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Introduction - A developmental
perspective on robotic intelligence

The ability to continuously adapt to their environment and to learn to recognize new objects
will be fundamental for future service robots if they eventually operate in everyday environ-
ments and in interaction with people. Research in computer vision for object detection made
tremendous progress in the past decade thanks to the apparition of efficient visual features
and the improvement of machine learning models. However, performances are still limited for
autonomous robot operation and moreover heavily rely on the availability of good training
data that are by themselves difficult to obtain. In contrast, two year old children have an
impressive ability to learn to recognize new objects and at the same time to learn the object
names during interaction with adults and without precise supervision. We propose in this
PhD thesis to develop object and name learning approaches inspired by the children capabil-
ities following the developmental robotics approach. The goal will be to build computational
models which make it possible to match objects to words for a humanoid robot using human
interaction similar to the interaction taking place between children and parents.

With this objective, we will build on several researches recently conducted regarding
multi-modal object discovery using sound and images and we compared two topic models
in the framework of cross-situational learning to tackle ambiguities in the supervision. We
also studied how active learning strategies could improve performances and compare them,
in terms of behaviors, with human learning.

Robot learning in social context

Among the scientific breakthrough during the past two centuries, the invention of computer,
followed by the prosperity of computer science, has not only made huge progress within its
own domain but also revolutionize interdisciplinary subjects with other fields, such as biology,
psychology and cognitive science. Taking direct advantage of ever-changing technology and
algorithm progress, the traditional generation of robotics has successfully been applied to
factory manufacturing, automatics and controlling systems. It exhibits superior performances
in well-predefined, targeted and repetitive tasks, executing precisely the orders programmed
by humans.

However, despite the computational and logical power it possesses, computer seems weak
at acquiring or even approximating the human intelligence which we humans take for granted,
for instance in terms of graphical pattern recognition, CAPTCHA Program has been launched
since 1996 to successfully prevent computer’s controlling the access of web service 1. Therefore,
if robotics really intends to evolve beyond the industrial level, from pure mechanical equipment

1http://en.wikipedia.org/wiki/CAPTCHA#Origin_and_inventorship
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2 Introduction - A developmental perspective on robotic intelligence

to life-like human companions or partners in the domain of personalized service, it has to come
closer to how human intelligence works, and in particular, to be endowed with some basic
mechanisms (existing during the growth of infants’ first several years after birth) to learn new
skills.

Supported by mathematics or inspired by biological phenomena, some intelligent algo-
rithms that serve as the brain of robot have been proposed to simulate the biological intel-
ligence, from both the structural (e.g. Neural Networks [78], Genetic Algorithm [46], Ant
Colony Optimization [53], Physarum Algorithm [205]) and functional (e.g. D-S theory of evi-
dence [49], Non-negative Matrix Factorization [112, 113]) perspectives. These methods alone
could serve as effective tools and achieve satisfactory results in some particular tasks. Yet
due to their use as tools, it is impossible to expect any such algorithm alone to go beyond
what has been initially envisioned by the robot developer.

Therefore, social learning mechanisms are studied to exploit the human-robot interaction
as a means to upgrade the “wisdom” of robot, since this kind of social-guided learning could
help the robot take full advantage of human while acquiring new skills. Some biologically
inspired social learning mechanisms include emulation, mimicking, imitation, stimulus en-
hancement [189, 28], and currently, one of the issues for this domain still not satisfactorily
solved is to decide what is the trade-off between the amount of guidance (social) and explo-
ration (self), because social interaction usually requires a high level of human involvement.

As for guidance-based methods, [76, 27] for example, propose methods of learning by
demonstration, and [158] describes how the robot imitates demonstrated motor actions for
learning. Besides, [110] is an example of how natural language works for guidance based
learning. Generally speaking, if the social interaction is highly dependent on guidance, no
matter what the differences among each methods [188], the human partner should be at the
expert level, knowing not only the way of communicating with robot but the clear picture of
how robot would perform in the task as well.

The exploration based method, on the contrary, requires much simpler signal from human
participants to adjust the learning procedures. [187, 91] seek to control the reward signal
for the reinforcement learning, and the role of human advice is discussed in [121]. Similar
works of the method in [121] also include the control over agent’s action during training [172].
While the laborious step-by-step human efforts are reduced at a large scale, the contribution
of participants’ involvement are much limited and the human tutors should know exactly the
tricks to convey the message effectively to the robot for improving learning.

For improving the social learning for robotics, the ultimate goal is simple to state: the
robot should be able to learn from a human without special expertise, through progress little
by little, and discover features and traits by itself from seemingly ordinary information source.
In this framework, a human as tutor or a robot as learner (not excluding its possible role of
tutor as well), are embedded in a social environment, structured like a network where every
participant should be aware about its optimal goal (eg. of whether becoming a tutor or
learner at the moment) and how to make an optimized use of current resources in an adaptive
learning manner. As one of pioneering works following this route, the Never Ending Learning
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[132] has initiated the study of paradigm that is supposed to help robot handle many different
types of knowledge from diverse experiences with the learning duration over many years, by
reasoning over its beliefs.

Without going this far in this research direction, we will focus our work on scenarios where
we take advantage of simple and natural supervision by a human teacher in order to learn
words and their corresponding definitions in the visual domain. We will therefore perform
experiments using only data recorded from naive human teachers that do not have special
knowledge of the underlying algorithm used for learning.

Word and object learning

Word and object learning, on top of which effective communication could be established, is
one of the bases of cognition in a social context. The objective of word and object learning
can be defined as object or feature labeling by using corresponding words, or as word-referent
matching. The open issue lies in the situation that in ordinary teaching situations, if no
constraint is imposed, there could exist multiple mappings from word to referent, known as
“indeterminacy of reference” problem, proposed by [145].

Regardless of the stage of life, whether childhood or adulthood, there are respectively
specific strategies and mechanisms which appear active and primarily applied to decrease or
even eradicate the issue of referential indeterminacy during different ages. And recent studies
which aim at decreasing the uncertainty of potential referents involve two main directions:
cross-situational [144, 3] and social learning [8, 9]. Cross-situational learning, as an unsuper-
vised learning method, means that the learner does not receive feedback on its performance
but merely relies on finding and analyzing common factors between different ambiguous sit-
uations, however, the supervised social interactive learning requires that the learner receive
feedback during interaction [30]. And both methods indicate that word-object learning could
not be accomplished at one stroke: on one hand, cross-situational learning provides multiple
scenes, which are relating to one specific word, the learner is supposed to make use of the the
intersection of meanings among those scenes to get the possible referents; on the other hand,
interactive learning also has the request that the teacher conduct sufficient times of guidance
over potential mapping for the learner.

Despite the mechanisms and strategies already proposed, the problem of ambiguity still
sets up obstacles for the word’s referent learning. There are two main types of ambiguities
that the models and experiments described in the remaining of this thesis will tackle:

1) Referential ambiguity: Imaging a simple situation in which an object has features
in different modalities, for example shape and color, and a minimal description
of this object contains two keywords. The referential ambiguity exists in the two
possible correspondences between the words and the features. This ambiguity is
even more present in cases in which multiple objects are presented to the learner
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while only one general descriptive sentence is given by the teacher: the mapping
of a set of keywords (among many) to its corresponding object (among many) is
also undefined;

2) Linguistic ambiguity: The sentences for the description of an object or a set of
objects might also contain not only keywords but other grammatical words, mood
words, or speaking errors as well, so the algorithm should try to distinguish key-
words from other words considered as noise in this context.

A developmental robotics perspective

The goal of developmental robotics is to develop robots that are able to learn incrementally a
large variety of tasks by taking inspiration on the way human children develop and learn. It
studies ways of transferring the mechanism of how humans (especially infants) gradually ac-
quire knowledge and cognitive abilities to the applications of robotics. For early age children,
it is an amazing show of intelligence and curiosity to see them observing the surroundings,
recognizing their own bodies, exploring and interacting with the physical world. On one hand,
children can discover an object by manipulation and exploration, analyzing its size, shape,
texture, color, etc.; while on the other hand, they show an ingenious language learning ability
[107, 106] from birth to 3 or 4 years old. And the progress made by these efforts will be far
more enhanced if effective interaction with adults is introduced. A more detailed analysis
about the different stages of mental developments of infants can be found in the Piaget’s
theory of cognitive development [143].

In order to develop a robot with the same types of skills as human infants, six principles
from developmental psychology [173] indicate possible directions for further breakthrough:
1)multi-modal learning, 2)incremental development, 3)learning through physical interaction,
4)exploratory behavior, 5)social interaction, 6)symbolic communication.

Alan Turing [191] and other pioneers of cybernetics first proposed the idea that led to
developmental robotics. Among these, there is the idea of letting the robot’s learning be
"autonomous throughout its lifelong mental development" as proposed in [198] and developed
by follow-up practices including the aforementioned work of Never Ending Learning [132]. A
key observation that we will use in this thesis is the fact that, when facing the vast space of
learning, curiosity often guides the infants’ exploration and sets constraints for the learning
processes. Therefore artificial curiosity [138, 33] was developed for simulating the intrinsic
motivation of infants for seeking new information. As an attempt for a comprehensive appli-
cation of all above theories, the combinatorial learning with social guidance was studied in
[33], capable of autonomous new object detection and tracking, sensorimotor coordination,
intrinsic motivation and hierarchical learning, which are investigated on the iCub humanoid
robot platform.

In our thesis, we will study how curiosity, and more generally active learning, can be used
to improve the learning performance of an agent learning word-referent associations.
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Objectives

The objective of this Ph.D research, on a general manner, is to establish a framework of
interactive learning system by means of computational modeling which is applicable for a
humanoid robot, primarily tackling the word-object learning issue by focusing on the two
basic examples: the accurate associations between color features and color adjectives along
with shape features and nouns, as foundations for more complicated cognitive researches in
future for developmental robotics. While other word categories, such as adjectives for size,
spatial indication (left, right..) or verbs could be studied, we focus on these simple concepts
in order to be able to study in depth the algorithms and the active learning behaviors.

Our concern and interest are concentrating on the inspiration from very young infants,
who are at dawn of acquiring external knowledge and have little knowledge about linguistics,
especially in terms of syntax and grammar. In this case, other than resorting to ontological
tools such as WordNet, our efforts are engaged in the true early phase of cognitive learning,
so early that not only feature knowledge appears unknown before but linguistic ability of a
learner is supposed to be at its very basic level. What’s more, in order to concentrate on
the disambiguation potentiality of proposed computational models, we likewise put aside the
interaction techniques to decrease the level of ambiguities, such as joint attention or precise
pointing which on the contrary lead to easier data and less challenging environment to learn.

Besides, we found that most of the word-object learning studies highlighted the evaluation
for effectiveness by resorting to how well they perform in explicit tests. However, what exactly
the results are, which the learning stage manages to achieve, is rarely tackled. Therefore, apart
from using traditional task performances for evaluation, this thesis is also going to discuss the
form of the factorized components as the acquired knowledge with visualized demonstrations
as well as their evolution.

In addition, as emphasized previously, since the adaptive learning ability will be at the
crux of the future trend of robotics, we instantiate this topic by studying the applications of
active learning strategies based on intrinsic motivations to incremental learning processes as
an endeavor to promote the learning speed as well as quality, compared to those by just using
passive data gathering.

In fact, more challenges stand in the way of building a complete modeling of word-object
learning, and the most significant of them are listed in the following:

1. Feature extraction and presentation
The information acquisition for experimental data normally concerns multimodalities:
computer vision, audio feature and linguistic symbols. Normally, raw information should
be processed into the space of features which are compatible with the algorithms, effec-
tive in characterizing, taking less storage and being invariant to the changing conditions
before further analyses. In this thesis, vision and audio raw data are dealt with, espe-
cially for vision feature and we use two descriptors: a simple one (ie. pixel) and a more
complex one (ie. HOG);
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2. Learning algorithms
In general, the algorithms applied should prove not only effective and efficient in pro-
cessing feature data but robust to noise, disturbances and uncertainties as well. In the
case of this thesis, we expect the proposed algorithms, apart from the basic objective of
discovering feature-word associations, to be compatible with an adaptive environment
where special learning strategies are applied, capable of dealing with ambiguities and,
in contrast to more traditional supervise learning, less dependent of good and precise
training data;

3. Human-robot interaction
Since the research of this thesis is from the inspiration of parent-infant interactions, it
would naturally becomes one of the objectives to see if some characteristics of interac-
tion behaviors derived from human-robot communications are in accordance with those
from humans. And evidently, this behavioral study is highly relevant to the rules and
protocols that we deliberately design as the platform. In our thesis, in order to exploit
attentively from the aspect of learning algorithm, in particular related to behavioral
studies, we make use of simulations as substitution of real robot-human participations
(although applied at the very beginning) to get experimental data more efficiently, on
which analysis could be conducted at the statistical level to arrive at more convincing
conclusions.

Contributions

This thesis is mainly focused towards complete computational models for word-object learn-
ing, in particular in terms of word-feature associations by means of basic interactions between
a human teacher and a humanoid robot as a learner, and special concern has been made about
the two central issues in the domain of machine learning and developmental robotics: cross-
situational learning and active learning and their applications in a series of systematically
designed simulation experiments. The highlights of contributions of the thesis are listed as
follows:

• Significant modifications have been made on NMF so as to solve its related two open
issues: the determination of number of components as well as the stability of decomposed
results that could be regard as simple concepts in the form of “one modality-one word”
and adapt the demands of our experiments;

• Based on the idea of topic model, two computational models by applying Non Negative
Matrix Factorization and Latent Dirichlet Association respectively have been built,
capable of fulfilling tasks of cross-situational learning in which two sort of ambiguities
exist: referential and linguistic;

• Two active learning strategies have been proposed, which are compatible to the proposed
learning models, in an effort to benefit the incremental learnings;
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• Series of experiments simulating word-object learning in different scenarios haven been
conducted, including batch learning and incremental learning, learning with ambigu-
ous/unambiguous or noisy/noise-free data and active learning vs. random learning.
The analyses of these experiments are not only for the validation for our proposed
algorithms but also contributing to the fundamental studies about cognitive thinking
behaviors via the comparison of performances between humans and learning models
that really control the actions of humanoid robots;

• In terms of experimental settings, a complete image processing pipeline concerning
object segmentation and object feature computation, along with audio to text conversion
has been applied in our research.

The majority of the works of the thesis was presented in the following publications:

• Yuxin Chen, Jean-Baptiste Bordes, and David Filliat. “An experimental comparison
between NMF and LDA for active cross-situational object-word learning.” In: ICDL
EPIROB 2016. 2016

• Yuxin Chen and David Filliat. “Cross-situational noun and adjective learning in an
interactive scenario.” In: 2015 Joint IEEE International Conference on Development
and Learning and Epigenetic Robotics (ICDL-EpiRob). IEEE. 2015, pp. 129–134

as well as contributions to workshops as:

• Yuxin Chen, Jean-Baptiste Borde, and David Filliat. “A comparative study on active
learning behavior in word-meaning association acquisition between human and learning
machine.” In: ICDL-EpiRob 2016 Workshop on Language Learning. IEEE. 2016

• Fabio Pardo, Yuxin Chen, and David Filliat. “Effects of robot feedback on teacher
during word-referent learning.” In: ICDL-EpiRob 2015 Workshop on Mechanisms of
Learning in Social Contexts. IEEE. 2015

additionally, a journal publication is currently under submission.

Overview of the manuscript

In the remainder of this thesis, related works of word-object learning will be presented by in
Chapter 1. We then present our own models and experimental settings mainly from aspects of
the multimodal signal processing for feature extraction and presentation, the modeling of the
the learning behavior by applying and improving topic model algorithms and the introduction
of available active learning strategies in Chapter 2.

The experiments starts from Chapter 3, in which batch learning scenarios are established
in order to validate our modifications on Non negative Matrix Factorization (NMF), especially
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involving the issue of auto-estimation of the NMF dictionary size (ie. number of decomposed
factors) and the quality of learned decomposed factors by resorting to the ground truth data.
We then focus on incremental scenarios in Chapter 4 where ground truth data are replaced
by real interactive testing tasks as the evaluation criteria and our proposed models will be
challenged from the simplest experiment to more and more complicated ones by increasing
ambiguities and noise as well as adding active learning strategies. In addition, data using a
more complex vision feature are implemented to further validate our models and comparative
studies between performances of our models and those of humans are also demonstrated.

Finally, Chapter 5 discusses several aspects of our proposed models while chapter 6 gives
a short summary of our work as a conclusions before discussing potential future works.
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1.1 Overview of word-referent learning problem

The objective of word-referent learning is to achieve an accurate association between a set of
real world elements (for example an object identity or an object feature such as color) and
another set of discrete word symbols that are used for communication. This problem, in a
larger perspective, can be stated as language grounding [72] or symbol grounding [81, 178,
109, 202].

As described in the “talking head” experiment [179], the goal is to establish the various
relations described in a semiotic square picturing the bidirectional connection between an
external referent and an utterance through an agent perception and its internal meaning
representation (Figure 1.1):

9
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External 
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Sensory 

stream

UtteranceMeaning

Figure 1.1: Semiotic square linking an uterance and an external reference.
• The External referent is an entity in the real world such as an object which will be

the subject of the Utterance.

• The Utterance is the set of words pronounced by an agent which can be complete
natural sentences, comprising nouns, verbs, adjectives, articles, etc. Obviously, some of
the words are related to the description of the referent while others are related to the
grammar or indicate other concepts.

• The Sensory stream is the perception of the referent by the agent and depends on
the modalities of information source. In most cases, vision is applied to characterize the
referent in terms of features (like shape, size, color).

• TheMeaning is a set of internal discrete symbols representing features from the sensory
stream. These symbols have associated Utterance that make it possible to express
them.

In the frame of the semiotic square described above, language grounding is engaged in
the correct mapping between the Utterance and the properties of the External referent
through the mediation of the Sensory stream and the Meaning. While all parts of these
mappings could be learned, we will focus on learning the mapping between the Sensory
stream and discrete Meaning and between Meaning and Utterance, assuming a fixed
mapping between the External referent and the Sensory stream (but considering noise).
In the remainder of this document, we will most of the time refer to this sub-problem as
“word-referent learning”.

Many researches have been conducted in the field of word-referent learning, with the goal
of grounding various contents, including personal pronouns [127, 71], colors, shapes [148], set
of multiple properties [126], locations [177] and spatial relations [146, 149, 42, 170, 204, 186,
184, 185]. In our work, we focus on the relatively simple yet primary task of learning words
related to object identities as well as features and concentrate on studying various algorithmic
aspects that influence the performance of a system performing this task with data obtained
by interaction with a human teacher.

Applying word-referent learning in a human-robot interactive scenarios leads to potentially
both theoretical and pragmatic problems. We give a short overview of these problems here
before detailing them in the following sections:
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• Perception problems, which can be divided into two parts:

(a) speech perception problem, where individual words are to be properly seg-
mented from natural fluent sentences before they are endowed with real world
meanings. The simplest way to carry out the communication is that both human
and robot utter only keywords (ie. feature related words, for instances, nouns and
adjectives describing attributes), however, in realistic parent-child or human-robot
interactions, we seldomly observe that the speaker will just use keywords, but will
resort to more complex sentences comprising keywords (nouns and adjectives) plus
grammatical words (eg. articles, conjunctions, pronouns, interjections, etc.). In
human-robot interaction scenarios, the speech recognition may also frequently pro-
duce errors so that the speech modal data seem noisy because those grammatical
words and spoken errors will not be matched by any feature of real world objects.
Several solutions exists that can be categorized as grammar based and statistics
based and will be detailed later;

(b) object perception problem, where objects are to be firstly segmented from
the background, and then different feature descriptors (eg. appearance, shape,
color etc.) are computed to characterize the objects as the basis for recognition
algorithms. Although there are also recent experiments in which more than visual
features are used [5, 136], still visual perception plays a predominant role and
is still an active research area that is confronted to problems such as varying
environmental conditions that produce strong noise in object segmentation and
feature extraction.

• Choice of the word-referent learning algorithms in order to learn the correct
associations between words and features. Various algorithms have been developed in
the domain of machine learning, which can be presented in two approaches, either based
on statistics or on matrix decomposition. Not only are the principles different, but they
have their own respective pre-processing necessities and preferred working conditions
which lead to different integration problems in an interactive learning scenario.

• Choice of the learning strategy, which defines the interaction protocol between the
learner and the teacher. On one hand, strategies should be devised to limit the ambiguity
on the referred object on which to learn, so that the correct word-referent associations
can be formed. To solve this problem, there are strategies either directly removing the
ambiguity at the moment of perception by using non-verbal communication techniques
such as eye gaze coordination [64, 25, 24, 134, 2, 79, 80] and shared attention [1, 157,
156, 48, 59] or, on a more global scale, by decreasing the effects of ambiguity via cross-
situational learning (learning through statistics on several situations). On the other
hand, humans do not simply learn passively, but have the capability to choose the
objects/words they want to learn, especially when then learning behavior is active for a
long period of time. Therefore, besides simply learning on a database, it is interesting
to perform incremental learning and active learning by choosing the examples so as to
learn faster.

• Choice of the evaluation criteria, which up to now can be characterized into the
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following categories:

(a) accuracy measure, also known as the correctness percentage of successful per-
formances in tasks such as categorizing objects [5], recognizing associations across
modalities [125, 123], testing linguistic operations (eg. speech segmentation, its
correspondence to a real word) [150] and matching word-object pairs [150, 201];

(b) direct comparison with ground truth raw data, for example in [136], im-
age retrieval performance is quantified by the root mean square (RMS) errors in
comparison with original image patches;

(c) phenomenal or behavioral observation and analysis. For instance, in the
Talking Heads experiment [178], the frequency of different words expressing a single
meaning and the category variance are plotted as the learning goes on. In [174],
the statistics are recorded of real human behaviors concerning fixation time to the
target against distracter objects, given different conditions and cases;

(d) other customized criteria that could be represented by works in Naming Games
[164] where the traditional success rate (ie. accuracy rate) is not working consid-
ering that the common shared vocabulary among agents might converge to only
a subset of all available meanings and other measures like the mean time needed
for convergence as well as the average number of meanings per agent does not
fit the demand either. As a solution, which is based on information theory [166],
the number of possible configurations according to the currently known words and
meanings is defined in bits by applying a logarithm and able to represent a coherent
distance to global convergence.

This thesis focuses on cross-situational word-referent learning with active learning strate-
gies. We will aim at implementing these models on a humanoid robot in interactive scenarios
by applying and improving related learning algorithms and visual processing techniques, which
will be detailed in the later sections.

1.2 Existing models of word-referent learning

Regarding the current approaches to word-referent learning, [40] proposed to categorize the
symbol grounding problems as physical symbol grounding (firstly defined in [196]) and social
symbol grounding (originally proposed by [29]). While the physical symbol grounding means
the grounding of symbols to real world objects by a physical agent (eg. robot) interacting in
the real world, the social symbol grounding refers to the collective negotiation for the selection
of shared symbols (words) and their grounded meanings in (potentially large) populations of
agents.

Our work is mainly focussed on the domain of physical symbol grounding. Existing models
in this category mainly differ on the following aspects:
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1) the scenarios (experimental settings) they are working on. For example, is it a
learning machine system or a real robot which takes part in the learning? Does
the learning takes place in an interactive scenario or just database learning?

2) the data types which are used, concerning vision (local descriptors or global de-
scriptors), speech (raw sound or symbolic words) and even other modalities;

3) the learning algorithms that are applied not only for the objective of word-referent
learning but also for classification or identification.

Yu [201] presents a multimodal learning system that can ground spoken names of objects
in their physical referents and categorize those objects simultaneously from vocal and vision
input. For the audio part, a natural language processing module processes raw audio data
using lexical and grammatical analysis on the utterance consisting of several spoken words
(ie. keywords as nouns) so as to convert the continuous wave pattern into a series of rec-
ognized words by considering phonetic likelihoods and grammars. For visual processing, a
head-mounted camera is used to get visual features (including color, shape and texture de-
scription) that are extracted as perceptual representations. These feature sets are labeled
with temporally co-occurring object name candidates to form many-to-many word-meaning
pairs. For learning, the problem of multimodal clustering and correspondence is finally solved
by the proposed Generative Correspondence Model.

Mangin [123] proposes an approach based on Non-negative Matrix Factorization for learn-
ing complex human movements applied to data recorded in a database. The learning system
associates motions with sound and word labels. The motion part encodes the skeleton posi-
tion and velocity acquired from a single human dancer through a Kinect device and the raw
sound information is taken from the Acorns Caregiver dataset [4].

Araki [5] proposes a multimodal (vision, sound and haptic properties of object) approach
implemented on a real robot, focusing on learning object concepts by using Latent Dirichlet
Allocation (LDA). The multimodal data are acquired autonomously by a robot equipped
with a 3D visual sensor, two arms and a small hand-held observation table that serves as
the platform for capturing multi-view visual images of objects and complemented by a small
amount of linguistic information from human users.

Noda [136] uses deep neural network to achieve the association of cross-modal information,
including image, sound and motion trajectory. The memory retrieval, behaviour recognition
and causality modeling experiments are tested on a small humanoid robot NAO, developed
by Aldebaran Robotics 1.

The Talking Heads [178] is another model of language acquisition among a population of
agents, which consists of a visual perception system, a symbolic communication channel, and
an associative memory. In this experiment, a pair of agents are chosen randomly as “speaker”
and “hearer” to accomplish series of guessing games on an open-ended set of geometric figures

1http://www.aldebaran-robotics.com/Downloads/Download-document/192-Datasheet-NAO-
Humanoid.html
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Model Scenario Data Algorithm

Yu [201]
Learning
Machine &
Interactive

Color, Shape,
Texture, Raw

Audio
Generative Correspondence Model

Mangin
[123]

Learning
Machine &
Database

Motion, Images,
Raw Audio Non-negative Matrix Factorization

Araki [5] Real Robot &
Interactive

Image texture,
Raw audio,

Haptic
Online Multimodal LDA

Noda
[136]

Real Robot &
Interactive

Image, Sound,
Motion Deep Neural Network

Talking
Heads
[178]

Learning
Machine &
Interactive

Shape, color,
Symbolic Words Categorization trees

CELL
model
[150]

Learning
Machine &
Database

Shape, Raw
Audio Clustering and mutual information

Table 1.1: Overview of the word-referent learning approaches.

pasted on a white board so that a shared lexicon as well as the perceptually grounded cate-
gorization of objects are self-organized within this population without human intervention or
prior specification. The learning is based on the gradual construction of categorization trees
that associate features and words.

The CELL model of Roy [150] (Cross-channel Early Lexical Learning) is a cross-situational
model of word-referent learning from multimodal sensory input. It has been implemented in
the experiment of grounding shape names acquired through a word acquisition model based
on directly processing raw data from spontaneous infant-directed speech which are paired
with video images of single objects. The main structure of CELL is composed of speech
processing, computer vision, and machine learning algorithms together with the settings of
STM (short-term memory) and LTM (long-term memory). STM serves as a buffer where pairs
of recurrent co-occurring utterance-shape events (also known as audio-visual prototypes or
AV-prototypes) are filtered and LTM further applies a recurrence filtering by first clustering
the AV-prototypes from STM and then consolidating them based on a mutual information
criterion [43] as the final lexical units.

The main aspects of the selected existing models are summarized in Table 1.1.

1.3 Perception for word-referent learning

Since word-referent learning entails the association of both linguistic words and (mainly)
vision features, the experimental settings and computational models have to deal with the
perception of speech and vision before applying algorithms for the association.
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Before detailing the speech and visual processing approaches used in the word-referent
learning context, let’s first introduce a very generic model used in several systems: the Bag
of Words (BoW) modelling approach. This approach has been used in many domains, rang-
ing from text processing to computer vision and acoustic processing. BoW theory assumes
that an object (possibly a document, an image or an audio stream, etc) is represented as
an orderless collection of words, vision features or acoustic events whose set is defined as a
dictionary. Therefore, a described object can be encoded by the frequencies of its words (fea-
tures or events) associated with the dictionary, while discarding most sequential information
and geometric relationships. Generally speaking, the BoW algorithm consists of the following
steps: raw feature extraction, feature quantization into dictionaries (also called codebooks) of
words (quantized features or events), and representation of data as the word frequencies for
each document. The BoW approach has the advantage of providing a fixed size and sparse
data representation that is suited as input for many learning algorithms.

1.3.1 Speech perception

Speech perception has been treated with two approaches: either by processing directly the
raw audio speech data or by first converting voice to text before analysis. Besides this
distinction, another distinction can be made on the way models deal with noisy speech data
from a complete natural sentence comprising non-referent articles, conjunctions, pronouns,
interjections, and even spoken errors, apart from key words such as nouns and adjectives.
Existing solutions either require that the speaker only utter keywords or make use of grammar
or statistics to process the noisy input.

1.3.1.1 Raw audio wave based approaches

Some models directly take the raw audio signal, not assuming a preliminary segmentation
and filtering of the words.

Mangin et al. [123] proposed a BoWmethod based on histograms of acoustic co-occurrence
(HAC) presented by Van Hamme in [194] and in [23, 56]: from the spoken utterances, the
Mel-Frequency Cepstral coefficients (MFCC) is computed together with its first and second
order time derivative; then MFCC and its derivatives are split at multiple time scales into
small chunks, which will be vector quantized into a dictionary. Using this dictionary, each
utterance is represented by a sequence of discrete acoustic events each corresponding to an
occurrence of a chunk from a cluster; and the final representation of the utterance will be an
histogram over the occurrences and the successive co-occurrences of pairs of the events above.

CELL model [150] directly deals with raw acoustic input which is first converted into a
spectral representation using the Relative Spectral-Perceptual Linear Prediction (RASTA-
PLP) algorithm [83] for the purpose of filtering out the nonspeech components of acoustic
signals. This is done by using bandwidth filtering, because the variation frequency of non-
speech signals always appear either faster or slower than that of speech signals. The filtered
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signals are processed with an exponential transformation and scaling so as to be presented as
a set of 12 RASTA-PLP coefficients estimated at a rate of 100 Hz followed by an analysis with
a recurrent neural network (RNN) for computing a probability distribution over 40 phonemes,
ranging from “aa”, “ae” to “z”. The RNN is trained off-line using the TIMIT database of
phonetically transcribed American English speech recordings [66]. Finally as a result, input
speech is represented as an array of probabilities for the 40 phonemes.

1.3.1.2 Text based approaches

Other approaches take already recognized words as inputs, thereby directly using symbolic
information. There are many specialized softwares and online services to process raw audio
wave data and convert them into recognized sentences. Example of these cloud processing
services include Google speech-api2, IBM watson 3 or Microsoft Bing Speech API 4.

In [201], “Dragon Naturally Speaking” software is used for speech recognition by consider-
ing phonetic likelihoods and grammars. Besides, Link Grammar Parser [171], which is capable
of labeling words’ syntactic categories, is used to extract from transcripts the nouns, among
which the nouns belonging to physical objects or entities are selected by applying WordNet
[129]. Using these pre-processing, the model is relying on a set of noiseless keywords.

In [5], a robot collects sentences uttered by a human participant as the multimodal per-
ception of the observed object goes on. Each description of object appears as continous speech
signals which then are converted into sequences of words by utilizing morphological analysis
which makes it possible to extract real informative linguistic components such as nouns and
adjectives that are then treated as a bag of words. Finally, a histogram whose length equals
the number of selected informative words is generated as the word information of objects.

In the Talking Heads experiment [178], speech recognition is not used since the goal of the
experiment is to show the construction of a shared vocabulary between agents, but not to align
the meaning of human words to agent perception. Therefore all agents have Internet con-
nections where they directly exchange symbolic information, without verbal communication,
thus emulating a perfect word recognition system.

Note that the Bag of Words provides a very simple representation of a data, but overlooks
the words ordering. Other language representations could be used, such as the "n-grams"
which is very popular in the Natural Language processing domain since it can easily be
learned through the frequency calculation of occurrences in a database. It has proved very
efficient for speech recognition, since it catches the order of the words. However, even 3-grams
and 4-grams require very large model since, for N words, N3 and respectively N4 parameters
need to be learned, even with backoff methods which make it faster. Such models are therefore
rarely used in the language grounding community.

2https://github.com/gillesdemey/google-speech-v2
3https://github.com/watson-developer-cloud/speech-to-text-nodejs
4https://github.com/Microsoft/ProjectOxford-ClientSDK/tree/master/Speech

https://github.com/gillesdemey/google-speech-v2
https://github.com/watson-developer-cloud/speech-to-text-nodejs
https://github.com/Microsoft/ProjectOxford-ClientSDK/tree/master/Speech
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1.3.2 Visual perception

Vision is the most frequently used modality for word-referent learning, but the raw stream
of images from a camera carries a lot of redundant information which not only makes the
data processing difficult but also submerges the useful information. Therefore, dimension
reduction, feature extraction or object segmentation are common processing steps applied
before learning word-referent associations.

Figure 1.2: The diagram of visual processing in Yu [201].
The visual perception in the model of Yu [201] takes place on a simple uniform background,

making object segmentation relatively easy. A head-mounted camera captures sequences of
images continuously and a position sensor tracks the movement of the head. When the head
is detected stable, a snapshot of the scene is taken together with the temporally co-occurring
spoken utterances. Objects are extracted using color segmentation. Each object extracted
from the scene is represented by histograms of features including color, shape and texture
properties. By defining a discrete color space on the basis of color axes (e.g. red, green,
blue) and counting the number of times each color unit from the color space occurs in the
image array [181], a 64-dimensional color histogram is obtained. The shape feature histogram
which is 48-dimensional in length is calculated on top of the multidimensional receptive field
histograms capturing shape-related local characteristics (eg. neighborhood operators and
local appearance hashing) [159]. As for the texture presentation of an object, assuming that
local texture regions are spatially homogeneous, Gabor filters [62] with three scales and five
orientations are applied to the segmented image and the mean and the standard deviation of
the magnitude of the transform coefficients are used to form a 48-dimensional texture feature
vector. In total, histograms of color, shape and texture form a 160-dimensional feature vectors,
which will finally be transformed in a lower dimensional subspace of 15 dimensions in total by
using Principle Component Analysis (PCA). The overall diagram is depicted in Figure 1.2.

Although Mangin’s [125] grounding objective is mainly towards choreographies (dancer’s
movement), vision is also used to encode object appearance (see details in [120]): pictures
are acquired through a Kinect camera, then objects are segmented from the background by
using depth and motion detection and characterized by local features (SURF keypoints [12])
and by their colors in the HSV color space. These descriptors are quantized in dictionaries
and objects are represented following the Bag of Words approach by an histogram of these
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feature occurences.

The information perception in Araki [5] also depends on vector quantization (k-means
algorithm) and feature extraction. At first, a small hand-held observation table is prepared
for the robot when it takes a target object on the observation table to get non-occluded
various views with necessary manipulations. Then in each image frame of the observed views,
object is detected and segmented simply by applying the planar segmentation algorithms as
described in [152, 153] which is followed by the feature description through the computation of
36-dimensional PCA-SIFT descriptors [101]. In fact, every image is characterized by from 300
to 400 feature vectors, and considering that there are ten image frames for one object, thus
for every object there would be about 3000-4000 features, each of which is vector-quantized
using a codebook (generated by k-means algorithm in advance) with 500 clusters. Finally, a
histogram for the bag of features representation is formed.

In Noda [136], image sequences of the scene (an observation of the manipulation of objects
by the robot) are used for the training of deep neural networks. This network is trained to
reconstruct the images using a limited size in its inner layer (a model called an auto-encoder)
and the corresponding feature vectors is taken from the inner layer. In this work, the full
images are used without object segmentation as the objects represent a very large part of the
field of view given the small size of the robot’s hand and fingers.

The Talking Heads experiment [178, 179] works with simple colored geometric objects and
deals with the segmentation of objects by color thresholding thanks to a simple background
(ie. a white board). For each object, a set of features are computed: area, hpos (horizontal
position), vpos (vertical position), height, width, bb-area (the area of the bounding box), gray
(the average gray-scale value of the pixels in an object), r, g, b (the average redness, greenness,
and blueness values in a segment), edge-count (the number of edges in a segment), angle-count
(the number of angles in a segment) and ratio (the ratio between the area of the segment and
the area of its bounding box).

In the CELL model [150], only object shapes are observed and used for the lexical ac-
quisition. A 3-D observation of an object is carried out on top of a view-based approach in
which a group of two-dimensional images of an object is captured from multiple viewpoints.
Simplification which facilitates the vision perception includes an uniform background and the
fact that referent objects are presented single and unoccluded to the system. Besides, all
the visual data are generated off-line. As for the segmentation, a Gaussian modeling of the
illumination-normalized background color is estimated so as to classify background as well as
foreground pixels, and the large connected regions near the center of an image indicates the
presence of an object. The shape of an object is represented by an histogram describing the
shape of its boundary. Finally, the 3-D representation of an object in terms of shape is based
on a set (noted as view-set) of two-dimensional histograms representing different views. In
order to compare two objects, the distance between these object is computed as the sum of
the four best matches (using χ2 divergence) between histograms of two view-sets.

Object representation and recognition is actually a very active research area in computer
vision. Besides the approaches presented above and used in word-referent learning models,
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Figure 1.3: The Talking Heads experiment (from [178]).

more powerful representations exist and could be used in these models. We will however
not try to give an overview of the existing feature presentation approaches, but in particular
present the Histogram of Oriented Gradient (HOG) representation that we use in some of our
experiments.

Figure 1.4: HOG image of Lena.
HOG, primarily proposed by Navneet Dalal and Bill Triggs [45], is based on the counting

of occurrences of gradient orientations in localized portions of an image, thus less influenced
by geometric and photometric transformations as well as the scaling of size. The image is
divided into cells which are small connected regions of pixels, and within each cell a histogram
of gradient directions concerning every pixel is compiled. Besides, the contrast-normalized
strategy is applied across a block, normally containing several cells, to enhance the invariance
to changes in illumination and shadowing by normalizing all cells within the block via several
effective normalization methods in [45, 119]. HOG originally focuses on pedestrian detection
in static images and then expands its application to the static detection of other objects and
even the detection in videos. An example of HOG could be found on the processing of Lena,
shown in Figure 1.4.
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1.3.3 Other modalities

Apart from visual and speech perceptions, there are other modalities that contribute to the
feature presentation of the observed objects, mainly including motion, sound and haptics.

1.3.3.1 Motion

Motion perception is highly related to the grounding of verb, referring to a physical action
or a temporal flow of events. According to its complexity from low to high, the objectives of
motion perception could be roughly categorized as

• Motion profile based, where the system characterizes motions only in terms of time-
series data concerning relative-and-absolute positions, velocities, and accelerations of
the participant objects and applies stochastic reasoning (often in the form of hidden
Markov models) to classify the time-series data into event types;

• Event logic based, as a result of the analysis of the force-dynamic relations between the
participant objects. Instead of motion trajectory oriented, the time-series data will take
the form of the truth values of force-dynamic relations between the participant objects
as a function of time. Finally, by applying logical reasoning in the form of event logic,
the classification of events is executed.

Evidently, the event logic based motion perception, which is firstly proposed by Siskind
[169] by adopting Talmy’s theory of force dynamics [182], has advantages over the Motion
profile based method on several aspects, such as it is less sensitive to a wider variance in
motion profile (eg. the angle and velocity of the participant objects), not influenced by the
presence of unrelated objects in the field of view and capable of handling complex events
(eg. sequential, overlapping or even hierarchical events). However, on considering the word-
referent learning scenarios of related works, we find that they most adopt the framework of
the first motion perception category, mainly due to the fact that most actions in experiments
remain simply at the motion level other than the event level.

For example, in Yu’s model [200], a simplified model is build, where body movements
(regarded as motion profiles) are mapped to action verbs, without inferences about causality
function and force dynamics described in [169]. Main procedures consist of action segmen-
tation and motion featuring. Based on the fact that actions mostly occur during fixations
of either eyes or head, user-centric attention switches, indicated by gaze and head cues, are
calculated and used for the segmentation of a continuous action stream into action units that
are then categorized by Hidden Markov Models (HMMs). From the raw position and the
rotation data of each action unit, the feature vectors consisting of the hand speed on the
table plane, the speed in the vertical-axis, and the speed of rotation in the three dimensions
are extracted for recognizing the types of motion rather than the accurate trajectory of the
hand movement.
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In the work of Mangin [125], motion is used as input in order to ground choreographies
(dancer’s movements). The data is acquired as 3D position of a set of skeleton points from a
single human dancer through a Kinect device and the OpenNI software that enables the direct
capture of the subject skeleton. By applying a simple geometrical model of human limbs, 12
angle values are calculated, representing the dancer’s position at a specific time. Further more,
angular velocities are computed out of 12 angular values for better descriptions of motion
features. These data are clustered and represented as histograms of position/velocities for all
angles.

In Noda [136], motion is represented by joint angle sequences of performing bell-ringing
behaviors by robot’s arms. For each joint angle data input, 10 degrees of freedom of the arms
(from the shoulders to the wrists) are used. The joint angles of both arms (as well as image
frames) are recorded at approximately 66 Hz, and a contiguous segment of 30 steps from the
original time series is used as a single feature vector describing the recent motion.

1.3.3.2 Sound

The perception of sound is specified for those objects (such as a bell) having intrinsic auditory
features under certain conditions, for example the manipulations performed by humans or
robots.

In Araki’s model [5], the sound information is used to characterize an object. When
the hand of the robot holds and shakes the object, the raw audio stream is processed to
a 13-dimensional MFCCs feature vectors before the vector quantization based on k-means
algorithm constructs a histogram.

In the model of Noda [136], the sound of objects is also used. It is generated mainly
because of the touch on the tip of a ring bell by the hand of robot. The pulse-code modulation
(PCM) sound data is recorded by a single channel microphone mounted on the forehead of
the robot, preprocessed by discrete Fourier transform (DFT5) that is then converted into a
feature vector by a deep auto-encoder .

1.3.3.3 Haptics

Haptic information contributes to characterize physical properties of an object such as its
materials. Araki [5] obtains the haptic information from a three-finger robotic hand with a
tactile array sensor: when the robot’ hand presses an object, the time series of data from
162 pressure sensors are collected and then transformed to 162 feature vectors, following the
bag-of-features approach with 15 codewords.

5https://en.wikipedia.org/wiki/Discrete_Fourier_transform

https://en.wikipedia.org/wiki/Discrete_Fourier_transform
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1.3.4 Summary of data representation

The approaches for encoding perceptual information have been described in the previous
section, and in terms of presenting data from a pragmatic point of view, the aforementioned
Bag of Words and histogram approaches are the most popular due to their convenient ways
of recording very different kinds of features while occupying limited data space.

In fact, although humans can process raw sensory information naturally and easily extract
their intrinsic features for further analysis and reasoning, it is still a computationally expensive
process for a learning machine or a real robot. Hence for any computational learning model,
perceived data should be processed in a way that only critical features remains, keeping them
prominent thus mathematically determinant, while limiting representation space, which is
expected to accelerate their processing.

Therefore the majority of related works, by using feature descriptors, characterizes modal
information on the basis of frequency presentation over a codebook of features, resulting in
histogram presentation whose dimensionality has been massively reduced. We will therefore
resort to similar approaches in our work, by designing data processing that results in data
representation in the form of histograms.

1.4 Learning algorithms

In the domain of word-referent learning, supervised learning approaches could be used by
giving samples of situations that correspond to each word to be learned. However, in realistic
interactive scenario such as when a child learns the meaning of words from his parents, such
detailed supervision is not available. On the contrary, as will be explained in more details in
Section 1.5, several sources of ambiguities in the referent objects and in the utterances have
to be dealt with. Considering the absence of ground truth in the above contexts, classical
supervised classification methods appear invalid and unsupervised learning algorithms should
be resorted to for the problems of word-referent associations.

Among various unsupervised-learning solutions, an effective approach for learning word-
referent associations, is the topic model approach. The goal of topic modeling is the automatic
discovery of the topics from a collection of documents. Topic models [19, 73, 75, 74, 88, 89] are
based on the assumption that documents are mixtures of topics, where a topic is a probability
distribution over words. As a generative model for documents, a specific topic model acts as a
simple probabilistic procedure by which documents can be generated. In order to write a new
document, one has to choose a set of topics from a topic distribution, followed by the choice
of words from these topics, obeying a topic-word distribution, and this generative iteration
continues until all words are chosen. As shown in Figure 1.5, if topics are well-defined by
following their respective distributions over words (see the far left), then a document can be
featured by a certain distribution over these topics (the proportion among topics as shown in
the histogram on the far right). Thus, topics are not directly observable, but give a structured
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presentation of seemingly unstructured data by bridging the connection between words and
documents.

Figure 1.5: An illustration of a topic model (from [18]).
A particular feature of the topic models is that they assume individual words’ exchange-

ability. Under this assumption, two sequences of words have the same density of probability
if they contain the same words but in different orders. This is the standard assumption of
the Bag of Words approach we proposed to use for data representation, thus making topic
models applicable to our problem.

Topic models have several interesting properties. First of all, they are unsupervised ap-
proaches that let latent topics emerge from the analysis of the original data, and since no
prior annotation or labeling is needed, they enable the automatic organization and summa-
rization of many kinds of data such as genetic data, images, social networks, etc. Secondly,
regarding the interpretability, the extracted topics can always find explanations either from a
probabilistic point of view or in a specified vector feature space, and these explanations make
it possible to devise good criterion for task like data comparison. Finally, latent topics can
deal with more than literal meanings, thus to some extent simulating humans’ comprehen-
sion from seemingly non-informative or misleading raw data while removing the noise from
the original raw data, for instance, tackling a situation in which a certain meaning could be
indicated by multiple words or a certain word corresponds to several real world meanings.

Nevertheless, we could not neglect its drawbacks that is mainly due to its word exchange-
ability assumption, rarely true in practice. By this assumption, the topic model also discards
the temporal and/or spatial information when generating a topic and hence ignores the se-
mantics of the context.

When boiling down to the applications of the word-meaning association learning, the
topic model will generate topics that could be considered a concept having manifestation in
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the different modalities. For example, the topic for “red” would relate a word label “red”
in the linguistic modality and correspond to a spectrum histogram representing red in the
visual modality. This kind of concept is called multimodal concepts in [125], where a learned
concept is represented by an histogram, consisting of three parts describing vision, motion,
and sound.

Topic models may be implemented by algorithms following different mathematical prin-
ciples, the main algorithms can be categorized as probabilistic models, such as Probabilistic
Latent Semantic Analysis (pLSA) or Latent Dirichlet Association (LDA) and matrix de-
composition models, such as Principal Component Analysis (PCA) or Non-negative Matrix
Factorization (NMF). In the remainder of this section, we will first give a brief introduction to
these algorithms and present their applications in related works. Before going to these topic
models, we will first review other algorithms that have been applied to the word-referent
learning problem.

1.4.1 Non Topic model approaches

Besides the wide use of topic models in the applications of word-referent learning/symbol
grounding, there have been also other non topic model approaches, based on, for example,
the statistical analysis of the directly observable variables or the low dimensional feature
learning from observations. Hence in this part, we briefly introduce a co-occurrence based
approach and a neural network based method, each one of them being representative to the
two mentioned categories respectively.

1.4.1.1 Co-occurrence based approach

Several algorithms working directly on co-occurrences between word and referent have been
proposed. In the CELL model [150], as an example of this category, a measure of mutual in-
formation in terms of co-occurence frequency between clusters representing words and cluster
representing object shape is used to find the most probable word-shape association.

As previously described, words are obtained through the conversion from the raw acoustic
wave data and shapes are derived from camera images. And in order to represent a spoken
utterance (of words) paired with a visual object shape, an audio-visual event or AV-event is
defined as {speech segment, object}. Figure 1.6 shows the diagram of the CELL model:

1) The short term memory (STM) works as a first-in-first-out buffer containing input AV-
events of a constant number (eg. limited to five), followed by the exhaustive searches of
the short-term recurrence filter for AV-events that share similar visual contexts and also
have recurrent/repeating legal speech segments (ie. containing at least one vowel). Any
AV-event that passes this filtering is called a AV-prototype, to be stored in the long term
memory (LTM);
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Figure 1.6: Diagram of the CELL model [150].

2) In LTM, however, the AV-prototypes contain noisy words (ie. words not referring to
objects, like “the”, “a/an”, etc.). Therefore, lexical items are created by consolidating
AV-prototypes based on a mutual information criterion. At first, the acoustic and visual
presentation of a new prototype is stored in the acoustic and visual feature space with a
radius taking into consideration pronunciation variance and visual noise. Then a mutual
information function [43] is applied for both the new prototype and all n AV-prototypes
in LTM as

I(A;V ) =
∑

i

∑
j
P (A = i, V = j) log

[
P (A = i, V = j)
P (A = i)P (V = j)

]
(1.1)

where P (A = i) = |A=i|
n is calculated as the proportion of the number of AV-prototypes in

LTM that shares approximately the same acoustic segment of the new prototype (ie. by
falling within the circle of the acoustic space illustrated on the left of Figure 1.7) against
the total number of n, then vice versa P (V = j) = |V=j|

n is for the case of visual prototype
and P (A = i, V = j) = |A=i,V=j|

n is jointly for both acoustic and visual prototypes. Note
that two radii – rA, rV are determined by a search procedure that maximizes I(A;V );

Figure 1.7: Illustration of the acoustic-prototype and shape-prototype marked as centers,
with acoustic radius and visual radius as allowable deviations (from [150]).

3) Finally, a lexical item is formed, by following a “winner-takes-all” strategy, when I(A;V )



26 Chapter 1. State of the art

Figure 1.8: An illustration of a neural
network with one hidden layer.

w0

w1

w2

wm

 

Σ

X0

X1

X2

Xm

Output

Activation 

function

Net input 

function

WeightsInputs

Figure 1.9: Diagram of data processing at a
neuron node.

exceeds an empirically set threshold, meanwhile all other AV-prototypes in LTM that
match this lexical item acoustically and visually are removed as the last procedure of
garbage collection filtering.

As a summary, the CELL model, 1). is based on the fact that elements truly concerning
either a referent or a word symbol co-occur frequently in contrast to the occurring behaviors
of noisy parts; 2). the co-occurring phenomenon is proved effective in a statistical manner
to validate real word-referent pairs across different situations. Nevertheless, problems exists
when applying the co-occurrence based approach that it is difficult to deal with synonym and
polysemy and the model has to endure heavy computational burden as the learning samples
increase.

Other approaches using similar strategies will not be detailled, but Hypothesis testing
[128, 190] is based on the idea that a learner selects the most plausible interpretation (i.e.
one referent) of a new word, which would be confirmed (hence remained) or falsified in later
exposure to this word. In the second case, the old referential candidate is replaced by a new
hypothesis. Associative learning [93] stores word-object associations between all co-occurring
stimuli (other than only the “one word - one referent” mapping applied in hypothesis testing)
and evolves this co-occurring matrix with preferential bias towards some specific word-object
associations while gradually forgetting others.

1.4.1.2 Deep neural networks

The idea of deep neural networks is derived from Artificial Neural Networks (ANN) and the
idea of using a large number of layers to augment the data representation capacity. Taking
inspiration from how biological neural networks (in particular of the brain) work, a classical
(feed forward) neural network, as shown in Figure 1.8, consists of several layers: input,
hidden layer(s) and output. Each layer is composed of neurons (drawn as nodes) that are
linked together and perform elementary computations.
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The operation on data (see Figure 1.9) takes place between linked neurons, by first com-
puting the weighted sum of input neural signals and then going through an activation function.
The resulting value is taken as the input of the next layer. A training procedure based on
gradient descent makes it possible to adapt the weights in order to learn a function from
examples.

The traditional approach to learn the weights of deep neural networks is based on back
propagation and gradient descent [84, 85], where we first set a cost function which normally
is the calculation of errors between the data of the output layer and the predefined labelling
data and then an iterative procedure minimizes the cost function according to the layer-wise
gradient in terms of weights.

Originally, ANNs had been applied to pattern recognition for linear cases, before being
extended to non linear cases. To find a better presentation of complex data structures, [14]
argues that the observed data are generated by the interactions of many different factors on
different levels (ie. distributed), and higher the level is, further the abstraction of concept it
acquires. The definition of Deep Neural Networks (DNNs) therefore emphasizes that it should
have multiple layers of hidden units between inputs and outputs. Each hidden layer of neural
network contains the feature representation of the data from the previous layer, existing in a
form that is more abstract and compressed.

Another variation of ANN, apart from DNNs, is the autoencoder (also known as autoas-
sociator or Diabolo network) [13], a particular type of neural network for learning a lower-
dimensional representation (ie. encoding) of raw data for the purpose of extracting their
innate features of correlation as well as saving memory and also used for learning generative
models of data [105]. The most prominent feature of the autoencoder is that it tries to output
the data (by means of reconstruction) approximating the input as much as possible. And in
the central hidden layer, the number of nodes is far less than that of the visible (input/output)
ones, therefore we could define that the first half (from the input layer to the central hidden
layer) of the neural networks is the procedure of encoding by compressing the dimensionality
of inputs and the second half (from the central hidden layer to the output layer) represents
the decoding trying to reconstruct the data to its original dimensionality. The task of training
is to minimize an error of reconstruction and find the most efficient compact representation
(encoding) for input data. Besides, another application of the autoencoder is to initialize
the inter-layer weight distribution from “shallow” to “deep” (ie. starting layer-wise from the
input layer onwards) as an effective pre-process to improve the results of the subsequent back
propagation, especially when training deep neural networks.

As an example of applications of these approaches to word-referent learning, Noda [136]
extended the time-delayed neural networks (TDNN) [197] to a deep neural network of time-
delayed autoencoder, with the goal of relating sequences of sound, vision and robot motion
to recognize actions. In that framework, there are for every single modality an individual
autoencoder whose central hidden layer is used as input of a main auto-encoder that encode
sequences of perceptions, as shown in Figure 1.10. As a result, the main auto-encoder manages
to encode behaviors (eg. the bell-striking motions performed by a robot) in a way similar to
the meaning in the semiotic square in Figure 1.1, thus giving the basis to associate words to
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actions.

Figure 1.10: The structure diagram of DNNs in Noda [136].
A special note should be put here that although ANN can be explained from the point of

view of restricted Boltzmann machine (RBM)6, therefore theoretically very close to the topic
model, still in practice they are customarily regarded distinct and implemented for different
purposes.

1.4.2 Matrix decomposition topic models

Several matrix decomposition methods such as Singular Value Decomposition (SVD), Princi-
pal Components Analysis (PCA) and Non Negative Matrix Factorization (NMF) can be used
to decompose data into sum of elementary components. The main objective of these methods
is to reduce the dimensionality of data so as to focus on the important underlying elements
and to reduce the presence of noise. Due to their different underlying principles, the results
of the decomposition by applying these algorithms will be different. However, the decom-
posed matrix can be regarded as a set of component features (i.e. topics) that are much less
in number compared to the original sample size yet available to reconstruct samples, either
learned or totally new. Hence in this part, on one hand, special attentions will be paid on
the properties of the decomposed results; on the other hand, since this thesis has relied in
a large part on NMF, a particular attention will be devoted to NMF’s relations with other
widely used algorithms of this category.

6https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
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One of the important properties of a decomposition algorithm is the interpretability of its
result by comparison with the original data. In particular, it is interesting to see that if the
results are non-negative because in the fields like computer vision, document clustering, speech
recognition, bioinformatics, etc., most data appear non-negative. For example, Lee [113]
illustrates the fact that the decomposition of images of faces into non-negative components
(using NMF) is naturally interpretable as a sum of local elements, whereas its decomposition
using PCA has not similar meanings. In Figure 1.11, positive values are illustrated with black
or grey while red marks the negative. By using NMF, decomposition result is a dictionary of
facial parts of mouths, noses and so on and so forth. On the contrary, the PCA basis contains
some distorted versions of whole faces [192].

Figure 1.11: Comparison of NMF and PCA in an example of face decomposition. Example
taken from [113].

1.4.2.1 Latent Semantic Analysis using Singular Value Decomposition

Singular value decomposition (SVD) [99] decomposes a matrix to two orthogonal matrices
and a singular value diagonal matrix as:

M = UΣQT

Commonly, the singular values in Σ are listed in a descending order to guarantee the
uniqueness of the decomposition. The low-rank matrix approximation [180] is proposed to
approximate a matrix M(of rank n) with a truncated matrix M̃ (of rank r, with r � n) as

M̃ ≈ U Σ̃QT (1.2)

where Σ̃ contains only the r largest singular values while all others are zeros. With this ap-
proach, the Frobenius norm of the difference between M̃ andM is minimized. One advantage
of this method is that noise factors (indicated by the discarded singular values) are filtered
out by keeping only the most essential parts.



30 Chapter 1. State of the art

n =

V
T

m

n

n

d
o
cu
m
e
n
t

d
o
cu
m
e
n
t

D
T

×n

m
k
topic

Σ

×

W

word

m
word

k

to
p
ic

m
k

to
p
ic

k
topic

Figure 1.12: Illustration of SVD/LSA.

Considering that all the information to be processed constructs a corpus, which is made up
of documents, we define a matrix Vm×n where each row i (i = 1, 2, ...,m) denotes a (feature)
word and each column j (j = 1, 2, ..., n) a single document. The element mij is denoted as
the number of occurrences of a particular word i in document j. Latent semantic analysis
(LSA) [108] decomposes V T via singular value decomposition (SVD) [65] as

V T = DTΣW (1.3)

where D is an orthogonal occurrence matrix of document-topics, each column of which indi-
cates the topics of a document;Σ is a diagonal matrix of singular values which indicate the
importance of each topic in the corpus; W is the topic-word orthogonal matrix whose row
and column represent topic and word information respectively (Figure 1.12).

In order to let relevant topics appear, dimensionality reduction is performed by keeping
only the largest r among all k singular values in Σ while replacing the others with 0. Thus,
we get an approximate singular matrix Σr and also an approximate word-occurrence matrix
(ie. the rank r approximation to V with the smallest error of Frobenius norm) as

V T
r ≈ DT

r ΣrWr (1.4)

Since DT
r indicates the information in the documents at the topic level, we are interested in

the following relation:
DT
r ≈ V T

r W
T
r Σ̃−1 (1.5)

This means that when a new document vector vi(i ∈ {1, ..., n}) appears, we could project it
into a semantic space by

di ≈ viW T
r Σ̃−1 (1.6)

The main merit of LSA is the use of a simple technique (SVD) for uncovering hidden or
“latent” data structures.

However, the main limitation is that LSA lacks a sound interpretation in both physical
and probabilistic way. Moreover, the choice of the number of singular values (ie. the rank r)
seems more empirical than standardized.
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1.4.2.2 Principal Component Analysis

Another algorithm for matrix decomposition is Principal Component Analysis (PCA) [142]
which draws from data the most representative components which possess as much informa-
tion as possible for presenting the data, while avoiding the overlap of information between
components, by choosing them orthogonal.

Assume that the matrix of V̂m×n represents n samples of observable data withm dimension
of features. We first create the modified matrix Vm×n such that E(Vj) = 0 by mean centering
every column of V̂m×n (vi,j = v̂i,j − 1

m

m∑
q=1

v̂q,j , where i ∈ {1, 2, ...,m}, j ∈ {1, 2, ..., n}).

PCA will find H, a k × n transfer matrix, such that

W = Vm×nH
T
n×k (1.7)

where W is the vector space after projection. In order to respect the two above constraints
(maximizing information and having orthogonal components), it can be show that H should
contain the eigenvectors of Cor(V ) (denoted as the covariance of V ) whose diagonal ele-
ments are the variances of each row vectors while the remaining positions are covariances.
If H is composed of eigenvectors placed in the decreasing order of related eigenvalues, this
decomposition is unique.

Similar to the low rank approximation in SVD, we can choose the most important r
(r ≤ n) components for the compressed presentation

W̃m×r ≈ Vm×nH̃T
n×r (1.8)

So for each new piece of data, after being projected into the eigenvector space by pre-
multiplication of the transfer matrix H̃T , it could be compared with other data for the
applications like clustering and classification, which lay the basis of the word-referent learning.

We may notice that PCA, as well as SVD, makes use of orthogonality in the vector space
projection, and both matrix operations of PCA and SVD could be proved as mathematically
equivalent, which even makes SVD become one of the standard ways to preform PCA (the
other one is based on the calculation of the eigenvalues and eigenvectors of the covariance
matrix), despite the fact that SVD is more referred in the field of natural language processing
(NLP) while PCA is more involved in applications of computer vision.

PCA can be applied in many real world applications such as data representation, pattern
recognition (eg. eigenfaces [192, 151]) or image compression (eg. Hotelling or Karhunen-Loeve
transform). It is often used as pre-processing (dimensionality reduction, orthogonal feature
projection, etc.) for more complex tasks like symbol referent learning.

The advantages of PCA are: 1) no parameter settings are required; 2) the reduction of
dimensionality is effective for maintaining the most important data, while compressing data
and removing redundancy. Nevertheless, some major drawbacks can not be neglected like 1)
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it is ineffective for the samples with non-linear properties (yet Kernel PCA [162] could solve
this problem); 2) there is no standardized rule for the number of principal components; 3)
if negative values of decomposed data appear, there is no physical interpretation for them,
which remains a serious problem for many other matrix decomposition algorithms as well (see
Figure 1.11).

1.4.2.3 Non-negative Matrix Factorization

As a breakthrough to deal with the problem of interpretability of decomposed results, Non-
negative Matrix Factorization (NMF) [112, 113] is a decomposition method that requires that
all elements in matrices, both the original and decomposed, should be non-negative.

NMF is also known as non-negative matrix approximation seeks non-negative matrices W
and H so that:

Vm×n ≈Wm×kHk×n (1.9)

where m and n are the number of features and the count of samples respectively, and k is the
number of components. This same equation can also be written of each matrix element Vi,j :

Vi,j ≈ (WH)i,j =
k∑
r=1

Wi,rHr,j (1.10)

A physical explanation of the above decomposition is that the column vectors of V are n
observable samples (of m dimension), each of which is the linear combination of component
vectors (represented by the k column vectors in W ) weighted by the k coefficients of the
related column vector in V . Obviously, computing the NMF basis of W is one of the most
important issues.

Comparing NMF with PCA, by post-multiplying both sides of Equation 1.7 with the
orthogonal H, we come to

V = WH (1.11)

and choose the k largest principal components for approximation, we get

Vm×n ≈Wm×kHk×n (1.12)

From this point of view NMF shares the same format of matrix decomposition with PCA
(thus with SVD as well), yet the difference lies in non-negativity of NMF, which permits
better interpretability as illustrated in Figure 1.11.

Another comparison of NMF can be drawn with neural networks [78]. As illustrated in
Figure 1.13, the hidden layer of k nodes in a simple auto-encoder network can be considered as
the NMF basis, which is decomposed from the training matrix V training

m×p . When reconstructing
the data using the k components, the link between the hidden layer and output layer (denoted
by Hcompose

k×q ) will perform the linear combination of the k nodes to each of the output data.
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From this model, it is easy to observe the data compression capability when k � p. And also
from this structure, hierarchical extension of NMF can be defined [41, 11, 102, 175].

... ...
...
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Figure 1.13: Explanation of NMF from the model of neural networks. (Derived from Figure
3 in [113]).

The applications of NMF can be found in data analysis [113, 77], signal and image pro-
cessing [38, 154], language modeling, text analysis [16, 50], music transcription [37], and
bioinformatics [26]. In [123], the author made full use of the decomposition property of NMF
to decompose the choreography and audio sentence into motion and sound primitives. This
multimodal model is able not only to perform the decomposition of testing data, but also
to perform the recovery of one modality of information when the other modal information is
missing.

NMF can be realized using several algorithms. Using notations from Equation 1.9 and
concerning a non-negative approximation with Vm×n ≈ Wm×kHk×n such that Wm×k ≥ 0,
Hk×n ≥ 0, there basically exist two objective functions that can be used to measure the
approximation error: 1) least squares error or 2) the generalized Kullback-Leibler divergence.
Before further detailing the two different optimization methods, we remodel Equation 1.9 as
a probabilistic model with additive noise as

Vm×n = Wm×kHk×n + Em×n (1.13)

where Em×n is the noise matrix. Depending on the assumption on the noise, the two methods
can be derived as follows [104]:

Least squares error based optimization
Supposing that the noise follows a Gaussian distribution, we can write

p(Vij |W,H ) = 1√
2πσij

e
− 1

2 (
Vij−(WH)ij

σij
)
2

(1.14)
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where σij(i ∈ {1, 2, ...m}, j ∈ {1, 2, ...n}) is a weight for each observed sample. Assuming that
each data is observed independently, the overall distribution of the model is

p(V |W,H ) =
∏
ij

p(Vij |W,H ) (1.15)

and according to the maximum likelihood theory 7 we come to log likelihood function as

L(W,H) =
∑
ij

[Vij − (WH)ij ]
2

2σ2
ij

+
∑
ij

log(
√

2πσij) (1.16)

Now supposing that every observation is of the same importance, ie. σij = 1, and neglecting
the coefficient and constant terms, we arrive at

LLS(W,H) =
∑
ij

[Vij − (WH)ij ]
2 (1.17)

Equation 1.17 will be used as the objective function for the least squares error approach.

So the optimization problem can be formulated as

min LLS(W,H) =
∑
ij

[Vij − (WH)ij ]
2

s.t. W,H ≥ 0
(1.18)

Computing the gradients on W and H, we get:

∂LLS
∂Wik

= −2[(V HT )ik − (WHHT )ik]
∂LLS
∂Hkj

= −2[(W TV )kj − (W TWH)kj ]
(1.19)

which lead to an additive update rule for minimization using gradient descent:

Wik ←Wik + φik[(V HT )ik − (WHHT )ik]
Hkj ← Hkj + ϕkj [(W TV )kj − (W TWH)kj ]

(1.20)

if we choose φik = Wik

(WHHT )ik
, ϕkj = Hkj

(WTWH)kj
, we finally obtain a simple multiplicative

update rule:
Wik ←Wik

(V HT )ik
(WHHT )ik

Hkj ← Hkj
(WTV )kj

(WTWH)kj

(1.21)

Generalized Kullback-Leibler divergence based optimization
In the case of generalized KL divergence, the noise is supposed to follow the Poisson

7https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
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distribution, therefore:

p(Vij |W,H ) =
(WH)Vijij
Vij !

e−(WH)ij (1.22)

where Vij ! is the factorial of Vij . By using the same method under the same condition of
independence as described above, the likelihood function is

L(W,H) =
∑
ij

[Vij log (WH)ij − (WH)ij − log(Vij !)] (1.23)

Note that Vij is actually a constant, so is log(Vij !). Therefore the task of maximizing the
likelihood is equivalent to minimizing the generalized Kullback-Leibler divergence between V
and WH:

LKL(W,H) =
∑
ij

[Vij log Vij
(WH)ij

− Vij + (WH)ij ] (1.24)

Note that Vij log(Vij) is added in Equation 1.24 yet does not interfere the effect of minimiza-
tion.

Now the optimization problem is

min LKL(W,H) =
∑
ij

[Vij log Vij
(WH)ij

− Vij + (WH)ij ]

s.t. W,H ≥ 0
(1.25)

then once again through the calculation of gradient, we first get the additive updating rule as

Wik ←Wik + φik[
∑
j
Hkj

Vij
(WH)ij

−
∑
j
Hkj ]

Hkj ← Hkj + ϕkj [
∑
i
Wik

Vij
(WH)ij

−
∑
i
Wik]

(1.26)

by setting the learning step as φik = Wik∑
j

Hkj
and ϕkj = Hkj∑

i

Wik
, we arrive at the multiplicative

iteration rule corresponding to generalized KL divergence as

Wik ←Wik

∑
j

Hkj
Vij

(WH)ij∑
j

Hkj

Hkj ← Hkj

∑
i

Wik
Vij

(WH)ij∑
i

Wik

(1.27)

The theoretical proof of convergence regarding both methods is detailed in [112].

Apart from the above two classical rules of update, other methods for the iteration exist,
for example projected gradient descent [117, 118], active set [68, 103], block principal pivoting
[104], alternating least squares [17, 193], etc. However all current methods can only guarantee
the convergence to a local minimum.
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As mentioned before, the strongest advantage of NMF consists in the interpretability
supported by its non-negative constraints and the fact that its model can be well explained
theoretically. However, NMF is highly initialization-dependent, in other words easy to trap
in a local optimum. Moreover, the results of NMF is not unique. Consider for example a
given WH decomposition:

WH = WBB−1H

Ŵ = WB, Ĥ = B−1H
(1.28)

If B is an invertible matrix, then there will possibly be unlimited pairs of Ŵ and Ĥ. The
other significant drawback lies in the determination of the number of components k, which
still remains an open issue.

In the next chapter, we will detail our solutions to the two problems of initializing NMF
and choosing k (the number of NMF basis in W ) regarding word-referent learning scenarios.

1.4.2.4 SV-NMF

In the early phase of the Ph.D project, the determination of number of components k in
Equation 1.9, has been systematically studied. As an indispensable step of applying classical
NMF methods, the number k, which is vital to the decomposed feature presentation, has to
be chosen manually. To tackle this hard issue, many researches have studied various criteria
and rules [195, 167, 140, 130, 114, 97, 92, 63, 32, 7], however, as reported in [122], none of
the above methods for the purpose of estimating k seems obviously better than the others.

Recent studies concerning the choosing of k include beta process sparse NMF [115], au-
tomatic relevance determination projective nonnegative matrix factorization (ARDPNMF)
[199] and SV-NMF (single-class SVM based NMF) [58]. In the experimental evaluations to
be described in the subsequent chapters, only SV-NMF is found to produce somewhat satis-
factory results. Therefore SV-NMF is introduced here and will be used for the comparative
experiments in Chapter 3.

Convex cone interpretation

Unlike the traditional algebra perspective only, SV-NMF tries to find a geometrical ex-
planation of NMF. Figure 1.14 is an illustration of a two dimensional convex cone where
observed data are distributed. Since each data point represents a vector by linking the origin,
a cone area is formed by finding two vectors (denoted as w1 and w2) with the largest aperture
angle, capable of encompassing all other data points. The very property of a convex cone
is that through the non-negative linear combination of “border vectors”, any data encom-
passed inside can be represented. This property can also be generalized to higher dimensional
space, where number of ”border vectors” (called vertices of the cone) might be unequal to the
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Figure 1.14: Example of convex cone in 2D
space.

1ŵ
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Figure 1.15: Example of normalized convex
cone in 2D space.

number of dimensions, and mathematically the convex cone can be represented as

cW = {
k=K∑
k=1

λkwk |λk ≥ 0} (1.29)

where wk represents a vertex and λk denotes its non-negative coefficient. Now if we define
the space as m dimension, then the n samples can be termed as Vm×n = [v1,v2, ...,vn], then
the vertices Wm×k = [w1,w2, ...,wk] and coefficients Hk×n = [h1,h2, ...,hn]. Thus comes the
linear combination as

Vm×n = Wm×kHk×n
[v1,v2, ...,vn] = [w1,w2, ...,wk] [h1,h2, ...,hn] (1.30)

Hk×n is by definition as non-negative, if we further define that the cone exists in the
area only composed of the non-negative half of each dimension, in other words, Vij ,Wij ≥
0, we obtain the non-negative constraints of NMF. Therefore, the convex cone is a valid
geometric model of NMF, which has the following properties: 1) the NMF basis acquires
a clear interpretation of its role to form the observed data; 2) if we further normalize the
wi(i ∈ {1, 2, ...,K}) (see Figure 1.15), the data points which form the ”smallest cone” (ie.
conic hull) can be uniquely found, thus solving the problem of choosing k.

Computation using SV-NMF
In order to solve the approximation of V ≈WH, the SV-NMF method first compute the

basis matrix W using the Single-class SVM algorithm, then followed by the computation of
the coefficients of H.

Derived from the traditional Support Vector Machine (SVM) [163], which tries to separate
data patterns with the maximum margin by searching the optimal hyper plane in the feature
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space, single class SVM (also known as one class SVM) first defines only one class from the
training data and then solves the problem of data discrimination by setting up a hyperplane
that separates the feature vectors (located on the positive side of the hyperplane) from the
origin with maximum margin. The hyperplane will be calculated in the final as defined by
a set of support vectors automatically chosen from the training data. One detail which we
should note is the fact that in the formation of the hyperplane the margin errors always exist,
hence a parameter ν (which is often noted nu later on) is used as a penalization parameter
allowing for a trade-off, which proves to be both an upper bound on the fraction of outliers
and a lower bound on the fraction of support vectors, or even both asymptotically equal to
them under mild conditions on the form of the data distribution and the kernel [161].

SV-NMF seeks to find a conic hull of input data to determine W . Since normalization is
applied on all input data, all observations are on a unit hypersphere, as illustrated by Figure
1.15. The smallest conic hull can be found by seeking the hyperplane separating the data
from the origin with the maximum margin using single class SVM. By using this method,
the margin support vectors (which are also the vertices of the smallest conic hull, see Figure
1.16) will be computed and serve as the basis vectors wk in W . Obviously, another result is
the automatic determination of k, which is equal to the number of margin support vectors.

a

P*

P

Figure 1.16: Example of two different hyperplanes for input data on a unit hypersphere in
2D space computed by SV-NMF with different nu values. Data points which lie on the

hyperplane are the margin support vectors and the vertices of the smallest conic hull. The
hyperplane in dashed line shows some errors, failing to incorporate all the input data.

As for the computation of H, it is a simple linear regression problem with positive con-
straints after obtaining W formulated as :

min
hj

C(hj) = ‖vj −Whj‖2

s.t. hk,j ≥ 0, k ∈ {1, ...,K}, j ∈ {1, ..., n}
(1.31)

The detailed solution can be found in [111].
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1.4.3 Probabilistic topic models

Probabilistic topic models have been designed to solve some defects in the previous models,
such as their limitation in dealing with polysemy defined as the problem of words having sev-
eral different meanings such as bank in the two sentences: “The currency reserve is sufficient
in this bank” and “There are windmills on the other side of the bank”. Intuitively, a proba-
bilistic representation is better able to capture these possible variations than a representation
as a vector used in the previous methods.

We will present two algorithms : Probabilistic Latent Semantic Analysis (pLSA) and
Latent Dirichlet Association (LDA). In both models, topic allocation per document and word
allocation per topic are presented as probabilities. An important difference is that the number
of parameters of pLSA increases linearly as new documents appear, which will bring problems
of increasing computational burden and over-fitting, while LDA sets hyper parameters to
control the generation of allocations in a probabilistic manner that could be timely modified
in processing the documents.

1.4.3.1 pLSA

Probabilistic Latent Semantic Analysis (pLSA) [88], which is regarded as a probabilistic
modeling of LSA, depicts the generation of a document by introducing a latent class of topic
as zk ∈ {z1, z2, ..., zK}. In a whole corpus of M documents, p(di) denotes the appearance
probability of the ith(i = 1, 2, ...,M) document, p(zk| di) the semantic distribution of topics
in a document and p(wj | zk) the probabilistic distribution of words regarding a topic.

... ...
...

With latent class

... ...

Documents

Without latent class

DocumentsTerms Terms

ˆ ( )p w d ( )p z d ( )p w z

robotics

interactive

multimodal

object learning

...

Figure 1.17: Three layers of pLSA. [137].
Figure 1.17 illustrates how pLSA models the document generation process using a neural-

network analogy. First, a document is selected according to p(di), then at the semantic layer
a topic zk is chosen conforming the distribution of p(zk| di), finally given a particular topic
zk, a word comes out following p(wj | zk).

Another view of this model could be illustrated by a graphical model in which a filled
circle represents an observable variable, a hallow circle a latent (thus unobservable) variable,
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z w N
M

d

Figure 1.18: Diagram of pLSA.

an arrow the dependence of the variable pointed by its tip on the variable connected by its
tail, a square with a capital letter (eg. M or N) the repetition of the enclosed procedures.
In Figure 1.18, d (document) and w (word) are observable variables and z (latent class, ie.
topic) is primarily hidden.

In order to find document-topic and topic-word distribution, we will maximize the joint
distribution of (di, wj):

p(di, wj) = p(di)p(wj | di) (1.32)

p(wj | di) =
K∑
k=1

p(wj | zk)p(zk| di) (1.33)

where p(wj | zk) and p(zk| di) are two distribution parameters to be estimated, which conform
to multinomial distribution.

As a BoWs model where each choice of word is regarded independent, the joint prob-
ability distribution of the pLSA model concerning collecting words for all documents is

L = p(D,W ) =
M∏
i=1

Ni∏
j=1

p(di, wj)n(di,wj), where n(di, wj) represents the number of word wj

appeared in document di. Besides, the indirect causal effect takes place in the process of
d→ z → w, which gives conditional independence as p(wj , di|z k) = p(wj |z k)p(di|z k). There-
fore the log likelihood function is formulated as

logL = log(
M∏
i=1

Ni∏
j=1

p(di, wj)n(di,wj))

=
M∑
i=1

Ni∑
j=1

n(di, wj) log p(di, wj)

=
M∑
i=1

Ni∑
j=1

n(di, wj) log[p(di)
K∑
k=1

p(wj |zk )p(zk |di )]

=
M∑
i=1

n(di)

log p(di) +
Ni∑
j=1

n(di, wj)
n(di)

log
K∑
k=1

p(wj |zk )p(zk |di )


=

M∑
i=1

n(di)

log p(di) +
Ni∑
j=1

n(di, wj)
n(di)

log
K∑
k=1

φk,jθi,k



(1.34)
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where n(di) =
Ni∑
j=1

n(di, wj). And the estimations of φk,j and θi,k can be solved as an optimiza-

tion problem by using maximum likelihood estimation (MLE) and expectation-maximization
(EM) algorithm.

The most widely used applications of pLSA include large-scale image retrieval [133, 90,
89, 22], which usually relies on one modality of visual features. [116] proposed a multilayer
multimodal pLSA model, making use of both visual and tag based modalities. This model is
proved effective for image retrieval when it is combined with its proposed fast initialization
settings.

Note that NMF and pLSA are closely related and thus convertible. But we should pay
very careful attention to the difference regarding notations between Equation 1.9 and Figure
1.18, because the term “feature” and “sample” in Equation 1.9 corresponds to “word” and
“document” here, in other words n = M and m = N . Then we define that V̂ m× n is
the co-occurrence matrix of m words and n documents, whose element V̂m,n is the count of
mth word in the nth document and certainly non-negative. After the normalization of each
column vector of V̂m×n, we get Vm×n such that

m∑
i=1

Vi,j = 1. And Vi,j is just the conditional

distribution of word w given document d, ie. p(w |d). Similar to Equation 1.9, we get the
decomposition as

Vm×n = p(w |d)

=
(
p(w| d1), p(w| d2), · · · , p(w| dn)

)
=
(

k∑
r=1

p(zr| d1)p(w| zr),
k∑
r=1

p(zr| d2)p(w| zr), · · · ,
k∑
r=1

p(zr| dm)p(w| zr)
)

=
(
p(w| z1), p(w| z2), · · · , p(w| zk)

)
p(z1| d1) p(z1| d2) · · · p(zk| dn)
p(z2| d1) p(z2| d2) · · · p(z2| dn)
· · · · · · · · · · · ·

p(zk| d1) p(zk| d2) · · · p(zk| dn)


= p(w| z)

(
p(z| d1), p(z| d2), · · · , p(z| dn)

)
= p(w| z)p(z|d)
= Wm×kHk×n

(1.35)

with the constraints that
m∑
i=1

Wi,r = 1(r ∈ {1, 2, ..., k}),
k∑
r=1

Hr,j = 1(j ∈ {1, 2, ..., n}). In fact,

[67] argues that PLSA solves NMF with KL divergence, and [51, 52] also state that both
NMF and pLSA optimize the same objective function, therefore these two models are highly
equivalent.
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1.4.3.2 LDA

Figure 1.19: Diagram of LDA, see text for details.
The structure of LDA [20] is illustrated in Figure 1.19, by using the graphical model as

described before, where D, K, N represent the total number of documents, topics and words
within each document, θd the topic distribution for the document d (d = {1, 2, ..., D}), φk
the distribution over words for the topic k (k = {1, 2, ...,K}), wd,n the observed nth word in
document d, zd,n the topic assignment of wd,n. Special attention should be paid to α and
β, which are parameters of the Dirichlet prior on θd and φk which are regarded as random
variables. This is the main difference with pLSA which on the contrary holds a deterministic
point of view towards the distributions of both topics per document and words per topic.
That’s why LDA is regarded as a Bayesianized version of pLSA.

The events of choosing a topic given a document and choosing a word given a topic
conform to a multinomial distribution and should therefore be conditioned on a prior Dirichlet
distribution (by making use the conjugate prior theory, the conjugate prior of multinomial
distribution [20] is a Dirichlet distribution). By choosing the prior distribution of topic and
word generation process parameterized by α and β respectively, their posterior probabilities
will still remain Dirichlet distributed.

The generative model of LDA for a corpus of D documents goes as follow:

1. Compute corpus-document distribution θd ∼ Dir(α), where d ∈ {1, ..., D} and Dir(α)
is a Dirichlet distribution under the parameter of α;

2. Compute document-topic distribution φk ∼ Dir(β), where k ∈ {1, ...,K} and Dir(β) is
the Dirichlet distribution under the parameter of β;

3. For the generation of word at position d, n, where d ∈ {1, ..., D} and n ∈ {1, ..., Nd}

(Nd is the count of words in the dth document, and N =
D∑
d=1

Nd):

(a) Choose a topic zd,n ∼Multinomial(θd)

(b) Choose a word wd,n ∼Multinomial(φzd,n)
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Therefore, we come to the total distribution as

p(w, z,θ,φ;α, β) =
K∏
k=1

p(φk;β)
D∏
d=1

p(θd;α)
Nd∏
n=1

p(zd,n |θd )p(wd,n |φk, zd,n ) (1.36)

However, the posterior (ie. the conditional distribution of the topic structure given the
observed documents) in which w is observable while z, θ and φ are hidden random variables
as shown below

p(z,θ,φ |w ;α, β) = p(w, z,θ,φ;α, β)
p(w;α, β) (1.37)

can not be computed directly due to the fact that p(w;α, β) is intractable, which can be
explained by two aspects: 1). from the practical point of view, the marginal probability
is through the summation of the joint distribution over every possible instantiation of the
hidden topic structure (concerning z, θ and φ), exponentially large in number thus appearing
impractical to calculate; 2). from the mathematical point of view, the marginal probability
is by integrating the joint probability in terms simultaneously of θ and φ, but the problem
of coupling between θ and φ makes the calculation of integral nearly impossible (as detailed
in the original paper [20]).

Therefore, in order to infer the posterior distribution and therefore the latent topics,
various approximation methods are developed, which generally fall into two categories –
variational algorithms and sampling-based algorithms. We give details about these approaches
in Appendix A. The variational algorithms are usually highly dependent on their initialization
of parameters and get often trapped in local optimum. We therefore preferred sampling-
based algorithms, in particular Gibbs Sampling, which are more robust for inferring posterior
variables, despite the fact that variational methods are faster in terms of convergence.

1.5 Learning strategies

We now focus on the learning strategy, i.e., the way information is gathered in order to learn
the correct word-referent associations. As introduced in Section 1.1, there are two main
problems we need to address: the ambiguity of the word and referent when multiple words
and objects are presented and the potential method to speed up the incremental learning
process, which might be used in the interactive learning scenarios. These two problems will
be addressed by cross-situational learning and active learning.

1.5.1 Cross-situational learning

We should first note that when trying to learn a word-referent association, there are possible
ambiguities both on the side of the referents and on the side of the words.

The first type of ambiguity appears in the presence of multiple referent, for example when
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a scene containing two objects is described by “There are object A in color B and object
C in color D”, there is ambiguity on which of the two unknown features (out of four) are
indicated by A,B and C,D. Another illustration has been given by Quine’s experiment on
the “Gavagai” problem [145], where the word “Gavagai” is pronounced while pointing to a
rabbit in a field, and therefore its meaning can be “rabbit”, “field”, or even the color of the
rabbit. Potential solutions to reduce these ambiguities include the joint attention [86] which
makes both teacher and learner focus on the same object, but not all ambiguities can be
solved in this way. For example, saying “red apple” in association to a red apple still leaves
the ambiguity about which word points to the type of object and which one points to its
color.

The second type of ambiguity is linked to language understanding. For example, when
describing a scene with a single object with “Look at this red apple”, the verb “look”, prepo-
sition “at” and pronoun “this” are actually not related to the object identity and have other
functions in the sentence. The syntactic constraints of the language itself [70] can obviously
help identify the function of the words and therefore make it clearer about which one is
potentially describing an object for example.

However, these ambiguities can be solved in a larger context by using cross-situational
learning [168, 203, 95, 150, 94]. The general idea of this strategy is that by displaying various
objects and associated words in different situations, the learner is supposed to analyze the
commonalities between them and solve the ambiguities so as to recover the correct word-
referent associations. For human beings, it has been observed that as early as 12 months old
we are naturally relying on cross-situational learning [174] so as to solve the above referring
ambiguities. Take the series of studies performed by Kachergis et al. (eg. in [96]) for instance,
participants are asked to learn the referent of novel words by watching a series of training
trials, on each of which, learners see an array of unfamiliar objects while hearing pseudowords.
The ambiguity occurs due to the unspecified intention about the referent of each pseudoword
on a given trial, although each word is sure to refer to a single onscreen object, however, by
observing the pairs occurring on multiple trials spread across trainings as well as appearing
with different concurrent pairs, people can learn some of the intended word-object pairings
given that the accumulated word-object co-occurrences are well utilized in some fashion.

1.5.2 Active learning

An efficient strategy used by humans to improve learning speed is the use of active learning
with which the learner is able to actively choose future training samples instead of simply
passively observing incoming information.

Let’s first introduce the data acquisition possibilities for machine learning purpose. The
first distinction is between batch learning where learning takes place on the entire training
data and incremental learning in which the whole training data are divided and received
sequentially by the learner in order to progress step by step. This second approach is inter-
esting since in some cases it is computationally infeasible to train over the entire dataset and
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Figure 1.20: A cross-situational learning demo in which a young learner by calculating
co-occurrences frequencies across these two trials can find the proper mapping of “Ball” to

BALL (from [174]).

moreover it provides adaptability to the changing environments. Therefore the incremental
learning gets more and more attention, especially from a developmental learning perspective.

Incremental learning can be further categorized as off-line learning and on-line learning.
Off-line learning assumes that the training data are known to the learner in advance and
have no restriction on the computation time. Although seemingly not so adaptable from an
algorithmical point of view, it has significance of further developing (ie. enhancing, consol-
idating) acquired skills between practice sessions (eg. during sleep) [147]. On-line learning,
on the contrary, does not require the complete knowledge of training data and takes place in
a sequential order, i.e., it should generate a temporary result which is executable for action
or decision after each data, even if it is not optimal. Recently, the methods to improve the
efficiency of incremental learning, in particular on-line learning, have been investigated and
among the theories of computationally modeling the thinking and exploration behaviors of
humans, active learning has been a hot topic.

Incremental and on-line learning is therefore influenced by the order of training data. In
passive learning, the learner can only follow the sequential training data whose order has
already been determined, while in active learning, motivations will serve as a driving force
for the learner to autonomously choose which object is to be learned next. [139] gives a
detailed classification of various motivations and in particular makes a classification between
“intrinsic and extrinsic” (also see [57]). A general definition is that a motivation is intrinsic if
it is formed by factors exclusively from the learner or the continuity of the action, otherwise
it is extrinsic.

Intrinsic motivations, from a psychological point of view, are rewarding situations which
include novelty, surprise, incongruity, and complexity (see [15]) or the self-engagement in ac-
tivities, requiring skills just above their current level, which represents a learning challenge
[44]. It is found in neurosciences that dopamine neurons in the midbrain report the error,
predicting expected reward delivery, not only for the extrinsic reward but also for the intrin-
sic motivation associated with novelty and exploration [47, 98]. Therefore, applying intrinsic



46 Chapter 1. State of the art

motivation from the computational modeling perspective, a mechanism should be built in or-
der to evaluate operationally the degree of “novelty”, “surprise”, “complexity” or “challenge”
together with an associated reward whose maximal value corresponds to a proper degree of
the above attributes so as to achieve the most rewarding result. This modeling is denoted as
“artificial curiosity”.

The problem of “artificial curiosity” in the context of machine learning is therefore to
implement the rule to choose the next sample for learning in order to either minimize the
number of samples necessary to achieve a given level of performance or maximize the level
of performance with a certain limited number of examples. While the theory of “optimal
experiment design” [60] is regarded as one of the fundamental works, other particular learning
models like statistical models [39], neural networks [82] have already adopted active learning
strategy to enhance the learning performance in applications like language learning [100].

In the field of developmental robotics, [138] reviewed computational models of intrinsic
movitation and pointed out roughly two categories, that is Error Maximization based and
Progress Maximization based.

metaM 
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Figure 1.21: The architecture of two intrinsic motivation systems in [138], and
< Er(t+ 1) > and < Er(t) > represent the expected mean error rate and the mean error

rate in the close past respectively.
For the understanding of the two systems, the notations of M for the learner and metaM

for the meta-learner from [138] are used here (see Figure 1.21). M predicts the consequence
(y′) of an action performed in a sensorimotor context and y′ will be compared to the actual
consequence y (as the ground truth) for the actual error E = |y′ − y|. metaM is used for
the evaluation (or the prediction, denoted as E′) of the actual error E. For the actual error
at a specific learning step t, we denote it as Et, and the derivative of the actual error E is
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defined to signify the learning progress as LP = Et+1 − Et, and estimated by the module
KGA (knowledge gain assessor). Yet in real calculations, Et+1 and Et are usually replaced
by the mean error rate, in the proximity of learning step t+ 1 and t, noted as < Er(t+ 1) >
and < Er(t) >.

In the Error Maximization based system, the action that is chosen at each step is the one
which is predicted by metaM to generate the maximum actual error by M. The precondition
of applying this method is that M should have an effective capacity to learn in all the
sensorimotor space so as to be able to decrease this error in all cases. However, in real
scenarios, there are situations where the learner may be unable to learn correctly a model.
These situations will cause a constant and high error, thus leading the system to get stuck
in one area, although showing the highest predicted error yet making zero progress from the
learner’s perspective.

Progress Maximization based system, instead of depending on the prediction of error to
choose an action, prefers the choice of the next action which would bring the maximum
learning progress. This choice prevents the system to get stuck in area where the error
remains high because the learning progress appears small there. This approach therefore
improves the learning speed as well as the coverage of the learnable space while avoiding
unlearnable situations. In practice, the estimation of the learning progress is based on the
prediction of the continuity of the error curves based on the error data (calculated as mean
error rate) recorded in the near past steps. By using the proper modeling of the sensorimotor
context, via categorization and measuring the similarity of situations [160], this system has
extended applications and provides a way to control the complexity of learning situations [164]
in the frame of developmental robotics [138]. The main practical limitation of this strategy
is that the real word consequence should be accessible for the prediction of learning progress.

Examples of applying active learning strategies in word-referent learning could be found,
for instance, in Kachergis’ study in [96], where the active learning strategy of immediate
repetition of word-referent pairs to deal with referential ambiguities was evidenced in human
behavior and then modeled computationally. More interestingly, it is found that humans who
repeat only one pair per trial (which is an easy way to rapidly infer this pair) perform worse
than those who repeat multiple pairs per trial.

Schueller [164] studied the application of active learning to Naming Games where, at each
learning step among two agents (a “speaker” and a “hearer”), the decision of whether to
explore (ie. try to learn an unknown word) or teach (ie. review or consolidate what has
been learned) meaning-word pairs is addressed by applying several active learning policies.
Besides the Naive Strategy where the meaning-choice policy is simply uniform (resulting in
random sample learning), Success-Threshold Strategy suggests exploring new meanings other
than involving the already associated meanings once the success rate of past records exceeds
a certain threshold (that is to say only when the learner seems confident enough about what
has been learned). They also proposed the Last Result Strategy where the agent considers
only its last result of interaction and explore in the next trial only if he succeeded for the last
time. Finally, they proposed Decision Vector Strategies that ignore results of past interactions
and base decision only on the currently known vocabulary size. The decision vector will
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indicate at which dictionary size exploration should take place. There are two models to
build a decision vector, whose length covers the increasing size of the acquired vocabulary
of a “hearer” agent and whose coordinates represent the probability (which for simplicity is
set as 1 or 0) of an exploring action at the corresponding vocabulary size. The first model
design triggers an exploration only at fixed vocabulary sizes, following a predefined rule in
which the gap between adjacent triggering steps is in line with a geometric progression with
the ratio of 0.5. Then the second model is denoted as Gain Maximization Decision Vector
Strategy, in which every coordinate value of the decision vector is set to be 1 or 0 according to
the calculation that whether the expected information gain of the vocabulary matrix of the
“hearer” is positive or not. The simulation performance shows that Success-Threshold Strategy
and Gain Maximization Decision Vector Strategy could lead to the overall convergence and
reach the highest values of acquired information, meanwhile Last Result Strategy does not
proves much better than the Naive Strategy.

Facing situations of both referential and linguistic ambiguities and the challenge to improve
the learning speed, active learning methods can be jointly applied with the use of cross-
situational learning strategy. In this thesis, we will study how different learning algorithms
are suited to an adequate definition of intrinsic motivation in order to support active learning
and improve the speed of interactive word referent learning.

1.6 Conclusion

Within the framework of the semiotic square illustrated in Figure 1.1, the word-referent learn-
ing model proposed by this thesis focuses on the algorithmic solution for the implementation
of infant-inspired learning abilities such as cross-situational learning and active learning and
its validations by means of simulation experiments, underlying the future interactive applica-
tions with real robots.

An important principle of this thesis is to build models on top of comparatively simplified
setup and simple presentations so as to concentrate more on the analysis of algorithms. The
simple yet effective Bag of Words (BoW) representation is therefore applied to process visual
raw data in terms of shape and color as well as audio voice input which will be converted to
text words using existing speech recognition techniques.

As for learning algorithms, the topic model approach is favored mainly due to its capabil-
ity of discovering latent components, which brings about the flexibility of reaching learning
goals as well as the possibility of carrying out more complex learning plans, and we adopt Non
Negative Matrix Factorization (NMF) and Latent Dirichlet Association (LDA) as representa-
tives respectively from matrix decomposition methods and probabilistic models to undertake
the learning executions in all related experiments. In addition, active learning strategies will
be proposed, integrating ideas of some of the previous works into our simplified interactive
scenarios, which are to be detailed in the next chapter.
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Cross situational word-meaning
association using topic models
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In this chapter, we describe our application of topic models to the word-meaning associa-
tion learning. We describe first how data are pre-processed as input for our system, and how
we apply NMF and LDA to our problem.

2.1 Multimodal signal processing

The goal of signal processing is the preparation of the data in a format well-suited for our
proposed computational models. In the following experiments, object perception and signal
processing are carried out on two modalities: visual and audio. The visual information
provides the descriptions of an object in terms of sub-modalities of shape, color, and HOG
while audio information is from the linguistic descriptions of the object by humans. The
overall framework is depicted in Figure 2.1.
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Figure 2.1: Formation of histogram from multimodal information. Note that the shape
description using pixel could be replaced by HOG (to be introduced in Section 2.1.1.2) if we

adopt HOG as the shape descriptor.

As previously stated, since topic models are well adapted to histogram representations,
data are presented in the form of histogram by applying feature descriptors on different
modalities. All respective histograms would be concatenated to form a longer histogram as
the result of the multimodal observation of an object (see the far right in Figure 2.1), and
all these multimodal histograms, each corresponding to an observation of objects, come to
form a corpus, we denote as V of vectors Vi (i = 1, 2, ..., n) representing the appearance of an
object and an associated sentence pronounced by a human partner.

The first part of each vector is a continuous channel that represents features obtained
through computer vision. These features are constructed to represent color (V color

i ), shape
(V shape
i ) or HOG (V HOG

i ) of the object, but they could be the results of a more generic feature
computation algorithm. The features are encoded as vectors of constant size, and multiple
objects of interest are represented (as would be detailed in Section 2.1.4) by summing the
description of each individual object, thanks to the fact that the features are histograms,
which can be added. The second part of each vector is a binary vector of the size of the
dictionary of all known words (V word

i ) and represents the word occurrences in the sentence,
as will be explained in Section 2.1.2, and the dictionary is created incrementally, starting
from an empty dictionary and adding each new word encountered in sentences at the end.

The following sections detail the methodology of acquiring data for each modality.

2.1.1 Visual input

Visual input is acquired through a standard webcam in order to capture shape, color and
HOG information. A more advanced RGB-D camera was also used in some experiments in
order to benefit from the depth information to improve object segmentation.
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2.1.1.1 Object segmentation

Objects are first individually segmented from the camera image. Two approaches were used:
the first one using only color information that requires a simple black background for the
images, and the second one using depth information that makes it possible to use a less
constrained experimental setup. In each of these methods, a reference orientation is computed
so that object shape description is invariant to the orientation of the object in the image frame.

Color based object segmentation
In the case of an experimental setup using a black background, the images are first read

at the rate of 15 Hz and the black background is removed by using mask functions available in
the OpenCV library, which reads the HSV (to be detailed in Chapter2.1.1.2) information of
every pixel and accepts only those whose V (ie. Brightness) value is higher than a threshold
(a predefined value depending on the lighting condition). The remaining pixels are segmented
into connected areas and the group whose size are above a given threshold are extracted as
detected object(s) (see Figure 2.2).

Figure 2.2: Example of object detection on a black background.
One special case that may add confusion to the image extraction is the pixels caused by

the forearm and hand of human tutors. In order to avoid this, the group of pixels which are
found in contact with the edge of the image are removed.

Another issue is the rotation of object. Indeed, for any asymmetric object, its shape
description is highly dependent on the angular position when it is put on a table. Hence,
only when all shape descriptions share the same angular position reference, can the shape
representations be comparable among objects. We propose a first rotation method in which
an object is first enclosed by a minimum area rectangular box1 (see the green boxes in Figure

1Based on the built-in OpenCV functions cv2.minAreaRect
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2.2) and then a larger rectangle in a standard up-right profile (ie. bounding rectangle, see the
red boxes in Figure 2.2) is shaped according to the positions of four corners of the minimum
area rectangle. The observed object would then be rotated from the angular position of the
green box to its nearest up-right position specified by the red box. This rotation function
evidently only works at a local scale because by adapting an object to one of the four standard
positions (ie. up, left, down, right), there still remains ambiguities if the object is rotated for
more than 90 degrees.

Therefore, a second rotation method is proposed in two steps. First of all, we calculate
for any pixel its gradient value by applying the Sobel operator2. Since every gradient value
corresponds to an angular value, thus a histogram which describes the occurrences of these
angular values is generated for all image pixels. Mean shift3 is then used to detect the
mode of this histogram which is used as the angular value for rotation. However, after being
rotated by the recommended angular value, there exists situations where the rotated image
still remains unstable and would switch among four standard positions. As shown in Figure
2.3, we therefore split the image into four quadrants and we define the final standard angular
position as when the sum of all pixel values of Quadrant 1 and Quadrant 3 is larger than
that of the other two adjacent quadrants.

Figure 2.3: Rotation of an image based on gradient orientation and the split of an image
into four quadrants.

Depth based object segmentation

The camera with depth sensor (eg. Xtion or Kinect) provides a depth image where each
pixel contains a value encoding the object distance in meters (see Figure 2.4). Note that the
black regions in the image represent areas where the distance could not be estimated.

We tried a simple depth-based segmentation method which first finds the closest valid
point with distance X and adopts a distance threshold dthreshold which is user-defined, to

2https://en.wikipedia.org/wiki/Sobel_operator
3https://en.wikipedia.org/wiki/Mean_shift



2.1. Multimodal signal processing 53

Figure 2.4: A demonstration of
a depth image

Figure 2.5: Unstable object
segmentation

Figure 2.6: In purple the
contour enclosing the
pixels which meet the

threshold and in red the
Minimal Area Bounding

Rectangle.

select all the points with the depth distance in [X,X + dthreshold]. We then keep all the
corresponding pixels in the color image, in which a contour is searched4 and then used to
indicate possible objects. However, one of the problems with this approach is that due to
the imprecision of the camera sensor, the segmented image sometimes does not obtain a clear
border and momentary black spots are observed inside the segmented area because of scene
noise, as shown in Figure 2.5.

The solution which is applied in our experiments makes some assumptions on the object
shape, which are white cubes with drawings in our case. Instead of directly taking the pixels
meeting the distance threshold, we use a minimal area bounding box that encloses those pixels
with the constraints that 0.65 < Height/Width < 1.35 (Figure 2.6). This reduces greatly the
instability generated by the noise in the depth image since it prevents small changes which
might propagate to the segmented image. We finally crop the box contour so as to remove
the border pixels that belong to the background.

The last procedure, as implemented in the color-based object segmentation, is to rotate
the well-cropped image to a reference angular position. The previous method of maximum-
gradient based rotation in Section 2.1.1.1 does not give satisfactory results because the seg-
mented image is in a square with the background full of (theoretically) white pixels, which
lead to too much noise in the histogram of angular values.

We had to resort to a solution using machine learning to solve this problem. First, the
detected bounding rectangle is turned parallel to the images borders (ie. up, left, down or
right), and sent to a classifier that has been trained to recognize the already seen objects in
an arbitrary reference orientation. Then, depending on the classifier output:

1) if a new object is classified as one object from the training data with a very high
confidence score, then this object is supposed to have the same shape and orienta-
tion with that of the targeted object and thus no rotation is needed;

4by applying OpenCV’s findContour function
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2) if it is classified as one existing object with a relatively high confidence score, but
below than that in the previous case, it is thought to has the same shape but a
different orientation, thus rotation takes place (ie. by anti-clockwise 90◦, 180◦,
270◦ respectively) and the new object will stay at the rotated angular position
where the highest confidence score is attained;

3) if it is classified with a confidence score lower a threshold for consecutive frames,
then this object is regarded as a novel object with regards to classifier’s training
database. Therefore, the classifier is trained with data concerning this new object
before it becomes capable of dealing with new data sharing the same shape of this
novel object.

The image descriptor used here is the HOG (which has been introduced in Section 1.3.2
and will be detailed in Section 2.1.1.2) yet with different parameter settings5 than those for
later visual features descriptions.

As for the classifier, we needed a classifier with small training time, possibility of partial
fit (for the purpose of online learning) and reliability of the output confidence scores. We
finally chose a linear model trained with Stochastic Gradient Descent (SGD) 6 while Support
Vector Machine7 (quadratic with the number of samples in time complexity and compulsory
to relearn the whole database when new samples come) and K-nearest neighbors vote8 (which
requires high number of voting neighbors and outputs unreasonable confidence scores) have
been tried but failed.

In short, the proposed rotation method guarantees that the same object is always shown
in the same orientation, given that it has been trained when it was first seen.

2.1.1.2 Visual features

Shape

In our work we first used a very simple shape descriptor whose goal is to encode the identity
of the objects, assuming that the different objects have stable and clearly distinguishable
shapes.

The shape is therefore described by an array of normalized intensity values of pixels from a
grayscale converted image. In allowance for the trade-off between lowering the computational
burden and the effectiveness of presenting a shape, all images of recognized objects are resized
to be 30×30 pixels, which avoids the problem of recognizing the same object category caused
by different sizes. Therefore, the final result of shape presentation is a histogram by raveling

5 the captured RGB image is resized to 128 × 128, orientation bins = 6, block size = 64 × 64 and block
stride = cell size = 32× 32

6http://scikit-learn.org/stable/modules/sgd.html#sgd
7http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
8http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
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the array of pixel values so as to constitute a large vector of 900 elements, as shown in Figure
2.7.

x11 x12 x13 … x1w

x21 x21 x21 … x21

| 
|

|
|

|
|

… |
|

xh1 xh2
xh3 … xhw

x11 x12 x13 … x1w … xh1 xh2 xh3 … xhw

≡ 30

30

30× 30 = 900

X

X

Figure 2.7: The histogram presentation in terms of the object’s shape from an image.

Color

In our experiments, in order to lower as possible the variance of color values due to chang-
ing illumination, we controlled the lighting condition and we used the HSV (Hue Saturation
Value) color model in order to represent object’s color.

Figure 2.8: The graphical model of HSV.

The model of HSV is graphically shown in Figure 2.8. Unlike the cartesian representation
of colors adopted by RGB, HSV uses a cylindrical description where the vertical axis in the
center characterizes V (value, also known as brightness) and H (hue, also known as color)
and S (saturation) are represented in a cross-section area by the angle and the distance to
the vertical axis respectively. In OpenCV9, hue range is [0, 179], saturation range is [0, 255]
and value range is [0, 255]. For example, the minimum (ie. 0) or the maximum(ie. 255) of
V means total black or white. In our experiment, only the H information is used to form a

9http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html
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color histogram of length 80 that represents the number of pixels of the image for each color,
whereas both purely white and black pixels are excluded by setting a threshold where the
saturation value - S is set to be zero.

A Gaussian blur is then applied to smoothen this histogram, taking into account the fact
that this representation is circular (both 360◦ and 0◦ in H means “red”).

HOG
We used the Histogram of Oriented Gradient (HOG, see description in Section 1.3.2

and Figure 2.9) in order to replace the shape description presented above in more realistic
scenarios. In practice, the HOG function which we adopt for the acquisition of visual features
is imported from the built-in toolkit of Scikit-Learn10 and the parameter settings (units in
pixel) in the experiments are listed as follows so as to reach a trade-off between the data
precision and complexity:

original image size = 80× 80
block size = 8× 8

block stride = 0
cell size = 8× 8

number of orientations = 9

  

80

80

80

80

8

8

one block 

contains one cell

with 9 quantized 

orientations

g11 g12 g13 … g19 … gh1 gh2 … g100, 9

9×1× (80÷8)2 = 900

no block stride

Figure 2.9: HOG parameter settings in the experiments.
In our setting, the RGB image is resized to 80 by 80. Given this small size, one block was

set to contain only one cell with the size of 8 by 8 meanwhile no block stride (ie. the shift of a
block that results in some pixels overlapping between two adjacent blocks) was used. Finally,
the original image is described by (80÷ 8)2 = 100 blocks, each of which contains 1 cell, and
there are by default 9 gradient orientation bins for the histogram in each cell, therefore the

10http://scikit-learn.org/
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HOG information can be raveled to a histogram presentation of 900 elements, whose length is
equal to that of shape descriptor using pixels, which was found a good compromise between
data precision and the computational burden.

2.1.2 Audio input

The solution of perceiving audio information in terms of speech is based on the voice-to-text
conversion technique as described in Chapter 1.3.1.2.

The vocal sentences uttered by the human tutor are sampled at 16 kHZ by a microphone
to get audio frames for the vocal-word conversion. The Google speech-api11 is applied, which
accepts audio flac files and returns a set of potential sentences in json format, where linguistic
words can be extracted.

Two distinct sentences recording policies are used, differentiating subsequent experimental
scenarios as “keywords only” and “full sentence”. For instance, a vocal description of a red
car has been converted by Google speech-api as “C’est une voiture rouge (this is a red car)”,
then following the policy of “full sentence”, a histogram is created with the length of 4, whose
indices correspond to the words - “C’est”, “une”, “voiture”, “rouge” respectively; however, in
the “keywords only” scenario, only keywords concerning nouns and adjectives are retained,
that is to say, a histogram is created only for the two keywords “voiture” and “rouge”.

We should also consider the problem about how this histogram recording adapts itself to
the situation when new words appear in the upcoming new sentences. For this, a dictionary
is defined starting from empty at the beginning to contain all known words, and a histogram
just represents the occurrences of every known words in a sentence for the description of an
object. If new words appear in next descriptions, the dictionary augments incrementally by
adding each new word encountered in sentences at the end meanwhile the histogram is also
prolonged by the length equivalent to the number of new words in order to present their
occurrences in the sentence. For instance, in the “full sentence” scenario, if there comes the
second sentence like “Voici une tasse verte (Here is a green cup)”, then updated dictionary
would be {c′est, une, voiture, rouge, voici, tasse, vert} and the histogram regarding this new
sentence would be [0, 1, 0, 0, 1, 1, 1].

2.1.3 Feature quantification

In some of our approaches, the perceived data can not be used in their original formats of
feature presentations, but need to be clustered. As an effective tool, vector quantification
(VQ) will be applied in this thesis for the subsequent statistical word filtering (see Section
2.2) and LDA learning model (see Section 2.4).

It is the non symbolic (visual) channel in the observation vectors in V that needs to be
11https://github.com/gillesdemey/google-speech-v2

https://github.com/gillesdemey/google-speech-v2
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Figure 2.10: Diagram of vector quantification and clustering. Note that the shape
description using pixel could be replaced by HOG (see Section 2.1.1.2) if we adopt HOG as

the shape descriptor.

quantized. The clustering is performed by a simple incremental clustering that puts each
observation in the same cluster as a previous observation if its distance is smaller than a
threshold (whose value will be specified in related chapters of experiments), or creates a new
cluster otherwise. We use the χ2 distance which is well adapted for histogram features :

χ2(x, y) =
d∑

k=1
(xk − yk)2/(xk + yk)

Each of the resulting shape cluster will be labelled as st ∈ S, while all member vectors
within a cluster will be averaged as vst ∈ VS , then S and VS act as entries and corresponding
contents of the shape dictionary. The same procedure takes place for the formation of the
HOG dictionary {H : VH} and the color dictionary {C : VC} as shown in Figure 2.10. A
corpus (D) of vector-quantized samples di, (i = 1, 2, ..., n) is then established by finding the
items si ∈ S or hi ∈ H together with ci ∈ C whose member vectors are most similar to
V shape
i or V HOG

i and V color
i respectively by applying χ2 distance. Using the words wi whose

corresponding indices in V word
i are positive, di indicates a collection of symbols, containing

all words in wi plus si or hi as well as ci (which we denote as VQ symbols). To facilitate the
narrative, W = {w1, ..., wi, ..., wn} is denoted as a set for all recognized spoken words during
the whole experiment.

The far right of Figure 2.10 illustrates a further clustering process where samples with
the same VQ symbol pairs, either {si, ci} or {hi, ci}, fall into the same group. This serves as
the pre-processing work for the proposed model of statistical word filtering, to be described
in Section 2.2.

Note that the advantage of the proposed incremental clustering based VQ is that there is
no need to pre-determine the number of cluster centers before hand, thus facilitating the case
of incremental (and even online) learning; however, one limitation resides in the fact that this
method is affected by the order of samples, therefore in some of the subsequent experiments,
we just do the feature quantification for all the data at the beginning before the learning
starts in order to have reproducible results independent of clustering variations.
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2.1.4 Multiple objects representation

“Here are a red ring, a yellow cup 
and a green lego.”

Figure 2.11: Example of an ambiguous teaching situation.
As described in Section 1.5.1, learning algorithms should deal with ambiguities regarding

both the referent and the language (see Figure 2.11). These ambiguities therefore have to be
represented in the data which, in subsequent experiments, occur especially in the case where
multiple objects are presented.

Figure 2.12: Examples of data recording regarding ambiguities of multi-object referring and
full sentence descriptions.

In practice, thanks to the fact that all features are presented as histograms, multiple
objects of interest can simply be represented by summing the description of each individual
object. An example of several input sample recordings in cases similar to Figure 2.11 can be
found in Figure 2.12, benefiting from the additive property in terms of histogram presentation.

In order to make our experiments representative enough of both the referential and the
linguistic ambiguities, we define two different cases of linguistics ambiguities and three dif-
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ferent cases of referential ambiguities that lead to six different learning scenarios as shown in
Table 2.1. Table 2.1: Data ambiguities defined in different scenarios and cases.

SCENARIO
CASE Single Double Triple

Keywords only KW&S KW&D KW&T
Full sentence FS&S FS&D FS&T

In this table “Keywords only” indicates the scenario where a human tutor only speaks
feature-related words of objects (ie. nouns and adjectives) in contrast to the scenario of “Full
sentence” in which the speaker uses natural sentences (including articles, pronouns, verbs,
etc...) to describe an observed scene, and Single, Double and Triple refer to how many
objects (one, two and three respectively) the teacher would present to a learner robot. In the
remaining of the thesis, notions of KW&S, KW&D, KW&T, FS&S, FS&D, FS&T will be
used for short, referring specific experiment settings of different level of ambiguity in Table
2.1.

2.2 Statistical word filtering

In order to tackle the linguistic ambiguity, this thesis adopts statistical models as a solution.
Since LDA is just a statistics-based generative model, it is supposed to be able to deal with
linguistic ambiguity in the scenario of “full sentence”. However, for NMF, which is matrix
operation based, an initial filtering of keywords has proved to be required to obtain good
performances.

We applied the Term Frequency-Inverse Document Frequency (TF-IDF) approach [155],
which is popular in text processing, to build a statistical word filtering model tailored as a
pre-processing for NMF.

First of all, by applying the clustering method described in Section 2.1.3, we group all
the observed samples so as to put together all the observations that share a common (non
symbolic) feature for the analysis of the associated word statistics. Then for every such
cluster, all recognized words used for the descriptions of samples in the cluster are grouped
to form a document (the term expressed in the original theory) corresponding to this cluster,
and the total set of words describing samples from all groups thus becomes the so called
corpus.

The term-frequency (TF) of the word i associated with each cluster j is then computed :

tfij = nij/nj

where nj is the total number of words observed in samples from cluster j, and nij is the
number of occurrence of word i observed in samples from cluster j. This value is high for
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words that occur often with a given object. The words with tf below or equal a threshold
are considered as noise and removed from the observations (their entries are put to 0).

The inverse document frequency (IDF) of the remaining words i is then computed:

idfi = log[N/(1 +Ni)]

where N is the number of clusters, and Ni is the number of clusters where word i appears
at least once. This measure is high for words that appear in very few clusters and low when
they appear in many clusters. The words with idf above a threshold are common words (such
as articles) and removed from the observations. The words with idf below a threshold are
also removed, making the assumption that each word will eventually be associated to several
different objects (e.g. two objects will have the same color). We define thresholds on IDF in
order to remove too common or too rare words as

idflow = idfmin + ηlow(idfmax − idfmin)
idfhigh = idfmin + ηhigh(idfmax − idfmin) (2.1)

where idfmin and idfmax are the maximum and minimum of idf values for all words. For
the subsequent experiments, ηlow and ηhigh values are optimized to reach the highest possible
final performance in each scenario.

Theoretically, when sample size of input data is sufficient, the remaining words after these
two steps should contain little noise and represent the words for which we have enough cross-
situational data to learn their meaning, however, due to the limited number of objects we used
in the experiments, the thresholds concerning TF and IDF can not be set with fixed values
and our choice of thresholds will be further described in related chapters on experiments. In
addition, the total number of all selected keywords could suggest k, a parameter known as
the number of NMF components which will be used in the next section (Section 2.3).

2.3 Learning with NMF

Taking inspiration from [123], we applied NMF for word-referent learning using the previously
described data. Regarding the mathematical notations, because every object is described in
terms of shape and color and the shape feature could be represented by using pixels or HOG,
we take by default that if shape as subscript appears in the remaining of this section, it refers
to modalities of either shape pixel or HOG, so as to facilitate the following description.

The NMF decomposition in our experiments could be formulated as

Vm×n = Wm×kHk×n Vshape
Vcolor
Vword


m×n

=

 Wshape

Wcolor

Wword


m×k

[H1, H2, ...,Hn]k×n
(2.2)
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where V denotes the matrix of data, w the learned dictionary of topics and H the coefficients
to reconstruct the data from the topics.

Additionally, let Wi(i ∈ 1, 2, ..., k) be denoted as a column vector of W , then

Wi =

 Wi−shape
Wi−color
Wi−word


where Wi−shape and Wi−color represent the visual information elements while Wi−word repre-
sents the associated words.

The main adaptations of the NMF algorithm for the applications in our experiments
consist in two parts:

1) initialization of Wm×k and Hk×n

2) normalization of the non symbolic channel of Wm×k during iterations.

With these adaptations, NMF is expected to produce results that are both stable and
clear in interpretation as concepts, provided with a proper number of components k.

2.3.1 Initialization

We expect that the learned result from NMF processing could be regarded as a concept, which
is in the form of “one symbolic label - one feature pattern” similar to the “one entry - one
explanation” format in a dictionary. With this structure, it would be easy to construct com-
pound or complex meanings through linear combination. To favor that we use the following
initialization:

For every column vector inW , we first randomly initialize and normalize the non symbolic

channel, ie
[
Wshape

Wcolor

]
. Then, for the symbolic channel whose size is k × k since only k

keywords are present or k words are retained from the module of statistical word filtering
when the number of components is k, we initialize it to the identity matrix where only one
element is made 1 while the others are all 0 in a column.

Hence we can get the initialization form of W as

· · · Wnormalized
i−shape+color · · ·

− − −−−−−−−−
1 · · · 0
... . . . ...
0 · · · 1


m×k
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To note that it is not strict that the symbolic channel part should be an identity matrix, if
every column as a binary vector has only one element as value 1, whose index position in each
column ought to be different. But for purpose of facilitating the mathematical expression
and operation as well as coding, the term - “identity matrix” is preferred without losing any
generality for this problem.

When W is initialized, the initialization of H matrix is processed as

H init = W TV (2.3)

From the mathematical point of view, since NMF always converges to a local optimum, the
proposed initialization design tries to help NMF algorithm to start iterations from a nearby
region of a local optimum which corresponds to a desired format of expressing a learned
concept.

2.3.2 Normalization and convergence criteria

The normalization operation is not only used in the initialization, but also in every iteration
when a new basis matrix W (p) (where p is number of iterations) is formed.

Therefore, sinceW (p)
i (i ∈ 1, ..., k) is composed ofW (p)

i−shape,W
(p)
i−color andW

(p)
i−word,

[
W

(p)
i−shape

W
(p)
i−color

]
and W (p)

i−word are normalized respectively, before the next iteration for W (p+1) until the stop-
ping condition is met.

The idea underlying this normalization process is to enforce some structure in Wi in order
to have as much as possible one word associated to its definition in one of the feature spaces.
The evolution of a dictionary entry Wi during NMF iterations would therefore change its
content but not its structure (of a symbol plus a real word meaning).

Although the effectiveness of our proposed model will be detailed later, an obvious ad-
vantage of our proposed NMF models is illustrated in Figure 2.13, where two examples of
learned results by applying two NMF models, the original version proposed by Mangin [123,
124, 125] and the version proposed in this thesis, dealing with the KW&S data (every object
is presented once) as input. We can observe that in the learned result by the original NMF
model, a symbol concerning a shape or a color could be associated with a mixed visual pre-
sentation of both sub-modalities, which indicates a degree of confusion in understanding a
concept; meanwhile every component in the result from the proposed NMF model is much
more clearer, up to the definition of a simple concept.

As for the convergence rule of the proposed NMF model, the KL-divergence is adopted
as the optimization criteria, and we take e(i) as the error in terms of KL-divergence after the
ith iteration. Therefore, the condition on which the iterative calculation would stop is either∣∣∣e(i+1) − e(i)

∣∣∣ should be under a defined threshold or p reaches the max iteration number.
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(a) An example of the learned result by the original NMF model.

(b) An example of the learned result by the our proposed NMF model.

Figure 2.13: Comparison between the learned results by using different NMF models.

One last thing about the coding of NMF algorithm is that an offset number (10−8) is
added to some variables who might be the denominator in the update rule. Obviously, this
avoids pure zero number when applying division operation.

2.3.3 Incremental learning

We applied NMF in several different scenarios. In the batch learning case (see Chapter 3),
NMF deals with a total of all collected samples V observed by the robot and described by a
human teacher, and produce a topic matrix W used for subsequent evaluation.

In the incremental learning case (see Chapter 4), whenever a new observed sample is
described and perceived, it is added as the last column in parallel with all previous samples
Vt−1 to create an up to date matrix Vt as input. It is then processed by the same NMF
method as for batch learning to produce the current learning state in the form of the matrix
Wt. While dedicated incremental learning algorithms could be used (avoiding to process the
full Vt matrix), we choose to retrain the models using all the data of the updated matrix Vt,
so as to give an upper bound of the performance an incremental learning algorithm could
achieve.

2.4 Learning with LDA

In parallel with the NMF based topic modeling of the cross situational word-meaning as-
sociation, a probabilistic topic model is build using LDA. While no major modification is
proposed to change the theoretical structure of LDA, this thesis tries to let the experimental
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data be fitted to the learning model of LDA, which processes the same source of input data
and undergoes the same kind of tests for comparison with NMF (mainly described in Chapter
4).

By using the Vector Quantified symbols, i.e., the results of the feature quantification
of input raw data (as stated in Section 2.1.3), we have a corpus of observed data D =
{d1, ..., di, ..., dn} where di is the VQ representation of the ith input (which might be of single,
double or triple data) concerning shape/HOG, color and word label, and n denotes the total
number of inputs for the current LDA training. As for every di, in the Single object case,
di = {wi, si, ci} or di = {wi, hi, ci} according to whether we use pixel or HOG as shape
descriptor during experiments. However in Double and Triple cases, di would consist of
more than one si ∈ S (or hi ∈ H) and ci ∈ C. As for wi, regarding the modality of word
label, it contains all the recognized words for the description of the ith input if it is for “Full
sentence” or only keywords of shape noun(s) and color adjective(s) in the case of “Keywords
only”.

Every topic k ∈ {1, ...,K}, in our experiment settings, is expected to only contain (ideally)
a keyword label from wi paired with a definition in si, hi or ci. The parameter φk (see the
LDA diagram in Figure 1.19) is thus assumed to be a sparse word distribution per topic over
all words of W , S or H and C. Also note that the number of VQ symbols in every di might
not be the same, which differs from the case of N in the innermost box in Figure 1.19.

The parameter inference of proposed LDA learning model will maximize the p(w, z,θ,φ;α, β)
in Equation 1.36 by using Collapsed Gibbs Sampling12 which is presented in Chapter A.2.
In practice, we observe that for a given k, the distribution p(., zk, β) is only significant for a
couple (si, wi), (hi, wi) or (ci, wi) where wi ∈ wi.

2.5 Active learning

In the previous chapter, following [138], we categorize active learning strategy into Error
Maximization based and Progress Maximization based. The original methods proposed in [138]
require that the learning agent be capable of testing its performances on the task to learn
(here the word-referent association) so as to estimate its learning progress. This, however,
does not fit in our experimental scenario that simulates the natural parent-infant interactive
learning where the infant just keeps on observing objects with descriptions without taking
tests (like school exams) each time. In this scenario, the parents would only occasionally
make conversations to test child’s knowledge about a certain object.

The testing measures in all experiments in this thesis therefore only play a role of “third-
party” evaluation which is inaccessible for both the parent and the child. There should
therefore be another, indirect, criteria to decide if a training sample is useful or not. We
will see that the reconstruction error in NMF and the likelihood of data in LDA can play

12We use the implementation from https://github.com/ariddell/lda with all parameters initialized with
default settings

https://github.com/ariddell/lda
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this role. The active learning strategies proposed below belong to the Error Maximization
category. Note that we performed experiments with Progress Maximization approaches using
the same criterion but were not able to obtain satisfactory results. We believe this is due to
the limited size of the dataset used (compared to classical experiments in the field) that did
not made it possible to evaluate a correct learning progress estimate.

Many active learning algorithms exist in the literature, but a lot of them are either un-
suitable to the experimental scenario of the thesis or not showing superiority over random
learning performance. For instance, in applications of active learning to the Naming Games
[164] where the goal is towards a global agreement of the word-meaning associations among
a group of agents, teacher and learner exchange roles and are initialized each with random
word-meaning associations. In this context, it is possible to use Decision Vector strategies
for the teacher [164] that depends on the current vocabulary size to decide when to explore
new meanings because the vocabulary size can augment when an agent becomes a learner. In
our scenario, where the agent is always a learner, such strategies will get stuck into situations
where only a limited part of the vocabulary is learned because the size of the vocabulary
where new meanings can be explored could never be reached. We will see however that a
variant of the Success-Threshold Strategy and Last Result Strategy [164] can be applied in our
experiments.

2.5.1 Maximum reconstruction error based selection (MRES)

The maximum reconstruction error based selection (MRES) holds the belief that the sample
which is the worst reconstructed is the best indicator of the current deficiency of the learned
knowledge, therefore by further introducing such samples for training, the learner gets more
raw data concerning the deficient components to process and the deficiency residing in the
current knowledge structure is supposed to be compensated.

As for the internal evaluation of the acquired knowledge, using the notations in Section
1.4.2.3 and 1.4.3.2, we use the generalized KL divergence for NMF:

DKL(V·j ‖WH ) =
∑
i

(Vij ln Vij
(WHi)j

− Vij + (WHi)j)

and the likelihood function for LDA:

LLDA(d) = p(θd;α)
K∏
k=1

p(φk;β)
Nd∏
n=1

p(zd,n |θd,)p(wd,n |φk, zd,n)

as the reconstruction error measures, where V·j represents the jth sample in the training
database for NMF and d indicates a single document for LDA.

The active selection of new samples is then formulated as finding the new test sample
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such that:
ĵ = arg max

j
(DKL(V·j

∥∥∥WH(P2) )/Gini(H))

d̂ = arg min
d

(LLDA(d))
(2.4)

where j ∈ {1, 2, ..., n}, d ∈ {1, 2, ..., D} are the new samples that can be considered for
learning. H(P2) are the weight coefficients derived from H 13 by making use only of the two
highest values while discarding all others and updated via the reconstruction by minimizing
DKL(V·j

∥∥∥WH(P2) ). Gini(H) is the Gini index which estimates the sparsity of the H vector
(to be detailed in Equation 3.4 in Chapter 3). These two modifications have the objective
of promoting the samples that need more than 2 dictionary components to be correctly
reconstructed, based on the idea that these samples are not currently well known. In fact,
we tried originally ĵ = arg max

j
(DKL(V·j ‖WH )) directly derived from the NMF algorithm,

however, the version in Equation 2.4 would produce prominently better results in practice.

As previously described, we use single, double and triple object sets to represent differ-
ent level of referential ambiguities. In these cases, the learner could choose 1, 2 or 3 samples
accordingly by applying Equation 2.4. However, in practice, we found problems when the
learner strictly executes this strategy, for instance, if certain sample(s) which are chosen do
not efficiently improve the current knowledge status, this/these sample(s) will be selected
over and over again, resulting in a stagnation of the performance.

Here, a slack strategy (which has also been referred as drop-out strategy in some previous
literature) is proposed to help the learning agent jump out of the described “dead loop”.
First, a pool of selected candidate samples (more than necessary) is created using the previous
strategy: we choose the 6, 9 or 12 samples of maximum reconstruction error values for single,
double and triple cases respectively. Then the learner will randomly choose from this pool
the needed (ie. 1, 2 or 3) sample(s) for the next incremental training.

2.5.2 Confidence base exploration (CBE)

The second tested strategy is derived from Success-Threshold Strategy and Last Result Strategy
in [164]. The general idea is that a learner seeks to explore unknown new things only when
confident enough about what has been learned already, therefore we should first take measure
to define such a confidence. For this, we have the knowledge of all the previously learned
samples, and every sample has its associated reconstruction error. It is natural to define a
self-evaluation criteria by calculating the average reconstruction error of all used samples as
the confidence indicator, and if this value is below a certain threshold, the learner is thought
to be confident about the knowledge that has been learned.

We define Dn′
KL and LD

′(d)
LDA respectively as the confidence indicators for NMF and LDA by

13computed by finding the H that minimize DKL(V·j ‖W H ) first



68 Chapter 2. Cross situational word-meaning association using topic models

utilizing the average of DKL and LLDA values of all already used samples:

Dn′
KL =

∑n′
j=1[DKL(V·j ‖WH )]/n′

LD
′

LDA =
∑D′
d=1[LLDA(d)]/D′

(2.5)

where n′ and D′ represent number of used samples in NMF and LDA learning.

When feeling confident, in other words Dn′
KL ≤ thresholdDKL or LD′LDA ≥ thresholdLLDA ,

the learner will explore by randomly choosing candidate objects among those that does not
contain the features (relating color and shape) which have already existed in any used samples.
However, when the confidence is not sufficient, that is to say Dn′

KL > thresholdDKL or LD′LDA <
thresholdLLDA , sample selection will favor already encountered color and shapes: we choose
the worst reconstructed sample(s) by using the previous MRES method14 from the pool of
samples that have only one feature in common with the already known samples.

Note that as the incremental learning proceeds, there are less and less unknown features
up to the point where all features have been seen at least once, while there still remain unused
samples. In that case, the exploration have no samples to choose from, so we resort to random
choice among all unused samples instead.

14without using the slack strategy
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In this chapter, we present experiments on a small object dataset that focuses on the use
of NMF, whose structure has been modified in Chapter 2.3, with the goal of setting algorithms
parameters and evaluating the quality of the learned dictionary of word-meaning associations.
We are primarily concerned with setting the value of k, the size of the NMF dictionary, which
has to be chosen manually. Moreover, we will take advantage of the interpretability of the
NMF result thanks to the non-negativity of the dictionary to explicitly compare the resulting
dictionary with a reference dictionary that can be easily constructed for such a small dataset.

Our first exploration towards the determination of k was by making use of a reference
dictionary for the similarity measure with a group of learned dictionaries given a range of
candidate values for k. We verified that the value of k corresponding to the real number of
words to learn indeed lead to a dictionary very close to the reference dictionary. In parallel,
SV-NMF [58], as a representative of the current studies on the topic of auto-determination of
k, was evaluated to see if it is applicable to our experimental scenarios by comparing its result
to reference dictionaries. However, as this method does not prove to be effective, we proposed
a quality measure of the learned dictionary that does not require a reference dictionary and
apply it with the standard NMF algorithm to automatically find the value of k. We then
evaluated its effectiveness by comparing the learned dictionary with its reference.
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3.1 Experimental data

The interactive learning procedures take place on a table, which is decorated in black as the
background. The set of objects for learning is composed of lego toys. It is denoted as S-OBJ-A
so as to differentiate it from S-OBJ-B, S-OBJ-C, S-OBJ-D used in the next chapter. Note
that in order not to make the experiments too complicated, yet without loosing generality, we
deliberately ignore the feminine as well as masculine forms of adjective keywords in French
by simply adopting either its masculine (eg. bleu) or feminine (eg. violette) if necessary.

3.1.0.1 S-OBJ-A

There are four types of objects in four colors (therefore 8 concepts relating to shape and color)
as objects to be learned: “ring (anneau in French)”, “lego”,“cup (tasse)” and “car (voiture)”
in “red (rouge)”, “yellow (jaune)”, “green (vert)” and “blue (bleu)” respectively, as shown
in Figure 3.1. Every object is described by a human participant using normal descriptive
sentences including the keywords concerning the shape and color like “C’est une voiture rouge
(This is a red car)”, “Voici un lego bleu (Here is a blue lego)” according to his/her own will.
The training data base contains 50 input samples, with every object in different color being
described and recorded around 3 times. Yet for all the experiments in this chapter, where the
statistical word filtering is not needed to achieve the goal of this chapter, all recorded data
will be processed as “keywords only” data related to a single object’s description (ie. KW&S
in Table 2.1).

Figure 3.1: S-OBJ-A: Four types of objects in four colors.

To obtain the modal information of the object from S-OBJ-A by using the setup described
in Chapter 2.1, a small camera is installed over the table at a proper height, perpendicularly
facing down to capture the view of the table, then a microphone is settled at a proper
distance from the human participant in order to receive the audio linguistic information.
The raw dataflow of both images and voice acquired from the camera and the microphone
will be transmitted to a computer via USB interface, where data files are created. The image
descriptor used for these experiments are the shape histograms and the H histograms (see
Section 2.1.1.2). Note that, because the S-OBJ-A data had been recorded before the rotation
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method (introduced in Chapter 2.1.1.1) was fully developed, a few samples have different
angular positions, which will bring some errors in the following experiments.

Figure 3.2: Visualization of the reference dictionary (Full dictionary).

In order to perform an systematic analysis, we prepared reduced experimental data sets
besides the Full dictionary data (ie. four objects in four colors as described above, whose
recorded data are visualized in Figure 3.2) and they are:

• 2c-2s, with keywords of 2 colors and 2 shapes, consisting of “lego” and “tasse” in “rouge”
and “bleu”, as visualized in Figure 3.3;

Figure 3.3: Visualization of the reference dictionary (2c-2s).

• 3c-3s, with keywords of 3 colors and 3 shapes, consisting of “lego”, “tasse” and “voiture”
in “rouge”, “jaune” and “vert”, as visualized in Figure 3.4;
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Figure 3.4: Visualization of the reference dictionary (3c-3s).

• 4c, with keywords of four colors of “rouge”, “jaune”, “vert” and “bleu”, as visualized in
Figure 3.5;

Figure 3.5: Visualization of the reference dictionary (4c).

• 4c-2s, with keywords of 4 colors and 2 shapes, consisting of “lego” and “tasse” in “rouge”,
“jaune”, “vert” and “bleu”, as visualized in Figure 3.6;

Figure 3.6: Visualization of the reference dictionary (4c-2s).

• 4s, with keywords of shapes, consisting of “anneau”, “lego”, “tasse”, “voiture” with no
color informations, as visualized in Figure 3.7;
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Figure 3.7: Visualization of the reference dictionary (4s).

• 4s-2c, with keywords of 2 colors and 4 shapes, consisting of “anneau”, “lego”, “tasse”,
“voiture” in “rouge” and “bleu”, as visualized in Figure 3.8.

Figure 3.8: Visualization of the reference dictionary (4s-2c).

3.2 Measuring the quality of word-learning association

We consider two cases for evaluating the quality of a learned dictionary of concepts. In
the first case, we assume that a reference dictionary is available and compare the result to
this reference. This measure helps evaluate the performance of the algorithms and makes it
possible to find the optimal parameters, but is not usable in real scenarios where the reference
dictionary is not known in advance. In the second case, we introduce a quality measure that
is based on the reconstruction error and the sparsity of the reconstruction and this measure
can be applied in a realistic scenario.

3.2.1 Comparing with a reference dictionary

A common idea of evaluating a learned dictionary with regard to a reference dictionary
is to make a pairwise comparison (eg. similarity measure) of items, which are from both
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dictionaries and possibly directing to the same concept, and then make a summation of these
comparison results as a measure of quality. The reference dictionary (as shown from Figure
3.2 to Figure 3.8) is formed by first averaging the histogram descriptions of all the valid
samples concerning a keyword (of 4 shape concepts and 4 color concepts), then only keeping
the part that is for the modality indicated by this keyword while replacing other positions in
the histogram by zeros.

The above comparison idea can be carried out by using a matrix comparison, with the
assumption that the order of entries are the same in both dictionaries and that every entry is
unique. In this case, there exists one-to-one entry mappings between dictionaries, which can
be formulated as

W reference ≈W learnC[
W reference

1 ,W reference
2 , ...,W reference

k

]
m×k

≈
[
W learn

1 ,W learn
2 , ...,W learn

k′

]
m×k′

C
(3.1)

where C is a matrix which will be the identity in the ideal case of the learned dictionary being
equal to the reference dictionary. When k = k′, that is say the two dictionaries have the same
entry numbers, C is considered to be an k times k eye matrix or resembles a diagonally
dominant matrix; however, when k 6= k′, i.e. the learned dictionary is not perfect, C is
expected to be an eye matrix, augmented with row or column vectors of all zero elements.

3.2.1.1 Conversion to a similarity measure of matrices

Thus, instead of using the item-wise similarity comparison between W reference and W learn,
we could find a more mathematical-friendly and convenient criterion to evaluate a learned
dictionary by measuring the similarity of C with an identity matrix. Yet before coming to
the algorithm of similarity measure, we should solve the problem of how to compute C, which
boils down to the solution of linear system of equations.

Interestingly, we first notice that the solution of Equation 3.1 can be computed using a vari-
ant of NMF. The objective is formulated as finding C such that min

C
arg(W reference

∥∥∥W learnC ),
where W reference is the reference dictionary as ground truth and W learn is kept fixed.

The resulting C matrix from Equation 3.1 could not at all be like an identity matrix, but
thanks to the property of linear invariance we can exchange the row or column in C. This
is simply because once we change two columns of C, say C.i and C.j , if W learn

i and W learn
j

change their positions correspondingly, then the linear relation expressed in Equation 3.1
remain the same. This property also fits the case of simultaneous row exchange of Ci., Cj.
and the position change of W reference

i , W reference
j .

We therefore developed an algorithm (Algorithm 1) for reordering the matrix C so as to
have it in the form of a dominant diagonal.
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Algorithm 1 Reordering of matrix.
Input: Xm×n
Output: Ym×n′

1: m, n← Xm×n
2: if m > n then
3: Zm×n′ ← (X, zero(m,m− n))
4: else
5: Zm×n′ ← Xm×n
6: end if
7: m, n′ ← Zm×n′

8: for i = 1→ m do
9: zpq ← max(Zm×n′)

10: exchange(Zp·, Zi·)
11: end for
12: for i = 1→ m do

13: zpq ← max

 Zi·
· · ·
Zm·


14: exchange(Zp·, Zi·)
15: end for
16: for i = 1→ m do
17: zpq ←

(
zii · · · zin′

)
18: exchange(Zp·, Zi·)
19: end for
20: Ym×n′ ← Zm×n′

The underlying reason for such a transform is based on the fact that every entry in a
reference dictionary is unique and distinct from the others, that is to say, if one entry in a
learned dictionary has already found its corresponding entry in the reference dictionary, it is
unlikely that there exist another entry which might match it for the second time. By using the
above algorithm, the largest elements in C will move to the diagonal position in descending
order from C11 to Cmm. Noticeably, there exists the possibility in which some consecutive
largest elements are in the same row or column, thus making it impossible to put them all
in the diagonal positions. However, as explained above, if one diagonal element dominantly
indicates the inter-dictionary relationship of two entries, the other elements from the same
row or column should be regarded as noise and disturbances.

3.2.1.2 Similarity measure with an identity matrix

After the reordering of matrix C, we get C′. And the next step of dictionary evaluation
is the comparison between C′ with an identity matrix of the same size. Among various
similarity measures in machine learning, we here adopt two of them: correlation coefficient
and Euclidean distance (2-norm).
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Let’s take I as an identity matrix. The Euclidean distance will be:

d =
∥∥C ′m×n − Im×n∥∥2 =

 m∑
p=1

n∑
q=1

(c′pq − ipq)2

1/2

(3.2)

and the correlation coefficient is

r =

∑
m

∑
n

(C ′mn − C̄ ′)(Imn − Ī)√(∑
m

∑
n

(C ′mn − C̄ ′)
2
)(∑

m

∑
n

(Imn − Ī)2
) (3.3)

where C̄ ′ and Ī are the average values considering all matrix elements. Both Equation 3.2
and Equation 3.3 are available by calling functions norm and corr2 in Matlab.

The Euclidean distance is an absolute measure of distance, thus the smaller d is (0 as
the minimum), the more C ′ approaches I and the learned dictionary is of higher quality. As
for correlation coefficient, it is more measuring the structure similarity, while disregarding its
absolute scale, the closer r approaches 1, the better the result is.

Finally, cases should be considered when the number of components in the learned dictio-
nary is not equal to that in the reference dictionary so as to make this evaluation framework
complete. Let’s denote k the number of components in the reference dictionary, k′ for the
learned dictionary and Ym×n for the coefficient matrix by applying Algorithm 1.

When k 6= k′, a modification of the comparison score is needed. We have two cases:

1) k > k′: there are insufficient components created in the learned dictionary com-
pared to the reference dictionary. That is to say, the learned dictionary only
succeeds in creating k′

k of the correct content. This why n
m (ie. k′

k ) is multiplied
to corr2, whose maximum value is 1. As for norm, for the same reason, it should
be added with the penalty representing the (1 − n

m) failure part. We assume
that the maximum distance in terms of 2-norm is n (ie. k) from ‖In×n − 0n×n‖2,
where In×n corresponds to the case when the learned dictionary exactly matches
the reference dictionary and 0n×n the result that none of the learned dictionary
components could be used for the linear combination to construct the reference
dictionary. Since a smaller value of norm index indicates a better performance,
the penalty term n · (1− m

n ) is added to indexnorm;

2) k′ > k: there are superfluous components in the learned dictionary compared to
the reference dictionary. In this case we determine the percentage of the results
that correspond to the correct components. In Algorithm 2, this percentage is m

n

(ie. k
k′ ) and modifications related to the penalty are exactly from the same concern

as described in the previous case.
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Algorithm 2 summarizes our method to estimate the quality of a learned dictionary.

Algorithm 2 Evaluation index of learned dictionaries.
Input: Ym×n
Output: resultnorm, resultcorr2
1: m, n← Ym×n
2: if m > n then

3: I ←

 1 · · · 0
... . . . ...
0 · · · 1


n×n

4: Z ← Y (1 : n, :)
5: indexnorm ← norm(Z − I) + n · (1− n

m)
6: indexcorr2 ← corr2(Z, I) · nm
7: else

8: I ←

 1 · · · 0
... . . . ...
0 · · · 1


m×m

9: Z ← Y ( :, 1 : m)
10: indexnorm ← norm(Z − I) + n · (1− m

n )
11: indexcorr2 ← corr2(Z, I) · mn
12: end if

3.2.2 Quality estimation without reference dictionary

Considering more realistic scenarios, for example online learning where a robot continuously
acquires new words, in which it is impossible to build a reference dictionary, we have to find
alternative methods to evaluate the learned dictionary without reference. Here, two important
features that are intrinsic to the learned dictionary, reconstruction error and sparsity, are
adopted as the basis on which the quality estimation is built.

The reconstruction error is a measure of how much the decomposed matrices approximate
the original one. For NMF, the KL divergence (see Equation 1.24) is used as the criterion to
represent reconstruction error. An obvious property of reconstruction error is that if there
are insufficient number of components in W , the reconstruction error would be huge; on the
contrary, if the learned dictionary has the exact number or superfluous components, the error
is expected to be quite small.

The sparsity is a measure of the distribution pattern of data, for example in a matrix, lager
sparsity index means that non-negative values are located only on a few elements while most
positions are filled with zeros or values very close to zeros, on the contrary, smaller sparsity
index indicates the case where major values might appear evenly among most positions.
During dictionary learning, the most goal dictionary is of the form “one label - one modality”,
which is guaranteed by our modifications on NMF as described in Chapter 2.3 and appears
sparser than other formats, for example the composite concept in which one label is associated
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with multiple modalities. However, we have tested the sparsity measure of related histogram
of every keyword, by using the data from the reference dictionary, and the result shows that
the sparsity index is proved different for each keyword related histogram even within one
modality (eg. rouge, vert) let along between two modalities (eg. rouge, voiture). To avoid
the above complexity, the sparsity analysis is only applied on word label histograms. For this
part, if a learned dictionary has less components than (or equal to) what it should be, the
sparsity value should be at a comparatively high level due to the fact that every word modal
histogram contains only one position with a non-zero value while others are all zeros; on the
other hand, if the dictionary contains redundant components, the sparsity measure would be
lower.

Among all the available algorithms to compute sparsity, the Gini index (see Equation 3.4)1,
is adopted to evaluate every sub-column vector relating to the words of a learned dictionary
and the average value of these Gini indices is used as the overall sparsity measure. Assuming
that a vector is reordered as monotonically increasing, denoted as x = [x1, ..., xi, ..., xn], the
Gini index is formulated as

Gini(x) =
n+ 1− 2

n∑
i=1

(n+ 1− i)xi/
n∑
i=1

xi

n− 1 (3.4)

Finally, we come to a comprehensive indicator combing both the reconstruction error and
the sparsity measure to evaluate the quality of a learned dictionary as

idxdictionary = a · error + b · (1−Gini) (3.5)

where a and b are parameters that weights the two terms respectively. We used a = 1/150
and b = 50 so as to make the two criteria curves comparable.

3.3 Evaluation of NMF with reference dictionary

In this section, we rely on using a reference dictionary for the purpose of finding a recom-
mended k to run the NMF learning model, and verify that with such a parameter setting
the learned dictionary is close to the reference dictionary. For this, k as a parameter, will be
endowed a value from a wide range (eg. all integer numbers from 2 to 14), and we will record
the quality of the learned dictionary in terms of criteria regarding both correlation coefficient
(a.k.a matrix coefficient) and Euclidean distance (a.k.a norm-2 ) given every possible k value,
followed by visualizing the optimal results recommended by the two criteria. In order to
achieve a comprehensive understanding and a systematic study, every one of the seven data
sets from S-OBJ-A will be used for the evaluation respectively. Note that all the results are
obtained with a maximum number of iterations of 80, and 10−4 as the error threshold for
convergence.

1https://en.wikipedia.org/wiki/Gini_coefficient
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Figure 3.9: Evaluation of NMF learned dictionary (Full dictionary).

We first applied our evaluation to the full S-OBJ-A dataset. Since in this case the ref-
erence dictionary is of eight components, both criteria show (Figure 3.9) that NMF applied
with the correct number of components results in a good learned dictionary. Besides, the
visualized illustrations (in Figure 3.10 and 3.11) show that the optimal learned dictionary
really approximates the Full dictionary reference to a very high extent, despite some visual
errors. In particular, the shape description is a bit noisy and the shape associated to the color
words are not completely zero, but very close.

Figure 3.10: Visualization of the optimal NMF learned dictionary (Full dictionary) in
norm-2 criterion.
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Figure 3.11: Visualization of the optimal NMF learned dictionary (Full dictionary) in
correlation coefficient criterion.

Table 3.1 summarizes the results obtained for the reduced datasets. The complete results
can be found in Appendix B.1. We observe that, in all cases, the value of k corresponding to
the real number of words to learn consistently leads to the lowest error and a good learned
dictionary.

Criteria
Data set Full

dictionary 2c-2s 3c-3s 4c 4c-2s 4s 4s-2c

Correlation
coefficient

max value 0.79162 0.9171 0.75409 0.96796 0.785 0.74471 0.78409
optimal k 8 4 6 4 6 4 6

Euclidean
distance

min value 1.5151 1.0969 1.2551 1.0313 1.582 1.4139 1.4499
optimal k 8 4 6 4 6 4 6

Table 3.1: Performance of NMF learning compared to reference for all data sets of
S-OBJ-A. For each criteria and dataset, the table reports the lowest error for all values of k

tested and the value of k corresponding to this lowest value.
From this seven different cases, we can conclude firstly that the proposed evaluation

algorithms using matrix similarity measure are efficient to evaluate the learned dictionary with
regard to the reference one, thus providing suggestion about the right value of k, with which
NMF has the best performance. Secondly, the learning algorithm of NMF with initialization
of W and the normalization rule of “shape+color” and “label” respectively during iteration,
as described in Section 2.3, is capable of generating a good learned dictionary of pure concepts
in the format of “one label - one modality”, approximating the reference dictionary, given the
right number of components. In addition, repeated experiments with the above data also
result in the same and stable performances.

3.4 Auto-determination of k by applying SV-NMF

Although we have shown that NMF with the correct value of k will lead to good dictionaries
in the previous section, we still have to find a method for finding k when the number of
relevant words is unknown. As introduced before, SV-NMF (see Section 1.4.2.4) can determine
automatically the size of the learned dictionary, and we can evaluate a learned result by
comparing it with the reference dictionary as well as the applicability of SV-NMF in our
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experiments based on its overall performance. Note that all the results are obtained with
nu (ie. the positive penalization parameter used to allow for a trade-off, between margin
maximisation and training error, see Section 1.4.2.4 ) ranging from 0.05 to 0.95 with the step
of 0.05, “linear kernel” and no normalization for column vectors in W .
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Figure 3.12: Evaluation of SV-NMF learned dictionary (Full dictionary).
Just like before, using the seven data sets from S-OBJ-A, the following descriptions will

first illustrate the curves of criteria (ie. correlation coefficient and Euclidean distance) against
nu. We will then show the found value of k according to the nu value recommended by the
above criteria, followed by visualizing the learned results of SV-NMF with the corresponding
optimal parameter setting.

Figure 3.13: Visualization of the optimal SV-NMF learned dictionary (Full dictionary) in
norm-2 criterion.

Figure 3.12 shows that with the nu values of 0.55 or 0.65 (depending on the used crite-
ria), the learned dictionary reaches the best quality and that the number of components is
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Figure 3.14: Visualization of the optimal SV-NMF learned dictionary (Full dictionary) in
correlation coefficient criterion.

correctly chosen as 8, equivalent to the ground truth number. However, by comparing the
visualized dictionaries (Figures 3.13 and 3.14), we notice that instead of producing compo-
nent as simple concept (in “one label - one modality” format), SV-NMF tends to generate
composite concepts, which does not conform to our assumption of a good dictionary. Further
more, some entries of the dictionary are wrong in contents.

Table 3.2 summarizes the results obtained for the reduced datasets. The complete results
can be found in Appendix B.2. We observe that, in all cases, similar conclusions can be
drawn. The number of components is often, but not always, correctly estimated, but the
resulting dictionaries are always quite far from the reference ones. Moreover, the value of nu
leading to the best dictionary is always different.

Criteria
Data set Full

dictionary 2c-2s 3c-3s 4c 4c-2s 4s 4s-2c

Correlation
coefficient

max value 0.80138 0.966 0.91964 0.86686 0.80875 0.7742 0.86358
nu (ν) 0.65 0.4 0.25 0.8 0.5 0.45 0.75
optimal k 8 4 6 4 5 5 6

Euclidean
distance

min value 1.3014 1.0496 1.1558 1.2083 1.887 1.6507 1.3653
nu (ν) 0.55 0.3 0.25 0.8 0.45 0.45 0.75
optimal k 8 4 6 4 7 5 6

Table 3.2: Performance of auto-determination of k by applying SV-NMF for all data sets of
S-OBJ-A. Values in red indicate errors in the determination of k by SV-NMF.

From these experiments, we can conclude that 1). the automatic determination function
for k from SV-NMF model proposed in [58] is proved effective to some extent, given a correct
parameter setting of nu; 2). however, in different experiments, the optimal nu variates, which
makes this model not applicable in our case because we have to decide nu empirically and
manually; 3). in addition, the quality of learned dictionary via SV-NMF is not so good as we
expect, usually consisting of missing, repeated or contradictory items.
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3.5 Determination of k for NMF without reference

Now that it seems not easy to find applicable ready-made methods to auto-determine k
without using the reference, we therefore propose a comprehensive quality measure for this
purpose. Using the same methodology, we evaluate the reconstruction error and the 1-Gini
index for every learned dictionary with values of k ranging from 2 to 14. The comprehensive
indicator formulated in Equation 3.5, i.e., the combination of the above two criteria, will be
adopted as the indicator to find the optimal k. And we will also illustrate the performance
of NMF with such a parameter.
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Figure 3.15: Evaluation of NMF learned dictionary (Full dictionary) in criteria of error and
Gini index.

Figure 3.16: Visualization of the optimal NMF learned dictionary (Full dictionary) in
criteria of error and Gini index.
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Figure 3.15 shows the values of the two criteria and their combination as a function of
the value of k for the NMF algorithm. We can see that the optimal values of error curve and
(1-Gini) curve lie apart (see the top), but the combined curve (see the bottom) reaches its
minimum value when k = 8, exactly the right number of components of the reference. With
k = 8, learning via NMF results in a very good dictionary (Figure 3.16, as was previously
shown).

Table 3.3 summarizes the results obtained for the reduced datasets. The complete results
can be found in Appendix B.3. We observe that, in all cases, similar conclusions can be drawn.
The number of components is always correctly estimated, and the resulting dictionaries are
very close to the reference dictionaries.

Criteria
Data set Full

dictionary 2c-2s 3c-3s 4c 4c-2s 4s 4s-2c

Reconstruction

error
min value 0.58007 0.2837 0.3826 0.28633 0.42 0.19472 0.38529
optimal k 12 14 12 12 12 4 10

1-Gini
index

min value 2.2404×
10−8

4.2991×
10−7

1.0546×
10−7

4.7441×
10−7

8.8561×
10−8

6.0488×
10−7

1.2396×
10−7

optimal k 3 2 2 2 2 2 2
Comprehensive
quality

measure

min value 0.60592 0.33183 0.39992 0.34057 0.47421 0.19472 0.41137
optimal k 8 4 6 4 6 4 6

Table 3.3: Performance of determination of k by applying NMF without reference for all
data sets of S-OBJ-A.

From the above results, we could find the common points that with every experimental
data set, using k determined by the comprehensive index combing both reconstruction error
and (1-Gini) index, the NMF model gives in every case highly stable and correct learned
dictionary by comparison with its reference as ground truth. In fact, for every purple curve
(corresponding to the comprehensive index), there is a local minimum, left to which is a
descending trend which is dominated by the reconstruction error while right to which is a
ascending trend mainly influenced by the sparsity measure, and this is concordant with what
have been analyzed in Chapter 3.2.2, making the optimal k as the right number of the ideal
dictionary components being indicated by the turning point of two trends.

In a realistic scenario, this method can by applied by starting the experiment with a value
of k = 1, and then, at each new sample, evaluate the result of the learning with the values of
k and k + 1. If using k + 1 lead to a lower value of our combined coefficient, it can be used
as the new reference for processing the next sample.
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3.6 Discussion

In this chapter, we tried to validate the performance of our proposed NMF learning model
by evaluating the quality of a learned dictionary representing the word-meaning associations,
compared with a corresponding reference. Thanks to the non-negativity of NMF that give rises
to good interpretability, we could simply conduct the comparison by visualizing the learned
results. Another key issue of applying NMF is the determination of k as the number of hidden
topics, on which all input samples could be reconstructed by means of linear combination.
The first trial was to find an optimal k from a range of candidates, with which different
learned dictionaries are created and then compared with references, and proved valid via case
by case (in total seven) evaluations. Then as a representative of the current research focusing
on this topic, SV-NMF, which is supposed capable of auto-determining k, was evaluated with
the same experiment data as those processed by NMF so as to evaluate its suitability in
our experiments. As a result, since SV-NMF seemed not adapted for our experiments, we
proposed a comprehensive quality measure (as the combination of reconstruction error and
sparsity measure) to determine k without the needs of using references and finally proved its
effectiveness by evaluating every case of our experiment data sets.

Concerning the evaluation measures, when a reference dictionary is available as the ground
truth, our solutions to estimate the similarity between a learned dictionary and a reference
one proved to be effective. As it is not possible to compare reference and learned dictionaries
directly, we sought to describe/reconstruct a learned dictionary by using the linear combina-
tion of reference dictionary bases, then reorder the linear coefficient matrix (computed also by
NMF based method) in a way as similar as possible to an identity matrix. We then applied
the least square or correlation measure between the obtained matrix and the identity matrix,
with a penalty term considered when the learned dictionary is not of the same size as the
reference one.

In the case where a reference dictionary is not available, the reconstruction error and
sparsity measure were used jointly to find the optimal dictionary and shown to give the
correct prediction of the number of components. For the reconstruction error curve, there is
an obvious decline from the situation in which components are insufficient to the situation
where component number is just right and a flat trend afterwards; on the contrary, the sparsity
curve (for sub-column vectors of label section in W ) will first be flat before ascending when
the dictionary components appear superfluous. Hence, the minimum of the combination of
the two curves gives the right number of components.

We evaluated the quality of learned dictionaries produced through a series of experiments
given a comparatively small set of data in seven dictionary cases (1 full version and 6 reduced
versions). Generally speaking, the NMF model manages to learn objects by extracting the
pure concepts concerning shape and color, therefore learning that objects are the combination
of different features. The learned dictionaries are very close to the reference and present the
right format of “one label - one modality”. Besides, in cases of both “with reference” and
“without reference”, k is determined correctly, thus ensuring an optimal NMF output in
every experimental scenario. On the contrary, in our evaluation of SV-NMF, most learned
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dictionaries do not contain pure concept and always contain bad entries (eg. missing, repeated,
contradictory). Further more, SV-NMF does not have a fixed parameter setting of nu for
the experiment series, and this prevents its further utilization before some improvements are
made.

SV-NMF, proposed in [58], is an endeavour to interpret and solve the NMF model from
a geometrical aspect, however, in practical use concerning our problem, it is not adapted for
several reasons:

1) SV-NMF seeks to find a conic hull, as small as possible, of input data V to deter-
mine W , but as a matter of fact in our experimental scenario, any input sample
itself is not qualified to be taken as one component in the learned dictionary.
That’s why the learned dictonary, ideally containing only pure concepts, always
includes composite concepts, especially just copying one of the input samples (eg.
the Component 1 to 4 in Figure B.36) and repeated results (possibly because they
are in close proximity of a “border vector” of the smallest conic hull, eg. in Figure
B.32);

2) in real world scenarios, the reasonable decomposition of a complex object is not
unique, for instance, a white horse might be regarded as the combination of two
concepts white (from the category of color) and horse (from the category of biol-
ogy), yet it can also be decomposed as a horse head, a horse body, four horse legs,
a horse tail... Therefore, instead of insisting on an universal solution regarding the
uniqueness of decomposition (as proposed by SV-NMF), efforts should be taken
to explore the conditions on which a desired and reasonable decomposition would
appear.

In fact, the proposed NMF model as described in Chapter 2.3 succeeds in solving partially, if
not all, the above problems.

Now that the pure concept acquisition is validated via our proposed NMF learning model
in ideal conditions. We will carry on into experiments to deal with more realistic scenarios,
where more objects are to be presented and we will go beyond the “keywords only” data for
the evaluation in “full sentence” noisy circumstances. Moreover, we will study how active
learning can improve the learning speed in incremental scenarios.
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In this chapter, we will study the behavior of the NMF and LDA algorithms on the task
of incrementally learning word-meaning associations. Unlike the theoretical evaluations with
only a small set of data presented in the previous chapter, we prepare new sets of objects,
in higher quantity as well as higher complexity of image representation, to evaluate if our
learning method is capable of dealing with more real world scenarios such as describing
an image or recognizing a named object. Besides, some of the experimental scenarios will
present both referential and linguistic ambiguities, demonstrating that the proposed learning
models can tackle situations in which multiple objects are referred when only one descriptive

87



88 Chapter 4. Incremental word-meaning learning

sentence is spoken or/and full sentences (including unrelated words) are used instead of just
keywords. Regarding the automatic determination of the number of hidden topics (referred
to as k throughout this manuscript), new methods are proposed to suit the above scenarios
that, contrary to the solution proposed in the previous chapter, do not require a posterior
evaluation of the learning result for several values of the parameter. In all this chapter, we
evaluate the learning progress during incremental learning experiments and show that it can
be improved by the proposed active learning strategies. Finally, we evaluate the potential for
the betterment of our proposed learning model by applying more complex visual features.

To note that for every individual experiment, a temporary conclusion or short comment
is attached after the description based on the local observation of the experimental results;
however, comprehensive conclusions according to the overall analyses of all experiment series
will be drawn finally in the chapter of Discussion and Conclusion.

4.1 Experimental data

Using the same experimental settings (introduced in Chapter 3.1, including the use of the
rotation technique described in Chapter 2.1.1.1) in which we obtain S-OBJ-A, we recorded
more objects and denoted them as S-OBJ-B and S-OBJ-C. Additionally, a fourth dataset,
S-OBJ-D, contains the HOG descriptors of several objects (images printed on cubes) detected
by applying depth based object segmentation (see Section 2.1.1.1).

4.1.0.1 S-OBJ-B

In this dataset, there are 24 objects which represent 4 colors as “blue (bleu)”, “green (vert)”,
“red (rouge)”, “yellow (jaune)”, and 7 shapes as “cup (tasse)”, “ring (anneau)”, “lego”, “apple
(pomme)”, “compass (boussole)”, “car (voiture)”, “book (livre)”, constituting in total 11 word
meanings, as shown in Figure 4.1.

A total of 77 samples were recorded from three different teachers and manually categorized
as correct (i.e. containing both correct labels of color and shape along with other unrelated
words), half-correct (i.e. containing only one of color or shape label) and corrupted (i.e.
containing no correct label). For example in Figure 4.2, “Une tasse jaune” correctly describes
a yellow cup. When describing a green lego, the speaker says: “Ha, c’est un lego vert”,
however the word “lego” fails to be recognized and leads to a half-correct sample on the right.
A corrupted sample appears when none of the correct words are recognized, for example when
the original sentence “c’est un anneau vert” is misunderstood as “c’est quand halloween”.
Among all recorded samples, there are 70.13% correct samples, 11.69% half-correct samples
and 18.18% corrupted samples. Overall, the 11 words to learn represent only 17.74% of the
total number of words present in the samples. Similar to the cases in Chapter 3, there is a
reference dictionary created for evaluation.
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Figure 4.1: Twenty-four objects with eleven concepts of shape and color

Figure 4.2: Examples of correct, corrupted and half-correct samples.
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4.1.0.2 S-OBJ-C

Figure 4.3: Thirty-nine objects with fifteen concepts of shape and color.

This dataset (Figure 4.3) is similar to the previous one, but is larger. It contains 39 objects
presented in 5 colors and 10 shapes, thus giving 15 meanings of shape and color. They can
be grouped by color as “green (vert)”, “blue (bleu)”,“red (rouge)”, “yellow (jaune)”, “purple
(violette)”, and categorized by shape as “ring (anneau)”, “raft (radeau)”, “wall (mur)”, “stool
(tabouret)”, “apple (pomme)”, “lego”, “triangle”, “compass (boussole)”, “cup (tasse)”, “book
(livre)”.

We recorded 153 samples with the help of ten volunteers, in which every object was
described at least three times and most of them four times. Each object was described by two
keywords, but the mean sentence length is 4.026, thus containing in average 2.026 irrelevant
words. We did not created a reference dictionary but we separated the data set into a training
set by selecting 3 samples for every one of the 39 objects (thus summing up to a total of 117
samples) and keep the remaining 36 samples, which cover all the keywords, as testing data to
monitor the performance of learning.



4.1. Experimental data 91

4.1.0.3 S-OBJ-D

Figure 4.4: Twenty cubics of object images with every side of cubic in different color.

In order to evaluate our proposed models with more complex visual representations and more
shape and color concepts combinations, new objects are “created” by making cubes with
printed objects on their sides. As shown in Figure 4.4, we made 20 cubes in total, each side
of which represents a color, containing “blue”, “cyan”, “green”, “purple”, “red” and “yellow”.
This gives a total of 120 object instances. All cubes have the white background, which is
supposed to have no influence on the HOG description, and are drawn with cartoon images of
“bird”, “boat”, “book”, “cake”, “car”, “cat”, “cow”, “dog”, “dolphin”, “fish”, “frog”, “hat”,
“house”, “pig”, “pumpkin”, “rat”, “sealion”, “shark”, “vase” and “whale”.

By using the proposed segmentation (see Section 2.1.1.1) and HOG recording techniques
(see Section 2.1.1.2), every side of a cube was described and recorded 7 times, thus forming a
total number of 840 samples as database. In order to get the testing data, we first randomly
chose one side of the object from which one sample was then randomly selected out of the
seven samples, therefore we obtain 20 samples for testing. As for the remaining five cubic
sides, we prepared two different sets of training data: “T3” in which 3 samples were randomly
selected and “T1” with only one sample for each of the five cubic sides. In this way, every
object from the testing data never appears during training (although its HOG and color
properties separately do). Besides, the sentence collection procedure remains the same as
before and finally every sample is represented by an histogram of three sections in terms of
HOG, color and linguistic channel.
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4.2 Performance evaluation

In the previous chapter, we used reference dictionaries for the evaluation. However, in most
realistic scenarios, these reference dictionaries are not available, especially in online learning
situations. In this chapter, we therefore applied other evaluation strategies by evaluating
the learned dictionaries on recognition tasks. This approach is very similar to the one used
in cognitive studies on human or animal learning performance, as they treat the system as
a “black box”. In all subsequent experiments, there are three evaluations criteria in total
to illustrate the learning performances: the first two which are mostly applied are derived
from the common interactive activities such as a parent asks a child to recognize a toy (by
correctly telling its name or distinguishing it from other toys), and the third one which is
used comparatively less simulates how an infant self-evaluates what has been learned.

Note that in order to exhibit the best performance results possible for each learning
algorithm, we didn’t specifically develop an online and incremental version, but we emulate
incremental learning by performing standard “batch” learning with new samples added to
the previous training data set. Besides, in most following experiments (except for those in
Section 4.5.1), the feature quantification (see. Chapter 2.1.3) is applied for all data before
learning starts so as to reduce the influence of quantification errors caused by the different
appearing orders of samples.

4.2.1 Task of image recognition (T2img)

The first evaluation method called “Text to Images” (T2img) evaluates if the system makes
it possible to recognize the image of an object given its spoken description.

“T2img” is the task of choosing a correct image from a group of candidate pictures by
matching features described by a corresponding linguistic text (Tj). The whole process simu-
lates the everyday situation where the teacher utters a textual description about an object and
the learner has to designate the corresponding object. This evaluation criteria is implemented
for both LDA and NMF with specific procedures.

For LDA, which is using clustered visual description, we first estimate the hidden topic
distribution associated to the textual description Tj : P (z|Tj), and reconstruct the associated
vision feature channel using P (ωj |Tj) =

∑
k P (ωj |zk) · P (zk|Tj) where ωj ∈ S ∪ C (resp.

ωj ∈ H ∪ C) and S (resp. H), C correspond to the sets of shape (resp. HOG) and color VQ
symbols respectively as introduced in Section 2.1.3. Then for every testing image dtesti , we
compute the likelihood

L(dtesti |Tj) =
∑
l

Cnt(ωl) · lnP (ωl|Tj) (4.1)

where ωl ∈ S ∪ C (or ωl ∈ H ∪ C) and Cnt(ωl) is number of occurrence of visual cluster
ωl from the testing sample dtesti . Note that penalty is imposed when Cnt(ωl) > 0 while
P (ωl|Tj) = 0 by applying lnP (ωl|Tj) = −5000 for the reason that the VQ feature ωl totally
fails to be reconstructed. The object whose likelihood is the highest is taken as the answer
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and we compute the overall percentage of correct answers.

For NMF, which is using raw visual histograms, we adopted the approach proposed in
[123]. Since visual histograms matching would easily introduce errors, we preferred to perform
matching in the word space. For this, for each testing sample :

V test
i =

[
V test
i−shape
V test
i−color

]

we first compute the coefficient vector of hidden topics Htest
i associated with the visual de-

scription of each testing object i by minimizing the distance

DKL([V test
i−shape, V

test
i−color]T ‖[Wshape,Wcolor]THtest

i ) (4.2)

and then reconstruct the textual description of this testing object:

V test
i−word = WwordH

test
i (4.3)

Finally, we find the object in the testing set whose textual description is the closest to Tj by
computing

χ2(Tj , V test
i−word)

for all i and count the percentage of all right answers among the total number of testing
objects.

4.2.2 Task of image description (Img2T)

The second evaluation method called “Images to Text” (Img2T) evaluates if the system makes
it possible to correctly describe an image.

“Img2T” is the task in which an image is shown to a learner who has to give a related
textual description of its features (eg. concerning shape or HOG and color). It is quite similar
to the behavior of annotation of an image.

For LDA, given a test image dtesti = {si, ci} (or dtesti = {hi, ci}) where si ∈ S, hi ∈ H

and ci ∈ C, we also estimate the hidden topic distribution associated to dtesti : p(z|dtesti ), and
reconstruct the associated word description P (Ti|dtesti ) =

∑
k P (Ti|zk, dtesti ) · P (zk|dtesti ). The

two words with the maximum P (Ti|dtesti ) values are chosen to form Ri, the set of reconstructed
words while Gi is denoted as the ground truth words corresponding to dtesti . Then we apply
equation (4.4) to compute the “Img2T" performance (in percentage):

scoreImg2T = 100
NT

NT∑
i=1

Card(Ri ∩Gi)
Card(Ri ∪Gi)

(4.4)

where Card(X) is the number of elements of X and NT the total number of testing samples.
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For NMF, from V test
i =

[
V test
i−shapeV

test
i−color

]T
, we reconstruct the hidden topics by minimiz-

ing the distance from Equation 4.2 and reconstruct the word modality (using Equation 4.3)
to get the reconstructed V test

i−word. We then take the two words with indices of the largest two
values from V test

i−word and check if they are identical to the ground truth words concerning its
shape and color. We come to the score for the overall testing objects in percentage also by
using Equation 4.4.

4.2.3 Reconstruction error

Both NMF and LDA are approximation algorithms that reconstruct the data from a set of
underlying topics, thus leading to a reconstruction error. This reconstruction error could be
regarded as a self-evaluation procedure from a learner who tries to re-describe an object with
the features that he/she has learned despite the errors which might occur. In our experiments,
we focus only on the reconstruction error of visual modalities (ie. of shape/HOG and color)
which makes it possible to estimate if our method has a good knowledge of an object.

Both NMF and LDA have expressions related to the reconstruction error. For LDA, we
make use of the log-likelihood of the data as described in Equation 4.1: logL(dtesti |Ti). It is
in fact related to the opposite of the error as its value increases during training. For NMF,
we directly utilize the KL divergence distance DKL from Equation 4.2.

4.3 Policy of the determination of the dictionary size in incre-
mental experiment settings

The estimation of the optimal value of k (ie. the dictionary size or the number of components
for NMF and number of topics for LDA) as the number of components in the previous chapter
is essentially posterior based: an optimal value is chosen from trials given a list of candidate
parameter values. This method is however sometimes untractable as the training is too
computationally heavy.

Therefore, alternative approaches were used to determine the optimal value of k in an
incremental experiment setup, concerning two scenarios of “keywords only” and “full sentence”
with respect to learning models of both NMF and LDA.

For LDA, the same strategy is used for both scenarios, which is based on the current
number of VQ clusters concerning all described samples and the log likelihood measure of
LDA model with a certain value of k as the parameter for the number of topics:

1) we give an initial value of k as k(1)
LDA = n

(1)
cluster, with n

(1)
cluster, the size of the first

set of VQ symbols concerning S or H and C, that is to say the number of vector
quantized clusters about shape (or HOG) and color of the first input samples.
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2) when LDA trains the input data at time i, we use the parameter k(i−1)
LDA , and

perform an additional training with parameter k(i−1)
LDA + 1 as the number of top-

ics, and both training models result in two log likelihood measures (ie. logL =
log(p(w, z,θ,φ;α, β)), derived from Equation 1.36). We then take the value of k
that gives the best likelihood:

k
(i)
LDA = arg max

k={k(i−1)
LDA ,k

(i−1)
LDA+1}

(logL(·; k))

additionally, we limit the value of k(i)
LDA as

k
(i)
LDA = min[max(k(i)

LDA, n
(i)
cluster), 2× n

(i)
cluster]

so as to control the over growth of k(i)
LDA.

In short, the general idea is that the number of topics for LDA is in correlation to the
number of VQ clusters, which is a required pre-processing before applying LDA; however, in
practice, we found that once a small amount of redundant topics are given, the overall per-
formance would improve and this improvement would be measured just by the log likelihood
of LDA training model.

For NMF, the choice of k in the “keywords only” scenario is just the number of keywords
which have been used to describe all encountered samples and in the “full sentence” exper-
iment, k takes the value of the number of selected keywords as the result of TF-IDF word
filtering (see Section 2.2).

From the next section and on, we will test the learning ability of our proposed models to
conduct cross-situational learning tasks with ascending complexities, starting from the case
of the lowest ambiguity where object is given to the learner one by one and described with
only keywords, then to the situation where the noisy words are added during the single object
description, followed by the scenario when multiple objects are present each time while full
sentences (containing more than keywords) are used for description, until to the final stage
with active learning strategy and finally using a more complex vision descriptor.

4.4 Learning with unambiguous noise free data

In this section, we will demonstrate the learning ability of the two proposed models in the
simplest experimental setting. An incremental learning scenario is considered which simulates
the situation of a teacher who randomly chooses one single object and describes it with
its associated keywords (corresponding to the KW&S scenario of Section 2.1.4). There is
consequently no ambiguity regarding the referent and the linguistic ambiguity is at its lowest
level. Both learning methods are used and their performances are compared.

Using the dataset S-OBJ-C, a sample is randomly chosen and presented which can not be
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reused any more, therefore there are 117 learning steps for a learner to finish the whole learning
process. From the point of view of the learner, at every learning step, a new sample will be
added to its training database composed of all the used samples, and the learning model will
retrain the whole data before the 36 testing samples are used to evaluate learning results via
“Img2T” and “T2img”. It should be noted that, as described in Section 2.3 before, we here
do not develop a true online version of the learning algorithms, because the objective at the
current stage is more focused on estimating the upper bound of the performance achievable
by each method.

In order to present the learned results pertinently, we choose to report the testing perfor-
mance as a function of the number of samples used for training, up to the total number of
samples of 117. The curves display the 75th, 50th and 25th percentile of performance among
50 repetitions of the experiments.
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Figure 4.5: “T2img” performance of incremental learning with KW&S data from S-OBJ-C
Figure 4.5 and 4.6 show that both LDA and NMF are able to reach a performance of 100%

before half of the training samples are given. Compared to [5], the best performance in which
is less than 75%, the proposed learning methods perform better mainly due to two evident
reasons: 1). within a specific category in terms of shape, the objects used in [5] are still
different in shape while in this thesis most categories just have objects that possess almost
the same shape but in different colors, which lowers the difficulty of recognition; 2). online
version of LDA was used in [5], yet on the contrary, NMF and LDA still adopts the batch
processing so as to achieve the potentially best performance.

Not beyond our anticipation of the two methods according to their mathematical proper-
ties, we observed that their learning progresses appear different: NMF reaches above 90% in
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Figure 4.6: “Img2T” performance of incremental learning with KW&S data from S-OBJ-C
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Figure 4.7: Reconstruction error curves of incremental learning with KW&S data from
S-OBJ-C.
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the task of “T2img” and 80% in “Img2T” after 25 samples while for LDA to attain the same
level of performance, it needs around 35 samples. We can also observe that NMF consistently
outperforms LDA regarding the learning speed in all criteria curves (in Figure 4.7, we can
observe their different speeds of converging to 0 for their reconstruction error), showing its
adaptation to the case of limited ambiguities in the language part. Two main facts could
be used to explain the above differences: 1). when choosing the number of components (for
NMF, noted as kNMF ) or topics (for LDA, noted as kLDA), according to the policy in Section
4.3, kNMF is exactly equal to the sum number of shape and color clusters while kLDA is set
redundant1, thus more than the ground truth cluster numbers, making the learning more
stable, but less precise; 2). unlike NMF which is directly specialized in dimensionality reduc-
tion of raw data, LDA with its statistic approach needs more samples to train accurately the
generative model and therefore remains comparatively slow in learning.

Figure 4.8: An excerpt of testing samples (which are 36 in total).
We notice small differences in the performance curves of “T2img” and “Img2T”: “T2img”

performs slightly better than “Img2T”. If we take a look at some intermediate learning results,
we find that when tested with the same object a learner would sometimes succeed in the task of
“T2img”, however fail in “Img2T”, which finally causes the tiny gap between the two curves.
For example, when given the Object 25 (radeau jaune, as shown in Figure 4.8) and based
on the current (and obviously not perfect) learned results of components (as illustrated in
Figure 4.9), a learning agent applying the NMF learning model reconstructs the tested object
via the linear combination of the following principal components: tabouret, radeau, lego and
jaune, with corresponding weights (whose value have been rounded) as 0.454, 0.307, 0.189 and
0.986. In “T2img”, by applying χ2(Tj , V test

i−word) as described in Section 4.2.1, it chooses the
right object among all the objects on hearing the description “radeau jaune” because all other
objects’ textual descriptions are even farther from “radeau jaune”. However in “Img2T”, it

1In fact, if well learned, the hidden topics of LDA have several different types: most of them obey the
format “one feature VQ symbol - one word label”, but there are also possibilities where in a topic there might
be several VQ symbols or word labels on some occasions and no symbols or words on others.
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(a)

(b)

(c)

Figure 4.9: An example of a midterm result of learned components.
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utters the names of components with largest weight values, that is “jaune”, “tabouret”, and
as a result, leads to an error. A more intuitive way to explain this difference is to say that
“T2img” chooses the best matching image in the test set, thus can give correct answers even
with imperfect component dictionaries, while “Img2T” directly generates an answer, and thus
is more sensitive to errors in the dictionary.

4.5 Learning with unambiguous noisy data

4.5.1 Validation of “NMF+TF-IDF” learning model by means of reference
dictionary

Since using NMF to tackle directly the linguistic noisy data definitely does not lead to good
performances, we proposed TF-IDF as a supplement to the learning via NMF (as described
in Section 2.2). In order to testify this filtering effectiveness, we specifically conducted an
incremental experiment with all 77 samples from S-OBJ-B (in which there are bad samples
whose linguistic descriptions have partial or even no related words concerning shape and
color, thus corresponding to the FS&S scenario of Section 2.1.4), and 10 learning experiments
had been performed independently by processing all the samples in random order before the
values of mean and variance concerning their performances were computed.
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Figure 4.10: Performance of keywords’s filtering with FS&S data from S-OBJ-B.
Figure 4.10 plots the evolution of the total number of different words encountered in the

samples (in black), the number of selected words by our filtering scheme (in red) and the real
number of correct keywords in these selected words (in blue). We can see that our approach
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selects an approximately correct number of words during the whole experiment, and converges
to the correct total number of keywords after approximately 50 samples.

Two metrics are defined for the evaluation of the quality of word filtering and word-
meaning dictionary. For the word filtering part, we compare the set of filtered words F with
the set of reference words R using the equation:

sword = 100× Card(F ∩R)2

Card(F )× Card(R) (4.5)

where Card(X) is the number of elements of X. This score is maximal when F = R and
decreases when the set of filtered words lacks some reference elements or when it contains
additional erroneous words.

After word filtering, we performed dictionary learning with NMF, using only the words
that are selected. We then compared the learned dictionary with the reference dictionary
(using the same method as described in Section 3.2.1) applying the following formula:

sdict = 100×

(∑
i∈R

∑
j∈F

δ(i, j) · e−χ2(ri,fj)
)
· Card(F ∩R)

Card(F )× Card(R) (4.6)

where δ(i, j) is the Dirac function that equals 1 when the most activated word of the learned
dictionary entry j is the same as in the reference word i, 0 otherwise. χ2(ri, fj) is the χ2

distance between the visual feature part of learned entry j and reference entry i. This measure
is maximum when the learned dictionary is equal to the reference dictionary and decreases
when the selected words are different from the reference or when the definitions of the selected
words differ from their reference definitions.

Figure 4.11 shows the mean and variance of these values with incremental amount of
training samples. We can see that the word filtering improves its performance another time
and reaches the maximum score after 70 samples in all cases. The dictionary quality follows
very closely the word filtering quality, showing that the dictionary learning using NMF is
efficient and that the overall quality mainly depends on the word filtering. The difference
with 100 is mostly due to remaining noise in the shape description.

As the results show, the “NMF+TF-IDF” cross-situational learning method manages to
deal efficiently with noisy and ambiguous input taken from vision and speech recognition,
where correct words represents only 17.74% of total words. Therefore, we would like to test
the proposed method with more realistic and challenging tasks subsequently.

4.5.2 Comparison between “NMF+TF-IDF” and NMF only

Now that “NMF+TF-IDF” has been proved its power of word-meaning learning while effec-
tively dealing with linguistic noise and ambiguities, we still wonder to what extent TF-IDF
helps improving the learning process.
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Figure 4.11: Quality of keywords and dictionary learning with data from S-OBJ-B.

We adopt the same experiment settings as described in Section 4.4 but with the samples
whose descriptions are full sentences instead of mere keywords. We simulate the scenario of
a teacher who randomly chooses an object (which is still not reusable) and describes it with
a natural descriptive sentence.

The performance of two different learning agents, one of which uses TF-IDF to filter out
unrelated words while the other one just accepts all it has received, are illustrated by “T2img”
and “Img2T” curves respectively (Figures 4.12 and 4.13).

It is noticeable that the performances via NMF learning without the linguistic filtering
function are more efficient at first in both cases. This is due to the fact that the statistical
filtering performed by TF-IDF is not efficient with few samples and thus leads to erroneous
keyword selections. However, the performance by applying NMF with TF-IDF continues to
improve until the score of almost 100 could be reached, while the NMF learning without
using TF-IDF stagnates or even reduces a little when it comes to the end of the incremental
learning. This demonstrates that TF-IDF is efficient when enough samples (i.e., over 40) are
available.

We now illustrate the performance of the automatic threshold selection strategy proposed
in Equation 2.1 in Section 2.2. Figure 4.14 illustrates the evolution of the IDF values against
the number of input training samples. We report the mean, variance, maximum as well
as minimum of IDF values for the set of all words contained in the training samples. We
also show the IDF thresholds idflow and idfhigh computed from Equation 2.1 (with legends
of “Max-thresh-idf” and “Min-thresh-idf” respectively). In order to have a clear feedback
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Figure 4.12: “T2img” performances of NMF
model: with TF-IDF vs. without TF-IDF by

using FS&S data from S-OBJ-C
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Figure 4.13: “Img2T” performance of NMF
model: with TF-IDF vs. without TF-IDF by

using FS&S data from S-OBJ-C
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Figure 4.14: Evolution of the IDF values during learning. See text for details.
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about whether the calculated thresholds are effective or not, we also draw the maximum and
minimum IDF values for all keywords that have appeared up to the current learning step
(marked by “Max-kw-idf” and “Min-kw-idf” respectively).

We used ηhigh = 0.67 and ηlow = 0.20 in Equation 2.1 which lead to the fact that the
curves of “Max-kw-idf” and “Min-kw-idf” converge in the area between “Max-thresh-idf” and
“Min-thresh-idf” as expected. The initial behavior of the IDF threshold which incorrectly
selects keywords before step 50 explains in a large part the better performances of learning
without TF-IDF observed in Figures 4.13 and 4.12.

As for the TF threshold, which is based on the word occurrences in one cluster (serving
as a document), we used the following adaptive policy:

a) when samples are few in one cluster, more specifically when the maximum value of word
occurrence is not more than 1, all words will pass the TF filtering due to the fact that
the TF as a criterion is unable to distinguish keywords from the rest in this situation;

b) when samples become more and more, that is when the maximum value of word occur-
rence is over 1, we set the TF threshold as the proportion value of the number of samples
belonging to a cluster against the sum of word occurrences regarding all samples in this
cluster.

The general principle about devising the parameter setting is that it would be preferred to
have extra unrelated words than loosing some real keywords, because the later case would
strongly ruin the performance.

We finally visualize the results of NMF learning with or without using TF-IDF in Figure
4.15 and 4.16.

In both figures, thanks to the proposed NMF model (see Section 2.3), all keyword compo-
nents as well as some unrelated word components manage to have a “one word-one modality”
data description. In Figure 4.15, although there are five words like “ce”, “est”, “la”, “le”,
“voila” with very common grammatical functions, which fail to be filtered out, the perfor-
mances seem not to be influenced and the remaining words have correct definitions. In Figure
4.16, it is obvious first of all that due to the existence of too many unimportant components,
the modal description of some principal components (eg. “boussole”) are somehow damaged;
besides, some unimportant components appears to have very similar or even the same modal
description (eg. “abel”, “avez-vous” and “bleu”; “aimes”, “avec” and “belle”) which coinci-
dentally leads to the phenomenon of synonym, will have an direct misleading effect during
testing by replacing the role of real keyword components; further more, some unimportant
components are associated with mixed modal descriptions (eg. “a” and “as”).

Obviously, there are stronger ambiguities in this experimental scenario which has already
come closer to the real life communication scenario, however, by applying our proposed TF-
IDF with well tuned parameter settings, learning via NMF still succeeds in making progress
incrementally compared to the result when TF-IDF is not applied.
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(a)

(b)

(c)

Figure 4.15: Example of the learned dictionary after NMF learning using TF-IDF.



106 Chapter 4. Incremental word-meaning learning

(a)

(b)

(c)

Figure 4.16: Partial example (on a total of 75 elements) of the learned dictionary after NMF
learning without using TF-IDF.
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Figure 4.17: “T2img” performance of
incremental learning with FS&S data from

S-OBJ-C
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Figure 4.18: “Img2T” performance of
incremental learning with FS&S data from

S-OBJ-C

Now we come to the temporary conclusion that NMF with the help of TF-IDF is able to
deal with linguistic ambiguity during incremental learning, and we now turn to compare its
learning power with that of another model, LDA, in the same scenario, using the same data
and fulfilling the same tasks.

4.5.3 Comparison of NMF with LDA

Similar to the settings of the previous experiment we use the same 117 training samples
described by full sentences and 36 testing samples as before, the experiment has been launched
50 times and the results are illustrated below, which will be mainly compared with Figure
4.5 and 4.6 in the “keywords only” case.
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Figure 4.19: Reconstruction error curves of incremental learning with FS&S data from
S-OBJ-C.
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Due to the extra ambiguities in linguistic part compared to that of “keywords only", the
performances are not guaranteed at the end of training to reach exactly 100%, especially
in the curve of NMF learning. Contrary to the previous scenario using only keywords, LDA
learns much faster than NMF coupled with the statistical TF-IDF filtering and achieves higher
final performances. Besides, it is obvious that the fluctuation in the curves concerning LDA
is lowered compared to NMF’s performances, indicating that the NMF model seems more
sensitive to the changes of corpus of descriptive words which will be filtered by TF-IDF.
Lastly, in Figure 4.19, we also find that faster convergence in the criteria of reconstruction
error is achieved by LDA than NMF.

In short, the results illustrate the better adaptation of the probabilistic model of LDA to
this problem compared to NMF which requires a more complex pre-processing. We think this
comes from the fact that some hidden topics capture the “noise” resulting from the words
which are not considered as keywords. Indeed, we observe that, at the end of the training,
some topics are linking a feature to a word, when some others just correspond to mere words
(and no features). For NMF, on the contrary, it is almost impossible for TF-IDF to conduct
a strict filtering of sentences with linguistic noise, hence unlike the case in Section 4.4 the
NMF components are always redundant as well, containing noise items. What’s more, in a
noise item, whatever the feature description could be, it just corresponds to a single word,
which makes it more difficult to absorb the extra noise.

4.6 Learning with ambiguous noisy data

Going further from the previous experiment with only a single object described each time,
we simulate a scenario in which a teacher would present multiple (ie. 2 or 3) objects while
describing them using full sentences in general without further referring intention (corre-
sponding to the FS&D and FS&T scenario of Section 2.1.4). In this case, the learner will not
only deal with linguistic ambiguity as demonstrated in the previous section but the referential
ambiguity as well. Therefore, inheriting the same settings and data as in Section 4.5.3, the
following curves add cases when “double” and “triple” data are utilized.

Due to further ambiguities in terms of referring, learning by presenting multiple objects
each time does not lead to the full performance of 100% in the end, which is especially obvious
in the “triple” case. Besides, as visualized in Figure 4.20 and 4.21, the impact of referential
ambiguity reduces the learning speed and quality as well as the speed of convergence of
reconstruction error with gradual effect from “single”, “double” to “triple”.

However, another perspective of interest to observe in Figure 4.20 and 4.21 is to pay
attention to overall performances, that is to say to analyze the “single”, “double” to “triple”
learning curves together, of NMF and LDA respectively. Obviously, the three learning curves
of NMF appear mutually much closer than those of LDA, in other words NMF is less influenced
by the changes of referential ambiguity thus rendering less variance concerning the incremental
performances, which can be pointed out conspicuously by the fact that NMF performs even
better than LDA in “Img2T” using triple data. Imagining that the learner is given a quadruple
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Figure 4.20: “T2img” performance of
incremental learning with FS&S, FS&D and

FS&T data from S-OBJ-C
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Figure 4.21: “Img2T” performance of
incremental learning with FS&S, FS&D and

FS&T data from S-OBJ-C
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Figure 4.22: Reconstruction error curves of incremental learning with FS&S, FS&D and
FS&T data from S-OBJ-C.
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of (ie. four) objects each time, there possibly might be a reverse trend that NMF would surpass
LDA in both “T2img” and “Img2T”. Possible explanation could be from the quality of samples:
if each time the samples given contain too much ambiguities, the statistical model of LDA
would be shaped and refined less significantly, however, NMF exhibits comparatively better
capability of extracting common factors directly from cross-situational raw data, therefore
demanding less samples to have its model adequately trained.

It is also noticeable that the performance curves in “Img2T” are generally lower than
those in “T2img”. As pointed out in Section 4.4, this is once again linked to the fact that the
“T2img” evaluation is more tolerant toward errors in the learned dictionary.

Up to now, we have studied how different kinds of ambiguities impact the performance
in the incremental learning experiments with a random choice of training samples. In the
next part we will study if an active sample selection strategy can be devised to accelerate the
incremental learning of word-meaning association.

4.7 Learning with active sample selection

In this section, we simulate an incremental scenario in which a learner actively chooses ob-
ject(s) to learn, which will be then described by a teacher either with related keywords only
or with full sentences. Like previous experiments, the incremental learning has limited learn-
ing steps (eg. 117, 58 and 39 for “single”, “double” and “triple” cases respectively) and the
experiment settings and data remain the same as those in the previous section, however, the
learner could reuse the training samples which have been chosen, in other words all the 117
training samples are considered for the choice of the next sample using either the random or
active strategy. This is made to highlight the ability of active learning to efficiently ignore
the already known samples.

As described in Section 2.5, two active learning strategies will be applied to help the learner
accelerate its learning progress : MRES (maximum reconstruction error based selection) and
CBE (Confidence base exploration). We will study their performances for both “T2img” and
“Img2T” tasks, with NMF (by default, TF-IDF is applied in all situations in the rest of this
thesis) and LDA respectively which will be compared with the strategy of random choice of
objects. Similar to the ambiguity settings of the experimental data in previous sections, there
are “single”, “double” and “triple” cases using data of “keywords only” and “full sentence”
respectively. In order to have a quantitative comparison of the different curves, we compute
the area under the curves and use this as a global measure of learning performance (see
Section 4.7.3 for details). We use S, D and T in short for “single data”, “double data” and
“triple data” from S-OBJ-C, and KW and FS represent scenarios of “keywords only” and
“full sentence”. We use notation in the form:

Perf Img2T−KW−SMRES−NMF

in order to designate the performance for the MRES active strategy, applied with the NMF
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algorithm, on the “keywords only” and single object data, evaluated on the “Image to Text”
task, relative to the overall best performing approach.

Note that in order to enhance the comparability among all cases, we deliberately let initial
samples (at the first learning step) be the same. For all curves, the simulation experiment
was performed 50 times in total.

4.7.1 Active learning vs. random learning by applying NMF

4.7.1.1 Learning with “keywords only” data

In this first experiment, we compared the performances of NMF with “keywords only” data.
From Figure 4.23, we observe that the “Img2T” performance (on the left half) is generally a
little bit inferior to that of “T2img”, whose possible reasons have been addressed in previous
sections, yet they both indicate almost the same trend in terms of the progress of incremental
learning by applying the different strategies.

In terms of the effects of active learning, first of all, the superiority seems quite conspicuous
in terms of the speed of progress and the overall quality when “single” data are used, especially
for MRES. Regarding the area under the curves (see full results in Table 4.1 and 4.2), this
improvement can be quantified as:

PerfT2img−KW−S
MRES−NMF − Perf

T2img−KW−S
random−NMF = 0.036

As for CBE, it still shows faster learning speed than that of random learning although not as
good as that of MRES, with the overall quality as:

PerfT2img−KW−S
CBE−NMF − PerfT2img−KW−S

random−NMF = 0.01

However, when referential ambiguities increase (ie. by using “double” and “triple” data),
both active learning and random learning exert the performances almost the same level, where
MRES and CBE appear slightly lower than random:

PerfT2img−KW−T
MRES−NMF − Perf

T2img−KW−T
random−NMF = −0.009

PerfT2img−KW−T
CBE−NMF − PerfT2img−KW−T

random−NMF = −0.009

4.7.1.2 Learning with “full sentence” data

We now compare the performances of NMF with “full sentence” data. In Figure 4.24, we can
see that the performances obtained with different strategies now consistently place MRES as
the best method, above CBE, and that these two methods are above the random choice. This
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(a) “Img2T” results using KW &S from S-OBJ-C
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(b) “T2img” results using KW &S from S-OBJ-C
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(c) “Img2T” results using KW &T from S-OBJ-C
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(d) “T2img” results using KW &T from S-OBJ-C

Figure 4.23: Active learning vs. random learning - comparisons in performances between
MRES, CBE and random choice by applying NMF with “keywords only” data.

can be seen in the area under curves which show a significant difference:

PerfT2img−FS−T
MRES−NMF = 0.67

PerfT2img−FS−T
CBE−NMF = 0.61

PerfT2img−FS−T
random−NMF = 0.527

for instance.

In these results, although active learning strategies play a role, we can not ignore the
effect of TF-IDF. Indeed the optimized parameter setting (explained in Section 4.5.2) cannot
accommodate all possible sequence of learning samples. This is particularly true for the
random choice strategy where a lot of samples are used multiple times in this scenario (see
further discussion in Section 5.3) while for MRES and CBE we could find comparatively the
best parameters in terms of thresholds that lead to the results illustrated in the above images.
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(a) “Img2T” results using F S&S from S-OBJ-C
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(b) “T2img” results using F S&S from S-OBJ-C
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(c) “Img2T” results using F S&T from S-OBJ-C
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(d) “T2img” results using F S&T from S-OBJ-C

Figure 4.24: Active learning vs. random learning - comparisons in performances between
MRES, CBE and random choice by applying NMF with “full sentence” data.

4.7.2 Active learning vs. random learning by applying LDA

4.7.2.1 Learning with “keywords only” data

We now study the effect of active learning on LDA, with “keywords only” data. As shown
in Figure 4.25, contrary to what has been observed for NMF (Figure 4.23 in Section 4.7.1.1),
there is no marked difference in performances between the “Img2T” and “T2img” evaluation
method.
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(a) “Img2T” results using KW &S from S-OBJ-C
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(b) “T2img” results using KW &S from S-OBJ-C
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(c) “Img2T” results using KW &T from S-OBJ-C
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(d) “T2img” results using KW &T from S-OBJ-C

Figure 4.25: Active learning vs. random learning - comparisons in performances between
MRES, CBE and random choice by applying LDA with “keywords only” data.

However, with LDA, the more ambiguous the referring situation is, the larger the difference
between the active learning and random learning. This difference is particularly visible in
the triple scenario, where MRES clearly outperforms CBE, which is very close to the random
choice (see Table 4.1 and 4.2 for complementary data):

PerfT2img−KW−T
MRES−LDA − PerfT2img−KW−T

random−LDA = 0.108

PerfT2img−KW−T
CBE−LDA − PerfT2img−KW−T

random−LDA = −0.002

4.7.2.2 Learning with “full sentence” data

With the “full sentence” data, similar effects of superiority of active learning (especially
for MRES) over random learning can be observed in Figure 4.26. Compared to what have
already been observed in Figure 4.25, this gain is more evident with the increase of referential
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ambiguity as below:
PerfT2img−FS−T

MRES−LDA = 0.801

PerfT2img−FS−T
CBE−LDA = 0.672

PerfT2img−FS−T
random−LDA = 0.674

for instance.

Yet in the current situation where linguistic noise is added, this effect also happens in
“single” case with the least referential ambiguity:

PerfT2img−FS−S
MRES−LDA = 0.945

PerfT2img−FS−S
CBE−LDA = 0.906

PerfT2img−FS−S
random−LDA = 0.906
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(a) “Img2T” results using F S&S from S-OBJ-C
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(b) “T2img” results using F S&S from S-OBJ-C
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(c) “Img2T” results using F S&T from S-OBJ-C
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(d) “T2img” results using F S&T from S-OBJ-C

Figure 4.26: Active learning vs. random learning - comparisons in performances between
MRES, CBE and random choice by applying LDA with “full sentence” data.
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4.7.3 Discussion regarding the overall performances

In order to have a global comparison of performances of all case, we establish Table 4.1 and
4.2 that show the relative performance (area under the curves) in different cases by using
different learning models and data. The reason why we call the performance value relative is
because we have all values normalized, by means of being divided by the the maximum value
of all cases.

Case

Img2T Strategy
MRES CBE random

S D T S D T S D T
NMF KW 1 0.901 0.829 0.966 0.872 0.816 0.964 0.882 0.82
LDA 0.915 0.873 0.828 0.91 0.838 0.723 0.926 0.834 0.723
NMF FS 0.827 0.686 0.631 0.784 0.675 0.533 0.746 0.617 0.497
LDA 0.844 0.744 0.667 0.784 0.645 0.508 0.795 0.635 0.51

Table 4.1: Relative performance values of “Img2T” in all cases. See text for legend.

Case

T2img Strategy
MRES CBE random

S D T S D T S D T
NMF KW 0.996 0.895 0.802 0.97 0.866 0.802 0.96 0.884 0.811
LDA 0.8965 0.855 0.805 0.888 0.815 0.695 0.9018 0.813 0.697
NMF FS 0.873 0.741 0.67 0.84 0.747 0.61 0.807 0.682 0.527
LDA 0.945 0.87 0.8007 0.906 0.798 0.672 0.906 0.801 0.674

Table 4.2: Relative performance values of “T2img” in all cases. See text for legend.
First of all, some simple conclusions can be drawn from direct observation of the above

tables. For example, with the increase of referential ambiguity (ie. using data from S, D to
T), the performance decreases under the same scenario as well as using the same strategy;
Besides, NMF performs better almost always than LDA in KW scenario, however, LDA
outperforms NMF in FS scenario, which corresponds to the conclusion about the different
abilities of dealing with linguistic ambiguities between NMF and LDA as described in Section
4.5.3 and 4.6. In addition, using KW data, all experiments generally achieve better results
in the test of “Img2T” than “T2img” while FS data would help the learning attain better
performances in “T2img”.

4.7.3.1 Comparing performances of KW and FS

It seems obvious that the performances using keywords only (KW ) should surpass those of
using full sentences (FS) which is more ambiguous in terms of linguistics, and in reality it is the
case in Table 4.1. However, in Table 4.2, exceptions can be found in the performance of LDA
learning, using “single” data while applying MRES, CBE and random choice respectively and
using “double” data while applying MRES only. In fact, similar phenomena can be observed
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if we trace back to compare Figure 4.5 and 4.20 even when random learning is conducted
with “single” data.

The explanation is quite possibly related to the policy of determining the number of topics
of LDA learning in Section 4.3: on one hand, there should be little difference concerning the
evolution of topic numbers in cases ofKW and FS respectively, because such numbers depend
directly on the number of VQ clusters and the log likelihood of the feature part rather than
the linguistic part; on the other hand, in practice, small amount of redundant topics are
added to improve the results of LDA learning. In reality, by checking the midterm learned
dictionary of topics by applying LDA, we found in both KW and FS cases that there are
noise types in learned topics (especially the redundant ones) as follows: either multiple words
corresponding to a vision feature, a word associating a vacant meaning or a wrong feature.
The difference between KW and FS resides in the fact in FS it is almost always the noisy
words that take part in the above ill-matching topics however in KW it is the keywords that
play the role. In consequence, when performing “T2img” tests, the learner would be much
more misled by the ill-matching topics in the KW case because a word label (as a keyword
indeed) could just indicate a wrong feature, yet on the contrary in FS, if an ill-matching
topic is labeled just by a noisy word, it won’t be involved in “T2img” at all, which alleviates
the misleading effect and thus helps to achieve better performances.

A short conclusion could be drawn from the above analysis: on one hand, in order to build
a refined statistical model, it is necessary to have sufficient samples, otherwise the misleading
effect would take place as we observe in KW case; on the other hand, the noisy words in FS
case of LDA learning effectively helps to absorb the noise by replacing the role of keywords
in the formation of ill-matching topics and in turn improves the learning performance of
“T2img”.

4.7.3.2 Comparing performances of MRES and CBE

Based on previous analyses of visualized results in Section 4.7.1 and 4.7.2 along with the
data from the above two tables, MRES’s performance is observed conspicuously better than
that using random choice learning strategy in the majority cases. As for CBE, although its
superiority over random seems not so strong as that of MRES, it could still distinguish itself
from random based on the positive gap in terms of relative performance value, however small
it is, in most cases (despite 9 exceptions among all 24 comparisons). Therefore, we come to
the general conclusion that both models of MRES and CBE are proved valid in elevating the
learning progress and quality, and even in some specific experimental settings such improve-
ments are quite large. Concerning the comparison between the two active learning strategies,
obviously MRES appears more effective than CBE.

Besides the fact that the two active learning strategies presented in Section 2.5.1 and
2.5.2 rely on different principles, in practice, we have to tune parameters carefully so as
to exhibit as much its potential as possible. For example in MRES, the slacking index is
adopted and this has been observed effective in improving the performance in active learning
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via NMF using data of more ambiguities (ie. “D” or “T”). However, even without the slacking
strategy, MRES can still work in the model of LDA, which remains effective in outperforming
random choice strategy despite the increase of referential ambiguities. In CBE, however,
finding the correct confidence threshold, whose optimized value differs according to different
experimental scenarios, is essential to obtain good performances, showing a greater sensibility
of this method to parameter settings.

4.8 Learning with more complex visual features

Due to the limitations of applying pixel as the shape descriptor, mainly in terms of shape
reconstruction with unexpected combination of shape components (see more discussion in
Section 5.4), we found interesting to extend the experiment settings by using more complex
visual features (we choose the HOG descriptor) to further validate our proposed learning
models.

To some extent, HOG could be regarded as pixel descriptor however with orientations,
which is capable of recording more subtle information such as texture and interior pattern on
the surface of an object. The following experiments, will make use of HOG data of “T1” and
“T3” from S-OBJ-D as described in Section 4.1.0.3.

4.8.1 About the sensitivity to feature quantification

Compared to using pixel directly as the shape descriptor, HOG is more complex in its for-
mation. In our applications, two vital procedures turn out to be quite sensitive to the per-
formance of HOG as a way to describe shapes: vector quantification (VQ) for LDA and VQ
clustering for NMF, which we have detailed in Section 2.1.3 about the feature quantification.

Initially, like what have been applied in previous experiments which use pixel to describe
shape, we used the incremental clustering to group samples for TF-IDF as well as for the
VQ for LDA. However, despite its described merits, it also has two main drawbacks: 1).
the clustering result is directly influenced by the order in which the samples are presented,
because a new sample will try to be compared one by one by using χ2 distance with all existed
clusters derived from all previous samples, and as a result, samples that appear first have the
priority to form cluster centers; 2). the clustering result is usually not the global optimum
for the reason that once a sample has been ascribed to a cluster, it will never belong to a new
cluster, regardless that the latter one might show closer similarity.

Consequently, when HOG data were used, we found systematic loss of performances both
via NMF and LDA because of the wrong clustering. As a solution, we resorted to the
traditional K-Means clustering2 whose performance is centroids-oriented rather than order-
dependent. The difficulty of applying K-Means in an incremental learning scenario is that

2http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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the number of centroids should be manually determined. It was resolved in our enclosed
environment of S-OBJ-D because we knew the correct number of shape centroids (ie. 20),
color centroids (ie. 6) as well as the clustering concerning both shape and color of all samples
(ie. 120). We adopted this solution since our current objective is to analyze the best possible
performance, knowing that it would not be feasible in an open environment in which new
objects are unknown in terms of property and number, which is left for future work.

In order to illustrate the role the quality of feature quantification plays in the incremental
learning using HOG data, the performances by adopting K-Means clustering are compara-
tively displayed below with those obtained by applying the original methods of incremental
clustering. Note that, since the latter type of models is doomed to be sub-optimal, we just let
it run 5 times so as to get the percentile curves without the pursuit of higher precision while
the learning experiment using K-Means clustering, which possibly appears optimal, had been
conducted 50 times before the final curves of higher quality concerning statistical represen-
tation were generated. In reality, such treatment of data will definitely not tamper with the
essence of the following comparisons.

In the following figures the best performances of all cases are presented after the tuning
of parameter settings of both incremental VQ (for LDA) and TF-IDF (for NMF) has been
carried out. Note that these parameters are quite sensitive, especially for the use of TF-IDF
(for NMF).

4.8.1.1 Learning with noise-free “T1” HOG data

We first illustrate in Figure 4.27 the performances using “T1” data from S-OBJ-D in “key-
words only” scenario with cases in terms of increasing referential ambiguities from “single”,
“double” to “triple” (marked by KW&S, KW&D and KW&T respectively).

In Figure 4.27, clear at a glance is the difference of performances via LDA learning.
Compared to the incremental VQ of HOG and color histograms on which the learning progress
will stagnate at a level, approximately 80% for “T2img” and 60% for “Img2T”, the k-means
VQ could lead to higher performances, close to 100%. Correspondingly, it can be observed
that the converging performance of LDA’s total log-likelihood using K-Means (see Figure
4.27(f)) fully outperforms the other case (see Figure 4.27(e)) in terms of speed, stability and
the final level. As for the performances of NMF, there seems no major differences because
when dealing with noise-free data NMF can be applied directly.

4.8.1.2 Learning with noisy “T1” HOG data

The comparison has also been made with noisy (i.e. Full sentences) HOG data, for which
NMF is applied after TF-IDF filtering, and the results are illustrated in Figure 4.28 based on
the same experimental settings as in the previous one.

Regarding the performances of LDA learning, like before, when using the incremental
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(a) “Img2T” performances by adopting the
incremental clustering
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(b) “Img2T” performances by adopting K-Means
clustering
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(c) “T2img” performances by adopting the
incremental clustering

0 20 40 60 80 100
Number of input training samples

20

0

20

40

60

80

100

Co
rr

ec
tio

n 
pe

rc
en

ta
ge

T2img curves of NMF and LDA (T1 KM) with "keywords only" HOG data (TEST-NR)

T2img (triple - NMF)
T2img (triple - LDA)
T2img (double - NMF)
T2img (double - LDA)
T2img (single - NMF)
T2img (single - LDA)

(d) “T2img” performances by adopting K-Means
clustering
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(e) Performances of the evolution of reconstruction
errors by adopting the incremental clustering
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(f) Performances of the evolution of reconstruction
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Figure 4.27: The comparison of performances during incremental learning by applying
incremental clustering and K-Means clustering respectively in proposed models with “T1”

data set in scenarios of KW&S, KW&D and KW&T from S-OBJ-D.
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(a) “Img2T” performances by adopting the
incremental clustering
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(b) “Img2T” performances by adopting K-Means
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(c) “T2img” performances by adopting the
incremental clustering
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(d) “T2img” performances by adopting K-Means
clustering
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(e) Performances of the evolution of reconstruction
errors by adopting the incremental clustering
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(f) Performances of the evolution of reconstruction
errors by adopting K-Means clustering

Figure 4.28: The comparison of performances during incremental learning by applying
incremental clustering and K-Means clustering respectively in proposed models with “T1”

data set in scenarios of FS&S, FS&D and FS&T from S-OBJ-D.
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clustering based VQ, LDA performed at a lower level than in the case when the K-Means
cluster is applied. However, in this case, the final performance with k-means still remains far
from 100%.

As for NMF learning, contrary to what have been illustrated using only keywords in
Figure 4.27 where there essentially seems to be no difference between cases, using k-means
here improve performances, while not reaching high-levels. This is linked to the fact that
a correct clustering is essential to the correct working of the TF-IDF filtering. We should
emphasize that we have made special thresholds for TF-IDF using incremental clustering:
besides the tuning of ηlow and ηhigh in Equation 2.1, we used a TF threshold of 0 which
means that all words would pass the TF filtering. Normally, when the clustering of samples is
of good quality, every cluster encloses more or less the same amount of samples. However, with
incorrect clustering, clusters may contain a very different number of samples, which prevents
the TF criteria to be efficient. Thanks to the property of NMF that its performance will
not decrease noticeably if some extra unrelated words are taken into account as components,
removing the TF filtering makes it possible to maintain a limited, but coherent performance
for the incremental clustering. K-means, by providing a better clustering allows to keep the
TF filtering and reach much better performances.

By comparing the learning performances of our proposed models applying either the in-
cremental clustering or K-Means clustering, we first reinforce the conclusion that the quality
of feature quantification plays a vital role in the learning performance of our proposed models.
The incremental vector quantification is based on the similarity measure with χ2 kernel, which
worked well for the shape described by pixels, but performs badly in the case of HOG. We
attribute this bad performance to the fact that the shape description using HOG can cover
more details and appears more sensitive to the condition changes in the experimental scenario
than that directly of utilizing pixels. This is a good thing to have data able to represent more
objects, but impose the use of a more efficient clustering algorithm.

Although K-Means in which the number of cluster centroids is known before the learning
starts was applied, alternative solutions better than our incremental clustering using the χ2

kernel, which proves not capable of fully presenting HOG information, should be proposed in
future in order to exhibit the performances using HOG similar to the incremental learning
performance reported in Section 4.4, 4.5, 4.6, and 4.7 using our simple shape descriptor.

4.8.2 About the necessary minimum size for training

We noticed that in all experiments using pixels as shape descriptor, the performances would
always converge (either at the level of 100% or a little bit lower) before the learning comes to
its end. However, in the experiments using HOG with “T1” data in the previous Section 4.8.1,
while using similar number of samples, the learning seemingly fails to converge in some cases.
It would be interesting to see their performances when more training samples (ie. “T3” data)
are given, and analyze if the imperfection of learning caused by the ill feature quantification
could be remedied by giving more training samples.
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The results in this section are obtained by replacing “T1” data with those of “T3” and
inheriting other experimental settings of the previous section.

4.8.2.1 Learning with noise-free “T3” HOG data

In this experiment, since no linguistic noise is involved, Figure 4.29 shows that NMF learning
converges to the final state of 100% quite fast in all cases of “single” (with around 75 training
samples given), “double” and “triple” (with around 125 training samples provided).

Regarding LDA, its learning in the previous section with “T1” data hardly converged when
the size of training samples is less than 100 as shown in Figure 4.27. In fact, as illustrated in
Figure 4.29, during the learning process by using incremental clustering, all cases of “single”,
“double” and “triple” converge approximately after 150 samples are given for training to their
“bottle neck” levels respectively (70% (in “Img2T”) and 85% (in “T2img”) for “single”, 65%
(in “Img2T”) and 80% (in “T2img”) for “double” and “triple”). Moreover, the LDA learning
by applying K-Means clustering is able to reach its maximum performance around 95% (in
“Img2T”) and 97.5% (in “T2img”) and also converges when more or less 150 training samples
are provided.

As a result, we can see that the imperfection of incremental learning process caused by
the ill VQ could be made up to a limited extent by providing more training data, but reaching
a good performance is still dependent on a better clustering approach.

4.8.2.2 Learning with noisy “T3” HOG data

We now come to the case when noisy (Full Sentence) data are used. With carefully set
TF-IDF thresholds, the difference for NMF between incremental VQ and k-means is strongly
reduced. Regarding the “Img2T” performance, the learning with “single” data converges when
approximately 150 training samples are used at the level around 95% and with “double” when
about 225 samples are given at the level near 90%, however, with “triple” data, we can not
see the trend of convergence even when all training samples from “T3” data are used. When
it comes to “T2img” performance, learning in both cases of “single” and “double” could
converge to 100% faster, with the minimum size of around 125 and 150 samples respectively
and the convergence of learning with “triple” data is observable after around 170 samples
are presented at the level of 90%. It is also noticeable that the learning performances with
“triple” data for the different clustering solutions show obvious differences despite the fact
that such differences seem imperceptible in “single” and “double” cases. In fact, the defect of
miss-grouping of samples can not be avoided in this case, thus leading to the bad performance
of filtering in which some keywords are wrongly filtered out. Therefore, for NMF with TF-
IDF, using more samples makes it possible to compensate erroneous clustering to some extent,
but there still exists an upper limit (eg. see Figure 4.30(a)) to the performance that is not
overcome with new samples.
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(a) “Img2T” performances by adopting the
incremental clustering
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(b) “Img2T” performances by adopting K-Means
clustering
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(c) “T2img” performances by adopting the
incremental clustering

0 50 100 150 200 250 300
Number of input training samples

20

0

20

40

60

80

100

Co
rr

ec
tn

es
s 

in
 p

er
ce

nt
ag

e

T2img curves of NMF and LDA (T3 KM) with "keywords only" HOG data (TEST-NR)

T2img (triple - NMF)
T2img (triple - LDA)
T2img (double - NMF)
T2img (double - LDA)
T2img (single - NMF)
T2img (single - LDA)

(d) “T2img” performances by adopting K-Means
clustering
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(e) Performances of the evolution of reconstruction
errors by adopting the incremental clustering
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(f) Performances of the evolution of reconstruction
errors by adopting K-Means clustering

Figure 4.29: The comparison of performances during incremental learning by applying
incremental clustering and K-Means clustering respectively in proposed models with “T3”

data set in scenarios of KW&S, KW&D and KW&T from S-OBJ-D.
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(a) “Img2T” performances by adopting the
incremental clustering
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(b) “Img2T” performances by adopting K-Means
clustering
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(c) “T2img” performances by adopting the
incremental clustering
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(d) “T2img” performances by adopting K-Means
clustering
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(e) Performances of the evolution of reconstruction
errors by adopting the incremental clustering
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(f) Performances of the evolution of reconstruction
errors by adopting K-Means clustering

Figure 4.30: The comparison of performances during incremental learning by applying
incremental clustering and K-Means clustering respectively in proposed models with “T3”

data set in scenarios of FS&S, FS&D and FS&T from S-OBJ-D.
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As for the performance of LDA, Table 4.3 shows information concerning the convergence
performances taken from the analysis of Figure 4.30. Like what has been described before,

Case

Converging performance Task
“Img2T” “T2img”

size of samples final level size of samples final level

“single” K-Means 110 80% 110 95%
incremental clustering 110 60% 110 90%

“double” K-Means 175 75% 125 95%
incremental clustering 175 55% 125 80%

“triple” K-Means 250 70% 170 95%
incremental clustering 250 50% 170 70%

Table 4.3: Performances in terms of convergence of LDA learning in all cases.

the term “size of samples” indicates the minimum size of training samples necessary to arrive
at the level of convergence which is termed as “final level” in the above table.

For LDA, compared to the training using “T1” data, using more data makes it possible to
improve performance, but also reaches an upper limit at some point. It is also clear in Table
4.3 that the final convergence level via LDA learning by using a better clustering solution (ie.
K-Means) would improve by around 20% compared to that by applying the sub-optimal one
(ie. incremental clustering) in all cases for the task of “Img2T”, and between 5% and 25% in
the task of “T2img”.

In this section, by conducting experiments of incremental learning with data in scenarios
at different levels of referential and linguistic ambiguities, we have validated the feasibility of
applying more complex vision features represented by HOG in our proposed learning models.
In fact, compared to using pixel as the shape descriptor, HOG which manages to describe
shape with more details is observed more sensitive and less stable in our proposed vector
quantification in Section 2.1.3. For instance, the objects in S-OBJ-D have ground truth of 20
shape (using HOG) clusters and 6 clusters for color, however, when trying to tune parameters
manually for the method of incremental clustering, we either get 19 or 21 shape clusters, never
achieving 20; in addition, all 840 samples should be categorized into 120 groups, in fact, we’ve
really found a parameter to do so, yet the categorization is only correct in the total number
but unsatisfactory in the content of some groups because some samples of the same cubic side
are divided into different groups while some other samples regarding different cubic sides are
grouped into one. However, by using an alternative as the solution for feature quantification
that relies on knowing the number of concepts in advance, we saw that our proposed models
can still achieve high quality of word-meaning association learning in ambiguous and noisy
environment, despite the fact that the demand of finding a good solution for a real open
environment is yet to be satisfied.
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4.9 Summary

As a summary of this chapter, we have extended our proposed models from batch learn-
ing experiments to the applications of incremental word-referent learning, mainly compris-
ing data collections, performance evaluations derived from real interactive tests, policies of
auto-determining the number of components/topics in incremental experimental settings and
simulations of interactive protocols for experiments. The incremental learning experiments
have been conducted in series, following an ascending order of data ambiguities from “unam-
biguous noise free” to “ambiguous noisy”. As a solution to improve the effects and efficiency
of incremental learning, we proposed two active learning strategies that are inspired from
human intrinsic motivations and compared their performances with those by applying ran-
dom choice. In addition, we also implemented complex new visual features to validate the
proposed learning models and discussed two related factors which might contribute to the
successful implementation.

According to the analyses of all our experimental results, both NMF and LDA computa-
tional models live up to our expectation on the cross-situational learning objective, dealing
with both referential and linguistic ambiguities while making progress step by step. What
have been validated also are the effective use of active strategies in our models as well as the
models’ compatibility of applying new vision features.
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In each previous experiment, we evaluated the performance and analyzed the result re-
spectively. In this chapter, we continue the discussion of some issues which appear more
clearly if we take a transverse view across all experiment series. Besides, by reviewing all
the processes of incremental learning performed by our models, it seems interesting to pay
attention to the behaviors and some of their features might be or might be not in common
with those possessed by human learners.

Therefore, the discussions in this chapter start from topics concerning learning algorithms,
followed by the comparative studies of cognitive learning behaviors performed by computa-
tional models as well as humans, and ends by a comparison of their different types of capa-
bilities.

5.1 Comparison between NMF and LDA approaches

As has been concluded many times in previous discussions, NMF and LDA are essentially a
linear algebraic factorization approach in high dimension and a generative statistical model
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respectively, both of which are capable of discovering the latent components/topics and giving
explanation concerning the generation of observed data.

5.1.1 Overall behavior

For NMF, whose related values in matrix are non-negative thus giving better physical in-
terpretations than other matrix decomposition based methods, it has first of all the striking
advantage of dealing directly with raw data, the significance of which, as demonstrated in
our work, resides in its ability to auto-discriminate the multimodal data presentation into
different modalities, therefore giving rise to the basic concepts that are quite natural and
convenient for linear combinations during reconstruction. Comparatively, LDA, which orig-
inates from the applications in the field of information retrieval, should first of all convert
raw data features into vector-quantized feature symbols as adopted widely in previous works,
before they are to be processed like textual documents. By avoiding the issue of processing
feature data, LDA, in a sense, is only responsible for associating VQ symbols and textual
words and putting them in a topic, yet whose performance is evidently relying on the quality
in terms of accuracy of vector quantification. In short, in terms of factorizing raw data into
basic components/topics, NMF has a sharper performance with less running time as observed
in our simulations and appears less difficult to manipulate as a learning model, in the cases
where no linguistic noise is involved.

However, when linguistic ambiguity exists in the interactive scenario, NMF, with its foun-
dation in linear algebra, lacks the algorithmic mechanism (eg. statistics) to select out key-
words that are really useful from a corpus of all recognized words. That’s why we resort to a
statistical measure (i.e. TF-IDF) to make up the defect of keywords selection as well as the
determination of the number of components by providing pertinent restrictions in an effort to
guide the decomposition via NMF towards the results that appear more precise and accurate.
On the contrary, LDA on top of its foundation of statistics, has already been proved capable
of discovering topic words from a corpus of documents. In our experiments, when all raw data
are quantized to VQ symbols which are then concatenated with linguistic words (including
unrelated descriptive words) to form one document representing one sample, LDA is able to
find the right associations of VQ symbols with its possible corresponding topic words while
withstanding the disturbance of noisy words based on the frequency analysis of those words
and symbols. As shown by the results of our research, it seems that LDA is more adapted to
the scenario with linguistic noise and thus performs better than NMF in experiments using
pixels as the shape descriptor; yet in experiments using HOG, we observe that NMF still
performs better than LDA, possibly because a perfect clustering of samples is not possible in
this case with our approaches.

5.1.2 Determination of the number of topics

Another issue, difficult for both NMF and LDA, is the determination of the number of compo-
nents/topics. Since there does not seen to exist an automatic method as a universal standard
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for all applications, we proposed our own solutions that are both feasible to be applied on the
algorithms and adaptable to our experimental scenarios.

Generally, for NMF, the number of keywords can be determined only after the linguistic
ambiguity has been eradicated via keywords filtering; on the contrary, for LDA whose topic
number is calculated based on the sum of the quantized feature clusters concerning both
shape and color, only when the number of topics are determined can we be aware of the
possible keywords according to the resultant probability distribution of words per topic. As
demonstrated in experiments, proposed solutions are capable of not only figuring out the
number of topics but adapting to the whole process of incremental learning as well, and
in addition, a minor amount of redundancy in the determination of this number has been
proved to optimize the learning performances compared to the adoption of the exact number
of keywords or VQ symbol summation in related experiments.

However, as for the difficulty of manipulating them, TF-IDF (for NMF) performs well
only when pertinent parameter settings are provided, which proves to be laborious not only
because the threshold values should be carefully tuned but also due to the fact that if the
incremental learning pattern changes (in accordance to the changes of the experimental sce-
nario) parameter settings have to be redefined, otherwise fluctuations occur as response to
the unstable results of keywords filtering. LDA’s performance is first of all dependent on the
quality of vector quantification of features in which the tuning of parameter settings is also in-
volved and its limitation has been described in HOG related experiments where K-means and
incremental clustering methods are compared. Besides, the current diagram of determining
the number of topics for LDA figures out only a roughly correct number which is able to be
increased but never decreased (cf. Section 4.3) thus resulting in the possible over-redundancy
of topics.

An additional, yet interesting, remark about this issue is that, for both models, the weak
point (ie. the inability of NMF to deal with linguistics without the use of TF-IDF, and of
LDA to process raw feature data without resorting to VQ) ought to be overcomed before the
strong point (ie. the capability of NMF to process directly the raw feature data, and of LDA
to perform conduct textual/linguistic analysis) exhibits its power, and the determination of
the number of components is in both cases a side effect of the solutions to the models’ weak
point.

5.1.3 Compatibility with active learning strategies

In active learning experiments, relevant measures of error have to be devised for both NMF
and LDA. It turns out that there is no problem of applying the active learning strategies in
both NMF and LDA, however, since TF-IDF is used in NMF when dealing with “full sentence”
data, different strategies might collide in terms of the priority of selecting new samples (to be
discussed in Section 5.3), which tremendously adds to the complexity as well as the difficulty
of building active learning models.

As for the effectiveness, the superiority of active choice can be observed in almost every
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experiment if LDA is applied as the learning model, however, when it comes to NMF, there are
evidently some experimental results where active learning with “double” and “triple” data
have approximately the same or even lower performance than random learning, probably
because TF-IDF would exert its own influence (apart from that of NMF) on the learning
performance on one hand, and because the current shape descriptor still has limitation of
perfectly describing shapes causing errors on the other hand. That’s the main reason why
LDA, thanks to its better property in terms of compatibility and effectiveness in cooperation
with active choice strategy, is adopted in the final for the extensive study in comparison with
human behaviors.

5.1.4 About synonym and polysemy

Lastly, we can project the comparison between NMF and LDA one step further beyond our
presented work and discuss what would happen if we try to model synonyms (several words
having the same meaning) and polysemy (one word having several meaning).

In the framework of linear algebra, NMF is a way of finding a set of bases of lower
dimension on which any input sample is able to be reconstructed through linear combinations.
These bases represent particular feature values and serve as the latent components. New
samples will therefore be decomposed as a weighted sum of these deterministic components.
Differently, in the framework of probability theory, LDA discovers a set of latent topics which
are in the form of probabilities concerning feature distributions given a certain topic and
therefore there is a probabilistic link between word and features.

As seen evidently from the literal meanings of synonym and polysemy, the “Img2T” test
will naturally be afflicted with synonym the same way “T2img” will have troubles with pol-
ysemy. Taking “Img2T” in a synonymous scenario for example, the problem will be that
for one particular visual feature, two different words can be generated. Imagine one vision
feature (noted as F) that corresponds to multiple words (noted as X, Y for instance), ac-
cording to the current framework of NMF, there appears two components represented as F-X
and F-Y during learning and it remains uncertain whether the former, the latter or even
the both would be used in the linear combination for reconstruction when an F resembling
visual feature is given (in fact, in practice both F-X and F-Y would have vision errors which
probably might dominate the decision), thus the result would appear quite unmanageable. In
LDA, the synonym could be represented by one topic F-{X, Y}, where X and Y could have
close probabilities. From this, it is possible to generate either X or Y, and not a combination
of the two as NMF would produce.

In summary, both models in the current version seem not able to deal with synonym and
polysemy satisfactorily, however, with respect to the mathematical nature of the models, the
probabilistic nature endows LDA with comparatively better presentations and explanations
concerning the two ambiguities while NMF can not due to its deterministic nature.



5.2. Role of purity of concepts in the performance during testing 133

5.2 Role of purity of concepts in the performance during test-
ing

One of highlights of this thesis is the proposal that the devised learning model (especially with
NMF) could help to learn pure concepts exclusively in one modality based on the multi-modal
input even with noise.

In fact, cognition through the combinational use of pure concepts is a basic capacity of
humans, for instance, a black horse as a concrete object could be identified as the combination
of two abstract concepts: black from the color category and horse from the biological category.
In the history of the study of cognition, the discussion about the term concept, concerning the
combination of name and properties in relation to the existence of an object (either abstract
or concrete), could also date back to the early age of Plato and Aristotle when many great
thinkers from the east and the west shed light upon it.

Regarding the performances of our proposed models, taking the human capability as
inspiration, it seems appealing to think that the purer the concepts are (in terms of the
correctness in number and the quality of feature description in single modality only), the
better the learning performances achieve. This was the case in the experiments of chapter 3
with simple datasets. However, from our results in incremental learning scenarios with more
complex data, on the one hand, it is not feasible to achieve situations where the learned
concepts always have a “one to one” mapping to the ground truth concepts; and on the
other hand, it seems not necessary to pursue such an ideal situation because a redundant
number of learned components might even help to augment the performances. Indeed, all
experiments about LDA as well as NMF using “full sentence” data in the previous chapter
have, compared to the ground truth, a redundancy of the number of topics/components which
in most cases correspond to noisy contents and in turn make the data description of the real
important topics/components even purer. Therefore, the slightly impure learned concepts
which contain multi-modal data presentations will not decrease the performance all the time.

Another issue of interest, already partly discussed in Section 4.4, is the fact that the
scores of “T2img” could regularly outperform “Img2T”, especially when learning progress has
already come to the matured phase of learning (ie. with performance score at a high level). As
explained in section 4.4, this is linked to the fact that concepts are not pure enough, because if
all learned topics/components would be pure, both “T2img” and “Img2T” would achieve the
full performance of 100%. This can also be linked to the general property that the “T2img”
task is a discriminative task (one has to choose among images from a text description), while
the “Img2T” task is generative (one has to generate a text description of the image). And
it is a general property in machine learning that discriminative algorithms often outperform
generative ones.

This can be contrasted with the fact that in almost all experiments, the performances
of “Img2T” is higher than “T2img” in the beginning of the learning. The explanation here
resides in the fact that if topics/components are not well learned, the learner is supposed
to fail in both “Img2T” and “T2img”, however, according to the scoring rules described in
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Section 4.2.1 and 4.2.2, for the same testing object, if “T2img” fails it leads to a loss of 1/36
(≈ 2.78%) score, while failing on one keyword causes only a loss of (1/2)× 1/36 (≈ 1.39%).

5.3 Applying TF-IDF in different experimental scenarios

In a simple incremental learning experiment in Section 4.5, we managed to apply a strict
filtering via TF-IDF in which keywords were correctly picked out, however, we gave it up
and resorted to a soft filtering in the other experiments using NMF with noisy data not only
because it becomes unmanageable as the noise level increases but also due to the findings that
a small amount of noisy words wrongly recognized as keywords does not seem to decrease the
testing performances too much.

Special concerns have been given to cases where active choice strategies are applied to
incremental learning. Indeed, TF-IDF works better with an unbiased sampling of training
samples, which is antagonistic with the use of active sampling that has the goal of biasing
sampling in order to improve learning speed:

1) Knowing that TF-IDF depends on statistics, for which the corpus of linguistic samples
should be given properly to ensure its effectiveness, we implemented an extra measure to
let samples belonging to different categories (as the results of feature clustering, described
in Section 2.1.3) be chosen preferentially until in every category there is at least one sample
for training so as to avoid the observed case of extreme inequality of sample allocation
where samples of some categories have overwhelming more probabilities to be selected thus
leaving less or no chance for some other types of samples;

2) Subsequently, the priority issue appears during the above special period of preferential
selection when active choice (ie. MRES or CBE) is applied. The solution obeys the
principle that if the active choice’s preference is in common with that of the preferential
selection, the learner’s decision follows the shared preference; otherwise when contradiction
occurs, the learner’s preference goes to the preferential selection in prior.

More generally, TF-IDF helps to simulate the humans’ learning in an ambiguous linguistic
scenario simply relying on statistics, however in contrast, many other effective measures (eg.
joint attention, grammar, intonation, etc.) are taken by humans for linguistic disambiguation.
As a common feature, the resilience to errors exists in both human cognitive activities and
plenty of applications of modern intelligent systems, yet admittedly, while humans have more
powerful solutions (eg. fuzzy inference and association) to deal with imperfect knowledge
containing some uncertain or even wrong information, TF-IDF primarily works on statistical
calculations. The consequence is that the effective running of TF-IDF imposes some com-
plexity on the logic of object selection. At last, the true potentiality of the TF-IDF model is
expected to be fully released when a large amount of samples is involved in that the statistics
itself works for massive sample data.
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5.4 About the slack strategy applied in MRES

Wemay notice, as introduced at the end of Section 2.5.1, that a slack strategy has been applied
in MRES to benefit the active learning performance via NMF. Apart from its positive effect
on the performance at the technical level, we would like to further discuss it at the theoretical
level.

In order to formulate this issue clearly, inheriting the same experimental settings as in
Section 4.7.1.1, we illustrate in Figure 5.1 the result of an active learning experiment (using
“keywords only” data ) via NMF applying MRES yet without the use of the slack strategy.
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(a) “Img2T” results using KW &S from S-OBJ-C
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(b) “T2img” results using KW &S from S-OBJ-C

Figure 5.1: Active learning (MRES) vs. random learning - a demo of active incremental
learning by applying NMF with “keywords only” data yet without the use of the slack
strategy. As a result, fluctuations are observed in the performance of active learning,

especially in “single” case.

Unlike the steady progress of learning performances in Figure 4.23, in Figure 5.1, there
are strong fluctuations, especially evident in “single” scenario, in which a case study has been
conducted to clarify some important characteristics related to the active learning progress:

A. Objects of some certain features are over selected. Among all 117 samples used for
training, as high as 60.68% of them are concerning “pomme” (apple) and 59.83%
related to “vert” (green). For example, from the 59th learning step to the 66th,
every choice prefers the sample with the shape of “pomme”, and in particular from
Step 59 to 61 and Step 63 to 65, all chosen samples are consecutively “pomme
vert”. In consequence, while samples of some certain features constitute the major-
ity of training samples, there must be some other sort of samples which are totally
ignored by the learner and fail to contribute to the variety of learned components,
leading to the underperformance in testing tasks;

B. Repeated choosing samples of identical features does not improve the quality of
learning via NMF, which seems contradictory to our common human experience
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of focused study or engaged learning so as to crack a hard nut. In fact, the
goal of NMF is to acquire a certain number of factors, which are not supposed
to be further decomposed, from original raw sample data. It would be valuable
that a new sample is equipped with new features that are to be factorized by
NMF. However, if features in a new sample are identical to those of some previous
samples, then the factorized components that are capable of reconstructing the
previous samples are supposed to be able to reconstruct this new one already. In
the end, this new sample of identical features would give no push to the changes
of decomposed factors, resulting in no improvement of learning;

C. There exists a kind of “dead loop” as a specific phenomenon in the learning pro-
cess: given a certain state of knowledge represented by learned components, the
learner would choose sample(s) of certain features according to the rule of maxi-
mum reconstruction error, however, the chosen new sample would not change too
much the knowledge state (mainly due to Characteristic B. as one of the reasonable
explanations) then the learner would still favor this type of sample over and over
again. Or in some cases, a circular transition between several states emerges when
the leaner is keen on a limited number of samples, each of which helps to let the
state jump from one to another but only within this circle;

D. There might be disagreement concerning results between the reconstruction error
as a measure in MRES (only for candidate training samples) and “Img2T” as well
as “T2img” (exclusively for testing samples). Still focusing on the performance
at Step 59, 60 and 61 where the candidate sample chosen according to MRES is
“pomme vert” as a result of maximum reconstruction error it possesses among all
candidates, we also check the “Img2T” and “T2img” performance about the 11th
object for testing, which is also “pomme vert”: “T2img” task succeeds in all three
steps while “T2img” succeeds totally at Step 59 and partially at Step 60 and 61
with the wrong choice of “anneau” (ring) instead of “pomme”. The primary ex-
planation is that there is too much noise in the learned components which are not
pure enough to achieve perfect performances in all sorts of evaluations. However,
the reconstruction error as a measure in MRES cares about the optimal linear com-
bination that leads to the minimum reconstruction error regardless of how many
components are utilized as well as how much weight each of them is endowed with;
on the contrary, “Img2T” and “T2img” focus more on the principal components
of highest weights (especially for “Img2T” which favors only the first two), that’s
why a sample of a certain sorts of features would be well reconstructed through
linear combination of many seemingly not-well-learned components, but might fail
in our cognition tasks where only their principal components of high weights take
effect.

The fundamental reason which gives rise to the above issue from the algorithmic point
of view is that the shape descriptor using pixels is not so precise enough that some shapes,
like “pomme” and “bousole”(compass), “mur”(wall) and “radeau”(raft), etc, can be mis-
recognized. Besides, the samples themselves contain a certain level of noise (for instance,
the color histogram of “vert” appears a little bit different in different samples) which might
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exacerbate the phenomenon of mis-recognition.

Yet from the cognitive point of view, the proposed demo, to some extent, simulates be-
haviors out of the mental disease of mild paranoid which gets a person into a dead end by
narrowing his perspective of mind and thus hinders the progress in terms of cognition. As a
solution, the effective treatment should follow the direction of alleviating the state of stub-
bornness by helping him get rid of the controlling of negative mental feelings such as anxiety
or fear, thus more freedom could be released for him to regain a full perspective of cognition.
In fact, the slack strategy in active choice is proposed as the embodiment of this thinking in
our proposed learning model of NMF: if MRES is still believed to be effective at the theoreti-
cal level, why not enlarge the size of the pool of candidates, which creates more opportunities
to jump out of the “dead loop” yet still maintains the influence of MRES. As a consequence,
which has been displayed in related sections in this chapter, the fluctuations disappear based
on a more reasonable coverage of different categories of samples meanwhile the performance
out of active choice is observed better than that out of random choice.

In the end, as an extension, we also tried MRES without using slack strategy to deal
with HOG data via NMF learning. In fact, similar phenomenon as illustrated in Figure 5.1
still appears but less serious with the most frequent keyword takes around one third of all
occurrences (comparatively less than the proportion of approximately 60% in the above case
study), possibly due to the fact that HOG is more precise in describing shape features yet
not fully capable of dealing with some specific shapes. As for LDA, which avoids the direct
processing of raw shape data by applying vector quantification in advance, MRES has been
observed very well to be integrated with the learning model even without using the slack
strategy, yet for the convenience of comparing equally the effects of MRES on NMF and
LDA, the slack strategy has been adopted as well in related active learning experiments in
Section 4.7.2 and 5.5.2.

5.5 About the repetition behavior

5.5.1 Analysis of the experiments

In [96], where comparative studies of active learning and random learning had been tested on
human participants, Kachergis et al first proposed that most learners use immediate repetition
to disambiguate pairings, and then further confirmed that those who repeat multiple pairs
per trial outperform those who repeat only one pair per trial, given the experimental rule
that in every trial four artificial object-word pairs are provided.

In order to evaluate this repetition behavior on our proposed model, we choose the learning
model of LDA which appears more robust and effective in the application of active learning
strategies and remains less sensitive to the parameter tuning, in cases of “keywords only
(KW )” and “full sentence (FS)” with data of “single (S)”, “double (D)” and “triple (T)”
respectively, using both MRES and CBE. We therefore took the experiments of Section 4.7.2
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and computed the statistical results presented in Table 5.1. Here, “R-NXT” is the mean of

Case

Repetition Strategy
MRES CBE random

R-NXT R-WHT R-NXT R-WHT R-NXT R-WHT

KW
S 0.29 0.00 0.31 0.00 0.31 0.00
D 0.84 1.00 1.15 0.34 1.17 0.30
T 1.74 2.04 2.38 0.89 2.41 0.90

FS
S 0.34 0.00 0.32 0.00 0.32 0.00
D 0.98 1.00 1.16 0.34 1.17 0.31
T 1.92 2.02 2.38 0.87 2.41 0.88

Table 5.1: Mean value of the word repetitions in successive trial and the feature repetition
within trial in active learning experiments using LDA learning model.

the repetition of descriptive keywords for samples in the successive trial, equivalent to the
term “immediate repetition” in [96] and “R-WHT” for “within-trial feature repetition”, the
mean of the repetition of same features from sample(s) within a trial, which will be discussed
later on.

According to [96], active learners mainly rely on immediate sample repetition to facilitate
learning, yet from our implementation, the resulting strategy seems different: in the “triple”
scenario, for instance, random sample choices (for both KW and FS cases) led to a mean
repetition of 2.41 words in successive steps, however, concerning active choices, both MRES
and CBE lead to less word repetitions, especially for MRES, by applying which the mean
repetition of words is 1.74 in KW and 1.92 in FS. In fact, this phenomenon fits almost all cases
(despite the fact that the exception occurs when MRES is applied in FS with “single” data),
particularly in “double” and “triple” scenarios in which referential ambiguities prominently
appear.

Two basic reasons could be used to explain such a difference in applying the repetition
strategy. On one hand, in [96], each trial consists of four mutually different objects thus no
“within-trial repetition of objects” is allowed, however in our experiment scenarios, especially
in “double” and “triple” cases, the same features (shape or color) from different objects could
appear in a double or a triple and this gives rise to a “within-double feature repetition”
or “within-triple feature repetition” (both particular cases of “R-WHT”) which can simply
reduce the complexity of each trial. In fact, for instance in the “triple” scenario, the number
of repeated features inside a triple is 0.88 (in FS) or 0.90 (in KW ) with the random strategy
and 2.02 (in FS) or 2.04 (in KW ) with the MRES. On the other hand, unlike computational
models, humans are less efficient at keeping a long-term memory of the past co-occurring
records and hence the successive repetition facilitates learning for humans but not for our
model.

It is also interesting to go back to the figures in Section 4.7.2 to observe that, in situations
where the performances in terms of “R-NXT” and “R-WHT” are similar, the learning progress
exhibits less difference between active and random strategies (cf. Figure 4.25(a) and 4.25(b)).
When “R-WHT” is allowed in the experimental scenarios, the more it is utilized the better
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learning quality is achieved (cf. figures 4.25(c), 4.25(d), 4.26(c) and 4.26(d)). On the contrary,
when “R-WHT” is infeasible (ie. in “single” scenario), it seems that “R-NXT” still plays an
important role to distinguish the performance of active learning from that by applying random
choice (cf. Figure 4.26(a) and 4.26(b)). As a conclusion, “R-WHT” is adopted as a measure
in priority by an effective active learning strategy to reduce ambiguity, followed by “R-NXT”
whose power seems secondary yet still visible. This combination use of “R-WHT” and “R-
NXT” quite conforms to the way humans would behave if repetition in a trial is allowed.

5.5.2 Active learning without within trial repetition

Although a comparison of learning behaviors has been conducted in the previous section
between the performances of our proposed models and humans in reality, the feasibility of
using “within-trial feature repetition” in our experiment was strongly exploited by our model.
Hence, we set restrictions on all active learning experiments in Section 4.7.2 such that “within-
trial feature repetition” is inhibited in every trial, either “double” or “triple”. For example,
in a triple, if the first object is “lego rouge”, then any object which is red (“rouge”) in color
or has the shape of “lego” will never be second of the third sample in this triple. Based on
the statistics of 50 times repetitions of experiments, the learning progress using FS data is
illustrated in Figure 5.2, and the performance gains for active learning versus random learning
(using both KW and FS data) measured by the area under the curve are shown in Table 5.2
and 5.3 and repetition statistics are shown in Table 5.4.

Case

Img2T Strategy
MRES over random CBE over random

D T D T
R-WHT
allowed

KW 0.039 0.107 0.004 0
FS 0.109 0.157 0.01 -0.002

R-WHT
inhibited

KW 0.003 0.013 -0.009 -0.004
FS 0.036 0.026 0 0.005

Table 5.2: Gain of performance value of active learning over random learning in “Img2T”.

Case

T2img Strategy
MRES over random CBE over random

D T D T
R-WHT
allowed

KW 0.042 0.108 0.002 -0.002
FS 0.069 0.1267 -0.003 -0.002

R-WHT
inhibited

KW 0.003 0.022 -0.006 0.005
FS 0.033 0.022 0.005 -0.009

Table 5.3: Gain of performance value of active learning over random learning in “T2img”.
From these experiments, we can observe first a sudden fall of performance in terms of

both the learning speed illustrated by Figure 5.2 and the relative performance with a loss of
up to 40% compared to the experiments where the within trial repetition is possible.
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Img2T: ACTIVE vs. RANDOM - LDA with "full sentence" - "single" data (NRF)

img2T (single - random)
img2T (single - CBE)
img2T (single - MRES)

(a) “Img2T” results using F S&S from S-OBJ-C
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T2img: ACTIVE vs. RANDOM - LDA with "full sentence" - "single" data (NRF)

T2img (single - random)
T2img (single - CBE)
T2img (single - MRES)

(b) “T2img” results using F S&S from S-OBJ-C

0 20 40 60 80 100 120
Number of input training samples

0

20

40

60

80

100

P
e
rf

o
rm

a
n
ce

 o
f 

co
rr

e
ct

n
e
ss

 i
n
 p

e
rc

e
n
ta

g
e

Img2T: ACTIVE vs. RANDOM - LDA with "full sentence" - "double" data (NRF)

img2T (double - random)
img2T (double - CBE)
img2T (double - MRES)

(c) “Img2T” results using F S&D from S-OBJ-C
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T2img: ACTIVE vs. RANDOM - LDA with "full sentence" - "double" data (NRF)

T2img (double - random)
T2img (double - CBE)
T2img (double - MRES)

(d) “T2img” results using F S&D from S-OBJ-C
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Img2T: ACTIVE vs. RANDOM - LDA with "full sentence" - "triple" data (NRF)

img2T (triple - random)
img2T (triple - CBE)
img2T (triple - MRES)

(e) “Img2T” results using F S&T from S-OBJ-C
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T2img: ACTIVE vs. RANDOM - LDA with "full sentence" - "triple" data (NRF)

T2img (triple - random)
T2img (triple - CBE)
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(f) “T2img” results using F S&T from S-OBJ-C

Figure 5.2: Active learning vs. random learning - comparisons in performances between
MRES, CBE and random choice by applying LDA with “full sentence” data when the

feature repetition within trial is inhibited.
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Case

Repetition Strategy
MRES CBE random

R-NXT R-NXT R-NXT

KW
S 0.30 0.32 0.32
D 1.18 1.26 1.27
T 2.74 2.84 2.80

FS
S 0.33 0.31 0.32
D 1.27 1.25 1.25
T 2.85 2.88 2.84

Table 5.4: The mean value of the word repetitions in successive trial when the feature
repetition within trial is inhibited in active learning experiments using LDA learning model.

Similarly, the gain between random and active learning representing the learning superior-
ity of the later, shrinks as well in “double” and “triple” scenarios, where “within-trial feature
repetition” used to be allowed, as shown in Table 5.2 and 5.3 (in spite of a few exceptions
concerning the performance of CBE).

However, even if the global performances are lower when “within-trial feature repetition”
is not allowed, active choice will resort more to immediate repetition so as to exhibit its
superiority of performance over random choice, which is especially noticeable by observing
the increase of values concerning the repetitions of MRES in terms of “R-NXT” in Table 5.1
and 5.4.

As for the conclusion in [96] that active human learners who repeat multiple pairs (of
word and object) outperform those repeating only one pair on average, data from Table 5.4
partially agree with it in “double” case (which has the most equivalent learning scenario to
[96] with four feature-word pairs) with the mean repetition value of around 1.25 words and in
“triple” case with the mean repetition value of around 2.8 words. Evidently, computational
learning models use comparatively less immediate repetitions.

Finally, we go back to the summary at behavioral level about the learning performances.
First of all, “within-trial feature repetition” plays a predominant role in disambiguation and
acts as the main power to make active learning effective for computational algorithms, which
is also consistent with human learning experience. Besides, immediate repetition, utilized
almost at the same level for both active and random learning when “within-trial feature
repetition” is inhibited, also proves to be another factor which helps the learning be less
ambiguous and renders active learning strategy useful (observed in the FS case). However,
the computational learning model, unlike humans which rely more on short-term memory for
this task, relies less on the immediate repetition because the disambiguation via the repetition
of features used long ago still appears possible.
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5.6 About the relative use of exploration and exploitation

Based on our experimental data, we have conducted comparative analyses at the behavioral
level, for instance, about how the instant repetition behaviors help to reduce referential am-
biguities as stated previously in Section 5.5. Another issue of interest is the behavior of
exploration and exploitation when applying CBE in incremental learning. Using the same
legends as in tables in Section 5.5, we show in Table 5.5 the proportion of EXP (exploration)
as well as EPT (exploitation) in all active choices. As can be seen, exploration is adopted with
strikingly high frequency by the learner in all experimental cases while exploitation plays a
limited supplementary role. It is also noticeable that the more ambiguity (in terms of both
referential and linguistic) exists, the higher proportion of EPT appears, which is consistent
with the policy of CBE that larger reconstruction error (equivalent to lower confidence) leads
to more conservative actions (ie. exploitation) so as to consolidate what has been learned. As
a matter of fact, we have tried confidence thresholds with many ranges of values and found
that if the proportion of exploitation becomes larger, the training samples would just be cho-
sen from a limited categories of samples, leading to the deficient training with other samples
and finally resulting in the stagnation or even the decrease of performances. Therefore, we
tried to lower exploitation’s proportion until superior performances of CBE can be observed
over random learning.

Case

Proportion Data
S D T

EXP EPT EXP EPT EXP EPT
R-WHT
allowed

KW 92.56% 7.44% 90% 10% 89.85% 10.15%
FS 90.67% 9.33% 83.14% 16.86% 89.13% 10.87%

R-WHT
inhibited

KW 93.95% 6.05% 87.79% 12.21% 89.33% 10.67%
FS 95.62% 4.38% 95.28% 4.72% 73.13% 26.87%

Table 5.5: Proportion of exploration and exploitation behaviors in active learning
experiments (conducted 50 times) applying CBE.

One could wonder why the CBE active learning model strongly prefers exploration. There
are the following factors which might possibly be the explanations on the part of algorithm’s
behavior: 1). first of all, there is a bias towards the variety of samples in the evaluation.
Because it is based on the global testing of different samples, the covering of as many features
as possible of training samples plays a critical role. Since, as just mentioned above, exploitation
in CBE has the tendency of restricting the choice of training candidates to a limited range,
thus exploration is much more applied to ensure the variety coverage; 2). in some cases, the
proposed learning algorithms are proved capable of learning object features even if related
samples are just presented very few times. Considering the property of interchangeability
(possessed by both LDA and NMF) and the “long-term memory” effect caused by the perfect
memorization of past samples, there is less demand of repeating a used sample because no
matter when it has appeared before it makes no difference to the training. Yet despite the
above differences, CBE shares in common with human behaviors the fact that instead of
completely repeating one of the used samples, new samples whose features remain partially
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the same as before while bringing in some differences contribute to improve the learning.

5.7 Comparison with human capabilities

Compared to the real word-referent learning system of humans, what has been proposed in
this thesis could be regarded as models with massive simplifications, which we can trace in
the following three major points:

1. Visual system

The biological visual system (ie. mainly the eye and the visual processing area in the
brain) of human is a complex system endowed with a combination of critical visual
functions, natural to humans but difficult for the computer vision. First of all, humans
eyes are less illuminance-sensitive when dealing with colors, for example in experiments
using data from cubes (ie. S-OBJ-D) whose background is seen as pure white by
human eyes, the original color histogram reports that there are always some red pixels
recognized as systematic errors. As a solution, we had to use a filtering on the intensity
to remove the above noisy influence. Besides, the human visual system is quite efficient
with the transformation of coordinates, eg. image rotation, deformation due to the
angle of observations, etc, which in the case of computer vision needs laborious efforts.
In addition, saliency detection is effectively performed by humans, therefore leading to
efficient object segmentation and tracking against the background;

2. Cognitive ability

Though many cognitive abilities in humans probably contribute to the word-referent
learning ability, the memory system structure has been shown to produce a clear differ-
ence between the human behavior and our models: as described in the previous section,
human is comparatively weaker in memorizing details, especially in instant memory with
large quantity of data as well as in the long term; on the contrary, efficient memory
through data indexing helps computer take advantage of the whole data for learning;

3. Social skills

Human beings are social animals. For a child, its incremental acquisition of social skills
accompanies the growth of ages. Therefore, it is hard to imagine that an infant’s learning
would happen strictly without the use of of social means like joint attention which could
be further defined as responding to joint attention (RJA) and initiating joint attention
(IJA) [135]. This capacity would clearly take an important part in reducing ambiguity
in real learning scenarios. For the same reason, the growing infant at least knows some
basic language skills, hence the keywords would be much easier to be referred to when
interactions take place. However, this does not exclude the possibility that sometimes
infants also primarily use statistics to figure out the correct references across various
situations. Furthermore, compared to the proposed models, the underlying cause of
human intrinsic motivation definitely appears more complex, and the phenomena of
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deliberate selection rules as introduced in Section 5.3 which is just for the effectiveness
of models would probably be very different.

Nevertheless, even if constrained by the limited implementation of component systems,
the proposed learning models still manage to demonstrate how simple concepts can emerge
from the visual and audio data, by applying specific strategies in a series of learning tasks and
achieve good performances. As indicated at the beginning, the research of this thesis is just
anchoring a few principles concerning cognitive learning while harnessing less complex data as
well as interactive actions so that the potentiality of computational learning algorithms could
be observed and exploited possibly at its maximum, despite the fact that making use of more
complex strategies and signal processing would further improve the learning performances in
future versions of our proposed models.
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6.1 Conclusion

This thesis describes the building of complete computational models for the interactive learn-
ing of objects in terms of word-feature associations through simple communications between
a human teacher and a computer as a learner. Inspired by the infants’ impressive ability to
learn to recognize and name objects, which often takes place in a parent-child interaction,
our study mainly focuses on two issues in the domain of machine learning and developmental
robotics: cross-situational learning and active learning.

We developed two cross-situational learning models based on two different topic models:
Non-Negative Matrix Factorization (NMF) and Latent Dirichlet Association (LDA), each of
which, associated with complementary processing (TF-IDF statistical word filtering for NMF
and vector quantification of raw data for LDA) has been proved capable of dealing with two
sorts of ambiguities: the referential ambiguity and linguistic ambiguity in simple interactive
scenarios.

The results of learning were evaluated with two approaches 1). measuring the similarity
of learned results and their corresponding ground truth, which might not be available in
practical use, and 2). performing two tasks (called “Img2T” and “T2img”) that simulate the
everyday testing of a learner’s achievements by offering objects’ information in one modality
(textual words or vision feature) and asking for the other (vision feature or textual words).

145
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From these evaluations, we found that our models are able to learn representations that make
it possible to solve the two tasks and that NMF, in simple scenarios, is able to produce pure
concepts in the format of “one modality-one word” close to the ground truth. Furthermore,
we proposed specific methods for the auto-determination of the number of components/topics
for NMF and LDA, and proved them to be pertinent in all experimental scenarios.

Besides, two active learning strategies: Maximum Reconstruction Error Based Selection
(MRES) and Confidence Base Exploration (CBE) were compared and proved compatible with
proposed cross-situational learning models while effective when comparing the incremental
learning performances in between with the strategies of MRES, CBE and random choice. We
also made a high-level comparison of the behaviors of computational models and humans.
As a result, in executing some behaviors, like slack strategy and instant repetition, both
algorithms and humans have similar behaviors, while in other cases such as the relative use
of exploration and exploitation when applying CBE, behaviors appear widely divergent due
to different types of capabilities.

Finally, all these results have been obtained with an experimental setup that includes all
the necessary data processing modules. These processings include the necessary computer vi-
sion processes and pre-processing specific to the NMF and LDA algorithms. While simplified,
this setup makes it possible to record data for exhaustive simulation experiments and also
perform preliminary experiments in real human-robot interactions (see Appendix C) where a
human has to teach object and feature names to a robot.

6.2 Future work

As the continuation of this thesis, future work can be foreseen on several aspects:

6.2.1 Relative size of modality representations

A first technical point concerns the NMF algorithm. As has been mentioned in Section 2.1.1.2,
one reason why we set the histogram length of HOG descriptor to be 900, the same as in
the case of utilizing pixel (compared to a histogram of 80 values for color), is that we want
to make use of the effect concerning the auto-separation of different modal data by applying
NMF. Experimentally, we observed that the longer the modality length is, the more value
this modality will be allocated by following the current updating rules (cf. Section 1.4.2.3 and
2.3) during NMF decomposition. As a result when we review the decomposed components,
the one indicating a simple concept in terms of the modality of the shorter length would have
in its histogram noisy values corresponding to the other modality of the longer length, and
in the extreme case when one modality has the length far longer than that of the other, the
noise would even overwhelm the needed data value in some components. An idea emerges
quite naturally that compensation weight, with negative correlation to the modality length,
could be introduced during the normalization of NMF’s iterations, but this would break the
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assumption that the true modality distributions in the histogram is supposed to be unknown
a priori. It would therefore be of interest to study how NMF could keep such a separation
power of pertinent modalities with modalities of very different length.

6.2.2 Synonyms and polysemy

As briefly discussed in Section 5.1 about the possibility of our proposed models of NMF and
LDA to deal with synonymous and polysemous learning situations, it would be interesting to
design experiments in which synonymy and polysemy exist. Based on the current expectation
on the models’ performances, solving these problems would be more easily performed through
LDA, and should include more information, for instance by introducing the conditional prob-
ability derived from the contextual environment so as to calculate a more reliable posterior
probability distributions concerning word-meaning mappings to well interpret the decision of
why adopt one of the polysemous meanings while discarding others.

6.2.3 Hierarchical layout of knowledge

Compared to the very simple concepts and words we have focused on, human concepts are
much more complex. In particular, they often use hierarchies to describe different nested
categories of concepts (e.g. Animals > Mammals > Dogs ). It would be interesting to study
if hierarchical extension of NMF [102] or LDA [21] could be applied to our problem and
generate topics that resemble the ones used by humans. In particular, would it be possible to
find a solution to precisely control the effects, in terms of how many levels in the hierarchy
and how many concepts in each layer ?

6.2.4 Wider range of multi-modal data

Proposed works only implement shape (using either pixel or HOG) and color for the object-
word learning, however, in [5] for example, multi-modal data are applied, containing visual,
audio and haptic information, to help robot learn more object concepts. In a similar way,
it would be promising to extend the current models to adapt more complicated multi-modal
data including for instance the touch to learn words related to object texture, or the action
performed by the robot in order to learn action names, i.e. verbs. Moreover, word learning
could be extended to other domains like object size or spatial relationships among objects or
between an object and the robot, which are expected to reach the limitations of the current
framework of bag of words (BoW) where the order of the words are not taken into account and
the non-symetric spatial relationships (eg. “the glass is over the book”) can not be described.
A more complex words representation using for example n-grams could be used.

In a shorter term, even in the implementation of vision features, more complex vision
descriptors like those learned by deep learning could be implemented to avoid the manual



148 Chapter 6. Conclusion and future work

specifications of the two visual features we used and to apply the models in more realistic
scenarios.

6.2.5 More sophisticated language model

Natural language ability contributes a lot to help humans do well in tackling linguistic refer-
ences. It is quite promising that future development of our learning models could also make
use of language models, for example concerning the grammar. In fact, one possible improve-
ment can be made by exploiting existing resources such as WordNet [61] and VerbNet [165]
where some semantics on words exist and could be used. This would provide a much more
efficient replacement than the simple statistical TF-IDF filtering used in this PhD. On a
longer term, it could be linked to the idea mentioned previously of learning the grounding of
hierarchies of concepts and could lead to the more realistic real robot interactive applications.

6.2.6 From individual learning to group learning

Finally, Schueller’s study on naming games [164] demonstrate the active learning in a social
environment in which a group of agents ought to come to a consensus about the word-object
associations. It simulates the evolutionary process of the formation of a local language and
studies the influence of active learning in this setup. However, the word-object learning rule is
comparatively much simpler than ours. An interesting perspective would then be to consider
the combination of the proposed models in this thesis and the framework of naming games
so as to let the mechanism of word-object learning be analyzed at a social scale, studying for
example if stable concepts (such as the individual colors) could appear and how to design
robust enough visual features to deal with viewpoint variations among agents.
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LDA algorithms

A.1 Variational algorithms

Variational methods (see detailed formulation in [20]), also known as variational expecta-
tion maximization (EM) algorithm, is based on using a variational distribution q(z,θ,φ |η, γ, λ),
which can be fully factorized, as a good approximation to the original coupled system p(z,θ,φ |w ;α, β).
The difference between the two distributions is noted asKL(q(z, θ, φ |η, γ, λ) ‖p(z, θ, φ |w ;α, β))
whereKL(q ‖p) is the Kullback-Leibler divergence of two distributions of q and p. The Jensen
inequality provides a lower bound on log p(w;α, β), formulated as :

log p(w;α, β) = log
∫∫ ∑

z p(w, z, θ, φ;α, β)dθdφ
= log

∫∫ ∑
z
p(w,z,θ,φ;α,β)q(z,θ,φ|η, γ,λ)

q(z,θ,φ|η, γ,λ) dθdφ

≥
∫∫ ∑

z q(z, θ, φ |η, γ, λ) log p(w,z,θ,φ;α,β)
q(z,θ,φ|η, γ,λ) dθdφ

=
∫∫ ∑

z q(z, θ, φ |η, γ, λ) log p(w, z, θ, φ;α, β)dθdφ
−
∫∫ ∑

z q(z, θ, φ |η, γ, λ) log q(z, θ, φ |η, γ, λ)dθdφ
= Eq[log p(w, z, θ, φ;α, β)]− Eq[log q(z, θ, φ |η, γ, λ)]
∆= L(η, γ, λ;α, β)

(A.1)

It could be easily verified, as stated in [20], that the difference between log p(w;α, β) and
L(η, γ, λ;α, β) is just the KL divergence between the variational posterior probability and the
true posterior probability, written as

log p(w;α, β)− L(η, γ, λ;α, β) = KL(q(z, θ, φ |η, γ, λ) ‖p(z, θ, φ |w ;α, β)) (A.2)

where KL(q(z, θ, φ |η, γ, λ)) serve as the lower bound of log p(w;α, β).

Therefore, the problem of finding a variational distribution q(z, θ, φ |η, γ, λ) which mini-
mizesKL(q(z, θ, φ |η, γ, λ) ‖p(z, θ, φ |w ;α, β)) can be converted to the problem of maximizing
L(η, γ, λ;α, β) by adjusting parameters of η, γ and λ.

This optimization problem, generally speaking, is solved by using Lagrange Multipliers,
then executed by applying fixed point iteration to update the latent variables. And the whole
process can be described in two phases as E step and M step.

In E step, L(η, γ, λ;α, β), which is created as a function for the expectation of the log-
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likelihood as stated in Equation A.1, is to be maximized by using Lagrange Multipliers with
regard to η, γ and λ respectively while assuming that α and β are fixed. As a result, we get
for each variational paramter its iterative formula with respect to other variables, and the
updating work is done by the use of fixed point iteration.

InM step, Lagrange Multipliers and fixed point iteration are also applied for L(η, γ, λ;α, β),
with regard to estimated parameters of α and β, however, fixing all variational parameters of
η, γ and λ for the purpose of further maximizing the lower bound by improving the model
parameters. We could get the iterative equation for β by following the above procedure and
also for α with additional using of Newton-Raphson algorithm, as described in [20].

A.2 Sampling-based algorithms

Apart from the variational algorithms, which is highly dependent on its initialization
of parameters and the trap of local optimum, sampling-based algorithms, especially Gibbs
Sampling, are proposed and more often used for inferring posterior variables, despite the fact
that variational methods are shown to be faster in terms of convergence.

Gibbs Sampling [131, 183, 74] is one member of a family of algorithms from the Markov
Chain Monte Carlo (MCMC) framework [69], aiming to build a Markov chain that has the
target posterior distribution as its stationary distribution. In effect, Gibbs Sampling is based
on sampling from conditional distributions of the variables of the posterior. Since we can not
directly calculate the joint posterior probability in Equation 1.37, then a posterior conditional
distribution should be found first before Gibbs Sampling is to be applied.

We notice from Figure 1.19 that the Dirichlet-Multinomial conjugate structure happens
in α→ θd → zd,n and β → φk → wd,n, therefore the posterior distribution for θd and φk are

θd ∼ Dir(α+ nd)
φk ∼ Dir(β + nk)

(A.3)

where nd = [n(1)
d , ..., n

(K)
d ] represents the number of observed words belonging to every topic

in the dth document and nk = [n(1)
k , ..., n

(V )
k ] the number of words generated by the kth topic

for all documents (with V referring to the size of the vocabulary for the total words of all
documents).

It is by evident that given the probability distribution of z, it would be available for the
distributions of nd, nk and thus the posterior probabilities of θd, φk in Eq.A.3.

Right now, we can focus on finding a simpler algorithm, known as the collapsed Gibbs
sampler, where the multinomial parameters are integrated out and only zd,n is sampled,
expressed as p(zd,n |z−d,n, w;α, β) where z−d,n is the topic allocations for all words from all
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documents except for wd,n, and come to

p(zd,n |z−d,n, w;α, β) = p(zd,n, z−d,n,w;α, β)
p(z−d,n,w;α, β)

= p(z,w;α, β)
p(z−d,n,w−d,n;α, β).p(wd,n;α, β)

∝ p(z,w;α, β)
p(z−d,n,w−d,n;α, β)

(A.4)

Note that wd,n is independent of z−d,n and p(wd,n;α, β) is available from direct observations.

For p(z,w;α, β), which in fact indicates the whole process of generating a word in a
document, we have

p(z,w;α, β) =
∫∫

p(z,w, θ, φ;α, β)dθdφ

=
∫
p(z |θ;α)p(θ;α)dθ

∫
p(w |φ;β )p(φ;β)dφ

(A.5)

where we notice that the two integral items just correspond to the generative processes of
α → θd → zd,n and β → φk → wd,n as Dirichlet-Multinomial conjugate structures shown in
Figure 1.19. Hence, ∫

p(z |θ;α)p(θ;α)dθ =
∏

d

B(nd + α)
B(α) (A.6)

∫
p(w |φ;β )p(φ;β)dφ =

∏
k

B(nk + β)
B(β) (A.7)

where the multinomial beta function B(α) =
∏
k

Γ(αk)
Γ(
∑

k
αk) and Γ() represents the gamma function.

By combining Eq.A.6 and Eq.A.7, we have

p(z,w;α, β) =
∏

d

B(nd + α)
B(α)

∏
k

B(nk + β)
B(β) (A.8)

Finally, subsituting equations Eq.A.8 into Eq.A.4, the chain rule equation of Gibbs sam-
pling equation for LDA can then be derived 1

[
p(zd′,n′

∣∣z−d′,n′ , w;α, β) ∝
∏

d

B(nd + α)
B(n−(d′,n′)

d + α)

∏
k

B(nk + β)
B(n−(d′,n′)

k + β)

]
(A.9)

where the superscript −(d′,n′) signifies leaving the (d′, n′)th token out of the calculation.

1All the expanded formulae can be referred to in literature [131, 183, 74]
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A.3 Online LDA

In many applications of LDA based models, the collection of documents grows over time,
making it infeasible to run batch algorithms repeatedly. Therefore, online LDA (o-LDA)
models[74, 87, 31], which update the estimates of the topics once each document is observed,
are proposed.

For example, Griffiths[74] proposed an on-line version of the Gibbs sampler using Eq.A.9
to assign words to topics, but with counts only from the subset of the words rather than the
full data. Hoffman[87] devised an online variational Bayes for LDA, where the main structure
of the Expectation Maximization algorithm (annex A) is kept, however, with modifications
that 1). the training only takes place in a special corpus containing only a randomly chosen
document which is occurring repeatedly and 2). the updating of λ (the variational parameter
for β) is the weighted average of the old value and the newly iterated one. “o-LDA” model
is proposed in [176, 10] where paremeters are firstly initialized with the old words (eg. the
first σ− 1 words from a corpus of total N words) by applying the batch Gipps sampling, and
then updated by only sampling the newly observed words (eg. the words from σth and on)
meanwhile a temporary posterior (which might as well be termed in this thesis) p(zi |zi−1, wi)
(with i = {σ + 1, ..., N}, zi−1 = [z1, ..., zi−1] and wi = [w1, ..., wi]) replaces the true posterior
p(zj

∣∣∣zN\j , wN ) (with j = {1, ..., N}). Since the performance of “o-LDA” is critically depen-
dent on the accuracy of the initial batch sampling, incremental Gibbs sampler and particle
filter are proposed in [31]. Incremental Gibbs sampler discards the batch initialization of “o-
LDA” while maintaining its idea of temporary posterior sampling, however, with two changes
at every iteration: 1). the topic allocations are sampled for all words (with i = {1, ..., N})
instead of only the newly observed ones; 2). after the sampling of the ith word, some previous
words in R〉 (known as “rejuvenation sequence” in the literature, with R〉 ⊆ {1, ..., i}) are also
to be resampled. Based on the framework of the incremental Gibbs sampler, particle filter for
LDA mainly solves the problem of how often the “rejuvenating” resampling actions should
happen by introducing the theory of particle filter[55, 54] in which the importance weight vec-
tor ωi = [ω(1)

i , ..., ω
(p)
i , ..., ω

(P )
i ] and the proposal probability for every topic in terms of each

particle p are proposed as z(p)
i (p = {1, ..., P}). During every iteration, both z

(p)
i and ω

(p)
i

are to be sampled similar to the procedure of the temporary posterior sampling (see detailed
formulations in [31]) and ωi will be normalized before the checking of whether ‖ωi‖−2 ≤ ESS
(effective sample size) threshold: if so, the “rejuvenating” resampling takes place; otherwise,
it skipps to a new iteration.

As for the application of LDA in the domain of human-robot word-referent learning, a
representative example can be found as Online MLDA described in [6], where the procedure
β → φk → wd,n illustrated in Figure 1.19 is extented to four set of parameters in parallel
as βm → φmk → wmd,n (m ∈ {visual, auditory, haptic, word}) in order to represent the word
allocation per topic of four modalities. Every observed object, which contains four collections
of vector quantized features of repespetive modalities, is regarded equivalent to the term
“document” and the categorization of an object serves as a topic. The inference algorithm by
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using Gipps sampling for batch LDA learining is still in the form as in Equation A.9 except
that φmk and θd should be calculated, considering the information of four different modalities.
Adaptations for the online use are summarized as follows:

1) parameter updatings only take place by the sequential sampling of the newly observed
input information of an object;

2) a forgetting factor λ is introduced to regulate the influence of previous parameter results
(as initial settings) on the learning of new object;

3) particle filter theory is integrated in the topic allocation (zmk) process for a given modality
feature word (wmk) during sampling and

4) a model selection method is proposed to find the optimized setting of α, λ, targeting the
objective of achieving the best word prediction performance given modal information of
visual, acoustic and haptic (ie. maximizing p(ww |wvobs, waobs, whobs)).

The proposed Online MLDA, which models the possible category allocation for every
observed object as well as the modal feature distribution per category, is not only used for
a refined analysis of the observed object concerning categorization, but also for inferring the
category of the unseen object according to ẑ = arg max

z
p(z |wmobs ) and predicting descriptive

words for unseen objects by solving ŵ = arg max
w

p(ww |wmobs ).





Appendix B

Complementary results for chapter
3

B.1 Determination of k for NMF with reference

We report here the results on the partial S-OBJ-A dataset.

1. 2c-2s data
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Figure B.1: Evaluation of NMF learned dictionary (2c-2s).
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Figure B.2: Visualization of the optimal NMF learned dictionary (2c-2s) in norm-2 criterion.

Figure B.3: Visualization of the optimal NMF learned dictionary (2c-2s) in correlation
coefficient criterion.

As similar to the previous case, both the optimal learned dictionaries possess the right
number of components and approximate the reference.

2. 3c-3s data
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Figure B.4: Evaluation of NMF learned dictionary (3c-3s).

Figure B.5: Visualization of the optimal NMF learned dictionary (3c-3s) in norm-2 criterion.

Figure B.6: Visualization of the optimal NMF learned dictionary (3c-3s) in correlation
coefficient criterion.

3. 4c data
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Figure B.7: Evaluation of NMF learned dictionary (4c).

Figure B.8: Visualization of the optimal NMF learned dictionary (4c) in norm-2 criterion.

Figure B.9: Visualization of the optimal NMF learned dictionary (4c) in correlation
coefficient criterion.

4. 4c-2s data
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Figure B.10: Evaluation of NMF learned dictionary (4c-2s).

Figure B.11: Visualization of the optimal NMF learned dictionary (4c-2s) in norm-2
criterion.

Figure B.12: Visualization of the optimal NMF learned dictionary (4c-2s) in correlation
coefficient criterion.

5. 4s data
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Figure B.13: Evaluation of NMF learned dictionary (4s).

Figure B.14: Visualization of the optimal NMF learned dictionary (4s) in norm-2 criterion.

Figure B.15: Visualization of the optimal NMF learned dictionary (4s) in correlation
coefficient criterion.

6. 4s-2c data
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Figure B.16: Evaluation of NMF learned dictionary (4s-2c).

Figure B.17: Visualization of the optimal NMF learned dictionary (4s-2c) in norm-2
criterion.

Figure B.18: Visualization of the optimal NMF learned dictionary (4s-2c) in correlation
coefficient criterion.

B.2 Evaluation of SV-NMF

We report here the results on the partial S-OBJ-A dataset.
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1. 2c-2s data
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Figure B.19: Evaluation of SV-NMF learned dictionary (2c-2s).

Figure B.20: Visualization of the optimal SV-NMF learned dictionary (2c-2s) in norm-2
criterion.

Figure B.21: Visualization of the optimal SV-NMF learned dictionary (2c-2s) in correlation
coefficient criterion.
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Once again, both criteria curves indicate the right k via two respective nu values as
optimals, yet the model fails to produce all the necessary entries with some components
repeated and some contradictory, for example rouge and bleu.

2. 3c-3s data
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Figure B.22: Evaluation of SV-NMF learned dictionary (3c-3s).

Figure B.23: Visualization of the optimal SV-NMF learned dictionary (3c-3s) in norm-2
criterion.

Figure B.24: Visualization of the optimal SV-NMF learned dictionary (3c-3s) in correlation
coefficient criterion.
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This time both criteria suggest the same nu, thus the same k and the same learned
result, in which four compoents just match the referents while two are totally wrong.

3. 4c data

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

nu

si
m

ila
rit

y 
m

ea
su

re
m

en
t

Evaluation of learning dictionary(sv−nmf) of Data: cecile−data−RMV−4c

 

 

(0.8, 1.2083)
↑

Iteration times: 18

(0.8, 0.86686)
↓

norm − 2
matrix coeffient

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

4
↓
4
↓

nu

nu
m

be
r 

of
 c

om
po

ne
nt

s 
(k

)

Number of components in accordance of nu

Figure B.25: Evaluation of SV-NMF learned dictionary (4c).

Figure B.26: Visualization of the optimal SV-NMF learned dictionary (4c) in norm-2
criterion.



B.2. Evaluation of SV-NMF 165

Figure B.27: Visualization of the optimal SV-NMF learned dictionary (4c) in correlation
coefficient criterion.

Resembling the previous case, k is correctly estimated but there is one component totally
wrong in the learned dictionary.

4. 4c-2s data
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Figure B.28: Evaluation of SV-NMF learned dictionary (4c-2s).

Figure B.29: Visualization of the optimal SV-NMF learned dictionary (4c-2s) in norm-2
criterion.
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Figure B.30: Visualization of the optimal SV-NMF learned dictionary (4c-2s) in correlation
coefficient criterion.

In this case, SV-NMF method gives two different predicted numbers of components
according to norm-2 and correlation criteria respectivelly. We can notice at the bottom
of Figure B.28 that no parameter of nu(ν) gives indication to 6, so the algorithm chooses
its two neighbours of 5 and 7 as the optimals. The qualities of the resultant dictionaries
are not as ideal as before.

5. 4s data
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Figure B.31: Evaluation of SV-NMF learned dictionary (4s).
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Figure B.32: Visualization of the optimal SV-NMF learned dictionary (4s) in norm-2
criterion.

Figure B.33: Visualization of the optimal SV-NMF learned dictionary (4s) in correlation
coefficient criterion.

We can observe that since no nu(ν) corresponds to k = 4, the SV-NMF learned dictio-
nary finally has five components, where one concept (“tasse (cup)”) is repeated twice.

6. 4s-2c data
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Figure B.34: Evaluation of SV-NMF learned dictionary (4s-2c).
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Figure B.35: Visualization of the optimal SV-NMF learned dictionary (4s-2c) in norm-2
criterion.

Figure B.36: Visualization of the optimal SV-NMF learned dictionary (4s-2c) in correlation
coefficient criterion.

In spite of the number of k correctly estimated, the learned dictionaries possess no pure
concepts where two of them are totally wrong.

B.3 Determination of k for NMF without reference

We report here the results on the partial S-OBJ-A dataset.

1. 2c-2s data
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Figure B.37: Evaluation of NMF learned dictionary (2c-2s) in criteria of error and Gini
index.

Figure B.38: Visualization of the optimal NMF learned dictionary (2c-2s) in criteria of error
and Gini index.

Here we arrive at as similar results as in the previous case.

2. 3c-3s data
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Figure B.39: Evaluation of NMF learned dictionary (3c-3s) in criteria of error and Gini
index.

Figure B.40: Visualization of the optimal NMF learned dictionary (3c-3s) in criteria of error
and Gini index.

3. 4c data
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Figure B.41: Evaluation of NMF learned dictionary (4c) in criteria of error and Gini index.

Figure B.42: Visualization of the optimal NMF learned dictionary (4c) in criteria of error
and Gini index.
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Figure B.43: Evaluation of NMF learned dictionary (4c-2s) in criteria of error and Gini
index.

Figure B.44: Visualization of the optimal NMF learned dictionary (4c-2s) in criteria of error
and Gini index.
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Figure B.45: Evaluation of NMF learned dictionary (4s) in criteria of error and Gini index.

Figure B.46: Visualization of the optimal NMF learned dictionary (4s) in criteria of error
and Gini index.
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Figure B.47: Evaluation of NMF learned dictionary (4s-2c) in criteria of error and Gini
index.

Figure B.48: Visualization of the optimal NMF learned dictionary (4s-2c) in criteria of error
and Gini index.



Appendix C

Complementary experimental
settings for a complete

human-robot intractive learning

In collaboration with Fabio Pardo during his Master internship, we developed an object
learning demonstration during human robot interaction.

C.1 Meka robot

This experiment of object learning was conducted on a humanoid robot Meka with interac-
tions with human experimenters. Figure C.1 illustrates the overall setting scenario of the
experiment.

Figure C.1: Meka, the operation platform and a set of sample objects to be learned in the
experiment.

Expressively designed for the human-robot interaction by Meka Robotics, this humanoïd
robot is composed of a head, a pair of eyes with two cameras inside, a torso with a depth-
camera, two arms and a mobile base on omnidirectional wheels. It can perform motion control
and object learning by detecting objects and interacting with humans in the front.

The most shining feature of Meka, especially on contrast to the industrial robots, is its
compliant and force control. The idea is to let the actions of actuators be under the control
of spring, thus 1). on one hand exerting exact force and torque to accomplish a motion in
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accordance with the controlling of precise displacement based on inverse dynamics, and 2).
on the other hand, by setting appropriate stiffness parameters of spring, different modes of
human-robot interactions can be achieved, for example, the robot can maintain a zombie-like
posture (high stiffness) or resilient enough to move back and forth when contacting with a
human tutor.

As for the software framework, Meka is equipped with real-time control software with
ROS extensions. ROS (robot operating system) is an open-sourced system operation frame-
works under BSD licence. It is a system of nodes and communications, providing operating
system-like functionality on a heterogeneous computer cluster, including hardware abstrac-
tion, peripheral equipment drivers, libraries, visualizers for simulations, message transitions,
package management, and more. During the experiment, every Python script is run on a
node and has the possibility to create topics where messages can be published to other nodes,
while other nodes then have the opportunity to subscribe to these topics and thus be notified
to the publication of each new message. These nodes can be run on different computers if
they are connected to the same Ethernet hub.

An auxiliary camera, installed in the torso, is an Xtion Pro Live-Asus, the same type
as the Microsoft Kinect with an infrared sensor to assess the depth and efficiently identify
human forms. It is used to make a connection between the spatial position of the robot and
the spatial position of the head of the human teacher. Hence, by adjusting the angles of the
robot’s neck to watch the tutor’s eyes, the human-robot interaction will be more natural as
interpersonal one.

Finally, all procedures of the experiment are filmed by a webcam, fixed on a tripod on the
left of the robot and human tutor.

C.2 Interaction protocol

C.2.0.1 Robot

We performed experiments in order to study the effect of the feedback from the robot (re-
garded as the reflection of its current learning state) on the human teacher’s behavior.

Future robots

Reconstruction
by

Linear 
Combination

Fabio PARDO (pardo.fab@gmail.com) – Yuxin CHEN (ychen@ensta.fr) – David FIllIAT (david.filliat@ensta-paristech.fr)
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Figure C.2: Two basic approaches during HRI (human robot interaction)
In fact, two basic capabilities (see Figure C.2) are applied in the human robot interaction:

giving test on the part of a human tutor and showing curiosity on the part of a robot.
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Therefore, four sorts of scenarios of interactive learning are devised, as depicted in Table
Equation C.1.

With curiosity of robot Without curiosity

With test from tutor Scenario I Scenario II
Without test Scenario III Scenario IV

Table C.1: Four sorts of interactions.
For the realization of a true interaction, both the robot and human tutor should acquire

the abilities to express and receive information.

On the part of robot, its actions include the following cases:

1. If a movement is detected on the table

look in the direction of the moving point that is the nearest to the robot

If an object is detected in vicinity of the moving point when it comes
to stop

Watch the detected object for 3 seconds and wait for the key words

If the key words are detected

Learn about this new example

Say "d’accord (OK)"

Else

Look at the head of human tutor

2. If curiosity about an object is beyond a certain level

Watch the object

3. If the keyword is about "question"

Test the designated object

Select the words reconstructed by the order of weight in the histogram

Keep the words whose weights are greater than a certain level

Utter "je dirais (I think it is)" and the resultant words in a descending
order of weight.

For every mode of the iterative learning in Table Equation C.1, the lasting time is 10 min-
utes (indicated on the computer screen), within which the human tutor can give instructions
and receive feedbacks from the robot.

Among them, its vocal utterance (repeating words during training and speaking the iden-
tification result during testing) is made available via Google TTS (text-to-speech) API, which
automatically generates a wav file easily obtained with an HTTP request through any .net
programming. And the input text source is just from the coefficient matrix H whose column
vectors will tell the weight of concepts stored in W .
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C.3 Human tutor

The human tutor is sitting on a chair in front of Meka, and a table covered in black is placed
in between (see Figure C.3). The 16 objects in total are randomly put on a big table on the
left side of the human participant. While the participant can take some objects to show to the
robot on the black table, a monitor located a little bit behind the robot shows the remaining
time of the current mode (among four scenarios) of interaction.

Figure C.3: The interaction during experiment.
After being informed about the rules of the experiment, every participant is given 15

minutes practice so as to be more familiar with experimental operations.

Then begins the experiment, comprising of four distinct phases of ten minutes, during
which the participants have to teach the robot the eight concepts regarding shape (four
words) and color (four words) using sixteen objects available on a table left to him. The
remaining time of each phase is displayed on a monitor on their left. For each phase, the
memory of the robot will be initialized as blank for another round of learning.

For example during training, the human tutor puts four objects on the front table, then
points to one of the object. Tracking the finger tip of the tutor, the eyes of the robot will
finally focus on the pointed object. The tutor would say “Voici un lego jaune (Here is a yellow
lego)”, waiting for the confirmation from the robot repeating the key words - “D’accord - lego
- jaune”. When this confirmation of words is well done, the tutor can go on with other objects
or retrain the same object if only partial words or even no words are repeated.

As for testing, the tutor points to one designated object, which will be tracked and focused
by robot’s eyes, and then propose a question like “C’est quoi ça (What’s this)?”. Then the
multimodal information of this object are acquired and processed for the calculation of NMF.
By decomposing the input data Vi into linear combination of basis in W , the corresponding
coefficient vector Hi will be computed. So the robot will use the Google TTS API to speak
the words with the highest value (larger than a threshold) in Hi. And by judging if the robot
speak the right words in terms of shape and color of the object, the tutor gets feedback, which
will help him to improve the training in the subsequent grounds.

The experiment ends when the participant finishes all the training and testing operations
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of the four phases. Finally, every participant will fill in a questionnaire about the personal
status (eg. current understanding about artificial/intelligent learning, the goal of conducting
the experiment, the strategy during training, the remark on the role of curiosity and feedback)
for other further psychological studies.

The results of these experiments have been presented to the “Mechanisms of learning in
social contexts” workshop at the ICDL 2015 conference [141].





Bibliography

[1] Lauren B. Adamson and Roger Bakeman. “The development of shared attention during
infancy.” In: (1991) (cit. on p. 11).

[2] Henny Admoni et al. “Deliberate delays during robot-to-human handovers improve
compliance with gaze communication.” In: Proceedings of the 2014 ACM/IEEE inter-
national conference on Human-robot interaction. ACM. 2014, pp. 49–56 (cit. on p. 11).

[3] N. Akhtar and L. Montague. Early lexical acquisition: the role of cross-situational
learning. 1999 (cit. on p. 3).

[4] Toomas Altosaar et al. “A Speech Corpus for Modeling Language Acquisition: CARE-
GIVER.” In: LREC. 2010 (cit. on p. 13).

[5] Takaya Araki et al. “Autonomous acquisition of multimodal information for online
object concept formation by robots.” In: IEEE International Conference on Intelligent
Robots and Systems. 2011, pp. 1540–1547 (cit. on pp. 11–14, 16, 18, 21, 96, 147).

[6] Takaya Araki et al. “Online object categorization using multimodal information au-
tonomously acquired by a mobile robot.” In: Advanced Robotics 26.17 (2012), pp. 1995–
2020 (cit. on p. 152).

[7] Jushan Bai and Serena Ng. Determining the Number of Factors in Approximate Factor
Models. 2002 (cit. on p. 36).

[8] A. Bandura and R. H. Walters. Social learning and personality development. 1963,
pp. 1–62 (cit. on p. 3).

[9] Albert Bandura. “Social learning theory.” In: Social Learning Theory. 1971, pp. 1–46
(cit. on p. 3).

[10] Arindam Banerjee and Sugato Basu. “Topic Models over Text Streams: A Study of
Batch and Online Unsupervised Learning.” In: SDM. Vol. 7. SIAM. 2007, pp. 437–442
(cit. on p. 152).

[11] Paresh Chandra Barman and Soo Young Lee. “Tree cluster of text data by NMF
based neural network.” In: Proceedings of 4th International Conference on Electrical
and Computer Engineering, ICECE 2006. 2007, pp. 312–315 (cit. on p. 33).

[12] Herbert Bay et al. “Speeded-up robust features (SURF).” In: Computer vision and
image understanding 110.3 (2008), pp. 346–359 (cit. on p. 17).

[13] Yoshua Bengio. “Learning deep architectures for AI.” In: Foundations and trends® in
Machine Learning 2.1 (2009), pp. 1–127 (cit. on p. 27).

[14] Yoshua Bengio, Aaron Courville, and Pascal Vincent. “Representation learning: A
review and new perspectives.” In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 35 (2013), pp. 1798–1828. arXiv: arXiv:1206.5538v2 (cit. on p. 27).

[15] Daniel E. Berlyne. Conflict, arousal, and curiosity. McGraw-Hill Book Company, 1960
(cit. on p. 45).

181

http://arxiv.org/abs/arXiv:1206.5538v2


182 Bibliography

[16] Michael W. Berry et al. “Algorithms and applications for approximate nonnegative
matrix factorization.” In: Computational Statistics & Data Analysis 52 (2007), pp. 155–
173 (cit. on p. 33).

[17] Michael W. Berry et al. “Algorithms and applications for approximate nonnegative
matrix factorization.” In: Computational Statistics & Data Analysis 52 (2007), pp. 155–
173 (cit. on p. 35).

[18] David M. Blei. “Probabilistic Topic Models.” In: Commun. ACM 55.4 (Apr. 2012),
pp. 77–84 (cit. on p. 23).

[19] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet Allocation.”
In: J. Mach. Learn. Res. 3 (Mar. 2003), pp. 993–1022 (cit. on p. 22).

[20] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet Allocation.”
In: Journal of Machine Learning Research 3.4-5 (2012). Ed. by John Lafferty, pp. 993–
1022. arXiv: 1111.6189v1 (cit. on pp. 42, 43, 149, 150).

[21] David M. Blei et al. “Hierarchical Topic Models and the Nested Chinese Restaurant
Process.” In: Advances in Neural Information Processing Systems. MIT Press, 2004,
p. 2003 (cit. on p. 147).

[22] Anna Bosch, Andrew Zisserman, and Xavier Muñoz. “Scene classification via pLSA.”
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). Vol. 3954 LNCS. 2006, pp. 517–530
(cit. on p. 41).

[23] Louis ten Bosch et al. “Unsupervised detection of words–questioning the relevance of
segmentation.” In: ISCA ITRW, Speech Analysis and Processing for Knowledge Dis-
covery. Citeseer. 2008 (cit. on p. 15).

[24] Cynthia Breazeal et al. “Effects of nonverbal communication on efficiency and ro-
bustness in human-robot teamwork.” In: Intelligent Robots and Systems, 2005.(IROS
2005). 2005 IEEE/RSJ International Conference on. IEEE. 2005, pp. 708–713 (cit. on
p. 11).

[25] Susan E. Brennan et al. “Coordinating cognition: The costs and benefits of shared
gaze during collaborative search.” In: Cognition 106.3 (2008), pp. 1465–1477 (cit. on
p. 11).

[26] J. P. Brunet et al. “Metagenes and molecular pattern discovery using matrix factor-
ization.” In: Proc Natl Acad Sci U S A 101 (2004), pp. 4164–4169 (cit. on p. 33).

[27] Sylvain Calinon and Aude G. Billard. “What is the Teacher ’ s Role in Robot Program-
ming by Demonstration? Toward Benchmarks for Improved Learning.” In: Science 8
(2007), pp. 441–464 (cit. on p. 2).

[28] Josep Call and Malinda Carpenter. “Three sources of information in social learning.”
In: Imitation in animals and artifacts. 2002, pp. 211–228 (cit. on p. 2).

[29] Angelo Cangelosi. “The grounding and sharing of symbols.” In: Pragmatics & Cognition
14.2 (2006), pp. 275–285 (cit. on p. 12).

http://arxiv.org/abs/1111.6189v1


Bibliography 183

[30] J.F. Fontanari Cangelosi and A. “Cross-situational and supervised learning in the
emergence of communication.” In: Interaction Studies 12.1 (2011), pp. 119–133 (cit. on
p. 3).

[31] Kevin R. Canini, Lei Shi, and Thomas L. Griffiths. “Online Inference of Topics with
Latent Dirichlet Allocation.” In: Proceedings of the International Conference on Arti-
ficial Intelligence and Statistics (2009), pp. 65–72 (cit. on p. 152).

[32] Raymond B. Cattell. “The scree test for the number of factors.” In: Multivariate be-
havioral research 1.2 (1966), pp. 245–276 (cit. on p. 36).

[33] Pramod Chandrashekhariah, Gabriele Spina, and Jochen Triesch. “Let it Learn-A
Curious Vision System for Autonomous Object Learning.” In: VISAPP (2). 2013,
pp. 169–176 (cit. on p. 4).

[34] Yuxin Chen, Jean-Baptiste Borde, and David Filliat. “A comparative study on active
learning behavior in word-meaning association acquisition between human and learning
machine.” In: ICDL-EpiRob 2016 Workshop on Language Learning. IEEE. 2016 (cit. on
p. 7).

[35] Yuxin Chen, Jean-Baptiste Bordes, and David Filliat. “An experimental comparison
between NMF and LDA for active cross-situational object-word learning.” In: ICDL
EPIROB 2016. 2016 (cit. on p. 7).

[36] Yuxin Chen and David Filliat. “Cross-situational noun and adjective learning in an
interactive scenario.” In: 2015 Joint IEEE International Conference on Development
and Learning and Epigenetic Robotics (ICDL-EpiRob). IEEE. 2015, pp. 129–134 (cit.
on p. 7).

[37] Yong Choon Cho and Seungjin Choi. “Nonnegative features of spectro-temporal sounds
for classification.” In: Pattern Recognition Letters 26 (2005), pp. 1327–1336 (cit. on
p. 33).

[38] Andrzej Cichocki, Rafal Zdunek, and Shun-Ichi Amari. “New Algorithms for Non-
Negative Matrix Factorization in Applications to Blind Source Separation.” In: 2006
IEEE International Conference on Acoustics Speed and Signal Processing. 2006, pp. V–
621–V–624 (cit. on p. 33).

[39] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. “Active learning with
statistical models.” In: Journal of artificial intelligence research (1996) (cit. on p. 46).

[40] Silvia Coradeschi, Amy Loutfi, and Britta Wrede. “A short review of symbol grounding
in robotic and intelligent systems.” In: KI-Künstliche Intelligenz 27.2 (2013), pp. 129–
136 (cit. on p. 12).

[41] Giovanni Costantini, Renzo Perfetti, and Massimiliano Todisco. “Recurrent neural
network for approximate nonnegative matrix factorization.” In: Neurocomputing 138
(2014), pp. 238–247 (cit. on p. 33).

[42] Kenny R. Coventry and Simon C. Garrod. Saying, seeing and acting: The psychological
semantics of spatial prepositions. Psychology Press, 2004 (cit. on p. 10).

[43] Thomas M. Cover and Joy A. Thomas. Elements of information theory. John Wiley
& Sons, 2012 (cit. on pp. 14, 25).



184 Bibliography

[44] Mihaly Csikszentmihalyi. “Flow: The psychology of optimal performance.” In: NY:
Cambridge UniversityPress (1990) (cit. on p. 45).

[45] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients for human detec-
tion.” In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). Vol. 1. IEEE. 2005, pp. 886–893 (cit. on p. 19).

[46] L. Davis. Handbook of Genetic Algorithms. 1991, pp. 1–6 (cit. on p. 2).
[47] Peter Dayan and Bernard W. Balleine. “Reward, motivation, and reinforcement learn-

ing.” In: Neuron 36.2 (2002), pp. 285–298 (cit. on p. 45).
[48] Gedeon O. Deák, Ian Fasel, and Javier Movellan. “The emergence of shared attention:

Using robots to test developmental theories.” In: Proceedings 1st International Work-
shop on Epigenetic Robotics: Lund University Cognitive Studies. Vol. 85. 2001 (cit. on
p. 11).

[49] Arthur P. Dempster. “Upper and lower probabilities induced by a multivalued map-
ping.” In: Studies in Fuzziness and Soft Computing 219 (2008), pp. 57–72 (cit. on
p. 2).

[50] Inderjit S. Dhillon and Dharmendra S. Modha. “Concept decompositions for large
sparse text data using clustering.” In: Machine Learning 42 (2001), pp. 143–175 (cit.
on p. 33).

[51] Chris Ding, Tao Li, and Wei Peng. “Nonnegative matrix factorization and probabilistic
latent semantic indexing: Equivalence chi-square statistic, and a hybrid method.” In:
National conference on artificial intelligence (2006), pp. 342–347 (cit. on p. 41).

[52] Chris Ding, Tao Li, and Wei Peng. On the equivalence between Non-negative Matrix
Factorization and Probabilistic Latent Semantic Indexing. 2008 (cit. on p. 41).

[53] Marco Dorigo and Thomas Stützle. “Ant Colony Optimization.” In: IEEE Computa-
tional Intelligence Magazine 1 (2004), pp. 28–39 (cit. on p. 2).

[54] Arnaud Doucet, Nando De Freitas, and Neil Gordon. “An introduction to sequential
Monte Carlo methods.” In: Sequential Monte Carlo methods in practice. Springer, 2001,
pp. 3–14 (cit. on p. 152).

[55] Arnaud Doucet et al. “Rao-Blackwellised particle filtering for dynamic Bayesian net-
works.” In: Proceedings of the Sixteenth conference on Uncertainty in artificial intelli-
gence. Morgan Kaufmann Publishers Inc. 2000, pp. 176–183 (cit. on p. 152).

[56] Joris Driesen. “Discovering words in speech using matrix factorization.” In: KU Leuven,
ESAT (2012) (cit. on p. 15).

[57] Deci Edward and Richard Ryan. “Intrinsic Motivation and Self-Determination in Hu-
man Behavior.” In: New York: Pantheon (1985) (cit. on p. 45).

[58] Slim Essid. “A single-class SVM based algorithm for computing an identifiable NMF.”
In: Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Con-
ference on. IEEE. 2012, pp. 2053–2056 (cit. on pp. 36, 69, 82, 86).

[59] Ian Fasel et al. “Combining embodied models and empirical research for understanding
the development of shared attention.” In: Development and Learning, 2002. Proceed-
ings. The 2nd International Conference on. IEEE. 2002, pp. 21–27 (cit. on p. 11).



Bibliography 185

[60] Valerii Vadimovich Fedorov. Theory of optimal experiments. Elsevier, 1972 (cit. on
p. 46).

[61] Christiane Fellbaum. “WordNet and wordnets.” In: Encyclopedia of Language and Lin-
guistics. Ed. by (Editor-in-Chief) Keith Brown. Oxford: Elsevier, 2005, pp. 665–670
(cit. on p. 148).

[62] Itzhak Fogel and Dov Sagi. “Gabor filters as texture discriminator.” In: Biological
cybernetics 61.2 (1989), pp. 103–113 (cit. on p. 17).

[63] Paul Fogel et al. “Inferential, robust non-negative matrix factorization analysis of mi-
croarray data.” In: Bioinformatics 23 (2007), pp. 44–49 (cit. on p. 36).

[64] Susan R. Fussell, Robert E. Kraut, and Jane Siegel. “Coordination of communication:
Effects of shared visual context on collaborative work.” In: Proceedings of the 2000
ACM conference on Computer supported cooperative work. ACM. 2000, pp. 21–30 (cit.
on p. 11).

[65] E. Garcia. SVD and LSI Tutorial 1: Understanding SVD and LSI. 2007 (cit. on p. 30).
[66] John S. Garofolo et al. “Getting started with the DARPA TIMIT CD-ROM: An acous-

tic phonetic continuous speech database.” In: National Institute of Standards and Tech-
nology (NIST), Gaithersburgh, MD 107 (1988) (cit. on p. 16).

[67] Eric Gaussier and Cyril Goutte. “Relation between PLSA and NMF and implications.”
In: Proceedings of the 28th annual international ACM SIGIR conference on Research
and development in information retrieval. ACM. 2005, pp. 601–602 (cit. on p. 41).

[68] Rainer Gemulla et al. “Large-scale matrix factorization with distributed stochastic
gradient descent.” In: Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining - KDD ’11. 2011, pp. 69–77 (cit. on p. 35).

[69] Walter R. Gilks, Sylvia Richardson, and David J. Spiegelhalter. “Introducing markov
chain monte carlo.” In: Markov chain Monte Carlo in practice 1 (1996), p. 19 (cit. on
p. 150).

[70] Lila Gleitman. “The Structural Sources of Verb Meanings.” In: Language Acquisition
1.1 (1990), pp. 3–55 (cit. on p. 44).

[71] Kevin Gold and Brian Scassellati. “Grounded pronoun learning and pronoun reversal.”
In: Proceedings of the 5th International Conference on Development and Learning.
2006 (cit. on p. 10).

[72] Peter John Gorniak. “The affordance-based concept.” PhD thesis. Massachusetts In-
stitute of Technology, 2005 (cit. on p. 9).

[73] Thomas L. Griffiths and Mark Steyvers. “A probabilistic approach to semantic rep-
resentation.” In: Proceedings of the 24th annual conference of the cognitive science
society. Citeseer. 2002, pp. 381–386 (cit. on p. 22).

[74] Thomas L. Griffiths and Mark Steyvers. “Finding scientific topics.” In: Proceedings of
the National Academy of Sciences of the United States of America 101 Suppl (2004),
pp. 5228–5235 (cit. on pp. 22, 150–152).



186 Bibliography

[75] T. Griffiths, Mark Steyvers, et al. “Prediction and semantic association.” In: Advances
in neural information processing systems (2003), pp. 11–18 (cit. on p. 22).

[76] Daniel H. Grollman and Odest Chadwicke Jenkins. “Sparse incremental learning for
interactive robot control policy estimation.” In: 2008 IEEE International Conference
on Robotics and Automation. 2008, pp. 3315–3320 (cit. on p. 2).

[77] D. Guillamet, J. Vitrià, and B. Schiele. “Introducing a weighted non-negative ma-
trix factorization for image classification.” In: Pattern Recognition Letters 24 (2003),
pp. 2447–2454 (cit. on p. 33).

[78] M. T. Hagan, H. B. Demuth, and M. H. Beale. Neural network design. Vol. 2. 1996,
p. 734 (cit. on pp. 2, 32).

[79] Joy E. Hanna and Susan E. Brennan. “Speakers’ eye gaze disambiguates referring ex-
pressions early during face-to-face conversation.” In: Journal of Memory and Language
57.4 (2007), pp. 596–615 (cit. on p. 11).

[80] Joy E. Hanna and Michael K. Tanenhaus. “Pragmatic effects on reference resolution in
a collaborative task: Evidence from eye movements.” In: Cognitive Science 28.1 (2004),
pp. 105–115 (cit. on p. 11).

[81] Stevan Harnad. “The symbol grounding problem.” In: Physica D: Nonlinear Phenom-
ena 42.1 (1990), pp. 335–346 (cit. on p. 9).

[82] M. Hasenjäger and H. Ritter. “Active learning in neural networks.” In: New learning
paradigms in soft computing. Springer, 2002, pp. 137–169 (cit. on p. 46).

[83] Hynek Hermansky and Nelson Morgan. “RASTA processing of speech.” In: Speech and
Audio Processing, IEEE Transactions on 2.4 (1994), pp. 578–589 (cit. on p. 15).

[84] G. E. Hinton and R. R. Salakhutdinov. “Reducing the dimensionality of data with
neural networks.” In: Science (New York, N.Y.) 313 (2006), pp. 504–507 (cit. on p. 27).

[85] Geoffrey E. Hinton. Learning multiple layers of representation. 2007 (cit. on p. 27).
[86] Masako Hirotani et al. “Joint attention helps infants learn new words: event-related

potential evidence.” In: Neuroreport 20 (6 2009), pp. 600–605 (cit. on p. 44).
[87] Matthew D. Hoffman, David M. Blei, and Francis Bach. “Online Learning for La-

tent Dirichlet Allocation.” In: Advances in Neural Information Processing Systems 23
(2010), pp. 1–9 (cit. on p. 152).

[88] Thomas Hofmann. “Probabilistic latent semantic indexing.” In: SIGIR. 1999, pp. 50–
57 (cit. on pp. 22, 39).

[89] Thomas Hofmann. “Unsupervised learning by probabilistic Latent Semantic Analysis.”
In: Machine Learning 42 (2001), pp. 177–196 (cit. on pp. 22, 41).

[90] Eva Hörster, Rainer Lienhart, and Malcolm Slaney. “Image retrieval on large-scale
image databases.” In: Image Rochester NY (2007), pp. 17–24 (cit. on p. 41).

[91] Charles Lee Isbell et al. “A Social Reinforcement Learning Agent.” In: Fifth Interna-
tional Conference on Autonomous Agents (2001), p. 8 (cit. on p. 2).



Bibliography 187

[92] Douglas Northrop Jackson, Richard D. Goffin, and Edward Helmes. Problems and
solutions in human assessment: Honoring Douglas N. Jackson at Seventy. Springer,
2000 (cit. on p. 36).

[93] G. Kachergis and Chen Yu. “Continuous measure of word learning supports associative
model.” In: Development and Learning and Epigenetic Robotics (ICDL-Epirob), 2014
Joint IEEE International Conferences on. Oct. 2014, pp. 20–25 (cit. on p. 26).

[94] G. Kachergis, Chen Yu, and R.M. Shiffrin. “Cross-situational word learning is better
modeled by associations than hypotheses.” In: Development and Learning and Epige-
netic Robotics (ICDL), 2012 IEEE International Conference on. Nov. 2012, pp. 1–6
(cit. on p. 44).

[95] George Kachergis and Chen Yu. “More Naturalistic Cross-situational Word Learning.”
In: Proceedings of the 35th Annual Conference of the Cognitive Science Society. 2013
(cit. on p. 44).

[96] George Kachergis, Chen Yu, and Richard M. Shiffrin. “Actively Learning Object Names
Across Ambiguous Situations.” In: topiCS 5.1 (2013), pp. 200–213 (cit. on pp. 44, 47,
137, 138, 141).

[97] H. F. Kaiser. The Application of Electronic Computers to Factor Analysis. 1960 (cit.
on p. 36).

[98] Sham Kakade and Peter Dayan. “Dopamine: generalization and bonuses.” In: Neural
Networks 15.4 (2002), pp. 549–559 (cit. on p. 45).

[99] Dan Kalman. “A Singularly Valuable Decomposition: The SVD of a Matrix.” In: The
College Mathematics Journal 27 (1996), p. 2 (cit. on p. 29).

[100] Frédéric Kaplan, Pierre-Yves Oudeyer, and Benjamin Bergen. “Computational models
in the debate over language learnability.” In: Infant and Child Development 17.1 (2008),
pp. 55–80 (cit. on p. 46).

[101] Yan Ke and Rahul Sukthankar. “PCA-SIFT: A more distinctive representation for
local image descriptors.” In: Computer Vision and Pattern Recognition, 2004. CVPR
2004. Proceedings of the 2004 IEEE Computer Society Conference on. Vol. 2. IEEE.
2004, pp. II–506 (cit. on p. 18).

[102] Kristian Kersting et al. “Hierarchical Convex NMF for Clustering Massive Data.” In:
ACML (2010), pp. 253–268 (cit. on pp. 33, 147).

[103] Hyunsoo Kim and Haesun Park. Nonnegative Matrix Factorization Based on Alter-
nating Nonnegativity Constrained Least Squares and Active Set Method. 2008 (cit. on
p. 35).

[104] Jingu Kim and Haesun Park. Fast Nonnegative Matrix Factorization: An Active-Set-
Like Method and Comparisons. 2011 (cit. on pp. 33, 35).

[105] Diederik P. Kingma and Max Welling. “Auto-encoding variational bayes.” In: arXiv
preprint arXiv:1312.6114 (2013) (cit. on p. 27).

[106] Patricia K. Kuhl. Brain Mechanisms in Early Language Acquisition. 2010 (cit. on p. 4).



188 Bibliography

[107] Patricia K. Kuhl. “Early language acquisition: cracking the speech code.” In: Nature
reviews neuroscience 5 (2004), pp. 831–843 (cit. on p. 4).

[108] Thomas K. Landauer. “LSA as a theory of meaning.” In: Handbook of latent semantic
analysis. 2007, pp. 3–34 (cit. on p. 30).

[109] Stephen David Larson. Intrinsic representation: Bootstrapping symbols from experi-
ence. Springer, 2004 (cit. on p. 9).

[110] Stanislao Lauria et al. “Mobile robot programming using natural language.” In: Robotics
and Autonomous Systems 38 (2002), pp. 171–181 (cit. on p. 2).

[111] C. L. Lawson and R. J. Hanson. Solving least squares problems. Vol. 15. 1995, p. 337
(cit. on p. 38).

[112] D. D. Lee and H. S. Seung. “Algorithms for non-negative matrix factorization.” In:
Advances in neural information processing systems (2001), pp. 556–562 (cit. on pp. 2,
32, 35).

[113] D. D. Lee and H. S. Seung. “Learning the parts of objects by non-negative matrix
factorization.” In: Nature 401 (1999), pp. 788–791 (cit. on pp. 2, 29, 32, 33).

[114] Yi-Ou Li, Tülay Adalı, and Vince D. Calhoun. “Estimating the number of indepen-
dent components for functional magnetic resonance imaging data.” In: Human brain
mapping 28.11 (2007), pp. 1251–1266 (cit. on p. 36).

[115] Dawen Liang, Matthew D. Hoffman, and Daniel P. W. Ellis. “Beta Process Sparse
Nonnegative Matrix Factorization for Music.” In: ISMIR. 2013, pp. 375–380 (cit. on
p. 36).

[116] Rainer Lienhart, Stefan Romberg, and Eva Hörster. “Multilayer pLSA for multimodal
image retrieval.” In: International Conference on Image and Video Retrieval -CIVR.
2009, p. 1 (cit. on p. 41).

[117] Chih-Jen. Lin. “On the convergence of multiplicative update algorithms for nonneg-
ative matrix factorization.” In: IEEE Transactions on Neural Networks 18 (2007),
pp. 1589–1596 (cit. on p. 35).

[118] Chih-Jen Lin. “Projected gradient methods for nonnegative matrix factorization.” In:
Neural computation 19 (2007), pp. 2756–2779 (cit. on p. 35).

[119] David G. Lowe. “Distinctive image features from scale-invariant keypoints.” In: Inter-
national journal of computer vision 60.2 (2004), pp. 91–110 (cit. on p. 19).

[120] Natalia Lyubova and David Filliat. “Developmental approach for interactive object
discovery.” In: Neural Networks (IJCNN), The 2012 International Joint Conference
on. IEEE. 2012, pp. 1–7 (cit. on p. 17).

[121] Richard Maclin et al. “Giving advice about preferred actions to reinforcement learners
via knowledge-based kernel regression.” In: Proceedings of the 20th National Conference
on Artificial Intelligence. Vol. 2. 2005, pp. 819–824 (cit. on p. 2).

[122] José M. Maisog. “Non-negative Matrix Factorization: Assessing Methods for Evaluat-
ing the Number of Components, and the Effect of Normalization Thereon.” PhD thesis.
Georgetown University, 2009 (cit. on p. 36).



Bibliography 189

[123] Olivier Mangin. “The Emergence of Multimodal Concepts.” PhD thesis. 2014 (cit. on
pp. 12–15, 33, 61, 63, 93).

[124] Olivier Mangin and Pierre Yves Oudeyer. “Learning semantic components from sub-
symbolic multimodal perception.” In: 2013 IEEE 3rd Joint International Conference
on Development and Learning and Epigenetic Robotics, ICDL 2013 - Electronic Con-
ference Proceedings (2013) (cit. on p. 63).

[125] Olivier Mangin et al. “MCA-NMF: Multimodal Concept Acquisition with Non-Negative
Matrix Factorization.” In: PLoS ONE 10.10 (Oct. 2015), e0140732 (cit. on pp. 12, 17,
21, 24, 63).

[126] Nikolaos Mavridis and Deb K. Roy. “Grounded situation models for robots: Where
words and percepts meet.” In: Intelligent Robots and Systems, 2006 IEEE/RSJ Inter-
national Conference on. IEEE. 2006, pp. 4690–4697 (cit. on p. 10).

[127] Nikolaos Mavridis et al. “FaceBots: social robots utilizing facebook.” In: Proceedings of
the 4th ACM/IEEE international conference on Human robot interaction. ACM. 2009,
pp. 195–196 (cit. on p. 10).

[128] Tamara Nicol Medina et al. “How words can and cannot be learned by observation.” In:
Proceedings of the National Academy of Sciences 108.22 (2011), pp. 9014–9019. eprint:
http://www.pnas.org/content/108/22/9014.full.pdf+html (cit. on p. 26).

[129] George Miller and Christiane Fellbaum. Wordnet: An electronic lexical database. 1998
(cit. on p. 16).

[130] T. P. Minka. “Automatic choice of dimensionality for PCA.” In: Advances in neural
information processing systems (2001), pp. 598–604 (cit. on p. 36).

[131] Thomas Minka and John Lafferty. “Expectation-Propagation for the Generative As-
pect Model.” In: Uncertainty in Artificial Intelligence. 2002, pp. 352–359 (cit. on
pp. 150, 151).

[132] Tom Mitchell. Never-ending learning. Tech. rep. DTIC Document, 2010 (cit. on pp. 3,
4).

[133] Florent Monay and Daniel Gatica-perez. “PLSA-based Image Auto-Annotation : Con-
straining the Latent Space.” In: Proceedings of the 12th annual ACM international
conference on Multimedia (2004), pp. 348–351 (cit. on p. 41).

[134] AJung Moon et al. “Meet me where i’m gazing: how shared attention gaze affects
human-robot handover timing.” In: Proceedings of the 2014 ACM/IEEE international
conference on Human-robot interaction. ACM. 2014, pp. 334–341 (cit. on p. 11).

[135] Peter Mundy and Lisa Newell. “Attention, joint attention, and social cognition.” In:
Current directions in psychological science 16.5 (2007), pp. 269–274 (cit. on p. 143).

[136] Kuniaki Noda et al. “Multimodal integration learning of robot behavior using deep
neural networks.” In: Robotics and Autonomous Systems 62.6 (June 2014), pp. 721–
736 (cit. on pp. 11–14, 18, 21, 27, 28).

[137] Dan Oneata. Probabilistic Latent Semantic Analysis. Tech. rep. The University of Ed-
inburgh School of Informatics (cit. on p. 39).

http://www.pnas.org/content/108/22/9014.full.pdf+html


190 Bibliography

[138] Pierre Yves Oudeyer, Frédéric Kaplan, and Verena V. Hafner. “Intrinsic Motivation
Systems for Autonomous Mental Development.” In: IEEE Transactions on Evolution-
ary Computation 11.2 (Apr. 2007), pp. 265–286 (cit. on pp. 4, 46, 47, 65).

[139] Pierre-Yves Oudeyer and Frédéric Kaplan. “What is intrinsic motivation? a typology
of computational approaches.” In: Frontiers in neurorobotics 1 (2007), p. 6 (cit. on
p. 45).

[140] Art B. Owen and Patrick O. Perry. “Bi-cross-validation of the SVD and the nonneg-
ative matrix factorization.” In: The Annals of Applied Statistics (2009), pp. 564–594
(cit. on p. 36).

[141] Fabio Pardo, Yuxin Chen, and David Filliat. “Effects of robot feedback on teacher
during word-referent learning.” In: ICDL-EpiRob 2015 Workshop on Mechanisms of
Learning in Social Contexts. IEEE. 2015 (cit. on pp. 7, 179).

[142] Karl Pearson. “LIII. On lines and planes of closest fit to systems of points in space.” In:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2
(1901), pp. 559–572 (cit. on p. 31).

[143] J. Piaget. Play, Dreams and Imitation in Childhood. Developmental psychology. Rout-
ledge, 1999 (cit. on p. 4).

[144] Steven Pinker. Language Learnability and Language Development. Vol. 193. 1984,
p. 435 (cit. on p. 3).

[145] Willard Van Orman Quine, Otto Neurath, and James Grier Miller. “Word and Object.”
In: Language (1960), pp. 1–201 (cit. on pp. 3, 44).

[146] Terry Regier and Laura A. Carlson. “Grounding spatial language in perception: an
empirical and computational investigation.” In: Journal of experimental psychology:
General 130.2 (2001), p. 273 (cit. on p. 10).

[147] Edwin M. Robertson, Daniel Z. Press, and Alvaro Pascual-Leone. “Off-line learning and
the primary motor cortex.” In: The Journal of Neuroscience 25.27 (2005), pp. 6372–
6378 (cit. on p. 45).

[148] Deb K. Roy. “A computational model of word learning from multimodal sensory input.”
In: Proceedings of the International Conference of Cognitive Modeling (ICCM2000),
Groningen, Netherlands. Citeseer. 2000 (cit. on p. 10).

[149] Deb K. Roy. “Learning visually grounded words and syntax for a scene description
task.” In: Computer Speech & Language 16.3 (2002), pp. 353–385 (cit. on p. 10).

[150] Deb K. Roy and A. Pentland. “Learning words from sights and sounds: A computa-
tional model.” In: Cognitive science 26 (2002), pp. 113–146 (cit. on pp. 12, 14, 15, 18,
24, 25, 44).

[151] J. Ruiz-del-Solar and P. Navarrete. “Eigenspace-based face recognition: a comparative
study of different approaches.” In: IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews) 35 (2005) (cit. on p. 31).

[152] Radu Bogdan Rusu et al. “Detecting and segmenting objects for mobile manipulation.”
In: Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on. IEEE. 2009, pp. 47–54 (cit. on p. 18).



Bibliography 191

[153] Radu Bogdan Rusu et al. “Fast 3d recognition and pose using the viewpoint feature
histogram.” In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on. IEEE. 2010, pp. 2155–2162 (cit. on p. 18).

[154] Paul Sajda et al. “Nonnegative matrix factorization for rapid recovery of constituent
spectra in magnetic resonance chemical shift imaging of the brain.” In: IEEE Trans-
actions on Medical Imaging 23 (2004), pp. 1453–1465 (cit. on p. 33).

[155] Gerard Salton and Christopher Buckley. “Term-weighting Approaches in Automatic
Text Retrieval.” In: Inf. Process. Manage. 24.5 (Aug. 1988), pp. 513–523 (cit. on p. 60).

[156] Brian Scassellati. “Imitation and mechanisms of joint attention: A developmental struc-
ture for building social skills on a humanoid robot.” In: Computation for metaphors,
analogy, and agents. Springer, 1999, pp. 176–195 (cit. on p. 11).

[157] Brian Scassellati. “Mechanisms of shared attention for a humanoid robot.” In: Embodied
Cognition and Action: Papers from the 1996 AAAI Fall Symposium. Vol. 4. 9. 1996,
p. 21 (cit. on p. 11).

[158] Stefan Schaal. Is imitation learning the route to humanoid robots? 1999 (cit. on p. 2).
[159] Bernt Schiele and James L. Crowley. “Recognition without correspondence using mul-

tidimensional receptive field histograms.” In: International Journal of Computer Vision
36.1 (2000), pp. 31–50 (cit. on p. 17).

[160] Jürgen Schmidhuber. “Curious model-building control systems.” In: Neural Networks,
1991. 1991 IEEE International Joint Conference on. IEEE. 1991, pp. 1458–1463 (cit.
on p. 47).

[161] B. Schölkopf. “Learning with kernels.” In: Journal of the Electrochemical Society 129
(2002), p. 2865 (cit. on p. 38).

[162] B. Schölkopf, A. J. Smola, and K. R. Muller. “Kernel Principal Component Analysis.”
In: Computer Vision And Mathematical Methods In Medical And Biomedical Image
Analysis 1327 (2012), pp. 583–588 (cit. on p. 32).

[163] Bernhard Schölkopf et al. “Support Vector Method for Novelty Detection.” In: Ad-
vances in Neural Information Processing Systems 12. 1999, pp. 582–588 (cit. on p. 37).

[164] William Schueller and Pierre-Yves Oudeyer. “Active learning strategies and active
control of complexity growth in naming games.” In: the 5th International Conference
on Development and Learning and on Epigenetic Robotics. 2015 (cit. on pp. 12, 47, 66,
67, 148).

[165] Karin Kipper Schuler. “VerbNet: A broad-coverage, comprehensive verb lexicon.” PhD
thesis. University of Pennsylvania, Philadelphie, 2005 (cit. on p. 148).

[166] Claude Elwood Shannon. “A mathematical theory of communication.” In: ACM SIG-
MOBILE Mobile Computing and Communications Review 5.1 (2001), pp. 3–55 (cit. on
p. 12).

[167] Xueguang Shao et al. “Extraction of mass spectra and chromatographic profiles from
overlapping GC/MS signal with background.” In: Analytical Chemistry 76 (2004),
pp. 5143–5148 (cit. on p. 36).



192 Bibliography

[168] Jeffrey Mark Siskind. “A computational study of cross-situational techniques for learn-
ing word-to-meaning mappings.” In: Cognition 61.1–2 (1996). Compositional Language
Acquisition, pp. 39–91 (cit. on p. 44).

[169] Jeffrey Mark Siskind. “Grounding the lexical semantics of verbs in visual perception
using force dynamics and event logic.” In: J. Artif. Intell. Res.(JAIR) 15 (2001), pp. 31–
90 (cit. on p. 20).

[170] Marjorie Skubic et al. “Spatial language for human-robot dialogs.” In: Systems, Man,
and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 34.2 (2004),
pp. 154–167 (cit. on p. 10).

[171] Daniel D.K. Sleator and Davy Temperley. “Parsing English with a link grammar.” In:
Technical Report CMU-CS-91- 196 (1991) (cit. on p. 16).

[172] W.D. Smart and L. Pack Kaelbling. “Effective reinforcement learning for mobile robots.”
In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat.
No.02CH37292) 4 (2002) (cit. on p. 2).

[173] Linda Smith and Michael Gasser. “The development of embodied cognition: Six lessons
from babies.” In: Artificial life 11.1-2 (2005), pp. 13–29 (cit. on p. 4).

[174] Linda Smith and Chen Yu. “Infants rapidly learn word-referent mappings via cross-
situational statistics.” In: Cognition 106.3 (2008), pp. 1558–1568 (cit. on pp. 12, 44,
45).

[175] Hyun Ah Song and Soo-Young Lee. “Hierarchical Data Representation Model-Multi-
layer NMF.” In: arXiv preprint arXiv:1301.6316 (2013) (cit. on p. 33).

[176] Xiaodan Song et al. “Modeling and predicting personal information dissemination
behavior.” In: Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining. ACM. 2005, pp. 479–488 (cit. on p. 152).

[177] Thorsten Spexard et al. “BIRON, where are you? Enabling a robot to learn new places
in a real home environment by integrating spoken dialog and visual localization.” In:
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE.
2006, pp. 934–940 (cit. on p. 10).

[178] Luc Steels. “Evolving grounded communication for robots.” In: Trends in Cognitive
Sciences 7.7 (2003), pp. 308–312 (cit. on pp. 9, 12–14, 16, 18, 19).

[179] Luc Steels. The Talking Heads experiment: Origins of words and meanings. Vol. 1.
Language Science Press, 2015 (cit. on pp. 9, 18).

[180] G. W. Stewart. On the Early History of the Singular Value Decomposition. 1993 (cit.
on p. 29).

[181] Michael J. Swain and Dana H. Ballard. “Color indexing.” In: International journal of
computer vision 7.1 (1991), pp. 11–32 (cit. on p. 17).

[182] Leonard Talmy. “Force dynamics in language and cognition.” In: Cognitive science 12.1
(1988), pp. 49–100 (cit. on p. 20).

[183] Yee Whye Teh, David Newman, and Max Welling. “A Collapsed Variational Bayesian
Inference Algorithm for Latent Dirichlet Allocation.” In: NIPS 19 (2007), pp. 1353–
1360 (cit. on pp. 150, 151).



Bibliography 193

[184] Stefanie Tellex et al. “Approaching the symbol grounding problem with probabilistic
graphical models.” In: AI magazine 32.4 (2011), pp. 64–76 (cit. on p. 10).

[185] Stefanie Tellex et al. “Learning perceptually grounded word meanings from unaligned
parallel data.” In: Machine Learning 94.2 (2014), pp. 151–167 (cit. on p. 10).

[186] Stefanie Tellex et al. “Understanding natural language commands for robotic naviga-
tion and mobile manipulation.” In: (2011) (cit. on p. 10).

[187] Andrea L. Thomaz and Cynthia Breazeal. “Teachable robots: Understanding human
teaching behavior to build more effective robot learners.” In: Artificial Intelligence 172
(2008), pp. 716–737 (cit. on p. 2).

[188] Andrea L. Thomaz and Maya Cakmak. “Social learning mechanisms for robots.” In:
(2009) (cit. on p. 2).

[189] Michael Tomasello. The Cultural Origins of Human Cognition. Vol. 114. 1999, p. 248
(cit. on p. 2).

[190] John C. Trueswell et al. “Propose but verify: Fast mapping meets cross-situational
word learning.” In: Cognitive psychology 66.1 (2013), pp. 126–156 (cit. on p. 26).

[191] Alan M. Turing. “Computing machinery and intelligence.” In: Mind 59.236 (1950),
pp. 433–460 (cit. on p. 4).

[192] M.A. Turk and A.P. Pentland. “Face recognition using eigenfaces.” In: Proceedings.
1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(1991) (cit. on pp. 29, 31).

[193] Mark H. Van Benthem and Michael R. Keenan. “Fast algorithm for the solution of
large-scale non-negativity-constrained least squares problems.” In: Journal of Chemo-
metrics 18 (2004), pp. 441–450 (cit. on p. 35).

[194] Hugo Van Hamme. “H.: Hac-models: a novel approach to continuous speech recogni-
tion.” In: Proceedings Interspeech, ISCA. Citeseer. 2008 (cit. on p. 15).

[195] Wayne F. Velicer. “Determining the number of components from the matrix of partial
correlations.” In: Psychometrika 41 (1976), pp. 321–327 (cit. on p. 36).

[196] Paul Vogt. “The physical symbol grounding problem.” In: Cognitive Systems Research
3.3 (2002), pp. 429–457 (cit. on p. 12).

[197] Alex Waibel et al. “Phoneme recognition using time-delay neural networks.” In: IEEE
transactions on acoustics, speech, and signal processing 37.3 (1989), pp. 328–339 (cit.
on p. 27).

[198] J. Weng et al. “Artificial intelligence. Autonomous mental development by robots and
animals.” In: Science (New York, N.Y.) 291 (2001), pp. 599–600 (cit. on p. 4).

[199] Zhirong Yang, Zhanxing Zhu, and Erkki Oja. “Automatic rank determination in pro-
jective nonnegative matrix factorization.” In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics). Vol. 6365 LNCS. 2010, pp. 514–521 (cit. on p. 36).



194 Bibliography

[200] Chen Yu and Dana H. Ballard. “A Multimodal Learning Interface for Grounding Spo-
ken Language in Sensory Perceptions.” In: ACM Trans. Appl. Percept. 1.1 (July 2004),
pp. 57–80 (cit. on p. 20).

[201] Chen Yu and Dana H. Ballard. “On the integration of grounding language and learning
objects.” In: AAAI. Vol. 4. 2004, pp. 488–493 (cit. on pp. 12–14, 16, 17).

[202] Chen Yu, Linda B. Smith, and Alfredo F. Pereira. “Grounding word learning in multi-
modal sensorimotor interaction.” In: Proceedings of the 30th annual conference of the
cognitive science society. 2008, pp. 1017–1022 (cit. on p. 9).

[203] Chen Yu et al. “Rapid word learning under uncertainty via cross-situational statistics.”
In: Psychological Science (2007), pp. 414–420 (cit. on p. 44).

[204] Hendrik Zender et al. “Conceptual spatial representations for indoor mobile robots.”
In: Robotics and Autonomous Systems 56.6 (2008), pp. 493–502 (cit. on p. 10).

[205] Xiaoge Zhang et al. “An improved Physarum polycephalum algorithm for the shortest
path problem.” In: The Scientific World Journal 2014 (2014) (cit. on p. 2).



 



Titre : Apprentissage interactif de mots et d’objets pour un robot humanoïde

Mots clefs : robotique développementale, apprentissage de mot-référent, apprentissage cross-situationnel,
apprentissage actif, Factorisation en Natrices Non-Négatives (NMF), Allocation de Dirichlet latente (LDA)

Résumé : Les applications futures de la robotique
exigeront des capacités d’adaptation à l’environne-
ment, notamment la capacité à reconnaître des nou-
veaux objets via l’interaction avec les humains. Or
les enfants de deux ans ont une capacité impression-
nante à apprendre à reconnaître de nouveaux objets
par l’interaction avec les adultes et sans supervi-
sion précise. Par conséquent, suivant l’approche de
la robotique développementale, nous développons
dans la thèse des approches d’apprentissage pour les
objets, en associant leurs noms et leurs caractéris-
tiques correspondantes, inspirées par les capacités
des enfants qui sont exploitées lors de l’interaction
ambiguë avec les parents.
Dans le cadre de l’apprentissage cross-situationnel,
deux approches de découverte de thèmes latents (la
Factorisation en Natrices Non-Négatives (NMF) et
l’Allocation de Dirichlet latente (LDA)) sont utili-

sées pour la découverte de concepts multi-modaux,
découvrant les régularités sous-jacentes dans le flux
de données brutes afin de parvenir à produire des
ensembles de mots et leur signification visuelle as-
sociée, p.ex le nom d’un objet et sa forme, ou un
adjectif de couleur et sa correspondance dans les
images, malgré les ambiguïtés référentielles et les
ambiguïtés linguistiques. Par ailleurs, deux stratégies
d’apprentissage actives: la Sélection par l’Erreur de
Reconstruction Maximale (MRES) et l’Exploration
Basée sur la Confiance (CBE) sont proposées pour
améliorer l’apprentissage incrémental en termes de
qualité et de vitesse. Enfin, les comportements d’ap-
prentissage sont comparés entre les humains et les
modèles proposés qui ont été étudiés non seulement
à travers de simulations extensives mais aussi lors
d’interactions réelles entre des humains et un robot.

Title : Interactive learning of words and objects for a humanoid robot

Keywords : developmental robotics, word-referent learning, cross-situational learning, active learning,
Non negative Matrix Factorization (NMF), Latent Dirichlet Association (LDA)

Abstract : Future applications of robotics will re-
quire adaptability to the environment, particularly
the ability to recognize new objects through interac-
tion with humans. In fact, two year old children have
an impressive ability to learn to recognize new ob-
jects via interaction with adults and without precise
supervision. Therefore, following the developmental
robotics approach, we develop in the thesis learning
approaches for objects, associating their names and
corresponding features, inspired by the capabilities
of infants that are used during ambiguous interac-
tion with parents.
Under the framework of cross-situational learning,
two latent topic discovery approaches, that is Non
Negative Matrix Factorization (NMF) and Latent

Dirichlet Association (LDA), are utilized to imple-
ment multi-modal concept discovery, finding the un-
derlying regularities in the raw dataflow to produce
sets of words and their associated visual meanings,
eg. the name of an object and its shape, or a color
adjective and its correspondence in images, despite
referential ambiguities and linguistic ambiguities.
Besides, two active learning strategies: Maximum
Reconstruction Error Based Selection (MRES) and
Confidence Based Exploration (CBE), are proposed
to improve incremental learning in terms of quality
and speed. Finally, learning behaviors are compa-
red between humans and the proposed models not
only through extensive simulations but also through
applications in real human-robot interactions.
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