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Visual Psychophysics: Perception-guided display of sparkling materials 59 and Aspects) project, which is a collaboration between 3 research laboratories of École Nationale Supérieure des Mines de Paris, 3 SMEs 2 , and an industrial partner, the PSA Peugeot Citröen group. The LIMA project ran from January 2011 to January 2016; this thesis started in March 1st, 2013, nanced within the framework of a CIFRE (gonventions sndustrielles de pormtion pr l eherhe) convention. The goal of the LIMA project is to create perceptually realistic simulations of paint materials with specic known properties. Interactive head-tracking and stereoscopic visualization are suggested as ways to improve perceptual realism. We will say that the simulations are perceptually-realistic when they trigger the same visual response on a human observer as the physical instances, under the same observation conditions. Our research takes place in the context of automobile paints, with a special focus on complex sparkling coating materials.

The aspect of paint materials is a very important factor in industrial product design, more so after the proliferation of complex nishes such as those used in pearlescent, sparkling, glossy, or goniochromatic materials. The use of simulation applications for product design introduces important cost and time reductions, in addition to oering greater control and exibility to designers in the creative process; however, replacing the visual evaluation of physical samples or prototypes (Figure 1.1) by virtual representations of the product also carries important challenges. Industrial design applications rely strongly on the aspect of the product, so it is paramount to ensure that the product simulation is accurate with respect to the physical product. [START_REF] Chen | Natural enhancement of color image, tournl on smge nd ideo roessing[END_REF] The production of industrial materials requires the participation of three main agents: manufacturer, designer and nal user. In digital simulations, the manufacturing process denes the physical composition of the materials, which often entails the modelization at several levels (chemical, mechanical, mathematical, optical, etc) of the material's microstructure in terms of spatio-chromatic distribution. This model is then used by a rendering engine to produce a color image representation 1 ANR (Agence Nationale de la Recherche) grant #2011 RMNP 01401 2 Small and medium-sized enterprises of the material, under some predened environment, which simulates the optical properties of the material's microstructure in an accurate, or realistic, manner. Realism is dened based on perceptual criteria that relate perceptual image attributes to spatio-chromatic properties which, in turn, are related to properties of the material composition.

The LIMA project proposes a double approach, from material composition to material aspect, and vice versa. Consequently, visual simulations of the materials could be generated from their composition and, conversely, their composition be predicted from a desired visual aspect. We can distinguish three main lines of work: material measurement and modeling, simulation rendering, and perceptual validation of the results (Figure 1.2). First, optical measurements are taken from each individual physical component of the paint coating materials, and used to describe and model their morphological microstructure [START_REF] Couka | wodélistion des propriétés optiques de peintures pr mirostrutures létoires et luls numériques[END_REF]. At the same time, the same physical base components are combined to produce real reference samples [START_REF] Ben-Achour | ynthèse et rtéristion multiEéhelle de nnoprtiules pour revêtements utomoiles[END_REF], which are later used for physical validation. A rendering engine integrates these models to generate simulations of the materials, using virtual reality techniques like head tracking and stereoscopy to provide dynamic and interactive visualization [4].

This allows the user to move around the objects and view them from dierent angles, reproducing more accurately the real observation conditions. In this context, the work presented in this thesis deals with the perceptual validation of the simulations: we use feedback from visual evaluations by human observers, under some controlled conditions (illumination, observation, display, etc.), to ensure the perceptual realism of the simulations with respect to the real samples.

Perceptually realistic rendering

When we observe an object illuminated by one or several light sources, its surface is hit by some portion of the electromagnetic waves emitted by these light sources. A series of optical interactions then take place between the light and the object, resulting in the case of non-fully absorbent objects in a series of secondary signals re-emitted by the object, some of which will reach the eye of the observer. When this light arrives in the eye, it is captured by the photoreceptors in the retina, and transmitted to deeper processing stages. These further stages process the perceived signal in terms of higher-level criteria, using information about the environment and our personal prior knowledge. Image synthesis, or image rendering, is the process by which a computer simulates these processes, to generate an image that reproduces, to some extent, the information present in the real scene.

The rst part of this section discusses dierent interpretations of realistic image rendering, using objective criteria to evaluate the realism of an image. In this context, we dene a perceptually realistic object simulation as one that produces the same visual response in the observer as the physical object. The following section discusses dierent ways in which the light can interact with the objects in a real environment to produce visual stimuli, and how that aects our visual response Chapter 1. Introduction when we observe the environment. We will nish by describing the process to generate and display visual stimuli with a computer.

Denition of realistic image rendering

Image synthesis, or image rendering, is the process by which computers can generate a digital representation of a given environment. These images represent selected properties of a real scene with varying degrees of realism. However, although extensive research work has been done in the area of realistic image rendering, one of the most important issues remains the lack of common criteria to dene and measure the level of realism [START_REF] Ferwerda | Three varieties of realism in computer graphics[END_REF]. We can nd in the literature many dierent interpretations of realism, attending to various criteria. Some interpretations require the existence of a reference, whereas others simply judge the realism of a scene or object in itself. Authors Shirley et al. [START_REF] Shirley | Basics of physically-based rendering[END_REF] and Ferwerda [START_REF] Ferwerda | Three varieties of realism in computer graphics[END_REF] present two overlapping, but dierent, classications of special interest for our work.

Shirley et al. [START_REF] Shirley | Basics of physically-based rendering[END_REF] distinguish the following three rendering approaches attending to the accuracy of the physics in the scene:

• Predictive rendering: the results must match the real scene (design and simulation applications).

• Plausible rendering: plausibly real look, but the physics can be wrong (entertainment and visualization applications).

• Visually-rich rendering: visual richness of reality, but can be highly stylized.

In this work we are concerned by the rst and second types of rendering. We do not care for the aesthetic aspect of a scene so much as for how it is constructed according to a set of input models and physics laws. This rendering paradigm is known as physically-based rendering (PBR). In the past, PBR required a big amount of computation time and resources, but the latest technological advances have reduced these computation demands drastically. However, as the complexity of a scene increases, the amount of computation needed to simulate a high-delity scene is such that even modern GPUs are incapable of doing it in reasonable time. This problem becomes specially important in interactive simulation applications such as ours. The key to reducing computation times, as discussed by Chalmers et al. [START_REF] Chalmers | Selective rendering: computing only what you see[END_REF], is to keep in mind that the scenes are rendered for a human observer, so that the amount of required information is limited by the capabilities of the human visual system (HVS).

This takes us to the next classication, provided by Ferwerda [START_REF] Ferwerda | Three varieties of realism in computer graphics[END_REF], based on the type of visual information depicted in the scene:

• Physical realism: the image provides the same visual stimulation as the real scene.

• Photo-realism: the image produces the same visual response as the real scene.

• Functional realism: the image provides the same visual information as the real scene.

In this second classication we can identify physical realism with predictive rendering, or more specically, PBR; however, there is no correspondence between the remaining categories in the two classications which is why we provide both classications here. We nd an additional variety of realism in this classication: funtionl relism. Functional realism refers to a type of realism where, even if the simulation does not resemble the real scene as much (stylized, sketched, etc), it still provides the same (or even more) information needed to perform a given task. This is illustrated in Figure 1.3. As explained by Ferwerda, although the photographs in this illustration are suciently clear, one could argue if they are preferred in terms of providing information because 1.2. Perceptually realistic rendering "the drawings oer a number of benets over the photos. First, the drawings can eliminate irrelevant details produced (in this case) by shading, shadows, and surface texture. Second, the drawings can facilitate visual segmentation and grouping by color (e.g. hand white, tools gray, wood tan).

Third, the drawings make it possible to show viewpoints that would be dicult or impossible in a photograph, such as the edge shot shown in the rst panel or the point-of-view shot shown in the second. Finally, the rendering of the saw blade shows that the drawings can make use of `special eects' like articial transparency to depict important features that would be hidden in photographs" [START_REF] Ferwerda | Three varieties of realism in computer graphics[END_REF].

Figure 1.3: Functional realism in technical illustrations. edpted y perwerd S from the eder9s higest gomplete hoEst ourself wnul VF As we mentioned above, physically-realistic rendering has several disadvantages: the highly demanding computation requirements of PBR; the low capabilities of current conventional displays in terms of tone reproduction; and the fact that producing physically-realistic images for human observers is excessive, since it ignores the limitations of the HVS. All of these factors, reduce the suitability of a strictly physics-based approach for interactive simulation applications like ours. For this reason, we nd the latter classication proposed by Ferwerda more appropriate for our purposes.

When a human observer looks at the simulations produced by our rendering model, the perceived information should be the same as if they were looking at the actual physical objects, under the same environment. In other words, the response produced by the observer's visual system should be the same when looking at the simulation and the real scene under the same conditions. This denition of perceptual realism can be identied with Ferwerda's denition of photo-realism, but also with that of functional realism. Indeed, human visual perception is known to be selective and, often, biased and dependent on factors like the context or the perceiver's motivation [START_REF] Henderson | High-level scene perception[END_REF][START_REF] Balcetis | See what you want to see: motivational inuences on visual perception[END_REF]. For this reason, we use immersive and stereoscopic visualization to introduce functional information in the simulations with the aim of improving their perceptual realism. With this in mind, we will use the term "perceptual realism" in this manuscript to refer to realistic material simulations in the sense of material simulations that produce the same visual response in the observer as the real material, under predened environmental and observation conditions.

Generation of color stimuli in real conditions

Color stimuli can be produced directly from the radiant energy emitted by a light source, or indirectly, as the result of the interaction of that radiant energy with an object. When a color stimulus is produced by a light source, we speak of light-source colors, and the resulting visual response is produced by additive synthesis of the contribution from each individual source. When the color stimulus results from the interaction of some illuminating light with an object, we speak of object colors, and the visual response is the result of a subtractive synthesis.

Additive color synthesis

Light radiation is a combination of waves at multiple wavelengths, known as the light spectrum, as we will explain in Section 2.1.1. Because each wavelength corresponds to one color, the perceived color of the emitted radiation is the result of adding the contribution of each individual wavelength, which can be seen as mixing multiple monochromatic lights (light with only one wavelength, or a narrow band of wavelengths). A color resulting from the addition of multiple lights is said to be produced by additive color synthesis.

Color stimuli produced by additive synthesis can be measured in two dierent ways, depending on the use: directly or by reection. The direct (or incident) measurement method is done with the meter facing the source, whereas the reection method measures the light reected by a near-perfect white diuser (or barium white) 3 positioned in front of the light source. Multiple devices may be used to perform this measurement, but the most common ones are 4 :

• Spectroradiometer: the most complete device, it measures the spectral power distribution (SPD) 5 of the radiance emitted by surface.

• Spectrocolorimeter: measures the spectral reectance, transmittance, or relative irradiance of a color sample [START_REF] Schanda | Tristimulus color measurement of self-luminous sources, golorimetryX nderstnding the gsi system[END_REF], and calculates its tristimulus values.

• Tristimulus colorimeter: measures the chromaticity coordinates of a color surface.

Subtractive color synthesis

When light hits a (non-fully absorbent) solid object, a color is produced as the result of its interaction with the object's material. The color resulting from said interaction depends on the object's

properties, but also on the illumination and observation angles. A light incident on an object's surface can be subject to many dierent physical phenomena, but the most relevant in this context are those shown in Figure 1.4.

Some wavelengths of the incident light is reected by the object, bouncing o the surface, in two forms: specular and diuse reections. In perfectly planar surfaces, the specular component is reected with the same angle in a direction opposite to the incident light; the diuse component, however, is reected at multiple angles and magnitudes (luminance). Under most observations conditions except when the observer is at the angle of maximum specularity the diuse component is what creates the primary color sensation, since it provides most of the light rays arriving to the retina of the eyes. Some wavelengths of the incident light may also be absorbed by the object, disappearing. Finally the remaining light is refracted through the object at dierent angles due to dierences between the refraction indices of the object's material (n2) and the surrounding medium (n1), as indicated by the Snell-Descartes law (Section A.16 of the glossary) and transmitted out of the object.

Figure 1.4: Optical light-matter interaction phenomena that may take place when light reaches the surface of an object (with refraction index n2), from another medium (with refraction index n1).

Since the colors produced in this way are the result of subtracting components from the illuminating light 6 , via one or several of the phenomena mentioned above, this process is called subtractive color synthesis. A fully-absorbent object, or an object which is not illuminated, will not reect any light, and it will be seen as black. Conversely, an object that reects every wavelength of the illuminating light in its entirety (lambertian reectance) will be seen as having the same color of the illuminant. When an object is painted a certain color, the properties of its surface are modied by pigments in the paint that act as a lter, absorbing certain wavelength components and reecting others. Therefore, subtractive color synthesis requires the existence of light to produce color stimuli object's colors cannot be seen in the absence of light. In order to measure subtractive color stimuli, we must always characterize two components: the optical behavior of the object's surface and the illumination. The optical behavior of a surface is always given as the percentage of the illumination that is aected by each phenomenon (reection, absorption,...) per unit wavelength; the illumination is specied by its SPD.

In the case of perfectly planar surfaces, the characterization of the optical properties of an object is simple; but the computation becomes more dicult for irregular surfaces. In that case, more complex functions such as the bidirectional reectance distribution function (BRDF) are used.

The BRDF (which has units inverse steradians, sr -1 ) describes the amount (proportion) of light reected when light makes contact with a material, as a function of the illumination and observation angles, relative to the surface normal and tangent, and the wavelength of the light [START_REF] Wynn | An introduction to brdf-based lighting, xvidi gorportion[END_REF]. This is indicated by Expression 1.1, where ω i is a vector representing the incoming direction of the light, ω r represents the outgoing or reection direction of the light, L is radiance (W • sr -1 • m -2 ), and E is irradiance (W • m -2 ).

f r (ω i , ω r ) = dL r (ω r ) dE i (ω i )
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Chapter 1. Introduction

Generation of color stimuli with a computer

The process of image rendering generates a digital representation of the information in a real scene.

Since the rendered images are meant to be viewed on a display, the computed information has to be adapted to the capabilities of the reproduction medium. Depending on the display technology used to visualize the images, dierent methods can be used to display the color information present in an image (see Chapter 3). Traditionally, displays such as cathodic raytube (CRT) displays have used a set of three colored-light sources to create the color for each pixel, and modulate the intensity of each one to obtain the necessary proportion that produces the desired color. Practically any color can be produced by combining a set of three primary lights; displays typically chose red, green, and blue, as primary lights, to emulate the human visual system as described by the trichromatic theory (explained in Section 2.1.2.4). As display technologies have evolved, this display model has become more complex. For example, as we will see in Section 3.1.1, modern liquid-crystal displays (LCD) use more advanced techniques like backlight illumination with multi-color lters, or color dithering (integration of the color response over time) to display colors in the screen.

The presence of dierent electronic and optical components like lters, light diusers, etc inside the display device obscures the computation of the synthesized color stimuli. However, in practice, a display can be seen as a "black box" where colors are essentially produced by means of additive synthesis using dierent color lights. When a display is observed in a perfectly dark environment, our visual response will depend exclusively on the stimuli generated by the display. In the presence of ambient light, however, our visual response will depend on many other factors, such as the displayed color stimuli, the ambient illumination, the contribution from the environment, and the properties of the display's surface (absorption, reection, etc). This is the reason why displays must be calibrated for each observation environment.

Thesis organization

Physically-based rendering, or PBR, also known as predictive rendering, aims at creating images that produce the exact same radiometric information as the real scene that they simulate. Since the simulations contains the same information as in reality, one might think that the simulation is realistic. This is partly true and, in fact, this type of precision is necessary in some cases (remote sensing, multi-spectral imaging, etc); however, when the images are made to be viewed by humans, there are additional constraints that must be taken into account to produce realistic simulations.

The human visual system (HVS) has a limited acuity that depends on many factors such as contrast, frequency, shape, or illuminant [START_REF] Peli | Contrast perception across changes in luminance and spatial frequency[END_REF][START_REF] Bäuml | Simultaneous color constancy: how surface color perception varies with the illuminant[END_REF][START_REF] Pappas | Perceptual criteria for image quality evaluation, rndook of imge nd video proessing[END_REF][START_REF] Maloney | Color and material perception: Achievements and challenges[END_REF][START_REF] Fleming | Visual perception of materials and their properties[END_REF]. As a result, the original radiometric signals that hit our eyes are compressed and transformed at dierent stages of our visual system, before a visual response is created in our brain. This means that a lot of the visual information present in the real scene cannot be perceived by a human observer and, therefore, it is unnecessary (and, at times, even wrong, as we will see in Section 4.1) to compute it. Furthermore, since images are visualized on a display, additional constraints are introduced by the capabilities and limitations of the display and visualization devices participating in the process (Figure 1.5). Taking all these constraints into account in the rendering process allows us to nd and resolve aspects that are not properly dealt with by the rendering engine, as well as to identify perceptually superuous information that may be removed from the computation. Consequently, we can reduce the amount of image information and computation times, without aecting the visual response produced by the scene for a human observer. We have dened this type of rendering as perceptually realistic rendering. By dening accuracy in terms of perceptual realism, we can optimize the rendering model to produce images much closer than PBR to what we see in reality while reducing computation time. However, given the complexity of human visual perception, and the large amount of factors that take part in the process, the addition of perceptual constraints to a physically-based rendering model might lead to incorrect results. For this reason, a perceptual validation process is needed to verify that the 1.3. Thesis organization 9 simulations remain perceptually correct after introducing these simplications.

One big issue in the context of perceptual realism is the problem of tone reprodution (or tone mpping). This problem consists in nding how to represent the light richness of the physical reality on a display device that is much more limited in terms of reproducible light ranges (dynamic range, or DR). Ample research exists in this area [START_REF] Irawan | Perceptually based tone mapping of high dynamic range image streams[END_REF][START_REF] Reinhard | Dynamic range reduction inspired by photoreceptor physiology, isuliztion nd gomputer qrphisD siii rnstions on[END_REF], and there are multiple models to reproduce the appearance of a scene with a more limited dynamic range; however, the use of generic reproduction models is not desired in our case, given the distinct characteristics of the materials that we will study. In order to control the realism of the results, we must rst be able to understand the relationship between light and perceived material aspect in our specic context, and how it aects our perception of the materials.

Chapter 2 describes human visual perception as the result of a series of complex processes distributed along dierent stages of the visual system. As we will see, the light emitted by the objects in the scene that we are observing arrives into our eyes, and is captured and converted into sensory information by a series of selective photosensitive cells distributed on its surface. This information is transmitted via several channels to deeper stages of the visual system. It is then interpreted by dierent physiological mechanisms, responsible for producing visual attributes like contrast, color constancy, depth, etc. Each of these mechanisms produce a series of neurological responses that are interpreted and combined in the brain to construct a global visual response. This work is part of a research project that integrates material models into a physico-realistic rendering model, as described by Da Graça et al [START_REF] Da Graça | Stereoscopy for visual simulation of materials of complex appearance[END_REF]4]. As we will see in Chapter 2, physical representation and perceptual (sensory) appearance are connected by means of the colorimetric space used to express the color information in the image. Representing image information using perceptual spaces such as those directly related to cone-response values (e.g. LMS) or device-independent spaces like XYZ closely related to radiometric values entering the retina gives us important information about the relationship between analyzed image parameters and visual attributes. This information may be used in determining the amount of contribution of said attributes to the appearance of the nal images, identifying relevant information to maximize perceptual similarity with the original scene. The rendering process produces images which are viewed on a display. Therefore, our visual system is not the only element that aects the perception of the images after the simulation. In eect, choosing the right display device, as well as analyzing and modeling its characteristics in the right way, is also crucial to control the visualization process. Chapter 3 presents an overview of the most common display technologies, the eects that each technology has on visualization, and the most important criteria to select a display for our purposes. The same chapter also describes the process to fully characterize a computer display, showing characterization results from our specic model. A proper display characterization will allow us to understand the transformations that take place inside the display, and to control its colorimetric response, favoring the conversion between Chapter 1. Introduction representation spaces without altering the original perceptual information.

Because we use a two-dimensional (2D) medium (a display) to reproduce a dynamic 7 three- dimensional (3D) scene, part of the depth information provided by binocular visual cues, such as stereopsis (depth by triangulation) or eye convergence, is lost during the simulation both at rendering and visualization time. This becomes specially true in the case of sparkling coating materials. The intensity of the sparkles generated by the metal akes and therefore the overall material appearance in sparkling coatings depends on factors such as the depth and size of the metal akes, and the illumination and observation angles. Given the separation between our eyes, we may perceive a dierent image with each eye when we look at one point in space, because the observation angle is slightly dierent for each one. If we ignore this information, we will be neglecting a very important aspect of the material, and therefore the simulation will lose accuracy.

To overcome some of these disadvantages and improve perceptual realism, we use stereoscopic visualization to provide additional depth information from binocular disparity. As we will show later on, our tests show that in all of our cases observers nd that stereoscopic visualization produces a visual response that is much closer to the reference than monoscopic visualization. In this sense, Chapter 3 provides an analysis of the most important technologies to produce depth perception in displays, to serve as the basis to justify our choice of stereoscopy. Similarly, the characterization methodology is extended to incorporate criteria specic to stereoscopic displays.

Chapter 4 presents an analysis of the particularities of human visual perception when observing sparkling materials. We will use digital photographs to reproduce the integrating function of the human eye in terms of trichromatic photoreceptor responses, showing how the sparkling eect in metallic aked paints is strongly linked to the incident light. This eect is the macrometric optical manifestation of a physical phenomenon, which results from the interaction at micrometric level between light and matter (i.e. micrometric akes). Since the digital camera emulates the mechanisms of the human visual system to produce visual responses (respectively, images), it must be possible to control the imaging process to maximize perceptual similarity between the visual response of an observer looking at the real scene and the resulting photograph of the scene.

The sparkling eect in metallic aked paints is the macrometric optical manifestation of a physical phenomenon, which results from the interaction at micrometric level between light and matter (i.e. micrometric akes). When the material is illuminated, the light bouncing o the metal akes is much stronger due to their high specular reectivity. When these specular reections reach the camera lens and pass through its optical components, they are spread, producing the optical eect associated with sparkling. Therefore, due to this light spreading, the sparkles may be perceived as being much larger than the actual metal akes at their origin. Consequently, we can then see that the sparkling eect is strongly linked to the amount and intensity of the incident light, which in turn determines the intensity of the light reected by the metal akes, or sparkle luminance, as well as the global luminance (brightness) of the image.

The camera sensor is not capable of capturing the vast luminance dynamics (values) of a real scene into an image, so we must introduce simplications in the image, to produce a similar visual response with less information. We can maximize the amount of perceptual information present in the images, by selecting those camera settings that best reproduce human visual perception under the experimentation conditions. By xing all imaging parameters but the shutter speed, we can establish a direct relationship between image luminance and exposure time, under those same conditions. We have conducted an experimental psychophysics study, where human observers were presented a series of stereoscopic images taken with dierent exposures, and asked to evaluate their similarity to a physical reference. The results from this experiment show that image luminance has indeed an eect on its brightness and contrast, and that this aects the perceived size of the sparkling, texture depth, and sparkling-background contrast. Furthermore, they suggest optimal global luminance values to maximize perceptual similarity with the physical references.

A second psychophysics study has been performed, to analyze the perceptual eects of modifying the range of luminance values in the images, with respect to the found optimal global luminance, as well as the dynamic range (number of luminance values). The results suggest that indeed the global luminance found in the rst experiment seems to maximize perceptual similarity, whereas no improvements result from using dierent luminance or dynamic ranges. Furthermore, under the selected luminance conditions, there seems to be a inverse relation between sparkling contrast and global image brightness. Chapter 5 presents a methodology to validate objectively the images produced by a rendering engine against photographs of a real scene (Figure 1.6). We describe the process to ensure identical conditions in the virtual and real scenes, which results in two types of images, photographs and simulations, suciently similar to permit a meaningful objective comparison between them. We will show how, with the proposed methodology, we are capable of simulating a scene with a very high level of perceptual colorimetric and radiometric realism. This is a fundamental step towards the validation of any physico-realistic rendering engine, because it ensures the reliability of the comparisons, and paves the way for the integration of the observations from the psychophysics experiments into the rendering model.

We will nish this PhD thesis manuscript with a discussion of the research work performed during this thesis, and by suggesting possible future lines of work in the context of this research. The computer simulations that we aim at producing are meant to be viewed by humans, who interact with the application and, ultimately, will be judging the aspect of the images. Therefore we must know how the human visual system (HVS) works when viewing these images, and understand its characteristics and limitations, in order to understand the complex processes behind human visual perception.

Humans are capable of seeing because our visual system can translate the light present in a scene into visual stimuli that can be interpreted by our brain. When the light interacts with the objects in a scene, it is transformed in dierent ways, depending on their physical properties and chemical composition, resulting in what we commonly know as object colors (see Section 1.2.2).

Therefore, we cannot say that objects have a certain color; colors are the psychophysical sensations produced in our visual system by the energy emitted by those objects in a specic environment.

That energy hits our eyes, which are covered by multiple photoreceptors that are sensitive to some of this energy, known as light, producing a neuron signal that is sent through the visual system and on to the brain, where it is processed.

Colors are indeed intimately linked to light. As we have seen, they are the result of the interaction of the light with the objects in a scene, and ultimately with the visual system of the observer [START_REF] Sawadogo | yutils d9évlution de l qulité d9un prmétrge de propriétés visuellesX s des textures ouleur[END_REF],

Chapter 2. Human visual perception of materials which means that colors cannot exist in the absence of light. We could then say that we do not see objects, but onneted sets, grouped by color criteria, that form shapes.

Visual perception processes are not the result of the action of individual areas in the HVS, but rather, of a collaborative interaction between them. For this reason, perceptual processes are dicult to describe completely, although many key features can be modeled [START_REF] Mcnamara | Visual perception in realistic image synthesis[END_REF]. In this chapter we will describe the structure of the HVS and present some important notions that are required to understand the mechanisms behind human visual perception, how the human eye captures the energy in a scene and transmits it to our brain to be translated into a visual response.

Transforming electromagnetic waves into a visual response 2.1.1 Electromagnetic radiation and visible light

Objects are constantly emitting electromagnetic radiation. A specic portion of this radiation can be seen by the human eye, and it is therefore known as visile light, or just light 1 . The nature of light can be typically explained by two fundamental theories, according to which light can behave both as a wave and a particle. This is known as the wave-particle duality of light. These two theories are complementary in the sense that, while many observations can be explained by both models, some can only be explained by one or the other. 1 Some authors use the term light more widely to refer to any electromagnetic radiation and the term visible light for the radiation that can be seen, but here we will use both as synonyms for visible light. From the point of view of the wave theory, the electromagnetic spectrum can be classied into dierent types of radiation attending to its wavelength. According to this classication, the term visile light refers to all the radiation with wavelengths roughly between 400 and 700 nanometers. This part of the electromagnetic spectrum is known as the visile spetrum, and corresponds to the wavelength interval that the photoreceptors in our eyes are sensitive to. The visible spectrum goes from violet light to red light, but often we also speak of ultraviolet light for the radiation with wavelengths immediately below the visible spectrum (100 nm -400 nm), and infrared light for the radiation with wavelengths immediately above it (700 nm -1 mm), even though we cannot see this radiation and therefore it should not be considered as light. Figure 2.3: The electromagnetic spectrum. The visible light is that with wavelengths roughly between 400 and 700 nanometers. Ultraviolet and infrared light is that with wavelengths immediately below and above the visible spectrum, respectively. Image obtained from he hotovolti vighting qroup [START_REF] Mccann | Visible light-what the human eye sees[END_REF].

Mechanisms of the human eye for sensing and processing light

General physiology of the human eye

The processing of information in the HVS takes place in three main stages: the eyes, the visual pathway that connects them to the brain, and the brain cortex. The eyes are two pseudo spheres of about 24 mm in diameter, with their centers separated by a distance of about 6.3 cm in average Chapter 2. Human visual perception of materials for an adult although it varies with the person. The walls of the eyes are formed by three layers (Figure 2.4): schlera, choroid, and retina, respectively from the innermost to the outermost layer.

Towards the anterior pole, the schlera transforms into the cornea, a transparent tissue that is curved outwards about 1 mm with respect to the ocular globe. [START_REF] Wyszecki | golor siene[END_REF][START_REF] Sève | iene de l ouleur E espets physiques et pereptifs[END_REF] At the intersection with the cornea, the choroid continues into the ciliary muscle and the suspensory ligament which, in turn, holds the lens a biconvex structure that focuses the light on the retina by changing its shape to adapt to dierent focal distances, a process known as accommodation. The iris and the ciliary muscle are responsible for controlling the pupil size and the amount of light that reaches the retina. The space between the cornea and the lens, divided by the iris into the anterior and posterior chambers, is lled with a saline solution called the aqueous humour which controls the intraocular pressure and the refractive index, amongst other important functions.

The retina, which is an extension of the optic nerve, contains a series of photoreceptor cells and dierent layers of visual neurons. The most sensitive area in the retina is the fovea and, more specically, its central region an area of about 400µm, corresponding to a visual eld of 1.3 • called the foveola, which contains the highest concentration of photoreceptors. The optic nerve, which contains no photoreceptors, connects the information gathered in the retina with further visual processing stages that take place in the brain.

The images of what we see are formed at the fovea. Therefore, if we consider the eye as an optical system, the visual axis which passes by the xation point at the center of the pupil and the fovea is deviated about ve degrees from the horizontal optic axis, as shown in Figure 2 transmitting the axons from right-eld neurons to the left brain hemisphere, and the axons from lefteld neurons to the right brain hemisphere. From there, the axons follow the optic tracts on to their respective hemisphere's LGN (lateral geniculate nucleus), where the information is processed and transformed. The new axons then follow the optic radiations to the primary visual cortex (the V1 area) and successive visual areas, where the information is nally processed and interpreted. [START_REF] Wyszecki | golor siene[END_REF][START_REF] Valero | Color science lecture notes[END_REF] 

The human photoreceptors

The surface of the retina is covered by dierent photosensitive and neuron cells of ve types: photoreceptor, bipolar, ganglion, horizontal, and amacrine cells. All these cells are arranged in a double radial and transversal structure which maintains the spatial properties of the image while introducing lateral inhibition eects that increase contrast and sharpness in the visual response (Figure 2.6). [START_REF] Sève | iene de l ouleur E espets physiques et pereptifs[END_REF] As we can see in Figure 2.6, the photoreceptors are very elongated cells arranged perpendicular to the wall of the choroid which can discriminate light of dierent wavelengths. They are sensitive to the photons hitting the eye and can generate signals of varying amplitudes depending on the intensity of the light.

Bipolar cells can synapse with the photoreceptors directly or through horizontal cells to transmit signals to the ganglion cells again, directly or through amacrine cells. Signals are sent using graded potentials via ON and OFF bipolar cells: in the presence of light, ON cells are depolarized (excited) and OFF cells are hyperpolarized (inhibited); inversely, in the dark, ON cells are inhibited and OFF cells are excited. [START_REF] Purves | riniples of ognitive neurosiene[END_REF] Horizontal cells are responsible for the external synapses, transversal connections between the photoreceptors and bipolar cells. They allow the eye to adjust to changing light conditions and also introduce the lateral inhibition that participates in the center-surround inhibition in the ganglion cells.

Ganglion cells provide a mechanism for perceiving contrast and detecting edges. They have a receptive eld connected with underlying levels in a way to cover isotropic areas of the visual Chapter 2. Human visual perception of materials from Robert Sève's iene de l ouleur [START_REF] Sève | iene de l ouleur E espets physiques et pereptifs[END_REF].

eld. The ganglion cell receives information about the contrast (or lack thereof ) between a central area and a surrounding area that produce opposing responses. According to the response of their receptive eld, ganglion cells can be of two types: "on-center" and "o-center". On-center cells are excited when the center of their receptive eld is exposed to light, and inhibited when the surround area is exposed to light; o-center cells have the exact opposite reaction (Figure 2.7).

The amacrime cells create the internal synapses, transversal connections between the bipolar and ganglion cells. They work laterally, like bipolar cells, but are more specialized and supplement their action. Their function, although complex and not entirely known [START_REF] Sève | iene de l ouleur E espets physiques et pereptifs[END_REF], is related to directional motion detection and modulation of light detection, amongst others.

We nd two distinct types of photoreceptor cells in the retina: rods and cones. Rods are the most sensitive photoreceptors, only active at medium light levels mesopic vision, at luminance levels of 0.001 to 3 cd/m 2 and low light levels scotopic vision, at luminance levels of 10 -3.5 to 10 -6 cd/m 2 . Cones are less sensitive to light than rods but provide a faster response time to stimuli; they are responsible for the vision at high luminance levels photopic vision, at luminance levels of 10 to 10 8 cd/m 2 and color vision. Due to their low sensitivity to light, cones can be divided in three types depending on the light wavelengths that they are sensitive to. [START_REF] Sève | iene de l ouleur E espets physiques et pereptifs[END_REF] Figure 2.7: Representation of the On-center/O-center ganglion cells mechanisms. Image taken from ikipedi [START_REF] Wikipedia | Receptive eld wikipedia, the free encyclopedia[END_REF].

There are around 140 millions of rods and 5 to 7 millions of cones in the human retina. Cones are mainly located in and around the fovea, and highly concentrated in its central region, the foveola, where all three types are mixed (Figure 2.8). Furthermore, the central region of the foveola an angular diameter of about 0.2 • only contains cones and no rods. In the 20 • around this area, the number of cones reduces drastically, whereas the amount of rods increases rapidly to achieve its peak at about 15 • of the visual axis, then reducing slowly until the peripheral area of the retina [START_REF] Sève | iene de l ouleur E espets physiques et pereptifs[END_REF].

There is a small part 7.5

• high and 5.5 • wide of the visual eld, located roughly at 12 • 15 • horizontally towards the nasal retina and 1.5 • below the visual axis, where nothing is visible. This area, which is known as the "blind spot", corresponds to the area where the optic nerve passes through the retina, and therefore there are no photoreceptors.

Human sensitivity to light

We saw earlier that the photoreceptors in the HVS are classied according to the interval of the light wavelengths that they are sensitive to. Rods have their peak sensitivity at around 498nm; cones on the other hand are separated into three dierent categories: L cones, sensitive to longwavelength light; M cones, sensitive to medium-wavelength light; and S cones, sensitive to shortwavelength light. The peak sensitivities of L, M, and S cones, are around 564nm, 534nm, and 420nm, respectively (Figure 2.9). Sometimes LMS cones are also referred to as RGB cones, hinting at the color of the light that they are sensitive to; however, as we can see in Figure 2.9, this denomination is inaccurate and LMS is preferred instead.

The spectral luminous eciency functions shown in Figure 2.10 represent the sensitivity of the photoreceptors in scotopic and photopic vision. With scotopic vision only the rods are active, so the luminous eciency function V'(λ) corresponds exactly with that of the spectral sensitivity shown in Figure 2.9; the function V(λ), however, is a combination of the three spectral sensitivity functions of L, M, and S cones, since all three are active under photopic conditions. Note that with scotopic vision we are more sensitive to shorter wavelengths which means, for example, that a red object that appears the same lightness as a blue one in daylight will appear much darker than the blue one under very low luminance levels this is known as the Purkinje eect or Purkinje shift. [START_REF] Fairchild | golor pperne models[END_REF] 2.1. which means that images cannot be formed in that area. We can see that there is a much higher concentration of cones towards the central region (the fovea), whereas rods are located in the surrounding areas of the retina. [START_REF] Valero | Color science lecture notes[END_REF] Figure 2.9: Normalized human photoreceptor absorbances for dierent wavelengths of light. Cones sensitive to short, medium, and long wavelengths are typically referred to as Blue, Green, and Red cones, respectively. Image taken from ikipedi [START_REF] Wikipedia | Photoreceptor cell wikipedia, the free encyclopedia[END_REF].

Traditionally, each type of cone has been associated with the perception of one color, which is why L, M and S cones are also known as Red , Green, and Blue cones, respectively. This is known Figure 2.10: CIE spectral luminous eciency functions for scotopic, V'(λ), and photopic, V(λ), vision. [START_REF] Fairchild | golor pperne models[END_REF] as the trichromatic color vision theory.

Proposed originally by Thomas Young (1773-1829) in 1802, it was rst considered as a hypothesis, and then as a theory when the experiments of James Clerk Maxwell (1831-1879) proved its validity by means of color light matching experiments. This theory was extended later on by Hermann von Helmholtz (1821-1894) with results from quantitative experiments. He proposed three spectral sensitivity curves for the photoreceptors, and stated that the perceived color was in fact a combination of the relative responses from each type of photoreceptor. This theory explained the additive properties of color mixtures, and several other aspects of color generation and reproduction; however, it failed to explain other phenomena of color perception. [START_REF] Valero | Color science lecture notes[END_REF] Opponent-colors theory An alternative theory, was proposed in 1878 by Ewald Hering (1834-1948), who observed that there never seemed to be color combinations such as reddish-green or yellowish-blue. According to this theory, called the opponent theory of color vision, there would be three types of photoreceptors with an opponent response to red and green, blue and yellow, and black and white. It was then based on six basic colors: red, green, blue, yellow, black and white, and stated that color perception would be the result of the combined responses of these three types of color-pair receptors, which cannot produce signals for both colors in the pair at the same time. This theory explains phenomena such as negative afterimages where a color appears when a presented stimulus of its opponent color is removed or color blindness caused by the lack of a particular chemical in the eye. However, although both the trichromatic and opponent color vision theories do explain many color perception phenomena, none of them are capable of explaining all the aspects of color vision, so we cannot say that either one is right or wrong. In fact, most recent color vision models assume a combination of both. [START_REF] Valero | Color science lecture notes[END_REF] 

Stage theory

The opponent colors theory regained popularity in the mid-20th century after a series of independent studies such as those by Jameson and Hurvich (1955), Svaetichin (1956), DeValois et al.

Chapter 2. Human visual perception of materials (1958), as well as many other researchers, provided data that reinforced Hering's theory [START_REF] Fairchild | golor pperne models[END_REF]. This resulted in a modern version of the opponent-colors vision theory, also called the stge theory. This theory shows that color perception is indeed the result of complex processes performed in the brain cortex using opponent signals received from the retina.

According to this theory, color processing would take place at least in two stages: the rst stage, corresponding to the photoreceptors, is trichromatic as described by Young and Helmholtz; the second stage follows the opponent theory, and takes place partly in the retina and partly in the visual pathway. Given the complexity of the processes that occur in the second stage, they are usually simplied using color vision models which vary from one author to another, such as those proposed by [START_REF] Boynton | A system of photometry and colorimetry based on cone excitations[END_REF] or DeValois (1993). 

  A T D   =   1 1 0 1 -2 0 1 1 -1     L M S   (2.1)

Mathematical representation of color stimuli

Color perception is the physiological sensation generated by our visual system to a specic interaction between light and matter. Indeed, all there is in reality is just light and surfaces that interact 2.2. Mathematical representation of color stimuli 23 with it. This light is measured in terms of its spectral power distribution (SPD) 2 , however most of this information is redundant because the HVS samples color signals according to the sensitivity of the photoreceptors in the retina [START_REF] Ford | Colour space conversions[END_REF]. Therefore, when we work with color stimuli we must take into account this compression of information, and modify the perceived signal's SPD accordingly.

Most color vision approaches assume the existence of an initial trichromatic retinal stage corresponding to the three types of photoreceptors, L, M, and S. Regardless of whether or not, depending on the theory, further processing may occur in deeper areas of the visual pathway, the processing of the original signals received by the photoreceptors in the HVS is always assumed to be trichromatic. As shown by Maxwell, any given color light can be perceptually matched by mixing dierent amounts of a set of three known color lights, known as primaries [START_REF] Sève | iene de l ouleur E espets physiques et pereptifs[END_REF]. The amount of each primary light required to match a stimulus are known as tristimulus values (see Appendix A).

The results of the color matching experiments proving the principles of the trichromatic theory were summarized by Hermann Grassmann (1809-1877) into the two following laws, known as Grassmann Laws [START_REF] Malacara | golor vision nd olorimetryX theory nd pplitions[END_REF]:

IF o speify olorD three elements re neessry nd su0ientX the hueD the luminneD nd the luminne of the intermixed whiteD whih de(nes the sturtionF PF por every olorD there is omplementry olorD whihD when mixedD eomes olorless gryF QF wo lights of di'erent olorD with the sme hue nd sturtionD when mixedD produe nother olor with identil hue nd sturtion independently of their power spetrF RF he totl luminne of ny mixture of light is the sum of eh light9s luminneF where = represents a perceptual match. Using this notation, Grassmann Laws can be summarized in mathematical terms as follows [START_REF] Ohta | golorimetryX fundmentls nd pplitions[END_REF]:

1. Proportionality: Color matching holds when the intensity of all the lights are multiplied by a constant.

α[C 1 ] = α[C 2 ] and α[C 3 ] = α[C 4 ] (2.2)
2. Additivity: Color matching holds for new stimuli obtained by adding color-matched stimuli.

[C 1 ] + [C 3 ] = [C 2 ] + [C 4 ] and [C 1 ] + [C 4 ] = [C 2 ] + [C 3 ] (2.3)
The trichromatic theory then states than any color stimulus [F] can be matched mixing dierent amounts of reference stimuli [R], [G], and [B]; we can then write the color matching equation as: 

[F ] = R[R] + G[G] + B[B]

[F λ ] = rλ [R] + ḡλ [G] + bλ [B]

(2.5) 2 Radiant ux (W/sr/m 2 ) or luminous ux (lm/m 2 ) per unit wavelength (See a more complete denition in Section A.12 of the glossary) 3 See a more complete denition of color matching functions further in this chapter and in Section A.33
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The CMF indicate the tristimulus values of the spectral primaries for each wavelength. In general, for any given set of primaries, we can write the color equation as:

[F ] = T 1[C 1 ] + T 2[C 2 ] + ... + T n[C n ] (2.6)
where n is the number of primaries used to match the color stimulus, T k are the tristimulus values, and [C k ] are the primary colors. A light with spectral power distribution (SPD)(see Appendix A) P (λ) can be seen as made of a group of lights with a narrow band of wavelengths ∆λ [START_REF] Ohta | golorimetryX fundmentls nd pplitions[END_REF], so using Expression 2.6 we can obtain any tristimulus value T from the SPD of the light, P (λ), and its CMF, f, as shown in Expression 2.7. Ohta and Robertson [START_REF] Ohta | golorimetryX fundmentls nd pplitions[END_REF] provide a detailed description of the steps to obtain this expression.

T = n i=1 P (λ)f λi ∆λ (2.7)
In order to represent color information more simply, omitting spectral information redundant to our visual system, color stimuli can be represented using tuples of numbers (the tristimulus values) and a set of primaries. Choosing a specic tuple representation and a set of primaries results in a color model; dening the conditions to interpret the model's components such as the primaries' chromaticity or the set of CMF results in a color space, that is, the space of all the possible colors that can be produced using that model under those conditions. Color stimuli are then specied as coordinates within a reference system; the specic color corresponding to those coordinates depends on the color space used.

Color spaces are always dened for an observer. Given the physiological dierences between observers in terms of cone distribution, the tristimulus values may vary from one to another depending on their visual eld. In order to produce standard color conversion functions, the CIE (see Appendix A) dened an average chromatic response function within a 2 • arc inside the fovea the area with the highest concentration of cones known as the gsi IWQI tndrd yserver or, simply, the standard observer. Alternatively, the gsi IWTR 10 • stndrd oserver is also provided for observations covering a eld larger than 4 • . There are any dierent color spaces, each one appropriate for dierent applications. The rst attempt to connect spectral color signals with physiological responses in humans was the CIE 1931 RGB color space (or CIE RGB) based on three monochromatic additive color primaries: Red, Green, and Blue. It was created based on the trichromatic color theory and the results from color matching experiments, and it is mainly used for color representation in electronic systems such as computers and displays. The results from the observation experiments showed that some colors perceived by humans could not be matched using the three primaries, because they were too saturated. Matching could only be achieved by subtracting some amount of one of the primaries from the reference color, which can be observed in the negative values present in the CMF shown in Figure 2.12(a).

In order to correct the existence of these negative values, the CIE derived a new space from the RGB color space based on experimental results from Wright and Guild [START_REF] Fairman | How the cie 1931 color-matching functions were derived from wright-guild data[END_REF][START_REF] Brill | How the cie 1931 color-matching functions were derived from wright-guild data (erratum)[END_REF] 

    R G B   (2.8)
The spectral sensitivities of the three types of cones in the HVS (Figure 2.9) originate another important color space, the LMS color space. In this space, which can be approximated to CIE XYZ • standard observer color matching functions. [START_REF] Wikipedia | Cie 1931 color space wikipedia, the free encyclopedia[END_REF] by a linear transformation, each tristimulus value represents the response of one type of cone, so it is useful when we need to model human visual perception, because it is easier to simulate the mechanisms performed by the human eye.

Visual adaptation to the environment

Human perception works in a way such that the aspect of objects remain relatively constant even when the observation conditions change. Two important adaptation phenomena take place without us realizing it when the luminance levels or the spectral distribution of the illuminant change, in order to adapt to the new conditions while preserving our perception of the environment. These two phenomena are, respectively, luminance adaptation and chromatic adaptation, or color constancy.

Luminance adaptation

The HVS can work at varying levels of illumination, ranging from about 100000 lx to about 0.0003 lx. To adapt to such dierent levels, the human eye has two mechanisms: on the one hand, the pupil can adjust its diameter, similar to the diaphragm of a camera, to control the amount of light reaching the retina; on the other hand, rods and cones alternate their function rods in dark (scotopic) conditions, cones in bright (photopic) conditions, and both at the same time in intermediate brightness (mesopic) conditions to change the responsivity of the retina. The adaptation from scotopic to photopic conditions is much quicker (about 1 min) than the adaptation from photopic to scotopic (around 30 min), as illustrated by the experimental dark adaptation curve in Figure 2.13.

Chromatic adaptation

As explained by Ohta and Robertson [START_REF] Ohta | golorimetryX fundmentls nd pplitions[END_REF], chromatic adaptation occurs in two steps: rst, an illuminant (or colorimetric) shift takes place, during which our perception of the colors will change according to the spectral distribution of the new illuminant; then, an adaptive color shift takes place, where our eyes adapt to the new illuminant and the color appearance changes to a corresponding color that matches that under the old illuminant. In theory these two steps should perform a color shift of similar length in opposite directions of the color space, resulting in perfect color constancy; however, in practice, color constancy is rarely perfect, and there is always a resultant color shift that is typically much smaller than either one of the two shifts separately. This process is illustrated in S D and S A are the chromaticity points of an object under illuminant D and A, respectively; and S D is the corresponding color for S D under illuminant A. Colorimetric changes in the illuminant become a problem in cases such as when we look at photographs or displayed images; in these cases, the radiometric information reaching our eyes is not that of the scene depicted in the images, but that of the environment under which we observe such images, which means that color constancy cannot take place. For this reason, we must introduce in the images a color correction to the illuminant color shift between the acquisition and the observation environments, known as white balance. 

Modeling visual adaptation mathematically

The complex nature of human perception requires that new elements be introduced to fully describe a color, not only from a mathematical point of view, but also in terms of their perceptual aspect.

Color appearance models (CAM) attempt to quantify the human sensory response to color stimuli, describing relationships between changes in viewing conditions and changes in appearance, by introducing appearance parameters such as hue, lightness, or chroma, which represent a measure of subjective sensations. Since the LMS color space is related to human visual perception, chromatic adaptation operations are typically performed in that space, so a transformation between the CIE XYZ and the LMS space must be dened. However, given the diuse boundaries between the sensitivity bandwidths of the three types of cones, no objective transformation exists between these two spaces, and instead several authors provide various chromatic adaptation transforms (CAT) as part of dierent CAMs.

One example of a CAT is given by the von Kries transformation matrix. This matrix is based on the von Kries model, which proposes an independent color adaptation between two viewing conditions for each type of cone, by means of a linear transformation, as described in Expression 2.9,

where L, M , and S, are the LMS tristimulus in the initial viewing conditions; L a , M a , and S a , are the LMS tristimulus in the new viewing conditions after the adaptation; L max , M max , and S max , are the maximum value for L, M, and S, respectively; and L white , M white , and S white , are the LMS tristimulus of a white object.

L a = k L L (k L = 1/L max or k L = 1/L white ) M a = k M M (k M = 1/M max or k M = 1/M white ) S a = k S S (k S = 1/S max or k S = 1/S white ) (2.9) 
For convenience, the same transforms are presented in matrix form in Expression 2.10, as a transformation between spaces under dierent illuminants. under scotopic vision rods are active, so our eyes are more sensitive to small changes in luminance, but acuity for detail and color is poor; conversely, under photopic vision, cones are active, so color vision and acuity are sharp, but sensitivity to changes in luminance is low. [START_REF] Mcnamara | Visual perception in realistic image synthesis[END_REF] Visual acuity is typically measured using the Snellen eye chart (Figure 2.15) or any of its more modern variants such as the LogMAR chart. According to these charts, a normal person has a visual acuity of 20/20 (6/6 in the metric system) which means that this person is capable of seeing clearly at 20 feet (respectively, 6 meters) an object that should be seen clearly at that distance.

In general, the numerator of this fraction, known as the Snellen fraction, indicates the distance at which a person can see clearly an object that should normally be seen clearly at the distance indicated in the denominator e.g. 20/10 (6/3), 20/25 (6/7.5), or 20/100 (6/30) [START_REF] Strouse-Watt | How visual acuity is measured[END_REF].

Each letter on the 8th line (20/20 or 6/6) of the Snellen chart should subtend exactly 5 minutes of arc (and the width of each black line should subtend 1 minute of arc) from a distance of 6 meters. Another way to measure visual acuity is through the use of sinusoidal gratings, which measure acuity in terms of spatial frequency. Snellen's fractions can be converted to spatial frequency (Fig-

ure 2.16
), which is more convenient when working with displays given the grating-like arrangement of pixels in an image. In a grating, a cycle is the distance between two consecutive black lines (i.e.

one black line followed by a white line). A person with normal vision is known to have a maximum resolution of 60 cycles per degree of vision, which means that an image must contain at least 60 pixels per degree of vision to avoid its pixels from being seen. [START_REF] Kalloniatis | Visual acuity, evisionX he yrgniztion of the etin nd isul ystem rF uolD iF pernndezD nd F xelsonD lt vke gity @AX niversity of th relth ienes genter[END_REF] The viewing angle or eld of view (FOV) of an observer located at a given distance can be calculated using trigonometry, as shown in Expression 2.11. M R = F OV × 60 (cycles)

F OV = 2 × arctan Sample size 2 × Observation distance deg (degrees) 
(2.12)

Contrast sensitivity

We cannot see patterns with frequencies over the maximal resolution of the eye. The sensitivity of the HVS to the spatial frequency of visual stimuli can be measured using the Contrast Sensitivity Function (CSF), which represents the contrast sensitivity of a person as a function of the spatial frequency of a stimulus. [START_REF] Mcnamara | Visual perception in realistic image synthesis[END_REF] Contrast perception follows the WeberFechner law, according to which the human perception of a given stimulus follows a logarithmic function, so that the just-noticeable dierence (JND) between two adjacent stimuli is proportional to their magnitudes. Depending on the situation, contrast can be dened in several ways, with slight dierences, the most common being the ratio between the luminance dierence between two adjacent stimuli and the average luminance. The most relevant in our context is the eer ontrst, dened as shown in Expression 2.13.

I f -I b Ib (2.13)
where I f is the luminance of an image feature, and I b is the luminance of the background.

This formula is used in cases with small features on a large uniform background, that is, with small dierences between the feature and background luminance [START_REF] Wikipedia | Contrast (vision) wikipedia, the free encyclopedia[END_REF]. This is illustrated by a phenomenon called simultaneous contrast, where a stimulus of constant luminance is perceived with a dierent contrast as the luminance of the background changes (Figure 2.17)

Acuity of color vision

The spatial acuity of the HVS varies for dierent parts of the light spectrum or locations in a color space. Some contributing factors are the chromatic aberration of the eye, the photoreceptors density on the retina, or the spatial acuity of opponent channels [START_REF] Meyer | Color spatial acuity control of a screen subdivision image synthesis algorithm[END_REF]. Due to the refraction index of the human eye, each wavelength arriving into the eye is focused to a dierent distance from the retina that is directly proportional to the wavelength of the light, which limits our ability Chapter 2. Human visual perception of materials squares. [START_REF] Mcnamara | Visual perception in realistic image synthesis[END_REF] to resolve each wavelength. This is called axial chromatic aberration. Another limiting factor is the density of each type of photoreceptor on the retina: it is known that all three types of cones are not equally distributed over the retina, with approximate double amount of L cones than M cones, which samples the original spectral stimulus down to only three components; as shown by Meyer and Liu [START_REF] Meyer | Color spatial acuity control of a screen subdivision image synthesis algorithm[END_REF], there are approximately 62 L cones, 32 M, and 6 S per degree of vision, which determines the visual acuity for each wavelength. Furthermore, Meyer and Liu also cite results

by Middleton [43] and Schade [START_REF] Schade | On the quality of color-television images and the perception of color detail[END_REF] as evidence that color spatial acuity is less than monochrome, supported by results from Mullen [START_REF] Mullen | The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings[END_REF] showing a cuto of 34 cycles/degree for the luminance channel, and 11 cycles/degree for the red/green and yellow/blue opponent channels (see Section 2.1. spatial localization; it also improves the assessment of surface curvature and the perception of surface materials using luster perception. Combining the information seen by both eyes, known as binocular summation, permits to average the visual input from both eyes, correcting for monocular inaccuracies, and improving absolute light detection at the perception threshold and the CSF. [START_REF] Stidwill | xorml inoulr visionX heoryD investigtion nd prtil spets[END_REF] The HVS infers depth perception from information received by two types of depth cues: monocular and binocular. Some monocular cues are: perspective, texture gradients, occlusion, relative and known object sizes, haze, or defocus [START_REF] Saxena | Learning depth from single monocular images[END_REF]. Binocular cues are provided by four main physiological mechanisms: binocular disparity, accommodation, eye convergence, and motion parallax.

From these four mechanisms, we have already described binocular disparity and accommodation (see Section 2.1.2); eye convergence is the capability of the human eye to rotate inwards, increasing or reducing the amount of parallax; motion parallax refers to the additional parallax introduced by movement. Without these four physiological cues, it is not possible to perceive a true threedimensional view [START_REF] Mcallister | tereo nd QEh hisply ehnologies[END_REF].

Vision as a temporal combination of partial views of a scene

The human eye is constantly sampling information from images projected onto the retina. This information is integrated in time at several stages along the visual system, notably the retina and the visual cortex. Information is integrated at the retina to stabilize the position of objects and produce the impression of smooth movement. This temporal integration has a limited resolution given the nite amount of time required to process the information. Intermittent stimuli are perceived smoothly when presented to eye above a certain rate; below that rate, they are perceived as separate, producing the sensation called icker [START_REF] Kalloniatis | Temporal resolution, evisionX he yrgniztion of the etin nd isul ystem rF uolD iF pernndezD nd F xelsonD lt vke gity @AX niversity of th relth ienes genter[END_REF][START_REF] Le Gargasson | Ii-l'÷il et la vision[END_REF]. These mechanisms are exploited, for example, by television or cinema, to produce the desired eect from a succession of static images. A second integration level is located at the visual cortex, where the brain creates a representation of a visual scene from dierent spatial eye xations. Processing times take place between dierent saccades, while the eye is static, so rapid saccades (microsaccades) do not provide visual information. On the other hand, smooth pursuit movements allow us to follow and xate moving objects to stabilize gaze.

At an upper integration level, the environment can be reconstructed as a homogeneous whole

where each element appears perfectly clear. However, in reality, this reconstruction is put together from a number of dierent elements, captured at successive times, which only contain some clear elements and many blurred ones. Such a complex puzzle is reassembled using immediate memory to provide it with continuity and coherence.

These cognitive mechanisms are used, for example, to provide color constancy under dierent illuminations. [START_REF] Le Gargasson | Ii-l'÷il et la vision[END_REF] 2

.7 Conclusion

Human visual perception, as we mentioned concisely in Chapter 1, is produced as the combination of a series of bottom-up and top-down processes. In the bottom-up process, the sensory responses produced by the light that arrives in our eyes constitutes a stimulus representation which is accepted by the observer passively. This representation includes low-level information such as color discrimination and light information [START_REF] Balcetis | See what you want to see: motivational inuences on visual perception[END_REF]. Human perception continues as the information is transmitted via dierent channels to deeper layers, where top-down inuences enrich our perception of the environment. The signals are processed at several layers of the LGN to provide information about depth, or ne details about brightness and color contrast. The information from the LGN is then Chapter 2. Human visual perception of materials sent to the visual cortex. In early cortex stages, spatial information is provided, such as orientation and contours, being responsible for the occurrence of some basic visual illusions related to gure contour and occlusion [START_REF] Heider | Stereoscopic illusory contourscortical neuron responses and human perception[END_REF]. Deeper areas of the visual cortex provide more complex information, inuenced by factors such as the environment, the perception context, the perceiver's cognitive and psychological state, or the motivation. At this point, perception processing specializes into two dierent paths: the "where" (or "how") stream, involved in spatial attention, aecting eye and hand movements; and the "what" stream, involved in recognition, identication, and categorization of visual stimuli.

When we display a simulated virtual stimulus to a human observer, the information corresponding to top-down inuences is already provided by the observers themselves. Indeed, when observers look at a displayed simulation, they already contribute with high-level information processing beyond what is provided by the simulation. For this reason, we only oer here an introduction to the mechanisms behind passive bottom-up processing. To maximize perceptual realism in the simulations, we must minimize the amount of perceptual information from bottom-up inuences that gets lost in the simulation process, that is, chromaticity (color) and luminance information.

The visual studies that we perform in this thesis research also need the consideration of the higher-level mechanisms that participate in the visual perception, in order to understand what the observers see when they look at the materials. As we will see in the following sections, color and luminance contrast, in turn determined by how the color and luminance information in the scene in represented in the images, play an important role in the perception of material aspect in images.

Since they aect the spatial relationships within sub elements in a texture, this also aects the ability of an observer to identify and recognize visual image attributes such as texture density, or randomness.

Chapter 3

Ensuring color signal consistency in the visualization chain We have seen in previous chapters that visualizing images on a display implies the representation of a radiometric reality with an unlimited dynamic range, in a medium with a much more restricted dynamic range. Although the human eye is not capable of perceiving all the luminance variations present in a real scene, it can perceive a much wider range of luminance levels than what can be shown by a display.

The perceptual aspect of displayed images is directly related to three main factors: the display technology, the transfer function, or colorimetric response, of the visualization device (inherent to its electronic components) and the tone mapping operator used to display the image. Section 3.1 starts by introducing liquid-crystal display (LCD) technologies presently the most commonly used in the general consumer market in comparison with their predecessor, cathodic ray-tube (CRT) displays. The most prevalent LCD technologies are presented, as well as the mechanisms that they use to produce color. Next, we describe the two most popular technologies for depth visualization, stereoscopy and holography, naming some advantages and disadvantages of Chapter 3. Ensuring color signal consistency in the visualization chain each one. We nish the section by explaining the display technology chosen for our tests, justifying this choice in terms of the suitability of the technology for the experimentations. Section 3.2 describes the most relevant characteristics of LCD displays that may aect the visualization under our specic test conditions, as well as a methodology to perform the characterization of the device.

Each aspect of this process is illustrated with specic results obtained for our chosen display. Finally, Section 3.3 will describe some particularities of the characterization methodology required by the use of stereoscopic visualization.

Choosing the right display device

The technology used in the visualization device has a very strong inuence on the quality of the displayed images. Some technologies may be inherently limited by the electronics, while others may skyrocket the price of the solution. Choosing the right display technology is therefore a very important step in obtaining a solution that provides good results within the requirements of the project.

LCD technology has replaced CRT displays as the main technology for desktop computer monitors. We present in this section an overview of the main technologies used in LCD displays focusing on those most relevant to our test display providing in each case some advantages and disadvantages relevant to psychophysical experimentation.

Display Technologies

Cathodic Raytubes (CRT) vs Liquid-crystal displays (LCD)

CRT displays produce light by means of three primary phosphors red, green, and blue for each pixel. Each phosphor is excited independently by an electron beam of varying intensity to form a pixel. This results in a large gamut of colors and brightness levels [START_REF] Lin | Frame rate modulation for liquid crystal display (lcd)[END_REF]. Conversely, LCD displays are formed by an array of liquid crystal molecules which can change their polarization state from "on" to "o" by applying a varying electric voltage. In their o state the molecules block the light, whereas in their on state they let the light pass.

Although there are many advantages to LCDs over CRTs in terms of consumer applications, such as smaller space requirements or lower energy consumption, their use in vision science applications introduces several complications [START_REF] Sharma | Lcds versus crts-color-calibration and gamut considerations[END_REF][START_REF] Brainard | Display characterization, inylopedi of imgE ing siene nd tehnology[END_REF][START_REF] Elze | Temporal properties of liquid crystal displays: Implications for vision science experiments[END_REF]. For example, Gaurav Sharma reported that while earlier LCD models already provided a larger color gamut than CRTs, changing the viewing angle resulted in colorimetric variations larger that what was estimated by the characterization model. Indeed, the large variations of luminance as a function of both the viewing angle and the distance from the surface's central position, is a well known disadvantage of LCD displays. Elze and Tanner [START_REF] Elze | Temporal properties of liquid crystal displays: Implications for vision science experiments[END_REF] provide a very good analysis of the positive and negative aspects of the main technologies used in LCD displays in comparison with CRT displays.

Common LCD display technology

Depending on the type of liquid crystal molecules, their arrangement, and their orientation, we can distinguish dierent types of LCD displays. Next we describe the most common technologies: Twisted Nematics LCD and In Plane Switching LCD.

Twisted Nematic Liquid Crystal Display (TN-LCD) TN-LCD is the most common tech- nology in the desktop display market [START_REF] Baker | Panel technologies. TNT Central[END_REF], used also for watches and calculators. It consists of a layer of nematic liquid crystals, between two layers of glass. As a voltage is applied to the nematic 3.1. Choosing the right display device 35 crystals they stand up, changing their orientation and polarization, and blocking light with the selected polarization. Varying voltage can produce almost any gray level [START_REF] Gerhard | Twisted nematic liquid crystal displays (tn-lcds), an invention from basel with global eects[END_REF]. They present however certain drawbacks, most notably their narrow viewing angles (especially vertically) and low color depth [START_REF] Gray | Liquid crystals for twisted nematic display devices[END_REF][START_REF] Baker | Panel technologies. TNT Central[END_REF][START_REF] Klein | Photometric and colorimetric measurements of crt and tft monitors for vision research[END_REF] In Plane Switching Liquid Crystal Display (IPS-LCD) This technology was designed to resolve the limitations of TN-LCDs such as brightness change an color shift depending on the viewing angle. In IPS-LCD, liquid crystal molecules never change their orientation with respect to the display panel, and instead they rotate in parallel with the panel. For this reason, the variations related to the viewing angle are much smaller than in TN-LCDs [63]. Besides preserving accurate color display from all viewing angles, they eliminate other issues of TN-LCDs like the appearance of tailing when touched [START_REF] Lg Display | Ips technology[END_REF], which makes them more convenient for touch-screen devices, such as smartphones and tablets.

Color management in LCD displays

The human eye can discriminate around 10 million dierent color shades. Modern graphic cards are capable of displaying RGB images with up to 8 bits per color channel, or 24 bits in total, which can represent 16.7 million color shades.

Color in LCDs is created by a backlight which is usually made of LEDs that can be separated into dierent color components via optical elements, which are then let pass by the liquid crystal molecules depending on their state. These molecules can typically present only two states (on/o ) which translates into a color depth of one bit per pixel. Some newer models use variations with molecules that can present a few dierent states, with up to 6 bits per bit, so they cannot produce as many colors as graphic cards. It is therefore necessary to use additional techniques to increase the precision of pixel colors on LCD displays.

The most common technique is frame rate control (FRC), which takes advantage of the color persistence properties of the human retina [65, 66] (see Section 2.3.1) to increase in the number of perceivable gray scale values. The number of color shades may therefore be increased by combining dierent colors in time at a fast rate (30 Hz), through the use of dithering algorithms a pixel density variation method that introduces intentional noise to reduce quantization patterns. In theory some problems such as transverse striping or perceived ickering [START_REF] Lin | Frame rate modulation for liquid crystal display (lcd)[END_REF] may arise due to the use of FRC, specially in rst-generation LCD models and the most inexpensive modern ones, but in practice they are hardly noticeable to the human eye [67].

Depth perception in displays

Recent years have seen the emergence of numerous visualization technologies that try to reproduce the perception of depth in the human visual system (HVS). Section 2.5 described how the humans can obtain depth information from monocular perspective, texture gradients, occlusion, etc and binocular cues binocular disparity, accommodation, convergence, and motion parallax. These binocular cues can be reproduced by some display technologies to produce depth perception in the viewer. The most important of such technologies are stereoscopy and holography. Stereoscopic displays are developing at a very fast pace, and are already well established as a mass-market product; however, they have some limitations that make holographic displays seem like a more promising technology in the future. [START_REF] Fairman | How the cie 1931 color-matching functions were derived from wright-guild data[END_REF] Chapter 3. Ensuring color signal consistency in the visualization chain

Stereoscopic displays

This is the most common type of displays that provide depth perception. They are often referred to as 3D displays, however this name is not correct because they do not provide all four binocular depth cues required to see true 3D images. Indeed, although the images shown by this type of displays are perceived by the observer as being at dierent depths both with respect to each other and to the observer the elements depicted are all at the same depth plane, namely, the image plane corresponding to the screen. Therefore, when looking at these images our eyes must accommodate to the screen's distance and not to the perceived distance, which provides conicting accommodation cues. Moreover, since the displayed images have been taken from a xed point of view, there is no true binocular disparity between the images seen by each eye.

Nonetheless, although this type of displays does not provide true three-dimensional images, they can mimic stereoscopic visualization and simulate the perception of depth by adding the missing binocular depth cues articially. This can be done in several ways, as we will describe next.

Stereo-Pair displays

Stereo-Pair stereoscopic displays create articial parallax by distributing a separate image of the scene for each eye, so they normally require an additional viewing device generally a pair of special glasses in order to combine two separate images sent by the display into one single view. There are two types, distinguished by the type of viewing device used:

• Active (shutter) stereoscopy:

The image-eye synchronization known as alternate-frame sequencing electronics are contained within the glasses themselves; normally, two independent LCD lters (one per eye) switch on and o, alternatively for the right and left eye, in phase with the displaying device, at rates from 60 to 120 frames per second or above. This technology provides a larger color spectrum and higher image resolution, however, the lters in the glasses alter the original image color and reduce the luminance, which may also modify the contrast in LCD displays as a result of the reduction of the blacklight intensity. This technology has proven so far to be the best solution for 3D home entertainment such as video games and home cinema.

• Passive stereoscopy:

Images are sent to the viewing device in a special way so that the images for each eye can be separated on the other end. The most common solutions rely on using a dierent polarization (usually linear or circular) or complementary colors (known as anaglyph stereoscopy) for each eye's image. The glasses contain special lters to be able to only see the right image. This technology has the advantage that glasses are inexpensive, but the displays are much more expensive and, since the images have to share the screen, the resolution is reduced. This technology is more common in applications for large audiences such as cinema theaters.

Autostereoscopic displays

Unlike stereo-pair displays, autostereoscopic displays also known as glasses-free 3D or glassesless 3D do not require an additional external device in order to provide the perception of depth [68]. They have the ability to multiplex several views at a time, so a series of different perspective views can be delivered to the observers depending on their viewpoint, a process called diretionEmultiplex [69]. This type of stereoscopy reproduces two of the four eye mechanisms required to create a 3D image, namely, motion parallax and binocular dis- 

Holographic displays

Holographic displays work by encoding at a spatial light modulator (SLM) the light diracted from a 3D object, which essentially corresponds to its Fourier transform. Color is typically produced using either monochrome (most often) or light-emitting diodes (LED) [71,72]. Although some early working implementations exist [73, 74, 75], they are much less developed than stereoscopic displays; however, the limitations inherent to the latter, make holographic technologies a more promising bet for 3D displays. Unlike stereoscopy, holography does provide all four binocular depth cues necessary to reconstruct natural looking three-dimensional scenes with unlimited depth, however, it still has some issues such as insucient display resolution, inadequate data volume, and large computational requirements [76].

Our choice

We have presented the most relevant types of display technology, as well as the main techniques to reproduce depth perception in displays. The nature of our work imposes certain requirements that reduce our number of choices in terms of display technology, so the advantages and disadvantages of each type had to be taken into account when choosing a display for our experiments. Indeed, initial material analysis performed by Couka et al. [77,78] reveal that the eect particles contained in some of the paint coating materials used in our research are distributed at dierent depths and orientations. Consequently, as we will explain in later chapters, depth plays a very important role in the visual perception of the material aspect, and neglecting this information would reduce the perceptual realism of the displayed images.

Although true depth would be preferable, the current development state and low availability of holographic displays eectively restricts our choice of displays to stereoscopic displays. We tested several types of stereoscopic technology, such as a stereoscopic projector, an autostereoscopic display, and several types of active-viewing stereoscopic displays, and found that active-viewing stereoscopy gave the best results in terms of colorimetry, resolution and quality/price ratio. In order to avoid an elevated cost for the system, we decided to choose general-purpose technology, so the nal choice was an esus qPRVi stereoscopic display with a set of Nvidia3D vision shutter glasses as the viewing device. We purposely selected this display's specications (see Table 3.1) to obtain the best results for our requirements, keeping in mind the numerous disadvantages of using an LCD display for visual experiments [START_REF] Elze | Temporal properties of liquid crystal displays: Implications for vision science experiments[END_REF][START_REF] Brainard | Display characterization, inylopedi of imgE ing siene nd tehnology[END_REF]. This monitor uses TN-LCD technology but, in spite of the drawbacks mentioned earlier associated with this technology, this specic model ranks very well in terms of color reproduction in existing benchmarks [79]. Furthermore, the color depth is increased greatly through the use of FRC, which we could corroborate from the color gamuts resulting from the measured primaries in each of the tested monitors (Figure 3.1).

The only important problem left to workaround is the reduced viewing angles which, given the size of our samples, we can minimize by restricting the position of the displayed samples during the experiments to avoid using the outer edges of the display, and also limiting the observer's position to the center of the screen to minimize the angle with respect to the image position.

Color signal transformations introduced by the display

Traditionally, CRT displays have always been preferred over LCDs for visual experiments because their behavior has been widely studied. However, due to the advances in at-screen display tech- LCDs, although it is necessary to perform extensive measurements to ensure their suitability, since violations of some model assumptions might invalidate the results. In eect, an accurate characterization is required to identify the eects of possible imprecisions in the results of the experiments, and verify whether or not a specic display is suitable for the tests.

As we have seen earlier, human visual perception is mainly the result of the interaction between an electromagnetic signal hitting the retina and the HVS. In order to ensure the perceptual realism of the displayed stimuli, we must characterize and control the transformations sustained by the visual signal during visualization. The color characterization of a display allows us to nd a transfer function that predicts the display's colorimetric response from a given input (forward transformation) and, conversely, to nd the input needed to produce a given output (inverse transformation) [84,85]. Therefore, the transfer function permits us to move between device-dependent and device-independent representations.

It is dicult to obtain a perfect characterization model that is valid in all possible situations; the recommendation is to nd a simple model that is acceptable in most cases and then extend it Viewing angle(CR+/-10):

170 • (H)/160 • (V)
Gray-to-gray response: 1 ms

Color depth: 6 bits + FRC Table 3.1: Technical specications of the Asus VG248QE monitor.

to deal with exceptions, rather than to nd a very specic model that may not allow to be inverted to cover more general cases. Following this recommendation, we base our characterization model on the standard CRT model, as described by Brainard et al. [START_REF] Brainard | Display characterization, inylopedi of imgE ing siene nd tehnology[END_REF], adapting the model for certain particularities of stereoscopic LCD displays. Indeed, most of the assumptions made in the standard CRT model also apply to LCDs, and this model can be easily adapted to cover the particular characteristics of the latter.

Previous considerations

The CRT characterization model considers that the light emitted by any given pixel in the screen is the result of a linear combination of the contribution from each of the color lters in the pixel plus the reected light from the ambient illuminant. Since we want to display images in stereoscopic mode, the entire characterization process was done using stereoscopic color samples, so that the monitor's stereoscopic mode is kept enabled throughout the process, and placing a pair of shutter glasses in front of the characterization device.

C(λ) = rR(λ) + gG(λ) + bB(λ) + A(λ) (3.1) 
This is important because the stereoscopic mode has an eect on both the colorimetry and the luminance of the output, as shown in Figures 3.4 and 3.5. We will discuss more in detail the eects of stereoscopy in the characterization process in Section 3.3. From now on, all the results will be shown under these conditions, unless otherwise stated. 1 The o-axis angle is the horizontal oset of the viewing angle with respect to the display's normal. Although the gamut size does not change much, the white point moves towards the green in stereo mode as a result of the lters in the shutter glasses.

We created a series of large RGB uniform color patches (see Table C. separately from 0 to 255, with increments of 10 units. This resulted in three ramp sets for the red, green, and blue. Additional shorter series were created for Magenta, Yellow and Cyan, with intensity increments of 50 units, plus an hromti series of grays. This results in seven color series and a total of 120 samples, used to estimate the parametric model that characterizes the response of the display. Additionally, an image of the 24-path Macbeth color chart was used to validate the estimated models, and black and white samples were measured throughout the characterization process to ensure the stability of the white and black point signals. Figure 3.6

shows the characterization setup and the measuring distances. Both the described color samples and the setup were used throughout the entire characterization process in this chapter.

Pixel independence

One of the assumptions of the most common characterization models is that of pixel independence.

Pixel independence means that the intensity of each primary color at each pixel location depends only on the input signal for that pixel, independent of the neighboring pixels 

Warm-up

LCD panels can take a long time to warm up due to the backlight used to illuminate the liquid crystal panel. Although our model uses a white LED (WLED) backlight which is known to be more ecient we performed stabilization measurements to ensure that the peak luminance was reached before proceeding with the characterization. We displayed a medium-tone gray image code named gryIPH, as shown in Table C.1, at approximately a 50% intensity level, with RGB tristimulus [120 120 120] on the monitor. Using a spectroradiometer 2 , we took regular measurements (at about 10- minute intervals) of the SPD of the signal emitted by the display on three points evenly distributed along the central horizontal line of the screen (points P1, P2 and P3 in Figure 3.7). Once the graphs were stable during several measurements (Figure 3.8), we considered that the display had already reached its peak luminance. Unlike in older LCDs, we can see that our monitor has a very low warm-up time, which is almost immediate after being switched on.

Angular dependence

We have seen that one of the biggest disadvantages of using LCD displays for visual experiments is the strong dependency of the screen's luminance on the viewing angle. We positioned the spectroradiometer facing the center of the screen, parallel to its normal; we then took several measurements on the screen by rotating the spectroradiometer's head so as to reproduce o-axis visualization. This way, we can represent more faithfully what an observer would perceive when positioned in its place.

Figure 3.7 shows the dierent luminance levels relative to the maximum luminance obtained for all the color patches measured on the display's screen for the same color patch, gray120, used in section 3.2.1.2. In eect, we can see that the luminance varies greatly for o-axis observation angles; however, as mentioned earlier, we believe that this eect can be minimized by restricting the position of the displayed objects to the center of the display, thus reducing the amount of o-axis observations. Decreasing the observation distance would also help mitigate this eect, given that shorter distances require larger deviation angles from the center of the screen for the observer to reach the edges of the display.

Channel constancy

The model described by equation 3.1 assumes the presence of channel constancy in the display.

Channel constancy implies that, when only one channel is active, varying the input intensity for that channel only changes the luminance, whereas the chromaticity remains constant. In terms of the SPD of the signal emitted by the display, channel constancy means that the responses of a given channel for two dierent inputs are proportional, so that P c i λ = P c j λ × k, where P c i λ and P c j λ are the SPDs emitted by channel C as output for two input intensity values, i and j, respectively, and k is a multiplicative constant. In terms of chromatic properties, if (x i , y i ) and (x j , y j ) are the chromaticity coordinates of inputs i and j, respectively, then x i = x j and y i = y j , and their respective luminance, Y i and Y j , are such that Y i = Y j × k. In the case of the x coordinate, the green channel remains almost constant, whereas channels red and blue have a very poor constancy for low intensity inputs and improve as the intensity increases;

similarly, in the case of the y coordinate, channel red remains constant, but channels green and blue deviate from constancy at low intensities and behave almost linearly for higher values. Our studies suggest that the reason for this low color constancy is that, as we already explained LCD displays, unlike CRT displays for which this calibration model was designed do not produce light by means of independent monochromatic light sources, but through a common backlight and several color lters. In the case of the Asus VG248QE, a white backlight is used, so the method used to produce this white light inuences the response of each color channel. As we will see later, we can use more complex characterization models to take into account this lack of constancy.

Channel independence

Another assumption of the CRT characterization model is that the light signals emitted by each color channel are independent from each other, so that no interferences exist between color channels.

Given the current advances in the electronic components used for display devices, the assumption of channel independence is true in most modern displays. However, since a poor channel dependence may introduce additional color changes in the input data, it is important to verify that independence does indeed exist. Channel independence can be veried with an additivity test, consisting in comparing the intensity emitted for a white input with that of the combined primaries, to check whether changes on any of the channels has an inuence on the others. Figure 3.10 shows the additivity of the luminance emitted for each a series of increasing-intensity inputs by the Asus VG248QE. We can see that there is a very small oset between the graphs, except at the limit of the display's gamut, where the measurements are less reliable. We attribute this oset to the the fact that, again due to their backlight, LCD displays do not produce a full-zero signal for black inputs. This can be observed both in Figure 3.9 and 3.10, which show that neither the luminance nor the chromaticity of the black input is zero. The signal emitted by the display for a black input is known as the display's black point and, if needed, can also be corrected in the characterization process by subtracting the black point color signal from every color output.

Gamma correction

The pixel luminance response of a display is typically nonlinear, and is characterized by a function in the form of a power-law for CRT displays or a sigmoid, or S-curve, for LCDs. By generalization, this function is usually known as gmm funtion, and represents the relationship between the input color values and the luminance output for each pixel. By measuring the color samples in Table C.1, we obtained the corresponding luminance curves for each color channel. As shown in Figure 3.11, these measurements can be used to nd the parameters of the gamma function that best approximates the resulting shape for each color channel. respectively and γ is the parameter that determines the shape of the gamma function. In our case, as illustrated in Figure 3.11, initial analyses via best-t have estimated the gamma parameter as 1.75, 1.75, and 2, for the red, green and blue channels, respectively.

r = gamma(R) = R max(RGB) γ , f or R > 0 / r = 0 otherwise g = gamma(G) = G max(RGB) γ , f or G > 0 / g = 0 otherwise (3.2) b = gamma(B) = B max(RGB)
Similarly, we can use Expression 3.3 to estimate the input color value needed to obtain a given output.

R = gamma(r) -1 = (max(RGB))r 1/γ G = gamma(g) -1 = (max(RGB))g 1/γ (3.3) B = gamma(b) -1 = (max(RGB))b 1/γ
However, although this approximation may be sucient for simple characterizations, in cases like ours where colorimetry is important we must use more complex models, as we will see in Section 3.2.2.

Modeling the response of the display

The transfer function that characterizes the response of a display device is generally estimated from a set of known color samples. The premise is that, due to the electronics in the display, an input RGB value is displayed with a given output chromaticity and luminance which cannot necessarily be predicted from the input color intensities; the chromaticity response depends on the response of the display's color pixels, and the luminance response depends on the display's gamma function explained in Section 3.2.1.6.

Several groups of models can be used to perform this estimation: physical models, numerical models, and models based in 3D lookup tables (LUT). Physical models assume a channel independence and that the chromaticity of the primaries is constant; the colorimetric transform is done by weighting a combination of the chromaticity of the primaries by a standard luminance function (such as a power law, more appropriate for CRT displays, or a sigmoid function in the case of LCDs, as we saw in Section 3.2.1.6). Numerical models use a training color set to estimate the parameters of a polynomial function via a tting process. Models based in 3D LUTs construct the LUT from a series of known color patches, and use interpolation methods to estimate unknown values; the quality of the results depends on the interpolation method and the amount of color measurements, although a large data set is often required to obtain precise results [88].

Physical models are the most commonly used for display characterization because, although it has been shown that they do not t well for some LCD cases, they are fast, it is easy to estimate the response curve with a small amount of data [88], and allow for both forward and inverse transformations [89]. The general model used in CRTs assumes the presence of a brightness gain in the screen and two types of chromaticity osets, which can also be applied to modern LCDs in many cases [90]. Fixing the values of some of these terms gives several variants of the model:

• Gain-Oset-Gamma-Oset (GOGO) (a, b, c = 0) y h = (a h • x h + b h ) γ h + c (3.4) • Gain-Oset-Gamma (GOG) (c = 0) y h = (a h • x h + b h ) γ h (3.5) • Gain-Gamma-Oset (GGO) (b = 0) y h = (a h • x h ) γ h + c (3.6) • Simple Gamma model (a = 1, b = c = 0) y h = x γ h h (3.7)
where y h is the gray level of channel H for a given digital input x h ; a h , b h , and γ h , are the gain, oset, and gamma for the channel, respectively; and c is a general oset that represents the environmental are [88].

We measured the color samples in Table C.1 (Appendix C) in full-screen mode so that the contribution due to the point-spread function from neighboring pixels can be neglected and measured their spectra in the central position of the monitor using a Konica Minolta CS-2000 spectroradiometer 3 . Initial results showed that the simple gamma model could not estimate a good approximation to our problem. We computed a solution using each of the models above for a given set of measured color data, and obtained the coecient of determination, R 2 , for each solution. The simple model yielded very low average R 2 values, between 0.13 and 0.6, which were very far o from those obtained with the other three models. For that reason we decided to test only the rst three models (GOGO, GOG and GGO) . Figure 3.12 shows the chromaticity coordinates of all the measured color samples with regularlyincreasing intensities for the Asus VG248QE. We can see that there is a strong nonlinearity (especially when for samples near the maximum channel's intensity), which justies our choice to choose the more complex characterization models over the simple gamma model. Figure 3.13 shows the SPD of the three primaries i.e. the red, green and blue color samples at full intensity measured with the spectroradiometer under the same illumination conditions used in our experiments. If we look at the zoomed-in graph in Figure 3.14, we can see that the response of the red and green channels overlap with the blue channel (see the small blue peak around 450 nm); this overlap aects especially the red channel, whose response is much more powerful in this area of the spectrum. This is part of the reason why the chromaticity response shown in Figure 3.9 was not linear and, indeed, the response of the blue channel always aects that of the red (x chromaticity) or the green (y chromaticity) channels. This signal overlap must be taken into account, since it complicates things if we want to characterize the display with a simple model.

Let [R in G in B in ] denote the device-dependent RGB tristimulus values of the input color stimulus displayed at each time on the monitor, and let coordinates (r in g in b in ) be the normalized RGB color coordinates corresponding to that same input stimulus, such that:

(r in = R in /255; g in = G in /255; b in = B in /255) (3.8)
Similarly, let [X out Y out Z out ] denote the device-independent XYZ tristimulus values, corresponding to the radiance measured by the spectroradiometer on the surface of the display, as output for the corresponding input stimulus. These values can be converted from the XYZ color space to RGB by multiplying by the corresponding transformation matrix, M xyz2rgb , such that:

RGB out = XY Z out * M xyz2rgb (3.9)
where [R out G out B out ] are the RGB tristimulus values estimated from the output stimulus XY Z out , and similarly (r out g out b out ) refer to the normalized RGB color coordinates of the estimated stimulus RGB out .

A simple method to estimate the characterization models is to estimate the parameters directly from the set of input RGB and output XYZ data via a Least Squares (LS) regression analysis which tries to t the set of RGB-XYZ data correspondences to the chosen model as given by 2 ) with respect to the other channels, notably in the case of the estimation of/from Z values, typically associated with the blue channel, which shows once again the dependency between both channels that we discussed earlier.

As we can see, R 2 is similar in most cases for all three models, although the best results in our case are obtained by the GOG and GGO models. The results for these two models are very similar, and they both use the same number of parameters; however, we decided to choose the GOG model because it does not include the are oset term and therefore it is more appropriate for a characterization in the dark. However, although it can be used as a rst approach to obtain the most adequate model, the estimation method shown above presents several problems. First, it performs the estimation between two dierent color spaces, XYZ and RGB. Furthermore, each channel is estimated separately without accounting for the eect of other channels, which is not correct because the tristimulus values in both RGB and XYZ are not independent from each other.

To improve the characterization results, we propose a dierent methodology, where data tting GOG (XYZ-DAC) GOG (DAC-XYZ) 1. Compute the transformation matrix from the XYZ (device-independent) color space to the RGB (device-dependent) color space.

R 2 X R 2 Y R 2 Z AV G R
GOGO (XYZ-DAC) R 2 X R 2 Y R 2 Z AV G R
GGO (XYZ-DAC) R 2 X R 2 Y R 2 Z AV G R
R 2 X R 2 Y R 2 Z AV G R
GOGO (DAC-XYZ) R 2 X R 2 Y R 2 Z AV G R
GGO (DAC-XYZ) R 2 X R 2 Y R 2 Z AV G R
2. Use the matrix obtained previously to estimate output RGB (RGB out ) tristimuli from dis- played XYZ output tristimuli (X Y Z out ) i.e. the cone responses to the measured radiances.

3. Perform data tting between RGB in and RGB out , and estimate the model's parameters for each channel's data.

As we said earlier, the characterization model that we are using assumes color constancy and channel independence. According to these assumptions, since we know the XYZ tristimulus values of the display's RGB primaries, we can estimate the XYZ tristimulus of any RGB input as a linear combination of the primaries. We can then estimate the inverse transformation matrix M rgb2xyz , and the corresponding direct transformation M xyz2rgb , from the tristimulus values of the primaries, as shown in Expressions 3.10 and 3.11 respectively. We are more interested, however, in the inverse transformation, because it allows to estimate the input that is required to obtain the desired output. In order to obtain the inverse transformation, we performed the same NLLS regression analysis, but using the inverse GOG function, that is:

M rgb2xyz =   X R255 X G255 X B255 Y R255 Y G255 Y B255 Z R255 Z G255 Z B255   (3.10) M xyz2rgb = M -1 rgb2xyz (3.11)
y h = a h • (x γ h h -b h ) (3.14)
where y h is the required input gray level of channel H to obtain a given digital output x h , and a h , b h , and γ h , are the inverse gain, oset, and gamma, for the channel, respectively. The results obtained for the inverse model are shown in Table 3.6; notice how the values obtained for the gamma parameter are very similar to those obtained experimentally in Section 3.2.1.6 (Figure 3.11). 

Eects of stereoscopic visualization on the color signal

Characterizing the response of the monitor is not enough to control the entire chain of visualization.

As we saw earlier in Section 3.2.1, the use of stereoscopic visualization has a strong eect in the nal image, both in terms of luminance and chromaticity, so it is necessary to account for this contribution. As a complement to the luminance graph shown in Figure 3.5, Figure 3.18 shows the normalized spectral transmittance of the Nvidia 3D shutter glasses used as the stereoscopic visualization device. This graph shows the percentage amount of the total incoming signal that is transmitted through the glasses; as we can see, the transmittance is very low, with a maximum value of around 15%, which explains the low luminance in Figure 3.5 with respect to the monoscopic mode.

In order to account for the contribution of stereoscopy, we have characterized our display using stereoscopic visualization throughout the entire process so that our characterization model already includes the contribution of stereoscopy. For this, we created a stereoscopic version of our 120 color samples, in order to force the monitor to enable the stereoscopic mode at all times. We then positioned a pair of shutter glasses in front of the spectroradiometer (Figure 3.19) and took the Chapter 3. Ensuring color signal consistency in the visualization chain 

Conclusion

Chapter 2 showed the importance of controlling the output signal emitted by the display to avoid loosing perceptual information that might aect higher level perceptual processes when observers view the simulations. Although we focus our work on the use of a specic monitor model, this chapter presents an brief analysis of the most common display technologies, and which mechanisms they use to produce color, so that the methodologies used in this work can be easily adapted to dierent technologies without loss of generality. We have provided an analysis of the most important factors that must be taken into account when LCD technology is used to display the simulations, and how we can model their colorimetric output and apply the necessary corrections when need.

Although CRT displays have been used for a long time in psychophysical experiments, lately they have been replaced by LCD displays. LCD technology produces color in a dierent way than CRT does, which means that new characterizations models are required to account for the dierences 3.4. Conclusion 57 between these two technologies. In terms of color reproduction, we have seen that the use of backlight illumination in LCDs introduces irregularities in the color signal, notably in terms of color channel independence. For this reason, simple characterizations where the color response of the display is modeled by a color-conversion matrix and the luminance response as a simple gamma function, do not produce good data estimations. Therefore, more complete models are required to account for the eect of additional factors like color gain and oset. The use of stereoscopic visualization in the observation tests introduces additional constraints in the characterization process. In this case, the colorimetric response of the stereoscopic visualization devices must be taken into account, as well as the implications of enabling the "3D mode" in the display. The lters used in the stereoscopic visualization devices ("3D glasses") are not always colorimetrically neutral, which means that they introduce modications in the color signal emitted by the display. Additionally, when "3D mode" is enabled in the display, the frame refresh rate increases up to 2.5 times the refresh rate in monoscopic mode, but also reduces the overall display luminance. We take all of these eects into account in our methodology by performing the entire characterization process with stereoscopic color samples so as to force the "3D mode" to stay enabled and putting a pair of 3D glasses in front of the measuring device.

We have presented here two characterization methodologies. The rst methodology estimates the model parameters directly from device-independent XYZ output values and device-dependent RGB inputs. We have seen that although this methodology produces good estimations in the average, the dependencies between color channels, most notably between the red and blue channels, reduces the goodness of the estimation for display stimuli where these two channels are involved. To correct for this problem, we propose a second characterization methodology where out XYZ values are st converted to RGB so the model parameters are estimated between data sets in the same color space. This second methodology has shown to produce better results that the rst one for our tests monitor.

We present our characterization methodology using XYZ as device-independent color space, although it is worth noting it could also be performed using the LMS color space. The absence of bimodal responsivity curves in the LMS cone responsivity curves as opposed to XYZ would simplify the modelization of the colorimetric response of the display; in this case the colorimetric response of the display could be considered as a special case of a chromatic adaptation. However, despite the latest advances, the absence of color models to account for factors such as contrast of color space uniformity, or the lack of standard objective transforms between RGB, XYZ, and LMS, are some of the reasons why we have decided to use XYZ instead. Indeed, XYZ has been accepted as the standard by the CIE for a long time, so there are objective color conversion between devicedependent RGB and XYZ. Furthermore, XYZ is the most commonly used independent color space in the eld of physical rendering. Therefore, this choice simplies the integration of our results in the simulation process. We have described the mechanisms of the human visual system (HVS) to generate an initial representation of the objects in a scene, using sensory response information, as well as some of the physiological mechanisms that can inuence this perception depending on observation and environmental aspects. We have also discussed some particularities associated with the amount of perceptual image realism when we use a display to present the simulations to human observers. We have shown a methodology to control the colorimetric signal of the display devices to minimize the loss of information during visualization, maximizing perceptual realism. In this chapter, Section 4.3 presents a methodology to capture the visual information from a scene, using a Digital Single-Lense Reex (DSLR) camera to represent the behavior of the earlier stages of the HVS in terms of perceptually-aware sensory responses. This allows us to reproduce in the simulated images as much as possible of the perceptually relevant information present in the real scene.

Section 4.4 describes the eects of the imaging process in the perception of sparkles. The perceived aspect of the car paint materials that we study is strongly dependent on the light of 60 Chapter 4. Visual Psychophysics:Perception-guided display of sparkling materials the scene and the material composition. In the case of sparkling materials, sparkling occurs when the light in the scene is reected by the metallic akes in the materials, as a result of their much higher specularity with respect to the rest of components in the material. In photographs, the light reected by the material results in image luminance, and is a determining factor in the perceived size and depth position of the sparkles. Therefore, maintaining perceptual light information during the photograph acquisition process is a key factor to conserving the perceived aspect of the materials.

Given the capabilities of camera sensors, it is not possible to capture the entire dynamic range of a real scene in the photographs. Thus, we must choose which information to select and which information to neglect in the photographs.

Section 4.5 presents two studies supported by results from visual psychophysical experiments.

First, we try to nd a correspondence between the sensitivity of the HVS to the light in a scene, and the sensitivity of the camera sensor, using image exposure as a measure of sensitivity (Section 4.5.1).

We then present a second study where we use the results from the rst one to analyze the eects of representing the image luminance with dierent dynamic ranges (Section 4.5.2).

Description of the problem

The visual aspect of paint coating materials is intimately linked to their material composition and physical properties, but also to the environment under which they are observed. As explained by Balcetis and Dunning [START_REF] Balcetis | See what you want to see: motivational inuences on visual perception[END_REF], the material aspect perceived by an observer is the result of a bottomup process where sensory organs and perceptual systems work automatically to produce a visual representation of the stimulus as the light in the environment arrives in the eyes of the observer after interacting with the materials. At the same time, this perception is also biased by topdown inuences such as the cognitive and psychological state of the observer, or the observation environment. For this reason, physically-realistic images that ignore these properties are not correct when simulations are destined to be viewed by human observers; in this case, perceptual realism is needed, in order to account for the eect of human visual perception.

The rendering engine creates simulations of the real materials from a series of physical models and measurements that describe their microstructure. In order to link this structure with the macrometric aspect perceived by observers upon visualization, psychophysical studies must be performed to analyze the perceptual characteristics of the materials under a controlled observation environment. The case of sparkling materials is specially delicate. The micrometric metallic particles contained in this type of materials are distributed spatially on one of the material layers at random depths and orientations. Their high specular reectivity produces strong reections of the illuminating light, which are the origin of the sparkling eect. Therefore, an important factor to produce perceptually-realistic simulations of the sparkling eect is to understand how the human eye perceives luminance contrasts in the real scenes, and how this wide luminance range can be represented in the simulations.

When illuminated, a real scene is constantly emitting an almost innite number of luminance levels, either directly from the light sources, or reected from the objects in the scene; this is what we refer to as the dynamic range of the scene. When we look at an object in such a scene, the capabilities of our visual system which is determined by the spatial distribution of the photoreceptors in the retina and their sensitivity to light introduce a simplication in the perceived signal, compressing and reducing the dimensionality of the original information. When a scene is simulated, the images resulting from the simulations already contain information in a similar reduced response space; however, the complexity of the visualization devices may produce modications in the information.

Since we want to produce perceptually-realistic simulations, we must verify that the information remains perceptually accurate at each step of the process. In this work, we concentrate in the study of luminance perception in the visualization of real samples and images of sparkling materials, using stereoscopic visualization to provide additional depth information from binocular disparity. Since 4.2. Perceptual characteristics of sparkling materials 61 the sparkle of the metallic akes is perceived dierently by each eye, this helps represent more accurately the material texture and, in turn, improve perceptual realism.

There are several ways to analyze the visual perception of the materials in a real and virtual context, the two most intuitive being the following:

• Direct comparison:

The direct method is possibly the most straightforward. Intuitively, one could think of asking observers to compare material simulations directly with a real reference and give their opinion in terms of similarity. Nonetheless, although this might work for subjective analyses, there is no simple way to associate objective parameters between a simulation and a real scene.

The visual response is directly dependent on the radiance values arriving on the retina of the eyes; if we had a way to measure at any given moment the radiance reaching the eyes of the observer, we could simply compare these values with those in the simulation. However, this is not practical, because it would imply measuring the radiance at every point of the scene for every image.

• Indirect comparison:

To simplify the comparison process and introduce more objective criteria, we propose to replace the HVS with a DSLR camera. Cameras are based on an objective and validated model, whose correlation with the HVS is widely known. In this sense, the camera acts as a macrometric integrator of the real scene, and can also transform a radiometric signal into colorimetric information, the same way the human photoreceptors do.

This section presents the methodology and results of two observation experiments using the indirect comparison method with a DSLR camera. The rst experiment analyzes the perceptual eects of acquiring sample images with varying image luminance via the comparison of sample photographs with a real reference scene; the second experiment studies the perceptual eects of dierent tone-reproduction methods for the display of sample photographs via the side-by-side comparison of sample photographs with variable dynamic ranges. Additionally, we will show how stereoscopy can improve the perceptual realism of the virtual images with respect to the real reference, supported by results from the conducted psychophysical experiments.

Perceptual characteristics of sparkling materials

The perceived visual aspect of a material is indeed strongly dependent on its optical properties and, in turn, on its composition, as we discussed earlier. As a result, the complexity of a material directly increases the number of optical phenomenon taking place as light hits its surface. Keeping this in mind, we distinguish two main types of paint coating materials in our studies: uniform and sparkling materials. Although our studies may apply to both types of materials, given the lack of perceptual eects resulting from uniform materials, we concentrate on the analysis of sparkling materials.

Automotive paint coatings are multi-layer composite materials with two basic purposes: protec- on the other hand, the larger paint droplets contain more metallic akes that form conglomerates, which prevents an even distribution and parallel alignment in the lm. The sparkling eect is the result of light reected at the surface of the metal particles. This eect will depend on many factors like particle size, shape, orientation, roughness, chemical composition the lightness varies with the observation angle (lightness op) in aluminum eect pigments, as does the color hue (color op) in the case of mica eect or interference pigments spatial distribution, or dispersion, which in turn are determined by the pigment manufacturing process and the paint making process.

As we saw in Section 2.4.1, a person with normal visual acuity can resolve elements of up to 8.86 mm in size from a 6-meter distance, which means that the largest particles (80 µm) should if they could focus be clearly visible to the eye when observed from a distance of around 5.5 cms. However, the sparkling eect is only the perceptual optical manifestation that results from the interaction of the metallic akes with the light, so what we see when we look at sparkling materials is actually the sparkles and not the physical akes. Given the high specularity of metals, the size of the sparkle which is always larger that the ake depends on the illumination and observation conditions, amongst other factors, as we will see later. Since akes can be found at dierent depths and orientations, it is possible that the sparkle produced by large akes makes them appear much bigger than they are [93,94]. Similarly, shiny akes located in deeper layers might appear the same size as duller ones that are closer to the surface. For all these reasons, it becomes necessary to characterize the materials properly from a perceptual point of view.

Modeling the human visual response with a digital camera

The perceptual characterization of this type of paint materials implies the analysis of the relationships between the physical attributes and the perceptual aspect of the material as a function of the illumination and observation conditions. Since the nal goal is to simulate this behavior on a computer, we must also understand how these relationships work in the simulations. This can be done in many dierent ways. As mentioned earlier, the most straightforward way would be to compare directly the aspect of real and virtual samples, and use similarity metrics to evaluate the perceptual accuracy of each rendering parameter. For instance, we could produce images with different brightness values and ask a group of observers to select the image that looks the most similar to the reality; that way, we would nd the brightness value that best approximates the real scene for a specic environment. However, this criterion would be purely subjective and there would be no objective metric to link brightness in the simulation with the perceived aspect of the real scene.

Modeling the human visual response with a digital camera 63

We know that the visual response perceived by an observer when viewing an image (real or virtual scene) depends ultimately on the radiometric signals that hits the retina of the observer's eyes.

Therefore, if we could measure these radiometric signals at the moment of viewing the real scene in our example, we could associate those radiance values to the selected brightness value, using objective criteria. Using a calibrated DSLR camera in between the real scene and the simulation allows us to create an approximative "map" of the radiometric signals received by the camera's sensor and, by extension, by the photoreceptors in the retina of the observer.

As we explained in Section 4.2, cameras can simulate well the response of the human eye, integrating electromagnetic waves arriving onto the sensor, and translating it into perceptually relevant images of the stimuli. Therefore, it provides us with a exible tool to study visual perception, giving us access to colorimetric and radiometric information, as well as giving us more control over the imaging process.

In general we can nd many similarities between a DSLR camera and the HVS: both have a lens to focus the light; the amount of light passing through the lens is controlled by a diaphragm-like mechanism, which is the shutter in cameras and the pupil in the eye; and a virtual inversed image is projected on the sensor in a camera, and the retina in the eye. However, there are also important dierences between them which must be considered in order to obtain accurate results with this approach. Notably, we must keep in mind that cameras can have optics of dierent quality to focus the light onto the sensor, and that each optical system may respond to light in a dierent manner.

For this reason, it is necessary to fully characterize a camera before we can use it to study visual perception in psychophysical experiment and then use always the same camera.

For our experiments we chose a Nikon D800 DSLR camera, which is a model that oers a very high resolution (7360 x 4912 pixels) and sensitivity, and a large dynamic range, which is important given the amount of detail, shadows, and highlights (sparkles), in our images. We used a standard 50 mm FX lens 1 , which we consider sucient to obtain enough detail at the desired observation distance of around 70 cms, without introducing deformations. In this work, we have characterized two aspects of the camera: the eect of the optics on the incoming light, and the transfer function that converts the light's spectral power distribution into image pixel values.

Eects of camera optics on sparkle perception in photographs

As we discussed in Section 4.2, when we observe metallic-ake materials we must dierentiate between the perceived sparkle size and the actual ake size. We explained that the sparkling eect is the perceptual manifestation of the physical akes, which results from the interaction of the light with the material by means of dierent optical phenomena, most notably, specular reection. The size of the sparkle resulting from these interactions is always larger than the ake producing it, as a consequence of several factors like the pixel size and resolution of the camera sensor, and the lens' point-spread function (PSF), which describes the magnitude of the diraction that occurs when the light passes through the lens of the camera.

The sensor of our camera measures 35.9 x 24 mm, so a 50 mm lens would have a horizontal eld of view (FOV) of nearly 40 degrees, and a vertical FOV of 27 degrees. The image size is 7360 x 4912 pixels, so assuming an acquisition distance of 70 cms, the entire scene falling in the camera's eld of view will be imaged with a size of 50.4 x 33.6 cms. This corresponds to a resolution of roughly 146 image pixels per centimeter in the real scene. Since, as we will see later, we are imaging paint samples 15 cms wide by 10 cms high, that means that a sample will be imaged with a total size of roughly 2190 x 1460 pixels.

We mentioned earlier that the size of the perceived sparkle is always larger than the actual ake that produces it. Figure 4.2 shows a small area of a photograph of a paint sample, magnied with a 1 Lens specications: Nikon AF-S FX NIKKOR 50mm f/1.4G Lens with Auto Focus. Fix 50 mm focal length. Aperture values from F1.4 to F16.

64 Chapter 4. Visual Psychophysics:Perception-guided display of sparkling materials 700 factor, where the bright pixels correspond to the sparkle produced by a metal ake. As we can see, all the sparkles take up more than one pixel. Assuming a particle size between 5 and 80 µm, and a resolution of 146 image pixels per centimeter, most particles specically, any particle smaller than 68.5 µm would have a size smaller than one pixel. Consequently, under some conditions such as low illumination or particle orientations at low-reection angles it is possible that the sparkle produced by these particles would be imaged with one entire pixel, causing pixelation (as explained in Section 2.4.1) and losing image information like shape and color. Additionally, when the light in the scene passes through the optical elements of the camera, some diraction may occur depending on the quality of the components. Good components will have a smaller diraction and, therefore, will produce a much closer image to the reality. As we mentioned earlier, the amount of diraction that occurs in a camera is modeled by its PSF, which describes the imaging response to a point. Bad lenses may produce images with an even larger sparkle size. The computation of the PSF is complex, but we can study its eect by analyzing the intensity prole of a sparkle point in the image. Figure 4.3 shows the intensity values 2 measured in a 8-pixel neighborhood around a sparkle point. The PSF determines how much the pixel's value is "spread" to the neighboring pixels. As we can see in the gure, the pixel intensity value is spread to a 4-pixel neighborhood (2 pixels on each side), and remains stable as the intensity value of the pixel changes. Therefore, since the dispersion does not change with the intensity, we can assume that it is caused by the actual specular reection of the metal ake, and not by the optical elements in the camera.

Obtaining radiometric information from the scene using photographs

DSLR cameras create a color image of a real physical scene by converting electromagnetic radiation in the visible spectrum into color tristimulus values. The light from the scene is concentrated by the lens, then passes through a color lter array (CFA), before reaching the sensor, which stores light information as a scalar for each sensor pixel. The CFA uses spectrum-selective lters to integrate Once a light signal has been integrated i.e. converted into tristimulus value, either by the photoreceptors in the eye or by any other type of lter the spectral information is lost, and cannot be recovered. All we can do is approximate the tristimulus response (or any of its metamers 3 ) produced by the original spectral signal, in any type of physiologically-aware color space like XYZ or LMS. The HVS has been studied for a long time, and many experimental results have made possible the creation and normalization of direct and inverse transformations (typically, in the form of a transformation matrix) both between colorimetric spaces and physiological responses, and between dierent observation conditions. However, each camera produces images in a specic devicedependent tristimulus space, which depends on the spectral sensitivities of the imaging sensor's CFA. These sensitivities often dier from one camera to another and, in turn, are dierent from the device-independent RGB space based on the standard CIE color-matching functions (CMFs, see denition in A.33) [96,97]. This means that the transformations must be calculated individually for each camera and each set of observation conditions.

The goal of the radiometric camera characterization is to estimate the transformation that predicts the tristimulus values of the raw sensor response expressed in a device-independent color space, like XYZ that produces a given device-dependent RGB color stimulus in the camera's color space, and viceversa [98]. This transformation is given by Expression 4.1:

X = a 11 R + a 12 G + a 13 B + v 1 Y = a 21 R + a 22 G + a 23 B + v 2 Z = a 31 R + a 32 G + a 33 B + v 3 (4.1)
where a ij are the elements of the color calibration matrix A, and v i are the elements of a vector V that represents the contribution of the environment light to the scene. We can represent this same expression in matrix form as: 3 See Section A.30 for a description of metamerism. 

  ×   R G B   +   v 1 v 2 v 3   (4.2)
Furthermore, we can integrate matrix A and light vector V into one sole characterization matrix M = (A|V ), obtaining the following expression:

  X Y Z   =   a 11 a 12 a 13 v 1 a 21 a 22 a 23 v 2 a 31 a 32 a 33 v 3   ×     R G B 1     (4.3)
The camera characterization process consists in nding a linear transformation between RGB and XYZ tristimuli given a set of N color correspondences. Let C denote an N x 3 matrix, where each row c i is the RGB tristimuli vector measured for color sample i, and let U denote another N x 3 matrix, where each row u i is the XYZ tristimuli vector corresponding to the radiance of sample i. We can then extend expression 4.3 as follows: 

      X 1 Y 1 Z 1 X 2 Y 2 Z 2 X 3 Y 3 Z 3 • • • • • • • • • X N Y N Z N       =       R 1 G 1 B 1 1 R 2 G 2 B 2 1 R 3 G 3 B 3 1 • • • • • • • • • • • • R N G N B N 1       ×   a 11 a 12 a 13 v 1 a 21 a 22 a 23 v 2 a 31 a 32 a 33 v 3   T (4.4) which is equivalent to:       u 1 u 2 u 3 • • • u N       =       c 1 1 c 2 1 c 3 1 • • • • • • c N 1       ×  
U = C × M T (4.6)
where M T is the transpose matrix of M, the 3 x 4 characterization matrix that maps devicedependent RGB stimuli to device-independent XYZ stimuli. We can solve this problem using a least-square tting approach, by nding the matrix M that minimizes the error E between the measured XYZ tristimulus u i and the estimated XYZ tristimulus u i , as shown by the following expression:

E = N i=1 u i T -u i T = N i=1 u i T -M c i T (4.7)
The matrix M that minimizes E is given by

M = C T × C -1 × C T × U (4.8)
where C T is the transpose matrix of C, and C -1 is the inverse. For simplication reasons, we performed the characterization of the Nikon D800 DSLR camera using the target-based process using the Macbeth color chart (see A.36) since this turned out to be sucient for our purposes. The characterization process consists of two parts, radiometric and colorimetric acquisition, both of which are performed in the same environment and under the same illumination conditions. The target was positioned at 70 cms from the measuring devices, the same observation distance used in the experiments, which we consider a reasonable distance for a computer display.

In the radiometric acquisition stage, we used a spectroradiometer 4 to measure the radiance emitted by each color eld in the color chart under those illumination conditions, using a wide angle (1 • ) to integrate the measured area. In the colorimetric acquisition stage we took a raw photograph of the color chart under the same illumination conditions. This procedure results in a set of 24 correspondences between radiometric and colorimetric data.

The total luminance of a photograph depends mainly on four parameters: scene illuminance (L), lm speed or sensitivity (ISO), f-number or lens aperture (N), and shutter speed (t). L relates to the illumination conditions in the environment, and the ISO is inherent to the lm used -although digital cameras can emulate dierent lm speeds whereas N and t can be set in the camera. The f-number and shutter speed combined result in the exposure value (EV), according to the following formula:

EV = log 2 N 2 t (4.9)
Since all the measurements in the characterization process are taken under the same illumination conditions, L will be constant throughout the process. Given the nature of our samples which contain large amounts of small size shiny particles per unit area we must pay attention to the sharpness of the image; both the ISO and the f-number have an eect over the image sharpness, the rst one aecting image noise, and the second one aecting the depth of eld (or the amount of image that is in focus). To simplify the process, we chose to keep the ISO and f-number constant during the characterization set experimentally to numbers found to give acceptable results in terms of the amount of oversaturated and undersaturated pixels so that the resulting image luminance be directly dependent on the shutter speed and, in turn, on the exposure value, as indicated by expression 4.9.

The camera was characterized for several exposure values, so that it could be used in later tests.

The illumination was kept constant for short intervals of shutter speed values, reducing the intensity reason, it is important to control the luminance levels during acquisition, to reduce the amount of sensor overexposure and avoid losing color information, as explained in Section 4.3.2.

However, when we calibrate images, using the display's characterization model to adapt the intensity values in the image to its capabilities, we face an additional challenge: the magnitude of the radiance emitted by the display's screen is much lower than that emitted by our paint samples, due to the high reectivity of the latter. Hence, some clipping may still occur after image calibration due to the dynamic range (range of intensity values) dierences between the real scene and the displayed image. As we may remember from Section 1.2.1, this was indeed one of the big issues associated with perceptual realism. This problem occurs more frequently as the exposure time increases during photograph acquisition. Indeed, as the intensity of the high-intensity pixels corresponding to sparkles is typically near the saturation limits of the sensor, their intensity values will not increase much with exposure time; conversely, the intensity of lower-intensity pixels will do increase, reducing the contrast between them. This phenomenon is illustrated in Figures 4.10 The characteristic sparkling texture of some paint materials is produced, as we have seen, by the metallic particles, or akes, contained in the materials. These particles, with a high specularity, reect the light producing the perceptual phenomenon that is called sparkling. The luminance (amount of light, see Section A.18) emitted by the material produces a response in both the observer's visual system and the camera's sensor, which can be represented in some perceptual color space like XYZ or LMS. In this sense, producing a perceptually-realistic simulation of the materials consists, as described in Section 1.2.1, in ensuring a match of the chromaticity and luminance between the visual responses expressed in terms of these two dimensions produced by the real and virtual scenes.

We can distinguish two main steps in the conversion from real scene to virtual image: scene acquisition and image representation on a screen. Firstly, the physical reality is captured by a sensor, which results in an initial integration of the information by the sensor's CFA. The amount of information loss carried by this integration will depend on the quality of the camera characterization process, which gives us the transformation between image data in the camera-dependent RGB color space and the sensor response in a device-independent color space. Secondly, the sensed image must be adapted to the capabilities of the display, using a second transformation, given by the display's transfer function and characterization model. This transformation, which estimates the devicedependent RGB data required as input for the display, will also result in some loss of information.

Additionally, a tone-reproduction transformation may be applied to improve image aspect.

Therefore, as discussed in Section 4. 

Perceptual eects of image exposure in photographs of sparkling materials

Typically, in our environment, we can nd a vast array of dierent light radiation that aect our perception, not only in the visible spectrum, but also in the high ultraviolet and low infrared spectra that may also be seen by some people. Therefore, the amount of dierent luminance levels present in any real scene is almost innite. However, when we try to capture a photograph of a real scene using some electronic equipment, due to its limitations, the acquisition process introduces many simplications that may alter our perception of them. The purpose of this experiment is to study the sensitivity of human observers to this type of simplications. We saw in Chapter 2 that the photoreceptors in the human retina work within a known limited range of illumination levels, and their response depends on the wavelength of the radiation. The same thing is true for a photographic camera, but because the camera response varies from one to another (see Section 4.3) the correlation between the sensitivity and the representation of luminance in both systems is unknown.

As we saw in Section 4.3.2, the total luminance of an image depends on the scene illuminance (the amount of light arriving on the scene), the camera's sensitivity, and the exposure time used for acquisition (that is, the time during which the camera's sensor is exposed to the light). We discussed that by xing the illumination and the sensitivity, the luminance depends exclusively on the exposure time and aperture. Furthermore, by xing also the aperture, we can study the relationship between perception and exposure time as a function of only one parameter, the shutter speed. Depending on the chosen value, the displayed photograph may vary from an image with a clearly perceptible depth and large overexposed areas, to a atter image with smaller overexposed 76 Chapter 4. Visual Psychophysics:Perception-guided display of sparkling materials areas. Hence, we can see that choosing the right exposure is essential to obtain the correct amount of perceived sparkle and texture depth throughout the image.

Methodology

For this experiment we created a series of stereoscopic photographs of the same paint plate, captured at dierent exposures as described in previous sections of this chapter, and presented these photographs to a group of observers. The participants were asked to select the one image they perceived as being the most similar to a physical reference plate with special attention to ake density, depth, sparkle-background contrast, and sparkle intensity.

To compensate for possible luminance disparities between the real conditions and the display, and to facilitate the comparisons, the luminance of the virtual images was adapted after calibration to a chosen target value preserving the colorimetric ratios to produce an overall luminance similar to that of the reference real samples. This luminance target value was chosen so that a Macbeth color chart displayed in the computer monitor would produce a similar luminance response as the real physical chart under the same illumination conditions. Since the same value was used for all the images, they all share a similar global luminance after the adaptation, but preserve the local texture contrast due to their dierent exposure times.

The images were presented to the observers inside a custom made visualization cabin (see Im- We presented ve dierent paint samples to a group of 15 observers, with the following respective paint codes: GM1, GM2, HI, BC and BR (Figure 4.13). Three dierent series were created for each sample, each one consisting of the same photograph taken with six increasing shutter speeds of 1.3, 1.6, 2, 2.5, 3, and 4 seconds. This resulted in a total of 90 sample plate photographs, that is, three series of six images per sample plate. The rst series consisted of six stereoscopic color photographs. The second series consisted also of six stereoscopic color photographs, but taken with a longer exposure time, resulting in a higher luminanc (33% brighter); the purpose of this series is to study how changing the global image luminance aects their perceived aspect. The third series consisted of the same photographs in the rst series, but converted into grayscale; in this case, the use of grayscale images served to study the role of color in the perception of the images. For each series of photographs, observers were asked to select the image that they perceived as being the most similar to the reference plate, using criteria such as ake density, texture depth, sparkle-background contrast, and sparkle intensity. They were also asked to rate, in a scale from 1 to 10, the similarity of the chosen image to the reference; this parameter was later used as a measure of the reliability of each choice, as well as an indicator on the average similarity between the images in a given series and the reference plate. Finally, observers were asked to indicate the level of diculty (from 1 to 10) to discern between the images within each series which, in addition, gives us a measure of the reliability of each choice. To interpret the test results we gave a score to each chosen photograph that is, each photograph that has been chosen by an observer as being the closest to the reference which we obtained by weighting each observation by its similarity to the reference; this way we penalize low-quality responses and reward high-quality ones.

Results

The average scores for each series of images is shown in Figure 4.14, where we can see that the most chosen photograph for all the series is the one with the highest exposure. In the case of the rst series (base images), the standard deviation is not very high, which we can see in the bar graph, where there is not much variation in the score for the rest of the photographs in the series. One possible explanation could be that the details in the images or the plates (or both) were not clear, and that made observers choose randomly. This would be consistent with that fact that many observers pointed out that the use of stereoscopic glasses reduced notably the amount of detail both in the images and the sample plates.

The participants tended to say that the images with a higher luminance, as well as the grayscale images, had very little texture contrast and sparkles, which resulted in duller, atter images that resemble the reference less than the corresponding base images. This could be due to the contrast reduction eect discussed in Section 4.4.4. We believe that in these cases they chose higher-exposure images to compensate the increased luminance for the lack of detail and texture contrast. This would justify the fact that standard deviations in the image scores are generally larger in those two series 78 Chapter 4. Visual Psychophysics:Perception-guided display of sparkling materials than for the base photographs, and that the chosen photographs i.e. the one with the highest exposure were given a much higher resemblance score that the rest of photographs, possibly because the observers could see the details much better.

The time increments between the chosen shutter speeds namely, 0.3, 0.4, 0.5, 0.5, and 1 second, respectively are not constant (the increments are determined by the camera), which means that the dierences between any two consecutive images in the series do not have to be similar. In eect, observers noted that there were some images (namely, the rst three) where dierences were almost imperceptible, whereas dierences started to be clearer starting from the fourth image. This could suggest that half a second of exposure is around the just noticeable dierence (JND) for observers to start perceiving a dierence between two of these images.

As we can see from the bar graph in Figure 4.15, the images in the rst series (base images) are most often perceived to have a closer resemblance to the reference. We commented earlier that observers thought that the images in the higher-luminance and grayscale series were at and little detailed, which in general made them look much more dierent from the references than the images in the base series; however, observers also noticed that this atness made it easier to discern between the images in those series, as we can see in Figure 4.16 where the results for the rst series are generally lower or similar than for the other two. The paint tint does not seem to aect the similarity between test images and reference plates, although it does seem to inuence the diculty for intra-series image discernment. Indeed we can see that, in the average, observers seem to nd it easier to dierentiate between series of green-tinted textures than red or blue, which would be consistent with the fact the HVS is more sensitive to green stimuli under photopic conditions (bright light levels).

We have discussed several times that the reason why we choose to use stereoscopic visualization in our tests is because, based on previous results by Da Graça et al [START_REF] Da Graça | Stereoscopy for visual simulation of materials of complex appearance[END_REF]4], we believe that the additional binocular cues provided by this technique of depth visualization do improve the perception of images of this kind of materials. In order to test this armation, and justify our choice, we started the experiment by showing each participant two versions of the rst 6-image series i.e. base-luminance photographs of sample plate GM1 with shutter speeds of 1.6 through 4 seconds using monoscopic and stereoscopic images in a random order. We then asked them to say which images where closer to the reference. Surprisingly enough, many participants, despite being capable of seeing dierences between a stereoscopic and monoscopic image if shown explicitly, could not distinguish between each type during the experiment. Nonetheless, they all chose the stereoscopic images as closer to the reference in each case.

In general, these results are an initial approach to understanding one of the many problems associated with the acquisition of sparkling materials, which is the choice of an appropriate exposure value. Although the results hereby presented are not very conclusive, we can draw very important ideas from them. We have observed that the use of stereoscopy poses additional visualization problems in case of low-luminance images, since many properties of the materials, such as the amount of perceived sparkling and the contrast, seem to be reduced. However, despite this observation, all the participants seem to agree that stereoscopic images are perceived as more similar to the reference than monoscopic ones. We have also learned that high-exposure values are typically preferred in the case of images with a low global luminance. We justify this observation by supposing that, although observers arm that these images have less detail and contrast, the additional luminance increases the visibility of identiable features to use as reference in the comparison with the reference. Finally, given the low similarity scores of the images in the grayscale series, we must conclude that color seems to play an important role in how in the perception of sparkling images, and textures in general. Nonetheless, when comparing grayscale images between themselves (see the intra-series discernment scores in Figure 4.16), they seem to be easier to distinguish from each other. This is probably explained by the fact that, although grayscale images may overall seem very dierent from the color reference for an observer, the human eye is in fact much more sensitive to details in the absence of color, as explained in Chapter 2. 

Perceptual eects of dynamic range compression in photographs of sparkling materials

The results from the previous section provide us with important knowledge about the perceptual eects of scene luminance on the image during the acquisition process, but also about the observation methodology itself. Indeed, we observed that using stereoscopic visualization in the tests results in much lower scene luminance levels due to the light ltering properties of the stereoscopic glasses, which complicates the observation and visual analysis of texture details. Additionally, luminance disparities were observed between the real and virtual scenes, due to the additional luminance introduced by the display in the virtual images. In this section we describe another observation experiment, where we propose a new comparison methodology that tries to resolve the issues in the previous one.

This experiment analyzes the perceptual eects of dierent methods to adapt the luminance of sample paint photographs to the low-dynamic range capabilities of our display. This problem, as we have described earlier, is known as tone reprodution. The previous section showed us the importance of acquiring scene luminance information correctly, maintaining the visual response of the real scene. The results from this experiment help us understand the eect of dierent tonereproduction methods to represent the same luminance information on a display. Given the much lower dynamic range of conventional displays like ours, this process is crucial to ensure perceptuallyrealistic simulations, as discussed in Section 1.2.1.

Problem description

Previous experience has shown us that the comparison of real and virtual samples implies three important constraints: rstly, the photographs must be taken under the same illumination conditions as those used in the visualization experiment; secondly, given the eect of contrast and luminance on perception in general [START_REF] Pappas | Perceptual criteria for image quality evaluation, rndook of imge nd video proessing[END_REF] and material texture perception in particular (see Section 4.4.4), we 4.5. Perceptual reproduction of luminance dynamics in photographs of sparkling materials. 81 must ensure similar contrast levels in both the images and the physical samples; nally, if we want to include both stereoscopic and monoscopic images in the comparisons, observers must keep the stereoscopic glasses on at all times, regardless of the type of image they are looking at, to ensure similar colorimetric conditions.

The most straightforward scenario to compare a physical and virtual sample under the same observation conditions is to visualize the photographs and the physical reference together, under the same illuminant, as we did in our previous experiment (Figure 4.17.a). The idea behind this test scenario is to equalize as much as possible the observation conditions so that, if we hide everything outside the samples, we can somehow make the observers forget that they are looking at two samples on dierent supports (physical and digital). However this solution has an important downside to it: the display is an emissive surface and, as such, it introduces additional light into the virtual sample the illumination already present in the photograph, plus the one in the visualization environment, plus that of the black point of the display. Although we can correct for some of the additional brightness as we did in Section 4.5.1 we have seen that it is impossible to obtain similar luminance levels on both samples due to a common factor, the ambient illumination in the visualization environment, which always remains constant on both sides of the comparison.

A possible workaround to this scenario is to take the sample photographs with a lower exposure to compensate for the additional luminance that will later be introduced by the display (Figure 4.17.b); this solution would indeed produce images with a similar luminance as the physical samples when viewed under the same illumination. However, as discussed throughout this chapter, image exposure plays an important role in our perception when observing photographs of materials. Hence, by taking the photographs with a lower exposure we might inadvertently be favoring certain aspects of the material and, therefore, biasing our perception.

The solution that we propose is to visualize the real and virtual samples side by side, but using a dierent intensity on each side (Figure 4.17.c). This scenario is more versatile because it allows for independent tuning of the illumination. The experiment presented in this section shows that this methodology produces better results than those obtained with the previous comparison scenarios.

We are interested in obtaining perceptually-realistic results, and paired comparisons are a good way to assess the aspect of these sparkling metallic paint textures. Given the complexity of the sparkling eect, it is dicult for an observer to visually assess these images on an absolute scale, so introducing a reference that acts as ground truth simplies the evaluation task. At the same time, comparing the images side-by-side reduces the time to move the eyes from the test image to the reference and, therefore, the eects of low visual memory persistence times in the comparisons.

Methodology

From the original multi-exposure series of photographs of the sample paint plates, we chose three 

V out = V in k m (4.10) k m = L ref L max (4.11) 
Factor k m was chosen so that the maximum luminance (maximum Y) is as close as possible to that of Image 2.1 (the reference image). If using the denition in Expression 4.11 results in 4.5. Perceptual reproduction of luminance dynamics in photographs of sparkling materials. 83 excessive oversaturation 6 in the RGB image, then the maximum possible value before reaching that much oversaturation is used. In our case, the maximum luminance in the reference image is 104.7, and the maximum luminance in Images 2.1 and 3.1 is, respectively, 205.3 and 15.65 (see Table 4.3). In the case of Image 1.1, the tone-mapping operation consists in multiplying each pixel by k m = 104.7/205.3 = 0.51. However, Image 3.1 was taken with a much longer exposure time, so scaling the pixels by k m = 104.7/15.65 = 6.7 results in excessive oversaturation; therefore, we can only scale by a factor of 1.78.

Scaling the XYZ tristimulus values in this manner has several eects on the images. If k m is greater than one, the dynamic range is expanded, which results in increased overall image brightness;

on the other hand, if k m is less than one, the dynamic range is compressed and the overall brightness reduced. Given the low concentration of sparkle pixels with respect to background pixels, we observe a decreasing contrast between sparkle pixels and background as the overall image brightness increases, which establishes an inversely proportional relationship between sparkle contrast and overall image brightness, as a function of the dynamic range.

For each of the ve images listed in Table 4.3 we created two versions, monoscopic and stereoscopic, to also test whether or not the use of stereoscopy has any eect on the preference for a given sample. Altogether, this resulted in a set of 10 dierent images (see Table 4.4). We created series of 45 pairs of images from the list i.e. all possible combinations of the 10 images, excluding comparisons with themselves combined randomly, and asked a group of 30 observers to compare the two images in each pair (test images) and say which one they perceived as "closer" to the reference paint plate i.e. the physical plate that we took the original photographs from. The test images were arranged vertically on the right-hand side, whereas the reference was positioned to their left, 42 centimeters away (Figure 4.17.c).

Both the test images and the reference were observed through an aperture on a black surface to isolate them from their surroundings. The reference was illuminated independently from the test images during the experiment, with the same illumination used to take the photographs. This was done to avoid the luminance dierences observed in the previous experiment. The observers were seated in a position between the test images and the reference, wearing a pair of stereoscopic shutter glasses at a distance of approximately 70 centimeters.

Results

From the responses obtained in the experiment answering the question "which image from the test pair is closer to the reference?" we computed the scores for each sample, according to the 

, yellow (3), brown (4), and red [START_REF] Ferwerda | Three varieties of realism in computer graphics[END_REF].

In this experiment we are analyzing the eect of three dierent factors on the perception of images from our paint samples: the use of stereoscopy, exposure time, and dynamic range and contrast. From the information in Table 4.4 we can see a tendency from observers to choose samples giving these factors a clear order of preference. Indeed we can see that stereoscopic samples are clearly preferred over monoscopic ones; when both samples are of the same type, contrast comes into play. Base images i.e. the original non-tone-mapped images are preferred over the adjusted ones, with observers preferring medium-exposure images over short-exposure (excessive contrast) and long-exposure ones (low contrast). Based on these results, we can extract the following observations, regarding observer preference to match a sample image to its reference:

1. Stereoscopic images are always found more similar to their reference than any monoscopic version of the same image, regardless of the other parameters.

2. Medium-exposure images are preferred over short and long exposure ones. Between long and short exposure images, short exposures are preferred.

3. Tone-mapped images are never preferred over the non-tone-mapped ones, which suggests that, in the absence of overexposure, no information is actually lost during display when we acquire photographs with medium exposure values.

We mentioned earlier that contrast is inversely proportional to exposure time and dynamic range.

In System validation consists of gathering and analyzing data from the dierent stages of the system's workow, to ensure that it produces quality results according to a predened standard. In the case of a simulation system, this standard is typically the level of realism of the simulated scenes with respect to a chosen reference [108,109]. Physically-based rendering is a complex process where many dierent physical phenomena must be reproduced in order to obtain accurate, or relisti, results. We have seen that before we can judge the level of realism of an image, we must dene realism within the context of our application. Considering that our simulations will be viewed by human observers, we can use our knowledge of the human visual system (HVS) to improve the perceptual similarity between the simulations and the real objects under the observation conditions.

At the same time, we can use this information to avoid computing redundant image information that will not be seen by the viewer, while ensuring that the visual response produced by the simulated scene will be the same as in reality. We have dened this type of realism as perceptual realism.

In this context, the visuo-perceptual validation of our system is the process that veries that the simulations generated by the system can induce in the observers the same visual response as if they viewed the original scene in reality.

The validation of a rendering engine requires two types of validations: objective and subjective.

In order to perform a robust subjective (visuo-perceptual) validation, we must rst make sure that the rendering engine produces valid results with respect to the real models [110]. This chapter presents a methodology that allows us to validate a simulated scene using pairs of photographs and rendered images of the real scene. The goal is to take photographs of the real conditions under dierent settings, and at the same time reproduce the real conditions in the rendering engine, so that the photographs and their corresponding rendered images are as close as possible to each other.

We will say that the rendering engine is objectively validated when the images rendered from a scene are identical to the photographs from the same scene, or in the event that dierences exist, we are capable of identifying the causes and justifying them.

We propose a complete workow, including: scene setup, scene characterization, data acquisition, scene simulation, and data analysis. At each step we describe the most relevant aspects to consider 88 Chapter 5. Objective render model validations against photographs of real scenes in order to maintain the visuo-perceptual realism of the simulation. Using objective data, we provide results that show that we can achieve high levels of visuo-perceptual accuracy following this methodology. We will also present the bases to perform subjective validations, leaving the actual experimentation results as a future work.

Introduction

The visuo-perceptual validation workow that we propose for our simulation system consists of two parts: objective (colorimetric) and subjective (visual examination) validations. Objective validations use numerical comparisons to validate the simulations produced by the system against ground-truth data; subjective validations use human observers to validate the perceptual realism of the results. Since we cannot perform a direct comparison of a simulation with a real scene, we use photographs as an intermediate step. We can take advantage of the results from Chapter 4 to use these photographs as ground truth without any loss of perceptual accuracy.

We want to ensure that the visual response produced by the simulations is the same as in the real conditions. We know that the visual response depends ultimately on the response of a given sensor i.e. human retina, imaging sensor, etc for each type of light (tristimulus sensory quantities), and that we can represent and compare device-independent sensory quantities using some physiological color space like XYZ. Furthermore, we also know that we can characterize an imaging device to obtain the transformation function that estimates device-independent sensory quantities from device-dependent RGB color data. Consequently, device-independent sensory quantities can be used as objective radiometric ground-truth data in the validation process. In this context, the objective validation process ensures that the virtual images contain the same perceptual information as the real scene; the subjective validation process ensures that the visual response produced by said images on human observers is equally maintained. Figure 5.1, which we already presented in Chapter 1, illustrates the two parts of our methodology for visuo-perceptual validations.

An important phenomenon to keep in mind in any validation process is that of metamerism.

Two color stimuli with dierent spectral power distributions (SPD) are said to be metamers under a given illuminant, and for a given set of spectral sensitivities, when they are represented by the same tristimulus values under those conditions. Given that metamers produce the same set of tristimulus sensory quantities under the metameric conditions, they are potentially a source of The rendering engine produces 3-dimensional hyperspectral images where each pixel contains an array of spectral radiances for the specied wavelength range. By integrating these values with the averaged sensitivity curves of the standard colorimetric observer (the color matching functions, or CMF), the XYZ tristimulus response can be computed. Additionally, the subjective tests require that a displayable device-dependent color image also be computed. We could use the inverse camera characterization matrix to convert from the XYZ response to RGB pixel colors; however, we would be neglecting spectrally-related phenomena, most notably metamerisms. We can take into account the eect of potential metamerisms by reproducing the camera's color ltering process. Thus, instead of using the camera's inverse characterization matrix to estimate RGB values directly from sensory tristimuli, the real color response can be obtained from the spectral data by using the sensor's spectral sensitivities (Figure 5.1).

Setup and characterization of a controlled test scene

The response produced by our visual system when we observe an object in a given scene depends on the characteristics of the object itself, but also on its environment (surrounding objects, lighting, etc) and our position with respect to the scene (observation conditions). As we explained in previous chapters, what we see when we look at an object is the response of our visual system to the light arriving to our eyes from the object. This light is in turn the result of complex physical interactions between the light and all the elements in the scene that contains it. For this reason, objects cannot be simulated in isolation, without taking into account the contribution from additional elements in its environment; doing so would result in an incorrect simulation, since the real conditions will not be reproduced accurately. Therefore, when we speak of a simulated object, we are in fact referring to an object contained within a larger scene.

We consider a scene as a collection of objects, with some light sources, and an environment containing them. The light emitted by the direct light sources (primary light sources) will be reected by the objects in the scene and the environment, resulting in additional lighting (secondary light sources). Any non-black surface in the scene is subject to act as a secondary light source, so we must ensure that all potential light sources, primary and secondary, are known and characterized (e.g. their photometric distribution, such as the IES 1 measurements, their spectral power distribution, etc.). Consequently, in order to simplify the simulation, it is advisable to reduce the complexity of the scene to a minimum.

To produce a minimal scene, we built our own light cabin, where a black cardboard box acts as environment (Figure 5.3). The box dimensions were large enough to allow for the desired distance between the objects and the observer in this case, the camera and the color was chosen black to reduce the amount of light reected from the walls. All sides were closed except for one aperture, where the camera and lighting were placed. The sample was located in the middle of this box, to a distance of 80 cms from the camera measuring at the bottom of the sample inclined backwards an angle of 15 • 50 with respect to the vertical to enhance the perception of sparkles.

It was illuminated by two direct Solux halogen lights the same ones used in all of our other experiments In order to provide accurate comparisons, the real scene has to be reproduced as close as possible in the simulation another reason why it is advisable to keep the scene simple because any dierence between them will result in dierent calculations and, therefore, dierent images, and possibly, wrong validation results. Therefore, we took measurements of every distance, size, and inclination angles in the scene, and did not change it until the entire validation process was nished.

Similarly, it is also important to properly characterize the optical behavior of the materials used in the scene, in order to reproduce it in the simulation. We took BRDF measurements (as dened in Section A.15 of the glossary) from small samples of each material, using a beam diameter of 2.1 • on the incident plane, and 4.2 • on the vertical plane. The beam diameter is important because it determines the surface area for which the BRDF is computed. If the area is very narrow, the measurements might not contain enough variability, which will translate in lower texture detail similar to the eect of an averaging lter. This is the case in Figure 5.12, where the background has a dierent texture in the photograph than the simulation because the material's BRDF was measured with a beam diameter smaller than the texture pattern.

If a complete characterization of the scene is not possible, we recommend performing a thorough analysis of the eventual repercussions of each measurement inaccuracy, in order to consider them in case of possible discrepancies between the images.

Data acquisition from test scene photographs

Once the scene has been fully characterized, we can proceed to take photographs of the scene. Since the position of the camera also needs to be reproduced in the simulation, it is advisable to perform this step before creating the virtual scene especially in experiments where the position of the camera might change and register each camera position used in the experiment to be simulated later on.

The photographs were taken with the same DSLR camera (Nikon D800) keeping all the parameters xed (Table 5.1) except for the exposure times. In order to have a wide enough dynamic range, we took photographs with shutter speeds of 1/8, 1/15, 1/30, 1/60, 1/125, and 1/250 seconds.

Since the samples are inclined, it is important to choose the right focus point, because otherwise the depth of eld may produce blurry images especially in the case of sparkling samples. We used a focus chart to focus on the center of the sample, so that there is the same amount of negative and positive oset with respect to the focus point. Similarly, we took photographs of a Macbeth color chart before each series for color control purposes.

The samples are inclined with respect to the camera and the illumination to increase the perception of sparkles. However, depending on the application and the position of the camera, the inclination of the samples and camera with respect to each other may vary; this is not an issue as long as the angles and distances are measured each time as we said earlier.

Simulation of the scene in the target rendering engine

The nal task required before proceeding with the validations is the simulation of the scene to be used in the rendering engine. As we said, this simulation must reproduce as close as possible the 92 Chapter 5. Objective render model validations against photographs of real scenes aspect of the real scene, in order to minimize the amount of discrepancies in the validation results.

The materials used for each object must behave according to the corresponding BRDF function. For the purpose of colorimetric validation, to ensure that the colorimetric values resulting from the radiometric XYZ data are identical, we have implemented a virtual model of the DSLR camera in the rendering engine. This way, we can evaluate the results visually as well as numerically, disregarding the eect of unaccounted phenomena such as metamerisms (see Section 4.3.2), and identify and isolate eventual errors, by reproducing the exact same setup used to take the photograph.

The virtual camera mimics the spectral response of our real camera, the Nikon D800 (Figure 5.6) so, if there are no measurement errors in the scene simulation, and all the camera parameters are set to the same value, photograph and simulation should both contain the same information. We used Eclat Digital's Ocean simulation software (versions 2014 and 2015) to generate a validated ground-truth simulation of the scene. Since this is already a commercialized software, it provides a good foundation to analyze our results, ensuring that any eventual validation discrepancies are only produced by the validation methodology, and not the simulation software.

Objective comparison of photographs with simulations

The simulation process computes the radiance information in the images as a function of the totality of light rays arriving on each pixel, which has no specied range (i.e. 0 to innity). Similarly, the sensor responses estimated by the camera's characterization matrix are also given on an unspecied range, which does not necessarily have to match that of the rendering engine. Therefore, it is not possible to perform a direct value comparison in the XYZ space between the simulations and the photographs.

We assume that, in order for a photograph and a rendered image to produce the same visual response on a human observer, their tristimulus sensory quantities must be proportional by a certain factor, which depends on the amount of light entering the sensor. We can think of any visual stimulus as formed by two independent components: chromaticity and luminance. Chromaticity depends on the SPD of the light, and luminance depends on its intensity; therefore, since varying the amount of light does not change its SPD, it will only aect the luminance component of the stimuli, but the chromaticity will be conserved. We can transform the XYZ tristimulus values into the derived CIE xyY color space, which expresses color stimuli in terms of their chromaticity and luminance the two rst components of this space (xy) represent the chromaticity coordinates (color) of the stimulus, whereas the third component (Y) represents its luminance (brightness). This allows us to compare visual responses by separating chromaticity from luminance. The images are in the camera's own RGB color space. They have been neither calibrated nor white balanced. The table below indicates the reference number of each color square in the chart.

in the same color space, and under identical illumination conditions [112]; however, a calibration and white balance would be required if we were to perform visual comparisons on dierent media (e.g. a photograph with a physical reference). We can transform our data into the xyY color space, to represent luminance and chromaticity information separately. Typically, the xy space is not appropriate to represent chromaticity distances, because it is not perceptually uniform [113].

This means that: the same x-y distances do not correspond to the same perceptual dierences to a human observer for dierent parts of the space; and a given dierence in x is perceived dierently by a human observer as the same dierence in y. However, at this point we just want to compare chromaticity and luminance independently as a way to validate the similarity between the simulation and the photographs, so we can represent this relation using distances in the xyY color space.

Before we proceed any further, there are some things that we must consider. Firstly, it may occur that some test scenes have a higher dynamic range (i.e. dierence between the highest and lowest luminance value) than the characterization scene, resulting in some oversaturation or undersaturation; in this case, it is advisable to remove these colors from the test set if possible or, at least, to keep in mind that they may produce unexpected results. Furthermore, since the camera's XYZ response was characterized under some illumination conditions that may dier and in fact most times they do from those of the actual scene where the test photographs are taken, we may obtain some colors which fall out of the characterized range. If this happens, using the camera's characterization matrix to estimate sensor responses may produce unexpected results.

For this reason, it is recommendable to characterize the devices with a set of samples with similar properties to those that will be used in the tests. However, since this is not our case, we must take this phenomenon into account, by omitting from the test set those samples which produce values outside the characterized range. Looking at these values, we can see that the chromaticity coordinates dier very little between the photographs and the simulations for both images; however, the luminance (Y) of the colors in the photographs is much higher than that of the corresponding colors in the simulation. We have rejected the idea that this is due to measurement errors during the characterization of the real scene, because in that case the magnitude of the values would be much closer between the photographs and the simulations. A more likely explanation is that it is related to the characteristics of the ray-tracing rendering process.

The rendering engine generates the simulations using a Ray-tracing algorithm where the total radiance in each image pixel is calculated from a series of "light rays" intersecting with the position of the pixel. If the radiant power of these rays is weaker than in reality, the simulation would produce radiance (and, thus, luminance) values at a dierent scale, diering by a multiplicative factor. This hypothesis is supported by some of our tests. Figures 5.9 and 5.10 compare the luminance values in the photographs with the luminance values from the same colors in the simulation, after scaling them by a multiplicative factor obtained as the average of the ratio between each pair of luminance values. As we can see, the luminance values in both images dier very little after scaling, which is supported by their high correlation. We attribute larger dierences, like those in some colors in Figure 5.9, to the dierent color sensitivities of the lters in the camera sensor (Figure 5.6).

Color ∆Y In general, the results presented above suggest that we can achieve simulations which are very accurate in terms of chromaticity, and dier in luminance by some multiplicative (intensity) factor.

However, these results are only numerical dierences. Since we are concerned about visual perception, we must nd the correspondence between these numerical quantities and perceptual dierences.

Therefore, color dierences between the images must also be analyzed using a more perceptually uniform metric. We chose to use the industry standard CIEDE2000 metric (∆E00), because it provides improved perceptual uniformity with respect to its predecessor, the CIE DeltaE 1994 metric, which in turn is based on RIT-DuPont results from automotive paint experiments [114,[START_REF] Berns | Rit-dupont supra-threshold color-tolerance individual colordierence pair dataset[END_REF][START_REF] Baldevbhai | Color image segmentation for medical images using l* a* b* color space, sy tournl of iletronis nd gommunition ingineering @sytigiA[END_REF].

CIEDE2000 operates on the CIE 1976 Lab (CIELAB) color model, which represents colors in terms of lightness and chrominance (chrominance-based color space) with respect to a given white point.

As we explained earlier, the choice of the white point can be arbitrary, since both images have been obtained under the same environment; therefore, we used a standard ICC white point, which is Matlab's[91] default 3 . The color dierences in Figure 5.7 were calculated for an averaged area around the center of each color square. They are shown numerically in Table 5.3 as percentages, and graphically in Figure 5.11, with the color scale range adapted to a 0-10 range to facilitate visual inspection.

The results in Table 5.3 show that generally the CIEDE2000 color dierence increases as the shutter speed decreases (total exposure increases) as the luminance response approaches the oversaturation limit which is why we recommend to remove them from the test set. That occurs because CIELAB is represented in a chrominance-based color space and, therefore (unlike in chromaticitybased color spaces), chromaticity and luminance are very much linked. The CIEDE2000 color 3 As dened in Matlab's[91] implementation of this metric, the ICC white point is the ICC standard prole connection space illuminant; a 16-bit fractional approximation of D50 to compensate for the inuence from the luminance; that is why, in the case of the 1/8 second shutter speed photograph, the highest values for the S L function occur for the samples which we have removed in previous tests (2, 5, 6, 7, 11, 12, 16, 19, 20 and 21).

So far we have only obtained color dierences for the Macbeth color chart, but what is more interesting for us is to analyze these color dierences in the case of our paint materials. For that we have chosen a sample green paint plate 4 , and computed the same dierences as before. It is worth noting that, since the plate was positioned with a certain inclination with respect to the camera and the light sources, there is some amount of vertical color gradient due to non-uniform lighting.

For this reason, we have taken three sample colors at the top, middle and bottom positions of the plate, and compared the images at these three positions.

The tolerance of the HVS to color dierences has been the subject of multiple studies, notably those by Alman, Snyder, Berns, and Melgosa [START_REF] Alman | Performance testing of colordierence metrics using a color tolerance dataset[END_REF][START_REF] Berns | Visual determination of suprathreshold color-dierence tolerances using probit analysis[END_REF][START_REF] Snyder | Visual determination of industrial color-dierence tolerances using probit analysis[END_REF]114,[START_REF] Shen | Evaluating color dierence equation performance incorporating visual uncertainty[END_REF], which provide a way to interpret color dierence magnitudes in dierent elds of application. Most recently, Berns and

Hou [START_REF] Berns | Rit-dupont supra-threshold color-tolerance individual colordierence pair dataset[END_REF] provided some CIEDE2000 statistics for the RIT-DuPont dataset, indicating a mean CIEDE2000 dierence of around 1, and a standard deviation of around 0.4. Since these results are based on automotive paint datasets, we can use them to judge the goodness of our color dierence results. We can then consider that, in our context of paint colors, any color pair which dier by a CIEDE2000 of 1.4 or less, will be considered as equal by a human observer.

As we can see in Table 5.4, the dierences in the xyY color space are much bigger than they were for the Macbeth chart. The XYZ tristimulus values are estimated from the photograph using the camera's characterization matrix, which in turn was obtained using samples from the Macbeth color chart. Therefore, we can expect estimations for colors outside the characterized gamut to be of lower quality. This is why, as we mentioned earlier, the characterization should be performed with color samples of similar optical properties to those used in the tests. Nonetheless, the perceptual behavior is dierent. As we can see in Table 5.5, when we consider selected areas individually, the CIEDE2000 color dierences are very high; however, this dierence is drastically reduced when we compare a larger averaged area. If we look again at This means that, despite the colors being very dierent locally, the contribution of each one to the globally perceived color compensates for local dierences. This phenomenon shows that, although numerical results are often useful, it is very important to perform visual tests as well, to support or refute the numerical quantities. In fact, although the color dierences under xyY were quite big, we have obtained a perceptual color dierence of 0.85 for the averaged area, which is smaller than the mean value of 1.00 provided by Berns and Hou [START_REF] Berns | Rit-dupont supra-threshold color-tolerance individual colordierence pair dataset[END_REF]. Therefore we can consider that, in the case of this paint plate, when observed globally under the dened observation conditions, a human observer would not discern the dierence between the photograph and the simulation.

Conclusion

In order to perform the objective validation of a rendering engine, we need ground-truth information about the scene that we are rendering. We propose to use radiometrically-calibrated photographs of the scene, under a set of well known conditions, as ground-truth information to measure the amount of realism of the results. Although similar methodologies have been proposed in the past [START_REF] Karner | A concept for evaluating the accuracy of computer generated images[END_REF][START_REF] Bärz | Validating photometric and colorimetric consistency of physically-based image synthesis[END_REF],

only the results and a brief description of the process are usually given. Furthermore, we have only found cases where this methodology is used for colorimetric and photometric comparisons, but never for radiometric comparisons.

In this chapter, we have presented a complete methodology that allows us to render a computer simulation of a real scene with a minimum number of perceptual dierences. Since the photographs are taken with a radiometrically calibrated camera, as described in Section 4.3.2, we can obtain both colorimetric and radiometric information from them. Our methodology describes every step, from the setup of the physical scene to the generation of the rendered images, presenting the most important factors to keep in mind at each step to minimize the amount of discrepancies between the real scene, the photograph, and the simulation.

Following the proposed methodology, we can obtain two sets of data from each image: radiometric and colorimetric. The radiometric data are used for numerical comparisons, and the colorimetric data are the images used for visual comparison and color dierence metrics, which allows for a double validation.

Our results show that in general we can obtain simulations with very small dierences from the photographs, and have highlighted the need to characterize the camera with sample color surfaces whose optical behavior resembles that of the test materials. Otherwise, we may obtain good results

for images of the same type of materials used for characterization, but the dierences might be larger for materials with dierent spectral reectances, since we may predict the wrong radiometric responses from the color images.

Although there is still a lot of work left to do in this area, being able to simulate a real scene with such level of perceptual delity supposes an important step in the right direction for the validation of a rendering model. Discussion and future work

Industrial design simulations reproduce processes that will eventually be implemented in reality, so the accuracy of a simulation will depend on the specic process that it simulates. In the context of computer graphics, accuracy is not always necessarily synonymous with visual realism, but it depends on the requirements of the specic application. With this in mind, our aim is to obtain perceptually-realistic simulations, in the sense of photo-realism given in Ferwerda's classication [START_REF] Ferwerda | Three varieties of realism in computer graphics[END_REF].

We have proposed several contributions to perceptual realism. First, we propose a methodology for the characterization of the visualization devices, to ensure a controlled reproduction of the simulated color signal at display time. We also propose the use of photographs as ground truth representations of perceptual information from the real scene. A radiometrically-calibrated DSLR camera is used to acquire real scene information, and represent it in terms of human visual sensory responses; this way, the photographs can be calibrated according to perceptual criteria, and used in visual psychophysics experiments. Then, we present results from two visual psychophysics experiments where we analyze the perceptual realism of dierent methods for representing luminance information from a real scene in images.

Visual perception is the result of a series of very complex mechanisms that take place in the human visual system (HVS), as the light (radiant energy) in a scene arrives into our eyes. The goal of physico-realistic rendering is to create simulations that produce the same radiometric information as the real scene. In some cases (e.g. remote sensing) it is important to compute more information than what is visible by the human eye [START_REF] Reinhard | righ dynmi rnge imgingX quisitionD displyD nd imgeEsed lighting[END_REF]; however, since our images will be seen by a human observer, we can take advantage of the limitations of the human visual system to reduce the amount of computation. Perceptual realism takes into account these limitations, as well as others like the inability of conventional displays to reproduce the radiometric richness of physico-realistic images.

In this case, accuracy is dened in terms of perceptually-realistic rendering, which means that the simulation can trigger the same response as the real scene in the visual system of the observer.

We have focused this research on the case of automobile sparkling paint materials containing a layer of metal particles, or akes. These materials produce a sparkling eect when they reect the light from an illuminating source. The perceived aspect of the sparkles depends on the amount of reected light that arrives on the observer's eye (sparkle luminance), which in turn depends on the depth and orientation of the underlying metal ake within the paint coating, and its position with respect to the light source and the observer. Since the use of 2D visualization eliminates many of the cues that allow us to perceive depth in this type of images, we try to improve perceptual realism by using stereoscopic visualization, which provides additional depth information from binocular disparity.

Given the strong inuence of sparkle luminance towards the perceived aspect of these materials, we have performed extensive psychophysics studies to analyze the perception of luminance values in real and virtual scenes. To perform these studies, a perceptually-realistic image validation approach has been dened, using a DSLR camera as an intermediate device to emulate the trichromatic response of the human eye from input spectral power distributions. This allows us to obtain a radiometric map of the scene, expressed in a perceptual tristimulus (XYZ) space analogous to that of We present our results from two observation experiments. The rst experiment has the following aims: to conrm whether or not the use of stereoscopy improves the realism of the images, to try to nd a relationship between image exposure and real luminance, and to study how these properties aect the perceptual aspect of the materials in the images. In this experiment, a series of stereoscopic photographs of material samples at dierent exposures was shown to a group of observers; they were asked to compare them with their corresponding real objects, under the same observation conditions, and select the closest photograph. The results from this experiment corroborate that stereoscopy does indeed improve perceptual realism in the images, by improving depth perception and emphasizing the sparkling eect; it also conrms our previous hypothesis that image luminance has an eect on its brightness and contrast, which in turn aects the perceived size of the sparkles, texture depth, and sparkle-background contrast. They also suggest that, under those conditions, perceptually-close results are obtained for images with a maximum luminance of around 100 cd/m 2 .

The second experiment analyzes the perceptual eects of dierent tone reproduction methods.

Using the results from the previous experiment, we take as reference exposure the one that produces the images with a maximum luminance closest to 100 cd/m 2 . A group of observers were asked to compare side by side a series of stereoscopic images with three dierent exposures the reference, and the one immediately above and below and tone-mapped versions of each one of them where the luminance values were scaled up or down to approach as much as possible the target luminance of 100 cd/m 2 . This experiment shows that sparkle contrast increases as global image brightness decreases, and the other way around, but only for intermediate brightness values, with perceptual similarity decreasing below and above a certain threshold. Moreover, these results reveal interesting facts about tone reproduction: as long as the amount of overexposed pixels stays below a minimum, no information is lost upon display and, in fact, tone-mapped images dier more from the reference than the original ones.

The ndings presented above provide important information to validate the accuracy of the simulations. Since each simulation engine can implement a dierent rendering model, the relationship between the rendering model parameters and the real radiometric values is a priori unknown.

Therefore, photographs can be used as a perceptually valid colorimetric and radiometric groundtruth to adjust the parameters of the simulation and validate its results. Following this line of work, we have designed a generic validation methodology that allows to create a simulation of a real scene with perceptually-realistic accuracy, pointing out the most important factors that may inuence this accuracy. We have also presented a methodology to compare these simulations with photographs of the same scene, taken under the same conditions.

Initial results with this methodology reveal that, when comparing images of materials with similar optical properties to those used in the camera characterization process, both the chromaticity and perceptual CIELAB2000 dierences between the simulation and the photographs, are very small in the absence of oversaturation. Luminance values dier between the simulations and the photographs, but they are related by a multiplicative factor, hinting that they could be in a dierent scale which we attribute to dierences in the radiometric properties of the ray-tracing rendering process. When comparing images of materials with dierent optical properties than those used for the camera characterization, the absence of reliable radiometric data prediction results in relatively large colorimetric dierences. Nonetheless, our results show that perceptual CIELAB2000 dierences remain below the accepted tolerance values when large enough areas are compared. Typically, tolerance indices are given to interpret the magnitude of perceptual color dierences, but these are dened for material sets with specic properties. We have used existing statistics from the RIT-DuPont automotive paint dataset, given the similarity with our materials; however, the particular properties of this type of sparkling materials might justify the use of its own specic dataset.

As we mentioned in Chapter 1, the LIMA project proposes a double approach, where the aspect 
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Measures the SPD emitted by a source. It is the most complete measuring device because from the SPD we can also compute other radiometric, photometric, and colorimetric quantities.

A.20 Spectrocolorimeter

Measures the spectral reectance, transmittance, or relative irradiance of a color sample [START_REF] Schanda | Tristimulus color measurement of self-luminous sources, golorimetryX nderstnding the gsi system[END_REF] and calculate its tristimulus values.

A.21 Tristimulus colorimeter

Measures the chromaticity coordinates of a color surface.

A.22 CIE

The International Commission on Illumination or CIE (french acronym for Commission internationale de l'éclairage) is the international regulatory body on illumination and color.

A.23 Color Stimulus

Represents the psychophysical specications of the light that causes the sensation of color in our eyes when observing a given surface. The perceived color is represented by a tuple or vector of (typically) three values, known as tristimulus values. Mots Clés
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 11 Figure 1.1: Several types of physical samples for automobile paints.
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 15 Figure 1.5: Stages of the simulation process
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 16 Figure 1.6: Visuo-perceptual validation methodology comparing photographs with simulations.

  According to the wave theory rst proposed by Christian Huygens in 1678 light waves are made up of two mutually coupled vector waves, the electric and magnetic elds (electromagnetic wave), as shown in Figure2.1. However, this model is often simplied by describing light as a single scalar wave function (Figure2.2). This model is typically used to explain phenomena such as polarization, diraction, absorption or imaging theory.

Figure 2 . 1 :

 21 Figure 2.1: Electromagnetic waves are made up of electric (E) and magnetic (H) elds, perpendicular to the travel direction of the wave, and perpendicular to each other.

Figure 2 . 2 :

 22 Figure 2.2: The electromagnetic wave model can be simplied in many cases as a scalar wave function.

  Figure 2.3 summarizes this classication.

  .4.
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 24 Figure 2.4: Top view of the right human eye [26].
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 25 Figure 2.5: Diagram of the human optic nerves [26].

Figure 2 . 6 :

 26 Figure 2.6: Diagram of the retinal cell structure. From bottom to top, cones are represented in blue, dierent types of bipolar cells in shades of green, and dierent types of ganglion cells in shades of red. At the very top, the axons from the ganglion cells continue towards the optic nerve. Diagram
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 28 Figure 2.8: Density distribution of cones and rods in the retina. The area where the optic nerve passes through the retina is called the blind spot because it does not have any photoreceptors,

Figure 2 .

 2 Figure 2.11: Left: Boynton's color vision model diagram.[START_REF] Boynton | A system of photometry and colorimetry based on cone excitations[END_REF]; Right: Input combinations that produce each output.[START_REF] Valero | Color science lecture notes[END_REF] 

  All mathematical operations in colorimetry are based on these laws. If [C 1 ], [C 2 ], [C 3 ], and [C 4 ] are two pairs of matching color stimuli, we can then write that [C 1 ] = [C 2 ] and [C 3 ] = [C 4 ],

(2. 4 )

 4 where R, G, B are the amounts of stimuli [R], [G], and [B], respectively, required to match stimulus [F]. Stimuli [R], [G], and [B], are the primary stimuli and R, G, and B, are called the tristimulus values. We can generalize for the spectral case as shown in Expression 2.5, in which case the tristimulus values become the color matching functions (CMF) 3 .
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 325212 Figure 2.12: Left (a): CIE 1931 RGB color matching functions; Right (b): CIE 1931 XYZ and CIE2 • standard observer color matching functions.[START_REF] Wikipedia | Cie 1931 color space wikipedia, the free encyclopedia[END_REF] 
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 2 Figure 2.14, where illuminants D and A indicate daylight and an incandescence lamp, respectively;
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 213 Figure 2.13: Dark adaptation curve. The shaded area represents 80% of the group of subjects. Hecht and Mandelbaum's data from From Pirenne M. H., Dark Adaptation and Night Vision. Chapter 5.In: Davson, H. (ed), The Eye, vol 2. London, Academic Press, 1962.[START_REF] Kalloniatis | Light and dark adaptation, evisionX he yrgniztion of the etin nd isul ystem rF uolD iF pernndezD nd F xelsonD lt vke gity @AX niversity of th relth ienes genter[END_REF] 
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 21424 Figure 2.14: Illuminant color shift (from S D to S A ), adaptive color shift (from S A to S D ), resultant color shift (from S D to S D ), and corresponding color S D for S D , when illuminant changes from D to A.[START_REF] Ohta | golorimetryX fundmentls nd pplitions[END_REF] 

4

 4 Measuring human visual acuity 2.4.1 Spatial frequency and image resolutionVisual acuity (or sharpness) is the ability of the HVS to resolve details in an image, and it is inversely proportional to the observation distance. The sensitivity to changes in brightness increases with the spatial frequency of the changes. The acuity is related to the type of photoreceptors being used:

Chapter 2 .

 2 Human visual perception of materialsTherefore, the chart must be sized so that the letters on the 8th line are 8.86 mm tall. This means that from a 6-meter distance, a person with normal visual acuity can resolve clearly any visual element above 8.86 mm in size which corresponds to a visual resolution of 1.48 mm at a 1 meter distance.
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 215 Figure 2.15: The Snellen chart is used for measuring visual acuity by showing it to the subject at a distance of 20 feet (or 6 meters). It was developed in 1862 by Dutch ophthalmologist Herman Snellen.

(2. 11 )

 11 Since we know that a person with normal vision has a maximum resolution of 60 cycles per degree of vision, we can derive from Expression 2.11 the minimum resolution (MR) of a displayed sample photograph to avoid the observer from seeing the pixel grid of the image (pixelation) usingExpression 2.12 
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 216 Figure 2.16: Conversion between Snellen's notation and spatial frequency.[START_REF] Kalloniatis | Visual acuity, evisionX he yrgniztion of the etin nd isul ystem rF uolD iF pernndezD nd F xelsonD lt vke gity @AX niversity of th relth ienes genter[END_REF] 
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 217 Figure 2.17: Simultaneous contrast: the internal squares all have the same luminance, but the changes in luminance in the surrounding areas change the perceived luminance of the internal

  2.4), as illustrated by Figure 2.18.
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 218 Figure 2.18: Spatial frequency response of opponent color channels.Left: red-green versus monochromatic green; Right: yellow-blue versus monochromatic blue.[START_REF] Meyer | Color spatial acuity control of a screen subdivision image synthesis algorithm[END_REF][START_REF] Mullen | The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings[END_REF] 
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 2 Color signal transformations introduced by the display 37 parity. Common examples of autostereoscopic displays are parallax barrier and re-imaging displays [70].

Figure 3 . 1 :

 31 Figure 3.1: Color gamuts obtained by measuring the color coordinates of the three primaries for the same conguration in several monitors: Asus VG248QE (stereoscopic), Eizo ColorEdge CG21(monoscopic), and HP ZR24w (monoscopic). As we can see, the gamut size is very similar in all three cases, and it is even slightly larger in the stereoscopic (Asus) case.

Equation 3 .

 3 1 represents this model, where C(λ) is the spectrum measured at a pixel, R(λ), G(λ) and B(λ) are the spectral power distributions (SPD) measured when each of the color lters are fully saturated (primary colors), r, g and b are real numbers between 0 and 1 that indicate the weights for each lter, and A(λ) represents the amount of ambient illumination (or "are") emitted or reected by the display when it shows a black signal. It is recommended to work with no ambient light in order to simplify the computations; to adapt the model for the presence of ambient illumination, we must simply replace C(λ) with C (λ) = C(λ) -A(λ) and characterize supposing no ambient. We performed the characterization process in a dark room where all external light sources were blocked, and bright surfaces were covered with black tissue to minimize reections with only the monitor light on, so that no ambient illumination was present (Figure3.2).
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 32 Figure 3.2: Monitor characterization environment.

Figure 3 . 3 :

 33 Figure 3.3: Gamut comparison of the Asus VG248QE preset settings. As we can see, there is not much dierence in the resulting gamuts.

Figure 3 . 4 :

 34 Figure 3.4: Gamut comparison of the Asus VG248QE with the stereoscopic mode On and O. In stereoscopic mode, a pair of shutter glasses was also placed in front of the characterization device.

  1 and Figure C.1) by setting the intensities of all R, G, and B channels to zero and increasing each channel's intensity

  [86]. In old CRT displays and the rst LCD models this assumption of pixel independence could fail due to inadequate video bandwidth, DC restoration, and high-voltage regulation, caused by inaccuracies of the digitalto-analog converters (DACs)[87]. However, newer LCD displays such as ours are provided with a digital video input (DVI) which eliminates the conversion stage, thus improving pixel independence.
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 35 Figure 3.5: Luminance comparison of the Asus VG248QE with stereoscopic mode On and O, for the characterization gray series with intensity from 0 to 255. We can see that the stereoscopic mode reduces drastically the luminance.
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 36 Figure 3.6: Monitor characterization setup.

Figure 3 . 7 :

 37 Figure 3.7: Left: approximate locations of the points measured with the spectroradiometer on the Asus VG248QE monitor; Right: luminance uniformity values (cd/m 2 ) (top) and corresponding percentage deviations from the central position (bottom) obtained by spectroradiometer rotation for the gray120 color patch, with RGB values [120 120 120]. The measurements were taken on the nine points indicated on the left image.
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 38 Figure 3.8: Display stabilization graphs measured at 10-minute intervals on points P1, P2, and P3 (respectively from top to bottom) for a 30-minute period (4 measurements). For reference purposes, we also included a fth measurement taken on point P2 (central point), 1 hour and 15 minutes later.
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 2 Color signal transformations introduced by the display 45

Figure 3 . 9 :

 39 Figure 3.9: Asus VG248QE channel constancy graphs for the x (left) and y (right) chromaticity coordinates. The dashed lines represent the chromatic response of ideally constant red, green, and blue phosphors in a CRT display.

Figure 3 .

 3 Figure 3.9 shows the channel constancy results for the Asus VG248QE. The graph displays the x and y chromaticity coordinates for all the red, green, and blue color series, in comparison with a constant signal with the same coordinates obtained by each channel at their maximum intensity.
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 310 Figure 3.10: Asus VG248QE channel additivity test graph comparing the luminance of a gray series input of increasing intensity (dashed red line) with the summed luminance of the red, green and blue inputs of the same intensity (solid blue line).

Figure 3 . 11 :

 311 Figure 3.11: From left to right and top to bottom: normalize luminance distributions for the red, green, blue, and gray input series. The blue line shows the measured luminance values for a series of color samples with intensities from 10 to 255 in equal increments of 10 units; the dotted red line shows the best-t gamma function approximation for the same input values, with γ = 1.75, γ = 1.75, γ = 2, and γ = 1.75, respectively.
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 483 , f or B > 0 / b = 0 otherwise where r, g, and b are the output luminance for each color channel, R, G, and B are the values in each pixel for the red, green and blue channels, max(RGB) is the maximum intensity for each Ensuring color signal consistency in the visualization chain RGB color channel which should be 255 or 1 if RGB values are given in a [0-255] or [0-1] scale,

Figure 3 .

 3 Figure 3.12: CIE diagram 1931 showing the chromaticity coordinates of all the characterization color samples measured at the Asus VG248QE, and the location of the white point.
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 313 Figure 3.13: Spectral radiance curves for each of the three primary colors of the Asus VG248QE.
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 314 Figure 3.14: Zoom of the bottom section of Figure 3.13. The response of the red and green channels overlap with the blue channel for wavelengths around 450 nanometers.
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 3 Figure 3.15: Average R 2 for the estimation of output XYZ values, from input DAC values, with each of the proposed models: GOG, GOGO, and GGO (values in Table3.3).

Figure 3 .

 3 Figure 3.16: Average R 2 for the inverse estimation of input DAC values, from output XYZ values, with each of the proposed models: GOG, GOGO, and GGO (values in Table 3.4).

Figure 3 .

 3 Figure 3.17 shows the correlation between the real RGB input values and those estimated from the measured output in our tests; as we can see, there is an almost linear correlation, which is consistent with the high values obtained for the coecient of determination R 2 . At the same time, this method produces much better results than the one shown earlier.
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 317 Figure 3.17: Asus VG248QE RGB correlation between the real and estimated RGB input values with the GOG model.
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 318 Figure 3.18: Spectral transmittance of the Nvidia 3D shutter glasses.

Figure 3 . 19 :

 319 Figure 3.19: Stereoscopic characterization with a spectrometer and the Nvidia 3D shutter glasses.

  tion and attractiveness[92]. Depending on their function and composition, each layer may have a variable thickness. Our materials are formed by four main layers: electrodeposition coating, primer surface, base coat, and clear coat (Figure4.1). In the case of sparkling materials, the base coat layer consists of a pigment which contains micrometric-scale metallic (aluminum) particles, or akes, of between 8 and 80 micrometers in size, with most particles around 10-40 micrometers[START_REF] Ben-Achour | ynthèse et rtéristion multiEéhelle de nnoprtiules pour revêtements utomoiles[END_REF]. These metallic akes are deposited in the pigment following a pseudo-random distribution at dierent depths and orientations. In eect, as described by Streitberger and Dösel [92], during the application process an adjustable atomizer generates paint droplets of various sizes: small droplets contain 62 Chapter 4. Visual Psychophysics:Perception-guided display of sparkling materials

Figure 4 . 1 :

 41 Figure 4.1: Material structure diagram (left), and microscopic closeup view of a paint layer of approximately 679 x 511.3 µm (right). Illustrations by Fernando Da Graça [20] (left) and Mona Ben Achour [3] (right).

Figure 4 . 2 :

 42 Figure 4.2: Zoom of a paint sample photograph taken from 70 cms. The area corresponds to an area of 80 x 80 pixels (0.55 cms) with a 700 magnication factor. The photograph has been taken with an exposure time of 1/15 seconds and then corrected (brightness and contrast) for illustration purposes. As we can see, all the sparkling akes (brighter pixels) are imaged with more than one pixel.
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 43 Figure 4.3: Intensity prole 2 of an image area around a sparkle pixel as a function of the total exposure. Only the shutter speed was changed, keeping all the other camera parameters xed.
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 3 Modeling the human visual response with a digital camera 67 Performing a target-based calibration carries many diculties that must be taken into account. Some of these issues have to do with eye-camera metamerisms [97] or the specularity of the color target patches. The problem of eye-camera metamerisms in target-based characterizations result from not taking into consideration the spectral responses of the camera's sensor. Several solutions exist to deal with this issue: Hong et al. propose to average color dierences obtained with characterization matrices from dierent color sets [97]; alternatively, Alsam and Finlayson propose to nd the set of all possible metamers by nding the set of convex combinations of the reectance spectra from all the color samples in the target [99]. The presence of color patches with high specularity and saturation may translate in the presence of outliers which make dicult the tting process. This is the case for color patches such as white or bright orange. Joshi et al. propose a solution based on averaging measurements from photographies of the color targets taken with varying illuminations [100]. Finally, a common solution to improve the results for target-based characterization is to use a multi-polynomial approach, such as the ones presented by Renani et al. [101] or Hong et al. [97].

Figure 4 . 5 :

 45 Figure 4.5: Custom support for stereoscopic sample acquisition. The red arrows indicate that the position can be regulated in that direction.

Figure 4 . 6 :

 46 Figure 4.6: Methods for stereo-pair creation (top view): O-axis frustum (left) and Toe-in (right) [105].

Figure 4 . 7 :

 47 Figure 4.7: Positive parallax occurs when the projected object is behind the projection plane [105].

Figure 4 . 8 :

 48 Figure 4.8: Zero parallax occurs when the projected object lies at the projection plane, and its projection onto the focal plane coincides for both eyes [105].

Figure 4 . 10 :

 410 Figure 4.10: Contrast reduction in calibrated images as exposure time increases (exposure increases from left to right), due to the lower dynamic range of the display. As the exposure increases, the intensity of the brighter circles remains relatively similar due to clipping, whereas the intensity of the less bright pixels increases much more, reducing the contrast between them.

Figure 4 . 11 :

 411 Figure 4.11: Two photographs of a green paint sample taken with a shutter speed of 1/8 s (left) and 1 s (right). We can see that the sparkles on the left image (shorter exposure time), are narrower than on the right image, but there is more contrast with the background.

4 . 4 ,

 44 it is important to control the luminance range of the images during acquisition and display, to try to keep as much of the original perceptual information as possible. Here we present two experiments were we analyze the eects of the acquisition parameters (Section 4.5.1) and tone-reproduction methods (Section 4.5.2) on the perception of the aspect of the materials.

age 4 .

 4 [START_REF] Wynn | An introduction to brdf-based lighting, xvidi gorportion[END_REF]. The cabin walls were all black and the back wall (the one facing the observer) contained two apertures the size of the paint plates. Observers could see the physical sample plate (reference) through the aperture on the left and a portion of a computer monitor (where the photographs, or test images, were displayed) through the aperture on the right. This was done to minimize the eects of surrounding stimuli. The illumination and observation conditions were as described in Section 4.4.1, so the observers were seated at roughly 70 cm from the cabin's back wall with their eyesight at the same height as the apertures. Both the test images and reference samples were viewed wearing a pair of active stereoscopic glasses (shutter glasses) to equalize the observation conditions in all the cases.

Figure 4 . 12 :

 412 Figure 4.12: Visualization setup for the comparison of virtual images with real references.

Figure 4 . 13 :

 413 Figure 4.13: Paint samples. From left to right: GM1, GM2, HI, BC and BR. The rst three samples possess an overall green tint HI being slightly brownish, whereas BC and BR have a red and blue tint respectively. All samples are shiny except for GM2, which is matte.

4. 5 . 79 Figure 4 . 14 :

 579414 Figure 4.14: Average image similarity score with respect to the real reference for the base photograph series (left bar), the increased global image luminance series (middle bar), and the grayscale series (right bar), as a function of the shutter speed.

Figure 4 . 15 :

 415 Figure 4.15: Similarity between chosen images and the corresponding reference sample (a high number indicates a high similarity).

Figure 4 . 16 :

 416 Figure 4.16: Diculty to discern between the images in a series (a low number indicates a high diculty to discern between the images). Each 3-bar group represents a paint sample, from left to right: GM1, GM2, HI, BC, BR; the leftmost bar (purple) represents the base images, the middle bar (blue) represents the image series with increased luminance, and the rightmost bar (gray) represents the grayscale images.

Figure 4 .

 4 Figure 4.17: [a,b,c] Diagram of the setup in the three scenarios suggested. The test photographs are to the right and the real sample reference to the left. In the rst two scenarios the illumination is common to both sides of the comparison, whereas in the third case it only aects the physical sample. Notice the important luminance dierence between both sides of the comparison in the rst scenario, due to the additional light emitted by the display. The use of paired comparisons in the third scenario simplies the assessment of the images.

  dierent values: short (Image 1.1, 1/15 seconds), medium (Image 2.1, 1/8 seconds), and long (Image 3.1, 1 second). This choice tries to maximize contrast and minimize the amount of underexposure and overexposure present in the calibrated images. As we saw in Section 4.4, controlling the amount of saturation is crucial to maintain as much information as possible from the original scene and, in turn, ensure perceptually-realistic simulations. This time we only studied one type of paint sample, commercially named wnito qry. Using the medium exposure images as reference, we created tone-mapped versions of the short and long exposure images, resulting in Images 1.2 and 3.2, respectively. To maintain the perceptual properties of the images, we performed the transformations in the sensor-response domain represented in the XYZ color space, where the Y channel carries the luminance information. The tone-mapping transformation is shown in Expressions 4.10 and 4.11, where V in and V out are the pixel luminance of the original and tone mapped version of the image, respectively, L max is the maximum luminance in the original image, L ref is the maximum luminance in the reference image, and k m is the tonemapping operator.

  Bradley-Terry model[107]. These scores indicate the probability of each sample being chosen by an observer as closer to the reference over any other. Representing these scores in a logarithm scale which represents better the relative nature of visual perception we can group our ten samples into dierent similarity classes.

Figure 4 .

 4 [START_REF] Irawan | Perceptually based tone mapping of high dynamic range image streams[END_REF] shows ve classes designated by colors green (1), blue

Figure 4 . 18 :

 418 Figure 4.18: Experiment results. The ordinates indicate the sample number (see Table4.4) and the

Figure 5 . 1 :

 51 Figure 5.1: Visuo-perceptual validation methodology comparing photographs with simulations.

Figure 5 . 2 :

 52 Figure 5.2: Spectral power distribution of the Solux lights at 4700K, 12v, 50w, 36 • . Measured with a CS-2000 spectroradiometer with a 0.2-degree angle and an integration time of 0.401 seconds.

Figure 5 . 3 : 1 :

 531 Figure 5.3: Acquisition light cabin.

Figure 5 .

 5 Figure 5.4 shows wireframe views of the scene after modeling with the measurements from the real scene. Figure 5.5 shows a low-quality rendered preview of the same scene.

Figure 5 . 4 :

 54 Figure 5.4: Clockwise from the top: perspective, front, and top wireframe views of the validation scene for comparing photographs with simulations. reenshots from eutodesk Qds wxF wodeling nd simultion y homs wuller.

5. 5 .Figure 5 . 5 :

 555 Figure 5.5: Render preview of the scene used for the validations. The red circle on the right image marks the position of the camera as a reference. Note that the brightness has been increased for visualization purposes.

Figure 5 . 6 :

 56 Figure 5.6: Spectral sensitivity of the Nikon D800 [111].

Figure 5 .Figure 5 . 7 :

 557 Figure 5.7 shows two photographs (left) of a Macbeth color chart taken with shutter speeds of 1/8 and 1/15 seconds, and their corresponding simulations (right). Note that both the photographs and the simulations are represented in the camera's own RGB color space and have not been either calibrated nor white balanced. We can do this because we are comparing two images represented

Figure 5 . 8 ,

 58 shows the luminance values measured with a spectroradiometer during the camera characterization process, where oversaturated samples have already been removed for simplication. The red rectangle indicates the "safe zone" where luminance stimuli, estimated from a photograph, can be trusted according to the camera's characterization. This means that sample photographs with a estimated Y luminance under 9.41 and over 120.8 should be excluded from the comparisons or, at least, not be considered for making decisions about the results. Table5.2 represents the same colors from the Macbeth color chart images in Figure5.7, using the xyY space, as well as the dierences in the x (∆x) and y (∆y) chromaticity coordinates, and the total Euclidean distance between the points (∆xy). Oversaturated samples, as well as those outside the characterized range zone, have been excluded from this list to avoid confusion.

Figure 5 . 8 :

 58 Figure 5.8: Luminance of the Macbeth color chart measured with a spectroradiometer for the camera characterization process. Luminance values outside the red rectangle may produce produce unexpected results.

Figure 5 . 9 :

 59 Figure 5.9: Luminance comparison between a photograph (at a 1/8-second shutter speed) and its simulation, after scaling the latter by a multiplicative factor obtained as an average ratio.

Figure 5 . 10 :

 510 Figure 5.10: Luminance comparison between a photograph (at a 1/15-second shutter speed) and its simulation, after scaling the latter by a multiplicative factor obtained as an average ratio.

Figure 5 . 11 :

 511 Figure 5.11: Graphical representation of the CIEDE2000 color dierences between the photograph and the simulated image in Figures 5.7(a) (1/8 seconds, left), and 5.7(b) (1/15 seconds, right), using the standard ICC white point for the color space conversions to CIELAB. The images show a color representation of the dierences, with the color scale range adapted to a 0-10 range to facilitate visual inspection.

Figure 5 . 12 :

 512 Figure 5.12: Photograph (top) and simulation (bottom) of a sample green paint plate, with a total exposure corresponding to a shutter speed of 1/8 seconds. The images are in the camera's own RGB color space and have not been calibrated nor white balanced.

Chapter 6 .

 6 visual responses. Image realism at any point of this process is ensured by a full characterization and 104 Discussion and future work calibration methodology that gives us information and control over any transformation undergone by the radiometric signals throughout the entire chain of image acquisition and visualization.

1 :

 1 RGB tristimulus values of the 120 characterization color samples shown in Figure C.1.
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Table 3 .

 3 2: Asus VG248QE settings used for its characterization and during all the observation tests.
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 3 

	2	XY Z

3: Individual and average R 2 for the estimation of output XYZ values, from input DAC values, with each of the proposed models: GOG, GOGO, and GGO.

Table 3 .

 3 4: Individual and average R 2 for the inverse estimation of input DAC values, from output XYZ values, with each of the proposed models: GOG, GOGO, and GGO.
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Table 3 .

 3 [START_REF] Ferwerda | Three varieties of realism in computer graphics[END_REF] for the forward transformation using the GOG model on the Asus VG248QE monitor.

	Parameter	Red channel	Green channel	Blue channel
	Gain (a)	267.6079	258.6558	257.9680
	Oset (b)	0.0458	0.0572	0.0202
	Gamma (γ)	0.5256	0.5055	0.5534
	R 2	0.9995	0.9984	0.9986

Table 3 .

 3 5: Asus VG248QE characterization results with the forward GOG model.

Table 3 .

 3 4).

	3.3. Eects of stereoscopic visualization on the color signal	55
	Parameter	Red channel	Green channel	Blue channel
	Gain (a)	0.0038	0.0041	0.0039
	Oset (b)	0.0218	0.0000	0.0000
	Gamma (γ)	1.8132	1.7649	1.7156
	R 2	0.9995	0.9976	0.9991

Table 3 .

 3 6: Asus VG248QE characterization results with the inverse GOG model.
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	and, more generally	

Table 4 .

 4 3: List of images used in the experiment. There is a base version of each image and a tone mapped version of Images 1 and 3. There is no tone mapped version of Image 2 because it is the reference image for luminance levels. Image 3.2 has a maximum luminance lower than the reference (104.7) because scaling it by a higher factor would result in a high amount of oversaturated pixels.

	Image	Exposure time (sec)	Luminance scaling factor	Maximum luminance	Saturated pixels (%)
					R=0.158
	1.1	Short (1/15)	1	205.3	G=0.034
					B=0.032
					R=0.039
	1.2	Short (1/15)	0.51	104.7	G=0.006
					B=0.007
	2.1 (Reference)	Medium (1/8) 1	104.7	R=0.145 G=0.028 B=0.030
					R=0.009
	3.1	Long (1)	1	15.65	G=0.000
					B=0.000
					R=0.300
	3.2	Long (1)	1.78	27.85	G=0.000
					B=0.000

Table 4 .

 4 4) and the abscissas indicate the Bradley-Terry scores in logarithmic scale.

	Sample	Image Type Score LOG	Perceptual
				score	class
	8	3.2	M	0.0296 -1.5287 5
	2	1.2	M	0.0432 -1.3645 4
	7	3.1	M	0.0543 -1.2652 3+4
	1	1.1	M	0.0718 -1.1439 3
	5	2.1	M	0.0740 -1.1307 3
	9	3.2	S	0.0751 -1.1244 3
	3	1.2	S	0.0762 -1.1180 3
	10	3.1	S	0.1149 -0.9397 2
	4	1.1	S	0.2036 -0.6912 1
	6	2.1	S	0.2574 -0.5894 1

Table 4 .

 4 4: Bradley-Terry scores and Log scores for each of the samples used in the experiment in ascending order. These scores represent the probability of each sample being judged closer to the reference over any other. Types M and S stand for Monoscopic and Stereoscopic respectively.

  general, we can say that contrast increases as global image brightness decreases, and the other way around. Our results show that this armation is true, but only for intermediate values of image 4.5. Perceptual reproduction of luminance dynamics in photographs of sparkling materials. 85 brightness; below and above a certain threshold, perceptual similarity decreases. Although this contrasts with our results from the previous experiment, where we found that observers preferred bright images, the fact that high contrast images are preferred supports our assumption that it was due to the lack of contrast in darker images. Based on previous observation results (Section 4.5.1), we can arm that image brightness and contrast image attributes determined by the luminance of the scene and the dynamic range of the display are also strongly linked to the amount of light exposure during acquisition. The results shown in this section support our previous claims that image brightness and contrast can alter the perception of sparkling material images due to its eect on perceived ake size. Moreover, they suggest that, under the described observation and illumination conditions, close perceptual similarity with respect to real references can be achieved by ensuring device-independent XYZ visual responses with luminance values (Y channel) around 100 cd/m 2 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 Setup and characterization of a controlled test scene . . . . . . . . . . . . 89 5.3 Data acquisition from test scene photographs . . . . . . . . . . . . . . . . 91 5.4 Simulation of the scene in the target rendering engine . . . . . . . . . . . 91 5.5 Objective comparison of photographs with simulations . . . . . . . . . . . 92 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
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	model against photographs of real
	scenes
	Contents
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  5.2. Setup and characterization of a controlled test scene 89 discrepancies between the real and virtual scene. Although visual responses should not be aected by this phenomenon, because they are triggered by integrated tristimulus quantities, this is something that should be veried during the validation process.

Table 5

 5 .2 we can see that, for an exposure of 1/8 seconds, a much larger luminance dierence is obtained for the green square (number 14) of the Macbeth chart. Regardless of the fact that the images have not been calibrated which means that they have double number of green pixels from the camera's CFA this shows that the camera's green lters are more sensitive to luminance. Looking at Table5.5, we can see that the luminance dierences (∆L) are indeed very large in each individual area, but with negative symbol.

Table 5 .

 5 3: CIEDE2000 color dierences between the photographs and the simulated images in Figure 5.7, using the standard ICC white point for the color space conversions to CIELAB. S L , S C , and S H indicate the value of the weighting functions for lightness, hue, and chroma, respectively.

	100Chapter 5. Objective render model validations against photographs of real scenes
					1/8 seconds			
		Photograph	Simulation	Dierence (∆)
	Color	x	y	Y	x	y	Y	∆x	∆y ∆xy
	1	0.44	0.38	59.81	0.44	0.39	0.07	0.00	0.01	0.01
	3	0.31	0.27	78.39	0.29	0.32	0.13	0.02	0.05	0.05
	4	0.39	0.46	77.61	0.38	0.46	0.09	0.01	0.00	0.01
	8	0.26	0.26	67.12	0.25	0.23	0.08	0.02	0.03	0.04
	9	0.46	0.35	102.17	0.51	0.34	0.14	0.05	0.01	0.05
		0.35	0.27	34.87	0.35	0.27	0.04	0.00	0.00	0.00
		0.21	0.18	25.84	0.21	0.19	0.03	0.01	0.00	0.01
		0.35	0.42	87.70	0.34	0.51	0.15	0.01	0.09	0.10
		0.55	0.34	73.11	0.58	0.34	0.08	0.03	0.00	0.03
		0.41	0.28	95.43	0.44	0.28	0.13	0.03	0.00	0.03
		0.25	0.27	67.94	0.23	0.32	0.11	0.02	0.05	0.05
		0.36	0.37	82.77	0.36	0.37	0.11	0.00	0.01	0.01
		0.35	0.37	34.72	0.36	0.37	0.05	0.01	0.01	0.01
		0.34	0.37	9.87	0.36	0.37	0.01	0.02	0.00	0.02
						Average:	0.02	0.02	0.03
					1/15 seconds			
		Photograph	Simulation	Dierence (∆)
	Color	x	y	Y	x	y	Y	∆x	∆y ∆xy
	1	0.44	0.38	59.31	0.44	0.39	0.04	0.00	0.01	0.01
	3	0.29	0.31	101.17	0.29	0.32	0.07	0.00	0.01	0.01
	4	0.39	0.46	75.87	0.38	0.46	0.05	0.01	0.00	0.01
	8	0.24	0.22	57.97	0.25	0.23	0.04	0.01	0.01	0.02
	9	0.51	0.33	114.97	0.51	0.34	0.07	0.01	0.01	0.01
		0.35	0.27	35.23	0.35	0.27	0.02	0.00	0.00	0.00
		0.21	0.18	25.73	0.21	0.19	0.02	0.01	0.00	0.01
		0.34	0.51	120.68	0.34	0.51	0.08	0.00	0.00	0.00
		0.55	0.34	72.42	0.58	0.34	0.05	0.03	0.00	0.03
		0.43	0.28	99.79	0.44	0.28	0.07	0.00	0.00	0.00
		0.23	0.31	85.94	0.23	0.32	0.06	0.00	0.02	0.02
		0.36	0.37	80.07	0.36	0.37	0.06	0.00	0.01	0.01
		0.35	0.36	35.23	0.36	0.37	0.02	0.01	0.01	0.01
		0.35	0.36	12.31	0.36	0.37	0.01	0.01	0.02	0.02
						Average:	0.01	0.01	0.01
	Table 5.2: xyY tristimulus values of the Macbeth color samples and non-perceptual chromaticity
	distances in the CIE xy color space.							

Table 5 .

 5 4: xyY tristimulus values, and non-perceptual chromaticity distances in the CIE xy color space, of the photograph and the simulated images in Figure 5.12.

		Photograph	Simulation			CIEDE2000		
	Area	L	a	b	L	a	b	∆L	∆H ab ∆E00	S L	S C	S H
	Top	87.53	-52.90	2.71	89.91	-58.70	13.25	2.38	-9.63	2.52	1.60	3.55	1.91
	Middle	87.08	-56.92	11.84	89.30	-61.23	19.49	2.22	-6.29	2.14	1.60	3.76	2.09
	Bottom	84.69	-60.39	22.81	80.00	-56.68	20.02	-4.69	1.34	3.32	1.51	3.81	2.18
	Average	86.40	-57.04	12.93	86.53	-59.01	17.71	0.13	-4.11	0.85	1.57	3.70	2.07

Table 5 .
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5: CIEDE2000 color dierences between the photographs and the simulated images in Figure

5

.12, using the standard ICC white point for the color space conversions to CIELAB. S L , S C , and S H indicate the value of the weighting functions for lightness, hue, and chroma, respectively. Chapter 6

  RésuméLa simulation de matériaux physico-réalistes est un processus demandant beaucoup de calcul. Les images de synthèse étant destinées aux observateurs humains, nous pouvons utiliser les limitations de notre système visuel pour simplifier le modèle de rendu, en évitant le calcul d'information invisible. Cela s'appelle le réalisme perceptif. Nous nous intéressons à la simulation de peintures d'automobiles, en particulière aux peintures scintillantes à paillettes métalliques. Nous essayons d'améliorer le réalisme perceptif de deux manières : en utilisant de la visualisation stéréoscopique pour apporter de l'information de profondeur additionnelle à partir de la disparité binoculaire ; et en conservant autant d'information perceptive de la luminance originale que possible. La gamme dynamique illimitée d'une scène réelle est réduite lorsqu'une image est traitée dans des dispositifs à une gamme dynamique plus basse dans la chaîne d'acquisition et de visualisation. Pour assurer un réalisme perceptive, nous proposons une méthodologie reposant sur la caractérisation des dispositifs, l'acquisition d'information radiométrique, et des validations visuoperceptives. En remplaçant l'oeil humain par un appareil photo numérique, en tant qu'intégrateur tristimulaire d'information radiométrique, nous réalisons des comparaisons visuelles entre des échantillons réels et des photographies pour estimer la valeur d'exposition qui maximise le réalisme perceptif dans un environnement d'observation contrôlé. Ces résultats sont ensuite contrastés avec plusieurs méthodes de reproduction tonale, afin d'analyser les effets perceptifs de certains attributs d'image tels que l'exposition, la gamme dynamique, la brillance, et le contraste. Nous proposons également une méthodologie complète pour simuler des scènes réelles qui soient comparables, d'un point vue radiométrique et colorimétrique, aux photographies de la même scène. En assurant des images simulées correctes, cette méthodologie établie les bases face à une future intégration de nos observations dans le moteur de rendu.
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Figure 1.2: LIMA Project: general task organization. The bottom-right block, marked in red, concerns the perceptual validations.

A near-perfect white diuser is a surface made of barium sulfate whose reectance approximates a lambertian reectance, a theoretical surface that reects back all the light that it receives.

See Appendix A for a more complete denition of these devices.

Radiant ux (W/sr/m 2 ) or luminous ux (lm/m 2 ) per unit wavelength (See a more complete denition in Section A.12 of the glossary)

(1.1)[START_REF] Shirley | Basics of physically-based rendering[END_REF] Since it is out of the scope of this research, we will not consider here the special case of luminescent objects.

As we will see in Section 2.6 real scenes, unlike synthetic scenes, are dynamic in the sense that our perception of the scene changes constantly due to the temporal integration properties of our visual system, which is periodically examining the scene for changes.

As described in Section 1.2.2.1 and A.19, a spectroradiometer is a device that measures the SPD of a light source (units W • sr -1 • m -2 per unit wavelength). We used a Konica Minolta CS-2000, which is a non-contact spectroradiometer that measures contrasts of 100,000:1 and low luminance levels down to 0.003 cd/m 2 .

The spectroradiometer is a Konica Minolta CS-2000. It is a non-contact spectroradiometer that measures contrasts of 100,000:1 and low luminance levels down to 0.003 cd/m 2 .

Using Matlab R2012b's t function [91].

DAC is the acronym for Digital-to-Analog Converter; although our display has a digital input and therefore this term is not strictly correct, the term is widely used in the context of CRT characterization, so we continue to use it here for consistency.

Note that the maximum intensity values in the graph decrease as the exposure time increases. This is because these values were measured on images that were calibrated to meet the dynamic range of a display, as we will see in Section 4.4.3. Nonetheless, this does not aect our observations about the variations in the intensity proles.

The spectroradiometer is a Konica Minolta CS-2000. It is a non-contact spectroradiometer that measures contrasts of 100,000:1 and low luminance levels down to 0.003 cd/m 2 .

As a result, sparkling areas reect much less light in long-exposure photographs than in short-exposure ones, which translates into lower intensity values in the image, as we saw in Figure4.3.

Figure 4.4: Acquisition setup for sample photographs.

The HVS, as we have seen in Chapter 2, has the ability to maintain color and luminance constancy through varying observation conditions, and possesses a variable acuity that depends on factors like color, luminance, and contrast. Cameras, on the other hand, cannot do this on their own, so the raw image data sensed by the camera has to be transformed to a specic colorimetric system (a set of primary colors) other than the camera's, in order to obtain a meaningful image where these properties apply.

We consider that an RGB image is excessively oversaturated when more than a 0.3% of the pixels have the maximum gray level value. This saturation percentage was chosen experimentally to obtain a reasonably low amount of perceivable oversaturated pixels.

one to each side of the box, oriented towards the sample. Figure5.2 shows the SPD of the Solux lights, and Figure5.3 shows some photographs of this setup.[START_REF] Chen | Natural enhancement of color image, tournl on smge nd ideo roessing[END_REF] IES is the standard le format recommended by the Illuminating Engineering Society (IES) for electronic transfer of photometric data. The IES le denes the input electrical power (W) of the light, as well as the luminous ux and luminous intensity for multiple dierent angles.[START_REF] Couka | wodélistion des propriétés optiques de peintures pr mirostrutures létoires et luls numériques[END_REF] Solux incandescent lights at 4700 Kelvins, running at 12 volts and 50 watts each, with a

36-degree illumination cone

Commercial name: Vaillant Green; Grain code: A001; Color code: KRM (7M)

Perception visuelle humaine, réalisme perceptive, validation d'images, modèles physiques de matériaux, peintures scintillantes automobile, psychophysique.

4.4 Perceptually-aware acquisition of photographs of sparkling materials

Representing the real observation conditions in a photograph

We use photographs of paint samples as an intermediate step to determine the relationship between the HVS and the material rendering model. Because these photographs will be used in real-virtual comparisons, we must be able to control the acquisition conditions in order to reproduce them later on in the rendering engine.

The sample photographs were captured under a controlled light environment inside a dark room.

We simulated solar daylight using a set of Solux incandescent lamps at 4700 Kelvins, running at 12 volts and 50 watts each, with a 36-degree illumination cone. We used a set of four lamps for global illumination, plus an additional directional light focused on the paint plate being photographed (Figure 4.4). The global illumination is used to increase the overall ambient light, and therefore the illuminance arriving on the paint plates; similarly, the directional lighting brings up the sparkling eect, resulting in a type of texture that authors Kirchner and Ravi refer to as qlint impression [102].

To capture the sample photographs we used a custom-built support (Figure 4.5) consisting of a T-shaped metal structure with a short bar (the T's crossbar) intersecting perpendicularly a longer bar on one of the edges. The longest bar holds the paint sample in front of the camera mount, allowing to regulate the observation distance; the shortest bar serves as the mount for the camera and is distance-marked, which permits stereoscopic image acquisition as well, by allowing dierent osets in the camera viewpoint.

We took the photographs at a distance of roughly 70 centimeters, which we found to be a comfortable distance for an observer sitting at the observation post while allowing for the entire sample to stay within the standard 10-degree view angle. Using the stereoscopic acquisition bar described above, we took three photographs for each case in In order to produce perceptually-realistic images, as dened in Section 1.2.1, we must ensure that the visual responses produced by the virtual images and the real scenes are the same. Given that the physiological camera input obtained above represents the real scene's visual response, this means that the physiological output produced by the display should be the same as the estimated camera input (i.e. the tristimulus values emitted by the display should match those "seen" by the camera in the real scene). Therefore, we need an additional step where the display's characterization model obtained in Section 3.2.2 is used to estimate the image RGB values that must be input to the display to produce the desired visual response. 

Eects of image calibration in the perception of sparkle in photographs

The result from the image calibration process are photographs which all have a similar average luminance, but with dierent variance amongst the pixel values. Raw images with short exposure times present a wide contrast between shadows and highlights, whereas the contrast in long-exposure images tends to be much narrower. Sparkling is the result of specular reections from metal akes and, as such, they are imaged as pixels with very high-intensity values. As the amount of light reected by the akes increases, the resulting intensity values will overexpose. Eventually this intensity will exceed the saturation limits of the camera's sensor, which will clip values above this threshold to the upper limit of the color depth (number of bits) used to encode the image. For this of the materials is to be predicted from their composition, and vice versa. The aim is to nd the relationship between optical behavior and aspect perception without having to produce the physical material, using only their simulations. The work produced in this PhD thesis is only a small part of what is certainly a very extensive research area. In this work, we propose some foundations in the eld of visuo-perceptual validations of physically correct simulations of sparkling materials.

We have concentrated on what we consider one of the most important factors in the simulation of sparkling materials, which is the reproduction of luminance values, and have provided important psychophysics results regarding the eects of luminance over the perception of images of sparkling materials. After some further testings, the validation methodology presented at the end of this work to compare material simulations with photographs already permits to integrate all these psychophysics results into the rendering model. However, a lot more work is necessary to ensure a fully perceptual validation for this type of simulations.

Possible areas for future work include, for example: the design of a material-specic characterization method to improve radiometric estimations and, in turn, perceptual image realism; a further analysis of color-related perception; or a study of perceptual thresholds in metal-ake density. We know that the accuracy of human vision varies for dierent parts of the color spectrum, so the perception of color paints might vary for dierent hues. In this regard, initial results presented in this thesis suggest that observers could distinguish more easily between dierent image exposures for green paints than red or blue. We propose to use non-sparkling paint samples to carry out additional analyses of visual perception. The absence of sparkles results in uniform colors that can be used to compute color dierence metrics in sample photographs. These color dierences can then be compared to the results from psychophysics experiments. Since the camera is calibrated, we can extract radiometric information from the photographs, in order to establish a relation between perceptual tolerance and physical values for selected attributes. We mentioned that one of the reasons why we performed our studies using the XYZ color space instead of LMS is because of the lack of perceptual attributes in the existing LMS color appearance models; performing these additional studies in the LMS color space could provide us with important information to expand current color appearance models in the context of our particular type of materials and observations conditions. Finally, additional work directions include testing the consistency of our results for dierent visualization devices and under dierent illumination and observation environments.

Appendix 1: Glossary

Many of the terms used in this PhD thesis may have dierent interpretations depending on factors such as the eld of study (e.g. computer graphics, design, optics, etc.) or the language. For this reason, the multidisciplinary nature of this work and the fact that it is presented in a french speaking environment we can nd several false friends amongst technical terms in French and English demand that we ensure uniformity in the denition of the terms. This sections presents a series of denitions that allow for a more objective interpretation of the terms used throughout this work.

A.1 Real Scene

We will use the term "real" to refer to any physical tangible object, or collection of objects, that exist in real life.

A.2 Virtual scene

As opposed to a real scene, the term "virtual" will refer to any object, or collection of objects, that is displayed on any type of screen (computer display, projector, etc).

A.3 Simulated scene

The term "simulation" will refer only to computer-generated virtual scenes, resulting from a simulation rendering process.

A.4 Radiometry

Set of techniques to measure electromagnetic energy, including the visible light, in terms of absolute power.

A.5 Photometry

Science that measures visible light in terms of psychophysical quantities that reect the psychological impressions perceived by a human observer. Photometric quantities are typically normalized with respect to the luminous eciency curve of the human visual system, which indicates its peak sensitivity to each wavelength under specic illumination conditions (photopic or scotopic). The ratio between photometric and radiometric units is given by the peak sensitivity (at 555 nm), called the luminous ecacy (683 lm/W). Therefore, photometry only applies to visible light measurements, that is, to electromagnetic energy within the visible spectrum.

A.6 Radiant ux (or radiant power) Amount of radiant energy transferred per unit time. It is measured in watts(W) or Joules per second (J/s), its equivalent SI base unit. We speak of spectral radiant ux (or spectral radiant power) when the ux is given for each wavelength (watts/nanometer or W/nm).

A.7 Luminous ux (or luminous power)

Photometric quantity, equivalent to radiant power in the visible spectrum. It is expressed in lumen (lm). To convert between radiometric and photometric units keep in mind that, at 555 nm, a luminous power of 1 lm corresponds to a radiant power of 1/683 W.

A.8 Irradiance

Radiant power incident on a surface per unit area. It is measured in watts per square meter

2 ) and it is inversely proportional to the squared distance between the illuminating source and the illuminated surface (inverse square law).

A.9 Illuminance

Luminous power incident on a surface per unit area. It is measured in lumen per square meter (lm/m 2 ).

A.10 Solid Angle

A unit solid angle, measured in steradian (sr) is dened as the angle subtended at the center of a sphere with a 1-meter radius by an area of 1 m 2 located on its surface. It is a measure of the apparent size of an object for an observer located at a given point away from it, independent of the object's size and its distance from the observer.

A.11 Radiance

Radiant power that leaves a surface per unit solid angle and unit projected area of that surface. For point sources the term intensity is equivalent to radiance in practice, any source with a diameter smaller than 1/20th of its distance to the irradiated surface is considered a point source. It is expressed in watts per steradian per square meter (W/sr/m 2 ).

vnguge dismigutionX The word radiance does not exist in french (it is called "luminance énergétique"), although it is sometimes used as an anglicism.

A.12 Spectral Power Distribution (SPD)

The SPD of a given electromagnetic radiation is the contribution of that illumination to a radiometric or photometric quantity, for each wavelength of a given spectrum range. Typically, we give SPDs for a wavelength range covering the visible portion of the electromagnetic spectrum, roughly Reection is caused when a given light wave bounces on the interface between two media (in our case, the air and the material), returning back through the same medium. If the wave is not perfectly reected, part of the light wave gets refracted through the second material. In turn, the refracted light can be transmitted through and/or absorbed by the second material. The amount of light that gets reected, refracted, transmitted and absorbed by the material depends, respectively, on the reectance, refraction, transmittance and absorption indexes of the materials. Similarly, when the light wave is given as a function of the wavelength, we speak of spectral reectance, spectral refraction, spectral transmittance and spectral absorption.

A.14 Reectance factor

Ratio of light reected from an object on a surface to the amount of light reected from a perfect diuser on the same surface, under the same illumination conditions.

A.15 Bidirectional Reectance Distribution Function (BRDF)

The BRDF (with units inverse steradians, sr -1 ) describes the amount (proportion) of light reected when light makes contact with a material, as a function of the illumination and observation angles, relative to the surface normal and tangent, and the wavelength of the light [START_REF] Wynn | An introduction to brdf-based lighting, xvidi gorportion[END_REF]. This is indicated by Expression A.1, where ω i is a vector representing the incoming direction of the light, ω r represents the outgoing or reection direction of the light, L is radiance (W • sr -1 • m -2 ), and E is irradiance

A.16 Snell-Descartes law

When light passes through a boundary between two isotropic media with respective refractive indices n 1 and n 2 , Snell-Descartes' law states that the ratio between the sines of the incidence and refraction angles (θ 1 and θ 2 ) is equivalent to the ratio of phase velocities (ν 1 and ν 2 ) and light wavelengths (λ 1 and λ 2 ) in the two media, or the inverse ratio of the refraction indices. This is indicated by Expression A.2.

A.17 Brightness / Lightness

The quantity of light in a color is expressed with the terms brightness and lightness. Brightness is measured in an absolute scale from dark to bright, which depends on adaptation and may vary over time for dierent conditions; it is typically used for the colors of light sources, and it expresses the intensity of the light source in terms such as dark, dim, bright, etc. Lightness, on the other hand, is measured in a relative scale, so it does not change with adaptation and conditions; it is typically used for the colors of reecting objects, expressing the appearance of the surface in terms such as black, dark gray, light gray, white, etc.

A vnguge dismigutionX Be aware that, while the french word "luminance" refers to its english homonym "luminance", the term "luminance énergétique" is used in french to refer to the english word "radiance". A.19. Spectroradiometer

A.24 Tristimulus Values

The amount of each of the three reference stimuli, under a given representation system, that needs to be in the mixture to produce a given color stimulus. Depending on the model, the tristimulus values may be more than three, but the same word is used by extension.

A.25 Color response

The color response or color output of an output device describes the set of colors (color gamut) that can be reproduced by a given device.

A.26 Transfer function

Mathematical representation that describes the response of a device, that is, the relation between the device's input and output signal.

A.27 Calibration

The process of modifying the response of a device to meet a given target.

A.28 Illuminant

The source of visible light that generates the sensation of colors after bouncing on an object. An illuminant is generally specied by its SPD. There is a set of known theoretical illuminants, each one with a name and a known predened SPD; the illuminants in this group are called standard illuminants.

vnguge dismigutionX Be aware that the french word "éclairage" refers to any illuminant in general, whereas the french word "illuminant", unlike the english one, refers only to a standard illuminant.

A.29 Reference white

These are the coordinates of the white color used as a reference. It is chosen so that it is close the basic white stimulus, also known as the equi-energy white, established by the CIE at coordinates (0.33,0.33). The tristimulus values of the reference white are considered the tristimulus values of a perfect reecting diuser under the same illuminant as the rest of the objects under consideration.

A.30 Metamerism

The phenomenon under which two color stimuli, with dierent spectral distributions, match (are perceived as being the same color) under specied observation conditions. The two color stimuli are called metamers.

A.31. Viewing conditions 113

A.31 Viewing conditions

The viewing conditions are the conditions under which a certain scene is observed. These conditions include the viewing angle with respect to the surface normal, the illuminant under which the scene is observed and several other factors that may inuence the aspect of the perceived colors.

A.32 Vision adaptation / Color constancy

When the viewing illumination varies, the human visual system has the ability to adapt to the changing conditions without being greatly inuenced by the change. When the level of the ambient illumination changes, we talk about Luminance adaptation; when the ambient illumination changes its color, we talk about chromatic adaptation. Because of these two mechanisms, we can perceive the color of objects without many changes under dierent illuminants (this is known as color constancy).

A.33 Color Matching Functions (CMF)

The color matching functions are three functions, x, ŷ, and ẑ, that represent the chromatic sensitivity alongside the visual spectrum of wavelengths, of a reference human observer (the standard observer)

for the three types of color-sensitive cones in the human retina. They were computed by the CIE (International Commission on Illumination) as the averaged response of a series of real observers, obtaining functions measured at 2 • (for viewing angles less than 2 • wide) and 10 • (for and viewing angles larger than 4 • ). The averaged set of responses obtained for each viewing angle are referred to as the gsi IWQI tndrd yserver and the gsi IWTR 10 • tndrd yserver, respectively.

Alternatively, an additional set of CMFs was dened for the CIE 1931 RGB color space, which are expressed as r, ĝ, and b. See Section ?? for more information.

A.34 Color Space

The mathematical space that denes the interval (or locus) for the possible tristimulus values that specify a given color stimulus.

A.35 Color (Appearance) Model

As color vision models get more complex, it becomes necessary to dene colors in a better way.

Sometimes it is not enough to represent a color by its set of tristimulus values, so color spaces must then be extended, dening equations that describe how color stimuli relate with the appearance attributes of the color such as hue, saturation, lightness, brightness, etc. as well as taking other factors into account like the observer's adaptation to the viewing conditions, or the surround and ambient light to predict the color appearance. This is known as a Color Model, or Color Appearance Model.

A.36 Color calibration target

A color calibration target, or color calibration chart, is a physical swatchbook-like cardboard chart formed by a set of color elds arranged in a grid. The number of color elds depends on the size of the gamut of the device being calibrated, with dierent standard calibration targets for dierent • Virtual reality international summer school 2014. 

Abstract

The simulation of physico-realistic materials is a process that requires a lot of computation. Since the images are meant to be seen by human observers, we can use the limitations of their visual system to simplify the rendering model, avoiding redundant information that will not be seen. This is known as perceptual realism. Focusing on the simulation of automobile paint coatings, with special attention to metallic-flaked coatings with a sparkling appearance, we try to improve perceptual realism in two ways: using stereoscopic visualization, to provide additional depth information from binocular disparity; and preserving as much of the original perceptual luminance information as possible. The unlimited luminance levels, or dynamic range, of a real scene must be reduced as an image is processed by lowerdynamic range media throughout the acquisition and visualization chain. To ensure perceptual accuracy throughout this process, we propose a methodology consisting of device characterization, radiometric acquisition, and visuo-perceptual validations.

Replacing the human eye by a DSLR camera, as a trichromatic color integrator of radiometric information, we perform visual comparisons of real samples and photographs to estimate the image exposure that maximizes perceptual accuracy under a controlled observation environment. These results are then contrasted with different tone reproduction methods, in order to analyze the effects on texture perception of specific image attributes like exposure, dynamic range, brightness, and contrast. We also propose a full methodology to produce simulations of a real scene, which are radiometrically and colorimetrically comparable to photographs of the same scene. By ensuring that the simulation produces correct images, this methodology lays the foundations for a future integration of our observations into the rendering engine.