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Abstract

In the recent years, the innovation of new services over Internet is considerably growing at
a fast speed, which brings forward lots of new challenges under varied scenarios. We replace
encyclopedia with search engine, extend telephone functionality thanks to data connection,
maintain social network from any time and anywhere, store and exchange music and video
in the cloud, etc. The quality of user experience of such a diverse set of application can
be mapped to network key performance indicators such as throughput (storage, video, file
sharing) and latency (interactive service, voice, video of chat).

Bearing in mind of such context, the overall service performance depends in turn on
the performance of multiple network segments. We investigated two representative design
challenges in different segments : the two most important sit at the opposite edges of the
end-to-end Internet path, namely, the end-user access network vs. the service provider data
center network.

At the one end, due to the fact that regular users become data consumer and data producer
at the same time, large amount of traffic is generated from “access network”. To ensure
high throughput and low latencies, end users applications and equipment can leverage two
complementary techniques : namely end-to-end congestion control algorithms vs. local
scheduling and active queue management (AQM). Considering the bottleneck governed by
an AQM, we discovered a potentially fateful interaction “reprioritization” between best-
effort TCP and low priority congestion control (LPCC) protocols. We then quantify its
generality with an extended set of simulation, followed by a thorough sensitivity analysis,
and completed by an experimental campaign conducted on both controlled testbed and on
the internet. Further analysis with control theory qualitatively characterizes this phenomenon,
and therefore, help us propose a simple and practical system-level solution.

At the other end, on the service providers’ side, results are more being often dynamically
calculated in the cloud. The design of “data center network” (DCN) becomes critical to
the service quality and performance, and has been under active development for over a
decade. Solutions proposed range from end-to-end transport protocol redesign to more
intricate, monolithic and cross-layer architectures – yet, we remark the absence of DCN
proposals based on simple fair-scheduling strategies. Our evaluation of FQ-CoDel in a DCN
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environment shows that (i) average throughput is better with respect to that of end-to-end
protocols tailored for DCN such as DCTCP, (ii) the completion time of short flow approaches
that of state-of-art DCN proposals such as pFabric : good enough performance and striking
simplicity make FQ-CoDel a serious contender in the DCN arena.



Abstract

Au cours de ces dernières années, les services Internet croissent considérablement ce
qui crée beaucoup de nouveaux défis dans des scénarios variés. Nous avons témoignés
divers changements tel que le remplacement des encyclopédies par des moteurs de recherche,
l’extension des fonctionnalités de téléphone grâce à la liaison de données, l’utilisation
de réseaux sociaux à tout moment depuis toutes sortes d’appareils, le téléchargement et
l’échange de musique et des vidéos dans le nuage, etc. La qualité de l’expérience utilisateur
d’un ensemble diversifié d’applications peut être liée aux indicateurs clés de performance des
réseaux tels que le débit (stockage, vidéo, partage de fichiers) et la latence (service interactif,
voix, conversations vidéo).

Compte tenu de ce contexte, la performance globale du service dépend à son tour de la
performance des multiples segments de réseau. Nous étudions deux défis représentatifs de
conception dans différents segments : les deux les plus importants se trouvent sur les bords
opposés la connectivité de bout en bout des chemins d’Internet, notamment, le réseau d’accès
pour l’ utilisateur et le réseau de centre de données du fournisseur de services.

Du côté du réseau d’accès, les utilisateurs deviennent consommateur et producteur de
données en même temps, ce qui génère une grande quantité de trafic sur ces réseaux. Pour
garantir un débit élevé et une latence faible, les applications et les utilisateurs peuvent
exploiter deux techniques complémentaires : les algorithmes de contrôle de congestion et la
politique d’ordonnancement et la gestion active de file d’attente (AQM). Considérant le goulet
d’étranglement régi par un AQM, nous avons découvert une interaction “reprioritization”
potentiellement fatale entre un TCP “meilleur effort” et les protocoles de contrôle de file à
priorité faible (LPCC). Nous avons ensuite quantifié sa généralisation avec d’une série de
simulations suivie d’une analyse de sensibilité et complété par des méthodes expérimentales
sur un banc de test contrôlé et sur Internet. Une analyse plus approfondie avec la théorie du
contrôle caractérise qualitativement ce phénomène et nous a aidés à proposer une solution
simple et pratique au niveau système.

Du côté des fournisseurs de services, les résultats sont plus souvent dynamiquement
calculés dans le nuage. Par conséquent, la conception de “réseau de centre de données”
(DCN) devient essentielle à la qualité de service. Elle a été en développement actif depuis
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plus d’une décennie en utilisant des solutions variées. Nous les observons allant de la
refonte de protocole de transport de bout-en-bout à l’architecture inter-couches complexe
et monolithique. Cependant, on remarque l’absence de proposition basée sur une politique
d’ordonnancement équitable. Notre évaluation d’un représentant “FQ-CoDeL” montre que,
dans un environnement DCN, (i) le débit moyen atteint est mieux par rapport à celle des
protocoles de bout-en-bout spécifiquement adaptés pour DCN tels que DCTCP, (ii) le délais
de réalisation du flux court se rapproche de celle des propositions de pointe telles que pFabric.
La bonne performance et la simplicité font de FQ-CoDeL un concurrent prometteur dans le
domaine du DCN.



Synthèse en Français

Introduction
Il est indubitable que nos activités quotidiennes exigent de plus en plus l’omniprésence

de l’accès à l’Internet. Au cours d’une journée typique, nous posons des questions à Google
et Bing, appelons des amis avec Skype ou Hangout, socialisons sur Twitter et Facebook,
téléchargeons des images et des musiques à Picasa et Google Music, sauvegardons ou
partageons des données avec BitTorrent, Dropbox et OneDrive, jouons aux jeux vidéo sur
la Xbox et Steam et regardons les films en streaming par ordinateurs, portables et même
décodeurs TV, etc. Une façon généralement acceptable d’évaluer la “bonté” de tels services
est la qualité d’expérience (QoE). Bien que des communautés différentes puissent utiliser un
langage divers, comme des hommes d’affaires parlant du revenu par le taux d’attrition tandis
que des scientifiques comportementaux parlent des expériences, des ingénieurs adoptent
d’habitude la performance de réseau et la qualité de service (QoS) [1], qui sont les pierres
angulaires fondamentales. L’innovation de nouveaux services sur Internet est à un rythme
ultra-rapide qu’il présente beaucoup de nouveaux défis. Avec l’aide de Fig. 1, nous mettons
en évidence deux parmi les plus importants qui méritent l’attention.

D’abord, des utilisateurs réguliers deviennent des consommateurs de données et des
producteurs de données en même temps. La prospérité de service en nuage comme indiqué
dans “le réseau d’accès” de Fig. 1, contraint par des insuffisances matérielles des dispositifs
mobiles, tant le calcul que le stockage se déplacent des ordinateurs individuels des utilisa-
teurs à certains centres de données. La sauvegarde et le partage des données, que ce soit
l’architecture client-serveur (CS) ou l’architecture pair-à-pair (P2P), générent une grande
quantité de trafic dans la direction de téléchargement d’utilisateurs. De plus, comme un
effet secondaire de la prolifération des appareils électroménagers connectés, la nécessité
de synchroniser des données entre les nombreux appareils survient. Comme les copies des
données sont de plus en plus stockées dans certains centres de données, ceci se traduit par
des téléchargements fréquents depuis/vers le Cloud.

En même temps, la périphérie de l’infrastructure de l’Internet a été conçue en tenant
compte que les utilisateurs seraient surtout les consommateurs de données (par opposition au
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Figure 1 Scénario de réseau représentatif considéré dans cette thèse.

producteurs de données), comme par exemple témoigné par le déploiement de l’asymmetric
digital subscriber line (l’ADSL) en Europe. Tandis que ce fait a été déjà contesté par le trafic
pair-à-pair (P2P), le changement actuel de génération de données exacerbe l’asymétrie de
l’infrastructure.

Deuxièmement, plus de services sont fournis avec des résultats dynamiquement calculés
à partir de centres de données au lieu des informations statiques de base de données. Comme
montré dans “le réseau de centre de données" de Fig. 1, au lieu des informations statiques
retournées par un seul serveur seul, il existe actuellement de grands centres de données pour
calculer le résultat à la volée pour des utilisateurs. En considérant le fait que, même “la
recherche Web", l’un des services les plus courants et les plus fréquemment utilisés, compte
sur toute une quantité de calcul dans le centre de données avant le retour du meilleur résultat
qu’il peut obtenir dans un temps limité selon l’accord de niveau de service (SLA). Les riches
applications Web telles que les jeux vidéo en ligne avec des utilisateurs massifs exigeraient
une coordination supplémentaire entre des centres de données.

Cependant, la façon traditionnelle d’examiner la qualité de service de l’utilisateur dans le
contexte de réseau considère de façon limitée la bande passante et la latence entre l’utilisateur
et un seul serveur. La conscience devrait être soulevé pour inclure la performance de réseau
à l’intérieur du centre de données pour être aussi un composant majeur de la QoS. Une
mauvaise conception accumulerait le coût du taux d’attrition soit à cause de la lenteur du
service ou du résultat dégradé.
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Dans cette thèse, nous étudions les défis de conception auxquels font face ces deux
transformations remarquables.

La première partie de cette thèse est consacrée à l’analyse du phénomène “repriorisation”
lorsque les flux de services similaires à TCP et les flux de LPCC sont en concurrence
dans un goulot d’étranglement régi par AQM. Dans ce but, les différentes méthodologies
sont exploitées: (i) programme de simulation, (ii) banc de test expérimental, (iii) modèle
analytique. Afin de comparer les performances sous les combinaisons différentes, les divers
systèmes métriques sont utilisés, comme la justice d’intra-protocole et d’inter-protocole,
l’utilisation de lien, l’occupation de tampon, pour n’en citer que quelques-uns.

The second part of the thesis is focused on data center network (DCN) proposals. With
the goal of reducing a more service-oriented metric, the flow completion time, we study the
influence of adopting a fair queuing scheduler via simulation. La deuxième partie de la thèse
est axée sur des propositions de réseau de centre de données (DCN). Dans le but de réduire
un système métrique plus orienté-service, le temps d’achèvement de flux, nous étudions
l’influence d’adopter un ordonnancement de file d’attente par simulation.

Contributions
Les principales contributions de cette thèse sont les suivants.

• Démontrer l’interaction négative de la “repriorisation” lorsque les techniques d’ordonnancement
/ de AQM et les protocoles du contrôle d’encombrement à faible priorité (LPCC) sont
combinés.

• Évaluer la généralité du phénomène de la “repriorisation” avec la simulation et les
expériences de mesure contrôlées.

• Analyser la dynamique de système d’AQM contre l’interaction LPCC avec le modèle
de fluide de la théorie du contrôle.

• Proposer une solution déployable au niveau du système en mesure de rétablir les
priorités entre les protocoles.

• Quantifier la performance de l’adoption des techniques de l’ordonnancement équitable
et de l’AQM équitables dans le réseau de centre de données.

• Sensibiliser la communauté à l’ordonnancement équitable dans la conception de
paysages de centre de données.

Réseau d’accès
L’Internet est un écosystème très hétérogène, où les multiples espèces de protocole

coexistent, évoluent, et parfois éteignent. TCP est un bon exemple de cette évolution. Étant
donné que les variations les plus répandues de TCP suivent une conception basée sur la perte,
un vieux problème qui a resurgi ces dernières années: à savoir, le problème de tampon de
manière “persistently full”, qui a été surnommé “bufferbloat” [2]. Bufferbloat se réfère à un
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excès de tampon qui est exacerbée par deux facteurs: (i) la conception de TCP à base de perte
remplit le goulot d’étranglement avant que l’émetteur réduit son taux et (ii) des tampons
d’Internet sont traditionnellement dimensionné suffisamment grands pour stocker jusqu’à
250-500 msec de paquets à la vitesse de ligne nominale de la liaison. Cette simple approche
de règle générale peut provoquer l’augmentation inattendue du temps d’aller-retour de paquet
qui peut atteindre quelques secondes, où la bande passante d’accès réel est significativement
plus petite que la bande passante nominale sous laquelle le tampon a été conçu.

Pour ce problème, qui a été bien connu depuis les années 90, deux classes de solutions
ont été proposées. Pour mieux les illustrer, nous regardons d’abord sur l’écosystème des
“protocoles” de l’Internet: selon la terminologie de l’Internet (ou OSI), le principe de super-
position le sépare en une couche « application » (L7), une couche « transport » (L4), une
couche « inter-réseau » (L3) et une couche « liaison de données » (L2). Par faire simple,
nous faites référence aux ingénieries des protocoles de niveau d’application et de niveau de
transport comme les espèces de l’ingénierie de “couche supérieure”, et à ceux des couches «
réseau » et des couches « hôte à réseau » comme les espèces de “couche inférieure”.

Tout d’abord, pour faire face à bufferbloat, les évolutions récentes de la “couche inférieure”
ont été spécifiquement conçues et ont particulièrement commencé à être déployées dans
l’UE et aux États-Unis: en effet, les solutions infrastructurelles du bufferbloat telles que les
techniques de la planification (SFQ [3], DRR [4]) et de la gestion active de file d’attente
(RED [5], CoDel [6]), dont l’adoption a été limité jusqu’ici, sont en train de devenir courantes
pour les opérateurs du monde entier pour améliorer l’expérience utilisateur de leurs clients
des lignes ADSL/câble (par exemple, le FAI français Free emploie SFQ depuis 2005 [7]
et les Etats-Unis font de même avec CoDel en cours de développement dans les modems
DOCSIS [8]) .

Deuxièmement, depuis le début de 2000, un ensemble d’algorithmes de contrôle de
congestion de “couche supérieure”, qui s’exécute sur UDP, a été défini. Ces protocoles sup-
portent typiquement l’application exécutée en arrière-plan, telles que le transfert de fichiers
P2P ou la synchronisation de fichiers, et sont visés aux services de contrôle de congestion
à faible priorité (LPCC), de sorte que les applications d’arrière-plan ne soustraient pas de
bande passante des applications interactives. Les exemples notables de protocoles LPCC
sont Microsoft Background Intelligent Transfer Service [9], TCP-LP [10], TCP-Nice [11] et
low extra delay background transport (LEBDAT) de BitTorrent [12], qui est particulièrement
pertinent que BitTorrent est toujours crédité en tant que contributeur principal de la bande
passante montante [13].

Bien que ces tendances sur LPCC et le déploiement AQM sont les faits connus, la sé-
paration temporelle des sujets de recherche de l’AQM contre LPCC en résulte le manque
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Figure 2 Exemple illustré des problèmes résultant de l’interaction des techniques d’AQM et
de CC(ns2 simulation pour AQM=RED, CC=TCP+LEDBAT).

d’investigation en profondeur de leur interaction. L’impact sur la dynamique des plans LPCC
de “couche supérieure” et des changements de “couche inférieure” tels que le remplace-
ment des politiques de gestion du tampon de DropTail avec des politiques adaotatives plus
intelligentes n’est pas tout à fait clair.

Dans cette thèse, nous nous concentrons sur la coexistence de best-effort TCP et Low
Priority Congestion Control (LPCC) transitant un lien de goulot d’étranglement contrôlé par
AQM. Notre travail montre qu’un phénomène de “reprioritisation” peut se produire avec les
flux LPCC obtenant une part de bande passante comparable à la part de TCP: à savoir, AQM
remet le niveau relatif de priorité entre les meilleurs efforts et les protocoles de contrôle de
congestion de faible priorité.

Fig. 2 illustre le phénomène “repriorisation”: l’image présente une rupture de l’utilisation
de lien lorsque 5 TCP NewReno (dont chacun est représenté avec une nuance différentes de
rouge) et 5 flux en attente de LEDBAT (bleu) partageant le même goulot d’étranglement. La
capacité est fixé à 10 Mbps et le tampon a de la place pour 500 paquets (600 ms valeur de
retard); pour faire simple, les retards sont homogènes à travers des flux. Le schéma à gauche
rapporte le cas d’une discipline des files d’attente de DropTail, tandis que celui à droite
rapporte le cas de RED. Les schémas sont annotés avec de nouvelles statistiques concernant
la taille de la file d’attente moyenne dans des paquets E[Q], la part des capacités exploitée
par TCP% total, et l’utilisation moyenne de lien η .
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Dans le cas de DropTail, le protocole LEDBAT fonctionne dans un mode “plus faible
que le meilleur effort": nous voyons que ce protocole à base de retard exploite avec succès la
capacité de réserve laissée inutilisée par NewReno (comme indiqué dans [14]). L’agrégat
de TCP utilise la plus grande partie de la capacité (TCP%=99%), avec une part équitable
parmi les flux de TCP (en raison du retard homogène). Toutefois, le retard de file d’attente se
rapproche d’une demi-seconde, car près de 400 paquets de TCP en pleine grandeur sont en
file d’attente en moyenne. De toute évidence, bufferbloat serait encore pire pour les capacités
plus faibles (par exemple, semblable à ADSL-like), ou les tailles de tampon plus grandes
(des défauts communs pour des passerelles domestiques sont bien au-delà de 1000 paquets).

Dans le cas de RED, alors qu’il a du succès dans la limitation de la taille de file
d’attente (moins de 4 paquets en moyenne), cela se fait au coût de (i) une légère réduc-
tion de l’utilisation(3%) de lien, (ii) une réinitialisation complète du niveau relatif de priorité
entre les flux. Dans le cas représenté dans la figure, la part est maintenant égale parmi tous les
flux de LEDBAT et de NewReno, de sorte que LEDBAT fonctionne dans un mode d’effort
meilleur, et est donc aussi agressif que TCP. Alors qu’un AQM fixe le bufferbloat, il détruit la
priorité relative parmi les protocoles de CC.

Bien que l’interaction entre LEDBAT et AQM est indiquée dans [15] et mentionnée par
le projet [12], nous croyons que la profondeur et l’étendue du problème sont à la fois à être
sous-estimés. Dans cette thèse, nous exploitons la généralité de ce phénomène en utilisant
diverses méthodologies, y compris la simulation, l’expérience, et l’analyse du contrôle
théorique.

Simulations et expériences
Nos ns2 simulations visent à tester la validité du phénomène de repriorisation sous le

plus grand ensemble possible de scénarios. Nous incluons un certain nombre de techniques
de AQM représentatives: à savoir, SFQ [3], RED [5], DRR [4], CHOKe [16] et CoDel [6].
De même, nous considérons un certain nombre de technique de LPCC représentatives comme
TCP-Nice [11], TCP-LP [10] et LEDBAT [12]. Quant au TCP standard de l’effort meilleur,
nous considérons la variante IETF NewReno.

Nous illustrent les résultats dans Fig. 3: les résultats sont arrangés sous forme de dia-
gramme à bulles, où le centre de la bulle représente la moyenne (part de TCP%, occupation de
file d’attente) pour une paire spécifique AQM+LPCC, et le rayon de la bulle représente l’écart-
type sur les différents paramètres de réseau considéré. On peut constater que, tandis que sous
DropTail, TCP% monopolise le goulot d’étranglement provoquant le bufferbloat(zone de
“bufferbloat” dans l’axe y), n’importe quelle combinaison de protocole AQM + LPCC aboutit
à une réduction de la longueur de la file d’attente au-dessous du seuil considéré comme
dangereux pour les communications interactives (100ms ou 33 paquets pour la capacité
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considérée dans cet exemple), mais aussi sur une part de TCP dramatiquement faible (zone de
“reprioritisation” dans l’axe x). Nous ne trouvons aucune combinaison dans la zone “idéale”,
ce qui représente à peu près une taille de file d’attente courte avec le délai acceptable et un
haut TCP% (selon l’objectif de conception de LPCC, 100% TCP% est idéal).

La campagne expérimentale est effectuée pour confirmer l’occurrence du phénomène de
repriorisation dans le monde réel. Nous sélectionnons les systèmes qui sont déjà disponibles
dans le noyau de Linux 3.2: à savoir, RED [5] et SFQ [3] pour AQM, TCP-LP [10] et LED-
BAT pour la famille de protocoles de LPCC. As for the LEDBAT, we employ the libUTP [17]
application-level implementation of BitTorrent that we already analyzed in [18]. Quant au
LEDBAT, nous employons libUTP [17], une mise en œuvre au niveau de l’application de
BitTorrent que nous avons déjà analysé dans [18].
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Notre expérience systématique à la fois sur le banc d’essai et Internet confirme que la
repriorisation est un phénomène du monde réel, qui ne peut être facilement résolu par le
réglage d’AQM.

Analyse théorique de contrôle
It is worth stressing that whereas the actual values TCP share or queue size vary quantita-

tively across combinations, reprioritization is a qualitatively general phenomenon. It is thus
reasonable to develop a model for one such AQM+LPCC combination, to give both solid
theoretic explanation of the observed phenomenon, and intuition and insights behind its root
causes.

Il vaut le coup de souligner que, alors que les valeurs réelles de la part de TCP ou de la
taille de file d’attente varient quantitativement à travers des combinaisons, la repriorisation est
un phénomène qualitativement général. Il est donc raisonnable de développer un modèle pour
une telle combinaison AQM+LPCC, pour donner à la fois une solide explication théorique
du phénomène observé, et l’intuition et des idées derrière ses causes profondes.

En analysant les propriétés dynamiques du système autour de ses points d’équilibre, nous
avons été en mesure de fournir une explication au phénomène de repriorisation et confirmé la
généralité de cette question. En fait, même si nous fournissons une condition suffisante qui
permet de façon indépendante régler le paramètre de LEDBAT τ pour éviter la repriorisation
quel que soit l’AQM employé, nous montrons qu’une telle condition est d’intérêt pratique
rare en raison de la difficulté de mesurer avec précision les retards au niveau des systèmes
d’extrémité. En outre, les prévisions du modèle ont été validées contre ns2 les simulations
lorsque le RED est utilisé comme l’algorithme d’AQM.

En raison du déploiement croissant tant du contrôle de congestion à faible priorité que des
techniques d’AQM qui sont aujourd’hui employés pour combattre le bufferbloat, le problème
discuté dans cette thèse peut avoir de significative pertinence pratique. Comme nous croyons
qu’il peut être souhaitable pour les utilisateurs finaux (ou les applications d’utilisateur final)
pour définir de manière autonome et grossière leur niveau relatif des priorités.

Une solution idéale à ce problème devrait atteindre deux objectifs: (i) prendre en compte
la qualité des contraintes de service tout en respectant (ii) les niveaux relatifs des priorités
parmi des protocoles. Puisque même un seul flux de TCP peut apporter le bufferbloat
aux autres, la solution ayant besoin d’AQM, car sinon la qualité des contraintes de service
serait violée. En même temps, pour éviter le phénomène de la repriorisation de LPCC,
nous soutenons que les capacités de classification seront nécessaires dans l’AQM pour tenir
compte du niveau de priorité des flux explicitement annoncé.

Dans un monde hybride de AQM contre LPCC, il est logique pour les flux de demander
une priorité inférieure utilisant le champ ToS IP. L’utilité du TOS IP n’est pas de bout en
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bout, mais simplement signifiée comme un signal de faible priorité à la boîte dans la maison
de l’utilisateur, où le goulot d’étranglement et l’encombrement surgissent. Par conséquent,
ToS IP pourrait être mobilisé par le Customer-premises equipment (CPE) d’ISP dans la
maison de l’utilisateur pour appliquer un traitement différentiel au trafic de l’effort meuiller
et de faible priorité (par exemple, les différents profils de perte de AQM, les différents poids
d’ordonnancement), après quoi la valeur de TOS IP chez les utilisateurs finaux n’est plus
utile et peut être réécrite par le CPE (ou au DSLAM, ou BRAS, etc.) dans le réseau d’un
opérateur utilisant DiffServ si nécessaire.

Réseau de centre de données
Dans la dernière décennie, les réseaux de centres de données (DCNS) ont de plus en plus

été construites avec des dispositifs à disponibilité immédiate et relativement peu coûteux.
DCNs sont souvent assumés pour être des environnements hautement spécialisés, appartenant
à une seule entité qui a le contrôle complet tant de l’architecture du réseau que de la charge
de travail. La recherche de la couche transport de DCN a donc exploré un plus grand espace
de conception que celui de l’Internet. Cette caractéristique conduit aux conceptions qui ne
se concentrent pas généralement sur une seule couche de la pile de protocole, mais plus
typiquement une intercouche.

La liberté dans l’espace de conception de DCN se traduit par un paysage relativement
encombré de propositions, dont chacune est typiquement conçue et tordue avec un scénario
d’application spécialisé en considération. Les propositions de DCN sont plus enchevêtrées
car leur conception est spécialement conçue pour les charges de travail très spécifiques, avec
des modèles divers d’application, y compris, par exemple, requête-réponse [19, 20], tâches
de MapReduce [21, 22], ou l’accès par paquets au DRAM d’autres machines [23]. Rarement,
si jamais, est une conception de DCN testée avec une charge de travail autre que celui pour
lequel le système a été explicitement conçu.

Au-delà de toute doute raisonnable, l’hypothèse à locataire unique sera fortement remise
en question dans un proche avenir. La dépendance accrue des utilisateurs sur les applications
de cloud exigera que les DCNs s’évoluent vers le système à multi-locataire manipulant un
ensemble significativement plus hétérogène des applications et des charges de travail. La
gamme des applications va inévitablement augmenter soit parce qu’un centre de données à
locataire unique est utilisé pour de nouveaux secteurs d’activité ou tout simplement parce
que le centre de données est utilisé par un nombre croissant des locataires indépendants. La
charge de travail de DCN va donc se développer au-delà du mélange typique de transactions
courtes et de gros transferts élastiques considérés de nos jours et notamment inclura une
fraction importante des flux de taux limité avec les exigences de latence strictes.
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Comme les ressources de DCN sont de plus en plus partagées parmi de multiples parties
prenantes, nous devons mettre en question la pertinence d’entre certaines les hypothèses
fréquemment faites. Comment peut-on compter sur tous les systèmes d’extrémité à mettre en
œuvre, un protocole de transport commun et sur mesure comme le DCTCP [19], lorsque les
systèmes d’extrémité sont des machines virtuelles sous contrôle des locataires? Comment
peut-on compter sur les applications indiquant fidèlement la taille de leurs flux pour permettre
l’ordonnancement “le flux le plus court en premier” comme pFabric [20], quand un locataire
peut obtenir un meilleur débit en coupant tout simplement un long flux dans de nombreux
petits morceaux? L’usage attendu de future DCN met clairement ces hypothèses dans le
doute et nous amène à mettre en question les avantages attendus des conceptions fragiles de
DCN qui comptent sur eux.

Contrairement à la tendance de spécialisation, nous soutenons donc que la conception de
DCN bénéficierait d’une généralisation accrue: par cela, nous voulons dire la dépendance
aux mécanismes bien compris, fouris comme les services de réseau, qui nécessitent le moins
que possible les hypothèses sur la charge de travail de DCN.

Dans cette thèse, nous explorons les propositions les plus importantes dans la con-
ception de DCN et évaluons un aperçu évident et surprenant, c’est à dire un mécanisme
d’ordonnancement fournissant l’équité parmi des flux, couplé avec la gestion active de file
d’attente (AQM) au retard à limite supérieure.

Taxonomie
Dans la Tab. 1, nous présentons une vue certes incomplète de la recherche de DCN qui

illustre plusieurs tendances importantes.

La première vague de recherche de DCN commence par des études concentrées sur la
topologie de réseau, dans la recherche d’un plus grand débit et d’un transfert non bloquant
avec des dispositifs de marchandises. Quelques exemples bien connus incluent FatTree [24],
DCell [25], Portland [26], BCube [27] et VL2 [28] et, plus récemment, nous observons un
accord général sur l’utilisation de la topologie de la topologie de leaf-spine [20, 40, 43, 44].
Au cours des dernières années, pour adresser la supposition sans perte de mise en réseau des
centres de données, les chercheurs se concentrent sur les structures de couche-2, ou Overlay
Virtual Network [36] introduisant de nouveaux protocoles couvrant les couche 2 à 4.

Une deuxième vague est marquée par l’amélioration de la structure de réseau com-
prennent Hedera [30] et Orchestra [21] qui reposent sur un oracle centralisé pour traiter le
routage, la répartition de charge, l’évitement d’encombrement et la tolérance aux pannes.
En commençant avec le travail pionnier de DCTCP [19], la communauté a reconnu que
les conceptions spécifiques ont été nécessaires pour le protocole TCP pour faire face aux
propriétés de DCNs: une bande passante élevée et un faible retard, germant la conception
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Table 1 Taxonomie conception de reseaux des centres de données.

Proposal Yr Primary metrics Information Rate Control†

FatTree[24] 08 Bandwidth
DCell[25] 08 Bandwidth

Portland[26] 09 Scalability
BCube[27] 09 Bandwidth

VL2[28] 09 Goodput
DCTCP[19] 10 Latency Imp+ECN
ICTCP[29] 10 Goodput
Hedera[30] 10 Bisection bandwidth switch buffer

D3[31] 11 Throughput deadline, size Exp (D)
MPTCP[32] 11 Throughput MP-enabled

Orchestra[21] 11 Transfer-CT everything Exp (C)
HULL[23] 12 Latency, throughput DCTCP+ECN
DeTail[33] 12 Tail FCT priority TCP+ECN

PDQ[34] 12 FCT deadline, size Exp (D)
L2DCT[35] 13 Short flow FCT Imp+ECN
pFabric[20] 13 FCT priority Imp

zOVN[36] 13 FCT
RepFlow[37] 14 Short flow FCT size

Baraat[38] 14 Task-CT priority Exp (D)
PASE[39] 14 FCT size, max rate Exp+ECN (D)
Varys[22] 14 Coflow-CT size Exp (C)

CONGA[40] 14 FCT
Fastpass[41] 14 Fairness/FCT size Exp (C)

FlowBender[42] 14 Latency
PIAS[43] 14 FCT DCTCP+ECN

RAPIER[44] 15 Coflow-CT size Exp (C)
† Rate/congestion control: (Exp)licit vs (Imp)licit; (D)istributed vs (C)entralized
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Table 2 Taxonomie conception de reseaux des centres de données (continué).

Proposal Yr Routing Scheduling Layers‡

L N T A O

FatTree[24] 08 Yes Yes ✓ ✓
DCell[25] 08 DFR ✓

Portland[26] 09 Yes ✓ ✓ ✓
BCube[27] 09 BSR ✓

VL2[28] 09 ECMP VLB ✓ ✓
DCTCP[19] 10 FS ✓
ICTCP[29] 10 Imp FS ✓
Hedera[30] 10 Yes ✓

D3[31] 11 ECMP VLB greedy ✓ ✓
MPTCP[32] 11 ECMP ✓

Orchestra[21] 11 Yes FIFO, FS, Priority ✓
HULL[23] 12 ECMP ✓
DeTail[33] 12 packet-based ✓ ✓ ✓ ✓

PDQ[34] 12 ECMP EDF/SJF ✓ ✓
L2DCT[35] 13 Imp+ECN LAS ✓
pFabric[20] 13 RPS Priority ✓ ✓

zOVN[36] 13 ✓ ✓ ✓
RepFlow[37] 14 ECMP ✓ ✓

Baraat[38] 14 FIFO-LM ✓ ✓
PASE[39] 14 SJF ✓ ✓
Varys[22] 14 SEBF + MADD ✓ ✓ ✓

CONGA[40] 14 flowlet-based ✓
Fastpass[41] 14 packet-based maximum matching ✓ ✓ ✓

FlowBender[42] 14 flow-based ✓ ✓
PIAS[43] 14 SJF ✓

RAPIER[44] 15 coflow-based MRTF ✓ ✓ ✓
‡ Layers: (L)ink, (N)etwork, (T)ransport, (A)pplication, (O)racle
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de nouveaux les protocoles de transmission de bout-en-bout dont [29], HULL [23] et
L2DCT [35] que, au mieux de notre connaissance n’a pas encore été déployée. Il est à noter
que le réglage optimal des paramètres pour les variantes de TCP déployées comme DCTCP
est toujours le sujet de recherche [45]. Orchestra [21] va plus loin par le contrôle de couplage
tant de la structure de réseau que du contrôle de congestion continu de bout-en-bout.

Pendant la troisième phase, un certain nombre de propositions ont favori une conception
d’inter-couches. De telles architectures DCN impactent le contrôle de flux et conges-
tion aux systèmes de bout, soit explicite [31, 34, 39, 44] ou implicite [33, 20], ainsi que
l’ordonnancement [31, 34, 20, 38, 39, 22, 41, 43, 44], le routage [33, 20, 40–42, 44] et
des oracles [22, 41]. Parmi ces propositions, pFabric [20] a une performance presque opti-
male au niveau de flux. Par conséquent, il est devenu une norme de facto contre laquelle
l’alternative les conceptions de DCN doivent être comparées. Les informations de couche
d’application ont été progressivement intégrées dans la logique de décision (comme un index
prioritaire [33, 20], ou un délai de flux [31, 34] ou la taille [31, 34, 37]).

La dernière phase a été témoin d’un transformation de la métrique de réseau à ser-
vice, de la même façon à Internet QoS/QoE. Varys [22] et RAPIER [44] utilisent le
temps d’achèvement de co-flux comme sa métrique, alors que Baraat [38] utilise le temps
d’achèvement de tâche. Contrairement a la régulation du débit implicite utilisé par pFabric,
[38, 39, 22, 41, 44] tous emploient la régulation du débit explicite (avec l’arbitre distribué ou
centralisé).

En plus de l’arbitre et le protocole de transmission de bout en bout, l’intégration (ou plus
précisément, la personnalisation) de les politiques de routage et d’ordonnancement gagne sa
popularité. Ils sont généralement bien réglés pour atteindre son objectif et le mécanisme de
travail des arbitres.

Les approches deviennent plus diversifiées. Par exemple, contrairement à la dominante
conception inter-couches compliquée, les solutions aménagées pour le déploiement obti-
ennenet leur place: le RepFlow [37] reproduit le flux court à travers du chemin différent
pour réduire le temps d’achèvement du flux court seulement dans la couche d’application
(ou un module dans la pile de réseau); CONGA [40] ne touche que la couche de réseau pour
concevoir une répartition de charge distribuée, inter-réseaux, consciente de congesetion et
basée à flowlet; et le PASE [39] tente de combiner l’avantage des stratégies de transport, la
priorisation inter-réseaux et l’arbitrage dans un framework unique de transport. Le PIAS [43],
présente une approche pratique de la planification des flux minimisant le FCT sans aucune
connaissance préalable de la couche d’application. Certaines tentatives orthogonales ont
également été faites, telles que l’intégration de la capacité de propagation à trajets multiples
dans le réseau ou au niveau de l’application.
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Figure 4 Performance à un coup d’oeil. Scénario “data mining" d’origine pFabric, load 0.6.

Planification équitable
De la taxonomie, nous observons une évidente omission mais surprenante dans le paysage

DCN exploré, à savoir un mécanisme d’ordonnancement fournissant l’équité parmi les flux,
couplé avec la gestion active de file d’attente (AQM) à un retard de la limite supérieure.
Un tel ordonnanceur est FQ-CODEL qui a récemment pris de l’importance dans une autre
application de réseau, battant le bufferbloat notamment dans les routeurs domestiques [6, 46].
Son objectif de maintenir un débit élevé tout en contrôlant le retard de file d’attente et sa
généralité par rapport à la composition du trafic l’identifie clairement comme un excellent
candidat à l’opération DCN. Notre objectif dans cette thèse est de comparer sa performance
à celle réalisée par des propositions alternatives DCN de pointe.

Outre notre proposition choisie: FQ-CODEL, DCTCP et pFabric ont été choisis comme
le point de référence pour la comparaison. Tous les deux ont déjà été largement étudiés
dans la communauté tandis que le premier est un protocole de transport et le dernier est une
conception inter-couches.

Nous conseillons d’effectuer le calibrage prudent avant qu’une campagne d’expérimentation
pourrait assurer une comparaison juste parmi les candidats. Notre travail montre que le
réglage dans le système d’AQM/Ordonnancement et le système de bout en bout est néces-
saires en réponse à l’exigence spécifique et aux caractéristiques de réseau à l’étude. En raison
de la caractéristique (grande capacité et faible latence) de DCN, le réglage des paramètres
liés au temps est d’une grande importance, pour ne citer que quelques-uns, la précision de la
minuterie, la retransmission de timeout, etc.

Pour montrer les différences d’un coup d’oeil, nous commençons à partir du scénario
original de pFabric où les longs flux à un paquet représentent une fraction importante (50%)
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du volume de flux, mais représentent juste une part négligeable du volume de trafic par octet
(0,01%). Le débit moyen et le temps d’achèvement de flux à un paquet sont rapportés dans
Fig. 4 montrant que pFabric présente en effet la performance exceptionnelle pour les deux
paramètres. Pourtant, il montre aussi que FQ-CODEL arrive en second: spécifiquement, FCT
pour FQ-CODEL est très proche à celui de pFabric, tandis que le débit pour les longs flux est
nettement plus petit que pFabric mais supérieur à celui de DCTCP. Déjà dans ce scénario,
l’équité semble être une alternative intéressante, attrayante en raison de sa simplicité, ainsi
que sa performance suffisante.
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Figure 5 Impact des flux courts par intensité: scénario réglé, load 0.6.

La conception robuste de DCN devrait maintenir leur performance à travers des scénarios:
la différence montrée dans Fig. 4 doit être maintenue, si non quantitativement, au moins
dans l’ordre de sens sous un large spectre de situations. Nous effectuons une analyse de
sensibilité très simple mais perspicace de la performance de pFabric, DCTCP et FQ-CODEL
en augmentant le volume du trafic par octet généré par les flux à 1-paquet. A titre de référence,
le flux à 1 paquet représente 0,01% de volume dans le trafic total du scénario original.
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Comme on le voit dans Fig. 5, l’écart réduit considérablement pour l’intensité croissante
de flux courts ou limités de taux: alors que l’écart entre les conceptions de DCTCP et pFabric
reste toujours remarquable, la performance de FQ-CoDel se rapproche considérablement
celle de pFabric.

À la lumière de nos résultats, FQ-CoDel réalise la performance comparable à pFabric
en termes de temps d’achèvement de flux court, qui présente une grande amélioration par
rapport à DCTCP. Une telle caractéristique assure une priorité relative des flux de taux limités
(produit par l’application interactive, etc) sur des flux en attente. Notre autre expérience
montre que l’écart de performance entre FQ-CODEL et pFabric devient plus petit quand la
part de volume par octet de flux courts augmente, qui le rend plus intéressant pour le centre
de données multi-locataire avec un mélange de haut niveau d’applications. Nous croyons
qu’une déclaration juste est que FQ-CODEL réalise une “assez bonne” performance tout en
étant “assez simple” pour être fortement attrayant dans la pratique.

Les avantages de performance à l’épreuve du temps de FQ-CODEL couplées avec un
déploiement remarquablement simple, car il est déjà mis en œuvre dans le noyau Linux, font
l’ordonnanceur un composant indispensable de futurs DCNs multi-locataires.

Conclusion
En réponse au développement rapide de nouveaux services sur Internet dans la dernière

décennie, la qualité de l’expérience utilisateur peut être mappé aux indicateurs clés de
performance de réseau tels que le débit et la latence. Ayant à l’esprit que la performance
globale de service dépend de la performance de plusieurs segments de réseau, dans cette
thèse, nous avons étudié deux défis de conception de réseau dans deux segments les plus
importants au niveau des bords opposés de la trajectoire Internet de bout en bout, à savoir, le
réseau d’accès de l’utilisateur final contre le réseau de centre de données du fournisseur de
services.

Réseau d’accès
Dans la première partie, nous indiquons les possibles aspects négatifs de la “repriorisation”

résultant de l’interaction de AQM et des techniques de CC. Plus précisément, sous AQM il
est probable que les techniques de LPCC deviendront aussi agressives que TCP du meilleur
effort.

Nous utilisons une campagne de simulation pour quantifier la généralité du phénomène
de repriorization sous le plus grand ensemble possible de scénarios. Nous incluons un certain
nombre de techniques représentatives de AQM et LPCC. Nos résultats montrent que, dans
toutes les combinaisons envisagées ce phénomène se produit. Le choix d’une combinaison
particulière (LPCC, AQM) n’a qu’un impact très limité sur la performance du système. Une
autre analyse de sensibilité montre que si les paramètres spécifiques du scénario peuvent
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avoir un impact sur l’équité et les statistiques de la taille de file d’attente, ils ont néanmoins
qu’un impact très limité sur le phénomène de repriorization. Nous menons une campagne de
banc d’essai expérimentale plus systématique dans un environnement contrôlé et l’Internet
sauvage avec AQM et LPCC disponibles dans le noyau Linux. Le résultat de l’expérience
confirme la validité de repriorization dans le monde réel.

Dans le but d’analyser qualitativement ce phénomène, nous avons proposé un modèle
de DDE qui capture la dynamique d’un système global composé des flux de TCP, des flux
de LEDBAT et d’un algorithme de contrôle d’AQM qui est exécuté à la file d’attente de
goulot d’étranglement. En analysant les propriétés dynamiques du système autour de ses
points d’équilibre, nous avons été en mesure de fournir une explication du phénomène de
repriorization et avons confirmé la généralité de cette question. En outre, les prévisions
de modèle ont été validées contre ns2 les simulations lorsque RED est utilisé comme
l’algorithme d’AQM.

En raison du déploiement croissant du contrôle de congestion en faible priorité et des
techniques d’AQM qui sont aujourd’hui employées pour combattre le bufferbloat, le problème
discuté dans cette thèse peut peut avoir de pertinence pratique et significative.

Réseau de centre de données
Dans la deuxième partie, nous examinons et compilons une taxonomie complète de

conception de réseau de centre de données, qui devient essentielle à la qualité de service et à
la performance. Malgré le développement actif de la communauté, on remarque l’absence
de propositions DCN basées sur des simples stratégies en ordonnancement équitable. Nous
soutenons que la planification équitable pourrait apporter des avantages au centre de données
à usage général sans preassumption du mélange de la charge de travail.

Nous choisissons FQ-CODEL, un système de déploiement prêt conçu à l’origine pour
lutter contre le bufferbloat dans les routeurs domestiques du réseau d’accès, pour évaluer
l’impact du système d’ordonnancement équitable dans les réseaux de centre de données.
FQ-CODEL combine le mécanisme d’ordonnancement fournissant l’équité parmi les flux et
la gestion active de file d’attente (AQM) pour couvrir le délai de limite supérieure. DCTCP
et pFabric ont été choisis comme les deux autres points de référence de comparaison. Ils ont
déjà été largement étudiés dans la communauté tandis que le premier est un protocole de
transport et le dernier est une conception inter-couches.

Avec le calibrage prudent du protocole de transport TCP de bout en bout, et le réglage
des paramètres de tous les candidats de comparaison pour les adapter à un haut débit et à
l’environnement à faible latence, notre évaluation de FQ-CODEL dans un environnement
DCN montre qu’il réalise un meilleur débit moyen que les protocoles de bout en bout adaptés
pour DCN tels que DCTCP. En même temps, le temps d’achèvement de flux courts se
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rapproche de celui des propositions de l’état de l’art de DCN telles que pFabric: la bonne
performance et la simplicité frappante font FQ-CODEL un concurrent sérieux dans l’arène
DCN.

Nous ajustons plus loin la part de volume par octet des flux courts, le résultat montre un
écart de performance plus faible entre FQ-CODEL et pFabric. FQ-CODEL présente avec
succès la caractéristique d’assurer une priorité relative pour les flux de taux limité sur les flux
en attente. Par conséquent, nous préconisons qu’un système d’ordonnancement équitable
couplé avec AQM pourrait être bénéfique au centre de données multi-locataire avec mixure
de haut niveau des applications.

Travail futur

Techniques hybrides d’AQM

Dans la première partie, l’AQMs évalué mets en œuvre des stratégies d’abandon (RED,
CoDel, CHOKe) ou de la planification (SFQ). Dans le même temps, les techniques hybrides
d’AQM qui exploitent conjointement les files d’attente juste avec un abandon précoce appa-
raissent, par exemple, le FQ-CoDel [6] a déjà integré dans les noyaux de Linux à partir de
3.5 [47]. On n’a pas eu l’occasion de l’inclure dans notre analyse sur le réseau d’accès en
raison de l’indisponibilité de FQ-CoDeL à ce moment-là. L’inclusion de cette technique dans
l’évaluation pourrait être intéressante de compléter notre étude d’AQM contre l’interaction
de LPCC, même si nous pensons que le problème de repriorization restera: intrinsèquement,
l’AQM et la planification visent à l’équité, alors que le LPCC vise à l’objectif contrastant
d’injustice à l’égard de TCP.

Priorités de grain plus fin à l’intérieur de LPCC

Une autre question sensible est de savoir s’il serait possible de différencier les priorités
à un grain plus fin au sein de la classe LPCC: par exemple, il est connu que des cibles
différentes dans LEDBAT pourraient céder à la famine en cas des flux en attente sous une
discipline de DropTail [48]; en même temps, on ne sait pas ce que le comportement serait
sous AQM.

Évaluation approfondie de FQ-CoDel

Bien que FQ-CODEL a été intensivement testé avant le déploiement dans les routeurs
domestiques, l’étude de son application dans un environnement DCN est plutôt limitée. Notre
travail sert une étape préliminaire dans un tel domaine, et nous croyons que l’évaluation
plus approfondie est nécessaire dans l’avenir. Comme dans le calibrage, nous choisissons
les mêmes paramètres pour tous les systèmes considérés. Ils donnent en effet un avantage
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pour pFabric dans notre cas. Il serait intéressant d’appliquer le calibrage des paramètres
hétérogènes pour évaluer les complets avantages potentiels que FQ-CODEL pourrait apporter
à notre scénario. En outre, nous observons de Fig. 5 une tendance renversée de FQ-CODEL
par rapport à pFabric et DCTCP. Il pourrait être important de procéder à l’étude supplémen-
taire pour révéler la différence potentielle derrière ces systèmes.

Etude de conception DCN sur le déploiement réel
Dans la deuxième partie, notre évaluation sensibilise essentiellement dans la communauté

la pertinence d’adopter le système d’ordonnancement équitable, cependant beaucoup reste à
faire. Pour commencer, FQ-CODEL doit être comparé à un véritable déploiement contre
DCTCP pour prouver que les avantages sont immédiatement et sans douleur réalisables dans
les DCNs d’aujourd’hui. Une compréhension plus large des autres ingrédients clés (par
exemple, la pulvérisation de paquet; l’identification co-flux, etc.) qui jouent très bien avec
FQ-CODEL dans un design DCN simple mais réussi, constitue une étape logique de notre
programme.

Impact de corrélation des flux
La charge de travail que nous avons utilisée dans notre simulation dérive de la charge de

travail largement utilisée produite de [19] et [28], avec le flux simple/le processus d’arrivée
de paquet et la distribution de taille. Compte tenu du fait que ce sont les statistiques de deux
traces d’un centre de données spécifique à un temps précis, il reste deux préoccupations
majeures 1) la pertinence de les utiliser dans des conceptions diverses est douteuse; 2) le
manque d’information de corrélation de temps et de l’espace parmi les flux.

Alors que la communauté est encore loin d’être en mesure de modéliser le trafic réaliste
d’une manière pratique, on peut en effet ajouter une partie des informations manquantes, ce
qui reflète la corrélation des flux à une mesure raisonnable. Les propositions récentes comme
Varys [22], RAPIER [44] et Baraat [38] considèrent déjà le temps d’achèvement en termes
de co-flux et de la tâche. Nous croyons qu’une conception plus systématique de la charge de
travail serait bénéfique à toute la communauté.
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Chapter 1

Introduction

1.1 Overview

It comes as no doubt that our daily activities increasingly require ubiquitous Internet
access. In a typical day, we ask questions to Google and Bing, call friends with Skype or
Hangout, socialize on Twitter and Facebook, upload pictures and tunes to Picasa and Google
Music, backup or share data with BitTorrent, Dropbox and OneDrive, play video games
on Xbox and Steam, and watch streaming shows through PC, mobile and even Internet TV
set-top box, etc. A commonly acceptable way to evaluate the “goodness” of such services
is quality of experience (QoE). Although different communities may use diverse language,
such as business people talking about revenue per user and customer churn while behavioral
scientists talk about happiness and experiences, engineers usually adopt network performance
and quality of service (QoS) [1], which are the fundamental cornerstones. The innovation of
new services over Internet is at such a lightning-fast pace that it presents quite a lot of new
challenges, with the help of Fig. 1.1, we highlight two important ones worth attention.

First, regular users become data consumers and data producers at the same time. The
prosperity of cloud-based service as shown in the “access network” of Fig. 1.1, constrained
by mobile devices’ hardware limitation, both computing and storage are moving from
users’ individual computers to some data centers. Data backup and sharing, whether it’s
client-server (CS) or peer-to-peer (P2P) architecture, generate large amount of traffic in the
upload direction from users. Moreover, as a side effect of the proliferation of connected
household devices, the need to synchronize data between the numerous appliances arises. As
copies of the data are increasingly stored in some datacenters, this translates into frequent
upload/downloads to/from the Cloud.

At the same time, the periphery of the Internet infrastructure was designed having in
mind that users would mostly be data consumer (as opposed to data producer), as for instance
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Figure 1.1 Representative network scenario considered in this thesis.

testified by the deployment of Asymmetric Digital Subscriber Line (ADSL) in Europe. While
this fact was already challenged by peer-to-peer traffic (P2P), current data generation shift
exacerbates the infrastructure asymmetry.

Second, more services are provided with dynamically calculated results from data centers
instead of static information from database. As shown in the “data center network” of
Fig. 1.1, instead of static information returned by a single server, currently there exists large
data centers to calculate the result on-the-fly for users. Considering the fact that even “web
search”, one of the most common and frequently used service, relies on quite an amount of
computing in data center before returning the best result that it can achieve in limited time
according to service-level agreement (SLA). The rich web application such as online video
game with massive users would require additional coordination between data centers.

However, traditional way of investigating user’s quality of service in network context
limitedly considers the bandwidth and latency between user and a single server. Awareness
should be raised to include the network performance inside data center to be also a major
component of QoS. Poor network design would accrue the cost of client churn either because
of slow service or degraded result.

In the following Sec. 1.2 and Sec. 1.3, we further introduce the specific concern and
design challenge facing these two dramatic transformations.
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1.2 Concerns in access network

The Internet is a very heterogeneous ecosystem, where multiple protocol species coexist,
evolve, and sometimes extinguish. TCP is a good example of this evolution. Over the years
numerous species proliferated under this protocol family; it remains the most commonly
adopted congestion control protocol over the Internet for the support of elastic data transfer
and communication with weak real-time constraints such as video streaming. Since the most
widespread flavors of TCP follow a loss-based design, an old problem which has resurged
in recent years: namely, the “persistently full” buffer problem, which was nicknamed
“bufferbloat” [2]. Bufferbloat refers to an excess of buffering that is exacerbated by two
factors: (i) TCP loss-based design fills up the bottleneck buffer before the sender reduces
its rate and (ii) Internet buffers are traditionally dimensioned sufficiently large to store up
250-500 msec of packets at the nominal line speed of the link. This simple rule-of-thumb
approach may cause the unexpected increase of the packet round-trip time that may reach
several seconds, where the real access bandwidth is significantly smaller than the nominal
bandwidth under which the buffer has been designed (this may happen over heavily congested
3G/4G[49] and WiFi networks[6], or low-quality ADSL/Cable lines[50]).

For this problem, which has been well known since the 90s, two classes of solutions
have been proposed. To better illustrate them, we first take a look at Internet “protocols”
ecosystem: according the Internet (or OSI) terminology, the layering principle breakdowns it
into an application-level (L7), a transport-level (L4), an Inter-networking (L3) and a data
link (L2) level. For the sake of simplicity, we refer to engineers of the application and
transport level protocols as the “upper-layer” engineer species, and to those of the network
and host-to-network layers as “lower-layer” species.

First, to cope with bufferbloat, recent evolutions of the “lower-layer” have been specif-
ically designed, and especially have started being deployed in both EU and US: indeed,
infrastructural solutions to the bufferbloat such as scheduling (SFQ [3], DRR [4]) and Active
Queue Management (RED [5], CoDel [6]) techniques, whose adoption has been so far limited,
are now becoming commonplace for operators worldwide to improve the user experience of
their ADSL/Cable lines customers (e.g., the French ISP Free employs SFQ since 2005 [7]
and US follows suit with CoDel under active development in DOCSIS modems [8]).

Second, since early 2000, an ensemble of “upper-layer” congestion control algorithms,
running over UDP, have been defined. These protocols typically support application executed
in background, such as P2P file transfer or file synchronization, and are targeted to low-
priority congestion control (LPCC) services, so that background applications do not subtract
bandwidth from interactive applications. Notable examples of LPCC protocols are Microsoft
Background Intelligent Transfer Service [9], TCP-LP [10], TCP-Nice [11] and BitTorrent low
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extra delay background transport (LEBDAT) [12], which is especially relevant as BitTorrent
is still credited as a primary contributor of uplink bandwidth [13].

While these trends on LPCC and AQM deployment are known facts, the temporal
separation of the AQM vs. LPCC research topics results in the lack of in-depth investigation
of their interaction. The impact on the dynamics of “upper-layer” LPCC schemes and “lower-
layer” changes such as the replacement of simple DropTail buffer management policies with
smarter adaptive policies is not completely clear.

In this thesis, we focus on the coexistence of best-effort TCP and Low Priority Conges-
tion Control (LPCC) transiting a bottleneck link governed by AQM. Our work shows that
a “reprioritization” phenomenon may occur with LPCC flows getting a bandwidth share
comparable with the TCP share.

1.3 Concerns in data center network

In the last decade, data center networks (DCNs) have increasingly been built with
relatively inexpensive off-the-shelf devices. DCNs are frequently assumed to be highly
specialized environments, owned by a single entity that has full control of both the network
architecture and the workload. DCN transport research has consequently explored a larger
design space than that of the Internet. This characteristic leads to designs that generally do
not focus on a single layer of the protocol stack but are more typically cross-layer.

Freedom in the DCN design space translates into a relatively crowded landscape of
proposals, each of which is typically designed and tweaked with a specialized application
scenario in mind. DCN proposals are further entangled as their design is tailored for
very specific workloads, with diverse application patterns including, for instance, query-
response [19, 20], map-reduce jobs [21, 22], or packet-size access to the DRAM of other
machines [23]. Rarely, if ever, is a DCN design tested with a workload other than that for
which the system was explicitly designed.

Beyond any reasonable doubt, the single-tenant assumption will be severely challenged
in the near future. Increased user reliance on cloud applications will require DCNs to evolve
towards multi-tenant system handling a significantly more heterogeneous set of applications
and workloads. The range of applications will inevitably increase either because a single-
tenant data center is used for new lines of business or simply because the data center is used
by an increasing number of independent tenants. DCN workload will thus evolve beyond the
typical mixture of short transactions and fat elastic transfers considered nowadays and will
notably include a significant fraction of rate-limited flows with strict latency requirements.
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As DCN resources are increasingly shared among multiple stakeholders, we must question
the appropriateness of some frequently made assumptions. How can one rely on all end-
systems implementing a common, tailor-made transport protocol like DCTCP [19], when
end-systems are virtual machines under tenant control? How can one rely on applications
truthfully indicating the size of their flows to enable the shortest flow first scheduling as in
pFabric [20], when a tenant can gain better throughput by simply slicing a long flow into
many small pieces? Expected future DCN usage clearly puts these assumptions in doubt and
leads us to question the expected benefits of fragile DCN designs that rely on them.

In this thesis, we explore most important proposals in DCN design and evaluate the
obvious yet surprising overlook, namely a scheduling mechanism providing fairness among
flows, coupled with Active Queue Management (AQM) to upper-bound delay.

1.4 Contributions

The main contributions of this thesis are as follows.
• Demonstrate the negative interplay “reprioritization” when scheduling/AQM tech-

niques and low-priority congestion control (LPCC) protocols are combined.
• Evaluate the generality of “reprioritization” phenomenona with simulation and con-

trolled measurement experiments.
• Analyze the system dynamics of AQM vs. LPCC interaction with control theoretic

fluid model.
• Propose a system-level deployable solution able to reinstate priorities among proto-

cols.
• Quantify the performance of adopting fair scheduling and AQM techniques in data

center network.
• Raise awareness in the community of fair scheduling in the data center network

design landscape.
Tab. 1.1 contains an overview of the contributions of the thesis.
The first part of this thesis is dedicated to the analysis of “reprioritization” phenomenon

when TCP-like and LPCC flows competing under a bottleneck governed by AQM. To this
aim, different methodologies are exploited: (i) simulation program, (ii) experimental testbed,
(iii) analytical model. In order to compare the performance under different combinations,
various metrics are used, as the intra-protocol and inter-protocol fairness, the link utilization,
the buffer occupancy, to cite a few.

In Chap. 2 we unveil the “reprioritization” phenomenon by a simple yet practical mo-
tivated scenario. By investigating at research history of AQM and LPCC, we discover the



6 Introduction

Table 1.1 Synopsis of the thesis

Chapter Methodology Comment Publication

Part. I
Chap. 3

Simulation,
experimental
testbed

“Reprioritization” phenomenon
assessment and sensitivity anal-
ysis

[W1, W2]

Chap. 4
Analytical
model

System dynamics and stability
region analysis

[P1, J1, S1]

Part. II Chap. 6 Simulation
Fair queuing performance mea-
surement in DCN

in preparation

independent evolution of engineering at different network layers as a potential source of the
problems mentioned, resulting in a lack of joint research over the years. We also present the
related work of topics involved in Part. I.

In Chap. 3 we use ns2 to evaluate a large spectrum of AQM and LPCC combination via
packet-level simulation. We find that “reprioritization” holds under any considered LPCC
and AQM. The choice of a specific (LPCC,AQM) combination has only very limited impact
on the system performance. Moreover, a careful sensitivity analysis is carried out considering
extended network scenarios.

In Chap. 4 we model the system as a Delay Differential Equation (DDE) that we study
both as an open loop and as a closed loop system. Using the open-loop model, we fully
characterize the “reprioritization” regions; we then numerically characterize the stability of
the linearized system around the equilibrium using the closed-loop model. The results of our
model are validated by packet-level simulation with good agreement. Therefore, we discuss
a very simple yet effective way to avoid such “reprioritization” phenomenon.

The second part of the thesis is focused on data center network (DCN) proposals. With
the goal of reducing a more service-oriented metric, the flow completion time, we study the
influence of adopting a fair queuing scheduler via simulation.

In Chap. 5 we explore the landscape of DCN proposals in a comprehensive survey.
Furthermore, we point out that the absence of a flow scheduler like FQ-CoDel in the design
space is a surprising and unjustified omission that we hope to investigate in the following
chapter.

In Chap. 6 we compare the performance of representative DCN designs among. We carry
out careful calibration before running the simulation campaign, and discover the proposed
FQ-CoDel as a suitable solution for data center network with great potential.

Finally, in Chap. 7 we discuss the main results achieved in this thesis, with a glance at
the future directions and evolutions of this study.



Part I

Access network





Chapter 2

Background

In this chapter, we first in Sec. 2.1 motivate our study on the interaction of active
queue management(AQM) and low priority congestion control(LPCC) in the access network
environment. Sec. 2.2 describes related work in concerned research fields and methodologies
used both in Chap. 2 and Chap. 3.

2.1 Motivation

The Internet is a rather complex ecosystem in which different species (i.e., hardware
equipment), speaking a plethora of languages (i.e., protocols) with numerous dialects (i.e.,
software implementations) coexists. Equipment vendors, normalization fora, and software
developers let these species, languages and dialects exist and evolve. Of course, within each
category a finer grained taxonomy is possible. For instance, taking the Internet “protocols”
category, the layering principle allows to breakdown the protocol ecosystem into, according
to the Internet (or OSI) terminology, an application-level (or L7), a transport-level (L4), an
Inter-networking (L3) and a host-to-network (L2) level. Let us, for the sake of simplicity, refer
to engineers of the application and transport level protocols as the “upper-layer” engineer
species, and to engineers of the network and host-to-network layers as “lower-layer” species.

Recent evolution in the “upper-layer” has confirmed TCP to be still the most commonly
adopted congestion control protocol over the Internet for the support of either elastic data
transfer or communication with weak real-time constraints such as video streaming. Never-
theless, in the recent years an ensemble of application-specific Layer-7 congestion control
algorithms, running over UDP, have been defined. With few exceptions 1, these protocols
typically support application executed in background, such as P2P file transfers, file synchro-

1. The most notable of which is represented by Google’s QUIC, an application-layer protocol over UDP,
targeted for TCP replacement in the context of SPDY/HTTP.
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nization etc., and are targeted to low-priority congestion control (LPCC) services, so that
background applications do not subtract bandwidth from interactive applications.

Notable examples of LPCC protocols are represented by Microsoft Background In-
telligent Transfer Service 2, TCP-LP [10], TCP-Nice [11] and BitTorrent low extra delay
background transport (LEBDAT) [12], which is especially relevant as BitTorrent is still
credited as a primary contributor for uplink bandwidth. According to Brahm Cohen, and as
confirmed by our measurement [51], LEDBAT is now “the bulk of all BitTorrent traffic, [...]
most consumer ISPs have seen the majority of their upload traffic switch to a UDP-based
protocol” [52]. Concerning the penetration of BitTorrent traffic, while downlink traffic
is nowadays dominated by video streaming, BitTorrent remains the top-1 contributor in
the uplink direction. As pointed out by a recent report [13] from the Canadian broadband
management company Sandvine, BitTorrent is the top-1 application on uplink traffic, and
can be credited for over one-third of all upload traffic in North America, Latin America and
Asia Pacific. Additionally, BitTorrent represents no less than 10% of the aggregated uplink
and downlink traffic, and is still the top-1 application in terms of aggregated traffic volume
in the Asia Pacific region. Finally, as median Internet traffic increases, so does the overall
BitTorrent traffic.

Different from standard TCP, which reduces the source sending rate only in the occurrence
of packet loss events, LPCC congestion control schemes decrease the source sending rate
as soon as the estimated packet delay grows beyond a given target. As a result, the LPCC
schemes exhibit a less aggressive profile than TCP when they compete for the bottleneck
bandwidth, which is typically placed at the access link (especially in upstream in today’s
scenarios), thus leave to the TCP flows most of the bottleneck bandwidth.

However, this is true only when TCP flows are able to fill the bottleneck buffer inducing
a significant increase of the packet delay, i.e. when buffers are dimensionally sufficiently
large and DropTail packet discarding policies are adopted.

With this regard, we recall that Internet buffers are traditionally sufficiently large to
store up to 250-500 msec of packets at the nominal line speed of the link. This simple
rule-of-thumb approach, however, may be the cause of the “bufferbloat” phenomenon, i.e.,
the unexpected increase of the packet round-trip time that may reach several second. In
such cases, the real access bandwidth is significantly smaller than the nominal bandwidth for
which the buffer has been designed (this may happen over heavily congested 3G/4G [49] and
WiFi networks [6], or low-quality ADSL/Cable lines [50]).

To cope with bufferbloat, recent evolutions of the “lower-layer” have been specifically
designed, and have started being deployed in both the EU and US: indeed, infrastructural

2. https://msdn.microsoft.com/en-us/library/aa363167.aspx

https://msdn.microsoft.com/en-us/library/aa363167.aspx
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solutions to the bufferbloat such as scheduling (SFQ [3], DRR [4]) and Active Queue
Management (RED [5], CoDel [6]) techniques, whose adoption has been so far limited, are
now becoming common for operators worldwide to improve the quality of experience of
their ADSL/Cable lines customers (e.g., the French ISP Free employs SFQ since 2005 [7]
and US follows suit with CoDel under active development in DOCSIS modems [8]).

From the above observation, we gather an increasing adoption trend of both AQM
techniques and LPCC protocols, which already coexist in the current Internet. Yet, studies
have so far focused on AQM or LPCC, and only seldom considered these two aspects together.
As such, interactions between AQM and LPCC is, at this stage, poorly understood.

In this thesis, we show a potentially fateful interplay between AQM and LPCC: namely,
AQM resets the relative level of priority between best-effort and low-priority congestion
control protocols. In other words, current scavenging protocols can successfully realize a
lower-than-best-effort priority only if the bottleneck buffer operates according to a DropTail
discipline. Intuitively, this arises from the fact that one of the typical design goals of AQM is
to enforce fairness among flows, to penalize the most aggressive heavy-hitter flows and to
protect the newly starting and short-lived ones. This is in sharp contrast with LPCC’s design
goal, which instead aims at utilizing the excess capacity without interfering with standard
TCP transfers. As this interplay resets the relative level of priority among congestion control
protocols, we refer to this issue simply as “reprioritization” in the following.

Fig. 2.1 illustrates the “reprioritization” phenomenon: we stress that, while the picture
depicts simulation results gathered in a very specific case, the remainder of this part will
show the phenomenon to hold under a large range of AQM+LPCC scenarios (using both
real-world experiments and ns2 simulations). The picture shows a breakdown of the link
utilization when 5 TCP NewReno (each of which is represented with a different shade of
red) and 5 LEDBAT (blue) backlogged flows sharing the same bottleneck. Capacity is set to
10 Mbps and the buffer has room for 500 packets (600 ms worth of delay); for the sake of
simplicity, delays are homogeneous across flows. The left plot reports the case of a DropTail
queuing discipline, while the right one reports the case of RED. The plots are annotated
with further statistics concerning the average queue size in packets E[Q], the capacity share
exploited by the aggregate TCP%, and the average link utilization η .

In the DropTail case, the LEDBAT protocol operates in a lower-than-best-effort mode:
we see that this delay-based scavenging protocol successfully exploits the spare capacity left
unused by NewReno (as shown in [14]). The TCP aggregate uses the bulk of the capacity
(TCP%=99%), with a fair share among TCP flows (due to homogeneous delay). However,
the queuing delay approaches half a second because nearly 400 full-size TCP packets are
queued on average. Clearly, bufferbloat would be even worse for lower (e.g., ADSL-like)
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Figure 2.1 Illustrated example of problems arising from the interaction of AQM and CC
techniques (ns2 simulation for AQM=RED, CC=TCP+LEDBAT).

capacities, or larger buffer sizes (common defaults for home gateways are well in excess of
1000 packets).

In the RED case, while it is successful in limiting the queue size (less than 4 packets
on average), this comes at the cost of (i) a slight 3% reduction of the link utilization, (ii)
a complete reset of the relative level of priority between flows. In the case depicted in the
figure, the share is now equal among all LEDBAT and NewReno flows, so that LEDBAT
operates in a best-effort mode, and is thus as aggressive as TCP. While an AQM fixes the
bufferbloat, it destroys the relative priority among CC protocols.

While the interaction between LEDBAT and AQM is pointed out in [15] and mentioned by
the draft [12], we believe both the depth and the extent of the problem to be underestimated.
As for the depth, Sec. 3.3 not only confirms the phenomenon to hold in the real world
via Internet experiments on multiple AQM and LPCC techniques, but also shows that the
relative level of priority seldom reverses under AQM. As for the extent, in reason of the
limited availability of actual implementation of AQM and LPCC in the Linux kernel, we are
forced to complement our experimental methodology with a simulation based one: Sec. 3.2
summarizes results of over 3,000 simulations, showing that the phenomenon just illustrated
is a fairly general problem, arising from the interaction of AQM and any LPCC protocol.
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Figure 2.2 Timeline of Active Queue Management (AQM) and Low Priority Congestion
Control (LPCC) algorithms.

2.2 Related work

It would be extremely cumbersome to comprehensively retrace over 20 years of Internet
research in few pages. A historical viewpoint is sketched in [53]: we extend this viewpoint
by reporting in Fig. 2.2 a timeline of research in scheduling/AQM algorithms and LPCC
protocols. The timeline clearly shows a temporal separation of these two research topics,
which in our opinion helps understand why the AQM vs. LPCC interaction assessed in
this thesis was only barely exposed before. In this section, we overview the related work
considering (i) AQM and scheduling, notably RED (ii) LPCC protocols, notably LEDBAT
(iii) the AQM vs. LPCC interaction, (iv) fairness of capacity share, (v) fluid modeling of
TCP and AQM.

2.2.1 Active Queue Management (AQM)

Traditional routers use drop-tail discipline in queues holding packets to be scheduled on
each interface, and drop packets only when the queue is full. This mechanism tends to cause
global synchronization between flows and penalize bursty flows.

To overcome these issues, AQM disciplines drop or mark packets before the queue is full
in a probabilistic way, thus provide endpoints with an earlier congestion indication. As a
result, AQM disciplines are able to maintain a shorter queue length than drop-tail queues,
which serve as a practical method to counter “bufferbloat”.

Studies on scheduling and active queue management were very popular during the 90s
(e.g., SFQ [3], RED [5], DRR [4]), and declined after the beginning of the early 2000s (e.g.,
CHOKe [16]).

Despite numerous AQM proposals, they have so far encountered limited adoption. The
difficulties in tuning RED [54] are well known, and the computational cost of Fair Queuing
was, back in the 90s, considered to be prohibitive (see [53] for a historical perspective).
The situation has however started to change, with operators worldwide implementing AQM
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policies in the upstream of the ADSL modem (e.g., in France, Free implements SFQ since
2005 [7], and Orange starts to deploy SQF [55]) to improve the quality of user experience.

We currently see a resurgence of the topic, in terms of novel proposals (e.g., CoDel [6],
AFpFT [56]) and further research [57–59], as also testified by the very recent proposal to
create a dedicated IETF AQM WG [60].

We provide the brief mechanism of AQM/Schedulings considered in our work, namely,
SFQ, DRR, RED, CHOKe, and CoDel.

SFQ (Stochastic Fair Queuing)

Stochastic Fairness Queueing (SFQ) [3] is a simple implementation of the fair queueing
algorithms family. SFQ does not shape traffic but only schedules the transmission of packets
based on conversation (or flow). The goal is to ensure fairness so that each flow is able to
send data in turn, thus prevent any single flow from drowning out the rest. The performance
is impacted by the total queue length and the number of buckets.

SFQ works by dividing traffic into a large but limited number of FIFO queues, one
for each conversation, using a hashing algorithm. Queues are serviced in a round-robin
fashion, without considering packet lengths. When there are no free buffers to store a packet,
the packet at the end of the longest queue is dropped. The limited bucket makes its fair
scheduling guaranteed as “stochastically”, which would under certain cases put multiple
conversations under the same bucket. To prevent such situation from becoming noticeable,
SFQ changes its hashing algorithm quite often so that any two colliding conversations will
only do so for a small number of seconds. At the same time, using a hashing algorithm
makes SFQ less accurate than other fair queueing scheduling policies, but also requires less
calculations while being almost perfectly fair. And thus is suitable for high-speed network
implementation.

DRR (Deficit Round Robin)

Deficit Round Robin (DRR) [4] is another approximation of fair queueing to correct the
unfair behavior exhibited with previous approximations. It can handle packets of different
size without having knowledge of their mean size by keeping track of credits for each flow.
This queue mechanism used a well-designed idea to get better performance and can also be
implemented in a cost-effective manner.

DRR inherits the queue assignment behavior of SFQ, and to overcome the major problem
of ordinary round-robin servicing of queues, which is the unfairness caused by possibly
different packet sizes used by different flows, it assigns a quantum to each queue. Each can
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send a packet of size that can fit in the available quantum. If not, the idle quantum gets added
to this queue’s deficit and the packet can be sent in the next round. The quantum size is a
very vital parameter in the DRR scheme, determining the upper bound on the latency as well
as the throughput.

RED (Random Early Drop)

Random Early Drop (RED) [5] is one of the most important representative AQMs used in
this thesis. Due to its relatively simple design, it has been in long time the AQM considered
in quite a few researches and under continuing improvement.

A traditional RED monitors the average queue size and compares it with two parameters
minth (minimum threshold) and maxth (maximum threshold). If the buffer is shorter than
minth, no packet will be dropped; on the contrary, all packets will be discarded if the buffer is
larger than maxth. When the buffer length is within the defined range, it drops packets based
on statistical probabilities with another parameter p (probability).

In spite of its success in combating TCP global synchronization and “bufferbloat”, it
requires careful tuning [61] of its parameters in order to provide good performance. Therefore
some work has been done aiming to improve the classical proposal, WRED (Weighted
RED) [62], ARED (Adaptive RED) [63], RRED (Robust RED) [64], to name a few.

CHOKe (CHOose and Keep for responsive flows, CHOose and Kill for unresponsive
flows)

CHOKe [16] is a variation of RED which tries to penalize flows that submit more packets
than is allowed by their fair share. By doing this, the scheme aims to approximate the fair
queueing policy. It is stateless and easy to implement with a minimum overhead.

While RED reduces the delays experienced by most flows, the percentage of packets
dropped from each flow over a period of time is almost the same. Thus, it is unable to
penalize unresponsive flows. The idea behind CHOKe is to use the “sufficient statistic”
contents of the FIFO buffer as an indicator of the incoming traffic to identify misbehaving
flows. Based on RED’s mechanism and parameters, the difference is that once the queue
passes minth, before marking any incoming packets with a dropping probability, it randomly
draws a packet from the FIFO buffer and compares it with the arriving packet. If they both
belong to the same flow, then they are both dropped, else it is admitted with a probability
computed as in RED. Therefore, packets of misbehaving flows are dropped more often than
packets of well-behaved flows considering that it is more likely to draw packet belonging to
misbehaving flows and encounter incoming packet from them.
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CoDel (Controlled Delay), FQ-CoDel (FlowQueue-CoDel)

Controlled Delay (CoDel) [6] is a queue management algorithm designed to overcome
bufferbloat in network links by setting limits on the delay that network packets suffer. CoDel
claims to have addressed some fundamental misconceptions in the traditional AQM algorithm
such as RED, it maintains that the packet sojourn time, instead of average queue size, should
be used as an indicator of network congestion condition.

The algorithm is independently computed at each hop. The algorithm operates over an
interval, which is initially set to 100ms. Per-packet queuing delay is monitored through the
hop. As each packet is dequeued for forwarding, the packet sojourn time in the queue is
calculated. The lowest queuing delay for the interval is stored. When the last packet of the
interval is dequeued, if the lowest queuing delay for the interval is greater than a target delay
(5ms), this single packet is dropped and the interval used for the next group of packets is
shortened (in accordance with the inverse square root of the number of successive intervals
in which packets were dropped due to excessive queuing delay). Otherwise, the packet is
forwarded and interval is reset to initial interval.

Due to the controlling of packet delay, CoDel claims to be insensitive to round-trip
delays, dynamically changing link rates, and traffic loads. With its implementation for Linux
kernel and open-source router firmware, it has been exhaustively tested and is adopted as
the standard AQM/scheduling in both Linux distribution (Linux 3.6 and later), open-source
firmware (OpenWrt, CeroWrt, dd-wrt, IPfire, etc), commercial routers (Qualcomm, Netgear),
and operators products (Free.fr) [65].

FlowQueue-CoDel (FQ-CoDel) was presented in 2012 as a hybrid packet scheduler/AQM
algorithm for fighting bufferbloat and reducing latency across the Internet. It is based on
a two-tier Deficit Round Robin (DRR) queue scheduler, with the CoDel AQM algorithm
operating on each sub-queue. Unlike DRR, there are two sets of flows - a “new” list for
flows that have not built a queue recently, and an “old” list for flow-building queues. As a
consequence, the short flows that don’t build up more than a quantum of bytes before being
visited by the scheduler can get priority over long flows that build up queues not empty out
each round. This mechanism reduces the impact of the head-of-line blocking from bursty
traffic. It provides isolation for interactive/low-rate traffic such as DNS, web, and video
streaming traffic.

2.2.2 Low Priority Congestion Control (LPCC) protocols

Congestion and flow control may have different goals, such as controlling the streaming
rate over TCP connections as done by YouTube or Netflix, or aggressively protecting user
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QoE as done by Skype over UDP, or to provide low-priority bulk transfers service toward the
Cloud (e.g., Picasa background upload or Microsoft Background Intelligent Transfer Service
BITS, etc.).

The standard TCP congestion control needs losses to back off: this means that, under
a drop-tail FIFO queuing discipline, TCP necessarily fills the buffer. As uplink devices of
low-capacity home access networks can buffer up to hundreds of milliseconds, this may
translate into poor performance of interactive applications (e.g., slow Web browsing and
bad gaming/VoIP quality). Low priority congestion control protocols tackle this problem by
using congestion indicator other than packet loss that enables it to react faster than standard
TCP.

Studies on low-priority congestion control protocols started in the early 2000s, with
several contributions such as TCP-Nice [11], TCP-LP [10], 4CP [66, 9] and LEDBAT [12].
While it is out of scope for this thesis to provide a full overview of the above protocols, we
refer the reader to [67] for a more thorough survey. Finally, a simulation based analysis
of the impact of LEBDAT parameters on its behavior has been recently carried out in [68].
It focuses on a DropTail bottleneck-link shared by LEBDAT and TCP New Reno flows,
proposing a set of LEBDAT parameters that minimize the overall LEBDAT bandwidth share.

Protocols mentioned above share the same low-priority spirit of LEDBAT. We carried
out a simulation-based comparison of TCP-Nice, TCP-LP, and LEDBAT in [48], showing
that LEDBAT has the lowest level of priority.

In terms of adoption, while TCP-LP and TCP-Nice have been around in the Linux
kernel for about a decade, they have seldom been used 3. However, ignited by the ease of
application-layer deployment, scavenging congestion control services are now becoming
popular: examples of this trend are represented by Picasa’s background upload option and the
adoption of an LPCC by BitTorrent. Indeed, BitTorrent recently abandoned TCP in favor of
LEDBAT, a “low extra delay background transport” protocol implemented at the application
layer over a UDP framing.

In terms of AQM vs. LPCC trend, it is worth to highlight an interesting similarity between
the most recent approaches of either class (i.e., CoDel and LEDBAT), as both control queuing
delay explicitly: they both employ a target delay parameter upon which dropping decisions
or congestion window modifications are based respectively.

We report, in the time order, the mechanism of LPCCs considered in our work, namely,
TCP-Nice, TCP-LP, and LEDBAT.

3. In recent kernels, TCP-Nice is no longer available as a kernel module, whereas TCP-LP it available but
not among the TCP flavors allowed by default via net.ipv4.tcp_allowed_congestion_control
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TCP-Nice

TCP-Nice [11] is intended to provide an abstraction of infinite free network bandwidth
for background data. The primary goals are (i) to eliminate interference with regular demand
traffic, as well as avoid self-interference and (ii) to reap a significant fraction of the spare
network bandwidth available. Unlike traditional TCP Reno, TCP-Nice uses increasing
RTT as congestion signal instead of packet loss. It derives TCP Vegas’s multiplicative
decrease of congestion window to ensure an aggressive responsiveness to early congestion
detected. By only modifying sender-side congestion control, TCP-Nice can approximate
simple prioritization at the routers without modifying the routers and receiver at all.

Different from LEDBAT, that reacts to instantaneous one-way delay (OWD) variations,
TCP-Nice instead reacts to RTT variations, thus could possibly reduce the sending window
due to growing delay in the reverse path similar to TCP Vegas [69].

TCP-LP (TCP Low Priority)

TCP Low Priority (TCP-LP) [10] shares the same principle as TCP-Nice to utilize the
spare network bandwidth without interfering with foreground traffic by inferring congestion
earlier than TCP. It modifies the loss-based behavior of NewReno with an early congestion
detection based on the distance of the one-way delay (OWD) from a weighted moving
average calculated on all observations. In case of congestion (the smoothed OWD exceeds
a threshold within the range of the minimum and maximum delay), the protocol halves
the rate and enters an inference phase, during which, if further congestion is detected, the
congestion window is set to one and normal NewReno behavior is restarted. This differs
from LEDBAT’s aim of explicitly bounding the maximum delay introduced in the bottleneck
queue, which is particularly important for VoIP, video conferencing, gaming and all other
interactive delay-sensitive applications.

LEDBAT (Low Extra Delay Background Transport)

Low Extra Delay Background Transport (LEDBAT) [12] was initially introduced in 2008
by BitTorrent, and later recognized on the Web. It implements a distributed congestion control
mechanism, tailored for the transport of non-interactive traffic with lower-than-best-effort
priority, whose main design goals are:

• Saturate the bottleneck when no other traffic is present, but quickly yield to TCP and
other UDP real-time traffic sharing the same bottleneck queue.

• Keep delay low when no other traffic is present, and add little to the queuing delays
induced by TCP traffic.
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• Operate well in drop-tail FIFO networks, but use explicit congestion notification (e.g.,
ECN) where available.

These goals are achieved by reacting to congestion notification earlier than TCP, and by
reducing its transmission rate to avoid harming current traffic: while TCP infers congestion
from packet losses, LEDBAT infers congestion from increasing buffering delay, hence prior
than losses occur.

Its congestion control algorithm is based on the One-Way Delay (OWD) estimation:
queuing delay is estimated as the difference between the instantaneous delay and a base delay,
taken as the minimum delay over the previous observations. Whenever the sender detects
a growing OWD, it infers that queue is building up and reacts by decreasing its sending
rate with reference to a target delay parameter. This way, LEDBAT reacts earlier than TCP,
which instead has to wait for a packet loss event to detect congestion.

2.2.3 Joint AQM and LPCC studies

From our knowledge, only [15] merely mentions, without being the main focus, the
interplay of AQM and LEDBAT via an experimental approach: in one of the tests, authors
experiment with a home gateway that implement some (non-specified) AQM policy other
than DropTail. When LEDBAT and TCP are both marked in the same “background class” the
“TCP upstream traffic achieves a higher throughput than the LEDBAT flows but significantly
lower than” that under DropTail [15]. This fact is also recognized by the LEDBAT RFC,
which states that under AQM it is possible that “LEDBAT reverts to standard TCP behavior,
rather than yield to other TCP flows” [12]. Hence, the interplay of AQM and LPCC has been
anecdotally covered, though a broad and deep study is missing so far.

2.2.4 Fairness

Our main focus concerns fairness of the capacity share among heterogeneous control
protocols on a bottleneck governed by AQM. While fairness is a long studied subject, its
investigation generally considered rather different settings. First, it has often been tackled
in the intra-protocol case [70, 14, 71, 51]: i.e., heterogeneous settings of a single protocol
flavor. For instance, [70] studies RTT unfairness of TCP Reno.

Fairness in the inter-protocol case, thus closer to ours heterogeneous control protocols
settings, has long been studied as well [72, 59, 56]. Old works focused especially on
undesirable side effect of delay-based congestion control of Vegas, that makes it back off
in the presence of TCP Reno [72]. Even more recent work on the topic studies different
issues than ours. Authors of [59, 56] focus on several high-speed variants of TCP: in
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their case, fairness between the different protocols is thus desirable, while in our settings
unfairness would be desirable (as it would imply that low-priority property is maintained).
Complementary to this work, authors in [56] design and analyze an AQM scheme (named
AFpFT after Approximate Fairness through Partial Finish Tag), that they show via ns2
simulations to reinstate fairness in the heterogeneous protocols case [59].

2.2.5 Fluid modeling

Fluid models have been extensively used in the literature to investigate the dynamics
of TCP flows [73–79]. While several lines of research do exist (e.g., [78, 79] model the
network as a time-delay linear system and TCP congestion control algorithms as Smith
predictor controllers whose aim is to track an exogenous reference signal which models the
TCP congestion window), the mainstream approach, closer to ours, is to model TCP window
dynamics by means of either Delay Differential Equations (DDE) or Partial Differential
Equations (PDE), [73–76]. We point out that, since generally a single dominant TCP flavor
is modeled [73, 74, 78] (optionally including unresponsive background traffic [75] or short-
lived connections [76]), the novelty in this thesis lies in the definition of a fluid model of
heterogeneous responsive sources, notably including LEDBAT.



Chapter 3

Hands-on investigation

As motivated in Chap. 2, the “reprioritization” phenomenon could take place when
TCP and LEDBAT are competing under a bottleneck governed by RED. In this chapter, we
exploit the generality of this phenomenon using various methodologies described in Sec. 3.1,
followed by results gathered in ns2 simulation Sec. 3.2 and experiment testbed under both
controlled and uncontrolled environment in Sec. 3.3. We also perform sensitivity analysis
to further refine the understanding of its behavior by varying network scenarios. We finally
draw the conclusion in Sec. 3.4.

3.1 Methodology

Simulation campaign

Our ns2 simulations aim to test the validity of the reprioritization phenomenon under the
largest possible set of scenarios.

We include a number of representative AQM techniques: namely, SFQ [3], RED [5],
DRR [4], CHOKe [16] and CoDel [6]. Similarly, we consider a number of representative
LPCC techniques such as TCP-Nice [11], TCP-LP [10] and LEDBAT [12]. As for standard
best-effort TCP, we consider the IETF NewReno variant 1. Notice that some of these
modules are not directly available in ns2 (version 2.33), therefore we patch it to support
CHOKe [16], CoDel [6], LEDBAT and TCP-Nice (the last two LPCCs use our own open
source implementations [80]).

1. We point out that, in recent times both Linux and Windows have drifted from IETF recommendation,
selecting Cubic and Compound as default TCP flavors respectively. Yet, as both Cubic and Compound are
designed to be more aggressive than NewReno, we henceforth expect reprioritization to hold for these flavors
as well.
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A couple of points are worth stressing. Although we are aware of the fallacies of RED,
we believe that it needs to be considered as a reference benchmark (to which indeed CoDel
is compared in [6]). Additionally, note that RED is one of the few AQM policies available on
common recent Linux kernels shipped with standard distributions, we believe it would not
make sense to exclude it from this study even due to its known performance issues [61, 54].
Similarly, we are aware of the latecomer unfairness issues of LEDBAT [14, 71], but its
widespread use makes it necessary to be considered in the mix.

Experimental campaign

The experimental campaign is carried out to confirm the occurrence of the reprioritization
phenomenon in the real world.

Since our aim is not to propose any new AQM or LPCC, nor to replicate the full set
of simulation campaign, we select the ones that are already available in recent Linux 3.2
kernel: namely, RED [5] and SFQ [3] for AQM and TCP-LP [10] and LEDBAT for the
LPCC protocol family. As for the LEDBAT, we employ the libUTP [17] application-level
implementation of BitTorrent that we already analyzed in [18].

Incidentally, while our choice is forced by the availability of AQM and LPCC implemen-
tation in Linux, in reason of results of the simulation campaign we expect the performance of
other AQM+LPCC combinations to fall into the boundaries defined by {RED,SFQ}×{TCP-
LP,LEDBAT}. On the one hand, this is due to the fact that RED vs. SFQ yield to small vs.
large queuing delays respectively; on the other hand, it is known that TCP-LP and LEDBAT
have the most and the least aggressive behavior in the LPCC family [48].

Throughout this chapter, we express system performance mainly in terms of the link
utilization η , the share of the link exploited by the TCP aggregate TCP%, and the average
queue length E[Q]. For convenience, we can either express E[Q] in number of packets
(possibly normalized over the buffer size E[Q]/Qmax to gauge the bufferbloat intensity), or
as the actual packet sojourn time in the queue (a more direct measure of the user quality of
experience).

To facilitate cross-comparison and independent validation of our results, we make our
scripts and datasets for both simulation an experimental campaign available to the research
community at [81].

In particular, the network scenario analyzed in the following two chapters is shown in
Fig. 3.1. Nw TCP flows and Nz LPCC flows compete at the bottleneck governed by AQM,
which has B as buffer size, and C as link capacity.
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Figure 3.1 Network scenario.

3.2 Simulation results

In this section, we aim at conveying straightforward the most relevant message we gather
from simulation. We therefore incrementally extend the breadth of our results by initially
considering the impact of AQM policies in Sec. 3.2.1, then the joint impact of AQM and
LPCC in Sec. 3.2.2, and finally the sensitivity analysis in Sec. 3.2.3 considering the impact
of other network parameters such as buffer size, link capacity, heterogeneous RTT delay, and
flow duty cycle.

For simplicity, we consider an equal number N = 5 of best-effort TCP NewReno and low-
priority flows sharing a link having capacity C = 4 Mbps and a buffer size Qmax = 400packets
(corresponding to a maximum bufferbloat of 1.2 seconds). All flows are backlogged, start at
time t = 0, and have a homogeneous RT T = 50 ms. Simulations last for 60s, and 10 runs are
repeated for each parameter settings. A larger number of settings is reported in Sec. 3.2.3.

3.2.1 Impact of AQM policy

For the time being, we fix the LPCC to LEDBAT and examine the impact of different
AQM techniques. Fig. 3.2 reports the bufferbloat intensity E[Q]/Qmax (top), link utilization
η (middle) and TCP% breakdown (bottom) for varying AQM policies, and for DropTail as
a comparison (right). As expected, at the price of a slight decrease in the link utilization,
AQM reduces the intensity of the bufferbloat: compared to a persistently full DropTail buffer,
queue size and delay is from 14 to 77 times smaller, using SFQ and RED respectively. This
implies that, under AQM the queuing delay is always less than 85 ms (SFQ, the worst case 2),
and generally much lower. However, we see that the capacity share of the TCP aggregate
can drastically reduce 35%-46% (under CoDel and CHOKe respectively). Notice that this

2. It has to be noted that, strictly speaking, SFQ is a scheduling discipline and not an AQM mechanism: as
such, longer delay is expected since no “early” drops occur.
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Figure 3.2 Impact of AQM policies on the bufferbloat intensity E[Q]/Qmax (top) link utiliza-
tion η (middle) and TCP% breakdown (bottom).

result alone extends the validity of the phenomenon observed under unknown 3 AQM policies
in [15]. Importantly, we point out that simply reducing the DropTail buffer size is not a
solution to the problem either: notice that (i) as shown in Fig. 3.2, shorter DropTail buffer
behaves like AQM, as bufferbloat is reduced at the expense of reprioritization and (ii) in the
case of varying link bandwidth such as WiFi (where rates can vary from few to several tens
of Mbps), there is no fixed buffer size that would not translate into bufferbloat. Intrinsically,
when the queue length is short, either due to AQM or tiny buffers, LPCC cannot reliably
infer congestion signals from delay measurement.

Finally, Fig. 3.3 shows a Kiviat chart of the impact of AQM policies on drop rate of
different flow types, considering average drop rate (top axis), TCP drop rate (bottom right
axis) and LPCC drops (bottom left axis). Compared to DropTail, all AQMs increase drop
rate of all flows (due to early drop decisions) but not enough to influence the link utilization.
Interestingly, DropTail penalizes TCP as much as LPCC, whereas AQMs generally penalizes
TCP more than LPCC – the root cause of reprioritization. Drop rates for TCP are worst in the
case of CHOKe, which is designed to leverage power of two choices to especially penalize

3. Authors just mention that “different prioritized traffic classes” are implemented in the “modern home
gateways” used in their experiments.
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Figure 3.3 Impact of AQM policies on the drop rate.

heavy-hitter flows. In the case of SFQ scheduling, notice that LPCC almost experiences no
losses.

Summarizing, reprioritization of LEDBAT holds under any AQM. Additionally, the use
of tiny buffers is not helpful in terms of reinstating priorities between LPCC and best-effort
TCP.

3.2.2 Impact of AQM policy and LPCC protocol

We now explore the full product of LPCC flavors and AQM techniques. Under DropTail, it
is known [48] that LEDBAT achieves the lowest priority against best-effort TCP, followed by
TCP-Nice and TCP-LP. We illustrate results as a parallel coordinate plot in Fig. 3.4. Having
noticed that link utilization is subject to small variations, we consider the two main metrics
of interest: namely the queuing delay and the TCP share. For convenience, we normalize the
bufferbloat over the queue size and report its normalized intensity E[Q]/Qmax ∈ [0,1] on the
left y-axis, and report the normalized TCP share of the link capacity TCP

TCP+LPCC ∈ [0,1] on
the right y-axis. In the parallel coordinate plot, each (LPCC, AQM) pair is represented as a
line, joining the delay and TCP share figures. For reference purposes, we put a light-gray
strip representing the ideal case where the queue is short but priorities are unaltered.

We see that the three (LPCC,DropTail) combinations appear as horizontal lines on the
top of the figure: this happens since, under DropTail, bufferbloat has maximal intensity while
TCP monopolizes the bottleneck. We see that this holds for any LPCC protocol, with a slight
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Figure 3.4 Joint impact of AQM and LPCC on the queuing delay and TCP breakdown.

separation of the curves reflecting the order of priority observed in [48] (from top to bottom,
the least to the most aggressive LPCC with respect to TCP).

Excluding DropTail, we also see that all (LPCC,AQM) combinations are very close, as
AQM implies low bufferbloat but jeopardizes CC priorities. Specifically, as under AQM all
TCP and LPCC flows have roughly the same priority, the lines fall in the best-effort (BE)
priority range, below the ideal strip, with best-effort TCP getting slightly more than half of
the link share.

Summarizing, reprioritization holds under any considered LPCC and AQM. The choice of
a specific (LPCC,AQM) combination has only very limited impact on the system performance
– and, in any case, is not helpful in reinstating priorities between LPCC and best-effort TCP.

3.2.3 Sensitivity analysis

To further extend the breadth of our findings, we conduct over 3,000 simulations to
investigate the impact of other network parameters such as buffer size Qmax, link capacity C,
heterogeneous RTT delay, and flow duty cycle. We first discuss each of the above factors
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Table 3.1 Sensitivity analysis parameters

Variable parameters

Parameter Default Range Subsection

Qmax (pkt) 400 100, 200, 300, 400 Buffer size and capacity
C (Mbps) 4 0.25, 0.5, 1, 2, 4, 6, 8, 10 Buffer size and capacity
Workload (%) 100 10 - 100 (interval 10) Flow duty cycle
RTT (ms) 6 2, 4, 6, 8, 10 RTT delay heterogeneity

Fixed parameters

Parameter Value

AQM DropTail, RED, CHOKe, DRR, SFQ, CoDel
LPCC LEDBAT
No.TCP flows 5
No.LPCC flows 5
Duration (s) 60
No.Runs 10

separately, and finally compactly report their impact. We anticipate that under all explored
circumstances 4 the early outlined phenomenon remains valid.

The parameters used in our analysis are listed in Tab. 3.1 (as parameters listed in the
table are by no means exhaustive, we invite the reader to use the provided scripts [81] shall
they reproduce these experiments). We let 10 flows (5 TCP + 5 LEDBAT) competing at the
bottleneck at the same time for 60s, results are obtained from the average of 10 runs for each
simulation. We will explain the varied parameters investigated in detail in its corresponding
sub-section.

Buffer size and capacity

We explore over 30 combinations of link capacity varying in the 250Kbps to 10Mbps
range, and buffer size between 100 and 400 packets (detailed values can be found in Tab. 3.1).

First, when fixing the value of buffer size, we observe a decrease of packet drop rate
as the link capacity increases, while the link utilization is mostly unaffected by capacity
variations. This is expected since TCP ramps up to exploit the full capacity both in the case
of DropTail or AQM.

4. We avoid reporting some of which (such as scenarios with a larger number of flows, or dynamic flow
arrivals patterns, etc.) in full details, to privilege clarity over completeness.
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Figure 3.5 Sensitivity analysis: average buffer occupancy and TCP% share for varying
capacity (x-axis) and buffer sizes (standard deviation across buffer size is reported in the
legend).

If we instead fix the capacity, then the impact of the buffer size is limited in case of AQM.
This is again expected, since AQM is configured to keep the buffer short irrespectively of its
size: in other words, the average queue size is E[Q]≈ Qmax under DropTail for any Qmax,
whereas E[Q]< Qmax under any AQM technique irrespectively of Qmax.

We elaborate more on capacity variations in Fig. 3.5, which reports the average queue
size E[Q] (in packets, left y-axis) and TCP% breakdown (right y-axis) as a function of the
link capacity (x-axis) for some AQM mechanisms (namely we limitedly report RED, SFQ
and CoDel to avoid cluttering the picture). The picture reports the average of the metrics
over all buffer sizes, and the legend is further annotated with the largest standard deviation
across buffer size (i.e., for any given capacity, we evaluate the standard deviation of the
metrics of interest across different buffer sizes, and report the largest across all capacities).
As the standard deviation is very low, this confirms reprioritization results to hold across the
explored scenarios.

As expected, capacity does not have an impact on average queue size E[Q] except for
CoDel, which controls the packet-sojourn time: as a result, larger capacities translate into a
larger number of packets to be allowed in the buffer under the same target delay configuration
(hence, a larger standard deviation). The TCP% breakdown is also unaffected under any
capacity and buffer size combination tested, confirming TCP% manages to maintain its
priority level over LPCC only under DropTail.
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Figure 3.6 Sensitivity analysis: Impact of flow duty cycle on the link utilization.

Flow duty cycle

We next observe that networks are rarely used by backlogged flows: hence, we include
duty cycle model simulating different workloads to make our simulation more realistic.
We engineer the scenario to simulate different workloads, by controlling the individual
flow duty cycle (from 10% to 100% with a 10% step). For each flow, we turn it ON and
OFF alternatively during the entire simulation duration. During each ON period, the flow
continuously transmits data, and during an OFF period, the flow remains idle and resets its
window parameters. At the end of each OFF period (including the initial state), we randomly
generate the duration of next ON period, which follows an exponential distribution with
average λ . Also, the same procedure is employed at the end of each ON period, generating
the duration of next OFF period with average duration µ . Thus, the individual flow duty
cycle is defined as λ/(λ +µ).

By design, the duty cycle model affects link utilization, so that we can individuate two
regimes. Regimes are illustrated as two colored regions in Fig. 3.6, which reports the average
link utilization as a function of the individual flow duty cycle. When individual duty cycle is
low, the aggregated load remains, on average, well below the link capacity. Also, as flows are
often idle, they will operate in isolation, only seldom interact. Still, due to TCP bursty nature,
the buffer can occasionally be filled with a burst of packets belonging to the same congestion
window, possibly triggering AQM reactions. In the underload regime, we therefore expect
each flow to get a fair share of the link. As individual flow duty cycle increases, and the
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Figure 3.7 Sensitivity analysis: Impact of flow duty cycle on the TCP breakdown.

aggregated load approaches the link capacity, packets of different flows now mix in the
buffer, and we expect AQM decisions to penalize the most aggressive flows – which as we
previously observed will induce reprioritization. Also in the overload regime, we therefore
expect each flow to get a fair share of the link.

As shown in Fig. 3.7, the expected behavior holds. In both the underload zone (shaded
left part of Fig. 3.6 and Fig. 3.7) and overload region (white right part), TCP and LPCC
always fairly share the link. In case only one flow is active at a time, it will monopolize the
bottleneck in both TCP and LPCC cases. When two (or more) flows are active at the same
time, in case one of these flows is best-effort TCP, then its AIMD dynamics will let the queue
increase and trigger AQM reaction, to the advantage of LPCC flows.

Extending results of Fig. 3.3, we report per-protocol drop rate under different AQMs and
workloads in the scatter plot of Fig. 3.8. The diagonal line corresponds to an equivalent drop
rate of packets of both TCP and LPCC: as it can clearly be seen, under all considered duty
cycle conditions TCP is more heavily penalized with respect to LPCC. Note that the line of
CoDel is very close to the diagonal, which means its penalization of TCP is the slightest
while SFQ has the heaviest penalization. Additionally, we see that fairness in the loss rate
translates in higher TCP share: notice indeed that the loss behavior is reflected in Fig. 3.7,
showing that CoDel and SFQ grant the highest and lowest TCP% breakdown respectively.
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Figure 3.8 Sensitivity analysis: Impact of flow duty cycle on drop rate.

RTT delay heterogeneity

Finally, we acknowledge that rarely flows have homogeneous delay in the real life. Yet,
as it is known that TCP exhibits RTT unfairness, it makes sense to carefully build the scenario
so to avoid RTT unfairness biasing our conclusions. First, we observe that congestion control
protocol in use end-to-end (i.e., TCP vs. LPCC) is not correlated with the RTT, as this is
an end-host decision: it follows that TCP and LPCC aggregates have no a priori reason to
have different RTT distributions. Second, we observe that as the queuing delay is low due to
AQM, the propagation delay is the dominant component of the RTT, which controls the rate
at which acknowledgments are received, which in turn controls how fast the sending rate can
change: it follows that the relative difference of RTT between heterogeneous flows, more
than the absolute RTT value, is important to gauge response to RTT heterogeneity.

As such, indicating by abuse of language with TCP and LEDBAT the set of flows using
that congestion control protocol, we engineer the scenario so that (i) both the TCP and
the LPCC sets have the same E[RT T ], (ii) the E[RT T ] of both sets is the same as in the
homogeneous case, (iii) within one set, there are no flows having the same RTT delay, (iv)
across two sets, there are one TCP and one LEDBAT flows having exactly the same RTT
delay. Specifically, we assign RT Tk = 2k ms for the k-th flows (with k ∈ [1,5]) in the TCP
and LEDBAT sets (so that E[RT T ] = 6ms is the same as the default setting).

Unsurprisingly, we verify that RTT heterogeneity does not affect our conclusion in
terms of reprioritization. While RTT unfairness affects the performance of individual flows
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Figure 3.9 Sensitivity analysis: Impact of heterogeneous RTT delay on inter/intra-protocol
fairness.

within an aggregate, we see that each aggregate as an entirety can fairly compete with each
other on the RTT (i.e., there is a balanced mix of opportunistic flows with small RTT and
penalized flows with large RTT in both sets). We resort to the classical Jain fairness index
FX = (∑N

i=1 Ti)
2/(N ∑

N
i=1 T 2

i ), with Ti throughput of the i-th connection, is calculated within
homogeneous TCP and LPCC aggregate (intra-protocol fairness), as well as over the total set
of flows (inter-protocol fairness). We visualize the impact of RTT heterogeneity in Fig. 3.9,
where we report the relative error in terms of fairness with respect to the homogeneous
scenario.

Fig. 3.9 shows that RTT heterogeneity decreases both inter-protocol and intra-protocol
fairness up to 20%. Though different AQMs have rather noticeable different impact on
fairness decrease, each of them influences TCP and LPCC aggregate in a similar way.

It is more interesting to observe the intra-protocol fairness, i.e., with respect to a set
of flows using homogeneous congestion control protocol, which may change significantly
depending on the AQM policy. We find that intra-protocol fairness of TCP (FTCP) and LPCC
(FLPCC) are quite close with respect to each AQM. To rule out the impact of congestion control
protocols heterogeneity, we measure the average Jain fairness index F = (FTCP +FLPCC)/2
as an indicator of average intra-protocol fairness 5. We have that fairness under CoDel

5. Notice that 1
2 FTCP +

1
2 FLPCC differs from evaluating the fairness over the whole aggregate FW = TCP∪

LPCC, as in the latter case we would be measuring the inter-protocol effect as well.
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Table 3.2 Sensitivity analysis report (Coefficient of variation (CoV))

η E[Q] TCP%

AQM 0.0073 0.6916 0.080

LPCC DropTail 0 0.038 0.072
AQM 0.0047 0.034 0.048

Link capacity DropTail 0.0003 1.136 0.035
AQM 0.0042 0.604 0.050

Flow duty cycle DropTail 0.259 1.309 0.120
AQM 0.313 1.067 0.057

RTT delay DropTail 0.0003 0.022 0.001
heterogeneity AQM 0.0248 0.052 0.048

(F = 0.81) is only slightly better than RED (F = 0.78) and significantly smaller than SFQ
(F = 0.99). Notice that CoDel fairness range is coherent with [6], which, however, does not
address a comparison with SFQ and reports significantly smaller fairness values for RED
(under a more heterogeneous scenario).

From the result, we can conclude that the extent up to which heterogeneous RTT delays
can affect inter-protocol and intra-protocol fairness, is closely related to AQM drop decision-
making mechanism. Due to the fact that AQM like RED and CHOKe work on the entire
buffer status, it follows that with heterogeneous delay, packets will be dropped at more varied
intervals, resulting in a lower fairness both intra-protocol and inter-protocol. For instance,
CHOKe uses sampling to find heavy hitters, dropping both packets if the sampled packet and
the newly incoming one both belong to the same flow (whereas RED would only drop the new
packet): hence, this design choice increases the fairness among flows (with respect to RED)
even when heavy hitters are flows opportunistically exploiting RTT heterogeneity. However,
scheduling decisions of the DRR and SFQ policies affect individual flow (or stochastic flow
aggregates), thus they can always ensure almost perfect fairness under these two scenarios.

Summary

Tab. 3.2 summarizes the results of the sensitivity analysis reporting the coefficient of
variation CoV (X) = σ(X)/E[X ] of the metric X of interest (i.e., link efficiency η , average
queue size in packets E[Q] and the TCP aggregate TCP%) due to each of the studied
parameters (i.e., link capacity C, buffer size Q, flow duty cycle, RTT delay, etc.). Notice that
metrics of interest all have different units and value ranges: CoV describes the dispersion in a
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way that does not depend neither on the metric unit, nor on its scale. Hence, this choice allows
a relative comparison across metrics, and makes CoV especially suitable in our context.

For parameters other than AQM, we include the result calculated both under DropTail
and AQM: i.e., to exclude the impact due to AQM (shown in the first row of the table) we
compute the CoV (X) considering each AQM policy in isolation, then report the average
E[CoV (X)]. The result shows that most values of the CoV are small, which confirms that
results are only minimally affected by any of the tested parameters, and especially for the
TCP%, confirming the generality of the reprioritization phenomenon illustrated in Fig. 3.4.

We highlight (in bold) CoV value larger than 0.5 in Tab. 3.2, which are of straightforward
interpretation. It can be seen indeed that AQM policy can have noticeable impact on average
queue size E[Q] (recall Fig. 3.2) due to both their inner working mechanism (e.g. RED limits
the queue explicitly while SFQ schedules the flows but allows a proportional increase of
packets in the queue with increasing flows) and the variation of their default parameters
(untested in this sensitivity analysis due to known difficulty in tuning AQM [54], and so not
accounted for in CoV). Obviously, buffer size influences heavily the average queue size under
DropTail (CoV=1.136), whereas flow duty-cycle translates into a wider range of queue sizes
under both DropTail (CoV=1.309) and AQM (CoV=1.067), as queues are possibly empty
unlike in backlogged workload.

Summarizing, reprioritization holds under most networking scenarios. While the spe-
cific scenario settings may have an impact on fairness and queue size statistics, they have
nevertheless only very limited impact on the reprioritization phenomenon.

3.3 Experimental results

In this section, we present the results gathered from experimental testbed. For any AQM
and LPCC combination, we explore some experimental settings, including varying bottleneck
capacity C, configuration of AQM parameters, number of flows N in the bottleneck, in both
an emulated testbed (Sec. 3.3.1) and in a real Internet deployment (Sec. 3.3.2).

3.3.1 Testbed experiments

In the testbed experiments, we directly connect two PCs through a crossover Ethernet
cable. Capacity limitations are either emulated through a Hierarchical Token Bucket (HTB)
of the standard Linux traffic control tc suite, or natively by forcing C = 10 Mbps PHY
Ethernet through ethtool (which is a more reliable option than HTB). In both cases, we turn
off most features that could possibly interfere with the experiments (e.g., jumbo frames, TCP
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segmentation offload, interrupt coalescing). To emulate a WAN setup, we inflate RTT delay
by a constant amount equal to 30 ms using netem. We configure the tc queuing discipline to
either DropTail (i.e., the default pfifo_fast), RED (with state-of-the-art configuration) or
SFQ.

We generate backlogged traffic during 60 seconds experiments, using iperf for all TCP
flavors (both best-effort and low-priority) and simple client/server applications provided by
libUTP 6 for the application-layer LEDBAT implementation. For best-effort TCP, we report
results using NewReno, the protocol of choice at the IETF, and leave the study of Compound
(default TCP flavor in Windows) and Cubic (default in Linux) for future work 7.

As for queuing delay measurement, we point out that dark buffers may lay at multiple
points in the kernel stack (e.g., TCP buffers, device driver), and that buffering may occur
outside the host (e.g., in the ADSL modem in Internet experiments). Hence, we opt for a
simple methodology that mimics the way in which TCP-Nice measures the queuing delay:
specifically, we monitor the RTT through a low-frequency ICMP ping command and estimate
the queuing delay samples as Qi = RTTi −min j≤i RTT j. Notice that, as the reverse direction
is carrying only ACK data and is thus not congested, we are safe in assuming that the RTT
variation is due to queuing at the sender side.

A further example of the temporal evolution of the utilization breakdown of TCP vs.
LEDBAT flows is depicted in Fig. 3.10 for different AQM techniques (DropTail, RED, SFQ),
capacities (500 Kbps, 10 Mbps) and emulation technique (HTB, PHY). The phenomenon
early shown in Fig. 2.1 is thus confirmed for different AQMs and testbed settings: shortly,
AQMs induce reprioritization of heterogeneous CC flows. We also see that, while when the
capacity is abundant the breakdown is smooth, the opposite happens when capacity is scarce
(which additionally leads to unfairness at short timescales).

We conduct a more systematic experimental testbed campaign that is summarized in
Tab. 3.3, reporting the TCP breakdown and average queuing delay for an emulated HTB
capacity of C = 500 Kbps. The total number of flows varies in N ∈ {2,10}, with flows
equally split in the best-effort TCP and LPCC families. Experiments report the average
over 3 independent runs. As we may now expect, DropTail leads to bufferbloat of multiple
seconds 8, which is instead solved by both RED and SFQ. The picture may change completely

6. libUTP is the uTorrent Transport Protocol (uTP) library implementation of LEDBAT, released under the
MIT license at [17]. Version d4685a3 (May 2012) was used in all experiments, though we point out that libUTP
has been very stable since, with only 4 commits, all of which were not related to congestion control issues.

7. While Windows, and thus Compound, constitutes the largest portion of hosts, it would be difficult to
replicate the same methodology. Preliminary tests with Cubic suggest the phenomenon to hold; at the same
time, we incur in problems with Cubic vs. TCP-LP since the latter appears to be more aggressive than Cubic
under DropTail– so we prefer to examine the issue at a later time.

8. In our settings, this is due to our emulated capacity limitations, coupled to the default Network Interface
Card (NIC) queue length, which for Ethernet NICs is set to 1000 packets in Linux.
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DropTail, 0.5Mbps HTB RED, 0.5Mbps HTB

DropTail, 10Mbps PHY SFQ, 10Mbps PHY

Figure 3.10 Testbed experiments: Utilization breakdown among TCP and LEDBAT, for
different AQM techniques (DropTail, RED, SFQ), capacities (500 Kbps, 10 Mbps) and
emulation technique (HTB, PHY).

under RED, depending on the LPCC flavor and the number of flows: indeed, while for N = 10
the reprioritization happens for both LEDBAT (TCP%=49.3) and TCP-LP (57%), in the case
that N = 2 flows compete for the same access, the LEDBAT+NewReno combination, through
RED, possibly results in TCP NewReno starvation (1.7%) while the opposite happens under
TCP-LP+NewReno (97.5%).

With respect to reprioritization, which is a general issue holding for a large number of
LPCC vs. AQM combinations and AQM settings, we believe the starvation phenomenon to
be of more limited interest (as it happens for a single AQM, and furthermore non-systematic,
thus tied to specific configurations). Yet, the phenomenon is still worth elucidating further,
as these differences reflect the LPCC dynamics of LEDBAT and TCP-LP. The latter is
AIMD-controlled, and its low priority stems from a slower recovery after losses that the
AIMD dynamics force. The former is delay-based and PID-controlled: by limiting the queue
size, it will seldom be penalized under RED. Whenever the queue grows due to best-effort
TCP AIMD, LEDBAT reduces its own window, and so the chances that a packet will get
dropped are very low. Whenever TCP experienced a timeout and abruptly shrank its window,
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Table 3.3 Testbed: LEDBAT vs. TCP-LP

5+5 flows 1+1 flows

TCP% E[Q] ms TCP% E[Q] ms

FIFO 94.9 6437.3 99.5 5304.3
LEDBAT RED 49.3 11.3 1.7 9.5

SFQ 76.1 106.4 57.7 15.1

FIFO 50.8 7870.6 65.8 7471.9
TCP-LP RED 57.0 21.0 97.5 2.7

SFQ 49.8 144.2 50.0 25.2

LEDBAT instead grows its window again, but in reason of its low target delay, it will limit
the amount of queuing and again prevent its packets from being dropped.

Under SFQ, TCP starvation phenomena are avoided. All flows get hashed in different
buckets at enqueue time, and since hash buckets are queried in a round-robin fashion,
this guarantees that each flow is able to send data in turn – including the best-effort TCP
that was heavily penalized under RED, though reprioritization still occurs. However, the
queuing delay under SFQ (which has a default buffer size of 127 packets) grows up to about
100-150 ms, thus approaching the limit of what is considered to be harmful for interactive
communication [82].

3.3.2 Internet experiments

We then perform additional experiments on the wild Internet. Since we have already
shown the reprioritization to hold for different combinations of LPCC and AQM, our aim
here is to disproof that these are artifacts that only arise in testbed due to, e.g., the extremely
controlled settings or, conversely, due to unexpected interactions inside the emulation layer.

In order to replicate a setup as close as possible to the typical user scenario, the sender is
connected with 802.11g WiFi to an ADSL box. The receiver is connected to another ADSL
box of another ISP through the Ethernet interface. The minimum RTT delay between the
two hosts is approximately 50 ms, and the capacity between the hosts only slightly exceeds
500 Kbps (so that it can be compared with the testbed).

We carry on experiments only for the LEDBAT LPCC, using two configurations 9 of
RED with results summarized in Tab. 3.4. It can be seen that TCP starvation persists under

9. Both RED and RED⋆ parameters are set based on recommended settings proposed in [5]. RED⋆ is a
configuration inspired by [54, 83] and crafted ad hoc by a standard trial and error procedure. We stress once
more that configuration details and scripts used for these experiments are available at [81].
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Table 3.4 LEDBAT: Testbed vs. Internet Experiments

5+5 flows 1+1 flows

TCP% E[Q] ms TCP% E[Q] ms

FIFO 94.9 6437.8 99.5 5304.3
Testbed RED 49.3 11.3 1.7 9.5

RED⋆ 71.9 763.9 98.2 333.8

FIFO 97.0 6551.7 98.9 916.0
Internet RED 2.6 45.0 5.1 29.1

RED⋆ 63.8 745.2 86.7 305.4

RED when the number of flows is small: we stress that we observe TCP starvation only
under the RED+LEDBAT combination, since as previously explained RED tries to penalize
flows proportionally to the queue they create while LEDBAT is designed to precisely avoid
queuing.

This unexpected phenomenon is worth pointing out, as it may add other reasons not to
deploy RED other than those listed in [61]. At the same time, it is also worth highlighting
that the phenomenon appears to be non-systematic and possibly arises from specific configu-
ration and network environment (that are possibly hard to reproduce [84, 85]). Additionally,
starvation is not observed under scheduling disciplines as SFQ, which may play a more
important role than RED in the near future. It follows that the practical relevance of this star-
vation phenomenon is expected to be significantly smaller with respect to the reprioritization
phenomenon.

Finally, we experiment with RED⋆, a configuration inspired by the fluid model in [83],
which reinstates the relative CC priorities, but at the cost of an already sizeable bufferbloat
(in the order of several hundred milliseconds, which makes it thus an impractical solution).
The main difference between RED⋆ vs. RED configurations is that RED⋆ sets a larger
minth (16500B) compared to that in RED (1500B). As the queuing delay equivalent to minth

exceeds the default LEDBAT queuing delay target value (respectively, 264ms vs 100ms), this
partly allows relative prioritization of end-to-end TCP vs. LEDBAT protocols. Intuitively, in
this case our configuration starts dropping packets after the LEDBAT queuing delay target,
so that TCP has the chance to grow its congestion window at the expense of LEDBAT (that
by its LPCC nature will back off in the presence of best-effort TCP) before one of its packets
get dropped by AQM; however, TCP recovery is in this case fast enough, and the additional
buffer space beyond the LEDBAT target is large enough, to let TCP prevails over LEDBAT.
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3.4 Summary

In this chapter, we studied the interaction between Active Queue Management (AQM)
and Low-priority Congestion Control (LPCC). We considered a fairly large number of
AQM techniques (i.e., RED, CHOKe, SFQ, DRR and CoDel) and LPCC protocols (i.e.,
LEDBAT, TCP-Nice, and TCP-LP), studying system performance (mainly expressed in terms
of TCP% breakdown, average queue size E[Q], and link utilization η) with both simulation
and experimental methodologies.

Summarizing our main findings, we observe that AQM resets the relative level of priority
between best-effort TCP and LPCC. That is to say, the TCP share of the bottleneck capacity
drops dramatically, becoming close to the LPCC share. Additionally, while reprioritization
generally equalizes the priority of LPCC and TCP, we also find that some AQM settings may
actually lead best-effort TCP to starvation – as these are however non-systematic, we believe
the starvation issue to be of less practical relevance than reprioritization.

Reprioritization is a fairly general phenomenon, as it holds for any combination of AQM
technique, LPCC protocol and network scenario. This is testified by our thorough sensitivity
analysis, where we confirmed the phenomenon for varying network parameters such as buffer
size Qmax, link capacity C, heterogeneous RTT delay, flow numbers and flow duty cycle for
over 3,000 simulations.

Reprioritization is a real world phenomenon, easily replicable on testbed and the Internet,
which cannot be easily solved via AQM tuning. Hence, we advocate that explicit collaboration
is needed from LPCC (e.g., openly advertise low priority) to assist AQM in taking decisions
that maintain the desired level of priority.





Chapter 4

Control theoretic analysis

In the previous chapter, we show that “reprioritization” phenomenon is general and can
arise from the interaction of any scheduling/AQM discipline and LPCC protocol shown in
Fig. 2.2, using a twofold methodology including ns2 simulation and experiments from both
controlled testbed and wild Internet. In this chapter, we further investigate this phenomenon
differently in both its depth and methodology: indeed, we adopt a narrower but profound
scope, selecting LEDBAT and RED as representative examples of the LPCC and schedul-
ing/AQM design space that we then analytically model. As our main innovation is not on
the technique per se, but on its application to the study of a particular problem, we resort
to classic models for TCP [75] and RED [73], that we extend to incorporate novel popular
protocols such as LEDBAT.

First, to convince the reasonability of our choice of one AQM+LPCC combination to
model, we depict in Fig. 4.1 an original representation of simulations performed in [86, 87]:
results are arranged as a bubble chart, where the center of the bubble represents the average
(TCP share%, queue occupancy) for a specific AQM+LPCC pair, and the radius of the bubble
represents the standard deviation over the different network parameters considered. It can
be seen that, while under DropTail, TCP% monopolizes the bottleneck causing bufferbloat
(“bufferbloat” zone in the y-axis), any combination of AQM+LPCC protocol results in a
reduction of the queue length below the threshold considered to be harmful to interactive
communications (100ms or 33 packets for the capacity considered in this example), but also
on a dramatic low TCP share (“reprioritization” zone in the x-axis). We find no combination
in the “ideal” zone, which roughly represents a short queue size with acceptable delay
and a high TCP% (according to LPCC’s design goal, a 100% TCP% is ideal). It is worth
stressing that whereas the actual values TCP share or queue size vary quantitatively across
combinations, reprioritization is a qualitatively general phenomenon. It is thus reasonable
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Figure 4.1 Interaction of scheduling/AQM disciplines and LPCC protocols.

to develop a model for one such AQM+LPCC combination, to give both solid theoretic
explanation of the observed phenomenon, and intuition and insights behind its root causes.

Second, we stress that our objective is far from being a sterile academic exercise, as
mixtures of AQM+LPCC are already commonplace in the current Internet landscape. On the
one hand, it has to be observed that LEDBAT is used by BitTorrent, the most prominent P2P
applications: whereas downlink traffic is dominated by Video streaming applications and
portals (e.g., Netflix and YouTube), BitTorrent is the top-1 application on uplink traffic, and
can be credited for over one-third of all upload traffic in North America, Latin America, and
Asia Pacific, as the latest report [13] from the Canadian broadband management company
Sandvine testifies. As claimed by Brahm Cohen, “LEDBAT is now the bulk of all BitTorrent
traffic, [...] most consumer ISPs have seen the majority of their upload traffic switching
to a UDP-based protocol” [52], it is also confirmed by our own independent measurement
in customer ISPs [51]. On the other hand, it has also to be stressed that AQM adoption
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Figure 4.2 Network scenario.

worldwide has started to change, with operators implementing scheduling policies in the
upstream of the ADSL modem to improve the quality of user experience. For instance, in
France, Free implements Stochastic Fair Queuing (SFQ) since 2005 [7] and Orange has
started the deployment of Shortest Queue First (SQF) in 2010 [55]). Similarly, US follow
suit with new promising AQM techniques, such as CoDel [6], under active development in
DOCSIS modems [8].

Based on the above observations, we argue the RED+LEDBAT combination to be a
reasonable modeling target. Indeed, though there is no agreement on a single specific AQM
technique, due to the similar behavior of any AQM+LPCC combinations in Fig. 4.1, results
will be still qualitatively relevant across combination. To simplify the analysis, we therefore
decide to propose a new model for LEDBAT (which is by far the most used LPCC protocol
in the Internet nowadays) and resort to known models of RED (which is by far the most
popular AQM technique in the literature).

This chapter is organized as following: in Sec. 4.1 we provide closed-form solution for the
equilibrium in open-loop and in Sec. 4.2 we provide a stability analysis and a characterization
of the reprioritization phenomenon when closing the loop with RED. The validation between
the model and corresponding simulation results are reported in Sec. 4.3, followed by a simple
yet practical system-level solution proposed in Sec. 4.4. We finally conclude the control
theoretic analysis in Sec. 4.5.

4.1 Open-loop model

The goal of this section is to provide an open-loop model of the system composed of the
LEDBAT and TCP sources that access a bottleneck whose queue is governed by a generic
AQM controller.
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As a reminder, the network scenario analyzed in this chapter is shown in Fig. 4.2. NW

TCP long-lived flows and NZ LEDBAT flows share a bottleneck with a fixed capacity C,
whose access queue is of size B and implements a generic AQM scheme. In Sec. 4.1.1
we derive a mathematical model of the open-loop system, meaning that we consider the
packet dropping probability p(t) set by the AQM controller as given, i.e. it is assumed to
be an input parameter of the model. This assumption is not fully realistic, since, in practice,
packet loss probability p(t) arises from queuing dynamics, which in turn are induced by
the behavior of the sources. Nevertheless, the analysis of this simplified system allows us
to gather important preliminary information on the behavior of the system. In particular,
our study of the open-loop system focuses mainly on its equilibrium points and the analysis
of their properties (see Sec. 4.1.2). Furthermore, we complement our analysis in section
Sec. 4.1.3 by providing a clear physical interpretation of our findings. Finally, in Sec. 4.2 we
will close the loop considering the effect of queuing dynamics on the loss probability for the
specific case of RED.

4.1.1 The mathematical model

We denote the average TCP and LEDBAT window at time t as W (t) and Z(t) respectively.
For TCP, we neglect the slow-start phase, which is instead only optional in LEDBAT. As
such, we limitedly model the TCP congestion window dynamics in the congestion avoidance
phase. At the reception of the (n+1)-th ack at time tn+1, the TCP congestion window is
updated as follows:

W (tn+1) =

1
2W (tn) on packet loss,

W (tn)+ 1
W (tn)

otherwise
(4.1)

Similarly to TCP, LEDBAT reacts to losses by halving the congestion window, but it increases
its congestion window at a rate that is proportional to the distance of the queuing delay q(t)
from the delay target τ and is always bounded by the TCP ramp-up in congestion avoidance:

Z(tn+1) =

1
2Z(tn) on packet loss,

Z(tn)+ 1
Z(tn)

τ−qd(tn)
τ

otherwise
(4.2)
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with the current queuing delay qd(t) measured as:

qd(tn) = D(tn)−Dmin (4.3)

Dmin = min
n

D(tn) (4.4)

where D(n) represents the instantaneous one-way delay (OWD) estimate, while the base
delay Dmin is the minimum observed OWD. The rationale is that, over a sufficiently large
number of observations Dmin accurately represents the fixed component of the delay (i.e.,
propagation delay plus negligible transmission delay, which should be the one found when
queues are empty) so that the D(tn)−Dmin difference represents the variable component of
the delay (i.e., queuing delay plus negligible processing delay).

Notice that host synchronization over the Internet is known to be hard. As such, it is
worth stressing that the OWD estimate D(tn) is affected by an unknown clock offset between
the two endpoints, and is thus of no practical use. Conversely, the offset cancels in the
difference operation in (4.3), which is only affected by clock drift – that is of much smaller
magnitude and furthermore easier to correct [88].

From (4.2), we gather that ramp-up is as fast as TCP only whenever the queue is empty
(4.3), i.e., limqd→0

τ−qd
τ

= 1 . Furthermore, whenever the queuing delay hits the target τ , the
congestion window settles since – when qd = τ holds – it results Z(tn+1) = Z(tn) for all n.

To analyze the interactions between sources and queue dynamics, we adopt a fluid flow
modeling approach [73–76] in which the average dynamics of both sources and queues are
described by nonlinear time-delay differential equations. In the following, we denote by
Wi(t) the instantaneous congestion window at time t for connection i in the fluid system, by
Ri(t) the Round Trip Time (RTT) and by p(t) the packet dropping probability set by the
AQM algorithm. We consider the case of NW TCP and NZ LEDBAT connections sharing the
same bottleneck, where flow-level congestion window evolution the TCP case is adopted
from [73]:

dWi(t)
dt

=
1

Ri(t)
− Wi(t)W (t −Ri(t))

2Ri(t −Ri(t))
p(t −Ri(t)) (4.5)

dZi(t)
dt

=
τ −q(t −Ri(t))/C

τ

1
Ri(t)

− Zi(t)Z(t −Ri(t))
2Ri(t −Ri(t))

p(t −Ri(t)) (4.6)

dq(t)
dt

=
NW

∑
i=1

Wi(t)
Ri(t)

+
NZ

∑
i=1

Zi(t)
Ri(t)

−C1q(t)≥0 (4.7)
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Figure 4.3 Block diagram of the proposed model.

where the queuing delay is modeled as qd(t) = q(t)/C as suggested in [74]. The RTT Ri(t)
is the superposition of two components: one constant component, i.e. the propagation delay
Ti, and one time-varying, i.e. the queuing delay qd(t), thus giving Ri(t) = Ti +q(t)/C. For
this reason, the RTT cannot be considered to be constant since the component due to queuing
delay can be predominant over the propagation delay – which is especially true in the case of
bufferbloat due to FIFO buffering. Conversely, in case AQM is used to avoid bufferbloat, it
could be reasonable to assume the reverse q(t)/C ≪ Ti to hold.

We conclude this section by analyzing Fig. 4.3 that provides a representation of the
dynamical system (4.5)-(4.6)-(4.7) in the form of a block diagram. The figure clearly shows
that two control components interact to form the overall control system: (i) end-to-end
control algorithms, namely TCP and LEDBAT, and (ii) the AQM controller.

The AQM control component sets a packet drop probability p(t) that is first delayed and
then fed in parallel to the TCP and LEDBAT blocks. Thus, we can argue that this control
action acts equivalently on both the dynamics of the TCP and LEDBAT flows.

Concerning the end-to-end control algorithms, it is easy to check that the only difference
stems from the fact that LEDBAT dynamics is explicitly affected by the instantaneous queue
length. With this regard it is interesting to notice that, from a control-theoretic point of view,
the term −q(t −Ri(t))/(τC) in (4.6) plays the role of a “stabilizing” control signal since
its sign is always negative or zero (q(t)≥ 0). Moreover, it is intuitive to anticipate that the
value of the constant positive gain 1/(τC) plays an important role: the larger this constant,
the larger will be the effect of the control signal −q(t −Ri(t))/(τC) on the dynamics of the
LEDBAT flow. The next sections will give a theoretical ground to this statement and show
some important properties of the system.
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4.1.2 Equilibrium and properties

In this section, we compute the equilibrium of the proposed mathematical model, which
allows us to derive some fundamental properties of the system. For the sake of simplicity,
we consider a bottleneck shared by an equal number of TCP and LEDBAT flows, i.e.
NW = NZ = N. Moreover, we consider a homogeneous case, in which all the connections
exhibit the same RTT (i.e., for both LEDBAT and TCP sources Ti = T ∀i). It is also worth
noticing that the results presented below are valid regardless of the AQM control algorithm.

Proposition 1. The unique equilibrium (w,z,q) of (4.5)-(4.6)-(4.7) when N = NW = NZ , in
the case of a generic AQM algorithm setting a steady-state packet drop probability p ∈ [0,1],
is given by:

w =

√
2
p

(4.8)

z =


w

√
2 < w ≤ C

2N T

w
2

[√(Nw
τC −2

)2
+4T

τ
− Nw

τC

]
C
2N T < w ≤ (τ +T )C

N

0 w > (τ +T )C
N

(4.9)

q =


0

√
2 < w ≤ C

2N T

τC

[
1− 1

4

(√(Nw
τC −2

)2
+4T

τ
− Nw

τC

)2
]

C
2N T < w ≤ (τ +T )C

N

Nw−TC w > (τ +T )C
N

(4.10)

Proof. We denote with (w,z,q) the equilibrium components of the steady state. By imposing
dW/dt = 0 in (4.5) we readily obtain:

w =

√
2
p
.

It has to be noted that since p ∈ [0,1] the steady-state value of the TCP window is lower
bounded by

√
2. By imposing dZ/dt = 0 in (4.6) we get:

1
τR

(τ −q/C)− z2

2R
p = 0,

which gives:
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z =

w
√

1− q
τC 0 ≤ q ≤ τC

0 q > τC
(4.11)

Let us begin by focusing on the case 0 ≤ q ≤ τc. By letting q̇ = 0 in (4.10) we obtain:

Nw+Nw
√

1− q
τC

= TC+q (4.12)

We now make the change of variables:

x(q) =
√

1− q
τC

(4.13)

that is a monotonically decreasing mapping from the set [0,τC] to the set [0,1]. By plugging
(4.13) into (4.12) we get:

x2 +
Nw
τC

x+
Nw
τC

− T
τ
−1 = 0 (4.14)

By solving (4.14) we get a unique positive solution:

x =
1
2

√(
Nw
τC

−2
)2

+4
T
τ
− Nw

τC

 (4.15)

The solution (4.15) is meaningful only if it belongs to the domain [0,1]. Let us start by
looking at the upper bound of the solution by plugging x = 1 into (4.15), which corresponds
to the case q = 0: √(

Nw
τC

−2
)2

+4
T
τ
− Nw

τC
= 2. (4.16)

After a little algebra we obtain:

wmin =
TC
2N

(4.17)

To get a physical interpretation of wmin we have to consider that for this value of w the queue
is zero and z(wmin) = w, i.e. the N TCP and N LEDBAT flow obtain exactly the same per
flow rate equal to wmin/T . It has also be noticed that the sum of the rates of the LEDBAT
flows and TCP flows is exactly equal to the capacity of the link:

N
wmin

T + q
C
+N

wmin

T + q
C
=

2N
T

wmin =C (4.18)
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Let us now consider the other extreme case x = 0 corresponding to q = τc. In this case by
substituting x = 0 in (4.15) we get:

wmax =
C
N
(T + τ) (4.19)

Thus, we conclude that the interval 0 < q < τC maps to the interval TC/(2N) < w <

C(T + τ)/N. By considering (4.15) and (4.13) we obtain the equilibrium for the queue when
TC/(2N)< w <C(T + τ)/N:

q = τC

1− 1
4

√(
Nw
τC

−2
)2

+4
T
τ
− Nw

τC

2
 (4.20)

It is important to notice that z = 0 when w = wmax, meaning that in this case the whole
link capacity is allocated to the N TCP flows. Finally, by plugging (4.20) in (4.11) we get the
LEDBAT window size at steady-state when TC/(2N)< w <C(T + τ)/N:

z =
w
2

√(
Nw
τC

−2
)2

+4
T
τ
− Nw

τC

 . (4.21)

Let us now consider the case q ≥ τC that occurs when w ≥ C(T + τ)/N. In this case
z = 0 and, as a consequence, q = Nw−TC > 0.

To conclude the proof we have to consider the case w < wmin = TC/(2N). It is easy to
check that q = 0 and thus by plugging this value in (4.11) we obtain z = w.

Remark 1. At steady state w, z, and q vary as a function of p according to the three different
operating zones 1 that are shown in Fig. 4.4:

1. No reprioritization 0 ≤ p < 2N2/(C2(τ + T )2): in this zone z = 0 and thus the
dynamics of N TCP flows accessing a bottleneck described in [74] is recovered.

2. Reprioritization 2N2/(C2(τ +T )2) ≤ p < 8N2/(CT )2: in this zone 0 < z < w and
q > 0, meaning that reprioritization is occurring since the LEDBAT flows are getting
a non-negligible bandwidth share;

3. Underutilization 8N2/(CT )2 ≤ p ≤ 1: in this zone w = z =
√

2/p and q = 0 and in
this case the link is not fully utilized since ∑w/R+∑z/R = 2Nw/R <C;

Proposition 2. A sufficient condition to avoid reprioritization in the case an equal number
N of TCP and LEDBAT flows access a bottleneck link of capacity C, round-trip propagation

1. In the following we consider that CT/(2N)>
√

2 otherwise the first zone would collapse to a point.
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Figure 4.4 LEDBAT window size z, TCP window size w, and queue size q at the equilibrium
as a function of p ∈ [0,1].
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delay T , with a queue governed by a generic AQM algorithm is that:

C
N

T + τ√
2

< 1. (4.22)

Proof. To prove this proposition we need to show that for any p ∈ [0,1] set by a generic AQM
algorithm the LEDBAT congestion window z is zero at the equilibrium. From Remark 1 we
have that z = 0, i.e. no reprioritization occurs, when the following condition holds:

0 < p <
2N2

(τ +T )2C2 . (4.23)

To conclude the proof we observe that when (4.22) holds the right extreme 2N2/((τ +T )2C2)

of (4.23) is always greater than 1, meaning that the only possible equilibrium is z = 0
regardless of the loss probability p set by the employed AQM control algorithm.

Remark 2. Since (4.22) is a sufficient condition, when (4.22) does not hold, reprioritization
could be still avoided by a particular AQM control law that sets a steady-state p such that
(4.23) holds.

4.1.3 Discussion

In this section, we analyze the tension that exists between the two main components of the
overall system: (i) end-to-end control algorithms, implemented at the transport or application
layer in the hosts; (ii) AQM controllers which are executed in the routers, i.e. in the network.
Ideally one could aim at independently tuning the two control algorithms while obtaining the
following two properties at steady-state: (i) the LPCC flows only get a negligible share of
the bottleneck when competing with TCP flows (reprioritization is avoided); (ii) the queuing
delays are minimized (bufferbloat is avoided).

Thus, in this section we investigate whether, by only tuning the LEDBAT delay target τ ,
it is possible to satisfy the two properties mentioned above. Towards this end, we consider
Proposition 2 which provides a sufficient condition to avoid reprioritization. Thus, if we can
show that condition (4.22) is general enough in practical scenarios and when it holds, is able
to also avoid bufferbloat, we would have satisfied both the properties by only tuning τ .

With this purpose in mind we rewrite (4.22) as follows:

0 < τ <
√

2
N
C
−T (4.24)

and we observe that if the inequality (4.24) is verified for some positive τ then reprioritization
is avoided regardless of the specific AQM employed. Of course, satisfying (4.24) would
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need the apriori knowledge, or a worst case estimate, of the number of concurrent TCP and
LEDBAT flows N, the capacity of the bottleneck C, and the round-trip propagation delay
of connections T . By considering a typical example, we show that using (4.24) might be
unfeasible because it could require setting a delay target τ that is either negative or too small.

To begin with, notice that for a typical ADSL whose upload data rate is 500Kbps, the
transmission of a full MTU packet takes about 24 ms: initial versions of LEDBAT used to set
τ = 25 ms, i.e., a packet worth of queuing. However, due to practical limitations (including
timestamp precision in Windows OS, clock drift of several ppm in off-the-shelf PCs, etc.)
this setting did not allow to fully exploit the link capacity, the reason why the target was later
increased to τ =100 ms. Thus, even though in principle one should set τ as low as possible,
for practical issues τ has to be set to a value that is lower bounded at least by τmin =25 ms
(for which we already know that underutilization of the bottleneck occurs).

Therefore, if we require now that τ > τmin, for (4.24) to be feasible we have to satisfy the
following condition:

N >
C√

2
(T + τmin). (4.25)

Now, we turn our attention to the case in which an ADSL whose uplink data-rate is 1 Mbps,
which corresponds to C = 100pkt/s for packets of fixed size P = 1250B, is shared by flows
whose round-trip propagation delay T is 50ms. In this case (4.25) would require at least
N = NZ = NW = 6, i.e. a total of 12 flows sharing the bottleneck, a condition which might
not hold in general. From these arguments, we can say that it is in general not possible to
tune τ independently from the AQM control law in order to both avoid reprioritization and
bufferbloat.

We now take a different point of view and we analyze the formula of the TCP bandwidth
share ρ at steady-state that is able to both quantitatively explain the interplay between AQM
and LEDBAT algorithms and the reprioritization issue shown in Fig. 4.1. In particular we
have:

ρ =
w

w+ z
(4.26)

By plugging the steady state w and z in the form of (4.11) we readily obtain:
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ρ =


1

1+
√

1− q/C
τ

0 ≤ q/C ≤ τ

1 q/C > τ

(4.27)

It is straightforward to notice that ρ ∈ [1/2,1]: ρ = 1 corresponds to the desirable case in
which reprioritization is avoided and that is obtained when the steady state queuing delay q/C
is greater than the LEDBAT target delay τ; ρ = 1/2 represents the non-desirable situation
where LEDBAT and TCP get the same bandwidth share which is obtained when q/C → 0.
This discussion confirms what we have anticipated at the end of Sec. 4.1.1, i.e. that the
control term −q/(τC) that appears in the LEDBAT differential equation (4.6) is the main
component driving the interplay between the two control algorithms acting on the system, i.e.
AQM and end-to-end.

Interestingly, (4.27) is the only function of the two parameters used by the AQM and the
LEDBAT algorithms. The main parameter that can be used to tune LEDBAT is τ , whereas
AQM algorithms trying to avoid bufferbloat strive to make the queuing delay qd = q/C small.

While a 100 ms target may be reasonable for an end-to-end protocol, such as in the
case of LEDBAT [12], an AQM may be more precise in measuring the queue size and in
adopting more aggressive dropping policy. This is, in fact, the case for two recently proposed
AQM algorithms, namely CoDel and PIE: CoDel employs a target sojourn time of only
5 ms, whereas the default queuing delay target used by PIE is 20 ms. It is then reasonable to
assume that in practical scenarios q/C < τ holds and consequently ρ < 1. This explains why
the ideal interplay of AQM and LPCC that avoids bufferbloat and reprioritization shown in
Fig. 4.1 is unfeasible.

Another important observation can be drawn by analyzing the absolute sensitivity of
ρ with respect to τ or qd = q/C, i.e. ∂ρ/∂qd and ∂ρ/∂τ , in the region qd < τ where
reprioritization occurs:

∂ρ

∂qd
(τ,qd) =

1
2τ(1+

√
1−qd/τ)2

√
1−qd/τ

(4.28)

∂ρ

∂τ
(τ,qd) =

qd/τ

2τ(1+
√

1−qd/τ)2
√

1−qd/τ
(4.29)

Both the sensitivity functions show an asymptote at qd = τ meaning that a sharp transition
phase occurs when moving from the non-reprioritization (qd > τ) to the reprioritization zone
(qd < τ) – yet another reason to make it impractical to rely on a single parameter selection τ

to drive the overall system performance.
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4.2 Closed-loop model

In this section, we focus on the properties of the closed-loop system that is obtained when
a particular AQM controller, namely RED, is used. As already mentioned, RED has been
chosen as a representative AQM algorithm mainly due to its popularity in the literature. It is
worth noting that, even though the quantitative results derived in the following are specific to
RED, the qualitative behavior of the system obtained by closing the loop with another AQM
algorithm would be similar (see Fig. 4.1).

We start our analysis by deriving the model of the closed-loop system. To the purpose we
take the model described by (4.5)-(4.6)-(4.7) and we plug the RED control law that sets the
packet dropping probability p(t) according to a static function f : R+ → [0,1] ⊂ R of the
queue size q(t) defined as follows:

f (q) =


0 q < qmin

maxp
q−qmin

qmax−qmin
qmin ≤ q ≤ qmax

1 q > qmax

(4.30)

where maxp ∈ [0,1] is the maximum dropping probability when q ∈ [qmin,qmax]. In Sec. 4.1
we have shown that reprioritization is driven by two parameters, i.e. the steady state queuing
delay q/C and the LEDBAT target τ (see (4.27)). For this reason, we consider the system
parameters space to be qmin, which relates to q/C, and τ . In particular, we analyze the
closed-loop system and we explore the system parameters space to characterize: (i) the
region of the system parameters where the reprioritization phenomenon is avoided, (ii) the
stability region of the equilibrium.

4.2.1 Characterizing reprioritization

In order to characterize the reprioritization phenomenon in the parameters space, we have
to compute the window size of the LEDBAT and the TCP flows at the equilibrium. Towards
this end, we use Proposition 1 (Sec. 4.1) that characterizes the equilibrium of the open-loop
system in closed form as a function of the packet drop probability p set by a generic AQM
controller.

We start by observing that the cases q < qmin and q > qmax are trivial and can be treated as
follows. In the case q < qmin RED would set a packet dropping probability equal to 0 that
would make z = 0, i.e. LEDBAT is starved, and w → ∞. However, since the congestion
window w is always limited by the advertised window set by the flow control, in practice we
would have w = wmax. The other limit case occurs when q > qmax and RED would compute a
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packet dropping probability of 1, meaning that all packets are dropped, a situation of limited
practical interest.
From the consideration made above, we limitedly focus on the case q ∈ [qmin,qmax] where p
is set proportional to the error q−qmin:

p(q) = k(q−qmin) (4.31)

with the gain k defined as k = maxp /(qmax − qmin). Thus, substitution of (4.31) in (4.10)
yields the following equation has to be solved to get the steady-state queue length q ∈
[qmin,qmax]: √

1− q
τC

=
TC+q

N

√
k
2
(q−qmin)−1 (4.32)

Then, in order to get p we substitute the steady state queue length q solution of (4.32) in
(4.30). Finally, plugging p in (4.8) and (4.9) we get the steady state window size of the TCP
and LEDBAT flows respectively.
In order to characterize the local stability of the equilibrium we linearize the system around
the equilibrium (w,z,q) to get the following linear time-delay system:

ẋ(t) = A0x(t)+ARx(t −R) (4.33)

where the state of the linearized system is x(t) = [W (t)−w,Z(t)− z,q(t)−q]T , R = T +q/C
and the matrices A0, and AR are defined as follows:

A0 =


−

√
p√

2R
0 − 1

R2C

0 −
√

p(1− q
τC )√

2R
− τ+T

τR2C
NW
R

NZ
R −NW w+NZz

R2C

 ;AR =


−

√
p√

2R
0 1

R2C − k
pR

0 −
√

p(1− q
τC )√

2R
τ−q/C
τR2C − k 1− q

τC
pR

0 0 0


(4.34)

It is well-known that the equilibrium of a non-linear time-delay system is locally stable if
all the eigenvalues of the characteristic equation associated to (4.33) are in the left half-
plane [89]. Since the equilibrium (w,z,q) cannot be found in closed form, we resort to
numerically find the rightmost eigenvalue of (4.33) by using the tools described in [90].

Fig. 4.5 shows both reprioritization and stability regions in the parameters space (T,τ) in
the case of a bottleneck with a capacity C = 100 pkt/s, propagation round trip time T = 50 ms
maximum queue length qmax = 100 pkt which corresponds to a maximum queuing delay of
1 second. It is worth noting that such values are commonplace today, with modem buffers
able to hold up to 4 seconds worth of data [50]. We have considered qmin ∈ {1,2, . . . ,10} pkt
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to cover both AQM algorithms specifically designed to contain the queuing delay (CoDeL
and PIE) and AQMs designed to contain queue length (f.i. RED, Choke [16]). Finally, for
simplicity and without loss of generality, Fig. 4.5 shows the case of one LEDBAT with one
concurrent TCP flow, i.e. N = 1.

Let us consider a pair (T ∗,τ∗) and qmin = q∗min: the equilibrium is stable if (T ∗,τ∗) is
at the left of stability boundary (dashed line) associated to q∗min; similarly, it is simple to
show that no reprioritization occurs, i.e. the LEDBAT bandwidth share at steady state is zero
(z = 0) if (T ∗,τ∗) is below the reprioritization boundary (solid line) associated to q∗min. To
give an example, Fig. 4.5 shows in gray the region where both stability of the equilibrium
and reprioritization avoidance are obtained in the case of qmin = 1 pkt.

The figure shows that, as previously observed, the reprioritization phenomenon vanishes
when τ < q/C: in other words, when this condition holds all LEDBAT flows will by design
yield to TCP and the system will behave as [73, 74]. At the same time, this scenario is
unlikely to hold in practice. In fact, as previously observed, end-to-end congestion control
protocols such as LEDBAT rely on noisy measures of queuing delay, so that they will not be
able to guarantee protocol efficiency when τ → 0.

In the following, we shall characterize reprioritization using a more fine-grained approach
as opposed the binary information that Fig. 4.5 conveys. In particular, we employ the TCP
bandwidth share ρ given by (4.27) to measure the level of reprioritization, recalling that
when ρ is close to 1 reprioritization is avoided.

We depict in Fig. 4.6 the TCP share ratio ρ at the equilibrium for varying user scenarios
(i.e., number of TCP and LEDBAT flows N, LEDBAT target settings τ , and RED settings
qmin).

Fig. 4.6 shows that under AQM the TCP share exhibits a sharp transition phase as soon as
τ exceeds qmin, quickly dropping with a hyperbolic slope from a monopoly situation (ρ → 1)
to a fair share (ρ∗ ≈ 0.58 for τ = 2q). Interestingly, [48] shows that in the DropTail case,
which can essentially be recovered from ours by letting qmin → qmax = B, a sharp transition
phase from TCP monopoly to a fair share happens whenever τ → B. This difference is rooted
on the fact that RED dropping rates are strictly positive as soon as the queue size exceeds
qmin, whereas DropTail decisions have to wait until the queue exceeds B.

From Fig. 4.6 we also gather that different RED settings only minimally affect the repri-
oritization phenomenon. Trivially, since no dropping happens for q < qmin, this parameter
plays the biggest role in determining the queue size at the equilibrium. Next comes the load
factor, i.e., the number of flows insisting on the bottleneck.
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Figure 4.6 TCP share ratio ρ at the equilibrium as a function of τC/qmin for various flow
number N, LEDBAT τ , and RED qmin settings.

The impact of the LEDBAT target τ on the queue size has almost a step-like behavior,
that can be explained taking into account the discussion about the absolute sensitivity of ρ

with respect to τ (see (4.29)) or qd = q/C (see (4.28)) provided in Sec. 4.1.3.

4.2.2 Characterizing system dynamics

In this section, we explore the parameter space with the aim of characterizing the
dynamical behavior of the system. To the purpose, let us consider again Fig. 4.5: the figure
shows that the main parameter affecting the stability of the equilibrium is T , whereas the
influence of qmin and τ is less important. Indeed, the adverse effect of time-delays in control
loops is well-known and it affects a wide class of dynamical systems [89]. In particular,
many time-delay systems display Hopf bifurcations when the time-delay T is varied: the
linearized system is stable, i.e. all the eigenvalues are in the left-half plane, until T is equal
to a critical value Tc for which a couple of purely imaginary eigenvalues appear; then, for
T > Tc the real-part of those eigenvalues increases. When a Hopf bifurcation takes place, a
limit cycle, i.e. an isolated periodic orbit, branches from the fixed point and a self-sustained
oscillatory dynamics is established for T ≥ Tc [91].
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Even though it is not the main focus of this work, in the following we shall characterize
the properties of the dynamics of the system when T and τ are varied. In particular, we will
show that, when the local stability of the equilibrium is lost, i.e. when passing from the
stable to the unstable region shown in Fig. 4.5, a Hopf bifurcation occurs and the behavior
of the solutions at steady-state will change from being stationary to being periodic. With
this purpose, we make T and τ vary and we numerically solve the time-delay differential
equations to measure the amplitude of the oscillations as a function of the two parameters.
Fig. 4.7 shows a contour plot of the oscillation amplitude function of T and τ : as expected, in
the stable region – the one at the left of the stability boundary show in black – the amplitude
of the oscillations is zero, meaning that a stationary behavior is obtained; as soon as we leave
the stable region self-sustained oscillations appear whose amplitude gets larger and larger as
we move away from the stable region. Fig. 4.8 shows the phase plots in the case of T = 0.1 s
and T = 0.2 s when τ is fixed to 0.2 s: in the case of T = 0.1 s, since we are in the stable
region, the equilibrium is reached asymptotically; on the other hand when T = 0.2 s, the
trajectory describes a closed orbit and it does not converge to the equilibrium.
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Figure 4.9 LEDBAT and TCP dynamics window comparison in the four regions (qmin = 10pkt,
qmax = 100pkt, C = 1Mbps, N = 1)

Let us now consider Fig. 4.9 that shows the dynamics of the system in each of the four
regions shown in Fig. 4.5.

The two figures at the left are representative of the region where the system is stable
and exhibits a stable response: the figure at the top-left corner shows the case in which
reprioritization is obtained and the LEDBAT flow gets a non-negligible share of the bottleneck
bandwidth; on the other hand, the figure at the bottom-left corner shows the desirable case
where the LEDBAT flow is starved by the TCP flow. The two figures at the right of Fig. 4.9
show the corresponding behavior in the case the propagation delay T is larger than the critical
value and, as expected considering the above analysis, a periodic response is obtained.

We conclude this section by showing the time-evolution of the system equations when
NW = NZ = 1 in Fig. 4.10 under either DropTail (a) or RED (b,c,d) disciplines. Top plot
shows the LEDBAT and TCP window congestion windows evolution, while queue q(t) is
reported in bottom plots.

In the DropTail case, we set τ = 0.1 s and observe the same behavior shown via ns2
simulation in [14]: i.e., LEDBAT yields to TCP as expected under DropTail. In the RED case,
we set qmax = B = 100,qmin = 10 for the sake of illustration and let τ grow from 0.1 s (b) to



62 Control theoretic analysis

0 50 100 150

R
a

te
 [

k
b

p
s
]

0

500

1000

τ = 0.1 s, DropTail

W(t)

Z(t)

Time [s]
(a)

0 50 100 150

Q
u

e
u

e
 [

p
k
t]

0

50

100

q(t)

0 50 100 150
0

500

1000

τ = 0.1 s, RED

W(t)

Z(t)

Time [s]
(b)

0 50 100 150
0

50

100 q(t)

0 50 100 150
0

500

1000

τ = 0.2 s, RED

W(t)

Z(t)

Time [s]
(c)

0 50 100 150
0

50

100 q(t)

0 50 100 150
0

500

1000

τ = 0.4 s, RED

W(t)

Z(t)

Time [s]
(d)

0 50 100 150
0

50

100 q(t)

Figure 4.10 Reprioritization phenomenon: Time evolution of W (t), Z(t) and Q(t) under
DropTail (a) and RED (b,c,d) for different values of τ .

0.2 s (c) and 0.4 s (d). Notice that in case (b), RED drastically reduces the queue size and let
the TCP rate to match the capacity after a short transient. Yet, when the target τ increases in
(c) and (d), LEDBAT becomes increasingly aggressive under RED, and competes more fairly
against TCP.

To avoid cluttering the pictures, we do not report here the behavior of LEDBAT for
increasing target τ under DropTail: from the simulation-based sensitivity analysis reported
in [48], it emerges that LEDBAT yields to TCP for a large range of τ < B/C values, and only
whenever τ approaches (or exceeds) B/C LEDBAT behavior becomes loss-based as TCP.

4.3 Validation

In this section, we validate a subset of the numerical results obtained by integrating
the time-delay differential equations modeling the system against those obtained from ns2
simulator using our own implementation of LEDBAT, which is available as open source 2. We
additionally point out that we released all scripts and scenarios 3 to reproduce the simulation
(as well as the experimental) results of [87]. In what follows, validation is performed on
the most challenging (in terms of matching the simulation vs. fluid model results, to get
a conservative estimate of model accuracy) and relevant scenarios (in terms of practical
relevance).

2. http://www.enst.fr/~drossi/ledbat
3. http://www.enst.fr/~drossi/dataset/ledbat+aqm

http://www.enst.fr/~drossi/ledbat
http://www.enst.fr/~drossi/dataset/ledbat+aqm
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4.3.1 Scenario

We argue that the most challenging scenario, in terms of matching results gathered via
simulation and fluid model, is the one with few numbers of flows. This is intuitive since in the
case of multiple backlogged connections, statistical multiplexing will smooth out the impact
of events, such as TCP retransmission timeout, that would otherwise cause discontinuities
in the case of few connections. At the same time, we also argue that the most practically
relevant scenario is precisely one with a relatively small number of flows. Indeed, since the
bottleneck is the user access, the number of concurrent connections will be likely small, even
considering multiple applications/users in the household.

We consider both the Cloud and the P2P cases. In the Cloud case, it is easy to see that
a small number of connections will be opened, at any given time, for a specific service.
While considering a single user, even the server contacted will evolve over time (e.g., due
to load balancing), this likely happens over time-scales that are much larger with respect
to the short time-frames that we consider as “backlogged” data transfers (i.e., from tens
of seconds to minutes) in this thesis. Hence, the number of backlogged connections is
upper-bounded by the number of Cloud services the user subscribes to, such as DropBox
for data, GoogleMusic for music and Picasa for pictures/videos. Additionally, the number
of simultaneous connections also depends on the on/off synchronization pattern toward the
Cloud. As users are not continuously generating all kind of data at the same time, it thus
reasonable to envision only a moderate number of concurrent backlogged connections per
household, some of which may be lower priorities (e.g., pictures) over others (e.g., critical
data, backup).

Consider next the P2P case, where it makes sense to consider file-sharing applications
such as BitTorrent due to its popularity, and since it introduced LEDBAT in the first place
precisely due to the bufferbloat problem. In BitTorrent, pipelining of piece requests at the
application level can cause multiple chunks to be transmitted consecutively over the same
connection at transport-level. Since BitTorrent limits the number of concurrent slots to about 4

4 per torrent, the number of concurrent connections will be again small. Moreover, BitTorrent
peers periodically evaluate the throughput toward other peers every tens of seconds, and
connections are maintained in case of good end-to-end throughput: coupled to pipelining,
this entails that over the tens of seconds to minute timescale, connections can be considered
backlogged.

4. The limit actually increases with the square root of the uplink capacity



64 Control theoretic analysis

4.3.2 Model validation against ns2 simulations

From the above discussion, in the following we will limitedly consider an equal number
N = NW = NZ of flows, and let the total number of flows vary in 2N ∈ [2,10] range. Unless
otherwise stated, we consider homogeneous RTT delay settings with propagation delay
T = 50 ms (to which we add a jittering component of 1 ms to avoid synchronization of the
congestion window dynamics). To precisely characterize system equilibrium properties, we
will let the LEDBAT target τ vary – that in the uTorrent implementation of LEDBAT, this
can be easily done by adjusting the net.utp_target_delay settings.

Without loss of generality, we consider a single access bottleneck and fix the capacity to
C=1Mbps, a typical range for ADSL/Cable access. The bottleneck buffer can accommodate
up to B = qmax = 100 packets that, considering P=1250 Bytes sized packets for simplicity,
corresponds to a maximum queuing delay of 1000 ms.

We point out that our goal is not to provide an exhaustive coverage of all scenarios
considered in [87] (as scripts to reproduce experiments and simulations are available as
pointed out before). Rather, our main aim here is to validate the most representative instance
of our results – which is clearly represented by the TCP share ratio ρ that precisely quantifies
the reprioritization.

As we have previously seen, qmin and τ have by far the biggest role in determining the
TCP share curve, followed by the number N of flows in the bottleneck. Hence, in Fig. 4.11
we compare the TCP share ratio ρ = w/(z+w) as a function of τC ∈ [5,100]pkt and the RED
minimum threshold qmim ∈ [5,40]pkt obtained either numerically (top figures) or via ns2
simulations (bottom figures) in the case of N = 1 (left) or N = 2 (right). The figure shows
that the proposed model is able to qualitatively capture the reprioritization phenomenon
that is observed with ns2 simulations (and experiments) across the considered parameter
space (τC,qmin). In particular, by fixing qmin = q∗min and moving from the left to the right
on the line parallel to the x-axis connecting (0,q∗min) to (τmaxC,q∗min) an abrupt decrease
of the TCP bandwidth share ρ occurs for any q∗min. However, Fig. 4.11 also shows that
the model overestimates the reprioritization: in fact, ns2 simulations provide a zone where
ρ ≃ 1 (no reprioritization) that is larger than the one obtained by using the model. We
shall return shortly on this matter and propose a refinement of the model to address this
issue. Finally, Fig. 4.11 shows that the effect of increasing the number N of concurrent
flows on reprioritization is qualitatively the same, i.e. with an increased number of flows,
reprioritization is mitigated. This result also confirms the theoretical findings conveyed by
Proposition 2.
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Figure 4.11 Heatmap plots of ρ(τ,qmin) in the case of either N = 1 (left) or N = 2 (right)
obtained using the proposed model (top) or ns2 simulations (bottom).
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Figure 4.12 Simulation validation of TCP share ratio ρ at steady-state as a function of τC for
various traffic scenarios NW = NZ = {1,5}.

4.3.3 Model refinement

We now return on the issue of the model underestimation of the TCP share that has been
observed in Fig. 4.11 to provide a refined model. Towards this end, we fix qmin = 10pkt,
qmax = B = 100, maxp = 0.1 and consider two traffic scenarios NW = NZ = {1,5}. Fig. 4.12
compares average simulation results (solid point, with standard deviation bars over multiple
runs) against the equilibrium given by (4.27) previously discussed (dotted line) and a slightly
more accurate version (solid black line) that compensates two simplifications of the fluid
model that we discuss next. Notice indeed that (4.27) captures reasonably well the essence
of the reprioritization phenomenon. Still, two quantitative discrepancies arise.

First, it can be seen that for values of τC > qmin the model underestimates the TCP
share. This results from a known problem of the TCP model presented in [75] that this
work extends: i.e., [75] is known to underestimate TCP congestion window with respect
to simulation, which can be easily compensated by taking into account a multiplicative
decrease factor of 1.5 (instead of 2) as in [75]. The refined equilibrium takes into account
this correction and is significantly more accurate when τC > qmin.

Second, recall that when τC < q, the model degenerates into a simpler one in which only
TCP flows compete on the bottleneck, hence ρ = 1. In practice, however, we know that
LEDBAT will keep sending a minimum of 1 packet per RTT: this is done to continuously
measure the queuing delay, at very low frequency and intrusiveness. LEDBAT does this in
order to promptly react to queuing delay reduction and effectively utilize the spare capacity
as soon as the link becomes free again. Hence, in case τC < q, our model of LEBDAT
window dynamics can be, in principle, easily refined to account for this effect by introducing
a non-linearity (i.e, capping from below window) at z = 1. As a result, the capacity available
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for TCP is reduced proportionally to the number of LEDBAT flows, i.e.,

ρ < 1− N
CT p

P +q

Observe that, the new equilibrium point taking into account this second correction is
significantly more accurate with respect to (4.27) when τC < qmin. However, this is obtained
at the price of having to handle the additional complexity brought by the additional non-
linearity. Yet, we argue that such level of detail can be better captured with ns2 simulations,
and that quantifying the exact level of reprioritization is less relevant for practical purposes –
i.e., as users will likely be interested in knowing whether their non-critical bulk transfers are
indeed lower-priority with respect to critical continuous backups, or if they compete on a
roughly equal basis.

4.4 System-level solution

Recent evolution on the upper species (i.e., Internet applications) and lower species (i.e.,
Internet infrastructure) seems to suggest that AQM and Low priority congestion control
(LPCC) protocols will have to coexist: indeed, popular applications are developing delay-
based congestion control protocols such as BitTorrent/LEDBAT on the one hand, operators
are starting to deploy AQM/scheduling on the user access uplink on the other hand. As such,
it is imperative to find solutions to the negative AQM/LPCC interplay we have shown in this
thesis. While a general solution is hard to find, as testified by the current standpoint after
over 20 years of research, a patch to this specific problem may be within reach.

Some might argue that small buffers would be enough to solve bufferbloat altogether. Yet,
there are several reasons why this simple solution is not sufficient. First, in the presence of
too small buffers, it would be difficult for TCP and other congestion control to fully saturate
the capacity, causing an undesirable efficiency loss. Second, deciding a buffer size is a matter
of concern per se: consider indeed WiFi links, where the capacity may fluctuate widely over
time, so that no single buffer size can at the same time (i) be large enough to support TCP
congestion control and (ii) rule out bufferbloat in a fast-to-slow transition from 54Mbps to
2Mbps. Finally, jeopardizing of relative priorities are not solved by small buffers as we show
in [86].

An ideal solution should achieve two goals: (i) meet quality of service constraints while
(ii) respecting relative levels of priorities among protocols. Quality of service constraints
clearly translate into upper-bounding the queuing delay, that we know is used by protocols to
enforce their relative priorities. Since even a single TCP flow may bufferbloat the others, the
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solution needs AQM, as otherwise the quality of service constraints would be violated. At
the same time, to avoid the LPCC reprioritization phenomenon, we argue that classification
capabilities will be needed in AQM to account for flows’ explicitly advertised level of priority.

Although in the more general case classification has failed to be adopted (IP TOS field,
DiffServ, etc.), and the ability to claim higher priority could be easily gamed, in a hybrid
AQM vs. LPCC world it makes sense for flows to claim a lower priority: indeed, generally
malicious sources would tend to exploit resources by claiming high priority, so if the source
is marking its own packets as low priority, for the scheduler there is no reason not to follow
the application desire by prioritizing dropping of low-priority packets. We believe that this
subtle difference can make an important practical difference in terms of deployability.

A simple way would be to let application exploit IP TOS field. While the overloading of
the IP TOS can be troublesome within an operator network, this is not an issue in the home.
Indeed, the usefulness of the IP TOS is not end-to-end but merely meant as a low-priority
signal to the box in the user home, where the bottleneck and contention arise. Hence, IP TOS
could be leveraged by the ISP Customer Premise Equipment (CPE) in the user home to apply
differential treatment to best-effort and low-priority traffic (e.g., different AQM loss profiles,
different scheduling weights), after which the end-user IP TOS value is no longer useful and
can be rewritten by the CPE (or at the DSLAM, or BRAS, etc.) in the network of an operator
using DiffServ if needed.

We further stress that the firmware governing home routers and WiFi APs is generally
based on some variants of the Linux kernel, possibly open-source as in the OpenWrt or
CeroWrt cases. We point out that the above solution is therefore already implementable
without any additional development effort – e.g., using strict priority queuing or shaping. In
the Linux traffic control (tc) suite, this can be achieved with the PRIO queuing discipline
(qdisc) that implements non-shaping container for a configurable number of classes which
are dequeued in order. This first solution allows for easy prioritization of traffic, where lower
classes are only able to send if higher ones have no packets available. A second solution
offered by Linux tc is represented by the CBQ qdisc that offers shaping and finer-grained
prioritization capabilities.

This solution is simple, as it requires a minimum amount of information exchange
precisely at the interface between layers, with the upper layers requiring a marking in
the lower-layer packet header. This also means that evolution of species can still happen
independently, without requiring heavy cross-layer or hybrid solution – which would require
much more involved exchanges between species that are not necessarily akin. The simplicity
is, we believe, the root of its appeal, as this also increases the chances of its deployment,
making it of high practical relevance for the problem under consideration.
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4.5 Summary

In this chapter, we analyzed the interdependency phenomenon that occurs when hetero-
geneous protocols, namely best-effort and low priority congestion control (LPCC) protocols,
share a bottleneck governed by an Active Queue Management (AQM) algorithm. In Chap. 3
we have shown by means of simulations and Internet experiments that a negative interplay
exists: in particular, the relative level of priority of the congestion control protocols is reset,
a phenomenon that we call reprioritization, meaning that the protocols compete on a roughly
equal basis. With the purpose of analyzing this phenomenon we have proposed a DDE model
that captures the dynamics of an overall system composed of: (i) TCP flows, which are
representative of best-effort congestion control algorithm; (ii) LEDBAT flows, which is a
prominent example of LPCC algorithms; (iii) an AQM control algorithm which is executed
at the bottleneck queue.

By analyzing dynamical properties of the system around its equilibrium points, we have
been able to provide an explanation to the reprioritization phenomenon and confirmed the
generality of this issue. In fact, even though we provide a sufficient condition that allows to
independently tune the LEDBAT parameter τ to avoid reprioritization regardless of the AQM
employed, we show that such a condition is of scarce practical interest due to the difficulty
of accurately measuring the delays at the end systems. Moreover, model predictions have
been validated against ns2 simulations when RED is used as AQM algorithm.

Due to the increasing deployment of both low-priority congestion control and AQM
techniques that today are employed to fight bufferbloat, the problem discussed in this thesis
may be of significant practical relevance. As we believe that it may be desirable for end-users
(or end-user applications) to autonomously and coarsely set their relative level of priorities,
we have proposed simple yet an effective system-level design and practices that give a
solution to the issue that we have analyzed in this thesis.





Part II

Data center network (DCN)





Chapter 5

Background

In this chapter, we first motivate in Sec. 5.1 our study focusing on the scheduling
mechanism deployed in a data center network, with the multi-tenant system assumption.
Sec. 5.2 provides a comprehensive taxonomy of existing proposals of low-latency data center
network design. We take a broad view identifying the main trends over the decade, as well as
an in-depth view on representative proposals focusing on different network layers.

5.1 Motivation

In the last decade, data center networks (DCNs) have increasingly been built with
relatively inexpensive off-the-shelf devices. DCNs are frequently assumed to be highly
specialized environments, owned by a single entity that has full control of both the network
architecture and the workload. DCN transport research has consequently explored a larger
design space than that of the Internet leading to designs that generally do not focus on a
single layer of the protocol stack but are more typically cross-layer. The proposed transport
solutions may for instance integrate application information, use explicit or implicit rate
control, incorporate routing and load balancing or rely on an omniscient oracle.

While most work [92, 21, 34, 35, 37, 31, 33, 20, 39, 43, 38, 22, 40] broadly agrees in
identifying application requirements as throughput for fat data transfers and latency for short
transactions, the precise definition of these observables varies across proposal: for instance,
special attention is given to either average [92, 34, 21], tail [33] short flows [35, 37], task [38]
or co-flows [22, 40] completion times.

Freedom in the DCN design space translates into a relatively crowded landscape of
proposals, each of which is typically designed and tweaked with a specialized application sce-
nario in mind. DCN proposals are further tangled as their design is tailored for very specific
workloads, with diverse application patterns including for instance, query-response [19, 20],
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map-reduce jobs [21, 22], or packet-size access to the DRAM of other machines [23]. Rarely,
if ever, is a DCN design tested with a workload other than that for which the system was
explicitly designed.

Beyond any reasonable doubt, the single-tenant assumption will be severely challenged
in the near future. With increasing user reliance on cloud applications and public cloud
providers like Amazon AWS, it will require DCNs to evolve towards multi-tenant system
handling a significantly more heterogeneous set of applications and workloads. The range
of applications will inevitably increase either because a single-tenant data center is used for
new lines of business or simply because the data center is used by an increasing number
of independent tenants. DCN workload will thus evolve beyond the typical mixture of
short transactions and fat elastic transfers considered nowadays and will notably include
a significant fraction of rate-limited flows with strict latency requirements. Such flows
are produced by gaming applications [93], instant voice translation [94] and augmented
reality services, for example. The precise mix will also be highly variable, depending
on both the degree to which networked applications rely on offloading to the Cloud (e.g.,
streaming gaming meta-data for local rendering or streaming Cloud-rendered videos) and on
the expected benefits of offloading that vary depending on device capabilities, battery life,
and connectivity opportunities, etc. [95].

As DCN resources are increasingly shared among multiple stakeholders, we must question
the appropriateness of some frequently made assumptions. How can one rely on all end-
systems implementing a common, tailor-made transport protocol like DCTCP [19], when
end-systems are virtual machines under tenant control? How can one rely on applications
truthfully indicating the size of their flows to enable the shortest flow first scheduling as in
pFabric [20], when a tenant can gain better throughput by simply slicing a long flow into
many small pieces? Expected future DCN usage clearly puts these assumptions in doubt and
leads us to question the expected benefits of fragile DCN designs that rely on them.

Contrary to the specialization trend, we therefore argue that DCN design would benefit
from an increased generalization: by this, we mean reliance on well-understood mechanisms,
provided as network services, that require as few assumptions as possible on the DCN
workload.

As we would further discuss in Sec. 5.2, we observe an obvious yet surprising omission
in the explored DCN landscape, namely a scheduling mechanism providing fairness among
flows, coupled with Active Queue Management (AQM) to upper-bound delay. Such a
scheduler is FQ-CoDel that has recently gained prominence in another network application,
fighting bufferbloat notably in home routers [6, 46]. Its aim of keeping throughput high while
controlling queueing delay and its generality with respect to the traffic mix clearly identify it
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as an excellent candidate for DCN operation. Our objective in this thesis is to compare its
performance to that realized by alternative state-of-the-art DCN proposals. We find notably
that, under FQ-CoDel:

• the throughput of plain TCP is better than that of a tailored end-to-end solution like
DCTCP [19]

• short flows incur a delay comparable to what they incur under pFabric [20]
The future-proof performance advantages of FQ-CoDel coupled with remarkably simple
deployment, since it is already implemented in the Linux kernel, make the scheduler an
indispensable component of future multi-tenant DCNs.

5.2 Related work

We review the effort has been made during the last decade on DCN design with both a
broad view Sec. 5.2.1 and an in-depth view Sec. 5.2.2 of representative proposals which we
believe would briefly illustrate the design space involving almost all network layers.

5.2.1 Broad view

In Tab. 5.1, we report an admittedly incomplete view of DCN research that illustrates
several important trends.

The first wave of DCN research begins with studies focused on network topology, in
the quest of larger throughput and non-blocking transfer with commodity devices. Some
well-known examples include FatTree [24], DCell [25], Portland [26], BCube [27] and
VL2 [28] and, more recently, we observe a general agreement on the use of the leaf-spine
topology [20, 40, 43, 44]. In recent years, to address the lossless assumption of data center
networking, researchers focus either on layer-2 fabrics, or Overlay Virtual Network [36]
introducing new protocols spanning layer-2 to 4.

A second wave is marked with improved network fabric include Hedera [30] and
Orchestra [21] that rely on a centralized oracle to deal with routing, load balancing, congestion
avoidance and fault tolerance. Starting with pioneering work of DCTCP [19], the community
recognized that specific designs were needed for TCP to cope with the high bandwidth
and low delay properties of DCNs, sprouting the design of new end-to-end transmission
protocols including [29], HULL [23] and L2DCT [35] that, to the best of our knowledge
have not yet been deployed. It is noteworthy that optimal parameter tuning for deployed
TCP variants like DCTCP is still the subject of research [45]. Orchestra [21] goes further by
coupling control of both network fabric and end-to-end congestion control.
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Table 5.1 Taxonomy of recent data center network design.

Proposal Yr Primary metrics Information Rate Control†

FatTree[24] 08 Bandwidth
DCell[25] 08 Bandwidth

Portland[26] 09 Scalability
BCube[27] 09 Bandwidth

VL2[28] 09 Goodput
DCTCP[19] 10 Latency Imp+ECN
ICTCP[29] 10 Goodput
Hedera[30] 10 Bisection bandwidth switch buffer

D3[31] 11 Throughput deadline, size Exp (D)
MPTCP[32] 11 Throughput MP-enabled

Orchestra[21] 11 Transfer-CT everything Exp (C)
HULL[23] 12 Latency, throughput DCTCP+ECN
DeTail[33] 12 Tail FCT priority TCP+ECN

PDQ[34] 12 FCT deadline, size Exp (D)
L2DCT[35] 13 Short flow FCT Imp+ECN
pFabric[20] 13 FCT priority Imp

zOVN[36] 13 FCT
RepFlow[37] 14 Short flow FCT size

Baraat[38] 14 Task-CT priority Exp (D)
PASE[39] 14 FCT size, max rate Exp+ECN (D)
Varys[22] 14 Coflow-CT size Exp (C)

CONGA[40] 14 FCT
Fastpass[41] 14 Fairness/FCT size Exp (C)

FlowBender[42] 14 Latency
PIAS[43] 14 FCT DCTCP+ECN

RAPIER[44] 15 Coflow-CT size Exp (C)
† Rate/congestion control: (Exp)licit vs (Imp)licit; (D)istributed vs (C)entralized
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Table 5.2 Taxonomy of recent data center network design (continued).

Proposal Yr Routing Scheduling Layers‡

L N T A O

FatTree[24] 08 Yes Yes ✓ ✓
DCell[25] 08 DFR ✓

Portland[26] 09 Yes ✓ ✓ ✓
BCube[27] 09 BSR ✓

VL2[28] 09 ECMP VLB ✓ ✓
DCTCP[19] 10 FS ✓
ICTCP[29] 10 Imp FS ✓
Hedera[30] 10 Yes ✓

D3[31] 11 ECMP VLB greedy ✓ ✓
MPTCP[32] 11 ECMP ✓

Orchestra[21] 11 Yes FIFO, FS, Priority ✓
HULL[23] 12 ECMP ✓
DeTail[33] 12 packet-based ✓ ✓ ✓ ✓

PDQ[34] 12 ECMP EDF/SJF ✓ ✓
L2DCT[35] 13 Imp+ECN LAS ✓
pFabric[20] 13 RPS Priority ✓ ✓

zOVN[36] 13 ✓ ✓ ✓
RepFlow[37] 14 ECMP ✓ ✓

Baraat[38] 14 FIFO-LM ✓ ✓
PASE[39] 14 SJF ✓ ✓
Varys[22] 14 SEBF + MADD ✓ ✓ ✓

CONGA[40] 14 flowlet-based ✓
Fastpass[41] 14 packet-based maximum matching ✓ ✓ ✓

FlowBender[42] 14 flow-based ✓ ✓
PIAS[43] 14 SJF ✓

RAPIER[44] 15 coflow-based MRTF ✓ ✓ ✓
‡ Layers: (L)ink, (N)etwork, (T)ransport, (A)pplication, (O)racle
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During the third wave, a number of proposals have promoted a cross-layer design.
Such DCN architectures impact multiple aspects including explicit [31, 34, 39, 44] or
implicit [33, 20] congestion and flow control at end-systems, flow scheduling [31, 34, 20, 38,
39, 22, 41, 43, 44], routing [33, 20, 40–42, 44] and oracles [22, 41]. Among these proposals,
pFabric [20] has near ideal flow-level performance and has become a de facto standard
against which alternative DCN designs must be compared. Application-layer information
has been progressively integrated into decision logic (as either a priority index [33, 20], or a
flow deadline [31, 34] or size [31, 34, 37]).

The last wave witnessed a move from network-oriented to service-oriented metrics,
similarly to the Internet QoS/QoE. Varys [22] and RAPIER [44] use co-flow completion time,
and Baraat [38] uses task completion time. Contrarily to implicit rate control of pFabric,
[38, 39, 22, 41, 44] all employ explicit rate control (with either distributed or centralized
arbitrator).

Besides arbitrator and end-to-end transmission protocol, integration (or more precisely,
customization) of routing and scheduling policies is gaining its popularity. They are usually
carefully tweaked to meet its objective and arbitrators’ working mechanism.

Approaches become more diverse. For example, in contrast to mainstream complicated
cross-layer design, deploy-friendly solutions get their place: RepFlow [37] replicates short
flow through different path to reduce short flow’s completion time in only application layer (or
a module in network stack); CONGA [40] touches only network layer to design a distributed
in-network congestion-aware flowlet-based load balancing; and PASE [39] tries to combine
the benefit of transport strategies, in-network prioritization and arbitration in a single transport
framework. PIAS [43], introduces a practical flow scheduling approach minimizing FCT
with no prior application-layer knowledge. Some orthogonal attempts have also been made,
such as the integration of multipath capability in the network or at application level.

Important observations

One of the most important designs in the network development history is the layered
structure, which decouples different functionalities, enabling good scalability and flexibility.
However, with the understanding and analysis of previously mentioned proposals, we can
conclude that, researchers worked hard to optimize data center network with regard to limited
service traffic pattern (e.g. web search, data mining, etc) and limited network architecture
variation (e.g. FatTree, spine tree, non-blocking fabric, etc). The principle philosophy applied
(until now) to achieve this is the assumption of single-tenant with a complete control of
hardware, software and traffic inside a data center.
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Researchers broke the decoupling principle by gathering and communicating informa-
tion among several layers to help decision-making process (e.g. forwarding scheduling,
congestion control, rate control, etc), which could also be implemented in different layers
and entities. Besides the precise information collection of network fabric, endpoints, or
arbitrators, what makes these proposals different in the performance as well as feasibility is:

• the amount of information collected, which largely decides the performance.
• the interpretation of the metric, which is critical when this represents a translation

from an observed metric to the real situation. e.g., whether an increasing delay
indicates a network congestion due to concurrent flows through a shared bottleneck,
or a too high sending rate saturating network devices’ buffer.

• the decision-making process, in which people combine and utilize all available
information in an innovative way to make decision on rate, path, time, etc. The choice
of the decision also matters, e.g., whether we send a congestion indicator only to
reduce rate or follow a strict scheduling policy to pause flow.

• the information flow pattern, which involves the time, carrier, sender and receiver of
each piece of information. This usually influences the difficulty in deployment, e.g.,
complicated decision logic on the packet’s header fields, memorizing flow history,
and adopting new protocol or arbitrator are generally adverse factors for deployment.

5.2.2 Representative proposals

We briefly introduce some representative proposals. Each exhibits an important aspect of
design choice, especially the opportunity and constraints the working layer(s) may enforce.
DCTCP and pFabric are selected as our comparison candidates in our work. FQ-CoDel,
which we propose to use, was previously covered in Sec. 2.2.

zOVN (zero-loss Overlay Virtual Networking)

Zero-loss Overlay Virtual Networking (zOVN) [36] is a representative proposal closely
related to data link layer (Layer-2) network design for data center. With the prospect of
increasing adoption of virtualization in datacenters, the underlying assumption is that virtual
networks (VN) will be deployed in practically most multi-tenant datacenters, providing a
fully virtualized Cloud platform by default. zOVN is designed as the first zero-loss OVN to
reduce the query and flow completion time of latency-sensitive datacenter applications.

Recent development in layer-2 data center network design has two trends. The advance
of lossless, flat layer-2 fabrics based on commodity-ready Converged Enhanced Ethernet
or InfiniBand brings benefits in efficiency and performance. On the other hand, Software
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Defined Networking (SDN) based Overlay Virtual Networking (OVN) provides flexibility
on management, migration, etc. However, existing OVNs are all lossy, which proved by
the authors to be critical to performance. zOVN tries to remedy this situation through
lossless virtual switch zVALE, which is designed to operate in a dual push/pull mode. 1 By
eliminating the costly packet loss, it [36] claims to “achieve an up to 15-fold reduction of the
mean completion time with three widespread TCP versions.” Furthermore, zOVN can be
orthogonally composed with other schemes for functional or performance enhancements on
other layers.

CONGA

CONGA [40] is a network-based distributed congestion-aware load balancing mechanism
for datacenters. The main strength is the capability of efficient load balancing and seamlessly
asymmetry handling, without requiring any TCP modification. CONGA realizes this goal
by taking distributed congestion-aware load balancing inside network fabric, thus nearly
achieving the performance of a centralized scheduler (which instead requires transport
layer protocols modification) without suffering from slow reaction in centralized scheduling
schemes. At the same time, it outperforms widely used ECMP based on local decision
without knowledge of potential downstream congestion on each path.

CONGA is designed and evaluated in a Leaf-Spine topologies. The leaf switches take
the majority functionality. The source leaf makes load balancing decisions based on per
uplink congestion metrics, derived by taking the maximum of the local congestion at the
uplink and the remote congestion for the path to the destination leaf that originate at the
uplink. The remote metrics are obtained via opportunistic piggybacks from the destination
leaf switch. It is worth mentioning that CONGA considers TCP flows as series of flowlets,
each consists a sequence of packets using the same uplink without a sufficiently long gap.
Load balancing decisions are made on the first packet of each flowlet, and remain valid for
subsequent packets in the same flowlet.

In testbed experiments [40], “CONGA has 5× better flow completion times than ECMP
even with a single link failure and achieves 2–8× better throughput than MPTCP in Incast
scenarios.”

DCTCP (Data Center TCP)

Data Center TCP (DCTCP) [19] is the first attempt to enhance the TCP congestion control
algorithm (Layer-4 transport layer) for data center networks, with the goal of enabling small

1. pull: output queue pull packets from input queue; push: input queue push packets to output queue.
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predictable latency and large sustained throughput for mixing workloads. It leverages Explicit
Congestion Notification (ECN), a feature which is increasingly becoming available in modern
data center switches. DCTCP sources extract multi-bit feedback on congestion from the
single-bit stream of ECN marks by estimating the fraction of marked packets. In doing so,
DCTCP sources react to the extent of congestion, not just the presence of congestion as in
TCP. In other words, DCTCP starts marking congestion early and aggressively, thus enable
the sender to react early.

The DCTCP algorithm has three main components:
• Simple marking at the switch: based on instantaneous queue length, that switch

compares with a pre-defined parameter marking threshold, K. It marks the arriving
packet with the CE codepoint if the queue occupancy is greater than K.

• ECN-Echo at the receiver: a DCTCP receiver sets the ECN-Echo flag if and only if
the packet has a marked CE codepoint.

• Controller at the sender: a DCTCP sender maintains an estimate of the fraction of
packets that are marked, called α , which is updated once for every RTT. It further
uses α to regulate congestion window size. When the queue starts exceeding K, it
gently reduces the congestion window. When congestion persists, α will increase
until 1, which turns DCTCP’s behavior into the same as TCP.

The importance of this protocol lies in several aspects. One the one hand, it raises the
community’s awareness that the state-of-the-art TCP has a limitation in real data center
environment, as proven by “detailed traffic measurements from a 6000 server data center
cluster, running production soft real-time applications”. On the other hand, the solution not
only provides an impressive enhancement over TCP, as “DCTCP delivers the same or better
throughput than TCP, while using 90% less buffer space. ... DCTCP enables the applications
to handle 10X the current background traffic, without impacting foreground traffic. Further,
a 10X increase in foreground traffic does not cause any timeouts, thus largely eliminating
incast problems.” , but also with a deploy-friendly design with mechanism already available
in commodity hardware. With its implementation in simulator and Linux kernel, it becomes
the essential benchmark for all later research.

pFabric

pFabric [20] is the most well-known cross-layer design (Layer 2-4), but its design is
beyond simply “patching” different mechanisms, but realise a clean-slate datacenter transport
design that provides near theoretically optimal flow completion times even at the 99th
percentile for short flows, while still minimizing average flow completion time for long
flows.
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pFabric’s entire design consists of the following:
• End-hosts: put a single number in the header of every packet that encodes its priority

based on independent flow information from application layer. All flows start at
line-rate and throttle their sending rate only if they see high and persistent loss.

• Switches: have very small buffers and decide which packets to accept into the buffer
and which ones to schedule strictly according to the packet’s priority number. They
perform a strict priority-based packet scheduling and dropping mechanisms. Thus,
each switch operates independently in a greedy and local fashion, which lead to an
approximately optimal flow scheduling decision across the entire fabric.

The minimalistic design is the prominent characteristic, which requires no flow state
or complex rate calculations at the switches, no large switch buffers, no explicit network
feedback, and no sophisticated congestion control mechanisms at the end host. Such design
permits pFabric to be the state-of-the-art solution and, together with DCTCP, turns it into
another benchmark. As claimed by the authors, “pFabric achieves near-optimal flow comple-
tion times. ... pFabric reduces the FCT for short flows compared to DCTCP by more than
2.5–4× respectively at the mean, and more than and 3–4× respectively at the 99th percentile.”
However, it requires modifications both at the switches and the end-hosts, which impedes the
deployment in commodity devices. Furthermore, it would be rather brittle and sensitive to
set flow priority due to flow and user dynamics.

The fundamental conceptual insight behind the design is the observation that rate control
is a poor and ineffective technique for flow scheduling and the mechanisms for the two should
be decoupled and designed independently. pFabric shows that large buffers and complex
rate control could be unnecessary in datacenters. We strongly believe in the same principle,
and we consider it crucial in a multi-tenant datacenter scenario to ensure fairness among
heterogeneous users, flows and transport protocols.

RepFlow

RepFlow [37] is a recently proposed solution based purely on application layer (Layer-7)
mechanism. Compared to other schemes, RepFlow offers competitive though not optimal
performance, but rather innovation that sheds some light on a simple yet practically effective
approach. RepFlow aims at providing low latency for short flows both average and in the
99-th percentile, and can be readily deployed in current infrastructures. It can also be used
with other data center transport protocols such as DCTCP to further improve performance.

RepFlow uses flow replication to exploit multi-path diversity. It works on top of layer-4
transport protocols, replicating short flows to reduce the completion times, without any
change to switches or host kernels. With ECMP, the original and replicated flows traverse
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distinct paths with different congestion levels, thereby reducing the probability of long
queueing delay. The deployment involves two parameters, i) the threshold to differentiate a
flow from long to short; 2) the condition under which to replicate the flows. Both decisions
are critical to the overall performance, but also grant great flexibility to each specific case.
The low-level implementation is equally flexible, one can either modify application behavior,
provided RepFlow as a general library, or further be incorporated into transport protocols.

According to the result under simulation and emulation, “RepFlow improves TCP by
around 30%–50% in most cases. RepFlow over DCTCP improves DCTCP further by 30%,
providing very close-to-optimal FCT compared to state-of-the-art pFabric.” [37].





Chapter 6

Fairness in data center network

Bearing in mind the observation we made, we believe that it is not likely that one single
perfect solution exists for most scenarios in data center, instead a good solution making
reasonable compromise is our goal. In Sec. 6.1, we argue the rationality of adopting fair
scheduling in DCN. We then describe the methodology we used and recommendation of
future research in Sec. 6.2. The result of our simulation is reported in Sec. 6.3, followed by a
summary in Sec. 6.4.

6.1 Fairness

We argue that the advantages of decoupling rate control from scheduling, put forward
in the pFabric proposal [20], would similarly be obtained by implementing per-flow fair
scheduling on bottleneck links. We also argue this design not only to be simple enough, but
also to be good enough in terms of performance, as we justify in Sec. 6.3.

6.1.1 Fair scheduling

Starting with the original proposal of Nagle [96], per-flow fair scheduling has often
been advocated as a means to make Internet bandwidth sharing robust and more efficient.
However, the need has never been considered sufficiently compelling to warrant widespread
implementation. An exception is a recent work on fighting bufferbloat, notably on home
routers [8] where the preferred solution has been to perform fair queuing on the user access
line, in association with the CoDel queue management algorithm [6, 46].

Per-flow scheduling on the user access line ensures low latency for packets of delay-
sensitive flows like VoIP while allowing bulk data transfers to fully utilize residual bandwidth.
Such scheduling is generally unnecessary on Internet links beyond the access line since these
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are rarely a bottleneck: the combined rate of flows in progress, accounting for the access
bottleneck, is generally much less than link capacity. This is not the case in data centers,
however, where an upstream or downstream link between a server and its top-of-rack switch
can be saturated by a single flow.

Using a Fair queuing (FQ) scheduler such as Deficit Round Robin (DRR), the latency
for single packet flows is bounded by the duration of a cycle, in turn lasting for the service
duration of n flows in the queue. This is of course a heavy penalty for short flows, which
can be bypassed by Priority Fair Queuing (PFQ): PFQ adapts DRR to give priority to “new
flows”, which are served in FIFO fashion in a DRR cycle. New flows include those emitting
packets spaced by a time gap greater than a DRR cycle (or, equivalently, at a rate lower than
current fair rate). This constraint is easily satisfied for transactions-style communications, as
well as for bandwidth-limited transfers such as voice/video/gaming streams.

Priority fair queuing

The DRR-based “FlowQueue Controlled Delay” (FQ-CoDel) scheduler [46], originally
proposed for fighting bufferbloat, does in fact more than just fair scheduling: it incorporates
a priority mechanism to further reduce the packet latency of low rate flows, which would
also be very useful in DCNs. A fair queuing scheduler maintains a list of flows that currently
have backlogged packets. It can, therefore, recognize packets that come from flows that
are not currently backlogged. Such flows will include single packet queries as well as any
flows emitting packets at a rate less than the current fair rate. In FQ-CoDel, these packets are
dequeued with priority, minimizing their latency without undue impact on the throughput of
backlogged flows.

This mechanism was first proposed as a means to realize implicit service differentiation
(e.g., [97]) and has been rediscovered in the fight against bufferbloat and implemented in
FQ-CoDel [46]. FQ-CoDel drops packets as necessary using Codel while the proposal in
[97] was to use longest queue drop [98].

Controlling queue delay

In FQ-CoDel, packets can be dropped on applying the CoDel [6] AQM algorithm to
each flow queue. Packets are also dropped from the flow with the biggest backlog when the
shared buffer would otherwise overflow. The latter, longest queue drop policy [98] is another
possibility that would, as in [20], avoid the coupling between rate control and scheduling that
is implicit in CoDel. However, in this thesis, we prefer to use techniques that are available
out-of-the-box and that would arguably speed up deployment in DCN operation. As we do
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not fine tune performance in the scenario under investigation, our results may be considered
conservative. A detailed study of the impact of implementation options and the precise
assessment of the achievable performance, are left for future work.

6.1.2 Suitability for DCN

We argue that per-flow fair scheduling on DCN links would enable low packet latency
for delay-sensitive flows, while allowing bulk data transfers to attain maximum throughput at
the same time, making it an interesting design for DCN.

Flow identity

Without loss of generality, we identify flows by the usual IPv4 5-tuple. However, it may
be more appropriate in a DCN to use other criteria like the origin and destination servers or
virtual machines, or to identify co-flows belonging to a single task. Note that the proposal is
to apply lightweight, egalitarian fair sharing as opposed to weighted fair sharing. The latter
would incur additional complexity to determine the weight from local state or a header field.
Yet, whether this additional complexity is truly necessary for performance reasons demands
future investigation.

Quantum size

The default DRR quantum size in FQ-CoDel is one 1500 byte MTU. This implies the
packets of any flow emitting less than 1500 bytes in a DRR cycle are handled with priority.
In the data center environment, it may make more sense to increase the quantum size, to
ensure all packets of a short query are handled with priority, for instance.

It is interesting to note that the Baraat [38] scheduler has similar behavior to FQ-CoDel
with a particular choice of quantum. Baraat handles flows in FIFO order until they are
observed to have emitted more than a given number of bytes θ . They are then required to
fairly share the link bandwidth under the end-to-end control of RCP [92]. The result of
applying FQ-CoDel with a quantum equal to θ would be broadly similar.

Rate-limited flows

The workloads considered in previous proposals, including DCTCP [19] and pFabric [20],
is simulated according to statistics extracted from two traffic patterns: the query-response
(search) and data analytics (map/reduce) applications. Although we doubt the validity of such
generalization from two single observation in a specific time and place, researchers agree to
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one important characteristic observed: flow sizes follow a heavy-tailed distribution. Generally,
a data analytics application generates more skewed flows in size than query-response ones.

Although we cannot obtain the exact flow information of these universally used workloads,
we believe that they do not include flows whose rate is intrinsically limited. However, such
flows exist in any data centers supporting streaming applications, and would benefit from the
low latency provided naturally by FQ-CoDel.

Incast

If many flows converge on the same interface of a switch over a short period time, the
packets may exhaust either the switch memory or the maximum permitted buffer for that
interface, resulting in packet losses. This happens usually at the at the queue of the switch
port connected to the aggregator. Even if the flow sizes are small, this partition/aggregator
traffic pattern synchronizes the request for data from workers’ responses and thus creates
incast in a short time but induces severe consequence.

Imposing fair sharing has a similar impact on incast as DCTCP [19] since fair sharing
between the fanned-in flows is guaranteed. The fair rate during incast would likely still be
high enough that packets of any streaming flow sharing the bottleneck link would be handled
with priority.

Stability

As in the evaluation of pFabric [20], we envisage a simple stochastic demand model
where flows arrive according to a Poisson process, in which case fair sharing is known to
be stable as long as the overall load is less than 1 on every link. Conversely, as overtly
recognized in [20], “size-based traffic prioritization may reduce the stability region of the
network” with respect to the maximum capacity attained by fair sharing. This occurs because
the progress of a low priority flow may be delayed by high priority flows momentarily
saturating any link on its path. This leads to situations where network capacity is effectively
wasted leading to unbounded completion times for the low priority flows, even when the load
on every link is less than 1 [99].

Given that analytical results are hard to obtain in case of size-based scheduling [99], a
simplistic model of strict priority scheduling may be preferable for illustration purposes. Let
us consider a star network with a large number of branches having unit uplink/downlink
capacity, and where all flows use one uplink and one downlink, which represents a DCN
where only the edge links between the server and the top-of-rack switch are capacity limiting.
The network handles two classes of traffic with loads ρ1 and ρ2, with ρi given by the product
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of the average arrival rate and flow size for class i . Flows of class-1 have preemptive priority
over class-2, i.e., to make progress, a flow of class-2 should see no flow of type-1 on either of
its two hops. Since there is a large number of links, their occupancy is practically independent
and the probability both links are available to class-2 is (1−ρ1)

2. Intuitively, to ensure
stability, the class-2 load must be less than ρ2 < (1−ρ1)

2. This inequality defines the traffic
capacity, which is minimized when ρ2 = ρ1/2 and is then equal to 0.75. In other words, to
ensure stability we must have ρ1 +ρ2 < 3/4, implying that 1/4 of the capacity is wasted.

This phenomenon impacts both pFabric and FQ-CoDel. It remains to more thoroughly
evaluate this impact under a relevant range of workloads. Of course, neither is pFabric
size-based scheduling entirely captured by a strict priority model, nor FQ-CoDel priority
to packets of “new” flows is accurately described via perfect fairness. Nevertheless, these
models warn for potential inefficiency for pFabric in the high-load regime, and especially
in cases where the portion of high-priority traffic is sizable. We recognize this potential
limitation while the relevant work is left to future work.

6.2 Methodology

In this section, we rationalize our methodology used, as well as the parameters of network
and experiment. As observed in previous research works, due to the fact that each proposal
targets (and is possibly tuned to) a specific data center environment and aims at different
design objectives, the comparison between them is seldom done in a fair way. Although a
perfect comparison is hard to achieve, we argue that certain principles considering network,
workload, and measured metric should be tuned. Thus, we carried out a careful calibration
before the simulation.

Terms of comparison

We consider criteria in choosing our candidates for comparison. We first narrow down
our candidates to those under the same design space as FQ-CoDel, that is a transport layer
scheme. Solutions focusing on different layers such as zOVN [36] and RepFlow [37] are
not suitable in our context. Indeed, they are orthogonal designs which can be deployed
together with FQ-CoDel, thus future work can be planned. Since FQ-CoDel works purely in
the network, it would be unfair to compare with those having different design assumptions
and requiring application layer involvement. We then exclude solutions requiring additional
deadline information, such as D3 [31] and D2TCP [100]. Finally, concerning the recognition
in the community and the availablility of open-source code, we compare FQ-CoDel against
two representative alternative DCN design: (i) DCTCP [19], a distributed end-to-end design
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that exposes a general transport service through an L4 abstraction and (ii) pFabric [20], a
clean-slate cross-layer design that aims to optimize flow completion time performance.

The first one has become the benchmark since its proposal in almost all designs, including
pFabric [20]. It is actually implemented in production data centers [45], while the second
represents an ideal that may only be attained in a particular protected data center environment
where end-systems are compliant. However, pFabric [20] is recognized as the state-of-art
design in terms of flow completion time reduction. Recent solutions such as RepFlow [37],
Baraat [38] and PIAS [43] include it in comparison as well. The code of both designs is
available in ns2.

We argue that this subset is representative considering the recognition in the community
as well as the similar design goal among them. We admit that comparison among designs
spanning more layers would be useful and necessary for future work, what we achieve in this
work is a good first step towards such objective.

Network and workload

We adopt a downscaled version of the pFabric network scenario (32 vs 144 hosts [20],
interconnected by a Leaf-Spine topology with the same delay characteristics). We adopt the
pFabric “data mining” workload, presented in Fig. 4b in [20]. Flows arrive according to a
Poisson process and have a size drawn independently from an empiric distribution, where half
of the flows are single packet while 95% of bytes are in flows larger than 35 MB. No matter
how much realistic, a single scenario is only representative of a rather arbitrary evaluation
point. Especially, real flow size distributions represent a snapshot of traffic, but are not very
telling on how the traffic mixture will evolve.

Note that this workload does not include any rate-limited flows as arise in streaming and
gaming applications, for instance. To account for growing impact of rate-limited flows in
DCN, we tweak the data mining scenario by controlling the percentage of 1-packet long
flows, which in DCN settings are an accurate representation of bandwidth-limited flows
(voice, music, games; and in the case that the DRR quantum is extended to a fixed but small
number, also of video streams). Indeed, as long as the individual rate of such flows is a small
fraction of link capacity (which is clearly the case since the bottleneck link capacities are
O(10Gbps) while stream rates are O(10Mbps) even for 4K videos) their packet latency is
broadly the same as that of the single packet flows. Specifically, we let the overall volume of
1-packet flow vary between 0.01% and 10% of the overall offered traffic, and proportionally
reduce the occurrence of all the other flows sizes.
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Table 6.1 pFabric TCP tuning

param pFabric (default) note

Retransmission minrto_ 45µs (200ms) minimum rto
maxrto_ 2s (60s) maximum rto
rtxcur_init_ 45µs (3s) initial rto
tcpTick_ 1µs (10ms) clock granularity

Flow control interval_ 6µs (100ms) delayed ack
window_ 106 (20) rx window

Congestion control windowInit_ 12 (2) initial cwnd
maxcwnd_ queue-1 (∞) max cwnd
windowOption_ 0: basic (1: std) congestion avoid mode

Performance measures

We compare the performance of the considered DCN designs through two measures
widely used in the literature: the flow completion time (FCT) of single packet flows and the
mean flow throughput defined as the ratio of size in bits to FCT in seconds. The single packet
flow completion time is a measure of latency that, as discussed above, is also a relevant
performance measure for rate-limited flows.

Flow completion time (FCT) has become the unanimously accepted performance metric
since DCTCP[19], with different focuses, such as, the average FCT (generally), the tail
FCT [33] or FCT of short flows [35, 37]. We argue that throughput for long data transfers
and latency for 1-packet transactions can provide a simple yet complete picture of DCN
performance. Notice that both metrics directly relate to FCT, since FCT of 1-packet flows
practically expresses the DCN latency, whereas throughput of larger flows is inversely
proportional to the FCT.

6.2.1 Calibration

Given the fact shown from all the related works that each data center is very different in
terms of size, architecture, devices, and more important, services run inside, we point out that
few fair comparisons among them have been done. In fact, many of them even bear different
design objectives, which makes it quite hard to select suitable comparing candidates (and
of course, limitation of simulation and experiment technology stack is not ignorable). We
believe that comparison should be done in a way in which scenario and objective together
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to be the first-class citizens. As a result, comparison conclusion should be addressed more
carefully with the condition of scenario and reasoning of choice.

Since we consider the pFabric scenario (i.e., workload, topology, capacities, etc.), we
retain the transport protocol settings of [20] and make necessary adjustments for DCTCP
and FQ-CoDel to make the performance comparison as fair as possible.

Local AQM tuning

For DCTCP, we resort to standard DropTail FIFO, and experiment with two buffer sizes
(namely, 100 and 1000 packets). It is not reasonable to adopt pFabric’s buffer size setting of
24 packets, which is designed with the assumption of very low packet drop possibility. Due
to the working mechanism of DCTCP, it does not impose strict queue length management, as
a result, these buffer sizes could have a slightly different impact on short flows latency and
long flow throughput performance as we will discuss later.

Our fair scheduling candidate is represented by FQ-CoDel, which uses a stochastic
fair queuing implementation of DRR. Our preliminary experiments show that buffer size
variation does not have a significant impact on our metrics, we then keep it as 100 packets for
simplicity. FQ-CoDel relies essentially on three parameters: the number of FQ hash buckets
(default 1024), the CoDel target delay (default 5ms) and the inference interval (default
100ms). The default CoDel settings were meant to counter bufferbloat in the access network,
with timescales correlated to human perception that are thus orders of magnitude larger than
what is reasonable for the DCN environment. Considering that the RTT propagation delay
between any two hosts in our DCN scenario is 12µs and a full-packet packet transmission
delay is 1.2µs, we downscale by a factor of 1000x both the target delay (about 4 packets per
bucket) and the inference interval. While these settings work well in practice (after verifying
with a large set of combination), a more careful tuning along the line of [54] could possibly
improve performance further. In terms of hash buckets amount, our experiment result shows
that the default buckets amount is large enough without incurring performance degradation.

Different from pFabric, we do not use packet spraying in FQ-CoDel, as we prefer to
gather results that are conservative and valid in order sense, as opposite to gather finely-tuned
but scenario-specific results.

End-to-end TCP tuning

To perform a fair comparison is necessary to specialize transport protocol parameters
to the DCN environment [45]. Tab. 6.1 contrasts the pFabric settings with default TCP
values. The DCN environment clearly requires an increase of timestamp precision [101],
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Figure 6.1 pFabric TCP parameters impact overview. (Each combination denoted as
“AQM/scheduling - Buffer size”)

a significant reduction of time-related parameters (such as delayed ack and retransmission
timer [101]), and an increase of window-related parameters. The tuning of TCP minimum
RTO (minrto) can have significant impact on network performance. The imbalance between
minrto and data center latencies can result in poor performance for applications sensitive to
millisecond delays in query response time [101]. Under severe packet loss, it is unacceptable
to experience a timeout that lasts minrto. As long as we keep the minimum RTO larger than
timer precision and delayed ack, reducing minrto can benefit both latency-sensitive flows
and overall goodput of network.

To verify that pFabric settings do not play against DCTCP and FQ-CoDel, we compare
the mean FCT difference before and after applying pFabric TCP parameters. In the following
discussion, we use “AQM/scheduling - buffer size” format to represent the combinations
considered. Fig. 6.1 clearly shows the reduce of the mean FCT for candidates (with combi-
nation of buffer size variation) considered. Moreover, the pFabric TCP settings reduce the
mean FCT under pFabric by a factor of more than 2 compared to that provided by pFabric
used with vanilla TCP settings. We can conclude that applying pFabric TCP parameters is
feasible, and benefit all candidates.

To further investigate the impact of TCP tuning in a more detailed manner, we activate
features progressively and measure differences in latency (i.e., single packet FCT) and
throughput. Results are shown in Fig. 6.2 showing that activating all parameters yields to
about a 30% reduction of the mean FCT for DCTCP and 20% for FQ-CoDel. The breakdown
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Figure 6.4 Performance at a glance. Original pFabric “data mining" scenario, load 0.6.

per retransmission(rtx)/receiver(tx)/congestion(cc) categories of Tab. 6.1 shows that time-
related parameters play a paramount role, as expected. On the other hand, we see that
congestion-related parameter have a limited impact on DCTCP and even a negative impact
on FQ-CoDel, additionally it can be seen that the combined impact of the cc parameters
is more than additive. The bottom line is that each candidate gains the most reduction in
mean FCT when all parameters tuning is on. It follows that, by enabling pFabric parameters
without any further tuning, our results are slightly more favorable for pFabric, and provide a
conservative estimate of FQ-CoDel performance.

By further breaks down the rtx/tx/cc parameter impacts on the FCT vs throughput metrics
for DCTCP in Fig. 6.3, we obtain a more precise understanding of its impact on different
categories of flows. Here again it can be seen that whereas FCT of 1-packet flows (or
equivalently latency of rate-limited flows) benefits of the combined settings, the throughput
of long DCTCP suffers slightly due to a bulk adoption of pFabric settings adoption. Yet,
selective parameter inclusion is hard, since performance metrics are differently affected from
specific settings (e.g., cc parameters have a negative impact for short flows and positive
impact for long flows.)

6.3 Simulation

Original data-mining scenario

To show differences at a glance, we start from the original pFabric scenario where 1-
packet long flows represent a significant fraction (50%) of the flow volume but just account
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for a negligible portion of the byte-wise traffic volume (0.01%). Average throughput and
completion time of 1-packet flows are reported in Fig. 6.4 showing that pFabric indeed
exhibits outstanding performance for both metrics. Yet, it also shows that FQ-CoDel comes
second: specifically, FCT for FQ-CoDel is very close to that of pFabric, while throughput
for long flows is significantly smaller than pFabric but higher than that of DCTCP. Already
in this scenario, fairness appears to be an interesting alternative, appealing due to both its
simplicity, as well as its sufficient performance.

Fig. 6.5 shows a breakdown of flow size categories on both metrics. We apply feature
scaling to bring all values into the range [0,1] for an intuitive comparison. Since pFabric
and DropTail(with buffer size 1000 packets) represents the best and worst cases respectively
in both metrics, in Fig. 6.5, a point closer to bottom (0, pFabric standard) represents a
better performance, namely, lower FCT or higher throughput. In terms of FCT, FQ-CoDel
claims a similar performance of DCTCP for most flow sizes, but largely improves that of the
shortest flows in range (0,7] packets. This range indeed represents the rate-limited traffic,
and confirms our analysis that fair scheduling schemes can benefit latency-sensitive flows a
lot. From the observation of DropTail and DCTCP, we again see the impact of the short buffer
has on latency improvement of short flows. And we can further conclude that either a control
of queue length or packet sojourn time in the buffer can make a limited but not significant
difference on backlogged flows. Throughput is basically calculated as the ratio of size in bits
to FCT in seconds, thus a positive relation between FCT and throughput can be expected. As
Fig. 6.5 shows, FQ-CoDel enjoys an impressive performance boost in short flow throughput.
We notice that DCTCP-1000 provides extremely large flows better throughput thanks to the
large buffer size.

Tweaked data-mining scenario

Robust DCN design should maintain their performance across scenarios: difference
early shown in Fig. 6.4 has to be maintained, if not quantitatively, at least in order sense
under a large spectrum of situations. We perform a very simple yet insightful sensitivity
analysis of the pFabric, DCTCP and FQ-CoDel performance by increasing the volume of
byte-wise traffic generated by 1-packet flows. As a reference, the 1-packet flow accounts
for 0.01% volume-wise in total traffic of original scenario. For technical reasons tied to the
simulation duration, we cap the maximum flow size to 105 packets – yet, as it can be seen
the tweak is favorable to pFabric as the gap between pFabric and FQ-CoDel for 0.01% in
Fig. 6.6 is larger than in Fig. 6.4. Nevertheless, it is easy to gather that the difference reduces
significantly for increasing intensity of short or rate-limited flows: while that gap between
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DCTCP and pFabric designs always remain remarkable, the performance of FQ-CoDel
approaches considerably that of pFabric.

6.4 Summary

In this chapter, we study the impact of fair scheduling scheme in data center network. We
pick a recent proposal named FQ-CoDel, which couples fair scheduling and explicit queue
size control. Besides, DCTCP and pFabric has been chosen as the comparison benchmark.
Both of them have already been widely studied in the community while the former is a
layer-4 transport protocol and the latter is a clean slate cross-layer design.

We advise that performing careful calibration before an experiment campaign could en-
sure fair comparison among candidates. Our work shows that tuning in both AQM/scheduling
schemes and end-to-end are necessary in response to specific requirement and network char-
acteristics under study. Due to the high capacity low latency feature of DCN, time-related
parameters tweak is of great importance, to name a few, timer precision, retransmission
timeout, etc.

In light of our results, FQ-CoDel achieves comparable performance to pFabric in terms of
short flow completion time, which exhibits a large improvement over DCTCP. Such feature
ensures a relative priority of rate-limited flows (generated by interactive application, etc)
over backlogged flows. Our further experiment shows that the performance gap between
FQ-CoDel and pFabric becomes smaller when the bytewise volume share of short flows
increases, which makes it more interesting for multi-tenant data center with high-level
mixture of applications. We believe a fair statement is that FQ-CoDel achieves “good enough”
performance while being “simple enough” to be highly appealing in practice. Yet, to date
this simple yet effective approach has been neglected in DCN research for no obvious reason.





Chapter 7

Conclusion

7.1 Summary

In response to the fast development of new services over Internet in the latest decade, the
quality of user experience can be mapped to network key performance indicators such as
throughput and latency. Bearing in mind that the overall service performance depends on the
performance of multiple network segments, in this thesis we investigated two network design
challenges in two most important segments at the opposite edges of the end-to-end Internet
path, namely, the end-user access network vs. the service provider data center network.

Access network

In the first part, we point out possible negative issues “reprioritization” arising from the
interaction of AQM and CC techniques. Specifically, under AQM it is likely that LPCC
techniques will become as aggressive as best-effort TCP.

We use a simulation campaign to quantify the generality of the reprioritization phe-
nomenon under the largest possible set of scenarios. We include a number of representative
AQM and LPCC techniques. Our results show that under all combinations considered this
phenomenon occurs. The choice of a specific (LPCC,AQM) combination has only very
limited impact on the system performance. A further sensitivity analysis shows that though
the specific scenario settings may have an impact on fairness and queue size statistics, they
have nevertheless only very limited impact on the reprioritization phenomenon. We conduct
a more systematic experimental testbed campaign under controlled environment and wild
internet with available AQM and LPCC in Linux kernel. The experiment result confirms the
validity of reprioritization in the real world.
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With the purpose of analyzing this phenomenon qualitatively, we have proposed a DDE
model that captures the dynamics of an overall system composed of TCP flows, LEDBAT
flows and an AQM control algorithm that is executed at the bottleneck queue. By analyzing
dynamical properties of the system around its equilibrium points, we have been able to
provide an explanation of the reprioritization phenomenon and have confirmed the generality
of this issue. Moreover, model predictions have been validated against ns2 simulations when
RED is used as AQM algorithm.

Due to the increasing deployment of both low-priority congestion control and AQM
techniques that today are employed to fight bufferbloat, the problem discussed in this thesis
may be of significant practical relevance.

Data center network

In the second part, we review and compile a comprehensive taxonomy of data center
network design, which becomes critical to the service quality and performance. Despite
the active community development, we remark the absence of DCN proposals based on
simple fair-scheduling strategies. We argue that fair scheduling could bring benefit to
general-purpose data center without preassumption of workload mixture.

We pick FQ-CoDel, a deploy-ready scheme originally designed to fight bufferbloat in
home routers of the access network, to evaluate the impact of fair scheduling scheme in
data center networks. FQ-CoDel combines the scheduling mechanism providing fairness
among flows, and Active Queue Management (AQM) to cap upper-bound delay. DCTCP
and pFabric have been chosen as the other two comparison benchmarks. Both of them have
already been widely studied in the community while the former is a layer-4 transport protocol
and the latter is a clean slate cross-layer design.

With careful calibration of end-to-end transport protocol TCP, and parameter tuning of
all comparison candidates to adapt them to a high throughput and low latency environment,
our evaluation of FQ-CoDel in a DCN environment shows that it achieves better average
throughput than end-to-end protocols tailored for DCN such as DCTCP. At the same time,
the completion time of short flows approaches that of state-of-the-art DCN proposals such
as pFabric: good enough performance and striking simplicity make FQ-CoDel a serious
contender in the DCN arena.

We further adjust the bytewise volume share of short flows, the result shows a smaller
performance gap between FQ-CoDel and pFabric. FQ-CoDel successfully exhibits the
feature of ensuring a relative priority for rate-limited flows over backlogged flows. Therefore,
we advocate a fair scheduling scheme coupled with AQM could benefit multi-tenant data
center with high-level mixure of applications.
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7.2 Future work

In this section, we present the open questions that remain unsolved in our research field,
to be explored in future works.

Hybrid AQM techniques

In the first part, the AQMs evaluated either implement drop (RED/CoDel/CHOKe) or
scheduling (SFQ) strategies. At the same time, hybrid AQM techniques that jointly exploit
fair queuing with early drop are appearing, for instance, the FQ-CoDel [6] has already made
its way into Linux kernels starting from 3.5 [47]. We didn’t have the opportunity to include it
in our analysis on access network due to the unavailable of FQ-CoDel at that time. Including
this technique into evaluation could be interesting to complete our study of AQM vs. LPCC
interaction, though we argue that the reprioritization problem will remain: intrinsically, AQM
and scheduling aim at fairness, whereas LPCC aims at the contrasting objective of unfairness
with respect to TCP.

Finer-grain priorities within LPCC

Another sensible question is whether it would be possible to differentiate priorities at a
finer grain within the LPCC class: for instance, it is known that different targets in LEDBAT
could yield to starvation in case of backlogged flows under a DropTail discipline [48]; at the
same time, it is not clear what the behavior would be under AQM.

In-depth evaluation of FQ-CoDel

Although FQ-CoDel has been intensively tested before the deployment in home routers,
the study of its application in DCN environment is rather limited. Our work serves a
preliminary step into such field, and we believe that more in-depth evaluation is necessary in
the future. As in the calibration, we choose the same parameters for all schemes considered.
They indeed give an advantage to pFabric in our case. It would be interesting to apply
heterogeneous parameter calibration to evaluate the full potential benefits FQ-CoDel could
bring to our scenario. Furthermore, we observe from Fig. 6.6 a reversed trend of FQ-CoDel
compared to pFabric and DCTCP. It could be important to carry out the additional study to
reveal the potential difference behind these schemes.
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DCN design study on real deployment

In the second part, our evaluation essentially raises awareness in the community about
the suitability of adopting fair scheduling scheme, however much remain to be done. To
start with, FQ-CoDel should be compared in a real deployment against DCTCP to prove that
benefits are immediately and painlessly achievable in today DCNs. A broader understanding
of further key ingredients (e.g., packet spraying; co-flow identification; etc.) that play nicely
along FQ-CoDel in a simple yet successful DCN design constitute a logical next step of our
agenda.

Flow correlation impact

The workload we used in our simulation derives from the widely-used workload orig-
inated from [19] and [28], with simple flow/packet arrival process and size distribution.
Considering the fact that they are statistics of two traces from a specific data center at a
specific time, there remains two major concerns 1) the appropriateness of using them in
diverse designs is questionable; 2) the lack of both time and space correlation information
among flows. While the community is still far from being able to model realistic traffic in a
practical way, we can indeed add a part of missing information, reflecting the flow correlation
to a reasonable extent. Recent proposals like Varys [22], RAPIER [44] and Baraat [38]
already consider completion time in terms of co-flow and task. We believe a more systematic
design of workload should benefit the entire community.
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La quête de faible latence sur les deux bords du réseau :
conception, d’analyse, de simulation et expériences

Yixi GONG

RESUME : Au cours de ces dernières années, les services Internet croissent considérablement ce qui
crée beaucoup de nouveaux défis dans des scénarios variés. La performance globale du service dépend
à son tour de la performance des multiples segments de réseau. Nous étudions deux défis représentatifs
de conception dans différents segments : les deux les plus importants se trouvent sur les bords opposés la
connectivité de bout en bout des chemins d’Internet, notamment, le réseau d’accès pour l’ utilisateur et le
réseau de centre de données du fournisseur de services.

ABSTRACT : In the recent years, the innovation of new services over Internet is considerably growing at
a fast speed, which brings forward lots of new challenges under varied scenarios. The overall service perfor-
mance depends in turn on the performance of multiple network segments. We investigated two representative
design challenges in different segments : the two most important sit at the opposite edges of the end-to-end
Internet path, namely, the end-user access network vs. the service provider data center network.
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