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Emmanuel Trélat is also among the people I couldn’t thank enough.
During our frequent meetings he was always prolific with creative approaches
and ideas on how to tackle upcoming issues. His priceless contribution made
this thesis possible.

Huge thanks also to both the referees of this thesis, Denis Arzelier and
Alexander Vladimirsky, for helping me improve and correct my work with
priceless suggestions and comments.

I want to express my eternal gratitude to Roberto Ferretti, my former
director during my M.Sc. in Mathematics in Rome. He was the one who
suggested me to pursuit a Ph.D. in the first place.

I also have to thank all the members of the SADCO Initial Training
Network, as well as the colleagues at Unité de Mathématiques Appliquées
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Chapter 1

Introduction

This Ph.D. thesis is the result of the collaboration between ENSTA Paris-
Tech and Airbus Safran Launchers. This work is partially supported by
the EU under the 7th Framework Programme Marie Curie Initial Training
Network “FP7-PEOPLE-2010-ITN”, SADCO project, GA number 264735-
SADCO; and by iCODE Institute project funded by the IDEX Paris-Saclay,
ANR-11-IDEX-0003-02.

The goal of this research project is the study of both hybrid systems and
robust control problems in the domain of Applied Mathematics. Progress
in these fields is crucial to the solution to problems arising in the industrial
field. Thus the incentive to collaborate with the industrial sector.

In the field of engineering, and in our case aerospace engineering, solv-
ing optimization problems is a crucial aspect of every project. Whether it
involves reducing the cost of a mission, finding the best trajectory for de-
livering a satellite to orbit or maximizing the payload of a space launcher.
Optimal control problems are a particular type of optimization problems:
they involve the study of the relation between the output and the input
of a controlled system, sometimes with the additional goal of minimizing a
cost associated to its evolution. The development of Control Theory is often
driven by the great number and variety of its applications, such as the con-
trol of an engine, the management of a stock portfolio, or the organization
of a power plant, to name a few.

A controlled system usually consists in a set of ordinary differential equa-
tions parameterized by a function called control:{

ẏ(t) = f
(
t, y(t), u(t)

)
∀t ∈ (0, tf]

y(0) = y0

where f : R+×Rn×Rm → Rn is the state function, u : Rm → U ⊂ Rm is the
control function. In order to simplify the exposition, we assume that the final
time tf is finite. A control u is said to be admissible if it belongs to a given set
U , and each u in the admissible set selects a trajectory yu : R+ → Rn. What
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Chapter 1. Introduction

characterizes an optimal control problem is the presence of a cost functional,
whose purpose is to measure the quality of a control strategy with respect
to a chosen criterion. For a controlled system in the form presented, the
cost functional J : U → R+ is defined as

J(u) := φ
(
tf, yu(tf)

)
+
∫ tf

0
`
(
t, yu(t), u(t)

)
dt

where the functionals φ : R+ × Rn → R+ and ` : R+ × Rn × Rm → R+ are
called final cost and running cost respectively. Since we are interested in
finding an optimal control strategy that minimizes the cost, we define our
optimal control problem as

min
u∈U

J(u).

There exist mainly two approaches to the solution of an optimal control
problem: the Dynamic Programming Principle (DPP) and the Pontryagin
Maximum Principle (PMP).

The Dynamic Programming Principle is used to associate the solution
of a given optimization problem to a function of the system’s initial state.
If we explicit the dependency of the cost J on the initial state y0 of the
system, we can define a new function, called value function, as

v(y0) := inf
u∈U

J(y0, u).

The DPP is then used to prove that, for every 0 < s < s0

v(y0) = inf
u∈U

{∫ s

0
`
(
t, y(t), u(t)

)
dt+ v

(
y(s)

)}
where the parameter λ > 0 is called discount factor. The previous equation
is, in fact, the mathematical translation of the Principle of Optimality stated
by Bellman in his book [8]: “An optimal policy has the property that what-
ever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first
decision”. Using this property, the value function v can be characterized as
the solution of a specific equation named Dynamic Programming Equation
or Bellman Equation. The main advantage of this approach is that, once the
value function is known, it’s easy to reconstruct the solution to the original
problem for any given initial state. However, this method has also a major
drawback: the difficulty of the computation of this function increases dra-
matically with the dimension of the state space, a behavior appropriately
named Curse of Dimensionality.

The Pontryagin Maximum Principle provides, for a given initial state,
a condition for the optimal solution of a control problem. It differentiates
from the DPP mainly because of the local nature of the optimality condition
it provides, as opposed to the global one obtainable via the latter. Although
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not particularly vulnerable to the increase of the problem’s dimension, this
technique does require a new computation of the solution if the initial state
is changed. One of the advantages of the PMP is that it opens the path
to the parameterization approach, leading to the shooting method. More
precisely, the PMP allows to reformulate an optimal control problem as an
ODE system in the form

{
ż(t) = F

(
t, z(t)

)
∀t ∈ (0, tf)

R
(
z(0), z(tf)

)
= 0.

Denoting zz0(tf) the solution of

{
ż(t) = F

(
t, z(t)

)
∀t ∈ (0, tf)

z(0) = z0

our problem reduces to finding the root of the function R(z0, zz0(tf)), which
can be achieved numerically via iterative root-finding algorithms such as
the Newton method. Unfortunately the PMP has also some drawbacks.
The application of this principle requires some knowledge of the structure
of the optimal control strategy, such as the presence of singular arcs or
discontinuities, and in some cases these information might not be possible
to recover. Moreover, the shooting method can have some stability issues in
the presence of nonlinearities in the function F , thus requiring a good initial
guess for z0 in order to converge.

Regardless of the approach chosen, the computation of the numerical
solution of an optimization problem can be achieved in several ways. For
simpler problems, the solution method can be coded directly in programming
languages such as C, C++, Fortran or Python or scripting languages like
MATLAB, Mathematica or AMPL. For more complex problems though, it
might be more convenient to use an already existing Non-Linear Problem
Solver (NLP) as Ipopt, WORHP or KNITRO, which can be interfaced with
many of the previously listed languages. In particular, the AMPL language
has been designed to be easily paired with most of the available solvers,
streamlining the task of simulating optimization problems.

The study presented in this work is focused on two particular aspects
of optimization and optimal control: the numerical solution of a special
case of optimal control problems, called hybrid control problems; and the
approximation of chance-constrained optimization problems, with a focus
on aerospace applications. Given the nature of these two different, although
related, subjects, we decided to split this thesis into two parts.
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Chapter 1. Introduction

1.1 Part I: Numerical schemes for hybrid control
systems

This part is dedicated to the numerical approximation of the equations defin-
ing optimal control problems for hybrid systems as well as their algorithmic
implementation.

The motivation behind this study is due to the interest that the author
developed for the field of hybrid optimal control during the draft of his M.Sc.
thesis in Italy. This, combined with the wide range of industrial applications
of this theory, is a huge incentive to research and produce new results in the
field.

1.1.1 Contents

Hybrid systems are described by a combination of continuous and discrete
or logical variables and have been the subject of much attention over the
last decade. One example of an optimal control problem involving a hybrid
system arises in multi-stage rocket control, where there are both continuous
control variables such as actuator inputs and logical controls governing the
rocket stage ejection strategy and switches in the structure of the dynamic
description.

More formally, consider the controlled system:

Ẋ(t) = f

(
X(t), Q(t), u(t)

)
X(0) = x

Q(0+) = q

where x ∈ Rd, and q belongs to a finite set I. Here, X and Q represent
respectively the continuous and the discrete component of the state. The
function f is the continuous dynamics and the continuous control set is U .
The trajectory undergoes discrete transitions when it enters two predefined
sets A (the autonomous jump set) and C (the controlled jump set), both
subsets of Rd × I. More precisely:

• On hitting A, the trajectory jumps to a predefined destination set D
which is a subset of Rd×I\(A∪C). This jump is guided by a prescribed
transition map g and the arrival point after the jump depends on a
discrete control action ν ∈ V.

• When the trajectory evolves in the set C, the controller can choose
to jump or not. If it chooses to jump, then the continuous trajectory
displaced to a new point in D.
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1.1. Part I: Numerical schemes for hybrid control systems

The discrete inputs take place at the transition times

0 ≤ τ0 ≤ τ1 ≤ · · · ≤ τi ≤ τi+1 ≤ . . .
0 ≤ ξ0 ≤ ξ1 ≤ · · · ≤ ξk ≤ ξk+1 ≤ . . .

where τi denotes the time of each mandatory transition and ξk denotes the
controlled transition times.

A hybrid control strategy θ would consist in the history of the control u
and the transitions. For every initial state (x, q) and control strategy θ, we
define the cost functional:

J(x, q; θ) :=
∫ +∞

0
`
(
X(t), Q(t), u(t)

)
e−λtdt+

+
∞∑
i=0

cA(X(τ−i ), Q(τ−i ), νi)e−λτi+

+
∞∑
k=0

cC
(
X(ξ−k ), Q(ξ−k ), X(ξ+

k ), Q(ξ+
k )
)
e−λξk

where λ > 0 is the discount factor, ` is the running cost, cA is the au-
tonomous transition cost and cC is the controlled transition cost.

With these definitions, the hybrid optimal control problem can now be
stated as the computation of the control strategy θ∗ which minimizes the
cost J over the set Θ of all admissible strategies:

inf
θ∈Θ

J(x, q; θ).

We solve this problem by applying the Dynamic Programming Principle,
thus associating the solution of a the optimization problem to a function of
the system’s initial state. This so called value function is characterized as
the solution of a specific equation named Dynamic Programming Equation.
Once the value function is known, it’s easy to reconstruct the solution to
the original problem for any given initial state. However, the difficulty of
the computation of this function increases dramatically with the problem’s
dimension d.

In our case, the value function V is defined as

V (x, q) := inf
θ∈Θ

J(x, q; θ)

and, under suitable hypotheses, it can be proven that it satisfies
λV (x, q) +H

(
x, q,DxV (x, q)

)
= 0 on (Rd × I) \ (A ∪ C)

max
{
λV (x, q) +H

(
x, q,DxV (x, q)

)
,

V (x, q)−NV (x, q)
}

= 0
on C

V (x, q)−MV (x, q) = 0 on A
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Chapter 1. Introduction

where H is the Hamiltonian, defined as

H(x, q, p) := sup
u∈U

{
− `(x, q, u)− f(x, q, u) · p

}
and M and N are the transition operators:

Mφ(x, q) := inf
ν∈V

{
φ
(
g(x, q, ν)

)
+ cA(x, q, ν)

}
(x, q) ∈ A

Nφ(x, q) := inf
(x′,q′)∈D

{
φ(x′, q′) + cC(x, q, x′, q′)

}
(x, q) ∈ C

For the approximation of this problem we can use a numerical scheme in the
general form

S
(
h, x, q, Vh(x, q), Vh

)
= 0 on (Rd × I) \ (A ∪ C)

max
{
S
(
h, x, Vh(x, q), Vh

)
,

Vh(x, q)−NVh(x, q)
}

= 0
on C

Vh(x, q)−MVh(x, q) = 0 on A

where Vh denotes the numerical approximation of the value function V , and
Vh(x, q) its value at the point (x, q).

The first contribution of this thesis in the field of hybrid optimal control
is the derivation of an important error estimate between the value func-
tion V and its approximation Vh. We describe in detail the technique used
to overcome the issues arising from the presence of the highly non-linear
operators M and N .

The second contribution is the adaptation of the Policy Iteration algo-
rithm to the hybrid case in order to accelerate the convergence of the scheme
S.

Usually, an approximation scheme is constructed over a discrete grid of
nodes in (xi, q) with discretization parameters ∆x and ∆t. We denote the
discretization steps in compact form by h := (∆t,∆x) and the approximate
value function by Vh.

The scheme S can be rewritten write in the fixed point form

Vh(xi, q) =


MhVh(xi, q) (xi, q) ∈ A
min

{
Σh(xi, q, Vh), NhVh(xi, q)

}
(xi, q) ∈ C

Σh(xi, q, Vh) else

in which Nh, Mh and Σh are approximations for respectively the operators
N , M and the Hamiltonian H.

Under basic assumptions, the right-hand side of the scheme’s fixed point
form is a contraction and can therefore be solved by fixed-point iteration,
also known as Value Iteration (VI):

V
(j+1)
h = T h(V (j)

h ).
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1.1. Part I: Numerical schemes for hybrid control systems

Since in practice this procedure might require a large number of iterations
in order to converge, our objective is to provide a better alternative to VI.

The Policy Iteration (PI) algorithm is used to solve optimization prob-
lems in the form

min
y∈Y⊆Rm

{
B(y)x− c(y)

}
= 0

where, for every y, B(y) is a n × n matrix and c(y) is an n-dimensional
array. The procedure consists in alternating two operations, called Policy
Evaluation and Policy Improvement, in the following way:
j ← 0
STOP ← FALSE
y0 ∈ Y
while STOP = FALSE do

if [stopping criterion satisfied] then
STOP ← TRUE

else
xj ← ξ solution of B(yj)ξ = c(yj) (Policy Evaluation)
(yj+1)← arg min

τ∈Y

{
B(τ)xj − c(τ)

}
(Policy Improvement)

j ← j + 1
end if

end while
We point out that this algorithm might need to be coupled with some selec-
tion criteria in order to properly define the Policy Improvement step.

In this part show how to construct a scheme S that can be solved via PI
and use several numerical test to show that this techniques is indeed very
efficient in practice when compared to VI.

In the following sections we also obtain the error estimates between the
value function V and its approximation Vh. We study the simplified hybrid
optimal control problem in which optional transitions are always allowed
and mandatory transitions are always forbidden, meaning that C = Rd × I
and A = ∅. In this framework, we are able to prove our main result:

−C ln h|h|γ ≤ V (x, q)− Vh(x, q) ≤ C ln h|h|γ ∀(x, q) ∈ Rd × I

for some positive constants C, C and γ, defined explicitly.

1.1.2 Structure

In Chapter 2 we give some historical notes and a formal definition of hy-
brid optimal control problems, describing the mathematical framework and
providing the analytical background.

Chapter 3 analyzes the approximation of such problems and shows a
comparison between the numerical solution obtained by using two imple-
mentations of the Semi-Lagrangian scheme: Value Iteration and Policy It-
eration.

7



Chapter 1. Introduction

Chapter 4 and Appendix A complement the previous chapter with the-
oretical results on the error estimates of numerical schemes for hybrid op-
timal control problems, providing convergence and regularity results on the
approximated solution.

Finally, Chapter 5 is dedicated to conclusions.

1.2 Part II: Chance-constrained optimization in
aerospace

This part is dedicated instead to the chance-constrained approach for the
solution of robust optimization problems, focusing on the application of the
Kernel Density Estimation technique.

Robust methods are aimed at achieving consistent performance and/or
stability in the presence of bounded modeling errors. Using again the case
of a multi-stage rocket, an example of robust optimization would consist in
minimizing the initial fuel load of the launcher in the presence of uncertain-
ties in the engine thrust, while guaranteeing that the payload is delivered
within a certain level of confidence. One of the many possible approaches
used for solving robust optimization problems consists in chance-constrained
optimization. The name comes from the the idea of treating the uncertain-
ties in the underlying mathematical model as random variables.

1.2.1 Contents

Consider the problem of minimizing a function J which depends on a set of
variables x ∈ X ⊆ Rn, while requiring a given constraint G to be satisfied:min

x∈X
J(x)

G(x) ≥ 0.

Let us suppose that, in addition to the decision variable x, the constraint
function G also depends on a set of parameters ξ ∈ Rm. This means that
to every choice of ξ corresponds one instance of the problem:min

x∈X
J(x)

G(x, ξ) ≥ 0.

At this point we might be interested in studying the dependency of
the solution to our parameterized problem on ξ, or require the inequality
constraint to be satisfied for a subset E ⊆ Rm of all the possible values of ξ,
for example: min

x∈X
J(x)

G(x, ξ) ≥ 0 ∀ξ ∈ E .

8



1.2. Part II: Chance-constrained optimization in aerospace

A chance-constrained optimization problem arises from the assumption
that the components of ξ are random variables with a given distribution.
This allows us to reformulate our optimization problem in the form:min

x∈X
J(x)

P
[
G(x, ξ) ≥ 0

]
≥ p.

where p ∈ (0, 1) is a probability threshold and ξ is an m-dimensional random
vector defined on some probability space.

Optimization problems with chance constraints are often considered if
there’s a need of minimizing a cost associated to the performance of a dy-
namical model, while taking into account uncertainties in the parameters
defining it. Many results in this field are related to the theoretical study of
this type of problems, such as the regularity of the constraint function and
the stability of the solution with respect to the distribution of ξ.

Our main contribution focuses on the study of an efficient numerical
solution to chance-constrained problems. In particular, we explore the ap-
plication of the Kernel Density Estimation (KDE): a technique used in non-
parametric statistics to approximate the probability density function of a
random variable with unknown distribution.

The main difficulty lies in the form of the constraint function: being G
dependent on both x and ξ, it is a priori impossible to derive an analytical
representation of its probability distribution, even if the distribution of ξ is
known.

Our idea consists in producing an approximation of the distribution of
G, so that we can replace the probability with the integral of its estimated
density and solve the stochastic optimization problem as a deterministic
one. More precisely, for a given x in X , let fx and f̂x be respectively the
probability density function (pdf) of G(x, ξ) and its approximation. From
basic probability theory, we have

P
[
G(x, ξ) ≥ 0

]
= 1− P

[
G(x, ξ) < 0

]
= 1−

∫ 0

−∞
fx(z)dz

if fx and f̂x are “close” in some appropriate sense, we obtain∫ 0

−∞
f̂x(z)dz ≈

∫ 0

−∞
fx(z)dz = 1− P

[
G(x, ξ) ≥ 0

]
.

By defining F̂x(y) :=
∫ y
−∞ f̂x(z)dz we can write an approximation of our

chance constraint in the formmin
x∈X

J(x)

F̂x(0) ≤ 1− p.

9



Chapter 1. Introduction

Such an approximation can be obtained via KDE: for every x ∈ X ,
let {G(x, ξ1), G(x, ξ2), . . . , G(x, ξn)} be a sample of size n from the variable
G(x, ξ). A Kernel Density Estimator for the pdf fx is the function

f̂x(y) := 1
nh

n∑
i=1

K

(
y −G(x, ξi)

h

)

where the function K is called kernel and the smoothing parameter h is
called bandwidth.

We show how this method can be implemented numerically as a valid
alternative to the traditional Monte Carlo approach, and use several exam-
ples of chance-constrained optimization in the domain of aerospace to test
its performances.

1.2.2 Structure

In Chapter 6 we give the mathematical formulation of the chance-con-
strained optimization problem and provide an overview of the existing the-
oretical results.

Chapter 7 collects several numerical results on the application of two
different techniques for the numerical solution of chance-constrained opti-
mization problems: the Stochastic Arrow-Hurwicz Algorithm and Kernel
Density Estimation. The former combines the Monte Carlo method with
the Arrow-Hurwicz iterative gradient method. The latter is a technique
used in non-parametric statistics for approximating the density function of
a sample with unknown distribution.

Chapter 8 is dedicated to conclusions.

10



Part I

Numerical schemes for
hybrid control systems
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Chapter 2

The hybrid optimal control
problem

2.1 Introduction

The earlier examples of the application of Control Theory date back to the
end of the nineteenth century, but the most visible growth of this fringe dis-
cipline between Mathematics and Engineering happened during the Second
World War. The field of application of Control Theory then extended from
the development of military and aerospace technologies to more abstract
problems, raising the interest of many mathematicians. It was in fact dur-
ing the Space Race that the two powers involved in the Cold War gave birth
to the traditional approaches for the solution of control and optimization
problems.

In 1957 the American Richard E. Bellman illustrated, in his book called
“Dynamic Programming”, the well known Dynamic Programming Princi-
ple (a term he coined himself), which is used to associate the solution of a
given optimization problem to a function of the system’s initial state. This
function is called value function and it’s characterized as the solution of a
specific equation named Dynamic Programming Equation or Bellman Equa-
tion. Once the value function is known, it’s easy to reconstruct the solution
to the original problem for any given initial state.

In the following years, the growing interest in the application of control
problems required the introduction of a new notion of solution for partial
differential equations which don’t admit one in the classical sense. In the
eighties, mathematicians Pierre-Louis Lions and Michael G. Crandall devel-
oped the concept of viscosity solution, through which it’s possible to derive
the uniqueness of the solution to some differential equations related to a
great variety of optimal control problems.

The last years of the twentieth century saw another expansion of the field
of Control Theory with its generalization to hybrid systems, that is, complex

13



Chapter 2. The hybrid optimal control problem

systems in which continuous and discrete control actions mix together.
In this chapter we set the basic assumptions on the hybrid control prob-

lem and review the characterization of the value function in terms of a
suitable Dynamic Programming equation.

2.2 Preliminaries

We start by introducing some notations. We denote | · | the standard Eu-
clidean norm in any Rn type space (for any n ≥ 1). In particular, if B is a
n×n matrix, then |B|2 = tr(BBᵀ), where Bᵀ is the transpose of B and |B|
is the Frobenius norm. For a discrete set S, |S| will denote its cardinality.

Let φ be a bounded function from Rn into either R, Rn, or the space of
n×m matrices (m ≥ 1). We define

|φ|0 := sup
x∈Rn

∣∣φ(x)
∣∣.

If φ is also Lipschitz continuous, we set

|φ|1 := sup
x,y∈Rn,x 6=y

∣∣φ(x)− φ(y)
∣∣

|x− y|

Moreover, for any closed set S ⊂ Rn, the space Cb(S) [respectively Cb,l(S)]
will denote the space of continuous and bounded functions [resp. bounded
and Lipschitz continuous functions] from S to R.

Given φ ∈
[
Cb,l(Rn)

]m, we denote by Lφ and Mφ some upper bounds of
respectively the Lipschitz constant and the supremum of φ:

Lφ ≥ max
i∈{1,...,m}

|φi|1

Mφ ≥ |φ|0.

We denote by ≤ the component wise ordering in Rn, and by � the
ordering in the sense of positive semi-definite matrices. For any a, b ∈ R, we
define a ∧ b as

a ∧ b := min(a, b).
For any given closed subset S of Rm, the notations ∂S, dist(·,S) stand

respectively for the boundary of S and the Euclidean distance defined by

dist(x,S) := inf
y∈S
|x− y|.

Let us also recall that in the inductive limit topology on Rd × I, the
concept of converging sequence is stated as follows.

Definition 2.2.1 (convergence of a sequence). (xn, qn) ∈ Rd × I converges
to (x, q) ∈ Rd × I if, for any ε > 0, there exists Nε such that qn = q, and
|xn − x| < ε for any n ≥ Nε.
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2.2.1 Formulation of the problem

Among the various mathematical formulations of optimal control problems
for hybrid systems, we will adopt here the one given in [26, 15, 4]. Let there-
fore I be a finite set, and consider the controlled system (X,Q) satisfying:

Ẋ(t) = f
(
X(t), Q(t), u(t)

)
X(0) = x

Q(0+) = q

(2.2.1)

where x ∈ Rd, and q ∈ I. Here, X and Q represent respectively the contin-
uous and the discrete components of the state. Throughout the thesis we
term switch a transition in the state which involves only a change in the Q(t)
component, whereas jump denotes a transition which might also involve a
discontinuous change in X(t).

The function f : Rd × I × U → Rd is the continuous dynamics and the
continuous control set is:

U =
{
u : (0,+∞)→ U | u measurable, U compact metric space

}
.

In our case, the function u represents a feedback control law: u adapts dy-
namically as the system changes through time, steering its evolution towards
the desired goal. This type of control is also called closed-loop control, since
changes in the system affect the control strategy, which in turn affects the
system.

The trajectory undergoes discrete transitions when it enters two prede-
fined sets A (the autonomous jump set) and C (the controlled jump set),
both of them subsets of Rd × I. More precisely:

• On hitting A, the trajectory jumps to a predefined destination set D,
possibly with a different discrete state q′ ∈ I. This jump is guided
by a prescribed transition map g : Rd × I × V → D, where V is a
discrete finite control set. We denote by τi an arrival time to A, and
by

(
X(τ−i ), Q(τ−i )

)
the position of the state before the jump. The

arrival point after the jump and the new discrete state value will be
denoted by

(
X(τ+

i ), Q(τ+
i )
)

= g
(
X(τ−i ), Q(τ−i ), νi

)
and will depend on

a discrete control action νi ∈ V.

• When the trajectory evolves in the set C, the controller can choose to
jump or not. If it chooses to jump, then the continuous trajectory is
displaced to a new point in D. By ξi we denote a (controlled) transition
time. The state

(
X(ξ−i ), Q(ξ−i )

)
is moved by the controlled jump the

to the destination
(
X(ξ+

i ), Q(ξ+
i )
)
∈ D.

The trajectory starting from x ∈ Rd with discrete state q ∈ I is therefore
composed of a continuous evolution given by (2.2.1) between two discrete
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jumps at the transition times. For example, assuming τi < ξk < τi+1, the
evolution of the hybrid system would be given by:

(
X(τ+

i ), Q(τ+
i )
)

= g
(
X(τ−i ), Q(τ−i ), ν

)
Ẋ(t) = f

(
X(t), Q(τ+

i ), u(t)
)

τi < t < ξk(
X(ξ+

k ), Q(ξ+
k )
)
∈ D (destination of the jump at ξk)

Ẋ(t) = f
(
X(t), Q(ξ+

k ), u(t)
)

ξk < t < τi+1

Associated to this hybrid system, we consider an infinte horizon control
problem where the cost is composed of a running cost and transistion costs
corresponding to the controlled and uncontrolled jumps. A similar control
problem has been considered in [28], where the authors have studied the
value function and its numerical approximation. A procedure to compute a
piecewise constant feedback control is also analyzed in [28].

2.2.2 Basic assumptions

In the product space Rd× I, we consider sets (and in particular the sets A, C
and D) of the form

S =
{
(x, q) ∈ Rd × I : x ∈ Sq

}
(2.2.2)

in which Si represents the subset of S in which q = i.
We make the following standing assumptions on the sets A, C,D and on

the functions f and g:

(A1) For each i ∈ I, Ai, Ci, and Di are closed subsets of Rd, and Di is
bounded. The boundaries ∂Ai and ∂Ci are C2.
This assumption is essential to the well-posedness of the HJB equation
resulting from the characterization of the value function. The regu-
larity of the boundary of A and C is also necessary for proving some
stability results.

(A2) We assume that in the case Ai, Ci, and Di are non-empty, for all i ∈ I,

dist(Ai, Ci) ≥ β > 0 and dist(Ai,Di) ≥ β > 0.

The purpose of the first inequality is to ensure that the intersection
between A and C is empty, thus avoiding any ambiguity on the position
of the state inside Rd × I.
The second inequality, along with suitable assumptions on the cost
functional, prevents any pathological executions of multiple discrete
transitions at one single time or an infinite number of discrete tran-
sitions in any finite period of time. These kind of transitions happen
because the definition of admissible controls implies that a discrete
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transition on the state is instantaneous and takes no time, they are
known in the literature as Zeno executions. See also [9, 72] for other
kind of sufficient assumptions that allow to avoid Zeno executions.

(A3) The function f is Lipschitz continuous with Lipschitz constant Lf in
the state variable x and uniformly continuous in the control variable
u. Moreover, for all (x, q) ∈ Rd × I and u ∈ U ,∣∣f(x, q, u)

∣∣ ≤Mf

This hypothesis could be replaced by the less strict requirement of f
being only locally Lipschitz, in order to extend the results to a more
general case. However, the boundedness of f is a standard simplifica-
tion in the framework of hybrid optimal control problems (see [3] and
[4]).

(A4) The map g : A×V → D is bounded and uniformly Lipschitz continuous
with respect to x.

(A5) ∂A is a compact set, and for some ω > 0, the transversality condition

f(x, q, u) · ηx,q ≤ −2ω

holds for all x ∈ ∂Aq, and all u ∈ U , where ηx,q denotes the unit
outward normal to ∂Aq at x. We also assume similar transversality
conditions on ∂C.
This condition, also known as the Petrov condition, ensures that the
boundary of the sets A and C are attractive with respect to the system
dynamics. Informally, this forces the state of the system to enter A
or C if it gets close enough to its boundary. Similar conditions are
also essential to some controllability results such as the small time
controllability analyzed in [3, Chapter 4]. In this book, the authors
study optimal control problems with cost functionals involving the exit
time from a given domain. The concept of small time controllability
is introduced to study the continuity of the value function.

In what follows, a control policy for the hybrid system consists in two parts:
continuous input u and discrete inputs. A continuous control is a measurable
function u ∈ U acting on the trajectory through the continuous dynamics
(2.2.1). The discrete inputs take place at transition times

0 ≤ τ0 ≤ τ1 ≤ · · · ≤ τi ≤ τi+1 ≤ . . .
0 ≤ ξ0 ≤ ξ1 ≤ · · · ≤ ξk ≤ ξk+1 ≤ . . . .

At time τi (which cannot be selected by the controller) the trajectory un-
dergoes a discrete transition under the action of the discrete control wi ∈ V,
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while at time ξk (which can be selected by the controller) the trajectory
moves to a new position (x′k, q′k) ∈ D. The discrete inputs are therefore of
two forms {νi}i≥0 and {(ξk, x′k, q′k)}k≥0. To shorten the notation, we will
denote by θ :=

(
u(·), {νi},

{
(ξk, x′k, q′k)

})
a hybrid control strategy, and by

Θ the set of all admissible strategies.
Now, for every control strategy θ ∈ Θ, we associate the cost defined by:

J(x, q; θ) :=
∫ +∞

0
`
(
X(t), Q(t), u(t)

)
e−λtdt+

+
∞∑
i=0

cA(X(τ−i ), Q(τ−i ), νi)e−λτi+

+
∞∑
k=0

cC
(
X(ξ−k ), Q(ξ−k ), X(ξ+

k ), Q(ξ+
k )
)
e−λξk

(2.2.3)

where λ > 0 is the discount factor, ` : Rd× I×U → R+ is the running cost,
cA : A×V → R+ is the autonomous transition cost and cC : C ×D → R+ is
the controlled transition cost. The value function V is then defined as:

V (x, q) := inf
θ∈Θ

J(x, q; θ). (2.2.4)

We assume the following conditions on the cost functional:

(A6) ` : Rd × I× U → R is a bounded and nonnegative function, Lipschitz
continuous with respect to the x variable, and uniformly continuous
with respect to the u variable.

(A7) cA : A × V → R and cC : C × D → R are bounded with a strictly
positive infimum K0 > 0 and both cA and cC are uniformly Lipschitz
continuous in the variable x′.

2.2.3 An example of hybrid control problem

For the purpose of showing how the framework of hybrid systems can be
adapted to industrial applications, we provide a typical example of a hybrid
control problem involving the simulation of a vehicle equipped with two
engines: an electric engine (EE) and an internal combustion engine (ICE)
(figure 2.2.1).

The former is powered by a battery that is recharged by the latter, which
instead consumes regular fuel. The goal is to minimize a combination of fuel
consumption and speed by acting on both the acceleration strategy and the
discontinuous switching between EE and ICE. The commutation between
the two engines is mandatory only in the cases of a fully charged or fully
discharged battery: in the first case the vehicle has to switch from ICE to
EE, while in the second case the opposite happens. For all the intermediate
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level of battery charge, is up to the control strategy to transition from EE
to ICE or vice versa.

Before giving the details of the model, we remark that this example, as
well as all the others in this part, do not necessarily satisfy all the theoretical
assumptions. The examples serve the purpose of illustrating the mathemat-
ical framework, explaining the application of the numerical methods and
testing the necessity of the assumptions.

Figure 2.2.1: A hybrid car. Credits to the U.S. Department of Energy
(https://www.fueleconomy.gov/feg/hybridtech.shtml).

The state variable X(t) of the system is the normalized residual charge
of the battery at time t, such that X(t) ∈ [0, 1] for every t ∈ [0,+∞). We
control the vehicle by means of its speed and active engine. The speed u(t)
is also normalized: u(t) ∈ [0, 1] for every t ∈ [0,+∞). The active engine at
time t is denoted by Q(t):

Q(t) :=
{

1 EE is active
2 ICE is active

The dynamics are described by the system of ordinary differential equations

Ẋ(t) = f
(
X(t), Q(t), u(t)

)
:=
{
−
(
1−X(t)

)
u(t) Q(t) = 1

u(t) Q(t) = 2

with initial conditions X(0) = 0 and Q(0) = 2. From the previous equations
it can be deduced that the battery discharges at an increasing rate while
the EE is active, while it charges linearly with respect to the control u if the
ICE is active.

In this case we have four sets defining the switching conditions: A1, C1,
A2, C2. Because it is mandatory to switch from EE to ICE if the battery
level is zero, for the first dynamic we have A1 := {0} and C1 := (0, 1]. On
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the opposite, for the second dynamic the sets are A2 := {1} and C2 :=
[0, 1). Moreover, instantaneous jumps in the state variable are obviously
not allowed, since they would imply an unrealistic discontinuous behavior
of the battery charge.

At any time, the objective is to minimize the function

`(X(t), Q(t), u(t)) =
{
−u(t) Q(t) = 1(
u(t)− 1

)
u(t) Q(t) = 2

which translates to the necessity of maximizing the speed of the vehicle while
reducing fuel consumption. Finally, taking into account that turning on the
ICE takes time and fuel, we assume that the switching cost from dynamic 1
to 2 is strictly positive, as opposed to a zero cost of switching from dynamic
2 to 1.

2.2.4 Characterization of the value function

We briefly review the main theoretical facts about the value function V
defined in (2.2.4).

It is quite straightforward to derive the Dynamic Programming Principle
for the control problem (2.2.1)–(2.2.3) as follows:

1. For any (x, q) ∈ (Rd × I) \ (A ∪ C) there exists s0 > 0 such that, for
every 0 < s < s0, we have:

V (x, q) = inf
u∈U

{∫ s

0
`
(
X(t), q, u(t)

)
e−λtdt+ e−λsV

(
X(s), q

)}
(2.2.5)

2. For (x, q) ∈ A, we have:

V (x, q) = inf
ν∈V

{
V
(
g(x, q, ν)

)
+ cA(x, q, ν)

}
(2.2.6)

3. For (x, q) ∈ C, we have:

V (x, q) ≤ inf
(x′,q′)∈D

{
V (x′, q′) + cC(x, q, x′, q′)

}
(2.2.7)

If it happens that V (x, q) < inf(x′,q′)∈D
{
V (x′, q′)+cC(x, q, x′, q′)

}
, then

there exists s0 > 0 such that for every 0 < s < s0, we have:

V (x, q) = inf
u∈U

{∫ s

0
`
(
X(t), q, u(t)

)
e−λt dt+ e−λsV

(
X(s), q

)}
(2.2.8)

Moreover, it is known that the value function V is uniformly continuous [26,
Theorem 3.5]. More precisely, we have:
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Lemma 2.2.1. Under assumptions (A1)–(A7), the value function V is
Hölder continuous and bounded.

From the dynamic programming principle, it can be checked that the
value function satisfies, in an appropriate sense, a quasi-variational inequal-
ity. To give a precise statement of this result, we first introduce the Hamil-
tonian H : Rd × I× Rd → R defined, for x, p ∈ Rd and q ∈ I, by:

H(x, q, p) := sup
u∈U

{
− `(x, q, u)− f(x, q, u) · p

}
(2.2.9)

We also define the transition operatorsM [respectivelyN ] mapping C0(Rd×
I) into C0(A) [resp. C0(C)] by:

Mφ(x, q) := inf
ν∈V

{
φ
(
g(x, q, ν)

)
+ cA(x, q, ν)

}
(x, q) ∈ A (2.2.10)[

resp. Nφ(x, q) := inf
(x′,q′)∈D

{
φ(x′, q′) + cC(x, q, x′, q′)

}
(x, q) ∈ C

]
(2.2.11)

The following properties hold for M and N .

Proposition 2.2.1. Let φ, ψ : Rd×I→ R, andM, N be defined by (2.2.10)-
(2.2.11). Then:

1. If φ ≤ ψ, then Mφ ≤Mψ

2. M(tφ+ (1− t)ψ) ≥ tMφ+ (1− t)Mψ ∀t ∈ [0, 1]

3. M(φ+ c) =Mφ+ c ∀c ∈ R

4. |Mφ−Mψ|0 ≤ |φ− ψ|0
The same properties also hold for the operator N .

Remark 2.2.1. Properties 1 to 3 are similar to the ones from [36] and
are valid by definition of M and N . Property 4 amounts saying that the
operator M is nonexpansive, this is a consequence of assumptions (A4) and
(A7).

Now we go back to the characterization of the value function V . Our
goal is to show that V solves

λV (x, q) +H
(
x, q,DxV (x, q)

)
= 0 on (Rd × I) \ (A ∪ C)

max
{
λV (x, q) +H

(
x, q,DxV (x, q)

)
,

V (x, q)−NV (x, q)
}

= 0
on C

V (x, q)−MV (x, q) = 0 on A.

(2.2.12)

Unfortunately this system doesn’t admit a C1 solution in general, and we
need to define one in a weaker sense. For this purpose, we recall the definition
of viscosity solution used in [9].
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Definition 2.2.2 (Viscosity solution). Assume (A1)–(A7). Let w : Rd×I→
R be a bounded and uniformly continuous function. We say that w is a
viscosity sub-[respectively super-]solution of the HJB equation (2.2.12) if,
for any bounded function φ : Rd → R with continuous and bounded first
derivative, the following property holds.

For any q ∈ I, at each local maximum [resp. minimum] point (x′, q) of
w(x, q)− φ(x) we have

λV (x′, q) +H
(
x′, q,Dxφ(x′)

)
≤ 0 [resp. ≥ 0] on (Rd × I) \ (A ∪ C)

max
{
λV (x′, q) +H

(
x′, q,Dxφ(x′)

)
,

V (x′, q)−NV (x′, q)
}
≤ 0 [resp. ≥ 0]

on C

V (x′, q)−MV (x′, q) ≤ 0 [resp. ≥ 0] on A

A viscosity solution is a function which is simultaneously sub- and super-
solution.

The previous definition allows us to characterize V .

Proposition 2.2.2. Assume (A1)–(A7). The function V is a bounded and
Hölder continuous viscosity solution of:

λV (x, q) +H
(
x, q,DxV (x, q)

)
= 0 on (Rd × I) \ (A ∪ C) (2.2.13a)

max
{
λV (x, q) +H

(
x, q,DxV (x, q)

)
,

V (x, q)−NV (x, q)
}

= 0
on C (2.2.13b)

V (x, q)−MV (x, q) = 0 on A. (2.2.13c)

The proof is given in [26, Theorem 4.2]. The same arguments of the
proof of Theorem 5.1 in [26] can then be used to obtain a strong comparison
principle (and hence, uniqueness of the solution) as follows:

Theorem 2.2.1. Assume (A1)–(A7). Let w [respectively v] be a bounded
usc [resp. lsc] function on Rd. Assume that w is a subsolution [resp. v is a
supersolution] of (2.2.13) in the following sense: for any q ∈ I

λV (x, q) +H
(
x, q,DxV (x, q)

)
≤ 0 [resp. ≥ 0] on (Rd × I) \ (A ∪ C)

max
{
λV (x, q) +H

(
x, q,DxV (x, q)

)
,

V (x, q)−NV (x, q)
}
≤ 0 [resp. ≥ 0]

on C

V (x, q)−MV (x, q) ≤ 0 [resp. ≥ 0] on A

Then, w ≤ v.

The viscosity framework turns out to be a convenient tool for the study
of the theoretical properties of the value function and also for the analysis
of the convergence of numerical schemes.
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Chapter 3

Approximation of the
Hamilton-Jacobi-Bellman
equation

3.1 The numerical scheme

Here we further the study of the numerical approximation of the value func-
tion by a class of schemes obtained as adaptations of monotone schemes to
the hybrid case. The main goal of this chapter is to establish error estimates
between the value function and its numerical approximation.

Consider monotone approximation schemes of (2.2.13a)-(2.2.13c), of the
following form:

S
(
h, x, q, Vh(x, q), Vh

)
= 0 on (Rd × I) \ (A ∪ C) (3.1.1a)

max
{
S
(
h, x, Vh(x, q), Vh

)
,

Vh(x, q)−NVh(x, q)
}

= 0
on C (3.1.1b)

Vh(x, q)−MVh(x, q) = 0 on A (3.1.1c)

Here S : Rd+×Rd×I×R×Cb(Rd×I)→ R is a consistent, monotone operator
which is considered to be an approximation of the HJB equation (2.2.13a)
(see assumptions (S1)-(S3) for the precise properties). We will denote by
h ∈ Rd+ the mesh size, and by Vh ∈ Cb(Rd × I) the solution of (3.1.1). The
rest of the chapter is devoted to study conditions on S under which Vh is an
approximation of V .

The abstract notations of the scheme have been introduced by Barles and
Souganidis [6] to display the monotonicity of the scheme: S(h, x, q, r, v) is
non decreasing in r and non increasing in v. Typical approximation schemes
that can be put in this framework are finite differences methods [40, 64],
Semi-Lagrangian schemes [27, 16], and Markov chain approximations [40].
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In all the sequel, we make the following assumptions on the discrete scheme
(3.1.1):

(S1) Monotonicity: for all h ∈ Rd+, m ≥ 0, x ∈ Rd, r ∈ R, q ∈ I, and φ, ψ
in Cb(Rd) such that φ ≤ ψ in Rd

S(h, x, q, r, φ+m) ≤ m+ S(h, x, q, r, ψ)

(S2) Regularity: for all h ∈ Rd+ and φ ∈ Cb(Rd), x 7→ S(h, x, q, r, φ) is
bounded and continuous. For any R > 0, r 7→ S(h, x, q, r, φ) is uni-
formly continuous on the ball B(0, R) centered at 0 and with radius
R, uniformly with respect to x ∈ Rd.

(S3) Consistency: There exist n, ki > 0, i ∈ J ⊆ {1, . . . , n} and a constant
Kc > 0 such that for all h ∈ Rd+ and x in Rd, and for every smooth
φ ∈ Cn(Rd) such that |Diφ|0 is bounded, for every i ∈ J and q ∈ I,
the following holds:∣∣∣λφ(x) +H

(
x, q,Dφ(x)

)
− S

(
h, x, q, φ(x), φ

)∣∣∣ ≤ KcE(h, φ)

where E(h, φ) := ∑
i∈J |Diφ|0|h|ki . Here Diφ denotes the i-th deriva-

tive of the function φ.

We also assume that for each h ∈ Rd+, the numerical scheme has a unique
solution Vh. Then, combining consistency, monotonicity and L∞ stability, it
is a standard matter to recover convergence by means of Barles-Souganidis
theorem:

Theorem 3.1.1 (Barles and Souganidis [6]). Assume (A1)-(A7) and let
V ∈ Cb,l(Rd× I) be the viscosity solution of (2.2.13). Assume (S1)-(S3) and
that (3.1.1) admits a unique solution Vh ∈ Cb(Rd × I). Then Vh converges
locally uniformly to V .

We point out that the existence of such a numerical scheme holds for
many classical monotone schemes. For example, the existence of Vh has
been established in [28] for a class of Semi-Lagrangian (SL) schemes.

In the sequel, we define a more precise framework where the scheme
(3.1.1) admits a unique solution.

3.2 Policy Iteration and Semi-Lagrangian schemes

In this section, we study efficient numerical methods for applying Dynamic
Programming techniques to hybrid optimal control problems of infinite hori-
zon type.

From the very start of Dynamic Programming techniques [8, 35], Policy
Iteration (PI) has been recognized as a viable, usually faster alternative to
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3.3. A Semi-Lagrangian scheme for hybrid control problems

Value Iteration (VI) in computing the fixed point of the Bellman operator.
Among the wide literature on PI, we quote here the pioneering theoretical
analysis of Puterman and Brumelle [55], which have shown that the lineariza-
tion procedure underlying PI is equivalent to a Newton-type iterative solver.
More recently, the abstract setting of [55] has been adapted to computation-
ally relevant cases [59], proving superlinear (and, in some cases, quadratic)
convergence of PI. Moreover, we mention that an adaptation of PI to large
sparse problems has been proposed as Modified Policy Iteration (MPI) in
[56], and has also become a classical tool. It’s important to remark that PI,
however, is not the only approach for accelerating the solution process of
numerical schemes: in the case of Finite Difference schemes, for instance,
one might consider improving performances via Fast Methods [63, 19].

In the present chapter, we intend to study the construction and numerical
validation of a SL scheme with PI/MPI sover for hybrid optimal control. To
this end, we will recall the general algorithm, sketch some implementation
details for the simple case of one-dimensional dynamics, and test the scheme
on some numerical examples in dimension d = 1, 2.

The outline of the chapter is the following. In Section 3.3 we review
the main results about the Bellman equation characterizing the value func-
tion, and construct a Semi-Lagrangian approximation for V in the form of
value iteration. In Section 3.4 we improve the algorithm by using a policy
iteration technique. Finally, Section 3.5 presents some numerical examples
of approximation of the value function as well as the construction of the
optimal control.

3.3 A Semi-Lagrangian scheme for hybrid control
problems

First, we recall some basic analytical results about the value function (2.2.4).
To this end, we start by making a precise set of assumptions on the problem.

3.3.1 Numerical approximation

In order to set up a numerical approximation for (2.2.13), we construct a
discrete grid of nodes (xi, q) in the state space and fix the discretization
parameters ∆x and ∆t. In what follows, we denote the discretization steps
in compact form by h := (∆t,∆x) and the approximate value function by
Vh.

Following [28], we write the fixed point form of the scheme at (xi, q) as

v
(q)
i = Vh(xi, q) =


MhVh(xi, q) (xi, q) ∈ A
min

{
Σh(xi, q, Vh), NhVh(xi, q)

}
(xi, q) ∈ C

Σh(xi, q, Vh) else
(3.3.1)
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Chapter 3. Approximation of the Hamilton-Jacobi-Bellman equation

in which Nh, Mh and Σh are consistent and monotone numerical approxima-
tions for, respectively, the operators N , M and the Hamiltonian H. More
compactly, (3.3.1) could be written as

Vh = T h(Vh).

We recall that, for λ > 0, under the basic assumption which ensure conti-
nuity of the value function, the right-hand side of (3.3.1) is a contraction
[28] and can therefore be solved by fixed-point iteration, also known as value
iteration (VI):

V
(j+1)
h = T h(V (j)

h ). (3.3.2)

In order to define the scheme more explicitly, as well as to extend the ap-
proximate value function to all x ∈ Rd and q ∈ I, we use a monotone
interpolation I constructed on the node values, and denote by I[Vh](x, q)
the interpolated value of Vh computed at (x, q).

We recall the definition of a monotone interpolation, adapted to our case.

Definition 3.3.1 (Monotone interpolation). Let I be an interpolation op-
erator. I is said to be monotone if, given two functions φ, ψ : Rd × I → R
such that φ(x, q) ≥ ψ(x, q) for every (x, q) ∈ Rd × I the following holds

I[φ](x, q) ≥ I[ψ](x, q) ∀(x, q) ∈ Rd × I

With this notation, a natural definition of the discrete jump operators
Mh and Nh is given by

MhVh(x, q) := min
ν∈V

{
I[Vh]

(
g(x, q, ν)

)
+ cA(x, q, ν)

}
(3.3.3)

NhVh(x, q) := min
(x′,q′)∈D

{
I[Vh](x′, q′) + cC(x, q, x′, q′)

}
. (3.3.4)

A standard Semi-Lagrangian discretization of the Hamiltonian related to
continuous control is provided (see [27]) by

Σh(x, q, Vh) := min
u∈U

{
∆t`(x, q, u)+e−λ∆tI[Vh]

(
x+∆tf(xi, q, u), q

)}
. (3.3.5)

In the SL form, the value iteration (3.3.2) might then be recast at a node
(xi, q) as

V
(j+1)
h (xi, q) =


MhV

(j)
h (xi, q) (xi, q) ∈ A

min
{
NhV

(j)
h (xi, q),Σh(xi, q, V (j)

h )
}

(xi, q) ∈ C
Σh(xi, q, V (j)

h ) else
(3.3.6)

with Σh given by (3.3.5), and j denoting the iteration number.
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3.3. A Semi-Lagrangian scheme for hybrid control problems

We can also check that such a scheme satisfies all the required properties.
Monotonicity, regularity and consistency of the jump operators can be ob-
tained by using a monotone interpolation in the definition of the operators
Mh and Nh. For example, P1 (piecewise linear) or Q1 (piecewise multi-
linear) interpolations would satisfy the requirements in Definition 3.3.1, but
the choice is not limited to those two.

Regarding the operator Σh, its monotonicity and regularity also come
from the choice of a monotone interpolation of the value function Vh. As for
its consistency, we start by giving the following estimate on the interpolation
term in (3.3.5). In the case of a P1 interpolation, the approximation error
is O(∆x2). Hence, for every smooth function φ satisfying the properties
described in (S3), we have, for some constants C1 > 0 and C2 > 0

I[φ]
(
x+ ∆tf(x, q, u), q

)
=

= φ
(
x+ ∆tf(x, q, u), q

)
+ C1|D2φ|0∆x2 =

= φ(x, q) + ∆tf(x, q, u) ·Dφ(x, q) + C2|D2φ|0
(
∆t2 + ∆x2). (3.3.7)

Our scheme takes the form

S
(
∆t, x, q, φ(x), φ

)
:= φ(x, q)− Σ(x, q, φ)

∆t

and, by applying (3.3.7) and e−λ∆t = 1− λ∆t+O(∆t2), we obtain

φ(x, q)− Σ(x, q, φ)
∆t =

= 1
∆t sup

u∈U

{
φ(x, q)−∆t`(x, q, u)− e−λ∆tI[φ]

(
x+ ∆tf(x, q, u), q

)}
=

= 1
∆t sup

u∈U

{
φ(x, q)−∆t`(x, q, u)−

−
(
φ(x, q) + ∆tf(x, q, u) ·Dφ(x, q) + C2|D2φ|0

(
∆t2 + ∆x2))+

+ λ∆t
(
φ(x, q) + ∆tf(x, q, u) ·Dφ(x, q) + C2|D2φ|0

(
∆t2 + ∆x2))+

+O(∆t2)
}

=

= sup
u∈U

{
λφ(x, q)− `(x, q, u)− f(x, q, u) ·Dφ(x, q)

}
+

+ C3|Dφ|0∆t+ C2|D2φ|0∆t+O

(
∆x2

∆t

)
.

(3.3.8)
for some constants and C3 > 0. Now, under the additional assumption
∆x2

∆t → 0 (also known as inverse CFL condition) by the definition of the
Hamiltonian H and from (3.3.8), we can recover the consistency property
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(S3):

S
(
∆t, x, q, φ(x), φ

)
= λφ(x, q) +H

(
x, q,Dφ(x, q)

)
+Kc

∑
i∈{1,2}

|Diφ|0∆t

for some constant Kc > 0 independent of ∆t or ∆x.

3.4 Policy Iteration algorithm

Following [60], we give now an even more explicit form of the scheme, which
is the one applied to the one-dimensional examples of Section 3.5. Once we
set up a one-dimensional space grid of evenly spaced nodes x1, . . . , xn with
space step ∆x, the discrete solution may be given by the column vector

v := (v(1),v(2), . . . ,v(m))ᵀ ∈ Rnm.

This vector is constructed by concatenating the column vectors v(q) :=
(v(q)

1 , . . . , v
(q)
n ), each denoting the discretized value function associated to

the q-th component of the state space. Within the vector v, the element
v

(k)
i appears with the index (k − 1)n+ i.

Keeping the same notation for all vectors, u ∈ Unm will denote the
vector of controls of the system, u(k)

i being the value of the control at the
space node xi while the k-th dynamics is active. We also define the vector
s ∈ Inm representing the switching strategy, so that s(k)

i = l means that if
the trajectory is in xi and the active dynamics is k, the system commutes
from k to l. Note that, in the numerical examples of Sec. 3.5, discontinuous
jumps will always appear only on the discrete component of the state space.
For example, we have x′ = x and this data need not be kept in memory (we
will use the term switch to denote a state transition of this kind).

In the general case, we would also need to keep memory of the arrival
point of the jump and/or of the discrete control w in the case of an au-
tonomous jump. In general, the arrival point is not a grid point, so that
we also need to perform an interpolation in (3.3.3)-(3.3.4). Therefore, the
details for the general case can be recovered by mixing the basic arguments
used in what follows.

The endpoint of this construction is to put the problem in the standard
form used in Policy Iteration,

min
(u,s)∈Unm×Inm

{
B(u, s)v − c(u, s)

}
= 0, (3.4.1)

with explicitly defined matrix B and vector c. Note that, in (3.4.1), we have
made clear the fact that a policy is composed of both a feedback control u
and a switching strategy s.

For every given s, define now the matrices DA(s), DC(s) ∈Mnm
(
{0, 1}

)
as permutations of the array v. These matrices represent changes in the state
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3.4. Policy Iteration algorithm

due to the switching strategy: DA(s) corresponds to autonomous jumps and
DC(s) to controlled jumps. Note that, in our case, the elements of DA(s)
and DC(s) will be in {0, 1}, that there exists at most one nonzero element
on each row, and that the two matrices cannot have a nonzero element in
the same position.

In order to determine the positions of the nonzero elements in the matrix
DA(s), we apply the following rule. For all (i, k) ∈ {1, . . . , n} × I, if the
following conditions hold:

(xi, k) ∈ A
s

(k)
i 6= k (a switch occurs)

(xi, s(k)
i ) ∈ g(xi, k,V) (the switch is in the image of g),

then, defining the indices a and b{
a = (k − 1)n+ i

b = (s(k)
i − 1)n+ i

the element in row a and column b of the matrix DA(s), denoted [DA]a,b(s),
is equal to 1.

Similarly, the nonzero elements of the matrix DC(s) are defined by the
following rule. For all (i, k) ∈ {1, . . . , n}× I, if the following conditions hold:{

(xi, k) ∈ C
s

(k)
i 6= k (a switch occurs),

then, defining the indices a and b{
a = (k − 1)n+ i

b = (s(k)
i − 1)n+ i

the element in row a and column b of the matrix DC(s), denoted [DC ]a,b(s),
is equal to 1.

Last, we define the matrix

D(s) := DA(s) +DC(s)

which accounts for changes in the state related to the switching strategy,
both autonomous and controlled.

We turn now to the continuous control part. First, we write Σ in vector
form as

Σ(x, k,v) = min
u(k)∈Un

{
∆t `(x, k,u(k)) + e−λ∆tE(x, k,u(k))v(k)

}
where the matrix E(x, k,u(k)) ∈Mn(R) is defined so as to have

E(x, k,u(k))v(k) = I[Vh]
(
x+ ∆t f(x, k,u(k)), k

)
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and I[Vh]
(
x+ ∆t f(x, k,u(k)), k

)
and `(x, k,u(k)) denote vectors which col-

lect respectively all the values I[Vh]
(
xi+∆tf(xi, k, u(k)

i ), k
)

and `(xi, k, u(k)
i ).

At internal points, using a monotone P1 interpolation for the values of
v results in a convex combination of node values. On the boundary of the
domain, the well-posedness of the problem requires either to have an invari-
ance condition (which implies that f(xi, k, u(k)

i ) always points inwards) or
to perform an autonomous jump or switch when the boundary is reached.
Therefore, we should not care about defining a space reconstruction out-
side of the computational domain, although this could be accomplished by
extrapolating the internal values.

For every u and s, the matrix E(u, s) ∈Mnm(R) is then constructed in
the block diagonal form:

E(u, s) :=


E(1)(u(1), s(1)) 0 · · · 0

0 E(2)(u(2), s(2)) . . . ...
... . . . . . . 0
0 · · · 0 E(m)(u(m), s(m))

 .

Assuming for simplicity that we work at Courant numbers below the unity
(although this is not necessary for the stability of SL schemes), each block
E(k)(u(k), s(k)) ∈ Mn(R) is a sparse matrix with non-zero elements E(k)

i,j

determined so as to implement a P1 space interpolation, in the following
way: for every (i, k) ∈ {1, . . . , n} × I, define

hi,k := ∆t
∆xf(xi, k, u(k)

i )

and

if
{
s

(k)
i = k

hi,k < 0
then

E
(k)
i,i−1(u(k)

i , s
(k)
i ) = 1 + hi,k

E
(k)
i,i (u(k)

i , s
(k)
i ) = −hi,k

else,

if
{
s

(k)
i = k

hi,k > 0
then

E
(k)
i,i (u(k)

i , s
(k)
i ) = 1− hi,k

E
(k)
i,i+1(u(k)

i , s
(k)
i ) = hi,k.

Note that, if a switching strategy z ∈ Inm doesn’t perform any switch (i.e.
z

(k)
i = k for all (i, k) ∈ N× I), by definition of the matrix E(u, s) we obtain,

for all k ∈ I,
E(k)(u(k), z(k))v(k) = E(x, k,u(k))v(k)

whereas, in the general case, if a switch occurs at xi, then the corresponding
element of the matrix E(k) is zero. Finally, we define the vector c(u, s) ∈
Rnm with a block structure of the form:

c(u, s) =
(
c(1)(u(1), s(1)), c(2)(u(2), s(2)), . . . , c(m)(u(m), s(m))

)
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with c(k)(u(k), s(k)) ∈ Rn such that, for every (i, k) in {1, . . . , n} × I,

c
(k)
i (u(k)

i , s
(k)
i ) =

−∆t `(xi, k, u(k)
i ) s

(k)
i = k

−ξ(k, s(k)
i ) s

(k)
i 6= k

(3.4.2)

where ξ(k, l) denotes the switching cost (cA or cC) from dynamics k to l.
With these notations, we can write the SL scheme (3.3.1) in vector form

as
v = min

(u,s)∈Unm×Inm

{[
D(s) + e−λ∆tE(u, s)

]
v − c(u, s)

}
(3.4.3)

or, defined the matrix

B(u, s) := −Inm +D(s) + e−λ∆tE(u, s)

as
min

(u,s)∈Unm×Inm
{
B(u, s)v − c(u, s)

}
= 0.

Once we have reformulated the Semi-Lagrangian scheme for the hybrid con-
trol problem in the standard form, we can solve it using Algorithm 1. The
only difference with a standard PI algorithm is the inclusion of the switching
strategy in the control policy.

Algorithm 1 Policy Iteration
j ← 0
STOP ← FALSE
u0 ∈ Unm
s0 ∈ Inm
while STOP = FALSE do

if [stopping criterion satisfied] then
STOP ← TRUE

else
vj ← w solution of B(uj , sj)w = c(uj , sj) (Policy Evaluation)
(uj+1, sj+1)← arg min

(µ,σ)∈Unm×Inm

{
B(µ,σ)vj − c(µ,σ)

}
(Policy Improvement)

j ← j + 1
end if

end while

The initialization of the control u0 and switching strategy s0 in Algo-
rithm 1 (as well as its modified version, described later in Algorithm 2) is
crucial to performances. A traditional approach consists in obtaining a first
rough approximation of the value function v by performing a predetermined
number of Value Iteration steps and then computing its minimum to have
u0 and s0.
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It is also important to detail the Policy Improvement step of the algo-
rithm: in the presence of multiple minima, we have to make sure to imple-
ment a selection criterion.

We remark that some theoretical result obtained in the “classical” setting
is also true in the hybrid setting. In particular, convergence might still be
obtained by means of the theorem proven in [11]. In order to apply the
result, we have to rewrite (3.4.1) according to the framework of [11], since
in this paper problem (3.4.1) actually comes from a maximization problem.
This can be done by simply changing the sign of B and v so that the new
vector v̄ := −v is the solution to

min
(α,s)∈Unm×Inm

{
B̄(α, s)v̄ − c(α, s)

}
= 0. (3.4.4)

where B̄ := −B.
With this notation, we can prove that the matrix B̄ and the vector c

satisfy the following properties:

(P1) For every (u, s) ∈ Unm × Inm, the matrix B̄(u, s) is monotone. That
is, if B̄(u, s) is invertible and B̄−1(u, s) ≥ 0 component wise.

(P2) The functions B̄ : Unm × Inm → Mnm(R) and c : Unm × Inm → Rnm
are continuous.

The matrix B̄ = −B is monotone for every α ed s if and only if the
system

B̄(α, s)w̄ = b (3.4.5)

has a non-negative solution w̄ for every non-negative vector b. Which is
equivalent to proving that for every non-negative vector b the system

B(α, s)w = b (3.4.6)

has a non-positive solution w. On the other hand, recasting (3.4.6) in fixed
point form as

w =
[
D(s) + e−λ∆tE(α, s)

]
w − b. (3.4.7)

we have (according to [28]) that, in the case of a monotone interpolation,
the right hand side is a contraction and the solution can be recovered as the
limit of the sequence

wj+1 =
[
D(s) + e−λ∆tE(α, s)

]
wj − b.

Due to the monotonicity of the interpolation, the matrices D and E have
non-negative elements and therefore preserve the sign of wj , whereas the
vector −b is non-positive. Therefore, starting from an the initial vector
w0 = 0, every element wj of the sequence (and thus its limit w) is non-
positive. Hence, the matrix B̄ is monotone.
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The continuity of B̄ and c is trivial if we provide the product space
Unm × Inm with the usual topology for α with the discrete one for s: a
sequence (αj , sj) converges to (α, s) if αj → α and sj is definitely equal to
s.

Now that we know that (P1) and (P2) are satisfied, we are ready to state
the convergence theorem.

Theorem 3.4.1 ([11]). Assume (P1)-(P2) hold. Then there exist a unique
v̄ ∈ Rnm solution of (3.4.4). Moreover, the sequence {v̄j} generated by
Algorithm 1 satisfies the following:

i) v̄j ≤ v̄j+1 for every j ≥ 0;

ii) v̄j → v̄ as j tends to +∞.

Under the same hypotheses, we can apply another result proven in [11]
to obtain superlinear convergence.

Theorem 3.4.2 ([11]). Assume (P1)-(P2) hold. Then problem (3.4.4) has a
unique v̄ ∈ Rnm and, for every initial guess (u0, s0) ∈ Unm×Inm, Algorithm
1 converges globally, i.e.

lim
j→+∞

|v̄j − v̄| = 0

and superlinearly, i.e.

|v̄j+1 − v̄| = o
(
|v̄j − v̄|

)
as k → +∞

3.4.1 Modified policy iteration

A different iterative solver for the numerical scheme has been first proposed
and analyzed in [56], and it is known as Modified Policy Iteration. It consists
in performing the minimization in (3.3.6) only once every Nit iterations. In
other terms, the policy evaluation step is replaced by Nit iterations of lin-
ear advection (in which, however, the transport may occur among different
components of the state space). For Nit = 1 we obtain the value iteration,
whereas for Nit →∞ the transport steps converge to an exact policy evalu-
ation, and the algorithm coincides with the previous “exact” PI algorithm.

The pseudo-code in Algorithm 2 shows the MPI algorithm, for a com-
parison with the exact algorithm (Algorithm 1).

Note that, in the numerical test section, the MPI algorithm has been
applied to the two-dimensional examples. Although the formulation in di-
mension d = 2 could be accomplished by a suitable redefinition of the vectors
and matrices, in practice the MPI algorithm does not need such a formalism.

Concerning convergence, the hybrid case can again be treated with the
same theoretical tools of the original proof in [56], which relies on the mono-
tonicity of the (discretized) Bellman operator, as well as on giving an upper
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Algorithm 2 Modified Policy Iteration
j ← 0
STOP ← FALSE
u0 ∈ Unm
s0 ∈ Inm
while STOP = FALSE do

if [stopping criterion satisfied] then
STOP ← TRUE

else
if j = 0 (modNit) then

(uj+1, sj+1)← arg min
(µ,σ)∈Unm×Inm

{
B(µ,σ)vj − c(µ,σ)

}
(Policy Improvement)

else
(uj+1, sj+1)← (uj , sj)

end if
vj+1 ←

[
D(sj+1) + e−λ∆tE(uj+1, sj+1)

]
vj − c(uj+1, sj+1)

(Inexact Policy Evaluation)
j ← j + 1

end if
end while

and a lower bound on the sequence vj by means of two converging sequences
(one of which generated by value iteration). More precisely, the sequence
considered in the convergence proof for the MPI is the sequence of approx-
imations obtained after each policy improvement. In our notation, this is
the subsequence vl corresponding to j = lNit + 1. We have therefore the
following.

Theorem 3.4.3 ([56]). Let v be the solution of (3.4.3), and vj be defined
by Algorithm 2. If

min
u,s

{
B(u, s)v0 − c(u, s)

}
≤ 0

then, for any Nit ≥ 1, the subsequence vl obtained for j = lNit + 1 is
monotone decreasing, and vl → v for l→∞.

3.5 Numerical tests

We give in this section some numerical examples in one and two space di-
mensions, comparing the performances of Value and Policy Iteration (exact
PI algorithm in one dimension, and MPI in two dimensions). The compari-
son shows a substantial improvement in the convergence of the solver for the
exact PI algorithm, whereas the MPI performs roughly the same number of
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iterations as the VI. Here, the bottleneck is apparently the contraction co-
efficient of the Bellman operator. Nevertheless, the MPI allows to avoid the
minimization step in a large majority of the iterates, thus reducing the CPU
time. Note that in both two-dimensional examples the control appears only
as a switching strategy, and the complexity of policy evaluation steps is re-
duced by a factor 1/m. For more complex control actions the improvement
in computing time would be even greater.

We also remark that the following tests do not exceed dimension 2 be-
cause their purpose is to show practical applications of the PI/MPI algo-
rithm to hybrid control problems. Tackling the problem of the complexity
arising from the increase of the problem’s dimension is beyond the scope of
this thesis, since the gain in performance obtainable with these algorithms
is not sufficient to overcome the Curse of Dimensionality.

3.5.1 Stabilization of an unstable system

We now apply this technique to a stabilization problem: we consider a
system with two dynamics: one “strong and expensive” and the other “weak
and cheap”. Only the former is able to keep the state of the system within
the given set over time.

The state equation Ẋ(t) = f
(
X(t), Q(t), u(t)

)
is defined by

f(x, q, u) =
{
x+ d1u q = 1
x+ d2u q = 2

where d1 < d2 and −1 ≤ u(t) ≤ 1 for every t in [0,+∞). Switching is
mandatory only when the dynamics q = 1 is active and |X(t)| = 1, which
implies that the state of the system belongs to the interval [−1, 1] for all t
in [0,+∞).

Here and in what follows, ci,j denotes a constant switching cost from
q = i to q = j, and the cost functional is defined as

`(x, q, u) =
{
x2 + c1u

2 q = 1
x2 + c2u

2 q = 2.

The values assigned to all the parameters are summed up in Table 3.5.1,
whereas Table 3.5.2 reports the number of iterations required for given stop-
ping tolerances. In the first three examples, the stopping criterion reads

|vj − vj−1|0 < ε.

Note that, according to Table 3.5.2, squaring the tolerance makes the num-
ber of iteration NP of the PI algorithm increase linearly, which indicates
roughly quadratic convergence, while the number NV for VI has a geomet-
ric behaviour as expected.
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d1 d2 c1,2 c2,1 c1 c2 λ tf

0.5 2 0.2 0 0.25 4 1 20

Table 3.5.1: Choice of parameters, weak-strong test

ε NV NP

10−3 456 8
10−6 1147 10
10−12 2786 12

Table 3.5.2: Number of iterations (VI and PI) for a given tolerance ε, weak-
strong test
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Figure 3.5.1: Value function, trajectory and optimal control, weak-strong
test

Figure 3.5.1 shows the optimal strategy obtained for ∆t = 0.0067, ∆x =
∆t||f ||∞,

(
X(0), Q(0)

)
= (0.5, 1), and t ∈ [0, tf ]. This strategy consists in

using the unstable dynamics q = 1 as long as the state belongs to the interval
[−x̄, x̄] (where the value of x̄ ∈ [−1, 1] depends on the given data). On the
other hand, as soon as |X(t)| > x̄, the optimal choice is to switch from q = 1
to q = 2 in order to stabilize the system and force it back towards the origin,
then switch again to the first dynamics which can be used at a lower cost.

3.5.2 Three-gear vehicle

In this test, we consider the optimal control of a vehicle equipped with a
three-gear engine, focusing on the acceleration strategy and the commuta-
tion between gears. Physical parameters correspond to the italian scooter
Piaggio Vespa 50 Special.
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3.5. Numerical tests

m ρ1 ρ2 ρ3 r cd τ ν

140 [kg] 0.06 0.09 0.12 0.2 [m] 0.3 10 [Nm] 6 · 103 [min−1]

cu cx ci,j λ tf

1 0.5
{

0.1 i 6= j

0 i = j
1 10 [s]

Table 3.5.3: Choice of parameters, three-gear vehicle test

ε NV NP

10−3 337 6
10−6 586 6
10−12 1084 6

Table 3.5.4: Number of iterations (VI and PI) for a given tolerance ε, three-
gear vehicle test.

The state equation for the speed of the vehicle is defined, for each gear
q ∈ {1, 2, 3}, by

f(x, q, u) := 1
m

(
T (βqx)
rρq

u− cdx
2
)

where T (ω) := τ
(
ω
ν −

(
ω
ν

)3) is the power band of the engine, τ and ν are
respectively its maximum torque and r.p.m., βq := 60

rπρq
is a conversion

coefficient with
ρq := transmission shaft r.p.m.

crankshaft r.p.m. ,

r is the radius of the wheel and cd the drag coefficient. The control u(t) ∈
[0, 1] represents the fraction of maximum torque used and the running cost
is a linear combination of x and u:

`(x, u) = −cxx+ cuu

cx and cu are positive weights. Lastly, we define ci,j as the switching cost
from from q = i to q = j.

The numerical results are obtained by assigning realistic values (Table
3.5.3) to the parameters defining the dynamics. The number of iterations
is shown in Table 3.5.4 for various tolerances. The constant number of
iterations obtained by PI might be due to the fact that optimal solutions
(seem to) work with increasing values of q, this possibly meaning some sort
of “causality” in the propagation of the value function.

Figure 3.5.2 shows the power band corresponding to our choice of τ and
ν. Figure 3.5.3 shows the optimal solution obtained with ∆t = 0.027 [s],
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∆x = ∆tMf , (x, q) = (0.28 [m/s], 1) and t ∈ [0, tf ]. The optimal strategy
is to reach the highest gear as fast as possible and then stabilize at a value
u ≈ 0.5. A different scenario is shown in Fig. 3.5.4, in which we set the
initial state to (x, q) = (14.58 [m/s], 1). Here, the control lets the vehicle
slow down, then switches to the third gear in order to replicate the previous
strategy.

3.5.3 Bang–Bang control of a chemotherapy model

In this test, we consider the control of a two-compartment model of tumor
growth. For this model, and cost functionals of the kind we will consider
below, optimal controls are known to be of bang–bang type (see [42]). In this
case, we can recast the problem in hybrid form, by considering an evolution
in lack of chemotherapy (Q = 1):{

Ẋ1(t) = −a1X1(t) + 2a2X2(t)
Ẋ2(t) = a1X1(t)− a2X2(t)

(3.5.1)

and a different evolution at full-dose chemotherapy (Q = 2):{
Ẋ1(t) = −a1X1(t)
Ẋ2(t) = a1X1(t)− a2X2(t).

(3.5.2)

Here, the two compartments represent the number of cells at different stages
of their lives, and the chemotherapy acts by preventing the generation of new
tumor cells in the first compartment by inhibiting the mitosis of cells in the
second compartment.

The cost functional is defined as

J(x, q; θ) =
∫ ∞

0

(
r1Ẋ1(t) + r2Ẋ2(t) +Q(t)− 1

)
e−λtdt (3.5.3)

in which Ẋ1(t) and Ẋ2(t) are given by (3.5.1)–(3.5.2) for respectively Q(t) =
1 and Q(t) = 2, and we have to minimize a combination between the growth
of the tumor mass and the toxic effect of the drug on healthy cells (note
that this latter term appears only when Q(t) = 2). Due to the geometric
properties of the problem, Zeno executions cannot occur, and we can avoid to
introduce a switching cost, which would have no practical meaning. Setting
the switching cost to zero also causes the two value functions to coincide,
i.e., V (x, 1) ≡ V (x, 2), and in this case a switch can occur at t = 0+. While
the general theory usually rules out this situation, no particular problems
arise in this specific case.

The values of the parameters are assigned as in Table 3.5.5, according to
the current literature (see [42]). Figg. 3.5.5–3.5.7 show the value function(s)
of the problem, the optimal switching with respect to time and space and a

38



3.5. Numerical tests

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8

9

10

11

ω [min−1]

T
(ω

) 
[N

m
]

Figure 3.5.2: Power band of the engine.
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Figure 3.5.3: Value functions, trajectory and optimal control, three-gear
vehicle, first case.
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Figure 3.5.4: Value functions, trajectory and optimal control, three-gear
vehicle, second case.
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a1 a2 r1 r2 λ x1 x2

0.197 0.356 6.94 3.94 0.1 2 1

Table 3.5.5: Choice of parameters, chemotherapy test

ε NV NP

10−3 192 192
10−6 528 526

Table 3.5.6: Number of iterations for a given tolerance ε, chemotherapy test.

sample trajectory starting from the initial state (x1, x2) = (2, 1). The value
function has been computed with a 100×100 grid on the domain [0, 2]2, and
∆t = 0.1. Note that there exists a clear discontinuity for the gradient of
the value function, which corresponds to the switching curve in Fig. 3.5.7,
which separates the black region, in which the optimal solution is Q(t) = 1,
from the white region, in which the optimal solution is Q(t) = 2. The
approximate optimal control shows a limit cycle in which a quasi-periodic
switching between the two dynamics takes place.

Table 3.5.6 compares the two (VI and MPI) numerical solvers. Here
and in the following test, the MPI algorithm has been implemented with
Nit = 10, and an initial block of 10 value iterations has been performed
at the very start in order to provide a better initial guess. As remarked
above, the Modified Policy Iteration algorithm performs essentially the same
number of iterations than the value iteration algorithm, but at a lower cost.

3.5.4 DC/AC inverter

The last test presents a single-phase DC/AC inverter, whose conceptual
structure is sketched in Fig. 3.5.8.

In this device, a DC source generates an AC output by means of a
suitable operation of the switches S1, . . . , S4, as well as a suitable choice of
the three components (R, L and C) which appear in series in the RLC load.
Following [20], we consider as state variables X1 = iL (the current through
the inductor L, i.e., through the load) and X2 = vC (the voltage across the
capacitor C), the state equations being


Ẋ1(t) = VDC

L
(Q(t)− 2)− R

L
X1(t)− 1

L
X2(t)

Ẋ2(t) = 1
C
X1(t).

(3.5.4)

The physical meaning of the discrete state variable depends on the state of
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Figure 3.5.5: Value function and optimal switching for the chemotherapy
test.
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Figure 3.5.8: Abstract structure of the single-phase DC/AC inverter.

the switches S1, . . . , S4, and more precisely

Q(t) =


1 if S1, S3 = OFF and S2, S4 = ON

2 if S1, S4 = OFF and S2, S3 = ON

3 if S2, S4 = OFF and S1, S3 = ON .

The cost functional is defined so as to force the system to evolve (approxi-
mately) along an ellipse of the state space (see [20]), namely

x2
1
a2 + x2

2
b2

= c

in which the constants a and b are defined in terms of the physical parameters
R, L, C and of the desired pulsation ω. This makes it natural to define the
running cost as

`(x, q, u) =
(
x2

1
a2 + x2

2
b2
− c
)2

. (3.5.5)

With the parameters chosen (see Table 3.5.7), a ≈ 0.84, b ≈ 1.34 and the
required output of the system would be given by two sinusoids of amplitude
respectively 126 A for X1 and 200 V for X2, both at the frequency of 1
Hz. The approximate solution has been computed on a 100 × 100 grid on
the domain [−250, 250]2, with ∆t = 0.01, and state constraint boundary
conditions have been treated by penalization, assigning a stopping cost of
5 · 108 on the boundary. The effect of the lack of full controllability is
apparent in Fig. 3.5.9, which shows one component of the value function
(they are practically undistinguishable from one another) and the optimal
switching with respect to time. Fig. 3.5.10 shows the output (X1(t), X2(t))
of the controlled system, whereas, as an example, Fig. 3.5.11 reports the
switching map of the second component of the state space. Here, the optimal
solution is to keep Q(t) = 2 in grey regions, commute to Q(t) = 1 in black
regions and to Q(t) = 3 in white regions.

Finally, Table 3.5.8 compares the two numerical solvers (VI and MPI).
In this last test, the stopping condition has been computed on the relative
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VDC R L C ω c λ x1 x2

200 [V] 0.7 [Ω] 0.1 [H] 0.1 [F] 2π [s−1] 22500 1 0 200

Table 3.5.7: Choice of parameters, inverter

ε NV NP

10−3 469 469
10−6 13481 13491

Table 3.5.8: Number of iterations for a given tolerance ε, DC/AC inverter
test.

l1 update,
|vj − vj−1|l1
|vj |l1

< ε

to avoid problems with both high values of the solution and the occurrence
of a discontinuity caused by the lack of controllability.

43



Chapter 3. Approximation of the Hamilton-Jacobi-Bellman equation

0

200

200

100

100

0

200

200

100

100

0e00

2e08

4e08

1e08

3e08

X

Y

Z

0 2 41 30.5 1.5 2.5 3.5

2

1

3

0.5

1.5

2.5

3.5

Figure 3.5.9: Value function and optimal switching for the DC/AC inverter.
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Chapter 4

Error estimates for the
numerical scheme

The main goal of this chapter is to derive error estimate between the value
function V and its approximation Vh. The arguments that will be used
here are mainly based on viscosity notion and on the equations satisfied
by V and Vh. The proof follows some ideas introduced in [38, 39] and it
is based on the perturbation and shaking coefficients technique, relying on
some sensitivity analysis of the value function with respect to perturbations
of the trajectories.
Remark 4.0.1. Throughout this chapter we will study the problem in the
particular case where optional transitions are always allowed and mandatory
transitions are always forbidden, i.e. C = Rd × I and A = ∅.
Remark 4.0.2. Here we analyze a general form of the numerical scheme
S approximating (2.2.13), assuming that it has a solution Vh. We verify in
Appendix A.2 that this holds for the Semi-Lagrangian scheme, but the proof
can be extended to Finite Differences schemes.

In order to prove the results of this chapter, we will make use of two
additional assumptions.

(A8) The discount factor λ satisfies both λ > 1 and λ > Lf .
This assumption is convenient for the computation of the estimates,
but it’s not strictly necessary as suggested by the positive results of
the numerical tests of the previous chapter.

(S4) Let η ≥ 0 be a constant. If v is solution of

max
{
S
(
h, x, q, v(x, q), v

)
, v(x, q)−N v(x, q)

}
= 0

then v + η is solution of

max
{
S
(
h, x, q, v(x, q), v

)
+ ηλ; v(x, q)−N v(x, q)

}
= 0
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Moreover, if S can be written in the form

S(h, x, q, r, φ) = max
u∈U

Su
(
h, x, q, r, φ

)
then for µ ∈ (0, 1), µv is sub-solution of

max
{

max
u∈U

Su
(
h, x, q, µv(x, q) + (µ− 1)`(x, q, u), µv

)
,

µv(x, q)− µN v(x, q)
}
≤ 0

(4.0.1)

4.1 Cascade Problems

The main difficulties in this study come from the presence of controlled
jumps which leads to an HJB equation with coupling terms that involve the
highly non-linear operator N . To deal with these difficulties, we use the
idea of cascade problems that we describe in the following subsections.

4.1.1 Cascade for the HJB equation

We approach equation (2.2.13) with a sequence of obstacle problems and
use the same methods as in [36, Proof of Theorem 4.2] to prove that the
solutions of the sequence of equations converges to the solution of (2.2.13).

Consider the following problem:

λV0(x, q) +H
(
x, q,DxV0(x, q)

)
= 0 on Rd × I. (4.1.1)

Under assumptions (A1)-(A2), this equation has a unique viscosity solution
V0 in Cb,l(Rd × I). Since V ≡ 0 is a viscosity sub-solution of (4.1.1), the
comparison principle (see [36, Theorem 3.3]) implies 0 ≤ V0. Now, for a
given Vn−1 in Cb,l(Rd × I) and n ≥ 1, consider the problem

max
{
λVn(x, q) +H

(
x, q,DxVn(x, q)

)
,

Vn(x, q)−NVn−1(x, q)
}

= 0
on Rd × I. (4.1.2)

Since NVn−1 is uniformly continuous, under assumptions (A1)-(A2), there
exists a unique viscosity solution Vn of (4.1.2) in Cb,l(Rd × I). It is easy
to check that V1 is a viscosity sub-solution of (4.1.1). By the comparison
principle, V1 ≤ V0. Moreover, V ≡ 0 is a sub-solution of (4.1.2) for n = 1,
and then 0 ≤ V1 ≤ V0 in Rd. By point (1) of Proposition 2.2.1 NV1 ≤ NV0,
then we can say that V2 is a viscosity sub-solution of (4.1.2) for n = 1, and
also V2 ≤ V1 in Rd.

By induction over n, we obtain:

0 ≤ · · · ≤ Vn ≤ · · · ≤ V2 ≤ V1 ≤ V0. (4.1.3)
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We can see that, if |V0|0 ≤ K0 (where K0 is defined in assumption (A7)),
then V = V0 is a viscosity solution of (4.1.1) (we refer to Section 4.3.2 for
error estimates).

Suppose now that |V0|0 > K0, and let µ ∈ (0, 1) such that µ|V0|0 < K0.

Theorem 4.1.1. We have that, for all n,

Vn − Vn+1 ≤ (1− µ)n|V0|0. (4.1.4)

Moreover, Vn converges towards V , when n tends to +∞ and

0 ≤ Vn − V ≤
(1− µ)n

µ
|V0|0. (4.1.5)

Proof. The same arguments used in [36, Proof of Theorem 4.2] can be used
here. For convenience of the reader, we give here the main steps. Let n ∈ N,
and θn ∈ (0, 1] be such that, in Rd × I

Vn − Vn+1 ≤ θnVn. (4.1.6)

By (4.1.3), this holds at least for θn = 1. Rewriting (4.1.6) as (1− θn)Vn ≤
Vn+1, and using Proposition 2.2.1, get

(1− θn)NVn + θnK0 ≤ (1− θn)NVn + θnN0 ≤ N
(
(1− θn)Vn

)
≤ NVn+1.

(4.1.7)
We now prove that

(1− θn + µθn)Vn+1 ≤ Vn+2 (4.1.8)

where Vn+2 is the viscosity solution of (4.1.2) with n+ 2. Since Vn+1 is the
viscosity solution of (4.1.2) with n+ 1, and `(x, q, u) ≥ 0, for all x, for all q,
and for all u, we have that (1− θn + µθn)Vn+1 is a viscosity sub-solution of

λv(x, q) +H(x, q,Dxv(x, q)) ≤ 0 (x, q) ∈ (Rd × I) \ C.

Moreover, by the construction of the sequence (4.1.3), and by (4.1.7), we
have

(1− θn + µθn)Vn+1 ≤ (1− θn)Vn+1 + µθn|V0|0 (4.1.9)
NVn+1 ≥ (1− θn)NVn + θnK0. (4.1.10)

Taking the difference between (4.1.9) and (4.1.10), and knowing that Vn+1
is the viscosity solution of (4.1.2), we obtain

(1− θn + µθn)Vn+1 −NVn+1 ≤
≤ (1− θn)Vn+1 + µθn|V0|0 − (1− θn)NVn − θnK0 ≤
≤ (1− θn)Vn+1 + θnK0 − (1− θn)NVn − θnK0 ≤ 0.
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The same arguments also lead to

(1− θn + µθn)Vn+1 −NVn+1 ≤ 0.

So we can say that (1− θn + µθn)Vn+1 is a viscosity sub-solution of (4.1.2)
with n+ 2. The comparison principle implies (4.1.8), or equivalently

Vn+1 − Vn+2 ≤ θn(1− µ)Vn+1. (4.1.11)

By the inequalities V0 − V1 ≤ V0 in Rd × I, we obtain V1 − V2 ≤ (1 − µ)V1
in Rd × I. Then, taking θ1 = 1 − µ yields to V2 − V3 ≤ (1 − µ)2V2, and by
induction we have

Vn+1 − Vn+2 ≤ (1− µ)n+1Vn+1 ≤ (1− µ)n+1|V0|0. (4.1.12)

By (4.1.3) and (4.1.4), we can find a function V ∈ C(Rd × I), such that
|Vn − V |0 → 0, when n → +∞. Proposition 2.2.1 and the stability of
solutions imply that V is a viscosity solution of (2.2.13). Then we can
say that Vn converges to V , the unique viscosity solution of (2.2.13), when
n → +∞. Moreover, by (4.1.4) and since (1 − µ) < 1, the following upper
bound holds in Rd × I for all n ≥ 0

0 ≤ Vn−V ≤
+∞∑
i=n

(1−µ)i|V0|0 = (1− µ)n
1− (1− µ) |V0|0 = (1− µ)n

µ
|V0|0. (4.1.13)

4.1.2 Cascade for the numerical scheme

As we have done for the equation (2.2.13), we will approach (3.1.1) by a
sequence of equations approximating (4.1.2).

Let Vh0 ∈ Cb(Rd × I) be a solution of

S
(
h, x, q, Vh0(x, q), Vh0

)
= 0 on Rd × I (4.1.14)

Define Vh1 ∈ Cb(Rd × I) a solution of the problem:

max
{
S
(
h, x, q, v(x, q), v

)
, v(x, q)−NVh0(x, q)

}
= 0 on Rd × I. (4.1.15)

For n = 2, 3, · · · , we suppose that there exists a continuous and bounded
solution Vhn of

max
{
S
(
h, x, q, v(x, q), v

)
, v(x, q)−NVh(n−1)(x, q)

}
= 0 on Rd × I.

(4.1.16)
Again, as pointed out in Remark 4.0.2, the fact that Vhn exists will be proven
in the appendix for the particular case of the Semi-Lagrangian scheme.
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The function Vh1 is a sub-solution of (4.1.14), and then Vh1 ≤ Vh0 in
Rd × I. Using proposition 2.2.1 and assumption (S4), one can verify that
Vh ≡ 0 is a sub-solution of (4.1.15) in Rd× I, which gives that 0 ≤ Vh1 ≤ Vh0
in Rd × I. Proposition 2.2.1 implies that 0 ≤ NVh1 ≤ NVh0, then Vh2 is a
sub-solution of (4.1.15), and hence Vh2 ≤ Vh1 in Rd × I. By induction on n,
it follows

0 ≤ · · · ≤ Vhn ≤ · · · ≤ Vh2 ≤ Vh1 ≤ Vh0 (4.1.17)
As in Subsection 4.1.1, we suppose that |V0|0 > K0. Then, since Vh0 → V0
uniformly (Theorem 3.1.1), we have also |Vh0|0 > K0 for h small enough and
we can choose µ ∈ (0, 1) such that µ|V0|0 < K0, and µ|Vh0|0 < K0.

If the scheme S is such that Vhn and Vh exist, then the following conver-
gence result holds:

Theorem 4.1.2. Suppose that, for every n, problems (4.1.14)-(4.1.16) admit
solution. Then for all n and for h small enough, in Rd × I we have

Vhn − Vh(n+1) ≤ (1− µ)n|Vh0|0 (4.1.18)

Proof. We use the same methods as in Theorem 4.1.1, taking into account
the monotonicity of S.

Proposition 4.1.1. Under assumptions (S1)-(S4), if the equation (4.1.16)
admits a unique solution Vhn for every n ≥ 2, we have |Vhn−Vh|0 → 0 when
n→ +∞ and, on Rd × I,

Vhn − Vh ≤
+∞∑
i=n

(1− µ)i|Vh0|0 = (1− µ)n
µ

|Vh0|0 ∀n ≥ 1. (4.1.19)

Proof. By (4.1.17) and (4.1.18), we can find a function Vh ∈ Cb(Rd×I), such
that |Vhn − Vh|0 → 0, when n → +∞. The stability property of solutions
implies that Vh is a solution of (3.1.1).

If (4.1.14), (4.1.15) and (4.1.16) admit solutions Vhn, then they converge
towards the solutions Vn of (4.1.1) and (4.1.2) and we also have (4.1.17) and
(4.1.19).

Moreover, we assume that Vhn is Lipschitz continuous for every n ≥ 0
and that

0 ≤ · · · ≤ LVhn ≤ · · · ≤ LVh2 ≤ LVh1 ≤ LVh0 (4.1.20)
We verify in the appendix that this holds for the Semi-Lagrangian scheme.

4.2 Lipschitz continuity

We point out that, in order to establish the approximation error of the
scheme, we need V to be Lipschitz (or at least Hölder) continuous. In gen-
eral, problem (2.2.13) is expected to have a Hölder continuous solution (see
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[26]). However, assumption (A4) ensures non-expansivity of the Lipschitz
constants by the jump operator N . Therefore, for λ large enough it is pos-
sible to prove that the value function is Lipschitz continuous. This claim is
stated precisely and proved in this section.

Lemma 4.2.1. Under assumption (A1)-(A8), the viscosity solution V0 of
the HJB equation (4.1.1) is Lipschitz continuous and its Lipschitz constant
is given by:

LV0 = L`
λ− Lf

.

Proof. This is a classical result and its proof can be found in [3].

Now, consider a general HJB equation of the form:

max
{
λw(x, q) +H(x, q,Dxw(x, q)), w(x, q)− Φ(x, q)

}
= 0 on Rd × I.

(4.2.1)
where Φ : C → R is Lipschitz continuous. Again, by using classical argu-
ments in viscosity theory, we get the following lemma.

Lemma 4.2.2. Under assumptions (A1)-(A8), equation (4.2.1) admits a
unique bounded Lipschitz continuous viscosity solution w. Moreover, the
Lipschitz constant of w satisfies:

Lw = max
{
LΦ,

L`
λ− Lf

}

Proof. The proof can be found in Appendix A.1.

This Lemma 4.2.2 and the cascade construction, lead directly to the
following conclusion.

Theorem 4.2.1. Assume (A1)-(A8). The value function V is Lipschitz
continuous and an upper bound of its Lipschitz constant is LV0:

|V |1 ≤ LV0

Proof. Consider the cascade construction and the associated sequence
{
Vn
}
.

We claim that for any n ≥ 0, an upper bound of the Lipschitz constant of
Vn is given by:

LVn = max{LV0 , LcC} (4.2.2)

For n = 0, this result is stated in Lemma 4.2.1. Now, assume that (4.2.2)
holds for n ≥ 0 and let us prove that the statement remains valid for n+ 1.
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First, notice that for hypothesis (A7), for every x1 and x2

∣∣NVn(x1, q)−NVn(x2, q)
∣∣ ≤ ∣∣∣ min

(x′,q′)∈D

{
Vn(x′, q′) + cA(x1, q, x

′, q′)
}
−

− min
(x′,q′)∈D

{
Vn(x′, q′) + cA(x2, q, x

′, q′)
}∣∣∣ ≤

≤
∣∣∣ sup

(x′,q′)∈D

{
cA(x1, q, x

′, q′)−

− cA(x2, q, x
′, q′)

}∣∣∣ ≤
≤ LcC |x1 − x2|.

Hence, by combining the previous inequality with Lemma 4.2.2, we deduce
that

|Vn+1|1 ≤
L`

λ− Lf
.

Using (4.1.3), we conclude that an upper bound of |Vn+1|1 is LVn+1 = LV0

which ends the proof.

4.3 Error estimates

Before starting the analysis of error estimates for the approximation of
(2.2.13), we first analyze two intermediate problems. The first one corre-
sponds to the first iteration in the cascade problems defined in the previous
section.

4.3.1 The Hamilton-Jacobi equation with obstacles

Consider first the viscosity solution w of the general HJB equation (4.2.1)
and define an approximation wh of w as solution of the following numerical
scheme:

max
{
S
(
x, q, wh(x, q), wh

)
, wh(x, q)− Φ(x, q)

}
= 0 on Rd × I. (4.3.1)

In the sequel, we assume that for every h > 0, equation (4.3.1) admits a
solution wh, and in Appendix A.2 we show that this requirement is valid at
least for a SL scheme.

We want to analyze the error estimate between w and wh for a small mesh
size h. Unfortunately, due to the non-linearity of the obstacles NVn−1 and
NVh(n−1) appearing in (4.1.2) and (4.1.16), the classical approach developed
by Capuzzo Dolcetta and Souganidis cannot be applied to our problem. For
this reason, the arguments that used here to obtain the error estimates are
based on the shaking coefficients and regularization method introduced by
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Krylov in [38, 39]. To use this method, some further notations are needed.
Consider a sequence of mollifiers {ρε} defined as follows:

ρε(x) = ε−dρ

(
x

ε

)
(4.3.2)

where ρ ∈ C∞(Rd),
∫
Rd ρ = 1, supp{ρ} ⊆ B̄(0, 1) and ρ ≥ 0. We define the

mollification of φ ∈ Cb(Rd) as follows:

φε(x) := φ ∗ ρ =
∫
Rd
φ(x− e)ρε(e)de. (4.3.3)

If φ is Lipschitz continuous, then∣∣φ(x)− φε(x)
∣∣ ≤ Lφε, and |Diφε(x)

∣∣ ≤ Lφε1−i∣∣φ|0 (4.3.4)

Lemma 4.3.1. Assume (A1)-(A8). For every 0 < ε < β
4 (where β is as in

(A2)), the following assertions hold:

i) There is a unique solution wε of

max
{
λwε(x, q) + max

|e|≤ε
H
(
x+ e, q,Dxw

ε(x, q)
)
,

wε(x, q)− Φ(x, q)
}

= 0
on Rd × I. (4.3.5)

ii) The following estimate holds:

|w − wε|0 ≤ εKΦ

where w is a solution of (4.2.1) and KΦ := L`
λ−Lf + LΦ

Lf
λ . Moreover,

we have

|wε|1 ≤ Lw = max
{
LΦ,

L`

λ− Lf

}
.

iii) If we define wε := wε ∗ ρε. Then there exists C > 0, such that wε is a
classical sub-solution of

max
{
λwε(x, q) +H

(
x, q,Dxwε(x, q)

)
,

wε(x, q)− Cε− Φ(x, q)
}
≤ 0

on Rd × I. (4.3.6)

Proof. i) The existence and uniqueness of solution wε is standard, as it is
viscosity solution of the stopping control problem described below (we
also report a more general formulation in Appendix A.3).
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4.3. Error estimates

Let us consider the following variation of the dynamics described in
(2.2.1): 

Ẋε(t) = f
(
Xε(t) + e(t), Q(t), u(t)

)
Xe(0) = x

Q(0+) = q

where, given ε > 0, e ∈ Fε with

Fε :=
{
e : (0,+∞)→ Rd | e measurable, |e(t)| ≤ ε a.e.

}
With these dynamics we define a stopping control problem in which the
ability to switch between dynamics is replaced by the ability to stop
at any moment. The stopping time is denoted by ξ and, in case the
controller doesn’t choose to stop, its value is +∞ by definition.
The control strategy θε consists then in the continuous controls u and e
and the controlled stopping time ξ (which can be finite or infinite) and
belongs to the set Θε := U × R+ ×Fε.
From [3], we know that the function wε defined as

wε(x, q) := inf
θε∈Θε

Jε(x, q; θε)

where

Jε(x, q; θε) :=
∫ ξ

0
`
(
Xε
x(t, q, u) + e(t), q, u(t)

)
e−λtdt+

+ e−λξΦ
(
Xε
x(ξ, q, u), q

)
.

is solution of (4.3.5).

ii) The stability result is also proved in Appendix A.3, while the estimate
on the Lipshitz constant of wε is obtained in Appendix A.1.

iii) First, note that wε is subsolution of the equation:

λwε(x, q) + max
|e|≤ε

H(x+ e, q,Dxw
ε(x, q)) ≤ 0 (x, q) ∈ Rd × I.

By a straightforward adaptation of the arguments in [5, Lemma A3],
we prove that wε is a subsolution of

λwε(x, q) +H(x, q,Dxwε(x, q)) ≤ 0 (x, q) ∈ Rd × I.

Moreover, since wε ≤ Φ on C and wε and Φ are Lipschitz continuous,
for any x ∈ C we have:

wε(x, q) :=
∫
|e|≤1

wε(x− εe, q)ρ(e)de ≤

≤
∫
|e|≤1

wε(x, q)ρ(e)de+ Lwε ≤

≤ Φ(x, q) + Lwε.
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The same result holds also for the scheme. Indeed, one can define the
perturbed scheme by:

max
{

max
|e|≤ε

S
(
x+e, q, wεh(x, q)

)
, wεh(x, q)−Φ(x, q)

}
= 0 on Rd×I. (4.3.7)

If we assume that this scheme has a solution wεh (see Remark 4.0.2), then
the following statement holds.

Lemma 4.3.2. Let 0 < ε < β
4 (where β is as in (A2)). If we define

wh,ε := wεh ∗ ρε. Then there exists a constant C > 0 such that wh,ε is a
classical subsolution of

max
{
S
(
x, q, wh,ε(x, q), wh,ε

)
, wh,ε(x, q)− Φ(x, q)− Cε

}
≤ 0 on Rd × I.

(4.3.8)

Proof. This result is derived with the same arguments as in the proof of
Lemma 4.3.1(iii).

In addition, we shall assume that the following estimates hold:

|wh|1 ≤ Lwh :=
(
1 + (λ− Lf )h

)
max

{
LΦ,

L`
λ− Lf

}
|wεh|1 ≤ Lwh

(4.3.9)

and
|wh − wεh|0 ≤ εKwh,h (4.3.10)

where wh is a solution of (4.3.1) and

Kwh,h := max
{

(L` + LwhLf )h, L` + LwhLf
λ

}
.

These assumptions are proved in Sections A.2 and A.3.4 for the case of a
monotone Semi-Lagrangian scheme. The same arguments can be used for
other classical monotone schemes.

Lastly, we assume that, for an obstacle function Φ̃, the solution w̃h of

max
{
S
(
x, q, w̃h(x, q), w̃h

)
, w̃h(x, q)− Φ̃(x, q)

}
= 0 on Rd × I

and the solution wh of (4.3.1) satisfy∣∣wh(x, q)− w̃h(x, q)
∣∣ ≤ ∣∣Φ(x, q)− Φ̃(x, q)

∣∣ ∀(x, q) ∈ Rd × I. (4.3.11)

The previous result can be easily obtained for SL schemes.
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Proposition 4.3.1. Assume (A1)-(A8) and (S1)-(S4). If problem (4.3.1)
and (4.3.7) admit solutions and (4.3.9) and (4.3.10) hold, then for every
(x, q) ∈ Rd × I, we have

−Kwh,h|h|
γ ≤ w(x, q)− wh(x, q) ≤ Kw,Φ|h|γ

where
Kw,Φ := KΦ + Lw +KcLw|w|0|J |
Kwh,h := Kwh,h + Lwh +KcLwh |wh|0|J |

and
γ := min

i∈J

ki
i

(4.3.12)

according to the definitions in (S3) and Lemma 4.3.1(ii).

Proof. By Lemma 4.3.1 (iii), wε is a classical sub-solution of (4.3.6). There-
fore, by (S3) and (4.3.4), we have:

S
(
h, x, q, wε(x, q), wε

)
≤ λwε(x, q) +H

(
x, q,Dwε(x, q)

)
+KcE(h,wε) ≤

≤ Kc
∑
i∈J
|Diwε|0|h|ki ≤ Kc

∑
i∈J

Lwε
1−i|w|0|h|ki ≤

≤ KcLw|w|0
∑
i∈J

ε1−i|h|ki .

By comparison principle of the scheme, we get:

wε − wh ≤ KcLw|w|0
∑
i∈J

ε1−i|h|ki .

In order to determine γ, we substitute ε = |h|γ in the previous estimate to
obtain

wε − wh ≤ KcLw|w|0
∑
i∈J
|h|γ(1−i)+ki .

So, by choosing γ = mini∈J ki
i , we have

wε − wh ≤ KcLw|w|0|J ||h|γ .

Now, by taking (4.3.4) and Lemma 4.3.1(ii) into account, we conclude

w − wh = w − wε + wε − wε + wε − wh ≤
≤ KΦ|h|γ + Lw|h|γ +KcLw|w|0|J ||h|γ

and therefore the upper bound in Proposition 4.3.1 is satisfied.
The lower bound on w − wh follows with symmetric arguments where a

smooth sub-solution of equation (4.2.1) is constructed from the regularized
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numerical scheme (4.3.8). In fact, by Lemma 4.3.2 we have that wh,ε is a
classical sub-solution of (4.3.8), and by applying (S3) and (4.3.4) we obtain

λwh,ε(x, q) +H
(
x, q,Dwh,ε(x, q)

)
≤

≤ S
(
h, x, q, wh,ε(x, q), wh,ε

)
+KcE(h,wh,ε) ≤

≤ Kc
∑
i∈J
|Diwh,ε|0|h|ki ≤

≤ KcLwh |wh|0
∑
i∈J

ε1−i|h|ki .

Again, by using the comparison principle and substituting ε = |h|γ with
γ = mini∈J ki

i , we get

wh,ε − w ≤ KcLwh |wh|0
∑
i∈J
|h|γ(1−i)+ki ≤ KcLwh |wh|0|J ||h|

γ .

Now, by taking (4.3.4), (4.3.10) and (4.3.9) into account, we conclude

wh − w = wh − wεh + wεh − wh,ε + wh,ε − w ≤
≤ Kwh,h|h|

γ + Lwh |h|
γ +KcLwh |wh|0|J ||h|

γ

and therefore we obtain the lower bound in Proposition 4.3.1.

Remark 4.3.1. The value of γ can be determined explicitly once the nu-
merical scheme is chosen. For example, in the case of the Semi-Lagrangian
scheme used in Chapter 3, we proved that the consistency property reads

S
(
∆t, x, q, φ(x), φ

)
= λφ(x, q) +H

(
x, q,Dφ(x, q)

)
+

∑
i∈{1,2}

|Diφ|0∆t.

Hence, by setting h = ∆t and by applying the definition γ := mini∈J ki
i with

J = {1, 2}, k1 = 1 and k2 = 1, Proposition 4.3.1 leads to the estimate

−Kwh,h|h|
1
2 ≤ w(x, q)− wh(x, q) ≤ Kw,Φ|h|

1
2

for the SL scheme.

4.3.2 Error estimates for the case without controlled jumps

First, consider the problem (4.1.1) and its viscosity solution V0 ∈ Cb,l(Rd×I).

Proposition 4.3.2. Assume that (A1)-(A8) and (S1)-(S4) hold. Then, if
λ > 1, we have∣∣V0(x, q)− Vh0(x, q)

∣∣ ≤ C0|h|γ ∀(x, q) ∈ Rd × I

where
C0 := 2Kc|J |max{LV0 |V0|0, LVh0 |Vh0|0}

and γ := mini∈J ki
i , according to the definitions in (S3) and Lemma 4.3.1(ii).
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Proof. This is a classical result, we report a sketch of the proof given in [17].
Take q ∈ I. Let ε ∈ (0, 1) and, for any (x, y) inside the set Rd × Rd,

consider the test function

Ψε(x, y) := Vh0(x, q)− V0(y, q)− |x− y|
2

ε2
.

We can assume that Ψε attains its maximum in Rd×Rd at a point (x0, y0):

Ψε(x0, y0) ≥ Ψε(x, y) ∀(x, y) ∈ Rd × Rd (4.3.13)

First, we note that
Ψε(x0, x0) ≤ Ψε(x0, y0)

hence

Vh0(x0, q)− V0(x0, q) ≤ Vh0(x0, q)− V0(y0, q)−
|x0 − y0|2

ε2
.

From the Lipschitz continuity of V0 we derive

|x0 − y0|2

ε2
≤ V0(x0, q)− V0(y0, q) ≤ LV0 |x0 − y0|

and obtain
|x0 − y0| ≤ LV0ε

2. (4.3.14)

Now we define
φε(y) := Vh0(x0, q)−

|x0 − y|2

ε2

and from (4.3.13) we have that the function y 7→ V0(y, q)− φε(y) attains its
minimum at y0. Since V0 is a viscosity solution of (4.1.1), there exists ũ ∈ U
such that

λV0(y0, q)− `(y0, q, ũ)− f(y0, q, ũ) ·Dφε(y0, q) ≥ 0

or, more explicitly

λV0(y0, q) ≥ `(y0, q, ũ) + f(y0, q, ũ) · 2|x0 − y0|
ε2

. (4.3.15)

On the other hand, combining the fact that Vh0 is solution to (4.1.14) with
assumption (S3) we have

λVh0(x0, q) +H
(
x0, q,DVh0(x0, q)

)
≤ KcE(h, Vh0)

which implies

λVh0(x0, q) ≤ `(x0, q, ũ) + f(x0, q, ũ) · 2|x0 − y0|
ε2

+KcE(h, Vh0). (4.3.16)
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By subtracting (4.3.15) from (4.3.16) we obtain

λVh0(x0, q)− λV0(y0, q) ≤
≤ `(x0, q, ũ)− `(y0, q, ũ)+

+
(
f(x0, q, ũ)− f(y0, q, ũ)

)
· 2|x0 − y0|

ε2
+

+KcE(h, Vh0)

which, because of the Lipschitz continuity of ` and f , leads to

Vh0(x0, q)− V0(y0, q) ≤
L`
λ
|x0 − y0|+

2|x0 − y0|
ε2

Lf
λ
|x0 − y0|+

+ Kc
λ
E(h, Vh0).

From (4.3.13) it follows

Vh0(x, q)− V0(x, q) ≤ Vh0(x0, q)− V0(y0, q)−
|x0 − y0|2

ε2
. (4.3.17)

hence

Vh0(x, q)− V0(x, q) ≤ |x0 − y0|2

ε2
+ L`

λ
|x0 − y0|+

+ 2|x0 − y0|
ε2

Lf
λ
|x0 − y0|+

Kc

λ
E(h, Vh0).

By using (4.3.14) on the previous estimate, we have

Vh0(x, q)− V0(x, q) ≤
(
LV0 + L`

λ
+ Lf

λ
2LV0

)
LV0ε

2 + Kc
λ
E(h, Vh0)

and if we choose

ε =
√

KcE(h, Vh0)
(λLV0 + L` + Lf2LV0)LV0

we obtain,

Vh0(x, q)− V0(x, q) ≤ 2Kc

λ
E(h, Vh0) ≤ 2Kc

λ
E(h, Vh0)

The same estimate on the difference V0(x, q) − Vh0(x, q) can be proved by
applying the previous steps to the test function

V0(x, q)− Vh0(y, q)− |x− y|
2

ε2
.

Now, by using the definition of γ in (4.3.12) we obtain

E(h, Vh0) :=
∑
i∈J
|DiVh0|0|h|ki ≤ |J |LVh0 |Vh0|0|h|γ
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and, since we assumed λ > 1, by defining

C0 := 2Kc|J |max{LV0 |V0|0, LVh0 |Vh0|0}

we conclude ∣∣Vh0(x, q)− V0(x, q)
∣∣ ≤ C0|h|γ . (4.3.18)

4.3.3 The error estimate for the problem with n switches

First, for every 0 < ε < β
4 (where β is as in (A2)), we define V ε

n as the
viscosity solution of

max
{
λVn(x, q) + max

|e|≤ε
H
(
x+ e, q,DxVn(x, q)

)
,

Vn(x, q)−NVn−1(x, q)
}

= 0
on Rd × I. (4.3.19)

We recall that the fact that (4.3.19) has a unique solution as a consequence
of Lemma 4.3.1 (i).

Lemma 4.3.3. Let V ε
n be the viscosity solution of (4.3.19), for n ≥ 1. Then,

an upper bound of the Lipschitz constant of V ε
n is

|V ε
n |1 ≤ max{LV0 , LcC}. (4.3.20)

Proof. Using the same methods as for sequence (4.1.3), we can show that

0 ≤ · · · ≤ V ε
n ≤ · · · ≤ V ε

2 ≤ V ε
1 ≤ V ε

0 (4.3.21)

Combining with (4.3.20), get

0 ≤ · · · ≤ LV εn ≤ · · · ≤ LV ε2 ≤ LV ε1 ≤ max{LV0 , LcC} (4.3.22)

We can give now the error estimate of the upper and lower bound of
the difference between Vn and Vhn. We recall that C0 has been defined in
Proposition 4.3.2.

Proposition 4.3.3. For n ≥ 1, let Vn ∈ Cb,l(Rd× I) be the unique viscosity
solution of (4.1.2), and Vhn ∈ Cb(Rd × I) the unique solution of (4.1.16).
Then, on Rd × I we have

− Cn|h|γ ≤ Vn(x, q)− Vhn(x, q) ≤ Cn|h|γ (4.3.23)

where, for every n ≥ 1, there exist positive constants KVn−1 and KVh(n−1),h

such that
Cn := Cn−1 +KVn−1

Cn := Cn−1 +KVh(n−1),h
.

(4.3.24)
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Proof. . We prove the proposition by induction over n, starting from the
upper bound.

Let n = 1. We want to estimate the difference

V1(x, q)− Vh1(x, q) = V1(x, q)− Ṽh1(x, q) + Ṽh1(x, q)− Vh1(x, q)

where Ṽh1 is the solution of

max
{
S
(
x, q, Ṽh1(x, q), Ṽh1

)
, Ṽh1(x, q)−NV0(x, q)

}
= 0 on Rd × I.

By applying Proposition 4.3.1, (4.3.11) and Proposition 4.3.2 we obtain

V1(x, q)− Vh1(x, q) ≤ KV1,NV0 |h|γ + C0|h|γ .

Note that, for every n ≥ 1, the constant KVn,NVn−1 coincides with the
constant Kw,Φ defined in Proposition 4.3.1 in the case w = Vn and Φ =
NVn−1 and, by assumption (A4), it can be simplified to

KVn−1 := L`
λ− Lf

+ LVn−1
Lf
λ

+ LVn−1 +KcLVn−1 |Vn−1|0|J | ≥

≥ L`
λ− Lf

+ LVn−1
Lf
λ

+ LVn +KcLVn |Vn|0|J | ≥

≥ L`
λ− Lf

+ LNVn−1
Lf
λ

+ LVn +KcLVn |Vn|0|J | =: KVn,NVn−1 .

(4.3.25)
We also recall that

C0 := 2Kc|J |max{LV0 |V0|0, LVh0 |Vh0|0}

while Kc and J are defined in the consistency hypothesis (S3).
By the definition of KV0 in (4.3.25), we obtain

V1(x, q)− Vh1(x, q) ≤ KV0 |h|γ + C0|h|γ

and, defining C1 := KV0 + C0, we have

V1(x, q)− Vh1(x, q) ≤ C1|h|γ ∀(x, q) ∈ Rd × I.

Let us now suppose that the result is true for n. For n + 1, applying
Proposition 4.3.1 and (4.3.11) we have

Vn+1(x, q)− Vh(n+1)(x, q) = Vn+1(x, q)− Ṽh(n+1)(x, q)+
+ Ṽh(n+1)(x, q)− Vh(n+1)(x, q) ≤
≤ KVn |h|γ +

∣∣Vn(x, q)− Vhn(x, q)
∣∣ ≤

≤ KVn |h|γ + Cn|h|γ .
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Hence, by taking Cn+1 := KVn + Cn we finally obtain

Vn+1(x, q)− Vh(n+1)(x, q) ≤ Cn+1|h|γ .

For the lower bound, the base case of the induction can be obtained in
a similar way by applying Proposition 4.3.1 and (4.3.11):

Vh1(x, q)− V1(x, q) = Vh1(x, q)− Ṽh1(x, q) + Ṽh1(x, q)− V1(x, q) ≤
≤ C0|h|γ +KVh0,h|h|

γ

and then defining C1 := KVh0,h + C0, where, for every n ≥ 1, the constant
KVhn,h coincides with Kwh,h defined in Proposition 4.3.1 in the case wh =
Vhn:

KVhn,h := max
{

(L` + LVhnLf )h, L` + LVhnLf
λ

}
+ LVhn +KcLVhn |Vhn|0|J |.

The rest of the induction follows the same steps of the previous case, leading
to

Vh(n+1)(x, q)− Vn+1(x, q) ≤ Cn+1|h|γ

with Cn+1 := KVhn,h + Cn.

We now set
Dn−1 := Cn − Cn−1 = KVn−1 .

where Cn has been defined in (4.3.24). The definition of KΦ in Lemma 4.3.1
(ii) and (4.3.22) imply that Dn ≤ D0, and hence

Cn ≤ C0 + nD0. (4.3.26)

Similarly, if we define

Dn−1 := Cn − Cn−1 = KVh(n−1),h

from the definition of Kwh,h in (4.3.10) and (4.1.20) we have that Dn ≤ D0,
and hence:

Cn ≤ C0 + nD0 (4.3.27)
Before stating our main result, it is important to point out that we used the
cascade technique as a tool for obtaining some theoretical error estimates,
and not for actually solving the hybrid control problem numerically. We
refer to Chapter 3 for a detailed construction of a numerical scheme capable
of computing the approximated solution.

Theorem 4.3.1. Assume (A1)-(A8) and (S1)-(S4). Let V ∈ Cb,l(Rd) be the
unique viscosity solution of (2.2.13), and Vh ∈ Cb(Rd) the unique solution
of (4.1.14). Then there exist C > 0 and C > 0 such that

− C ln h|h|γ ≤ V (x, q)− Vh(x, q) ≤ C ln h|h|γ ∀(x, q) ∈ Rd × I (4.3.28)
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Chapter 4. Error estimates for the numerical scheme

Proof. We start with the upper bound. By (4.1.5), (4.3.26) and (4.1.19) we
obtain the following estimate

V − Vh = V − Vn + Vn − Vhn + Vhn − Vh ≤

≤ (1− µ)n
µ

|V0|0 + (C0 + nD0)|h|γ + (1− µ)n
µ

|Vh0|0

which can be rearranged as

V − Vh ≤
|V0|0 + |Vh0|0

µ
(1− µ)n +D0|h|γn+ C0|h|γ .

For the lower bound, by following the same reasoning and using (4.3.27)
instead of (4.3.26) we have

Vh − V ≤
(1− µ)n

µ
|Vh0|0 + (C0 + nD0)|h|γ + (1− µ)n

µ
|V0|0

or, equivalently

Vh − V ≤
|V0|0 + |Vh0|0

µ
(1− µ)n +D0|h|γn+ C0|h|γ .

The idea now is to minimize with respect to n the estimates on the upper
and lower bound:

E(n) := a(1− µ)n + bn+ c

E(n) := a(1− µ)n + bn+ c

where a := |V0|0+|Vh0|0
µ , b := D0|h|γ , b := D0|h|γ and c := C0|h|γ .

By a straightforward application of [12, Lemma 6.1] to E(n) we haveV − Vh ≤ −
b

ln(1−µ) + c − b
a ln(1−µ) ≥ 1

V − Vh ≤ − (1−µ)b
ln(1−µ) + b

(
log1−µ

(
− b
a ln(1−µ)

)
+ 1

)
+ c else.

More explicitly, if

− D0|h|γ
|V0|0+|Vh0|0

µ ln(1− µ)
≥ 1

then the upper bound for V − Vh is(
− D0

ln(1− µ) + C0

)
|h|γ

otherwise(
−(1− µ)D0

ln(1− µ) +D0

(
log1−µ

(
− µD0|h|γ(
|V0|0 + |Vh0|0

)
ln(1− µ)

)
+ 1

)
+ C0

)
|h|γ

in this second case, the factor multiplying |h|γ is O(ln h) +O(1).
The same can be proven for the lower bound, replacing D0 with D0, thus

proving the result.
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Appendix A

Appendix to Chapter 4

A.1 The upper bounds of the Lipschitz constants

Proof of Lemma 4.2.2. Set

mε := sup
x,y

ϕ(x, y) := sup
x,y∈Rd

{w(x, q)− w(y, q)− δ

2 |x− y|
2 − ε

2(|x|2 + |y|2)}.

Let x0, y0 ∈ Rd such that mε = ϕ(x0, y0). Taking into account the HJB
equation satisfied by w and applying the viscosity notion, we get:

0 ≤ max
{
λw(y0, q) +H(y0, q, py)− λw(x0, q)−H(x0, q, px),
w(y0, q)− Φ(y0, q)− w(x0, q) + Φ(x0, q)

}
where

px = δ(x0 − y0) + εx0

py = δ(x0 − y0)− εy0.
(A.1.1)

Two cases have to be considered.

a) λw(y0, q) +H(y0, q, py)− λw(x0, q)−H(x0, q, px).
This is the standard case (see [3]), and we have that

w(x, q)− w(y, q) ≤ L`
λ− Lf

|x− y| ∀x, y ∈ Rd.

b) w(y0, q)− Φ(y0)− w(x0, q) + Φ(x0).
In this case, we get w(x0, q) − w(y0, q) ≤ LΦ|x0 − y0|. Then we deduce
that

mε ≤ LΦ|x0 − y0| −
δ

2 |x0 − y0|2. (A.1.2)

Setting r := |x0 − y0|, and noting that maxr≥0
{
LΦr − δ

2r
2
}

= L2
Φ/2δ,

we obtain
mε ≤

L2
Φ

2δ .
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Applying a simple calculus argument (see [37, Lemma 2.3]), for fixed δ,
we have:

lim
ε→0

mε = sup
x,y∈Rd

{
w(x, q)− w(y, q)− δ|x− y|2

}
:= m

and hence m ≤ L2
Φ

2δ .
Therefore, by definition of m, we have that:

w(x, q)− w(y, q) ≤ L2
Φ

2δ + δ

2 |x− y|
2 ∀x, y ∈ Rd.

Now by using the simple remark that

min
δ≥0

{
L2

Φ
2δ + δ

2 |x− y|
2
}

= LΦ|x− y|

we obtain:

w(x, q)− w(y, q) ≤ LΦ|x− y| ∀x, y ∈ Rd.

In conclusion, for the two above cases, we obtain

Lw = max
{
LΦ,

L`
λ− Lf

}
By using similar arguments, we can compute Lwε and get:

Lwε = max
{
LΦ,

L`
λ− Lf

}
.

A.2 Lipschitz stability for the SL scheme

In this section we will prove that, in the case described in Remark 4.0.1,
the numerical approximation wh of w of the obstacle problem is Lipschitz
continuous.

We consider schemes approximating (4.2.1) in the form:

Wh(x, q) = min
{
Σh(x, q,Wh),Φ(x, q)

}
on x ∈ Rd × I. (A.2.1)

In the case of a Semi-Lagrangian scheme, we recall the definition (3.3.5) of
the operator Σh:

Σh(x, q,Wh) := min
u∈U

{
h`(x, q, u) + e−λhI[Wh]

(
x+ hf(x, q, u), q

)}
.

It is well-known that Σh is non-expansive in the ∞-norm.
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A.2. Lipschitz stability for the SL scheme

Theorem A.2.1. Under assumptions (A1)-(A8), (S1)-(S4), the solution
Wh of problem (4.3.1) obtained with the Semi-Lagrangian scheme (A.2.1) is
Lipschitz continuous with

|Wh|1 ≤ LWh
=
(
1 + (λ− Lf )h

)
max

{
LΦ,

L`
λ− Lf

}
.

Proof. For any q ∈ I, let us consider the solution of the numerical scheme
Σh in fixed point form:

W
(k+1)
h (x, q) = min

{
Σh(x, q,W (k)

h ),Φ(x, q)
}

where W (k)
h is the approximation of Wh at iteration k.

For any x1, x2 ∈ Rd we have∣∣W (k+1)
h (x1, q)−W (k+1)

h (x2, q)
∣∣ ≤

≤ max
{
hL` + e−λh(1 + λLf )L

W
(k)
h

, LΦ
}
≤

≤ max{hL` + e−(λ−Lf )hL
W

(k)
h

, LΦ} ≤

≤ max
{

L`
λ− Lf

, LΦ

}
max

(λ− Lf )h+
e−(λ−Lf )hL

W
(k)
h

max
{

L`
λ−Lf , LΦ

} , 1
 .

By setting
m := (λ− Lf )h

Mk :=
L
W

(k)
h

max
{

L`
λ−Lf , LΦ

}
we have

Mk+1 ≤ max{m+ e−mMk, 1}.
Note that if Mk ≤ 1 + m, then Mk+1 ≤ 1 + m because the inequality
Mk ≤ 1 +m implies e−mMk ≤ e−m(1 +m) ≤ 1. It follows

Mk+1 ≤ max{m+ e−mMk, 1} ≤ max{1 +m, 1} = 1 +m.

It suffices then to initialize the fixed point iterations with W
(0)
h such that

M0 = 0 to guarantee Mk ≤ 1 +m for every k ≥ 0, and, by the definitions of
m and Mk, we obtain

L
W

(k)
h

max
{

L`
λ−Lf , LΦ

} ≤ 1 + (λ− Lf )h

which implies

L
W

(k)
h

≤
(
1 + (λ− Lf )h

)
max

{
L`

λ− Lf
, LΦ

}
.
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Now, since W (k)
h converges towards the solution Wh of the scheme (A.2.1)

as k → +∞, we conclude

LWh
≤
(
1 + (λ− Lf )h

)
max

{
L`

λ− Lf
, LΦ

}
.

A.3 Estimate on the perturbed value function of
the stopping problem

For the sensitivity analysis in this section, we will drop the assumptions
C = Rd and A = ∅ made in 4.0.1 and consider the more general case in
which the two sets just non-empty.

Let us consider the controlled system defined in (2.2.1) with a variation:
the ability to switch between dynamics is replaced with the ability to stop
when the trajectory enters the two predefined sets A and C. More precisely:

• On hitting A the trajectory has to stop.

• When the trajectory evolves in the set C, the controller can choose to
stop or not. In this case the stopping time is denoted by ξ and, if
controller doesn’t choose to stop, its value is +∞ by definition.

• If the trajectory is neither inside A or C, it cannot stop.

The control strategy θ consists then in the continuous control u and the
controlled stopping time ξ (which can be finite or infinite) and belongs to
the set Θ := U × R+. Throughout this section we will assume all the basic
hypotheses (A1)-(A7).

In order to define the cost associated to a control strategy (u, ξ) we need
to define the notion of hitting time for this problem.

Definition A.3.1 (Hitting time). Let E ⊂ Rd, x ∈ Rd\E, θ ∈ Θ and q ∈ I.
We define the hitting time of the trajectory X associated to the set E as

tE(x, q, θ) := inf
{
t > 0 | Xx(t, q, u) ∈ E

}
if the trajectory never enters the set E we set tE = +∞ by definition. Note
that this definition implies ξ > tCq(x, q, θ).

The cost can now be defined as

J(x, q; θ) :=
∫ ξ

0
`
(
Xx(t, q, u), q, u(t)

)
e−λtdt+

+ e−λξΦ
(
Xx(ξ, q, u), q

)
+

+ e−λtAq (x,q,θ)Ψ
(
Xx
(
tAq(x, q, θ), q, u

)
, q
)
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where Φ : C → R and Ψ : A → R are Lipschitz continuous, and the value
function of this problem

w(x, q) := inf
θ∈Θ

J(x, q; θ)

satisfies (4.2.1).
For ε > 0 small enough and for every q ∈ I, we consider the set Aεq

defined by:
Aεq :=

{
x ∈ Aεq | dAεq(x) ≤ −ε

}
where, for a set E ∈ Rd, dE(x) is the signed distance between the point x
and ∂E:

dE(x) :=


d(x, ∂E) x ∈ Ēc

0 x ∈ ∂E
−d(x, ∂E) x ∈ E̊

Note that by assumption (A1), the boundary of Aεq is C2. We define also
Aε := ⋃

Aεq × {q}.
If we replace the dynamics in (2.2.1) with

Ẋε(t) = f
(
Xε(t) + e(t), Q(t), u(t)

)
Xε(0) = x

Q(0+) = q

where, given ε > 0, e ∈ Fε with

Fε :=
{
e : (0,+∞)→ Rd | e measurable, |e(t)| ≤ ε a.e.

}
we can define in a similar way the value function wε, solution to the system

λwε(x, q) + max
|e|≤ε

H
(
x+ e, q,Dxw

ε(x, q)
)

= 0 on Oε (A.3.1a)

max
{
λwε(x, q) + max

|e|≤ε
H
(
x+ e, q,Dxw

ε(x, q)
)
,

wε(x, q)− Φ(x, q)
}

= 0
on C (A.3.1b)

wε(x, q)−Ψ(x, q) = 0 on Aε (A.3.1c)

where Oε := Rd × I \ (Aε ∪ C) and

wε(x, q) := inf
θε∈Θε

Jε(x, q; θε)

with Θε := U × R+ ×Fε, and, for a sufficiently small ε

Jε(x, q; θε) :=
∫ ξε

0
`
(
Xε
x(t, q, u) + e(t), q, u(t)

)
e−λtdt+

+ e−λξ
εΦ
(
Xε
x(ξε, q, u), q

)
+

+ e
−λtεAεq

(x,q,θ)
Ψ
(
Xε
x

(
tεAεq(x, q, θ), q, u

)
, q
)
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We use the notation ·ε to distinguish between the quantities related to the
perturbed trajectory and the ones related to the unperturbed trajectory: ξε
is the stopping time of Xε

x inside the set Cεq , and tεE is the hitting time of
the perturbed trajectory relative to the set E.

The rest of this section is dedicated to the results necessary for obtaining
an estimate for the difference between wε and w, respectively solutions of
(4.3.5) and (4.2.1).

A.3.1 Estimate for the hitting times

In order to prove that the magnitude of the hitting times of the perturbed
and unperturbed trajectory can be controlled by means of ε, we first need
an estimate on tAq(x, q, θ) and tεAεq(x, q, θ) for points close to Aq and Aεq
respectively.

Lemma A.3.1. Let θ ∈ Θ, q ∈ I and ω > 0 as defined in (A5). Then the
following statements are true:

i) There exists δ > 0 such that

tAq(x, q, θ) <
dAq(x)
ω

∀x ∈ B(∂Aq, δ) \ Aq

ii) There exist δ > 0 and ε̄ > 0 such that

tεAεq(x, q, θ) <
2dAεq(x)

ω
∀x ∈ B(∂Aεq, δ) \ Aεq,∀ε < ε̄

The same results are also true replacing the set Aq with the set Cq.

Proof. We will prove the first statement, then use an analogous argument
to prove the second. Once the two statements are proven to be true for the
set Aq, the fact that they hold for the set Cq is trivial.

i) Since Aq has a C2 boundary, we can choose r̄ > 0 such that dAq is C1

on B(∂Aq, r̄). Then we take r < r̄ such that

f(x, q, u) · d′Aq(x) < −ω ∀x ∈ B(∂Aq, r)

Let x ∈ B(∂Aq, r), choosing t̄ > 0 such that Xx(t, q, u) is in B(∂Aq, r)
for every t < t̄, we have

dAq
(
Xx(t̄, q, u)

)
− dAq(x) =

∫ t̄

0
d′Aq

(
Xx(t, q, u)

)
f(Xx, q, u)dt < −ωt̄

On the other hand, taking δ = min{r, ωt̄} we have

x ∈ B(∂Aq, δ)⇒ dAq(x) < ωt̄
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Now, for tδ = d(x)
ω we get

dAq
(
Xx(tδ, q, u)

)
< −ωtδ + dAq(x) = 0

From the definition of dAq , this implies that Xx(tδ, q, u) ∈ Åq and since
tAq < tδ

tAq(x, q, θ) <
dAq(x)
ω

∀x ∈ B(∂Aq, δ) \ Aq

ii) If we choose r > 0 as in the previous step of the proof, from the defini-
tion of Aεq we have that

B

(
∂Aεq,

r

2

)
⊂ B (∂Aq, r) ∀ε ≤ r

2
and

dAεq(x) = dAq(x) + ε ∀x ∈ Rd,∀ε > 0

taking ε ≤ r
2 , x in B

(
∂Aεq, r2

)
and choosing t̄ > 0 such that the trajec-

tory Xε
x(t, q, u) is in B

(
∂Aεq, r2

)
for every t < t̄, we have

dAεq
(
Xε
x(t̄, q, u)

)
− dAεq(x) =

∫ t̄

0
d′Aq

(
Xε
x(t, q, u)

)
f
(
Xε
x + e, q, u)dt ≤

≤
∫ t̄

0
d′Aq

(
Xε
x(t, q, u)

)
f
(
Xε
x, q, u)dt+

+ εMd′Aq
Lf t̄ ≤

< −ωt̄+ εMd′Aq
Lf t̄

where Md′Aq
is the upper bound of d′Aq on B(∂A

r
2
q ,

r
2). If we then choose

ε̄ such that

ε̄ = min

r2 , ω

2Md′Aq
Lf


for ε ≤ ε̄ we have

dAεq
(
Xε
x(t̄, q, u)

)
− dAεq(x) < −ωt̄2

hence taking δ = min
{
r
2 ,

ωt̄
2

}
we obtain

x ∈ B(∂Aεq, δ)⇒ dAεq(x) < ωt̄

2

Now if we take tδ =
2dAεq (x)

ω

dAεq
(
Xε
x(tδ, q, u)

)
< −ω2 t

δ + dAεq(x) = 0
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this again implies that Xε
x(tδ, q, u) ∈ Åεq and since tεAεq < tδ

tεAεq(x, q, θ) <
2dAεq(x)

ω
∀x ∈ B(∂Aεq, δ) \ Aεq, ∀ε < ε̄

We will also need the following estimate on the distance between the two
trajectories at a given time.

Lemma A.3.2. Let x ∈ Rd, u ∈ U , q ∈ I and ε > 0. Then, the difference
between the trajectories Xε and X satisfies the following inequality∣∣∣Xε

x

(
t, q, u(t)

)
−Xx

(
t, q, u(t)

)∣∣∣ ≤ ε(eLf t − 1
)
∀t ≥ 0

Proof. Since u and q are fixed, we drop the dependency of f on those two
variables, for readability. Because f is Lipschitz continuous in the state
variable, we have ∀t ≥ 0

Ẋε
x(t)− Ẋx(t) = f

(
Xε
x(t) + e(t)

)
− f

(
Xx(t)

)
=

= f
(
Xε
x(t) + e(t)

)
− f

(
Xε
x(t)

)
+ f

(
Xε
x(t)

)
− f

(
Xx(t)

)
≤

≤ εLf + Lf
∣∣Xε

x(t)−Xx(t)
∣∣

then applying Grönwall’s inequality we obtain∣∣Xε
x(t)−Xx(t)

∣∣ ≤ ε(eLf t − 1
)

+
∣∣Xε

x(0)−Xx(0)
∣∣eLf t = ε

(
eLf t − 1

)

We can now prove the following result.

Lemma A.3.3. Let x ∈ Rd \ (Aq ∪ Cq), θε ∈ Θε, θ ∈ Θ such that θ = θ0

and q ∈ I, the following statements are true:

i) If tCq(x, q, θ) = +∞, then ∃ε̄ > 0 such that

tεCq(x, q, θ
ε) = +∞ ∀ε ≤ ε̄

The same result is also true when replacing the set Cq with the set Aq,
in this second case we also have tεAεq(x, q, θ

ε) = +∞.

ii) If tAq(x, q, θ) < +∞, then ∃ε̄ > 0 such that tεAεq(x, q, θ
ε) < +∞ and

∣∣tεAεq(x, q, θε)− tAq(x, q, θ)∣∣ < ε
2
ω
e
Lf
(
tεAεq

(x,q,θε)∧tAq (x,q,θ)
)
∀ε ≤ ε̄

where a ∧ b := min{a, b}.
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iii) If tCq(x, q, θ) < +∞, then ∃ε̄ > 0 such that that tεCq(x, q, θ
ε) < +∞

Proof. In order to simplify the notation we will again hide the dependency
of the hitting times on x, q and u.

i) We will prove the result by contradiction only for tεCq since the same
argument can be used for tεAq . If tCq = +∞, Lemma A.3.1 implies that
exist σ > 0 such that

dCq
(
yXx(t, q, u)

)
> σ ∀t ≥ 0

Suppose that tεCq < +∞ for every ε > 0, by Lemma A.3.2 we have that

∣∣Xε
x(tεCq)−Xx(tεCq)

∣∣ ≤ ε(eLf tεCq − 1
)
∀ε > 0

this means that there exists ε > 0 such that ε < σ

e
Lf t

ε
Cq−1

, but since
Xε
x(tεCq) belongs to ∂Cq we get

Xx(tεCq) ∈ B(∂Cq, σ)

which is absurd. Therefore there must exist ε̄ > 0 such that

tεCq = +∞ ∀ε ≤ ε̄

Finally, once the result is proven for tεAq , we also have

tεAq(x, q, θ) ≤ t
ε
Aεq(x, q, θ)⇒ tεAqε(x, q, θ) = +∞

ii) For t < +∞ we have∣∣Xε
x(t)−Xx(t)

∣∣ ≤ ε(eLf t − 1
)

by Lemma A.3.1 we can take δ and ε̄0 such that

tεAεq(z, q, θ
ε) <

2dAεq(z)
ω

∀z ∈ B(∂Aεq, δ) \ Aεq, ∀ε < ε̄0

note that the definition of tAq implies Xx(tAq , q, u) ∈ ∂Aq, hence if we
choose ε̄ such that

ε̄ = min
{
ε̄0,

δ

2
(
eLf tAq − 1

)}

we have that Xε
x(tAq) and Xx(tεAεq) belong to B(∂Aεq, δ). Therefore, we

can have two cases:
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• If tεAεq ≤ tAq , then, for every ε ≤ ε̄

0 ≤ tεAεq − tAq = tAq
(
Xx(tεAεq), q, θ

)
<
dAq

(
Xx(tεAεq)

)
ω

<

<
dAεq

(
Xx(tεAεq)

)
ω

≤ εe
Lf t

ε
Aq − 1
ω

• If tAq ≤ tεAεq , then, for every ε ≤ ε̄

0 ≤ tAq − tεAεq = tεAεq
(
Xε
x(tAq), q, θ

)
<

2dAεq
(
Xε
x(tAq)

)
ω

=

=
2dAq

(
Xε
x(tAq)

)
+ 2ε

ω
≤ ε2eLf tAq

ω

Combining the two results, we obtain

∣∣tεAεq(x, q, θε)− tAq(x, q, θ)∣∣ < ε
2
ω
e
Lf
(
tεAεq

(x,q,θε)∧tAq (x,q,θ)
)
∀ε ≤ ε̄

• By following the same steps of the previous proof, we have that
tεCεq (x, q, θ

ε) is finite, but since the definition of perturbed set im-
plies tεCεq (x, q, θ

ε) ≥ tεCq(x, q, θ
ε). We also have tεCq(x, q, θ

ε) < +∞.

A.3.2 Estimate for the cost functionals

The result showed in Lemma A.3.3 proves that, for a sufficiently small ε > 0,
the number of different scenarios for the perturbed and unperturbed systems
can be reduced to three.

Proposition A.3.1. Assume (A1)-(A8) and λ > Lf . There exists ε̄ > 0
such that, for every x ∈ Rd\(Aq∪Cq), q ∈ I, θε ∈ Θε, θ ∈ Θ such that θ = θ0

and ε ≤ ε̄ there can be only three possible behaviors for the trajectories Xx

and Xε
x:

1. ξ = +∞ and both hitting times tAq(x, q, θ) and tεAεq(x, q, θ
ε) are infinite,

neither Xx or Xε
x stop.

2. ξ < +∞, Xx and Xε
x enter the sets Cq and Cεq (respectively) and both

stop at time ξ.

3. ξ = +∞, Xx and Xε
x enter the sets Aq and Aεq (respectively). Xx stops

at time tAq(x, q, θ) while Xε
x stops at time tεAεq(x, q, θ

ε).
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Moreover, we have∣∣Jε(x, q; θε)− J(x, q; θ)
∣∣ < ε

(
K∞ + max{KΦ,KΨ}

)
∀ε ≤ ε̄

where
K∞ := L`

λ− Lf

KΦ := LΦ
Lf
λ

KΨ := LΨ

(
Lf
λ

+ 2
ω

(Mf + λM` + λMΨ)
) (A.3.2)

Proof. We will recover the estimate for the difference of the value functions
w and wε by studying the difference of the corresponding cost functionals
in the three cases. In order to simplify the notation, the dependency from
the arguments t, x, q and u will be dropped when unnecessary.

1. From (A8), and since ` is Lipschitz continuous we have∣∣Jε(x, q; θε)− J(x, q; θ)
∣∣ ≤

≤
∫ +∞

0

∣∣`(Xε
x + e, q, u)− `(Xx, q, u)

∣∣e−λtdt =

=
∫ +∞

0

∣∣`(Xε
x + e)− `(Xε

x) + `(Xε
x)− `(Xx)

∣∣e−λtdt ≤
≤ εL`

∫ +∞

0
e−λtdt+ L`

∫ +∞

0
|Xε

x −Xx|e−λtdt ≤

≤ εL`
λ

+ εL`

∫ +∞

0
e−(λ−Lf )tdt− εL`

∫ +∞

0
e−λtdt =

= ε
L`

λ− Lf

2. Since ` is bounded, for the previous result we have∣∣Jε(x, q; θε)− J(x, q; θ)
∣∣ ≤

≤
∫ ξ

0

∣∣`(Xε
x + e)− `(Xx)

∣∣e−λtdt+ e−λξ
∣∣∣Φ(Xε

x(ξ)
)
− Φ

(
Xx(ξ)

)∣∣∣ ≤
≤ ε L`

λ− Lf
+ e−λξ

∣∣∣Φ(Xε
x(ξ)

)
− Φ

(
Xx(ξ)

)∣∣∣
Using boundedness and Lipschitz continuity of Φ, the second term can
be estimated

e−λξ
∣∣∣Φ(Xε

x(ξ)
)
− Φ

(
Xx(ξ)

)∣∣∣ ≤ LΦe
−λξ∣∣Xε

x(ξ)−Xx(ξ)
∣∣ ≤

≤ εLΦ
(
e−(λ−Lf )ξ − e−λξ

)
≤

≤ εLΦ

(
1− Lf

λ

)(
Lf

λ− Lf

)
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Collecting the above results we finally obtain

∣∣Jε(x, q; θ)− J(x, q; θ)
∣∣ < ε

[
L`

λ− Lf
+ LΦ

(
1− Lf

λ

)(
Lf

λ− Lf

)]

3. By boundedness of `, we have∣∣Jε(x, q; θε)− J(x, q; θ)
∣∣ ≤

≤
∫ tεAεq

∧tAq

0

∣∣`(Xε
x + e)− `(Xx)

∣∣e−λtdt+
∣∣∣∣∣
∫ tεAεq

tAq

`(Xε
x + e)e−λtdt

∣∣∣∣∣+
+
∣∣∣e−λtεAεqΨ

(
Xε
x(tεAεq)

)
− e−λtAqΨ

(
Xx(tAq)

)∣∣∣ ≤
≤ ε L`

λ− Lf
+ M`

λ
e
−λ(tεAεq

∧tAq )(
1− e

−λ|tεAεq
−tAq |

)
+

+
∣∣∣e−λtεAεqΨ

(
Xε
x(tεAεq)

)
− e−λtAqΨ

(
Xx(tAq)

)∣∣∣
We will first obtain the estimate in terms of the quantities ε and |tεAεq−
tAq |, then we will use Lemma A.3.3 to have a uniform bound depending
only on ε.
The third term can be estimated using again the boundedness and
Lipschitz continuity of Ψ:∣∣∣e−λtεAεqΨ

(
yεx(tεAεq)

)
− e−λtAqΨ

(
Xx(tAq)

)∣∣∣ ≤
≤ e
−λ(tεAεq

∧tAq )∣∣∣Ψ(Xε
x(tεAεq)

)
−Ψ

(
Xx(tAq)

)∣∣∣+
+ Ψ

(
Xx(tAq)

)
e
−λ(tεAεq

∧tAq )∣∣e−λtεAεq − e−λtAq ∣∣ ≤
≤ LΨe

−λ(tεAεq
∧tAq )∣∣Xε

x(tεAεq)−Xx(tAq)
∣∣+

+MΨe
−λ(tεAεq

∧tAq )(
1− e

−λ|tεAεq
−tAq |

)
where, if tAq ≤ tεAεq we have

e
−λ(tεAεq

∧tAq )∣∣Xε
x(tεAεq)−Xx(tAq)

∣∣ ≤
≤ e−λtAq

(∣∣Xε
x(tεAεq)−X

ε
x(tAq)

∣∣+ ∣∣Xε
x(tAq)−Xx(tAq)

∣∣) ≤
≤ e−λtAq

(
Mf |tεAεq − tAq |+ ε

(
e−(λ−Lf )tAq − e−λtAq

))
≤

≤ e−λtAqMf |tεAεq − tAq |+ ε

(
1− Lf

λ

)(
Lf

λ− Lf

)
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Otherwise, if tεAεq < tAq

e
−λ(tεAεq

∧tAq )∣∣Xε
x(tεAεq)−Xx(tAq)

∣∣ ≤
≤ e
−λtεAεq

(∣∣Xx(tεAεq)−Xx(tAq)
∣∣+ ∣∣Xε

x(tεAεq)−Xx(tεAεq)
∣∣) ≤

≤ e
−λtεAεqMf |tεAεq − tAq |+ ε

(
1− Lf

λ

)(
Lf

λ− Lf

)

Hence, since 1− e−x ≤ x we get∣∣∣e−λtεAεqΨ
(
Xε
x(tεAεq)

)
− e−λtAqΨ

(
Xx(tAq)

)∣∣∣ ≤
≤ LΨMfe

−λ(tεAεq
∧tAq )

|tεAεq − tAq |+

+ εLΨ

(
1− Lf

λ

)(
Lf

λ− Lf

)
+

+ λLΨMΨe
−λ(tεAεq

∧tAq )
|tεAεq − tAq |

By Lemma A.3.3, we can apply the following inequality

e
−λ(tεAεq

∧tAq )
|tεAεq − tAq | < ε

2
ω
e
−λ(tεAεq

∧tAq )
e
Lf (tεAεq

∧tAq )
≤

≤ e
−(λ−Lf )(tεAεq

∧tAq )
≤ ε 2

ω

and conclude∣∣∣e−λtεAεqΨ
(
Xε
x(tεAεq)

)
− e−λtAqΨ

(
Xx(tAq)

)∣∣∣ <
< εLΨ

(
1− Lf

λ

)(
Lf

λ− Lf

)
+ εLΨMf

2
ω

+ ελLΨMΨ
2
ω

Collecting the results above, we finally obtain

∣∣Jε(x, q; θε)− J(x, q; θ)
∣∣ < ε

[
L`

λ− Lf
+ LΨ

(
1− Lf

λ

)(
Lf

λ− Lf

)
+

+ 2
ω
LΨ (Mf + λM` + λMΨ)

]

A.3.3 Estimate for the value functions

We are finally able to estimate the error between the solutions of problems
(4.3.5) and (4.2.1).
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Theorem A.3.1. If (A1)-(A7) hold, then there exists ε̄ > 0 such that, for
every x ∈ Rd \ (Aq ∪ Cq), q ∈ I, δ > 0 and ε ≤ ε̄ we have∣∣w(x, q)− wε(x, q)

∣∣ < εKΦ,Ψ + δ

where KΦ,Ψ := K∞ + max{KΦ,KΨ}, with K∞, KΦ and KΦ as defined in
(A.3.2)

Proof. From the definition of the value functions w and wε we know that
for each δ > 0 there exist θδ and θεδ respectively in Θ and Θε such that

J(x, q; θδ) ≤ w(x, q) + δ

Jε(x, q; θεδ) ≤ wε(x, q) + δ

then, by Proposition A.3.1, it follows

w(x, q)− wε(x, q) ≤ J(x, q; θδ)− Jε(x, q; θεδ) + δ < εKΦ,Ψ + δ.

On the other hand, we also have 0 ≤ w(x, q) − wε(x, q) because Θ ⊂ Θε,
and by combining the two inequalities we obtain our result.

A.3.4 Estimate on the perturbed numerical approximation

As we did in the previous section, we will drop the assumptions C = Rd and
A = ∅ made in 4.0.1 and consider the more general case in which the two
sets just non-empty.

We want to examine here the difference between the numerical approxi-
mations of respectively the QVI with a constant obstacles and its perturbed
version in the case of a Semi-Lagrangian scheme.

We recall that the non-perturbed system is

λw(x, q) +H
(
x, q,Dxw(x, q)

)
≤ 0 on Rd \ (A ∪ C) (A.3.3a)

max
{
λw(x, q) +H

(
x, q,Dxw(x, q)

)
,

w(x, q)− Φ(x, q)
}
≤ 0

on C (A.3.3b)

w(x, q)−Ψ(x, q) = 0 on A. (A.3.3c)

It can be approximated with the scheme

Wh(x, q) = Θh(x, q,Wh) :=


Σh(x, q,Wh) x ∈ Rd \ (A ∪ C)
min

{
Σh(x, q,Wh),
Φ(x, q)

} x ∈ C

Ψ(x, q) x ∈ A.
(A.3.4)
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The perturbed SL scheme is obtained by replacing Σh in (A.3.4) with
the mapping

Σε,h(x, q,W ε
h) =

= min
u∈U,|e|≤ε

{
h`(x+ e, q, u) + (1− λh)I[W ε

h ]
(
x+ hf(x+ e, q, u), q

)}
.

(A.3.5)
We start by giving the following general result:

Theorem A.3.2. Let (A1)-(A7) and (S1)-(S4) hold, and let Wh and W ε
h

be respectively solution of (A.3.4) and its perturbed version (A.3.5) with Φ
finite or infinite. Then, the perturbed SL scheme has a unique bounded and
uniformly Lipschitz continuous solution W ε

h .

Proof. It suffices to note that, with the addition of the term e, the problem
still satisfies the basic assumptions, and all the relevant constants of the
problem remain unchanged. Then, the result follows from Theorem A.2.1,
implying

|W ε
h |1 ≤

(
1 + (λ− Lf )h

)
max

{
LΦ, LΨ,

L`
λ− Lf

}
.

Let now W ε
h denote the numerical solution for the perturbed SL scheme.

We prove the following.

Theorem A.3.3. Let (A1)-(A7) and (S1)-(S4) hold, and let Wh and W ε
h

be respectively solution of (A.3.4) and its perturbed version (A.3.5) with Φ
finite or infinite. Then, for ε and h small enough, we have

|Wh −W ε
h |0 ≤ εKWh,h (A.3.6)

with
KWh,h := max

{
(L` + LWh

Lf )h, L` + LWh
Lf

λ

}
.

Proof. We recall that both the exact and the approximate solutions for either
the original or the perturbed problem are Lipschitz continuous.

Using a scheme in fixed point SL form, the unperturbed QVI is approx-
imated by (A.3.4), whereas its perturbed version is given by

W ε
h(x, q) = Θε,h(x, q,W ε

h) :=


min

{
Σε,h(x, q,W ε

h),Φ(x, q)
}

on Cε

Ψ(x, q) on Aε

Σε,h(x, q,W ε
h) else

(A.3.7)
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The idea is to apply the two schemes to Lipschitz continuous numerical
solutions Wh and W ε

h and estimate the difference∣∣T h( · , · ,Wh)− T ε,h( · , · ,W ε
h)
∣∣
0 ≤

∣∣T h( · , · ,Wh)− T h( · , · ,W ε
h)
∣∣
0+

+
∣∣T h( · , · ,W ε

h)− T ε,h( · , · ,W ε
h)
∣∣
0

(A.3.8)
Using now, for T = Θh,Θε,h,Σh,Σε,h and U = Wh,W

ε
h , the shorthand

notation
T (U) := T ( · , · , U),

we can single out four cases:

a) (x, q) ∈ (I× Rd) \ (A ∪ C).
In this case, we can obtain for the first term in (A.3.8)∣∣Θh(Wh)−Θh(W ε

h)
∣∣
0 =

∣∣Σh(Wh)− Σh(W ε
h)
∣∣
0 ≤ (1− λh)

∣∣Wh −W ε
h

∣∣
0

(A.3.9)
whereas for the second, there exists C > 0 such that:∣∣T h(W ε

h)− T ε,h(W ε
h)
∣∣
0 ≤ Chε. (A.3.10)

The former inequality is a known property of the SL scheme, while the
latter is easily obtained by considering that the Lipschitz continuity of `
and f , along with the bound on |e|, imply that∣∣`(x, q, u)− `(x+ e, q, u)

∣∣ ≤ L`ε,∣∣f(x, q, u)− f(x+ e, q, u)
∣∣ ≤ Lfε

so that, taking into account the Lipschitz continuity of Wh, by a standard
argument we obtain (A.3.10) as∣∣Σh(Wh)− Σε,h(Wh)

∣∣
0 ≤ (L` + LWh

Lf )hε

b) (x, q) ∈ Aε.
In this case, we recall that Aε ⊂ A, which clearly implies that

Θh(x, q,Wh) = Θε,h(x, q,W ε
h) = Ψ(x, q)

and the left-hand side of (A.3.8) vanishes.

c) (x, q) ∈ Cε.
First, note that in case the minimum in both Θh(Wh) and Θh(W ε

h) is
attained by the same operator, then there is nothing else to prove. In
fact, in this case the estimates (A.3.9)-(A.3.10) are recovered by mix-
ing the arguments of the previous cases a) and b). Let therefore the
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min be achieved by different operators, e.g., let Θh(Wh) = Σh(Wh) and
Θh(W ε

h) = Φ. Working in terms of unilateral estimates, we have

Θh(x, q,Wh)−Θh(x, q,W ε
h) = Σh(x, q,Wh)− Φ(x, q) ≤
≤ Φ(x, q)− Φ(x, q) = 0

in which we get the inequality by replacing the argmin in Θh(Wh) with
the other choice. In a parallel form, we obtain the reverse inequality, as

Θh(x, q,W ε
h)−Θh(x, q,Wh) = Φ(x, q)− Σh(x, q,Wh)

≤ Σh(x, q,W ε
h)− Σh(x, q,Wh)

≤ (1− λh)|Wh −W ε
h |0

The same arguments can then be applied to the case in which the choice
of the operators is reversed, so that we finally obtain (A.3.9). Note
that by a further straightforward adaptation of this technique it is also
possible to obtain (A.3.10). We leave this part of the proof to the reader.
Moreover, we can observe that, due to the transversality condition (A5),
both A and C (and the perturbed sets if ε is small enough) are invariant
for the dynamics and (if h is also small enough) for the scheme. In
particular, for (x, q) ∈ Cε, we can understand the ∞-norm in (A.3.9)–
(A.3.10) as the norm on the set Cε itself. We obtain therefore, by iterating
the estimate (A.3.8) in (A.3.4) and (A.3.7) from the same initial guess
W

(0)
h = W

ε(0)
h :

|Wh −W ε
h |0 ≤ (L` + LWh

Lf )εh
∑
k≥0

(1− λh)k = L` + LWh
Lf

λ
ε

d) (x, q) ∈ C \ Cε or (x, q) ∈ A \ Aε

In this last case, due to the transversality condition (A5), we can apply
the same arguments of the previous case to extend the estimate obtained
on Aε and Cε to the whole of respectively A and C by adding a term
O(ε).

We can therefore conclude by collecting all the cases above in the bound

|Wh −W ε
h |0 ≤ max

{
(L` + LWh

Lf )h, L` + LWh
Lf

λ

}
ε.
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Chapter 5

Conclusions

In this first part of the thesis we showed how the numerical solution of hy-
brid optimal control problems can be analyzed from an abstract and more
general point of view, leading to the main result on the error estimate be-
tween the value function and its approximation, under suitable assumptions.
We also have constructed and validated a Semi-Lagrangian scheme for hy-
brid Dynamic Programming problems in infinite horizon form, improving
its efficiency with the application of a Policy Iteration type algorithm.

We started by describing the general framework of this kind of prob-
lems, listing and detailing all the necessary hypotheses to be used later.
The Dynamic Programming Principle allowed us to characterize the value
function of the hybrid optimal control problem as the solution of a particular
Quasi-Variational Inequality.

Then we showed how to construct and solve a Semi-Lagrangian type
scheme for the approximation of the value function and the corresponding
optimal control strategy. The scheme presented not only satisfies all the con-
vergence hypotheses, but can also be made more efficient by applying the
Policy Iteration algorithm, as opposed to the Value Iteration, a more tradi-
tional solution method. Numerical tests performed on examples of varying
complexity show that the scheme is robust and that the approximate opti-
mal control policy obtained is stable and accurate, although the complexity
remains critical with respect to the dimension of the state space. This vali-
dation suggests that this could be a feasible method to design optimization-
based static controllers in low dimension.

On the theoretical point of view, the QVI characterizing the value func-
tion also allows us to define the starting point of the method used to obtain
some the error estimates: the cascade. This technique allowed us to ap-
proach the original hybrid control problem by studying a sequence of less
complex obstacle problems, providing us with a chain of error estimates
which, combined, give us the main result. It’s important to remark that we
use used the cascade as a tool for obtaining the theoretical result, and not
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for actually solving the hybrid control problem numerically. We also point
out that some of the assumptions made throughout this part are not true
a priori for every numerical scheme, such as the existence, the uniqueness
or the Lipschitz continuity of its solution. Nonetheless, we make sure that
they hold at least for SL schemes.

Our results have been obtained under standard hypotheses that in some
more realistic scenarios might not hold. For this reason, further development
of this theory could involve the extension of the results presented to a more
general framework for Hybrid Systems. Moreover, it could be interesting to
study the numerical approximation of such systems with numerical methods
which don’t satisfy all the properties we required, such as the non-monotone
Essentially Non-Oscillatory (ENO) scheme, in order to obtain the same error
estimates for a wider variety of schemes.
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Chance-constrained
optimization in aerospace
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Chapter 6

The chance-constrained
optimization problem

6.1 Introduction

One of the earliest and most famous examples of optimization problems in
aerospace dates back to the beginning of the twentieth century. In 1921,
American physicist Robert Hutchings Goddard published a paper titled “A
Method of Reaching Extreme Altitudes” in which he studied the problem
of minimizing the fuel consumption of a rocket ascending vertically from
Earth’s surface, taking into account both atmospheric drag and gravitational
field.

In order to better explain the nature of this kind of problems, we give a
simplified formulation of the one studied by Goddard, but first we need to
formally define what an optimal control problem is. We start by recalling
the definition of a controlled system. A controlled system usually consists
in a set of ordinary differential equations parameterized by a function called
control: {

ẏ(t) = f
(
t, y(t), u(t)

)
∀t ∈ (0, tf]

y(0) = y0
(6.1.1)

where f : R+ × Rn × Rm → Rn is the state function, u : R+ → U ⊂ Rm is
the control function and the final time tf can be either finite or infinite. A
control u is said to be admissible if it belongs to a given set U , and each u
in the admissible set selects a trajectory yu : R+ → Rn.

What characterizes an optimal control problem is the presence of a cost
functional, whose purpose is to measure the quality of a control strategy
with respect to a chosen criterion. For a controlled system in the form of
(6.1.1), the cost functional J : U → R+ is defined as

J(u) := φ
(
tf, y(tf)

)
+
∫ tf

0
`
(
t, y(t), u(t)

)
dt (6.1.2)
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where the functionals φ : R+ × Rn → R+ and ` : R+ × Rn × Rm → R+
are called final cost and running cost respectively. Since we are interested
in finding an optimal control strategy u∗ that minimizes the cost (6.1.2), we
define our optimal control problem as

min
u∈U

J(u).

Sometimes we might require the system trajectory y to satisfy some
other constraints in addition to the ODE system (6.1.1). In this case we can
generalize the previous formulation by adding constraint functions:

min
u∈U

J(u)

G
(
t, y(t), u(t)

)
≥ 0 ∀t ∈ (0, tf]

H
(
t, y(t), u(t)

)
= 0 ∀t ∈ (0, tf]

(6.1.3)

where G : R+ × Rn × Rm → Rl represents the set of inequality constraints
and H : R+ × Rn × Rm → Rp the set of equality constraints.

Going back to our example, consider the vertical ascent of a rocket in
one dimension. At a given time t, we measure the position of the launcher
by means of its altitude r(t) and its speed with the scalar value v(t). We
introduce the variable u(t) ∈ [0, 1] which represents the percentage of maxi-
mum thrust applied at a given time. The vehicle starts from a still position
at ground level. At time t = 0 the thrust force Tu(t) of the engine pushes
the launcher upwards, against the force of gravity m(t)g. m(t) denotes the
mass of the launcher at time t, and it is consumed at the rate T

ve
u(t). We

consider the maximum thrust T , the fuel speed ve, the initial mass m0 and
the final time tf to be fixed. The controlled system describing the launcher’s
dynamics is 

ṙ(t) = v(t) t ∈ (0, tf]
v̇(t) = T

m(t)u(t)− g t ∈ (0, tf]
ṁ(t) = − T

ve
u(t) t ∈ (0, tf]

r(0) = 0
v(0) = 0
m(0) = m0

(6.1.4)

where the admissible control set is

U := {u : R+ → [0, 1] ⊂ R | u is measurable}.

We want to solve the optimal control problem of finding a particular u∗ ∈ U
that maximizes the final mass of the launcher while making sure it reaches
at least a given altitude r̄f at time tf. Formally, this translates to solvingmax

u∈U
mf(u)

rf(u) ≥ r̄f
(6.1.5)
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where cost mf(u) and constraint rf(u) functions are represented by respec-
tively final mass m(tf) and altitude r(tf) corresponding to the control u.

In the particular case of this thesis, we are interested in the specific
field of parametric optimization, that is, a class of optimization problems
characterized by the fact that the optimal value of the cost function depends
on one or more parameters defining the mathematical model. Drawing a
parallel with the previous example, let us suppose that we want to study
how the optimal final mass of the launcher changes with respect to the
maximum thrust T . We explicit the dependency of the cost and constraint
functions on the parameter and denote the optimal cost for a given T with
m∗(T ): m

∗(T ) := max
u∈U

mf(u, T )

rf(u, T ) ≥ r̄f

This formulation has many applications, for example, it can be used for
studying the sensitivity of m∗(T ) with respect to the parameter T , allowing
us to predict how the final mass of the launcher would respond to changes
in the engine’s thrust.

Since we are interested in the case where T is subject to unpredictable
variations, we represent this behavior by redefining T as a random variable
taking values inside an interval [T−, T+], according to a given probability
distribution. As a consequence of this definition, the two functions mf(u, T )
and rf(u, T ) also become random variables, thus forcing us to reformulate the
problem accordingly. For this purpose we introduce the parameter p ∈ [0, 1]
and consider the following problemmax

u∈U
E
[
mf(u, T )

]
P
[
rf(u, T ) ≥ r̄f

]
≥ p

where E denotes the expectation and P the probability. Here p acts as a
probability threshold for the realization of the event rf(u, T ) ≥ rf, and the
inequality P

[
rf(u, T ) ≥ r̄f

]
≥ p is called chance or probability constraint.

The resulting problem belongs to the subclass of stochastic optimization
problems known as chance-constrained optimization problems. The goal of
this chapter is to show how Lagrangian methods and non-parametric statis-
tics can be used to solve this kind of problems, focusing on the details of
the algorithmic approach. We analyze two distinct methods: the Stochas-
tic Arrow-Hurwicz Algorithm (SAHA) and the Kernel Density Estimation
(KDE). The former is a combination of the Monte Carlo method and the
iterative gradient method, while the latter is a technique used to approxi-
mate the probability density function of a random variable with unknown
distribution, from a relatively small sample. We explain how these methods
can be implemented numerically and applied to several examples of chance-
constrained optimization in aerospace.
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The rest of this introduction will focus on the definition of the type
of chance-constrained optimization problems we will solve, presenting the
techniques that will be adopted later. In Section 6.2 we mention some
existing results on the subject of chance-constrained optimization, while
Section 7.1.2 gives an overview of the SAHA and KDE techniques. Section
7.2 consists in a collection six numerical examples involving the application
of KDE to chance-constrained optimization and optimal control problems.

6.1.1 The chance-constrained optimization problem

Before describing the type of chance-constrained optimization problems we
are interested in, we will give a brief overview of the history and the results
of parametric optimization.

Using example (6.1.5) as a reference, we start by considering the formal
definition of a parametric optimization problem given in [14]:min

x∈X
J(x, ξ)

G(x, ξ) ∈ G.
(6.1.6)

In the general case, X is a Banach space and the parameter ξ can be a
scalar, a vector or an element of an appropriate normed or metric space Ω.
The set G is a convex subset of a Banach space Y and G : X × Ω→ Y.

A crucial aspect of parametric optimization is the notion of stability.
It can be used to retrieve many information on the regularity of the value
function with respect to ξ, and obtain error estimates. For this reason,
we report one of the most important definitions of stability. If there exists
(x∗, ξ∗) ∈ X × Ω such that the following regularity condition is satisfied

0 ∈ int
{
G(x, ξ) +DxG(x, ξ)X − G

}
then, for all (x, ξ) in a neighborhood of (x∗, ξ∗), from [14, Proposition 3.3]
we have

d
(
x,
{
x ∈ X | G(x, ξ) ∈ G

})
= O

(
d
(
G(x, ξ),G)

)
(6.1.7)

where d(x,Y) := infy∈Y ‖x− y‖ and Dx denotes the partial derivative with
respect to x. Property (6.1.7) is called metric regularity, and it can be used
for obtaining upper estimates for the optimal value function.

The study of this category of problems can be traced back to the works
of Chebyschev on uniform approximations by algebraic polynomials, but
for an important development of the subject we have to wait until the ’60s
and ’70s, thanks to the mathematicians who worked in parallel between the
former Soviet Union (e.g. Levitin [43, 44]) and the Western school (e.g.
Danskin, Dem’yanov and Malozemov [23, 24]).
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Robust optimization

An important subject in parametric optimization is robust optimization.
This approach makes use of the worst-case analysis to treat uncertainties
in order to obtain what is called a “robust” solution, i.e. a solution whose
worst outcome is equal or better than the ones of all the other feasible
solutions. Using a variation of Wald’s maximin model (see [70]), we consider
the following mathematical formulations of a robust optimization problem.min

x∈X
max
ξ∈Ω

J(x, ξ)

G(x, ξ) ∈ G ∀ξ ∈ Ω.
(6.1.8)

This model is named after Abraham Wald, who developed it in the 1940s,
taking inspiration from similar models used in game theory. He studied
this approach while attempting to solve problems involving one agent play-
ing, figuratively, with a pessimistic attitude towards all possible outcomes.
Despite the presence of uncertain parameters, robust optimization is a de-
terministic method and it doesn’t involve probability or random variables.
That is a feature of what is called stochastic optimization, and it will be
discussed later.

In parallel with the example, we can apply the robust optimization
approach to problem (6.1.5). By defining x := u, X := U , J(x, ξ) :=
−mf(u, T ), G(x, ξ) := rf(u, T )− r̄f and G := R+, we obtain what is called a
robust optimal control problem:max

u∈U
min

T∈[T−,T+]
mf(u, T )

rf(u, T ) ≥ r̄f ∀T ∈ [T−, T+].
(6.1.9)

A solution to this system is a control strategy u∗ ∈ U that maximizes the
final mass of the launcher even for the worst realization of the parameter T ,
while satisfying the constraint on the final altitude for any T ∈ [T−, T+].

As pointed out in [10], robust optimization requires a trade-off: the price
for obtaining a solution that is feasible in every scenario often results in the
suboptimality of the value function. Moreover, there might exist problems
in which the constraint function cannot be satisfied for every realization of
the model’s parameters. In the case of our example (6.1.9), let us look at the
controlled system (6.1.4) describing the dynamics. In order for the launcher
to take off, its thrust T and initial mass m0 must satisfy the relation m0 ≤ T

g ,
otherwise the engine wouldn’t be powerful enough to lift the weight of the
rocket. If, for example, we assign to the initial mass the value 8.75 and
choose a gravitational acceleration g equal to 9.8, we have

T

g
≥ m0 ⇐⇒ T ≥ m0g = 8.75 · 9.8 = 85.75.
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This means that if T varies in the interval [T−, T+] = [80, 90], we can’t apply
the robust approach defined in (6.1.9), since there exist values of T inside
[T−, T+] for which the launcher can’t take off and thus it can’t possibly reach
the required final altitude r̄f.

One way for addressing this kind of issues is constraint relaxation: in
the general formulation (6.1.8), instead of asking the constraint G(x, ξ) ∈ G
to be satisfied for every ξ ∈ Ω, we can substitute this requirement with less
strict ones. There are many ways to relax this kind of constraints, and in
the case of optimal control problems we report the controllability approach
illustrated in [1]. Consider the parameterized control system{

ẏξ = fξ
(
yξ(t), u(t)

)
t ∈ (0, tf]

yξ(0) = y0(ξ)

where the state yξ of the system belongs to a finite-dimensional manifold
M. The set of admissible controls is

U := {u : R+ → U ⊂ Rq | u is measurable}

and ξ 7→ fξ is a family of vector fields onM parameterized by ξ ∈ Ω ⊆ Rm.
The system is said to be Lq-approximately controllable in time tf from y0(ξ)
to yf(ξ) if for every δ > 0 there exists a ξ-independent control u such that∣∣yξ(tf)− yf(ξ)

∣∣
Lq
< δ

where the function yf(ξ) is called target and |·|Lq denotes the usual Lq norm.
We refer to [1] for the requirements that guarantee this property. We also
point out that, although the authors only use the canonical Lebesgue mea-
sure, it could be worth exploring the introduction of a probability measure
on the set of parameters.

We can use problem (6.1.5) to show an application of Lq-approximate
controllability. In our case the role of the parameter ξ is covered by T and
the system’s state and initial conditions are denoted by

yT :=
(
r(t, u), v(t, u),m(t, u)

)
fT
(
yT (t), u(t)

)
:=
(
v(t, u), T

m(t, u)u(t)− g,− T
ve
u(t)

)
y0 := (0, 0,m0).

If our system is Lq-approximately controllable, we can fix δ > 0 and q > 0,
and replace the constraint in (6.1.9) with the controllability condition to
obtain 

max
u∈U

min
T∈[T−,T+]

mf(u, T )∣∣∣min
{
rf(u, T )− r̄f, 0

}∣∣∣
Lq
< δ ∀T ∈ [T−, T+].
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This means that we are willing to tolerate an error δ for the violation of the
constraint rf(u, T ) − r̄f with respect to the Lq norm. The relaxation of the
constraint allows for more control strategies u to be considered, implying
that the corresponding optimal value for the final mass is bigger than the
one we would obtain with the more strict formulation stated in (6.1.9). We
refer to [45, 62] as well as to two other Ph.D. theses [7, 61] as sources for
other approaches in the field of robust optimization in aerospace.

Chance-constrained optimization

We already mentioned that the robust approach to parametric optimization
comes with some disadvantages: it might be difficult to guarantee the ex-
istence of a solution due to the strictness of the constraint in (6.1.8), and
even in the case of a relaxation approach, it’s hard to make sure that the
problem satisfies all the required controllability hypotheses.

Chance constraints can be seen as another method for relaxing the con-
straint in (6.1.8). The basic idea is to choose a probability distribution for
the parameter ξ and treat it as a random variable. Consider the following
formulation for a chance-constrained optimization problem:min

x∈X
E
[
J(x, ξ)

]
P
[
G(x, ξ) ≥ 0

]
≥ p

(6.1.10)

where X ⊆ Rn is the admissible set for the decision variables in x, J : Rn →
R is an objective, G : Rn × Rm → R defines an inequality, p ∈ (0, 1) is
a probability threshold called confidence level and ξ is an m-dimensional
random vector defined on some probability space (Ω,A,P). The probability
distribution of ξ will be denoted by µ := P ◦ ξ−1 ∈ P(Rm), where P(Rm) is
the space of Borel probability measures on Rm.

This kind of problem has been treated at least since the fifties with the
work of Charnes, Cooper and Symonds (see [21]). A general theory, however,
is due to Prékopa in [51, 52], who also introduced the convexity theory based
on logconcavity. Other contributions on logconcavity theory in stochastic
programming can be found in [53, 54, 25].

There are many variations to the chance-constrained optimization prob-
lem. For example, when considering multiple constraints, they might be
either joint or disjoint. Let l > 1 be the number of constraints, with
Gi : Rn×Rm → R denoting the function defining the i-th constraint. In the
case of joint constraints, the problem becomesmin

x∈X
E
[
J(x, ξ)

]
P
[
Gi(x, ξ) ≥ 0 ∀i ∈ {1, 2, . . . , l}

]
≥ p

(6.1.11)

implying that all the inequalities P
[
Gi(x, ξ) ≥ 0

]
≥ p must hold with the

same confidence level p. On the other hand, disjoint chance constraints
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require a different confidence level pi ∈ (0, 1) for each inequality:min
x∈X

E
[
J(x, ξ)

]
P
[
Gi(x, ξ) ≥ 0

]
≥ pi ∀i ∈ {1, 2, . . . , l}.

Although there are many other ways of formulating a chance-constrained
optimization problem, for the purpose of our tests we are mainly interested
in two of them. The first one is a slightly simpler version of (6.1.10), in
which the cost function does not depend on the random array ξ:min

x∈X
J(x)

P
[
G(x, ξ) ≥ 0

]
≥ p.

The second formulation is the one used in the particular case of percentile
optimization, where there is only one decision variable and one constraint,
and the cost function is the decision variable itself:min

µ∈R
µ

P
[
G(ξ) ≤ µ

]
≥ p

(6.1.12)

The name comes from the fact that this problem is aimed at finding µ such
that µ is the the p-percentile of the distribution of G(ξ).

6.2 Theoretical results

There exist many results on the regularity of the constraint function and on
the error between approximated solutions of chance-constrained optimiza-
tion problems.

Two fundamental theorems regarding continuity and convexity of the
constraint function have been proven by Raik in [57] and Prékopa in [52] in
the case of multiple joint constraints. Consider problem (6.1.11) and define
the function

G(x) := P
[
Gi(x, ξ) ≥ 0 ∀i ∈ {1, 2, . . . , l}

]
.

Then the continuity theorem by Raik states the following.
Theorem 6.2.1 (Raik [57]). Assume ξ has an arbitrary distributed m-
dimensional vector.

• If, for every y, the functions Gi(·, y) are upper semicontinuous in Rn,
then G(x) is upper semicontinuous in Rn.

• If, for every y, the functions Gi(·, y) are continuous in Rn and

P
[
Gi(x, ξ) = 0 ∀i ∈ {1, 2, . . . , l}

]
= 0

then G(x) is continuous in Rn.
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For the convexity theorem, we first need to define the notions of quasi-
concavity and logconcavity.

Definition 6.2.1 (Quasi-concave function). A function f : Rn → R is said
to be quasi-concave if

f
(
λx+ (1− λ)y) ≥ min

{
f(x), f(y)

}
∀x, y ∈ Rn ∀λ ∈ (0, 1).

Definition 6.2.2 (Logconcave function). A function f : Rn → R such that
f(x) > 0 for every x ∈ Rn is said to be logarithmically concave if

f
(
λx+ (1− λ)y) ≥

(
f(x)

)λ(
f(y)

)1−λ ∀x, y ∈ Rn ∀λ ∈ (0, 1)

f(x) > 0 implies that log f(x) is a concave function in Rn.

Definition 6.2.3 (Logconcave probability measure). A probability measure
defined on the Borel sets of Rn is said to be logarithmically concave if

P
[
λA+ (1− λ)B

]
≥
(
P[A]

)λ(P[B]
)1−λ ∀ convex A,B ⊆ Rn ∀λ ∈ (0, 1)

where

λA+ (1− λ)B =
{
z = λx+ (1− λ)y | x ∈ A, y ∈ B

}
.

With these definitions, we can now state Prékopa’s theorem.

Theorem 6.2.2 (Prékopa [52]). If Gi(x, y) is a quasi-concave function of
the variables x ∈ Rn and y ∈ Rm for every i, and ξ ∈ Rm is a random
variable that has a logconcave probability distribution, then the function
G(x) := P

[
G(x, ξ) ≥ 0

]
is a logconcave function in Rn.

In [68] the authors prove that, if the random array ξ has a Gaussian
distribution, it is possible to obtain a gradient formula for the nonlinear
probabilistic constraint G(x). This is a valuable result because, even though
obtaining gradient formulas in the case of linear constraints is relatively
easy, doing the same in the nonlinear case is a much more difficult task. A
representation formula for the gradient of G(x) opens the path to many so-
lution approaches which utilize the information provided by the derivatives.
Moreover, obtaining the gradient of the chance constraint is a crucial step
towards establishing first order necessary conditions for optimality. Earlier
results on the subject of probability functions derivatives can be found in
[67] and [47].

Going back to the the convexity of the constraint function, a stronger
version of Theorem 6.2.2 has been obtained by Henrion and Strugarek in
the particular case where the variables x are separated from the random
variables ξ: min

x∈X
J(x)

P
[
ξ ≤ G(x)

]
≥ p

(6.2.1)
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where the function G : Rn×Rm → Rm is vector-valued and the operator “≤”
represents the element-wise inequality between the m-dimensional arrays ξ
and G(x).

In order to state the theorem, we first need to give the definitions of
r-concave and r-decreasing functions.

Definition 6.2.4 (r-concave function). A function f : Rn → R is said to
be r-concave for some r ∈ R if

f
(
λx+ (1− λ)y

)
≥
(
λ
(
f(x)

)r + (1− λ)
(
f(y)

)r) 1
r ∀x, y ∈ Rn ∀λ ∈ (0, 1).

Definition 6.2.5 (r-decreasing function). A function f : R→ R is said to
be r-decreasing for some r ∈ R if it is continuous on (0,+∞) and if there
exists some x∗ > 0 such that the function xrf(x) is strictly decreasing for
all x > x∗.

The convexity theorem can now be stated.

Theorem 6.2.3 (Henrion and Strugarek [34]). Consider problem (6.2.1).
Suppose that, for every i in the set {1, 2, . . . ,m}, the following hypotheses
are satisfied:

i) there exists ri > 0 such that the component Gi of G is (−ri)-concave;

ii) the component ξi of ξ is independently distributed from the others, with
(ri + 1)-decreasing density fi.

Then there exists p∗ ∈ [0, 1] such that the set{
x ∈ Rn | P

[
ξ ≤ G(x)

]
≥ p

}
is convex for all p > p∗, where p∗ := maxi∈{1,2,...,m} Fi(x∗i ), Fi denotes the
distribution function of ξi and x∗i as in Definition 6.2.4.

Another important result in the framework of problem (6.2.1) involves
the stability of the solution, and it is due to Henrion and Römisch. Let us
suppose that we only have partial information on the probability measure
µ and that we replace it with some estimation ν ∈ P(Rm). We then define
the following functions

ψ(ν) := arg min
x∈X

{
J(x) | Fν

(
G(x)

)
≥ p

}
φ(ν) := inf

x∈X

{
J(x) | Fν

(
G(x)

)
≥ p

}
where Fν(y) := ν(z ∈ Rm | z ≤ y) is the distribution function of the
probability measure ν. We point out that, in general, the solutions of (6.2.1)
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are not unique under the assumptions that will be later stated in Theorem
6.2.4. Because of this, in the definition of ψ and φ we have to deal with
solution sets. The distances among parameters and solutions are measured
respectively with the Kolmogorov and Hausdorff metrics:

dK(ν1, ν2) := sup
y∈Rm

∣∣Fν1(y)− Fν1(y)
∣∣ ν1, ν2 ∈ P(Rm)

dH(A,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

A,B ⊆ Rm.

Before stating the theorem we have to extend the definition of r-concavity
to a probability measure.

Definition 6.2.6 (r-concavity). The probability measure µ is said to be r-
concave if µr is a convex set function, i.e. for any λ ∈ (0, 1) and all Borel
measurable and convex sets A,B ∈ Rm such that λA + (1 − λ)B is Borel
measurable the following inequality holds

µr
(
λA+ (1− λ)B

)
≤ λµr(A) + (1− λ)µr(B).

Moreover, we define

YV :=
[
G(X ∩ V ) + Rm−

]
∩ F−1

µ

([
p

2 , 1
])

π(y) := inf
x∈X∩V

{
J(x) | G(x) ≥ y

}
σ(y) := arg min

x∈X∩V

{
J(x) | G(x) ≥ y

}
y ∈ YV

Y (ν) := arg min
y∈YV

{
π(y) | Fν(y) ≥ p

}
ν ∈ P(Rm).

Theorem 6.2.4 (Henrion and Römisch [33]). Assume that X is closed, J
and X are convex, G has concave components and the following holds:

• µ is r-concave;

• ψ(µ) is nonempty and bounded;

• there exists some x̂ ∈ X such that Fµ
(
G(x̂)

)
> p;

• F rµ is strongly convex on some convex open neighborhood U of Y (µ),
where r < 0 is chosen such that µ is r-concave;

• σ is Hausdorff Hölder continuous with rate κ−1 on YV .

Then ψ is Hausdorff Hölder continuous with rate (2κ)−1 at µ, i.e. there are
L > 0 and δ > 0 such that

dH
(
ψ(µ), ψ(ν)

)
≤ L

(
dK(µ, ν)

) 1
2κ ∀ν ∈ P(Rm) | dK(µ, ν) < δ.
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Chapter 7

Approximation of
chance-constrained problems

7.1 Numerical approaches

The most intuitive methods for solving a problem in the form of (6.1.10)
belong to the class of Monte Carlo methods. An algorithm of this type
consists in repeatedly sampling variables and parameters of a problem in
order to obtain numerical results, treating them as random quantities. This
kind of approach might be very useful in the case of problems involving a
high number of dimensions, many degrees of freedom or unknown probability
distributions.

The first modern definition of the Monte Carlo method was developed in
the late ’40s by Stan Ulam. Shortly after, John von Neumann understood
the importance of the technique and implemented it for the first electronic
computer: the ENIAC [48]. During the following years, the popularity of
the Monte Carlo method grew in parallel with the increasing power of com-
puters.

The general procedure of a method belonging to the Monte Carlo class
consists in performing the following steps:

1. Define the inputs of the problem as well as their domain.

2. Choose a probability distribution for the inputs and generate random
input values over the domain.

3. Elaborate the results using a deterministic mathematical model.

The mathematical theory supporting these methods depends on the par-
ticular type chosen, but the main result on which the whole Monte Carlo
methods’ class lays foundation is the Strong Law of Large Numbers.

Theorem 7.1.1 (Strong Law of Large Numbers). Let X1, X2, . . . , Xn be a
sequence of independent identically distributed random variables, each one
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with finite average µ = E[Xi] for every i ∈ {1, 2, . . . , n}, then

P
[

lim
n→+∞

∑n
i=1Xi

n
= µ

]
= 1.

A simple proof for this result can be found in [58]. This theorem can be
applied for estimating the probability of a random variable via a sequence
of samples, and we will use this application later on for the verification of
the numerical tests. Let E be a given event, relative to a single realization
of a random variable X. By choosing a number n ∈ N of tries and defining
for every i ∈ {1, 2, . . . , n}

Xi =
{

1 E realizes at the i-th try
0 else

we can apply Theorem 7.1 to obtain

P
[

lim
n→+∞

∑n
i=1Xi

n
= E[X] = P[E]

]
= 1.

There are many advantages to Monte Carlo methods: they are usu-
ally easy to implement and can be parallelized if the random variables to
be sampled are independent. Moreover, given the wide variety of existing
Monte Carlo methods, it is not difficult to find an implementation specifi-
cally designed for a particular field: from physics to statistics, from biology
to finance, as well as engineering and Artificial Intelligence.

The rest of this section is dedicated to the description of two tech-
niques for the numerical solution of chance-constrained optimization prob-
lems which take inspiration from the Monte Carlo-type approach: The
Stochastic Arrow-Hurwicz Algorithm and the Kernel Density Estimation.

7.1.1 Stochastic Arrow-Hurwicz Algorithm

The stochastic Stochastic Arrow-Hurwicz Algorithm (SAHA) is designed to
solve an optimization problem in the formmin

x∈X
E
[
K(x, ξ)

]
E
[
H(x, ξ)

]
≤ α.

(7.1.1)

The constraint in expectation can be rewritten explicitly as a chance con-
straint by defining the function G as

H(x, ξ) := −1R+(G(x, ξ)) =
{
−1 G(x, ξ) ≥ 0
0 else

to obtain
E
[
H(x, ξ)

]
= −P

[
G(x, ξ) ≥ 0

]
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then, by setting α := −p we have

E
[
H(x, ξ)

]
≤ α⇔ P

[
G(x, ξ) ≥ 0

]
≥ p.

To cite a successful implementation of the SAHA in aerospace, in [18] the
authors solve the problem of minimizing fuel consumption while driving a
satellite to its final position with a certain probability threshold, considering
that the engine may fail at a random instant for a random amount of time.

This algorithm arises from the combination of the Monte Carlo method’s
idea with the iterative gradient method. In the case of a deterministic
constrained optimization problem in the formmin

x∈X
K(x)

H(x) ≤ α

if there exists a saddle point for the Lagrangian

L(x, λ) = K(x) + 〈λ,H(x)− α〉

the deterministic Arrow-Hurwicz Algorithm consists in iterating the follow-
ing steps: let xk and λk be the estimates for the primal and dual variable
at iteration k, then define

xk+1 := ΠX
(
xk − εk

(
∇xK(xk) + λk∇xH(xk)

))
λk+1 := ΠR+

(
λk + ρk

(
H(xk+1)− α

))
where the sequences {εk} and {ρk} affect the length of the each approxima-
tion step and ΠA denotes the projection onto the set A.

With the introduction of the random variable ξ the stochastic version of
this algorithm takes the form

1. draw ξk+1 according to the distribution law of ξ

2. update xk and λk:

xk+1 := ΠX
(
xk − εk

(
∇xK(xk, ξk+1) + λk∇xH(xk, ξk+1)

))
(7.1.2)

λk+1 := ΠRm+

(
λk + ρk

(
H(xk+1, ξk+1)− α

))
. (7.1.3)

Culioli and Cohen proved the following convergence theorem in the general
case where the functions K and H might not be differentiable in the classic
sense.

Theorem 7.1.2 (Culioli and Cohen [22]). In addition to general measur-
ability assumptions, we suppose that the associated lagrangian L admits a
saddle point (x̃, λ̃), and that
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i) E
[
K(x, ξ)

]
is strictly convex on X and, for every ξ ∈ Ω ,K(x, ξ) is

locally Lipschitz on X .

ii) For all ξ ∈ Ω, H(x, ξ) is locally Lipschitz on X and regularly subdiffer-
entiable, with subgradient with respect to x uniformly bounded. We also
assume that it is sub-Lipschitz, i.e. for every ξ ∈ Ω∥∥H(x, ξ)−H(y, ξ)

∥∥ ≤ LH‖x− y‖+ µH ∀x, y ∈ X

and that E
[
H(x, ξ)

]
is C-convex and Lipschitz.

iii) There exist positive constants αK and βK such that, for every ξ ∈ Ω
and r ∈ ∂xK(x, ξ)

‖r‖ ≤ αK‖x− x̃‖+ βK ∀x ∈ X

where ∂xK denotes the Clarke subdifferential of K with respect to x.

iv) The sequences {εn}n∈N and {ρn}n∈N are σ-sequences, i.e.

+∞∑
n=0

εn = +∞ and
+∞∑
n=0

(εn)2 < +∞

+∞∑
n=0

ρn = +∞ and
+∞∑
n=0

(ρn)2 < +∞

and the sequence
{
εn
ρn

}
n∈N

is monotone.

v) there exist positive constants γH and δH such that

E
[(
H(x, ξ)− E

[
H(x, ξ)

])2]
< γH‖x− x̃‖2 + δH ∀x ∈ X .

Then, almost surely, the sequence
{
(xn, λn)

}
n∈N is bounded and {xn}n∈N

weakly converges to x̃. Moreover, if E
[
K(x, ξ)

]
is strongly convex, then the

sequence {xn}n∈N strongly converges to x̃.

As for the convergence rate, the general result in [41, Theorem 3.1] can
be applied to the case of the SAHA to obtain an upper bound for the Asymp-
totic Mean Squared Error (AMSE). In order to state the result, we first need
to rewrite algorithm (7.1.2) in the following compact form

zk+1 = Π
(
zk − wk · ψ(zk, ξk+1)ᵀ

)
where zk := (xk, λk), wk := (εk, ρk),

ψ(zk, ξk+1) :=
(
∇xK(xk, ξk+1) + λk∇xH(xk, ξk+1), H(xk+1, ξk+1)− α

)
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and Π stands for the projection operation on X × Rm+ . Then we choose
γ > 0, set εk = 1

kγ , ρk proportional to εk and define

Ψ(z̃) :=
(
∇xE

[
K(x, ξ)

]
+ λ∇xE

[
H(x, ξ)],E

[
H(x, ξ)]− α

)
Bk := E

[
ψ(zk, ξ)

]
−Ψ(zk)

Vk := E
[∥∥∥ψ(zk, ξ)− E

[
ψ(zk, ξ)

]∥∥∥2]
.

Finally, we choose β > 0 and δ > 0 such that Bk = O
(

1
kβ

)
and Vk = O

(
1
kδ

)
,

and obtain
AMSE(zk)E

[
(zk − z̃)2] ≤ O(k−min{2β,γ+δ}).

This result shows that the higher min{2β, γ + δ} is, the faster the sequence
{zk}n∈N converges to z̃ := (x̃, λ̃).

Unfortunately this algorithm has also some disadvantages. In the par-
ticular case of chance-constrained optimization problems, the convexity and
the connectedness of the feasible subset defined by H are not easily satis-
fied, this implies that the existence of a saddle point of the Lagrangian is
not granted. The reformulation of the probability constraint as a constraint
in expectation is not harmless either: defining H by means of a character-
istic function introduces a discontinuity that must be carefully regularized
in order to evaluate ∇xH. See [2] for a more detailed explanation of the
above-mentioned difficulties.

7.1.2 Kernel Density Estimation

Another approach for solving the chance-constrained problem numerically is
based on Kernel Density Estimation, a particular kind of density estimation
used in statistics. This technique consists in approximating the probability
density function (pdf) of a random variable with unknown distribution from
a given sample. This technique has also been applied to many other fields
like archaeology, banking, climatology, economics, genetics, hydrology and
physiology (see [65] for more references). Silverman’s book [66] represents
the basic text on the subject.

In the case of problem (6.1.10), if we are able to produce an approxima-
tion of the pdf defining the chance constraint, we can replace the probability
with the integral of the estimated pdf and solve the stochastic optimization
problem as a deterministic one. For a given x in X , let fx and f̂x be re-
spectively the pdf of G(x, ξ) and its approximation. From basic probability
theory, we have

P
[
G(x, ξ) ≥ 0

]
= 1− P

[
G(x, ξ) < 0

]
= 1−

∫ 0

−∞
fx(z)dz
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if fx and f̂x are “close” in some appropriate sense, we obtain∫ 0

−∞
f̂x(z)dz ≈

∫ 0

−∞
fx(z)dz = 1− P

[
G(x, ξ) ≥ 0

]
.

By defining F̂x(y) :=
∫ y
−∞ f̂x(z)dz we can write an approximation of problem

(6.1.10) in the form min
x∈X

J(x)

F̂x(0) ≤ 1− p.
(7.1.4)

Let x∗ and x̂∗ be respectively the solutions of problems (6.1.10) and (7.1.4),
if we can control the error between x∗ and x̂∗ by means of the error between
f̂x and fx, we could be able to produce an approximate solution to our
original problem which can be as accurate as we need. Let X be a random
variable with an unknown distribution f that we want to estimate and let
{X1, X2, . . . , Xn} be a sample of size n from the variable X. A Kernel
Density Estimator for the pdf f is the function

f̂n,h(x) := 1
nh

n∑
i=1

K

(
x−Xi

h

)
(7.1.5)

where the function K is called kernel and the smoothing parameter h is
called bandwidth. A fundamental result has been obtained by Nadaraya:

Theorem 7.1.3 (Nadaraya [49]). If the kernel K : R→ R+ is a function of
bounded variation, f : R → R+ is a uniformly continuous density function,
and if h satisfies

+∞∑
n=1

e−γnh
2
< +∞ ∀γ > 0

then
P
[

lim
n→+∞

sup
x

∣∣f̂n,h(x)− f(x)
∣∣ = 0

]
= 1.

The approximation error between f and f̂n,h depends on the choice of
both K and h. The kernel K is generally chosen such that it satisfies the
conditions∫

K(y)dy = 1 and
∫
yK(y)dy = 0 and

∫
y2K(y)dy > 0

in most applications the study is focused on the choice of h and K is usually
the Gaussian kernel:

K(x) := 1√
2π
e−

x2
2 .

If the unknown density is sufficiently smooth and the kernel has a finite
fourth moment (which is true for of the Gaussian kernel) we can use Taylor
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expansions to show that

Bias
[
f̂n,h(x)

]
= h2

2

∫
y2K(y)dyf ′′(x) + o(h2)

Var
[
f̂n,h(x)

]
= 1
nh

∫
K2(y)dyf(x) + o

( 1
nh

)
where Bias

[
f̂(x)

]
and Var

[
f̂(x)

]
denote the estimator bias and variance re-

spectively. With these definitions we can use the Mean Integrated Squared
Error (MISE) as a measure of the discrepancy between f̂ and f :

MISE
[
f̂(x)

]
:= E

[∫ (
f̂n,h(x)− f(x)

)2
dx

]
=

=
∫

Bias2[f̂n,h(y)
]
dy +

∫
Var

[
f̂n,h(y)

]
dy.

Under integrability assumptions on f (see [65]), the MISE becomes the
Asymptotic Mean Integrated Squared Error (AMISE):

AMISE
[
f̂n,h(x)

]
:= 1

nh

∫
K2(y)dy + h4

4

(∫
y2K(y)dy

)2 ∫
f ′′

2(y)dy

which leads to the following optimal choice for the bandwidth h

hAMISE := 5

√ ∫
K2(y)dy

n (
∫
y2K(y)dy)2 ∫ f ′′2(y)dy

. (7.1.6)

Unfortunately, the presence of the unknown factor
∫
f ′′2(y)dy in the previ-

ous definition makes the expression of hAMISE almost useless. For this reason
there exist many practical ways (see [65]) for choosing the bandwidth using
only informations on the sample. A common choice for h, used in conjunc-
tion with the Gaussian kernel, is the Simple Normal Reference (SNR): let S
be the sample standard deviation, the SNR bandwidth is then defined as

hSNR := 1.06 S
5
√
n
. (7.1.7)

Even though there’s no general rule for obtaining an explicit value of h
leading to the best approximation of f , it’s important to point out that big
values of h will probably lead to an overestimation of the volume of the
density function and thus to a loss of information.

7.2 Numerical results

This section is dedicated to some numerical applications of the Stochastic
Arrow-Hurwicz Algorithm and the Kernel Density Estimation. Before show-
ing the results we will explain how they are obtained from a coding point
of view, describing the solvers used and their interface with programming
languages.
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7.2.1 Nonlinear optimization solvers

Most of the time, whenever we need to numerically compute a solution to
an optimization problem, we have to write a code interface using a spe-
cific programming or scripting language (e.g. C, C++, Fortran, MATLAB,
AMPL,. . . ). The purpose of this interface is to translate our problem’s
abstract formulation into one accepted by one of the available solvers for
nonlinear optimization (e.g. IPOPT, WORHP, KNITRO,. . . ).

The results in this section have been obtained using Fortran 90 to write
the code interface and both WORHP and IPOPT as solvers. These two
solvers are designed to handle finite dimensional nonlinear optimization
problem in the form 

min
X∈RN

F (X)

XL ≤ X ≤ XU

GL ≤ G(X) ≤ GU

(7.2.1)

where N ∈ N is the number of decision (or optimization) variables, which are
collected in the array X := (X1, X2, . . . , XN ); the function F (X) : RN → R
represents the cost to be minimized; G(X) : RN → RM is the constraint
function, with M ∈ N being the number of constraints to be satisfied. The
arrays XL, XU ∈ RN and GL, GU ∈ RM define respectively the lower and
upper bounds for X and G. In addition to this, the user must provide
an initial guess X0 for the solution of (7.2.1), while the derivatives of F
and G are optional since they can be usually approximated by the solvers
themselves.

WORHP (We Optimize Really Huge Problems) implements a Sequential
Quadratic Programming (SQP) method which is based on a descent method
with line search. For more details on this algorithm, consult the User’s Guide
to WORHP available at www.worhp.de.

IPOPT (Interior Point OPTimizer) instead, implements, as the name
suggests, an interior point line search filter method. We refer to Introduction
to IPOPT: A tutorial for downloading, installing, and using IPOPT (avail-
able at https://projects.coin-or.org/Ipopt) for a step-by-step guide
for interfacing the solver with several programming languages, and to [69]
for a detailed analysis of the mathematical background.

7.2.2 Test 1: Simple single stage launcher with one decision
variable and one random variable

The first numerical test involves a very simple chance constrained optimiza-
tion problem in the domain of aerospace engineering. Consider the vertical
ascent of a single stage launcher (i.e. consisting in one continuous structure
with no detachable parts) in one dimension. At a given time t, we only mea-
sure the position of the launcher by means of its altitude r(t) and represent
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its speed with a scalar value v(t). The vehicle starts from a still position at
ground level, and at time t = 0 the thrust force T of the engine pushes the
launcher upwards against the force of gravity m(t)g, where m(t) denotes the
mass of the launcher at time t. The rate at witch the mass is consumed is
the ratio between thrust force T and the fuel speed ve (which are assumed
to be constant over time).

We can act on the dynamics only by changing the initial mass m0, mean-
ing that we only have one decision variable. We are interested in studying
the case where the parameter T is a random variable, i.e. the value of T
is unknown at t = 0 and it changes randomly for each launch. Our goal is
then to minimize the initial mass of the launcher while guaranteeing some
constraints to be satisfied even if T is subject to random variations: an
equality constraint on the launcher’s final position (its final position has to
match exactly the value we need) and a chance constraint on its final mass
(the final mass has to surpass a given threshold mu with a probability of at
least p).

A solution to this problem consists in an optimal value m∗0 which is
the smallest amount of mass that allows the launcher to satisfy the chance
constraint. This means that if (for a given realization of T ) we define a
launch to be successful when the final mass is higher than mu, we expect
that over a large number of launches with initial mass m∗0, the ratio between
successful launches and total attempts is close to p. In this case m∗0 can
be considered a “relaxed” robust solution to our constrained optimization
problem, in the sense that it works in presence of variations in the parameters
defining the problem while still allowing some margin of error.

Model

The ODE system describing the dynamics is



ṙ(t) = v(t)
v̇(t) = T

m(t) − g
ṁ(t) = − T

ve

r(0) = 0
v(0) = 0
m(0) = m0 <

T
g .

The last inequality makes sure that the launcher his not too heavy or, equiv-
alently, that the engine is powerful enough to overcome the force of gravity.
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The system can be solved explicitly:

r(t) =
(
vet−

v2
em(0)
T

)
ln
(
m(0)
m(t)

)
+ vet−

g

2 t
2

v(t) = ve ln
(
m(0)
m(t)

)
− gt

m(t) = m0 −
T

ve
t.

Before defining our stochastic optimization problem, let us first look at the
solution to its deterministic counterpart:min

m0∈R
m0

Mu(m0) ≥ mu.
(7.2.2)

The constraint function is defined as

Mu(m0) := m0 − (1 + k)me(m0).

In the previous formula, the parameter k is called stage index and it repre-
sents the ratio between the structure’s mass and the fuel mass me(m0) :=
T
ve
tf(m0). For a given m0, the final time tf(m0) is the smallest time that

satisfies the energy constraint on the final orbit:

tf(m0) := min
{
t ∈ [0,+∞) s.t. r(t) + v2(t)

2g = ωf

}
.

Note that, being r(t) + v2(t)
2g an increasing monotone function of time (see

figure 7.2.1, bottom right), the previous formula can be reduced to the
solution of the equation r(t) + v2(t)

2g = ωf. Since this equation cannot be
solved explicitly, its solution will be computed numerically with a standard
bisection method. Using the values in Table 7.2.1, we compute the set of

Parameter T k ve g ωf mu
Value 150 [N] 0.1 5 [m/s] 9.8 [m/s2] 0.5 [m] 0.5 [kg]

Table 7.2.1: Parameters for the deterministic optimization

values for m0 satisfying the inequalities 0 < m0 <
T
g and obtain that the

interval of admissible values for the initial mass is (0,≈ 15, 3001).
We can solve this problem using a nonlinear optimization solver, as long

as we rewrite it in the form (7.2.1). The optimal solution found by WORHP
is

m∗0 ≈ 1.04709 [kg].

Figures 7.2.1 show the corresponding optimal trajectory.
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Figure 7.2.1: Plot of altitude, speed, mass and constraint for the single-stage
launcher.

Problem statement

Since we want to deliver a given payload mu with a 90% probability while
minimizing the initial total mass of the launcher (and thus the fuel mass),
we define the stochastic optimization problemmin

m0∈R
m0

P
[
Mu(T,m0) ≥ mu

]
≥ p

(7.2.3)

where T is a uniformly distributed random variable on the interval [T−, T+]
with expected value T :

T ∼ U(T−, T+).

Here T− := T (1 − ∆T ), T+ := T (1 + ∆T ). The pdf (probability density
function) of T is

φ(x) :=

 1
T+−T− x ∈ [T−, T+]
0 else.

Mu(T,m0) is a function of the random variable T , parameterized by m0:

Mu(T,m0) := m0 − (1 + k)me(T,m0).

Table 7.2.2 shows the choice of parameters defined in this subsection. Figure
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Parameter p T ∆T
Value 0.9 150 [N] 0.1

Table 7.2.2: Additional parameters for the stochastic optimization

7.2.2 shows the plot of Mu(T,m0) as a function of m0 for T = T . We
can observe that there is a critical value for the initial mass m0 (≈ 15.3)
above which it’s impossible to satisfy the constraint on the final altitude
because the launcher is too heavy (therefore tf(m0) = +∞), implying that
the payload delivered is zero. It is also interesting to remark how the payload
mass is not a monotone increasing function of m0 but it actually has a
maximum.
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Figure 7.2.2: Plot of the payload as a function of m0.

Solution via Stochastic Arrow-Hurwicz Algorithm

In order to apply the SAHA we have to rewrite problem (7.2.3) in the form
(7.1.1). The only decision variable is x := m0, while X := R+ is the set of
admissible solutions. The cost functional then becomes F (x, ξ) := m0 = x,
since it doesn’t depend on ξ := T , the only random variable. We also define
the function G as

G(x, ξ) := −1R+
(
Mu(ξ, x)−mu

)
=
{
−1 Mu(ξ, x) ≥ mu

0 else

and we obtain

E
[
G(x, ξ)

]
≤ α⇔ P

[
Mu(ξ, x) ≥ mu

]
≥ p

108



7.2. Numerical results

where α := −p. Following [18], the sequences {εk} and {ρk} are defined as

εk := aε
bε + k

ρk := aρ
bρ + k

and also set aρ := 2aε and bρ := bε to ensure that hypotheses iv) of Theorem
7.1.2 are satisfied. Along the same lines of [18], the indicator function defin-
ing the constraint in expectation has been replaced by a smoother version
which depends on a parameter r:

1R+(x) ≈ Ir(x) :=


1 x ≥ 0(
1−

(
x
r

)2)2
−r ≤ x ≤ 0

0 else.

In our case, we choose r to be dependent on k, so that as k increases, rk
tends to zero:

rk := ar
br + k

.

It should be noted that there are many other ways to approximate the
expectation of an indicator function. A more detailed analysis of this ap-
proach can be found in [50, 29].

Results

We solved the problem with different initializations for x0, which is the initial
guess for the solution. The optimal solution m∗0 is defined as the last value
of the sequence {xk} after 105 iterations. Table 7.2.3 summarizes the choice
of parameters for the algorithm. The tuning of these parameters is quite
difficult and unfortunately it has to be done heuristically since it depends
heavily on the particular formulation of the problem and there’s no general
rule for choosing them.

Parameter λ0 aε bε aρ bρ ar br
Value 0.005 0.5 1000 1 1000 100 1000

Table 7.2.3: Parameters for the SAHA

We will check each solution by applying Theorem 7.1: for each n, we will
call m∗0 the optimal solution found and then draw a large random sample
Na from T . Let Ns be the number of times that the event Mu(T,m∗0) ≥ mu
occurs. The Strong Law of Large Numbers states that, with probability 1

lim
Ns→+∞

Ns
Na

= P[Mu(T,m∗0) ≥ mu].

Table 7.2.4 and Figure 7.2.3 show the comparison between the five different
cases.
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x0 m∗0 [kg] R

4 1.6926921752 1.0000
3.5 1.1926921752 1.0000
3 1.0495447154 0.9506

2.5 1.0486332974 0.7931
2 1.0486458316 0.7955

1.5 1.0486458316 0.7955
1 0.0000000000 0.0000

0.5 0.0000000000 0.0000

Table 7.2.4: Optimal solution m∗0 and success rate R for each choice of x0.

Solution via Kernel Density Estimation

In order to use the KDE we have to reformulate the chance constraint show-
ing its dependency on the CDF F of random variable Mu. Let fm0 be the
pdf of Mu, parameterized by m0. From the definition of fm0 we have

P
[
Mu(T,m0) ≥ mu

]
= 1− P

[
Mu(T,m0) < mu

]
= 1−

∫ mu

0
fm0(x)dx.

Then, if we define

Fm0(mu) :=
∫ mu

0
fm0(x)dx

we can rewrite problem 3.1.1 asmin
m0∈R

m0

Fm0(mu) ≤ 1− p.
(7.2.4)

For each value of m0 we are able to produce an approximation F̂m0 of Fm0

via KDE by drawing a sample of size n from the random variable T . Our
problem then becomes min

m0∈R
m0

F̂m0(mu) ≤ 1− p.
(7.2.5)

The procedure used for solving problem (7.2.5) is described in the following
steps.

1. Draw the sample
We can either take n equidistant values for T in the interval [T−, T+]
such that

Ti = T− + (i− 1)T+ − T−
n− 1 ∀i ∈ 1, . . . , n
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Figure 7.2.3: Plot of the sequence xk for each choice of x0.

or draw n random realizations from the variable T according to its
distribution law. While the first approach clearly leads to more accu-
rate results, it may be computationally demanding when the number
of random parameters grows.

2. Define the constraint function
Instruct the solver on how to associate an initial mass m0 to the con-
straint function F̂m0 .

(a) For each Ti in {T1, T2, . . . , Tn} solve the equation r(tf)+ v2(tf)
2g = ωf

and define the elements of the sample X(m0) of Mu as Xi(m0) :=
Mu(Ti,m0).

(b) Build the KDE for the pdf of Mu using the SNR method (see
7.1.7) for computing the bandwidth.

f̂m0(x) := 1
nh

n∑
i=1

1√
2π
e
− 1

2

(
x−Xi(m0)

h

)2

.

(c) Compute F̂m0 as

F̂m0(mu) :=
∫ mu

0
f̂m0(x)dx.
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For this example and all the others we will treat, the integral of the
approximated density function is obtained numerically by using the
composite Simpson’s rule. Given an interval [a, b], the integral of the
function f is computed by dividing [a, b] into an even number N of
sub-intervals (in our case N = 2000) and applying the formula

∫ b

a
f(x)dx ≈ 1

3
b− a
N

f(a) + 2
N
2 −1∑
i=1

f(x2i) + 4
N
2∑
i=1

f(x2i−1) + f(b)


where

xi := a+ b− a
N

i ∀i ∈ {0, 1, . . . , N − 1}.

We decided to use Simpson’s rule for this method because it is a good
balance between ease of code implementation and precision, since the
error of this quadrature formula is bounded by(

b− a
N

)4
(b− a) max

x∈[a,b]

∣∣f (4)(x)
∣∣.

Details and results on this formula can be found in [71].
The performances of the solver can be improved by discretizing an in-
terval where the decision variable belongs (e.g. [0,≈ 15.3], in this case)
and store the values of the constraint function at the corresponding
nodes prior to solving the problem. This way, each time the solver
needs to evaluate the constraint function, it can interpolate it from
the previously saved values instead of having to compute them.

3. Solve the problem
Now that the solver knows how to compute the approximation F̂m0

of Fm0 , we can solve problem (7.2.5) as a standard deterministic opti-
mization problem by using WORHP as described in Subsection 7.2.1
with an initial guess equal to the solution of the deterministic problem.

Results

Constraint function Before solving problem (7.2.5), we want to check
the regularity of F̂m0(mu) as a function of m0. Figure 7.2.4 shows F̂m0(mu)
evaluated at several values of m0 for a sample of size n = 500. We can
see that the set

{
m0

∣∣ F̂m0(mu) < 1− p
}

is connected, meaning that we
can expect the optimal solution to coincide with the left endpoint of the
corresponding interval. The plot above seems to show that the constraint
function is discontinuous at ≈ 1.04, but if we plot it only inside a small
neighborhood of 1.04 we can see that it is not discontinuous but just very
steep.
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Figure 7.2.4: Approximation of P
[
Mu(T,m0) ≥ mu

]
as a function of m0 for

n = 500 (left). Zoom on the apparent discontinuity (right).

Convergence of approximated solutions Now that we have some in-
formation on where to find the optimal solution for a given n, we will solve
problem (7.2.5) with WORHP for n ∈ {10, 20, . . . , 500}.

Figure 7.2.5 shows the behavior of the sequence of optimal solutions
m∗0 for all the considered values of n and the corresponding rate of success
R := Ns

Na
computed a posteriori with Na = 105. In figure 7.2.6 it can be seen
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Figure 7.2.5: Plot of m∗0 and R as functions of n with a deterministic uniform
sample from T .

instead how the results change if T is sampled randomly from its distribution
instead of being sampled with uniform equidistant steps in its interval. Due
to the random nature of the results of this kind of test, we show the results
of ten simulations. Figure 7.2.7 contains the plots of the average values
and variance of the ten simulations showed in figure 7.2.6. As expected, a
smaller size of the sample X corresponds to a worse approximation of the
chance constraint we want to satisfy. In this particular case the probability
of success is over-estimated, leading to an increase of the optimal value for
the initial mass m0 due to the fact that the constraint the solver tries to
satisfy is actually tighter.
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Figure 7.2.6: Plot of m∗0 and R as functions of n with a random sample from
T (ten simulations).

For example, for n = 500 the optimal solution

m∗0 ≈ 1.04928 [kg].

allows us to deliver the payload with a success rate R ≈ 90, 73% even if the
maximum thrust T of the engine is subject to random uniform oscillations.
Figure 7.2.8 show the corresponding plots.

Comparison with best/worst case scenario Table 7.2.5 compares the
solution we just found for the stochastic optimization problem to the two
solutions we obtain from the deterministic one if T is fixed at the values
(1 + ∆T )T and (1−∆T )T .

Case T m∗0 [kg]
Random ∼ U(T−, T+) 1.04928
Best T+ 1.04488
Worst T− 1.04984

Table 7.2.5: Result comparison for extremal values of T .

We observe that the optimal mass of the stochastic problem is smaller
than the one obtained in the worst deterministic case but bigger than the
one of the best case.

Consistency An interesting comparison is the one between the solution
of the deterministic problem (7.2.2) and its stochastic counterpart (7.2.3)
when p and ∆T are respectively closer 1 and 0. We expect the two solutions
to be similar, since we reduce the uncertainty on the random parameter
and request the constraint on the payload to be satisfied with a higher
probability.
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Figure 7.2.7: Plot of the average value and variance of m∗0 and R as functions
of n with a random sample from T .

Table 7.2.2 shows that, for a high value of p, the optimal cost decreases
with ∆T , suggesting that the solution we obtain from the stochastic op-
timization is consistent with the deterministic one. Unfortunately though,
this method doesn’t allow arbitrarily small values of ∆T . As reported in the
table, when we don’t provide enough variation to the sample, the success
rate doesn’t match the chosen probability. This is likely due to two issues
related to the sample variance (see (7.1.7)), and therefore to ∆T . First,
if ∆T is too small, the Gaussian distributions summed in (7.1.5) tend to
superimpose over the same points and not spread on the real axis. This
adds probability mass outside the domain of the distribution to be esti-
mated. A negligible manifestation of this symptom can be observed even
with ∆T = 0.1 (see Figure 7.2.8, notice the white space beneath the red
graph on the left and right sides of the vertical sample lines). Second, be-
cause the bandwidth depends on the sample variance (which itself depends
on ∆T ), the accuracy of the estimator might decrease if h is too small, as h
appears as a denominator in (7.1.5).

SAHA vs. KDE

From the results in this section we can conclude that in this case the KDE
performs much better than the SAHA. In this first example, the KDE is
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Figure 7.2.8: Plot of the Kernel Density Estimator f̂ of Mu(T,m∗0) and its
integral F̂ .

able to provide an approximated solution to problem (7.2.3) with a rate of
success which is very close to the desired one (≈ 90.73%), while the best
result provided by the SAHA (≈ 95.06%), although feasible in terms of the
satisfaction of the chance constraint, is still far from the 90% goal.

The accuracy of the probability constraint’s satisfaction is not the only
reason behind our preference of KDE over SAHA. The main issue with
the application of the SAHA lies in the need of rewriting the constraint in
expectation as a chance constraint, introducing irregularities in the model.
Because this algorithm is designed to solve problems in the form (7.1.1), the
required hypotheses supporting convergence might not be satisfied when
defining the probability constraint by using the indicator function. Another
drawback is the initialization: Table 7.2.4 shows how sensitive this algorithm
is to the initial guess for approximated solution x0, to the point that even
initializing it with the solution of the deterministic counterpart (7.2.2) of
problem (7.2.3) leads to a sequence converging to zero. In contrast to this,
the same initialization for the KDE returns a very good approximation of
the solution to the chance-constrained optimization problem. Even from the
performance point of view the SAHA doesn’t appear to be the best choice
between the two: the necessary number of iterations needed by the algorithm
to stabilize is very large (tens of thousands), compared to the iterations
performed by WORHP with the KDE (a few dozen). Moreover, the choice
of the parameters defining the SAHA is more difficult to perform compared
to the KDE: in our case, for the first example we had to define both sequences
{εk} and {ρk} as well as the sequence {rk} of smoothing parameters for the
approximation of the indicator function; the parameterization of KDE, on
the other hand, is mainly focused on one scalar quantity h (the bandwidth).

For all the aforementioned reasons, we will not use the SAHA in the next
examples and we’ll focus only on KDE.
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n p ∆T h m∗0 [kg] R

Stochastic

500

0.8

0.5 0.00130 1.05823 0.8047
0.25 0.00054 1.05154 0.8036
0.1 0.00021 1.04868 0.8014
0.05 0.00010 1.04786 0.8015
0.025 0.00005 1.04733 0.6874

0.9

0.5 0.00131 1.06462 0.9031
0.25 0.00054 1.05343 0.9037
0.1 0.00021 1.04928 0.9050
0.05 0.00010 1.04809 0.8881
0.025 0.00005 1.04766 0.9520

0.995

0.5 0.00134 1.07553 1.0000
0.25 0.00054 1.05662 1.0000
0.1 0.00021 1.05035 1.0000
0.05 0.00010 1.04871 1.0000
0.025 0.00005 1.04792 1.0000

Deterministic
— 1.04709 —

Table 7.2.6: Result comparison for different values of n, p and ∆T .

7.2.3 Test 2: Simple three stage launcher with three decision
variables and three random variables

We now focus on a slightly more complex model, still in one dimension, in-
volving a three-stage launcher. This type of space launchers is characterized
by the fact that they are divided into three sections, each one with its own
fuel load and engine. During the flight the launcher consumes progressively
the fuel of each stage, and detaches the empty structure of one stage once its
fuel load is depleted. In this model we have more agency on the dynamics,
since we can choose the amount of initial fuel mei of each stage, meaning
that now we have three decision variables. While the nature of the chance-
constrained optimization problem remains the same, the number of random
parameters has also been increased to three: we consider the thrust Ti of
each stage engine to be random.

Model

The ODE system to be solved is the same as before and thus the solution
can be obtained explicitly, but the introduction of discontinuities in the mass
forces us to split the trajectory into three phases.

The initial mass of the launcher is defined as the sum of the three stages’
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fuel and structure, plus the payload:

m(0) =
3∑
i=1

(1 + ki)mei +mu

where k = (k1, k2, k3) and me := (me1,me2,me3) are respectively the stage
indexes and the fuel masses of the three stages. To simplify the notation we
define the final time of each phase as

t1 := ve1me1
T1

t2 := t1 + ve2me2
T2

t3 := t2 + ve3(me3 +mu)
T3

.

We point out that, while t1 and t2 represent the exact duration of phases 1
and 2 (the launchers consumes all the fuel in the first and second stages), the
quantity t3 is just an upper bound for the final time of the third phase. The
final time of the third phase (and thus the trajectory) depends on both the
total fuel mass and the energy constraint on the final orbit. In the definition
of t3, the payload mu is summed to the fuel mass of the third stage, allowing
the launcher to consume part of the payload in case the amount of fuel is
not sufficient to satisfy the constraint on the final position. We will also
define T := (T1, T2, T3) and ve := (ve1, ve2, ve3).

With these definitions, for 0 ≤ t ≤ t1 the solution to the ODE system is

r(t) =
(
ve1t−

ve
2
1m(0)
T1

)
ln
(
m(0)
m(t)

)
+ ve1t−

g

2 t
2

v(t) = ve1 ln
(
m(0)
m(t)

)
− gt

m(t) =
3∑
i=1

(1 + ki)mei +mu −
T1
ve1

t

otherwise, if t1 < t ≤ t2

r(t) =
(
ve1t−

ve
2
1m(0)
T1

)
ln
(
m(0)
m(t1)

)
+

+
(
ve2(t− t1)− ve

2
2(m(t1)− k1me1)

T2

)
ln
(
m(t1)− k1me1

m(t)

)
+

+ ve1t1 + ve2(t− t1)− g

2 t
2

v(t) = ve1 ln
(
m(0)
m(t1)

)
+ ve2 ln

(
m(t1)− k1me1

m(t)

)
− gt

m(t) =
3∑
i=2

(1 + ki)mei +mu −
T2
ve2

(t− t1)
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and lastly, if t2 < t ≤ t3

r(t) =
(
ve1t−

ve
2
1m(0)
T1

)
ln
(
m(0)
m(t1)

)
+

+
(
ve2(t− t1)− ve

2
2(m(t1)− k1me1)

T2

)
ln
(
m(t1)− k1me1

m(t2)

)
+

+
(
ve3(t− t2)− ve

2
3(m(t2)− k2me2)

T3

)
ln
(
m(t2)− k2me2

m(t)

)
+

+ ve1t1 + ve2(t2 − t1) + ve3(t− t2)− g

2 t
2

v(t) = ve1 ln
(
m(0)
m(t1)

)
+ ve2 ln

(
m(t1)− k1me1

m(t2)

)
+

+ ve3 ln
(
m(t2)− k2me2

m(t)

)
− gt

m(t) = (1 + k3)me3 +mu −
T3
ve3

(t− t2).

As we did in the previous section, let us first look at the solution of the
deterministic optimization problem:

min
me∈R3

+

3∑
i=1

(1 + ki)mei +mu

Mu(me) ≥ mu

(7.2.6)

where the constraint function is defined as

Mu(me) := m
(
t3(me)

)
− k3me3.

For a given me, the trajectory’s final time t3(me) ∈ [t2, t3] is the solution
of the equation obtained by imposing the constraint r(t3) + v2(t3)

2g = ωf.
Similarly to the previous example, this equation cannot be solved explicitly
and its solution is computed numerically. Table 7.2.7 sums up the choice of
parameters. The optimal solution found by WORHP is

Parameter Ti ki vei g ωf mu
Value 150 [N] 0.1 5 [m/s] 9.8 [m/s2] 0.5 [m] 0.5 [kg]

Table 7.2.7: Parameters for the deterministic optimization

me
∗
1 ≈0.21528 [kg]

me
∗
2 ≈0.18378 [kg]

me
∗
3 ≈0.07743 [kg].
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with a corresponding optimal cost of
3∑
i=1

(1 + ki)me
∗
i +mu ≈ 1.02414 [kg].

Note that an optimal initial mass of ≈ 1.02414 [kg] is consistent with the
one of the model with just one stage (≈ 1.04709 [kg]), since the whole point
of separating launchers into stages is exactly to reduce its initial mass.

Figures 7.2.9 shows the corresponding optimal trajectory.
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Figure 7.2.9: Plot of altitude, speed, mass and constraint for the three-stage
launcher.

Problem statement

In this section we will consider the three-stage version of the stochastic
optimization problem treated in the previous one.

min
me∈R3

+

3∑
i=1

(1 + ki)mei +mu

P
[
Mu(T,me) ≥ mu

]
≥ p.

(7.2.7)

Each Ti is a uniformly distributed random variable on [Ti−, Ti+] with ex-
pected value T i:

Ti ∼ U(Ti−, Ti+)

120



7.2. Numerical results

where Ti− := T i(1 − ∆Ti), Ti+ := T i(1 + ∆Ti). We also define T :=
(T 1, T 2, T 3) and ∆T := (∆T1,∆T2,∆T3). The pdf of each element of the
array T is

φi(x) :=


1

Ti+−Ti−
x ∈ [Ti−, Ti+]

0 else
∀i ∈ {1, 2, 3}.

Mu(T,me) is a function of the random variables T1, T2 and T3, parameter-
ized by me:

Mu(T,me) := m
(
t3(T,me)

)
− k3me3.

Table 7.2.8 shows the choice of parameters defined in this subsection.

Parameter p T i ∆T
Value 0.9 150 [N] 0.1

Table 7.2.8: Additional parameters for the stochastic optimization

Solution via Kernel Density Estimation

Like the previous example, we have to reformulate the chance constraint
showing its dependency on the CDF F of random variable Mu.

min
me∈R3

+

3∑
i=1

(1 + ki)mei +mu

Fme(mu) ≤ 1− p.
(7.2.8)

Where
Fme(mu) :=

∫ mu

0
fme(x)dx

For each value of me we are able to produce an approximation F̂me of Fme

via KDE by drawing a sample from the random array T. Our problem
becomes 

min
me∈R3

+

3∑
i=1

(1 + ki)mei +mu

F̂me(mu) ≤ 1− p.
(7.2.9)

The procedure used for solving problem (7.2.9) is described in the following
steps.

1. Draw the sample
We take ns equidistant values for each Ti in the interval [Ti−, Ti+] such
that

Tij = Ti− + (j − 1)Ti+ − Ti−
n− 1 ∀j ∈ 1, . . . , ns
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We can represent this sample as a 3× ns matrix:T11 T12 . . . T1ns

T21 T22 . . . T2ns

T31 T32 . . . T3ns .


2. Define the constraint function

Instruct the solver on how to associate any choice of fuel mass me to
the constraint function F̂me .

(a) The number of all the possible combinations of T1, T2 and T3 in
the sample matrix is n3

s , this means that the size of the sample for
Mu will be n := n3

s . For each combination Ti in {T1,T2, . . . ,Tn}
solve the equation r(t3) + v2(t3)

2g = ωf and define the elements of
the sample X(me) of Mu as Xi(me) := Mu(Ti,me).

(b) Build the KDE for the pdf of Mu using the SNR method (see
7.1.7) for computing the bandwidth.

f̂me(x) := 1
nh

n∑
i=1

1√
2π
e
− 1

2

(
x−Xi(me)

h

)2

.

(c) Compute F̂me as

F̂me(mu) :=
∫ mu

0
f̂me(x)dx.

3. Solve the problem
Now that the solver knows how to compute the approximation F̂me

of Fme , we can solve problem (7.2.9) as a standard deterministic opti-
mization problem by using WORHP as described in Subsection 7.2.1
with an initial guess equal to the solution of the deterministic problem.

Results

Convergence of approximated solutions Figures 7.2.10 shows the se-
quence of optimal costs for ns ∈ {2, 3, . . . , 20} and the corresponding rates
obtained by selecting a uniform sample from the variables Ti. Figure 7.2.11
instead, shows ten sequences of optimal costs and success rates obtained
by drawing a random sample from the variables Ti. The average value and
variance of the ten sequences can be seen in figure 7.2.12. For example, for
ns = 20 (i.e. n = n3

s = 8000) the optimal solution

me
∗
1 ≈0.20927 [kg]

me
∗
2 ≈0.17057 [kg]

me
∗
3 ≈0.09747 [kg].
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Figure 7.2.10: Plot of the optimal cost J and R as functions of n with a
deterministic uniform sample from T .
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Figure 7.2.11: Plot of the optimal cost J and R as functions of n with a
random sample from T (ten simulations).

with a corresponding optimal cost of
3∑
i=1

(1 + ki)me
∗
i +mu ≈ 1.02504 [kg].

allows us to deliver the payload with a success rate R ≈ 92% even if the
maximum thrust Ti of each stage engine is subject to random uniform os-
cillations. Figure 7.2.13 shows the corresponding plots.

Comparison with best/worst case scenario Table 7.2.9 compares the
solution we just found for the stochastic optimization problem to the two
solution we obtain from the deterministic one in the best and worst case.

We observe again that the optimal mass of the stochastic problem is
smaller than the one obtained in the worst deterministic case but bigger
than the one of the best case.

Consistency For this second example we repeat the comparison between
the solution of the deterministic problem (7.2.6) and its stochastic counter-
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Figure 7.2.12: Plot of the average value and variance of optimal cost J and
R as functions of n.

Case Ti m∗0 [kg]
Random ∼ U(Ti−, Ti+) 1.02504
Best Ti+ 1.02197
Worst Ti− 1.02631

Table 7.2.9: Result comparison for estremal values of T.

part (7.2.7) when p and ∆T are respectively closer 1 and 0. The results in
Table 7.2.10 are similar to the ones from the previous example.

Comparison between WORHP and IPOPT

We attempted to solve both deterministic and stochastic problems described
in examples 1 and 2 by using the two solvers WORHP and IPOPT (see Sub-
section 7.2.1 for more details). In our case WORHP behaved much better
than IPOPT (see table 7.2.11) and thus we decided to use the former to
solve all the following examples. In the stochastic case, the behavior of
both solvers depends heavily on the initial guess for the solution: some ini-
tializations can negatively affect performances and even sometimes prevent
convergence. We are able to overcome this issue by initializing the solvers
with the solution of the deterministic problem, which can be easily obtained.
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Figure 7.2.13: Plot of the Kernel Density Estimator f̂ of Mu(T,m∗e) and its
integral F̂ .

n p ∆Ti h me1 me2 me3 m∗
0 [kg] R

Stochastic

203

0.8

0.5 0.00043 0.216 0.171 0.096 1.03090 0.7968
0.25 0.00018 0.206 0.175 0.097 1.02642 0.7993
0.1 0.00007 0.209 0.170 0.098 1.02464 0.8063
0.05 0.00003 0.207 0.158 0.112 1.02394 0.7691
0.025 0.00002 0.216 0.168 0.092 1.02406 0.8726

0.9

0.5 0.00043 0.216 0.174 0.096 1.03454 0.9014
0.25 0.00018 0.202 0.180 0.097 1.02748 0.9020
0.1 0.00007 0.208 0.171 0.098 1.02501 0.9032
0.05 0.00003 0.211 0.166 0.099 1.02426 0.8770
0.025 0.00002 0.209 0.179 0.103 1.04045 1.0000

0.995

0.5 0.00043 0.217 0.180 0.096 1.04237 0.9955
0.25 0.00018 0.200 0.185 0.097 1.02997 0.9957
0.1 0.00007 0.210 0.171 0.097 1.02590 0.9989
0.05 0.00003 0.212 0.167 0.098 1.02476 0.9996
0.025 0.00002 0.209 0.170 0.097 1.02425 1.0000

Deterministic
— 0.215 0.184 0.077 1.02414 —

Table 7.2.10: Result comparison for different values of n, p and ∆T .

Solver Example Problem Convergence Iterations Time [s]

WORHP →
1 → Det. → Yes < 5 < 1

Sto. → Yes 5 ÷ 10 < 1

2 → Det. → Yes < 5 < 1
Sto. → Yes < 5 1 ÷ 5

IPOPT →
1 → Det. → Yes 25 ÷ 50 5 ÷ 10

Sto. → Yes 50 ÷ 100 10 ÷ 15

2 → Det. → No — —
Sto. → No — —

Table 7.2.11: Comparison between WORHP and Ipopt
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7.2.4 Test 3: Simple three stage launcher with three decision
variables and nine random variables

The next step in complexity consists in introducing new uncertainties in
the model. While in the previous example we fixed all the parameters but
the thrusts T, in this one we will also consider the stage indexes k and the
fuel velocities ve as random variables. We can skip the description of the
dynamics since it coincides with the one of the previous section.

Problem statement

If we want to adapt the formulation of problem 7.2.7 to this model, we have
to keep in mind that now the cost to be minimized also depends on the
random array k and it has to be defined as an expectation.

E
[ 3∑
i=1

(1 + ki)mei +mu

]
=

3∑
i=1

(
1 + E [ki]

)
mei +mu.

Now, since each ki is a uniformly distributed random variable on the interval
[ki−, ki+] with expected value ki, we can write the cost as

3∑
i=1

(
1 + E [ki]

)
mei +mu =

3∑
i=1

(1 + ki)mei +mu.

This leads us to the stochastic optimization problem
min

me∈R3
+

3∑
i=1

(1 + ki)mei +mu

P
[
Mu(T,k,ve,me) ≥ mu

]
≥ p.

(7.2.10)

In this case we have a total of nine uniform random variables (three random
arrays of dimension three): T, k and ve. We define the arrays k, ve, ∆k
and ∆ve in the same way we previously did for T.

Mu(T,k,ve,me) is a function of the random arrays T, k and ve, param-
eterized by me:

Mu(T,k,ve,me) := m
(
t3(T,k,ve,me)

)
− k3me3.

Table 7.2.12 shows the choice of parameters defined in this subsection.

Parameter p T i ∆Ti ki ∆ki vei ∆vei
Value 0.9 150 [N] 0.1 0.1 0.1 5 [m/s] 0.1

Table 7.2.12: Additional parameters for the stochastic optimization
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7.2. Numerical results

Solution via Kernel Density Estimation

As for the previous example, we have to reformulate the chance constraint
showing its dependency on the CDF F of random variable Mu.

min
me∈R3

+

3∑
i=1

(1 + ki)mei +mu

Fme(mu) ≤ 1− p.
(7.2.11)

Where
Fme(mu) :=

∫ mu

0
fme(x)dx

For each value of me we are able to produce an approximation F̂me of Fme

via KDE by drawing a sample from the random arrays T, k and ve. Our
problem becomes 

min
me∈R3

+

3∑
i=1

(1 + ki)mei +mu

F̂me(mu) ≤ 1− p
(7.2.12)

The procedure used for solving problem (7.2.12) is described in the following
steps.

1. Draw the sample
Take a sample of size n from the random array (T,k,ve):{

(T1,k1,ve1), (T2,k2,ve2), . . . , (Tn,kn,ven)
}
.

2. Define the constraint function
Instruct the solver on how to associate any choice of fuel mass me to
the constraint function F̂me .

(a) For each element (Ti,ki,vei) solve the equation r(t3)+ v2(t3)
2g = ωf

and define Xi(me) := Mu(Ti,ki,vei,me).
(b) Build the KDE for the pdf of Mu using the SNR method (see

7.1.7) for computing the bandwidth.

f̂me(x) := 1
nh

n∑
i=1

1√
2π
e
− 1

2

(
x−Xi(me)

h

)2

.

(c) Compute F̂me as

F̂me(mu) :=
∫ mu

0
f̂me(x)dx.
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3. Solve the problem
Now that the solver knows how to compute the approximation F̂me

of Fme , we can solve problem (7.2.12) as a standard deterministic
optimization problem by using WORHP as described in Subsection
7.2.1 with an initial guess equal to the solution of the deterministic
problem.

Results

Convergence of approximated solutions The results presented in this
example have been obtained by using exclusively random samples of the
random parameters. Figures 7.2.14 show the behavior of ten sequences of
optimal costs for n ∈ {100, 200, . . . , 10000} and the corresponding rates of
success R := Ns

Na
computed a posteriori with Na = 105. Figure 7.2.15 instead
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Figure 7.2.14: Plot of the optimal cost J and R as functions of n (ten
simulations).

shows the the average value and variance of the ten sequences previously
shown for each n.

For example for n = 500 the optimal solution

me
∗
1 ≈0.22222 [kg]

me
∗
2 ≈0.18356 [kg]

me
∗
3 ≈0.10289 [kg].

with a corresponding optimal cost of
3∑
i=1

(1 + ki)me
∗
i +mu ≈ 1.05953 [kg].

allows us to deliver the payload mu = 0.5 with a success rate R ≈ 90% even
if the maximum thrust Ti, the stage index ki and the fuel speed vei of each
stage are subject to random uniform oscillations. Figures 7.2.16 shows the
related plots.
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Figure 7.2.15: Plot of the average value and variance of optimal cost J and
R as functions of n.

Comparison with best/worst case scenario Table 7.2.13 compares
the solution we just found for the stochastic optimization problem to the
two solution we obtain from the deterministic one in the best and worst
case.

Case Ti ki vei m∗0 [kg]
Random ∼ U(Ti−, Ti+) ∼ U(ki−, ki+) ∼ U(vei−, vei+) 1.05953
Best Ti+ ki− vei+ 0.94971
Worst Ti− ki+ vei− 1.12464

Table 7.2.13: Result comparison for extremal values of T, k and ve.

We observe again that the optimal mass of the stochastic problem is
smaller than the one obtained in the worst deterministic case but bigger
than the one of the best case.

Consistency Table 7.2.14 shows the comparison between the solution of
the deterministic problem (7.2.6) and its stochastic counterpart (7.2.10)
when p is close to 1 and ∆Ti, ∆ki and ∆vei are close to 0. In contrast
with the previous example, the results showed in the table confirm that it
is possible to reduce the variance of the random variables if their number
is high enough to grant a sparse sample. In this example the bandwidth
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Figure 7.2.16: Plot of the Kernel Density Estimator f̂ of Mu(T,m∗e) and its
integral F̂ .

reaches the value ≈ 0.00002 with a 0.1% variation of the random parame-
ters while, for the previous example, the same bandwidth value was obtained
with a 2.5% variation.
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n p
∆Ti

∆ki

∆vei

h me1 me2 me3 m∗
0 [kg] R

Stochastic

104

0.8

0.5 0.01169 0.218 0.191 0.202 1.17137 0.7966
0.25 0.00508 0.226 0.185 0.124 1.08867 0.8120
0.1 0.00191 0.237 0.158 0.103 1.04773 0.8055
0.01 0.00019 0.214 0.166 0.098 1.02593 0.8024
0.001 0.00002 0.209 0.167 0.101 1.02389 0.8281

0.9

0.5 0.01472 0.186 0.281 0.271 1.31146 0.9052
0.25 0.00517 0.227 0.205 0.133 1.12153 0.8993
0.1 0.00192 0.218 0.184 0.106 1.05956 0.9018
0.01 0.00018 0.215 0.166 0.098 1.02707 0.9013
0.001 0.00002 0.214 0.166 0.097 1.02410 0.9397

0.995

0.5 no convergence
0.25 0.00579 0.261 0.214 0.197 1.23939 0.9960
0.1 0.00202 0.220 0.212 0.106 1.09191 0.9951
0.01 0.00019 0.216 0.168 0.098 1.02984 0.9959
0.001 0.00002 0.212 0.169 0.096 1.02441 0.9996

Deterministic
— 0.215 0.184 0.077 1.02414 —

Table 7.2.14: Result comparison for different values of n, p and ∆T .

7.2.5 Test 4: Simple single stage launcher with continuous
control and one random variable

This example takes inspiration from the first one by using the same single-
stage model, the difference is that now we consider an optimal control prob-
lem.

The motion of the launcher retains the same nature of a one-dimensional
vertical ascent, but this time we can act on the dynamics at each instant
t. Contrary to all the previous examples in which the optimization vari-
ables directly influence only the initial state of the launcher, we can now
control the vehicle at any point of the trajectory. We introduce the variable
u(t) ∈ [0, 1] which represents the percentage of maximum thrust we want
to use at a given time t, meaning that for every t the thrust force and the
fuel consumption are equal to Tu(t) and T

ve
u(t) respectively. We are again

considering the case where only the parameter T is a random variable but
now our objective is to maximize the final mass of the launcher while making
sure that the launcher’s final altitude is higher than a given value rf with a
probability of at least p.

A solution to this problem consists in an optimal control function u∗ :
R+ → [0, 1] such that, if we apply u∗ regardless of the value of T , the
probability of the final altitude being greater than rf is at least p.
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Model

The modified ODE system is

ṙ(t) = v(t) t ∈ (0, tf]
v̇(t) = T

m(t)u(t)− g t ∈ (0, tf]
ṁ(t) = − T

ve
u(t) t ∈ (0, tf]

r(0) = 0
v(0) = 0
m(0) = m0

where
m0 := (1 + k)me +mu

is the initial mass. The control function u belongs to U , where

U := {u : R+ → [0, 1] ⊂ R | u is measurable}.

For the purpose of this test, we will integrate the equations numerically with
the standard fourth-order Runge-Kutta method. The continuous control is
thus replaced by a piece-wise constant function. If we denote with nt the
number of time steps, we can identify a control strategy u with the array of
values taken at each time step:

u := (u1, u2, . . . , unt) ∈ Rnt+ .

Before defining our stochastic optimization problem, let us first look at the
solution to its deterministic counterpart:max

u∈U
m(tf)

r(tf) ≥ rf
(7.2.13)

which, implementing the numerical integration described above, is approxi-
mated by  max

u∈[0,1]nt
m(tf)

r(tf) ≥ rf.

Table 7.2.15 sums up the choice of parameters for this model. The
optimal cost found by WORHP is

m(tf) ≈ 4.6141 [kg].

Figures 7.2.17 shows the corresponding optimal trajectory. We point out
that, up to discretization errors, the computed deterministic control is bang-
bang.
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Parameter T k ve g

Value 150 [N] 0.1 5 [m/s] 9.8 [m/s2]
Parameter me mu rf tf nt
Value 7.5 [kg] 0.5 [kg] 0.2 [m] 0.2 [s] 100

Table 7.2.15: Parameters for the deterministic optimization
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Figure 7.2.17: Plot of control, altitude, speed and mass for the controlled
single-stage launcher.

Problem statement

Our goal is to reach at least the altitude rf with a 90% probability while
maximizing the final mass of the launcher. If we want to adapt the formu-
lation of problem 3.1.1 to this model, we have to keep in mind that the cost
to be minimized also depends on the random parameter T and it has to be
defined as an expectation.

E [m(tf)] = E
[∫ tf

0
m0 −

T

ve
u(t)dt

]
=
∫ tf

0
m0 −

E[T ]
ve

u(t)dt.

Now, since T is a uniformly distributed random variable on the interval
[T−, T+] with expected value T , we can define the cost as

m(tf) :=
∫ tf

0
m0 −

T

ve
u(t)dt.
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This leads us to the stochastic optimization problemmax
u∈U

m(tf)

P
[
Rf(T, u) ≥ rf

]
≥ p

(7.2.14)

where Rf(T, u) is the final altitude as a function of the random variable T ,
parameterized by u.

Table 7.2.16 shows the choice of parameters defined in this subsection.

Parameter p T ∆T
Value 0.9 150 [N] 0.1

Table 7.2.16: Additional parameters for the stochastic optimization

Solution via Kernel Density Estimation

In order to use the KDE we have to reformulate the chance constraint show-
ing its dependency on the CDF F of random variable ru(T, tf). Let ftf,u
be the pdf of ru, parameterized by tf. From the definition of ftf,u we can
rewrite problem 7.2.14 as max

u∈U
m(tf)

Fu(rf) ≤ 1− p.
(7.2.15)

For each choice of u we are able to produce an approximation F̂u of Fu via
KDE by drawing a sample of size from the random variable T . Our problem
becomes max

u∈U
m(tf)

F̂u(rf) ≤ 1− p.
(7.2.16)

The procedure used for solving problem (7.2.16) is described in the following
steps.

1. Draw the sample
Take n equidistant values for T in the interval [T−, T+] such that

Ti = T− + (i− 1)T+ − T−
n− 1 ∀i ∈ 1, . . . , n.

2. Define the constraint function
Instruct the solver on how to associate a control u to the constraint
function F̂u.

(a) For each Ti in {T1, T2, . . . , Tn} define the elements of the sample
X(u) of Rf as Xi(u) := Rf(Ti, u).
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(b) Build the KDE for the pdf of Rf using the SNR method (see 7.1.7)
for computing the bandwidth.

f̂u(x) := 1
nh

n∑
i=1

1√
2π
e
− 1

2

(
x−Xi(u)

h

)2

.

(c) Compute F̂u as
F̂u(rf) :=

∫ rf

0
f̂u(x)dx.

3. Solve the problem
Now that the solver knows how to compute the approximation F̂u of
Fu, we can solve problem (7.2.16) as a standard deterministic opti-
mization problem by using WORHP as described in Subsection 7.2.1
with an initial guess equal to the solution of the deterministic problem.

Results

Convergence of approximated solutions Figures 7.2.18 shows the be-
havior of the sequence of optimal costs for n ∈ {10, 20, 30, . . . , 500} and the
corresponding rate of success R := Ns

Na
computed a posteriori with Na = 105.

For example, for n = 500 the optimal cost and the success rate are

 3.25
 3.3

 3.35
 3.4

 3.45
 3.5

 3.55
 3.6

 3.65
 3.7

 3.75

 50  100  150  200  250  300  350  400  450  500

J

n

Optimal cost

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99

 1

 50  100  150  200  250  300  350  400  450  500

R

n

Success rate

Figure 7.2.18: Plot of m(tf) corresponding to u∗ and R as functions of n.

m(tf) ≈ 3.1934 [kg]

and R = 91.06%. The corresponding optimal control u∗ is shown in figure
7.2.19. Figure 7.2.20 shows the other related plots.

Comparison with best/worst case scenario Table 7.2.17 and figure
7.2.21 compare the solution we just found for the stochastic optimization
problem to the two solution we obtain from the deterministic one in the best
and worst cases. In this case the results are different from the previous
cases: the optimal final mass of the stochastic problem is smaller than both
the ones obtained in the best and worst deterministic cases.
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Figure 7.2.19: Optimal control for n = 500.
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Figure 7.2.20: Plot of the Kernel Density Estimator f̂ of Rf(T, u∗) and its
integral F̂ .

Consistency Table 7.2.18 shows the comparison between the solution of
the deterministic problem (7.2.13) and its stochastic counterpart (7.2.14)
when p is close to 1 and Ti is close to 0. For the results in the table we set

u(t) = 1 ∀t ∈ [0, tf]

as the initial guess for the optimal control strategy. We could also initialize
u with the solution of the deterministic problem (7.2.16) but, surprisingly,
the constant initialization is the one that allows WORHP to converge more
often. Unfortunately the solver unable to converge to an optimal solution for
every combination of p and ∆T . In the two cases (p,∆T ) = (0.8, 0.025) and
(p,∆T ) = (0.995, 0.025) we tried, without success, three different initial-
izations for u: the constant initialization previously described; the optimal
solution of the deterministic problem and the initialization by continuation,
i.e. initializing u with the solution of the problems with (p,∆T ) = (0.8, 0.05)
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Case T m(tf) [kg]
Random ∼ U(T−, T+) 3.19589
Best T+ 4.88176
Worst T− 3.93085

Table 7.2.17: Result comparison for extremal values of T .

 0

 0.2

 0.4

 0.6

 0.8

 1

0.0000 0.0400 0.0800 0.1200 0.1600 0.2000

u(
t)

t

Stochastic, best and worst case controls

Stochastic
Best case

Worst case

Figure 7.2.21: Comparison between stochastic, best and worst case controls.

and (p,∆T ) = (0.995, 0.05). We are aware that these three different initial-
ization techniques are not exhaustive for the purpose of solving the con-
vergence issues. For instance, the continuation method could be refined by
introducing more intermediary steps. In any case, the best way to avoid such
problems with solvers would be to implement from scratch a code for the
solution of optimal control problems. Contrary to a non open source library
like WORHP, this would allow the user to investigate in detail convergence
issues and modify the algorithm accordingly by adapting the source code.
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n p ∆T h m(tf) [kg] R

Stochastic

500

0.8

0.5 no convergence
0.25 no convergence
0.1 0.01051 4.04155 0.8012
0.05 0.00167 7.17424 0.0000
0.025 no convergence

0.9

0.5 no convergence
0.25 no convergence
0.1 0.01118 3.19345 0.9098
0.05 0.00506 3.63893 0.9085
0.25 0.00122 7.11364 0.0000

0.995

0.5 no convergence
0.25 no convergence
0.1 0.01223 2.75000 1.0000
0.05 0.00536 3.20587 1.0000
0.025 no convergence

Deterministic
— 4.61410 —

Table 7.2.18: Result comparison for different values of n, p and ∆T .

7.2.6 Test 5: Goddard problem with one random variable

Moving on to a more complex version of the chance-constrained optimal
control problem of the previous example, we now apply the KDE technique
to the Goddard problem.

Formally, the structure of the model is the same as the previous example:
the vertical ascent of a launcher in one dimension, in presence of a control
u(t) ∈ [0, 1] proportional to the thrust applied at time t. The main difference
between Goddard problem and the one treated in Example 4 is the addition
of the drag force to the dynamics. For the purpose of defining a probabilistic
constraint, we consider the thrust T as the only random parameter and our
objective is to maximize the final mass of the launcher while making sure
that its altitude is higher than a given value rf with a probability of at least
p.

As in the previous example, a solution to this problem consists in an
optimal control function u∗ : R+ → [0, 1] such that, if we apply u∗ regardless
of the value of T , the probability of the final altitude being greater than rf
is greater than p.
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Model

The original formulation of the Goddard problem can be found in [31]. We
will consider a one-dimensional version of the one treated in [13].

The ODE system is

ṙ(t) = v(t) t ∈ (0, tf]

v̇(t) = Tu(t)−Av2(t)e−κ
(
r(t)−r0

)
m(t) − 1

r2(t) t ∈ (0, tf]
ṁ(t) = −bu(t) t ∈ (0, tf]
r(0) = r0

v(0) = 0
m(0) = m0

where the final time tf > 0 is free. The control function u belongs to U ,
where

U := {u : R+ → [0, 1] ⊂ R | u is measurable}.

We will again integrate the equations numerically by using fourth-order
Runge-Kutta method, as we did in the previous example, where the contin-
uous control is replaced by a piece-wise constant function.

Before defining our stochastic optimization problem, we first show the
solution to the deterministic one: max

(tf,u)∈R+×U
m(tf)

r(tf) ≥ rf
(7.2.17)

which, implementing the numerical integration described above, is approxi-
mated by  max

(tf,u)∈R+×[0,1]nt
m(tf)

r(tf) ≥ rf.

Table 7.2.19 sums up the choice of parameters for this model. We remark
that all the quantities in this model are dimensionless and thus they do not
require to be specified in terms of unit measures. The optimal cost found

Parameter T A κ b r0 m0 rf nt
Value 3.5 310 500 7 1 1 1.01 100

Table 7.2.19: Parameters for the deterministic optimization

by WORHP is
m(tf) ≈ 0.62975.

Figures 7.2.22 shows the corresponding optimal trajectory.
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Figure 7.2.22: Plot of control, altitude, speed and mass for the Goddard
problem.

Problem statement

Our goal to reach at least the altitude rf with a 90% probability while
maximizing the final mass of the launcher. Keeping in mind that the cost to
be minimized also depends on the random parameter T , it has to be defined
as an expectation.

E [m(tf)] = E
[∫ tf

0
m0 −

T

ve
u(t)dt

]
=
∫ tf

0
m0 −

E[T ]
ve

u(t)dt.

We recall that T is a uniformly distributed random variable on the interval
[T−, T+] with expected value T , so the cost is defined as

m(tf) :=
∫ tf

0
m0 −

T

ve
u(t)dt.

This leads us to the stochastic optimization problem max
(tf,u)∈R+×U

m(tf)

P
[
Rf(T, tf, u) ≥ rf

]
≥ p

(7.2.18)

where Rf(T, tf, u) is the final altitude as a function of the random variable
T , parameterized by u.

Table 7.2.20 shows the choice of parameters defined in this subsection.
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Parameter p T ∆T
Value 0.9 3.5 0.1

Table 7.2.20: Additional parameters for the stochastic optimization

Solution via Kernel Density Estimation

By using the definition of the density function ftf,u of the random variable
ru(T, tf), we can rewrite problem 7.2.18 as max

(tf,u)∈R+×U
m(tf)

F(tf,u)(rf) ≤ 1− p.
(7.2.19)

If we replace Fu with its KDE approximation F̂u, our problem becomes max
(tf,u)∈R+×U

m(tf)

F̂(tf,u)(rf) ≤ 1− p.
(7.2.20)

The procedure used for solving problem (7.2.20) is described in the following
steps.

1. Draw the sample
Take n equidistant values for T in the interval [T−, T+] such that

Ti = T− + (i− 1)T+ − T−
n− 1 ∀i ∈ 1, . . . , n.

2. Define the constraint function
Instruct the solver on how to associate a pair of final time and control
(tf, u) to the constraint function F̂(tf,u).

(a) For each Ti in {T1, T2, . . . , Tn} define the elements of the sample
X(tf, u) of Rf as Xi(tf, u) := Rf(Ti, tf, u).

(b) Build the KDE for the pdf of Rf using the SNR method (see 7.1.7)
for computing the bandwidth.

f̂(tf,u)(x) := 1
nh

n∑
i=1

1√
2π
e
− 1

2

(
x−Xi(tf,u)

h

)2

.

(c) Compute F̂(tf,u) as

F̂(tf,u)(rf) :=
∫ rf

0
f̂(tf,u)(x)dx.
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3. Solve the problem
Now that the solver knows how to compute the approximation F̂(tf,u)
of F(tf,u), we can solve problem (7.2.16) as a standard deterministic
optimization problem by using WORHP as described in Subsection
7.2.1 with an initial guess equal to the solution of the deterministic
problem.

Results

Convergence of approximated solutions Figures 7.2.23 shows the be-
havior of the sequence of optimal costs for n ∈ {10, 20, 30, . . . , 500} and the
corresponding rate of success R := Ns

Na
computed a posteriori with Na = 105.

For example, for n = 500 the optimal cost is
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Figure 7.2.23: Plot of m(tf, u∗) and R as functions of n.

m(t∗f ) ≈ 0.60014

with a success rate R = 90.81%. The corresponding optimal control u∗ is
shown in figure 7.2.24. Figure 7.2.25 the other related plots.

Comparison with best/worst case scenario Table 7.2.21 and Figure
7.2.26 compare the solution we just found for the stochastic optimization
problem to the two solution we obtain from the deterministic one in the
best and worst cases. It can be seen how the solution to the chance-

Case T t∗f m(t∗f )
Random ∼ U(T−, T+) 0.18806 0.60014
Best T+ 0.16126 0.65841
Worst T− 0.19016 0.59279

Table 7.2.21: Result comparison for extremal values of T .

constrained problem is slightly better than the one in the worst case, but
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Figure 7.2.24: Optimal control for n = 500.
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Figure 7.2.25: Plot of the Kernel Density Estimator f̂ of Rf(T, t∗f , u∗) and
its integral F̂ .

still lower than the one of the best case. Interestingly, Figure 7.2.26 shows
that the shape of the control strategy doesn’t change much between the
three cases, and the main difference lies in the optimal value for the final
time t∗f .

Consistency Table 7.2.22 shows the comparison between the solution of
the deterministic problem (7.2.17) and its stochastic counterpart (7.2.18)
when p is close to 1 and Ti is close to 0. For the results in the table we set the
initial guess for u equal to the optimal solution found for the deterministic
problem (see Figure 7.2.22).
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Figure 7.2.26: Comparison between stochastic, best and worst case controls.

n p ∆T h m(t∗f ) R

Stochastic

500

0.8

0.5 0.00517 0.48082 0.7980
0.25 0.00155 0.57006 0.8011
0.1 0.00048 0.60852 0.7996
0.05 0.00022 0.61970 0.7999
0.025 0.00010 0.62669 0.6879

0.9

0.5 0.00813 0.38665 0.9096
0.25 0.00185 0.54187 0.9090
0.1 0.00051 0.60014 0.9090
0.05 0.00023 0.61625 0.8929
0.25 0.00011 0.62221 0.9479

0.995

0.5 0.02127 0.15383 1.0000
0.25 0.00271 0.47279 1.0000
0.1 0.00057 0.58270 1.0000
0.05 0.00024 0.60750 1.0000
0.025 0.00011 0.61860 1.0000

Deterministic
— 0.62975 —

Table 7.2.22: Result comparison for different values of n, p and ∆T .
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7.2.7 Test 6: Complex three stage launcher with one decision
variable and two random variables

We now move to a different application of this method. We use the more
complex model of a real space launcher for defining a percentile optimization
problem in the form of (6.1.12). In this case we have two random parameters:
the specific impulse Isp3 and the index K3 of the third stage. As a function
of both Isp3 and K3 the optimal fuel mass of the third stage is also random,
and our goal is to compute the 0.9-percentile of its distribution.

Model

This subsection is aimed at describing the mathematical model which rep-
resents the dynamics of the launcher: after defining the coordinate system
related to the chosen frame of reference, we list all the forces that the vehicle
is subject to and then write the system’s equations of motion.

Frame of reference We define the inertial equatorial frame coordinate
system S := (O, i, j,k), where

• O is the center of the Earth;

• k is the versor of Earth rotation axis, directed towards North;

• i is the versor that belongs to Earth equatorial plane and points to-
wards the Greenwich meridian;

• j := k× i completes the coordinate system.

x

y

z

i
j

k

O

N

Figure 7.2.27: The coordinate system S.
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In this coordinate system we define

x := xi + yj + zk
v := ẋ := vxi + vyj + vzk

vr(v,x) := v− (0, 0,Ω)× x

to be respectively the position, the velocity and the relative velocity of the
vehicle’s center of mass G, where Ω is the Earth’s angular speed.
Furthermore, we will denote with (φ, λ, h) the geographic coordinates of G,
as shown in figure 7.2.28.

x

y

z

φ

h

O

G

λ

Figure 7.2.28: The geographic coordinates of G.

Cartesian to geographic coordinates transformation At a given
time t, the equivalence between cartesian and geographic coordinates is given
by the following relations (see [30] for more details).

• Latitude 
p

cos(φ) −
z

sin(φ) − e
2ν(φ) = 0 p 6= 0

φ = π
2 p = 0 and z ≥ 0

φ = −π
2 p = 0 and z < 0

where

e :=
√

1−
R2

p
R2

e

ν(φ) := Re√
1− e2 sin2(φ)

p :=
√
x2 + y2
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Re and Rp are the Earth’s equatorial and polar radius.

• Longitude

λ =


arccos

(
x
p

)
− Ωt p 6= 0 and y ≥ 0

− arccos
(
x
p

)
− Ωt p 6= 0 and y < 0

0 p = 0.

• Height h = p
cos(φ) − ν(φ) p 6= 0

h = |z| −Rp p = 0.

Geographic to cartesian coordinates transformation At a given
time t, the following equations show how to change from geographic to
cartesian coordinates.

x = (ν(φ) + h) cos(φ) cos(λ+ Ωt)
y = (ν(φ) + h) cos(φ) sin(λ+ Ωt)

z =
(
ν(φ)

(
1− e2)+ h

)
sin(φ).

Orbit plane The orbit plane is the plane of the ellipse that defines the
GTO, it is characterized by two angles: the longitude of the ascending node
and the angle of inclination with respect to the equatorial plane of the Earth.
Not all the inclinations can be reached from a given launch site: the location
has to be a point inside the target orbit plane.

Axis and angles We associate to the launcher a longitudinal axis: this
axis passes through G and points towards the edge of the launcher (see figure
7.2.29). At each time the thrust of the launcher has the same direction of
the longitudinal axis (i.e. we are assuming a perfect control).
We also define the following angles:

• The launch azimuth ψ is the angle between the perpendicular line to
the longitudinal axis at the initial position directed towards North and
the orbit plane. The launch azimuth must satisfy the following equa-
tion in order to allow the launcher to reach the target orbit inclination

ψ = arcsin
( cos(i)

cos(φ0)

)
this means that the inclination i must be greater than the launch site
latitude φ0.
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• The angle of attack α between the longitudinal axis and the relative
velocity vr measured in the orbit plane;

• The pitch angle θ between the longitudinal axis and the vector −−→Ox0
measured in the orbit plane;

G

FT

Longitudinal axis

vr

−−→
Ox0θ

α

Figure 7.2.29: The angles θ and α.

Mechanical and structural parameters We call βi, Ispi and Si respec-
tively the mass flow rate, the specific impulse and the area of the nozzle’s
section of the i-th stage engine. Furthermore, we denote with Ai the area
of the i-th stage reference surface involved in the computation of the drag
force. Finally, we call m the total mass of the vehicle. Depending on the
flight phase, it is the sum of some of the payload mp, payload case mc, the
fairing mf, the i-th stage fuel mei(t) at time t, where the initial fuel mass of
each stage is defined as

mei0 := mei(t0) ∀i ∈ {1, 2, 3}

the i-th stage structure msi, which is defined as

msi := Kimei0

with Ki being the i-th stage index.
We now define the mathematical model of the dynamic system: we first

introduce all the forces that we choose to take into account, then we describe
its evolution through Newton’s second law.
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Force of gravity Gravity is given by

FG(m,x) = −

FGx(m,x) 0 0
0 FGy(m,x) 0
0 0 FGz(m,x)

 x
||x||

where

FGx(m,x) = FGy(m,x) = m
µ0
||x||2

(
1 + J2

3
2
R2

e
||x||2

(
1− 5 z2

||x||2

))

FGz(m,x) = m
µ0
||x||2

(
1 + J2

3
2
R2

e
||x||2

(
3− 5 z2

||x||2

))

µ0 is the standard gravitational parameter of the Earth and J2 is the cor-
rection factor due to its oblateness.

Drag force Given by

FD(x,v) = −FD(x,v) vr(x,v)
||vr(x,v)||

where
FD(x,v) = 1

2ρ(x)||vr(x,v)||2ACD(x,v)

ρ is the air density and CD is the drag coefficient, depending on the Mach
number

Ma(x,v) = ||vr(x,v)||
vs(x)

which itself depends on the speed of sound vs.

Thrust force
FT(θ,x,v) = FT(x)iT(θ,x,v)

where
FT(x) = g0βIsp − SP (x)

g0 is the Earth gravitational acceleration and P is the atmospheric pressure.
The direction iT is given by

iT(θ,x,v) =


vr(x,v)
||vr(x,v)|| α = 0
Rλ0,φ0RψR(θ)e1 α 6= 0

149



Chapter 7. Approximation of chance-constrained problems

where

Rλ0,φ0 =

− sin(λ0) − cos(λ0) sin(φ0) cos(λ0) cos(φ0)
cos(λ0) − sin(λ0) sin(φ0) sin(λ0) cos(φ0)

0 cos(φ0) sin(φ0)


Rψ =

0 sin(ψ) − cos(ψ)
0 cos(ψ) sin(ψ)
1 0 0


R(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


e1 = (1, 0, 0)ᵀ

λ0 and φ0 are the longitude and the latitude of the launch site and ψ is the
launch azimuth.

Equations of motion We can now write the equations of motion in carte-
sian coordinates:

ẋ(t) = v(t)
m(t)v̇(t) = FG

(
m(t),x(t)

)
+ FD

(
x(t),v(t)

)
+ FT

(
θ(t),x(t),v(t)

)
ṁ(t) = −β.

(7.2.21)
We can control the direction of the launcher by acting on the pitch angle θ
at any time t.

Target orbit For a given position x and velocity v, the perigee and apogee
of the orbit associated are given by

Lp(x,v) =
(
1− ε(x,v)

)
a(x,v)−Re

La(x,v) =
(
1 + ε(x,v)

)
a(x,v)−Re

where ε is the eccentricity of the orbit

ε(x,v) =
√

1− ||x× v||2
µ0a(x,v)

and a is the semi-major axis

a(x,v) = 1
2
||x|| −

||v||2
µ0

.
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Flight sequence The flight sequence consists in several phases, we will
use the following notation to denote duration and final time of each flight
phase: t0 is the initial time, τi is the duration of the phase i, τi.j is the
duration of the sub-phase i.j, ti is the final time of the phase i and ti.j is
the final time of the sub-phase i.j.

Phase 1 The launch azimuth is fixed at the value ψ and the initial position at
the geographic coordinates (φ0, λ0, h0). During this phase the mass of
the launcher is

m(t) = mp +mc +mf +
3∑
i=1

(1 +Ki)mei(t) ∀t ∈ [t0, t1).

1.1 The engine of the first stage is ignited and the launcher accelerates
vertically (i.e. with the same direction of −−→OG) leaving the service
structure

θ(t) ≡ 0 ∀t ∈ [t0, t1.1).

1.2 The launcher rotates with constant speed changing its orienta-
tion:

θ(t) = θ1
τ1.2

(t− t1.1) ∀t ∈ [t1.1, t1.2).

1.3 The direction of the thrust is fixed at the final values of the
previous sub-phase until the angle of incidence α is zero (see
figure 7.2.29):

θ(t) = θ1 ∀t ∈ [t1.2, t1.3)
t1.3 = min

t∈(t1.2,+∞)

{
t | α(t) = 0

}
.

1.4 Zero incidence flight until complete consumption of the first stage
fuel:

τ1 = me10
β1

this sub-phase ends with the separation of the first stage.

Phase 2 At the beginning of this phase the mass of the launcher is

m(t) = mp +mc +mf +
3∑
i=2

(1 +Ki)mei(t) ∀t ∈ [t1, t2.1).

2.1 Ignition of second stage engine. This sub-phase ends with the
release of the fairing, as soon as the heat flux decreases to a given
value:

θ(t) = θ2 + θ′2(t− t1) ∀t ∈ [t1, t2.1)

t2.1 = min
t∈(t1,+∞)

{
t | Γ

(
x(t),v(t)

)
≤ Γ∗

}
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where
Γ(x,v) = 1

2ρ(x)||vr(x,v)||3

represents the heat flux.
The mass changes to

m(t) = mp +mc +
3∑
i=2

(1 +Ki)mei(t) ∀t ∈ [t2.1, t2).

2.2 Flight without fairing until complete consumption of the fuel in
the second stage:

τ2 = me20
β2

this sub-phase ends with the jettison of the second stage:

θ(t) = θ2 + θ′2τ2.1 + θ′2(t− t1) ∀t ∈ [t2.1, t2).

Phase 3 During this phase the mass of the launcher is

m(t) = mp +mc + (1 +K3)me3(t) ∀t ∈ [t2.2, tf)

Ignition of third stage engine, this phase ends when the third stage’s
fuel is exhausted:

τ3 = me30
β3

.

At final time tf := t3 the the final position and velocity have to be
compatible with the target orbit:

θ(t) = θ3 + θ′3(t− t2) ∀t ∈ [t2.2, tf)
Lp
(
x(tf),v(tf)

)
= L∗p

La
(
x(tf),v(tf)

)
= L∗a.

Optimization of the third stage mass We can now formulate the fol-
lowing deterministic optimization problem.

min
(me30,θ1,θ2,θ

′
2,θ3,θ

′
3)∈R6

+

me30

Lp(me30, θ1, θ2, θ
′
2, θ3, θ

′
3) = L∗p

La(me30, θ1, θ2, θ
′
2, θ3, θ

′
3) = L∗a

(7.2.22)

where, with a slight abuse of notation, the functions Lp and La denote, re-
spectively, the perigee and apogee associated to the final state

(
x(tf),v(tf)

)
,

according to the decision variables (me30, θ1, θ2, θ
′
2, θ3, θ

′
3).
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7.2. Numerical results

Fairing
mf 1.100 kg

Case
mc 858.86 kg

Payload
mp 4500 kg

Stage 1
K1 0.13
β1 1896.58 kg/s
Isp1 345.32 s
S1 7.18 m2

A1 17.35 m2

Stage 2
K2 0.13
β2 273.49 kg/s
Isp2 349.4 s
S2 5.16 m2

A2 17.35 m2

Stage 3
K3 0.13
β3 42.18 kg/s
Isp3 450.72 s
S3 1.97 m2

A3 17.35 m2

Table 7.2.23: Mechanical and structural parameters

Given data and fixed parameters Table 7.2.23 summarizes the choice
of all the fixed parameters of the problem while Figure 7.2.30 shows the
profile of the speed of sound, the air density, the atmospheric pressure (each
one depending on altitude) and drag coefficient (depending on the Mach
number). With this choice of the duration of the first two flight phases,
the fuel load of the corresponding stages can be computed easily (see Table
7.2.26) because of the relationmei0 = βiτi for i ∈ {1, 2, 3}. Lastly, parameter
values for the Earth and the flight sequence are shown in Tables 7.2.24 and
7.2.25 respectively.

Ω 7.292155·10−5 rad/s
Rp 6356752 m
Re 6378137 m
µ0 3.986005·1014 m3/s2

J2 1.08263·10−3

g0 9.80665 m/s2

Table 7.2.24: Earth’s parameters

The optimal solution In order to use WORHP to obtain the numerical
solution to (7.2.22), we have to rewrite our optimization problem in the form
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Figure 7.2.30: Speed of sound vs, air density ρ, atmospheric pressure P and
drag coefficient CD.

(7.2.1). This can be done quite easily by setting

N := 6
X := (me30, θ1, θ2, θ

′
2, θ3, θ

′
3)ᵀ

XL := (0, 0, 0, 0, 0, 0)ᵀ

XU := (10000 kg, 5 deg, 180 deg, 0.5 deg/s, 180 deg, 0.5 deg/s)ᵀ

F (X) := me30

M := 2
G(X) :=

(
Lp(X), La(X)

)ᵀ
GL := (L∗p, L∗a)ᵀ

GU := GL.

The ODE system (7.2.21) is integrated by using the Fortran 90 subroutine
DOP853 described in [32]. The optimal values found by WORHP for the
optimization variables are reported in Table 7.2.27 and Figure 7.2.31 shows
the corresponding optimal trajectory.

Problem statement

Let Me30(π,mp) be the value function of problem (7.2.22), depending on
π := (Isp3,K3) and the dimensioning parameter mp. Consider the following
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7.2. Numerical results

Phase 1
Sub-phase 1.1

t0 0 s
ψ 90 deg
φ0 5.159722 deg
λ0 -52.650278 deg
h0 0 m
τ1.1 5 s

Sub-phase 1.2 τ1.2 2 s
τ1 147 s

Phase 2 Sub-phase 2.1 Γ∗ 1135 W/m2

τ2 222 s

Phase 3 L∗p 200000 m
L∗a 35786000 m

Table 7.2.25: Parameters for the flight sequence

me10 278797.26 kg
me20 60714.78 kg

Table 7.2.26: Values for the initial fuel masses

chance-constrained optimization problemmin
µ∈R+

µ

P
[
Me30(π,mp) ≥ µ

]
≥ p

(7.2.23)

where Isp3 and K3 are uniformly distributed random variables, respectively
on the intervals [Isp3−, Isp3+] and [K3−,K3+], with expected values Isp3 and
K3:

Isp3 ∼ U(Isp3−, Isp3+)
K3 ∼ U(K3−,K3+).

Here Isp3− := Isp3(1−∆Isp3), Isp3+ := Isp3(1 + ∆Isp3) (similar definitions
hold for K3). Note that (7.2.23) matches the definition of the percentile
optimization problem (6.1.12).

We remark that this problem, and thus its solution, depends on two
dimensioning parameters: the payload mp and the success probability p.

Table 7.2.28 shows the choice of parameters defined in this subsection.
The main difference between this problem and the ones treated previ-

ously is that the decision variable is separated from the random ones. More
generally, if we call x and ξ respectively the decision and the random vari-
ables, we can rewrite the chance constraint in the general form

P
[
G(x, ξ) ≤ 0

]
≥ p.
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me30 2627.1511 kg
θ1 1.98164037 deg
θ2 74.24468871 deg
θ′2 0.14736836 deg/s
θ3 99.15421943 deg
θ′3 0.30801744 deg/s

Table 7.2.27: Optimal values for the free variables
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Figure 7.2.31: Result of the three-stage launcher optimization

In the particular case of this example’s model, the inequality above can be
rewritten as

P
[
D(π) ≤ E(µ)

]
≥ p

allowing us to improve the solver’s performances by pre-computing the func-
tion Me30(π,mp) at given grid values for the random variables π for a fixed
mp. In the opposite case in which x and ξ are not separated, we would
need to compute the constraint function also for all the possible values of
x, which can be unbounded. Figure 7.2.32 shows the plot of Me30(π,mp)
as a function of π for our choice of mp (see Table 7.2.23). The function has
been evaluated at 16 values of π on an equally partitioned grid on the set
[Isp3−, Isp3+] × [K3−,K3+]. The values in between gridpoints are obtained
via bilinear interpolation. We also recall that, since the constraint function
is parameterized by the payload mp, every change in its value would re-
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7.2. Numerical results

Parameter p Isp3 ∆Isp3 K3 ∆K3
Value 0.9 450.72 [s] 0.1 0.13 0.1

Table 7.2.28: Additional parameters for the stochastic optimization

quire a new computation of Me30 at grid values. For all the values of π in

420

440

460

480 0.12
0.125

0.13
0.135

0.14

0

1000

2000

3000

4000

5000

K
3

M
e3

 as a function of I
sp3

 and K
3

I
sp3

M
e3

0

Figure 7.2.32: Plot of the third stage optimal fuel mass as a function of π.

[Isp3−, Isp3+]× [K3−,K3+] the solver WORHP was able to compute an op-
timal control allowing the launcher to reach its final orbit while minimizing
the initial mass.

Solution via Kernel Density Estimation

In order to use the KDE we have to reformulate the chance constraint show-
ing its dependency on the CDF F of random variable Me30(π,mp). Let fmp

be the pdf of Me30, parameterized by mp. From the definition of fmp we
can rewrite problem 7.2.23 asmin

µ∈R+
µ

Fmp(µ) ≥ 1− p.
(7.2.24)
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As explained earlier, the remarkable feature of the problem is that, in con-
trast with the previous examples, the PDF estimator does not depend on
the optimization parameter µ.

For each choice of mp we are able to produce an approximation F̂mp of
Fmp via KDE by drawing a sample of size from the array of random variables
π. Our problem becomes min

µ∈R+
µ

F̂mp(µ) ≥ 1− p.
(7.2.25)

The procedure used for solving problem (7.2.25) is described in the following
steps.

1. Draw the sample
We take n random realizations of π according to the distribution of its
elements. This sample can be represented as a 2 by n matrix:(

Isp31 Isp32 . . . Isp3n
K31 K32 . . . K3n.

)

2. Define the constraint function
Instruct the solver on how to associate µ to the constraint function
F̂mp(µ).

(a) For performance purposes, the best strategy would be to sample
the function Me30(π,mp) and store its values in a file to be used
when building the estimator for the distribution function Fmp(µ).
This will avoid nested optimization procedures and give us the
possibility to solve in advance convergence issues with the deter-
ministic optimization problem. For each element πi of the sample
set Xi(mp) := Me30(πi,mp).

(b) Build the KDE for the pdf of Me30 using the SNR method (see
7.1.7) for computing the bandwidth.

f̂mp(x) := 1
nh

n∑
i=1

1√
2π
e
− 1

2

(
x−Xi(mp)

h

)2

.

(c) Compute F̂mp as

F̂mp(µ) :=
∫ µ

0
f̂mp(x)dx.

3. Solve the problem
Now that the solver knows how to compute the approximation F̂mp

of Fmp , we can solve problem (7.2.25) as a standard deterministic
optimization problem by using WORHP as described in Subsection
7.2.1 with an initial guess equal to the solution of the deterministic
problem.
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7.2. Numerical results

Results

Convergence of approximated solutions Figures 7.2.33 to 7.2.34 show
the behavior of ten sequences of optimal costs for n ∈ {10, 20, 30, . . . , 500}
and the corresponding rate of success R := Ns

Na
computed a posteriori with

Na = 105. For example, for n = 500 the optimal cost and the success rate
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Figure 7.2.33: Plot of µ∗ and R as functions of n (ten simulations).
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Figure 7.2.34: Plot of the average value and variance of µ∗ and R as functions
of n.

are
µ∗ ≈ 2162.78

and R ≈ 91.83%. Figure 7.2.35 shows the related plots.
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Chapter 8

Conclusions

Throughout this part of the thesis we showed how chance-constrained opti-
mization can be a valid approach for solving robust optimization and optimal
control problems, especially when the traditional deterministic techniques
like the worst-case analysis cannot be applied since they are not designed
to take into account unfeasible solutions. Although we did not focus on
the generalization of the existing theoretical results (e.g. to the case where
decision and random variables are not separated) we recognize that such
a study would be fundamental to the development of chance-constrained
optimization.

Nonetheless, even in lack of a solid theoretical framework, the numerical
results obtained with Kernel Density Estimation are very promising. We
applied this technique to increasingly complex optimization problems with
chance constraints and it always led to satisfying solutions, while still offering
room for improvement.

Better results might be obtained by changing the computation of the
bandwidth h, for example, by substituting the second derivative f ′′ of the
unknown density in (7.1.6) with some approximation (this so called plug-
in method is explained in detail in [65]). Such a method can improve the
accuracy of the estimator f̂ , but since it involves more complex operations
for the computation of h compared to the Simple Normal Reference band-
width (7.1.7), we decided to implement the latter in our tests in order to
preserve performances. Another way for improving the accuracy of the es-
timator f̂ is to experiment with different kernels. This, however, should
not be the priority because the Gaussian kernel satisfies all the required
regularity properties. The regularity of this kernel, coupled with the recur-
rence of the corresponding Gaussian distribution in the real world, makes
it a widely popular choice in the literature, which is usually focused on the
study of bandwidth selection. Lastly, the accuracy of the estimator also
depends on the approximation of its integral F̂ . We already explained in
the first example why we decided to use the composite Simpson’s rule for
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Chapter 8. Conclusions

computing
∫
f̂(y)dy numerically, but it could be worth trying more complex

and accurate quadrature formulas when performances are not a priority.
Regardless of the particular implementation of the KDE, the approach

of pairing it with a robust NLP solver like WORHP or IPOPT has been
proven to be able to handle a good variety of chance-constrained optimiza-
tion problems in the domain of aerospace engineering. We are confident that
the content of this chapter will reveal itself useful for the development of
future research in this field.

Lastly, we remark that a natural link between the two parts of this thesis
is the opportunity to combine the two approaches (i.e. Policy Iteration
and Kernel Density Estimation) to study the implementation of an efficient
numerical method for solving chance-constrained hybrid control problems.
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[54] A. Prékopa. Probabilistic programming. In A. Shapiro A. Ruszczuǹski,
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Titre : Méthodes numériques pour des problèmes de contrôle hybride et optimisation avec contraintes en

probabilité

Mots clés : Contrôle optimal, Systèmes hybrides, Schémas numériques, Optimisation stochastique,

Contrainte en probabilité, Lanceurs spatiaux

Résumé : Cette thèse est dediée à l'analyse numérique de méthodes numériques dans le domaine du contrôle

optimal, et est composée de deux parties. La première partie est consacrée à des nouveaux résultats

concernant des méthodes numériques pour le contrôle optimal de systèmes hybrides, qui peuvent être

contrôlés simultanément par des fonctions mesurables et des sauts discontinus dans la variable d'état. La

deuxième partie est dédiée à l'étude d'une application spéci�que sur l'optimisation de trajectoires pour des

lanceurs spatiaux avec contraintes en probabilité. Ici, on utilise des méthodes d'optimisation nonlineaires

couplées avec des techniques de statistique non paramétrique. Le problème traité dans cette partie appartient

à la famille des problèmes d'optimisation stochastique et il comporte la minimisation d'une fonction de coût

en présence d'une contrainte qui doit être satisfaite dans les limites d'un seuil de probabilité souhaité.
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Abstract : This thesis is devoted to the analysis of numerical methods in the �eld of optimal control, and it

is composed of two parts. The �rst part is dedicated to new results on the subject of numerical methods for

the optimal control of hybrid systems, controlled by measurable functions and discontinuous jumps in the

state variable simultaneously. The second part focuses on a particular application of trajectory optimization

problems for space launchers. Here we use some nonlinear optimization methods combined with

non-parametric statistics techniques. This kind of problems belongs to the family of stochastic optimization

problems and it features the minimization of a cost function in the presence of a constraint which needs to be

satis�ed within a desired probability threshold.
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