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Introduction

Cloud computing has recently emerged as a successful alternative computing paradigm, involving a large number of machines connected to a network delivering computing power, storage and Information Technology (IT) services over the Internet. The increasing use of cloud computing introduced new security risks, exposing cloud users to see the data they store and the applications they host in the cloud compromised. To alleviate this threat and increase trust into the cloud, the cloud service providers should implement mechanisms to ensure that the data and applications are correctly managed in their infrastructures. The discovery of security breaches in the cloud may result in heavy economical losses and poor reputation, especially if the provided services target the general audience. Consequently, security concerns act as strong impediments to the wide adoption of cloud technologies.

1 Topic of Research

Observations

Before characterizing our topic of research, we present some actual facts to illustrate our motivation in conducting research on some peculiar aspects of cloud security: verifiability and accountability. These observations will reflect the existence of these two concerns.

Lack of Trust in Cloud Computing: the Sidekick Data Loss Incident

The context. In the first decade of the new century, at a time when smartphones were not yet as popular as they are nowadays, three former employees of Apple 1 founded Danger, a Consumer Electronics (CE) company that designed and sold what is known as the first successful smartphone in the United States: the Sidekick smartphone. Sidekick phones were launched under T-Mobile carrier and their competitive advantage, compared to other phones available in the market at that time, relied on the pioneering provision of mobile Internet services and especially of an application marketplace (later popularized by the Apple's App Store and Google's Android Market). Sidekick caught the attention of certain numbers of celebrities such as Paris Hilton 2 making the phones rapidly popular among the general audience, in particular for teenagers and young adults 3 . Its popularity can also be assessed through the important number of thefts 4 and hackings 5 the devices were subject to. Sidekick phones also pioneered by their use of cloud computing services: all personal data, such as contacts, text messages, calendar entries and pictures, were not locally stored (not even backed-up) in the devices but stored in cloud servers operated by Danger. The company has finally been acquired in 2008 by Microsoft 6 .

The facts. At the beginning of October 2009, many users started to face data service outage: they were not able to access their pictures, contacts, calendar entries, or e-mails. This outage was caused by a server crash at Danger. The earliest complaints about this event were published on Twitter from October 2, 2009. Among dissatisfied users, Perez Hilton, a famous on-line American gossip blogger, launched the hashtag " # TMobileSucks" which became a number one trending topic on Twitter 7 . Microsoft (who bought Danger) and T-Mobile kept silent for a couple of days concerning the amount of damage this failure caused. But on October 10, 2009, Microsoft and T-Mobile said that the data may be permanently lost 8 . Fortunately, on October 12, 2009, T-Mobile and Microsoft finally declared that they would be able to recover Sidekick users' data 9 . Finally on October 15, 2009, Microsoft published a small report 10 announcing that it has recovered most of the Sidekick users' data. Besides, the report revealed that "the outage was caused by a system failure that created data loss in the core database and the back-up". Other sources 11 relate a hardware problem on servers run by Danger.

The impacts. The Sidekick data loss incident was known to be the "biggest disaster of cloud computing" 12 : it impacted an estimated number of 800,000 users. For a long period of nearly two weeks (from October 2, to October 15, 2009), they were unable to access their own data, ranging from calendar entries to pictures, including game high scores and notes.

A straightforward commercial repercussion arose in Sidekick phones sales. The American carrier T-Mobile temporarily interrupted sales of the smartphone 13 , from October 12, 2009. Another consequence results in several lawsuits being filled against both Microsoft and T-Mobile. These lawsuits alleged the negligence of the two international companies of guaranteeing an appropriate level of back-up. "T-Mobile and its service providers ought to have been more careful with the use of backup technology and policies to prevent such data loss.", one complaint says 14 . Another one 15 sums up the situation as following: "T-Mobile and Microsoft promised to safeguard the most important data their customers possess and then apparently failed to follow even the most basic data protection principles. What they did is 6 Robert J. Bach, "Microsoft Agrees To Acquire Danger Inc.", Microsoft News Center, February 11, 2008, http://tiny.cc/hsgr8x [Accessed: February 1, 2016]. Rumors affirmed this acquisition was part of Microsoft's strategy to compete with the new successful Apple's smartphone: the iPhone. 7 Cristina Lepore, "The T-Mobile Sidekick Data Outage: A Lesson in Social Media Crisis Management", 451 Heat, October 11, 2009, http://tiny.cc/4vgr8x [Accessed: February 1, 2016]. 8 Excerpt of T-Mobile Press Release on Sidekick Data Loss: "Regrettably, based on Microsoft/Danger's latest recovery assessment of their systems, we must now inform you that personal information stored on your device -such as contacts, calendar entries, to-do lists or photos -that is no longer on your Sidekick almost certainly has been lost as a result of a server failure at Microsoft/Danger". Pete Cashmore, "T-Mobile: All Your Sidekick Data Has Been Lost Forever", Mashable, October 10, 2009, http://tiny.cc/4ygr8x [Accessed: February 1, 2016]. 9 Saul Hansell, "T-Mobile Says Sidekick Owners May Recover Lost Data" The New York Times, October 12, 2009, http://tiny.cc/l1gr8x [Accessed: February 1, 2016]. 10 Roz Ho, "Microsoft Confirms Data Recovery for Sidekick Users", Microsoft News Center, October 15, 2009, http://tiny.cc/93gr8x [Accessed: February 1, 2016].

11 Ina Fried, "Sidekick Users Share Their Horror Stories", CNET, October 12, 2009, http://tiny.cc/lehr8x [Accessed: February 1, 2016].

12 Rory Cellan-Jones, "The Sidekick Cloud Disaster", BBC News, October 13, 2009, http://tiny.cc/xhhr8x [Accessed: February 1, 2016]. 13 Maggie Shiels, "Phone sales hit by Sidekick loss", BBC News, October 13, 2009, http://tiny.cc/xjhr8x [Accessed: February 1, 2016]. 14 Daniel Eran Dilger, "Sun, Oracle save Microsoft's Pink After Danger Data Disaster", AppleInsider, October 21, 2009, http://tiny.cc/nlhr8x [Accessed: February 1, 2016]. 15 Ina Fried, "Lawsuits Filed Over Sidekick Outages", CNET, October 14, 2009, http://tiny.cc/8nhr8x [Accessed: February 1, 2016].

unthinkable in this day and age."

Resulting from the data loss and the consecutive lawsuits, the reputations of T-Mobile and Microsoft have been harmed. In the case of T-Mobile, which was facing at that time, a substantial churn, this disaster did not help the carrier increase the number of its subscribers 16 . As far as Microsoft is concerned, 2009 was a key year for the company: the Sidekick disaster occurred just one month before Microsoft was believed to promote its cloud computing services, Azure 17 .

More than the damage caused on Microsoft's reputation as a cloud service provider, the public perception of cloud computing in general suffered in this anecdote. As a matter of fact, loss of confidence in cloud computing came to light after the Sidekick data outage. This episode clearly supported the idea that cloud services cannot be trusted. Customers of other cloud services were likely to question the providers about their storage, back-up and recovery practices.

Analysis. The Sidekick smartphone users had no technical means to back-up their personal data. The devices were designed such that the data was not stored locally but directly in the cloud. This means that the users were putting their entire trust on Danger (Microsoft) competence in storing their data, making the supposition that the data would be correctly stored in the cloud, intact and available at any time. Even worse, users (legitimately) assumed that the cloud servers were redundantly storing their data to prevent such a data loss disaster. Hence, the Sidekick users were not backing-up their data locally. In spite of the awareness of the data loss threat and the evolution of cloud technologies 18 , the concern remains the same: personal or sensitive data cannot be assumed to be trustfully stored in the cloud.

Along with the lack of trust concern, the Sidekick anecdote reveals another cloud computing issue: delegating all control over stored data to the cloud is problematic especially in the case of service outage. As a matter of fact, these two concerns also apply if the service failure was due to malicious acts.

The perspective of our work in this thesis is to bring some control on the way an untrusted cloud stores outsourced data. In particular, we believe that data owners may be willing to check that their data is, at any point of time, correctly stored and available and, under certain adversarial circumstances, retrievable. For such a verification, the data owners should be provided with proofs that their data is intact and recoverable.

Verifying Untrusted Computers: the SETI@home Project

The context. Since the dawn of time, humanity has contemplated the stars and wondered "Are we alone in the Universe?". Owing to the difficulty of space traveling and planet visiting, the chance to come face to face with an alien is extremely low. Nevertheless, the advent of radio communications gives hope that this question will not remain unanswered. Indeed, humanity has been broadcasting radio signals into space to find other civilizations. Humans also believe that other beings might be doing the same from other planets, from other galaxies. The Search for ExtraTerrestrial Intelligence (SETI) project is an American program started in the sixties whose goal is to detect signals from outer space that would witness the existence of forms of extraterrestrial intelligence. The project analyzes the electromagnetic radiations from space and tries to identify signals that are not the random noise due to gravitational forces. Researchers are collecting a huge amount of data from radio telescopes around the world. However, processing this data is an expensive and resource intensive task which the researchers could not afford themselves. Hence, in 1999, researchers at the University of California, Berkeley, devised the SETI@home project: instead of analyzing the data themselves, the analyses are distributed among a large number of volunteers using the Internet. The SETI@home project is the first successful and popular implementation of distributed computing. The volunteers download the Berkeley Open Infrastructure for Network Computing (BOINC) client application which runs when their computers are not used. Thus, their computational resources are made available to the SETI project. All BOINC clients interface with a central BOINC server which divides the signal data and its respective computation (for analysis) into small units called work units. The server sends these work units to computers distributed over the Internet, which analyze their respective data and send back the results to the server. The computations performed by the BOINC clients mainly consist in statistical signal processing which involves operations such as the discrete Fourier transform. Participants to the SETI@home project are volunteers; Berkeley does not offer any material or financial reward to those who contribute most to the radio signal processing.

The facts. Since the beginning of the SETI@home project in 1999, BOINC publishes rankings showing which users and which machines processed the biggest amount of work units 19 . These rankings act as incentives for joining the project, downloading and running the BOINC client software. Indeed, as no material or financial compensation are offered, reputation and success provided by these rankings constitute the only reward which motivates volunteers to process signal data. However, the downside of rankings is that it creates competition between users, and thus some of them might cheat to get a better rank. Molnar [START_REF] Molnar | The SETI@home problem[END_REF] reported an episode in which "cheating" with the BOINC software compromised computation integrity, yielding incorrect results. A German volunteer, who called himself "Olli" created and published an unauthorized patch to improve and speed up the computations performed by the original BOINC client application. SETI@home researchers revealed that this patch actually return wrong results, substantially different from what the original BOINC software would have output. Besides, there was no way for the BOINC server to tell whether results are returned by a patched client or by a normal one. Camp and Johnson [START_REF] Camp | The Economics of Financial and Medical Identity Theft[END_REF] also report users tampering with result data to generate false positives.

The impacts. This "Olli' anecdote raised awareness about the computation integrity concern in distributed computing, as shown in the SETI@home's Frequently Asked Questions (FAQ) 20 . This concern was referred as the "SETI@home problem" by Molnar [START_REF] Molnar | The SETI@home problem[END_REF] who summarized it by the following question: "how do you ensure that the client machines are doing the right thing?". Indeed, the results of a delegated computation to a volunteer computer cannot be trusted because (i) unintentional hardware problem at client hosts can cause errors in the computations; (ii) volunteers might intentionally return bogus results by sabotage of the application or simply by not performing the requested computation. The SETI@home project was then required to review their security practices in order to filter out incorrect results. One envisioned approach to prevent such a misbehavior was to remove the incentive that motivates users to run patched BOINC client software (such as the one released by "Olli"). Namely, SETI@home could have stopped ranking users to shrink competition and thus thwart cheating behaviors. However, this solution would also have removed the motivation to participate in the project. Hence, the BOINC platform copes with this computation integrity concern via replication. As the project involves a large number of volunteers 21 , the same work unit (same computation on the same data) is randomly assigned to several clients. Assuming that clients running unauthorized patched BOINC applications form a minority and that clients cannot collude 22 , only the results that appear in a majority will be considered as valid. Molnar [START_REF] Molnar | The SETI@home problem[END_REF] also extrapolates another possible approach from some research conducted around the years 2000s about proofs of correct computation, that consider an adversary that would only disrupt the computation and do not mind about the reputation resulting from the BOINC rankings 23 . Applied to the SETI@home project, the volunteers would be required to generate a proof of correctness for each result they output and the BOINC server would verify the validity of this proof.

Analysis. Related to the SETI@home problem, Gennaro et al. [90] wrote: "A related fear plagues cloud computing". Indeed, when a user outsources some resource intensive computation to the cloud, the concern of computation integrity and result correctness arise. This user cannot trust the cloud to correctly perform the outsourced computation, as the BOINC server cannot trust the BOINC clients. While the incentives for BOINC clients to misbehave were related to the inherent competition in the SETI@home project, a malicious cloud may return bogus computation results to save computational resources. As a consequence of the "Olli" patch problem, the BOINC platform devised a measure to control the computations by the untrusted BOINC clients and detect fraudulent results. Similarly, cloud users should be given control on the way the cloud operates the outsourced computation. Namely, they should be convinced that the returned results are correct by verifying the computation. Namely, as extrapolated by Molnar [START_REF] Molnar | The SETI@home problem[END_REF] for the SETI@home project, the cloud server should generate proofs of correctness. Besides, the verification of these proofs must demand less computational resources than the computation itself. Otherwise, delegating the computation offers no gain to the user. The vision of our work consists in giving to cloud users such a control over the computation they outsource to a cloud server.

Security, Privacy and Accountability: the iCloud Data Breach

The context. The breakthrough of cloud computing technologies opened the way to a plethora of new services. Among others, iCloud, provided by Apple since 2011, hit the headlines during summer 2014, because of a media-hyped data breach. iCloud 24 is the leading cloud computing service offered by Apple Inc. It provides cloud storage and serves as an automatic back-up system for iOS 25 devices. Users can upload their documents, contact lists, e-mails, photos and other multimedia items to their iCloud account. They can easily access their data from any device and share them to others.

The facts. On August 31, 2014, a substantial collection of private pictures, portraying at least 100 female celebrities, was hacked and leaked on the Internet. Some of these stolen pictures contain nudity. They were initially published on the anonymous image-based forum, 4chan 26 , and later advertised on popular social networks such as Reddit 27 and Tumblr 28 . All these images (even images that were previously deleted by the subjects) were stolen via a breach in iCloud. Many of the affected celebrities confirmed the genuineness of the pictures. Other data such as calendar entries, address books or text messages were also illegally ob-tained. Apple confirmed 29 within two days that the data leak resulted from targeted attacks on celebrities' iCloud accounts. As a matter of fact, the hackers obtained the pictures by the brute force guessing 30 of usernames, passwords and security questions.

The impacts. The illicit distribution of the hacked pictures was perceived as a major privacy breach for the affected celebrities. Some of the subjects were underage when the nudity pictures were taken, leading to prosecution for child pornography distribution for all web users that republished them.

Beyond the legal aspects of the leak, finding responsibilities and evidence of the data breach was one of the main priorities. The concern was to identify which party is responsible for the attack: did the iCloud service present vulnerability or were the accounts hijacked by brute-force attack? Investigations by Apple revealed that the problem stemmed from these two aspects. It appears that hackers were able to conduct an unbounded number of brute force iCloud credential guesses because iCloud was not locking the number of signing-in attempts. Besides, iCloud legitimate users did not receive notifications that their accounts were tried to be accessed. In a sense, Apple rejected responsibility for the hack and blamed iCloud users for choosing weak or multiple-time passwords as credentials.

As a result, while denying accountability for this incident 31 , Apple took some remediation measures 32 to prevent similar attacks in the future: it added security alerts for the users when someone is trying to access and change their accounts; it increased users' awareness about the danger of weak passwords and it introduced a two-factor authentication to access the iCloud account.

This incident undermined iCloud's and Apple's reputation and induced bad publicity for Apple just before the release of their new operating system iOS8 32 . As a result, Apple published an accountability report 33 on their security and privacy practices. Beyond iCloud, cloud computing services in general suffered from the iCloud data breach. It aroused concerns on how these services guarantee privacy and security and the general audience's trust in the cloud.

Analysis. The iCloud data breach is an example of how important the concept of accountability is and how critical trust in cloud computing becomes. In its accountability report 33 , Apple states that "strict policies govern how all data is handled". Nevertheless, we identify at least three issues that should have been stated in such policies in order to ensure a better level of privacy and accountability: (i) Deleted pictures were still recoverable. This may consist in a policy violation, or even a legal violation since many data protection regulations impose restrictive rules on data erasure 34 ; (ii) No notifications or alerts were sent to legitimate users when an unauthorized user accessed the iCloud accounts or when data was retrieved from unknown devices; (iii) Collecting evidence 35 about the data breach was a tough issue in order to determine the responsibilities of the actors involved in the iCloud 29 Apple Media Advisory, "Update to Celebrity Photo Investigation", Apple Press Info, September 2, 2014, http://tiny.cc/o8ir8x [Accessed: February 1, 2016]. 30 A script used to guess iCloud login credentials was on Github. "Brute Force Attack Burns Celebrities", LMG Security Blog, September 11, 2014, http://tiny.cc/udjr8x [Accessed: February 1, 2016]. 31 Nicole Arce, "iCloud? Find My iPhone? What Should Be Blamed For Nude Celebrity Photo Leaks? Neither, says Apple". Tech Times, September 4, 2014, http://tiny.cc/trjr8x [Accessed: February 1, 2016]. 32 Daisuke Wakabayashi, "Tim Cook Says Apple to Add Security Alerts for iCloud Users", The Wall Street Journal, September 5, 2014, http://tiny.cc/fvjr8x [Accessed: February 1, 2016]. 33 Tim Cook, "Apple's Commitment To Your Privacy", Apple, http://www.apple.com/privacy/ [Accessed: February 1, 2016]. 34 Regulation of the European Parliament and of the Council on the protection of individuals with regard to the processing of personal data and on the free movement of such data: http://tiny.cc/12jr8x [Accessed: February 1, 2016]. 35 Warwick Ashford, "Apple and FBI Launch iCloud Hack Investigation", Computer Weekly, September 2, 2014, http://tiny.cc/25jr8x [Accessed: February 1, 2016].

incident (Apple cloud service, users, malicious parties). Hence, we can appreciate the important role played by appropriate policies in order to mitigate risks and increase trust in cloud-based services, in which users give up the control over their data. Establishing policies and ensuring their enforcement enable those users to keep data under certain control.

Framing the Topic

In the observations we made in the previous section, we mentioned some key notions that we define in the present section in more detail. The expression of these definitions contribute to the delineation of the topics of this dissertation.

Cloud Computing: an emerging computing paradigm

The term "cloud computing" (or just "cloud") is perhaps one of the most popular buzzword in IT in this early stage of the 21 st century. No other technologies has raised the same amount of enthusiasm and passion as cloud computing. Envisioned since the 1950s, the idea of providing shared access to a single resource (in the model of client/server) has constantly evolved. The advent of virtualization and virtual machines, the development of web services and the growing number of individuals and companies able to connect to the Internet made the ideal conjunction for cloud computing to exist. In 2006, Amazon unveiled Amazon Web Services 36 , maybe the first cloud-based service offering storage and computation known to the general audience. 2009 marked a shift in cloud computing perception: two other multinational companies, namely Google and Microsoft, entered the field. Google launched its App Engine, a cloud-based platform for developing and hosting web applications in Google's servers 37 , while Microsoft announced Azure, a cloud-based platform for developing applications that are hosted inside Microsoft's data centers 38 . Naturally, other big players in the IT market took part in cloud computing evolution (Oracle, HP, Apple, etc.) It was not until September 2011 that the National Institute of Standards and Technology (NIST) released a definition of cloud computing embraced by many research papers and IT articles: Definition 1 (Cloud Computing). "Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction". [START_REF] Mell | The NIST Definition of Cloud Computing[END_REF] In other terms, the term "cloud computing" represents a computing paradigm with the following four characteristics:

On-demand service: Cloud clients can obtain cloud services whenever they want, and as long as they want, in an automated way, without requiring any human assistance.

Accessibility: Cloud services are delivered using Internet and through standardized mechanisms. The clients are enabled to access such services through a variety of devices (such as mobile phones, tablets or laptops) and from anywhere on the globe.

Pooled resources and multi-tenancy: Unlike the traditional IT model that provides services for one client, cloud-based services share pooled resources that are delivered to multiple clients in a multi-tenant model. Namely, a single instance of resources serves multiple clients. Note that resource mutualization implies location independence: the resources are distributed among different locations in order to maintain cloud performances (availability of resources, high Quality of Service (QoS), etc.).

Elasticity: Cloud computing virtually supplies computing, storage and network resources that the clients can easily access and use. This illusion is due to the capacity of the cloud to dynamically scale up or down the provision of a service in function of the demand. Because of resource pooling and multi-tenancy, the elasticity of cloud computing implies that a resource not used by one client can be assigned to another one who needs more resources.

Adopting cloud computing presents many benefits for both the service consumer and the service provider. Indeed, the cloud client, be it a company or an individual, can leverage cloud computing technologies for:

Reduced IT costs: Instead of spending a possibly large amount of money on IT infrastructures for storage and computation, an organization can rent resources from cloud providers. Reduced costs also concern IT maintenance or support, including salaries or energy expenditures.

Ease of access and usage: Cloud-based services empower their users to access the resources from any geographical location and simultaneously by different users, with various devices. Besides, the resources can be used in an automated and intuitive way, without the users being required to be trained to use cloud services.

High QoS: Cloud services supply their users with highly responsive applications with low latency on demand. This is so because cloud computing optimizes the use of pooled resources via the elasticity property.

Flexibility: This benefit also results from cloud computing's elasticity characteristic. For example, a company can face several seasonal changes in demand of resources (such as adding users into a cloud-based system for a short period of time). Cloud computing can handle such variations easily by scaling up and then down again the provision of the demanded resources. Besides, cloud providers often adopt the pay-as-you-go model: clients are charged only for the resources they consume. Hence, no resource is left idle.

From the cloud provider's perspective, benefits include:

Optimized utilization of resource: While in traditional computing systems, IT assets, such as hardware, are not used at their maximum capacity, cloud computing empowers cloud providers to effectively allocate their idle resources to a broad range of clients.

Increased profit: With an increased number of cloud users, cloud providers enter a new growing market that generates high revenue. Besides, the optimized use of their resources help make new high incomes.

Alongside cloud computing, the 21 st century is facing the advent of "big data". This other buzzword not only describes data that is "big" in size (namely, tera, peta or exabytes of data) but also considers data that is constantly produced (such as streaming data or time-series data) and that presents a heterogeneity of formats and structures. Hence, the big data paradigm deals not only with storing these huge amount of data but also with processing, analyzing, visualizing and extracting relevant information and knowledge from different kinds of data. Organizations generating or collecting big data are confronted to the following concern: how to efficiently process this data? A possible solution to this concern arises from cloud computing that provides an optimal infrastructure to deal with big data.

The elasticity property of the cloud makes it ideal to handle big data processing. Together cloud computing and big data empower organizations to operate cost effective and scalable data analytics, from which they may gain valuable business information.

Cloud Computing: security, privacy and compliance challenges

In spite of the benefits we listed previously, cloud computing is prone to various security and privacy concerns (as shown in Section 1.1), which present barriers to the widespread adoption of cloud computing. Besides, for cloud service providers to be competitive in the cloud computing market place, these concerns must be addressed. Most of the impediments to the success of cloud computing stem from a combination of two interconnected issues, namely loss of control and lack of trust:

• Cloud users relinquish the control over their data to the cloud service providers. Indeed, by outsourcing their assets (data and computation) to the cloud, users do not physically possess them anymore and rely on the cloud providers to implement adequate control over a wide range of aspects, including: storage, access, privacy, confidentiality, integrity, availability and usage. This loss of control is typically critical for organizations which must adhere to regulatory obligations such as the European Data Protection directive [START_REF]the Council of 27 April 2016[END_REF], the Health Insurance Portability and Accountability Act (HIPAA) [1] or the EuroSOX39 directive on transparency and accountability of financial control [79].

Hence, the loss of control over data by companies induces compliance challenges with respect to these regulations.

• Deterrence in cloud computing adoption can also be attributed to a lack of trust in cloud service providers. This lack of trust applies according to two aspects. First, unintentional failure in the cloud services may cause data loss or service disruption which can be critical for organizations that rely on these services. Secondly, cloud providers themselves are considered as untrusted and malicious. They can adopt two adversarial behaviors. A curious cloud compromises data and computation privacy and confidentiality, by, for instance, performing data mining operations to acquire valuable knowledge and information from the data they manage. This is typically the case with the huge amount of sensitive and personal data generated and collected by social networks such as Twitter, LinkedIn or Facebook. A malicious cloud intentionally misuses its resources in such a way that it compromises confidentiality, integrity or availability of the data and computations they handle. Furthermore, malicious third parties are another threat faced by cloud services. Alongside lack of trust, transparency on how, why and where the data and computations are processed is a fundamental concern in cloud-based services. Providers may be tempted to hide any system failure or data breach that might comprise their reputation.

To summarize, transferring control to an untrusted cloud poses several security and privacy risks, which are correlated with transparency, responsibility and compliance concerns. The threats associated with these risks were reported and analyzed by the Cloud Security Alliance (CSA) in their "Notorious Nine" report [START_REF]The Notorious Nine: Cloud Computing Top Threats in 2013[END_REF] that lists the nine cloud computing top threats.

Here are some real-word examples of some of these threats:

Data breach: This threat is reported as the Top 1 in cloud computing. It refers to the theft and leakage of sensitive data falling into the hands of unauthorized parties. Over the past decade, not only have more and more organizations suffered from data breach incidents, but the amount of stolen data also increased. In addition, this stolen data is more and more sensitive 40 . The term sensitive encompasses personal, business, medical and governmental/military data. In the following, we list some examples of data breach incidents. They do not all involve cloud technologies, but similar incidents are believed to occur in the cloud as well.

Personal data: The iCloud data breach we described in Section 1.1.3 is an example of personal data breach. Hackers stole and published celebrities' personal pictures. Business data: In 2013, a major discount retailer, Target Corporation, unveiled that a serious data breach affected more than 70 million customers, during the Christmas holiday season. The stolen data included credit card information 41 . Medical data: In 2015, an important data breach at Premera Blue Cross, an American healthcare insurer 42 , was discovered. This data breach affected more than 11 million people. Data includes date of birth, social security number and clinical information. Governmental data: In 2015, the American government's personnel management agency (OPM) announced that hackers stole 21.5 million people's personal data from their IT system 43 . The stolen data includes information collected from security clearance applications, such as birth dates, addresses, current and former federal employees, information about relatives, eye colors, financial history, past substance abuse, social security numbers, etc.

Data loss: Cited as the Top 2 threat by the CSA [START_REF]The Notorious Nine: Cloud Computing Top Threats in 2013[END_REF], data loss refers to the unrecoverable destruction of data as was the case in the Amazon's cloud crash disaster in April 2011 44 . Data loss also corresponds to the temporary unavailability of the data as faced by the Sidekick users in the example we mentioned in Section 1.1.1. These two previous examples show data losses resulting from unintentional incidents. In addition to these, malicious behaviors can also compromise data storage, data integrity and data availability by, for instance, deleting or tampering with the data, unlinking the data from a larger context [START_REF]The Notorious Nine: Cloud Computing Top Threats in 2013[END_REF] or destroying encryption keys if the data is encrypted.

The above examples of cloud computing threats in real-life scenarios justify the recent research efforts in the topic of security and privacy in the cloud. Besides, with the increasing demand of cloud services and the proliferation of mobile devices, the cloud security market has been enjoying an important and rapid growth in the past few years. A report from Transparency Market Research estimated that the cloud security market reached $4.5 billion in 2014 and that it could be worth $11 billion by 2022 45 .

However, the peculiar characteristics of cloud computing negate the straightforward utilization of traditional IT security mechanisms such as encryption to ensure confidentiality of data, cryptographic-based techniques to guarantee data or computation integrity, isolation to secure computations, etc. This is due to several challenges specific to the cloud:

1. The proliferation of data, the so-called "big data" movement, and the increasing number of mobile devices incite individuals and organizations to use cloud services to outsource and access at anytime and from anywhere their data and applications.

2. This implies that the cloud users lose control over their data and lend it to the cloud. Besides, since the users do not have the physical possession of their data anymore, making it safe via traditional IT security mechanisms is impractical. Therefore they have to rely on cloud providers to implement the appropriate security measures.

3. Regulatory and contractual compliance makes challenging the application of security measures in the cloud, especially those laws and contracts that rule storage and use of data. They entail that verifications of the way the cloud stores and uses the outsourced assets must be performed to show that the cloud is compliant. In a wider perspective, compliance implies accountability with respect to a cloud's behavior.

In addition, solutions addressing cloud security concerns and challenges must be designed in a such a way that outsourcing to the cloud remains an attractive solution for cloud users. Security techniques must be efficient and must, at the same time, ensure ease of use and access of outsourced data.

Focus of the present work

This thesis addresses the problem of verifiability in the cloud. The goal is to devise mechanisms used by cloud users to control and verify that the cloud correctly delivers the promised services of storage and computation. It is legitimate to believe that users who consume and pay for these services expect that their data are correctly stored or that their computations are correctly performed. In other words, the terms of the "contract" (be it an explicit agreement such as Service Level Agreements (SLAs), terms of use, policies, or a tacit agreement) that binds the cloud and its users should be verifiable [42] and failures to meet this contract or violations to the terms should be detectable. Intuitively, we say that a property is verifiable if given an instance of this property, an agent can test whether this instance actually satisfies the property. The verifiability concept supports transparency: verifying cloud's behavior enables to know about the controls the cloud put in place to handle outsourced data and outsourced computation.

This thesis particularly focuses on two aspects of verifiability in the context of cloud computing, namely storage and computation:

Storage: We mentioned in Section 1.2.2 the data loss threat: a cloud user outsources to the cloud her possible large amount of data and expects the cloud to correctly store the data. Therefore, the user wants to verify the integrity of the data. Namely, she must be convinced that the data is not deleted, nor tampered with. In order to verify such a property, the cloud is required to generate some proofs of storage, that enable the user to check that the data is correctly stored.

Computation: Data is not the only asset that can be outsourced to the cloud. Many scenarios entail computation outsourcing: several kinds of operations may require a substantial amount of computational resources that may not be affordable for individuals or organizations. Hence, these users decide to migrate these operations to the cloud.

In this case, they should be convinced that the cloud will always return correct results.

In order to verify such a statement, the cloud is summoned to generate some proofs of correct computation, that empower the users to check that the returned results actually correspond to a correct execution of the outsourced operation. In this work, we focus on three types of computation: large degree polynomial evaluation, large matrix multiplication and keyword search in a large database

Besides verifiability, we study the broader concept of accountability for cloud computing, in relation with the transparency, responsibility and compliance challenges we identify in Section 1.2.2. We are particularly interested in policies for accountability. Such policies may convey the obligations that the cloud should comply with during the entire relationship between the cloud and its users. There currently exists no accountability framework that enables these users to understand how cloud providers honor accountability obligations, namely the rules making clear what the cloud is expected to do with the outsourced data. We believe that accountability policies provide means to express those obligations in terms of how the cloud should handle users' assets. Therefore, we look at the possibility to design a machine-readable policy language to convey accountability concepts.

Problem Statement

This thesis attempts to address a list of concerns that we formalize below.

Questions raised by this thesis

Associated with the security challenges identified in Section 1.2.3, a user who wants to adopt cloud technologies could raise the following questions:

• Is the service correctly provided by the cloud?

• Is it doing what it is supposed to do?

• How can I verify the execution of a service without wasting the cloud's benefits?

• Does the service comply with appropriate policies related to accountability and security? Expressed in a more formal way, we characterize three problems that the present thesis considers as key issues in cloud computing security.

Problem 1: Verifiable Storage. This problem concerns the correct storage of cloud users' data. As users do not possess their data anymore, they relinquish the control over their storage to an untrusted cloud. How can we give back cloud users some control over the data they outsource to the cloud? In particular, the users must be convinced that the cloud complies with the promise to provide a storage service that does not compromise the integrity and the availability of users' outsourced data. In this perspective, the users must be empowered with the capability to verify the storage service offered by the cloud. Ideally, the cloud should produce a proof of storage stating that it actually stores an intact version of users' data. Besides, the verification of the proof by the users must not require computationally demanding operations since the users might not have sufficient resources to perform heavy verifications. Therefore, another question must be addressed: Can we design a system where the cloud generates proofs of storage that enable to verify in an efficient way that users' data are correctly stored by the cloud?

Problem 2: Verifiable Computation. Along with data outsourcing, cloud computing allows to delegate the computation of expensive operations to powerful servers that perform the computation on behalf of cloud users. In this thesis, we focus on primitives that are very common in today's world: polynomial evaluation, matrix multiplication and conjunctive keyword search. Similarly to the case of data storage, in the computation outsourcing scenario, users do not have control over the delegated computation and lend this control to untrusted servers. How can we give back cloud users some control over the computation they outsource to the cloud? More specifically, we regard computation integrity as an important issue. When the cloud returns the results of one of the above operations, the users must be convinced that these results are the ones they expect. Namely, they must be convinced that the returned results are equal to the one they would have obtained if they had performed the computation themselves.

In other terms, the users must be able to verify that the cloud returned the correct outcome of the delegated computation. In this perspective, the cloud should produce a proof of computation ensuring the users that the returned results correspond to a correct evaluation of the outsourced operation. Furthermore, the verification of this proof by the users must be substantially less computationally demanding than the operation itself; otherwise outsourcing the computation would not be profitable for the users. Hence, this thesis considers the following problem: Can we design a system where the cloud generates proofs of computation that enable to verify in an efficient way that users' computation is correctly performed by the cloud?

Problem 3: Accountability. We identify in Section 1.2.3 that accountability is a peculiar challenge in cloud computing. Cloud providers must be compliant to regulation and contracts and be held accountable for the way they manage and operate cloud users' assets. Stated differently, a collection of accountability obligations binds cloud users and providers together so that the cloud operates in a transparent way. Machine-readable policies are a way to express these accountability obligations such that their enforcement can be handled easily in an automated way. This thesis intends to answer the following question: How and to what extent can we convey accountability obligations via expressive and declarative policies in such a way that policies are easy to use, manage, enforce and validate and such that cloud provider can be held accountable for these obligations, thus increasing trust between users and providers?

Contributions

This thesis answers the above problems and we propose the following contributions.

Proofs of Storage.

Under an untrusted cloud, we design a protocol that generates some cryptographic proofs showing that the data outsourced at this cloud is correctly stored. The possible (and naïve) protocol whereby the data owner stores at the cloud the data along with a digital signature and, in order to verify the correct storage, downloads the data and checks the signature, would not scale in the context of cloud computing and big data, since it would incur large resource consumption. Hence the protocol for proofs of storage should be more efficient than this simple solution. Namely, the generation and the verification of these proofs of storage do not induce expensive costs in terms of computation, storage and bandwidth for the data owner (and/or any party that verifies the storage correctness). In addition, the protocol must be secure under a malicious cloud that would forge false proofs while not storing the data as expected. We propose our protocol for proofs of storage, StealthGuard, based on the idea of inserting in the outsourced data special blocks, called watchdogs.

Proofs of Computation.

Under an untrusted cloud, we can delegate and verify the results of computationally demanding operations. The remote computer is required to send the result of such a computation along with a cryptographic proof that the operation was carried out as expected. We devise three protocols in which verifying the proof of correct computation is efficient, requiring less computational resources than computing the outsourced operation locally from scratch. These three protocols address the problem of verifiable computation for three types of operations: large degree polynomial evaluation, large matrix multiplication and conjunctive keyword search. These three solutions are based on simple mathematical techniques and well-established cryptographic primitives, rendering our protocol efficient compared to some prior work. One of the peculiar characteristics of our solutions is the fact that they allow two properties: public delegatability (anyone, not only the user who outsourced the computation, can request the server to perform the computation) and public verifiability (anyone, not only the user who requested the computation, can verify the results returned by the server). Besides, these protocols are secure against a malicious server that would return bogus results without performing the computation.

Accountability Policy Language. We design A-PPL, a policy language that enables the expression of accountability obligations which rule the conditions under which an accountable cloud must operate outsourced data. This policy language is machine readable to facilitate the automation of the enforcement of these obligations. We also devise the A-PPL engine, the system that enables the enforcement of the accountability policies written in our new language.

Organization

The present dissertation is organized into three parts:

Proofs of Retrievability: Part I investigates on storage verifiability. Chapter 1 provides the reader with the definition of a cryptographic proof of storage protocol and a new security model against malicious servers. We also review prior work in terms of proofs of storage solutions. Chapter 2 describes our protocol StealthGuard. We also prove the security properties of our proposal and implement a prototype showing the efficiency of StealthGuard.

Proofs of Correct Computation:

Part II addresses Problem 2 on proofs of correct computation. In particular, Chapter 3 introduces the concept of verifiable computation and gives an exhaustive analysis of the literature in this domain. We then propose three efficient protocols for three different operations: polynomial evaluation (Chapter 4), matrix multiplication (Chapter 5) and conjunctive keyword search (Chapter 6). We study the security properties of our solutions, and demonstrate them. We finally build prototypes and analyze their efficiency.

An Accountability Policy Language: Part III introduces the concept of accountability in the context of cloud computing. We define the obligations related to an accountable cloud and derive from them some requirements that a machine-readable policy language for accountability should satisfy. We review existing policy languages and determine to which extent they meet the identified requirements. We then present A-PPL, a new policy language for accountability, together with the A-PPL engine. We finally illustrate with a scenario the expression and the enforcement of accountability policies. In recent years, cloud computing became popular and received considerable attention since this paradigm allows users (industries, organizations, individuals) to outsource possibly large amounts of data to a remote cloud server who is then responsible for storing these data. While the users enjoy the advantage of offloading the storage burden to the cloud, some security issues inhibit some organizations or end users to shift from traditional storage systems where the data is locally stored (implying heavy costs in server maintenance) to cloud computing technology. Indeed, by storing data to the cloud, users lose the physical control over their data and relinquish their management to untrusted servers. In particular, as we showed in Section 1.2.2, outsourced data in the cloud may be the target of several threats identified by the CSA in their report on the "Notorious Nine" Top Threats of Cloud Computing [START_REF]The Notorious Nine: Cloud Computing Top Threats in 2013[END_REF]. The scope of this part of the thesis focuses on data losses, reported as the second biggest threat in cloud computing by the CSA [START_REF]The Notorious Nine: Cloud Computing Top Threats in 2013[END_REF]. The term data loss encompasses not only unauthorized deletion of data but also unrecoverable tampering of data. Data losses may result from (i) malicious attackers that intentionally erase or manipulate the data; and (ii) accidental deletion or changes due to system crashes, bogus software update or any unintentional systembased data corruption. Stated differently, the data loss threat may compromise the integrity and availability of outsourced data.

Part I

Proofs of Storage

To be given back a certain form of control, the data owners need to be convinced that the cloud server is compliant with their storage expectations. In particular, data owners must be ensured that their data is intact and available all along the storage period. One of the challenges we mentioned in Section 1.2.2 concern big data. Since data owners cannot afford for the storage of large amounts of data, they use cloud storage services to store them. In such a scenario, data owners do not physically possess their assets anymore. Therefore, the traditional technique of integrity checking relying on a digital signature cannot be considered: Indeed, to check that large data is correctly stored, the owner downloads it, computes its signature, and compares it with the stored signature. Unfortunately, this solution does not scale in the context of cloud computing, since downloading big data incurs high communication costs that waste the advantage of outsourcing storage to the cloud.

This concern and the related challenges are addressed by a body of research in Proofs of Storage (POS), in which a user outsources the storage of large data to the cloud and further audits the cloud to check whether it stores the data as expected. In such an audit, the user challenges the cloud to return some cryptographic proofs asserting that the data is available and intact. Section 1.2 gives the definition of Proofs of Storage and requirements for such proofs are listed in Section 1.3. We introduce the security model specific to POS schemes in Section 1.4. We finally review prior work in Section 1.5.

Characterization of Proofs of Storage

Definition of a Proof of Storage Protocol

This section gives a formal definition of a POS protocol, inspired by the definition proposed respectively by Ateniese et al. [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF], Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] and Shacham and Waters [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF].

Entities Involved in a POS Protocol

A POS scheme comprises the following entities: Data owner O: Data owner O wants to outsource the storage of her set of files, denoted F , to a cloud server S and would like to obtain from S the assurance over the integrity of her files.

Cloud Server S: Often mentioned as the prover, and considered as potentially malicious, cloud server S is presumed to store each file F ∈ F in its entirety. 

System Model

We present here the definition of a POS system. The notion of POS was first formalized by Ateniese et al. [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF] and Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] then updated by Shacham and Waters [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF]. The definition we propose here follows the challenge-response approach proposed in [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] while defining a stateless protocol as suggested by Shacham and Waters [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF]. The term stateless means that the verifier does not need to maintain auxiliary information (a state) between several instances of verifications. We also define three POS phases (Setup, Challenge and Verification). Without loss of generality, we assume that each file F ∈ F is composed of n splits {S 1 , S 2 , ..., S n } of equal size of L bits. If necessary, F will be padded to a multiple of L. We also make the assumption that each split S i comprises m blocks {b i1 , b i2 , ..., b im } of l bits, i.e. L = m • l.

Definition 2 (POS Scheme). A POS scheme consists of five polynomial-time algorithms (KeyGen, Encode, Challenge, ProofGen, Verify) distributed across three POS phases.

Setup. This phase only involves data owner O. She runs KeyGen to produce the keying material required in the POS scheme and invokes Encode to prepare a verifiable version F of a particular file F ∈ F of hers:

KeyGen(1 κ ) → K: This probabilistic key generation algorithm takes as input a security parameter 1 κ and outputs a secret key K ∈ {0, 1} * for data owner O. ProofGen(fid, chal) → P: This algorithm is used by cloud server S to generate the proof of storage P for the target file F whose identifier is fid.

The generated proof P is then sent to verifier V for Verification.

Verification. After receiving the proofs of storage for file F with identifier fid from cloud server S, verifier V executes algorithm Verify to check their validity.

Verify(K, fid, chal, P) → b ∈ {0, 1}: This deterministic algorithm decides whether P is a valid response to challenge chal. It takes as inputs key K, file identifier fid, challenge chal and proof P.

It outputs bit b = 1 if proof P is valid, b = 0 otherwise.

Requirements for a POS protocol

Protocols for POS enable users of a remote storage service to verify that this service continuously and correctly stores their data, with the concern that such a verification does not waste the possibly limited bandwidth and computation resources of the users. In this section, we identify the design requirements and features that a POS must/should satisfy.

Security. The POS protocol must be sound, even against a malicious adversary, who would falsely claim that it stores the data correctly. The protocol must not allow such an adversary to produce correct proofs that will be accepted by the verifier (this is called the unforgeability of proofs of storage). We develop more the characterization of this requirement in Section 1.4.

Unbounded number of verifications. Data owners should be able to check that their data are correctly stored as many times as they want. Some POS schemes only provide limited number of verifications, compelling data owners to download their data back, in order to perform further verifications. Others guarantee an unbounded number of verifications.

Efficiency. Performances of a POS scheme can be assessed by means of four types of metrics: (i) the communication cost between the verifier and the server during the Challenge phase must not be large; (ii) the computational cost of algorithm Verify must be light for the verifier; (iii) the computational cost of algorithm ProofGen must be optimized for the server; (iv) the amount of storage induced by the POS protocol must be kept at minimum 46 . Besides, considering the two requirements of unbounded number of queries and efficiency, we authorize a POS protocol to adopt the amortized model approach: an expensive Setup phase for the data owner is amortized over multiple instances of the Challenge and Verification procedures.

Along with the three above requirements, additional features can be adopted by a POS protocol.

POS with extractability.

A certain number of solutions that verify storage are able to detect any data loss or modification, but they do not guarantee that the data can be recovered. As we will explain in Section 1.5.2.1, such schemes fall into the category of Provable Data Possession (PDP) or Remote Integrity Check (RIC). In other terms, they only assess whether the storage server possesses the data and stores it intact without allowing data owners to retrieve the data in its entirety. On the contrary, Proofs of Retrievability (POR) schemes, thoroughly described in Section 1.5.2.2, ensure that the verifier can retrieve her data in its entirety, at any point of time. In particular, we refer to data retrievability as a special security feature for data storage. Retrievability can be seen as a combination of integrity and availability.

POS with dynamic data. POS solutions allow to perform verifications on data that is prone to updates. The challenge here is to check that the outsourced data is correctly stored even in the case of modification by the data owner. Besides, this feature allows the data owner to update the data without the need to download it. Update operations include: deletion, modification or insertion of data blocks.

POS with public verification. We distinguish two modes for verifying storage: private verification and public verification. The feature of public verification is of special interest in the case where the verification procedure can be performed by anyone, not just the data owner. Precisely, anyone should be able to launch verification queries and verify the proofs of storage returned by the storage server.

POS with privacy. This security feature intends to protect the privacy of data owner's data and/or identity against third-party verifiers. The latter are authorized to assess whether the remote server stores the data correctly but not to infer any other information concerning the data.

Security Model of a POS Scheme

This section gives an outline of the two security requirements related to any POS scheme, namely completeness and soundness properties. In a nutshell, the completeness property captures the fact that the POS scheme does not yield any false negatives. In other words, verifier V always accepts cloud server S's proof, whenever S stores the outsourced files. On the other hand, soundness requires that any prover, who convinces verifier V that she is storing some file F , is actually storing a verifiable version of file F .

Completeness

If cloud server S and verifier V are both honest, then on input of a challenge chal and some file identifier fid sent by verifier V , using algorithm Challenge, algorithm ProofGen generates a proof of storage that will be accepted by verifier V with probability 1.

Soundness

A POS scheme (KeyGen, Encode, Challenge, ProofGen, Verify) is sound if any malicious server cannot forge valid proofs of storage for a file F without storing a verifiable version of F in its entirety. In other words, a verifier can always detect (except with negligible probability) that a server deviates from a honest behavior. More details will be given in Section 2.1.2.

State of the Art on Proofs of Storage

Significant efforts to address the problem of POS were stimulated with the advent of cloud computing and big data in recent years. In particular, a large collection of research work proposes cryptographic solutions for a verifier (be it the data owner or third parties) to efficiently check that an untrusted remote server, the prover, correctly stores the outsourced data as expected, namely that the data is available and not tampered with. We review in this section the existing POS solutions providing mechanisms to enable such verifications. These solutions include the pioneering work by Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] on Proofs of Retrievability (POR) and Ateniese et al. [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF] on Provable Data Possession (PDP).

This analysis of existing POS solutions will be based on the requirements (see Section 1.3) for the design of such solutions (security, unbounded number of verifications, efficiency), as well as additional features that some work adopt (extractability, handling of dynamic data, public verifiability and privacy-preserving mechanisms). These criteria allow us to establish a classification of the existing work.

Having identified the design requirements and features in Section 1.3, we propose to use the efficiency requirement as the first criterion for classification: we classify the existing work into two categories: deterministic and probabilistic solutions. In a nutshell, the first category (Section 1.5.1) ensures that the verifier can check the correct storage and be convinced with a probability of 1. This kind of solution often incurs heavy computations for the data owner, the prover and the verifier. The second category (Section 1.5.2) follows a sampling approach that involves some randomness in the verification protocol. This randomness makes uncertain the data integrity guarantee. Nevertheless, this probabilistic procedure makes more efficient solutions compared to deterministic solutions.

Deterministic Solutions

Early work [START_REF] Deswarte | Remote Integrity Checking[END_REF][START_REF] Luiz | Demonstrating Data Possession and Uncheatable Data Transfer[END_REF][START_REF] Sebé | Efficient Remote Data possession Checking in Critical Information Infrastructures[END_REF] allow for Remote Integrity Check (RIC) that can convince a verifier with an integrity guarantee of 100 %. Deswarte and Quisquater [START_REF] Deswarte | Remote Integrity Checking[END_REF], and independently Filho and Barreto [START_REF] Luiz | Demonstrating Data Possession and Uncheatable Data Transfer[END_REF], devise solutions that use RSA-based functions applied to the entire data for each verification challenge. The data owner needs first to pre-compute and to store a checksum on the data. The verifier challenges the prover based on a random number r and the server computes the proof of storage as r F mod N where F is the outsourced file and N a RSA modulus. The verifier then checks the validity of the proof against the precomputed checksum. However, these RSA-based schemes suffer from a prohibitive cost for the server, especially in the case of large files, since the server has to exponentiate over the entire file F to compute its proof of integrity. Sebé et al. [START_REF] Sebé | Efficient Remote Data possession Checking in Critical Information Infrastructures[END_REF] revisit the approach followed by Filho and Barreto [START_REF] Luiz | Demonstrating Data Possession and Uncheatable Data Transfer[END_REF] and leverage the homomorphism property of the checksum: instead of generating the checksum over entire file F , the authors suggest to divide F into splits of same size F = {S 1 , .., S n } and to compute the checksum over each split. The integrity verification requires the prover to compute a pseudo-random linear combination of all the splits in file F and to generate a proof based on this combination. Upon reception of the proof, the verifier checks its validity based on the checksum and the same combination of splits. In this setting, at the server side, the exponentiation time of the work in [START_REF] Luiz | Demonstrating Data Possession and Uncheatable Data Transfer[END_REF] is reduced to n sub-exponentiations. However, the data owner has to keep O(n) check values. Schwarz and Miller [START_REF] Thomas | Store, Forget, and Check: Using Algebraic Signatures to Check Remotely Administered Storage[END_REF] develop the concept of algebraic signatures that, in combination with Error Correcting Code (ECC) 47 , constitute the proofs of integrity. Algebraic signatures are generated such that the signature on the bits of redundancy (produced by the application of the ECC) is equal to the redundancy of the signatures on splits of data. The integrity check is based on the comparison of the signature on the ECC splits with the signature of the unencoded data (the check also relies on some additional technique to guarantee the freshness of the response). This retains the server from returning the entire file and the verifier to store a local copy of that file. However, the communication complexity is linear in the size of the data, since the server has to return the signatures for all the splits. Besides, the authors of [START_REF] Thomas | Store, Forget, and Check: Using Algebraic Signatures to Check Remotely Administered Storage[END_REF] did not provide any security proof of their scheme.

Probabilistic Solutions

To remove the burden of heavy communication and computation complexities, not always applicable in a cloud-based scenario, since this burden would cancel out the advantage of storing the data at a remote server, probabilistic solutions provide an alternative to the deterministic guarantee offered by the solutions described in Section 1.5.1. These probabilistic solutions rely on the technique of random sampling. In this method, each element of a set has an equal and independent chance of being selected. The rationale behind the use of random sampling is to optimize the communication and computation complexities of POS solutions: Instead of checking the integrity of the entire data (as performed in existing work presented in Section 1.5.1), probabilistic solutions for verifiable storage allow the verification of integrity of a randomly selected subset of data splits. Operating in such a way, a verifier can get the assurance that the data as a whole is correctly stored by the remote server. The optimization induced by the random sampling approach does not come without a price: sampling only ensures a probabilistic guarantee that the data is correctly stored in its entirety.

Two pioneer work on POS laid the basis for new solutions relying on random sampling: Provable Data Possession (PDP) introduced by Ateniese et al. [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF] and Proofs of Retrievability (POR) defined by Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF]. These two seminal works on PDP and POR led to an intensive body of research on POS. PDP and POR protocols differ from the fact that only POR solutions satisfy the extractability requirement we established in Section 1.3. In other terms, PDP mechanisms only detect inconsistencies in the data but do not allow to recover from them.

Provable Data Possession

The dynamicity requirement enables us to provide a further categorization of methods that are based on PDP: we first review static solutions, then examine dynamic ones. We also analyze PDP schemes that provide other features, such as privacy-preserving data possession verification.

Static PDP schemes. PDP introduced by Ateniese et al. [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF] enables a data owner to verify the integrity of outsourced data in an efficient way. The data owner is not required to keep a local copy of its outsourced data. The integrity check is performed according to a challenge-response protocol between the data owner and the remote server. In particular, its communication complexity is lighter that the one induced by the schemes presented in Section 1.5.1 and is independent of the data size.

RSA tags. Ateniese et al. [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF] devise homomorphic verifiable tags as check-values for each data split. These items serve as an essential building blocks for many other PDP schemes but also POR techniques, as we will see in this review of the state of the art. In [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF], the homomorphic tags are based on RSA and are of the form σ i = (w i • g S i ) d mod N , where w i is a randomized function of the position i of split S i in file F = {S 1 , ..., S n }, namely w i = PRF(r, i), with r being a random number and PRF a pseudo-random function, N is a RSA modulus, d is the RSA private exponent such that ed = 1 mod ϕ(N ), e is the the RSA public exponent and g is a generator of the group of quadratic residues modulo N . The data owner keeps d secret, publishes N , e, r and g, and stores F and Σ = {σ i } 1≤i≤n at the remote server (without keeping a local copy). To verify data possession, the verifier asks the server for tags of c pseudo-randomly chosen splits. The server generates a proof of storage based on the selected splits and their respective tags: The server generates a linear combination of the splits and thanks to the homomorphism on the tags, combines tags of the selected splits into a single tag. Since the homomorphic tags are encrypted using the secret RSA exponent d, this scheme provides public verifiability by means of public exponent e. The generation of the tags by the data owner is quite expensive, requiring O(n) exponentiations. However, the server exponentiations are reduced to a number c, corresponding to the number of challenged splits. In [START_REF] Ateniese | Proofs of Storage from Homomorphic Identification Protocols[END_REF], the authors formalize the definition and use of homomorphic verifiable tags in publicly verifiable PDP protocols. In particular, they show how a homomorphic identification protocol can be derived to construct a PDP scheme (a homomorphic identification protocol originally authenticates an entity to a remote server without leaking any information). Curtmola et al. [67] envisioned the scenario where a file is replicated in t different (untrusted) servers to increase availability of the data. The authors devise a multi-replica PDP protocol (MR-PDP) that enables to verify the correct storage of the t replicas stored at the t servers. Instead of executing the single-replica PDP [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF] for the t replicas, which may be computationally demanding since the data owner would have to compute homomorphic tags for each of the copies, the MR-PDP protocol generates a single set of tags (the tags are the one proposed in [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF]) for the t copies of the same file. Besides, to prevent servers from colluding in order to correctly respond to a PDP challenge (when some of the servers do not store the data as expected), the protocol generates t unique and differentiable replicas by encrypting the original file and then applying a random mask of the encrypted file to produce the replicas. Even with this improvement, this solution still presents some weaknesses because the MR-PDP does not ensure that the proof generated by a challenged server really corresponds to the replica it was required to store.

BLS tags. Hanser and Slamanig [START_REF] Hanser | Efficient Simultaneous Privately and Publicly Verifiable Robust Provable Data Possession from Elliptic Curves[END_REF] develop a PDP construction that simultaneously allow for private verification (that is only the data owner holding a secret key can perform the verification) and public verification. This scheme relies on elliptic curves and the computation of the tags is based on BLS signatures [41]. In a nutshell, a tag is computed as σ i = (H(i)g S i ) α and is publicly verified by checking that e(σ i , g) = e(H(i)g S i , g α ), where e is a bilinear pairing 48 , H a cryptographic hash function, g the generator of a cyclic group and α is data owner's secret key. The security of this scheme does not rely on standard assumptions but on the random oracle model.

Algebraic signatures. Chen [START_REF] Chen | Using Algebraic Signatures to Check Data Possession in Cloud Storage[END_REF] elaborates on algebraic signatures introduced in [159] to construct a PDP scheme that generates algebraic tags for data splits and imposes less computational overhead than homomorphic tags. The scheme pre-computes t verifications challenges. Each of these challenges randomly samples c data splits, that are combined into a single split corresponding to the sum of the c splits. This resulting split is then authenticated via its algebraic signature. To verify data possession, the verifier sends one of the pre-computed challenges and the server responds with the sum of the splits targeted by this challenge, and the corresponding algebraic signature. The obvious concerns with this method rely on the fact that the challenges are computed beforehand, limiting the number of verifications, and that this method induces a storage cost at the verifier.

Polynomial-based PDP. Krzywiecki and Kuty lowski [START_REF] Krzywiecki | Proof of Possession for Cloud Storage via Lagrangian Interpolation Techniques[END_REF] suggest tags that do not rely on RSA but on polynomial-based techniques. In [START_REF] Krzywiecki | Proof of Possession for Cloud Storage via Lagrangian Interpolation Techniques[END_REF], each data split S i is divided in m blocks b ij and is assigned to a pseudo-random polynomial P i (the coefficients of P i are pseudo-randomly generated) of degree m. The tag σ i for split S i corresponds to the set ((b i1 , P i (b i1 )), ..., (b im , P i (b im ))). The data owner stores the data splits and the tags at the server. To test whether the server stores correctly split S i , the verifier selects a random point x chal (different from the blocks) and a (secret) nonce r and computes y = g rP i (x chal ) , with g being the generator of an appropriate group G. The verifier sends g r , g rP i (0) , x chal to the server. The server computes the proof of data possession by computing Π = g rP i (x chal ) . To do so, the server employs the Lagrangian interpolation technique in the exponent, with the use of σ i that contains the blocks and their image by P i , and the challenge sent by the verifier. The latter then checks that Π corresponds to the expected value y. Beyond this interesting effort to use polynomial interpolation, this scheme is not very efficient. Indeed, the protocol we just described applies to a single block only and involves expensive exponentiation and interpolation. Thus the verification of other blocks for a full PDP induces high cost. Some solutions to a problem orthogonal to verifiable storage can be applied as a technique for PDP. Indeed, verifiable polynomial evaluation 49 schemes [START_REF] Benabbas | Verifiable Delegation of Computation over Large Datasets[END_REF]90] enable to check that a remote server correctly evaluates an outsourced polynomial on some targeted inputs. The server must send a proof that the evaluation is correct. Benabbas et al. [START_REF] Benabbas | Verifiable Delegation of Computation over Large Datasets[END_REF] and Gennaro et al. [90] suggest to use their respective protocol for verifiable polynomial evaluation as a building block for provable data possession. The idea is to encode the outsourced data as a polynomial whose coefficients correspond to the data splits. The proof consists in evaluating this polynomial over a random point sent by the verifier as a challenge. The server returns the outcome of this evaluation together with a proof of correct computation. The verifier checks the proof and recognizes that the server correctly stores the data if the proof is valid.

Dynamic PDP schemes. As we mentioned in Section 1.3, data can be subject to updates after its storage at a remote server. Enabling dynamic PDP is a useful feature: a verifier can run storage verification procedures while enabling the data owner to update the data (and verify the update) without the need to download the data.

Ateniese et al. [START_REF] Ateniese | Scalable and Efficient Provable Data Possession[END_REF] revisit their original PDP scheme [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF] to address the problem of dynamic updates in the data. While in [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF], public-key cryptography and homomorphic tags are used, the authors of [START_REF] Ateniese | Scalable and Efficient Provable Data Possession[END_REF] only employ symmetric-key cryptography. In this new scheme, the data owner pre-computes a collection of t verification tokens. Each of these tokens τ j consists in c possible challenged splits of indices i 1 , ..., i c and their corresponding answer v j that is generated as

v j = H(f (j), i 1 , S i 1 ) ⊕ ... ⊕ H(f (j), i c , S ic )
, where f is a pseudo-random function, H a cryptographic hash function and ⊕ the XOR operation. These tokens can either be locally stored or outsourced in an encrypted form to the server. Besides, the data owner should maintain a data structure to keep track of the structure of split indices in the data. To check that the server correctly stores the data, a verifier challenges the server with split indices i 1 , ..., i c corresponding to token τ j . The server then computes a proof of storage z = H(f (j), i 1 , S i 1 ) ⊕ ... ⊕ H(f (j), i c , S ic ). This proof is valid if z matches the corresponding verification token v j . To update a data split stored at the server, the data owner must retrieve all the tokens that involve the updated split and update in each of the token answer the value of v j (1 ≤ j ≤ t) according to the new split. This technique is unpractical, since all the tokens have to be modified. Besides, the insertion of new data splits requires to update all the indices of consequent splits and thus update all the pre-computed tokens, which can be computationally intensive. Furthermore, this scheme suffers form the fact that the number of storage verifications is limited by the number t of precomputed tokens, which contravenes the requirement of unlimited number of verifications.

Skip list. An effective technique to support dynamic data updates relies on authenticated data structures, such as Merkle trees [START_REF] Ralph C Merkle | A Digital Signature Based on a Conventional Encryption Function[END_REF] or skip lists [START_REF] Pugh | Skip Lists: a Probabilistic Alternative to Balanced Trees[END_REF]. From this perspective, Erway et al. [START_REF] Erway | Dynamic provable data possession[END_REF] (also Esiner et al. [START_REF] Esiner | FlexDPDP: FlexList-based Optimized Dynamic Provable Data Possession[END_REF] that extend this work) propose a PDP protocol that is fully dynamic (all the update operations are supported in this scheme). The authors revisit the original skip list data structure to enable efficient insertions and deletions of splits, while being able to verify updates. Each split in the data is authenticated with a homomorphic tag σ i = g S i mod N which is stored in the skip list (N is a RSA modulus). The verification of storage is similar to the work proposed by Ateniese et al. [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF]: the verifier challenges some randomly-selected blocks and the server returns a combination of the tags and the blocks, thanks to the homomorphism of the tags. The skip list is then used to authenticate that the combination is correctly computed for the requested blocks. Indeed, unlike in [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF], the tag does not include the information on the index i. In addition, the skip list is used to perform the efficient updates. In this setting, the skip list induces a non-negligible storage overhead for the server. Besides, deleting or inserting a data block can affect the computational complexities at the server.

Update tree. Zhang and Blanton [START_REF] Zhang | Efficient Dynamic Provable Possession of Remote Data via Balanced Update Trees[END_REF] propose another PDP protocol that allows efficient updates, while maintaining a revision control history of past updates. In the scheme of Zhang and Blanton [START_REF] Zhang | Efficient Dynamic Provable Possession of Remote Data via Balanced Update Trees[END_REF], each update is not directly verified. A verifier can check that the updates are well-performed only when she retrieves the outsourced data. This protocol relies on a new authenticated data structure that the authors name balanced update trees. Unlike in previous PDP proposals [START_REF] Erway | Dynamic provable data possession[END_REF][START_REF] Esiner | FlexDPDP: FlexList-based Optimized Dynamic Provable Data Possession[END_REF], the authenticated data structure does not store information about the tags but about the updates themselves. The update operations are arranged into a balanced tree such that the verification of an update takes O(v) time, where v is the total number of the data versions (which is assumed to be identical to the number of updates performed on the data). While performing the update operations and their verification is efficient, this scheme requires the data owner to keep track of the update history. Thus, she needs to locally store the update tree (which is of size O(v)). Furthermore, the tree must be updated, which may not be straightforward and lightweight, since keeping it balanced can require further computations. Besides, since the tags used to authenticate the data splits are just Message Authentication Codes (MACs), they cannot be aggregated into a single value as the homomorphic tags in [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF]. Therefore, at each verification challenge, the communication complexity is linear with the number of challenged splits. Finally, the MACs have to be recomputed at each update, inducing additional costs for the data owner.

Merkle tree. Wang et al. [START_REF] Wang | Enabling public verifiability and data dynamics for storage security in cloud computing[END_REF] devise a publicly verifiable dynamic PDP scheme that employs homomorphic tags [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF], Merkle hash trees 50 [START_REF] Ralph C Merkle | A Digital Signature Based on a Conventional Encryption Function[END_REF] and bilinear pairings 51 as building blocks. The authors observe that the tags of the scheme proposed by Ateniese et al. [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF] cannot be devoted to a dynamic PDP protocol since they include the indices (the positions) of the splits in the data. Hence, when the data is updated, especially in the case of a new split insertion, the indices of subsequent splits are modified (incremented in the case of insertion), compelling the data owner to change (possibly many) other tags, which can be computationally demanding. Therefore, Wang et al. [START_REF] Wang | Enabling public verifiability and data dynamics for storage security in cloud computing[END_REF] pull away the index information for the computation of the tags. The data owner then computes the tags of the form σ i = (H(S i )g S i ) α , where H is a cryptographic hash function, α is a random number kept secret and g is the generator of a cyclic group (as a matter of fact, these tags are BLS signatures [41]). During a verification challenge, as in [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF], the prover computes and returns a pseudorandom linear combination of splits and aggregation of their respective tags. The Merkle tree serves for authenticating H(S i ). Indeed, to perform the verification, a verifier would need to recompute this value. For a matter of efficiency, instead of requesting the server to return each split S i separately (along with the combination of challenged splits), the verifier only retrieves H(S i ) and authenticates it using the tree, such that she can be sure that it really corresponds to the hash of the block at position i. Besides, the tree allows efficient split deletion and insertion (in O(log n) time). Nevertheless, it is not clear whether a malicious server can be successful in a replay attack. Indeed, the server may use a previous version of the data to pass the verification.

PDP schemes with other features. In the static publicly verifiable PDP scheme devised by Wang et al. [START_REF] Wang | Privacy-preserving public auditing for data storage security in cloud computing[END_REF], third-party verifiers are considered as honest but curious, in the sense that they correctly follow the PDP procedure, but may learn unauthorized information about the data content. In particular, in the original PDP scheme [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF], a verifier who has issued several challenges and received the same amount of proofs from the remote server, can recalculate the challenged splits via their combination S chal = c i=1 α i S i . If the verifier receives enough S chal , it can recover the S i 's using a simple linear equation system. To overcome this pitfall, Wang et al. [START_REF] Wang | Privacy-preserving public auditing for data storage security in cloud computing[END_REF] propose a privacy-preserving publicly verifiable PDP that requires 50 Section 6.4.3 characterizes Merkle hash trees. 51 Section 4.3.1 gives more details on bilinear pairings.

the server to apply a random mask over the split aggregation S chal . Hence, such a technique prevents the verifier to infer any information about the data content from the proof of data possession. While this scheme protects data privacy against third-party verifiers, it does not protect against remote servers, to which the data blocks are sent in clear.

Shen and Tzeng [START_REF] Shen | Delegable Provable Data Possession for Remote Data in the Clouds[END_REF] refine the concept of public verifiability. They propose a PDP protocol in which the data owner can delegate the verification ability to a third-party while preventing this party to re-delegate this capability to unauthorized users. In addition, the data owner can revoke the verification capability to an authorized verifier. These two features do not compel the data owner to compute new tags for the designated/revoked verifiers. Instead, the protocol "transforms" the tags computed from the data owner's secret key into tags that can be verified by the verifier's secret key, using a pre-computed token (note that the scheme involves similar tags to the ones in [START_REF] Wang | Enabling public verifiability and data dynamics for storage security in cloud computing[END_REF] based on BLS signatures [41]).

Wang et al. [START_REF] Wang | Oruta: Privacy-Preserving Public Auditing for Shared Data in the Cloud[END_REF] propose Oruta, a PDP construction that considers the scenario of a (static) group of users sharing data in the cloud while preserving the identity of these users during integrity verifications performed by a third-party verifier (a similar scenario applies to their subsequent work [START_REF] Wang | Knox: Privacy-Preserving Auditing for Shared Data with Large Groups in the Cloud[END_REF][START_REF] Wang | Panda: Public Auditing for Shared Data with Efficient User Revocation in the Cloud[END_REF]). The splits are authenticated via homomorphic tags which are also shared among group users and may be subject to changes according to updates performed in the data. These tags are similar to the ones in [START_REF] Wang | Enabling public verifiability and data dynamics for storage security in cloud computing[END_REF] and are based on ring signatures [START_REF] Ronald L Rivest | How To Leak A Secret[END_REF][START_REF] Boneh | Aggregate and Verifiably Encrypted Signatures From Bilinear Maps[END_REF] that enable to verify that a signature is computed from the secret key of a member of a group of users. Oruta suffers from the fact that each group member generates tags for the shared data, which substantially increases the storage overhead at the server. Besides, Oruta applies to a group that is static, that is, it does not support group dynamicity, a new user joining the group, or an exisiting user leaving the group (or being revoked). In this perspective, in their consecutive works, the authors propose Knox [START_REF] Wang | Knox: Privacy-Preserving Auditing for Shared Data with Large Groups in the Cloud[END_REF] that accommodates to the issue of a new user joining the group and Panda [START_REF] Wang | Panda: Public Auditing for Shared Data with Efficient User Revocation in the Cloud[END_REF] that allows to perform group member revocations, using homomorphic tags based on proxy re-signatures [START_REF] Blaze | Divertible Protocols and Atomic Proxy Cryptography[END_REF], that efficiently convert tags generated by a revoked group member to tags of remaining group members.

Proofs of Retrievability

The notion of POR was defined by Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF]. POR is stronger than PDP in the sense that POR offers the additional property that the data owner can be ensured that she can recover her data at any point of time. Indeed, the security model provided by POR schemes makes the definition of an extractor algorithm explicit. This algorithm can recover the outsourced data from a collection of POR challenges. Thus the security guarantee of POR is stronger than the PDP's. This extractability property is supported by means of Error Correcting Codes. In addition, the application of ECC mitigates an arbitrary number of data corruption. Sampling random splits detects substantial data corruption on the sampled splits and thus ensures that the remote server indeed committed to storing the outsourced data. However, small data corruption (tantamount to a couple of bits) may go undetected by the sampling technique, since it only targets large data corruption. In this case, the server can produce valid proofs of integrity for the sampled splits although the data is actually corrupted. To make the POR scheme robust to such corruptions, ECC is integrated in the pre-processing of the data before its outsourcing. Hence, corruptions on small parts of data provoke no damage since they can be recovered from the redundancy bits generated by the application of the ECC, while the corruptions affecting large amounts of data can be detected by random sampling. In the following, all the presented POR constructions involve the application of an ECC.

Static POR schemes. Sentinels. The original POR proposed by Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] encodes each data split using an ECC algorithm, such as Reed-Solomon codes [START_REF] Reed | Polynomial Codes Over Certain Finite Fields[END_REF]. After encrypting the data with a semantically secure encryption, a bunch of pseudo-random valued blocks called sentinels are inserted in random positions in the data. These sentinels are in fact indistinguishable from other data blocks thanks to the semantically secure encryption of the data. Therefore, an adversary cannot tell whether a block is a real data block or a sentinel. To check the retrievability of the data, the verifier specifies the positions of a collection of randomly-selected sentinels and queries them from the remote server. The latter retrieves the queried sentinels and sends them back to the verifier who checks that they are intact. The rationale behind this protocol is that modifying part of the data will also, with a certain probability, impact the sentinels. Therefore, if the returned sentinels are not correct, this means that the data has been modified. This solution incurs very lightweight computational complexity, at the price of a limited number of verifications that can be performed by the verifier. Indeed, challenging the server discloses the position and value of the targeted sentinels. Thus the challenged sentinels cannot be used for further verification.

BLS signatures. Shacham and Waters [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] introduce the concept of Compact POR to improve the efficiency and the security guarantee provided by the POR construction of Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF], while enabling an unbounded number of verifications. The Compact POR protocol relies on homomorphic tags to minimize the bandwidth consumption during a POR challenge: indeed, the server can aggregate the tags into a single tag value, thanks to the homomorphism of the tags. Shacham and Waters [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] propose two distinct protocols: the first produces block tags that are based on MAC [START_REF] Bellare | Keying Hash Functions for Message Authentication[END_REF] for private verifiability and the second generates BLS signatures [41] as tags for public verifiability. The notion of POR is further formalized and generalized in [43]. In particular, Bowers et al. [43] observe that the ECC used in the protocol of Shacham and Waters [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] is inefficient and suggest different codes to improve the efficiency. Dodis et al. [START_REF] Dodis | Proofs of retrievability via hardness amplification[END_REF] improved the privately verifiable version in [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] to reduce the challenge communication complexity. Another direction of research considers the multi-server setting [44], where the outsourced data is replicated among several independent servers. If a verifier detects (using POR as a building block) that the data is not correctly stored in one of the servers, she can resort to the other servers to recover the parts of the data that are not intact. The POR protocol is conceived such that a block at a particular position is verified comparing the different blocks stored by the various servers at this particular position.

Polynomial-based POR. In [START_REF] Xu | Towards efficient proofs of retrievability[END_REF], the authors revisit the POR scheme with private verifiability of Shacham and Waters [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] and construct a static POR protocol based on polynomial commitments defined in [START_REF] Kate | Constant-Size Commitments to Polynomials and Their Applications[END_REF]. This scheme is very similar to the polynomial-based PDP proposed by Benabbas et al. [START_REF] Benabbas | Verifiable Delegation of Computation over Large Datasets[END_REF] and Gennaro et al. [90] but with the additional application of an ECC to meet the extractability requirement. This polynomial commitment scheme enables to commit to a polynomial P and to generate a short proof (a witness) of the correct evaluation P (r) on some input r. In [START_REF] Xu | Towards efficient proofs of retrievability[END_REF], the block tags are computed using tags from [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] as

σ i = H(i) + m j=1 b ij α j = H(i) + P i (α)
where each split S i is regarded as a vector of blocks {b i1 , b i2 , ..., b im } that forms the coefficients of polynomial P i . Then as in [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF], to check the retrievability of the data, the verifier sends random positions to the server, who in turn computes a linear combination of the targeted splits and a linear aggregation of the corresponding tags. In addition, the server evaluates P chal (r) where P chal is the polynomial mapped to the challenged splits, and generates the corresponding witness of correct evaluation. Then the verifier checks that the proof is valid. This protocol improves the scheme by Shacham and Waters [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] in terms of communication complexity, but unlike [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] it does not ensure public verifiability.

RSA-based tags. Ateniese et al. [START_REF] Ateniese | Remote Data Checking Using Provable Data Possession[END_REF] enhanced the original PDP construction of [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF] with ECC to make it robust against small data corruptions. The authors observe that with the application of an ECC, three encoding strategies can be applied: (i) the data owner simply applies a Reed-Solomon code; (ii) to prevent an adversary to learn the dependencies between the splits and their corresponding redundancy blocks, the data owner applies the
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Reed-Solomon code, permutes all the blocks in the data (including the redundancy blocks) and then encrypts the entire data; (iii) to prevent from executing an expensive preprocessing operation (due to the permutation step), the data owner only permutes the redundancy blocks. The choice between these three methods is made according to the desired security level of the data owner.

Dynamic POR schemes. As we will see in this paragraph, applying an ECC in the case of dynamic data is not straightforward. Indeed, updating a split also impacts the corresponding redundancy blocks, thus reveals to an adversary which redundancy blocks correspond to which splits. Having this extra knowledge enables the adversary to selectively delete some splits together with their redundancy blocks. If a POR challenge does not target the deleted blocks, the adversary is still able to generate valid PORs, that will be accepted by the verifier. The latter can then believe that the data is retrievable, even though some splits are deleted and cannot be recovered.

Batching updates via a proxy. Stefanov et al. [START_REF] Stefanov | Iris: a scalable cloud file system with efficient integrity checks[END_REF] were the first to tackle the problem of dynamic PORs. They introduce an encoding based on XOR operations that is efficient and addresses the problem mentioned above. However, their setting involves an additional (trusted) proxy that caches update operations and performs them on behalf of the data owner. As the updates are not executed once requested, but cached by the proxy, the dependencies between redundant blocks and their corresponding data blocks are concealed.

Batching updates without a proxy. Chen and Curtmola [START_REF] Chen | Robust dynamic provable data possession[END_REF] enhance the robust scheme of [START_REF] Ateniese | Remote Data Checking Using Provable Data Possession[END_REF] to handle dynamic updates. In particular, they observe that updating even a small number of blocks may require to retrieve the entire file, since several blocks may be involved during the generation of the redundancy blocks. They present two protocols. The idea behind these two protocols is to leverage a variant of Reed-Solomon codes that is based on Cauchy matrices52 [START_REF] James | Optimizing Cauchy Reed-Solomon codes for fault-tolerant network storage applications[END_REF]. The first protocol is efficient in encoding but suffers from high communication costs during updates (especially in the case of insertion operation, when the data owner needs to retrieve the entire data), while the second proposal reduces the communication costs but the encoding (and decoding) operation is more computationally demanding. Shi et al. [START_REF] Shi | Practical Dynamic Proofs of Retrievability[END_REF] deploy a hierarchical log structure that logs the update operations to be performed. In other words, the protocol in [START_REF] Shi | Practical Dynamic Proofs of Retrievability[END_REF] batches the update operations to handle them in a single time such that multiple data blocks are modified, concealing the dependencies between data and redundancy blocks.

O-RAM. Cash et al. [START_REF] Cash | Dynamic Proofs Of Retrievability via Oblivious RAM[END_REF] devise a (publicly verifiable) POR protocol with the technique of Oblivious RAM (O-RAM) [START_REF] Goldreich | Software Protection and Simulation on Oblivious RAMs[END_REF]. In a nutshell, O-RAM consists in a data structure that allows the data owner to update the outsourced data in a privacy-preserving way. In particular, the write accesses are hidden, which conceals the dependencies between data and the redundancy blocks. This data structure is hierarchical: it consists of several layers of hash tables such that the top levels store the most recently accessed data and the bottom levels store the least recent ones. During an update operation, the modified split is inserted in the top table. During a read operation, that may occur before a write operation, the split is first searched in the top table. If it is found, the O-RAM structure simulates a search on the lower tables by looking for randomly-selected splits. Otherwise, the next layer is searched and so on and so forth until the last layer. This trick enables to conceal which data is about to be updated.

iO program. Guan et al. [START_REF] Guan | Symmetric-Key Based Proofs of Retrievability Supporting Public Verification[END_REF] innovate by proposing the first dynamic POR protocol with public verifiability that works in the symmetric-key setting. This protocol considers the static POR scheme with private verifiability proposed by Shacham and Waters [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] and brings the public verifiability property by means of an Indistinguishability Obfuscation (iO) program. The indistinguishable obfuscation of a program [START_REF] Barak | On the (im) Possibility of Obfuscating Programs[END_REF][START_REF] Garg | Candidate Indistinguishability Obfuscation and Functional Encryption for All Circuits[END_REF] intends to conceal the internal program operations while preserving its functionality. An iO program is thus able to embed secret information used by the program operations. In Guan et al. [START_REF] Guan | Symmetric-Key Based Proofs of Retrievability Supporting Public Verification[END_REF], the authors suggest to create an iO program, available for any third-party verifier, that encodes the challenge and verification algorithms of the privately verifiable POR protocol in [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF]. The secret key, used in that protocol as input to these two algorithms, is embedded in the iO program. Therefore, third-party verifiers do not need a secret key nor a public key to launch verification requests. By only running the iO program, they can verify the proofs of retrievability. Besides, the protocol of Guan et al. [START_REF] Guan | Symmetric-Key Based Proofs of Retrievability Supporting Public Verification[END_REF] supports dynamic updates thanks to the use of a Merkle tree. Resorting to an iO program may incur very expensive computational overhead since iO has not practical relevance yet. Besides, the work in [START_REF] Guan | Symmetric-Key Based Proofs of Retrievability Supporting Public Verification[END_REF] does not really handle the concern of concealing data and redundancy blocks under updates.

POR schemes with other features. Zheng and Xu [START_REF] Zheng | Fair and dynamic proofs of retrievability[END_REF] introduce the property of fairness in a dynamic POR protocol. Fairness implies the fact that the data owner is also considered as being malicious: for instance, she can accuse (to a judge in a court) a legitimate remote server of not storing her data correctly to gain financial compensation and damage server's reputation. The authors in [START_REF] Zheng | Fair and dynamic proofs of retrievability[END_REF] define a new authenticated data structure called 2-3 range-based tree that enables membership queries and dynamic operations in logarithmic complexity. To provide fairness, the protocol requires the server to verify a signature computed by the data owner at the time it receives the data, and whenever it receives an update request.

Similarly, Armknecht et al. [START_REF] Armknecht | Outsourced proofs of retrievability[END_REF] propose a publicly verifiable POR system in which the data owner and third-party verifiers are also considered as being potentially malicious. The authors formalize the concept of outsourced POR and build a concrete instantiation upon the scheme with private verification in [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF]. Their construction requires the third-party verifier to create a log file which contains the collection of challenges and responses she performed. The data owner is able to check that the log entries are correct (which is claimed to be less expensive than running an entire POR protocol). Besides, the authors of [START_REF] Armknecht | Outsourced proofs of retrievability[END_REF] observe that the randomness involved in the sampling-based POR challenge can emanate neither from the data owner nor from the verifier only, since these are both untrusted. Therefore, they devise a technique based on the Bitcoin [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] mining process to produce (time-dependent) randomness, such that the data owner and the verifier are synchronized on a challenge without any interaction between each other. Since the randomness introduced by the Bitcoin process is somewhat verifiable, in case of conflict between the owner and the verifier, the latter can prove she correctly followed the POR protocol based on the provided randomness.

Conclusion of the State of the Art

Table 1.1 summarizes the analysis of the state of the art of Proofs of Storage. From the review of existing work, we are able to draw some conclusions that guide our own research perspective in the field of verifiable storage:

1. POR protocols are more efficient than deterministic remote integrity checking at the price of a storage assurance that is probabilistic.

2. POR protocols offer a better security guarantee than PDP schemes, with regard to storage integrity and retrievability.

3. The POR construction of Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] incurs light bandwidth and computation overhead but suffers from the fact that it does not satisfy the requirement on unbounded number of verification.

From the last observation, we propose our own POR protocol, StealthGuard, that is inspired by the breakthrough of Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] but which overcomes the problem of a limited number of verification. 

StealthGuard: Proofs of Retrievability with Hidden Watchdogs

This chapter presents StealthGuard, a new Proofs of Retrievability (POR) scheme which combines the use of a Privacy-Preserving Word Search (PPWS) scheme [START_REF] Blass | PRISM -Privacy-Preserving Search in MapReduce[END_REF] suited for large data stores with the insertion in the outsourced data of randomly generated short bit sequences, named watchdogs. We see data retrievability as a fundamental security requirement for data storage. Retrievability can be interpreted as a combination of integrity and availability.

Proofs of retrievability are a particular type of Proofs of Storage, with the extra property of extractability. Indeed, not only a data owner can check the integrity and the availability of her outsourced data, but she can also check that her data is retrievable. In a nutshell, this property implies that there exists an extractor that, via an interaction with the storage server (which can be malicious), can recover the outsourced data in its entirety, with some overwhelming probability. Being an instance of a POS scheme, a POR protocol inherits from the characteristics of POS and adopts the definition of a POS protocol we presented in Section 1.2. In particular, a POR solution must meet the requirements of security, unbounded number of verification and efficiency After defining the security of a POR protocol in Section 2.1.2, we describe StealthGuard in Section 2.2. We analyze the security of StealthGuard in Section 2.3 and evaluate its performances in Section 2.4

Security Model of POR

A POR protocol must be complete and sound. Completeness means that the POR scheme does not yield any false negatives: a verifier V always accepts a proof of a honest cloud server S. Soundness characterizes the fact that it is impossible for a malicious server to make the verifier accept forged (and false) proofs of retrievability.

Completeness

If cloud server S and verifier V are both honest, then on input of a challenge chal and some file identifier fid sent by verifier V , using algorithm Challenge, algorithm ProofGen generates a proof of retrievability that will be accepted by verifier V with probability 1.
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Definition 3 (Completeness). A POR scheme (KeyGen, Encode, Challenge, ProofGen, Verify) is complete if for any honest pair of cloud server S and verifier V , and for any key K ← KeyGen(1 κ ), any file F ∈ F whose file identifier is fid and for any challenge chal ← Challenge(K, fid): Pr[Verify(K, fid, chal, P) → 1 | P ← ProofGen(fid, chal)] = 1

Soundness

In this section, we elaborate the soundness definition which is peculiar to any POR scheme.

Intuition behind the definition

A POR protocol is deemed sound, if for any malicious prover, i.e. malicious cloud server S, the only way to convince a verifier V that a file F is retrievable is by actually storing a retrievable version of that file. As a consequence, if server S correctly executes a polynomial number of proof generations for file F , using algorithm ProofGen, thus yielding valid proofs, then it implies that server S should keep that file intact in such a way that data owner O can later retrieve her file F . According to Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF], such a definition gives way to the existence of a special algorithm E, called the file extractor algorithm, which via an interaction with cloud server S, is able to extract file F with an overwhelming probability, using the sound POR protocol. Shacham and Waters [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] revisit the definition of soundness by capturing the soundness of POR schemes that empower the verifier with unlimited number of possible POR challenges. However this definition does not apply to POR schemes where only limited number of possible challenges are available to the verifier such as in [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF][START_REF] Stefanov | Iris: a scalable cloud file system with efficient integrity checks[END_REF]. Indeed, the definition in [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] asserts that whenever cloud server S generates valid PORs for some file F with a non-negligible probability and whenever the file is recoverable, then the corresponding POR scheme is sound. In the case of other POR schemes, such as the one proposed in [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF][START_REF] Stefanov | Iris: a scalable cloud file system with efficient integrity checks[END_REF], where the number of possible POR challenges is limited, this definition cannot be employed to assess the soundness property. For example, if we take the POR scheme introduced by [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF], and if we consider a scenario where cloud server S randomly corrupts half of the outsourced file, then the server will be able to correctly answer half of the POR challenges that the verifier issues, yet the file is irretrievable. This means that the POR mechanism adopted by Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] is not secure under the definition of [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF], still it is arguably "sound". In practice, to check whether a file is retrievable, the verifier generates a polynomial number of POR queries to which the server has to respond correctly. Otherwise, the verifier detects a corruption attack, be it malicious or unintentional. Here, the term "POR query" captures the ability of a verifier to issue requests for proofs of retrievability based on the challenges available to the verifier. In the following section, we aim at revisiting the soundness definition given in [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] with this notion of number of POR queries that the verifier should generate either to be sure that a file is retrievable or to detect a corruption attack on the file.

Definition details

The following lines formalize our definition of the protocol soundness. This definition sets a soundness game in which a Probabilistic Polynomial-Time (PPT) adversary A (i.e. a malicious cloud server) intends to frame a verifier V . A's goal is to create a situation where verifier V is convinced that data owner O's file is retrievable, with an overwhelming probability, while that file is actually not. Adversarial corruption can consist in either modification or deletion of file blocks. This section also defines the file extractor algorithm, denoted E.

To formally capture the capabilities of adversary A, we assume that she has access to the following oracles:

O Encode This oracle takes as inputs a file F and data owner's key K, and returns a file identifier fid and a verifiable version F of F that will be outsourced by A.

O Challenge On input of a file identifier fid and data owner's key K, this oracle returns a POR query chal to adversary A.

O Verify When queried with data owner's key K, a file identifier fid, a POR query chal and a proof of retrievability P, this oracle outputs a bit b such that b = 1 if P is a valid proof of retrievability and b = 0 otherwise.

In the soundness game we define, adversary A accesses the aforementioned oracles in two phases: a learning phase and a challenge phase.

Learning Intuitively, a POR scheme is sound, if for any adversary A that wins the soundness game described above with a non-negligible probability δ, there exists a file extractor algorithm E that succeeds in retrieving challenge file F * with an overwhelming probability. We say that a probability is overwhelming if it is equal to 1 -ε, where ε is negligible.

Definition 4 (Soundness). A POR scheme (KeyGen, Encode, Challenge, ProofGen, Verify) is said to be (δ, γ)-sound, if for every adversary A that provides γ valid proofs of retrievability in a row ( i.e. succeeds in the soundness game described above) with a nonnegligible probability δ, there exists an extractor algorithm E such that:

P r[E(K, fid * ) → F * | E(K, fid * ) A] ≤ 1 -ε,
where symbolizes the interaction between extractor E and adversary A, and ε is a negligible function in security parameter κ.

Informally, if verifier V issues a number of queries larger than γ and if cloud server S correctly responds to them, then V can ascertain that S is still storing a retrievable version of file F * with high probability. While γ characterizes the number of valid proofs of retrievability that extractor E has to receive to assert that file F * is retrievable, δ quantifies the number of operations that E has to execute and the amount of data that it has to download to first declare that F * is retrievable and then to extract it.

StealthGuard

Intuition behind StealthGuard

StealthGuard pursues an idea originally proposed by Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] which relies on the insertion, in random positions in the data to be outsourced, of some special (precomputed) random blocks, called watchdogs. Then, the proofs of retrievability consist in checking that some of these watchdogs are still intact in the outsourced data. This method is based on the random sampling technique: at each instance of the POR protocol, the verifier samples some of the watchdogs and checks their integrity. In other terms, it offers a probabilistic retrievability guarantee while being computationally very light.

In a nutshell, to prepare a retrievable version of a data file F , data owner O first encrypts her data and embeds some pseudo-randomly generated watchdogs in it. Here, encryption guarantees the indistinguishability of the watchdogs from a real data block. Once the data is outsourced to cloud server S, a verifier V issues queries for some watchdogs, in order to check that they are intact in the data. Cloud server S responds to these queries by generating a proof for the targeted watchdogs. If unintentional or adversarial corruption affects the data, then with high probability, it would also impact the watchdogs. Thus, cloud server S would unlikely return a valid proof of retrievability. Besides, in order to protect the data from small corruptions, StealthGuard applies an ECC that enables the recovery of the corrupted data. In other words, StealthGuard satisfies the requirement of extractability.

Our proposal differs from the solution of [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] in the way server S generates the proofs of retrievability. In [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF], verifier V selects a collection of watchdogs and sends their positions to server S which responds with the blocks located at the requested positions. Thereafter, verifier V checks that the returned blocks are really the requested watchdogs. Although this solution is efficient in terms of computational complexity, it does not meet the unbounded number of POR queries requirement. Indeed, when verifier V challenges server S, she discloses the positions of the watchdogs. Hence, the challenged watchdogs cannot be used for further verifications since S knows that these particulars blocks are watchdogs and thus can discard the blocks that correspond to the file content. Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] envisioned to use a Private Information Retrieval (PIR) algorithm to retrieve the watchdogs in a privacypreserving way. This technique would allow to re-use them for an unbounded number of verifications. However, the authors did not investigate on this idea since they perceived the application of a PIR algorithm on the entire data as being computationally prohibitive.

To cope with this concern, StealthGuard leverages a Privacy-Preserving Word Search (PPWS) scheme combined with watchdogs inserted in the outsourced data. By selecting an efficient PPWS solution and by inserting an optimal number of watchdogs (this number will be determined in Section 2.3.2), StealthGuard is efficient while satisfying the unbounded number of verification requirement. The privacy preserving property of the search ensures that cloud server S cannot discover which watchdogs were targeted by the search queries. As a result, verifier V can launch an unbounded number of POR queries, even for the same watchdog, without the need to update the data with new watchdogs, thus realizing the desired POR design requirement. In addition, the search results are obfuscated thanks to the underlying PPWS scheme. The only way that cloud server S can convince verifier V about the retrievability of a targeted file is by returning valid search results, that is by storing the file in its entirety and executing the PPWS correctly.

StealthGuard Phases

In this section, we consider the following scenario: Data owner O outsources to cloud server S some of her files F . At some point of time 53 , verifier V (be it the data owner herself or any authorized party who is delegated the challenge and verification capabilities) checks the retrievability of file F using StealthGuard.

In accordance with the definition of a POR scheme stated in Section 1.2, our protocol comprises three phases:

Setup. During this phase, O performs some transformations over F and inserts a certain number of watchdogs to F . The resulting file F is sent to server S.

Challenge. This phase corresponds to the Challenge phase described in Definition 2. It consists in searching for some watchdog w in a privacy-preserving manner. Hence, V prepares and sends a privacy-preserving lookup query for w; S, in turn, processes F to generate a correct response to the search and returns the output to verifier V .

Verification. Verifier V checks the validity of the received response and makes the decision about the existence of watchdog w in the outsourced file.

According to the POR soundness definition we gave in Definition 4, verifier V must receive at least γ (γ must be larger than a threshold determined in Section 2.3) correct responses from S to decide thatO's file F is retrievable. On the other hand, if V receives one response that is not valid, then she is convinced that F is either corrupted or lost.

Building Blocks

Before detailing the phases of StealthGuard, we start by introducing the different building blocks that are used in our solution.

Pseudo-Random Functions and Permutations

Pseudo-Random Function (PRF). Informally, a pseudo-random function, introduced by Goldreich et al. [START_REF] Goldreich | How to Construct Random Functions[END_REF], is a function Φ : K × X → Y , where K , X and Y respectively denote the set of keys, the set of possible inputs and the set of possible outputs, such that:

• Given a key K ∈ K and an input X ∈ X , there exists an efficient algorithm to compute Y = Φ(K, X) ∈ Y ;

• Φ is indistinguishable from a random function, selected from the uniform distribution of all functions f : X → Y .

In StealthGuard, the watchdogs are generated using an appropriate PRF, see Section 2.2.4.1.

Pseudo-Random Permutation (PRP). In a nutshell, a pseudo-random permutation is a function Π : K × X → X , where K and X respectively represent the set of keys and the set of possible inputs, such that:

• Given a key K ∈ K and an input X ∈ X , there exists an efficient algorithm to evaluate Y = Π(K, X) ∈ X ; • For any key K ∈ K , Π is a bijection from X to X . Namely there exists an efficient inverse function Π -1 : K × X → X such that, for any key K ∈ K and any X ∈ X ,

X = Π -1 (K, Π(K, X));
• Π is indistinguishable from a random permutation, selected from the uniform distribution of all permutations π : X → X .

StealthGuard employs such a PRP to randomize the position of data blocks and the location of the watchdogs in the data. A cryptographically secure keyed block cipher such as Advanced Encryption Standard (AES) [68] is a good PRP candidate.

Error-Correcting Codes

An [n, k, d]-error correcting code (ECC) denotes a code which transforms a k-bit word into a n-bit codeword, where d denotes the minimal Hamming distance 54 between codewords.

Any ECC algorithm would suit to StealthGuard. As a matter of example, we can employ Reed-Solomon error-correcting codes. Reed-Solomon codes are an [n, k, n -k + 1]-ECC over a finite field F p of prime order p > n. The encoded unit, called a symbol, is generally a byte or any symbol of 2 i bits. As the Reed-Solomon codes are known to be block-based codes, they encode data in blocks, where the block length is defined by n: a block is constituted of n symbols. Reed-Solomon codes are also systematic, in the sense that the original data is 54 The Hamming distance of two sequences of bits is the number of bits which differ from the two sequences. left unchanged and the blocks generated during the encoding are just appended at the end of the data. We call these extra blocks "parity" blocks or "redundant" blocks or even "ECC" blocks 55 . The Reed-Solomon decoding processes each block of data and attempts to detect and correct the errors that can be included in the data. Such a decoder can detect and correct up to d 2 = n-k+1 2 errors.

Semantically-Secure Encryption

The notion of a semantically secure encryption SSE scheme, introduced by Goldwasser and Micali [START_REF] Goldwasser | Probabilistic Encryption & How to Play Mental Poker Keeping Secret All Partial Information[END_REF], characterizes a probabilistic encryption scheme in which, given the ciphertext of some message chosen from any distribution of plaintexts, any passive Probabilistic Polynomial-Time (PPT) adversary cannot distinguish which of these plaintexts correponds to the given ciphertext. In other terms, semantic security guarantees that the adversary cannot feasibly derive any significant information about the plaintext from the ciphertext (and the message's length).

In StealthGuard, the watchdogs are pseudo-randomly generated (with the use of a PRF), and inserted in the data encrypted with a SSE algorithm. Hence, no adversary can distinguish watchdogs from original data blocks.

Privacy-Preserving Word Search

As mentioned above, StealthGuard enables the cloud server to operate a search for the watchdogs over the (encrypted) data it stores, in a privacy-preserving fashion. By relying on a Privacy-Preserving Word Search (PPWS) algorithm that preserves both search queries and search results privacy, our solution ensures that the cloud server cannot discover which watchdogs are targeted by the search queries and does not learn any information on whether these watchdogs are found or not. As a result, the PPWS algorithm allows to reuse the watchdogs for future queries.

In this work, we resort to a simplified version 56 of an existing solution called Prism [START_REF] Blass | PRISM -Privacy-Preserving Search in MapReduce[END_REF]. Prism transforms the search problem into several parallel efficient Private Information Retrieval (PIR) instances. The PIR mechanism inherited by Prism is based on the Trapdoor Group PIR scheme 57 proposed by Trostle and Parrish [START_REF] Trostle | Efficient Computationally Private Information Retrieval from Anonymity or Trapdoor Groups[END_REF] that is depicted in Figure 2.1. In this scheme, the data outsourced in the cloud is represented by a matrix and the PIR procedure allows a user to obtain one row from this matrix without letting the cloud determine which row the user is querying. The words are mapped to a binary matrix and unique position for each word. Therefore, a user can perform a word search on her outsourced data as follows:

• A user issues a search query for a particular word ω using the underlying PIRquery algorithm (cf. Figure 2.1);

• The cloud creates an index matrix M of "0" and "1" on-the-fly, where each matrix position is assigned to a word in the data and where each matrix element stores a one-bit witness calculated via a hash over the word assigned to the corresponding position;

• The cloud runs PIRprocess, described in Figure 2.1, with inputs matrix M and the PIR query on word ω. It should be highlighted that Prism is not another PIR algorithm. Indeed, algorithm PIRprocess does not retrieve the word itself, but it retrieves some very short 55 Same terminology applies for symbols and bits. Thus we might mention redundant symbols or parity bits. 56 However, any efficient PPWS scheme assuring the confidentiality of both the query and the result can fit in our framework. 57 A security breach in the PIR algorithm developed by Trostle and Parrish [START_REF] Trostle | Efficient Computationally Private Information Retrieval from Anonymity or Trapdoor Groups[END_REF] have been found by Lepoint

and Tibouchi [START_REF] Lepoint | Cryptanalysis of a (Somewhat) Additively Homomorphic Encryption Scheme Used in PIR[END_REF], shortly after the design of StealthGuard. Nevertheless, for a matter of illustration, we describe in this section the mechanism behind this PIR protocol. In our protocol, the PIR mechanism operates as a black box: any secure (computationally-)PIR solution that guarantees the confidentiality of the PIR query and PIR reply can be applied to our protocol information (i.e the witness) that enables the user to decide about the presence or absence of the searched word.

• The user analyzes the output of the PIRanalysis (see Figure 2.1) and gets the answer of the search result (either word ω is present, or absent in the targeted data). • K enc : This key serves as a data encryption key and is computed as

K enc = H enc (K),
where H enc is a cryptographic hash function;

• K wdog : To generate the watchdogs, StealthGuard resorts to a PRF whose input key is K wdog = H wdog (K) ;

• K permF : Algorithm Encode requires to permute all blocks in a file using a PRP (see below), thus algorithm KeyGen computes K permF = H permF (K);

• K permS i : For all 1 ≤ i ≤ n, algorithm Encode inserts the generated watchdogs in random positions in split S i , thus algorithm KeyGen generates the keys

K permS i = H permS i (K).
Encode: Once all the keying material is generated, data owner O runs algorithm Encode which first generates a pseudo-random and unique file identifier fid for file F , segments F into n splits {S 1 , S 2 , ..., S n } of equal size of L bits, and each split S i into m blocks {b i1 , b i2 , ..., b im } of l bits 58 , i.e. L = m • l, and then processes F as described below.

1. Error correcting: The Error Correcting Code (ECC) assures the protection of the file against small corruptions. This step applies to each split S i an ECC that operates over l-bit symbols. It uses an [m+d-1, m, d]-ECC. Each split is expanded with d -1 blocks of redundancy. Thus, the new splits are made of D = m + d -1 blocks.

2. File-level permutation: StealthGuard applies a Pseudo-Random Permutation (PRP) to permute all the blocks in the file. This operation conceals within a 58 If necessary, F will be padded to a multiple of L. 

D = m + d -1 End 2. File block permutation Compute KpermF = HpermF (K); For 1 ≤ p ≤ n • D do # ΠF : {0, 1} κ × [[1, n • D]] → [[1, n • D]] is
= H wdog (K); For 1 ≤ i ≤ n do # Φ : {0, 1} κ × [[1, n]] × [[1, v]] × {0, 1} * → {0, 1} l is a PRF For 1 ≤ j ≤ v do Generate watchdog wij as Φ(K wdog , i, j, fid); Append watchdog wij to split i; End # Split number i contains C = D + v blocks Compute KpermS i = HpermS i (K); For D ≤ k ≤ C do # ΠS : {0, 1} κ × [[1, C]] → [[1, C]
] is a PRP Permute block at current position k to the position ΠF (KpermS i , k); End # Final split augmented with watchdogs is denoted Ŝi End 5. Return (fid, F = { Ŝ1. Ŝ2, ..., Ŝn}); split the dependencies between the original data blocks and the corresponding redundancy blocks. We explain at the end of the description of the Setup phase the importance of such a permutation.

Let Π F : {0, 1} κ × [[1, n • D]] → [[1, n • D]] be a PRP: for each p ∈ [[1, n • D]]
, the block at current position p will be at position Π F (K permF , p) in the permuted file that we denote F . F is then divided into n splits { S1 , S2 , ..., Sn } of equal size D.

3.

Encryption: StealthGuard uses a Semantically-Secure Encryption (SSE) E that operates over l-bit blocks 59 to encrypt the data. Encryption E is applied to each block of F using K enc .

Watchdog creation:

For each split of encrypted blocks, v l-bit watchdogs are generated using a Pseudo-Random Function (PRF) Φ :

{0, 1} κ × [[1, n]] × [[1, v]] × {0, 1} * → {0, 1} l .
Hence, for j ∈ [ [1, v]], w ij = Φ(K wdog , i, j, fid). Since the watchdogs are pseudo-randomly generated and the blocks in the split are encrypted, a malicious cloud cannot distinguish watchdogs from data blocks. 59 Practically, l will be 128 or 256 bits.

Watchdog insertion:

The v watchdogs are appended to each split. Let C = D+v be the size (in blocks) of the new splits. A split-level PRP Π S : {0,

1} κ × [[1, C]] → [[1, C]
] is then applied to the blocks within the same split in order to randomize the location of the watchdogs: for S i , such that i ∈ [ [1, n]], the block at current position k will be at position Π S (K permS i , k) in the permuted split. We denote Ŝi , i ∈ [ [1, n]], the permuted split and bik , k ∈ [[1, C]] its blocks.

Encode file F together with fid. Data owner O uploads (fid, F = { Ŝ1 , Ŝ2 , ..., Ŝn }) to cloud server S. We stress the fact that the only information stored at data owner O is master secret key K. The operations of algorithm Encode are depicted in Figure 2. Discussion on the block permutation step (step 2). As mentioned earlier, this operation conceals within a split the dependencies between the original data blocks and the corresponding redundancy blocks. Without this permutation, the corresponding redundancy blocks are just appended to the split, since Reed-Solomon codes are systematic codes. Hence, without such a permutation, a malicious cloud could for instance delete all the redundancy blocks located at the end of a split and a single data block from this split and thus render the file irretrievable. Such an attack would not easily be detected since the malicious server could still be able to respond with valid proofs to a given POR query if the watchdogs are not impacted by this attack or if the query targets other splits in the file. The permutation prevents this attack since data blocks and redundancy blocks are mixed up among all splits.

Challenge

Once data is uploaded, verifier V wants to check the retrievability of file F stored at cloud server S. Hence, V issues search queries for randomly selected watchdogs. Such a query applies to a single watchdog in a particular split. S processes these queries without knowing what the values of the watchdogs are and where they are located in the targeted split. We propose WDSearch, a Privacy-Preserving Word Search (PPWS) solution derived from Prism [START_REF] Blass | PRISM -Privacy-Preserving Search in MapReduce[END_REF] which is based on a Private Information Retrieval (PIR) protocol. Our proposal is a simpler version of Prism and improves its performance in the particular context of StealthGuard.

To process a query in the framework of WDSearch, cloud server S constructs q (s, t)binary matrices such that s • t = C. Each element in the matrices is filled with the witness (a one-bit information on the existence of the watchdog) of the corresponding block in the split. Based on the PIR query sent by the verifier, the server retrieves in the matrices the witnesses corresponding to the requested watchdogs. We insist on the fact that WDSearch is not a PIR solution: the server does not retrieve the watchdog itself but only the witness.

WDSearch, depicted in Figure 2.5, consists of two steps, corresponding to the challengeresponse protocol inherent to any POR scheme: Challenge in which verifier V prepares the challenge, i.e. the POR query to be sent to cloud server S and Response where cloud server S processes the received POR query to issue a POR response to be sent to verifier V .

Challenge: Verifier V executes algorithm Challenge to generate a challenge chal that is transmitted to cloud server S. Challenge takes as input master key K and file identifier fid and it is executed in three phases:

1. It randomly selects a split index i and a watchdog index

j (i ∈ [[1, n]] and j ∈ [[1, v]]),
and computes the position pos j of the watchdogs w ij in the split Ŝi by applying PRP Π S pos j = Π S (K permS i , D + j). Then, Challenge maps the position pos j to its unique position (x j , y j ) in an (s, t)-matrix (i.e. the ones created by cloud server S during the Response phase):

x j = pos j t y j = pos j -pos j t × t + t 2. Given (x j , y j ), Challenge computes a PIR query µ = PIRquery(x j , y j ), to retrieve the witness at position (x j , y j ) in an (s, t)-matrix.

3. Challenge generates a nonce R. This nonce will be used by cloud server S when creating matrices to guarantee the freshness of its responses. Then Challenge outputs challenge chal = ( µ, R, i, j).

Eventually, V sends challenge chal and file identifier fid to S.

Response: Upon receiving challenge chal = ( µ, R, i, j) and file identifier fid, S runs ProofGen to process the POR query in two phases:

1. S creates q binary matrices 60 of size (s, t). For each block bik in split Ŝi , S computes

h ik = H( bik , R), where k ∈ [[1, C]].
Here, H denotes a cryptographic hash function.

Thanks to R, S cannot drop the block in order to only store the hash and respond to the query using that hash. Let h ik | q be the first q bits of h ik . For r ∈ [ [1, q]], let M r be one of the matrices created by cloud server S. S fills the r th matrix with the r th bit of h ik | q as algorithm FillMatrix in Figure 2.4 shows. It should be noted that according to the assignment process described in Figure 2.4, the witness at position (x j , y j ) in M r is associated with watchdog w ij : it is the r th bit of H(w ij , R).

2. Once all the q matrices are filled, S processes PIR query µ by executing PIRprocess (cf. Figure 2.1) that retrieves one row from each matrix M r , r ∈ [ [1, q]]. We denote σ r the output of PIRprocess for matrix M r . 3. Algorithm ProofGen outputs P, i.e. the proof of retrievability which consists in the set P = { σ 1 , σ 2 ..., σ q }. In a nutshell, vectors σ r are the rows of coordinate x j and size t, retrieved in a privacy-preserving manner from matrix M r .

S sends proof P to verifier V . 

{h ik } 1≤k≤C ) 1. k=1; 2. For 1 ≤ x ≤ s do For 1 ≤ y ≤ t do Mr[x, y] ← r th bit of h ik ; k = k + 1; End End 3. Return Mr;
(a) FillMatrix C = 6 is the number of blocks in one split Ŝi s = 2 is the number of rows in a matrix t = 3 is the number of columns in a matrix q = 4 is the number of matrices Matrix elements are indexed as 1 2 3 4 5 6

Hashes of blocks truncated to the first q = 4 bits:

h i1 = 1 0 1 0; h i2 = 1100; h i3 = 0001; h i4 = 1001; h i5 = 1111; h i6 = 1101 1 1 0 1 1 1 M 1 0 1 0 0 1 1 M 2 1 0 0 0 1 0 M 3 0 0 1 1 1 1 M 4 (b) FillMatrix toy example

Verification

The last phase of StealthGuard consists in the Verification phase in which verifier V runs algorithm Verify to analyze proof P she received from cloud server S.

Algorithm Verify takes as inputs master key K, proof P, challenge chal (from which it extracts split index i and watchdog index j) and file identifier fid, and outputs bit b = 1 if proof P is valid or b = 0 otherwise.

As shown in Figure 2.6, algorithm Verify operates in three phases: 1. It first processes the q vectors σ r , 1 ≤ r ≤ q, contained in proof P using procedure PIRanalysis (depicted in Figure 2.1) with inputs: vector σ r and coordinate y j . For 60 q defines a tunable parameter of our system, that quantifies the size of the witness retrieved in

StealthGuard. Typically, we select |q| = 80 bits. The value of q is discussed in Section 2.3.2. Parse chal = ( µ, R, i, j) 1. Initialize q binary matrices Mr of size (s, t);

For 1 ≤ k ≤ C do # Loop over the blocks in split Ŝi Compute h ik = H( bik , R); End For 1 ≤ r ≤ q do # Loop over the matrix indices Execute procedure Mr = FillMatrix(Mr) # cf. Figure 2.4; End 2. For 1 ≤ r ≤ q do
Compute σr = PIRprocess( µ, Mr) # cf. Figure 2.1; End 3. Return P = ( σ1, σ2, ..., σq); each σ r , PIRanalysis outputs the queried bit r from matrix M r at position (x j , y j ), for 1 ≤ r ≤ q. Let h denote the bit string 1 2 ... r ... q .

2. We recall that verifier V queried watchdog w ij in split Ŝi and that by having access to master key K, verifier V can recompute the value of w ij = Φ(K wdog , i, j, fid) and its position in split Ŝi , pos j = Π S (K permS i , D + j). Thereafter, algorithm Verify computes the hash of the watchdog h i,pos j = H(w ij , R), with the same nonce R chosen in the WDSearch phase and considers the q first bits of h i,pos j . 3. Based on the value of h and h i,pos j , algorithm Verify checks whether h = h i,pos j | q . If it is the case, then verifier V returns 1 and judges that with overwhelming probability the watchdog is correct in the split. Otherwise, verifier V outputs 0 and it interprets the invalid proof as the occurrence of an attack. Parse P = ( σ1, σ2, ..., σq);

1. For 1 ≤ r ≤ q do Evaluate r = PIRanalysis( σr, yj); End # h = 1 2.. q 2. Compute wij = Φ(K wdog , i, j, fid);
Compute pos j = ΠS(KpermS i , D + j); Compute hi,pos j = H(wij, R); 3. Check whether h = hi,pos j |q;

If this check fails then return b = 0 else return b = 1;

As mentioned in Section 2.2.2, in order to acknowledge the retrievability of file F , verifier

V needs to initiate at least γ POR queries 61 from randomly selected splits in order to either ascertain that file F is retrievable or detect a corruption attack: if verifier V receives γ valid POR responses, then she can conclude that S stores a retrievable version of the file, otherwise, she concludes that S has corrupted part of the file.

Security Analysis of our Protocol

In this section, we state and prove the two security theorems of completeness and soundness satisfied by StealthGuard.

Completeness

Theorem 1 (Completeness). StealthGuard is complete.

Proof of Theorem 1. Without loss of generality, we assume that the honest verifier V runs a StealthGuard instance for a file F . To this end, V sends a challenge chal = ( µ, R, i, j) for watchdog w ij , and file identifier fid of F . Upon receiving challenge chal and file identifier fid, cloud server S generates a proof of retrievability P for file F .

According to the description of StealthGuard, the verification of POR P consists in first retrieving the first q bits of a hash h i,pos j , then verifying whether h i,pos j |q corresponds to the first q bits of the hash H(w ij , R). Since S is honest, then this entails that it stores w ij and therewith, can always compute h i,pos j = H(w ij , R). Consequently, Verify(K, fid, chal, P) = 1.

Soundness

We recall that we consider the scenario where data owner O outsources the storage of her file F = {S 1 , S 2 , ..., S n } to cloud server S. In the following, we enunciate the soundness theorem for StealthGuard.

Theorem 2 (Soundness). Let κ be the security parameter of StealthGuard and let ρ = d 2D denote the error rate of the ECC, δ be the probability that an adversary A wins the POR soundness game and γ be the number of valid proofs of retrievability provided by adversary A in a row.

StealthGuard is (δ, γ)-sound in the Random Oracle Model (ROM), if δ > δ neg and γ ≥ γ neg , where

δ neg = 1 2 κ γ neg = ln(2)κ ρ neg 1 - ρ ρ neg 2 ρ neg = 3 ln(2)κ D ρ neg ≤ ρ.
Accordingly, if γ ≥ γ neg , then there exists an extractor E that recovers a file F with a probability 1 -n 2 κ , such that n is the number of splits in F , by interacting with an adversary

A against StealthGuard who succeeds in the soundness game with a probability δ > 1 2 κ .

Interpretation. If V issues γ ≥ γ neg POR queries for some file F to which S responds correctly, then V can declare F as retrievable with probability 1 -n 2 κ . In addition, since an instance of StealthGuard's protocol executed for F consists c obliviously fetching a witness for a watchdog from the encoding F of that file, O must insert at least γ neg watchdogs in file F , to ensure a security level of 1 2 κ . That is, if file F comprises n splits, then nv ≥ γ neg where v is the number of watchdogs per split.

Proof of Theorem 2. We assume there is an adversary A that corrupts on average ρ adv fraction of the outsourced file, and succeeds in the soundness game, depicted in Section 2.1.2, with some probability δ. In the following, we show that if δ > δ neg = 1 2 κ , then there exists an extractor algorithm E that retrieves the challenge file

F * = {S * 1 , S * 2 , ..., S * n }
by interacting with adversary A and by controlling a random oracle H.

Proof overview. For ease of exposition, the proof of Theorem 2 is broken down into four consecutive steps:

1-Computation of the probability δ of success in the soundness game: This step quantifies probability δ according to which adversary A succeeds in the soundness game when it corrupts on average ρ adv fraction of outsourced file F * . We find that δ (1 -ρ adv ) γ .

2-Computation of corruption threshold ρ neg above which file F * is irretrievable: In this step, we determine threshold ρ neg for the probability ρ adv of corruption by adversary

A such that:

• If ρ adv ≥ ρ neg , then the file F * is irretrievable by extractor E.

• If ρ adv < ρ neg , then the file F * is retrievable by extractor E with an overwhelming probability.

3-Computation of γ neg above which F * is said retrievable when A wins the game: Here we derive a bound γ neg for value γ, such that if γ ≥ γ neg and:

• If ρ adv ≥ ρ neg , then δ = (1-ρ adv ) γneg ≤ δ neg = 1 2 κ .

This ensures that if adversary

A corrupts more than ρ neg fraction of the file F * , then A will be detected with an overwhelming probability (adversary A wins the soundness game with a negligible probability).

• If ρ adv < ρ neg , then δ = (1 -ρ adv ) γneg > δ neg , however, the file F * is still retrievable. 

4-Construction

= { Ŝ * 1 , Ŝ * 2 , ..., Ŝ * n }.
In the following we detail the four parts of the proofs.

1-Computation of the probability δ of success in the soundness game. We determine the probability δ as a function of adversarial corruption fraction ρ adv . For this purpose, we model the corruption pattern: for each split Ŝ * i , let X ik denote the random variable that corresponds to the event in which adversary A corrupts the k th block of split Ŝ * i . Namely,

X ik = 1 if A corrupts the k th block of the split Ŝ * i 0 otherwise.
We assume for sake of simplicity that for all 1 ≤ i ≤ n and all 1 ≤ k ≤ C, random variable X ik follows a Bernouilli process of parameter ρ adv , i.e. P r(X ik = 1) = ρ adv and P r(X ik = 0) = 1 -ρ adv . This implies that random variables X ik are independent identical distributed binary random variables. In other words, the probability that a block in split Ŝ *

i is corrupted by adversary A is the same for all blocks in file F * . This model is valid in the case of StealthGuard: Indeed, the use of a secure PRP and a SSE in algorithm Encode (cf. Section 2.2.4.1) ensures that adversary A sees block values as uniformly distributed. It follows that adversary A succeeds in providing a valid proof of retrievability for some challenge chal * j (1 ≤ j ≤ γ) generated by oracle O Challenge (cf. Algorithm 2) according to the following two cases:

• The watchdog associated with challenge chal * j (we assume it is located at position k in split Ŝ * i ) is not affected by the adversarial corruption. This event occurs with probability P r(X ik = 0) = 1 -ρ adv .

• A does corrupt this watchdog but she is still able to provide the q-bit witness associated with that watchdog (cf. Figure 2.5 and Figure 2.6) as expected by oracle O Verify . The probability of such an event is P r(X ik = 1) × 1 2 q = ρ adv 2 q .

Let P A (Success,j) denote the probability that adversary A succeeds in providing a valid proof of retrievability for challenge chal * j . Accordingly, P A (Success,j) = 1 -ρ adv + ρ adv 2 q .

As mentioned in the soundness definition enunciated in Section 2.1.2, adversary A succeeds in the challenge phase of the soundness game if she succeeds in supplying oracle O Verify with γ valid proofs of retrievability. Therefore, the probability that adversary A succeeds in the soundness game is:

δ = γ j=1 P A (Success,j) = (1 -ρ adv ) γ + γρ adv (1 -ρ adv ) γ-1 2 q + o 1 2 q denoted ζ .
We recall that q corresponds to the number of bits that a verifier has to retrieve from the cloud server in StealthGuard. Hence, we note that if q is large enough, for example q = 80 bits, then ζ is negligible. Therefore, to simplify, we assume q ≥ 80 and δ

(1 -ρ adv ) γ .
This result can be interpreted as follows: to win the soundness game, adversary A has to send the q-bit witness that corresponds to the watchdog targeted by the challenge generated by oracle O Challenge . The bigger q, the harder for A to guess the exact sequence of q bits. Thus, A may not corrupt the watchdog to provide valid proofs of retrievability, which yields probability δ to reach (1 -ρ adv ) γ (i.e. the probability that γ watchdogs are not corrupted by adversary A).

2-Computation of corruption threshold ρ neg above which file F * is irretrievable. Now that we have quantified probability δ according to which adversary A wins the soundness game, we determine the threshold ρ neg for the corruption probability ρ adv . As specified above, if ρ adv ≤ ρ neg then the challenged file F * is retrievable by file extractor E with overwhelming probability. Before computing this threshold, we introduce a simplified Chernoff bound lemma that we will use later to bound the probability that a split Ŝ * i is corrupted in a manner that prevents file extractor E from retrieving S * i , and therewith prevents E from retrieving file F * .

Lemma 1 (Simplified Chernoff Bound). Let X 1 , X 2 , ..., X D be independent random variables that follow a Bernouilli process of parameter π, i.e P r(

X i = 1) = π for 1 ≤ i ≤ C. Then for X = D i=1 X i , µ = E[X] = Dπ, and for any α ∈]0, 1], we have P r(X > (1 + α)µ) ≤ e -α 2 µ 3 and P r(X < (1 -α)µ) ≤ e -α 2 µ 2 .
We leverage Lemma 1 in the following lines. File extractor E fails at recovering file F * if there is a split Ŝ * i of the encoding F * damaged by more than d 2 = ρD errors (by definition of an Error Correcting Code (ECC)). This assertion can be interpreted in terms of probability: Let P E (Fail,j) denote the probability that split Ŝ * i is damaged with more than ρD errors. In particular, it expresses the probability that extractor E fails in recovering split Ŝ * i . Thus P E (Fail,j) = P r( X ik ] = ρ adv D (indeed, ρ adv is the parameter of the Bernoulli process followed by the random variables X ik ) and α = ρ ρ adv -1. Written in another way, this bound corresponds to:

P E (Fail,j) ≤ e - ρ adv D 3 (1-ρ ρ adv ) 2
.

We notice that probability P E (Fail,j) is negligible, i.e P E (Fail,j) ≤ 1 2 κ where κ is the security parameter in StealthGuard, for any ρ adv that satisfies the inequality (1

-ρ ρ adv ) 2 ρ adv ≥ 3 ln(2)κ D
. In particular, P E (Fail,j) is negligible for any ρ adv ≤ ρ neg where ρ neg is defined as

(1 - ρ ρ neg ) 2 ρ neg = 3 ln(2)κ D and ρ neg < ρ.
3-Computation of γ neg above which F * is said retrievable when A wins the game. In order to ensure that file F * is retrievable whenever adversary A succeeds in the soundness game, γ, the number of challenges that have to be issued and sent to adversary A, must pass a threshold value denoted γ neg , such that if adversary A corrupts more than ρ neg fraction of the encoded file F * , she will be detected by extractor E with an overwhelming probability. In other words, we want to assure that if γ ≥ γ neg and probability of corruption ρ adv is larger than probability ρ neg (above which file F * is irretrievable by extractor E), then probability δ that adversary A succeeds in the soundness game is negligible. Precisely,

δ = (1 -ρ adv ) γ as shown in step 1 of this proof δ ≤ (1 -ρ adv ) γneg since γ ≥ γ neg .
We want to assure that:

δ ≤ δ neg = 1 2 κ .
Therefore, from the last two lines, we deduce that γ neg should be greater than -ln(2)κ ln(1-ρ adv ) . To fulfill the above condition whenever ρ adv ≥ ρ neg , it suffices to have

γ neg ≥ -ln(2)κ ln(1-ρneq) ≥ ln(2)κ ρneg .
As a result, we can define γ neg as:

γ neg = ln(2)κ ρ neg .
Summary of the findings. Before detailing the last step of the proof, we give here a brief summary of the above findings. If γ ≥ γ neg :

• If ρ adv ≥ ρ neg , that is, when adversary A corrupts a fraction of file F * that is larger than the limit for which file extractor E can recover the file, then the probability that adversary A wins the soundness game is δ ≤ δ neg = 1 2 κ , which is negligible.

• If ρ adv < ρ neg , then the probability that adversary A succeeds in the soundness game is δ > δ neg . Nevertheless, file F * is retrievable, as shown in part 4 of the proof, with a probability larger than 1 -n 2 κ , where n is the number of splits in file F * . 4-Construction of a file extractor E. In this last part of the proof of Theorem 2, we show that there exists a file extractor E that can recover challenge file F * whenever adversary A succeeds in the soundness game with probability δ > 1 1. If there is a tuple (β, H(β)) that corresponds to β, then E returns H(β).

2. If β has never been queried before, then E picks a random number h, and returns

H(β) = h.
We assume for the rest of the proof that A succeeds in the soundness game with probability δ > δ neg . Below, we show that if γ ≥ γ neg then extractor E is able to recover file F * with an overwhelming probability. We denote Π E Success the probability that extractor E recovers file F * by interacting with adversary A.

We highlight the fact that if γ ≥ γ neg , then succeeding in the soundness game implies that A corrupts less than ρ neg fraction of the encoded file F * . This means that the probability that the ECC-encoded split S * i receives more that ρD = d 2 errors is negligible, and so is probability P E (Fail,i) that extractor E fails in recovering split S * i . In what follows, we show how extractor E recovers file F * :

• E simulates oracle O Challenge to issue a challenge chal = ( µ, R, i) for challenged file F * , where R is the random number that is used by adversary A to generate its POR response and i is the index of split Ŝ * i that extractor E wants to extract. Here, µ serves to retrieve the witnesses corresponding to the blocks composing Ŝ * i . Without loss of generality, we assume that extractor E is interested in retrieving the k th block of split Ŝ * i (i.e., b * ik ). Accordingly, if the proof sent by adversary A for challenge chal is valid, extractor E will be able to recover the q-bit string h = 1 2 ... q (see Figure 2.6) corresponding to the q first bits of H( bik , R).

• Provided with h, extractor E identifies the block β ∈ T H for which H(β, R)|q = h if there is any. If it is the case, extractor E outputs bik = β. Otherwise, extractor E declares block bik as missing.

Extractor E repeats the above procedure until retrieving the n splits Ŝ * i of file F * . To this end, E issues nC (C is the number of blocks composing Ŝ * i ) challenges to the adversary A which is rewound before each challenge. Once the n splits Ŝ * i are retrieved, extractor E uses secret key K to decrypt the splits, then uses the ECC to correct the errors in the splits if there are any.

Note that extractor E fails in retrieving file F * if she does not succeed in retrieving at least one of the splits

S * i . The probability of this event is Π E Fail ≤ n i=1 P E (Fail,i) .
Hence, E recovers file F * with the following probability:

Π E Success = 1 -Π E Fail ≥ 1 - n i=1 P E (Fail,i)
Since adversary A corrupts less than ρ neg fraction of file F * , the probability that a split

S * i in the file F * is irretrievable is negligible, namely, P E (Fail,i) ≤ 1 2 κ
, and therefore:

Π E Success ≥ 1 - n 2 κ negligible Conclusion.
StealthGuard is a (δ, γ)-sound proof of retrievability for any δ > δ neg = 1 2 κ and γ ≥ γ neg = ln(2)κ ρneg , where ρ neg fulfills the following conditions:

(1 - ρ ρ neg ) 2 ρ neg = 3ln(2)κ D and ρ neg ≤ ρ.

Performance Analysis of StealthGuard

In this section we discuss the efficiency and the choice of the parameters in StealthGuard. We therefore give an example of parametrization and draw important conclusions for StealthGuard's implementation. We finally report some experimental results issued from the construction and the test of a StealthGuard prototype.

Discussion on Efficiency

To discuss the efficiency of StealthGuard, please refer to the notations listed in Table 2.1. Table 2.2 sums up the computational, storage and communication complexities of our StealthGuard.

Storage

At the end of the Setup phase, data owner O is only required to store master secret key K.

On the other hand, cloud server S must store the retrievable version F of the outsourced file F which amounts to n • C • l bits, where n is the number of splits in F , C is the number of blocks in each split Ŝi of F and l in the size in bits of a block. This value includes the storage overhead induced by the application of ECC -n • (d -1) • l bits -and the insertion of watchdogs-n • v • l bits.

Computation

The computational costs of algorithm KeyGen consists in first invoking a Pseudo-Random Number Generator (PRNG) to issue master secret key K. Thereafter, it computes n + 3 keys by computing hash functions.

Algorithm Encode operates an ECC and a SSE over each split. Moreover, it performs nD file-level PRP and nv split-level PRP. Besides, to generate the watchdogs, this algorithm computes nv PRF. To check the retrievability of some file F composed of n splits and obtain a security level of 1 2 κ , where κ is the security parameter, StealthGuard requires data owner O to generate v > γneg n watchdogs per split where γ neg (computed in Section 2.3.2) is the threshold of the number of queries that verifier V should issue. As shown in Theorem 2, this threshold does not depend on the size of data (in bytes). Instead, γ neg is defined solely by the security parameter κ, the number D = m + d -1 of blocks (including those generated by the application of an ECC) per split and the rate ρ = d 2D of errors that the underlying ECC can correct. Namely, γ neg is inversely proportional to both D and ρ. This means that by increasing the number of blocks D per split or the correctable error rate ρ, the number of queries that data owner O should issue decreases. However, having a large ρ would increase the size of data that O has to outsource to S, which can be inconvenient for the data owner.

Besides, increasing D leads to an increase in the number of blocks C = s • t per split Ŝi which has a direct impact on the communication cost and the computation load per query at both verifier V and cloud server S. It follows that when defining the parameters of StealthGuard, one should consider the trade-off between the affordable storage cost and the computation and communication complexity per POR query.

It should also be noticed that the permutations applied during the execution of algorithm Encode are without doubt the most computationally-intensive steps in StealthGuard.

Indeed, permutations require a non-negligible amount of random accesses which slow down the performance of the overall Setup phase. Notwithstanding their substantial costs, we highlight the fact that algorithm Encode is carried out only once for a theoretical unlimited number of POR verifications. In other terms, StealthGuard adopts the amortized model as we explained in Section 1.3: O performs a one-time expensive pre-processing operation that is amortized over an unlimited number of verifications. Indeed, as we can see in Table 2.2, the costs induced by algorithm Verify are light compared to the ones of Encode which can be potentially expensive due to the application of the pseudo-random permutation.

To illustrate the computation performances of StealthGuard, we take into consideration the Trapdoor Group PIR62 , proposed in [START_REF] Trostle | Efficient Computationally Private Information Retrieval from Anonymity or Trapdoor Groups[END_REF] to implement the PIR procedure in WDSearch. This PIR mechanism enables verifier V who runs algorithm Challenge to fetch a row from an (s, t) matrix (representing a split) without revealing to cloud server S, who executes algorithm ProofGen, which row verifier V is querying. One important feature of this PIR scheme is that it only involves random number generations, additions and multiplications in Z p (where p is a prime of size |p| = 200 bits) which are not computationally intensive and could be performed by a lightweight verifier. 

Data owner

* Server n • C • l Included ECC n • (d -1) • l Included watchdogs n • v • l Communication Outbound γ • (s • |p|) Inbound γ • q • (t • |p|) Operations KeyGen Encode Challenge ProofGen Verify PRNG 1 - γ • (s + 2) - - Hash computations n + 3 - - γ • C γ ECC - n - - - PRP - n • D + n • v γ - - Encryption - n - - - PRF - n • v - - γ Additions - - 3γ γ • q • (s -1) • t - Multiplications - - γ • (s 2 + 2) γ • q • s • t γ • q 2.4.1.

Communication

The communication complexity only depends on the underlying PIR algorithm used to query and perform the watchdog search. We emphasize that PIR in StealthGuard is not employed to retrieve a watchdog, but rather a q-bit hash of the watchdog (typically q = 80), and that it is not performed on the entire file, but it is instead executed over a split. When employing

Trapdoor Group PIR [START_REF] Trostle | Efficient Computationally Private Information Retrieval from Anonymity or Trapdoor Groups[END_REF], the communication cost of StealthGuard is minimal when s √ Cq and t C q . This results in a communication complexity (per query) at verifier

V of O( √ Cq
) and a communication complexity at the server of O( √ Cq).

Example of Parameterization

To illustrate the efficiency of StealthGuard, we provide in this section an example of parameterization. Table 2.3 exposes the chosen parameters and the computed efficiency figures.

Let us consider a file F of 4 GB divided into n = 32768 splits F = {S 1 , S 2 , ..., S n }, and each split S i is composed of m = 4096 blocks of size l = 256 bits. The choice of block size l = 256 is obviously correlated to the block size operated by AES. Besides, this value ensures that the watchdogs are large enough to be impacted by any adversarial corruption (thus to be detected by an instance of StealthGuard) and to prevent a malicious cloud server from guessing watchdogs values by a brute-force attack. As it is, StealthGuard applies an We obtain thus F = { Ŝ1 , Ŝ2 , ..., Ŝn }, where Ŝi is composed of C = 4559 blocks of size l = 256 bits. This results in a redundancy of 11.3%, where 11.1% redundancy is due to the use of ECC, and 0.20% redundancy is caused by the use of watchdogs. Furthermore, we select optimum values for s √ Cq and t C q such that C = s • t and q = 80. It appears that (s, t) = (570, 8) is an optimal choice. Besides, if StealthGuard implements the Trapdoor Group PIR [START_REF] Trostle | Efficient Computationally Private Information Retrieval from Anonymity or Trapdoor Groups[END_REF] where |p| = 200 bits, then verifier V 's query will be of size 13.9 KB, whereas cloud server S's response will be of size 15.6 KB. In addition, if cloud server S still stores the file F , then verifier V will declare file F as retrievable with probability 1 -n 2 60 1 -1 2 45 by executing the POR protocol γ = 1719 times; namely, by sending γ POR queries which amounts to 23.4 MB and by downloading 26.2 MB which corresponds to 0.64% of the size of the original file F . 

Comparison with Related Work

Table 2.5 and Table 2.6 depict the performance results of StealthGuard and compares it with previous work. In particular, we compare our solution with other POR schemes, namely [START_REF] Ateniese | Remote Data Checking Using Provable Data Possession[END_REF][START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF][START_REF] Shacham | Compact Proofs Of Retrievability[END_REF][START_REF] Xu | Towards efficient proofs of retrievability[END_REF] within the same setting. This comparison considers a file F of size 4 GB and a POR assurance of 1 -1 2 45 (as computed in Section 2.4.2). We assume that all the compared schemes have three initial operations in the Setup phase: The application of an ECC, a SSE and a file-level PRP over all the blocks in file F . Since these three initial operations have comparable costs for all the schemes, we omit them in Table 2.5. Computational costs are represented with exp for exponentiation, mul for multiplication, PRF for pseudo-random function or PRP for pseudo-random permutation. The row corresponding to StealthGuard is filled with the values provided in Section 2.4.2. As for the other schemes, all initial parameters derive from the respective papers. An exception is made for [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] where no information about the number of blocks in a split is given. Therefore, we choose the same value as in [START_REF] Xu | Towards efficient proofs of retrievability[END_REF].

Setup. In StealthGuard, data owner O computes n•v ≈ 2.6×10 5 PRF and ≈ 2.6×10 5 PRP for the generation and the insertion of watchdogs. One of the advantages of StealthGuard is to provide a more lightweight Setup phase when O preprocesses large files. Indeed, the Setup phase in most of previous work [START_REF] Ateniese | Remote Data Checking Using Provable Data Possession[END_REF][START_REF] Shacham | Compact Proofs Of Retrievability[END_REF][START_REF] Stefanov | Iris: a scalable cloud file system with efficient integrity checks[END_REF][START_REF] Xu | Towards efficient proofs of retrievability[END_REF] requires O to compute an authentication tag for each block of data in the file which is computationally demanding in the case of large files.

Storage Overhead. The insertion of watchdogs in StealthGuard induces a smaller storage overhead compared to other schemes that generate authentication tags as in [START_REF] Ateniese | Remote Data Checking Using Provable Data Possession[END_REF][START_REF] Shacham | Compact Proofs Of Retrievability[END_REF][START_REF] Xu | Towards efficient proofs of retrievability[END_REF].

Proof Generation and Verification. As specified in Section 2.4.2, we consider the PIR operations as multiplications of elements in Z p where |p| = 200 bits. To determine the server and verifier computational costs of existing work, we rely on the parameters and the bounds given in their respective papers. In particular, we compute the number of requested blocks in one challenge to obtain a probability of 1 -1 2 45 to declare the file as retrievable: 764 blocks in [START_REF] Ateniese | Remote Data Checking Using Provable Data Possession[END_REF], 1719 sentinels in [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF], 45 blocks in [START_REF] Shacham | Compact Proofs Of Retrievability[END_REF] and 1639 blocks in [START_REF] Xu | Towards efficient proofs of retrievability[END_REF]. As depicted in Table 2.6, it appears that StealthGuard induces high cost compared to existing work but is still acceptable.

Proof Generation and Verification. Even if its communication cost is relatively low compared to StealthGuard, the solution in [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] (JK POR) suffers from the limited number of challenges, that causes the data owner to download the whole file to regenerate new sentinels.

Although we realize that StealthGuard's communication cost is much higher than [START_REF] Ateniese | Remote Data Checking Using Provable Data Possession[END_REF][START_REF] Shacham | Compact Proofs Of Retrievability[END_REF][START_REF] Xu | Towards efficient proofs of retrievability[END_REF], such schemes would induce additional cost at the file retrieval step, as mentioned in Section 1.5.

Summary. StealthGuard trades off between light computation at the data owner, small storage overhead at the cloud and significant but still acceptable communication cost. Nevertheless, we believe that StealthGuard's advantages pay off when processing large files. The difference between the costs induced by existing schemes and those induced by StealthGuard may become negligible if the size of the outsourced file increases. 

Experimental Analysis

This section presents the implementation of StealthGuard into a prototype to validate the theoretical performance analysis conducted in Section 2.4.1 as well as to evaluate its practicality.

Experimental Setup. We simulate data owner O, cloud server S and verifier V in the same environment, on a machine with the following characteristics: Processor Intel Core i5-2500; CPU 3.30 GHz clock speed; 64 bit OS; RAM 16 GB. The prototype is mainly written in Python language, resorts to the pycrypto library 63 for cryptographic operations (AES, SHA-256) and consists of two scripts: one for the data owner (used by the verifier as well) and another for the server. The data owner's script implements algorithms KeyGen, Encode, Challenge and Verify. It also provides a function Decode to reverse the operations performed by Encode when the outsourced data is retrieved. The server's program enforces algorithm ProofGen.

Algorithm Encode involves the application of an Error Correcting Code (ECC) algorithm. For our prototype, we implement the Reed-Solomon codes [START_REF] Reed | Polynomial Codes Over Certain Finite Fields[END_REF] by means of a C ++ library called Schifra 64 and which operates on 16-bit symbol for the encoding. The pseudo-random function is implemented by means of the SHA-256 algorithm provided by the pycrypto library. The pseudo-random permutation is performed via a permutation table randomly generated on-the-fly by the program. Our prototype is perhaps not optimized to render the experimental analysis in line with our efficiency expectations. Nevertheless, the current version of the program is still valuable in order to interpret some of the results. Further improvements in the code will be implemented as a future work.

We run the prototype over files of different sizes ranging from 100 MB to 1000 MB. Each file is composed of splits of m = 2048 blocks of l = 256 bits. Hence, each split is of size L = 65535 bytes and each file is made of n = filesize L splits. While Figure 2.7 shows that the time required by the application of the ECC is linear in the file size (at the speed of approximately 340 KB/s), Figure 2.8 reveals that the file-level permutation time follows an exponential growth in the file size, which slows the overall performance of algorithm Encode, as shown in Figure 2.9. We explain this slow file-permutation operation by the fact that it requires O(nm) random accesses for permuting the file at the data owner side. Nonetheless, we highlight that this permutation is required only once by the Encode algorithm for multiple POR queries and verifications. Besides, our implementation of the permutation is not optimized.

The Challenge and Verification phases. We test our prototype to evaluate the performances of the generation and verification of POR for a file of 1GB whose splits contain m = 2048 blocks of l = 256 bits. Hence, the number of splits is n = 16385. The prototype applies an ECC that corrects up to [START_REF] Krawczyk | Chameleon Signatures[END_REF] Table 2.7 displays the average times to execute the three algorithms involved in the Challenge and Verification phases.

Challenge: This operation is the slowest among the three algorithms. As we can in see in Table 2.7 the average time to generate a single POR query is around 74.553 seconds. We argue that this value is non-negligible due to a non-optimized implementation of Challenge, and in particular of the permutation needed to generate the POR query.

ProofGen: On average, the time required by the server to respond to a single POR query, that is, to perform the privacy-preserving word search on a queried watchdog, is about 6.549 seconds. Measurements vary in the range [0.535; 12.891] seconds. We highlight the fact that this computation is done on the server side.

Verify: The verification of the proof of retrievability takes approximately 1.745×10 -4 second, which is is fast and negligible compared to the time required by other algorithms of our protocol.

Concluding thoughts. The above experimentations show that the overall protocol performance perceived by the data owner is impacted by (i) the application of the ECC to each split in the data to be outsourced; and (ii) the permutation of all the blocks in the data. Nonetheless, there exist mitigating aspects that should be considered. (i) Encoding the data is a one-time operation that allows an unrestricted number of POR verifications; and (ii) Our suboptimal implementation of the permutation operation does not reflect the efficiency of algorithm Encode and Challenge, but leaves open the way for improvements. The time to check the proofs of retrievability using algorithm Verify is shown to be affordable by users with limited resources. Finally, provided that the permutation operation is optimized in the prototype, StealthGuard is a viable POR solution.

Conclusion

Part I was devoted to the problem of proofs of storage. Well-suited to detect data losses in a remote storage service, proofs of storage have the advantage to be verifiable without the need to transfer the outsourced data in order to check its integrity.

We particularly focused on a particular kind of proofs of storage. Namely, proofs of retrievability not only ascertain the correct storage of outsourced data, but also prove that this data can be recovered if small corruptions affect it. We therefore design a new POR protocol, StealthGuard, that generates proofs of retrievability by combining randomly generated watchdogs with an efficient privacy-preserving word search mechanism. We showed that our technique is secure against malicious cloud servers who would be tempted to falsely claim that they correctly store the data. Besides, we evaluated StealthGuard's practicality by means of a prototype. Our solution perfectly answers Problem 1 on Verifiable Storage we expounded in the introduction of this thesis. If StealthGuard is deployed into a real-world cloud-based environment, the cloud users will be able to control that their data is correctly stored by the cloud service provider.

Future Work

A key direction for future research with respect to StealthGuard would address the difficulties of handling updates in the data while applying error-correcting codes. The protocol described in Chapter 2 does not consider update operations the data owner can perform over its data. Indeed, any update operation in the data, be it split insertion, split deletion or split modification has an impact on the security of the StealthGuard mechanism. For example, if the data owner modifies a same block several times then the cloud can discover that this particular block is not a watchdog. Additionally, updated splits should contain new watchdogs. Otherwise, if some of the watchdogs are not modified at each update, then the cloud may not execute the required operation, keep an old version of a split and hence it can still be successful in responding to POR queries, although it has not performed the update operation. Besides, updates in the data significantly alter the efficiency of StealthGuard. We recall that in StealthGuard, algorithm Encode first applies the ECC and then operates a permutation (Π F ) over all the blocks in the file (step 2 in Figure 2.3) to prevent the attack depicted in Section 2.2.4.1. In the case of data that are subject to updates, the permutation step renders any split update operation inefficient. Indeed, updating a split requires to update the corresponding ECC-blocks, resulting in the update of other splits and thus revealing to S the dependencies between the data blocks and the ECC-blocks. This knowledge allows the cloud to perform selective corruption attacks on the outsourced data. Therefore, the file permutation becomes ineffective. Some techniques are available to conceal these dependencies such as batching updates [START_REF] Stefanov | Iris: a scalable cloud file system with efficient integrity checks[END_REF][START_REF] Shi | Practical Dynamic Proofs of Retrievability[END_REF] or Oblivious RAM (O-RAM) [START_REF] Cash | Dynamic Proofs Of Retrievability via Oblivious RAM[END_REF]. While O-RAM does not reveal to the cloud which blocks are blocks of ECC, this tool is computationally demanding and bandwidth consuming and has no practical relevance. Therefore, future work should be devoted to the design of an O-RAM-like mechanism that protects access pattern privacy, such that the updates can be securely performed with light costs.

Another direction for future research in the area of proofs of storage is to consider not only the cloud as malicious, but also the data owners and verifiers as untrusted. Indeed, we can envision that a cloud service would provide its users with financial compensation for any losses impacting their data. Malicious users would then be motivated to falsely claim that the cloud lost their data in order to fraudulently obtain this compensation. To cope with this concern, StealthGuard, and any POR protocols, should be enhanced with the fairness property. Fairness entails that a data owner cannot accuse an honest cloud server of having lost her data. Fairness also means that in case a dispute arises between the data owner and the server, a trusted third party (such as a judge in court) can mediate the two parties to reach a solution. Therefore, the server should be empowered with a mechanism to prove to this trusted third party that the data owner is lying, or to prove that the server itself is honest. A couple of papers [START_REF] Zheng | Fair and dynamic proofs of retrievability[END_REF]116] considered the fairness property in the context of POS. A straightforward solution would be to require the data owner to sign the data before its outsourcing. However, in the case of dynamic POR protocol, this is more challenging since the data owner does not physically possess the data anymore. Downloading the data to update it and then compute the signature on the updated data cannot be considered in practice because it incurs prohibitive bandwidth consumption. A possible solution to circumvent this difficulty involves secure Chameleon signatures [START_REF] Krawczyk | Chameleon Signatures[END_REF][START_REF] Ateniese | Identity-Based Chameleon Hash and Applications[END_REF]. The characteristic property of this kind of signature relies on the fact that it is hard to find a pair (S , r ) such that CH(S , r ) = CH(S, r) (where CH denotes the Chameleon signature, S (resp. S ) a split in an outsourced file (resp. an updated split) and r, r two random numbers), but with the knowledge of a trapdoor, one can feasibly compute r such that CH(S , r ) = CH(S, r), given CH(S, r) and S . Integrating this signature for each split in the framework of StealthGuard would commit the data owner to the content of the data she outsourced. Hence, she cannot repudiate that she has stored all the signed splits. In case of dispute, the honest server can prove, thanks to the Chameleon signatures that a trusted third party can check, that it correctly stores the data. Besides, in case of updates, the data owner will be able to generate a new r for the Chameleon signature of the updated split, without the need to download it. We will investigate more on StealthGuard with the fairness property via Chameleon signatures in the future.

Part II

Efficient Techniques for Verifiable Computation 

Charaterization of Verifiable Computation

Introduction to Verifiable Computation

The advent of cloud computing offers to individuals and organizations promising technologies for delegating not only the storage of their possibly huge amount of data (as analyzed in Part I), but also the execution of computationally demanding operations as investigated in the present part. However, outsourcing computation may jeopardize users' computation privacy and integrity, which dissuades a wide adoption of cloud technologies. As a matter of fact, remote servers, such as cloud providers, to whom control over data and computation is lent, cannot always be trusted. One of the main concerns deals with the problem of the outsourced computation integrity and is the matter of this part. In particular, we consider the following scenario: we assume a cloud user, be it an individual cloud-end user or a company (or any other kind of organization), wishes to delegate to the cloud, the execution of a computationally demanding operation f so that she can later submit some input x of her choice and receive from the cloud the output y = f(x). The question raised here, is: how can the user be sure that y legitimately corresponds to the execution of function f on input x? In other terms, the cloud must not only correctly perform the requested computation, but also try to convince the user that the output is correct. One of the challenges here is that the user outsourced function f to the cloud, thus relinquished the control over f to the cloud. Therefore, the hypothetical and trivial solution having the user recompute y * = f(x) and then verify that y = y * cannot be considered. Besides, this trivial solution would have suffered from a major drawback: recomputing y * and verifying y = y * is too expensive in terms of computational complexity and bandwidth, canceling out the advantage of outsourcing f to the cloud. Hence, one of the goals in the present work is to devise solutions whereby the cloud can convince the user of the correctness of the computation in such a way that it still remains advantageous for the user to outsource that computation rather than executing it on her side.

To cope with the aforementioned challenges, Gennaro et al. [90] formalized the concept of Verifiable Computation (VC) in which a user delegates the execution of an operation to the cloud and further receives the result with some cryptographic proofs asserting the correct execution of the requested operation.

We describe in Section 3.2 a scenario that highlights the problem of Verifiable Computation. In Section 3.3, we give a characterization of a protocol in which a cloud server must provide the proofs of correct computation. Section 3.4 extends this initial definition to a special context where these proofs are publicly verifiable. Finally, we analyze prior art in Section 3.6.

Motivating Scenario

To concretely appreciate the problem and the challenges, the requirements and the features that we are dealing with, we elaborate the following scenario.

The Scenario

Let us consider an international space agency, such as the European Space Agency (ESA) or the National Aeronautics and Space Administration (NASA), that conducts research on Earth observation 65 . As a science organization, this space agency collects, produces and owns terabytes, even petabytes 66 of data such as space and aerial images or time-series data acquired from observing satellites. In other terms, the space agency has to deal with the so-called "big data" concept. The exploitation of this large amount of Earth observation data is essential for a wide range of applications: monitoring water quality in Africa 67 , monitoring air pollution in Europe 68 , monitoring the ice melting in the Arctic 69 , or analyzing postdisaster effects 70 such as after the occurrence of earthquakes, tsunamis or volcanoes. Many stakeholders participate and collaborate in the various tasks related to Earth observation: the international space agency and its employees, outside researchers on Earth observation from all around the world, members of the space research community, educational users, and any other organizations to whom observation results are crucial for their business 71 . Notwithstanding their tremendous significance, the management of Earth observation data poses three major challenges to the space agency. First, it requires a large amount of space to store the tera, even petabytes of data. Furthermore, exploiting this data, that is, running data mining and information extraction operations in an automated way, is resource and time expensive. Finally, the data is envisioned to be efficiently shared among all the stakeholders cited above so as to enable collaborative research. We can also mention an additional challenge for the case of disaster monitoring: the Earth observation data should be processed nearly in real time to support emergency response teams after the occurrence of a hazard. Therefore, these challenges lead the international space agency to adopt cloud computing technologies, as it was the case for the ESA 72 and the NASA 73 in 2013. This migration to the cloud is expected to:

• reduce the agency's heavy investments in IT assets, in particular for its storage servers;

• offload to the cloud long and expensive data processing operations, such as data mining or image processing;

• make data access and sharing among researchers all around the world easier so that collaborative work is rendered efficient and effective.

One of the tasks that is incumbent upon our international space agency consists in processing and analyzing earth data such as space and aerial images or time-series data produced by observing satellites. Most image processing techniques leverage polynomial and matrix arithmetics. For example, polynomial evaluation can be used for contour detection [START_REF] Joseph D Twicken | Photometric Analysis in the Kepler Science Operations Center pipeline[END_REF], while matrices are often employed as a computational mask : Images are represented as a matrix of pixels that is multiplied by another matrix (the mask) which encodes an image processing operation (such as denoising or edge detection) [START_REF] Porwik | The Haar-Wavelet Transform in Digital Image Processing: Its Status and Achievements[END_REF]. Since the space images are remotely stored in the cloud, the latter is also requested to process the images (that is, to operate the underlying polynomial evaluations or matrix multiplications) on behalf of the space agency. In addition to image processing, data mining is fundamental in our scenario. For instance, the agency may desire to conduct some statistics on the images or on the annotations accompanying the images in order to classify them. In this line of research, keyword search is one of the most frequently used primitives for data mining. The agency may want to search its database for files that contain particular keywords, to classify the images 74 . As in the case of image processing, the cloud will be responsible for the keyword search on behalf of the space agency.

This computation outsourcing use case falls in the domain of verifiable computation, whereby the space agency wishes to receive cryptographic proofs generated by the cloud server attesting the correctness of the computation results. Namely, the agency must be convinced that the images are processed as expected (for example that the image -i.e the matrix-resulting from the application of the mask is correct) and that the keyword search returns the correct set of images that corresponds to the targeted keywords.

Requirements and Features for Verifiable Computation Protocols

From the above space agency scenario, we are able to extract the requirements and desired features for a VC scheme. The proofs of correct computation must satisfy two security requirements: they must be correct (if the cloud server is honest, the agency will always accept the proofs) and sound (a malicious cloud server cannot make the agency accept an incorrect result). Furthermore, it is essential that the verification of the results of outsourced computation must induce less costs than having the data owner process the space data locally. Otherwise, the migration to a cloud infrastructure would not be profitable for the space agency; on the contrary, it should help the agency save costs in processing. This illustrates another requirement: the efficiency requirement. Besides, the space agency would like to delegate to its researchers and to other collaborators (such as researchers from universities abroad, subcontractors, etc.) the capability to execute the outsourced operations (evaluate polynomial, compute matrix multiplication, search for keywords). These third-party users will also be empowered with the capability to verify the results of these operations. Consequently, the space agency needs a framework that ensures public delegatability and public verifiability of outsourced operations.

Efficiency Requirement. This requirement can be expressed in the following terms: In order not to waste the advantages of outsourcing the computation to the cloud, the cost for the user of submitting computation requests and verifying the cryptographic proofs must be less expensive than running the computation locally from scratch. This requirement imposes that the computational, storage and bandwidth overheads must be kept at minimum.

The efficiency requirement is also closely related to the concept of amortized model, introduced by Gennaro et al. [90]. This model authorizes the user to run a one-time expensive preprocessing operation that prepares the function before its outsourcing. This preprocessing can be as costly as computing the function from scratch. However, after this stage, the preprocessing is amortized over an unlimited number of fast verifications.

Security Requirements. To capture the essence of verifiable computation, we highlight the two standard security requirements that they must satisfy:

Correctness: A honest server cannot be accused of deviating from the correct execution of the outsourced computation. Thus the verifier (i.e the entity who checks the validity of the proofs) will always be convinced by the server's correct behavior.

Soundness: If the server diverges from the correct execution of the computation, it cannot forge false proofs that would make the verifier accept the results.

Additional Features. In order to handle a setting similar to the one presented in the space agency scenario, a VC protocol should allow any user to request computation to the cloud and verify the returned result. Parno et al. [START_REF] Parno | How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption[END_REF] characterized the first public delegatable and public verifiable computation solution and gave the following definitions for the two desired properties of public delegatability and public verifiability:

Public delegatability: Anyone can submit inputs to the remote server to evaluate the outsourced function without any interaction with the user that outsourced the function. For ease of exposition, we will refer to the querier as the entity that submits the inputs. Therefore, the querier only needs to have access to a public key to request the computation to the cloud.

Public verifiability: Anyone (not only the one who submitted the inputs) can assess the correctness of the server's results. Thus, we will call this party the verifier. During the verification process, the verifier does not need any involvement of the querier but only a public verification key advertised by the querier. Note that in this framework, the verifier trusts the querier and hence trusts the verification key.

Definition of Verifiable Computation

This section formally defines a Verifiable Computation (VC) scheme. In a nutshell, a VC scheme is a two-party protocol in which a data owner outsources a computationally expensive function to a cloud server. Later on, the data owner submits some inputs of her choices to the server which is then required to evaluate the outsourced function on the requested inputs. The data owner finally verifies that the output returned by the server actually corresponds to a correct evaluation of the outsourced function on the provided inputs. In the following, we identify the players in a VC protocol and describe their capabilities. Then, we present the system model of such a protocol.

Parties Involved

A VC scheme comprises the following players: Data owner O: Data owner O outsources the computation of some (computationally demanding) function f belonging to a family of functions F to a cloud server S. Additionally, data owner O can provide cloud server S with some inputs x. The latter is required to compute y = f(x) and tries to convince data owner O that y is indeed f(x).

O enjoys the capability to check that the result returned by S is correct.

Cloud Server S: Often considered as potentially malicious, cloud server S is presumed to evaluate outsourced function f on requested input x. Cloud server S also produces a proof that the output f(x) is correct. Hence, we may refer to server S as the prover.

System Model

In this paragraph, we present the definition of a VC protocol. Without loss of generality, we assume that data owner O outsources the computation of a function f ∈ F to cloud server S.

Then O asks S to evaluate function f on input x ∈ D f (the domain of definition of function f) and checks the correctness of the computation result returned by server S.

Definition 5 (VC Scheme). A VC scheme consists of four polynomial-time algorithms (Setup, ProbGen, Compute, Verify) distributed across three phases:

Setup. This phase only involves data owner O. She runs algorithm Setup to produce the keying material required in the VC scheme and to process function f before its outsourcing: Compute(σ x , EK f ) → σ y : On input of the encoding σ x and the evaluation key EK f , server S runs this algorithm to compute an encoding σ y of f's output y = f(x).

Setup(1 κ , f) → (param, SK f , EK f ): It is
Verification. After receiving the encoding of the computation result from cloud server S, data owner O executes algorithm Verify to check its validity.

Verify(σ y , VK x ) → out y : Data owner O operates this deterministic algorithm to check the correctness of the result σ y supplied by server S on input σ x . More precisely, this algorithm first decodes σ y which yields a value y, and then uses the verification key VK x associated with the encoding σ x to decide whether y is equal to the expected output f(x). If so, Verify outputs out y = y meaning that f(x) = y; otherwise it outputs an error out y =⊥.

Before formalizing the requirements for a VC scheme we have identified in Section 3.2.2, that is the efficiency and security requirements, we enhance the above model with the two additional features of public delegatability and public verifiability.

Definition of Publicly Verifiable Computation

The system model we detailed in Section 3.3 focuses on a privately verifiable computation scheme in the sense that only the data owner can request the cloud server to evaluate the outsourced function and only she can verify the result returned by the server. In our international space agency scenario, depicted in Section 3.2, we let the agency delegate the search and verification capabilities to any third party such as outside researchers. Therefore, we devise here the model for a VC scheme that enables public delegatability and public verifiability.

Parties Involved in a PVC Protocol

A Publicly Verifiable Computation (PVC) scheme comprises four players: a data owner and a cloud server (which are identical to the ones in a VC scheme, as well as a querier and a verifier, that are specific to the model of a PVC scheme.

Data owner O: As in a privately VC protocol, data owner O outsources the computation of some computationally demanding function f belonging to a family of functions F to a cloud server S. She then produces an evaluation key EK f used by server S to respond to any requested computation on function f. In addition, data owner O can delegate to anyone the capability to submit inputs and to verify outputs, to achieve public delegatability and public verifiability. To do so, she advertises a public key PK f that will be used by anyone who wishes to request computations on f. Cloud Server S: S is presumed to evaluate outsourced function f on a requested input x.

Cloud server S also produces a proof that the output f(x) is correct.

Querier Q: Given public key PK f , querier Q requests cloud server S to evaluate the already outsourced function f on some input x in the domain D f of f. Q would like to obtain from S the assurance that the results that S returns are correct. Therefore, she generates a public verification key VK x tied to input x. Note that querier Q can be not only data owner O herself but also any party that is interested in evaluating function f (public delegatability).

Verifier V : With the help of public verification key VK x , this player checks that the result f(x) returned by cloud server S given x is correct. The role of verifier can be played either by querier Q who has requested the computation or by any other entity that wants to verify the computation result on behalf of Q (public verifiability).

System Model

In this paragraph, we present the definition of a PVC protocol. Without loss of generality, we assume that data owner O outsources the computation of a function f ∈ F to cloud server S. Then a querier Q asks S to evaluate function f on input x ∈ D f and a verifier V checks the correctness of the computation result returned by server S.

Definition 6 (PVC Scheme). A PVC scheme consists of four polynomial-time algorithms (Setup, ProbGen, Compute, Verify) distributed across three phases:

Setup. This phase only involves data owner O. She runs algorithm Setup to produce the keying material required in the PVC scheme and to process function f before its outsourcing:

Setup(1 κ , f) → (param, PK f , EK f ):
It is a randomized algorithm executed by data owner O. It takes as input the security parameter 1 κ and a description of the function f to be outsourced, and outputs a set of public parameters param, a public key PK f , and an evaluation key EK f that will be used by subsequent algorithms.

Computation. The Computation phase consists of two steps. Querier Q runs algorithm ProbGen that prepares an input x to be submitted to cloud server S. In turn, the server invokes algorithm Compute that evaluates function f on input x and generates a proof of correct computation.

ProbGen(x, PK f ) → (σ x , VK x ): Given an input x in the domain D f of the outsourced function f and public key PK f , querier Q calls this algorithm to produce an encoding σ x of input x that is transmitted to server S, and a public verification key VK x that will afterwards be used by verifier V to check the correctness of the server's result.

Compute(σ x , EK f ) → σ y : On input of the encoding σ x and the evaluation key EK f , server S runs this algorithm to compute an encoding σ y of f's output y = f(x).

Verification. After receiving the result and the proof of computation from cloud server S, verifier V executes algorithm Verify to check their validity.

Verify(σ y , VK x ) → out y : Verifier V operates this deterministic algorithm to check the correctness of the result σ y supplied by server S on input σ x . More precisely, this algorithm first decodes σ y which yields a value y, and then uses the public verification key VK x associated with the encoding σ x to decide whether y is equal to the expected output f(x). If so, Verify outputs out y = y meaning that f(x) = y; otherwise it outputs an error out y =⊥.

Before formalizing the security requirements, namely the notion of correctness and soundness of a PVC scheme, we provide here a characterization of the efficiency requirement and the desired properties of public delegatability and public verifiability.

We require for a viable PVC scheme that the costs of generating a computation request and to verify the output of this computation must be smaller than the costs of computing the function from scratch.

Requirement 1 (Efficiency). We say that a PVC scheme is a viable solution if the problem generation and the verification algorithms are efficient. In particular, given PK f and for any x and any σ y the time to run ProbGen(x, PK f ) together with the time to execute Verify(σ y , VK x ) (where VK x is generated by algorithm ProbGen) is o(T ), where T is the time needed to compute f(x).

Following the amortized model, the time required for Setup is omitted in this definition. In this model, algorithm Setup operates an expensive pre-processing operation that encodes the function to be outsourced in such a way that public delegatability and public verifiability are possible. Nonetheless, Setup is executed once for many computations of the same function on many different inputs. Therefore, it does not undermine the above consideration for a viable solution.

Additionally, we formalize in the following lines the notions of public delegatability and public verifiability, considered as optional requirements.

Requirement 2 (Public delegatability). A VC scheme is publicly delegatable if, given a public key PK f , some input x ∈ D f , and some additional public parameters, then any third-party querier can execute algorithm ProbGen on inputs x and PK f , without the need of any secret information provided by the data owner that outsourced function f. Requirement 3 (Public verifiability). A VC scheme is publicly verifiable if, given an encoding σ y of the outsourced computation y = f(x) for some input x ∈ D f , a public verification key VK x , and some additional public parameters, then a third-party verifier can run algorithm Verify to check that σ y is a valid encoding of y = f(x), without knowing any secret information required from the data owner that outsourced function f or from the querier who submitted input x.

Adversary Model in Verifiable Computation

A PVC scheme must fulfill the basic security requirements of correctness and soundness. Succinctly, the correctness property states that if the server honestly evaluates the function based on the user's input (i.e. correctly executes algorithm Compute), then the verifier (who runs algorithm Verify) will always accept the server's result. On the other hand, the soundness requirement captures the fact that a malicious server cannot make algorithm Verify (and thus the verifier) accept a result that is not correctly computed via algorithm Compute.

Correctness

A publicly verifiable computation scheme for a family of functions F is deemed to be correct, if whenever an honest server S executes the algorithm Compute to evaluate a function f ∈ F on an input x ∈ D f , this algorithm always yields an encoding σ y that will be accepted by a verifier V running algorithm Verify (i.e. Verify(σ y , VK x ) → f(x), where VK x is generated via ProbGen).

Definition 7 (Correctness).

A publicly verifiable computation scheme for a family of functions F is correct, iff for any function f ∈ F and any input x ∈ D f :

If ProbGen(x, PK f ) → (σ x , VK x ) and Compute(σ x , EK f ) → σ y , then:

Pr(Verify(σ y , VK x ) → f(x)) = 1.

Soundness

A publicly verifiable computation scheme for a family of functions F is said to be sound, if for any f ∈ F and for any x ∈ D f , a server S cannot convince a verifier V to accept an incorrect result. Notably, a verifiable computation scheme is sound if it assures that the only way server S generates a result σ y that will be accepted by verifier V (i.e. by algorithm Verify)

as a valid encoding of the evaluation of some function f ∈ F on an input x, is by correctly computing σ y (i.e. σ y ← Compute(σ x , EK f )).

We capture the adversarial capabilities of an adversary (i.e. malicious server) A against a publicly verifiable computation scheme for a family of functions F through a soundness experiment, depicted in Algorithm 3 and 4. In this experiment, adversary A accesses the output of algorithm Setup by calling oracle O Setup . When queried with a security parameter 1 κ and a description of a function f ∈ F, oracle O Setup returns the set of public parameters param, public key PK f , and evaluation key EK f . Adversary A also invokes an oracle O ProbGen that selects an input x ∈ D f and that, given public key PK f , executes algorithm ProbGen. This algorithm outputs a pair of matching encoding σ x and public verification key VK x . Finally, adversary A generates an encoding σ y and calls algorithm Verify on the pair (σ y , VK x ).

The soundness game we develop involves two phases: a learning phase and a challenge phase:

Learning. Adversary A adaptively calls oracle O Setup with t distinct functions f (k) allowing A to receive for each function f (k) the corresponding public parameters param (k) , the public key PK x and a verification key VK (k)

x associated with x (k) and file f (k) . On reception of this encoding, A produces an encoding σ (k) y , either arbitrarily or by executing algorithm Compute. Then, adversary A invokes algorithm Verify on inputs VK (k) x and σ (k) y .

Algorithm 3: Learning Phase of the Soundness Experiment

for k := 1 to t do A → f (k) ; (param (k) , PK (k) f , EK (k) f ) ← O Setup (1 κ , f (k) ); A → x (k) ; (σ (k) x , VK (k) x ) ← O ProbGen (x (k) , PK (k) f ); A → σ (k) y ; out (k) y ← Verify(σ (k) y , VK (k)
x ); end Challenge. Afterwards, adversary A selects function f * and the corresponding public key PK f * from the set of public keys {PK 

A → (param * , PK f * , EK f * ); A → x * ; (σ x * , VK x * ) ← O ProbGen (x * , PK f * ); A → σ y * ; out y * ← Verify(σ y * , VK x * );
Let out y * denote the output of algorithm Verify at the end of the experiment. We say that adversary A succeeds in the soundness experiment of publicly verifiable computation if out y * =⊥ and out y * = f * (x * ). Definition 8. Let Π A,f * denote the probability that adversary A succeeds in the soundness experiment of publicly verifiable computation ( i.e. out y * =⊥ ∧ out y * = f * (x * )).

A publicly verifiable computation scheme for a family of functions F is sound, iff: For any adversary A and for any f ∈ F, Π A,f ≤ ε and ε(κ) is a negligible function in the security parameter κ.

State of the Art in Verifiable Computation

An important body of research recently emerged to address the problem of verifiable outsourced computation. Especially, the advent of cloud computing stimulated a large number of research work proposing cryptographic solutions for a verifier to efficiently verify the execution by a remote untrusted server, the prover, of computationally demanding operations. However, the problem of VC is not new: decades ago, many solutions were proposed to respond to concerns on how to put more trust on results computed by a remote server. This section attempts to provide an in-depth review of existing solutions for verifiable computation. At the time of writing this dissertation, no such a review has been carried out, or published. We can only refer to a relevant survey conducted by Walfish and Blumberg [START_REF] Walfish | Verifying Computations Without Reexecuting Them[END_REF]. Nevertheless the authors only focus on general-purpose solutions that provide answers to the problem of VC for arbitrary functions, discarding those solutions that apply to specific computations. The rationale behind the lack of an extensive review may lie in the fact that multiple approaches have been adopted and that the rapid and growing plebiscite for cloud computing reawakened the interest for the problem of VC, yielding multitudinous solutions that may be difficult to compare. Our review endeavors to compile and to propose a possible classification for a list of relevant existing works.

In the following, we establish a first categorization: non-proof based solutions (Section 3.6.1) and proof-based solutions (Section 3.6.2). As their name implies, solutions in the former category do not require the generation and verification of a proof stating that the computation result is correct. Thereafter, we organize solutions from the second category in several subcategories depending on whether they satisfy particular properties. Indeed, we identify the following characteristics that proof-based solutions may satisfy: Generality: Some existing solutions (Section 3.6.2) provide protocols to verify the correct computation of arbitrary functions while other proposals (Section 3.6.3) target a restricted class of functions, exploiting special properties of these functions. Interactivity: Most early work on VC build an Interactive Proofs (IP) system in which the prover and the verifier engage in an "exchange" to convince the latter about the result correctness (Section 3.6.2.1). However, an increasing number of solutions are non-interactive and only require a challenge-response phase between the prover and the verifier (Section 3.6.2.2). Practicality: Early solutions to the problem of VC were mainly theoretical, with poor practicality, since they were too inefficient for actual implementation. The breakthroughs not only in cloud computing but also in mobile devices (smartphones, tablets, laptops, etc.) made crucial the design of practical solutions that spare both the prover and verifier's work. Security model: Schemes for VC can be based on several assumptions: For example, early theoretical work on IP assume an all-powerful prover whereas work on arguments [START_REF] Kilian | A Note on Efficient Zero-Knowledge Proofs and Arguments[END_REF] presumes a polynomial-time prover. Some work are based on complexity-theory assumptions only while others rely on cryptographic assumptions. Additional features: In a nutshell, depending on the scenario in which solutions for VC apply, one may desire the features of public verifiability or public delegatability, notions that are defined in Section 3.2.2 and Section 3.4. Some other solutions focus on privacy of verifiable computation, in the sense that the outsourced data over which the verifiable computations are performed are encrypted, such that the prover cannot infer any information from the data, the computations and their outputs. Note that in our international space agency scenario, we do not require the data to be encrypted nor the computation to be kept private. However, for a deep survey on VC protocols we also mention the existence of the privacy-preserving property. Based on these identified characteristics and the requirements for a PVC we outlined in Section 3.1, we provide here our review of existing work. We highlight the fact that we use the term "verifiable computation" for all the schemes discussed in the following. This naming may appear improper since Gennaro et al. [90] were the first to formalize the notion of "verifiable computation". Nevertheless, we regroup under the same term all prior work that aims at verifying the outcome of a computation.

Non-Proof-based and Hardware-based Solutions

A first answer to the problem of VC is the replication of the outsourced computation among multiple servers [START_REF] David P Anderson | SETI@Home: An Experiment in Public-Resource Computing[END_REF][START_REF] David P Anderson | Volunteer Computing: The Ultimate Cloud[END_REF][START_REF] Canetti | Practical Delegation of Computation using Multiple Servers[END_REF]. As described in Section 1.1.2, the SETI@Home project [START_REF] David P Anderson | SETI@Home: An Experiment in Public-Resource Computing[END_REF] replicates an instance of the same computation to different (untrusted) nodes through the BOINC middleware [START_REF] David P Anderson | Volunteer Computing: The Ultimate Cloud[END_REF]. This middleware sends a copy of the computation to several computers and compares the results output by these computers (located in different nodes). If the results match, then, with high probability, they are considered correct. Otherwise, the middleware sends other replicas to other computers. This process is repeated until a majority of matching results is obtained. Therefore, this replication system requires that a majority of computers, among all the computers where the computation is replicated, behaves honestly. Canetti et al. [START_REF] Canetti | Practical Delegation of Computation using Multiple Servers[END_REF] reduce this assumption to a single server: the computation is still replicated to several servers, but it suffices that only a single server is honest 75 .

Other techniques [START_REF] Parno | Bootstrapping Trust in Modern Computers[END_REF][START_REF] Sadeghi | Token-Based Cloud Computing[END_REF][START_REF] Schiffman | Seeding Clouds with Trust Anchors[END_REF] rely on trusted computing and attestation procedures based on trusted hardware, such as the Trusted Platform Module (TPM), embedded at the server side. For example, Parno et al. [START_REF] Parno | Bootstrapping Trust in Modern Computers[END_REF] suggest to combine code identity recordings (like computing a cryptographic hash on the binary of the software performing the outsourced computation) and remote attestation that checks the code signature. However, as the TPM is under the (physical) control of the server, this solution appears to put a lot of trust in the module. Sadeghi et al. [START_REF] Sadeghi | Token-Based Cloud Computing[END_REF] propose to combine a trusted-hardware token (such as a cryptographic coprocessor) with techniques for secure function evaluation (such as Fully-Homomorphic Encryption (FHE) [START_REF] Gentry | Fully Homomorphic Encryption Using Ideal Lattices[END_REF] or Yao's garbled circuits [START_REF] Andrew | Protocols for Secure Computations[END_REF]) to compute outsourced arbitrary functions on encrypted data (this scheme guarantees input privacy but not output privacy). The token consists in a tamper-proof coprocessor attached to the remote server and which executes operations within a shielded environment, on behalf of the user that requests the computation. Yet, again in this proposal, the verifier has to trust the token's manufacturer.

Proof-based General-Purpose Solutions

As mentioned before, the majority of solutions to the problem of VC follows the proof-based approach: the VC protocol enables the prover to return the results of an outsourced function along with a proof that the result is correct. The review of the state of the art identifies two types of solutions. This section inspects general-purpose solutions which define a proof system for arbitrary functions. They make few or no assumptions on the outsourced function and enable to verify the correctness of the evaluation of that function. We survey the second category of proof-based solutions in Section 3.6.3. This class of solutions targets specific operations. In a nutshell, they exploit the particular structure and properties of these operations to enable efficient verification. Designing a proof system for general computation first spurred the interest in the theoretical computer science community: Researchers crafted interactive solutions that were mostly impractical for an actual deployment. With time, more and more effort was put on the design of solutions that bring the theory into more efficient and thus more practical solutions.

Interactive: the prover and the verifier engage a randomized "dialog" where the prover tries to convince the verifier that she has performed the computation correctly;

Probabilistic: the verifier is legitimately convinced of the correctness of the proofs with "very high probability", and falsely convinced with "very small probability" [START_REF] Goldwasser | The Knowledge Complexity of Interactive Proof Systems[END_REF].

In such a system, the prover is considered to have infinite power, while the verifier is polynomial-time. Besides, Goldwasser et al. [START_REF] Goldwasser | The Knowledge Complexity of Interactive Proof Systems[END_REF] introduced the concept of correct proof and sound proof (i.e. it is not possible to return a proof for an incorrect computation) as well as the notion of efficiency (that is, the verifier's work should be less demanding than the prover's). Nevertheless, such a system is believed hard to bring to practice. Muggle proofs. Goldwasser et al. [98] brought the concept of IP systems to closer practicality in a real scenario: the verifier is "super-efficient" (i.e runs in quasi-linear time), the honest prover is efficient (i.e runs in polynomial time) and a dishonest prover is unbounded. The authors accordingly named this efficient prover a "Muggle" in comparison to "Merlin" which represents the all-powerful prover in [19]. In the Muggle IP system, there exists a preprocessing phase in which the outsourced computation is translated into a Boolean circuit 76 . Then, the verifier and the prover interact, at the same time the prover evaluates the circuit on some inputs, such that the verifier verifies each step of the computation, that is the output of each gate in the circuit. However, Muggle proofs are efficient only for small circuits and functions that can be parallelized: The work of Goldwasser et al. [98] yet suffers from still being impractical. Therefore it has been extended in [66,[START_REF] Thaler | Time-Optimal Interactive Proofs for Circuit Evaluation[END_REF], achieving better performance for the prover (so closer to practicality) by putting some further restrictions on the circuit (parallelization, "sufficiently regular" wiring pattern). Note that the Muggle proof system is publicly delegatable, but not publicly verifiable.

Probabilistically Checkable Proofs. As a consequence of the breakthrough in IP systems, Arora and Safra [10] introduced Probabilistically Checkable Proofs (PCP). In this setting, a proof (say of size n) is encoded such that a verifier can be convinced of its correctness (with a high confidence level) only by querying and checking (via interactions with the prover) a constant number of randomly selected locations in the encoding (of size polynomial in n, thus much longer than the proof). The authors stated the PCP theorem [10,[START_REF] Arora | Proof verification and the hardness of approximation problems[END_REF] that stipulates that it is not necessary to query and verify the entire proof (which can be very long and hard) for a verifier to be convinced of its correctness. However, while theoretically interesting for the problem of verifiable computation, PCPs are not practical since the encoded proofs are very long yielding huge amount of work for the prover to construct these encodings and for the verifier to check sufficient random locations in the encodings. Consecutive efforts were performed in [START_REF] Ben-Sasson | Short PCPs Verifiable in Polylogarithmic Time[END_REF][START_REF] Ben-Sasson | Robust PCPs of proximity, shorter PCPs, and applications to coding[END_REF] to construct shorter PCPs, but the generation and verification of such proofs were still not deployable in "the real world". Besides, in an actual deployment of PCP, the soundness of PCPs can be violated: the prover might be tempted to change values of queried locations in the proof so as to answer the verifier's later queries, while speciously matching earlier queries. Therefore, the proof computed by the prover must be predetermined so as to answer all verifier's queries.

Arguments. Following the work on IP and PCP systems, Kilian [START_REF] Kilian | A Note on Efficient Zero-Knowledge Proofs and Arguments[END_REF] introduced the concept of efficient arguments [START_REF] Kilian | A Note on Efficient Zero-Knowledge Proofs and Arguments[END_REF][START_REF] Kilian | Improved Efficient Arguments[END_REF]. While IP systems consider an all-powerful prover and the Muggle setting assumes a polynomial-time honest prover but unbounded (polynomial time) dishonest provers, the work on efficient argument systems develop interactive protocols that are sound against computationally-bounded dishonest provers. In a nutshell, this proof system based on efficient arguments combines PCP with standard cryptographic primitives (namely, bit commitments 77 and cryptographic hash functions in [START_REF] Kilian | A Note on Efficient Zero-Knowledge Proofs and Arguments[END_REF], as well as Merkle trees [START_REF] Ralph C Merkle | A Digital Signature Based on a Conventional Encryption Function[END_REF] in the subsequent publication [START_REF] Kilian | Improved Efficient Arguments[END_REF]): the prover produces a (large) encoding of a proof and commits to the bits of this encoding (using a Merkle tree whose leaves correspond to the bits of the encoded proof); the verifier queries a certain number of locations in this encoding and its commitment; the prover reveals the bits at these locations and the verifier checks that they are correct (using the Merkle tree root and the authentication paths). The commitment on the proof (or its encoding) is the key contribution of [START_REF] Kilian | A Note on Efficient Zero-Knowledge Proofs and Arguments[END_REF][START_REF] Kilian | Improved Efficient Arguments[END_REF] to circumvent the violation of PCP soundness we mentioned above. However, as it is, the cost of checking a single bit is logarithmic in the proof size. Nevertheless, it is important to stress that the work on efficient arguments was the first to leverage cryptographic assumptions for solutions to the problem of VC. Many proposals ensued from this new setting, opening the way to more practical VC schemes that are efficient in terms of computation and communication complexities. In particular, Ishai et al. [START_REF] Ishai | Efficient arguments without short PCPs[END_REF] developed an efficient argument system that considers PCP as a linear function. For a verifier, querying the proof implies requesting the prover to evaluate the function at some inputs selected by the verifier. The scheme then employs a linearlyhomomorphic encryption scheme (such as Paillier [START_REF] Paillier | Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[END_REF] or El-Gamal [START_REF] El | A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms[END_REF] cryptosystems) to issue a (linear) commitment of the proof: the prover commits a linear function (representing the PCP) to some points chosen by the verifier; then the latter submits inputs to the function (corresponding to the PCP queries); and the prover outputs the results (depicting the PCP responses). The verifier finally checks that the prover's responses are consistent with the commitment. Nonetheless, this protocol requires an expensive pre-processing phase for the verifier; though this phase is amortized over many verification instances (thus, the protocol adopts the amortized model we defined in Section 3.4).

Towards practicality. Practicality is one of the major concerns for designing a viable solution for the problem of verifiable computation. In other words, research work on VC aims at building systems that have practical performance and are simple to implement, while fulfilling the correctness and soundness properties specific to any VC solution. However, the bulk of work we described so far in Section 3.6.2 remains theoretical and no implementations were performed in their respective publications. Starting from the work by Setty et al. [START_REF] Setty | Toward Practical and Unconditional Verification of Remote Computations[END_REF], a collection of research papers proposes actual deployment (with some implementation-oriented refinements) of some of the theories mentioned above. Accordingly, Setty et al. [START_REF] Setty | Toward Practical and Unconditional Verification of Remote Computations[END_REF][START_REF] Srinath | Making Argument Systems for Outsourced Computation Practical (sometimes)[END_REF] proposed Pepper which implements the protocol of Ishai et al. [START_REF] Ishai | Efficient arguments without short PCPs[END_REF] in a real scenario. In their prototype, to verify the evaluation of an arbitrary function f by a remote prover, the verifier first encodes f into an arithmetic circuit that she sends to the prover. Such a kind of circuit is similar to Boolean circuits, except that (i) input and output wires are elements (or variables x, y) of a field; and (ii) gates represent the add operation (sum gates) or the multiply operation between two input wires (product gates). During a computation instance, the verifier sends input x to the prover who sends back y as the evaluation f(x). Also, the prover computes a linear commitment to an encoded proof based on the evaluation of the arithmetic circuit. Then the verifier sends queries to the encoded proof (as in PCP) and the prover responds to them by evaluating the linear function at the verifier-selected points. However, while the verifier's asymptotic costs are efficient, the verifier should still operate a "constant" expensive pre-processing phase (encoding the outsourced function in an arithmetic circuit), that is substantially larger than computing the outsourced function itself. This cost is nevertheless amortized over several instances of the same computation. Another drawback of this protocol concerns "small" computations (in [START_REF] Setty | Toward Practical and Unconditional Verification of Remote Computations[END_REF], the authors illustrate this drawback with a specific function: matrix multiplication): the computation request and verification procedures are more expensive for the verifier than performing the computation locally. As a follow-up to [START_REF] Setty | Toward Practical and Unconditional Verification of Remote Computations[END_REF], Setty et al. [START_REF] Srinath | Taking Proof-Based Verified Computation a Few Steps Closer to Practicality[END_REF] describe another improved scheme named Ginger that mainly cuts the costs for the verifier by compressing proof queries and making those queries reusable. While the authors of [START_REF] Srinath | Making Argument Systems for Outsourced Computation Practical (sometimes)[END_REF][START_REF] Srinath | Taking Proof-Based Verified Computation a Few Steps Closer to Practicality[END_REF] claim that their solutions apply to the generalpurpose verifiable computation scenario, their schemes nonetheless put restrictions on the class of computations that can be verified. Indeed, the encoding of the outsourced function into an arithmetic circuit assumes that that function is "encodable" in an efficient way (namely, this assumption applies to function that are decomposable into several subcomputations such as matrix multiplication). Their consecutive proposal, Zaatar [START_REF] Setty | Resolving the Conflict between Generality and Plausibility in Verified Computation[END_REF] eliminates those restrictions by generating an arithmetic representation of the outsourced function (i.e encoding the function into a quadratic arithmetic program -QAP), as proposed by Gennaro et al. [START_REF] Gennaro | Quadratic Span Programs and Succinct NIZKs without PCPs[END_REF] (see below, in Section 3.6.2.2). Using QAP also yields shorter proofs in Zaatar than in Ginger. Nevertheless, the encoding into an algebraic representation induces high costs, substantially higher than evaluating the outsourced function. Besides, the amortization of the initial costs by the verifier is only done via batching verifications for several inputs. Subsequent implementations built upon Pepper, Ginger and Zaatar enhance the previous implementations with additional aspects: Allspice [START_REF] Vu | A Hybrid Architecture for Interactive Verifiable Computation[END_REF] attempts to reduce the dependence on cryptographic machinery; Pantry [START_REF] Braun | Verifying Computations with State[END_REF] considers a setting where the verifiers do not have the entire input to the outsourced function and leverages the parallelization of the MapReduce paradigm 78 [70]; and Buffet [START_REF] Riad S Wahby | Efficient RAM and Control Flow in Verifiable Outsourced Computation[END_REF] improves Pantry's computational costs.

Non-Interactive solutions.

Unlike interactive solutions, schemes that are claimed to work without interaction between the prover and the verifier output the computation result and the corresponding proof in the same message.

CS proofs. Micali [START_REF] Micali | Computationally Sound Proofs[END_REF] was the first to make the transition from interactive to noninteractive solutions for the problem of VC, and proposes Computationally Sound (CS) proofs. Informally, the author combines the rationale behind PCP with efficient argument systems and eliminates the interaction between the prover and the verifier by invoking a random oracle and applying the Fiat and Shamir heuristic [START_REF] Fiat | How to Prove Yourself: Practical Solutions to Identification and Signature Problems[END_REF]. This heuristic, initially applied for a digital signature scheme, works as follows: In an interactive protocol, the prover sends an initial message (representing a proof) to the verifier; then the latter sends a random query to which the prover responds with another message, enabling the verifier to check the proof. In the non-interactive version of the same protocol, the Fiat and Shamir heuristic removes the interaction by having the prover query a random oracle (in practice, evaluate a collisionfree hash function) on the initial message, in lieu of the verifier sending the random query. In other terms, the random oracle simulates the verifier's query. Basing his work on this approach, Micali [START_REF] Micali | Computationally Sound Proofs[END_REF] introduces the CS proofs. As in PCP [10], the prover in a CS proof system computes a proof of computation π for some function and encodes this proof into a longer and samplable version τ . As in the efficient argument model [START_REF] Kilian | A Note on Efficient Zero-Knowledge Proofs and Arguments[END_REF][START_REF] Kilian | Improved Efficient Arguments[END_REF], the bits of encoding τ are then stored in the leaves of a Merkle tree, built using a random oracle. This yield a root value σ. Now recall that in a PCP system, the verifier interacts with the prover to query and check some randomly-sampled bits of encoded proof τ . In the CS proof setting, the prover uses a second random oracle to generate the randomly-sampled locations, and issue the responses of these locations. The CS proof therefore consists in the root value σ, the sampled bits in the encoding τ and their respective authentication paths 79 . The verifier receives the proof and can verify it using the same oracle. The CS proofs are publicly delegatable and 78 In a nutshell, MapReduce is a programming paradigm enabling parallel and distributed processing of big data in the cloud. The rationale is to divide the processing into small subtasks undertaken by several computing nodes (the map phase) and then to aggregate the resulting subtasks' outputs into other outputs which are step by step reduced to the final result.

79 See Section 6.4.3 for more details on Merkle tree and authentication paths.

verifiable. However, they rely on the random oracle model. SNARKs. The work by Bitansky et al. [START_REF] Bitansky | From Extractable Collision Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again[END_REF] introduce the concept of Succinct Non-Interactive ARgument of Knowledges (SNARKs). A SNARK protocol removes the use of random oracles in CS proofs and employs instead a concept the authors introduce, namely Extractable Collision-Resistant Hash Functions (ECRH), that rely on the non-falsifiable assumption 80 that, given an image of the ECRH there exists an extractor that computes a pre-image. Furthermore, the SNARK approach combines the theory behind CS proofs [START_REF] Micali | Computationally Sound Proofs[END_REF] with an instantiation of a Private Information Retrieval (PIR) protocol (as it was also suggested in [73]): The verifier sends "encrypted" PIR queries on the encoded proof (at randomly selected locations) and the prover responds by executing the PIR on the encoded proof. The SNARK-based protocol defined by Bitansky et al. [START_REF] Bitansky | From Extractable Collision Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again[END_REF] is publicly delegatable but relies on non-standard and non-falsifiable assumptions. Concerning this kind of hardness assumptions, Gentry and Wichs [START_REF] Gentry | Separating Succinct Non-Interactive Arguments From All Falsifiable Assumptions[END_REF] show that it exists an intrinsic limitation on solutions based on SNARKs: they cannot rely on falsifiable assumptions.

Pinocchio. Gennaro et al. [START_REF] Gennaro | Quadratic Span Programs and Succinct NIZKs without PCPs[END_REF] construct a publicly verifiable computation scheme based on Quadratic Span Program (QSP) and Quadratic Arithmetic Program (QAP), upon which they propose a new SNARK protocol. Indeed, the authors introduce the concept of QSP to convert any Boolean circuit and QAP to translate any arithmetic circuit. As in previous schemes [98,[START_REF] Setty | Toward Practical and Unconditional Verification of Remote Computations[END_REF][START_REF] Srinath | Making Argument Systems for Outsourced Computation Practical (sometimes)[END_REF][START_REF] Srinath | Taking Proof-Based Verified Computation a Few Steps Closer to Practicality[END_REF], the Boolean or arithmetic circuit encodes any arbitrary function. The choice between QSP and QAP depends on the outsourced function; each of the encoding may yield different performance, according to the "structure" of the function. The rationale behind QAP is as follows (similar considerations apply to QSP): each gate in an arithmetic circuit encoding an outsourced function is replaced by a quadratic polynomial which is in turn encoded in the exponent (such that the resulting encoding belongs to a bilinear group). The set of all encoded polynomials represents the QAP outsourced to the prover along with the function. Then, given the verifier's (encrypted) inputs, the prover evaluates the circuit and produces a proof based on QAP's polynomials. All polynomial evaluations (i.e gate computations) are then (succintly, i.e using constant amount of time) verified in the exponent, using bilinear pairings. The PVC scheme deriving from the above idea shows great promising practical performance. Indeed, this work was brought into practicality with a prototype called Pinocchio [START_REF] Parno | Pinocchio: Nearly Practical Verifiable Computation[END_REF], which implements the QAP-based scheme. In particular, benchmarks on Pinocchio shows that the verifier (more precisely the user who outsources the function) operates a one-time pre-processing phase, that enables an unbounded number of verifications. But the workload at the prover is still substantial. Compared to Zaatar [START_REF] Setty | Resolving the Conflict between Generality and Plausibility in Verified Computation[END_REF] that also implements an instantiation of a QAP [START_REF] Gennaro | Quadratic Span Programs and Succinct NIZKs without PCPs[END_REF], Pinocchio induces more expensive costs, since it uses more cryptographic machinery, but has the advantage to be non-interactive and publicly verifiable (which Zaatar is not). Despite its close-to-practicality property, the scheme by Gennaro et al. [START_REF] Gennaro | Quadratic Span Programs and Succinct NIZKs without PCPs[END_REF] and Pinocchio [START_REF] Parno | Pinocchio: Nearly Practical Verifiable Computation[END_REF] rely on a non-falsifiable assumption (namely, the power knowledge of exponent), that is a non-standard assumption, and thus on which we have not a high confidence on it.

Use of FHE. Gennaro et al. [90] formalize the notion of non-interactive verifiable computation in the amortized model, whereby the verifier must execute a one-time expensive preprocessing operation to allow an unbounded number of efficient verifications. Their solution combines the use of garbled Boolean circuits [START_REF] Andrew | Protocols for Secure Computations[END_REF] with FHE [START_REF] Gentry | Fully Homomorphic Encryption Using Ideal Lattices[END_REF]: During the pre-processing phase, the function to be outsourced is encoded into a Boolean circuit using Yao's garbled 80 Gentry and Wichs [START_REF] Gentry | Separating Succinct Non-Interactive Arguments From All Falsifiable Assumptions[END_REF] gave a definition of falsifiable assumptions (thus giving a characterization of nonfalsifiable ones). In essence, falsifiable assumptions capture the idea that there exists an "efficient process to test whether an adversarial strategy falsifies (i.e. breaks) the assumption" [START_REF] Gentry | Separating Succinct Non-Interactive Arguments From All Falsifiable Assumptions[END_REF]. This idea is modeled as an interactive game between a challenger and an adversary as in the soundness experiment we described in Section 3.5. Under falsifiable assumptions (such as RSA, CDH or Decisional Diffie-Hellman (DDH)), the probability that an adversary wins the game is negligible. In contrast, non-falsifiable assumptions are considered to be non-standard and "harder to reason about" [START_REF] Gentry | Separating Succinct Non-Interactive Arguments From All Falsifiable Assumptions[END_REF]. Thus they appear to be stronger assumptions than falsifiable ones [START_REF] Papamanthou | Signatures of Correct Computation[END_REF]. Variants of the knowledge-based assumption (such as the Knowledge of Exponent Assumption) fall into the category of non-falsifiable assumptions.

circuit construction [START_REF] Andrew | Protocols for Secure Computations[END_REF], which associates random labels to each wire in the circuit. A computation request generates the labels associated with an input, and as a response, the prover computes the labels associated with the output, based on the garbled circuit and the input labels. The verifier will then verify that the output labels correspond to a correct evaluation of the outsourced function. Since a computation request reveals the labels to the prover, they cannot be used for subsequent verifications. The application of a FHE scheme to the labels enables to protect those labels and hence reuse the same circuit for multiple verifications. A similar idea to combine circuits and FHE was proposed in [START_REF] Chung | Improved Delegation of Computation using Fully Homomorphic Encryption[END_REF]65]. However, at the time of writing this thesis, computational overhead of FHE is still prohibitive, limiting its practicality for actual implementation. Besides, these solutions only allow private verifications, that is, they are not publicly delegatable nor publicly verifiable.

Using Attribute-Based Encryption (ABE). Parno et al. [START_REF] Parno | How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption[END_REF] propose a solution for public delegation and public verification of computation using ABE [START_REF] Goyal | Attribute-based Encryption for Fine-grained Access Control of Encrypted Data[END_REF]. In an ABE scheme, a (secret) decryption key is associated with a Boolean function f. This key can decrypt a ciphertext that results from the encryption of a message m under an attribute x, if and only if f(x) = 1. Based on this concept of ABE, Parno et al. [START_REF] Parno | How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption[END_REF] design a VC scheme for arbitrary (Boolean) functions. In a nutshell, a user requests the prover to evaluate some Boolean function f on some input x. The computation query consists of the encryption of a random message m using the underlying ABE technique that associates the resulting ciphertext with input x. In other terms, x becomes an attribute of the encryption of m. This means that m can be decrypted using the (secret) decryption key associated with function f if and only if f(x) = 1. The prover who is given the key and the ciphertext that encrypts m can now prove that f(x) = 1 if he can return the decrypted message m. Public delegatability and verifiability are therefore achieved with the use of ABE. However, this scheme is limited to the computation of Boolean functions that output a single bit. For functions with more than one output bit, the verification has to be repeated (for each output bit).

Homomorphic MACs and signatures. Another line of work designs homomorphic message authenticators [START_REF] Gennaro | Fully Homomorphic Message Authenticators[END_REF]2] or homomorphic signatures [START_REF] Johnson | Homomorphic Signature Schemes[END_REF][START_REF] Boneh | Homomorphic Signatures for Polynomial Functions[END_REF][START_REF] Catalano | Homomorphic Signatures with Efficient Verification for Polynomial Functions[END_REF]; the former allows private verification (i.e only the holder of a secret key can verify the authenticators) while the latter enables public verifiability. Such homomorphic primitives have been first considered in the context 81 of linear network coding [3] where several authenticators are linearly combined into a single tag that proves the correct linear combination of the underlying messages. Subsequent work have addressed a larger class of functions (other than linear operations as it was the case for network coding).

Homomorphic MACs. Gennaro and Wichs [START_REF] Gennaro | Fully Homomorphic Message Authenticators[END_REF] define a new primitive referred as fully homomorphic message authenticators. With this construction, the prover can perform arbitrary computations (in particular, Boolean functions) on authenticated data and (homomorphically) generate an unforgeable tag (i.e a succinct authenticator) that certifies the correctness of the computation, without resorting to any secret key. Such a secret is only used to verify the tag, in order to validate the result of the computation over the authenticated data. Notwithstanding, the verifier (who was given the secret key used to compute the tag by the entity that outsourced the data) is able to verify the authenticators without knowing the data itself. The construction and verification of the tag are based on a FHE scheme, such as the one proposed by Gentry [START_REF] Gentry | Fully Homomorphic Encryption Using Ideal Lattices[END_REF], thus requiring heavy cryptographic computations. In particular, as mentioned by Gennaro and Wichs [START_REF] Gennaro | Fully Homomorphic Message Authenticators[END_REF], the verification of fully homomorphic message authenticators is not more efficient that evaluating the function. The authors suggest to outsource the verification step to the prover using existing protocols for verifiable computation such as CS proofs [START_REF] Micali | Computationally Sound Proofs[END_REF] or SNARKs [START_REF] Bitansky | From Extractable Collision Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again[END_REF]. A new construction for homomorphic MAC was proposed by Catalano and Fiore [START_REF] Catalano | Practical Homomorphic MACs for Arithmetic Circuits[END_REF] for functions that can be encoded into an arithmetic circuit (whose gates are either additive or multiplicative). This new homomorphic MAC generates 81 Homormorphic authenticators also appear in the context of proofs of retrievability and provable data possession [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF][START_REF] Shacham | Compact Proofs Of Retrievability[END_REF]. See Part I for more details.

for each gate a tag as a 1-degree polynomial P m (X) = aX + m whose constant term m is the authenticated data, and which evaluates to a pseudo-random number (generated by a PRF) on some secret input s; that is, HomMAC(m, s) = P m (s) = as + m = r, where HomMAC is the homomorphic MAC on data m and r = PRF(s). The natural homomorphism property of these polynomials ensures the homomorphism of the MAC. Therefore, when evaluating the circuit, the prover can produce a tag at each internal gate without knowing the secret key used to authenticate the underlying data. Gate by gate, the prover obtains a single tag for the entire circuit evaluation. Hence the verifier checks that the resulting tag is a correctly produced tag. This new solution is less general than the one in [START_REF] Gennaro | Fully Homomorphic Message Authenticators[END_REF] in the sense that it applies only to polynomially-bounded arithmetic circuits (as opposed to Boolean functions in [START_REF] Gennaro | Fully Homomorphic Message Authenticators[END_REF]), but it does not rely on the burden of FHE and presents a more efficient (thus practical) verification process. However, the size of the MAC heavily depends on the degree of the arithmetic circuit. Indeed, multiplicative gates in the circuit increases the degree of the "polynomial" tag. Consequently to this work, Catalano et al. [START_REF] Catalano | Generalizing Homomorphic MACs for Arithmetic Circuits[END_REF], Backes et al. [START_REF] Backes | Verifiable Delegation of Computation on Outsourced Data[END_REF] and Zhang and Safavi-Naini [START_REF] Liang | Generalized Homomorphic MACs with Efficient Verification[END_REF] propose other frameworks for fully-homomorphic MAC that ensure succinct authenticators and efficient verification. In particular, the homomorphic MAC propounded by Backes et al. [START_REF] Backes | Verifiable Delegation of Computation on Outsourced Data[END_REF] resort to Algebraic Pseudo-Random Functions (aPRF) 82 to generate the pseudorandom number used as the evaluation of the 1-degree polynomial P m (X) on the secret input s [START_REF] Catalano | Practical Homomorphic MACs for Arithmetic Circuits[END_REF]. This strategy makes the verification process more efficient than in [START_REF] Catalano | Practical Homomorphic MACs for Arithmetic Circuits[END_REF]. However, the framework introduced by Catalano et al. [START_REF] Catalano | Generalizing Homomorphic MACs for Arithmetic Circuits[END_REF] and Zhang and Safavi-Naini [START_REF] Liang | Generalized Homomorphic MACs with Efficient Verification[END_REF] rely on the multilinear map abstraction, and corresponding hardness assumptions, which are not yet straightforwardly practical [START_REF] Langlois | GGHLite: More Efficient Multilinear Maps from Ideal Lattices[END_REF][START_REF] Garg | Candidate Multilinear Maps from Ideal Lattices[END_REF]. Besides, the MAC of Backes et al. [START_REF] Backes | Verifiable Delegation of Computation on Outsourced Data[END_REF] only apply to a restricted type of homomorphism (namely, evaluation of arithmetic circuits of degree up to 2, i.e encoding quadratic polynomials).

Homomorphic signatures. Homomorphic signatures [START_REF] Boneh | Homomorphic Signatures for Polynomial Functions[END_REF][START_REF] Catalano | Homomorphic Signatures with Efficient Verification for Polynomial Functions[END_REF] are the "public" version of homomorphic MACs in the sense that anyone having access to the verifying public key can verify a homomorphic signature. Similarly to homomorphic MACs, the prover can compose such signatures into a single signature without knowledge of the secret signing key. However, to the best of our knowledge, homomorphic signatures have been essentially developed for the verification of polynomial functions on authenticated data. Boneh and Freeman [START_REF] Boneh | Homomorphic Signatures for Polynomial Functions[END_REF] devise polynomially-homomorphic signatures based on lattices. The verification procedure is as costly as computing the function from scratch. This scheme is proven secure under the Random Oracle Model (ROM). Catalano et al. [START_REF] Catalano | Homomorphic Signatures with Efficient Verification for Polynomial Functions[END_REF] eliminate the ROM assumption and design new polynomially-homomorphic signatures that are secure under a more standard model (in particular, they are based on problems in groups that admit multilinear maps). In addition, the verification of a signature homomorphically computed for a function f of authenticated data is more efficient than the computation of f. As a matter of fact, this property is verified in the the amortized model: after a one-time pre-computation of function f, the verifier can check an unbounded number of signatures on f efficiently, that is, check the evaluation of f on any data efficiently.

AD-SNARKs. One of the most recent techniques proposed for the problem of VC, and which has retained our attention, combines ideas stemming from QAPs and their implementation in Pinocchio [START_REF] Parno | Pinocchio: Nearly Practical Verifiable Computation[END_REF] with the rationale of (linearly) homomorphic MACs [START_REF] Catalano | Practical Homomorphic MACs for Arithmetic Circuits[END_REF]. AD-SNARKs [START_REF] Backes | ADSNARK: Nearly Practical and Privacy-Preserving Proofs on Authenticated Data[END_REF] (SNARKs for Authenticated Data) extends Pinocchio with the privacy-preserving feature. Indeed, AD-SNARKs support operations where the prover gets the inputs form a trusted source that produce and authenticate them. A third-party verifier, that has no knowledge of the data, can request and verify computations but learn nothing but the outputs and their correctness. To render Pinocchio privacy-preserving, Backes et al. [START_REF] Backes | ADSNARK: Nearly Practical and Privacy-Preserving Proofs on Authenticated Data[END_REF] propose to shift to the prover some parts of the verification procedure that involve linear computations of the inputs (as in QAPs). Hence, linearly-homomorphic MACs are computed to authenticate this part of the verification procedure to the verifier. However, as it was the case for Pinocchio, 82 See Section 3.6.3.1 for more details on aPRF.

AD-SNARKs must rely on non-falsifiable assumptions.

Proof-based Function-Specific Solutions

All the proposals we describe in the previous section realize solutions to the VC problem for a broad range of computations, or perhaps for arbitrary functions satisfying some restrictive properties (parallelizable functions as in [98] or Boolean functions as in [START_REF] Parno | How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption[END_REF]). Nevertheless, some effort has been devoted to protocols that offer solutions for a specific class of functions. As a matter of fact, these protocols exploit the peculiar properties and structures of some functions to enable tailored efficient delegation and verification solutions. Among others, polynomial evaluation [START_REF] Benabbas | Verifiable Delegation of Computation over Large Datasets[END_REF][START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF][START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF][START_REF] Papamanthou | Signatures of Correct Computation[END_REF], matrix computation [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF][START_REF] Zhang | Efficient Secure and Verifiable Outsourcing of Matrix Multiplications[END_REF][START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF], set operations [START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF][START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF] and keyword search [START_REF] Benabbas | Verifiable Delegation of Computation over Large Datasets[END_REF][START_REF] Zheng | VABKS: Verifiable Attribute-Based Keyword Search over Outsourced Encrypted Data[END_REF] have received significant interest from the research community. Linear algebra (such as matrix inversion or computing the rank and determinant of a matrix or solving a linear equation system) have also given rise to notable publications. The investment in those specific functions can be explained by the fact that they can be used as primitives for broader problems, such as outsourced image recognition or outsourced data mining. Benabbas et al. [START_REF] Benabbas | Verifiable Delegation of Computation over Large Datasets[END_REF] pioneered a new body of research for practical VC protocols. Adopting the amortized model approach introduced by Gennaro et al. [90], they initiate the concept of Algebraic Pseudo-Random Functions (aPRF) that enables efficient verifications, at the cost of an expensive one-time pre-processing operation that prepares the function to be outsourced. In particular, the authors removed the burden of relying on heavy cryptographic tools, such as FHE as in [90,[START_REF] Chung | Improved Delegation of Computation using Fully Homomorphic Encryption[END_REF] or on expensive circuit encoding and evaluation as in [START_REF] Gennaro | Quadratic Span Programs and Succinct NIZKs without PCPs[END_REF][START_REF] Parno | Pinocchio: Nearly Practical Verifiable Computation[END_REF].

Polynomial evaluation.

In the verifiable polynomial evaluation problem, a data owner outsources a polynomial of large degree to a server and then requests the server to evaluate that polynomial for several inputs, such that a verifier can verify the correctness of the result.

In the polynomial evaluation scheme of Benabbas et al. [START_REF] Benabbas | Verifiable Delegation of Computation over Large Datasets[END_REF], the verifier outsources a polynomial A of degree d and coefficients a i ∈ F p (0 ≤ i ≤ d -1) where p is a large prime, to the prover. She also sends a vector of elements of the form g αa i +r i , where the r i 's are the coefficients of a polynomial R, of degree d and α is randomly selected from F p . On input of some point x selected by the verifier, the prover returns the evaluation y = A(x) and a proof of correct evaluation π = g αA(x)+R(x) . The verifier accepts the result if π = g αy+R(x) . It is obvious that R should be generated in such a way that the verification is efficient. Otherwise, if R was completely random, the verification would require the same amount of computation as evaluating A directly, thus outsourcing would be useless. The idea to optimize the verifier's work is to produce polynomial R with the help of an aPRF F K : F K is a pseudorandom function that has a special property called closed form efficiency such that anyone who knows the secret key K can efficiently (namely sub-linearly in d) compute polynomial R(x), where the coefficients of R are defined as r i = F K (i). This solution, however, only works in the symmetric-key setting; thus it does not enable public verifiability nor delegatability. In the same line of work, Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF] devise new aPRFs and combine them with bilinear pairings to develop a publicly verifiable protocol for polynomial evaluation. As a follow-up to the work of Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF], Zhang and Safavi-Naini [START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF] propose a solution that trades off storage at the prover and the computational costs for the verifier. Indeed, in these two schemes [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF][START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF], outsourcing polynomial A together with the auxiliary polynomial R doubles the storage overhead for the prover. Therefore, to reduce such costs, the authors in [START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF] leverage the aPRF for publicly verifiable polynomial evaluation introduced in [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF] and break the delegated evaluation into several sub-computations, all of them verifiable in a single proof.

Another solution for public verification considers Signatures of Correct Computation (SCC) [START_REF] Papamanthou | Signatures of Correct Computation[END_REF]. As its name implies, this solution applies to the public-key setting and al-lows public verifiability. Besides, public delegatability is possible since the scheme does not require any secret to submit a computation query to the prover. SCC employ polynomial commitments [START_REF] Kate | Constant-Size Commitments to Polynomials and Their Applications[END_REF] to construct the signatures. In a nutshell, the authors in [START_REF] Kate | Constant-Size Commitments to Polynomials and Their Applications[END_REF] observe that the polynomial A -A(α) is divisible by the polynomial X -α (for any polynomial A ∈ F p [X] and α ∈ F p ). We can then find a polynomial W such that A(x)-A(α) = (x-α)W (α). Based on this property, the prover in [START_REF] Kate | Constant-Size Commitments to Polynomials and Their Applications[END_REF] constructs a witness by encoding polynomial W to the exponent in some group that admits a bilinear pairing; the verifier only needs to verify that the equation involving A(x) and W (x) holds in the exponent. The work by Papamanthou et al. [START_REF] Papamanthou | Signatures of Correct Computation[END_REF] extends the above solution for multivariate polynomials.

Matrix Multiplication.

In this setting a data owner outsources a large matrix M to a server and then requests the server to multiply matrix M with an input vector x. A verifier can then check the validity of the output returned by the server. This vector-matrix multiplication can generalize to matrix-matrix multiplication by applying the mentioned scenario to each column of the input matrix.

To our best knowledge, Atallah and Frikken [START_REF] Mikhail | Securely Outsourcing Linear Algebra Computations[END_REF] were the first to specifically tackle the problem of verifiable matrix multiplication. The authors give an insight of an idea later formalized by Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF]. In [START_REF] Mikhail | Securely Outsourcing Linear Algebra Computations[END_REF], the actual matrix is outsourced together with an auxiliary matrix, called "random noise" that is used to verify the correct matrix multiplication. In [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF], a data owner outsources a n × m matrix M of elements M i,j to the prover together with an auxiliary matrix N of the form N = αM + R, where α is a random number and R is a n × m random matrix. The data owner wishes to compute the product y = M x for an m-sized vector x. The prover produces the proof π = N x. The verifier can then check that π = α y + R x. All these operations are performed in the exponent; namely elements of N are of the form N i,j = g αM i,j +R i,j to provide secrecy of random matrix R. This scheme provides public verifiability through the use of bilinear pairings that encode a public verification key to the form e(g, g) R x . As in the polynomial case described above, Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF] suggest to generate the auxiliary random matrix R using dedicated aPRFs to allow the verifier to efficiently check the proof. As in the polynomial case, Zhang and Safavi-Naini [START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF] revisit the scheme of Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF] to reduce the storage overhead induced by the outsourcing of the matrices M and R. However, public delegatability is not supported by these two protocols. On the other hand, Zhang and Blanton [START_REF] Zhang | Efficient Secure and Verifiable Outsourcing of Matrix Multiplications[END_REF] propose a publicly delegatable and verifiable scheme that does not employ aPRF but instead leverage basic matrix properties, with comparable costs than the ones induced by the scheme of Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF]. Nonetheless, in spite of the additional feature of public delegatability, the work by Zhang and Blanton [START_REF] Zhang | Efficient Secure and Verifiable Outsourcing of Matrix Multiplications[END_REF] relies on the non-standard multiple Decisional Diffie-Hellman (m-DDH) assumption. Besides, the generation of the computation request (ProbGen) is costly and not amortized over multiple verifications. Indeed, the setup of this scheme does not depend on a particular matrix, so the generation of the matrix multiplication request should be repeated each time a user outsources that computation to the prover.

The work of Mohassel [START_REF] Mohassel | Efficient and Secure Delegation of Linear Algebra[END_REF], also mentioned in [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF][START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF][START_REF] Zhang | Efficient Secure and Verifiable Outsourcing of Matrix Multiplications[END_REF], also addresses the problem of verifiable matrix multiplication. The author gives a general approach in which a verifier that wishes to outsource the multiplication of two matrices A and B, precomputes and stores y = B x and y = A y (where x is a random vector). Later, she receives from the prover the product C = AB. To verify that C = AB, the verifier checks that y * = C x = y . In this approach, the verifier costs are induced by the computation of y, y and y * which is substantially less than the computation of AB. Besides, this scheme ensures privacy of the matrices and their product by employing a homomorphic encryption scheme (such as Paillier's [START_REF] Paillier | Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[END_REF], El-Gamal's [START_REF] El | A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms[END_REF], etc.) that encrypts each element of the input matrices. The verifier is then able to verify the correctness of the computation without the need to decrypt its result. However, this protocol is not very efficient for the verifier who first has to encrypt the matrices, and computing the vectors y, y and y * .

Note finally that the work by Thaler [START_REF] Thaler | Time-Optimal Interactive Proofs for Circuit Evaluation[END_REF] applies his interactive proof system (see Section 3.6.2.1) to the parallelizable problem of matrix multiplication. The operation is encoded into an arithmetic circuit whose evaluation is efficient for the prover. In this setting, a data owner stores to a server a large amount of data and delegates to that server the keyword search operation, such that the verification of the search is less costly that the operation of search for the data owner.

The problem of verifiable keyword search finds some early solutions in the domain of verifiable polynomial evaluation as explained in [START_REF] Benabbas | Verifiable Delegation of Computation over Large Datasets[END_REF][START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF]: A document is encoded as a polynomial P whose roots are exactly the keywords contained in the document. To prove whether a keyword ω is present in the document, the prover returns P (ω) to the verifier along with the proof of the correct evaluation of P on ω (using a verifiable polynomial evaluation scheme). Thereafter, the verifier runs the underlying verification procedure: If P (ω) = 0 and the proof is valid, then the verifier acknowledges that the keyword exists in the document; if P (ω) = 0 and the proof is valid, then the verifier is convinced that the keyword does not appear in the document; otherwise (when the proof is not valid), the verifier decides that the evaluation (thus the search) is not correct. Although this solution is convenient to test whether a single keyword appears in a document, it does not efficiently support conjunctive keyword search. Besides, to search for a single keyword in multiple documents, the prover has to search for each document, one by one, and thus generate a proof for each document. The cost of such a scheme is linear in the number of documents outsourced to the server.

The problem of verifiable conjunctive keyword search is closely related to the ones of verifiable set operations (and in particular set intersection). Indeed, many search algorithms consider a collection of keywords organized into an inverted index data structure [START_REF] Baeza | Modern Information Retrieval[END_REF]: Each keyword in a database is mapped to the set of all the database files that include this keyword. A query for keywords ω 1 and ω 2 targets the records that are present in both sets mapping ω 1 and ω 2 respectively, namely the intersection of these two sets. Therefore, a verifier should be able to verify that the prover outputs the correct intersection, yielding the correct search result.

Verifiable Set Intersection for Keyword Search. Morselli et al. [START_REF] Morselli | Trust-Preserving Set Operations[END_REF] first explore the concept of verifiable set operations and design a tool based on RSA accumulators83 [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Signatures[END_REF] and Counting Bloom Filters (CBFs) [START_REF] Fan | Summary Cache: a Scalable Wide-Area Web Cache Sharing Protocol[END_REF]: a data owner produces a digest of her sets by (i) creating for each set a CBF of the elements included in the considered set; (ii) generating an RSA accumulator for each set. Both filters and accumulators are then signed. When the prover receives an intersection query, she returns the elements of the intersection, the CBF of each set, their accumulators, the RSA witnesses (proving that the intersection is included in each intersected set) and the signatures on the filters and accumulators. The verifier then checks that the signatures and the witnesses are correct (that is, they satisfy a particular equation involving the witnesses, the RSA accumulators and the intersection). However, this scheme incurs linear verification costs for the verifier. In addition, while it supports public verification, it does not offer public delegatability.

Papamanthou et al. [START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF] also tackle the problem of verifiable set intersection and claim that their solution is suitable for the problem of verifiable keyword search. Their scheme exploits the primitive referred as polynomial-based accumulators 84 [START_REF] Nguyen | Accumulators From Bilinear Pairings and Applications[END_REF] and devises a new authenticated data structure, called accumulation tree, built upon these accumulators that allow to efficiently query and update the elements in the sets. Here also, the keywords contained in a collection of outsourced database records are viewed as an inverted index: To each keyword ω i corresponds a set S i whose elements are pointers to documents where keyword ω i is present. To query a conjunction of keywords ω 1 , .., ω k , the prover should return the intersection I = k i=1 S i (i.e I contains the pointers to documents that contain all keywords in the conjunction) along with a proof of the correct intersection. In a nutshell, the authors reduce the problem of verifiable set intersection into two subproblems: (i) subset containment which allows to prove that I is contained in each S i ; and (ii) set disjointness which proves that k i=1 S i \I = ∅. Besides, the solution proposed by Papamanthou et al. [START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF] encodes each set involved in the intersection with a polynomial of degree equal to the cardinal of the set and whose roots are the elements in the set. This polynomial is then encoded to the exponent: this corresponds to the polynomial-based accumulator. The homomorphic characteristics of this kind of accumulators enable the verification of relations between the sets thanks to arithmetic properties between the accumulators. Therefore, the subset containment property can be expressed in terms of polynomial: for a set S i , its encoding polynomial divides the polynomial encoding the intersection I. Hence, to verify that the intersection is contained in each intersected set S I , the verifier is required to verify the divisibility criterion of the corresponding polynomials, using their respective accumulators and using bilinear maps. This criterion can be publicly and efficiently verified in the exponent. Similarly, the set disjointness property can be reduced to checking that the polynomials' encoding S i \I are mutually coprime, such that they satisfy the Bézout identity 85 . The verifier can publicly and efficiently check this identity in the exponent using the corresponding polynomial-based accumulators and bilinear maps. Thus, this solution for verifiable set intersection can be exploited for conjunctive keyword search. The work of Papamanthou et al. [START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF] has been extended by Canetti et al. [START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF] in order to compose multiple set operations while having the same security guarantees as defined in [START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF] 86 . Sun et al. [START_REF] Sun | Catch You If You Lie To Me: Efficient Verifiable Conjunctive Keyword Search Over Large Dynamic Encrypted Cloud Data[END_REF] leverage the techniques of Papamanthou et al. [START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF] and Canetti et al. [START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF] to propose a verifiable conjunctive keyword search on dynamic encrypted data, allowing to update the outsourced data collection.

Kosba et al. [START_REF] Ahmed E Kosba | TRUESET: Faster verifiable set computations[END_REF] introduce TrueSet, a protocol for verifiable set operations based on circuit that is applicable to the problem of keyword search as the authors mention. In a nutshell, Kosba et al. [START_REF] Ahmed E Kosba | TRUESET: Faster verifiable set computations[END_REF] introduces the concept of Quadratic Polynomial Programs (QPP) analogous to QAP defined in [START_REF] Gennaro | Quadratic Span Programs and Succinct NIZKs without PCPs[END_REF]. QQPs encode a set circuit in order to derive efficient SNARK. A set circuit is a circuit whose gates implement set operations such as union, difference and intersection. This kind of circuit can be represented as a polynomial circuit where every wire is a polynomial and every gate defines either polynomial addition or polynomial multiplication. The scheme offers an elegant technique that combines QPPs and SNARK, but as these building blocks, TrueSet relies on a non-falsifiable assumption (the power knowledge of exponent assumption).

Verifiable Conjunctive Keyword Search on Encrypted Data. Several works [START_REF] Zheng | VABKS: Verifiable Attribute-Based Keyword Search over Outsourced Encrypted Data[END_REF][START_REF] Chai | Verifiable Symmetric Searchable Encryption for semi-Honestbut-Curious Cloud Servers[END_REF][START_REF] Kissel | Verifiable Phrase Search over Encrypted Data Secure against a Semi-Honest-but-Curious Adversary[END_REF][START_REF] Liu | Efficient Verifiable Public Key Encryption with Keyword Search Based on KP-ABE[END_REF][START_REF] Sun | Verifiable Privacy-Preserving Multi-Keyword Text Search in the Cloud Supporting Similarity-Based Ranking[END_REF] focus on verifiable search on encrypted data. These proposals aim at satisfying three features for outsource databases: (i) Privacy protection on the data via encryption; (ii) Keyword search over encrypted data; and (iii) Verifiability of the search. Zheng et al. [START_REF] Zheng | VABKS: Verifiable Attribute-Based Keyword Search over Outsourced Encrypted Data[END_REF] develop the concept of Verifiable Attribute-Based Keyword Search (VABKS) which allows the owner of a database to grant a user (a verifier) satisfying an access control policy the right to query a keyword over the owner's outsourced encrypted files and to verify the search result returned by the remote server (the prover). This protocol makes use of basic cryptographic primitives such as ABE, Bloom filters and digital signature and create a new building block called attribute-based keyword search. This new primitive organizes the keywords according to their respective access control policies and authorizes the user satisfying an access control policy to conduct keyword search over the encrypted data. However, VABKS does not allow public delegatability or verifiability since the verifier and the user who searches for some keywords should satisfy an access control policy. Besides, VABKS does not efficiently enable the search for a conjunction of keywords.

Cheng et al. [START_REF] Cheng | Verifiable Searchable Symmetric Encryption from Indistinguishability Obfuscation[END_REF] propose a protocol for verifiable conjunctive keyword search that leverages a combination of a searchable symmetric encryption scheme with an indistinguishability obfuscation circuit (iO circuit) realizing the search operation. While public verifiability is achieved by means of another (public) iO circuit representing the verification function, public delegatability is not addressed in this work. Nevertheless, it is worth considering generating an additional iO circuit to realize the publicly delegatable property. Still, the generation and obfuscation of such circuits induce substantial costs that the authors in [START_REF] Cheng | Verifiable Searchable Symmetric Encryption from Indistinguishability Obfuscation[END_REF] barely mention.

In the same line of work, Chai and Gong [START_REF] Chai | Verifiable Symmetric Searchable Encryption for semi-Honestbut-Curious Cloud Servers[END_REF] consider a prover that may correctly operate only a fraction of search queries to save both computation and bandwidth. This prover is referred as semi-honest-but-curious 87 . The scheme relies on a MAC-based prefix tree that allows the prover to perform the search on encrypted data and the verifier to verify the correctness of the result. As it relies on MAC to authenticate the responses, this solution offers neither public verifiability nor public delegatability. This work was extended in [START_REF] Kissel | Verifiable Phrase Search over Encrypted Data Secure against a Semi-Honest-but-Curious Adversary[END_REF] for verifiable phrase search. This solution boils down to performing a single keyword search for each keyword in the targeted phrase and to computing the intersection of the server's responses.

Verifiable SQL databases. A certain number of work focuses on systems that enable a verifier to perform verifiable SQL queries over relational databases [START_REF] Singh | Ensuring Correctness Over Untrusted Private Database[END_REF][START_REF] Papadopoulos | Separating Authentication From Query Execution in Outsourced Databases[END_REF][START_REF] Yang | Authenticated Join Processing in Outsourced Databases[END_REF][START_REF] Zhang | IntegriDB: Verifiable SQL for Outsourced Databases[END_REF]. One of the most recent proposal on that field is IntegriDB, proposed by Zhang et al. [START_REF] Zhang | IntegriDB: Verifiable SQL for Outsourced Databases[END_REF]. It is based on the accumulator-based verifiable set operations described in [START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF][START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF]. Besides, the authors suggest to create another tree, called interval tree (a sort of Merkle tree that has the properties of a traditional search tree) in order to enable verifiable join and range queries. Unfortunately, this tree as to be constructed for each pair of columns of each table of the outsourced database. Namely, if the database consists of k tables with n rows, then the data owner has to compute k • n 2 interval trees. Besides, each tree involves the computation of an accumulator of all the row values for a given column. Since the database is large, the number of rows might be very important. Thus the computation of the interval tree is computationally demanding.

Conclusions of the State of the Art Analysis

From the above survey, we can draw the following conclusions on the gap that exists between the requirements identified in Section 3.2.2 and existing work. Table 3.1 gathers and compares the results of our analysis of the state of the art.

1. Interactive solutions for general-purpose functions are far from being practical. Indeed, they require substantial computation and yield large-sized proofs.

2. Some related work on non-interactive proofs for arbitrary functions either are secure in the Random Oracle Model (ROM) (CS proofs [START_REF] Micali | Computationally Sound Proofs[END_REF]) or rely on non-falsifiable assumptions (SNARK [START_REF] Bitansky | From Extractable Collision Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again[END_REF]). Moreover, solutions that are based on FHE [90,[START_REF] Chung | Improved Delegation of Computation using Fully Homomorphic Encryption[END_REF] are not practical yet and not publicly delegatable nor publicly verifiable. The scheme by Parno et al. [START_REF] Parno | How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption[END_REF] is not fully applicable to any function, since the authors put restrictions on Boolean functions only.

3. Proposals for homomorphic MACs and signatures appear to not fulfill the efficiency requirement since verifying the MAC or the signature is as costly as executing the function locally.

4. Function-specific solutions are believed to be more efficient than the solutions for arbitrary computations. However, no function-specific solutions are publicly delegatable and publicly verifiable while fully satisfying the efficiency requirement at the same time.

Therefore, we advocate for solutions that are:

• Efficient for the verifier (while we allow the execution of a one-time pre-processing operation, following the amortized model)

• Non-interactive

• Based on falsifiable assumptions

• Publicly delegatable and publicly verifiable.

Chapter 4

Verifiable Polynomial Evaluation

Introduction to Verifiable Polynomial Evaluation

In this chapter, we focus on the public delegatability and verifiability of a specific family of functions: namely large-degree polynomial evaluation.

Let us recall our space agency scenario. The agency outsources to a cloud server a considerable collection of high-resolution (digital) space images. As we mentioned in Section 3.2, these images can be represented as a matrix where each element stores a pixel of the image. For example, to date, the highest resolution for an image produced by the Hubble Telescope is 1.5 billion pixels, which can be represented by a 60,000-by-22,000 matrix 88 . Thus, owing to its huge size, the processing of this kind of images will also be offload to the cloud, since the cloud can afford computationally demanding operations.

In particular, many techniques for image processing employ polynomial evaluation as a primitive. Among others, we can cite some contour detection or background estimation techniques that require to evaluate a (possible high-degree) polynomial in each pixel of the image. For example, in [START_REF] Joseph D Twicken | Photometric Analysis in the Kepler Science Operations Center pipeline[END_REF], the authors estimate and remove background from space images using polynomial-based techniques: Each pixel belonging to the background is fit to a polynomial (using a least-square polynomial fitting method 89 ). The background is then removed from the considered pixel by evaluating the estimated polynomial on the coordinates of this pixel and subtracting the resulting estimate from the considered pixel. Due to their possible heavy costs, the international space agency outsources such polynomial evaluations to the cloud and wants to be ensured of the correctness of their results. This scenario fits clearly into the VC model where data owner O represents the space agency. It wishes to delegate to cloud server S the computation of a polynomial A of large degree d that encodes an expensive polynomial-evaluation-based image processing operation.

Precisely, if we apply Definition 6, we let f = A and data owner O executes algorithm Setup; cloud server S runs Compute and returns the result to O. Additionally to the outcome of the computation, data owner O should receive some cryptographic proofs of correct polynomial evaluation from cloud server S. Furthermore, the space agency solicits public delegatability and verifiability of the computation to enhance collaborative work within universities and research centers all around the world. For instance, any space researcher can submit an input to that polynomial and another researcher may verify the results returned by the cloud. Hence, the first space researcher corresponds to querier Q in Definition 6. She runs algorithm 88 NASA, ESA, J. Dalcanton (University of Washington, USA), B. F. Williams (University of Washington, USA), L. C. Johnson (University of Washington, USA), the PHAT team, and R. Gendler, "Sharpest ever view of the Andromeda Galaxy", ESA/Hubble Media Newsletter, January 5, 2015, http://tiny.cc/uift8x [Accessed: [START_REF] Cole | NASA's Brings Earth Science "Big Data" to the Cloud with Amazon Web Services[END_REF]. 89 This method uses a polynomial P (x) = a0 + a1x + ... + anx n to approximate a series of data of the form (xi, yi), where y = f (xi) for some function f (1 ≤ i ≤ m), with estimation (xi, ŷi), where ŷi = P (xi). The least-square fit ensures that the coefficients of P are selected such that the fitting error i (yi -ŷi)

2 is minimized.

ProbGen on some input x. The second researcher acts as verifier V . She receives result y and proof π from cloud server S and invokes algorithm Verify to check whether the returned value y actually equals A(x).

Protocol Overview

Having set the above motivating scenario, we will devise in the following sections a protocol for publicly delegatable and verifiable evaluation of polynomials.

The solution we propose draws upon the basic properties of Euclidean division of polynomials: for any pair of polynomials A = 0 and B = 0 of degrees d and 2 respectively, the Euclidean division of A by B yields a unique pair of polynomials Q and R such that: (i) A = QB + R; and (ii) the degree of quotient polynomial Q equals d -2, whereas the remainder polynomial R has a degree less than 1. Now, data owner O, who would like to outsource the evaluation of a polynomial A of degree d to cloud server S, runs algorithm Setup (as defined in Definition 6) which first defines a polynomial B(X) = X 2 + b 0 for a randomly chosen b 0 , and divides A by B to get the quotient polynomial Q(X) = d-2 i=0 q i X i and the remainder polynomial R(X) = r 1 X +r 0 .

Next, data owner O outsources polynomial A together with quotient polynomial Q to server S and publishes the public key PK A = (g b 0 , g r 1 , g r 0 ), where g is the generator of a well-defined cyclic group. Consequently, whenever a querier Q wants to evaluate polynomial A at point x, she invokes algorithm ProbGen which first computes and advertises the public verification key VK x = (g B(x) , g R(x) ), and then transmits x to server S. The latter in turn calls algorithm

Compute which returns y = A(x) and generates the proof π = Q(x). Given the server's output (y, π), a verifier V checks whether g y = (g B(x) ) π g R(x) .

This protocol meets the efficiency requirement defined in Section 3.4. Indeed, the efficiency of the verification in the solution stems from the fact that B and R are small-degree polynomials. Indeed, to verify the correctness of a result (y, π) provided by server S on an input x, algorithm Verify performs a small and constant number of computations as opposed to carrying out the O(d) exponentiations that are required to evaluate polynomial A.

It is clear that to meet the soundness requirement stipulated in Section 3.5, the description of polynomials B and R must remain secret. However since B is a two-degree polynomial, the secrecy of these two polynomials can be easily compromised by disclosing the quotient polynomial Q. To remedy this shortcoming, the client encodes polynomial Q using an additively homomorphic one-way encoding. Namely, each coefficient q i of polynomial Q is encoded as h q i . In this manner, we allow server S to compute the proof π = h Q(x) of correct execution (where h is the generator of a group) while ensuring the confidentiality of polynomials B and R. Finally, we use bilinear pairings to let verifier V assess the correctness of the server's results. Accordingly, we show that our solution is sound under the d/2 -Strong Diffie-Hellman ( d/2 -SDH) assumption.

To sum things up, we will describe in the following lines our proposal for verifiable polynomial evaluation that is:

Efficient: We propose a solution that is non-interactive and practical. We will show that our protocol induces constant costs for algorithms ProbGen and Verify, that are independent of the degree of the outsourced polynomial, and which are much less expensive that the cost of evaluating the polynomial.

Amortized: Algorithm Setup requires heavy exponentiations to prepare the outsourced polynomial. However, these operations are performed only once for an unlimited number of verifications for the same polynomial.

Publicly delegatable: The data owner publishes public key PK A that enables anyone to submit input to the server.

Publicly verifiable:

The querier generates a public verification key VK x , tied to input x, enabling any verifier to check the result returned by the server.

Secure: As we will demonstrate in Section 4.5, our protocol is correct and sound.

Building Blocks

Before describing our protocol in full detail, we recall the definitions of bilinear pairings and the SDH assumption.

Bilinear Pairings

Let G 1 , G 2 and G T be three cyclic groups of the same finite order p.

A bilinear pairing is a map e: G 1 × G 2 → G T , with the following properties:

1. e is bilinear:

∀ α, β ∈ Z p , g ∈ G 1 and h ∈ G 2 , e(g α , h β ) = e(g, h) αβ ;
2. e is non-degenerate: If g is a generator of G 1 and h is a generator of G 2 , then e(g, h) is a generator of G T ;

3. e is computable: There is an efficient algorithm to compute e(g, h) for any (g,

h) ∈ G 1 × G 2 .

D-Strong Diffie-Hellman Assumption

Definition 9 (D-SDH Assumption). Let G 1 , G 2 and G T be three cyclic groups of the same finite prime order p such that there exists a bilinear pairing e :

G 1 × G 2 → G T .
We say that the D-Strong Diffie-Hellman assumption (D-SDH) holds, if given the tuple (g, g α , h, h α , ...,

h α D ) ∈ G 2 1 × G D+1 2 
for some randomly chosen α ∈ F * p , the probability to produce a pair (β, h 1/(β+α) ) ∈ F p \{-α} × G 2 is negligible.

Protocol Description

We assume here that data owner O wants to outsource the evaluation of a d-degree polynomial A(X) = d i=0 a i X i with coefficients a i ∈ F p where p is a large prime. Our protocol for verifiable polynomial evaluation follows the system model introduced in Section 3.4. Indeed, the protocol operates in three phases: the Setup phase in which data owner O prepares polynomial A to outsource; the Computation phase where a querier Q crafts a computation request based on an input x and where a server S replies to that request with A(x) and a proof of correct evaluation; and the Verification phase during which a verifier V checks that the result is correct. This scheme satisfies the requirements of correctness and soundness as defined in Section 3.5 while meeting the efficiency property. Moreover, it is publicly delegatable and verifiable since at the end of the Setup phase, data owner O publishes a public key that can be used by querier Q to request the evaluation of A on x. Besides this request, Q advertises a public verification key so that verifier V checks the returned results. 

Setup

In this phase, data owner O runs algorithm Setup which, on input of security parameter κ and polynomial A, prepares A to enable publicly verifiable polynomial evaluation as follows:

Public parameters generation: Algorithm Setup chooses two cyclic groups G 1 and G 2 of prime order p that admit a bilinear pairing e : G 1 ×G 2 → G T . Then it picks a generator g and a generator h of G 1 and G 2 respectively, and defines the set of public parameters as:

param = (p, G 1 , G 2 , G T , e, g, h).
Next, algorithm Setup randomly selects b 0 ∈ F * p such that polynomial B(X) = X 2 + b 0 does not divide polynomial A and performs the Euclidean division of polynomial A by polynomial B in F p [X]. We denote the resulting quotient polynomial by Q(X) = d-2 i=0 q i X i and the resulting remainder polynomial by R(X) = r 1 X + r 0 . Notice that R is a polynomial of degree at most 1, i.e. r 1 could be 0.

Public key computation: Algorithm Setup computes the public key

PK A = (b 0 , r 1 , r 0 ) = (g b 0 , h r 1 , h r 0 )
Evaluation key computation: To compute evaluation key EK A algorithm Setup computes

q i = h q i ∈ G 2 for all 0 ≤ i ≤ d -2,

and lets

EK A = (A, q 0 , q 1 , ..., q d-2 )
Algorithm Setup concludes its execution by outputting the tuple (param, PK A , EK A ).

Computation

In this phase, a querier Q requests cloud server S to evaluate outsourced polynomial A on point x ∈ F p and to return the result of this evaluation. To that effect, querier Q calls ProbGen that takes x and public key PK A and returns encoding σ x and verification key VK x .

In turn, server S performs the evaluation by invoking algorithm Compute with inputs σ x and EK A . Compute outputs an encoding of the evaluation result σ y . Algorithm ProbGen and Compute operate as following:

ProbGen(x, PK A ): On input of x ∈ F p and public key PK A = (b 0 , r 1 , r 0 ), algorithm ProbGen first computes

VK (x,B) = b 0 g x 2 VK (x,R) = r x 1 r 0
and then outputs the public encoding σ x = x and the public verification key VK x = (VK (x,B) , VK (x,R) ).

Compute(σ x , EK A ): Given σ x = x and evaluation key EK A = (A, q 0 , q 1 , ..., q d-2 ), algorithm

Compute evaluates y = A(x) = d i=0 a i x i mod p, generates the proof π = d-2 i=0
q x i i , and outputs the encoding σ y = (y, π).

Verification

On reception of the polynomial evaluation result, verifier V checks the correctness of server S's response by running algorithm Verify: Verify(σ y , VK x ): Provided with σ y = (y, π) and verification key VK x = (VK (x,B) , VK (x,R) ), algorithm Verify checks whether the following equation holds:

e(g, h y )=e(VK (x,B) , π)e(g, VK (x,R) ) (4.1)

If so, then Verify outputs y meaning that A(x) = y; otherwise it outputs ⊥. 

polynomials (Q, R) such that A = BQ + R; # Q(X) = d-2 i=0 qiX i and R(X) = r1X + r0 Compute PKA = (b0, r1, r0) = (g b 0 , h r 1 , h r 0 ); 3. Evaluation key computation For 0 ≤ i ≤ d -2 do
Compute qi = h q i ; End Set EKA = (A, q0, q1, ..., q d-2 ); Return (param, PKA, EKA); 

Algorithm: {σx, VKx} ← ProbGen(x, PKA) 1. Compute VK (x,B) = b0g x 2 ; 2. Compute VK (x,R) =

Security Analysis

In this section, we state and prove the two security theorems pertaining to our protocol for verifiable polynomial evaluation.

Correctness

Theorem 3 (Correctness). Our scheme for publicly verifiable polynomial evaluation is correct.

Proof of Theorem 3. If on input σ x = x ∈ F p , server S executes algorithm Compute correctly, then the latter's output will correspond to

σ y = (y, π) = (A(x), h Q(x) )
Indeed, we have:

π = d-2 i=0 q x i i = d-2 i=0 h q i x i = h d-2 i=0 q i x i = h Q(x)
Given that A = QB + R in F p [X] and that the order of e(g, h) is equal to p, we get:

e(g, h) A(x) = e(g, h) Q(x)B(x)+R(x) = e(g, h Q(x) ) B(x) e(g, h) R(x)
As y = A(x) and π = h Q(x) we have:

e(g, h) y = e(g, π) B(x) e(g, h) R(x)
= e(g B(x) , π)e(g, h R(x) )

Since VK (x,B) = b 0 g x 2 = g b 0 +x 2 = g B(x)
and VK (x,R) = r x 1 r 0 = h r 1 x+r 0 = h R(x) we conclude that e(g, h) y = e(VK (x,B) , π)e(g, VK (x,R) )

and that Verify outputs "y = A(x)".

Soundness

Theorem 4. The scheme proposed for publicly verifiable polynomial evaluation is sound under the d/2 -SDH assumption.

Proof of Theorem 4. Assume there is an adversary A that breaks the soundness of our protocol for publicly verifiable polynomial evaluation with a non-negligible advantage . We demonstrate in what follows that there exists another adversary B that breaks the d/2 -SDH assumption with a non-negligible advantage .

The proof of soundness of our solution for publicly verifiable polynomial evaluation involves two games: Game 0. This game corresponds to the soundness experiment (cf. Section 3.5.2) of our protocol for verifiable polynomial evaluation.

Game 1. The goal of adversary B in this game is to break the d/2 -SDH assumption using adversary A.

Let O SDH be an oracle which when queried returns the pair (g, g α ) in G 1 and the tuple (h, h α , h α 2 , ..., h α d/2 ) in G 2 for randomly generated α in F * p .

To break d/2 -SDH, adversary B first calls oracle O SDH to obtain a tuple (g, g α , h, h α , ..., h α d/2 ); then simulates the soundness experiment to adversary A.

Namely, adversary A enters the learning phase of the soundness experiment depicted in Algorithm 3:

Adversary A calls oracle O Setup with t different polynomials A (k) (X) = d i=0 a (k) i X i in F p [X]
, where 1 ≤ k ≤ t. Adversary B then simulates O Setup 's response as follows:

1. Adversary B defines the public parameters

param = (p, G 1 , G 2 , G T , e, g, h) 2. For 1 ≤ k ≤ t, to compute the evaluation key EK (k) A = (A (k) , q (k) 0 , ..., q (k) d-2 ), adversary
B proceeds as follows:

• B lets q (k) d-2 = h a (k) d and q (k) d-3 = h a (k) d-1 ; • For each 2 ≤ l ≤ d -2, adversary B computes q (k) d-2-l = l/2 i=0 h a (k) d-l+2i (-1) i α i k
where α k = αµ k + γ k and µ k , γ k are randomly selected from F * p . Note that adversary B can compute h α i k and thus q (k) d-2-l without the knowledge of α using the Binomial Theorem:

h α i k = h (αµ k +γ k ) i = i j=0 (h α j ) ( i j )µ j k •γ i-j k
, where h α j is given by the d/2 -SDH tuple returned by O SDH .

B computes the public key PK

(k) A = ( b (k) 0 , r (k) 1 , r (k) 
0 ) as follows: 

b (k) 0 = g α k r (k) 0 = d/2 i=0 h a (k) 2i (-1) i α i k r (k) 1 = (d-1)/2 i=0 h a (k) 2i+1 (-1) i α i k Note that B can efficiently compute b (k) 0 as g α k = (g α ) µ k g γ k ,
≤ i ≤ d -2, q (k) i = h q (k) i and if we let ( r (k) 0 , r (k) 1 ) = (h r (k) 0 , h r (k) 1
), then we can easily verify that:

• a (k) d = q (k) d-2 mod p and a (k) d-1 = q (k) d-3 mod p; • for all 2 ≤ i ≤ d -2, a (k) i = α k q (k) i + q (k) i-2 mod p; • a (k) 1 = α k q (k) 1 + r (k) 1 mod p and a (k) 0 = α k q (k) 0 + r (k) 0 mod p; • (r (k) 0 , r (k) 1 ) = (0, 0).
This entails that the polynomials defined as Q

(k) (X) = d-2 i=0 q (k) i X i , B (k) (X) = X 2 + α k and R (k) (X) = r (k) 1 X + r (k) 0
verify the following equality:

A (k) = B (k) Q (k) + R (k) with R (k) = 0.
Therefore we can safely conclude (i) that polynomial B (k) does not divide polynomial A (k) ; (ii) that each q (k) i correctly encodes the i th coefficient of the quotient polynomial Q (k) that results from the Euclidean division of polynomial A (k) by polynomial B (k) ; (iii) that the pair ( r

(k) 0 , r (k) 
1 ) correctly encodes the corresponding remainder polynomial R (k) .

Following the learning phase of the soundness game, adversary A selects a challenge value x (k) ∈ F p and calls oracle O ProbGen with the pair (x (k) , PK (k) A ). Accordingly, adversary B computes the response of oracle O ProbGen and returns verification key

VK (k) x = (VK (k) (x,B) , VK (k) (x,R) ) = ( b (k) 0 g x 2 , r (k) 0 r (k)x 1
).

Finally, adversary A returns a pair (y (k) , π (k) ) and invokes algorithm Verify which outputs

out (k) y .
In the challenge phase of the soundness game (cf. Algorithm 4), adversary A selects a polynomial A from the ones challenged to O Setup during the learning phase (For more readibility, we do not pursue the notation with the * as in Algorithm 4). Without loss of generality, we assume polynomial A is associated with public key PK A and evaluation key EK A . In particular, PK A and EK A are computed on the basis of α = αμ + γ, where μ, γ ∈ F * p are ones of the t values µ k , γ k selected in the learning phase. Adversary A selects a challenge value x ∈ F p and calls oracle O ProbGen with the pair (x, PK A ). Accordingly, adversary B computes the response of oracle O ProbGen and returns verification key

VK x = (VK (x,B) , VK (x,R) ) = ( b 0 g x 2 , r 0 r x 1 ).
Finally, adversary A returns a pair (y, π) such that y = A(x) and (y, π) is accepted by algorithm Verify with a non-negligible advantage .

Consequently, to break d/2 -SDH, adversary B first computes A(x) and the proof

π * = d-2 i=0 ( q i ) x i .
Since the pair (y, π) passes the verification, it satisfies Equation 4.1, namely: e(g, h) y = e( b 0 g x 2 , π)e(g, r 0 ( r 1 ) x ) = e(g x 2 + α, π)e(g, r 0 ( r 1 ) x ). (4.2) Furthermore, by construction: e(g, h) A(x) = e(g x 2 + α, π * )e(g, r 0 ( r 1 ) x ), (

where π * denotes the proof of correct evaluation A(x). By dividing Equation 4.2 by 4.3, we obtain: e(g, h) (y-A(x)) = e g x 2 + α, π π * Since y = A(x), the above equation implies:

e(g, h) = e g x 2 + α, π π * (y-A(x)) -1
.

This entails:

h = π π * (x 2 + α)(y-A(x)) -1 = π π * (x 2 +αμ+γ)(y-A(x)) -1 since α = αμ + γ with μ, γ ∈ F * p = π π * μ(α+ x 2 +γ μ )(y-A(x)) -1
.

Hence if adversary B does not stop the experiment, then she will be able to break the d/2 -SDH assumption by outputting the pair

(β, h 1/(β+α) ) = x 2 + γ μ , π π * μ(y-A(x)) -1
. Now if adversary B aborts the experiment i.e. when ( r 0 , r 1 ) = (1, 1), then adversary B can conclude that B divides A. As B knows that B = X 2 + α, B can break the d/2 -SDH assumption as follows:

1. B factorizes polynomial A into a product of irreducible polynomials in F p [X]. 2. B discards all the irreducible polynomials of degree above 2 and considers only polynomials of degree 2 of the form X 2 +b and polynomials of degree 1 that when multiplied are under the form X 2 + b. For instance, if one of the irreducible factor is X 2 + X + 1, it is discarded, but since X + 1 and X -1 give (X + 1)(X -1) = X 2 -1, polynomial X 2 -1 is retained.

3. Among all polynomials (irreducible or combined) of the form X 2 + b that were selected in the previous step, one is equal to B. Therefore, for each of those polynomials, B tests whether g b = g α. If it is the case, then adversary B determines α and thus learns α (since α = αμ+ γ). With knowledge of α, B can easily break the d/2 -SDH assumption.

Thus, we deduce that if there is an adversary A that breaks the soundness of our protocol for publicly verifiable polynomial evaluation with a non-negligible advantage , then there is an adversary B that breaks the d/2 -SDH assumption with a non-negligible advantage ≥ .

Finally, we want to highlight the fact that if B(X) = X δ + b 0 , then using a similar argument as the one above, we can easily show that our protocol for verifiable polynomial evaluation is secure under the D-SDH assumption for D ≥ d/δ .

Performance Analysis

This section evaluates the theoretical performance of our verifiable polynomial evaluation scheme. We study the storage overhead induced by our protocol as well as its communication and computation complexities. We will show that while adopting the amortized model defined by Gennaro et al. [90], our protocol meets the efficiency requirement defined in Section 3.4.

Storage

Data owner O is required to store and publish the public key (b 0 , r 1 , r 0 ) ∈ G 1 × G 2 2 . Server S however keeps the d + 1 coefficients a i ∈ F p of polynomial A and the d -1 encodings q i ∈ G 2 . Table 4.1 lists the storage complexity of our protocol.

Communication

In terms of communication complexity, our verifiable polynomial evaluation solution requires constant bandwidth consumption. Indeed, at the end of the execution of algorithm ProbGen, querier Q sends to cloud server S encoding σ x and verification key VK x , requiring O(1) space.

Similarly, server S returns encoding σ y = (y, π) which amounts to O(1) space. Table 4.1 sums up the bandwidth complexity.

Computation

Algorithm Setup first generates a random coefficient b 0 ∈ F * p to construct polynomial B and conducts an Euclidean division of polynomial A by polynomial B. The latter operation consists of d multiplications and additions, where d is the degree of polynomial A. Once the Euclidean division is performed, algorithm Setup performs one exponentiation in G 1 to derive b 0 , and d + 1 exponentiations in G 2 to compute r 0 , r 1 and q i . Although computationally expensive, algorithm Setup is executed only once by the client. Besides, its computational cost is amortized over the large number of verifications that third-party verifiers can carry out.

On the other hand, ProbGen computes the verification key VK x = (VK (x,B) , VK (x,R) ) which demands a constant number of operations that does not depend on the degree of polynomial A. More precisely, ProbGen consists of computing x 2 in F p , performing one exponentiation and one multiplication in G 1 to get VK (x,B) = g B(x) , and running one exponentiation and one multiplication in G 2 to obtain VK (x,R) = h R(x) .

Furthermore, algorithm Compute runs in two steps: (i) the evaluation of polynomial A at point x which requires at most d additions and multiplications in F p if the server uses Horner's rule; and (ii) the generation of the proof π which involves d -3 multiplications in F p and d -1 exponentiations and d -2 multiplications in G 2 . ) = e(VK (x,B) , π)).

Finally, the work at verifier V only consists of one exponentiation and one division in

Summary. The reader may refer to Table 4.1 for a summary of the computational performances of our protocol. We can conclude from the above that our solution meets the requirement on efficiency. Indeed, as Table 4.1 shows, the combined costs of algorithms ProbGen and Verify are negligible compared to the complexity of evaluating the polynomial. As a matter of fact, the time required to compute ProbGen and Verify are constant and independent of the degree of the outsourced polynomial. Moreover, the asymptotic cost of Compute is kept linear in d, which is substantially the same as evaluating the polynomial. In other terms, the complexity of generating the proof of computation does not influence the overall asymptotic complexity of Compute. The complexity of algorithm Setup is admittedly linear in the degree of the outsourced polynomial, however, it is amortized over an unlimited number of efficient verifications. Furthermore, our protocol is efficient in terms of communication complexity but also efficient in terms of storage for the data owner. 

Storage

|G| refers to the size (in bits) of elements in set G.

Data owner

O(1)

1 • |G 1 | + 2 • |G 2 | bits Server O(d) (d + 1) • |F p | + (d -1) • |G 2 | bits Communication Outbound O(1) 1 • |F p | + 2 • |G 1 | bits Inbound O(1) 1 • |F p | + 1 • |G 2 | bits Operations Setup ProbGen Compute Verify PRNG 1 - - - Additions in F p d - d - Multiplications in F p d 1 2d -3 - Multiplications in G 1 - 1 - - Multiplications in G 2 - 1 d -2 1 Exponentiations in G 1 1 1 - - Exponentiations in G 2 d + 1 1 d -1 1 Pairings - - - 2 

Comparison with Related Work

We compare our solution with two relevant existing techniques for verifiable polynomial evaluation. Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF] devise Algebraic Pseudo-Random Functions (aPRF), also used by Zhang and Safavi-Naini [START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF], to develop publicly verifiable solutions. Compared to these two solutions, our protocol induces the same amount of computational costs but with the additional property of public delegatability. Another solution for public verification considers signatures for correct computation [START_REF] Papamanthou | Signatures of Correct Computation[END_REF], and uses polynomial commitments [START_REF] Kate | Constant-Size Commitments to Polynomials and Their Applications[END_REF] to construct these signatures. Besides public verifiability, this solution implements public delegatability. However, the construction in [START_REF] Papamanthou | Signatures of Correct Computation[END_REF] relies on the d-SBDH assumption, whereas our solution is secure under a weaker assumption that is the d/2 -SDH. It is worth mentioning that our protocol can be changed to rely on the d/δ -SDH assumption, where δ is the degree of the divisor polynomial and therefore our scheme can accommodate higher-degree polynomials. Table 4.2 compares our verifiable polynomial evaluation solution with the work described by Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF] and Papamanthou et al. [START_REF] Papamanthou | Signatures of Correct Computation[END_REF].

Experimental Results

We developed a prototype of our verifiable polynomial evaluation scheme in Python, using the Charm-Crypto library 90 which implements cryptographic primitives such as elliptic curves and bilinear pairings. We experimented on a machine with the following characteristics: Processor Intel Core i5-2500; CPU@3.80GHz clock speed; 64 bit OS; RAM 16 GB. All reported times are computed as the average of the times measured for a total of 20 executions of our protocol. Figure 4.2 depicts the time (reported in Table 4.3) needed by each of the four algorithms of our protocol in function of the degree of the outsourced polynomial. As expected, the costs induced by algorithms Setup and Compute grow linearly with the degree of the polynomial. We highlight the fact that in accordance with the theoretical cost analysis we conducted at 90 Charm-Crypto library, http://jhuisi.github.io/charm/ [Accessed: February 3, 2016]. the beginning of Section 4.6, algorithms ProbGen and Verify generate light costs, independent from the degree of the outsourced polynomial. We also compute in the last column of Table 4.3 the breakeven point from which the expensive cost of Setup is amortized over multiple verifications. To interpret these values, we introduce the following criterion, called outsourceability.

1 pairing d + 1 exp in G 1 1 pairing co-CDH No [85] 2(d + 1) exp in G 1 1 exp in G 1 1 exp in G T DLin 1 exp in G T Papamanthou et al. Polynomial preparation d + 1 exp in G 1 2 pairing d-SBDH Yes [141] 2d + 1 exp in G 1 2 exp in G 1 Our scheme d + 1 exp in G 2 1 exp in G 1 d -1 exp in G 2 2 pairings d/2 -SDH Yes 1 exp in G 1 1 exp in G 2 1 exp in G 2
Definition 10 (Outsourceability -computation). The criterion x of outsourceability for a verifiable computation scheme is determined by a parameter x ≥ 0, according to which the time to pre-process the function f to be outsourced is amortized over x verifications of results returned by a remote server. Stated differently, x is such that:

t Setup + x • (t ProbGen + t Verify ) ≤ x • t Compute Local
where t algo is the time required to execute algorithm algo. Hence, x is defined by the relation:

x = t Setup t Compute Local -(t ProbGen + t Verify )
Table 4.3 shows that for degrees d ≤ 5000, outsourcing the evaluation of the polynomials is not an interesting strategy because it would be more costly for the data owner to outsource the polynomial and verify the correctness of the results than evaluating it locally. However, for polynomials with larger degrees d ≥ 5000, outsourcing is a winning strategy. Namely, if we consider the case where d = 500000, the data owner should better make the choice to outsource the polynomial to the cloud, if at least x = 606 polynomial evaluations are requested to the server (naturally, for the same polynomial). Besides, it is worth noticing that we run our benchmarks on a machine that has 16 GB of RAM. Modern smartphones 91 have between 1 and 4 GB of RAM, latest laptops 92 have no more than 8 GB of RAM. 91 Gareth Beavis, "Best Phone 2016: The 10 Best Smartphones We've Tested", TechRadar, January 25, 2016, http://tiny.cc/w4ft8x [Accessed: [START_REF] Cole | NASA's Brings Earth Science "Big Data" to the Cloud with Amazon Web Services[END_REF]. 92 Joel Santo Domingo, Laarni Almendrala Ragaza, "The 10 Best Laptops of 2016", PC Magazine, January Therefore, we can extrapolate the analysis of outsourceability of our verifiable polynomial solution to the real world. It may take greater time on smartphones and laptops to evaluate a polynomial with large degree. Hence, even for polynomial with degree d ≤ 5000, the best strategy for users of these devices would be to outsource these polynomials to the cloud, in order to save computation resources.

Conclusion to Verifiable Polynomial Evaluation

We presented in this chapter our publicly delegatable and publicly verifiable polynomial evaluation scheme. Exploiting the basic properties of Euclidean division for polynomials, our solution is provably secure according to the correctness and soundness definitions we highlighted in Section 3.5, without relying on heavy cryptographic operations or non-falsifiable assumptions. In addition, our protocol satisfies the efficiency requirement for any VC scheme while adopting the amortized model approach.

In comparison to prior art, we are the first to propose a verifiable polynomial protocol that takes advantage of the Euclidean division and which does not rely on algebraic PRFs. The strength of our approach is that there is no need to design such specific algebraic PRFs to verify any polynomial evaluation while keeping the cost of the verification lightweight. While some of the related work do not support public delegatability and verifiability, our proposal enables third-party queriers and verifiers to submit inputs to the server and check the results. Besides, our scheme can accommodate higher-degree polynomials than most of existing work, thanks to the d/2 -SDH assumption. Verifiable Matrix Multiplication

Introduction to Verifiable Matrix Multiplication

As we explained in our motivating scenario, matrix multiplications are a key primitive that can be employed by the international space agency for several operations such as image processing. For instance, the Haar Wavelet Transform technique is widely used for image compressing or edge detection [START_REF] Kenneth | Digital Image Processing[END_REF][START_REF] David | Wavelet theory: An Elementary Approach with Applications[END_REF]. This method employs a large matrix, called the Haar matrix, that is multiplied with each row or column of the matrix encoding the image. Since the images produced by the agency are represented as large matrices, it requires considerable computational resources to process them via matrix multiplications, such as the ones performed in the Haar Wavelet Transform. Hence, the space agency also delegates these matrix-based processing operations to the cloud. As a consequence, the cloud must generate a proof to convince the agency that the outcome of these operations is valid.

Obviously, this scenario implies the need for a verifiable protocol for matrix multiplication that fits into the VC model we presented in Section 3.4. In this setting, similarly to the verifiable polynomial evaluation scheme we introduced in Chapter 4, data owner O corresponds to our international space agency, delegating to a cloud server S a matrix M of size n × m, that can, for example, encode a large Haar matrix. If we refer to the model discussed in Section 3.4, our context imposes that f is the operation of multiplying a vector with M . Besides, data owner O, i.e the space agency, executes algorithm Setup that performs a one-time expensive operation that prepares matrix M to enable an unlimited number of verifiable multiplications on the same matrix M for different inputs. O also lets anyone submit inputs to S, in order to provide public delegatability. Namely, the space agency allows any collaborating researcher around the world to process the images that it owns. If we consider the example of the Haar Wavelet Transform used to detect edges 93 in the images, a researcher, denoted as querier Q (as specified in the PVC model in Definition 6), can provide a vector of pixels of size m (that is, a column of the image matrix), denoted x, to server S by calling algorithm ProbGen. In turn, S runs algorithm Compute that returns y = M x, containing n elements, along with a proof π that certifies the correctness of the multiplication. Furthermore, to support the public verifiability feature desired in our scenario, the space agency lets anyone verify the outcome of algorithm Compute. Therefore a collaborating researcher, which can be different from the one who submitted vector x, is able to run algorithm Verify on y and π that checks that y actually equals M x.

In the next sections, we devise a new protocol for verifiable matrix multiplication that is efficient and provably secure. It adopts the PVC model presented in Definition 6 and provides a solution to the scenario illustrated above. 93 We recall that our space agency's mission is to observe Earth from space images and we assume that edge extraction is a technique that can be used for such a task.

Protocol Overview

The protocol we introduce in this section relies on the intuition already expressed in [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF], which states that in order to verify that server S correctly multiplies an (n, m)-matrix M of elements M ij with some column vector x = (x 1 , x 2 , ..., x m ) , it suffices that data owner O randomly picks a secret (n, m)-matrix R of elements R ij , and supplies server S with the (n, m)-matrix M and an auxiliary (n, m)-matrix N such that N ij = gM ij g R ij (where g = g δ for some randomly generated δ and g is a generator of a well-defined group). Consequently, when a querier Q runs algorithm ProbGen that prompts server S to multiply matrix M with vector x, the latter returns vector y = (y 1 , y 2 , ..., y n ) and proof π = (π 1 , π 2 , ..., π n ) , such that

π i = gy i g m j=1 R ij x j
if the server is honest. If we denote π i = g γ i and γ = (γ 1 , γ 2 , ..., γ n ) , then the verification process induced by algorithm Verify consists of checking whether γ = δ y +R x. Now, to transform this intuition into a viable solution, that is, to fulfill the efficiency requirement expounded in Requirement 1, one must ensure that the execution of both algorithms ProbGen and Verify is much less computationally demanding than performing the matrix multiplication M x for all vectors x. Besides the efficiency requirement, we desire the properties of public delegatability and verifiability. Thus, we cannot directly apply the idea of Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF], that suggest to generate the secret matrix R using dedicated algebraic PRFs that optimize the multiplication R x. As a matter of fact, this method does not offer the desired features.

We tackle this issue by observing that for any vector λ = (λ 1 , λ 2 , ..., λ n ), the verification whether λ γ = δ λ y + λ(R x) takes O(n) time if the vector λR is computed beforehand. Therefore, we define the public key by an exponent encoding of λR, and the verification key for vector x by an exponent encoding of ( λR) x.

More concretely, we generate the elements in the auxiliary matrix N as

N ij = gM ij i g R ij i
for g i = g λ i , we let the public key PK M be a vector of m components PK j = n i=1 g R ij i , and we compute the verification key for vector x as VK x = m j=1 PK x j j . This modus operandi requires an expensive execution of algorithm Setup, but our system model allows such a requirement, since Setup will be amortized by several instances of the verification procedure for different inputs.

As a result, the proposed solution does not only offer public delegatability, but also is sound under the assumption of co-Computation Diffie-Hellman (co-CDH).

Definition 11 (Co-Computational Diffie-Hellman Assumption). Let G 1 , G 2 and G T be three cyclic groups of the same finite prime order p such that there exists a bilinear pairing e :

G 1 × G 2 → G T .
We say that the co-CDH holds in G 1 , if given g, g α ∈ G 1 and h, h β ∈ G 2 for random α, β ∈ F * p , the probability to compute g αβ is negligible.

To summarize, the protocol for verifiable matrix multiplication, that we describe in the following sections, is:

Efficient: While being non-interactive and practical, our scheme requires less costs to operate algorithms ProbGen and Verify, than executing the matrix multiplication. In particular, algorithms ProbGen and Verify run in O(m) and O(n) time respectively, whereas the matrix multiplication takes O(nm) time.

Amortized: Algorithm Setup requires heavy exponentiations and bilinear pairings to prepare the outsourced matrix. However, these operations are performed only once for an unlimited number of verifications for the same matrix.

Publicly delegatable: The data owner publishes public key PK M that enables anyone to submit input to the server.

Publicly verifiable:

The querier generates a public verification key VK x , tied to input vector x, enabling any verifier to check the result returned by the server.

Secure: As we will demonstrate in Section 5.4, our protocol is correct and sound.

Protocol Description

Without loss of generality, we assume that data owner O outsources to a cloud server S the multiplication operations involving an (n, m)-matrix M of elements M ij ∈ F p (1 ≤ i ≤ n and 1 ≤ j ≤ m) with p being a large prime. Adopting the VC model introduced in Definition 6 our protocol for verifiable matrix multiplication comprises three phases Setup, Computation and Verification. We give in what follows the details of the idea expressed in Section 5.2.

Setup

In this phase, data owner O runs Setup which, on input of security parameter 1 κ and matrix M , prepares M as follows:

Parameters generation: Algorithm Setup chooses two cyclic groups G 1 and G 2 of prime order p that admit a bilinear pairing e : G 1 × G 2 → G T . It then selects a generator h of group G 2 and computes h = h δ for a randomly selected δ in F * p . Thereafter, it randomly picks n generators g i of G 1 , for all 1 ≤ i ≤ n. Without loss of generality, we can assume that g i = g λ i for λ i in F * p . Subsequently, algorithm Setup defines the public parameters associated with matrix M as:

param = (p, G 1 , G 2 , G T , e, {g i } 1≤i≤n , h, h).
Evaluation key computation: Algorithm Setup selects an (n, m)-random matrix R of elements R ij in F * p and derives another (n, m)-matrix N of elements At the end of its execution, algorithm Setup outputs public parameters param, evaluation key EK M and public key PK M .

N ij = g δM ij +R ij i , ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Computation

We assume in this phase that a querier Q requests cloud server S to multiply outsourced matrix M with vector x of her choice and to return the result of this computation. To that effect, querier Q calls ProbGen that takes vector x and public key PK M as inputs and returns encoding σ x and verification key VK 

Verification

Upon reception of computation result, verifier V checks the correctness of server S's response by running algorithm Verify:

Verify(σ y , VK x ): Given σ y = ( y, π) and verification key VK x , it checks whether the following equality holds:

e(π, h)

? = e( n i=1 g y i i , h)VK x (5.1)
If so, algorithm Verify outputs y meaning that M x = y; otherwise it outputs ⊥. 

Verify e(π, h)

? = e( n i=1 g y i i , h)VKx; 3. If it verifies then return outy = y else return outy =⊥;

Security Analysis

We state and formally prove in this section the two security properties of correctness and soundness satisfied by our scheme. In particular, we adapt the adversary model described in Section 3.5 to the specific scenario of matrix multiplication.

Correctness

Theorem 5 (Correctness). Our scheme for publicly verifiable matrix multiplication is correct.

Proof of Theorem 5. If when queried with vector x = (x 1 , x 2 , ..., x n ) , server S correctly operates algorithm Compute, then Equation 5.1 always holds.

In that case, σ y corresponds to the pair ( y, Π) such that y = (y 1 , y 2 , ..., y n ) = M x and

Π = n i=1 m j=1 N x j ij .
This implies that for all 1 ≤ i ≤ n:

y i = m j=1
M ij x j mod p, and as the order of g i is p, it also implies that:

Π = n i=1 m j=1 N x j ij = n i=1 m j=1 g δM ij +R ij i x j = n i=1 m j=1 g δM ij x j +R ij x j i = n i=1 m j=1 g δM ij x j i g R ij x j i = n i=1 g δ m j=1 M ij x j i n i=1 m j=1 g R ij x j i = n i=1 g δy i i n i=1 m j=1 g R ij x j i .
Therefore, we have:

e(Π, h) = e( n i=1 g δy i i n i=1 m j=1 g R ij x j i , h) = e( n i=1 g y i i , h δ )e( n i=1 m j=1 g R ij x j i
, h) thanks to the bilinearity of e = e( n i=1

g y i i , h δ ) m j=1 e( n i=1 g R ij i , h) x j .
As h = h δ and VK x = 

g y i i , h)VK x .
We can conclude that Verify outputs y = M x.

Soundness

Theorem 6 (Soundness). Our solution for publicly verifiable matrix multiplication is sound under the co-CDH assumption in G 1 , provided that e : G 1 × G 2 → G T is a bilinear pairing of type 2. Namely, there exists a homomorphism φ : G 2 → G 1 such that φ(h) = g, where g (respectively h) is a generator of G 1 (respectively G 2 ).

Proof of Theorem 6. Assume there is an adversary A that breaks the soundness of our protocol for publicly verifiable delegation of matrix multiplication with a non-negligible advantage . In other terms, we assume that adversary A convinces a verifier to accept an incorrect result. Using the soundness definition outlined in Section 3.5.2, we show in the following via a proof-by-reduction that this assumption is not valid. In particular, we prove that if adversary A (efficiently) breaks our protocol, that is, returns an incorrect result to the matrix multiplication, we can build another adversary B that uses adversary A to break the co-CDH assumption in G 1 with a non-negligible advantage . The proof of the soundness of our protocol for publicly verifiable matrix multiplication comprises two games: Game 0. This corresponds to the soundness experiment of the protocol described in Algorithm 3 and Algorithm 4.

Game 1. In this game, adversary B would like to break the co-CDH assumption in G 1 with the help of adversary A.

Let O co-CDH be an oracle which, when invoked, returns the co-CDH pairs (g, g α ) ∈ G 2 1 and (h, h β ) ∈ G 2 2 , for some α, β ∈ F * p .

To break co-CDH, adversary B first calls oracle O co-CDH which randomly chooses α, β ∈ F * p and outputs the co-CDH pairs (g, g α ) and (h, h β ).

When adversary A enters the learning phase of the soundness experiment depicted in Algorithm 3 in Section 3.5.2, A calls oracle O Setup with t different (n, m)-matrices M (k) of elements

M (k) ij in F p , where 1 ≤ k ≤ t, 1 ≤ i ≤ n and 1 ≤ j ≤ m.
As a matter of fact, adversary B simulates O Setup as algorithm Setup in Game 0 except for the following:

1. For 1 ≤ k ≤ t, adversary B selects µ k , η k , ϕ k , ψ k uniformly at random in F *
p and computes the pairs (g, g α k ) and (h, h β k ), where

α k = αµ k + η k and β k = βϕ k + ψ k .
Note that adversary B can compute these pairs without the knowledge of α and β by just having access to co-CDH pairs (g, g α ) and (h, h β ):

g α k = (g α ) µ k g η k and h β k = (h β ) ϕ k h ψ k .
2. Now, for all 1 ≤ k ≤ t, adversary B sets ĝk = g α k and ĥk = (h β k ) δ , for some δ ∈ F * p .

B then computes for all 1 ≤ k ≤ t and 1 ≤ i ≤ n, ĝki = ĝλ i k for some randomly chosen λ i ∈ F * p . Hereafter, B sets the public parameters to

param k = (p, G 1 , G 2 , G T , e, {ĝ ki } 1≤i≤n 1≤k≤t , h, ĥk ),
where e is a bilinear pairing that maps an element from G 1 × G 2 to an element in G T and there exists a homomorphism φ : M . Note that the simulated output of oracle O Setup in the game is statistically indistinguishable from the distribution of the output of algorithm Setup in Game 0. Namely, the following is true:

G 2 → G 1 such that φ(h) = g .
• The statistical distribution of matrix N (k) is identical to the distribution of matrix N generated by algorithm Setup, which is of the form N ij = g

δM ij i g R ij i
, where R ij are elements of a random matrix R, for 1 ≤ i ≤ n and 1 ≤ j ≤ m (see Section 5.3.1). Since, each N (k) are randomly generated, then for each N (k) ij , we can always find a random ĝR i j ki such that N

(k) ij = ĝδM ij ki ĝR ij ki .
• For all vectors x = (x 1 , ..., x m ) ∈ F m p and y = (y 1 , ..., y n ) = M (k) x, the simulated public key PK .

Therefore, we can conclude that the distribution of public key PK

M is the same as the distribution of PK M = (PK 1 , ..., PK m ) produced by algorithm Setup.

In the rest of the learning phase, adversary A picks a challenge vector 

x (k) = (x (k) 1 , x (k) 2 , ..., x ( 
(k) , VK (k) x ) with VK (k) x = m j=1 PK (k)x j j . Afterwards, adversary A returns a response σ (k) y = ( y (k) , Π (k) )
and invokes algorithm Verify which outputs out (k) y .

In the challenge phase of the soundness game (cf. Algorithm 4), adversary A selects a matrix M from the ones challenged to O Setup during the learning phase. Without loss of generality, we assume matrix M is associated with public parameters param = (p, G 1 , G 2 , G T , e, {ĝ i } 1≤i≤n , h, ĥ), where for 1 ≤ i ≤ n, ĝi = ĝλ i = g αλ i , with α = αμ + η and (μ, η) is one of the pair of coefficients selected by adversary B when she simulated oracle O Setup to adversary A at the beginning of Game 1. Similarly, ĥ = h β where β = β φ + ψ. In addition, matrix M is associated with public key PK M and evaluation key EK M , both generated during the simulation of O Setup by adversary B. Adversary A also picks a challenge vector x = (x 1 , x 2 , ..., x m ) and queries oracle O ProbGen with the pair ( x, PK M ).

Adversary B simulates oracle O ProbGen and outputs the pair ( x, VK x ) with VK x = m j=1 PK x j j . Afterwards, adversary A returns a response σ y = ( y, π) such that y = M x. In the remainder of this proof, we denote y * = (y * 1 , y * 2 , ..., y * n ) = M x.

To break the co-CDH assumption in G 1 , adversary B first fetches the vector λ = (λ 1 , λ 2 , ..., λ n ) used to compute the powers ĝi = ĝλ i and verifies whether λ y = λ y * mod p.

If so, adversary B aborts the game. We will later provide Lemma 2 stating that, under the hardness of discrete logarithm, the probability that λ y = λ y * mod p is negligible. If λ y = λ y * mod p, B breaks co-CDH as follows:

Since σ y = ( y, π) passes the verification, then this implies that the following equation holds:

e(π, h) = e( n i=1
ĝy i i , ĥ) VK x (5.3) Also given Equation 5.2, we have:

e( n i=1 m j=1 N x j ij , h) = e( n i=1
ĝy * i i , ĥ) VK x (5.4)

By dividing Equation 5.3 with Equation 5.4, we obtain:

e      π n i=1 m j=1 N x j ij , h      = e n i=1 ĝy i -y * i i , ĥ = e n i=1
ĝλ i (y i -y * i ) , ĥ = e ĝ n i=1 λ i (y i -y * i ) , ĥ = e ĝ λ( y-y * ) , ĥ

As ĝ = g α and ĥ = h βδ , where α, β, δ correspond to the challenged matrix M , we deduce that

e      π n i=1 m j=1 N x j ij , h      = e g α λ( y-y * ) , h βδ = e g α, h β δ λ( y-y * )
To make the notation less cluttered, we denote for the rest of this proof: Λ = δ λ( y-y * ). Hence:

e      π n i=1 m j=1 N x j ij , h      = e g α, h β Λ .
Since α = αμ + η and β = β φ + ψ, we can write:

e      π n i=1 m j=1 N x j ij , h      = e (g α ) μg η, h β Λ = e (g α ) μ, h β Λ e g η, h β Λ = e (g α ) μ, (h β ) φh ψ Λ e g η, h β Λ = e (g α ) μ, (h β ) φ Λ e (g α ) μ, h ψ Λ e g η, h β Λ = e g αβ , h
μ φΛ e (g α ) μ ψΛ g η βΛ , h

Since φ(h) = g, where φ : G 2 → G 1 is a homomorphism, we have:

e      π n i=1 m j=1 N x j ij , h      = e g αβ , h μ φΛ e (g α ) μ ψΛ φ(h β ) ηΛ , h
Again, to reduce the amount of notation, we set Θ = (g α ) μ ψφ(h β ) η. Note that adversary B can easily compute Θ since she knows (g, g α ) (that she received from O co-CDH ), μ, ψ and η (that she selected herself) and h β (she computed during the learning phase). Therefore, we can conclude:

e      π n i=1 m j=1 N x j ij , h      = e g αβ , h μ φΛ e Θ Λ , h e      π Θ Λ n i=1 m j=1 N x j ij , h      = e g αβ , h μ φΛ e            π Θ Λ n i=1 m j=1 N x j ij      (Λμ φ) -1 , h       = e g αβ , h
As a result, if λ( y -y * ) = 0 mod p, then δ λ( y -y * ) = 0 mod p (δ ∈ F * p ) and Λ = 0. Furthermore, since μ, φ ∈ F * p , μ φ = 0. We finally have

g αβ =      π Θ Λ n i=1 m j=1 N x j ij      (Λμ φ) -1
, where Θ = (g α ) μ ψφ(h β ) η and Λ = δ λ( y -y * ).

Hence, adversary B breaks the co-CDH assumption in G 1 as long as λ y = λ y * mod p.

Fortunately, under the hardness of discrete logarithm, the probability that λ y = λ y * mod p is negligible, as shown in Lemma 2.

To summarize, if there is an adversary A that breaks the soundness of our protocol for publicly verifiable matrix multiplication with a non-negligible advantage , then there exists an adversary B that breaks the co-CDH assumption in G 1 with a non-negligible advantage .

Verifiable Matrix Multiplication

Lemma 2. If adversary A outputs y such that λ y = λ y * mod p, then adversary B can break the Discrete Log (DL) assumption in G 1 .

Proof of Lemma 2. Assume there is an adversary A that outputs a vector y = (y 1 , y 2 , ..., y n ) verifying the property above with a non-negligible advantage . We show that there is another adversary B which uses adversary A to break the DL assumption in G 1 with a non-negligible advantage greater than n .

Assume that adversary B receives ó g ∈ G 1 and is required to output λ ∈ F p such that ó g = g λ .

To this effect, adversary B simulates the soundness experiment. More precisely, upon receipt of an (n, m)-matrix M , it simulates the output of O Setup exactly as in Game 0 except for the following:

• It selects k randomly in {1, 2, ..., n} and lets ó g k = ó g;

• for all 1 ≤ i ≤ n, i = k, it randomly selects λ i ∈ F * p and sets ó g i = ó g λ i ;

• it sets the public parameters to ú

param = (p, G 1 , G 2 , G T , e, {ó g i } 1≤i≤n , h, h).
Adversary A eventually returns a pair of vectors x = (x 1 , x 2 , ..., x m ) and y = (y 1 , y 2 , ..., y n ) that verify y = M x and λ y = λM x mod p, whereby λ = (λ 1 , λ 2 , ..., λ, λ k+1 , ..., λ n ).

If we denote y * = (y * 1 , y * 2 , ..., y * n ) = M x, then the above equality entails that

λ = n i=1,i =k λ i (y * i -y i ) y k -y * k
as long as y k = y * k . Since y = y * , then there is at least one index 1 ≤ j ≤ n such that y j = y * j . Since k is randomly chosen from {1, ..., n}, the probability that y k = y * k is at least 1/n, and consequently, adversary B will be able to break the DL assumption with advantage ≥ /n.

Performance Analysis

We discuss here the performance of our solution for verifiable matrix multiplication.

Storage

In terms of storage complexity, server S is required to keep the (n, m)-matrix M of elements On the other hand, data owner O is required to store and publish the public parameters which are of size n • |G 1 | bits and the public key PK M whose size is m • |G T | bits. We highlight the fact that the public parameters' size can be made constant: Instead of advertising the set {g i } 1≤i≤n , the client can select a hash function H : F * p → G 1 \{1} and compute the generators g i as H(i), for all 1 ≤ i ≤ n. On the downside, this optimization makes our scheme secure only in the random oracle model.

M ij ∈ F p
The reader is provided with a summary of this storage complexity in Table 5.1.

Communication

As regard communication complexities, querier Q sends encoding σ x and verification key VK x which consists of a bandwidth consumption of O(m) space, since m is the dimension of σ x = x. On the other hand, server S sends an encoding of the matrix multiplication result y which represents O(n) space ( y amounts to n • |F p | bits). Table 5.1 summarizes the communication complexity of our protocol for verifiable matrix multiplication.

Computation

Algorithm Setup generates the (n, m)-random matrix R which requires the generation of nm random numbers in F p . To compute the elements N ij of matrix N as g

δM ij +R ij i
, algorithm Setup performs nm multiplications and n(m-1) nm additions in F p , and nm exponentiations in G 1 . Furthermore, the generation of public key PK M demands m(n -1) multiplications in G 1 , nm exponentiations in G 1 and m pairings. It should be noted that while algorithm Setup involves expensive operations such as exponentiations and pairings, it is executed by the data owner only once, and consequently, its cost is amortized over the large number of verifications that a verifier can perform.

To multiply a vector x = (x 1 , x 2 , ..., x m ) with matrix M , algorithm ProbGen computes VK x = m j=1 PK

x j j . This involves m -1 multiplications and m exponentiations in G T . Moreover, algorithm Compute consists of two operations: (i) the matrix multiplication y = M x which requires nm multiplications and additions in F p ; and (ii) the generation of the proof Π which involves nm exponentiations and (n -1)(m -1) multiplications in G 1 .

Finally, algorithm Verify evaluates two bilinear pairings, (n -1) multiplications and n exponentiations in G 1 , and one multiplication in G T . We summarize in Table 5.1 the computational complexity of our protocol for verifiable matrix multiplication. 

Storage

|G| refers to the size (in bits) of elements in set G.

Data owner

O(n + m) n • |G 1 | + m • |G T | bits Server O(nm) nm • |F p | + nm • |G 1 | bits Communication Outbound O(m) m • |F p | + 1 • |G T | bits Inbound O(n) n • |F p | + 1 • |G 1 | bits Operations Setup ProbGen Compute Verify PRNG nm - - - Additions in F p nm - n(m -1) - Multiplications in F p nm - nm - Multiplications in G 1 m(n -1) - (n -1)(m -1) n -1 Multiplications in G 2 - - - - Multiplications in G T - m -1 - - Exponentiations in G 1 2nm - nm n Exponentiations in G 2 - - - - Exponentiations in G T - m - - Pairings m - - 2 

Comparison with Related Work

We analyze two relevant prior works on verifiable matrix multiplication and compare them with our solution. Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF] (extended by Zhang and Safavi-Naini [START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF]) exploit Algebraic Pseudo-Random Functions (aPRF) for publicly verifiable matrix multiplications. However, only the data owner can submit input vectors to the outsourced multiplication, hence their constructions do not meet the public delegatability requirement. Besides, even though our Setup is more expensive than in [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF], our algorithms ProbGen and Verify require less computational resources. Zhang and Blanton [START_REF] Zhang | Efficient Secure and Verifiable Outsourcing of Matrix Multiplications[END_REF] present a construction for publicly delegatable and verifiable outsourcing of matrix multiplication that uses mathematical properties of matrices instead of aPRFs. Unlike our work, the public verifiable scheme suggested in [START_REF] Zhang | Efficient Secure and Verifiable Outsourcing of Matrix Multiplications[END_REF] does not transfer the matrix M to the server during Setup (whose purpose is reduced to generating the public parameters). Instead, ProbGen prepares the matrix and the input vector for the delegation. The solution proposed by Zhang and Blanton [START_REF] Zhang | Efficient Secure and Verifiable Outsourcing of Matrix Multiplications[END_REF] does not follow the amortized model. Hence, ProbGen has to be repeated for each matrix to outsource, inducing possible expensive costs. This construction is secure under the multiple decisional Diffie-Hellman (M-DDH) and the eXternal Diffie-Hellman (XDH) assumptions, which are stronger than the co-CDH assumption we rely on in our solution. Table 5.2 depicts a comparison of our proposal for matrix multiplication with the solution proposed by Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF] and Zhang and Blanton [START_REF] Zhang | Efficient Secure and Verifiable Outsourcing of Matrix Multiplications[END_REF].

Experimental Results

We benchmark our verifiable matrix multiplication solution by means of a prototype implemented in Python, with the help of the Charm-Crypto library. We experiment on the same machine as in the polynomial case (Processor Intel Core i5-2500; CPU@3.80GHz clock speed; 64 bit OS; RAM 16 GB). The various measurements reported in this section correspond to an average time of 20 trials of our prototype. We run two types of benchmarks: Impact of m: For several values of n (the number of rows in the matrix), we tune m (the number of columns) to appreciate the effects of this parametrization over the overall time of our prototype. Results are listed in Table 5.3 and plotted in Figure 5.2. Impact of n: Symmetrically, given some values of m, we test, for different values of n, the impact of the number of rows in the times required during the execution of our implementation. Table 5.4 shows the measured time for each algorithm of our protocol whereas Figure 5.3 depicts their evolution. In accordance with Table 5.1, the experimental results show that:

1. Setup is the most expensive operation. The time required to execute this algorithm is linear both in m (as shown in Figure 5.2) and n (as depicted in Figure 5.3).

2.

Similarly, the time for algorithm Compute linearly increases with n and m.

3. Table 5.3 and Table 5.4 reveal that algorithm ProbGen only depends on m, according to which the times to compute a computation request linearly grows. 5.4 and Table 5.3, which makes the matrix multiplicaiton outsourcing practical.

As we can see in

In the last column of Table 5.3, we report the time it takes to compute the matrix multiplication locally by the data owner (that is, without resorting to our verifiable matrix multiplication scheme). The values show that, according to our criterion of outsourceability presented in Definition 10, the expensive Setup is not amortized over multiple verifications. Indeed, this observation comes from the fact that computing the matrix multiplication only involves O(nm) multiplications in F p while algorithm ProbGen requires O(m) exponentiations in G T and algorithm Verify O(n) exponentiations in G 1 . Thus, the time to execute these two algorithms is greater than the time to perform the matrix multiplication. Nonetheless, we can still acknowledge that matrix multiplication protocol is outsourceable for two reasons.

First, our scheme applies to scenarios that involve very large matrices. If we consider our space agency scenario, high resolution space images, which are represented as matrices of pixels, can be very large. For example, the Mars Reconnaissance Orbiter's HiRISE (High Resolution Imaging Science Experiment) camera takes pictures of around 2.52 gigapixels [START_REF] Mark W Powell | A Scalable Image Processing Framework for Gigapixel Mars and Other celestial Body Images[END_REF].

In memory, this kind of images amounts to store matrices of 14 GB, if each pixel contains 16 millions of colors, encoded on 6 bytes. It makes sense that the owner of these images may not afford to store this amount of memory. Thus her best strategy is: outsourcing the storage of these images to the cloud and requesting the server to process them, using the proposed verifiable matrix multiplication protocol. This scenario is realistic: Powell et al. [START_REF] Mark W Powell | A Scalable Image Processing Framework for Gigapixel Mars and Other celestial Body Images[END_REF] use cloud computing technologies to perform gigapixel image processing, which involves matrix multiplication. To summarize, storage efficiency defines another criterion for the amortized model and outsourceability. Furthermore, another advantage of our protocol is the public delegatability and verifiability properties. Namely, for an outsourced matrix, multiple users can request the cloud to multiply this matrix by an input vector of their choices. We can thus define a third criterion with respect to bandwidth efficiency for outsourceability. This criterion is particularly suited for verifiable computation solutions that are publicly delegatable and verifiable.

Definition 12 (Outsourceability -bandwidth). Outsourceability for a publicly delegatable and publicly verifiable computation scheme is determined by a parameter N ≥ 0, according to which the bandwidth consumption between data owner O and N third-party queriers Q is greater than the bandwidth consumed by O to outsource the function to the cloud server S plus the bandwidth consumed between S and the N third-party queriers Q.

Stated differently, x is such that:

N • BW(O → Q) ≥ BW(O → S) + N • BW(S Q)
where BW is the bandwidth consumed between two parties.

Let us consider the scenario where the data owner stores the large matrix locally. To enable N third-party users to perform multiplications on this matrix, the data owner needs to transmit the matrix to them, which amounts to a bandwidth complexity in O(N nm) (namely, N nm • |F p | bits have to be transmitted). On the other hand, outsourcing the matrix will lead to a communication complexity in O(nm + N (m + n)) (namely, the data owner transmits nm

• |F p | bits to the cloud, N ProbGen transmit N m • |F p | + N • |G T | bits and N Verify send N n • |F p | + N • |G 1 | bits,
as shown in Table 5.1). Let us calculate these figures for the space agency scenario. We consider that a 1 gigapixel image (6 GB in memory) is a matrix of approximately n = 32000 rows and m = 32000 columns and that N = 1000 thirdparty researchers will multiply this matrix with some inputs. The matrix contains pixels of |F p | = 6 bytes and for simplicity |G 1 | = |G T | = 160 bits 94 . If the space agency locally stores this matrix and transmits it to third-party researchers for multiplication then the bandwidth consumption amounts to approximately 6 TB. If the space agency outsources the matrix and uses our publicly delegatable and verifiable matrix multiplication protocol, then the agency only needs to transmit the matrix of 6 GB to the cloud. The interaction between the cloud and the third parties who request matrix multiplication only amounts to 0.4 GB in total.

Conclusion to Verifiable Matrix Multiplication

We introduced in this chapter a new non-interactive publicly delegatable and publicly verifiable matrix multiplication scheme. While many existing solutions leverage algebraic PRF, our solution only relies on algebraic properties of matrices. Compared to prior work, our solution reduces the cost of the multiplication of a random matrix R with the input vector x by introducing a random row vector λ. This vector is left-multiplied with R x as a projection of R x on λ, which shrinks the cost of verification from quadratic to linear. Our solution is secure against the correctness and soundness definitions we stated in Section 3.5, without relying on heavy cryptographic operations, nor on non-falsifiable assumptions, as it is the case for some existing work. Furthermore, our protocol meets the efficiency requirement that we highlighted in Section 3.2.2 and follows the amortized model approach with respect to an expensive setup operation. The strength of our approach is that public delegatability and verifiability are ensured without sacrificing efficiency.

Chapter 6

Verifiable Conjunctive Keyword Search

Introduction to Verifiable Conjunctive Keyword Search

In this chapter, we focus on the problem of verifiable conjunctive keyword search. Cloud servers are the best candidates to undertake the operation of search in large datasets. Indeed, they have means to store huge amount of data and own the necessary computational resources to process and analyze huge datasets. Keyword search is one of the most frequently used primitives in data mining. Therefore, we consider this operation and design a solution that assures the correctness of the search result.

More specifically, let us consider again the international space agency scenario. For the sake of their Earth observation mission, the agency collects and generates huge amount of data, be it space and aerial images or time-series data. To save IT investments, the agency outsources this public dataset to a cloud server. To enable the processing of this data, the space agency annotates each document with information relevant for their identification, classification, search or retrieval. Hence, an image can be annotated with information related to:

• the name of the satellite that acquired the image (LandSat 95 , Sentinel-1 96 , Ikonos 97 , etc.) • the mission or topic the image was captured for (forest, ocean, erosion, landslide, volcano, etc.) • the places on Earth the image depicts (Nice, Haiti, Lake Baikal, Gobi Desert, World

Trade Center New-York, etc.) • the date of acquisition, etc. As searching for keyword in the database of images might be costly, the space agency also delegates the search operation to the cloud. Furthermore, the agency wants to empower third-party researchers collaborating in its Earth observation mission (i) to issue conjunctive keyword search queries to the database and (ii) to efficiently verify the correctness of the results returned by the cloud. As an example, a collaborator from a research center can search for keywords such as "LandSat AND hurricane AND Florida" to search whether there exist, in the agency's public database, images that were produced by the LandSat satellite and showing a hurricane in Florida 98 . If such an image does not exist, the cloud server should return a proof that the search yields no result. Otherwise, it returns the identifiers of the images that satisfy the search query, that is, the images whose annotations contain keywords 95 "LandSat AND hurricane AND Florida". Along with this result, the server should produce a proof stating that it operated the search correctly and returned the valid set of image identifiers corresponding to the search. In other terms, the server proves that the result it returned does not contain images that do not match the keyword search nor omit any images matching the search query.

It becomes obvious that this scenario fits into the PVC model defined in Section 3. In the two next sections, we adapt the system model of publicly verifiable computation presented in Section 3.4 to the problem of publicly verifiable conjunctive keyword search (Section 6.2). We also customize in Section 6.2.3 the adversary model introduced in Section 3.5.

Definition of Publicly Verifiable Conjunctive Keyword Search

In the following, we tailor the definition of a PVC scheme to the problem of Publicly Verifiable Conjunctive Keyword Search (PVCKS).

System Model

As discussed previously, publicly verifiable conjunctive keyword search enables a data owner O to outsource a set of files F to a server S, while ensuring the properties of • Public delegatability: A querier Q can issue conjunctive keyword search queries of the form W = {ω 1 , ω 2 , ..., ω k } to server S for outsourced files F . Server S responds to this search query by returning the subset of files F W ⊂ F containing all words in W .

• Public verifiability: A verifier V can assess the correctness of the results returned by server S, that is, verify whether the search result output by S for a collection of words W is correct. Namely, if we denote CKS the function which on inputs of files F and a collection of words W returns the files containing all keywords in W , then verifier V checks that F W actually corresponds to CKS(F , W ).

In more formal terms, we adapt the PVC model for the search operation and define thereafter publicly verifiable conjunctive keyword search. In this setting, function f in the PVC definition corresponds to the set of files F to be outsourced. Algorithm ProbGen becomes QueryGen that takes as input the conjunction of keywords W ant outputs an encoded search query E Q . Algorithm Compute from Definition 6 is appropriately renamed Search whereas algorithm Verify in PVCKS handles the same function as in PVC. Furthermore, PVCKS consists of three phases: Setup, Search and Verification.

Definition 13 (Publicly Verifiable Conjunctive Keyword Search Scheme). A PVCKS scheme consists of four polynomial-time algorithms (Setup, QueryGen, Search, Verify), distributed across three phases:

Setup. This phase only involves data owner O. She runs algorithm Setup to produce the keying material required in the PVCKS scheme and to process files f before their outsourcing:

Setup(1 κ , F ) → (PK F , LK F ): Data owner O executes this randomized algorithm whenever it wishes to outsource a set of files F = {F 1 , F 2 , ...}. On input of a security parameter 1 κ and files F , algorithm Setup outputs the pair of public key PK F and lookup key LK F (i.e. search key, we use the terms lookup key and search key interchangeably).

Search. The Search phase consists of two steps. Querier Q runs algorithm QueryGen that prepares a search query W to be submitted to cloud server S. In turn, the server invokes algorithm Search that search keywords belonging to W in set of files f and generates a proof of search. 

QueryGen(W , PK F ) → (E Q , VK Q ): Given a collection of words W = {ω 1 ,
F W = CKS(F , W ).
Verification. After receiving the search results and the proof of search from cloud server S, verifier V executes algorithm Verify to check their validity.

Verify(E R , VK Q ) → out: Verifier V invokes this deterministic algorithm to check the integrity of the server's response E R . Notably, algorithm Verify first converts E R into a search result F W , then uses verification key VK Q to decide whether F W is equal to CKS(F , W ). Accordingly, algorithm Verify outputs out = F W if it believes that F W = CKS(F , W ), and in this case we say that verifier V accepts the server's response. Otherwise, algorithm Verify outputs out =⊥, and we say that verifier V rejects the server's result.

Definition of a Publicly Dynamic Verifiable Conjunctive Keyword Search protocol

In Definition 14, we formalize three algorithms that extends the initial definition of a publicly verifiable conjunctive keyword search (Definition 13) to the case where the data is subject to updates. Namely, we introduce algorithm UpdateQuery run by the data owner and which requests the server to perform the update using a new algorithm Update. This algorithm also produces a proof of correct update that is verified by the data owner who invokes the new algorithm VerifyUpdate.

Definition 14 (Publicly Dynamic Verifiable Conjunctive Keyword Search). A Publicly Dynamic Verifiable Conjunctive Keyword Search is a PVCKS scheme which efficiently handles updates in the outsourced data. Additionally to the algorithms related to the definition of a PVCKS scheme, a Publicly Dynamic Verifiable Conjunctive Keyword Search solution includes these three algorithms:

UpdateQuery(F j , W j , op) → (U Q , VK Q ):
Given a file F j to be updated (either F j is an existing file to be modified or deleted, or F j = F n+1 is a new file to insert in the outsourced database), given W j the collection of keywords that have to be updated, and given the operation op ∈ {modify, delete, insert} to be performed, data owner 

Adversary Model

We tailor the adversary model proposed for verifiable computation in Section 3.5 to our problem of PVCKS.

A conjunctive keyword search must fulfill the two security of correctness and soundness. We briefly recall that correctness means that a response generated by an honest server will always be accepted by the verifier; soundness implies that a verifier accepts a response of a (potentially malicious) server if and only if that response is the outcome of a correct execution of the Search algorithm. Since we adopt new notations for the case of search, compared to the general model presented in Section 3.4, we give in the following paragraphs a clear characterization of the correctness and soundness properties, specifically to the problem of verifiable keyword search.

Correctness

A verifiable conjunctive keyword search scheme is said to be correct, if whenever server S operates algorithm Search correctly on the input of some encoded search query E Q , it always obtains an encoding E R that will be accepted by verifier V who runs algorithm Verify. Definition 15. A verifiable conjunctive keyword search is correct, iff for any set of files F and collection of words

W : If Setup(1 κ , F ) → (PK F , LK F ), QueryGen(W , PK F ) → (E Q , VK Q ) and Search(LK F , E Q ) → E R , then: Pr(Verify(E R , VK Q ) → CKS(F , W )) = 1

Soundness

We say that a scheme for publicly verifiable conjunctive keyword search is sound, if for any set of files F and for any collection of words W , server S cannot convince a verifier V to accept an incorrect search result.

To formalize the soundness of verifiable conjunctive keyword search, we adapt the soundness experiment presented in Section 3.5.2 with the notations we adopt in this chapter. Algorithm 5 depicts the learning phase of the soundness experiment, whereas Algorithm 5 details its challenge phase.

Let out * denote the output of algorithm Verify on input (E * R , VK * Q ). Adversary A succeeds in the soundness experiment if: (i) out * =⊥ and (ii) out * = CKS(F * , W * ), where F * is the set of files associated with public key PK * F .

Algorithm 5: Learning Phase of the Soundness Experiment

for k := 1 to t do A → F k ; (PK F k , LK F k ) ← O Setup (1 κ , F k ); A → W k ; (E Q,k , VK Q,k ) ← O QueryGen (W k , PK F k ); A → E R,k ; out k ← Verify(E R,k , VK Q,k ); end Algorithm 6: Challenge Phase of the Soundness Experiment A → (PK * F , LK * F ); A → W * ; (E * Q , VK * Q ) ← O QueryGen (W * , PK * F ); A → E * R ; out * ← Verify(E * R , VK * Q );
Definition 16. Let Adv A denote the advantage of adversary A in succeeding the soundness game, i.e., Adv A = Pr(out * =⊥ ∧ out * = CKS(F * , W * )).

A publicly verifiable conjunctive keyword search is sound, iff for any adversary A, Adv A ≤ and is a negligible function in the security parameter 1 κ .

Protocol Overview

Our PVCKS solution relies on polynomial-based accumulators (i.e. bilinear pairing accumulators) defined in [START_REF] Nguyen | Accumulators From Bilinear Pairings and Applications[END_REF]69] to represent the keywords present in files F = {F 1 , F 2 , ..., F n }.

By definition, a polynomial-based accumulator maps a set to a unique polynomial such that each root of the polynomial corresponds to an element in the set. Hence, polynomial-based accumulators allow efficient verifiable test of membership which can be tailored for Verifiable Keyword Search (VKS).

A naive approach to accommodate polynomial-based accumulators to VKS would be to represent the words in each file F j ∈ F with a single accumulator. To check whether a word ω is in file F j , querier Q first sends a search query to server S, upon which the latter generates a proof of membership if word ω is present in F j ; and a proof of non-membership otherwise. This solution however is not efficient: (i) Given the mathematical properties of polynomialbased accumulators, the resulting complexity of keyword search in a file F j is linear in the number of keywords in that file; (ii) additionally, to identify which files F j contain a word, the user must search all files in F one by one.

To avoid these pitfalls, we combine polynomial-based accumulators with Merkle trees [START_REF] Ralph C Merkle | A Digital Signature Based on a Conventional Encryption Function[END_REF] to build an authenticated index of the keywords in files in F such that the keyword search at the server runs in logarithmic time. More specifically, data owner O first organizes the keywords in all files in F into an index I (i.e. hash table) where each entry corresponds to a bucket B storing at most d keywords. To construct an efficient index I, data owner O employs the Cuckoo hashing algorithm introduced in [START_REF] Dietzfelbinger | Balanced Allocation and Dictionaries with Tightly Packed Constant Size Bins[END_REF] which guarantees a constant lookup time and minimal storage requirements. Later, data owner O authenticates index I as follows:

(i) For each bucket B, it computes an accumulator of the keywords assigned to B; (ii) and it builds a binary Merkle tree TW that authenticates the resulting accumulators. Files in F are then outsourced together with Merkle tree TW to server S. Hence, when server S receives O then uploads files F and Merkle trees TW and TF to server S. Given the root of TF, querier Q will be able to identify which subset of files contain a word ω. In addition, since polynomial-based accumulators allow efficient verifiable set intersection, querier Q will also be able to perform VCKS on files F . Figure 6.1 depicts the steps of the search operation.

To summarize, the protocol for verifiable conjunctive keyword search is:

Efficient: Since our protocol is non-interactive and does not rely on heavy cryptographic mechanisms, it is efficient and practical. Namely algorithms QueryGen and Verify require less costs than executing algorithm Search.

Amortized: Algorithm Setup is a one-time expensive operation that pre-processes the files to be outsourced. However, Setup is executed only once for an unlimited number of search verifications.

Publicly delegatable: The data owner publishes public key PK F that enables anyone to submit conjunctive search queries to the server.

Publicly verifiable:

The querier generates a public verification key VK Q , tied to search query W , enabling any verifier to check the result returned by the server.

Secure: We prove in Section 6.6 that our protocol is correct and sound.

Building Blocks

As mentioned in Section 6.3, our protocol for VCKS operates several building blocks to elaborate an efficient search scheme. We provide here a brief description of the tools underpinning our solution: Cuckoo hashing (Section 6.4.1), polynomial-based accumulators (Section 6.4.2) that allow verifiable test of membership and verifiable set intersection, and Merkle trees (Section 6.4.3). Note that our protocol will employ symmetric bilinear pairings. Symmetric bilinear pairings are bilinear pairings as defined in Section 4.3.1 with the characteristic that G 1 = G 2 = G.

Cuckoo Hashing

Our VCKS solution builds an authenticated index of the keywords contained in the outsourced files. For this purpose, we employ the Cuckoo hashing approach, introduced by Pagh and Rodler [START_REF] Pagh | Cuckoo Hashing[END_REF]. This technique belongs to the multiple choice hashing techniques. In the seminal work by Pagh and Rodler [START_REF] Pagh | Cuckoo Hashing[END_REF], an object can be stored in one of two possible buckets, each located in two different hash tables, corresponding to two hash functions. Note that these functions are not collision-free hash functions, in the sense that two different objects can be assigned by the hash functions to the same bucket. To add a new object, the first hash function, thus the first table, is used. If the bucket assigned to this new object is full in the first table (this event is called a collision), then the object currently occupying this location is "kicked out", making possible to place the new item. The removed item is moved to the other bucket, using the second hash function that gives a position in the second table. This move may encounter another collision, thus requiring another element to be kicked out from its location. This insertion procedure is repeated until all objects find a free spot, or the number of insertion attempts reaches a predefined threshold to declare an insertion failure. In the worst case, the insertion procedure runs into a cycle, making it impossible to insert a new object. If this case happens, the method of rehashing should be performed: we choose two new hash functions and try to insert all the elements back into the tables using these new functions. Multiple rehash operations may be operated to succeed in inserting all the elements. To look for an item, it suffices to examine two locations, each in one of the two tables.

In our protocol, we leverage a variant proposed by Dietzfelbinger and Weidling [START_REF] Dietzfelbinger | Balanced Allocation and Dictionaries with Tightly Packed Constant Size Bins[END_REF]:

Their solution inserts N elements using two independent and random hash functions H 1 , H 2 :

{0, 1} * → [1, m] into a single index I with m buckets B i , such that: m = 1+ε d N , for ε > 0, and each bucket B i stores at most d elements. As depicted in Figure 6.2, a lookup operation for a particular element x requires the evaluation of the two hash functions H 1 (x) and H 2 (x).

In this Cuckoo hashing variant, the insertion of a new element x follows a random walk in the index, as suggested in [START_REF] Dietzfelbinger | Balanced Allocation and Dictionaries with Tightly Packed Constant Size Bins[END_REF]. In this approach, when a collision occurs in the first bucket B 1 pointed by H 1 , then item x is redirected to bucket B 2 given by H 2 . If this results in another collision, then an item y is randomly selected from one of the 2d elements stored in the buckets determined by H 1 and H 2 . Then item y is kicked out from its location and replaced by x. Finally, the insertion procedure is repeated for y, until all elements can be stored in one bucket. Dietzfelbinger and Weidling [START_REF] Dietzfelbinger | Balanced Allocation and Dictionaries with Tightly Packed Constant Size Bins[END_REF] prove that the expected time to insert x is bounded by (1/ε) O(log d) .

Polynomial-based Accumulators and Applications

Cryptographic accumulators, first introduced by Benaloh and De Mare [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Signatures[END_REF], are authentication primitives that allow (i) combining the elements of a given set in a constant-size value, representing a short and secure description of that set; (ii) efficiently proving, thanks to the existence of a constant-size witness, whether a particular element is member of that set. Note that a unique witness is computed for each accumulated element. Original accumula- 

# Search for x in index I 1. Compute i1 = H1(x) and i2 = H2(x); 2. Return (x ∈ Bi 1 ) ∨ (x ∈ Bi 2 );
tors were designed for membership proofs. They have later been extended for the purpose of non-membership proofs: such accumulators provide non-membership witnesses that can certify, using the accumulator computed for the considered set, that a given element is not present in that set. Definition 17 details our definition of such an accumulator.

Definition 17 (Accumulators

). An accumulator is a tuple of four PPT algorithms (KeyGenAcc, ComputeAcc, GenerateWitness,VerifyMembership) defined as follows:

KeyGenAcc(1 κ ) → (SK, PK): This probabilistic algorithm takes as input security parameter 1 κ and outputs a secret key SK stored by the data owner and public key PK that allows the server to respond to membership queries and enables any third party to verify membership query responses.

ComputeAcc(SK, S) → Acc(S):

The data owner runs this probabilistic algorithm that takes as input set S = {h 1 , h 2 , ..., h n } and secret key SK and computes the public accumulation value Acc(S). Accumulators were first based on RSA exponentiation and exploited in some research work for membership tests [START_REF] Benaloh | One-Way Accumulators: A Decentralized Alternative to Digital Signatures[END_REF][START_REF] Baric | Collision-free Accumulators and Fail-stop Signature Schemes Without Trees[END_REF][START_REF] Camenisch | Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials[END_REF] or non-membership proofs [START_REF] Li | Universal Accumulators with Efficient Non-Membership Proofs[END_REF]. An alternative to the RSA-based construction was proposed by Nguyen [START_REF] Nguyen | Accumulators From Bilinear Pairings and Applications[END_REF] to allow efficient dynamic accumulators, whereby insertions and deletions of elements in the set result in efficient updates of the accumulators and witnesses. These accumulators are computed by means of polynomials. RSA-based dynamic accumulators were suggested by Camenisch and Lysyanskaya [START_REF] Camenisch | Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials[END_REF] but their solution requires the knowledge of some trapdoor information to perform updates. The dynamic accumulators introduced by Nguyen [START_REF] Nguyen | Accumulators From Bilinear Pairings and Applications[END_REF] rely on the sole properties of polynomials to support membership proofs. These polynomial-based accumulators [START_REF] Nguyen | Accumulators From Bilinear Pairings and Applications[END_REF] were then extended by Damgård and Triandopoulos [69] with the functionality of non-membership proofs.

Polynomial-based accumulators (also referred as bilinear accumulators) are a powerful tool: not only have they been leveraged for verifiable tests of membership [START_REF] Nguyen | Accumulators From Bilinear Pairings and Applications[END_REF]69] but they have been employed for verifiable set intersections [START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF][START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF], as we will explain in the following lines. We apply and tailor these primitives to our protocol for VCKS. Succinctly, our scheme uses polynomial-based accumulators to map a set of keywords to a unique polynomial such that each keyword in the set corresponds to a root of the polynomial. Accordingly, a verifiable test of membership relying on polynomial-based accumulators accommodates the question on whether a particular keyword is present in the set. On the other hand, our scheme computes additional accumulators: For each keyword, we compute an accumulator of the files that contain that particular keyword. Hence, to support verifiable conjunctive keyword search, a verifiable set intersection solution based on these accumulators supplies effective information to identify all the files that contain all the searched keywords.

In the rest of this section, we give an overview polynomial-based accumulators and the two protocols for verifiable test of membership and verifiable set intersection. The authors of [START_REF] Freedman | Efficient Private Matching and Set Intersection[END_REF], and later the ones of [START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF][START_REF] Nguyen | Accumulators From Bilinear Pairings and Applications[END_REF], introduced the notion of characteristic polynomial, according to which a set S = {h 1 , ..., h n } of elements in F p can be encoded by its characteristic polynomial P S (X) = h i ∈S (X -h i ) (here X is the formal variable).

Let g be a random generator of a bilinear group G of prime order p. Given the public tuple (g, g α , g α 2 , ..., g α D ), where α is randomly chosen in F * p and D ≥ n, Nguyen [START_REF] Nguyen | Accumulators From Bilinear Pairings and Applications[END_REF] defines the public accumulator of the elements in S: The different values that come into play in the accumulator computation can be interpreted as follows: The value D imposes an upper-bound on the number of elements to be accumulated in the set; α coincides with the accumulator secret key and the tuple (g, g α , g α 2 , ..., g α D ) represents the corresponding public key. It should be mentioned that the accumulator value can be computed by any party who has access to this tuple using Fast Fourier Transform (FFT) interpolation, as explained in [START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF].

Acc(S) = g P S (α) ∈ G
We indicated above that polynomial-based accumulators accommodate verifiable test of membership and set intersections. In the following paragraphs, we give an overview of these two protocols.

Verifiable Test of Membership.

To prove that a particular keyword is present or absent from some outsourced files, our VCKS solution operates the scheme for test of membership proposed by Damgård and Triandopoulos [69]. The authors observe that:

• any element h ∈ F p is in set S iff P S (h) = 0;
• for all element h ∈ F p , there exists a unique polynomial Q S,h such that

P S (X) = (X -h) • Q S,h (X) + P S (h).
In particular, for any h, the accumulator can be written as

Acc(S) = g P S (α) = g (α-h)•Q S,h (α)+P S (h) = Ω (α-h) S,h g P S (h) .
The value Ω S,h def = g Q S,h (α) defines the witness of h with respect to Acc(S): It constitutes a membership witness if h ∈ S, a non-membership witness otherwise. Following these observations, the authors in [69] define a verifiable test of membership depicted in Figure 6.4. This test is secure under the D-Strong Diffie-Hellman (D-SDH) assumption.

Definition 18 (D-Strong Diffie-Hellman Assumption). Let G be a cyclic group of prime order p generated by g. We say that the D-SDH holds in G if, given the tuple (g, g α , g α 2 , ..., g α D ) ∈ G D+1 , for some randomly chosen α ∈ F * p , no PPT algorithm A can find a pair (x, g 1 α+x ) ∈ F * p × G with a non-negligible advantage. To support conjunctive keyword search queries, our VCKS solution exploits the scheme for verifiable set intersection proposed by Canetti et al. [START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF]. In particular, this scheme is used to determine which files contain all the keywords of a conjunctive search query.

(h) = h i ∈S (h -hi); 2. Determine polynomial Q S,h such that PS(X) = (X -h) • Q S,h ( 
In the verifiable set intersection protocol, we consider k sets S i and their respective characteristic polynomials P i . If we denote I = i S i and P the characteristic polynomial of I then P = gcd(P 1 , P 2 , .., P k ). It follows that the k polynomials U i = P i P identify the sets S i \I. Since i (S i \I) = ∅, gcd(U 1 , U 2 , ..., U k ) = 1. Therefore, according to Bézout's identity99 [START_REF] Bézout | Théorie générale des équations algébriques[END_REF], there exist polynomials

V i such that i U i V i = 1.
Based on these observations, Canetti et al. [START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF] define a protocol for verifiable set intersection described in Figure 6.5 that involves the accumulators of each set S i and of their intersection. In particular, using these accumulators and the properties of the characteristic polynomials we just pointed out, the protocol checks the following relations satisfied by the intersection:

Subset: For all set S i , I ⊆ S i . In other words, all elements found in the intersection actually appear in all sets S i .

Complement Disjointness: i (S i \I) = ∅. It means that no element that must belong to the intersection is omitted.

The intersection verification is secure if the D-Strong Bilinear Diffie-Hellman (D-SBDH) assumption holds.

Definition 19 (D-Strong Bilinear Diffie-Hellman Assumption).

Let G and G T be cyclic groups of prime order p, g a generator of G, and e a bilinear pairing. We say that the D-SBDH holds if, given (g, g α , g α 2 , ..., g α D ) ∈ G D+1 , for some randomly chosen α ∈ F * p , no PPT algorithm A can find a pair (x, e(g, g)

1 α+x ) ∈ F *
p × G T with a non-negligible advantage. 

Binary Merkle Trees

Merkle trees enable the authentication of elements in a set S = {h 1 , ..., h n } without transferring the entire set. More precisely, Merkle trees allow any party having possession of the root to verify whether an element h is in set S. In our VCKS protocol, Merkle trees are used to authenticate the accumulators. Indeed, these accumulators will be stored at the cloud along with the outsourced files. Thus the Merkle trees will authenticate them so that a verifier can be sure that they really are the ones she expects.

In the following, we introduce the algorithms that build a binary Merkle tree for a set S and authenticate the elements in that set 100 .

• T ← BuildMT(S, H). On input of set S and a cryptographic hash function H, BuildMT builds a binary Merkle tree T. Each leaf L i of the tree maps an element h i in set S and each internal node stores the hash of the concatenation of the children of that node, i.e H(left right). Without loss of generality, we denote by σ the root of T.

• path ← GenerateMTProof(T, h i ). To authenticate the element h i stored in leaf L i of Merkle tree T, a prover runs GenerateMTProof which, on input of h i and T, outputs the authentication path for leaf L i corresponding to element h i , that is, the set of the siblings of the nodes on the path from L i to root σ. We denote path the authentication path output by GenerateMTProof.

• {Accept, Reject} ← VerifyMTProof(h i , path, σ). On input of an element h i stored in leaf L i , the corresponding authentication path and the correct root value σ of tree T, VerifyMTProof verifies that the value of the root computed from h and path equals the expected value σ.

Figure 6.6 shows the details of these Merkle tree algorithms. As a matter of illustration, we show and label a Merkle tree whose leaves correspond to set {h 1 , h 2 , h 3 , h 4 }.

Protocol Description

In our protocol for VCKS, data owner O outsources the storage of a set of files F = {F 1 , F 2 , ..., F n } to a server S. Once the data is uploaded, any third-party querier Q can search for some keywords in the set of files F and verify the correctness of the search results returned by S. The collection of searchable keywords in F is sorted in the lexicographic order and is defined as W = {ω 1 , ω 2 , ..., ω N }. As mentioned in Definition 13, the proposed protocol comprises three phases: Setup, Search and Verification. In the description of our scheme, we refer to the notations listed in Table 6.1. 

F i in set F - j Index of a file [[1, n]] N Number of keywords contained in F - k Number of keywords contained in a search query W - i Index of keywords [[1, N ]] or [[1, k]] m Number of buckets in index I d
Number of keywords in each bucket in index I

Setup

Before outsourcing her files to the cloud, data owner O enters the Setup phase and invokes algorithm Setup to process the files and enable verifiable keyword search.

On input of security parameter 1 κ and set of files F , algorithm Setup outputs the public parameters param, a public key PK F and a search key LK F . As shown in Figure 6.7, Setup operates in four steps. 1. It first generates the public parameters needed for the protocol. 2. It builds index I for the set W = {ω 1 , ω 2 , ..., ω N } using Cuckoo hashing. Without loss of generality, we assume that W is composed of the list of distinct words in F sorted in a lexicographic order. 3. Setup authenticates index I with Merkle tree TW where each leaf is mapped to a bucket in I. We denote σ W the root of tree TW. 4. Setup builds Merkle tree TF, of root σ F , to identify which files exactly contain the keywords.

At the end of this phase, data owner O publishes parameters param, publishes public key PK F and transmits the search key LK F to server S. When the latter receives LK F , it creates a hash table HT where each entry is mapped to a keyword ω i and stores the pair (i, pointer) such that: i is the position of keyword ω i in set W and in tree TF; whereas pointer points to a linked list storing the identifiers of files F ω i that contain keyword ω i . As such, hash table HT enables server S to find the position of ω i in TF and to identify the files containing ω i easily. In the remainder of this chapter, we assume that server S does not store LK F as (I, TW, TF, F , W, {F ω i } 1≤i≤N ), but rather as LK F = (I, TW, TF, F , HT). For ωi ∈ W do Compute hi = H(ωi);

Run CuckooInsert(I, H1, H2, hi);

End 3. Authentication of Index For Bi ∈ I do Compute PB i (α) = h j ∈B i (α -hj); Compute AWi = Acc(Bi) = g P B i (α) ;
Compute HWi = H(AWi||i), where i is the position of Bi in I; End TW = BuildMT({HWi} 1≤i≤m , H); 4. Encoding of files # Identify which files contain the keywords

For Fj ∈ F do Generate fid j ; End For ωi ∈ W do
Identify Fω i , the subset of files that contain ωi;

Compute Pi(α) = fid j ∈Fω i (α -fidj); Compute AFi = Acc(Fω i ) = g P i (α) ;
Compute HFi = H(AFi||ωi); End TF = BuildMT({HFi} 1≤i≤N , H).

Return param = (g, G, GT , e, H, H1, H2);

Return PKF = ({g α i } 0≤i≤D , σW , σF );
Return LKF = (I, TW, TF, F , W, {Fω i } 1≤i≤N ).

Search

In this phase, our protocol for VCKS uses the algorithms of verifiable test of membership and verifiable set intersection presented in Section 6.4. Indeed, the actual search realizes two operations. The first operation answers the question: Do the queried keywords are present in the outsourced files? A negative answer induces that at least one keyword in the query cannot be found. The verifiable test of membership is thus employed to prove that this particular keyword does not belong to the outsourced files. The second operation only occurs when the first question receives a positive answer (i.e all the keywords in the conjunctive search query are found). However this positive answer does not tell where the keywords can be found. Hence, the second operation aims at answering the question: Which outsourced files contain all the keywords of the conjunctive search query? The verifiable set intersection algorithm is thus applied to identify the files that contain the searched keywords.

We assume in what follows that a querier Q wants to identify the set of files F W ⊂ F that contain all words in W = {ω 1 , ω 2 , ..., ω k }. To that effect, as specified in our tailored definition of publicly verifiable computation in Definition 13, querier Q enters the Search phase and first runs algorithm QueryGen (cf. Figure 6.8) which returns the query E Q = W and the If CuckooLookup(I, H1, H2, hi) = false then # Keyword ωi is not in F Compute i1 = H1(hi) and i2 = H2(hi);

Compute Π1 = GenerateWitness(hi, Bi 1 ); Compute Π2 = GenerateWitness(hi, Bi 2 ); Compute AWi 1 = Acc(Bi 1 ) and HWi 1 = H(AWi 1 ||i1); Compute AWi 2 = Acc(Bi 2 )
and HWi 2 = H(AWi 2 ||i2);

Compute path 1 = GenerateMTProof(TW, HWi 1 ); Compute path 2 = GenerateMTProof(TW, HWi 2 );

Return ER = (∅, ω, AWi 1 , AWi 2 , Π1, Π2, path 1 , path 2 ); End End

# All the keywords have been found

For ωi ∈ W do Determine Fω i using HT; # the set of files that contain wi Compute AFi = Acc(Fω i ) and HFi = H(AFi||ωi);

Determine position l of wi in TF using HT; # HFi is in the l th leaf of TF Compute path i = GenerateMTProof(TF, HFi); End

# F W = Fω 1 ∩ ... ∩ Fω k is the set of files that contain all the words in W Compute (F W , Π W ) = ProveIntersection(Fω 1 , ..., Fω k ); Return ER = (F W , Π W , {AFi} 1≤i≤k , {path i } 1≤i≤k );
public verification key VK Q = (PK F , W ). Querier Q then sends query E Q to server S.

On reception of query E Q , server S invokes algorithm Search (cf. Figure 6.8) which searches the index I for every individual keyword ω i ∈ W . If all the keywords ω i ∈ W are found in the index, then Search identifies the subset of files F ω i that contains ω i and outputs the intersection of all these subsets F W = F ω 1 ∩ ... ∩ F ω k . Moreover, to prove the correctness of the response (i.e. to prove that F W was computed correctly), Search (i) authenticates the accumulators of each set F ω i using Merkle tree TF; and (ii) generates a proof of intersection for F W = F ω 1 ∩ ... ∩ F ω k using the verification algorithm described in Figure 6.5.

If at least one keyword ω i is not found, then Search aborts for the remaining keywords in the query, returns ω i and proves the correctness of its response by (i) authenticating the accumulators of buckets B i 1 and B i 2 associated with ω i (if it was stored in index I) using Merkle tree TW; and (ii) generating a proof of non-membership of keyword ω i with respect to buckets B i 1 and B i 2 (cf. Figure 6.4).

Verification

On reception of the search result, verifier V checks the correctness of the server's response by calling algorithm Verify as shown in Figure 6.9. More precisely, if server S advertises that it has found all the keywords W in index I, then algorithm Verify checks that the returned intersection F W is correct using the verification algorithm of Merkle tree and verifiable set intersection. Otherwise, V verifies that the returned keyword is actually not in F using the verification algorithm of Merkle tree and verifiable test of membership.

Merkle tree TF , by updating the leaf corresponding to HF i and the nodes along the path to the new root σ F . It also generate the authentication path path i for the updated leaves as: path i = GenerateMTProof(HF i , TF ), for each ω i ∈ W j . Finally, algorithm Update returns Π upd = ({AF i , AF i , path i , path i } ω i ∈W j , σ F ) and LK F = (I, TW, TF , F , W, {F ω i } 1≤i≤N ). Upon reception of Π upd , data owner O runs VerifyUpdate(VK Q , Π upd ). For each ω i ∈ W j , this algorithm first verifies, using VerifyMTProof(H(AF i ||ω i ), path i , σ F ), that AF i is correct. Then, for each

ω i ∈ W j , data owner O computes AF i = AF 1 α-fid j i
and verifies that σ F corresponds to the expected value by invoking VerifyMTProof(H(AF i ||ω i ), path i , σ F ).

(c) Some of the keywords in W that were not in F j are now in F j . In this case, we consider the set

W j = {ω i | ω i ∈ F j ∧ ω i / ∈ F j }. Then, for each ω i ∈ W j , P i (α) = P i (α)(α-fid j ), since fid j ∈ F ω i .
As in the previous case, UpdateQuery returns U Q = (F j , W j , modify) and VK Q = PK F . Server S executes algorithm Update which first replaces F j by F j . Similarly as before, for each ω i ∈ W j , algorithm Update computes path i for the old accumulator AF i , and updates the new accumulator AF i . Afterwards, for each ω i ∈ W j , Update accordingly modifies Merkle tree TF , by updating leaf HF i and the nodes along the path to the new root σ F . Thereafter, Update determines the authentication path path i for the updated leaves, for

ω i ∈ W j . Finally, algorithm Update returns Π upd = ({AF i , AF i , path i , path i } ω i ∈W j , σ F )
and LK F = (I, TW, TF , F , W, {F ω i } 1≤i≤N ). Upon reception of Π upd and LK F , for each ω i ∈ W j , data owner O runs VerifyUpdate which first verifies using

VerifyMTProof(H(AF i ||ω i ), path i , σ F ) that AF i is correct. Then, for each ω i ∈ W j , data owner O computes AF i = AF α-fid j i
and verifies that it corresponds to the expected value by invoking VerifyMTProof(H(AF i ||ω i ), path i , σ F ).

op = delete:

The data owner executes UpdateQuery(F j , W j = {ω i } ω i ∈F j , delete), which outputs U Q = (F j , W j , delete) and VK Q = PK F . Server S executes algorithm Update which first deletes F j . The remainder of this update is similar to the case when op = modify. In particular, for each ω i ∈ W j , data owner O runs VerifyUpdate which computes

AF i = AF 1 α-fid j i
and verifies that it corresponds to the expected value.

op = insert:

The data owner executes UpdateQuery(F j , W j = {ω i } ω i ∈F j , insert), which returns U Q = (F j , W j , insert) and VK Q = PK F . Server S executes algorithm Update which first insert F j in the outsourced database. The remainder of this update is similar to the case when op = delete, with the difference that, for each ω i ∈ W j , data owner O

computes AF i = AF α-fid j i . 2. Keyword deletion, W = W -W j : This event may probably occur if op = modify or op = delete. Data owner O runs UpdateQuery(F j , W j = ω i , op), which returns U Q = (F j , W j , op) and VK Q = PK F ,
where ω i is the keyword that will be deleted during the update operation indicated by op (for simplicity we assume that only a single keyword is deleted from the dictionary). For both types of operations (delete or modify), server S executes Update which is executed in two steps. First, Update deletes or modifies F j and removes keyword ω i from Cuckoo hash index I, which yields the updated index I .

Namely, if we denote B i the bucket that stores ω i , such that B i is at position H 1 (ω i ) or H 2 (ω i ) (see Figure 6.2) then B i = B i -{ω i }. Secondly, Update computes the corresponding accumulator AW i = g

P B i (α) . Note that P B i (α) = P B i (α)
α-H(ω i ) . Afterwards, using algorithm GenerateMTProof (see Figure 6.6), Update calculates the authentication path, path i,TW , of AW i in Merkle tree TW (which is the same of AW i ) and then updates the tree to obtain TW with root σ W . The second step of the keyword deletion removes the leaf corresponding to the deleted keyword ω i from tree TF, as depicted in Figure 6.13. This operation produces a new tree TF with root σ F . Besides, Update computes the authentication path, path i,TF , of the old accumulator AF i , using algorithm GenerateMTProof. Finally, algorithm Update outputs Π upd = (AW i , AW i , path i,TW , σ W , AF i , path i,TF , σ F ) and LK F = (I , TW , TF , F , W , {F ω i } 1≤i≤N ). Consequently, data owner O checks that the update operation is correctly performed by invoking VerifyUpdate. This algorithm first runs VerifyMTProof(H(AW i || i), path i,TW , σ W ) to verify that AW i returned by the server is correct. Secondly, VerifyUpdate computes

AW i = AW 1 α-H(ω i ) i
and checks that the new root σ W is correctly computed, using VerifyMTProof(H(AW i || i), path i,TW , σ W ). On the other hand, VerifyUpdate checks that the leaf corresponding to deleted keyword ω i is correctly deleted from Merkle tree TF using VerifyMTProof(∅, path i,TF , σ F ).

3. Keyword insertion, W = W ∪ W j : This event occurs if op = modify or op = insert. Keyword insertion is the most expensive operation, as the insertion of new keyword can affect multiple buckets in index I. Data owner O runs UpdateQuery(F j , W j = ω i , op), which returns U Q = (F j , W j , op) and VK Q = PK F , where ω i is the keyword that will be inserted during the update operation indicated by op (for simplicity we consider that a single keyword is inserted).

Server S executes Update which operates in two steps as in the previous case of keyword deletion. First, Update inserts or modifies F j and then inserts keyword ω i in the Cuckoo hash index I, using CuckooInsert. As we saw in Section 6.4.1, this insertion procedure may impact several buckets in index I, since existing keywords might be kicked off from their current buckets. At the end of the keyword insertion procedure, we denote I the updated index101 and B = {B k } k the set of buckets affected by the insertion ω i . We also denote W = {({ω i } add,k , {ω i } del,k )} k the set of keywords affected by the insertion of ω i , where {ω i } add,k is the set of keywords that are added to bucket B k ∈ B and {ω i } del,k is the set of keywords that are removed from bucket B k ∈ B. Therefore, for all buckets B k ∈ B, Update (i) computes the authentication paths in tree TW of accumulator AW k as path k,TW = GenerateMTProof(TW, H(AW k || k)); and (ii) updates the new accumulators AW k using the FFT interpolation technique and PK F . Then, Update accordingly modifies Merkle tree TW to obtain TW , with root σ W and for each bucket B k ∈ B, it computes the authentication paths in tree TW of accumulator AW k as path k,TW = GenerateMTProof(TW , H(AW k || k)), to prove that the tree is correctly updated. In the second step of the keyword insertion, Update computes the authentication path path i-1,TF of the accumulator AF i-1 in the old tree TF, using algorithm GenerateMTProof. Indeed, as the keywords are sorted in the lexicographic order, AF i will be inserted after AF i-1 in tree TF, as shown in Figure 6.14. Then Update computes AF i and adds a new leaf corresponding to the inserted keyword ω i in tree TF, which produces a new tree TF with root σ F . The authentication path for AF i is simply the authentication path of AF i-1 together with the leaf corresponding to AF i-1 , as shown in Figure 6.14. Finally, algorithm Update outputs 

Π upd = (W, {AW k , AW k , path k,TW , path k,TW } B k ∈B , σ W , AF i-1 , AF i , path i-1,TF , σ F ) and LK F =
P k (α) = ω i ∈{ω i } add,k (α -ω i ) ω i ∈{ω i } del,k (α -ω i ) , then it calculates AW k = AW P k (α) k
. VerifyUpdate thus checks that these accumulators correspond to the ones sent by the server and verifies that tree TW was correctly updated thanks to VerifyMTProof(H(AW k || k), path k,TW , σ W ), for all buckets B k ∈ B. On the other hand, VerifyUpdate checks that the leaf corresponding to keyword ω i is correctly added to Merkle tree TF using VerifyMTProof(H(AF i ||ω i ), path i-1,TF ∪ H(AF i-1 ||ω i-1 ), σ F ).

Security Analysis

Our protocol satisfies the two security properties of correctness and soundness. In this section, we define and prove the two security theorems related with these properties.

Correctness

Theorem 7 (Correctness). Our scheme is a correct verifiable conjunctive keyword search solution.

Proof of Theorem 7. Suppose that a querier Q sends to server S the query E Q = W = {ω 1 , ..., ω k }. S correctly runs algorithm Search and returns the search response E R . According to Figure 6.8, the content of E R varies depending on whether:

All words in W are found in F Then E R = (F W , Π W , {AF i } 1≤i≤k , {path i } 1≤i≤k
) where:

• F W = F ω 1 ∩ ... ∩ F ω k such that F ω i is the subset of files that contain keyword ω i ; • Π W = {(∆ 1 , Γ 1 ), ..., (∆ k , Γ k )} is the proof of intersection;
• for all 1 ≤ i ≤ k, AF i = Acc(F ω i ); if we denote P i the characteristic polynomial of subset F ω i , then we can write AF i = g P i (α) ;

• for all 1 ≤ i ≤ k, path i is the authentication path of H(AF i ||ω i ) in TF.

Firstly, if we assume that the Merkle tree authentication is correct, then verifier V accepts the accumulators AF i computed by server S. Secondly, since S computes the proof Π W using algorithm ProveIntersection (cf. Figure 6.5), for all 1 ≤ i ≤ k, we have the following: α) , where U i = P i P and P = gcd(P 1 , P 2 , ..., P k ) is the characteristic polynomial of F W ;

• ∆ i = g U i (
• Γ i = g V i (α) , such that i U i V i = 1.
It follows that for all 1 ≤ i ≤ k:

e(Acc(F W ), ∆ i ) = e(g P (α) , g Ui(α) ) = e(g, g)

P (α)•Ui(α) = e(g, g) Pi(α) = e(AF i , g)
This means that the first equality in algorithm VerifyIntersection (cf. Figure 6.5) holds. Furthermore, the second equality is also verified, indeed:

ωi∈W e(∆ i , Γ i ) = ωi∈W e(g Ui(α) , g Vi(α) ) = ωi∈W e(g, g) Ui(α)•Vi(α)
= e(g, g) ω i ∈W Ui(α)•Vi(α) = e(g, g)

These computations thus prove the correctness of our solution in the case where the targeted keywords are all found.

There exists

ω i ∈ W not found in F In this case, E R = (∅, ω i , AW i 1 , AW i 2 , Π 1 , Π 2 , path 1 , path 2
) such that:

• AW i 1 = Acc(B i 1 )
and AW i 2 = Acc(B i 2 ) are the accumulators of buckets B i 1 and B i 2 respectively, where i 1 and i 2 are the positions assigned to keyword ω i in index I;

• Π 1 and Π 2 are the proofs that ω i is not a member of bucket B i 1 nor of bucket B i 2 respectively;

• path 1 and path 2 are the authentication paths of these two buckets in tree TW.

If we consider the Merkle tree to be correct, then verifier V will accept Acc(B i 1 ) and Acc(B i 2 ). Moreover, if we denote

P B i 1 the characteristic polynomial of bucket B i 1 , then by definition P B i 1 (X) = h j ∈B i 1 (X -h j ) and Acc(B i 1 ) = g P B i 1 (α) .
Recall now that the proof of non-membership Π 1 of keyword ω i to bucket B i 1 is computed as:

{P B i 1 (h i ), Ω B i 1 ,h i }, such that h i = H(ω i ), Ω B i 1 ,h i = g Q B i 1 ,h i (α)
and

Q B i 1 ,h i (X) = P B i 1 (X)-P B i 1 (h i ) X-h i . It follows that: e(Ω Bi 1 , g α • g -hi )e(g P B i 1 (hi) , g) = e(g, g) Q B i 1 ,h i (α)
•(α-hi) e(g, g)

P B i 1 (hi)
= e(g, g)

Q B i 1 ,h i (α)•(α-hi)+P B i 1 (hi)
= e(g, g)

P B i 1 (α) = e(Acc(B i1 ), g).
This means that the first equality of algorithm GenerateWitness (cf. Figure 6.4) holds. Finally, since ω i / ∈ B i 1 , P B i 1 (h i ) = 0. This implies that verifier V will accept the proof of non-membership for bucket B i 1 and conclude that ω i is not in F . Similar computations can be performed for B i 2 , which proves the correctness of our solution in the case where a keyword ω i / ∈ F .

Correctness of updates.

The update procedures we presented in Section 6.5.4 mainly involves the Merkle tree operations. The proof Π upd of correct updates includes the authentication paths of the updated accumulators. Therefore, since we consider H being a collision-resistant hash function, a honest verifier will always accept the proof of update generated by a honest server.

Soundness

Theorem 8 (Soundness). Our solution for verifiable conjunctive keyword search is sound under the D-SDH and D-SBDH assumptions, provided that the hash function H used to build the Merkle trees is collision-resistant.

Proof of Theorem 8. We observe that an adversary can break the soundness of our scheme through two types of forgery: Type 1 forgery: On input of W = {ω 1 , ..., ω k } and search key LF F , adversary A 1 returns a search result that consists of a proof of non-membership of some keyword ω i ∈ W (meaning that ω i is not in the set of files F ), although ω i is in F ; Type 2 forgery: On input of W = {ω 1 , ..., ω k } and search key LF F , adversary A 2 returns an incorrect F W and the corresponding proof. This means that adversary A 2 claims that all keywords in W have been found in F and that F W is the subset of files that contain them, although F W = CKS(F , W ). (We use the caret notation ( • ) to distinguish the elements of the search response returned by adversary A 2 from the ones that would be returned by a honest server.)

In the following, we demonstrate that if A 1 and A 2 runs Type 1 and Type 2 forgery respectively, then there exists another adversary B 1 that breaks D-SDH and an adversary B 2 that breaks D-SBDH respectively.

Lemma 3 (Type 1 forgery).

If A 1 breaks the soundness of our protocol, then there exists adversary B 1 that breaks the D-SDH assumption in G.

Let O D-SDH be an oracle which, when invoked, returns the D-SDH tuple T (α) = (g, g α , g α 2 , ..., g α D ) ∈ G D+1 , for some randomly selected α ∈ F * p . Here we define an adversary B 1 that breaks the D-SDH assumption:

1. B 1 first calls O D-SDH which selects a random α ∈ F * p and returns T (α).

2. B 1 simulates the soundness game for adversary A 1 (cf. Algorithm 5). Specifically, when A 1 invokes O Setup with the sets of files F k (for 1 ≤ k ≤ t), B 1 simulates O Setup and generates (param, PK F k , LK F k ), as follows:

(a) B 1 selects the parameters g, G, G T , e and H;

(b) B 1 computes the tuple T k (α) = (g, g α k , g α k 2 , ..., g α k D ) where α k = α • δ k + β k for some random δ k , β k ∈ F * p .
Note that this tuple can be easily computed by B 1 , without having access to α, thanks to tuple T (α) and the Binomial Theorem: 

∀ i ≤ D, g α k i = g (α•δ k +β k ) i = i j=0 (g α j ) ( i j )(δk) j •β i-j k ; (c)

Acc(B *

i 2 ) that were computed in the setup phase by B 1 . Namely, AF * 1 = g

P B * i 1 (α * )
and AF * 2 = g

P B * i 2 (α * )
.

6. We now show how B 1 breaks the D-SDH assumption. Let us consider that h * = H(ω * ) is indeed stored in the first bucket B * i 1 (similar consideration can be applied to B * i 2 ). As returned by A 1 , the forged proof of non-membership for ω * consists of

Π * 1 = { P B i 1 (h * ), Ω B * i 1
,h * } (cf. Figure 6.4). Notice that P B * i 1 (h * ) = 0, as adversary A 1 claims that ω * is not in F * . If Verify accepts the proof of non-membership, then according to Figure 6.4, the following equality holds:

e( Ω B * 1 ,h * , g α * -h * )e(g P B 1 (h * ) , g) = e( AF * 1 , g) = e(g P B * i 1 (α * ) , g) e( Ω B * 1 ,h * , g α * -h * ) = e(g P B * 1 (α * )-P B * 1 (h * ) , g) (6.1) 
On the other hand, by construction we have:

e(Ω B * i 1 ,h * , g α * -h * ) = e(g P B * i 1 (α * ) , g), (6.2) 
where

Ω B * i 1 ,h * = g Q B * i 1 ,h * (α * ) such that Q B * i 1 ,h * (X) = P B * i 1 (X)
X-h * . By dividing equation 6.1 with equation 6.2, we obtain:

e Ω B * i 1 ,h * Ω B * i 1 ,h * , g α * -h * = e   Ω B * i 1 ,h * Ω B * i 1 ,h * α * -h * , g   = e(g -P B * i 1 (h * )
, g).

Therefore

,

Ω B * i 1 ,h * Ω B * i 1 ,h * α * -h * = g -P B * i 1 (h * ) Ω B * i 1 ,h * Ω B * i 1 ,h * 1 -P B * i 1 (h * ) = Ω B * i 1 ,h * Ω B * i 1 ,h * 1 P B * i 1 (h * ) = g 1 α * -h * .
We have α * = α•δ * +β * , where (δ * , β * ) are randomly selected from set {δ k , β k } 1≤k≤t generated earlier. Accordingly,

Ω B * i 1 ,h * Ω B * i 1 ,h * 1 P B * i 1 (h * ) = g 1 α•δ * +β * -h * = g 1 δ * (α+ β * -h * δ * ) Ω B * i 1 ,h * Ω B * i 1 ,h * δ * P B * i 1 (h * ) = g 1 α+ β * -h * δ *
Since β * = h * with an overwhelming probability (Pr(β * = h * ) = 1 p ), then adversary B 1 breaks D-SDH by outputting the pair

   β * -h * δ * , Ω B * i 1 ,h * Ω B * i 1 ,h * δ * P B * i 1 (h * )    with a non- negligible advantage ε B ≥ ε A • (1 -1 p )
where ε A is the advantage of adversary A 1 in breaking the soundness of our scheme. Lemma 4 (Type 2 forgery). If A 2 breaks the soundness of our protocol, then there exists an adversary B 2 that breaks the D-SBDH assumption in G.

Let O D-SBDH be an oracle that returns for any random α ∈ F * p , the tuple T (α) = (g, g α , g α 2 , ..., g α D ) ∈ G D+1 . In the following lines, we describe an adversary B 2 that breaks the D-SBDH assumption:

1. To break D-SBDH, B 2 calls O D-SBDH : this oracle picks a random α and returns the corresponding tuple T (α). 

VK * Q = (PK F * , W * ). A 2 then produces E * R = ( F W * , Π W * , { AF i } 1≤i≤k , { path * i } 1≤i≤k
), where:

• F W * is the returned search response, that is the set of files containing W * ;

• Π W * = {( ∆ 1 , Γ 1 ), ..., ( ∆ k , Γ k )}, the proof of this intersection; • { AF i } 1≤i≤k , the accumulation values of sets F ω * i containing keywords ω * i ; • { path * i } 1≤i≤k
, the authentication paths in Merkle tree TF for the accumulators { AF i }.

Here, the returned response F W * is different from the expected search result F W * = CKS(F * , W * ). Therefore, this is possible according to two cases: Case (a). F W * contains a file with file identifier fid * that is not in F W * . Put in another way, F W * breaks the subset rule of set intersection (see Figure 6.5).

Case (b).

There is a file with file identifier fid * that is in F W * but missing from F W * . In other words, F W * does not satisfy the complement disjointness property of set intersection (c.f Figure 6.5).

4. Since H is a collision-resistant hash function, the Merkle tree authentication proves that { AF i } 1≤i≤k are actually associated with leaves at position i in tree TF. More precisely, it proves that each path in { path * i } 1≤i≤k authenticates the respective values H( AF * i ||ω * i ) and that for 1 ≤ i ≤ k, AF * i corresponds to Acc(F ω * i ) that was computed in the setup phase by B 2 . Specifically,

AF * i = g P * i (α * ) with P * i (X) = fid j ∈F ω * i (X - fid j ).
5. Given accumulators AF i , we show how B 2 breaks the D-SBDH assumption in the two cases (a) and (b). Note that these cases can occur at the same time, but for the sake of simplicity, we treat them independently:

Case (a). In this case, there exists a keyword ω * ∈ W * such that fid * / ∈ F ω * . Therefore, if we denote P * the characteristic polynomial of F ω * , (X -fid * ) does not divide P * (X). However, since fid * ∈ F W * , then (X -fid * ) divides P (X) where P is the characteristic polynomial of F W * . Using polynomial division, we find that there exist polynomial Z 1 , Z 2 and R ∈ F p such that P * (X) = (X -fid * ) • Z 1 (X) + R and P (X) = (X -fid * ) • Z 2 (X). Hence, when B 2 verifies the first equality of VerifyIntersection (cf. Figure 6.5), she gets for

1 ≤ i ≤ k: e(Acc( F W * ), ∆ i ) = e(Acc(F ω * ), g) e(g, ∆ i ) P (α * ) = e(g, g) P * (α * ) e(g, ∆ i ) (α * -fid * )•Z 2 (α * ) = e(g, g) (α * -fid * )•Z 1 (α * )+R e(g, ∆ i ) Z 2 (α * ) = e(g, g) Z 1 (α * ) • e(g, g) R α * -fid * (e(g, ∆ i ) Z 2 (α * ) • e(g, g) -Z 1 (α * ) ) 1 R = e(g, g) 1 α * -fid * .
Assuming that we have α * = α • δ * + β * , where (δ * , β * ) are randomly selected from set {δ k , β k } 1≤k≤t generated earlier, we can write:

e(g Z 2 (α * ) , ∆ i ) • e(g -Z 1 (α * ) , g) 1 R = e(g, g) 1 δ * (α+ β * -fid * δ * ) e(g Z 2 (α * ) , ∆ i ) • e(g -Z 1 (α * ) , g) δ *
R = e(g, g)

1 α+ β * -fid * δ *
In other words, we construct an adversary B 2 that breaks the D-SBDH assumption by outputting the pair

β * -fid * δ * , e(g Z 2 (α * ) , ∆ i ) • e(g -Z 1 (α * ) , g) δ * R .
Notice that β * is randomly generated in F * p , and therefore Pr(

β * = fid * ) = 1 p .
this means that if A 2 has a non-negligible advantage ε A to break the soundness of our scheme, then there is an adversary B 2 that breaks D-SBDH with a non-negligible advantage

ε B ≥ ε A • (1 -1 p ).
Case (b). In this case, fid * is in F W * but not in F W * . Since, we exclude Case (a) here, it means that F W * ⊂ F W * . Besides, fid * can be found in all sets

(F ω * i \ F W * ), for all 1 ≤ i ≤ k. We denote R i the characteristic polynomials of (F ω * i \ F W * ).
We also have P i (X) = R i (X) • P (X) where P i denote the characteristic polynomial of F ω * i and P is the characteristic polynomial of F W * . If algorithm Verify accepts A 2 's proof then it means that e(Acc( F W * ), ∆ i ) = e(Acc(F ω * i ), g), which can be written as e(g, ∆ i ) P (α * ) = e(g, g) P i (α * ) . It follows that ∆ i = g R i (α) . In addition, (X -fid * ) divides R i (X) and we can write R i (X) = (X -fid * ) • Z i (X).

When B 2 verifies the second equality of VerifyIntersection, he gets:

k i=1 e( ∆ i , Γ i ) = k i=1 e(g, Γ i ) R i (α * ) = e(g, g) k i=1 e(g, Γ i ) (α * -fid * )•Z i (α * ) = e(g, g) ( k i=1 e(g, Γ i ) Z i (α * ) ) (α * -fid * ) = e(g, g) k i=1 e(g, Γ i ) Z i (α * ) = e(g, g) 1 α * -fid *
Since we have α * = αδ * + β * , with (δ * , β * ) randomly selected from set {δ k , β k } 1≤k≤t generated earlier, it follows that: e(g Z i (α * ) , Γ i )) δ * . Since β * = fid * with probability 1 p , we can safely conclude that if there is an adversary A 2 that breaks the soundness of our scheme with a non-negligible advantage ε A , then there is an adversary

k i=1 e(g Z i (α * ) , Γ i ) = e(g, g) 1 δ * (α+ β * -fid * δ * ) ( k i=1 e(g Z i (α * ) , Γ i )) δ * = e(g,
B 2 that breaks D-SBDH with a non-negligible advantage ε B ≥ ε A • (1 -1 p ).
Security of updates. All the critical update operations we presented in Section 6.5.4 are performed on the server side, which mainly updates the Merkle trees TW and TF.

Besides, the server generates the proof Π upd which ascertains of the correctness of the tree update. It consists of the updated accumulators and their authentication paths. Therefore, since we consider H being a collision-resistant hash function, the server cannot make the verifier accept incorrect updates.

Performance Evaluation

This section discusses the efficiency of our VCKS protocol. We also present some experimental results based on the implementation of a prototype of our solution.

Discussion on Efficiency

Hereafter, we evaluate the costs of our scheme with respect to storage, computation and communication complexities. Table 6.2 gives a summary of these various costs.

Storage

With respect to storage complexity, the data owner stores and publishes public key PK F = ({g α i } 0≤i≤D , σ W , σ F ), of size O(D). On the other hand, cloud server S keeps search key LK F = (I, TW, TF, F , HT), resulting in a storage complexity in O(N + n), where N is the total number of keywords and n is the number of files. Indeed, the size of index I , hash table HT and Merkle trees TW and TF is linear in N .

Computation

In light of the performances of the several building blocks (Cuckoo hashing, polynomial-based accumulators and Merkle trees), we analyze in the following the computational costs of our solution.

1. Setup: The Setup phase of our protocol is a one-time pre-processing operation that is amortized over an unlimited number of fast verifications. The computational cost of this phase is dominated by:

• The public parameter generation which amounts to D exponentiations in G;

• N calls to CuckooInsert where, as shown in [START_REF] Dietzfelbinger | Balanced Allocation and Dictionaries with Tightly Packed Constant Size Bins[END_REF], each insertion is expected to terminate in (1/ε) O(log d) time (ε > 0);

• The computation of m accumulators AW which requires m exponentiations in G and md multiplications in F p (in the worst case);

• The computation of N accumulators AF which involves N exponentiations in G and N n multiplications in F p (in the worst case);

• The generation of Merkle tree TW (respectively TF) which consists of 2m hashes (respectively 2N ).

2.

QueryGen: This algorithm does not require any computation. It only constructs the query for the k keywords together with the corresponding VK Q .

3. Search: Although this algorithm seems expensive, we highlight the fact that it is executed by the cloud server, who has more computational resources than the data owner and the users. Search runs k CuckooLookup which consists in 2k hashes and 2kd comparisons to search for all the k queried keywords (in the worst case). Following this operation, the complexity of this algorithm depends on whether all the keywords have been found:

• out = F W :
The complexity of Search is governed by:

-The computation of k file accumulators AF. Without the knowledge of trapdoor α, and using FFT interpolation as specified in [START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF], this operation performs kn log n multiplications in F p and k exponentiations in G; -The generation of the authentication paths in tree TF for these accumulators, which amounts to k log N hashes; -The generation of the proof of intersection that takes O((kn) log 2 (kn) log log(kn))

multiplications 102 in F p to compute the gcd of the characteristic polynomials of the sets involved in the query result.

• out = ∅: The computational costs of this phase consist in:

-The generation of the proof of membership for the missing keyword by calling twice GenerateWitness. This operation requires 2(d + d log d) multiplications in F p and 2d exponentiations in G; -The computation of 2 bucket accumulators AW, which amounts to 2d log d multiplications in F p and 2d exponentiations in G; -The generation of 2 authentication paths for these 2 buckets by running GenerateMTProof on tree TW, which performs 2 log m hashes.

Verify:

We also analyze the complexity of this algorithm according to whether all the keywords have been found:

• out = F W : Verify runs k instances of VerifyMTProof on tree TF, which requires k log N hashes. It computes the accumulator of the intersection, which, in the worst case, amounts to n multiplications in F p and 1 exponentiation in G. Then, it executes VerifyIntersection which computes 3k pairings and k multiplications in G T .

• out = ∅: Verify runs twice VerifyMTProof on tree TW that computes 2 log m hashes and it invokes twice VerifyMembership that evaluates 3 × 2 = 6 pairings.

In summary, to verify the search results, a verifier V performs very light computations compared to the computations undertaken by the server when answering keyword search queries and generating the corresponding proofs. Besides, the verification cost depends on k only in the case where all the keywords have been found and is independent otherwise. Furthermore, we believe that for large values of k, the probability that the search returns a set of files containing all the k keywords is low. Hence, the verification cost will be constant and small (6 pairings and 2 log m hashes). On the other hand, for smaller values of k, the verification cost remains efficient.

the server has to run n ProveIntersection which runs in O((kD) log 2 (kD) log log(kD)) = O(k log 2 (k) log log(k)) time.

Experimental Analysis

This section evaluates the performance of our proposed PVCKS scheme with two datasets:

• For the purpose of experimental analysis, we created a collection of files which gathers the complete plays of Molière103 . We will refer to this dataset as "Molière". This dataset consists of n = 25 293 files and is of size 1.34 MB. It is populated by N = 16 720 distinct keywords.

• The Enron email dataset104 is used to test our protocol in a real-world scenario. This collection of data includes emails generated by 150 former employees of Enron, an American energy company that faced a bankruptcy in the beginning of years 2000s. The dataset was acquired for a matter of investigation after Enron's collapse and made publicly available for study and research purposes. The investigation of Enron email dataset applies to a scenario where our PVCKS would be an interesting tool. Indeed, some verifiers from financial auditing companies or legal authorities might be required to search in the collection of emails for some keywords related to their investigations. This search might be delegated to the cloud which is then compelled to return the search results with a proof of correct search. The Enron email dataset contains 2.54 GB of n = 517 401 files and N = 2 141 711 unique keywords.

Experimental Setup. Our prototype is written in C and uses the Pairing-Based Cryptography (PBC) library105 . We run the experiments on two different machines. The Molière dataset was tested on a laptop with the following characteristics: processor Intel Core i5-4258U CPU@2.4 GHz; RAM of 4 GB; system on 64-bit.

We tested the Enron email dataset on a desktop machine with the following characteristics: processor Intel Core i5-2500 CPU@3.80GHz; RAM of 16 GB; system on 64-bit.

Benchmarks on the Molière dataset

Evaluation of the Setup phase. To evaluate the performance of the Setup phase, we run our prototype on three different scenarios based on the Molière dataset. We arrange the collection of files so that n = 1, n = 253 or n = 25293 files; each of these settings involves N = 16720 unique keywords (the same set of N keywords for each file collection). The various benchmark times mentioned here correspond to the average of times of 5 trials of our prototype against the data set. Table 6.3 shows the experimental results of the different steps of the Setup phase in the case it is run on the collection of n = 25293 files. In the different cases, the prototype builds a Cuckoo index that can store up to m × d = 65536 keywords. Hence, 26% of the index is populated.

As we can see in Table 6.3, the most computationally expensive operation is the computation of the accumulators AF. This is in accordance with our performance evaluation: algorithm Setup must compute N accumulators AF, one for each keyword, and the underlying polynomial of each of these accumulators is of degree at most n. Nevertheless, notice that this computational burden is allowed in the amortized model our protocol adopts. Setup is executed once for multiple search queries and verifications. We will discuss about the amortization later on. d N ). In particular, according to our performance analysis conducted in Table 6.2, for N and m fixed, the Setup operations is linearly dependent on n (in the worst case) only because of the computation of accumulators AF. However, in our setting, we do not reach this worst case (namely, all the keywords are not in all the files). This can be explained by the fact that one particular keyword is not present in all the n files of the tested data collection. Empirical analysis shows that on average, in the case of n = 253 files, a keyword is present in 6 files while in the case of n = 25293 files, a keyword is present in 13 files. We also highlight the fact that the overall efficiency of the Setup phase is acceptable for practical scenarios.

Evaluation of the Search phase. To appreciate the performance of algorithms Search and Verify, we use the same data set as before. We want to evaluate the dependencies of these algorithms with n (the number of files) and k (the number of searched keywords), while N is fixed (N = 16720 unique keywords in the entire data set). We also look at the two cases where the search outputs an empty or a non-empty result. All the reported times in this paragraph are computed as the average of 25 executions of our prototype. We first run our program for a fixed number of searched keywords: k = 2. In this setting, we evaluate the impact of n in the efficiency of the algorithms when all the keywords of the search query are found. Hence, our prototype launches the search operations for several values of n: n = 10, 100, 1000, 10000 files (selected from our test data set). Figure 6.16 and Table 6.4 present the results of this benchmark. As we can see, the increase in n slows the search operation. This is due to the computation of each accumulator AF which, in the worst case, involves n files. ProveIntersection is also a computationally demanding operation, since it has to compute the gcd of k sets, where each of the sets may include, in the worst case, the identifiers of n files. Therefore, we consider ProveIntersection as the most expensive operation performed in our solution. Besides, as we saw in Section 6.7.1, the time required by Verify does not depend on the number of searched keywords. Figure 6.16 and Table 6.4 validate this property. Thereafter, we conduct a second experiment where n is fixed to n = 25293 files and the number of searched keywords k varies according to the following serie k = 2, 5, 10. This scenario assesses the effect of k in the efficiency of Search and Verify. Table 6.5 and Figure 6.17 display respectively the times to compute the proof of intersection, the search and the verification in the case when all the keywords of the search query are found. First, let us consider the time required by algorithm Verify. As expected by the theoretical performance evaluation, it linearly increases with k the number of keywords to be searched for and is negligible compared to the running time of algorithm Search. In addition, Figure 6.17 shows that the step that generates the intersection of sets and its proof determines the time Figure 6.17: Total time of the Search phase -all keywords are found of Search. Besides, while N and n are fixed in this experiment, we observe that the times for ProveIntersection and Search are not strictly linear in k as expected by the performance evaluation conducted in Table 6.2. We explain this divergence by the fact that our theoretical evaluation does not take into account the different sizes of the sets accumulated in AF. Indeed, Table 6.2 presents the worst case complexities according to which each of the N keywords exist in all the n files. Practically, in the case where n = 25293 files, a keyword is present in only 13 files. Hence, between two distinct values of k, the computation of accumulators AF and the proof of intersection of their respective sets impacts differently the time of operating the search.

Finally, we study the performance of our protocol when the search has not found a keyword from the query. In the following, we evaluate the evolution of the time required by algorithms Search and Verify in function of k the number of searched keywords in a query. These results are presented in Table 6.6 and depicted in Figure 6.18. First, we can notice that in accordance with the theoretical performance evaluation presented in Table 6.2, the running time of Verify is independent from k. Secondly, we highlight the fact that in this experiment, the search takes much less time than in the case where all the keywords in the search query were found. Furthermore, while we were expecting the time of Search to be linear in k, Figure 6.18 shows a different evolution. We can explain this discrepancy by the fact that our theoretical performance was studied in the worst case, where each of the bucket in Cuckoo index I was populated by d keywords (the maximum capacity of the buckets). In reality, all the buckets in the index might not be full. Hence, the computation of the accumulators AW for the missing keyword may take less time than in the worst-case scenario. Therefore, in our experiment, we believe that in the case where k = 5, the buckets corresponding to the missing keyword were empty, while in the case where k = 2, these buckets were probably filled by at most d keywords (in this experiment d = 8 keywords). Discussion on Amortization and Outsourceability. We discuss the amortization and the outsourceability of the conjunctive keyword search operation. In particular, we will define in terms of computation, storage and bandwidth consumption the criteria that make the use our verifiable keyword search protocol a more interesting strategy for a data owner than performing the search locally.

In terms of computational performance, we compare our protocol executed over the Molière dataset with a local search performed at the client side (without resorting to cloud technology). This local search requires a pre-processing step which includes the construction of the Cuckoo index I as well as the indexing {F ω i } of files according to the keywords that the files in Molière dataset contain. Then, the data owner can perform the search for a conjunction of keywords by executing algorithm CuckooLookup over index I and computing the intersection of sets {F ω i } for all the keywords targeted by the search. Table 6.7 depicts the time to run the pre-processing step and the search for 2 keywords for different sizes of the Molière data set. First, we can assess from Table 6.7 that while, for a large number of files, our protocol satisfies the efficiency requirement we gave in Section 3.4.2 (namely, the verification time showed in Table 6.5 is less than the local search time, for n = 10000), it is not outsourceable in the computational definition of the amortized model. To better understand this concept we introduce the following definition for a verifiable keyword search solution.

Definition 20 (Outsourceability -Computation). The criterion x of outsourceability in computation for a verifiable keyword search scheme is determined by a parameter x ≥ 0 such that:

t Setup + x • (t ProbGen + t Verify ) ≤ t Preprocessing Local + x • t Search Local
where t algo is the time required to execute algorithm algo. Hence, x is defined by the relation:

x = t Setup -t Preprocessing Local t Search Local -(t ProbGen + t Verify )
Regarding the tests we performed on the Molière dataset, we cannot find an x ≥ 0 that meets the outsourceability definition. Nonetheless, our protocol is still arguably outsourceable. Indeed, the above definition for outsourceability only takes into account the computational performances of a verifiable keyword search solution. However, in real-world scenarios, storage and bandwidth consumption are also to be considered in the outsourceability criteria: Storage: Our protocol targets large databases that cannot be locally stored at the data owner side due to its heavy consumption of memory. If we consider the case where users may use laptops, smartphones or other devices with low memory resources, outsourcing the storage and thus the search operation to the cloud will be necessary. Therefore, the outsourceability definition must take into account this storage criterion: data owners with limited memory resources choose to outsource their large databases to the cloud while delegating the search operation to the cloud server as the best strategy.

Bandwidth: In the context of a publicly delegatable and verifiable keyword search solution, bandwidth consumption is a criterion of paramount importance in the notion of outsourceability. Indeed, without our protocol, if a data owner delegates to third-party queriers the capability to search their large datasets, she has to transmit for each querier the search indexes, which consumes a non-negligible amount of bandwidth. Hence, in this context, outsourceability can be defined as the amount of search queries needed to amortize the expensive setup phase. Namely, it should be less consuming to delegate the capability of requesting a search operation and verifying its results than to transmit x times the search indexes.

Definition 21 (Outsourceability -Bandwidth). The criterion x of outsourceability in bandwidth for a publicly delegatable and verifiable keyword search scheme is determined by a parameter x ≥ 0 that defines the number of search queries (issued by different users) such that:

x • BW(O → Q) ≥ BW(O → S) + x • BW(S Q)
where:

• BW() is the bandwidth consumed to exchange data between two parties,

• "O → Q" translates the transmission of search indices by data owner O to a third-party querier Q,

• "O ← S" corresponds to the upload of the database and the corresponding search indices to server S, and

• "S
Q" is the challenge-response between S and Q in which Q sends a search query and S returns the search result.

Benchmarks on the Enron email dataset

In this section, we evaluate the performance of our publicly verifiable conjunctive keyword search scheme with a real-world dataset in order to demonstrate its practical efficiency. We remind the reader that the Enron dataset includes of n = 517 401 files which amounts to 2.54 GB in memory size. The entire set contains N = 2 141 711 unique keywords. The different parameters and running times of our prototype against the Enron email dataset are listed in Table 6.8. Description of the experiment. We run the preprocessing phase, that is algorithm Setup, in the entire collection of emails without any filtering or pruning of the dataset. Setup creates the Cuckoo index I with the parameters d = 512 and m = 16384. Hence, 26% of the index is full. As described in Section 6.5, the algorithm also determines the file index, that is the set of files {F ω i }, and computes the two types of accumulators and the two Merkle trees. To test the efficiency of algorithms Search and Verify, we launch three types of search queries:

1. The first query requests 3 common keywords in the Enron email dataset (such as report, meeting, Monday). They are present together in 997 files;

2. The second query targets 3 keywords that exist in the Enron email dataset (Robertson, Stephens, finances) but which are present together in 10 files only;

3. The third query searches for keywords that are not present in the Enron email dataset.

Preprocessing at the data owner. As we already explained for the Molière dataset, algorithm Setup is a (one-time) expensive phase. To process the entire Enron email dataset, our implementation takes approximately 7.46 hours, due to the computation of accumulators. While expensive, we will see that it allows for very fast search result verifications.

Storage overhead at the server. Naturally, the server stores the dataset which amounts to 2.54 GB of memory. Additionally, it is required to store I and the sets {F ω i }, which consists of 564.3 MB of memory in total, or 26.7% of the entire dataset. As regards of the two Merkle trees that are built by algorithm Setup, the server is not compelled to store them. Indeed, it can build them on the fly whenever it received a search request. As a matter of fact, the generation of tree TW (respectively tree TF) only takes 0.017 seconds (respectively 4.007 seconds).

Search efficiency.

In this paragraph, we analyze and comment the times it takes to perform the three test queries:

Query 1: Responding to this type of query is relatively expensive for the server compared to the two other types. Indeed, as the searched keywords are present in many files (here in 997 files), the server has to compute 3 polynomials of degree 997, to compute accumulators and the proof of set intersection. It took nearly 1.30 hours to return the search results. We argue that in a real scenario this type of query will not induce valuable information for any investigator that would like to mine the email dataset. Indeed, such verifiers would search for more sensitive keywords for which the search results return highly instructive information. Besides, this search is run by the cloud server. Thus in a real cloud environment, the time to search would be less than what we measured in a desktop machine.

Query 2: The second query targets 3 less common keywords. For example, by searching the set {Robertson, Stephens, finances}, an investigator that analyzes the Enron email dataset is interested in emails exchanged between individuals named Robertson and Stephens and which refer to some finances issues. Our test query returned only 10 files in approximately 4 minutes. In a real context, the amount of time taken to return the search result is acceptable and does not impede from resorting to cloud technologies.

Query 3: A search that returns an empty result is, as expected, the fastest type of search query. It takes only a bit more than 1 second for the server to perform this search.

The analysis of the search efficiency at the server side shows that the time to execute the search operation highly depends on the size of the intersection, that is, on the popularity of searched keywords. The more the searched keywords are popular, the longer it will take to perform the search and to generate the proof of correct results. In the case where a keyword is not present in the file collection, the search operation is very fast even with large datasets.

Verification efficiency. We saw, in relation with the Molière dataset, that the search result verification is a very fast and lightweight operation performed by the verifier. This result is also confirmed by our experiment in the Enron email dataset. As depicted in Table 6.8, for the case where 3 keywords are found in 997 files, it takes only 2.50 seconds to verify the search results, while in the case of less common keywords, verification is performed in 0.088 seconds only. Furthermore, in the case where the search returns an empty result, the verification is even faster (0.011 seconds). Therefore, our solution allows fast and practical search verifications even for a large number of files and popular keywords.

Amortization. Our last analysis perspective discusses the amortization of our protocol for the Enron email dataset. To appreciate the computational outsourceability as defined in Definition 20, we list in Table 6.9 the times required to perform a conjunctive keyword search in two cases: in the case where the search is performed by the data owner and the case where the search operation is outsourced to a cloud server. According to the criterion of outsourceability in computation we defined in Definition 20, we learn that in the case of a query of type 1, the expensive operations performed by algorithm Setup are amortized after 1277 queries. However, in the case of queries of type 2 and 3, computation performances are not amortized. Hence, we resort to two another parameters, that we already mentioned in the case of the Molière dataset, and which support the viability of our solution:

Storage: As shown in Table 6.8, the search over the Enron dataset incurs a storage overhead of 564.3 MB, due to the generation of search indices. This additional storage should be considered even if the data owner does not outsource the storage and the search operation over this file collection to the cloud. Hence, for users with limited storage resources, the burden of keeping the dataset in addition with the indices is substantially costly. The best strategy for this kind of users is therefore to outsource the dataset to the cloud and thus, the search operation over this data set.

Bandwidth: We recall that our solution is publicly delegatable and verifiable. In this context, third-party queriers can search for a conjunction of keywords in the Enron dataset, without any interaction with the data owner. If the data owner decides to outsource the search operation to the cloud, she will transmit the dataset of 2.54 GB and the search indices of 564.3 MB. This bandwidth is consumed only once in the Setup phase of our prototype. The Search and Verification phase are less bandwidth consuming compared to the Setup phase. We estimate that one search query and search response amount to 5290 bytes106 of consumed bandwidth, in the case of Query 1. On the other hand, if the data owner does not outsource the large dataset, to enable anyone to search for keywords, she will need to transmit the search indices for each querier. Based on the formula given in Definition 21, we compute that 6 queries is the threshold above which outsourcing the Enron dataset to the cloud is the best strategy to optimize the bandwidth consumption.

Concluding thoughts. The above experiments of our verifiable keyword search solution over the Enron dataset show that our proposal enables relatively fast conjunctive keyword search, even with large file collection. Since our tests were performed on a desktop machine, we can safely envision that on a real cloud server the performances for the search operation would yield better running times. Besides, in spite of an expensive Setup pre-processing phase, our protocol is a viable and practical solution by the fact that search results verifications are efficient, regardless of the file collection size.

Conclusion to Verifiable Keyword Search

We described in this chapter our publicly delegatable and publicly verifiable conjunctive keyword search solution. It is based on a combination of well-established cryptographic primitives: polynomial-based accumulators, Cuckoo hashing and Merkle trees. Besides, our scheme handles updates of files while still enabling verifiable search without the need for the data owner to download the database to perform the update operations. We proved that our proposal is correct and sound, according to the definitions we gave in Section 6.2.3. In addition, our verifiable keyword search solution satisfies the efficiency requirement for any VC scheme and adopts the amortized model approach.

Compared to relevant existing work on verifiable keyword search, we discuss the practicality of our proposal and its outsourceability. Besides, our scheme ensures public delegatability and verifiability while, in contrast, most existing work [START_REF] Morselli | Trust-Preserving Set Operations[END_REF][START_REF] Ahmed E Kosba | TRUESET: Faster verifiable set computations[END_REF][START_REF] Chai | Verifiable Symmetric Searchable Encryption for semi-Honestbut-Curious Cloud Servers[END_REF][START_REF] Zheng | VABKS: Verifiable Attribute-Based Keyword Search over Outsourced Encrypted Data[END_REF][START_REF] Cheng | Verifiable Searchable Symmetric Encryption from Indistinguishability Obfuscation[END_REF][START_REF] Zhang | IntegriDB: Verifiable SQL for Outsourced Databases[END_REF] do not provide these two requirements simultaneously.

Part III

Accountability and Verifiability

Chapter 7

An Accountability Policy Language

Introduction

The two previous parts illustrated how cryptography supports verifiability in the cloud. We looked at cryptographic proofs of retrievability to verify that a cloud server stores outsourced data as expected. We also focused on three cryptographic protocols that generate proofs stating that the cloud evaluates the outsourced operation as expected. In this part, we turn our attention to how to express the statement "as expected " in more formal terms. In particular, we will extend our study on verifiability to the broader notion of accountability.

We regard accountability for the cloud as the delineation of data governance in which organizations that are entrusted with personal and confidential data are held responsible and liable for storing, processing and sharing data according to contractual and legal constraints, called obligations, from the time the data is stored until when the data is destroyed. The accountable organization must implement appropriate actions and handle remediation procedures in case of failure to act properly [START_REF] Pearson | Accountability for Cloud and Other Future Internet Services[END_REF]. Obligations must respond to a collection of many regulations, including the European Union (EU) General Data Protection Regulation [START_REF]the Council of 27 April 2016[END_REF] and its reform 107 . In addition, cloud services are delivered in form of contracts and agreements. Such agreements may not explicitly address in which way obligations are handled, as they are often formulated by cloud providers and not cloud customers [45]. These customers lack control over the way their data is managed by the cloud, therefore, they grant a high level of trust on the cloud compared to the guarantees they finally obtain. The set of obligations corresponds to the intuitive concept of "as expected " we mentioned above. Obligations also help to clarify the accountability relationships in the cloud, i.e. who is responsible to whom and for what. Hence, defining appropriate policies mapping the accountability obligations is a fundamental requirement for control mechanisms, in the sense that policies mitigate risks, provided that their enforcement and the verification of their compliance are applicable.

In this setting, cryptographic techniques, such as the ones we develop in Part I and Part II, alone do not fully capture the essence of accountability. Indeed, as we will see, accountability encompasses multiple aspects such as notifications of security breaches, that cryptography does not enable to satisfy. Therefore, we look at another tool, namely a policy language, to express in terms of policies the accountability obligations that the cloud has to comply with during the correct execution of the services it delivers. The objective of our work in this part consists in analyzing how and to what extent we can convey accountability obligations via expressive and declarative policies in such a way that these policies are easy to write, manage, enforce and validate. We are interested in machine-readable representations of policies expressing accountability obligations. In order to express such policies, we design in this work a new policy language, Accountability-PPL (A-PPL), that is both expressive and declarative. The term expressive means that the language is easy to understand for both a human reader and a machine reader. In the case of a policy language, the machine reader is called a policy engine and enforces the policies written in that language. Our work also designs a new policy engine to enforce A-PPL statements: the A-PPL Engine (A-PPLE). The term declarative encompasses the concept that the language should describe what to do. We highlight the fact that at the time of writing this thesis our effort in designing a machine-readable policy language for accountability obligations is unprecedented in the state of the art.

This part of this thesis offers the following contributions:

• We present and analyze a collection of accountability obligations from which we derive the requirements for an accountability policy language. • We detail the design of a new language called A-PPL 108 (shorthand for Accountability-PPL, where PPL [START_REF] Trabelsi | D5.3.4 -Report on design and implementation of the PrimeLife Policy Language and Engine[END_REF] is an existing policy language devoted to privacy). We also describe A-PPLE 109 , the policy engine that takes care of the enforcement of A-PPL rules.

• We finally illustrate the expressive and declarative properties of our accountability policy language by modeling a use case. We show how to translate into A-PPL policies the obligations extracted from this use case. This work on a policy language for accountability has been undertaken within the European FP7 research project, the A4Cloud project 110 , whose goal consists in increasing trust in cloud computing by developing methods and tools that enable to make cloud actors accountable for the security and privacy of the data held in the cloud and to give cloud users more control and transparency on the way the data is stored and processed by the cloud.

The Concepts of Accountability

As we mentioned in the introduction to this chapter, the concept of accountability for the cloud embraces the notion of verifiability in the cloud, which is the main topic of this thesis. To be more specific, accountability is a complex concept that can be modeled under a set of various elements. First, accountability includes a collection of principles, that we call accountability attributes. Based on the identification of these attributes by the A4Cloud project [START_REF] Catteddu | Towards a Model of Accountability for Cloud Computing Services[END_REF], we regroup them into a number of four: responsibility, transparency, verifiability and remediability. Moreover, from these attributes, the concept of accountability implies a certain number of practices or behaviors that an accountable cloud should engage. There are four such practices: delineating data governance, implementing appropriate actions such that the cloud is accountable, demonstrating compliance with policies and regulations and remedying any failure in the correct execution of the actions. Finally, the concept of accountability involves mechanisms that support accountability practices. Three types of mechanisms apply: operational processes (auditing), non-technical mechanisms (contracts, policies) and technical tools (privacy-enhancing technologies, proofs of retrievability, etc.).

In this section, we give more details on the above accountability model (Section 7.2.1). We also describe the different actors and their respective roles in a cloud computing environment (Section 7.2.2). We finally highlight the importance of policies in an accountable setting (Section 7.2.3).

Accountability Model

Modeling accountability requires a hybrid approach that combines attributes, practices and mechanisms. These three aspects are naturally interconnected to each other: while attributes 108 A-PPL is pronounced "a people". 109 A-PPLE is pronounced "apple". 110 The Cloud Accountability project (A4Cloud), http://www.a4cloud.eu/ [Accessed: February 4, 2016].

characterize accountability at a conceptual level, accountability practices interpret at the operational level the attributes' essence whereas the accountability mechanisms implement those practices.

Accountability Attributes

Accountability attributes [START_REF] Felici | Accountability for Data Governance in the Cloud[END_REF] support or are strongly related to the concept of accountability. We identified four key attributes that are interconnected to each other [START_REF] Felici | Accountability for Data Governance in the Cloud[END_REF]:

Responsibility: This characterizes the state of undertaking some assigned actions to comply with a set of policies or rules.

Transparency: This principle requires a transparent system to provide visibility on the way this system delivers the services it provides. Transparency involves the provision of enough and easy-to-access information about the behavior of the system.

Verifiability: Verifiability, as we saw in Part I and Part II, refers to the provision of proof or evidence showing whether the system delivers the service it offers correctly. In other terms, verifiability suggests that it is possible to verify, to audit or to be convinced that the considered system complies (or not) with obligations, that are translated into rules of policies.

Remediability: This attribute characterizes an accountable system that is able to take corrective procedures as a result of failure to comply with obligations.

In the description of these accountability attributes, we pointed out three fundamental notions that capture the essence of what an accountable system is accountable for: Obligations: They define the rules for data storing, processing and sharing and can be expressed in terms of policies that derive from law or contracts.

Behavior: This notion characterizes the operations (actions and reactions) handled by the system to fulfill the obligations.

Compliance: This concept involves the comparison of the system's behavior with the obligations in order to show the conformity of the behavior with the obligations.

Having defined these three notions, we can summarize the outcome of the characterization of accountability attributes and their interconnection for a cloud system: Regulations, contracts between cloud providers and customers or ethical norms impose obligations that the accountable system is responsible for complying with. The accountable system therefore takes some actions such that its behavioral operations are transparent and verifiable. If the verification of this behavior detects non-compliance with obligations, the accountable system is responsible to take transparent and verifiable remedies for any failure to act properly.

Accountability Practices

Accountability practices designate the operational behavior that should be adopted by an accountable system in order to apply the accountability attributes:

• In relation to the responsibility and transparency attributes: The cloud should define and inform how data is managed so as to comply with obligations that it commits to.

• In relation to the responsibility, transparency and verifiability attributes: The cloud should ensure the implementation of the appropriate operations (the accountability mechanisms) to comply with obligations and to demonstrate their compliance.

• In relation to the responsibility, transparency and remediability attributes: The cloud should respond to any failure to act as specified by the obligations. In particular, it should take the appropriate corrective measures to redress from these failures.

Accountability Mechanisms

Accountability mechanisms relate to the tools and techniques that implement and support the accountability practices and attributes we listed above. These mechanisms range from privacy and security mechanisms to risk assessment and audits, including notification techniques and policy definition. As we discussed in Part I and Part II, our proposals for proofs of retrievability and verifiable computation can fall into the mechanisms that support accountability: Obviously, our cryptographic solutions establish verifiability in a cloud system since they meet the definition we gave for verifiability. Nonetheless, as we specified in Section 7.1, cryptographic techniques alone do not suffice to support verifiability and thus accountability. Logs and notifications are two examples of tools that are related to the transparency attribute since they provide a certain amount of information that offers visibility of the way the cloud processes the data it handles. Moreover, auditing logs is another mechanism that enhances verifiability in an accountable system. Indeed, audits ensure a detective control on whether the cloud comply with advertised obligations. Besides, an incidence response tool may help to inform cloud users about a security breach that may occur during a normal execution of cloud procedures. All these examples show that there exist a wide range of techniques that create accountability for cloud services. This thesis investigates another type of mechanism to support accountability: machinereadable policies. As we will see in Section 7.2.3, policies are at the core of our accountability model as they play a pivotal role between the three notions we highlighted above, namely obligations, behavior and compliance.

Accountability Actors and their Roles

Before delving into policies and their relevance in an accountable system, we delineate here the different actors that come into play in an accountable cloud ecosystem. This term refers to the complex system of components that interact with each other to deliver, consume, enjoy or monitor cloud services. Identifying the actors and their roles in an accountable ecosystem is essential to provide accountability. Besides, policies must reflect these actors and their interdependencies. Our analysis is based upon two different sources: the NIST cloud reference architecture [START_REF] Liu | NIST Cloud Computing Reference Architecture[END_REF] and the data protection regulation taxonomy [START_REF]the Council of 27 April 2016[END_REF].

The NIST reference architecture defines the following three main cloud actors:

Cloud Provider: This is an organization that delivers cloud computing services or technologies to interested parties. We typically called this party the cloud server in Part I and Part II.

Cloud Customer: This is a person or an organization that contracts a business relationship with a Cloud Provider. It consumes the services delivered by this Cloud Provider. This party may correspond to the data owner we introduced in Part I and Part II. This definition can also apply to the querier user mentioned in Part II since this entity uses the cloud resources to submit a computation request (Chapter 4, Chapter 5) or a search query (Chapter 6).

Cloud Auditor: This entity operates independent assessment of cloud services, their operations, their performance and their security.

Each of these actors endorses some roles defined by the EU regulation on data protection, roles that help characterize the actors in an accountable cloud ecosystem: Data Subject: It refers to the individual from whom personal data is collected. Data Subjects are often the end users of a cloud service.

Data Controller: This term identifies "the natural or legal person, public authority, agency or any other body which alone or jointly with others determines the purposes and means of the processing of personal data" [START_REF]the Council of 27 April 2016[END_REF]. Organizations that purchase cloud services, namely Cloud Customers, are often Data Controllers. Besides, multinational Cloud Providers that offer cloud services (e.g. Amazon 111 , Facebook 112 and Google 113 ) can also become Data Controllers.

Data Processor: This expression includes "the natural or legal person, public authority, agency or any other body which processes personal data on behalf of the Data Controller. Cloud Providers will become Data Processors when their customers use their services to process personal data" [START_REF]the Council of 27 April 2016[END_REF].

Data Protection Authorities: They represent national supervisory authorities, such as the Information Commissioner's Office 114 (UK), the French CNIL 115 , the German BFDI 116 , etc.

Table 7.1 depicts the correspondence and the possible combinations between the cloud actors and the roles they endorse in an accountable cloud ecosystem. For the rest of this part, we may interchange cloud actors or their corresponding roles. 

NIST cloud actors

Data protection roles

Accountability and Policies

The term policy refers to "a set of rules related to a particular purpose. A rule can be expressed as an obligation, an authorization, a permission or a prohibition" [105]. As we specified before, policies play a central role in our accountability model: Accountability policies are particularly useful for specifying obligations in cases where Cloud Customers (data owners) outsource the processing of personal data to Cloud Providers. Besides, Cloud Providers operate the data according to the behavior defined by the stated policies. Finally, compliance checking against the obligations can be done via comparing the policies with the behavior traces and evidences. More concretely, accountability policies convey the different accountability attributes of responsibility, transparency, verifiability and remediability that the Cloud Providers (Data Controllers and Data Processors) should satisfy. Therefore, defining and enforcing those policies is one of the accountability practices we mentioned above. A machine-readable policy language can implement these accountability policies. The goal of the present work is to design an accountability policy language that eases and automates the enforcement of accountability policies.

Motivating Scenario

This section describes a use case that illustrates accountability concerns in the cloud ecosystem. This scenario has been developed within the A4Cloud project [START_REF] Bernsmed | Use Case Descriptions. Deliverable, Cloud Accountability (A4Cloud) Project[END_REF][START_REF] Bernsmed | Consolidated Use Case Report[END_REF] in order to demonstrate how accountability mechanisms devised or used in the project can be applied to a real-case scenario which involves storing and processing data by different actors in a cloud ecosystem. The use case highlights the intrinsic obligations for accountability that these actors have to fulfill. Related to our work on the design of a policy language for accountability, the scenario enables us to determine the requirements that such a language should satisfy in order to convey the accountability obligations into the form of policies. After outlining the A4Cloud use case in this section117 , Section 7.4 investigates the obligations related to this scenario and derive from them the requirements for a policy language for accountability. The use case defined by the A4Cloud project [START_REF] Bernsmed | Consolidated Use Case Report[END_REF] develops a healthcare system, the "M" platform, depicted in Figure 7.1, used to support elderly people. The hospital, that considers these elderly people as its patients, adopts the "M" platform to collect medical data from sensors and analyzes them for diagnosis purposes via the service offered by this platform. The (wireless) sensors monitor patients' vital signs such as blood pressure, heart pulse rate or body temperature. This collected data is stored in a cloud-based storage service where it will also be processed. In addition, the sensor data is likely to be exchanged between the elderly people, their relatives, the hospital caregivers and healthcare personnel.

The "M" Platform is used by an hospital who subscribed to a service delivered by service provider M. This service provider made the choice to outsource the data collected by the sensors to a cloud-based storage service (Cloud X in Figure 7.1) which also takes care of some initial processing. Besides, a second cloud provider (Cloud Y in Figure 7.1) is responsible for backing up the sensor data. Cloud Z, which is provided by M's own infrastructure, is in charge of some processing and visualization of data. It communicates with Cloud X and Cloud Y. Figure 7.1 shows that the "M" platform interacts with different actors involved in the scenario through Graphical User Interfaces (GUIs). We map to this scenario these actors with the roles we identified in Table 7.1 [START_REF] Bernsmed | Deploying Medical Sensor Networks in the Cloud -Accountability Obligations from a European Perspective[END_REF]:

• The patients are the Data Subjects. Indeed, the "M" platform collects the sensor data from them.

• The hospital is the Data Controller of the patients' data. It has selected the "M" platform delivered by service provider M to process this data.

• Service provider M, together with Cloud Z belonging to its own infrastructure, are Data Processors of the patients' data.

• Cloud Providers X and Y selected by service provider M to store and process patients' data are also Data Processors.

• Relatives, friends and hospital staff can be considered as Data Subjects, and under certain circumstances also Data Controllers (with respect to the patients' personal data)

Requirements for an Accountability Policy Language

From the motivating scenario depicted in Section 7.3, we identify the accountability obligations that the described system should endorse (Section 7.4.2). These results will generalize for any accountable cloud ecosystem. Then, from this analysis, we derive the design requirements for a policy language conveying, in a machine-readable manner, the accountability obligations (Section 7.4.4).

Source of Accountability Obligations

Accountability obligations generally derive from three perspectives: regulatory, contractual and ethical. First, regulations and in particular those related to data protection, such as the EU regulation for data protection [START_REF]the Council of 27 April 2016[END_REF], are a primary source of obligations. In particular, the EU regulation controls the processing of personal data and puts the responsibility for compliance with the rules it defines to the Data Controller. These rules give priority to transparency: the Data Subject has the right to know when, how and where her personal data is to be processed. Put in another way, it means that the Data Controller must inform the Data Subject on who processes the data, where the data is being stored, the purpose for which the data is collected and processed, with whom the data will be shared and any other information making the data processing transparent to the Data Subject.

The second source of obligations consists of contracts. In our setting, the term "contracts" includes SLAs, privacy policies and Terms of Use (ToU). An SLA is a contract, in natural language, binding a service provider (in the context of cloud computing, a Cloud Provider) and its customers. The agreement states the quality level of the provided services: it contains clauses on services' performance, availability, but also security; it defines the responsibilities of the service provider and the appropriate remedies applicable when some of the clauses are not satisfied. Privacy policies are a document in natural language generated by the service provider and stating how the service handles personal data from their customers. Many websites define and advertise privacy policies to their visitors. Such policies declare which personal data is gathered, explain how it is processed and stored and for which purpose, and disclose if personal data may be shared or sold to third parties. There is no explicit consent from the Data Subject concerning privacy policies: if a visitor accesses a web page with some privacy policies, she tacitly accepts them. Note that it is not clear whether privacy policies legally bind the service provider with their customers, unlike ToU. ToU are prescribed by the service provider and define what it can do with the data it collects. They also detail what the provider intends to do with respect to the security and privacy of data.

Finally, the ethical perspective completes the list of source of obligations. It gives the opportunity to the Data Controller to 'do the right thing' [START_REF] Pearson | Accountability for Cloud and Other Future Internet Services[END_REF] with respect to data protection and accountability. In a nutshell, ethics define a set of guidelines and rules in order to fulfill the expectations of Data Subjects and Cloud Customers (such as consent, transparency, security, privacy, etc.)

Accountability Relationships and Obligations

Having identified the source of accountability obligations, we determine the accountability relationships that exist between the different actors of our motivating healthcare scenario [START_REF] Azraoui | A-PPL: An Accountability Policy Language[END_REF] and derive the obligations, stemming from regulations, contracts and ethics, that have to be satisfied. Note that the results we outline here can be generalized to any cloud ecosystem.

Data Controller is accountable to Data Subject. We focus on the obligations that the hospital, which is, in our scenario, the Data Controller, has to fulfill with respect to the Data Subjects, namely the elderly patients. Hence, the hospital is accountable to the patients for:

The right to information: Data Subjects have the right to know that their personal data is processed and for which purpose.

Data quality: This term means that personal data must be, processed fairly and lawfully, collected for specified, explicit and legitimate purposes, and kept in a form which permits identification of the patients for no longer than is necessary for the purposes for which the data was collected or further processed [START_REF]the Council of 27 April 2016[END_REF].

Confidentiality: The hospital shall implement appropriate technical and organizational measures to ensure an appropriate level of security in relation to the risks represented by the processing and the nature of the personal data to be protected.

Data Processor is accountable to Data Controller. Service provider M, Cloud X and Cloud Y endorse obligations, such that they are made accountable to the hospital for:

Contractual obligations: This means that they are required to provide the service as specified in the contracts.

Confidentiality/Security control obligations/Data integrity: These notions relate to regulatory obligations of data security, breach, data loss and confidentiality.

Notification: This refers to the obligation for the Data Processors to collect and retain certain information that might be relevant to security breaches, but also to conduct a reasonable investigation of the security breach.

Data Location: The objects stored in a region must never leave the region unless the hospital transfers them out.

Data Controller is accountable to Data Protection Authorities. Here, we are interested in the accountability obligations that the hospital should meet to be accountable for the Data Protection Authorities118 . The hospital is accountable to Data Protection Authorities for:

Notification on processing operations of personal data: The hospital must explain the context of the personal data processing and justify the purposes of the processing.

International data transfers (change of data location): Some international legal mechanisms frame personal data transfers across countries, for instance, Binding Corporate Rules 119 . The hospital is hence accountable for obtaining authorization from the Data Protection Authorities for international transfers.

The assignment of processing operations to data processors: The hospital is accountable to Data Protection Authorities for choosing those Data Processors (here, Cloud X and Cloud Y) that provide sufficient safeguards concerning the technical security and the organizational measures required in relation to the processing to be carried out on their behalf.

Besides, the above identified relationships highlight the needs for collecting evidence on the cloud service operations and implemented security controls. For instance, audits from Data Protection Authorities may require the collection of logs generated by the Data Processors (Cloud X and Cloud Y) and which record the actions performed by the Data Processors.

To further analyze the accountability relationships and obligations of the instantiated use case, we draw in the following a classification of the mechanisms into three categories capturing the level of controls these mechanisms suggest: preventive, detective and corrective controls:

Preventive. This type of control relate to the obligations that mitigate the risks of accountability breaches. Preventive controls include security and privacy obligations, access control obligations or other authorization controls with respect to data location, data retention periods or purpose of processing.

Detective. Detective controls are used to determine whether or not the system complies with the obligations. They are used to identify any security breach. Logging and monitoring techniques, audit mechanisms, generation of cryptographic proofs such as the one studied in Part I and Part II are part of detective controls.

Corrective. This category of control is used to fix and inform any accountability breach or any failure in satisfying the obligations. Corrective controls include in particular notifications and reports.

Accountability Obligations

From the source of accountability obligations and after describing the accountability relationships, we provide the following list of accountability obligations. Although we refer to our motivating scenario, we highlight the fact that these obligations remain general and relevant for any other business use cases. A more exhaustive list of obligations was presented in [START_REF] Bernsmed | Consolidated Use Case Report[END_REF] within the A4Cloud project. Here we only give the prominent obligations that help us determine the requirements for the design of an accountability policy language.

Obligation 1: The right to access, correct and delete personal data. According to the General Data Protection Regulation [START_REF]the Council of 27 April 2016[END_REF], the hospital must ensure that the patients have read and write access to their personal data that have been collected and stored in the cloud. There must be also means to enforce the deletion of such data. Obligation 1 implies preventive controls that must be translated into privacy, access control and usage control policies.

Obligation 2: Duration and Purpose of processing. The hospital must make sure that the patients' personal data is only processed for specific, explicit and legitimate purposes. Here processing also includes the notion of storage. In this case, the purposes of processing are to help diagnosing and curing the patients. In addition, the hospital must guarantee that the patients' data is kept and processed for the specified purposes only for the duration imposed by regulations. Obligation 2 entails preventive mechanisms that authorize the collection, storage and processing of the specified purposes for the appropriate duration.

Obligation 3: Breach notification. In case of security or personal data breaches, cloud providers X and Y must notify M, which in turn must notify the hospital and the hospital must notify the patients. This notification should not exceed an appropriate period of time (for example, the notification should be sent within 24 hours after the detection of the breach120 ). Obligation 3 involves a kind of corrective control. As a matter of fact, it consists in a reactive control after a security breach is observed.

Obligation 4: Evidence of the correct and timely deletion of personal data. Cloud providers X and Y must be able to provide evidence to the platform provider M, and M must be able to provide evidence to the hospital on the correct and timely deletion of personal data. These evidences serve for auditing purposes. Indeed, a Data Protection Authority may audit Data Controllers on the way the data is hold and the manner in which they are processed. Obligation 4 covers detective mechanisms to observe security breaches as well as compliance with other obligations.

Obligation 5: Location of processing. Cloud providers X and Y, as well as service provider M have contractual obligations towards their respective customers on the location of the data processing. Obligation 5 implies preventive control on geographical location of this processing.

Policy Language Requirements

Machine-readable accountability policies are particularly useful for conveying the above obligations. A policy language allows to represent such policies in a machine-readable format. Our goal is to design an accountability policy language that eases and automates the enforcement of these policies. Therefore we derive from the analysis of the accountability obligations several design requirements for our proposed policy language. We classify our requirements into two categories: requirements for data handling policies and specific requirements for accountability. The former refers to the need to express privacy constraints, access and usage control rules. The latter corresponds to the requirements that are specific to accountability and which are often not addressed by existing policy languages such as audits, logging and notifications. • Data handling requirements:

(R1) Capturing privacy policies: An accountability policy language must allow the expression of privacy policies about the usage of personal data. This requirement is related to Obligations 1,2 and 3.

(R2) Access Control Rules: In relation with Obligation 1, the accountability policy language must enable the specification of access control policies to personal data. The access requester should in particular be defined by a set of attributes such as its name, its role, or the group it belongs to.

(R3) Usage Control Rules: Obligations 1 and 2 suggest the definition of appropriate usage control rules. The accountability policy language must allow the expression of such rules. In particular, it should express the conditions under which an action on the data is permitted or prohibited (such as sharing the data with third parties, usage for a particular purpose). It should also define the operations on the data that has to be performed after its collection (such as deletion, anonymization, etc.).

(R4) Data Retention Period: In accordance with Obligation 2, the accountability language must be able to express rules about data retention such as retention time.

• Accountability requirements:

(R5) Reporting and Notification: The policy language we design should enable the sending of notifications to Data Subjects and third parties. This requirement addresses Obligation 3.

(R6) Controlling Data Location: As controlling data location is required by Obligation 5, the language must enable the expression of rules about data location in a policy.

(R7) Auditability: Obligation 4 states that accountable services may be audited to verify compliance with obligations. Therefore, the accountability policy language must make possible the auditing of operations performed in the cloud (such as deletion, transfer, modification, access, etc.). The language must also specify what information is targeted by an audit, and which evidence should be collected to perform the audit.

(R8) Logging: Evidence collection is ruled by Obligation 4. Logs can be a particular type of evidence. Therefore, the policy language must specify which events have to be logged and what information related to the logged event have to be added in the log.

One may argue that these requirements can be expressed and enforced using multiple existing languages. We advocate that centralizing these concerns in a single policy expressed in a unique policy language will increase the accountability of the actors processing personal data in the cloud. In the next section, we use these requirements to review and analyze existing policy languages so as to design a suitable accountability policy language.

State of the Art on Policy Languages

Methodology

A number of policy languages have been proposed in recent years for policy representation. We reviewed several existing policy languages, defined either as standards (XACML [START_REF]eXtensible Access Control Markup Language (XACML) Version 3.0[END_REF], WS-* standards [START_REF]Web Services Security: SOAP Message Security 1[END_REF][START_REF]OASIS Web Services Secure Exchange (WS-SX) TC[END_REF] and P3P [START_REF] Marchiori | The Platform for Privacy Preferences 1.0 (P3P1.0) Specification. W3C recommendation[END_REF]) or as academic/industrial proposals (PPL [START_REF] Ardagna | Primelife policy language[END_REF], USDL [START_REF] Barros | Handbook of Service Description: USDL and Its Methods[END_REF], SLAng [START_REF] Lamanna | SLAng: A Language for Defining Service Level Agreements[END_REF], SecPal4P [START_REF] Moritz | S4P: A generic language for specifying privacy preferences and policies[END_REF], Ponder [START_REF] Damianou | The Ponder Policy Specification Language[END_REF] and ConSpec [START_REF]La solution que nous proposons s'appuie sur les propriétés de la division euclidienne des polynômes : pour n'importe quelle paire de polynômes A et B = 0 de degré respectif d et 2, il Les attributs de l'imputabilité sont la responsabilité[END_REF]). We studied their suitability to accountability representation according to the accountability requirements identified in Section 7.4.4. In this review, the main question was to determine the ability of the existing policy languages to represent accountability obligations defined in Section 7.4.2. Rather than imposing a brand new language, we consider to select and extend one or several existing languages with accountability-aware features in order to map accountability requirements as much as possible.

Survey of Existing Languages against the Language Requirements

We present here the outcome of this survey. The reader can find the detailed description of this analysis of exiting languages in the A4Cloud report "Policy Representation Framework" [START_REF] Cherrueau | Policy Representation Framework. Deliverable, Cloud Accountability (A4Cloud) Project[END_REF].

Although most of the reviewed languages fail at meeting all the accountability requirements at first glance, some of them can be extended to support accountability policies. As a result, we elect PrimeLife Policy Language (PPL) as the policy language that captures the best the accountability requirements. We therefore build our proposed accountability policy language upon PPL. This choice is motivated by the following four reasons:

1. PPL is the language that covers the more language requirements; 2. PPL presents many extension points making the language easy to extend for accountability;

3. PPL is based on eXtensible Access Control Markup Language (XACML) which is a standard policy language for access control;

4. PPL is well-documented as in the work done by Ardagna et al. [START_REF] Ardagna | Primelife policy language[END_REF].

Before presenting our proposal for an accountability policy language, the next section provides the reader with more details on PPL. Besides, since PPL is based on XACML, we also outline the main characteristics of this language.

XACML

XACML [START_REF]eXtensible Access Control Markup Language (XACML) Version 3.0[END_REF] stands for eXtensible Access Control Markup Language and consists of an OASIS standard that defines both a declarative language for expressing access control policies and a request-response message exchange protocol to obtain access control decisions. The XACML request-response message exchange is used to express queries to a decision engine about whether an action should be allowed (request) and describes the respective answers (response). The language is expressed in eXtensible Markup Language (XML) [START_REF] Bray | Extensible markup language (XML)[END_REF] that is both human and machine-readable.

A set of rules is encapsulated in a Policy. The main components of a Rule are:

• A Target that defines the requests to which the rule is intended to apply. It is expressed in terms of subjects, resources and actions.

• An Effect that indicates the rule-writer's intended consequence if the evaluation of the rule outputs true. The possible effects are either Permit or Deny.

• A Condition that refines the applicability of the rule by putting restrictions on Target's attributes (subjects, resources or actions).

The structure of an XACML request comprises one or more attributes that specify: (i) the entity making the access request (a subject), (ii) the resource to which the subject(s) has requested access, identified by its URI, and (iii) the action that the subject(s) wishes to take on the resource (read, write, etc.).

General usage scenario. XACML provides a standard reference architecture to achieve the enforcement of XACML policies. Figure 7.2 depicts a simplified version of the XACML policy engine, responsible for this enforcement. The Policy Enforcement Point (PEP) forms a request based on the attributes of the requester, the resource and the action on that resource that the requester wants to perform. The PEP then sends this request to the Policy Decision Point (PDP). The PDP evaluates the requests and finds policies that apply to that request, from the Policy Administration Point (PAP). As a result of evaluating the policy, the PDP sends a response context that specifies the access decision taken Permit or Deny. PAP maintains and stores the policies.

XACML provides a standard to express access control policies. An advantage of this language is that it presents many extensible points that can serve to express accountability requirements. However, the definition of XACML obligations lacks support for privacy and usage control obligations. The PrimeLife Policy Language (PPL) [START_REF] Ardagna | Primelife policy language[END_REF] is an XML-based policy language proposed by the PrimeLife project [152] that extends XACML. The language combines access and data handling policies. The goal of PPL is to make service customers aware of the conditions under which their data are handled. Therefore PPL gives service providers automatic means of defining and managing privacy policies while applications are enabled to compare these service privacy policies with user privacy preferences.

Terminology. The language is symmetric: a similar syntax is used to express privacy policies and preferences. A PPL policy can be defined by a service provider to specify its privacy policies. In particular, the service provider defines in the policy how the collected data will be handled by the Data Controller and the entities the data is shared with. PPL makes it possible to automatically match these privacy policies with Data Subjects' privacy preferences. The outcome of the matching procedure generates a sticky policy or an annotated sticky policy that points out the difference between a user's preference and a controller's policy. This sticky policy is bound to the data and travels with the data. The sticky policy specifies statements on:

• access control, which is inherited from XACML that PPL extends with privacyfriendly credential-based features. Conditions on access control describe how access to which resource under which condition can be granted.

• authorizations, that detail actions that the Data Controller is allowed to perform with respect to the purpose of usage of collected data. In addition, authorizations enable to define the conditions of what in PPL specification [START_REF] Ardagna | Primelife policy language[END_REF] is called downstream usage 121 . This kind of authorizations are applicable for other Data Controllers, the downstream usage becomes the sticky policy for the data as it goes downstream.

• obligations, that the PPL specification [START_REF] Ardagna | Primelife policy language[END_REF] defines as "a promise made by a Data Controller to a Data Subject in relation to the handling of his/her personal data. The Data Controller is expected to fulfill the promise by executing and/or preventing a specific action after a particular event, e.g. time, and optionally under certain conditions". In PPL, an obligation is expressed using the pair Trigger-Action. Triggers are events related to an obligation and filtered by conditions. For example, PPL defines the trigger TriggerPersonalDataDeleted that occurs whenever the personal data related to the obligation is deleted. Triggers fire Actions that are performed by the Data Controller. For instance, PPL provides the action ActionNotifyDataSubject. The complete list of available PPL Triggers and Actions can be found in Table 7.3.

PPL extends XACML with privacy-enhancing, credential-based and usage control features. The structure of XACML is preserved and PPL introduces new elements in XACML in order to enable the description of privacy policies. Such elements are the DataHandlingPolicy element that enables the Data Controller to express how the data received from the Data 

ActionNotifyDataSubject

Notifies the data subject when triggered, that is, send the information concerning the event that triggers the obligation to the data subject ActionLog Logs an event, that is, writes in a log file the information concerning the event that triggers the obligation ActionSecureLog Logs an event and ensures integrity and authentication of origin of the event Subject will be treated, the DataHandlingPreferences element that enables the Data Subject to specify how its data has to be treated by the Data Controller, Obligation that specifies which specific actions to execute when given events occur (triggers) and Authorization that specifies the actions that are allowed to be performed. Figure 7.3 presents the structure of a PPL policy.

PPL presents a generic and user-extensible structure for authorizations and obligations which are more specific than what is defined in XACML. Indeed, the users are enabled to specify and add their own authorization and obligation vocabularies. Furthermore, the Obligation Enforcement Engine [START_REF] Ali | Obligation Language and Framework to Enable Privacy-Aware SOA[END_REF] that makes sure that committed obligations as part of a sticky policy are indeed enforced may be extended with audit features to check compliance with policies. Although the adoption of PPL is still limited today, since it has not been developed until recently (2011), PPL presents features that capture most of the identified requirements (see Section 7.4). Besides, PPL can be extended to provide further components that can address even more specifically those requirements. Limitations of PPL. PPL provides elements to declare some of the accountability specific obligations such as notifications (R5) and logging (R8). However, these elements need more specification and they may be unpractical when directly used within an accountability policy. For example, in the current version of PPL, the Notify element only allows the Data Controller to notify the Data Subject. In accountability scenarios, notifications are not exclusive to the Data Subject. Instead, notifications may be sent all along the accountability chain to notify the actors within the chain of an occurred event. As far as logging is concerned, the current specification of PPL allows to declare the action to log, but we cannot specify what information has to be put in the log. Moreover, there is no way in PPL to specify the location of the data (R6). Besides, auditing (R7) is not part of the PPL language since the focus of the PrimeLife project was on privacy and not accountability. In the language specification, the way policy violations and security breaches are detected and handled remains unclear. Our policy language aims at providing a way to declare the conditions under which an audit is required, which are not provided in PPL. An audit may require the provision of evidence to enable the verification of compliance with policies, data subjects' preferences, contracts or regulations. Evidence appears then to be an accountability object of paramount importance. As audits are not part of PPL, this language fails to capture the concept of an auditor that intrinsically plays a relevant role in an accountable cloud environment. This auditor is responsible of specific tasks, such as requesting evidence or notifying actors in the accountability chain for policy violation.

In Section 7.6, we present an enhanced version of PPL with extensions that address the accountability requirements that we identified in Section 7.4.4. We call this accountability policy language A-PPL, for Accountability-PPL.

Related Work on PPL extension

Recent related work [START_REF] Butin | Log Design For Accountability[END_REF][START_REF] Henze | Towards Data Handling Requirements-aware Cloud Computing[END_REF]72] support our choice to extend PPL with some of the accountability features we identified in Section 7.4.4. However, these works do not propose a complete accountability policy language. They rather propose some extensions to the PPL language to address the requirements of logging, location and duration of storage that the authors of [START_REF] Butin | Log Design For Accountability[END_REF][START_REF] Henze | Towards Data Handling Requirements-aware Cloud Computing[END_REF]72] have identified as being keys for accountability.

Concomitantly to our work, Butin et al. [START_REF] Butin | Log Design For Accountability[END_REF] leverage PPL to design logs for accountability.

They develop two case studies (a private bank account and a hospital handling personal data) and they show the limitations of PPL with respect to logs. In particular, similarly to our PPL analysis, they identify the lack of expressiveness of PPL logging action. Indeed, the ActionLog element does not provide sufficient information in the logs. Besides, they discuss the fact that the PPL element ActionNotifyDataSubject does not allow to specify the content of the notification. In addition, the authors of [START_REF] Butin | Log Design For Accountability[END_REF] suggest that the PPL obligations should express the causal relationship between Triggers and Actions, i.e. the obligations should make explicit which Triggers fired which Actions. Therefore, the authors propose to add a TriggerId attribute in the Trigger elements and a TriggerReference attribute in the Action elements. Finally, the authors recommend to develop a more fine-grained downstream usage specification, by allowing to define a list of authorized or unauthorized third parties to whom the personal data can be forwarded. Similarly, Henze et al. [START_REF] Henze | Towards Data Handling Requirements-aware Cloud Computing[END_REF] focus on the goal to make cloud computing aware of data handling requirements. They identify location and duration of storage as the two main challenges in cloud data handling scenarios. They propose to create data annotations that contain the data handling obligations (e.g "delete after 30 days"). These annotations are transmitted to the cloud service before the annotated data in order to match the corresponding obligation against the cloud service's data handling policies. If the annotations match the data handling policies, the cloud service signs the annotation and sends it back to the user, who now has a proof that the cloud will process the data as stated in the annotation. The authors in [START_REF] Henze | Towards Data Handling Requirements-aware Cloud Computing[END_REF] suggest to leverage the PPL language to formalize the data annotation. Without giving more details, they propose to address the obligation of duration of storage by introducing maximum and minimum duration of storage attributes. They also define an extension to PPL with an element that restricts the location of stored data. On the other hand, sending annotations can impact data privacy, since the annotations leak potentially privacy-sensitive information to the cloud service.

A recent research work by Di Cerbo et al. [72] extends PPL for imposing restrictions to cloud providers on the location of storage. The authors propose a new PPL element, ActionStorageLocation, to make explicit the obligation to store outsourced data only in data centers that are located in countries specified in the policy. This element allows to define a set of attributes corresponding to the countries where storage is permitted.

A-PPL: a Policy Language for Accountability

The newly proposed A-PPL maintains the overall policy structure of PPL. Figure 7.4 shows the structure of an A-PPL policy, that derives from the XACML structure and highlights the new extensions provided by A-PPL. To support the accountability features that A-PPL has to provide, we introduce new elements and we extend the PPL engine.

Roles

PPL implicitly identifies the Data Subject and Data Controller roles. To make the identification of roles more explicit in an accountable cloud, we include in a policy a reference to the role of the different entities involved in the policy. These roles are those identified in Section 7.2.2. Thus, we create a role attribute identifier subject:role to be included as an attribute of the standard XACML element <Subject>. In addition, as the auditor plays an important role in accountability in order to conduct independent assessments of cloud services, this role has to be interpreted in terms of policies. We propose to define the role of the auditor in A-PPL. This new role is useful for accountability specific obligations such as reporting and notification (R5) or auditability (R7). 

Capturing Privacy Policies (R1)

As the purpose of PPL was to define privacy policies, A-PPL inherits the privacy-related language elements from PPL.

Access Control Rules (R2)

We introduce two new triggers which condition the execution of an obligation based on the result of an access decision. In other words, we propose TriggerPersonalDataAccess-Permitted and TriggerPersonalDataAccessDenied that occur when the evaluation of the access control on the targeted data results in "Permit", respectively "Deny".

Usage Control Rules (R3)

PPL already defines a set of Triggers and Actions for the purpose of usage control. Therefore, A-PPL is granted with the same elements.

Data Retention (R4)

PPL provides an element Purpose that allows to specify for which purpose a piece of data can be collected or accessed. In A-PPL, we define the duration attribute for Purpose that allows to specify for how long the data can be processed for a particular purpose. For instance, a particular piece of data is used for research purposes for 2 years but has to be kept for legal purposes for 5 years. In addition, this attribute implies that when all durations for each purpose have expired, the data has to be deleted, since the data cannot be used for any purpose anymore.

Reporting and Notification (R5)

PPL's ActionNotifyDataSubject element enables the data controller to send notifications to the data subject only. Our language provides a more fine-grained notification action in order to satisfy the requirement (R5). We modify the existing PPL ActionNotifyData-Subject element and call the newly created notify action ActionNotify. Notifications are not limited to notifications to the data subject only. Instead, we provide an attribute recipient that allows to indicate the recipient of the notification. The ActionNotify element presents an attribute type that specifies the type of notification to be sent to the recipient (policy violation report, audit reports, etc.). Table 7.4 describes the ActionNotify element. 

Name

ActionNotify Description This action notifies a cloud actor when triggered Parameters Media

The media used to notify the user (e-mail, SMS, etc.) Address

The corresponding address (e-mail address, phone number, etc.) Recipient The identity of the recipient of the notification Type

The type of notification(policy violation, evidence, redress, etc.)

Controlling Data Location (R6)

We propose in A-PPL a standard identifier region to express the location of collected data. This attribute should be used as an attribute of the A-PPL Purpose element that is nested inside a <AuthzUseForPurpose> environment. Thus we will limit the region among which the data can be transferred without violating the policy access control rules. This is directly responding to our requirement on controlling data location in the policy language (R6).

Auditability (R7)

Auditing plays an important role in accountability and evidence is key in the auditing processes. We identify several types of evidence such as logs or cryptographic proofs such as the ones we presented in Part I and Part II for verifiability in storage and computation. An audit protocol may involve two parties: an auditor (such as a Data Protection Authority) and an auditee (e.g a Data Controller, a Data Processor, etc.). The auditee is responsible for collecting evidence about his processing practices. We propose two extensions that relate to audits and collection of evidence. Based on the evidence request that the auditee receives from the auditor, the auditee collects the requested evidence. This evidence collection is governed by a new A-PPL trigger TriggerOnEvidenceRequestReceived, and a new A-PPL action ActionEvidenceCollection. The combination of the two A-PPL elements initiates the evidence collection by the Data Controller. Table 7.5 describes the ActionEvidenceCollection element. Name ActionEvidenceCollection Description This action collects the requested evidence Parameters Evidence The type of evidence to generate (logs, crypto proofs, etc)

Resource The ID of the resource the evidence is based on Subject The ID of the data subject the evidence is based on Recipient The ID of the recipient of the evidence (the auditor) 7.6.9 Logging (R8) PPL's ActionLog action element fails to capture the concept of logging detailed in Section 7.4.2. The logging action should provide a way to specify not only the details of the event that has to be logged but also the security properties of the logs (integrity or confidentiality of the logs for instance). Therefore, we extend the ActionLog element in A-PPL.

In particular, we introduce several parameters to make explicit which information about an event needs to be logged. A timestamp is required to log the time of the event. The policy must indicate to log the action that is performed on the data (e.g. SEND), the identity of the subject who performed the action (e.g. Cloud x) and the purpose of the action (e.g. marketing). To trace events based on data, the policy must require the identifier of the data. Other details must also be written in the logs such as some security flags that may state whether the log entry is encrypted or not. Table 7.6 describes the ActionLog element. 

Name

ActionLog Description This action logs an event based on the details in the policy Parameters Timestamp

The time of occurrence of the logged event Action

The action that is logged Purpose

The purpose of the action that is logged Subject ID

The identity of the subject that performed the action Resource ID

The identifier of the resource the action was made on Resource Location The location of the resource Security Flag 1 if the log is confidential, 2 for integrity check, 3 for both Table 7.7 compiles the new Triggers and new or extended Actions we propose in A-PPL.

A-PPLE: a policy engine for A-PPL

Policy enforcement is the task of a policy engine. In the case of policies written in A-PPL, A-PPLE handles their interpretation and automatic enforcement.

Description of A-PPLE

A privacy policy engine supporting PPL policies was originally designed in the PrimeLife project [START_REF] Trabelsi | D5.3.4 -Report on design and implementation of the PrimeLife Policy Language and Engine[END_REF]. We adapt its architecture to implement the new obligations of accountability, creating the architecture depicted in Figure 7.5. PDP: This is the component where the access control decision is taken. PDP relies on the access control engine implementation based on HERAS-AF122 for the evaluation of XACML part of an A-PPL policy. Apart from the standard attribute-based access control, the other information evaluated by the PDP is usage authorization. The usage authorization basically consists of the comparison of the list of purposes specified in the access control request with the one specified by the Data Controller in the policy.

PAP:

The Policy Administration Point is responsible for storing and deleting data and policies from the database.

Obligation Handler: It analyzes the Triggers and Actions which an A-PPL policy consists of. The obligations represented by this policy are related either to timely scheduled events or to events associated with the data life cycle, e.g. retrieval or deletion. This component keeps track of these events to generate Triggers that are part of the obligation statements in the A-PPL policy. In turn, Triggers fire the Actions associated with them. The Obligation Handler is invoked by the PEP and interfaces with the database.

Logging Handler: This module is responsible for creating and storing logs in the database. The Logging Handler is called to execute an ActionLog that is defined in the policy. In this case it includes extra information in the message such as the subject who requested a data, the action and purpose of the access, the location of data and the expiration date of the log. It interfaces with the Obligation Handler.

A-PPLE Client: This module represents an A-PPLE client in order to interact with A-PPLE.

Database: This component provides storage for A-PPL policies and personal data.

Operations of A-PPLE

To illustrate the operational behavior of A-PPLE we consider the case where a Cloud Customer requests the Data Controller to delete her data. The Cloud Customer runs an A-PPLE client module whereas the Data Controller hosts on its side the entire engine. The sequence of operations of this delete request is showed in Figure 7.6. 1. The Cloud Customer, through the A-PPLE client interface, generates a Delete request for some of her data. This request is transmitted to the Data Controller.

2. At the Data Controller side, the PEP receives the Delete request and asks the PAP to retrieve the targeted data along with its policies. In turn, the PAP generates a database query for this data and policy.

3. The database replies to this query and sends back the data and the policy to the PEP.

4. The PEP forms an XACML request 123 that is forwarded to the PDP along with the policy related to the targeted data.

5. This XACML request is evaluated by the PDP to determine whether the Cloud Customer is authorized to access and delete the targeted data.

6. In this case, the PDP acknowledges that the Cloud Customer is authorized to access and delete the data. Therefore, the PDP returns to the PEP the authorization message "Permit".

7. Then the PEP generates a TriggerDataAccessPermitted that is consumed by the Obligation Handler. 123 We recall the reader that A-PPL is based on PPL which in turn is based on XACML. Therefore, the XACML request-response messages exchange protocol are part of the A-PPL specification. The XACML request is an XML-based message that contains the several attributes (subject, resource, action) related to the considered access request. The XACML request is compared to the policy by the PDP to grant or deny access to the targeted resource.

8. The Obligation Handler queries the database for the Actions related to that Trigger.

Here, we suppose that TriggerDataAccessPermitted fires three types of Actions: Log, Notify and, naturally, Delete, which was the action requested by the Cloud Customer.

9. Once, the Obligation Handler receives the Actions from the Database, it executes them. Namely, it deletes the targeted data, notifies the Cloud Customer of this deletion and requests the Logging Handler to log information on the deletion and the notification.

10. Finally, the PEP informs the Cloud Customer on the fact that her delete access request is granted.

Integration of our StealthGuard Prototype in A-PPLE

In relation with the work we presented in Part I on Proofs of Retrievability (POR), we propose in this section to integrate the prototype for StealthGuard in the implementation of the policy engine. Indeed, the provision of POR is regarded as a particular obligation with respect to data storage: the Cloud Provider must provide evidence that it correctly stores the data of the Data Owner (this obligation can be related with Obligation 4 in Section 7.4.3).

Chapter 2 presented an implementation of StealthGuard. In the perspective of the present chapter, StealthGuard is considered as an automated mechanism to provide the evidence of correct storage and thus to enforce the obligation on evidence provision. We can therefore leverage the two A-PPL language elements we introduced in Section 7.6, namely TriggerEvidenceRequestReceived and ActionEvidenceCollection.

Practically, the A-PPLE Client module shown in Figure 7.5 embeds the operations of a

StealthGuard's data owner and verifier, that is, this module is enhanced with algorithms Keygen, Encode, Challenge and Verify of StealthGuard (see Section 2.2.4). On the other hand, the Obligation Handler module is in charge of executing the watchdog search involved in algorithm ProofGen. In Figure 7.7, we depict the sequence diagram of an execution of StealthGuard within A-PPLE.

1. When a Data Owner wishes to upload a piece of file, she runs the A-PPLE Client module which pre-processes the file according to the underlying algorithm Encode of StealthGuard, that we described in Figure 2.3. Namely, it applies an ECC to the file, encrypts it and inserts the watchdogs in random positions in the data.

2. When this operation is complete, the A-PPLE Client module uploads the retrievable version of the file to the Cloud Provider who runs an instance of A-PPLE.

3. The PEP receives the file, forwards the upload request to the PAP who stores it within the database.

4. Later on, a StealthGuard's verifier runs the A-PPLE Client module to audit the Cloud Provider on whether it correctly stores the outsourced file. This module generates a POR query that is sent to the Cloud Provider. We recall that this POR query consists in a privacy-preserving search query for some watchdogs inserted in the data.

5. At the cloud side, the PEP receives the POR query and initiates a TriggerEvidence-RequestReceived that is transmitted to the Obligation Handler module.

6. The Obligation Handler receives the trigger and fires the A-PPL action Action-EvidenceCollection. In a nutshell, this action executes algorithm ProofGen (see Figure 2.5) which performs the privacy-preserving search for the targeted watchdogs in the POR query.

7. The output of the search is returned as a POR response to the PEP which forwards it to the A-PPLE Client module of the verifier. 

Example of A-PPL Statements with respect to our Healthcare Scenario

This section gives some examples of use of the A-PPL elements, based on the healthcare scenario presented in Section 7.3 and the obligations listed in Section 7.4.3. We briefly recall these obligations and we define for each of them an A-PPL rule.

Obligation 1: The right to access, correct and delete personal data. The hospital must ensure that the patients have read and write access to their personal data that have been collected and stored in the cloud. The right to access is expressed in XACML rules that A-PPL is built upon. The data controller grants both read and write access to the data subject. In addition, the deletion of the personal data can be ruled by an A-PPL data handling policy whereby the obligation to delete the data can be expressed using the A-PPL ActionDeletePersonalData in conjunction with the trigger TriggerAtTime.

Obligation 2: Duration and Purpose of processing. The hospital must make sure that the patients' personal data is only processed for specific, explicit and legitimate purposes.

A-PPL uses authorizations to express such purposes using AuthzUseForPurpose that allows to specify the purposes for which the processors are authorized to use the collected data.

In addition, with the duration attribute for purposes, one can specify different durations for different purposes. Obligation 3: Breach notification. In case of security or personal data breaches, cloud X and Y must notify M, which in turn must notify the hospital and the hospital must notify the patients. A-PPL provides a way to notify those actors using the ActionNotify element. Figure 7.9 shows an example of policy that makes the data controller responsible for notification in case of a policy violation or a loss of data.

<a-ppl:AuthzUseForPurpose> <!--Authorization for following purposes--> <a-ppl:Purpose duration=2Y>diagnosis</a-ppl:Purpose> <a-ppl:Purpose duration=5Y>research</a-ppl:Purpose> </a-ppl:AuthzUseForPurpose> Obligation 4: Evidence of the correct and timely deletion of personal data. Cloud providers X and Y must be able to provide evidence to the platform provider M, and M must be able to provide evidence to the hospital on the correct and timely deletion of personal data. Therefore, we can use, for example, the A-PPL ActionLog element to tell the Data Processors (that is, Cloud X and Y) to track the collection, processing and deletion of personal data. Combined with the A-PPL trigger, TriggerPersonalDataDeleted, the logged event will constitute the requested evidence. Besides, we use the action ActionEvidence-Collection combined with the trigger TriggerOnEvidenceRequestReceived to require the data processor to collect logs for the deletion as evidence of its correctness. Obligation 5: Location of processing. Cloud providers X and Y, as well as the M Platform provider have contractual obligations towards their respective customers on the location of the data processing. In order to be sure that the personal data is not shipped towards location that are not authorized, A-PPL extends XACML with the region attribute to be placed in the AuthzUseForPurpose environment. For example, we specify in Figure 7.12 that only utilization of collected data in Europe are authorized.

Conclusion

Part III attempted to answer the following problem: How and to what extent can we convey accountability obligations via policies in such a way that policies are easy to write and enforce and such that Data Controllers and Data Processors can be held accountable for these obligations, thus increasing trust between Cloud Customers and Cloud Providers? 1. We demonstrate that machine-readable policies are suitable means to mitigate the accountability risks by expressing and enforcing accountability obligations related to cloud computing services.

2. From an analysis of these obligations, we identify some design requirements for an accountability policy language.

3. We propose A-PPL, as an extension of the XACML standard and the PPL language. A-PPL enables the specification of access control rules, usage control rules and accountability specific requirements (consent, audits, notification, logging).

7. An Accountability Policy Language 4. We describe an architecture for the enforcement of A-PPL policies: the A-PPL engine.

This work on a policy language for accountability is unprecedented. Before A-PPL, there existed no other language that enables to express several accountability obligations within the same framework Limitations There exists a trade-off between accountability obligations which can be stated in a policy and the technical burden of its enforcement. Automating all accountability processes is not always possible. An example concerns data location and data transfer obligations.

Regulations and contracts impose restrictions on sharing data with third-party data processors that are located in a geographical area that does not provide an adequate level of data protection. This kind of restriction would be translatable into an A-PPL policy. However, enforcing this policy, which is controlling, seems to be an open issue. Nonetheless, A-PPL and A-PPLE can be leveraged to monitor data transfer, that is verifying thanks to audit and logs that data transfers is compliant with obligations.

General Conclusions

In this dissertation, we tackled the problem of loss of control and lack of trust in cloud computing. Since cloud users relinquish to untrusted cloud servers the control of data and computation, these users should be empowered with the ability to verify that the servers are correctly handling these assets. Verifiability is hence perceived as a problem of paramount importance in cloud computing. Besides, we looked at the broader notion of accountability.

The cloud servers should be held accountable for the way they deliver the services they provide. Namely, they must comply with a set of accountability obligations that are conveyed via machine-readable policies. In particular, users should be able to audit them and receive notifications if any security breach is detected.

We stated three problems that this thesis aimed to answer. We provide here an overview of the findings that this thesis reveals.

Problem 1: Verifiable Storage. The goal was to give to cloud users some control over the data they outsourced to an untrusted cloud, by verifying that this cloud possesses the data in its entirety. Well-established cryptographic solutions based on digital signatures computed over the data to check integrity would suffice to answer this problem. However, in the cloud computing context, they are unpractical and cannot scale with big data, since they may incur large communication cost per verification. Therefore, we aimed at designing a protocol in which the cloud generates efficient and probabilistic cryptographic proofs of storage that convince the data owners that their data is correctly stored. We focused on proofs of retrievability, a particular type of proofs of storage that, in addition to the integrity guarantee, ensure the data owner that the data can be recovered even if corruption affects it. We design StealthGuard, a new POR protocol that inserts in the outsourced data special blocks as watchdogs that witness whether or not the data remains untouched in the remote storage server. We showed its practicality in terms of storage, computation and communication performance. In addition, we proved the security of our scheme. Indeed, a malicious cloud cannot deceitfully pretend to correctly store the outsourced data without being detected.

Problem 2: Verifiable Computation. Cloud users outsource to the cloud computationally demanding operations, especially in the case when these users only can afford limited computation resources. However, the lack of trust in cloud servers imposes users to verify the outcome of the operations they outsourced. Hence, we designed three protocols that generate cryptographic proofs enabling cloud users to check the integrity of computation results returned by the untrusted cloud. We considered the two security requirements that these proofs must satisfy: correctness and soundness. Namely, an untrusted cloud cannot make a verifier accept incorrect results. We proved that our protocols are secure in the standard model and rely on falsifiable assumptions. We also took care about the efficiency requirement of verifiable computation protocol. In addition, our protocols adopt the amortized model approach in which the user who outsources the computation is required to perform a one-time expensive pre-processing of this computation in order to enable verifiability. The cost of this pre-processing step is then amortized by the costs of a possibly unbounded number of verifications. In addition, we looked at publicly delegatable and verifiable solutions which may apply in real-world scenarios, as the space agency scenario we presented in this part.

Problem 3: Accountability Finally, we investigated the possibility of expressing accountability obligations in terms of policies using a machine-readable policy language. To a certain extent, these obligations rule the verifiability requirement of the protocols presented in Part I and Part II, which refers to the ability to prove whether the cloud deviates from the correct provision of the service it delivers (correct storage and correct computation). Hence, we defined the design requirements for an accountability policy language. We then presented A-PPL, which handles accountability specific requirements such as notification, logging and evidence collection. We also described an architecture for A-PPLE, the policy engine that enforces A-PPL policies. We expressed several obligations from a healthcare scenario and defined the corresponding A-PPL rules. In relation to the previous parts of this thesis, we integrated in the A-PPLE framework our StealthGuard protocol which, by means of appropriate A-PPL policies, requires the cloud to provide evidence (PORs) that it correctly stores outsourced data.

In conclusion, this thesis showed that giving some control to cloud users on the way the cloud servers operate their assets is possible and does not cancel out the advantages of outsourcing storage and computation. Deploying cryptography-based protocols for verifiable storage and computation not only detects cloud servers' misconduct but also deters servers from deviating from a correct operational behavior. The techniques of cryptographic proof verifications tend to foster adoption of cloud technologies. Indeed, proofs of retrievability enable cloud users to audit cloud servers' promise to continuously store their data intact, while proofs of correct computation allow the detection of counterfeit results. In addition, by adopting A-PPL, our policy language for accountability, cloud services can be held responsible for any failure in honoring accountability obligations. The combination of accountability policies with unforgeable proofs for verifiability contributes to the commitment of cloud services to store data and handling outsourced operations. Therefore, ensuring a proper use and provision of cloud services is not the prerogative of a single aspect of computer security such as cryptography, but it is rather the interaction of several mechanisms (policy language, notification, cryptographic protocols, etc.). The work presented in this thesis supports this concluding remark: we built a language for accountability that eases the enforcement of the cryptographic protocols we designed.

Directions for future research work

A future research direction is to investigate verifiability of outsourced data encryption, data location and data deletion. Although they have received much less attention than the problem of POR, we argue that these concerns belong to a broader view of verifiable storage in the sense that they provide verifiability for the different steps of the lifecycle of data at rest (that is, data that is not processed or transferred to third parties). We believe these topics should be carefully considered in order to provide a comprehensive cloud storage solution. There exists limited prior art on these aspects. Nevertheless some researchers propose initial frameworks for proofs of encryption, proofs of location and proofs of deletion. These researchers adopt a similar approach to the one followed by POR protocols. Therefore, solutions to these problems can be seen as applications of POR schemes.

To the best of our knowledge, only one existing solution addresses the problem of proofs of encryption. Van Dijk et al. [START_REF] Van Dijk | Hourglass Schemes: How to Prove that Cloud Files Are Encrypted[END_REF] introduce the concept of hourglass schemes which provides an encryption framework to securely store data at rest and that enables data owners to remotely verify, using a POR-like challenge-response protocol, that their data is indeed encrypted by the storage server. Hourglass functions, employed by such schemes, deter economically rational storage servers (thus, not fully malicious) from storing the data unencrypted by imposing significant operating costs. While the work by Van Dijk et al. [START_REF] Van Dijk | Hourglass Schemes: How to Prove that Cloud Files Are Encrypted[END_REF] offers an initial solution, the problem of proofs of encryption has not been investigated by other research work yet. Proofs of encryption are of interest since data protection rules entail storage service to store data of their users in an encrypted form. Hence, such proofs may become a hot topic in the coming years.

On the other hand, data location becomes a critical issue in cloud computing, as mentioned for example by Peterson et al. [START_REF] Zachary Nj Peterson | A Position Paper on Data Sovereignty: The Importance of Geolocating Data in the Cloud[END_REF] and in Section 7.4.3. The concern here is to prove that outsourced data is stored in a given geographical location. Watson et al. [START_REF] Watson | LoSt: Location Based Storage[END_REF] formalize the concept of Proofs of Location (POL) that gives a solution for verifying the location of data in distributed storage systems such as the cloud. The solution proposed in [START_REF] Watson | LoSt: Location Based Storage[END_REF] involves a challenge-response protocol between users and servers that combines (i) an Internet Geolocation System such as the ones proposed in [START_REF] Wong | Octant: A Comprehensive Framework for the Geolocalization of Internet Hosts[END_REF][START_REF] Katz-Bassett | Towards IP Geolocation Using Delay and Topology Measurements[END_REF], that allows to check geographical location of a server using trusted landmarks and network latencies, with (ii) a POR scheme, that enables to verify that a server actually stores the data it claims to store. Compared to a POR protocol, users of a POL solution must detect that (i) the server does not actually store the data, or (ii) the server does store the data but forges its location. As in the case for proofs of encryption, and despite their importance in verifiable storage and accountable systems, POL have not yet been thoroughly investigated in the cloud computing security research community.

Along with proofs of encryption and proofs of location, proofs of deletion should convince a data owner that her data is faithfully deleted. Proofs of deletion have first spurred the interest in the context of local secure storage whereby a user wants to verify that the deletion of her data is actually performed by a software-based erasure program [START_REF] Hao | Deleting Secret Data with Public Verifiability[END_REF][START_REF] Perito | Secure Code Update for Embedded Devices via Proofs of Secure Erasure[END_REF]. Yet, little attention was paid to outsourced storage deletion in the context of cloud computing [START_REF] Paul | Proof Of Erasability for Ensuring Comprehensive Data Deletion in Cloud Computing[END_REF]. Therefore, future work should include investigations on this topic.

A possible direction of research in the area of verifiable computation would integrate privacy-preserving mechanisms in the context of proofs of correct computation. Indeed, the schemes we presented in Part II do not consider encrypted data. We believe that in the context of cloud computing, performing computation on outsourced encrypted data and verifying the integrity of the results are relevant problems that we should care about. The concerns in this setting would be to allow the cloud to perform operations on encrypted data, but to prevent it from learning anything from (i) the outsourced data; (ii) the computation results and; (iii) the acceptance or the rejection of the results by the users who requested the computation. Hence, we would like to devise a solution that can address these concerns while not sacrificing efficiency.

The main direction of research in the policy language work is to implement enforcement tools. For our policy language framework to be a success, a critical challenge is to develop the components that will enforce the different obligations written in A-PPL within A-PPLE. Integrating StealthGuard to A-PPLE was a first step. Indeed, collecting and checking proofs of retrievability enable to verify that a cloud server complies with the obligation of storing data. Further components to be integrated in the policy engine would be mechanisms that allow secure logging, that is, that generate non-repudiable logs while protecting their confidentiality and integrity.

Introduction

Le terme "informatique nuagique" (en anglais cloud computing ou juste cloud ) est sans doute l'un des concepts les plus populaires dans le monde des technologies de l'information et de la communication (TICs) en ce début du XXI e siècle. L'Institut américain des Normes et de la Technologie (NIST) a fait paraître en 2011 sa définition du cloud , souvent citée dans les articles scientifiques du domaine des TICs: Le cloud computing est un modèle permettant l'accès à la demande, via le réseau, à un ensemble de ressources informatiques (réseaux, serveurs, stockage, applications et services), configurables et partagées, et qui peuvent être rapidement mises à disposition avec un effort ou une intervention du fournisseur de service minimum.

En d'autres termes, l'informatique en nuage possède les caractéristiques suivantes :

Service à la demande : les utilisateurs peuvent accéder aux services du cloud à la demande;

Accessibilité : le cloud est accessible sur l'ensemble du réseau, quelque soit l'appareil utilisé pour l'accès;

Mutualisation des ressources : les services du cloud utilisent des ressources mutualisées qui sont mises à la disposition de plusiers utilisateurs;

Élasticité : ces services doivent être élastiques, c'est-à-dire qu'ils s'adaptent rapidement aux variations des besoins des utilisateurs.

Les bénéfices du cloud

Utiliser les ressources du cloud présente de nombreux avantages aux utilisateurs (que ce soient des organisations ou des individus) :

La réduction des coûts : grâce à la mutualisation des ressources, les entreprises n'ont plus besoin d'investir dans des insfrastructures pour le stockage et la puissance de calcul;

Des accès rapides et des usages facilités : les services cloud sont accessibles n'importe quand, n'importe où, sur tout support via l'Internet;

La disponibilité du service : le cloud permet d'assurer à ses utilisateurs des services hautement réactifs avec peu de latence;

La flexibilité : grâce à la propriété d'élasticité du cloud , les utilisateurs peuvent adapter leurs demandes en ressources cloud en temps réel et ne payer que les ressources qu'ils consomment (pay-as-you-go).

Les problèmes de sécurité et de vie privée liés au cloud

Cependant, malgré tous ces avantages prometteurs, nombreux sont les organisations et les utilisateurs qui sont encore réticents à l'idée de migrer leurs données vers le cloud . La plupart des obstacles à une adoption généralisée du cloud découle d'une combinaison de deux facteurs interconnectés, à savoir la perte de contrôle et la méfiance envers le cloud :

• Les utilisateurs du cloud perdent le contrôle sur leurs données et leur traitement en les transférant aux fournisseurs de services. En effet, en externalisant leurs données et leurs opérations au cloud , les utilisateurs ne les possèdent plus et doivent compter sur les fournisseurs du cloud pour implémenter les contrôles requis sur de nombreux aspects comme le stockage, l'accès, l'usage, la confidentialité, l'intégrité ou la disponibilité des données. Cette perte de contrôle est critique pour des sociétés ou des organismes devant respecter des obligations réglementaires comme le Règlement général sur la protection des données [START_REF]the Council of 27 April 2016[END_REF], la loi américaine Health Insurance Portability and Accountability Act [1] ou la directive européene EuroSox [79]. Donc, la perte de contrôle sur les données dans le cloud implique un défi de conformité en rapport avec ces réglementations.

• Les freins à l'adoption généralisée du cloud sont également liés à la méfiance à l'égard des fournisseurs de cloud . Cette méfiance s'exprime selon deux aspects. D'abord, des défaillances involontaires dans les services du cloud peuvent causer des pertes de données ou une indisponibilité du service qui peuvent être critiques pour les organismes qui dépendent de ces services. 

Contributions

La thèse propose les contributions suivantes en rapport avec les trois problèmes énoncés plus haut.

Preuves de Stockage. Sous l'hypothèse d'un fournisseur de cloud malveillant, nous concevons un protocole qui produit des preuves cryptographiques prouvant que les données externalisées sont correctement stockées. Le protocole naïf, dans lequel le propriétaire de la donnée stocke cette donnée avec une signature électronique chez le cloud et, pour vérifier que celui-ci stocke la donnée de façon conforme, la télécharge et vérifie la signature, ne serait pas très efficace dans le contexte de l'infonuagique et du big data. Donc les solutions de preuves de stockage doivent être plus efficaces que ce simple mécanisme. Pour cette raison, nous proposons StealthGuard, notre protocole de preuve de stockage, basé sur l'idée d'insérer dans la donnée des blocs spéciaux appelés "chiens de garde".

Preuves de Calcul. Sous l'hypothèse d'un fournissuer de cloud non digne de confiance, il est possible de déléguer et de vérifier les résultats d'une opération couteûse. Le serveur cloud doit envoyer les résultats avec une preuve cryptographique garantissant que l'opération a été effectuée correctement. Nous concevons trois protocoles dans lesquels la vérification de la preuve opère de manière efficace, c'est-à-dire de telle sorte que la vérification de la preuve prend nettement moins de temps que l'exécution de l'opération. Ces trois protocoles concernent trois types d'opérations, fréquemment utilisées dans des programmes d'exploration de données, à savoir l'évaluation de polynomes, la multiplication matricielle et la recherche de conjonction de mots-clés. Ces trois solutions sont basées sur de simples propriétés mathématiques et d'outils cryptographiques bien connues, rendant nos protocoles plus efficaces que l'état de l'art. Par ailleurs, nos solutions se singularisent par le fait qu'elles permettents deux propriétés intéressantes : la délégation publique (n'importe qui, et pas seulement la personne qui a externalisé la fonction peut solliciter le cloud d'effectuer un calcul) et la vérifiabilité publique (n'importe qui, et pas seulement l'utilisateur qui a soumis la requête, peut vérifier les résultats retournés par le cloud ).

Langage de Politique pour l'Imputabilité. Nous concevons A-PPL, un langage de politique qui permet d'exprimer des obligations d'imputabilité qui conditionnent les opérations par le cloud sur les données externalisées. Ce langage de politique est compréhensible et interprétable par la machine afin de faciliter l'automatisation de la mise en oeuvre de ces politiques. Nous élaborons également A-PPLE, le moteur qui permet de mettre en pratique les politiques d'imputabilité exprimées avec A-PPL.

Preuves de Stockage

La perte de données est une des plus grandes menaces dans le cloud . Le terme de perte de données inclut non seulement la suppression non autorisée de données, mais aussi la modification irréversible de toute ou partie des données. En d'autres termes, la perte de données compromet l'intégrité et la disponobilité de ces données.

Les propriétaires des données confiées au cloud devraient pouvoir vérifier que le fournisseur de cloud les stocke correctement, c'est-à-dire, vérifier que les données sont intactes et disponibles tout au long de la période de stockage. Cette problématique est abordée dans le domaine de la recherche en preuves de stockage. Ces preuves permettent au propriétaire de données de les confier au cloud tout en ayant la capacité de vérifier que le cloud les stocke correctement. Les preuves de stockage sont des preuves cryptographiques qui sont générées et vérifiées dans le contexte d'un protocole entre le propriétaire de la donnée et le cloud .

Définition d'un Protocole de Preuves de Stockage

Ce type de protocole fait participer trois acteurs :

Le Propriétaire des données O : Il souhaite confier le stockage d'une liste de documents F à un serveur de cloud S et souhaite obtenir de S l'assurance de l'intégrité de ses documents.

Le serveur de cloud S : Considéré comme potentiellement malveillant, le serveur est censé stocker chaque fichier F ∈ F dans son intégralité. En pratique, S stocke une version vérifiable F du fichier F de sorte que S puisse produire des preuves montrant que F est correctement stocké.

Le Vérificateur V : Pour le compte du propriétaire O de la donnée externalisé, le vérificateur V interagit avec S pour vérifier si S stocke le fichier F ∈ F . Ce rôle peut être joué par O lui-même ou par n'importe quelle entité habilitée.

Sans perte de généralité, nous supposons que chaque fichier F ∈ F est composé de n sections {S 1 , S 2 , ..., S n } de tailles égales (L bits). Chacune de ces sections S i se compose de En complément de ces exigences, un protocole de preuves de stockage peut présenter certaines propriétés intéressantes :

Extractabilité : Certains protocoles permettent de récupérer la donnée en plus de vérifier son intégrité. Ce sont les protocoles de preuves de récupérabilité.

État de l'art

De nombreux protocoles de preuves de stockage ont été identifiés et analysés dans l'état de l'art. Il existe deux grands types protocoles de preuves de stockage : les protocoles de possession de données prouvables (Provable Data Possession (PDP)) et les protocoles de preuves de récupérabilité (Proofs of Retrievability (POR)). Les PDP ne satisfont pas la propriété d'extractabilité : les propriétaires de données n'obtiennent l'assurance que seulement une partie de leurs données est intacte chez le cloud . Ces protocoles ont été conçus pour la première fois par Ateniese et al. [START_REF] Ateniese | Provable Data Possession at Untrusted Stores[END_REF]. Les protocoles de POR en revanche permettent d'assurer que la donnée peut être récupérée dans son intégralité. En particulier, les protocoles de POR emploient des codes correcteurs d'erreurs (ECC) qui permettent de corriger des erreurs dans la donnée.

En nous basant sur l'analyse de l'état de l'art, nous proposons StealthGuard, un nouveau protocole de preuves de récupérabilité.

Preuves de Récupérabilité : StealthGuard

Dans ce chapitre nous présentons StealthGuard, un nouveau protocole de preuves de récupérabilité qui combine l'utilisation d'un algorithme de recherche de mots préservant la vie privée (PPWS) et l'insertion dans les données à externaliser de courtes séquences de bits générées aléatoirements et appelées chiens de garde. Notre protocole poursuit une idée déjà proposée par Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] reposant sur l'insertion à des positions aléatoires dans la donnée à externaliser de blocs aléatoires particuliers appelés chiens de garde. Les preuves de récupérabilité consistent alors à vérifier que certains de ces blocs sont toujours intacts dans les données externalisées. Nous considérons la notion de récupérabilité comme étant une combinaison des concepts d'intégrité et de disponibilité des données. Les preuves de récupérabilité (POR) sont un cas spécial des preuves de stockages et donc héritent des propriétés précedemment énoncées.

Modèle de sécurité

Un protocole de POR doit être complet et robuste. L'exigence de complétude signifie que le protocole ne produit aucun faux négatif, c'est-à-dire qu'un vérificateur accepte toujours une preuve construite par un serveur honnête. La robustesse caractérise le fait qu'il est impossible pour un serveur malveillant de faire accepter par un vérificateur des preuves de récupérabilité contrefaites.

Aperçu du protocole

En substance, lors de la phase de configuration, pour préparer une version vérifiable F d'un fichier F , le propriétaire de ce fichier O exécute l'algorithme Encode qui chiffre le fichier et y insère les chiens de garde générés pseudo-aléatoirement. Le chiffrement garantit que les blocs de données et les blocs de chiens de garde sont indifférentiables. Par ailleurs, Encode applique un code correcteur d'erreur sur le fichier pour rendre possible la récupération du fichier corrompu par de "petites" erreurs. Une fois que la donnée est confiée au serveur S, le vérificateur V qui souhaite vérifier la récupérabilité du fichier F interagit avec S dans la phase de challenge. V exécute l'algoritme Challenge qui génère des requêtes pour plusieurs chiens de garde, afin de vérifier qu'ils sont toujours intacts dans le fichier F stocké chez le serveur S. En réponse, celui-ci invoque l'algorithme ProofGen qui traite ces requêtes et produit les preuves pour les chiens de garde ciblés. Si une partie du fichier est altérée, alors ces altérations affecteront aussi les chiens de garde avec une grande probabilité.

Notre solution diffère de celle proposée par Juels and Kaliski [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] dans le génération de la preuve avec l'algorithme ProofGen. Dans l'article [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF], le vérificateur V choisit un ensemble de chiens de garde et envoie leurs positions supposées au serveur S qui retourne les blocs correspondant à ces positions. Ensuite, V vérifie que les blocs reçus sont bien les chiens de garde demandés. Cette solution présentée dans [START_REF] Juels | PORs: Proofs Of Retrievability For Large Files[END_REF] ne permet cependant pas un nombre illimité de vérifications car en révélant la position des chiens de garde au serveur, ces chiens de garde ne peuvent plus être utilisés pour des vérifications futures. Donc le serveur ne pourrait garder que les blocs correspondant aux chiens de garde, supprimer les blocs de données et produire des preuves de récupérabilité correctes alors même que le serveur ne stocke pas la donnée dans son intégralité.

Pour faire face à ce problème, notre protocole StealthGuard utilise un algorithme de recherche de mot préservant la vie pricée en combinaison des chiens de garde. Ce type d'algorithme permet de garantir que le serveur ne découvrira pas quels chiens de garde sont ciblés par des requêtes de recherche. Par conséquent, V peut envoyer un nombre illimité de requêtes, même pour le même chien de garde, sans le besoin de mettre à jour les chiens de garde déjà consommés. De plus, les résultats de la recherche sont illisibles par le serveur qui ne pourra donc pas savoir si le chien de garde a bien été récupéré ou non. En conséquence, le seul moyen pour le serveur de convaincre V de la récupérabilité du fichier F est de retourner des résultats de recherche valides, c'est-à-dire en stockant F dans son intégralité et en exécutant la recherche correctement.

Détails du protocole

Comme tout protocole de preuves de stockage, StealthGuard se divise en trois phases : configuration, challenge et vérification. Nous donnons dans les lignes qui suivent les détails des opérations effectuées dans chacune des phases.

Configuration

Cette phase prépare une version vérifiable F du fichier F à confier au cloud . Nous invitons le lecteur à se reporter à la (ii) une permutation appliquée à l'ensemble des blocs du fichier, blocs de parité inclus; (iii) le chiffrement de chaque bloc de fichier en utilisant un chiffrement sûr sémantiquement afin de rendre les blocs de données et les chiens de garde indifférentiables; (iv) la création des chiens de garde de façon pseudo-aléatoire; (v) l'insertion de ces chiens de garde fraîchement créés dans des positions choisies pseudo-aléatoirement dans le fichier F .

Challenge

Une fois que le fichier vérifiable F est confié au cloud , V souhaite vérifier sa récupérabilité. Pour ce faire, V crée des requêtes de recherche pour un certain nombre de chiens de garde Avant de décrire comment V crée une requête de recherche pour un chien de garde, voyons d'abord comment S traite cette requête. S exécute l'algorithme ProofGen. Cet algorithme crée pour chaque requête reçue un nombre q d'index de recherche correspondant à q matrices dont le nombre d'éléments est égal au nombre de blocs contenus dans une section S i du fichier F . Chacune de ces matrices de recherche est remplie avec des bits témoingant de la présence des blocs dans la section ciblée par la requête : une position (donc un bit) dans chaque matrice correspond à un bloc dans la section. Ce bit est calculé à l'aide d'une fonction de hachage prenant en entrée le bloc correspond à la positoin courante et un nonce cryptographique. Le nombre q correspond au nombre q de bits requis pour la sécurité du protocole.

En se basant sur la requête de recherche générée par l'algorithme Challenge exécuté par V , ProofGen récupére de maniére privée la valeur des bits à la position correspondant au chien de garde recherché. Cette opération s'appuie sur l'algorithme d'extraction privée sousjacent notre algorithme de recherche privée. En conséquence, l'algorithme Challenge crée une requête de recherche privée qui traduit, de façon chiffrée, le fait que le serveur doit récupérer les bits correspondant à la position du chien de garde ciblé par la requête. Finalement, la preuve de récupérabilité comprend les q bits-témoins correspondant au chien de garde.

Vérification

Une fois que V reçoit de la part de S la preuve de récupérabilité, la phase de vérification permet vérifier que ladite preuve est valide. Cette opération consiste à vérifier que les bits retournés par S sont ceux attendus par V .

Analyse de sécurité

Nous prouvons dans l'analyse de sécurité que notre protocole StealthGuard est complet et robuste. En particulier, dans le cas de la robustesse de notre solution, nous montrons que le vérificateur doit créer un nombre γ de requêtes de recherche de chiens de garde afin de pouvoir décider de la récupérabilité du fichier confié au cloud avec une probabilité proche de 1. Ce nombre γ dépend de plusieurs facteurs parmi lesquels : le paramètre de sécurité de notre schéma, le taux de correction du code correcteur d'erreur ainsi que le nombre de blocs contenus dans chaque section du fichier externalisé.

Calcul Vérifiable

L'avènement de l'informatique nuagique offre aux particuliers et aux entreprises un paradigme non seulement pour externaliser le stockage de leurs données potentiellement considérables mais aussi l'exécution d'opérations très demandeuses en puissance de calcul. Cependant, externaliser ces opérations peut compromettre leur confidentialité et intégrité, ce qui peut dissuader finalement l'adoption des technologies du cloud . En effet, comme mentionné plus hat, le cloud n'est pas digne de confiance. Un des problémes rencontrés est l'intégrité des calculs externalisés. En particulier, nous consdérons le scénario suivant : un utilisateur souhaite déléguer au cloud l'exécution d'une operation f de telle sorte que cet utilisateur peut soumettre des valeurs d'entrée x et recevoir du cloud le résultat y = f(x). Le problème soulevé dans ce scénario est le suivant : comment l'utilisateur peut-il être sûr que y correspond de façon légitime à l'exécution de f avec l'entrée x ? En d'autres termes, le cloud doit non seulement exécuter correctement la fonction demandée mais aussi convaincre lútilisateur que le résultat est correct. Le défi pour répondre à cette problématique réside dans le fait que lútilisateur cède la fonction f au cloud . Donc la solution hypothétique selon laquelle l'utilisateur recalcule y * = f(x) et ensuite compare y * = y ne peut pas être considérée. Par ailleurs, cette solution triviale ne serait pas efficace car recalculer y * serait aussi coûteux que calculer y, ce qui annule l'intêret d'externaliser la fonction f au départ. Pour faire face à ces défis, nous allons concevoir des protocoles pour le calcul vérifiable dans lesquels le cloud peut convaincre un utilisateur de l'exactitude des calculs de telle sorte qu'il est toujours plus profitable pour l'utilisateur de déléguer la fonction au cloud plutôt que de la calculer chez lui. Gennaro et al. [90] a formalisé le concept de calcul vérifiable, où l'utilisateur délègue l'exécution d'une fonction au cloud et reçoit le résultat accompagné d'une preuve cryptographique assurant l'exécution correcte de l'opération demandée.

Un protocole de calcul vérifiable doit répondre à plusieurs exigences :

Efficacité : Pour ne pas annuler le bénéfice d'externaliser une fonction au cloud , le coût pour l'utilisateur de soumettre une valeur d'entrée et de vérifier la preuve de calcul doit être nettement moindre que celui d'exécuter la fonction localement. De plus, les protocoles de calcul vérifiable adoptent un modèle d'amortissement qui autorise l'utilisateur à exécuter une phase de configuration, coûteuse mais unique, préparant la fonction avant son externalisation. Cette phase de configuration est ensuite amortie avec un nombre illimité de vérifications de résultats rapides.

Sécurité : Les preuves de calcul doivent satisfaire deux propriétés classiques en cryptographie : l'exactitude (un serveur honnête ne peut pas être accusé d'avoir mal exécuté la fonction) et la robustesse (si le serveur dévie d'une correcte exécution de la fonction externalisée alors il ne pourra pas créer des preuves factices qu'un vérificateur acceptera).

Autres propriétés : Dans certaines applications où des données publiques sont impliquées, un protocol de calcul vérifiable peut présenter les propriétés de délégation publique (n'importe qui peut soumettre une valeur d'entrée qu cloud pour la fonction externalisée) et de vérification publique (n'importe qui peut vérifier un résultat retourné par le cloud ).

Définition d'un protocole de calcul vérifiable public

Quatre acteurs sont impliqués dans ce type de protocole : q i X i et le polynôme reste R(X) = r 1 X + r 0 . Ensuite, O confie les polynômes A et Q à S et publie la clé publique PK A = (g b 0 , g r 1 , g r 0 ). Plus tard, quand un utilisateur Q souhaite évaluer le polynôme A à un certain point x, celui-ci exécute l'algorithme ProbGen qui calcule et publie la clé publique de vérification VK x = (VK x,B , VK x,R ) = (g B(x) , g R(x) ), puis transmet σ x = x à S. Ce dernier invoque l'algorithme Compute qui calcule y = A(x) et génère la preuve π = Q(x). Après réception de la réponse σ y = (y, π) de la part de S, un vérificateur V exécute l'algorithme Verify qui vérifie si g y = (g B(x) ) π g R(x) .

L'efficacité de la vérification découle du fait que B et R ont un degré petit. En effet, pour vérifier l'exactitude d'un résultat σ y , V effectue un nombre faible et constant d'opérations, contrairement aux O(d) operations pour évaluer le polynôme A.

La robustesse de ce protocole s'appuie sur la confidentialtié des polynômes B et R. Cependant, puisque B est de degré 2, la confidentialité de ces deux polynômes peut être facilement menacée en divulguant le polynôme quotient Q. Pour remédier à cet inconvénient, l'algorithme Setup code le polynôme Q en utilisant un codage homomorphe pour l'addition à sens unique. Plus précisément, chaque coefficient q i du polynôme Q est codé selon h q i . Par conséquent, EK A comprend tous ces h q i . De cette manière, l'algorithme Compute génère la preuve π = h Q(x) tout en préservant la confidentialité des polynômes B et R.

Pour finir, nous nous servons des opérateurs de couplage bilinéaires pour permettre à V de vérifier l'exactitude du résultat retourné par S. Autrement dit, l'algorithme Verify vérifie que e(g, h y ) = e(VK x,B , π)e(g, VK x,R ). En conséquence, notre protocole est robuste sous l'hypothèse d/2 -forte de Diffie-Hellman ( d/2 -SDH) précisée ci-dessous.

Hypothèse D-SDH

Soient G 1 , G 2 et G T trois groupes cycliques du même ordre premier p tels qu'il existe un opérateur de couplage bilinéaire e : G 1 × G 2 → G T .

L'hypothèse D-forte de Diffie-Hellman (D-SDH) est valable, si étant donné le tuple (g, g α , h, h α , ..., h α D ) ∈ G 2 1 × G D+1 2 pour un α ∈ F * p choisi aléatoirement, la probabilité de générer une paire (β, h 1/(β+α) ) ∈ F p \{-α} × G 2 est negligeable.

Multiplication matricielle vérifiable publiquement

Dans le cas de la multiplication matricielle, le modèle de protocole de calcul vérifiable public se traduit ainsi : le propriétaire O souhaite déléguer une matrice M de taille (n, m) (pouvant être très grande) et contacte le serveur S pour calculer y = M x.

Comme dans l'article publié par Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF], notre protocole de multiplication matricielle vérifiable publiquement poursuit l'idée suivante. Dans le but de vérifier que le serveur S multiplie correctement une matrice M de taille (n, m) à éléments M ij avec un vecteur colonne x = (x 1 , x 2 , ..., x m ) , O invoque l'algorithme Setup qui choisit aléatoirement une matrice secrète R de taille (n, m) à éléments R ij et fournit à S la matrice M et une matrice auxiliaire N de taille (n, m) telle que N ij = gM ij g R ij (où g = g δ pour un δ généré aléatoirement).

Par conséquent, quand un utilisateur Q fait appel à l'algorithme ProbGen pour solliciter S à multiplier la matrice M avec un vecteur x de son choix, celui-ci exécute l'algorithme Compute qui retourne le vecteur y = (y 1 , y 2 , ..., y n ) et la preuve de calcul π = (π 1 , π 2 , ..., π n ) , de telle sorte que π i = gy i g m j=1 R ij x j , si S est honnête. Si on pose π i = g γ i et γ = (γ 1 , γ 2 , ..., γ n ) , alors le processus de vérification consiste à vérifier si γ = δ y + R x.

Pour transformer cette intuition en une solution pratique, on doit assurer que le processus de vérification est beaucoup moins coûteux que la multiplication M x pour n'importe quel vectuer x. Pour ce faire, nous observons que pour n'importe quel vecteur λ = (λ 1 , λ 2 , ..., λ n ), vérifier que λ γ = δ λ y+ λ(R x) (c'est-à-dire que la projection de l'équation de vérification sur un vecteur λ aléatoire) ne requiert que O(n) de temps si le vecteur λR est calculé préalablement. Donc, nous définissons la clé publique comme un codage à l'exposant de λR et la clé publique de vérification associée au vecteur x comme un codage à l'exposant de ( λR) x.

Plus conrètement, l'algorithme Setup génère les éléments de la matrice auxiliaire N selon La solution que nous proposons dans cette thèse est vérifiable et déléguable publiquement. Elle est aussi robuste sous l'hypothèse de Diffie-Hellman co-calculatoire (co-CDH).

N ij = gM ij i g R ij i avec g i = g λ i ,

Hypothèse co-CDH

Soient G 1 , G 2 et G T trois groupes cycliques du même ordre premier p tels qu'il existe un opérateur de couplage bilinéaire e : G 1 × G 2 → G T .

L'hypothèse de Diffie-Hellman co-calculatoire (co-CDH) est valable sur G 1 , si étant donné g, g α ∈ G 1 et h, h β ∈ G 2 pour α, β ∈ F * p , la probabilité de calculer g αβ est négligeable.

6 Recherche de conjonction de mots-clés vérifiable publiquement

Dans le cas de la recherche de conjonction de mots-clés, le modèle de protocole de calcul vérifiable public se traduit ainsi : le propriétaire O souhaite déléguer un ensemble de fichiers F et contacte le serveur S pour chercher dans F une conjonction de mots-clés W = {ω 1 , ω 2 , ..., ω k }.

La figure 7.14 donne un aperçu de notre protocole. Notre protocole s'appuie sur l'outil cryptographique appelé accumulateur à base de polynômes [START_REF] Nguyen | Accumulators From Bilinear Pairings and Applications[END_REF]. Par définition, cet outil permet de représenter un ensemble sous la forme d'un polynôme unique de telle sorte que les racines du polynôme sont exactement les éléments de cet ensemble. Plus formellement, soit un ensemble S = {h 1 , ..., h n } d'éléments dans F p . Cet ensemble peut être codé sous la forme d'un unique polynôme P S (X) = h i ∈S (X -h i ). Soit g un générateur quelconque d'un groupe bilinéaire G d'ordre premier p. Étant donné le tuple (g, g α , g α 2 , ..., g α D ), où α est choisi aléatoirement dans F * p et D ≥ n, Nguyen [START_REF] Nguyen | Accumulators From Bilinear Pairings and Applications[END_REF] définit l'accumulateur public des éléments dans S : Acc(S) = g P S (α) ∈ G. Les accumulateurs à base de polynômes rendent par ailleurs possible un test vérifiable d'appartenance, qui peut être adapté au problème de recherche vérifiable de mots-clés. Une approche naïve pour adapter les accumulateurs au problème de recherche serait de représenter les mots-clés de chaque fichier contenu dans F avec un unique accumulateur pour chaque fichier. Pour vérifier qu'un mot est présent dans un fichier de F , l'utilisateur Q envoie d'abord une requête de recherche au serveur S, à partir de laquelle ce dernier génère une preuve d'appartenance si ce mot-clé existe dans le fichier en question, ou une preuve de non-appartenance sinon. Cependant, cette solution n'est pas efficace. Étant données les propriétés des accumulateurs à base de polynômes, la complexité de la recherche dans un L'hypothèse D-forte de Diffie-Hellman bilinéaire (D-SBDH) est valable, si étant donné le tuple (g, g α , ..., g α D ) ∈ G D+1 pour un α ∈ F * p choisi aléatoirement, la probabilité de générer une paire (x, e(g, g) 1/(x+α) ) ∈ F p \{-α} × G est negligeable.

Langage de Politiques d'Imputabilié

Alors que les protocoles présentés précédemment traitaient d'outils cryptographiques destinés à vérifier qu'un serveur de cloud effectue les opérations demandées, notre travail sur le langage de politiques permet d'étendre le concept de vérifiabilité à celui d'imputabilité. Nous condirérons l'imputabilité comme étant une notion qui permet de définir la gouvernance des données au sein de laquelle les entreprises, à qui sont confiées des données personnelles et sensibles, sont tenues responsables pour stocker, traiter et partager les données selon des obligations contractuelles et règlementaires. L'organisme, sous cette définition de l'imputabilité, doit implémenter des actions adéquates et prendre en compte des mesures de restauration dans les cas où cet organisme échoue à agir convenablement [START_REF] Pearson | Accountability for Cloud and Other Future Internet Services[END_REF]. Les obligations proviennent de plusieurs sources, notamment le Règlement Général sur la Protection des données [START_REF]the Council of 27 April 2016[END_REF]. Elles permettent de clarifier les relations liées à l'imputabilité dans le cloud , c'est-à-dire qui est responsable de quoi et envers qui. Donc définir des politiques appropriées représentant les obligations liées à l'imputabilité est une exigence fondamentale pour des mecanismes de contrôle dans le sens où les politiques réduisents les risques, à condition que leurs mises en application et la vérification de leur conformité soient rendues possibles.

Nous étudions alors la conception d'un langage de politiques qui permet d'exprimer les obligations d'imputabilité. L'objectif de notre travail est d'analyser comment et dans quelle mesure nous pouvons transmettre des obligations via un langage expressif et déclaratif, de telle sorte que ces politiques soient faciles à écrire, à gérer, à mettre en oeuvre et à valider. Nous nous intéressons alors à des politiques interpretables par la machine. Nous proposons donc A-PPL, un nouveau langage de politique basé sur un langage existant PPL, lui-même basé sur un langage devenu standard, à savoir XACML. A-PPL est à la fois expressif et déclaratif.

Pour concevoir ce langage, nous avons d'abord analysé les concepts derrière la notion d'imputabiité. Nous avons aussi étudié les obligations afin d'identifier les exigences pour un langage de politiques d'imputabilité. Nous avons passé en revue l'état de l'art afin de choisir un langage, dans le but de l'améliorer afin de répondre aux exigences liées à l'imputabilité. Finalement, nous proposons nos extensions ainsi que le moteur, l'A-PPL engine, qui permet de mettre en oeuvre une politique d'imputabilité écrite avec A-PPL. Ce travail s'inscrit dans le projet européen A4Cloud. 

A-PPLE

La mise en oeuvre de la potique écrite en A-PPL est l'affaire du moteur appelé A-PPLE. A-PPLE étend le moteur utilisé par les langages sur lesquels A-PPL est basé, à savoir XACML et PPL.

En particulier, nous avons développé le composant qui s'occupe de mettre en oeuvre les obligations d'imputabilité comme les notifications ou la consignation des actions. Par ailleurs, nous avons intégrer nos travaux sur les preuves de récupérabilité avec StealthGuard dans le moteur A-PPLE afin de permettre des audits du cloud quant à l'intégité des données.

  If we denote d(a, b) the Hamming distance between two bit strings a = (ai) i∈[0,n-1] and b = (bi) i∈[0,n-1 with n ∈ N, then d(a, b) = n i=1 ai ⊕ bi.
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  ik quantifies the adversarial corruptions in split Ŝ * i , that is the number of errors in that split. By applying Lemma 1, we find the bound P E (Fail,j) ≤ e -α 2 µ 3 where µ = E[ D k=1

  ECC that corrects up to 228 corrupted blocks. In other terms, it operates the (D, m, d)-Reed-Solomon code of error rate ρ = 5% and where d = 456 and D = m + d -1 = 4551. Thereafter, StealthGuard inserts v = 8 watchdogs per split.
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  corrupted blocks, namely the ECC rate is ρ = 5%, d = 228 and D = m + d -1 = 2275. Besides, the test inserts v = 3 watchdogs in each split.
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  and the evaluation key EK (k) f . Then, given an input x (k) and public key PK (k) f associated with file f (k) , adversary A queries O ProbGen to generate an encoding σ (k)

  (k) f } 1≤k≤t she has received during the learning phase. Then, A outputs a challenge input x * ∈ D f * and executes algorithm ProbGen with public key PK f * and x * to get the matching pair of encoding σ x * and public verification key VK x * . Finally, adversary A generates an encoding σ y * and runs algorithm Verify on the pair (σ y * , VK x * ).
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  Figure 4.1 illustrates the details of the different algorithms involved in our protocol for verifiable polynomial evaluation.
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  Figure 4.1: Verifiable Polynomial Evaluation
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  where g α is given by the d/2 -SDH tuple returned by O SDH . If ( r (k) 0 , r (k) 1 ) = (1, 1), then adversary B stops the experiment. 4. Otherwise, B returns public parameters param, evaluation key EK (k) A and public key PK
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  to adversary A.It can easily be shown that if adversary B does not stop the experiment, then the distribution of the tuple ( param, PK(k) A , EK(k)A ) returned by adversary B is statistically indistinguishable from the distribution of (param, PK A , EK A ) in Game 0. As a matter of fact, if we denote for all 0

G 2

 2 and the computation of 2 bilinear pairings (indeed, we can rephrase Equation4.1 as e(g, h y VK (x,R)
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 42 Figure 4.2: Experimental measurements

  Finally, Setup sets the evaluation key to EK M = (M, N). Public key computation: Setup generates m keys PK j = e( n i=1 g R ij i , h), 1 ≤ j ≤ m and sets PK M = (PK 1 , PK 2 , ..., PK m ).

  x . In turn, server S performs the multiplication of x by M by invoking algorithm Compute with inputs encoding x and evaluation key EK M . Compute outputs an encoding of the multiplication result σ y . Algorithm ProbGen and Compute operate as follows: ProbGen( x, PK M ): On input of column vector x = (x 1 , x 2 ..., x m ) ∈ F m p and public key PK M = (PK 1 , PK 2 , ..., PK m ) associated with matrix M , this algorithm derives verification key VK x = m j=1 PK x j j and returns encoding σ x = x and verification key VK x .Compute(σ x , EK M ): Provided with encoding σ x = x = (x 1 , x 2 , ..., x m ) and evaluation key EK M = (M, N), algorithm Compute multiplies matrix M with vector x, which yields a column vector y = (y 1 , y 2 , ..., y n ) . Then, Compute evaluates the product: π = and outputs encoding σ y = ( y, π).
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 51223 Figure 5.1: Verifiable Matrix Multiplication Algorithm: {param, PKM , EKM } ← Setup(1 κ , M ) 1. Parameter generation Select prime p and groups G1, G2 of prime order p that admits a pairing e : G1 × G2 → GT ; Pick n generators gi of G1 and a generator h of G2; Select random δ ∈ F * p ; Compute h = h δ ; Set param = {p, G1, G2, GT , e, {gi} 1≤i≤n , h, h}; 2. Evaluation key computation Select random (n, m)-matrix R of element in F * p ; For 1 ≤ i ≤ n, 1 ≤ j ≤ m do Compute Nij = g δM ij +R ij i ; End Set EKM = (M, N); 3. Public key computation For 1 ≤ j ≤ m do Compute PKj = e(

j

  , where PK j = e( n i=1 g R ij i , h), we get: e(Π, h) = e( n i=1

3 . 5 .

 35 B generates an (n, m)-random matrix N (k) of elements N (k) ij ∈ G 1 ;4. Afterwards, B computes, for all 1 ≤ k ≤ t, and for all 1 ≤ j ≤ m, B defines the public key associated with matrix M (k) as PK , B sets the corresponding evaluation key to EK (k) M = (M (k) , N (k) ). Adversary B concludes its simulation of oracle O Setup by outputting public parameters param k , public key PK (k) M and evaluation key EK (k)

  k) m ) and queries oracle O ProbGen with the pair ( x (k) , PK (k) M ). As a result, adversary B simulates oracle O ProbGen and outputs the pair ( x

  and the (n, m)-matrix N of elements N ij ∈ G 1 . The storage complexity is equal to nm • |F p | bits and nm • |G 1 | bits where |F p | (resp |G 1 |) designates the size (in bits) of an element in F p (resp in G 1 ).
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 52 Figure 5.2: Experimental measurements in function of the number of columns
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 53 Figure 5.3: Experimental measurements in function of the number of rows
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 61 Figure 6.1: Overview of our protocol for Verifiable Conjunctive Keyword Search

Figure 6 . 2 :

 62 Figure 6.2: Cuckoo Hashing Algorithms Algorithm: CuckooInsert(I, H1, H2, x) # Insert x in index I using hash functions H1, H2 : {0, 1} * → [1, m] 1. Compute i1 = H1(x) and i2 = H2(x);

6. 4 . 2 . 1

 421 Polynomial-based accumulators.
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 634 Figure 6.3: Accumulator Computation Algorithm: (SK, PK) ← KeyGenAcc(1 κ ) # Generates the keying material 1. Select random α ∈ F * p ; 2. Set SK = α; 3. For 0 ≤ i ≤ D do Compute g α i ; End 4. Set PK = {g, g α , g α 2 , ..., g α D }; 5. Return (SK, PK);

Figure 6 .

 6 Figure 6.3 gives the detailed instructions of the two first algorithms presented in Definition 17, namely KeyGenAcc and ComputeAcc (the two other algorithms are considered in Section 6.4.2.2).The different values that come into play in the accumulator computation can be interpreted as follows: The value D imposes an upper-bound on the number of elements to be accumulated in the set; α coincides with the accumulator secret key and the tuple (g, g α , g α 2 , ..., g α D ) represents the corresponding public key. It should be mentioned that the accumulator value can be computed by any party who has access to this tuple using Fast Fourier Transform (FFT) interpolation, as explained in[START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF].We indicated above that polynomial-based accumulators accommodate verifiable test of membership and set intersections. In the following paragraphs, we give an overview of these two protocols.
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 64 Figure 6.4: Verifiable Test of Membership

4 .

 4 X) + PS(h); 3. Compute the witness Ω S,h = g Q S,h (α) ; Return w S,h = (PS(h), Ω S,h );Algorithm: {h ∈ S, h / ∈ S, Reject} ← VerifyMembership(h, Acc(S), w S,h , PK)# Verify the proof and output the result of the test of membership 1. Parse w S,h = (PS(h), Ω S,h );2. Verify e(Ω S,h , g α • g -h )e(g P S (h) , g) ? = e(Acc(S), g). If it fails then return Reject; 3. If PS(h) = 0 then return h ∈ S else return h / ∈ S;
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 65 Figure 6.5: Verifiable Set Intersection
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 66223 Figure 6.6: Merkle Tree Algorithms

Figure 6 . 7 : 2 .

 672 Figure 6.7: Setup Algorithm: (param, PKF , LKF ) ← Setup(1 κ , F ) # F = {F1, ..., Fn}: set of files # W = {ω1, .., ωN }: list of distinct words in F sorted in lexicographic order. 1. Parameter generation Pick D, g, G, GT , e, H : {0, 1} * → Fp as function of security parameter 1 κ ; Pick random α ∈ F * p and compute public values {g, g α , ..., g α D }; 2. Construction of the Index # Create an index I with m buckets of size d where d < D Identify W from F ; Pick random hash functions H1, H2 : {0, 1} * → [1, m];

Figure 6 . 8 : 2 .

 682 Figure 6.8: Verifiable Conjunctive Keyword Search
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 613 Figure 6.13: Deletion in a Merkle tree

Figure 6 . 14 :

 614 Figure 6.14: Insertion in a Merkle tree

  The rest of the simulation of O Setup is operated as in Figure 6.7. Afterwards, adversary A 1 selects a collection of keywords W k to search for in a set of files F k and invokes O QueryGen . Adversary B 1 computes the response of O QueryGen and returns encoded query E Q,k = W k and the verification key VK Q,k = (PK F k , W k ). Later, A 1 returns an encoded response E R,k and runs Verify.

3 . 2 . 5 .

 325 In the challenge phase of the soundness game (cf. Algorithm 6), A 1 first selects a public key PK * F from the keys he has received earlier, and a collection of keywords W * to search for in a set of files F * associated PK * F then A 1 runs O QueryGen (W * , PK * F ) which is simulated by B 1 and outputs the encoded query E * Q = W * and the verification key VK* Q = (PK F * , W * ). 4. Then, A 1 returns E * R = (∅, ω * , AF * 1 , AF * 2 , Π * 1 , Π * 2 , path• The empty set, being the result of the search, meaning that the keyword ω * ∈ W * was not found in F * , although ω * is indeed in F * ; • The accumulators AF * 1 , AF * 2 of the buckets at the positions associated to ω * in index I * of files F * ; • Π * 1 , Π * 2 , the proofs of non-membership of ω * with respect to buckets B * i 1 , B * i 2 , where i 1 and i 2 are the positions assigned to keyword ω * in index I * ; • path * 1 , path * 2 , the authentication paths in Merkle tree TW for the accumulators of buckets AF * 1 , AF * Since we assume H is a collision-resistant hash function, the Merkle tree authentication proves that AF * 1 and AF * 2 are actually associated with leaves at positions i 1 and i 2 in TW. More precisely, it proves that path * 1 and path * 2 authenticate the values H( AF * 1 ||i 1 ) and H( AF * 2 ||i 2 ) and that AF * 1 and AF * 2 correspond to Acc(B * i 1 ) and

2. A 2

 2 enters the soundness game as described in Algorithm 5 and when A 2 invokes O Setup with the sets of files F k (for 1 ≤ k ≤ t), B 2 simulates O Setup and generates (param, PK F k , LK F k ), as follows: (a) B 2 selects the parameters g, G, G T , e and H; (b) B 2 computes the tuple T k (α) = (g, g α k , g α k 2 , ..., g α k D ) where α k = α • δ k + β k for some random δ k , β k ∈ F * p . Similar to Type 1 forgery, T k (α) can be computed by B 2 using the Binomial Theorem; (c) The rest of the simulation is operated as in Figure 6.7. Thereupon, adversary A 2 selects a collection of keywords W k to search for in a set of files F k and invokes O QueryGen . Adversary B 2 computes the response of O QueryGen and returns encoded query E Q,k = W k and the verification key VK Q,k = (PK F k , W k ). Later, A 2 returns an encoded response E R,k and runs Verify. 3. Afterwards, adversary A 2 enters the challenge phase of the soundness experiment, specified in Algorithm 6. On input of search key LK F * and a query on a collection of keywords W * = {ω * 1 , .., ω * k } to be searched for in the set of files F * associated with a public key PK * F obtained earlier, A 2 runs OQueryGen. B 1 simulates the output of this oracle and returns the encoded query E * Q = W * and the verification key

g) 1

 1 α+ β * -fid * δ * Therefore, if β * = fid * , then adversary B 2 breaks the D-SBDH assumption with the pair β * -fid *

Figure 6 .

 6 15 compares the average total time for the Setup phase for different values of n and m (thus different values for d since N is fixed and m, d and N are linked with the relation m = 1+ε
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 615 Figure 6.15: Average total time of the Setup phase
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 616 Figure 6.16: Total time of the Search phase (fixed number of searched keywords)
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 618 Figure 6.18: Total time of the Search phase -one keyword is not found
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 71 Figure 7.1: Healthcare Scenario [34]

Figure 7 . 2 :

 72 Figure 7.2: XACML reference architecture (simplified)[START_REF] Steel | Core Security Patterns: Identity Management Standards and Technologies[END_REF] 

  the personal data bound to the obligation is accessed of one of the defined purposesTriggerPersonalDataDeletedOccurs when the personal data associated with the obligation is deleted TriggerPersonalDataSent Occurs when the personal data akin to the obligation is forwarded to a third-party TriggerDataSubjectAccess Occurs when the data subject requests access to ts own personal data collected by the data controllerActionsActionDeletePersonalDataDeletes a piece of personal data (data retention) ActionAnonymizePersonalData Anonymizes a particular piece of data
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 73 Figure 7.3: General structure of a PPL Policy
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 74 Figure 7.4: Structure of an A-PPL Policy
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 75 Figure 7.5: A-PPLE architecture
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 76 Figure 7.6: Sequence of operations for a Delete request.
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 77 Figure 7.7: Sequence diagram of StealthGuard in A-PPLE

Figure 7 .

 7 [START_REF] Ardagna | Primelife policy language[END_REF] shows an example of such authorization definitions.
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 78 Figure 7.8: Authorization for the specified list of purposes
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 79 Figure 7.9: Notification in case of a breach

  Figure 7.10 and Figure 7.11 show a piece of policy that expresses the obligations to log the deletion of the personal data and to collect the requested evidence.
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 711 Figure 7.11: Collection of the deletion log
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 712 Figure 7.12: Control of the location of data in Europe
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 713 KeyGen : Le propriétaire du fichier O exécute cet algorithme pour générer plusieurs clés : un clé principale K et n + 3 clés dérivant de K, à savoir K enc , K wdog , K permF et n clés K permS i . Encode : Le proprétaire du fichier O exécute cet algorithme pour générer d'abord un unique identifiant fid pour le fichier F . Puis, Encode segmente F en n sections {S 1 , S 2 , ..., S n }, où chaque section est divisée en m blocs {b i1 , b i2 , ..., b im }. Ensuite, l'algorithme Encode traite le fichier F en plusieurs opérations : (i) l'application d'un code correcteur d'erreurs sur chaque section;

…Figure 7 . 13 :

 713 Figure 7.13: Configuration de StealthGuard

  existe une unique paire de polynômes Q et R telle que A = BQ + R et le degré du polynôme quotient est d -2 alors que le polynôme reste est de degré inférieur à 1. Par conséquent, O qui souhaite externaliser l'évaluation du polynôme A de degré d exécute d'abord l'algorithme Setup qui définit un polynôme B(X) = X 2 + b 0 pour un b 0 choisi aléatoirement, puis divise A par B pour obtenir le polynôme quotient Q(X) = d-2 i=0

i

  et la clé publique PK M est un vecteur à m composantes PK j = e( , h). L'algorithme ProbGen calcule la clé de vérification pour le vecteur x selon VK x = m j=1 PK x j j . L'algorithme Compute génère la preuve de calcul en calculant π = et l'algorithme Verify vérifie que e(π, h) = e( n i=1 g y i i , h)VK x . Par conséquent, l'algorithme ProbGen combiné à l'algorithme Verify ne requiert que O(n + m) opérations, contrairement aux O(nm) opérations nécessaires pour calculer la multiplication M x.
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 714 Figure 7.14: Aperçu de notre protocole pour la recherche de conjonction de mots-clés vérifiable

7. 1

 1 Cadre conceptuelLe concept d'imputabilité dans le cloud inclut plusieurs notions : des attributs, des pratiques et des mécanismes.Nom DescriptionTriggersTriggerPersonalDataAccessPermitted Déclenché quand l'accès à une donnée est permis TriggerPersonalDataAccessDenied Déclenché quand l'accès à une donnée est refusé TriggerEvidenceRequestReceived Déclenché quand le DC reçoit une requête pour générer des preuves Actions ActionNotify Notifie le destinataire avec l'information relative à l'événement qui déclenche cette action ActionLog Consigne un événement, c'est-à-dire, écrit dans un fichier journal les informations détaillées relatives à l'événement qui déclenche cette action ActionEvidenceCollection Initie la collecte (ou la production) des preuves demandées Table 7.9: Extensions d'A-PPL. avons donc étudié et analysé plusieurs langages de politiques et avons choisi celui qui satisfait le plus les critères énoncés plus hauts et celui qui peut être facilement extensible. Le meilleur candidat se trouve être le langage PPL développé, par le projet PrimeLife. PPL est à l'origine un langage de politique permettant d'exprimer des politiques de protection de la vie privée. Basé sur XACML, PPL présente de nombreux points d'extension. Il permet de définir des règles de contrôle d'accès, des autorisations ainsi que des obligations. Une obligation en langage PPL définit une promesse faire par le DC au DS en relation avec le traitement de ses données personnelles. Le DC doit tenir sa promesse en exécutant une action particulière après un événement spécifique, et facultativement, sous certaines conditions. En pratique, une obligation en PPL s'exprime en termes de Triggers (déclencheur) et d'Actions. Un Trigger est un événement conditionné qui déclencle une action que le cloud doit réaliser dans le cadre de l'obligation en question. Les extensions d'A-PPL. Nous avons d'abord rendu plus explicite la définition des rôles de chacun des acteurs du cloud à l'aide d'un nouvel attribut subject:role. Ensuite, le tableau 7.9 compile les nouveaux Triggers et les nouvelles (ou améliorées) Actions que nous proposons dans notre nouveau langage A-PPL.

  

  In practice, cloud server S stores an enlarged, verifiable version F of file F such that S can produce proofs showing that data owner O can retrieve her original file F .

Verifier V : On behalf of data owner O, verifier V enters a challenge-response protocol with cloud server S (i.e. the prover) to check whether S is storing O's file F ∈ F in its entirety. The role of verifier can be played either by data owner O herself or by any authorized entity, acting as an auditor.

  The Challenge phase consists in one or several challenge-response protocols involving verifier V and cloud server S ( i.e. the prover). In essence, verifier V runs algorithm Challenge that generates POS requests to the prover so as to check the integrity of data owner O's file F . In turn, the prover invokes algorithm ProofGen that responds to verifier V 's challenge by generating the requested proofs.Challenge(K, fid) → chal: This probabilistic and randomized algorithm generates a challenge chal for an execution of the POS protocol for file F whose identifier corresponds to fid. It takes as inputs secret key K and file identifier fid, and returns challenge chal. For different executions of the POS protocol, algorithm Challenge always outputs different values for chal.

Encode(K, F ) → (fid, F ): This algorithm takes key K and file F = {S 1 , S 2 , ..., S n } as inputs and returns the verifiable file F = { Ŝ1 , Ŝ2 , ..., Ŝn } and F 's unique identifier fid. It is worth mentioning that algorithm Encode is invertible: There exists an algorithm Decode that lets data owner O recover her original file F from F . At the end of the Setup phase, cloud server S is supposed to store file F together with F 's identifier fid, whereas data owner O removes F from her local storage, and only keeps the key output by KeyGen. Note that key K is independent of file F . 1.3. Requirements for a POS protocol Challenge.

Table 1 .

 1 1: Existing work for Proofs of Storage

	1. Characterization of Proofs of Storage
	Deterministic	Probabilistic	PDP	POR	Unbounded	Static	Dynamic	Public Verifiability	Privacy-Preserving

  . Adversary A can call oracles O Encode , O Challenge and O Verify for a polynomial number of times in any interleaved order as depicted in Algorithm 1. In particular, adversary A can make three types of oracle queries: Encode query: A queries O Encode for a file F of her choice, given key K. O Encode outputs the corresponding retrievable version F of F together with a generated file identifier fid, and sends them to A. Given a file identifier fid associated with some file F chosen by adversary A and given key K, A queries O Challenge to generate a random challenge chal. On reception of chal, adversary A produces a proof of retrievability P, either arbitrarily or by executing algorithm ProofGen.Verify query: Adversary A calls O Verify to check the proof P based on challenge chal and file identifier fid and gets decision bit b. The extractor algorithm takes as input data owner's key K and file identifier fid * . E is allowed to initiate a polynomial number of POR executions by interacting with adversary A for file F * . E is also allowed to rewind adversary A. This suggests in particular that extractor E can execute the challenge phase of the soundness game a polynomial number of times, while the state of adversary A remains unchanged.

	for j = 1 to γ do
	chal * j ← O Challenge (K, fid * );
	P * j ← A;
	b * j ← O Verify (K, fid * , chal * j , P * j );
	end		
	b * =	γ j=1	b * j ;
	E(K, fid	
		Challenge query: At the end of this learning phase, adversary A chooses a file identifier fid * among all the
		file identifiers she has obtained throughout the phase. We denote F * the corresponding
		file.
	Algorithm 1: Learning phase of the soundness game
	// A executes the following in any interleaved order for a polynomial number of times
	(fid, F ) ← O Encode (F, K);
	chal ← O Challenge (K, fid);
	P ← A;
	b ← O Verify (K, fid, chal, P);
	// A outputs a file identifier fid *
	fid * ← A;
	Challenge. The goal of adversary A is to generate γ valid proofs of retrievability P * j for file F * whose file identifier is fid * (cf. Algorithm 2). To this end, A calls oracle O Challenge
		that supplies her with γ challenges chal * j . Next, adversary A generates γ proofs P * j for each of the challenges. Finally, on input of data owner key K, file identifier fid * ,
		challenges chal * j and proofs P * j (1 ≤ j ≤ γ), oracle O Verify outputs γ decision bits b * j .
		Adversary A is deemed successful if b * =	γ j=1	b * j = 1. In other terms, adversary A
		succeeds in producing γ proofs of retrievability P * j that are accepted by O Verify .
	Thereafter, we formalize the notion of the file extractor algorithm, E, that uses adversary
	A to retrieve file F * :

* ) → F * :

  2.1: Private Information Retrieval of Trostle and Parrish[START_REF] Trostle | Efficient Computationally Private Information Retrieval from Anonymity or Trapdoor Groups[END_REF] 

	/* The data outsourced at the cloud is represented by a (s, t) matrix M of elements in Z2 where s • t is the
	size of the data. */
	/* A user is interested in retrieving an element ∈ {0, 1} at position (x, y) in M. */
	Algorithm: u ← PIRquery(x, y)
	# Executed by the user
	1. Select a group Zp where p is prime;
	2. Select a random generator u ∈ Zp and s random values ai ∈ Zp;
	3. Compute ex = 1 + 2 • ax and ∀ i = x, ei = 2 • ai;
	4. Compute ui = u • ei (mod p) for all 1 ≤ i ≤ s;
	5. Return u = (u1, u2, ..., us);
	Algorithm: v ← PIRprocess( u, M)
	# Run by the cloud server
	1. Compute the matrix-vector product v = (v1, v2, ..., vt) = M u;
	2. Return v;
	Algorithm: ← PIRanalysis( v, y)
	# Executed by the user
	1. Compute the value zy = vy • u -1 (mod p);
	2. Compute the retrieved element = zy (mod 2);
	3. Return ;
	2.2.4 Description of the Entire Protocol
	As stated in Section 2.2.2, StealthGuard consists of of the three phases: Setup, Challenge and
	Verification. Throughout the description of the protocol, the reader may refer to Table 2.1
	that lists the symbols used in StealthGuard.

Table 2 .1: List of notations in StealthGuard
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	Index	Description	Range
	n	Number of splits S i in file F	-
	m	Number of blocks in a split S i	-
	D	Number of blocks in an encoded split Si	-
	v	Number of watchdogs in one split S i	-
	C	Number of blocks in a split Ŝi with watchdogs	-
	i	Index of a split S i	[[1, n]]
	k	Index of a block in split Ŝi	[[1, C]]
	j	Index of a watchdog	[[1, v]]
	l	Size of a block (in bits)	-
	L	Size of a split (in bits)	L = m • l
	p	Index of a block in F	[[1, n • D]]
	q	Number of cloud matrices	-
	r	Index of a cloud matrix	[[1, q]]
	(s, t)	Size of cloud matrices	-
	(x, y)	Coordinates in a cloud matrix	[[1, s]] × [[1, t]]

Split-level ECC File-level permutation Π 𝑭

  Data owner O first runs algorithm KeyGen to generate the master secret key K. In addition to this master key, this algorithm derives n + 3 additional keys used for further operations in algorithm Encode. These keys are computed with dedicated cryptographic hash functions H enc , H wdog , H permF , H permS i that can be the Secure Hash Algorithm (SHA)-256 algorithm[START_REF]FIPS 180-2, Secure Hash Standard, Federal Information Processing Standard (FIPS)[END_REF]:

	𝐹 =	
	𝑚 blocks	
	𝑚	𝑑 -1
	𝐹 � =	
	Encryption 𝑬(𝑲 𝒆𝒏𝒆 , 𝑺 � 𝒊 )	
	Watchdog creation and insertion	
	Split-level permutation Π 𝑺	𝐶 𝑣 watchdogs
	𝐹 � =	
	Figure 2.2: Setup phase in StealthGuard
	2.2.4.1 Setup	
	The Setup phase prepares a verifiable version F of file F .	

KeyGen:

  2.3: StealthGuard's Encode algorithm

	Algorithm: (fid, F ) ← Encode(K, F )
	Generate fid;
	Divide F into n equal-sized splits Si of m blocks;
	1. Error-correcting code
	For 1 ≤ i ≤ n do
	Apply ECC on split Si ∈ F ;
	# Split Si is expanded with d -1 blocks of redundancy
	# The size of ECC-encoded split Si is

Table 2 .

 2 2: Complexities of StealthGuard Storage |p| refers to the size (in bits) of elements in Zp.

Table 2 .

 2 3: Parameterization of StealthGuard

	Param.	Description	Values
	n	Number of splits S i in file F	32768 splits
	m	Number of blocks in a split S i	4096 blocks
	l	Size of a block	256 bits
	L	Size of a split S i	1048576 bits
	d	Parameter of the ECC	456 blocks
	D	Number of blocks in an encoded split Si	4551 blocks
	ρ	Error rate of the ECC	5%
	v	Number of watchdogs in one split S i	8 watchdogs
	C	Number of blocks in a split Ŝi with watchdogs	4559 blocks
	q	Number of cloud matrices (or size of witness)	80 matrices (or bits)
	s	Number of rows in a cloud matrix	570
	t	Number of columns in a cloud matrix	8
	γ	Number of POR queries	1719

Table 2 .
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	Metrics	Costs
	Storage overhead (at server)	4.45 GB
	Redundancy	11.3%
	Due to ECC	11.1%
	Due to watchdogs	0.20%
	Communication cost for γ = 1719 queries and responses
	Outbound	23.4 MB
	Inbound	26.2 MB

4: Efficiency of StealthGuard's example

Table 2 .

 2 5: Comparative table between StealthGuard and relevant existing work (Setup).

	Protocols	Parameters	Data Owner	Storage
	Robust PDP [17]	Block size: 2 KB Tag size: 128 B	4.4 × 10 6 exp 2.2 × 10 6 mul	Tags: 267 MB
	JK POR [107]	Block size: 128 bits Nb sentinels: 2 × 10 6	2 × 10 6 PRF	Sentinels: 30.6 MB
		Block size: 80 bits	5.4 × 10 6 PRF	Tags:
	Compact POR [165]	Blocks/split: 160	1.1 × 10 9 mul	51 MB
		Tag size: 80 bits		

Efficient POR

[START_REF] Xu | Towards efficient proofs of retrievability[END_REF] 

Block size: 160 bits 2.2 × 10 8 mul Tags: Blocks/split: 160 1.4 × 10 6 PRF 26 MB StealthGuard Block size: 256 bits 2.6 × 10 5 PRF Watchdogs: Blocks/split: 4096 2.6 × 10 5 PRP 8 MB

Table 2 .

 2 6: Comparative table (Challenge-Response and Verification).

	Protocols	Server	Verifier	Communication
			Challenge	Verify	Out	In
		764 PRP				
	Robust PDP [17]	764 PRF 765 exp	1 exp	766 exp 764 PRP	168 B	148 B
		1528 mul				
	JK POR [107]	⊥	1719 PRP	⊥	6 KB	26.9 MB
	Compact POR [165]	7245 mul	1 enc 1 MAC	45 PRF 365 mul	1.9 KB	1.6 KB
	Efficient POR [189]	160 exp 2.6 × 10 5 mul	⊥	2 exp 1639 PRF 1639 mul	36 KB	260 B

StealthGuard

6.3 × 10 8 mul 5.6 × 10 8 mul 1.4 × 10 5 mul 23.4 MB 26.2 MB 1719 PRP 1719 PRF

  a randomized algorithm executed by data owner O. It takes as input the security parameter 1 κ and a description of the function f to be outsourced, and outputs a set of parameters param, a secret key SK f that is kept by data owner O, and an evaluation key EK f that encodes function f to be used by cloud server S to evaluate f.Computation. The Computation phase consists of two steps. Data owner O runs algorithm ProbGen that prepares an input x to be submitted to cloud server S. In turn, the server invokes algorithm Compute that evaluates function f on input x and generates a proof of correct computation.

ProbGen(x, SK f ) → (σ x , VK x ): Given an input x in the domain D f of the outsourced function f and secret key PK f , data owner O calls this algorithm to produce an encoding σ x of input x that is transmitted to server S, and a secret verification key VK x kept by O and which will afterwards be used to check the correctness of the server's result.

  4.1: Verifiable Polynomial Evaluation Parameter generation Pick param = {p, G1, G2, GT , g, h, e}; 2. Public key computation Pick random b0 ∈ F * p and set B(X) = X 2 + b0; # Make sure B does not divide A # Euclidean division of A by B: Compute

Algorithm: {param, PKA, EKA} ← Setup(1 κ , A) 1.

Table 4 .

 4 1: Costs of our Verifiable Polynomial Evaluation scheme

Table 4 .

 4 2: Comparison with related work

	Hardness	Public

Table 4

 4 

			.3: Average times of our protocol and amortization	
	d	Setup (s)	ProbGen (s)	Compute (s)	Verify (s)	Compute Local (s)	Amortization
	5	0.011	0.0031	0.005	0.0032	2.174× 10 -5	×
	50	0.103	0.0030	0.070	0.0031	1.245× 10 -4	×
	500	0.728	0.0029	0.723	0.0031	0,001	×
	5000	7.205	0.0030	7.22	0.0031	0,012	1195
	50000	72.58	0.0036	72.22	0.0032	0,127	602
	500000	796.9	0.0043	724.9	0.0032	1,324	606

Table 5 . 1 :

 51 Costs of our Verifiable Matrix Multiplication solution

Table 5 . 2

 52 

	Public

: Comparison with related work

Table 5

 5 

.3 and Table

5

.4, algorithm Verify only depends on the value of n and grows linearly with it.

Table 5 .

 5 3: Average times of our protocol and amortization (impact of number of columns)

	n	m	Setup (s) ProbGen (s) Compute (s) Verify (s) Compute Local (s)
		10	0.307	0.001	0.139	0.016	6,072× 10 -5
		100	2.987	0.013	1.359	0.015	4,891× 10 -4
	10	1000	29.728	0.125	13.500	0.015	0,004
		10000	297.037	1.245	134.987	0.015	0,043
		100000 2978.320	12.263	1343.951	0.015	0,472
		10	2.899	0.001	1.359	0.138	6,209 × 10 -4
	100	100 1000	28.987 288.171	0.013 0.125	13.567 134.938	0.138 0.137	0,005 0,043
		10000	2882.103	1.247	1350.279	0.137	0,436
		10	28.739	0.001	13.484	1.351	0,008
	1000	100	287.223	0.013	134.935	1.353	0,049
		1000	2874.599	0.125	1350.250	1.354	0,461
	10000	10 100	287.380 2871.961	0.001 0.012	135.307 1350.648	13.523 13.499	0,079 0,477

Table 5 .

 5 4: Average times of our protocol and amortization (impact of number of rows)

	m	n	Setup (s) ProbGen (s) Compute (s) Verify (s)
		10	0,307	0,001	0,139	0,016
		100	2,899	0,001	1,359	0,138
	10	1000	28,739	0,001	13,485	1,351
		10000	287,380	0,001	135,307	13,523
		100000 2875,865	0,004	1338,877	134,072
		10	2,987	0,013	1,359	0,016
	100	100 1000	28,987 287,223	0,013 0,013	13,567 134,935	0,138 1,353
		10000	2871,961	0,012	1350,648	13,499
		10	29,728	0,124	13,500	0,015
	1000	100	288,171	0,125	134,938	0,137
		1000	2874,599	0,125	1350,250	1,354
	10000	10 100	297,037 2882,103	1,244 1,247	134,987 1350,279	0,015 0,137

  LandSat Image Gallery, February 4, 2016, http://tiny.cc/m9gu8x [Accessed: February 4, 2016].

96 

Sentinel-1 Missions, ESA, http://tiny.cc/a9gu8x [Accessed:

February 4, 2016]

.

97 

Ikonos Satellite Images, Satellite Imaging Corporation, http://tiny.cc/qahu8x [Accessed: February 4, 2016]. 98 Such images do exist, for example see the image produced by satellite Landsat of hurricane Jeanne above Florida in September 2004. LandSat Image Gallery, http://tiny.cc/rchu8x [Accessed: February 4, 2016].

  [START_REF]La solution que nous proposons s'appuie sur les propriétés de la division euclidienne des polynômes : pour n'importe quelle paire de polynômes A et B = 0 de degré respectif d et 2, il Les attributs de l'imputabilité sont la responsabilité[END_REF], where data owner O corresponds to our space agency. It delegates to a cloud server S the search operation on a large dataset F = {F 1 , F 2 , ..., F n }. Namely, data owner O executes algorithm Setup to outsource the set of files F and to enable verifiable conjunctive keyword search. Cloud server S undertakes the search operation by executing a slightly modified version of algorithm Compute, that we name Search. This algorithm also generates the proof that the search results are correct. Additionally, we mentioned that the space agency delegates the search and verification capabilities to third parties: (i) a querier Q will be able to run a modified version of algorithm ProbGen, named QueryGen for more expressiveness, to submit conjunctive search queries to server S; and (ii) a verifier V who runs algorithm Verify can check the validity of the search results returned by cloud server S.

  ω 2 , ...} and public key PK F , querier Q calls algorithm QueryGen which outputs an encoded conjunctive keyword search query E Q and the corresponding public verification key VK Q . Search(LK F , E Q ) → E R : Provided with search key LK F and the encoded search query E Q , server S executes this algorithm to generate an encoding E R of the search result

  O calls algorithm UpdateQuery which outputs an encoded update query U Q and the corresponding public verification key VK Q . Update(PK F , LK F , U Q ) → (Π upd , LK F ): Provided with public key PK F , search key LK F and the encoded update query E Q , server S executes this algorithm to generate a new search key LK F and a proof of update Π upd . VerifyUpdate(VK Q , Π upd ) → {accept, reject}: Provided with verification key VK Q , and the proof of update Π upd , this algorithm checks that algorithm Update correctly modified LK F . If it is the case, then algorithm VerifyUpdate returns accept. Otherwise, it outputs reject.

2 .

 2 If bucket Bi 1 is not full then Insert x in Bi 1 ; If buckets Bi 1 and Bi 2 both full then Randomly choose y from the 2d elements in Bi 1 ∪ Bi 2 ;

	Return;
	End
	3. If bucket Bi 2 is not full then
	Insert x in Bi 2 ;
	Return;
	End
	4. Remove y;
	CuckooInsert(I, H1, H2, x);
	CuckooInsert(I, H1, H2, y);
	Return;
	End
	Algorithm: {true, false} ← CuckooLookup(I, H1, H2, x)

  Executed by the server, this algorithm takes as input public key PK, set S and a target element h used to test membership, that is, test whether h belongs to set S. It outputs a witness w S,h for membership or nonmembership of h with respect to set S.

	VerifyMembership(h, Acc(S), w S,h , PK) → {h ∈ S, h / ∈ S, Reject}: A third-party verifier
	executes this algorithm that takes as input public key PK, accumulator Acc(S), target
	element h and the corresponding witness w

GenerateWitness(h, S, PK) → w S,h : S,h . If witness w S,h is valid, then this algorithm outputs the result of the membership test: either h ∈ S or h / ∈ S. Otherwise, the algorithm outputs Reject.

Table 6 .

 6 1: List of notations in our protocol for VCKS

	Index	Description	Range
	n	Number of files	

Table 6 .

 6 3: Time of Setup phase n = 25293 files

	m	d	Index I (s)	AW (s)	{Fω i } (s)	AF (s)	TW (s)	TF (s)	Total (s)
	8192	8	3.489	7.252	11.484	26.591	0.147	2.284	51.248
	4096	16	1.819	4.240	10.568	28.843	0.039	2.341	47.851
	2048	32	2.037	2.038	10.505	29.760	0.012	2.357	46.708
	1024	64	1.940	1.074	10.998	27.889	0.003	2.270	44.175

Table 6 .

 6 4: Time of Search phase (fixed number of searched keywords)

	n	ProveIntersection (s)	Search (s)	Verify (s)
	10	0.002	0.005	0.009
	100	0.005	0.008	0.009
	1000	0.075	0.114	0.009
	10000	0.703	1.063	0.011

Table 6 .

 6 5: Time of Search phase -all keywords are found

	k	ProveIntersection (s)	Search (s)	Verify (s)
	2	13.121	21.369	0.009
	5	120.867	172.121	0.017
	10	305.062	368.500	0.036

Table 6 .

 6 6: Time of Search phase -one keyword is not found

	k	Search (s)	Verify (s)
	2	0.039	0.008
	5	0.008	0.008
	10	0.049	0.008

Table 6 .

 6 

	7: Local search computational performance
	n	Pre-Processing (s)	Search (s)
	10	0.002	2.524 × 10 -5
	100	0.017	2.968 × 10 -4
	1000	0.203	3.326 × 10 -3
	10000	2.618	0.021

Table 6 .

 6 8: Parameters and experimental results on Enron email dataset

	Values

Table 6 .

 6 9: The Enron email dataset and amortization

		Search at the data owner	Search outsourced at the cloud
		Cuckoo Index (s)	File index (s)	Local Search (s)	Setup (s)	Verify (s)
	Query 1	2266.956	21390.553	5.197	26870.847	2.500
	Query 2	2266.956	21390.553	0.026	26870.847	0.088
	Query 3	2266.956	21390.553	1.25 × 10 -4	26870.847	0.011

Table 7 .

 7 1: Correspondence between Cloud Actors and Data Protection Roles

		Data Subject
	Customer	Data Controller
		Data Processor
	Cloud Provider	Data Controller Data Processor
	Cloud Auditor	Data Protection Authorities

Table 7 .

 7 2 summarizes our analysis of accountability obligations concerning personal data processing.

	Requirement	Category
	(R1) Capturing Privacy Policies	Data Handling
	(R2) Access Control Rules	Data Handling
	(R3) Usage Control Rules	Data Handling
	(R4) Data Retention Period	Data Handling
	(R5) Reporting and Notification	Accountability
	(R6) Controlling Data Location	Accountability
	(R7) Auditability	Accountability
	(R8) Logging	Accountability

Table 7 .

 7 2: Accountability policy language requirements.

Table 7 . 3

 73 

: List of Triggers and Actions in PPL

Table 7 .

 7 4: ActionNotify element.

Table 7 . 5

 75 

: ActionEvidenceCollection element.

Table 7 .

 7 6: ActionLog element.

Table 7 .

 7 

	Name	Description
	Triggers	
	TriggerPersonalDataAccessPermitted	Occurs when access to a queried data is permitted
	TriggerPersonalDataAccessDenied	Occurs when access to a queried data is denied
	TriggerEvidenceRequestReceived	Occurs when the Data Controller receives a re-
		quest for evidence generation
	Actions	
	ActionNotify	Notifies the recipient with the information con-
		cerning the event that triggers this action
	ActionLog	Logs an event, that is, writes in a log file the de-
		tailed information concerning the event that trig-
		gers the obligation
	ActionEvidenceCollection	Initiates the collection (or generation) of re-
		quested evidence

7: List of extended or new Triggers and Actions in A-PPL.

  Ensuite, les fournisseurs de cloud sont eux-mêmes considérés comme malveillants et peuvent adopter deux types de comportements malintentionnés. (i) Un cloud curieux met en péril la confidentialité des données et des calculs, par exemple en effectuant des operations d'extraction de données pour acquérir de précieusesProblématiqueCette thèse tente de répondre à ces trois problèmes : Problème 1: Stockage vérifiable. La vérifiabilité est un concept d'importance dans le cloud . Le but est de concevoir des mécanismes utilisés par les utilisateurs afin de contrôler et de vérifier que le cloud fournit correctement les services de stockage et de calcul. Il est légitime de croire que les utilisateurs qui consomment et paient ces services s'attendent à ce que leurs données soient correctement stockées et que leurs opérations soient correctement effectuées. Le concept de vérifiabilité appuie celui de transparence : vérifier les actions du cloud permet de connaître les contrôles que le cloud met en place pour gérer les données et les opérations externalisées. Cette thèse se focalise en particulier sur deux aspects de la vérifiabilité dans le contexte du nuage informatique, à savoir le stockage et le calcul. Nous abordons en premier lieu le problème lié au stokage : un utilisateur confie ses données au cloud et s'attend à ce que celui-ci les stocke correctement. Par conséquent, l'utilisateur veut vérifier l'intégrité de ses données. En d'autres termes, l'utilisateur doit être convaincu que les données ne sont pas supprimées, ni modifiées. Pour vérifier cette proporiété, l'utilisateur doit pouvoir vérifier que le cloud stocke correctement ses données. Autrement dit, le cloud doit produire des preuves de stockage qui permettent d'affirmer que celui-ci stocke réellement une version intacte des données. Par ailleurs, la vérification de ces preuves par l'utilisateur doit être efficace. Cela veut dire qu'elle ne doit pas générer des coûts prohibitifs pour l'utilisateur. Problème 2: Calcul vérifiable. Conjointement à l'externalisation de données, l'infonuagique permet l'externalisation de calcul : les utilisateurs peuvent déléguer au cloud l'exécution d'opérations coûteuses. Dans ce cas, les utilisateurs doivent être convaincus que le cloud retournera toujours des résultats corrects, c'est-à-dire que les résultats fournis par le cloud sont ceux que les utilisateurs auraient obtenu s'ils avaient euxmêmes effectué le calcul externalisé. En d'autres termes, les utilisateurs doivent être capables de vérifier que le cloud renvoie le bon résultat. Dans cette optique, le cloud doit pouvoir produire des preuves de calcul garantissant aux utilisateurs que les valeurs retournées par le cloud correspondent à une exécution correcte de l'opération externalisée. Par ailleurs, la vérification des ces preuves doit être nettement moins exigeante en termes de calcul que l'opération externalisée elle-même. Autrement, confier l'opération au cloud n'apporte aucun bénéfice. Problème 3: Imputabilité. Outre la vérifiabilité, nous étudions le concept plus large d'imputabilité pour l'informatique nuagique, qui est correlé aux notions de tranparence, de responsabilité et de conformité. Les fournisseurs de cloud doivent se conformer à des législations et des contrats. De plus, ils doivent rendre des comptes et être tenus responsables en ce qui concerne leurs façons de gérer et de traiter les données des utilisateurs. En d'autres termes, un ensemble d'obligations lie les utilisateurs et les fournisseurs de cloud de sorte que le cloud fonctionne de façon transparente. Nous nous intéressons particulièrent aux politiques pour exprimer ces obligations d'imputabilité. Il n'existe actuellement aucun cadre permettant aux utilisateurs d'appréhender la façon avec laquelle le cloud honore ses obligations d'imputabilité. Nous pensons que les politiques d'imputabilité fournissent un moyen d'exprimer les obligations. C'est pourquoi nous étudions la possibilité de concevoir un langage de politique interprétable par la machine de telle sorte que les politiques écrites avec ce langage soient facilement appliquées de manière automatique.

EuroSOX is the European version of the American Sarbanes-Oxley (SOX) Act stating that a company is responsible for any accounting or financial misbehavior even if financial data are processed by third-parties such as cloud providers.

The data owner is not required to locally back-up a file to be checked.

We give a description of ECC in Section 2.2.3.2.

Bilinear pairings are introduced in Section 4.3.1.

Cauchy matrices are matrices of elements aij = 1 x i +y j , where xi and yj are elements of a Galois field.

StealthGuard: Proofs of Retrievability with Hidden Watchdogs Algorithm 2: Challenge phase of the soundness game

In practice, a verifier will audit the cloud storage in a periodic fashion based on a contract, or SLA.

The value of γ is determined in Section 2.3.

κ . For this purpose, we require that such an extractor simulates the output of hash function H by controlling a random oracle H, as depicted in the following lines. We recall that this hash function H was used in algorithm WDSearch to construct and verify the proofs of retrievability (cf. Figure2.5).Simulation of random oracle H. To respond to the queries of the random oracle H, extractor E keeps a table T H of tuples (β, H(β)) as follows:On a query H(β), extractor E checks:

As mentioned in 37, this PIR has been recently proven not to be secure. For illustration we mention this protocol but in practice, any efficient PIR algorithm that preserve confidentiality of queries and results would fit in our model.

The Python Cryptography Toolkit (pycrypto): https://pypi.python.org/pypi/pycrypto [Accessed: February 2, 2016].

[START_REF] Chung | Improved Delegation of Computation using Fully Homomorphic Encryption[END_REF] Schifra library: http://www.schifra.com/ [Accessed: February 2, 2016].

For example, the concerned images are accompanied with a report that describes in words the elements that can be seen in the images.

Besides, the protocol by Canetti et al.[START_REF] Canetti | Practical Delegation of Computation using Multiple Servers[END_REF] allows to detect cheating and honest servers.

In a nutshell, a Boolean circuit is a computation model representing a function into a graph whose vertices are logical gates (AND, OR, NOT), whose leaves are the function's inputs and whose roots are the function's outputs.

A bit commitment protocol involves two parties, a sender and a receiver. The sender commits to the receiver to a bit b, such that the receiver does not know the value of b. Besides, the sender has no mean to change b after it was committed. Later on, the sender reveals bit b and the receiver can verify that b is really the committed bit.

This primitive is briefly explained in Section 6.4.2.

The Bézout identity states that if D is the GCD of two polynomials A and B then there exist two polynomials U and V such that AU + BV = D.

Note that these papers[START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF][START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF] also propose techniques for set union and difference. But in the context of verifiable keyword search only intersections are of interest.

In[START_REF] Chai | Verifiable Symmetric Searchable Encryption for semi-Honestbut-Curious Cloud Servers[END_REF], a semi-honest-but-curious server refers to a server that "may execute only a fraction of search operations honestly and/or return a fraction of search outcome honestly".

Verifiable Polynomial Evaluation

This is the case for Charm-Crypto library.

The Bézout identity states that if D is the GCD of two polynomials A and B then there exist two polynomials U and V such that AU + BV = D.

In principle, keyword insertion is possible only if index I did not reach its maximum capacity.

More details on this complexity computation can be found in[START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF][START_REF] Canetti | Verifiable Set Operations over Outsourced Databases[END_REF].

"Molière oeuvres complètes", http://tiny.cc/17hu8x [Accessed:February 4, 2016].

The Enron Email Dataset, http://tiny.cc/d9hu8x [Accessed:February 4, 2016].

The Pairing-Based Cryptography Library: https://crypto.stanford.edu/pbc/ [Accessed:February 4, 2016].

We compute this value based on the communication complexity analyzed in Table6.2. We assume a keyword in encoded on 4 bytes, the file identifiers on 3 bytes and |G| = 160 bits.

At the time of writing this thesis, the Reform of the data protection legal framework in the EU is still in progress. "Reform of EU Data Protection Rules", European Commission, http://tiny.cc/neiu8x [Accessed: February 4, 2016].

A comprehensive description and an in-depth analysis of the use case we outline here are presented in the A4Cloud's "Consolidated Use Case Report"[START_REF] Bernsmed | Consolidated Use Case Report[END_REF].

These Data Protection Authorities are not represented in Figure7.1, depicting our scenario.

Opinion 03/2014 on Personal Data Breach Notification: http://ec.europa.eu/justice/data-protection/ article-29/documentation/opinion-recommendation/files/2014/wp213 en.pdf.

Downstream usage specifies under which conditions data can be shared with other Data Controllers.

Holistic Enterprise-Ready Application Security Architecture Framework (HERAS-AF) is an open source implementation of XACML: http://www.herasaf.org/.

Cela implique que les utilisateurs de cloud perdent le contrôle sur leurs données et transfèrent ce contrôle au fournisseur de service. Donc les utilisateurs doivent compter sur le fournisseur du cloud pour implémenter les mesures de sécurité adéquates.

Les exigences de conformité réglementaire et contractuelle rendent difficile l'application de mesures de sécurité dans le cloud , particulièrement les règles et les lois qui contrôlent le stockage et l'usage des données. Cela suppose que la manière dont le cloud stocke et traite les données externalisées doit être vérifiée afin de déterminer que le cloud suit les exigences de conformité. Dans une optique plus large, la conformité implique la possibilité d'attribuer au fournisseur de service cloud la responsabilité de l'ensemble de ses actions. Ce dernier concept sous-entend l'imputabilité du cloud .En outre, les mesures de sécurité dans le cloud doivent être conçues de telle sorte que l'externalisation des données et des applications reste une solution intéressante pour les utilisateurs.

Acknowledgments

iii Acknowledgments informations. Ce scénario est envisageable pour le cas des nombreuses données sensibles et personnelles générées ou collectées par les réseaux sociaux du genre Facebook, Twitter ou LinkedIn. (ii) Un cloud malveillant fait volontairement mauvais usage de ses ressources pour compromettre la confidentialité, l'intégrité ou la disponibilité des données et des opérations dont il a la charge. Par ailleurs, le manque de confiance envers les fournisseurs de cloud est également lié à l'absence de transparence sur le traitement des données et des calculs, ainsi que sur leur localisation et leur but. Des fournisseurs de cloud pourraient par exemple être tentés de cacher à leurs utilisateurs une défaillance du sytème ou une fuite de données pour préserver leur réputation.

En résumé, le transfert de contrôle vers un fournisseur de cloud non digne de confiance pose de sérieux problèmes liés à la sécurité et à la préservation de la vie privée des données et des opérations des utilisateurs. Ces problèmes sont corrélés avec des problèmes de transparence, de responsabilité et de conformité.

Malheureusement, les caractéristiques singulières du cloud compromettent l'utilisation directe des mécanismes traditionnels de sécurité comme le chiffrement pour garantir la confidentialité des données, les techniques cryptographiques pour garantir l'intégrité des données et des calculs, l'isolation de code pour des opérations sécurisées, etc. Cela est dû à plusieurs enjeux spécifiques au cloud :

1. La prolifération de données due au big data et le nombre croissant d'appareils portatifs incitent les particuliers et les sociétés à utiliser les services de cloud pour leur confier leurs données et leurs applications.

//boincstats.com/en/stats/0/user/

Interactive proofs

Babai [19] Goldwasser et al. [START_REF] Goldwasser | The Knowledge Complexity of Interactive Proof Systems[END_REF] Goldwasser et al. [98] Arora and Safra [10] Kilian [START_REF] Kilian | A Note on Efficient Zero-Knowledge Proofs and Arguments[END_REF] Ishai et al. [START_REF] Ishai | Efficient arguments without short PCPs[END_REF] Setty et al. [START_REF] Setty | Toward Practical and Unconditional Verification of Remote Computations[END_REF] Setty et al. [START_REF] Srinath | Making Argument Systems for Outsourced Computation Practical (sometimes)[END_REF] Setty et al. [START_REF] Srinath | Taking Proof-Based Verified Computation a Few Steps Closer to Practicality[END_REF] Setty et al. [START_REF] Setty | Resolving the Conflict between Generality and Plausibility in Verified Computation[END_REF] Non-interactive proofs Micali [START_REF] Micali | Computationally Sound Proofs[END_REF] Bitansky et al. [START_REF] Bitansky | From Extractable Collision Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again[END_REF] Gennaro et al. [START_REF] Gennaro | Quadratic Span Programs and Succinct NIZKs without PCPs[END_REF] Parno et al. [START_REF] Parno | Pinocchio: Nearly Practical Verifiable Computation[END_REF] Gennaro et al. [90] Parno et al. [START_REF] Parno | How to Delegate and Verify in Public: Verifiable Computation from Attribute-Based Encryption[END_REF] Gennaro and Wichs [START_REF] Gennaro | Fully Homomorphic Message Authenticators[END_REF] Backes et al. [START_REF] Backes | Verifiable Delegation of Computation on Outsourced Data[END_REF] Boneh and Freeman [START_REF] Boneh | Homomorphic Signatures for Polynomial Functions[END_REF] Catalano et al. [START_REF] Catalano | Homomorphic Signatures with Efficient Verification for Polynomial Functions[END_REF] Backes et al. [START_REF] Backes | ADSNARK: Nearly Practical and Privacy-Preserving Proofs on Authenticated Data[END_REF] Polyn.

Benabbas et al. [START_REF] Benabbas | Verifiable Delegation of Computation over Large Datasets[END_REF] Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF] Zhang and Safavi-Naini [START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF] Papamanthou et al. [START_REF] Papamanthou | Signatures of Correct Computation[END_REF] Matrices Fiore and Gennaro [START_REF] Fiore | Publicly Verifiable Delegation of Large Polynomials and Matrix Computations, with Applications[END_REF] Zhang and Safavi-Naini [START_REF] Liang | Verifiable Delegation of Computations with Storage-Verification Trade-off[END_REF] Zhang and Blanton [START_REF] Zhang | Efficient Secure and Verifiable Outsourcing of Matrix Multiplications[END_REF] Mohassel [START_REF] Mohassel | Efficient and Secure Delegation of Linear Algebra[END_REF] Search Morselli et al. [START_REF] Morselli | Trust-Preserving Set Operations[END_REF] Papamanthou et al. [START_REF] Papamanthou | Optimal Verification of Operations on Dynamic Sets[END_REF] Kosba et al. [START_REF] Ahmed E Kosba | TRUESET: Faster verifiable set computations[END_REF] Zheng et al. [START_REF] Zheng | VABKS: Verifiable Attribute-Based Keyword Search over Outsourced Encrypted Data[END_REF] AC AC Chai and Gong [START_REF] Chai | Verifiable Symmetric Searchable Encryption for semi-Honestbut-Curious Cloud Servers[END_REF] AC means for users satisfying an access control policy. 

Supporting Dynamic Data

Although we can use digital signatures instead of Merkle trees to authenticate the accumulators, they are not practical to support dynamic data. Thanks to Merkle trees, our solution enables data owner O to update its outsourced files and the set of searchable keywords efficiently. In particular, we are concerned by the fact that search operations should also be verifiable after updates (such as insertion, modification or deletion of a file in the set of outsourced files) without the data owner being required to download the whole database, perform the update and rebuild the entire system to enable verifiable conjunctive keyword search (namely to build from scratch the different data structures used in our protocol: the Cuckoo hash index, tables and Merkle trees). Figure 6.10 depicts the operations performed by UpdateQuery while Figure 6.11 and Figure 6.12 show the procedure of algorithms Update and VerifyUpdate respectively. We consider three possible update scenarios.

1. File update without updating the set of searchable keywords, W = W: In this case, whatever the update operation is (file modification, deletion or insertion), the Cuckoo index I and tree TW remain unchanged since we assume the set of keywords is not affected by this update. On the other hand, server S is required to update Merkle tree TF and send a proof of correct update to the data owner. We will consider the different cases according to the nature of the update operation:

1. op = modify: The data owner executes UpdateQuery(F j , W j , modify). Then there exist 

For ωi ∈ Wj do Compute path i = GenerateMTProof(HFi, TF); Compute AF i using FFT interpolation and PKF ;

Compute (a) F j and F j have exactly the same keywords, which means that W j = ∅. Then Update only consists in replacing F j by F j in the database.

(b) Some of the keywords in W that were in F j are not in F j anymore. Thus, we consider the set W j = {ω i | ω i ∈ F j ∧ ω i / ∈ F j }. Note that for each ω i ∈ W j , if we denote F ω i the set of files that contain ω i and P i its characteristic polynomial (before the update), then by denoting P i the updated polynomial, we have P i (α) = P i (α) α-fid j , since fid j is not part of F ω i anymore. UpdateQuery returns U Q = (F j , W j , modify) and VK Q = PK F . In turn, the server executes algorithm Update which first replaces F j by F j . Besides, for each ω i ∈ W j , algorithm Update computes the authentication path path i for the old accumulator AF i using algorithm GenerateMTProof (see Figure 6.6) and updates the new accumulator AF i (see step 4 in Figure 6.7). As server S does not have the knowledge of secret α, it computes AF i using PK F and the FFT interpolation technique. Afterwards, for each ω i ∈ W j , Update computes HF i = H(AF i ||ω i ) and updates 

Communication

Outbound

Communication

In terms of communication complexity, our protocol for VCKS is relatively lightweight. In particular, sending a search query to server S amounts to O(k) space, where k is the number of keywords in that query. The size of server's answer to the query depends on the outcome of Search algorithm, as shown in Figure 6.8:

If all the keywords are found: Then server's result is of size O(n + k), where n corresponds to the worst case scenario where all the outsourced files contain the conjunction of keywords, and k results from the underlying proof of intersection of k sets of files

If one keyword is not found: In this case, server S has to send a search result of size O(1) that contain the keyword that is not found and its corresponding proof of nonmembership.

Impact of D on the performance.

This performance analysis assumes n ≤ D, where n is the number of files. The value of D solely depends on security parameter κ, and as such, defines an upper-bound to the size of sets for which we can compute a polynomial-based accumulator. It follows that in our protocol, the number of files that a data owner can outsource at once is bounded by D. However, it is still possible to accommodate files' sets that exceed the bound D. The idea is to divide the set of size n into n = n D smaller sets of size D. By using the same public parameters, Setup accordingly creates for each set of D files an index and the corresponding Merkle trees. This increases the complexity of the Setup by a factor of n . Namely, the data owner is required to build n Cuckoo indexes and 2n Merkle trees. However, since D is now constant, the computation of each file accumulator Acc(F ω ) will take O(D log D) = O(1) time. Besides,

Obligations liées à l'imputabilité

Comme évoqué plus haut, les obligations d'imputabilité proviennent de plusieurs sources : réglementaire, contractuel et éthique. Ces sources permettent en particulier de définir les relations entre DS, DC, DP et DPA, et d'identifier plusieurs types de contrôle, à savoir un contrôle préventif, détectif ou correctif.

À partir d'un scénario bien défini lié à un hôpital désireux de stocker des données de patients dans un cloud , le projet A4Cloud a déterminé les huit obligations suivantes : (1) le DS a le droit d'accéder, de corriger et de supprimer les données confiées au cloud ; (2) les données sont traitées pour une durée et un objectif bien définis; (3) les violations de sécurité doivent être notifiées; (4) le cloud doit pouvoir fournir des preuves de la suppression correcte et ponctuelle de données personnelles; et [START_REF] Ali | Obligation Language and Framework to Enable Privacy-Aware SOA[END_REF]