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Introduction générale

La premiere partie de cette introduction, qui se veut accessible au plus grand nombre, présente les
domaines de la physique et des mathématiques auxquels nous rattachons nos travaux, qui sont la
diffraction inverse et I’analyse asymptotique. La deuxieme partie, un peu plus technique, s’attache a
décrire nos problématiques et les méthodes utilisées pour les résoudre. Un apercu de la bibliographie
pertinente y est fourni. Nous précisons également le contenu des deux parties et cing chapitres qui
constituent ce manuscrit.

I - Contexte de nos travaux et domaines d’étude associés

Diffraction directe et inverse

Dans cette introduction, nous utilisons le terme “diffraction” pour désigner ’altération d’une onde
due & une perturbation de son milieu de propagation '. Pour restreindre un peu le champ immense
de cette définition, on se concentrera sur des exemples concernant les ondes mécaniques, qui se
propagent en mettant localement en mouvement la matiere constituant leur milieu de propagation.
Dans les milieux fluides, on parle alors souvent d’ondes acoustiques. Dans les milieux solides, les
ondes sismiques sont un exemple connus de telles ondes. Dans ce cadre, la perturbation du milieu
matériel peut étre un obstacle rigide ou pénétrable, une fissure dans le cas d’un milieu solide, une
interface entre deux matériaux ... Par souci de simplification, on utilisera fréquemment dans cette
introduction le terme d’obstacle pour désigner une telle perturbation.

En étudiant un phénomene de diffraction, et de facon tres générale, on peut s’intéresser a deux
grands types de probleme. Dans les problemes directs, le milieu de propagation est entierement
connu, ce qui inclut la présence d’éventuels obstacles et leurs caractéristiques. L’onde incidente
(non encore perturbée) ou les sollicitations mécaniques qui vont I’engendrer sont également supposés
connus. La résolution du probléme a alors pour but de déterminer la fagon dont cette onde incidente
est diffractée, ou plus généralement de déterminer I’'état du milieu et les différentes ondes qui s’y
propagent pendant le processus de propagation et diffraction. La résolution de tels problemes,
qu’elle soit exacte ou approchée, a de nombreuses applications dans divers domaines de la physique.
Par exemple, déterminer les propriétés acoustiques d’une salle de concert dont on connait toutes
les caractéristiques (géométrie de la salle, position des sources sonores ...), ¢’est-a~dire déterminer
les multiples réflexions et diffractions possibles des ondes acoustiques qui s’y propageront, est un
probleme direct complexe. Pour les ondes sismiques, un autre exemple de probleme direct est
I’étude de la diffraction d’'une onde se propageant dans la crotte terrestre quand elle atteint la

1Ce sens assez large est celui du terme anglais scattering, qu’on traduit parfois également par “diffusion” selon le
contexte.



surface, en fonction de la topologie et des matériaux qui constituent le sous-sol, afin ensuite de
prévoir les conséquences d’une telle interaction onde-surface.

Pour les problemes inverses, au contraire, la connaissance des parametres de la diffraction (onde
incidente, milieu de propagation, obstacle(s)) est incomplete. Ces problemes s’appuient alors sur
une connaissance totale ou partielle de I’onde diffractée pour essayer de déterminer les parametres
manquants. L’écholocalisation des chauves-souris et des dauphins, et sa contrepartie artificielle, le
sonar, sont certainement 1’exemple le plus connus d’une utilisation “inverse” des ondes acoustiques
pour déterminer la position des obstacles les plus proches dans une direction donnée. En plus de la
position de telles obstacles, on peut aussi imaginer obtenir quelques-unes de leurs caractéristiques
comme leur forme et leur caractere rigide ou pénétrable. Ces problemes inverses ont bien sir eux
aussi de nombreuses applications dans des domaines tres différents, on parle ainsi parfois d’imagerie
(médicale, par exemple), ou de contréole non-destructif quand on cherche a détecter des défauts dans
des structures sans les endommager. C’est cette problématique d’identification qui a motivé nos
travaux.

La figure 1 illustre ainsi la diffraction d’une onde par un obstacle, et deux problemes, direct et
inverse, qui peuvent y étre associés.
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Figure 1: Tllustration de problémes de diffraction (i) direct (en haut), pour lequel une onde incidente
u et un obstacle sont connus et ol 'on veut déterminer le champ total apres diffraction u'°t, somme
de u et du champ diffracté v, et (ii) inverse (en bas) pour lequel une observation partielle de u*°*

sur une surface S° est disponible mais la cause de la diffraction est inconnue.

Quelques types de méthodes existantes pour la résolution de problemes inverses

Les problemes de diffraction inverse appartiennent & la famille des problemes inverses, qui peuvent
concerner bien d’autres domaines que celui -déja vaste- de la propagation des ondes. Nous renvoyons



le lecteur intéressé a la préface et aux deux premiers articles du compte-rendu de conférence [Anger
et al., 1993] et a l'introduction de l'ouvrage [Kirsch, 2011] pour une présentation générale de ces
problemes et de certains formalismes mathématiques associés, accompagnée de nombreux exemples
dans différents cadres. Pour le cas particulier de la diffraction inverse, I'introduction du célebre
ouvrage [Colton & Kress, 1998| présente un exemple canonique pour I’acoustique et comporte de
nombreuses références.

De tres nombreuses méthodes existent pour la résolution de tels problemes. Sans rentrer dans
le détail ni espérer étre représentatif de cette variété, nous présentons ci-dessous quelques grandes
classes de méthodes. Le cas le plus simple se présente quand la relation entre les parametres
inconnus et les données disponibles, établie en résolvant le probleme direct, est suffisamment simple
pour étre inversée et exprimer les inconnues directement en fonction des données. Un exemple
canonique est celui de la triangulation : supposons qu’on connaisse l'instant ou a été émise une
onde se propageant dans toutes les directions d’un plan (par exemple des ondes a la surface plane
d’une mare) et sa vitesse de propagation, mais pas l'origine de cette émission (“l’endroit ou le caillou
est tombé dans I’eau”). Si l'on mesure son temps d’arrivée en trois points différents (x1, x2, x3),
on peut calculer directement les trois distances (dj,ds,ds) parcourues depuis le point d’émission
et ce point est uniquement déterminé comme l'intersection des trois cercles de centres x; et de
rayons d;. Souvent, cependant, la relation liant parametres inconnus et données observables n’est
pas si explicite : elle est par exemple définie comme étant la solution d’un systeme d’équations aux
dérivées partielles, non connue analytiquement. On se repose alors fréquemment sur des méthodes
approchées.

Les méthodes dites itératives s’appuient sur une estimation a priori des parametres a
déterminer, qui est utilisée pour simuler un probleme direct et comparer les résultats obtenus
a des résultats de référence. Par exemple, on se donne un obstacle “test” (défini par son emplace-
ment, sa forme, ses caractéristiques matérielles ...) et on compare les résultats d’une simulation
numérique de diffraction par cet obstacle test a des mesures expérimentales du champ diffracté
par un obstacle inconnu. Cette comparaison est utilisée pour modifier I’estimation des inconnues,
et on itere le processus de simulation-comparaison-mise a jour jusqu’a obtenir une approximation
satisfaisante des données de référence. La difficulté de cette approche réside souvent dans la le choix
de la méthode de mise a jour des estimations & partir de I’écart aux données de référence observé.
L’efficacité de cette étape conditionne en effet la convergence de la méthode vers les parametres
a identifier, et, tout aussi important, la rapidité de cette convergence. En effet, chaque itération
nécessite la résolution d’un nouveau probleme direct, ce qui peut rapidement faire exploser les
temps de calcul. Enfin, ces méthodes sont souvent sensibles a la distance de ’estimation initiale
aux vrais parametres. On renvoie encore a l'ouvrage [Kirsch, 2011] et les références qu’il contient
pour des exemples de telles méthodes, et a article [Bonnet & Guzina, 2009] pour un exemple de
reconstruction itérative d’obstacles pénétrables en élasticité.

Une autre classe de méthodes, dites d’échantillonnage?, auxquelles 'ouvrage [Cakoni & Colton,
2006] est consacré, vise a produire une fonction indicatrice calculée en un échantillon de différents
points du domaine “testé”, dont les valeurs extrémales indiquent la présence d’obstacles (ou parfois,
de leurs frontieres). La linear sampling method est en particulier détaillée dans l'ouvrage [Cakoni
et al., 2011]. La sensibilité topologique d’une fonction-cotit a la nucléation d’un petit obstacle-test,
détaillée dans la partie qui suit, est un autre exemple d’une telle fonction indicatrice. Un des
avantages de ces méthodes est souvent qu’elles nécessitent peu de calculs de problemes directs pour

2sampling methods en anglais



obtenir la “carte” évoquée ci-dessus, contrairement aux méthodes itératives. En revanche, elles sont
souvent moins précises, mais peuvent par exemple fournir une bonne estimation pour initialiser une
méthode itérative.

Finalement, on peut évoquer des méthodes qui, pour contourner le caractere implicite de la
“yraie” relation qui lie parametres inconnus et données disponibles, commencent par établir une
approximation du probléme direct et/ou de sa solution. Cette approximation est choisie pour
fournir une relation plus explicite qu’on utilise pour mener 'inversion, en gardant bien str en téte
que 'approximation initiale faite sur le probleme direct impactera la qualité de cette inversion.
C’est ce dernier type de méthodes dont ce travail de these traite, et 'approximation désirée y est
obtenue au moyen d’ analyses asymptotiques des problemes considérés. Nous décrivons donc a
présent ce type d’approche.

Méthodes asymptotiques

L’analyse asymptotique d’un modele étudie son comportement quand les valeurs d’un ou plusieurs
des parametres qui le définissent, ou les rapports de telles valeurs, s’approchent de valeurs
spécifiques. Par exemple, une longueur caractéristique du probleme peut tendre a s’annuler, de-
venir beaucoup plus grande qu’une autre longueur considérée, ou s’approcher d’une longueur cri-
tique particulierement digne d’intérét. La motivation d’une telle étude est par exemple que des
valeurs spécifiques peuvent correspondre a différents régimes du phénomene physique modélisé.
L’écoulement d’un fluide peut ainsi étre qualifié de laminaire ou turbulent, et ces deux régimes cor-
respondent respectivement a des valeurs “petites” et “grandes” du nombre de Reynolds. Ce nombre
est lui-méme défini comme une combinaison de différents parametres physiques qui interviennent
dans les équations de Navier-Stokes qui décrivent un tel écoulement.

De fagon similaire, un méme type d’onde peut adopter des comportements tres différents en
fonction des valeurs de la fréquence étudiée (ou de sa contrepartie spatiale, la longueur d’onde).
Pour les ondes électromagnétiques, le spectre des couleurs visibles constitue par exemple la seule
bande de longueurs d’onde perceptible par I’ceil humain. Dans le cas de la diffraction d’une onde
par un obstacle, le rapport entre la longueur d’onde et une taille caractéristique de 1'obstacle (par
exemple le rayon d’un obstacle sphérique) a souvent une importance cruciale. Sibien qu’on distingue
fréquemment les régimes de basses fréquences (et donc de grandes longueurs d’ondes par rapport
a une longueur donnée) et de haute fréquences et qu’on s’efforce de comprendre le comportement
des modeles étudiés dans ces cas limites.

Les méthodes asymptotiques sont toutes les méthodes qui tirent parti de de I'hypothese
lexistence d’un petit parametre (ou d’un petit rapport de parametres) pour obtenir une simplifi-
cation du modele étudié, valable dans le régime sous-entendu par cette hypothese. Par exemple,
I'influence d’un tel petit parametre, souvent noté e, peut parfois étre étudiée comme une perturba-
tion d’un modele de référence plus simple. Ce point de vue, et diverses méthodes et applications
associées, sont décrits dans [Holmes, 1995].

Une approche systématique couramment utilisée et que nous suivons dans nos travaux est celle
du développement asymptotique d’une quantité d’intérét, ici notée w, qui est recherchée sous la

forme?:

w R U+ eur + 2ug + .. (1)

3De fagon plus générale, on peut aussi rechercher des développements de la forme £*lu; 4+ €*2us + ... sans
présupposer de la valeur des exposants (a1, a...).



Injecter cette forme de solution dans le modele considéré, qui lui aussi dépend de €, permet ensuite
de dégager successivement des problemes satisfaits par le terme dominant wug, puis ceux d’ordres
supérieurs uy, us ... Comme € est supposé petit, 'influence de chacun de ces termes diminue avec
leur ordre dans la série (1), et le but est de ne calculer qu'un petit nombre d’entre eux et de tronquer
la série, c’est a dire considérer que les suivants sont négligeables pour obtenir une approximation
de u. Typiquement, dans certains cas ou l'influence fine de € n’est pas 'information recherchée,
on peut considérer que ug ou ug + cuy sont des approximations satisfaisantes de u. Cependant,
dans d’autres cas il est intéressant de “pousser” le développement, c’est a dire de calculer aussi les
termes suivants (du moins, quelques-uns d’entre eux) pour obtenir une meilleure approximation et
mieux rendre compte de I'influence de €. On parle alors de développements d’ordre élevé.

C’est précisément a ’aide de tels développements d’ordre élevé que nous proposons par la suite
des méthodes approchées d’identification d’obstacles. Les deux probleémes que nous étudions, et
l'organisation des parties correspondantes dans la suite du manuscrit, sont a présent détaillés.

IT - Problemes étudiés

Ce manuscrit comprend deux parties pouvant étre lues indépendamment 'une de ’autre, corres-
pondant approximativement aux travaux menés au sein de 1’équipe POEMS (UMR CNRS-INRIA-
ENSTA) sous la direction de Marc Bonnet, et a ceux conduits sous la direction de Bojan Guzina
au Civil, Environmental and Geo-Engineering Department de I’Université du Minnesota.

Dérivées topologiques et identification de défauts

La premiere partie de notre travail, réalisé sous la supervision de Marc Bonnet, prend place dans
un domaine de recherche né au début des années 2000 : le calcul des dérivées topologiques d’une
fonction-cott et leur utilisation pour l'identification de défauts enfouis.

Histoire et quelques développements de la dérivée topologique. Le concept de dérivée
(ou gradient) topologique T d’une fonction-cott J dépendant d’un domaine 2 a été introduit par
[Eschenauer et al., 1994; Schumacher, 1996] puis formalisé par [Sokolowski & Zochowski, 1999] ou
elle est définie par:

: (2)

ou J(0) et J(Bq(2)) désignent respectivement les valeurs de J prises quand le domaine Q de référence
est intact et quand une perturbation topologique B,(z) du domaine (2, de taille a, est introduite
autour du point z (typiquement, un trou, mais aussi une fissure, un obstacle pénétrable ...) 4. T
fournit donc une information sur la variation infinitésimale de J quand une telle perturbation est
effectuée. Son calcul pratique a été rapidement facilité par I'utilisation de la méthode de [’état
adjoint, par exemple introduite dans le cadre de 1’élasticité par [Garreau et al., 2001].

De concert avec la dérivée de forme, son analogue pour les perturbations des frontieres de
Q, la dérivée topologique T a tout d’abord été exploitée dans des méthodes d’optimisation [Céa
et al., 2000; Novotny et al., 2003]. Cette direction de recherches est encore tres active aujourd’hui,

*[Sokolowski & Zochowski, 1999], qui considére uniquement des trous, utilise plut6t les notations J(Q2) et J(€ \
B,(z)), moins adaptées quand B, désigne un obstacle pénétrable.




par exemple de facon couplée avec I’homogénéisation pour la conception de structures périodiques
[Giusti et al., 2010; Toader, 2011].

Son potentiel pour l'identification de défauts qui nous intéresse ici est également vite remarqué
et fait I'objet de nombreux travaux. En effet, dans ce domaine, des fonctions-cout J quantifiant
I’écart d'un domaine “test” & un domaine réel Q"¢ comportant un (ou un ensemble de) défaut(s)
B'U¢ gont souvent utilisées. Si T(z) est alors calculée pour une modification topologique B, du
domaine test de méme nature que B'™"°, ses valeurs les plus négatives correspondent aux “meilleurs”
emplacements z (ou l'inclusion de B, ferait diminuer le plus la valeur de J(B,)) dont on peut
supposer qu’ils désignent la (ou les) position(s) du ou des défauts réels B™°. Tracer T (z) fournirait
donc une “carte” de €2 indiquant '’emplacement de possible défauts.

Dans le cadre de 'élasticité étudié dans ce manuscrit, [Bonnet & Guzina, 2004; Guzina &
Bonnet, 2004] ont calculé cette dérivée topologique et ont étudié son potentiel pour 'identification
de cavités dans des solides élastiques isotropes soumis a des sollicitations dynamiques dans le régime
harmonique. Les fonction-cotits considérées dépendent de B, implicitement au travers du champ de
déplacement défini dans un solide de référence perturbé par B, et soumis aux mémes sollicitations.
[Bonnet, 2006] étend ces résultats au régime temporel transitoire, toujours pour des cavités, puis
[Guzina & Chikichev, 2007] traite le cas d’obstacles pénétrables. [Guzina & Yuan, 2009] traite le
cas de solides hétérogenes et visco-élastiques. [Bellis & Bonnet, 2009] aborde l'identification de
fissures plutot que de défauts volumiques. Plus récemment, [Bonnet & Delgado, 2013; Schneider
& Andr, 2014] abordent de cas de solides possiblement anisotropes, et [Delgado & Bonnet, 2015]
celui de fonctions-cout pouvant dépendre de 1’état de contrainte du solide étudié.

Parallelement a ces développements dans des cas de plus en plus complexes, des travaux se
sont attachés & prouver I'heuristique initiale que les valeurs minimales de T étaient atteintes &
I’emplacement des défauts réels. C’est effectivement démontrable dans des cas particuliers, comme
le montrent les travaux [Ammari et al., 2012] pour de petits obstacles et [Bellis et al., 2013] pour
des obstacles faiblement diffractant (pour lesquels 'approximation de Born peut étre utilisée) ou
pour des obstacles plus généraux mais dans le cas ol on dispose de mesures completes autour
de l'obstacle. Le cas particulier des hautes fréquences, pour lequel la dérivée topologique tend a
souligner les frontieres des obstacles plutdt que leur support, est étudié dans [Guzina & Pourah-
madian, 2015]. Dans un autre registre de validation, [Tokmashev et al., 2013] fournit une des rares
études s’appuyant sur des mesures expérimentales (et non pas simulées) pour le calcul de T et
I'imagerie d’une plaque trouée.

Dérivées topologiques d’ordre élevé. De fagon générale, et ce sera 'objet de la premiere
partie de ce manuscrit, on peut également définir et calculer les dérivées topologiques 7; d'une
fonctionnelle J comme les termes de son développement asymptotique en a que ’on écrit alors:

Jmax
J(Ba(2)) =J®) + > dTj(2) + o(a?>). (3)

J=Jmin

L’indice jpin désigne l'ordre dominant de ce développement (généralement égal a la dimension du
probleme), de sorte que =T, et jmax est l'ordre auquel on choisit d’arréter le développement.
En négligeant le résidu o(a’m=x) pour a suffisamment petit, le développement (3) fournit une approzi-
mation polynomiale de J, de laquelle certaines informations quantitatives peuvent étre extraites, par
opposition a l'information uniquement qualitative donnée par la seule connaissance de la premiere
dérivée topologique 7. Ainsi, de tels développement sont calculés et exploités pour 'identification

min
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par [Bonnet, 2008] dans un cadre acoustique pour des obstacles impénétrables, par [Rocha de Faria
& Novotny, 2009; Bonnet, 2009, 2011] pour des problemes potentiels (de type conductivité), et
pour des obstacles pénétrables ou des fissures, et par [Silva et al., 2010] pour un domaine élastique
2D perforé par un petit trou. L’article [Hintermiiller et al., 2012] insiste sur le fait que dans ces
termes d’ordre élevé interviennent les interactions entre plusieurs obstacles tests que ’on choisirait
d’introduire simultanément (contrairement & la premiere dérivée topologique qui ne prend pas en
compte de telles interactions).

C’est dans la poursuite de ces avancées que se situent nos travaux. Nous nous placons en effet
dans le cadre plus général de ’élasticité tridimensionnelle, et considérons des obstacles pénétrables.
De plus, les matériaux constituant le domaine étudié €2 et ’obstacle test B, sont homogenes mais
peuvent étre anisotropes.

Organisation de la premieére partie. Le chapitre 1 présente tout d’abord les notations et
définitions des termes et objets utilisés dans cette premiere partie. Il rappelle ensuite en détail
des résultats sur les problemes de transmission en milieu infini dont les solutions seront au cceur
des développements asymptotiques présentés dans les chapitres suivants. Le résultat original de ce
chapitre est le théoreme 1.3 qui porte sur I'opérateur intégral associé a ces problemes, et étend un
résultat d’inversibilité récent prouvé par [Gintides & Kiriaki, 2015] au cas des matériaux anisotropes.

Le chapitre 2 s’intéresse a des fonctions-cotts dépendantes d’un obstacle test B, implicitement
au travers de la perturbation des déplacements induite par la présence de cet obstacle dans un
domaine {2 soumis a des sollicitations statiques. Un développement asymptotique de cette pertur-
bation en la taille a de 'obstacle est donc calculé dans un premier temps, au moyen d’une formu-
lation par équations intégrales volumiques. Ce développement est ensuite injecté dans I’expression
de la fonction-colit pour obtenir un développement de la forme (3) a 'ordre 6 , qui fait 1'objet
du théoreme 2.4. Une nouveauté de ce travail est la justification de ce développement par une
estimation de l'ordre du résidu.

Les résultats de ces deux premiers chapitres ont fait I'objet d’un article soumis [Bonnet &
Cornaggia, aJ.

Finalement, le chapitre 3 reprend la démarche du chapitre 2 dans le cas de sollicitations dy-
namiques dans le régime harmonique, et détaille le calcul des termes inertiels qui viennent s’ajouter
tant dans le développement de la perturbation du déplacement (on parle plutot dans ce chapitre
de champ diffracté par 'obstacle) que dans celui de la fonction-cotit. Ce dernier est précisé par le
théoreme 3.3. De plus, 'objectif initial d’identification est réalisé par la proposition d’une méthode
s’appuyant sur l’approximation polynomiale de J ainsi obtenue pour déterminer position et taille
d’un obstacle pénétrable. Cette méthode est illustrée par quelques exemples numériques dans des
cas simples (milieu infini, obstacle sphérique et matériaux isotropes). Ce chapitre est destiné a
étre remanié sous la forme d’un article [Bonnet & Cornaggia, b] constituant la suite immédiate de
[Bonnet & Cornaggia, al.

Pour ces trois chapitres, le cas particulier des matériaux isotropes et des obstacles de forme
ellipsodale, pour lesquels de nombreux résultats sont disponibles, en particulier dans l'ouvrage
[Mura, 1982], est traité analytiquement. Les calculs sont completement détaillés pour le cas d’une
inclusion sphérique et tous les éléments nécessaires aux calculs finaux sont fournis dans les autres
cas. Pour plus de lisibilité du corps du texte, le détail de ces calculs est souvent relégué aux annexes.
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Homogénéisation d’un probléme de transmission intérieur pour l’identification
d’un obstacle périodique

La seconde partie du manuscrit rend compte d’un travail réalisé en collaboration avec Cédric
Bellis et sous la supervision de Bojan Guzina. Le but de ce travail est de proposer une méthode
d’identification d’une inclusion périodique monodimensionnelle (typiquement, une portion de barre
crénelée) a partir de la connaissance des fréquences propres de transmission de cette barre, définies
ci-dessous. Cette méthode se repose I’homogénéisation d’une telle barre pour prendre en compte sa
structure périodique. Cette approche asymptotique est également brievement présentée ci-dessous.

Fréquences propres de transmission. Pour définir les fréquences propres de transmission,
considérons un probléme simple de diffraction acoustique en régime fréquentiel et en espace libre
R3. On note u! une onde incidente de pulsation w et de vitesse ¢ uniforme dans le milieu ambiant,
c’est-a-dire une solution de ’équation de Helmholtz Au' + k?u' = 0 dans R? tout entier, ot1 k = w/c
désigne le nombre d’onde associé a w. Cette onde est diffractée par un obstacle de support D
et d’indice de réfraction n. On recherche alors le champ diffractré u® et le champ total interne a
I'obstacle u, comme les solutions du probleme:

A + k*uf =0 dans R*\ D
Au +nk*u =0 dans D
) i s
u:w—i—uset({)—u:M sur 9D (4)
ov ov
lim 7 <8“ —ikus> —0
r—r+00 or

ol, sans rentrer dans le détail, la troisieme ligne traduit la continuité du champ total et de sa
dérivée normale au passage de la frontiere de ’obstacle, et la derniere ligne, appelée la condition
de rayonnement de Sommerfeld, assure que u® représente des ondes “sortantes” (et ou r désigne la
coordonnée radiale).

Pour certaines formes et caractéristiques d’obstacles, il existe des pulsations w (ou de fagon
équivalente, des nombres d’ondes k) et des champs incidents u! spécifiques qui ne sont pas diffractées
par l'obstacle, c¢’est-a-dire pour lesquels v® = 0. Vu d’un observateur extérieur a D, ’obstacle est
“invisible” a ces ondes. Ces fréquences sont appelées fréquences propres de transmission, et les
nombres d’onde associés, qui sont valeurs propres du probléme (4) pour u® = 0, les valeurs propres
de transmission.

L’étude de ces fréquences propres de transmission a débuté a la fin des années 80 avec I'article
[Kirsch, 1986], au début parce qu’elles constituaient des “points durs” de certaines méthodes
d’identifications telle que la linear sampling method citée ci-dessus. Ces méthodes reposent en
effet sur I'injectivité de I'application u' — u®, qui n’est plus vraie & ces fréquences. Pour une étude
plus facile des possibles valeurs propres de transmission, il a été montré qu’on pouvait se ramener
a un probleme dit de transmission intérieur posé uniquement sur D. Pour ce probléme, on cherche
un couple de fonctions (v, w) telles que

Av+ Ek*v =0 dans D
Aw + nk*w =0 dans D (5)
w:veta—w:@ sur 0D.

ov v
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Les valeurs propres de transmission intérieures sont les nombres d’onde k telles qu’il existe une
solution (v,w) non triviale & ce probleme (5). On voit facilement que toute valeur propre de
transmission est également valeur propre de transmission intérieure. En effet, supposons que (u!, u)
soient un couple solution du probleme de diffraction (4) avec u* = 0 pour un nombre d’onde k
donné, alors (v, w) = (uT p» ) est une solution du probleme de transmission intérieur pour le méme
nombre d’onde. L’implication inverse est plus subtile, et nous renvoyons le lecteur a l’article de
revue [Colton et al., 2007] pour plus de détails.

Plus récemment, le potentiel de ces fréquences propres comme données utilisables pour identifier
les caractéristiques de 'obstacle a commencé a étre exploité. En effet, elles peuvent d’une part étre
déterminées grace a des mesures de champs diffractés a différentes fréquences [Cakoni et al., 2010],
et d’autre part leur dépendance a la géométrie et aux caractéristiques de ’obstacle peut étre étudiée
- et inversée - au travers du probleme de transmission intérieur (5). Cette nouvelle orientation a
donné lieu & de nombreux travaux, détaillés en partie dans 'article de revue [Cakoni & Haddar,
2013).

Probléeme étudié. Dans nos travaux, on se propose de considérer le cas d’'un “obstacle” unidi-
mensionnel, qui peut modéliser par exemple une longueur de barre sur laquelle la section varie. Les
fréquences de transmission sont donc les fréquences pour lesquelles certaines ondes longitudinales
en régime établi ne sembleraient pas affectées par 'existence de cet obstacle pour un observateur
n’ayant acceés qu’aux parties “saines” (a section constante) de la barre.

La difficulté supplémentaire que nous introduisons est la nature de cet obstacle : comme dit
ci-dessus, on s’intéresse a des variations de section périodiques au sein de l'inclusion, ou de facon
équivalente pour la propagation d’ondes longitudinales a des variations de parametres matériaux.
Une telle inclusion est représentée figure par la figure 2.0n imagine que cet obstacle est “sondé” par
une onde incidente u! pour une gamme de fréquence et que des relevés de champ de déplacement
sont effectués plus loin dans la barre (capteurs représentés en rouges), de facon a obtenir les valeurs
propres de transmission sur lesquelles nous travaillons pour finalement reconstruire les parameres
(longeur, contraste, période) de I'inhomogénéité.

M)i eee

Figure 2: Barre dont une partie est constitué de deux matériaux periodiquement alternés.

On verra dans le détail de nos travaux que I’étude analytique des fréquences propres d’une telle
structure est peu aisée, ce qui rend difficile la détermination d’une procédure d’inversion. C’est
pourquoi on se repose sur la méthode de ’homogénéisation, décrite ci-apres, pour produire un
modele approché que ’on cherchera ensuite a inverser.

Homogénéisation d’ordre élevée. L’homogénéisation est un outil de modélisation de maté-
riaux complexes, généralement dans le sens que les coefficients caractérisant ces matériaux varient
rapidement dans ’espace. On peut penser par exemple a une suspension de particules dans un
fluide, une plaque trouée, ou les matériaux composites constitués de fibres de verre ou de carbone
liées par une matrice de résine. La variation des coefficients peut aussi étre provoquée par des
variations géométriques de la structure étudiée.



La prise en compte de ces variations est rarement analytiquement possible, et peut étre tres
couteuse numériquement. C’est pourquoi les méthodes d’homogénéisation visent a produire un
modele correspondant & un matériau fictif homogéne, ayant des caractéristiques semblables &
celles du matériau complexe pour tout ou partie de sa gamme d’utilisation : il existe par ex-
emple des techniques d’homogénéisation spécifiques aux régimes de hautes fréquences. En par-
ticulier, on s’intéressera a l'homogénéisation périodique, utilisée quand les variations considérées
sont périodiques en espace, et plus précisément a la méthode d’homogénéisation dite double-échelle
introduite dans les années 70. On renvoie aux ouvrages precurseurs [Bensoussan et al., 1978;
Sanchez-Palencia, 1980] pour le détail de ces premiers travaux et a [Cioranescu & Donato, 1999]
pour une présentation plus récente.

Pour exposer rapidement les principes de cette méthode, considérons ’exemple canonique d’un
barreau élastique modélisé en une dimension dont la section S est périodique de période €. Sa
rigidité axiale est donc donné par une fonction périodique a de période 1 telle que ES(x) = a(x/¢)
(E étant le module d’Young du matériau constituant le barreau). L’équation d’équilibre statique
dans un tel barreau soumis & des forces linéiques axiales notées f s’écrit :

7 (s @) + ) =0, )

ou u(z) est le déplacement longitudinal d’une section située en x. L’idée de 1’homogénéisation
double-échelle est de supposer que u est soumis a deux régimes de variation : un régime “lent” cor-
respondant aux variations dans un barreau homogene “équivalent” qu’on va chercher a déterminer,
et un régime “rapide” de période € concrétisé par des oscillations autour du régime lent. On intro-
duit donc une variable rapide y = x/¢ et on cherche & approcher u a 1’aide d’une fonction u(z,y)
des deux variables lentes et rapides telle que u(x) = 4(z, x/¢).

Pour obtenir un modele homogene équivalent, on suppose ensuite que la période € est “petite”
(devant une dimension caractéristique du probleéme, typiquement une longueur d’onde pour les
probléemes ondulatoires) et on regarde ce qui se passe a la limite ¢ — 0. En particulier, on cherche
la fonction @ sous la forme d’un développement asymptotique:

a(z,y) = uo(z,y) + eur(z,y) + 2ua(z,y) + ..., (7)

chaque terme du développement étant formellement négligeable devant les précédents quand e tend
vers 0. Typiquement, et sans détailler les calculs qui suivent, on trouve ensuite que ug ne dépend
que de z et satisfait une équation d’équilibre:

d2’LL0
a0’ 3 (@) + f(@) =0, (®)

ou le coefficient ag, constant, caractérise le matériau fictif dit homogénéisé qui était recherché.

Pour a présent revenir a la problématique qui nous intéresse, on remarque que nous ne pouvons
pas espérer produire une méthode d’identification de la période € d’une barre périodique en nous
limitant & 'ordre dominant, puisque le modele associé, similaire a ’équation (8), ne dépend plus
de cette période. Dans ce but d’identification, et plus généralement pour rendre compte finement
des phénomenes liées a la microstructure du barreau, il faut nécessairement étudier les termes
suivants de la série (7). Sans pouvoir rendre compte de I’'abondante littérature sur le sujet, on
se contentera de citer ici les travaux récents [Fish et al., 2002; Andrianov et al., 2008; Wautier &
Guzina, 2015] pour le cas de 'homogénéisation de 1’équation des ondes en une dimension sur lequel
nous travaillons.
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Organisation de la seconde partie. Nous commencons dans le chapitre 4 par établir les
résultats utile pour la suite de I’étude. Nous y rappelons les récents résultats cités ci-dessus pour
I’homogénéisation d’ordre élevée des domaines unidimensionnels non bornés. Nous proposons en-
suite des conditions aux limites adaptées, en expliquant en particulier comment nous pouvons éviter
d’étudier des problemes de couche limite grace aux particularités du cas unidimensionnel. La per-
tinence de notre proposition est justifiée par une analyse de convergence pour I’homogénéisation
d’un probléme aux frontieres simple modélisant une poutre encastrée soumise a des efforts axiaux.
Nous étudions ensuite en détails ce probleme dans le cas d’'un matériau biphasique, pour lequel un
traitement analytique est possible.

Le chapitre 5 est ensuite consacré au probleme de transmission intérieur unidimensionnel pour
une inclusion de longueur L. Nous commencons par discuter brievement du cas de l'inclusion
homogene. Nous montrons ensuite que pour une inclusion périodique, modélisant une longueur
de poutre de section constante par morceaux, I’étude du probléme homogénéisé classique (d’ordre
0) permet d’identifier les parametres macroscopiques (L et rapport des sections) de 'inclusion.
Dans le but de fournir un modele dépendant de la période de la structure et convenant a une
inversion conduisant & une identification de cette période, nous présentons finalement les problemes
homogénéisés d’ordre supérieur obtenus par applications des résultats présentés dans le chapitre 4.

Ce travail devrait également apres sa complétion faire 'objet d’un article [Cornaggia et al., al.
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Context and overview of the thesis

The purpose of this PhD work was to develop new methods to address inverse problems in elastic-
ity. Generally speaking, such methods aim to recover some of the missing parameters of a model
from the knowledge of some of their outputs for given inputs. They are the counterpart to direct
problems, in which the model is fully known and one wants to determine its output. For a more
complete presentation of general inverse problems, associated mathematical formalism and numer-
ous examples from various physical situations, we refer to the first articles of the proceeding [Anger
et al., 1993] and the introduction of the book [Kirsch, 2011]. In the specific case of inverse problems
in elasticity, the paper [Bonnet & Constantinescu, 2005] and the references therein provides a good
overview of existing methods.

More specifically, we focus on inverse scattering. Supposing we have some information about
the scattering of a probing elastic wave by an obstacle (such information may be e.g. measurements
of the scattered field, or the knowledge of specific frequencies which entails remarkable properties),
we aim at recovering (some of) the properties of this obstacle. We refer to the introduction of the
celebrated book [Colton & Kress, 1998] for relevant literature on these problems and for an example
of inverse acoustic scattering problem. Such problems cover many useful applications, from medical
imaging to non-destructive testing.

Since the direct problems we consider are not easily invertible, we will rely on higher-order
asymptotic expansions to obtain approximations of the corresponding models. These problems
indeed feature a small parameter, e.g. the ratio between a characteristic length of the obstacle
and the wavelength of a probing wave. Therefore, based on previous results addressing mostly the
leading order of relevant asymptotic expansions, we aim to show the improvements and possibilities
brought by pushing these expansions to higher orders.

The two main problems we addressed are (i) the identification of a penetrable inhomogeneity
in a 3D elastic domain using a higher-order expansion of a misfit function, which constitutes the
natural expansion of the concept of topological derivative, and (ii) the identification of a 1D periodic
scatterer from the knowledge of the associated transmission eigenvalues. They correspond roughly
to the periods of the joint program spent in (i) team POEMS, at ENSTA Paristech and under the
supervision of Marc Bonnet, and (ii) the Civil, Environmental and Geo-Engineering department of
the University of Minnesota, under the supervision of Bojan Guzina. They are now described in
further detail.

Identification of buried obstacles using higher-order expansion of a misfit cost
functional

This first part is dedicated to the localization and size identification of a inhomogeneity B¢ buried
in an elastic solid occupying a domain €. In this goal, we focus on the study of functionals J(B,)
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quantifying the misfit between (i) measurements of the displacement in the real solid embedding
B%U9 and/or at its surface, when it is submitted to some static or time-harmonic excitations (ii) the
displacement that would lie in a reference solid occupying 2, perturbed by a trial inhomogeneity
B,, and submitted to the same excitations. Such functional is classically expected to be minimized
with respect to some or all the characteristics (location, size, mechanical properties ...) of the trial
inclusion B, to find the best agreement with B¢,

In the case of small obstacles (e.g. compared to a reference wavelength), instead of computing J
explicitly, we propose to build a polynomial approzimation of J(B,) for small trial inhomogeneities
B,, obtained by asymptotic expansion with respect to the size a of B,, whose terms will depend
in particular on the location z of the inhomogeneity. The leading-order term of such expansion,
the topological derivative T (z) of J, was the subject of thorough studies in the last decade. As it
is the basis of the upcoming higher-order expansion, we provide below a short review of some of
these works.

A short story of the topological derivative. The well-known topological derivative 7T (z)
was introduced for general cost functional J by [Eschenauer et al., 1994; Schumacher, 1996] and
[Sokolowski & Zochowski, 1999]. It was at first defined as:

T(Z) = lim J(Ba(Z)) - J(@)
a0 [Ba(2)]

: 9)

where J(0)) is the value taken by J for no inhomogeneity in 2. Roughly speaking, this derivative
provides an information on how an infinitesimal perturbation B, of  placed at location z would
perturb the considered functional J.

A convenient way to effectively compute T was rapidly provided by the adjoint state method
that is explained by [Garreau et al., 2001] for the elasticity system. The topological derivative was
at first used in optimization methods, e.g. in [Céa et al., 2000; Novotny et al., 2003], along with the
shape derivative, its analogous for the perturbations of the boundaries of 2. This research direction
is still very active, for instance when the optimization of periodic structures is sought. In this goal,
and one has to look for the “best” perturbation of the periodicity cell to reach interesting effective
material properties, which is done in [Giusti et al., 2010; Toader, 2011].

The potential of the topological derivative for defect localization and identification was also
quickly remarked. Indeed, if J(B,) is a misfit cost functional as described above and B, is of the
same topological nature than the obstacle B, then the most negative values of 7 indicate the
best location(s) where the introduction of an infinitesimal obstacle would reduce the misfit. One
can therefore hope that plotting 7(2) over a sampling grid Q' will provide a “map” where the
most negative values indicate the position of real defects.

For the elasticity context addressed in this dissertation [Bonnet & Guzina, 2004; Guzina &
Bonnet, 2004] computed the topological derivative and used it to localize cavities in isotropic
elastic solids submitted to time-harmonic excitations. These results were extended to the time
domain by [Bonnet, 2006]. The resulting localization method was rapidly extended to other type of
defects e.g. to penetrable obstacles by [Guzina & Chikichev, 2007] and cracks by [Bellis & Bonnet,
2009], and was shown to be easily adaptable to classical computational frameworks, e.g. by [Bellis
& Guzina, 2010]. It is also studied for more and more complex materials: [Guzina & Yuan, 2009
consider visco-elastic heterogeneous solids and more recently [Bonnet & Delgado, 2013; Schneider
& Andr, 2014] consider anisotropic solids. Finally, recent works [Delgado & Bonnet, 2015] address
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the difficulties of computing the topological derivatives of cost functionals that depend on the stress
state (and not only on the displacements) inside the domain €.

In the meantime, some works aimed at showing the reliability of this approach for identification,
hence investigated the original heuristic which supposed that the most negative values of T (z) are
reached at the position of the real defect. It was indeed proven for small obstacles in [Ammari
et al., 2012], and for “weak” scatterers (for which Born’s approximation holds) and/or full aperture
measurements around the defect to be identified in [Bellis et al., 2013]. In high-frequency regime,
the topological derivative was shown to emphasize boundaries of obstacles in [Guzina & Pourah-
madian, 2015], as already observed in previous studies. Another kind of validation was provided
by [Tokmashev et al., 2013], one of the few studies relying on experimental measurements (rather
than simulated ones) to compute the topological derivative and to localize holes in a thin aluminum
plate.

Moreover, it is to be noted that 7 only provides qualitative information on “relevant” positions
z. Pushing the expansion to higher-order terms, on the other hand, provides a polynomial approx-
imation of J that can be minimized to obtain quantitative informations such as the “best” size a of
B, for a given trial shape B. Previous works in this direction include [Bonnet, 2008] for acoustics
and a sound-hard scatterer, [Rocha de Faria & Novotny, 2009; Bonnet, 2009, 2011] for potential
(conductivity-like) problems and penetrable obstacles or cracks, and [Silva et al., 2010] for holes in
a two-dimensional elastic solid. It was emphasized by [Hintermdiiller et al., 2012] that such higher-
order expansion includes terms accounting for the interactions between several trial obstacles that
one would choose to introduce simultaneously inside 2. Indeed, when using the (first) topological
derivative, which accounts only for the leading-order contribution of each obstacles, one could just
sum up the contributions of several obstacles.

Contents of the first part. Our results are a natural continuation of the works above. They lie
in a 3D elastic setting, for both static and time-harmonic excitations, and for possibly anisotropic
materials. In these cases, under certain assumptions on the cost-functional J specified thereafter,
we derived sixth-order expansions of the kind:

J(B,) = J(0) + ®*T3(2) 4+ a*Ta(2) + ®T5(2) + aTs(2) + o(a®). (10)

where 73 = T and we call the other 7; higher-order topological derivatives.

Chapter 1 is dedicated to (i) the definitions and notations used throughout the first part of
this dissertation and (ii) the collection of required results on elastostatic free-space transmission
problems (FSTPs), whose solutions will play a key role in the ensuing asymptotic expansions. The
main new result of this chapter is Theorem 1.3, that focuses on the integral operator associated
with these FSTPs and extends the recent invertibility result proven by [Gintides & Kiriaki, 2015]
for isotropic materials to any anisotropic material.

Chapter 2 addresses the expansion of a cost-functional depending on the displacement in an
elastic solid submitted to static excitations and perturbed by an inhomogeneity B,. In a volume
integral equation framework, we first derive the expansion for the perturbation of the displacement
due the presence of this inhomogeneity. We then produce and justify an expansion such as (10) for
cost-functionals depending on B, implicitly through this displacement perturbation. One original
result to be noted is the rigorous estimate of the remainder of such expansion (which is proven to
be of order o(a%) as expected).

The main results of these two chapters are gathered in a submitted journal paper [Bonnet &
Cornaggia, aJ.
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We then pursue by addressing solids submitted to time-harmonic excitations and displacements
in Chapter 3. Most of the steps of Chapter 2 are repeated, with emphasis on the new inertial
terms. We also propose an identification procedure based on the minimization of the sixth-order
approximation (10) of J, supported by numerical illustrations for simple obstacles in full-space R3.
This chapter provides the basis for another paper under preparation [Bonnet & Cornaggia, b],
which would be a natural follow-up to [Bonnet & Cornaggia, al.

Identification of a one-dimensional micro-structured inclusion using homogenized
interior transmission problems

The main purpose of the second part is to propose an identification procedure of a two-phase
layered 1D inclusion of length L (typically, a rod whose cross-section periodically varies on [0, L]
and is constant elsewhere), supposing we already know its low-frequency transmission eigenvalues
(TEs). Such eigenvalues are defined as the frequencies for which there exists an incident wave (the
associated eigenfunction) that is completely transmitted through the inclusion, i.e. that produces
no reflected wave. On the other hand, they can be computed as the eigenvalues of an equivalent
interior transmission problem (ITP) posed only on the support [0, L] of the inclusion. A short
introduction on the interior transmission problems is accordingly provided below.

The main difficulty of this study is to provide a model simple enough to be inverted, while
accounting for the microstructure effects. In this goal, we relied on homogenized approximations
of the exact ITP for the periodic inclusion. To support such decision, a recent work [Cakoni et al.,
2015] showed that the TEs of the leading-order homogenized ITP converge to these of the exact
periodic ITP. Homogenization methods, and in particular the two-scale homogenization method
that we will use, are discussed afterwards.

Transmission eigenvalues. To define the transmission eigenvalues, consider the simple example
of an acoustic scattering problem in time-harmonic domain and in full space R?. An incident wave
u! propagates at circular frequency w and uniform wavespeed ¢ in the background medium. It is a
solution to Helmholtz equation Au! + k?u' = 0 in full-space R3, where k = w/c is the background
wavenumber. This wave is scattered by an obstacle occupying a domain D and characterized by
the refraction index n. We then look for the scattered field u°® and the internal field u inside the
obstacle as the solutions of the problem:

A + k*u® =0 in R\ D
Au + nk*u =0 in D
u:ui—kusand%:M on 0D (11)
ov ov
S
lim r <8u — ikus) =0.
r—-+oo or

Without going into detail, the third line stands for the continuity of the total field and its normal
derivative across the boundary 0D of the obstacle, and the last line, called the Sommerfeld radiation
condition, ensures that u® corresponds to “outgoing” waves.

For certain shapes and characteristics of the obstacle, there exist circular frequencies w (or,
equivalently, wavenumbers k) and specific corresponding incident fields u! that are not scattered
by the obstacle, i.e. for which u® = 0. The obstacle is somewhat “invisible” to an observer located
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outside D in the sense that these specific incident fields u' are not perturbed. Those values of the
wavenumber k are called scattering eigenvalues.

The study of such eigenvalues began in the late eighties with the work [Kirsch, 1986]. In the
beginning, they were studied because they indicate “blind spots” of existing identification methods
such as the linear sampling method explained in the book [Cakoni et al., 2011]. Indeed, roughly
speaking, these methods require the mapping u! — u® to be one-to-one, which does not hold for
these wavenumbers. For an easier study of the the scattering eigenvalues, it was shown that, instead
of investigating the full-space scattering problem, one could look at an interior transmission problem
(ITP) posed only on the obstacle’s support D. For this problem, we look for a couple of functions
(v, w) such that:

Av+ k=0 in D,
Aw+nk*w =0 in D, (12)
ow  Ov
= —_— = D.
w = v and ey 7 on d

The interior transmission eigenvalues (ITEs or TEs) are the wavenumbers k such that there exists
a non-trivial solution (v, w) to this problem. It is easily observed that any scattering eigenvalue is a
transmission eigenvalue. Indeed, suppose that k is a scattering eigenvalue with associated incident
field u! (i.e. u® = 0 in problem (11)), then the couple (v, w) = (U?D, u) is a non-trivial solution of
the ITP (12). The reverse implication is more subtle, and we refer to the review paper [Colton
et al., 2007] for further details.

More recently, the possibility to consider these TEs as available data to identity the obstacle
began to be investigated. Indeed, they can be determined from scattered field measurements over
a range of sampling frequencies as shown by [Cakoni et al., 2010]. On the other hand, the way they
depend on the obstacle can be studied thanks to the interior transmission problem. This whole
new branch of research lead to numerous works, partly covered by the recent review article [Cakoni
& Haddar, 2013].

We now describe the homogenization method, that we will use as explained before to investigate
interior transmission problems for periodic scatterers.

Homogenization. Homogenization is a modeling tool of complex materials, generally in the
sense that the coefficients that describe these materials vary within space. One can think e.g.
to a particle suspension in some fluid, a perforated plate, concrete, or fiber-reinforced composite
materials.

Taking these variations into account is rarely analytically possible, and can be very costly in
numerical computations. It is why homogenization methods aim at determining a model corre-
sponding to a fictitious homogeneous material, such that this model reproduces the behavior of
the original material for the range of use that is of interest. It exists for instance homogenization
methods dedicated to high-frequency behaviors to such material. In particular, we are interested
in periodic homogenization, used when the original variations are periodic in space. More precisely,
we will use the two-scale homogenization method whose original ideas appeared in the seventies.
We refer to the celebrated books [Bensoussan et al., 1978; Sanchez-Palencia, 1980] for these early
works, and to [Cioranescu & Donato, 1999] for a more recent review.

To introduce this method, let us consider the canonical example of a unidimensional problem
modeling an elastic rod whose section S varies periodically along x with period e. Its axial stiffness
is therefore expressed thanks to a 1-periodic function a such that ES(z) = a(z/e), where E is the

17



Young’s modulus of the material the rod is made of. The static equilibrium equation for such a
rod submitted to longitudinal force density f writes:

7 (e @) + 1 = (13)

where u(x) is the longitudinal displacement of the neutral axis of the rod at point x. The idea of the
double-scale homogenization is to assume that u is submitted to two variation regimes: a “slow”
regime corresponding to the “macroscopic” response of the rod to the loading, and a “fast” regime
of period € accounting for the microstructure. One therefore introduce a fast variable y = /¢ and
look for u as a function @(z,y) of both variables so that u(z) = 4(z, x/¢).

To obtain an equivalent homogenized model, one then suppose that the period ¢ is small in
front of a characteristic length of the problem, typically a wavelength for scattering problems. The
asymptotic behavior of the original problem as ¢ — 0 is therefore investigated. In particular, the
functions 4 is sought as the asymptotic expansion:

a(z,y) = uo(w,y) + cur (z,y) + 2ua(z,y) + ... (14)

Each term of such expansion is formally negligible in front of the previous ones as € becomes smaller.
Typically, without addressing the computations which occur from such assumptions, one then finds
that ug depends only on the slow variable x and is the solution of an equilibrium equation:

d2uo
a0’ 3 (@) + f(2) =0, (15)

where the constant coefficient ag characterizes a fictitious homogenized material.

Coming back to our final goal, i.e. the identification of a periodic 1D scatterer, we observe
that one cannot expect to derive a method able to recover the period € while considering only the
leading-order homogenized model since this model does not depend on € anymore. More generally,
to account accurately for the microstucture effects, one has to study the higher-order terms of the
expansion (14). On the corresponding higher-order homogenization methods, we do not give here
an overview of the wide existing literature, but refer to Chapter 4 where some of it is provided.

Contents of the second part Chapter 4 indeed collects notations and recall recent results
obtained for the higher-order homogenization of 1D wave equation by [Andrianov et al., 2008;
Wautier & Guzina, 2015] among other. An effort is made to provide relevant high-order boundary
conditions, exploiting the pecularities of the one-dimensional modeling to avoid dealing with the
well-known boundary layers that appear in higher dimensions. The need for such conditions and the
efficiency of our proposition are illustrated by the homogenization of a simple 1D boundary-value
problem and for a two-phase layered material for which analytical treatment is possible.

Chapter 5 then focuses on interior transmission problems associated with 1D elastic inclusions.
We first present some preliminary results on the transmission eigenvalues of homogeneous inclusions.
We then address the case of a periodic inclusion made of the two-phase layered material studied
in Chapter 4. The analysis of the leading-order homogenization of the ITP shows that the length
of such inclusion and the contrast between the two phases can be recovered easily from the two
lowest-frequency TE, under reasonable low-contrast assumption. We finally define the higher-
order homogenized ITP featuring the boundary conditions defined in Chapter 4 and discuss their
relevance.

This work is conducted in collaboration with Cédric Bellis and under the supervision of Bojan
Guzina. A journal paper [Cornaggia et al., a] is under preparation.
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Free-space transmission problem
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This chapter is dedicated to the introduction of notations and results (most of them already
existing) that will be of wide use in the following chapters. Section 1.1 introduces our notations for
tensor calculus, along with the needed basics of linearized elasticity. We then address in detail the
free-space transmission problem (FSTP) that describes the perturbations of the displacement field
due to the presence of a perfectly-bounded inhomogeneity embedded in an otherwise homogeneous
infinite elastic solid. Indeed, this problem will play a key role in the upcoming asymptotic ex-
pansions. We firstly recall in Section 1.2 the corresponding local and integral formulations. These
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formulations are shown to be equivalent, and the well-posedness of the problem is proven for both of
them. On this basis, the invertibility of the integro-differential operator associated to the transmis-
sion problem is shown, which is the main new result in this chapter. Finally, Section 1.3 addresses
the specific case of FSTPs featuring polynomial background displacements, whose solution relies
on Eshelby’s equivalent inclusion method for ellipsoidal inhomogeneities. We notably recall the
definition of the so-called elastic moment tensors, we introduce the inertial polarization tensors,
and we provide the expressions of these tensors for such ellipsoids.

1.1 General notations in linearized elasticity

This section is devoted to the introduction of the notations used all along our work. It has no
pretension of completeness, and for a complete presentation of linearized elasticity the interested
reader is invited to refer to the textbook [Gonzalez & Stuart, 2008] and the numerous references
therein; see in particular the very enlightening bibliographic notes that conclude each chapter.

1.1.1 Vectors and tensors

The spatial domain we will consider will either be the whole three-dimensional space R? or a subset
of it. A fixed Cartesian coordinate system with orthonormal basis (e;)1<i<3 is adopted. Most of
the vectors will be denoted by boldface lowercases (e.g. @, u) and represented by 3-by-1 component
arrays (e.g. x;, u;) in this basis. As a consequence, the space of vectors is identified to R? thereafter.

We more generally use p-th order tensors, defined here as p-linear forms on (R?)?P and represented
by p-dimensional arrays. Vectors are thus identified to first-order tensors. Most second-order tensors
will be denoted by uppercase letters (e.g. E, A), except for stress o and strain e, and represented
by 3-by-3 matrices (with components E;j, A;j, 0i;). Higher-order tensors, denoted by calligraphic
uppercase letters for some of them (e.g. C, .A) are similarly represented by multi-dimensional
arrays.

The classical tensor product ® between two tensors T' and R of orders p and ¢ is defined so that
T ® R is the (p+¢q)-th order tensor acting on (R3)P x (R?)4 which corresponds to the multiplication
of the p and g-linear forms associated with T' and R.

For u a vector, E a second-order tensor and C a fourth-order tensor, we therefore note:

u=u; e, E=EFEje®ej), C=CijnleR®e e,® e, (1.1)

where Einstein’s convention of summation over repeated indices is implicitly used here and through-
out this dissertation, so that:

3 3 3
U; €; = Zuz ei, FEij(e;® ej) ZZ ij(ei ® ej). (1.2)
i=1 i=1 j=1

1.1.1.1 Inner products, norm and trace

Considering two tensors T and R of orders p and ¢, we note T o R the j-th order inner product
of T and R defined for any integer j < min(p,q). This product is a tensor of order (p + g — 2j)
resulting from the contraction of j indices of each tensor, i.e. the sum over the j last indices of T'
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and the j first indices of R. In other words, noting v a sequence of j indices,

J
(T b R)aﬁ = Ta'yR'yBa (13)

where summation is implicit on each of the j indices of the sequence v, and a and [ design
respectively the sequences of remaining indices in T' and R.

1
The most frequently used of these inner products are the single and double inner products e

and  that will be noted as usual “” and “”. For instance, with the same notations as in (1.1),
u - v = uv;, E -u= Eijuj €;, E: . F= EijFij7 C.FE= Cijk:lEkl(ei ® ej). (1.4)

We also introduce a “maximal” inner product noted e that contracts the maximum number of
indices available, i.e.

TeR=T""¢"R (1.5)
with the notations above. For example:
uev=u-v, CeE=C:E, CeC=CeC=CijuCij (1.6)

We then define the norm of a tensor by |T'| := T e T. In particular, it coincides with classical
Euclidean and Frobenius norms of vectors and second order tensors:

u| = Vazu; and |E| = \/E;E;. (1.7)

Finally the trace of a second-order tensor E designs the sum of its diagonal components: Tr(FE) :=
EZZ'

1.1.1.2 Special tensors

We now define some particular tensors used widely thereafter.

Identities First of all, we note I the second-order identity represented by the 3-by-3 identity
matrix in any orthonormal basis, whose components are given in index notation by Kronecker’s
delta 52‘]’3

I= 5ij(6i & Ej). (1.8)

Among other uses of the identity, remark that I : T' (resp T : I) denotes the contraction of the
two first (resp. last) indices of any tensor T. Similarly, I @) and 1) are the fourth-order and
sixth-order identities for second and third-order tensors:

)

ijab = 52'(15]'5 and I-(G)

) e = Giadb0ne- (1.9)

The calligraphic Z will denote the fourth-order identity for symmetric second-order tensors, or
symmetrization operator for the two first indices of any tensor:
1

1 : s
— (5ik5jl + 51'15]'1@) sothat Z:T =T" with Tz] = 5

2 (Tyj.. +Tji..).  (1.10)

Lij =
Similarly, Z will denote the sixth-order identity for third-order tensors symmetric on indices 1-2.
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Projectors The fourth-order tensors J, K, defined by
J=01/3)IxI and K=T-J, (1.11)

are the projectors onto the spherical and deviatoric components of a symmetric second-order tensor:

J:E= éTr(E)I and K:E=E°:=E - éTr(E)I. (1.12)

Remark that J and IC are orthogonal projectors and thus:
J: J=J, K: K=K and J:K=K:J =0. (1.13)

In particular, that implies that any tensor T' of the form T = AJ + BK is invertible if A # 0 and
B#0,withT-'=A"17 + BK.

Polynomial tensors in r Finally, homogeneous polynomials of a position vector (in the tensor
product sense) will be used in this dissertation. The simplest of such polynomial is the k-th order
tensor product of r by itself, noted 7®* (e.g. r® = r ®r ®r). For any even integer p and any
integer ¢, we also introduce the (p + ¢)-th order tensor kPY(r), invariant by any permutation of
its indices, such that p indices are accounted into Kronecker’s deltas, and the remaining ¢ as r’s
components (so that kP? is a ¢-th order polynomial in 7). For instance, the first ones of these
tensors are:
0,1
prqg=1: k) (r)=
2,0
pHq=2: ky(r)=
0,2
ki (r) =
2,1
ptq=3: ki,

0,3
kklm

k
k
TET (1.14)
(1) = Okirm + Okm71 + SmTk

(r) =TETTm

Such notations may seem unnecessary, especially for smallest (p+¢) (e.g *°(r) = I and k™(r) =
r®7 for any q). However, their usefulness will appear when dealing with (i) high-order tensors
defined through combinations of Kronecker’s deltas (e.g. in Appendix 1.A.4) and (ii) high-order

gradients of functions of r = |r|, (e.g. in Appendix 3.B). In particular, the tensor k*!(r) will be
used multiple times, and we can provide the alternative expression:

E*Y(r) = (3T +2I)-r = (5T +2K) - r. (1.15)

1.1.1.3 Differential operators on tensors

Tensor-valued functions of the space variable x (including vector-valued functions) that will be
considered are generally regular enough to be differentiated once or several times. Within our
Cartesian framework, we call the ¢-th order gradient of a p-th order tensor-valued function! T the

!Note that for compactness, we will often call “vectors” and “tensors” vector-valued functions and tensors-valued
functions.
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(p + q)-th order tensor whose components are defined as the g-th order partial derivatives of the
components of T w.r.t. &’s components and we note:
oTi;...

ViIT =
0L Oy, . ..

(ei®e®..0eQe,®...)
| e e
p indices q indices (1.16)

=Tij.mm..(€6iRe;Q..0€, Ve, D...),

where the comma serves to distinguish between component indices of T' and differentiation indices
in the last term. Among the most used particular case is the (first) gradient of a vector function:

Vu= ui,j(ei X ej). (1.17)

The divergence of a p-th order tensor T (for p > 1) is the (p — 1)-th order tensor defined
intrinsically by div T := VT : I. In particular this definition implies for vectors and second-order
tensors the classical formulae:

div u = U5 and div E = Eij,j €;. (1.18)
Finally, the Laplacian of a tensor is a tensor of the same order computed as:

AT = div(VT) = (V?*T) : I =T ;. (1.19)

1.1.1.4 Taylor’s expansion of a vector

Eventually, the Taylor’s expansion of a smooth vector function w w.r.t. the sapce variable &, which
makes use of many of the notations defined above, will be widely used in the upcoming asymptotic
expansions. About & = 0, and for |z| small enough so that the infinite expansion is defined, it is

written:
1 1
u(®) = u(0) + Vu(0) -z + 5 V?u(0) : (& ® @) + £ V7u(0) c(zor@x)... (1.20)
which can be written in compact form:
1
u(x) = u(0) + Z Hvku(o) o 2%k, (1.21)

k>1

1.1.1.5 Functional spaces of vector and tensor-valued functions

Throughout this dissertation, we will use the boldface L2, H' ... to design classic Sobolev spaces of
vector or tensor-valued functions, the order of the considered tensors being specified when necessary.
When addressing symmetric tensor-valued function, it will be explicitly mentioned in the suitable
functional space, e.g. LQ(R?’;RS;H?{) for symmetric second-order tensor-valued L? functions of the
space variable.

Finally, the subscripts comp and 1. have their usual meaning, e.g. Lgomp and L12oc mean com-

pactly supported L? functions and locally L? functions.
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1.1.2 Displacement, strain and stress

Studying now the behavior of an elastic body occupying the domain  C R? (Q = R? being
possible), we note u(x) the displacement vector at point x. In this introductory part, u is supposed
regular enough so that all the introduced quantities are well-defined. More precise regularity will
be specified when needed in the following.

The assumption of small perturbations, underpinning all this work, postulates that |[Vu| < 1
in Q, and, if the considered problem features a characteristic length L, that |u| < L in . Under
this assumption, x designs both the positions in initial and deformed configurations, and the strain
of the material is approximated by the linearized strain £[u] defined as the symmetric part of the
gradient of u:

(Vu+ V). (1.22)

DN | =

elu] =

To define internal stress of the material, consider now an infinitesimal surface dS around a
point x, oriented by unit normal vector . Then the infinitesimal force df applied on dS by the
side to which m is pointing is computed as df = t(x;n)dS where the surface force density ¢ will
be called the traction vector. This traction vector is easily shown to linearly depend on n, and is
therefore represented by the second order Cauchy stress tensor o such that:

t(x;n) =o(x) n. (1.23)

When these internal stresses are the only strain source, the relation between stress o and strain
g for linear elasticity is given by Hooke’s law:

o =C:elul, (1.24)

where Hooke’s tensor C is a fourth-order tensor endowed with the minor and major symmetries
Cijki = Cjiti = Cijir = Criij- Equivalently, (1.24) combined with (1.22) can be written:

1
0ij = Cijki €k = icijkl(uk,l +upk) = Cijrl U, (1.25)

The last equality, corresponding to o = C : Vu, results from the minor symmetry of C given above.

1.1.3 Equilibrium equations and fundamental solution

The static equilibrium of an infinitesimal volume of the material submitted to volume force density
f implies the equilibrium of (i) forces and (ii) momentum. It translates into (i) a system of equations
for Cauchy stress tensor components:

dive+ f=0, (1.26)

and (ii) the symmetry of o, i.e. 0;; = 0j;. This last condition was taken in account into Hooke’s
law by imposing the minor symmetry of C.
Introducing Hooke’s law (1.24) into these equations leads to the displacement formulation of
the equilibrium:
div(C:Vu)+ f=0. (1.27)
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We then define the fundamental solution (or full-space Green’s tensor) G associated to this
system of equations as the solution of:

div(C : VGoo(r)) +5(r)I =0 in R3, |Goo(T)] = 0 as |r| — oo, (1.28)

where r was preferred to @ to denote positions in full space, and § is the Dirac distribution. G, is
thus a second-order tensor-valued generalized function. One of its components [Goo(T)]ij = Gij(7)
may be seen as the i-th component of the displacement at r resulting from a unitary force imposed
at = 0 in the j-th direction. The inner products will be applied accordingly on the “displacement”
index e.g. [’U . Goo]j = ’UZ‘GZ']' and [C : VGoo]mnj = Cmm'kGij,k-

Referring to [Mura, 1982, Chap. I, part 5] for details, G can be expressed as an inverse Fourier

integral:
1

(2m)3 Jgs
where the second-order acoustic tensor K (§) is defined by K;(§) = Ciji€;& and is invertible for

any &€ # 0 and positive definite C. In particular, K is symmetric, and so are K~ and Go. From
the expression (1.29), we can also assert that for any » € R3\ {0} and o € R\ {0}, one has

Guolr) = K\ (€)exp(ig-v) ATz (r € R%\{0)) (1.29)

i = ||t T
() Gnfor) = ol Gulr) ) a0
(i) VG(ar) = |a|?aVGx(r) = |a| *sgn(a) VG (1),

the second relation meaning that VG, is a homogeneous tensor-valued function of degree -2.
Remark 1.1. For a homogeneous material, by translational invariance of R®, the displacements
at point & due to point forces applied at another point x are given by Goo(€ — ).

1.1.4 Isotropic homogeneous materials

For isotropic materials, many simple expressions of the quantities and functions defined above are
available. First of all, the Hooke’s tensor C depends only on two independent coefficients, and can
be expressed in several ways, e.g. using the identity tensors I and Z:

C:AI®I+2MI:2M<1 ”2 I®I+I>, (1.31)
—2v
or, using the projectors J and K defined by (1.12):
1
C:3/<J+2;UC:2M<1_+2VVJ+7C>, (1.32)

where A is the first Lamé parameter, x and p are the bulk and shear moduli, and v is Poisson’s
ratio. Although only two of these parameters suffice to define C, we’ll use alternatively one couple
or another depending on the simplest expression available.

Hooke’s law is then expressed in closed-form, e.g. using Lamé parameters (A, u):

o =2pelu]+ A Tr(e[u))I =2uefu] + A div(u)I, (1.33)

and the inverse relation is, using Young’s modulus E = 2u(1 + v) and Poisson’s ratio v:

L (14 v)o — v Tr(o)T) (1.34)

glu] = 5
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Injecting (1.33) into equilibrium equation (1.27) leads to the Navier equations for the displace-
ment u:

A+ p)V(div u) + pAu+ f =0 (1.35)

The associated fundamental solution, called the Kelvin solution after Lord Kelvin who firstly
derived its expression, is given by:

1

Goolr) = 16mp(l —v)r

(B—4v) I+ 7®@7], r=|r|and 7 = ;, (1.36)

as showed e.g. in [Mura, 1982, Chap. I Part 5]. Its gradient is:

-1

VGo(r) = Tomp(1 — )2 [

A1-v I -k (#)+3707 @7, (1.37)

with k2L

zjk(w) = xiéij + (5¢kxj + 5ijxk-

1.2 Free-space transmission problem

This section is dedicated on the free-space transmission problem (FSTP), whose goal is to deter-
mine the perturbation of the displacement field due to the presence of an inhomogeneity having
domain B in an otherwise homogeneous elastic medium occupying R?. Its purpose is (i) to establish
the needed local and integral equation framework, and (ii) to rigorously prove the invertibility of
the integral operator associated to the transmission problem. Since both background and inhomo-
geneity materials are allowed to be anisotropic, this result completes the recent work [Gintides &
Kiriaki, 2015] which focused on isotropic materials.

1.2.1 Setting of the problem

Consider an homogeneous elastic medium occupying the whole space R3, characterized by the
elasticity tensor C and submitted to a body force density f. We define the background displacement
u as the solution of the static equilibrium equation in the homogeneous medium, which reads:

div(C : Vu(x)) + f(x) =0 VY c R (1.38)

Assume now the presence of a bounded inhomogeneity of support B with smooth boundary, and
made of a material characterized by another (constant) elasticity tensor C* = C+ AC. Accordingly,
we define the piecewise-constant elastic tensors ACg and Cp by:

ACp(z) == xp(x)AC,  Cp(z) = (1 —x5(x))C + x5(x)C* = C + ACs(z), (1.39)

where xp is the characteristic function of B.
The total displacement field upg accounting for the presence of the inhomogeneity (B, C*) there-

fore satisfies:
div(Cs(x) : Vug(z)) + f(x) =0 x € R?

uf(x) = ug(x) x € 0B (1.40)
t*[up)(z) =t [ug)(z) x € 0B,
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where we used the following notations:

u%(a}) = %1{% up(x + hn), t*[ug](x) = }111{‘% (C: Vup(x £ hn)) - n,

1.41
t**ug)(x) = }Ll{‘% (C*: Vup(x £ hn)) - n, (L41)

and n = n(x) is defined as the outward normal to 0B at point . The two last equations in (1.40)
express the continuity of displacements and tractions across 9.

Remark 1.2. The limit case AC = 0, which corresponds to no elasticity contrast between back-
ground and inhomogeneity materials, results in no perturbation (ug = w) for the static excitations
which are assumed in this chapter and the following one. Moreover, the analysis of Chapter 3
for time-harmonic excitations remains valid, and is in fact much simpler when canceling all terms
depending on AC.

As said of the introduction, our primary interest will be to study the perturbation of the dis-
placement field that is noted vp and defined by:
VB = Up — U. (1.42)

The background field w being assumed to be known from now, the problem (1.40) can be written
in terms of vg and reads in this case:

div(Cp(x) : Vug(z)) = —div(ACs(x) : Vu(z)) =z cR3

vi(z) —vg(z) =0 x € 0B (1.43)

(£ — t)vs)(x) = (¢ — 1) [u](x) z € 0B
Remark that the source terms of this problem can be seen as (i) pre-stress AC : Vu on B and (ii)
surface forces (£*~ — t*)[u] on 9B, both defined by contrast AC and background field u. For the
problems (1.43) and therefore (1.40) to be well-posed, we finally need to prescribe the asymptotic

behavior of vg:
vg(x) =o(1) as |x| — . (1.44)

Remark 1.3. This very relaxed condition (1.44) is proposed by [Gurtin € Sternberg, 1961] who
shows (Thm. 5.1) that it implies vg(x) = O(|z|™!) as |x| — oo for isotropic background material.
This last condition is thus often used instead, e.g. in [Gintides & Kiriaki, 2015]. One can also
refer to the discussion for exterior problems in [Knops € Payne, 1971, Sect. 4.2].

Multiplying the first equation of (1.43) by a test function w and integrating by part over R3,
v is found to satisfy the integral identity:

(vg,w)ﬂi‘; =— (u,w)éc, Yw € W, (1.45)

where (u, w)% denotes the bilinear elastic energy form associated with a given domain D C R? and
elasticity tensor C, i.e.:

C ._ .C - — .C -
(u,w)}, = /Ds[u] :Crelw]dV = /DVu :C:VwdV, (1.46)

and the function space W , is defined by
We ={we L} (R, Vwe L*(R*)} (1.47)

and can be seen as the space of displacements having finite strain energy over all R3.
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Remark 1.4. Note that the decay condition (1.44) also implies Vvg(x) = O(|x|~2) for isotropic
materials as shown in [Gurtin & Sternberg, 1961], which is sufficient to guarantee that vg € W .
In this case, we can justify the integral over R® that appears in (1.45), by e.g. (i) writing the weak
formulation on a sphere Br of radius R containing B and (i) showing that the boundary terms on
OBpRr cancel as R — oo and that the remaining integral is well-defined for w € W .. For more
general cases, we refer to [Bonnet, 2016b].

Using the identity (1.45), some major properties of the solution up of the FSTP (1.40) are now
addressed. We begin by a classical uniqueness result:

Lemma 1.1. (Uniqueness) Provided that C and C* are both positive definite, the FSTP (1.43)
completed with condition (1.44) admits a unique solution for any background displacement u defined
up to a rigid-body displacement.

Proof. Let us consider the homogeneous problem in static elasticity, i.e. the case where the back-
ground displacement is of rigid-body type: e[u] = 0. We then show that the perturbation vp
vanishes. Setting w = vp in (1.45), we obtain:

(v, vB)gE = 0. (1.48)

Since Cp is positive everywhere by assumption, it implies that e[vg](z) = 0 for all z € R3. That
means that vg is a rigid-body displacement. We conclude using the decreasing condition at infinity
(1.44) that vp is zero everywhere. O

Remark 1.5. The lack of uniqueness when the inhomogeneity is a cavity (i.e. C* = 0) was
demonstrated in [Furuhashi € Mura, 1979] (with explicit counter-example for spherical shape B).

We also assert:

Lemma 1.2. (Reciprocity identity) Let up, uy solve the FSTP (1.40) with respective background
displacements w, u’'. Then we have:

<uB, u’>§c = <u, u’lg>§c. (1.49)

Proof. We invoke the integral identity (1.45) satisfied by vg with w = v}y € W (see Remark 1.4)
and obtain:

(5,055 + (v5, V)5 = — (u, V) 5" . (1.50)

We then write the similar identity satisfied by vjz with w = vg and, thanks to symmetry of (-, -),
obtain:

<u', vg>gc = <u, UIB>2€, (1.51)

the equivalent identity (1.49) being finally obtained by adding (u, u’ )?C to both sides. O

1.2.2 Integral equation and equivalence with local formulation

Applying equation (1.28) in the sense of distributions to a trial displacement w, and using Remark
1.1, the fundamental solution G, defined in Section 1.1.3 is found to verify the identity:

(Gool- — ), w)5s = w(x) Yw € W NCHuwy), (1.52)
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where w, is a neighborhood of x.

Setting w = Goo(- — @) in (1.45) (the resulting integral remaining well-defined despite the fact
that Go ¢ W due to sufficient interior regularity of vp in B) and using (1.52), we obtain the
integral formulation:

Llvp)(x) = — (4, G- — )5 Yz € BUR\B, (1.53)

where the linear integral operator £ is defined by
Lv](x) == v(x) + (v, Goo(- — 2))5° = v(x) + / Vo(g): AC: VGoo(€ — x) dVi. (1.54)
B

For x € B, the identity (1.53) is an integral equation to solve in order to obtain v (and Vwpg)
in the inhomogeneity. Once these are known, it becomes an integral representation for ¢ B:

vp(x) = — (up, Goo(- — ®))5°, x e R}\B. (1.55)

Remark 1.6. From the homogeneity property of VG given by (1.30), the representation (1.55)
implies vg(x) = O(|z|~2) as |x| — oo, so the condition (1.44) is verified.

From the local formulation of the problem (1.40), we just established the integral equation
(1.53) satisfied by vg. We now want to show the converse implication, i.e. that the solution of the
integral equation is solution to (1.40). For this, consider a displacement density h € H'(B), and
define Vg[h] as in (1.55) by:

Valh|(z) = — /B Vh(£) : AC : VGoo(€ — ) dVE. (1.56)

Defining v as the solution of (1.53), the goal is then to prove that setting h = (u +vg) |5 = ug|s,
and extending outside B by up = u+ V g[up], we obtain a field satisfying the local volume equation
and transmission conditions (1.40).

To facilitate the ensuing computations, let’s define the local differential operators L and L* as:

Liv](x) :==div(C : Vu(x)) and L*[v](x) = div(C*: Vv(x)). (1.57)

We also introduce the single-layer potential S and the Newtonian potential V' associated to B and
background medium as integral operators acting on surface and volume vector-valued densities g
and ¢, and defined as:

Stdl@) = | Gule ) a©aS; and Vigl(e)i= [ Gul6—0) 0O AV (159)
Then, for & ¢ 02, integrating (1.56) by parts gives:
Vlh](z) = . Goo(§—)- (7 —t7)[h](§) dSe +/BGoo(€ — ) (L* = L)[h](&) dV¢ (1.50)

= S[t” —t7)[h][(x) + VI(L" - L)[h](z)

Remark 1.7. One can note that the expression (1.59) is the one directly proposed in [Knops, 1964]
where it is shown that applying the surface and volume forces (¢~ —¢*~)[h] and (L* — L)[h], on 0B
and B and to the homogeneous medium, would induce the same perturbation than introducing an
inhomogeneity (B,C*).
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Still for « ¢ 0B, in which case the potentials have regular (for S) and weakly singular (for V)
kernels, we can then compute the local equation for V g[h]:

L[Vglh]] (z) = /86 —L[G)(§ — @) - (£ — ") [R](€) dS¢

n /B ~L[G)(€ — @) - (L* — L)[R)(€) dVg (1.60)

= [ s —w)t —t)nlE) S, — /B 5(€ — ) (L* — L)[h](€) AV

oB
= x5(x)(L - L")[h](z),
We abused a bit the notations by differentiating twice the weakly singular kernel of V under the

integral in the first line. The above identity holds, however, and can be justified e.g. by writing V
as the convolution of distributions:

Vipl = G * (xB9), (1.61)

Then, we conclude invoking [Rudin, 1991, Thm. 6.37] which states that the derivatives of a convo-
lution such as (1.61) in the distributional sense can be computed as in the classical sense provided
that one of the involved distributions has compact support (which is indeed the case here owing to
the presence of xg).

We still have to estimate the jump of (i) the displacement V' g[h| and (ii) the associated dtraction
vector t [V glh]] across 9B. (i) Both S and V are known (see e.g. [Kress, 1989]) to be continuous
across the boundary 9B, so the displacement V g[h](x) is continuous across 0B:

Vilh)(@) = Vglh](x). (1.62)
(ii) The associated traction vectors are defined by:
t= [V[h]] (x) = t* [S[(t™ — )R] (x) + £ [VI(L* — L) [R]]] (). (1.63)

The traction vector associated to the Newtonian volume potential V is continuous across 03, while
this of the single-layer potential S is discontinuous and the jump is equal to the opposite of the
considered density ([Kupradze, 1979, eq. V.5.9] 2, [Dahlberg et al., 1988] 3) :

" —t) Vigll(x) =0, (" —t7)[S[q]](x) = —q(). (1.64)
So the jump of ¢ [V g[h]] is:
(t" —t7) [Vslh]](x) = —(t~ —t*7)[h]. (1.65)

Finally setting h = ugp inside B and up = u + Vg[up] outside reads:
Llug|(x) + f(x) =0 xcR3\B
L*ig)(@) + f(@) =0 zeB
d3+(az) =up (x) x € 0B
t () =t [upl(x) x € IB,

(1.66)

*[ug]

*Note that Kupradze uses opposite sign notations for the limits (1.41) (see Chap. V, §1) and a fundamental
solution I' = 2G (see Chap. II, §1) .

3In the papers by Ammari and colleagues (e.g. [Ammari & Kang, 2007], [Kang & Milton, 2008)), we find opposite
sign for this jump, perhaps due to a notational mistake when referring to the original source [Dahlberg et al., 1988]
which also uses opposite sign notations.
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which is exactly the initial local formulation (1.40).

1.2.3 Invertibility of the integro-differential operator

We now state the main result of this chapter, which extends Theorem 1 of [Gintides & Kiriaki,
2015] to anisotropic materials:

Theorem 1.3. Consider the free-space transmission problem featuring an inhomogeneity (B,C* =
C + AC). Under the assumptions that both C and C* are positive and bounded, the associated
operator L defined by:

Cv)(z) = v(a:)—i—/BVv:AC:VGOO(-—:c) av (1.67)

is invertible with bounded inverse from H'(B) to itself.

Proof. Consider the integral equation satisfied by the total field ug = u + vp:
Llug|(x) = u(x), =€ b. (1.68)

It is then useful to reformulate this problem introducing the additional unknown o* = ACp : Vug.
Note that this unknown o*, having the meaning of a pre-stress, is called the equivalent stress in
Eshelby’s equivalent inclusion method as it will be explained in Section 1.3.1. Applying the operator
ACp: e =ACp: V to (1.68) provides the equivalent system:
* .
{ Glo*] = ACj : e[ul (169)
ug =u+ Mlo*] ie. vg=Mlo"],

where the volume potential M acting on second-order symmetric tensor-values functions o* €
L2(R3;R3%3) is defined by:

Sym

Mlo™|(x) := | VGu(z—§):0"(§)dV, (1.70)
R3
and where we used VG (§ — ) = —VG(x — £) to write M as a convolution operator. Since
VGy € L (R*R¥>3¥3) M is well-defined as a L2, (R* R33) — L3 .(R3) operator by virtue
of Young’s convolution theorem [Brezis, 2011, Thm 4.15]. The singular integral operator G is then
defined in terms of M by:

G:=T-ACp:eM]. (1.71)

The operator o* +— € [M[o*]] can be given a representation in terms of a singular integral operator
involving the kernel H o, defined as the symmetrized version of V2Goo:
1

(H oo lijrl = 1 (Gikji + Gajk + Gk + Gjik) » (1.72)
and whose singularity at the origin is not integrable; see e.g. [Gintides & Kiriaki, 2015, Sec. 4].
This definition is consistent with the symmetry of o* (by assumption) and of € [M[o*]]. The precise
singular integral operator form of o* — & [M][o*]], that requires a limiting process described in
[Kupradze, 1979; Gintides & Kiriaki, 2015] to handle the singularity, will not be needed here.
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The mapping from the initial data w to the sought perturbation vz is then formally given by:

AC:5(V+VT -1
u # AC : e[u] I et M vg, (1.73)
where we emphasized that the solution depends only on e[u]. The inverse of £ (whose existence is
to be proved) would be decomposed as:

ug =L 'u] == (I + MG 'ACp : €) [u]. (1.74)

Since w + ACg : €[u] is a continuous H'(B) — L?(B) mapping, proving the existence and
continuity of the mapping £~! : H'(B) — H*(B) above requires proving that (i) M : L?*(B) —
H'(B) is bounded and (ii) G : L?(B) — L*(B) is invertible with bounded inverse. Step (i) is a
known result on elastic volume potentials that can be obtained by the theory of pseudo-differential
operators, see e.g. [Hsiao & Wendland, 2008, Thm. 6.1.12]. We nevertheless give a proof as some
of its ingredients will be used in step (ii).

Step (i): Boundedness of M : L?(B) — H*(B) In fact, it is possible to state the more general
result:

Lemma 1.4. Provided that the background elasticity tensor C is definite, positive and bounded, the
integral operator M defined by (1.70) is continuous as a L2, (R?R3X3) — H] (R?) operator.

comp sym loc

Proof. We already know that M : L2 (R3*;R3X3) — L2 (R3) is bounded, so we only have to

comp Sym loc
prove the boundedness of e[M] : L2, (R* R33) — L3 (R3).
The kernel VG defines a tempered distribution (since VG is locally summable and belongs
to the class of slowly growing functions), making the convolution M[o*| = (¢[G]) * o* well-
defined for any o* € Lgomp (R3; Rg’yﬁ) Therefore, e[ M|o*]] = H * o* also holds in the sense of

distributions. Under the present conditions, the distributional version of the Fourier convolution
theorem applies:

FleMlo*]]| =F [Hx *x0*| = F [Hx| : Flo™], (1.75)
with the Fourier transform defined for any f € L!(R3) such that:
Fifle) = [ &= f(@) av.. (1.76)

Moreover, referring to expression (1.29) of Goo, H(p) = F[Ho(p) is given for p # 0 by the
expression:

A

(H]iji = —i (Qik(p)PjPl + Qu(p)pipk + Qjr(p)pips + le<P)PiPk)v (1.77)

where Q(p) = K~ 1(p) and K is the acoustic tensor already seen in Section 1.1.3 and defined
by Kix(p) = Cijrepjpe. Q is well-defined and bounded under the assumptions on C we made. In
particular, H(p) is C*(R*\0) and homogeneous with degree 0, i.e. H(p) = H(p) with p = p/|p|.
It is therefore bounded in R?, and the boundedness of e[M] : L2, (R* R3*3) — L2 (R3) follows
with the help of Plancherel’s theorem:

leMo* ]l r2@) = IF (€M™ 2@ = I1H : Flo*]| 2@
< C|Fle* 2wy = Cllo*|2w)- (1.78)
OJ
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Remark 1.8. The representation h — M|ACpg : Vh| used in (1.56) is therefore seen to be con-
tinuous from H*(B) to itself.

Step (ii): bounded invertibility of G : L?(B) — L*(B)

To prove the invertibility of the tensorial operator G, we pass by the study of its (tensor-valued)
symbol ¥(x, p) as defined by [Mikhlin & Préssdorf, 1986, Sec. 11.1]. Since G =T — ACp : € [M],
W is given in terms of H = F[H ] as:

U(x,p) =T — ACp(x) : H(p), (1.79)

and can be given a 6 x 6 matrix representation [¥(x,p)], corresponding e.g. to the Mandel
vector representation of symmetric second-order tensors [Helnwein, 2001]. Moreover, the identity:

Ak A

[T+ ACp(x): H']: [T - ACu(z): H =T (1.80)

holds as shown by [Freidin & Kucher, 2016], where H " is defined by (1.72) with C replaced by C*
as a consequence of:

H :AC:H=AC:(H - H) (1.81)

which can be checked using (1.72). This identity shows that the symbol tensor ¥ (x, p) is invertible
with its inverse given by W~ (x, p) = T + ACp(x) : H A corresponding invertibility result of
course holds for the symbol matrix [¥(x, p)]s,s. We can then rely on the following result from
Mikhlin’s theory for singular integral equations:

Lemma 1.5. ([Mikhlin & Préssdorf, 1986, Chap. 14, Thm 5.2] ): Let A be a singular matriz
operator with pole & and [¥(x, p)|, y,, its n x n symbol matriz. Then if the moduli of the minors:

R xz,p) U
Dy =V (x,p), Dy:= - p) Vol

z, p) ._ A
b)) Uz p) | D,, .—det([\Il(:c,p)]

nXTL)

SRS

are bounded below by a positive constant almost everywhere for (x, p) € R3 x S, A is Fredholm with
index 0*.

Since (i) p — [¥(x, p)]gye is (together with all its minors) continuous on the (compact) unit
sphere and (ii)  — [¥(x, p)]s,¢ is piecewise-constant, the invertibility of [¥(x, p)]4, ¢ for each
(z, p) guarantees that all minors involved in Lemma 1.5 are nonzero and bounded away from zero
(possibly after applying a suitable column permutation to [¥(x, p)]s,¢). The condition of Lemma
1.5 being fulfilled, the operator G is bounded and Fredholm with index 0.

The solution up to the FSTP (1.40) was shown by Lemma 1.1 to be unique, and we showed
in Section 1.2.2 the equivalence between local and integral formulations. Equation (1.68) therefore
has at most one solution. Concluding, as a Fredholm operator with index 0, G : L?(B;R3%3) —

Sym

L?(B;R2%3) is invertible with bounded inverse (by virtue of e.g. [McLean, 2000, Thm. 2.1 and

sym

Corollary 2.2]).

4Fredholm operators with index zero are defined in [Mikhlin & Prossdorf, 1986, Chap. 1]; one can also refer to
the presentations of [McLean, 2000],[Ramm, 2001].
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Conclusion on £

The mapping from the background displacement w € H'(B) to the total field ug € H*(B) due
to an inhomogeneity B embedded in an infinite medium and corresponding to the integral equation
L[ug] = u is given by:

ug =L u] =u+vs =T+ MG ACs: €)[u] (1.82)
and is continuous as the sum and composition of continuous operators. O

As a immediate corollary of we can assert the continuity of the mapping between the gradients
of uw and ug:

Lemma 1.6. The mapping

Vu— Vug=VL [u] = IY + VMG ACi : T)[Vu] (1.83)
is continuous from L*(B) to itself.
Remark 1.9. In the case addressed by [Gintides & Kiriaki, 2015] for which both materials are
isotropic and characterized by the couples (u,v) and (u*,v*), the matriz representation of the
symbol (1.79) can be computed explicitly, and in particular we find:

* _ 9y %\ 3
det ([(2, p)loxs) = 8 : gu)*()tl _21/; (’i) ) (1.84)

which, along with the expression of the other minors required by Lemma 1.5 (not provided here for
brevity), ensures that the only forbidden values of the material parameters are v = 0.5, v* = 0.5
(which correspond to incompressible materials), and p = 0, p* = 0. As expected, these are the
transpositions of assumptions made in Theorem 1.8 to isotropic materials.

1.2.4 Centrally symmetric inhomogeneities

To end this section, we provide an important auxiliary result that will permit significant subsequent
simplifications:

Lemma 1.7. Let B be centrally symmetric, i.e. * € B = —x € B. Let the symmetry operator S
be defined by Sw(x) = —w(—x) for any vector function w € HY(B). Then if ug is the solution of
the FSTP (1.43) with background field w (i.e. Llug] = u holds), Sup is the solution of the FSTP
with background field Su (i.e. L]|Sug| = Su holds).

Proof. We write the integral equation Ljug] = u at collocation point —x (—x € B by symmetry
assumption):

/ Vug(€) : AC: VG (§ +x) dVe = u(—x) (1.85)
Then, using VG (€ + ) = —VGo(—€ — x) and introducing the integration variable y = —€ (so
that V,, = —Vg),

/V’LLB :AC: VG (y —x) dVy = u(—=x) (1.86)

Finally, noting that V(Sug)(x) = V(ug)(—x) arise from the definition of S directly yields the
desired equation L[Sup] = Su. O
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As a consequence of Theorem 1.3 and this lemma, the following corollary immediately holds:

Lemma 1.8. Let B be centrally symmetric. Then if the considered background field u is an even
function of x, the solution ug of the FSTP is also an even function of . Likewise for odd functions
u.

Proof. w is an even function means u(—x) = u(x), i.e. Su = —u with S the symmetry operator
defined in Lemma 1.7. Invoking this lemma and the invertibility of £ given by Theorem 1.3
directly yields Sug = L7![Su] = —L7'[u] = —up, i.e. up is also even. Likewise when u is odd,
i.e. Su=u. O

1.3 Transmission of polynomial background displacement

This part addresses the particular case where the background displacement is polynomial. A
polynomial displacement of order n is noted:

n 1 ‘
u=Eo+ Y @][E;] with: ¢[Ej)(z)= ~Eje x® (1.87)
j=1

and where E; are constant tensors of order j + 1. Owing to the linearity of the FSTP, we will
specifically address the FSTPs featuring the homogeneous polynomial displacements goj[Ej] as

background fields. The solutions to these particular FSTPs will be denoted ug) [E;]. The per-
turbation u(])[Ej] — ¢,[Ej] is accordingly denoted vg)[Ej]. Setting u = ¢,[E;] into the general

integral equation (1.53), these perturbations vg)[Ej] are found to be solutions of the equations:

c {vg)[Ej]} (@) = /B (Ej j21§®j—1) AC: VGoo(€ — ) AV, (1.88)

1.3.1 Eshelby’s equivalent inclusion method for ellipsoidal inhomogeneities

When B is an ellipsoid, Eshelby proposed a method to solve the transmission problem, expressed
in terms of strains rather than displacements. His landmark paper [Eshelby, 1957] initially dealt
with uniform strains (corresponding to linear displacements) and isotropic materials. His original
idea then inspired many works, and some of his conjectures where proved only recently, as related
in the historical introductions of [Kang & Milton, 2008; Gintides & Kiriaki, 2015] and in the recent
review [Parnell, 2016]. Of particular interest for us is the extension of his method to polynomial
strains, as explained in [Mura, 1982, Chap. 4].

Eshelby first had the idea of following imaginary process : (i) remove the inhomogeneity from
the matrix, which results in transformation of the border 0B of the new hole, (ii) apply surface
tractions to this border to recover the original shape B, (iii) fill the hole with background material
and (iv) relax the surface tractions so that the matrix is in its original state, which results in
an additional stress and strain state of the material occupying B, now called the inclusion. This
original thought experiment lead him to formulate the assumption that the perturbation field vz
generated by any inhomogeneity (B,C*) could be generated by an inclusion of support B having
the same properties C than the outside medium but supporting an additional eigenstrain €*. The
problem is therefore described using three different strains defined inside B:
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e the known polynomial background strain associated with the polynomial displacement (1.87),
given by:
glulf(z) =Ei+E5 -2+ E5: (x®x)... (1.89)

where the superscript -* means symmetrization w.r.t. the two first indices of the tensors E;,

e the sought equivalent eigenstrain, also polynomial and defined by the tensors B, symmetric
on indices 1 — 2 (i.e. B} = Bj):

E*(w):Bl—i—Bg-:c—l—Bg:(m@m)... (190)

e the sought perturbation strain e(x) = e[vg|(x), which is linked to the eigenstrain through
the Eshelby tensors Dj as:

e(x) = Di(z) : Bi + Do(x) 8 By + Ds(z) e B... (1.91)

The method then relies on two steps. Firstly, one needs to compute the tensors D; (i.e. to
solve the inclusion problem for polynomial eigenstrains). This step is developed in [Mura, 1982,
Part 12] for isotropic media. It relies on the well-known integral representation of the solution of
the inclusion problem:

w5 = M(C : €] :/vaw(m—g) L (C: e (8) AV
5 (1.92)
= [ VeGule—a): (i) av

that is analytically computable for polynomial e* and isotropic material. These computations and
the results for the first and second Eshelby tensors are reproduced for convenience in Appendix
1.A.4. Tt is also found that inside the inclusion, these tensors are polynomial in & with terms having
the same parity, i.e. D;(x) is a polynomial of & with terms of degrees j —1, j —3,j —5....

Remark 1.10. This property was firstly highlighted in [Eshelby, 1961] under the form: if e*(x)
is a homogeneous polynomial of © with degree n, then e(x) will be an inhomogeneous polynomial
whose terms are of degreesn, n —2, n—4...

Secondly, the equivalent inclusion method states the equality of stresses in B for the inhomo-
geneity and the inclusion problems that we write:

C*:(elul+e)=C: (elu]+e—¢€*) Va ek,

| , (1.93)
ie. AC:e+C:e"=—-AC:¢€lu Va € B.

Inserting the expressions (1.89-1.91) of the strains e[u|, e* and e, and from the property of Eshelby’s
tensors described above, this equation is found to be an equality between two polynomials. Writing
it and its gradients for = 0 then leads to the following tensorial equations satisfied by the unknown
tensors B,:

AC:d,eB,+C:B,=-AC: E,, (1.94)
where the constant tensors d,, are defined such that d,, ¢ B,, = V"! (D, (x) e B,,). Solving these
equations, one finally obtains the B, and therefore the sought perturbation strain [vg] given by
expression (1.91).

The particular cases n = 1 and n = 2, which correspond to constant and linear background
strains and that we call first and second Eshelby problems, are now specified.
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1.3.2 Transmission problems for constant and linear background strains
1.3.2.1 First Eshelby problem

The first Eshelby problem is the particular transmission problem considering a linear background
displacement u(x) = E; - x. Equivalently, it was firstly described in [Eshelby, 1957] for a constant
background strain e[u] = Ef5. Writing the stress equality (1.93) for this particular case lies the
original equation given by Eshelby:

AC:D,:B1+C:B;=-AC: E;. (195)

This equation is a tensorial system to solve to recover Bjp, and its solvability, well-known for
isotropic materials, was definitely established very recently for any anisotropic material by [Freidin
& Kucher, 2016]. It involves the first Eshelby tensor D;, which is computed for any ellipsoid in
Appendix 1.A.4 for isotropic materials. Once solving this equation is done, the perturbation strain
can be written as:

e [vg”[El]] = A By, (1.96)

with the fourth-order tensor A; given by:
Ay =-D;: (C+AC:Dy) ' :AC, (1.97)
and the total strain is e[ug)[El]] = (Z + A)) : E;. The resulting displacement ug)[El] =

(o1 + ’vg))[El] is obtained by integrating (1.96) as:
uE(x) =B -z + (A E)) x = ((I<4> T A El) ‘x (1.98)

For the simplest case of ball in an isotropic material, we note & = D; the first Eshelby tensor,
which is given by [Mura, 1982, eq. 17.19] as:

14+v 8 —10v

8 = Slj+ SZ’C, with Sl = m, 2 = m

(1.99)
Moreover, inserting (1.99), C’s decomposition (1.32) and its analogous for AC into (1.97), and using
the properties of the projectors J and IC detailed by (1.13), one easily computes Aj:

S1(ve — 1) So(yu—1)

- - K, 1.100
1250107 "1+ S0, =1) (1.100)

with v, = k*/k and v, = p*/p.

1.3.2.2 Second Eshelby problem

Similarly, the second Eshelby problem is the particular transmission problem considering a quadratic
background displacement u(x) = (E3 : (x ® x))/2, or, equivalently, a linear background strain
elu](x) = E5 - x.

For an ellipsoidal inhomogeneity B, as seen above, the perturbation strain is given as the product
of the second (5th-order) Eshelby tensor Dy and the 3d-order tensor Bj:

e [Ug@ [Eg]] (z) = Do(z) 8 By = (VD5 - x) ¢ By, (1.101)
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the second equality arising because D5 is a linear function of & as explained above, so that VD,
is a constant 6th-order tensor. Note also that, since € and Bs are symmetric on their two first
indices, Dy and VD5 are uniquely defined as symmetric tensors for the couples of indices 1-2 and
3-4. VD5 is given in Appendix 1.A.4 for a general ellipsoid and isotropic materials. When B is the
unit sphere, it becomes:

70(1 — V)Dijqu,p = - 2]€%2lqp + 14]/]{?]32P6kl
I 0 0 o (1.102)
+7(1—v) (5,-ll~cj,;qp + 0jikifgp T itk iy, + 5jkkiz’qp>

in terms of the tensors k%° and k*° defined in Section 1.1.1.
The third-order-tensorial equation allowing to compute By from F5 is then obtained setting
n=2in (1.94):

AC: V(D38 By)+C: By = —AC: Es,
i.e.  ACmnijDijrigpBrig + Connki Brip = —ACmnki Erip (1.103)
or (Acmnijpijqu,p + Cmnklépq)Bqu = _AcmnklEklp

This system is thus written in compact form as:

TeBy=AC:E;  with T := Pagys[-AC: VD, —C® L], (1.104)

where Piog345 designs the index permutation: Pi26345(A)mnkipg = Amnpkiq- Remark that the 6-th
order tensor T is therefore symmetric on the couples of indices 1-2 and 4-5. To solve the system
(1.104), so far and unlike for the first Eshelby problem, we did not find any analytical formula.
Therefore, for any given isotropic materials defined by (u, ) and contrasts (Ax, Ap), we numerically
solve the equivalent matrix system - whose size is 18 x 18 due to 7 ’s symmetries.

Once this inversion has been performed, we can write:

v 3 . inv _
By =T"™eEy, with Ty —=(T Y ktqijpACijmn (1.105)

Inserting this expression into the strain expression (1.101), using Da(x) = VD3 - @, and upon
some indices reorganizations, the linear background and perturbation strains are finally found to
be linked by a 6-th order tensor Ay such that:

3
€ [’Ug)[Ez]] (z) = (Az 0 Es) - w, (1.106)
As being defined by:
3 .
Ay = Piag3as(V Do) ¢ T, (1.107)
and the total strain is:
elug) [Ea))(x) = B3 @ + (Ayo Ba) -z = (IO + Ay) ¢ By) -, (1.108)

where Z(® is the sixth-order identity for third-order symmetric tensors on indices 1-2.

To obtain the resulting displacement ug) [E2] = (¢ + 'vg))[Eg}, one must integrate the linear
strain (1.106). To this end, consider the general case of a symmetric third-order tensor E and of a
linear strain written:

e=FE- xie. g;=FE,xy, with Eijr = Ejig. (1.109)

40



To compute the associated displacement that we note g[E], we need the skew-symmetric part
of its gradient w defined as w;; = (¢;; — ¢j,;)/2 and such that Vg[E] = € + w. Classically, the
partial derivatives of w are given as combinations of those of &:

Wij ke = §(qi,jk — Qjik) = €ik,j — Ejki = Eikj — Ejki- (1.110)
Integrating these equations (and canceling the arising constants that correspond to rigid-body
rotations) gives:

wij = (Ezk] — E]]ﬂ)xk and qi,j = €ij + Wij = (Emk + Eikj — E]]ﬂ)xk (1111)

Integrating once more, and again canceling integration constants that this time correspond to
rigid-body translations,

1 .
q[E](:L') = §F : (m & 113) with Fijk = Ez’jk + Ez‘kj - Ejkz‘- (1.112)
To keep an explicit tensor formulation in E, we furthermore introduce the sixth-order tensor F as:

Fijkabe = 0ia0jb0ke + 0ia0jcOkp — 0icOjadkb (1.113)

so that F = F e E and q[E|(x) = (Fe E) : (x ® )/2. The displacement solution of the second
Eshelby problem is then given by:

((I<6>  FeAy) .EQ) (z® ). (1.114)

) [Bal(w) = (2 + o) [Bal(a) =

1.3.3 Elastic Moment tensors

AC
For a given couple of tensors (E,, E,), the “stiffness product” <ug) [Ep], [Eq]>8 will be widely

used in the upcoming chapters. It involves (i) the solution ug)) [E,] to a transmission problem
with polynomial background displacement defined by E,, and (ii) another polynomial displacement
¢yl E,]. It can be compacted introducing the (p + g + 2)-th order elastic moment tensor A, such
that:

/ Vul)[E,)(€) : AC: (Eq " £®q_1) AV = E,e Ay, 0 E,. (1.115)
B

A, accounts for the transmission problem solved by ug) [E,], and the integral on B. Its thus
depends on B, C and AC. Noting that the left-hand side of (1.115) only depends on the partially-
symmetrized versions E}, E of E, and E,, A, is uniquely defined by upon enforcing minor
symmetries mirroring those of E,, E, , e.g. [Axlijkmnp = [A22]jikmnp = [A22)ijknmp. Moreover,

note that the reciprocity identity (1.49) applied to two solutions ug) [E)p] and ug) [E,] ensures:

E,e A, eE,=E,eA,eE, V(E,E,), (1.116)
so that the practical evaluation of \A,, requires only this of the solution uggm) [E,,] with m =
min(p, q).

Remark 1.11. These elastic moment tensors, introduced in [Ammari et al., 2002] with different
formalism, are the analogous for elasticity to the widely studied polarization tensors for acoustics,
see e.g. [Ammari & Kang, 2007].
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From the symmetry properties of transmission solutions in the case of a centrally symmetric B,
given by Lemmas 1.7 and 1.8, the following property holds:

Lemma 1.9. For any centrally symmetric inclusion B, Ay, = 0 whenever p+ q is odd.

Proof. Lemma 1.8 applied to u = ¢,[E,] states that ug) [E,] has the same parity than p for

centrally symmetric inclusions. Then, one finds that the integrand in (1.115) has the same parity
than p + ¢, thus the above result. ]

Thereafter, we concentrate on (i) the fourth-order tensor .A;; that we call the first elastic
moment tensor and note A := A;j; for compactness and consistency with previous works [Bonnet
& Delgado, 2013] and (ii) the sixth-order tensors A;3 and Asge. These are computed for ellipsoidal
shapes thanks to the resolutions of first and second Eshelby problems that we addressed in the
previous section.

1.3.3.1 First elastic moment tensor

The first elastic moment tensor A is defined for an inhomogeneity B, elasticity tensors C and AC
and for any second-order tensor E; by:

A:E; = /BAC - Vul) [B)(¢) dVe = /BAC: (E1+Vv,(31)[E1](£)) V. (1.117)

Its properties are extensively explained in [Bonnet & Delgado, 2013, Sect. 5]. In particular, it
is easily shown from (1.96) and (1.97) that A is given by A = |B|AC : (Z + A;) for ellipsoidal
inclusions, and that it results in the expression:

A=|BIC:(C+AC:D;)':AC (1.118)

featuring the first Eshelby tensor D;. From this expression, the special case of a spherical inclusion
in an isotropic material results in:

4 Vi — 1 Yo —
A= — [3h—F — __J+2u—F — K|, 1.119
3 T s, oY T y (1.119)

with (S1,52) defined by (1.99), v, = x*/k and v, = p*/p.

1.3.3.2 Sixth-order elastic moment tensors

A3 is defined for any second-order tensor E; and fourth-order tensor E3 such that:
Ei: AjseEs= /Bvug)[El](g) LAC: (Es: £9%) dVs. (1.120)
When B is an ellipsoid, this product becomes:
E,:ApzeE;=(E| :(T+A)):AC: <E3 : /Bg ® €& dVg) : (1.121)

from which we can write:

Az =(ZT+A):AC) o M® = 1

= ’B’A®M(2) with M(z)—/£®£dV5. (1.122)
B
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M® is the geometrical inertia tensor of B and is given for an ellipsoid with semi-principal axes a;
and principal directions n; as:

3
47
= /BE ® & dVe = J-a1az03 Y "ain; @m;. (1.123)
i=1

In particular, M® = (47a®/15)I for a sphere of radius a.
Remark 1.12. Using property (1.116), we thus define Az, without computing it by:
E3 [ ] A31 : E1 = E1 : A13 [ ] E3 V(El, Eg) (1124)

Similarly, Asgs is defined so that for any couple of third order tensors (Eq, EY),
EYye Ay o Ey = /B (Y- &) : AC : Vul) [Es)(€) V. (1.125)
Let the 6th order tensor M® be defined as:
M© = / ERACREAV: ie. wklb / o ACijn1 & dVE. (1.126)

Then, for ellipsoids, knowing the tensor A, and inserting expression (1.108) for the second Eshelby
solution in (1.125), Ao is computed as:

[A22]abeiji = M

cabmnp

[1(6) + A2]mnpzjk (1127)

As for M (2), when B is an ellipsoid with semi-principal axes a; and principal directions n;, M ©)
is given by:

3
4
M© = Tgamgag a?(’f}j ® AC® T]j)- (1.128)
j=1

In particular, if B is a sphere of radius a, M(Em)klb (4ma® /15)6apAC; 11

1.3.4 Inertial polarization tensors

Similarly to the elastic moment tensors, we define for (i) the couple of tensors (E,, E,) and (ii) a
scalar weight function p (typically, a material density) defined on B the (p+ ¢ + 2)-th order tensors
QFf, such that, for p=0or ¢ = 0:

/Bp(ﬁ) ul [E,)(€) dVe = E, 0 Q5 = Qf o E,, (1.129)
and, for p # 0 and ¢ # 0,
&) w BN - ulf () aVe = By e 04, 0 B (1.130)

Whenever p is a mass density, the left-hand-side of (1.130) corresponds to a “mass product” (the
inertial counterpart of the “stiffness product” computed thanks to the EMTs defined above) between
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two FSTP solutions and will intervene in time-harmonic contexts. Thus the choice of the name
“inertial polarization tensors”.

From definition (1.130), it is straightforward that E, ¢ Q7 e E, = E, e Q! e E;,. Moreover,
in the upcoming works, the considered density p will be constant, and we therefore focus on the
particular tensors Q,, := Q}Dq (so that qu = pQ,, for constant p). For these Q,,, from the
symmetry properties of Eshelby’s solutions and similarly to the EMTs, the analog of Lemma 1.9
holds:

Lemma 1.10. For any centrally-symmetric inclusion B, Q,q = 0 whenever p + q is odd.

However, unlike for the EMTs, both Eshelby solutions of order p and q are required to evaluate

qu .

Expressions for ellipsoids When B is an ellipsoid, the first non-zero of these polarization
tensors are the fourth-order tensors Qg2 and Qi1. From the second Eshelby solution (1.114), we
can compute for any third-order tensor Es:

1
/ u)[B,)(€) dVe = / 5 ((I(6> L FeAy)e Eg) L €52 Vg, (1.131)
B B
and Qo is therefore defined by:
Qp e Ey = % ((I(6> +FeAy)e E2> - M@, (1.132)

After suitable permutation of the indices, Qs is given in index notations by:

1
[QOQ]iabc =35

2
5 [I(6> tFe AQ} MY (1.133)

ijkabc
Similarly, for two second-order tensors E; and E’ and using the first Eshelby solution (1.98), one
obtains

E1:QH:E’1:/

5 [((I(4) +Ap): E1> .5} . [((I(4) + Ap): E’I) .5} dvg, (1.134)

which provides the expression of Q11 as:

[Qi11)ijab = [1(4) + Al] Ml(c2) [IM) T Al}

. 1.135
klij kcab ( )

1.4 Conclusions

In this introductory chapter concerning the free-space transmission problem, most of the accessory
tools needed thereafter were provided, with explicit expressions whenever available. An important
invertibility result was first stated by Theorem 1.3, which will permit upcoming estimates of expan-
sion residuals. Free-space transmission problems with polynomial background displacements were
then addressed, and some of their solutions that we called the Fshelby solutions were specified for
ellipsoidal inhomogeneities. Finally, “stiffness” and “mass” bilinear forms (corresponding to elastic
and kinetic energy) involving one or two of these solutions were expressed in closed-form thanks to
the introduction of elastic moment tensors and inertial polarization tensors.
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1.A (Bi)harmonic potentials and Eshelby tensors

The n-th order tensor-valued harmonic and biharmonic potentials ¢(”) and Ib(") associated to a
shape B are defined by:

¢Wszi/gmd%7 ¢Wszié€mm—ﬂwd%, (1.136)

5 1€ — x|
or in index notation (in which case the order of the potential is indicated by the number of indices)
by:
[ & -Em _
burm(@) = [ LA (@) = [ €6 Glé o] Ve (1.137)
5 |€— x| B
Since they are the elementary bricks to compute many of the integrals involved in our study
in the isotropic case, a compilation of the expressions we need is given in this section. It includes
some of these potentials and their derivatives when B is an ellipsoid whose axis are aligned with
the Cartesian basis (e;) and whose half-lengths are noted (aq, as, as3).

Remark 1.13. The following expressions are almost all provided in [Mura, 1982], along with more
general results and many particular cases for specific ellipsoids. However, we chose to reproduce
them here (with slight simplifications) so that the dissertation is as self-consistent as possible and the
interested reader is able to reproduce most of our upcoming numerical experiments without referring
extensively to additional material.

1.A.1 Elliptic integrals

é™ and 9™ will be given in the following parts as functions of elliptic integrals I; ; whose
expressions are therefore recalled here:

oo ds
huk(A(w))=:2ﬂaﬂa2“3j§@ﬂ(a34-s)”.(a§4—shﬁ(5) (1.138)

with: A(s) = \/(a% + 5)(a3 + s)(a3 + s).

The lower bound A(x) of the integral above is itself defined implicitly by (i) AM(z) = 0 if € B and
(ii) A(x) is the largest positive root of U(s;x) if ¢ B, U being defined by:
il 73 3

2+s ai+s di+s

(1.139)

In the case of a sphere of ray a, the computation of the elliptic integrals is simpler and results in:

4ra’

I(n)(A) = 1
(2n +1)(aZ + X\)" "2

(1.140)

where (n) indicates the order of the integral.

Since we aim to compute the potentials qb(") and ¢(") for x € B, we actually considered only
this case, for which A = 0 and the I, are constants w.r.t. . The general case A # 0 is addressed
in [Mura, 1982, Chap. 11, from eq. 11.38].
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1.A.2 Harmonic potentials

The following expressions are given in index notation, and with Mura’s convention: upper case
indexes take the same value than the corresponding lower case indexes, and repetition of lower-case
indexes still stands for summation. For example, z;z;I1 = ), JJ?IZ' = x%h + x%IQ + x%[;; and z; 17
represents the vector with components (z111,z212, x313).

Scalar harmonic potential ¢(©):

1
¢ = 5([ - xT$TIR>

by i (1.141)
O rl = —OmlK
First-order harmonic potential (15(1):
a}
¢a :?ZEa(IA - xrerRA)
a’ 1.142
d)a,k :?A(IA - xrerRA)éak - aixakuAK ( )
bakl = — a2 Garrilar + Ouwr + Opza)Lax)
Second-order harmonic potential ¢(2):
a,24 2
bab :?{waxbaB(IAB — 2,2 IrAB)
1
+ 70a(I = a31a — zrx,(Ig — a3 Ipa) + zr 22525 (IRs — aiIRSA))}
2 CLQB 2
Gab,k :aA{7(5akl'b + 0ok%a)({aB — ZrTrIRAB) — TaZpTraBIABK
dab
- %ka(IK — a4 Iax — vy (Ipk — G,QLJRAK))} (1.143)
2
a
Gab,kl 20,24{73(5ak5bz + 0pi0at) Tap — o2, IRAR) — 0% (Sakzh + SpkTa)TiILAB
— (SatpTh + TaOuTy + TapOr)aBlaBK
OubO
— ab2 M (Ic — ailag — xra,(Igx — a4 Irar))
+ daprr (I — aiILAK)}
1.A.3 Biharmonic potentials
Scalar biharmonic potential ¢(©):
5 a2 1 1
)= Z é([ —a?l;) + Z:ETIT(I —a%IR) — gxrxrass:cs(IR — a%Igs) (1.144)

=1
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Its gradients are thus given by:

X
. :?”(I — a3 Ip — xp2.(Ig — abIgrp))
Vg =L — aplp — e (Ip — aplrp)) - 2jap(Ly — apLp) (1.145)
bopjke = = Spjex(Ix — abIp) + (655 + Opr;)(Ly — ablyp)

¥ pint = — Opid(Ix — apIpi) + (6u0p + 0pibj0) (I — aplyp)

First-order biharmonic potential 'w(l): This potential intervenes in e.g. the computation of
the second Eshelby tensor Ds, and we provide only its derivatives of second to fourth order:

a2
Ya,p; :7A{5ap$j(IJ —a41ay — zr2r(Irg — a4 1RAY))

+ (5ajxp + xaépj)(fp — a124[,4p — IIJTQJT(IRP — a?quAP» (1'146)

— 2£L'al'j£L‘p(IpJ — GZIAPJ)}
Third derivative:

a2
Va,pik :f{5ap5jk(b — a4 14y — zr2r(Irg — a%1Ray))

+ (6aj0pk + 0akdpi)(Ip — a3 1ap — mrar(Inp — a%IRap)) (1.147)
— 2((5@33;,; + xa(spj)xk(fp[( — a%IApK) — 2((5akxp + $a5pk)£()j(1pj — aiIAPJ)

— 20gpjxk (7K — ai]AJK) — 2xaxp051x(Ipy — aiIApJ)

Fourth derivative:

Vapjkl = — ai{5ap5jk$l(fu — a4 Ipag) + (6aj0pk + Sardpj)zi(ILp — X Lap)
+ [(0aj8pt + 0atdps) s, + (Bajitp + 2adpj)on) (Ipx — alapi)
+ [(6ak6pl + 5a15pk)x]— + (5akxp + xaépk)éj ] (IPJ — aiIAPJ) (1.148)

+ Oap(6j17k + 2j0k) (Lyic — a2 TasK)

+ (0qrxp + a0p1) ik (Ipy — a?quPJ)}
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Second-order harmonic potential Q/J(2): As above, only the second and third order derivatives
of ¥® are given:

0/2 a2
Yabpj = A8 B{ — (Baplbs + 0ajonp) | Ia — ahlap — 22,2, (Ipa — aBIRAR)

+ 2p2,2525(Irs A — aBIRsAB))

+ 4(8apm + TaObp)zj(Iag — aBIaps — vrxr(Iras — ahIRABT))

+ 4(xaxb5pj -+ $a5bj37p + (5aj:cbxp)(IAB — a%IABp — l’rl’r(IRAJ — Q%DIRABP))

— 8xqxpxpri(Lapy — G?JIABPJ)}
a2
+ féab{épj [I — (al% + a124)IA + a[};IAp —2z,x,(Ig — (a%; + ai)IRA + aj%;IRAp)

+ zpxpx5x5(Ips — (a%; + ai)]RSA + (Z%;IRSAP)]
— dwpr; [IJ — (ap +a%)Ias +aplapy

— zpz,(Ipy — (a3 + a%)Iras + G%IRAPJ)} }

(1.149)
Third derivative:
‘%24“23 2 2
Yabpjk = 5 {(5ap5bj + 6ajovp)xi(lax — aplapx — rxr(Ipak — aBIRABK))
+ (8apOuk + Oardvp)i(Iag — aBIapy — vrxr(Iras — ahIRABT))
+ (8app + Tabp)djk(Iag — ahlapy — 2r2r(Ipas — aBIrRABS))
+ [(8ajObk + 0ardbj)xp + (0aj0pk + Oakdp;) Ty + (ObjOpk + Opklpj)Ta)
(Iup — abIapp — vrxr(Iras — abIpapP))
— 2(5aij$p + xaébjxp + SL‘aﬂjb(;pj)ﬂjk(IABK — a%;]ABpK)
— 2(5aka:ba:p + xa(sbkxp + xaxbépk)xj(IABJ — Q%DIABPJ) (1’150)
— 2(8apxp + TaObp)Tirr(Task — aBIABIK)
— 2xaxp2p05k(LaBy — G%IABPJ)}
2
a

- 7A5ab$p{5j (Iy — (ab + a)1as + aplapy)
— Sipwrar(Iy — (a3 + a%)Ipay + aplrapy)

—2za5(Lyk — (ap + a)ask + G%IAPJK)}

1.A.4 Eshelby tensors

We now are in position to provide explicit expression for the fourth and fifth-order Eshelby tensors
D; and Ds for any ellipsoid.
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First Eshelby tensor The fourth-order tensor D is given [Mura, 1982, eq. 11.34] with the help
of the derivatives of the scalar harmonic and biharmonic potentials ¢(©) and (©):

8m(1 — v)Dyjrr = Vijr — 2v 9,50k — (1 — v) | @ jnbar + ¢ ixdj1 + & j10ir + ¢,il5jk]- (1.151)

For « € B, we use the above expressions (1.141) and (1.145) for these potentials, which results in
[Mura, 1982, eq. 11.42]:

87T(1—V) ikl 52]5kl(2VII_IK+a]IIK)

(1.152)
+ (Okbj1 + 0600) (a7lry — Iy + (1 —v)(Ik + I1))

For the unit sphere, the elliptic integrals are given by (1.140) and we obtain the expression (1.99).

Second Eshelby tensor Similarly, the fifth-order tensor Dy is given by [Mura, 1982, eq 12.11],
with the help of the harmonic and biharmonic potentials of first order ¢(1) and I/)(l)

87(1 — v)Dijrig = Vg ijkl — 2vdq,ij0r — (1 — 1) [¢q,jk5iz + Gqikdj1 + Pg 10k + ¢q,z’l(5jk] (1.153)
Inserting the expressions (1.142) and (1.148) into (1.153), we obtain:

87(1 — v)Dijkig —aQ{(S,lékqu (aQIJLQ Iyr)
+ (6u0kqi + 0ij0kq1) (ag 1Lg — IiL)
+ (6ikbiq + OigOrt) v (L ix 0 — 1iK)
[ 5 ik01q + 65q0k)Ti + Oidiqtn + 10mq| (aDT1k0 — I1kc)
[ iade + 0ikdia)1 + (Biad + Gudjo) i + (Gind + dudjn) |

(GQILKQ — ILK)} (1.154)

+ QVG%(skl(diq.’L’jIJQ + (6i52q + 05q2i)11Q)
+(1- V)&gg{@l@kqﬂcﬂm + (0jkq + 0jgk) [xQ)
+ 051(0igzrl kg + (kg + Orgxi)11Q)
+ 03k (019251 1Q + (81q + 0jqx1)I1Q)
+ 0k (SigriILQ + (g + 5lql’z‘)flcg)}-
As expected, Do(x) is a linear function of  and we can therefore write Da(x) = VD3 - &, VDy

being a constant sixth-order tensor. For a sphere (a1 = as = ag = a), the elliptic integral expression
(1.140) permits to compute:

@ AT e AT 23 @) 8T

= . 1.1
5a2’ Tat 35a2 (1.155)

49



For the unit sphere (a = 1) computing the gradient of (1.154) results in:
70(1 = v)Dijrigp = — 2 (0ij01p + 0i16jp + 0ipdj1) Oxg
— 2{(5ik5lq + 5iq5kl)5jp + 6ip(5jk51q + 5jq5k:l) + 5ij(5kpfslq + 5kl(5qp)

+ (8iqOjk + Girdjq)01p + (0igji + 6idjq)Okp + (dikdji + 5z‘l5jk)5qp}

(1.156)
+ 14v (5iq5jp + 5ij5qp + 5iP5JQ) Okl
+7(1 - V){5iz(5jp5kq + 0jq0kp + 0jk0qp) + (0iqOkp + dipOiq + diklgp)J;
+ 0i(85p01q + Gjg0tp + 0j10qp) + (Bigdip + Sipiq + dirdgp)9; }
Introducing the tensors k”C defined in Section 1.1.1 provides a more compact expression:
6,0 4,0
T0(1 = v)Dijigp = — 2k k1, + 140K 0,0k

S0 s 40 s a0 s a0 (1.157)
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Chapter 2

Displacement and misfit function
expansions in static elasticity
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This chapter aims to compute and justify a sixth-order expansion for a certain class of cost
functionals, w.r.t. the size a of a inhomogeneity B, nucleating in an elastic solid occupying a
bounded domain 2 submitted to static excitations.

In Section 2.1, we begin by setting the elastostatic transmission problem featuring an inhomo-
geneity B, in 2. We next specify the hypothesis on the misfit functions that will be considered in
this chapter and the next one. In particular, these functional depends on B, implicitly through the
perturbation v, of the displacement in §2, and the computation of their expansion is made easier by
the use of an adjoint field. Consequently, after introducing a convenient volume integral equation
framework, we compute in Section 2.2 the inner expansion (inside B,) of v, up to the fourth order.
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Finally, in Section 2.3, using this expansion and the already known leading-order outer expansion
(sufficient for our needs), we compute the sought sixth-order expansion for the cost functional. This
expansion, stated in Theorem 2.4, is justified by an evaluation of the residual.

Appendix 2.A shows how some of the computations on the expansion of v, presented in a
general setting can be addressed in practice, in the case of two concentric isotropic spheres (the
smallest being considered as the inclusion).

2.1 Transmission problem and misfit function.

This section is devoted to the presentation of the elastostatic transmission problem and the defini-
tion of the cost functional to be expanded.

2.1.1 Background, total and and perturbation displacements

An homogeneous elastic material ocupying the domain Q C R? is considered, fully characterized by
Hooke’s Tensor C. It is submitted to volumic forces f € C*°(2). Prescribed displacement up and
traction ty are supported by the surfaces I'p and I'y such that I'pn UT'y = 99Q, I'p NT'y = 0 and
|Il'p| # 0. These solicitations give rise to the background displacement u(x) satisfying the following

problem:
div(C : Vu(z)) + f(x) =0 in Q

u(x) = up(x) on I'p (2.1)
tlu](x) = tn(x) on I'y

where t[u](z) = ofu](z) - n(x) = (C : Vu(x)) - n(x) is the traction vector associated with u, n
being the output normal to the surface 0f2.
The weak formulation corresponding to problem (2.1) is:

Find w € W (up), (u,w)$, = / f-w +/ tn-w, Yw e Wy, (2.2)
Q I'n
and we recall that (u, w>% stands for:

¢ ._ eglu| : L Elw = u : : w .
(u,w>D.—/D ] : C : efw] dV /Dv C:VwdV, (2.3)

(the second equality holding again by virtue of the minor symmetries of C). The function spaces
W, W of admissible displacements are defined by

W(up)={ we H'(Q); u=uponlp}, Wy = W(0). (2.4)
Transmission by a small inhomogeneity. An inhomogeneity B, of small size a and shape B
is then introduced in the medium, centered at a point z, so that we note B, = z + al3. It is char-
acterized by Hooke’s tensor C*, defined similarly to (1.31) by two coefficients among (A\*, k*, u*, v*)

if isotropic. We note the associated contrasts AC := C* — C, and (A, Ak, Ap) when applicable.
By analogy with (2.2), the displacement u, for the perturbed solid solves the weak formulation:

Find u, € W(up), (u,w) Q —/f 'w+/ tn-w, Yw e Wy, (2.5)
I'n
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(-,-) being defined by (2.3), and C,(x) = (1 — xB,(x))C + xB,(£)C* = C + xB,(x)AC ( where
XB, 18 By’s characteristic function) is the piecewise-constant elasticity tensor of the whole solid.
Subtracting (2.2) to (2.5), the perturbation displacement v, := u, — u is found to solve the weak
formulation:

Find v, € W, (va,w)% =— (u,w)ﬁf , YweW,. (2.6)

Remark 2.1. The condition f € C*(Q) in (2.1) is adopted for the sake of simplicity and ensures
u € C®(Q). Though it is satisfied in many applications (e.g. when the volumic forces such as
weight are neglected in front of boundary tractions), it might may be weakened if needed, provided
they allow sufficient regularity of w (C*, as it will be seen later) at the chosen inhomogeneity
location z.

2.1.2 Cost functional and adjoint field

We consider cost functionals J(B,) that depend on the inhomogeneity (B,,C*) implicitly through
the perturbed displacement u, solution of (2.5), of the form:

J(B,) = J(u,) with J(w) = / Uo(z;w(x)) dV, —i—/ Up(z; w(x)) dS,, (2.7)
with the volume and surface densities ¥, : (Q™xR3) — Rand Ur : (I™xR3) — R assumed to be
twice differentiable in their second argument. Moreover, the corresponding second-order derivatives
of ¥ and W are assumed to have C%7 regularity with respect to their second argument for some
~ > 0. The supports Q™ and I'™ are open subsets of (2 and I', respectively; moreover we assume
z # Q™ which ensures that B, NQ™ = () for a small enough. Using Taylor expansion with integral
remainder of U and ¥, J(u,) can be expanded about the background solution u as:

1
J(ug) = J(u) + J'(u;v,) + iJ//(u; Vo) + R(u;v,) (2.8)
with:
Jl(“’; Ua) = V2\IIQ(';U’) v, dV + VQ\IJF(';U’) v, dS,
Qm rm
J"(u;v,) = VaaVa(;u): (v ®v,) dV + Vo lp(su) @ (ve ®v,)dS, (2.9)
Qm rm

1
1
R(u;v,) = / (1—t)J"(u+ tvg;v,) dt — §J”(u; Va),
0

where, for any function ¥ having two arguments, V1 denotes its gradient with respect with its
k-th argument, and Vet its second gradient w.r.t. k-th and ¢-th arguments.

To evaluate the directional derivative J'(u;v,), it is convenient to introduce the adjoint solution
p defined as the solution of the weak formulation

Find p € Wy, (p,w)$, = J' (u;w), Ywe W, (2.10)

Then, on setting w = p in (2.6) and w = v, in (2.10), combining the resulting identities and
exploiting the symmetry of the energy bilinear form, one obtains

J,(u;va) = —(p, u>§f - <palva>§f = —(p, ua>§f : (2.11)
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Least-squares misfit cost functional. One of the most simple of such cost functional is the
one evaluating the misfit between a simulated displacement w and measurements 4™ resulting from
e.g. experiments on a real configuration to be recovered, on a measurement surface I'™ C I'y:

1
J(w) =5 / lw — u™*dS. (2.12)

It corresponds to ¥Up(z, w) = 3|w(z) — u™(z)|* and ¥ = 0 in the above formalism. In this case,
the expansion (2.8) is exact and reads:

1
J (u;v,) = / (u—u™) v,dS, J'(u;v,) = 2/ [va)?dS and R(w;v,) =0, (2.13)
m I'm

and the adjoint solution p is therefore defined by:

Find p € W, (p,'w)g = / (u—u™) - wdS, YweW,. (2.14)
The case of interior measurements of displacements recorded in a region Q2™ C €2 can be accom-
modated in a essentially identical fashion, setting ¥p(z,w) = 0 and Vg = 3|w(z) — u™(x)|?,
x e Q™.

Eventually, J" and J” being expressed by (2.11) and (2.9) as linear and quadratic functionals of
v, it is readily seen that we need to know the asymptotic behavior of v, to determine that of J. As
it enables to make the dependency of the transmission problem on a more explicit, the framework
of volumic integral equations is adopted for such study. This framework is now presented.

2.1.3 Volume integral equation (VIE) formulation

We first recall the definition of the Green’s tensor of the considered problem, which is in the core
of any integral equation formulation. We give the integral equation and representation equivalent
to the transmission problem (2.5), involving integrals on the support B, of the inhomogeneity. In
order to (i) make use of the results of Chapter 1 and (ii) make the dependency in a explicit for the
upcoming expansion, a scaling B, — B is then specified, along with the isomorphism mapping the
functions defined in B, to these defined in B. Finally, the considered integral operator is shown
to be invertible with bounded inverse by Theorem 2.1, which is a natural follow-up for bounded
domains of Theorem 1.3.

2.1.3.1 Elastostatic Green’s tensor

The elastostatic static Green’s tensor G(&, ) associated to the problem (2.1) is defined for any
source point x € () by:

div(C : VG(, @)+ 6(-—x)I =0 in Q
G(,x)=0 onI'p (2.15)
t[G(-,z)]=0 on I'y.

The components [G(§, x)];; denote the i-th component of the displacement at £ resulting from

a unitary force imposed at x in the j-th direction. Consequently, the inner products apply first on
the “displacement” index of G. Green’s tensor can be decomposed according to:
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where G () is the (singular) full-space Green’s tensor previously introduced in Section 1.1.3. To
account for the homogeneous boundary conditions in (2.15), the complementary part G¢o(&, @) is
the solution the elastostatic boundary-value problem:
div(C: VGc(,x)) =0 in Q
G(,z)=—-Gux(-—) on I'p (2.17)
t[G(-,x)] = —t[Goo(- — x)] on I'y.
Due to the regularity of the boundary data of this problem for any = € Q, Go(-,x) € C®(Q;R33)
and in particular is bounded at & = x. Eventually, on applying the first equation of (2.15) to a

test function w € WyNC%(w,) (where w; is a neighborhood of &) and integrating by part the first
term over {2, Green’s tensor is seen to verify:

(G(, @), w)S = x(x) YweWoNCws), (2.18)

where w, is a neighborhood of x.

2.1.3.2 Integral equation and representation for perturbation

Setting (i) w = G(-,x) in (2.6), (ii) w = v, in (2.18) and (iii) subtracting the two resulting
equalities, we obtain the governing volume integral equation (VIE) for v,:

Lova)(x) = — (u,G(-,2))5°, VeeB,UQ\ B, (2.19)
where the linear integral operator L, is defined by
La[o)(@) :=v(z) + (v, G(-, @) 5" . (2.20)

Note that the integral arising from steps (i) and (ii) above are well-defined for € B, U\ B, due
to interior elliptic regularity of v, and the fact that VG(-,z) € L'(Q). The equality (2.19) can be
understood differently whether or not € B,. If ¢ € B,, (2.19) is an integro-differential equation of
the Lippman-Schwinger type to be solved to compute the restrictions v, g, and Vv, p,. Once this
step is performed, v, is given outside B, by (2.19), this time written as the integral representation:

vo(x) = — (uq, G(,x))5°, Va ¢ B, (2.21)

2.1.3.3 Scaling on the reference shape

For easier reference to the previously studied FSTPs (Sections 1.2 and 1.3), and to take into account
the dependency w.r.t. a of the integrals over the small inhomogeneity B,, it will be convenient
to rescale the integrals intervening in (2.20) onto the fixed reference domain B. We consequently
define the scaled counterparts (€, Z, dVg) to the position vectors &, € B, and the differential
volume element dV; according to:

(a) (€2)=z+a(&z), (b) dVg=a’dVg (£ €B,, E€B). (2.22)

Then, we define the isomorphism P, : H(B,) — H'(B) associated with this scaling, and its
inverse P, 1, by:

Pulv)(2) == v(z +az) and: P;V](z):=V <x - Z) . (2.23)



The following properties are then verified by P, when considering the gradients of scaled functions:
V(Palv])(@) = aPa[Vo)(Z), V(P '[V])(2) =0 'Py [VV](@). (2.24)
Furthermore, computing the norms of such scaled functions leads to:
0l c28,) = a2 IPalolll2)y  1VOll2s. = 2V (Pafo])ll25)- (2.25)

2.1.3.4 Solvability of the VIE

In order to prove that (2.19) is uniquely solvable, let us work a little further on the operator L,.
The decomposition of Green’s tensor G = G, + G¢ leads to a natural decomposition of L,:

Lo = Koo + K¢ (2.26)
with:
Kos[v)(z) == v(x) + (v,Goo(- — 2))5°  and Kclv](z) = (v,Go(-,z))5° . (2.27)

Remark that the operator K corresponds to the transmission by B, when it is embedded in an
infinite medium rather than in €, as studied in the previous chapter. To come back to the reference
shape B, recall that VG, is homogeneous of degree -2 as explained in Section 1.1.3, which writes
with the notations of (2.22):

VG (€& — ) =a 2VG (€ — 7). (2.28)
Then, in terms of the scaling operator P, defined by (2.23), one shows:
Koo = P;ILP,. (2.29)
where £ denotes the operator associated with the transmission by B, i.e.:
LIV](@) =V (2) + (V,Gux(- — 2))5° (2.30)
The decomposition (2.26) eventually writes:
Ly, =P, LPy+ Ko (2.31)
and we are now in position to assert:

Theorem 2.1. Consider the transmission problem featuring an inhomogeneity (B, C*) embedded
in a finite elastic domain ) characterized by C. Under the assumptions of Theorem 1.8 on C and
C*, the corresponding integro-differential operator L, : H'(B,) — HY(B,) defined by (2.20) and
decomposition (2.31) is invertible. Moreover, there exists a; > 0 such that L' is bounded uniformly
in a, for all a < ay.

A first step is to prove the following Lemmas:

Lemma 2.2. Under the same assumptions than for Theorem 1.3, the operator Koo := P, 1LP, :
HY(B,) - H'(B,) is invertible and its inverse is bounded uniformly in a for sufficiently small a.
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Proof. The invertibility is given by that of £, stated by Theorem 1.3, and definition Ko := P, 1 LP,,.
To estimate the norm of (K+,) ™!, we consider the equation P, ' LP,[v] = u, equivalent to LP,[v] =
Po[u] for some given background displacement u € H'(B,), and use the representation (1.74) of
its solution, introduced in the proof of Theorem 1.3:

Pov = L7 Pou) = (I + MG 'ACp : €) [Pyul. (2.32)

By virtue of the continuity of G~! : L?(B) — L*(B) and M : L*(B) — H*(B), there exists C' > 0
independent of a such that:

|Pavlr2s) < [Pattllr2(s) + ClIVPaul 125) (2.33)
Owing to the properties (2.25) of P,, it is equivalent to:
vl 22(B,) < lwll2s,) + CallVullL2p,)- (2.34)

Choosing ag such that B, € {2 for any a < ag, we therefore have ||v||72(p,) < max(1, aoC)|u| g1 (B,)-
Similarly, since

VP = (I<4> + VMg—lAc) [VP.ul, (2.35)
there exists C’ such that:
IVoll2p,) < (1 +C)IVul 2,y < 1+ C)|ullg s, (2.36)

Summing inequalities (2.34) and (2.36), we obtain that for a < ag, there exists Cp such that
V| a1, < CollVulgi(p,), i-e. that Koo ™t =P;1L71P, is bounded uniformly in a. O

Proof of Theorem 2.1. The next step is to write L, = Koo (I + Koo 1K¢) and to invert the second
member of this product thanks to Neumann series. For that, remark that ¢ is an integral operator
with C*° kernel VG so its norm can be readily estimated by Cauchy-Swartz inequality to obtain:

H’CC[”]H%{l(Ba) < HVGCH%%BaxBa)HAc : VUH%%BQ)

(2.37)
< G/GCC’2HVUH%Q(B(1) < GGCCQHUH?W(BG)’

so that [|Kcllgi(p,) < a®Cco. Consequently, for all ¢ < 1 there exists an inclusion size a; such that
||ICOO_11CC||H1(Ba) <c¢<1 Va < ag, namely:

o \1U/3
a1 = min (ao, (COCC> >

As a result, Va < ay, I 4+ Koo~ 'K¢ is invertible by Neumann series, with bounded inverse:

1 1
I+ Ko™ Ke) Ha (s, < -
I B e Ve PP

The inverse of L, is finally given by:
L= (T+ Ko Ko ) Ko™ (2.38)

and its norm is bounded uniformly on a for a < a;.

57



2.2 Asymptotic behavior of perturbation displacement

The asymptotic behavior of v, is now investigated, involving the expansion for a — 0 of integral
equation (2.19). To compute the integral, we use the scaling (2.22) introduced above.

2.2.1 Inner expansion

First, we look for the inner expansion of v,(x) i.e. for * € B,. The expansion is sought in the
form:

1 1
vo(x) = aV1(Z) + a*Va(Z) + §a3V3(:i:) + 6a4V4(:T:) (TeB, x=z+ax€B,)  (2.39)

in term of functions V'; of the rescaled coordinates that have to be determined. More precisely,

based and this ansatz, we write the inner approximation of v, in the form:

1 . 1
vo(x) = P V() + da(2), with Vg :=aV +a*Va+ §a3V3 + 6a4V4, (2.40)

and the remainder d, is “small” in a sense that will be made precise later. Note that the scaling
properties (2.24) imply that:

Vo (x) = a P VV,](z) + Vi (x)
a? a? (2.41)
= VVi(2) +aVVa(Z) + 5 VV3(2) + - VVi(Z) + V().

Remark 2.2. The expansion (2.41) implies in particular that Vv, = O(1) does not vanish as
a — 0. The difficulties arising from this observation when considering cost functionals depending
on strains or stress rather than displacement were recently studied in [Delgado & Bonnet, 2015].

Taking Taylor’s expansion of Vu about z provides a similar expansion for Vu:
2 ;%o sw2 A’y @3 4
Vu(§) = Vu(z) +aViu(z) - &+ ?V u(z): &+ EV u(z)e & "+ 0O(a). (2.42)

Invoking the decomposition (2.16) of G(&, ), the homogeneity property (1.30) and differentia-
bility of G¢ in By, one has

V1G(¢,z) =a *VGo (£ —T) + V1Gc(z, 2)

Y . (2.43)
+a(V11Ge(z,2) - €+ VaGe(z,2) - &) + o(a)
Finally, the integral equation L,[v,](x) = — (u, G(-, m)}éf (2.19) is expanded as:
4 aj
G=1) (LIV)(®) - F;(®)) + o(a”) =0, (2.44)
Jj=1 '
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where the right-hand sides F; are given by:

/ Vu(z): AC: VG (§ —z) dVg

Fo(z) = g (Vu(z)-€) : AC: VG (€ — ) AV
/ V3u ):AC:VGOO(E—:E) dv;
—2 B(Vu(z)+VV1(E)) :AC: V1Ge(z,2) dVe (2.45)
Fi@)=- | (V4u(z) .§®3) L AC: VGoo(€ - 2) AV}

—6 | (V2u(z) €+ VV3(E)) : AC: V1Ge(z, z) dVg

e

- 6/6 (Vu(z) + VV1(8)) : AC: (V11Gc(2,2) - €+ V21 Go(z,2) - ) dVeg

Cancelling each order contribution in (2.44), the terms of the expansion of v, are found to be
the solutions to the equations:

LIVj|(®) - Fj(z) =0& LIV,](z) = Fj(z), j € {1.4}.

Resolution The solutions of these equations are those of the FSTPs with polynomial background
displacement described in Section 1.3. More precisely, rewriting the RHS (2.45) with the help of
notations ¢; [V7u(z)] for homogeneous polynomial displacements driven by the gradients of w, the
first and second-order equations are:

LIV1](Z) = — (¢1[Vu(2)], G- — 2))5°

- ) CAC (2.46)
LIV2](®) = — (@2 Viu(2)], Goo(- — T)) 5
Consequently, V1 and V5 are the corresponding FSTP solutions:
Vi=vP[Vu(z)], Vi=v2[Vu(z)] (2.47)

The third and fourth-order equations, involving complementary parts coming from the contribution
of G¢, then are:

LIV3](@) = — (p3]V?u(2)], Goo(- — 2))° — 2 g5(2)

(2.48)
LIVi](@) = — (24[V'u(2)], Gool- — 7)) — 6 (a4(2) + L(2) - )

where the vectors g;(z) and g4(z) collect the constant terms w.r.t. & in F3 and Fy, and L(z) - &
accounts for the linear term in Fy4. Introducing the solutions (2.47) into (2.45), and using the elastic
moment tensors defined in Section 1.3.3, they are written:

q3(z) = Vu(z): A: VGc(z, 2)
q4(2) = Vu(z) e Ay : ViGc(z,2) + Vu(z) : Ay e V11Gc(z, 2) (2.49)
L(z) =Vu(z): A: Va1 Ge(z,2)
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The solutions V'3 and V4 are therefore given by:
Vs = o) [V3u(2)] + 2vsc, V=00 [Viu(2)] + 6vac, (2.50)

where the complementary parts are defined accordingly to (2.48) and using the solution for first-
order FSTP by:

vso(®; 2) 1= —gs(2),  vac(®; 2) = —qu(2) — ul) [L(2)](@). (2.51)

Inserting all these solutions into (2.40), the inner approximation P, 'V, of v, is finally defined
by:

Vi i= av [Vu(z)] + d®0 2 [V2u(z))

1 1
+ad? <21Jg’) [V3u(z)] + vgc> +a* (61}%) [V4u(z)] + v4c>

(2.52)

2.2.2 Remainder estimate

Eventually, the O(a%) inner approximation we obtained is justified by the following estimate.

Theorem 2.3. (Error estimate on the inner approximation of displacement): Assume that the
background and inhomogeneity elasticity tensors C and C* are both positive definite and bounded.
Then there exists a bound a1 > 0 and a constant C' > 0 independent of the size a such that:

19all 71 (B,) < Catl’? Va < ay. (2.53)
Proof. Combining (2.19) and (2.44), the error d, is found to satisfy an integral equation:

La[ba](x) = v,(z) (2.54)

The proof then relies on (i) the existence and boundedness of the inverse operator £; ' : H'(B,) —
H'(B,) uniformly in a, which was proven in Theorem 2.1 for a smaller than a fixed bound a; and
(ii) estimate of the second member ~,, that we provide now.

Subtracting the RHS F; defined by (2.45) to the RHS — (u, G(, x)>§f of the integral equation
satisfied by the exact perturbation v, (after adequate scaling), the RHS ~, is written as the sum
of convolutions:

4
Yo(@)=— | Fo:AC:VGo(-—x)dV -> | F;:AC:H,(-z)dV, (2.55)
B B
a ]71

where the functions F'; and kernels H; will be specified below. In particular, these kernels are
bounded and smooth enough so that the gradient V-, is computed as:

4
Vv, (x) = -V, i Fo:AC:VGoo(- —x)dV =) ; Fj:AC:VoH(-,x)dV. (2.56)
a j_l
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Definition and estimates for the functions F';: The functions Fy and F'; are remainders of
Taylor’s expansion of Vu about z:

Fo(€) = Vu(g) — | Vu(z) + aVul(z) €+ a22V3u(z) €77+ CgV“u(Z) o €%, (2.57)

Fi(¢) = [VU(E) — Vu(z) — CLVQU(Z) é] ,

where we used the scaled variable & = (£ — z)/a. Consequently, their leading-order contributions
are so that:

CL4 - CL4
Fo(€) = 5, Voulz) ¢ €7 +o(a*) = 5, P [Veps[Vou(2)]] (€) + ofa®),

; . (2.58)
Fi(€) = 5 VPu(2) : €7 4 o(a®) = TP, [Vepy[VPu(z)]] (€) + o(a?),
Similarly, the other functions F; for j > 2 are found to be:
Fa(6) = P, [ Vul [Vu(2)]| ().
Fy(€) = P, | Vup [V2u(2)]] (€). (2.59)

a’_ a
Fi(§) = 5P [ Vo [V0u(z)] + 5V (o5 [V'u(2)] - 6u [L(2)]) | (©).
From the expressions (2.58) and (2.59) and since ||77(1_1F”L2(Ba) = 0(a®?) for any function

F ¢ H'(B) independent of a as specified by (2.25), we obtain the following estimates:

1Follz2(m,) = Oa?), [[Fill2(5,) = O(™?),

(2.60)
||F2||L2(Ba) = 0(03/2)7 HF3”L2(BQ) = O(GB/Z); HF4”L2(BQ) = O(a7/2)-

Definition and estimates for the kernels H;: These kernels are:

Hi(§ z) = Hy§ x) = VGe(§, ),
H; (& @) = VGe(€, ) — VGe(z,2) —a(Vi1Ge(z,2) - €+ Va1 Ge(z, 2) - @), (2.61)
Hj;(& ) = VGe(§,x) — VGo(z, 2).

and are therefore bounded by virtue of the C'* regularity of G¢. Their gradients are also bounded

and defined by:
VZH](€7$) = V21GC(5733) fOI‘j € {17374}7

V2H2(£,$) = V21G0(6,$) — Vgch(Z,Z).

As for Fo and F'p, these kernels are remainders of Taylor expansions of VG¢ about (z,z) whose
leading-order contribution can be determined similarly to (2.58). Since [P, H||12(5,x5,) = O(a?)

(2.62)

for any function He L%(B x B) independent of a, one easily obtains the estimates:

| H il 22(B.xB.) = O(a®) for j € {1,4}, | H2|12(B,xBa) = O(a”)

.y (2.63)
and HH3HL2(BaxBa) = 0(a"),
and similarly, for the gradients,
IV2H | 125, xB,) = O(a®) for j € {1,3,4} and [|VoHoall12(p,x5,) = O(a®). (2.64)
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Estimation of «,: Remark that the first term of (2.55) writes —MJ[AC, : Fy], with AC, :=
xB,AC and M : L2 (R} R3X3) — H] (R3?)is shown to be continuous by Lemma 1.4. Therefore,

comp sym

there exists C' > 0 such that the following inequality holds:

Fo:AC: VG — ) dVH < C||Foll2(p,) :Ca11/2+o(a11/2). (2.65)

B, H'(Ba)

For the remaining terms, we use Cauchy-Schwartz inequality twice to assert similarly that there
exists C' > 0 such that:

We then apply (2.66) to the products of functions F'; and kernels H; (resp. VoH ;) and introduce
the estimates (2.60) and (2.63) to evaluate the L? norm of 5, (resp. of V~,). Combining those
norms finally yields the sought estimate:

F:AC:H(,x)dV
Ba

< C|F| 2B 1H | £2(B. x B.)
L?(Ba)

V(F,H) € L*(B,) x L*(B, x B,). (2.66)

Vol (5. < Ca''/?+ 0 (a11/2> . (2.67)

O]

2.2.3 Outer expansion

We now look for the outer expansion of v,, i.e. for ¢ B,. Recall that v,(z) is then given by the
integral representation

vo(x) = — ; V(u+v,):AC: V1G(-,z)dV, =z Q)\ B,. (2.68)

In this case, the singular behavior of G(, x) is not activated, and one therefore has:
VIG(an) = V1G<Z,:E> +O(a)7 €€Ba7w€Ba-

Using the first order inner expansion v, = aP, }[V1]+o(a) and V| = vg) [Vu(z)], one moreover

has:
V(u+v,)(€) = Vu(z) + P [VVI(E) + 0(a) = P, ! | Vuy [Vu(2)]| (), &€ B..

Scaling the representation (2.68), retaining only the leading-order terms and expressing the
resulting integral thanks to the elastic moment tensor .4, we finally obtain the well-known leading-
order outer perturbation [Ammari et al., 2002]:

vo(x) = aPvoy(x;2) + O(a?), =€ Q\ B, (2.69)

where:

Vout(x; 2) := —Vu(z) : A: ViG(z,x). (2.70)
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2.3 Misfit function expansion

Now that we know both the inner and outer expansion of the perturbation v,, we are in position to
provide and justify the sixth-order expansion of the cost functional J(B,). We begin by stating the
Theorem 2.4, which addresses the general case and constitutes the main result of this chapter. The
possible simplifications for centrally symmetric shapes are then specified, with focus on ellipsoidal
and spherical shapes. We finally discuss shortly the issues raised by the practical computation of
this expansion.

2.3.1 Inhomogeneity of arbitrary shape

Theorem 2.4. The sixth-order expansion of any misfit functional fulfilling the requirements pre-
sented in Section 2.1.2 is of the form:

J(ug) = J(u) + a>T3(z) + a*Tu(2) + a®T5(2) + a®Tg(2) + 0(ab), (2.71)
where the topological derivatives 7T; are given by:

T3(z) = — Vu(z) : A: Vp(z),
Ta(z) = — Vu(z) : Az e Vp(z) — Vp(2) : Az e Vu(z),

Ts5(z) = — %Vu(z) t Az e V3p(2) — Vu(z) o Ay 0 Vp(2) — %Vp(z) t Az e Viu(z),
Tolz) =~ s Vu(z) s Aur o Vp(z) = S V%u(z) @ Ay o Vp(2) (2.72)
1

— §V2p(z) o Ay 0 Viu(z) — %Vp(z) : Apy 0 Viu(z)

1
+Vu(z): A: Vo Ge(z,2) : A: Vp(z) + §J”(u;v0ut(-;z)),

in terms of (i) the direct and adjoint fields w and p solutions of the problems (2.1) and (2.10) posed
on the homogeneous domain (2,C), (i) the elastic moment tensors A,, defined in Section 1.3.3,
and (iii) the Green’s tensor G defined by (2.15), which intervenes in Tg through its complementary
part Go = G — G and in the definition (2.70) of vout.

Proof. Recall that J is expanded in Section 2.1.2 as:
1

J(ug) = J(u) + J'(u;v,) + §J”(u; va) + R(u;v,). (2.73)

The expansion in powers of a is therefore obtained by evaluating successively each of these terms.

First derivative J’ is computed thanks to the adjoint field p defined by (2.10) as:

_ AC
J/(u;'va) = - <p7 ua>§f = - <p, u+P, I[Va]>Ba - <p, 5a>§fv (2'74)

where the inner expansion (2.39) was introduced for the second equality. The first term is expanded
up to order O(a®) by (i) expressing the integral using the scaling B, — B, (ii) introducing the
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definition (2.52) of V,, (iii) using Taylor expansion (2.42) of P,[Vu] and P,[Vp] and (iv) using

(p) (p”

the notation uyg’[E)| = ¢, [Ep] + vy’ [E)p] for compactness. We obtain:

4 -1
_ AC a? —@0—
(pyu+ P V)Y =a3/ Z—( VRl €
Bl (g—1)

4
PIvPu(z)] - a*Vauy [L(2)]| (€) dVe +o(a®). (2.75)

p=1

Owing to the fact that only the gradients of vz 4c defined by (2.51) intervene, one can note that
Vug)[L(z)] is the only remaining contribution of these “complementary” terms in (2.75).

Moreover, the o(a®) behavior of the second term (p, 6(1)@5 in (2.74) is obtained thanks to the
estimate |04/ f1(B,) < Ca''/? given by the Theorem 2.3 so that:

\(p, AC\ < [|AC : VD25, IVall12(p,) < Ca’?a1? < Cd”. (2.76)

Second derivative To evaluate J”(u;v,), under the assumptions Q™ N B, = and "™ N B, =
made earlier, we use only the outer expansion of v, (2.69) to obtain:

J"(u;v,) = aGJ"(u; Vout) + 0(a6)

(2.77)
=a6[ Vo Uo(;u): v82 dV + Voo Ur(u) : v82 dS| + o(a®).
Qm

out
Fm

Remainder R(u;v,) can be put in the form (considering only the surface integral on I'™ for
brievety)

1
R(u;v,) = /0 (1—-1) /m [V Ur(z; u(x) + tvg(x)) — Vo Ur(z; u(x))] : (ve ® v,)(x) dS, dt.

(2.78)
The C°7 assumption on VoW and the outer expansion (2.69) then yield the estimate:

‘ (Voo Up(x; u(x) + tvg(x)) — Vo Ur(z;u(x))] : (v ® 'va)(:c)‘
< Cat* ([vgu (2 2) 270 + 0(1)) (2.79)

for some constant C'. Consequently, the following estimate holds:

R(u;v,) < 0(a%37) = o(a®) (2.80)

Final computations The expansion (2.71) finally follows directly from the expansions above by
(i) expanding the inner product (2.75) into a sum of inner products ordered by increasing powers
of incsize, (ii) remarking that these products are of the form (1.115) used as the definition of elastic
moment tensors and (iii) adding the O(a®) contribution of J” (2.77). Owing to the o(a®) behavior
of both remainder (2.76) and (2.80), one obtains the sought expansion. Remark also that we also
used the definition (2.49) of L(z) in Ts to emphasize the dependency on the complementary Green’s
tensor Gc. O
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2.3.2 Simplifications for particular shapes

We now adress some of the simplifications that can be obtained when considering particular shapes
of inclusion.

Centrally symmetric inhomogeneities: Centrally symmetric shapes B cover many simple
shapes such as balls, ellipsoids or cuboids. As a consequence of Lemma 1.9 asserting that A,, =0
for odd p+ g, all of T4 and much of 7¢ vanish in (2.72) and the topological derivatives are given as:

T3(z) = —Vu(z) : A: Vp(z),
Ta(z) = 0,

1 1
To(2) = — 5 Vu(2) : Aig s Vop(2) — V2u(z) o An 0 V2p(2) — 5 V(=) : i : V¥u(2), (2.81)
1
Te(z) = Vu(z) : A: Vo1Ge(z,2) : A: Vp(z) + §J"(u;vout(-; z))
Note in particular that since Ty = 0, J(0)) + a®>T3(2) is a fourth-order (and not third-order) approx-

imation of J(B,) in a in this case.

Remark 2.3. In the expansion of v,, one can observe that the constant part q470f vac (2.51)
vanishes for any centrally symmetric shape, since it involves first-order integrals of & on B.

Ellipsoidal inhomogeneities: Ellipsoids are a particular case of centrally-symmetric shapes for
which the Vug)[Ej] are polynomials whose terms have degrees j — 1, j — 3 ...as explained in
Section 1.3. The particular cases j = 1 and j = 2 and the way to compute the corresponding
moment tensors are detailed in sections 1.3.2 and 1.3.3, in particular the following simplification
holds:

1
Az = ®A® M®, (2.82)

M@ being B’s geometrical inertia tensor defined by (1.123). The topological derivatives are then
expressed with the help of A and Ay only:

Ts3(z) = —Vu(z): A: Vp(2)
Ta(z) =0

__ 1 A (Vin(z) M@ A (VBulz) - M
To(2) = = g | Vulz) : A (v p(z): M ) +Vp(z): A (v w(z): M )] (2.83)
— VZu(z) o Az e V2p(2)
1
T6(z) = Vu(z) : A: Vo1Ge(z,2) : A: Vp(z) + iJ"(u;vout(gz))
Spherical inhomogeneities: If B is the unit sphere, then we easily compute:

1B| = %ﬂ, M3 = %I and Vu:I=VAu, (2.84)
so that 75 becomes:

Ts(z) = —% Vu(z): A: VAP(z) + Vp(z) : A: VAu(z)| — Viu(z) e Ay e Vp(z), (2.85)
and A have the closed-form expression (1.119) for isotropic materials.
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2.3.3 Practical evaluation of the topological derivatives

The practical evaluation of the topological derivatives T3 to Tg rely on the following ingredients:

(a) Background and adjoint solutions: each needs to be computed just once, irrespective of
the number of inhomogeneity sites z considered. As derivatives of u and p of order up to four
in 7g (or only up to three in 75 for centrally symmetric shapes) are required, suitable solution
or post-processing methods are needed. One possibility is to use integral representation formulas,
since they can be differentiated at arbitrary order.

(b) Elastic moment tensors: each needs to be computed just once for given inhomogeneity
shape and material properties. Their computation requires knowing the FSTP solutions ug) for
p € {1,2,3,4} in the general case and p € {1,2} in the centrally symmetric case. The latter are
known explicitly for ellipsoidal inhomogeneities, except for the need to (i) evaluate Eshelby tensors
given by integrals for anisotropic background properties, and (ii) solve numerically a small matrix
system for computing ug) via (1.104). For non-ellipsoidal inhomogeneities, one needs to solve
numerically the FSTPs (1.88).

(c) Derivatives of either the Green’s tensor G(-,z) or its complementary part G¢(-, z) are

needed for the evaluation of Tg .

Evaluations of contributions related to the Green’s tensor Item (c) above deserves elab-
oration. If an infinite medium is considered (Q = R3), then of course G = G, and G¢ = 0. In
a few other cases, in particular that of a semi-infinite elastic medium with a traction-free plane
surface, the Green’s tensor G is known in closed form. In most situations, however, contributions
of G(+,z) or G¢(+, z) to the topological derivative Tg will have to be computed numerically. We
now briefly discuss the implications of this requirement.

First, the derivatives V1G(-,z) are involved, through the expression (2.70) of vgout, in
J"(u;vout). This looks inconvenient as all Green’s tensors with source points on I'™ and Q™
are a priori needed. However, we note that the well-known symmetry property G(z,z) = G* (z, z)
implies the property V1G(z,x) = VoG (x, z). This allows to evaluate J” (u; vyt ) for given z by
means of the Green’s tensor having z as source point.

In fact, the derivatives H®) (., z) := 0.,Gc(+, z) can be found as solutions to problems obtained
by differentiating the problem (2.17) satisfied by G¢ with respect to the coordinates of z (which
acts therein as a parameter):

div(C: VH®?) (.. 2)) =0 in €,
HP (. 2) = 0,Go0(- — 2) on I'p, (2.86)
t{HP) (., 2)] = t[0,Gx(- — 2z)] on I'x.
Problems above are ordinary elastostatic problems with smooth boundary data (since z € Q).
Then, 7¢(z) also involves the second-order derivative V12G¢(z, z), which can be evaluated using
first-order derivatives of & — HP)(z, z) at = = z.
If the expansion of J(B,) is to be evaluated for many inhomogeneity sites z, the induced need

to solve many problems of the form (2.86) becomes impractical. One possible remedy then consists
in using a (truncated) separable representation of Goo(x — 2z), of the form

Gool(r —2) = Y _0y(x) @ B,(2) +&p. (2.87)
q=1
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Such representations are provided by e.g. multipole expansions [Fu et al., 1998] or the sparse
cardinal sine decomposition of [Alouges & Aussal, 2015], with bounds on the truncation error
€p. Then, the computational effort associated with solving problems of type (2.86) becomes O(p)
irrespective of the number of inhomogeneity sites z.

2.4 Conclusions

This chapter was about the perturbations due to the presence of an inhomogeneity (B,,C*) in an
otherwise homogeneous medium, and their asymptotic behavior as the size a of such inhomogeneity
becomes smaller.

We first established the expansions of the perturbation v, of the displacement due to external
loads, up to O(a) for the inner expansion (inside B,) and to O(a®) - the leading order - for the
outer expansion (outside B,). The practical computation of these expansions lean on the free-
space transmission solutions ug) addressed in Chapter 1, with analytical expressions available for
ellipsoids. As an illustration, a full analytical example of the computation of the second-order inner
expansion (up to O(a?)) is provided in appendix 2.A.

These expansions of the perturbation displacement were then used to compute the expansion up
to O(a®) of any cost functional J that depend implicitly on the inhomogeneity (B, C*) through this
perturbation v, and that satisfies some regularity assumptions. Thanks especially to the adjoint
state method that we used to expand the first functional derivative of J, the terms 7;, j = 3,...,6
of the expansion of J, called the topological derivatives of J, were given in closed-form by Theorem
2.4. The remainder of the expansion was rigorously proven to be of higher-order, i.e. o(a%). Finally,
some of the difficulties raised by their practical computation were discussed briefly, along with some
tracks to address these difficulties.

We now delay further discussion, particularly on how to use such expansion for identification,
to the next chapter.
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2.A Analytical example of perturbation expansion: concentric
spheres

This part is meant to illustrate the expansion of the perturbation of the displacement. Consider
two concentric spheres S, and S, of radii @ and b, S, being embedded in S (a < b). We note
Sc = S\S, the complementary part of S,. An homogeneous isotropic “background” material
occupies S¢ and is characterized by shear modulus and Poisson coefficient (u, ). Another isotropic
homogeneous material occupies “the inhomogeneity” S, and is similarly characterized by (u*, v*).
These notations are summarized on figure 2.1.

Figure 2.1: Concentric spheres: notations.

Applying some tractions (to be defined later) on the exterior boundary 9S, we note in this
section:

e u the “background” displacement, i.e. the displacement that would lie in S if it was homo-
geneous with properties (u, V).

e u* the exact total displacement, and v** = u®* — u the exact perturbation displacement due
to the presence of S,.

e v, the second-order approximation of v®* obtained by an asymptotic expansion as a — 0.
The goal of this study is to compute the first terms of v, and compare it to v**. Some numerical
illustrations are provided, performed with Matlab and the tensor toolbox [Bader et al., 2012].
2.A.1 Preliminary computations: exact and background fields
2.A.1.1 Solution of Navier equations in spherical coordinates

General solutions to the elastic equilibrium equation div(C : Vu) = 0 for isotropic materials are
given in spherical coordinates (r, 6, ) in [Parton et al., 1984]. We limit ourselves to axisymmetrical
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problems, for which the solutions are the harmonics u(™ (r, ) defined for each harmonics by four
constants (A, B,C, D) as:

u™

[A(n +1)(n—2+4)r" " + Bnr™ '+ Cn(n+ 3 — 4)r™" — D(n + 1)r~ "2 | P, (cos(8))

ug = {A(n +5—4w)r" 4 Br' ™ 4 C(—n + 4 — w)r~" 4 Dr~ ")) 9y P, (cos(9)),
(2.88)

where 0y = 0/06 and P, are Legendre polynomials. The first ones and their derivatives are:

Py(cos(0)) =1 09 Po(cos(0)) =0
Py (cos(0)) = cos(0) 09 P1(cos(0)) = —sin(h) (2.89)

Py(cos(0)) = %(3 cos?(0) —1)  9pPy(cos(h)) = —3 cos(f) sin()

Such fields are physically acceptable in a bounded domain that does not contain the origin (typically
Sc) while C' = D = 0 is required for a solution computed in a bounded domain containing the origin
(typically S or S;). The corresponding components of the traction vector in the radial direction
t) = g . e, are:

) =2 [A(n +1)(n? —n—2—2v)r" 4 Bn(n — 1)r" 2
— Cn(n?+3n —2v)r~ ") L D(n+1)(n + 2)7’7("+3)] P, (cos(0))
(2.90)
tgn) =2u {A(n2 +2n—142v)r" 4+ B(n — 1)7‘"_2

+C(n? =2+ 20)r ") _ D(n+ 2)7“_(”4“3)} 0p Py (cos(0))

2.A.1.2 Solution under surface harmonic loading

As showed by (2.88), one displacement harmonic is entirely defined by up to four coefficients (A,
B, C and D) depending if the domain of study contains the origin and/or is bounded. These
coefficients are to be determined for each problem by the boundary and/or interface conditions.
For simplicity, we chose to consider a surface harmonic loading on the exterior surface 05, i.e.

tfgfg = t, Pp(cos(0))e, + tgOy Py (cos(6))eq (2.91)

for some (t,,t9) € R2. The corresponding force per unit length on a vertical half-circle as @ € [0, 7]
is (™ sin(f) (sin(f)dy being the contribution of the surface element in the direction e,) and is
represented on Figure 2.2.

This loading, must be balanced (zero resultant force and moment). The only global equilibrium
condition that is not trivially verified for loads of the form (2.91) is

/‘tqu:O (2.92)
oS

i.e.

27 /OTr [tr-Pp(cos(8)) cos(0) — tg sin(0)dy Pn(cos(6))] sin(f) d6 = 0 (2.93)
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(n = 0) (n=1) (n=2)

Figure 2.2: Force per unit length (™) sin(#) applied on 98 for (t,,tg) = (1, —0.5) such that t,+2tg =
0.

or, integrating by parts the 2nd term in the integral and using 9psin?(f) = 2sin(f)cos(d) and
cos(f) = Py (cos(0)):

27 /07r [t + 2tg] Pa(cos(6)) Py (cos(6)) sin(f) d6 = 0 (2.94)

Orthogonality properties of the Legendre polynomials show that the above is automatically satisfied
for n# 1, whereas one must assume t, + 2tyg =0 if n=1. Figure 2.2 gives a graphical confirmation
of the global equilibrium under such constraint.

Finally, this choice of surface harmonic traction loading was made such that, thanks to the
orthogonality of the Legendre polynomials, only the corresponding (n‘*) harmonic composing the
traction and displacement field is excited inside S. The background and exact solutions are therefore
easily computed.

Background solution: Since u is defined on S which contains the origin, only A and B are
nonzero for each harmonic. These coefficients are computed from the traction boundary conditions
on 05, i.e. for r = b, which result on the system:

tr
An+1)(n?  —n—2—-20)0" + Bn(n —1)p" 2 = =
24
] (2.95)
An®+2n— 14 20)0" + B(n — 1)b" % = i

Exact solution: wu®* is defined by parts on (i) S, containing the origin, by two coefficients A;
and B; and (ii) Sc¢ bounded and not containing the origin by four coefficients Ay, B, Co and Ds.
The transmission conditions (continuity of the displacement and traction vector) on 9S, (r = a)
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then read:
[Ao(n —2+4v) — Aj(n — 2+ 40%)] (n + 1)a™™ + (By — By)na™ ™t
+ Cyn(n+3 —4v)a™ — Dy(n +1)a” "2 =0
[Ao(n+5—4v) — Aj(n+ 5 — 4v*)]a™™ + (By — By)a" !
+ Co(—n+4 — 4v)a™" + Dya~ "+ =0

2 2 5 (2.96)
[A2(n® —=n—2—=2v) —vA1(n® —n—2—2v%)] (n+ 1)a” + (B2 — vBi)n(n — 1)a"
— Con(n® +3n — 20)a” ") 4 Dy(n+ 1)(n+ 2)a= "3 =0
[Ao(n® +2n — 1+ 2v) — yA1(n® + 2n — 1+ 2v%)] a” + (Ba — vB1)(n — 1)a" 2
+ Cy(n?® — 24 20)a~ "D — Dy(n + 2)a ™+ =0
where the stiffness contrast - is:
M*
. (2.97)
Similarly, the boundary conditions on 95 (r = b) are written:
As(n+1)(n* —n —2 — 20)b" + Byn(n — 1)b" 2
|25
— Con(n® +3n — 20)b~ ") L Dy(n + 1) (n + 2)b~("+3) = %
2.98
As(n? 4 2n — 1+ 20)0"™ + By(n — 1)b" 2 (2:98)
+ Cg(n2 -2+ 2u)b_("+1) — Do(n + 2)()—(n+3) — ;i
L
for a total of six equations that can be written as a linear system :
[ —fra)  —gr(a)  frla) gr(a) he(a) ke(a) ] (A ) | O
—fi(a)  —goa) fola) go(a) hela) ko(a) By 0
—vFX(a) —Gy(a) Fr(a) Gr(a) Hp(a) K,(a) Ay | _ 0 (2.99)
—vFy(a) —Gela) Fyla) Gola) He(a) Ko(a) By o [’
0 0 Fr(b) Gr(b) Hr(b) Kr(b) Co tr/2,u
L0 0 Fp(b)  Go(b) Hy(b) Ko(b) | \ D2 ) U to/2p )

where the functions F, G, f, g... are defined as the coefficients in (2.96) and (2.98). Note that F* = F
and f* = f if v* = v. This system is solved numerically in the Matlab code.

2.A.1.3 The case n=1
When n = 1, for the background solution, the boundary conditions (2.95) become:

tr to
—4A(1 = — 2A(1 = —. 2.1
(1+v)b 2 and (1+v)b 2 (2.100)

They provide another justification to the necessary condition t, + 2ty = 0 already established in

part 2.A.1.2, and gives:
t t
A=— - =—— 2.101
8u(l+v)b 4Eb’ ( )
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E being the Young’s modulus of the background material. For the exact solution, since G,(r) =
n(n —1)r""2 =0 and Gy(r) = (n — 1)r"~2 = 0, the matrix of the system (2.99) is:

[ —fr(a)  —gr(a) fr(a) gr(a) he(a) ke(a) ]
—fola) —gola) fola) go(a) he(a) ke(a)
_P)/F':<a) 0 FT(a) 0 Hr(a’) Kr(a’) (2 102)
—Fg(a) 0 Fyla) 0  Hy(a) Ky(a) '
0 0 E®B) 0 H(b) Kb
.0 0 Fpb) 0  Hp(b) Koy(b)

and is no more invertible since the second and fourth columns are each other opposite : the kernel
of the matrix is the one-dimensional space defined by B; = Bs, and zero other coefficients. As the
motion associated to the coefficient B is a rigid body translation toward the es direction (up =
B(cos(#)e, —sin(f)ey) = Bes), this kernel physically corresponds to the rigid body translation of
the whole sphere S. Consequently, an additional assumption involving By and/or Bj is necessary
for the system to be solved.

2.A.1.4 Gradients of the background field

The gradients Vu(0) and V2u(0) of the background field act as the source terms of the FSTPs
satisfied by the terms of the expansion of v,. They are therefore computed in this part.

General case n > 1, expressed in spherical coordinates: Since u is defined on S containing
the origin, it can be written as a sum of harmonics u™) with positive powers of r:

(2.103)

where we introduced the notations:

AP = A(n +1)(n — 2+ 4v) B™ = Bn
AY = A(n+5—4v) B/ =B

Op still stands for 9/06, and the dependency P, = P, (cos(#)) is kept implicit to ease the lecture.
Its first gradient, in spherical coordinates, is:

D = vu™ = | DM D : (2.104)
o o DY
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with:

pn) —

rr

(n+ DA 4 (n — 1)B§”>rn—2] P,
D) = [(Ar) — A7)y + (B — B2 | oy,
Dy = [(n+ 1) A" + (n = 1)BVr" 2] 0Py (2.105)
D(SZ) = _Aén)r” + Bé")r"*ﬂ 3P, + [Aﬁ,”)r” + Bﬁn)rn72:| P,
9P
tan 6

'D(n) — _A(”)Tn + Bén)rn—ﬂ

PP 0 + [Agn)rn + Bﬁn)rn_ﬂ P,

The above expression is also valid for n = 1, since P;(cos(#)) = cos(f) and some alebra show that

all the coefficients in front of the r”~2 = #~! vanish. In particular, we have:
3cos?(f) —1  —3cos(f)sin(d) 0
Vu(0)=0, Vu?(0)=B| —3cos(d)sin(d) —3cos2(d)+2 0 (2.106)
0 0 -1

The couple (0, ¢) in the later expression defines the basis (e,,eg,e,) in which this gradient is
expressed. For example, taking 8 = ¢ = 0, the spherical basis is a direct permutation of the
Cartesian basis: (e, eg,e,) = (e3, e, e2) so that:

-B 0 0
vu?(0)=| 0 —-B 0 (2.107)
0 0 2B

(e1,e2,e3)

Noting &€ () — 24 the relation dD™ = £ . dr holds, where the differential of D™ is
computed as:

d (Dg;)ea ® eg> = dDEXnﬁ)ea ®es+ Dénﬂ)dea ®es+ Dggea ® deg (2.108)
for (a, B) € (1,0, )?, those of the basis vectors are:

de, = dfeg + sin(f)dpey
dey = —dfe, + cos(#)dypey (2.109)
de, = —dy (sin(f)e, + cos(f)ey) ,

and this of the position vector r = re, is:
dr = dre, + rdfey + rsin(6)dye,, (2.110)

Then, identifying the terms containing dr, df and d¢p in (2.108), we obtain the nonzero components
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of the second gradient £™:
g = (n + 1)nA7(n”)r”_1 +(n—1)(n-— 2)37@)7«"—3} P,

rrr

rrd — “ror r

&) = &ly) = [n(Al) = AT 4 (n = (B = B{V)r ] 9P,
ey = (AL = 2407yt 4 (BE — 2B{")r" | 3P,

+ [nqu")rnfl + (n— 2)B7(n”)7’”*3} P,

g(n) — _nAgﬂn),rn—l + (TL _ Q)B(n)rn—3:| P,

TP N
(n) _ g A(M)y,n—1 M) _ on®)y n-3] %bn
+ [(Ar 24, yr" 1 + (B! 2B{")r ] e
&) = [0+ 1)nAT " (= 1)(n = 2)BJr 9P,

Epmy = € = [n AT+ (= 2) B 93,
+ _nAfn”)r”_l + (n— 2)B7§")r"_3} P, (2.111)
£ = (a9 + 5 o,

+ [@2A™ 1 Ayt 4 2B™) 4+ (n— 2)B§”>)r"—3} 9 Py

(n) _
ébww

(n + 1)Aén)r"*1 + (n— 1)Bén)r”*3] 0o Py,
3P, 0Py
tanf tanZ6

+ _Aén)Tn_l +Bén)rn—3] <

} 89Pn
tan 6
+ [nAfn”)r”_l + (n— 2)B7§")r"_3} P,

OiP,  0pP,
tanf  sinZ6

+ [AS”)T”_I + Bﬁ”)r”_?’] Oy Py,

£, = €. = [nAgPr = + (n - 2) By

o, = ey = [ afene]

Similarly than for the first gradient, these expressions are also valid for n = 1 and n = 2, since in
these case the coefficients in front of the negative powers of r vanish. In particular, V2u?) is found
to be linear in r, so that V2u((0) = 0.

Gradients for n = 1 in Cartesian coordinates Taking n = 1 in (2.103), we obtain for u(!)
defined on S:

ull) = [2A(4v — 1)r* + B] cos(0)
ul?) = [2A(3 — 2v)r® + B] (—sin(0)).

In the Cartesian basis (e, ez, e3),

(2.112)

r2 9 r2 9

1 13 1 —I1x3
cos(f)e, = — | woxs and —sin(f)eg = — | —xox3 |, with p® =% + 23,  (2.113)
L3 p
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and w(Y is therefore given by:

4ABv — 2)z 123
u(z) = 4A(3v — 2)z03 : (2.114)
24 [(4v — 1)z + (3—2v)p?] + B

Is gradient is then found to be:

(3v — 2)x3 0 (Bv — 2)x;
Vull) (z) = 44 0 (3v —2)x3  (3v — 2)z9 (2.115)
B—2v)x1 (3—2v)zy (4v—1)z3

and in particular vanishes at the origin & = 0 as already seen in (2.106). Noting the second gradient
EW = VQ’U,(U, most of its components are zero except seven that are constants:

Ely = 4A(3v - 2) el — 4430 -2)
el —4AB3y —2) &L) =443 - 2) (2.116)
e —aaB—2v) Q) =443 -20) €3 =4A(4v 1)

One can check that these expressions correspond to the general formulae (2.105) and (2.111) for
n =1, 0 = ¢ =0 and after proper index permutation.
2.A.2 Second-order approximation of displacement
The inner approximation is given up to the second-order term as:
va(x) = av) [Vu(0)] (2) + a*0 [V2u(0)] (&) + o(a?) (2.117)

where x € S, and & = x/a belongs to the unit sphere. We recall for convenience the solutions of
the first and second Eshelby problems for ellipsoids, studied in section 1.3.2.1 and 1.3.2.2:

v [B)(®) = (A1 : By) -2, v [Baf(®) = % (FoAy)eEo): (z0a), (2.118)

where Ay and Ay are computed from the resolution of Eshelby’s equivalent stress equation, and F
accounts for the integration of a linear strain.
2.A.2.1 Thecasen =1
The various (exact, background, Eshelby) solutions for n =1 are now considered in some detail.
The two-sphere transmission problem. The axisymmetric solution u®* for n =1 of the two-
sphere transmission problem is given, from (2.88), by

ult) = [2(40* —1) A% 4 B§¥] cos(6)

ul = —[(6—40*) Ar? 4 B sin(6)
in S,, and by

ulV) = [2(4v — 1) AS? + BS* + 4(1—v)C5*r ' — 2DFr 3] cos(6)

uf) = —[(6—4v)AGr? + B + (3—w)C5*r " + D] sin(6)
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in Sc. The transmission conditions (2.98) become

[ (2-8v)a® -1 (8v—2)a®> 1 4(1-v)a~' —2a7%] (AT 0)
(4v*—6)a®> -1 (6—4v)a®> 1 (B3—4v)at a3 By 0
dy(1+v%)a®> 0 —4(1+v)a®? 0 (4—2v)a~! 6a3 Ay _t- 0O (2.119)
—2y(1+v*)a? 0  2(1+v)a® 0 (v—1)a ! —3a3| VB2 — 4p ) O '
0 0 —4(1+v)b 0 (u—4)b=2 6b74 Co 2
i 0 0 2(1+v)b 0 (Uu-1)b"2 -=3b%] | D -1
i.e.
[AS (4v — 1) — A (4v* —1)] 262 + BS* — B + 4CS(1—v)a™t — 2DSa™3 = 0 (2.120a)
[AS(6 —4v) — A(6 —4v%)] a® + BS — B + CX(3—4v)a™ ' 4+ D§a™3 = 0 (2.120b)
[—AS¥(242v) + yAT(242v%)] 20 — C(4—2v)a ™2 + 6DSa™ = 0 (2.120c)
[AS(2+20) — YA (24 20%)] a + CS¥(2v —1)a™2 — 3D$a™ = 0 (2.120d)
—2A55(24-20)b — O (4 —20)b"2 + 6DS*b ™ = t,. /2 (2.120e)
AS(2420)b 4+ O (v —1)b™2 = 3DSb™* = —t, /4 (2.120f)

where the equilibrium condition %, +2t9 = 0 has been taken into account.

Writing (2.120e) + 2(2.120f) gives 6C5*(v — 1)b=2 = 0 so C$* = 0. Then the equations (c-d)
and (e-f) are identical, and finally solving the four left independent equations (e.g. egs (a-b-c-¢e))
for the four independent constants A{*, AS*, BS* — By*, DS* yields

5(1—v) ty
AT = 2.121a
U= Gt — (1) Sub (2.121a)
qz ty
ASE = 2.121b
> qad — (1+v)g Sub ( )
1-v)— %t
By pex = OUZV) =@ Shat (2.121¢)
qo® — (1+v)ge  12p
¥ =0 (2.121d)
b4 Btr
Dy = — & atr (2.121¢)
ae’ = (1+v)ge  12p
with «:=a/b and the constants ¢, g2 defined by
g =10v—v*) + (1+v")(6r—4)(y—1), @ =51-v")+1A+v")(y-1) (2.122)

Finally, a separate determination of Bf* and BS* is achieved by imposing a kinematic constraint,
namely that the mean displacement vanish on Sc. This translates into

4(1+ V)b A + 2B — b 3D = 0 (2.123)
ie.
B = ( qa® _ 6ga(1+v) ) trb
qa® —(1+v)e  qa® — (14+v)g/ 24u
(o’ __yub
qad — (14+v)g/ 24p
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Background solution. This solution u corresponds to the previous solution (2.121a—e) when
the two materials are identical (v* =v and v = p*/pu=1). In that case, ¢ =0 and g2 = 5(1 —v),
and the relevant coefficients are given (still with the zero-mean constraint on Sc) by

t, t,

t.b
A=Ay =A=— =— By = =& =Dy = 2.124
1 2 Sub(1+0) WE 2= a0 Cs 2 =0, ( )

which, as expected, is identical to (2.95). Moreover:

5
qro 123
A — Ay =
2T (qef = (1)) (1+v) 8pb
5q1a° b
BQex _ B2 — - q1c r
q10® — (1+v)g 24p
C*—Cy=0
DSX — Dy = q1 b4045t7«

qe® — (1+v)ge  12p

Second Eshelby solution. For n = 1, the background solution w defined by (2.112) and (2.124)
is a quadratic polynomial displacement. The second Eshelby solution is therefore the solution ug)
to the transmission problem for S, taken as the unit sphere and S as the free-space (i.e. a=1 and
b=400). The Eshelby solution is of the form (2.88), with its coefficients satisfying the transmission
conditions (2.120a—d) with a =1 together with the condition

128

@ _ 4 _
AP = A= ST (2.125)

ensuring that u(BQ) —u = o(1) at infinity. Solving (2.120a—d) for the remaining constants AgQ), Béz),
C? and DY) yields

(2) 5(1—v)t,
= 2.126
! 8ub(14v)g2 ( )
) 55(1—v) — oty
By = — 2.12
2 24pb(1+v)ge (2.127)
cP =0 (2.128)
t
D@ _ _ qitr 2.12
2 12pb(14+v)q2 (2.129)

In particular, one has A?) = [5(1—v)/q2]A, so that the (constant) second gradients of the Eshelby

(2)

perturbation vy’ and background solutions u (noted respectively Eg) and E5) are such that

@  (5(1-v) B
EY = <q2 1) E, (2.130)

This gives (among other things) a possible test for checking the numerical procedure solving the
second Eshelby problem.
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Interior expansion of transmission solution. The interior expansion of u® at z =0 is given
(since Vu(0) = 0) by

uy(@) = u(@) + a®v) [V2u(0)] (2)
= — by (1-v) v—2)cos(f)e v —6)sin(f)eg|r

The truncation error is thus

- - ks 5(1_1/2) S(1-v) —2)cos(f)e v — 6)sin(6)eg|r?
T T (14 0) <q1a5 ) P ) [(8v—2) cos(B)e, + (4v - 6) sin(6)ey]
. 5(1_V)tr q1a5 9

T Bub(1 1) laed — L+ v)a] (2.131)

2.A.3 Numerical illustrations

We now provide some examples of exact and approximated fields computed with the methods
described above. In the upcoming results, the characteristics of S¢ are : radius b = 1, shear
modulus g = 1 and Poisson ratio v = 0.3. The displacement fields 4, u, v** and v, are plotted
in S, for a = 0.2 and Poisson ratio v* = v = 0.3.

We computed a numerical error on the radial component as:

ex
[ = Varl e o = Zm‘ (2.132)

E,. =
|Var|

N, being the number of points where these fields are computed. We similarly compute Fg. This
error is computed for several inner radii so that we can check that it follows the predicted order of
convergence.

A soft inclusion is considered: the shear modulus is lower in S,: p* = 0.1y while 4 = 1. For
the computed loadings (n = 0,1), the second-order approximation v, is found to approximate the
exact perturbation v®* with at least the sought order O(a®).

For n = 1, the only case where the second-order term is actually computed since vg) =0 in

the other cases, the error is found to be in O(a®) as observed on Figure 2.6 as it was predicted by
(2.131).
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Figure 2.3: Exact, background and approximated displacement inside S,, for p* = 0.1y, a = 0.2
and n =0 (ug = 0 in this case, as well as the #-components of the other fields)
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Figure 2.4: Relative error on the displacement in S, for n =0 and a € [0.02,0.2].
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Figure 2.5: Exact, backgound and approximated displacement inside S,, for p* = 0.1y, a = 0.2
and n = 1.
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This chapter is dedicated to the time-harmonic follow-up of the previous chapter. The elastic
solid occupying the domain €2 is now supposed to be submitted to time-harmonic dynamic exci-

tations, so that the implicit time dependence of all considered fields is el

. This dependence will

be omitted in the sequel: we consider only the space-dependent part of these fields (which are
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now complex-valued). We furthermore suppose that none of the boundary-value problems into
consideration admits the circular frequency w as an eigenvalue.

We follow the exact same steps than in the previous chapter: Section 3.1 presents the scattering
problem associated to a trial inhomogeneity B, the equivalent integral formulation and the invert-
ibility of the resulting integral operator. Sections 3.2 and 3.3 then address the expansions of the
scattered displacement and of the misfit function, with emphasis on the new terms that appear in
the dynamical case. Finally, Section 3.4 shows some identification results obtained thanks to this
expansion. Some tedious computations were delayed to the appendices to ease the lecture.

3.1 Scattering problem and integral formulation

3.1.1 Incident, total and scattered displacements

Consider an elastic solid occupying the domain ) and characterized by both Hooke’s tensor C and
density p. For prescribed time-harmonic displacements up on I'p, tractions tx on I'y and volume
forces f, the background (or incident) displacement u satisfies:

div(C: Vu)+ pw’u+f=0 inQ,
u=1up on I'p, (3.1)
tju] =ty on I'y.

The associated variational formulation is:
Find u € W (up), (u,w)§, —w?(u,w)f = F(w), Yw e Wy, (3.2)

where (-, )% denotes the bilinear elastic energy form as previously, and (-, )7, denotes the kinetic
energy bilinear form associated with domain D and density p, i.e.:

<u,'w>CD = / Vu:C:VwdV and (u,w)y := / pu-wdV, (3.3)
D D
the linear form F' is defined as:
F(w):/f-de+/ ty - wdS, (3.4)
Q I'n

and the same notations were kept for the functional spaces, although the fields are now complex-
valued:

W(up)={we H(Q); w=uponTp}, Wy =W(0). (3.5)

The inhomogeneity B, = z+ a3, which now supports a constant density contrast Ap along with
the previously studied elastic coefficients contrast AC, is then taken into account. In the perturbed
domain, the total displacement u? is the solution of the variational problem:

Find u¥ € W(up), (w2, w)$+ (s, w)5¢ —w? [(ug,w)g n (ug,w)gﬂ = F(w), Yw e W,.
(3.6)
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Finally, subtracting (3.2) from (3.6), the scattered displacement v¥ := u —u is found to satisfy
the weak formulation:

Find v* € Wy, (v¥, w)$ + (v w)éf —w? [(v¥, w)E + (vﬁ:,w)gf

a’

= <u,w>§f + w2(u,w)gp Vw e Wy, (3.7)

a

whose source terms are expressed only as a function of the incident field. To derive the integral
equation corresponding to this scattering problem, we now need a proper Green’s tensor.

3.1.2 Time harmonic Green’s tensor

Green’s tensor G¥(-, ) associated to problem (3.1) is defined similarly to the static case as the
tensor whose components represent the displacements resulting from time-harmonic point-like forces
applied at x, and that satisfies homogeneous boundary conditions on I'p and I'y:

div(C: VG¥(-,x)) + pw’G¥(-, ) + 6(- —x) I =0 in Q,
G“(,x)=0 on I'p, (3.8)
t[G“(,z)] =0 on I'y.
It satisfies the integral equality:
<Gw('7 32), w>g2 - (Gw('a w)a w)g = w(m) Vw e Won Cl (ww)v (39)

where w, is a neighborhood of x.

3.1.2.1 First decomposition: fundamental solution and complementary part

As for the static case, we split G* into the time-harmonic fundamental solution G%, and a com-
plementary part G as:

G*(§ x) = G5, (§ — o) + GE(€, @), (3.10)
where G, satisfies:

div(C : VG, (r) + pw?Ge(r) + 6(rI =0,  reR3, (3.11)

along with radiation conditions that ensure that G corresponds to outgoing waves. A convenient
expression is computed in [Wang & Achenbach, 1995] for general anisotropic materials, by means
of Radon transform on equation (3.11) and inverse transform of the result. For isotropic materials,
it is called the Helmholtz solution, and given by [Achenbach et al., 1982] as:

1(1

GL(r) =, {k2v2 [ — G(rikp) + G(ry ks)] +G(rs ks)I} - (3.12)
S

where kp and kg are the wave numbers associated with pressure and shear waves (or “primary”

and “secondary” waves) defined by:

k2 = A’f; and k2= ’)‘;2, (3.13)
and G(r; k) is the fundamental solution for the scalar Helmholtz operator (A + k?) given as:
etkr
G(r;k) = yp— (3.14)
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Remark 3.1. Alternative expressions of G, exist for isotropic materials, see Appendiz 3.B. The
choice of a particular expression depends on the most convenient way to compute this tensor and
its derivatives for a particular situation.

The complementary part G¢ in the decomposition (3.10) accounts for the homogeneous bound-
ary conditions on 02 and thus is defined for each source point x as the solution of the following
boundary-value problem:

div(C : VG4 (-, x)) 4+ pu?Ge(-, ) =0  in Q,
Gé(,x) = -G (- —x) on I'p, (3.15)
HGE(,@)] = G2 (- — )] on Ty,

In particular, G¢(-, ) € C*(Q) Vo € Q.

3.1.2.2 Second decomposition involving the static fundamental solution

Further decomposition is available featuring the static fundamental solution G,, which shares
the same singular behavior with G&,. We define G¢ (r) := G4 (1) — G (T), so that a second
decomposition for G holds:

G“(§;®) = Go(§ — @) + Gooe (€ — ) + GE(§, ). (3.16)

This difference G¢,, between time-harmonic and static fundamental solutions is now stud-
ied in further details. Again, we refer to [Wang & Achenbach, 1995]! for anisotropic materials.
For isotropic materials, we use the decomposition from [Bonnet, 1999, Part 8.5] to establish the
expression:

1

Coolr) = g (AT + Br @ 7), (3.17)
where A and B are given as:
1+p+ﬁp+2 . (1_ﬁp+2)(l—p) .
A(r) = L p _ ) |
(1) p; pl(p+2) (iksr)?,  B(r) pz;l Do+ 2) (iksr)P, (3.18)

and [ is defined by:

kp  cs [
=—=—= . 3.19
P ks cp A4 2u ( )

As seen in the static case, the asymptotic behavior of G¢ () and of its gradient when applying
the scaling » = a7 and letting a — 0 will be required. We therefore define their first-order
expansions as:

“ (ai) =1G¥? + 4G (F) + o(a)

VG (a7) = H*OF) + aiH*W (F) + o(a). (3.20)

lwhere the notation gR('r,w) is adopted for this complementary part
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This form was chosen so that the terms G¥U) and H¥U) are real-valued tensors for an isotropic
material. Indeed, from (3.17) and (3.18), they are given in this case by:

ks
GO = = (24891
k3r

Gwm(?) B 327

(~@+sHI+(1-phier),
(3.21)

37
kgr

607 1

H*W(7) =

(-5I®%+ (1—B°)k>' (7)),
where 7 = r/r and k‘%&%p('r) = SmnTp + OmpTn + TmOnp-

3.1.3 Volume integral equation formulation

Introducing Green’s tensor G¥(+, x) as test function in (3.7), and using identity (3.9) with w = v¥,
we obtain the integral equation:

L) () = — (u, G (@) 5 + w?(u, G (-, )5, (3.22)
where the linear integral operator £ is defined by
L4 v)(z) = v(E) + (v, G¥(-, x))5¢ — W (v, G (-,z))5". (3.23)

Owing to (i) the decomposition (3.16) of Green’s tensor G* and (ii) the homogeneity properties of
the static fundamental solution G, given by (1.30) while applying the scaling B, — B, £¥ can be
decomposed as:

L] = Koo[v] — a2w? P, WP, [Ap v] + Koo [v] + KE[v]. (3.24)
where P, : H'(B,) — H'(B) is the “scaling operator” defined in Section 2.1.3.3, Koo = P, 1LP,,
and L (the integral operator associated to the free-space transmission problem by B) and V (the
Newtonian potential associated to B) are given by:

Lv](x) = v(x) + /B Vv :AC: VGx(-—x)dV and V]p|(x) = /Bcp -Goo(-— ) dV. (3.25)

The complementary operators K¢ and K¢ are classical integral operators with bounded kernels
G¢ and G¢:

Coolv]() = / Vv:AC:VGE (-—x)dV —wz/ Apv-Géo(-—x) dV,
Ba B (3.26)
Kév](x) == Vov:AC: VGL(-,x) dV — w? Apv-GE(,x)dV.
B, Ba

We are now in position to assert the following invertibility theorem:

Theorem 3.1. Suppose that both elasticity tensors C and C* = C + AC are positive and bounded.
Then there exists a§ > 0 such that the integro-differential operator LY : H'(B,) — H'(B,)
corresponding to the scattering problem by an inhomogeneity (B, C*) embedded in the finite domain
Q, defined by (3.23) and decomposition (3.24), is invertible and its inverse is bounded independently
of the size a of B, for all a < ag.
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Proof. Using the decomposition (3.24) and the fact that Ko := P, 1LP, is invertible with bounded
inverse independently of a as shown by Lemma 2.2, we have:

LY = Koo (I 4+ Koo Kéior) (3.27)

a

where we noted for convenience:
oop = —@AWEPTIVP[Ap ]+ KE L + K. (3.28)

We then rely on the following estimate for the norm of K¢, .:

Lemma 3.2. The integro-differential operator K&, : H'(B,) — H'(B,) defined by (3.28) is
continuous, and there exists Cy; > 0 such that its norm satisfies ||K¢qllm(p,) < aCy + o(a) as
a— 0.

Proof. The proof is given by estimating the three operators involved in K¢, .. It is found that the
O(a) contribution of the norm comes from the first one (hence the chosen notation for C§;), while
the contributions of K¢ and K¢ are of higher order (O(a?)).

Indeed, the Newtonian potential V : H*(B) — H*(B) is bounded due to the fact that both V
and VYV are integral operators with weakly singular kernels [Kress, 1989, Problem 4.5]. Owing to
the properties of the scaling operators P, and P, ! (2.25), there exists a constant C} independent
of a such that:

2Py VP [Ap i (s, < a%? (aV2V I gya 2 80]) < Ca (3.29)
with:
$ = w2 Al 5. (3.30)

On the other hand, K¢ is a sum of integral operator with bounded kernels. Moreover, the
derivatives of these kernels are also bounded (owing to the C*° regularity of G¢). The norm of K¢
can therefore be readily estimated by Cauchy-Schwarz inequalities:

||K%[v]||12L11(Ba) < (HVIG%H%Q(BG)XL?(BG) + HVlQG%H%%Ba)xL?(Ba)) |AC : VUH%?(BQ)
+ w? (HG%H%z(Ba)xLz(Ba) + HVQG%H%Q(BQ)XLQ(BG)> |Ap ”H%Q(Ba) (3.31)

< (C)? a° |3,

so that ||K&| g1 (m,) < C%a3. Similarly, the kernels of the integral operators involved in K¥__ and
VK¢, are bounded, except for Vi2G¢, that is square-integrable. A similar Cauchy-Schwarz

inequality holds and shows that there exists C¢ > 0 independent of a so that ||K¢ ||z (B,) <

w 3
ool
The norm of K¢, , is therefore dominated by the one of the first term as @ — 0 and we obtain:

||’C8tot||H1(Ba) < Cya+o(a), (3.32)

where CY; is defined by (3.30).
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We are now able to conclude the proof of Theorem 3.1. Recall that £¥ is written as:
Ly =Kol + ’Coo_llccétot)‘

For all ¢ < 1 there exists an inclusion size af such that HICOO_llC"étOtHH1(Ba) <c<1Va <ay,
namely, from Lemma 3.2:

c
ag = — . (3.33)
C8lIKoe ™ a1 (Ba)
Then, Va < af, I + ICOQ_IIC"étOt is invertible by Neumann series, with bounded inverse:
1T + Koo ™ Cthat) s < 1 <
00 W) — > .
° L= IL7 Kol rpay — 1—c
And finally, Va < af, the inverse of £ exists and is given by:
L7 = (T4 Koo 'Kor) Koo, (3.34)
and its norm is bounded as showed by:
_ pw - _ 1 _
1L M (5 < I + Koo ™ K&ior) ™Ml () 1Ko 11 (Ba) < 17_C||’Coo Yepy-  (3:35)
O

3.2 Scattered displacement expansion

Relying on the integral equation framework that we set above, we now look at the asymptotic
behavior of the scattered displacement v¥ as a — 0. Since computing v¥ requires (i) to solve the
integral equation (3.22) for @ € B, and (ii) to use this equation as an integral representation for
x ¢ B,, we address successively the inner and outer expansions of v%.

3.2.1 Inner expansion

First, we look for the inner expansion of vy (x) i.e. ® € B,. In this goal, we apply the scaling
B, — B described in Section 2.1.3.3 ( and therefore the variable change (x,&) — (&,&) ) to the
integral equation (3.22) and use the following expansions:

e The sought decomposition for vy is given in terms of functions V¥ of the scaled variable &

as:
r—Zz

vile) = Vi (225 4 8(e) = PuIVEI(e) + 65(a),

(3.36)
1 1
with: V¥(z) := aV{(2) + >V () + 5cﬁ’vgj(:f:) + 6a4V§f(§3),
and the remainder d;; will later be proven to be “small” in some sense.

e The expansions of u, Vu, G¢& and VG¢ are given by their Taylor expansions about z.

e The expansion of G¥ (£ — ) = GE (a(€ — %)) is given by (3.20).
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Regrouping all the powers of a, and owing to the O(1) behavior of P, 1 LP, in the decomposition
of LY (3.24) as a — 0, the integral equation (3.22) is expanded as:

4

> G ijl)! (LIVE)(®) — F5 (@) + o(a*) = 0. (3.37)

J=1

The definition of £ is given in (3.25) and those of the terms F; are:

F(z) = — /BVu(z) 1 AC : VG (€ — &) AV,
Fo(z) = /B (V2u(2) &) : AC: VG (E — &) AV:
2 ) £ _ 3 -
[ Apu(z)- Gule—a) av,
“(z) = — /B (Vou(z) :€%) : AC: VG (€ ~ ) aV (3.38)
+2 w? /B Ap (Vu(z) - £+ V() - Goo(§ — ) dV
- 2/3 (Vu(z) + VVY): AC : (Vch(z, z)+ H*O)(€ — :E)) dVe

+2 wQ/BAp u(z) - <G°é(z,z) + iG“(O)) dVg,

and:

§(®) =~ /B (V4u(z) . £®3> L AC: VGoo(€ — 7) AV

2 . g®2
w6t [ Ap (V“(?S ¥ v;(&)) Gaol€— ) AV

- 6/6 (V2u(z) - €+ VV5(E)) : AC : (Vch(z, 2) + H*O (€ - g-c)) vz

- 6/8 (Vu(z) + VVI(€)) : AC: (ViiGe(z,2) - €+ Va1Ge(z,2) - ) dV; (3.39)
- 6/8 (Vu(z) + VV{(€)) : AC : iH*V (€ — z) AV

+6w2/BAp (Vu(z) - €+ V() - (G‘é(z,z) +iG“(°)) dv;

+6w? / Ap u(z) - (vlc;g(z, 2) €+ V2GY(z,2) @+ GYV(E - :z:)) dv;.
B

Canceling each order of the expansion (3.37), the terms V5’ of the expansion (3.36) are found to
be the solutions of the following equations corresponding to static free-space transmission problems:

LIVEN(z) = Ff (=), j€{1,2,3,4} (3.40)
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Owing to the linearity of equations (3.40), and the different terms involved in the right-hand-sides
F} as explained below, the following decomposition holds:
= vg)[Vu z)
y =03 [V2u(2)] + UOu(2)]
(

]
(2)
@ — [ Viu(2)] +2 UV {uggn[w(z)]] 2w (3.41)
(2)

3="p
V§ = U(B)[V4u 2)]+6 U3 [ug) [V2u(z)] + UOu(2)]| + 6 v,
where:

e The vg) are the perturbation displacement solutions of FSTPs featuring background poly-
nomial displacements:

_\\AC

c vg’)[vpu(z)ﬂ = — ([ VPu(2)], G- — &))55 (3.42)

These problems and their solutions (that we called the Eshelby solutions) were extensively
addressed in Section 1.3.

e The U™ are solutions of FSTPs for which the background displacement is defined as a
Newtonian potential involving a “source” displacement u(®):

A
£ [UPu?] (@) = (u?), Gocl —2)) " = VAU (@) (3.43)
These problems are examined in details below, in Section 3.2.1.1.

e Finally, the “complementary terms” v§- and v account for the contribution of Green’s
tensor complementary part G¢, + G¢&. The corresponding FSTPs and their solutions, are
also addressed below in Section 3.2.1.2.

3.2.1.1 Additional inertial terms
From any “source” displacement noted ug in this section, let us define the displacement Plus] as:
Pluy(@) = * (u,Goo(- — 2))” = w?V[Apu)(Z). (3.44)

Then the displacement U [ug] := ug[Pus]], i.e. the solution of the transmission problem involving
B with background displacement P[us] is such that:

LUus|(®) = Plus)(). (3.45)

Physically, P[us] may be seen as the displacement due to a repartition of volume forces f =
wQAp us on the domain B in the background medium. Remark that P € W,. Ulus| is the
displacement due to the same repartition of forces, B furthermore supporting the elasticity contrast
AC. They satisfy the identities:

VP[uS]:c:deV:w2/Apus-wdv Vw € Wy,
R3 B

(3.46)
VU[uS]:CB:V'de:wQ/Ap us-wdV  Vw € W
B

RS
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The reciprocity identity stated by Lemma 1.2 applied to two of these solutions with two source
fields ug and w therefore reads:

/ Ap us-Ulul] dV = / Ap Ulug) - ul dV. (3.47)
B B

Moreover, for any tensor E, and “source” displacement us, the same reciprocity relation applied
to an Eshelby solution ug) [E,] and U us] = ug[P[us]] reads:

/ VU[uy : AC : Vi, [E,] dV = / VPluy : AC : Vu(p)[ E,] dV
(3.48)
= —w /Ap U - E,] dV.

For ellipsoidal inclusions, the source displacements ug that we have to consider in the scattered
displacement expansion (3.41) are polynomial displacements of order p in &, not necessarily homo-
geneous, that we note u(®. We therefore note P®[u®)] and UP [u)] for the fields P and U
associated to such displacements.

The computation of P®) [u(p)] for an ellipsoidal inhomogeneity and isotropic materials uses the
decomposition of Kelvin solution on harmonic and biharmonic potentials presented in [Mura, 1982]
and is addressed in Appendix 3.A.1. The important property arising from this computation is:
since w(P) is a polynomial of degree p, pw® [u(p)] inside the inclusion will also be a polynomial with
terms of degree p+ 2, p, p — 2 ... So will be the Eshelby solution Uu®.

Note that the reciprocity relations (3.47) and (3.48) will permit to limit the required expressions
in the misfit function expansion to these of P(9) and U®. These expressions are given by (3.123)
and (3.129). We also provided the expression of PW and the general method to obtain these
expressions.

3.2.1.2 Complementary terms

The complementary terms v%- and v~ which embed the contribution of the complementary part
of G“ are now addressed.

Third order complementary term Introducing the solution for the first order term V{ =

'vg) [Vu(z)] into F§ (3.38), and consequently expressing the resulting integral thanks to the elastic
moment tensor A, v§. is defined as the solution of:

Llviel(@) = - Vu(z) : A2 V1GE(z,2) +W2IBlAp u(z) - (iG“0) + GE(2,2))
(3.49)
- / Vul)[Vu(z)] : AC : H¥O(. — z) V.
B

We reordered the right-hand-side of (3.49) so that the first line is seen to be independent of &, the
difficulty lying therefore in the computation of the integral involving H w(0),

The general case is not addressed, but for ellipsoids and isotropic materials, the computation of
this integral is explained in Appendix 3.A.2, and the resulting contribution is found to be polynomial
in Z:

/ Vul) [Vu(z)] : AC: HYO( — 2) AV = JH(2) - 2 + JHO(2) 0 2, (3.50)
B
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where the tensors J zI){ 0 are expressed as:

Jfo(z) =Vu(z): A: Ifo p={1,3}, (3.51)

in terms of constant tensors I f 0 whose computation is explained in Appendix 3.A.2. For a sphere,
these computations provide the closed-form expressions:

JHO(2) = g —5_Vu(z): A: [15(1+ 81T — 6(1 — pHK],
807”]:2 (3.52)
JHO(2) = —560§ruvu(z) LA [[(17 +2584 T — 10(1 — BYK] @ I + 4 I(6>] .

Eventually, in these cases, equation (3.49) also corresponds to the integral formulation of a FSTP

with non-homogeneous polynomial background displacement, and its solution is expressed thanks

to the corresponding Eshelby solutions ug) as:

Vo = — Vu(z) : A: V1GE(2, 2) + w?|B|Ap u(z) - (iG‘“(O) + G¢(=z, z))

(3.53)
—ug) [T1°2)] - u’ [75(2)].

Fourth order complementary term Introducing the expressions (3.41) of V{ and V¥ into
the remaining terms in F; (3.39), using reciprocity relation (3.48), and expressing the arising
“stiffness” and “mass” products thanks to the elastic moment tensors and inertial polarization
tensors whenever possible, v§ is found to be the solution of:

L] (®) = — Vu(z) 1 A2 ¢ V11GE(2,2) — Vu(z) 8 Ay 1 V1GE(z, 2)
—HUQAP [ Qo1 : ViGE(z,2) + Vu(z) 1 Qo - (iGw(O) + G"é(z,z))}
Vu(z) : A: V3 GE(z, 2) — w?|B|Ap u(z) - VaGé(z,2)] - &
/ Vul [Vu(z)] : AC : iH*D (- — &) AV (3.54)

- / v (u,(;)[v?u(z)] +U(°>[u(z)]) :AC: HYO (. —z) dV
B
+ w?Ap u(z) - / G (. —z)dv
B

As above for v%, we reordered some terms to make clear that the right-hand-side of (3.54) includes
three kind of contributions: (i) constant terms w.r.t & (first and second lines), (ii) linear terms w.r.t.
Z (third line) and (iii) contributions of the expansion of G¢ ..

Again, we focus on the case of ellipsoids and isotropic materials, for which closed-form expres-
sions are available. First remark that all the constant terms vanish owing to the cancellation of A,,
and Q,,; whenever p+ ¢ is odd for centrally symmetric shapes B (Lemmas 1.9 and 1.10). Then, we

recall that Vug)[Vu(z)] is constant for ellipsoids, and that the expressions (1.108) for ug) and
(3.130) for U© imply:

ul? [V2u(z)] + UO [u(z)]} (&) = [(:r“)‘) + A2> . (v2u(z) +w?np €Y. u(z))} €, (3.55)
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so that completing the evaluation of the right-hand side of (3.54) requires the computation of the
integrals:

/Hw(l)(. — &) dv, /§®H“’(O)(£ —)dV; and / GN (. —z)dv. (3.56)
B B B

After some algebra, delayed to Appendix 3.A.2, these integrals are found to be polynomials in .

Finally, the equation (3.54) is again seen to be the formulation of a FSTP with polynomial source
(p)

terms, and its solution is therefore written in terms of the corresponding Eshelby solutions uy;” as:
Vo = — ug) [(LAC — WLA? + iJ{ﬂ) ()]
HO 2 HO 4 HO
- (I5"@) +uf) [I500=)] +uf) [I572)]) (3.57)

+ w? (Jg”(z) + ug) [ng(z)} + ug) [Jfl(z)]) ,

where:

LAC

e the tensor-valued functions and L2 are given by:

LAC(2) = Vu(z) : A: Vo1G¥(2,2) and L~°(z) = |B|Ap u(z) - VoG¥(2,2), (3.58)
e the tensor J {{ 1is given by
JH(2) = Vu(z) : A: T (3.59)

where the computation of the constant tensor I! for any ellipsoid is explained in Appendix
3.A.2. When B is a sphere, it results in:

k’3
T (z) = 8

= Gomg Y (2 A B2+ 50T 21~ F7)K], (3.60)

e the contributions of the tensors J[C,;1 and JgH 0 will be found to vanish in the upcoming misfit
function expansion. Consequently, we provide only partially explicit expression for these
tensors. The tensors Jfl are given as function of constant tensors I 51 as:

IS = |B|Ap u(z) - IS, (3.61)

and the tensors Jf,H 0 are the polynomial coefficients of the integral below:

/ V (u[V2u(z)] + UO(z)]) : AC: H¥O( — 2) v
B
= J570(2) + J570(2) : %% + J5H0(2) e 1. (3.62)

The setting for complete computations, along with preliminary expressions, are provided in
Appendix 3.A.2.
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3.2.2 Remainder estimate for the inner expansion

The inner approximation V¥ of v¥ being given by (3.41), we now provide an estimate of the
remainder §% = v¥ — P 1VY.

Proposition 3.1. (Error estimation on the inner expansion of the displacement) Consider the
inner expansion v¥ = P, IVY + §% of the scattered field by an inhomogeneity (Bg,C*), with V¥
defined by expressions (3.41). If both C and C* are bounded and positive, there exists a constant
C¥ > 0 independent of the size a such that

1641,y < C5a'? asa— 0. (3.63)

Proof. Subtracting the integral equations satisfied by the terms V5’ of the inner expansion (3.37)
to the one satisfied by v¥ (3.22), 8% is found to satisfy the integral equation L£¥[6%](x) = v¥(x)
where v% is written as the sum:

Yo (x) = — : Fo(§) : AC: VG (§ —x) dV +w2/ Ap fo(§) Goo(§ —x) dVe
‘ (3.64)
+Z[  AC 1 Hp(€, )dvf+w/ Apf(ﬁ)-hp(é,:c)dvg],
where the functions F'), and f, come from the expansion of uyg:
Fo(€) = Vu(g) - [V’U,(Z) +aVu?(z) €+ fv%(z) €% 4 a63V4u(z) . g‘ﬂ :
2 3
Fi(€) = Vu(€) - [Vu(=) + aV?u(z) - €] + T VVE(E) + TVV (@)
Fa(6) =aV V5 (©),
F3(8) = VVT(§), (3.65)
~a® ad at -
Fol€) = wl®) - [uz) +aVu() - €+ GV €] + TVHO + SVHE),
F1(8) = u(€) — [u(z) + aVu(z) - €] +a*VE(§),
f2(€) = a[Vu(z) - €+ VT(E)],
f3(£) = ’LL(Z),
and the bounded kernels H (&, z) and h,(§, ) come form the expansion of G¢, + G¢:
H1(€7 w) = VG%&(S - w) + VIG%(£7$)7
Hy(§.@) = Hi(€.2) - [HYO(E - 2) + VGE(=.2)|
Hs(¢,x) = Hy(€,x) —a [iﬂwﬂ)(é — &) + V11GE(2,2) - € + V21 GE(2, 2) - 53] , -
hi(€.2) = G2n (6~ 2) + G(€.). 1399
ho(€, ) = hy(€,2) — [iG“’(O) + GY(z, z)} ,
hs(&,x) = ho(&,x) —a [G‘”(l)(g — )+ V1Gi(z,2) - &+ V3G (z, 2) - :E] .
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The gradient of this right-hand-side is then:

Voi(a) == Vo [ Ful€):AC: VG —a) V= [ Apfy- VGalg —a)

Fy () : AC : VoH, (€, 7) dv5+w2/B Ap £,(€) - Vahy(€,x) dVe| |
(3.67)

We know from Theorem 3.1 that £ is invertible with bounded inverse independently of a for
a < ag, so that:
aC > 0, HJZ;HHl(Ba) < CH’Y‘;”Hl(Ba) Va < ag’. (368)

Our goal is therefore to show that |vg||g1(B,) = O(a"/?). We successively deal with the three
terms in (3.64):

(i) Remark that the first term of (2.55) writes —M[AC, : Fo], with AC, := xp,AC and
M L2 (RERES) — HY(R®) is shown to be continuous by Lemma 1.4. The following

inequality therefore holds:

C' > 0,

Fo:AC:VGo( — ) dVH < C||Fo| 125, = Ca'* + 0 (a11/2> . (3.69)

Ba H(B.)

(ii) Similarly than in the proof of Lemma 3.2 (see eq. (3.29)), we have:
& (For Goc- = @) 5! N1 (8,) < @ *C5 1 Pafollim )
<0203 (5 s [V°u()] 4 Ve o)) 370)

<Ca''? 4o (an/z)

(iii) For all the other terms, we have to bound the H'-norm of functions defined by the con-
volutions (F, AC : Hy(-,x))2(p,) and w2(fp, hy(-, w))éf. Since H) and h,, are bounded kernels,
and their gradients Vo H,, and V3h, that intervene in (3.67) are respectively square-integrable and
bounded kernels, we can apply Cauchy-Schwarz inequality twice. From the definitions (3.65) and
(3.66), it is straightforward that:

1B lz2( ~ IFpllas, = O (a7 wpe {1,2,3}

(3.71)
and | Hyll (5, (5,) ~ ol i sy s,) = O (¢F07D) wp e {1,2,3)
Multiplying these orders of magnitude, one obtains:
|(Fps AC s Hy (@) 25, |15,y = O (@'¥2) Vb € {1,2,3) .
and [(F P23 Ny = O (a¥%/2) p e {1,2,3} |

And we can conclude the estimation of 4% and the proof of Proposition 3.1 by:
3C¢, el s < Cga'? +o(a"7?) (3.73)
O
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Remark 3.2. Evaluating successively the L*-norms of the fields considered in step (i) and (ii) above
and those of their gradients (instead of evaluating directly their Hl-norms), one could additionally
show that:

30, Vllze(sa < Ca®? + o(a®/?), (3.74)

s0 that the O(a'/?) estimate (3.73) comes from VYl r2(B,)- Similar observation then holds for
105 |28,y and V&5 || r2(B,)-

3.2.3 Outer expansion

We now look for the outer expansion of v¥. Let’s recall that for © ¢ B,, v¥(zx) is given by the
integral representation:

ug(m):—/B V(u—i—v;"):AC:VlG“(-,:c)dV—i—wQ/B Ap (u+v2)-G¥(,@) dV.  (3.75)

In this case, the singular behavior of G¥ (&, x) is not activated, and one therefore has:

G“(€,®) =G“(z,2) +O(a), €€Ba,x¢ B,

_ (3.76)
ViG¥(&,x) = V1G¥(z,x) + O(a), € By, x ¢ By.
Using the leading-order inner expansion of v¥, one moreover has :
u(§) +v3(€) = u(z) + O(a), € B,
V(u(€) + v5(€)) = Vu(z) + P, [VVE](€) + Ola), €€ B, -

vl [Vu(z)] <£ - Z) +O(a), ¢ € B,.

Inserting (3.76) and (3.77) into (3.75), and scaling the integrals over B, as usual, we finally
obtain the well-known leading-order outer expansion given in [Guzina & Chikichev, 2007]:
v¥ () = aPv¥, (x) + O(a?) x ¢ By, (3.78)

a out

with:

v () = — u WV Vau(z) : : “(z,x w? u(z) - G¥(z,x
o) = = [ Ve IVue) AC ViGH @) AV o [ Apul) Gamav

= -—Vu(z): A: ViG¥(z,z) + w?|B|Ap u(z) - G¥(z, x).

As it was observed in the previous chapter for the static case, and as we will show in the next
section, only this leading-order approximation is required to reach the sought sixth order for the
expansion of a misfit functional.

3.3 Misfit function: definition and expansion

After we established the inner and outer expansion of the scattered displacement v¥ by an in-
homogeneity (Bg, AC,Ap), we are in position to compute such expansion for a misfit functional
depending implicitly on B, through v%.
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3.3.1 Notations and adjoint displacement

We consider misfit functions J(B,) taking the exact same form than in the static case, as described
in Section 2.1.2. In particular, J(B,) = J(u¥) with J defined in terms of volume and surface
densities ¥ and ¥ as:

J(w) = /m Uo(x;w(x)) dV, + /m Up(xz;w(x))dS,, (3.80)

and these densities are twice differentiable so that the following expansion about u holds:

() = J(w) + J'(us02) + T (us 0%) + R(u; o). (3.81)

a

A difference with the static case appears now in the definition of J', J” and R to account for the
fact that all the fields are (possibly) complex-valued. Following e.g. [Guzina & Chikichev, 2007;
Bonnet, 2008], J’ is written as:

J (u;w) = §FE{ Volg(su)-wdV + VoUr (- u) ~wdS} , (3.82)
Qm T'm

where, for a complex-valued field u, noting ugr = Ru and u; = Su, V is defined by:
Vip(u) = Vip(ur + itg) := Vg t) — iV, 1), (3.83)

Consequently, we define the adjoint solution p as the solution of the weak formulation

Find pc WOv <pa 'LU>?2 - w2(paw)6

= Vaolo(u)-wdV + VoUr(su) - wdS, VYweW,. (3.84)
Qm ['m

Then, on setting w = p in (3.7) and w = v¥ in (3.84), combining the resulting identities, exploiting
the symmetry of the energy bilinear forms, and finally retaining only the real part of the result to
retrieve the first derivative (3.82), one obtains

T v3) = R{— (pu) 5 + P (p,u) 3} (3.85)

The second directional derivative J” is similarly given as in [Bonnet, 2008] by:

1
wiw)i= g 3 | [ Vot o, 0w av
a,f=R,I

+ [ Vauus ¥r(u) : (wa @wg)dS|, (3.86)
Fm

and the remainder R is defined exactly as in the static case by:

1
R(u;w) := /0 (1—t)J"(u+ tw; w) dt — %J"(u; w). (3.87)
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Example of the least-square cost functional To illustrate the definitions above, let’s again
consider the least-square cost functional defined for some measurements u™ as:

1
J(w) =5 / lw — u™|?dS, (3.88)

for which the expansion (3.81) is exact, i.e. R(u;v¥) = 0. Its first derivative is:

) =5 [ [@=um vot (- u) 5] dszm{/mw—«m-vadS}. (3.89)

The adjoint solution p is therefore the solution of:

Find p € Wy, <p,'w>5c) —w?(p,w)f = / (u—um) - wdS, YweW,. (3.90)

m

The second derivative of J is: )
J" (w; v?) = 2/ v ? dS (3.91)
Fm

3.3.2 Expansion in the general case

We are now in position to state the main result of this chapter:

Theorem 3.3. Misfit functionals of the form (3.81), with the regularity hypothesis on ¥q and Yr
stated in Section 2.1.2, admit the O(a®) expansion:

J(ud)=J(u)+ a37§“(z) +a T (2) + a57gw(z) + a67'6w(z) + o(a%), (3.92)

and the topological derivatives 7;-‘“ are computed as bilinear forms of the incident displacement u
and the adjoint displacement p defined by (3.84) as explained below. T’ moreover embeds the
leading-order contribution of the second-order derivative J” of J. More precisely, the well-known
leading-order topological derivative T3’ is recalled by (3.96), and T}, T and T¢® are given resp. by
(3.98), (3.101) and (3.105). Closed-form expressions in the special case of ellipsoidal shapes and
isotropic materials are also provided in Section 3.3.3.

Proof. We begin the proof by isolating the higher-order terms (in o(a%)). First, inserting the inner
expansion (3.36) in the expression (3.85) of J' gives:

Jwivg) = Rf = (put+ PV 0 (pu+ P V) — (p.82)5 + W (0.55)5 |
(3.93)

The o(a®) behavior of the terms involving % is then justified by Proposition 3.1: there exists C' > 0
so that:

— (. 62)5C + (P, )| < Cllplm (51931 0 5
< Ca*? (Cgal'/? + ofa!1?)) (3.94)
< OC¥a" 4 o(a).
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To evaluate the second derivative J” (u; v¥, v¥), still supposing that J” does not use the evalu-

ation of v¥ inside B,, we use the outer expansion of v¥ (3.78) and obtain:

J"(w;v8) = a®J" (u; vi5y,) + o(a®). (3.95)

Finally, the remainder R(u;v®) in (3.81) is shown to be of order o(a®) the same way than for
the static case (see Section 2.3).

The rest of the proof consists in introducing (i) the decomposition (3.41) of V¥ and (ii) the
Taylor expansions about z of u, Vu, p and Vp into the expression (3.93). Adding a%J" (u;v¥,,)
from (3.95) to the obtained sum and collecting the contributions of the different powers of a then
provides the expressions of the topological derivatives, as given below.

In the computation of these topological derivatives, we use the reciprocity relations (3.48)
wherever possible to obtain expressions featuring the lowest-order Eshelby problems. Each specific
use of these relations will be specified for clarity. O

Leading-order topological derivative The third-order topological derivative 73 is found to
have the well-known expression already given by [Guzina & Chikichev, 2007]:

T3 (2) = R{-Vu(z) : A: Vp(2) + w?B|Ap u(z) - p(2)} . (3.96)

Fourth order topological derivative For the fourth topological derivative 7,7, to avoid later
computation of U we use the reciprocity relation:

AC Ap

(UO(=)] i Vp(2)]) | = —w? (ulz). v [VP(2)]) (3.97)

and obtain:

AC

7e2) =] - (i [V2u(z)] ) (o)), (ul ()l s [V7p(2)])

B B

(3.98)
o (u(e) uf 1Vp()]) "+ o2 (u (el p2)), |-

Introducing the elastic moment tensors As; and A2 and the inertial polarization tensor Qgi, this
expression becomes:

T (2) :ﬂ%{ — V?u(z) e Ag1 : Vp(z) — Vu(z) : A e Vp(2)
(3.99)
+ wQAp[u(z) - Qo1 : Vp(2) + Vu(z) : Q1o - p(2)] }

Fifth order topological derivative For 7, to avoid the computation of U(l), we similarly use
the relation:

AC

(U [ug Vu@)] |, @i Vp(2)]) = —? (ug>[vu(z)],vg>[vp(z)])2”, (3.100)
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and find:

1 AC

72) =R{ - 5 (s [VPu(a)] w001, — 5 (u [Vula)l o3 [90(:)])

B

~(u@V?u(=)). 02 [V7(2)] ).

~ (v erlVe=)),

o (uf) [V2u(z)) p(z))g” +o? (u(2),ul) [V?p(2)))

B

B
A (3.101)

B
+o? (u[Vu(z)], ul (Va(=)])

Since we did not compute a closed-form expression for the term v$- in the general case, further
simplification is provided in the next section.

Sixth order topological derivative Finally, for 75, to avoid the computation of U ) and
U(l), we use both relations:

(U [ul[V2u()] + UOR(z)]] o [Vo(=)])

= —? (u [V7ul(2) +U<0>[u(z)],vg>[vp(z)])2p, (3.102)

B

and:

AC

<U<1> [ugﬂ[w(z)]] ;o [V2p(z)]>B S— (ug)[Vu(z)],vg)[VQp(z)])gp. (3.103)

(3)

To compute the inertial product involving v;” without solving the third Eshelby problem, we also
use the reciprocal identity:

Ap AC

=~ (3 [Vu(2)] UV p(2)]) (3.104)

W (v (Ve (=), p(2) 5

B
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Finally, the sixth-order Topological derivative is given by:

752) =R{ = (ia (V)] u (99(1), — § (u (il o0 [Vp(2)]),
5 (0 [Vu(2)] u (V2p(2)] + UOlp(2)])
5 (W V()] + U ()] 04 [Vop(2)] ),
AC AC
— (v50. 02l VP(2)]) = (vic.e:[VP(E)) |
#59 |(o [V°u)] )+ (e 900 ) (3.105)

Since neither the solution U® nor the “complementary” terms v5- and vj, have closed-form
expressions in the general case, we delay further simplifications of this expression to the next
section.

General simplifications Provided some additional assumption on B, some simplifications may
hold. Choosing z as the gravity center of B, (i.e. 0 as the gravity center of B), which is done
without any loss of generality, all “Ist order” integrals on & are canceled. Moreover, for any centrally
symmetric inclusion, invoking Lemmas 1.9 and 1.10, all odd-order tensors \A,, and Q,,, vanish, so
does T, and most of the terms in 7g”.

3.3.3 Ellipsoidal shapes and isotropic materials

We now consider the specific case case for which all materials are isotropic and B is an ellipsoid.
The expression of the required polarization tensors are then computed explicitly in Sections 1.3.3
and 1.3.4, and some terms in the expansion of the scattered displacement v% are available in
closed-form. In this case,

() T3° is still given by (3.96), with A given by (1.117).

(ii) T4 entirely vanishes.

(iii) For 72, most of the terms in (3.101) are available in closed form:

e The elastic moment tensors A and Ajge are given by (1.118) and (1.127), and Aj3 = A ®
M@ /|B| from (1.122).

e The inertial polarization tensors Qg and Qi; are given by (1.133) and (1.135).

e The solution U® is expressed as:

U [u(z)](@) = w?Ap [0 w(z) + ud [ - u(2)|(z)] (3.106)
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and the way to compute the constant £) and the tensor £ éo) is explained in Appendix 3.A.1.

e From (3.53), the only contribution of the “complementary” terms is:
1 3
Vo = ~Vag) [J1(2)] - Val) [750(2)] (3.107)

where Jfo(z) =Vu(z): A: Ifo for p = {1,3}, and the way to compute the expressions of
the tensors I {Ig is explained in Appendix 3.A.2.

Inserting all these expressions into the general expression (3.101) for 7 leads to:

T (2) :&e{ - 2|13| [(v?’u(z) : M<2>) LA Vp(z) + Vu(z) A (v3p(z) : M<2>)}
— V?u(z) e Az e V?p(2)
4 Vp(z): A: [I{fo 4 ’13’150 : M<2>] LA Vau(z)
+w’Ap [VPu(z) e Qoo - p(2) +u(z) - Qoo e Vp(2)]
+w?Ap Vu(z) : Qi1 : Vp(2)

+ (WQAP)Q p(z) - {5(0)1 + Qo2 @ 550)} u(z)}

(3.108)

(iv) Finally, for 7§, nearly all terms in the expression (3.105) that come from the expan-

sion of J'(v¥) vanish, except the contribution of v§, in (v‘;fc,cpl[Vp(z)D?c and that of v§ in

V4, Pz o, Inserting the expressions (3.53) for v%- and (3.57) for v into these products leads
3C B 3C 4C
to:

T (z) :%{Vu(z) c A (iIllLH + V21 Gé(z,2)) : A: Vp(z)

— W2 |B|Ap [u(2) - V2Gé(z,2) : A: Vp(z) + Vu(z) : A: ViGE(z, 2) - p(2)]

(3.109)
+ (w2|B]Ap)2 u(z) - (iG“’(O) + G¢(z, z)) -p(z)}
+ J”(u; v(gut)'
Spherical inhomogeneity If B is the unit sphere,
4 4 B B
B| = g M®@ = %I = |5|I, Viu: M® = |S’V(Au), (3.110)
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and A is given by (1.119). 7:* therefore becomes:

10
— V?u(z) e Ay ¢ Vp(2)

T2(2) :?R{ L V(Au)(z) i A: Vp(2) + Vu(z) : A: V(Ap)(2) + |

)
+ 2 Ap [V2u(z) 0 Qo p(2) + u(2) - Qoo 0 Vp(2)]
+w?Ap Vu(z): Qi1 : Vp(2)

+ (z,uQAp)2 p(z) - [E(O)I +Qu2 e Eéo)} -u(z)},

+Vp(z) A [I{fo 4 Lo, 1] LA Vu(z)
(3.111)

where I and I are given by (3.151) and £ and Sgo) are given by (3.126). 7 becomes:
T (z) :%{Vu(z) t A (I + V21 GE(2,2)) : A Vp(2)

- 4—7Tw2Ap [u(z) -VaoGE(z,2) : A: Vp(z)+ Vu(z): A: ViGE(z, 2) - p(=z)

3 (3.112)

+ (ZlngAp>2 u(z) - (iG“(O) + G¢(=, Z)) ~p(z)}
+ J" (u; v5y)

and I is given by (3.143).

3.4 Identification of a penetrable scatter

In this section, we eventually address the use of the misfit function expansion we derive for iden-
tification of a penetrable scatterer. We therefore seek estimations (2%, a®') of the location z'u¢
and size a'™° of an homogeneity B™°, in a test domain Q% ( chosen in practice as a discrete
research grid) and for all a. We first describe a procedure to obtain these estimates, then apply
this procedure to a simple setting.

3.4.1 General identification procedure

For any cost functional J(B,) = J(u,), we define:
Jo(a, z) == a>T3(2) + a*Ta(z) + a®T5(2) + a5T5(2) (3.113)

so that the sixth-order approximation J(B,) = J(0) + Js(a, z) + 0(a®) holds. The identification
procedure then reads:

1. “Probe” the solid occupying 2 with an incident wave w, and compute its values for all
zc Qtest‘

2. From this incident field, compute the directional derivative J'(u;w) of J, then compute the
adjoint displacement p defined by the weak formulation (3.84) for all z € Qtest,
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w

3. From u, p and the second directional derivative J”(u;v%,

derivatives T;(z) for all z € QFst.

) of J, compute the topological

4. Define a™®(z) := argmin Js(a, 2), z € Qs
a

5. Estimate the location as: z®' := arg min Js(a™"(2), 2).
zeﬂtest
6. Estimate the size as: a®t! := ™7 (2°%).

The most costly of these operations are steps (1) and (2) for most cases, i.e. when we don’t have
access to analytical expressions for u and p and have to rely on a numerical method (finite elements,
boundary elements ...) to solve the direct and adjoint problems. An additional constraint is that
such method must accurately compute high-order derivatives of both these fields, at least into Qtst,
as discussed in Section 2.3.3.

Step (3) consists on computing all the bilinear forms implied in the topological derivatives, plus
the quadratic term J”(u; v¥,,), which may deserve special attention since it involves Green’s tensor
G* for (, including complementary part G¢. The arising difficulties were addressed in Section
2.3.3. These computations were implemented in a Matlab code, limited for now to Q = R3, i.e.

¢ = 0, to spherical shapes and to isotropic materials. The tensor formalism was maintained in
this code thanks to the Matlab tensor toolbox [Bader et al., 2012].2

Step (4) is straightforward since it is just a minimization of a polynomial in a for each z. It
could be achieved analytically, but in the following we rely on numerical tools provided by Matlab.
Note also that Jg(a™"(z), z) minimizes Jg(a, z) on a for each z, and thus can be used similarly to
T3 as an indicator function.

Finally, step (5) is just a search of a minimum over the research grid Q' and again we rely
on Matlab to do so.

Remark 3.3. In this section, unless specified, the contrasts (AC,Ap) that characterize the real
inclusion B¢ are assumed to be known and they are used in the computation of the topological
derivatives T; (i.e. the trial inhomogeneity B, is characterized by the same contrasts).

3.4.2 Identification of a spherical scatterer in full-space and for isotropic mate-
rials

We suppose that measurements data u™ of the scattered field by a spherical obstacle B for
some incident plane P-wave u are available on a discrete array of “captors” : I'™ = Uévzla:n such
that '™ N Q'st = (). For convenience, we consider the least-square misfit function:

N
J(Ba) = J(ug) =) [ug (@n) — u™ ()| (3.114)
n=1

In full-space, when both materials are isotropic, all the required fields can be computed analytically:

e The incident field is a single plane P-wave in the direction d defined by the angle 8 as shown
on figure 3.1: ‘
u(z) = ug @ d  with : d = cos(f)e; + sin(0)es (3.115)

2available at http://www.sandia.gov/ tgkolda/TensorToolbox/index-2.6.html
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e Since the solution of the scattering problem for a incident plane P-wave and a penetrable
sphere is known ([Eringen & Suhubi, 1975, Sect. 9.12]), measurements u™ can be simulated
analytically.

e The adjoint field, in the case of the least-square cost functional (3.114), is then computed
using the full-space Green’s tensor G, i.e. the Helmholtz solution given by (3.12), as:

N
p(x) =) (u—u)(x) G (xn, ). (3.116)

n=1

Note that since high-order derivatives of p are required, high-order derivatives of G, must
be computed. These straightforward but tedious computations are addressed in Appendix
3.B.

Material and geometrical parameters: The examples below are intended to provide a first
illustration of the identification method given above and not to mimic any physically realistic
situation. Consequently, all the parameters we use are fixed to meaningless “mathematical” values.
In particular, we do not precise any unit.

The considered circular frequency is w = 1 and the materials are fixed as follow:

e The background coefficients are (u,v,p) = (1,0.3,10) and, so that the pressure and shear
wavelengths are Ap &~ 3.7 and Ag ~ 2.0. A “small” size is thus supposed to be a < A\g =~ 2.0.

e The material in the scatterer is characterized by: (u*,v*,p*) = (1.2,0.3,12) i.e AC = 0.2C
and Ap = 0.2p.

The “screen” I'™ of 5 x 5 captors spaced by 2 = Ag is kept fixed on the plane z; = 10. The
angle 6 which defines the incident direction d varies to study the influence of the “illumination”
direction, as represented on Figure 3.1. The results are compared to those obtained on a “full
aperture” configuration, for which I'™ is a spherical array of 50 “captors”, of radius R = 5 and
centered on the origin.

The sample domain Q%' we used for localization attempts is a cubic grid with 11 x 11 x 11

true

sampling points spaced by 0.1 &~ A\g/20, so that its side length is 1 ~ Ag/2, centered on z as
shown on Figure 3.1.

FZU.T,, Btrue
.o
()test A~ ° ® e
PRSI o. °
- I 2 e °
|K\\ I///I ....
;e
| Y ° °
RIS NPER
|</ |Btru3>‘ .. °
| - °
NP °

Figure 3.1: 3D representation and notations for the scattering by a spherical obstacle B¢
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Reflexion configuration: We begin by looking at a “reflexion” configuration that we define
by setting # = 7 so that the incident direction is d = —e;: the displacement measured on I'™
therefore corresponds to the wave “reflected” by the obstacle. This might correspond to situations
in which only one face of the domain 2 is reachable, so both captors and the device that produces
the incident wave (e.g. transducers) have to be placed on it.

In this configuration, as seen on Figure 3.2, the minimum values of the topological derivative
T3(z) already provides a very good localization of the obstacle, only the peak of Jgs(a™®(z), 2) is
sharper. Figure 3.3 presents the errors in localization and size estimation. Over the tested range of
sizes a € [0.025)\g, 0.25)\g], it is seen that perfect localization is provided by all indicator functions,
even T3 for partial aperture measurements. The improvement brought by Jg therefore lies only on
the size estimate, which is performed with reasonable mistake.

T3(2) Jo(a™"(2), 2)
3 :
25 ¢
2 L
15 ¢
l L L
1 15 2 2.5 3 1 15 2 2.5 3
Figure 3.2: Isovalues of T3(z) and Jg(a™®(2), 2) in the z1z3-plane passing by 2'¢ = (2,2,2), and

with '™ = 0.2 = \g/10, for the reflexion configuration (§ = )

105



Relative error in size estimation

Error in localization
1 : : :
partial aperture 25% 1 ’>
partial aperture, T3
05 | —e—full aperture 1 20% r
Zest _ ztrue|
S — 15%
a 0
10%
-05
5% | partial aperture| |
—e—full aperture
-1 : : w w . w w w :
0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
Normalized size a/Ag Normalized size a/\g

Figure 3.3: Errors in localization and size estimation of a penetrable sphere in full-space, for weak
contrast, 2™ = (2,2,2) and reflexion configuration (6 = 7).

Transmission configuration We define the transmission configuration by # = 0 (so that the
incident direction is d = ej): the displacement is measured behind the obstacle.

Figure 3.4 presents the indicator functions 73(2z) and Jg(a™"(2), z) for a scatterer placed at
z"e = (2,2,2) and with radius ™ = 0.2 = \g/10. This configuration was chosen as an example
because the minimum of the sole topological derivative 7Tz is seen to be outside B'°. At the
contrary the indicator function Jg(a™"(2), z) computed from the above procedure presents a sharp
peak closer to the position of B¢, For this configuration, we find z®" = (1.8,2,2) and a®* = 0.207.

Figure 3.5 presents for the same case the contributions of each term a’ 7T; of the approximation
to Jg(a, z), for z = 2°'. It emphasizes the importance of the highest-order term a%7s: at least
in this case, both 73 and 75 are negative, so stopping the expansion of J to order 5 would have
provided no minimum to estimate a.

Figure 3.6 investigates the asymptotic accuracy of the identification method as a'™¢ — 0. The
distance to the exact location z""¢ does not exceed 2a"™"°, up to a*® = \g/4. The full aperture
meastrements enable to reach exactly z'"™", but in this case, 73 already gave such information.
The estimate of a from the partial aperture measurements is quite precise (less than 20% error) up
to a'™¢ = 0.2\g, where a “jump” that we don’t explain yet occurs.
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Figure 3.4: Isovalues of T3(z) and Jg(a™™"(2), ) in the z;x3-plane passing by 2" = (2,2,2), and
with '™ = 0.2 ~ Ag/10.

-6
1.5 10 : : : :
- - _a37§(zest) )
I _a57g(zest) ,,
1r ---0676(Zest) ’/ T
Js(a, 2%) ’
----------- real size: a™¢ = (.2 .
05 B . . t 14 T
----------- estimated size: a®' = 0.207 P4
0 %::i_:" | yz
'05 B =~ ~ N 7
1k e
1.5 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25

a

est )

Figure 3.5: Contributions to Jg(a, 2°") for the weak-contrast transmission configuration.
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Relative error in size estimation

Error in localization

120% F
100% r
15+
Sost Ztrue| 80% r
- tial t
a 1 | 60% | —e—full aperture
partial aperture
—e—full aperture 40% r
05t 1
20% r A_*‘///’/‘D
0 © © : ‘ ‘ ‘
0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25
Normalized size a/\g Normalized size a/Ag

Figure 3.6: Errors in localization and size estimation of a penetrable sphere in full-space, for weak
contrast and 2" = (2,2,2).
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Unknown material coefficients: An interesting case is the one for which we do not know the
exact material coefficient of the obstacle, but rather its “kind” (i.e. stiffer / softer or more or less
dense than the background medium). We investigate the case where the obstacle is still the “weak
contrast” obstacle B¢ described above, that is (u*,v*,p*) = (1.2,0.3,12), but the coefficient
associated to B, and therefore used in the computation of the topological derivatives are those
for a “generic” stiffer and denser obstacle: (u'®st ptest ptest) = (2/0.3,20), i.e. C'**' = 2C and
p't = 2p. For the transmission configuration defined above (d = e;), Figure 3.7 shows that the

localization is still quite precise, and certainly more than using 73 alone.

Error in localization

10 partial aperture
partial aperture, 73
8 —e—full aperture
cht _ Ztru(‘,|
6
a
4¢
2

0.05 0.1 0.15 0.2 0.25
Normalized size a/\g

Figure 3.7: Errors in localization of a penetrable sphere in full-space, for unknown material coeffi-
cients: (u*,v*, p*) = (1.2,0.3,12) in the true obstacle whereas (u'®t, v*t ptest) = (2,0.3,20) were
used in the computation. The estimate given by the minimum of the first topological derivative T3
is also plotted.

Other possible experiments Many other numerical experiments could be conduced over this
simple framework. In particular, one could investigate the influence of the distance between the
scatterer and the “screen”, that of the number of “captors”, the limit cases of a cavity (i.e. u* — 0)
or a rigid scatterer y* — +00) and many more. However, our goal in this part was to show some
preliminary illustrations of chosen configuration for which the usefulness of using the high-order
expansion of J clearly appears. Further attempts and a more systematic experimental study are to
be considered afterwards.
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3.5 Conclusions and future work

In this chapter, we first established the fourth-order expansion of displacement field inside a small
penetrable scatterer. It is to be noted that the leading-order contribution of the considered time-
harmonic integral operator is still the operator addressed in detail in Chapter 1 corresponding to
static free-space transmission problem. As a consequence, all terms in the expansion are computed
as the solutions of such static problems and the frequency w acts only as a parameter in the source
terms of these problems.

Under the same assumptions for the studied cost functionals than in the previous chapter, we
then computed the sixth-order expansion of such a cost functional. The higher-order topological
derivatives are expressed similarly than in the static case as bilinear forms of incident and adjoint
displacements, plus and additional term in 7g involving the full Green’s tensor of the domain (2.

Eventually, we presented a method relying on this sixth-order polynomial approximation to
estimate the position and size of an unknown scatterer. Some examples were provided in the simple
case of a spherical scatterer illuminated by an incident plane wave, and for isotropic materials. In
particular, in specific configurations, our high-order method improves the quality of the localization
compared to the one obtained when using only the first topological derivative 7s.

Many works could follow from these results. First of all, we stated all the general results
for anisotropic materials and any obstacle shape, but we addressed only isotropic materials and
spherical shapes to provide explicit expressions. A natural follow-up to this work would therefore
be to provide explicit expressions for more general cases. Beginning with ellipsoidal shapes, for
which the necessary tools are provided all along this dissertation, would permit for instance to
address thin obstacles that cannot be approached by spheres.

Another issue is the practical computation of these topological derivative. The two main issues
one will have to deal with are (i) the computation of high-order derivatives of the incident and
adjoint displacements, which requires accurate enough numerical methods, and (ii) the computation
of 76 in bounded domains, for which the complementary part G¢ of Green’s tensor must be known.
These issues were already discussed in Section 2.3.3 of Chapter 2, to which we refer since the
conceptual difficulties do not depend on whether we consider static or time-harmonic fields.

Eventually, many other identification process could be imagined from the knowledge of the
sixth-order approximation Jg of the cost functional. An example which comes naturally to mind is
attempting to perform material identification rather than only geometrical identification. Indeed, a
preliminary example in Section 3.4 showed that quite precise localization can be obtained without
precise knowledge of the material of the scatterer. One could therefore imagine to fix the sampling
point z to this first estimate and to minimize Jg(2z) w.r.t. other parameters. More generally,
conducing a minimization of Jg w.r.t. parameters other than the position z, which intervenes
very implicitly through the direct and adjoint fields, could benefit from the closed-form formula we
derived.
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3.A Time-harmonic terms in scattered displacement expansion

This section presents the computation of the additionnal terms which appear in the scattered
displacement expansion:

e Some come from the inertial term in the bilinear form, so that the new terms are the solutions
of equations L[v](x) = (us, Goo (- — az))gp , Us being some “source” displacement as explained
in section 3.2.1.1

e Some come from the expansion of elastodynamic Green’s complementary part G¢., (3.20)
and the resulting contributions are parts of the “complementary” displacement v%- and vy,
as explained in section 3.2.1.2.

We address successively these two cases, the main tool being the harmonic and biharmonic
potentials detailed in section 1.A.

Remark 3.4. Since this appendiz addresses only problems posed on the reference shape B with no
reference to the initial inhomogeneity B,, variables  and & will be used rather than & and & to
simplify notations.

3.A.1 Contribution of inertial additionnal terms for ellipsoids

For ellipsoids, the source displacement us into consideration is a polynomial:

[us]p(§) = Ep + Epala + Epab&alp + - (3.117)

and recall that the right-hand sides P[us] of the FSTPs to be solved are:
P[us](w) = "‘)Q(U'a Goo( - m))l%p = WQ/ Ap US(E) : Goo(€ - :13) dVEv (3'118)
B

In this part, we adress only the cases where Ap is constant in B. Since the fundamental static
solution may be written:

1 1

_ "
T L T s R (3.119)

Gx(§ —x)

then P can be expressed thanks to the harmonic and biharmonic potentials ¢gup. . and Yep...m
(1.137) as:

w?Ap
Pjlug](z) i (Bpd(x) + Epada(®) + Epapdab(T) + ...) Iy
(3.120)
2A
; % (Ept,p;(®) + Epatap;(®) + Epaptaspj(T) + ...)
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3.A.1.1 Constant source displacement

This part adresses the simplest case for which us = e is a constant vector.

Displacement P [e](x):

POe](x) = wQ/ Ape -G —x)dVz =w?Ape- / G (€& —x) dV, (3.121)

B B

and from (3.120) and B an ellipsoid,
1 1
[/E Goo(§ — ) dVé] o mﬁb(ﬂ?ﬁjp + m%y’p(%‘)
1
= %([ — xrxTIR)éjp (3122)
1
+ 32— 1) (I -y, Ip — ab(Ip — xpx,Igp))ojp — (I — CL%JIJP)IL‘jIZ}‘p)

Remark 3.5. Recall that terms written (5jpa%3[p do not represent tensors proportionnal to I but
diagonal tensors with a%IP as p-th diagonal values.

Introducing (3.122) into (3.121), P(¥[e] is found to be a second-order polynomial displacement,
and we define the constant £() and the fourth-order tensor 5:(30) such that:

1
POe)(x) = w?Ap {g@)e +5 (géo) . e) (x® m)] (3.123)
For the unit sphere, thanks to the expression (1.140) of elliptic integrals, (3.122) becomes:
1 1 1
-z dVe= —— | =(T—6v — (3 — 20)|z|")I — = 124
[ Gnte-o)ave= o S0 G- eI - o wal (3,124
so that P(0)[e] is given by
AN 1 1
POle](z) = #j’y) [2(7 —6v— B WePle - e (@ a:)} (3.125)
and, with reference to (3.123), £©) and 8;0) are found to be:
e _ (T—6v)
12p(1 = v) (3.126)

o _—__ 1 g5 5 5
4 ijl = 3ot =y (15~ 100)dudi + 20d

Strain e[P*)[e]](z): The associated strain is obtained by symmetrizing 85())0) over its two first

indexes: we obtain

e[POle]|(z) = w?Ap (eg(”s : e) x (3.127)
with:
[ggo)s} = —é [(8 — 51/)(5il5jk + 5ik5jl) + 5ij5kl]
ijkl 30u(1 —v) (3.128)
ie. EVF = L (19— 100) T + (16 — 100)K]

T 30u(l—v)
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Solution U [e] of corresponding Eshelby problem: U ©) [e] satisfies E[U(O) le]] = PO le]
and is therefore given for an ellipsoid by:

U e] = w?Ap {5(0) e+ ug) [Séo) -e” (3.129)

i.e., using the expression of the second Eshelby solution (1.114),

UOle)(x) = w?Ap [5(0) e+ % <<I(6) +Fe Ag) o (5%0) i e)) e ® zc)] (3.130)

3.A.1.2 Linear source displacement

The case of a linear source displacement us(x) = E - @, while not necessary to compute the
topological derivatives, is of interest for the expansion of the scattered displacement.

Displacement PV [E](x):
PUIB)@) = [ Ap (B-)- Gual6 ~ ) dV
5 (3.131)
e, PUIB|@) = w*Ap By [ €Giy(€ ~ o) dV,
B

where we noted Gp; for [Glp;. From (3.120) and B an ellipsoid,

1 1
/BfaGpj(ﬁ —x)dVe = m%(%’)@‘p + m"‘/’mjp(w)

1
= %xaai(IA — 2,2 IRA)0jp
+ mai [(xadjp =+ (5ajxp)(fp — xTxTIRp — a124(1,4p — xrerRAP))
+ Oapzj(Iy — wpapIry — ap(Ipy — 2p2: IRpy))
— 2(IPJ — aiIAPJ>l'a.’L'j1'p:|
(3.132)
So PW is written:
1
PYE](z) = w?Ap [(sg” : E) ot (zg” : E) . m®3} (3.133)
For the unit sphere, (3.132) becomes:
1 1 1
/BfaGpj(g —x) dVe = ﬂxa (3 - 5‘33’2) Opj
1 1 1 2
C4p(l—-v) [(15 - 35|$|2> (Tadjp + dajTp + dap;) — 35%%%]
(3.134)
and the fourth and sixth-order tensors € gl) and 8@1) are given by:
O L 10 100)6;0m — G100 — G40l
3,jbpa — 60u(1 _ y) jpCab jaUpb jbYpa
(3.135)
(1) 3

55,jbcdpa = —m [(13 — 141/)5jp6ab — 6ja5pb — 5jb6pa] 6cd + 25jb6pc(5ad:|
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Strain e[PW[E]|(z):

e[POE]|(z) = w?Ap [5&”3 E+ (ngs : E) : m@ﬂ (3.136)
with: 1
s _ ) . _5.
3,jkpa — m |:(4 — 5”)(6jp5ak‘ + 6](L(Spk’) 5jk5pa:| (3 137)
e, gV 1 [5(1 —W)T +2(4 - 5V)IC} .
3 60u(1 —v)
and 8&”8 is given by:
s _ 3 . SV 6
Sagkmnpe = " 1401 = ) [(6 = 7v)(8jp0ak + 0jadpk) — OjkOpal Smn
+ (12 — 14v) (0jp0kn + 6jnbkp) Oma (3.138)

-2 [5jm5kn6pa + 5ja(5kn6mp + 6jm5ka5np + 5jk5mp5na]

Solution UW[E] of corresponding Eshelby problem L[UV[E]] = PW[E]. UW|E]is there-
fore given for an ellipsoid by:

U 4] = w?Ap [ug> [85}) :E} +uld) [sgl) E” . (3.139)

The first Eshelby solution ug) is given by (1.98), but we didn’t compute the third Eshelby solution
(3)
uB .
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3.A.2 Contribution of Green’s tensor complementary part for isotropic mate-
rials

As explained in Section 3.2.1.2, to compute the “complementary” terms v‘g’ 4c We need to compute
the following integrals which intervene in the right-hand sides of the integral equations (3.49) and
(3.54), featuring the coefficients of the expansions of G¢ ., and its gradient:

19 / G+ av; "z / H*O)(¢ —z) dV;
I / E0GYOE —z)dV; I9(x / G (¢ —x) dVe (3.140)
Iz /£®H“ (& —-=z)dV; I"Y(z /H“’ —x) dV;

From (3.20) the integrands:

w(0) _ =Y
12W(2+6)
wl) (e N k3 NP (5—33)@(5—@]
GO(E ~ ) = 5= (34 87 —alT + (5" - ) EZT)EE -
s £~ £ £-a\* ‘
[ . I g km< ) < )
(€)= g | MO Je =gy O 5)( e—al) " \jg—al
3
HO (€ - ) = o0 [-51 @ (6 - 2) + (1= B (€~ )],
where 8 = kp /ks, and recall that k?!(r) = (57 +2K) - r

General shapes Since the leading-order terme G“) is constant, we have:
1) = |B| G*© (3.142)

Moreover, setting 0 as the gravity center of B (which is done without loss of generality), so that
J5 € dVe = 0, we immediately obtain from the definitions (3.140) and (3.141):

I*%(z) = 0
(3.143)

I'Y(z) = B &, with T .= [5(2+8°)T —2(1 - B°)K]

60,u

Ellipsoidal shapes For the three other integrals, closed-form expressions are available for el-
lipsoids. Indeed, we use the harmonic and biharmonic potentials introduced in Appendix 1.A to
evaluate the sought tensor-valued integrals:

Us § ] de} — (@) — zad()

[/““’”mdv} = Gub(®) — Tad(@) — Thbal®) + Tamsd()
B |£—:B‘ 3 ab— ab\L LaPp T TpPalT TaTpP\ T (3144)
£—x\®
dV; = (¢a($) - xa¢(m))5 c (%, c(m) - xaw, c(m))
[/B<|s—w|> 3 S ’
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In particular, to obtain the third expression of (3.144), we used:

(é = z‘>®3 = k! (é = Z) ~ V2 (€ —)|g — ), (3.145)

And, recalling that ¢, = zp¢—¢p = —(¢p—xp¢) (and here and therafter dropping the x-dependency
for simplicity):

M(éiz\)@g e

= (G0 — Ta®)0pe + dap(De — Tc®) + Sac(Pp — Tp9)

abc

— (Yo — Za¥) pe

= (G0 — Ta®)0be + dac(Pp — Tp®) + dap (e — Tc))
— (Yape — Tape) + dapth e + dacthp

= (¢a — Ta®)Obe — (Yabe — TaP bc)

(3.146)

For ellipsoids, the three integrals (3.144) can thus be computed thanks to the following combinations
of potentials:

X
b0 = at == (I = d4la — 2,2, (Ip — a4 1pa))
a2
Bab — Tabp 27’4{%% lab(Iap — xr2rIgaB) — (Ia — 22 1RA)]

1
+ 70 (I — a’ I — v, (Ig — a*Iga) + zrarxsrs(Ips — CL,24]RSA))}
2

a
Yabe — Ta be Zf{%b%(fc — a4 1ac — zr2r(Irc — a4 1RAC))

+ bucty(Ip — a4 Iap — vrx(Ipp — aiIRAB))}

a0,

— a?bc (I — (QQB + ai)IB + ajIAB — xTxT(IR — (CLQB + ai)[RB + aiIRAB))

+ zampre(Ic — (0% + aB)Ipe + ahlape),
(3.147)

whose expressions when B is the unit sphere are (using (1.140)):
1 1
o — Ta® = — 47T, (3 - wxrxr)
1 1 1 1 1 1
Gab — TaPp = — 47T{$aflfb <15 - %xrxr> - Z‘Sab <3 - Emrxr + 351:7‘1:7"'%5375> }

(3.148)

1 1
wa,bc - xaw,bc = 4”{(5(117550 + 5acxb) (15 - 35xrxr>

1 1 8
— 4x,0pc 5~ ﬁmrmr + ﬁxaxbxc}.
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We finally find that all the integrals are polynomials of . Adding the previously found expres-
sions (3.143) for completeness, all the integrals defined by (3.140) are:

(3.149)

and all the tensors-valued coefficients involved in these expressions can be computed from the
formula given above. For the unit sphere, using (3.144) and (3.148), and since |B| = 47/3, we
compute I as:

12(@) = {2 [ (T2 - 00 )
—(1— ,84)(xa5bc + 0qcp) (; — 211367«%) — %xaxbxc}
= ﬁ [(7 + 38)6ap0ci — 3(1 — B*)(Saidbe + GacOpi)] T (3.150)
_ 4;%” [(9+58%)0ab0ci0k — 5(1 — B*)(Gaibbe + 6acObi)Sjk + 40aidb;0ck] Tiwj,

47
- ? (LI{IO] abei i + [Iglo] abcijk Iixj‘rk) s

so that I7% and TH° are given by:
2

I — ngw [15(1 + 1T — 6(1 — BHK],

(3.151)

HO _ k3 o L o
I = 560W“(17+255 )T —10(1 - HK] @ I +4I }
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3.B Higher-order derivatives of Green’s tensors

This section gives a systematic method to compute higher derivatives of static and time-harmonic
Green’s tensors in full space and for isotropic material.

Green’s tensors expressed as gradients of scalar functions. Kelvin’s fundamental solution
may be written as functions of r’s derivatives as [Mura, 1982, Chap. I, Part. 5|

Goolr) = 167m(11 — (4(1; Y- V%«) . (3.152)

Similarly, from [Chaillat et al., 2008], [Yoshida, 2001], Helmholtz’ fundamental solution can also be
written:

0 0 J 0
G2 (&—x)],: = | (0apdij — 0aj0ip) =— =G (|€ — x|; k —G(|€—=z|;k
G(6 ~ )l = 75 (b — ) g GUE = aliks) + 525G — )
| (3.153)
i.e. [G‘go (T)]ij = _@ ((5ab5ij - (5aj5ib>G,ab(T; ks) + Gﬂ‘j (7“; kp)) y
where G(r;k) = €*"/drr and G, denotes the differentiation with respect to 7,, having used
r=§&—-xsoV, =Veg= -V, We can therefore express the gradients of G (§ — =) and
G, (& — x) with respect to x as:
n _ (_1)n n} n-+2
VoG(é—x) = 6rp(—2) 41-I® V,.r V. r
(71)71-1-1 (3154)
VG (&£ —x) = =T (3T —I): VI2G(riks) + VT G(r kp))

Remark 3.6. In [Yoshida et al., 2001], Kelvin’s fundamental solution is given only as a function
of the derivatives of the distance r = |€ — x|:

1 1 )
= N .1
- 1_V)I> Vi, (3.155)

Go(r) = — (3.7 3=

which is a form closer to (3.153). However, using (3.152) avoids additional inner products in
numerical comptations.

118



Expressions of gradients of a general scalar function. Recall that the tensors kP9(r) in-
troduced in Section 1.1.1, with p even, are tensors of order p + ¢, invariant by any permutation of
their indices, such that p indices are acounted into Kronecker’s deltas, and the remaining ¢ as r’s
components. The first ones of these tensors are:

pra=1: ki'(r)=m
pta=2: ki(r)=du,
)

p —+ q= 3: k‘iﬁn(r) = (Sk;l'l"m + 5k;mrl + 6lmrk’ (3 156)
]4:2221(’)“) =TETITm
PHa=4: kg (1) = Ska0mn + OkmOin + Skndim
k:,zlfrm(r) = 0kiTm"n + OkmTiTn + OknTiTm + OtmTkTn + O TkTm + dmnTkr1
kL (1) = rgr
klmn ET1TmTn

As mentioned earlier, these notations are not necessary for small orders since we have e.g.
E%9(r) = r®9 for any ¢, k*°(r) = I and k*°(r) = 3J + 2Z = 5J + 2K, but emphasis the
systematic differentiation properties VkP!(r) = kP70 (¢) and, for ¢ > 2:

VP (r) = kPF297 1 (p) — BPP202(0) @ 1) (3.157)

and, differentiating kP4(#) w.r.t. r (where ©» = r/r), for ¢ > 2,

Y, kPU(#) = VEPI(7) - V0

_ (kp+2,q—1(7;) _ kp+2,q72(7;) ® 7%) . % I-7r®7) (3.158)
L i) - i) s )

We can then express the gradients of any scalar function f(r = |r|) as functions of kP4(7), as
showed below.
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Vo f(r)=f'(r)e

Vi) = P00 (1) - 1) e

Vif(r) = <f /;f”) ! ;(27“ )> k2L (7) + ( ) - 3f/;(7’) + 3qu;>) 753

Vif(r) = <f/;(27") - f;(;)> (5 + 2KC) + (f(gi(r) - 3f/;(;) + 3f;(;)> k22(7)
. < ) - 6220 4510 15f;(;)> -

U5 f(r) = (ﬂi’:z( )y I"0) +3f<4r>> K5
. <f(4;(r) _ 6f(j)2(7") p15l0) 15fr(4r)> K23 () (3.159)
+ <f(5) (r) — 10 (4;(T) +a5t (?2(7") 1057 ”g ) 4 105f ;ﬁ?) ®5

() = (f(j)g( ) 3f"<4r> +3f;(57“)> K50(5)

_l’_

+
N7 N/
&H
c
=

r2 7”3 7.4 rd

YA G AU 105f”( r) +105f( )> K24 (i)

r r2 r3

FO(r) - 15f(5;(r) +105200) 420f(3)( )y 945f”( ") 945f;(;)) 720

+
r2 r3

Expressions of the gradients of the required fundamental solutions. The gradients of
the biharmonic fundamental solution G(r) = r are therefore:

V,.r=1%,

Vir= % (I - #%2)

Vo = }2 (—k>(7) + 3759)

Vor = % (—(5T + 2K) + 3k>%(7) — 15¢#%4) (3.160)
Vor = % (3k™'(#) — 15K>3(7) + 1057%7) ,

Vor = %5 (3k%0(7) — 15K™2(#) + 105k (#) — 9457°) .
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The gradients of the harmonic fundamental solution G(r) = 1/r are:

1 1,
Vo =527
11
2
Vr; = 7,73 ( I+ 37+ )
11
3 _ 21 ~®3
Voo =3 (3k>! () — 15¢%7)
ron (3.161)
V== — (35 +2K) — 15k>*(#) + 1057°) ,
r 7
11
Vi = 5 (F15KM () + 105K () — 0457°7)
11
v S= (—15K%0(#) + 105k*2(#) — 945k>* () + 1093579°) .

The gradients of the fundamental solution of Helmholtz equation G(7; k) = €*" /47y are, noting
x = kr:

iz

V2G(ri k) = e (i — )T — (3(x — 1) + 2?) rf~®2},
V3G(r; k) = yperd (3(iz — 1) + SUQ) k(7)) + (15(iz — 1) + 622 — ia:3) f"®3} ,
ViG(rik) = 46 | = (8w — 1) + 2%) (5T +2K) + (15 — 1) + 6% — i) k>*(7)
mwre L
— (1051 — 1) + 450% — 10ia® — a1) 754,
el ) 3.162
ViG(rsk) = 1 |~ (15 — 1) + 62 — 1a%) K41 (7) (3.162)
— (105(iz — 1) + 452° — 10iz® — 2*) k>3 (#)
+ (945(iz — 1) + 4202 — 105iz® — 1527 + iz”) f®5},
VOG(r: k) = #[ (15(iz — 1) + 622 — ia®) kS0 (#)
— (105(iz — 1) + 452” — 10i2® — 2*) K*?(#)
+ (945(iz — 1) + 4202% — 105iz® — 152 + iz®) k>4 (7)
— (10395(iz — 1) + 47252% — 1260iz” — 210z* + 21iz° + 2°) ®6}

121



122



Part 11

Homogenization of a one-dimensional
interior transmission problem to
identify a microstructured inclusion
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Chapter 4

Second-order homogenization of 1D
boundary-value problems
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The purpose of this chapter is to set the framework for the homogenized models used in Chapter
5. We begin by recalling in Section 4.1 recent results on higher-order two-scale homogenization for
unbounded 1D periodic structures [Fish et al., 2002; Andrianov et al., 2008; Wautier & Guzina,
2015]. We then exploit the specificity of this one-dimensional case to propose local boundary
conditions, expanding these results to bounded domains. Finally, the full procedure is illustrated
for a layered two-phase periodic medium, for which this homogenization process, and in particular

the computation of the featured cell functions, are performed analytically.

4.1 Higher-order two-scale homogenization

Here, we provide the necessary background on higher-order two-scale homogenization. We focus on
the 1D time-harmonic problem, the interested reader being invited to refer to the books [Bensoussan
et al., 1978; Cioranescu & Donato, 1999] for general two-scale homogenization and to [Wautier &

Guzina, 2015] and the references therein for the transient time-domain case.
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Consider an elastic medium characterized by the periodic Young’s modulus £}, and density p,
varying in the z-direction with period £. These coefficients satisfy physical boundedness properties:

0 < Epin < Ep(:II) < FBhax <00 and 0< Pmin < pp(a:) < Prmax < 00 (41)

In the time-harmonic regime with circular frequency w, the longitudinal displacement uP in a
rod with constant section and composed of such a material satisfies:

(EpuP z) , + ppw 2uP =0, (4.2)

where f, = 0f/0x and the excitation (to be specified later on) is provided by prescribed time-
harmonic boundary displacements and/or tractions.

Throughout this chapter and the following one, we also use some “reference” properties (E, p),
together with the reference wave speed ¢, wavelength A and wavenumber k that are defined by:

E
c=/—, A=-—" and k=2 (4.3)
p 2mw c
We then assume that the period £ is much smaller than A, and therefore we define a small parameter
€ as:

T2 74
=—-=—<x1 4.4
=1 =5 < (4.4)
Remark 4.1. The “reference” properties may be chosen to be e.g. (i) (E,p) = (Fmin, Pmax) SO
that X is an upper bound to all wavlengths A\,(z) encoutered in the material:

Cj (‘/L‘) 1 Ep(x) m1n E
= = > < .
Apla) = 5= =5 (@) > = and o <5< 1 Ve (4.5)

or (ii) the properties of a “reference” homogeneous medium, typically these of a background medium
when dealing with a transmission problem that involves a microstructured obstacle.

4.1.1 Two-scale expansion

The key idea of the two-scale homogenization is to introduce a fast space variable y and accordingly
a scaled cell size £ as:

y=— and 0= { (4.6)
9 9

We then write the periodic coefficients in terms of /-periodic functions (E,p) as Ey(z) = E(z/¢)
and pp(x) = p(z/e), while the displacement is sought as a function of both variables = and y, i.e.

uP(x) = a(z,z/e), so that @ is (-periodic in its second argument y. We introduce the differential
and averaging operators:

d 90,0 1!
—_— + € — and = = dy. 4.7
Feaere e md (0= [ rwa (@7)
Inserting all these ingredients into the time-harmonic wave equation (4.2) and ordering the contri-
butions along increasing powers of ¢ entails:

2(Bay) +e7! [(Eux>
Yy

)

+ (Bay) ] + Bt gp + i = 0. (4.8)
y T

) )
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The displacement @ is then sought as an expansion in powers of €, and we note u(P) the restriction
of this sum to the p + 1 first terms:

u(z,y) = Zsjuj(x,y) and  u®(z) = Zejuj (:E, g) . (4.9)
720 J=0

Inserting (4.9) into (4.8) leads to a cascade of partial differential equations for the u;’s. Solving
these equations (which is not addressed here) yields separated-variable solutions:

uo(z,y) = Up(z)

uy (z,y) = Uy (z) + Up2(z) Pi(y) (4.10)
uz(@,y) = Us(z) + U 5 (2) P (y) + Unze(z) Pa(y)

uz(z,y) = Us(2) + Uza(2) Pi(y) + Utax(2) Pa(y) + U zea () P3(y)-

in terms of (i) mean fields terms U; defined by

Uj(z) == (uj(z,-)) (4.11)
and (ii) the so-called cell functions P; which are addressed in detail below.

Remark 4.2. The cell functions are noted P, Q, R ... in [Wautier & Guzina, 2015] and often
X', XY ... in other references [Bensoussan et al., 1978] for higher-dimensional problems. Indeed,
in the latter case the j-th cell function is a j-th order tensor-valued function.

Cell functions and homogenized coefficients: The first three cell functions P;, P, and P
are solutions of the cell problems consisting of the differential equations:

B+ Py =0
= ’y
. 1 « &
[B(PL+Poy)| = —B(+Py)+ P (4.12)
- 7y 0
. 1 . . &
[E(P2 +Psy)| =—-E(Pi+Py)+ Pplgg
- 7y
for y €]0, [ together with the requirements
(P;) =0, P;is {-periodic (j =1,2,3). (4.13)

where we set Py = 1. The homogenized coefficients & and gy that appear in (4.12), and their
higher-order counterparts £; and g; are given by:

&=(E(P+Pu1,)) and o= (pF)). (4.14)
Recall the classical result for & in 1D: & can be shown to be in fact the harmonic mean of E, i.e.

o = <E*1>_1. (4.15)

We also assert a very useful property, that is not frequently encountered but which is also valid
without any additional assumption on E and p:
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Lemma 4.1. The leading-order and first-order homogenized coefficients (Ey, 00) and (€1, 01) satisfy:

&
51 = 7091' (4.16)
€0

Proof. Consider the weak form of the first two cell problems (4.12):
2 A
Find Pj € V, /0 EP; wy =Fj(w) Ywe, (4.17)

with V = {w € H'(]0,4[), (w) = 0,w is {-periodic}, and where:

0 0 i &l
Fi(w) = _/ Fw,, RBw)= —/ EP1w7y+/ E(1+P1,y)w—£ pw. (4.18)
0 0 0 0

Setting w = P in (4.17) for j = 1, and w = P; for j = 2, then owing to the symmetry of the
left-hand side of (4.17), we obtain F}(Ps) = F5(P;), which leads after some simplifications to:

¢ i
- &
/ E(P+Py,) — 0/ pPy = 0. (4.19)
0 00 Jo
Recalling the definition (4.14) of (£1, 1) then (4.19) is exactly the desired relation (4.16). O

Remark 4.3. Lemma 4.1 asserts in fact the simplest particular case of a more general family
of relations relating the homogenized coefficients at different orders. These relations can be ob-
tained similarly by exploiting reciprocity relations that arise from the weak formulations of the cell
problems. Such relations are known from [Moskow € Vogelius, 1997] and also occur in higher
dimensions [Bonnet, 2016a/.

Cell stresses and stress expansion. For convenience, we also define the cell stresses 3J; as:
v = E(Py+P). (4.20)

The cell stress are also /-periodic functions and by definition of the homogenized Young’s moduli
(4.14) one has:

(55) = &j1. (4.21)

The notation (4.20) is introduced so that computing the total derivative of the expansion (4.10) of
1 leads to a similar expansion for the stress:

A

E(y)——i(z,y) = UD (2)E1(y) + UL (2)2(y) + £ U uaa () E3(y) + O(c?). (4.22)

d
dx
Mean fields and homogenized equations. Once the cell functions defined above are known,
determining wu; for j = 0...2 requires to determine the mean fields U;. Once again introducing

the expansion (4.9) into the wave equation (4.8), and averaging the equations of order O(e’) for
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7 =0...2 w.r.t. the fast variable y, leads to a cascade of “macroscopic” or “mean” equations that
are written by analogy as:

O(1) 1 EUoua + 00w?Up =0,
O(E) : goUL;m + Qow2U1 + 51U0’mm + Q1w2U07m =0, (4.23)
0(52) : gOUZ,a:x + QOW2U2 + glUl,mcx + Q1W2Ul,a: + gZUO,xmcx + Q2W2U0,x:r: =0.

However, Lemma 4.1 permits to recursively cancel the terms involving (&1, 01) in these equations.
Indeed, in the O(e) equation, one has

9 (E0Up 2w + 00w Up) = 0. (4.24)

glUO,J}.Z’Z‘ + QlszO,:v = % T

and the same simplification occurs for Uy in the O(g?) equation. Eventually, by introducing the

notations:
& w \/a ki _ Eeo
00 co &o k2 p& (4.25)

and dividing the equations (4.23) by &, we obtain:

O1): Uz +nk*Uy =0,

O(e) 1 Uiyy +nk*Us =0, (4.26)

0(52) : U2,mx + nk2U2 + éUO,xmzm + @nkQUO,mz = 0.
&o Q0

Similarly to (4.9), we define the pth-order mean field U®) as the finite sum of the z—:jUj’s. In
particular the first and second-order mean fields are:

UW () := (U +eln)(x) = Up(x) + & (w(,-),
2 2
U@ (z) := ZajUj(x) = <Zsjuj(x,-)> .
=0 =0

We then derive the field equations that are satisfied by these fields. The equation for Up is given
by (4.23). For UM, adding the first two equations of (4.26) yields in fact the same equation, i.e.:

(4.27)

UL +nk?v® =o. (4.28)

Similarly, for U®, we add the equations (4.26) so that the averaged original equation is ap-
proximated with an O(&3) error by:

E
U 4 k20 4 [;Uo,mm Lo nszO’m] —o. (4.29)
’ 0 00
Furthermore, (i) the O(1) equation Up ., = —nk?Uy permits to permute the fourth, second and

zero-th order derivatives of Uy in the O(g?) term, and (ii) noting that Uy = U® + O(e) allows to
replace Uy by U@ in (4.29) while keeping an O(e?) residual. Eventually, we obtain a family of
mean second-order equations:

UR) +nk2U® + 2 (8,U D), + Bank®UR) - Bin?k*U ) =0, (4.30)

,LTTL
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where [,, B, and (; are some user-chosen parameters satisfying:

g e
o= Pm—Pr=F= 5 [50 QO]. (4.31)

This family of equations can be reordered along decreasing orders of spatial derivatives:
BolPU Ry + (14 Bnk®2) UR) + nk? (1 — Bink?*) U®) = 0, (4.32)

The choice of the signs and indexes for (5., 5, and S; in (4.30) and (4.31) comes from the time-
domain counterpart of (4.2) studied in [Wautier & Guzina, 2015], whose homogenization procedure
results in fourth-order “space”, “mixed” and “time” derivatives.

Note also that f is defined so that the dependency on € in (4.32) is implicit, while the role of three
new length scales \/Bat for a € {x,m,t} is emphasized. In fact, it shows that the homogenization
process permits to obtain such models involving higher-order derivatives and associated additional
length scales and known since long as gradient elasticity models introduced by [Mindlin & Eshel,
1968]. We refer to the review [Askes & Aifantis, 2011] for further details on these models and their
histories.

The simplest members of the family (4.32) are obtained by canceling two of the three parameters
(Bys B, Bt). They will be referred to as the “space”, “mixed” and “time” models and denoted
respectively by (x), (m) and (¢):

(z) UQ,, + UR +nk?’U® =0,

,LTLT

(2) 2172 — ' R L
(m) Usa +nm(k)E"U 0 with n,, (k) : T

(t) UZ) +n(k)K2UP =0 with ny(k) := n (1 +nk*(*8) .

LT

(4.33)

Similarly, the models retaining two of these parameters (i.e. canceling only one of them) will be

denoted as (mt), (zt) and (zm), for instance:

n (1 — nkQEZﬁt)
1+ nk2025,,

(mt)  U®)

XX

+ e (R)R2UP) =0 with (k) := and By, + B =58 (4.34)

while (zmt) designates the family of models retaining all of the three parameters. Some of these
models and their relevance in terms of the approximation of the dispersive behavior of the structure
will be addressed in Section 4.2 for a specific periodic medium.

4.1.2 Boundary value problem and boundary conditions

To introduce appropriate boundary conditions completing the mean field equations (4.28) and
(4.32), we now investigate the solutions of a boundary value problem (BVP) modeling a rod that
is clamped at = 0 and submitted to (i) time-harmonic axial volumic forces with amplitude f on
[0, L] and (ii) time-harmonic axial traction with amplitude t;, = Fkuy at © = L (so that uy, has
the dimension of a displacement). The problem reads:

(BpuPz) , + ppw’uP + f =0 z € [0, ]
EyuP , = Fkuy, =1L
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where Ep,(z) = E(z/¢) and py(z) = p(z/e). Then uP satisfies the variational equation:

ap(uP,v) = F(v) YveV (4.36)
with
V ={ve H'(]0,L[); v(0) =0} (4.37)
and
L L L
ap(u,v) = /0 Epu g, — w2/0 ppuv  and F(v) = Ekurv(L) —i—/o fu. (4.38)

It is known (see e.g. [McLean, 2000, Thm. 4.2] or adapt [Brezis, 2011, Thm. 8.22] to the present
setting) that the homogeneous counterpart of (4.35) (i.e. with uz, = 0) has an infinite set of positive
real eigenvalues \; = wjz- > 0 such that \; = +o00 as j — +00. Assuming that w # w;, therefore
(4.35) admits at most one solution. Moreover, owing to the bounds (4.1) on (Ej, pp), ap satisfies
the Garding inequality:

|ap (u, 1) + 20% prnax]|ullo| > min(Bnin, 0 pmax) [ull1 (4.39)

where here and thereafter || - [, = || - [|gr(j0,Lp), in particular || [o = || - [[2qo,zp-

From (4.39), the classical Fredholm theory ensures that (4.36) is uniquely solvable, i.e. the
inverse operator noted A Ly (up, f) = u exists. Moreover, ap being bounded, by the bounded
inverse theorem, this inverse operator is bounded, so that the following stability result holds:

3C >0,  |luPly < C(Ekfur] +£lo), (4.40)

where the constant C' depends on the bounds of E, and p, and on the frequency w but not on the
period ¢ (and therefore not on ¢ for a given w).

Remark 4.4. The problem (4.35) is written with both internal forces and boundary tractions for
generality and for latter use of the stability result (4.40), but we will consider f = 0 from now on
for simplicity.

Discussion on boundary conditions. In a general multi-dimensional setting, deriving appro-
priate boundary conditions for higher-order homogenized models in a domain @ C R% d > 2 is a
complex problem that is still an active research topic, see e.g. the nice introduction of the recent
paper [Gérard-Varet & Masmoudi, 2012].

Indeed, while taking in account higher-order terms (typically ui(x,z/¢)) in the two-scale ex-
pansion, one has to deal with the oscillating behavior of the trace of these terms on 0f). Rigorous
convergence analysis is therefore possible by introducing additional functions in the expansion: the
boundary correctors 0]5- , which were introduced in [Santosa & Vogelius, 1993; Moskow & Vogelius,
1997] and studied subsequently by e.g. [Allaire & Amar, 1999] and more recently [Gérard-Varet &
Masmoudi, 2012; Onofrei & Vernescu, 2012; Prange, 2013] among many others.

However, these correctors are solutions of problems posed on the periodic (and not the homog-
enized) medium, and a separate asymptotic procedure is required to provide effective boundary
conditions for the problems involving the mean fields. In particular, since [Santosa & Vogelius,
1993] it is shown that for polygonal domains with rational slopes, including one-dimensional prob-
lems as a particular case, the limit 0; of 9; may not be unique and depends on the sequence of e;’s
chosen to establish such a limit.
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In the case of one-dimensional problems, however, some of these difficulties can be avoided.
First, boundary data at x = 0 and x = L are real numbers. Additionally, we make the assumption
that there is an integer number N of cells in the rod. This hypothesis implies that ¢ and € can only
take the specific values:

L L
(= N % that ¢ = R N eN. (4.41)

In particular, the numerical convergence results presented thereafter respect this constraint, i.e.
€ — 0 stands for N — +o00, with A being fixed. Consequently, the boundary values of the two-scale
expansions (4.9) and (4.22) are obtained by evaluating the cell functions P; and the cell stresses X;
at y = 0. These values thus act as fixed coefficients that define boundary conditions for the mean
fields.

Remark 4.5. The assumption (4.41) above is quite strong from a mathematical point of view, but
realistic for many engineering applications. The extremities of a periodic structure are often chosen
at a specific point of the cell, e.g. the point where the section is the largest. Note that choosing
different points for the two extremities could be handled with few modifications. For instance, if the
constraint is to begin the rod at the beginning of the first cell (y = 0 at x = 0) and to end at the
middle of the last cell (y = /2 at x = L), we have to replace the P;(0) and ¥;(0) by Pj(é/Q) and
X (@/2) in the boundary conditions for the right endpoint.

Moreover, for 8, # 0, the family of equations (4.32) features a fourth-order derivative Uﬁgm,
so that the use of these field equations necessitates additional boundary conditions compared to the
original problem (4.35). There are many ways to obtain such boundary conditions. In [Askes et al.,
2008], they are derived from the variational formulation for U () 50 that the boundary contributions
cancel in the bilinear form associated with (4.32). The coefficients in the boundary conditions are
therefore completely determined by the choice of the field equation. From another point of view,
[Kaplunov & Pichugin, 2009] focuses on the presence of extraneous (non-physical) solutions to
(4.32) and the necessity to take them into account while determining relevant boundary conditions
(typically, by building BCs which cancel these extraneous waves). However, no error analysis is
provided with these boundary conditions, and it is not clear at this point how to make a rigorous
link between them and the convergence results underlying the homogenization theory.

As a consequence, for second-order approximation, we focus on (mt) models, i.e. [, = 0,
and therefore cancel the fourth-order space derivative term. This convenient choice corresponds to
retaining only higher order time derivatives for the transient counterpart of our time-harmonic mod-
els. This possibility is another specificity of one-dimensional problems as underlined by [Kaplunov
& Pichugin, 2009] and showed explicitly in [Wautier & Guzina, 2015, Part 5.5] where the homog-
enization of a 2D chessboard-like material leads to a family of equations similar to (4.32) but
which features an additional fourth-order anisotropic term that cannot be replaced by any time
derivatives.

Eventually, under these assumptions and restrictions, we are able to show convergence results
similar to those of [Moskow & Vogelius, 1997] for appropriately chosen first and second-order
approximations of uP as demonstrated below.
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First-order homogenization. We define the first-order approximation (ﬂ(l),c}(l)) of the dis-
placement and stress (uP, E,uP ) as:

D (z) = UD(z) + eP, (f) U0 (2),
8 k)

. . (4.42)

() = 1 () UP (@) + 22 (T) UR @),

The first-order mean field UM is the solution of the BVP obtained by (i) using the field equation

(4.28) and (ii) enforcing ") and 5 to satisfy exact displacement and stress boundary conditions:

U +nk?’UM =0 z €0, L]
U +ep(0)UY =0 z=0 (4.43)

S10)UY — eXo(0)nk*UY = Bkuy, z =1L
Note that we used the field equation to replace U(xlg by —nk2UW in the stress boundary condition,
obtaining Robin-like boundary conditions that are more convenient, e.g. for numerical treatment.
As for the exact BVP (4.35), we suppose that k is not an eigenvalue of (4.43) so that UM is
uniquely defined and depends continuously on uy. Eventually, we note that choosing f = 0 as
discussed in Remark 4.4 ensures that UM € C°°([0, L)), so that @1, (1) and their derivatives are
well-defined.
Following [Moskow & Vogelius, 1997], we then look at the errors (2%, s°) defined as:

ZF=uP — i =y UV —epUWY,

s¢ = EpuP 5 — g = EyuP , — ElUfL}) - EEQU’Q‘I).. (4.44)
and remark that the boundary conditions on U1 in (4.43) were chosen precisely so that
2°(0) =0 and s*(L) =0. (4.45)
Moreover, differentiating these fields yields the relations:
Ezax =5 —esh) with (1) = EPQWU%): = —EAg—EwQngyU(l)
(4.46)

Sy = —w? ([’526 - 52(1)> with z() = <§222 - ﬁP1> U,(zl) = —%223,3,/@(;)

In other words, (4.45) and (4.46) mean that the error terms (z°, s°) satisfy the homogeneous BVP!
with exact boundary conditions and O(g) error in the field equation. More precisely, the justification
of our choice of approximation is given by:

Lemma 4.2. The first-order approzimation iV = U(1)+5P1U,g) defined in terms of the first-order
mean field U satisfying (4.43) is such that:

3C >0 |2 = |[uP —aM||; < ce|uD;. (4.47)

or rather the equivalent first-order system, see [Moskow & Vogelius, 1997)
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Proof. We follow the duality argument of [Moskow & Vogelius, 1997] and aim at evaluating the
duality product (identified to the L? inner product) (2%, ¢)2 for ¢ € H=1(]0, L[). To this end, we
define the function w® as the solution of a periodic BVP featuring ¢ as source term:

(Epwgﬁ),x + ppw2wp = ¢ x € [07 L]

Epw?, =0 r=1L

and compute:

L
(25,9)12 = / 2° [(Epw%) .t ppw2wp} dzx
0 I’
L
= [ty - [ —es)ut, — pasur do (4.49)
? O ?
L
= [Epw%zs]OL — [sfwP)y + &7/ s(l)w?x — w2zWwP dg
0

where we used (4.46) when integrating by parts. Because of the boundary conditions (4.45) and
(4.48), the boundary terms cancel out and expanding s and (") we are left with:

L
(25,6) 2 = —6%w2 / EPy ,UMuP, - [E (P + ngy)} UDwP da, (4.50)
0

)

where E and the cell functions P; have to be understood as functions of (z/¢). We deduce that:
301, G2 >0, (2% ¢)2] < CrellUW [ |w |y < CoellTW [ d]]-1, (4.51)

the second inequality coming from the well-posedness of the problem (4.48) which is another par-
ticular case of the periodic BVP (4.35). Then, taking the supremum over all ¢ € H~1(]0, L[) and
invoking [Brezis, 2011, Corollary 1.4] concludes the proof. O

Remark 4.6. The result (4.47) is classical for 1D homogenization problems, and in fact it does
not require boundary corrections to hold. Indeed, without them, the contribution on boundary terms
n (4.49) would not cancel but be in O(g). On the contrary, in higher dimension, the oscillating
behavior of such boundary term would result in an O(Y/2) error estimate in H'(Q)-norm without
boundary corrections, see [Cioranescu & Donato, 1999, Thm. 6.3].

However, the main contribution of these corrections will become clear when looking at the L*-
norm of uP — @Y, which analysis requires to pursue the homogenization process.

Second order homogenization. We move now to the second-order homogenization, following
the exact sames steps as above. The second-order approximation (&(2), 6(2)) is sought as:

i (z) = U (2) + Py (g) U (x )+52P2< ) ) (@),

U
(@) = 1 (2) UD + 25 (2) UB @) + 255 (£) UR, (@)

LT

(4.52)
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where the second-order mean field U is defined using the “time” model (t) for the bulk equation
as the solution of the problem:

UR) 4, (k)KPUP =0 z €0, L]

(1 - 52nt(k)k:2P2(O))U(2) +eP(0)UR) =0 =0 (4.53)
(21(0) . e2nt(/c)k223(o))Uf§> — e (R)k2S(0)U® = Ekup = L.

The effective index n(k) in the field equation is given by (4.33) as:

ny(k) =n (1+nk*¢*g) =n (1 + e’nk? {52 — 92D : (4.54)
& oo

We then consider the errors:

2 =uP —a?,
(4.55)
s¢ = EpuP 5 — 52,

and again remark that the boundary conditions on U in problem (4.53) were chosen so that
2°(0) =0 and s*(L) = 0. (4.56)

Moreover, differentiating these terms yields the relations:

E’zfm =5 — 2@ 4+ o(e?) with ) = —E%w2P3,yU’(m2),
0
(4.57)
55, = —w? (ﬁze — 62Z(2)> +o0(e?) with 2 = (QOZ;; — pPy — [82 — Qﬂ) Dy@,
The o(¢?) terms, not specified here for brevity, come from the fact that we used U(ﬁ = —nk2U® +

O(e?) to deal with higher-order derivatives of U(?) (while we had the strict equality U(wla); = —nk?U®
for the first-order case). As expected, we gain one order of convergence in the following sense:

Lemma 4.3. The second-order approzimation 4(?) := U®) + €P1U7(12) + 52P2U7(x232 defined in terms
of the second-order mean field U®) satisfying (4.53) is such that:

3C>0 =l =[P —a® |y < o2 UP, (4.58)

Proof. The proof is exactly the same as for Lemma 4.2, except that the remainders of the errors
2 and s° are of order O(¢?) as shown by (4.55), hence the O(£?) final estimate. O

Remark 4.7. We chose to consider only the “time” model (t) for simplicity. However, all the
models of the (mt) family (4.34) would behave exactly the same way, replacing ne(k) by nmi(k) and
making some minor computational adjustments.

As announced in Remark 4.6, we are now in position to show the final result of this part:

Theorem 4.4. The first-order approzimation 1) := UM + €P1U7(xl) satisfies the H' estimate of
Lemma 4.2 together with the inequality:

3C >0 |uP —aM < Ce?|UP)|s. (4.59)
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Proof. The aim of the proof is to show that ||a(!) — 4(?) |y < Ce2||UP)||3, and then (4.59) follows
directly from Lemma 4.3. To this end, let us just note that this difference is:

2z) = i@ (2) — aV(x) = Z(z) + Py (g)z ( )+52P2( )U<2>( ) (4.60)

where Z :=U® —UW gsatisfies the difference between the problems (4.53) and (4.43). Therefore,
Z is the solution of a problem similar to the first-order BVP (4.43), except that the source terms
depend on U®):

7w +nk?Z = —2(nk?)? [52 — @] u® xz € [0,L]
& oo
Z 4 eP1(0)Z, = 2ny (k)2 Po(0) U2 =0
$1(0)Z, — enk?55(0)Z = &2 <nt(k)k223(0)Uf§> — (nk?)? [? - 52] 22(0)U<2>> z =1,
0 0
(4.61)

Still under the assumption that k is not an eigenvalue of this problem, noting that the boundary
(2)

source terms feature the derivative U3 , hence the bound in H%mnorm in inequality (4.59) and
below, we have:

C>0, |2 < U], (4.62)
Then from definition (4.60),
3C >0, I1Z]l0 < CE2|UP)., (4.63)
and finally, by Lemma 4.3
lu? =@ < [luP =@l + |20 < C|UP]|2. (4.64)
O]

Remark 4.8. With the help of the observations of Remark 4.6, one could show that the second-order
boundary corrections for U® in (4.58) were not necessary to establish Lemma 4.3 and Theorem
4.4. However, there would undoubtedly be necessary to establish a result such that:

IC >0 [uP —a@ |y < C3|UD)] (4.65)

for some third-order mean field U®) obtained by pursuing the homogenization procedure. While we
do not prove this result, we firmly believe it holds, and we will indeed observe such O(e®) behavior
for ||uP — @@||g in the numerical experiments presented in the next section.

4.2 Two-phase layered medium

In this section, we consider the case of a two-phase layered medium that is characterized from
reference properties (E, p) using four material parameters (ag, «,, Vg, 7,) such that £ and p are
piecewise constant and defined within a periodicity cell [0, £] as:

R {ElzaEE ye0,4/2] 5 :{plzapp ye0,0/2)

Ely) = Y,
Ey =vgEy = agypE y € [0/2,1] p2=Ypp1 = appp Y € [£/2,1]
(4.66)
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Remark 4.9. We considered only rods with constant section for simplicity. Howewver, since the
coefficients of the longitudinal wave equation are in fact ES and pS (with S the section of the rod),
for vv = gR such a rod is equaivalent to a homogeneous rod with piecewise-constant section, as
showed by Figure 4.1.

/2 £/2 /2 £/2
Ay = Az Ay
| |A2 L A E |WE
¥ = p |
L] I [
Unit Cell Unit Cell

Figure 4.1: Rod with periodically variable section, and equivalent two-phase layered rod [Dontsov
et al., 2013]

Despite some loss of generality, we choose to consider the simple case for which each material

occupies half of the cell, rather than introducing an additional parameter « €]0, 1[ such that [0, ¢]
is split into [0, af] U [/, f]. The latter case is addressed in [Fish et al., 2002; Wautier & Guzina,
2015]. However, some of the results we need, in particular the exact expression of the cell functions,
are not explicitly given in these references. For completeness, these results are therefore recalled

thereafter.

4.2.1 Cell functions and homogenized coefficients

This part is dedicated to the computation of the cell functions for the two-phase layered material
defined by (4.66). Similar cell functions are already given in [Andrianov et al., 2008] for symmetric
cells [—£/2,7/2], and we provide here their expressions with our notations from [Wautier & Guzina,
2015]. For later convenience, we introduce the additional material coefficients S, 8, and Bg, as:

vE — 1 B+ Bp YEYp — 1

_ 1 _
b= ety T A,y ™ T T Timpr g,y A

and proceed with the cell problems definitions and notations.

First cell problem: P; satisfies the following problem on the cell [0, ¢]:

A

[E(1+ Pl’y)]y =0
(P1)=0

P; and E(1 + Py ) are (-periodic (4.68)
(P (E/2) =0, (B(1+P))(@/2)=0.
The solution is given e.g. in [Fish et al., 2002, eq. (17)] by:
BE (4y - @) y €[0,0/2],
Ply) = (4.69)

BE (Sé— 4y> ye[l/2,19.
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The associated stress ¥ = E(y)(1 + Py ) is constant and therefore equal to the leading-order

homogenized Young’s modulus:

2Vgap >

PO <y <{/2)=Pl/2<y <) =7~

= &.

~

Second cell problem: P, satisfies the following problem on the cell [0, £]:

A . K 5
[E(Py+ Py, = —E(1+ Pry) + pgz —& (;’) - 1)

(P) =0
P and E(Pl + Py ,) are é—periodic

(o) (£/2) =0, (B(PL+Poy)) (0/2) =0

Using the cell function P; determined previously, the solution is computed as:

A(2y — D)y + CP? y e [0,0/2],
Py(y) = ; L
As(30 —2y)y + (C — A)l* y € [£/2,4],
with:
Av= 4858, ~ 205, Az =4BsP, ~20m, and C =2

And the second cell stress Yo is:

&by (4 1) welo.i/,

Sa(y) = E(y)(PL+ Pay)(y) = . o
0By (3£ - 4y) y e [0/2,4).

~

Third cell problem: Ps satisfies the following problem on the cell [0, /]

i i "
[E(P2+ P3y)]ly=—E(P1+ P2y) + Pplzz

(P3) =0
P; and E (P2 + P3 ) are {-periodic

)
(P (0/2) =0, (B(Py+Py,))(0/2) =0

The solution is written:

2vg Ao 0 2y 9 . 3 A
A - — = B D 2
() <’7E+1+ 1) (2 3 y° + By + D1/ yE[O,Z/]
P(y) = .
20 L) (2238 24 Boity 4+ Do € [0/2,0]
'7E+1 2 3 2 Yy 2¢°Y 2 Yy sty
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(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)



2 24 2
with: Bl:ﬁE<7EﬁE+ﬁp>, By = 1 +AQ+BE<7 Be +ﬁp),

3 \e+1 e+l 3 \ye+1 W
4.77
BE < 27 )2 5 < 24, )
Di=—7"1]1 Dy =D — Ay | — Bs.
1 24 + o+ 1 ) 2 1+6 ")/E+1+ 2 2
The third cell stress >3 is:
B2 )
& (—A2(2y — Oy + 562) y €10,/2]
Za(y) = E(y) (P2 + Ps ) (y) = ) 2 - 4Ty
&o (—A1(3€ —2y)y + <:f + A1> P) y € [£/2,4].

These three cell functions P;, P> and P5 are plotted on Figure 4.2, along with Yo and 3.

0.03 0.03

— First cell function
Second cell function
= Third cell function

— T
_23 =F [P2 -+ P3,y]

0.02 ¢ 0.02 r

0.01 | 0.01 |
0 0
-0.01 | -0.01 t
-0.02 | -0.02 |
-0.03 : -0.03 :
0 0.5 1 0 0.5 1
y y

Figure 4.2: Cell functions and stresses for £ =1, p =1, /=1 and vE = ¥, = 0.8. The first cell
stress is constant with ¥; = & (= 0.889 in this case) and is not represented.

139



Boundary values: We saw in Section 4.1.2 that the boundary values of the cell functions and
those of the corresponding cell stresses are required to build the high-order boundary conditions.
For convenience, we recall here these values, which are obtained by setting y = 0 in the identities
(4.69,4.70,4.72,4.74, 4.76,4.78):

P1(0) = —Bgl 21(0) = &
Py(0) = —%ﬁ $5(0) = &oB,¢ (4.79)
Py0) = 2o (14 (2B Ak S55(0) = LE,3%02

30 =54 5+ 1 3\V) = 3¢0Pk

Homogenized coefficients: The homogenized coefficients defined by (4.14), and given in [Wau-
tier & Guzina, 2015] for any material ratio within the cell, are as follow for the simpler configuration
considered here:

2 2 2
g =12 g = EOE E, & =0, & = = BrBr,l*&,
14+ vg 1+~vE 3 (4.80)
1+~ 14+, 2 N ’
00 = —5 Ppr = ( 20) p, 01 =0, 02 = _gﬁpﬁEpEQQO-
The index n is: P ) )
e Boo _ oy (148 +7p)7 (4.81)
P  ap VE
and the second-order coefficient 3 (4.31) is:
1 [& 92} 4, 4 (1 —vE7,)?
1|2 e _4 _ , 4.82
=5 e 2] =3 = T (452

which corresponds to the result of [Fish et al., 2002; Andrianov et al., 2008].
4.2.2 Dispersive properties of real material and second-order homogenized
models

To conclude this section, we briefly recall the dispersive properties of such layered medium. Upon
noting rp, the effective wavenumber of the microstructure, then the corresponding dispersion relation
(given in terms of k = w/c) is given by [Wautier & Guzina, 2015] as:

cos(ripf) = (1 + ) cos <’“;\/Z (1 + \/71?%)) ~ ycos (f\/g <1 - Jﬁ)) (4.83)

where y is the parameter defined by:

X = % <m+ - 2) . (4.84)

1
/YEVp

One of the remarkable feature of the layered material is the presence of band gaps, i.e. intervals of
frequency w for which the propagation within the structure is forbidden. Since we address mostly
low-frequency behavior, we refer to [Dontsov et al., 2013] for more precise characterization of this
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phenomenon and numerical and experimental observations. In terms of the dispersion relation
(4.83), these frequency values are the one for which only purely imaginary solutions x, can exist.
We call the onset of the first band-gap the couple (wpg, kpg) that corresponds to the beginning of
this band and the corresponding wavenumber. In particular, one can show that xpg is given as:

e % (4.85)

Roughly speaking, we can show that for “reasonable” contrasts (yg and 7, close to 1), one has
kpc = wpg/c = O(kBg), so that the corresponding homogenization parameter is egg = kpgl/2m =
O(1/2), which is out of the usual bounds for a “small parameter” assumption. This explains the
difficulty for classical models to reach such band-gap. We therefore show how the second-order
family of homogenized equations that was obtained in the first section can be calibrated so that
the dispersion relation (4.83) is well approached.
Recall that the family of second order equations (4.32) is:
BolPUR) o + (14 Brnk??) U + nk? (1 — Bn?k**) UP =0, (4.86)

TXXIT

with 8, — Bm — Bt = B. All these models capture the low-frequency dispersive behavior of the
propagation within the periodic material. Indeed, the low-frequency dispersion relations for the
models (4.86) are:

(4.87)

1= B (k) — \/1 — 2(Bm + 2B:) (k)2 + (B2, + 48.0t) (k€)%
vkt = \/ 2,

and the obtained asymptotic expansion of k¢ as k¢ — 0 coincides with that of (4.83) up to O((k¢)?)
for any set of parameters (84, Bm, i) satisfying condition (4.31). Additionally, one can take advan-
tage of the degrees of freedom offered by models (4.86) to obtain better agreement.

Optimized two-parameter model (mt): If 8, = 0, the relation 8 = —f,, — ; is prescribed, but
then we still have a degree of freedom to fit the dispersion relation. The two-parameter dispersion
relation is:

ke \/ L= Bn(wl)? = /1 2o+ L+ F0t) (439

We have to choose the condition to impose:

e Predicting the onset of the first band gap (as done in [Wautier & Guzina, 2015, sect. 3.4.3],
for 5, = 0) would be:

ok
el 0. (4.89)

However, it cannot be achieved for 8, = 0 when (4.88) holds, since in this case the derivative
cancels only for x — oc.

e Predict the location of the band-gap as done in [Dontsov et al., 2013], i.e. impose k(k =
7w/l) = wpg/c = kpg. This gives:
B, = _n(kBgﬁ)Q(l + n(k:B(;E)QB) —
" n(kpal)?(n(kpal)? — 72) (4.90)
Bt =—8— Bm-
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However, this condition was shown for a similar three-parameter model in [Wautier & Guzina,
2015, Sect. 3.4.3] to be less accurate at low-frequency (in terms of approaching the exact
dispersion relation) than even one-parameter models.

Approaching the Taylor’s expansion of the exact dispersion relation (4.83) up to O((k¢)®)
instead of O((kf)3) as k¢ — 0. To simplify the computations, we address only the simplest
case for which vg = 7, = 7. The real dispersion relation is given as a particular case of (4.83)
by [Dontsov et al., 2013] as:

14 1
k¢ = cos™! <W> » X= g (v+ 4t - 2), (4.91)

and its Taylor expansion as k¢ — 0 is:

ke = \/11+7X <npz— 21411)((%5)3 T 9120 X((l_f ;;‘) (k) +0((npe)7)> L (492)

In this case, the index n and second-order coefficient 8 given by (4.81) and (4.82) become:

X

n=1+x and B:ﬁm7 (4.93)
and we therefore write the expansion (4.92) as:
N g(npz)?’ + 5(27450_2)(%5)5 +O((ro)). (4.94)
Similarly, we expand the homogenized dispersion relation (4.88) as:
Akl = K0 + W(Rz)?’ 4 Bt Bt)(g’ﬁm T8 (e + O((s0)). (4.95)

Equating the coefficients of expansions (4.94) and (4.95) thus provides the additional condi-
tion:

2-27
30m + 10 = — B , (4.96)
which, along with the already known relation 5,, + 8; = —3, leads to:
—1—4 1-6

Optimized three-parameter model The full (zmt) model presented in [Wautier & Guzina,
2015] is numerically optimized to respect both the slope condition dw/dk = 0 at the beginning of
the BG and the width of the BG.

Eventually, the Figure 4.3 plots the dispersion relations obtained for the models described above.

Note that the latter one (optimized (xmt)) is the only one able to accurately fit the dispersion curve
up to and even after the band-gap.
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Figure 4.3: Dispersion relations: k¢ as a function of /nkf (plotted as usual with shifted axes) for
YE = 7, = 0.6, up to the first band-gap. The error for the 2nd-order simplest model () is to be
compared to these of optimized models (mt) and (zmt).

4.3 Analytical and numerical examples

This final section is dedicated to the illustration of the approximate high-order models proposed
in Section 4.1.2 in the simple case of the bi-layered material. Consider the model problem of a
clamped rod submitted to time-harmonic axial tractions:

(EpuP ), + ppu’uP =0z € [0, L]
u=20 =0 (4.98)
EyuP , = Fkuy, r=1L,

for which an exact solution is available in the case of a bilayered material as presented now.

4.3.1 Exact solution

Let E, and pp, in (4.98) be the piecewise-constant coefficients defined by (4.66). The number of
cells in the rod, supposed to be an integer, is given by N = L/¢. We note x,, :=nl, n=0,...,N
the positions of the interfaces between cells, and n; = (E/p)/(E;/p;) the index in the half-cell j for
j € {1,2}. Then uP is piecewise and defined by the coefficients (ag), bg),ag), bg)) corresponding
to the cells [z, zp41] according to:

WP (z) = { a\V cos (vnrk(z — z,)) + bV sin (Vark(z — 2,)) T € [Tn, Ty + £/2],
a'? cos (vgk(z — zn — £/2)) + bP sin (/igk(z — z, — £/2)) € [z, + £/2, :cn_(H]. |
4.99

We then write the boundary condition at x = 0 and at z = L, and the transmission conditions
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for each interface within the microstructure.

=0 :a(gl):O

ang) agll)

n

T =2Tpt1 ©

a(l)l a7(12) agll)
b(‘f)L =Bak) | o) | = Ba(K)Balk) - |y
n+1

z=1L : Eh/nlkbg\lf) = Fkuy,

where we added a “virtual” half-cell with coefficients (ag\lr),bg\lf)) at xy = L for a more compact

expression. The transmission matrices By and By in (4.100) are defined by:
Bi(k) = { cos(y/n1kl/2) sin(y/n1kl/2) }
—(yEv,) "2 sin(arTke/2)  (vEv,) M2 cos(y/mrkl/2)
Ba(k) = { cos(/nake/2) sin(y/miokt/2) }
_(W’E%)l/Q Sin(\/rTQk:E/Q) (W’E%)l/Q COS(\/TTQM/2)

Combining all these equations, we finally rewrite the boundary condition at x = L as:

<[BQ(]€)Bl(/€)]N [ bf?l) D : [ (1) } = Ei%? (4.102)

Note that the eigenvalues of problem (4.98) are the wavenumbers k that cancel the left-hand-side
of (4.102), i.e. those for which the homogeneous problem (u; = 0) admits a non-trivial solution.
We therefore define the characteristic function f, as:

(4.101)

fo(k) = [ (1) r- [Ba(k)B1 (k)] - [ (1) ] . (4.103)

Provided that f,,(k) # 0, the value of the first coefficient bél), which uniquely defines the solution,
is therefore given by:
FEu L
b(l) _ , 4.104
Ey/n1fp(k) ( )
and it can easily be computed numerically. The coefficients (aq(ql), bg), ag), b,(f)) are then determined
iteratively thanks to the transmission conditions (4.100), and the complete solution is defined by
(4.99).

Remark 4.10. We chose the boundary conditions for the problem (4.98) so that both displacement
and stress boundary corrections introduced previously are used. However, considering other bound-
ary conditions would result in very similar expression for the characteristic function f, and the
solution u. As an example, considering a prescribed displacement u(L) = uy, instead of an applied

force, the associated characteristic function fgiSp and the coefficient bél)diSp would be:
~ 11" N | O
£ (k) = [ 0 } - [Ba(k)B1 (k)] - [ | ] : (4.105)
and, provided that fgiSp(k:) £0:
piDdise — UL (4.106)

SNO)
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4.3.2 Homogenized models

We now apply the homogenization procedure described in the previous sections to the problem
(4.98).

Leading-order: The leading-order homogenized BVP reads:

E
Uoe +1k2ug =0 z €[0,L] withn= —20
r&o
up =0 z=0 (4.107)
k &
uoggzﬂ r=1L, with a = =2,
) a E

This problem is well-posed provided k is not an eigenvalue for the homogeneous problem (given by
ug, = 0), i.e.

T mm
k) = kL) #0 k — 4 —; N;. 4.108
Jolk) = cos(/ikE) £ 0= kg {370+ D8 meny (4.108
In this case, its solution is unique and given by:
i k
() = M Sn(ynkz) (4.109)

ay/n cos(y/nkL)

It is natural to wonder whether the eigenvalues of the homogenized problem (i.e. the zeros of fj) are
related to those of the periodic problem (i.e. the zeros of f;,). A short discussion on this complex
issue is delayed to Section 4.3.3.

First order As seen for the general case (4.43), the first-order homogenized BVP is written for
the first-order mean field U™ as:

Ul +nk?U® =0 € [0,L]
U — 5EEUS) =0 =0 (4.110)

U _ g k2 = ML g
’ (6%

The characteristic function f; is defined by:

fi(k) := (1 = BBymn(kl)?) cos(vnkL) — (Br + B,)v/nklsin(y/nkL), (4.111)

so that k is an eigenvalue of the homogeneous counterpart of (4.110) if and only if fi(k) = 0.
Assuming this is not the case, the solution of (4.110) is unique and given by:

ur,

T = S ®

[BE\/EM cos(v/nkx) + sin(\/ﬁk‘m)] . (4.112)
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Second order “time” model: Similarly, up to the second order u(?, and using the “time”
model as in (4.53) we obtain for the second-order mean displacement:

U+ ny(k)E*UP =0 ze0,L]
BEBy 12,2\ 11(2) @) _ _
<1+3nk‘ C)UY = BRtUy’ =0 x=0 (4.113)
2
(1 - %nk%?) U® — kU@ = kur g
’ a
where the refraction index n(k) is given by:
ny(k) == n (1 + Bnk?¢?). (4.114)
The characteristic function fo is:
AL BE2 2,2 /BEﬁp 2,2 .
fa(k) == - 1- Tnk‘ l 1+ Tnk 02 ) cos(y/nikL) — Br~/nikl sin(y/nikL)
(4.115)

— Bov/nkt [(1 + Bzﬁpnk?z?) sin(y/nikL) — Bry/nikl cos(\/TTtkL)}

where the dependency of n; on k was omitted for compactness. Provided that fa(k) # 0, the
solution of (4.113) is:

uy, ﬁE\/ﬁkf

@)(y) —
URE) = R h®) [1 T (BB, 3k

cos(y/nikx) + sin(\/ﬁth)} (4.116)

Numerical illustration The mean fields ug, U) and U (respectively given by (4.109), (4.112)
and (4.116)) are first plotted on Figure 4.4 with the exact solution uP. The first-order boundary
corrections are seen to improve qualitatively the match between UM, U®) and wP. From these
solutions, we then reconstruct the approximations ™) and @ as:

i (@) = UV (@) +2P (Z) UP (@)
i (z) = U () +ePy (g) UD(x) + Py (g) U () (4.117)
_ (1 — 2y (k) k2P (9) U (z) +ePy (g) U ()

while the cell functions are given for the bi-layered material by (4.69) for P, and by (4.72) for P;.
These approximations are plotted on Figure 4.5 and a very good qualitative agreement between u
and @?) is observed.

Figure 4.6 finally illustrates the convergence of these models as ¢ — 0 (in this case, k is kept
fixed while N — +00 so that £ — 0). The first and second-order H!-estimates provided by Lemmas
4.2 and 4.3 are clearly observed. Moreover, L2-estimate stated by Theorem 4.4 for @(!) is seen, as
well as its counterpart for @(® predicted by Remark 4.8. The solutions obtained without boundary
corrections (i.e. by replacing U and U® by wug in (4.117)) are plotted in dashed lines, and they
highlight the need for these corrections as discussed in Remarks 4.6 and 4.8.
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Figure 4.4: Exact displacement uP and homogenized mean fields Uy, UM and U® for k =1, ¢ =1
(so that e = 0.16), v = 0.5 and uy, = 1.
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Figure 4.5: Exact displacement uP and homogenized total fields Uy, @") and @(?) defined by (4.117)
for k=1, ¢ =1 (so that ¢ = 0.16), v = 0.5 and uy = 1.
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Figure 4.6: Errors on the L? and H'-norms of the homogenized approximations @) defined by

(4.117), in log-scale. The parameters are v = 0.5, k = 1. Dashed lines correspond to the solutions
computed with no corrections on the boundary conditions.
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4.3.3 About the associated eigenvalue problems

Up to this point, we only have considered the sets of eigenvalues of the periodic problem (i.e. the
zeros of the characteristic function f;,) and those of the homogenized mean field problems (i.e the
zeros of fy, f1 and f2), without specifying further the relationships between these sets. Indeed, the
homogenization of eigenvalue problems is a complex issue addressed in [Santosa & Vogelius, 1993]
2 and completed later by [Moskow & Vogelius, 1997] for the Dirichlet eigenvalue problem, while
[Moskow, 1997] addressed the Neumann eigenvalue problem. It is well-known that the eigenvalues
of the exact problem (4.98) (the zeros of f;,) converge to those of the leading-order homogenized
eigenvalue problem (4.107) (the zeros of fy) as € — 0. However higher-order correction must be
addressed carefully, by means of an analysis that involves the boundary correctors we invoked in
Section 4.1.2 rather than the boundary corrections we introduced in problems (4.110) and (4.113).

As a consequence, we do not claim that the eigenvalues of these problems (i.e. the zeros of
fi and fo defined resp. by (4.111) and (4.115)) are better approximations to those of f,, but
rather limit ourselves to empirical observations on a specific example. On Figure 4.7 are shown
the errors on the first six eigenvalues associated with the homogenized models corresponding to a
given microstructured rod. These eigenvalues were chosen so that all of them are smaller than the
onset of the band-gap of the periodic structure kgg. On the particular setting that is shown here,
all models are very accurate: the associated eigenvalues have less than 1% misfit with those of the
periodic model. However the second-order model provides a slightly better approximation, which
could justify further investigations.

0.015 ¢ 4
4
4
’
’
’
8 e
£ 0.01 §
3 —oe— Leading order
'qg - v - 1st order
= 2nd-order e
[} ,
A~ 0.005 _.v
- - - v -
- - = - -
Ov: _____ 1 1 1 1 i
1 2 3 4 5 6

Number of the eigenvalue

Figure 4.7: Relative errors on the eigenvalues for the problems (4.107), (4.110) and (4.113) (zeros
of fo, f1 and fz) with respect to those of problem (4.98) (zeros of f,), £ =1,y = 0.5 and uy, = 1.

2See also erratum [Santosa & Vogelius, 1995]
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4.4 Conclusion and perspectives

The main addition of this chapter is the presentation and justification of simple boundary conditions
for high-order homogenized one-dimensional problems. The idea promoted here is to enforce exact
boundary condition for the two-scale expansion in the BVP satisfied by the mean fields. However
it cannot be generalized to higher dimensions, as discussed in Section 4.1.2. Nonetheless, we think
they can provide a simple framework for a better understanding of second-order homogenization in
bounded domains.

Many follow-ups come to mind. The first one is to look into the models that feature fourth-order
space derivatives, that we have discarded yet and for which deriving accurate BCs requires other
mathematical and/or physical considerations. A very interesting perspective is also investigate
into the relevance of the proposed local boundary conditions for eigenvalue problems, following the
brief discussion and observations of Section 4.3.3. In particular, the relationships between these
boundary conditions and the boundary correctors used in the analysis of such eigenvalue problem
are to be explicated -if any- and understood further.
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Chapter 5

Homogenized interior transmission
problem and identification of a
periodically-varying rod.

Contents
5.1 Definitions and preliminary results . . . . . . .. ... ... ... ... 152
5.1.1 ITP for a homogeneous inhomogeneity . . . . . . . . ... ... ... .... 152
5.1.2 ITP for a microstructured inhomogeneity . . . . . .. ... ... ... ... 159
5.2 Homogenized interior transmission problem ... ... .......... 163
5.2.1 Leading-order homogenization . . . . . .. ... ... ... ... .. ... 163
5.2.2 Higher-order homogenized interior transmission problem . . . . . . ... .. 166
5.3 Conclusion and future work . . . ... ... ... ... 00 0 0o 169

This chapter comes to the main purpose of the second part, which is to propose an identification
procedure of a two-phase layered 1D inhomogeneity of length L. Typically, such an inhomogeneity
may be the rod with piecewise constant cross section studied in the last chapter, this time prolon-
gated on both sides by parts with fixed cross section. We suppose that the only knowledge available
is the low-frequency spectrum of the associated transmission eigenvalues (TEs). As explained in
the introduction, such eigenvalues are defined as the frequencies for which there exists an inci-
dent wave (the associated eigenfunction) that is transmitted through the inhomogeneity with no
reflected wave. They can be seen e.g. as the “counterpart” of the band-gap frequencies for which
no energy is transmitted through the inhomogeneity as discussed by [Dontsov et al., 2013] for such
a one-dimensional microstructure.

Recall also that the TEs can be computed as the eigenvalues of an equivalent interior trans-
mission problem (ITP) posed only on the support [0, L] of the inhomogeneity. Thus we propose
to study the ITP to propose a model suitable for identification. At our knowledge, the simple
one-dimensional ITP we will focus on here has not yet been addressed, but close studies [Colton
et al., 2010; Aktosun et al., 2011] address a spherically stratified acoustic medium.

To provide a convenient model, while accounting for microstructure effects, we aim at using
homogenized approximations of the exact ITP for the periodic inhomogeneity, based on the results
presented in the last chapter and leaning on the recent work [Cakoni et al., 2015] that shows that the
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TEs of the leading-order homogenized I'TP converge to these of the exact ITP. After some reminders
and preliminary results on I'TPs for homogeneous and periodic inhomogeneitys in Section 5.1, we
investigate this leading-order homogenized ITP in Section 5.2. In the present case, it is shown
to be accurate to approach low-frequency TEs and well suited for asymptotic expansions under
low-contrast assumption. These asymptotics lead to remarkably simple formulas expressing the
length L of the inhomogeneity and the section ratio v as functions of the first two TEs. However,
the leading-order homogenized I'TP does not retain the period ¢ as a parameter, thus it cannot be
inverted to recover this parameter. Preliminary qualitative results for higher-order homogenized
ITP are then presented, yet without complete analysis.

5.1 Definitions and preliminary results

Consider (i) a homogeneous background material characterized by constant Young’s modulus E and
density p and (ii) an heterogeneous inhomogeneity characterized by the length L, and the space-
varying Young’s modulus E,(x) and the density p,(z). The 1D elastic interior problem consists in
finding a couple of displacements (v, w) such that:

Ev 4y + pw?v =0 x €0, L]

(Epws) , + ppw?w =0 x€0,L] (5.1)
v=w r=0andz=1L

Ev, = E,w, r=0andz =1L

The displacement v is associated with the inhomogeneity geometry but with the background
material properties, whereas w corresponds to the periodic inhomogeneity. We require that both
the displacements and stresses associated to these fields match at the boundaries £ = 0 and x = L.
Defining the longitudinal wave speed ¢ and wave number k for the background medium as:

E
c:’/;andk:%:ww/%, (5.2)

then the transmission eigenvalues (TEs) k € R\{0} are defined as the wavenumbers such that there
exists a non-trivial solution (v,w) € (L2([0, L]))? to the problem (5.1).

Remark 5.1. In this work, we will address only real transmission eigenvalues. However, as in
[Colton et al., 2010] for spherically stratified inhomogeneities, we could observe that there exists
complex TFEs, at least for particular configurations such as the homogeneous inhomogeneity pre-
sented next.

5.1.1 ITP for a homogeneous inhomogeneity

Focusing on the I'TP for a homogeneous inhomogeneity permits to carry out analytical and asymp-
totic developments which will also be of use thereafter. We characterize such inhomogeneity by
constant Young’s modulus and density (E*, p*). For convenience, we introduce the alternative set
of parameters:

e Young’s moduli ratio « = E*/E
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e refraction index n = ¢2/(c*)? = (E/p)/(E*/p*).
The ITP (5.1) then becomes:

Ver +EPV=0  2€[0,L]
W4y +nk*w =0 2 €[0,L] (5.3)

v=w z=0and x =L

Vg = QW4 r=0and x =1L
The solutions v and w to the equilibrium equations can be given in terms of four real coefficients
(A, B,a,b) as:

v(x) = Acos(kz) + Bsin(kx),

w(z) = acos(yv/nkx) + bsin(y/nkz).

Moreover, the boundary conditions at x = 0 impose A = a and B = «a+/nb while those at z = L
result in the 2 X 2 system:

(5.4)

Mo (k) [ ) ] =0, (5.5)
with:
cos(kL) — cos(y/nkL) ay/nsin(kL) — sin(y/nkL)
—sin(kL) + ay/nsin(y/nkL) ay/n[cos(kL) — cos(y/nkL)] |~
This linear system has non-trivial solutions if and only if the matrix M (k) is singular, i.e. if and

only if det(M(k)) = 0. Therefore, we define the characteristic function fy, such that fo(k) =0 if
and only if k is a TE, as:

Mo(k) = (5.6)

fo(k) = det(Mo(k))

= 2a/n(1 — cos(kL) cos(v/nkL)) — (1 + a*n) sin(kL) sin(v/nkL). (5.7)

For easier visualizations, we will also use the indicator function Iy(k) := 1/|fo(k)| whose peaks
indicate the location of TEs. For a given TE k*, the corresponding eigenvector (v*, w*) is (up to a
multiplicative constant):

(5.8)

v*(z) = cos(k*z) + ay/n sin(k*x) with ¢ = cos(y/nk*L) — cos(k*L)
w*(x) = cos(v/nk*r) + ¢ sin(v/nk*x) ay/nsin(k*L) — sin(y/nk*L)’

Finally, we define r such that v/n = 1 + r and remark that the characteristic function fo (5.7)
admits the alternative expressions:

fo(k) =2a(1+7) = [2a(1+7)+ (1 —a(l+ r))? sin2(k:L)] cos(rkL)
— [(1 = a1+ 7))?sin(kL) cos(kL)] sin(rkL) (5.9)
=2a(147)[1 —cos(rkL)] — (1 — a1 +7))?sin(kL) sin((1 + 7)kL)
The expressions (5.9) emphasize the fact that f features oscillatory functions with the two periods
27 /L and 27 /r L, which can be very different, especially at the limit case n — 1 i.e. r < 1. Figure

5.1 illustrates this observation for (a,n) = (2,2). It also plots the characteristic and indicator
functions for the limit cases n = 1 and a = 1, that we address next.
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Figure 5.1: Normalized characteristic function fy (5.9) and indicator function Iy := 1/|fp| for

= 1 and different values of material coefficients (a,n). The transmission eigenvalues are such
that fo(k) =0 (and thus correspond to the peaks of Ij).

5.1.1.1 Refraction index n =1

In the case n = 1, i.e. E*/E = p*/p, the inhomogeneity is completely characterized by the Young’s
moduli ratio « and its length L. In this case, the characteristic function fy (5.7) reduces to:

fo(k) = —(1 4 a)?sin?(kL), (5.10)
and the two-period behavior discussed above vanishes as seen on Figure 5.1. The set of transmission

eigenvalues is {k}, = mn/L, m € N}. The length L of the inhomogeneity is therefore easily
identifiable from the first TE, or any other TE provided we now its rank m:

¥m e N. (5.11)

On the other hand, for such configuration, the TEs are independent of the contrast a, which thus
cannot be recovered if these TEs are the only available information.
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5.1.1.2 Young’s moduli ratio a =1

If « =1, i.e. E* = E, then the index n = p*/p is the only remaining material parameter, and the
characteristic function (5.9) becomes

fo(k) = 2(1 +7) [1 — cos(rkL)] — r?sin(kL) sin((1 + r)kL), (5.12)

in terms of r = \/n — 1. Unlike the previous case, there is no simple way to determine the zeros of
this function and thus to provide an inversion scheme. However, one can make further assumptions.
In particular, a possibility is to investigate the low-contrast regime, i.e. to look for the zeros of f
when r — 0, whichcorresponds to n — 1.

In this case, since 2 = o(1 + r), by looking at the two terms in formula (5.12) one can expect
that the condition |1 — cos(rkL)| < 1 is required for k to be a TE. This leads us to look for TEs
around what we refer to as the “central zeros” k,,:

_ 2mm

km = . 1
T (5.13)

To this end, we compute the Taylor expansion of fy about these k,, values. Setting k = k,, + p,
we look for the zeros of the second-order approximation f,, of fy, given in term of the dimensionless
variable X := §,,L as:

/ km /! k;m
fin(X) == folkm) + fO(L ) x - 02(1;2 )x? with X — 6mL = (k — kpy)L (5.14)
and
folkm) = —12s2, with s, = sin(kp, L) = sin(2mm/r),
!
km,

f0<L ) = 122+ 7)8mem  with ¢, = cos(ky L) = cos(2mm/7), (5.15)

/l(km) 1

02L2 = 57“2(2 +7)%s2,.

The discriminant of the polynomial equation fp,(X) = 0 is:
A=r42+47)%s2 (1+s2,), (5.16)
and the solutions &% of this equation are:

m /1 + 82
+ _ ﬂ’ (5.17)

™ L(247)5m

so that the two values k,, + J;> are expected to provide a good approximation of the TEs.

Figure 5.2 shows an example of this approximation for two low-contrast values of the index n.
The first couple of transmission eigenvalues is plotted. The first point to be noted is that they are
indeed on either side of k; = 2w /rL. However, for the two values of n considered, only one of the
corresponding couple of TEs is correctly approximated by ki + 5?. To provide another illustration,
we represent on Figure 5.3 the three first couples of TEs for n = 2. Again, depending on how fy
behave around a given central zero k,,, then the quality of the approximation varies.

Due to these variations, we cannot use the second-order approximation f,, of fy as a model
suitable for straightforward inversion and identification. However, this pattern of coupled TEs
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around the central zeros ky, (5.13) is characteristic and provides itself some information: in the
case o # 1, it can be checked that there would be (at least) one low-frequency TE as seen on Figure
5.1. Moreover, the measure of these central zeros, which are reasonably well approximated as the
mean of each couple of eigenvalues, could provide an accurate estimate of the product rL. Such an
estimate could be used to e.g. initialize an iterative procedure to identify (r, L) from some of the

available TEs.

10° .
In(k) 1072t -
maxy, |1o(k)|
|
|
1041 i ]
—_—n=13,r=0.14 (N
n=14,7r=0.8 i
| [ | \iT |
25 30 35 40 45 50

Wavenumber k

Figure 5.2: First couple of TEs for L = 1, @ = 1 and two low-contrast values of n. Dot-dashed
vertical lines indicate the first fundamental zero k1 := 27/rL, and dashed lines the approximations

k1 —i—(Sit
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Figure 5.3: Normalized characteristic function fy and indicator function Iy for L = 1, « = 1 and
n = 2. Dot-dashed vertical lines indicate the central zeros ky, := 2mm/rL, and dashed lines the
approximations k,, + 6.

157



To conclude this part, we would like to highlight the particular cases for which r takes rational
values. Indeed, in such cases, the characteristic function fy (5.12) is periodic of period 2pw/rL
for some p € N, which itself is a multiple of the two periods 27 /L and 27/rL. This could lead to
shared zeros of the two oscillating contributions.

We do not provide further investigation, but we illustrate this remark with Figure 5.4. In
particular, the couples of TEs around each central zero k,, in the general case can degenerate into
a unique TE for some -but not necessarily all- of the k,,, see for example the case r = 0.8.

1

0.8
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maxy, | fo(k)|
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04 I
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Figure 5.4: Normalized characteristic function fp and indicator function Iy for L = 1, « = 1 and
rational values of r = /n — 1.
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5.1.2 ITP for a microstructured inhomogeneity

In this section, the scatterer is considered to be made of the layered two-phase material that is
described in the previous chapter and whose period or cell length is noted £. The number of cells
N = L/t is supposed to be an integer, the small parameter to be considered is ¢ = ¢/, and (Ey, pp)
are defined by E,(z) = E(z/e) and py(x) = p(z/e) with:

Bly) = {E1 =apkE y€0,0/2] Sy) = {m = a,p y € [0,0/2]
Ey =~gEy =agygE ye[l/2,{] P2 =VpP1 = QpYpp Y E [/2,1]
(5.18)
where / = ¢ /¢ is the normalized cell length. Moreover, we note z,, := nf, n = 0... N the boundaries
of the cells, and n; = (E/p)/(E;/p:), i € {1,2} the two possible values for the refraction index in
each of the half-cell.
Considering the resulting periodic ITP (5.1) and proceeding with the same steps than for the
homogeneous inhomogeneity, we first remark that the solution v to the homogeneous “background”
equilibrium equation can be defined by two coefficients (A, B) as:

v(z) = Acos(kx) + Bsin(kx). (5.19)

The solution w to the “periodic” equilibrium equation with piecewise-constant refraction index is

accordingly defined piecewisely in each cell [z, z,+1] by the coefficients (ag), b,(ql), a,(f), bg)) as:

w(z) = all) cos(y/nik(z — ) + b sin(ynik(z — 2n)) T € [an, 2 +£/2],
w(z) = al?) cos(y/ngk(z — zn — £/2)) + 6P sin(yngk(z — 2, — £/2)) = € [T+ €/2, Tns1).

(5.20)

We then write the boundary conditions matching v, w and the corresponding stresses at x = 0

and x = L, and the transmission conditions for w at each interface between half-cells. Introducing

for convenience an additional fictitious half-cell [L, L+4¢/2] and corresponding coefficients (ag\l,), bg\lf)),
then these conditions can be expressed as the linear system:

(1)
a A

[ a7(12) agll)
c=xn+L4/2 1| o | =Bik)| 1 |
n

- " 5.21
No3 @ o (5.21)
r=an41 2| G | =Ba2k)| (9 | =Ba2k)Bu(k) | 4y |-
L bn+1 br, n
[ (1)
_7 .| % | _ A

The “boundary” matrices By and By, are defined by:

1 0 B cos(kL) sin(kL)
0 (apymr) ! ] Bu(k) = { ~(apyan)tsin(kL)  (apy/mn)-Lcos(kL)
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and the transmission matrices By and By by (4.101). Combining all these equations, we finally
obtain the system:

A A A

(B2B1)" By = By < [(B2B1)" By — By =0. (5.23)
B B B

The characteristic function f;, that satisfies f,(k) = 0 if and only if k£ is a TE and its associated

indicator function I, are therefore given by:

1
(R

This function, although easily computable numerically for any set of parameters defining the peri-
odic inhomogeneity, does not have a convenient closed-form expression, and therefore is not well-
suited for an analytical inversion procedure. It is why we rely on an homogenized version of this
periodic ITP to obtain an identification procedure in closed forms.

Some examples of the characteristic and indicator functions are shown on Figure 5.5 and for
ap = a, = 1. For the indicator functions, we plotted the whole first Brillouin zone, i.e. the range
of frequencies before the first band-gap. It is observed that the characteristic functions present a
fast oscillatory behavior around a slower “mean”, as for the homogeneous I'TP addressed in the
previous section. Depending on the amplitude ratio of these two contributions, governed by the
couple (vg,7,), they can have one or several zeros at low-frequency, where “low-frequency” is to
be understood in the sense “in beginning of the first Brillouin zone”.

On Figures 5.6, we impose an “initial” contrast by setting ag = o, = 2 so that E,(z) (resp.
pp(x)) varies between Ey = 2F and Eo = 2ygE (resp. p1 = 2p and ps = 27,p). As a result, more
low-frequency TEs are observed for the plotted configurations.

In both these examples, the most low-frequency TEs are observed for (i) vg = v, and (ii) vg
and v, close to 1, which corresponds to low contrast within the periodic structure. We therefore
focus next on such configurations.

fo(k) :=det ([(B2B1)"Bo — B.] (k)) and I,(k):

. (5.24)
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5.2 Homogenized interior transmission problem

We present now the application of the homogenization process presented in the previous section to
the interior transmission problem for the periodic inhomogeneity discussed in Section 5.1.2.

5.2.1 Leading-order homogenization

The leading-order homogenized ITP, is obtained by replacing (v, w) in the periodic ITP (5.1) by
its homogenized approximation (vg,wp), which satisfies:

V0,22 T k21}0 =0 WS [O, L]
Wo gz + nk*wy =0 z€[0,L] (5.25)
Vo = Wo r=0and z =1L
Vo,z = QW0 g, z=0and x = L.

This is the ITP for a homogeneous inhomogeneity presented in Section 5.1.1, with (E*, p*) replaced
by the leading order homogenized coefficients (&y, o) defined by (4.80), so that o and n are given
by:

&o 2vE ¢ Elp _ap(yp+D+1)
o= —= and n=— = = = . 5.26
E P+l & &/oo ag dvg (5:26)
Recall that the characteristic function reads:
fo(k) = 2av/n(1 — cos(kL) cos(v/nkL)) — (1 + *n) sin(kL) sin(y/nkL). (5.27)

The recent work [Cakoni et al., 2015, Thms. 3.1 and 3.2] justified the use of such homogenized
model by proving the convergence (up to a subsequence) of the TEs and the associated eigen-
functions of the periodic ITP to those of the homogenized ITP as ¢ — 0. It is to be noted that
this is achieved under certain assumptions on the bounds of the parameters corresponding to the
coeflicients (Ey, pp). In particular, permitting both E}, and p;, to reach the values of E and p some-
where within the inhomogeneity (which is the case for any two half-cell when we set ag = a, = 1)
does not fulfill these assumptions. However, we choose to retain this setting in order to keep our
empirical work as simple as possible. We will see thereafter that very good agreement between the
TEs of both problems can be observed, even if not proven rigorously.

5.2.1.1 Approximation of the TEs for (not so) weak contrast

As we did for the homogeneous inhomogeneity, we restrain the number of involved parameters by
setting ap = a, = 1 and yg = 7, = 7. These assumptions furthermore correspond to the physically
relevant case of a rod with periodically varying cross-section which is represented on Figure 4.1,
for which experimental data is available [Dontsov et al., 2013]. They imply:

2y (v+1)
= — d = 2
e T and n > (5.28)
In this case, the characteristic function denoted fy, is:
fn(k) =2/~(1 — cos(kL) cos(v/nkL)) — (1 + 7) sin(kL) sin(v/nkL). (5.29)
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While closed-form formulas for the zeros of f, are not available, we attempt again to derive
approximate expressions by investigating the asymptotic behavior of fj for weak contrasts, i.e. for
v — 1. To this end, let us introduce the index contrast x :=n — 1, given by:

1

X=Z(v+7‘1—2)<=>7:1—2\/§~/1+x+2x- (5.30)

Remark that x ~ (v — 1)2/4 as v — 1, so that y is well-suited to be a small parameter even for
“quite large” contrasts v — 1. Letting x — 0 and writing the asymptotic expansion of f;(k), we
obtain:

fn(k) = (—=x +x¥?)sin®(kL) + O(x?). (5.31)

We thus define the central zeros k,,, such that sin?(k,,L) = 0 as
km = % for m € N\{0}. (5.32)

For a fixed value y # 0 such that |y| < 1, we seek the zeros of f;, around these central zeros as
the zeros of the second-order Taylor expansion of f;, about k,;:

52
Fm(0m) = frn(km) + Om fr,(km) + %f,’[(km) with &, = k — kp,. (5.33)

For the values k = k,,,, then f;, and its derivatives become:

Fallm) = 207 (1 — (=1)™cos ( 1+ Xm7r>) ,
Fi(km) =0, (5.34)
Fil (k) = —2L%x/4(—=1)™ cos ( 1+ me) )

We then expand v =1 — /X + o(\/Xx), and /14 x = 14 x/2 + o(x). For the Taylor expansion
of the cosines to be accurate, we have to make the additional assumption that both x and m are
small enough so that ymm < 1. The following equations are therefore valid only for the few first
TEs:

£ (k) =0, (5:35)
fil(km) = —2Lx + o(x).

Inserting (5.34) into (5.33), then the location of the zeros of fj, around k,, is found to be
symmetrical up to this approximation:

S = ikmg +o(y/X). (5.36)

Eventually, we expect the first TEs, i.e. the zeros of the original characteristic function, to be

kE =k + 6 = % (1 + \f) . (5.37)

approached by:
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Some examples are plotted on Figure 5.7. Even if we lie outside the necessary assumptions for
the convergence results of [Cakoni et al., 2015] to hold, as discussed above, the low-frequency TEs,
corresponding to small homogenization parametere = k¢/27, are very well approximated by those
of the homogenized ITP.

Moreover, and unlike the homogeneous inhomogeneity, the second approximation (5.37) we
make here for low contrasts also gives very satisfying results for the first two TEs k:f (when they
exist) and for « significantly different from 1: up to v = 0.6 in the chosen example.
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Figure 5.7: Exact indicator function I, = 1/|fp| (solid lines), homogenized indicator function
I, = 1/|fu| (dashed lines) and low-contrast approximation of the TEs kX (dot-dashed vertical
lines) for L =10, /=1, E =1, p = 1 and several section ratio .

These approximations thus give a straightforward way to identify v and L for a given inhomo-
geneity, provided we have an a priori knowledge that v ~ 1. Indeed, suppose there exists at least
two low-frequency TEs, k; and k] that are measurable. Then inverting (5.37) leads to:

P Lkl — k)N 20k — kD)2
L~ % and then: Y~ <(11)> = <(_1+1)> . (5.38)
ki + Ky @ ki + Ky

Theses expressions are the main result of this first section. They show how restrictive -but physically
realistic- assumptions can lead to simple direct formulas for the identification of a periodic rod.

The last parameter we would need to completely characterize such inhomogeneity would then
be the period £. Obviously, that cannot be done using the leading-order homogenized I'TP, since it
the dependency on ¢ vanishes in the homogenization process. It is why it is necessary to push the
homogenization to higher orders.
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5.2.2 Higher-order homogenized interior transmission problem

First order. We consider the first-order approximation of (v,w), and note (v,w = W(l)) the
associated homogenized mean fields (note that since v is associated with a homogeneous medium,
its homogenized approximation is equal to its mean field). Using the boundary corrections already
specified for the first-order boundary-value problem (4.110), we obtain the following ITP for (v, w):

Ve + K0 =0 z € [0, L]
ww + k20 =0 z€[0,L]
V=0 — BEly r=0and z=1L

V=0 (g — 5pnk2€ﬁ1) x=0and x = L.

5

£

(5.39)

As previously, we write:

17~(33) = /Nlcos(/m) + Bsin(k:v) (5.40)
w(z) = acos(yv/nkx) + bsin(y/nkx),

and injecting these expressions into the boundary conditions leads to for x = 0:

A =a— Bp/nktb,
B

3 = av/n (13 - Bp\/ﬁkfd) . (5:41)

Then for x = L one obtains the usual system
M, (k) [ Z } =0 with: M (k) = Mo(k) — vnkt T (k) (5.42)
with M being defined by (5.6) for a homogeneous ITP with coefficients (n, o) and T'; is given by:

T (k) = [ BEsin(y/nkL) + ay/nf,sin(kL) BE [cos(kL) — cos(y/nkL)) (5.43)

ay/nf,[cos(kL) — cos(y/nkL)] —prsin(kL) — ay/nf,sin(y/nkL) |-

The characteristic function is thus fi(k) := det(M(k)).

Second order using the “time” model. We now consider the second-order approximation of
(v,w), and note (9, = W) the associated homogenized mean fields. Using the “time” model
(t) for the equilibrium equation governing w, and using the same boundary corrections than for the
second-order boundary-value problem (4.113), we obtain:

Dpr + K0 =0 z€0,1]

WD gz + 1 (k)20 = 0 z € 0,L]

U= (1 + BEgﬁpnkQEQ) W — PRl , z=0and x =L (5.44)
i BE® ap) - 2~ _ _

Vg = 1—?71/{:5 Wy — Bpnk lw r=0and z =1L
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with:

no(k) = n(1 + Bnk>®) and B = =B’ = (L—7e7)” (5.45)
3 12(1 +9E)%(1 +19,)?
Writing

(5.46)

leads to the linear system

} =0  with Mo (k) = Mo(k) — /nkl T14(k) + %En(kz)Q To(k),  (5.47)

Q1

Mu(h) |

and

Moy(k) = [ cos(kL) — cos(y/nikL) ay/my sin(kL) — sin(,/ngkL) ]
ot | —sin(kL) + ay/ng sin(y/ngkL)  ay/ng [cos(kL) — cos(y/n¢kL)]
T (k) = [ Be/ne/nsin(y/nikL) + ay/nB,sin(kL) Bey/ne/n [cos(kL) — cos(y/nkL)] }
i ay/np, [cos(kL) — cos(y/nikL)] —Bey/ne/nsin(kL) — ay/np,sin(y/nkL)
Ty (k) = [ By [cos(kL) — cos(y/nikL)] —a/mifEsin(kL) + B, sin(,/nkL) }
. | —Bpsin(kL) + ay/niBrsin(y/nikL) —ay/niBE [cos(kL) — cos(y/nikL)]

(5.48)
The dependency n;(k) is omitted in the above expressions for readability. The associated charac-
teristic function is therefore:

Far(k) == det(May(K)). (5.49)

First results. Figures 5.8 (for ap = o, = 1) and 5.9 (for ap = o, = 2, which is compatible with
the theoretical framework of [Cakoni et al., 2015]) show the discrepancy on the first TEs between
the periodic and homogenized I'TPs. We consider the “canonical” setting vg = 7, = 0.8 for which
the ITPs feature numerous low-frequency TEs as shown by e.g. Figure 5.5. As seen before on
Figure 5.7, the first TEs are very well approximated even by the leading-order homogenization,
which is confirmed by the errors observed here: less that 1% misfit until the 10th TE.

The first-order model (5.39) is seen to perform no better than the leading-order model, and
even worse from some TEs. This could mean that (i) there is no first-order correction for the
TEs; that is the case for the Dirichlet eigenvalue problem for an integer number of cells [Santosa &
Vogelius, 1993] or (ii) there is such correction but our choice of first-order correction is not adapted
to capture them.

The second-order model (5.44), however, does clearly improve the approximation quality for the
TEs in these two cases, which somehow motivates the need for a further mathematical investigation
of this model.

Remark 5.2. We have also tested the (mt) models described in Section 4.2 as well as the (zmt)
models , using both the boundary conditions proposed in [Askes et al., 2008] and [Kaplunov &
Pichugin, 2009]. In terms of approzimation quality for the TEs, none of these performed better
than the simplest (t) model presented here.
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5.3 Conclusion and future work

An accurate - but incomplete - identification of a periodic inhomogeneity was provided by (5.38)
under the assumption of “reasonably” low-contrast variations within the periodic structure. This is
achieved using the leading-order homogenization of the corresponding interior transmission prob-
lem. To be able to recover the period ¢ to complete the reconstruction, some efforts have been
made towards proposals of higher-order homogenized models.

However, our conclusions are limited to observation, lacking some time to push further (i) the
understanding of higher-order models and their TEs and (ii) a thorough analysis of their properties
possibly leading to a comprehensive identification procedure. In particular, an investigation of
the boundary layer formalism introduced precisely for eigenvalue problems in [Santosa & Vogelius,
1993; Moskow & Vogelius, 1997] is under consideration, and should benefit of the latest study
[Cakoni et al., 2016] which addresses the homogenization of a transmission problem using such
boundary layers. First attempts have been made in this direction, but are not complete enough to
be presented here. We expect that their completion will lead to an article on this problem.

Another natural continuation of this work is to investigate the accurately dispersive models
proposed in [Wautier & Guzina, 2015] that feature fourth-order derivatives and are discussed briefly
in Section 4.2. As underlined by Remarks 5.2 and discussion of Section 4.1.2, some unsuccessful
attempts to use them (in the sense that they yield no better approximations of the TEs than the
simpler models) convinced us that careful treatment of the chosen boundary conditions is required
to take full advantage of such high-order models.
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Conclusion

The purpose of the research presented in this dissertation is to propose new methods for the
identification of elastic inhomogeneities. We focus on configurations that feature a small parameter,
and we take advantage of this peculiarity by means of asymptotic analysis of the problems under
considerations. More specifically, an effort is made to provide higher-order expansions of existing
asymptotic models and to investigate the new possibilities brought by such expansions.

The work presented in the first part aims at providing a method to detect and identify a pen-
etrable inhomogeneity embedded in a tridimensional elastic solid submitted to “probing” static or
time-harmonic loads. To this end, we consider cost-functionals depending on a trial inhomogeneity
and that quantify the misfit between the perturbations of the displacement fields in the solid due
the real and trial inhomogeneities. By building up on the widely studied concept of topological
derivative, we compute the expansion of such cost-functional with respect to the size of the trial
inhomogeneity, up to order 6 which corresponds to the leading-order contribution of its second func-
tional derivative. Such expansion is to be used as an approximation of the cost functional and to be
minimized with respect to various characteristics of the trial inhomogeneity (typically, its position,
size, mechanical properties ...) to find the best agreement with the unknown inhomogeneity.

The computations that we perform to derive such expansion lean on the integral formulations
associated with the transmission or scattering problems featuring the small trial inhomogeneity em-
bedded in the reference solid. The corresponding integral operators are therefore carefully specified
and studied. In particular, it is found that the terms of the inner expansion of the displacement (i.e.
inside the trial inhomogeneity) are solutions to free-space transmission problems for both elastostat-
ics and time-harmonic elastodynamics (in the latter case, the frequency acts only as a parameter in
the static problems solved by these terms). Eventually, the terms of the cost functional expansion,
that we call the high-order topological derivatives, are expressed in terms of (i) the background and
adjoint fields, which are both solution of elastic problems on the homogeneous reference domain,
and their high-order derivatives, (ii) the so-called elastic moment tensors and their counterparts
for time-harmonic expansions, and (iii) Green’s tensor associated to the bounded domain and to
the loads into consideration. Special attention is given to the remainder of this expansion, which
is proven to be of higher (seventh) order as expected.

All the main results, including the expressions of the various expansions and the estimates of
the remainders, are stated for general anisotropic materials, arbitrary shapes for the trial inho-
mogeneity, and possibly bounded domains. However, the practical evaluation of these expansions
are performed only in the simple cases of isotropic materials, ellipsoidal shapes and unbounded
domain. In particular, the explicit expressions we obtain are used to illustrate an identification
method through a simple example featuring an unknown spherical scatterer illuminated by an in-
cident plane wave in full-space. The position and size of this obstacle are estimated by minimizing
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the sixth-order approximation of a simple least-square misfit function depending on a spherical
trial inhomogeneity. For the investigated configurations, this method improves the quality of the
localization compared to the estimate provided by using only the first topological derivative.

The difficulties one has to address when considering more general settings are discussed; in
particular we emphasize the need for an effective and numerically affordable way to compute the
Green’s tensor of a bounded domain. Moreover, some of the other possibilities provided by such
polynomial approximation of a cost functional, including e.g. material identification, are briefly
considered.

The purpose of the second part is to propose an identification procedure of a two-phases lay-
ered one-dimensional inclusion (which corresponds e.g. to a rod whose cross-section is periodically
varying, in which longitudinal waves propagate). This time, the data which are supposedly known
are the transmission eigenvalues of such inclusion. Such frequencies, for which there exists incident
waves completely transmitted throughout the inclusion, are computed in practice as the eigenval-
ues of an interior transmission problem posed only on the domain that supports the inclusion.
However, such problem is not easily analytically solvable, especially for the periodic inclusion un-
der consideration. Therefore, we rely on asymptotic homogenization, valid in the low-frequency
domain, to obtain a approximated model suitable for inversion.

A first chapter is dedicated to high-order asymptotic homogenization for one-dimensional prob-
lems. The main addition of this chapter is the presentation and justification of simple boundary
conditions for such problems. Although the simple idea we proposed to derive such boundary con-
ditions cannot be generalized to higher dimensions, this work is expected to provide a first basis
for a more thorough understanding and use of second-order homogenization in bounded domains.
Future work on this part includes notably the investigation on the links between our proposition
and the so-called boundary correctors that provide a rigorous but not always explicit way to deal
with homogenization of bounded domains.

Finally, in the last chapter, an accurate - but incomplete - identification of a periodic inho-
mogeneity is performed under the assumption of “reasonably” low-contrast variations within the
periodic structure, using the first two transmission eigenvalues. This is achieved using the leading-
order homogenization of the corresponding interior transmission problem. To be able to recover
the period of the microstructure and thus to complete its identification, some efforts have been
made towards proposals of higher-order homogenized models. So far, these attempts are limited to
preliminary observations, showing some potential for a better approximation of the transmission
eigenvalues by the second-order homogenized model. The completion of this work is expected to
provide a better understanding on the relation between the transmission eigenvalues of the real
structure and these of the high-order homogenized models, and to lead to an approximation of
these eigenvalues explicit enough to be inverted and to complete the identification procedure.
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DEVELOPPEMENT ET UTILISATION DE METHODES ASYMPTOTIQUES D’ORDRE ELEVE
POUR LA RESOLUTION DE PROBLEMES DE DIFFRACTION INVERSE

Résumé : L’objectif de ce travail fut le développement de nouvelles méthodes pour aborder certains
problemes inverses en élasticité, en tirant parti de la présence d’un petit parametre dans ces probléemes
pour construire des approximation asymptotiques d’ordre élevé.

La premiere partie est consacrée a I'identification de la taille et la position d’une inhomogénéité Btue
enfouie dans un domaine élastique tridimensionnel. Nous nous concentrons sur I’étude de fonctions-couts
J(B,) quantifiant Pécart entre B ¢ et une hétérogénéité “test” B,. Une telle fonction-cotit peut en effet
étre minimisée par rapport & tout ou partie des caractéristiques de U'inclusion “test” B, (position, taille,
propriétés mécaniques ...) pour établir la meilleure correspondance possible entre B, et B""¢. A cet
effet, nous produisons un développement asymptotique de J en la taille a de B,, qui en constitue une
approximation polynomiale plus aisée & minimiser. Ce développement, établi jusqu’a lordre O(a%), est
justifié par une estimation du résidu. Une méthode d’identification adaptée est ensuite présentée et
illustrée par des exemples numériques portant sur des obstacles de formes simples dans I’espace libre R3.

L’objet de la seconde partie est de caractériser une inclusion microstructurée de longueur L, modélisée
en une dimension, composée de couches de deux matériaux alternés périodiquement, en supposant que
les plus basses de ses fréquences propres de transmission (TEs) sont connues. Ces fréquences sont les
valeurs propres d’un probléme dit de transmission intérieur (ITP). Afin de disposer d’un modele propice
a l'inversion, tout en prenant en compte les effets de la microstructure, nous nous reposons sur des
approximations de I'I'TP exact obtenues par homogénéisation. A partir du modele homogénéisé d’ordre
0, nous établissons tout d’abord une méthode simple pour déterminer les parametres macroscopiques
(L et contrastes matériaux) d’une telle inclusion. Pour avoir accés & la période de la microstructure,
nous nous intéressons ensuite a des modeles homogénéisés d’ordre élevé, pour lesquels nous soulignons
le besoin de conditions aux limites adaptées.

Mots-clés: diffraction inverse, méthodes asymptotiques, élastodynamique, dérivées topologiques, valeurs
propres de transmission, homogénéisation.

DEVELOPMENT AND USE OF HIGHER-ORDER ASYMPTOTICS
TO SOLVE INVERSE SCATTERING PROBLEMS

Abstract: The purpose of this work was to develop new methods to address inverse problems in
elasticity, taking advantage of the presence of a small parameter in the considered problems by means of
higher-order asymptotic expansions.

The first part is dedicated to the localization and size identification of a buried inhomogeneity B%*1¢
in a 3D elastic domain. In this goal, we focus on the study of functionals J(B,) quantifying the misfit
between B%U® and a trial homogeneity B,. Such functionals are to be minimized w.r.t. some or all
the characteristics of the trial inclusion B, (location, size, mechanical properties ...) to find the best
agreement with B%4¢. To this end, we produce an expansion of J with respect to the size a of B,,
providing a polynomial approximation easier to minimize. This expansion, established up to O(a%) in a
volume integral equations framework, is justified by an estimate of the residual. A suited identification
procedure is then given and supported by numerical illustrations for simple obstacles in full-space R>.

The main purpose of this second part is to characterize a microstructured two-phases layered 1D
inclusion of length L, supposing we already know its low-frequency transmission eigenvalues (TEs).
Those are computed as the eigenvalues of the so-called interior transmission problem (ITP). To provide
a convenient invertible model, while accounting for the microstructure effects, we rely on homogenized
approximations of the exact ITP for the periodic inclusion. Focusing on the leading-order homogenized
ITP, we first provide a straightforward method to recover the macroscopic parameters (L and material
contrast) of such inclusion. To access the key features of the microstructure, higher-order homogenization
is finally addressed, with emphasis on the need for suitable boundary conditions.

Keywords: inverse scattering, asymptotic methods, elastodynamics, topological derivatives, transmis-
sion eigenvalues, homogenization.
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