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Introduction

Cette thèse est dédiée à l’étude des propriétés de compacité de
familles d’applications analytiques entre espaces analytiques définis sur
un corps métrisé non-archimédien.

Nous travaillerons dans le contexte des espaces analytiques dévelop-
pés par Berkovich dans [Ber90, Ber93]. La raison principale pour
ceci est que les espaces analytiques au sens de Berkovich possèdent des
bonnes propriétés topologiques: ils sont localement compacts et locale-
ment connexes par arcs, ce qui les rend plus adaptés à des arguments
de nature analytique.

F

Avant de discuter les résultats que nous avons obtenus, regardons
tout d’abord le cas des variétés analytiques complexes.

La compacité des familles d’applications holomorphes apparait en
lien avec la notion d’hyperbolicité au sens de Kobayashi [Kob67], qui
est l’un des concepts fondamentaux en géométrie complexe. Nous
renvoyons à [Kob98] et [Lan87] pour des monographies détaillées sur
le sujet ou aux surveys plus récents [Voi03, DR11]. Cette notion a
motivé de nombreux travaux dans les dernières décennies ainsi que de
profondes conjectures.

Rappelons que la semi-distance de Kobayashi est une généralisa-
tion aux espaces analytiques complexes quelconques de la métrique de
Poincaré ρ sur le disque unité D, et qu’elle est définie comme suit. SoitX
un espace analytique complexe connexe. Une chaîne de Kobayashi reliant
deux points x et y dans X est la donnée d’une famille finie d’applications
holomorphes fl : D→ X et de points zl, wl ∈ D, l = 1, · · · ,m tels que
f1(z1) = x, fl(wl) = fl+1(zl+1) pour l = 1, · · · ,m − 1 et fm(wm) = y.
La semi-distance de Kobayashi entre x et y est alors donnée par

dX(x, y) = inf
m∑
l=1

ρ(wl, zl) ,

où l’infimum est pris parmi toutes les chaînes de Kobayashi reliant x à
y.

L’espace X est dit (Kobayashi) hyperbolique lorsque dX est une
distance, c’est-à-dire lorsque dX(x, y) = 0 si et seulement si x = y. Une
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x INTRODUCTION

surface de Riemann est hyperbolique si et seulement si elle est uni-
formisée par le disque unité, et une variété contenant une courbe entière
n’est jamais hyperbolique, comme par exemple tout tore complexe.

C’est un fait remarquable et fondamental dû à Brody [Bro78] que
les espaces analytiques complexes compacts hyperboliques peuvent être
caractérisés de la façon suivante:

Théorème 1. Soit X un espace analytique complexe compact lisse
muni d’une métrique hermitienne. Les conditions suivantes sont alors
équivalentes.

(1) L’espace X est Kobayashi hyperbolique.
(2) La dérivée d’une application holomorphe du disque dans X est

bornée sur tout compact K de D par une constante ne dépendant
que de X et de K.

(3) L’espace X ne contient pas de courbe entière.
(4) La famille Hol(D, X) est normale.

Rappelons qu’une famille d’applications analytiques fn : D → X
est dite normale si elle est équicontinue, ce qui revient par le théorème
d’Ascoli-Arzelà à dire que quitte à extraire une sous-suite, la suite
d’applications fn converge uniformément sur tout compact vers une
application holomorphe g : D→ X.

Le contenu essentiel du théorème ci-dessus est l’implication (3)⇒ (1)
dont la démontration procède comme suit. Si X est un espace compact
non hyperbolique alors il existe une suite d’applications holomorphes
fn : D→ X telles que |dfn(0)| → ∞. Le lemme dit de Zalcman [Zal75]
nous permet alors de trouver une suite de points zn → 0 et de réels
ρn → 0 tels que la suite renormalisée gn(z) = fn(zn + ρnz) définisse une
famille d’applications holomorphes gn : D(0, n)→ X avec |dgn(0)| = 1
et de dérivée uniformément bornée sur tout compact. L’équicontinuité
des gn nous permet alors de produire une courbe entière.

Les espaces complexes analytiques hyperboliques jouissent de pro-
priétés remarquables concernant la compacité des espaces d’applications
holomorphes à valeurs dans eux.

Le théorème de De Franchis généralisé par [Sam66, KO75, Nog92]
assure ainsi qu’il n’existe qu’une quantité finie d’applications méromor-
phes surjectives d’une variété compacte dans une variété compacte
Kobayashi hyperbolique.

Le théorème de Montel classique affirme que la famille des appli-
cations holomorphes d’une variété complexe à valeurs soit dans un
domaine borné de CN , soit dans P1(C) \ {0, 1,∞}, qui sont tous les
deux hyperboliques, est normale, signifiant qu’une telle famille est rela-
tivement compacte pour la topologie de la convergence uniforme locale
[Mon07].
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Mentionnons pour conclure cette discussion une conjecture dûe à
Lang qui fait le pont entre géométrie complexe et des questions plus
arithmétiques, énonçant que toute variété projective lisse hyperbolique
X définie sur un corps de nombres k ne contient qu’une quantité finie
de points k-rationnels [Lan74].

F

Fixons maintenant un corps valué complet k non-archimédien et
algébriquement clos et non-trivialement valué.

Nous allons considérer des espaces analytiques définis sur k au sens
de Berkovich. Rappelons brièvement que ce sont des espaces localement
modelés sur des espaces dits affinoïdes, qui sont des espaces compacts
isomorphes à des sous-espaces analytiques d’un polydisque fermé. Nous
nous intéresserons surtout à des espaces analytiques obtenus comme
analytifications au sens de Berkovich des variétés algébriques définies
sur un corps non-archimédien. L’ensemble des points fermés d’une
telle variété forme un sous-ensemble dense et d’intérieur vide dans son
analytification, désignés comme points rigides.

W. Cherry a initié l’étude de l’hyperbolicité dans le cadre non-
archimédien dans [Che96]. Il a défini une semi-distance dCK sur l’en-
semble des points fermés d’un espace k-analytique en termes de chaînes
de Kobayashi. Soient x, y deux points rigides d’un espace k-analytique
connexe X. Comme dans le cas complexe, une chaîne reliant x à y est
la donnée d’une famille finie d’applications analytiques fl : D→ X et
de points rigides zl, wl dans le disque ouvert D, l = 1, · · · ,m tels que
f1(z1) = x, fl(wl) = fl+1(zl+1) pour l = 1, · · · ,m − 1 et fm(wm) = y.
La semi-distance de Cherry-Kobayashi entre x et y est alors donnée par

dCK(x, y) = inf
m∑
l=1
|wl − zl| ,

où l’infimum est pris parmi toutes les chaînes reliant x à y. Nous disons
qu’un espace k-analytique est Cherry hyperbolique lorsque dCK est une
vraie distance. Cette semi-distance définit la distance standard dans le
cas du disque unité, et est comme dans le cas complexe contractée par
les applications analytiques.

Dans une série d’articles [Che93, Che96, ACW08, Che94], W.
Cherry a étudié en détail le comportement de cette semi-distance et
l’existence de courbes entières dans le cas des variétés abéliennes et des
courbes projectives, en exploitant de manière essentielle la théorie de la
réduction pour ces variétés. Il a obtenu des résultats surprenants qui
contrastent avec le cas complexe.

Théorème 2. Soit X une variété abélienne.
(1) Toute application analytique de la droite affine à valeurs dans

X est constante.
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(2) La variété X est Cherry hyperbolique.
Notons néanmoins que ceci n’entraîne pas de contrexemple non-

archimédien au Théorème 1. Inspiré par ses résultats, Cherry a même
proposé la conjecture remarquable suivante dans [Che94, Che96]:

Conjecture 1. Une variété projective lisse définie sur un corps
non-archimédien est Cherry hyperbolique si et seulement si elle ne
contient pas de courbe rationnelle.

Cette conjecture est spécifique aux corps non-archimédiens, mais
il existe néanmoins des conjectures analogues dans le cas complexe.
Mentionnons par exemple la conjecture suivante dûe à Lang:

Conjecture 2. Une variété projective complexe X lisse est Koba-
yashi hyperbolique si et seulement si toute application holomorphe d’une
variété abélienne dans X est constante.

La Conjecture 1 reste largement ouverte bien que Cherry ait traité
le cas des courbes, des variétés abéliennes et certaines larges classes de
surfaces algébriques compactes dans [Che93, §VII.3]. Le premier cas
à regarder serait celui des surfaces de type général.

F

Un de nos objectifs est de comprendre la semi-distance de Cherry-
Kobayashi sur un espace analytique X en termes de la compacité des
applications analytiques du disque dansX en s’inspirant de l’équivalence
entre les propriétés (1) et (3) du Théorème 1. Pour celà, nous allons tout
d’abord dégager une notion de normalité pour des familles d’applications
analytiques à valeurs dans un compact.

Nous faisons cependant face immédiatement au problème suivant.
Les points rigides d’une variété X sont denses, et donc tout point non
rigide x0 ∈ X peut être approximé par une suite de points rigides xn.
En particulier, la suite d’applications analytiques constantes fn ≡ xn
converge vers l’application constante f ≡ x0 qui n’est pas analytique
car x0 n’est pas un k-point.

Pour cette raison, nous posons:
Définition. Soit X un espace k-analytique sans bord et Y un

espace k-analytique compact.
Une famille d’applications analytiques F de X dans Y est normale

en un point x ∈ X s’il existe un voisinage V 3 x sur lequel toute suite
{fn} dans F possède une sous-suite {fnj} qui converge ponctuellement
vers une application continue.

La famille F est normale si elle est normale en tout point x ∈ X.
L’hypothèse pour une variété analytique d’être sans bord est une

hypothèse non triviale, mais elle est vérifiée par tous les analytifiés
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des variétés algébriques et tous les sous-espaces analytiques fermés des
polydisques ouverts. Remarquons que cette hypothèse est nécessaire. En
effet, il a été remarqué dans [FKT12, §4.2] que la suite d’applications
analytiques du disque unité fermé D̄ dans lui-même fn(z) = z2n! converge
ponctuellement sur tout D̄, mais que la limite f n’est pas continue. Le
point de Gauss, qui est l’unique point du bord de D̄, est fixé par f ,
tandis que tout le disque ouvert D est envoyé sur 0 par f .

F

Notre premier résultat est une version du théorème de Montel pour
des applications analytiques à valeurs dans un domaine borné de l’espace
affine qui généralise en dimension quelconque [FKT12, Theorem 2.1].

Théorème A. Soit X un espace k-analytique réduit, sans bord et
σ-compact, et Y un espace strictement k-affinoïde.

Alors, la famille des applications analytiques de X dans Y est
normale.

Expliquons notre méthode de démonstration. On se ramène tout
d’abord au cas des polydisques de telle sorte que l’on supposera dans la
suite de la discussion que X = Dr et Y = D̄s. Notre idée centrale est
alors de munir l’espace des applications analytiques de Dr dans D̄s d’une
structure de spectre analytique d’une k-algèbre de Banach adéquate.
Le résultat découle de la compacité séquentielle de cet espace.

Pour comprendre notre construction, considérons l’espace des ap-
plications polynomiales de l’espace affine Ar,an → As,an de degré au
plus δr avec δ ≥ 1 et envoyant le polydisque ouvert Dr dans le poly-
disque fermé D̄s. Une telle application f est donnée par s polynômes
Pl(T1, . . . , Tr) = ∑

|I|≤δ al,IT
I , où l’on pose |I| = |(i1, . . . , ir) := max ij,

dont les coefficients vérifient |al,I | ≤ 1. On voit donc que f détermine
un point rigide d’un polydisque unité fermé de dimension s(δ + 1)r.

Toute suite d’applications polynomiales fn : Ar,an → As,an comme
ci-dessus fournit donc une suite de points rigides αn dans D̄s(δ+1)r , dont
nous pouvons extraire une sous-suite αnj convergente vers un point
α ∈ D̄s(δ+1)r , car les polydisques fermés sont séquentiellement compacts
par [Poi13]. Un petit argument montre alors que la sous-suite fnj
converge ponctuellement en tout point. Finalement, nous calculons
l’application limite explicitement en termes du point α et démontrons
qu’elle est continue.

La construction précédente dans le cas des applications polynomiales
de degré δ suggère que l’espace des applications analytiques de Dr dans
D̄s peut être paramétré par un polydisque de dimension infinie. Pour
donner un sens précis à cet énoncé, nous construisons une k-algèbre de
Banach T r,s∞ qui est un analogue de l’algèbre de Tate en une quantité
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dénombrable de variables. Nous montrons que son spectre analytique
noté Mor(Dr, D̄s) satisfait la propriété universelle suivante.

Notons X(k) l’ensemble des points rigides d’un espace k-analytique
X.

Théorème B. Il existe une application analytique
Φ : Mor(Dr, D̄s)× Dr → D̄s

satisfaisant la propriété universelle suivante.
Soit W le spectre analytique d’une k-algebra de Banach ou un espace

k-analytique bon. Pour toute application analytique F : W × Dr → D̄s

il existe une unique application analytique G : W → Mor(Dr, D̄s) telle
que F (x, z) = Φ(G(x), z) pour tout x ∈ W (k) et tout z ∈ Dr(k).

Les points rigides de Mor(Dr, D̄s) sont donc en correspondance avec
les applications analytiques Dr → D̄s, et il s’avère que tout point
non-rigide de Mor(Dr, D̄s) définit une application continue Dr → D̄s.
Le Théorème A résulte alors de la compacité séquentielle de l’espace
Mor(Dr, D̄s), ce qui découle d’une adaptation à ce cadre de dimension
infinie de [Poi13, Proposition 5.2].

Nous construisons plus généralement l’espace des applications analy-
tiques d’un polydisque ouvert vers un affinoide quelconque Y . L’espace
résultant Mor(Dr, Y ) est le spectre analytique d’un quotient de T r,s∞ par
un idéal fermé qui safisfait une propriété universelle analogue.

Revenons aux limites continues fournies par le Théorème A. Nous
établissons que toute application f : Dr → D̄s obtenue comme limite
d’une suite d’applications analytiques fn : Dr → D̄s se relève en une
application analytique après un changement de base convenable.

L’énoncé précis utilise une section de l’application de changement de
base introduite dans [Poi13]. Pour toute extension complète K/k, et
tout espace k-analytique X, notons par XK son extension des scalaires.
Celle-ci est munie d’une projection canonique πK/k : XK → X. C’est
un fait fondamental que tout k-point de X peut être relevé à XK ,
et Poineau a démontré que ce relèvement s’étend en une application
continue σK/k : X → XK telle que πK/k ◦ σK/k = id.

Corollaire C. Soit X un espace k-analytique réduit, sans bord et
σ-compact, et Y un espace k-affinoïde.

Soit fn : X → Y une suite d’applications analytiques convergeant
ponctuellement vers une application continue f : X → Y . Alors, il
existe une extension complète K/k et une application K-analytique
F : XK → YK telles que

f = πK/k ◦ F ◦ σK/k .

Ce résultat suggère la définition suivante. Une application continue
f : X → Y entre espaces analytiques est dite faiblement analytique si
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elle est localement de la forme f = πK/k ◦ F ◦ σK/k pour une extension
complète K de k et une application K-analytique F . Ces applications
partagent plusieurs propriétés caractéristiques des applications analy-
tiques, que nous discutons dans §3. En particulier, nous démontrons
une version du principe des zéros isolés pour ces applications.

Cette définition technique présente quelques difficultés, car il n’est
pas clair si les applications faiblement analytiques peuvent être relevées
sur tout X en une application analytique, et pas seulement localement
au voisinage de tout point. Nous proposons la conjecture suivante:

Conjecture 3. Soit X un espace k-analytique sans bord et Y un
espace k-affinoide. Soit f : X → Y une application faiblement analy-
tique. Alors, il existe une extension complète K/k et une application
K-analytique F : XK → YK telles que f = πK/k ◦ F ◦ σK/k.

Cette conjecture permettrait d’étendre le Théorème A à toute suite
d’applications faiblement analytiques.

F

Dans le Chapitre 4, nous nous sommes intéressée aux applications
possibles de notre version du théorème de Montel à la dynamique des
endomorphismes de PN,an de degré au moins 2, et plus particulièrement
à des problèmes de nature globale. La première question que nous avons
abordée est la définition dans ce cadre des ensembles de Fatou (où la
dynamique est régulière) et de Julia (où elle est chaotique).

La première idée est de définir l’ensemble de Fatou Fnorm(f) d’un
endomorphisme de l’espace projectif f : PN,an → PN,an comme le lieu
de normalité de la famille de ses itérés. Dans le cas complexe, cet
ensemble possède plusieurs caractérisations, notamment comme complé-
mentaire du support du courant de Green. Dans le cas non-archimédien,
Kawaguchi et Silverman [KS07, KS09] ont associé à f une fonction
de Green Gf définie sur AN+1,an. Si ρ : AN+1,an → PN,an désigne la pro-
jection canonique, il est alors naturel d’introduire l’ensemble Fharm(f)
de f comme l’ensemble des z ∈ PN,an possédant un voisinage U tel que
Gf est fortement pluriharmonique au sens de [CL11] sur ρ−1(U).

Conjecture 4. Pour tout endomorphisme f de l’espace projectif
de degré au moins 2, nous avons Fnorm(f) = Fharm(f).

La dynamique des endomorphismes de la droite projective a été
étudiée par de nombreux auteurs, et on peut trouver une démonstration
de la conjecture ci-dessus dans [FKT12, Theorem 5.4] qui repose sur
les travaux précédents de Rivera-Letelier et sur la construction de la
mesure d’équilibre due à Favre-Rivera-Letelier et Baker-Rumely.

Mentionnons que l’on peut également étudier l’ensemble Equi(f) des
points rigides au voisinage desquels les itérés de f sont équicontinues
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par rapport à la métrique chordale. Ce point de vue est exploré en
dimension 1 par H’sia [Hsi00], et l’on peut montrer que l’intersection
de l’ensemble de Fatou avec les points rigides coïncide avec Equi(f),
voir [FKT12, Theorem C]. En dimension quelconque, Kawaguchi et
Silverman ont donné une caractérisation de Equi(f) en termes de la
fonction de Green.

Nous démontrons à la Proposition 4.4.4 que Fharm(f) peut être
caractérisé comme le lieu où les itérés fn se relèvent en des applications
analytiques à valeurs dans un compact fixe de AN+1,an \ {0}. Il s’ensuit
alors du Théorème A que Fharm(f) est contenu dans Fnorm(f).

Nous nous intéressons ensuite aux propriétés géométriques de l’ens-
emble de Fatou harmonique. Rappelons que dans le cas complexe, Ueda
a démontré que toute composante connexe de l’ensemble de Fatou peut
être plongée hyperboliquement au sens de Kobayashi dans PNC [Ued94].
En adaptant ses arguments au cas non-archimédien, on obtient:

Théorème D. Soit f : PN,an → PN,an un endomorphisme non
inversible, Ω une composante connexe de Fharm(f) et U un ouvert de
P1,an.

Alors, toute suite d’applications analytiques gn : U → Ω possède une
sous-suite gnj qui converge ponctuellement vers une application continue
g : U → PN,an.

Notre preuve utilise de façon essentielle l’hypothèse que U est un
ouvert de la droite projective, bien qu’il soit vraisemblable que le résultat
reste valide pour tout espace analytique sans bord et σ-compact.

Comme conséquence au Théorème A, nous obtenons:

Théorème E. Soit f : PN,an → PN,an un endomorphisme non
inversible et Ω une composante connexe de Fharm(f). Toute application
analytique A1,an \ {0} → Ω est constante.

Un autre résultat basique portant sur la géométrie des composantes
de Fatou complexes est que celles-ci sont Stein [Ued94, FS95, Mae04].
La démonstration repose sur la théorie du pluripotentiel, et la carac-
térisation du complémentaire de l’ensemble de Fatou comme support
du courant de Green. Sur un corps non-archimédien, la notion d’espace
analytique Stein a été introduite dans [Kie67] en termes d’exhaustion
par un certain type d’espaces affinoides, ce qui peut être vérifié dans
le cas sans bord avec des critères cohomologiques. Nous proposons la
question suivante:

Question. Les composantes connexes de Fatou d’un endomorphis-
me de PN,an sont-elles Stein?

Si l’on s’attend à ce que la démonstration suive son analogue com-
plexe, on a besoin de développer une caractérisation pluripotentielle
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des domaines Stein de l’espace projectif. Nous ne disposons cependant
pas à l’heure actuelle d’une théorie du pluripotentiel sur un corps non-
archimédien arbitraire en dimension supérieure. Ducros et Chambert-
Loir ont proposé une définition de courant dans un contexte assez
général dans [CLD12], mais certains ingrédients importants, comme la
régularisation des fonctions plurisousharmoniques, ne sont pas encore
disponibles alors qu’ils jouent un rôle crucial dans le cas complexe.

F

Au chapitre 5, nous revenons au problème initial de cette thèse
portant sur l’étude de la semi-distance dCK. Nous démontrons tout
d’abord une version non-archimédienne du Théorème 1 et caractérisons
les variétés projectives lisses pour lesquelles dCK est non dégénérée en
un sens adéquat.

Rappelons que l’espace projectif PNk est naturellement muni de la
distance sphérique dP. Notre premier résultat est le suivant:

Théorème F. Soit X une variété projective lisse définie sur un
corps complet non-archimédien algébriquement clos de caractéristique
résiduelle nulle. Les conditions suivantes sont équivalentes:

i) Tout point rigide x ∈ X possède un voisinage U tel que les
semi-distances min{1, dCK} et dP sont équivalentes sur U(k).

ii) La semi-distance dCK est non dégénérée et définit la même
topologie sur l’ensemble des points rigides de X que la distance
projective dP.

iii) La dérivée de Fubini-Study de toute application analytique de
D dans X est localement uniformément bornée au voisinage de
tout point rigide.

Le contenu principal de cet énoncé réside dans l’implication ii) ⇒
iii), qui résulte de l’adaptation du lemme de Zalcman au cas non-
archimédien. Nous produisons ainsi une suite d’applications analytiques
gn : D(0;n) → X dont la dérivée sphérique est uniformément bornée
sur tout compact de A1,an. Une différence majeure avec le cas complexe
est que cette suite ne converge a priori pas vers une courbe entière
A1,an → X.

Remarquons que dans le cas complexe l’assertion ii) est vérifiée si et
seulement si X est Kobayashi hyperbolique par un théorème de Barth
[Lan87, I, §2].

Notons de plus que l’hypothèse de caractéristique résiduelle nulle
sur k est nécessaire pour borner les dérivées, et nous l’utilisons pour
l’implication iii) ⇒ i).

Nous observons enfin que la condition iii) implique que la famille
Mork(D, X) d’applications analytiques du disque ouvert dans X est
normale au voisinage de tout point rigide. Il est vraisemblable que
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l’implication réciproque soit aussi valide. La conjecture 1 montre que
si la famille Mork(D, X) est normale au voisinage de tout point rigide,
alors X est Cherry hyperbolique, ce qui est une condition légèrement
plus faible que ii).

Pour les courbes projectives, on obtient le théorème suivant, qui
donne un analogue précis du Théorème 1:

Théorème G. Soit k un corps complet non-archimédien et al-
gébriquement clos de caractéristique résiduelle nulle. Soit X une courbe
projective lisse sur k. Les conditions suivantes sont équivalentes:

i) La courbe X est de genre strictement positif.
ii) Tout point rigide x ∈ X possède un voisinage U tel que les

semi-distances min{1, dCK} et dP sont équivalentes sur U(k).
iii) La dérivée de Fubini-Study de toute application analytique de

D dans X est uniformément bornée au voisinage de tout point
rigide.

iv) La famille des applications analytiques de D dans X est nor-
male.

v) La courbe X est Cherry hyperbolique.

F

Au dernier chapitre, nous étudions de près la normalité des familles
d’applications analytiques à valeurs dans une courbe algébrique (lisse
et irréductible) fixée.

Rappelons que pour une telle courbe X, il existe une unique courbe
projective X̄ lisse contenant X comme ouvert Zariski dense. On définit
alors la caratéristique d’Euler de X comme la quantité

χ(X) = 2− 2g −#(X̄ \X) ,
où g dénote le genre de X̄.

Dans le cas complexe, les courbes algébriques lisses Kobayashi-
hyperboliques sont exactement celles de caractéristique d’Euler négative,
et pour celles-ci la famille Hol(Y,X) est normale pour un espace analy-
tique Y quelconque. Nous démontrons ici un analogue non-archimédien.

Pour celà, nous adaptons notre définition de famille normale lorsque
le but est non compact de la manière suivante.

Soit U un espace k-analytique sans bord. Une famille F d’applica-
tions analytiques de U dans X est normale si pour toute suite fn ∈ F
il existe une sous-suite fnj qui converge ponctuellement sur U vers une
application continue f∞ : U → X̄.

Nous montrons:
Théorème H. Soit k un corps non-archimédien complet et al-

gébriquement clos dont le corps résiduel k̃ est de caractéristique zéro et
dénombrable. Soit X une courbe algébrique irréductible lisse sur k.
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Alors, la caractéristique d’Euler χ(X) de X est strictement négative
si et seulement si pour toute courbe lisse connexe et sans bord U , la
famille Mork(U,X) est normale.

En outre, toute suite d’applications analytiques fn : U → X avec
χ(X) < 0 admet une sous-suite fnj qui converge ponctuellement vers
une application continue f∞ : U → X̄ tel que soit f∞(U) ⊂ X ou f∞
est une constante dans X̄ \X.

Pour mémoire notons que χ(X) ≤ 0 si et seulement si Mork(D, X)
est normale, le cas projectif étant une conséquence du Théorème G.

L’une des implications du Théorème H a déjà été essentiellement
démontrée dans [FKT12]. Si la caractéristique d’Euler deX est positive
ou nulle, alors il existe une courbe k-analytique sans bord U telle que
la famille Mork(U,X) n’est pas normale. Quand X est la droite affine
ou la droite projective, alors on peut prendre U égal au le disque unité.
Dans le cas où X est la droite affine épointée, il suffit de considérer une
couronne ouverte. Il ne reste qu’à traiter le cas où X est une courbe
elliptique, pour lequel on peut prendre U = X.

La partie centrale de la démonstration est l’implication suivante:
la famille Mork(U,X) est normale pour toute courbe lisse analytique
connexe sans bord U dès que χ(X) < 0. La preuve se divise en plusieurs
étapes: on s’occupe tout d’abord du cas où X est une courbe projective
puis on traite le cas algébrique général.

Théorème I. Soit k un corps non-archimédien complet et algébri-
quement clos dont le corps résiduel k̃ est de caractéristique zéro. Sup-
posons que X est une courbe algébrique irréductible lisse de caractéris-
tique d’Euler négative dont le squelette San(X) n’est pas un singleton.

Soit U une courbe k-analytique lisse connexe sans bord. Alors, il
existe un recouvrement (X̄i) de X̄ par des domaines affinoides et un
recouvrement ouvert (Uj) de U localement fini par des tubes basiques
tel que pour toute application analytique f : U → X et tout Uj, l’image
f(Uj) est contenue dans un domaine affinoide X̄i.

Notons que ce dernier théorème montre une forme d’équicontinuité
pour les applications de U dans X.

Dans le cas où San(X) n’est pas un singleton, il implique avec
Théorème A une version plus forte du Théorème H. Par exemple, toute
limite ainsi obtenue est une application faiblement analytique.

Lorsque San(X) est un singleton, la courbe X est projective et à
bonne réduction au sens où elle admet un modèle lisse sur k◦. Dans ce
cas nos arguments utilisent de façon cruciale l’hypothèse que le corps
résiduel k̃ est dénombrable, et nous ne pouvons pas assurer que la limite
soit faiblement analytique.
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Les deux théorèmes ci-dessus sont démontrés en examinant de près
le comportement des applications analytiques entre courbes, et en
particulier sur leurs squelettes respectifs.

F

Il serait intéressant de clarifier la différence entre la notion de nor-
malité et celle d’équicontinuité. Rappelons que lorsque Y est compact,
une famille d’applications analytiques F de X dans Y est équicontinue
en un point x ∈ X si pour tout recouvrement ouvert fini (Yi) de Y
il existe un voisinage Ux de x tel que pour toute application f ∈ F
il existe un indice i tel que f(Ux) ⊆ Yi. Une famille équicontinue est
nécessairement normale, mais nous ne savons pas si la réciproque est
aussi valide.

Si ces deux notions étaient équivalentes, alors les ensembles de Fatou
harmonique et normal coïncideraient. On obtiendrait également une
forme plus forte du Théorème H.

F

Cette thèse est organisée comme suit.
Tout d’abord, nous donnons quelques rappels de la géométrie de

Berkovich dans §1, ainsi que des résultats de [Poi13]. Le chapitre 2 est
consacré à la paramétrisation de l’espace des applications analytiques
de Dr dans un espace affinoide Y , i.e. à la construction de l’espace
Mor(Dr, Y ), ainsi qu’à l’étude de ses propriétés. La démonstration du
Théorème A se trouve dans §2.5. Les applications faiblement analytiques
sont étudiées dans §3.

Dans §4 nous nous occupons de la dynamique des endomorphismes
de PN,an. La preuve du Théorème D se trouve dans §4.5.

Les chapitres §5 et 6 sont dédiés à la recherche d’une notion d’espace
k-analytique hyperbolique. Dans §5 nous reprenons les travaux de
Cherry et démontrons les Théorèmes F et G. La démonstration des
Théorèmes H et I se trouve dans le chapitre 6.



CHAPTER 1

Some facts on Berkovich spaces

Throughout this dissertation, k is a field endowed with a non-
Archimedean complete absolute value |.|. We will always assume that k
is non trivially valued. Except if explicitely mentioned we shall always
assume k to be algebraically closed.

We write |k×| = {|x| : x ∈ k×} ⊆ R+ for its value group and
k◦ = {x ∈ k : |x| ≤ 1} for its ring of integers. The latter is a local ring
with maximal ideal k◦◦ = {x ∈ k : |x| < 1}. The residue field of k is
k̃ = k◦/k◦◦.

In this chapter we make no assumptions on the characteristic of the
field k.

The basic reference for the construction of Berkovich analytic spaces
is Berkovich’s original text [Ber90], see also [Tem15] for a more recent
survey. The structure of k-analytic curves is detailed in [Duc14], and
we shall recall some of these facts in §1.4. Of crucial importance for us
are the base change morphism and the continuous section introduced
by Poineau [Poi13] which we discuss in §1.7.

1.1. Analytic spaces

1.1.1. Analytic spectrum of a Banach k-algebra. Let A be
a commutative k-algebra with identity. A norm on A is a function
‖.‖ : A → R+ satisfying the following properties:

i) ‖f‖ = 0 if and only if f = 0;
ii) ‖f + g‖ ≤ ‖f‖+ ‖g‖;
iii) ‖fg‖ ≤ ‖f‖‖g‖

for all f, g ∈ A. A Banach k-algebra is a normed k-algebra (A, ‖.‖)
which is complete with respect to the norm ‖.‖.

Pick any ideal I ⊂ A and denote by π : A → A/I the usual
morphism. The quotient seminorm on A/I is defined as follows. For
any f ∈ A/I, we set ‖f‖ = inf{‖g‖ : π(g) = f}. If the ideal I is closed,
then this seminorm is an actual norm.

Let A and B be two Banach k-algebras and denote by ‖.‖A and
‖.‖B their respective Banach norms. On the tensor product A⊗k B we
have the seminorm that associates to every f ∈ A⊗k B the quantity

||f || = inf max ‖ai‖A · ‖bi‖B ,
1
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where the infimum is taken over all the possible expressions of f of the
form f = ∑

i ai⊗ bi with ai ∈ A and bi ∈ B. The seminorm ||.|| induces
the tensor norm on the quotient A⊗k B/{||f || = 0}, whose completion
is a Banach k-algebra satisfying a suitable natural universal property.
This algebra is called the complete tensor product of A and B and we
denote it by A⊗̂kB, see [BGR84, §2.1.7].

Recall that a morphism of Banach k-algebras ϕ : B → A is bounded
if there exists a positive constant C such that ‖ϕ(f)‖ ≤ C‖f‖ for every
f ∈ B. A bounded morphism ϕ is admissible if the residue norm on
B/ ker(ϕ) is equivalent to the restriction to the image of ϕ of the norm
on A.

The analytic spectrumM(A) of a Banach k-algebra A is the set of
all mutiplicative seminorms on A that are bounded by the norm ‖.‖ on
A. Given f ∈ A, its image under a seminorm x ∈M(A) is denoted by
|f(x)| ∈ R+. The setM(A) is endowed with the weakest topology such
that all the functions of the form x 7→ |f(x)| with f ∈ A are continuous.
The resulting topological space is nonempty, compact and Hausdorff
[Ber90, Theorem 1.2.1].

Given a point x ∈M(A), the fraction field of A/Ker(x) naturally
inherits from x an absolute value extending the one on k. Its completion
is the complete residue field at x and denoted by H(x).

Recall that the spectral radius of f ∈ A is defined by

ρ(f) = lim
n→∞

‖fn‖1/n,

and the supremum seminorm on A is defined by |f |sup := sup{|f(x)| :
x ∈M(A)} for f ∈ A. The spectral radius and the supremum seminorm
agree [Ber90, Theorem 1.3.1].

The set A◦ = {f ∈ A : ρ(f) ≤ 1} is a subring of A and A◦◦ = {f ∈
A : ρ(f) < 1} an ideal. The reduction of A is defined as the quotient
Ã := A◦/A◦◦ and the reduction of X =M(A) is X̃ = Spec(Ã).

A character on A is a bounded homomorphism A → K, where
K is any complete extension of k. Two characters χ1 : A → K1 and
χ2 : A → K2 are equivalent if there exists a character χ : A → L and
inclusions i1 : L → K1 and i2 : L → K2 such that i1 ◦ χ = χ1 and
i2 ◦ χ = χ2.

Composing the character A → K with the norm on K gives rise to
a seminorm on A that is bounded, and thus corresponds to a point x ∈
M(A). Equivalent characters give rise to the same point. Conversely,
every point x ∈M(A) induces a character χx : A → H(x) in a natural
way. Any other character A → K giving rise to x can be decomposed
as A → H(x) ↪→ K.
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A morphism between the analytic spectra of two k-Banach alge-
bras ϕ] : M(A) →M(B) is by definition one induced by a bounded
morphism of Banach k-algebras ϕ : B → A. The morphism ϕ] is
continuous.

The fibre of a morphism ϕ] :M(A)→M(B) over a point y ∈M(B)
is isomorphic toM(A⊗̂BH(y)). Indeed, let y ∈M(B) and let χy : B →
H(y) be the associated character. By definition, a point x ∈M(A) is
mapped to y if and only if the composition B ϕ→ A → H(x) factors
throughH(y), which is equivalent to the character χx factorizing through
the B-algebra morphism A⊗̂BH(y) → H(x). Pick x ∈ M(A⊗̂BH(y))
and let A⊗̂BH(y) → H(x) be the associated character. The latter is
equivalent to the data of morphisms H(y)→ H(x) and A → H(x) such
that the composition B ϕ→ A → H(x) equals B → H(y) → H(x). In
other words, the image of x inM(A) is mapped to y by ϕ.

1.1.2. Affinoid spaces. Given a positive integer N and an N -
tuple of positive real numbers r = (r1, · · · , rN), we denote by k{r−1T}
the set of power series f = ∑

I aIT
I , I = (i1, · · · , iN), with coefficients

aI ∈ k such that |aI |rI → 0 as |I| := i1 + · · · + iN tends to infinity.
The norm ‖∑I aIT

I‖ = maxI |aI |rI makes k{r−1T} into a Banach k-
algebra. When r = (1, · · · , 1), this algebra is called the Tate algebra
and we denote it by Tn.

A Banach k-algebra A is called affinoid if there exists an admissible
surjective morphism of k-algebras ϕ : k{r−1T} → A. If ri ∈ |k×| for all
i, then A is said to be strictly affinoid. It is a fundamental fact that all
k-affinoid algebras are noetherian and that all their ideals are closed, see
[Ber90, Proposition 2.1.3]. Notice that the fact that the epimorphism
ϕ is admissible implies that A and k{r−1T}/ ker(ϕ) endowed with the
residue norm are isomorphic as Banach algebras.

The analytic spectrum X = M(A) of a k-affinoid algebra A is
called a k-affinoid space. When A is strictly affinoid, one says that X
is strictly affinoid.

The affinoid space X naturally carries a sheaf of analytic functions
OX , see [Ber90, §2.3], whose construction relies on the notion of affinoid
domain.

Definition 1.1.1. Let X =M(A) be a k-affinoid space and V a
closed subset of X. One says that V is an affinoid domain of X if there
exists a bounded homomorphism of k-affinoid algebras ϕ : A → AV
inducing a morphism whose image is contained in V satisfying the
following universal property. For every bounded homomorphism of
affinoid k-algebras A → B such that the image of M(B) in X is
contained in V , there exists a unique bounded homomorphism AV → B



4 1. SOME FACTS ON BERKOVICH SPACES

such that the following diagram commutes:

A AV

B

ϕ

The construction of the sheaf OX is based on Tate’s Acyclicity
Theorem [BGR84, §8.2]:

Theorem 1.1.2. Let V be an affinoid domain of a k-affinoid space
X. Let {Vi} be a finite covering of V by affinoid domains.

Then the sequence induced by the restriction

AV
∏AVi ∏AVi∩Vj

is exact.
Let V be a finite union of affinoid domains of X. Given a finite cov-

ering (Vi) of V by affinoid domains, set AV = ker
(∏AVi → ∏AVi∩Vj).

It is a commutative Banach k-algebra that does not depend on the
choice of the covering (Vi) [Ber90, Corollary 2.2.6].

In view of this result, for every open set U ⊂ X, one sets
OX(U) = lim←−AV ,

where the limit is taken over all closed subsets V ⊂ U that are a finite
union of affinoid domains of X.

For any point x in a k-affinoid space X, the stalk OX,x is a local
k-algebra. Its maximal ideal mx consists of all the functions f ∈ OX,x
that do not vanish at x. The stalk OX,x inherits from x an absolute
value extending the one on k, and the completion of OX,x/mx is precisely
H(x), the complete residue field at x.

When H(x) is a finite extension of k (or equivalently when H(x) = k,
since k is supposed to be algebraically closed), one says that x is rigid.
The set X(k) of rigid points of a strictly k-affinoid space X is dense in
X.

Example 1.1.3. The closed polydisk of dimension N and polyradius
r = (r1, · · · , rN ) ∈ (R+

∗ )N is defined to be D̄N (r) :=M(k{r−1T}). The
Gauss point xg ∈ D̄N is the point associated to the norm

|(
∑

aIT
I)(xg)| := max |aI |.

When r = (1, · · · , 1) we just write D̄N , and when N = 1 we denote it
by D̄.

Example 1.1.4. Pick any real numbers r ≤ R. The closed annulus
is the affinoid space A[r, R] :=M(k{R−1T, rS}/(ST − 1)). It can be
identified with the closed subset of the closed disk D̄(R) consisting of
the points x ∈ D̄(R) with r ≤ |T (x)| ≤ R.
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1.1.3. General analytic spaces. General analytic spaces are lo-
cally ringed spaces (X,OX) obtained by gluing together affinoid spaces.
Difficulties arise in the gluing construction due to the fact that affinoid
spaces are compact, and we refer to [Ber90, Ber93] for the precise
(and delicate) definition.

In the following, we shall however only deal with good analytic
spaces which is formed by the subcategory of analytic spaces that are
locally ringed spaces modelled on affinoid spaces. Let us make this
definition precise.

A (good) k-analytic space X is a locally ringed space endowed with
a k-analytic atlas, which is the data of an open cover (Ui)i∈I of X and
an open immersion ϕi on each Ui into a k-affinoid space such that the
induced morphism of locally ringed spaces ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) →
ϕj(Ui ∩ Uj) satisfies the following property. For every affinoid domains
Vi ⊂ ϕi(Ui ∩ Uj) and Vj ⊂ ϕj(Ui ∩ Uj) with ϕj ◦ ϕ−1

i (Vi) contained in
the topological interior of Vj in ϕj(Ui ∩ Uj), the restriction of ϕj ◦ ϕ−1

i

to Vi is an isomorphism of k-affinoid spaces.
Denote by OX the structure sheaf of X. The complete residue

field at a point x ∈ X is the defined as the completion of the quotient
OX,x/mx, as in the affinoid case. Rigid points in X are those such that
H(x) is a finite extension of k (or equivalently when H(x) = k, since k
is supposed to be algebraically closed). The set X(k) of rigid points of
X is dense in X.

Example 1.1.5. The open polydisk of dimension N and polyradius
r = (r1, . . . , rN) ∈ (R+

∗ )N is the set
DN
k (r) = {x ∈ D̄N(r) : |Ti(x)| < ri, i = 1, . . . , N}.

It can be naturally endowed with a structure of good analytic space by
writing it as the increasing union of N-dimensional polydisks D̄N

k (ρ)
whose radii ρ = (ρ1, · · · , ρN) ∈ (|k×|)N satisfy ρi < ri for all i =
1, . . . , N .

Example 1.1.6. Pick any real numbers r < R. The open annulus
is the set

A(r, R) = {x ∈ A[r, R] : r < |T (x)| < R}.
It can be naturally endowed with a structure of good analytic space by
writing it as an increasing union of closed annuli.

1.1.4. Topological properties of analytic spaces. Every k-
analytic space is locally compact, and it is a theorem of Berkovich
that it is locally path-connected [Ber90, Theorem 3.2.1].

Analytic spaces also satisfy the following remarkable property that
their topology can be characterized by sequences, although they are
not metrizable in general (for instance when k̃ is uncountable). The
precise statement is due to Poineau and relies on the following notion.
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A topological space X is Fréchet-Urysohn if every subset A ⊆ X is
sequential, that is for every point x in the closure of A there exists a
sequence of points an ∈ A converging to x.

Theorem 1.1.7 ([Poi13]). Every k-analytic space X is a Fréchet-
Urysohn space.

1.1.5. Analytic maps. An analytic map between k-affinoid spaces
ϕ] :M(A)→M(B) is a closed immersion when the underlying homo-
morphism ϕ : B → A is surjective and admissible.

Let X and Y be (good) k-analytic spaces. A continuous map
f : X → Y is analytic if there exists an atlas {(Ui, ϕi)} of X and
an atlas {(Vj, ψj)} of Y such that for every pair of indexes i, j, the
composition ψj ◦ f ◦ ϕ−1

i : ϕi(Ui) → ψj(Vj) satisfies the following
property. For every affinoid domains W ⊂ ϕi(Ui) and Z ⊂ ψj(Vj) with
ψj ◦ f ◦ϕ−1

i (W ) contained in the topological interior of Z in ψj(Vj), the
restriction of ϕj ◦ f ◦ ϕ−1

i to W is an morphism of k-affinoid spaces, i.e.
is induced by a bounded morphism between the underlying k-affinoid
algebras.

We shall denote by Mork(X, Y ) the set of all analytic maps from X
to Y .

Example 1.1.8. An analytic map f : D̄N → D̄M is given by a
bounded homomorphism between the corresponding k-affinoid algebras.
It is thus of the form f = (f1, . . . , fM), where fl = ∑

I∈NN al,IT
I with

|al,I | ≤ 1 and |al,I | → 0 as |I| → ∞ for all l = 1, . . . ,M .

Example 1.1.9. An analytic map f : DN → D̄M is a continuous
map such that the restriction to D̄N(ρ) for every ρ < 1 is given by
a bounded homomorphism of k-affinoid algebras. It follows that f is
of the form f = (f1, . . . , fM), where fl = ∑

I∈NN al,IT
I with the only

requirement that the coefficients al,I are of norm at most one, for every
l = 1, . . . ,M .

We may now extend the definition of an affinoid domain to a general
k-analytic space X. Let Y be a k-affinoid space and f : Y → X an
analytic map that is an homeomorphism on its image. If for every
analytic map g : Z → X with g(Z) ⊆ f(Y ) there exists a unique
analytic map h : Z → Y such that g = f ◦ h, then the image of f in
X is called an affinoid domain. Affinoid domains form a basis for the
topology of X.

1.2. Analytification of algebraic varieties

1.2.1. General construction. A fundamental class of good an-
alytic spaces are the analytifications of algebraic varieties. To every
algebraic variety X over k one can associate a k-analytic space Xan in
a functorial way. We refer to [Ber90, §3.4] for a detailed construction.
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In the case of an affine variety X = Spec(A), where A is a finitely
generated k-algebra, then the set Xan consists of all the multiplicative
seminorms on A whose restriction to k coincides with the norm on k.
This set is endowed with the weakest topology such that all the maps
of the form x ∈ Xan 7→ |f(x)| with f ∈ A are continuous. Fix an
embedding of X into some affine space AN . Then the intersections with
the open polydisks Xan ∩ DN(r) with r > 0 define an analytic atlas on
Xan.

Observe that any k-point x ∈ X corresponds to a morphism of
k-algebras A → k and its composition with the norm on k defines a
rigid point in Xan. Since k is algebraically closed, one obtains in this
way an identification of the set of closed points in X with the set of
rigid points in Xan.

Let X be a general algebraic variety and fix an affine open cover.
The analytification of a general algebraic variety X is obtained by
glueing together the analytification of its affine charts in natural way.
Analytifications of algebraic varieties are good analytic spaces, and
closed points are in natural bijection with rigid points as in the affine
case.

1.2.2. The analytic affine line. As described above, the analytic
affine line A1,an is the set of bounded seminorms on the polynomial ring
k[T ].

The points in A1,an can be explicitly described as follows [Ber90,
§1.4.4].

Pick a ∈ k and r ∈ R+ and denote by B̄(a; r) the closed ball in
k centered at a and of radius r. To B̄(a; r) one can associate a point
ηa,r ∈ A1,an by setting |P (ηa,r)| := sup|y−a|≤r |P (y)| for every polynomial
P ∈ k[T ]. If r = 0, then ηa,0 corresponds to evaluating polynomials in
a ∈ k.

More generally, any decreasing sequence of closed balls B̄(ai; ri) in
k defines a sequence of points ηai,ri that converges in A1,an to a point
η ∈ A1,an sending any polynomial P ∈ k[T ] to |P (η)| = limi |P (ηai,ri)|.
Observe that such a sequence of balls might have empty intersection,
in which case limi ri = r > 0 since k is complete.

It is a key fact due to Berkovich [Ber90, §1.4.4] that any point in
A1,an comes from a decreasing sequence of closed balls in k.

Suppose that x = lim ηai,ri and set B̄ = ∩iB̄(ai; ri). V. Berkovich
introduced the following terminology.

i) The point x is of type I if and only if B̄ = {a}, with a ∈ k.
ii) The point x is of type II if and only if B̄ = B̄(a; r) with

r ∈ |k×|.
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iii) The point x is ot type III if and only if B̄ = B̄(a; r) with
r /∈ |k×|.

iv) The point x is of type IV if and only if B̄ = ∅.
Every point in A1,an falls into one of these four types.
The analytic affine line carries a tree structure, which will be dis-

cussed in §4.2.
Let us describe a basis of neighbourhoods of a point x ∈ A1,an

according to its type.
If x is of type I or IV, then x admits a fundamental family of

neighbourhoods that are open disks.
If x = ηa,r is of type II, then it has a fundamental family of neighbour-

hoods of the form D(a;R)\t1≤i≤nD̄(ai; ri) with R > r > ri, |ai−a| ≤ r
and |ai − aj| = r whenever i 6= j. In particular, the complement of x in
this neighbourhood is a disjoint union of open disks and finitely many
open annuli.

Finally, if x = ηa,r is a type III point, then open annuli D(a;R1) \
D̄(a;R2) with R1 > r > R2 form a fundamental family of neighbour-
hoods of x.

The analytic projective line P1,an is the one-point compactification
of A1,an. An open (resp. closed) disk in P1,an is either an open (resp.
closed) disk in A1,an or the complement of a closed (resp. open) disk
in A1,an. Connected affinoid domains in P1,an are the complement of
finitely many open disks.

1.3. Reduction, boundary and interior

1.3.1. Reduction. Recall from §1.1.1 the definition of the reduc-
tion of the analytic spectrum of a Banach algebra. The reduction of
the closed polydisk D̄N

k is the affine space AN
k̃
. Observe that Noether’s

normalization Lemma [BGR84, Corollary 6.1.2/2] implies that for any
strictly k-affinoid algebra A, the reduction Ã is a finitely generated
k̃-algebra. The reduction of the strictly k-affinoid space X =M(A) is
thus the affine variety X̃ = Spec(Ã) defined over the residue field k̃.

1.3.2. Boundary. Let us recall the notions of boundary and in-
terior of a good k-analytic space X from [Ber90, §3.1]. We refer to
[Ber93, §1.5.4] for a discussion in the case of general Berkovich spaces.

A point x in an affinoid space X lies in the interior of X if there
exists a closed immersion ϕ : X → D̄N(r) for some polyradius r and
some integer N such that ϕ(x) lies in the open polydisk DN(r).

If X is a good analytic space, a point x belongs to its interior if it
admits an affinoid neighbourhood U such that x belongs to the interior
of U . We let Int(X) be the open set consisting of all the interior points
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in X. Its complement ∂(X) is called the boundary of X. It is a closed
subset of X.

Example 1.3.1. The analytification of any algebraic variety has
empty boundary.

In the remainder of this section, we explain how to compute the
interior of a strictly k-affinoid space X =M(A).

The reduction map red : X → X̃ is defined as follows. Every
bounded morphism of Banach k-algebras A → B induces a morphism
between their reductions Ã → B̃. In particular, from the character
χx : A → H(x) associated to a point x ∈ X we obtain a k̃-algebra
morphism χ̃x : Ã → H̃(x). We set red(x) := Ker(χ̃x). This map is
anticontinuous for the Zariski topology, meaning that the inverse image
of a closed set is an open set.

Let X =M(A) and Y =M(B) be strictly k-affinoid spaces. Any
analytic map f : X → Y induces the following commutative diagram:

(1.1) X

red
��

f
// Y

red
��

X̃
f̃
// Ỹ

Let us verify the commutativity. Denote by f ] and f̃ ] the dual
morphisms of f and f̃ respectively. Pick any x ∈ X. On the one hand,
by definition we have that red ◦ f(x) is the kernel of the composition
B̃ → Ã → H̃(x). On the other hand, we see that f̃ ◦ red(x) =
f̃(ker(χ̃x)) =

(
f̃ ]
)−1

(ker(χ̃x)), which is precisely ker(χ̃x ◦ f̃), and thus
the diagram commutes.

Lemma 1.3.2. Let X be a strictly k-affinoid space. Then,
Int(X) = {x ∈ X : red(x) is a closed point}.

Proof. Let ϕ : X → D̄N be a closed immersion. By (1.1) we have
the following commutative diagram:

X

red
��

ϕ
// D̄N

red
��

X̃
ϕ̃
// AN

k̃

Let A be the underlying affinoid algebra of X and pick any x ∈ X.
If the reduction x̃ = red(x) of x is a closed point then so is ϕ̃(x̃).
The inverse image of ϕ̃(x̃) is isomorphic to an open polydisk. Up
to composing ϕ with an automorphism of D̄N , we may assume that
red−1(ϕ̃(x̃)) is isomorphic to DN . the commutativity of the diagram
implies that ϕ(x) lies in DN .
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Pick a point x ∈ Int(X). By [Ber90, Proposition 2.5.2], the image
of the morphism of k̃-algebras χ̃x : Ã → H̃(x) induced by χx is integral
over k̃. This implies that χ̃x(Ã) ' Ã/Ker(χ̃x) is a field. Thus, x̃ is a
closed point of X̃. �

Recall that a morphism of k-affinoid spaces f :M(A)→M(B) is
finite if A is a finite Banach B-module.

Proposition 1.3.3. Let X =M(A) and Y =M(B) be k-affinoid
spaces, and let f : X → Y be a finite morphism. Then, Int(X) =
f−1(Int(Y )).

This result is a consequence from [Ber90, Proposition 2.5.8] and
[Ber90, Corollary 2.5.13]. Here we give a proof in the strictly k-affinoid
case.

Proof. We prove the result only in the strictly affinoid case. In
order to adapt this proof to the general one, one needs to use Temkin’s
graded reduction of affinoid algebras ([Tem00, Tem04]).

The morphism f : X → Y induces the following commutative
diagram, cf. (1.1):

X

red
��

f
// Y

red
��

Spec(Ã) f̃
// Spec(B̃)

Let x be a point in Int(X). By Lemma 1.3.2, its image f(x) belongs to
Int(Y ).

Let now x ∈ X be such that f(x) = y lies in Int(Y ). By the previous
lemma, we have to show that red(x) is a closed point of X̃. Consider
the ring homomorphism ϕ : B̃ → Ã inducing f̃ . It induces a morphism
ϕ′ : B̃/ker(χ̃y) → Ã/ker(χ̃x), as the diagram above is commutative.
Observe that ϕ is integral, since it is finite ([BGR84, Theorem 6.3.5/1]),
and thus ϕ′ is also integral. As y ∈ Int(Y ), by Lemma 1.3.2 the quotient
B̃/ker(χ̃y) is a field. This implies that Ã/ ker(χx) is a field and thus
that red(x) is a closed point. �

1.4. Smooth analytic curves

In this section, we recall some facts on the structure of smooth
analytic curves. Our main references are [Ber90, §4] and [Duc14].

1.4.1. First properties. Recall that a k-analytic curve X is a
k-analytic space that is Hausdorff and of pure dimension 1. Throughout
this section, X will denote a smooth analytic curve over k.

Points in a k-analytic curve can be classified as follows, see [Duc14,
§3.3]. Let x ∈ X and let H(x) be its complete residue field. Then one
says that:
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i) The point x is of type I if H(x) ' k;
ii) The point x is of type II if the reduction H̃(x) has transcendence

degree 1 over k̃ and |H(x)| = |k|;
iii) The point x is of type III if H̃(x) ' k̃ and the value group
|H(x)×| is generated by |k×| and some real number r /∈ |k×|;

iv) The point x is of type IV if H̃(x) ' k̃, |H(x)| = |k| and H(x)
is a non-trivial extension of k.

On A1,an, this classification of the points in an analytic curve agrees
with the one introduced above.

Let x be a type II point in a k-analytic curve X. We define the
genus g(x) of the point x as the genus of the unique smooth projective
curve C over k̃ whose field of rational functions is isomorphic to H̃(x).
The set of points in X with positive genus is a closed discrete subset of
X by [Duc14, Théorème 4.4.17].

The following fundamental topological result will be used in the
sequel, see [Duc14, Théorème 4.5.10]:

Theorem 1.4.1. Every k-analytic curve is paracompact.

1.4.2. Graph structure. Following the terminology of [Duc14],
we say that a locally compact Hausdorff topological space X is a graph
if it admits a fundamental basis of open sets U satisfying the following
properties:

i) For every pair of points x, y ∈ U , there exists a unique closed
subset [x, y] ⊂ U homeomorphic to a segment of endpoints x
and y.

ii) The boundary of U in X is finite.
A graph X is a tree if X itself satisfies property i).
It follows from the definition that graphs are locally path-connected

and that trees are path-connected.
It is a fundamental fact that every k-analytic curve is a graph

[Duc14, Théorème 3.5.1].
Let X be a k-analytic curve. Given a point x ∈ X, the tangent

space TxX at x is defined as the set of connected components of U \{x}
where U is an open neighborhood of x which is a tree. It can be also
defined as the set of paths leaving from x modulo the relation having a
common initial segment proving that the definition does not depend
on the choice of U . Given any tangent direction ~v ∈ TxX, we denote
by U(~v) the open subset of points y ∈ X \ {x} such that there exists a
path starting from y and abuting at x in the direction of ~v.

1.4.3. Skeleton of an analytic curve. Recall the definition of
the skeleton of an analytic curve:
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Definition 1.4.2. The skeleton of a curve X is the set of all points
x ∈ X having no neighbourhood isomorphic to an open disk. It will be
denoted by San(X).

The only smooth projective curve with empty skeleton is P1,an, see
[Duc14, §5.4.8]. In the non-compact case, examples of curves with
empty skeleton include the open disk and the affine line. The skeleton
of an open annulus A(ρ, 1) is the segment consisting of the points η0,r
for ρ < r < 1.

By definition, San(X) is a closed subset of X and its complement
is a disjoint union of open disks. The skeleton of X is a closed locally
finite subgraph of X. If X is projective, then San(X) is compact.

For any curve X with nonempty skeleton there is a retraction map
rX : X → San(X), defined as follows. Every point in the skeleton is
fixed by rX . For every point x ∈ X \San(X), denote by Ux the maximal
open neighbourhood of x that is isomorphic to D. Then, rX(x) is the
unique point in the topological boundary of Ux in X. The retraction
map is continuous.

Let us now introduce the notion of nodes of a curve X following
[Duc14, Lemme 6.2.3], which is a subset of its skeleton. In order to
define it, recall that we say that a tangent direction ~v ∈ TxX at a type
II or type III point x ∈ X is discal if U(~v) is a disc.

Definition 1.4.3. Let X be a smooth analytic curve over k. A
type II point x ∈ San(X) is a node if one of the following conditions is
satisfied:

i) The point x has positive genus;
ii) There exist three distinct tangent directions at x that are non-

discal;
iii) The point x belongs to the boundary of X.

The set of all nodes of a curve X will be denoted by N(X). Observe
that it contains every branching point in San(X), which is discrete and
closed as San(X) is a locally finite graph. Since the boundary of X is
finite and the set of points x ∈ X of positive genus is closed and discrete
[Duc14, Théorème 4.4.7], then N(X) is also discrete and closed. The
complement of N(X) in San(X) is by definition a disjoint union of open
segments. It follows that if N(X) is nonempty, then X \ N(X) is a
disjoint union of infinitely many open disks, finitely many open annuli,
and finitely many punctured disks.

1.4.4. Smooth projective curves. Let us describe in more detail
the structure of smooth projective curves. Recall that in this case, the
skeleton is compact and the set of nodes finite.

Let X be a smooth irreducible projective curve. Its genus g is
encoded in the topology of the skeleton and in the points of positive
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genus as follows, see [Duc14, §5.2.6] and [Ber90, §4.3]. Denote by b
the first Betti number of San(X). Then, one has the equality

(1.2) g = b+
∑

x∈X[2]

g(x) ,

where X[2] is the set of type II points in X. Notice that the sum is
finite, since a smooth projective curve X has only finitely many points
of positive genus.

We remark that the endpoints of the skeleton are nodes:

Lemma 1.4.4. Let X be a smooth projective curve. Let η be an
endpoint of San(X). Then η is a node and has positive genus.

This result helps us describe all the possibilities for a smooth pro-
jective curve X in terms of its skeleton and its nodes, see [Duc14,
§5.4.12].

i) If X has empty skeleton, then it is isomorphic to P1,an.
ii) If San(X) is nonempty and X has no nodes, then San(X) has

no endpoints by Lemma 1.4.4, and hence the skeleton must
be homeomorphic to a circle. It follows from (1.2) that X
has genus 1. In that case, we say that X is a Tate curve, i.e.
the analytification of an elliptic curve whose j-invariant is not
integral.

iii) If N(X) is nonempty, then it follows from (1.2) that X has
positive genus.

The particular case where X has only one node ηX deserves a more
thorough description. We distinguish two possibilities for the geometry
of X based on its skeleton, which will be used in §6:

i) The skeleton of X consists only of the point ηX . In that case,
we say that X has good reduction. By (1.2), the genus of ηX
equals the genus of the curve X. In particular, if g(ηX) = 1
then the curve X is the analytification of an elliptic curve with
bad reduction, i.e. whose j-invariant is integral.

ii) There is at least one loop in San(X) passing through ηX . By
(1.2), X has genus at least 2.

Proof of Lemma 1.4.4. Let η be an endpoint of the skeleton of
X. If San(X) = {η}, then η is a node, since otherwise it has an open
neighbourhood that is isomorphic to an open disk. As X is boundaryless
and San(X) has no branching points, we conclude that η has positive
genus.

We may assume that {η} is strictly contained in San(X). As η ∈
San(X), there exists a tangent direction ~v ∈ TηX such that U(~v)∩San(X)
is non-empty, and so ~v is non-discal. Being an endpoint of San(X), all
the other tangent directions at η are discal. Since X is projective, the
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Bad reduction Good reduction

Figure 1. Elliptic curves

only remaining possibility for η to be a node is to have positive genus,
since η is not a branching point of the skeleton.

Suppose by contradiction that g(η) = 0. By [Duc14, Théorème
4.5.4], then point η has a simply connected open neighbourhood V .
Moreover, this theorem states that V is isomorphic to an open annulus
if η is a type III point. If η is a type II point, the same result implies
that we may reduce V such that it is also isomorphic to an open annulus,
since η is an endpoint of San(X).

In fact, as every tangent direction ~v′ ∈ TηX different from ~v is
discal, we may assume that every U(~v′) is contained in V . After maybe
reducing V , we may assume that he topological boundary of V in
X is a single point in San(X) and that no point in V has positive
genus. By [Duc14, Proposition 5.1.18], V is isomorphic to an open
disk, contradicting the fact that η ∈ San(X). �

We have the following description of curves of positive genus:

Lemma 1.4.5. Let X be a smooth irreducible projective curve with
non-empty set of nodes. Then San(X) can be decomposed as the disjoint
union of N(X) and open segments I1, . . . , Ia, with each Ij isomorphic to
a real segment (1, Rj) with Rj ∈ |k×|, for 1 ≤ j ≤ a. The complement
of N(X) in X is a disjoint union of infinitely many open unit disks and
annuli A(1, R1), . . . , A(1, Ra).

Moreover, if N(X) consists of a single node ηX , then the closure
Īj = Ij ∪ {ηX} of each Ij in X is a circle.

Proof. Let X be a smooth projective curve with non-empty set
of nodes. Suppose that San(X) \ N(X) contains a loop C. As the
skeleton of X is connected and every branching point in San(X) is a
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node, we conclude that C = San(X), contradicting the fact that N(X)
is nonempty.

Moreover, since X is projective there are only finitely many nodes,
which are all type II points. As a consequence, the set San(X) \ N(X)
consists of finitely many open segments Ij isomorphic to real segments
(1, Rj) with Rj ∈ |k×|, for 1 ≤ j ≤ a. It follows thatX\N(X) consists of
a disjoint union of open disks and the open annuli A(1, R1), . . . , A(1, Ra).

Assume now that X has only one node ηX . If San(X) consists only
of the point ηX , then the complement of N(X) is a disjoint union of
open disks. Otherwise, the exists at least one loop in San(X) passing
through ηX by Lemma 1.4.4. Necessarily, the closure of each segment
Ij in X is Ij ∪ {ηX}, which is homeomorphic to a circle. �

The following lemma will be essential in the subsequent chapters,
specially the proof of Theorem H. It is a particular case of [Duc14,
Proposition 6.1.2].

Lemma 1.4.6. Let X be a smooth irreducible projective curve over k
and x ∈ X a rigid point. Every open neigbourhood U of x has an open
subset V ⊆ U such that X \ V is an affinoid domain of X.

1.5. Distinguished morphisms

Of special interest for us are analytic maps induced by a distin-
guished morphism of affinoid algebras, which are extensively discussed
in [BGR84, §6.4.3]. Let A be a k-affinoid algebra.

Definition 1.5.1. A surjective morphism ϕ : TN → A is called
distinguished if the quotient norm |.|ϕ induced by ϕ agrees with the
supremum norm on A. We say that A is distinguished if such an
epimorphism exists.

It can be shown that over an algebraically closed field k, every
reduced algebra (i.e. without non-trivial nilpotents) is distinguished
[BGR84, Theorem 6.4.3/1].

From the definition one obtains the following useful result:

Proposition 1.5.2. Let X be a k-affinoid space and let X → D̄N

be a closed immersion induced by a distinguished morphism of Banach
algebras. Then, every analytic map on X with values in a polydisk D̄M

extends to an analytic map D̄N → D̄M .

Proof. Let A be the underlying affinoid algebra of X. Pick an
analytic map f : X → D̄M , which by definition is given by elements
f1, . . . , fM ∈ A with |fi|sup ≤ 1. Fix a distinguished epimorphism TN →
A. For l = 1, . . . ,M , we may lift fl to an element gl in TN having the
same norm. The resulting analytic map g = (g1, . . . , gM) : D̄N → D̄M

agrees with f on the affinoid space X. �
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The key property of distinguished affinoid algebras is that the
reduction commutes with the quotient, see [BGR84, Corollary 6.4.3/5]:

Theorem 1.5.3. Let TN → A be a distinguished morphism of strictly
k-affinoid algebras. Then the reduction Ã is isomorphic to the quotient
T̃N/k̃er(ϕ).

1.6. Basic tubes

We introduce the following terminology.
Definition 1.6.1. A k-analytic space X is called a basic tube if

there exists a reduced equidimensional strictly k-affinoid space X̂ and a
closed point x̃ in its reduction such that X is isomorphic to red−1(x̃).

By convention, a basic tube is reduced.
Theorem 1.6.2. A basic tube is connected.
The fact that any basic tube over an algebraically closed field is

connected is a deep theorem due to [Bos77], which was generalized to
arbitrary base fields in [Poi14].

Example 1.6.3. Let a1, · · · , am be type II points in P1,an. Then
every connected component of P1,an \ {a1, · · · , am} is a basic tube, cf.
§1.2.2.

Proposition 1.6.4. A k-analytic space X is a basic tube if and
only if it is isomorphic to a connected component of the interior of some
equidimensional strictly k-affinoid space.

Remark 1.6.5. Every good reduced boundaryless k-analytic space
has a basis of open neighbourhooods that are basic tubes.

Proof. Let V be any connected component of the interior of an
equidimensional strictly k-affinoid space X̂. By Lemma 1.3.2, red(V ) is
contained in the set of closed points of the reduction of X̂. If red(V )
contains at least two distinct points, then V can be written as a disjoint
union of nonempty open sets, contradicting the connectednes. Hence,
red(V ) is a singleton.

Let conversely X = red−1(x̃) be a basic tube, where x̃ is a closed
point in the reduction of an equidimensional strictly k-affinoid space
X̂. Clearly, X is contained in some connected component V of Int(X̂).
The previous argument shows that red(V ) = {x̃}. �

Recall that a topological space is σ-compact if it is the union of
countably many compact subspaces. For instance, open Berkovich
polydisks or the analytification of an algebraic variety are σ-compact
spaces. Observe that there exist simple examples of k-analytic spaces
which are not σ-compact, e.g. the closed unit disk of dimension N ≥ 2
with the Gauss point removed over a base field k with uncountable
reduction k̃.
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Proposition 1.6.6. For every basic tube X there exist a strictly
k-affinoid space X̂ and a distinguished closed immersion into some
closed polydisk X̂ → D̄N such that X is isomorphic to X̂ ∩ DN .

In particular, X is boundaryless and σ-compact.

Proof. Let X̂ =M(A) be an equidimensional reduced k-affinoid
space and let x̃ be a closed point in its reduction such that red−1(x̃)
is isomorphic to X. Recall from §1.5 that there exists a distinguished
closed immersion ϕ : X̂ → D̄N , as k is algebraically closed and A is
reduced. Hence, Ã is isomorphic to k̃[T1, · · · , TN ]/k̃er(ϕ) by Theorem
1.5.3.

The induced morphism Spec(Ã) → AN
k̃

is a closed immersion by
[BGR84, Proposition 6.4.3/3], since ϕ is distinguished. We may assume
that x̃ is mapped to 0. We conclude that x is mapped to a point in
red−1(0), which is isomorphic to DN . �

1.7. Universal points and base changes

Given a k-affinoid algebra A and a complete extension K of k, the
K-algebra A⊗̂kK is in fact K-affinoid. One defines the scalar extension
of the k-affinoid space X = M(A) by K as the K-affinoid space
XK :=M(A⊗̂kK). The natural morphism A → A⊗̂kK induces a base
change morphism πK/k : XK → X which is continuous and surjective.
This construction can be done similarly for general k-analytic spaces.

Recall the following definition from [Ber90, Poi13]:

Definition 1.7.1. Let X be a k-analytic space. A point x in X is
universal if for every complete extension K of k the tensor norm on
H(x)⊗̂kK is multiplicative.

The key feature of universal points is that they can be canonically
lifted to any scalar extension. To explain this fact we may suppose that
X is an affinoid space with underlying algebra A. Pick any universal
point x ∈ X and fix any complete extension K of k. The k-algebra
morphism A → H(x) corresponding to the point x induces a K-algebra
morphism A⊗̂kK → H(x)⊗̂kK.

Since x is universal, the tensor norm on H(x)⊗̂kK is multiplicative,
and so the composition of A⊗̂kK → H(x)⊗̂kK with the tensor norm
defines a point in XK . The point in XK obtained by these means is
denoted by σK/k(x).

Observe that if x ∈ X is rigid, then so is σK/k(x), and that σK/k is
a section of πK/k on the set of universal points of X.

Theorem 1.7.2 ([Poi13]). Let k be an algebraically closed complete
field and X a k-analytic space. Then, every point x ∈ X is universal,
and the map σK/k : X → XK is continuous.
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Let us describe the map σK/k on A1,an
k explicitly. Recall from §1.2.2

that every closed ball B̄(a; r) in k defines a point ηa,r ∈ A1,an (of
type I, II or III) whose corresponding seminorm satisfies |P (ηa,r)| =
supy∈B̄(a;r) |P (y)| for any polynomial P ∈ k[T ]. Then, σK/k(x) is the
point in A1,an

K given by the closed ball in K centered at a ∈ k and of
radius r. The same procedure applies when x is a type IV point, given
by a decreasing sequence of closed balls in k with empty intersection.

Notice that σK/k preserves the type of type I and II points, whereas
type III points can be sent to type II or type III points and type IV
points to type II, III or IV points.

We conclude this section by recalling the following construction.

Lemma 1.7.3. Let X be a k-analytic space and x a point in X. Then
for every complete extension K of H(x), the fibre π−1

K/k(x) contains a
rigid point.

Proof. Pick a point x ∈ X. We may suppose K = H(x). Since the
statement is local at x, we may replace X by any affinoid domain of X
containing x. Denote by A the underlying k-affinoid algebra. Consider
the character χx : A → H(x). The morphism A⊗̂kH(x) → H(x)
sending f ⊗ a to χx(f) · a is by definition a rigid point in XH(x) lying
over x. �

We shall denote by τ(x) ∈ XH(x) the rigid point lying over x ∈ X
obtained in the previous proof. This point τ(x) is not to be confused
with σK/k(x).



CHAPTER 2

Parametrization of the space of analytic maps

Our goal in this chapter is to prove the following non-Archimedean
analogue of Montel’s theorem:

Theorem A. Let k be a non-Archimedean complete field that is
non trivially valued and X a good, reduced, σ-compact, boundaryless
strictly k-analytic space. Let Y be a strictly k-affinoid space.

Then, every sequence of analytic maps fn : X → Y admits a
pointwise converging subsequence whose limit is continuous.

Observe that the previous theorem only supposes the base field k to
be complete and non trivially valued. However, the key arguments of
the proof are done under the assumption that k is algebraically closed,
and the result is thereupon generalized to an arbitrary base field. We
shall therefore assume troughout this chapter that k is algebraically
closed. The case of an arbitrary complete non-Archimedean field k is
treated in §2.5.2.

It is crucial in Theorem A to assume that X has no boundary.
Indeed, as pointed out in [FKT12, §4.2], the sequence of analytic maps
from the closed unit disk D̄ to itself fn(z) = z2n! converges pointwise
everywhere, but the limit map f is not continuous. The Gauss point xg
is a fixed point of f , but f maps the whole of D to 0.

Let us clarify the remaining assumptions on X. Our proof first
deals with the case where X is an open polydisk. We need the space
X to be reduced in order to treat the case where X is a basic tube,
as this ensures the existence of a distinguished closed immersion into
some closed polydisk, which allows us to reduce to the polydisk case
by Proposition 1.5.2. Finally, if X is a σ-compact space, then we may
cover it by countably many basic tubes and extract diagonally.

This chapter is structured as follows. In §2.1 we give a proof
of Theorem A in the simpler case of sequences of polynomial maps
Ar,an → As,an of uniformly bounded degree sending the open polydisk
Dr to D̄s. The reason for this is that the arguments used in this case
are at the core of the proof of Theorem A and motivate the subsequent
technical constructions needed to deal with general analytic maps. The
idea is to interpret any such polynomial map as a rigid point of a closed
polydisk of the adequate dimension, which is determined by the degree
of the polynomial. Specifically, if the polynomial maps have degree at
most δr with δ ∈ N∗, the dimension of this closed polydisk is s(δ + 1)r.

19
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By these means, we parametrize the space of such polynomial maps by
the closed polydisk D̄s(δ+1)r . Any such sequence fn : Ar,an → As,an then
provides a sequence of rigid points αn in D̄s(δ+1)r , and we may extract a
subsequence αnj converging to some point α, since closed polydisks are
sequentially compact by [Poi13]. We infer that the subsequence fnj is
converging. Finally, we compute its limit map explicitly in terms of α
and show that it is continuous.

In light of the construction in the case of polynomial maps of
bounded degree, it is apparent that the space of analytic maps from an
open polydisk Dr to a closed polydisk D̄s should be parametrized by
an infinite dimensional polydisk. To this end, we construct a k-Banach
algebra T r,s∞ that is an analogue of the Tate algebra in countably many
variables. Its analytic spectrum Mor(Dr, D̄s) satisfies the following
universal property.

Theorem 2.0.1. There exists an analytic map Φ : Mor(Dr, D̄s)×
Dr → D̄s satisfying the following universal property. Let W be the
analytic spectrum of a Banach k-algebra or any good k-analytic space.
For any analytic map F : W ×Dr → D̄s there exists a unique morphism
G : W → Mor(Dr, D̄s) such that F (x, z) = Φ(G(x), z) for all x ∈ W (k)
and z ∈ Dr(k).

In fact, this construction may be generalized to analytic maps having
an arbitrary affinoid space Y as a target. The resulting space Mor(Dr, Y )
is defined as the analytic spectrum of a quotient of T r,s∞ and satisfies
the same universal property, cf Theorem B.

Then, Theorem A is a consequence of the following fact:

Theorem 2.0.2. The space Mor(Dr, Y ) is Fréchet-Urysohn.

Further properties of the space Mor(Dr, Y ) are stated in Theorem
2.3.1. It specifies how to associate a continuous map Dr → Y to every
point in Mor(Dr, Y ) in a continuous way.

Finally, in §2.7 we discuss the convergence of sequences of analytic
maps defined on a k-affinoid space X, which has nonempty boundary,
with values in any k-affinoid space Y . We establish that when the
residue field of k is countable, every sequence fn : X → Y has a
converging subsequence, but the limit map may fail to be continuous.

2.1. The polynomial case

As a first step in proving Theorem A, we deal with the case of
sequences of polynomial maps of bounded degree.

Throughout this section, we fix integers r, s, δ > 0.
The result we aim to show is the following:
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Theorem 2.1.1. Let k be an algebraically closed non-Archimedean
complete field. Let fn : Ar,an → As,an be a sequence of polynomial
maps of uniformly bounded degree satisfying fn(Dr) ⊂ D̄s. Then, there
exists a subsequence that is converging pointwise to a continuous map
f : Ar,an → As,an.

2.1.1. Parametrization of polynomial maps of uniformly
bounded degree. In order to prove this theorem, we reinterpret poly-
nomial maps between analytic affine spaces as rigid points in a closed
polydisk.

Given a multi-index I = (i1, · · · , ir), denote by |I| = maxj ij.

Every polynomial map f : Ar,an → As,an of degree at most δr where
δ ∈ N∗ satisfying f(Dr) ⊆ D̄s is of the form

f = (f1, · · · , fs) =
∑
|I|≤δ

a1,IT
I , · · · ,

∑
|I|≤δ

as,IT
I

 ,
with |al,I | ≤ 1. Thus, the point

(2.1) α = α(f) :=
(
(a1,I)|I|≤δ, · · · , (as,I)|I|≤δ

)
can be realized as rigid point in the (Berkovich) analytic space D̄s(δ+1)r .

Additionally, to every not-necessarily rigid point α in D̄s(δ+1)r we
shall associate a continuous map

Pα = P r,s
α : Ar,an → As,an

as follows. Consider first the analytic map Φ : D̄s(δ+1)r × Ar,an → As,an,
given by the k-algebra morphism

k[T1, . . . , Ts] → k[T1, . . . , Tr]{(a1,I)|I|≤δ, · · · , (as,I)|I|≤δ}
Tl 7→

∑
|I|≤δ

al,IT
I .

Next, consider the projection π1 : D̄s(δ+1)r
k × Ar,an → D̄s(δ+1)r . The

fibre over the point α ∈ D̄s(δ+1)r is isomorphic to Ar,an
H(α) (cf. §1.1.1).

Recall that the point α ∈ D̄s(δ+1)r is associated to the character χα :
k{(a1,I)|I|≤δ, . . . , (as,I)|I|≤δ} → H(α). Set K := H(α). The inclusion
ιK : Ar,an

K → D̄s(δ+1)r
k × Ar,an

k is given by
k[T1, · · · , Tr]{(a1,I)|I|≤δ, . . . , (as,I)|I|≤δ} → K[T1, . . . , Tr]

Ti 7→ Ti

al,I 7→ χα(al,I) .
Recall that σK/k : Ar,an

k → Ar,an
K denotes the continuous section of the

base change morphism described in §1.7. Finally, for every z ∈ Ar,an

we set:
(2.2) Pα(z) = Φ ◦ ιK ◦ σK/k(z) .
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The map Pα : Ar,an → As,an is clearly continuous. Explicitely, given a
polynomial g = ∑

J gJT
J ∈ k[T1, · · · , Ts] and a point z ∈ Ar,an, we have

(2.3) |g(Pα(z))| =

∣∣∣∣∣∣
∑
J∈Ns

gJ
s∏
l=1

( ∑
|I|≤δ

χα(al,I)T I
)jlσK/k(z)

∣∣∣∣∣∣ .
To emphasize the fact that D̄s(δ+1)r parametrizes polynomial maps of
degree δ, we shall denote it from now on by Morr,sδ . For r, s and δ ∈ N
fixed, we have thus constructed a map

Ev : Morr,sδ → C0(Ar,an,As,an)
α 7→ Ev(α) := Pα .

2.1.2. Proof of Theorem 2.1.1. Consider a sequence of poly-
nomial maps fn : Ar,an → As,an of degree at most δ ∈ N satisfying
fn(Dr) ⊂ D̄s.

For every n ∈ N, let αn be the rigid point in the polydisk D̄s(δ+1)r

corresponding to the mapping fn, as constructed above. The polydisk
D̄s(δ+1)r is sequentially compact by Theorem 1.1.7, therefore we may find
a subsequence {αnj}nj converging to some point α ∈ D̄s(δ+1)r . Recall
that this limit point defines a continuous map Ev(α) : Ar,an → As,an.

It remains to verify that Ev(α) is the pointwise limit of the subse-
quence {fnj}. Observe that this is equivalent to checking that for every
z ∈ Ar,an and every polynomial g ∈ k[T1, . . . , Ts], the sequence of real
numbers {|g(fnj(z))|}n∈N converges to |g(Ev(α)(z))|.

If z is a non-rigid point in Ar,an, we make a base change by H(z)
and take a rigid point x ∈ Dr

H(z) lying over z (see Lemma 1.7.3). The
maps fnj induce analytic maps Ar,an

H(z) → As,an
H(z) and g defines an analytic

function on Ar,an
H(z). By definition,

|g(fnj(z))| = |g(fnj(πH(z)/k(x))| = |g(fnj(x))| ,

so that |g(fnj(z))| converges if and only if |g(fnj(x))| converges.
Similarly, Ev(α) defines a continuous map Ar,an

H(z) → As,an
H(z). Indeed,

recall from (2.2) that Ev(α) = Φ ◦ ιH(α) ◦ σH(α)/k. As Φ is k-analytic,
it induces a H(z)-analytic map D̄s(δ+1)r

H(z) × Ar,an
H(z) → As,an

H(z) that we shall
also denote by Φ.

Denote by L the complete residue field H(σH(z)/k(α)), which is
a complete extension of H(z). Moreover, we claim that it is also a
complete extension of H(α). In order to see this, notice that ker(α) =
k{al,I}|I|≤δ,1≤l≤s ∩ ker(σH(z)/k(α)). Thus, we have inclusions

k{al,I}|I|≤δ,1≤l≤s/ ker(α) ⊂ H(z){al,I}|I|≤δ,1≤l≤s/ ker(σH(z)/k(α)) ,

and so H(σH(z)/k(α)) is a complete extension of H(α).
Consider next the inclusion ιL : Ar,an

L → D̄s(δ+1)r
H(z) × Ar,an

H(z) given by
the inclusion of the fibre of the first projection over the point σH(z)/k(α).
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We obtain that Ev(α) induces the continuous map Φ ◦ ιL ◦ σL/H(z). By
construction, we see that

|g(Ev(α)(z))| = |g(Ev(α)(πH(z)/k(x))| = |g(Ev(α)(x))| .

We may thus assume that z is rigid. Let g = ∑
J∈Ns gJT

J be a
polynomial of degree d. Denoting fnj = (f (nj)

1 , . . . , f
(nj)
s ), we have:

∣∣∣g(fnj(z))
∣∣∣ =

∣∣∣∣∣∣
∑
|J |≤d

gJ
s∏
l=1

(
f

(nj)
l (z)

)jl ∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣
∑
|J |≤d

gJ
s∏
l=1

∑
|I|≤δ

a
(nj)
l,I zI

jl
∣∣∣∣∣∣∣ = (∗) .

Taking the polynomial in s(δ + 1)r-variables

(2.4) R :=
∑
|J |≤d

gJ
s∏
l=1

∑
|I|≤δ

Sl,Iz
I

jl ∈ k[{Sl,I}1≤l≤s,|I|≤δ
]
,

one sees that (∗) = |R(αnj)|, and so |R(αnj)| → |R(α)| as n tends to
infinity since αnj → α. Moreover, it is clear from (2.3) that R(α) =
g(Ev(α)(z)), and so the sequence

∣∣∣g(fnj(z))
∣∣∣ converges to |g(Ev(α)(z))|,

concluding the proof.

2.1.3. Remarks on the map Ev.
1. The assignment

(α, z) 7→ Ev(α)(z)
does not define a continuous map on |Morr,sδ |×|Ar,an|. This phenomenon
already appears when r = s = δ = 1.

Indeed, suppose by contradiction that there exists a continuous map
ϕ : |D̄2| × |A1,an| → |A1,an| such that ϕ ((α0, α1), z) = α0 + α1z for any
α0, α1, z ∈ k and |z| ≤ 1. Pick any sequence of points ζn ∈ k such that
|ζn| = 1 and |ζn − ζm| = 1 for n 6= m. Both the sequences {ζn} and
{−ζn} converge to the Gauss point xg. We compute:

lim
n
ϕ ((ζn, 1), ζn) = lim

n
ϕ ((ζn, 1),−ζn) = ϕ ((xg, 1), xg) = xg .

However, we have that ϕ ((ζn, 1),−ζn) = 0 for all n, contradicting the
continuity of ϕ.

2. In general, the map
Ev : Morr,sδ → C0(Ar,an,As,an)

α 7→ Ev(α)
is not injective. This already occurs in the case r = s = 1 for affine
maps.

The space Mor1,1
1 is naturally isomorphic to the polydisk D̄2. Denote

by p0 and p1 the first and second projections Mor1,1
1 → Mor1,1

0 . Pick two
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points α, α′ ∈ Mor1,1
1 such that p0(α) = p0(α′) = xg ∈ D̄. As seen in

§1.1.1, the fibre p−1
0 (xg) is naturally homeomorphic to D̄H(xg), and so the

points α and α′ correspond to points α1, α
′
1 ∈ D̄H(xg) respectively. Write

K = H(xg) for simplicity, and recall that K is a non-trivial extension
of k that contains the field of rational functions in one variable k(S) as
a dense subset. Assume that both α1 and α′1 are the rigid points in D̄K

given by α1 = Q(S) = q0 +q1S+q2S
2 and α′1 = Q′(S) = q0 +q1S+q′2S2,

with q2 6= q′2 and |q2| = |q′2|.
We claim that Ev(α) = Ev(α′). It suffices to check that they agree

on the set of rigid points. Indeed, pick any z ∈ A1,an(k). Following
Berkovich’s classification of the points in the disk (cf. §1.2.2), the
point Ev(α)(z) corresponds to the closed ball in k centered at zq0 and
of radius max{|1 + q1z|, |q2z|}. Since |q2| = |q′2|, we conclude that
Ev(α)(z) = Ev(α′)(z).

3. It is a direct consequence of (2.3) that for every fixed α ∈ Morr,sδ ,
the map z 7→ Ev(α)(z) can be expressed as

Ev(α)(z) = πK/k ◦ Fα ◦ σK/k(z) ,
where K = H(α) and Fα : Ar,an

K → As,an
K is the polynomial map

Fα = (F1, · · · , Fs) =
∑
|I|≤δ

χα(a1,I)T I , · · · ,
∑
|I|≤δ

χα(as,I)T I
 .

Observe that the coefficients of Fα define a rigid point

β :=
(
(χα(a1,I))|I|≤δ, · · · , (χα(as,I))|I|≤δ

)
∈ Morr,sδ,K

and that it satisfies πK/k(β) = α.

2.2. Construction of the space Mor(Dr, Y )

Our aim is to parametrize in a suitable sense the set of all analytic
maps from the polydisk Dr to a strictly affinoid space Y . We shall
realize this space as the analytic spectrum of a k-Banach algebra T r,Y∞ .

The first step is to construct the Banach k-algebra T r,Y∞ . In the
case where Y is a unit polydisk, this algebra is a sort of Tate algebra in
countably many variables. In §2.2.3, we show that its analytic spectrum
satisfies an appropriate universal property and specify in which sense it
parametrizes the set of analytic maps Dr → Y .

2.2.1. Construction of the Banach k-algebra T r,s∞ . We shall
first concentrate on the case where Y = D̄s.

Pick some integer δ ∈ N∗. Recall from §2.1 that the set of all polyno-
mial maps P : Ar,an → As,an of degree at most δ such that P (Dr) ⊂ D̄s

can be endowed with a natural structure of affinoid space whose affinoid
algebra is the Tate algebra k{a1,I , · · · , as,I}|I|≤δ = k{al,I}|I|≤δ,1≤l≤s. We
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denote this space by Morr,sδ . It is isomorphic as a k-analytic space to
the unit polydisk D̄s(δ+1)r .

Observe that for any given δ ∈ N∗ there exists a natural truncation
map prδ : Morr,sδ+1 → Morr,sδ , which is a surjective analytic map dual
to the inclusion of Tate algebras k{al,I}|I|≤δ,1≤l≤s ⊂ k{al,I}|I|≤δ+1,1≤l≤s.
These inclusions are isometric and we may so consider the inductive
limit of this directed system. It is a normed k-algebra that we denote
by T r,s.

In order to describe the elements of T r,s and its norm, we introduce
the set S of all maps M : {1, . . . , s}×Nr → N having finite support and
set |M| = ∑

l,I M(l, I) for every M ∈ S. We define Sδ as the subset of S
consisting of all M ∈ S such that M(l, I) = 0 for all |I| ≥ δ+1. Observe
that no such set Sδ is finite. Given a =

(
(a1,I)|I|≤δ, . . . , (as,I)|I|≤δ

)
and

M ∈ S, we write
aM =

∏
1≤l≤s,I∈Nr

a
M(l,I)
l,I .

The k-algebra T r,s consists of all power series that are of the form∑
M∈Sδ

gM · aM,

for some δ ∈ N and whose coefficients gM ∈ k are such that |gM| → 0
as |M| → ∞.

Let us describe the norm on T r,s. Observe that by the defini-
tion of Sδ, every element ∑M∈Sδ gM · aM ∈ T r,s belongs to the Tate
algebra k{al,I}|I|≤δ,1≤l≤s, and we may associate to ∑M∈Sδ gM · aM the
norm on k{al,I}|I|≤δ,1≤l≤s. Since the inclusions of k{al,I}|I|≤δ,1≤l≤s in
k{al,I}|I|≤δ+1,1≤l≤s are isometric, this norm is well-defined.

Remark 2.2.1. The k-algebra T r,s is not complete. Take for in-
stance r = s = 1 and consider the sequence fn = ∑n

i=1 gi · ai ∈ T 1,1.
This is a Cauchy sequence as soon as the coefficients gi ∈ k are such
that |gi| → 0 when i→∞, but it does not have any limit in T 1,1.

The completion T r,s∞ of T r,s is the Banach k-algebra consisting of
all power series ∑

M∈S
gM · aM

such that |gM| tends to zero with respect to the filter of cofinite subsets,
i.e. such that for all ε > 0 the set of M ∈ S such that |gM| > ε is finite.

Definition 2.2.2. The space Mor(Dr, D̄s) is the analytic spectrum
of the Banach algebra T r,s∞ .

In particular, Mor(Dr, D̄s) is compact, because it is the analytic
spectrum of the k-Banach algebra T r,s∞ .

For every δ ∈ N, the isometric inclusion k{al,I}|I|≤δ,1≤l≤s ⊂ T r,s∞
defines a natural surjective continuous map Pr∞δ : Mor(Dr, D̄s)→ Morr,sδ .
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We may as well consider the inverse limit of all the spaces Morr,sδ ,
induced by the truncation maps prδ : Morr,sδ+1 → Morr,sδ . These maps
verify the equality prδ ◦ Pr∞δ+1 = Pr∞δ and induce a continuous map
ϕ : Mor(Dr, D̄s)→ lim←−δ Morr,sδ .

We shall consider the inclusions iδ : Morr,sδ → Mor(Dr, D̄s) given by
the bounded morphism T r,s∞ → k{al,I}|I|≤δ,1≤l≤s, sending al,I to itself if
|I| ≤ δ and to 0 otherwise. These are closed immersions.

Proposition 2.2.3. The map ϕ : Mor(Dr, D̄s) → lim←−δ Morr,sδ is a
homeomorphism.

Proof. The inverse limit lim←−δ Morr,sδ is compact by Tychonoff.
Let us show that ϕ : Mor(Dr, D̄s)→ lim←−δ Morr,sδ is bijective.
Fix δ ≥ 0. Let πδ : lim←−δ Morr,sδ → Morδ be the natural map and

prδ : Morr,sδ+1 → Morr,sδ the truncation map. We know that Pr∞δ =
πδ ◦ ϕ : Mor(Dr, D̄s) → Morr,sδ . Pick a point y ∈ lim←−δ Morr,sδ and
consider πδ(y) ∈ Morr,sδ . Consider the set Kδ consisting of all the points
α ∈ Mor(Dr, D̄s) such that Pr∞δ (α) = πδ(y). The closed immersion
iδ : Morr,sδ → Mor(Dr, D̄s) constructed above is a section of Pr∞δ . Thus,
the map Pr∞δ is surjective and the subset Kδ is non-empty. Clearly, we
have that Kδ+1 ⊆ Kδ. Every Kδ is compact and so the intersection
∩δ≥0Kδ is nonempty. This shows that ϕ is surjective.

For the injectivity, let α, α′ be two points in Mor(Dr, D̄s) having the
same image in lim←−δ Morr,sδ . We have to check that |g(α)| = |g(α′)| for
every g ∈ T r,s∞ , that by density reduces to the case where g ∈ T r,s. We
know that Pr∞δ (α) = Pr∞δ (α′) ∈ Morr,sδ for all δ. Given g ∈ T r,s observe
that it lies in k{al,I}|I|≤δ,1≤l≤s for some δ ≥ 0. Thus,

|g(α)| = |g(Pr∞δ (α))| = |g(Pr∞δ (α′))| = |g(α′)| ,
concluding the proof. �

Recall from §1 the definition of the complete residue field H(α) of
a point α ∈ Mor(Dr, D̄s). We say that α is rigid when H(α) = k. To
simplify notation, we write αδ = Pr∞δ (α).

Proposition 2.2.4. Let α be a point in Mor(Dr, D̄s). For every
δ ∈ N, the inclusion of Banach k-algebras k{al,I}1≤l≤s,|I|≤δ ⊂ T r,s∞
induces an extension of valued fields H(α)/H(αδ).

The complete residue field H(α) is isomorphic to the completion of
the inductive limit of valued fields lim−→δ

H(αδ).

Proof. A point α ∈ Mor(Dr, D̄s) corresponds to a seminorm on
the k-algebra T r,s∞ , whose restriction to k{al,I}|I|≤δ,1≤l≤s is the seminorm
αδ. The kernel of αδ is the intersection of k{al,I}|I|≤δ,1≤l≤s with ker(α).
This induces inclusions
(2.5) k{al,I}|I|≤δ,1≤l≤s/ ker(αδ) ⊂ T r,s∞ / ker(α).
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It follows that there are inclusions H(αδ) ⊂ H(α), and thus the
direct limit of the H(αδ) is naturally contained in H(α). In order
to show that H(α) is isometrically isomorphic to the completion of
lim−→δ
H(αδ), it suffices to show that lim−→δ

H(αδ) is dense in H(α).
Consider the field K := lim−→δ

Frac
(
k{al,I}|I|≤δ,1≤l≤s/ ker(αδ)

)
. It is

clear that K is contained in lim−→δ
H(αδ). By (2.5) and by the definition

of T r,s∞ , we also know that K is dense in Frac (T r,s∞ / ker(α)). The latter
is by definition dense in H(α), which proves that lim−→δ

H(αδ) is dense in
H(α). �

Proposition 2.2.5. The set of rigid points in Mor(Dr, D̄s) is dense.

Proof. Pick any point α ∈ Mor(Dr, D̄s). For every δ ∈ N, pick a
sequence of rigid points α(δ)

n ∈ Morr,sδ converging to αδ. By Proposition
2.2.3 and Proposition 2.2.4, a point in Mor(Dr, D̄s) is rigid if and only
if for every δ ∈ N its projection to Morr,sδ is rigid.

We may view each point α(δ)
n as a rigid point in Mor(Dr, D̄s) via de

map iδ : Morr,sδ → Mor(Dr, D̄s) constructed above. We claim that α lies
in the closure of the set {α(δ)

n }n,δ. Indeed, fix an open neighbourhood U
of α. It is a finite intersection of open sets of the form {β ∈ Mor(Dr, D̄s) :
|g(β)| − |g(α)|| ≤ r} for some r ≤ 1. Since T r,s is dense in T r,s∞ , we
may assume that g ∈ T r,s. Thus, for sufficiently large δ one has that
|g(αδ)| = |g(α)|. Moreover, by construction we have |g(α(δ)

n )| n→∞→
|g(αδ)|. It follows that for δ, n� 0, the points α(δ)

n belong to U . �

2.2.2. Construction of the Banach k-algebra T r,Y∞ . We now
generalize the construction of the infinite dimensional Tate algebra T r,s∞
to the case where the target Y is any strictly k-affinoid space. We
obtain a Banach k-algebra T r,Y∞ that is homeomorphic to a quotient of
T r,s∞ by some closed ideal.

Let Y be a strictly k-affinoid space with underlying algebra B. Fix
an admissible epimorphism Ts → B giving rise to a closed immersion
Y → D̄s and such that B is isomorphic as an affinoid algebra to Ts/J
for some closed ideal J . Recall that an analytic map f : Dr → D̄s is
given in coordinates by

f =
∑
I∈Nr

a1,IT
I , . . . ,

∑
I∈Nr

as,IT
I

 , |al,I | ≤ 1 ,

and that an analytic map Dr → Y is an analytic map f : Dr → D̄s such
that ϕ ◦ f ≡ 0 for all ϕ ∈ J . Explicitly, for every ϕ = ∑

J∈Ns ϕJT
J one
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has:

ϕ ◦ f =
∑
J∈Ns

ϕJ

∑
I∈Nr

a1,IT
I , . . . ,

∑
I∈Nr

as,IT
I

J

=
∑
J∈Ns

ϕJ
∏

1≤l≤s

∑
I∈Nr

al,IT
I

jl .
Further developing the formulae, one obtains:

ϕ ◦ f =
∑
J∈Ns

ϕJ
∏

1≤l≤s

(
al,(0,...,0)

)jl + · · ·

=
∑
K∈Nr

Bϕ,K(al,I)TK ,

where Bϕ,K(al,I) is a series in the al,I ’s whose coefficients are determined
by those of ϕ. In fact, in the expression of Bϕ,K(al,I) intervene only
the al,I such that the multiindex I = (i1, . . . , ir) satisfies in ≤ kn for
all n = 1, . . . , r and Bϕ,K(al,I) is linear in ϕ. That is, only finitely
many coefficients al,I appear in the expression of Bϕ,K(al,I), and so
Bϕ,K(al,I) ∈ T r,s∞ . Nevertheless, notice that Bϕ,K(al,I) is not a polyno-
mial in general.

Denote by I := (Bϕ,K(al,I))K the closure of the ideal in T r,s∞ gener-
ated by all the series Bϕ,K(al,I), for ϕ ∈ J and K ∈ Nr. The quotient
T r,Y∞ := T r,s∞ /I endowed with the quotient norm is a Banach algebra,
and we set:

Mor(Dr, Y ) =M
(
T r,Y∞

)
.

2.2.3. Universal property of the space Mor(Dr, Y ). We now
prove that the space Mor(Dr, Y ) satisfies the following natural universal
property.

Theorem B. There exists an analytic map Φ : Mor(Dr, Y )×Dr →
Y satisfying the following universal property. Let W be the analytic
spectrum of a Banach k-algebra or any good k-analytic space. Then,
for any analytic map F : W × Dr → Y there exists a unique morphism
G : W → Mor(Dr, Y ) such that F (x, z) = Φ(G(x), z) for all x ∈ W (k)
and z ∈ Dr(k).

Remark 2.2.6. As a consequence of the previous theorem, the space
M

(
T r,Y∞

)
does not depend on the presentation of Y .

Recall from §1.1.1 that a morphism between the spectra of two Ba-
nach k-algebras is by definition a continuous map induced by a bounded
morphism between the underlying algebras. In the same fashion, an
analytic map from a good k-analytic space W into Mor(Dr, Y ) is given
by an affinoid covering {Wi} ofW and analytic mapsWi → Mor(Dr, Y ),
which are induced by bounded morphisms of Banach k-algebras and
are compatible with the restrictions.
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Being the analytic spectrum of a k-Banach algebra, there is a natural
notion of complete residue field of any point in Mor(Dr, Y ). Recall that
a point α ∈ Mor(Dr, Y ) is rigid if and only if its complete residue
field H(α) is equal to k. When α is rigid, Φ(α, ·) defines an analytic
map from Dr to Y . The previous theorem shows in particular that
the set of analytic maps from Dr to Y is in bijection with the set
{Φ(α, ·) : α ∈ Mor(Dr, Y )(k)}, hence with the set of rigid points in
Mor(Dr, Y ).

Proof of Theorem B. Let Y be a strictly k-affinoid space with
underlying affinoid algebra B. Fix an admissible epimorphism Ts → B
such that B is isomorphic as an affinoid algebra to Ts/J for some ideal
J .

As a first step, let us construct the analytic map Φ : Mor(Dr, Y )×
Dr → Y . The assignment

(S1, . . . , Ss) 7→
∑
I∈Nr

a1,IT
I , . . . ,

∑
I∈Nr

as,IT
I


defines a bounded morphism of Banach k-algebras ψ : k{S1, . . . , Ss} →
T r,s∞ {ρ−1T1, . . . , ρ

−1Tr} for every positive ρ < 1, and thus an analytic
map Ψ : Mor(Dr, D̄s)× Dr → D̄s.

Pick any ϕ ∈ J . We see that ϕ ◦Ψ = ∑
K∈Nr Bϕ,K(al,I)TK , and so

it follows from the definition of the Banach algebra T r,Y∞ that Ψ induces
an analytic map Φ : Mor(Dr, Y )× Dr → Y .

We now prove the universal property. Suppose first that W is the
aalytic spectrum of a Banach k-algebra A. Let F : W × Dr

k → Y be
an analytic map, which is given by an analytic map f : W × Dr → D̄s

induced by some bounded homomorphism of Banach k-algebras

(S1, . . . , Ss) 7→
∑
I∈Nr

b1,IT
I , . . . ,

∑
I∈Nr

bs,IT
I

 ,

where bl,I ∈ A are such that supl,I |bl,I(x)| ≤ 1 for all x ∈ W and such
that for every element ϕ = ∑

J∈Ns ϕJT
J in the ideal J ⊂ Ts we have

ϕ ◦ f ≡ 0. In the notation of the preceding section,

0 ≡ ϕ ◦ f =
∑
J∈Ns

ϕJ

∑
I∈Nr

b1,IT
I , . . . ,

∑
I∈Nr

bs,IT
I

J(2.6)

=
∑
K∈Nr

Bϕ,K(bl,I)TK .

Consider the analytic map g : W → Mor(Dr, D̄s) given by al,I 7→
bl,I for all I ∈ Nr and all 1 ≤ l ≤ s. By (2.6), the composition
Bϕ,K(al,I) ◦ g ≡ 0 for every K ∈ Nr and every ϕ ∈ J . Thus, the map g
induces an analytic map G : W → Mor(Dr, Y ).
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A rigid point x ∈ W together with a rigid point z ∈ Dr defines
a rigid point in the product W × Dr, and by construction we have
F (x, z) = Φ(G(x), z).

Conversely, let H : W → Mor(Dr, Y ) be an analytic map induced
by the map h : W → Mor(Dr, D̄s) sending al,I to some cl,I ∈ A and
satisfying F (x, z) = Φ(h(x), z) for all x ∈ W (k) and all z ∈ Dr(k). For
every fixed x ∈ W (k), consider the analytic map z ∈ Dr 7→ Φ(h(x), z).
By hypothesis, it agrees with the map z ∈ Dr 7→ Φ(g(x), z), and so
bl,I(x) = cl,I(x) for every I ∈ Nr and 1 ≤ l ≤ s. As the equalities hold
for every rigid x ∈ W , we conclude that h = g, and so H = G.

Let now W be an arbitrary good k-analytic space. Let {Wi} be
an affinoid covering of W inducing an analytic map F : W × Dr → Y .
By the previous case, for every affinoid domain Wi of W there exists
a unique analytic map Gi : Wi → Mor(Dr, Y ), induced by a bounded
morphism of Banach algebras, such that F (x, z) = Φ(Gi(x), z) for all
x ∈ Wi(k) and z ∈ Dr(k). By construction, the maps Gi agree on the
intersections Wi ∩Wj and are compatible with the restrictions. �

2.3. Points of Mor(Dr, Y ) as continuous maps Dr → Y

The following theorem specifies in which sense the points of the
space Mor(Dr, Y ) correspond to continuous maps from Dr to Y . As
before, k denotes a complete algebraically closed field.

Recall that Φ : Mor(Dr, Y ) × Dr → Y denotes the analytic map
from Theorem B.

Theorem 2.3.1. Let Y be a strictly k-affinoid space. There exists a
map Ev from Mor(Dr, Y ) to the space of continuous functions C0(Dr, Y )
such that the following holds:

i) The map Ev(α) is analytic if and only if α is a rigid point in
Mor(Dr, Y ). In that case, the map Ev(α) is precisely Φ(α, ·).

ii) For any fixed z ∈ Dr, the assignment α ∈ Mor(Dr, Y ) 7→
Ev(α)(z) is a continuous map.

Proof. Let B be the underlying affinoid algebra of Y and fix an
admissible surjection Ts → B with kernel J ⊂ Ts.

The map Ev : Mor(Dr, Y ) → C0(Dr, Y ) is given as follows. Fix a
point α ∈ Mor(Dr, Y ) and consider the first projection π1 : Mor(Dr, Y )×
Dr → Mor(Dr, Y ). The fibre π−1

1 (α) is canonically isomorphic to Dr
H(α)

(cf. §1.1.1). We can thus consider the inclusion map ιH(α) : Dr
H(α) →

Mor(Dr, Y )× Dr, given by

T r,Y∞ {ρ−1T1, . . . , ρ
−1Tr} → H(α){ρ−1T1, . . . , ρ

−1Tr}
Ti 7→ Ti(2.7)

a ∈ T r,Y∞ 7→ χα(a)
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for ρ < 1, where χα : T r,Y∞ → H(α) denotes the character associated to
the point α. Let σH(α)/k : Dr → Dr

H(α) be the continuous map discussed
in §1.7. Let Φ : Mor(Dr, Y ) × Dr → Y be the analytic map from
Theorem B. We set:

Ev(α) = Φ ◦ ιH(α) ◦ σH(α)/k .

Clearly, Ev(α) is a continuous map from Dr to Y .
It will be useful in the remaining of the proof to compute Ev(α)(z)

explicitely for any point z ∈ Dr. The map Ev(α) is given by a continuous
map f : Dr → D̄s such that ϕ ◦ f ≡ 0 for every element ϕ in the ideal
J ⊂ Ts defining the affinoid space Y . For any z ∈ Dr and for any
g = ∑

J∈Ns gJS
J in k{S1, . . . , Ss}, we have

(2.8) |g(Ev(α)(z))| =
∣∣∣∣∣∑
J

gJ
s∏
l=1

(∑
I

χα(al,I) · T I
)jl(σH(α)/k(z))

∣∣∣∣∣ .
Pick a rigid point α ∈ Mor(Dr, Y ), i.e. such that H(α) = k. In this

situation, the fibre π−1
1 (α) is homeomorphic to Dr, and so ιH(α) is in

fact an analytic map between k-analytic spaces, and the map σH(α)/k
is the identity on Dr. Then, for every z ∈ Dr the pair (α, z) defines a
point in Mor(Dr, Y )×Dr, and so ιk(z) = (α, z). Thus, Ev(α) = Φ(α, ·)
is analytic.

Suppose conversely that Ev(α) is analytic. It follows from (2.8) that
the map Ev(α) can be decomposed as Ev(α) = πK/k ◦ F ◦ σK/k, where
F : Dr → D̄s is the K-analytic map

F (z) = (
∑
I

χα(a1,I) · zI , . . . ,
∑
I

χα(as,I) · zI).

It suffices to treat the case s = 1. Since Ev(α) is analytic, we may find
coefficients bI ∈ k bounded by 1 such that Ev(α)(z) = ∑

I∈Nr bIz
I for

every z ∈ Dr(k). Notice that the equality πK/k
(∑

I∈Nr χα(aI) · zI
)

=∑
I∈Nr bIz

I ∈ k implies that ∑I∈Nr χα(aI) · zI ∈ k, as k is algebraically
closed.

Suppose by contradiction that α is not a rigid point and consider
the equation

(2.9)
∑
I∈Nr

bIz
I =

∑
I∈Nr

χα(aI) · zI ,

where we may assume that every χα(aI) is either 0 or does not belong
to k. Since α is not rigid, not all of them are zero. We may consider the
nonempty set M ⊆ Nr consisting of all the multi-indices I ∈ Nr such
that χα(aI) /∈ k. Let P be the Newton polytope of M , i.e. the convex
hull of the union of all upper-quadrants I + Rr

+ with I ∈ M . It is a
non-compact polytope in Rr

+ whose extremal points all belong to M .
Pick any extremal point p of P, and take any hyperplane in Rr

with integer coefficients H = {β1x1 + . . .+ βrxr = β0} intersecting the
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polytope P exactly at the point p. In other words, we have

(2.10) i1β1 + . . .+ irβr > β0

for every I ∈ Nr distinct from p intervening in (2.9). Fix any λ ∈ k
with |λ| < 1 and consider the rigid point z = (λβ1 , . . . , λβr) ∈ Dr. Then,∑

I∈Nr
bIz

I =
∑
I∈Nr

bI(λβ1 , . . . , λβr)I =
∑
I∈Nr

bIλ
i1β1+...+irβr =

= bpλ
β0 +

∑
I∈Nr,I 6=p

bIλ
i1β1+...+irβr = bpλ

β0 +O(λβ0) ,

where the last equality follows from (2.10). It follows that bpλβ0 +
O(λβ0) = χα(ap)λβ0 + O(λβ0), and hence χα(ap) = bp ∈ k. Repeating
this procedure at every vertex of the polytope P, we conclude that
χα(aI) ∈ k for every I ∈ P, contradicting the fact that α is not rigid.

Let us now prove the continuity statement. Fix a point z ∈ Dr. It
suffices to check that for any sequence of points {αn} ⊂ Mor(Dr, Y )
converging to some α ∈ Mor(Dr, Y ), we have Ev(αn)(z)→ Ev(α)(z).

Consider the second projection π2 : Mor(Dr, Y ) × Dr → Dr. The
fibre π−1

2 (z) is isomorphic to the space Mor(Dr, Y )H(z). The inclusion
map ιH(z) : Mor(Dr, Y )H(z) → Mor(Dr, Y )× Dr is given by

T r,Y∞ {ρ−1T1, . . . , ρ
−1Tr} → T r,Y∞ ⊗̂kH(z)

Ti 7→ χz(Ti)
al,I 7→ al,I

for any ρ < 1, where χz : k{ρ−1T1, . . . , ρ
−1Tr} → H(z) denotes the

character associated to the point z. Pick some converging power series
g = ∑

I∈Nr gIT
I in T r,Y∞ {ρ−1T1, . . . , ρ

−1Tr} and compute:

(2.11)
∣∣∣g (ιH(z) ◦ σH(z)/k(α)

)∣∣∣ =
∣∣∣( ∑

I∈Nr
gI · χz(T )I

) (
σH(z)/k(α)

) ∣∣∣
= max

I∈Nr
|gI(α)| ·

∣∣∣χz(T )I
∣∣∣
H(z)

= max
I∈Nr
|χα(gI)|H(α) ·

∣∣∣T I(z)
∣∣∣

=
∣∣∣( ∑

I∈Nr
χα(gI) · T I

) (
σH(α)/k(z)

) ∣∣∣ =
∣∣∣g (ιH(α) ◦ σH(α)/k(z)

)∣∣∣ .
That is, for all fixed z ∈ Dr and α ∈ Mor(Dr, Y ),

ιH(α) ◦ σH(α)/k(z) = ιH(z) ◦ σH(z)/k(α) .

Consider the continuous map Ψ(z) : Mor(Dr, Y )→ Y , defined as the
composition Ψ(z) = Φ ◦ ιH(z) ◦ σH(z)/k. For every fixed α ∈ Mor(Dr, Y )
and every fixed z ∈ Dr, we have

Ψ(z)(α) = Ev(α)(z).

If αn is a sequence of points in Mor(Dr, Y ) converging to α, then the
continuity of Ψ(z) implies that Ψ(z)(αn) converges to Ψ(z)(α) as n goes
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to infinity, and so we see that
Ev(αn)(z) n→∞−→ Ev(α)(z) ,

concluding the proof. �

2.4. The space Mor(Dr, Y ) is Fréchet-Urysohn.

We prove Theorem 2.0.2, which states that the space Mor(Dr, Y )
is Fréchet-Urysohn. This technical result is a key step in the proof of
Theorem A. Recall that the field k is complete and algebraically closed.

We follow Poineau’s proof of the fact that analytic spaces are Fréchet-
Urysohn [Poi13, Proposition 5.2], which in turn relies on [Poi13,
Théorème 4.22].

Recall that a subset Γ of the analytic spectrum of a k-Banach
algebra (A, ‖.‖) is a boundary if for every g ∈ A there exists some
x ∈ Γ such that |g(x)| = ‖g‖. A closed boundary is called the Shilov
boundary if it is the smallest closed subset Γ ofM(A) satisfying this
property. Since we have excluded the trivially valued case and the norm
on T r,s∞ is multiplicative, there exists a Shilov boundary in Mor(Dr, D̄s)
by [EMN04, Theorem C].

In the following we deal with subfields l of k that are of countable
type over the prime subfield kp of k, i.e. such that l has a dense kp-vector
subspace of countable dimension.

The following proposition is an infinite dimensional analogue of
[Poi13, Théorème 4.22].

Proposition 2.4.1. For every point α in Mor(Dr, D̄s) there exists
a subfield l of k that is of countable type over the prime subfield kp of k
and satisfying the following property.

Let l′ be any subfield of k with l ⊂ l′ ⊂ k and let π∞k/l′ : Mor(Dr, D̄s)→
Mor(Dr, D̄s)l′ be the base change morphism. Then α is the unique point
in the Shilov boundary of the fibre (π∞k/l′)−1(π∞k/l′(α)).

Proof of Proposition 2.4.1. The space Mor(Dr, D̄s) is the pro-
jective limit of Morr,sδ with the morphisms Pr∞δ,k : Mor(Dr, D̄s)→ Morr,sδ
for δ ∈ N∗ (cf. Proposition 2.2.3). A point α in Mor(Dr, D̄s) is thus
determined by a sequence (αδ)δ≥0, where each αδ lies in Morr,sδ and
satisfies prδ+1(αδ+1) = αδ for the projections prδ+1 : Morr,sδ+1 → Morr,sδ .

To every αδ we apply [Poi13, Théorème 4.22]. We obtain a field
lδ ⊂ k that is of countable type over the prime subfield kp of k and such
that for any subfield lδ ⊂ l′ ⊂ k the point αδ is the only point in the
Shilov boundary of (πδk/l′)−1(πδk/l′(αδ)), where πδk/l′ : Morr,sδ → Morr,sδ,l′
denotes the base change morphism.

Let l be the subfield of k generated by all the lδ. By construction,
l is of countable type over kp. We may assume in addition that l is
algebraically closed.
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The equality πδk/l′ ◦ Pr∞δ,k = Pr∞δ,l′ ◦ π∞k/l′ implies that Pr∞δ,k maps
the fibre (π∞k/l′)−1(π∞k/l′(α)) to the fibre (πδk/l′)−1(πδk/l′(αδ)). We show
that α belongs to the Shilov boundary of (π∞k/l′)−1(π∞k/l′(α)). Pick an
element g ∈ T r,s∞ . As T r,s is dense in T r,s∞ , we may assume that g lies
in k{al,I}|I|≤δ,1≤l≤s for some δ ≥ 0. Thus, |g(α)| = |g(αδ)|, which is
the maximum value of g, since αδ belongs to the Shilov boundary of
(πδk/l′)−1(πδk/l′(αδ)).

Pick a point β ∈ (π∞k/l′)−1(π∞k/l′(α)) different from α, i.e. such that
βδ 6= αδ for some δ ≥ 0. As αδ is the unique point in the Shilov
boundary of (πδk/l′)−1(πδk/l′(αδ)), we may find some g ∈ k{al,I}|I|≤δ such
that

|g(β)| = |g(βδ)| < |g(αδ)| = |g(α)|,
showing that α is the unique point in the Shilov boundary of the space
(π∞k/l′)−1(π∞k/l′(α)). �

Proof of Theorem 2.0.2. Since Mor(Dr, Y ) is a closed subset
of Mor(Dr, D̄s), it suffices to prove that the space Mor(Dr, D̄s) is Fréchet-
Urysohn.

Let A be any subset of Mor(Dr, D̄s) and let α be a point in the
closure of A. Let l be the subfield of k associated to α from Proposition
2.4.1. Let l ⊂ l′ ⊂ k be any subfield of k that is of countable type over
l. Every polydisk Morr,sδ,l′ is first countable, and as a consequence so
is the countable product of all the Morr,sδ,l′ . The space Mor(Dr, D̄s)l′ is
a subspace of the product ∏δ Morr,sδ,l′ by Proposition 2.2.3, and thus is
first countable.

Copying Poineau’s proof of [Poi13, Proposition 5.2] and using
Proposition 2.4.1, we may find a sequence of points αn in A converging
to α. �

2.5. Montel’s theorem

This section is devoted to the proof of Theorem A. We first apply
the results and constructions from the previous sections to prove the
case where the base field k is algebraically closed and next we generalize
this argument to an arbitrary non-Archimedean complete field.

2.5.1. Proof of Theorem A in the algebraically closed case.
Let k be an algebraically closed complete non-Archimedean field.

Let X be a good, reduced, σ-compact k-analytic space without
boundary and Y a strictly k-affinoid space. Pick a sequence of analytic
maps fn : X → Y . We claim that there exists a subsequence that is
pointwise converging to a continuous map.

Assume first that X = Dr. In this case, each analytic map fn
corresponds to a rigid point αn in Mor(Dr, Y ) by Theorem B. Since the
space Mor(Dr, Y ) is compact and Fréchet-Urysohn by Theorem 2.0.2,
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we may find a converging subsequence αnj converging to some point
α ∈ Mor(Dr, Y ). The continuous map Ev(α) : Dr → Y is the limit map
of the subsequence fnj by Theorem 2.3.1.

Suppose now that X is a basic tube in the sense of §1.6. Let
X̂ be a strictly k-affinoid space and X̂ → D̄r a distinguished closed
immersion such that X is isomorphic to X̂ ∩ Dr (cf. Proposition 1.6.6).
We may thus write X as a growing countable union of affinoid spaces
X = ⋃

0<ρ<1Xρ. Moreover, since k is algebraically closed, we may
take every ρ in |k×|. As the affinoid algebra corresponding to X̂ is
isomorphic to the quotient of the Tate algebra Tr by some closed ideal
I, we may assume that the affinoid algebra Aρ of each Xρ is of the form
k{ρ−1T1, . . . , ρ

−1Tr} modulo the ideal generated by I. In particular, we
have distinguished closed immersions ϕρ : Xρ → D̄r(ρ).

Let fn : X → D̄s be a sequence of analytic maps. Fix 0 < ρ < 1,
ρ ∈ |k×|. We may apply Proposition 1.5.2 to the restriction of fn to Xρ

to obtain an analytic map g(ρ)
n : D̄r(ρ)→ D̄s extending fn|Xρ . Indeed,

fn|Xρ is given by elements f (n)
1 , . . . , f (n)

s ∈ Aρ of norm at most 1. As
we have a distinguished epimorphism k{ρ−1T1, . . . , ρ

−1Tr} → Aρ, we
may lift each f (n)

l , l = 1, . . . , s, to an element in k{ρ−1T1, . . . , ρ
−1Tr}

having the same norm. These define analytic maps g(ρ)
n : D̄r(ρ)→ D̄s

satisfying g(ρ)
n ◦ ϕρ = fn|Xρ for all n ∈ N. We now apply the previous

case to the restricted sequence {g(ρ)
n |Dr(ρ)}n. We conclude by a diagonal

extraction argument.
Consider now X as in the theorem. Being σ-compact, X is the union

of countably many compact sets Kn. Since it is a good analytic space
without boundary, each compact set Kn is included in a finite union
of open sets, each isomorphic to a basic tube. It follows that X is a
countable union of basic tubes Um. By the previous case, on every open
set Um there exists a subsequence converging pointwise, and extracting
diagonally we may find a subsequence {fnj} converging pointwise on
the whole X. The limit is continuous on every Um and hence on X
since they are open. �

2.5.2. Proof of Theorem A over an arbitrary base field. Let
K be a completed algebraic closure of k, and XK , YK be the scalar
extensions of X and Y respectively, see §1.7.

Pick a sequence fn : X → Y of analytic maps and consider the
analytic maps Fn : XK → YK induced by the base change. The following
diagram commutes:

XK
Fn
//

πK/k
��

YK

πK/k
��

X
fn

// Y
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Observe that the analytic space XK is good and σ-compact, since the
preimage π−1

K/k(U) of an affinoid domain U of X is an affinoid domain
in XK . It follows directly from the definition of the interior that XK is
boundaryless ([Ber90, Proposition 3.1.3]). Thus, by the algebraically
closed case of Theorem A proved above, we may assume that Fn is
pointwise converging to a continuous map F : XK → YK . Pick a point
z ∈ X. As πK/k is surjective, we may choose a point z′ ∈ π−1

K/k(z).
It follows that fn(z) = fn(πK/k(z′)) = πK/k ◦ Fn(z′), which tends to
πK/k◦F (z′) =: f(z) as n goes to infinity. The limit map f is well-defined.
Indeed, if z′, z′′ are two points in π−1

K/k(z), then

lim
n
πK/k ◦ Fn(z′) = lim

n
fn(πK/k(z′)) =

= lim
n
fn(πK/k(z′′)) = lim

n
πK/k ◦ Fn(z′′) .

It remains to check that f is continuous. Let A be any closed
(hence compact) subset of Y . By continuity, the set F−1

(
π−1
K/k(A)

)
is closed. Recall that the map πK/k : XK → X is proper. Since XK

and X are locally compact, then πK/k is closed. As a consequence,
f−1(A) = πK/k

(
F−1 ◦ π−1

K/k(A)
)
is closed. �

2.6. Analytic properties of pointwise limits of analytic maps

Continuous maps of the form Ev(α) : Dr → Y are very special, as
they exhibit properties that are distinctive of analytic maps. We shall
prove that they lift to analytic maps after a suitable base change and
that the graph of Ev(α) is well-defined in the analytic product Dr × Y
and not just in the topological product |Dr| × |Y |.

Theorem 2.6.1. Let k be a complete non-Archimedean field that is
algebraically closed.

Let α be a point in Mor(Dr, Y ). Then there exists a closed subset Γα
of Dr×Y such that the first projection π1 : Γα → Dr is a homeomorphism
and such that for every z ∈ Dr the image of Γα ∩ π−1

1 (z) under the
second projection is the point Ev(α)(z) ∈ Y .

Moreover, there exist a complete extension K of k and a K-analytic
map Fα : Dr

K → YK such that Ev(α) = πK/k ◦ Fα ◦ σK/k.

We deduce the following result:

Corollary C. Let k be a non-Archimedean algebraically closed
complete field and X a good, reduced, boundaryless strictly k-analytic
space. Let Y be a k-affinoid space. Let fn : X → Y be a sequence of
analytic maps converging pointwise to a continuous map f .

Then, for any point x ∈ X one can find an affinoid neighbourhood
Z of x, a complete extension K/k and a K-analytic map F : ZK → YK
such that

f |Z = πK/k ◦ F ◦ σK/k .
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Proof of Theorem 2.6.1. Fix a point α ∈ Mor(Dr, Y ) and de-
note by H(α) its complete residue field. We define Γα as the image of a
continuous map ψ : Dr → Dr × Y , that we construct as follows.

Let ιH(α) : Dr
H(α) → Mor(Dr, Y )×Dr be the inclusion map defined in

(2.7). Let Υ : Mor(Dr, Y )×Dr → Dr × Y be the analytic map induced
by

k{ρ−1T1, . . . , ρ
−1Tr}{S1, . . . , Ss} → T r,s∞ {ρ−1T1, . . . , ρ

−1Tr}
Ti 7→ Ti

Sl 7→
∑
I

al,IT
I .

Let σH(α)/k : Dr → Dr
H(α). We set ψ = Υ ◦ ιH(α) ◦ σH(α). Explicitly, ψ is

induced by the analytic map Ψ : Dr → Dr × D̄s that maps any z ∈ Dr

to the seminorm sending every g ∈ Ts{ρ−1T1, . . . , ρ
−1Tr}, which is of

the form g = ∑
J∈Ns gJS

J with gJ ∈ k{ρ−1T1, . . . , ρ
−1Tr} are such that

|gJ | → 0 as |J | → 0, to the following real number:

(2.12) |g(Ψ(z))| =
∣∣∣∣∣∑
J

gJ
s∏
l=1

(∑
I

χα(al,I) · T I
)jl(σH(α)/k(z))

∣∣∣∣∣ .
Consider the projections π1 and π2 on Dr × Y to the first and second
factor respectively. It is an immediate consequence of the previous
computation and (2.8) that

π2(ψ(z)) = Ev(α)(z).
If no variables Sl appear in the expression of g ∈ Ts{ρ−1T1, . . . , ρ

−1Tr},
then g lies in the algebra k{ρ−1T1, . . . , ρ

−1Tr}. Thus, by (2.12) we see
that |g(Ψ(z))| = |g(z)|, and so

π1(ψ(z)) = z .

It remains to check that the image Γα of ψ is a closed subset of
Dr × Y . Let zn be a sequence of points in Dr such that ψ(zn) converges
to some point x in Dr×Y . As π1(ψ(zn)) = zn, we see that zn converges
to π1(x) ∈ Dr, and by continuity of ψ we have that x = ψ(π1(x)) lies
in Γα. The set Γα is so sequentially closed, and hence closed.

Consider now the continuous map Ev(α) : Dr → Y . Let K be the
complete residue field H(α). Consider the H(α)-analytic map

Fα =
∑
I∈Nr

χα(a1,I) · T I , . . . ,
∑
I∈Nr

χα(as,I) · T I
 .

A direct computation together with (2.8) shows that Ev(α) = πH(α)/k ◦
Fα ◦ σH(α)/k. �

Proof of Corollary C. Suppose first that X = Dr. Each
analytic map fn is of the form fn = Ev(αn) for some rigid point
αn ∈ Mor(Dr, Y ) by Theorem 2.3.1. It was shown in Proposition 2.2.3
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that the space Mor(Dr, Y ) is Fréchet-Urysohn so that we may assume
that αn converges to some point α ∈ Mor(Dr, Y ). The limit map f is
precisely Ev(α) (cf. Theorem 2.3.1) and we conclude by Theorem 2.6.1.

Let now X be any good, boundaryless, reduced k-analytic space.
Pick a point x ∈ X and an affinoid neigbourhood Z of x containing
x in its interior. Fix a distinguished closed immersion of Z into some
closed unit polydisk D̄r. For every n we may find an analytic map
f̂n : D̄r → D̄s such that f̂n|Z = fn by Proposition 1.5.2. We now apply
the previous case to the restriction of f̂n to Dr, concluding the proof. �

2.7. Fields with countable residue field

We observe in this section that part of the assertion of Theorem
A extends to maps between any k-affinoid spaces when the residue
field of k is countable. Specifically, we do not exclude source spaces
with boundary and show that one may always extract an everywhere
converging subsequence.

Recall that the boundary of an affinoid space can be written as
a finite union of affinoid spaces defined over some extension of k, see
[Duc12, Lemma 3.1]. Here we shall only use the following observation.
Consider the closed N -dimensional polydisk D̄N , and denote by pi :
D̄N → D̄ the projection to the i-th coordinate. Recall that the boundary
of D̄ consists only of the Gauss point. It follows from Lemma 1.3.2 that
p−1
i (xg) is contained in the boundary of D̄N for every i = 1, · · · , N . Let

now x be a point in ∂D̄N and consider the commutative diagram:

D̄N

red
��

pi
// D̄

red
��

AN
k̃

p̃i
// A1

k̃

Suppose that pi(x) 6= xg for all i. By Lemma 1.3.2, p̃i(x) is a closed
point in A1

k̃
corresponding to some maximal ideal 〈Ti − ζi〉 ⊂ k̃[Ti] for

every i = 1, . . . , N . The commutativity of the diagram implies that the
ideal 〈T1 − ζ1, . . . , TN − ζN〉 of k̃[T1, . . . , TN ] is contained in the prime
ideal corresponding to red(x). As a consequence, red(x) ∈ AN

k̃
is closed,

contradicting the fact that x belongs to ∂D̄N .
The boundary of D̄N is thus equal to the union p−1

1 (xg)∪. . .∪p−1
N (xg).

Observe that each fibre p−1
i (xg) is isomorphic to D̄N−1

H(xg).

Proposition 2.7.1. Suppose k is a non-Archimedean complete
valued field that is algebraically closed and such that k̃ is countable.
Let X and Y be k-affinoid spaces and assume that X is reduced and
distinguished. Then, every sequence of analytic maps fn : X → Y has
an everywhere pointwise converging subsequence.
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Proof. We may assume X = D̄r, Y = D̄s as in the proof of
Theorem A. The set of connected components of the interior of D̄r is
in bijection with the set of k̃-points on its reduction Ar

k̃
and hence is

countable.
We now argue inductively on r. When r = 1, then the boundary of

D̄ consists of a single point, namely the Gauss point. We may therefore
apply Theorem A to each of the (countably many) components of the
interior of D̄ and apply a diagonal extraction argument to conclude.

Assume now that the statement holds for the polydisk of dimension
r − 1 defined over any complete valued field with countable residue
field, and pick a sequence of analytic maps fn : D̄r → D̄s. As before,
we apply Theorem A to each of the (countably many) components of
the interior of D̄r so that we may suppose that fn converges pointwise
on the interior of D̄r.

The boundary of D̄r is the union of r unit polydisks of dimension
r − 1 defined over the field H(xg) by our previous discussion. On each
of these we may apply the induction hypothesis, as the field H̃(xg) is
isomorphic to k̃(T ), which is countable. This concludes the proof. �





CHAPTER 3

Weakly analytic maps

In this chapter we study the continuous maps that are locally
pointwise limits of analytic maps, as obtained in Corollary C. Since
they can be locally lifted to an analytic map over some field extension
K of k, they share several properties with analytic maps, so that they
deserve the name of weakly analytic maps.

As before, k is any complete non trivially valued non-Archimedean
valued field which is algebraically closed.

3.1. Definition and first properties

We begin with a definition.

Definition 3.1.1. Let X and Y be any two good k-analytic spaces,
and let f : X → Y be a continuous map.

We say that f is weakly analytic if for every point x ∈ X there exist
an affinoid neighbourhood U of x, a complete field extension K/k and
an analytic map F : UK → YK such that f|U = πK/k ◦ F ◦ σK/k.

It will be convenient to denote by WA(X, Y ) the set of all weakly
analytic maps from X to Y .

Clearly, the set Mork(X, Y ) of analytic maps from X to Y is a
subset of WA(X, Y ). It is also a strict subset if Y has dimension at
least 1, since any constant map is weakly analytic, but it is analytic
only if the constant is a rigid point.

Proposition 3.1.2. Let X be a basic tube and Y be a k-affinoid
space. Let f : X → Y be a continuous map. The following two
conditions are equivalent.

i) For any point x ∈ X there exist an affinoid neighbourhood Z
of x and a sequence of analytic maps fn : Z → Y pointwise
converging to f |Z.

ii) For any point x ∈ X there exist an affinoid neighbourhood
Z of x, a complete extension K of k and an analytic map
F : ZK → YK such that f |Z = πK/k ◦ F ◦ σK/k.

A consequence of the previous result is that whenX has no boundary,
a continuous map f : X → Y is weakly analytic whenever for every
point x ∈ X there exists a basic tube U containing x and a sequence of
analytic maps fn from U to Y that converge pointwise to f .

41
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Proof. The implication i) ⇒ ii) is precisely Corollary C, since
basic tubes are boundaryless.

Suppose that ii) is satisfied. Choosing a closed immersion Y →
D̄s, we may assume Y = D̄s. Pick a point x ∈ X and an affinoid
neighbourhood Z of x such that there exists a complete extension K/k
and a K-analytic map F : ZK → D̄s

K such that f |Z = πK/k ◦ F ◦ σK/k.
Fix a closed immersion of ZK into some closed polydisk Dr

K . By
Proposition 1.5.2, we may find an analytic map F̂ : Dr

K → D̄s
K that

agrees with F on ZK ∩ Dr
K . By Theorem 2.3.1, there exists a rigid

point a ∈ Mor(Dr, D̄s)K such that F̂ = Φ(a, ·). The point α = π∞K/k(a)
in Mor(Dr, D̄s) is not rigid in general, but we may find rigid points
αn ∈ Mor(Dr, D̄s) converging to α by Proposition 2.2.5, since k is
assumed to be non trivially valued. The analytic maps Ev(αn) converge
pointwise to Ev(α) : Dr → D̄s by Theorem 2.3.1, and by construction
we have that Ev(α) = πK/k ◦ F̂ ◦ σK/k , see Theorem 2.6.1. �

3.2. Rigidity of weakly analytic maps

We prove here the following statement

Proposition 3.2.1. Suppose f : X → Y is a weakly analytic map,
where Y is a curve. If x is a rigid point that is mapped to a non-rigid
point by f , then f is locally constant near x.

Proof. Let x ∈ X be a rigid point such that y = f(x) is not
rigid. Since this is a local statement, we may replace X and Y by
affinoid neighbourhoods of x and y respectively. In particular, we may
assume that X = D̄r and x = 0. After maybe reducing X, there exists
an extension K of k and a K-analytic map F : XK → YK such that
f = πK/k ◦ F ◦ σK/k. Observe that F (x) is a rigid point of YK .

Suppose first that Y = D̄. The fact that y is not rigid means that y
has positive diameter, i.e.

inf
a∈k◦
|(T − a)(y)| = r > 0 .

By continuity, we can find a polyradius ε > 0 such that every rigid
point z in Dr

K(0; ε) satisfies |F (z) − F (0)|K < r, where |.|K denotes
the absolute value on K. Pick a point a ∈ k◦. For every rigid point
z ∈ Dr

K(0; ε), we get

|(T − a)(y)| = max {|F (z)− F (0)|K , |(T − a)(y)|}
= max

{
|F (z)− F (0)|K , |(T − a)(πK/k ◦ F (0))|

}
= max {|F (z)− F (0)|K , |F (0)− a|K}
= |F (z)− a|K
= |(T − a)(πK/k ◦ F (z))| .
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Thus, F maps the polydisk Dr
K(0; ε) into the fibre π−1

K/k(y). As
σK/k(Dr(0; ε)) ⊆ Dr

K(0; ε),
we conclude that f is locally constant near 0.

For Y any affinoid space of dimension 1 there exists a finite morphism
ϕ : Y → D̄ by Noether’s Lemma. By what precedes, the composition
ϕ ◦ f is locally constant near 0, and by finiteness so is f . �

Example 3.2.2. The previous result does not hold if Y has dimen-
sion greater than 2. Consider for instance the weakly analytic map
f : D̄ → D̄2 given by f = πK/k ◦ F ◦ σK/k, where K = H(xg) and
F (z) = (xg, z). No rigid point in D̄ has rigid image under f , but f is
not locally constant at these points.

3.3. Weakly analytic maps from curves

Proposition 3.3.1. Let f : X → Y be a weakly analytic map,
where X is a curve. If there exists a converging sequence of rigid points
of X whose images under f are rigid points, then f is analytic.

Remark 3.3.2. Let X be a k-affinoid space. Let f : X → D̄s be a
continuous map such that there exists a complete extension K/k such
that f = πK/k ◦ F ◦ σK/k for some K-analytic map F . We may assume
that the extension K/k is of countable type [BGR84, §2.7].

Indeed, let A be the underlying k-affinoid algebra of X and fix an
epimorphism k{r−1T} → A such that A is isomorphic as a Banach
algebra to k{r−1T}/I for some closed ideal I ⊂ k{r−1T}. Extending
scalars, we see that AK is isomorphic to K{r−1T}/I as a K-affinoid
algebra. The map F is then determined by elements F1, · · · , Fs ∈
AK with |Fl|sup ≤ 1, and hence the expression of F contains at most
countably many elements of K.

Proof. Pick any sequence xn ∈ X(k) such that f(xn) are also
rigid, and assume that limn xn = x. Here x may be non-rigid. We
may replace X by some affinoid neighbourhood of x and assume that
f = πK/k ◦F ◦σK/k for some complete extension K/k of countable type
and some K-analytic map F . Observe that f(xn) = F (xn) ∈ Y (k). We
may as well replace Y by an affinoid neighbourhood of f(x) and embed
it in some polydisk D̄s.

Let A be the underlying k-affinoid algebra of X. The map F is then
determined by elements F1, · · · , Fs in the K-affinoid algebra AK with
|Fl|sup ≤ 1. Pick any real number α > 1. By [BGR84, Proposition
2.7.2/3] there is an α-cartesian Schauder basis {ej}j∈N of K, and we
may choose e0 = 1 by [BGR84, Proposition 2.6.2./3].

Fix a distinguished epimorphism TM → AK and lift every Fl to
an element Gl in TM . Then for every l = 1, · · · , s we can develop
Gl = ∑

I a
l
IT

I with alI ∈ K and such that |alI |K → 0 as |I| goes to
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infinity. Using the Schauder basis we may find elements alI,j ∈ k such
that alI = ∑

j a
l
I,jej and satisfying

|alI,j|k ≤ max
j
|alI,j|k ≤ α|alI |K .

Since α|alI |K → 0 as as |I| goes to infinity, the series Ajl = ∑
I a

l
I,jT

I

defines an element in TM . Thus, we obtain a converging power series
Gl = ∑

j

(∑
I a

l
I,jT

I
)
ej. Recall that Fl(xn) ∈ k for all n, and so

Gl(xn) ∈ k. We infer that for j ≥ 1 and for all n, Ajl (xn) = 0. Each of
these Ajl defines in turn an analytic map on X that vanishes at every
xn, and hence is constant equal to zero on X by the principle of isolated
zeros. It follows that Fl|X = A0

l for every 1 ≤ i ≤ s, thus they are
defined over k. �

We observe that the previous result does not hold in higher dimen-
sion.

Example 3.3.3. Let ζn ∈ k, |ζn| = 1, |ζn − ζm| = 1 for n 6= m.
Let f be the weakly analytic map obtained as the limit of the sequence
fn : D2 → D̄1, given by on the rigid points by fn(z1, z2) = ζnz1 + z2.
The map f is not analytic, since the rigid point (λ, 0) ∈ D2, 0 < |λ| < 1,
is mapped to the point in D̄ corresponding to the closed ball B̄(0; |λ|).
However, the set {0} × D1(k) is mapped to the set of rigid points.

A consequence of the previous result is the following statement that
can be viewed as the principle of isolated zeroes for weakly analytic
maps.

Proposition 3.3.4. Let f : X → Y be a non constant weakly
analytic map where X is a curve without boundary. Then the fibre of
any rigid point in Y contains no accumulation point.

Proof. Let y ∈ Y (k) and suppose there exist points xn ∈ X
converging to a point x and such that f(xn) = y for all n. In this
situation, we may assume Y = D̄s, y = (0, · · · , 0) and replace X with
some affinoid neighbourhood of x such that f lifts to a K-analytic map
F over some complete extension K/k. This map F is given by some
elements F1, · · · , Fs in the underlying affinoid algebra of XK of norm
at most 1.

The point y is rigid and so it has only one preimage under πK/k.
Thus,

(0, · · · , 0) = f(xn) = F ◦ σK/k(xn) ∈ D̄s
K

for all n. Since X is a curve and F is non-constant (otherwise f would
be so), F−1(0) is included in the set of rigid points of X. It follows that
every σK/k(xn) is rigid. Each component Fi of F defines an analytic map
between the curves XK and D̄K and admits a sequence of zeros with
an accumulation point σK/k(x). It follows that every Fi is identically
zero, hence so is f . �
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3.4. A conjecture on weakly analytic maps

On basic tubes, we conjecture that weakly analytic maps can be
globally lifted to analytic maps.

Conjecture 5. Let Y be a k-affinoid space and X a basic tube.
Let f : X → Y be a weakly analytic map. Then, there exist a complete
extension K/k and F : XK → YK analytic such f = πK/k ◦ F ◦ σK/k.

Notice that a weakly analytic map can be locally lifted to an analytic
map over some complete extension of k. Conjecture 5 means that this
can be done globally.

Remark 3.4.1. In the case when X and Y are polydisks, Conjec-
ture 5 amounts to saying that the map Ev is surjective onto the set
WA(X, Y ).

The map Ev becomes closed by Theorem 2.3.1 for the topology of
the pointwise convergence, and so WA(X, Y ) becomes Fréchet-Urysohn
for this topology.

Observe that if Conjecture 5 holds, then using Theorem 2.0.2 we
have:

Theorem 3.4.2. Suppose that Conjecture 5 holds.
Let X be a boundaryless σ-compact k-analytic space and Y a k-

affinoid space. Then, every sequence of weakly analytic maps fn : X →
Y admits a subsequence that is pointwise converging to a weakly analytic
map f : X → Y .

As a consequence, we have:

Corollary 3.4.3. Suppose that Conjecture 5 holds. Let X be a
boundaryless σ-compact k-analytic space and Y a k-affinoid space. Let
{fn} ⊂WA(X, Y ) be a sequence converging to some continuous map f .
Then, f is weakly analytic.





CHAPTER 4

Dynamics of endomorphisms of the projective
space

In this chapter, we give applications of Theorem A to the dynamics
of an endomorphism f of the projective space PN,an of degree at least 2,
and attach to f two different notions of Fatou sets.

The first definition relies on the following notion of normal families,
whose motivation comes from Theorem A.

Definition 4.0.1. We say that a family of analytic maps F from a
boundaryless k-analytic space X into a compact space Y is normal at a
point x ∈ X if for every sequence {fn} in F there exists a neighbourhood
V 3 x and a subsequence fnj that is pointwise converging on V to some
continuous map f : V → Y .

We may then define the normal Fatou set Fnorm(f) of f as the
normality locus of the family of the iterates {fn}.

Next, we define the harmonic Fatou set Fharm(f) as the set where
the non-Archimedean Green function Gf of f introduced by Kawaguchi-
Silverman is strongly pluriharmonic in the sense of [CL11].

In the complex setting, the definition of the Fatou set as the locus
of normality of the family of the iterates agrees with the one in terms
of the pluriharmonicity locus of the Green function. It is thus natural
to compare Fharm(f) and Fnorm(f) in the non-Archimedean setting. In
dimension 1, it was shown in [FKT12, Theorem 5.4] that both Fatou
sets agree on the rigid points. We shall obtain as a consequence of
Proposition 4.4.4 and Theorem A that Fharm(f) ⊆ Fnorm(f).

We focus our attention on the hyperbolicity properties of harmonic
Fatou components. Specifically, we give an analogue to a theorem by
Ueda [Ued94] stating that every Fatou component of a non-invertible
endomorphism of PNC is hyperbolically embedded in PNC . To do so, we
adapt our above definition of normal families to a non-compact target
as follows.

Let X be any boundaryless k-analytic space and Y ⊂ Z a relatively
compact subset of a k-analytic space Z. We say that a family of analytic
maps F ⊂ Mork(X, Y ) is normal at a point x ∈ X if there exists an
open neighbourhood V 3 x such that every sequence {fn} ⊂ F has a
subsequence fnj that is pointwise converging on V to a continuous map
f : V → Z.

47
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Theorem D. Let Ω be a connected component of the harmonic
Fatou set Fharm(f) of an endomorphism f : PN,an → PN,an of degree at
least 2. Let U be a connected open subset of P1,an. Then the family
Mork(U,Ω) is normal.

As a consequence of Theorem D we obtain the following Picard-type
result:

Theorem E. Let Ω be a connected component of the harmonic
Fatou set Fharm(f) of an endomorphism f : PN,an → PN,an of degree
d ≥ 2. Then every analytic map from A1,an \ {0} to Ω is constant.

This chapter is structured as follows. In §4.1 we discuss strongly
pluriharmonic functions in the sense of [CL11] and in §4.2 we review
the one-dimensional case. We recall the construction of the Green
function of a non-invertible endomorphism from [KS07, KS09] in
section 4.3, and next we introduce our notions of Fatou sets in §4.4.
Finally, Theorem D is proved in §4.5 and Theorem E in §4.6.

4.1. Strongly pluriharmonic functions

We recall the definition from [CL11]:

Definition 4.1.1. Let X be any boundaryless k-analytic space. A
continuous function u : X → R is strongly pluriharmonic if for every
x ∈ X there exist an open neighbourhood U of x, a sequence of invertible
analytic functions hn on U and real numbers bn such that

u = lim
n→+∞

bn · log |hn|

locally uniformly on U .

Strongly pluriharmonic functions form a sheaf by definition.

Harmonic functions have been widely studied in dimension 1. Baker-
Rumely [BR10], Favre-Rivera Letelier [FRL10], and Thuillier [Thu05]
have defined non-Archimedean analogues of the Laplacian on P1,an and
on general analytic curves respectively.

If X is an analytic curve, strongly harmonic functions are harmonic
in the sense of Thuillier. It is not known whether the converse holds,
see [CL11, Remark 2.4.6]. However, if X is a connected open subset of
P1,an, then all definitions agree by [BR10, Corollary 7.32].

Observe that over C, pluriharmonic functions are in fact locally the
logarithm of the norm of an invertible analytic function, whereas this
is not true in the non-Archimedean setting. Counterexamples appear
already for curves, see [CL11, §2.3].

Remark 4.1.2. Let X be any boundaryless k-analytic space. The
set of all strongly pluriharmonic functions on X forms a R-vector space.
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4.2. Harmonic functions on open subsets of P1,an

The Berkovich projective line P1,an is the one-point compactification
of the analytic affine line, see [Ber90, §4.2]. The classification of the
points in the analytic affine line given in §1.2.2 extends naturally to
P1,an.

It is a fundamental fact that the Berkovich projective line carries a
tree structure. It is obtained by patching together one-dimensional line
segments in such a way that it contains no loop. We refer to [Jon15,
§2] for a precise definition. Suffice it to say that for any two points
x, y ∈ P1,an there exists a closed subset [x, y] ⊂ P1,an containing x and
y that can be endowed with a partial order making it isomorphic to
the real closed unit interval [0, 1] or to {0}. These ordered sets are
required to satisfy a suitable set of axioms. For instance, for any triple
x, y, z there exists a unique point w such that [z, x]∩ [y, x] = [w, x] and
[z, y] ∩ [x, y] = [w, y]. Any subset of the form [x, y] is called a segment.

As a consequence, P1,an is uniquely path-connected, meaning that
given any two distinct points x, y ∈ P1,an the image of every injective
continuous map γ from the real unit interval [0, 1] into P1,an with
γ(0) = x and γ(1) = y is isomorphic to the segment [x, y].

A nonempty closed subset Γ ⊆ P1,an is called a subtree if it is
connected. An endpoint of Γ is a point x ∈ Γ such that Γ \ {x} either
remains connected or is empty. For every subtree Γ of P1,an there is a
canonical retraction rΓ : P1,an → Γ, which sends a point x ∈ P1,an to the
unique point in Γ such that the intersection of the segment [x, rΓ(x)]
with Γ consists only of the point rΓ(x).

A strict finite subtree Γ of P1,an is the convex hull of finitely many
type II points x1, . . . , xn. As a set, it is the union of all the paths [xi, xj ],
i = 1, . . . , n.

Recall from §1.2.2 that a disk in P1,an is by definition either a disk
in A1,an or the complement of a disk in A1,an. Basic tubes in P1,an are
strict simple domains in the terminology of [BR10]. They are either
P1,an or strict open disks in P1,an with a finite number of strict closed
disks of P1,an removed, cf. §1.6. In particular, basic tubes different from
P1,an and strict open disks can be obtained as an inverse image r−1

Γ (Γ0),
where Γ is a strict finite subtree of P1,an and Γ0 the open subset of Γ
consisting of Γ with its endpoints removed.

Similarly, every connected affinoid domain of P1,an is either a closed
disk or a closed disk in P1,an with a finite number of open disks of
P1,an removed. In particular, an affinoid subset of the form D̄(a; r) \⋃n
i=1 D(ai; ri) is homeomorphic to the Laurent domain of underlying

affinoid algebra

k{r−1(T − a), r1S1, . . . , rnSn}/(S1(T − a1)− 1, . . . , Sn(T − an)− 1).
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Given a subset W ⊂ P1,an, denote by W its closure and by ∂topW
its topological boundary. If W is a basic tube strictly contained in P1,an,
then ∂topW consists of a finite set of type II points.

Proposition 4.2.1. Let U be a proper connected open subset of
P1,an. Then there exist an increasing sequence Wm of basic tubes of
P1,an exhausting U and a sequence of strictly affinoid subspaces Xm of
P1,an satisfying

Wm ⊂ Xm ⊂ Wm+1 ⊂ U

for every m ∈ N∗.

The proof makes extensive use of the tree structure of P1,an. Recall
from §1.4 the construction of the tangent space TxP1,an at a point
x ∈ P1,an.

Proof. By [BR10, Corollary 7.11] there exists a sequence of basic
tubes Wm exhausting U and such that Wm ⊂ Wm+1 ⊂ U for every
m ∈ N∗. The idea is to take the set of points in the topological boundary
of U , which is a compact subset of P1,an, and to consider their convex
hull. Denote by D the intersection of this set with U . The set D can
be then expressed as a countable growing union of finite R-trees Dm,
whose endpoints are of type II. The skeleton of Wm is precisely Dm.

Fix a positive integer m > 0. As we have assumed that U is strictly
contained in P1,an, the topological boundary ofWm is a non-empty finite
set of type II points of P1,an. The convex hull Γm of ∂topWm is thus a
subgraph of P1,an with finitely many endpoints.

If Wm is an open disk, we set Xm to be the closed disk of same
centre and same radius as Wm. Otherwise, consider the following strict
finite subtree Γ of P1,an. Let Γ0

m be the open subset of Γm consisting
of Γm with its endpoints removed. Pick a point x in Γm \ Γ0

m. There
are at most finitely many tangent directions at x containing points of
the complement in U and not contained in Γm. For every such tangent
direction, attach a segment to Γm in that direction and in such a way
that it is contained in Wm+1 and such that its endpoint is a type II
point. If no such tangent direction exists, lengthen that edge ending at
x such that the new endpoint is again of type II and belongs to Wm+1.
Denote by Γ the strict finite subtree obtained this way. Observe that
all the boundary points of Γm are contained in Γ0.

Let rΓ : P1,an → Γ be the natural retraction map. The basic tube
Wm is precisely r−1

Γ (Γ0
m). Setting Xm = r−1

Γ (Γm), clearly one has
Wm ⊂ Xm ⊂ Wm+1. Let xi1 , . . . , xim be the endpoints of Γm, where
xij = ηaij ,rij are of type II. The set Xm is homeomorphic to P1,an

minus the strict open disks D(aij ; rij ), j = 1, . . . ,m, and is thus strictly
affinoid. �

The following lemma will be essential for the proof of Theorem D.
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Proposition 4.2.2. Let U be a basic tube in P1,an. There exists a
positive constant C depending only on U such that for every harmonic
function g : U → R there exists an analytic function h : U → A1,an \{0}
such that

sup
U

∣∣∣g − log |h|
∣∣∣ ≤ C.

Proof. If U is either P1,an or D, the assertion is trivial, because
every harmonic function on D or on P1,an is constant by [BR10, Propo-
sition 7.12]. We may thus assume that U is of the form D \∪mi=1D̄(ai, ri)
with ri ∈ |k×|, 0 < ri < 1 and |ai| < 1 for i = 1, . . . ,m. The topological
boundary of U consists of m+ 1 type II points.

By the Poisson formula [BR10, Proposition 7.23], we may find real
numbers c0, . . . , cm with ∑m

i=1 ci = 0 such that for all z ∈ U

g(z) = c0 +
m∑
i=1

ci · log |(T − ai)(z)|.

Pick non-zero integers n1, . . . , nm such that |ci−ni| < 1 and b ∈ k such
that | log |b| − c0| < 1. Consider the map h : U → A1,an \ {0},

h(z) = b
m∏
i=1

(T − ai)ni(z).

Since ai /∈ U , the function log |h| is harmonic on U and we have

sup
U
|g − log |h|| ≤ |c0 − log |b||+

m∑
i=1
|ci − ni| · sup

U
log |(T − ai)(z)|.

The functions log |(T − ai)(z)| are bounded on U and it follows that
the right-hand side of the inequality is bounded. �

4.3. Green functions after Kawaguchi-Silverman

Consider an endomorphism of the N -dimensional projective analytic
space f : PN,an

k → PN,an
k of degree d ≥ 2. Denote by fn its n-th iterate.

Fixing homogeneous coordinates, such a map can be written as
f = [F0 : · · · : FN ], with Fi homogeneous polynomials of degree d
without non-trivial common zeros.

Denote by ρ : AN+1,an \{0} → PN,an the natural projection map. An
endomorphism f of PN,an can be lifted to a map F : AN+1,an → AN+1,an

such that ρ◦F = f ◦ρ. One can take for instance F = (F0, · · · , FN ). In
the sequel, we will always choose lifts of f such that all the coefficients
of the Fi’s lie in k◦ and at least one of them has norm 1.

Given T0, . . . , TN affine coordinates of AN+1,an and a point z ∈
AN+1,an, we define its norm as |z| = max0≤i≤N |Ti(z)|. Similarly, we set
|F (z)| = max0≤i≤N |Fi(z)|. With these norms in hand, we may now
define the Green function associated to f following Kawaguchi and
Silverman [KS07, KS09], see [Sib99] for the complex case.
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Proposition-Definition 4.3.1. The sequence of functions

Gn(z) = 1
dn

log |F n(z)|

converges uniformly on AN+1,an.
One defines the dynamical Green function associated to f as Gf (z) =

limn→∞Gn.
Remark 4.3.2. The Green function does not depend on the choice

of the lift of f up to a constant. Indeed, let F = (F0, . . . , FN) and
F̃ = (F̃0, . . . , F̃N) be two different lifts of f . We may find a nonzero
λ ∈ k such that F̃ = λ·F . Since both F and F̃ are given by homogeneous
polynomials of degree d, for every n ∈ N we have that F̃ n(z) = λd

n ·
F n(z). Thus,

lim
n→∞

1
dn

log |F̃ n(z)| = log |λ|+ lim
n→∞

1
dn

log |F n(z)| .

Proof. Let us show that the limit limnGn exists. The inequality
|F (z)| ≤ |z|d is clear. Since the polynomials Fi have no common
zeros other than the origin, by the homogeneous Nullstellensatz we
may find a positive integer s such that the homogeneous polynomial
T si ∈ k[T0, . . . , TN ] belongs to the ideal generated by F0, . . . , FN for every
i = 0, . . . , N . That is, for every i there are homogeneous polynomials
λij ∈ k[T0, . . . , TN ] such that T si = ∑N

j=0 λ
i
jFj. For any z ∈ AN+1,an, we

have:
|z|s = max

0≤i≤N
|zi|s ≤ max

0≤i,j≤N
|λij(z)Fj(z)| ≤ max

0≤i,j≤N
C|z|s−d · max

0≤j≤N
|Fj(z)|

for some positive constant C depending only on the polynomials λij.
Hence, for all z we have that
(4.1) C · |z|d ≤ |F (z)| ≤ |z|d,
and so

C · |F n(z)|d ≤ |F n+1(z)| ≤ |F n(z)|d.
Set C1 = | logC|. Taking logarithms, one obtains

(4.2) |Gn+1 −Gn| ≤
C1

dn
.

By the ultrametric inequality, |Gn+j −Gn| ≤ C1
dn

for all j ≥ 0 and for
all n, and so the limit Gf = limn→∞Gn exists. �

Remark 4.3.3. Letting j go to infinity in (4.2), one obtains the
inequality

(4.3) |Gf −Gn| ≤
C1

dn
.

Theorem 4.3.4 ([KS07]). i) The function Gf is continuous.
ii) For every λ ∈ k× and for every z ∈ AN+1,an we have that

Gf (λ · z) = Gf (z) + log |λ| .
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iii) There exists a positive constant C such that
sup

z∈AN+1,an
|Gf (z)− log |z|| ≤ C.

Proof. i) The continuity of the Green function follows di-
rectly from the fact that Gf is the uniform limit of the functions
Gn.

ii) Pick any λ ∈ k× and any z ∈ AN+1,an. As every polynomial Fi
is homogeneous of degree d, we have that F n(λ · z) = λd

n
F (z)

and the assertion follows.
iii) By (4.1), for any z ∈ AN+1,an we have that |G1(z)−log |z|| ≤ C1.

Thus, (4.3) implies that

|Gf (z)− log |z|| ≤ |Gf (z)−G1(z)|+ |G1(z)− log |z|| ≤ C1

d
+ C1 ,

concluding the proof. �

Remark 4.3.5. It is a direct consequence of the definition that
Gf = Gfn for every n ∈ N.

4.4. Fatou and Julia sets

4.4.1. Dimension 1. Let us first discuss the one-dimensional situ-
ation, both in the complex and in the non-Archimedean setting.

Recall that there are several characterizations of the Fatou and
Julia sets of an endomorphism f of P1

C. The Fatou set F (f) can be
defined as the normality locus of the family of the iterates of f , and the
Julia set J(f) as its complement. Equivalently, one can set J(f) to be
the support of unique measure of maximal entropy, also referred to as
the equilibrium measure, see [Sib99], or as the closure of the repelling
periodic points.

Some of these equivalences have a non-Archimedean counterpart.
There is a well-defined notion of the canonical measure of an endo-
morphism f on P1,an (see [FRL04, FRL06] and [BR10, §10.1]), and
so one sets J(f) to be its support and F (f) its complement. Using a
similar definition of normality as ours, it can be shown that this notion
of Fatou set agrees with the normality locus of the family of the iterates
of f [FKT12, Theorem 5.4].

One may as well consider the Fatou and Julia sets in restriction
to the set of rigid points of P1,an, see [Sil07] for a survey on the topic.
However, notice that if f is a map with good reduction, i.e. if the
reduction f̃ of f is a selfmap of P1

k̃
of the same degree as f , then its

Julia set contains no rigid points [Sil07, Theorem 2.17].
We mention the following two characterizations of the intersections

of J(f) and F (f) with P1,an(k). It was shown in [FKT12, Theorem
C] that the intersection of the Fatou set F (f) with the set of rigid
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points in P1,an agrees with the set of rigid points where the sequence of
the iterates fn is equicontinuous with respect to the chordal metric on
P1,an(k).

In [Oku12, Theorem 2] it is shown that the set of rigid points in the
Julia set is precisely the closure of the repelling periodic points under
the technical assumption that the Lyapunov exponent of f is strictly
positive.

4.4.2. Higher dimensions. The Fatou set of a non-invertible com-
plex endomorphism f of PNC for N ≥ 2 is defined as the normality locus
of the family of the iterates. Its complement is the support of the Green
current, which is the unique positive closed (1, 1)-current that is for-
ward invariant by f , see [Sib99, Théorème 1.6.5] for a proof. There are
several possible definitions for the Julia set of f , see [Sib99, Définition
3.31]. We define the Julia set of f as the complement of the Fatou set.

We now explore the non-Archimedean higher dimensional case. We
consider two different Fatou sets of f :

Definition 4.4.1. The normal Fatou set Fnorm(f) of an endomor-
phism f : PN,an → PN,an of degree at least 2 is the set of all points
z ∈ PN,an where the family {fn} is normal.

The normal Julia set Jnorm(f) is the complement of Fnorm(f).

Definition 4.4.2. Let ρ : AN+1,an → PN,an be the usual map. We
define the harmonic Fatou set Fharm(f) of f as the set of points z ∈ PN,an

having a neighbourhood U such that the Green function Gf is strongly
pluriharmonic on ρ−1(U).

The harmonic Julia set Jharm(f) is the complement of Fharm(f).

It follows directly from the definitions that both Fatou sets Fnorm(f)
and Fharm(f) are open and totally invariant.

The set Jharm(f) is always nonempty. Indeed, Chambert-Loir has
constructed a natural invariant probability measure µf on PN,an and
shown that its support is contained in the complement of the locus
where Gf is strongly pluriharmonic, see [CL11, Proposition 2.4.4]. In
other words, the support of µf is included in the harmonic Julia set of
f .

We do not know whether the Fatou set is always non-empty.

Example 4.4.3. Let z ∈ PN,an be any rigid fixed point for f such
that the eigenvalues of its differential Df(z) are all of norm at most
1. Then, we may find an arbitrarily small open neighbourhood U of z
which is f-invariant, i.e. such that f(U) ⊆ U . After maybe reducing
U , we may assume that U ⊂ {z0 = 1, |zi| < 2, i = 1, · · · , N}. We thus



4.4. FATOU AND JULIA SETS 55

have:

Gn = 1
dn

log |(F n
0 , · · · , F n

N)|

= 1
dn

log |F n
0 |+

1
dn

log max
1≤i≤N

∣∣∣∣∣F n
i

F n
0

∣∣∣∣∣ .
The second term converges uniformly to 0. On the open set ρ−1(U), the
function Gf is thus the uniform limit of the sequence 1

dn
log |F n

0 |, hence
strongly pluriharmonic. Hence z belongs to the harmonic Fatou set.

In dimension 1, it follows from the Woods Hole formula that any
rational map admits at least one indifferent fixed point p, i.e. such that
|f ′(p)| = 1. We observe that the same result holds for any polynomial
map f : A2,an → A2,an that extends to an endomorphism of P2,an so
that Fharm(f) 6= ∅ in this case.

In [KS09], the authors define the Fatou set of an endomorphism of
the N -th projective space PNk as the equicontinuity locus of the family
of iterates, which they prove to be the same as the locus where it is
locally uniformly Lipschitz. However, the definition of the Fatou set in
terms of equicontinuity presents some difficulties already in dimension
one. Indeed, let k be a field of characteristic p > 0 and consider the
polynomial f(z) = pz2 + cz, with |c| = 1. Then, the family of the
iterates fn is normal at the Gauss point, but it is not equicontinuous
at xg, see [BR10, Example 10.53]

4.4.3. Comparison between Fnorm and Fharm. We expect our
two notions of Fatou sets to coincide.

Conjecture 6. For every non-invertible endomorphism f of the
projective space, we have that Fnorm(f) = Fharm(f).

In dimension 1, the equality follows from [FKT12, Theorem 5.4],
and we are able to prove one inclusion in general. Our argument relies
on the following result which gives a characterization of Fharm(f) in
terms of a sort of equicontinuity property for the iterates of f . Its proof
follows its complex counterpart.

Recall that the norm of an analytic map selfmap F = (F0, . . . , FN)
of AN+1,an at a point z ∈ AN+1,an is |F (z)| = max0≤i≤N |Fi(z)|.

Proposition 4.4.4. Let f : PN,an → PN,an be an endomorphism of
degree d ≥ 2 and U a basic tube in PN,an.

The Green function Gf is strongly pluriharmonic on the open set
ρ−1(U) ⊂ AN+1,an \ {0} if and only if for every n ∈ N there exists a lift
Fn of fn on U and a positive constant C1 such that e−C1 ≤ |Fn| ≤ eC1

on ρ−1(U) for all n ∈ N.

This result together with Theorem A implies the following:
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Corollary 4.4.5. The harmonic Fatou set Fharm(f) is contained
in Fnormal(f).

Proof of Proposition 4.4.4. Pick any lift F = (F0, · · · , FN ) of
f , where Fi ∈ k[T0, · · · , TN ] are homogeneous polynomials of degree d
without nontrivial common zeros. We may assume that supD |F (z)| = 1.
Recall from (4.3) that there exists a positive constant C1 such that
|Gf −Gn| ≤ C1

dn
for all n ∈ N.

Let U be a basic tube on which Gf is strongly pluriharmonic. Let
hn ∈ O×AN+1(U) and let bn be non-zero real numbers such that Gf is
the uniform limit of the sequence bn · log |hn|. After maybe extracting
a subsequence and renumbering it, we may assume that

|Gf − bn · log |hn|| ≤
C1

dn
∀n� 0

on U. Thus, we have∣∣∣∣ 1
dn

log |F n| − bn · log |hn|
∣∣∣∣ =

∣∣∣∣∣ 1
dn

log
(
|F n|
|hn|bn·dn

)∣∣∣∣∣
≤ max {|Gf − bn · log |hn|| , |Gf −Gn|}

≤ C1

dn
.

So we see that for n� 0

(4.4) e−C1 ≤ |F n|
|hn|bn·dn

≤ eC1 .

Since the functions hn have no zeros on U , each Fn := Fn

hbn·d
n

n
is a lift of

fn.
Assume conversely that on U , for every n ∈ N there exists a lift Fn

of fn such that e−C1 ≤ |Fn| ≤ eC1 for some positive constant C1. Then,
for every n ∈ N we may choose a non-vanishing function hn on U such
that F n = hn · Fn. It follows that

Gn = 1
dn

log |F n| = 1
dn

log |hn|+
1
dn

log |Fn| .

The second term converges uniformly to 0. On the open set ρ−1(U),
the function Gf is thus the uniform limit of the sequence 1

dn
log |hn|,

hence strongly pluriharmonic. �

Remark 4.4.6. For any polynomial map f : A2,an → A2,an of
degree d ≥ 2 that extends to an endomorphism f̄ of P2,an, one has
Fharm(f̄) = Fnormal(f̄).

4.5. Hyperbolicity of the Fatou components

4.5.1. The complex case: tautness and hyperbolic embed-
dings. Recall that Mork(X, Y ) denotes the set of analytic maps from
X to Y .
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For a non-necessarily compact target, we set:
Definition 4.5.1. Let Ω be a relatively compact subset of an analytic

space Y and let U be a basic tube.
The family Mork(U,Ω) is said to be normal if for every sequence of

analytic maps {fn} ⊂ Mork(U,Ω) there exists a subsequence fnj that is
pointwise converging to a continuous map f : U → Y .

In order to motivate our definition of normal families of maps with
non-compact target, let us recall the complex setting.

In the complex setting, our definition of normality for a non-compact
target corresponds to the family Hol(U,Ω) being relatively compact
in Hol(U, Y ). The complex definition of normality for a non-compact
target is slightly different, since it allows for a sequence to be compactly
divergent [Kob98, §I.3].

Recall that a relatively compact complex subspace X of a complex
space Y is tautly imbedded if every sequence of holomorphic maps {fn}
on the open unit disk with values in X satisfies one of the following
conditions:

(1) There exists a subsequence {fnj} converging to a holomorphic
map f : D→ Y ;

(2) For every compact subset K of D and every compact subset L
of Y , there exists a integer N ∈ N such that fn(K) ∩ L = ∅ for
every n ≥ N .

A complex compact space is taut if it is tautly imbedded in itself.
It is shown in [Wu67] that every taut domain in Cn is pseudoconvex.

In [KK73, Kie73], it is shown that X is tautly imbedded in Y if
and only if X is hyperbolically imbedded in Y .

4.5.2. Proof of Theorem D. Let Ω be a connected component of
the harmonic Fatou set Fharm(f) of an endomorphism f : PN,an → PN,an

of degree at least 2. Let U be any connected open subset of P1,an. Our
aim is to show that the family Mork(U,Ω) is normal.

The projective space PN,an can be covered by N+1 charts V0, . . . , VN
analytically isomorphic to D̄N . For every i = 0, · · · , N , let si : {z ∈
PN,an : zi 6= 0} → AN+1,an be the analytic local section of ρ sending the
point z = [z0 : . . . : zN ] to ( z0

zi
, . . . , zi−1

zi
, 1, zi+1

zi
, . . . , zN

zi
).

Let g : U → Ω be an analytic map. We claim that for any compact
subset K ⊂ U the map g|K admits a lift to ρ−1(Ω).

Suppose first that U is not the whole P1,an. By Proposition 4.2.1,
there exists a sequence of basic tubes Wm exhausting U and a sequence
of affinoid subspaces Xm satisfying

Wm ⊂ Xm ⊂ U .

Pick any compact subset K ⊂ U . For m sufficiently large, K is
contained in some Xm. Fix m ∈ N∗. Cover Xm by sets U (m)

i =
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g−1(Vi)∩Xm with 0 ≤ i ≤ N . On every U (m)
ij = g−1(Vi)∩g−1(Vj)∩Xm,

we know that ρ◦si◦g = ρ◦sj ◦g, and thus si◦g = ϕ
(m)
ij ·(sj ◦g) for some

ϕ
(m)
ij ∈ O×(U (m)

ij ). Since Xm is an affinoid subspace of P1,an we have that
H1(Xm,O×) = 0 by [Put80]. We may thus find ϕi ∈ O×(U (m)

i ) and
ϕj ∈ O×(U (m)

j ) such that ϕ(m)
ij = ϕ

(m)
i

ϕ
(m)
j

. On Xm, consider the following
local lifts of g:

ĝi
m : U (m)

i → ρ−1(Ω), ĝi
m = si ◦ g

ϕ
(m)
i

.

It follows that ĝim = ĝj
m on U (m)

ij , and hence we have a lift ĝm : Xm →
ρ−1(Ω) of g as required.

By definition of the harmonic Fatou set, the Green function Gf of
f is strongly pluriharmonic on ρ−1(Ω), and thus Gf ◦ ĝm is harmonic
on Xm.

Let gn : U → Ω be a sequence of analytic maps. For every Xm

consider the lifts ĝnm : Xm → ρ−1(Ω) of the restriction of gn to Xm

constructed above.
Fix a sufficiently large real number C > 0 and consider the set

M = {z ∈ AN+1,an \ {0} : 1
C
≤ |Gf(z)| ≤ C}. By Theorem 4.3.4, the

set M is compact. By Proposition 4.2.2, for every n and every m there
exists an analytic map hmn : Wm → A1,an \ {0} such that

sup
Wm

∣∣∣Gf ◦ ĝnm − log |hmn |
∣∣∣ ≤ C.

We set g̃nm = ĝn
m

hmn
. Each g̃nm : Wm → ρ−1(Ω) is a lift of gn and its image

lies in the compact M. By Theorem A, there exists a subsequence of g̃nm
converging pointwise to a continuous map. By a diagonal extraction
argument, we conclude that the family Mork(U,Ω) is normal.

The case U = P1,an follows by writing P1,an as a finite union open
disks. �

4.6. Curves in Fatou sets

The aim of this section is to prove Theorem E, which states that
harmonic Fatou components do not contain any non trivial image of
the punctured affine line.

4.6.1. No algebraic curves in the Fatou set. We briefly ob-
serve the following fact that follows almost directly from the work of
Chambert-Loir.

Proposition 4.6.1. Suppose that C is an algebraic curve in PN,an,
and let f : PN,an → PN,an be any endomorphism of degree at least 2.
Then the harmonic Fatou set of f cannot contain a Zariski open subset
of C.
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In particular, a Fatou component contains no complete algebraic
curve. This supports the conjectural fact that any Fatou component
should be Stein (in the sense of [Kie67]). Over the complex numbers,
this result is proved in [Ued94, FS95, Mae04], but the proof relies
on pluripotential techniques which are not available at the moment over
a non-Archimedean field.

Proof of Proposition 4.6.1. Since the result is not central to
our studies, we shall only give a sketch of proof, which relies on special
metrizations of line bundles. We refer to [CL11, §2] for a detailed ex-
position of these notions. Choose a homogeneous lift F = (F0, · · · , FN )
of f to AN+1,an

k \ {0}, and consider the associated Green function
Gf = limn

1
dn

log |F n|. The function Gf induces a continuous and semi-
positive metrization | · |F in the sense of Zhang on the tautological
line-bundle O(1) on PN,an, see [CL11, §2.1].

Pick any algebraic curve C in PN,an. The restriction of the metrized
line bundle (O(1), | · |F ) to C is again continuous and semi-positive.
We may thus consider its curvature, see [Thu05, Proposition 4.2.3].
It is a positive measure µC on the Berkovich analytification of C of
mass degC(O(1)) which does not charge any rigid point, see [Thu05,
§4.2.1]. The support of µC is contained in Jharm(f), which implies the
result. �

4.6.2. No image of A1,an\{0} in the harmonic Fatou set. Our
main result is:

Proposition 4.6.2. Let Ω be an open subset of PN,an.
If the family of analytic maps Mork(A1,an \ {0},Ω) is normal, then

every analytic map A1,an \ {0} → Ω is constant.
As a direct application, we obtain:
Proof of Theorem E. It follows from Theorem D and Proposi-

tion 4.6.2. �

Example 4.6.3. Complex Hénon maps constitute an important class
of automorphisms of the complex affine plane A2

C. These exhibit very
different dynamical properties from endomorphisms of the projective
space. For instance, consider the map Hénon map

f : (z, w) 7→ (z2 − aw, z) , |a| < 1 .
The point (0, 0) is an attracting fixed point for f , and thus lies in the
Fatou set, i.e. the set where the iterates of f form locally a normal
family. However, its basin of attraction is biholomorphic to C2, see e.g.
[FsS95, Ued08]. The proof relies on the fact that f is an automorphism
and on the existence of a local analytic diffeomorphism φ defined in a
neighbourhood of the origin conjugating f to a linear contracting map,
see [Ste57]. Such a domain is usually referred to as a Fatou-Bieberbach
domain.
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An analogous construction gives rise to the same phenomenon over
a non-Archimedean complete field k of any characteristic. Suppose f is
a Hénon map as above with coefficient |a| < 1. We may then define the
Fatou set as the normality locus (in the sense of §4.5) of the iterates of
f . The basin of attraction of (0, 0) is then a component of the Fatou
set of f and the same proof as in the complex case shows that it is
analytically isomorphic to A2

k.

As a first step in proving Proposition 4.6.2, we deal with a simpler
particular case, that of entire curves.

Proof of the particular case of entire curves. Let Ω be
any open subset of PN,an and assume that the family Mork(A1,an,Ω)
is normal. Suppose that there exists a non-constant analytic map
g : A1,an → Ω. Consider the sequence of analytic maps from A1,an into
Ω given by fn(z) = g(zn). By normality there is a subsequence {fnj}
that is pointwise converging to a continuous map f : A1,an → PN,an.

The Gauss point xg is fixed by all the maps z 7→ zn, and so f(xg) =
g(xg). For every integer m > 0 let zm = η0,1− 1

m
∈ A1,an. Since every zm

lies in the open unit disk D, we have that

f(zm) = lim
nj→∞

fnj(zm) = lim
nj→∞

g ((zm)nj) = g(0)

for all m. The continuity of f implies that the f(zm) tend to f(xg) as
m goes to infinity. It follows that g(xg) = g(0) is a rigid point of Ω. As
the source A1,an is one-dimensional, g must be constant. �

In order to prove Proposition 4.6.2, we need to recall some basic
topological facts. Recall from §4.2 that given a point x ∈ P1,an, we
denote by U(~v) the connected component of P1,an \ {x} corresponding
to the tangent direction ~v ∈ TxP1,an.

Let g : U ⊆ P1,an → P1,an be a non-constant analytic map. For every
point x ∈ U , the map g induces a tangent map dg(x) between TxU and
Tg(x)P1,an. Let ~v be a tangent direction at x that is mapped to ~v′ ∈
Tg(x)P1,an by dg(x). Then either g(U(~v)) = U(~v′) or g(U(~v)) = P1,an.
This follows from the fact that the map g is open [BR10, Corollary
9.10].

Of special interest for us is the case when x is a type II point.
Assume for simplicity that both x and g(x) are the Gauss point. The
space TxgP1,an is isomorphic to P1

k̃
, and the tangent map dg(x) : P1

k̃
→ P1

k̃
and can be described as follows. In homogeneous coordinates g can be
written as g = [G0 : G1] with G0, G1 ∈ O(A1,an) without common zeros
by [FvdP04, Theorem 2.7.6], where all the coefficients of G0 and G1
are of norm less or equal than one and least one has norm one. Thus, we
may consider the reduction map of g, which is a non-constant rational
map from P1

k̃
to itself, and hence surjective. One can show that dg(x)

is given by the reduction of g [BR10, Corollary 9.25].
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Proof of Proposition 4.6.2. Suppose that Mork(A1,an \{0},Ω)
is normal. We first deal with the case where Ω is contained in P1,an.
Let g : A1,an \ {0} → P1,an be a non-constant analytic map. We may
assume that it is of the form g = [G0 : G1] with Gi : A1,an \ {0} → A1,an

analytic without common zeros by [FvdP04, Theorem 2.7.6]. Our goal
is to construct a sequence of analytic maps from A1,an \ {0} to itself
such that the composition with g gives a sequence gn : A1,an \ {0} → Ω
that admits no converging subsequence with continuous limit.

Suppose first that there exists a type II point in P1,an having infinitely
many preimages in the segment T = {η0,r ∈ A1,an : 0 < r < ∞}.
Composing with an automorphism of P1,an, we may assume that this
point is the Gauss point. Let thus {η0,rn} be a sequence of preimages
of xg.

Denote by Vn the compact set containing η0,rn consisting of A1,an\{0}
minus the open sets U(~v0) and U(~v∞), where ~v0 and ~v∞ are the tangent
directions at η0,rn pointing at 0 and at infinity respectively. As dg(η0,rn)
is surjective, we deduce that g(Vn) avoids at most two tangent directions
at xg. After maybe extracting a subsequence, we may find a connected
component B of P1,an \ {xg} that is contained in g(Vn) for all n � 0.
As a consequence, we may pick a rigid point a0 in B and rigid points
xn ∈ Vn such that g(xn) = a0 for every n ∈ N.

Consider the sequence in Mork(A1,an \ {0},P1,an) given by gn(z) =
g(xn!z

n!). By normality, we may assume that gn converges to a continu-
ous map g∞. The Gauss point xg is fixed by g∞, as gn(xg) = xg for all
n ∈ N. For every fixed n ∈ N and every m ≤ n, the map gn sends the
set of all the m-th roots of unity Rm to a0, and so g∞ maps every Rm

to a0. For every m ∈ N pick a point ζm ∈ Rm such that ζm → xg as m
tends to infinity. We have that

g∞(xg) = lim
m→∞

g∞(ζm) = a0 ,

contradicting the continuity.

Suppose next that every type II point in P1,an has at most finitely
many preimages in the segment T . Pick a sequence of type II points
{η0,rn} with rn → +∞ as n goes to infinity. By compactness, we may
assume that the points g(η0,rn) converge to some point y∞ ∈ P1,an. We
claim that the points g(η0,r) converge to a point y∞ as r tends to infinity.
To see this, fix a basic tube V containing y∞. Recall that ∂topV is a
finite set of type II points. By assumption, g(η0,r) does not belong to
∂topV for sufficiently large r. For n� 0 we have that g(η0,rn) lies in V .
Thus, g(η0,r) must belong to V for r � 0.

Pick any r ∈ R+ and consider the tangent direction ~v at η0,r pointing
towards infinity. We may assume that g(U(~v)) avoids at most one rigid
point in P1,an, as otherwise Picard’s Big theorem [CR04] asserts that g
admits an analytic extension at infinity and we conclude by the case of
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entire curves. After maybe varying the rn, we may find a rigid point
a0 ∈ P1,an and rigid points xn with |xn| = rn such that g(xn) = a0 for
all n.

Consider the sequence gn(z) = g(xn!z
n!) and assume that it admits

a continuous limit g∞. Our previous argument shows that g∞ maps
every set Rm to a0. The points gn(xg) converge to y∞ by our claim,
and hence g∞ is not continuous.

Assume now that Ω is an open subset of PN,an. Let g : A1,an \
{0} → Ω be a non-constant analytic map. This map can be written in
homogeneous coordinates as g = [G0 : . . . : GN ], with Gi ∈ O×(A1,an \
{0}). As g is not constant we may assume that G0 is non-constant and
that G1 is not a scalar multiple of G0. We may assume by [FvdP04,
Theorem 2.7.6] thatG0 andG1 have no common zeros. As a consequence,
the map defined on the image of g by

π : [G0(z) : . . . : GN(z)] 7→ [G0(z) : G1(z)]
is well-defined and analytic. By construction π ◦ g is non-constant
and analytic. By the previous case we may find xn ∈ k× such that no
subsequence of {π ◦ g(xn!z

n!)} has a continuous limit, and thus neither
{g(xn!z

n!)}. �



CHAPTER 5

Cherry hyperbolicity

In [Che96], the author translates the definition of Kobayashi chains
on complex spaces [Kob67] to the set of rigid points of a Berkovich
space X, which gives rise to a semi distance dCK on X(k).

In this chapter, we continue the study initiated by W. Cherry
of this semi distance. We give a non-Archimedean version of Zal-
cman’s reparametrization lemma [Zal75], which we apply to character-
ize smooth projective varieties defined over a field of residue character-
istic zero for which dCK is an actual distance, with special interest in
the case of curves.

5.1. Cherry’s notion of hyperbolicity

Recall the definition of the Cherry-Kobayashi semi distance [Che96]:

Definition 5.1.1. Let x, y be rigid points in a k-analytic space
X. A Kobayashi chain joining x and y is a finite set of analytic maps
fl : D̄→ X and points zl, wl ∈ D̄(k), l = 1, · · · ,m such that f1(z1) = x,
fl(wl) = fl+1(zl+1) for l = 1, · · · ,m− 1 and fm(wm) = y. The Cherry-
Kobayashi semi distance on X is defined by

dCK(x, y) = inf
m∑
l=1
|wl − zl| ,

where the infimum is taken over all Kobayashi chains joining x and y.
If there is no Kobayashi chain joining x and y, we set dCK(x, y) =∞.

Observe that the group of analytic automorphisms of D̄ is the set
of series of the form ∑

n≥0 anT
n such that |a1| = 1 and such that

maxn |an| ≤ 1, which are isometries for the distance |.|. Thus, dCK is
invariant under automorphisms of D̄. Up to composition by such an
automorphism we may suppose that zl = 0, for all l.

On the closed disk D̄, the Cherry-Kobayashi semi distance agrees
with the distance induced by the norm on k.

Remark 5.1.2. Not every point pair of points in an analytic space
X can be joined by a Kobayashi chain. Assume for instance that X
has dimension at least two and take a point x ∈ X such that the
transcendance degree of H̃(x) over k̃ greater than one. Then, no analytic
map D→ X avoids the point x.

63
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Definition 5.1.3. A k-analytic space X is Cherry hyperbolic if
dCK is an actual distance on X(k), which might take the value ∞.

As A1,an can be written as a union of disks of whose radii tend to
infinity, we see that dCK is exactly zero on A1,an, just like over C.

The semi distance dCK shares an important property with its complex
counterpart: analytic maps are distance decreasing with respect to dCK.
As a consequence, the fact that dCK is 0 on the whole A1,an implies
that Cherry hyperbolicity is stronger than Brody hyperbolicity, i.e. the
non-existence of entire curves.

Recall from §1.4 that the skeleton San(X) of a curve X is the
set of points not having a neighbourhood that is isomorphic to an
open disk. Let X be an elliptic curve and pick any two distinct rigid
points x, y ∈ X. If x and y belong to the same connected component
of X \ San(X), then dCK(x, y) agrees with the distance on the disk,
and hence dCK(x, y) 6= 0. Otherwise, they cannot be joined by a
Kobayashi chain and thus dCK(x, y) = ∞. Thus, elliptic curves are
Cherry hyperbolic. The same argument shows that a projective curve
X is Cherry-hyperbolic if and only if it has strictly positive genus.

In a series of papers [Che93, Che96, ACW08, Che94], Cherry
studied in detail the behaviour of dCK and the existence of entire curves
in the case of abelian varieties and of projective curves, making extensive
use of the reduction theory available for these varieties. His results
contrast with the complex case.

Theorem 5.1.4. Let X be an abelian variety.
(1) Every analytic map A1,an → X is constant.
(2) The variety X is Cherry hyperbolic.

We refer to [Che96] for further details on the Cherry-Kobayashi
semi distance.

5.2. Alternate definition of the Kobayashi semi distance

Let us briefly comment on the following alternate definition of an
analogue of the Kobayashi semi distance on the set of rigid points of
a k-analytic space X, which is very natural. In the same notation as
above, for any x, y ∈ X(k) we set

d(x, y) = inf max
1≤l≤m

|wl − zl| ,

where the infimum is taken over all Kobayashi chains joining x and
y. As before, if there is no Kobayashi chain joining x and y we set
dCK(x, y) =∞. The obtained semi distance d satisfies the ultrametric
inequality.
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Remark 5.2.1. Let X be a smooth analytic curve, and pick any two
rigid points x, y. Observe that there exists a Kobayashi chain joining
x and y if and only if they belong to the same connected component of
X \ San(X). In this case, the chain consists of a single analytic map
f : D̄→ X, and as a consequence we have that d = dCK.

Clearly, d ≤ dCK for any analytic space X(k). In general, these
semidistances are not equivalent, as shown in the following example.

Indeed, pick a closed unit disk and take two rigid points x, y ∈ D̄
with |x− y| = 1. Attach to D̄ two irreducible components X1 and Y
isomorphic to D̄, one passing through x and the other through y. For
every integer n ≥ 3, take rigid points x(n)

1 ∈ X1, yn ∈ Y such that
|x− x(n)

1 | = |y − yn| = 1
n
. Attach a closed disk to X1 passing through

x
(n)
1 . Denote this new irreducible component by X(n)

2 and pick a rigid
point x(n)

2 ∈ X(n)
2 with |x(n)

1 − x
(n)
2 | = 1

n
. Repeat this procedure as to

obtain irreducible components X(n)
l ' D̄ and rigid points x(n)

l ∈ X
(n)
l

for 1 ≤ l ≤ n with X(n)
n = Y , x(n)

n−1 = yn and x(n)
n = y. Denote by

x
(n)
0 := x for every n ≥ 3. Observe that |x(n)

l − x
(n)
l−1| = 1

n
for every

l = 1, . . . , n.
For every n, the points x = x

(n)
0 , x

(n)
1 , . . . , x(n)

n = y form a Kobayashi
chain joining x and y. We see that

d(x, y) = inf
n≥3
|x(n)

1 − x
(n)
0 | = inf

n≥3

1
n

= 0 ,

whereas

dCK(x, y) = inf
n≥3

n∑
l=1
|x(n)
l − x

(n)
l−1| = inf

n≥3
n · 1

n
= 1 .

In the sequel, we shall build on W. Cherry’s work and only consider
the semi distance dCK.

5.3. Zalcman’s reparametrization lemma

We give a non-Archimedean version of Zalcman’s lemma [Zal75].
After renormalizing, we obtain a sequence of analytic maps whose
Fubini-Study derivative at 0 does not vanish. However, and contrary to
the complex case, this does not assure that this sequence is converging.

5.3.1. Fubini-Study derivative. We fix once and for all homo-
geneous coordinates on PN,an and P1,an.

Definition 5.3.1. Let Ω be any open subset of A1,an. Consider an
analytic map f : Ω→ PN,an and choose coordinates f = [f0 : · · · : fN ].
The Fubini-Study derivative of f at a point z ∈ Ω, is

|f ′(z)| = max{1, |z|2}
max |(f ′ifj − f ′jfi)(z)|

max |fi(z)|2 .
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Observe that, by construction, the function z ∈ Ω 7→ |f ′(z)| is
continuous.

Next we prove some properties of the Fubini-Study derivative.

Lemma 5.3.2. For every analytic map f : D → PN,an given in
homogeneous coordinates by f = [f0 : · · · : fN ], we have

|f ′(z)| ≤ max{|f ′i(z)|}
max{|fi(z)|} .

The proof is trivial.
Since rigid points are dense, for any analytic map f : Ω→ PN,an we

have:
sup
z∈Ω
|f ′(z)| = sup

z∈Ω(k)
|f ′(z)| .

A direct computation shows:

Lemma 5.3.3. Let Ω,Ω′ be open subsets of A1,an. Consider analytic
maps g : Ω→ P1,an, and f : Ω′ → PN,an with g(Ω) ⊆ Ω′. Then, we have

|(f ◦ g)′(z)| = |f ′(g(z))| · |g′(z)| .

Corollary 5.3.4. For every g ∈ PGL(2, k◦) and every analytic
map f : Ω→ P1,an

k , we have |(f ◦ g)′(z)| = |f ′(z)|.

Proof. We have to prove that |g′(z)| = 1 for every g ∈ PGL(2, k◦).
A simple calculation shows that it holds for every g of the form z 7→ az,
z 7→ z + b and z 7→ 1/z, with |a| = 1 and |b| ≤ 1. Since PGL(2, k◦) is
generated by all the maps of this form, the assertion is proved. �

5.3.2. Diameter function. It will be useful in the sequel to esti-
mate the size of the image of a disk. The required tool is the diameter
function.

There are diameter functions on A1,an and on P1,an. Recall from
§1.2.2 that any point x ∈ A1,an is uniquely determined by a decreasing
sequence of disks {B̄(ai; ri)} in k. The diameter function is defined as
diamA(x) = lim ri. On P1,an, one sets

diam(x) = diamA(x)
max{1, |x|2} .

In both cases, a point has zero diameter if and only if it is rigid.
Observe that diamA(x) = infc∈k |(T − c)(x)|. We refer to [BR10,

§2.7] for further details on the diameter function on P1,an.
We now extend these definitions to any dimension.

Definition 5.3.5. For any x ∈ AN,an, we set:
diamA(x) := max

1≤i≤N
inf
ci∈k
|(Ti − ci)(x)| = max

1≤i≤N
diamAπi(x) ,

where πi : AN,an → A1,an is the usual projection to the i-th coordinate.
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Definition 5.3.6. Let x ∈ PN,an. Choose an affine chart isomorphic
to AN,an at x. We may assume x = [1 : x1 : · · · : xN ]. Write |xi| =
|Ti(x)|. We set:

diam(x) := diamA(x)
max{1, |xi|2}

= max1≤i≤N diamAπi(x)
max{1, |xi|2}

.

It is clear from the definitions that diamA and diam are zero exactly
on the rigid points.

Lemma 5.3.7. The function diam : PN,an → R≥0 is invariant under
the action of PGL(N + 1, k◦).

Proof. The function diam is clearly invariant under translations
of the form Ti 7→ Ti − ai, ai ∈ k◦.

It follows directly from the definition that for a1, . . . , aN ∈ k with
|ai| = 1,

diam(x1, · · · , xN) = diam(a1x1, · · · , aNxN).
Finally, consider maps of the form
ϕ : [1 : x1 : · · · : xN ] 7→ [xi : x1 : · · · : xi−1 : 1 : xi+1 : · · · : xN ].

Clearly, we have diam(ϕ(x)) = diam(x). All these transformations
generate PGL(N + 1, k◦). �

Lemma 5.3.8. Assume that char(k̃) = 0, and consider an analytic
map f : D→ PN,an. Then for every z ∈ D, we have

diam(f(z)) ≤ diam(z) · |f ′(z)| .
Moreover, for N = 1 we have an equality.

Remark 5.3.9. The previous lemma does not hold if char(k̃) = p >
0. In fact, there are maps with small Fubini-Study derivative and whose
image is arbitrarily big. Take for instance the sequence fn : z 7→ cnz

pn,
with |cn| = (pn)p

n

. Denote by η0,ε the point in D associated to the closed
ball B̄(0; ε). A direct computation shows that

|f ′n(η0,ε)| =
|cn|εp

n−1

pn max{1, |cn|εpn}2 .

It follows that
sup
n

sup
z∈D
|f ′n(z)| = 1 .

If ε < p−n, then the Fubini-Study derivative is |f ′n(η0,ε)| = (pnε)pn−1.
Thus, we see that diam(fn(η0,ε)) cannot be bounded away from 1 uni-
formly in ε and n ∈ N.

Proof of Lemma 5.3.8. Let us first consider the case N = 1.
By continuity, it suffices to consider points of type II and III. More
so, we may assume that z = η0,r ∈ D (i.e. z is associated to the
closed ball B̄(0; r) ⊂ k) and that f(z) = η0,R, since both the diameter
function and the Fubini-Study derivative are invariant under the action
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of PGL(2, k◦) by Lemmas 5.3.4 and 5.3.7. Let f(z) = ∑
i≥0 aiz

i be the
series development of f . It follows from the definitions that the equality
is equivalent to diamA(f(η0,r)) = diam(η0,r) · |f ′(η0,r)|. We have

diamA(f(η0,r)) = max
i≥1
|ai|ri = r ·max

i≥1
|ai| · |i|ri−1 = r · |f ′(η0,r)| ,

concluding the proof for N = 1.
Consider now the general case. We may choose homogeneous coor-

dinates [z0, · · · , zN ] in PN,an such that the inverse image under f of the
hyperplane H∞ = {z0 = 0} is a discrete subset of D. Denote by Γ its
convex hull in D. It suffices to prove the result for points z ∈ D lying
outside Γ. On a neighbourhood U of z contained in D \ Γ, the map f
can be expressed as a map f : U → AN,an, i.e. f = [1 : f1, · · · : fN ].

By the previous case, we know that
diamA(f(z)) = max

1≤i≤n
diam(z) · |(πi ◦ f)′(z)|

= diam(z) max
1≤i≤n

|f ′i(z)| .

By Lemma 5.3.2, we see that

diam(f(z)) = diam(z)max1≤i≤n |f ′i(z)|
max{1, |fi(z)|2} ≤ diam(z) · |f ′(z)| ,

proving the assertion. �

5.3.3. Zalcman’s reparametrization lemma. We notice that
the complex Zalcman’s lemma holds in the non-Archimedean setting.
We follow the proof found in [Ber06]. Notice that our result does not
imply that the reparametrized sequence is converging.

Proposition 5.3.10. Let X be a smooth projective variety defined
over an algebraically closed complete non-Archimedean field k.

Suppose that there exists a sequence of analytic maps fn : D→ X
whose Fubini-Study derivative is not locally uniformly bounded in a
neighbourhood of some rigid point z0 ∈ D. Then, we can find a sequence
of rigid points zn → z0 and a sequence k 3 ρn → 0 such that the rescaled
sequence gn(z) := fn(zn + ρnz) satisfies the following properties:

i) Each gn is defined on the open disk of radius n;
ii) The Fubini-Study derivatives of the maps gn are uniformly

bounded on any compact subset of A1,an
k ;

iii) For every n ∈ N we have |g′n(0)| = 1.

The proof relies on the following technical result, whose proof we
transpose directly to the non-Archimedean setting.

Lemma 5.3.11 (Gromov). Let ϕ : D̄(0;R)→ R+ be a locally bounded
function, and fix ε > 0 and τ > 1. Then, for every a ∈ D̄(0;R)(k) such
that ϕ(a) > 0, there is b ∈ D̄(0;R)(k) satisfying:

i) |a− b| ≤ τ
ε(τ−1)ϕ(a)
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ii) ϕ(b) ≥ ϕ(a)
iii) If x ∈ D̄(0;R)(k) is such that |x−b| ≤ 1

εϕ(b) , then ϕ(x) ≤ τϕ(b).

Proof. Suppose we can find a point a ∈ D̄(0;R)(k) such that every
b ∈ D̄(0;R)(k) fails to satisfy one of the three conditions. In particular,
so does a. As a itself obviously satisfies i) and ii), there must exist a
rigid point a1 such that |a1 − a| ≤ 1

εϕ(a) and ϕ(a1) > τϕ(a). We will
show by induction that we can construct a Cauchy sequence of rigid
points along which ϕ is not bounded.

Suppose that we have constructed a1, · · · , an ∈ D̄(0;R)(k) satisfying
|ai − a| ≤ 1

εϕ(a) and ϕ(ai) > τ iϕ(a). In particular, an satisfies i) and ii)
and hence not iii). We then find an+1 satisfying |an+1 − an| ≤ 1

τnεϕ(a)
and ϕ(an+1) > τϕ(an) > τn+1ϕ(a). The ultrametric inequality now
shows that |an+1 − a| ≤ 1

εϕ(a) and that |an+j − an| ≤ 1
τnεϕ(a) for every

positive integer j. Thus, {an} is a Cauchy sequence and must converge
to some rigid point α, but we have shown that ϕ is not bounded at
α. �

Proof of Proposition 5.3.10. We may suppose z0 = 0, and
X = PN,an

k .
Pick a sequence of rigid points an → 0 such that |f ′n(an)| ≥ n3. For

every an, we now apply Lemma 5.3.11 chosing ε = 1/n, τn = 1 + 1
n
and

ϕ = |f ′n| and obtain a sequence zn ∈ D(k) satisfying:
i) |an − zn| ≤ n2+n

|f ′n(an)| ≤
2
n
;

ii) |f ′n(zn)| ≥ |f ′n(an)| ≥ n3;
iii) If x ∈ D̄(k) is such that |x− zn| ≤ n

|f ′n(zn)| , then

|f ′n(x)| ≤ (1 + 1
n

)|f ′n(zn)| .

It is clear that zn → 0. Now set rn = 1
|f ′n(zn)| , and pick ρn ∈ k

with |ρn| = rn. We see that rn ≤ 1
n3 , and hence ρn → 0. Each map

gn(z) := fn(zn + ρnz) is hence defined on D(0;n). Fix some R > 0 and
pick z ∈ D̄(R). We compute using Lemma 5.3.3:

|g′n(z)| ≤ R2 · rn · |f ′n(zn + ρnz)| ≤

≤ R2 · rn(1 + 1
n

)|f ′n(zn)| = R2(1 + 1
n

) .

The Fubini-Study derivative of the maps gn is thus uniformly bounded
on compact sets.

Clearly, |g′n(0)| = |ρn| · |f ′n(zn)| = 1 for all n ∈ N. �

5.3.4. The projective distance. For any two points given in
homogeneous coordinates by x = [x0, · · · , xN ], y = [y0, · · · , yN ] ∈ PNk ,
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one defines their projective distance as

dP(x, y) = max |xiyj − xjyi|
max |xi|max |yj|

.

By continuity, one can extend this definition to the whole Berkovich
projective space PN,an. This leads to the definition of discs in the
projective space. We denote by BdP(x;R) the open polydisk for the
projective distance centered at x and of radius R.

Observe that dP(x, y) ≤ 1 for every x, y ∈ PN,an. Hence, if R ≥ 1
one has that BdP(x;R) = PN,an.

Lemma 5.3.12. Let f : D→ PN,an be an analytic map. Then,

sup
x∈D
|f ′(x)| ≤ sup

x,y∈D

dP(f(x), f(y))
|x− y|

.

Proof. Fix some point rigid point x ∈ D. Using the Taylor series
of f , we have that for y close to x,∣∣∣∣∣fi(x) fi(y)

fj(x) fj(y)

∣∣∣∣∣ =
∣∣∣∣∣fi(x) fi(x) + f ′i(x)(x− y) +O((x− y)2)
fj(x) fj(x) + f ′j(x)(x− y) +O((x− y)2)

∣∣∣∣∣ =

= |x− y|
∣∣∣∣∣fi(x) f ′i(x)
fj(x) f ′j(x)

∣∣∣∣∣+O((x− y)2) .

This means that

|f ′(x)| = lim
y→x

dP(f(x), f(y))
|x− y|

,

and thus |f ′(x)| ≤ supy∈D
dP(f(x),f(y))
|x−y| . �

5.3.5. Topology induced by the projective distance. Let X
be a projective variety defined over a field k of zero characteristic that
is algebraically closed. Fixing an embedding of X into some projective
space, we obtain a distance function on X(k) induced by the pull-back
of the Fubini-Study distance. It is a fundamental fact that any two
embeddings X → PN,an and X → PM,an induce equivalent distances on
X(k), see e.g. [Gri15, Proposition 4.3].

Our aim is to prove that on the set of rigid points of X the topology
induced by dP agrees with the Berkovich topology.

Proposition 5.3.13. Let X smooth projective variety and fix an
embedding X → PN,an.

Then the Berkovich topology on the set of rigid points of X agrees
with the one induced by the projective distance dP.

To this end, we consider first the affinoid case.
Recall that given two points z = (z1, . . . , zN), w = (w1, . . . , wN) in

D̄N(k), the usual distance is given by
dD(z, w) = max

1≤i≤N
|zi − wi| .
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Lemma 5.3.14. Let X be a strictly k-affinoid space and fix a closed
immersion X → D̄N . The Berkovich topology on the set of rigid points
of X agrees with the one induced by the usual distance dD.

Proof. Pick a rigid point x ∈ X and fix some positive number ε.
The open ball BdD(x; ε) for the distance dD centered at x of radius ε can
be expressed as the following finite intersection:

BdD(x; ε) =
N⋂
i=1
{z ∈ X(k) : |(Ti − xi)(z)| < ε} .

For every 1 ≤ i ≤ N , the set {z ∈ X(k) : |(Ti − xi)(z)| < ε} is an open
set for the Berkovich topology.

Conversely, pick any Berkovich open set U in X(k). We may assume
that U is a finite intersection of sets of the form {x ∈ X(k) : ri <
|fi(x)| < si} for some analytic function fi ∈ O(D̄N) and some positive
real numbers ri and si. Recall that for any z, w ∈ X(k) the following
inequality holds:

|fi(z)− fi(w)| ≤ ‖fi‖dD(z, w) ,
where ‖.‖ denotes the norm on the Tate algebra TN . As a consequence,

U ∩X(k) =
⋂
i

⋃
x∈U∩X(k)

BdD

(
x; min{||fi(x)| − r| , ||fi(x)| − s|}

‖fi‖

)
,

and the result follows. �

Proof of Proposition 5.3.13. Pick a rigid point x ∈ X and
fix some positive real number ε < 1. The open ball BdP(x; ε) for the
projective distance can be expressed as a finite intersection of open sets
for the Berkovich topology as follows:

BdP(x; ε) =
⋂

0≤i,j≤N
i 6=j

{y ∈ X(k) : |(xiTj − xjTi)(y)| < ε} .

The converse follows from the fact that the projective space can be
covered by a finite number of Berkovich polydisks. �

Given a projective variety X, we may consider the semi distance
d′CK := min{1, dCK}. We now compare it with the projective distance.

Proposition 5.3.15. Let X be a smooth projective variety. For
any rigid point x ∈ X, there exists an open neighbourhood U of x and a
positive constant C such that d′CK ≤ CdP on U(k).

Proof. Denote byM the dimension of X. Pick a rigid point x ∈ X
and fix an analytic map ϕ : DM → X that is an isomorphism on its
image, sending some z ∈ DM to x. Set U := ϕ(DM ). Embed X in some
projective space PN,an. By Proposition 5.3.13, we may choose a positive
number ε such that BdP(x; ε) ∩X(k) is contained in U .
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After maybe reducing the polydisk DM , we may assume that U is
contained in some fixed unit polydisk D̄N ⊂ PN,an. Thus, the projective
distance agrees with the usual distance on U . Notice that the map
ϕ is given by ϕ = (ϕ1, . . . , ϕN), where every ϕi ∈ TM has coefficients
bounded by 1, for 1 ≤ i ≤ N . Given any rigid point y ∈ D̄N with
y = ϕ(w) for some w ∈ DM , we have that

dP(x, y) = dP(ϕ(z), ϕ(w)) = max
1≤i≤N

|ϕi(z)− ϕi(w)| .

For distinct z, w ∈ DM(k), consider the real-valued function

Θ(z, w) = dP(ϕ(z), ϕ(w))
d′CK(z, w) .

This function is strictly positive. By the previous equation, we know
that Θ(z, w) = maxi≤N |ϕi(z)−ϕi(w)|

maxj≤M |zj−wj |
. The Taylor series development of

each component ϕi implies that for any z, w ∈ DM(k), we may write
ϕi(w)− ϕi(z) = ∑M

j=1(zj − wj)∂jϕi(z) + O(∑1≤j≤M |zj − wj|2), where
∂jϕi(z) denotes the partial derivative of ϕi with respect to the j-th
component. Using this observation, we may extend the function Θ
continuously to the diagonal by setting

Θ(z, z) = lim
w→z

Θ(z, w) = max
1≤i≤N
1≤j≤M

|∂jϕi(z)| .

As ϕ is an isomorphism on its image, not all the partial derivatives
∂jϕi are zero at the same time, and so Θ is strictly positive on the
whole DM(k) × DM(k). We may so find a positive constant C such
that Θ(z, w) ≥ C for every z, w ∈ DM(k). As the Cherry-Kobayashi
semi distance contracts analytic maps, we see that dCK(ϕ(z), ϕ(w)) ≤
dCK(z, w). Thus, d′CK(ϕ(z), ϕ(w)) ≤ CdP(ϕ(z), ϕ(w)). �

5.4. Royden’s length function

Royden’s length function on the tangent bundle of a complex man-
ifold has the particularity that the semi distance it defines on the
manifold is precisely the Kobayashi semi distance. This enables us to
translate the notion of Kobayashi hyperbolicity into infinitesimal terms.
We refer to [Roy71] for further details.

One can adapt this definition to Berkovich spaces as follows. Recall
that the tangent space of a smooth analytic space X at a point x is the
set of all derivations on the local ring OX,x.

Definition 5.4.1. Let X be a smooth analytic space over k. For
every x ∈ X(k), Royden’s length function is defined for every ~v ∈ TxX
as

|~v|Roy := inf
{

1
|λ|

: ∃f : D→ X analytic, f(0) = x, f ′(0) = λ~v

}
.

The following result holds for fields k of arbitrary characteristic:
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Proposition 5.4.2. Let X be a smooth projective variety over some
non-Archimedean field k.

If Royden’s function is such that |~v|Roy = 0 if and only if ~v = 0,
then X contains no entire curve.

Proof. Suppose there exists an entire curve f : A1,an → X. We
may suppose that f is not constant at 0, and hence ~v = f ′(0) ∈ Tf(0)X
is a non-zero vector. Denoting by mn : D→ D(0;n) the homothety of
ratio n, the sequence fn := f ◦mn : D→ X is such that f ′n(0) = λn~v,
with |λn| = n. Hence, |~v|Roy = 0. �

Proposition 5.4.3. Let X be a smooth projective variety defined
over a complete non-Archimedean field k of characteristic zero.

Assume that every rigid point admits a neighbourhood on which the
Fubini-Study derivative of Mork(D, X) is uniformly bounded. Then,
Royden’s function is such that |~v|Roy = 0 if and only if ~v = 0.

Proof. Suppose that there exists a point x ∈ X and some nonzero
~v ∈ TxX such that |~v|Roy = 0. Then there is a sequence fn : D → X
fixing the origin and such that f ′n(0) = Rnv, with v 6= 0 and |Rn| → +∞.
Hence, the Fubini-Study derivative explodes at 0. �

5.5. Further notions of hyperbolicity

In an attempt to obtain hyperbolicity results analogous to complex
ones, we may consider other notions of hyperbolicity that arise naturally
from the Cherry-Kobayashi semi distance:

Definition 5.5.1. Let X be a smooth projective variety defined over
an algebraically closed non-Archimedean complete field. The variety X
is strongly Cherry hyperbolic if the semi distance dCK defines the same
topology as the projective distance on rigid points.

We shall see in Theorem F that this notion is stronger than that
of Cherry hyperbolicity. If X is a hyperbolic complex analytic space,
Barth showed that the Kobayashi metric defines the topology of X, see
[Lan87, Theorem §I.2.3].

5.5.1. Smooth projective varieties of arbitrary dimension.
Recall that d′CK := min{1, dCK}. We have the following equivalences
for general smooth projective varieties:

Theorem F. Let X be a smooth projective variety defined over
an algebraically closed non-Archimedean complete field k of residue
characteristic zero. The following conditions are equivalent:

i) Every rigid point x ∈ X has a neighbourhood U such that the
semi distances d′CK and dP are equivalent on U(k).

ii) The variety X is strongly Cherry hyperbolic.
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iii) For every rigid point z ∈ D there exists a neighbourhood U and
a positive constant C such that

sup
f∈Mork(D,X)

sup
z∈U
|f ′(z)| ≤ C .

Remark 5.5.2. Residue characteristic 0 is used for the implications
iii) ⇒ i) and iii) ⇒ ii).

Proof of Theorem F. i) ⇒ ii): Let us first show that X is
Cherry hyperbolic. Pick any point x ∈ X(k). We shall prove that
dCK(x, y) > 0 for all y ∈ X(k) different from x.

By Corollary 5.3.13, the topology induced by dP agrees with the
Berkovich topology. Our assumption i) thus implies the existence
of ε > 0 and a constant C > 0 such that d′CK(x1, x2) ≥ CdP(x1, x2)
whenever max{dP(x, x1), dP(x, x2)} ≤ ε.

If y is such that dP(x, y) ≤ ε, then d′CK(x, y) ≥ CdP(x, y) > 0 as
required. Suppose now that dP(x, y) > ε, and pick any Kobayashi chain
joining x and y. We get a finite set of analytic maps fl : D̄→ X and
points zl ∈ D̄(k), l = 1, · · · ,m such that f1(0) = x, fl(zl) = fl+1(0) for
l = 1, · · · ,m− 1 and fm(zm) = y. We shall prove that |zl| ≥ Cε/4 for
some l, which proves that dCK(x, y) ≥ Cε/4.

For each l, consider the function dl(t) := dP(x, fl(t)). This is a con-
tinuous function on the whole disk D̄. Since all closed disks D̄(0; |zl|) are
connected, the subset of the real line ∪ml=1dl(D̄(0; |zl|)) is also connected.
As d1(0) = 0 and dm(zm) > ε, we may find an integer l and a point
τ ∈ D̄(0; |zl|) such that dl(τ) = ε/2. By density of rigid points in the
open disk, we may find t ∈ D̄(0; |zl|)(k) such that dl(t) ∈ (ε/4, 3ε/4).
We get that |zl| ≥ |t| ≥ dCK(x, fl(t)) ≥ Cε/4.

We now prove that the two topologies induced by d′CK and dP are
the same. This amounts to checking that converging sequences for
one topology are converging for the other one. Suppose first that
dP(xn, x) → 0. Then for sufficiently large n we have that xn lies in a
neighbourhood of x where d′CK is equivalent to dP, hence d′CK(xn, x)→ 0.

Suppose next that d′CK(xn, x)→ 0. Our arguments above show that
for n sufficiently large xn belongs to a neighbourhood of x on which
d′CK is equivalent to dP, so that again dP(xn, x)→ 0.

ii) ⇒ iii): Fix an embedding of X in some analytic projective space
PN,an. Suppose that the Fubini-Study derivative explodes at some point
of D. We apply Proposition 5.3.10 to find a sequence of analytic maps
gn : D(0;n) → X satisfying |g′n(0)| = 1 and with uniformly bounded
Fubini-Study derivative on compact subsets of A1,an.

Denote by dn = diam(gn(D)). If dn tends to zero as n goes to
infinity, then after maybe extracting a subsequence all the gn(D) are
contained in some fixed ball of PN,an. Schwarz’ lemma implies that
the derivative at zero is strictly smaller than 1, contradicting the fact
that |g′n(0)| = 1. Thus, we may assume that there exists some ε > 0
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such that dn > ε for every n ∈ N. In particular, for every n there are
rigid points wn, zm ∈ D such that dP(gn(wn), gn(zn)) ≥ ε

2 . However,
dCK(gn(wn), gn(zn)) ≤ dCK(wn, zn) ≤ 1

n
, since gn is defined on D(0;n),

and so the distances dCK and dP cannot be equivalent.
iii) ⇒ ii): Suppose that the Fubini-Study derivative of all the

analytic maps f : D → X is uniformly bounded on some open disk
D(0; r) by some positive constant C. It suffices to show that given any
rigid points xn, x in X such that dCK(xn, x) tends to 0, dP(xn, x)→ 0
as n goes to infinity.

For every n, consider a Kobayashi chain fnl : D→ X, l = 1, · · · , Nn,
joining xn and x of length rn < r and such that rn → 0. By Lemma
5.3.8, we see that fnl (D(0; rn)) ⊆ DN(fnl (0); rnC). For every fixed
n ∈ N∗, these polydisks have nonempty intersection by definition of
Kobayashi chain and have the same radius, and so they must be the
same. Hence, dP(xn, x) tends to 0.

iii) ⇒ i): Let r > 0 and C > 0 be constants such that
sup

Mork(D,X)
sup
D(0;r)

|f ′(z)| ≤ C .

After maybe reducing the radius r, we may assume that d′CK ≤ dP
on D(0; r) by Proposition 5.3.15. Pick any two rigid points x, y ∈ X.
Assume that dCK(x, y) ≤ r

2 . Let Cn be a sequence of Kobayashi chains
joining x and y of length dn and such that limn dn = dCK(x, y). Recall
that each chain Cn is given by analytic maps f (n)

1 , . . . , f
(n)
Nn : D → X

and rigid points z(n)
1 , . . . , z

(n)
Nn in D satisfying the appropritate equalities.

For sufficiently large n we may assume that
dCK(x, y) ≤ dn < 2 · dCK(x, y) = r ,

and in particular we see that |z(n)
l | < r for every n� 0 and every 1 ≤ l ≤

Nn. As a consequence of Lemma 5.3.8, we see that f (n)
l (D̄(0; |z(n)

l |)) ⊆
DN(f (n)

l (0); |z(n)
l |C). Thus, for every n ∈ N we have

dP(x, y) ≤ C · dn < 2C · dCK(x, y) ,
concluding the proof. �

Proposition 5.5.3. Let X be a smooth projective variety defined
over an algebraically closed non-Archimedean complete field k of residue
characteristic zero. If the Fubini-Study derivative of Mork(D, X) is
uniformly bounded in a neighbourhood of every rigid point, then the
family Mork(D, X) is normal at every rigid point.

Proof. Embed X in some projective space PN,an. It suffices to
prove the assertion for z = 0 in D. Assume first that U is a neighbour-
hood of 0 on which there exists a positive constant C such that

sup
Mork(D,X)

sup
U
|f ′(z)| ≤ C < +∞ .
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Pick any sequence of analytic maps fn : D → X. Since PN,an can be
covered by a finite number of closed polydisks isomorphic to D̄N , we see
that, after maybe to extracting a subsequence and rescaling the image,
the points fn(0) converge to a point in D̄N (0; 1

2), as PN,an is sequentially
compact [Poi13].

Now let η0,r ∈ U be the point corresponding to the closed all B̄(0; r)
in k. It follows from Lemma 5.3.8 that diamfn(η0,r) ≤ r · C for all n.
Choose r > 0 such that r ≤ 1

2C and set U ′ = D(0; r). By continuity,
fn(U ′) ⊆ D̄N(0; 1

2), and by Theorem A there exists a subsequence
converging on U ′ to a continuous map. �

5.5.2. Smooth projective curves. In the case of smooth projec-
tive curves, we have the following characterization:

Theorem G. Let X be a smooth projective curve defined over an
algebraically closed field of residue characteristic zero. The following
conditions are equivalent:

i) The curve X has positive genus.
ii) Every rigid point x ∈ X has a neighbourhood U such that the

semi distances d′CK and dP are equivalent on U(k).
iii) The Fubini-Study derivative of Mork(D, X) is uniformly bounded

in a neighbourhood of every rigid point.
iv) The family Mork(D, X) is normal.
v) The curve X is Cherry hyperbolic.

The equivalence between i) and v) was proved in [Che96]. We
provide a new proof of the fact that every smooth projective curve with
positive genus is Cherry hyperbolic.

Proof. iv) ⇒ i): Pick any |λ| > 1 and consider the sequence of
analytic maps fn(z) = (λz)n from D to P1,an. As explained at the
beginning of this chapter, no subsequence of fn has a continuous limit,
and thus the family Mork(D,P1,an) is not normal.

i) ⇒ iv): Assume that X has positive genus. Recall from §1.4 that
if X is a smooth projective curve with positive genus, then San(X) is
nonempty. The set X \ San(X) is a disjoint union of infinitely many
open disks.

Let fn : D → X be a sequence of analytic maps. By [Ber90,
Theorem 4.5.3], the image of each map fn does not intersect San(X).

If the image of infinitely many maps fn is contained in the same
connected component of X \ San(X), then we may find a subsequence
fnj avoiding some fixed connected component of the complement of
San(X). Hence, by Lemma 1.4.6 the maps fnj take values in a fixed
affinoid domain of X and so they converge pointwise to some continuous
map by Theorem A.

Assume next that at most finitely many fn(D) are contained in the
same connected component of X \ San(X). If San(X) consists only of
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one point ηX , this means that the sequence fn converges pointwise to
the constant map ηX . Suppose otherwise San(X) is not a singleton.
Denoting by rX : X → San(X) the usual retraction map, we consider
the composition yn := rX ◦ fn. Thus, each map yn is constant. By
compactness of San(X) we may find a subsequence {ynj} converging to
some point y ∈ San(X).

Fix an open neighbourhood V 3 y. By [Duc14, Théorème 4.5.4], we
are reduced to the following possibilities for V . If y is a type III point,
then V is isomorphic to an open annulus whose skeleton is contained in
San(X). Otherwise, if y has type II then V \ {y} is the disjoint union of
infinitely many open disks and finitely many open annuli. In particular,
the intersection of the skeleton of V and San(X) is nonempty. Pick any
z ∈ D. For sufficiently large nj, the points fnj(z) lie in V . Thus, the
subsequence {fnj} converges pointwise to the constant map f ≡ y.

i) ⇒ iii): Let X be a curve of positive genus. We show that the
Fubini-Study derivative of every map from D to X is bounded. Let
f : D→ X be an analytic map. By [Ber90, Theorem 4.5.3], the image
of f is contained in some connected component of the complement of
San(X), i.e. in some open subset V of X analytically isomorphic to D.
This implies that the Fubini-Study derivative of f is bounded by 1 on
the whole disk.

iii) ⇔ ii): This equivalence was shown in Theorem F.
ii) ⇒ v): This implication follows from Theorem F. �





CHAPTER 6

Compactness of spaces of analytic maps with
values in an algebraic curve

Throughout this chapter, the base field k is a non-Archimedean
complete algebraically closed field. Our main results, stated below,
assume furthermore that k has zero residue characteristic.

Our aim is to give a characterization of smooth (irreducible) alge-
braic curves having negative Euler characteristic in terms of normality
properties of suitable families of analytic maps.

Suppose that X is a smooth (irreducible) algebraic curve. One can
then find a unique open embedding of X in a smooth projective curve
X̄ such that X̄ \X is a finite set of k-points. The Euler characteristic
of X is by definition

χ(X) = 2− 2g −#(X̄ \X) ,
where g denotes the genus of X̄.

Pick any boundaryless k-analytic space U . A family F of analytic
maps f : U → X is said to be normal if and only if for any sequence
fn ∈ F there exists a subsequence fnj converging pointwise on U to a
continuous function f∞ : U → X̄. This definition is analogous to the
one used in §4.

Our main theorem is:

Theorem H. Suppose that k is a complete non-Archimedean alge-
braically closed field of zero residue characteristic whose residue field is
countable. Let X be a smooth irreducible algebraic curve over k.

Then, the Euler characteristic χ(X) of X is negative if and only if
for every smooth connected boundaryless analytic curve U the family
Mork(U,X) is normal.

More precisely, any sequence of analytic maps fn : U → X admits
a subsequence fnj that converges pointwise to a continuous map f∞ :
U → X̄ such that either f∞(U) ⊂ X or f∞ is constant equal to a point
in X̄ \X.

One implication was basically already noticed in [FKT12]. When
the Euler characteristic of X is non-negative, then we may find a
smooth boundaryless curve such that the family Mork(U,X) is not
normal. When X is the projective or the affine line, one can take U
to be the unit disk. When X is the punctured affine line any open

79
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annulus works. In §6.3, we extend these arguments to any elliptic curve,
in which case we may take U = X.

The core of the proof lies in the forward implication: the family
Mork(U,X) is normal as soon as χ(X) < 0. We consider first the case
where the skeleton of X is not too small and next the general case.

Theorem I. Suppose that k is a complete non-Archimedean alge-
braically closed field of zero residue characteristic. Let X be a smooth
irreducible algebraic curve of negative Euler characteristic whose skeleton
San(X) is not a singleton.

Let U be a smooth connected boundaryless analytic curve. Then
there exists a finite affinoid cover (X̄i) of X̄ and a locally finite cover
(Uj) of U by basic tubes such that for every analytic map f : U → X
and every j the image f(Uj) is contained in some affinoid X̄i.

Moreover, the affinoid cover (X̄i) is independent of U .

This result together with Theorem A implies a stronger form of
Theorem H when San(X) is not a singleton. For instance, any limit
map is weakly analytic in this case.

When the skeleton of X is reduced to a point, then X is a projective
curve and admits a smooth model over k◦. In other words, it is a curve
with good reduction.

When X is a complete curve having good reduction, our arguments
rely crucially on the countability assumption on the residue field k̃ and
we are no longer able to ensure that limit maps are weakly analytic.

The two above stated theorems are proved by closely examining
the behaviour of analytic maps between curves, in particular on the
skeleta, and thus rely heavily on the reduction theory of curves which
is explained in detail in [Duc14].

6.1. Geometry of basic tubes of dimension 1

Recall from §1.6 the definition of a basic tube. Any connected
component of the interior of an equidimensional strictly affinoid space
is a basic tube.

Recall from §1.4 that the skeleton San(X) of a curve X is the set of
points in X not having an open neighbourhood that is isomorphic to
an open disk. In particular, a one-dimensional basic tube has empty
skeleton if and only if it is isomorphic to an open disk, see [Duc14,
Proposition 5.1.18]. An open annulus A(R, 1) with R ∈ |k×| is a basic
tube, and its skeleton is isomorphic to the open real segment (R, 1).

A point x in the skeleton of a smooth analytic curve X is a node if
it satisfies one of the following conditions: the point x is a branching
point of the skeleton, x has positive genus or it belongs to the boundary
of X.
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An important class of basic tubes of dimension one are star-shaped
domains:

Definition 6.1.1. A basic tube U of dimension 1 is called a star-
shaped domain if it is simply connected and contains exactly one node
ηU .

g(ηU) > 0

Figure 1. Star-shaped domains

Let us describe the geometry of star-shaped domains in more detail.
Let U be a star-shaped domain. Since basic tubes are boundaryless, the
point ηU has positive genus or it is a branching point of San(U). The
skeleton of U can be decomposed in a disjoint union of {ηU} and finitely
many open segments. Thus, every connected component of U \ {ηU} is
either isomorphic to an open disk or to an open annulus. The latter
correspond to the non-discal tangent directions in TηUU .

As a consequence, a star-shaped domain U determines the following
data:

i) The residue curve at ηU , which is the unique smooth projective
curve CU over k̃ such that k̃(CU) ' H̃(ηU). The curve CU has
genus g(U);

ii) A reduced divisor DU on CU whose support is the set of non-
discal directions at ηU ;

iii) For every non-discal direction ~v ∈ TηUU a real number ρ ∈ |k×|
of norm less than 1 such that the open set U(~v) is isomorphic
to the open annulus A(ρ, 1).

6.2. Analytic maps between curves

The following result will be systematically used in the sequel, see
[Duc14, Lemme 6.2.4]:

Lemma 6.2.1. Let X be a smooth projective curve over k and U a
basic tube of dimension 1.
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Let f : U → X a non-constant analytic map. Let z ∈ U be a type
II or III point and consider the tangent map df(z) : TzU → Tf(z)X. If
a tangent direction ~v ∈ TzU is discal, then so is df(z)(~v).

As an immediate consequence, we have:
Lemma 6.2.2. Let X be a smooth projective curve and f : D→ X

an analytic map. Then the image of f is contained in some connected
component of X \ San(X).

Another important fact that will be used throughout the present
chapter is the following proposition:

Proposition 6.2.3. Let U be a basic tube of dimension 1 that is not
analytically isomorphic to the unit disk. Let X be a smooth projective
curve and f : U → X an analytic map. If a point z ∈ San(U) \ N(U) is
such that f(z) lies in the skeleton of X, then the connected component
of San(U) \ N(U) containing z is mapped to San(X).

The proof relies on the following Lemma [Duc14, Lemme 6.2.5]:
Lemma 6.2.4. Let X be a smooth projective curve over k and U a

basic tube of dimension 1.
Let f : U → X a non-constant analytic map. If f(z) is a node in

San(X), then z is a node in San(U).
Proof of Proposition 6.2.3. Let z ∈ San(U) be a non-nodal

point such that f(z) ∈ San(X). By Lemma 6.2.4, the point f(z) is
not a node. In particular, f(z) cannot be an endpoint of the skeleton
by Lemma 1.4.4, and so both z and f(z) have exactly two non-discal
tangent directions.

Consider the complement of N(U) in San(U), and let I be the
connected component containing the point z. Suppose by contradiction
that not the whole I is mapped to the skeleton of X. In this case,
we may find a point z′ ∈ I such that f(z′) ∈ San(X) and such that a
non-discal direction ~v ∈ Tz′U is mapped to some discal direction at
f(z′). The tangent map df(z′) : Tz′U → Tf(z′)X is surjective, and so
there is a discal direction at z′ that is mapped to a non-discal direction
at f(z′). This contradicts Lemma 6.2.1. �

We shall use the following version of Hurwitz’s theorem during the
proof of Theorem H:

Proposition 6.2.5. Let U be a boundaryless connected curve over
k and X a k-affinoid space. Let Z be any closed analytic subset of X.

Suppose that fn is a sequence of analytic maps from U to X \ Z
converging pointwise to a continuous map g.

Then, we have either that g(U) ∩ Z = ∅ or g(U) ⊂ Z.
Proof. The set Z is the zero locus of some analytic function ϕ in

the affinoid algebra of X with |ϕ|sup ≤ 1. Since the zeros of ϕ form a
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finite subset of X of rigid points, we may assume that X is the closed
unit disk and that Z is the origin by replacing fn by ϕ ◦ fn.

In this case our assumption ensures that the functions hn = log |fn| :
X → R− are harmonic. It follows from [Thu05, Proposition 3.1.2]
that either hn converges uniformly to −∞ on compact subsets and so
g(U) ⊂ {0}, or any limit map of the sequence hn is still harmonic, in
which case one necessarily has g(U) ∩ {0} = ∅. �

6.3. Curves with non-negative Euler characteristic

In this section we prove one of the implications of Theorem H.

Proposition 6.3.1. Let X be a curve with non-negative Euler
characteristic. Then there exists a one-dimensional basic tube U such
that the family Mork(U,X) is not normal.

Our proof follows [FKT12, Theorem 5.4] and uses an equidistribu-
tion result for non-Archimedean elliptic curves from [Pet09].

Proof. Recall that a smooth algebraic curve satisfies χ(X) ≥ 0 if
and only if it is isomorphic to one of the following models:

(1) P1,an, A1,an, A1,an \ {0};
(2) an elliptic curve.

We claim that for any ρ > 1 the family of analytic maps

Mork
(
A

(
1
ρ
, ρ

)
,A1,an \ {0}

)
is not normal. To see this, consider the sequence fn(z) = zn from
A(1

ρ
, ρ) to A1,an \ {0}. Observe that fn(xg) = xg for all n ∈ N, whereas

fn(z) → 0 for any |z| < 1. It follows that no limit map of fn can be
continuous at the Gauss point. As a consequence of the definition of
normality given at the begining of this chapter for families of maps
whose target is a smooth algebraic curve, this proves the proposition
for all cases in the first item.

Suppose now that X is an elliptic curve. Consider the map f : X →
X induced by the multiplication by 2. Pick any point x0 ∈ San(X),
and suppose by contradiction that the family of the iterates {fn} is
normal on a neighborhood U of x0. Assume that the subsequence fnj
converges on U to a continuous function g : U → X.

Choose any fixed rigid point y ∈ X for f . By [Pet09, Theo-
rem 1] the sequence of probability measures 4−n(fn)∗δy converges to
a probability measure µ whose support is equal to San(X), hence con-
tains x0. We may thus find a sequence of rigid points yn → x0 such
that fn(yn) = y. Observe that ym ∈ U for sufficiently large m, thus
g(ym) = limnj f

nj(ym) = y, for all m ∈ N.
But f leaves the skeleton of X invariant, hence y = g(x0) ∈ San(X)

which gives a contradiction. �
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6.4. Analytic maps on special domains

In this section, we study the normality of the family of analytic
maps taking values in a smooth projective curve X having only one
node that do not have good reduction, i.e. whose skeleton contains
points different from the node. Our discussion is based on the study of
three fundamental families of one-dimensional basic tubes: open disks,
open annuli and star-shaped domains.

6.4.1. Analytic maps avoiding a type II point.

Proposition 6.4.1. Let X be a smooth irreducible projective curve
and U any smooth connected curve. Let F be a family of analytic maps
from U to X.

If there exists a type II point η ∈ X such that η /∈ f(U) for every
f ∈ F , then there exists an affinoid covering (X1, X2) of X such that
for every f ∈ F , the image f(U) is contained either in X1 or in X2.

Moreover, the affinoid cover (Xi) is independent of U .

Corollary 6.4.2. Let X be a smooth irreducible projective curve
of genus at least 2 and U be an open disk or an open annulus. Then,
there exists a finite affinoid cover (Xi) of X such that the image of
every analytic map f : U → X is contained in some affinoid Xi.

Moreover, the affinoid cover (Xi) is independent of U .

Corollary 6.4.3. Let X be a smooth irreducible projective curve
having at least two nodes and let U be any smooth connected boundaryless
curve. Then, there exists a finite affinoid cover (Xi) of X and a locally
finite open cover (Uj) of U by basic tubes such that for every analytic
map f : U → X and every element of the cover Uj, the image f(Uj) is
contained in some affinoid Xi.

Moreover, the affinoid cover (Xi) is independent of U .

Proof of Proposition 6.4.1. Let X be any smooth irreducible
projective curve and U any smooth connected curve. Let F be a family
of analytic maps in Mork(U,X) whose images avoid some type II point
η ∈ X.

The image of every f ∈ F is contained in some connected component
of X \ {η}. We may thus pick any two distinct connected components
B1, B2 of X \ {η}. Then, X1 := X \ B1 and X2 = X \ B2 are affinoid
domains of X by Lemma 1.4.6, and (X1, X2) is a cover of X safisfying
the required property. �

Proof of Corollary 6.4.2. Let X be a smooth irreducible pro-
jective curve of genus at least two. The curve X contains at least one
node η by (1.2). On the other hand, if U is an open disk or an open
annulus, then it has no nodes. By Lemma 6.2.4, every analytic map
f : U → X avoids η. The result follows from Proposition 6.4.1. �
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Proof of Corollary 6.4.3. Let U be any smooth irreducible
boundaryless curve. Recall that its set of nodes is discrete. Consider a
locally finite open cover (Uj)j∈J of U , where each Uj is either an open
disk, an open annulus or a star-shaped domain. In particular, every
basic tube Uj contains at most one node.

Let X be a smooth projective curve with at least two nodes, and
denote N(X) = {η1, . . . , ηa}. For every 1 ≤ l ≤ a, let B1

l and B2
l be

two distinct connected components of X \ {ηl} that are isomorphic to
an open disk. The sets X1

l = X \ B1
l and X2

l = X \ B2
l are affinoid

domains of X by Lemma 1.4.6. The sets (X i
l ) i=1,2

1≤l≤a
form a finite affinoid

cover of X.
Fix some Uj. For every fixed 1 ≤ l ≤ a, consider the family of

analytic maps Fl,j = {f : U → X analytic : ηl /∈ f(Uj)}. By Lemma
6.2.4, we have that ⋃

1≤l≤a
j∈J

Fl,j = Mork(U,X) .

We conclude by applying Proposition 6.4.1 to every family Fl,j. �

6.4.2. Analytic maps into curves having only one node.

Proposition 6.4.4. Let X be a smooth irreducible projective curve
over k of genus at least 2 having a unique node ηX . Assume further
that the first Betti number of the skeleton of X is at least 1. Let U be a
smooth connected boundaryless curve.

Then there exists a finite affinoid cover (Xi)i∈I of X and a locally
finite open cover (Uj)j∈J of U by basic tubes such that for every analytic
map f : U → X and every j ∈ J , the set f(Uj) is contained in some
affinoid domain Xi.

Moreover, the affinoid cover (Xi) is independent of U .

Proof. Let b := b1(San(X)) > 1 be the first Betti number of the
skeleton of X. As b ≥ 1 and X has only one node, the skeleton of
X consists of b loops C1, . . . , Cb passing through ηX , and so there are
exactly 2b non-discal tangent directions at ηX .

The curve X may be decomposed as a disjoint union of {ηX}, open
annuli A1, . . . , Ab and infinitely many open disks by Lemma 1.4.5. Fix
some 1 ≤ i ≤ b. Pick an isomorphism ϕi : A(Ri, 1)→ Ai with Ri < 1
and such that limr→1 ϕi(η0,r) = limr→Ri ϕi(η0,r) = ηX . Consider the
type II point xi := ϕi(η0,

√
Ri), which lies on the loop Ci. Pick any

connected component Bi of X \ {xi} isomorphic to an open disk. The
set Xi := X\Bi is an affinoid domain of X by Lemma 1.4.6 and contains
the point ηX . The family (Xi)1≤i≤b forms an affinoid cover of X.

Since U is paracompact (cf. Theorem 1.4.1), it suffices to show
that for every point z ∈ U there exists an open neighbourhood V0 of z
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Figure 2. Curve with only one node and skeleton with
first Betti number 3

such that for every analytic map f : U → X, there exists some affinoid
domain Xi in the cover of X such that f(V0) ⊂ Xi. Moreover, since
the cases of disks and annuli have been treated separately in Corollary
6.4.2, obtaining an affinoid cover of X similar to (Xi), we may assume
that z ∈ N(U). We aim to construct a star-shaped domain V0 ⊂ U
containing z and such that every analytic map f : V0 → X sends V0 to
some affinoid domain Xi.

Let V be the connected component of the complement of N(U)\{z}
in U containing z. It is a star-shaped domain in U containing z whose
only node ηV is precisely z. Let {~v1, . . . , ~va} be the set of non-discal
directions at ηV . Fix some 1 ≤ j ≤ a and let Ij be the connected
component of San(V ) \ {ηV } corresponding to the direction ~vj. It is
isomorphic to an open segment. The set U(~vj) is isomorphic to an
open annulus whose skeleton is precisely Ij. We fix an isomorphism
ψj : A(ρj, 1)→ U(~vj) with ρj < 1 and such that ψj extends continuously
to the Gauss point xg satisfying ψj(xg) = ηV .
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Pick any analytic map f : U → X. If f(V ) avoids the node ηX , then
it is contained in some annulus Ai or in some connected component
of the complement of ηX that is isomorphic to an open disk, hence in
some affinoid domain Xi.

Assume otherwise that f maps the unique node z = ηV ∈ V to ηX .
Consider the star-shaped domain V0 contained in V obtained by

reducing every segment Ij in such a way that the resulting segment I0
j

is isomorphic to (ρ0
j , 1) with ρ0

j ≥ max1≤j≤a
√
ρj . We claim that xi does

not belong to f(I0
j ) and that f(V0) ⊆ Xi for some index i.

Recall that the tangent map df(ηV ) : TηV V → TηXX is a rational
map on the residue curve at ηV with values in the residue curve at ηX ,
which is surjective. The preimage of every non-discal direction at ηX
consists only of non-discal directions at ηV by Lemma 6.2.1. We may
thus choose j such that df(ηV )(~vj) ∈ TηXX is non-discal.

The restriction of f to U(~vj) takes values in some annulus Ai ⊂
X, and so we may consider the composition Fi,j = ϕ−1

i ◦ f ◦ ψj :
A(ρj, 1)→ A(Ri, 1). Since f(ηV ) = ηX , we see that limr→1 Fi,j(η0,r) =
xg. Additionally, Fi,j(San(A(ρj, 1)) ⊆ San(A(Ri, 1)) by Proposition
6.2.3.

The map Fi,j can be expanded into a Laurent series Fi,j(z) =∑
n∈Z anz

n. Consider the real function θi,j(r) := maxn∈Z{log |an|+ nr},
defined on the open real interval (log ρj, 0). Since Fi,j is an analytic
function on an open annulus without zeroes, there exists an integer
n0 ∈ Z such that the function θi,j is of the form θi,j(r) = log |an0 | +
n0r. As Fi,j extends continuously to the Gauss point in A(ρj, 1) with
limr→1 Fi,j(η0,r) = xg, we see that |an0| = 1. It follows that θi,j extends
continuously to the origin 0 ∈ R with θi,j(0) = 0.

Observe that θi,j(r) ≥ logRi for every r ∈ (log ρj, 0) by the definition
of Fi,j. It follows that the graph of θi,j lies above the linear function
r ∈ (log ρj, 0) 7→ logRi

log ρj r. In particular, we see that n0 ≤ logRi
log ρj . We

conclude that θi,j(r) > 1
2 logRi as soon as r > log√ρj . Notice that this

condition does not depend on Ri.
Pick any 1 > ρ0

j > max1≤j≤a
√
ρj and reduce the segment Ij into

a segment I0
j such that the corresponding open subset U(~v0

j ) ⊂ V is
isomorphic to ψj(A(ρ0

j , 1)). The previous calculations show that the
image under f of the segment I0

j covers at most half the loop Ci at ηX
starting with the direction df(ηU)(~vj), avoiding the point xi ∈ X. It
follows that f(U(~v0

j )) ⊆ Xi.
We may carry over this procedure to every non-discal direction at

ηV , imposing that ρ0
j > max1≤j≤a

√
ρj for every j = 1, . . . , a. Let V0 be

the resulting star-shaped domain in U , which contains the point z. We
conclude that the restriction of any f : U → X to V0 takes values in
some affinoid domain Xi. �
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6.5. Proof of Theorem I

From now on, we will suppose that the base field k has zero residue
characteristic.

6.5.1. De Franchis theorem. At several stages of the proofs of
Theorems I and H, we shall need the following (slight) improvement
of the original De Franchis theorem that applies to nonproper curves.
We refer for example to [Tsu79] for a purely algebraic proof in a much
more general context in arbitrary dimension.

Theorem 6.5.1. Let k̃ be any algebraically closed field of character-
istic zero. Let X and Y be two smooth algebraic curves defined over k̃.
Suppose that χ(X) < 0, with X not necessarily proper. Then the set of
regular maps from Y to X is finite.

6.5.2. The compact case. Let X be a smooth projective curve
of genus at least 2 not having good reduction. Recall that the latter
condition means that its skeleton consists of more than one point. Since
g(X) ≥ 2, then we know that N(X) is nonempty.

Let U be any smooth boundaryless curve. If N(X) consists of more
than one point, then we conclude by Corollary 6.4.3. Otherwise, we are
exactly in the situation of Proposition 6.4.4. �

6.5.3. General algebraic case. Let X be a smooth irreducible
algebraic curve with negative Euler characteristic whose skeleton is not
a singleton, and let X̄ be the unique smooth projective curve such that
there exists an open embedding X → X̄ with X̄ \X a finite set of rigid
points. Let U be any smooth connected boundaryless curve.

Our aim is to construct a finite affinoid cover (X̄i) of X̄ and a locally
finite cover (Uj) of U such that for every analytic map f : U → X there
exists some X̄i with f(Uj) ⊆ X̄i.

Recall that the non-proper algebraic curves X with negative Euler
characteristic are P1,an with at least three rigid points removed, and
elliptic curves and curves with genus at least 2 with finitely many rigid
points removed.

The case of P1,an \ {0, 1,∞} is treated in [FKT12, Proposition 3.2].
If X is such that X̄ does not have good reduction and its genus is
greater than 1, then we are reduced to the projective case, which has
already been treated.

Therefore, it only remains to address the cases where X is either
an elliptic curve or a projective curve with good reduction X̄ with a
rigid point removed. The curve X has exactly one node ηX , which is a
branching point of the skeleton in the case where X̄ has bad reduction
and a point of positive genus if X̄ has good reduction. We shall make
no distinction in the genus of X̄ when dealing with the good reduction
case.
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If X̄ is an elliptic curve with bad reduction, then the skeleton of X
consists of a loop C passing through ηX and the segment joining ηX
and the unique point in X̄ \X with its endpoint removed. We are in a
situation similar to that of Proposition 6.4.4. We obtain the following
affinoid cover (X̄)i=1,2 of X. Let x ∈ San(X) be any type II point on the
loop C ⊂ San(X) different from ηX and pick any connected component
B1 of X \ {x} that is isomorphic to an open disk. We set X̄1 := X̄ \B1.
Set X̄2 := X̄ \ B2, where B2 is a connected component of X \ {ηX}
isomorphic to a disk. We obtain a finite open cover of U by basic tubes
Uj having at most one node.

Assume now that X̄ is a curve with good reduction and genus at
least 1. There is only one non-discal direction ~w at ηX , and the set U(~w)
is isomorphic to a punctured disk. Pick any analytic map f : U → X.

Consider the following affinoid cover (X̄1, X̄2) of X̄. Pick an open
subset B1 of X̄ isomorphic to an open disk and containing the unique
point in X̄ \X. Assume further that B1 ∩X is strictly contained in
U(~w) and set X̄1 := X̄ \ B1. Let B2 be a connected component of
X \ {ηX} isomorphic to a disk and set X̄2 := X̄ \B2.

If f avoids the point ηX , then f(U) is clearly contained either in X̄1
or in X̄2. We may thus assume that there exists some ηj ∈ N(U) such
that f(ηj) = ηX .

Let Uj ⊂ U be the connected component of the complement of
N(U) \ {ηj} in U containing ηj. The tangent map df(ηj) is surjective,
and by Lemma 6.2.1 every preimage of ~w is non-discal. We may thus
pick ~v ∈ TηjU non-discal such that df(ηj)(~v) = ~w. Fix isomorphisms
ϕ : D\{0} → U(~w) and ψ : A(ρ, 1)→ U(~v) with ρ < 1. Assume further
that both extend continuously to the Gauss point, with limr→1 ϕ(η0,r) =
ηX and limr→1 ψ(η0,r) = ηX .

The composition F = ϕ−1 ◦ f ◦ ψ is so an analytic map on an open
annulus with values in the punctured disk. Write F (z) = ∑

n∈Z anz
n

and consider the real function θ(r) = maxn∈Z{log |an|+nr} on the open
interval (log ρ, 0). Since F has no zeros, there exists an integer n0 such
that θ(r) = log |an0 |+ n0r for all r ∈ (log ρ, 0). Moreover, |an0 | = 1, as
F (xg) = xg.

Consider the tangent map df(ηj) : TηjUj → TηXX. Both TηjUj
and TηXX are isomorphic to smooth projective curves CUj and CX
respectively over k̃ with a finite number of marked points, corresponding
to the non-discal directions at ηj and ηX respectively. In particular,
CX is a curve with one marked point and genus at least 1. The inverse
image under df(ηj) of the marked point in CX is contained in the set
of marked points in CUj by Lemma 6.2.1. Applying Theorem 6.5.1 to
the curve CX with the marked point, we obtain that there are only
finitely many possibilities for the tangent map df(ηj). As a consequence,
the degree at every marked point in CUj of the rational map df(ηj) is
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bounded. At the marked point corresponding to ~v ∈ TηjUj, this degree
is precisely n0, the slope of θ, which is thus bounded.

Hence, after maybe reducing the basic tube Uj we see that f(Uj) ⊂
X̄1. Repeating this procedure at every node of U , we obtain a locally
finite open cover (Uj) of U consisting of open disks, open annuli and
star-shaped domains satisfying the required property. �

Remark 6.5.2. The previous arguments in the case where X̄ has
good reduction apply verbatim to P1,an \ {0, 1,∞}, since its skeleton is a
tripod joining the points 0, 1 and ∞ and N(P1,an \ {0, 1,∞}) = {xg}.

6.6. Proof of Theorem H

Recall that the base field k is assumed to have zero residue charac-
teristic.

6.6.1. Curves having good reduction. Recall that the skeleton
of a smooth projective curve X with good reduction consists of a single
point ηX whose genus equals that of X.

g(ηX) ≥ 2

Figure 3. Curve with good reduction

Our previous arguments do not apply in the case of smooth projectve
curves having good reduction, and we therefore treat this case separately.
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Proposition 6.6.1. Let k be an algebraically closed complete field
of zero residue characteristic. Assume that the residue field is countable.
Let X be a smooth irreducible projective curve over k with good reduction
and of genus at least 2, and let U be a star-shaped domain. Then the
family Mork(U,X) is normal.

We shall need for the proof the following weaker version of [CTT16,
Lemma 3.6.8]

Lemma 6.6.2. Let k be an algebraically closed field of zero residue
characteristic. Let U be the complement of finitely many closed disks in
D. Let f : U → D be an analytic map.Let I ⊂ U be an interval.

Then there exists a finite subdivision of I into smaller intervals Ij
such that diam(f(z)) = ajdiam(z)nj for every z ∈ Ij.

Proof of Proposition 6.6.1. Let fn : U → X be a sequence of
analytic maps. We reduce to the case where the only node ηU in U is
mapped by every fn to the only node ηX in X by Proposition 6.4.1.

The formula (1.2) assures that g(ηX) = g(X) ≥ 2. For every n ∈ N,
the tangent map dfn(ηU ) : TηUU → TηXX is a rational map between the
residue curves at ηU and ηX . By Theorem 6.5.1 there are only finitely
many such nonconstant maps, as the residue curve at ηX has genus
greater than 1. We may thus assume that all the tangent maps dfn(ηU )
are equal. Let d be the degree of the dfn(ηU).

We treat every connected component of U \ {ηU} separately. Pick
any tangent direction ~v at ηU . The image of U(~v) under every fn is
contained in some fixed connected component V of X \ {ηX}, as all
the tangent maps df(ηU) agree. Thus, fn(U(~v)) is contained in some
affinoid domain of X for every n. Theorem A implies that there exists a
subsequence fnj converging on U(~v) to some continuous map f∞. Since
k̃ is countable, we may extract diagonally at every tangent direction at
ηU and obtain a limit map f∞ : U → X that is continuous on U \ {ηU}.

Observe that f∞(ηU ) = ηX . It remains to check that f∞ is continuous
at ηU . In order to do so, it suffices to verify that for every sequence
of points zm ∈ U converging to ηU we have f∞(zm) m→∞→ ηX . If the
points zm belong to infinitely many different connected components of
U \ {ηU}, then their images f∞(zm) belong to infinitely many distinct
connected components of X \ {ηX} and we conclude.

We may thus assume that all the points zm belong to U(~v) for some
fixed tangent direction ~v ∈ TηUU . Fix an isomorphism ψ : Y → U(~v),
where Y is an open disk or an open annulus depending on whether
~v is discal or not. Assume that ψ extends continuously to the Gauss
point xg with limr→1 ϕ(η0,r) = ηU . We may assume that for every
m ∈ N there exists some 0 ≤ r < 1 such that zm = ψ(η0,r). Fix
an isomorphism ϕ : D → V that extends continuously to xg with
limr→1 ϕ(η0,r) = ηX . Checking the continuity of f∞ at ηU amounts to
showing that limr→1 ϕ

−1 ◦ f∞ ◦ ψ(η0,r) = xg.
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For every fixed n ∈ N ∪ {∞}, set Fn = ϕ−1 ◦ fn ◦ ψ : Y → D. The
series development Fn(z) = a

(n)
0 + ∑

i 6=0 a
(n)
i zi is such that |a(n)

i | ≤ 1
for all i ∈ Z, |a(n)

d | = 1 and |a(n)
i | < 1 for i ≤ d, where d denotes the

degree of dfn(ηU). Consider the segments I = {η0,r : 0 ≤ r < 1} ⊂ D
and ln = I ∩ F−1

n (I). Notice that diam(Fn(η0,rn)) = |a(n)
0 |, where

rn = inf{r : η0,r ∈ ln}.
We distinguish two cases. Assume first that there exists a positive

real number R < 1 such that |a(n)
0 | ≤ R for infinitely many indices n ∈ N.

After maybe extracting a subsequence, we may reduce Y as to obtain
an annulus Y1 centered at 0 containing the point xg in its topological
boundary and such that every map Fn avoids the disk D̄(0;R). Moreover,
the skeleton San(Y1) ⊆ ⋂n ln is mapped to the segment I. For sufficiently
large r, Lema 6.6.2 implies that Fn(η0,r) = η0,rd, and so we see that
limr→1 F∞(η0,r) = xg.

Suppose next that |a(n)
0 | → 1. In this case, there exists an open

annulus A ⊆ U(~v) whose topological boundary contains ηU such that
the restriction of f∞ to A is the constant map ηX . Indeed, after
extracting a subsequence we have that Fn(η0,rn) = η0,rnd = η0,|a(n)

0 |
by

Lemma 6.6.2. As |a0(n)| → 1, then rn → 1
d
. Pick any r > 1

d
. For

n� 0, we may assume that r > rn. Then, Fn(η0,r) = η0,rd, and since
rd > rnd = |a(n)

0 | → 1, we see that Fn(η0,r) n→∞→ xg. Thus, F∞ ≡ xg on
the open annulus A(1

d
, 1). �

6.6.2. Proof of Theorem H. Assume first that X is a projective
curve of genus at least 2 with good reduction. Denote by ηX its only
node. Recall that X \ {ηX} is a countable disjoint union of open disks.
Since the open disk and the open annulus have been treated separatedly
in Corollary 6.4.2, we may assume that U has nodes. The set N(U) is
discrete and consequently we may find a locally finite cover (Uj) of U by
basic tubes being either an open disk, an open annulus or a star-shaped
domain.

Fix some basic tube Uj. If the set of nodes of Uj is empty, then
Uj is either a disk or an annulus, and we may apply Corollary 6.4.2
and Theorem A to extract a subsequence converging pointwise on Uj to
some continuous map. Suppose now that Uj contains one node ηj , i.e. it
is a star-shaped domain. Then we apply Proposition 6.6.1 to extract a
subsequence that is pointwise converging on Uj to some continuous map.
This procedure may be repeated for every open set Uj, and extracting
diagonally we obtain a subsequence fnj that converges on U to some
continuous map f∞ : U → X. This concludes the proof in the case of
curves having good reduction.

Suppose now that X is a smooth algebraic curve with negative Euler
characteristic whose skeleton is not a single point. Let X̄ be the smooth
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projective curve such that X can be embedded in X̄ and X̄ \X is a
finite set of rigid points.

Let U be any smooth connected boundaryless curve and pick any
sequence of analytic maps fn : U → X. By Theorem I we may find a
locally finite open cover Uj of U by basic tubes, and a finite k-affinoid
cover X̄i of X̄ such that for every n ∈ N and every j one has fn(Uj) ⊆ X̄i

for some i. By Theorem A and a diagonal extraction argument, we may
extract a subsequence converging pointwise to some continuous map
f∞ : U → X̄.

By Proposition 6.2.5, for each index j either we have f∞(Uj) ⊂ X
or f∞|Uj is constant equal to some point in X̄ \ X. If f∞(U) is not
included in X, then by continuity and connectedness we conclude that
f∞ is constant equal to some point in X̄ \X as required. �
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Titre : Théorème de Montel non-Archimédien
Mots Clefs : Famille normale, géométrie de Berkovich, hyperbolicité, systèmes dynamiques.
Résumé : Cette thèse est dédiée à l’étude des propriétés de compacité de familles d’applications
analytiques entre espaces analytiques définis sur un corps métrisé non-Archimédien k. Nous travaillons
dans le contexte des espaces analytiques développés par Berkovich pour exploiter leur topologie modérée.
Une de nos motivations est le désire d’introduire une notion naturelle d’hyperbolicité au sens de Kobayashi
dans ce cadre.
Nous démontrons d’abord un analogue au théorème de Montel pour des applications analytiques à valeurs
dans un domaine borné de l’espace affine. Afin de ceci faire, nous paramétrisons l’espace des applications
analytiques d’un polydisque ouvert dans un polydique fermé par le spectre analytique d’une k-algèbre de
Banach adéquate. Le résultat découle alors de la compacité séquentielle de cet espace.
Nos résultats mènent naturellement à une définition de famille normale, et nous introduisons ensuite deux
ensembles de Fatou associés à un endomorphisme de l’espace projectif. Nous montrons que les composantes
de Fatou se comportent comme dans le cas complexe et ne contiennent pas d’image non-triviale de la droite
affine épointée.
Ensuite, nous appliquons notre notion de normalité à l’étude de l’hyperbolicité dans le cadre non-
Archimédien. Nous reprenons les travaux de W. Cherry et démontrons plusieurs caractérisations des
variétés projectives lisses pour lesquelles la semi-distance de Cherry-Kobayashi sur l’ensemble des points
rigides définit la topologie usuelle. Nous obtenons finalement une caractérisation des courbes algébriques
lisses X de caractéristique d’Euler négative en termes de la normalité de certaines familles d’applications
analytiques à valeurs dans X.

Title : A non-Archimedean Montel’s theorem
Key words : Normal family, Berkovich geometry, hyperbolicity, dynamical systems.
Abstract : This thesis is devoted to the study of compactness properties of spaces of analytic maps
between analytic spaces defined over a non-Archimedean metrized field k. We work in the theory of analytic
spaces as developed by Berkovich to fully exploit their tame topology. One of our motivations is the desire
to introduce a natural notion of Kobayashi hyperbolicity in this setting.
We first prove an analogue of Montel’s theorem for analytic maps taking values in a bounded domain of
the affine space. In order to do so, we parametrize the space of analytic maps from an open polydisk to
a closed one by the analytic spectrum of a suitable Banach k-algebra. Our result then follows from the
sequential compactness of this space. Our results naturally lead to a definition of normal families, and we
subsequently introduce two notions of Fatou sets attached to an endomorphism of the projective space. We
show that Fatou components behave like in the complex case and cannot contain non trivial images of the
punctured affine line.
Thereafter, we apply our normality notion to the study of hyperbolicity in the non-Archimedean setting.
We pursue the work of W. Cherry and prove various characterizations of smooth projective varieties whose
Cherry-Kobayashi semi distance on the set of rigid points defines the classical topology. We finally obtain
a characterization of smooth algebraic curves X of negative Euler characteristic in terms of the normality
of certain families of analytic maps taking values in X.
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