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1.1 Research framework

This thesis is a part of a french national research project1, named LIMA (Light, Interaction, Matter,
and Aspects) project, which is a collaboration between 3 research laboratories of École Nationale
Supérieure des Mines de Paris, 3 SMEs2, and an industrial partner, the PSA Peugeot Citröen
group. The LIMA project ran from January 2011 to January 2016; this thesis started in March
1st, 2013, �nanced within the framework of a CIFRE (Conventions Industrielles de Formation par

la Recherche) convention. The goal of the LIMA project is to create perceptually realistic simula-
tions of paint materials with speci�c known properties. Interactive head-tracking and stereoscopic
visualization are suggested as ways to improve perceptual realism. We will say that the simulations
are perceptually-realistic when they trigger the same visual response on a human observer as the
physical instances, under the same observation conditions. Our research takes place in the context
of automobile paints, with a special focus on complex sparkling coating materials.

The aspect of paint materials is a very important factor in industrial product design, more
so after the proliferation of complex �nishes such as those used in pearlescent, sparkling, glossy,
or goniochromatic materials. The use of simulation applications for product design introduces
important cost and time reductions, in addition to o�ering greater control and �exibility to designers
in the creative process; however, replacing the visual evaluation of physical samples or prototypes
(Figure 1.1) by virtual representations of the product also carries important challenges. Industrial
design applications rely strongly on the aspect of the product, so it is paramount to ensure that the
product simulation is accurate with respect to the physical product.[1]

The production of industrial materials requires the participation of three main agents: manufac-
turer, designer and �nal user. In digital simulations, the manufacturing process de�nes the physical
composition of the materials, which often entails the modelization at several levels (chemical, me-
chanical, mathematical, optical, etc) of the material's microstructure in terms of spatio-chromatic
distribution. This model is then used by a rendering engine to produce a color image representation

1ANR (Agence Nationale de la Recherche) grant #2011 RMNP 01401
2Small and medium-sized enterprises



2 Chapter 1. Introduction

Figure 1.1: Several types of physical samples for automobile paints.

of the material, under some prede�ned environment, which simulates the optical properties of the
material's microstructure in an accurate, or realistic, manner. Realism is de�ned based on percep-
tual criteria that relate perceptual image attributes to spatio-chromatic properties which, in turn,
are related to properties of the material composition.

The LIMA project proposes a double approach, from material composition to material aspect,
and vice versa. Consequently, visual simulations of the materials could be generated from their
composition and, conversely, their composition be predicted from a desired visual aspect. We can
distinguish three main lines of work: material measurement and modeling, simulation rendering,
and perceptual validation of the results (Figure 1.2). First, optical measurements are taken from
each individual physical component of the paint coating materials, and used to describe and model
their morphological microstructure [2]. At the same time, the same physical base components are
combined to produce real reference samples [3], which are later used for physical validation. A ren-
dering engine integrates these models to generate simulations of the materials, using virtual reality
techniques like head tracking and stereoscopy to provide dynamic and interactive visualization [4].
This allows the user to move around the objects and view them from di�erent angles, reproducing
more accurately the real observation conditions. In this context, the work presented in this thesis
deals with the perceptual validation of the simulations: we use feedback from visual evaluations
by human observers, under some controlled conditions (illumination, observation, display, etc.), to
ensure the perceptual realism of the simulations with respect to the real samples.

1.2 Perceptually realistic rendering

When we observe an object illuminated by one or several light sources, its surface is hit by some
portion of the electromagnetic waves emitted by these light sources. A series of optical interactions
then take place between the light and the object, resulting �in the case of non-fully absorbent
objects� in a series of secondary signals re-emitted by the object, some of which will reach the
eye of the observer. When this light arrives in the eye, it is captured by the photoreceptors in the
retina, and transmitted to deeper processing stages. These further stages process the perceived
signal in terms of higher-level criteria, using information about the environment and our personal
prior knowledge. Image synthesis, or image rendering, is the process by which a computer simulates
these processes, to generate an image that reproduces, to some extent, the information present in
the real scene.

The �rst part of this section discusses di�erent interpretations of realistic image rendering, using
objective criteria to evaluate the realism of an image. In this context, we de�ne a perceptually
realistic object simulation as one that produces the same visual response in the observer as the
physical object. The following section discusses di�erent ways in which the light can interact with
the objects in a real environment to produce visual stimuli, and how that a�ects our visual response
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when we observe the environment. We will �nish by describing the process to generate and display
visual stimuli with a computer.

1.2.1 De�nition of realistic image rendering

Image synthesis, or image rendering, is the process by which computers can generate a digital
representation of a given environment. These images represent selected properties of a real scene
with varying degrees of realism. However, although extensive research work has been done in the
area of realistic image rendering, one of the most important issues remains the lack of common
criteria to de�ne and measure the level of realism [5]. We can �nd in the literature many di�erent
interpretations of realism, attending to various criteria. Some interpretations require the existence
of a reference, whereas others simply judge the realism of a scene or object in itself. Authors Shirley
et al. [6] and Ferwerda [5] present two overlapping, but di�erent, classi�cations of special interest
for our work.

Shirley et al. [6] distinguish the following three rendering approaches attending to the accuracy
of the physics in the scene:

• Predictive rendering: the results must match the real scene (design and simulation
applications).

• Plausible rendering: plausibly real look, but the physics can be wrong (entertainment
and visualization applications).

• Visually-rich rendering: visual richness of reality, but can be highly stylized.

In this work we are concerned by the �rst and second types of rendering. We do not care for the
aesthetic aspect of a scene so much as for how it is constructed according to a set of input models
and physics laws. This rendering paradigm is known as physically-based rendering (PBR). In the
past, PBR required a big amount of computation time and resources, but the latest technological
advances have reduced these computation demands drastically. However, as the complexity of a
scene increases, the amount of computation needed to simulate a high-�delity scene is such that
even modern GPUs are incapable of doing it in reasonable time. This problem becomes specially
important in interactive simulation applications such as ours. The key to reducing computation
times, as discussed by Chalmers et al. [7], is to keep in mind that the scenes are rendered for a
human observer, so that the amount of required information is limited by the capabilities of the
human visual system (HVS).

This takes us to the next classi�cation, provided by Ferwerda [5], based on the type of visual
information depicted in the scene:

• Physical realism: the image provides the same visual stimulation as the real scene.

• Photo-realism: the image produces the same visual response as the real scene.

• Functional realism: the image provides the same visual information as the real scene.

In this second classi�cation we can identify physical realism with predictive rendering, or more
speci�cally, PBR; however, there is no correspondence between the remaining categories in the two
classi�cations �which is why we provide both classi�cations here. We �nd an additional variety
of realism in this classi�cation: functional realism. Functional realism refers to a type of realism
where, even if the simulation does not resemble the real scene as much (stylized, sketched, etc),
it still provides the same (or even more) information needed to perform a given task. This is
illustrated in Figure 1.3. As explained by Ferwerda, although the photographs in this illustration
are su�ciently clear, one could argue if they are preferred in terms of providing information because
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"the drawings o�er a number of bene�ts over the photos. First, the drawings can eliminate irrelevant
details produced (in this case) by shading, shadows, and surface texture. Second, the drawings
can facilitate visual segmentation and grouping by color (e.g. hand white, tools gray, wood tan).
Third, the drawings make it possible to show viewpoints that would be di�cult or impossible in
a photograph, such as the edge shot shown in the �rst panel or the point-of-view shot shown in
the second. Finally, the rendering of the saw blade shows that the drawings can make use of
`special e�ects' like arti�cial transparency to depict important features that would be hidden in
photographs" [5].

Figure 1.3: Functional realism in technical illustrations. Adapted by Ferwerda [5] from the Reader's

Digest Complete Do-It Yourself Manual [8].

As we mentioned above, physically-realistic rendering has several disadvantages: the highly
demanding computation requirements of PBR; the low capabilities of current conventional displays
in terms of tone reproduction; and the fact that producing physically-realistic images for human
observers is excessive, since it ignores the limitations of the HVS. All of these factors, reduce the
suitability of a strictly physics-based approach for interactive simulation applications like ours. For
this reason, we �nd the latter classi�cation �proposed by Ferwerda� more appropriate for our
purposes.

When a human observer looks at the simulations produced by our rendering model, the perceived
information should be the same as if they were looking at the actual physical objects, under the
same environment. In other words, the response produced by the observer's visual system should
be the same when looking at the simulation and the real scene under the same conditions. This
de�nition of perceptual realism can be identi�ed with Ferwerda's de�nition of photo-realism, but
also with that of functional realism. Indeed, human visual perception is known to be selective and,
often, biased and dependent on factors like the context or the perceiver's motivation [9, 10]. For this
reason, we use immersive and stereoscopic visualization to introduce functional information in the
simulations with the aim of improving their perceptual realism. With this in mind, we will use the
term "perceptual realism" in this manuscript to refer to realistic material simulations in the sense
of material simulations that produce the same visual response in the observer as the real material,
under prede�ned environmental and observation conditions.
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1.2.2 Generation of color stimuli in real conditions

Color stimuli can be produced directly from the radiant energy emitted by a light source, or indi-
rectly, as the result of the interaction of that radiant energy with an object. When a color stimulus
is produced by a light source, we speak of light-source colors, and the resulting visual response is
produced by additive synthesis of the contribution from each individual source. When the color
stimulus results from the interaction of some illuminating light with an object, we speak of object
colors, and the visual response is the result of a subtractive synthesis.

1.2.2.1 Additive color synthesis

Light radiation is a combination of waves at multiple wavelengths, known as the light spectrum, as
we will explain in Section 2.1.1. Because each wavelength corresponds to one color, the perceived
color of the emitted radiation is the result of adding the contribution of each individual wavelength,
which can be seen as mixing multiple monochromatic lights (light with only one wavelength, or a
narrow band of wavelengths). A color resulting from the addition of multiple lights is said to be
produced by additive color synthesis.

Color stimuli produced by additive synthesis can be measured in two di�erent ways, depending
on the use: directly or by re�ection. The direct (or incident) measurement method is done with the
meter facing the source, whereas the re�ection method measures the light re�ected by a near-perfect
white di�user (or barium white)3 positioned in front of the light source. Multiple devices may be
used to perform this measurement, but the most common ones are4:

• Spectroradiometer: the most complete device, it measures the spectral power distribution
(SPD)5 of the radiance emitted by surface.

• Spectrocolorimeter: measures the spectral re�ectance, transmittance, or relative irradiance of
a color sample [11], and calculates its tristimulus values.

• Tristimulus colorimeter: measures the chromaticity coordinates of a color surface.

1.2.2.2 Subtractive color synthesis

When light hits a (non-fully absorbent) solid object, a color is produced as the result of its interac-
tion with the object's material. The color resulting from said interaction depends on the object's
properties, but also on the illumination and observation angles. A light incident on an object's
surface can be subject to many di�erent physical phenomena, but the most relevant in this context
are those shown in Figure 1.4.

Some wavelengths of the incident light is re�ected by the object, bouncing o� the surface, in
two forms: specular and di�use re�ections. In perfectly planar surfaces, the specular component is
re�ected with the same angle in a direction opposite to the incident light; the di�use component,
however, is re�ected at multiple angles and magnitudes (luminance). Under most observations con-
ditions �except when the observer is at the angle of maximum specularity� the di�use component
is what creates the primary color sensation, since it provides most of the light rays arriving to the
retina of the eyes. Some wavelengths of the incident light may also be absorbed by the object, dis-
appearing. Finally the remaining light is refracted through the object at di�erent angles �due to
di�erences between the refraction indices of the object's material (n2) and the surrounding medium

3A near-perfect white di�user is a surface �made of barium sulfate� whose re�ectance approximates a lambertian
re�ectance, a theoretical surface that re�ects back all the light that it receives.

4See Appendix A for a more complete de�nition of these devices.
5Radiant �ux (W/sr/m2) or luminous �ux (lm/m2) per unit wavelength (See a more complete de�nition in

Section A.12 of the glossary)
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(n1), as indicated by the Snell-Descartes law (Section A.16 of the glossary)� and transmitted out
of the object.

Figure 1.4: Optical light-matter interaction phenomena that may take place when light reaches the
surface of an object (with refraction index n2), from another medium (with refraction index n1).

Since the colors produced in this way are the result of subtracting components from the illumi-
nating light6, via one or several of the phenomena mentioned above, this process is called subtractive
color synthesis. A fully-absorbent object, or an object which is not illuminated, will not re�ect any
light, and it will be seen as black. Conversely, an object that re�ects every wavelength of the illu-
minating light in its entirety (lambertian re�ectance) will be seen as having the same color of the
illuminant. When an object is painted a certain color, the properties of its surface are modi�ed by
pigments in the paint that act as a �lter, absorbing certain wavelength components and re�ecting
others. Therefore, subtractive color synthesis requires the existence of light to produce color stim-
uli �object's colors cannot be seen in the absence of light. In order to measure subtractive color
stimuli, we must always characterize two components: the optical behavior of the object's surface
and the illumination. The optical behavior of a surface is always given as the percentage of the
illumination that is a�ected by each phenomenon (re�ection, absorption,...) per unit wavelength;
the illumination is speci�ed by its SPD.

In the case of perfectly planar surfaces, the characterization of the optical properties of an
object is simple; but the computation becomes more di�cult for irregular surfaces. In that case,
more complex functions such as the bidirectional re�ectance distribution function (BRDF) are used.
The BRDF (which has units inverse steradians, sr−1) describes the amount (proportion) of light
re�ected when light makes contact with a material, as a function of the illumination and observation
angles, relative to the surface normal and tangent, and the wavelength of the light [12]. This is
indicated by Expression 1.1, where ωi is a vector representing the incoming direction of the light,
ωr represents the outgoing or re�ection direction of the light, L is radiance (W · sr−1 ·m−2), and E
is irradiance (W ·m−2).

fr(ωi, ωr) =
dLr(ωr)

dEi(ωi)
(1.1)

6Since it is out of the scope of this research, we will not consider here the special case of luminescent objects.
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1.2.3 Generation of color stimuli with a computer

The process of image rendering generates a digital representation of the information in a real scene.
Since the rendered images are meant to be viewed on a display, the computed information has to be
adapted to the capabilities of the reproduction medium. Depending on the display technology used
to visualize the images, di�erent methods can be used to display the color information present in an
image (see Chapter 3). Traditionally, displays �such as cathodic raytube (CRT) displays� have
used a set of three colored-light sources to create the color for each pixel, and modulate the intensity
of each one to obtain the necessary proportion that produces the desired color. Practically any color
can be produced by combining a set of three primary lights; displays typically chose red, green, and
blue, as primary lights, to emulate the human visual system as described by the trichromatic theory
(explained in Section 2.1.2.4). As display technologies have evolved, this display model has become
more complex. For example, as we will see in Section 3.1.1, modern liquid-crystal displays (LCD)
use more advanced techniques like backlight illumination with multi-color �lters, or color dithering
(integration of the color response over time) to display colors in the screen.

The presence of di�erent electronic and optical components �like �lters, light di�users, etc�
inside the display device obscures the computation of the synthesized color stimuli. However, in
practice, a display can be seen as a "black box" where colors are essentially produced by means
of additive synthesis using di�erent color lights. When a display is observed in a perfectly dark
environment, our visual response will depend exclusively on the stimuli generated by the display. In
the presence of ambient light, however, our visual response will depend on many other factors, such
as the displayed color stimuli, the ambient illumination, the contribution from the environment, and
the properties of the display's surface (absorption, re�ection, etc). This is the reason why displays
must be calibrated for each observation environment.

1.3 Thesis organization

Physically-based rendering, or PBR, also known as predictive rendering, aims at creating images
that produce the exact same radiometric information as the real scene that they simulate. Since
the simulations contains the same information as in reality, one might think that the simulation is
realistic. This is partly true and, in fact, this type of precision is necessary in some cases (remote
sensing, multi-spectral imaging, etc); however, when the images are made to be viewed by humans,
there are additional constraints that must be taken into account to produce realistic simulations.
The human visual system (HVS) has a limited acuity that depends on many factors such as contrast,
frequency, shape, or illuminant [13, 14, 15, 16, 17]. As a result, the original radiometric signals that
hit our eyes are compressed and transformed at di�erent stages of our visual system, before a visual
response is created in our brain. This means that a lot of the visual information present in the real
scene cannot be perceived by a human observer and, therefore, it is unnecessary (and, at times,
even wrong, as we will see in Section 4.1) to compute it. Furthermore, since images are visualized
on a display, additional constraints are introduced by the capabilities and limitations of the display
and visualization devices participating in the process (Figure 1.5). Taking all these constraints into
account in the rendering process allows us to �nd and resolve aspects that are not properly dealt
with by the rendering engine, as well as to identify perceptually super�uous information that may
be removed from the computation. Consequently, we can reduce the amount of image information
and computation times, without a�ecting the visual response produced by the scene for a human
observer. We have de�ned this type of rendering as perceptually realistic rendering. By de�ning
accuracy in terms of perceptual realism, we can optimize the rendering model to produce images
much closer than PBR to what we see in reality while reducing computation time. However, given
the complexity of human visual perception, and the large amount of factors that take part in the
process, the addition of perceptual constraints to a physically-based rendering model might lead
to incorrect results. For this reason, a perceptual validation process is needed to verify that the
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simulations remain perceptually correct after introducing these simpli�cations.

One big issue in the context of perceptual realism is the problem of tone reproduction (or tone
mapping). This problem consists in �nding how to represent the light richness of the physical reality
on a display device that is much more limited in terms of reproducible light ranges (dynamic range,
or DR). Ample research exists in this area [18, 19], and there are multiple models to reproduce the
appearance of a scene with a more limited dynamic range; however, the use of generic reproduction
models is not desired in our case, given the distinct characteristics of the materials that we will
study. In order to control the realism of the results, we must �rst be able to understand the
relationship between light and perceived material aspect in our speci�c context, and how it a�ects
our perception of the materials.

Chapter 2 describes human visual perception as the result of a series of complex processes
distributed along di�erent stages of the visual system. As we will see, the light emitted by the
objects in the scene that we are observing arrives into our eyes, and is captured and converted
into sensory information by a series of selective photosensitive cells distributed on its surface. This
information is transmitted via several channels to deeper stages of the visual system. It is then
interpreted by di�erent physiological mechanisms, responsible for producing visual attributes like
contrast, color constancy, depth, etc. Each of these mechanisms produce a series of neurological
responses that are interpreted and combined in the brain to construct a global visual response.

This work is part of a research project that integrates material models into a physico-realistic
rendering model, as described by Da Graça et al [20, 4]. As we will see in Chapter 2, physical
representation and perceptual (sensory) appearance are connected by means of the colorimetric space
used to express the color information in the image. Representing image information using perceptual
spaces such as those directly related to cone-response values (e.g. LMS) or device-independent spaces
like XYZ�closely related to radiometric values entering the retina� gives us important information
about the relationship between analyzed image parameters and visual attributes. This information
may be used in determining the amount of contribution of said attributes to the appearance of the
�nal images, identifying relevant information to maximize perceptual similarity with the original
scene.

Figure 1.5: Stages of the simulation process

The rendering process produces images which are viewed on a display. Therefore, our visual
system is not the only element that a�ects the perception of the images after the simulation. In
e�ect, choosing the right display device, as well as analyzing and modeling its characteristics in the
right way, is also crucial to control the visualization process. Chapter 3 presents an overview of the
most common display technologies, the e�ects that each technology has on visualization, and the
most important criteria to select a display for our purposes. The same chapter also describes the
process to fully characterize a computer display, showing characterization results from our speci�c
model. A proper display characterization will allow us to understand the transformations that take
place inside the display, and to control its colorimetric response, favoring the conversion between
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representation spaces without altering the original perceptual information.

Because we use a two-dimensional (2D) medium (a display) to reproduce a dynamic7 three-
dimensional (3D) scene, part of the depth information provided by binocular visual cues, such
as stereopsis (depth by triangulation) or eye convergence, is lost during the simulation �both
at rendering and visualization time. This becomes specially true in the case of sparkling coating
materials. The intensity of the sparkles generated by the metal �akes �and therefore the overall
material appearance� in sparkling coatings depends on factors such as the depth and size of the
metal �akes, and the illumination and observation angles. Given the separation between our eyes,
we may perceive a di�erent image with each eye when we look at one point in space, because
the observation angle is slightly di�erent for each one. If we ignore this information, we will be
neglecting a very important aspect of the material, and therefore the simulation will lose accuracy.

To overcome some of these disadvantages and improve perceptual realism, we use stereoscopic
visualization to provide additional depth information from binocular disparity. As we will show later
on, our tests show that in all of our cases observers �nd that stereoscopic visualization produces a
visual response that is much closer to the reference than monoscopic visualization. In this sense,
Chapter 3 provides an analysis of the most important technologies to produce depth perception in
displays, to serve as the basis to justify our choice of stereoscopy. Similarly, the characterization
methodology is extended to incorporate criteria speci�c to stereoscopic displays.

Chapter 4 presents an analysis of the particularities of human visual perception when observing
sparkling materials. We will use digital photographs to reproduce the integrating function of the
human eye in terms of trichromatic photoreceptor responses, showing how the sparkling e�ect
in metallic �aked paints is strongly linked to the incident light. This e�ect is the macrometric
optical manifestation of a physical phenomenon, which results from the interaction at micrometric
level between light and matter (i.e. micrometric �akes). Since the digital camera emulates the
mechanisms of the human visual system to produce visual responses (respectively, images), it must
be possible to control the imaging process to maximize perceptual similarity between the visual
response of an observer looking at the real scene and the resulting photograph of the scene.

The sparkling e�ect in metallic �aked paints is the macrometric optical manifestation of a
physical phenomenon, which results from the interaction at micrometric level between light and
matter (i.e. micrometric �akes). When the material is illuminated, the light bouncing o� the
metal �akes is much stronger due to their high specular re�ectivity. When these specular re�ections
reach the camera lens and pass through its optical components, they are spread, producing the
optical e�ect associated with sparkling. Therefore, due to this light spreading, the sparkles may
be perceived as being much larger than the actual metal �akes at their origin. Consequently, we
can then see that the sparkling e�ect is strongly linked to the amount and intensity of the incident
light, which in turn determines the intensity of the light re�ected by the metal �akes, or sparkle
luminance, as well as the global luminance (brightness) of the image.

The camera sensor is not capable of capturing the vast luminance dynamics (values) of a real
scene into an image, so we must introduce simpli�cations in the image, to produce a similar visual
response with less information. We can maximize the amount of perceptual information present
in the images, by selecting those camera settings that best reproduce human visual perception
under the experimentation conditions. By �xing all imaging parameters but the shutter speed, we
can establish a direct relationship between image luminance and exposure time, under those same
conditions. We have conducted an experimental psychophysics study, where human observers were
presented a series of stereoscopic images taken with di�erent exposures, and asked to evaluate their
similarity to a physical reference. The results from this experiment show that image luminance
has indeed an e�ect on its brightness and contrast, and that this a�ects the perceived size of the

7As we will see in Section 2.6 real scenes, unlike synthetic scenes, are dynamic in the sense that our perception
of the scene changes constantly due to the temporal integration properties of our visual system, which is periodically
examining the scene for changes.
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sparkling, texture depth, and sparkling-background contrast. Furthermore, they suggest optimal
global luminance values to maximize perceptual similarity with the physical references.

A second psychophysics study has been performed, to analyze the perceptual e�ects of modifying
the range of luminance values in the images, with respect to the found optimal global luminance,
as well as the dynamic range (number of luminance values). The results suggest that indeed the
global luminance found in the �rst experiment seems to maximize perceptual similarity, whereas
no improvements result from using di�erent luminance or dynamic ranges. Furthermore, under the
selected luminance conditions, there seems to be a inverse relation between sparkling contrast and
global image brightness.

Figure 1.6: Visuo-perceptual validation methodology comparing photographs with simulations.

Chapter 5 presents a methodology to validate objectively the images produced by a rendering
engine against photographs of a real scene (Figure 1.6). We describe the process to ensure identical
conditions in the virtual and real scenes, which results in two types of images, photographs and
simulations, su�ciently similar to permit a meaningful objective comparison between them. We
will show how, with the proposed methodology, we are capable of simulating a scene with a very
high level of perceptual colorimetric and radiometric realism. This is a fundamental step towards
the validation of any physico-realistic rendering engine, because it ensures the reliability of the
comparisons, and paves the way for the integration of the observations from the psychophysics
experiments into the rendering model.

We will �nish this PhD thesis manuscript with a discussion of the research work performed
during this thesis, and by suggesting possible future lines of work in the context of this research.
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Human visual perception of materials
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The computer simulations that we aim at producing are meant to be viewed by humans, who
interact with the application and, ultimately, will be judging the aspect of the images. Therefore we
must know how the human visual system (HVS) works when viewing these images, and understand
its characteristics and limitations, in order to understand the complex processes behind human
visual perception.

Humans are capable of seeing because our visual system can translate the light present in a
scene into visual stimuli that can be interpreted by our brain. When the light interacts with the
objects in a scene, it is transformed in di�erent ways, depending on their physical properties and
chemical composition, resulting in what we commonly know as object colors (see Section 1.2.2).
Therefore, we cannot say that objects have a certain color; colors are the psychophysical sensations
produced in our visual system by the energy emitted by those objects in a speci�c environment.
That energy hits our eyes, which are covered by multiple photoreceptors that are sensitive to some
of this energy, known as light, producing a neuron signal that is sent through the visual system and
on to the brain, where it is processed.

Colors are indeed intimately linked to light. As we have seen, they are the result of the interaction
of the light with the objects in a scene, and ultimately with the visual system of the observer [21],
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which means that colors cannot exist in the absence of light. We could then say that we do not see
objects, but connected sets, grouped by color criteria, that form shapes.

Visual perception processes are not the result of the action of individual areas in the HVS,
but rather, of a collaborative interaction between them. For this reason, perceptual processes are
di�cult to describe completely, although many key features can be modeled [22]. In this chapter
we will describe the structure of the HVS and present some important notions that are required
to understand the mechanisms behind human visual perception, how the human eye captures the
energy in a scene and transmits it to our brain to be translated into a visual response.

2.1 Transforming electromagnetic waves into a visual response

2.1.1 Electromagnetic radiation and visible light

Objects are constantly emitting electromagnetic radiation. A speci�c portion of this radiation can
be seen by the human eye, and it is therefore known as visible light , or just light1. The nature of
light can be typically explained by two fundamental theories, according to which light can behave
both as a wave and a particle. This is known as the wave-particle duality of light. These two
theories are complementary in the sense that, while many observations can be explained by both
models, some can only be explained by one or the other.

According to the wave theory � �rst proposed by Christian Huygens in 1678 � light waves are
made up of two mutually coupled vector waves, the electric and magnetic �elds (electromagnetic
wave), as shown in Figure 2.1. However, this model is often simpli�ed by describing light as a
single scalar wave function (Figure 2.2). This model is typically used to explain phenomena such
as polarization, di�raction, absorption or imaging theory.

Figure 2.1: Electromagnetic waves are made up of electric (E) and magnetic (H) �elds, perpendicular
to the travel direction of the wave, and perpendicular to each other.

The particle theory (or quantum theory) � developed initially by Isaac Newton and re-emerged
in the 20th century � treats light as a group of particles, known as photons, with energy and
momentum, and without mass. This model is typically used to explain phenomena that cannot be
explained with classical optics, such as light-matter interactions or lasers.

1Some authors use the term light more widely to refer to any electromagnetic radiation and the term visible light

for the radiation that can be seen, but here we will use both as synonyms for visible light.
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Figure 2.2: The electromagnetic wave model can be simpli�ed in many cases as a scalar wave
function.

From the point of view of the wave theory, the electromagnetic spectrum can be classi�ed into
di�erent types of radiation attending to its wavelength. According to this classi�cation, the term
visible light refers to all the radiation with wavelengths roughly between 400 and 700 nanometers.
This part of the electromagnetic spectrum is known as the visible spectrum, and corresponds to
the wavelength interval that the photoreceptors in our eyes are sensitive to. The visible spectrum
goes from violet light to red light, but often we also speak of ultraviolet light for the radiation
with wavelengths immediately below the visible spectrum (100 nm - 400 nm), and infrared light
for the radiation with wavelengths immediately above it (700 nm - 1 mm), even though we cannot
see this radiation and therefore it should not be considered as light. Figure 2.3 summarizes this
classi�cation.

Figure 2.3: The electromagnetic spectrum. The visible light is that with wavelengths roughly be-
tween 400 and 700 nanometers. Ultraviolet and infrared light is that with wavelengths immediately
below and above the visible spectrum, respectively. Image obtained from The Photovoltaic Lighting

Group [23].

2.1.2 Mechanisms of the human eye for sensing and processing light

2.1.2.1 General physiology of the human eye

The processing of information in the HVS takes place in three main stages: the eyes, the visual
pathway that connects them to the brain, and the brain cortex. The eyes are two pseudo spheres
of about 24 mm in diameter, with their centers separated by a distance of about 6.3 cm in average
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for an adult � although it varies with the person. The walls of the eyes are formed by three layers
(Figure 2.4): schlera, choroid, and retina, respectively from the innermost to the outermost layer.
Towards the anterior pole, the schlera transforms into the cornea, a transparent tissue that is curved
outwards about 1 mm with respect to the ocular globe. [24, 25]

At the intersection with the cornea, the choroid continues into the ciliary muscle and the sus-
pensory ligament which, in turn, holds the lens �a biconvex structure that focuses the light on the
retina by changing its shape to adapt to di�erent focal distances, a process known as accommoda-
tion. The iris and the ciliary muscle are responsible for controlling the pupil size and the amount of
light that reaches the retina. The space between the cornea and the lens, divided by the iris into the
anterior and posterior chambers, is �lled with a saline solution called the aqueous humour which
controls the intraocular pressure and the refractive index, amongst other important functions.

The retina, which is an extension of the optic nerve, contains a series of photoreceptor cells
and di�erent layers of visual neurons. The most sensitive area in the retina is the fovea and, more
speci�cally, its central region �an area of about 400µm, corresponding to a visual �eld of 1.3◦�
called the foveola, which contains the highest concentration of photoreceptors. The optic nerve,
which contains no photoreceptors, connects the information gathered in the retina with further
visual processing stages that take place in the brain.

The images of what we see are formed at the fovea. Therefore, if we consider the eye as an
optical system, the visual axis �which passes by the �xation point at the center of the pupil and
the fovea� is deviated about �ve degrees from the horizontal optic axis, as shown in Figure 2.4.

Figure 2.4: Top view of the right human eye [26].

The neural signals from the retina are transmitted from the eye into the visual pathway until
they reach the visual cortex (Figure 2.5). The retinal neurons travel to the optic chiasm via the
optic nerve, where the information perceived by the right and left-hand sides of the eyes is separated,
transmitting the axons from right-�eld neurons to the left brain hemisphere, and the axons from left-
�eld neurons to the right brain hemisphere. From there, the axons follow the optic tracts on to their
respective hemisphere's LGN (lateral geniculate nucleus), where the information is processed and
transformed. The new axons then follow the optic radiations to the primary visual cortex (the V1
area) and successive visual areas, where the information is �nally processed and interpreted. [24, 26]
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Figure 2.5: Diagram of the human optic nerves [26].

2.1.2.2 The human photoreceptors

The surface of the retina is covered by di�erent photosensitive and neuron cells of �ve types: pho-
toreceptor, bipolar, ganglion, horizontal, and amacrine cells. All these cells are arranged in a
double radial and transversal structure which maintains the spatial properties of the image while
introducing lateral inhibition e�ects that increase contrast and sharpness in the visual response
(Figure 2.6). [25]

As we can see in Figure 2.6, the photoreceptors are very elongated cells arranged perpendicular
to the wall of the choroid which can discriminate light of di�erent wavelengths. They are sensitive
to the photons hitting the eye and can generate signals of varying amplitudes depending on the
intensity of the light.

Bipolar cells can synapse with the photoreceptors �directly or through horizontal cells� to
transmit signals to the ganglion cells �again, directly or through amacrine cells. Signals are sent
using graded potentials via ON and OFF bipolar cells: in the presence of light, ON cells are
depolarized (excited) and OFF cells are hyperpolarized (inhibited); inversely, in the dark, ON cells
are inhibited and OFF cells are excited. [27]

Horizontal cells are responsible for the external synapses, transversal connections between the
photoreceptors and bipolar cells. They allow the eye to adjust to changing light conditions and also
introduce the lateral inhibition that participates in the center-surround inhibition in the ganglion
cells.

Ganglion cells provide a mechanism for perceiving contrast and detecting edges. They have
a receptive �eld connected with underlying levels in a way to cover isotropic areas of the visual
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Figure 2.6: Diagram of the retinal cell structure. From bottom to top, cones are represented in blue,
di�erent types of bipolar cells in shades of green, and di�erent types of ganglion cells in shades of
red. At the very top, the axons from the ganglion cells continue towards the optic nerve. Diagram
from Robert Sève's Science de la couleur [25].

�eld. The ganglion cell receives information about the contrast (or lack thereof) between a central
area and a surrounding area that produce opposing responses. According to the response of their
receptive �eld, ganglion cells can be of two types: "on-center" and "o�-center". On-center cells are
excited when the center of their receptive �eld is exposed to light, and inhibited when the surround
area is exposed to light; o�-center cells have the exact opposite reaction (Figure 2.7).

The amacrime cells create the internal synapses, transversal connections between the bipolar
and ganglion cells. They work laterally, like bipolar cells, but are more specialized and supplement
their action. Their function, although complex and not entirely known [25], is related to directional
motion detection and modulation of light detection, amongst others.

We �nd two distinct types of photoreceptor cells in the retina: rods and cones. Rods are the
most sensitive photoreceptors, only active at medium light levels �mesopic vision, at luminance
levels of 0.001 to 3 cd/m2� and low light levels �scotopic vision, at luminance levels of 10−3.5

to 10−6 cd/m2. Cones are less sensitive to light than rods but provide a faster response time to
stimuli; they are responsible for the vision at high luminance levels �photopic vision, at luminance
levels of 10 to 108 cd/m2� and color vision. Due to their low sensitivity to light, cones can be
divided in three types depending on the light wavelengths that they are sensitive to. [25]
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Figure 2.7: Representation of the On-center/O�-center ganglion cells mechanisms. Image taken
from Wikipedia [28].

There are around 140 millions of rods and 5 to 7 millions of cones in the human retina. Cones are
mainly located in and around the fovea, and highly concentrated in its central region, the foveola,
where all three types are mixed (Figure 2.8). Furthermore, the central region of the foveola �an
angular diameter of about 0.2◦� only contains cones and no rods. In the 20◦ around this area,
the number of cones reduces drastically, whereas the amount of rods increases rapidly to achieve its
peak at about 15◦ of the visual axis, then reducing slowly until the peripheral area of the retina [25].
There is a small part �7.5◦ high and 5.5◦ wide� of the visual �eld, located roughly at 12◦�15◦

horizontally towards the nasal retina and 1.5◦ below the visual axis, where nothing is visible. This
area, which is known as the "blind spot", corresponds to the area where the optic nerve passes
through the retina, and therefore there are no photoreceptors.

2.1.2.3 Human sensitivity to light

We saw earlier that the photoreceptors in the HVS are classi�ed according to the interval of the
light wavelengths that they are sensitive to. Rods have their peak sensitivity at around 498nm;
cones on the other hand are separated into three di�erent categories: L cones, sensitive to long-
wavelength light; M cones, sensitive to medium-wavelength light; and S cones, sensitive to short-
wavelength light. The peak sensitivities of L, M, and S cones, are around 564nm, 534nm, and 420nm,
respectively (Figure 2.9). Sometimes LMS cones are also referred to as RGB cones, hinting at the
color of the light that they are sensitive to; however, as we can see in Figure 2.9, this denomination
is inaccurate and LMS is preferred instead.

The spectral luminous e�ciency functions shown in Figure 2.10 represent the sensitivity of the
photoreceptors in scotopic and photopic vision. With scotopic vision only the rods are active, so the
luminous e�ciency function V'(λ) corresponds exactly with that of the spectral sensitivity shown in
Figure 2.9; the function V(λ), however, is a combination of the three spectral sensitivity functions
of L, M, and S cones, since all three are active under photopic conditions. Note that with scotopic
vision we are more sensitive to shorter wavelengths which means, for example, that a red object
that appears the same lightness as a blue one in daylight will appear much darker than the blue
one under very low luminance levels �this is known as the Purkinje e�ect or Purkinje shift. [30]

2.1.2.4 Traditional approaches to color vision

Trichromatic theory
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Figure 2.8: Density distribution of cones and rods in the retina. The area where the optic nerve
passes through the retina is called the blind spot because it does not have any photoreceptors,
which means that images cannot be formed in that area. We can see that there is a much higher
concentration of cones towards the central region (the fovea), whereas rods are located in the
surrounding areas of the retina. [26]

Figure 2.9: Normalized human photoreceptor absorbances for di�erent wavelengths of light. Cones
sensitive to short, medium, and long wavelengths are typically referred to as Blue, Green, and Red
cones, respectively. Image taken from Wikipedia [29].

Traditionally, each type of cone has been associated with the perception of one color, which is
why L, M and S cones are also known as Red , Green, and Blue cones, respectively. This is known
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Figure 2.10: CIE spectral luminous e�ciency functions for scotopic, V'(λ), and photopic, V(λ),
vision. [30]

as the trichromatic color vision theory.

Proposed originally by Thomas Young (1773-1829) in 1802, it was �rst considered as a hypoth-
esis, and then as a theory when the experiments of James Clerk Maxwell (1831-1879) proved its
validity by means of color light matching experiments. This theory was extended later on by Her-
mann von Helmholtz (1821-1894) with results from quantitative experiments. He proposed three
spectral sensitivity curves for the photoreceptors, and stated that the perceived color was in fact a
combination of the relative responses from each type of photoreceptor. This theory explained the
additive properties of color mixtures, and several other aspects of color generation and reproduction;
however, it failed to explain other phenomena of color perception. [26]

Opponent-colors theory

An alternative theory, was proposed in 1878 by Ewald Hering (1834-1948), who observed that
there never seemed to be color combinations such as reddish-green or yellowish-blue. According to
this theory, called the opponent theory of color vision, there would be three types of photoreceptors
with an opponent response to red and green, blue and yellow, and black and white. It was then
based on six basic colors: red, green, blue, yellow, black and white, and stated that color perception
would be the result of the combined responses of these three types of color-pair receptors, which
cannot produce signals for both colors in the pair at the same time. This theory explains phenomena
such as negative afterimages �where a color appears when a presented stimulus of its opponent
color is removed� or color blindness �caused by the lack of a particular chemical in the eye.

However, although both the trichromatic and opponent color vision theories do explain many
color perception phenomena, none of them are capable of explaining all the aspects of color vision,
so we cannot say that either one is right or wrong. In fact, most recent color vision models assume
a combination of both. [26]

Stage theory

The opponent colors theory regained popularity in the mid-20th century after a series of inde-
pendent studies such as those by Jameson and Hurvich (1955), Svaetichin (1956), DeValois et al.
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(1958), as well as many other researchers, provided data that reinforced Hering's theory [30]. This
resulted in a modern version of the opponent-colors vision theory, also called the stage theory . This
theory shows that color perception is indeed the result of complex processes performed in the brain
cortex using opponent signals received from the retina.

According to this theory, color processing would take place at least in two stages: the �rst stage,
corresponding to the photoreceptors, is trichromatic as described by Young and Helmholtz; the
second stage follows the opponent theory, and takes place partly in the retina and partly in the
visual pathway. Given the complexity of the processes that occur in the second stage, they are
usually simpli�ed using color vision models which vary from one author to another, such as those
proposed by Boynton (1986) or DeValois (1993).

Figure 2.11: Left: Boynton's color vision model diagram. [31]; Right: Input combinations that
produce each output. [26]

Boynton's is one of the simplest models. It represents the output of the processed opponent
signals as three channels A, T, and D, which are a combination of the input signals from the
photoreceptors (Figure 2.11). Channel A is the luminance channel, and corresponds to the addition
of signals L and M; channel T represents the red-green opponent signal and is obtained as the result
of subtracting L minus 2M; �nally, channel D represents the blue-yellow opponent signal, which is
obtained as L+M-S. This is illustrated in matrix form by Expression 2.1.

 A

T

D

 =

 1 1 0

1 −2 0

1 1 −1

 L

M

S

 (2.1)

2.2 Mathematical representation of color stimuli

Color perception is the physiological sensation generated by our visual system to a speci�c interac-
tion between light and matter. Indeed, all there is in reality is just light and surfaces that interact
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with it. This light is measured in terms of its spectral power distribution (SPD)2, however most of
this information is redundant because the HVS samples color signals according to the sensitivity of
the photoreceptors in the retina [32]. Therefore, when we work with color stimuli we must take into
account this compression of information, and modify the perceived signal's SPD accordingly.

Most color vision approaches assume the existence of an initial trichromatic retinal stage corre-
sponding to the three types of photoreceptors, L, M, and S. Regardless of whether or not, depending
on the theory, further processing may occur in deeper areas of the visual pathway, the processing
of the original signals received by the photoreceptors in the HVS is always assumed to be trichro-
matic. As shown by Maxwell, any given color light can be perceptually matched by mixing di�erent
amounts of a set of three known color lights, known as primaries [25]. The amount of each primary
light required to match a stimulus are known as tristimulus values (see Appendix A).

The results of the color matching experiments proving the principles of the trichromatic the-
ory were summarized by Hermann Grassmann (1809-1877) into the two following laws, known as
Grassmann Laws [33]:

1. To specify a color, three elements are necessary and su�cient: the hue, the luminance, and

the luminance of the intermixed white, which de�nes the saturation.

2. For every color, there is a complementary color, which, when mixed, becomes a colorless gray.

3. Two lights of di�erent color, with the same hue and saturation, when mixed, produce another

color with identical hue and saturation independently of their power spectra.

4. The total luminance of any mixture of light is the sum of each light's luminance.

All mathematical operations in colorimetry are based on these laws. If [C1], [C2], [C3], and
[C4] are two pairs of matching color stimuli, we can then write that [C1] = [C2] and [C3] = [C4],
where = represents a perceptual match. Using this notation, Grassmann Laws can be summarized
in mathematical terms as follows [34]:

1. Proportionality: Color matching holds when the intensity of all the lights are multiplied by a
constant.

α[C1] = α[C2] and α[C3] = α[C4] (2.2)

2. Additivity: Color matching holds for new stimuli obtained by adding color-matched stimuli.

[C1] + [C3] = [C2] + [C4] and [C1] + [C4] = [C2] + [C3] (2.3)

The trichromatic theory then states than any color stimulus [F] can be matched mixing di�erent
amounts of reference stimuli [R], [G], and [B]; we can then write the color matching equation as:

[F ] = R[R] +G[G] +B[B] (2.4)

where R, G, B are the amounts of stimuli [R], [G], and [B], respectively, required to match
stimulus [F]. Stimuli [R], [G], and [B], are the primary stimuli and R, G, and B, are called the
tristimulus values. We can generalize for the spectral case as shown in Expression 2.5, in which case
the tristimulus values become the color matching functions (CMF)3.

[Fλ] = r̄λ[R] + ḡλ[G] + b̄λ[B] (2.5)

2Radiant �ux (W/sr/m2) or luminous �ux (lm/m2) per unit wavelength (See a more complete de�nition in
Section A.12 of the glossary)

3See a more complete de�nition of color matching functions further in this chapter and in Section A.33
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The CMF indicate the tristimulus values of the spectral primaries for each wavelength. In
general, for any given set of primaries, we can write the color equation as:

[F ] = T1[C1] + T2[C2] + ...+ Tn[Cn] (2.6)

where n is the number of primaries used to match the color stimulus, Tk are the tristimulus
values, and [Ck] are the primary colors. A light with spectral power distribution (SPD)(see Ap-
pendix A) P (λ) can be seen as made of a group of lights with a narrow band of wavelengths ∆λ [34],
so using Expression 2.6 we can obtain any tristimulus value T from the SPD of the light, P (λ), and
its CMF, f, as shown in Expression 2.7. Ohta and Robertson [34] provide a detailed description of
the steps to obtain this expression.

T =

n∑
i=1

P (λ)fλi∆λ (2.7)

In order to represent color information more simply, omitting spectral information redundant to
our visual system, color stimuli can be represented using tuples of numbers (the tristimulus values)
and a set of primaries. Choosing a speci�c tuple representation and a set of primaries results in a
color model; de�ning the conditions to interpret the model's components �such as the primaries'
chromaticity or the set of CMF� results in a color space, that is, the space of all the possible colors
that can be produced using that model under those conditions. Color stimuli are then speci�ed as
coordinates within a reference system; the speci�c color corresponding to those coordinates depends
on the color space used.

Color spaces are always de�ned for an observer. Given the physiological di�erences between
observers in terms of cone distribution, the tristimulus values may vary from one to another de-
pending on their visual �eld. In order to produce standard color conversion functions, the CIE
(see Appendix A) de�ned an average chromatic response function within a 2◦ arc inside the fovea
�the area with the highest concentration of cones� known as the CIE 1931 Standard Observer or,
simply, the standard observer. Alternatively, the CIE 1964 10◦ standard observer is also provided
for observations covering a �eld larger than 4◦.

There are any di�erent color spaces, each one appropriate for di�erent applications. The �rst
attempt to connect spectral color signals with physiological responses in humans was the CIE 1931
RGB color space (or CIE RGB) based on three monochromatic additive color primaries: Red, Green,
and Blue. It was created based on the trichromatic color theory and the results from color matching
experiments, and it is mainly used for color representation in electronic systems such as computers
and displays. The results from the observation experiments showed that some colors perceived by
humans could not be matched using the three primaries, because they were too saturated. Matching
could only be achieved by subtracting some amount of one of the primaries from the reference color,
which can be observed in the negative values present in the CMF shown in Figure 2.12(a).

In order to correct the existence of these negative values, the CIE derived a new space from the
RGB color space based on experimental results from Wright and Guild [36, 37], named the CIE 1931
XYZ (CIE XYZ) color space. This space is a linear transformation of the CIE RGB color space,
as shown in Expression 2.8. In fact, the spectral chromatic response of the CIE 1931 Standard
Observer was de�ned from the CMF of the CIE XYZ color space (Figure 2.12(b)).

 X

Y

Z

 =
1

0.17697

 0.49 0.31 0.20

0.17697 0.81240 0.01063

0.00 0.01 0.99

 R

G

B

 (2.8)

The spectral sensitivities of the three types of cones in the HVS (Figure 2.9) originate another
important color space, the LMS color space. In this space, which can be approximated to CIE XYZ
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Figure 2.12: Left (a): CIE 1931 RGB color matching functions; Right (b): CIE 1931 XYZ and CIE
2◦ standard observer color matching functions. [35]

by a linear transformation, each tristimulus value represents the response of one type of cone, so
it is useful when we need to model human visual perception, because it is easier to simulate the
mechanisms performed by the human eye.

2.3 Visual adaptation to the environment

Human perception works in a way such that the aspect of objects remain relatively constant even
when the observation conditions change. Two important adaptation phenomena take place without
us realizing it when the luminance levels or the spectral distribution of the illuminant change, in
order to adapt to the new conditions while preserving our perception of the environment. These two
phenomena are, respectively, luminance adaptation and chromatic adaptation, or color constancy.

2.3.1 Luminance adaptation

The HVS can work at varying levels of illumination, ranging from about 100000 lx to about 0.0003
lx. To adapt to such di�erent levels, the human eye has two mechanisms: on the one hand,
the pupil can adjust its diameter, similar to the diaphragm of a camera, to control the amount
of light reaching the retina; on the other hand, rods and cones alternate their function �rods
in dark (scotopic) conditions, cones in bright (photopic) conditions, and both at the same time
in intermediate brightness (mesopic) conditions� to change the responsivity of the retina. The
adaptation from scotopic to photopic conditions is much quicker (about 1 min) than the adaptation
from photopic to scotopic (around 30 min), as illustrated by the experimental dark adaptation curve
in Figure 2.13.

2.3.2 Chromatic adaptation

As explained by Ohta and Robertson [34], chromatic adaptation occurs in two steps: �rst, an
illuminant (or colorimetric) shift takes place, during which our perception of the colors will change
according to the spectral distribution of the new illuminant; then, an adaptive color shift takes place,
where our eyes adapt to the new illuminant and the color appearance changes to a corresponding
color that matches that under the old illuminant. In theory these two steps should perform a color
shift of similar length in opposite directions of the color space, resulting in perfect color constancy;
however, in practice, color constancy is rarely perfect, and there is always a resultant color shift that
is typically much smaller than either one of the two shifts separately. This process is illustrated in
Figure 2.14, where illuminants D and A indicate daylight and an incandescence lamp, respectively;
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Figure 2.13: Dark adaptation curve. The shaded area represents 80% of the group of subjects. Hecht
and Mandelbaum's data from From Pirenne M. H., Dark Adaptation and Night Vision. Chapter 5.
In: Davson, H. (ed), The Eye, vol 2. London, Academic Press, 1962. [38]

SD and SA are the chromaticity points of an object under illuminant D and A, respectively; and SD
′

is the corresponding color for SD under illuminant A. Colorimetric changes in the illuminant become
a problem in cases such as when we look at photographs or displayed images; in these cases, the
radiometric information reaching our eyes is not that of the scene depicted in the images, but that
of the environment under which we observe such images, which means that color constancy cannot
take place. For this reason, we must introduce in the images a color correction to the illuminant
color shift between the acquisition and the observation environments, known as white balance.

Figure 2.14: Illuminant color shift (from SD to SA), adaptive color shift (from SA to SD
′), resultant

color shift (from SD to SD
′), and corresponding color SD

′ for SD, when illuminant changes from D
to A. [34]
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2.3.3 Modeling visual adaptation mathematically

The complex nature of human perception requires that new elements be introduced to fully describe
a color, not only from a mathematical point of view, but also in terms of their perceptual aspect.
Color appearance models (CAM) attempt to quantify the human sensory response to color stimuli,
describing relationships between changes in viewing conditions and changes in appearance, by in-
troducing appearance parameters such as hue, lightness, or chroma, which represent a measure of
subjective sensations. Since the LMS color space is related to human visual perception, chromatic
adaptation operations are typically performed in that space, so a transformation between the CIE
XYZ and the LMS space must be de�ned. However, given the di�use boundaries between the sen-
sitivity bandwidths of the three types of cones, no objective transformation exists between these
two spaces, and instead several authors provide various chromatic adaptation transforms (CAT) as
part of di�erent CAMs.

One example of a CAT is given by the von Kries transformation matrix. This matrix is based
on the von Kries model, which proposes an independent color adaptation between two viewing
conditions for each type of cone, by means of a linear transformation, as described in Expression 2.9,
where L, M , and S, are the LMS tristimulus in the initial viewing conditions; La, Ma, and Sa, are
the LMS tristimulus in the new viewing conditions after the adaptation; Lmax, Mmax, and Smax,
are the maximum value for L, M, and S, respectively; and Lwhite, Mwhite, and Swhite, are the LMS
tristimulus of a white object.

La = kLL (kL = 1/Lmax or kL = 1/Lwhite)

Ma = kMM (kM = 1/Mmax or kM = 1/Mwhite)

Sa = kSS (kS = 1/Smax or kS = 1/Swhite)

(2.9)

For convenience, the same transforms are presented in matrix form in Expression 2.10, as a
transformation between spaces under di�erent illuminants.

∣∣∣∣∣∣
La
Ma

Sa

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1/Lmax 0.0 0.0

0.0 1/Mmax 0.0

0.0 0.0 1/Smax
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S

∣∣∣∣∣∣ (2.10)

2.4 Measuring human visual acuity

2.4.1 Spatial frequency and image resolution

Visual acuity (or sharpness) is the ability of the HVS to resolve details in an image, and it is inversely
proportional to the observation distance. The sensitivity to changes in brightness increases with the
spatial frequency of the changes. The acuity is related to the type of photoreceptors being used:
under scotopic vision rods are active, so our eyes are more sensitive to small changes in luminance,
but acuity for detail and color is poor; conversely, under photopic vision, cones are active, so color
vision and acuity are sharp, but sensitivity to changes in luminance is low. [22]

Visual acuity is typically measured using the Snellen eye chart (Figure 2.15) or any of its more
modern variants such as the LogMAR chart. According to these charts, a normal person has a
visual acuity of 20/20 (6/6 in the metric system) which means that this person is capable of seeing
clearly at 20 feet (respectively, 6 meters) an object that should be seen clearly at that distance.
In general, the numerator of this fraction, known as the Snellen fraction, indicates the distance
at which a person can see clearly an object that should normally be seen clearly at the distance
indicated in the denominator � e.g. 20/10 (6/3), 20/25 (6/7.5), or 20/100 (6/30) [39].

Each letter on the 8th line (20/20 or 6/6) of the Snellen chart should subtend exactly 5 minutes
of arc (and the width of each black line should subtend 1 minute of arc) from a distance of 6 meters.
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Therefore, the chart must be sized so that the letters on the 8th line are 8.86 mm tall. This means
that from a 6-meter distance, a person with normal visual acuity can resolve clearly any visual
element above 8.86 mm in size �which corresponds to a visual resolution of 1.48 mm at a 1 meter
distance.

Figure 2.15: The Snellen chart is used for measuring visual acuity by showing it to the subject at
a distance of 20 feet (or 6 meters). It was developed in 1862 by Dutch ophthalmologist Herman
Snellen.

Another way to measure visual acuity is through the use of sinusoidal gratings, which measure
acuity in terms of spatial frequency. Snellen's fractions can be converted to spatial frequency (Fig-
ure 2.16), which is more convenient when working with displays given the grating-like arrangement
of pixels in an image. In a grating, a cycle is the distance between two consecutive black lines (i.e.
one black line followed by a white line). A person with normal vision is known to have a maximum
resolution of 60 cycles per degree of vision, which means that an image must contain at least 60
pixels per degree of vision to avoid its pixels from being seen.[40]

The viewing angle or �eld of view (FOV) of an observer located at a given distance can be
calculated using trigonometry, as shown in Expression 2.11.

FOV = 2× arctan

(
Sample size

2×Observation distance

)
deg

(degrees) (2.11)

Since we know that a person with normal vision has a maximum resolution of 60 cycles per
degree of vision, we can derive from Expression 2.11 the minimum resolution (MR) of a displayed
sample photograph to avoid the observer from seeing the pixel grid of the image (pixelation) using
Expression 2.12
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Figure 2.16: Conversion between Snellen's notation and spatial frequency.[40]

MR = FOV × 60 (cycles) (2.12)

2.4.2 Contrast sensitivity

We cannot see patterns with frequencies over the maximal resolution of the eye. The sensitivity of
the HVS to the spatial frequency of visual stimuli can be measured using the Contrast Sensitivity
Function (CSF), which represents the contrast sensitivity of a person as a function of the spatial
frequency of a stimulus. [22]

Contrast perception follows the Weber�Fechner law, according to which the human perception of
a given stimulus follows a logarithmic function, so that the just-noticeable di�erence (JND) between
two adjacent stimuli is proportional to their magnitudes. Depending on the situation, contrast can
be de�ned in several ways, with slight di�erences, the most common being the ratio between the
luminance di�erence between two adjacent stimuli and the average luminance. The most relevant
in our context is the Weber contrast , de�ned as shown in Expression 2.13.

If − Ib
Ib

(2.13)

where If is the luminance of an image feature, and Ib is the luminance of the background.
This formula is used in cases with small features on a large uniform background, that is, with small
di�erences between the feature and background luminance [41]. This is illustrated by a phenomenon
called simultaneous contrast, where a stimulus of constant luminance is perceived with a di�erent
contrast as the luminance of the background changes (Figure 2.17)

2.4.3 Acuity of color vision

The spatial acuity of the HVS varies for di�erent parts of the light spectrum or locations in a
color space. Some contributing factors are the chromatic aberration of the eye, the photoreceptors
density on the retina, or the spatial acuity of opponent channels [42]. Due to the refraction index
of the human eye, each wavelength arriving into the eye is focused to a di�erent distance from
the retina that is directly proportional to the wavelength of the light, which limits our ability
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Figure 2.17: Simultaneous contrast: the internal squares all have the same luminance, but the
changes in luminance in the surrounding areas change the perceived luminance of the internal
squares.[22]

to resolve each wavelength. This is called axial chromatic aberration. Another limiting factor is
the density of each type of photoreceptor on the retina: it is known that all three types of cones
are not equally distributed over the retina, with approximate double amount of L cones than M
cones, which samples the original spectral stimulus down to only three components; as shown by
Meyer and Liu [42], there are approximately 62 L cones, 32 M, and 6 S per degree of vision, which
determines the visual acuity for each wavelength. Furthermore, Meyer and Liu also cite results
by Middleton [43] and Schade [44] as evidence that color spatial acuity is less than monochrome,
supported by results from Mullen [45] showing a cuto� of 34 cycles/degree for the luminance channel,
and 11 cycles/degree for the red/green and yellow/blue opponent channels (see Section 2.1.2.4), as
illustrated by Figure 2.18.

Figure 2.18: Spatial frequency response of opponent color channels. Left: red-green versus
monochromatic green; Right: yellow-blue versus monochromatic blue.[42, 45]

2.5 Binocularity and depth perception in humans

A very important characteristic of the HVS is its binocularity, or the possession of two eyes. In-
deed, having binocular vision confers the human being many advantages, the most remarkable
being a wider �eld of view and a more precise depth perception. The monocular �eld of view of
an average person is approximately 60◦ nasally, 60◦ superiorly, 70◦�75◦ inferiorly, and 100◦�110◦

temporally [46]; however, with binocular vision, the �eld of view increases up to approximately
200◦ horizontally and 135◦ vertically, with a common binocular overlap that is 120◦ wide [47]. The
position of the eyes in humans �located on the front of the head and separated in average by
an interpupillary distance of 64.7 mm in men and 62.3 mm in women [48] � o�ers a narrower
visual �eld than other animals �some birds may extend up to 360◦� in favor of better stereop-
sis. Stereopsis is the exploitation of the small disparity in the position of the objects between the
images observed by both eyes �also known as binocular disparity or parallax� which allows for
a very accurate depth perception and distance estimation by means of triangulation. Binocular
vision helps separate regions of interest from background, providing �gure-ground separation and
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spatial localization; it also improves the assessment of surface curvature and the perception of sur-
face materials using luster perception. Combining the information seen by both eyes, known as
binocular summation, permits to average the visual input from both eyes, correcting for monocular
inaccuracies, and improving absolute light detection at the perception threshold and the CSF. [49]

The HVS infers depth perception from information received by two types of depth cues: monoc-
ular and binocular. Some monocular cues are: perspective, texture gradients, occlusion, relative
and known object sizes, haze, or defocus [50]. Binocular cues are provided by four main physi-
ological mechanisms: binocular disparity, accommodation, eye convergence, and motion parallax.
From these four mechanisms, we have already described binocular disparity and accommodation
(see Section 2.1.2); eye convergence is the capability of the human eye to rotate inwards, increasing
or reducing the amount of parallax; motion parallax refers to the additional parallax introduced
by movement. Without these four physiological cues, it is not possible to perceive a true three-
dimensional view [51].

2.6 Vision as a temporal combination of partial views of a

scene

The human eye is constantly sampling information from images projected onto the retina. This
information is integrated in time at several stages along the visual system, notably the retina and the
visual cortex. Information is integrated at the retina to stabilize the position of objects and produce
the impression of smooth movement. This temporal integration has a limited resolution given
the �nite amount of time required to process the information. Intermittent stimuli are perceived
smoothly when presented to eye above a certain rate; below that rate, they are perceived as separate,
producing the sensation called �icker [52, 53]. These mechanisms are exploited, for example, by
television or cinema, to produce the desired e�ect from a succession of static images. A second
integration level is located at the visual cortex, where the brain creates a representation of a visual
scene from di�erent spatial eye �xations. Processing times take place between di�erent saccades,
while the eye is static, so rapid saccades (microsaccades) do not provide visual information. On
the other hand, smooth pursuit movements allow us to follow and �xate moving objects to stabilize
gaze.

At an upper integration level, the environment can be reconstructed as a homogeneous whole
where each element appears perfectly clear. However, in reality, this reconstruction is put together
from a number of di�erent elements, captured at successive times, which only contain some clear
elements and many blurred ones. Such a complex puzzle is reassembled using immediate memory
to provide it with continuity and coherence.

These cognitive mechanisms are used, for example, to provide color constancy under di�erent
illuminations. [53]

2.7 Conclusion

Human visual perception, as we mentioned concisely in Chapter 1, is produced as the combination
of a series of bottom-up and top-down processes. In the bottom-up process, the sensory responses
produced by the light that arrives in our eyes constitutes a stimulus representation which is accepted
by the observer passively. This representation includes low-level information such as color discrim-
ination and light information [10]. Human perception continues as the information is transmitted
via di�erent channels to deeper layers, where top-down in�uences enrich our perception of the en-
vironment. The signals are processed at several layers of the LGN to provide information about
depth, or �ne details about brightness and color contrast. The information from the LGN is then
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sent to the visual cortex. In early cortex stages, spatial information is provided, such as orientation
and contours, being responsible for the occurrence of some basic visual illusions related to �gure
contour and occlusion [54]. Deeper areas of the visual cortex provide more complex information,
in�uenced by factors such as the environment, the perception context, the perceiver's cognitive and
psychological state, or the motivation. At this point, perception processing specializes into two
di�erent paths: the "where" (or "how") stream, involved in spatial attention, a�ecting eye and
hand movements; and the "what" stream, involved in recognition, identi�cation, and categorization
of visual stimuli.

When we display a simulated virtual stimulus to a human observer, the information correspond-
ing to top-down in�uences is already provided by the observers themselves. Indeed, when observers
look at a displayed simulation, they already contribute with high-level information processing be-
yond what is provided by the simulation. For this reason, we only o�er here an introduction to the
mechanisms behind passive bottom-up processing. To maximize perceptual realism in the simula-
tions, we must minimize the amount of perceptual information from bottom-up in�uences that gets
lost in the simulation process, that is, chromaticity (color) and luminance information.

The visual studies that we perform in this thesis research also need the consideration of the
higher-level mechanisms that participate in the visual perception, in order to understand what the
observers see when they look at the materials. As we will see in the following sections, color and
luminance contrast, in turn determined by how the color and luminance information in the scene
in represented in the images, play an important role in the perception of material aspect in images.
Since they a�ect the spatial relationships within sub elements in a texture, this also a�ects the
ability of an observer to identify and recognize visual image attributes such as texture density, or
randomness.
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We have seen in previous chapters that visualizing images on a display implies the representation
of a radiometric reality with an unlimited dynamic range, in a medium with a much more restricted
dynamic range. Although the human eye is not capable of perceiving all the luminance variations
present in a real scene, it can perceive a much wider range of luminance levels than what can be
shown by a display.

The perceptual aspect of displayed images is directly related to three main factors: the display
technology, the transfer function, or colorimetric response, of the visualization device (inherent to
its electronic components) and the tone mapping operator used to display the image.

Section 3.1 starts by introducing liquid-crystal display (LCD) technologies �presently the most
commonly used in the general consumer market� in comparison with their predecessor, cathodic
ray-tube (CRT) displays. The most prevalent LCD technologies are presented, as well as the
mechanisms that they use to produce color. Next, we describe the two most popular technologies
for depth visualization, stereoscopy and holography, naming some advantages and disadvantages of
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each one. We �nish the section by explaining the display technology chosen for our tests, justifying
this choice in terms of the suitability of the technology for the experimentations. Section 3.2
describes the most relevant characteristics of LCD displays that may a�ect the visualization under
our speci�c test conditions, as well as a methodology to perform the characterization of the device.
Each aspect of this process is illustrated with speci�c results obtained for our chosen display. Finally,
Section 3.3 will describe some particularities of the characterization methodology required by the
use of stereoscopic visualization.

3.1 Choosing the right display device

The technology used in the visualization device has a very strong in�uence on the quality of the
displayed images. Some technologies may be inherently limited by the electronics, while others
may skyrocket the price of the solution. Choosing the right display technology is therefore a very
important step in obtaining a solution that provides good results within the requirements of the
project.

LCD technology has replaced CRT displays as the main technology for desktop computer mon-
itors. We present in this section an overview of the main technologies used in LCD displays �
focusing on those most relevant to our test display� providing in each case some advantages and
disadvantages relevant to psychophysical experimentation.

3.1.1 Display Technologies

3.1.1.1 Cathodic Raytubes (CRT) vs Liquid-crystal displays (LCD)

CRT displays produce light by means of three primary phosphors �red, green, and blue� for each
pixel. Each phosphor is excited independently by an electron beam of varying intensity to form a
pixel. This results in a large gamut of colors and brightness levels [55]. Conversely, LCD displays
are formed by an array of liquid crystal molecules which can change their polarization state from
"on" to "o�" by applying a varying electric voltage. In their o� state the molecules block the light,
whereas in their on state they let the light pass.

Although there are many advantages to LCDs over CRTs in terms of consumer applications, such
as smaller space requirements or lower energy consumption, their use in vision science applications
introduces several complications [56, 57, 58]. For example, Gaurav Sharma reported that while
earlier LCD models already provided a larger color gamut than CRTs, changing the viewing angle
resulted in colorimetric variations larger that what was estimated by the characterization model.
Indeed, the large variations of luminance as a function of both the viewing angle and the distance
from the surface's central position, is a well known disadvantage of LCD displays. Elze and Tan-
ner [58] provide a very good analysis of the positive and negative aspects of the main technologies
used in LCD displays in comparison with CRT displays.

3.1.1.2 Common LCD display technology

Depending on the type of liquid crystal molecules, their arrangement, and their orientation, we
can distinguish di�erent types of LCD displays. Next we describe the most common technologies:
Twisted Nematics LCD and In Plane Switching LCD.

Twisted Nematic Liquid Crystal Display (TN-LCD) TN-LCD is the most common tech-
nology in the desktop display market [59], used also for watches and calculators. It consists of a
layer of nematic liquid crystals, between two layers of glass. As a voltage is applied to the nematic
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crystals they stand up, changing their orientation and polarization, and blocking light with the se-
lected polarization. Varying voltage can produce almost any gray level [60]. They present however
certain drawbacks, most notably their narrow viewing angles (especially vertically) and low color
depth [61, 59, 62]

In Plane Switching Liquid Crystal Display (IPS-LCD) This technology was designed to
resolve the limitations of TN-LCDs such as brightness change an color shift depending on the
viewing angle. In IPS-LCD, liquid crystal molecules never change their orientation with respect to
the display panel, and instead they rotate in parallel with the panel. For this reason, the variations
related to the viewing angle are much smaller than in TN-LCDs [63]. Besides preserving accurate
color display from all viewing angles, they eliminate other issues of TN-LCDs like the appearance
of tailing when touched [64], which makes them more convenient for touch-screen devices, such as
smartphones and tablets.

3.1.1.3 Color management in LCD displays

The human eye can discriminate around 10 million di�erent color shades. Modern graphic cards
are capable of displaying RGB images with up to 8 bits per color channel, or 24 bits in total, which
can represent 16.7 million color shades.

Color in LCDs is created by a backlight �which is usually made of LEDs� that can be separated
into di�erent color components via optical elements, which are then let pass by the liquid crystal
molecules depending on their state. These molecules can typically present only two states (on/o�)
which translates into a color depth of one bit per pixel. Some newer models use variations with
molecules that can present a few di�erent states, with up to 6 bits per bit, so they cannot produce
as many colors as graphic cards. It is therefore necessary to use additional techniques to increase
the precision of pixel colors on LCD displays.

The most common technique is frame rate control (FRC), which takes advantage of the color
persistence properties of the human retina [65, 66] (see Section 2.3.1) to increase in the number of
perceivable gray scale values. The number of color shades may therefore be increased by combining
di�erent colors in time at a fast rate (30 Hz), through the use of dithering algorithms �a pixel
density variation method that introduces intentional noise to reduce quantization patterns. In
theory some problems �such as transverse striping or perceived �ickering [55]� may arise due to
the use of FRC, specially in �rst-generation LCD models and the most inexpensive modern ones,
but in practice they are hardly noticeable to the human eye [67].

3.1.2 Depth perception in displays

Recent years have seen the emergence of numerous visualization technologies that try to reproduce
the perception of depth in the human visual system (HVS). Section 2.5 described how the humans
can obtain depth information from monocular �perspective, texture gradients, occlusion, etc� and
binocular cues �binocular disparity, accommodation, convergence, and motion parallax. These
binocular cues can be reproduced by some display technologies to produce depth perception in the
viewer. The most important of such technologies are stereoscopy and holography. Stereoscopic
displays are developing at a very fast pace, and are already well established as a mass-market
product; however, they have some limitations that make holographic displays seem like a more
promising technology in the future.
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3.1.2.1 Stereoscopic displays

This is the most common type of displays that provide depth perception. They are often referred
to as 3D displays, however this name is not correct because they do not provide all four binocular
depth cues required to see true 3D images. Indeed, although the images shown by this type of
displays are perceived by the observer as being at di�erent depths �both with respect to each
other and to the observer� the elements depicted are all at the same depth plane, namely, the
image plane corresponding to the screen. Therefore, when looking at these images our eyes must
accommodate to the screen's distance and not to the perceived distance, which provides con�icting
accommodation cues. Moreover, since the displayed images have been taken from a �xed point of
view, there is no true binocular disparity between the images seen by each eye.

Nonetheless, although this type of displays does not provide true three-dimensional images, they
can mimic stereoscopic visualization and simulate the perception of depth by adding the missing
binocular depth cues arti�cially. This can be done in several ways, as we will describe next.

1. Stereo-Pair displays

Stereo-Pair stereoscopic displays create arti�cial parallax by distributing a separate image
of the scene for each eye, so they normally require an additional viewing device �generally a
pair of special glasses� in order to combine two separate images sent by the display into one
single view. There are two types, distinguished by the type of viewing device used:

• Active (shutter) stereoscopy:

The image-eye synchronization �known as alternate-frame sequencing� electronics
are contained within the glasses themselves; normally, two independent LCD �lters (one
per eye) switch on and o�, alternatively for the right and left eye, in phase with the
displaying device, at rates from 60 to 120 frames per second or above. This technology
provides a larger color spectrum and higher image resolution, however, the �lters in the
glasses alter the original image color and reduce the luminance, which may also modify
the contrast in LCD displays as a result of the reduction of the blacklight intensity. This
technology has proven so far to be the best solution for 3D home entertainment such as
video games and home cinema.

• Passive stereoscopy:

Images are sent to the viewing device in a special way so that the images for each eye
can be separated on the other end. The most common solutions rely on using a di�er-
ent polarization (usually linear or circular) or complementary colors (known as anaglyph
stereoscopy) for each eye's image. The glasses contain special �lters to be able to only
see the right image. This technology has the advantage that glasses are inexpensive, but
the displays are much more expensive and, since the images have to share the screen, the
resolution is reduced. This technology is more common in applications for large audiences
such as cinema theaters.

2. Autostereoscopic displays

Unlike stereo-pair displays, autostereoscopic displays �also known as glasses-free 3D or glasses-
less 3D� do not require an additional external device in order to provide the perception of
depth [68]. They have the ability to multiplex several views at a time, so a series of dif-
ferent perspective views can be delivered to the observers depending on their viewpoint, a
process called direction-multiplex [69]. This type of stereoscopy reproduces two of the four
eye mechanisms required to create a 3D image, namely, motion parallax and binocular dis-
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parity. Common examples of autostereoscopic displays are parallax barrier and re-imaging
displays [70].

3.1.2.2 Holographic displays

Holographic displays work by encoding at a spatial light modulator (SLM) the light di�racted from a
3D object, which essentially corresponds to its Fourier transform. Color is typically produced using
either monochrome (most often) or light-emitting diodes (LED) [71, 72]. Although some early
working implementations exist [73, 74, 75], they are much less developed than stereoscopic displays;
however, the limitations inherent to the latter, make holographic technologies a more promising bet
for 3D displays. Unlike stereoscopy, holography does provide all four binocular depth cues necessary
to reconstruct natural looking three-dimensional scenes with unlimited depth, however, it still has
some issues such as insu�cient display resolution, inadequate data volume, and large computational
requirements [76].

3.1.3 Our choice

We have presented the most relevant types of display technology, as well as the main techniques to
reproduce depth perception in displays. The nature of our work imposes certain requirements that
reduce our number of choices in terms of display technology, so the advantages and disadvantages
of each type had to be taken into account when choosing a display for our experiments. Indeed,
initial material analysis performed by Couka et al. [77, 78] reveal that the e�ect particles contained
in some of the paint coating materials used in our research are distributed at di�erent depths and
orientations. Consequently, as we will explain in later chapters, depth plays a very important role
in the visual perception of the material aspect, and neglecting this information would reduce the
perceptual realism of the displayed images.

Although true depth would be preferable, the current development state and low availability of
holographic displays e�ectively restricts our choice of displays to stereoscopic displays. We tested
several types of stereoscopic technology, such as a stereoscopic projector, an autostereoscopic display,
and several types of active-viewing stereoscopic displays, and found that active-viewing stereoscopy
gave the best results in terms of colorimetry, resolution and quality/price ratio. In order to avoid
an elevated cost for the system, we decided to choose general-purpose technology, so the �nal choice
was an Asus VG248QE stereoscopic display with a set of Nvidia3D vision shutter glasses as the
viewing device. We purposely selected this display's speci�cations (see Table 3.1) to obtain the
best results for our requirements, keeping in mind the numerous disadvantages of using an LCD
display for visual experiments [58, 57]. This monitor uses TN-LCD technology but, in spite of the
drawbacks mentioned earlier associated with this technology, this speci�c model ranks very well in
terms of color reproduction in existing benchmarks [79]. Furthermore, the color depth is increased
greatly through the use of FRC, which we could corroborate from the color gamuts resulting from
the measured primaries in each of the tested monitors (Figure 3.1).

The only important problem left to workaround is the reduced viewing angles which, given the
size of our samples, we can minimize by restricting the position of the displayed samples during the
experiments to avoid using the outer edges of the display, and also limiting the observer's position
to the center of the screen to minimize the angle with respect to the image position.

3.2 Color signal transformations introduced by the display

Traditionally, CRT displays have always been preferred over LCDs for visual experiments because
their behavior has been widely studied. However, due to the advances in �at-screen display tech-
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Figure 3.1: Color gamuts obtained by measuring the color coordinates of the three primaries for
the same con�guration in several monitors: Asus VG248QE (stereoscopic), Eizo ColorEdge CG21
(monoscopic), and HP ZR24w (monoscopic). As we can see, the gamut size is very similar in all
three cases, and it is even slightly larger in the stereoscopic (Asus) case.

nology, CRT display technology has been replaced by LCD as the standard for display technol-
ogy. Although many properties of LCDs, such as their photometric and temporal response, still
remain unknown [80, 58], ample research is being done to characterize and improve their perfor-
mance [81, 82, 83]. The characterization models traditionally used for CRTs may also be used for
LCDs, although it is necessary to perform extensive measurements to ensure their suitability, since
violations of some model assumptions might invalidate the results. In e�ect, an accurate character-
ization is required to identify the e�ects of possible imprecisions in the results of the experiments,
and verify whether or not a speci�c display is suitable for the tests.

As we have seen earlier, human visual perception is mainly the result of the interaction be-
tween an electromagnetic signal hitting the retina and the HVS. In order to ensure the perceptual
realism of the displayed stimuli, we must characterize and control the transformations sustained
by the visual signal during visualization. The color characterization of a display allows us to �nd
a transfer function that predicts the display's colorimetric response from a given input (forward
transformation) and, conversely, to �nd the input needed to produce a given output (inverse trans-
formation) [84, 85]. Therefore, the transfer function permits us to move between device-dependent
and device-independent representations.

It is di�cult to obtain a perfect characterization model that is valid in all possible situations;
the recommendation is to �nd a simple model that is acceptable in most cases and then extend it
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Panel size: 24.0�
True resolution: 1920x1080
Pixel pitch: 0.2768 mm
Max. brightness: 350 cd/m2

Viewing angle(CR+/-10): 170◦(H)/160◦(V)
Gray-to-gray response: 1 ms
Color depth: 6 bits + FRC

Table 3.1: Technical speci�cations of the Asus VG248QE monitor.

to deal with exceptions, rather than to �nd a very speci�c model that may not allow to be inverted
to cover more general cases. Following this recommendation, we base our characterization model
on the standard CRT model, as described by Brainard et al. [57], adapting the model for certain
particularities of stereoscopic LCD displays. Indeed, most of the assumptions made in the standard
CRT model also apply to LCDs, and this model can be easily adapted to cover the particular
characteristics of the latter.

3.2.1 Previous considerations

The CRT characterization model considers that the light emitted by any given pixel in the screen
is the result of a linear combination of the contribution from each of the color �lters in the pixel
plus the re�ected light from the ambient illuminant.

C(λ) = rR(λ) + gG(λ) + bB(λ) +A(λ) (3.1)

Equation 3.1 represents this model, where C(λ) is the spectrum measured at a pixel, R(λ),
G(λ) and B(λ) are the spectral power distributions (SPD) measured when each of the color �lters
are fully saturated (primary colors), r, g and b are real numbers between 0 and 1 that indicate
the weights for each �lter, and A(λ) represents the amount of ambient illumination (or "�are")
emitted or re�ected by the display when it shows a black signal. It is recommended to work with no
ambient light in order to simplify the computations; to adapt the model for the presence of ambient
illumination, we must simply replace C(λ) with C ′(λ) = C(λ) − A(λ) and characterize supposing
no ambient. We performed the characterization process in a dark room �where all external light
sources were blocked, and bright surfaces were covered with black tissue to minimize re�ections �
with only the monitor light on, so that no ambient illumination was present (Figure 3.2).

Figure 3.2: Monitor characterization environment.
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In order to select the right settings for the display before the characterization process, we tested
several preset con�gurations and found that they mostly a�ect images in terms of brightness, con-
trast, and o�-axis1 quality, whereas, as shown in Figure 3.3, the color gamut barely changes. For
this reason, we preferred to use the monitor settings values recommended by more exhaustive bench-
marks [79], as shown in Table 3.2.

Figure 3.3: Gamut comparison of the Asus VG248QE preset settings. As we can see, there is not
much di�erence in the resulting gamuts.

Splendid mode: Standard
Contrast (%): 80

Brightness (%): 35
RGB (%): Red 96 / Green 94 / Blue 88

Table 3.2: Asus VG248QE settings used for its characterization and during all the observation tests.

Since we want to display images in stereoscopic mode, the entire characterization process was
done using stereoscopic color samples, so that the monitor's stereoscopic mode is kept enabled
throughout the process, and placing a pair of shutter glasses in front of the characterization device.
This is important because the stereoscopic mode has an e�ect on both the colorimetry and the
luminance of the output, as shown in Figures 3.4 and 3.5. We will discuss more in detail the e�ects
of stereoscopy in the characterization process in Section 3.3. From now on, all the results will be
shown under these conditions, unless otherwise stated.

1The o�-axis angle is the horizontal o�set of the viewing angle with respect to the display's normal.
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Figure 3.4: Gamut comparison of the Asus VG248QE with the stereoscopic mode On and O�. In
stereoscopic mode, a pair of shutter glasses was also placed in front of the characterization device.
Although the gamut size does not change much, the white point moves towards the green in stereo
mode as a result of the �lters in the shutter glasses.

We created a series of large RGB uniform color patches (see Table C.1 and Figure C.1) by
setting the intensities of all R, G, and B channels to zero and increasing each channel's intensity
separately from 0 to 255, with increments of 10 units. This resulted in three ramp sets for the
red, green, and blue. Additional shorter series were created for Magenta, Yellow and Cyan, with
intensity increments of 50 units, plus an achromatic series of grays. This results in seven color
series and a total of 120 samples, used to estimate the parametric model that characterizes the
response of the display. Additionally, an image of the 24-path Macbeth color chart was used
to validate the estimated models, and black and white samples were measured throughout the
characterization process to ensure the stability of the white and black point signals. Figure 3.6
shows the characterization setup and the measuring distances. Both the described color samples
and the setup were used throughout the entire characterization process in this chapter.

3.2.1.1 Pixel independence

One of the assumptions of the most common characterization models is that of pixel independence.
Pixel independence means that the intensity of each primary color at each pixel location depends
only on the input signal for that pixel, independent of the neighboring pixels [86]. In old CRT
displays and the �rst LCD models this assumption of pixel independence could fail due to inadequate
video bandwidth, DC restoration, and high-voltage regulation, caused by inaccuracies of the digital-
to-analog converters (DACs) [87]. However, newer LCD displays � such as ours � are provided with a
digital video input (DVI) which eliminates the conversion stage, thus improving pixel independence.
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Figure 3.5: Luminance comparison of the Asus VG248QE with stereoscopic mode On and O�, for
the characterization gray series with intensity from 0 to 255. We can see that the stereoscopic mode
reduces drastically the luminance.

3.2.1.2 Warm-up

LCD panels can take a long time to warm up due to the backlight used to illuminate the liquid crystal
panel. Although our model uses a white LED (WLED) backlight �which is known to be more
e�cient� we performed stabilization measurements to ensure that the peak luminance was reached
before proceeding with the characterization. We displayed a medium-tone gray image �code named
gray120, as shown in Table C.1, at approximately a 50% intensity level, with RGB tristimulus [120
120 120]� on the monitor. Using a spectroradiometer2, we took regular measurements (at about 10-
minute intervals) of the SPD of the signal emitted by the display on three points evenly distributed
along the central horizontal line of the screen (points P1, P2 and P3 in Figure 3.7). Once the graphs
were stable during several measurements (Figure 3.8), we considered that the display had already
reached its peak luminance. Unlike in older LCDs, we can see that our monitor has a very low
warm-up time, which is almost immediate after being switched on.

3.2.1.3 Angular dependence

We have seen that one of the biggest disadvantages of using LCD displays for visual experiments is
the strong dependency of the screen's luminance on the viewing angle. We positioned the spectrora-
diometer facing the center of the screen, parallel to its normal; we then took several measurements
on the screen by rotating the spectroradiometer's head so as to reproduce o�-axis visualization. This
way, we can represent more faithfully what an observer would perceive when positioned in its place.
Figure 3.7 shows the di�erent luminance levels �relative to the maximum luminance obtained for

2As described in Section 1.2.2.1 and A.19, a spectroradiometer is a device that measures the SPD of a light
source (units W · sr−1 · m−2 per unit wavelength). We used a Konica Minolta CS-2000, which is a non-contact
spectroradiometer that measures contrasts of 100,000:1 and low luminance levels down to 0.003 cd/m2.
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Figure 3.6: Monitor characterization setup.

Luminance values (cd/m2):
0.0697 0.1047 0.0955
0.1088 0.1587 0.1434
0.1340 0.1774 0.1608

Luminance deviations (%):
8.90% 5.40% 6.32%
4.99% 0% 1.53%
2.47% -1.87% -0.21%

Figure 3.7: Left: approximate locations of the points measured with the spectroradiometer on the
Asus VG248QE monitor; Right: luminance uniformity values (cd/m2) (top) and corresponding
percentage deviations from the central position (bottom) obtained by spectroradiometer rotation
for the gray120 color patch, with RGB values [120 120 120]. The measurements were taken on the
nine points indicated on the left image.



44 Chapter 3. Ensuring color signal consistency in the visualization chain

Figure 3.8: Display stabilization graphs measured at 10-minute intervals on points P1, P2, and P3
(respectively from top to bottom) for a 30-minute period (4 measurements). For reference purposes,
we also included a �fth measurement taken on point P2 (central point), 1 hour and 15 minutes later.
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all the color patches� measured on the display's screen for the same color patch, gray120, used
in section 3.2.1.2. In e�ect, we can see that the luminance varies greatly for o�-axis observation
angles; however, as mentioned earlier, we believe that this e�ect can be minimized by restricting the
position of the displayed objects to the center of the display, thus reducing the amount of o�-axis
observations. Decreasing the observation distance would also help mitigate this e�ect, given that
shorter distances require larger deviation angles from the center of the screen for the observer to
reach the edges of the display.

3.2.1.4 Channel constancy

The model described by equation 3.1 assumes the presence of channel constancy in the display.
Channel constancy implies that, when only one channel is active, varying the input intensity for
that channel only changes the luminance, whereas the chromaticity remains constant. In terms of
the SPD of the signal emitted by the display, channel constancy means that the responses of a given
channel for two di�erent inputs are proportional, so that P ciλ = P cjλ × k, where P ciλ and P cjλ
are the SPDs emitted by channel C as output for two input intensity values, i and j, respectively,
and k is a multiplicative constant. In terms of chromatic properties, if (xi, yi) and (xj , yj) are
the chromaticity coordinates of inputs i and j, respectively, then xi = xj and yi = yj , and their
respective luminance, Yi and Yj , are such that Yi = Yj × k.

Figure 3.9: Asus VG248QE channel constancy graphs for the x (left) and y (right) chromaticity
coordinates. The dashed lines represent the chromatic response of ideally constant red, green, and
blue phosphors in a CRT display.

Figure 3.9 shows the channel constancy results for the Asus VG248QE. The graph displays the
x and y chromaticity coordinates for all the red, green, and blue color series, in comparison with
a constant signal with the same coordinates obtained by each channel at their maximum intensity.
In the case of the x coordinate, the green channel remains almost constant, whereas channels red
and blue have a very poor constancy for low intensity inputs and improve as the intensity increases;
similarly, in the case of the y coordinate, channel red remains constant, but channels green and
blue deviate from constancy at low intensities and behave almost linearly for higher values. Our
studies suggest that the reason for this low color constancy is that, as we already explained LCD
displays, unlike CRT displays �for which this calibration model was designed� do not produce
light by means of independent monochromatic light sources, but through a common backlight and



46 Chapter 3. Ensuring color signal consistency in the visualization chain

several color �lters. In the case of the Asus VG248QE, a white backlight is used, so the method
used to produce this white light in�uences the response of each color channel. As we will see later,
we can use more complex characterization models to take into account this lack of constancy.

3.2.1.5 Channel independence

Another assumption of the CRT characterization model is that the light signals emitted by each
color channel are independent from each other, so that no interferences exist between color channels.
Given the current advances in the electronic components used for display devices, the assumption of
channel independence is true in most modern displays. However, since a poor channel dependence
may introduce additional color changes in the input data, it is important to verify that independence
does indeed exist. Channel independence can be veri�ed with an additivity test, consisting in
comparing the intensity emitted for a white input with that of the combined primaries, to check
whether changes on any of the channels has an in�uence on the others.

Figure 3.10: Asus VG248QE channel additivity test graph comparing the luminance of a gray series
input of increasing intensity (dashed red line) with the summed luminance of the red, green and
blue inputs of the same intensity (solid blue line).

Figure 3.10 shows the additivity of the luminance emitted for each a series of increasing-intensity
inputs by the Asus VG248QE. We can see that there is a very small o�set between the graphs, except
at the limit of the display's gamut, where the measurements are less reliable. We attribute this o�set
to the the fact that, again due to their backlight, LCD displays do not produce a full-zero signal
for black inputs. This can be observed both in Figure 3.9 and 3.10, which show that neither the
luminance nor the chromaticity of the black input is zero. The signal emitted by the display for
a black input is known as the display's black point and, if needed, can also be corrected in the
characterization process by subtracting the black point color signal from every color output.

3.2.1.6 Gamma correction

The pixel luminance response of a display is typically nonlinear, and is characterized by a function
in the form of a power-law for CRT displays or a sigmoid, or S-curve, for LCDs. By generalization,
this function is usually known as gamma function, and represents the relationship between the
input color values and the luminance output for each pixel. By measuring the color samples in
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Table C.1, we obtained the corresponding luminance curves for each color channel. As shown in
Figure 3.11, these measurements can be used to �nd the parameters of the gamma function that
best approximates the resulting shape for each color channel.

Figure 3.11: From left to right and top to bottom: normalize luminance distributions for the red,
green, blue, and gray input series. The blue line shows the measured luminance values for a series
of color samples with intensities from 10 to 255 in equal increments of 10 units; the dotted red
line shows the best-�t gamma function approximation for the same input values, with γ = 1.75,
γ = 1.75, γ = 2, and γ = 1.75, respectively.

Indeed, Figure 3.11 shows that the curves are very closely approximated by a gamma function,
specially for intensity values below 200. We can then say that each color channel's luminance can
be approximated by the following expression:

r = gamma(R) =

[
R

max(RGB)

]γ
, for R > 0 / r = 0 otherwise

g = gamma(G) =

[
G

max(RGB)

]γ
, for G > 0 / g = 0 otherwise (3.2)

b = gamma(B) =

[
B

max(RGB)

]γ
, for B > 0 / b = 0 otherwise

where r, g, and b are the output luminance for each color channel, R, G, and B are the values
in each pixel for the red, green and blue channels, max(RGB) is the maximum intensity for each
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RGB color channel � which should be 255 or 1 if RGB values are given in a [0-255] or [0-1] scale,
respectively � and γ is the parameter that determines the shape of the gamma function. In our
case, as illustrated in Figure 3.11, initial analyses via best-�t have estimated the gamma parameter
as 1.75, 1.75, and 2, for the red, green and blue channels, respectively.

Similarly, we can use Expression 3.3 to estimate the input color value needed to obtain a given
output.

R = gamma(r)−1 = (max(RGB))r1/γ

G = gamma(g)−1 = (max(RGB))g1/γ (3.3)

B = gamma(b)−1 = (max(RGB))b1/γ

However, although this approximation may be su�cient for simple characterizations, in cases
like ours where colorimetry is important we must use more complex models, as we will see in
Section 3.2.2.

3.2.2 Modeling the response of the display

The transfer function that characterizes the response of a display device is generally estimated from
a set of known color samples. The premise is that, due to the electronics in the display, an input
RGB value is displayed with a given output chromaticity and luminance which cannot necessarily
be predicted from the input color intensities; the chromaticity response depends on the response
of the display's color pixels, and the luminance response depends on the display's gamma function
explained in Section 3.2.1.6.

Several groups of models can be used to perform this estimation: physical models, numerical
models, and models based in 3D lookup tables (LUT). Physical models assume a channel indepen-
dence and that the chromaticity of the primaries is constant; the colorimetric transform is done
by weighting a combination of the chromaticity of the primaries by a standard luminance function
(such as a power law, more appropriate for CRT displays, or a sigmoid function in the case of LCDs,
as we saw in Section 3.2.1.6). Numerical models use a training color set to estimate the parameters
of a polynomial function via a �tting process. Models based in 3D LUTs construct the LUT from
a series of known color patches, and use interpolation methods to estimate unknown values; the
quality of the results depends on the interpolation method and the amount of color measurements,
although a large data set is often required to obtain precise results [88].

Physical models are the most commonly used for display characterization because, although it
has been shown that they do not �t well for some LCD cases, they are fast, it is easy to estimate
the response curve with a small amount of data [88], and allow for both forward and inverse trans-
formations [89]. The general model used in CRTs assumes the presence of a brightness gain in the
screen and two types of chromaticity o�sets, which can also be applied to modern LCDs in many
cases [90]. Fixing the values of some of these terms gives several variants of the model:

• Gain-O�set-Gamma-O�set (GOGO) (a, b, c 6= 0)

yh = (ah · xh + bh)γh + c (3.4)

• Gain-O�set-Gamma (GOG) (c = 0)

yh = (ah · xh + bh)γh (3.5)

• Gain-Gamma-O�set (GGO) (b = 0)

yh = (ah · xh)γh + c (3.6)
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• Simple Gamma model (a = 1, b = c = 0)

yh = xγhh (3.7)

where yh is the gray level of channel H for a given digital input xh; ah, bh, and γh, are the
gain, o�set, and gamma for the channel, respectively; and c is a general o�set that represents the
environmental �are [88].

We measured the color samples in Table C.1 (Appendix C) in full-screen mode �so that the con-
tribution due to the point-spread function from neighboring pixels can be neglected� and measured
their spectra in the central position of the monitor using a Konica Minolta CS-2000 spectroradiome-
ter3. Initial results showed that the simple gamma model could not estimate a good approximation
to our problem. We computed a solution using each of the models above for a given set of measured
color data, and obtained the coe�cient of determination, R2, for each solution. The simple model
yielded very low average R2 values, between 0.13 and 0.6, which were very far o� from those ob-
tained with the other three models. For that reason we decided to test only the �rst three models
(GOGO, GOG and GGO) .

Figure 3.12 shows the chromaticity coordinates of all the measured color samples with regularly-
increasing intensities for the Asus VG248QE. We can see that there is a strong nonlinearity (espe-
cially when for samples near the maximum channel's intensity), which justi�es our choice to choose
the more complex characterization models over the simple gamma model. Figure 3.13 shows the
SPD of the three primaries �i.e. the red, green and blue color samples at full intensity� measured
with the spectroradiometer under the same illumination conditions used in our experiments. If we
look at the zoomed-in graph in Figure 3.14, we can see that the response of the red and green
channels overlap with the blue channel (see the small blue peak around 450 nm); this overlap a�ects
especially the red channel, whose response is much more powerful in this area of the spectrum. This
is part of the reason why the chromaticity response shown in Figure 3.9 was not linear and, indeed,
the response of the blue channel always a�ects that of the red (x chromaticity) or the green (y
chromaticity) channels. This signal overlap must be taken into account, since it complicates things
if we want to characterize the display with a simple model.

Let [Rin Gin Bin] denote the device-dependent RGB tristimulus values of the input color stimulus
displayed at each time on the monitor, and let coordinates (rin gin bin) be the normalized RGB
color coordinates corresponding to that same input stimulus, such that:

(rin = Rin/255; gin = Gin/255; bin = Bin/255) (3.8)

Similarly, let [Xout Yout Zout] denote the device-independent XYZ tristimulus values, correspond-
ing to the radiance measured by the spectroradiometer on the surface of the display, as output for
the corresponding input stimulus. These values can be converted from the XYZ color space to RGB
by multiplying by the corresponding transformation matrix, Mxyz2rgb, such that:

RGBout = XY Zout ∗Mxyz2rgb (3.9)

where [Rout Gout Bout] are the RGB tristimulus values estimated from the output stimulus
XY Zout, and similarly (rout gout bout) refer to the normalized RGB color coordinates of the esti-
mated stimulus RGBout.

A simple method to estimate the characterization models is to estimate the parameters directly
from the set of input RGB and output XYZ data via a Least Squares (LS) regression analysis
which tries to �t the set of RGB-XYZ data correspondences to the chosen model �as given by

3The spectroradiometer is a Konica Minolta CS-2000. It is a non-contact spectroradiometer that measures con-
trasts of 100,000:1 and low luminance levels down to 0.003 cd/m2.
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Figure 3.12: CIE diagram 1931 showing the chromaticity coordinates of all the characterization
color samples measured at the Asus VG248QE, and the location of the white point.

the corresponding equation from Expressions 3.4 to 3.7� replacing x by RGBin and y by XY Zout
in the model equation. Since the three chosen characterization models (GOGO, GOG and GGO)
are de�ned by a nonlinear function, we perform a nonlinear least squares (NLLS) analysis4, where
there can be up to four parameters, and a much larger number of observations (in this case, 120).
Tables 3.3 and 3.4 and Figures 3.15 and 3.16 show the individual and average goodness �averaged
from the individual determination coe�cients obtained for X, Y, and Z� of the �tted functions
estimated via NLLS regression analysis for each of the three models for the direct DAC-XYZ5 trans-
form and the inverse XYZ-DAC transformation functions for each color channel. As we mentioned
earlier, the non-linear response of the red channel complicates the estimation of XYZ from DAC,
and viceversa, as demonstrated by the low determination coe�cient (R2) with respect to the other
channels, notably in the case of the estimation of/from Z values, typically associated with the blue
channel, which shows once again the dependency between both channels that we discussed earlier.

As we can see, R2 is similar in most cases for all three models, although the best results in
our case are obtained by the GOG and GGO models. The results for these two models are very
similar, and they both use the same number of parameters; however, we decided to choose the
GOG model because it does not include the �are o�set term and therefore it is more appropriate
for a characterization in the dark. However, although it can be used as a �rst approach to obtain
the most adequate model, the estimation method shown above presents several problems. First,
it performs the estimation between two di�erent color spaces, XYZ and RGB. Furthermore, each
channel is estimated separately without accounting for the e�ect of other channels, which is not
correct because the tristimulus values in both RGB and XYZ are not independent from each other.

To improve the characterization results, we propose a di�erent methodology, where data �tting

4Using Matlab R2012b's �t function [91].
5DAC is the acronym for Digital-to-Analog Converter; although our display has a digital input and therefore this

term is not strictly correct, the term is widely used in the context of CRT characterization, so we continue to use it
here for consistency.
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GOG (XYZ-DAC)

R2
X R2

Y R2
Z AV G R2

XY Z

Blue channel 0.999 0.999 0.999 0.999
Green channel 0.998 0.998 0.996 0.997
Red channel 0.999 0.999 0.869 0.956

GOGO (XYZ-DAC)

R2
X R2

Y R2
Z AV G R2

XY Z

Blue channel 0.998 0.964 0.999 0.987
Green channel 0.998 0.998 0.975 0.990
Red channel 0.999 0.999 0.867 0.955

GGO (XYZ-DAC)

R2
X R2

Y R2
Z AV G R2

XY Z

Blue channel 0.999 0.999 0.999 0.999
Green channel 0.998 0.998 0.996 0.997
Red channel 0.999 0.999 0.869 0.956

Table 3.3: Individual and average R2 for the estimation of output XYZ values, from input DAC
values, with each of the proposed models: GOG, GOGO, and GGO.

GOG (DAC-XYZ)

R2
X R2

Y R2
Z AV G R2

XY Z

Blue channel 0.999 0.998 0.999 0.998
Green channel 0.999 0.999 0.997 0.998
Red channel 0.999 0.998 0.870 0.955

GOGO (DAC-XYZ)

R2
X R2

Y R2
Z AV G R2

XY Z

Blue channel 0.992 0.998 0.999 0.996
Green channel 0.997 0.999 0.997 0.998
Red channel 0.999 0.989 0.869 0.952

GGO (DAC-XYZ)

R2
X R2

Y R2
Z AV G R2

XY Z

Blue channel 0.999 0.999 0.999 0.999
Green channel 0.999 0.999 0.997 0.998
Red channel 0.999 0.998 0.867 0.955

Table 3.4: Individual and average R2 for the inverse estimation of input DAC values, from output
XYZ values, with each of the proposed models: GOG, GOGO, and GGO.
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Figure 3.13: Spectral radiance curves for each of the three primary colors of the Asus VG248QE.

is not performed directly between output XYZ values and input RGB values. Instead, we perform
a previous color space conversion from XYZ to RGB, and then obtain the model parameters by
NLLS analysis within the same color space. The general structure of the algorithm that �nds the
parameters of the GOGO characterization model (Expression 3.4), or any of its simpli�ed variants
(Expressions 3.5- 3.7), is the following:

1. Compute the transformation matrix from the XYZ (device-independent) color space to the
RGB (device-dependent) color space.

2. Use the matrix obtained previously to estimate output RGB (RGBout) tristimuli from dis-
played XYZ output tristimuli (XY Zout) �i.e. the cone responses to the measured radiances.

3. Perform data �tting between RGBin and RGBout, and estimate the model's parameters for
each channel's data.

As we said earlier, the characterization model that we are using assumes color constancy and
channel independence. According to these assumptions, since we know the XYZ tristimulus values
of the display's RGB primaries, we can estimate the XYZ tristimulus of any RGB input as a linear
combination of the primaries. We can then estimate the inverse transformation matrix Mrgb2xyz,
and the corresponding direct transformation Mxyz2rgb, from the tristimulus values of the primaries,
as shown in Expressions 3.10 and 3.11 respectively.

Mrgb2xyz =

 XR255 XG255 XB255

YR255 YG255 YB255

ZR255 ZG255 ZB255

 (3.10)

Mxyz2rgb = M−1rgb2xyz (3.11)
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Figure 3.14: Zoom of the bottom section of Figure 3.13. The response of the red and green channels
overlap with the blue channel for wavelengths around 450 nanometers.

Mrgb2xyz =

 10.83 9.67 5.68

5.62 18.65 2.20

0.54 1.63 29.18

 (3.12)

Mxyz2rgb =

 0.12645 −0.06383 −0.01980

−0.03808 0.07320 0.00189

−0.00021 −0.00291 0.03453

 (3.13)

where [XR255, YR255, ZR255], [XG255, YG255, ZG255], and [XB255, YB255, ZB255] are the XYZ tris-
timulus values of the maximum-intensity red, green, and blue samples, respectively. MatrixMxyz2rgb

can be used to convert any XYZ output value to RGB output, using Expression 3.9. The transfor-
mation matrices obtained for the Asus VG248QE are shown in Expressions 3.12 and 3.13.

For the set of characterization color samples shown in Figure C.1, we obtained the parameters
shown in Table 3.5 for the forward transformation using the GOG model on the Asus VG248QE
monitor.

Parameter Red channel Green channel Blue channel
Gain (a) 267.6079 258.6558 257.9680
O�set (b) 0.0458 0.0572 0.0202

Gamma (γ) 0.5256 0.5055 0.5534
R2 0.9995 0.9984 0.9986

Table 3.5: Asus VG248QE characterization results with the forward GOG model.

We are more interested, however, in the inverse transformation, because it allows to estimate the
input that is required to obtain the desired output. In order to obtain the inverse transformation,
we performed the same NLLS regression analysis, but using the inverse GOG function, that is:

yh = ah · (xγhh − bh) (3.14)

where yh is the required input gray level of channel H to obtain a given digital output xh, and
ah, bh, and γh, are the inverse gain, o�set, and gamma, for the channel, respectively. The results
obtained for the inverse model are shown in Table 3.6; notice how the values obtained for the gamma
parameter are very similar to those obtained experimentally in Section 3.2.1.6 (Figure 3.11).
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Figure 3.15: Average R2 for the estimation of output XYZ values, from input DAC values, with
each of the proposed models: GOG, GOGO, and GGO (values in Table 3.3).

Figure 3.16: Average R2 for the inverse estimation of input DAC values, from output XYZ values,
with each of the proposed models: GOG, GOGO, and GGO (values in Table 3.4).
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Parameter Red channel Green channel Blue channel
Gain (a) 0.0038 0.0041 0.0039
O�set (b) 0.0218 0.0000 0.0000

Gamma (γ) 1.8132 1.7649 1.7156
R2 0.9995 0.9976 0.9991

Table 3.6: Asus VG248QE characterization results with the inverse GOG model.

Figure 3.17 shows the correlation between the real RGB input values and those estimated from
the measured output in our tests; as we can see, there is an almost linear correlation, which is
consistent with the high values obtained for the coe�cient of determination R2. At the same time,
this method produces much better results than the one shown earlier.

Figure 3.17: Asus VG248QE RGB correlation between the real and estimated RGB input values
with the GOG model.

3.3 E�ects of stereoscopic visualization on the color signal

Characterizing the response of the monitor is not enough to control the entire chain of visualization.
As we saw earlier in Section 3.2.1, the use of stereoscopic visualization has a strong e�ect in the
�nal image, both in terms of luminance and chromaticity, so it is necessary to account for this
contribution. As a complement to the luminance graph shown in Figure 3.5, Figure 3.18 shows
the normalized spectral transmittance of the Nvidia 3D shutter glasses used as the stereoscopic
visualization device. This graph shows the percentage amount of the total incoming signal that
is transmitted through the glasses; as we can see, the transmittance is very low, with a maximum
value of around 15%, which explains the low luminance in Figure 3.5 with respect to the monoscopic
mode.

In order to account for the contribution of stereoscopy, we have characterized our display using
stereoscopic visualization throughout the entire process so that our characterization model already
includes the contribution of stereoscopy. For this, we created a stereoscopic version of our 120
color samples, in order to force the monitor to enable the stereoscopic mode at all times. We then
positioned a pair of shutter glasses in front of the spectroradiometer (Figure 3.19) and took the
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Figure 3.18: Spectral transmittance of the Nvidia 3D shutter glasses.

measurements as usual. This way, the spectrometer "sees" what a human observer would see in the
same position.

Figure 3.19: Stereoscopic characterization with a spectrometer and the Nvidia 3D shutter glasses.

3.4 Conclusion

Chapter 2 showed the importance of controlling the output signal emitted by the display to avoid
loosing perceptual information that might a�ect higher level perceptual processes when observers
view the simulations. Although we focus our work on the use of a speci�c monitor model, this
chapter presents an brief analysis of the most common display technologies, and which mechanisms
they use to produce color, so that the methodologies used in this work can be easily adapted to
di�erent technologies without loss of generality. We have provided an analysis of the most important
factors that must be taken into account when LCD technology is used to display the simulations,
and how we can model their colorimetric output and apply the necessary corrections when need.

Although CRT displays have been used for a long time in psychophysical experiments, lately they
have been replaced by LCD displays. LCD technology produces color in a di�erent way than CRT
does, which means that new characterizations models are required to account for the di�erences
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between these two technologies. In terms of color reproduction, we have seen that the use of backlight
illumination in LCDs introduces irregularities in the color signal, notably in terms of color channel
independence. For this reason, simple characterizations where the color response of the display is
modeled by a color-conversion matrix and the luminance response as a simple gamma function, do
not produce good data estimations. Therefore, more complete models are required to account for
the e�ect of additional factors like color gain and o�set. The use of stereoscopic visualization in the
observation tests introduces additional constraints in the characterization process. In this case, the
colorimetric response of the stereoscopic visualization devices must be taken into account, as well
as the implications of enabling the "3D mode" in the display. The �lters used in the stereoscopic
visualization devices ("3D glasses") are not always colorimetrically neutral, which means that they
introduce modi�cations in the color signal emitted by the display. Additionally, when "3D mode" is
enabled in the display, the frame refresh rate increases up to 2.5 times the refresh rate in monoscopic
mode, but also reduces the overall display luminance. We take all of these e�ects into account in
our methodology by performing the entire characterization process with stereoscopic color samples
�so as to force the "3D mode" to stay enabled� and putting a pair of 3D glasses in front of the
measuring device.

We have presented here two characterization methodologies. The �rst methodology estimates
the model parameters directly from device-independent XYZ output values and device-dependent
RGB inputs. We have seen that although this methodology produces good estimations in the
average, the dependencies between color channels, most notably between the red and blue channels,
reduces the goodness of the estimation for display stimuli where these two channels are involved. To
correct for this problem, we propose a second characterization methodology where out XYZ values
are �st converted to RGB so the model parameters are estimated between data sets in the same
color space. This second methodology has shown to produce better results that the �rst one for our
tests monitor.

We present our characterization methodology using XYZ as device-independent color space,
although it is worth noting it could also be performed using the LMS color space. The absence of
bimodal responsivity curves in the LMS cone responsivity curves �as opposed to XYZ� would
simplify the modelization of the colorimetric response of the display; in this case the colorimetric
response of the display could be considered as a special case of a chromatic adaptation. However,
despite the latest advances, the absence of color models to account for factors such as contrast of
color space uniformity, or the lack of standard objective transforms between RGB, XYZ, and LMS,
are some of the reasons why we have decided to use XYZ instead. Indeed, XYZ has been accepted
as the standard by the CIE for a long time, so there are objective color conversion between device-
dependent RGB and XYZ. Furthermore, XYZ is the most commonly used independent color space
in the �eld of physical rendering. Therefore, this choice simpli�es the integration of our results in
the simulation process.
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We have described the mechanisms of the human visual system (HVS) to generate an initial
representation of the objects in a scene, using sensory response information, as well as some of
the physiological mechanisms that can in�uence this perception depending on observation and
environmental aspects. We have also discussed some particularities associated with the amount of
perceptual image realism when we use a display to present the simulations to human observers. We
have shown a methodology to control the colorimetric signal of the display devices to minimize the
loss of information during visualization, maximizing perceptual realism. In this chapter, Section 4.3
presents a methodology to capture the visual information from a scene, using a Digital Single-
Lense Re�ex (DSLR) camera to represent the behavior of the earlier stages of the HVS in terms of
perceptually-aware sensory responses. This allows us to reproduce in the simulated images as much
as possible of the perceptually relevant information present in the real scene.

Section 4.4 describes the e�ects of the imaging process in the perception of sparkles. The
perceived aspect of the car paint materials that we study is strongly dependent on the light of
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the scene and the material composition. In the case of sparkling materials, sparkling occurs when
the light in the scene is re�ected by the metallic �akes in the materials, as a result of their much
higher specularity with respect to the rest of components in the material. In photographs, the light
re�ected by the material results in image luminance, and is a determining factor in the perceived size
and depth position of the sparkles. Therefore, maintaining perceptual light information during the
photograph acquisition process is a key factor to conserving the perceived aspect of the materials.
Given the capabilities of camera sensors, it is not possible to capture the entire dynamic range
of a real scene in the photographs. Thus, we must choose which information to select and which
information to neglect in the photographs.

Section 4.5 presents two studies supported by results from visual psychophysical experiments.
First, we try to �nd a correspondence between the sensitivity of the HVS to the light in a scene, and
the sensitivity of the camera sensor, using image exposure as a measure of sensitivity (Section 4.5.1).
We then present a second study where we use the results from the �rst one to analyze the e�ects of
representing the image luminance with di�erent dynamic ranges (Section 4.5.2).

4.1 Description of the problem

The visual aspect of paint coating materials is intimately linked to their material composition and
physical properties, but also to the environment under which they are observed. As explained by
Balcetis and Dunning [10], the material aspect perceived by an observer is the result of a bottom-
up process where sensory organs and perceptual systems work automatically to produce a visual
representation of the stimulus as the light in the environment arrives in the eyes of the observer
after interacting with the materials. At the same time, this perception is also biased by top-
down in�uences such as the cognitive and psychological state of the observer, or the observation
environment. For this reason, physically-realistic images that ignore these properties are not correct
when simulations are destined to be viewed by human observers; in this case, perceptual realism is
needed, in order to account for the e�ect of human visual perception.

The rendering engine creates simulations of the real materials from a series of physical mod-
els and measurements that describe their microstructure. In order to link this structure with the
macrometric aspect perceived by observers upon visualization, psychophysical studies must be per-
formed to analyze the perceptual characteristics of the materials under a controlled observation
environment. The case of sparkling materials is specially delicate. The micrometric metallic par-
ticles contained in this type of materials are distributed spatially on one of the material layers at
random depths and orientations. Their high specular re�ectivity produces strong re�ections of the
illuminating light, which are the origin of the sparkling e�ect. Therefore, an important factor to
produce perceptually-realistic simulations of the sparkling e�ect is to understand how the human
eye perceives luminance contrasts in the real scenes, and how this wide luminance range can be
represented in the simulations.

When illuminated, a real scene is constantly emitting an almost in�nite number of luminance
levels, either directly from the light sources, or re�ected from the objects in the scene; this is what we
refer to as the dynamic range of the scene. When we look at an object in such a scene, the capabilities
of our visual system �which is determined by the spatial distribution of the photoreceptors in the
retina and their sensitivity to light� introduce a simpli�cation in the perceived signal, compressing
and reducing the dimensionality of the original information. When a scene is simulated, the images
resulting from the simulations already contain information in a similar reduced response space;
however, the complexity of the visualization devices may produce modi�cations in the information.
Since we want to produce perceptually-realistic simulations, we must verify that the information
remains perceptually accurate at each step of the process. In this work, we concentrate in the study
of luminance perception in the visualization of real samples and images of sparkling materials, using
stereoscopic visualization to provide additional depth information from binocular disparity. Since
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the sparkle of the metallic �akes is perceived di�erently by each eye, this helps represent more
accurately the material texture and, in turn, improve perceptual realism.

There are several ways to analyze the visual perception of the materials in a real and virtual
context, the two most intuitive being the following:

• Direct comparison:

The direct method is possibly the most straightforward. Intuitively, one could think of asking
observers to compare material simulations directly with a real reference and give their opinion
in terms of similarity. Nonetheless, although this might work for subjective analyses, there
is no simple way to associate objective parameters between a simulation and a real scene.
The visual response is directly dependent on the radiance values arriving on the retina of the
eyes; if we had a way to measure at any given moment the radiance reaching the eyes of the
observer, we could simply compare these values with those in the simulation. However, this is
not practical, because it would imply measuring the radiance at every point of the scene for
every image.

• Indirect comparison:

To simplify the comparison process and introduce more objective criteria, we propose to
replace the HVS with a DSLR camera. Cameras are based on an objective and validated
model, whose correlation with the HVS is widely known. In this sense, the camera acts as
a macrometric integrator of the real scene, and can also transform a radiometric signal into
colorimetric information, the same way the human photoreceptors do.

This section presents the methodology and results of two observation experiments using the
indirect comparison method with a DSLR camera. The �rst experiment analyzes the perceptual
e�ects of acquiring sample images with varying image luminance via the comparison of sample pho-
tographs with a real reference scene; the second experiment studies the perceptual e�ects of di�erent
tone-reproduction methods for the display of sample photographs via the side-by-side comparison of
sample photographs with variable dynamic ranges. Additionally, we will show how stereoscopy can
improve the perceptual realism of the virtual images with respect to the real reference, supported
by results from the conducted psychophysical experiments.

4.2 Perceptual characteristics of sparkling materials

The perceived visual aspect of a material is indeed strongly dependent on its optical properties
and, in turn, on its composition, as we discussed earlier. As a result, the complexity of a material
directly increases the number of optical phenomenon taking place as light hits its surface. Keeping
this in mind, we distinguish two main types of paint coating materials in our studies: uniform and
sparkling materials. Although our studies may apply to both types of materials, given the lack
of perceptual e�ects resulting from uniform materials, we concentrate on the analysis of sparkling
materials.

Automotive paint coatings are multi-layer composite materials with two basic purposes: protec-
tion and attractiveness [92]. Depending on their function and composition, each layer may have a
variable thickness. Our materials are formed by four main layers: electrodeposition coating, primer
surface, base coat, and clear coat (Figure 4.1). In the case of sparkling materials, the base coat layer
consists of a pigment which contains micrometric-scale metallic (aluminum) particles, or �akes, of
between 8 and 80 micrometers in size, with most particles around 10-40 micrometers [3]. These
metallic �akes are deposited in the pigment following a pseudo-random distribution at di�erent
depths and orientations. In e�ect, as described by Streitberger and Dösel [92], during the applica-
tion process an adjustable atomizer generates paint droplets of various sizes: small droplets contain
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Figure 4.1: Material structure diagram (left), and microscopic closeup view of a paint layer of
approximately 679 x 511.3 µm (right). Illustrations by Fernando Da Graça [20] (left) and Mona
Ben Achour [3] (right).

a high portion of metallic �akes, which are distributed evenly and aligned parallel to the surface;
on the other hand, the larger paint droplets contain more metallic �akes that form conglomerates,
which prevents an even distribution and parallel alignment in the �lm. The sparkling e�ect is the
result of light re�ected at the surface of the metal particles. This e�ect will depend on many factors
like particle size, shape, orientation, roughness, chemical composition �the lightness varies with
the observation angle (lightness �op) in aluminum e�ect pigments, as does the color hue (color �op)
in the case of mica e�ect or interference pigments� spatial distribution, or dispersion, which in
turn are determined by the pigment manufacturing process and the paint making process.

As we saw in Section 2.4.1, a person with normal visual acuity can resolve elements of up to
8.86 mm in size from a 6-meter distance, which means that the largest particles (80 µm) should
�if they could focus� be clearly visible to the eye when observed from a distance of around 5.5
cms. However, the sparkling e�ect is only the perceptual optical manifestation that results from the
interaction of the metallic �akes with the light, so what we see when we look at sparkling materials
is actually the sparkles and not the physical �akes. Given the high specularity of metals, the size of
the sparkle �which is always larger that the �ake� depends on the illumination and observation
conditions, amongst other factors, as we will see later. Since �akes can be found at di�erent depths
and orientations, it is possible that the sparkle produced by large �akes makes them appear much
bigger than they are [93, 94]. Similarly, shiny �akes located in deeper layers might appear the same
size as duller ones that are closer to the surface. For all these reasons, it becomes necessary to
characterize the materials properly from a perceptual point of view.

4.3 Modeling the human visual response with a digital camera

The perceptual characterization of this type of paint materials implies the analysis of the relation-
ships between the physical attributes and the perceptual aspect of the material as a function of
the illumination and observation conditions. Since the �nal goal is to simulate this behavior on
a computer, we must also understand how these relationships work in the simulations. This can
be done in many di�erent ways. As mentioned earlier, the most straightforward way would be to
compare directly the aspect of real and virtual samples, and use similarity metrics to evaluate the
perceptual accuracy of each rendering parameter. For instance, we could produce images with dif-
ferent brightness values and ask a group of observers to select the image that looks the most similar
to the reality; that way, we would �nd the brightness value that best approximates the real scene
for a speci�c environment. However, this criterion would be purely subjective and there would be
no objective metric to link brightness in the simulation with the perceived aspect of the real scene.
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We know that the visual response perceived by an observer when viewing an image (real or virtual
scene) depends ultimately on the radiometric signals that hits the retina of the observer's eyes.
Therefore, if we could measure these radiometric signals at the moment of viewing the real scene
in our example, we could associate those radiance values to the selected brightness value, using
objective criteria. Using a calibrated DSLR camera in between the real scene and the simulation
allows us to create an approximative "map" of the radiometric signals received by the camera's
sensor and, by extension, by the photoreceptors in the retina of the observer.

As we explained in Section 4.2, cameras can simulate well the response of the human eye, inte-
grating electromagnetic waves arriving onto the sensor, and translating it into perceptually relevant
images of the stimuli. Therefore, it provides us with a �exible tool to study visual perception, giving
us access to colorimetric and radiometric information, as well as giving us more control over the
imaging process.

In general we can �nd many similarities between a DSLR camera and the HVS: both have a lens
to focus the light; the amount of light passing through the lens is controlled by a diaphragm-like
mechanism, which is the shutter in cameras and the pupil in the eye; and a virtual inversed image
is projected on the sensor in a camera, and the retina in the eye. However, there are also important
di�erences between them which must be considered in order to obtain accurate results with this
approach. Notably, we must keep in mind that cameras can have optics of di�erent quality to focus
the light onto the sensor, and that each optical system may respond to light in a di�erent manner.
For this reason, it is necessary to fully characterize a camera before we can use it to study visual
perception in psychophysical experiment and then use always the same camera.

For our experiments we chose a Nikon D800 DSLR camera, which is a model that o�ers a very
high resolution (7360 x 4912 pixels) and sensitivity, and a large dynamic range, which is important
given the amount of detail, shadows, and highlights (sparkles), in our images. We used a standard
50 mm FX lens1, which we consider su�cient to obtain enough detail at the desired observation
distance of around 70 cms, without introducing deformations. In this work, we have characterized
two aspects of the camera: the e�ect of the optics on the incoming light, and the transfer function
that converts the light's spectral power distribution into image pixel values.

4.3.1 E�ects of camera optics on sparkle perception in photographs

As we discussed in Section 4.2, when we observe metallic-�ake materials we must di�erentiate
between the perceived sparkle size and the actual �ake size. We explained that the sparkling e�ect
is the perceptual manifestation of the physical �akes, which results from the interaction of the light
with the material by means of di�erent optical phenomena, most notably, specular re�ection. The
size of the sparkle resulting from these interactions is always larger than the �ake producing it, as a
consequence of several factors like the pixel size and resolution of the camera sensor, and the lens'
point-spread function (PSF), which describes the magnitude of the di�raction that occurs when the
light passes through the lens of the camera.

The sensor of our camera measures 35.9 x 24 mm, so a 50 mm lens would have a horizontal �eld
of view (FOV) of nearly 40 degrees, and a vertical FOV of 27 degrees. The image size is 7360 x 4912
pixels, so assuming an acquisition distance of 70 cms, the entire scene falling in the camera's �eld
of view will be imaged with a size of 50.4 x 33.6 cms. This corresponds to a resolution of roughly
146 image pixels per centimeter in the real scene. Since, as we will see later, we are imaging paint
samples 15 cms wide by 10 cms high, that means that a sample will be imaged with a total size of
roughly 2190 x 1460 pixels.

We mentioned earlier that the size of the perceived sparkle is always larger than the actual �ake
that produces it. Figure 4.2 shows a small area of a photograph of a paint sample, magni�ed with a

1Lens speci�cations: Nikon AF-S FX NIKKOR 50mm f/1.4G Lens with Auto Focus. Fix 50 mm focal length.
Aperture values from F1.4 to F16.
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700 factor, where the bright pixels correspond to the sparkle produced by a metal �ake. As we can
see, all the sparkles take up more than one pixel. Assuming a particle size between 5 and 80 µm, and
a resolution of 146 image pixels per centimeter, most particles �speci�cally, any particle smaller
than 68.5 µm� would have a size smaller than one pixel. Consequently, under some conditions
�such as low illumination or particle orientations at low-re�ection angles� it is possible that the
sparkle produced by these particles would be imaged with one entire pixel, causing pixelation (as
explained in Section 2.4.1) and losing image information like shape and color.

Figure 4.2: Zoom of a paint sample photograph taken from 70 cms. The area corresponds to an
area of 80 x 80 pixels (0.55 cms) with a 700 magni�cation factor. The photograph has been taken
with an exposure time of 1/15 seconds and then corrected (brightness and contrast) for illustration
purposes. As we can see, all the sparkling �akes (brighter pixels) are imaged with more than one
pixel.

Additionally, when the light in the scene passes through the optical elements of the camera,
some di�raction may occur depending on the quality of the components. Good components will
have a smaller di�raction and, therefore, will produce a much closer image to the reality. As we
mentioned earlier, the amount of di�raction that occurs in a camera is modeled by its PSF, which
describes the imaging response to a point. Bad lenses may produce images with an even larger
sparkle size. The computation of the PSF is complex, but we can study its e�ect by analyzing the
intensity pro�le of a sparkle point in the image. Figure 4.3 shows the intensity values2 measured in
a 8-pixel neighborhood around a sparkle point. The PSF determines how much the pixel's value is
"spread" to the neighboring pixels. As we can see in the �gure, the pixel intensity value is spread
to a 4-pixel neighborhood (2 pixels on each side), and remains stable as the intensity value of the
pixel changes. Therefore, since the dispersion does not change with the intensity, we can assume
that it is caused by the actual specular re�ection of the metal �ake, and not by the optical elements
in the camera.

4.3.2 Obtaining radiometric information from the scene using photographs

DSLR cameras create a color image of a real physical scene by converting electromagnetic radiation
in the visible spectrum into color tristimulus values. The light from the scene is concentrated by the
lens, then passes through a color �lter array (CFA), before reaching the sensor, which stores light
information as a scalar for each sensor pixel. The CFA uses spectrum-selective �lters to integrate

2 Note that the maximum intensity values in the graph decrease as the exposure time increases. This is because
these values were measured on images that were calibrated to meet the dynamic range of a display, as we will see in
Section 4.4.3. Nonetheless, this does not a�ect our observations about the variations in the intensity pro�les.
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Figure 4.3: Intensity pro�le2 of an image area around a sparkle pixel as a function of the total
exposure. Only the shutter speed was changed, keeping all the other camera parameters �xed.

spectral light signals for each of the three color channels (red, green, and blue), emulating the
function of the photoreceptors in the human retina [95].

Once a light signal has been integrated �i.e. converted into tristimulus value, either by the
photoreceptors in the eye or by any other type of �lter� the spectral information is lost, and
cannot be recovered. All we can do is approximate the tristimulus response (or any of its metamers3)
produced by the original spectral signal, in any type of physiologically-aware color space like XYZ
or LMS. The HVS has been studied for a long time, and many experimental results have made
possible the creation and normalization of direct and inverse transformations (typically, in the
form of a transformation matrix) both between colorimetric spaces and physiological responses, and
between di�erent observation conditions. However, each camera produces images in a speci�c device-
dependent tristimulus space, which depends on the spectral sensitivities of the imaging sensor's
CFA. These sensitivities often di�er from one camera to another and, in turn, are di�erent from
the device-independent RGB space based on the standard CIE color-matching functions (CMFs, see
de�nition in A.33) [96, 97]. This means that the transformations must be calculated individually
for each camera and each set of observation conditions.

The goal of the radiometric camera characterization is to estimate the transformation that
predicts the tristimulus values of the raw sensor response �expressed in a device-independent color
space, like XYZ� that produces a given device-dependent RGB color stimulus in the camera's color
space, and viceversa [98]. This transformation is given by Expression 4.1:

X = a11R+ a12G+ a13B + v1
Y = a21R+ a22G+ a23B + v2
Z = a31R+ a32G+ a33B + v3

(4.1)

where aij are the elements of the color calibration matrix A, and vi are the elements of a vector
V that represents the contribution of the environment light to the scene. We can represent this
same expression in matrix form as:

3See Section A.30 for a description of metamerism.
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Furthermore, we can integrate matrix A and light vector V into one sole characterization matrix
M = (A|V ), obtaining the following expression:
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The camera characterization process consists in �nding a linear transformation between RGB
and XYZ tristimuli given a set of N color correspondences. Let C denote an N x 3 matrix, where
each row ci is the RGB tristimuli vector measured for color sample i, and let U denote another N x
3 matrix, where each row ui is the XYZ tristimuli vector corresponding to the radiance of sample
i. We can then extend expression 4.3 as follows:
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which is equivalent to:
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and, more generally

U = C ×MT (4.6)

where MT is the transpose matrix of M, the 3 x 4 characterization matrix that maps device-
dependent RGB stimuli to device-independent XYZ stimuli. We can solve this problem using a
least-square �tting approach, by �nding the matrix M that minimizes the error E between the
measured XYZ tristimulus ui and the estimated XYZ tristimulus u′i, as shown by the following
expression:

E =

N∑
i=1

(
ui
T − u′i

T
)

=

N∑
i=1

(
ui
T −Mci

T
)

(4.7)

The matrix M that minimizes E is given by

M =
(
CT × C

)−1 × (CT × U) (4.8)

where CT is the transpose matrix of C, and C−1 is the inverse.
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Performing a target-based calibration carries many di�culties that must be taken into account.
Some of these issues have to do with eye-camera metamerisms [97] or the specularity of the color
target patches.

The problem of eye-camera metamerisms in target-based characterizations result from not tak-
ing into consideration the spectral responses of the camera's sensor. Several solutions exist to deal
with this issue: Hong et al. propose to average color di�erences obtained with characterization
matrices from di�erent color sets [97]; alternatively, Alsam and Finlayson propose to �nd the set
of all possible metamers by �nding the set of convex combinations of the re�ectance spectra from
all the color samples in the target [99]. The presence of color patches with high specularity and
saturation may translate in the presence of outliers which make di�cult the �tting process. This
is the case for color patches such as white or bright orange. Joshi et al. propose a solution based
on averaging measurements from photographies of the color targets taken with varying illumina-
tions [100]. Finally, a common solution to improve the results for target-based characterization is
to use a multi-polynomial approach, such as the ones presented by Renani et al. [101] or Hong et
al. [97].

For simpli�cation reasons, we performed the characterization of the Nikon D800 DSLR camera
using the target-based process � using the Macbeth color chart (see A.36) � since this turned out
to be su�cient for our purposes. The characterization process consists of two parts, radiometric
and colorimetric acquisition, both of which are performed in the same environment and under the
same illumination conditions. The target was positioned at 70 cms from the measuring devices, the
same observation distance used in the experiments, which we consider a reasonable distance for a
computer display.

In the radiometric acquisition stage, we used a spectroradiometer4 to measure the radiance
emitted by each color �eld in the color chart under those illumination conditions, using a wide
angle (1◦) to integrate the measured area. In the colorimetric acquisition stage we took a raw
photograph of the color chart under the same illumination conditions. This procedure results in a
set of 24 correspondences between radiometric and colorimetric data.

The total luminance of a photograph depends mainly on four parameters: scene illuminance (L),
�lm speed or sensitivity (ISO), f-number or lens aperture (N), and shutter speed (t). L relates to
the illumination conditions in the environment, and the ISO is inherent to the �lm used -� although
digital cameras can emulate di�erent �lm speeds � whereas N and t can be set in the camera. The
f-number and shutter speed combined result in the exposure value (EV), according to the following
formula:

EV = log2

N2

t
(4.9)

Since all the measurements in the characterization process are taken under the same illumination
conditions, L will be constant throughout the process. Given the nature of our samples � which
contain large amounts of small size shiny particles per unit area � we must pay attention to the
sharpness of the image; both the ISO and the f-number have an e�ect over the image sharpness,
the �rst one a�ecting image noise, and the second one a�ecting the depth of �eld (or the amount of
image that is in focus). To simplify the process, we chose to keep the ISO and f-number constant
during the characterization � set experimentally to numbers found to give acceptable results in terms
of the amount of oversaturated and undersaturated pixels � so that the resulting image luminance
be directly dependent on the shutter speed and, in turn, on the exposure value, as indicated by
expression 4.9.

The camera was characterized for several exposure values, so that it could be used in later tests.
The illumination was kept constant for short intervals of shutter speed values, reducing the intensity

4The spectroradiometer is a Konica Minolta CS-2000. It is a non-contact spectroradiometer that measures con-
trasts of 100,000:1 and low luminance levels down to 0.003 cd/m2.
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Focal length: 50 mm
Aperture: f/8
ISO: 800

Table 4.1: Fixed camera parameters for the radiometric characterization of the Nikon D800.

Exposure set Macbeth white luminance (cd/m2) Shutter speed values (seconds)
1 132.32 1/15, 1/13, 1/10
2 34.4 1/8, 1/6, 1/5, 1/4, 1/3
3 14.82 1/2.5, 1/2, 1/1.6, 1/1.3, 1
4 3.7 1.3, 1.6, 2

Table 4.2: Exposure sets with variable luminance for the characterization of the Nikon D800,
indicating the shutter speeds in each set and the luminance of the white square in the Macbeth
color chart.

as the exposure time increases to minimize oversaturation5. This allows to characterize using the
same camera settings in all cases. In total we characterized for 16 di�erent exposure values, divided
into four di�erent shutter speed value sets, as summarized in Table 4.2. The rest of the settings are
summarized in Table 4.1.

4.4 Perceptually-aware acquisition of photographs of sparkling

materials

4.4.1 Representing the real observation conditions in a photograph

We use photographs of paint samples as an intermediate step to determine the relationship between
the HVS and the material rendering model. Because these photographs will be used in real-virtual
comparisons, we must be able to control the acquisition conditions in order to reproduce them later
on in the rendering engine.

The sample photographs were captured under a controlled light environment inside a dark room.
We simulated solar daylight using a set of Solux incandescent lamps at 4700 Kelvins, running at 12
volts and 50 watts each, with a 36-degree illumination cone. We used a set of four lamps for global
illumination, plus an additional directional light focused on the paint plate being photographed
(Figure 4.4). The global illumination is used to increase the overall ambient light, and therefore the
illuminance arriving on the paint plates; similarly, the directional lighting brings up the sparkling
e�ect, resulting in a type of texture that authors Kirchner and Ravi refer to asGlint impression [102].

To capture the sample photographs we used a custom-built support (Figure 4.5) consisting of a
T-shaped metal structure with a short bar (the T's crossbar) intersecting perpendicularly a longer
bar on one of the edges. The longest bar holds the paint sample in front of the camera mount,
allowing to regulate the observation distance; the shortest bar serves as the mount for the camera
and is distance-marked, which permits stereoscopic image acquisition as well, by allowing di�erent
o�sets in the camera viewpoint.

We took the photographs at a distance of roughly 70 centimeters, which we found to be a
comfortable distance for an observer sitting at the observation post while allowing for the entire
sample to stay within the standard 10-degree view angle. Using the stereoscopic acquisition bar
described above, we took three photographs for each case in Table 4.2: centered view, left view, and

5As a result, sparkling areas re�ect much less light in long-exposure photographs than in short-exposure ones,
which translates into lower intensity values in the image, as we saw in Figure 4.3.
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Figure 4.4: Acquisition setup for sample photographs.
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Figure 4.5: Custom support for stereoscopic sample acquisition. The red arrows indicate that the
position can be regulated in that direction.
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right view. The centered view was used to create monoscopic versions of the photographs, whereas
the right and left views were combined to produce stereoscopic images of the same scene.

4.4.2 Adding binocular information to the photographs

Binocular disparity was recreated in the images by introducing a horizontal o�set between the right
and left photographs, using the generally accepted interpupillary distance (IPD) of 65 mm [103].
The photographs were taken using the o�-axis frustum method, were the camera's �eld of view
(or frustum) remains parallel to the projection plane for both views. This method of creating
stereoscopic images is preferred over its alternative, the toe-in method �where the cameras rotate
in each view, converging at the focal point� because it produces increased eyestrain [104, 105]
(Figure 4.6).

Figure 4.6: Methods for stereo-pair creation (top view): O�-axis frustum (left) and Toe-in
(right) [105].

Since we are taking photographs of a real scene, the distance between the camera and the
samples in each view results in what is known as a positive parallax �the object is behind the
projection plane� when these images are displayed on the screen (Figure 4.7). To maximize the
similarity with the real scene, positive parallax was eliminated by aligning both views with respect
to a reference located at the same distance as the sample, obtaining zero parallax (Figure 4.8). This
reduces the chances of visual fatigue in the observer and simpli�es the stereoscopic image model,
while maintaining local parallax (which is what interests us) within the sample's texture.

4.4.3 Image calibration: Adapting color information to the visualization
environment

The HVS, as we have seen in Chapter 2, has the ability to maintain color and luminance constancy
through varying observation conditions, and possesses a variable acuity that depends on factors like
color, luminance, and contrast. Cameras, on the other hand, cannot do this on their own, so the
raw image data sensed by the camera has to be transformed to a speci�c colorimetric system (a
set of primary colors) other than the camera's, in order to obtain a meaningful image where these
properties apply.
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Figure 4.7: Positive parallax occurs when the projected object is behind the projection plane [105].

Figure 4.8: Zero parallax occurs when the projected object lies at the projection plane, and its
projection onto the focal plane coincides for both eyes [105].
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When we take a photograph of a paint sample, this photograph is stored in an uncompressed
raw format where data is encoded according to the sensor's internal CFA. In order to obtain a
color image, raw images must �rst be linearized and demosaiced, which results in a color image in
the camera's local RGB color space [106]. Linearization is sometimes required to map raw values
to the full 10-14 bit values through a lookup table (LUT) provided by the camera, and linearize
and normalize the pixel values to the range [0,1] via an a�ne transformation. Demosaicing is the
process of transforming 2D CFA pixel values into 3D RGB image values, interpolating the remaining
two dimensions from neighboring pixels. Rob Sumner explains this process more in detail in his
guide Processing RAW Images in MATLAB [106]. Once we have the RGB image in the camera's
color space, we can apply the transformation obtained from the radiometric camera characterization
process described in Section 4.3.2, in order to estimate the radiometric input signals sensed by the
camera, represented in a physiologically-aware tristimulus space (e.g. XYZ or LMS).

In order to produce perceptually-realistic images, as de�ned in Section 1.2.1, we must ensure
that the visual responses produced by the virtual images and the real scenes are the same. Given
that the physiological camera input obtained above represents the real scene's visual response, this
means that the physiological output produced by the display should be the same as the estimated
camera input (i.e. the tristimulus values emitted by the display should match those "seen" by the
camera in the real scene). Therefore, we need an additional step where the display's characterization
model obtained in Section 3.2.2 is used to estimate the image RGB values that must be input
to the display to produce the desired visual response. Figure 4.9 illustrates this process, where
OUTCAMRGB is the imaged RGB values in the camera's color space, INCAM

XY Z is the camera's XYZ
input values, which is the same as OUTDISPXY Z , the display's emitted XYZ output, and INDISP

RGB

is the display's input RGB image. Similarly, MCAM
RGB2XY Z is the camera's inverse transformation

matrix computed in Section 4.3.2, and MDISP
XY Z2RGB is the display's direct transformation matrix

computed in Section 3.2.2.

Figure 4.9: Raw image processing work�ow from sensor data to display input.

4.4.4 E�ects of image calibration in the perception of sparkle in pho-
tographs

The result from the image calibration process are photographs which all have a similar average
luminance, but with di�erent variance amongst the pixel values. Raw images with short exposure
times present a wide contrast between shadows and highlights, whereas the contrast in long-exposure
images tends to be much narrower. Sparkling is the result of specular re�ections from metal �akes
and, as such, they are imaged as pixels with very high-intensity values. As the amount of light
re�ected by the �akes increases, the resulting intensity values will overexpose. Eventually this
intensity will exceed the saturation limits of the camera's sensor, which will clip values above this
threshold to the upper limit of the color depth (number of bits) used to encode the image. For this
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reason, it is important to control the luminance levels during acquisition, to reduce the amount of
sensor overexposure and avoid losing color information, as explained in Section 4.3.2.

However, when we calibrate images, using the display's characterization model to adapt the
intensity values in the image to its capabilities, we face an additional challenge: the magnitude
of the radiance emitted by the display's screen is much lower than that emitted by our paint
samples, due to the high re�ectivity of the latter. Hence, some clipping may still occur after image
calibration due to the dynamic range (range of intensity values) di�erences between the real scene
and the displayed image. As we may remember from Section 1.2.1, this was indeed one of the big
issues associated with perceptual realism. This problem occurs more frequently as the exposure
time increases during photograph acquisition. Indeed, as the intensity of the high-intensity pixels
corresponding to sparkles is typically near the saturation limits of the sensor, their intensity values
will not increase much with exposure time; conversely, the intensity of lower-intensity pixels will do
increase, reducing the contrast between them. This phenomenon is illustrated in Figures 4.10 and
4.11.

Figure 4.10: Contrast reduction in calibrated images as exposure time increases (exposure increases
from left to right), due to the lower dynamic range of the display. As the exposure increases, the
intensity of the brighter circles remains relatively similar due to clipping, whereas the intensity of
the less bright pixels increases much more, reducing the contrast between them.

Figure 4.11: Two photographs of a green paint sample taken with a shutter speed of 1/8 s (left) and
1 s (right). We can see that the sparkles on the left image (shorter exposure time), are narrower
than on the right image, but there is more contrast with the background.
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4.5 Perceptual reproduction of luminance dynamics in pho-

tographs of sparkling materials.

The characteristic sparkling texture of some paint materials is produced, as we have seen, by the
metallic particles, or �akes, contained in the materials. These particles, with a high specularity,
re�ect the light producing the perceptual phenomenon that is called sparkling. The luminance
(amount of light, see Section A.18) emitted by the material produces a response in both the ob-
server's visual system and the camera's sensor, which can be represented in some perceptual color
space like XYZ or LMS. In this sense, producing a perceptually-realistic simulation of the materi-
als consists, as described in Section 1.2.1, in ensuring a match of the chromaticity and luminance
between the visual responses �expressed in terms of these two dimensions� produced by the real
and virtual scenes.

We can distinguish two main steps in the conversion from real scene to virtual image: scene
acquisition and image representation on a screen. Firstly, the physical reality is captured by a
sensor, which results in an initial integration of the information by the sensor's CFA. The amount of
information loss carried by this integration will depend on the quality of the camera characterization
process, which gives us the transformation between image data in the camera-dependent RGB color
space and the sensor response in a device-independent color space. Secondly, the sensed image must
be adapted to the capabilities of the display, using a second transformation, given by the display's
transfer function and characterization model. This transformation, which estimates the device-
dependent RGB data required as input for the display, will also result in some loss of information.
Additionally, a tone-reproduction transformation may be applied to improve image aspect.

Therefore, as discussed in Section 4.4.4, it is important to control the luminance range of the
images during acquisition and display, to try to keep as much of the original perceptual information
as possible. Here we present two experiments were we analyze the e�ects of the acquisition param-
eters (Section 4.5.1) and tone-reproduction methods (Section 4.5.2) on the perception of the aspect
of the materials.

4.5.1 Perceptual e�ects of image exposure in photographs of sparkling
materials

Typically, in our environment, we can �nd a vast array of di�erent light radiation that a�ect our
perception, not only in the visible spectrum, but also in the high ultraviolet and low infrared spectra
that may also be seen by some people. Therefore, the amount of di�erent luminance levels present
in any real scene is almost in�nite. However, when we try to capture a photograph of a real scene
using some electronic equipment, due to its limitations, the acquisition process introduces many
simpli�cations that may alter our perception of them. The purpose of this experiment is to study
the sensitivity of human observers to this type of simpli�cations. We saw in Chapter 2 that the
photoreceptors in the human retina work within a known limited range of illumination levels, and
their response depends on the wavelength of the radiation. The same thing is true for a photographic
camera, but because the camera response varies from one to another (see Section 4.3) the correlation
between the sensitivity and the representation of luminance in both systems is unknown.

As we saw in Section 4.3.2, the total luminance of an image depends on the scene illuminance
(the amount of light arriving on the scene), the camera's sensitivity, and the exposure time used
for acquisition (that is, the time during which the camera's sensor is exposed to the light). We
discussed that by �xing the illumination and the sensitivity, the luminance depends exclusively
on the exposure time and aperture. Furthermore, by �xing also the aperture, we can study the
relationship between perception and exposure time as a function of only one parameter, the shutter
speed. Depending on the chosen value, the displayed photograph may vary from an image with a
clearly perceptible depth and large overexposed areas, to a �atter image with smaller overexposed
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areas. Hence, we can see that choosing the right exposure is essential to obtain the correct amount
of perceived sparkle and texture depth throughout the image.

4.5.1.1 Methodology

For this experiment we created a series of stereoscopic photographs of the same paint plate, cap-
tured at di�erent exposures as described in previous sections of this chapter, and presented these
photographs to a group of observers. The participants were asked to select the one image they
perceived as being the most similar to a physical reference plate �with special attention to �ake
density, depth, sparkle-background contrast, and sparkle intensity.

To compensate for possible luminance disparities between the real conditions and the display, and
to facilitate the comparisons, the luminance of the virtual images was adapted after calibration to a
chosen target value �preserving the colorimetric ratios� to produce an overall luminance similar
to that of the reference real samples. This luminance target value was chosen so that a Macbeth
color chart displayed in the computer monitor would produce a similar luminance response as the
real physical chart under the same illumination conditions. Since the same value was used for all
the images, they all share a similar global luminance after the adaptation, but preserve the local
texture contrast due to their di�erent exposure times.

The images were presented to the observers inside a custom made visualization cabin (see Im-
age 4.12). The cabin walls were all black and the back wall (the one facing the observer) contained
two apertures the size of the paint plates. Observers could see the physical sample plate (reference)
through the aperture on the left and a portion of a computer monitor (where the photographs, or
test images, were displayed) through the aperture on the right. This was done to minimize the
e�ects of surrounding stimuli. The illumination and observation conditions were as described in
Section 4.4.1, so the observers were seated at roughly 70 cm from the cabin's back wall with their
eyesight at the same height as the apertures. Both the test images and reference samples were
viewed wearing a pair of active stereoscopic glasses (shutter glasses) to equalize the observation
conditions in all the cases.

Figure 4.12: Visualization setup for the comparison of virtual images with real references.
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We presented �ve di�erent paint samples to a group of 15 observers, with the following respective
paint codes: GM1, GM2, HI, BC and BR (Figure 4.13). Three di�erent series were created for each
sample, each one consisting of the same photograph taken with six increasing shutter speeds of
1.3, 1.6, 2, 2.5, 3, and 4 seconds. This resulted in a total of 90 sample plate photographs, that
is, three series of six images per sample plate. The �rst series consisted of six stereoscopic color
photographs. The second series consisted also of six stereoscopic color photographs, but taken with
a longer exposure time, resulting in a higher luminanc (33% brighter); the purpose of this series is
to study how changing the global image luminance a�ects their perceived aspect. The third series
consisted of the same photographs in the �rst series, but converted into grayscale; in this case, the
use of grayscale images served to study the role of color in the perception of the images.

Figure 4.13: Paint samples. From left to right: GM1, GM2, HI, BC and BR. The �rst three samples
possess an overall green tint �HI being slightly brownish�, whereas BC and BR have a red and
blue tint respectively. All samples are shiny except for GM2, which is matte.

For each series of photographs, observers were asked to select the image that they perceived as
being the most similar to the reference plate, using criteria such as �ake density, texture depth,
sparkle-background contrast, and sparkle intensity. They were also asked to rate, in a scale from
1 to 10, the similarity of the chosen image to the reference; this parameter was later used as a
measure of the reliability of each choice, as well as an indicator on the average similarity between
the images in a given series and the reference plate. Finally, observers were asked to indicate the
level of di�culty (from 1 to 10) to discern between the images within each series which, in addition,
gives us a measure of the reliability of each choice. To interpret the test results we gave a score to
each chosen photograph �that is, each photograph that has been chosen by an observer as being
the closest to the reference� which we obtained by weighting each observation by its similarity to
the reference; this way we penalize low-quality responses and reward high-quality ones.

4.5.1.2 Results

The average scores for each series of images is shown in Figure 4.14, where we can see that the most
chosen photograph for all the series is the one with the highest exposure. In the case of the �rst
series (base images), the standard deviation is not very high, which we can see in the bar graph,
where there is not much variation in the score for the rest of the photographs in the series. One
possible explanation could be that the details in the images or the plates (or both) were not clear,
and that made observers choose randomly. This would be consistent with that fact that many
observers pointed out that the use of stereoscopic glasses reduced notably the amount of detail both
in the images and the sample plates.

The participants tended to say that the images with a higher luminance, as well as the grayscale
images, had very little texture contrast and sparkles, which resulted in duller, �atter images that
resemble the reference less than the corresponding base images. This could be due to the contrast
reduction e�ect discussed in Section 4.4.4. We believe that in these cases they chose higher-exposure
images to compensate the increased luminance for the lack of detail and texture contrast. This would
justify the fact that standard deviations in the image scores are generally larger in those two series
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than for the base photographs, and that the chosen photographs �i.e. the one with the highest
exposure� were given a much higher resemblance score that the rest of photographs, possibly
because the observers could see the details much better.

The time increments between the chosen shutter speeds �namely, 0.3, 0.4, 0.5, 0.5, and 1 second,
respectively� are not constant (the increments are determined by the camera), which means that
the di�erences between any two consecutive images in the series do not have to be similar. In e�ect,
observers noted that there were some images (namely, the �rst three) where di�erences were almost
imperceptible, whereas di�erences started to be clearer starting from the fourth image. This could
suggest that half a second of exposure is around the just noticeable di�erence (JND) for observers
to start perceiving a di�erence between two of these images.

As we can see from the bar graph in Figure 4.15, the images in the �rst series (base images)
are most often perceived to have a closer resemblance to the reference. We commented earlier
that observers thought that the images in the higher-luminance and grayscale series were �at and
little detailed, which in general made them look much more di�erent from the references than the
images in the base series; however, observers also noticed that this �atness made it easier to discern
between the images in those series, as we can see in Figure 4.16 where the results for the �rst series
are generally lower or similar than for the other two. The paint tint does not seem to a�ect the
similarity between test images and reference plates, although it does seem to in�uence the di�culty
for intra-series image discernment. Indeed we can see that, in the average, observers seem to �nd
it easier to di�erentiate between series of green-tinted textures than red or blue, which would be
consistent with the fact the HVS is more sensitive to green stimuli under photopic conditions (bright
light levels).

We have discussed several times that the reason why we choose to use stereoscopic visualization in
our tests is because, based on previous results by Da Graça et al [20, 4], we believe that the additional
binocular cues provided by this technique of depth visualization do improve the perception of images
of this kind of materials. In order to test this a�rmation, and justify our choice, we started the
experiment by showing each participant two versions of the �rst 6-image series �i.e. base-luminance
photographs of sample plate GM1 with shutter speeds of 1.6 through 4 seconds� using monoscopic
and stereoscopic images in a random order. We then asked them to say which images where closer
to the reference. Surprisingly enough, many participants, despite being capable of seeing di�erences
between a stereoscopic and monoscopic image if shown explicitly, could not distinguish between
each type during the experiment. Nonetheless, they all chose the stereoscopic images as closer to
the reference in each case.

In general, these results are an initial approach to understanding one of the many problems
associated with the acquisition of sparkling materials, which is the choice of an appropriate exposure
value. Although the results hereby presented are not very conclusive, we can draw very important
ideas from them. We have observed that the use of stereoscopy poses additional visualization
problems in case of low-luminance images, since many properties of the materials, such as the amount
of perceived sparkling and the contrast, seem to be reduced. However, despite this observation, all
the participants seem to agree that stereoscopic images are perceived as more similar to the reference
than monoscopic ones. We have also learned that high-exposure values are typically preferred in the
case of images with a low global luminance. We justify this observation by supposing that, although
observers a�rm that these images have less detail and contrast, the additional luminance increases
the visibility of identi�able features to use as reference in the comparison with the reference. Finally,
given the low similarity scores of the images in the grayscale series, we must conclude that color
seems to play an important role in how in the perception of sparkling images, and textures in
general. Nonetheless, when comparing grayscale images between themselves (see the intra-series
discernment scores in Figure 4.16), they seem to be easier to distinguish from each other. This is
probably explained by the fact that, although grayscale images may overall seem very di�erent from
the color reference for an observer, the human eye is in fact much more sensitive to details in the
absence of color, as explained in Chapter 2.
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Figure 4.14: Average image similarity score with respect to the real reference for the base photograph
series (left bar), the increased global image luminance series (middle bar), and the grayscale series
(right bar), as a function of the shutter speed.

Figure 4.15: Similarity between chosen images and the corresponding reference sample (a high
number indicates a high similarity).
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Figure 4.16: Di�culty to discern between the images in a series (a low number indicates a high
di�culty to discern between the images). Each 3-bar group represents a paint sample, from left to
right: GM1, GM2, HI, BC, BR; the leftmost bar (purple) represents the base images, the middle bar
(blue) represents the image series with increased luminance, and the rightmost bar (gray) represents
the grayscale images.

4.5.2 Perceptual e�ects of dynamic range compression in photographs of
sparkling materials

The results from the previous section provide us with important knowledge about the perceptual
e�ects of scene luminance on the image during the acquisition process, but also about the observation
methodology itself. Indeed, we observed that using stereoscopic visualization in the tests results in
much lower scene luminance levels due to the light �ltering properties of the stereoscopic glasses,
which complicates the observation and visual analysis of texture details. Additionally, luminance
disparities were observed between the real and virtual scenes, due to the additional luminance
introduced by the display in the virtual images. In this section we describe another observation
experiment, where we propose a new comparison methodology that tries to resolve the issues in the
previous one.

This experiment analyzes the perceptual e�ects of di�erent methods to adapt the luminance
of sample paint photographs to the low-dynamic range capabilities of our display. This problem,
as we have described earlier, is known as tone reproduction. The previous section showed us the
importance of acquiring scene luminance information correctly, maintaining the visual response of
the real scene. The results from this experiment help us understand the e�ect of di�erent tone-
reproduction methods to represent the same luminance information on a display. Given the much
lower dynamic range of conventional displays like ours, this process is crucial to ensure perceptually-
realistic simulations, as discussed in Section 1.2.1.

4.5.2.1 Problem description

Previous experience has shown us that the comparison of real and virtual samples implies three im-
portant constraints: �rstly, the photographs must be taken under the same illumination conditions
as those used in the visualization experiment; secondly, given the e�ect of contrast and luminance
on perception in general [15] and material texture perception in particular (see Section 4.4.4), we
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Figure 4.17: [a,b,c] Diagram of the setup in the three scenarios suggested. The test photographs
are to the right and the real sample reference to the left. In the �rst two scenarios the illumination
is common to both sides of the comparison, whereas in the third case it only a�ects the physical
sample. Notice the important luminance di�erence between both sides of the comparison in the
�rst scenario, due to the additional light emitted by the display. The use of paired comparisons in
the third scenario simpli�es the assessment of the images.

must ensure similar contrast levels in both the images and the physical samples; �nally, if we want
to include both stereoscopic and monoscopic images in the comparisons, observers must keep the
stereoscopic glasses on at all times, regardless of the type of image they are looking at, to ensure
similar colorimetric conditions.

The most straightforward scenario to compare a physical and virtual sample under the same
observation conditions is to visualize the photographs and the physical reference together, under the
same illuminant, as we did in our previous experiment (Figure 4.17.a). The idea behind this test
scenario is to equalize as much as possible the observation conditions so that, if we hide everything
outside the samples, we can somehow make the observers forget that they are looking at two samples
on di�erent supports (physical and digital). However this solution has an important downside to
it: the display is an emissive surface and, as such, it introduces additional light into the virtual
sample �the illumination already present in the photograph, plus the one in the visualization
environment, plus that of the black point of the display. Although we can correct for some of the
additional brightness �as we did in Section 4.5.1� we have seen that it is impossible to obtain
similar luminance levels on both samples due to a common factor, the ambient illumination in the
visualization environment, which always remains constant on both sides of the comparison.

A possible workaround to this scenario is to take the sample photographs with a lower exposure to
compensate for the additional luminance that will later be introduced by the display (Figure 4.17.b);
this solution would indeed produce images with a similar luminance as the physical samples when
viewed under the same illumination. However, as discussed throughout this chapter, image exposure
plays an important role in our perception when observing photographs of materials. Hence, by taking
the photographs with a lower exposure we might inadvertently be favoring certain aspects of the
material and, therefore, biasing our perception.

The solution that we propose is to visualize the real and virtual samples side by side, but using a
di�erent intensity on each side (Figure 4.17.c). This scenario is more versatile because it allows for
independent tuning of the illumination. The experiment presented in this section shows that this
methodology produces better results than those obtained with the previous comparison scenarios.

We are interested in obtaining perceptually-realistic results, and paired comparisons are a good
way to assess the aspect of these sparkling metallic paint textures. Given the complexity of the
sparkling e�ect, it is di�cult for an observer to visually assess these images on an absolute scale, so
introducing a reference that acts as ground truth simpli�es the evaluation task. At the same time,
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Image
Exposure

time (sec)

Luminance

scaling factor

Maximum

luminance

Saturated

pixels (%)

1.1 Short (1/15) 1 205.3

R=0.158

G=0.034

B=0.032

1.2 Short (1/15) 0.51 104.7

R=0.039

G=0.006

B=0.007

2.1

(Reference)
Medium (1/8) 1 104.7

R=0.145

G=0.028

B=0.030

3.1 Long (1) 1 15.65

R=0.009

G=0.000

B=0.000

3.2 Long (1) 1.78 27.85

R=0.300

G=0.000

B=0.000

Table 4.3: List of images used in the experiment. There is a base version of each image and a tone
mapped version of Images 1 and 3. There is no tone mapped version of Image 2 because it is the
reference image for luminance levels. Image 3.2 has a maximum luminance lower than the reference
(104.7) because scaling it by a higher factor would result in a high amount of oversaturated pixels.

comparing the images side-by-side reduces the time to move the eyes from the test image to the
reference and, therefore, the e�ects of low visual memory persistence times in the comparisons.

4.5.2.2 Methodology

From the original multi-exposure series of photographs of the sample paint plates, we chose three
di�erent values: short (Image 1.1, 1/15 seconds), medium (Image 2.1, 1/8 seconds), and long (Image
3.1, 1 second). This choice tries to maximize contrast and minimize the amount of underexposure
and overexposure present in the calibrated images. As we saw in Section 4.4, controlling the amount
of saturation is crucial to maintain as much information as possible from the original scene and, in
turn, ensure perceptually-realistic simulations.

This time we only studied one type of paint sample, commercially named Manitoba Gray. Using
the medium exposure images as reference, we created tone-mapped versions of the short and long
exposure images, resulting in Images 1.2 and 3.2, respectively. To maintain the perceptual properties
of the images, we performed the transformations in the sensor-response domain �represented in
the XYZ color space, where the Y channel carries the luminance information. The tone-mapping
transformation is shown in Expressions 4.10 and 4.11, where Vin and Vout are the pixel luminance of
the original and tone mapped version of the image, respectively, Lmax is the maximum luminance
in the original image, Lref is the maximum luminance in the reference image, and km is the tone-
mapping operator.

Vout = Vinkm (4.10)

km =
Lref
Lmax

(4.11)

Factor km was chosen so that the maximum luminance (maximum Y) is as close as possible
to that of Image 2.1 (the reference image). If using the de�nition in Expression 4.11 results in
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excessive oversaturation6 in the RGB image, then the maximum possible value before reaching
that much oversaturation is used. In our case, the maximum luminance in the reference image is
104.7, and the maximum luminance in Images 2.1 and 3.1 is, respectively, 205.3 and 15.65 (see
Table 4.3). In the case of Image 1.1, the tone-mapping operation consists in multiplying each pixel
by km = 104.7/205.3 = 0.51. However, Image 3.1 was taken with a much longer exposure time, so
scaling the pixels by km = 104.7/15.65 = 6.7 results in excessive oversaturation; therefore, we can
only scale by a factor of 1.78.

Scaling the XYZ tristimulus values in this manner has several e�ects on the images. If km is
greater than one, the dynamic range is expanded, which results in increased overall image brightness;
on the other hand, if km is less than one, the dynamic range is compressed and the overall brightness
reduced. Given the low concentration of sparkle pixels with respect to background pixels, we
observe a decreasing contrast between sparkle pixels and background as the overall image brightness
increases, which establishes an inversely proportional relationship between sparkle contrast and
overall image brightness, as a function of the dynamic range.

For each of the �ve images listed in Table 4.3 we created two versions, monoscopic and stereo-
scopic, to also test whether or not the use of stereoscopy has any e�ect on the preference for a given
sample. Altogether, this resulted in a set of 10 di�erent images (see Table 4.4). We created series
of 45 pairs of images from the list �i.e. all possible combinations of the 10 images, excluding com-
parisons with themselves� combined randomly, and asked a group of 30 observers to compare the
two images in each pair (test images) and say which one they perceived as "closer" to the reference
paint plate �i.e. the physical plate that we took the original photographs from. The test images
were arranged vertically on the right-hand side, whereas the reference was positioned to their left,
42 centimeters away (Figure 4.17.c).

Both the test images and the reference were observed through an aperture on a black surface to
isolate them from their surroundings. The reference was illuminated independently from the test
images during the experiment, with the same illumination used to take the photographs. This was
done to avoid the luminance di�erences observed in the previous experiment. The observers were
seated in a position between the test images and the reference, wearing a pair of stereoscopic shutter
glasses at a distance of approximately 70 centimeters.

4.5.2.3 Results

From the responses obtained in the experiment �answering the question "which image from the
test pair is closer to the reference?"� we computed the scores for each sample, according to the
Bradley-Terry model [107]. These scores indicate the probability of each sample being chosen by
an observer as closer to the reference over any other. Representing these scores in a logarithm scale
�which represents better the relative nature of visual perception� we can group our ten samples
into di�erent similarity classes. Figure 4.18 shows �ve classes designated by colors green (1), blue
(2), yellow (3), brown (4), and red (5).

In this experiment we are analyzing the e�ect of three di�erent factors on the perception of
images from our paint samples: the use of stereoscopy, exposure time, and dynamic range and
contrast. From the information in Table 4.4 we can see a tendency from observers to choose samples
giving these factors a clear order of preference. Indeed we can see that stereoscopic samples are
clearly preferred over monoscopic ones; when both samples are of the same type, contrast comes
into play. Base images �i.e. the original non-tone-mapped images� are preferred over the adjusted
ones, with observers preferring medium-exposure images over short-exposure (excessive contrast)
and long-exposure ones (low contrast).

6We consider that an RGB image is excessively oversaturated when more than a 0.3% of the pixels have the
maximum gray level value. This saturation percentage was chosen experimentally to obtain a reasonably low amount
of perceivable oversaturated pixels.
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Figure 4.18: Experiment results. The ordinates indicate the sample number (see Table 4.4) and the
abscissas indicate the Bradley-Terry scores in logarithmic scale.

Sample Image Type Score LOG

score

Perceptual

class

8 3.2 M 0.0296 -1.5287 5

2 1.2 M 0.0432 -1.3645 4

7 3.1 M 0.0543 -1.2652 3+4

1 1.1 M 0.0718 -1.1439 3

5 2.1 M 0.0740 -1.1307 3

9 3.2 S 0.0751 -1.1244 3

3 1.2 S 0.0762 -1.1180 3

10 3.1 S 0.1149 -0.9397 2

4 1.1 S 0.2036 -0.6912 1

6 2.1 S 0.2574 -0.5894 1

Table 4.4: Bradley-Terry scores and Log scores for each of the samples used in the experiment in
ascending order. These scores represent the probability of each sample being judged closer to the
reference over any other. Types M and S stand for Monoscopic and Stereoscopic respectively.

Based on these results, we can extract the following observations, regarding observer preference
to match a sample image to its reference:

1. Stereoscopic images are always found more similar to their reference than any monoscopic
version of the same image, regardless of the other parameters.

2. Medium-exposure images are preferred over short and long exposure ones. Between long and
short exposure images, short exposures are preferred.

3. Tone-mapped images are never preferred over the non-tone-mapped ones, which suggests that,
in the absence of overexposure, no information is actually lost during display when we acquire
photographs with medium exposure values.

We mentioned earlier that contrast is inversely proportional to exposure time and dynamic range.
In general, we can say that contrast increases as global image brightness decreases, and the other way
around. Our results show that this a�rmation is true, but only for intermediate values of image
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brightness; below and above a certain threshold, perceptual similarity decreases. Although this
contrasts with our results from the previous experiment, where we found that observers preferred
bright images, the fact that high contrast images are preferred supports our assumption that it was
due to the lack of contrast in darker images.

Based on previous observation results (Section 4.5.1), we can a�rm that image brightness and
contrast �image attributes determined by the luminance of the scene and the dynamic range of
the display� are also strongly linked to the amount of light exposure during acquisition. The
results shown in this section support our previous claims that image brightness and contrast can
alter the perception of sparkling material images due to its e�ect on perceived �ake size. Moreover,
they suggest that, under the described observation and illumination conditions, close perceptual
similarity with respect to real references can be achieved by ensuring device-independent XYZ
visual responses with luminance values (Y channel) around 100 cd/m2.
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System validation consists of gathering and analyzing data from the di�erent stages of the
system's work�ow, to ensure that it produces quality results according to a prede�ned standard. In
the case of a simulation system, this standard is typically the level of realism of the simulated scenes
with respect to a chosen reference [108, 109]. Physically-based rendering is a complex process where
many di�erent physical phenomena must be reproduced in order to obtain accurate, or realistic,
results. We have seen that before we can judge the level of realism of an image, we must de�ne
realism within the context of our application. Considering that our simulations will be viewed
by human observers, we can use our knowledge of the human visual system (HVS) to improve the
perceptual similarity between the simulations and the real objects under the observation conditions.
At the same time, we can use this information to avoid computing redundant image information that
will not be seen by the viewer, while ensuring that the visual response produced by the simulated
scene will be the same as in reality. We have de�ned this type of realism as perceptual realism.
In this context, the visuo-perceptual validation of our system is the process that veri�es that the
simulations generated by the system can induce in the observers the same visual response as if they
viewed the original scene in reality.

The validation of a rendering engine requires two types of validations: objective and subjective.
In order to perform a robust subjective (visuo-perceptual) validation, we must �rst make sure that
the rendering engine produces valid results with respect to the real models [110]. This chapter
presents a methodology that allows us to validate a simulated scene using pairs of photographs and
rendered images of the real scene. The goal is to take photographs of the real conditions under
di�erent settings, and at the same time reproduce the real conditions in the rendering engine, so
that the photographs and their corresponding rendered images are as close as possible to each other.
We will say that the rendering engine is objectively validated when the images rendered from a scene
are identical to the photographs from the same scene, or in the event that di�erences exist, we are
capable of identifying the causes and justifying them.

We propose a complete work�ow, including: scene setup, scene characterization, data acquisition,
scene simulation, and data analysis. At each step we describe the most relevant aspects to consider
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Figure 5.1: Visuo-perceptual validation methodology comparing photographs with simulations.

in order to maintain the visuo-perceptual realism of the simulation. Using objective data, we
provide results that show that we can achieve high levels of visuo-perceptual accuracy following this
methodology. We will also present the bases to perform subjective validations, leaving the actual
experimentation results as a future work.

5.1 Introduction

The visuo-perceptual validation work�ow that we propose for our simulation system consists of
two parts: objective (colorimetric) and subjective (visual examination) validations. Objective val-
idations use numerical comparisons to validate the simulations produced by the system against
ground-truth data; subjective validations use human observers to validate the perceptual realism of
the results. Since we cannot perform a direct comparison of a simulation with a real scene, we use
photographs as an intermediate step. We can take advantage of the results from Chapter 4 to use
these photographs as ground truth without any loss of perceptual accuracy.

We want to ensure that the visual response produced by the simulations is the same as in the
real conditions. We know that the visual response depends ultimately on the response of a given
sensor �i.e. human retina, imaging sensor, etc� for each type of light (tristimulus sensory quan-
tities), and that we can represent and compare device-independent sensory quantities using some
physiological color space like XYZ. Furthermore, we also know that we can characterize an imaging
device to obtain the transformation function that estimates device-independent sensory quantities
from device-dependent RGB color data. Consequently, device-independent sensory quantities can
be used as objective radiometric ground-truth data in the validation process. In this context, the
objective validation process ensures that the virtual images contain the same perceptual information
as the real scene; the subjective validation process ensures that the visual response produced by
said images on human observers is equally maintained. Figure 5.1, which we already presented in
Chapter 1, illustrates the two parts of our methodology for visuo-perceptual validations.

An important phenomenon to keep in mind in any validation process is that of metamerism.
Two color stimuli with di�erent spectral power distributions (SPD) are said to be metamers under
a given illuminant, and for a given set of spectral sensitivities, when they are represented by the
same tristimulus values under those conditions. Given that metamers produce the same set of
tristimulus sensory quantities under the metameric conditions, they are potentially a source of
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discrepancies between the real and virtual scene. Although visual responses should not be a�ected by
this phenomenon, because they are triggered by integrated tristimulus quantities, this is something
that should be veri�ed during the validation process.

The rendering engine produces 3-dimensional hyperspectral images where each pixel contains an
array of spectral radiances for the speci�ed wavelength range. By integrating these values with the
averaged sensitivity curves of the standard colorimetric observer (the color matching functions, or
CMF), the XYZ tristimulus response can be computed. Additionally, the subjective tests require
that a displayable device-dependent color image also be computed. We could use the inverse camera
characterization matrix to convert from the XYZ response to RGB pixel colors; however, we would
be neglecting spectrally-related phenomena, most notably metamerisms. We can take into account
the e�ect of potential metamerisms by reproducing the camera's color �ltering process. Thus,
instead of using the camera's inverse characterization matrix to estimate RGB values directly from
sensory tristimuli, the real color response can be obtained from the spectral data by using the
sensor's spectral sensitivities (Figure 5.1).

5.2 Setup and characterization of a controlled test scene

The response produced by our visual system when we observe an object in a given scene depends
on the characteristics of the object itself, but also on its environment (surrounding objects, lighting,
etc) and our position with respect to the scene (observation conditions). As we explained in previous
chapters, what we see when we look at an object is the response of our visual system to the light
arriving to our eyes from the object. This light is in turn the result of complex physical interactions
between the light and all the elements in the scene that contains it. For this reason, objects cannot
be simulated in isolation, without taking into account the contribution from additional elements in
its environment; doing so would result in an incorrect simulation, since the real conditions will not
be reproduced accurately. Therefore, when we speak of a simulated object, we are in fact referring
to an object contained within a larger scene.

We consider a scene as a collection of objects, with some light sources, and an environment con-
taining them. The light emitted by the direct light sources (primary light sources) will be re�ected
by the objects in the scene and the environment, resulting in additional lighting (secondary light
sources). Any non-black surface in the scene is subject to act as a secondary light source, so we must
ensure that all potential light sources, primary and secondary, are known and characterized (e.g.
their photometric distribution, such as the IES1 measurements, their spectral power distribution,
etc.). Consequently, in order to simplify the simulation, it is advisable to reduce the complexity of
the scene to a minimum.

To produce a minimal scene, we built our own light cabin, where a black cardboard box acts as
environment (Figure 5.3). The box dimensions were large enough to allow for the desired distance
between the objects and the observer �in this case, the camera� and the color was chosen black
to reduce the amount of light re�ected from the walls. All sides were closed except for one aperture,
where the camera and lighting were placed. The sample was located in the middle of this box,
to a distance of 80 cms from the camera �measuring at the bottom of the sample� inclined
backwards an angle of 15◦50′ with respect to the vertical to enhance the perception of sparkles.
It was illuminated by two direct Solux halogen lights �the same ones used in all of our other
experiments2� one to each side of the box, oriented towards the sample. Figure 5.2 shows the SPD
of the Solux lights, and Figure 5.3 shows some photographs of this setup.

1IES is the standard �le format recommended by the Illuminating Engineering Society (IES) for electronic transfer
of photometric data. The IES �le de�nes the input electrical power (W) of the light, as well as the luminous �ux and
luminous intensity for multiple di�erent angles.

2Solux incandescent lights at 4700 Kelvins, running at 12 volts and 50 watts each, with a 36-degree illumination
cone
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Figure 5.2: Spectral power distribution of the Solux lights at 4700K, 12v, 50w, 36◦. Measured with
a CS-2000 spectroradiometer with a 0.2-degree angle and an integration time of 0.401 seconds.

Figure 5.3: Acquisition light cabin.
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Focal length: 50 mm
Aperture: f/8
ISO: 800

Table 5.1: Fixed Nikon D800 parameters for the comparison of photographs and simulations.

In order to provide accurate comparisons, the real scene has to be reproduced as close as possible
in the simulation �another reason why it is advisable to keep the scene simple� because any
di�erence between them will result in di�erent calculations and, therefore, di�erent images, and
possibly, wrong validation results. Therefore, we took measurements of every distance, size, and
inclination angles in the scene, and did not change it until the entire validation process was �nished.
Similarly, it is also important to properly characterize the optical behavior of the materials used in
the scene, in order to reproduce it in the simulation. We took BRDF measurements (as de�ned in
Section A.15 of the glossary) from small samples of each material, using a beam diameter of 2.1◦

on the incident plane, and 4.2◦ on the vertical plane. The beam diameter is important because
it determines the surface area for which the BRDF is computed. If the area is very narrow, the
measurements might not contain enough variability, which will translate in lower texture detail
�similar to the e�ect of an averaging �lter. This is the case in Figure 5.12, where the background
has a di�erent texture in the photograph than the simulation because the material's BRDF was
measured with a beam diameter smaller than the texture pattern.

If a complete characterization of the scene is not possible, we recommend performing a thorough
analysis of the eventual repercussions of each measurement inaccuracy, in order to consider them in
case of possible discrepancies between the images.

5.3 Data acquisition from test scene photographs

Once the scene has been fully characterized, we can proceed to take photographs of the scene. Since
the position of the camera also needs to be reproduced in the simulation, it is advisable to perform
this step before creating the virtual scene �especially in experiments where the position of the
camera might change� and register each camera position used in the experiment to be simulated
later on.

The photographs were taken with the same DSLR camera (Nikon D800) keeping all the pa-
rameters �xed (Table 5.1) except for the exposure times. In order to have a wide enough dynamic
range, we took photographs with shutter speeds of 1/8, 1/15, 1/30, 1/60, 1/125, and 1/250 seconds.
Since the samples are inclined, it is important to choose the right focus point, because otherwise the
depth of �eld may produce blurry images �especially in the case of sparkling samples. We used a
focus chart to focus on the center of the sample, so that there is the same amount of negative and
positive o�set with respect to the focus point. Similarly, we took photographs of a Macbeth color
chart before each series for color control purposes.

The samples are inclined with respect to the camera and the illumination to increase the per-
ception of sparkles. However, depending on the application and the position of the camera, the
inclination of the samples and camera with respect to each other may vary; this is not an issue as
long as the angles and distances are measured each time as we said earlier.

5.4 Simulation of the scene in the target rendering engine

The �nal task required before proceeding with the validations is the simulation of the scene to be
used in the rendering engine. As we said, this simulation must reproduce as close as possible the



92 Chapter 5. Objective render model validations against photographs of real scenes

aspect of the real scene, in order to minimize the amount of discrepancies in the validation results.
The materials used for each object must behave according to the corresponding BRDF function.
Figure 5.4 shows wireframe views of the scene after modeling with the measurements from the real
scene. Figure 5.5 shows a low-quality rendered preview of the same scene.

Figure 5.4: Clockwise from the top: perspective, front, and top wireframe views of the validation
scene for comparing photographs with simulations. Screenshots from Autodesk 3ds Max. Modeling

and simulation by Thomas Muller.

For the purpose of colorimetric validation, to ensure that the colorimetric values resulting from
the radiometric XYZ data are identical, we have implemented a virtual model of the DSLR camera
in the rendering engine. This way, we can evaluate the results visually as well as numerically, disre-
garding the e�ect of unaccounted phenomena such as metamerisms (see Section 4.3.2), and identify
and isolate eventual errors, by reproducing the exact same setup used to take the photograph.
The virtual camera mimics the spectral response of our real camera, the Nikon D800 (Figure 5.6)
so, if there are no measurement errors in the scene simulation, and all the camera parameters are
set to the same value, photograph and simulation should both contain the same information. We
used Eclat Digital's Ocean simulation software (versions 2014 and 2015) to generate a validated
ground-truth simulation of the scene. Since this is already a commercialized software, it provides
a good foundation to analyze our results, ensuring that any eventual validation discrepancies are
only produced by the validation methodology, and not the simulation software.

5.5 Objective comparison of photographs with simulations

The simulation process computes the radiance information in the images as a function of the totality
of light rays arriving on each pixel, which has no speci�ed range (i.e. 0 to in�nity). Similarly, the
sensor responses estimated by the camera's characterization matrix are also given on an unspeci�ed
range, which does not necessarily have to match that of the rendering engine. Therefore, it is not
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Figure 5.5: Render preview of the scene used for the validations. The red circle on the right image
marks the position of the camera as a reference. Note that the brightness has been increased for
visualization purposes.

Figure 5.6: Spectral sensitivity of the Nikon D800 [111].

possible to perform a direct value comparison in the XYZ space between the simulations and the
photographs.

We assume that, in order for a photograph and a rendered image to produce the same visual
response on a human observer, their tristimulus sensory quantities must be proportional by a certain
factor, which depends on the amount of light entering the sensor. We can think of any visual stimulus
as formed by two independent components: chromaticity and luminance. Chromaticity depends on
the SPD of the light, and luminance depends on its intensity; therefore, since varying the amount
of light does not change its SPD, it will only a�ect the luminance component of the stimuli, but
the chromaticity will be conserved. We can transform the XYZ tristimulus values into the derived
CIE xyY color space, which expresses color stimuli in terms of their chromaticity and luminance
�the two �rst components of this space (xy) represent the chromaticity coordinates (color) of the
stimulus, whereas the third component (Y) represents its luminance (brightness). This allows us to
compare visual responses by separating chromaticity from luminance.

Figure 5.7 shows two photographs (left) of a Macbeth color chart taken with shutter speeds of
1/8 and 1/15 seconds, and their corresponding simulations (right). Note that both the photographs
and the simulations are represented in the camera's own RGB color space and have not been either
calibrated nor white balanced. We can do this because we are comparing two images represented
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Figure 5.7: Photograph (left) and simulation (right) of a Macbeth color chart with total exposures
corresponding to a shutter speed of: (a) 1/8 seconds (top row); and (b) 1/15 seconds (bottom row).
The images are in the camera's own RGB color space. They have been neither calibrated nor white
balanced. The table below indicates the reference number of each color square in the chart.

in the same color space, and under identical illumination conditions [112]; however, a calibration
and white balance would be required if we were to perform visual comparisons on di�erent media
(e.g. a photograph with a physical reference). We can transform our data into the xyY color
space, to represent luminance and chromaticity information separately. Typically, the xy space is
not appropriate to represent chromaticity distances, because it is not perceptually uniform [113].
This means that: the same x-y distances do not correspond to the same perceptual di�erences to a
human observer for di�erent parts of the space; and a given di�erence in x is perceived di�erently
by a human observer as the same di�erence in y. However, at this point we just want to compare
chromaticity and luminance independently as a way to validate the similarity between the simulation
and the photographs, so we can represent this relation using distances in the xyY color space.

Before we proceed any further, there are some things that we must consider. Firstly, it may
occur that some test scenes have a higher dynamic range (i.e. di�erence between the highest
and lowest luminance value) than the characterization scene, resulting in some oversaturation or
undersaturation; in this case, it is advisable to remove these colors from the test set if possible
or, at least, to keep in mind that they may produce unexpected results. Furthermore, since the
camera's XYZ response was characterized under some illumination conditions that may di�er �
and in fact most times they do� from those of the actual scene where the test photographs are
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taken, we may obtain some colors which fall out of the characterized range. If this happens, using
the camera's characterization matrix to estimate sensor responses may produce unexpected results.
For this reason, it is recommendable to characterize the devices with a set of samples with similar
properties to those that will be used in the tests. However, since this is not our case, we must
take this phenomenon into account, by omitting from the test set those samples which produce
values outside the characterized range. Figure 5.8, shows the luminance values measured with a
spectroradiometer during the camera characterization process, where oversaturated samples have
already been removed for simpli�cation. The red rectangle indicates the "safe zone" where luminance
stimuli, estimated from a photograph, can be trusted according to the camera's characterization.
This means that sample photographs with a estimated Y luminance under 9.41 and over 120.8
should be excluded from the comparisons or, at least, not be considered for making decisions about
the results.

Table 5.2 represents the same colors from the Macbeth color chart images in Figure 5.7, using
the xyY space, as well as the di�erences in the x (∆x) and y (∆y) chromaticity coordinates, and
the total Euclidean distance between the points (∆xy). Oversaturated samples, as well as those
outside the characterized range zone, have been excluded from this list to avoid confusion.

Figure 5.8: Luminance of the Macbeth color chart measured with a spectroradiometer for the
camera characterization process. Luminance values outside the red rectangle may produce produce
unexpected results.

Looking at these values, we can see that the chromaticity coordinates di�er very little between
the photographs and the simulations for both images; however, the luminance (Y) of the colors in
the photographs is much higher than that of the corresponding colors in the simulation. We have
rejected the idea that this is due to measurement errors during the characterization of the real scene,
because in that case the magnitude of the values would be much closer between the photographs
and the simulations. A more likely explanation is that it is related to the characteristics of the
ray-tracing rendering process.

The rendering engine generates the simulations using a Ray-tracing algorithm where the total
radiance in each image pixel is calculated from a series of "light rays" intersecting with the position
of the pixel. If the radiant power of these rays is weaker than in reality, the simulation would produce
radiance (and, thus, luminance) values at a di�erent scale, di�ering by a multiplicative factor. This
hypothesis is supported by some of our tests. Figures 5.9 and 5.10 compare the luminance values
in the photographs with the luminance values from the same colors in the simulation, after scaling
them by a multiplicative factor �obtained as the average of the ratio between each pair of luminance
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values. As we can see, the luminance values in both images di�er very little after scaling, which
is supported by their high correlation. We attribute larger di�erences, like those in some colors in
Figure 5.9, to the di�erent color sensitivities of the �lters in the camera sensor (Figure 5.6).

Color ∆Y
1 6.40
3 18.90
4 6.58
8 9.92
9 1.34
10 1.79
13 0.66
14 22.62
15 9.73
17 1.80
18 11.15
22 2.78
23 0.23
24 1.26

Correlation 0.95

Figure 5.9: Luminance comparison between a photograph (at a 1/8-second shutter speed) and its
simulation, after scaling the latter by a multiplicative factor obtained as an average ratio.

In general, the results presented above suggest that we can achieve simulations which are very
accurate in terms of chromaticity, and di�er in luminance by some multiplicative (intensity) factor.
However, these results are only numerical di�erences. Since we are concerned about visual percep-
tion, we must �nd the correspondence between these numerical quantities and perceptual di�erences.
Therefore, color di�erences between the images must also be analyzed using a more perceptually
uniform metric. We chose to use the industry standard CIEDE2000 metric (∆E00), because it pro-
vides improved perceptual uniformity with respect to its predecessor, the CIE DeltaE 1994 metric,
which in turn is based on RIT-DuPont results from automotive paint experiments [114, 115, 116].
CIEDE2000 operates on the CIE 1976 Lab (CIELAB) color model, which represents colors in terms
of lightness and chrominance (chrominance-based color space) with respect to a given white point.
As we explained earlier, the choice of the white point can be arbitrary, since both images have
been obtained under the same environment; therefore, we used a standard ICC white point, which
is Matlab's[91] default3. The color di�erences in Figure 5.7 were calculated for an averaged area
around the center of each color square. They are shown numerically in Table 5.3 as percentages,
and graphically in Figure 5.11, with the color scale range adapted to a 0-10 range to facilitate visual
inspection.

The results in Table 5.3 show that generally the CIEDE2000 color di�erence increases as the
shutter speed decreases (total exposure increases) as the luminance response approaches the oversat-
uration limit �which is why we recommend to remove them from the test set. That occurs because
CIELAB is represented in a chrominance-based color space and, therefore (unlike in chromaticity-
based color spaces), chromaticity and luminance are very much linked. The CIEDE2000 color

3As de�ned in Matlab's[91] implementation of this metric, the ICC white point is the ICC standard pro�le

connection space illuminant; a 16-bit fractional approximation of D50
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Color ∆Y
1 2.41
3 2.53
4 0.15
8 3.03
9 4.53
10 0.09
13 1.06
14 3.03
15 4.77
17 0.19
18 1.99
22 5.15
23 2.15
24 0.38

Correlation: 1.00

Figure 5.10: Luminance comparison between a photograph (at a 1/15-second shutter speed) and its
simulation, after scaling the latter by a multiplicative factor obtained as an average ratio.

di�erence equation introduces corrections via a series of weighting functions, SL, SC , and SH [117],
to compensate for the in�uence from the luminance; that is why, in the case of the 1/8 second
shutter speed photograph, the highest values for the SL function occur for the samples which we
have removed in previous tests (2, 5, 6, 7, 11, 12, 16, 19, 20 and 21).

So far we have only obtained color di�erences for the Macbeth color chart, but what is more
interesting for us is to analyze these color di�erences in the case of our paint materials. For that we
have chosen a sample green paint plate4, and computed the same di�erences as before. It is worth
noting that, since the plate was positioned with a certain inclination with respect to the camera
and the light sources, there is some amount of vertical color gradient due to non-uniform lighting.
For this reason, we have taken three sample colors at the top, middle and bottom positions of the
plate, and compared the images at these three positions.

The tolerance of the HVS to color di�erences has been the subject of multiple studies, notably
those by Alman, Snyder, Berns, and Melgosa [118, 119, 120, 114, 121], which provide a way to
interpret color di�erence magnitudes in di�erent �elds of application. Most recently, Berns and
Hou [115] provided some CIEDE2000 statistics for the RIT-DuPont dataset, indicating a mean
CIEDE2000 di�erence of around 1, and a standard deviation of around 0.4. Since these results are
based on automotive paint datasets, we can use them to judge the goodness of our color di�erence
results. We can then consider that, in our context of paint colors, any color pair which di�er by a
CIEDE2000 of 1.4 or less, will be considered as equal by a human observer.

As we can see in Table 5.4, the di�erences in the xyY color space are much bigger than they
were for the Macbeth chart. The XYZ tristimulus values are estimated from the photograph using
the camera's characterization matrix, which in turn was obtained using samples from the Macbeth
color chart. Therefore, we can expect estimations for colors outside the characterized gamut to be of
lower quality. This is why, as we mentioned earlier, the characterization should be performed with

4Commercial name: Vaillant Green; Grain code: A001; Color code: KRM (7M)
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Figure 5.11: Graphical representation of the CIEDE2000 color di�erences between the photograph
and the simulated image in Figures 5.7(a) (1/8 seconds, left), and 5.7(b) (1/15 seconds, right),
using the standard ICC white point for the color space conversions to CIELAB. The images show a
color representation of the di�erences, with the color scale range adapted to a 0-10 range to facilitate
visual inspection.

Figure 5.12: Photograph (top) and simulation (bottom) of a sample green paint plate, with a total
exposure corresponding to a shutter speed of 1/8 seconds. The images are in the camera's own
RGB color space and have not been calibrated nor white balanced.
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color samples of similar optical properties to those used in the tests. Nonetheless, the perceptual
behavior is di�erent. As we can see in Table 5.5, when we consider selected areas individually, the
CIEDE2000 color di�erences are very high; however, this di�erence is drastically reduced when we
compare a larger averaged area. If we look again at Table 5.2 we can see that, for an exposure
of 1/8 seconds, a much larger luminance di�erence is obtained for the green square (number 14)
of the Macbeth chart. Regardless of the fact that the images have not been calibrated �which
means that they have double number of green pixels from the camera's CFA� this shows that the
camera's green �lters are more sensitive to luminance. Looking at Table 5.5, we can see that the
luminance di�erences (∆L) are indeed very large in each individual area, but with negative symbol.
This means that, despite the colors being very di�erent locally, the contribution of each one to the
globally perceived color compensates for local di�erences. This phenomenon shows that, although
numerical results are often useful, it is very important to perform visual tests as well, to support
or refute the numerical quantities. In fact, although the color di�erences under xyY were quite big,
we have obtained a perceptual color di�erence of 0.85 for the averaged area, which is smaller than
the mean value of 1.00 provided by Berns and Hou [115]. Therefore we can consider that, in the
case of this paint plate, when observed globally under the de�ned observation conditions, a human
observer would not discern the di�erence between the photograph and the simulation.

5.6 Conclusion

In order to perform the objective validation of a rendering engine, we need ground-truth information
about the scene that we are rendering. We propose to use radiometrically-calibrated photographs of
the scene, under a set of well known conditions, as ground-truth information to measure the amount
of realism of the results. Although similar methodologies have been proposed in the past [122, 123],
only the results and a brief description of the process are usually given. Furthermore, we have
only found cases where this methodology is used for colorimetric and photometric comparisons, but
never for radiometric comparisons.

In this chapter, we have presented a complete methodology that allows us to render a computer
simulation of a real scene with a minimum number of perceptual di�erences. Since the photographs
are taken with a radiometrically calibrated camera, as described in Section 4.3.2, we can obtain
both colorimetric and radiometric information from them. Our methodology describes every step,
from the setup of the physical scene to the generation of the rendered images, presenting the most
important factors to keep in mind at each step to minimize the amount of discrepancies between
the real scene, the photograph, and the simulation.

Following the proposed methodology, we can obtain two sets of data from each image: radiomet-
ric and colorimetric. The radiometric data are used for numerical comparisons, and the colorimetric
data are the images used for visual comparison and color di�erence metrics, which allows for a double
validation.

Our results show that in general we can obtain simulations with very small di�erences from the
photographs, and have highlighted the need to characterize the camera with sample color surfaces
whose optical behavior resembles that of the test materials. Otherwise, we may obtain good results
for images of the same type of materials used for characterization, but the di�erences might be
larger for materials with di�erent spectral re�ectances, since we may predict the wrong radiometric
responses from the color images.

Although there is still a lot of work left to do in this area, being able to simulate a real scene with
such level of perceptual �delity supposes an important step in the right direction for the validation
of a rendering model.
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1/8 seconds

Photograph Simulation Di�erence (∆)

Color x y Y x y Y ∆x ∆y ∆xy
1 0.44 0.38 59.81 0.44 0.39 0.07 0.00 0.01 0.01
3 0.31 0.27 78.39 0.29 0.32 0.13 0.02 0.05 0.05
4 0.39 0.46 77.61 0.38 0.46 0.09 0.01 0.00 0.01
8 0.26 0.26 67.12 0.25 0.23 0.08 0.02 0.03 0.04
9 0.46 0.35 102.17 0.51 0.34 0.14 0.05 0.01 0.05
10 0.35 0.27 34.87 0.35 0.27 0.04 0.00 0.00 0.00
13 0.21 0.18 25.84 0.21 0.19 0.03 0.01 0.00 0.01
14 0.35 0.42 87.70 0.34 0.51 0.15 0.01 0.09 0.10
15 0.55 0.34 73.11 0.58 0.34 0.08 0.03 0.00 0.03
17 0.41 0.28 95.43 0.44 0.28 0.13 0.03 0.00 0.03
18 0.25 0.27 67.94 0.23 0.32 0.11 0.02 0.05 0.05
22 0.36 0.37 82.77 0.36 0.37 0.11 0.00 0.01 0.01
23 0.35 0.37 34.72 0.36 0.37 0.05 0.01 0.01 0.01
24 0.34 0.37 9.87 0.36 0.37 0.01 0.02 0.00 0.02

Average: 0.02 0.02 0.03

1/15 seconds

Photograph Simulation Di�erence (∆)

Color x y Y x y Y ∆x ∆y ∆xy
1 0.44 0.38 59.31 0.44 0.39 0.04 0.00 0.01 0.01
3 0.29 0.31 101.17 0.29 0.32 0.07 0.00 0.01 0.01
4 0.39 0.46 75.87 0.38 0.46 0.05 0.01 0.00 0.01
8 0.24 0.22 57.97 0.25 0.23 0.04 0.01 0.01 0.02
9 0.51 0.33 114.97 0.51 0.34 0.07 0.01 0.01 0.01
10 0.35 0.27 35.23 0.35 0.27 0.02 0.00 0.00 0.00
13 0.21 0.18 25.73 0.21 0.19 0.02 0.01 0.00 0.01
14 0.34 0.51 120.68 0.34 0.51 0.08 0.00 0.00 0.00
15 0.55 0.34 72.42 0.58 0.34 0.05 0.03 0.00 0.03
17 0.43 0.28 99.79 0.44 0.28 0.07 0.00 0.00 0.00
18 0.23 0.31 85.94 0.23 0.32 0.06 0.00 0.02 0.02
22 0.36 0.37 80.07 0.36 0.37 0.06 0.00 0.01 0.01
23 0.35 0.36 35.23 0.36 0.37 0.02 0.01 0.01 0.01
24 0.35 0.36 12.31 0.36 0.37 0.01 0.01 0.02 0.02

Average: 0.01 0.01 0.01

Table 5.2: xyY tristimulus values of the Macbeth color samples and non-perceptual chromaticity
distances in the CIE xy color space.
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1/8 seconds 1/15 seconds
Color ∆E00 SL SC SH ∆E00 SL SC SH

1 5.38 1.21 2.72 1.53 1.40 1.37 2.04 1.35
2 3.00 1.75 1.28 1.06 1.66 1.66 3.50 1.83
3 2.34 1.65 2.63 1.57 2.23 1.26 2.59 1.54
4 4.90 1.36 4.12 2.37 1.37 1.25 2.84 1.81
5 9.35 1.71 1.78 1.31 2.49 1.41 2.50 1.50
6 9.62 1.72 1.68 1.29 2.96 1.62 3.09 1.74
7 1.61 1.72 4.67 1.86 1.08 1.32 3.94 1.57
8 5.44 1.53 2.88 1.88 2.82 1.21 2.30 1.68
9 2.13 1.58 3.41 1.47 1.77 1.21 3.00 1.41
10 2.37 1.22 1.53 1.17 0.59 1.47 1.31 1.10
11 3.95 1.73 2.75 1.42 1.86 1.62 4.67 2.49
12 1.67 1.72 4.33 1.79 2.13 1.61 4.67 1.95
13 5.77 1.21 2.78 1.65 1.80 1.43 2.06 1.43
14 2.13 1.60 4.42 2.58 3.69 1.26 4.05 2.39
15 1.43 1.26 4.42 1.74 1.23 1.30 3.00 1.43
16 1.55 1.73 3.22 1.53 1.38 1.72 4.57 1.84
17 4.33 1.64 1.83 1.18 0.87 1.22 1.96 1.24
18 1.78 1.62 3.11 1.72 2.62 1.22 2.63 1.51
19 6.31 1.75 1.16 1.08 6.31 1.75 1.16 1.08
20 6.31 1.75 1.16 1.08 3.96 1.68 2.22 1.48
21 6.13 1.73 1.40 1.20 0.65 1.50 3.43 2.13
22 3.14 1.51 3.44 2.13 0.37 1.21 2.47 1.68
23 2.22 1.25 2.33 1.61 0.25 1.49 1.94 1.41
24 2.02 1.61 1.66 1.29 0.51 1.71 1.23 1.10

Table 5.3: CIEDE2000 color di�erences between the photographs and the simulated images in
Figure 5.7, using the standard ICC white point for the color space conversions to CIELAB. SL, SC ,
and SH indicate the value of the weighting functions for lightness, hue, and chroma, respectively.

Photograph Simulation Di�erence (∆)

Area x y Y x y Y ∆x ∆y ∆xy
Top 0.3457 0.3689 9.7939 0.2353 0.4105 0.1085 0.11 0.04 0.12

Middle 0.3453 0.3688 9.6353 0.2350 0.4109 0.0985 0.11 0.04 0.12
Bottom 0.3444 0.3691 9.5153 0.2347 0.4112 0.0868 0.11 0.04 0.12
Average 0.3451 0.3689 9.6347 0.2350 0.4109 0.0989 0.11 0.04 0.12

Table 5.4: xyY tristimulus values, and non-perceptual chromaticity distances in the CIE xy color
space, of the photograph and the simulated images in Figure 5.12.

Photograph Simulation CIEDE2000

Area L a b L a b ∆L ∆Hab ∆E00 SL SC SH
Top 87.53 -52.90 2.71 89.91 -58.70 13.25 2.38 -9.63 2.52 1.60 3.55 1.91

Middle 87.08 -56.92 11.84 89.30 -61.23 19.49 2.22 -6.29 2.14 1.60 3.76 2.09
Bottom 84.69 -60.39 22.81 80.00 -56.68 20.02 -4.69 1.34 3.32 1.51 3.81 2.18
Average 86.40 -57.04 12.93 86.53 -59.01 17.71 0.13 -4.11 0.85 1.57 3.70 2.07

Table 5.5: CIEDE2000 color di�erences between the photographs and the simulated images in
Figure 5.12, using the standard ICC white point for the color space conversions to CIELAB. SL,
SC , and SH indicate the value of the weighting functions for lightness, hue, and chroma, respectively.





Chapter 6

Discussion and future work

Industrial design simulations reproduce processes that will eventually be implemented in reality, so
the accuracy of a simulation will depend on the speci�c process that it simulates. In the context
of computer graphics, accuracy is not always necessarily synonymous with visual realism, but it
depends on the requirements of the speci�c application. With this in mind, our aim is to obtain
perceptually-realistic simulations, in the sense of photo-realism given in Ferwerda's classi�cation [5].
We have proposed several contributions to perceptual realism. First, we propose a methodology for
the characterization of the visualization devices, to ensure a controlled reproduction of the simulated
color signal at display time. We also propose the use of photographs as ground truth representations
of perceptual information from the real scene. A radiometrically-calibrated DSLR camera is used to
acquire real scene information, and represent it in terms of human visual sensory responses; this way,
the photographs can be calibrated according to perceptual criteria, and used in visual psychophysics
experiments. Then, we present results from two visual psychophysics experiments where we analyze
the perceptual realism of di�erent methods for representing luminance information from a real scene
in images.

Visual perception is the result of a series of very complex mechanisms that take place in the
human visual system (HVS), as the light (radiant energy) in a scene arrives into our eyes. The goal
of physico-realistic rendering is to create simulations that produce the same radiometric information
as the real scene. In some cases (e.g. remote sensing) it is important to compute more information
than what is visible by the human eye [124]; however, since our images will be seen by a human
observer, we can take advantage of the limitations of the human visual system to reduce the amount
of computation. Perceptual realism takes into account these limitations, as well as others like the
inability of conventional displays to reproduce the radiometric richness of physico-realistic images.
In this case, accuracy is de�ned in terms of perceptually-realistic rendering, which means that the
simulation can trigger the same response as the real scene in the visual system of the observer.

We have focused this research on the case of automobile sparkling paint materials containing a
layer of metal particles, or �akes. These materials produce a sparkling e�ect when they re�ect the
light from an illuminating source. The perceived aspect of the sparkles depends on the amount of
re�ected light that arrives on the observer's eye (sparkle luminance), which in turn depends on the
depth and orientation of the underlying metal �ake within the paint coating, and its position with
respect to the light source and the observer. Since the use of 2D visualization eliminates many of
the cues that allow us to perceive depth in this type of images, we try to improve perceptual realism
by using stereoscopic visualization, which provides additional depth information from binocular
disparity.

Given the strong in�uence of sparkle luminance towards the perceived aspect of these materials,
we have performed extensive psychophysics studies to analyze the perception of luminance values in
real and virtual scenes. To perform these studies, a perceptually-realistic image validation approach
has been de�ned, using a DSLR camera as an intermediate device to emulate the trichromatic
response of the human eye from input spectral power distributions. This allows us to obtain a
radiometric map of the scene, expressed in a perceptual tristimulus (XYZ) space analogous to that of
visual responses. Image realism at any point of this process is ensured by a full characterization and
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calibration methodology that gives us information and control over any transformation undergone
by the radiometric signals throughout the entire chain of image acquisition and visualization.

We present our results from two observation experiments. The �rst experiment has the following
aims: to con�rm whether or not the use of stereoscopy improves the realism of the images, to try to
�nd a relationship between image exposure and real luminance, and to study how these properties
a�ect the perceptual aspect of the materials in the images. In this experiment, a series of stereoscopic
photographs of material samples at di�erent exposures was shown to a group of observers; they
were asked to compare them with their corresponding real objects, under the same observation
conditions, and select the closest photograph. The results from this experiment corroborate that
stereoscopy does indeed improve perceptual realism in the images, by improving depth perception
and emphasizing the sparkling e�ect; it also con�rms our previous hypothesis that image luminance
has an e�ect on its brightness and contrast, which in turn a�ects the perceived size of the sparkles,
texture depth, and sparkle-background contrast. They also suggest that, under those conditions,
perceptually-close results are obtained for images with a maximum luminance of around 100 cd/m2.

The second experiment analyzes the perceptual e�ects of di�erent tone reproduction methods.
Using the results from the previous experiment, we take as reference exposure the one that produces
the images with a maximum luminance closest to 100 cd/m2. A group of observers were asked to
compare side by side a series of stereoscopic images with three di�erent exposures �the reference,
and the one immediately above and below� and tone-mapped versions of each one of them where
the luminance values were scaled up or down to approach as much as possible the target luminance
of 100 cd/m2. This experiment shows that sparkle contrast increases as global image brightness
decreases, and the other way around, but only for intermediate brightness values, with perceptual
similarity decreasing below and above a certain threshold. Moreover, these results reveal interesting
facts about tone reproduction: as long as the amount of overexposed pixels stays below a minimum,
no information is lost upon display and, in fact, tone-mapped images di�er more from the reference
than the original ones.

The �ndings presented above provide important information to validate the accuracy of the
simulations. Since each simulation engine can implement a di�erent rendering model, the relation-
ship between the rendering model parameters and the real radiometric values is a priori unknown.
Therefore, photographs can be used as a perceptually valid colorimetric and radiometric ground-
truth to adjust the parameters of the simulation and validate its results. Following this line of
work, we have designed a generic validation methodology that allows to create a simulation of a
real scene with perceptually-realistic accuracy, pointing out the most important factors that may
in�uence this accuracy. We have also presented a methodology to compare these simulations with
photographs of the same scene, taken under the same conditions.

Initial results with this methodology reveal that, when comparing images of materials with sim-
ilar optical properties to those used in the camera characterization process, both the chromaticity
and perceptual CIELAB2000 di�erences between the simulation and the photographs, are very
small in the absence of oversaturation. Luminance values di�er between the simulations and the
photographs, but they are related by a multiplicative factor, hinting that they could be in a di�erent
scale which we attribute to di�erences in the radiometric properties of the ray-tracing rendering
process. When comparing images of materials with di�erent optical properties than those used for
the camera characterization, the absence of reliable radiometric data prediction results in relatively
large colorimetric di�erences. Nonetheless, our results show that perceptual CIELAB2000 di�er-
ences remain below the accepted tolerance values when large enough areas are compared. Typically,
tolerance indices are given to interpret the magnitude of perceptual color di�erences, but these are
de�ned for material sets with speci�c properties. We have used existing statistics from the RIT-
DuPont automotive paint dataset, given the similarity with our materials; however, the particular
properties of this type of sparkling materials might justify the use of its own speci�c dataset.

As we mentioned in Chapter 1, the LIMA project proposes a double approach, where the aspect
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of the materials is to be predicted from their composition, and vice versa. The aim is to �nd the
relationship between optical behavior and aspect perception without having to produce the physical
material, using only their simulations. The work produced in this PhD thesis is only a small part
of what is certainly a very extensive research area. In this work, we propose some foundations
in the �eld of visuo-perceptual validations of physically correct simulations of sparkling materials.
We have concentrated on what we consider one of the most important factors in the simulation of
sparkling materials, which is the reproduction of luminance values, and have provided important
psychophysics results regarding the e�ects of luminance over the perception of images of sparkling
materials. After some further testings, the validation methodology �presented at the end of this
work� to compare material simulations with photographs already permits to integrate all these
psychophysics results into the rendering model. However, a lot more work is necessary to ensure a
fully perceptual validation for this type of simulations.

Possible areas for future work include, for example: the design of a material-speci�c characteri-
zation method to improve radiometric estimations and, in turn, perceptual image realism; a further
analysis of color-related perception; or a study of perceptual thresholds in metal-�ake density. We
know that the accuracy of human vision varies for di�erent parts of the color spectrum, so the
perception of color paints might vary for di�erent hues. In this regard, initial results presented in
this thesis suggest that observers could distinguish more easily between di�erent image exposures
for green paints than red or blue. We propose to use non-sparkling paint samples to carry out
additional analyses of visual perception. The absence of sparkles results in uniform colors that can
be used to compute color di�erence metrics in sample photographs. These color di�erences can
then be compared to the results from psychophysics experiments. Since the camera is calibrated,
we can extract radiometric information from the photographs, in order to establish a relation be-
tween perceptual tolerance and physical values for selected attributes. We mentioned that one of
the reasons why we performed our studies using the XYZ color space instead of LMS is because
of the lack of perceptual attributes in the existing LMS color appearance models; performing these
additional studies in the LMS color space could provide us with important information to expand
current color appearance models in the context of our particular type of materials and observations
conditions. Finally, additional work directions include testing the consistency of our results for
di�erent visualization devices and under di�erent illumination and observation environments.





Appendix A

Appendix 1: Glossary

Many of the terms used in this PhD thesis may have di�erent interpretations depending on factors
such as the �eld of study (e.g. computer graphics, design, optics, etc.) or the language. For this
reason, the multidisciplinary nature of this work and the fact that it is presented in a french speaking
environment �we can �nd several false friends amongst technical terms in French and English�
demand that we ensure uniformity in the de�nition of the terms. This sections presents a series of
de�nitions that allow for a more objective interpretation of the terms used throughout this work.

A.1 Real Scene

We will use the term "real" to refer to any physical tangible object, or collection of objects, that
exist in real life.

A.2 Virtual scene

As opposed to a real scene, the term "virtual" will refer to any object, or collection of objects, that
is displayed on any type of screen (computer display, projector, etc).

A.3 Simulated scene

The term "simulation" will refer only to computer-generated virtual scenes, resulting from a simu-
lation rendering process.

A.4 Radiometry

Set of techniques to measure electromagnetic energy, including the visible light, in terms of absolute
power.

A.5 Photometry

Science that measures visible light in terms of psychophysical quantities that re�ect the psycholog-
ical impressions perceived by a human observer. Photometric quantities are typically normalized
with respect to the luminous e�ciency curve of the human visual system, which indicates its peak
sensitivity to each wavelength under speci�c illumination conditions (photopic or scotopic). The
ratio between photometric and radiometric units is given by the peak sensitivity (at 555 nm), called
the luminous e�cacy (683 lm/W). Therefore, photometry only applies to visible light measurements,
that is, to electromagnetic energy within the visible spectrum.
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A.6 Radiant �ux (or radiant power)

Amount of radiant energy transferred per unit time. It is measured in watts(W) or Joules per
second (J/s), its equivalent SI base unit. We speak of spectral radiant �ux (or spectral radiant
power) when the �ux is given for each wavelength (watts/nanometer or W/nm).

A.7 Luminous �ux (or luminous power)

Photometric quantity, equivalent to radiant power in the visible spectrum. It is expressed in lumen
(lm). To convert between radiometric and photometric units keep in mind that, at 555 nm, a
luminous power of 1 lm corresponds to a radiant power of 1/683 W.

A.8 Irradiance

Radiant power incident on a surface per unit area. It is measured in watts per square meter
(W/m2) and it is inversely proportional to the squared distance between the illuminating source
and the illuminated surface (inverse square law).

A.9 Illuminance

Luminous power incident on a surface per unit area. It is measured in lumen per square meter
(lm/m2).

A.10 Solid Angle

A unit solid angle, measured in steradian (sr) is de�ned as the angle subtended at the center of
a sphere with a 1-meter radius by an area of 1 m2 located on its surface. It is a measure of the
apparent size of an object for an observer located at a given point away from it, independent of the
object's size and its distance from the observer.

A.11 Radiance

Radiant power that leaves a surface per unit solid angle and unit projected area of that surface. For
point sources the term intensity is equivalent to radiance � in practice, any source with a diameter
smaller than 1/20th of its distance to the irradiated surface is considered a point source. It is
expressed in watts per steradian per square meter (W/sr/m2).

Language disambiguation: The word radiance does not exist in french (it is called "luminance
énergétique"), although it is sometimes used as an anglicism.

A.12 Spectral Power Distribution (SPD)

The SPD of a given electromagnetic radiation is the contribution of that illumination to a radio-
metric or photometric quantity, for each wavelength of a given spectrum range. Typically, we give
SPDs for a wavelength range covering the visible portion of the electromagnetic spectrum, roughly
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between 400 and 700 nm. It is expressed in W/sr/m2 or lm/m2 per unit wavelength (typically
meters or nanometers), respectively for spectral radiant �ux and spectral luminous �ux.

A.13 Re�ection, Refraction, Transmittance and Absorption

Re�ection is caused when a given light wave bounces on the interface between two media (in our
case, the air and the material), returning back through the same medium. If the wave is not perfectly
re�ected, part of the light wave gets refracted through the second material. In turn, the refracted
light can be transmitted through and/or absorbed by the second material. The amount of light
that gets re�ected, refracted, transmitted and absorbed by the material depends, respectively, on
the re�ectance, refraction, transmittance and absorption indexes of the materials. Similarly, when
the light wave is given as a function of the wavelength, we speak of spectral re�ectance, spectral
refraction, spectral transmittance and spectral absorption.

A.14 Re�ectance factor

Ratio of light re�ected from an object on a surface to the amount of light re�ected from a perfect
di�user on the same surface, under the same illumination conditions.

A.15 Bidirectional Re�ectance Distribution Function (BRDF)

The BRDF (with units inverse steradians, sr−1) describes the amount (proportion) of light re�ected
when light makes contact with a material, as a function of the illumination and observation angles,
relative to the surface normal and tangent, and the wavelength of the light [12]. This is indicated by
Expression A.1, where ωi is a vector representing the incoming direction of the light, ωr represents
the outgoing or re�ection direction of the light, L is radiance (W · sr−1 ·m−2), and E is irradiance
(W ·m−2).

fr(ωi, ωr) =
dLr(ωr)

dEi(ωi)
(A.1)

A.16 Snell-Descartes law

When light passes through a boundary between two isotropic media with respective refractive indices
n1 and n2, Snell-Descartes' law states that the ratio between the sines of the incidence and refraction
angles (θ1 and θ2) is equivalent to the ratio of phase velocities (ν1 and ν2) and light wavelengths
(λ1 and λ2) in the two media, or the inverse ratio of the refraction indices. This is indicated by
Expression A.2.

sin θ1
sin θ2

=
ν1
ν2

=
λ1
λ2

=
n1
n2

(A.2)

A.17 Brightness / Lightness

The quantity of light in a color is expressed with the terms brightness and lightness. Brightness is
measured in an absolute scale from dark to bright, which depends on adaptation and may vary over
time for di�erent conditions; it is typically used for the colors of light sources, and it expresses the
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intensity of the light source in terms such as dark, dim, bright, etc. Lightness, on the other hand,
is measured in a relative scale, so it does not change with adaptation and conditions; it is typically
used for the colors of re�ecting objects, expressing the appearance of the surface in terms such as
black, dark gray, light gray, white, etc.

A.18 Luminance / Luminous re�ectance

The photometric or psychophysical quantities corresponding to brightness and lightness are, respec-
tively, luminance and luminous re�ectance. Luminance can be seen as the amount (absolute scale)
of visible light that arrives in the eye (or a sensor) from a given surface or light source in candles
per square meter or, simply, cd/m2; luminous re�ectance is the proportion (relative scale) of light
that is re�ected from a surface from an incident light source. Luminance is an important factor to
determine the relationships between colors because it indicates the contrast between them (Figure
A.1).

Language disambiguation: Be aware that, while the french word "luminance" refers to its english
homonym "luminance", the term "luminance énergétique" is used in french to refer to the english
word "radiance".

Figure A.1: Main hues of the color wheel with constant saturation (right) and their corresponding
lightness levels converted to grayscale (left). When the color saturation level decreases, the lumi-
nance increases for hues with natural luminance above 50%, and decreases for hues with natural
luminance below 50%. That means that, when increasing the saturation, dark hues become darker
and light hues become lighter. [125]

Quantity Symbol SI units Notes
Luminous energy Qv lm·s Units are sometimes called Talbots.
Luminous �ux F lm Also called luminous power.
Luminous intensity Iv cd An SI base unit.
Luminance Lv Cd/m2 Units are sometimes called nits.
Illuminance Ev lx Used for light incident on a surface.
Luminous emittance Mv lx Used for light emitted from a surface.
Luminous e�cacy - lm/W Ratio of luminous �ux to radiant �ux;

theoretical maximum is 683.

Table A.1: SI Photometry Symbols and Units [126, 127]
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Quantity Symbol SI units Notes
Radiant energy Q J Energy.
Radiant �ux φ W Radiant energy per unit time,

also called radiant power.
Radiant intensity I W ·sr−1 Power per unit solid angle.
Radiance L W ·sr−1·m−2 Power per unit solid angle per

unit projected source area.
Sometimes confusingly called
�intensity�.

Irradiance E W ·m−2 Power incident on a surface.
Sometimes confusingly called
�intensity�.

Radiant emittance
or exitance

M W ·m−2 Power emitted from a sur-
face. Sometimes confusingly
called �intensity�.

Spectral radiance Lλ (Lν) W ·sr−1·m−3
(W ·sr−1·m−2·Hz−1)

Commonly measured in
W ·sr−1·m−2·nm−1.

Spectral irradiance Eλ (Eν) W ·m−3
(W ·m−2·Hz−1)

Commonly measured in
W ·m−2·nm−1.

Table A.2: SI Radiometry Symbols and Units [126, 127]

A.19 Spectroradiometer

Measures the SPD emitted by a source. It is the most complete measuring device because from the
SPD we can also compute other radiometric, photometric, and colorimetric quantities.

A.20 Spectrocolorimeter

Measures the spectral re�ectance, transmittance, or relative irradiance of a color sample [11] and
calculate its tristimulus values.

A.21 Tristimulus colorimeter

Measures the chromaticity coordinates of a color surface.

A.22 CIE

The International Commission on Illumination or CIE (french acronym for Commission interna-
tionale de l'éclairage) is the international regulatory body on illumination and color.

A.23 Color Stimulus

Represents the psychophysical speci�cations of the light that causes the sensation of color in our
eyes when observing a given surface. The perceived color is represented by a tuple or vector of
(typically) three values, known as tristimulus values.
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A.24 Tristimulus Values

The amount of each of the three reference stimuli, under a given representation system, that needs
to be in the mixture to produce a given color stimulus. Depending on the model, the tristimulus
values may be more than three, but the same word is used by extension.

A.25 Color response

The color response � or color output � of an output device describes the set of colors (color gamut)
that can be reproduced by a given device.

A.26 Transfer function

Mathematical representation that describes the response of a device, that is, the relation between
the device's input and output signal.

A.27 Calibration

The process of modifying the response of a device to meet a given target.

A.28 Illuminant

The source of visible light that generates the sensation of colors after bouncing on an object. An
illuminant is generally speci�ed by its SPD. There is a set of known theoretical illuminants, each
one with a name and a known prede�ned SPD; the illuminants in this group are called standard
illuminants.

Language disambiguation: Be aware that the french word "éclairage" refers to any illuminant
in general, whereas the french word "illuminant", unlike the english one, refers only to a standard
illuminant.

A.29 Reference white

These are the coordinates of the white color used as a reference. It is chosen so that it is close the
basic white stimulus, also known as the equi-energy white, established by the CIE at coordinates
(0.33,0.33). The tristimulus values of the reference white are considered the tristimulus values of a
perfect re�ecting di�user under the same illuminant as the rest of the objects under consideration.

A.30 Metamerism

The phenomenon under which two color stimuli, with di�erent spectral distributions, match (are
perceived as being the same color) under speci�ed observation conditions. The two color stimuli
are called metamers.
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A.31 Viewing conditions

The viewing conditions are the conditions under which a certain scene is observed. These conditions
include the viewing angle with respect to the surface normal, the illuminant under which the scene
is observed and several other factors that may in�uence the aspect of the perceived colors.

A.32 Vision adaptation / Color constancy

When the viewing illumination varies, the human visual system has the ability to adapt to the
changing conditions without being greatly in�uenced by the change. When the level of the ambient
illumination changes, we talk about Luminance adaptation; when the ambient illumination changes
its color, we talk about chromatic adaptation. Because of these two mechanisms, we can perceive the
color of objects without many changes under di�erent illuminants (this is known as color constancy).

A.33 Color Matching Functions (CMF)

The color matching functions are three functions, x̂, ŷ, and ẑ, that represent the chromatic sensitivity
alongside the visual spectrum of wavelengths, of a reference human observer (the standard observer)
for the three types of color-sensitive cones in the human retina. They were computed by the CIE
(International Commission on Illumination) as the averaged response of a series of real observers,
obtaining functions measured at 2◦ (for viewing angles less than 2◦ wide) and 10◦ (for and viewing
angles larger than 4◦). The averaged set of responses obtained for each viewing angle are referred
to as the CIE 1931 Standard Observer and the CIE 1964 10◦ Standard Observer, respectively.
Alternatively, an additional set of CMFs was de�ned for the CIE 1931 RGB color space, which are
expressed as r̂, ĝ, and b̂. See Section ?? for more information.

A.34 Color Space

The mathematical space that de�nes the interval (or locus) for the possible tristimulus values that
specify a given color stimulus.

A.35 Color (Appearance) Model

As color vision models get more complex, it becomes necessary to de�ne colors in a better way.
Sometimes it is not enough to represent a color by its set of tristimulus values, so color spaces must
then be extended, de�ning equations that describe how color stimuli relate with the appearance
attributes of the color �such as hue, saturation, lightness, brightness, etc.� as well as taking other
factors into account �like the observer's adaptation to the viewing conditions, or the surround
and ambient light� to predict the color appearance. This is known as a Color Model, or Color
Appearance Model.

A.36 Color calibration target

A color calibration target, or color calibration chart, is a physical swatchbook-like cardboard chart
formed by a set of color �elds arranged in a grid. The number of color �elds depends on the size
of the gamut of the device being calibrated, with di�erent standard calibration targets for di�erent
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Figure A.2: Flowchart of a typical color appearance model.[34]

devices. A typical color calibration target is the Macbeth ColorChecker [128], or Macbeth chart,
which consists of 24 color �elds arranged in 4 rows and 6 columns (Figure A.3).

Figure A.3: Macbeth color calibration target.
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B.1 International conference articles

• Physically based image synthesis of materials: a methodology towards the visual comparison
of physical vs. virtual samples.

� Authors:

∗ Victor Medina (Mines ParisTech, PSA Peugeot-Citröen)

∗ Dominique Lafon-Pham (C2MA mines d'Alès)

∗ Alexis Paljic (Mines ParisTech)

∗ Emmanuelle Diaz (PSA Peugeot-Citröen)

� Publisher: Institute of Electrical and Electronics Engineers (IEEE)

� Format: Proceedings

� Conference: IEEE Colour and Visual Computing Symposium (CVCS-2015)

� Dates: 25-26 August 2015

� Location: Gjøvik (Norway)

� Publication URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7274878

• A study of image exposure for the stereoscopic visualization of sparkling materials.

� Authors:

∗ Victor Medina (Mines ParisTech, PSA Peugeot-Citröen)

∗ Alexis Paljic (Mines ParisTech)

∗ Dominique Lafon-Pham (C2MA mines d'Alès)

� Publisher: International Society for Optics and Photonics (SPIE)

� Format: Proceedings

� Conference: IS&T/STIE Electronic Imaging Conference 2015

� Dates: 08-12 February 2015

� Location: San Francisco (USA)

� Publication URL: http://proceedings.spiedigitallibrary.org/proceeding.aspx?
articleid=2109943
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http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2109943
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B.2 Oral presentations

• Physically based image synthesis of materials: a methodology towards the visual comparison
of physical vs. virtual samples.

� Event: IEEE Colour and Visual Computing Symposium (CVCS-2015)

� Dates: 25-26 August 2015

� Location: Gjøvik (Norway)

• A study of image exposure for the stereoscopic visualization of sparkling materials.

� Event: IS&T/STIE Electronic Imaging Conference 2015

� Dates: 08-12 February 2015

� Location: San Francisco (USA)

• Visuo-perceptual validation methods for physically-based image synthesis.

� Event: Virtual reality international summer school 2014

� Dates: 25-29 August 2014

� Location: Biarritz (France)

B.3 Poster presentations

• 5th European Workshop on Visual Information Processing (EUVIP)

� Dates: 9-12 December 2014

� Location: Paris (France)

• Virtual reality international summer school 2014.

� Dates: 25-29 August 2014

� Location: Biarritz (France)

• PRISM 2 workshop: The science of light and shade

� Dates: 8-11 October 2013

� Location: Bordeaux (France)
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Appendix 3: Additional data

C.1 Color set used for the display characterization.

Figure C.1: Characterization color samples.
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Color R G B
black 0 0 0
red10 10 0 0
red20 20 0 0
red30 30 0 0
red40 40 0 0
red50 50 0 0
red60 60 0 0
red70 70 0 0
red80 80 0 0
red90 90 0 0
red100 100 0 0
red110 110 0 0
red120 120 0 0
red130 130 0 0
red140 140 0 0
red150 150 0 0
red160 160 0 0
red170 170 0 0
red180 180 0 0
red190 190 0 0
red200 200 0 0
red210 210 0 0
red220 220 0 0
red230 230 0 0
red240 240 0 0
red250 250 0 0
red255 255 0 0
green10 0 10 0
green20 0 20 0
green30 0 30 0
green40 0 40 0
green50 0 50 0
green60 0 60 0
green70 0 70 0
green80 0 80 0
green90 0 90 0
green100 0 100 0
green110 0 110 0
green120 0 120 0
green130 0 130 0

Color R G B
green140 0 140 0
green150 0 150 0
green160 0 160 0
green170 0 170 0
green180 0 180 0
green190 0 190 0
green200 0 200 0
green210 0 210 0
green220 0 220 0
green230 0 230 0
green240 0 240 0
green250 0 250 0
green255 0 255 0
blue10 0 0 10
blue20 0 0 20
blue30 0 0 30
blue40 0 0 40
blue50 0 0 50
blue60 0 0 60
blue70 0 0 70
blue80 0 0 80
blue90 0 0 90
blue100 0 0 100
blue110 0 0 110
blue120 0 0 120
blue130 0 0 130
blue140 0 0 140
blue150 0 0 150
blue160 0 0 160
blue170 0 0 170
blue180 0 0 180
blue190 0 0 190
blue200 0 0 200
blue210 0 0 210
blue220 0 0 220
blue230 0 0 230
blue240 0 0 240
blue250 0 0 250
blue255 0 0 255
yellow50 50 50 0

Color R G B
yellow100 100 100 0
yellow150 150 150 0
yellow200 200 200 0
yellow255 255 255 0

cyan50 0 50 50
cyan100 0 100 100
cyan150 0 150 150
cyan200 0 200 200
cyan255 0 255 255

magenta50 50 0 50
magenta100 100 0 100
magenta150 150 0 150
magenta200 200 0 200
magenta255 255 0 255

gray10 10 10 10
gray20 20 20 20
gray30 30 30 30
gray40 40 40 40
gray50 50 50 50
gray60 60 60 60
gray70 70 70 70
gray80 80 80 80
gray90 90 90 90
gray100 100 100 100
gray110 110 110 110
gray120 120 120 120
gray130 130 130 130
gray140 140 140 140
gray150 150 150 150
gray160 160 160 160
gray170 170 170 170
gray180 180 180 180
gray190 190 190 190
gray200 200 200 200
gray210 210 210 210
gray220 220 220 220
gray230 230 230 230
gray240 240 240 240
gray250 250 250 250
white 255 255 255

Table C.1: RGB tristimulus values of the 120 characterization color samples shown in Figure C.1.
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absorption, 6, 7, 14, 109
absorption index, 109
spectral absorption, 109

accommodation, 16, 31, 35, 36
additive color synthesis, 6
alternate frame-sequencing, 36
autostereoscopy, 36
axial chromatic aberration, 30

backlight, 8, 35, 36, 42, 45
barium white, 6
binocular disparity, see parallax
binocular summation, 31
binocular vision, 30
blind spot, 19
Bradley-Terry score, 83, 84
BRDF, 7, 109
brightness, 27, 34, 35, 39, 40, 48, 62, 81, 83�85,

93, 109, 110, 113

calibration, 112
cathodic raytube display (CRT), 34, 37, 39, 41,

46
center-surround inhibition, 17
characterization, 40, 41, 53

camera characterization, 63�68, 73, 75
camera characterization matrix, 66, 67
CRT characterization model, 39, 46
display characterization, 9, 37�42, 48, 50, 73
display characterization model, 34, 38, 39,

41, 49, 50, 74, 75
GGO model, 48�50
GOG model, 48�50, 53, 55
GOGO model, 48�50, 52
material characterization, 62
Simple gamma model, 49

choroid, 16
chromatic adaptation, 25

adaptive color shift, 25
color shift, 25
corresponding color, 25
illuminant color shift, 25

chromatic adaptation matrix (CAT), 27
chromaticity, 93
chrominance, 96
CIE, 111

CIE 1931 RGB color space, 24, 113
CIE 1931 standard observer, 24, 89
CIE 1931 XYZ color space, 9, 24, 27, 75
CIE 1964 standard observer, 24
CIE 1976 L*a*b* color model, 96
CIE DeltaE 1994 color di�erence, 96
CIE DeltaE 2000 color di�erence, 96, 97
CIE xyY color space, 93, 94
CIELAB, see CIE 1976 L*a*b* color model
color, 13, 24, 61, 63, 93, 111

color �op, 62
object color, 13

color appearance model (CAM), 27
color calibration target, 41, 67, 68, 113, 114
color constancy, 25, 113
color depth, 35
color �lter array (CFA), 64, 65, 73, 75
color gamut, 34, 37, 112
color matching function (CMF), 23�25, 65, 89,

113
color model, 24, 113
color space, 24, 73, 113
colorimeter, see tristimulus colorimeter
colorimetry, 23
cones, 18, 19, 24, 25, 27

blue cones, see S cones
green cones, see M cones
L cones, 19
M cones, 19
red cones, see L cones
S cones, 19

contrast, 8, 17, 27, 29, 40, 71, 74, 77, 80, 83�85,
110

contrast sensitivity function (CSF), 29, 31
simultaneous contrast, 29, 30
Weber contrast, 29

convergence, 31, 35
cornea, 16

depth perception, 30, 36
binocular cues, 31, 36
monocular cues, 31
true 3D, 31

di�raction, 14, 63, 64
di�user, 6
digital to analog converter (DAC), 41, 50
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digital video input (DVI), 41
direction-multiplex, 36
dispersion, 62, 64
dithering, 8, 35
dynamic range, 9, 33, 61, 63, 64, 74, 83, 84

electromagnetic spectrum, 15
exposure, 65, 67, 68, 73�77, 81, 83�85

exposure time, 64, 68, 73�76, 83, 84
overexposure, 74, 82
underexposure, 82

eye lens, 16

�eld of view, 63, 71
�ickering, 35
fovea, 16, 19, 24
foveola, 16, 19
frame rate control (FRC), 35

gamma function, 46, 48
Grasmmann laws, 23

holography, 37

illuminance, 67, 68, 75, 108
illuminant, 62, 112
image demosaicing, 73
image linearization, 73
image persistence, 35
in plane switching LCD (IPS-LCD), 34, 35
infrared light, 15
interpupillary distance, 30
iris (eye), 16
irradiance, 6, 108, 111

lambertian re�ectance, 6, 7
lateral geniculate nucleus (LGN), 16
lateral inhibition, 17
light, 13, 14
light measurement, 6

incident light measurement, 6
re�ection light measurement, 6

light particle, 14
light wave, 14
light-source color, 6
lightness, 62, 96, 109

lightness �op, 62
liquid crystal display (LCD), 34, 35, 37, 39, 42,

46
LMS color space, 9, 24, 27, 75
logMAR chart, 27
luminance, 6, 22, 23, 33, 42, 48, 67, 71, 75, 80,

82, 85, 110
luminance adaptation, 25, 71

luminous �ux, 108
luminous power, see luminous �ux
luminous re�ectance, 110

Macbeth color chart, see color calibration target
mesopic vision, 18, 25
metal �ake, 10, 61�64, 67, 73, 75�77, 85
metal particle, see metal �ake
metamerism, 65, 67, 88, 112

object color, 6
opponent color theory, 21
opponent color theory of vision, 21
optic nerve, 16, 19
optical axis, 16

parallax, 30, 31, 35�37, 71
motion parallax, 31, 35, 36
positive parallax, 71, 72
zero parallax, 71, 72

parallax barrier, 37
particle theory of light, 14
photometry, 107
photon, 14
photopic vision, 18, 25, 27
photoreceptors, 13, 15�19, 21�23, 29, 63, 65, 75
physically-based rendering (PBR), 4, 5, 8, 87
pixel independence, 41
pixelation, 28, 64
plausible rendering, 4
point-spread function (PSF), 49, 63, 64
predictive rendering, 4, 8
primary color, 23, 24, 34, 39, 41, 52
Purkinje e�ect, 19

radiance, 6, 61, 63, 66, 74, 108
radiant �ux, 108
radiant power, see radiant �ux
radiometry, 107
re-imaging display, 37
real scene, 107
realism, 4

functional realism, 4, 5
perceptual realism, 5, 8, 37, 38, 73�75, 80�

82, 87, 103, 104
photo-realism, 4, 5
physical realism, 4, 5
plausible realism , see plausible rendering
predictive realism , see predictive rendering
visually-rich realism , see visually-rich ren-

dering
receptive �eld, 17
reference white, 112
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re�ectance
re�ectance factor, 109
re�ectance index, 109
spectral re�ectance, 6, 109, 111

re�ection, 6, 7, 62, 67, 68, 73, 74, 109
di�use re�ection, 6
specular re�ection, 6, 62�64, 67, 73, 75

refraction, 6, 109
refraction index, 109
spectral refraction, 109

refraction index, 6
refractive index, 16
rendering, 2, 4, 8
retina, 6, 9, 16�19, 22, 35, 61, 63, 65, 75
retinal cells

amacrine, 17, 18
bipolar, 17, 18
ganglion, 17, 18
horizontal, 17
On-center/O�-center ganglion, 18
ON/OFF bipolar, 17

RGB color space, see CIE 1931 RGB color space
RIT-DuPont dataset, 96, 97
rods, 18, 19, 27

saccades, 31
microsaccades, 31
pursuit movements, 31

schlera, 16
scotopic vision, 18, 25, 27
shutter glasses, see stereoscopy>shutter stereo-

copy
shutter speed, 65, 67, 68, 74, 75, 77
simulation, 61�63, 75, 107
Snell-Descartes law, 109
Snellen chart, 27
Snellen fraction, 27, 28
solid angle, 108
sparkle, 1, 10, 61�65, 68, 74�77, 83, 85
spectral power distribution (SPD), 6, 7, 23, 39,

49, 108
spectrocolorimeter, 6, 111
spectroradiometer, 6, 42, 49, 111
stage theory, 22
Standard 10◦ Observer , see CIE 1964 standard

observer
Standard 2◦ Observer, see CIE 1931 standard

observer
stereopsis, 30
stereoscopy, 36, 37, 61, 68, 70, 71, 76, 77, 80, 83

active stereoscopy, 36
anaglyph, 36

o�-axis frustum method, 71
passive stereoscopy, 36
polarization, 36
shutter stereoscopy, 36, 37, 40, 41, 55, 56,

76
stereo-pair stereoscopy, 36
stereoscopic glasses, 36
toe-in method, 71

stripping, 35
subtractive color synthesis, 6, 7

temporal integration, 31
tone reproduction, 5, 9, 61, 75, 80, 84

tone mapping operator, 33, 83
transfer function, 33, 38, 48, 75, 112
transmittance, 7, 109, 111

spectral transmittance, 6, 109
transmittance index, 109

trichromatic theory of vision, 8, 21
tristimulus colorimeter, 6, 111
tristimulus values, 6, 23�25, 27, 65, 111�113, 118
twisted nematics LCD (TN-LCD), 34, 35, 37

ultraviolet light, 15

V1 brain area, see visual cortex
virtual scene, 107
visible light, 14, 15
visible spectrum, 15
vision

color vision, 18, 22
normal vision, 28

visual acuity, 27, 28, 30, 62, 71
spatial acuitity, 29

visual axis, 16, 19
visual cortex, 16, 22

primary (V1), 16
visual �eld, 16, 18, 19, 24, 28, 30
visual response, 61, 63, 73, 75
visually-rich rendering, 4
von Kries

model, 27
transform, 27

wave theory of light, 14, 15
wave-particle duality, 14
Weber�Fechner law, 29
white balance, 26

XYZ color space, see CIE 1931 XYZ color space
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Résumé 
 

La simulation de matériaux physico-réalistes est 
un processus demandant beaucoup de calcul. 
Les images de synthèse étant destinées aux 
observateurs humains, nous pouvons utiliser les 
limitations de notre système visuel pour simplifier 
le modèle de rendu, en évitant le calcul 
d’information invisible. Cela s’appelle le réalisme 
perceptif. Nous nous intéressons à la simulation 
de peintures d’automobiles, en particulière aux 
peintures scintillantes à paillettes métalliques. 
Nous essayons d’améliorer le réalisme perceptif 
de deux manières : en utilisant de la visualisation 
stéréoscopique pour apporter de l’information de 
profondeur additionnelle à partir de la disparité 
binoculaire ; et en conservant autant 
d‘information perceptive de la luminance 
originale que possible. La gamme dynamique 
illimitée d’une scène réelle est réduite lorsqu’une 
image est traitée dans des dispositifs à une 
gamme dynamique plus basse dans la chaîne 
d’acquisition et de visualisation. Pour assurer un 
réalisme perceptive, nous proposons une 
méthodologie reposant sur la caractérisation des 
dispositifs, l’acquisition d’information 
radiométrique, et des validations visuo-
perceptives. En remplaçant l’œil humain par un 
appareil photo numérique, en tant qu’intégrateur 
tristimulaire d’information radiométrique, nous 
réalisons des comparaisons visuelles entre des 
échantillons réels et des photographies pour 
estimer la valeur d’exposition qui maximise le 
réalisme perceptif dans un environnement 
d’observation contrôlé. Ces résultats sont ensuite 
contrastés avec plusieurs méthodes de 
reproduction tonale, afin d’analyser les effets 
perceptifs de certains attributs d’image tels que 
l’exposition, la gamme dynamique, la brillance, et 
le contraste. Nous proposons également une 
méthodologie complète pour simuler des scènes 
réelles qui soient comparables, d’un point vue 
radiométrique et colorimétrique, aux 
photographies de la même scène. En assurant 
des images simulées correctes, cette 
méthodologie établie les bases face à une future 
intégration de nos observations dans le moteur 
de rendu.  
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Abstract 
 

The simulation of physico-realistic materials 
is a process that requires a lot of 
computation. Since the images are meant to 
be seen by human observers, we can use the 
limitations of their visual system to simplify 
the rendering model, avoiding redundant 
information that will not be seen. This is 
known as perceptual realism. Focusing on the 
simulation of automobile paint coatings, with 
special attention to metallic-flaked coatings 
with a sparkling appearance, we try to 
improve perceptual realism in two ways: using 
stereoscopic visualization, to provide 
additional depth information from binocular 
disparity; and preserving as much of the 
original perceptual luminance information as 
possible. The unlimited luminance levels, or 
dynamic range, of a real scene must be 
reduced as an image is processed by lower-
dynamic range media throughout the 
acquisition and visualization chain. To ensure 
perceptual accuracy throughout this process, 
we propose a methodology consisting of 
device characterization, radiometric 
acquisition, and visuo-perceptual validations. 
Replacing the human eye by a DSLR camera, 
as a trichromatic color integrator of 
radiometric information, we perform visual 
comparisons of real samples and 
photographs to estimate the image exposure 
that maximizes perceptual accuracy under a 
controlled observation environment. These 
results are then contrasted with different tone 
reproduction methods, in order to analyze the 
effects on texture perception of specific image 
attributes like exposure, dynamic range, 
brightness, and contrast. We also propose a 
full methodology to produce simulations of a 
real scene, which are radiometrically and 
colorimetrically comparable to photographs of 
the same scene. By ensuring that the 
simulation produces correct images, this 
methodology lays the foundations for a future 
integration of our observations into the 
rendering engine. 
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