
HAL Id: tel-01618986
https://pastel.hal.science/tel-01618986

Submitted on 18 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verifiability and accountability in the Cloud
Monir Azraoui

To cite this version:
Monir Azraoui. Verifiability and accountability in the Cloud. Web. Télécom ParisTech, 2016. English.
�NNT : 2016ENST0032�. �tel-01618986�

https://pastel.hal.science/tel-01618986
https://hal.archives-ouvertes.fr

2016-ENST-0032

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Monir AZRAOUI
le 7 juin 2016

Vérifiabilité et Imputabilité dans le Cloud

Directeur de thèse : Refik MOLVA
Co-encadrement de la thèse : Melek Önen

Jury
Dr. Sébastien GAMBS, Université du Québec, Canada Rapporteur
Dr. Keith MARTIN, Royal Holloway, University of London, Royaume-Uni Rapporteur
M. Hervé CHABANNE, Morpho, France Examinateur
Dr. Josep DOMINGO-FERRER, Université Rovira i Virgili, Catalogne Examinateur

TELECOM ParisTech
école de l’Institut Télécom - membre de ParisTech

2

3

Thesis Dissertation

for the degree of Doctor of Science from

Telecom ParisTech
Computer Science and Networks

Monir Azraoui

Verifiability and Accountability in the Cloud

Jury composed of

Sébastien Gambs Reviewer
Keith Martin Reviewer
Hervé Chabanne Examiner
Josep Domingo-Ferrer Examiner

Refik Molva Thesis adviser
Melek Önen Thesis adviser

4

i

À mes proches, eux qui m’ont témoigné
un soutien inconditionnel lors de mon parcours.

ii

Acknowledgments iii

Acknowledgments

Looking back to these years as a PhD student, any achievement I made has been possible
thanks to the support and encouragement of numerous people. As this thesis is coming to
completion, I would like to thank all these individuals and organizations that contributed to
make this unforgettable experience possible.

I am sincerely indebted to three persons with whom I closely worked on the topics pre-
sented in this thesis. First, my deep gratitude goes to my supervisor Professor Refik Molva
who sowed the seeds of success for our research. It has been a privilege to learn from his out-
standing experience and knowledge and to receive his guiding support and invaluable advice.
I also thank him for his steady enthusiasm and passion that he conveyed to me. His state of
mind will always inspire me. As he often told me, I had much luck during my PhD studies.
I would add that I was very lucky to work with such a great professor and to receive from
him advice that will always be helpful in my career.

I also would like to express my sincere gratitude to my second supervisor Doctor Melek
Önen beside whom I learned a lot. Her great experience, guidance and support helped me
mature my research skills. I deeply thank her for her patience and tact when I sometimes
showed stubbornness. I also acknowledge her effort to draw the best from me by giving me
responsibilities in such a way that today I feel I have grown a lot. I finally thank her for
reviewing my manuscript, for her valuable suggestions and corrections; it was a long process
but we did it!

I am also deeply indebted to Doctor Kaoutar Elkhiyaoui, who highly contributed
to the success of this research work. I thank her for sharing her eminent knowledge and
open-mindedness. She is probably one of the cleverest persons I have ever met and it was a
great pleasure to discuss with her, not only about our research work but also about history,
literature or the news.

I gratefully acknowledge the thesis committee, Mister Hervé Chabanne, Professor
Josep Domingo-Ferrer, Professor Sébastien Gambs and Professor Keith Martin,
who kindly agreed to evaluate this work. I sincerely thank them for their availabilities and
their encouraging feedback. I hope that we will have other interactions in the future.

This work would not have been possible without the funding of the A4Cloud project.
Special thanks go to all the A4Cloud partners I have collaborated with. It has been very
instructive to pursue this PhD thesis in the context of this project: I especially enjoyed
working with very skilled people and observing how research and industry interact with each
other.

I take this opportunity to thank the Eurecom staff for making this journey so special.
My gratitude goes to Gwenaëlle Le Stir and Audrey Ratier for the administrative proce-
dures related to my thesis and to Christine Mangiapan, Audrey Ratier and Delphine
Tales for their caring about the travel procedures when I had the opportunity to travel for
conferences and project meetings.

Pursuing PhD studies is truly a challenging endeavour whose success also depends on the
encouragement of family and friends. I am therefore grateful to all the people who gave me
their emotional support, sometimes by only asking the (somewhat disturbing) question How
is your PhD going? First, I would like to thank all the friends I made at Eurecom. The

iv Acknowledgments

school gives us the opportunity to thrive in a multicultural environment and I am delighted
to have met so many Greek, Turkish, Italian and Spanish people. I thank my office mates
Iraklis, Cédric and Dimitrios: An anodyne Bonjour, ça va ? is often good for morale. Special
thoughts also go to Salvatore, Nikos, Panos, Katerina and Konstantinos whose friendships
go beyond the walls of Eurecom and other thoughts go to the extended Greek and Italian
communities in Nice and Sophia Antipolis with whom I shared lots of memories.

I always believed in the Latin phrase mens sana in corpore sano, a healthy mind in
a healthy body. Therefore, alongside my PhD studies I practiced volleyball, squash and
swimming within the Groupe Azur sport association. I thank all the athletes I met there,
especially Benôıt and Pierre-Yves, for their enthusiasm and their support. We had a lot of
fun and those nice sporting moments helped me temporarily get away from my studies.

Aside my PhD work, I have followed theater classes for more than two years. I would
like to thank all my fellow amateur actors, from Le Théâtre du Bocal, La Friche, Le Théâtre
Athéna, as well as the crew of Folle Amanda, for these delightful moments that enabled me to
open my mind wider. I specially thank Emmanuelle, our teacher and director, who became
a real friend. I will always apply her instructions to improve my acting skills whenever I will
have to give a talk in front of an audience. Her advice is a precious treasure.

I express my sincere gratitude to the following people living in Nice for their emotional
support during this journey: I thank Yoann, for being so special and understanding; I thank
the two “word in S”-est medical doctors that everyone would dream to have, Vanessa and
Clément, for their friendship, the funny moments we had together and, of course, for their
medical help!; I thank the greatest neighbours one can ever imagine to have, Lila and David,
whose help and care were unhoped in a city like Nice; I thank Gregory for his kindness in
spite of his life difficulties and for making me discover special places of Nice; I thank Juanjo
for his humour, his Spanish dinners (and accent) and his drives between Sophia and Nice; I
thank my great friend Guillaume for his support concomitantly to ours numerous laughters,
especially about the ESC and Céline..; I thank Catherine, a long-time friend, for sharing
thoughts about Mazamet. Warmhearted thoughts go to Cyrielle, for her love and care. She
is maybe the most incredible person I have ever met and became rapidly important to my
eyes. I thank her for our talks and the special moments we shared together. I thank her for
being supportive even when my PhD thesis took up all my time and energy.

I am thankful to the friends I met in Paris, before the beginning of my thesis, and who,
in spite of my gloominess that time, stood by me: I thank Gabriel for his regular messages
caring about my PhD work and for his warm welcome in Sevilla; I thank Christophe, whose
passion for philosophy inspired my work and state of mind; I thank my great friend, Michael,
who came many times in Nice to create new memories to share; and finally I thank Pauline,
for her love and her sweetness, our crazy moments and our holorimes.

I am lucky to have friends all around the world and I want to acknowledge the ones I met
in Munich: Arnaud, Peryoun, Wolf and Guillaume. I thank them for their warm welcome
when I went back in Munich, for their friendships and their nice messages asking about the
evolution of my thesis. I also thank Arnaud for his visit in Nice and his company in Wroc law
(Polska bia lo czerwoni!).

Another group of friends deserves my deep gratitude: la 846 de Toulouse. We celebrate
this year the 10th anniversary of our friendship, and in spite this long period, they are still
there. We were encouraging each other for our respective PhD studies and I am always glad
to receive supportive messages from them. These people are Philippe, who defended his
PhD thesis exactly at the same date and time as mine; Dr. Christophe, whose friendship is
golden to me; Oriane, who is also about to be a doctor; Dr. Alexandre, one of the coolest
and cleverest man I have ever met; President Fathi, whose eloquence is admirable. More
thoughts go to the other members of the 846, with whom I had, unfortunately, less contact:
Divin, Bastien, Matthieu and Patxi.

I cannot mention Toulouse without thinking of my dear friends, met there, ten years ago,

v

but spread all around the world. Despite the distance between us, they always dropped a
message to say hello and ask about my PhD work. Those are true friends that I know I can
rely on, eyes shut. I thank Dr. Camille for her supportive messages and her cartoons that
accurately describe the life of a PhD student; I am beholden to Boris, who opened his door
each time I went to Paris during my PhD studies; I am thankful to Laure, whose messages
from Congo-Kinshasa are always a great pleasure; and finally, I am grateful to Claire, for her
cheering kindness that I will always remember.

I take the opportunity to express my profound gratitude to Nadine, who knows me since
my early childhood, who has always been trying to be aware of my university and professional
career and who has given me a lot of inspiring and guiding advice.

Last but not least, my most loving thoughts go to my family. Je voudrais adresser mes
pensées les plus tendres et mes remerciements les plus intimes à ma famille, dont les membres
sont dispersés entre l’Algérie et la France. Un chaleureux merci à ma famille à Alger qui m’a
accueilli à bras ouverts pendant ma thèse, malgré 15 ans de séparation, comme s’il ne s’était
passé que 2 jours. Je pense aussi à mes frères, Mouloud, Ahmed et Amine, qui, je sais, sont
tacitement fiers de moi. Ils sont mon inspiration et mon moteur. Si j’ai poursuivi de longues
études, c’est pour que plus tard, nous puissions chacun vivre dans de meilleurs conditions
que l’ont été celles de notre enfance. Une douce pensée pour les nouveaux arrivés dans la
famille: mes demi-frères Abou-Sofiane et Abdellah. J’ai tellement hâte de les voir grandir.
Un grand merci à ma belle-mère Fatiha, qui m’accueille comme si j’étais son propre fils; merci
pour ses encouragements et sa bienveillance. Je remercie aussi mon père Mohamed, pour son
aide, pour son soutien et pour son amour. Sa présence a été et est très importante et son
éducation m’a fait devenir ce que je suis aujourd’hui. Enfin, un profond merci à ma mère
Fatma-Zohra, pour son amour, son soutien infaillible et inconditionnel ainsi que les soins
qu’elle m’a réservé. Elle a toujours été là pour moi, même dans l’adversité, elle a fait preuve
d’un grand courage pour élever quatre garçons et je sais que je lui en suis redevable tous les
jours. Je les remercie tous pour avoir été derrière moi, pendant les moments heureux, comme
les plus délicats, pendant les hauts, comme les bas. Cette aventure, je ne l’ai pas faite seul.
Mes frères, ma belle-mère, mon père et ma mère, merci d’avoir cru en moi.

vi Acknowledgments

Abstract vii

Abstract

Tremendous amounts of data are collected every day from sensors, social networks, mobile
devices, etc., requiring large resources to store and process them. Cloud computing is per-
ceived as the “holy grail” to cope with the handling of this “big data”. As a matter of fact,
the cloud offers virtually unlimited on-demand computational and storage resources. Hence,
outsourcing the storage and processing of this data to the cloud cancels the need to invest in
the maintenance of expensive storage and computing hardware or software. However, many
organizations are still reluctant to resort to cloud computing technologies. Indeed, the in-
herent transfer of control over storage and computation from data owners to untrusted cloud
servers raises various security and privacy challenges. In this regard, cloud users deem verifi-
ability as an important security requirement: they should be empowered with the capability
to check that the cloud processes their data and computations as expected. In particular,
they should be able to verify that the data is correctly stored and that the computations are
correctly performed. Besides, a further approach to encourage organizations to take advan-
tage of the cloud is to consider accountability as a key prerequisite which enables cloud users
to check that the cloud is compliant with policies and which allows these users to be aware
on how their assets are handled. On the other hand, ensuring verifiability and accountability
of cloud services should not sacrifice the benefits of migrating to the cloud. The literature
describes cryptographic-based methods to verifiably outsource storage and computation. Re-
cently, researchers introduced the concepts of Proofs of Storage and Verifiable Computation.
However, many of the existing methods involve heavy cryptographic techniques, which render
the solutions unpractical or inefficient. Besides, very few technical solutions were proposed
to achieve accountability in the cloud.

This dissertation proposes new cryptographic protocols that empower cloud users to ver-
ify the correct storage of outsourced data and the correct execution of outsourced computa-
tion. Our solutions achieve their goals more efficiently than prior art while pursuing simpler
approaches. We also introduce an accountability framework that expresses into machine-
readable policies accountability obligations with respect to a correct provision of cloud ser-
vices. In particular, we design a policy language for expressing accountability rules.

We first describe a cryptographic protocol that generates proofs of retrievability, which
enable data owners to verify that the cloud respects its promise to correctly store their data.
We then detail three cryptographic schemes for verifiable computation by focusing on three
operations frequently used in data processing routines, namely polynomial evaluation, matrix
multiplication and conjunctive keyword search. Each of these four protocols are publicly
verifiable, provably secure under well-studied assumptions and we demonstrate their efficiency
and practicality by means of prototypes. We finally present A-PPL, an accountability policy
language that allows the expression of accountability obligations into machine-readable format
in order to automate their enforcement. In particular, we show that A-PPL policies can be
used to rule the execution of our protocol for verifiable storage.

We expect our contributions to highlight the fact that increasing trust in cloud computing
technologies requires an interdisciplinarity of approaches (cryptographic protocols, policy
language) in order to make the existence of verifiable and accountable cloud solutions possible.

viii Abstract

List of Acronyms ix

List of Acronyms

ABE Attribute-Based Encryption

AES Advanced Encryption Standard

A-PPL Accountability-PPL

A-PPLE A-PPL Engine

aPRF Algebraic Pseudo-Random Functions

BLS Boneh-Lynn-Shacham

BOINC Berkeley Open Infrastructure for Network Computing

CBF Counting Bloom Filter

CDH Computation Diffie-Hellman

co-CDH co-Computation Diffie-Hellman

CE Consumer Electronics

CS Computationally Sound

CSA Cloud Security Alliance

DDH Decisional Diffie-Hellman

DL Discrete Log

D-SDH D-Strong Diffie-Hellman

D-SBDH D-Strong Bilinear Diffie-Hellman

ECC Error Correcting Code

ECRH Extractable Collision-Resistant Hash Functions

ESA European Space Agency

EU European Union

FAQ Frequently Asked Questions

FHE Fully-Homomorphic Encryption

FFT Fast Fourier Transform

GCD Great Common Divisor

GUI Graphical User Interface

x List of Acronyms

iO Indistinguishability Obfuscation

IT Information Technology

IP Interactive Proofs

MAC Message Authentication Code

m-DDH multiple Decisional Diffie-Hellman

NASA National Aeronautics and Space Administration

NIST National Institute of Standards and Technology

O-RAM Oblivious RAM

PAP Policy Administration Point

PBC Pairing-Based Cryptography

PCP Probabilistically Checkable Proofs

PDP Provable Data Possession

PDP Policy Decision Point

PEP Policy Enforcement Point

PIR Private Information Retrieval

PRNG Pseudo-Random Number Generator

POL Proofs of Location

POR Proofs of Retrievability

POS Proofs of Storage

PPL PrimeLife Policy Language

PPT Probabilistic Polynomial-Time

PPWS Privacy-Preserving Word Search

PRF Pseudo-Random Function

PRP Pseudo-Random Permutation

PVC Publicly Verifiable Computation

PVCKS Publicly Verifiable Conjunctive Keyword Search

QAP Quadratic Arithmetic Program

QoS Quality of Service

QSP Quadratic Span Program

RIC Remote Integrity Check

ROM Random Oracle Model

RSA Rivest-Shamir-Adleman

xi

SCC Signatures of Correct Computation

SETI Search for ExtraTerrestrial Intelligence

SHA Secure Hash Algorithm

SLA Service Level Agreement

SNARK Succinct Non-Interactive ARgument of Knowledge

SSE Semantically-Secure Encryption

ToU Terms of Use

TPM Trusted Platform Module

VABKS Verifiable Attribute-Based Keyword Search

VC Verifiable Computation

VCKS Verifiable Conjunctive Keyword Search

VKS Verifiable Keyword Search

XACML eXtensible Access Control Markup Language

xii List of Acronyms

List of Figures xiii

List of Figures

2.1 Private Information Retrieval of Trostle and Parrish [176] 38

2.2 Setup phase in StealthGuard . 39

2.3 StealthGuard’s Encode algorithm . 40

2.4 StealthGuard’s FillMatrix procedure . 42

2.5 StealthGuard’s WDSearch algorithm . 43

2.6 StealthGuard’s Verify algorithm . 43

2.7 Error-Correcting Code encoding time . 55

2.8 File-level permutation time . 55

2.9 Encode total time . 56

4.1 Verifiable Polynomial Evaluation . 89

4.2 Experimental measurements . 97

5.1 Verifiable Matrix Multiplication . 102

5.2 Experimental measurements in function of the number of columns 111

5.3 Experimental measurements in function of the number of rows 112

6.1 Overview of our protocol for Verifiable Conjunctive Keyword Search 120

6.2 Cuckoo Hashing Algorithms . 122

6.3 Accumulator Computation . 123

6.4 Verifiable Test of Membership . 124

6.5 Verifiable Set Intersection . 125

6.6 Merkle Tree Algorithms . 126

6.7 Setup . 128

6.8 Verifiable Conjunctive Keyword Search . 129

6.9 Search Verification . 130

6.10 Algorithm UpdateQuery . 130

6.11 Algorithm Update . 131

6.12 Algorithm VerifyUpdate . 132

6.13 Deletion in a Merkle tree . 134

6.14 Insertion in a Merkle tree . 135

6.15 Average total time of the Setup phase . 146

6.16 Total time of the Search phase (fixed number of searched keywords) 147

6.17 Total time of the Search phase - all keywords are found 148

6.18 Total time of the Search phase - one keyword is not found 149

7.1 Healthcare Scenario [34] . 162

7.2 XACML reference architecture (simplified) [169] 169

7.3 General structure of a PPL Policy . 171

7.4 Structure of an A-PPL Policy . 173

7.5 A-PPLE architecture . 175

7.6 Sequence of operations for a Delete request. 177

7.7 Sequence diagram of StealthGuard in A-PPLE 179

xiv List of Figures

7.8 Authorization for the specified list of purposes 180
7.9 Notification in case of a breach . 180
7.10 Logging of the deletion of personal data . 180
7.11 Collection of the deletion log . 181
7.12 Control of the location of data in Europe . 181
7.13 Configuration de StealthGuard . 211
7.14 Aperçu de notre protocole pour la recherche de conjonction de mots-clés vérifiable217

List of Tables xv

List of Tables

1.1 Existing work for Proofs of Storage . 30

2.1 List of notations in StealthGuard . 38
2.2 Complexities of StealthGuard . 51
2.3 Parameterization of StealthGuard . 52
2.4 Efficiency of StealthGuard’s example . 52
2.5 Comparative table between StealthGuard and relevant existing work (Setup). 53
2.6 Comparative table (Challenge-Response and Verification). 54
2.7 Challenge and Verification phase times . 56

3.1 Comparison of relevant existing solutions for Verifiable Computation 84

4.1 Costs of our Verifiable Polynomial Evaluation scheme 95
4.2 Comparison with related work . 96
4.3 Average times of our protocol and amortization 96

5.1 Costs of our Verifiable Matrix Multiplication solution 109
5.2 Comparison with related work . 110
5.3 Average times of our protocol and amortization (impact of number of columns) 111
5.4 Average times of our protocol and amortization (impact of number of rows) . 112

6.1 List of notations in our protocol for Verifiable Conjunctive Keyword Search
(VCKS) . 127

6.2 Complexities of our protocol for verifiable keyword search 144
6.3 Time of Setup phase n = 25293 files . 146
6.4 Time of Search phase (fixed number of searched keywords) 147
6.5 Time of Search phase - all keywords are found 147
6.6 Time of Search phase - one keyword is not found 148
6.7 Local search computational performance . 149
6.8 Parameters and experimental results on Enron email dataset 151
6.9 The Enron email dataset and amortization . 152

7.1 Correspondence between Cloud Actors and Data Protection Roles 161
7.2 Accountability policy language requirements. 166
7.3 List of Triggers and Actions in PPL . 170
7.4 ActionNotify element. 174
7.5 ActionEvidenceCollection element. 174
7.6 ActionLog element. 175
7.7 List of extended or new Triggers and Actions in A-PPL. 176
7.8 Critères d’un langage de politique d’imputabilité. 219
7.9 Extensions d’Accountability-PPL (A-PPL). 220

xvi List of Tables

Contents xvii

Contents

Acknowledgments iii

Abstract vii

List of Acronyms ix

List of Figures xiii

List of Tables xv

Contents xvii

Introduction 1
1 Topic of Research . 1

1.1 Observations . 1
1.2 Framing the Topic . 7

2 Problem Statement . 12
2.1 Questions raised by this thesis . 12
2.2 Contributions . 13

3 Organization . 14

I Proofs of Storage 15

1 Characterization of Proofs of Storage 17
1.1 Introduction to Proofs of Storage . 17
1.2 Definition of a Proof of Storage Protocol . 18

1.2.1 Entities Involved in a POS Protocol 18
1.2.2 System Model . 18

1.3 Requirements for a POS protocol . 19
1.4 Security Model of a POS Scheme . 20

1.4.1 Completeness . 20
1.4.2 Soundness . 20

1.5 State of the Art on Proofs of Storage . 21
1.5.1 Deterministic Solutions . 21
1.5.2 Probabilistic Solutions . 22
1.5.3 Conclusion of the State of the Art . 29

2 StealthGuard: Proofs of Retrievability with Hidden Watchdogs 31
2.1 Security Model of POR . 31

2.1.1 Completeness . 31
2.1.2 Soundness . 32

2.2 StealthGuard . 34
2.2.1 Intuition behind StealthGuard . 34

xviii Contents

2.2.2 StealthGuard Phases . 35

2.2.3 Building Blocks . 36

2.2.4 Description of the Entire Protocol . 38

2.3 Security Analysis of our Protocol . 44

2.3.1 Completeness . 44

2.3.2 Soundness . 44

2.4 Performance Analysis of StealthGuard . 49

2.4.1 Discussion on Efficiency . 49

2.4.2 Example of Parameterization . 51

2.4.3 Comparison with Related Work . 52

2.4.4 Experimental Analysis . 54

2.5 Conclusion . 57

II Efficient Techniques for Verifiable Computation 59

3 Charaterization of Verifiable Computation 61

3.1 Introduction to Verifiable Computation . 61

3.2 Motivating Scenario . 62

3.2.1 The Scenario . 62

3.2.2 Requirements and Features for Verifiable Computation Protocols . . . 63

3.3 Definition of Verifiable Computation . 64

3.3.1 Parties Involved . 64

3.3.2 System Model . 64

3.4 Definition of Publicly Verifiable Computation 65

3.4.1 Parties Involved in a PVC Protocol 66

3.4.2 System Model . 66

3.5 Adversary Model in Verifiable Computation 68

3.5.1 Correctness . 68

3.5.2 Soundness . 68

3.6 State of the Art in Verifiable Computation . 70

3.6.1 Non-Proof-based and Hardware-based Solutions 71

3.6.2 Proof-based General-Purpose Solutions 71

3.6.3 Proof-based Function-Specific Solutions 78

3.6.4 Conclusions of the State of the Art Analysis 82

4 Verifiable Polynomial Evaluation 85

4.1 Introduction to Verifiable Polynomial Evaluation 85

4.2 Protocol Overview . 86

4.3 Building Blocks . 87

4.3.1 Bilinear Pairings . 87

4.3.2 D-Strong Diffie-Hellman Assumption 87

4.4 Protocol Description . 87

4.4.1 Setup . 88

4.4.2 Computation . 88

4.4.3 Verification . 89

4.5 Security Analysis . 89

4.5.1 Correctness . 90

4.5.2 Soundness . 90

4.6 Performance Analysis . 94

4.6.1 Storage . 94

4.6.2 Communication . 94

4.6.3 Computation . 94

Contents xix

4.6.4 Comparison with Related Work . 95

4.6.5 Experimental Results . 95

4.7 Conclusion to Verifiable Polynomial Evaluation 97

5 Verifiable Matrix Multiplication 99

5.1 Introduction to Verifiable Matrix Multiplication 99

5.2 Protocol Overview . 100

5.3 Protocol Description . 101

5.3.1 Setup . 101

5.3.2 Computation . 101

5.3.3 Verification . 102

5.4 Security Analysis . 103

5.4.1 Correctness . 103

5.4.2 Soundness . 104

5.5 Performance Analysis . 108

5.5.1 Storage . 108

5.5.2 Communication . 109

5.5.3 Computation . 109

5.5.4 Comparison with Related Work . 109

5.5.5 Experimental Results . 110

5.6 Conclusion to Verifiable Matrix Multiplication 113

6 Verifiable Conjunctive Keyword Search 115

6.1 Introduction to Verifiable Conjunctive Keyword Search 115

6.2 Definition of Publicly Verifiable Conjunctive Keyword Search 116

6.2.1 System Model . 116

6.2.2 Definition of a Publicly Dynamic Verifiable Conjunctive Keyword Search
protocol . 117

6.2.3 Adversary Model . 118

6.3 Protocol Overview . 119

6.4 Building Blocks . 121

6.4.1 Cuckoo Hashing . 121

6.4.2 Polynomial-based Accumulators and Applications 121

6.4.3 Binary Merkle Trees . 126

6.5 Protocol Description . 127

6.5.1 Setup . 127

6.5.2 Search . 128

6.5.3 Verification . 129

6.5.4 Supporting Dynamic Data . 130

6.6 Security Analysis . 135

6.6.1 Correctness . 135

6.6.2 Soundness . 137

6.7 Performance Evaluation . 142

6.7.1 Discussion on Efficiency . 142

6.7.2 Experimental Analysis . 145

6.8 Conclusion to Verifiable Keyword Search . 153

III Accountability and Verifiability 155

7 An Accountability Policy Language 157

7.1 Introduction . 157

7.2 The Concepts of Accountability . 158

xx Contents

7.2.1 Accountability Model . 158

7.2.2 Accountability Actors and their Roles 160

7.2.3 Accountability and Policies . 161

7.3 Motivating Scenario . 162

7.4 Requirements for an Accountability Policy Language 163

7.4.1 Source of Accountability Obligations 163

7.4.2 Accountability Relationships and Obligations 163

7.4.3 Accountability Obligations . 165

7.4.4 Policy Language Requirements . 166

7.5 State of the Art on Policy Languages . 167

7.5.1 Methodology . 167

7.5.2 Survey of Existing Languages against the Language Requirements . . 167

7.6 A-PPL: a Policy Language for Accountability 172

7.6.1 Roles . 172

7.6.2 Capturing Privacy Policies (R1) . 173

7.6.3 Access Control Rules (R2) . 173

7.6.4 Usage Control Rules (R3) . 173

7.6.5 Data Retention (R4) . 173

7.6.6 Reporting and Notification (R5) . 173

7.6.7 Controlling Data Location (R6) . 174

7.6.8 Auditability (R7) . 174

7.6.9 Logging (R8) . 174

7.7 A-PPLE: a policy engine for A-PPL . 175

7.7.1 Description of A-PPLE . 175

7.7.2 Operations of A-PPLE . 177

7.7.3 Integration of our StealthGuard Prototype in A-PPLE 178

7.8 Example of A-PPL Statements with respect to our Healthcare Scenario . . . 179

7.9 Conclusion . 181

General Conclusions 183

Bibliography 187

Résumé Français 203
1 Preuves de Stockage . 207

1.1 Définition d’un Protocole de Preuves de Stockage 207

1.2 État de l’art . 209

2 Preuves de Récupérabilité : StealthGuard . 209

2.1 Modèle de sécurité . 209

2.2 Aperçu du protocole . 209

2.3 Détails du protocole . 210

2.4 Analyse de sécurité . 211

3 Calcul Vérifiable . 212

3.1 Définition d’un protocole de calcul vérifiable public 212

3.2 État de l’art . 214

4 Évaluation de polynômes vérifiable publiquement 214

5 Multiplication matricielle vérifiable publiquement 215

6 Recherche de conjonction de mots-clés vérifiable publiquement 216

7 Langage de Politiques d’Imputabilié . 218

7.1 Cadre conceptuel . 218

Contents xxi

7.2 Obligations liées à l’imputabilité . 219
7.3 A-PPL . 219
7.4 A-PPLE . 220

List of Publications 221

xxii Contents

Introduction 1

Introduction

Cloud computing has recently emerged as a successful alternative computing paradigm,
involving a large number of machines connected to a network delivering computing power,
storage and Information Technology (IT) services over the Internet. The increasing use of
cloud computing introduced new security risks, exposing cloud users to see the data they
store and the applications they host in the cloud compromised. To alleviate this threat and
increase trust into the cloud, the cloud service providers should implement mechanisms to
ensure that the data and applications are correctly managed in their infrastructures. The
discovery of security breaches in the cloud may result in heavy economical losses and poor
reputation, especially if the provided services target the general audience. Consequently,
security concerns act as strong impediments to the wide adoption of cloud technologies.

1 Topic of Research

1.1 Observations

Before characterizing our topic of research, we present some actual facts to illustrate our
motivation in conducting research on some peculiar aspects of cloud security: verifiability
and accountability. These observations will reflect the existence of these two concerns.

1.1.1 Lack of Trust in Cloud Computing: the Sidekick Data Loss Incident

The context. In the first decade of the new century, at a time when smartphones were
not yet as popular as they are nowadays, three former employees of Apple1 founded Danger,
a Consumer Electronics (CE) company that designed and sold what is known as the first
successful smartphone in the United States: the Sidekick smartphone. Sidekick phones were
launched under T-Mobile carrier and their competitive advantage, compared to other phones
available in the market at that time, relied on the pioneering provision of mobile Internet
services and especially of an application marketplace (later popularized by the Apple’s App
Store and Google’s Android Market). Sidekick caught the attention of certain numbers of
celebrities such as Paris Hilton2 making the phones rapidly popular among the general au-
dience, in particular for teenagers and young adults3. Its popularity can also be assessed
through the important number of thefts4 and hackings5 the devices were subject to. Side-
kick phones also pioneered by their use of cloud computing services: all personal data, such
as contacts, text messages, calendar entries and pictures, were not locally stored (not even

1An interesting historical note: One of the co-founder of Danger, Andy Rubin, left Danger in 2003 and cre-
ated Android, later acquired by Google. Ben Elgin, “Google Buys Android for Its Mobile Arsenal”, Bloomberg
Business, August 16, 2005, http://tiny.cc/j6fr8x [Accessed: February 1, 2016].

2Tricia Duryee, “T-Mobile Uses Celebrity Buzz to Market its Sidekick”, The Seattle Times, December 12,
2005, http://tiny.cc/17fr8x [Accessed: February 1, 2016].

3Melissa Trujillo, “Sidekicks Popular Among Teenagers, Thieves”, NBC News, http://tiny.cc/dhgr8x [Ac-
cessed: February 1, 2016].

4Andrew Nusca, “T-Mobile Sidekick Most Stolen Phone in America”, ZDNet, March 2, 2009, http://tiny.
cc/ujgr8x [Accessed: February 1, 2016].

5Steven Musil, “Paris Hilton’s cell phone hacked?”, CNET, March 18, 2005, http://tiny.cc/eqgr8x [Ac-
cessed: February 1, 2016].

http://tiny.cc/j6fr8x
http://tiny.cc/17fr8x
http://tiny.cc/dhgr8x
http://tiny.cc/ujgr8x
http://tiny.cc/ujgr8x
http://tiny.cc/eqgr8x

2 Introduction

backed-up) in the devices but stored in cloud servers operated by Danger. The company has
finally been acquired in 2008 by Microsoft6.

The facts. At the beginning of October 2009, many users started to face data service
outage: they were not able to access their pictures, contacts, calendar entries, or e-mails. This
outage was caused by a server crash at Danger. The earliest complaints about this event were
published on Twitter from October 2, 2009. Among dissatisfied users, Perez Hilton, a famous
on-line American gossip blogger, launched the hashtag “#TMobileSucks” which became a
number one trending topic on Twitter7. Microsoft (who bought Danger) and T-Mobile kept
silent for a couple of days concerning the amount of damage this failure caused. But on
October 10, 2009, Microsoft and T-Mobile said that the data may be permanently lost8.
Fortunately, on October 12, 2009, T-Mobile and Microsoft finally declared that they would
be able to recover Sidekick users’ data9. Finally on October 15, 2009, Microsoft published
a small report10 announcing that it has recovered most of the Sidekick users’ data. Besides,
the report revealed that “the outage was caused by a system failure that created data loss in
the core database and the back-up”. Other sources11 relate a hardware problem on servers
run by Danger.

The impacts. The Sidekick data loss incident was known to be the “biggest disaster of
cloud computing”12: it impacted an estimated number of 800,000 users. For a long period
of nearly two weeks (from October 2, to October 15, 2009), they were unable to access their
own data, ranging from calendar entries to pictures, including game high scores and notes.

A straightforward commercial repercussion arose in Sidekick phones sales. The American
carrier T-Mobile temporarily interrupted sales of the smartphone13, from October 12, 2009.

Another consequence results in several lawsuits being filled against both Microsoft and
T-Mobile. These lawsuits alleged the negligence of the two international companies of guar-
anteeing an appropriate level of back-up. “T-Mobile and its service providers ought to have
been more careful with the use of backup technology and policies to prevent such data loss.”,
one complaint says14. Another one15 sums up the situation as following: “T-Mobile and
Microsoft promised to safeguard the most important data their customers possess and then
apparently failed to follow even the most basic data protection principles. What they did is

6Robert J. Bach, “Microsoft Agrees To Acquire Danger Inc.”, Microsoft News Center, February 11, 2008,
http://tiny.cc/hsgr8x [Accessed: February 1, 2016]. Rumors affirmed this acquisition was part of Microsoft’s
strategy to compete with the new successful Apple’s smartphone: the iPhone.

7Cristina Lepore, “The T-Mobile Sidekick Data Outage: A Lesson in Social Media Crisis Management”,
451 Heat, October 11, 2009, http://tiny.cc/4vgr8x [Accessed: February 1, 2016].

8Excerpt of T-Mobile Press Release on Sidekick Data Loss: “Regrettably, based on Microsoft/Danger’s
latest recovery assessment of their systems, we must now inform you that personal information stored on your
device - such as contacts, calendar entries, to-do lists or photos - that is no longer on your Sidekick almost
certainly has been lost as a result of a server failure at Microsoft/Danger”. Pete Cashmore, “T-Mobile: All
Your Sidekick Data Has Been Lost Forever”, Mashable, October 10, 2009, http://tiny.cc/4ygr8x [Accessed:
February 1, 2016].

9Saul Hansell, “T-Mobile Says Sidekick Owners May Recover Lost Data” The New York Times, October
12, 2009, http://tiny.cc/l1gr8x [Accessed: February 1, 2016].

10Roz Ho, “Microsoft Confirms Data Recovery for Sidekick Users”, Microsoft News Center, October 15,
2009, http://tiny.cc/93gr8x [Accessed: February 1, 2016].

11Ina Fried, “Sidekick Users Share Their Horror Stories”, CNET, October 12, 2009, http://tiny.cc/lehr8x
[Accessed: February 1, 2016].

12Rory Cellan-Jones, “The Sidekick Cloud Disaster”, BBC News, October 13, 2009, http://tiny.cc/xhhr8x
[Accessed: February 1, 2016].

13Maggie Shiels, “Phone sales hit by Sidekick loss”, BBC News, October 13, 2009, http://tiny.cc/xjhr8x
[Accessed: February 1, 2016].

14Daniel Eran Dilger, “Sun, Oracle save Microsoft’s Pink After Danger Data Disaster”, AppleInsider, Oc-
tober 21, 2009, http://tiny.cc/nlhr8x [Accessed: February 1, 2016].

15Ina Fried, “Lawsuits Filed Over Sidekick Outages”, CNET, October 14, 2009, http://tiny.cc/8nhr8x
[Accessed: February 1, 2016].

http://tiny.cc/hsgr8x
http://tiny.cc/4vgr8x
http://tiny.cc/4ygr8x
http://tiny.cc/l1gr8x
http://tiny.cc/93gr8x
http://tiny.cc/lehr8x
http://tiny.cc/xhhr8x
http://tiny.cc/xjhr8x
http://tiny.cc/nlhr8x
http://tiny.cc/8nhr8x

1. Topic of Research 3

unthinkable in this day and age.”

Resulting from the data loss and the consecutive lawsuits, the reputations of T-Mobile
and Microsoft have been harmed. In the case of T-Mobile, which was facing at that time,
a substantial churn, this disaster did not help the carrier increase the number of its sub-
scribers16. As far as Microsoft is concerned, 2009 was a key year for the company: the
Sidekick disaster occurred just one month before Microsoft was believed to promote its cloud
computing services, Azure17.

More than the damage caused on Microsoft’s reputation as a cloud service provider, the
public perception of cloud computing in general suffered in this anecdote. As a matter of
fact, loss of confidence in cloud computing came to light after the Sidekick data outage. This
episode clearly supported the idea that cloud services cannot be trusted. Customers of other
cloud services were likely to question the providers about their storage, back-up and recovery
practices.

Analysis. The Sidekick smartphone users had no technical means to back-up their personal
data. The devices were designed such that the data was not stored locally but directly in
the cloud. This means that the users were putting their entire trust on Danger (Microsoft)
competence in storing their data, making the supposition that the data would be correctly
stored in the cloud, intact and available at any time. Even worse, users (legitimately) assumed
that the cloud servers were redundantly storing their data to prevent such a data loss disaster.
Hence, the Sidekick users were not backing-up their data locally. In spite of the awareness of
the data loss threat and the evolution of cloud technologies18, the concern remains the same:
personal or sensitive data cannot be assumed to be trustfully stored in the cloud.

Along with the lack of trust concern, the Sidekick anecdote reveals another cloud com-
puting issue: delegating all control over stored data to the cloud is problematic especially in
the case of service outage. As a matter of fact, these two concerns also apply if the service
failure was due to malicious acts.

The perspective of our work in this thesis is to bring some control on the way an untrusted
cloud stores outsourced data. In particular, we believe that data owners may be willing to
check that their data is, at any point of time, correctly stored and available and, under certain
adversarial circumstances, retrievable. For such a verification, the data owners should be
provided with proofs that their data is intact and recoverable.

1.1.2 Verifying Untrusted Computers: the SETI@home Project

The context. Since the dawn of time, humanity has contemplated the stars and won-
dered “Are we alone in the Universe?”. Owing to the difficulty of space traveling and planet
visiting, the chance to come face to face with an alien is extremely low. Nevertheless, the
advent of radio communications gives hope that this question will not remain unanswered.
Indeed, humanity has been broadcasting radio signals into space to find other civilizations.
Humans also believe that other beings might be doing the same from other planets, from
other galaxies. The Search for ExtraTerrestrial Intelligence (SETI) project is an American
program started in the sixties whose goal is to detect signals from outer space that would
witness the existence of forms of extraterrestrial intelligence. The project analyzes the elec-
tromagnetic radiations from space and tries to identify signals that are not the random noise
due to gravitational forces. Researchers are collecting a huge amount of data from radio

16Dan Butcher, “T-Mobile May Recover Some Data but Hit To Reputation Stings”, Mobile Marketer,
October 14, 2009, http://tiny.cc/sshr8x [Accessed: February 1, 2016].

17Daniel Eran Dilger, “Microsoft’s Danger Sidekick Data Loss Casts Dark On Cloud Computing”, October
11, 2009, http://tiny.cc/cvhr8x [Accessed: February 1, 2016].

18Unlike Sidekick, Apple’s iPhone syncs the data in users’ computers using the software called iTunes. Then
iTunes syncs the data with a cloud-based storage service. Therefore, if the cloud service was not available, the
users are still able to access their data locally using iTunes.

http://tiny.cc/sshr8x
http://tiny.cc/cvhr8x

4 Introduction

telescopes around the world. However, processing this data is an expensive and resource in-
tensive task which the researchers could not afford themselves. Hence, in 1999, researchers at
the University of California, Berkeley, devised the SETI@home project: instead of analyzing
the data themselves, the analyses are distributed among a large number of volunteers using
the Internet. The SETI@home project is the first successful and popular implementation of
distributed computing. The volunteers download the Berkeley Open Infrastructure for Net-
work Computing (BOINC) client application which runs when their computers are not used.
Thus, their computational resources are made available to the SETI project. All BOINC
clients interface with a central BOINC server which divides the signal data and its respective
computation (for analysis) into small units called work units. The server sends these work
units to computers distributed over the Internet, which analyze their respective data and send
back the results to the server. The computations performed by the BOINC clients mainly
consist in statistical signal processing which involves operations such as the discrete Fourier
transform. Participants to the SETI@home project are volunteers; Berkeley does not offer
any material or financial reward to those who contribute most to the radio signal processing.

The facts. Since the beginning of the SETI@home project in 1999, BOINC publishes rank-
ings showing which users and which machines processed the biggest amount of work units19.
These rankings act as incentives for joining the project, downloading and running the BOINC
client software. Indeed, as no material or financial compensation are offered, reputation and
success provided by these rankings constitute the only reward which motivates volunteers to
process signal data. However, the downside of rankings is that it creates competition between
users, and thus some of them might cheat to get a better rank. Molnar [128] reported an
episode in which “cheating” with the BOINC software compromised computation integrity,
yielding incorrect results. A German volunteer, who called himself “Olli” created and pub-
lished an unauthorized patch to improve and speed up the computations performed by the
original BOINC client application. SETI@home researchers revealed that this patch actually
return wrong results, substantially different from what the original BOINC software would
have output. Besides, there was no way for the BOINC server to tell whether results are
returned by a patched client or by a normal one. Camp and Johnson [50] also report users
tampering with result data to generate false positives.

The impacts. This “Olli’ anecdote raised awareness about the computation integrity con-
cern in distributed computing, as shown in the SETI@home’s Frequently Asked Questions
(FAQ)20. This concern was referred as the “SETI@home problem” by Molnar [128] who sum-
marized it by the following question: “how do you ensure that the client machines are doing
the right thing?”. Indeed, the results of a delegated computation to a volunteer computer
cannot be trusted because (i) unintentional hardware problem at client hosts can cause errors
in the computations; (ii) volunteers might intentionally return bogus results by sabotage of
the application or simply by not performing the requested computation. The SETI@home
project was then required to review their security practices in order to filter out incorrect
results. One envisioned approach to prevent such a misbehavior was to remove the incentive
that motivates users to run patched BOINC client software (such as the one released by
“Olli”). Namely, SETI@home could have stopped ranking users to shrink competition and
thus thwart cheating behaviors. However, this solution would also have removed the motiva-
tion to participate in the project. Hence, the BOINC platform copes with this computation
integrity concern via replication. As the project involves a large number of volunteers21,
the same work unit (same computation on the same data) is randomly assigned to several

19BOINC rankings: http://boincstats.com/en/stats/0/user/list/ [Accessed: February 1, 2016].
20SETI@home FAQ: http://www.faqs.org/faqs/seti/at-home/questions/ [Accessed: February 1, 2016].
21The “BOINCstats” web page reports 1,598,622 volunteers: http://boincstats.com/en/stats/0/user/list/

[Accessed: February 1, 2016].

http://boincstats.com/en/stats/0/user/list/
http://www.faqs.org/faqs/seti/at-home/questions/
http://boincstats.com/en/stats/0/user/list/

1. Topic of Research 5

clients. Assuming that clients running unauthorized patched BOINC applications form a
minority and that clients cannot collude22, only the results that appear in a majority will
be considered as valid. Molnar [128] also extrapolates another possible approach from some
research conducted around the years 2000s about proofs of correct computation, that
consider an adversary that would only disrupt the computation and do not mind about the
reputation resulting from the BOINC rankings23. Applied to the SETI@home project, the
volunteers would be required to generate a proof of correctness for each result they output
and the BOINC server would verify the validity of this proof.

Analysis. Related to the SETI@home problem, Gennaro et al. [90] wrote: “A related fear
plagues cloud computing”. Indeed, when a user outsources some resource intensive compu-
tation to the cloud, the concern of computation integrity and result correctness arise. This
user cannot trust the cloud to correctly perform the outsourced computation, as the BOINC
server cannot trust the BOINC clients. While the incentives for BOINC clients to misbehave
were related to the inherent competition in the SETI@home project, a malicious cloud may
return bogus computation results to save computational resources. As a consequence of the
“Olli” patch problem, the BOINC platform devised a measure to control the computations
by the untrusted BOINC clients and detect fraudulent results. Similarly, cloud users should
be given control on the way the cloud operates the outsourced computation. Namely, they
should be convinced that the returned results are correct by verifying the computation.
Namely, as extrapolated by Molnar [128] for the SETI@home project, the cloud server should
generate proofs of correctness. Besides, the verification of these proofs must demand less
computational resources than the computation itself. Otherwise, delegating the computation
offers no gain to the user. The vision of our work consists in giving to cloud users such a
control over the computation they outsource to a cloud server.

1.1.3 Security, Privacy and Accountability: the iCloud Data Breach

The context. The breakthrough of cloud computing technologies opened the way to a
plethora of new services. Among others, iCloud, provided by Apple since 2011, hit the
headlines during summer 2014, because of a media-hyped data breach. iCloud24 is the leading
cloud computing service offered by Apple Inc. It provides cloud storage and serves as an
automatic back-up system for iOS25 devices. Users can upload their documents, contact
lists, e-mails, photos and other multimedia items to their iCloud account. They can easily
access their data from any device and share them to others.

The facts. On August 31, 2014, a substantial collection of private pictures, portraying at
least 100 female celebrities, was hacked and leaked on the Internet. Some of these stolen
pictures contain nudity. They were initially published on the anonymous image-based forum,
4chan26, and later advertised on popular social networks such as Reddit27 and Tumblr28. All
these images (even images that were previously deleted by the subjects) were stolen via a
breach in iCloud. Many of the affected celebrities confirmed the genuineness of the pictures.
Other data such as calendar entries, address books or text messages were also illegally ob-

22Molnar [128] assumes BOINC clients cannot collude but since they are connected to the Internet, this
assumption seems too strong.

23As opposed to patched clients that only want to speed up their computations to increase the number of
processed work units and thus to top the BOINC rankings.

24iCloud: https://www.icloud.com/ [Accessed: February 1, 2016].
25iOS is the Operating System of Apple devices.
264chan: http://www.4chan.org/ [Accessed: February 1, 2016].
27Reddit: https://www.reddit.com/ [Accessed: February 1, 2016].
28Tumblr: https://www.tumblr.com/ [Accessed: February 1, 2016].

https://www.icloud.com/
http://www.4chan.org/
https://www.reddit.com/
https://www.tumblr.com/

6 Introduction

tained. Apple confirmed29 within two days that the data leak resulted from targeted attacks
on celebrities’ iCloud accounts. As a matter of fact, the hackers obtained the pictures by the
brute force guessing30 of usernames, passwords and security questions.

The impacts. The illicit distribution of the hacked pictures was perceived as a major
privacy breach for the affected celebrities. Some of the subjects were underage when the
nudity pictures were taken, leading to prosecution for child pornography distribution for all
web users that republished them.

Beyond the legal aspects of the leak, finding responsibilities and evidence of the data
breach was one of the main priorities. The concern was to identify which party is responsible
for the attack: did the iCloud service present vulnerability or were the accounts hijacked
by brute-force attack? Investigations by Apple revealed that the problem stemmed from
these two aspects. It appears that hackers were able to conduct an unbounded number of
brute force iCloud credential guesses because iCloud was not locking the number of signing-in
attempts. Besides, iCloud legitimate users did not receive notifications that their accounts
were tried to be accessed. In a sense, Apple rejected responsibility for the hack and blamed
iCloud users for choosing weak or multiple-time passwords as credentials.

As a result, while denying accountability for this incident31, Apple took some remedia-
tion measures32 to prevent similar attacks in the future: it added security alerts for the users
when someone is trying to access and change their accounts; it increased users’ awareness
about the danger of weak passwords and it introduced a two-factor authentication to access
the iCloud account.

This incident undermined iCloud’s and Apple’s reputation and induced bad publicity
for Apple just before the release of their new operating system iOS832. As a result, Apple
published an accountability report33 on their security and privacy practices. Beyond iCloud,
cloud computing services in general suffered from the iCloud data breach. It aroused concerns
on how these services guarantee privacy and security and the general audience’s trust in the
cloud.

Analysis. The iCloud data breach is an example of how important the concept of ac-
countability is and how critical trust in cloud computing becomes. In its accountability
report33, Apple states that “strict policies govern how all data is handled”. Nevertheless,
we identify at least three issues that should have been stated in such policies in order to
ensure a better level of privacy and accountability: (i) Deleted pictures were still recoverable.
This may consist in a policy violation, or even a legal violation since many data protection
regulations impose restrictive rules on data erasure34; (ii) No notifications or alerts were sent
to legitimate users when an unauthorized user accessed the iCloud accounts or when data
was retrieved from unknown devices; (iii) Collecting evidence35 about the data breach was
a tough issue in order to determine the responsibilities of the actors involved in the iCloud

29Apple Media Advisory, “Update to Celebrity Photo Investigation”, Apple Press Info, September 2, 2014,
http://tiny.cc/o8ir8x [Accessed: February 1, 2016].

30A script used to guess iCloud login credentials was on Github. “Brute Force Attack Burns Celebrities”,
LMG Security Blog, September 11, 2014, http://tiny.cc/udjr8x [Accessed: February 1, 2016].

31Nicole Arce, “iCloud? Find My iPhone? What Should Be Blamed For Nude Celebrity Photo Leaks?
Neither, says Apple”. Tech Times, September 4, 2014, http://tiny.cc/trjr8x [Accessed: February 1, 2016].

32 Daisuke Wakabayashi, “Tim Cook Says Apple to Add Security Alerts for iCloud Users”, The Wall Street
Journal, September 5, 2014, http://tiny.cc/fvjr8x [Accessed: February 1, 2016].

33 Tim Cook, “Apple’s Commitment To Your Privacy”, Apple, http://www.apple.com/privacy/ [Accessed:
February 1, 2016].

34Regulation of the European Parliament and of the Council on the protection of individuals with regard
to the processing of personal data and on the free movement of such data: http://tiny.cc/12jr8x [Accessed:
February 1, 2016].

35Warwick Ashford, “Apple and FBI Launch iCloud Hack Investigation”, Computer Weekly, September 2,
2014, http://tiny.cc/25jr8x [Accessed: February 1, 2016].

http://tiny.cc/o8ir8x
http://tiny.cc/udjr8x
http://tiny.cc/trjr8x
http://tiny.cc/fvjr8x
http://www.apple.com/privacy/
http://tiny.cc/12jr8x
http://tiny.cc/25jr8x

1. Topic of Research 7

incident (Apple cloud service, users, malicious parties). Hence, we can appreciate the impor-
tant role played by appropriate policies in order to mitigate risks and increase trust in
cloud-based services, in which users give up the control over their data. Establishing policies
and ensuring their enforcement enable those users to keep data under certain control.

1.2 Framing the Topic

In the observations we made in the previous section, we mentioned some key notions that we
define in the present section in more detail. The expression of these definitions contribute to
the delineation of the topics of this dissertation.

1.2.1 Cloud Computing: an emerging computing paradigm

The term “cloud computing” (or just “cloud”) is perhaps one of the most popular buzzword
in IT in this early stage of the 21st century. No other technologies has raised the same
amount of enthusiasm and passion as cloud computing. Envisioned since the 1950s, the idea
of providing shared access to a single resource (in the model of client/server) has constantly
evolved. The advent of virtualization and virtual machines, the development of web services
and the growing number of individuals and companies able to connect to the Internet made
the ideal conjunction for cloud computing to exist. In 2006, Amazon unveiled Amazon Web
Services36, maybe the first cloud-based service offering storage and computation known to the
general audience. 2009 marked a shift in cloud computing perception: two other multinational
companies, namely Google and Microsoft, entered the field. Google launched its App Engine,
a cloud-based platform for developing and hosting web applications in Google’s servers37,
while Microsoft announced Azure, a cloud-based platform for developing applications that
are hosted inside Microsoft’s data centers38. Naturally, other big players in the IT market
took part in cloud computing evolution (Oracle, HP, Apple, etc.) It was not until September
2011 that the National Institute of Standards and Technology (NIST) released a definition
of cloud computing embraced by many research papers and IT articles:

Definition 1 (Cloud Computing). “Cloud computing is a model for enabling ubiqui-
tous, convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider interaction”.
[124]

In other terms, the term “cloud computing” represents a computing paradigm with the
following four characteristics:

On-demand service: Cloud clients can obtain cloud services whenever they want, and as
long as they want, in an automated way, without requiring any human assistance.

Accessibility: Cloud services are delivered using Internet and through standardized mecha-
nisms. The clients are enabled to access such services through a variety of devices (such
as mobile phones, tablets or laptops) and from anywhere on the globe.

Pooled resources and multi-tenancy: Unlike the traditional IT model that provides ser-
vices for one client, cloud-based services share pooled resources that are delivered to

36About Amazon Web Services: http://aws.amazon.com/about-aws/.
37Brady Forrest, “App Engine: Host Your Apps with Google”, O’Reilly Radar, April 7, 2008, http://tiny.

cc/4wkr8x [Accessed: February 1, 2016].
38Ray Ozzie, “Microsoft Unveils Windows Azure at Professional Developers Conference”, Microsoft News

Center, October 27, 2008, http://tiny.cc/q4kr8x [Accessed: February 1, 2016].

http://aws.amazon.com/about-aws/
http://tiny.cc/4wkr8x
http://tiny.cc/4wkr8x
http://tiny.cc/q4kr8x

8 Introduction

multiple clients in a multi-tenant model. Namely, a single instance of resources serves
multiple clients. Note that resource mutualization implies location independence: the
resources are distributed among different locations in order to maintain cloud perfor-
mances (availability of resources, high Quality of Service (QoS), etc.).

Elasticity: Cloud computing virtually supplies computing, storage and network resources
that the clients can easily access and use. This illusion is due to the capacity of the cloud
to dynamically scale up or down the provision of a service in function of the demand.
Because of resource pooling and multi-tenancy, the elasticity of cloud computing implies
that a resource not used by one client can be assigned to another one who needs more
resources.

Adopting cloud computing presents many benefits for both the service consumer and the
service provider. Indeed, the cloud client, be it a company or an individual, can leverage
cloud computing technologies for:

Reduced IT costs: Instead of spending a possibly large amount of money on IT infras-
tructures for storage and computation, an organization can rent resources from cloud
providers. Reduced costs also concern IT maintenance or support, including salaries or
energy expenditures.

Ease of access and usage: Cloud-based services empower their users to access the re-
sources from any geographical location and simultaneously by different users, with
various devices. Besides, the resources can be used in an automated and intuitive
way, without the users being required to be trained to use cloud services.

High QoS: Cloud services supply their users with highly responsive applications with low
latency on demand. This is so because cloud computing optimizes the use of pooled
resources via the elasticity property.

Flexibility: This benefit also results from cloud computing’s elasticity characteristic. For
example, a company can face several seasonal changes in demand of resources (such as
adding users into a cloud-based system for a short period of time). Cloud computing
can handle such variations easily by scaling up and then down again the provision of
the demanded resources. Besides, cloud providers often adopt the pay-as-you-go model:
clients are charged only for the resources they consume. Hence, no resource is left idle.

From the cloud provider’s perspective, benefits include:

Optimized utilization of resource: While in traditional computing systems, IT assets,
such as hardware, are not used at their maximum capacity, cloud computing empowers
cloud providers to effectively allocate their idle resources to a broad range of clients.

Increased profit: With an increased number of cloud users, cloud providers enter a new
growing market that generates high revenue. Besides, the optimized use of their re-
sources help make new high incomes.

Alongside cloud computing, the 21st century is facing the advent of “big data”. This
other buzzword not only describes data that is “big” in size (namely, tera, peta or exabytes
of data) but also considers data that is constantly produced (such as streaming data or
time-series data) and that presents a heterogeneity of formats and structures. Hence, the
big data paradigm deals not only with storing these huge amount of data but also with
processing, analyzing, visualizing and extracting relevant information and knowledge from
different kinds of data. Organizations generating or collecting big data are confronted to the
following concern: how to efficiently process this data? A possible solution to this concern
arises from cloud computing that provides an optimal infrastructure to deal with big data.

1. Topic of Research 9

The elasticity property of the cloud makes it ideal to handle big data processing. Together
cloud computing and big data empower organizations to operate cost effective and scalable
data analytics, from which they may gain valuable business information.

1.2.2 Cloud Computing: security, privacy and compliance challenges

In spite of the benefits we listed previously, cloud computing is prone to various security
and privacy concerns (as shown in Section 1.1), which present barriers to the widespread
adoption of cloud computing. Besides, for cloud service providers to be competitive in the
cloud computing market place, these concerns must be addressed. Most of the impediments
to the success of cloud computing stem from a combination of two interconnected issues,
namely loss of control and lack of trust:

• Cloud users relinquish the control over their data to the cloud service providers. Indeed,
by outsourcing their assets (data and computation) to the cloud, users do not physically
possess them anymore and rely on the cloud providers to implement adequate control
over a wide range of aspects, including: storage, access, privacy, confidentiality, in-
tegrity, availability and usage. This loss of control is typically critical for organizations
which must adhere to regulatory obligations such as the European Data Protection
directive [80], the Health Insurance Portability and Accountability Act (HIPAA) [1] or
the EuroSOX39 directive on transparency and accountability of financial control [79].
Hence, the loss of control over data by companies induces compliance challenges with
respect to these regulations.

• Deterrence in cloud computing adoption can also be attributed to a lack of trust in
cloud service providers. This lack of trust applies according to two aspects. First,
unintentional failure in the cloud services may cause data loss or service disruption
which can be critical for organizations that rely on these services. Secondly, cloud
providers themselves are considered as untrusted and malicious. They can adopt two
adversarial behaviors. A curious cloud compromises data and computation privacy and
confidentiality, by, for instance, performing data mining operations to acquire valuable
knowledge and information from the data they manage. This is typically the case with
the huge amount of sensitive and personal data generated and collected by social net-
works such as Twitter, LinkedIn or Facebook. A malicious cloud intentionally misuses
its resources in such a way that it compromises confidentiality, integrity or availability
of the data and computations they handle. Furthermore, malicious third parties are
another threat faced by cloud services. Alongside lack of trust, transparency on how,
why and where the data and computations are processed is a fundamental concern in
cloud-based services. Providers may be tempted to hide any system failure or data
breach that might comprise their reputation.

To summarize, transferring control to an untrusted cloud poses several security and privacy
risks, which are correlated with transparency, responsibility and compliance concerns. The
threats associated with these risks were reported and analyzed by the Cloud Security Alliance
(CSA) in their “Notorious Nine” report [174] that lists the nine cloud computing top threats.
Here are some real-word examples of some of these threats:

Data breach: This threat is reported as the Top 1 in cloud computing. It refers to the
theft and leakage of sensitive data falling into the hands of unauthorized parties. Over
the past decade, not only have more and more organizations suffered from data breach
incidents, but the amount of stolen data also increased. In addition, this stolen data is

39EuroSOX is the European version of the American Sarbanes-Oxley (SOX) Act stating that a company
is responsible for any accounting or financial misbehavior even if financial data are processed by third-parties
such as cloud providers.

10 Introduction

more and more sensitive40. The term sensitive encompasses personal, business, medical
and governmental/military data. In the following, we list some examples of data breach
incidents. They do not all involve cloud technologies, but similar incidents are believed
to occur in the cloud as well.

Personal data: The iCloud data breach we described in Section 1.1.3 is an example
of personal data breach. Hackers stole and published celebrities’ personal pictures.

Business data: In 2013, a major discount retailer, Target Corporation, unveiled that a
serious data breach affected more than 70 million customers, during the Christmas
holiday season. The stolen data included credit card information41.

Medical data: In 2015, an important data breach at Premera Blue Cross, an Ameri-
can healthcare insurer42, was discovered. This data breach affected more than 11
million people. Data includes date of birth, social security number and clinical
information.

Governmental data: In 2015, the American government’s personnel management
agency (OPM) announced that hackers stole 21.5 million people’s personal data
from their IT system43. The stolen data includes information collected from se-
curity clearance applications, such as birth dates, addresses, current and former
federal employees, information about relatives, eye colors, financial history, past
substance abuse, social security numbers, etc.

Data loss: Cited as the Top 2 threat by the CSA [174], data loss refers to the unrecoverable
destruction of data as was the case in the Amazon’s cloud crash disaster in April
201144. Data loss also corresponds to the temporary unavailability of the data as
faced by the Sidekick users in the example we mentioned in Section 1.1.1. These two
previous examples show data losses resulting from unintentional incidents. In addition
to these, malicious behaviors can also compromise data storage, data integrity and data
availability by, for instance, deleting or tampering with the data, unlinking the data
from a larger context [174] or destroying encryption keys if the data is encrypted.

The above examples of cloud computing threats in real-life scenarios justify the recent
research efforts in the topic of security and privacy in the cloud. Besides, with the increasing
demand of cloud services and the proliferation of mobile devices, the cloud security market
has been enjoying an important and rapid growth in the past few years. A report from
Transparency Market Research estimated that the cloud security market reached $4.5 billion
in 2014 and that it could be worth $11 billion by 202245.

However, the peculiar characteristics of cloud computing negate the straightforward uti-
lization of traditional IT security mechanisms such as encryption to ensure confidentiality of
data, cryptographic-based techniques to guarantee data or computation integrity, isolation
to secure computations, etc. This is due to several challenges specific to the cloud:

1. The proliferation of data, the so-called“big data”movement, and the increasing number
of mobile devices incite individuals and organizations to use cloud services to outsource
and access at anytime and from anywhere their data and applications.

40A nice visualization of recent data breach incidents (since 2004) can be found at: http://tiny.cc/pwmr8x
[Accessed: February 1, 2016].

41John Biggs, “Target Confirms Point-Of-Sale Data Breach, Announces It Exposed 40 Million Credit Card
Numbers”, TechCrunch, December 19, 2013, http://tiny.cc/7xmr8x [Accessed: February 1, 2016].

42Premera Blue Cross, “About the Cyberattack”, http://tiny.cc/szmr8x [Accessed: February 1, 2016].
43Patricia Zengerle and Megan Cassella, “Millions More Americans Hit By government Personnel Data

Hack”, Reuters, July 9, 2015, http://tiny.cc/01mr8x [Accessed: February 1, 2016].
44Henry Blodget, “Amazon’s Cloud Crash Disaster Permanently Destroyed Many Customers’ Data”, Busi-

ness Insider, April 28, 2011, http://tiny.cc/d4mr8x [Accessed: February 1, 2016].
45James Martin, “Recent Research Into The Cloud Security Market That Is Expected To Reach US$ 11.84

Billion and CAGR of 12.8% by 2022 Just Published”, WhaTech, August 18, 2015, http://tiny.cc/1dnr8x
[Accessed: February 1, 2016].

http://tiny.cc/pwmr8x
http://tiny.cc/7xmr8x
http://tiny.cc/szmr8x
http://tiny.cc/01mr8x
http://tiny.cc/d4mr8x
http://tiny.cc/1dnr8x

1. Topic of Research 11

2. This implies that the cloud users lose control over their data and lend it to the cloud.
Besides, since the users do not have the physical possession of their data anymore,
making it safe via traditional IT security mechanisms is impractical. Therefore they
have to rely on cloud providers to implement the appropriate security measures.

3. Regulatory and contractual compliance makes challenging the application of security
measures in the cloud, especially those laws and contracts that rule storage and use of
data. They entail that verifications of the way the cloud stores and uses the outsourced
assets must be performed to show that the cloud is compliant. In a wider perspective,
compliance implies accountability with respect to a cloud’s behavior.

In addition, solutions addressing cloud security concerns and challenges must be designed
in a such a way that outsourcing to the cloud remains an attractive solution for cloud users.
Security techniques must be efficient and must, at the same time, ensure ease of use and
access of outsourced data.

1.2.3 Focus of the present work

This thesis addresses the problem of verifiability in the cloud. The goal is to devise mecha-
nisms used by cloud users to control and verify that the cloud correctly delivers the promised
services of storage and computation. It is legitimate to believe that users who consume and
pay for these services expect that their data are correctly stored or that their computations
are correctly performed. In other words, the terms of the “contract” (be it an explicit agree-
ment such as Service Level Agreements (SLAs), terms of use, policies, or a tacit agreement)
that binds the cloud and its users should be verifiable [42] and failures to meet this contract or
violations to the terms should be detectable. Intuitively, we say that a property is verifiable
if given an instance of this property, an agent can test whether this instance actually satis-
fies the property. The verifiability concept supports transparency: verifying cloud’s behavior
enables to know about the controls the cloud put in place to handle outsourced data and
outsourced computation.

This thesis particularly focuses on two aspects of verifiability in the context of cloud
computing, namely storage and computation:

Storage: We mentioned in Section 1.2.2 the data loss threat: a cloud user outsources to the
cloud her possible large amount of data and expects the cloud to correctly store the
data. Therefore, the user wants to verify the integrity of the data. Namely, she must
be convinced that the data is not deleted, nor tampered with. In order to verify such
a property, the cloud is required to generate some proofs of storage, that enable the
user to check that the data is correctly stored.

Computation: Data is not the only asset that can be outsourced to the cloud. Many
scenarios entail computation outsourcing: several kinds of operations may require a
substantial amount of computational resources that may not be affordable for individu-
als or organizations. Hence, these users decide to migrate these operations to the cloud.
In this case, they should be convinced that the cloud will always return correct results.
In order to verify such a statement, the cloud is summoned to generate some proofs
of correct computation, that empower the users to check that the returned results
actually correspond to a correct execution of the outsourced operation. In this work, we
focus on three types of computation: large degree polynomial evaluation, large matrix
multiplication and keyword search in a large database

Besides verifiability, we study the broader concept of accountability for cloud comput-
ing, in relation with the transparency, responsibility and compliance challenges we identify
in Section 1.2.2. We are particularly interested in policies for accountability. Such policies

12 Introduction

may convey the obligations that the cloud should comply with during the entire relation-
ship between the cloud and its users. There currently exists no accountability framework
that enables these users to understand how cloud providers honor accountability obligations,
namely the rules making clear what the cloud is expected to do with the outsourced data.
We believe that accountability policies provide means to express those obligations in terms
of how the cloud should handle users’ assets. Therefore, we look at the possibility to design
a machine-readable policy language to convey accountability concepts.

2 Problem Statement

This thesis attempts to address a list of concerns that we formalize below.

2.1 Questions raised by this thesis

Associated with the security challenges identified in Section 1.2.3, a user who wants to adopt
cloud technologies could raise the following questions:

• Is the service correctly provided by the cloud?

• Is it doing what it is supposed to do?

• How can I verify the execution of a service without wasting the cloud’s benefits?

• Does the service comply with appropriate policies related to accountability and security?

Expressed in a more formal way, we characterize three problems that the present thesis
considers as key issues in cloud computing security.

Problem 1: Verifiable Storage. This problem concerns the correct storage of cloud users’
data. As users do not possess their data anymore, they relinquish the control over their
storage to an untrusted cloud. How can we give back cloud users some control over the
data they outsource to the cloud? In particular, the users must be convinced that the
cloud complies with the promise to provide a storage service that does not compromise
the integrity and the availability of users’ outsourced data. In this perspective, the
users must be empowered with the capability to verify the storage service offered by
the cloud. Ideally, the cloud should produce a proof of storage stating that it actually
stores an intact version of users’ data. Besides, the verification of the proof by the users
must not require computationally demanding operations since the users might not have
sufficient resources to perform heavy verifications. Therefore, another question must
be addressed: Can we design a system where the cloud generates proofs of storage that
enable to verify in an efficient way that users’ data are correctly stored by the cloud?

Problem 2: Verifiable Computation. Along with data outsourcing, cloud computing al-
lows to delegate the computation of expensive operations to powerful servers that per-
form the computation on behalf of cloud users. In this thesis, we focus on primitives
that are very common in today’s world: polynomial evaluation, matrix multiplication
and conjunctive keyword search. Similarly to the case of data storage, in the compu-
tation outsourcing scenario, users do not have control over the delegated computation
and lend this control to untrusted servers. How can we give back cloud users some
control over the computation they outsource to the cloud? More specifically, we regard
computation integrity as an important issue. When the cloud returns the results of one
of the above operations, the users must be convinced that these results are the ones
they expect. Namely, they must be convinced that the returned results are equal to
the one they would have obtained if they had performed the computation themselves.
In other terms, the users must be able to verify that the cloud returned the correct

2. Problem Statement 13

outcome of the delegated computation. In this perspective, the cloud should produce
a proof of computation ensuring the users that the returned results correspond to a
correct evaluation of the outsourced operation. Furthermore, the verification of this
proof by the users must be substantially less computationally demanding than the op-
eration itself; otherwise outsourcing the computation would not be profitable for the
users. Hence, this thesis considers the following problem: Can we design a system where
the cloud generates proofs of computation that enable to verify in an efficient way that
users’ computation is correctly performed by the cloud?

Problem 3: Accountability. We identify in Section 1.2.3 that accountability is a peculiar
challenge in cloud computing. Cloud providers must be compliant to regulation and
contracts and be held accountable for the way they manage and operate cloud users’
assets. Stated differently, a collection of accountability obligations binds cloud users and
providers together so that the cloud operates in a transparent way. Machine-readable
policies are a way to express these accountability obligations such that their enforcement
can be handled easily in an automated way. This thesis intends to answer the following
question: How and to what extent can we convey accountability obligations via expressive
and declarative policies in such a way that policies are easy to use, manage, enforce and
validate and such that cloud provider can be held accountable for these obligations, thus
increasing trust between users and providers?

2.2 Contributions

This thesis answers the above problems and we propose the following contributions.

Proofs of Storage. Under an untrusted cloud, we design a protocol that generates some
cryptographic proofs showing that the data outsourced at this cloud is correctly stored.
The possible (and näıve) protocol whereby the data owner stores at the cloud the data
along with a digital signature and, in order to verify the correct storage, downloads the
data and checks the signature, would not scale in the context of cloud computing and
big data, since it would incur large resource consumption. Hence the protocol for proofs
of storage should be more efficient than this simple solution. Namely, the generation
and the verification of these proofs of storage do not induce expensive costs in terms of
computation, storage and bandwidth for the data owner (and/or any party that verifies
the storage correctness). In addition, the protocol must be secure under a malicious
cloud that would forge false proofs while not storing the data as expected. We propose
our protocol for proofs of storage, StealthGuard, based on the idea of inserting in the
outsourced data special blocks, called watchdogs.

Proofs of Computation. Under an untrusted cloud, we can delegate and verify the results
of computationally demanding operations. The remote computer is required to send
the result of such a computation along with a cryptographic proof that the operation
was carried out as expected. We devise three protocols in which verifying the proof of
correct computation is efficient, requiring less computational resources than computing
the outsourced operation locally from scratch. These three protocols address the prob-
lem of verifiable computation for three types of operations: large degree polynomial
evaluation, large matrix multiplication and conjunctive keyword search. These three
solutions are based on simple mathematical techniques and well-established crypto-
graphic primitives, rendering our protocol efficient compared to some prior work. One
of the peculiar characteristics of our solutions is the fact that they allow two properties:
public delegatability (anyone, not only the user who outsourced the computation, can
request the server to perform the computation) and public verifiability (anyone, not
only the user who requested the computation, can verify the results returned by the

14 Introduction

server). Besides, these protocols are secure against a malicious server that would return
bogus results without performing the computation.

Accountability Policy Language. We design A-PPL, a policy language that enables the
expression of accountability obligations which rule the conditions under which an ac-
countable cloud must operate outsourced data. This policy language is machine read-
able to facilitate the automation of the enforcement of these obligations. We also devise
the A-PPL engine, the system that enables the enforcement of the accountability poli-
cies written in our new language.

3 Organization

The present dissertation is organized into three parts:

Proofs of Retrievability: Part I investigates on storage verifiability. Chapter 1 provides
the reader with the definition of a cryptographic proof of storage protocol and a new
security model against malicious servers. We also review prior work in terms of proofs
of storage solutions. Chapter 2 describes our protocol StealthGuard. We also prove the
security properties of our proposal and implement a prototype showing the efficiency
of StealthGuard.

Proofs of Correct Computation: Part II addresses Problem 2 on proofs of correct com-
putation. In particular, Chapter 3 introduces the concept of verifiable computation and
gives an exhaustive analysis of the literature in this domain. We then propose three
efficient protocols for three different operations: polynomial evaluation (Chapter 4),
matrix multiplication (Chapter 5) and conjunctive keyword search (Chapter 6). We
study the security properties of our solutions, and demonstrate them. We finally build
prototypes and analyze their efficiency.

An Accountability Policy Language: Part III introduces the concept of accountability
in the context of cloud computing. We define the obligations related to an accountable
cloud and derive from them some requirements that a machine-readable policy language
for accountability should satisfy. We review existing policy languages and determine
to which extent they meet the identified requirements. We then present A-PPL, a
new policy language for accountability, together with the A-PPL engine. We finally
illustrate with a scenario the expression and the enforcement of accountability policies.

Part I

Proofs of Storage

1 Characterization of Proofs of Storage 17

2 StealthGuard: Proofs of Retrievability with Hidden Watchdogs 31

16

1. Characterization of Proofs of Storage 17

Chapter 1

Characterization of
Proofs of Storage

1.1 Introduction to Proofs of Storage

In recent years, cloud computing became popular and received considerable attention since
this paradigm allows users (industries, organizations, individuals) to outsource possibly large
amounts of data to a remote cloud server who is then responsible for storing these data. While
the users enjoy the advantage of offloading the storage burden to the cloud, some security
issues inhibit some organizations or end users to shift from traditional storage systems where
the data is locally stored (implying heavy costs in server maintenance) to cloud computing
technology. Indeed, by storing data to the cloud, users lose the physical control over their
data and relinquish their management to untrusted servers. In particular, as we showed in
Section 1.2.2, outsourced data in the cloud may be the target of several threats identified by
the CSA in their report on the “Notorious Nine” Top Threats of Cloud Computing [174]. The
scope of this part of the thesis focuses on data losses, reported as the second biggest threat in
cloud computing by the CSA [174]. The term data loss encompasses not only unauthorized
deletion of data but also unrecoverable tampering of data. Data losses may result from
(i) malicious attackers that intentionally erase or manipulate the data; and (ii) accidental
deletion or changes due to system crashes, bogus software update or any unintentional system-
based data corruption. Stated differently, the data loss threat may compromise the integrity
and availability of outsourced data.

To be given back a certain form of control, the data owners need to be convinced that the
cloud server is compliant with their storage expectations. In particular, data owners must
be ensured that their data is intact and available all along the storage period. One of the
challenges we mentioned in Section 1.2.2 concern big data. Since data owners cannot afford
for the storage of large amounts of data, they use cloud storage services to store them. In
such a scenario, data owners do not physically possess their assets anymore. Therefore, the
traditional technique of integrity checking relying on a digital signature cannot be considered:
Indeed, to check that large data is correctly stored, the owner downloads it, computes its sig-
nature, and compares it with the stored signature. Unfortunately, this solution does not scale
in the context of cloud computing, since downloading big data incurs high communication
costs that waste the advantage of outsourcing storage to the cloud.

This concern and the related challenges are addressed by a body of research in Proofs of
Storage (POS), in which a user outsources the storage of large data to the cloud and further
audits the cloud to check whether it stores the data as expected. In such an audit, the user
challenges the cloud to return some cryptographic proofs asserting that the data is available
and intact. Section 1.2 gives the definition of Proofs of Storage and requirements for such
proofs are listed in Section 1.3. We introduce the security model specific to POS schemes in
Section 1.4. We finally review prior work in Section 1.5.

18 1. Characterization of Proofs of Storage

1.2 Definition of a Proof of Storage Protocol

This section gives a formal definition of a POS protocol, inspired by the definition proposed
respectively by Ateniese et al. [14], Juels and Kaliski [107] and Shacham and Waters [165].

1.2.1 Entities Involved in a POS Protocol

A POS scheme comprises the following entities:

Data owner O: Data owner O wants to outsource the storage of her set of files, denoted F ,
to a cloud server S and would like to obtain from S the assurance over the integrity of
her files.

Cloud Server S : Often mentioned as the prover, and considered as potentially malicious,
cloud server S is presumed to store each file F ∈ F in its entirety. In practice, cloud
server S stores an enlarged, verifiable version F̂ of file F such that S can produce proofs
showing that data owner O can retrieve her original file F .

Verifier V : On behalf of data owner O, verifier V enters a challenge-response protocol with
cloud server S (i.e. the prover) to check whether S is storing O’s file F ∈ F in its
entirety. The role of verifier can be played either by data owner O herself or by any
authorized entity, acting as an auditor.

1.2.2 System Model

We present here the definition of a POS system. The notion of POS was first formalized
by Ateniese et al. [14] and Juels and Kaliski [107] then updated by Shacham and Waters
[165]. The definition we propose here follows the challenge-response approach proposed in
[107] while defining a stateless protocol as suggested by Shacham and Waters [165]. The term
stateless means that the verifier does not need to maintain auxiliary information (a state)
between several instances of verifications. We also define three POS phases (Setup, Challenge
and Verification). Without loss of generality, we assume that each file F ∈ F is composed of
n splits {S1, S2, ..., Sn} of equal size of L bits. If necessary, F will be padded to a multiple of
L. We also make the assumption that each split Si comprises m blocks {bi1, bi2, ..., bim} of l
bits, i.e. L = m · l.

Definition 2 (POS Scheme). A POS scheme consists of five polynomial-time algorithms
(KeyGen, Encode, Challenge, ProofGen, Verify) distributed across three POS phases.

I Setup. This phase only involves data owner O. She runs KeyGen to produce the key-
ing material required in the POS scheme and invokes Encode to prepare a verifiable
version F̂ of a particular file F ∈ F of hers:

BKeyGen(1κ)→ K: This probabilistic key generation algorithm takes as input a se-
curity parameter 1κ and outputs a secret key K ∈ {0, 1}∗ for data owner O.

BEncode(K,F)→ (fid, F̂): This algorithm takes key K and file F = {S1, S2, ..., Sn}
as inputs and returns the verifiable file F̂ = {Ŝ1, Ŝ2, ..., Ŝn} and F ’s unique
identifier fid.

It is worth mentioning that algorithm Encode is invertible: There exists an al-
gorithm Decode that lets data owner O recover her original file F from F̂ .

At the end of the Setup phase, cloud server S is supposed to store file F̂ together with
F ’s identifier fid, whereas data owner O removes F from her local storage, and only
keeps the key output by KeyGen. Note that key K is independent of file F .

1.3. Requirements for a POS protocol 19

I Challenge. The Challenge phase consists in one or several challenge-response protocols
involving verifier V and cloud server S (i.e. the prover). In essence, verifier V runs
algorithm Challenge that generates POS requests to the prover so as to check the
integrity of data owner O’s file F . In turn, the prover invokes algorithm ProofGen
that responds to verifier V ’s challenge by generating the requested proofs.

BChallenge(K, fid)→ chal: This probabilistic and randomized algorithm generates a
challenge chal for an execution of the POS protocol for file F whose identifier
corresponds to fid. It takes as inputs secret key K and file identifier fid, and
returns challenge chal. For different executions of the POS protocol, algorithm
Challenge always outputs different values for chal.

BProofGen(fid, chal)→ P: This algorithm is used by cloud server S to generate the
proof of storage P for the target file F̂ whose identifier is fid.

The generated proof P is then sent to verifier V for Verification.

I Verification. After receiving the proofs of storage for file F with identifier fid from
cloud server S , verifier V executes algorithm Verify to check their validity.

BVerify(K, fid, chal,P)→ b ∈ {0, 1}: This deterministic algorithm decides whether P
is a valid response to challenge chal. It takes as inputs key K, file identifier
fid, challenge chal and proof P. It outputs bit b = 1 if proof P is valid, b = 0
otherwise.

1.3 Requirements for a POS protocol

Protocols for POS enable users of a remote storage service to verify that this service continu-
ously and correctly stores their data, with the concern that such a verification does not waste
the possibly limited bandwidth and computation resources of the users. In this section, we
identify the design requirements and features that a POS must/should satisfy.

Security. The POS protocol must be sound, even against a malicious adversary, who would
falsely claim that it stores the data correctly. The protocol must not allow such an
adversary to produce correct proofs that will be accepted by the verifier (this is called
the unforgeability of proofs of storage). We develop more the characterization of this
requirement in Section 1.4.

Unbounded number of verifications. Data owners should be able to check that their
data are correctly stored as many times as they want. Some POS schemes only provide
limited number of verifications, compelling data owners to download their data back,
in order to perform further verifications. Others guarantee an unbounded number of
verifications.

Efficiency. Performances of a POS scheme can be assessed by means of four types of metrics:
(i) the communication cost between the verifier and the server during the Challenge
phase must not be large; (ii) the computational cost of algorithm Verify must be
light for the verifier; (iii) the computational cost of algorithm ProofGen must be
optimized for the server; (iv) the amount of storage induced by the POS protocol
must be kept at minimum46. Besides, considering the two requirements of unbounded
number of queries and efficiency, we authorize a POS protocol to adopt the amortized

46The data owner is not required to locally back-up a file to be checked.

20 1. Characterization of Proofs of Storage

model approach: an expensive Setup phase for the data owner is amortized over multiple
instances of the Challenge and Verification procedures.

Along with the three above requirements, additional features can be adopted by a POS
protocol.

POS with extractability. A certain number of solutions that verify storage are able to
detect any data loss or modification, but they do not guarantee that the data can be
recovered. As we will explain in Section 1.5.2.1, such schemes fall into the category of
Provable Data Possession (PDP) or Remote Integrity Check (RIC). In other terms, they
only assess whether the storage server possesses the data and stores it intact without
allowing data owners to retrieve the data in its entirety. On the contrary, Proofs of
Retrievability (POR) schemes, thoroughly described in Section 1.5.2.2, ensure that the
verifier can retrieve her data in its entirety, at any point of time. In particular, we refer
to data retrievability as a special security feature for data storage. Retrievability can
be seen as a combination of integrity and availability.

POS with dynamic data. POS solutions allow to perform verifications on data that is
prone to updates. The challenge here is to check that the outsourced data is correctly
stored even in the case of modification by the data owner. Besides, this feature allows
the data owner to update the data without the need to download it. Update operations
include: deletion, modification or insertion of data blocks.

POS with public verification. We distinguish two modes for verifying storage: private
verification and public verification. The feature of public verification is of special interest
in the case where the verification procedure can be performed by anyone, not just the
data owner. Precisely, anyone should be able to launch verification queries and verify
the proofs of storage returned by the storage server.

POS with privacy. This security feature intends to protect the privacy of data owner’s data
and/or identity against third-party verifiers. The latter are authorized to assess whether
the remote server stores the data correctly but not to infer any other information
concerning the data.

1.4 Security Model of a POS Scheme

This section gives an outline of the two security requirements related to any POS scheme,
namely completeness and soundness properties.

In a nutshell, the completeness property captures the fact that the POS scheme does not
yield any false negatives. In other words, verifier V always accepts cloud server S ’s proof,
whenever S stores the outsourced files. On the other hand, soundness requires that any
prover, who convinces verifier V that she is storing some file F , is actually storing a verifiable
version of file F .

1.4.1 Completeness

If cloud server S and verifier V are both honest, then on input of a challenge chal and some
file identifier fid sent by verifier V , using algorithm Challenge, algorithm ProofGen generates
a proof of storage that will be accepted by verifier V with probability 1.

1.4.2 Soundness

A POS scheme (KeyGen, Encode, Challenge, ProofGen, Verify) is sound if any malicious server
cannot forge valid proofs of storage for a file F without storing a verifiable version of F in
its entirety. In other words, a verifier can always detect (except with negligible probability)
that a server deviates from a honest behavior. More details will be given in Section 2.1.2.

1.5. State of the Art on Proofs of Storage 21

1.5 State of the Art on Proofs of Storage

Significant efforts to address the problem of POS were stimulated with the advent of cloud
computing and big data in recent years. In particular, a large collection of research work
proposes cryptographic solutions for a verifier (be it the data owner or third parties) to
efficiently check that an untrusted remote server, the prover, correctly stores the outsourced
data as expected, namely that the data is available and not tampered with.

We review in this section the existing POS solutions providing mechanisms to enable such
verifications. These solutions include the pioneering work by Juels and Kaliski [107] on Proofs
of Retrievability (POR) and Ateniese et al. [14] on Provable Data Possession (PDP).

This analysis of existing POS solutions will be based on the requirements (see Section 1.3)
for the design of such solutions (security, unbounded number of verifications, efficiency), as
well as additional features that some work adopt (extractability, handling of dynamic data,
public verifiability and privacy-preserving mechanisms). These criteria allow us to establish
a classification of the existing work.

Having identified the design requirements and features in Section 1.3, we propose to use
the efficiency requirement as the first criterion for classification: we classify the existing work
into two categories: deterministic and probabilistic solutions. In a nutshell, the first category
(Section 1.5.1) ensures that the verifier can check the correct storage and be convinced with
a probability of 1. This kind of solution often incurs heavy computations for the data owner,
the prover and the verifier. The second category (Section 1.5.2) follows a sampling approach
that involves some randomness in the verification protocol. This randomness makes uncertain
the data integrity guarantee. Nevertheless, this probabilistic procedure makes more efficient
solutions compared to deterministic solutions.

1.5.1 Deterministic Solutions

Early work [71, 84, 160] allow for Remote Integrity Check (RIC) that can convince a verifier
with an integrity guarantee of 100 %. Deswarte and Quisquater [71], and independently
Filho and Barreto [84], devise solutions that use RSA-based functions applied to the entire
data for each verification challenge. The data owner needs first to pre-compute and to store
a checksum on the data. The verifier challenges the prover based on a random number r
and the server computes the proof of storage as rF mod N where F is the outsourced file
and N a RSA modulus. The verifier then checks the validity of the proof against the pre-
computed checksum. However, these RSA-based schemes suffer from a prohibitive cost for
the server, especially in the case of large files, since the server has to exponentiate over the
entire file F to compute its proof of integrity. Sebé et al. [160] revisit the approach followed
by Filho and Barreto [84] and leverage the homomorphism property of the checksum: instead
of generating the checksum over entire file F , the authors suggest to divide F into splits
of same size F = {S1, .., Sn} and to compute the checksum over each split. The integrity
verification requires the prover to compute a pseudo-random linear combination of all the
splits in file F and to generate a proof based on this combination. Upon reception of the
proof, the verifier checks its validity based on the checksum and the same combination of
splits. In this setting, at the server side, the exponentiation time of the work in [84] is
reduced to n sub-exponentiations. However, the data owner has to keep O(n) check values.
Schwarz and Miller [159] develop the concept of algebraic signatures that, in combination
with Error Correcting Code (ECC)47, constitute the proofs of integrity. Algebraic signatures
are generated such that the signature on the bits of redundancy (produced by the application
of the ECC) is equal to the redundancy of the signatures on splits of data. The integrity
check is based on the comparison of the signature on the ECC splits with the signature of the
unencoded data (the check also relies on some additional technique to guarantee the freshness
of the response). This retains the server from returning the entire file and the verifier to store

47We give a description of ECC in Section 2.2.3.2.

22 1. Characterization of Proofs of Storage

a local copy of that file. However, the communication complexity is linear in the size of the
data, since the server has to return the signatures for all the splits. Besides, the authors of
[159] did not provide any security proof of their scheme.

1.5.2 Probabilistic Solutions

To remove the burden of heavy communication and computation complexities, not always
applicable in a cloud-based scenario, since this burden would cancel out the advantage of
storing the data at a remote server, probabilistic solutions provide an alternative to the
deterministic guarantee offered by the solutions described in Section 1.5.1. These probabilistic
solutions rely on the technique of random sampling. In this method, each element of a set has
an equal and independent chance of being selected. The rationale behind the use of random
sampling is to optimize the communication and computation complexities of POS solutions:
Instead of checking the integrity of the entire data (as performed in existing work presented in
Section 1.5.1), probabilistic solutions for verifiable storage allow the verification of integrity
of a randomly selected subset of data splits. Operating in such a way, a verifier can get the
assurance that the data as a whole is correctly stored by the remote server. The optimization
induced by the random sampling approach does not come without a price: sampling only
ensures a probabilistic guarantee that the data is correctly stored in its entirety.

Two pioneer work on POS laid the basis for new solutions relying on random sampling:
Provable Data Possession (PDP) introduced by Ateniese et al. [14] and Proofs of Retrievability
(POR) defined by Juels and Kaliski [107]. These two seminal works on PDP and POR led to
an intensive body of research on POS. PDP and POR protocols differ from the fact that only
POR solutions satisfy the extractability requirement we established in Section 1.3. In other
terms, PDP mechanisms only detect inconsistencies in the data but do not allow to recover
from them.

1.5.2.1 Provable Data Possession

The dynamicity requirement enables us to provide a further categorization of methods that
are based on PDP: we first review static solutions, then examine dynamic ones. We also
analyze PDP schemes that provide other features, such as privacy-preserving data possession
verification.

Static PDP schemes. PDP introduced by Ateniese et al. [14] enables a data owner to
verify the integrity of outsourced data in an efficient way. The data owner is not required
to keep a local copy of its outsourced data. The integrity check is performed according to
a challenge-response protocol between the data owner and the remote server. In particular,
its communication complexity is lighter that the one induced by the schemes presented in
Section 1.5.1 and is independent of the data size.

RSA tags. Ateniese et al. [14] devise homomorphic verifiable tags as check-values for each
data split. These items serve as an essential building blocks for many other PDP schemes
but also POR techniques, as we will see in this review of the state of the art. In [14], the
homomorphic tags are based on RSA and are of the form σi = (wi · gSi)d mod N , where
wi is a randomized function of the position i of split Si in file F = {S1, ..., Sn}, namely
wi = PRF(r, i), with r being a random number and PRF a pseudo-random function, N is a
RSA modulus, d is the RSA private exponent such that ed = 1 mod ϕ(N), e is the the RSA
public exponent and g is a generator of the group of quadratic residues modulo N . The data
owner keeps d secret, publishes N , e, r and g, and stores F and Σ = {σi}1≤i≤n at the remote
server (without keeping a local copy). To verify data possession, the verifier asks the server
for tags of c pseudo-randomly chosen splits. The server generates a proof of storage based on
the selected splits and their respective tags: The server generates a linear combination of the
splits and thanks to the homomorphism on the tags, combines tags of the selected splits into a

1.5. State of the Art on Proofs of Storage 23

single tag. Since the homomorphic tags are encrypted using the secret RSA exponent d, this
scheme provides public verifiability by means of public exponent e. The generation of the tags
by the data owner is quite expensive, requiring O(n) exponentiations. However, the server
exponentiations are reduced to a number c, corresponding to the number of challenged splits.
In [16], the authors formalize the definition and use of homomorphic verifiable tags in publicly
verifiable PDP protocols. In particular, they show how a homomorphic identification protocol
can be derived to construct a PDP scheme (a homomorphic identification protocol originally
authenticates an entity to a remote server without leaking any information). Curtmola et al.
[67] envisioned the scenario where a file is replicated in t different (untrusted) servers to
increase availability of the data. The authors devise a multi-replica PDP protocol (MR-PDP)
that enables to verify the correct storage of the t replicas stored at the t servers. Instead
of executing the single-replica PDP [14] for the t replicas, which may be computationally
demanding since the data owner would have to compute homomorphic tags for each of the
copies, the MR-PDP protocol generates a single set of tags (the tags are the one proposed
in [14]) for the t copies of the same file. Besides, to prevent servers from colluding in order
to correctly respond to a PDP challenge (when some of the servers do not store the data
as expected), the protocol generates t unique and differentiable replicas by encrypting the
original file and then applying a random mask of the encrypted file to produce the replicas.
Even with this improvement, this solution still presents some weaknesses because the MR-
PDP does not ensure that the proof generated by a challenged server really corresponds to
the replica it was required to store.

BLS tags. Hanser and Slamanig [101] develop a PDP construction that simultaneously
allow for private verification (that is only the data owner holding a secret key can perform the
verification) and public verification. This scheme relies on elliptic curves and the computation
of the tags is based on BLS signatures [41]. In a nutshell, a tag is computed as σi = (H(i)gSi)α

and is publicly verified by checking that e(σi, g) = e(H(i)gSi , gα), where e is a bilinear
pairing48, H a cryptographic hash function, g the generator of a cyclic group and α is data
owner’s secret key. The security of this scheme does not rely on standard assumptions but
on the random oracle model.

Algebraic signatures. Chen [61] elaborates on algebraic signatures introduced in [159]
to construct a PDP scheme that generates algebraic tags for data splits and imposes less
computational overhead than homomorphic tags. The scheme pre-computes t verifications
challenges. Each of these challenges randomly samples c data splits, that are combined
into a single split corresponding to the sum of the c splits. This resulting split is then
authenticated via its algebraic signature. To verify data possession, the verifier sends one of
the pre-computed challenges and the server responds with the sum of the splits targeted by
this challenge, and the corresponding algebraic signature. The obvious concerns with this
method rely on the fact that the challenges are computed beforehand, limiting the number
of verifications, and that this method induces a storage cost at the verifier.

Polynomial-based PDP. Krzywiecki and Kuty lowski [115] suggest tags that do not rely
on RSA but on polynomial-based techniques. In [115], each data split Si is divided in m
blocks bij and is assigned to a pseudo-random polynomial Pi (the coefficients of Pi are
pseudo-randomly generated) of degree m. The tag σi for split Si corresponds to the set
((bi1, Pi(bi1)), ..., (bim, Pi(bim))). The data owner stores the data splits and the tags at the
server. To test whether the server stores correctly split Si, the verifier selects a random point
xchal (different from the blocks) and a (secret) nonce r and computes y = grPi(xchal), with
g being the generator of an appropriate group G. The verifier sends gr, grPi(0), xchal to the
server. The server computes the proof of data possession by computing Π = grPi(xchal). To do
so, the server employs the Lagrangian interpolation technique in the exponent, with the use
of σi that contains the blocks and their image by Pi, and the challenge sent by the verifier.
The latter then checks that Π corresponds to the expected value y. Beyond this interesting

48Bilinear pairings are introduced in Section 4.3.1.

24 1. Characterization of Proofs of Storage

effort to use polynomial interpolation, this scheme is not very efficient. Indeed, the proto-
col we just described applies to a single block only and involves expensive exponentiation
and interpolation. Thus the verification of other blocks for a full PDP induces high cost.
Some solutions to a problem orthogonal to verifiable storage can be applied as a technique
for PDP. Indeed, verifiable polynomial evaluation49 schemes [30, 90] enable to check that a
remote server correctly evaluates an outsourced polynomial on some targeted inputs. The
server must send a proof that the evaluation is correct. Benabbas et al. [30] and Gennaro
et al. [90] suggest to use their respective protocol for verifiable polynomial evaluation as a
building block for provable data possession. The idea is to encode the outsourced data as a
polynomial whose coefficients correspond to the data splits. The proof consists in evaluating
this polynomial over a random point sent by the verifier as a challenge. The server returns
the outcome of this evaluation together with a proof of correct computation. The verifier
checks the proof and recognizes that the server correctly stores the data if the proof is valid.

Dynamic PDP schemes. As we mentioned in Section 1.3, data can be subject to updates
after its storage at a remote server. Enabling dynamic PDP is a useful feature: a verifier can
run storage verification procedures while enabling the data owner to update the data (and
verify the update) without the need to download the data.

Ateniese et al. [15] revisit their original PDP scheme [14] to address the problem of
dynamic updates in the data. While in [14], public-key cryptography and homomorphic tags
are used, the authors of [15] only employ symmetric-key cryptography. In this new scheme,
the data owner pre-computes a collection of t verification tokens. Each of these tokens τj
consists in c possible challenged splits of indices i1, ..., ic and their corresponding answer vj
that is generated as vj = H(f(j), i1, Si1)⊕ ...⊕H(f(j), ic, Sic), where f is a pseudo-random
function, H a cryptographic hash function and ⊕ the XOR operation. These tokens can
either be locally stored or outsourced in an encrypted form to the server. Besides, the data
owner should maintain a data structure to keep track of the structure of split indices in the
data. To check that the server correctly stores the data, a verifier challenges the server with
split indices i1, ..., ic corresponding to token τj . The server then computes a proof of storage
z = H(f(j), i1, Si1)⊕ ...⊕H(f(j), ic, Sic). This proof is valid if z matches the corresponding
verification token vj . To update a data split stored at the server, the data owner must retrieve
all the tokens that involve the updated split and update in each of the token answer the value
of vj (1 ≤ j ≤ t) according to the new split. This technique is unpractical, since all the
tokens have to be modified. Besides, the insertion of new data splits requires to update all
the indices of consequent splits and thus update all the pre-computed tokens, which can be
computationally intensive. Furthermore, this scheme suffers form the fact that the number
of storage verifications is limited by the number t of precomputed tokens, which contravenes
the requirement of unlimited number of verifications.

Skip list. An effective technique to support dynamic data updates relies on authenticated
data structures, such as Merkle trees [125] or skip lists [153]. From this perspective, Erway
et al. [77] (also Esiner et al. [78] that extend this work) propose a PDP protocol that is fully
dynamic (all the update operations are supported in this scheme). The authors revisit the
original skip list data structure to enable efficient insertions and deletions of splits, while
being able to verify updates. Each split in the data is authenticated with a homomorphic
tag σi = gSi mod N which is stored in the skip list (N is a RSA modulus). The verification
of storage is similar to the work proposed by Ateniese et al. [14]: the verifier challenges some
randomly-selected blocks and the server returns a combination of the tags and the blocks,
thanks to the homomorphism of the tags. The skip list is then used to authenticate that the
combination is correctly computed for the requested blocks. Indeed, unlike in [14], the tag
does not include the information on the index i. In addition, the skip list is used to perform the
efficient updates. In this setting, the skip list induces a non-negligible storage overhead for the

49This problem will be considered in Part II.

1.5. State of the Art on Proofs of Storage 25

server. Besides, deleting or inserting a data block can affect the computational complexities
at the server.

Update tree. Zhang and Blanton [194] propose another PDP protocol that allows efficient
updates, while maintaining a revision control history of past updates. In the scheme of Zhang
and Blanton [194], each update is not directly verified. A verifier can check that the updates
are well-performed only when she retrieves the outsourced data. This protocol relies on a
new authenticated data structure that the authors name balanced update trees. Unlike in
previous PDP proposals [77, 78], the authenticated data structure does not store information
about the tags but about the updates themselves. The update operations are arranged into
a balanced tree such that the verification of an update takes O(v) time, where v is the total
number of the data versions (which is assumed to be identical to the number of updates
performed on the data). While performing the update operations and their verification is
efficient, this scheme requires the data owner to keep track of the update history. Thus, she
needs to locally store the update tree (which is of size O(v)). Furthermore, the tree must be
updated, which may not be straightforward and lightweight, since keeping it balanced can
require further computations. Besides, since the tags used to authenticate the data splits are
just Message Authentication Codes (MACs), they cannot be aggregated into a single value as
the homomorphic tags in [14]. Therefore, at each verification challenge, the communication
complexity is linear with the number of challenged splits. Finally, the MACs have to be
recomputed at each update, inducing additional costs for the data owner.

Merkle tree. Wang et al. [186] devise a publicly verifiable dynamic PDP scheme that
employs homomorphic tags [14], Merkle hash trees50 [125] and bilinear pairings51 as building
blocks. The authors observe that the tags of the scheme proposed by Ateniese et al. [14]
cannot be devoted to a dynamic PDP protocol since they include the indices (the positions)
of the splits in the data. Hence, when the data is updated, especially in the case of a
new split insertion, the indices of subsequent splits are modified (incremented in the case of
insertion), compelling the data owner to change (possibly many) other tags, which can be
computationally demanding. Therefore, Wang et al. [186] pull away the index information
for the computation of the tags. The data owner then computes the tags of the form σi =
(H(Si)g

Si)α, where H is a cryptographic hash function, α is a random number kept secret
and g is the generator of a cyclic group (as a matter of fact, these tags are BLS signatures
[41]). During a verification challenge, as in [14], the prover computes and returns a pseudo-
random linear combination of splits and aggregation of their respective tags. The Merkle tree
serves for authenticating H(Si). Indeed, to perform the verification, a verifier would need to
recompute this value. For a matter of efficiency, instead of requesting the server to return
each split Si separately (along with the combination of challenged splits), the verifier only
retrieves H(Si) and authenticates it using the tree, such that she can be sure that it really
corresponds to the hash of the block at position i. Besides, the tree allows efficient split
deletion and insertion (in O(log n) time). Nevertheless, it is not clear whether a malicious
server can be successful in a replay attack. Indeed, the server may use a previous version of
the data to pass the verification.

PDP schemes with other features. In the static publicly verifiable PDP scheme devised
by Wang et al. [185], third-party verifiers are considered as honest but curious, in the sense
that they correctly follow the PDP procedure, but may learn unauthorized information about
the data content. In particular, in the original PDP scheme [14], a verifier who has issued
several challenges and received the same amount of proofs from the remote server, can recal-
culate the challenged splits via their combination Schal =

∑c
i=1 αiSi. If the verifier receives

enough Schal, it can recover the Si’s using a simple linear equation system. To overcome this
pitfall, Wang et al. [185] propose a privacy-preserving publicly verifiable PDP that requires

50Section 6.4.3 characterizes Merkle hash trees.
51Section 4.3.1 gives more details on bilinear pairings.

26 1. Characterization of Proofs of Storage

the server to apply a random mask over the split aggregation Schal. Hence, such a technique
prevents the verifier to infer any information about the data content from the proof of data
possession. While this scheme protects data privacy against third-party verifiers, it does not
protect against remote servers, to which the data blocks are sent in clear.

Shen and Tzeng [166] refine the concept of public verifiability. They propose a PDP
protocol in which the data owner can delegate the verification ability to a third-party while
preventing this party to re-delegate this capability to unauthorized users. In addition, the
data owner can revoke the verification capability to an authorized verifier. These two features
do not compel the data owner to compute new tags for the designated/revoked verifiers.
Instead, the protocol “transforms” the tags computed from the data owner’s secret key into
tags that can be verified by the verifier’s secret key, using a pre-computed token (note that
the scheme involves similar tags to the ones in [186] based on BLS signatures [41]).

Wang et al. [183] propose Oruta, a PDP construction that considers the scenario of a
(static) group of users sharing data in the cloud while preserving the identity of these users
during integrity verifications performed by a third-party verifier (a similar scenario applies to
their subsequent work [182, 184]). The splits are authenticated via homomorphic tags which
are also shared among group users and may be subject to changes according to updates
performed in the data. These tags are similar to the ones in [186] and are based on ring
signatures [155, 40] that enable to verify that a signature is computed from the secret key
of a member of a group of users. Oruta suffers from the fact that each group member
generates tags for the shared data, which substantially increases the storage overhead at the
server. Besides, Oruta applies to a group that is static, that is, it does not support group
dynamicity, a new user joining the group, or an exisiting user leaving the group (or being
revoked). In this perspective, in their consecutive works, the authors propose Knox [182] that
accommodates to the issue of a new user joining the group and Panda [184] that allows to
perform group member revocations, using homomorphic tags based on proxy re-signatures
[38], that efficiently convert tags generated by a revoked group member to tags of remaining
group members.

1.5.2.2 Proofs of Retrievability

The notion of POR was defined by Juels and Kaliski [107]. POR is stronger than PDP
in the sense that POR offers the additional property that the data owner can be ensured
that she can recover her data at any point of time. Indeed, the security model provided
by POR schemes makes the definition of an extractor algorithm explicit. This algorithm
can recover the outsourced data from a collection of POR challenges. Thus the security
guarantee of POR is stronger than the PDP’s. This extractability property is supported by
means of Error Correcting Codes. In addition, the application of ECC mitigates an arbitrary
number of data corruption. Sampling random splits detects substantial data corruption on
the sampled splits and thus ensures that the remote server indeed committed to storing the
outsourced data. However, small data corruption (tantamount to a couple of bits) may go
undetected by the sampling technique, since it only targets large data corruption. In this case,
the server can produce valid proofs of integrity for the sampled splits although the data is
actually corrupted. To make the POR scheme robust to such corruptions, ECC is integrated
in the pre-processing of the data before its outsourcing. Hence, corruptions on small parts
of data provoke no damage since they can be recovered from the redundancy bits generated
by the application of the ECC, while the corruptions affecting large amounts of data can be
detected by random sampling. In the following, all the presented POR constructions involve
the application of an ECC.

Static POR schemes. Sentinels. The original POR proposed by Juels and Kaliski [107]
encodes each data split using an ECC algorithm, such as Reed-Solomon codes [154]. After
encrypting the data with a semantically secure encryption, a bunch of pseudo-random valued

1.5. State of the Art on Proofs of Storage 27

blocks called sentinels are inserted in random positions in the data. These sentinels are in
fact indistinguishable from other data blocks thanks to the semantically secure encryption
of the data. Therefore, an adversary cannot tell whether a block is a real data block or
a sentinel. To check the retrievability of the data, the verifier specifies the positions of
a collection of randomly-selected sentinels and queries them from the remote server. The
latter retrieves the queried sentinels and sends them back to the verifier who checks that
they are intact. The rationale behind this protocol is that modifying part of the data will
also, with a certain probability, impact the sentinels. Therefore, if the returned sentinels
are not correct, this means that the data has been modified. This solution incurs very
lightweight computational complexity, at the price of a limited number of verifications that
can be performed by the verifier. Indeed, challenging the server discloses the position and
value of the targeted sentinels. Thus the challenged sentinels cannot be used for further
verification.

BLS signatures. Shacham and Waters [165] introduce the concept of Compact POR to
improve the efficiency and the security guarantee provided by the POR construction of Juels
and Kaliski [107], while enabling an unbounded number of verifications. The Compact POR
protocol relies on homomorphic tags to minimize the bandwidth consumption during a POR
challenge: indeed, the server can aggregate the tags into a single tag value, thanks to the
homomorphism of the tags. Shacham and Waters [165] propose two distinct protocols: the
first produces block tags that are based on MAC [27] for private verifiability and the second
generates BLS signatures [41] as tags for public verifiability. The notion of POR is further
formalized and generalized in [43]. In particular, Bowers et al. [43] observe that the ECC
used in the protocol of Shacham and Waters [165] is inefficient and suggest different codes to
improve the efficiency. Dodis et al. [75] improved the privately verifiable version in [165] to
reduce the challenge communication complexity. Another direction of research considers the
multi-server setting [44], where the outsourced data is replicated among several independent
servers. If a verifier detects (using POR as a building block) that the data is not correctly
stored in one of the servers, she can resort to the other servers to recover the parts of the data
that are not intact. The POR protocol is conceived such that a block at a particular position
is verified comparing the different blocks stored by the various servers at this particular
position.

Polynomial-based POR. In [189], the authors revisit the POR scheme with private verifia-
bility of Shacham and Waters [165] and construct a static POR protocol based on polynomial
commitments defined in [108]. This scheme is very similar to the polynomial-based PDP
proposed by Benabbas et al. [30] and Gennaro et al. [90] but with the additional application
of an ECC to meet the extractability requirement. This polynomial commitment scheme
enables to commit to a polynomial P and to generate a short proof (a witness) of the correct
evaluation P (r) on some input r. In [189], the block tags are computed using tags from
[165] as σi = H(i) +

∑m
j=1 bijα

j = H(i) + Pi(α) where each split Si is regarded as a vector
of blocks {bi1, bi2, ..., bim} that forms the coefficients of polynomial Pi. Then as in [165], to
check the retrievability of the data, the verifier sends random positions to the server, who
in turn computes a linear combination of the targeted splits and a linear aggregation of the
corresponding tags. In addition, the server evaluates Pchal(r) where Pchal is the polynomial
mapped to the challenged splits, and generates the corresponding witness of correct evalua-
tion. Then the verifier checks that the proof is valid. This protocol improves the scheme by
Shacham and Waters [165] in terms of communication complexity, but unlike [165] it does
not ensure public verifiability.

RSA-based tags. Ateniese et al. [17] enhanced the original PDP construction of [14]
with ECC to make it robust against small data corruptions. The authors observe that with
the application of an ECC, three encoding strategies can be applied: (i) the data owner
simply applies a Reed-Solomon code; (ii) to prevent an adversary to learn the dependencies
between the splits and their corresponding redundancy blocks, the data owner applies the

28 1. Characterization of Proofs of Storage

Reed-Solomon code, permutes all the blocks in the data (including the redundancy blocks)
and then encrypts the entire data; (iii) to prevent from executing an expensive preprocessing
operation (due to the permutation step), the data owner only permutes the redundancy
blocks. The choice between these three methods is made according to the desired security
level of the data owner.

Dynamic POR schemes. As we will see in this paragraph, applying an ECC in the case of
dynamic data is not straightforward. Indeed, updating a split also impacts the corresponding
redundancy blocks, thus reveals to an adversary which redundancy blocks correspond to
which splits. Having this extra knowledge enables the adversary to selectively delete some
splits together with their redundancy blocks. If a POR challenge does not target the deleted
blocks, the adversary is still able to generate valid PORs, that will be accepted by the verifier.
The latter can then believe that the data is retrievable, even though some splits are deleted
and cannot be recovered.

Batching updates via a proxy. Stefanov et al. [170] were the first to tackle the problem
of dynamic PORs. They introduce an encoding based on XOR operations that is efficient
and addresses the problem mentioned above. However, their setting involves an additional
(trusted) proxy that caches update operations and performs them on behalf of the data owner.
As the updates are not executed once requested, but cached by the proxy, the dependencies
between redundant blocks and their corresponding data blocks are concealed.

Batching updates without a proxy. Chen and Curtmola [60] enhance the robust scheme
of [17] to handle dynamic updates. In particular, they observe that updating even a small
number of blocks may require to retrieve the entire file, since several blocks may be involved
during the generation of the redundancy blocks. They present two protocols. The idea
behind these two protocols is to leverage a variant of Reed-Solomon codes that is based on
Cauchy matrices52 [149]. The first protocol is efficient in encoding but suffers from high
communication costs during updates (especially in the case of insertion operation, when
the data owner needs to retrieve the entire data), while the second proposal reduces the
communication costs but the encoding (and decoding) operation is more computationally
demanding. Shi et al. [167] deploy a hierarchical log structure that logs the update operations
to be performed. In other words, the protocol in [167] batches the update operations to handle
them in a single time such that multiple data blocks are modified, concealing the dependencies
between data and redundancy blocks.

O-RAM. Cash et al. [53] devise a (publicly verifiable) POR protocol with the technique of
Oblivious RAM (O-RAM) [94]. In a nutshell, O-RAM consists in a data structure that allows
the data owner to update the outsourced data in a privacy-preserving way. In particular, the
write accesses are hidden, which conceals the dependencies between data and the redundancy
blocks. This data structure is hierarchical: it consists of several layers of hash tables such
that the top levels store the most recently accessed data and the bottom levels store the
least recent ones. During an update operation, the modified split is inserted in the top table.
During a read operation, that may occur before a write operation, the split is first searched
in the top table. If it is found, the O-RAM structure simulates a search on the lower tables
by looking for randomly-selected splits. Otherwise, the next layer is searched and so on and
so forth until the last layer. This trick enables to conceal which data is about to be updated.

iO program. Guan et al. [100] innovate by proposing the first dynamic POR protocol
with public verifiability that works in the symmetric-key setting. This protocol considers
the static POR scheme with private verifiability proposed by Shacham and Waters [165] and
brings the public verifiability property by means of an Indistinguishability Obfuscation (iO)
program. The indistinguishable obfuscation of a program [23, 88] intends to conceal the
internal program operations while preserving its functionality. An iO program is thus able
to embed secret information used by the program operations. In Guan et al. [100], the

52Cauchy matrices are matrices of elements aij = 1
xi+yj

, where xi and yj are elements of a Galois field.

1.5. State of the Art on Proofs of Storage 29

authors suggest to create an iO program, available for any third-party verifier, that encodes
the challenge and verification algorithms of the privately verifiable POR protocol in [165].
The secret key, used in that protocol as input to these two algorithms, is embedded in the
iO program. Therefore, third-party verifiers do not need a secret key nor a public key to
launch verification requests. By only running the iO program, they can verify the proofs of
retrievability. Besides, the protocol of Guan et al. [100] supports dynamic updates thanks to
the use of a Merkle tree. Resorting to an iO program may incur very expensive computational
overhead since iO has not practical relevance yet. Besides, the work in [100] does not really
handle the concern of concealing data and redundancy blocks under updates.

POR schemes with other features. Zheng and Xu [197] introduce the property of fair-
ness in a dynamic POR protocol. Fairness implies the fact that the data owner is also
considered as being malicious: for instance, she can accuse (to a judge in a court) a legit-
imate remote server of not storing her data correctly to gain financial compensation and
damage server’s reputation. The authors in [197] define a new authenticated data structure
called 2-3 range-based tree that enables membership queries and dynamic operations in loga-
rithmic complexity. To provide fairness, the protocol requires the server to verify a signature
computed by the data owner at the time it receives the data, and whenever it receives an
update request.

Similarly, Armknecht et al. [9] propose a publicly verifiable POR system in which the
data owner and third-party verifiers are also considered as being potentially malicious. The
authors formalize the concept of outsourced POR and build a concrete instantiation upon the
scheme with private verification in [165]. Their construction requires the third-party verifier
to create a log file which contains the collection of challenges and responses she performed.
The data owner is able to check that the log entries are correct (which is claimed to be less
expensive than running an entire POR protocol). Besides, the authors of [9] observe that
the randomness involved in the sampling-based POR challenge can emanate neither from
the data owner nor from the verifier only, since these are both untrusted. Therefore, they
devise a technique based on the Bitcoin [130] mining process to produce (time-dependent)
randomness, such that the data owner and the verifier are synchronized on a challenge without
any interaction between each other. Since the randomness introduced by the Bitcoin process
is somewhat verifiable, in case of conflict between the owner and the verifier, the latter can
prove she correctly followed the POR protocol based on the provided randomness.

1.5.3 Conclusion of the State of the Art

Table 1.1 summarizes the analysis of the state of the art of Proofs of Storage. From the
review of existing work, we are able to draw some conclusions that guide our own research
perspective in the field of verifiable storage:

1. POR protocols are more efficient than deterministic remote integrity checking at the
price of a storage assurance that is probabilistic.

2. POR protocols offer a better security guarantee than PDP schemes, with regard to
storage integrity and retrievability.

3. The POR construction of Juels and Kaliski [107] incurs light bandwidth and compu-
tation overhead but suffers from the fact that it does not satisfy the requirement on
unbounded number of verification.

From the last observation, we propose our own POR protocol, StealthGuard, that is
inspired by the breakthrough of Juels and Kaliski [107] but which overcomes the problem of
a limited number of verification.

30 1. Characterization of Proofs of Storage

D
et

er
m

in
is

ti
c

P
ro

b
a
b
il
is

ti
c

P
D

P

P
O

R

U
n
b

ou
n

d
ed

S
ta

ti
c

D
y
n

a
m

ic

P
u

b
li
c

V
er

ifi
ab

il
it

y

P
ri

va
cy

-P
re

se
rv

in
g

D
et

er
m

in
is

ti
c Deswarte and Quisquater [71] 3 3 3

Filho and Barreto [84] 3 3 3

Sebé et al. [160] 3 3 3

Schwarz and Miller [159] 3 3 3 3

S
ta

ti
c

P
D

P

Ateniese et al. [14] 3 3 3 3 3

Curtmola et al. [67] 3 3 3 3 3

Wang et al. [185] 3 3 3 3 3 3

Krzywiecki and Kuty lowski [115] 3 3 3 3

Chen [61] 3 3 3

Hanser and Slamanig [101] 3 3 3 3 3 3

Shen and Tzeng [166] 3 3 3 3 3

Wang et al. [183] 3 3 3 3 3 3

D
y
n
a
m

ic
P

D
P Ateniese et al. [15] 3 3 3 3

Erway et al. [77] 3 3 3 3 3

Esiner et al. [78] 3 3 3 3 3

Zhang and Blanton [194] 3 3 3 3 3 3

Wang et al. [186] 3 3 3 3 3 3

S
ta

ti
c

P
O

R

Juels and Kaliski [107] 3 3 3

Shacham and Waters [165] (private) 3 3 3 3

Shacham and Waters [165] (public) 3 3 3 3 3

Bowers et al. [43] 3 3 3 3

Dodis et al. [75] 3 3 3 3

Bowers et al. [44] 3 3 3 3 3

Xu and Chang [189] 3 3 3 3

Ateniese et al. [17] 3 3 3 3 3

Armknecht et al. [9] 3 3 3 3 3

D
y
n
a
m

ic
P

O
R

Stefanov et al. [170] 3 3 3 3 3

Cash et al. [53] 3 3 3 3 3 3

Shi et al. [167] 3 3 3 3 3 3

Chen and Curtmola [60] 3 3 3 3 3 3

Guan et al. [100] 3 3 3 3 3 3

Zheng and Xu [197] 3 3 3 3 3

Table 1.1: Existing work for Proofs of Storage

2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs 31

Chapter 2

StealthGuard: Proofs of
Retrievability with Hidden
Watchdogs

This chapter presents StealthGuard, a new Proofs of Retrievability (POR) scheme which
combines the use of a Privacy-Preserving Word Search (PPWS) scheme [37] suited for large
data stores with the insertion in the outsourced data of randomly generated short bit se-
quences, named watchdogs. We see data retrievability as a fundamental security require-
ment for data storage. Retrievability can be interpreted as a combination of integrity and
availability.

Proofs of retrievability are a particular type of Proofs of Storage, with the extra property
of extractability. Indeed, not only a data owner can check the integrity and the availability
of her outsourced data, but she can also check that her data is retrievable. In a nutshell,
this property implies that there exists an extractor that, via an interaction with the storage
server (which can be malicious), can recover the outsourced data in its entirety, with some
overwhelming probability. Being an instance of a POS scheme, a POR protocol inherits
from the characteristics of POS and adopts the definition of a POS protocol we presented in
Section 1.2. In particular, a POR solution must meet the requirements of security, unbounded
number of verification and efficiency

After defining the security of a POR protocol in Section 2.1.2, we describe StealthGuard
in Section 2.2. We analyze the security of StealthGuard in Section 2.3 and evaluate its
performances in Section 2.4

2.1 Security Model of POR

A POR protocol must be complete and sound. Completeness means that the POR scheme
does not yield any false negatives: a verifier V always accepts a proof of a honest cloud server
S . Soundness characterizes the fact that it is impossible for a malicious server to make the
verifier accept forged (and false) proofs of retrievability.

2.1.1 Completeness

If cloud server S and verifier V are both honest, then on input of a challenge chal and some
file identifier fid sent by verifier V , using algorithm Challenge, algorithm ProofGen generates
a proof of retrievability that will be accepted by verifier V with probability 1.

32 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

Definition 3 (Completeness). A POR scheme (KeyGen, Encode, Challenge, ProofGen,
Verify) is complete if for any honest pair of cloud server S and verifier V , and for any
key K ← KeyGen(1κ), any file F ∈ F whose file identifier is fid and for any challenge
chal← Challenge(K, fid):

Pr[Verify(K, fid, chal,P)→ 1 | P ← ProofGen(fid, chal)] = 1

2.1.2 Soundness

In this section, we elaborate the soundness definition which is peculiar to any POR scheme.

2.1.2.1 Intuition behind the definition

A POR protocol is deemed sound, if for any malicious prover, i.e. malicious cloud server
S , the only way to convince a verifier V that a file F is retrievable is by actually storing a
retrievable version of that file. As a consequence, if server S correctly executes a polynomial
number of proof generations for file F , using algorithm ProofGen, thus yielding valid proofs,
then it implies that server S should keep that file intact in such a way that data owner O
can later retrieve her file F . According to Juels and Kaliski [107], such a definition gives way
to the existence of a special algorithm E , called the file extractor algorithm, which via an
interaction with cloud server S , is able to extract file F with an overwhelming probability,
using the sound POR protocol. Shacham and Waters [165] revisit the definition of soundness
by capturing the soundness of POR schemes that empower the verifier with unlimited number
of possible POR challenges. However this definition does not apply to POR schemes where
only limited number of possible challenges are available to the verifier such as in [107, 170].
Indeed, the definition in [165] asserts that whenever cloud server S generates valid PORs
for some file F with a non-negligible probability and whenever the file is recoverable, then
the corresponding POR scheme is sound. In the case of other POR schemes, such as the
one proposed in [107, 170], where the number of possible POR challenges is limited, this
definition cannot be employed to assess the soundness property. For example, if we take the
POR scheme introduced by [107], and if we consider a scenario where cloud server S randomly
corrupts half of the outsourced file, then the server will be able to correctly answer half of
the POR challenges that the verifier issues, yet the file is irretrievable. This means that
the POR mechanism adopted by Juels and Kaliski [107] is not secure under the definition
of [165], still it is arguably “sound”. In practice, to check whether a file is retrievable, the
verifier generates a polynomial number of POR queries to which the server has to respond
correctly. Otherwise, the verifier detects a corruption attack, be it malicious or unintentional.
Here, the term “POR query” captures the ability of a verifier to issue requests for proofs of
retrievability based on the challenges available to the verifier. In the following section, we
aim at revisiting the soundness definition given in [165] with this notion of number of POR
queries that the verifier should generate either to be sure that a file is retrievable or to detect
a corruption attack on the file.

2.1.2.2 Definition details

The following lines formalize our definition of the protocol soundness. This definition sets
a soundness game in which a Probabilistic Polynomial-Time (PPT) adversary A (i.e. a ma-
licious cloud server) intends to frame a verifier V . A ’s goal is to create a situation where
verifier V is convinced that data owner O’s file is retrievable, with an overwhelming probabil-
ity, while that file is actually not. Adversarial corruption can consist in either modification
or deletion of file blocks. This section also defines the file extractor algorithm, denoted E .

2.1. Security Model of POR 33

To formally capture the capabilities of adversary A , we assume that she has access to the
following oracles:

OEncode This oracle takes as inputs a file F and data owner’s key K, and returns a file
identifier fid and a verifiable version F̂ of F that will be outsourced by A .

OChallenge On input of a file identifier fid and data owner’s key K, this oracle returns a POR
query chal to adversary A .

OVerify When queried with data owner’s key K, a file identifier fid, a POR query chal and a
proof of retrievability P, this oracle outputs a bit b such that b = 1 if P is a valid proof
of retrievability and b = 0 otherwise.

In the soundness game we define, adversary A accesses the aforementioned oracles in two
phases: a learning phase and a challenge phase.

Learning. Adversary A can call oracles OEncode, OChallenge and OVerify for a polynomial num-
ber of times in any interleaved order as depicted in Algorithm 1. In particular, adversary
A can make three types of oracle queries:

Encode query: A queries OEncode for a file F of her choice, given key K. OEncode

outputs the corresponding retrievable version F̂ of F together with a generated
file identifier fid, and sends them to A .

Challenge query: Given a file identifier fid associated with some file F chosen by
adversary A and given key K, A queries OChallenge to generate a random challenge
chal. On reception of chal, adversary A produces a proof of retrievability P, either
arbitrarily or by executing algorithm ProofGen.

Verify query: Adversary A calls OVerify to check the proof P based on challenge chal
and file identifier fid and gets decision bit b.

At the end of this learning phase, adversary A chooses a file identifier fid∗ among all the
file identifiers she has obtained throughout the phase. We denote F ∗ the corresponding
file.

H Algorithm 1: Learning phase of the soundness game

// A executes the following in any interleaved order for a polynomial number of times

(fid, F̂)← OEncode(F,K);
chal← OChallenge(K, fid);
P ← A ;
b← OVerify(K, fid, chal,P);
// A outputs a file identifier fid∗

fid∗ ← A ;

Challenge. The goal of adversary A is to generate γ valid proofs of retrievability P∗j for file
F ∗ whose file identifier is fid∗ (cf. Algorithm 2). To this end, A calls oracle OChallenge

that supplies her with γ challenges chal∗j . Next, adversary A generates γ proofs P∗j
for each of the challenges. Finally, on input of data owner key K, file identifier fid∗,
challenges chal∗j and proofs P∗j (1 ≤ j ≤ γ), oracle OVerify outputs γ decision bits b∗j .

Adversary A is deemed successful if b∗ =
γ∧
j=1

b∗j = 1. In other terms, adversary A

succeeds in producing γ proofs of retrievability P∗j that are accepted by OVerify.

Thereafter, we formalize the notion of the file extractor algorithm, E , that uses adversary
A to retrieve file F ∗:

34 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

H Algorithm 2: Challenge phase of the soundness game

for j = 1 to γ do
chal∗j ← OChallenge(K, fid∗);

P∗j ← A ;

b∗j ← OVerify(K, fid∗, chal∗j ,P∗j);

end

b∗ =
γ∧
j=1

b∗j ;

BE(K, fid∗)→ F ∗: The extractor algorithm takes as input data owner’s key K and file identi-
fier fid∗. E is allowed to initiate a polynomial number of POR executions by interacting
with adversary A for file F ∗. E is also allowed to rewind adversary A . This suggests
in particular that extractor E can execute the challenge phase of the soundness game a
polynomial number of times, while the state of adversary A remains unchanged.

Intuitively, a POR scheme is sound, if for any adversary A that wins the soundness game
described above with a non-negligible probability δ, there exists a file extractor algorithm E
that succeeds in retrieving challenge file F ∗ with an overwhelming probability. We say that
a probability is overwhelming if it is equal to 1− ε, where ε is negligible.

Definition 4 (Soundness). A POR scheme (KeyGen, Encode, Challenge, ProofGen,
Verify) is said to be (δ, γ)-sound, if for every adversary A that provides γ valid proofs
of retrievability in a row (i.e. succeeds in the soundness game described above) with a non-
negligible probability δ, there exists an extractor algorithm E such that:

Pr[E(K, fid∗)→ F ∗ | E(K, fid∗)
 A] ≤ 1− ε,

where
 symbolizes the interaction between extractor E and adversary A, and ε is a negli-
gible function in security parameter κ.

Informally, if verifier V issues a number of queries larger than γ and if cloud server S
correctly responds to them, then V can ascertain that S is still storing a retrievable version of
file F ∗ with high probability. While γ characterizes the number of valid proofs of retrievability
that extractor E has to receive to assert that file F ∗ is retrievable, δ quantifies the number
of operations that E has to execute and the amount of data that it has to download to first
declare that F ∗ is retrievable and then to extract it.

2.2 StealthGuard

2.2.1 Intuition behind StealthGuard

StealthGuard pursues an idea originally proposed by Juels and Kaliski [107] which relies
on the insertion, in random positions in the data to be outsourced, of some special (pre-
computed) random blocks, called watchdogs. Then, the proofs of retrievability consist in
checking that some of these watchdogs are still intact in the outsourced data. This method
is based on the random sampling technique: at each instance of the POR protocol, the
verifier samples some of the watchdogs and checks their integrity. In other terms, it offers a
probabilistic retrievability guarantee while being computationally very light.

In a nutshell, to prepare a retrievable version of a data file F , data owner O first encrypts
her data and embeds some pseudo-randomly generated watchdogs in it. Here, encryption

2.2. StealthGuard 35

guarantees the indistinguishability of the watchdogs from a real data block. Once the data is
outsourced to cloud server S , a verifier V issues queries for some watchdogs, in order to check
that they are intact in the data. Cloud server S responds to these queries by generating a
proof for the targeted watchdogs. If unintentional or adversarial corruption affects the data,
then with high probability, it would also impact the watchdogs. Thus, cloud server S would
unlikely return a valid proof of retrievability. Besides, in order to protect the data from small
corruptions, StealthGuard applies an ECC that enables the recovery of the corrupted data.
In other words, StealthGuard satisfies the requirement of extractability.

Our proposal differs from the solution of [107] in the way server S generates the proofs of
retrievability. In [107], verifier V selects a collection of watchdogs and sends their positions
to server S which responds with the blocks located at the requested positions. Thereafter,
verifier V checks that the returned blocks are really the requested watchdogs. Although this
solution is efficient in terms of computational complexity, it does not meet the unbounded
number of POR queries requirement. Indeed, when verifier V challenges server S , she
discloses the positions of the watchdogs. Hence, the challenged watchdogs cannot be used for
further verifications since S knows that these particulars blocks are watchdogs and thus can
discard the blocks that correspond to the file content. Juels and Kaliski [107] envisioned to
use a Private Information Retrieval (PIR) algorithm to retrieve the watchdogs in a privacy-
preserving way. This technique would allow to re-use them for an unbounded number of
verifications. However, the authors did not investigate on this idea since they perceived the
application of a PIR algorithm on the entire data as being computationally prohibitive.

To cope with this concern, StealthGuard leverages a Privacy-Preserving Word Search
(PPWS) scheme combined with watchdogs inserted in the outsourced data. By selecting an
efficient PPWS solution and by inserting an optimal number of watchdogs (this number will
be determined in Section 2.3.2), StealthGuard is efficient while satisfying the unbounded
number of verification requirement. The privacy preserving property of the search ensures
that cloud server S cannot discover which watchdogs were targeted by the search queries. As
a result, verifier V can launch an unbounded number of POR queries, even for the same
watchdog, without the need to update the data with new watchdogs, thus realizing the
desired POR design requirement. In addition, the search results are obfuscated thanks to the
underlying PPWS scheme. The only way that cloud server S can convince verifier V about
the retrievability of a targeted file is by returning valid search results, that is by storing the
file in its entirety and executing the PPWS correctly.

2.2.2 StealthGuard Phases

In this section, we consider the following scenario: Data owner O outsources to cloud server
S some of her files F . At some point of time53, verifier V (be it the data owner herself or
any authorized party who is delegated the challenge and verification capabilities) checks the
retrievability of file F using StealthGuard.

In accordance with the definition of a POR scheme stated in Section 1.2, our protocol
comprises three phases:

I Setup. During this phase, O performs some transformations over F and inserts a certain
number of watchdogs to F . The resulting file F̂ is sent to server S .

I Challenge. This phase corresponds to the Challenge phase described in Definition 2. It
consists in searching for some watchdog w in a privacy-preserving manner. Hence, V
prepares and sends a privacy-preserving lookup query for w; S , in turn, processes F̂ to
generate a correct response to the search and returns the output to verifier V .

I Verification. Verifier V checks the validity of the received response and makes the deci-
sion about the existence of watchdog w in the outsourced file.

53In practice, a verifier will audit the cloud storage in a periodic fashion based on a contract, or SLA.

36 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

According to the POR soundness definition we gave in Definition 4, verifier V must receive
at least γ (γ must be larger than a threshold determined in Section 2.3) correct responses
from S to decide thatO’s file F is retrievable. On the other hand, if V receives one response
that is not valid, then she is convinced that F is either corrupted or lost.

2.2.3 Building Blocks

Before detailing the phases of StealthGuard, we start by introducing the different building
blocks that are used in our solution.

2.2.3.1 Pseudo-Random Functions and Permutations

Pseudo-Random Function (PRF). Informally, a pseudo-random function, introduced by
Goldreich et al. [95], is a function Φ : K × X → Y , where K , X and Y respectively
denote the set of keys, the set of possible inputs and the set of possible outputs, such
that:

• Given a key K ∈ K and an input X ∈ X , there exists an efficient algorithm to
compute Y = Φ(K,X) ∈ Y ;

• Φ is indistinguishable from a random function, selected from the uniform distri-
bution of all functions f : X → Y .

In StealthGuard, the watchdogs are generated using an appropriate PRF, see Sec-
tion 2.2.4.1.

Pseudo-Random Permutation (PRP). In a nutshell, a pseudo-random permutation is a
function Π : K ×X → X , where K and X respectively represent the set of keys and the
set of possible inputs, such that:

• Given a key K ∈ K and an input X ∈ X , there exists an efficient algorithm to
evaluate Y = Π(K,X) ∈ X ;

• For any key K ∈ K , Π is a bijection from X to X . Namely there exists an efficient
inverse function Π−1 : K × X → X such that, for any key K ∈ K and any X ∈ X ,
X = Π−1(K,Π(K,X));

• Π is indistinguishable from a random permutation, selected from the uniform dis-
tribution of all permutations π : X → X .

StealthGuard employs such a PRP to randomize the position of data blocks and the
location of the watchdogs in the data. A cryptographically secure keyed block cipher
such as Advanced Encryption Standard (AES) [68] is a good PRP candidate.

2.2.3.2 Error-Correcting Codes

An [n, k, d]-error correcting code (ECC) denotes a code which transforms a k-bit word into
a n-bit codeword, where d denotes the minimal Hamming distance54 between codewords.
Any ECC algorithm would suit to StealthGuard. As a matter of example, we can employ
Reed-Solomon error-correcting codes. Reed-Solomon codes are an [n, k, n− k + 1]-ECC over
a finite field Fp of prime order p > n. The encoded unit, called a symbol, is generally a byte
or any symbol of 2i bits. As the Reed-Solomon codes are known to be block-based codes,
they encode data in blocks, where the block length is defined by n: a block is constituted of
n symbols. Reed-Solomon codes are also systematic, in the sense that the original data is

54The Hamming distance of two sequences of bits is the number of bits which differ from the two sequences.
If we denote d(a, b) the Hamming distance between two bit strings a = (ai)i∈[0,n−1] and b = (bi)i∈[0,n−1 with

n ∈ N, then d(a, b) =
n∑
i=1

ai ⊕ bi.

2.2. StealthGuard 37

left unchanged and the blocks generated during the encoding are just appended at the end
of the data. We call these extra blocks “parity” blocks or “redundant” blocks or even “ECC”
blocks55. The Reed-Solomon decoding processes each block of data and attempts to detect
and correct the errors that can be included in the data. Such a decoder can detect and correct
up to d

2 = n−k+1
2 errors.

2.2.3.3 Semantically-Secure Encryption

The notion of a semantically secure encryption SSE scheme, introduced by Goldwasser
and Micali [96], characterizes a probabilistic encryption scheme in which, given the cipher-
text of some message chosen from any distribution of plaintexts, any passive Probabilistic
Polynomial-Time (PPT) adversary cannot distinguish which of these plaintexts correponds to
the given ciphertext. In other terms, semantic security guarantees that the adversary cannot
feasibly derive any significant information about the plaintext from the ciphertext (and the
message’s length).

In StealthGuard, the watchdogs are pseudo-randomly generated (with the use of a PRF),
and inserted in the data encrypted with a SSE algorithm. Hence, no adversary can distinguish
watchdogs from original data blocks.

2.2.3.4 Privacy-Preserving Word Search

As mentioned above, StealthGuard enables the cloud server to operate a search for the
watchdogs over the (encrypted) data it stores, in a privacy-preserving fashion. By relying
on a Privacy-Preserving Word Search (PPWS) algorithm that preserves both search queries
and search results privacy, our solution ensures that the cloud server cannot discover which
watchdogs are targeted by the search queries and does not learn any information on whether
these watchdogs are found or not. As a result, the PPWS algorithm allows to reuse the
watchdogs for future queries.

In this work, we resort to a simplified version56 of an existing solution called Prism
[37]. Prism transforms the search problem into several parallel efficient Private Information
Retrieval (PIR) instances. The PIR mechanism inherited by Prism is based on the Trapdoor
Group PIR scheme57 proposed by Trostle and Parrish [176] that is depicted in Figure 2.1.
In this scheme, the data outsourced in the cloud is represented by a matrix and the PIR
procedure allows a user to obtain one row from this matrix without letting the cloud determine
which row the user is querying. The words are mapped to a binary matrix and unique position
for each word. Therefore, a user can perform a word search on her outsourced data as follows:

• A user issues a search query for a particular word ω using the underlying PIRquery
algorithm (cf. Figure 2.1);

• The cloud creates an index matrix M of “0” and “1” on-the-fly, where each matrix
position is assigned to a word in the data and where each matrix element stores a one-bit
witness calculated via a hash over the word assigned to the corresponding position;

• The cloud runs PIRprocess, described in Figure 2.1, with inputs matrix M and the
PIR query on word ω. It should be highlighted that Prism is not another PIR algorithm.
Indeed, algorithm PIRprocess does not retrieve the word itself, but it retrieves some very short

55Same terminology applies for symbols and bits. Thus we might mention redundant symbols or parity
bits.

56However, any efficient PPWS scheme assuring the confidentiality of both the query and the result can fit
in our framework.

57A security breach in the PIR algorithm developed by Trostle and Parrish [176] have been found by Lepoint

and Tibouchi [119], shortly after the design of StealthGuard. Nevertheless, for a matter of illustration, we
describe in this section the mechanism behind this PIR protocol. In our protocol, the PIR mechanism operates
as a black box: any secure (computationally-)PIR solution that guarantees the confidentiality of the PIR query
and PIR reply can be applied to our protocol

38 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

information (i.e the witness) that enables the user to decide about the presence or absence
of the searched word.

• The user analyzes the output of the PIRanalysis (see Figure 2.1) and gets the answer of
the search result (either word ω is present, or absent in the targeted data).

Figure 2.1: Private Information Retrieval of Trostle and Parrish [176]

/* The data outsourced at the cloud is represented by a (s, t) matrix M of elements in Z2 where s · t is the
size of the data. */
/* A user is interested in retrieving an element ε ∈ {0, 1} at position (x, y) in M. */
H Algorithm: ~u← PIRquery(x, y)
Executed by the user

1. Select a group Zp where p is prime;
2. Select a random generator u ∈ Zp and s random values ai ∈ Zp;
3. Compute ex = 1 + 2 · ax and ∀ i 6= x, ei = 2 · ai;
4. Compute ui = u · ei (mod p) for all 1 ≤ i ≤ s;
5. Return ~u = (u1, u2, ..., us);

H Algorithm: ~v ← PIRprocess(~u,M)
Run by the cloud server

1. Compute the matrix-vector product ~v = (v1, v2, ..., vt) =M~u;
2. Return ~v;

H Algorithm: ε← PIRanalysis(~v, y)
Executed by the user

1. Compute the value zy = vy · u−1 (mod p);
2. Compute the retrieved element ε = zy (mod 2);
3. Return ε;

2.2.4 Description of the Entire Protocol

As stated in Section 2.2.2, StealthGuard consists of of the three phases: Setup, Challenge and
Verification. Throughout the description of the protocol, the reader may refer to Table 2.1
that lists the symbols used in StealthGuard.

Table 2.1: List of notations in StealthGuard

Index Description Range

n Number of splits Si in file F -
m Number of blocks in a split Si -

D Number of blocks in an encoded split S̃i -
v Number of watchdogs in one split Si -

C Number of blocks in a split Ŝi with watchdogs -
i Index of a split Si [[1, n]]

k Index of a block in split Ŝi [[1, C]]
j Index of a watchdog [[1, v]]
l Size of a block (in bits) -
L Size of a split (in bits) L = m · l
p Index of a block in F̃ [[1, n ·D]]
q Number of cloud matrices -
r Index of a cloud matrix [[1, q]]

(s, t) Size of cloud matrices -
(x, y) Coordinates in a cloud matrix [[1, s]]× [[1, t]]

2.2. StealthGuard 39

 𝑺𝟏 𝑺𝟐 … 𝑺𝒏

…

…

𝒘𝟏𝟏 𝒘𝟏𝐯 𝒘𝟐𝟐 𝒘𝟐𝟐 … 𝒘𝒊𝒊 𝒘𝐢𝐢 𝒘𝒏𝒏 𝒘𝐧𝐧

𝑺�𝟏 𝒘𝟏𝐯 𝒘𝟏𝟏 𝑺�𝟐 𝒘𝟐𝟐 𝒘𝟐𝟐 … 𝒘𝒊𝒊 𝒘𝐢𝐢 𝑺�𝒏 𝒘𝐧𝐧 𝒘𝒏𝒏

 𝑺�𝟏 𝑺�𝟐 … 𝑺�𝒏

Split-level ECC

File-level permutation Π𝑭

Encryption 𝑬(𝑲𝒆𝒆𝒆,𝑺�𝒊)

Watchdog creation and insertion

Split-level permutation Π𝑺

𝐹 =

𝐹� =

𝑚 blocks

𝑑 − 1

𝐶 𝑣 watchdogs

𝐹 �=

𝑚

Figure 2.2: Setup phase in StealthGuard

2.2.4.1 Setup

The Setup phase prepares a verifiable version F̂ of file F .

KeyGen: Data owner O first runs algorithm KeyGen to generate the master secret key K. In
addition to this master key, this algorithm derives n+3 additional keys used for further
operations in algorithm Encode. These keys are computed with dedicated cryptographic
hash functions Henc, Hwdog, HpermF , HpermSi that can be the Secure Hash Algorithm
(SHA)-256 algorithm [131]:

• Kenc: This key serves as a data encryption key and is computed as Kenc = Henc(K),
where Henc is a cryptographic hash function;

• Kwdog: To generate the watchdogs, StealthGuard resorts to a PRF whose input key
is Kwdog = Hwdog(K) ;

• KpermF : Algorithm Encode requires to permute all blocks in a file using a PRP (see
below), thus algorithm KeyGen computes KpermF = HpermF (K);

• KpermSi: For all 1 ≤ i ≤ n, algorithm Encode inserts the generated watchdogs in
random positions in split Si, thus algorithm KeyGen generates the keys KpermSi =
HpermSi(K).

Encode: Once all the keying material is generated, data owner O runs algorithm Encode
which first generates a pseudo-random and unique file identifier fid for file F , segments
F into n splits {S1, S2, ..., Sn} of equal size of L bits, and each split Si into m blocks
{bi1, bi2, ..., bim} of l bits58, i.e. L = m · l, and then processes F as described below.

1. Error correcting: The Error Correcting Code (ECC) assures the protection of
the file against small corruptions. This step applies to each split Si an ECC that
operates over l-bit symbols. It uses an [m+d−1,m, d]-ECC. Each split is expanded
with d− 1 blocks of redundancy. Thus, the new splits are made of D = m+ d− 1
blocks.

2. File-level permutation: StealthGuard applies a Pseudo-Random Permutation
(PRP) to permute all the blocks in the file. This operation conceals within a

58If necessary, F will be padded to a multiple of L.

40 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

Figure 2.3: StealthGuard’s Encode algorithm

H Algorithm: (fid, F̂)← Encode(K,F)
Generate fid;
Divide F into n equal-sized splits Si of m blocks;

1. Error-correcting code
For 1 ≤ i ≤ n do

Apply ECC on split Si ∈ F ;
Split Si is expanded with d− 1 blocks of redundancy
The size of ECC-encoded split Si is D = m+ d− 1

End
2. File block permutation

Compute KpermF = HpermF (K);
For 1 ≤ p ≤ n ·D do

ΠF : {0, 1}κ × [[1, n ·D]]→ [[1, n ·D]] is a PRP
Permute block at current position p to the position ΠF (KpermF , p)

End
Permuted file is denoted F̃
Divide F̃ into n equal-sized splits S̃i of D blocks;

3. Encryption
Compute Kenc = Henc(K);
For 1 ≤ i ≤ n do

E is an SSE scheme

Encrypt split S̃i as E(Kenc, S̃i)
End

4. Watchdog creation and insertion
Compute Kwdog = Hwdog(K);
For 1 ≤ i ≤ n do

Φ : {0, 1}κ × [[1, n]]× [[1, v]]× {0, 1}∗ → {0, 1}l is a PRF
For 1 ≤ j ≤ v do

Generate watchdog wij as Φ(Kwdog, i, j, fid);
Append watchdog wij to split i;

End
Split number i contains C = D + v blocks
Compute KpermSi = HpermSi(K);

For D ≤ k ≤ C do
ΠS : {0, 1}κ × [[1, C]]→ [[1, C]] is a PRP
Permute block at current position k to the position ΠF (KpermSi , k);

End

Final split augmented with watchdogs is denoted Ŝi
End

5. Return (fid, F̂ = {Ŝ1.Ŝ2, ..., Ŝn});

split the dependencies between the original data blocks and the corresponding
redundancy blocks. We explain at the end of the description of the Setup phase
the importance of such a permutation.

Let ΠF : {0, 1}κ × [[1, n · D]] → [[1, n · D]] be a PRP: for each p ∈ [[1, n · D]], the
block at current position p will be at position ΠF (KpermF , p) in the permuted file
that we denote F̃ . F̃ is then divided into n splits {S̃1, S̃2, ..., S̃n} of equal size D.

3. Encryption: StealthGuard uses a Semantically-Secure Encryption (SSE) E that
operates over l-bit blocks59 to encrypt the data. Encryption E is applied to each
block of F̃ using Kenc.

4. Watchdog creation: For each split of encrypted blocks, v l-bit watchdogs are
generated using a Pseudo-Random Function (PRF) Φ : {0, 1}κ × [[1, n]] × [[1, v]] ×
{0, 1}∗ → {0, 1}l. Hence, for j ∈ [[1, v]], wij = Φ(Kwdog, i, j, fid). Since the watch-
dogs are pseudo-randomly generated and the blocks in the split are encrypted, a
malicious cloud cannot distinguish watchdogs from data blocks.

59Practically, l will be 128 or 256 bits.

2.2. StealthGuard 41

5. Watchdog insertion: The v watchdogs are appended to each split. Let C = D+v
be the size (in blocks) of the new splits. A split-level PRP ΠS : {0, 1}κ× [[1, C]]→
[[1, C]] is then applied to the blocks within the same split in order to randomize
the location of the watchdogs: for Si, such that i ∈ [[1, n]], the block at current
position k will be at position ΠS(KpermSi , k) in the permuted split. We denote Ŝi,

i ∈ [[1, n]], the permuted split and b̂ik, k ∈ [[1, C]] its blocks.

Encode file F̂ together with fid. Data owner O uploads (fid, F̂ = {Ŝ1, Ŝ2, ..., Ŝn}) to cloud
server S . We stress the fact that the only information stored at data owner O is master secret
key K. The operations of algorithm Encode are depicted in Figure 2.2 and Figure 2.3.

Discussion on the block permutation step (step 2). As mentioned earlier, this op-
eration conceals within a split the dependencies between the original data blocks and the
corresponding redundancy blocks. Without this permutation, the corresponding redundancy
blocks are just appended to the split, since Reed-Solomon codes are systematic codes. Hence,
without such a permutation, a malicious cloud could for instance delete all the redundancy
blocks located at the end of a split and a single data block from this split and thus render
the file irretrievable. Such an attack would not easily be detected since the malicious server
could still be able to respond with valid proofs to a given POR query if the watchdogs are
not impacted by this attack or if the query targets other splits in the file. The permutation
prevents this attack since data blocks and redundancy blocks are mixed up among all splits.

2.2.4.2 Challenge

Once data is uploaded, verifier V wants to check the retrievability of file F stored at cloud
server S . Hence, V issues search queries for randomly selected watchdogs. Such a query
applies to a single watchdog in a particular split. S processes these queries without knowing
what the values of the watchdogs are and where they are located in the targeted split. We pro-
pose WDSearch, a Privacy-Preserving Word Search (PPWS) solution derived from Prism [37]
which is based on a Private Information Retrieval (PIR) protocol. Our proposal is a simpler
version of Prism and improves its performance in the particular context of StealthGuard.

To process a query in the framework of WDSearch, cloud server S constructs q (s, t)-
binary matrices such that s · t = C. Each element in the matrices is filled with the witness
(a one-bit information on the existence of the watchdog) of the corresponding block in the
split. Based on the PIR query sent by the verifier, the server retrieves in the matrices the
witnesses corresponding to the requested watchdogs. We insist on the fact that WDSearch is
not a PIR solution: the server does not retrieve the watchdog itself but only the witness.

WDSearch, depicted in Figure 2.5, consists of two steps, corresponding to the challenge-
response protocol inherent to any POR scheme: Challenge in which verifier V prepares the
challenge, i.e. the POR query to be sent to cloud server S and Response where cloud server
S processes the received POR query to issue a POR response to be sent to verifier V .

Challenge: Verifier V executes algorithm Challenge to generate a challenge chal that is
transmitted to cloud server S . Challenge takes as input master key K and file identifier
fid and it is executed in three phases:

1. It randomly selects a split index i and a watchdog index j (i ∈ [[1, n]] and j ∈ [[1, v]]),
and computes the position posj of the watchdogs wij in the split Ŝi by applying
PRP ΠS posj = ΠS(KpermSi , D+ j). Then, Challenge maps the position posj to its
unique position (xj , yj) in an (s, t)-matrix (i.e. the ones created by cloud server S
during the Response phase):

xj = d
posj
t
e yj = posj − d

posj
t
e × t+ t

42 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

2. Given (xj , yj), Challenge computes a PIR query ~µ = PIRquery(xj , yj), to retrieve
the witness at position (xj , yj) in an (s, t)-matrix.

3. Challenge generates a nonce R. This nonce will be used by cloud server S when cre-
ating matrices to guarantee the freshness of its responses. Then Challenge outputs
challenge chal = (~µ,R, i, j).

Eventually, V sends challenge chal and file identifier fid to S .

Response: Upon receiving challenge chal = (~µ,R, i, j) and file identifier fid, S runs ProofGen
to process the POR query in two phases:

1. S creates q binary matrices60 of size (s, t). For each block b̂ik in split Ŝi, S computes
hik = H(b̂ik, R), where k ∈ [[1, C]]. Here, H denotes a cryptographic hash function.
Thanks to R, S cannot drop the block in order to only store the hash and respond
to the query using that hash.
Let hik|q be the first q bits of hik. For r ∈ [[1, q]], let Mr be one of the matrices
created by cloud server S . S fills the rth matrix with the rth bit of hik|q as algorithm
FillMatrix in Figure 2.4 shows. It should be noted that according to the assignment
process described in Figure 2.4, the witness at position (xj , yj) inMr is associated
with watchdog wij : it is the rth bit of H(wij , R).

2. Once all the q matrices are filled, S processes PIR query ~µ by executing PIRprocess
(cf. Figure 2.1) that retrieves one row from each matrixMr, r ∈ [[1, q]]. We denote
~σr the output of PIRprocess for matrix Mr.

3. Algorithm ProofGen outputs P, i.e. the proof of retrievability which consists in
the set P = {~σ1, ~σ2..., ~σq}. In a nutshell, vectors ~σr are the rows of coordinate xj
and size t, retrieved in a privacy-preserving manner from matrix Mr.
S sends proof P to verifier V .

Figure 2.4: StealthGuard’s FillMatrix procedure

H Algorithm: Mr ← FillMatrix(Mr, {hik}1≤k≤C)
1. k=1;
2. For 1 ≤ x ≤ s do

For 1 ≤ y ≤ t do

Mr[x, y]← rth bit of hik;
k = k + 1;

End
End

3. Return Mr;

(a) FillMatrix

C = 6 is the number of blocks in one split Ŝi
s = 2 is the number of rows in a matrix
t = 3 is the number of columns in a matrix
q = 4 is the number of matrices

Matrix elements are indexed as 1 2 3
4 5 6

Hashes of blocks truncated to the first q = 4 bits:
hi1 = 1 0 1 0; hi2 = 1100; hi3 = 0001;
hi4 = 1001; hi5 = 1111; hi6 = 1101[

1 1 0
1 1 1

]
M1

[
0 1 0
0 1 1

]
M2

[
1 0 0
0 1 0

]
M3

[
0 0 1
1 1 1

]
M4

(b) FillMatrix toy example

2.2.4.3 Verification

The last phase of StealthGuard consists in the Verification phase in which verifier V runs
algorithm Verify to analyze proof P she received from cloud server S .

Algorithm Verify takes as inputs master key K, proof P, challenge chal (from which it
extracts split index i and watchdog index j) and file identifier fid, and outputs bit b = 1 if
proof P is valid or b = 0 otherwise.

As shown in Figure 2.6, algorithm Verify operates in three phases:
1. It first processes the q vectors ~σr, 1 ≤ r ≤ q, contained in proof P using procedure

PIRanalysis (depicted in Figure 2.1) with inputs: vector ~σr and coordinate yj . For

60q defines a tunable parameter of our system, that quantifies the size of the witness retrieved in

StealthGuard. Typically, we select |q| = 80 bits. The value of q is discussed in Section 2.3.2.

2.2. StealthGuard 43

Figure 2.5: StealthGuard’s WDSearch algorithm

H Algorithm: chal← Challenge(K, fid)
Executed by verifier V

1. Pick a random split index i, watchdog index j;
Compute posj = ΠS(KpermSi , D + j);

Determine xj = d posj
t
e and yj = posj − d

posj
t
e × t+ t;

2. Generate query ~µ = PIRquery(xj , yj);
3. Pick a random number R;
4. Return chal = (~µ,R, i, j);

H Algorithm: P ← ProofGen(fid, chal)
Run by cloud server S

Parse chal = (~µ,R, i, j)
1. Initialize q binary matrices Mr of size (s, t);

For 1 ≤ k ≤ C do

Loop over the blocks in split Ŝi
Compute hik = H(b̂ik, R);

End
For 1 ≤ r ≤ q do

Loop over the matrix indices
Execute procedure Mr = FillMatrix(Mr) # cf. Figure 2.4;

End
2. For 1 ≤ r ≤ q do

Compute ~σr = PIRprocess(~µ,Mr) # cf. Figure 2.1;
End

3. Return P = (~σ1, ~σ2, ..., ~σq);

each ~σr, PIRanalysis outputs the queried bit εr from matrixMr at position (xj , yj), for
1 ≤ r ≤ q. Let h denote the bit string ε1ε2...εr...εq.

2. We recall that verifier V queried watchdog wij in split Ŝi and that by having access
to master key K, verifier V can recompute the value of wij = Φ(Kwdog, i, j, fid) and its

position in split Ŝi, posj = ΠS(KpermSi , D + j). Thereafter, algorithm Verify computes
the hash of the watchdog hi,posj = H(wij , R), with the same nonce R chosen in the
WDSearch phase and considers the q first bits of hi,posj .

3. Based on the value of h and hi,posj , algorithm Verify checks whether h = hi,posj |q. If
it is the case, then verifier V returns 1 and judges that with overwhelming probability
the watchdog is correct in the split. Otherwise, verifier V outputs 0 and it interprets
the invalid proof as the occurrence of an attack.

Figure 2.6: StealthGuard’s Verify algorithm

H Algorithm: b← Verify(K, fid, chal,P)
Parse P = (~σ1, ~σ2, ..., ~σq);

1. For 1 ≤ r ≤ q do

Evaluate εr = PIRanalysis(~σr, yj);
End
h = ε1ε2..εq

2. Compute wij = Φ(Kwdog, i, j, fid);
Compute posj = ΠS(KpermSi , D + j);
Compute hi,posj = H(wij , R);

3. Check whether h = hi,posj |q;
If this check fails then return b = 0 else return b = 1;

As mentioned in Section 2.2.2, in order to acknowledge the retrievability of file F , verifier
V needs to initiate at least γ POR queries61 from randomly selected splits in order to either
ascertain that file F is retrievable or detect a corruption attack: if verifier V receives γ valid

61The value of γ is determined in Section 2.3.

44 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

POR responses, then she can conclude that S stores a retrievable version of the file, otherwise,
she concludes that S has corrupted part of the file.

2.3 Security Analysis of our Protocol

In this section, we state and prove the two security theorems of completeness and soundness
satisfied by StealthGuard.

2.3.1 Completeness

Theorem 1 (Completeness). StealthGuard is complete.

Proof of Theorem 1. Without loss of generality, we assume that the honest verifier
V runs a StealthGuard instance for a file F . To this end, V sends a challenge chal =
(~µ,R, i, j) for watchdog wij , and file identifier fid of F . Upon receiving challenge chal and
file identifier fid, cloud server S generates a proof of retrievability P for file F .

According to the description of StealthGuard, the verification of POR P consists in
first retrieving the first q bits of a hash hi,posj , then verifying whether hi,posj |q corresponds
to the first q bits of the hash H(wij , R). Since S is honest, then this entails that it stores
wij and therewith, can always compute hi,posj = H(wij , R).

Consequently, Verify(K, fid, chal,P) = 1.

2.3.2 Soundness

We recall that we consider the scenario where data owner O outsources the storage of her file
F = {S1, S2, ..., Sn} to cloud server S . In the following, we enunciate the soundness theorem
for StealthGuard.

Theorem 2 (Soundness). Let κ be the security parameter of StealthGuard and let ρ =
d

2D denote the error rate of the ECC, δ be the probability that an adversary A wins the POR
soundness game and γ be the number of valid proofs of retrievability provided by adversary
A in a row.
StealthGuard is (δ, γ)-sound in the Random Oracle Model (ROM), if δ > δneg and

γ ≥ γneg, where

δneg =
1

2κ

γneg =

⌈
ln(2)κ

ρneg

⌉
(

1− ρ

ρneg

)2

ρneg =
3 ln(2)κ

D

ρneg ≤ ρ.

Accordingly, if γ ≥ γneg, then there exists an extractor E that recovers a file F with a
probability 1− n

2κ , such that n is the number of splits in F , by interacting with an adversary

A against StealthGuard who succeeds in the soundness game with a probability δ > 1
2κ .

2.3. Security Analysis of our Protocol 45

Interpretation. If V issues γ ≥ γneg POR queries for some file F to which S responds
correctly, then V can declare F as retrievable with probability 1− n

2κ . In addition, since an

instance of StealthGuard’s protocol executed for F consists c obliviously fetching a witness
for a watchdog from the encoding F̂ of that file, O must insert at least γneg watchdogs in file
F , to ensure a security level of 1

2κ . That is, if file F comprises n splits, then nv ≥ γneg where
v is the number of watchdogs per split.

Proof of Theorem 2. We assume there is an adversary A that corrupts on average
ρadv fraction of the outsourced file, and succeeds in the soundness game, depicted in
Section 2.1.2, with some probability δ. In the following, we show that if δ > δneg = 1

2κ , then
there exists an extractor algorithm E that retrieves the challenge file F ∗ = {S∗1 , S∗2 , ..., S∗n}
by interacting with adversary A and by controlling a random oracle H.

Proof overview. For ease of exposition, the proof of Theorem 2 is broken down into
four consecutive steps:

1- Computation of the probability δ of success in the soundness game: This step quanti-
fies probability δ according to which adversary A succeeds in the soundness game
when it corrupts on average ρadv fraction of outsourced file F̂ ∗. We find that
δ ' (1− ρadv)γ .

2- Computation of corruption threshold ρneg above which file F ∗ is irretrievable: In this
step, we determine threshold ρneg for the probability ρadv of corruption by adversary
A such that:

• If ρadv ≥ ρneg, then the file F ∗ is irretrievable by extractor E .

• If ρadv < ρneg, then the file F ∗ is retrievable by extractor E with an overwhelm-
ing probability.

3- Computation of γneg above which F ∗ is said retrievable when A wins the game: Here
we derive a bound γneg for value γ, such that if γ ≥ γneg and:

• If ρadv ≥ ρneg, then δ = (1−ρadv)γneg ≤ δneg = 1
2κ . This ensures that if adversary

A corrupts more than ρneg fraction of the file F ∗, then A will be detected with
an overwhelming probability (adversary A wins the soundness game with a
negligible probability).

• If ρadv < ρneg, then δ = (1 − ρadv)γneg > δneg, however, the file F ∗ is still
retrievable.

4- Construction of a file extractor E: File extraction can be performed whenever adver-
sary A succeeds in the soundness game with a probability δ > δneg. For that purpose,
extractor E controls a random oracle H that simulates and keeps track of the output
of the hash function H which is used in StealthGuard to generate and verify the
proofs of retrievability (cf. Section 2.2.4).

Proof details. In the soundness game depicted in Section 2.1.2, A enters the learning
phase and makes a polynomial number of encode queries to oracle OEncode, challenge
queries to oracle OChallenge and verify queries to oracle OVerify. At the end of this phase, A
selects a file identifier fid∗ from the ones output by oracle OEncode.

After the learning phase, A gets into the challenge phase of the soundness game and
provides γ proofs of retrievability for the challenged file F ∗ to oracle OVerify. Adversary A
succeeds in the soundness game if all the proofs given to oracle OVerify are valid. Without
loss of generality, we assume that fid∗ labels file F ∗ = {S∗1 , S∗2 , ..., S∗n} and that oracle

46 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

OEncode returns the pair (fid∗, F̂ ∗) such that F̂ ∗ = {Ŝ∗1 , Ŝ∗2 , ..., Ŝ∗n}. In the following we
detail the four parts of the proofs.

1- Computation of the probability δ of success in the soundness game.
We determine the probability δ as a function of adversarial corruption fraction ρadv. For
this purpose, we model the corruption pattern: for each split Ŝ∗i , let Xik denote the random
variable that corresponds to the event in which adversary A corrupts the kth block of split
Ŝ∗i . Namely,

Xik =

{
1 if A corrupts the kth block of the split Ŝ∗i
0 otherwise.

We assume for sake of simplicity that for all 1 ≤ i ≤ n and all 1 ≤ k ≤ C, random
variable Xik follows a Bernouilli process of parameter ρadv, i.e. Pr(Xik = 1) = ρadv and
Pr(Xik = 0) = 1−ρadv. This implies that random variables Xik are independent identical
distributed binary random variables. In other words, the probability that a block in split
Ŝ∗i is corrupted by adversary A is the same for all blocks in file F̂ ∗. This model is valid in
the case of StealthGuard: Indeed, the use of a secure PRP and a SSE in algorithm Encode
(cf. Section 2.2.4.1) ensures that adversary A sees block values as uniformly distributed.

It follows that adversary A succeeds in providing a valid proof of retrievability for some
challenge chal∗j (1 ≤ j ≤ γ) generated by oracle OChallenge (cf. Algorithm 2) according to
the following two cases:

• The watchdog associated with challenge chal∗j (we assume it is located at position

k in split Ŝ∗i) is not affected by the adversarial corruption. This event occurs with
probability Pr(Xik = 0) = 1− ρadv.

• A does corrupt this watchdog but she is still able to provide the q-bit witness as-
sociated with that watchdog (cf. Figure 2.5 and Figure 2.6) as expected by oracle
OVerify. The probability of such an event is Pr(Xik = 1)×

(
1
2

)q
= ρadv

2q .

Let PA
(Success,j) denote the probability that adversary A succeeds in providing a valid proof

of retrievability for challenge chal∗j . Accordingly, PA
(Success,j) = 1− ρadv + ρadv

2q .
As mentioned in the soundness definition enunciated in Section 2.1.2, adversary A

succeeds in the challenge phase of the soundness game if she succeeds in supplying oracle
OVerify with γ valid proofs of retrievability. Therefore, the probability that adversary A
succeeds in the soundness game is:

δ =

γ∏
j=1

PA
(Success,j) = (1− ρadv)γ +

γρadv(1− ρadv)γ−1

2q
+ o

(
1

2q

)
︸ ︷︷ ︸

denoted ζ

.

We recall that q corresponds to the number of bits that a verifier has to retrieve from the
cloud server in StealthGuard. Hence, we note that if q is large enough, for example q = 80
bits, then ζ is negligible. Therefore, to simplify, we assume q ≥ 80 and δ ' (1 − ρadv)γ .
This result can be interpreted as follows: to win the soundness game, adversary A has
to send the q-bit witness that corresponds to the watchdog targeted by the challenge
generated by oracle OChallenge. The bigger q, the harder for A to guess the exact sequence
of q bits. Thus, A may not corrupt the watchdog to provide valid proofs of retrievability,
which yields probability δ to reach (1 − ρadv)γ (i.e. the probability that γ watchdogs are
not corrupted by adversary A).

2- Computation of corruption threshold ρneg above which file F ∗ is irretrievable. Now
that we have quantified probability δ according to which adversary A wins the soundness

2.3. Security Analysis of our Protocol 47

game, we determine the threshold ρneg for the corruption probability ρadv. As specified
above, if ρadv ≤ ρneg then the challenged file F ∗ is retrievable by file extractor E with
overwhelming probability.

Before computing this threshold, we introduce a simplified Chernoff bound lemma that
we will use later to bound the probability that a split Ŝ∗i is corrupted in a manner that
prevents file extractor E from retrieving S∗i , and therewith prevents E from retrieving file
F ∗.

Lemma 1 (Simplified Chernoff Bound). Let X1, X2, ..., XD be independent ran-
dom variables that follow a Bernouilli process of parameter π, i.e Pr(Xi = 1) = π

for 1 ≤ i ≤ C. Then for X =
D∑
i=1

Xi, µ = E[X] = Dπ, and for any α ∈]0, 1], we have

Pr(X > (1 + α)µ) ≤ e−
α2µ
3

and Pr(X < (1− α)µ) ≤ e−
α2µ
2 .

We leverage Lemma 1 in the following lines. File extractor E fails at recovering file
F ∗ if there is a split Ŝ∗i of the encoding F ∗ damaged by more than d

2 = ρD errors (by
definition of an Error Correcting Code (ECC)). This assertion can be interpreted in terms
of probability: Let P E(Fail,j) denote the probability that split Ŝ∗i is damaged with more than
ρD errors. In particular, it expresses the probability that extractor E fails in recovering

split Ŝ∗i . Thus P E(Fail,j) = Pr(
D∑
k=1

Xik > ρD), where
D∑
k=1

Xik quantifies the adversarial

corruptions in split Ŝ∗i , that is the number of errors in that split. By applying Lemma 1,

we find the bound P E(Fail,j) ≤ e−
α2µ
3 where µ = E[

D∑
k=1

Xik] = ρadvD (indeed, ρadv is the

parameter of the Bernoulli process followed by the random variables Xik) and α = ρ
ρadv
−1.

Written in another way, this bound corresponds to:

P E(Fail,j) ≤ e
− ρadvD

3
(1− ρ

ρadv
)2
.

We notice that probability P E(Fail,j) is negligible, i.e P E(Fail,j) ≤
1

2κ where κ is the security

parameter in StealthGuard, for any ρadv that satisfies the inequality (1 − ρ
ρadv

)2ρadv ≥
3 ln(2)κ
D . In particular, P E(Fail,j) is negligible for any ρadv ≤ ρneg where ρneg is defined as

(1− ρ

ρneg
)2ρneg =

3 ln(2)κ

D

and ρneg < ρ.

3- Computation of γneg above which F ∗ is said retrievable when A wins the game. In
order to ensure that file F ∗ is retrievable whenever adversary A succeeds in the soundness
game, γ, the number of challenges that have to be issued and sent to adversary A , must
pass a threshold value denoted γneg, such that if adversary A corrupts more than ρneg

fraction of the encoded file F̂ ∗, she will be detected by extractor E with an overwhelming
probability. In other words, we want to assure that if γ ≥ γneg and probability of corruption
ρadv is larger than probability ρneg (above which file F ∗ is irretrievable by extractor E),
then probability δ that adversary A succeeds in the soundness game is negligible. Precisely,

δ = (1− ρadv)γ as shown in step 1 of this proof

48 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

δ ≤ (1− ρadv)γneg since γ ≥ γneg.

We want to assure that:

δ ≤ δneg =
1

2κ
.

Therefore, from the last two lines, we deduce that γneg should be greater than − ln(2)κ
ln(1−ρadv) .

To fulfill the above condition whenever ρadv ≥ ρneg, it suffices to have γneg ≥ − ln(2)κ
ln(1−ρneq) ≥

ln(2)κ
ρneg

. As a result, we can define γneg as:

γneg =

⌈
ln(2)κ

ρneg

⌉
.

Summary of the findings. Before detailing the last step of the proof, we give here a
brief summary of the above findings. If γ ≥ γneg:

• If ρadv ≥ ρneg, that is, when adversary A corrupts a fraction of file F ∗ that is larger
than the limit for which file extractor E can recover the file, then the probability
that adversary A wins the soundness game is δ ≤ δneg = 1

2κ , which is negligible.

• If ρadv < ρneg, then the probability that adversary A succeeds in the soundness game
is δ > δneg. Nevertheless, file F ∗ is retrievable, as shown in part 4 of the proof, with
a probability larger than 1− n

2κ , where n is the number of splits in file F ∗.

4- Construction of a file extractor E. In this last part of the proof of Theorem 2,
we show that there exists a file extractor E that can recover challenge file F ∗ whenever
adversary A succeeds in the soundness game with probability δ > 1

2κ .
For this purpose, we require that such an extractor simulates the output of hash

function H by controlling a random oracle H, as depicted in the following lines. We recall
that this hash function H was used in algorithm WDSearch to construct and verify the
proofs of retrievability (cf. Figure 2.5).

Simulation of random oracle H. To respond to the queries of the random oracle H,
extractor E keeps a table TH of tuples (β,H(β)) as follows:

On a query H(β), extractor E checks:

1. If there is a tuple (β,H(β)) that corresponds to β, then E returns H(β).

2. If β has never been queried before, then E picks a random number h, and returns
H(β) = h.

We assume for the rest of the proof that A succeeds in the soundness game with
probability δ > δneg. Below, we show that if γ ≥ γneg then extractor E is able to recover
file F ∗ with an overwhelming probability. We denote ΠESuccess the probability that extractor
E recovers file F ∗ by interacting with adversary A .

We highlight the fact that if γ ≥ γneg, then succeeding in the soundness game implies
that A corrupts less than ρneg fraction of the encoded file F̂ ∗. This means that the
probability that the ECC-encoded split S∗i receives more that ρD = d

2 errors is negligible,
and so is probability P E(Fail,i) that extractor E fails in recovering split S∗i .

In what follows, we show how extractor E recovers file F ∗:

• E simulates oracle OChallenge to issue a challenge chal = (~µ,R, i) for challenged file
F ∗, where R is the random number that is used by adversary A to generate its POR
response and i is the index of split Ŝ∗i that extractor E wants to extract. Here, ~µ
serves to retrieve the witnesses corresponding to the blocks composing Ŝ∗i . Without

2.4. Performance Analysis of StealthGuard 49

loss of generality, we assume that extractor E is interested in retrieving the kth block
of split Ŝ∗i (i.e., b̂∗ik). Accordingly, if the proof sent by adversary A for challenge
chal is valid, extractor E will be able to recover the q-bit string h = ε1ε2...εq (see

Figure 2.6) corresponding to the q first bits of H(b̂ik, R).

• Provided with h, extractor E identifies the block β ∈ TH for which H(β,R)|q = h if
there is any. If it is the case, extractor E outputs b̂ik = β. Otherwise, extractor E
declares block b̂ik as missing.

Extractor E repeats the above procedure until retrieving the n splits Ŝ∗i of file F ∗. To
this end, E issues nC (C is the number of blocks composing Ŝ∗i) challenges to the adversary
A which is rewound before each challenge. Once the n splits Ŝ∗i are retrieved, extractor
E uses secret key K to decrypt the splits, then uses the ECC to correct the errors in the
splits if there are any.

Note that extractor E fails in retrieving file F ∗ if she does not succeed in retrieving at

least one of the splits S∗i . The probability of this event is ΠEFail ≤
n∑
i=1

P E(Fail,i). Hence, E

recovers file F ∗ with the following probability:

ΠESuccess = 1−ΠEFail ≥ 1−
n∑
i=1

P E(Fail,i)

Since adversary A corrupts less than ρneg fraction of file F̂ ∗, the probability that a split
S∗i in the file F ∗ is irretrievable is negligible, namely, P E(Fail,i) ≤

1
2κ , and therefore:

ΠESuccess ≥ 1− n

2κ︸︷︷︸
negligible

Conclusion. StealthGuard is a (δ, γ)-sound proof of retrievability for any δ > δneg = 1
2κ

and γ ≥ γneg = d ln(2)κ
ρneg
e, where ρneg fulfills the following conditions:

(1− ρ

ρneg
)2ρneg =

3ln(2)κ

D
and ρneg ≤ ρ.

2.4 Performance Analysis of StealthGuard

In this section we discuss the efficiency and the choice of the parameters in StealthGuard. We
therefore give an example of parametrization and draw important conclusions forStealthGuard’s
implementation. We finally report some experimental results issued from the construction
and the test of a StealthGuard prototype.

2.4.1 Discussion on Efficiency

To discuss the efficiency of StealthGuard, please refer to the notations listed in Table 2.1. Ta-
ble 2.2 sums up the computational, storage and communication complexities of ourStealthGuard.

2.4.1.1 Storage

At the end of the Setup phase, data owner O is only required to store master secret key K.

50 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

On the other hand, cloud server S must store the retrievable version F̂ of the outsourced
file F which amounts to n · C · l bits, where n is the number of splits in F̂ , C is the number
of blocks in each split Ŝi of F̂ and l in the size in bits of a block. This value includes the
storage overhead induced by the application of ECC - n · (d− 1) · l bits - and the insertion of
watchdogs- n · v · l bits.

2.4.1.2 Computation

The computational costs of algorithm KeyGen consists in first invoking a Pseudo-Random
Number Generator (PRNG) to issue master secret key K. Thereafter, it computes n+3 keys
by computing hash functions.

Algorithm Encode operates an ECC and a SSE over each split. Moreover, it performs nD
file-level PRP and nv split-level PRP. Besides, to generate the watchdogs, this algorithm
computes nv PRF. To check the retrievability of some file F composed of n splits and obtain
a security level of 1

2κ , where κ is the security parameter, StealthGuard requires data owner
O to generate v >

γneg

n watchdogs per split where γneg (computed in Section 2.3.2) is the
threshold of the number of queries that verifier V should issue. As shown in Theorem 2, this
threshold does not depend on the size of data (in bytes). Instead, γneg is defined solely by
the security parameter κ, the number D = m + d − 1 of blocks (including those generated
by the application of an ECC) per split and the rate ρ = d

2D of errors that the underlying
ECC can correct. Namely, γneg is inversely proportional to both D and ρ. This means that
by increasing the number of blocks D per split or the correctable error rate ρ, the number of
queries that data owner O should issue decreases. However, having a large ρ would increase
the size of data that O has to outsource to S , which can be inconvenient for the data owner.
Besides, increasing D leads to an increase in the number of blocks C = s · t per split Ŝi which
has a direct impact on the communication cost and the computation load per query at both
verifier V and cloud server S . It follows that when defining the parameters of StealthGuard,
one should consider the trade-off between the affordable storage cost and the computation
and communication complexity per POR query.

It should also be noticed that the permutations applied during the execution of algo-
rithm Encode are without doubt the most computationally-intensive steps in StealthGuard.
Indeed, permutations require a non-negligible amount of random accesses which slow down
the performance of the overall Setup phase. Notwithstanding their substantial costs, we
highlight the fact that algorithm Encode is carried out only once for a theoretical unlimited
number of POR verifications. In other terms, StealthGuard adopts the amortized model as
we explained in Section 1.3: O performs a one-time expensive pre-processing operation that
is amortized over an unlimited number of verifications. Indeed, as we can see in Table 2.2,
the costs induced by algorithm Verify are light compared to the ones of Encode which can be
potentially expensive due to the application of the pseudo-random permutation.

To illustrate the computation performances of StealthGuard, we take into considera-
tion the Trapdoor Group PIR62, proposed in [176] to implement the PIR procedure in
WDSearch. This PIR mechanism enables verifier V who runs algorithm Challenge to fetch
a row from an (s, t) matrix (representing a split) without revealing to cloud server S , who
executes algorithm ProofGen, which row verifier V is querying. One important feature of this
PIR scheme is that it only involves random number generations, additions and multiplications
in Zp (where p is a prime of size |p| = 200 bits) which are not computationally intensive and
could be performed by a lightweight verifier.

62As mentioned in 37, this PIR has been recently proven not to be secure. For illustration we mention this
protocol but in practice, any efficient PIR algorithm that preserve confidentiality of queries and results would
fit in our model.

2.4. Performance Analysis of StealthGuard 51

Table 2.2: Complexities of StealthGuard

Storage |p| refers to the size (in bits) of elements in Zp.

Data owner ∗
Server n · C · l

Included ECC n · (d− 1) · l
Included watchdogs n · v · l

Communication
Outbound γ · (s · |p|)

Inbound γ · q · (t · |p|)

Operations KeyGen Encode Challenge ProofGen Verify

PRNG 1 - γ · (s+ 2) - -
Hash computations n+ 3 - - γ · C γ

ECC - n - - -
PRP - n ·D + n · v γ - -

Encryption - n - - -
PRF - n · v - - γ

Additions - - 3γ γ · q · (s− 1) · t -
Multiplications - - γ · (s2 + 2) γ · q · s · t γ · q

2.4.1.3 Communication

The communication complexity only depends on the underlying PIR algorithm used to query
and perform the watchdog search. We emphasize that PIR in StealthGuard is not employed
to retrieve a watchdog, but rather a q-bit hash of the watchdog (typically q = 80), and that
it is not performed on the entire file, but it is instead executed over a split. When employing
Trapdoor Group PIR[176], the communication cost of StealthGuard is minimal when

s '
√
Cq and t '

√
C
q . This results in a communication complexity (per query) at verifier

V of O(
√
Cq) and a communication complexity at the server of O(

√
Cq).

2.4.2 Example of Parameterization

To illustrate the efficiency of StealthGuard, we provide in this section an example of param-
eterization. Table 2.3 exposes the chosen parameters and the computed efficiency figures.

Let us consider a file F of 4 GB divided into n = 32768 splits F = {S1, S2, ..., Sn}, and
each split Si is composed of m = 4096 blocks of size l = 256 bits. The choice of block
size l = 256 is obviously correlated to the block size operated by AES. Besides, this value
ensures that the watchdogs are large enough to be impacted by any adversarial corruption
(thus to be detected by an instance of StealthGuard) and to prevent a malicious cloud server
from guessing watchdogs values by a brute-force attack. As it is, StealthGuard applies an
ECC that corrects up to 228 corrupted blocks. In other terms, it operates the (D,m, d)-
Reed-Solomon code of error rate ρ = 5% and where d = 456 and D = m + d − 1 = 4551.
Thereafter, StealthGuard inserts v = 8 watchdogs per split.

We obtain thus F̂ = {Ŝ1, Ŝ2, ..., Ŝn}, where Ŝi is composed of C = 4559 blocks of size
l = 256 bits. This results in a redundancy of ' 11.3%, where 11.1% redundancy is due to
the use of ECC, and 0.20% redundancy is caused by the use of watchdogs.

Furthermore, we select optimum values for s '
√
Cq and t '

√
C
q such that C = s · t

and q = 80. It appears that (s, t) = (570, 8) is an optimal choice. Besides, if StealthGuard
implements the Trapdoor Group PIR [176] where |p| = 200 bits, then verifier V ’s query
will be of size ' 13.9 KB, whereas cloud server S ’s response will be of size ' 15.6 KB. In

52 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

addition, if cloud server S still stores the file F̂ , then verifier V will declare file F as retrievable
with probability 1 − n

260
' 1 − 1

245
by executing the POR protocol γ = 1719 times; namely,

by sending γ POR queries which amounts to 23.4 MB and by downloading 26.2 MB which
corresponds to 0.64% of the size of the original file F .

Table 2.3: Parameterization of StealthGuard

Param. Description Values

n Number of splits Si in file F 32768 splits
m Number of blocks in a split Si 4096 blocks
l Size of a block 256 bits
L Size of a split Si 1048576 bits
d Parameter of the ECC 456 blocks

D Number of blocks in an encoded split S̃i 4551 blocks
ρ Error rate of the ECC 5%
v Number of watchdogs in one split Si 8 watchdogs

C Number of blocks in a split Ŝi with watchdogs 4559 blocks
q Number of cloud matrices (or size of witness) 80 matrices (or bits)
s Number of rows in a cloud matrix 570
t Number of columns in a cloud matrix 8
γ Number of POR queries 1719

Table 2.4: Efficiency of StealthGuard’s example

Metrics Costs

Storage overhead (at server) 4.45 GB
Redundancy 11.3%

Due to ECC 11.1%
Due to watchdogs 0.20%

Communication cost for γ = 1719 queries and responses
Outbound 23.4 MB
Inbound 26.2 MB

2.4.3 Comparison with Related Work

Table 2.5 and Table 2.6 depict the performance results of StealthGuard and compares it
with previous work. In particular, we compare our solution with other POR schemes, namely
[17, 107, 165, 189] within the same setting. This comparison considers a file F of size 4 GB
and a POR assurance of 1− 1

245
(as computed in Section 2.4.2).

We assume that all the compared schemes have three initial operations in the Setup
phase: The application of an ECC, a SSE and a file-level PRP over all the blocks in file
F . Since these three initial operations have comparable costs for all the schemes, we omit
them in Table 2.5. Computational costs are represented with exp for exponentiation, mul for
multiplication, PRF for pseudo-random function or PRP for pseudo-random permutation. The
row corresponding to StealthGuard is filled with the values provided in Section 2.4.2. As for
the other schemes, all initial parameters derive from the respective papers. An exception is
made for [165] where no information about the number of blocks in a split is given. Therefore,
we choose the same value as in [189].

2.4. Performance Analysis of StealthGuard 53

Setup. In StealthGuard, data owner O computes n·v ≈ 2.6×105 PRF and ≈ 2.6×105 PRP
for the generation and the insertion of watchdogs. One of the advantages of StealthGuard is
to provide a more lightweight Setup phase when O preprocesses large files. Indeed, the Setup
phase in most of previous work [17, 165, 170, 189] requires O to compute an authentication
tag for each block of data in the file which is computationally demanding in the case of large
files.

Storage Overhead. The insertion of watchdogs in StealthGuard induces a smaller storage
overhead compared to other schemes that generate authentication tags as in [17, 165, 189].

Proof Generation and Verification. As specified in Section 2.4.2, we consider the PIR
operations as multiplications of elements in Zp where |p| = 200 bits. To determine the server
and verifier computational costs of existing work, we rely on the parameters and the bounds
given in their respective papers. In particular, we compute the number of requested blocks
in one challenge to obtain a probability of 1− 1

245
to declare the file as retrievable: 764 blocks

in [17], 1719 sentinels in [107], 45 blocks in [165] and 1639 blocks in [189]. As depicted in
Table 2.6, it appears that StealthGuard induces high cost compared to existing work but is
still acceptable.

Proof Generation and Verification. Even if its communication cost is relatively low
compared toStealthGuard, the solution in [107] (JK POR) suffers from the limited number of
challenges, that causes the data owner to download the whole file to regenerate new sentinels.
Although we realize that StealthGuard’s communication cost is much higher than [17, 165,
189], such schemes would induce additional cost at the file retrieval step, as mentioned in
Section 1.5.

Summary. StealthGuard trades off between light computation at the data owner, small
storage overhead at the cloud and significant but still acceptable communication cost. Never-
theless, we believe that StealthGuard’s advantages pay off when processing large files. The
difference between the costs induced by existing schemes and those induced by StealthGuard
may become negligible if the size of the outsourced file increases.

Table 2.5: Comparative table between StealthGuard and relevant existing work (Setup).

Protocols Parameters Data Owner Storage

Robust PDP [17]
Block size: 2 KB 4.4× 106 exp Tags:
Tag size: 128 B 2.2× 106 mul 267 MB

JK POR [107]
Block size: 128 bits 2× 106 PRF Sentinels:

Nb sentinels: 2× 106 30.6 MB

Compact POR [165]
Block size: 80 bits 5.4× 106 PRF Tags:
Blocks/split: 160 1.1× 109 mul 51 MB
Tag size: 80 bits

Efficient POR [189]
Block size: 160 bits 2.2× 108 mul Tags:
Blocks/split: 160 1.4× 106 PRF 26 MB

StealthGuard
Block size: 256 bits 2.6× 105 PRF Watchdogs:
Blocks/split: 4096 2.6× 105 PRP 8 MB

54 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

Table 2.6: Comparative table (Challenge-Response and Verification).

Protocols Server Verifier Communication
Challenge Verify Out In

Robust PDP [17]

764 PRP

1 exp 168 B 148 B
764 PRF 766 exp
765 exp 764 PRP
1528 mul

JK POR [107] ⊥ 1719 PRP ⊥ 6 KB 26.9 MB

Compact POR [165] 7245 mul
1 enc 45 PRF

1.9 KB 1.6 KB
1 MAC 365 mul

Efficient POR [189]
160 exp ⊥

2 exp
36 KB 260 B

2.6× 105 mul
1639 PRF
1639 mul

StealthGuard 6.3× 108 mul
5.6× 108 mul 1.4× 105 mul

23.4 MB 26.2 MB
1719 PRP 1719 PRF

2.4.4 Experimental Analysis

This section presents the implementation of StealthGuard into a prototype to validate the
theoretical performance analysis conducted in Section 2.4.1 as well as to evaluate its practi-
cality.

Experimental Setup. We simulate data owner O, cloud server S and verifier V in the
same environment, on a machine with the following characteristics: Processor Intel Core i5-
2500; CPU 3.30 GHz clock speed; 64 bit OS; RAM 16 GB. The prototype is mainly written
in Python language, resorts to the pycrypto library63 for cryptographic operations (AES,
SHA-256) and consists of two scripts: one for the data owner (used by the verifier as well)
and another for the server. The data owner’s script implements algorithms KeyGen, Encode,
Challenge and Verify. It also provides a function Decode to reverse the operations performed
by Encode when the outsourced data is retrieved. The server’s program enforces algorithm
ProofGen.

Algorithm Encode involves the application of an Error Correcting Code (ECC) algorithm.
For our prototype, we implement the Reed-Solomon codes [154] by means of a C++ library
called Schifra64 and which operates on 16-bit symbol for the encoding. The pseudo-random
function is implemented by means of the SHA-256 algorithm provided by the pycrypto library.
The pseudo-random permutation is performed via a permutation table randomly generated
on-the-fly by the program. Our prototype is perhaps not optimized to render the experimental
analysis in line with our efficiency expectations. Nevertheless, the current version of the
program is still valuable in order to interpret some of the results. Further improvements in
the code will be implemented as a future work.

We run the prototype over files of different sizes ranging from 100 MB to 1000 MB. Each
file is composed of splits of m = 2048 blocks of l = 256 bits. Hence, each split is of size
L = 65535 bytes and each file is made of n = filesize

L splits.

63The Python Cryptography Toolkit (pycrypto): https://pypi.python.org/pypi/pycrypto [Accessed: Febru-
ary 2, 2016].

64Schifra library: http://www.schifra.com/ [Accessed: February 2, 2016].

https://pypi.python.org/pypi/pycrypto
http://www.schifra.com/

2.4. Performance Analysis of StealthGuard 55

Figure 2.7: Error-Correcting Code encoding time

Figure 2.8: File-level permutation time

Setup phase. The Setup phase of StealthGuard is relatively expensive as shown in Ta-
ble 2.2. Indeed, algorithm Encode involves demanding operations such as the application of
the ECC and the permutation of all the blocks in the data. Figure 2.7 shows the time needed
to apply the ECC as a function of file size, Figure 2.8 displays the time required to perform
the file-level permutation and Figure 2.9 depicts the total time needed by Encode.

While Figure 2.7 shows that the time required by the application of the ECC is linear in
the file size (at the speed of approximately 340 KB/s), Figure 2.8 reveals that the file-level
permutation time follows an exponential growth in the file size, which slows the overall per-
formance of algorithm Encode, as shown in Figure 2.9. We explain this slow file-permutation
operation by the fact that it requires O(nm) random accesses for permuting the file at the
data owner side. Nonetheless, we highlight that this permutation is required only once by the
Encode algorithm for multiple POR queries and verifications. Besides, our implementation
of the permutation is not optimized.

The Challenge and Verification phases. We test our prototype to evaluate the per-
formances of the generation and verification of POR for a file of 1GB whose splits contain
m = 2048 blocks of l = 256 bits. Hence, the number of splits is n = 16385. The prototype
applies an ECC that corrects up to 114 corrupted blocks, namely the ECC rate is ρ = 5%,
d = 228 and D = m+ d− 1 = 2275. Besides, the test inserts v = 3 watchdogs in each split.

56 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

Figure 2.9: Encode total time

Table 2.7: Challenge and Verification phase times

Challenge (s) ProofGen (s) Verify (s) TOTAL (s)

74.553 6.549 1.745× 10−4 81.102

Table 2.7 displays the average times to execute the three algorithms involved in the
Challenge and Verification phases.

Challenge: This operation is the slowest among the three algorithms. As we can in see in
Table 2.7 the average time to generate a single POR query is around 74.553 seconds.
We argue that this value is non-negligible due to a non-optimized implementation of
Challenge, and in particular of the permutation needed to generate the POR query.

ProofGen: On average, the time required by the server to respond to a single POR query,
that is, to perform the privacy-preserving word search on a queried watchdog, is about
6.549 seconds. Measurements vary in the range [0.535; 12.891] seconds. We highlight
the fact that this computation is done on the server side.

Verify: The verification of the proof of retrievability takes approximately 1.745×10−4 second,
which is is fast and negligible compared to the time required by other algorithms of our
protocol.

Concluding thoughts. The above experimentations show that the overall protocol per-
formance perceived by the data owner is impacted by (i) the application of the ECC to each
split in the data to be outsourced; and (ii) the permutation of all the blocks in the data.
Nonetheless, there exist mitigating aspects that should be considered. (i) Encoding the data
is a one-time operation that allows an unrestricted number of POR verifications; and (ii) Our
suboptimal implementation of the permutation operation does not reflect the efficiency of
algorithm Encode and Challenge, but leaves open the way for improvements. The time to
check the proofs of retrievability using algorithm Verify is shown to be affordable by users
with limited resources. Finally, provided that the permutation operation is optimized in the
prototype, StealthGuard is a viable POR solution.

2.5. Conclusion 57

2.5 Conclusion

Part I was devoted to the problem of proofs of storage. Well-suited to detect data losses in
a remote storage service, proofs of storage have the advantage to be verifiable without the
need to transfer the outsourced data in order to check its integrity.

We particularly focused on a particular kind of proofs of storage. Namely, proofs of re-
trievability not only ascertain the correct storage of outsourced data, but also prove that
this data can be recovered if small corruptions affect it. We therefore design a new POR
protocol, StealthGuard, that generates proofs of retrievability by combining randomly gen-
erated watchdogs with an efficient privacy-preserving word search mechanism. We showed
that our technique is secure against malicious cloud servers who would be tempted to falsely
claim that they correctly store the data. Besides, we evaluated StealthGuard’s practicality
by means of a prototype. Our solution perfectly answers Problem 1 on Verifiable Storage we
expounded in the introduction of this thesis. If StealthGuard is deployed into a real-world
cloud-based environment, the cloud users will be able to control that their data is correctly
stored by the cloud service provider.

Future Work

A key direction for future research with respect to StealthGuard would address the diffi-
culties of handling updates in the data while applying error-correcting codes. The protocol
described in Chapter 2 does not consider update operations the data owner can perform
over its data. Indeed, any update operation in the data, be it split insertion, split deletion
or split modification has an impact on the security of the StealthGuard mechanism. For
example, if the data owner modifies a same block several times then the cloud can discover
that this particular block is not a watchdog. Additionally, updated splits should contain new
watchdogs. Otherwise, if some of the watchdogs are not modified at each update, then the
cloud may not execute the required operation, keep an old version of a split and hence it can
still be successful in responding to POR queries, although it has not performed the update
operation. Besides, updates in the data significantly alter the efficiency of StealthGuard.
We recall that in StealthGuard, algorithm Encode first applies the ECC and then operates
a permutation (ΠF) over all the blocks in the file (step 2 in Figure 2.3) to prevent the attack
depicted in Section 2.2.4.1. In the case of data that are subject to updates, the permutation
step renders any split update operation inefficient. Indeed, updating a split requires to up-
date the corresponding ECC-blocks, resulting in the update of other splits and thus revealing
to S the dependencies between the data blocks and the ECC-blocks. This knowledge allows
the cloud to perform selective corruption attacks on the outsourced data. Therefore, the file
permutation becomes ineffective. Some techniques are available to conceal these dependen-
cies such as batching updates [170, 167] or Oblivious RAM (O-RAM) [53]. While O-RAM
does not reveal to the cloud which blocks are blocks of ECC, this tool is computationally
demanding and bandwidth consuming and has no practical relevance. Therefore, future work
should be devoted to the design of an O-RAM-like mechanism that protects access pattern
privacy, such that the updates can be securely performed with light costs.

Another direction for future research in the area of proofs of storage is to consider not
only the cloud as malicious, but also the data owners and verifiers as untrusted. Indeed, we
can envision that a cloud service would provide its users with financial compensation for any
losses impacting their data. Malicious users would then be motivated to falsely claim that
the cloud lost their data in order to fraudulently obtain this compensation. To cope with
this concern, StealthGuard, and any POR protocols, should be enhanced with the fairness
property. Fairness entails that a data owner cannot accuse an honest cloud server of having
lost her data. Fairness also means that in case a dispute arises between the data owner and
the server, a trusted third party (such as a judge in court) can mediate the two parties to
reach a solution. Therefore, the server should be empowered with a mechanism to prove

58 2. StealthGuard: Proofs of Retrievability with Hidden Watchdogs

to this trusted third party that the data owner is lying, or to prove that the server itself
is honest. A couple of papers [197, 116] considered the fairness property in the context of
POS. A straightforward solution would be to require the data owner to sign the data before
its outsourcing. However, in the case of dynamic POR protocol, this is more challenging
since the data owner does not physically possess the data anymore. Downloading the data
to update it and then compute the signature on the updated data cannot be considered
in practice because it incurs prohibitive bandwidth consumption. A possible solution to
circumvent this difficulty involves secure Chameleon signatures [114, 13]. The characteristic
property of this kind of signature relies on the fact that it is hard to find a pair (S′, r′) such
that CH(S′, r′) = CH(S, r) (where CH denotes the Chameleon signature, S (resp. S′) a split
in an outsourced file (resp. an updated split) and r, r′ two random numbers), but with the
knowledge of a trapdoor, one can feasibly compute r′ such that CH(S′, r′) = CH(S, r), given
CH(S, r) and S′. Integrating this signature for each split in the framework of StealthGuard
would commit the data owner to the content of the data she outsourced. Hence, she cannot
repudiate that she has stored all the signed splits. In case of dispute, the honest server
can prove, thanks to the Chameleon signatures that a trusted third party can check, that it
correctly stores the data. Besides, in case of updates, the data owner will be able to generate
a new r′ for the Chameleon signature of the updated split, without the need to download
it. We will investigate more on StealthGuard with the fairness property via Chameleon
signatures in the future.

Part II

Efficient Techniques for
Verifiable Computation

3 Charaterization of Verifiable Computation 61

4 Verifiable Polynomial Evaluation 85

5 Verifiable Matrix Multiplication 99

6 Verifiable Conjunctive Keyword Search 115

60

3. Charaterization of Verifiable Computation 61

Chapter 3

Charaterization of Verifiable
Computation

3.1 Introduction to Verifiable Computation

The advent of cloud computing offers to individuals and organizations promising technologies
for delegating not only the storage of their possibly huge amount of data (as analyzed in
Part I), but also the execution of computationally demanding operations as investigated
in the present part. However, outsourcing computation may jeopardize users’ computation
privacy and integrity, which dissuades a wide adoption of cloud technologies. As a matter
of fact, remote servers, such as cloud providers, to whom control over data and computation
is lent, cannot always be trusted. One of the main concerns deals with the problem of the
outsourced computation integrity and is the matter of this part. In particular, we consider
the following scenario: we assume a cloud user, be it an individual cloud-end user or a
company (or any other kind of organization), wishes to delegate to the cloud, the execution
of a computationally demanding operation f so that she can later submit some input x of
her choice and receive from the cloud the output y = f(x). The question raised here, is: how
can the user be sure that y legitimately corresponds to the execution of function f on input x?
In other terms, the cloud must not only correctly perform the requested computation, but
also try to convince the user that the output is correct. One of the challenges here is that
the user outsourced function f to the cloud, thus relinquished the control over f to the cloud.
Therefore, the hypothetical and trivial solution having the user recompute y∗ = f(x) and then
verify that y = y∗ cannot be considered. Besides, this trivial solution would have suffered
from a major drawback: recomputing y∗ and verifying y = y∗ is too expensive in terms of
computational complexity and bandwidth, canceling out the advantage of outsourcing f to
the cloud. Hence, one of the goals in the present work is to devise solutions whereby the
cloud can convince the user of the correctness of the computation in such a way that it still
remains advantageous for the user to outsource that computation rather than executing it on
her side.

To cope with the aforementioned challenges, Gennaro et al. [90] formalized the concept
of Verifiable Computation (VC) in which a user delegates the execution of an operation to
the cloud and further receives the result with some cryptographic proofs asserting the correct
execution of the requested operation.

We describe in Section 3.2 a scenario that highlights the problem of Verifiable Compu-
tation. In Section 3.3, we give a characterization of a protocol in which a cloud server must
provide the proofs of correct computation. Section 3.4 extends this initial definition to a
special context where these proofs are publicly verifiable. Finally, we analyze prior art in
Section 3.6.

62 3. Charaterization of Verifiable Computation

3.2 Motivating Scenario

To concretely appreciate the problem and the challenges, the requirements and the features
that we are dealing with, we elaborate the following scenario.

3.2.1 The Scenario

Let us consider an international space agency, such as the European Space Agency (ESA)
or the National Aeronautics and Space Administration (NASA), that conducts research on
Earth observation65. As a science organization, this space agency collects, produces and
owns terabytes, even petabytes66 of data such as space and aerial images or time-series data
acquired from observing satellites. In other terms, the space agency has to deal with the
so-called “big data” concept. The exploitation of this large amount of Earth observation data
is essential for a wide range of applications: monitoring water quality in Africa67, monitoring
air pollution in Europe68, monitoring the ice melting in the Arctic69, or analyzing post-
disaster effects70 such as after the occurrence of earthquakes, tsunamis or volcanoes. Many
stakeholders participate and collaborate in the various tasks related to Earth observation:
the international space agency and its employees, outside researchers on Earth observation
from all around the world, members of the space research community, educational users,
and any other organizations to whom observation results are crucial for their business71.
Notwithstanding their tremendous significance, the management of Earth observation data
poses three major challenges to the space agency. First, it requires a large amount of space
to store the tera, even petabytes of data. Furthermore, exploiting this data, that is, running
data mining and information extraction operations in an automated way, is resource and time
expensive. Finally, the data is envisioned to be efficiently shared among all the stakeholders
cited above so as to enable collaborative research. We can also mention an additional challenge
for the case of disaster monitoring: the Earth observation data should be processed nearly in
real time to support emergency response teams after the occurrence of a hazard. Therefore,
these challenges lead the international space agency to adopt cloud computing technologies,
as it was the case for the ESA72 and the NASA73 in 2013. This migration to the cloud is
expected to:

• reduce the agency’s heavy investments in IT assets, in particular for its storage servers;

• offload to the cloud long and expensive data processing operations, such as data mining
or image processing;

• make data access and sharing among researchers all around the world easier so that
collaborative work is rendered efficient and effective.

One of the tasks that is incumbent upon our international space agency consists in pro-
cessing and analyzing earth data such as space and aerial images or time-series data produced
by observing satellites. Most image processing techniques leverage polynomial and matrix

65For more details on ESA’s (respectively NASA’s) Earth observation missions, see http://tiny.cc/2qdt8x
[Accessed: February 3, 2016] (resp. http://tiny.cc/xrdt8x) [Accessed: February 3, 2016].

66The NASA’s Earth Observing System Data and Information System metrics for 2014 shows that the
system operates 9 petabytes of data. Source: http://tiny.cc/2sdt8x [Accessed: February 3, 2016].

67Water quality in Africa, ESA, http://tiny.cc/otdt8x [Accessed: February 3, 2016].
68Measurement of change in the ozone layer, ESA, http://tiny.cc/7udt8x [Accessed: February 3, 2016].
69Measurements of the volume of Arctic sea ice, ESA, http://tiny.cc/jvdt8x [Accessed: February 3, 2016].
70Hazard monitoring, ESA, http://tiny.cc/4xdt8x [Accessed: February 3, 2016].
71For instance, we can consider the case where, after the occurrence of a tsunami, monitoring its effects is

essential for rescue services and civil defense authorities. Besides, insurance companies may be interested in
mapping the extent of the tsunami. Therefore, both emergency response teams and insurance companies are
“consumers” of Earth observation data.

72“European Space Agency delivers its SuperSites Exploitation Platform on Interoute Virtual Data Centre”,
Interoute, September 18, 2013, http://tiny.cc/w9dt8x [Accessed: February 3, 2016].

73Steve Cole, “NASA’s Brings Earth Science “Big Data” to the Cloud with Amazon Web Services”, NASA,
November 12, 2013, http://tiny.cc/ceet8x [Accessed: February 3, 2016].

http://tiny.cc/2qdt8x
http://tiny.cc/xrdt8x
http://tiny.cc/2sdt8x
http://tiny.cc/otdt8x
http://tiny.cc/7udt8x
http://tiny.cc/jvdt8x
http://tiny.cc/4xdt8x
http://tiny.cc/w9dt8x
http://tiny.cc/ceet8x

3.2. Motivating Scenario 63

arithmetics. For example, polynomial evaluation can be used for contour detection [177],
while matrices are often employed as a computational mask : Images are represented as a
matrix of pixels that is multiplied by another matrix (the mask) which encodes an image
processing operation (such as denoising or edge detection) [150]. Since the space images are
remotely stored in the cloud, the latter is also requested to process the images (that is, to
operate the underlying polynomial evaluations or matrix multiplications) on behalf of the
space agency. In addition to image processing, data mining is fundamental in our scenario.
For instance, the agency may desire to conduct some statistics on the images or on the anno-
tations accompanying the images in order to classify them. In this line of research, keyword
search is one of the most frequently used primitives for data mining. The agency may want
to search its database for files that contain particular keywords, to classify the images74. As
in the case of image processing, the cloud will be responsible for the keyword search on behalf
of the space agency.

This computation outsourcing use case falls in the domain of verifiable computation,
whereby the space agency wishes to receive cryptographic proofs generated by the cloud
server attesting the correctness of the computation results. Namely, the agency must be
convinced that the images are processed as expected (for example that the image -i.e the
matrix- resulting from the application of the mask is correct) and that the keyword search
returns the correct set of images that corresponds to the targeted keywords.

3.2.2 Requirements and Features for Verifiable Computation Protocols

From the above space agency scenario, we are able to extract the requirements and desired
features for a VC scheme. The proofs of correct computation must satisfy two security
requirements: they must be correct (if the cloud server is honest, the agency will always
accept the proofs) and sound (a malicious cloud server cannot make the agency accept an
incorrect result). Furthermore, it is essential that the verification of the results of outsourced
computation must induce less costs than having the data owner process the space data lo-
cally. Otherwise, the migration to a cloud infrastructure would not be profitable for the space
agency; on the contrary, it should help the agency save costs in processing. This illustrates
another requirement: the efficiency requirement. Besides, the space agency would like to
delegate to its researchers and to other collaborators (such as researchers from universities
abroad, subcontractors, etc.) the capability to execute the outsourced operations (evaluate
polynomial, compute matrix multiplication, search for keywords). These third-party users
will also be empowered with the capability to verify the results of these operations. Conse-
quently, the space agency needs a framework that ensures public delegatability and public
verifiability of outsourced operations.

Efficiency Requirement. This requirement can be expressed in the following terms: In
order not to waste the advantages of outsourcing the computation to the cloud, the cost for
the user of submitting computation requests and verifying the cryptographic proofs must be
less expensive than running the computation locally from scratch. This requirement imposes
that the computational, storage and bandwidth overheads must be kept at minimum.

The efficiency requirement is also closely related to the concept of amortized model,
introduced by Gennaro et al. [90]. This model authorizes the user to run a one-time expensive
preprocessing operation that prepares the function before its outsourcing. This preprocessing
can be as costly as computing the function from scratch. However, after this stage, the
preprocessing is amortized over an unlimited number of fast verifications.

74For example, the concerned images are accompanied with a report that describes in words the elements
that can be seen in the images.

64 3. Charaterization of Verifiable Computation

Security Requirements. To capture the essence of verifiable computation, we highlight
the two standard security requirements that they must satisfy:

Correctness: A honest server cannot be accused of deviating from the correct execution
of the outsourced computation. Thus the verifier (i.e the entity who checks the validity of
the proofs) will always be convinced by the server’s correct behavior.

Soundness: If the server diverges from the correct execution of the computation, it
cannot forge false proofs that would make the verifier accept the results.

Additional Features. In order to handle a setting similar to the one presented in the space
agency scenario, a VC protocol should allow any user to request computation to the cloud
and verify the returned result. Parno et al. [143] characterized the first public delegatable and
public verifiable computation solution and gave the following definitions for the two desired
properties of public delegatability and public verifiability :

Public delegatability: Anyone can submit inputs to the remote server to evaluate the
outsourced function without any interaction with the user that outsourced the function. For
ease of exposition, we will refer to the querier as the entity that submits the inputs. Therefore,
the querier only needs to have access to a public key to request the computation to the cloud.

Public verifiability: Anyone (not only the one who submitted the inputs) can assess
the correctness of the server’s results. Thus, we will call this party the verifier. During the
verification process, the verifier does not need any involvement of the querier but only a
public verification key advertised by the querier. Note that in this framework, the verifier
trusts the querier and hence trusts the verification key.

3.3 Definition of Verifiable Computation

This section formally defines a Verifiable Computation (VC) scheme. In a nutshell, a VC
scheme is a two-party protocol in which a data owner outsources a computationally expensive
function to a cloud server. Later on, the data owner submits some inputs of her choices to
the server which is then required to evaluate the outsourced function on the requested inputs.
The data owner finally verifies that the output returned by the server actually corresponds
to a correct evaluation of the outsourced function on the provided inputs. In the following,
we identify the players in a VC protocol and describe their capabilities. Then, we present the
system model of such a protocol.

3.3.1 Parties Involved

A VC scheme comprises the following players:

Data owner O: Data owner O outsources the computation of some (computationally de-
manding) function f belonging to a family of functions F to a cloud server S . Addi-
tionally, data owner O can provide cloud server S with some inputs x. The latter is
required to compute y = f(x) and tries to convince data owner O that y is indeed f(x).
O enjoys the capability to check that the result returned by S is correct.

Cloud Server S : Often considered as potentially malicious, cloud server S is presumed to
evaluate outsourced function f on requested input x. Cloud server S also produces a
proof that the output f(x) is correct. Hence, we may refer to server S as the prover.

3.3.2 System Model

In this paragraph, we present the definition of a VC protocol. Without loss of generality, we
assume that data owner O outsources the computation of a function f ∈ F to cloud server S .
Then O asks S to evaluate function f on input x ∈ Df (the domain of definition of function f)
and checks the correctness of the computation result returned by server S .

3.4. Definition of Publicly Verifiable Computation 65

Definition 5 (VC Scheme). A VC scheme consists of four polynomial-time algorithms
(Setup, ProbGen, Compute, Verify) distributed across three phases:

I Setup. This phase only involves data owner O. She runs algorithm Setup to produce
the keying material required in the VC scheme and to process function f before its
outsourcing:

BSetup(1κ, f)→ (param, SKf,EKf): It is a randomized algorithm executed by data
owner O. It takes as input the security parameter 1κ and a description of the
function f to be outsourced, and outputs a set of parameters param, a secret
key SKf that is kept by data owner O, and an evaluation key EKf that encodes
function f to be used by cloud server S to evaluate f.

I Computation. The Computation phase consists of two steps. Data owner O runs algo-
rithm ProbGen that prepares an input x to be submitted to cloud server S . In turn, the
server invokes algorithm Compute that evaluates function f on input x and generates
a proof of correct computation.

BProbGen(x,SKf)→ (σx,VKx): Given an input x in the domain Df of the outsourced
function f and secret key PKf, data owner O calls this algorithm to produce an
encoding σx of input x that is transmitted to server S , and a secret verification
key VKx kept by O and which will afterwards be used to check the correctness of
the server’s result.

BCompute(σx,EKf)→ σy: On input of the encoding σx and the evaluation key EKf,
server S runs this algorithm to compute an encoding σy of f’s output y = f(x).

I Verification. After receiving the encoding of the computation result from cloud server
S , data owner O executes algorithm Verify to check its validity.

BVerify(σy,VKx)→ outy: Data owner O operates this deterministic algorithm to
check the correctness of the result σy supplied by server S on input σx. More
precisely, this algorithm first decodes σy which yields a value y, and then uses
the verification key VKx associated with the encoding σx to decide whether y is
equal to the expected output f(x). If so, Verify outputs outy = y meaning that
f(x) = y; otherwise it outputs an error outy =⊥.

Before formalizing the requirements for a VC scheme we have identified in Section 3.2.2,
that is the efficiency and security requirements, we enhance the above model with the two
additional features of public delegatability and public verifiability.

3.4 Definition of Publicly Verifiable Computation

The system model we detailed in Section 3.3 focuses on a privately verifiable computation
scheme in the sense that only the data owner can request the cloud server to evaluate the
outsourced function and only she can verify the result returned by the server. In our interna-
tional space agency scenario, depicted in Section 3.2, we let the agency delegate the search and
verification capabilities to any third party such as outside researchers. Therefore, we devise
here the model for a VC scheme that enables public delegatability and public verifiability.

66 3. Charaterization of Verifiable Computation

3.4.1 Parties Involved in a PVC Protocol

A Publicly Verifiable Computation (PVC) scheme comprises four players: a data owner and
a cloud server (which are identical to the ones in a VC scheme, as well as a querier and a
verifier, that are specific to the model of a PVC scheme.

Data owner O: As in a privately VC protocol, data owner O outsources the computation
of some computationally demanding function f belonging to a family of functions F

to a cloud server S . She then produces an evaluation key EKf used by server S to
respond to any requested computation on function f. In addition, data owner O can
delegate to anyone the capability to submit inputs and to verify outputs, to achieve
public delegatability and public verifiability. To do so, she advertises a public key PKf

that will be used by anyone who wishes to request computations on f.

Cloud Server S : S is presumed to evaluate outsourced function f on a requested input x.
Cloud server S also produces a proof that the output f(x) is correct.

Querier Q: Given public key PKf, querier Q requests cloud server S to evaluate the already
outsourced function f on some input x in the domain Df of f. Q would like to obtain from
S the assurance that the results that S returns are correct. Therefore, she generates a
public verification key VKx tied to input x. Note that querier Q can be not only data
owner O herself but also any party that is interested in evaluating function f (public
delegatability).

Verifier V : With the help of public verification key VKx, this player checks that the result
f(x) returned by cloud server S given x is correct. The role of verifier can be played
either by querier Q who has requested the computation or by any other entity that
wants to verify the computation result on behalf of Q (public verifiability).

3.4.2 System Model

In this paragraph, we present the definition of a PVC protocol. Without loss of generality,
we assume that data owner O outsources the computation of a function f ∈ F to cloud server
S . Then a querier Q asks S to evaluate function f on input x ∈ Df and a verifier V checks
the correctness of the computation result returned by server S .

Definition 6 (PVC Scheme). A PVC scheme consists of four polynomial-time algo-
rithms (Setup, ProbGen, Compute, Verify) distributed across three phases:

I Setup. This phase only involves data owner O. She runs algorithm Setup to produce
the keying material required in the PVC scheme and to process function f before its
outsourcing:

BSetup(1κ, f)→ (param,PKf,EKf): It is a randomized algorithm executed by data
owner O. It takes as input the security parameter 1κ and a description of the
function f to be outsourced, and outputs a set of public parameters param, a public
key PKf, and an evaluation key EKf that will be used by subsequent algorithms.

I Computation. The Computation phase consists of two steps. Querier Q runs algo-
rithm ProbGen that prepares an input x to be submitted to cloud server S . In turn,
the server invokes algorithm Compute that evaluates function f on input x and gen-
erates a proof of correct computation.

3.4. Definition of Publicly Verifiable Computation 67

BProbGen(x,PKf)→ (σx,VKx): Given an input x in the domain Df of the outsourced
function f and public key PKf, querier Q calls this algorithm to produce an
encoding σx of input x that is transmitted to server S , and a public verification
key VKx that will afterwards be used by verifier V to check the correctness of the
server’s result.

BCompute(σx,EKf)→ σy: On input of the encoding σx and the evaluation key EKf,
server S runs this algorithm to compute an encoding σy of f’s output y = f(x).

I Verification. After receiving the result and the proof of computation from cloud server
S , verifier V executes algorithm Verify to check their validity.

BVerify(σy,VKx)→ outy: Verifier V operates this deterministic algorithm to check
the correctness of the result σy supplied by server S on input σx. More precisely,
this algorithm first decodes σy which yields a value y, and then uses the public
verification key VKx associated with the encoding σx to decide whether y is equal
to the expected output f(x). If so, Verify outputs outy = y meaning that f(x) = y;
otherwise it outputs an error outy =⊥.

Before formalizing the security requirements, namely the notion of correctness and sound-
ness of a PVC scheme, we provide here a characterization of the efficiency requirement and
the desired properties of public delegatability and public verifiability.

We require for a viable PVC scheme that the costs of generating a computation request
and to verify the output of this computation must be smaller than the costs of computing
the function from scratch.

Requirement 1 (Efficiency). We say that a PVC scheme is a viable solution if the prob-
lem generation and the verification algorithms are efficient. In particular, given PKf and
for any x and any σy the time to run ProbGen(x,PKf) together with the time to execute
Verify(σy,VKx) (where VKx is generated by algorithm ProbGen) is o(T), where T is the time
needed to compute f(x).

Following the amortized model, the time required for Setup is omitted in this definition. In
this model, algorithm Setup operates an expensive pre-processing operation that encodes the
function to be outsourced in such a way that public delegatability and public verifiability are
possible. Nonetheless, Setup is executed once for many computations of the same function on
many different inputs. Therefore, it does not undermine the above consideration for a viable
solution.

Additionally, we formalize in the following lines the notions of public delegatability and
public verifiability, considered as optional requirements.

Requirement 2 (Public delegatability). A VC scheme is publicly delegatable if, given
a public key PKf, some input x ∈ Df, and some additional public parameters, then any
third-party querier can execute algorithm ProbGen on inputs x and PKf, without the need
of any secret information provided by the data owner that outsourced function f.

68 3. Charaterization of Verifiable Computation

Requirement 3 (Public verifiability). A VC scheme is publicly verifiable if, given an
encoding σy of the outsourced computation y = f(x) for some input x ∈ Df, a public
verification key VKx, and some additional public parameters, then a third-party verifier
can run algorithm Verify to check that σy is a valid encoding of y = f(x), without knowing
any secret information required from the data owner that outsourced function f or from the
querier who submitted input x.

3.5 Adversary Model in Verifiable Computation

A PVC scheme must fulfill the basic security requirements of correctness and soundness.
Succinctly, the correctness property states that if the server honestly evaluates the function
based on the user’s input (i.e. correctly executes algorithm Compute), then the verifier (who
runs algorithm Verify) will always accept the server’s result. On the other hand, the soundness
requirement captures the fact that a malicious server cannot make algorithm Verify (and thus
the verifier) accept a result that is not correctly computed via algorithm Compute.

3.5.1 Correctness

A publicly verifiable computation scheme for a family of functions F is deemed to be correct,
if whenever an honest server S executes the algorithm Compute to evaluate a function f ∈ F

on an input x ∈ Df, this algorithm always yields an encoding σy that will be accepted by a
verifier V running algorithm Verify (i.e. Verify(σy,VKx)→ f(x), where VKx is generated via
ProbGen).

Definition 7 (Correctness). A publicly verifiable computation scheme for a family of
functions F is correct, iff for any function f ∈ F and any input x ∈ Df:

If ProbGen(x,PKf)→ (σx,VKx) and Compute(σx,EKf)→ σy, then:

Pr(Verify(σy,VKx)→ f(x)) = 1.

3.5.2 Soundness

A publicly verifiable computation scheme for a family of functions F is said to be sound, if for
any f ∈ F and for any x ∈ Df, a server S cannot convince a verifier V to accept an incorrect
result. Notably, a verifiable computation scheme is sound if it assures that the only way
server S generates a result σy that will be accepted by verifier V (i.e. by algorithm Verify)
as a valid encoding of the evaluation of some function f ∈ F on an input x, is by correctly
computing σy (i.e. σy ← Compute(σx,EKf)).

We capture the adversarial capabilities of an adversary (i.e. malicious server) A against
a publicly verifiable computation scheme for a family of functions F through a soundness
experiment, depicted in Algorithm 3 and 4. In this experiment, adversary A accesses the
output of algorithm Setup by calling oracle OSetup. When queried with a security parameter
1κ and a description of a function f ∈ F, oracle OSetup returns the set of public parameters
param, public key PKf, and evaluation key EKf. Adversary A also invokes an oracle OProbGen

that selects an input x ∈ Df and that, given public key PKf, executes algorithm ProbGen. This
algorithm outputs a pair of matching encoding σx and public verification key VKx. Finally,
adversary A generates an encoding σy and calls algorithm Verify on the pair (σy,VKx).

3.5. Adversary Model in Verifiable Computation 69

The soundness game we develop involves two phases: a learning phase and a challenge
phase:

Learning. Adversary A adaptively calls oracle OSetup with t distinct functions f(k) allowing
A to receive for each function f(k) the corresponding public parameters param(k), the

public key PK
(k)
f and the evaluation key EK

(k)
f . Then, given an input x(k) and public

key PK
(k)
f associated with file f(k), adversary A queries OProbGen to generate an encoding

σ
(k)
x and a verification key VK

(k)
x associated with x(k) and file f(k). On reception of this

encoding, A produces an encoding σ
(k)
y , either arbitrarily or by executing algorithm

Compute. Then, adversary A invokes algorithm Verify on inputs VK
(k)
x and σ

(k)
y .

H Algorithm 3: Learning Phase of the Soundness Experiment

for k := 1 to t do
A → f(k);

(param(k),PK
(k)
f ,EK

(k)
f)← OSetup(1κ, f(k));

A → x(k);

(σ
(k)
x ,VK(k)

x)← OProbGen(x(k),PK
(k)
f);

A → σ
(k)
y ;

out
(k)
y ← Verify(σ

(k)
y ,VK(k)

x);

end

Challenge. Afterwards, adversary A selects function f∗ and the corresponding public key

PKf∗ from the set of public keys {PK
(k)
f }1≤k≤t she has received during the learning

phase. Then, A outputs a challenge input x∗ ∈ Df∗ and executes algorithm ProbGen
with public key PKf∗ and x∗ to get the matching pair of encoding σx∗ and public
verification key VKx∗ .

Finally, adversary A generates an encoding σy∗ and runs algorithm Verify on the pair
(σy∗ ,VKx∗).

H Algorithm 4: Challenge Phase of the Soundness Experiment

A → (param∗,PKf∗ ,EKf∗);
A → x∗;
(σx∗ ,VKx∗)← OProbGen(x∗,PKf∗);
A → σy∗ ;
outy∗ ← Verify(σy∗ ,VKx∗);

Let outy∗ denote the output of algorithm Verify at the end of the experiment. We say
that adversary A succeeds in the soundness experiment of publicly verifiable computation if
outy∗ 6=⊥ and outy∗ 6= f∗(x∗).

Definition 8. Let ΠA,f∗ denote the probability that adversary A succeeds in the soundness
experiment of publicly verifiable computation (i.e. outy∗ 6=⊥ ∧ outy∗ 6= f∗(x∗)).

A publicly verifiable computation scheme for a family of functions F is sound, iff: For
any adversary A and for any f ∈ F, ΠA,f ≤ ε and ε(κ) is a negligible function in the security
parameter κ.

70 3. Charaterization of Verifiable Computation

3.6 State of the Art in Verifiable Computation

An important body of research recently emerged to address the problem of verifiable out-
sourced computation. Especially, the advent of cloud computing stimulated a large number
of research work proposing cryptographic solutions for a verifier to efficiently verify the exe-
cution by a remote untrusted server, the prover, of computationally demanding operations.
However, the problem of VC is not new: decades ago, many solutions were proposed to
respond to concerns on how to put more trust on results computed by a remote server.

This section attempts to provide an in-depth review of existing solutions for verifiable
computation. At the time of writing this dissertation, no such a review has been carried out,
or published. We can only refer to a relevant survey conducted by Walfish and Blumberg
[181]. Nevertheless the authors only focus on general-purpose solutions that provide answers
to the problem of VC for arbitrary functions, discarding those solutions that apply to specific
computations. The rationale behind the lack of an extensive review may lie in the fact that
multiple approaches have been adopted and that the rapid and growing plebiscite for cloud
computing reawakened the interest for the problem of VC, yielding multitudinous solutions
that may be difficult to compare. Our review endeavors to compile and to propose a possible
classification for a list of relevant existing works.

In the following, we establish a first categorization: non-proof based solutions (Sec-
tion 3.6.1) and proof-based solutions (Section 3.6.2). As their name implies, solutions in
the former category do not require the generation and verification of a proof stating that the
computation result is correct. Thereafter, we organize solutions from the second category
in several subcategories depending on whether they satisfy particular properties. Indeed, we
identify the following characteristics that proof-based solutions may satisfy:

Generality: Some existing solutions (Section 3.6.2) provide protocols to verify the correct
computation of arbitrary functions while other proposals (Section 3.6.3) target a re-
stricted class of functions, exploiting special properties of these functions.

Interactivity: Most early work on VC build an Interactive Proofs (IP) system in which
the prover and the verifier engage in an “exchange” to convince the latter about the
result correctness (Section 3.6.2.1). However, an increasing number of solutions are
non-interactive and only require a challenge-response phase between the prover and the
verifier (Section 3.6.2.2).

Practicality: Early solutions to the problem of VC were mainly theoretical, with poor prac-
ticality, since they were too inefficient for actual implementation. The breakthroughs
not only in cloud computing but also in mobile devices (smartphones, tablets, laptops,
etc.) made crucial the design of practical solutions that spare both the prover and
verifier’s work.

Security model: Schemes for VC can be based on several assumptions: For example, early
theoretical work on IP assume an all-powerful prover whereas work on arguments [110]
presumes a polynomial-time prover. Some work are based on complexity-theory as-
sumptions only while others rely on cryptographic assumptions.

Additional features: In a nutshell, depending on the scenario in which solutions for VC
apply, one may desire the features of public verifiability or public delegatability, notions
that are defined in Section 3.2.2 and Section 3.4. Some other solutions focus on pri-
vacy of verifiable computation, in the sense that the outsourced data over which the
verifiable computations are performed are encrypted, such that the prover cannot infer
any information from the data, the computations and their outputs. Note that in our
international space agency scenario, we do not require the data to be encrypted nor the
computation to be kept private. However, for a deep survey on VC protocols we also
mention the existence of the privacy-preserving property.

Based on these identified characteristics and the requirements for a PVC we outlined in
Section 3.1, we provide here our review of existing work. We highlight the fact that we use the
term“verifiable computation” for all the schemes discussed in the following. This naming may

3.6. State of the Art in Verifiable Computation 71

appear improper since Gennaro et al. [90] were the first to formalize the notion of “verifiable
computation”. Nevertheless, we regroup under the same term all prior work that aims at
verifying the outcome of a computation.

3.6.1 Non-Proof-based and Hardware-based Solutions

A first answer to the problem of VC is the replication of the outsourced computation among
multiple servers [7, 6, 51]. As described in Section 1.1.2, the SETI@Home project [7] replicates
an instance of the same computation to different (untrusted) nodes through the BOINC
middleware [6]. This middleware sends a copy of the computation to several computers and
compares the results output by these computers (located in different nodes). If the results
match, then, with high probability, they are considered correct. Otherwise, the middleware
sends other replicas to other computers. This process is repeated until a majority of matching
results is obtained. Therefore, this replication system requires that a majority of computers,
among all the computers where the computation is replicated, behaves honestly. Canetti
et al. [51] reduce this assumption to a single server: the computation is still replicated to
several servers, but it suffices that only a single server is honest75.

Other techniques [142, 157, 158] rely on trusted computing and attestation procedures
based on trusted hardware, such as the Trusted Platform Module (TPM), embedded at the
server side. For example, Parno et al. [142] suggest to combine code identity recordings (like
computing a cryptographic hash on the binary of the software performing the outsourced
computation) and remote attestation that checks the code signature. However, as the TPM
is under the (physical) control of the server, this solution appears to put a lot of trust in
the module. Sadeghi et al. [157] propose to combine a trusted-hardware token (such as a
cryptographic coprocessor) with techniques for secure function evaluation (such as Fully-
Homomorphic Encryption (FHE) [92] or Yao’s garbled circuits [191]) to compute outsourced
arbitrary functions on encrypted data (this scheme guarantees input privacy but not output
privacy). The token consists in a tamper-proof coprocessor attached to the remote server
and which executes operations within a shielded environment, on behalf of the user that
requests the computation. Yet, again in this proposal, the verifier has to trust the token’s
manufacturer.

3.6.2 Proof-based General-Purpose Solutions

As mentioned before, the majority of solutions to the problem of VC follows the proof-based
approach: the VC protocol enables the prover to return the results of an outsourced function
along with a proof that the result is correct. The review of the state of the art identifies
two types of solutions. This section inspects general-purpose solutions which define a proof
system for arbitrary functions. They make few or no assumptions on the outsourced function
and enable to verify the correctness of the evaluation of that function. We survey the second
category of proof-based solutions in Section 3.6.3. This class of solutions targets specific oper-
ations. In a nutshell, they exploit the particular structure and properties of these operations
to enable efficient verification.

Designing a proof system for general computation first spurred the interest in the theoret-
ical computer science community: Researchers crafted interactive solutions that were mostly
impractical for an actual deployment. With time, more and more effort was put on the design
of solutions that bring the theory into more efficient and thus more practical solutions.

75Besides, the protocol by Canetti et al. [51] allows to detect cheating and honest servers.

72 3. Charaterization of Verifiable Computation

3.6.2.1 Interactive solutions

Interactive Proofs (IP) systems for verifiable computation were first proposed by Babai [19]
and Goldwasser et al. [97]. IP systems, as its name implies, define proofs that are:

Interactive: the prover and the verifier engage a randomized “dialog” where the prover tries
to convince the verifier that she has performed the computation correctly;

Probabilistic: the verifier is legitimately convinced of the correctness of the proofs with
“very high probability”, and falsely convinced with “very small probability” [97].

In such a system, the prover is considered to have infinite power, while the verifier is
polynomial-time. Besides, Goldwasser et al. [97] introduced the concept of correct proof
and sound proof (i.e. it is not possible to return a proof for an incorrect computation) as
well as the notion of efficiency (that is, the verifier’s work should be less demanding than the
prover’s). Nevertheless, such a system is believed hard to bring to practice.

Muggle proofs. Goldwasser et al. [98] brought the concept of IP systems to closer
practicality in a real scenario: the verifier is“super-efficient”(i.e runs in quasi-linear time), the
honest prover is efficient (i.e runs in polynomial time) and a dishonest prover is unbounded.
The authors accordingly named this efficient prover a “Muggle” in comparison to “Merlin”
which represents the all-powerful prover in [19]. In the Muggle IP system, there exists a pre-
processing phase in which the outsourced computation is translated into a Boolean circuit76.
Then, the verifier and the prover interact, at the same time the prover evaluates the circuit
on some inputs, such that the verifier verifies each step of the computation, that is the output
of each gate in the circuit. However, Muggle proofs are efficient only for small circuits and
functions that can be parallelized: The work of Goldwasser et al. [98] yet suffers from still
being impractical. Therefore it has been extended in [66, 173], achieving better performance
for the prover (so closer to practicality) by putting some further restrictions on the circuit
(parallelization, “sufficiently regular” wiring pattern). Note that the Muggle proof system is
publicly delegatable, but not publicly verifiable.

Probabilistically Checkable Proofs. As a consequence of the breakthrough in IP
systems, Arora and Safra [10] introduced Probabilistically Checkable Proofs (PCP). In this
setting, a proof (say of size n) is encoded such that a verifier can be convinced of its correctness
(with a high confidence level) only by querying and checking (via interactions with the prover)
a constant number of randomly selected locations in the encoding (of size polynomial in
n, thus much longer than the proof). The authors stated the PCP theorem [10, 11] that
stipulates that it is not necessary to query and verify the entire proof (which can be very
long and hard) for a verifier to be convinced of its correctness. However, while theoretically
interesting for the problem of verifiable computation, PCPs are not practical since the encoded
proofs are very long yielding huge amount of work for the prover to construct these encodings
and for the verifier to check sufficient random locations in the encodings. Consecutive efforts
were performed in [28, 29] to construct shorter PCPs, but the generation and verification of
such proofs were still not deployable in “the real world”. Besides, in an actual deployment of
PCP, the soundness of PCPs can be violated: the prover might be tempted to change values
of queried locations in the proof so as to answer the verifier’s later queries, while speciously
matching earlier queries. Therefore, the proof computed by the prover must be predetermined
so as to answer all verifier’s queries.

Arguments. Following the work on IP and PCP systems, Kilian [110] introduced the
concept of efficient arguments [110, 111]. While IP systems consider an all-powerful prover
and the Muggle setting assumes a polynomial-time honest prover but unbounded (polynomial
time) dishonest provers, the work on efficient argument systems develop interactive protocols

76In a nutshell, a Boolean circuit is a computation model representing a function into a graph whose vertices
are logical gates (AND, OR, NOT), whose leaves are the function’s inputs and whose roots are the function’s
outputs.

3.6. State of the Art in Verifiable Computation 73

that are sound against computationally-bounded dishonest provers. In a nutshell, this proof
system based on efficient arguments combines PCP with standard cryptographic primitives
(namely, bit commitments77 and cryptographic hash functions in [110], as well as Merkle trees
[125] in the subsequent publication [111]): the prover produces a (large) encoding of a proof
and commits to the bits of this encoding (using a Merkle tree whose leaves correspond to the
bits of the encoded proof); the verifier queries a certain number of locations in this encoding
and its commitment; the prover reveals the bits at these locations and the verifier checks that
they are correct (using the Merkle tree root and the authentication paths). The commitment
on the proof (or its encoding) is the key contribution of [110, 111] to circumvent the violation
of PCP soundness we mentioned above. However, as it is, the cost of checking a single bit is
logarithmic in the proof size. Nevertheless, it is important to stress that the work on efficient
arguments was the first to leverage cryptographic assumptions for solutions to the problem
of VC. Many proposals ensued from this new setting, opening the way to more practical
VC schemes that are efficient in terms of computation and communication complexities. In
particular, Ishai et al. [104] developed an efficient argument system that considers PCP as a
linear function. For a verifier, querying the proof implies requesting the prover to evaluate
the function at some inputs selected by the verifier. The scheme then employs a linearly-
homomorphic encryption scheme (such as Paillier [138] or El-Gamal [76] cryptosystems) to
issue a (linear) commitment of the proof: the prover commits a linear function (representing
the PCP) to some points chosen by the verifier; then the latter submits inputs to the function
(corresponding to the PCP queries); and the prover outputs the results (depicting the PCP
responses). The verifier finally checks that the prover’s responses are consistent with the
commitment. Nonetheless, this protocol requires an expensive pre-processing phase for the
verifier; though this phase is amortized over many verification instances (thus, the protocol
adopts the amortized model we defined in Section 3.4).

Towards practicality. Practicality is one of the major concerns for designing a viable
solution for the problem of verifiable computation. In other words, research work on VC
aims at building systems that have practical performance and are simple to implement, while
fulfilling the correctness and soundness properties specific to any VC solution. However, the
bulk of work we described so far in Section 3.6.2 remains theoretical and no implementations
were performed in their respective publications. Starting from the work by Setty et al. [161], a
collection of research papers proposes actual deployment (with some implementation-oriented
refinements) of some of the theories mentioned above. Accordingly, Setty et al. [161, 163]
proposed Pepper which implements the protocol of Ishai et al. [104] in a real scenario. In
their prototype, to verify the evaluation of an arbitrary function f by a remote prover, the
verifier first encodes f into an arithmetic circuit that she sends to the prover. Such a kind
of circuit is similar to Boolean circuits, except that (i) input and output wires are elements
(or variables x, y) of a field; and (ii) gates represent the add operation (sum gates) or the
multiply operation between two input wires (product gates). During a computation instance,
the verifier sends input x to the prover who sends back y as the evaluation f(x). Also, the
prover computes a linear commitment to an encoded proof based on the evaluation of the
arithmetic circuit. Then the verifier sends queries to the encoded proof (as in PCP) and
the prover responds to them by evaluating the linear function at the verifier-selected points.
However, while the verifier’s asymptotic costs are efficient, the verifier should still operate a
“constant” expensive pre-processing phase (encoding the outsourced function in an arithmetic
circuit), that is substantially larger than computing the outsourced function itself. This cost
is nevertheless amortized over several instances of the same computation. Another drawback
of this protocol concerns “small” computations (in [161], the authors illustrate this drawback
with a specific function: matrix multiplication): the computation request and verification

77A bit commitment protocol involves two parties, a sender and a receiver. The sender commits to the
receiver to a bit b, such that the receiver does not know the value of b. Besides, the sender has no mean to
change b after it was committed. Later on, the sender reveals bit b and the receiver can verify that b is really
the committed bit.

74 3. Charaterization of Verifiable Computation

procedures are more expensive for the verifier than performing the computation locally. As a
follow-up to [161], Setty et al. [164] describe another improved scheme named Ginger that
mainly cuts the costs for the verifier by compressing proof queries and making those queries
reusable. While the authors of [163, 164] claim that their solutions apply to the general-
purpose verifiable computation scenario, their schemes nonetheless put restrictions on the
class of computations that can be verified. Indeed, the encoding of the outsourced func-
tion into an arithmetic circuit assumes that that function is “encodable” in an efficient way
(namely, this assumption applies to function that are decomposable into several subcompu-
tations such as matrix multiplication). Their consecutive proposal, Zaatar [162] eliminates
those restrictions by generating an arithmetic representation of the outsourced function (i.e
encoding the function into a quadratic arithmetic program - QAP), as proposed by Gennaro
et al. [91] (see below, in Section 3.6.2.2). Using QAP also yields shorter proofs in Zaatar
than in Ginger. Nevertheless, the encoding into an algebraic representation induces high
costs, substantially higher than evaluating the outsourced function. Besides, the amorti-
zation of the initial costs by the verifier is only done via batching verifications for several
inputs. Subsequent implementations built upon Pepper, Ginger and Zaatar enhance the
previous implementations with additional aspects: Allspice [179] attempts to reduce the
dependence on cryptographic machinery; Pantry [46] considers a setting where the verifiers
do not have the entire input to the outsourced function and leverages the parallelization of
the MapReduce paradigm78 [70]; and Buffet [180] improves Pantry’s computational costs.

3.6.2.2 Non-Interactive solutions.

Unlike interactive solutions, schemes that are claimed to work without interaction between
the prover and the verifier output the computation result and the corresponding proof in the
same message.

CS proofs. Micali [126] was the first to make the transition from interactive to non-
interactive solutions for the problem of VC, and proposes Computationally Sound (CS) proofs.
Informally, the author combines the rationale behind PCP with efficient argument systems
and eliminates the interaction between the prover and the verifier by invoking a random
oracle and applying the Fiat and Shamir heuristic [83]. This heuristic, initially applied for
a digital signature scheme, works as follows: In an interactive protocol, the prover sends an
initial message (representing a proof) to the verifier; then the latter sends a random query
to which the prover responds with another message, enabling the verifier to check the proof.
In the non-interactive version of the same protocol, the Fiat and Shamir heuristic removes
the interaction by having the prover query a random oracle (in practice, evaluate a collision-
free hash function) on the initial message, in lieu of the verifier sending the random query.
In other terms, the random oracle simulates the verifier’s query. Basing his work on this
approach, Micali [126] introduces the CS proofs. As in PCP [10], the prover in a CS proof
system computes a proof of computation π for some function and encodes this proof into a
longer and samplable version τ . As in the efficient argument model [110, 111], the bits of
encoding τ are then stored in the leaves of a Merkle tree, built using a random oracle. This
yield a root value σ. Now recall that in a PCP system, the verifier interacts with the prover to
query and check some randomly-sampled bits of encoded proof τ . In the CS proof setting, the
prover uses a second random oracle to generate the randomly-sampled locations, and issue the
responses of these locations. The CS proof therefore consists in the root value σ, the sampled
bits in the encoding τ and their respective authentication paths79. The verifier receives the
proof and can verify it using the same oracle. The CS proofs are publicly delegatable and

78In a nutshell, MapReduce is a programming paradigm enabling parallel and distributed processing of
big data in the cloud. The rationale is to divide the processing into small subtasks undertaken by several
computing nodes (the map phase) and then to aggregate the resulting subtasks’ outputs into other outputs
which are step by step reduced to the final result.

79See Section 6.4.3 for more details on Merkle tree and authentication paths.

3.6. State of the Art in Verifiable Computation 75

verifiable. However, they rely on the random oracle model.
SNARKs. The work by Bitansky et al. [36] introduce the concept of Succinct Non-

Interactive ARgument of Knowledges (SNARKs). A SNARK protocol removes the use of
random oracles in CS proofs and employs instead a concept the authors introduce, namely
Extractable Collision-Resistant Hash Functions (ECRH), that rely on the non-falsifiable as-
sumption80 that, given an image of the ECRH there exists an extractor that computes a
pre-image. Furthermore, the SNARK approach combines the theory behind CS proofs [126]
with an instantiation of a Private Information Retrieval (PIR) protocol (as it was also sug-
gested in [73]): The verifier sends “encrypted” PIR queries on the encoded proof (at randomly
selected locations) and the prover responds by executing the PIR on the encoded proof. The
SNARK-based protocol defined by Bitansky et al. [36] is publicly delegatable but relies on
non-standard and non-falsifiable assumptions. Concerning this kind of hardness assump-
tions, Gentry and Wichs [93] show that it exists an intrinsic limitation on solutions based on
SNARKs: they cannot rely on falsifiable assumptions.

Pinocchio. Gennaro et al. [91] construct a publicly verifiable computation scheme based
on Quadratic Span Program (QSP) and Quadratic Arithmetic Program (QAP), upon which
they propose a new SNARK protocol. Indeed, the authors introduce the concept of QSP
to convert any Boolean circuit and QAP to translate any arithmetic circuit. As in previous
schemes [98, 161, 163, 164], the Boolean or arithmetic circuit encodes any arbitrary function.
The choice between QSP and QAP depends on the outsourced function; each of the encoding
may yield different performance, according to the “structure” of the function. The rationale
behind QAP is as follows (similar considerations apply to QSP): each gate in an arithmetic
circuit encoding an outsourced function is replaced by a quadratic polynomial which is in
turn encoded in the exponent (such that the resulting encoding belongs to a bilinear group).
The set of all encoded polynomials represents the QAP outsourced to the prover along with
the function. Then, given the verifier’s (encrypted) inputs, the prover evaluates the circuit
and produces a proof based on QAP’s polynomials. All polynomial evaluations (i.e gate
computations) are then (succintly, i.e using constant amount of time) verified in the exponent,
using bilinear pairings. The PVC scheme deriving from the above idea shows great promising
practical performance. Indeed, this work was brought into practicality with a prototype
called Pinocchio [144], which implements the QAP-based scheme. In particular, benchmarks
on Pinocchio shows that the verifier (more precisely the user who outsources the function)
operates a one-time pre-processing phase, that enables an unbounded number of verifications.
But the workload at the prover is still substantial. Compared to Zaatar [162] that also
implements an instantiation of a QAP [91], Pinocchio induces more expensive costs, since it
uses more cryptographic machinery, but has the advantage to be non-interactive and publicly
verifiable (which Zaatar is not). Despite its close-to-practicality property, the scheme by
Gennaro et al. [91] and Pinocchio [144] rely on a non-falsifiable assumption (namely, the
power knowledge of exponent), that is a non-standard assumption, and thus on which we
have not a high confidence on it.

Use of FHE. Gennaro et al. [90] formalize the notion of non-interactive verifiable com-
putation in the amortized model, whereby the verifier must execute a one-time expensive pre-
processing operation to allow an unbounded number of efficient verifications. Their solution
combines the use of garbled Boolean circuits [191] with FHE [92]: During the pre-processing
phase, the function to be outsourced is encoded into a Boolean circuit using Yao’s garbled

80Gentry and Wichs [93] gave a definition of falsifiable assumptions (thus giving a characterization of non-
falsifiable ones). In essence, falsifiable assumptions capture the idea that there exists an “efficient process
to test whether an adversarial strategy falsifies (i.e. breaks) the assumption” [93]. This idea is modeled
as an interactive game between a challenger and an adversary as in the soundness experiment we described
in Section 3.5. Under falsifiable assumptions (such as RSA, CDH or Decisional Diffie-Hellman (DDH)),
the probability that an adversary wins the game is negligible. In contrast, non-falsifiable assumptions are
considered to be non-standard and“harder to reason about” [93]. Thus they appear to be stronger assumptions
than falsifiable ones [141]. Variants of the knowledge-based assumption (such as the Knowledge of Exponent
Assumption) fall into the category of non-falsifiable assumptions.

76 3. Charaterization of Verifiable Computation

circuit construction [191], which associates random labels to each wire in the circuit. A com-
putation request generates the labels associated with an input, and as a response, the prover
computes the labels associated with the output, based on the garbled circuit and the input
labels. The verifier will then verify that the output labels correspond to a correct evaluation
of the outsourced function. Since a computation request reveals the labels to the prover, they
cannot be used for subsequent verifications. The application of a FHE scheme to the labels
enables to protect those labels and hence reuse the same circuit for multiple verifications. A
similar idea to combine circuits and FHE was proposed in [64, 65]. However, at the time of
writing this thesis, computational overhead of FHE is still prohibitive, limiting its practicality
for actual implementation. Besides, these solutions only allow private verifications, that is,
they are not publicly delegatable nor publicly verifiable.

Using Attribute-Based Encryption (ABE). Parno et al. [143] propose a solution for
public delegation and public verification of computation using ABE [99]. In an ABE scheme,
a (secret) decryption key is associated with a Boolean function f. This key can decrypt a
ciphertext that results from the encryption of a message m under an attribute x, if and only if
f(x) = 1. Based on this concept of ABE, Parno et al. [143] design a VC scheme for arbitrary
(Boolean) functions. In a nutshell, a user requests the prover to evaluate some Boolean
function f on some input x. The computation query consists of the encryption of a random
message m using the underlying ABE technique that associates the resulting ciphertext with
input x. In other terms, x becomes an attribute of the encryption of m. This means that
m can be decrypted using the (secret) decryption key associated with function f if and only
if f(x) = 1. The prover who is given the key and the ciphertext that encrypts m can now
prove that f(x) = 1 if he can return the decrypted message m. Public delegatability and
verifiability are therefore achieved with the use of ABE. However, this scheme is limited to
the computation of Boolean functions that output a single bit. For functions with more than
one output bit, the verification has to be repeated (for each output bit).

Homomorphic MACs and signatures. Another line of work designs homomorphic
message authenticators [89, 2] or homomorphic signatures [106, 39, 57]; the former allows
private verification (i.e only the holder of a secret key can verify the authenticators) while the
latter enables public verifiability. Such homomorphic primitives have been first considered in
the context81 of linear network coding [3] where several authenticators are linearly combined
into a single tag that proves the correct linear combination of the underlying messages.
Subsequent work have addressed a larger class of functions (other than linear operations as
it was the case for network coding).

Homomorphic MACs. Gennaro and Wichs [89] define a new primitive referred as fully ho-
momorphic message authenticators. With this construction, the prover can perform arbitrary
computations (in particular, Boolean functions) on authenticated data and (homomorphi-
cally) generate an unforgeable tag (i.e a succinct authenticator) that certifies the correctness
of the computation, without resorting to any secret key. Such a secret is only used to ver-
ify the tag, in order to validate the result of the computation over the authenticated data.
Notwithstanding, the verifier (who was given the secret key used to compute the tag by the
entity that outsourced the data) is able to verify the authenticators without knowing the data
itself. The construction and verification of the tag are based on a FHE scheme, such as the
one proposed by Gentry [92], thus requiring heavy cryptographic computations. In particu-
lar, as mentioned by Gennaro and Wichs [89], the verification of fully homomorphic message
authenticators is not more efficient that evaluating the function. The authors suggest to out-
source the verification step to the prover using existing protocols for verifiable computation
such as CS proofs [126] or SNARKs [36]. A new construction for homomorphic MAC was pro-
posed by Catalano and Fiore [55] for functions that can be encoded into an arithmetic circuit
(whose gates are either additive or multiplicative). This new homomorphic MAC generates

81Homormorphic authenticators also appear in the context of proofs of retrievability and provable data
possession [14, 165]. See Part I for more details.

3.6. State of the Art in Verifiable Computation 77

for each gate a tag as a 1-degree polynomial Pm(X) = aX +m whose constant term m is the
authenticated data, and which evaluates to a pseudo-random number (generated by a PRF)
on some secret input s; that is, HomMAC(m, s) = Pm(s) = as + m = r, where HomMAC is
the homomorphic MAC on data m and r = PRF(s). The natural homomorphism property of
these polynomials ensures the homomorphism of the MAC. Therefore, when evaluating the
circuit, the prover can produce a tag at each internal gate without knowing the secret key
used to authenticate the underlying data. Gate by gate, the prover obtains a single tag for
the entire circuit evaluation. Hence the verifier checks that the resulting tag is a correctly
produced tag. This new solution is less general than the one in [89] in the sense that it applies
only to polynomially-bounded arithmetic circuits (as opposed to Boolean functions in [89]),
but it does not rely on the burden of FHE and presents a more efficient (thus practical) verifi-
cation process. However, the size of the MAC heavily depends on the degree of the arithmetic
circuit. Indeed, multiplicative gates in the circuit increases the degree of the“polynomial”tag.
Consequently to this work, Catalano et al. [56], Backes et al. [20] and Zhang and Safavi-Naini
[192] propose other frameworks for fully-homomorphic MAC that ensure succinct authentica-
tors and efficient verification. In particular, the homomorphic MAC propounded by Backes
et al. [20] resort to Algebraic Pseudo-Random Functions (aPRF)82 to generate the pseudo-
random number used as the evaluation of the 1-degree polynomial Pm(X) on the secret input
s [55]. This strategy makes the verification process more efficient than in [55]. However,
the framework introduced by Catalano et al. [56] and Zhang and Safavi-Naini [192] rely on
the multilinear map abstraction, and corresponding hardness assumptions, which are not yet
straightforwardly practical [118, 87]. Besides, the MAC of Backes et al. [20] only apply to a
restricted type of homomorphism (namely, evaluation of arithmetic circuits of degree up to
2, i.e encoding quadratic polynomials).

Homomorphic signatures. Homomorphic signatures [39, 57] are the “public” version of
homomorphic MACs in the sense that anyone having access to the verifying public key can
verify a homomorphic signature. Similarly to homomorphic MACs, the prover can compose
such signatures into a single signature without knowledge of the secret signing key. However,
to the best of our knowledge, homomorphic signatures have been essentially developed for
the verification of polynomial functions on authenticated data. Boneh and Freeman [39]
devise polynomially-homomorphic signatures based on lattices. The verification procedure
is as costly as computing the function from scratch. This scheme is proven secure under
the Random Oracle Model (ROM). Catalano et al. [57] eliminate the ROM assumption and
design new polynomially-homomorphic signatures that are secure under a more standard
model (in particular, they are based on problems in groups that admit multilinear maps).
In addition, the verification of a signature homomorphically computed for a function f of
authenticated data is more efficient than the computation of f. As a matter of fact, this
property is verified in the the amortized model: after a one-time pre-computation of function
f, the verifier can check an unbounded number of signatures on f efficiently, that is, check the
evaluation of f on any data efficiently.

AD-SNARKs. One of the most recent techniques proposed for the problem of VC, and
which has retained our attention, combines ideas stemming from QAPs and their implementa-
tion in Pinocchio [144] with the rationale of (linearly) homomorphic MACs [55]. AD-SNARKs
[21] (SNARKs for Authenticated Data) extends Pinocchio with the privacy-preserving fea-
ture. Indeed, AD-SNARKs support operations where the prover gets the inputs form a trusted
source that produce and authenticate them. A third-party verifier, that has no knowledge of
the data, can request and verify computations but learn nothing but the outputs and their
correctness. To render Pinocchio privacy-preserving, Backes et al. [21] propose to shift to
the prover some parts of the verification procedure that involve linear computations of the
inputs (as in QAPs). Hence, linearly-homomorphic MACs are computed to authenticate this
part of the verification procedure to the verifier. However, as it was the case for Pinocchio,

82See Section 3.6.3.1 for more details on aPRF.

78 3. Charaterization of Verifiable Computation

AD-SNARKs must rely on non-falsifiable assumptions.

3.6.3 Proof-based Function-Specific Solutions

All the proposals we describe in the previous section realize solutions to the VC problem for
a broad range of computations, or perhaps for arbitrary functions satisfying some restrictive
properties (parallelizable functions as in [98] or Boolean functions as in [143]). Nevertheless,
some effort has been devoted to protocols that offer solutions for a specific class of functions.
As a matter of fact, these protocols exploit the peculiar properties and structures of some
functions to enable tailored efficient delegation and verification solutions. Among others,
polynomial evaluation [30, 85, 193, 141], matrix computation [85, 195, 193], set operations
[52, 140] and keyword search [30, 198] have received significant interest from the research
community. Linear algebra (such as matrix inversion or computing the rank and determinant
of a matrix or solving a linear equation system) have also given rise to notable publications.
The investment in those specific functions can be explained by the fact that they can be used
as primitives for broader problems, such as outsourced image recognition or outsourced data
mining. Benabbas et al. [30] pioneered a new body of research for practical VC protocols.
Adopting the amortized model approach introduced by Gennaro et al. [90], they initiate the
concept of Algebraic Pseudo-Random Functions (aPRF) that enables efficient verifications,
at the cost of an expensive one-time pre-processing operation that prepares the function to be
outsourced. In particular, the authors removed the burden of relying on heavy cryptographic
tools, such as FHE as in [90, 64] or on expensive circuit encoding and evaluation as in [91, 144].

3.6.3.1 Polynomial evaluation.

In the verifiable polynomial evaluation problem, a data owner outsources a polynomial of
large degree to a server and then requests the server to evaluate that polynomial for several
inputs, such that a verifier can verify the correctness of the result.

In the polynomial evaluation scheme of Benabbas et al. [30], the verifier outsources a
polynomial A of degree d and coefficients ai ∈ Fp (0 ≤ i ≤ d − 1) where p is a large prime,
to the prover. She also sends a vector of elements of the form gαai+ri , where the ri’s are the
coefficients of a polynomial R, of degree d and α is randomly selected from Fp . On input
of some point x selected by the verifier, the prover returns the evaluation y = A(x) and a
proof of correct evaluation π = gαA(x)+R(x). The verifier accepts the result if π = gαy+R(x).
It is obvious that R should be generated in such a way that the verification is efficient.
Otherwise, if R was completely random, the verification would require the same amount of
computation as evaluating A directly, thus outsourcing would be useless. The idea to optimize
the verifier’s work is to produce polynomial R with the help of an aPRF FK : FK is a pseudo-
random function that has a special property called closed form efficiency such that anyone
who knows the secret key K can efficiently (namely sub-linearly in d) compute polynomial
R(x), where the coefficients of R are defined as ri = FK(i). This solution, however, only works
in the symmetric-key setting; thus it does not enable public verifiability nor delegatability.
In the same line of work, Fiore and Gennaro [85] devise new aPRFs and combine them with
bilinear pairings to develop a publicly verifiable protocol for polynomial evaluation. As a
follow-up to the work of Fiore and Gennaro [85], Zhang and Safavi-Naini [193] propose a
solution that trades off storage at the prover and the computational costs for the verifier.
Indeed, in these two schemes [85, 193], outsourcing polynomial A together with the auxiliary
polynomial R doubles the storage overhead for the prover. Therefore, to reduce such costs, the
authors in [193] leverage the aPRF for publicly verifiable polynomial evaluation introduced in
[85] and break the delegated evaluation into several sub-computations, all of them verifiable
in a single proof.

Another solution for public verification considers Signatures of Correct Computation
(SCC) [141]. As its name implies, this solution applies to the public-key setting and al-

3.6. State of the Art in Verifiable Computation 79

lows public verifiability. Besides, public delegatability is possible since the scheme does not
require any secret to submit a computation query to the prover. SCC employ polynomial
commitments [108] to construct the signatures. In a nutshell, the authors in [108] observe that
the polynomial A−A(α) is divisible by the polynomial X−α (for any polynomial A ∈ Fp[X]
and α ∈ Fp). We can then find a polynomial W such that A(x)−A(α) = (x−α)W (α). Based
on this property, the prover in [108] constructs a witness by encoding polynomial W to the
exponent in some group that admits a bilinear pairing; the verifier only needs to verify that
the equation involving A(x) and W (x) holds in the exponent. The work by Papamanthou
et al. [141] extends the above solution for multivariate polynomials.

3.6.3.2 Matrix Multiplication.

In this setting a data owner outsources a large matrix M to a server and then requests the
server to multiply matrix M with an input vector ~x. A verifier can then check the validity
of the output returned by the server. This vector-matrix multiplication can generalize to
matrix-matrix multiplication by applying the mentioned scenario to each column of the input
matrix.

To our best knowledge, Atallah and Frikken [12] were the first to specifically tackle the
problem of verifiable matrix multiplication. The authors give an insight of an idea later
formalized by Fiore and Gennaro [85]. In [12], the actual matrix is outsourced together
with an auxiliary matrix, called “random noise” that is used to verify the correct matrix
multiplication. In [85], a data owner outsources a n ×m matrix M of elements Mi,j to the
prover together with an auxiliary matrix N of the form N = αM +R, where α is a random
number and R is a n ×m random matrix. The data owner wishes to compute the product
~y = M~x for an m-sized vector ~x. The prover produces the proof ~π = N~x. The verifier can
then check that ~π = α~y + R~x. All these operations are performed in the exponent; namely
elements of N are of the form Ni,j = gαMi,j+Ri,j to provide secrecy of random matrix R. This
scheme provides public verifiability through the use of bilinear pairings that encode a public
verification key to the form e(g, g)R~x. As in the polynomial case described above, Fiore and
Gennaro [85] suggest to generate the auxiliary random matrix R using dedicated aPRFs to
allow the verifier to efficiently check the proof. As in the polynomial case, Zhang and Safavi-
Naini [193] revisit the scheme of Fiore and Gennaro [85] to reduce the storage overhead
induced by the outsourcing of the matrices M and R. However, public delegatability is not
supported by these two protocols. On the other hand, Zhang and Blanton [195] propose a
publicly delegatable and verifiable scheme that does not employ aPRF but instead leverage
basic matrix properties, with comparable costs than the ones induced by the scheme of Fiore
and Gennaro [85]. Nonetheless, in spite of the additional feature of public delegatability,
the work by Zhang and Blanton [195] relies on the non-standard multiple Decisional Diffie-
Hellman (m-DDH) assumption. Besides, the generation of the computation request (ProbGen)
is costly and not amortized over multiple verifications. Indeed, the setup of this scheme does
not depend on a particular matrix, so the generation of the matrix multiplication request
should be repeated each time a user outsources that computation to the prover.

The work of Mohassel [127], also mentioned in [85, 193, 195], also addresses the problem
of verifiable matrix multiplication. The author gives a general approach in which a verifier
that wishes to outsource the multiplication of two matrices A and B, precomputes and stores
~y = B~x and ~y′ = A~y (where ~x is a random vector). Later, she receives from the prover
the product C = AB. To verify that C = AB, the verifier checks that ~y∗ = C~x = ~y′.
In this approach, the verifier costs are induced by the computation of ~y, ~y′ and ~y∗ which
is substantially less than the computation of AB. Besides, this scheme ensures privacy of
the matrices and their product by employing a homomorphic encryption scheme (such as
Paillier’s [138], El-Gamal’s [76], etc.) that encrypts each element of the input matrices. The
verifier is then able to verify the correctness of the computation without the need to decrypt
its result. However, this protocol is not very efficient for the verifier who first has to encrypt

80 3. Charaterization of Verifiable Computation

the matrices, and computing the vectors ~y, ~y′ and ~y∗.
Note finally that the work by Thaler [173] applies his interactive proof system (see Sec-

tion 3.6.2.1) to the parallelizable problem of matrix multiplication. The operation is encoded
into an arithmetic circuit whose evaluation is efficient for the prover.

3.6.3.3 (Conjunctive) Keyword Search.

In this setting, a data owner stores to a server a large amount of data and delegates to that
server the keyword search operation, such that the verification of the search is less costly that
the operation of search for the data owner.

The problem of verifiable keyword search finds some early solutions in the domain of veri-
fiable polynomial evaluation as explained in [30, 85]: A document is encoded as a polynomial
P whose roots are exactly the keywords contained in the document. To prove whether a
keyword ω is present in the document, the prover returns P (ω) to the verifier along with the
proof of the correct evaluation of P on ω (using a verifiable polynomial evaluation scheme).
Thereafter, the verifier runs the underlying verification procedure: If P (ω) = 0 and the proof
is valid, then the verifier acknowledges that the keyword exists in the document; if P (ω) 6= 0
and the proof is valid, then the verifier is convinced that the keyword does not appear in the
document; otherwise (when the proof is not valid), the verifier decides that the evaluation
(thus the search) is not correct. Although this solution is convenient to test whether a single
keyword appears in a document, it does not efficiently support conjunctive keyword search.
Besides, to search for a single keyword in multiple documents, the prover has to search for
each document, one by one, and thus generate a proof for each document. The cost of such
a scheme is linear in the number of documents outsourced to the server.

The problem of verifiable conjunctive keyword search is closely related to the ones of
verifiable set operations (and in particular set intersection). Indeed, many search algorithms
consider a collection of keywords organized into an inverted index data structure [22]: Each
keyword in a database is mapped to the set of all the database files that include this keyword.
A query for keywords ω1 and ω2 targets the records that are present in both sets mapping
ω1 and ω2 respectively, namely the intersection of these two sets. Therefore, a verifier should
be able to verify that the prover outputs the correct intersection, yielding the correct search
result.

Verifiable Set Intersection for Keyword Search. Morselli et al. [129] first explore the
concept of verifiable set operations and design a tool based on RSA accumulators83 [31]
and Counting Bloom Filters (CBFs) [81]: a data owner produces a digest of her sets by
(i) creating for each set a CBF of the elements included in the considered set; (ii) generating
an RSA accumulator for each set. Both filters and accumulators are then signed. When the
prover receives an intersection query, she returns the elements of the intersection, the CBF
of each set, their accumulators, the RSA witnesses (proving that the intersection is included
in each intersected set) and the signatures on the filters and accumulators. The verifier then
checks that the signatures and the witnesses are correct (that is, they satisfy a particular
equation involving the witnesses, the RSA accumulators and the intersection). However, this
scheme incurs linear verification costs for the verifier. In addition, while it supports public
verification, it does not offer public delegatability.

Papamanthou et al. [140] also tackle the problem of verifiable set intersection and claim
that their solution is suitable for the problem of verifiable keyword search. Their scheme
exploits the primitive referred as polynomial-based accumulators84 [132] and devises a new
authenticated data structure, called accumulation tree, built upon these accumulators that
allow to efficiently query and update the elements in the sets. Here also, the keywords
contained in a collection of outsourced database records are viewed as an inverted index:
To each keyword ωi corresponds a set Si whose elements are pointers to documents where

83This primitive is briefly explained in Section 6.4.2.
84See Section 6.4.2 for more details.

3.6. State of the Art in Verifiable Computation 81

keyword ωi is present. To query a conjunction of keywords ω1, .., ωk, the prover should return

the intersection I =
k⋂
i=1

Si (i.e I contains the pointers to documents that contain all keywords

in the conjunction) along with a proof of the correct intersection. In a nutshell, the authors
reduce the problem of verifiable set intersection into two subproblems: (i) subset containment
which allows to prove that I is contained in each Si; and (ii) set disjointness which proves

that
k⋂
i=1

Si\I = ∅. Besides, the solution proposed by Papamanthou et al. [140] encodes each

set involved in the intersection with a polynomial of degree equal to the cardinal of the set and
whose roots are the elements in the set. This polynomial is then encoded to the exponent:
this corresponds to the polynomial-based accumulator. The homomorphic characteristics
of this kind of accumulators enable the verification of relations between the sets thanks to
arithmetic properties between the accumulators. Therefore, the subset containment property
can be expressed in terms of polynomial: for a set Si, its encoding polynomial divides the
polynomial encoding the intersection I. Hence, to verify that the intersection is contained
in each intersected set SI , the verifier is required to verify the divisibility criterion of the
corresponding polynomials, using their respective accumulators and using bilinear maps. This
criterion can be publicly and efficiently verified in the exponent. Similarly, the set disjointness
property can be reduced to checking that the polynomials’ encoding Si\I are mutually co-
prime, such that they satisfy the Bézout identity85. The verifier can publicly and efficiently
check this identity in the exponent using the corresponding polynomial-based accumulators
and bilinear maps. Thus, this solution for verifiable set intersection can be exploited for
conjunctive keyword search. The work of Papamanthou et al. [140] has been extended by
Canetti et al. [52] in order to compose multiple set operations while having the same security
guarantees as defined in [140]86. Sun et al. [172] leverage the techniques of Papamanthou et al.
[140] and Canetti et al. [52] to propose a verifiable conjunctive keyword search on dynamic
encrypted data, allowing to update the outsourced data collection.

Kosba et al. [113] introduce TrueSet, a protocol for verifiable set operations based
on circuit that is applicable to the problem of keyword search as the authors mention. In
a nutshell, Kosba et al. [113] introduces the concept of Quadratic Polynomial Programs
(QPP) analogous to QAP defined in [91]. QQPs encode a set circuit in order to derive
efficient SNARK. A set circuit is a circuit whose gates implement set operations such as
union, difference and intersection. This kind of circuit can be represented as a polynomial
circuit where every wire is a polynomial and every gate defines either polynomial addition or
polynomial multiplication. The scheme offers an elegant technique that combines QPPs and
SNARK, but as these building blocks, TrueSet relies on a non-falsifiable assumption (the
power knowledge of exponent assumption).

Verifiable Conjunctive Keyword Search on Encrypted Data. Several works [198, 59, 112,
122, 171] focus on verifiable search on encrypted data. These proposals aim at satisfying
three features for outsource databases: (i) Privacy protection on the data via encryption;
(ii) Keyword search over encrypted data; and (iii) Verifiability of the search. Zheng et al. [198]
develop the concept of Verifiable Attribute-Based Keyword Search (VABKS) which allows the
owner of a database to grant a user (a verifier) satisfying an access control policy the right to
query a keyword over the owner’s outsourced encrypted files and to verify the search result
returned by the remote server (the prover). This protocol makes use of basic cryptographic
primitives such as ABE, Bloom filters and digital signature and create a new building block
called attribute-based keyword search. This new primitive organizes the keywords according
to their respective access control policies and authorizes the user satisfying an access control
policy to conduct keyword search over the encrypted data. However, VABKS does not allow

85The Bézout identity states that if D is the GCD of two polynomials A and B then there exist two
polynomials U and V such that AU +BV = D.

86Note that these papers [140, 52] also propose techniques for set union and difference. But in the context
of verifiable keyword search only intersections are of interest.

82 3. Charaterization of Verifiable Computation

public delegatability or verifiability since the verifier and the user who searches for some
keywords should satisfy an access control policy. Besides, VABKS does not efficiently enable
the search for a conjunction of keywords.

Cheng et al. [62] propose a protocol for verifiable conjunctive keyword search that lever-
ages a combination of a searchable symmetric encryption scheme with an indistinguishability
obfuscation circuit (iO circuit) realizing the search operation. While public verifiability is
achieved by means of another (public) iO circuit representing the verification function, public
delegatability is not addressed in this work. Nevertheless, it is worth considering generating
an additional iO circuit to realize the publicly delegatable property. Still, the generation and
obfuscation of such circuits induce substantial costs that the authors in [62] barely mention.

In the same line of work, Chai and Gong [59] consider a prover that may correctly operate
only a fraction of search queries to save both computation and bandwidth. This prover is
referred as semi-honest-but-curious87. The scheme relies on a MAC-based prefix tree that
allows the prover to perform the search on encrypted data and the verifier to verify the
correctness of the result. As it relies on MAC to authenticate the responses, this solution
offers neither public verifiability nor public delegatability. This work was extended in [112]
for verifiable phrase search. This solution boils down to performing a single keyword search
for each keyword in the targeted phrase and to computing the intersection of the server’s
responses.

Verifiable SQL databases. A certain number of work focuses on systems that enable a
verifier to perform verifiable SQL queries over relational databases [168, 139, 190, 196]. One
of the most recent proposal on that field is IntegriDB, proposed by Zhang et al. [196]. It is
based on the accumulator-based verifiable set operations described in [140, 52]. Besides, the
authors suggest to create another tree, called interval tree (a sort of Merkle tree that has the
properties of a traditional search tree) in order to enable verifiable join and range queries.
Unfortunately, this tree as to be constructed for each pair of columns of each table of the
outsourced database. Namely, if the database consists of k tables with n rows, then the data

owner has to compute k ·
(
n

2

)
interval trees. Besides, each tree involves the computation

of an accumulator of all the row values for a given column. Since the database is large,
the number of rows might be very important. Thus the computation of the interval tree is
computationally demanding.

3.6.4 Conclusions of the State of the Art Analysis

From the above survey, we can draw the following conclusions on the gap that exists between
the requirements identified in Section 3.2.2 and existing work. Table 3.1 gathers and compares
the results of our analysis of the state of the art.

1. Interactive solutions for general-purpose functions are far from being practical. Indeed,
they require substantial computation and yield large-sized proofs.

2. Some related work on non-interactive proofs for arbitrary functions either are secure
in the Random Oracle Model (ROM) (CS proofs [126]) or rely on non-falsifiable as-
sumptions (SNARK [36]). Moreover, solutions that are based on FHE [90, 64] are not
practical yet and not publicly delegatable nor publicly verifiable. The scheme by Parno
et al. [143] is not fully applicable to any function, since the authors put restrictions on
Boolean functions only.

3. Proposals for homomorphic MACs and signatures appear to not fulfill the efficiency
requirement since verifying the MAC or the signature is as costly as executing the
function locally.

87In [59], a semi-honest-but-curious server refers to a server that “may execute only a fraction of search
operations honestly and/or return a fraction of search outcome honestly”.

3.6. State of the Art in Verifiable Computation 83

4. Function-specific solutions are believed to be more efficient than the solutions for ar-
bitrary computations. However, no function-specific solutions are publicly delegatable
and publicly verifiable while fully satisfying the efficiency requirement at the same time.

Therefore, we advocate for solutions that are:

• Efficient for the verifier (while we allow the execution of a one-time pre-processing
operation, following the amortized model)

• Non-interactive

• Based on falsifiable assumptions

• Publicly delegatable and publicly verifiable.

84 3. Charaterization of Verifiable Computation

Efficiency Features

G
en

er
al

S
p

ec
ifi

c

In
te

ra
ct

iv
e

N
o
n
-I

n
te

ra
ct

iv
e

A
m

or
ti

ze
d

m
o
d
el

P
ra

ct
ic

al

Im
p
le

m
en

ta
ti

on

P
u

b
li
c

D
el

eg
a
ta

b
il
it

y

P
u

b
li
c

V
er

ifi
ab

il
it

y

P
ri

va
cy

-P
re

se
rv

in
g

In
te

ra
c
ti

v
e

p
ro

o
fs

Babai [19] 3 3

Goldwasser et al. [97] 3 3

Goldwasser et al. [98] 3 3 3

Arora and Safra [10] 3 3 3

Kilian [110] 3 3

Ishai et al. [104] 3 3 3

Setty et al. [161] 3 3 3 3 3

Setty et al. [163] 3 3 3 3 3

Setty et al. [164] 3 3 3 3 3

Setty et al. [162] 3 3 3 3 3

N
o
n
-i

n
te

ra
c
ti

v
e

p
ro

o
fs

Micali [126] 3 3 3 3

Bitansky et al. [36] 3 3 3 3

Gennaro et al. [91] 3 3 3 3 3 3

Parno et al. [144] 3 3 3 3 3 3

Gennaro et al. [90] 3 3 3 3

Parno et al. [143] 3 3 3 3

Gennaro and Wichs [89] 3 3

Backes et al. [20] 3 3 3

Boneh and Freeman [39] 3 3 3

Catalano et al. [57] 3 3 3

Backes et al. [21] 3 3 3 3 3 3

P
o
ly

n
. Benabbas et al. [30] 3 3 3 3

Fiore and Gennaro [85] 3 3 3 3 3

Zhang and Safavi-Naini [193] 3 3 3 3 3

Papamanthou et al. [141] 3 3 3 3 3

M
a
tr

ic
e
s Fiore and Gennaro [85] 3 3 3 3 3

Zhang and Safavi-Naini [193] 3 3 3 3 3

Zhang and Blanton [195] 3 3 3 3 3

Mohassel [127] 3 3 3 3 3

S
e
a
rc

h

Morselli et al. [129] 3 3 3 3 3

Papamanthou et al. [140] 3 3 3 3 3

Kosba et al. [113] 3 3 3 3 3 3

Zheng et al. [198] 3 3 3 3 3 AC AC 3

Chai and Gong [59] 3 3 3

AC means for users satisfying an access control policy.

Table 3.1: Comparison of relevant existing solutions for Verifiable Computation

4. Verifiable Polynomial Evaluation 85

Chapter 4

Verifiable Polynomial Evaluation

4.1 Introduction to Verifiable Polynomial Evaluation

In this chapter, we focus on the public delegatability and verifiability of a specific family of
functions: namely large-degree polynomial evaluation.

Let us recall our space agency scenario. The agency outsources to a cloud server a con-
siderable collection of high-resolution (digital) space images. As we mentioned in Section 3.2,
these images can be represented as a matrix where each element stores a pixel of the image.
For example, to date, the highest resolution for an image produced by the Hubble Telescope
is 1.5 billion pixels, which can be represented by a 60,000-by-22,000 matrix88. Thus, owing
to its huge size, the processing of this kind of images will also be offload to the cloud, since
the cloud can afford computationally demanding operations.

In particular, many techniques for image processing employ polynomial evaluation as
a primitive. Among others, we can cite some contour detection or background estimation
techniques that require to evaluate a (possible high-degree) polynomial in each pixel of the
image. For example, in [177], the authors estimate and remove background from space
images using polynomial-based techniques: Each pixel belonging to the background is fit
to a polynomial (using a least-square polynomial fitting method89). The background is then
removed from the considered pixel by evaluating the estimated polynomial on the coordinates
of this pixel and subtracting the resulting estimate from the considered pixel. Due to their
possible heavy costs, the international space agency outsources such polynomial evaluations
to the cloud and wants to be ensured of the correctness of their results.

This scenario fits clearly into the VC model where data owner O represents the space
agency. It wishes to delegate to cloud server S the computation of a polynomial A of large
degree d that encodes an expensive polynomial-evaluation-based image processing operation.
Precisely, if we apply Definition 6, we let f = A and data owner O executes algorithm Setup;
cloud server S runs Compute and returns the result to O. Additionally to the outcome of the
computation, data owner O should receive some cryptographic proofs of correct polynomial
evaluation from cloud server S . Furthermore, the space agency solicits public delegatability
and verifiability of the computation to enhance collaborative work within universities and
research centers all around the world. For instance, any space researcher can submit an input
to that polynomial and another researcher may verify the results returned by the cloud.
Hence, the first space researcher corresponds to querier Q in Definition 6. She runs algorithm

88NASA, ESA, J. Dalcanton (University of Washington, USA), B. F. Williams (University of Washington,
USA), L. C. Johnson (University of Washington, USA), the PHAT team, and R. Gendler, “Sharpest ever view
of the Andromeda Galaxy”, ESA/Hubble Media Newsletter, January 5, 2015, http://tiny.cc/uift8x [Accessed:
February 3, 2016].

89This method uses a polynomial P (x) = a0 + a1x + ... + anx
n to approximate a series of data of the

form (xi, yi), where y = f(xi) for some function f (1 ≤ i ≤ m), with estimation (xi, ŷi), where ŷi = P (xi).
The least-square fit ensures that the coefficients of P are selected such that the fitting error

∑
i (yi − ŷi)2 is

minimized.

http://tiny.cc/uift8x

86 4. Verifiable Polynomial Evaluation

ProbGen on some input x. The second researcher acts as verifier V . She receives result y
and proof π from cloud server S and invokes algorithm Verify to check whether the returned
value y actually equals A(x).

4.2 Protocol Overview

Having set the above motivating scenario, we will devise in the following sections a protocol
for publicly delegatable and verifiable evaluation of polynomials.

The solution we propose draws upon the basic properties of Euclidean division of poly-
nomials: for any pair of polynomials A 6= 0 and B 6= 0 of degrees d and 2 respectively,
the Euclidean division of A by B yields a unique pair of polynomials Q and R such that:
(i) A = QB + R; and (ii) the degree of quotient polynomial Q equals d − 2, whereas the
remainder polynomial R has a degree less than 1.

Now, data owner O, who would like to outsource the evaluation of a polynomial A of
degree d to cloud server S , runs algorithm Setup (as defined in Definition 6) which first
defines a polynomial B(X) = X2 + b0 for a randomly chosen b0, and divides A by B to get
the quotient polynomial Q(X) =

∑d−2
i=0 qiX

i and the remainder polynomial R(X) = r1X+r0.
Next, data owner O outsources polynomial A together with quotient polynomial Q to server
S and publishes the public key PKA = (gb0 , gr1 , gr0), where g is the generator of a well-defined
cyclic group. Consequently, whenever a querier Q wants to evaluate polynomial A at point
x, she invokes algorithm ProbGen which first computes and advertises the public verification
key VKx = (gB(x), gR(x)), and then transmits x to server S . The latter in turn calls algorithm
Compute which returns y = A(x) and generates the proof π = Q(x). Given the server’s
output (y, π), a verifier V checks whether gy = (gB(x))πgR(x).

This protocol meets the efficiency requirement defined in Section 3.4. Indeed, the effi-
ciency of the verification in the solution stems from the fact that B and R are small-degree
polynomials. Indeed, to verify the correctness of a result (y, π) provided by server S on an
input x, algorithm Verify performs a small and constant number of computations as opposed
to carrying out the O(d) exponentiations that are required to evaluate polynomial A.

It is clear that to meet the soundness requirement stipulated in Section 3.5, the description
of polynomials B and R must remain secret. However since B is a two-degree polynomial, the
secrecy of these two polynomials can be easily compromised by disclosing the quotient poly-
nomial Q. To remedy this shortcoming, the client encodes polynomial Q using an additively
homomorphic one-way encoding. Namely, each coefficient qi of polynomial Q is encoded as
hqi . In this manner, we allow server S to compute the proof π = hQ(x) of correct execution
(where h is the generator of a group) while ensuring the confidentiality of polynomials B and
R. Finally, we use bilinear pairings to let verifier V assess the correctness of the server’s re-
sults. Accordingly, we show that our solution is sound under the bd/2c-Strong Diffie-Hellman
(bd/2c-SDH) assumption.

To sum things up, we will describe in the following lines our proposal for verifiable poly-
nomial evaluation that is:

Efficient: We propose a solution that is non-interactive and practical. We will show that our
protocol induces constant costs for algorithms ProbGen and Verify, that are independent
of the degree of the outsourced polynomial, and which are much less expensive that the
cost of evaluating the polynomial.

Amortized: Algorithm Setup requires heavy exponentiations to prepare the outsourced
polynomial. However, these operations are performed only once for an unlimited num-
ber of verifications for the same polynomial.

Publicly delegatable: The data owner publishes public key PKA that enables anyone to
submit input to the server.

4.3. Building Blocks 87

Publicly verifiable: The querier generates a public verification key VKx, tied to input x,
enabling any verifier to check the result returned by the server.

Secure: As we will demonstrate in Section 4.5, our protocol is correct and sound.

4.3 Building Blocks

Before describing our protocol in full detail, we recall the definitions of bilinear pairings and
the SDH assumption.

4.3.1 Bilinear Pairings

Let G1, G2 and GT be three cyclic groups of the same finite order p.

A bilinear pairing is a map e: G1 ×G2 → GT , with the following properties:

1. e is bilinear: ∀ α, β ∈ Zp, g ∈ G1 and h ∈ G2, e(gα, hβ) = e(g, h)αβ;

2. e is non-degenerate: If g is a generator of G1 and h is a generator of G2, then e(g, h) is
a generator of GT ;

3. e is computable: There is an efficient algorithm to compute e(g, h) for any (g, h) ∈
G1 ×G2.

4.3.2 D-Strong Diffie-Hellman Assumption

Definition 9 (D-SDH Assumption). Let G1, G2 and GT be three cyclic groups of the
same finite prime order p such that there exists a bilinear pairing e : G1 ×G2 → GT .

We say that the D-Strong Diffie-Hellman assumption (D-SDH) holds, if given the

tuple (g, gα, h, hα, ..., hα
D

) ∈ G2
1 ×GD+1

2 for some randomly chosen α ∈ F∗p, the probability

to produce a pair (β, h1/(β+α)) ∈ Fp\{−α} ×G2 is negligible.

4.4 Protocol Description

We assume here that data owner O wants to outsource the evaluation of a d-degree poly-

nomial A(X) =
d∑
i=0

aiX
i with coefficients ai ∈ Fp where p is a large prime. Our protocol

for verifiable polynomial evaluation follows the system model introduced in Section 3.4. In-
deed, the protocol operates in three phases: the Setup phase in which data owner O prepares
polynomial A to outsource; the Computation phase where a querier Q crafts a computation
request based on an input x and where a server S replies to that request with A(x) and a
proof of correct evaluation; and the Verification phase during which a verifier V checks that
the result is correct. This scheme satisfies the requirements of correctness and soundness as
defined in Section 3.5 while meeting the efficiency property. Moreover, it is publicly dele-
gatable and verifiable since at the end of the Setup phase, data owner O publishes a public
key that can be used by querier Q to request the evaluation of A on x. Besides this request,
Q advertises a public verification key so that verifier V checks the returned results. Fig-
ure 4.1 illustrates the details of the different algorithms involved in our protocol for verifiable
polynomial evaluation.

88 4. Verifiable Polynomial Evaluation

4.4.1 Setup

In this phase, data owner O runs algorithm Setup which, on input of security parameter κ
and polynomial A, prepares A to enable publicly verifiable polynomial evaluation as follows:

Public parameters generation: Algorithm Setup chooses two cyclic groups G1 and G2 of
prime order p that admit a bilinear pairing e : G1×G2 → GT . Then it picks a generator
g and a generator h of G1 and G2 respectively, and defines the set of public parameters
as:

param = (p,G1,G2,GT , e, g, h).

Next, algorithm Setup randomly selects b0 ∈ F∗p such that polynomial B(X) = X2 + b0
does not divide polynomial A and performs the Euclidean division of polynomial A
by polynomial B in Fp[X]. We denote the resulting quotient polynomial by Q(X) =
d−2∑
i=0

qiX
i and the resulting remainder polynomial by R(X) = r1X + r0. Notice that R

is a polynomial of degree at most 1, i.e. r1 could be 0.

Public key computation: Algorithm Setup computes the public key

PKA = (b0, r1, r0) = (gb0 , hr1 , hr0)

Evaluation key computation: To compute evaluation key EKA algorithm Setup computes
qi = hqi ∈ G2 for all 0 ≤ i ≤ d− 2, and lets

EKA = (A,q0,q1, ...,qd−2)

Algorithm Setup concludes its execution by outputting the tuple (param,PKA,EKA).

4.4.2 Computation

In this phase, a querier Q requests cloud server S to evaluate outsourced polynomial A on
point x ∈ Fp and to return the result of this evaluation. To that effect, querier Q calls
ProbGen that takes x and public key PKA and returns encoding σx and verification key VKx.
In turn, server S performs the evaluation by invoking algorithm Compute with inputs σx and
EKA. Compute outputs an encoding of the evaluation result σy.

Algorithm ProbGen and Compute operate as following:

ProbGen(x,PKA): On input of x ∈ Fp and public key PKA = (b0, r1, r0), algorithm ProbGen
first computes

VK(x,B) = b0g
x2

VK(x,R) = rx1r0

and then outputs the public encoding σx = x and the public verification key VKx =
(VK(x,B),VK(x,R)).

Compute(σx,EKA): Given σx = x and evaluation key EKA = (A,q0,q1, ...,qd−2), algorithm

Compute evaluates y = A(x) =
d∑
i=0

aix
i mod p, generates the proof π =

d−2∏
i=0

qx
i

i , and

outputs the encoding σy = (y, π).

4.5. Security Analysis 89

4.4.3 Verification

On reception of the polynomial evaluation result, verifier V checks the correctness of server
S ’s response by running algorithm Verify:

Verify(σy,VKx): Provided with σy = (y, π) and verification key VKx = (VK(x,B),VK(x,R)),
algorithm Verify checks whether the following equation holds:

e(g, hy)=e(VK(x,B), π)e(g,VK(x,R)) (4.1)

If so, then Verify outputs y meaning that A(x) = y; otherwise it outputs ⊥.

Figure 4.1: Verifiable Polynomial Evaluation

H Algorithm: {param,PKA,EKA} ← Setup(1κ, A)
1. Parameter generation

Pick param = {p,G1,G2,GT , g, h, e};
2. Public key computation

Pick random b0 ∈ F∗p and set B(X) = X2 + b0;
Make sure B does not divide A
Euclidean division of A by B:
Compute polynomials (Q,R) such that A = BQ+R;

Q(X) =
d−2∑
i=0

qiX
i and R(X) = r1X + r0

Compute PKA = (b0, r1, r0) = (gb0 , hr1 , hr0);
3. Evaluation key computation

For 0 ≤ i ≤ d− 2 do

Compute qi = hqi ;
End
Set EKA = (A,q0,q1, ...,qd−2);

Return (param,PKA,EKA);

H Algorithm: {σx,VKx} ← ProbGen(x,PKA)

1. Compute VK(x,B) = b0g
x2 ;

2. Compute VK(x,R) = rx1r0;
3. Set σx = x and VKx = (VK(x,B),VK(x,R));
4. Return (σx,VKx);

H Algorithm: σy ← Compute(σx,EKA)

1. Compute y = A(x) =
d∑
i=0

aix
i mod p;

2. Compute π =
d−2∏
i=0

qx
i

i ;

3. Return σy = (y, π);

H Algorithm: outy ← Verify(σy,VKx)
1. Parse σy = (y, π) and VKx = (VK(x,B),VK(x,R));

2. Verify e(g, hy)
?
= e(VK(x,B), π)e(g,VK(x,R));

3. If it verifies then return outy = y else return outy =⊥;

4.5 Security Analysis

In this section, we state and prove the two security theorems pertaining to our protocol for
verifiable polynomial evaluation.

90 4. Verifiable Polynomial Evaluation

4.5.1 Correctness

Theorem 3 (Correctness). Our scheme for publicly verifiable polynomial evaluation is
correct.

Proof of Theorem 3. If on input σx = x ∈ Fp, server S executes algorithm Compute
correctly, then the latter’s output will correspond to

σy = (y, π) = (A(x), hQ(x))

Indeed, we have:

π =
d−2∏
i=0

qx
i

i =
d−2∏
i=0

hqix
i

= h

d−2∑
i=0

qix
i

= hQ(x)

Given that A = QB +R in Fp[X] and that the order of e(g, h) is equal to p, we get:

e(g, h)A(x) = e(g, h)Q(x)B(x)+R(x)

= e(g, hQ(x))B(x)e(g, h)R(x)

As y = A(x) and π = hQ(x) we have:

e(g, h)y = e(g, π)B(x)e(g, h)R(x)

= e(gB(x), π)e(g, hR(x))

Since
VK(x,B) = b0g

x2 = gb0+x2 = gB(x)

and
VK(x,R) = rx1r0 = hr1x+r0 = hR(x)

we conclude that
e(g, h)y = e(VK(x,B), π)e(g,VK(x,R))

and that Verify outputs “y = A(x)”.

4.5.2 Soundness

Theorem 4. The scheme proposed for publicly verifiable polynomial evaluation is sound
under the bd/2c-SDH assumption.

Proof of Theorem 4. Assume there is an adversary A that breaks the soundness of
our protocol for publicly verifiable polynomial evaluation with a non-negligible advantage
ε. We demonstrate in what follows that there exists another adversary B that breaks the
bd/2c-SDH assumption with a non-negligible advantage ε.

The proof of soundness of our solution for publicly verifiable polynomial evaluation
involves two games:

4.5. Security Analysis 91

Game 0. This game corresponds to the soundness experiment (cf. Section 3.5.2) of our
protocol for verifiable polynomial evaluation.

Game 1. The goal of adversary B in this game is to break the bd/2c-SDH assumption
using adversary A .

Let OSDH be an oracle which when queried returns the pair (g, gα) in G1 and the tuple

(h, hα, hα
2
, ..., hα

bd/2c
) in G2 for randomly generated α in F∗p.

To break bd/2c-SDH, adversary B first calls oracle OSDH to obtain a tuple

(g, gα, h, hα, ..., hα
bd/2c

); then simulates the soundness experiment to adversary A .

Namely, adversary A enters the learning phase of the soundness experiment depicted
in Algorithm 3: Adversary A calls oracle OSetup with t different polynomials A(k)(X) =
d∑
i=0

a
(k)
i Xi in Fp[X], where 1 ≤ k ≤ t. Adversary B then simulates OSetup’s response as

follows:

1. Adversary B defines the public parameters

p̂aram = (p,G1,G2,GT , e, g, h)

2. For 1 ≤ k ≤ t, to compute the evaluation key ÊK
(k)

A = (A(k), q̂
(k)
0 , ..., q̂

(k)
d−2), adversary

B proceeds as follows:

• B lets q̂
(k)
d−2 = ha

(k)
d and q̂

(k)
d−3 = ha

(k)
d−1 ;

• For each 2 ≤ l ≤ d− 2, adversary B computes

q̂
(k)
d−2−l =

bl/2c∏
i=0

ha
(k)
d−l+2i(−1)iαik

where αk = αµk + γk and µk, γk are randomly selected from F∗p. Note that

adversary B can compute hα
i
k and thus q̂

(k)
d−2−l without the knowledge of α

using the Binomial Theorem: hα
i
k = h(αµk+γk)i =

i∏
j=0

(hα
j
)(
i
j)µ

j
k·γ

i−j
k , where hα

j

is given by the bd/2c-SDH tuple returned by OSDH.

3. B computes the public key P̂K
(k)

A = (b̂
(k)
0 , r̂

(k)
1 , r̂

(k)
0) as follows:

b̂
(k)
0 = gαk

r̂
(k)
0 =

bd/2c∏
i=0

ha
(k)
2i (−1)iαik

r̂
(k)
1 =

b(d−1)/2c∏
i=0

ha
(k)
2i+1(−1)iαik

Note that B can efficiently compute b̂
(k)
0 as gαk = (gα)µkgγk , where gα is given by

the bd/2c-SDH tuple returned by OSDH. If (r̂
(k)
0 , r̂

(k)
1) = (1, 1), then adversary B

stops the experiment.

4. Otherwise, B returns public parameters p̂aram, evaluation key ÊK
(k)

A and public key

P̂K
(k)

A to adversary A .

92 4. Verifiable Polynomial Evaluation

It can easily be shown that if adversary B does not stop the experiment, then the distri-

bution of the tuple (p̂aram, P̂K
(k)

A , ÊK
(k)

A) returned by adversary B is statistically indistin-
guishable from the distribution of (param,PKA,EKA) in Game 0. As a matter of fact, if

we denote for all 0 ≤ i ≤ d − 2, q̂
(k)
i = hq

(k)
i and if we let (r̂

(k)
0 , r̂

(k)
1) = (hr

(k)
0 , hr

(k)
1), then

we can easily verify that:

• a(k)
d = q

(k)
d−2 mod p and a

(k)
d−1 = q

(k)
d−3 mod p;

• for all 2 ≤ i ≤ d− 2, a
(k)
i = αkq

(k)
i + q

(k)
i−2 mod p;

• a(k)
1 = αkq

(k)
1 + r

(k)
1 mod p and a

(k)
0 = αkq

(k)
0 + r

(k)
0 mod p;

• (r
(k)
0 , r

(k)
1) 6= (0, 0).

This entails that the polynomials defined as Q(k)(X) =
d−2∑
i=0

q
(k)
i Xi, B(k)(X) = X2 +αk

and R(k)(X) = r
(k)
1 X + r

(k)
0 verify the following equality: A(k) = B(k)Q(k) + R(k) with

R(k) 6= 0.

Therefore we can safely conclude (i) that polynomial B(k) does not divide polynomial

A(k); (ii) that each q̂
(k)
i correctly encodes the ith coefficient of the quotient polynomial Q(k)

that results from the Euclidean division of polynomial A(k) by polynomial B(k); (iii) that

the pair (r̂
(k)
0 , r̂

(k)
1) correctly encodes the corresponding remainder polynomial R(k).

Following the learning phase of the soundness game, adversary A selects a challenge

value x(k) ∈ Fp and calls oracle OProbGen with the pair (x(k), P̂K
(k)

A). Accordingly, adversary
B computes the response of oracle OProbGen and returns verification key

VK(k)
x = (VK

(k)
(x,B),VK

(k)
(x,R)) = (b̂

(k)
0 gx

2
, r̂

(k)
0 r̂

(k)x
1).

Finally, adversary A returns a pair (y(k), π(k)) and invokes algorithm Verify which outputs

out
(k)
y .

In the challenge phase of the soundness game (cf. Algorithm 4), adversary A selects
a polynomial A from the ones challenged to OSetup during the learning phase (For more
readibility, we do not pursue the notation with the ∗ as in Algorithm 4). Without loss

of generality, we assume polynomial A is associated with public key P̂KA and evaluation
key ÊKA. In particular, P̂KA and ÊKA are computed on the basis of α̂ = αµ̂ + γ̂, where
µ̂, γ̂ ∈ F∗p are ones of the t values µk, γk selected in the learning phase. Adversary A selects

a challenge value x ∈ Fp and calls oracle OProbGen with the pair (x, P̂KA). Accordingly,
adversary B computes the response of oracle OProbGen and returns verification key

VKx = (VK(x,B),VK(x,R)) = (b̂0g
x2 , r̂0r̂

x
1).

Finally, adversary A returns a pair (y, π) such that y 6= A(x) and (y, π) is accepted by
algorithm Verify with a non-negligible advantage ε.

Consequently, to break bd/2c-SDH, adversary B first computes A(x) and the proof

π∗ =

d−2∏
i=0

(q̂i)
xi .

Since the pair (y, π) passes the verification, it satisfies Equation 4.1, namely:

e(g, h)y = e(b̂0g
x2 , π)e(g, r̂0(r̂1)x) = e(gx

2+α̂, π)e(g, r̂0(r̂1)x). (4.2)

4.5. Security Analysis 93

Furthermore, by construction:

e(g, h)A(x) = e(gx
2+α̂, π∗)e(g, r̂0(r̂1)x), (4.3)

where π∗ denotes the proof of correct evaluation A(x). By dividing Equation 4.2 by 4.3,
we obtain:

e(g, h)(y−A(x)) = e
(
gx

2+α̂,
π

π∗

)
Since y 6= A(x), the above equation implies:

e(g, h) = e

(
gx

2+α̂,
(π
π∗

)(y−A(x))−1
)
.

This entails:

h =
(π
π∗

)(x2+α̂)(y−A(x))−1

=
(π
π∗

)(x2+αµ̂+γ̂)(y−A(x))−1

since α̂ = αµ̂+ γ̂ with µ̂, γ̂ ∈ F∗p

=
(π
π∗

)µ̂(α+x2+γ̂
µ̂

)(y−A(x))−1

.

Hence if adversary B does not stop the experiment, then she will be able to break the
bd/2c-SDH assumption by outputting the pair

(β, h1/(β+α)) =

(
x2 + γ̂

µ̂
,
(π
π∗

)µ̂(y−A(x))−1
)
.

Now if adversary B aborts the experiment i.e. when (r̂0, r̂1) = (1, 1), then adversary B
can conclude that B divides A. As B knows that B = X2 + α̂, B can break the bd/2c-SDH
assumption as follows:

1. B factorizes polynomial A into a product of irreducible polynomials in Fp[X].
2. B discards all the irreducible polynomials of degree above 2 and considers only

polynomials of degree 2 of the formX2+b and polynomials of degree 1 that when multiplied
are under the form X2 + b. For instance, if one of the irreducible factor is X2 +X + 1, it
is discarded, but since X + 1 and X − 1 give (X + 1)(X − 1) = X2− 1, polynomial X2− 1
is retained.

3. Among all polynomials (irreducible or combined) of the form X2 + b that were
selected in the previous step, one is equal to B. Therefore, for each of those polynomials,
B tests whether gb = gα̂. If it is the case, then adversary B determines α̂ and thus learns
α (since α̂ = αµ̂+γ̂). With knowledge of α, B can easily break the bd/2c-SDH assumption.

Thus, we deduce that if there is an adversary A that breaks the soundness of our
protocol for publicly verifiable polynomial evaluation with a non-negligible advantage ε,
then there is an adversary B that breaks the bd/2c-SDH assumption with a non-negligible
advantage ≥ ε.

Finally, we want to highlight the fact that if B(X) = Xδ + b0, then using a similar
argument as the one above, we can easily show that our protocol for verifiable polynomial
evaluation is secure under the D-SDH assumption for D ≥ bd/δc.

94 4. Verifiable Polynomial Evaluation

4.6 Performance Analysis

This section evaluates the theoretical performance of our verifiable polynomial evaluation
scheme. We study the storage overhead induced by our protocol as well as its communication
and computation complexities. We will show that while adopting the amortized model defined
by Gennaro et al. [90], our protocol meets the efficiency requirement defined in Section 3.4.

4.6.1 Storage

Data owner O is required to store and publish the public key (b0, r1, r0) ∈ G1×G2
2. Server S

however keeps the d+ 1 coefficients ai ∈ Fp of polynomial A and the d−1 encodings qi ∈ G2.
Table 4.1 lists the storage complexity of our protocol.

4.6.2 Communication

In terms of communication complexity, our verifiable polynomial evaluation solution requires
constant bandwidth consumption. Indeed, at the end of the execution of algorithm ProbGen,
querier Q sends to cloud server S encoding σx and verification key VKx, requiring O(1) space.
Similarly, server S returns encoding σy = (y, π) which amounts to O(1) space. Table 4.1 sums
up the bandwidth complexity.

4.6.3 Computation

Algorithm Setup first generates a random coefficient b0 ∈ F∗p to construct polynomial B
and conducts an Euclidean division of polynomial A by polynomial B. The latter operation
consists of d multiplications and additions, where d is the degree of polynomial A. Once the
Euclidean division is performed, algorithm Setup performs one exponentiation in G1 to derive
b0, and d + 1 exponentiations in G2 to compute r0, r1 and qi. Although computationally
expensive, algorithm Setup is executed only once by the client. Besides, its computational
cost is amortized over the large number of verifications that third-party verifiers can carry
out.

On the other hand, ProbGen computes the verification key VKx = (VK(x,B),VK(x,R)) which
demands a constant number of operations that does not depend on the degree of polynomial
A. More precisely, ProbGen consists of computing x2 in Fp, performing one exponentiation
and one multiplication in G1 to get VK(x,B) = gB(x), and running one exponentiation and

one multiplication in G2 to obtain VK(x,R) = hR(x).

Furthermore, algorithm Compute runs in two steps: (i) the evaluation of polynomial A
at point x which requires at most d additions and multiplications in Fp if the server uses
Horner’s rule; and (ii) the generation of the proof π which involves d − 3 multiplications in
Fp and d− 1 exponentiations and d− 2 multiplications in G2.

Finally, the work at verifier V only consists of one exponentiation and one division in
G2 and the computation of 2 bilinear pairings (indeed, we can rephrase Equation 4.1 as
e(g, hy

VK(x,R)
) = e(VK(x,B), π)).

Summary. The reader may refer to Table 4.1 for a summary of the computational perfor-
mances of our protocol. We can conclude from the above that our solution meets the require-
ment on efficiency. Indeed, as Table 4.1 shows, the combined costs of algorithms ProbGen and
Verify are negligible compared to the complexity of evaluating the polynomial. As a matter
of fact, the time required to compute ProbGen and Verify are constant and independent of
the degree of the outsourced polynomial. Moreover, the asymptotic cost of Compute is kept
linear in d, which is substantially the same as evaluating the polynomial. In other terms, the
complexity of generating the proof of computation does not influence the overall asymptotic
complexity of Compute. The complexity of algorithm Setup is admittedly linear in the degree

4.6. Performance Analysis 95

of the outsourced polynomial, however, it is amortized over an unlimited number of efficient
verifications. Furthermore, our protocol is efficient in terms of communication complexity
but also efficient in terms of storage for the data owner.

Table 4.1: Costs of our Verifiable Polynomial Evaluation scheme

Storage |G| refers to the size (in bits) of elements in set G.

Data owner O(1) 1 · |G1|+ 2 · |G2| bits
Server O(d) (d+ 1) · |Fp|+ (d− 1) · |G2| bits

Communication
Outbound O(1) 1 · |Fp|+ 2 · |G1| bits

Inbound O(1) 1 · |Fp|+ 1 · |G2| bits

Operations Setup ProbGen Compute Verify

PRNG 1 - - -
Additions in Fp d - d -

Multiplications in Fp d 1 2d− 3 -
Multiplications in G1 - 1 - -
Multiplications in G2 - 1 d− 2 1

Exponentiations in G1 1 1 - -
Exponentiations in G2 d+ 1 1 d− 1 1

Pairings - - - 2

4.6.4 Comparison with Related Work

We compare our solution with two relevant existing techniques for verifiable polynomial eval-
uation. Fiore and Gennaro [85] devise Algebraic Pseudo-Random Functions (aPRF), also
used by Zhang and Safavi-Naini [193], to develop publicly verifiable solutions. Compared
to these two solutions, our protocol induces the same amount of computational costs but
with the additional property of public delegatability. Another solution for public verification
considers signatures for correct computation [141], and uses polynomial commitments [108]
to construct these signatures. Besides public verifiability, this solution implements public
delegatability. However, the construction in [141] relies on the d-SBDH assumption, whereas
our solution is secure under a weaker assumption that is the bd/2c-SDH. It is worth mention-
ing that our protocol can be changed to rely on the bd/δc-SDH assumption, where δ is the
degree of the divisor polynomial and therefore our scheme can accommodate higher-degree
polynomials. Table 4.2 compares our verifiable polynomial evaluation solution with the work
described by Fiore and Gennaro [85] and Papamanthou et al. [141].

4.6.5 Experimental Results

We developed a prototype of our verifiable polynomial evaluation scheme in Python, using
the Charm-Crypto library90 which implements cryptographic primitives such as elliptic curves
and bilinear pairings. We experimented on a machine with the following characteristics: Pro-
cessor Intel Core i5-2500; CPU@3.80GHz clock speed; 64 bit OS; RAM 16 GB. All reported
times are computed as the average of the times measured for a total of 20 executions of our
protocol.

Figure 4.2 depicts the time (reported in Table 4.3) needed by each of the four algorithms
of our protocol in function of the degree of the outsourced polynomial. As expected, the costs
induced by algorithms Setup and Compute grow linearly with the degree of the polynomial.
We highlight the fact that in accordance with the theoretical cost analysis we conducted at

90Charm-Crypto library, http://jhuisi.github.io/charm/ [Accessed: February 3, 2016].

http://jhuisi.github.io/charm/

96 4. Verifiable Polynomial Evaluation

Table 4.2: Comparison with related work

Hardness Public
Setup ProbGen Compute Verify Assumptions Delegatability

Fiore and Gennaro 1 pairing 1 pairing d+ 1 exp in G1 1 pairing co-CDH No
[85] 2(d+ 1) exp in G1 1 exp in G1 1 exp in GT DLin

1 exp in GT

Papamanthou et al. Polynomial preparation d+ 1 exp in G1 2 pairing d-SBDH Yes
[141] 2d+ 1 exp in G1 2 exp in G1

Our scheme d+ 1 exp in G2 1 exp in G1 d− 1 exp in G2 2 pairings bd/2c-SDH Yes
1 exp in G1 1 exp in G2 1 exp in G2

Table 4.3: Average times of our protocol and amortization

d Setup (s) ProbGen (s) Compute (s) Verify (s) ComputeLocal (s) Amortization

5 0.011 0.0031 0.005 0.0032 2.174× 10−5 ×
50 0.103 0.0030 0.070 0.0031 1.245× 10−4 ×
500 0.728 0.0029 0.723 0.0031 0,001 ×
5000 7.205 0.0030 7.22 0.0031 0,012 1195
50000 72.58 0.0036 72.22 0.0032 0,127 602
500000 796.9 0.0043 724.9 0.0032 1,324 606

the beginning of Section 4.6, algorithms ProbGen and Verify generate light costs, indepen-
dent from the degree of the outsourced polynomial. We also compute in the last column
of Table 4.3 the breakeven point from which the expensive cost of Setup is amortized over
multiple verifications. To interpret these values, we introduce the following criterion, called
outsourceability.

Definition 10 (Outsourceability - computation). The criterion x of outsourceability
for a verifiable computation scheme is determined by a parameter x ≥ 0, according to which
the time to pre-process the function f to be outsourced is amortized over x verifications of
results returned by a remote server. Stated differently, x is such that:

tSetup + x · (tProbGen + tVerify) ≤ x · tComputeLocal

where talgo is the time required to execute algorithm algo.
Hence, x is defined by the relation:

x =

⌈
tSetup

tComputeLocal
− (tProbGen + tVerify)

⌉

Table 4.3 shows that for degrees d ≤ 5000, outsourcing the evaluation of the polynomials
is not an interesting strategy because it would be more costly for the data owner to outsource
the polynomial and verify the correctness of the results than evaluating it locally. However,
for polynomials with larger degrees d ≥ 5000, outsourcing is a winning strategy. Namely,
if we consider the case where d = 500000, the data owner should better make the choice
to outsource the polynomial to the cloud, if at least x = 606 polynomial evaluations are
requested to the server (naturally, for the same polynomial). Besides, it is worth noticing
that we run our benchmarks on a machine that has 16 GB of RAM. Modern smartphones91

have between 1 and 4 GB of RAM, latest laptops92 have no more than 8 GB of RAM.

91Gareth Beavis, “Best Phone 2016: The 10 Best Smartphones We’ve Tested”, TechRadar, January 25,
2016, http://tiny.cc/w4ft8x [Accessed: February 3, 2016].

92Joel Santo Domingo, Laarni Almendrala Ragaza, “The 10 Best Laptops of 2016”, PC Magazine, January

http://tiny.cc/w4ft8x

4.7. Conclusion to Verifiable Polynomial Evaluation 97

Figure 4.2: Experimental measurements

Therefore, we can extrapolate the analysis of outsourceability of our verifiable polynomial
solution to the real world. It may take greater time on smartphones and laptops to evaluate
a polynomial with large degree. Hence, even for polynomial with degree d ≤ 5000, the best
strategy for users of these devices would be to outsource these polynomials to the cloud, in
order to save computation resources.

4.7 Conclusion to Verifiable Polynomial Evaluation

We presented in this chapter our publicly delegatable and publicly verifiable polynomial eval-
uation scheme. Exploiting the basic properties of Euclidean division for polynomials, our
solution is provably secure according to the correctness and soundness definitions we high-
lighted in Section 3.5, without relying on heavy cryptographic operations or non-falsifiable
assumptions. In addition, our protocol satisfies the efficiency requirement for any VC scheme
while adopting the amortized model approach.

In comparison to prior art, we are the first to propose a verifiable polynomial protocol
that takes advantage of the Euclidean division and which does not rely on algebraic PRFs.
The strength of our approach is that there is no need to design such specific algebraic PRFs
to verify any polynomial evaluation while keeping the cost of the verification lightweight.
While some of the related work do not support public delegatability and verifiability, our
proposal enables third-party queriers and verifiers to submit inputs to the server and check
the results. Besides, our scheme can accommodate higher-degree polynomials than most of
existing work, thanks to the bd/2c-SDH assumption.

7, 2016, http://tiny.cc/gdgt8x [Accessed: February 3, 2016].

http://tiny.cc/gdgt8x

98 4. Verifiable Polynomial Evaluation

5. Verifiable Matrix Multiplication 99

Chapter 5

Verifiable Matrix Multiplication

5.1 Introduction to Verifiable Matrix Multiplication

As we explained in our motivating scenario, matrix multiplications are a key primitive that
can be employed by the international space agency for several operations such as image
processing. For instance, the Haar Wavelet Transform technique is widely used for image
compressing or edge detection [54, 156]. This method employs a large matrix, called the
Haar matrix, that is multiplied with each row or column of the matrix encoding the image.
Since the images produced by the agency are represented as large matrices, it requires con-
siderable computational resources to process them via matrix multiplications, such as the
ones performed in the Haar Wavelet Transform. Hence, the space agency also delegates these
matrix-based processing operations to the cloud. As a consequence, the cloud must generate
a proof to convince the agency that the outcome of these operations is valid.

Obviously, this scenario implies the need for a verifiable protocol for matrix multiplication
that fits into the VC model we presented in Section 3.4. In this setting, similarly to the verifi-
able polynomial evaluation scheme we introduced in Chapter 4, data owner O corresponds to
our international space agency, delegating to a cloud server S a matrix M of size n×m, that
can, for example, encode a large Haar matrix. If we refer to the model discussed in Section 3.4,
our context imposes that f is the operation of multiplying a vector with M . Besides, data
owner O, i.e the space agency, executes algorithm Setup that performs a one-time expensive
operation that prepares matrix M to enable an unlimited number of verifiable multiplications
on the same matrix M for different inputs. O also lets anyone submit inputs to S , in order to
provide public delegatability. Namely, the space agency allows any collaborating researcher
around the world to process the images that it owns. If we consider the example of the Haar
Wavelet Transform used to detect edges93 in the images, a researcher, denoted as querier Q
(as specified in the PVC model in Definition 6), can provide a vector of pixels of size m (that
is, a column of the image matrix), denoted ~x, to server S by calling algorithm ProbGen. In
turn, S runs algorithm Compute that returns ~y = M~x, containing n elements, along with
a proof π that certifies the correctness of the multiplication. Furthermore, to support the
public verifiability feature desired in our scenario, the space agency lets anyone verify the
outcome of algorithm Compute. Therefore a collaborating researcher, which can be different
from the one who submitted vector ~x, is able to run algorithm Verify on ~y and π that checks
that ~y actually equals M~x.

In the next sections, we devise a new protocol for verifiable matrix multiplication that is
efficient and provably secure. It adopts the PVC model presented in Definition 6 and provides
a solution to the scenario illustrated above.

93We recall that our space agency’s mission is to observe Earth from space images and we assume that edge
extraction is a technique that can be used for such a task.

100 5. Verifiable Matrix Multiplication

5.2 Protocol Overview

The protocol we introduce in this section relies on the intuition already expressed in [85],
which states that in order to verify that server S correctly multiplies an (n,m)-matrix M
of elements Mij with some column vector ~x = (x1, x2, ..., xm)ᵀ, it suffices that data owner
O randomly picks a secret (n,m)-matrix R of elements Rij , and supplies server S with the
(n,m)-matrix M and an auxiliary (n,m)-matrix N such that Nij = g̃MijgRij (where g̃ = gδ

for some randomly generated δ and g is a generator of a well-defined group). Consequently,
when a querier Q runs algorithm ProbGen that prompts server S to multiply matrix M with
vector ~x, the latter returns vector ~y = (y1, y2, ..., yn)ᵀ and proof ~π = (π1, π2, ..., πn)ᵀ, such that

πi = g̃yig

m∑
j=1

Rijxj
if the server is honest. If we denote πi = gγi and ~γ = (γ1, γ2, ..., γn)ᵀ, then

the verification process induced by algorithm Verify consists of checking whether ~γ = δ~y+R~x.
Now, to transform this intuition into a viable solution, that is, to fulfill the efficiency

requirement expounded in Requirement 1, one must ensure that the execution of both al-
gorithms ProbGen and Verify is much less computationally demanding than performing the
matrix multiplication M~x for all vectors ~x. Besides the efficiency requirement, we desire
the properties of public delegatability and verifiability. Thus, we cannot directly apply the
idea of Fiore and Gennaro [85], that suggest to generate the secret matrix R using dedicated
algebraic PRFs that optimize the multiplication R~x. As a matter of fact, this method does
not offer the desired features.

We tackle this issue by observing that for any vector ~λ = (λ1, λ2, ..., λn), the verification
whether ~λ~γ = δ~λ~y+~λ(R~x) takes O(n) time if the vector ~λR is computed beforehand. There-
fore, we define the public key by an exponent encoding of ~λR, and the verification key for
vector ~x by an exponent encoding of (~λR)~x.

More concretely, we generate the elements in the auxiliary matrix N as Nij = g̃
Mij

i g
Rij
i

for gi = gλi , we let the public key PKM be a vector of m components PKj =
n∏
i=1

g
Rij
i , and we

compute the verification key for vector ~x as VKx =
m∏
j=1

PK
xj
j . This modus operandi requires

an expensive execution of algorithm Setup, but our system model allows such a requirement,
since Setup will be amortized by several instances of the verification procedure for different
inputs.

As a result, the proposed solution does not only offer public delegatability, but also is
sound under the assumption of co-Computation Diffie-Hellman (co-CDH).

Definition 11 (Co-Computational Diffie-Hellman Assumption). Let G1, G2 and
GT be three cyclic groups of the same finite prime order p such that there exists a bilinear
pairing e : G1 ×G2 → GT .

We say that the co-CDH holds in G1, if given g, gα ∈ G1 and h, hβ ∈ G2 for random
α, β ∈ F∗p, the probability to compute gαβ is negligible.

To summarize, the protocol for verifiable matrix multiplication, that we describe in the
following sections, is:

Efficient: While being non-interactive and practical, our scheme requires less costs to operate
algorithms ProbGen and Verify, than executing the matrix multiplication. In particular,
algorithms ProbGen and Verify run in O(m) and O(n) time respectively, whereas the
matrix multiplication takes O(nm) time.

Amortized: Algorithm Setup requires heavy exponentiations and bilinear pairings to pre-
pare the outsourced matrix. However, these operations are performed only once for an

5.3. Protocol Description 101

unlimited number of verifications for the same matrix.

Publicly delegatable: The data owner publishes public key PKM that enables anyone to
submit input to the server.

Publicly verifiable: The querier generates a public verification key VKx, tied to input vec-
tor ~x, enabling any verifier to check the result returned by the server.

Secure: As we will demonstrate in Section 5.4, our protocol is correct and sound.

5.3 Protocol Description

Without loss of generality, we assume that data owner O outsources to a cloud server S the
multiplication operations involving an (n,m)-matrix M of elements Mij ∈ Fp (1 ≤ i ≤ n and
1 ≤ j ≤ m) with p being a large prime. Adopting the VC model introduced in Definition 6
our protocol for verifiable matrix multiplication comprises three phases Setup, Computation
and Verification. We give in what follows the details of the idea expressed in Section 5.2.

5.3.1 Setup

In this phase, data owner O runs Setup which, on input of security parameter 1κ and matrix
M , prepares M as follows:

Parameters generation: Algorithm Setup chooses two cyclic groups G1 and G2 of prime
order p that admit a bilinear pairing e : G1 × G2 → GT . It then selects a generator
h of group G2 and computes h̃ = hδ for a randomly selected δ in F∗p. Thereafter, it
randomly picks n generators gi of G1, for all 1 ≤ i ≤ n. Without loss of generality, we
can assume that gi = gλi for λi in F∗p. Subsequently, algorithm Setup defines the public
parameters associated with matrix M as:

param = (p,G1,G2,GT , e, {gi}1≤i≤n, h, h̃).

Evaluation key computation: Algorithm Setup selects an (n,m)-random matrix R of el-

ements Rij in F∗p and derives another (n,m)-matrix N of elements Nij = g
δMij+Rij
i ,

∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m. Finally, Setup sets the evaluation key to EKM = (M,N).

Public key computation: Setup generates m keys PKj = e(
n∏
i=1

g
Rij
i , h), 1 ≤ j ≤ m and

sets PKM = (PK1,PK2, ...,PKm).

At the end of its execution, algorithm Setup outputs public parameters param, evaluation
key EKM and public key PKM .

5.3.2 Computation

We assume in this phase that a querier Q requests cloud server S to multiply outsourced
matrix M with vector ~x of her choice and to return the result of this computation. To that
effect, querier Q calls ProbGen that takes vector ~x and public key PKM as inputs and returns
encoding σx and verification key VKx. In turn, server S performs the multiplication of ~x by
M by invoking algorithm Compute with inputs encoding ~x and evaluation key EKM . Compute
outputs an encoding of the multiplication result σy. Algorithm ProbGen and Compute operate
as follows:

ProbGen(~x,PKM): On input of column vector ~x = (x1, x2..., xm)ᵀ ∈ Fmp and public key
PKM = (PK1,PK2, ...,PKm) associated with matrix M , this algorithm derives verifica-

tion key VKx =
m∏
j=1

PK
xj
j and returns encoding σx = ~x and verification key VKx.

102 5. Verifiable Matrix Multiplication

Compute(σx,EKM): Provided with encoding σx = ~x = (x1, x2, ..., xm)ᵀ and evaluation key
EKM = (M,N), algorithm Compute multiplies matrix M with vector ~x, which yields
a column vector ~y = (y1, y2, ..., yn)ᵀ. Then, Compute evaluates the product: π =
n∏
i=1

m∏
j=1

N
xj
ij and outputs encoding σy = (~y, π).

5.3.3 Verification

Upon reception of computation result, verifier V checks the correctness of server S ’s response
by running algorithm Verify:

Verify(σy,VKx): Given σy = (~y, π) and verification key VKx, it checks whether the following
equality holds:

e(π, h)
?
= e(

n∏
i=1

gyii , h̃)VKx (5.1)

If so, algorithm Verify outputs ~y meaning that M~x = ~y; otherwise it outputs ⊥.

Figure 5.1: Verifiable Matrix Multiplication

H Algorithm: {param,PKM ,EKM} ← Setup(1κ,M)
1. Parameter generation

Select prime p and groups G1, G2 of prime order p that admits a pairing e : G1 ×G2 → GT ;
Pick n generators gi of G1 and a generator h of G2;
Select random δ ∈ F∗p;
Compute h̃ = hδ;
Set param = {p,G1,G2,GT , e, {gi}1≤i≤n, h, h̃};

2. Evaluation key computation
Select random (n,m)-matrix R of element in F∗p;
For 1 ≤ i ≤ n, 1 ≤ j ≤ m do

Compute Nij = g
δMij+Rij
i ;

End
Set EKM = (M,N);

3. Public key computation
For 1 ≤ j ≤ m do

Compute PKj = e(
n∏
i=1

g
Rij
i , h);

End
Set PKM = (PK1,PK2, ...,PKm);

Return (param,PKM ,EKM);

H Algorithm: {σx,VKx} ← ProbGen(~x,PKM)

1. Compute VKx =
m∏
j=1

PK
xj
j ;

2. Set σx = ~x;
3. Return (σx,VKx);

H Algorithm: σy ← Compute(σx,EKM)
1. Compute ~y = (y1, y2, ..., yn)ᵀ = M~x;

2. Compute π =
n∏
i=1

m∏
j=1

N
xj
ij ;

3. Return σy = (~y, π);

H Algorithm: outy ← Verify(σy,VKx)
1. Parse σy = (~y, π);

2. Verify e(π, h)
?
= e(

∏n
i=1 g

yi
i , h̃)VKx;

3. If it verifies then return outy = ~y else return outy =⊥;

5.4. Security Analysis 103

5.4 Security Analysis

We state and formally prove in this section the two security properties of correctness and
soundness satisfied by our scheme. In particular, we adapt the adversary model described in
Section 3.5 to the specific scenario of matrix multiplication.

5.4.1 Correctness

Theorem 5 (Correctness). Our scheme for publicly verifiable matrix multiplication is
correct.

Proof of Theorem 5. If when queried with vector ~x = (x1, x2, ..., xn)ᵀ, server S cor-
rectly operates algorithm Compute, then Equation 5.1 always holds.

In that case, σy corresponds to the pair (~y,Π) such that ~y = (y1, y2, ..., yn)ᵀ = M~x and

Π =
n∏
i=1

m∏
j=1

N
xj
ij . This implies that for all 1 ≤ i ≤ n: yi =

m∑
j=1

Mijxj mod p, and as the

order of gi is p, it also implies that:

Π =

n∏
i=1

m∏
j=1

N
xj
ij

=
n∏
i=1

m∏
j=1

(
g
δMij+Rij
i

)xj
=

n∏
i=1

m∏
j=1

(
g
δMijxj+Rijxj
i

)
=

n∏
i=1

m∏
j=1

g
δMijxj
i g

Rijxj
i

=

n∏
i=1

g
δ
∑m
j=1Mijxj

i

n∏
i=1

m∏
j=1

g
Rijxj
i

=

n∏
i=1

gδyii

n∏
i=1

m∏
j=1

g
Rijxj
i .

Therefore, we have:

e(Π, h) = e(
n∏
i=1

gδyii

n∏
i=1

m∏
j=1

g
Rijxj
i , h)

= e(

n∏
i=1

gyii , h
δ)e(

n∏
i=1

m∏
j=1

g
Rijxj
i , h) thanks to the bilinearity of e

= e(

n∏
i=1

gyii , h
δ)

m∏
j=1

e(

n∏
i=1

g
Rij
i , h)xj .

As h̃ = hδ and VKx =
m∏
j=1

PK
xj
j , where PKj = e(

n∏
i=1

g
Rij
i , h), we get:

e(Π, h) = e(

n∏
i=1

gyii , h̃)VKx.

104 5. Verifiable Matrix Multiplication

We can conclude that Verify outputs ~y = M~x.

5.4.2 Soundness

Theorem 6 (Soundness). Our solution for publicly verifiable matrix multiplication is
sound under the co-CDH assumption in G1, provided that e : G1 × G2 → GT is a bilinear
pairing of type 2. Namely, there exists a homomorphism φ : G2 → G1 such that φ(h) = g,
where g (respectively h) is a generator of G1 (respectively G2).

Proof of Theorem 6. Assume there is an adversary A that breaks the soundness of our
protocol for publicly verifiable delegation of matrix multiplication with a non-negligible
advantage ε. In other terms, we assume that adversary A convinces a verifier to accept
an incorrect result. Using the soundness definition outlined in Section 3.5.2, we show in
the following via a proof-by-reduction that this assumption is not valid. In particular, we
prove that if adversary A (efficiently) breaks our protocol, that is, returns an incorrect
result to the matrix multiplication, we can build another adversary B that uses adversary
A to break the co-CDH assumption in G1 with a non-negligible advantage ε′ ' ε.

The proof of the soundness of our protocol for publicly verifiable matrix multiplication
comprises two games:

Game 0. This corresponds to the soundness experiment of the protocol described in
Algorithm 3 and Algorithm 4.

Game 1. In this game, adversary B would like to break the co-CDH assumption in G1

with the help of adversary A .
Let Oco−CDH be an oracle which, when invoked, returns the co-CDH pairs (g, gα) ∈ G2

1

and (h, hβ) ∈ G2
2, for some α, β ∈ F∗p.

To break co-CDH, adversary B first calls oracle Oco−CDH which randomly chooses
α, β ∈ F∗p and outputs the co-CDH pairs (g, gα) and (h, hβ).

When adversary A enters the learning phase of the soundness experiment depicted
in Algorithm 3 in Section 3.5.2, A calls oracle OSetup with t different (n,m)-matrices M (k)

of elements M
(k)
ij in Fp, where 1 ≤ k ≤ t, 1 ≤ i ≤ n and 1 ≤ j ≤ m. As a matter of fact,

adversary B simulates OSetup as algorithm Setup in Game 0 except for the following:

1. For 1 ≤ k ≤ t, adversary B selects µk, ηk, ϕk, ψk uniformly at random in F∗p and

computes the pairs (g, gαk) and (h, hβk), where αk = αµk + ηk and βk = βϕk + ψk.
Note that adversary B can compute these pairs without the knowledge of α and
β by just having access to co-CDH pairs (g, gα) and (h, hβ): gαk = (gα)µkgηk and
hβk = (hβ)ϕkhψk .

2. Now, for all 1 ≤ k ≤ t, adversary B sets ĝk = gαk and ĥk = (hβk)δ, for some δ ∈ F∗p.
B then computes for all 1 ≤ k ≤ t and 1 ≤ i ≤ n, ĝki = ĝλik for some randomly
chosen λi ∈ F∗p. Hereafter, B sets the public parameters to

p̂aramk = (p,G1,G2,GT , e, {ĝki}1≤i≤n
1≤k≤t

, h, ĥk),

where e is a bilinear pairing that maps an element from G1 × G2 to an element in
GT and there exists a homomorphism φ : G2 → G1 such that φ(h) = g .

5.4. Security Analysis 105

3. B generates an (n,m)-random matrix N̂(k) of elements N̂
(k)
ij ∈ G1;

4. Afterwards, B computes, for all 1 ≤ k ≤ t, and for all 1 ≤ j ≤ m,

P̂K
(k)

j =

e(
n∏
i=1

N̂
(k)
ij , h)

e(
n∏
i=1

ĝ
M

(k)
ij

ki , ĥk)

; (5.2)

5. B defines the public key associated with matrix M (k) as P̂K
(k)

M = (P̂K
(k)

1 , ..., P̂K
(k)

m);

6. Finally, B sets the corresponding evaluation key to ÊK
(k)

M = (M (k), N̂(k)).

Adversary B concludes its simulation of oracle OSetup by outputting public parameters

p̂aramk, public key P̂K
(k)

M and evaluation key ÊK
(k)

M .

Note that the simulated output of oracle OSetup in the game is statistically indistin-
guishable from the distribution of the output of algorithm Setup in Game 0. Namely, the
following is true:

• The statistical distribution of matrix N̂(k) is identical to the distribution of matrix
N generated by algorithm Setup, which is of the form Nij = g

δMij

i g
Rij
i , where Rij

are elements of a random matrix R, for 1 ≤ i ≤ n and 1 ≤ j ≤ m (see Section 5.3.1).

Since, each N̂(k) are randomly generated, then for each N̂
(k)
ij , we can always find a

random ĝRijki such that N̂
(k)
ij = ĝ

δMij

ki ĝ
Rij
ki .

• For all vectors ~x = (x1, ..., xm)ᵀ ∈ Fmp and ~y = (y1, ..., yn)ᵀ = M (k)~x, the simulated

public key P̂K
(k)

M = (P̂K
(k)

1 , ..., P̂K
(k)

m) verifies this equation:

e

 n∏
i=1

m∏
j=1

(N̂
(k)
ij)xj , h

 = e

(
n∏
i=1

ĝyiki, ĥ

)
m∏
j=1

P̂K
(k)xj
j .

Therefore, we can conclude that the distribution of public key P̂K
(k)

M is the same as
the distribution of PKM = (PK1, ...,PKm) produced by algorithm Setup.

In the rest of the learning phase, adversary A picks a challenge vector ~x(k) =

(x
(k)
1 , x

(k)
2 , ..., x

(k)
m)ᵀ and queries oracle OProbGen with the pair (~x(k), P̂K

(k)

M). As a re-

sult, adversary B simulates oracle OProbGen and outputs the pair (~x(k), V̂K
(k)

x) with

V̂K
(k)

x =
∏m
j=1 P̂K

(k)xj
j . Afterwards, adversary A returns a response σ

(k)
y = (~y(k),Π(k))

and invokes algorithm Verify which outputs out
(k)
y .

In the challenge phase of the soundness game (cf. Algorithm 4), adversary A selects
a matrix M from the ones challenged to OSetup during the learning phase. Without
loss of generality, we assume matrix M is associated with public parameters p̂aram =
(p,G1,G2,GT , e, {ĝi}1≤i≤n, h, ĥ), where for 1 ≤ i ≤ n, ĝi = ĝλi = gα̂λi , with α̂ = αµ̂ + η̂
and (µ̂, η̂) is one of the pair of coefficients selected by adversary B when she simulated

oracle OSetup to adversary A at the beginning of Game 1. Similarly, ĥ = hβ̂ where β̂ =

βϕ̂ + ψ̂. In addition, matrix M is associated with public key P̂KM and evaluation key
ÊKM , both generated during the simulation of OSetup by adversary B. Adversary A also
picks a challenge vector ~x = (x1, x2, ..., xm)ᵀ and queries oracle OProbGen with the pair

(~x, P̂KM).

106 5. Verifiable Matrix Multiplication

Adversary B simulates oracle OProbGen and outputs the pair (~x, V̂Kx) with V̂Kx =
m∏
j=1

P̂K
xj
j . Afterwards, adversary A returns a response σy = (~y, π) such that ~y 6= M~x. In

the remainder of this proof, we denote ~y∗ = (y∗1, y
∗
2, ..., y

∗
n)ᵀ = M~x.

To break the co-CDH assumption in G1, adversary B first fetches the vector ~λ =
(λ1, λ2, ..., λn) used to compute the powers ĝi = ĝλi and verifies whether ~λ~y = ~λ~y∗ mod p.
If so, adversary B aborts the game. We will later provide Lemma 2 stating that, under
the hardness of discrete logarithm, the probability that ~λ~y = ~λ~y∗ mod p is negligible. If
~λ~y 6= ~λ~y∗ mod p, B breaks co-CDH as follows:

Since σy = (~y, π) passes the verification, then this implies that the following equation
holds:

e(π, h) = e(
n∏
i=1

ĝyii , ĥ)V̂Kx (5.3)

Also given Equation 5.2, we have:

e(

n∏
i=1

m∏
j=1

N̂
xj
ij , h) = e(

n∏
i=1

ĝ
y∗i
i , ĥ)V̂Kx (5.4)

By dividing Equation 5.3 with Equation 5.4, we obtain:

e

 π
n∏
i=1

m∏
j=1

N̂
xj
ij

, h

 = e

(
n∏
i=1

ĝ
yi−y∗i
i , ĥ

)

= e

(
n∏
i=1

ĝλi(yi−y
∗
i), ĥ

)
= e

(
ĝ
∑n
i=1 λi(yi−y∗i), ĥ

)
= e

(
ĝ
~λ(~y−~y∗), ĥ

)
As ĝ = gα̂ and ĥ = hβ̂δ, where α̂, β̂, δ correspond to the challenged matrix M , we

deduce that

e

 π
n∏
i=1

m∏
j=1

N̂
xj
ij

, h

 = e
(
gα̂
~λ(~y−~y∗), hβ̂δ

)

= e
(
gα̂, hβ̂

)δ~λ(~y−~y∗)

To make the notation less cluttered, we denote for the rest of this proof: Λ = δ~λ(~y−~y∗).
Hence:

e

 π
n∏
i=1

m∏
j=1

N̂
xj
ij

, h

 = e
(
gα̂, hβ̂

)Λ
.

Since α̂ = αµ̂+ η̂ and β̂ = βϕ̂+ ψ̂, we can write:

e

 π
n∏
i=1

m∏
j=1

N̂
xj
ij

, h

 = e
(

(gα)µ̂gη̂, hβ̂
)Λ

5.4. Security Analysis 107

= e
(

(gα)µ̂, hβ̂
)Λ

e
(
gη̂, hβ̂

)Λ

= e
(

(gα)µ̂, (hβ)ϕ̂hψ̂
)Λ

e
(
gη̂, hβ̂

)Λ

= e
(

(gα)µ̂, (hβ)ϕ̂
)Λ

e
(

(gα)µ̂, hψ̂
)Λ

e
(
gη̂, hβ̂

)Λ

= e
(
gαβ, h

)µ̂ϕ̂Λ
e
(

(gα)µ̂ψ̂Λgη̂β̂Λ, h
)

Since φ(h) = g, where φ : G2 → G1 is a homomorphism, we have:

e

 π
n∏
i=1

m∏
j=1

N̂
xj
ij

, h

 = e
(
gαβ, h

)µ̂ϕ̂Λ
e
(

(gα)µ̂ψ̂Λφ(hβ̂)η̂Λ, h
)

Again, to reduce the amount of notation, we set Θ = (gα)µ̂ψ̂φ(hβ̂)η̂. Note that adver-
sary B can easily compute Θ since she knows (g, gα) (that she received from Oco−CDH),

µ̂, ψ̂ and η̂ (that she selected herself) and hβ̂ (she computed during the learning phase).
Therefore, we can conclude:

e

 π
n∏
i=1

m∏
j=1

N̂
xj
ij

, h

 = e
(
gαβ, h

)µ̂ϕ̂Λ
e
(
ΘΛ, h

)

e

 π

ΘΛ
n∏
i=1

m∏
j=1

N̂
xj
ij

, h

 = e
(
gαβ, h

)µ̂ϕ̂Λ

e


 π

ΘΛ
n∏
i=1

m∏
j=1

N̂
xj
ij


(Λµ̂ϕ̂)−1

, h

 = e
(
gαβ, h

)

As a result, if ~λ(~y − ~y∗) 6= 0 mod p, then δ~λ(~y − ~y∗) 6= 0 mod p (δ ∈ F∗p) and Λ 6= 0.
Furthermore, since µ̂, ϕ̂ ∈ F∗p, µ̂ϕ̂ 6= 0. We finally have

gαβ =

 π

ΘΛ
n∏
i=1

m∏
j=1

N̂
xj
ij


(Λµ̂ϕ̂)−1

,

where Θ = (gα)µ̂ψ̂φ(hβ̂)η̂ and Λ = δ~λ(~y − ~y∗).
Hence, adversary B breaks the co-CDH assumption in G1 as long as ~λ~y 6= ~λ~y∗ mod p.

Fortunately, under the hardness of discrete logarithm, the probability that ~λ~y = ~λ~y∗

mod p is negligible, as shown in Lemma 2.
To summarize, if there is an adversary A that breaks the soundness of our protocol

for publicly verifiable matrix multiplication with a non-negligible advantage ε, then there
exists an adversary B that breaks the co-CDH assumption in G1 with a non-negligible
advantage ε′ ' ε.

108 5. Verifiable Matrix Multiplication

Lemma 2. If adversary A outputs ~y such that ~λ~y = ~λ~y∗ mod p, then adversary B can
break the Discrete Log (DL) assumption in G1.

Proof of Lemma 2. Assume there is an adversary A that outputs a vector ~y =
(y1, y2, ..., yn)ᵀ verifying the property above with a non-negligible advantage ε. We show
that there is another adversary B which uses adversary A to break the DL assumption in
G1 with a non-negligible advantage greater than ε

n .
Assume that adversary B receives óg ∈ G1 and is required to output λ ∈ Fp such that

óg = gλ.
To this effect, adversary B simulates the soundness experiment. More precisely, upon

receipt of an (n,m)-matrix M , it simulates the output of OSetup exactly as in Game 0
except for the following:

• It selects k randomly in {1, 2, ..., n} and lets ógk = óg;

• for all 1 ≤ i ≤ n, i 6= k, it randomly selects λi ∈ F∗p and sets ógi = ógλi ;

• it sets the public parameters to úparam = (p,G1,G2,GT , e, {ógi}1≤i≤n, h, h̃).

Adversary A eventually returns a pair of vectors ~x = (x1, x2, ..., xm)ᵀ and
~y = (y1, y2, ..., yn)ᵀ that verify ~y 6= M~x and ~λ~y = ~λM~x mod p, whereby ~λ =
(λ1, λ2, ..., λ, λk+1, ..., λn).

If we denote ~y∗ = (y∗1, y
∗
2, ..., y

∗
n)ᵀ = M~x, then the above equality entails that

λ =

n∑
i=1,i 6=k

λi(y
∗
i − yi)

yk − y∗k

as long as yk 6= y∗k.
Since ~y 6= ~y∗, then there is at least one index 1 ≤ j ≤ n such that yj 6= y∗j . Since

k is randomly chosen from {1, ..., n}, the probability that yk 6= y∗k is at least 1/n, and
consequently, adversary B will be able to break the DL assumption with advantage ≥ ε/n.

5.5 Performance Analysis

We discuss here the performance of our solution for verifiable matrix multiplication.

5.5.1 Storage

In terms of storage complexity, server S is required to keep the (n,m)-matrix M of elements
Mij ∈ Fp and the (n,m)-matrix N of elements Nij ∈ G1. The storage complexity is equal
to nm · |Fp| bits and nm · |G1| bits where |Fp| (resp |G1|) designates the size (in bits) of an
element in Fp (resp in G1).

On the other hand, data owner O is required to store and publish the public parameters
which are of size n · |G1| bits and the public key PKM whose size is m · |GT | bits. We highlight
the fact that the public parameters’ size can be made constant: Instead of advertising the set
{gi}1≤i≤n, the client can select a hash function H : F∗p → G1\{1} and compute the generators
gi as H(i), for all 1 ≤ i ≤ n. On the downside, this optimization makes our scheme secure
only in the random oracle model.

The reader is provided with a summary of this storage complexity in Table 5.1.

5.5. Performance Analysis 109

5.5.2 Communication

As regard communication complexities, querier Q sends encoding σx and verification key
VKx which consists of a bandwidth consumption of O(m) space, since m is the dimension
of σx = ~x. On the other hand, server S sends an encoding of the matrix multiplication
result ~y which represents O(n) space (~y amounts to n · |Fp| bits). Table 5.1 summarizes the
communication complexity of our protocol for verifiable matrix multiplication.

5.5.3 Computation

Algorithm Setup generates the (n,m)-random matrix R which requires the generation of nm

random numbers in Fp. To compute the elements Nij of matrix N as g
δMij+Rij
i , algorithm

Setup performs nm multiplications and n(m−1) nm additions in Fp, and nm exponentiations
in G1. Furthermore, the generation of public key PKM demands m(n − 1) multiplications
in G1, nm exponentiations in G1 and m pairings. It should be noted that while algorithm
Setup involves expensive operations such as exponentiations and pairings, it is executed by
the data owner only once, and consequently, its cost is amortized over the large number of
verifications that a verifier can perform.

To multiply a vector ~x = (x1, x2, ..., xm)ᵀ with matrix M , algorithm ProbGen computes
VKx =

∏m
j=1 PK

xj
j . This involves m− 1 multiplications and m exponentiations in GT .

Moreover, algorithm Compute consists of two operations: (i) the matrix multiplication
~y = M~x which requires nm multiplications and additions in Fp; and (ii) the generation of
the proof Π which involves nm exponentiations and (n− 1)(m− 1) multiplications in G1.

Finally, algorithm Verify evaluates two bilinear pairings, (n − 1) multiplications and n
exponentiations in G1, and one multiplication in GT . We summarize in Table 5.1 the com-
putational complexity of our protocol for verifiable matrix multiplication.

Table 5.1: Costs of our Verifiable Matrix Multiplication solution

Storage |G| refers to the size (in bits) of elements in set G.

Data owner O(n+m) n · |G1|+m · |GT | bits
Server O(nm) nm · |Fp|+ nm · |G1| bits

Communication
Outbound O(m) m · |Fp|+ 1 · |GT | bits

Inbound O(n) n · |Fp|+ 1 · |G1| bits

Operations Setup ProbGen Compute Verify

PRNG nm - - -
Additions in Fp nm - n(m− 1) -

Multiplications in Fp nm - nm -
Multiplications in G1 m(n− 1) - (n− 1)(m− 1) n− 1
Multiplications in G2 - - - -
Multiplications in GT - m− 1 - -

Exponentiations in G1 2nm - nm n
Exponentiations in G2 - - - -
Exponentiations in GT - m - -

Pairings m - - 2

5.5.4 Comparison with Related Work

We analyze two relevant prior works on verifiable matrix multiplication and compare them
with our solution. Fiore and Gennaro [85] (extended by Zhang and Safavi-Naini [193]) exploit
Algebraic Pseudo-Random Functions (aPRF) for publicly verifiable matrix multiplications.

110 5. Verifiable Matrix Multiplication

Public
Setup ProbGen Compute Verify Delegatability

Fiore and Gennaro 3nm exp in G1 n pairings nm exp in G1 n pairings No
[85] 2(n+m) exp in G1 n exp in GT

Zhang and Blanton 1 pairing n exp in G1 nm exp in G2 n pairings Yes
[195] m exp in G2 (n+ 1) exp in GT

(n+ 1) exp in GT

Our scheme 2nm exp in G1 m exp in GT nm exp in G1 2 pairings Yes
m pairings n exp in G1

Table 5.2: Comparison with related work

However, only the data owner can submit input vectors to the outsourced multiplication,
hence their constructions do not meet the public delegatability requirement. Besides, even
though our Setup is more expensive than in [85], our algorithms ProbGen and Verify require
less computational resources. Zhang and Blanton [195] present a construction for publicly
delegatable and verifiable outsourcing of matrix multiplication that uses mathematical prop-
erties of matrices instead of aPRFs. Unlike our work, the public verifiable scheme suggested
in [195] does not transfer the matrix M to the server during Setup (whose purpose is reduced
to generating the public parameters). Instead, ProbGen prepares the matrix and the input
vector for the delegation. The solution proposed by Zhang and Blanton [195] does not fol-
low the amortized model. Hence, ProbGen has to be repeated for each matrix to outsource,
inducing possible expensive costs. This construction is secure under the multiple decisional
Diffie-Hellman (M-DDH) and the eXternal Diffie-Hellman (XDH) assumptions, which are
stronger than the co-CDH assumption we rely on in our solution. Table 5.2 depicts a com-
parison of our proposal for matrix multiplication with the solution proposed by Fiore and
Gennaro [85] and Zhang and Blanton [195].

5.5.5 Experimental Results

We benchmark our verifiable matrix multiplication solution by means of a prototype imple-
mented in Python, with the help of the Charm-Crypto library. We experiment on the same
machine as in the polynomial case (Processor Intel Core i5-2500; CPU@3.80GHz clock speed;
64 bit OS; RAM 16 GB). The various measurements reported in this section correspond to
an average time of 20 trials of our prototype. We run two types of benchmarks:

Impact of m: For several values of n (the number of rows in the matrix), we tune m (the
number of columns) to appreciate the effects of this parametrization over the overall
time of our prototype. Results are listed in Table 5.3 and plotted in Figure 5.2.

Impact of n: Symmetrically, given some values of m, we test, for different values of n,
the impact of the number of rows in the times required during the execution of our
implementation. Table 5.4 shows the measured time for each algorithm of our protocol
whereas Figure 5.3 depicts their evolution.

In accordance with Table 5.1, the experimental results show that:

1. Setup is the most expensive operation. The time required to execute this algorithm is
linear both in m (as shown in Figure 5.2) and n (as depicted in Figure 5.3).

2. Similarly, the time for algorithm Compute linearly increases with n and m.

3. Table 5.3 and Table 5.4 reveal that algorithm ProbGen only depends on m, according
to which the times to compute a computation request linearly grows.

4. As we can see in Table 5.3 and Table 5.4, algorithm Verify only depends on the value
of n and grows linearly with it.

5.5. Performance Analysis 111

Table 5.3: Average times of our protocol and amortization (impact of number of columns)

n m Setup (s) ProbGen (s) Compute (s) Verify (s) ComputeLocal (s)

10

10 0.307 0.001 0.139 0.016 6,072× 10−5

100 2.987 0.013 1.359 0.015 4,891× 10−4

1000 29.728 0.125 13.500 0.015 0,004
10000 297.037 1.245 134.987 0.015 0,043
100000 2978.320 12.263 1343.951 0.015 0,472

100

10 2.899 0.001 1.359 0.138 6,209 × 10−4

100 28.987 0.013 13.567 0.138 0,005
1000 288.171 0.125 134.938 0.137 0,043
10000 2882.103 1.247 1350.279 0.137 0,436

1000
10 28.739 0.001 13.484 1.351 0,008
100 287.223 0.013 134.935 1.353 0,049
1000 2874.599 0.125 1350.250 1.354 0,461

10000
10 287.380 0.001 135.307 13.523 0,079
100 2871.961 0.012 1350.648 13.499 0,477

Figure 5.2: Experimental measurements in function of the number of columns

5. Algorithms ProbGen and Verify generate light costs as shown in Table 5.4 and Table 5.3,
which makes the matrix multiplicaiton outsourcing practical.

In the last column of Table 5.3, we report the time it takes to compute the matrix
multiplication locally by the data owner (that is, without resorting to our verifiable matrix
multiplication scheme). The values show that, according to our criterion of outsourceability
presented in Definition 10, the expensive Setup is not amortized over multiple verifications.
Indeed, this observation comes from the fact that computing the matrix multiplication only
involves O(nm) multiplications in Fp while algorithm ProbGen requires O(m) exponentiations
in GT and algorithm Verify O(n) exponentiations in G1. Thus, the time to execute these two
algorithms is greater than the time to perform the matrix multiplication. Nonetheless, we
can still acknowledge that matrix multiplication protocol is outsourceable for two reasons.

First, our scheme applies to scenarios that involve very large matrices. If we consider
our space agency scenario, high resolution space images, which are represented as matrices
of pixels, can be very large. For example, the Mars Reconnaissance Orbiter’s HiRISE (High

112 5. Verifiable Matrix Multiplication

Table 5.4: Average times of our protocol and amortization (impact of number of rows)

m n Setup (s) ProbGen (s) Compute (s) Verify (s)

10

10 0,307 0,001 0,139 0,016
100 2,899 0,001 1,359 0,138
1000 28,739 0,001 13,485 1,351
10000 287,380 0,001 135,307 13,523
100000 2875,865 0,004 1338,877 134,072

100

10 2,987 0,013 1,359 0,016
100 28,987 0,013 13,567 0,138
1000 287,223 0,013 134,935 1,353
10000 2871,961 0,012 1350,648 13,499

1000
10 29,728 0,124 13,500 0,015
100 288,171 0,125 134,938 0,137
1000 2874,599 0,125 1350,250 1,354

10000
10 297,037 1,244 134,987 0,015
100 2882,103 1,247 1350,279 0,137

Figure 5.3: Experimental measurements in function of the number of rows

Resolution Imaging Science Experiment) camera takes pictures of around 2.52 gigapixels [151].
In memory, this kind of images amounts to store matrices of 14 GB, if each pixel contains 16
millions of colors, encoded on 6 bytes. It makes sense that the owner of these images may not
afford to store this amount of memory. Thus her best strategy is: outsourcing the storage
of these images to the cloud and requesting the server to process them, using the proposed
verifiable matrix multiplication protocol. This scenario is realistic: Powell et al. [151] use
cloud computing technologies to perform gigapixel image processing, which involves matrix
multiplication. To summarize, storage efficiency defines another criterion for the amortized
model and outsourceability.

Furthermore, another advantage of our protocol is the public delegatability and verifia-
bility properties. Namely, for an outsourced matrix, multiple users can request the cloud to
multiply this matrix by an input vector of their choices. We can thus define a third criterion

5.6. Conclusion to Verifiable Matrix Multiplication 113

with respect to bandwidth efficiency for outsourceability. This criterion is particularly suited
for verifiable computation solutions that are publicly delegatable and verifiable.

Definition 12 (Outsourceability - bandwidth). Outsourceability for a publicly dele-
gatable and publicly verifiable computation scheme is determined by a parameter N ≥ 0,
according to which the bandwidth consumption between data owner O and N third-party
queriers Q is greater than the bandwidth consumed by O to outsource the function to the
cloud server S plus the bandwidth consumed between S and the N third-party queriers Q.

Stated differently, x is such that:

N · BW(O → Q) ≥ BW(O → S) +N · BW(S � Q)

where BW is the bandwidth consumed between two parties.

Let us consider the scenario where the data owner stores the large matrix locally. To
enable N third-party users to perform multiplications on this matrix, the data owner needs
to transmit the matrix to them, which amounts to a bandwidth complexity in O(Nnm)
(namely, Nnm · |Fp| bits have to be transmitted). On the other hand, outsourcing the matrix
will lead to a communication complexity in O(nm + N(m + n)) (namely, the data owner
transmits nm · |Fp| bits to the cloud, N ProbGen transmit Nm · |Fp| + N · |GT | bits and N
Verify send Nn · |Fp| + N · |G1| bits, as shown in Table 5.1). Let us calculate these figures
for the space agency scenario. We consider that a 1 gigapixel image (6 GB in memory) is a
matrix of approximately n = 32000 rows and m = 32000 columns and that N = 1000 third-
party researchers will multiply this matrix with some inputs. The matrix contains pixels of
|Fp| = 6 bytes and for simplicity |G1| = |GT | = 160 bits94. If the space agency locally stores
this matrix and transmits it to third-party researchers for multiplication then the bandwidth
consumption amounts to approximately 6 TB. If the space agency outsources the matrix and
uses our publicly delegatable and verifiable matrix multiplication protocol, then the agency
only needs to transmit the matrix of 6 GB to the cloud. The interaction between the cloud
and the third parties who request matrix multiplication only amounts to 0.4 GB in total.

5.6 Conclusion to Verifiable Matrix Multiplication

We introduced in this chapter a new non-interactive publicly delegatable and publicly veri-
fiable matrix multiplication scheme. While many existing solutions leverage algebraic PRF,
our solution only relies on algebraic properties of matrices. Compared to prior work, our
solution reduces the cost of the multiplication of a random matrix R with the input vector ~x
by introducing a random row vector ~λ. This vector is left-multiplied with R~x as a projection
of R~x on ~λ, which shrinks the cost of verification from quadratic to linear. Our solution is
secure against the correctness and soundness definitions we stated in Section 3.5, without
relying on heavy cryptographic operations, nor on non-falsifiable assumptions, as it is the
case for some existing work. Furthermore, our protocol meets the efficiency requirement that
we highlighted in Section 3.2.2 and follows the amortized model approach with respect to an
expensive setup operation. The strength of our approach is that public delegatability and
verifiability are ensured without sacrificing efficiency.

94This is the case for Charm-Crypto library.

114 5. Verifiable Matrix Multiplication

6. Verifiable Conjunctive Keyword Search 115

Chapter 6

Verifiable Conjunctive Keyword
Search

6.1 Introduction to Verifiable Conjunctive Keyword Search

In this chapter, we focus on the problem of verifiable conjunctive keyword search. Cloud
servers are the best candidates to undertake the operation of search in large datasets. Indeed,
they have means to store huge amount of data and own the necessary computational resources
to process and analyze huge datasets. Keyword search is one of the most frequently used
primitives in data mining. Therefore, we consider this operation and design a solution that
assures the correctness of the search result.

More specifically, let us consider again the international space agency scenario. For the
sake of their Earth observation mission, the agency collects and generates huge amount of
data, be it space and aerial images or time-series data. To save IT investments, the agency
outsources this public dataset to a cloud server. To enable the processing of this data, the
space agency annotates each document with information relevant for their identification,
classification, search or retrieval. Hence, an image can be annotated with information related
to:
• the name of the satellite that acquired the image (LandSat95, Sentinel-196, Ikonos97,

etc.)
• the mission or topic the image was captured for (forest, ocean, erosion, landslide, vol-

cano, etc.)
• the places on Earth the image depicts (Nice, Haiti, Lake Baikal, Gobi Desert, World

Trade Center New-York, etc.)
• the date of acquisition, etc.

As searching for keyword in the database of images might be costly, the space agency also
delegates the search operation to the cloud. Furthermore, the agency wants to empower
third-party researchers collaborating in its Earth observation mission (i) to issue conjunctive
keyword search queries to the database and (ii) to efficiently verify the correctness of the
results returned by the cloud. As an example, a collaborator from a research center can
search for keywords such as “LandSat AND hurricane AND Florida” to search whether there
exist, in the agency’s public database, images that were produced by the LandSat satellite
and showing a hurricane in Florida98. If such an image does not exist, the cloud server should
return a proof that the search yields no result. Otherwise, it returns the identifiers of the
images that satisfy the search query, that is, the images whose annotations contain keywords

95LandSat Image Gallery, February 4, 2016, http://tiny.cc/m9gu8x [Accessed: February 4, 2016].
96Sentinel-1 Missions, ESA, http://tiny.cc/a9gu8x [Accessed: February 4, 2016].
97Ikonos Satellite Images, Satellite Imaging Corporation, http://tiny.cc/qahu8x [Accessed: February 4,

2016].
98Such images do exist, for example see the image produced by satellite Landsat of hurricane Jeanne above

Florida in September 2004. LandSat Image Gallery, http://tiny.cc/rchu8x [Accessed: February 4, 2016].

http://tiny.cc/m9gu8x
http://tiny.cc/a9gu8x
http://tiny.cc/qahu8x
http://tiny.cc/rchu8x

116 6. Verifiable Conjunctive Keyword Search

“LandSat AND hurricane AND Florida”. Along with this result, the server should produce
a proof stating that it operated the search correctly and returned the valid set of image
identifiers corresponding to the search. In other terms, the server proves that the result it
returned does not contain images that do not match the keyword search nor omit any images
matching the search query.

It becomes obvious that this scenario fits into the PVC model defined in Section 3.4, where
data owner O corresponds to our space agency. It delegates to a cloud server S the search
operation on a large dataset F = {F1, F2, ..., Fn}. Namely, data owner O executes algorithm
Setup to outsource the set of files F and to enable verifiable conjunctive keyword search.
Cloud server S undertakes the search operation by executing a slightly modified version of
algorithm Compute, that we name Search. This algorithm also generates the proof that the
search results are correct. Additionally, we mentioned that the space agency delegates the
search and verification capabilities to third parties: (i) a querier Q will be able to run a
modified version of algorithm ProbGen, named QueryGen for more expressiveness, to submit
conjunctive search queries to server S ; and (ii) a verifier V who runs algorithm Verify can
check the validity of the search results returned by cloud server S .

In the two next sections, we adapt the system model of publicly verifiable computation
presented in Section 3.4 to the problem of publicly verifiable conjunctive keyword search (Sec-
tion 6.2). We also customize in Section 6.2.3 the adversary model introduced in Section 3.5.

6.2 Definition of Publicly Verifiable Conjunctive Keyword Search

In the following, we tailor the definition of a PVC scheme to the problem of Publicly Verifiable
Conjunctive Keyword Search (PVCKS).

6.2.1 System Model

As discussed previously, publicly verifiable conjunctive keyword search enables a data owner
O to outsource a set of files F to a server S , while ensuring the properties of
• Public delegatability: A querier Q can issue conjunctive keyword search queries of

the form W = {ω1, ω2, ..., ωk} to server S for outsourced files F . Server S responds to this
search query by returning the subset of files FW ⊂ F containing all words in W .
• Public verifiability: A verifier V can assess the correctness of the results returned

by server S , that is, verify whether the search result output by S for a collection of words W
is correct. Namely, if we denote CKS the function which on inputs of files F and a collection
of words W returns the files containing all keywords in W , then verifier V checks that FW
actually corresponds to CKS(F ,W).

In more formal terms, we adapt the PVC model for the search operation and define
thereafter publicly verifiable conjunctive keyword search. In this setting, function f in the
PVC definition corresponds to the set of files F to be outsourced. Algorithm ProbGen becomes
QueryGen that takes as input the conjunction of keywords W ant outputs an encoded search
query EQ. Algorithm Compute from Definition 6 is appropriately renamed Search whereas
algorithm Verify in PVCKS handles the same function as in PVC. Furthermore, PVCKS
consists of three phases: Setup, Search and Verification.

Definition 13 (Publicly Verifiable Conjunctive Keyword Search Scheme). A
PVCKS scheme consists of four polynomial-time algorithms (Setup, QueryGen, Search,
Verify), distributed across three phases:

I Setup. This phase only involves data owner O. She runs algorithm Setup to produce
the keying material required in the PVCKS scheme and to process files f before their
outsourcing:

6.2. Definition of Publicly Verifiable Conjunctive Keyword Search 117

BSetup(1κ,F)→ (PKF , LKF): Data owner O executes this randomized algorithm
whenever it wishes to outsource a set of files F = {F1, F2, ...}. On input of
a security parameter 1κ and files F , algorithm Setup outputs the pair of public
key PKF and lookup key LKF (i.e. search key, we use the terms lookup key and
search key interchangeably).

I Search. The Search phase consists of two steps. Querier Q runs algorithm QueryGen
that prepares a search query W to be submitted to cloud server S . In turn, the server
invokes algorithm Search that search keywords belonging to W in set of files f and
generates a proof of search.

BQueryGen(W ,PKF)→ (EQ,VKQ): Given a collection of words W = {ω1, ω2, ...}
and public key PKF , querier Q calls algorithm QueryGen which outputs an en-
coded conjunctive keyword search query EQ and the corresponding public verifi-
cation key VKQ.

BSearch(LKF ,EQ)→ ER: Provided with search key LKF and the encoded search query
EQ, server S executes this algorithm to generate an encoding ER of the search
result FW = CKS(F ,W).

I Verification. After receiving the search results and the proof of search from cloud server
S , verifier V executes algorithm Verify to check their validity.

BVerify(ER,VKQ)→ out: Verifier V invokes this deterministic algorithm to check the
integrity of the server’s response ER. Notably, algorithm Verify first converts ER
into a search result FW , then uses verification key VKQ to decide whether FW
is equal to CKS(F ,W). Accordingly, algorithm Verify outputs out = FW if it
believes that FW = CKS(F ,W), and in this case we say that verifier V accepts
the server’s response. Otherwise, algorithm Verify outputs out =⊥, and we say
that verifier V rejects the server’s result.

6.2.2 Definition of a Publicly Dynamic Verifiable Conjunctive Keyword
Search protocol

In Definition 14, we formalize three algorithms that extends the initial definition of a publicly
verifiable conjunctive keyword search (Definition 13) to the case where the data is subject
to updates. Namely, we introduce algorithm UpdateQuery run by the data owner and which
requests the server to perform the update using a new algorithm Update. This algorithm also
produces a proof of correct update that is verified by the data owner who invokes the new
algorithm VerifyUpdate.

Definition 14 (Publicly Dynamic Verifiable Conjunctive Keyword Search). A
Publicly Dynamic Verifiable Conjunctive Keyword Search is a PVCKS scheme which
efficiently handles updates in the outsourced data. Additionally to the algorithms related to
the definition of a PVCKS scheme, a Publicly Dynamic Verifiable Conjunctive Keyword
Search solution includes these three algorithms:

BUpdateQuery(Fj ,Wj , op)→ (UQ,VKQ): Given a file Fj to be updated (either Fj is an
existing file to be modified or deleted, or Fj = Fn+1 is a new file to insert in the
outsourced database), given Wj the collection of keywords that have to be updated,
and given the operation op ∈ {modify, delete, insert} to be performed, data owner

118 6. Verifiable Conjunctive Keyword Search

O calls algorithm UpdateQuery which outputs an encoded update query UQ and the
corresponding public verification key VKQ.

BUpdate(PKF , LKF ,UQ)→ (Πupd, LK′F): Provided with public key PKF , search key LKF
and the encoded update query EQ, server S executes this algorithm to generate a new
search key LK′F and a proof of update Πupd.

BVerifyUpdate(VKQ,Πupd)→ {accept, reject}: Provided with verification key VKQ, and the
proof of update Πupd, this algorithm checks that algorithm Update correctly modified
LK′F . If it is the case, then algorithm VerifyUpdate returns accept. Otherwise, it
outputs reject.

6.2.3 Adversary Model

We tailor the adversary model proposed for verifiable computation in Section 3.5 to our
problem of PVCKS.

A conjunctive keyword search must fulfill the two security of correctness and soundness.
We briefly recall that correctness means that a response generated by an honest server will
always be accepted by the verifier; soundness implies that a verifier accepts a response of
a (potentially malicious) server if and only if that response is the outcome of a correct
execution of the Search algorithm. Since we adopt new notations for the case of search,
compared to the general model presented in Section 3.4, we give in the following paragraphs a
clear characterization of the correctness and soundness properties, specifically to the problem
of verifiable keyword search.

6.2.3.1 Correctness

A verifiable conjunctive keyword search scheme is said to be correct, if whenever server S
operates algorithm Search correctly on the input of some encoded search query EQ, it always
obtains an encoding ER that will be accepted by verifier V who runs algorithm Verify.

Definition 15. A verifiable conjunctive keyword search is correct, iff for any set of files
F and collection of words W :

If Setup(1κ,F) → (PKF , LKF), QueryGen(W ,PKF) → (EQ,VKQ) and
Search(LKF ,EQ)→ ER, then:

Pr(Verify(ER,VKQ)→ CKS(F ,W)) = 1

6.2.3.2 Soundness

We say that a scheme for publicly verifiable conjunctive keyword search is sound, if for any
set of files F and for any collection of words W , server S cannot convince a verifier V to
accept an incorrect search result.

To formalize the soundness of verifiable conjunctive keyword search, we adapt the sound-
ness experiment presented in Section 3.5.2 with the notations we adopt in this chapter.
Algorithm 5 depicts the learning phase of the soundness experiment, whereas Algorithm 5
details its challenge phase.

Let out∗ denote the output of algorithm Verify on input (E∗R,VK∗Q). Adversary A succeeds
in the soundness experiment if: (i) out∗ 6=⊥ and (ii) out∗ 6= CKS(F ∗,W ∗), where F ∗ is the
set of files associated with public key PK∗F .

6.3. Protocol Overview 119

H Algorithm 5: Learning Phase of the Soundness Experiment

for k := 1 to t do
A → Fk;
(PKFk , LKFk)← OSetup(1κ,Fk);
A →Wk;
(EQ,k,VKQ,k)← OQueryGen(Wk,PKFk);
A → ER,k;
outk ← Verify(ER,k,VKQ,k);

end

H Algorithm 6: Challenge Phase of the Soundness Experiment

A → (PK∗F , LK∗F);
A →W ∗;
(E∗Q,VK∗Q)← OQueryGen(W ∗,PK∗F);

A → E∗R;
out∗ ← Verify(E∗R,VK∗Q);

Definition 16. Let AdvA denote the advantage of adversary A in succeeding the soundness
game, i.e., AdvA = Pr(out∗ 6=⊥ ∧ out∗ 6= CKS(F ∗,W ∗)).

A publicly verifiable conjunctive keyword search is sound, iff for any adversary A,
AdvA ≤ ε and ε is a negligible function in the security parameter 1κ.

6.3 Protocol Overview

Our PVCKS solution relies on polynomial-based accumulators (i.e. bilinear pairing ac-
cumulators) defined in [132, 69] to represent the keywords present in files F = {F1, F2, ..., Fn}.
By definition, a polynomial-based accumulator maps a set to a unique polynomial such that
each root of the polynomial corresponds to an element in the set. Hence, polynomial-based
accumulators allow efficient verifiable test of membership which can be tailored for
Verifiable Keyword Search (VKS).

A naive approach to accommodate polynomial-based accumulators to VKS would be to
represent the words in each file Fj ∈ F with a single accumulator. To check whether a word
ω is in file Fj , querier Q first sends a search query to server S , upon which the latter generates
a proof of membership if word ω is present in Fj ; and a proof of non-membership otherwise.

This solution however is not efficient: (i) Given the mathematical properties of polynomial-
based accumulators, the resulting complexity of keyword search in a file Fj is linear in the
number of keywords in that file; (ii) additionally, to identify which files Fj contain a word,
the user must search all files in F one by one.

To avoid these pitfalls, we combine polynomial-based accumulators with Merkle trees
[125] to build an authenticated index of the keywords in files in F such that the keyword search
at the server runs in logarithmic time. More specifically, data owner O first organizes the
keywords in all files in F into an index I (i.e. hash table) where each entry corresponds to a
bucket B storing at most d keywords. To construct an efficient index I, data owner O employs
the Cuckoo hashing algorithm introduced in [74] which guarantees a constant lookup time
and minimal storage requirements. Later, data owner O authenticates index I as follows:
(i) For each bucket B, it computes an accumulator of the keywords assigned to B; (ii) and
it builds a binary Merkle tree TW that authenticates the resulting accumulators. Files in F
are then outsourced together with Merkle tree TW to server S . Hence, when server S receives

120 6. Verifiable Conjunctive Keyword Search

Figure 6.1: Overview of our protocol for Verifiable Conjunctive Keyword Search

a search query for a word ω, it finds the buckets corresponding to ω in index I, retrieves
the corresponding accumulator, generates a proof of membership (or non-membership), and
authenticates the retrieved accumulator using the Merkle tree TW. Therefore, anyone holding
the root of TW can verify the server’s response.

The solution sketched above still does not identify which files exactly contain a word ω nor
supports Verifiable Conjunctive Keyword Search (VCKS). Thus, data owner O constructs
another Merkle tree TF whereby each leaf is mapped to a single keyword and associated with
the polynomial-based accumulator of the subset of files containing that keyword. Data owner
O then uploads files F and Merkle trees TW and TF to server S . Given the root of TF,
querier Q will be able to identify which subset of files contain a word ω. In addition, since
polynomial-based accumulators allow efficient verifiable set intersection, querier Q will
also be able to perform VCKS on files F . Figure 6.1 depicts the steps of the search operation.

To summarize, the protocol for verifiable conjunctive keyword search is:

Efficient: Since our protocol is non-interactive and does not rely on heavy cryptographic
mechanisms, it is efficient and practical. Namely algorithms QueryGen and Verify require
less costs than executing algorithm Search.

Amortized: Algorithm Setup is a one-time expensive operation that pre-processes the files
to be outsourced. However, Setup is executed only once for an unlimited number of
search verifications.

Publicly delegatable: The data owner publishes public key PKF that enables anyone to
submit conjunctive search queries to the server.

Publicly verifiable: The querier generates a public verification key VKQ, tied to search
query W , enabling any verifier to check the result returned by the server.

Secure: We prove in Section 6.6 that our protocol is correct and sound.

6.4. Building Blocks 121

6.4 Building Blocks

As mentioned in Section 6.3, our protocol for VCKS operates several building blocks to elabo-
rate an efficient search scheme. We provide here a brief description of the tools underpinning
our solution: Cuckoo hashing (Section 6.4.1), polynomial-based accumulators (Section 6.4.2)
that allow verifiable test of membership and verifiable set intersection, and Merkle trees
(Section 6.4.3). Note that our protocol will employ symmetric bilinear pairings. Symmetric
bilinear pairings are bilinear pairings as defined in Section 4.3.1 with the characteristic that
G1 = G2 = G.

6.4.1 Cuckoo Hashing

Our VCKS solution builds an authenticated index of the keywords contained in the outsourced
files. For this purpose, we employ the Cuckoo hashing approach, introduced by Pagh and
Rodler [137].

This technique belongs to the multiple choice hashing techniques. In the seminal work by
Pagh and Rodler [137], an object can be stored in one of two possible buckets, each located
in two different hash tables, corresponding to two hash functions. Note that these functions
are not collision-free hash functions, in the sense that two different objects can be assigned
by the hash functions to the same bucket. To add a new object, the first hash function, thus
the first table, is used. If the bucket assigned to this new object is full in the first table (this
event is called a collision), then the object currently occupying this location is “kicked out”,
making possible to place the new item. The removed item is moved to the other bucket, using
the second hash function that gives a position in the second table. This move may encounter
another collision, thus requiring another element to be kicked out from its location. This
insertion procedure is repeated until all objects find a free spot, or the number of insertion
attempts reaches a predefined threshold to declare an insertion failure. In the worst case, the
insertion procedure runs into a cycle, making it impossible to insert a new object. If this case
happens, the method of rehashing should be performed: we choose two new hash functions
and try to insert all the elements back into the tables using these new functions. Multiple
rehash operations may be operated to succeed in inserting all the elements. To look for an
item, it suffices to examine two locations, each in one of the two tables.

In our protocol, we leverage a variant proposed by Dietzfelbinger and Weidling [74]:
Their solution inserts N elements using two independent and random hash functions H1,H2 :
{0, 1}∗ → [1,m] into a single index I with m buckets Bi, such that: m = 1+ε

d N , for ε > 0,
and each bucket Bi stores at most d elements. As depicted in Figure 6.2, a lookup operation
for a particular element x requires the evaluation of the two hash functions H1(x) and H2(x).
In this Cuckoo hashing variant, the insertion of a new element x follows a random walk in
the index, as suggested in [74]. In this approach, when a collision occurs in the first bucket
B1 pointed by H1, then item x is redirected to bucket B2 given by H2. If this results in
another collision, then an item y is randomly selected from one of the 2d elements stored
in the buckets determined by H1 and H2. Then item y is kicked out from its location and
replaced by x. Finally, the insertion procedure is repeated for y, until all elements can be
stored in one bucket. Dietzfelbinger and Weidling [74] prove that the expected time to insert
x is bounded by (1/ε)O(log d).

6.4.2 Polynomial-based Accumulators and Applications

Cryptographic accumulators, first introduced by Benaloh and De Mare [31], are authentica-
tion primitives that allow (i) combining the elements of a given set in a constant-size value,
representing a short and secure description of that set; (ii) efficiently proving, thanks to
the existence of a constant-size witness, whether a particular element is member of that set.
Note that a unique witness is computed for each accumulated element. Original accumula-

122 6. Verifiable Conjunctive Keyword Search

Figure 6.2: Cuckoo Hashing Algorithms

H Algorithm: CuckooInsert(I,H1,H2, x)
Insert x in index I using hash functions H1,H2 : {0, 1}∗ → [1,m]

1. Compute i1 = H1(x) and i2 = H2(x);
2. If bucket Bi1 is not full then

Insert x in Bi1 ;
Return;

End
3. If bucket Bi2 is not full then

Insert x in Bi2 ;
Return;

End
4. If buckets Bi1 and Bi2 both full then

Randomly choose y from the 2d elements in Bi1 ∪Bi2 ;
Remove y;
CuckooInsert(I,H1,H2, x);
CuckooInsert(I,H1,H2, y);
Return;

End

H Algorithm: {true, false} ← CuckooLookup(I,H1,H2, x)
Search for x in index I

1. Compute i1 = H1(x) and i2 = H2(x);
2. Return (x ∈ Bi1) ∨ (x ∈ Bi2);

tors were designed for membership proofs. They have later been extended for the purpose
of non-membership proofs: such accumulators provide non-membership witnesses that can
certify, using the accumulator computed for the considered set, that a given element is not
present in that set. Definition 17 details our definition of such an accumulator.

Definition 17 (Accumulators). An accumulator is a tuple of four PPT algorithms
(KeyGenAcc, ComputeAcc, GenerateWitness,VerifyMembership) defined as follows:

BKeyGenAcc(1κ)→ (SK,PK): This probabilistic algorithm takes as input security parame-
ter 1κ and outputs a secret key SK stored by the data owner and public key PK that
allows the server to respond to membership queries and enables any third party to
verify membership query responses.

BComputeAcc(SK, S)→ Acc(S): The data owner runs this probabilistic algorithm that
takes as input set S = {h1, h2, ..., hn} and secret key SK and computes the public
accumulation value Acc(S).

BGenerateWitness(h, S,PK)→ wS,h: Executed by the server, this algorithm takes as in-
put public key PK, set S and a target element h used to test membership, that is,
test whether h belongs to set S. It outputs a witness wS,h for membership or non-
membership of h with respect to set S.

BVerifyMembership(h,Acc(S), wS,h,PK)→ {h ∈ S, h /∈ S,Reject}: A third-party verifier
executes this algorithm that takes as input public key PK, accumulator Acc(S), target
element h and the corresponding witness wS,h. If witness wS,h is valid, then this al-
gorithm outputs the result of the membership test: either h ∈ S or h /∈ S. Otherwise,
the algorithm outputs Reject.

Accumulators were first based on RSA exponentiation and exploited in some research
work for membership tests [31, 24, 49] or non-membership proofs [120]. An alternative to

6.4. Building Blocks 123

the RSA-based construction was proposed by Nguyen [132] to allow efficient dynamic accu-
mulators, whereby insertions and deletions of elements in the set result in efficient updates
of the accumulators and witnesses. These accumulators are computed by means of poly-
nomials. RSA-based dynamic accumulators were suggested by Camenisch and Lysyanskaya
[49] but their solution requires the knowledge of some trapdoor information to perform up-
dates. The dynamic accumulators introduced by Nguyen [132] rely on the sole properties of
polynomials to support membership proofs. These polynomial-based accumulators [132] were
then extended by Damg̊ard and Triandopoulos [69] with the functionality of non-membership
proofs.

Polynomial-based accumulators (also referred as bilinear accumulators) are a powerful
tool: not only have they been leveraged for verifiable tests of membership [132, 69] but they
have been employed for verifiable set intersections [140, 52], as we will explain in the following
lines. We apply and tailor these primitives to our protocol for VCKS. Succinctly, our scheme
uses polynomial-based accumulators to map a set of keywords to a unique polynomial such
that each keyword in the set corresponds to a root of the polynomial. Accordingly, a verifiable
test of membership relying on polynomial-based accumulators accommodates the question on
whether a particular keyword is present in the set. On the other hand, our scheme computes
additional accumulators: For each keyword, we compute an accumulator of the files that
contain that particular keyword. Hence, to support verifiable conjunctive keyword search, a
verifiable set intersection solution based on these accumulators supplies effective information
to identify all the files that contain all the searched keywords.

In the rest of this section, we give an overview polynomial-based accumulators and the
two protocols for verifiable test of membership and verifiable set intersection.

6.4.2.1 Polynomial-based accumulators.

Figure 6.3: Accumulator Computation

H Algorithm: (SK,PK)← KeyGenAcc(1κ)
Generates the keying material

1. Select random α ∈ F∗p;
2. Set SK = α;
3. For 0 ≤ i ≤ D do

Compute gα
i

;
End

4. Set PK = {g, gα, gα
2

, ..., gα
D

};
5. Return (SK,PK);

H Algorithm: Acc(S)← ComputeAcc(SK, S)
Compute the accumulator value of set S = {h1, h2, ..., hn}

1. Parse SK = α;
2. Compute PS(α) =

∏
hi∈S(α− hi);

3. Compute Acc(S) = gPS(α);
4. Return Acc(S);

The authors of [86], and later the ones of [140, 132], introduced the notion of characteristic
polynomial, according to which a set S = {h1, ..., hn} of elements in Fp can be encoded by its
characteristic polynomial PS(X) =

∏
hi∈S (X − hi) (here X is the formal variable).

Let g be a random generator of a bilinear group G of prime order p. Given the public
tuple (g, gα, gα

2
, ..., gα

D
), where α is randomly chosen in F∗p and D ≥ n, Nguyen [132] defines

the public accumulator of the elements in S:

Acc(S) = gPS(α) ∈ G

124 6. Verifiable Conjunctive Keyword Search

Figure 6.3 gives the detailed instructions of the two first algorithms presented in Defini-
tion 17, namely KeyGenAcc and ComputeAcc (the two other algorithms are considered in
Section 6.4.2.2).

The different values that come into play in the accumulator computation can be in-
terpreted as follows: The value D imposes an upper-bound on the number of elements
to be accumulated in the set; α coincides with the accumulator secret key and the tuple
(g, gα, gα

2
, ..., gα

D
) represents the corresponding public key. It should be mentioned that the

accumulator value can be computed by any party who has access to this tuple using Fast
Fourier Transform (FFT) interpolation, as explained in [52].

We indicated above that polynomial-based accumulators accommodate verifiable test of
membership and set intersections. In the following paragraphs, we give an overview of these
two protocols.

6.4.2.2 Verifiable Test of Membership.

To prove that a particular keyword is present or absent from some outsourced files, our VCKS
solution operates the scheme for test of membership proposed by Damg̊ard and Triandopoulos
[69]. The authors observe that:

• any element h ∈ Fp is in set S iff PS(h) = 0;

• for all element h ∈ Fp, there exists a unique polynomial QS,h such that PS(X) =
(X − h) ·QS,h(X) + PS(h).

In particular, for any h, the accumulator can be written as

Acc(S) = gPS(α) = g(α−h)·QS,h(α)+PS(h) = Ω
(α−h)
S,h gPS(h).

The value ΩS,h
def
= gQS,h(α) defines the witness of h with respect to Acc(S): It constitutes a

membership witness if h ∈ S, a non-membership witness otherwise. Following these observa-
tions, the authors in [69] define a verifiable test of membership depicted in Figure 6.4. This
test is secure under the D-Strong Diffie-Hellman (D-SDH) assumption.

Definition 18 (D-Strong Diffie-Hellman Assumption). Let G be a cyclic group of
prime order p generated by g. We say that the D-SDH holds in G if, given the tuple
(g, gα, gα

2
, ..., gα

D
) ∈ GD+1, for some randomly chosen α ∈ F∗p, no PPT algorithm A can

find a pair (x, g
1

α+x) ∈ F∗p ×G with a non-negligible advantage.

Figure 6.4: Verifiable Test of Membership

H Algorithm: wS,h ← GenerateWitness(h, S,PK)
Compute the proof of (non-) membership of h with respect to set S

1. Compute the value PS(h) =
∏
hi∈S (h− hi);

2. Determine polynomial QS,h such that PS(X) = (X − h) ·QS,h(X) + PS(h);
3. Compute the witness ΩS,h = gQS,h(α);
4. Return wS,h = (PS(h),ΩS,h);

H Algorithm: {h ∈ S, h /∈ S,Reject} ← VerifyMembership(h,Acc(S), wS,h,PK)
Verify the proof and output the result of the test of membership

1. Parse wS,h = (PS(h),ΩS,h);

2. Verify e(ΩS,h, g
α · g−h)e(gPS(h), g)

?
= e(Acc(S), g).

If it fails then return Reject;
3. If PS(h) = 0 then return h ∈ S else return h /∈ S;

6.4. Building Blocks 125

Figure 6.5: Verifiable Set Intersection

H Algorithm: (I,ΠI)← ProveIntersection(S1, ..., Sk)
Generate the proof for the intersection of the k sets S1, ..., Sk

1. Compute I = S1 ∩ ... ∩ Sk and its characteristic polynomial P ;
2. Compute the polynomials Ui = Pi

P
and the values ∆i = gUi(α);

3. Compute the polynomials Vi such that
∑
i UiVi = 1;

4. Compute the values Γi = gVi(α);
5. Define ΠI = {(∆1,Γ1), ..., (∆k,Γk)};
6. Return (I,ΠI);

H Algorithm: {Accept,Reject} ← VerifyIntersection(I,ΠI , {Acc(Si)}1≤i≤k)
Verifiy the proof for I, the intersection of the sets S1, ..., Sk

1. Parse ΠI = {{∆i,Γi}1≤i≤k};
2. Verify the following equalities:

− e(Acc(I),∆i)
?
= e(Acc(Si), g) −

∏
i e(∆i,Γi)

?
= e(g, g)

Check I ⊆ Si for 1 ≤ i ≤ k # Check
⋂
i(Si\I) = ∅

If any of the checks fails then return Reject else return Accept;

6.4.2.3 Verifiable Set Intersection.

To support conjunctive keyword search queries, our VCKS solution exploits the scheme for
verifiable set intersection proposed by Canetti et al. [52]. In particular, this scheme is used
to determine which files contain all the keywords of a conjunctive search query.

In the verifiable set intersection protocol, we consider k sets Si and their respective char-
acteristic polynomials Pi. If we denote I =

⋂
i Si and P the characteristic polynomial of I

then P = gcd(P1, P2, .., Pk). It follows that the k polynomials Ui = Pi
P identify the sets Si\I.

Since
⋂
i(Si\I) = ∅, gcd(U1, U2, ..., Uk) = 1. Therefore, according to Bézout’s identity99 [35],

there exist polynomials Vi such that
∑

i UiVi = 1.

Based on these observations, Canetti et al. [52] define a protocol for verifiable set in-
tersection described in Figure 6.5 that involves the accumulators of each set Si and of their
intersection. In particular, using these accumulators and the properties of the characteristic
polynomials we just pointed out, the protocol checks the following relations satisfied by the
intersection:

Subset: For all set Si, I ⊆ Si. In other words, all elements found in the intersection actually
appear in all sets Si.

Complement Disjointness:
⋂
i(Si\I) = ∅. It means that no element that must belong to

the intersection is omitted.

The intersection verification is secure if the D-Strong Bilinear Diffie-Hellman (D-SBDH)
assumption holds.

Definition 19 (D-Strong Bilinear Diffie-Hellman Assumption). Let G and GT be
cyclic groups of prime order p, g a generator of G, and e a bilinear pairing. We say
that the D-SBDH holds if, given (g, gα, gα

2
, ..., gα

D
) ∈ GD+1, for some randomly chosen

α ∈ F∗p, no PPT algorithm A can find a pair (x, e(g, g)
1

α+x) ∈ F∗p×GT with a non-negligible
advantage.

99The Bézout identity states that if D is the GCD of two polynomials A and B then there exist two
polynomials U and V such that AU +BV = D.

126 6. Verifiable Conjunctive Keyword Search

Figure 6.6: Merkle Tree Algorithms

/* We consider set S = {h1, ..., hn}, build a Merkle tree of S and authenticate an element h ∈ S. */

H Algorithm: T← BuildMT(S,H)
Create Merkle tree T whose leaves are elements in set S

1. T← {h1, ..., hn}
2. For 1 ≤ i < 2n− 1, (i+ +2) do

hn+d i
2
e ← H(hi‖hi+1);

T← T ∪ {hn+d i
2
e};

End

H Algorithm: path← GenerateMTProof(T, hi)
Generate the authentication path for element hi in Merkle tree T

1. path← {};
2. While |path| < logn do

k ← i+ (−1)i+1;
path← path ∪ {hk};
i← n+ d i

2
e;

End

H Algorithm: {Accept,Reject} ← VerifyMTProof(hi, path, σ)
Verify the authentication path for hi with respect to root σ

1. σ′ ← hi;
2. For 1 ≤ k ≤ |path| do

If i mod 2
Then σ′ ← H(σ′‖path[k]);
Else σ′ ← H(path[k]‖σ′);
i← n+ d i

2
e;

End
3. If σ′ = σ then return Accept else return Reject;

6.4.3 Binary Merkle Trees

Merkle trees enable the authentication of elements in a set S = {h1, ..., hn} without transfer-
ring the entire set. More precisely, Merkle trees allow any party having possession of the root
to verify whether an element h is in set S. In our VCKS protocol, Merkle trees are used to
authenticate the accumulators. Indeed, these accumulators will be stored at the cloud along
with the outsourced files. Thus the Merkle trees will authenticate them so that a verifier can
be sure that they really are the ones she expects.

In the following, we introduce the algorithms that build a binary Merkle tree for a set S
and authenticate the elements in that set100.

• T← BuildMT(S,H). On input of set S and a cryptographic hash function H, BuildMT
builds a binary Merkle tree T. Each leaf Li of the tree maps an element hi in set S and
each internal node stores the hash of the concatenation of the children of that node, i.e
H(left‖right). Without loss of generality, we denote by σ the root of T.

• path ← GenerateMTProof(T, hi). To authenticate the element hi stored in leaf Li of
Merkle tree T, a prover runs GenerateMTProof which, on input of hi and T, outputs the
authentication path for leaf Li corresponding to element hi, that is, the set of the siblings of
the nodes on the path from Li to root σ. We denote path the authentication path output by
GenerateMTProof.
• {Accept,Reject} ← VerifyMTProof(hi, path, σ). On input of an element hi stored in leaf

100In our protocol, set S represents a collection of accumulator values.

6.5. Protocol Description 127

Li, the corresponding authentication path and the correct root value σ of tree T, VerifyMTProof
verifies that the value of the root computed from h and path equals the expected value σ.

Figure 6.6 shows the details of these Merkle tree algorithms. As a matter of illustration, we
show and label a Merkle tree whose leaves correspond to set {h1, h2, h3, h4}.

6.5 Protocol Description

In our protocol for VCKS, data owner O outsources the storage of a set of files F =
{F1, F2, ..., Fn} to a server S . Once the data is uploaded, any third-party querier Q can
search for some keywords in the set of files F and verify the correctness of the search results
returned by S . The collection of searchable keywords in F is sorted in the lexicographic order
and is defined as W = {ω1, ω2, ..., ωN}. As mentioned in Definition 13, the proposed protocol
comprises three phases: Setup, Search and Verification. In the description of our scheme, we
refer to the notations listed in Table 6.1.

Table 6.1: List of notations in our protocol for VCKS

Index Description Range

n Number of files Fi in set F -
j Index of a file [[1, n]]
N Number of keywords contained in F -
k Number of keywords contained in a search query W -
i Index of keywords [[1, N]] or [[1, k]]
m Number of buckets in index I
d Number of keywords in each bucket in index I

6.5.1 Setup

Before outsourcing her files to the cloud, data owner O enters the Setup phase and invokes
algorithm Setup to process the files and enable verifiable keyword search.

On input of security parameter 1κ and set of files F , algorithm Setup outputs the public
parameters param, a public key PKF and a search key LKF . As shown in Figure 6.7, Setup
operates in four steps.

1. It first generates the public parameters needed for the protocol.
2. It builds index I for the set W = {ω1, ω2, ..., ωN} using Cuckoo hashing. Without loss

of generality, we assume that W is composed of the list of distinct words in F sorted
in a lexicographic order.

3. Setup authenticates index I with Merkle tree TW where each leaf is mapped to a bucket
in I. We denote σW the root of tree TW.

4. Setup builds Merkle tree TF, of root σF , to identify which files exactly contain the
keywords.

At the end of this phase, data owner O publishes parameters param, publishes public key
PKF and transmits the search key LKF to server S . When the latter receives LKF , it creates
a hash table HT where each entry is mapped to a keyword ωi and stores the pair (i, pointer)
such that: i is the position of keyword ωi in set W and in tree TF; whereas pointer points
to a linked list storing the identifiers of files Fωi that contain keyword ωi. As such, hash
table HT enables server S to find the position of ωi in TF and to identify the files containing
ωi easily. In the remainder of this chapter, we assume that server S does not store LKF as
(I,TW,TF,F ,W, {Fωi}1≤i≤N), but rather as LKF = (I,TW,TF,F ,HT).

128 6. Verifiable Conjunctive Keyword Search

Figure 6.7: Setup

H Algorithm: (param,PKF , LKF)← Setup(1κ,F)
F = {F1, ..., Fn}: set of files
W = {ω1, .., ωN}: list of distinct words in F sorted in lexicographic order.
1. Parameter generation

Pick D, g,G,GT , e,H : {0, 1}∗ → Fp as function of security parameter 1κ;

Pick random α ∈ F∗p and compute public values {g, gα, ..., gα
D

};
2. Construction of the Index

Create an index I with m buckets of size d where d < D
Identify W from F ;
Pick random hash functions H1,H2 : {0, 1}∗ → [1,m];
For ωi ∈W do

Compute hi = H(ωi);
Run CuckooInsert(I,H1,H2, hi);

End
3. Authentication of Index

For Bi ∈ I do
Compute PBi(α) =

∏
hj∈Bi(α− hj);

Compute AWi = Acc(Bi) = gPBi (α);
Compute HWi = H(AWi||i), where i is the position of Bi in I;

End
TW = BuildMT({HWi}1≤i≤m, H);

4. Encoding of files
Identify which files contain the keywords
For Fj ∈ F do

Generate fidj;
End
For ωi ∈W do

Identify Fωi , the subset of files that contain ωi;
Compute Pi(α) =

∏
fidj∈Fωi

(α− fidj);

Compute AFi = Acc(Fωi) = gPi(α);
Compute HFi = H(AFi||ωi);

End
TF = BuildMT({HFi}1≤i≤N , H).

Return param = (g,G,GT , e,H,H1,H2);

Return PKF = ({gα
i

}0≤i≤D, σW , σF);

Return LKF = (I,TW,TF,F ,W, {Fωi}1≤i≤N).

6.5.2 Search

In this phase, our protocol for VCKS uses the algorithms of verifiable test of membership
and verifiable set intersection presented in Section 6.4. Indeed, the actual search realizes two
operations. The first operation answers the question: Do the queried keywords are present in
the outsourced files? A negative answer induces that at least one keyword in the query cannot
be found. The verifiable test of membership is thus employed to prove that this particular
keyword does not belong to the outsourced files. The second operation only occurs when the
first question receives a positive answer (i.e all the keywords in the conjunctive search query
are found). However this positive answer does not tell where the keywords can be found.
Hence, the second operation aims at answering the question: Which outsourced files contain
all the keywords of the conjunctive search query? The verifiable set intersection algorithm is
thus applied to identify the files that contain the searched keywords.

We assume in what follows that a querier Q wants to identify the set of files FW ⊂ F that
contain all words in W = {ω1, ω2, ..., ωk}. To that effect, as specified in our tailored definition
of publicly verifiable computation in Definition 13, querier Q enters the Search phase and
first runs algorithm QueryGen (cf. Figure 6.8) which returns the query EQ = W and the

6.5. Protocol Description 129

Figure 6.8: Verifiable Conjunctive Keyword Search

H Algorithm: {EQ,VKQ} ← QueryGen(W ,PKF)
1. Assign EQ = W and VKQ = (PKF ,W);
2. Return {EQ,VKQ};

H Algorithm: ER ← Search(EQ, LKF)
1. Parse EQ = W and LKF = (I,TW,TF,F ,HT);
2. For ωi ∈W do

Compute hi = H(ωi);
If CuckooLookup(I,H1,H2, hi) = false then

Keyword ωi is not in F
Compute i1 = H1(hi) and i2 = H2(hi);
Compute Π1 = GenerateWitness(hi, Bi1);
Compute Π2 = GenerateWitness(hi, Bi2);
Compute AWi1 = Acc(Bi1) and HWi1 = H(AWi1 ||i1);
Compute AWi2 = Acc(Bi2) and HWi2 = H(AWi2 ||i2);
Compute path1 = GenerateMTProof(TW,HWi1);
Compute path2 = GenerateMTProof(TW,HWi2);
Return ER = (∅, ω,AWi1 ,AWi2 ,Π1,Π2, path1, path2);

End
End

3. # All the keywords have been found
For ωi ∈W do

Determine Fωi using HT; # the set of files that contain wi
Compute AFi = Acc(Fωi) and HFi = H(AFi||ωi);
Determine position l of wi in TF using HT;

HFi is in the lth leaf of TF
Compute pathi = GenerateMTProof(TF,HFi);

End
FW = Fω1 ∩ ... ∩ Fωk is the set of files that contain all the words in W
Compute (FW ,ΠW) = ProveIntersection(Fω1 , ...,Fωk);
Return ER = (FW ,ΠW , {AFi}1≤i≤k, {pathi}1≤i≤k);

public verification key VKQ = (PKF ,W). Querier Q then sends query EQ to server S .

On reception of query EQ, server S invokes algorithm Search (cf. Figure 6.8) which
searches the index I for every individual keyword ωi ∈ W . If all the keywords ωi ∈ W are
found in the index, then Search identifies the subset of files Fωi that contains ωi and outputs
the intersection of all these subsets FW = Fω1 ∩ ...∩ Fωk . Moreover, to prove the correctness
of the response (i.e. to prove that FW was computed correctly), Search (i) authenticates the
accumulators of each set Fωi using Merkle tree TF; and (ii) generates a proof of intersection
for FW = Fω1 ∩ ... ∩ Fωk using the verification algorithm described in Figure 6.5.

If at least one keyword ωi is not found, then Search aborts for the remaining keywords
in the query, returns ωi and proves the correctness of its response by (i) authenticating the
accumulators of buckets Bi1 and Bi2 associated with ωi (if it was stored in index I) using
Merkle tree TW; and (ii) generating a proof of non-membership of keyword ωi with respect
to buckets Bi1 and Bi2 (cf. Figure 6.4).

6.5.3 Verification

On reception of the search result, verifier V checks the correctness of the server’s response
by calling algorithm Verify as shown in Figure 6.9. More precisely, if server S advertises that
it has found all the keywords W in index I, then algorithm Verify checks that the returned
intersection FW is correct using the verification algorithm of Merkle tree and verifiable set
intersection. Otherwise, V verifies that the returned keyword is actually not in F using the
verification algorithm of Merkle tree and verifiable test of membership.

130 6. Verifiable Conjunctive Keyword Search

Figure 6.9: Search Verification

H Algorithm: out← Verify(ER,VKQ)
1. Parse VKQ = (PKF ,W);
2. If W found in F then

Parse ER = (FW ,ΠW , {AFi}1≤i≤k, {pathi}1≤i≤k);
For ωi ∈W do

If VerifyMTProof(H(AFi||ωi), pathi, σF) = Reject
Then return out =⊥;

End
Compute Acc(FW);
If VerifyIntersection(FW ,ΠW , {AFi}1≤i≤k) = Accept;
Then return out = FW else return out =⊥;

End
3. If at least one keyword ωi is not found in F then

Parse ER = (∅, ωi,AWi1 ,AWi2 ,Π1,Π2, path1, path2);
Compute hi = H(ωi), i1 = H1(hi) and i2 = H2(hi);
If VerifyMTProof(H(AWi1 ||i1), path1, σW) = Reject
Then return out =⊥;
If VerifyMTProof(H(AWi2 ||i2), path2, σW) = Reject
Then return out =⊥;
If VerifyMembership(hi,AWi1 ,Π1) = Reject
Then return out =⊥;
If VerifyMembership(hi,AWi2 ,Π2) = Reject
Then return out =⊥;
Return out = ∅;

End

Figure 6.10: Algorithm UpdateQuery

H Algorithm: (UQ,VKQ)← UpdateQuery(Fj ,Wj , op)
Let denote Wj,del the list of keywords deleted from updated file Fj .
Let denote Wj,add the list of keywords added to updated file Fj .
Hence, Wj = (Wj,del,Wj,add).
1. UQ = (Fj ,Wj , op);
2. VKQ = PKF ;
3. Return (UQ,VKQ);

6.5.4 Supporting Dynamic Data

Although we can use digital signatures instead of Merkle trees to authenticate the accumu-
lators, they are not practical to support dynamic data. Thanks to Merkle trees, our solution
enables data owner O to update its outsourced files and the set of searchable keywords ef-
ficiently. In particular, we are concerned by the fact that search operations should also be
verifiable after updates (such as insertion, modification or deletion of a file in the set of
outsourced files) without the data owner being required to download the whole database,
perform the update and rebuild the entire system to enable verifiable conjunctive keyword
search (namely to build from scratch the different data structures used in our protocol: the
Cuckoo hash index, tables and Merkle trees). Figure 6.10 depicts the operations performed
by UpdateQuery while Figure 6.11 and Figure 6.12 show the procedure of algorithms Update
and VerifyUpdate respectively. We consider three possible update scenarios.

1. File update without updating the set of searchable keywords, W′ = W: In this
case, whatever the update operation is (file modification, deletion or insertion), the Cuckoo
index I and tree TW remain unchanged since we assume the set of keywords is not affected
by this update. On the other hand, server S is required to update Merkle tree TF and send
a proof of correct update to the data owner. We will consider the different cases according
to the nature of the update operation:

1. op = modify: The data owner executes UpdateQuery(F ′j ,Wj ,modify). Then there exist

6.5. Protocol Description 131

Figure 6.11: Algorithm Update

H Algorithm: (Πupd, LK′F)← Update(LKF ,UQ)
1. Parse UQ = (F ′j ,Wj , op);
2. Update F ′j according to op;
3. If Wj = ∅ then

Πupd = ∅;
LK′F = LKF ;
Return (Πupd, LK′F);

End
4. If W′ = W then

For ωi ∈ Wj do

Compute pathi = GenerateMTProof(HFi,TF);
Compute AF′i using FFT interpolation and PKF ;
Compute HF′i = H(AF′i||ωi);

End
Update TF with {HF′i}ωi∈Wj to obtain TF′ with root σ′F ;

For ωi ∈ Wj do

Compute path′i = GenerateMTProof(HF′i,TF′);
End

Assign Πupd = ({AFi,AF′i, pathi, path′i}ωi∈Wj , σ′F);
Assign LK′F = (I,TW,TF′,F ′,W, {F ′ωi}1≤i≤N);
Return (Πupd, LK′F);

End
5. If W′ = W−Wj then

This is the keyword deletion case
For simplicity we assume that Wj consists of a single keyword ωi
Remove ωi from assigned bucket Bi in index I to obtain I′;
Compute pathi,TW = GenerateMTProof(HWi,TW);
Compute AW′i using FFT interpolation and PKF ;
Compute HW′i = H(AW′i||i);
Update TW with HW′i to obtain TW′ with root σ′W ;
Compute HFi = H(AFi||ωi) and pathi,TF = GenerateMTProof(HFi,TF);
Remove leaf associated with ωi in TF to obtain TF′ with root σ′F ;
Assign Πupd = (AWi,AW′i, pathi,TW, σ

′
W ,AFi, pathi,TF, σ

′
F);

Assign LK′F = (I′,TW′,TF′,F ′,W′, {F ′ωi}1≤i≤N−1);
Return (Πupd, LK′F);

End
6. If W′ = W ∪Wj then

This is the keyword insertion case
For simplicity we assume that Wj consists of a single keyword ωi
Run CuckooInsert in index I for ωi and obtain I′;
This possibly impacts several buckets. We denote B the set of impacted buckets
We denote, for each Bk ∈ B, {ωi}add,k the set of keywords added to bucket Bk
We denote, for each Bk ∈ B, {ωi}del,k the set of keywords removed from bucket Bk
Let W = {({ωi}add,k, {ωi}del,k)}k

For Bk ∈ B do
Compute HWk = H(AWk||k) and pathk,TW = GenerateMTProof(TW,HWk);
Compute AW′k using FFT interpolation and PKF ;
Compute HW′k = H(AW′k||k);

End
Update TW with {HW′k}Bk∈B to obtain TW′ with root σ′W ;

For Bk ∈ B do

Compute path′′,TW′ = GenerateMTProof(TW′,HW′k);
End

Compute pathi−1,TF = GenerateMTProof(TF,HFi−1);
Insert leaf associated with ωi in TF to obtain TF′ with root σ′F ;
Assign Πupd = (W, {AWk,AW′k, pathk,TW, path′k,TW′}Bk∈B, σ

′
W ,AFi−1,AFi, pathi−1,TF, σ

′
F);

Assign LK′F = (I′,TW′,TF′,F ′,W′, {F ′ωi}1≤i≤N+1);
Return (Πupd, LK′F);

End

132 6. Verifiable Conjunctive Keyword Search

Figure 6.12: Algorithm VerifyUpdate

H Algorithm: {Accept,Reject} ← VerifyUpdate(VKQ,Πupd)
1. If Wj = ∅ Then return Accept;
2. If W′ = W then

Parse Πupd = ({AFi,AF′i, pathi, path′i}ωi∈Wj , σ′F);
For ωi ∈ Wj do

Compute HFi = H(AFi||ωi);
If VerifyMTProof(HFi, pathi, σF) = Reject Then return Reject;

Compute AF′i = AF
1

α−fidj

i if ωi ∈ Wj,del or AF′i = AF
α−fidj
i if ωi ∈ Wj,add ;

Compute HF′i = H(AF′i||ωi);
If VerifyMTProof(HF′i, path′i, σ

′
F) = Reject Then return Reject;

End
Return Accept;

End
3. If W′ = W−Wj then

Parse Πupd = (AWi,AW′i, pathi,TW, σ
′
W ,AFi, pathi,TF, σ

′
F);

Compute HWi = H(AWi||i);
If VerifyMTProof(HWi, pathi,TW, σW) = Reject Then return Reject;
Compute HW′i = H(AW′i||i);
If VerifyMTProof(HW′i, pathi,TW, σ

′
W) = Reject Then return Reject;

Compute HFi = H(AFi||ωi);
If VerifyMTProof(∅, pathi,TF, σ

′
F) = Reject Then return Reject;

Return Accept;
End

4. If W′ = W ∪Wj then

Parse Πupd = (W, {AWk,AW′k, pathk,TW, path′k,TW′}Bk∈B, σ
′
W ,AFi−1,AFi, pathi−1,TF, σ

′
F);

For Bk ∈ B do
Compute HWk = H(AWk||k);
If VerifyMTProof(HWk, pathk,TW, σW) = Reject Then return Reject;

Compute Pk(α) =

∏
ωi∈{ωi}add,k

(α− ωi)∏
ωi∈{ωi}del,k

(α− ωi)
;

Compute AW′k = AW
Pk(α)
k ;

Compute HW′k = H(AW′k||k);
If VerifyMTProof(HW′k, path′k,TW′ , σ

′
W) = Reject Then return Reject;

End
Compute HFi = H(AFi||ωi);
Compute HFi−1 = H(AFi−1||ωi−1);
If VerifyMTProof(HFi, pathi,TF ∪ HFi−1, σ

′
F) = Reject Then return Reject;

Return Accept;
End

three possible scenarios:

(a) F ′j and F ′j have exactly the same keywords, which means thatWj = ∅. Then
Update only consists in replacing Fj by F ′j in the database.

(b) Some of the keywords in W that were in Fj are not in F ′j anymore.
Thus, we consider the set Wj = {ωi | ωi ∈ Fj ∧ ωi /∈ F ′j}. Note that for each
ωi ∈ Wj , if we denote Fωi the set of files that contain ωi and Pi its character-
istic polynomial (before the update), then by denoting P ′i the updated polyno-

mial, we have P ′i (α) = Pi(α)
α−fidj

, since fidj is not part of Fωi anymore. UpdateQuery

returns UQ = (F ′j ,Wj ,modify) and VKQ = PKF . In turn, the server executes
algorithm Update which first replaces Fj by F ′j . Besides, for each ωi ∈ Wj , al-
gorithm Update computes the authentication path pathi for the old accumulator
AFi using algorithm GenerateMTProof (see Figure 6.6) and updates the new accu-
mulator AF′i (see step 4 in Figure 6.7). As server S does not have the knowledge
of secret α, it computes AF′i using PKF and the FFT interpolation technique.
Afterwards, for each ωi ∈ Wj , Update computes HF′i = H(AF′i||ωi) and updates

6.5. Protocol Description 133

Merkle tree TF′, by updating the leaf corresponding to HF′i and the nodes along
the path to the new root σ′F . It also generate the authentication path path′i for
the updated leaves as: path′i = GenerateMTProof(HF′i,TF′), for each ωi ∈ Wj .
Finally, algorithm Update returns Πupd = ({AFi,AF′i, pathi, path′i}ωi∈Wj , σ

′
F) and

LK′F = (I,TW,TF′,F ′,W, {F ′ωi}1≤i≤N). Upon reception of Πupd, data owner O
runs VerifyUpdate(VKQ,Πupd). For each ωi ∈ Wj , this algorithm first verifies,
using VerifyMTProof(H(AFi||ωi), pathi, σF), that AFi is correct. Then, for each

ωi ∈ Wj , data owner O computes AF′i = AF
1

α−fidj

i and verifies that σ′F corresponds
to the expected value by invoking VerifyMTProof(H(AF′i||ωi), path′i, σ

′
F).

(c) Some of the keywords in W that were not in Fj are now in F ′j . In this case,
we consider the setWj = {ωi | ωi ∈ F ′j∧ ωi /∈ Fj}. Then, for each ωi ∈ Wj , P

′
i (α) =

Pi(α)(α−fidj), since fidj ∈ Fωi . As in the previous case, UpdateQuery returns UQ =
(F ′j ,Wj ,modify) and VKQ = PKF . Server S executes algorithm Update which first
replaces Fj by F ′j . Similarly as before, for each ωi ∈ Wj , algorithm Update com-
putes pathi for the old accumulator AFi, and updates the new accumulator AF′i.
Afterwards, for each ωi ∈ Wj , Update accordingly modifies Merkle tree TF′, by
updating leaf HF′i and the nodes along the path to the new root σ′F . Thereafter,
Update determines the authentication path path′i for the updated leaves, for ωi ∈
Wj . Finally, algorithm Update returns Πupd = ({AFi,AF′i, pathi, path′i}ωi∈Wj , σ

′
F)

and LK′F = (I,TW,TF′,F ′,W, {F ′ωi}1≤i≤N). Upon reception of Πupd and LK′F ,
for each ωi ∈ Wj , data owner O runs VerifyUpdate which first verifies using
VerifyMTProof(H(AFi||ωi), pathi, σF) that AFi is correct. Then, for each ωi ∈ Wj ,

data owner O computes AF′i = AF
α−fidj
i and verifies that it corresponds to the

expected value by invoking VerifyMTProof(H(AF′i||ωi), pathi, σ
′
F).

2. op = delete: The data owner executes UpdateQuery(Fj ,Wj = {ωi}ωi∈Fj , delete), which
outputs UQ = (Fj ,Wj , delete) and VKQ = PKF . Server S executes algorithm Update
which first deletes Fj . The remainder of this update is similar to the case when op =
modify. In particular, for each ωi ∈ Wj , data owner O runs VerifyUpdate which computes

AF′i = AF
1

α−fidj

i and verifies that it corresponds to the expected value.

3. op = insert: The data owner executes UpdateQuery(Fj ,Wj = {ωi}ωi∈Fj , insert), which
returns UQ = (Fj ,Wj , insert) and VKQ = PKF . Server S executes algorithm Update
which first insert Fj in the outsourced database. The remainder of this update is similar
to the case when op = delete, with the difference that, for each ωi ∈ Wj , data owner O
computes AF′i = AF

α−fidj
i .

2. Keyword deletion, W′ = W − Wj: This event may probably occur if op = modify
or op = delete. Data owner O runs UpdateQuery(Fj ,Wj = ωi, op), which returns UQ =
(Fj ,Wj , op) and VKQ = PKF , where ωi is the keyword that will be deleted during the
update operation indicated by op (for simplicity we assume that only a single keyword
is deleted from the dictionary). For both types of operations (delete or modify), server
S executes Update which is executed in two steps. First, Update deletes or modifies Fj
and removes keyword ωi from Cuckoo hash index I, which yields the updated index I ′.
Namely, if we denote Bi the bucket that stores ωi, such that Bi is at position H1(ωi)
or H2(ωi) (see Figure 6.2) then Bi = Bi − {ωi}. Secondly, Update computes the corre-

sponding accumulator AW′i = g
P ′Bi

(α)
. Note that P ′Bi(α) =

PBi (α)

α−H(ωi)
. Afterwards, using

algorithm GenerateMTProof (see Figure 6.6), Update calculates the authentication path,
pathi,TW, of AWi in Merkle tree TW (which is the same of AW′i) and then updates the
tree to obtain TW′ with root σ′W . The second step of the keyword deletion removes the
leaf corresponding to the deleted keyword ωi from tree TF, as depicted in Figure 6.13.

134 6. Verifiable Conjunctive Keyword Search

Figure 6.13: Deletion in a Merkle tree

This operation produces a new tree TF′ with root σ′F . Besides, Update computes the au-
thentication path, pathi,TF, of the old accumulator AFi, using algorithm GenerateMTProof.
Finally, algorithm Update outputs Πupd = (AWi,AW′i, pathi,TW, σ

′
W ,AFi, pathi,TF, σ

′
F) and

LK′F = (I ′,TW′,TF′,F ′,W′, {F ′ωi}1≤i≤N). Consequently, data owner O checks that the up-
date operation is correctly performed by invoking VerifyUpdate. This algorithm first runs
VerifyMTProof(H(AWi|| i), pathi,TW, σW) to verify that AWi returned by the server is cor-

rect. Secondly, VerifyUpdate computes AW′i = AW
1

α−H(ωi)

i and checks that the new root σ′W
is correctly computed, using VerifyMTProof(H(AW′i|| i), pathi,TW, σ

′
W). On the other hand,

VerifyUpdate checks that the leaf corresponding to deleted keyword ωi is correctly deleted
from Merkle tree TF′ using VerifyMTProof(∅, pathi,TF, σ

′
F).

3. Keyword insertion, W′ = W ∪Wj: This event occurs if op = modify or op = insert.
Keyword insertion is the most expensive operation, as the insertion of new keyword can affect
multiple buckets in index I. Data owner O runs UpdateQuery(Fj ,Wj = ωi, op), which returns
UQ = (Fj ,Wj , op) and VKQ = PKF , where ωi is the keyword that will be inserted during the
update operation indicated by op (for simplicity we consider that a single keyword is inserted).
Server S executes Update which operates in two steps as in the previous case of keyword dele-
tion. First, Update inserts or modifies Fj and then inserts keyword ωi in the Cuckoo hash index
I, using CuckooInsert. As we saw in Section 6.4.1, this insertion procedure may impact several
buckets in index I, since existing keywords might be kicked off from their current buckets. At
the end of the keyword insertion procedure, we denote I ′ the updated index101 and B = {Bk}k
the set of buckets affected by the insertion ωi. We also denote W = {({ωi}add,k, {ωi}del,k)}k
the set of keywords affected by the insertion of ωi, where {ωi}add,k is the set of keywords
that are added to bucket Bk ∈ B and {ωi}del,k is the set of keywords that are removed from
bucket Bk ∈ B. Therefore, for all buckets Bk ∈ B, Update (i) computes the authentication
paths in tree TW of accumulator AWk as pathk,TW = GenerateMTProof(TW, H(AWk|| k));
and (ii) updates the new accumulators AW′k using the FFT interpolation technique and PKF .
Then, Update accordingly modifies Merkle tree TW to obtain TW′, with root σ′W and for
each bucket Bk ∈ B, it computes the authentication paths in tree TW′ of accumulator AW′k
as path′k,TW′ = GenerateMTProof(TW′, H(AW′k|| k)), to prove that the tree is correctly up-
dated. In the second step of the keyword insertion, Update computes the authentication path
pathi−1,TF of the accumulator AFi−1 in the old tree TF, using algorithm GenerateMTProof.
Indeed, as the keywords are sorted in the lexicographic order, AFi will be inserted after AFi−1

in tree TF, as shown in Figure 6.14. Then Update computes AF′i and adds a new leaf corre-
sponding to the inserted keyword ωi in tree TF, which produces a new tree TF′ with root σ′F .
The authentication path for AFi is simply the authentication path of AFi−1 together with
the leaf corresponding to AFi−1, as shown in Figure 6.14. Finally, algorithm Update outputs
Πupd = (W, {AWk,AW′k, pathk,TW, path′k,TW′}Bk∈B, σ

′
W ,AFi−1,AFi, pathi−1,TF, σ

′
F) and LK′F =

101In principle, keyword insertion is possible only if index I did not reach its maximum capacity.

6.6. Security Analysis 135

Figure 6.14: Insertion in a Merkle tree

(I ′,TW′,TF′,F ′,W′, {F ′ωi}1≤i≤N). Consequently, data owner O checks that the insert opera-
tion is correctly performed by invoking VerifyUpdate. This algorithm first checks that for each
Bk ∈ B, the old accumulators AWk are correct, using VerifyMTProof(H(AWk|| k), pathk,TW, σW).
Then, VerifyUpdate computes the new accumulators of the buckets impacted by the keyword
insertion. Namely, for each Bk ∈ B, if we denote

Pk(α) =

∏
ωi∈{ωi}add,k

(α− ωi)∏
ωi∈{ωi}del,k

(α− ωi)
,

then it calculates AW′k = AW
Pk(α)
k . VerifyUpdate thus checks that these accumulators corre-

spond to the ones sent by the server and verifies that tree TW′ was correctly updated thanks
to VerifyMTProof(H(AW′k|| k), path′k,TW′ , σ

′
W), for all buckets Bk ∈ B. On the other hand,

VerifyUpdate checks that the leaf corresponding to keyword ωi is correctly added to Merkle
tree TF′ using VerifyMTProof(H(AFi||ωi), pathi−1,TF ∪H(AFi−1||ωi−1), σ′F).

6.6 Security Analysis

Our protocol satisfies the two security properties of correctness and soundness. In this section,
we define and prove the two security theorems related with these properties.

6.6.1 Correctness

Theorem 7 (Correctness). Our scheme is a correct verifiable conjunctive keyword
search solution.

Proof of Theorem 7. Suppose that a querier Q sends to server S the query EQ =
W = {ω1, ..., ωk}. S correctly runs algorithm Search and returns the search response ER.
According to Figure 6.8, the content of ER varies depending on whether:

All words in W are found in F
Then ER = (FW ,ΠW , {AFi}1≤i≤k, {pathi}1≤i≤k) where:

• FW = Fω1 ∩ ... ∩ Fωk such that Fωi is the subset of files that contain keyword ωi;

136 6. Verifiable Conjunctive Keyword Search

• ΠW = {(∆1,Γ1), ..., (∆k,Γk)} is the proof of intersection;

• for all 1 ≤ i ≤ k, AFi = Acc(Fωi); if we denote Pi the characteristic polynomial of
subset Fωi , then we can write AFi = gPi(α);

• for all 1 ≤ i ≤ k, pathi is the authentication path of H(AFi||ωi) in TF.

Firstly, if we assume that the Merkle tree authentication is correct, then verifier V
accepts the accumulators AFi computed by server S . Secondly, since S computes the
proof ΠW using algorithm ProveIntersection (cf. Figure 6.5), for all 1 ≤ i ≤ k, we have the
following:

• ∆i = gUi(α), where Ui = Pi
P and P = gcd(P1, P2, ..., Pk) is the characteristic polyno-

mial of FW ;

• Γi = gVi(α), such that
∑

i UiVi = 1.

It follows that for all 1 ≤ i ≤ k:

e(Acc(FW),∆i) = e(gP (α), gUi(α)) = e(g, g)P (α)·Ui(α)

= e(g, g)Pi(α) = e(AFi, g)

This means that the first equality in algorithm VerifyIntersection (cf. Figure 6.5) holds.
Furthermore, the second equality is also verified, indeed:∏

ωi∈W

e(∆i,Γi) =
∏
ωi∈W

e(gUi(α), gVi(α)) =
∏
ωi∈W

e(g, g)Ui(α)·Vi(α)

= e(g, g)
∑
ωi∈W Ui(α)·Vi(α) = e(g, g)

These computations thus prove the correctness of our solution in the case where the
targeted keywords are all found.

There exists ωi ∈W not found in F
In this case, ER = (∅, ωi,AWi1 ,AWi2 ,Π1,Π2, path1, path2) such that:

• AWi1 = Acc(Bi1) and AWi2 = Acc(Bi2) are the accumulators of buckets Bi1 and Bi2
respectively, where i1 and i2 are the positions assigned to keyword ωi in index I;

• Π1 and Π2 are the proofs that ωi is not a member of bucket Bi1 nor of bucket Bi2
respectively;

• path1 and path2 are the authentication paths of these two buckets in tree TW.

If we consider the Merkle tree to be correct, then verifier V will accept Acc(Bi1) and
Acc(Bi2). Moreover, if we denote PBi1 the characteristic polynomial of bucket Bi1 , then

by definition PBi1 (X) =
∏
hj∈Bi1

(X − hj) and Acc(Bi1) = g
PBi1

(α)
.

Recall now that the proof of non-membership Π1 of keyword ωi to bucket Bi1 is

computed as: {PBi1 (hi),ΩBi1 ,hi
}, such that hi = H(ωi), ΩBi1 ,hi

= g
QBi1 ,hi

(α)
and

QBi1 ,hi(X) =
PBi1

(X)−PBi1 (hi)

X−hi .

It follows that:

e(ΩBi1 , g
α · g−hi)e(gPBi1 (hi), g) = e(g, g)

QBi1 ,hi
(α)·(α−hi)e(g, g)

PBi1
(hi)

= e(g, g)
QBi1 ,hi

(α)·(α−hi)+PBi1 (hi)

= e(g, g)
PBi1

(α)

= e(Acc(Bi1), g).

6.6. Security Analysis 137

This means that the first equality of algorithm GenerateWitness (cf. Figure 6.4) holds.
Finally, since ωi /∈ Bi1 , PBi1 (hi) 6= 0. This implies that verifier V will accept the proof of
non-membership for bucket Bi1 and conclude that ωi is not in F .

Similar computations can be performed for Bi2 , which proves the correctness of our
solution in the case where a keyword ωi /∈ F .

Correctness of updates. The update procedures we presented in Section 6.5.4 mainly
involves the Merkle tree operations. The proof Πupd of correct updates includes the au-
thentication paths of the updated accumulators. Therefore, since we consider H being a
collision-resistant hash function, a honest verifier will always accept the proof of update
generated by a honest server.

6.6.2 Soundness

Theorem 8 (Soundness). Our solution for verifiable conjunctive keyword search is
sound under the D-SDH and D-SBDH assumptions, provided that the hash function H
used to build the Merkle trees is collision-resistant.

Proof of Theorem 8. We observe that an adversary can break the soundness of our
scheme through two types of forgery:

Type 1 forgery: On input of W = {ω1, ..., ωk} and search key LFF , adversary A1 returns
a search result that consists of a proof of non-membership of some keyword ωi ∈W
(meaning that ωi is not in the set of files F), although ωi is in F ;

Type 2 forgery: On input of W = {ω1, ..., ωk} and search key LFF , adversary A2 returns
an incorrect F̂W and the corresponding proof. This means that adversary A2 claims
that all keywords in W have been found in F and that F̂W is the subset of files
that contain them, although F̂W 6= CKS(F ,W). (We use the caret notation (·̂) to
distinguish the elements of the search response returned by adversary A2 from the
ones that would be returned by a honest server.)

In the following, we demonstrate that if A1 and A2 runs Type 1 and Type 2 forgery
respectively, then there exists another adversary B1 that breaks D-SDH and an adversary
B2 that breaks D-SBDH respectively.

Lemma 3 (Type 1 forgery). If A1 breaks the soundness of our protocol, then there
exists adversary B1 that breaks the D-SDH assumption in G.

Let OD−SDH be an oracle which, when invoked, returns the D-SDH tuple T (α) =

(g, gα, gα
2
, ..., gα

D
) ∈ GD+1, for some randomly selected α ∈ F∗p. Here we define an

adversary B1 that breaks the D-SDH assumption:

1. B1 first calls OD−SDH which selects a random α ∈ F∗p and returns T (α).

2. B1 simulates the soundness game for adversary A1 (cf. Algorithm 5). Specifically,
when A1 invokes OSetup with the sets of files Fk (for 1 ≤ k ≤ t), B1 simulates OSetup

and generates (param,PKFk , LKFk), as follows:

138 6. Verifiable Conjunctive Keyword Search

(a) B1 selects the parameters g,G,GT , e and H;

(b) B1 computes the tuple Tk(α) = (g, gαk , gαk
2
, ..., gαk

D
) where αk = α ·δk+βk for

some random δk, βk ∈ F∗p. Note that this tuple can be easily computed by B1,
without having access to α, thanks to tuple T (α) and the Binomial Theorem:

∀ i ≤ D, gαki = g(α·δk+βk)i =
∏i
j=0(gα

j
)(
i
j)(δk)j ·βi−jk ;

(c) The rest of the simulation of OSetup is operated as in Figure 6.7.

Afterwards, adversary A1 selects a collection of keywords Wk to search for in a set
of files Fk and invokes OQueryGen. Adversary B1 computes the response of OQueryGen

and returns encoded query EQ,k = Wk and the verification key VKQ,k = (PKFk ,Wk).
Later, A1 returns an encoded response ER,k and runs Verify.

3. In the challenge phase of the soundness game (cf. Algorithm 6), A1 first selects a pub-
lic key PK∗F from the keys he has received earlier, and a collection of keywords W ∗ to
search for in a set of files F ∗ associated PK∗F then A1 runs OQueryGen(W ∗,PK∗F) which
is simulated by B1 and outputs the encoded query E∗Q = W ∗ and the verification
key VK∗Q = (PKF ∗ ,W ∗).

4. Then, A1 returns E∗R = (∅, ω∗, ÂF
∗
1, ÂF

∗
2, Π̂

∗
1, Π̂

∗
2, p̂ath

∗
1, p̂ath

∗
2), with:

• The empty set, being the result of the search, meaning that the keyword ω∗ ∈
W ∗ was not found in F ∗, although ω∗ is indeed in F ∗;

• The accumulators ÂF
∗
1, ÂF

∗
2 of the buckets at the positions associated to ω∗ in

index I∗ of files F ∗;

• Π̂∗1, Π̂
∗
2, the proofs of non-membership of ω∗ with respect to buckets B∗i1 , B

∗
i2

,
where i1 and i2 are the positions assigned to keyword ω∗ in index I∗;

• p̂ath
∗
1, p̂ath

∗
2, the authentication paths in Merkle tree TW for the accumulators

of buckets ÂF
∗
1, ÂF

∗
2.

5. Since we assume H is a collision-resistant hash function, the Merkle tree authen-

tication proves that ÂF
∗
1 and ÂF

∗
2 are actually associated with leaves at positions

i1 and i2 in TW. More precisely, it proves that p̂ath
∗
1 and p̂ath

∗
2 authenticate the

values H(ÂF
∗
1||i1) and H(ÂF

∗
2||i2) and that ÂF

∗
1 and ÂF

∗
2 correspond to Acc(B∗i1) and

Acc(B∗i2) that were computed in the setup phase by B1. Namely, ÂF
∗
1 = g

PB∗
i1

(α∗)

and ÂF
∗
2 = g

PB∗
i2

(α∗)
.

6. We now show how B1 breaks the D-SDH assumption. Let us consider that h∗ =
H(ω∗) is indeed stored in the first bucket B∗i1 (similar consideration can be applied
to B∗i2). As returned by A1, the forged proof of non-membership for ω∗ consists of

Π̂∗1 = {P̂Bi1 (h∗), Ω̂B∗i1
,h∗} (cf. Figure 6.4). Notice that P̂B∗i1

(h∗) 6= 0, as adversary

A1 claims that ω∗ is not in F ∗. If Verify accepts the proof of non-membership, then
according to Figure 6.4, the following equality holds:

e(Ω̂B∗1 ,h
∗ , gα

∗−h∗)e(gP̂B1
(h∗), g) = e(ÂF

∗
1, g) = e(g

P̂B∗
i1

(α∗)
, g)

e(Ω̂B∗1 ,h
∗ , gα

∗−h∗) = e(g
PB∗1

(α∗)−P̂B∗1 (h∗)
, g) (6.1)

On the other hand, by construction we have:

e(ΩB∗i1
,h∗ , g

α∗−h∗) = e(g
PB∗

i1
(α∗)

, g), (6.2)

6.6. Security Analysis 139

where ΩB∗i1
,h∗ = g

QB∗
i1
,h∗ (α∗)

such that QB∗i1 ,h
∗(X) =

PB∗
i1

(X)

X−h∗ .

By dividing equation 6.1 with equation 6.2, we obtain:

e

(
Ω̂B∗

i1
,h∗

ΩB∗
i1
,h∗
, gα

∗−h∗
)

= e

(Ω̂B∗
i1
,h∗

ΩB∗
i1
,h∗

)α∗−h∗
, g

 = e(g
−P̂B∗

i1
(h∗)

, g).

Therefore, (
Ω̂B∗

i1
,h∗

ΩB∗
i1
,h∗

)α∗−h∗
= g

−P̂B∗
i1

(h∗)

(
Ω̂B∗

i1
,h∗

ΩB∗
i1
,h∗

) 1

−P̂B∗
i1

(h∗)

=

(
ΩB∗

i1
,h∗

Ω̂B∗
i1
,h∗

) 1

P̂B∗
i1

(h∗)

= g
1

α∗−h∗ .

We have α∗ = α ·δ∗+β∗, where (δ∗, β∗) are randomly selected from set {δk, βk}1≤k≤t
generated earlier. Accordingly,(

ΩB∗
i1
,h∗

Ω̂B∗
i1
,h∗

) 1

P̂B∗
i1

(h∗)

= g
1

α·δ∗+β∗−h∗ = g

1

δ∗(α+
β∗−h∗
δ∗)

(
ΩB∗

i1
,h∗

Ω̂B∗
i1
,h∗

) δ∗

P̂B∗
i1

(h∗)

= g

1

α+
β∗−h∗
δ∗

Since β∗ 6= h∗ with an overwhelming probability (Pr(β∗ = h∗) = 1
p), then adversary

B1 breaks D-SDH by outputting the pair

β∗−h∗
δ∗ ,

(
ΩB∗

i1
,h∗

Ω̂B∗
i1
,h∗

) δ∗

P̂B∗
i1

(h∗)

 with a non-

negligible advantage εB ≥ εA · (1− 1
p) where εA is the advantage of adversary A1 in

breaking the soundness of our scheme.

Lemma 4 (Type 2 forgery). If A2 breaks the soundness of our protocol, then there
exists an adversary B2 that breaks the D-SBDH assumption in G.

Let OD−SBDH be an oracle that returns for any random α ∈ F∗p, the tuple T (α) =

(g, gα, gα
2
, ..., gα

D
) ∈ GD+1. In the following lines, we describe an adversary B2 that

breaks the D-SBDH assumption:

1. To break D-SBDH, B2 calls OD−SBDH: this oracle picks a random α and returns the
corresponding tuple T (α).

2. A2 enters the soundness game as described in Algorithm 5 and when A2 invokes
OSetup with the sets of files Fk (for 1 ≤ k ≤ t), B2 simulates OSetup and generates
(param,PKFk , LKFk), as follows:

(a) B2 selects the parameters g,G,GT , e and H;

(b) B2 computes the tuple Tk(α) = (g, gαk , gαk
2
, ..., gαk

D
) where αk = α ·δk+βk for

some random δk, βk ∈ F∗p. Similar to Type 1 forgery, Tk(α) can be computed
by B2 using the Binomial Theorem;

140 6. Verifiable Conjunctive Keyword Search

(c) The rest of the simulation is operated as in Figure 6.7.

Thereupon, adversary A2 selects a collection of keywords Wk to search for in a set
of files Fk and invokes OQueryGen. Adversary B2 computes the response of OQueryGen

and returns encoded query EQ,k = Wk and the verification key VKQ,k = (PKFk ,Wk).
Later, A2 returns an encoded response ER,k and runs Verify.

3. Afterwards, adversary A2 enters the challenge phase of the soundness experiment,
specified in Algorithm 6. On input of search key LKF ∗ and a query on a collection of
keywords W ∗ = {ω∗1, .., ω∗k} to be searched for in the set of files F ∗ associated with
a public key PK∗F obtained earlier, A2 runs OQueryGen. B1 simulates the output
of this oracle and returns the encoded query E∗Q = W ∗ and the verification key

VK∗Q = (PKF ∗ ,W ∗). A2 then produces E∗R = (F̂W ∗ , Π̂W ∗ , {ÂFi}1≤i≤k, {p̂ath
∗
i }1≤i≤k),

where:

• F̂W ∗ is the returned search response, that is the set of files containing W ∗;

• Π̂W ∗ = {(∆̂1, Γ̂1), ..., (∆̂k, Γ̂k)}, the proof of this intersection;

• {ÂFi}1≤i≤k, the accumulation values of sets Fω∗i containing keywords ω∗i ;

• {p̂ath
∗
i }1≤i≤k, the authentication paths in Merkle tree TF for the accumulators

{ÂFi}.

Here, the returned response F̂W ∗ is different from the expected search result FW ∗ =
CKS(F ∗,W ∗). Therefore, this is possible according to two cases:

Case (a). F̂W ∗ contains a file with file identifier fid∗ that is not in FW ∗ . Put in
another way, F̂W ∗ breaks the subset rule of set intersection (see Figure 6.5).

Case (b). There is a file with file identifier fid∗ that is in FW ∗ but missing from
F̂W ∗ . In other words, F̂W ∗ does not satisfy the complement disjointness
property of set intersection (c.f Figure 6.5).

4. Since H is a collision-resistant hash function, the Merkle tree authentication proves
that {ÂFi}1≤i≤k are actually associated with leaves at position i in tree TF. More

precisely, it proves that each path in {p̂ath
∗
i }1≤i≤k authenticates the respective values

H(ÂF
∗
i ||ω∗i) and that for 1 ≤ i ≤ k, ÂF

∗
i corresponds to Acc(Fω∗i) that was computed

in the setup phase by B2. Specifically, ÂF
∗
i = gP

∗
i (α∗) with P ∗i (X) =

∏
fidj∈Fω∗

i

(X −
fidj).

5. Given accumulators ÂFi, we show how B2 breaks the D-SBDH assumption in the
two cases (a) and (b). Note that these cases can occur at the same time, but for
the sake of simplicity, we treat them independently:

Case (a). In this case, there exists a keyword ω∗ ∈ W ∗ such that fid∗ /∈ Fω∗ .
Therefore, if we denote P ∗ the characteristic polynomial of Fω∗ , (X − fid∗)
does not divide P ∗(X). However, since fid∗ ∈ F̂W ∗ , then (X − fid∗) divides
P̂ (X) where P̂ is the characteristic polynomial of F̂W ∗ . Using polynomial
division, we find that there exist polynomial Z1, Z2 and R ∈ Fp such that

P ∗(X) = (X − fid∗) · Z1(X) +R and P̂ (X) = (X − fid∗) · Z2(X). Hence, when
B2 verifies the first equality of VerifyIntersection (cf. Figure 6.5), she gets for
1 ≤ i ≤ k:

e(Acc(F̂W ∗), ∆̂i) = e(Acc(Fω∗), g)

e(g,∆i)
P̂ (α∗) = e(g, g)P

∗(α∗)

6.6. Security Analysis 141

e(g, ∆̂i)
(α∗−fid∗)·Z2(α∗) = e(g, g)(α∗−fid∗)·Z1(α∗)+R

e(g, ∆̂i)
Z2(α∗) = e(g, g)Z1(α∗) · e(g, g)

R
α∗−fid∗

(e(g, ∆̂i)
Z2(α∗) · e(g, g)−Z1(α∗))

1
R = e(g, g)

1
α∗−fid∗ .

Assuming that we have α∗ = α · δ∗ + β∗, where (δ∗, β∗) are randomly selected
from set {δk, βk}1≤k≤t generated earlier, we can write:

(
e(gZ2(α∗), ∆̂i) · e(g−Z1(α∗), g)

) 1
R

= e(g, g)

1

δ∗(α+β
∗−fid∗
δ∗)

(
e(gZ2(α∗), ∆̂i) · e(g−Z1(α∗), g)

) δ∗
R

= e(g, g)

1

α+
β∗−fid∗
δ∗

In other words, we construct an adversary B2 that breaks the D-SBDH as-

sumption by outputting the pair

(
β∗−fid∗

δ∗ ,
(
e(gZ2(α∗), ∆̂i) · e(g−Z1(α∗), g)

) δ∗
R

)
.

Notice that β∗ is randomly generated in F∗p, and therefore Pr(β∗ = fid∗) = 1
p .

this means that if A2 has a non-negligible advantage εA to break the sound-
ness of our scheme, then there is an adversary B2 that breaks D-SBDH with a
non-negligible advantage εB ≥ εA · (1− 1

p).

Case (b). In this case, fid∗ is in FW ∗ but not in F̂W ∗ . Since, we exclude Case
(a) here, it means that F̂W ∗ ⊂ FW ∗ . Besides, fid∗ can be found in all sets
(Fω∗i \F̂W ∗), for all 1 ≤ i ≤ k. We denote Ri the characteristic polynomials of

(Fω∗i \F̂W ∗).

We also have Pi(X) = Ri(X) · P̂ (X) where Pi denote the characteristic polyno-
mial of Fω∗i and P̂ is the characteristic polynomial of F̂W ∗ . If algorithm Verify

accepts A2’s proof then it means that e(Acc(F̂W ∗), ∆̂i) = e(Acc(Fω∗i), g), which

can be written as e(g, ∆̂i)
P̂ (α∗) = e(g, g)Pi(α

∗). It follows that ∆i = gRi(α). In
addition, (X−fid∗) divides Ri(X) and we can write Ri(X) = (X−fid∗) ·Zi(X).

When B2 verifies the second equality of VerifyIntersection, he gets:

k∏
i=1

e(∆̂i, Γ̂i) =

k∏
i=1

e(g, Γ̂i)
Ri(α

∗) = e(g, g)

k∏
i=1

e(g, Γ̂i)
(α∗−fid∗)·Zi(α∗) = e(g, g)

(

k∏
i=1

e(g, Γ̂i)
Zi(α

∗))(α∗−fid∗) = e(g, g)

k∏
i=1

e(g, Γ̂i)
Zi(α

∗) = e(g, g)
1

α∗−fid∗

Since we have α∗ = αδ∗ + β∗, with (δ∗, β∗) randomly selected from set
{δk, βk}1≤k≤t generated earlier, it follows that:

k∏
i=1

e(gZi(α
∗), Γ̂i) = e(g, g)

1

δ∗(α+β
∗−fid∗
δ∗)

(

k∏
i=1

e(gZi(α
∗), Γ̂i))

δ∗ = e(g, g)

1

α+
β∗−fid∗
δ∗

142 6. Verifiable Conjunctive Keyword Search

Therefore, if β∗ 6= fid∗, then adversary B2 breaks the D-SBDH assumption with

the pair

(
β∗−fid∗

δ∗ , (
k∏
i=1

e(gZi(α
∗), Γ̂i))

δ∗
)

. Since β∗ 6= fid∗ with probability 1
p , we

can safely conclude that if there is an adversary A2 that breaks the soundness
of our scheme with a non-negligible advantage εA, then there is an adversary
B2 that breaks D-SBDH with a non-negligible advantage εB ≥ εA · (1− 1

p).

Security of updates. All the critical update operations we presented in Section 6.5.4
are performed on the server side, which mainly updates the Merkle trees TW and TF.
Besides, the server generates the proof Πupd which ascertains of the correctness of the
tree update. It consists of the updated accumulators and their authentication paths.
Therefore, since we consider H being a collision-resistant hash function, the server cannot
make the verifier accept incorrect updates.

6.7 Performance Evaluation

This section discusses the efficiency of our VCKS protocol. We also present some experimental
results based on the implementation of a prototype of our solution.

6.7.1 Discussion on Efficiency

Hereafter, we evaluate the costs of our scheme with respect to storage, computation and
communication complexities. Table 6.2 gives a summary of these various costs.

6.7.1.1 Storage

With respect to storage complexity, the data owner stores and publishes public key PKF =
({gαi}0≤i≤D, σW , σF), of size O(D). On the other hand, cloud server S keeps search key
LKF = (I,TW,TF,F ,HT), resulting in a storage complexity in O(N + n), where N is the
total number of keywords and n is the number of files. Indeed, the size of index I , hash
table HT and Merkle trees TW and TF is linear in N .

6.7.1.2 Computation

In light of the performances of the several building blocks (Cuckoo hashing, polynomial-based
accumulators and Merkle trees), we analyze in the following the computational costs of our
solution.

1. Setup: The Setup phase of our protocol is a one-time pre-processing operation that is
amortized over an unlimited number of fast verifications. The computational cost of
this phase is dominated by:

• The public parameter generation which amounts to D exponentiations in G;

• N calls to CuckooInsert where, as shown in [74], each insertion is expected to
terminate in (1/ε)O(log d) time (ε > 0);

• The computation of m accumulators AW which requires m exponentiations in G
and md multiplications in Fp (in the worst case);

• The computation of N accumulators AF which involves N exponentiations in G
and Nn multiplications in Fp (in the worst case);

6.7. Performance Evaluation 143

• The generation of Merkle tree TW (respectively TF) which consists of 2m hashes
(respectively 2N).

2. QueryGen: This algorithm does not require any computation. It only constructs the
query for the k keywords together with the corresponding VKQ.

3. Search: Although this algorithm seems expensive, we highlight the fact that it is executed
by the cloud server, who has more computational resources than the data owner and the
users. Search runs k CuckooLookup which consists in 2k hashes and 2kd comparisons to
search for all the k queried keywords (in the worst case). Following this operation, the
complexity of this algorithm depends on whether all the keywords have been found:

• out = FW : The complexity of Search is governed by:

– The computation of k file accumulators AF. Without the knowledge of trap-
door α, and using FFT interpolation as specified in [52], this operation per-
forms kn log n multiplications in Fp and k exponentiations in G;

– The generation of the authentication paths in tree TF for these accumulators,
which amounts to k logN hashes;

– The generation of the proof of intersection that takesO((kn) log2(kn) log log(kn))
multiplications102 in Fp to compute the gcd of the characteristic polynomials
of the sets involved in the query result.

• out = ∅: The computational costs of this phase consist in:

– The generation of the proof of membership for the missing keyword by calling
twice GenerateWitness. This operation requires 2(d + d log d) multiplications
in Fp and 2d exponentiations in G;

– The computation of 2 bucket accumulators AW, which amounts to 2d log d
multiplications in Fp and 2d exponentiations in G;

– The generation of 2 authentication paths for these 2 buckets by running
GenerateMTProof on tree TW, which performs 2 logm hashes.

4. Verify: We also analyze the complexity of this algorithm according to whether all the
keywords have been found:

• out = FW : Verify runs k instances of VerifyMTProof on tree TF, which requires
k logN hashes. It computes the accumulator of the intersection, which, in the
worst case, amounts to n multiplications in Fp and 1 exponentiation in G. Then,
it executes VerifyIntersection which computes 3k pairings and k multiplications in
GT.

• out = ∅: Verify runs twice VerifyMTProof on tree TW that computes 2 logm hashes
and it invokes twice VerifyMembership that evaluates 3× 2 = 6 pairings.

In summary, to verify the search results, a verifier V performs very light computations com-
pared to the computations undertaken by the server when answering keyword search queries
and generating the corresponding proofs. Besides, the verification cost depends on k only in
the case where all the keywords have been found and is independent otherwise. Furthermore,
we believe that for large values of k, the probability that the search returns a set of files
containing all the k keywords is low. Hence, the verification cost will be constant and small
(6 pairings and 2 logm hashes). On the other hand, for smaller values of k, the verification
cost remains efficient.

102More details on this complexity computation can be found in [140, 52].

144 6. Verifiable Conjunctive Keyword Search

Table 6.2: Complexities of our protocol for verifiable keyword search

Notations
D: parameter of our system, n ≤ D: number of files, N : number of keywords
m: the number of buckets in the index, d: size of a bucket
k: number of keywords in a query.

Storage |G| refers to the size (in bits) of elements in set G.
Data owner O(D) D · |G|+ 2× 256 bits

Server O(N + n) md · |Fp|+ (2m− 1)× 256 + (2n− 1)× 256 bits
We assume H is SHA-256.

Communication
Outbound O(k) k · |{0, 1}∗| bits

Inbound
out = FW O(n+ k) n · |{0, 1}∗|+ 3k · |G|+ k logn× 256 bits

out = ∅ O(1) 2 · |G|+ 2 · (|G|+ |Fp|) + 2 logm× 256 bits

Operations Setup QueryGen Search Verify
out = FW out = ∅ out = FW out = ∅

Hashes in {0, 1}∗ 2(m+N + 1) - k · (3 + logN) 2 logm+ 3k k logN 2 logm
Multiplications in Fp md+Nn - kn · logn 2d+ 4d log d n -

Multiplications in GT - - - - k -
Exponentiations in G D +m+N - k 4d 1 -

Pairings - - - - 3k 6
CuckooInsert N - - - - -

ProveIntersection - - 1 - - -
Light Computation - k - - - -

6.7.1.3 Communication

In terms of communication complexity, our protocol for VCKS is relatively lightweight. In
particular, sending a search query to server S amounts to O(k) space, where k is the number
of keywords in that query.

The size of server’s answer to the query depends on the outcome of Search algorithm, as
shown in Figure 6.8:

If all the keywords are found: Then server’s result is of size O(n + k), where n corre-
sponds to the worst case scenario where all the outsourced files contain the conjunction
of keywords, and k results from the underlying proof of intersection of k sets of files
Fωi .

If one keyword is not found: In this case, server S has to send a search result of size
O(1) that contain the keyword that is not found and its corresponding proof of non-
membership.

6.7.1.4 Impact of D on the performance.

This performance analysis assumes n ≤ D, where n is the number of files. The value of D
solely depends on security parameter κ, and as such, defines an upper-bound to the size of sets
for which we can compute a polynomial-based accumulator. It follows that in our protocol,
the number of files that a data owner can outsource at once is bounded by D. However, it is
still possible to accommodate files’ sets that exceed the bound D. The idea is to divide the
set of size n into n′ = d nDe smaller sets of size D. By using the same public parameters, Setup
accordingly creates for each set of D files an index and the corresponding Merkle trees. This
increases the complexity of the Setup by a factor of n′. Namely, the data owner is required
to build n′ Cuckoo indexes and 2n′ Merkle trees. However, since D is now constant, the
computation of each file accumulator Acc(Fω) will take O(D logD) = O(1) time. Besides,

6.7. Performance Evaluation 145

the server has to run n′ ProveIntersection which runs in O((kD) log2(kD) log log(kD)) =
O(k log2(k) log log(k)) time.

6.7.2 Experimental Analysis

This section evaluates the performance of our proposed PVCKS scheme with two datasets:

• For the purpose of experimental analysis, we created a collection of files which gathers
the complete plays of Molière103. We will refer to this dataset as “Molière”. This dataset
consists of n = 25 293 files and is of size 1.34 MB. It is populated by N = 16 720 distinct
keywords.

• The Enron email dataset104 is used to test our protocol in a real-world scenario. This
collection of data includes emails generated by 150 former employees of Enron, an American
energy company that faced a bankruptcy in the beginning of years 2000s. The dataset was
acquired for a matter of investigation after Enron’s collapse and made publicly available for
study and research purposes. The investigation of Enron email dataset applies to a scenario
where our PVCKS would be an interesting tool. Indeed, some verifiers from financial auditing
companies or legal authorities might be required to search in the collection of emails for some
keywords related to their investigations. This search might be delegated to the cloud which is
then compelled to return the search results with a proof of correct search. The Enron email
dataset contains 2.54 GB of n = 517 401 files and N = 2 141 711 unique keywords.

Experimental Setup. Our prototype is written in C and uses the Pairing-Based Cryp-
tography (PBC) library105. We run the experiments on two different machines. The Molière
dataset was tested on a laptop with the following characteristics: processor Intel Core i5-
4258U CPU@2.4 GHz; RAM of 4 GB; system on 64-bit.

We tested the Enron email dataset on a desktop machine with the following characteristics:
processor Intel Core i5-2500 CPU@3.80GHz; RAM of 16 GB; system on 64-bit.

6.7.2.1 Benchmarks on the Molière dataset

Evaluation of the Setup phase. To evaluate the performance of the Setup phase, we
run our prototype on three different scenarios based on the Molière dataset. We arrange the
collection of files so that n = 1, n = 253 or n = 25293 files; each of these settings involves
N = 16720 unique keywords (the same set of N keywords for each file collection). The
various benchmark times mentioned here correspond to the average of times of 5 trials of our
prototype against the data set. Table 6.3 shows the experimental results of the different steps
of the Setup phase in the case it is run on the collection of n = 25293 files. In the different
cases, the prototype builds a Cuckoo index that can store up to m × d = 65536 keywords.
Hence, 26% of the index is populated.

As we can see in Table 6.3, the most computationally expensive operation is the com-
putation of the accumulators AF. This is in accordance with our performance evaluation:
algorithm Setup must compute N accumulators AF, one for each keyword, and the under-
lying polynomial of each of these accumulators is of degree at most n. Nevertheless, notice
that this computational burden is allowed in the amortized model our protocol adopts. Setup
is executed once for multiple search queries and verifications. We will discuss about the
amortization later on.

Figure 6.15 compares the average total time for the Setup phase for different values of n
and m (thus different values for d since N is fixed and m, d and N are linked with the relation
m = 1+ε

d N). In particular, according to our performance analysis conducted in Table 6.2,

103“Molière œuvres complètes”, http://tiny.cc/17hu8x [Accessed: February 4, 2016].
104The Enron Email Dataset, http://tiny.cc/d9hu8x [Accessed: February 4, 2016].
105The Pairing-Based Cryptography Library: https://crypto.stanford.edu/pbc/ [Accessed: February 4,

2016].

http://tiny.cc/17hu8x
http://tiny.cc/d9hu8x
https://crypto.stanford.edu/pbc/

146 6. Verifiable Conjunctive Keyword Search

Table 6.3: Time of Setup phase n = 25293 files

m d Index I (s) AW (s) {Fωi} (s) AF (s) TW (s) TF (s) Total (s)

8192 8 3.489 7.252 11.484 26.591 0.147 2.284 51.248
4096 16 1.819 4.240 10.568 28.843 0.039 2.341 47.851
2048 32 2.037 2.038 10.505 29.760 0.012 2.357 46.708
1024 64 1.940 1.074 10.998 27.889 0.003 2.270 44.175

Figure 6.15: Average total time of the Setup phase

for N and m fixed, the Setup operations is linearly dependent on n (in the worst case) only
because of the computation of accumulators AF. However, in our setting, we do not reach this
worst case (namely, all the keywords are not in all the files). This can be explained by the
fact that one particular keyword is not present in all the n files of the tested data collection.
Empirical analysis shows that on average, in the case of n = 253 files, a keyword is present in
6 files while in the case of n = 25293 files, a keyword is present in 13 files. We also highlight
the fact that the overall efficiency of the Setup phase is acceptable for practical scenarios.

Evaluation of the Search phase. To appreciate the performance of algorithms Search
and Verify, we use the same data set as before. We want to evaluate the dependencies of these
algorithms with n (the number of files) and k (the number of searched keywords), while N
is fixed (N = 16720 unique keywords in the entire data set). We also look at the two cases
where the search outputs an empty or a non-empty result. All the reported times in this
paragraph are computed as the average of 25 executions of our prototype.

We first run our program for a fixed number of searched keywords: k = 2. In this setting,
we evaluate the impact of n in the efficiency of the algorithms when all the keywords of
the search query are found. Hence, our prototype launches the search operations for several
values of n: n = 10, 100, 1000, 10000 files (selected from our test data set). Figure 6.16 and
Table 6.4 present the results of this benchmark. As we can see, the increase in n slows the
search operation. This is due to the computation of each accumulator AF which, in the worst

6.7. Performance Evaluation 147

case, involves n files. ProveIntersection is also a computationally demanding operation, since
it has to compute the gcd of k sets, where each of the sets may include, in the worst case, the
identifiers of n files. Therefore, we consider ProveIntersection as the most expensive operation
performed in our solution. Besides, as we saw in Section 6.7.1, the time required by Verify
does not depend on the number of searched keywords. Figure 6.16 and Table 6.4 validate
this property.

Table 6.4: Time of Search phase (fixed number of searched keywords)

n ProveIntersection (s) Search (s) Verify (s)

10 0.002 0.005 0.009
100 0.005 0.008 0.009
1000 0.075 0.114 0.009
10000 0.703 1.063 0.011

Figure 6.16: Total time of the Search phase (fixed number of searched keywords)

Thereafter, we conduct a second experiment where n is fixed to n = 25293 files and the
number of searched keywords k varies according to the following serie k = 2, 5, 10. This
scenario assesses the effect of k in the efficiency of Search and Verify. Table 6.5 and Fig-
ure 6.17 display respectively the times to compute the proof of intersection, the search and
the verification in the case when all the keywords of the search query are found.

Table 6.5: Time of Search phase - all keywords are found

k ProveIntersection (s) Search (s) Verify (s)

2 13.121 21.369 0.009
5 120.867 172.121 0.017
10 305.062 368.500 0.036

First, let us consider the time required by algorithm Verify. As expected by the theoretical
performance evaluation, it linearly increases with k the number of keywords to be searched for
and is negligible compared to the running time of algorithm Search. In addition, Figure 6.17
shows that the step that generates the intersection of sets and its proof determines the time

148 6. Verifiable Conjunctive Keyword Search

Figure 6.17: Total time of the Search phase - all keywords are found

of Search. Besides, while N and n are fixed in this experiment, we observe that the times
for ProveIntersection and Search are not strictly linear in k as expected by the performance
evaluation conducted in Table 6.2. We explain this divergence by the fact that our theoretical
evaluation does not take into account the different sizes of the sets accumulated in AF. Indeed,
Table 6.2 presents the worst case complexities according to which each of the N keywords
exist in all the n files. Practically, in the case where n = 25293 files, a keyword is present in
only 13 files. Hence, between two distinct values of k, the computation of accumulators AF
and the proof of intersection of their respective sets impacts differently the time of operating
the search.

Finally, we study the performance of our protocol when the search has not found a keyword
from the query. In the following, we evaluate the evolution of the time required by algorithms
Search and Verify in function of k the number of searched keywords in a query. These results
are presented in Table 6.6 and depicted in Figure 6.18. First, we can notice that in accordance
with the theoretical performance evaluation presented in Table 6.2, the running time of Verify
is independent from k. Secondly, we highlight the fact that in this experiment, the search
takes much less time than in the case where all the keywords in the search query were found.
Furthermore, while we were expecting the time of Search to be linear in k, Figure 6.18
shows a different evolution. We can explain this discrepancy by the fact that our theoretical
performance was studied in the worst case, where each of the bucket in Cuckoo index I was
populated by d keywords (the maximum capacity of the buckets). In reality, all the buckets in
the index might not be full. Hence, the computation of the accumulators AW for the missing
keyword may take less time than in the worst-case scenario. Therefore, in our experiment,
we believe that in the case where k = 5, the buckets corresponding to the missing keyword
were empty, while in the case where k = 2, these buckets were probably filled by at most d
keywords (in this experiment d = 8 keywords).

Table 6.6: Time of Search phase - one keyword is not found

k Search (s) Verify (s)

2 0.039 0.008
5 0.008 0.008
10 0.049 0.008

6.7. Performance Evaluation 149

Figure 6.18: Total time of the Search phase - one keyword is not found

Discussion on Amortization and Outsourceability. We discuss the amortization and
the outsourceability of the conjunctive keyword search operation. In particular, we will define
in terms of computation, storage and bandwidth consumption the criteria that make the use
our verifiable keyword search protocol a more interesting strategy for a data owner than
performing the search locally.

In terms of computational performance, we compare our protocol executed over the
Molière dataset with a local search performed at the client side (without resorting to cloud
technology). This local search requires a pre-processing step which includes the construction
of the Cuckoo index I as well as the indexing {Fωi} of files according to the keywords that
the files in Molière dataset contain. Then, the data owner can perform the search for a con-
junction of keywords by executing algorithm CuckooLookup over index I and computing the
intersection of sets {Fωi} for all the keywords targeted by the search. Table 6.7 depicts the
time to run the pre-processing step and the search for 2 keywords for different sizes of the
Molière data set.

Table 6.7: Local search computational performance

n Pre-Processing (s) Search (s)

10 0.002 2.524× 10−5

100 0.017 2.968× 10−4

1000 0.203 3.326× 10−3

10000 2.618 0.021

First, we can assess from Table 6.7 that while, for a large number of files, our protocol
satisfies the efficiency requirement we gave in Section 3.4.2 (namely, the verification time
showed in Table 6.5 is less than the local search time, for n = 10000), it is not outsourceable
in the computational definition of the amortized model. To better understand this concept
we introduce the following definition for a verifiable keyword search solution.

Definition 20 (Outsourceability - Computation). The criterion x of outsourceability
in computation for a verifiable keyword search scheme is determined by a parameter x ≥ 0
such that:

tSetup + x · (tProbGen + tVerify) ≤ tPreprocessingLocal
+ x · tSearchLocal

where talgo is the time required to execute algorithm algo. Hence, x is defined by the relation:

x =

⌈
tSetup − tPreprocessingLocal

tSearchLocal
− (tProbGen + tVerify)

⌉

150 6. Verifiable Conjunctive Keyword Search

Regarding the tests we performed on the Molière dataset, we cannot find an x ≥ 0 that
meets the outsourceability definition. Nonetheless, our protocol is still arguably outsource-
able. Indeed, the above definition for outsourceability only takes into account the computa-
tional performances of a verifiable keyword search solution. However, in real-world scenarios,
storage and bandwidth consumption are also to be considered in the outsourceability criteria:

Storage: Our protocol targets large databases that cannot be locally stored at the data owner
side due to its heavy consumption of memory. If we consider the case where users may
use laptops, smartphones or other devices with low memory resources, outsourcing the
storage and thus the search operation to the cloud will be necessary. Therefore, the
outsourceability definition must take into account this storage criterion: data owners
with limited memory resources choose to outsource their large databases to the cloud
while delegating the search operation to the cloud server as the best strategy.

Bandwidth: In the context of a publicly delegatable and verifiable keyword search solu-
tion, bandwidth consumption is a criterion of paramount importance in the notion of
outsourceability. Indeed, without our protocol, if a data owner delegates to third-party
queriers the capability to search their large datasets, she has to transmit for each querier
the search indexes, which consumes a non-negligible amount of bandwidth. Hence, in
this context, outsourceability can be defined as the amount of search queries needed to
amortize the expensive setup phase. Namely, it should be less consuming to delegate
the capability of requesting a search operation and verifying its results than to transmit
x times the search indexes.

Definition 21 (Outsourceability - Bandwidth). The criterion x of outsource-
ability in bandwidth for a publicly delegatable and verifiable keyword search scheme is
determined by a parameter x ≥ 0 that defines the number of search queries (issued by
different users) such that:

x · BW(O → Q) ≥ BW(O → S) + x · BW(S � Q)

where:

• BW() is the bandwidth consumed to exchange data between two parties,

• “O → Q” translates the transmission of search indices by data owner O to a
third-party querier Q,

• “O ← S” corresponds to the upload of the database and the corresponding search
indices to server S , and

• “S � Q” is the challenge-response between S and Q in which Q sends a search
query and S returns the search result.

6.7.2.2 Benchmarks on the Enron email dataset

In this section, we evaluate the performance of our publicly verifiable conjunctive keyword
search scheme with a real-world dataset in order to demonstrate its practical efficiency. We
remind the reader that the Enron dataset includes of n = 517 401 files which amounts to 2.54
GB in memory size. The entire set contains N = 2 141 711 unique keywords. The different
parameters and running times of our prototype against the Enron email dataset are listed in
Table 6.8.

6.7. Performance Evaluation 151

Table 6.8: Parameters and experimental results on Enron email dataset

Values

n 517 401
N 2 141 711
m 16 384
d 512

Setup time 7.46 h

Search time
• for 3 frequent keywords 1.30 h
• for 3 infrequent keywords 4.13 min
• for missing keyword 1.05 s

Verify time
• for 3 frequent keywords 2.50 s
• for 3 infrequent keywords 0.09 s
• for missing keyword 0.01 s
Storage overhead at the server 564.3 MB

Description of the experiment. We run the preprocessing phase, that is algorithm Setup,
in the entire collection of emails without any filtering or pruning of the dataset. Setup creates
the Cuckoo index I with the parameters d = 512 and m = 16384. Hence, 26% of the index
is full. As described in Section 6.5, the algorithm also determines the file index, that is the
set of files {Fωi}, and computes the two types of accumulators and the two Merkle trees. To
test the efficiency of algorithms Search and Verify, we launch three types of search queries:

1. The first query requests 3 common keywords in the Enron email dataset (such as report,
meeting, Monday). They are present together in 997 files;

2. The second query targets 3 keywords that exist in the Enron email dataset (Robertson,
Stephens, finances) but which are present together in 10 files only;

3. The third query searches for keywords that are not present in the Enron email dataset.

Preprocessing at the data owner. As we already explained for the Molière dataset,
algorithm Setup is a (one-time) expensive phase. To process the entire Enron email dataset,
our implementation takes approximately 7.46 hours, due to the computation of accumulators.
While expensive, we will see that it allows for very fast search result verifications.

Storage overhead at the server. Naturally, the server stores the dataset which amounts
to 2.54 GB of memory. Additionally, it is required to store I and the sets {Fωi}, which
consists of 564.3 MB of memory in total, or 26.7% of the entire dataset. As regards of the
two Merkle trees that are built by algorithm Setup, the server is not compelled to store them.
Indeed, it can build them on the fly whenever it received a search request. As a matter of
fact, the generation of tree TW (respectively tree TF) only takes 0.017 seconds (respectively
4.007 seconds).

Search efficiency. In this paragraph, we analyze and comment the times it takes to perform
the three test queries:

Query 1: Responding to this type of query is relatively expensive for the server compared
to the two other types. Indeed, as the searched keywords are present in many files
(here in 997 files), the server has to compute 3 polynomials of degree 997, to compute
accumulators and the proof of set intersection. It took nearly 1.30 hours to return
the search results. We argue that in a real scenario this type of query will not induce

152 6. Verifiable Conjunctive Keyword Search

valuable information for any investigator that would like to mine the email dataset.
Indeed, such verifiers would search for more sensitive keywords for which the search
results return highly instructive information. Besides, this search is run by the cloud
server. Thus in a real cloud environment, the time to search would be less than what
we measured in a desktop machine.

Query 2: The second query targets 3 less common keywords. For example, by searching
the set {Robertson, Stephens, finances}, an investigator that analyzes the Enron email
dataset is interested in emails exchanged between individuals named Robertson and
Stephens and which refer to some finances issues. Our test query returned only 10 files
in approximately 4 minutes. In a real context, the amount of time taken to return the
search result is acceptable and does not impede from resorting to cloud technologies.

Query 3: A search that returns an empty result is, as expected, the fastest type of search
query. It takes only a bit more than 1 second for the server to perform this search.

The analysis of the search efficiency at the server side shows that the time to execute the
search operation highly depends on the size of the intersection, that is, on the popularity of
searched keywords. The more the searched keywords are popular, the longer it will take to
perform the search and to generate the proof of correct results. In the case where a keyword
is not present in the file collection, the search operation is very fast even with large datasets.

Verification efficiency. We saw, in relation with the Molière dataset, that the search result
verification is a very fast and lightweight operation performed by the verifier. This result is
also confirmed by our experiment in the Enron email dataset. As depicted in Table 6.8,
for the case where 3 keywords are found in 997 files, it takes only 2.50 seconds to verify
the search results, while in the case of less common keywords, verification is performed in
0.088 seconds only. Furthermore, in the case where the search returns an empty result, the
verification is even faster (0.011 seconds). Therefore, our solution allows fast and practical
search verifications even for a large number of files and popular keywords.

Amortization. Our last analysis perspective discusses the amortization of our protocol
for the Enron email dataset. To appreciate the computational outsourceability as defined in
Definition 20, we list in Table 6.9 the times required to perform a conjunctive keyword search
in two cases: in the case where the search is performed by the data owner and the case where
the search operation is outsourced to a cloud server.

Table 6.9: The Enron email dataset and amortization

Search at the data owner Search outsourced at the cloud
Cuckoo Index (s) File index (s) Local Search (s) Setup (s) Verify (s)

Query 1 2266.956 21390.553 5.197 26870.847 2.500
Query 2 2266.956 21390.553 0.026 26870.847 0.088
Query 3 2266.956 21390.553 1.25× 10−4 26870.847 0.011

According to the criterion of outsourceability in computation we defined in Definition
20, we learn that in the case of a query of type 1, the expensive operations performed by
algorithm Setup are amortized after 1277 queries. However, in the case of queries of type
2 and 3, computation performances are not amortized. Hence, we resort to two another
parameters, that we already mentioned in the case of the Molière dataset, and which support
the viability of our solution:

Storage: As shown in Table 6.8, the search over the Enron dataset incurs a storage overhead
of 564.3 MB, due to the generation of search indices. This additional storage should

6.8. Conclusion to Verifiable Keyword Search 153

be considered even if the data owner does not outsource the storage and the search
operation over this file collection to the cloud. Hence, for users with limited storage
resources, the burden of keeping the dataset in addition with the indices is substantially
costly. The best strategy for this kind of users is therefore to outsource the dataset to
the cloud and thus, the search operation over this data set.

Bandwidth: We recall that our solution is publicly delegatable and verifiable. In this con-
text, third-party queriers can search for a conjunction of keywords in the Enron dataset,
without any interaction with the data owner. If the data owner decides to outsource
the search operation to the cloud, she will transmit the dataset of 2.54 GB and the
search indices of 564.3 MB. This bandwidth is consumed only once in the Setup phase
of our prototype. The Search and Verification phase are less bandwidth consuming
compared to the Setup phase. We estimate that one search query and search response
amount to 5290 bytes106 of consumed bandwidth, in the case of Query 1. On the other
hand, if the data owner does not outsource the large dataset, to enable anyone to search
for keywords, she will need to transmit the search indices for each querier. Based on
the formula given in Definition 21, we compute that 6 queries is the threshold above
which outsourcing the Enron dataset to the cloud is the best strategy to optimize the
bandwidth consumption.

Concluding thoughts. The above experiments of our verifiable keyword search solution
over the Enron dataset show that our proposal enables relatively fast conjunctive keyword
search, even with large file collection. Since our tests were performed on a desktop machine,
we can safely envision that on a real cloud server the performances for the search operation
would yield better running times. Besides, in spite of an expensive Setup pre-processing phase,
our protocol is a viable and practical solution by the fact that search results verifications are
efficient, regardless of the file collection size.

6.8 Conclusion to Verifiable Keyword Search

We described in this chapter our publicly delegatable and publicly verifiable conjunctive
keyword search solution. It is based on a combination of well-established cryptographic
primitives: polynomial-based accumulators, Cuckoo hashing and Merkle trees. Besides, our
scheme handles updates of files while still enabling verifiable search without the need for the
data owner to download the database to perform the update operations. We proved that
our proposal is correct and sound, according to the definitions we gave in Section 6.2.3. In
addition, our verifiable keyword search solution satisfies the efficiency requirement for any
VC scheme and adopts the amortized model approach.

Compared to relevant existing work on verifiable keyword search, we discuss the practical-
ity of our proposal and its outsourceability. Besides, our scheme ensures public delegatability
and verifiability while, in contrast, most existing work [129, 113, 59, 198, 62, 196] do not
provide these two requirements simultaneously.

106We compute this value based on the communication complexity analyzed in Table 6.2. We assume a
keyword in encoded on 4 bytes, the file identifiers on 3 bytes and |G| = 160 bits.

154 6. Verifiable Conjunctive Keyword Search

Part III

Accountability and Verifiability

156

7. An Accountability Policy Language 157

Chapter 7

An Accountability Policy Language

7.1 Introduction

The two previous parts illustrated how cryptography supports verifiability in the cloud. We
looked at cryptographic proofs of retrievability to verify that a cloud server stores outsourced
data as expected. We also focused on three cryptographic protocols that generate proofs
stating that the cloud evaluates the outsourced operation as expected. In this part, we turn our
attention to how to express the statement “as expected” in more formal terms. In particular,
we will extend our study on verifiability to the broader notion of accountability.

We regard accountability for the cloud as the delineation of data governance in which
organizations that are entrusted with personal and confidential data are held responsible and
liable for storing, processing and sharing data according to contractual and legal constraints,
called obligations, from the time the data is stored until when the data is destroyed. The
accountable organization must implement appropriate actions and handle remediation proce-
dures in case of failure to act properly [146]. Obligations must respond to a collection of many
regulations, including the European Union (EU) General Data Protection Regulation [80] and
its reform107. In addition, cloud services are delivered in form of contracts and agreements.
Such agreements may not explicitly address in which way obligations are handled, as they
are often formulated by cloud providers and not cloud customers [45]. These customers lack
control over the way their data is managed by the cloud, therefore, they grant a high level
of trust on the cloud compared to the guarantees they finally obtain. The set of obligations
corresponds to the intuitive concept of “as expected” we mentioned above. Obligations also
help to clarify the accountability relationships in the cloud, i.e. who is responsible to whom
and for what. Hence, defining appropriate policies mapping the accountability obligations is
a fundamental requirement for control mechanisms, in the sense that policies mitigate risks,
provided that their enforcement and the verification of their compliance are applicable.

In this setting, cryptographic techniques, such as the ones we develop in Part I and Part II,
alone do not fully capture the essence of accountability. Indeed, as we will see, accountability
encompasses multiple aspects such as notifications of security breaches, that cryptography
does not enable to satisfy. Therefore, we look at another tool, namely a policy language, to
express in terms of policies the accountability obligations that the cloud has to comply with
during the correct execution of the services it delivers. The objective of our work in this
part consists in analyzing how and to what extent we can convey accountability obligations
via expressive and declarative policies in such a way that these policies are easy to write,
manage, enforce and validate. We are interested in machine-readable representations of
policies expressing accountability obligations. In order to express such policies, we design in
this work a new policy language, Accountability-PPL (A-PPL), that is both expressive and

107At the time of writing this thesis, the Reform of the data protection legal framework in the EU is still
in progress. “Reform of EU Data Protection Rules”, European Commission, http://tiny.cc/neiu8x [Accessed:
February 4, 2016].

http://tiny.cc/neiu8x

158 7. An Accountability Policy Language

declarative. The term expressive means that the language is easy to understand for both a
human reader and a machine reader. In the case of a policy language, the machine reader
is called a policy engine and enforces the policies written in that language. Our work also
designs a new policy engine to enforce A-PPL statements: the A-PPL Engine (A-PPLE).
The term declarative encompasses the concept that the language should describe what to
do. We highlight the fact that at the time of writing this thesis our effort in designing a
machine-readable policy language for accountability obligations is unprecedented in the state
of the art.

This part of this thesis offers the following contributions:

• We present and analyze a collection of accountability obligations from which we derive
the requirements for an accountability policy language.
• We detail the design of a new language called A-PPL108 (shorthand for Accountability-

PPL, where PPL [175] is an existing policy language devoted to privacy). We also
describe A-PPLE109, the policy engine that takes care of the enforcement of A-PPL
rules.
• We finally illustrate the expressive and declarative properties of our accountability

policy language by modeling a use case. We show how to translate into A-PPL policies
the obligations extracted from this use case.

This work on a policy language for accountability has been undertaken within the Euro-
pean FP7 research project, the A4Cloud project110, whose goal consists in increasing trust
in cloud computing by developing methods and tools that enable to make cloud actors ac-
countable for the security and privacy of the data held in the cloud and to give cloud users
more control and transparency on the way the data is stored and processed by the cloud.

7.2 The Concepts of Accountability

As we mentioned in the introduction to this chapter, the concept of accountability for the
cloud embraces the notion of verifiability in the cloud, which is the main topic of this the-
sis. To be more specific, accountability is a complex concept that can be modeled under
a set of various elements. First, accountability includes a collection of principles, that we
call accountability attributes. Based on the identification of these attributes by the A4Cloud
project [58], we regroup them into a number of four: responsibility, transparency, veri-
fiability and remediability. Moreover, from these attributes, the concept of accountability
implies a certain number of practices or behaviors that an accountable cloud should engage.
There are four such practices: delineating data governance, implementing appropriate actions
such that the cloud is accountable, demonstrating compliance with policies and regulations
and remedying any failure in the correct execution of the actions. Finally, the concept of
accountability involves mechanisms that support accountability practices. Three types of
mechanisms apply: operational processes (auditing), non-technical mechanisms (contracts,
policies) and technical tools (privacy-enhancing technologies, proofs of retrievability, etc.).

In this section, we give more details on the above accountability model (Section 7.2.1). We
also describe the different actors and their respective roles in a cloud computing environment
(Section 7.2.2). We finally highlight the importance of policies in an accountable setting
(Section 7.2.3).

7.2.1 Accountability Model

Modeling accountability requires a hybrid approach that combines attributes, practices and
mechanisms. These three aspects are naturally interconnected to each other: while attributes

108A-PPL is pronounced “a people”.
109A-PPLE is pronounced “apple”.
110The Cloud Accountability project (A4Cloud), http://www.a4cloud.eu/ [Accessed: February 4, 2016].

http://www.a4cloud.eu/

7.2. The Concepts of Accountability 159

characterize accountability at a conceptual level, accountability practices interpret at the
operational level the attributes’ essence whereas the accountability mechanisms implement
those practices.

7.2.1.1 Accountability Attributes

Accountability attributes [82] support or are strongly related to the concept of accountability.
We identified four key attributes that are interconnected to each other [82]:

Responsibility: This characterizes the state of undertaking some assigned actions to comply
with a set of policies or rules.

Transparency: This principle requires a transparent system to provide visibility on the
way this system delivers the services it provides. Transparency involves the provision
of enough and easy-to-access information about the behavior of the system.

Verifiability: Verifiability, as we saw in Part I and Part II, refers to the provision of proof
or evidence showing whether the system delivers the service it offers correctly. In other
terms, verifiability suggests that it is possible to verify, to audit or to be convinced that
the considered system complies (or not) with obligations, that are translated into rules
of policies.

Remediability: This attribute characterizes an accountable system that is able to take
corrective procedures as a result of failure to comply with obligations.

In the description of these accountability attributes, we pointed out three fundamental
notions that capture the essence of what an accountable system is accountable for:

Obligations: They define the rules for data storing, processing and sharing and can be
expressed in terms of policies that derive from law or contracts.

Behavior: This notion characterizes the operations (actions and reactions) handled by the
system to fulfill the obligations.

Compliance: This concept involves the comparison of the system’s behavior with the obli-
gations in order to show the conformity of the behavior with the obligations.

Having defined these three notions, we can summarize the outcome of the characteriza-
tion of accountability attributes and their interconnection for a cloud system: Regulations,
contracts between cloud providers and customers or ethical norms impose obligations that
the accountable system is responsible for complying with. The accountable system therefore
takes some actions such that its behavioral operations are transparent and verifiable. If the
verification of this behavior detects non-compliance with obligations, the accountable system
is responsible to take transparent and verifiable remedies for any failure to act properly.

7.2.1.2 Accountability Practices

Accountability practices designate the operational behavior that should be adopted by an
accountable system in order to apply the accountability attributes:

• In relation to the responsibility and transparency attributes: The cloud should define
and inform how data is managed so as to comply with obligations that it commits to.

• In relation to the responsibility, transparency and verifiability attributes: The cloud
should ensure the implementation of the appropriate operations (the accountability
mechanisms) to comply with obligations and to demonstrate their compliance.

• In relation to the responsibility, transparency and remediability attributes: The cloud
should respond to any failure to act as specified by the obligations. In particular, it
should take the appropriate corrective measures to redress from these failures.

160 7. An Accountability Policy Language

7.2.1.3 Accountability Mechanisms

Accountability mechanisms relate to the tools and techniques that implement and support
the accountability practices and attributes we listed above. These mechanisms range from
privacy and security mechanisms to risk assessment and audits, including notification tech-
niques and policy definition. As we discussed in Part I and Part II, our proposals for proofs of
retrievability and verifiable computation can fall into the mechanisms that support account-
ability: Obviously, our cryptographic solutions establish verifiability in a cloud system since
they meet the definition we gave for verifiability. Nonetheless, as we specified in Section 7.1,
cryptographic techniques alone do not suffice to support verifiability and thus accountability.
Logs and notifications are two examples of tools that are related to the transparency attribute
since they provide a certain amount of information that offers visibility of the way the cloud
processes the data it handles. Moreover, auditing logs is another mechanism that enhances
verifiability in an accountable system. Indeed, audits ensure a detective control on whether
the cloud comply with advertised obligations. Besides, an incidence response tool may help
to inform cloud users about a security breach that may occur during a normal execution of
cloud procedures. All these examples show that there exist a wide range of techniques that
create accountability for cloud services.

This thesis investigates another type of mechanism to support accountability: machine-
readable policies. As we will see in Section 7.2.3, policies are at the core of our accountability
model as they play a pivotal role between the three notions we highlighted above, namely
obligations, behavior and compliance.

7.2.2 Accountability Actors and their Roles

Before delving into policies and their relevance in an accountable system, we delineate here
the different actors that come into play in an accountable cloud ecosystem. This term refers
to the complex system of components that interact with each other to deliver, consume,
enjoy or monitor cloud services. Identifying the actors and their roles in an accountable
ecosystem is essential to provide accountability. Besides, policies must reflect these actors
and their interdependencies. Our analysis is based upon two different sources: the NIST
cloud reference architecture [121] and the data protection regulation taxonomy [80].

The NIST reference architecture defines the following three main cloud actors:

Cloud Provider: This is an organization that delivers cloud computing services or tech-
nologies to interested parties. We typically called this party the cloud server in Part I
and Part II.

Cloud Customer: This is a person or an organization that contracts a business relationship
with a Cloud Provider. It consumes the services delivered by this Cloud Provider. This
party may correspond to the data owner we introduced in Part I and Part II. This
definition can also apply to the querier user mentioned in Part II since this entity uses
the cloud resources to submit a computation request (Chapter 4, Chapter 5) or a search
query (Chapter 6).

Cloud Auditor: This entity operates independent assessment of cloud services, their oper-
ations, their performance and their security.

Each of these actors endorses some roles defined by the EU regulation on data protection,
roles that help characterize the actors in an accountable cloud ecosystem:

Data Subject: It refers to the individual from whom personal data is collected. Data Sub-
jects are often the end users of a cloud service.

Data Controller: This term identifies “the natural or legal person, public authority, agency
or any other body which alone or jointly with others determines the purposes and means

7.2. The Concepts of Accountability 161

of the processing of personal data” [80]. Organizations that purchase cloud services,
namely Cloud Customers, are often Data Controllers. Besides, multinational Cloud
Providers that offer cloud services (e.g. Amazon111, Facebook112 and Google113) can
also become Data Controllers.

Data Processor: This expression includes “the natural or legal person, public authority,
agency or any other body which processes personal data on behalf of the Data Con-
troller. Cloud Providers will become Data Processors when their customers use their
services to process personal data” [80].

Data Protection Authorities: They represent national supervisory authorities, such as
the Information Commissioner’s Office114 (UK), the French CNIL115, the German BFDI116,
etc.

Table 7.1 depicts the correspondence and the possible combinations between the cloud
actors and the roles they endorse in an accountable cloud ecosystem. For the rest of this
part, we may interchange cloud actors or their corresponding roles.

NIST
cloud actors

Data protection
roles

Cloud Customer
Data Subject

Data Controller
Data Processor

Cloud Provider
Data Controller
Data Processor

Cloud Auditor
Data Protection

Authorities

Table 7.1: Correspondence between Cloud Actors and Data Protection Roles

7.2.3 Accountability and Policies

The term policy refers to “a set of rules related to a particular purpose. A rule can be
expressed as an obligation, an authorization, a permission or a prohibition” [105]. As we
specified before, policies play a central role in our accountability model: Accountability
policies are particularly useful for specifying obligations in cases where Cloud Customers
(data owners) outsource the processing of personal data to Cloud Providers. Besides, Cloud
Providers operate the data according to the behavior defined by the stated policies. Finally,
compliance checking against the obligations can be done via comparing the policies with the
behavior traces and evidences. More concretely, accountability policies convey the different
accountability attributes of responsibility, transparency, verifiability and remediability that
the Cloud Providers (Data Controllers and Data Processors) should satisfy. Therefore, defin-
ing and enforcing those policies is one of the accountability practices we mentioned above. A
machine-readable policy language can implement these accountability policies. The goal of

111Amazon Web Services: https://aws.amazon.com [Accessed: February 4, 2016].
112Facebook: https://www.facebook.com/ [Accessed: February 4, 2016].
113Google: https://google.com/ [Accessed: February 4, 2016].
114Information Commissioner’s Office: https://ico.org.uk/ [Accessed: February 4, 2016].
115Commission Nationale de l’Informatique et des Libertés: www.cnil.fr/ [Accessed: February 4, 2016].
116Bundesbeauftragte Für den Datenschutz und die Informationsfreiheit www.bfdi.bund.de [Accessed:

February 4, 2016].

https://aws.amazon.com
https://www.facebook.com/
https://google.com/
https://ico.org.uk/
www.cnil.fr/
www.bfdi.bund.de

162 7. An Accountability Policy Language

the present work is to design an accountability policy language that eases and automates the
enforcement of accountability policies.

7.3 Motivating Scenario

This section describes a use case that illustrates accountability concerns in the cloud ecosys-
tem. This scenario has been developed within the A4Cloud project [32, 34] in order to
demonstrate how accountability mechanisms devised or used in the project can be applied to
a real-case scenario which involves storing and processing data by different actors in a cloud
ecosystem. The use case highlights the intrinsic obligations for accountability that these ac-
tors have to fulfill. Related to our work on the design of a policy language for accountability,
the scenario enables us to determine the requirements that such a language should satisfy in
order to convey the accountability obligations into the form of policies. After outlining the
A4Cloud use case in this section117, Section 7.4 investigates the obligations related to this
scenario and derive from them the requirements for a policy language for accountability.

The use case defined by the A4Cloud project [34] develops a healthcare system, the “M”
platform, depicted in Figure 7.1, used to support elderly people. The hospital, that considers
these elderly people as its patients, adopts the “M” platform to collect medical data from
sensors and analyzes them for diagnosis purposes via the service offered by this platform.
The (wireless) sensors monitor patients’ vital signs such as blood pressure, heart pulse rate
or body temperature. This collected data is stored in a cloud-based storage service where
it will also be processed. In addition, the sensor data is likely to be exchanged between the
elderly people, their relatives, the hospital caregivers and healthcare personnel.

The “M” Platform is used by an hospital who subscribed to a service delivered by service
provider M. This service provider made the choice to outsource the data collected by the
sensors to a cloud-based storage service (Cloud X in Figure 7.1) which also takes care of some
initial processing. Besides, a second cloud provider (Cloud Y in Figure 7.1) is responsible
for backing up the sensor data. Cloud Z, which is provided by M’s own infrastructure, is
in charge of some processing and visualization of data. It communicates with Cloud X and
Cloud Y. Figure 7.1 shows that the “M” platform interacts with different actors involved in
the scenario through Graphical User Interfaces (GUIs).

Figure 7.1: Healthcare Scenario [34]

We map to this scenario these actors with the roles we identified in Table 7.1 [33]:
• The patients are the Data Subjects. Indeed, the “M” platform collects the sensor data

from them.
• The hospital is the Data Controller of the patients’ data. It has selected the “M”

platform delivered by service provider M to process this data.

117A comprehensive description and an in-depth analysis of the use case we outline here are presented in
the A4Cloud’s “Consolidated Use Case Report” [34].

7.4. Requirements for an Accountability Policy Language 163

• Service provider M, together with Cloud Z belonging to its own infrastructure, are Data
Processors of the patients’ data.

• Cloud Providers X and Y selected by service provider M to store and process patients’
data are also Data Processors.

• Relatives, friends and hospital staff can be considered as Data Subjects, and under
certain circumstances also Data Controllers (with respect to the patients’ personal data)

7.4 Requirements for an Accountability Policy Language

From the motivating scenario depicted in Section 7.3, we identify the accountability obliga-
tions that the described system should endorse (Section 7.4.2). These results will generalize
for any accountable cloud ecosystem. Then, from this analysis, we derive the design require-
ments for a policy language conveying, in a machine-readable manner, the accountability
obligations (Section 7.4.4).

7.4.1 Source of Accountability Obligations

Accountability obligations generally derive from three perspectives: regulatory, contractual
and ethical. First, regulations and in particular those related to data protection, such as the
EU regulation for data protection [80], are a primary source of obligations. In particular,
the EU regulation controls the processing of personal data and puts the responsibility for
compliance with the rules it defines to the Data Controller. These rules give priority to
transparency: the Data Subject has the right to know when, how and where her personal
data is to be processed. Put in another way, it means that the Data Controller must inform
the Data Subject on who processes the data, where the data is being stored, the purpose for
which the data is collected and processed, with whom the data will be shared and any other
information making the data processing transparent to the Data Subject.

The second source of obligations consists of contracts. In our setting, the term “contracts”
includes SLAs, privacy policies and Terms of Use (ToU). An SLA is a contract, in natural
language, binding a service provider (in the context of cloud computing, a Cloud Provider)
and its customers. The agreement states the quality level of the provided services: it contains
clauses on services’ performance, availability, but also security; it defines the responsibilities
of the service provider and the appropriate remedies applicable when some of the clauses are
not satisfied. Privacy policies are a document in natural language generated by the service
provider and stating how the service handles personal data from their customers. Many
websites define and advertise privacy policies to their visitors. Such policies declare which
personal data is gathered, explain how it is processed and stored and for which purpose, and
disclose if personal data may be shared or sold to third parties. There is no explicit consent
from the Data Subject concerning privacy policies: if a visitor accesses a web page with some
privacy policies, she tacitly accepts them. Note that it is not clear whether privacy policies
legally bind the service provider with their customers, unlike ToU. ToU are prescribed by the
service provider and define what it can do with the data it collects. They also detail what
the provider intends to do with respect to the security and privacy of data.

Finally, the ethical perspective completes the list of source of obligations. It gives the
opportunity to the Data Controller to ‘do the right thing’ [146] with respect to data protection
and accountability. In a nutshell, ethics define a set of guidelines and rules in order to fulfill
the expectations of Data Subjects and Cloud Customers (such as consent, transparency,
security, privacy, etc.)

7.4.2 Accountability Relationships and Obligations

Having identified the source of accountability obligations, we determine the accountability
relationships that exist between the different actors of our motivating healthcare scenario [18]

164 7. An Accountability Policy Language

and derive the obligations, stemming from regulations, contracts and ethics, that have to be
satisfied. Note that the results we outline here can be generalized to any cloud ecosystem.

Data Controller is accountable to Data Subject. We focus on the obligations that the
hospital, which is, in our scenario, the Data Controller, has to fulfill with respect to the
Data Subjects, namely the elderly patients. Hence, the hospital is accountable to the
patients for:

The right to information: Data Subjects have the right to know that their personal
data is processed and for which purpose.

Data quality: This term means that personal data must be, processed fairly and
lawfully, collected for specified, explicit and legitimate purposes, and kept in a
form which permits identification of the patients for no longer than is necessary
for the purposes for which the data was collected or further processed [80].

Confidentiality: The hospital shall implement appropriate technical and organiza-
tional measures to ensure an appropriate level of security in relation to the risks
represented by the processing and the nature of the personal data to be protected.

Data Processor is accountable to Data Controller. Service provider M, Cloud X and
Cloud Y endorse obligations, such that they are made accountable to the hospital for:

Contractual obligations: This means that they are required to provide the service
as specified in the contracts.

Confidentiality/Security control obligations/Data integrity: These notions re-
late to regulatory obligations of data security, breach, data loss and confidentiality.

Notification: This refers to the obligation for the Data Processors to collect and retain
certain information that might be relevant to security breaches, but also to conduct
a reasonable investigation of the security breach.

Data Location: The objects stored in a region must never leave the region unless the
hospital transfers them out.

Data Controller is accountable to Data Protection Authorities. Here, we are inter-
ested in the accountability obligations that the hospital should meet to be accountable
for the Data Protection Authorities118. The hospital is accountable to Data Protection
Authorities for:

Notification on processing operations of personal data: The hospital must ex-
plain the context of the personal data processing and justify the purposes of the
processing.

International data transfers (change of data location): Some international legal
mechanisms frame personal data transfers across countries, for instance, Binding
Corporate Rules119. The hospital is hence accountable for obtaining authorization
from the Data Protection Authorities for international transfers.

The assignment of processing operations to data processors: The hospital is ac-
countable to Data Protection Authorities for choosing those Data Processors (here,
Cloud X and Cloud Y) that provide sufficient safeguards concerning the technical
security and the organizational measures required in relation to the processing to
be carried out on their behalf.

118These Data Protection Authorities are not represented in Figure 7.1, depicting our scenario.
119More details on Binding Corporate Rules are given in http://tiny.cc/vpiu8x [Accessed: February 4, 2016].

http://tiny.cc/vpiu8x

7.4. Requirements for an Accountability Policy Language 165

Besides, the above identified relationships highlight the needs for collecting evidence on the
cloud service operations and implemented security controls. For instance, audits from Data
Protection Authorities may require the collection of logs generated by the Data Processors
(Cloud X and Cloud Y) and which record the actions performed by the Data Processors.

To further analyze the accountability relationships and obligations of the instantiated
use case, we draw in the following a classification of the mechanisms into three categories
capturing the level of controls these mechanisms suggest: preventive, detective and corrective
controls:

Preventive. This type of control relate to the obligations that mitigate the risks of ac-
countability breaches. Preventive controls include security and privacy obligations, access
control obligations or other authorization controls with respect to data location, data reten-
tion periods or purpose of processing.

Detective. Detective controls are used to determine whether or not the system complies
with the obligations. They are used to identify any security breach. Logging and monitoring
techniques, audit mechanisms, generation of cryptographic proofs such as the one studied in
Part I and Part II are part of detective controls.

Corrective. This category of control is used to fix and inform any accountability breach
or any failure in satisfying the obligations. Corrective controls include in particular notifica-
tions and reports.

7.4.3 Accountability Obligations

From the source of accountability obligations and after describing the accountability relation-
ships, we provide the following list of accountability obligations. Although we refer to our
motivating scenario, we highlight the fact that these obligations remain general and relevant
for any other business use cases. A more exhaustive list of obligations was presented in [34]
within the A4Cloud project. Here we only give the prominent obligations that help us deter-
mine the requirements for the design of an accountability policy language.

Obligation 1: The right to access, correct and delete personal data. According
to the General Data Protection Regulation [80], the hospital must ensure that the patients
have read and write access to their personal data that have been collected and stored in the
cloud. There must be also means to enforce the deletion of such data. Obligation 1 implies
preventive controls that must be translated into privacy, access control and usage control
policies.

Obligation 2: Duration and Purpose of processing. The hospital must make sure that
the patients’ personal data is only processed for specific, explicit and legitimate purposes.
Here processing also includes the notion of storage. In this case, the purposes of processing
are to help diagnosing and curing the patients. In addition, the hospital must guarantee
that the patients’ data is kept and processed for the specified purposes only for the duration
imposed by regulations. Obligation 2 entails preventive mechanisms that authorize the col-
lection, storage and processing of the specified purposes for the appropriate duration.

Obligation 3: Breach notification. In case of security or personal data breaches, cloud
providers X and Y must notify M, which in turn must notify the hospital and the hospi-
tal must notify the patients. This notification should not exceed an appropriate period of
time (for example, the notification should be sent within 24 hours after the detection of the
breach120). Obligation 3 involves a kind of corrective control. As a matter of fact, it consists
in a reactive control after a security breach is observed.

120Opinion 03/2014 on Personal Data Breach Notification: http://ec.europa.eu/justice/data-protection/
article-29/documentation/opinion-recommendation/files/2014/wp213 en.pdf.

http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp213_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp213_en.pdf

166 7. An Accountability Policy Language

Obligation 4: Evidence of the correct and timely deletion of personal data. Cloud
providers X and Y must be able to provide evidence to the platform provider M, and M must
be able to provide evidence to the hospital on the correct and timely deletion of personal
data. These evidences serve for auditing purposes. Indeed, a Data Protection Authority
may audit Data Controllers on the way the data is hold and the manner in which they are
processed. Obligation 4 covers detective mechanisms to observe security breaches as well as
compliance with other obligations.

Obligation 5: Location of processing. Cloud providers X and Y, as well as service
provider M have contractual obligations towards their respective customers on the location
of the data processing. Obligation 5 implies preventive control on geographical location of
this processing.

7.4.4 Policy Language Requirements

Machine-readable accountability policies are particularly useful for conveying the above obli-
gations. A policy language allows to represent such policies in a machine-readable format.
Our goal is to design an accountability policy language that eases and automates the enforce-
ment of these policies. Therefore we derive from the analysis of the accountability obligations
several design requirements for our proposed policy language. We classify our requirements
into two categories: requirements for data handling policies and specific requirements for
accountability. The former refers to the need to express privacy constraints, access and usage
control rules. The latter corresponds to the requirements that are specific to accountabil-
ity and which are often not addressed by existing policy languages such as audits, logging
and notifications. Table 7.2 summarizes our analysis of accountability obligations concerning
personal data processing.

Requirement Category

(R1) Capturing Privacy Policies Data Handling
(R2) Access Control Rules Data Handling
(R3) Usage Control Rules Data Handling
(R4) Data Retention Period Data Handling
(R5) Reporting and Notification Accountability
(R6) Controlling Data Location Accountability
(R7) Auditability Accountability
(R8) Logging Accountability

Table 7.2: Accountability policy language requirements.

• Data handling requirements:

(R1) Capturing privacy policies: An accountability policy language must allow the
expression of privacy policies about the usage of personal data. This requirement is related
to Obligations 1,2 and 3.

(R2) Access Control Rules: In relation with Obligation 1, the accountability policy
language must enable the specification of access control policies to personal data. The access
requester should in particular be defined by a set of attributes such as its name, its role, or
the group it belongs to.

(R3) Usage Control Rules: Obligations 1 and 2 suggest the definition of appropriate
usage control rules. The accountability policy language must allow the expression of such

7.5. State of the Art on Policy Languages 167

rules. In particular, it should express the conditions under which an action on the data is
permitted or prohibited (such as sharing the data with third parties, usage for a particular
purpose). It should also define the operations on the data that has to be performed after its
collection (such as deletion, anonymization, etc.).

(R4) Data Retention Period: In accordance with Obligation 2, the accountability lan-
guage must be able to express rules about data retention such as retention time.

• Accountability requirements:

(R5) Reporting and Notification: The policy language we design should enable the
sending of notifications to Data Subjects and third parties. This requirement addresses
Obligation 3.

(R6) Controlling Data Location: As controlling data location is required by Obligation
5, the language must enable the expression of rules about data location in a policy.

(R7) Auditability: Obligation 4 states that accountable services may be audited to verify
compliance with obligations. Therefore, the accountability policy language must make possi-
ble the auditing of operations performed in the cloud (such as deletion, transfer, modification,
access, etc.). The language must also specify what information is targeted by an audit, and
which evidence should be collected to perform the audit.

(R8) Logging: Evidence collection is ruled by Obligation 4. Logs can be a particular type
of evidence. Therefore, the policy language must specify which events have to be logged and
what information related to the logged event have to be added in the log.

One may argue that these requirements can be expressed and enforced using multiple
existing languages. We advocate that centralizing these concerns in a single policy expressed
in a unique policy language will increase the accountability of the actors processing personal
data in the cloud. In the next section, we use these requirements to review and analyze
existing policy languages so as to design a suitable accountability policy language.

7.5 State of the Art on Policy Languages

7.5.1 Methodology

A number of policy languages have been proposed in recent years for policy representation. We
reviewed several existing policy languages, defined either as standards (XACML [134], WS-*
standards [135, 136] and P3P [123]) or as academic/industrial proposals (PPL [8], USDL [25],
SLAng [117], SecPal4P [26], Ponder [133] and ConSpec [4]). We studied their suitability
to accountability representation according to the accountability requirements identified in
Section 7.4.4. In this review, the main question was to determine the ability of the existing
policy languages to represent accountability obligations defined in Section 7.4.2. Rather than
imposing a brand new language, we consider to select and extend one or several existing
languages with accountability-aware features in order to map accountability requirements as
much as possible.

7.5.2 Survey of Existing Languages against the Language Requirements

We present here the outcome of this survey. The reader can find the detailed description of this
analysis of exiting languages in the A4Cloud report “Policy Representation Framework” [63].

168 7. An Accountability Policy Language

Although most of the reviewed languages fail at meeting all the accountability requirements
at first glance, some of them can be extended to support accountability policies. As a result,
we elect PrimeLife Policy Language (PPL) as the policy language that captures the best the
accountability requirements. We therefore build our proposed accountability policy language
upon PPL. This choice is motivated by the following four reasons:

1. PPL is the language that covers the more language requirements;

2. PPL presents many extension points making the language easy to extend for account-
ability;

3. PPL is based on eXtensible Access Control Markup Language (XACML) which is a
standard policy language for access control;

4. PPL is well-documented as in the work done by Ardagna et al. [8].

Before presenting our proposal for an accountability policy language, the next section
provides the reader with more details on PPL. Besides, since PPL is based on XACML, we
also outline the main characteristics of this language.

7.5.2.1 XACML

XACML [134] stands for eXtensible Access Control Markup Language and consists of an
OASIS standard that defines both a declarative language for expressing access control policies
and a request-response message exchange protocol to obtain access control decisions. The
XACML request-response message exchange is used to express queries to a decision engine
about whether an action should be allowed (request) and describes the respective answers
(response). The language is expressed in eXtensible Markup Language (XML) [47] that is
both human and machine-readable.

A set of rules is encapsulated in a Policy. The main components of a Rule are:

• A Target that defines the requests to which the rule is intended to apply. It is expressed
in terms of subjects, resources and actions.

• An Effect that indicates the rule-writer’s intended consequence if the evaluation of the
rule outputs true. The possible effects are either Permit or Deny.

• A Condition that refines the applicability of the rule by putting restrictions on Target’s
attributes (subjects, resources or actions).

The structure of an XACML request comprises one or more attributes that specify: (i) the
entity making the access request (a subject), (ii) the resource to which the subject(s) has
requested access, identified by its URI, and (iii) the action that the subject(s) wishes to take
on the resource (read, write, etc.).

General usage scenario. XACML provides a standard reference architecture to achieve
the enforcement of XACML policies. Figure 7.2 depicts a simplified version of the XACML
policy engine, responsible for this enforcement. The Policy Enforcement Point (PEP) forms a
request based on the attributes of the requester, the resource and the action on that resource
that the requester wants to perform. The PEP then sends this request to the Policy Decision
Point (PDP). The PDP evaluates the requests and finds policies that apply to that request,
from the Policy Administration Point (PAP). As a result of evaluating the policy, the PDP
sends a response context that specifies the access decision taken Permit or Deny. PAP
maintains and stores the policies.

XACML provides a standard to express access control policies. An advantage of this
language is that it presents many extensible points that can serve to express accountability
requirements. However, the definition of XACML obligations lacks support for privacy and
usage control obligations.

7.5. State of the Art on Policy Languages 169

Figure 7.2: XACML reference architecture (simplified) [169]

7.5.2.2 The PrimeLife Policy Language

The PrimeLife Policy Language (PPL) [8] is an XML-based policy language proposed by
the PrimeLife project [152] that extends XACML. The language combines access and data
handling policies. The goal of PPL is to make service customers aware of the conditions
under which their data are handled. Therefore PPL gives service providers automatic means
of defining and managing privacy policies while applications are enabled to compare these
service privacy policies with user privacy preferences.

Terminology. The language is symmetric: a similar syntax is used to express privacy
policies and preferences. A PPL policy can be defined by a service provider to specify its
privacy policies. In particular, the service provider defines in the policy how the collected
data will be handled by the Data Controller and the entities the data is shared with. PPL
makes it possible to automatically match these privacy policies with Data Subjects’ privacy
preferences. The outcome of the matching procedure generates a sticky policy or an annotated
sticky policy that points out the difference between a user’s preference and a controller’s
policy. This sticky policy is bound to the data and travels with the data. The sticky policy
specifies statements on:

• access control, which is inherited from XACML that PPL extends with privacy-
friendly credential-based features. Conditions on access control describe how access to
which resource under which condition can be granted.

• authorizations, that detail actions that the Data Controller is allowed to perform with
respect to the purpose of usage of collected data. In addition, authorizations enable
to define the conditions of what in PPL specification [8] is called downstream usage121.
This kind of authorizations are applicable for other Data Controllers, the downstream
usage becomes the sticky policy for the data as it goes downstream.

• obligations, that the PPL specification [8] defines as “a promise made by a Data Con-
troller to a Data Subject in relation to the handling of his/her personal data. The Data
Controller is expected to fulfill the promise by executing and/or preventing a specific
action after a particular event, e.g. time, and optionally under certain conditions”. In
PPL, an obligation is expressed using the pair Trigger-Action. Triggers are events re-
lated to an obligation and filtered by conditions. For example, PPL defines the trigger
TriggerPersonalDataDeleted that occurs whenever the personal data related to
the obligation is deleted. Triggers fire Actions that are performed by the Data Con-
troller. For instance, PPL provides the action ActionNotifyDataSubject. The
complete list of available PPL Triggers and Actions can be found in Table 7.3.

PPL extends XACML with privacy-enhancing, credential-based and usage control fea-
tures. The structure of XACML is preserved and PPL introduces new elements in XACML in
order to enable the description of privacy policies. Such elements are the DataHandlingPo-
licy element that enables the Data Controller to express how the data received from the Data

121Downstream usage specifies under which conditions data can be shared with other Data Controllers.

170 7. An Accountability Policy Language

Name Description

Triggers

TriggerAtTime Occurs based on a particular defined time

TriggerPeriodic Occurs repeatedly according to a well-specified period

TriggerPersonalData-
AccessedForPurpose

Occurs each time the personal data bound to the obli-
gation is accessed of one of the defined purposes

TriggerPersonalDataDeleted Occurs when the personal data associated with the obli-
gation is deleted

TriggerPersonalDataSent Occurs when the personal data akin to the obligation is
forwarded to a third-party

TriggerDataSubjectAccess Occurs when the data subject requests access to ts own
personal data collected by the data controller

Actions

ActionDeletePersonalData Deletes a piece of personal data (data retention)

ActionAnonymizePersonalData Anonymizes a particular piece of data

ActionNotifyDataSubject Notifies the data subject when triggered, that is, send
the information concerning the event that triggers the
obligation to the data subject

ActionLog Logs an event, that is, writes in a log file the information
concerning the event that triggers the obligation

ActionSecureLog Logs an event and ensures integrity and authentication
of origin of the event

Table 7.3: List of Triggers and Actions in PPL

Subject will be treated, the DataHandlingPreferences element that enables the Data
Subject to specify how its data has to be treated by the Data Controller, Obligation that
specifies which specific actions to execute when given events occur (triggers) and Authorization
that specifies the actions that are allowed to be performed. Figure 7.3 presents the structure
of a PPL policy.

PPL presents a generic and user-extensible structure for authorizations and obligations
which are more specific than what is defined in XACML. Indeed, the users are enabled
to specify and add their own authorization and obligation vocabularies. Furthermore, the
Obligation Enforcement Engine [5] that makes sure that committed obligations as part of a
sticky policy are indeed enforced may be extended with audit features to check compliance
with policies.
Although the adoption of PPL is still limited today, since it has not been developed until
recently (2011), PPL presents features that capture most of the identified requirements (see
Section 7.4). Besides, PPL can be extended to provide further components that can address
even more specifically those requirements.

7.5. State of the Art on Policy Languages 171

Figure 7.3: General structure of a PPL Policy

Limitations of PPL. PPL provides elements to declare some of the accountability specific
obligations such as notifications (R5) and logging (R8). However, these elements need more
specification and they may be unpractical when directly used within an accountability policy.
For example, in the current version of PPL, the Notify element only allows the Data Con-
troller to notify the Data Subject. In accountability scenarios, notifications are not exclusive
to the Data Subject. Instead, notifications may be sent all along the accountability chain
to notify the actors within the chain of an occurred event. As far as logging is concerned,
the current specification of PPL allows to declare the action to log, but we cannot specify
what information has to be put in the log. Moreover, there is no way in PPL to specify the
location of the data (R6). Besides, auditing (R7) is not part of the PPL language since the
focus of the PrimeLife project was on privacy and not accountability. In the language spec-
ification, the way policy violations and security breaches are detected and handled remains
unclear. Our policy language aims at providing a way to declare the conditions under which
an audit is required, which are not provided in PPL. An audit may require the provision
of evidence to enable the verification of compliance with policies, data subjects’ preferences,
contracts or regulations. Evidence appears then to be an accountability object of paramount
importance. As audits are not part of PPL, this language fails to capture the concept of an
auditor that intrinsically plays a relevant role in an accountable cloud environment. This
auditor is responsible of specific tasks, such as requesting evidence or notifying actors in the
accountability chain for policy violation.

In Section 7.6, we present an enhanced version of PPL with extensions that address the
accountability requirements that we identified in Section 7.4.4. We call this accountability
policy language A-PPL, for Accountability-PPL.

7.5.2.3 Related Work on PPL extension

Recent related work [48, 103, 72] support our choice to extend PPL with some of the ac-
countability features we identified in Section 7.4.4. However, these works do not propose a
complete accountability policy language. They rather propose some extensions to the PPL
language to address the requirements of logging, location and duration of storage that the
authors of [48, 103, 72] have identified as being keys for accountability.

Concomitantly to our work, Butin et al. [48] leverage PPL to design logs for accountability.

172 7. An Accountability Policy Language

They develop two case studies (a private bank account and a hospital handling personal data)
and they show the limitations of PPL with respect to logs. In particular, similarly to our
PPL analysis, they identify the lack of expressiveness of PPL logging action. Indeed, the
ActionLog element does not provide sufficient information in the logs. Besides, they discuss
the fact that the PPL element ActionNotifyDataSubject does not allow to specify the
content of the notification. In addition, the authors of [48] suggest that the PPL obligations
should express the causal relationship between Triggers and Actions, i.e. the obligations
should make explicit which Triggers fired which Actions. Therefore, the authors propose to
add a TriggerId attribute in the Trigger elements and a TriggerReference attribute
in the Action elements. Finally, the authors recommend to develop a more fine-grained
downstream usage specification, by allowing to define a list of authorized or unauthorized
third parties to whom the personal data can be forwarded.

Similarly, Henze et al. [103] focus on the goal to make cloud computing aware of data han-
dling requirements. They identify location and duration of storage as the two main challenges
in cloud data handling scenarios. They propose to create data annotations that contain the
data handling obligations (e.g “delete after 30 days”). These annotations are transmitted to
the cloud service before the annotated data in order to match the corresponding obligation
against the cloud service’s data handling policies. If the annotations match the data handling
policies, the cloud service signs the annotation and sends it back to the user, who now has
a proof that the cloud will process the data as stated in the annotation. The authors in
[103] suggest to leverage the PPL language to formalize the data annotation. Without giving
more details, they propose to address the obligation of duration of storage by introducing
maximum and minimum duration of storage attributes. They also define an extension to
PPL with an element that restricts the location of stored data. On the other hand, sending
annotations can impact data privacy, since the annotations leak potentially privacy-sensitive
information to the cloud service.

A recent research work by Di Cerbo et al. [72] extends PPL for imposing restrictions
to cloud providers on the location of storage. The authors propose a new PPL element,
ActionStorageLocation, to make explicit the obligation to store outsourced data only
in data centers that are located in countries specified in the policy. This element allows to
define a set of attributes corresponding to the countries where storage is permitted.

7.6 A-PPL: a Policy Language for Accountability

The newly proposed A-PPL maintains the overall policy structure of PPL. Figure 7.4 shows
the structure of an A-PPL policy, that derives from the XACML structure and highlights the
new extensions provided by A-PPL. To support the accountability features that A-PPL has
to provide, we introduce new elements and we extend the PPL engine.

7.6.1 Roles

PPL implicitly identifies the Data Subject and Data Controller roles. To make the iden-
tification of roles more explicit in an accountable cloud, we include in a policy a reference
to the role of the different entities involved in the policy. These roles are those identified in
Section 7.2.2. Thus, we create a role attribute identifier subject:role to be included as an
attribute of the standard XACML element <Subject>. In addition, as the auditor plays
an important role in accountability in order to conduct independent assessments of cloud
services, this role has to be interpreted in terms of policies. We propose to define the role of
the auditor in A-PPL. This new role is useful for accountability specific obligations such as
reporting and notification (R5) or auditability (R7).

7.6. A-PPL: a Policy Language for Accountability 173

Figure 7.4: Structure of an A-PPL Policy

7.6.2 Capturing Privacy Policies (R1)

As the purpose of PPL was to define privacy policies, A-PPL inherits the privacy-related
language elements from PPL.

7.6.3 Access Control Rules (R2)

We introduce two new triggers which condition the execution of an obligation based on the
result of an access decision. In other words, we propose TriggerPersonalDataAccess-
Permitted and TriggerPersonalDataAccessDenied that occur when the evaluation
of the access control on the targeted data results in “Permit”, respectively “Deny”.

7.6.4 Usage Control Rules (R3)

PPL already defines a set of Triggers and Actions for the purpose of usage control. Therefore,
A-PPL is granted with the same elements.

7.6.5 Data Retention (R4)

PPL provides an element Purpose that allows to specify for which purpose a piece of data
can be collected or accessed. In A-PPL, we define the duration attribute for Purpose
that allows to specify for how long the data can be processed for a particular purpose. For
instance, a particular piece of data is used for research purposes for 2 years but has to be
kept for legal purposes for 5 years. In addition, this attribute implies that when all durations
for each purpose have expired, the data has to be deleted, since the data cannot be used for
any purpose anymore.

7.6.6 Reporting and Notification (R5)

PPL’s ActionNotifyDataSubject element enables the data controller to send notifica-
tions to the data subject only. Our language provides a more fine-grained notification action
in order to satisfy the requirement (R5). We modify the existing PPL ActionNotifyData-
Subject element and call the newly created notify action ActionNotify. Notifications

174 7. An Accountability Policy Language

are not limited to notifications to the data subject only. Instead, we provide an attribute
recipient that allows to indicate the recipient of the notification. The ActionNotify
element presents an attribute type that specifies the type of notification to be sent to the re-
cipient (policy violation report, audit reports, etc.). Table 7.4 describes the ActionNotify
element.

Table 7.4: ActionNotify element.

Name ActionNotify

Description This action notifies a cloud actor when triggered

Parameters Media The media used to notify the user (e-mail, SMS, etc.)
Address The corresponding address (e-mail address, phone number, etc.)
Recipient The identity of the recipient of the notification
Type The type of notification(policy violation, evidence, redress, etc.)

7.6.7 Controlling Data Location (R6)

We propose in A-PPL a standard identifier region to express the location of collected data.
This attribute should be used as an attribute of the A-PPL Purpose element that is nested
inside a <AuthzUseForPurpose> environment. Thus we will limit the region among which
the data can be transferred without violating the policy access control rules. This is directly
responding to our requirement on controlling data location in the policy language (R6).

7.6.8 Auditability (R7)

Auditing plays an important role in accountability and evidence is key in the auditing pro-
cesses. We identify several types of evidence such as logs or cryptographic proofs such as
the ones we presented in Part I and Part II for verifiability in storage and computation. An
audit protocol may involve two parties: an auditor (such as a Data Protection Authority)
and an auditee (e.g a Data Controller, a Data Processor, etc.). The auditee is responsible
for collecting evidence about his processing practices. We propose two extensions that re-
late to audits and collection of evidence. Based on the evidence request that the auditee
receives from the auditor, the auditee collects the requested evidence. This evidence collec-
tion is governed by a new A-PPL trigger TriggerOnEvidenceRequestReceived, and
a new A-PPL action ActionEvidenceCollection. The combination of the two A-PPL
elements initiates the evidence collection by the Data Controller. Table 7.5 describes the
ActionEvidenceCollection element.

Table 7.5: ActionEvidenceCollection element.

Name ActionEvidenceCollection

Description This action collects the requested evidence

Parameters Evidence The type of evidence to generate (logs, crypto proofs, etc)
Resource The ID of the resource the evidence is based on
Subject The ID of the data subject the evidence is based on
Recipient The ID of the recipient of the evidence (the auditor)

7.6.9 Logging (R8)

PPL’s ActionLog action element fails to capture the concept of logging detailed in Sec-
tion 7.4.2. The logging action should provide a way to specify not only the details of the
event that has to be logged but also the security properties of the logs (integrity or confiden-
tiality of the logs for instance). Therefore, we extend the ActionLog element in A-PPL.

7.7. A-PPLE: a policy engine for A-PPL 175

In particular, we introduce several parameters to make explicit which information about an
event needs to be logged. A timestamp is required to log the time of the event. The policy
must indicate to log the action that is performed on the data (e.g. SEND), the identity of
the subject who performed the action (e.g. Cloud x) and the purpose of the action (e.g.
marketing). To trace events based on data, the policy must require the identifier of the
data. Other details must also be written in the logs such as some security flags that may
state whether the log entry is encrypted or not. Table 7.6 describes the ActionLog element.

Table 7.6: ActionLog element.

Name ActionLog

Description This action logs an event based on the details in the policy

Parameters Timestamp The time of occurrence of the logged event
Action The action that is logged
Purpose The purpose of the action that is logged
Subject ID The identity of the subject that performed the action
Resource ID The identifier of the resource the action was made on
Resource Location The location of the resource
Security Flag 1 if the log is confidential, 2 for integrity check, 3 for

both

Table 7.7 compiles the new Triggers and new or extended Actions we propose in A-PPL.

7.7 A-PPLE: a policy engine for A-PPL

Policy enforcement is the task of a policy engine. In the case of policies written in A-PPL,
A-PPLE handles their interpretation and automatic enforcement.

7.7.1 Description of A-PPLE

A privacy policy engine supporting PPL policies was originally designed in the PrimeLife
project [175]. We adapt its architecture to implement the new obligations of accountability,
creating the architecture depicted in Figure 7.5.

Figure 7.5: A-PPLE architecture

The core elements of the policy engine are:

PEP: It acts as an orchestrator of the enforcement process and it constitutes the entry point
of A-PPLE at the Data Controller side. The PEP coordinates the Obligation Handler
module that we present below.

176 7. An Accountability Policy Language

Name Description

Triggers

TriggerPersonalDataAccessPermitted Occurs when access to a queried data is permitted

TriggerPersonalDataAccessDenied Occurs when access to a queried data is denied

TriggerEvidenceRequestReceived Occurs when the Data Controller receives a re-
quest for evidence generation

Actions

ActionNotify Notifies the recipient with the information con-
cerning the event that triggers this action

ActionLog Logs an event, that is, writes in a log file the de-
tailed information concerning the event that trig-
gers the obligation

ActionEvidenceCollection Initiates the collection (or generation) of re-
quested evidence

Table 7.7: List of extended or new Triggers and Actions in A-PPL.

PDP: This is the component where the access control decision is taken. PDP relies on
the access control engine implementation based on HERAS-AF122 for the evaluation
of XACML part of an A-PPL policy. Apart from the standard attribute-based access
control, the other information evaluated by the PDP is usage authorization. The usage
authorization basically consists of the comparison of the list of purposes specified in the
access control request with the one specified by the Data Controller in the policy.

PAP: The Policy Administration Point is responsible for storing and deleting data and
policies from the database.

Obligation Handler: It analyzes the Triggers and Actions which an A-PPL policy consists
of. The obligations represented by this policy are related either to timely scheduled
events or to events associated with the data life cycle, e.g. retrieval or deletion. This
component keeps track of these events to generate Triggers that are part of the obliga-
tion statements in the A-PPL policy. In turn, Triggers fire the Actions associated with
them. The Obligation Handler is invoked by the PEP and interfaces with the database.

Logging Handler: This module is responsible for creating and storing logs in the database.
The Logging Handler is called to execute an ActionLog that is defined in the policy. In
this case it includes extra information in the message such as the subject who requested
a data, the action and purpose of the access, the location of data and the expiration
date of the log. It interfaces with the Obligation Handler.

A-PPLE Client: This module represents an A-PPLE client in order to interact with A-PPLE.

Database: This component provides storage for A-PPL policies and personal data.

122Holistic Enterprise-Ready Application Security Architecture Framework (HERAS-AF) is an open source
implementation of XACML: http://www.herasaf.org/.

http://www.herasaf.org/

7.7. A-PPLE: a policy engine for A-PPL 177

7.7.2 Operations of A-PPLE

To illustrate the operational behavior of A-PPLE we consider the case where a Cloud Cus-
tomer requests the Data Controller to delete her data. The Cloud Customer runs an A-PPLE
client module whereas the Data Controller hosts on its side the entire engine. The sequence
of operations of this delete request is showed in Figure 7.6.

Figure 7.6: Sequence of operations for a Delete request.

1. The Cloud Customer, through the A-PPLE client interface, generates a Delete request
for some of her data. This request is transmitted to the Data Controller.

2. At the Data Controller side, the PEP receives the Delete request and asks the PAP to
retrieve the targeted data along with its policies. In turn, the PAP generates a database
query for this data and policy.

3. The database replies to this query and sends back the data and the policy to the PEP.

4. The PEP forms an XACML request123 that is forwarded to the PDP along with the
policy related to the targeted data.

5. This XACML request is evaluated by the PDP to determine whether the Cloud Cus-
tomer is authorized to access and delete the targeted data.

6. In this case, the PDP acknowledges that the Cloud Customer is authorized to access
and delete the data. Therefore, the PDP returns to the PEP the authorization message
“Permit”.

7. Then the PEP generates a TriggerDataAccessPermitted that is consumed by the
Obligation Handler.

123We recall the reader that A-PPL is based on PPL which in turn is based on XACML. Therefore, the
XACML request-response messages exchange protocol are part of the A-PPL specification. The XACML
request is an XML-based message that contains the several attributes (subject, resource, action) related to
the considered access request. The XACML request is compared to the policy by the PDP to grant or deny
access to the targeted resource.

178 7. An Accountability Policy Language

8. The Obligation Handler queries the database for the Actions related to that Trigger.
Here, we suppose that TriggerDataAccessPermitted fires three types of Actions:
Log, Notify and, naturally, Delete, which was the action requested by the Cloud Cus-
tomer.

9. Once, the Obligation Handler receives the Actions from the Database, it executes them.
Namely, it deletes the targeted data, notifies the Cloud Customer of this deletion and
requests the Logging Handler to log information on the deletion and the notification.

10. Finally, the PEP informs the Cloud Customer on the fact that her delete access request
is granted.

7.7.3 Integration of our StealthGuard Prototype in A-PPLE

In relation with the work we presented in Part I on Proofs of Retrievability (POR), we
propose in this section to integrate the prototype for StealthGuard in the implementation of
the policy engine. Indeed, the provision of POR is regarded as a particular obligation with
respect to data storage: the Cloud Provider must provide evidence that it correctly stores the
data of the Data Owner (this obligation can be related with Obligation 4 in Section 7.4.3).

Chapter 2 presented an implementation of StealthGuard. In the perspective of the
present chapter, StealthGuard is considered as an automated mechanism to provide the
evidence of correct storage and thus to enforce the obligation on evidence provision. We can
therefore leverage the two A-PPL language elements we introduced in Section 7.6, namely
TriggerEvidenceRequestReceived and ActionEvidenceCollection.

Practically, the A-PPLE Client module shown in Figure 7.5 embeds the operations of a
StealthGuard’s data owner and verifier, that is, this module is enhanced with algorithms
Keygen, Encode, Challenge and Verify of StealthGuard (see Section 2.2.4). On the other
hand, the Obligation Handler module is in charge of executing the watchdog search involved
in algorithm ProofGen. In Figure 7.7, we depict the sequence diagram of an execution of
StealthGuard within A-PPLE.

1. When a Data Owner wishes to upload a piece of file, she runs the A-PPLE Client
module which pre-processes the file according to the underlying algorithm Encode of
StealthGuard, that we described in Figure 2.3. Namely, it applies an ECC to the file,
encrypts it and inserts the watchdogs in random positions in the data.

2. When this operation is complete, the A-PPLE Client module uploads the retrievable
version of the file to the Cloud Provider who runs an instance of A-PPLE.

3. The PEP receives the file, forwards the upload request to the PAP who stores it within
the database.

4. Later on, a StealthGuard’s verifier runs the A-PPLE Client module to audit the Cloud
Provider on whether it correctly stores the outsourced file. This module generates a
POR query that is sent to the Cloud Provider. We recall that this POR query consists
in a privacy-preserving search query for some watchdogs inserted in the data.

5. At the cloud side, the PEP receives the POR query and initiates a TriggerEvidence-
RequestReceived that is transmitted to the Obligation Handler module.

6. The Obligation Handler receives the trigger and fires the A-PPL action Action-
EvidenceCollection. In a nutshell, this action executes algorithm ProofGen (see
Figure 2.5) which performs the privacy-preserving search for the targeted watchdogs in
the POR query.

7. The output of the search is returned as a POR response to the PEP which forwards it
to the A-PPLE Client module of the verifier.

7.8. Example of A-PPL Statements with respect to our Healthcare Scenario179

Figure 7.7: Sequence diagram of StealthGuard in A-PPLE

8. Finally, the A-PPLE Client module runs algorithm Verify (see Figure 2.6) and makes a
decision about the retrievability of the targeted file.

7.8 Example of A-PPL Statements with respect to our Health-
care Scenario

This section gives some examples of use of the A-PPL elements, based on the healthcare
scenario presented in Section 7.3 and the obligations listed in Section 7.4.3. We briefly recall
these obligations and we define for each of them an A-PPL rule.

Obligation 1: The right to access, correct and delete personal data. The hospital
must ensure that the patients have read and write access to their personal data that have
been collected and stored in the cloud. The right to access is expressed in XACML rules
that A-PPL is built upon. The data controller grants both read and write access to the
data subject. In addition, the deletion of the personal data can be ruled by an A-PPL data
handling policy whereby the obligation to delete the data can be expressed using the A-PPL
ActionDeletePersonalData in conjunction with the trigger TriggerAtTime.

Obligation 2: Duration and Purpose of processing. The hospital must make sure that
the patients’ personal data is only processed for specific, explicit and legitimate purposes.
A-PPL uses authorizations to express such purposes using AuthzUseForPurpose that al-
lows to specify the purposes for which the processors are authorized to use the collected data.
In addition, with the duration attribute for purposes, one can specify different durations for
different purposes. Figure 7.8 shows an example of such authorization definitions.

Obligation 3: Breach notification. In case of security or personal data breaches, cloud
X and Y must notify M, which in turn must notify the hospital and the hospital must
notify the patients. A-PPL provides a way to notify those actors using the ActionNotify
element. Figure 7.9 shows an example of policy that makes the data controller responsible
for notification in case of a policy violation or a loss of data.

180 7. An Accountability Policy Language

<a-ppl:AuthzUseForPurpose>
<!-- Authorization for following purposes-->

<a-ppl:Purpose duration=2Y>diagnosis</a-ppl:Purpose>
<a-ppl:Purpose duration=5Y>research</a-ppl:Purpose>

</a-ppl:AuthzUseForPurpose>

Figure 7.8: Authorization for the specified list of purposes

<Obligation>
<!-- Notify the data subject when triggered -->
<TriggersSet>
<TriggerOnPolicyViolation/>
<TriggerOnDataLost/>

</TriggersSet>
<ActionNotify>
<Media>e-mail</Media>
<Address>data-subject@example.com</Address>
<Recipients>Patient:Data subject</Recipients>
<Type>Policy Violation</Type>

</ActionNotify>
</Obligation>

Figure 7.9: Notification in case of a breach

Obligation 4: Evidence of the correct and timely deletion of personal data. Cloud
providers X and Y must be able to provide evidence to the platform provider M, and M must
be able to provide evidence to the hospital on the correct and timely deletion of personal data.
Therefore, we can use, for example, the A-PPL ActionLog element to tell the Data Pro-
cessors (that is, Cloud X and Y) to track the collection, processing and deletion of personal
data. Combined with the A-PPL trigger, TriggerPersonalDataDeleted, the logged
event will constitute the requested evidence. Besides, we use the action ActionEvidence-
Collection combined with the trigger TriggerOnEvidenceRequestReceived to re-
quire the data processor to collect logs for the deletion as evidence of its correctness. Fig-
ure 7.10 and Figure 7.11 show a piece of policy that expresses the obligations to log the
deletion of the personal data and to collect the requested evidence.

<Obligation>
<TriggerOnPersonalDataDeleted/>
<ActionLog>
<Timestamp>
<EnvironmentAttributeSelector AttributeId="current-time"/>

</Timestamp>
<Action>
<AttributeValue DataType=string>

Personal Data deleted
</AttributeValue >

</Action>
<Subject>
<AttributeValue DataType=string>

Cloud X
</AttributeValue >

</Subject>
<Resource>
<ResourceAttributeDesignator DataType="string"

AttributeId="resource:resource-id"/>
</Resource>

</ActionLog>
</Obligation>

Figure 7.10: Logging of the deletion of personal data

7.9. Conclusion 181

<Obligation>
<TriggerOnEvidenceRequestReceived/>
<ActionEvidenceCollection>
<Evidence>
<Attribute AttributeId="evidence-type" DataType="string">
<AttributeValue>Logs</AttributeValue>

</Attribute>
</Evidence>
<Resource>
<Attribute AttributeId="resource-id" DataType="string">
<AttributeValue>Personal Data</AttributeValue>

</Attribute>
</Resource>
<Subject>
<Attribute AttributeId="subject-id" DataType="string">
<AttributeValue>Patient</AttributeValue>
</Attribute>

</Subject>
<Recipient>
<Attribute AttributeId="recipient-id" DataType="string">
<AttributeValue>Data Controller</AttributeValue>

</Attribute>
</Recipient>

</ActionEvidenceCollection>
</Obligation>

Figure 7.11: Collection of the deletion log

<AuthzUseForPurpose>
<Purpose duration=2Y region=Europe>diagnosis</Purpose>
<Purpose duration=2Y region=Europe>research</Purpose>
</AuthzUseForPurpose>

Figure 7.12: Control of the location of data in Europe

Obligation 5: Location of processing. Cloud providers X and Y, as well as the M
Platform provider have contractual obligations towards their respective customers on the
location of the data processing. In order to be sure that the personal data is not shipped
towards location that are not authorized, A-PPL extends XACML with the region attribute
to be placed in the AuthzUseForPurpose environment. For example, we specify in Figure
7.12 that only utilization of collected data in Europe are authorized.

7.9 Conclusion

Part III attempted to answer the following problem: How and to what extent can we convey
accountability obligations via policies in such a way that policies are easy to write and en-
force and such that Data Controllers and Data Processors can be held accountable for these
obligations, thus increasing trust between Cloud Customers and Cloud Providers?

1. We demonstrate that machine-readable policies are suitable means to mitigate the ac-
countability risks by expressing and enforcing accountability obligations related to cloud
computing services.

2. From an analysis of these obligations, we identify some design requirements for an
accountability policy language.

3. We propose A-PPL, as an extension of the XACML standard and the PPL language.
A-PPL enables the specification of access control rules, usage control rules and account-
ability specific requirements (consent, audits, notification, logging).

182 7. An Accountability Policy Language

4. We describe an architecture for the enforcement of A-PPL policies: the A-PPL engine.

This work on a policy language for accountability is unprecedented. Before A-PPL, there
existed no other language that enables to express several accountability obligations within
the same framework

Limitations There exists a trade-off between accountability obligations which can be stated
in a policy and the technical burden of its enforcement. Automating all accountability pro-
cesses is not always possible. An example concerns data location and data transfer obligations.
Regulations and contracts impose restrictions on sharing data with third-party data proces-
sors that are located in a geographical area that does not provide an adequate level of data
protection. This kind of restriction would be translatable into an A-PPL policy. However,
enforcing this policy, which is controlling, seems to be an open issue. Nonetheless, A-PPL
and A-PPLE can be leveraged to monitor data transfer, that is verifying thanks to audit and
logs that data transfers is compliant with obligations.

General Conclusions 183

General Conclusions

In this dissertation, we tackled the problem of loss of control and lack of trust in cloud
computing. Since cloud users relinquish to untrusted cloud servers the control of data and
computation, these users should be empowered with the ability to verify that the servers are
correctly handling these assets. Verifiability is hence perceived as a problem of paramount
importance in cloud computing. Besides, we looked at the broader notion of accountability.
The cloud servers should be held accountable for the way they deliver the services they
provide. Namely, they must comply with a set of accountability obligations that are conveyed
via machine-readable policies. In particular, users should be able to audit them and receive
notifications if any security breach is detected.

We stated three problems that this thesis aimed to answer. We provide here an overview
of the findings that this thesis reveals.

Problem 1: Verifiable Storage. The goal was to give to cloud users some control over
the data they outsourced to an untrusted cloud, by verifying that this cloud possesses
the data in its entirety. Well-established cryptographic solutions based on digital signa-
tures computed over the data to check integrity would suffice to answer this problem.
However, in the cloud computing context, they are unpractical and cannot scale with
big data, since they may incur large communication cost per verification. Therefore,
we aimed at designing a protocol in which the cloud generates efficient and probabilis-
tic cryptographic proofs of storage that convince the data owners that their data is
correctly stored. We focused on proofs of retrievability, a particular type of proofs of
storage that, in addition to the integrity guarantee, ensure the data owner that the data
can be recovered even if corruption affects it. We design StealthGuard, a new POR
protocol that inserts in the outsourced data special blocks as watchdogs that witness
whether or not the data remains untouched in the remote storage server. We showed its
practicality in terms of storage, computation and communication performance. In addi-
tion, we proved the security of our scheme. Indeed, a malicious cloud cannot deceitfully
pretend to correctly store the outsourced data without being detected.

Problem 2: Verifiable Computation. Cloud users outsource to the cloud computation-
ally demanding operations, especially in the case when these users only can afford
limited computation resources. However, the lack of trust in cloud servers imposes
users to verify the outcome of the operations they outsourced. Hence, we designed
three protocols that generate cryptographic proofs enabling cloud users to check the
integrity of computation results returned by the untrusted cloud. We considered the
two security requirements that these proofs must satisfy: correctness and soundness.
Namely, an untrusted cloud cannot make a verifier accept incorrect results. We proved
that our protocols are secure in the standard model and rely on falsifiable assumptions.
We also took care about the efficiency requirement of verifiable computation protocol.
In addition, our protocols adopt the amortized model approach in which the user who
outsources the computation is required to perform a one-time expensive pre-processing
of this computation in order to enable verifiability. The cost of this pre-processing step
is then amortized by the costs of a possibly unbounded number of verifications. In

184 General Conclusions

addition, we looked at publicly delegatable and verifiable solutions which may apply in
real-world scenarios, as the space agency scenario we presented in this part.

Problem 3: Accountability Finally, we investigated the possibility of expressing account-
ability obligations in terms of policies using a machine-readable policy language. To
a certain extent, these obligations rule the verifiability requirement of the protocols
presented in Part I and Part II, which refers to the ability to prove whether the cloud
deviates from the correct provision of the service it delivers (correct storage and cor-
rect computation). Hence, we defined the design requirements for an accountability
policy language. We then presented A-PPL, which handles accountability specific re-
quirements such as notification, logging and evidence collection. We also described an
architecture for A-PPLE, the policy engine that enforces A-PPL policies. We expressed
several obligations from a healthcare scenario and defined the corresponding A-PPL
rules. In relation to the previous parts of this thesis, we integrated in the A-PPLE
framework our StealthGuard protocol which, by means of appropriate A-PPL policies,
requires the cloud to provide evidence (PORs) that it correctly stores outsourced data.

In conclusion, this thesis showed that giving some control to cloud users on the way
the cloud servers operate their assets is possible and does not cancel out the advantages of
outsourcing storage and computation. Deploying cryptography-based protocols for verifiable
storage and computation not only detects cloud servers’ misconduct but also deters servers
from deviating from a correct operational behavior. The techniques of cryptographic proof
verifications tend to foster adoption of cloud technologies. Indeed, proofs of retrievability
enable cloud users to audit cloud servers’ promise to continuously store their data intact,
while proofs of correct computation allow the detection of counterfeit results. In addition, by
adopting A-PPL, our policy language for accountability, cloud services can be held responsi-
ble for any failure in honoring accountability obligations. The combination of accountability
policies with unforgeable proofs for verifiability contributes to the commitment of cloud ser-
vices to store data and handling outsourced operations. Therefore, ensuring a proper use
and provision of cloud services is not the prerogative of a single aspect of computer security
such as cryptography, but it is rather the interaction of several mechanisms (policy language,
notification, cryptographic protocols, etc.). The work presented in this thesis supports this
concluding remark: we built a language for accountability that eases the enforcement of the
cryptographic protocols we designed.

Directions for future research work

A future research direction is to investigate verifiability of outsourced data encryption, data
location and data deletion. Although they have received much less attention than the problem
of POR, we argue that these concerns belong to a broader view of verifiable storage in the
sense that they provide verifiability for the different steps of the lifecycle of data at rest (that
is, data that is not processed or transferred to third parties). We believe these topics should be
carefully considered in order to provide a comprehensive cloud storage solution. There exists
limited prior art on these aspects. Nevertheless some researchers propose initial frameworks
for proofs of encryption, proofs of location and proofs of deletion. These researchers adopt
a similar approach to the one followed by POR protocols. Therefore, solutions to these
problems can be seen as applications of POR schemes.

To the best of our knowledge, only one existing solution addresses the problem of proofs of
encryption. Van Dijk et al. [178] introduce the concept of hourglass schemes which provides an
encryption framework to securely store data at rest and that enables data owners to remotely
verify, using a POR-like challenge-response protocol, that their data is indeed encrypted
by the storage server. Hourglass functions, employed by such schemes, deter economically
rational storage servers (thus, not fully malicious) from storing the data unencrypted by

185

imposing significant operating costs. While the work by Van Dijk et al. [178] offers an initial
solution, the problem of proofs of encryption has not been investigated by other research work
yet. Proofs of encryption are of interest since data protection rules entail storage service to
store data of their users in an encrypted form. Hence, such proofs may become a hot topic
in the coming years.

On the other hand, data location becomes a critical issue in cloud computing, as mentioned
for example by Peterson et al. [148] and in Section 7.4.3. The concern here is to prove that
outsourced data is stored in a given geographical location. Watson et al. [187] formalize
the concept of Proofs of Location (POL) that gives a solution for verifying the location
of data in distributed storage systems such as the cloud. The solution proposed in [187]
involves a challenge-response protocol between users and servers that combines (i) an Internet
Geolocation System such as the ones proposed in [188, 109], that allows to check geographical
location of a server using trusted landmarks and network latencies, with (ii) a POR scheme,
that enables to verify that a server actually stores the data it claims to store. Compared to
a POR protocol, users of a POL solution must detect that (i) the server does not actually
store the data, or (ii) the server does store the data but forges its location. As in the case
for proofs of encryption, and despite their importance in verifiable storage and accountable
systems, POL have not yet been thoroughly investigated in the cloud computing security
research community.

Along with proofs of encryption and proofs of location, proofs of deletion should convince
a data owner that her data is faithfully deleted. Proofs of deletion have first spurred the
interest in the context of local secure storage whereby a user wants to verify that the deletion
of her data is actually performed by a software-based erasure program [102, 147]. Yet, little
attention was paid to outsourced storage deletion in the context of cloud computing [145].
Therefore, future work should include investigations on this topic.

A possible direction of research in the area of verifiable computation would integrate
privacy-preserving mechanisms in the context of proofs of correct computation. Indeed,
the schemes we presented in Part II do not consider encrypted data. We believe that in
the context of cloud computing, performing computation on outsourced encrypted data and
verifying the integrity of the results are relevant problems that we should care about. The
concerns in this setting would be to allow the cloud to perform operations on encrypted data,
but to prevent it from learning anything from (i) the outsourced data; (ii) the computation
results and; (iii) the acceptance or the rejection of the results by the users who requested the
computation. Hence, we would like to devise a solution that can address these concerns while
not sacrificing efficiency.

The main direction of research in the policy language work is to implement enforcement
tools. For our policy language framework to be a success, a critical challenge is to develop the
components that will enforce the different obligations written in A-PPL within A-PPLE. In-
tegrating StealthGuard to A-PPLE was a first step. Indeed, collecting and checking proofs of
retrievability enable to verify that a cloud server complies with the obligation of storing data.
Further components to be integrated in the policy engine would be mechanisms that allow
secure logging, that is, that generate non-repudiable logs while protecting their confidentiality
and integrity.

186 General Conclusions

Bibliography 187

Bibliography

[1] 104th Congress. Health Insurance Portability and Accountability Act of 1996. Public
Law, 104:191, 1996. 9, 204

[2] Shweta Agrawal and Dan Boneh. Homomorphic MACs: MAC-based Integrity for Net-
work Coding. In Applied Cryptography and Network Security, pages 292–305. Springer,
2009. 76

[3] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W Yeung. Network
Information Flow. IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.
76

[4] Irem Aktug and Katsiaryna Naliuka. ConSpec – a formal language for policy specifi-
cation. In Electronic Notes in Theoretical Computer Science, volume 197, pages 45–58.
Elsevier, 2008. 167

[5] Muhammad Ali, Laurent Bussard, and Ulrich Pinsdorf. Obligation Language and
Framework to Enable Privacy-Aware SOA. In Joaquin Garcia-Alfaro, Guillermo
Navarro-Arribas, Nora Cuppens-Boulahia, and Yves Roudier, editors, Data Privacy
Management and Autonomous Spontaneous Security, volume 5939 of Lecture Notes in
Computer Science, pages 18–32. Springer Berlin Heidelberg, 2010. 170

[6] David P Anderson. Volunteer Computing: The Ultimate Cloud. ACM Crossroads, 16
(3):7–10, 2010. 71

[7] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@Home: An Experiment in Public-Resource Computing. Communications of the
ACM, 45(11):56–61, 2002. 71

[8] Claudio A. Ardagna, Laurent Bussard, Sabrina De Capitani Di Vimercati, Gre-
gory Neven, Stefano Paraboschi, Eros Pedrini, Stefan Preiss, Dave Raggett,
Pierangela Samarati, Slim Trabelsi, and Mario Verdicchio. Primelife policy language.
http://www.w3.org/2009/policy-ws/papers/Trabelisi.pdf, 2009. 167, 168, 169

[9] Frederik Armknecht, Jens-Matthias Bohli, Ghassan O Karame, Zongren Liu, and Chris-
tian A Reuter. Outsourced proofs of retrievability. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages 831–843. ACM,
2014. 29, 30

[10] Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs: A New Character-
ization of NP. Journal of the ACM (JACM), 45(1):70–122, 1998. 72, 74, 84, 214

[11] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM
(JACM), 45(3):501–555, 1998. 72

[12] Mikhail J Atallah and Keith B Frikken. Securely Outsourcing Linear Algebra Com-
putations. In Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, pages 48–59. ACM, 2010. 79

188 Bibliography

[13] Giuseppe Ateniese and Breno de Medeiros. Identity-Based Chameleon Hash and Ap-
plications. In Financial Cryptography, pages 164–180. Springer, 2004. 58

[14] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary Peterson, and Dawn Song. Provable Data Possession at Untrusted Stores. In
Proceedings of the 14th ACM Conference on Computer and Communications Security,
pages 598–609. ACM, 2007. 18, 21, 22, 23, 24, 25, 27, 30, 76, 209

[15] Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini, and Gene Tsudik. Scalable and
Efficient Provable Data Possession. In Proceedings of the 4th International Conference
on Security and Privacy in Communication Networks, SecureComm’08, pages 9:1–9:10,
New York, NY, USA, 2008. ACM. 24, 30

[16] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of Storage from Homo-
morphic Identification Protocols. In ASIACRYPT, pages 319–333, 2009. 23

[17] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Osama Khan,
Lea Kissner, Zachary N. J. Peterson, and Dawn Song. Remote Data Checking Using
Provable Data Possession. ACM Transactions on Information and System Security
(TISSEC), 14(1):12, 2011. 27, 28, 30, 52, 53, 54

[18] Azraoui, Monir and Elkhiyaoui, Kaoutar and Önen, Melek and Bernsmed, Karin and
De Oliveira, Anderson Santana and Sendor, Jakub. A-PPL: An Accountability Pol-
icy Language. In Data Privacy Management, Autonomous Spontaneous Security, and
Security Assurance, pages 319–326. Springer, 2015. 163

[19] László Babai. Trading Group Theory for Randomness. In Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, STOC ’85, pages 421–429. ACM,
1985. 72, 84

[20] Michael Backes, Dario Fiore, and Raphael M Reischuk. Verifiable Delegation of Com-
putation on Outsourced Data. In Proceedings of the 2013 ACM SIGSAC conference on
Computer and Communications Security, pages 863–874. ACM, 2013. 77, 84

[21] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M. Reischuk. ADSNARK:
Nearly Practical and Privacy-Preserving Proofs on Authenticated Data. In IEEE Sym-
posium on Security and Privacy (Oakland), May 2015. 77, 84

[22] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. ACM
Press, 1999. 80

[23] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im) Possibility of Obfuscating Programs. In Advances
in cryptology—CRYPTO 2001, pages 1–18. Springer, 2001. 28

[24] Niko Baric and Birgit Pfitzmann. Collision-free Accumulators and Fail-stop Signature
Schemes Without Trees. In Proceedings of the 16th Annual International Conference on
Theory and Application of Cryptographic Techniques, EUROCRYPT’97, pages 480–494,
Berlin, Heidelberg, 1997. Springer-Verlag. 122

[25] Barros, Alistair and Oberle, Daniel. Handbook of Service Description: USDL and Its
Methods. Springer Publishing Company, Incorporated, 2012. 167

[26] Moritz Y Becker, Alexander Malkis, and Laurent Bussard. S4P: A generic language for
specifying privacy preferences and policies. Microsoft Research, 2010. 167

Bibliography 189

[27] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Message
Authentication. In Proceedings of the 16th Annual International Cryptology conference
on Advances in Cryptology, CRYPTO’96, pages 1–15. LNCS, August 1996. 27

[28] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Short PCPs Verifiable in Polylogarithmic Time. In Proceedings. Twentieth Annual
IEEE Conference on Computational Complexity, 2005., pages 120–134. IEEE, 2005. 72

[29] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal
on Computing, 36(4):889–974, 2006. 72

[30] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable Delegation of
Computation over Large Datasets. In Phillip Rogaway, editor, Advances in Cryptology
– CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 111–131.
Springer Berlin Heidelberg, 2011. 24, 27, 78, 80, 84, 214

[31] Josh Benaloh and Michael De Mare. One-Way Accumulators: A Decentralized Al-
ternative to Digital Signatures. In Advances in Cryptology – EUROCRYPT’93, pages
274–285. Springer, 1994. 80, 121, 122

[32] Karin Bernsmed, Massimo Felici, Anderson Santana De Oliveira, Jakub Sendor,
Nils Brede Moe, Thomas Rübsamen, Vasilis Tountopoulos, and Bushra Hasnain. Use
Case Descriptions. Deliverable, Cloud Accountability (A4Cloud) Project, 2013. 162

[33] Karin Bernsmed, Hon Kuan, and Christopher Millard. Deploying Medical Sensor Net-
works in the Cloud - Accountability Obligations from a European Perspective. Submit-
ted for publication, 2014. 162

[34] Karin Bernsmed, Vasilis Tountopoulos, Paul Brigden, Thomas Rübsamen, Massimo
Felici, Nick Wainwright, Anderson Santana De Oliveira, Jakub Sendor, Mohammed
Sellami, Jean-Claude Royer, Melek Önen, and Mario Südholt. Consolidated Use Case
Report. Deliverable, Cloud Accountability (A4Cloud) Project, 2014. xiii, 162, 165

[35] Etienne Bézout. Théorie générale des équations algébriques. Imprimerie Ph.-D. Pierres,
1779. 125

[36] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From Extractable
Collision Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back
Again. In Proceedings of the 3rd Innovations in Theoretical Computer Science Confer-
ence, pages 326–349. ACM, 2012. 75, 76, 82, 84

[37] Erik-Oliver Blass, Roberto Di Pietro, Refik Molva, and Melek Önen. PRISM - Privacy-
Preserving Search in MapReduce. In Proceedings of the 12th Privacy Enhancing Tech-
nologies Symposium (PETS 2012). LNCS, July 2012. 31, 37, 41, 211

[38] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible Protocols and Atomic
Proxy Cryptography. In Advances in Cryptology—EUROCRYPT’98, pages 127–144.
Springer, 1998. 26

[39] Dan Boneh and David Mandell Freeman. Homomorphic Signatures for Polynomial
Functions. In Advances in Cryptology–EUROCRYPT 2011, pages 149–168. Springer,
2011. 76, 77, 84

[40] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and Verifiably
Encrypted Signatures From Bilinear Maps. In Advances in cryptology—EUROCRYPT
2003, pages 416–432. Springer, 2003. 26

190 Bibliography

[41] Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil Pairing.
J. Cryptology, 17(4):297–319, September 2004. 23, 25, 26, 27

[42] Sara Bouchenak, Gregory Chockler, Hana Chockler, Gabriela Gheorghe, Nuno Santos,
and Alexander Shraer. Verifying Cloud Services: Present and Future. ACM SIGOPS
Operating Systems Review, 47(2):6–19, 2013. 11

[43] Kevin D. Bowers, Ari Juels, and Alina Oprea. Proofs of Retrievability: Theory and
Implementation. In Proceedings of the 2009 ACM Workshop on Cloud Computing
Security, CCSW ’09, pages 43–54, New York, NY, USA, 2009. ACM. 27, 30

[44] Kevin D Bowers, Ari Juels, and Alina Oprea. HAIL: a High-Availability and Integrity
Layer for Cloud Storage. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, pages 187–198. ACM, 2009. 27, 30

[45] Simon Bradshaw, Christopher Millard, and Ian Walden. Contracts for Clouds : Com-
parison and Analysis of the Terms and Conditions of Cloud Computing Services. Tech-
nical Report Legal Studies Research Paper 63/2010, Queen Mary, University of London,
2010. 157

[46] Benjamin Braun, Ariel J Feldman, Zuocheng Ren, Srinath Setty, Andrew J Blumberg,
and Michael Walfish. Verifying Computations with State. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles, pages 341–357. ACM, 2013.
74

[47] Bray, Tim and Paoli, Jean and Sperberg-McQueen, C Michael and Maler, Eve and
Yergeau, François. Extensible markup language (XML). World Wide Web Journal, 2
(4):27–66, 1997. 168

[48] Denis Butin, Marcos Chicote, and Daniel Le Métayer. Log Design For Accountability.
In Security and Privacy Workshops (SPW), 2013 IEEE, pages 1–7. IEEE, 2013. 171,
172

[49] Jan Camenisch and Anna Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. In Advances in Cryptology – CRYPTO
2002, pages 61–76. Springer, 2002. 122, 123

[50] L Jean Camp and M Eric Johnson. The Economics of Financial and Medical Identity
Theft. Springer Science & Business Media, 2012. 4

[51] Ran Canetti, Ben Riva, and Guy N Rothblum. Practical Delegation of Computation
using Multiple Servers. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, pages 445–454. ACM, 2011. 71

[52] Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Triandopoulos. Ver-
ifiable Set Operations over Outsourced Databases. In Public-Key Cryptography–PKC
2014, pages 113–130. Springer, 2014. 78, 81, 82, 123, 124, 125, 143, 214

[53] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic Proofs Of Retrievability via
Oblivious RAM. In EUROCRYPT, pages 279–295, 2013. 28, 30, 57

[54] Kenneth R. Castleman. Digital Image Processing. Prentice Hall Press, Upper Saddle
River, NJ, USA, 1996. 99

[55] Dario Catalano and Dario Fiore. Practical Homomorphic MACs for Arithmetic Circuits.
In EUROCRYPT, pages 336–352. Springer, 2013. 76, 77

Bibliography 191

[56] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. Generalizing Ho-
momorphic MACs for Arithmetic Circuits. In Public-Key Cryptography–PKC 2014,
pages 538–555. Springer, 2014. 77

[57] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Homomorphic Signatures with
Efficient Verification for Polynomial Functions. In Advances in Cryptology–CRYPTO
2014, pages 371–389. Springer, 2014. 76, 77, 84

[58] Daniele Catteddu, Massimo Felici, Giles Hogben, Amy Holcroft, Eleni Kosta, Ronald
Leenes, Christopher Millard, Maartje Niezen, David Nuñez, Nick Papanikolaou, et al.
Towards a Model of Accountability for Cloud Computing Services. In Proceedings
of the DIMACS/BIC/A4Cloud/CSA International Workshop on Trustworthiness, Ac-
countability and Forensics in the Cloud (TAFC)(May 2013), 2013. 158

[59] Qi Chai and Guang Gong. Verifiable Symmetric Searchable Encryption for semi-Honest-
but-Curious Cloud Servers. In Communications (ICC), 2012 IEEE International Con-
ference on, pages 917–922. IEEE, 2012. 81, 82, 84, 153

[60] Bo Chen and Reza Curtmola. Robust dynamic provable data possession. In ICDCS
Workshops, pages 515–525, 2012. 28, 30

[61] Lanxiang Chen. Using Algebraic Signatures to Check Data Possession in Cloud Storage.
Future Generation Computer Systems, 29(7):1709–1715, 2013. 23, 30

[62] Rong Cheng, Jingbo Yan, Chaowen Guan, Fangguo Zhang, and Kui Ren. Verifiable
Searchable Symmetric Encryption from Indistinguishability Obfuscation. In Proceedings
of the 10th ACM Symposium on Information, Computer and Communications Security,
pages 621–626. ACM, 2015. 82, 153

[63] Roman-Alexandre Cherrueau, Rémi Douence, Hervé Grall, Jean-Claude Royer, Mo-
hamed Sellami, M Südholt, Monir Azraoui, Kaouthar Elkhiyaoui, Refik Molva, Melek
Önen, Alexandr Garaga, Anderson Santana de Oliveira, Jakub Sendor, and Karin
Bernsmed. Policy Representation Framework. Deliverable, Cloud Accountability
(A4Cloud) Project, 2013. 167

[64] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved Delegation of Computation
using Fully Homomorphic Encryption. In Advances in Cryptology–CRYPTO 2010,
pages 483–501. Springer, 2010. 76, 78, 82

[65] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory Delegation.
In Advances in Cryptology–CRYPTO 2011, pages 151–168. Springer, 2011. 76

[66] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical Verified Com-
putation with Streaming Interactive Proofs. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, ITCS ’12, pages 90–112, New York, NY,
USA, 2012. ACM. 72

[67] Reza Curtmola, Osama Khan, Randal Burns, and Giuseppe Ateniese. MR-PDP:
Multiple-Replica Provable Data Possession. In The 28th International Conference on
Distributed Computing Systems, 2008. ICDCS’08. , pages 411–420. IEEE, 2008. 23, 30

[68] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael, 1999. 36

[69] Ivan Damg̊ard and Nikos Triandopoulos. Supporting Non-membership Proofs with
Bilinear-map Accumulators. IACR Cryptology ePrint Archive, 2008:538, 2008. 119,
123, 124

192 Bibliography

[70] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, 51(1):107–113, 2008. 74

[71] Yves Deswarte and Jean-Jacques Quisquater. Remote Integrity Checking. In Sixth
Working Conference on Integrity and Internal Control in Information Systems (IICIS),
pages 1–11. Kluwer Academic Publishers, 1 2004. 21, 30

[72] Francesco Di Cerbo, Doliere Francis Some, Laurent Gomez, and Slim Trabelsi. PPL
V2.0: Uniform Data Access and Usage Control on Cloud and Mobile. In Proceedings
of the First International Workshop on TEchnical and LEgal Aspects of Data pRIvacy,
TELERISE ’15. IEEE Press, 2015. 171, 172

[73] Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP Proofs from an Extractability
Assumption. In Logic and Theory of Algorithms, pages 175–185. Springer, 2008. 75

[74] Martin Dietzfelbinger and Christoph Weidling. Balanced Allocation and Dictionaries
with Tightly Packed Constant Size Bins. Theoretical Computer Science, 380(1):47–68,
2007. 119, 121, 142

[75] Yevgeniy Dodis, Salil Vadhan, and Daniel Wichs. Proofs of retrievability via hardness
amplification. In Theory of Cryptography, pages 109–127. Springer, 2009. 27, 30

[76] Taher El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. In CRYPTO 84 on Advances in Cryptology, pages 10–18. Springer New
York, Inc., 1985. 73, 79

[77] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia.
Dynamic provable data possession. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09, pages 213–222, New York, NY,
USA, 2009. ACM. 24, 25, 30

[78] Ertem Esiner, Adilet Kachkeev, Samuel Braunfeld, Alptekin Küpçü, and Öznur
Özkasap. FlexDPDP: FlexList-based Optimized Dynamic Provable Data Possession.
IACR Cryptology ePrint Archive, 2013:645, 2013. 24, 25, 30

[79] European Parliament and the Council of the European Union. Directive 2008/30/EC
of the European Parliament and of the Council of 11 March 2008 Amending Directive
2006/43/EC on Statutory Audits of Annual Accounts and Consolidated Accounts, 2008.
9, 204

[80] European Parliament and the Council of the European Union. Regulation (EU)
2016/679 of the European Parliament and of the Council of 27 April 2016 on the
Protection of Natural Persons with regard to the Processing of Personal Data and on
the Free Movement of such Data, 2016. 9, 157, 160, 161, 163, 164, 165, 204, 218, 219

[81] Li Fan, Pei Cao, Jurassa Almeida, and Andrei Z. Broder. Summary Cache: a Scalable
Wide-Area Web Cache Sharing Protocol. IEEE/ACM Trans. Netw., 8(3):281–293, June
2000. ISSN 1063-6692. 80

[82] Massimo Felici and Siani Pearson. Accountability for Data Governance in the Cloud.
In Accountability and Security in the Cloud, pages 3–42. Springer, 2015. 159

[83] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Advances in Cryptology—CRYPTO’86, pages 186–194.
Springer, 1987. 74, 214

Bibliography 193

[84] Décio Luiz Gazzoni Filho and Paulo Sérgio Licciardi Messeder Barreto. Demonstrating
Data Possession and Uncheatable Data Transfer. IACR Cryptology ePrint Archive,
2006:150, 2006. 21, 30

[85] Dario Fiore and Rosario Gennaro. Publicly Verifiable Delegation of Large Polynomials
and Matrix Computations, with Applications. In Proceedings of the 2012 ACM Con-
ference on Computer and Communications Security, CCS ’12, pages 501–512. ACM,
2012. 78, 79, 80, 84, 95, 96, 100, 109, 110, 214, 215

[86] Freedman, Michael J and Nissim, Kobbi and Pinkas, Benny. Efficient Private Match-
ing and Set Intersection. In Advances in Cryptology-EUROCRYPT 2004, pages 1–19.
Springer, 2004. 123

[87] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate Multilinear Maps from Ideal
Lattices. In Advances in Cryptology–EUROCRYPT 2013, pages 1–17. Springer, 2013.
77

[88] Shelly Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Anant Sahai, and Brent
Waters. Candidate Indistinguishability Obfuscation and Functional Encryption for
All Circuits. In IEEE 54th Annual Symposium on Foundations of Computer Science
(FOCS), 2013, pages 40–49. IEEE, 2013. 28

[89] Rosario Gennaro and Daniel Wichs. Fully Homomorphic Message Authenticators. In
Advances in Cryptology-ASIACRYPT 2013, pages 301–320. Springer, 2013. 76, 77, 84

[90] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-Interactive Verifiable Computa-
tion: Outsourcing Computation To Untrusted Workers. In In Proceedings of CRYPTO.
Citeseer, 2010. 5, 24, 27, 61, 63, 71, 75, 78, 82, 84, 94, 212, 214

[91] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic Span
Programs and Succinct NIZKs without PCPs. In EUROCRYPT, volume 7881, pages
626–645. Springer, 2013. 74, 75, 78, 81, 84

[92] Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In STOC, volume 9,
pages 169–178, 2009. 71, 75, 76

[93] Craig Gentry and Daniel Wichs. Separating Succinct Non-Interactive Arguments From
All Falsifiable Assumptions. In Proceedings of the Forty-Third Annual ACM Symposium
on Theory of Computing, pages 99–108. ACM, 2011. 75

[94] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on Oblivious
RAMs. Journal of the ACM (JACM), 43(3):431–473, 1996. 28

[95] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct Random Func-
tions. Journal of the ACM (JACM), 33(4):792–807, 1986. 36

[96] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption & How to Play Mental
Poker Keeping Secret All Partial Information. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, pages 365–377, New York, NY,
USA, 1982. ACM. 37

[97] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowledge Complexity of
Interactive Proof Systems. SIAM Journal on Computing, 18:186–208, 1989. 72, 84

[98] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating Computation:
Interactive Proofs for Muggles. In Proceedings of the 40th annual ACM Symposium on
Theory of Computing, pages 113–122. ACM, 2008. 72, 75, 78, 84, 214

194 Bibliography

[99] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based En-
cryption for Fine-grained Access Control of Encrypted Data. In Proceedings of the 13th
ACM conference on Computer and Communications Security, pages 89–98. ACM, 2006.
76

[100] Chaowen Guan, Kui Ren, Fangguo Zhang, Florian Kerschbaum, and Jia Yu.
Symmetric-Key Based Proofs of Retrievability Supporting Public Verification. In Com-
puter Security–ESORICS 2015, pages 203–223. Springer, 2015. 28, 29, 30

[101] Christian Hanser and Daniel Slamanig. Efficient Simultaneous Privately and Publicly
Verifiable Robust Provable Data Possession from Elliptic Curves. In SECRYPT 2013 -
Proceedings of the 10th International Conference on Security and Cryptography, Reyk-
jav́ık, Iceland, 29-31 July, 2013, pages 15–26, 2013. 23, 30

[102] Feng Hao, Dylan Clarke, and Avelino Francisco Zorzo. Deleting Secret Data with Public
Verifiability. Cryptology ePrint Archive, Report 2014/364, 2014. 185

[103] Martin Henze, Marcel Großfengels, Maik Koprowski, and Klaus Wehrle. Towards Data
Handling Requirements-aware Cloud Computing. In 2013 IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom), 2013. 171, 172

[104] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient arguments without short
PCPs. In Twenty-Second Annual IEEE Conference on Computational Complexity,
2007. CCC’07., pages 278–291. IEEE, 2007. 73, 84

[105] ISO/IEC. ISO/IEC 15414:2015. Information technology – Open distributed processing
– Reference model – Enterprise language. Technical report, International Organization
for Standardization (ISO), 2015. 161

[106] Robert Johnson, David Molnar, Dawn Song, and David Wagner. Homomorphic Signa-
ture Schemes. In Topics in Cryptology–CT-RSA 2002, pages 244–262. Springer, 2002.
76

[107] Ari Juels and Burton Stephen Kaliski. PORs: Proofs Of Retrievability For Large Files.
In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM
Conference on Computer and Communications Security, pages 584–597. ACM, 2007.
18, 21, 22, 26, 27, 29, 30, 32, 34, 35, 52, 53, 54, 209, 210

[108] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-Size Commitments
to Polynomials and Their Applications. In Advances in Cryptology-ASIACRYPT 2010,
pages 177–194. Springer, 2010. 27, 79, 95

[109] Ethan Katz-Bassett, John P John, Arvind Krishnamurthy, David Wetherall, Thomas
Anderson, and Yatin Chawathe. Towards IP Geolocation Using Delay and Topology
Measurements. In Proceedings of the 6th ACM SIGCOMM Conference on Internet
Measurement, pages 71–84. ACM, 2006. 185

[110] Joe Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In Proceedings
of the Twenty-Fourth Annual ACM Symposium on Theory of Computing, pages 723–
732. ACM, 1992. 70, 72, 73, 74, 84, 214

[111] Joe Kilian. Improved Efficient Arguments. In Advances in Cryptology–CRYPTO’95,
pages 311–324. Springer, 1995. 72, 73, 74, 214

[112] Zachary A Kissel and Jie Wang. Verifiable Phrase Search over Encrypted Data Se-
cure against a Semi-Honest-but-Curious Adversary. In Distributed Computing Systems
Workshops (ICDCSW), 2013 IEEE 33rd International Conference on, pages 126–131.
IEEE, 2013. 81, 82

Bibliography 195

[113] Ahmed E Kosba, Dimitrios Papadopoulos, Charalampos Papamanthou, Mahmoud F
Sayed, Elaine Shi, and Nikos Triandopoulos. TRUESET: Faster verifiable set compu-
tations. In USENIX Security, 2014. 81, 84, 153

[114] Hugo Krawczyk and Tal Rabin. Chameleon Signatures. In Proceedings of the Network
and Distributed System Security Symposium, NDSS 2000, San Diego, California, USA,
2000. 58

[115] Lukasz Krzywiecki and Miros law Kuty lowski. Proof of Possession for Cloud Storage via
Lagrangian Interpolation Techniques. In Network and System Security, pages 305–319.
Springer, 2012. 23, 30

[116] Alptekin Küpçü. Official Arbitration with Secure Cloud Storage Application. The
Computer Journal, 58(4):831–852, 2015. 58

[117] D. Davide Lamanna, James Skene, and Wolfgang Emmerich. SLAng: A Language for
Defining Service Level Agreements. In Proceedings of the The Ninth IEEE Workshop on
Future Trends of Distributed Computing Systems, Washington, DC, USA, 2003. IEEE
Computer Society. 167

[118] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More Efficient Multi-
linear Maps from Ideal Lattices. In Advances in Cryptology–EUROCRYPT 2014, pages
239–256. Springer, 2014. 77

[119] Tancrède Lepoint and Mehdi Tibouchi. Cryptanalysis of a (Somewhat) Additively Ho-
momorphic Encryption Scheme Used in PIR. In Michael Brenner, Nicolas Christin,
Benjamin Johnson, and Kurt Rohloff, editors, Financial Cryptography and Data Se-
curity, volume 8976 of Lecture Notes in Computer Science, pages 184–193. Springer
Berlin Heidelberg, 2015. 37

[120] Jiangtao Li, Ninghui Li, and Rui Xue. Universal Accumulators with Efficient Non-
Membership Proofs. In Applied Cryptography and Network Security, pages 253–269.
Springer, 2007. 122

[121] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Lee Badger, and Dawn
Leaf. NIST Cloud Computing Reference Architecture. NIST special publication, 500:
292, 2011. 160

[122] Pengliang Liu, Jianfeng Wang, Hua Ma, and Haixin Nie. Efficient Verifiable Public Key
Encryption with Keyword Search Based on KP-ABE. In Ninth International Conference
on Broadband and Wireless Computing, Communication and Applications, BWCCA
2014, Guangdong, China, November 8-10, 2014, pages 584–589, 2014. 81

[123] Massimo Marchiori. The Platform for Privacy Preferences 1.0 (P3P1.0) Specification.
W3C recommendation, W3C, 2002. 167

[124] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing, 2011. 7

[125] Ralph C Merkle. A Digital Signature Based on a Conventional Encryption Function. In
Advances in Cryptology–CRYPTO’87, pages 369–378. Springer, 1988. 24, 25, 73, 119,
217

[126] Silvio Micali. Computationally Sound Proofs. SIAM Journal on Computing, 30(4):
1253–1298, 2000. 74, 75, 76, 82, 84, 214

[127] Payman Mohassel. Efficient and Secure Delegation of Linear Algebra. IACR Cryptology
ePrint Archive, 2011:605, 2011. 79, 84

196 Bibliography

[128] David Molnar. The SETI@home problem. ACM Crossroads, 7:55, 2000. URL http:
//tiny.cc/f0c38x. 4, 5

[129] Ruggero Morselli, Bobby Bhattacharjee, Justin Katz, and Pete Keleher. Trust-
Preserving Set Operations. In INFOCOM 2004. Twenty-third Annual Joint Confer-
ence of the IEEE Computer and Communications Societies, volume 4, pages 2231–2241.
IEEE, 2004. 80, 84, 153

[130] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Consulted, 1
(2012):28, 2008. 29

[131] National Institute of Standards and Technology. FIPS 180-2, Secure Hash Standard,
Federal Information Processing Standard (FIPS), Publication 180-2. Technical report,
Department of Commerce, August 2002. 39

[132] Lan Nguyen. Accumulators From Bilinear Pairings and Applications. In Topics in
Cryptology–CT-RSA 2005, pages 275–292. Springer, 2005. 80, 119, 123, 216

[133] Nicodemos Damianou and Naranker Dulay and Emil Lupu and Morris Sloman. The
Ponder Policy Specification Language. In POLICY, pages 18–38, 2001. 167

[134] OASIS Standard. eXtensible Access Control Markup Language (XACML) Version
3.0. 22 January 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.html, 2013. 167, 168

[135] OASIS Web Service Security (WSS) TC. Web Services Security: SOAP Message Secu-
rity 1.1, 2006. 167

[136] OASIS Web Services Secure Exchange (WS-SX) TC. WS-Trust 1.4, 2012. 167

[137] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. Journal of Algorithms,
51(2):122–144, 2004. 121, 217

[138] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In Jacques Stern, editor, Advances in Cryptology at EUROCRYPT’99, volume
1592 of Lecture Notes in Computer Science, pages 223–238. Springer Berlin Heidelberg,
1999. 73, 79

[139] Stavros Papadopoulos, Dimitris Papadias, Weiwei Cheng, and Kian-Lee Tan. Separat-
ing Authentication From Query Execution in Outsourced Databases. In IEEE 25th In-
ternational Conference on Data Engineering, 2009. ICDE’09., pages 1148–1151. IEEE,
2009. 82

[140] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Optimal
Verification of Operations on Dynamic Sets. In Advances in Cryptology–CRYPTO
2011, pages 91–110. Springer, 2011. 78, 80, 81, 82, 84, 123, 143, 214

[141] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of Correct
Computation. In Theory of Cryptography, pages 222–242. Springer, 2013. 75, 78, 79,
84, 95, 96, 214

[142] Bryan Parno, Jonathan M McCune, and Adrian Perrig. Bootstrapping Trust in Modern
Computers, volume 10. Springer Science & Business Media, 2011. 71

[143] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to Delegate and
Verify in Public: Verifiable Computation from Attribute-Based Encryption. In Ronald
Cramer, editor, Theory of Cryptography, volume 7194 of Lecture Notes in Computer
Science, pages 422–439. Springer Berlin Heidelberg, 2012. 64, 76, 78, 82, 84

http://tiny.cc/f0c38x
http://tiny.cc/f0c38x

Bibliography 197

[144] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
Practical Verifiable Computation. In Security and Privacy (SP), 2013 IEEE Symposium
on, pages 238–252. IEEE, 2013. 75, 77, 78, 84, 214

[145] Mithun Paul and Ashutosh Saxena. Proof Of Erasability for Ensuring Comprehensive
Data Deletion in Cloud Computing. In Natarajan Meghanathan, Selma Boumerdassi,
Nabendu Chaki, and Dhinaharan Nagamalai, editors, Recent Trends in Network Se-
curity and Applications, volume 89 of Communications in Computer and Information
Science, pages 340–348. Springer Berlin Heidelberg, 2010. 185

[146] S. Pearson, V. Tountopoulos, D. Catteddu, M. Sudholt, R. Molva, C. Reich, S. Fischer-
Hubner, C. Millard, V. Lotz, M.G. Jaatun, R. Leenes, Chunming Rong, and J. Lopez.
Accountability for Cloud and Other Future Internet Services. In 2012 IEEE 4th Inter-
national Conference on Cloud Computing Technology and Science (CloudCom), pages
629–632, 2012. 157, 163, 218

[147] Daniele Perito and Gene Tsudik. Secure Code Update for Embedded Devices via Proofs
of Secure Erasure. In ESORICS, volume 6345, pages 643–662. Springer, 2010. 185

[148] Zachary NJ Peterson, Mark Gondree, and Robert Beverly. A Position Paper on Data
Sovereignty: The Importance of Geolocating Data in the Cloud. In Proceedings of the
8th USENIX Conference on Networked Systems Design and Implementation, 2011. 185

[149] James S Plank and Lihao Xu. Optimizing Cauchy Reed-Solomon codes for fault-tolerant
network storage applications. In Fifth IEEE International Symposium on Network
Computing and Applications, 2006. NCA 2006., pages 173–180. IEEE, 2006. 28

[150] Piotr Porwik and Agnieszka Lisowska. The Haar-Wavelet Transform in Digital Image
Processing: Its Status and Achievements. Machine graphics and vision, 13:79–98, 2004.
63

[151] Mark W Powell, Ryan Rossi, Khawaja Shams, et al. A Scalable Image Processing
Framework for Gigapixel Mars and Other celestial Body Images. In Aerospace Confer-
ence, 2010 IEEE, pages 1–11. IEEE, 2010. 112

[152] PrimeLife Consortium. PrimeLife, 2011. 169

[153] William Pugh. Skip Lists: a Probabilistic Alternative to Balanced Trees. Communica-
tions of the ACM, 33(6):668–676, 1990. 24

[154] Irving S. Reed and Gustave Solomon. Polynomial Codes Over Certain Finite Fields.
Journal of the Society of Industrial and Applied Mathematics, 8(2):300–304, 06/1960
1960. 26, 54

[155] Ronald L Rivest, Adi Shamir, and Yael Tauman. How To Leak A Secret. In Advances
in Cryptology—ASIACRYPT 2001, pages 552–565. Springer, 2001. 26

[156] David K Ruch and Patrick J Van Fleet. Wavelet theory: An Elementary Approach with
Applications. John Wiley & Sons, 2011. 99

[157] Ahmad-Reza Sadeghi, Thomas Schneider, and Marcel Winandy. Token-Based Cloud
Computing. In Trust and Trustworthy Computing, pages 417–429. Springer, 2010. 71

[158] Joshua Schiffman, Thomas Moyer, Hayawardh Vijayakumar, Trent Jaeger, and Patrick
McDaniel. Seeding Clouds with Trust Anchors. In Proceedings of the 2010 ACM
Workshop on Cloud Computing Security Workshop, pages 43–46. ACM, 2010. 71

198 Bibliography

[159] Thomas SJ Schwarz and Ethan L Miller. Store, Forget, and Check: Using Algebraic
Signatures to Check Remotely Administered Storage. In 26th IEEE International Con-
ference on Distributed Computing Systems, 2006. ICDCS 2006, pages 12–12. IEEE,
2006. 21, 22, 23, 30

[160] Francesc Sebé, Josep Domingo-Ferrer, Antoni Mart́ınez-Balleste, Yves Deswarte, and
Jean-Jacques Quisquater. Efficient Remote Data possession Checking in Critical Infor-
mation Infrastructures. IEEE Trans. Knowl. Data Eng., 20(8):1034–1038, 2008. 21,
30

[161] Srinath Setty, Andrew J Blumberg, and Michael Walfish. Toward Practical and Un-
conditional Verification of Remote Computations. In Proceedings of the 13th USENIX
Conference on Hot Topics in Operating Systems, HotOS, volume 13, pages 29–29, 2011.
73, 74, 75, 84

[162] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J Blumberg, Bryan Parno, and
Michael Walfish. Resolving the Conflict between Generality and Plausibility in Veri-
fied Computation. In Proceedings of the 8th ACM European Conference on Computer
Systems, pages 71–84. ACM, 2013. 74, 75, 84

[163] Srinath T. V. Setty, Richard McPherson, Andrew J. Blumberg, and Michael Walfish.
Making Argument Systems for Outsourced Computation Practical (sometimes). In 19th
Annual Network and Distributed System Security Symposium, NDSS 2012, San Diego,
California, USA, February 5-8, 2012, 2012. 73, 74, 75, 84

[164] Srinath TV Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J Blumberg,
and Michael Walfish. Taking Proof-Based Verified Computation a Few Steps Closer to
Practicality. In USENIX Security Symposium, pages 253–268, 2012. 74, 75, 84

[165] Hovav Shacham and Brent Waters. Compact Proofs Of Retrievability. In Proceedings
of the 14th International Conference on the Theory and Application of Cryptology and
Information Security: Advances in Cryptology, ASIACRYPT ’08, pages 90–107, Berlin,
Heidelberg, 2008. Springer-Verlag. 18, 27, 28, 29, 30, 32, 52, 53, 54, 76

[166] Shiuan-Tzuo Shen and Wen-Guey Tzeng. Delegable Provable Data Possession for Re-
mote Data in the Clouds. In Information and Communications Security, pages 93–111.
Springer, 2011. 26, 30

[167] Elaine Shi, Emil Stefanov, and Charalampos Papamanthou. Practical Dynamic Proofs
of Retrievability. In ACM Conference on Computer and Communications Security,
pages 325–336, 2013. 28, 30, 57

[168] Sarvjeet Singh and Sunil Prabhakar. Ensuring Correctness Over Untrusted Private
Database. In Proceedings of the 11th International Conference on Extending Database
Technology, pages 476–486. ACM, 2008. 82

[169] Steel, Christopher and Lai, Ray and Naggapan, Ramesh. Core Security Patterns:
Identity Management Standards and Technologies . http://www.informit.com/articles/
article.aspx?p=1398625&seqNum=12, 2009. xiii, 169

[170] Emil Stefanov, Marten van Dijk, Ari Juels, and Alina Oprea. Iris: a scalable cloud file
system with efficient integrity checks. In ACSAC, pages 229–238, 2012. 28, 30, 32, 53,
57

[171] Wenhai Sun, Bing Wang, Ning Cao, Ming Li, Wenjing Lou, Y. Thomas Hou, and Hui
Li. Verifiable Privacy-Preserving Multi-Keyword Text Search in the Cloud Supporting
Similarity-Based Ranking. IEEE Transactions on Parallel and Distributed Systems, 25
(11):3025–3035, 2014. 81

http://www.informit.com/articles/article.aspx?p=1398625&seqNum=12
http://www.informit.com/articles/article.aspx?p=1398625&seqNum=12

Bibliography 199

[172] Wenhai Sun, Xuefeng Liu, Wenjing Lou, Y Thomas Hou, and Hui Li. Catch You If You
Lie To Me: Efficient Verifiable Conjunctive Keyword Search Over Large Dynamic En-
crypted Cloud Data. In IEEE Conference on Computer Communications (INFOCOM),
2015 , pages 2110–2118. IEEE, 2015. 81

[173] Justin Thaler. Time-Optimal Interactive Proofs for Circuit Evaluation. In Ran Canetti
and JuanA. Garay, editors, Advances in Cryptology – CRYPTO 2013, volume 8043 of
Lecture Notes in Computer Science, pages 71–89. Springer Berlin Heidelberg, 2013. 72,
80

[174] Top Threats Working Group and others. The Notorious Nine: Cloud Computing Top
Threats in 2013. Cloud Security Alliance, 2013. 9, 10, 17

[175] Slim Trabelsi, Gregory Neven, Dave Raggett, Claudio Ardagna, Carine Bournez, Lau-
rent Bussard, Michele Bezzi, Jan Camenisch, Sabrina de Capitani di VIMERCATI,
Fatih Gey, Aleksandra Kuczerawy, Sebastian Meissner, Gregory Neven, Akram Njeh,
Stefano Paraboschi, Eros Pedrini, Sara Foresti, Ulrich Pinsdorf, Franz-Stefan Preiss,
Jakub Sendor, Christina Tziviskou, Dave Raggett, Thomas Roessler, Pierangela Sama-
rati, Jan Schallaboeck, Stuart Short, Dieter Sommer, Mario Verdicchio, and Rigo Wen-
ning. D5.3.4 - Report on design and implementation of the PrimeLife Policy Language
and Engine. Deliverable, Primelife Project, 2011. 158, 175

[176] Jonathan Trostle and Andy Parrish. Efficient Computationally Private Information
Retrieval from Anonymity or Trapdoor Groups. In Proceedings of Conference on In-
formation Security, pages 114–128, Boca Raton, USA, 2010. xiii, 37, 38, 50, 51

[177] Joseph D Twicken, Bruce D Clarke, Stephen T Bryson, Peter Tenenbaum, Hayley
Wu, Jon M Jenkins, Forrest Girouard, and Todd C Klaus. Photometric Analysis in
the Kepler Science Operations Center pipeline. In SPIE Astronomical Telescopes+
Instrumentation, pages 774023–774023. International Society for Optics and Photonics,
2010. 63, 85

[178] Marten Van Dijk, Ari Juels, Alina Oprea, Ronald L Rivest, Emil Stefanov, and Nikos
Triandopoulos. Hourglass Schemes: How to Prove that Cloud Files Are Encrypted. In
Proceedings of the 2012 ACM Conference on Computer and Communications Security,
pages 265–280. ACM, 2012. 184, 185

[179] Victor Vu, Srujay Setty, Andrew J Blumberg, and Michael Walfish. A Hybrid Archi-
tecture for Interactive Verifiable Computation. In IEEE Symposium on Security and
Privacy (SP), 2013, pages 223–237. IEEE, 2013. 74

[180] Riad S Wahby, Srinath Setty, Zuocheng Ren, Andrew J Blumberg, and Michael Walfish.
Efficient RAM and Control Flow in Verifiable Outsourced Computation. In Proceedings
of the ISOC NDSS, 2015. 74

[181] Michael Walfish and Andrew J. Blumberg. Verifying Computations Without Reexecut-
ing Them. Communications of the ACM, 58(2):74–84, January 2015. 70

[182] Boyang Wang, Baochun Li, and Hui Li. Knox: Privacy-Preserving Auditing for Shared
Data with Large Groups in the Cloud. In Applied Cryptography and Network Security,
pages 507–525. Springer, 2012. 26

[183] Boyang Wang, Baochun Li, and Hui Li. Oruta: Privacy-Preserving Public Auditing for
Shared Data in the Cloud. In IEEE 5th International Conference on Cloud Computing
(CLOUD), pages 295–302. IEEE, 2012. 26, 30

200 Bibliography

[184] Boyang Wang, Baochun Li, and Hui Li. Panda: Public Auditing for Shared Data with
Efficient User Revocation in the Cloud. IEEE Transactions on Services Computing, 8
(1):92–106, 2015. 26

[185] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving public auditing
for data storage security in cloud computing. In INFOCOM, pages 525–533, 2010. 25,
30

[186] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. Enabling public verifi-
ability and data dynamics for storage security in cloud computing. In Proceedings of
the 14th European conference on Research in computer security, ESORICS’09, pages
355–370, Berlin, Heidelberg, 2009. Springer-Verlag. 25, 26, 30

[187] Gaven J Watson, Reihaneh Safavi-Naini, Mohsen Alimomeni, Michael E Locasto, and
Shivaramakrishnan Narayan. LoSt: Location Based Storage. In Proceedings of the 2012
ACM Workshop on Cloud Computing Security Workshop, pages 59–70. ACM, 2012. 185

[188] Bernard Wong, Ivan Stoyanov, and Emin Gün Sirer. Octant: A Comprehensive Frame-
work for the Geolocalization of Internet Hosts. In Proceedings of the 4th USENIX
Conference on Networked Systems Design & Implementation, pages 23–23. USENIX
Association, 2007. 185

[189] Jia Xu and Ee-Chien Chang. Towards efficient proofs of retrievability. In ASIACCS,
pages 79–80, 2012. 27, 30, 52, 53, 54

[190] Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and Panos Kalnis. Authenticated
Join Processing in Outsourced Databases. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, pages 5–18. ACM, 2009. 82

[191] Andrew C Yao. Protocols for Secure Computations. In IEEE Annual Symposium on
Foundations of Computer Science. IEEE, 1982. 71, 75, 76

[192] Liang Feng Zhang and Reihaneh Safavi-Naini. Generalized Homomorphic MACs with
Efficient Verification. In Proceedings of the 2nd ACM Workshop on ASIA Public-key
Cryptography, ASIAPKC ’14, pages 3–12, New York, NY, USA, 2014. ACM. 77

[193] Liang Feng Zhang and Reihaneh Safavi-Naini. Verifiable Delegation of Computations
with Storage-Verification Trade-off. In Miros law Kuty lowski and Jaideep Vaidya, edi-
tors, Computer Security - ESORICS 2014, volume 8712 of Lecture Notes in Computer
Science, pages 112–129. Springer International Publishing, 2014. 78, 79, 84, 95, 109,
214

[194] Yihua Zhang and Marina Blanton. Efficient Dynamic Provable Possession of Remote
Data via Balanced Update Trees. In Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security, ASIACCS’13, pages 183–194,
New York, NY, USA, 2013. ACM. 25, 30

[195] Yihua Zhang and Marina Blanton. Efficient Secure and Verifiable Outsourcing of Matrix
Multiplications. Cryptology ePrint Archive, Report 2014/133, 2014. 78, 79, 84, 110,
214

[196] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. IntegriDB: Verifiable
SQL for Outsourced Databases. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 1480–1491. ACM, 2015. 82, 153

[197] Qingji Zheng and Shouhuai Xu. Fair and dynamic proofs of retrievability. In CO-
DASPY, pages 237–248, 2011. 29, 30, 58

Bibliography 201

[198] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. VABKS: Verifiable Attribute-
Based Keyword Search over Outsourced Encrypted Data. In INFOCOM, 2014 Pro-
ceedings IEEE, pages 522–530. IEEE, 2014. 78, 81, 84, 153, 214

202 Bibliography

Résumé Français 203

Résumé Français

L’informatique nuagique (le cloud computing) est considéré comme le “saint graal” pour faire
face à la gestion de quantités énormes de données recueillies chaque jour à travers les réseaux
sociaux, les appareils mobiles, les réseaux de capteurs, etc. Par conséquent, l’externalisation
du stockage et du traitement de ces données vers le cloud élimine la nécessité d’investir dans
du matériel informatique et logiciel coûteux. Cependant, de nombreuses entreprises sont
réticentes à l’idée de recourir à des technologies nuagiques. En effet, l’inévitable transfert
de contrôle sur le stockage et le calcul vers des serveurs cloud non-fiables soulève divers
problèmes de sécurité. À cet égard, la vérification des opérations effectuées par le cloud et
la possibilité de lui imputer la responsabilité de ses actions peuvent aider les utilisateurs à
avoir plus de contrôle sur leurs ressources et peuvent réduire l’impact de la méfiance envers le
cloud . L’état de l’art décrit des méthodes pour externaliser de façon vérifiable le stockage de
données et le calcul sur ces données. Cependant, la plupart des procédés existants impliquent
des techniques cryptographiques lourdes qui rendent les solutions inefficaces. En outre, très
peu de solutions techniques ont été envisagées pour l’imputabilité des actions effectuées par
le cloud .

Cette thèse propose de nouveaux protocoles cryptographiques, plus efficaces que l’existant,
et qui permettent aux utilisateurs du nuage informatique de vérifier (i) la bonne conservation
des données externalisées et (ii) l’exécution correcte de calculs externalisés. Nous décrivons
d’abord un protocole cryptographique qui génère des preuves de récupérabilité, qui permet-
tent aux propriétaires de données de vérifier que le cloud stocke leurs données correctement.
Nous détaillons ensuite trois schémas cryptographiques pour vérifier l’exactitude des calculs
externalisés en se focalisant sur trois opérations fréquentes dans les procédures de traitement
de données, à savoir l’évaluation de polynômes, la multiplication de matrices et la recherche de
conjonction de mots-clés. La sécurité de nos solutions est analysée dans le cadre de la sécurité
prouvable et nous démontrons également leur efficacité grâce à des prototypes. Nous présen-
tons également A-PPL, un langage de la politique pour l’imputabilité qui permet l’expression
des obligations de responsabilité et de traçabilité dans un format compréhensible par la ma-
chine. Nous espérons que nos contributions pourront encourager l’adoption du cloud par les
entreprises encore réticentes à l’idée d’utiliser ce paradigme prometteur.

Introduction

Le terme “informatique nuagique” (en anglais cloud computing ou juste cloud) est sans doute
l’un des concepts les plus populaires dans le monde des technologies de l’information et de
la communication (TICs) en ce début du XXIe siècle. L’Institut américain des Normes et de
la Technologie (NIST) a fait parâıtre en 2011 sa définition du cloud , souvent citée dans les
articles scientifiques du domaine des TICs:

Le cloud computing est un modèle permettant l’accès à la demande, via le réseau, à
un ensemble de ressources informatiques (réseaux, serveurs, stockage, applications
et services), configurables et partagées, et qui peuvent être rapidement mises à
disposition avec un effort ou une intervention du fournisseur de service minimum.

En d’autres termes, l’informatique en nuage possède les caractéristiques suivantes :

204 Résumé Français

Service à la demande : les utilisateurs peuvent accéder aux services du cloud à la de-
mande;

Accessibilité : le cloud est accessible sur l’ensemble du réseau, quelque soit l’appareil utilisé
pour l’accès;

Mutualisation des ressources : les services du cloud utilisent des ressources mutualisées
qui sont mises à la disposition de plusiers utilisateurs;

Élasticité : ces services doivent être élastiques, c’est-à-dire qu’ils s’adaptent rapidement aux
variations des besoins des utilisateurs.

Les bénéfices du cloud

Utiliser les ressources du cloud présente de nombreux avantages aux utilisateurs (que ce soient
des organisations ou des individus) :

La réduction des coûts : grâce à la mutualisation des ressources, les entreprises n’ont plus
besoin d’investir dans des insfrastructures pour le stockage et la puissance de calcul;

Des accès rapides et des usages facilités : les services cloud sont accessibles n’importe
quand, n’importe où, sur tout support via l’Internet;

La disponibilité du service : le cloud permet d’assurer à ses utilisateurs des services haute-
ment réactifs avec peu de latence;

La flexibilité : grâce à la propriété d’élasticité du cloud , les utilisateurs peuvent adapter
leurs demandes en ressources cloud en temps réel et ne payer que les ressources qu’ils
consomment (pay-as-you-go).

Les problèmes de sécurité et de vie privée liés au cloud

Cependant, malgré tous ces avantages prometteurs, nombreux sont les organisations et les
utilisateurs qui sont encore réticents à l’idée de migrer leurs données vers le cloud . La plupart
des obstacles à une adoption généralisée du cloud découle d’une combinaison de deux facteurs
interconnectés, à savoir la perte de contrôle et la méfiance envers le cloud :

• Les utilisateurs du cloud perdent le contrôle sur leurs données et leur traitement en
les transférant aux fournisseurs de services. En effet, en externalisant leurs données et
leurs opérations au cloud , les utilisateurs ne les possèdent plus et doivent compter sur
les fournisseurs du cloud pour implémenter les contrôles requis sur de nombreux aspects
comme le stockage, l’accès, l’usage, la confidentialité, l’intégrité ou la disponibilité des
données. Cette perte de contrôle est critique pour des sociétés ou des organismes devant
respecter des obligations réglementaires comme le Règlement général sur la protection
des données [80], la loi américaine Health Insurance Portability and Accountability Act
[1] ou la directive européene EuroSox [79]. Donc, la perte de contrôle sur les données
dans le cloud implique un défi de conformité en rapport avec ces réglementations.

• Les freins à l’adoption généralisée du cloud sont également liés à la méfiance à l’égard
des fournisseurs de cloud . Cette méfiance s’exprime selon deux aspects. D’abord, des
défaillances involontaires dans les services du cloud peuvent causer des pertes de don-
nées ou une indisponibilité du service qui peuvent être critiques pour les organismes qui
dépendent de ces services. Ensuite, les fournisseurs de cloud sont eux-mêmes considérés
comme malveillants et peuvent adopter deux types de comportements malintentionnés.
(i) Un cloud curieux met en péril la confidentialité des données et des calculs, par ex-
emple en effectuant des operations d’extraction de données pour acquérir de précieuses

205

informations. Ce scénario est envisageable pour le cas des nombreuses données sensi-
bles et personnelles générées ou collectées par les réseaux sociaux du genre Facebook,
Twitter ou LinkedIn. (ii) Un cloud malveillant fait volontairement mauvais usage de
ses ressources pour compromettre la confidentialité, l’intégrité ou la disponibilité des
données et des opérations dont il a la charge. Par ailleurs, le manque de confiance
envers les fournisseurs de cloud est également lié à l’absence de transparence sur le
traitement des données et des calculs, ainsi que sur leur localisation et leur but. Des
fournisseurs de cloud pourraient par exemple être tentés de cacher à leurs utilisateurs
une défaillance du sytème ou une fuite de données pour préserver leur réputation.

En résumé, le transfert de contrôle vers un fournisseur de cloud non digne de confiance pose
de sérieux problèmes liés à la sécurité et à la préservation de la vie privée des données et des
opérations des utilisateurs. Ces problèmes sont corrélés avec des problèmes de transparence,
de responsabilité et de conformité.

Malheureusement, les caractéristiques singulières du cloud compromettent l’utilisation
directe des mécanismes traditionnels de sécurité comme le chiffrement pour garantir la confi-
dentialité des données, les techniques cryptographiques pour garantir l’intégrité des données
et des calculs, l’isolation de code pour des opérations sécurisées, etc. Cela est dû à plusieurs
enjeux spécifiques au cloud :

1. La prolifération de données due au big data et le nombre croissant d’appareils portatifs
incitent les particuliers et les sociétés à utiliser les services de cloud pour leur confier
leurs données et leurs applications.

2. Cela implique que les utilisateurs de cloud perdent le contrôle sur leurs données et
transfèrent ce contrôle au fournisseur de service. Donc les utilisateurs doivent compter
sur le fournisseur du cloud pour implémenter les mesures de sécurité adéquates.

3. Les exigences de conformité réglementaire et contractuelle rendent difficile l’application
de mesures de sécurité dans le cloud , particulièrement les règles et les lois qui contrôlent
le stockage et l’usage des données. Cela suppose que la manière dont le cloud stocke
et traite les données externalisées doit être vérifiée afin de déterminer que le cloud suit
les exigences de conformité. Dans une optique plus large, la conformité implique la
possibilité d’attribuer au fournisseur de service cloud la responsabilité de l’ensemble de
ses actions. Ce dernier concept sous-entend l’imputabilité du cloud .

En outre, les mesures de sécurité dans le cloud doivent être conçues de telle sorte que l’exter-
nalisation des données et des applications reste une solution intéressante pour les utilisateurs.

Problématique

Cette thèse tente de répondre à ces trois problèmes :

Problème 1: Stockage vérifiable. La vérifiabilité est un concept d’importance dans le
cloud . Le but est de concevoir des mécanismes utilisés par les utilisateurs afin de
contrôler et de vérifier que le cloud fournit correctement les services de stockage et de
calcul. Il est légitime de croire que les utilisateurs qui consomment et paient ces services
s’attendent à ce que leurs données soient correctement stockées et que leurs opérations
soient correctement effectuées. Le concept de vérifiabilité appuie celui de transparence :
vérifier les actions du cloud permet de connâıtre les contrôles que le cloud met en place
pour gérer les données et les opérations externalisées.

Cette thèse se focalise en particulier sur deux aspects de la vérifiabilité dans le contexte
du nuage informatique, à savoir le stockage et le calcul. Nous abordons en premier lieu
le problème lié au stokage : un utilisateur confie ses données au cloud et s’attend à ce

206 Résumé Français

que celui-ci les stocke correctement. Par conséquent, l’utilisateur veut vérifier l’intégrité
de ses données. En d’autres termes, l’utilisateur doit être convaincu que les données
ne sont pas supprimées, ni modifiées. Pour vérifier cette proporiété, l’utilisateur doit
pouvoir vérifier que le cloud stocke correctement ses données. Autrement dit, le cloud
doit produire des preuves de stockage qui permettent d’affirmer que celui-ci stocke
réellement une version intacte des données. Par ailleurs, la vérification de ces preuves
par l’utilisateur doit être efficace. Cela veut dire qu’elle ne doit pas générer des coûts
prohibitifs pour l’utilisateur.

Problème 2: Calcul vérifiable. Conjointement à l’externalisation de données, l’infonua-
gique permet l’externalisation de calcul : les utilisateurs peuvent déléguer au cloud
l’exécution d’opérations coûteuses. Dans ce cas, les utilisateurs doivent être convaincus
que le cloud retournera toujours des résultats corrects, c’est-à-dire que les résultats
fournis par le cloud sont ceux que les utilisateurs auraient obtenu s’ils avaient eux-
mêmes effectué le calcul externalisé. En d’autres termes, les utilisateurs doivent être
capables de vérifier que le cloud renvoie le bon résultat. Dans cette optique, le cloud
doit pouvoir produire des preuves de calcul garantissant aux utilisateurs que les
valeurs retournées par le cloud correspondent à une exécution correcte de l’opération
externalisée. Par ailleurs, la vérification des ces preuves doit être nettement moins
exigeante en termes de calcul que l’opération externalisée elle-même. Autrement, confier
l’opération au cloud n’apporte aucun bénéfice.

Problème 3: Imputabilité. Outre la vérifiabilité, nous étudions le concept plus large d’im-
putabilité pour l’informatique nuagique, qui est correlé aux notions de tranparence, de
responsabilité et de conformité. Les fournisseurs de cloud doivent se conformer à des
législations et des contrats. De plus, ils doivent rendre des comptes et être tenus re-
sponsables en ce qui concerne leurs façons de gérer et de traiter les données des util-
isateurs. En d’autres termes, un ensemble d’obligations lie les utilisateurs et les four-
nisseurs de cloud de sorte que le cloud fonctionne de façon transparente. Nous nous
intéressons particulièrent aux politiques pour exprimer ces obligations d’imputabilité.
Il n’existe actuellement aucun cadre permettant aux utilisateurs d’appréhender la façon
avec laquelle le cloud honore ses obligations d’imputabilité. Nous pensons que les poli-
tiques d’imputabilité fournissent un moyen d’exprimer les obligations. C’est pourquoi
nous étudions la possibilité de concevoir un langage de politique interprétable par la ma-
chine de telle sorte que les politiques écrites avec ce langage soient facilement appliquées
de manière automatique.

Contributions

La thèse propose les contributions suivantes en rapport avec les trois problèmes énoncés plus
haut.

Preuves de Stockage. Sous l’hypothèse d’un fournisseur de cloud malveillant, nous con-
cevons un protocole qui produit des preuves cryptographiques prouvant que les données
externalisées sont correctement stockées. Le protocole näıf, dans lequel le propriétaire
de la donnée stocke cette donnée avec une signature électronique chez le cloud et, pour
vérifier que celui-ci stocke la donnée de façon conforme, la télécharge et vérifie la signa-
ture, ne serait pas très efficace dans le contexte de l’infonuagique et du big data. Donc
les solutions de preuves de stockage doivent être plus efficaces que ce simple mécan-
isme. Pour cette raison, nous proposons StealthGuard, notre protocole de preuve de
stockage, basé sur l’idée d’insérer dans la donnée des blocs spéciaux appelés “chiens de
garde”.

Preuves de Calcul. Sous l’hypothèse d’un fournissuer de cloud non digne de confiance,
il est possible de déléguer et de vérifier les résultats d’une opération couteûse. Le

1. Preuves de Stockage 207

serveur cloud doit envoyer les résultats avec une preuve cryptographique garantissant
que l’opération a été effectuée correctement. Nous concevons trois protocoles dans
lesquels la vérification de la preuve opère de manière efficace, c’est-à-dire de telle sorte
que la vérification de la preuve prend nettement moins de temps que l’exécution de
l’opération. Ces trois protocoles concernent trois types d’opérations, fréquemment util-
isées dans des programmes d’exploration de données, à savoir l’évaluation de polynomes,
la multiplication matricielle et la recherche de conjonction de mots-clés. Ces trois solu-
tions sont basées sur de simples propriétés mathématiques et d’outils cryptographiques
bien connues, rendant nos protocoles plus efficaces que l’état de l’art. Par ailleurs, nos
solutions se singularisent par le fait qu’elles permettents deux propriétés intéressantes
: la délégation publique (n’importe qui, et pas seulement la personne qui a external-
isé la fonction peut solliciter le cloud d’effectuer un calcul) et la vérifiabilité publique
(n’importe qui, et pas seulement l’utilisateur qui a soumis la requête, peut vérifier les
résultats retournés par le cloud).

Langage de Politique pour l’Imputabilité. Nous concevons A-PPL, un langage de poli-
tique qui permet d’exprimer des obligations d’imputabilité qui conditionnent les opéra-
tions par le cloud sur les données externalisées. Ce langage de politique est compréhen-
sible et interprétable par la machine afin de faciliter l’automatisation de la mise en
oeuvre de ces politiques. Nous élaborons également A-PPLE, le moteur qui permet de
mettre en pratique les politiques d’imputabilité exprimées avec A-PPL.

1 Preuves de Stockage

La perte de données est une des plus grandes menaces dans le cloud . Le terme de perte
de données inclut non seulement la suppression non autorisée de données, mais aussi la
modification irréversible de toute ou partie des données. En d’autres termes, la perte de
données compromet l’intégrité et la disponobilité de ces données.

Les propriétaires des données confiées au cloud devraient pouvoir vérifier que le four-
nisseur de cloud les stocke correctement, c’est-à-dire, vérifier que les données sont intactes et
disponibles tout au long de la période de stockage. Cette problématique est abordée dans le
domaine de la recherche en preuves de stockage. Ces preuves permettent au propriétaire
de données de les confier au cloud tout en ayant la capacité de vérifier que le cloud les stocke
correctement. Les preuves de stockage sont des preuves cryptographiques qui sont générées
et vérifiées dans le contexte d’un protocole entre le propriétaire de la donnée et le cloud .

1.1 Définition d’un Protocole de Preuves de Stockage

Ce type de protocole fait participer trois acteurs :

Le Propriétaire des données O : Il souhaite confier le stockage d’une liste de documents
F à un serveur de cloud S et souhaite obtenir de S l’assurance de l’intégrité de ses
documents.

Le serveur de cloud S : Considéré comme potentiellement malveillant, le serveur est censé
stocker chaque fichier F ∈ F dans son intégralité. En pratique, S stocke une version
vérifiable F̂ du fichier F de sorte que S puisse produire des preuves montrant que F
est correctement stocké.

Le Vérificateur V : Pour le compte du propriétaire O de la donnée externalisé, le vérifica-
teur V interagit avec S pour vérifier si S stocke le fichier F ∈ F . Ce rôle peut être joué
par O lui-même ou par n’importe quelle entité habilitée.

Sans perte de généralité, nous supposons que chaque fichier F ∈ F est composé de n
sections {S1, S2, ..., Sn} de tailles égales (L bits). Chacune de ces sections Si se compose de

208 Résumé Français

m blocs {bi1, bi2, ..., bim} de l bits. Le protocole de Preuves de Stockage est défini par cinq
algorithmes répartis en trois phases:

Definition 22 (Protocole de Preuves de Stockage). Nous donnons ici la définition
d’un tel protocole :

I Configuration. Cette phase implique le propriétaire des données O. Il exécute
l’algorithme KeyGen qui génère les clés requises pour le déroulement du protocole
puis O invoque l’algorithme Encode qui prépare une version vérifiable F̂ d’un fichier
F ∈ F :

BKeyGen(1κ)→ K: Cet algorithme probabiliste de génération de clés prend en entrée
le paramètre de sécurité 1κ et renvoie en sortie une clé secrète K ∈ {0, 1}∗.

BEncode(K,F)→ (fid, F̂): Cet algorithme prend pour paramètres la clé K et le
fichier F = {S1, S2, ..., Sn} et retourne le fichier vérifiable F̂ = {Ŝ1, Ŝ2, ..., Ŝn}
et l’unique identifiant fid de F .

À la fin de la phase de configuration, le serveur S est censé stocker le fichier F̂ avec
son identifiant fid, tandis que le propriétaire de la donnée O supprime F de son
stockage local et ne conserve que la clé générée par KeyGen.

I Challenge. La phase Challenge consiste en plusieurs interactions entre le vérificateur V
et le server S . En substance, V exécute l’algorithme Challenge qui génère des requêtes
envoyées à S pour des preuves de stockage, afin de vérifier l’intégrité du fichier F .
En retour, le serveur invoque l’algorithme ProofGen qui répond aux requêtes envoyées
par V en produisant les preuves demandées.

BChallenge(K, fid)→ chal: Cet algorithme probabiliste génère une requête chal pour
le fichier F dont l’identifiant correspond à fid. L’algorithme prend en entrée la
clé secrète K et l’identifiant fid, et retourne la requête chal.

BProofGen(fid, chal)→ P: Cet algorithme est invoqué par le serveur S pour générer
la preuve de stockage P pour le fichier ciblé F̂ dont l’identifiant est fid.

La preuve produite P est ensuite envoyée au verificateur V pour vérification.

I Vérification. Après avoir reçu les preuves de stockage pour le fichier F , V exécute
l’algorithme Verify pour vérifier leur validité.

BVerify(K, fid, chal,P)→ b ∈ {0, 1}: Cet algorithme décide si P est une réponse
valide à la requête chal. Il prend en paramètre la clé K, l’identifiant fid, la
requête chal et la preuve P. L’algorithme retourne le bit b = 1 si la preuve P est
valide, b = 0 autrement.

Les protocoles de preuves de stockage doivent satisfaire les exigences suivantes :

La sécurité : Le protocole doit être robuste, même en cas d’un cloud malveillant, qui clam-
erait à tort qu’il stocke la donnée intacte.

Un nombre illimité de vérifications : Les données doivent être vérifiables autant de fois
qu’elles sont confiées au cloud .

L’efficacité : Quatre indicateurs permettent de mesurer l’efficacité du protocole : (i) la
consomnation de bande passante, (ii) la complexité de calcul de l’algorithme Verify,
(iii) la complexité de calcul de l’algorithme ProofGen, et (iv) la quantité de stockage
requis chez le propriétaire de la donnée.

2. Preuves de Récupérabilité : StealthGuard 209

En complément de ces exigences, un protocole de preuves de stockage peut présenter certaines
propriétés intéressantes :

Extractabilité : Certains protocoles permettent de récupérer la donnée en plus de vérifier
son intégrité. Ce sont les protocoles de preuves de récupérabilité.

1.2 État de l’art

De nombreux protocoles de preuves de stockage ont été identifiés et analysés dans l’état de
l’art. Il existe deux grands types protocoles de preuves de stockage : les protocoles de pos-
session de données prouvables (Provable Data Possession (PDP)) et les protocoles de preuves
de récupérabilité (Proofs of Retrievability (POR)). Les PDP ne satisfont pas la propriété
d’extractabilité : les propriétaires de données n’obtiennent l’assurance que seulement une
partie de leurs données est intacte chez le cloud . Ces protocoles ont été conçus pour la pre-
mière fois par Ateniese et al. [14]. Les protocoles de POR en revanche permettent d’assurer
que la donnée peut être récupérée dans son intégralité. En particulier, les protocoles de POR
emploient des codes correcteurs d’erreurs (ECC) qui permettent de corriger des erreurs dans
la donnée.

En nous basant sur l’analyse de l’état de l’art, nous proposons StealthGuard, un nouveau
protocole de preuves de récupérabilité.

2 Preuves de Récupérabilité : StealthGuard

Dans ce chapitre nous présentonsStealthGuard, un nouveau protocole de preuves de récupéra-
bilité qui combine l’utilisation d’un algorithme de recherche de mots préservant la vie privée
(PPWS) et l’insertion dans les données à externaliser de courtes séquences de bits générées
aléatoirements et appelées chiens de garde. Notre protocole poursuit une idée déjà proposée
par Juels and Kaliski [107] reposant sur l’insertion à des positions aléatoires dans la donnée à
externaliser de blocs aléatoires particuliers appelés chiens de garde. Les preuves de récupéra-
bilité consistent alors à vérifier que certains de ces blocs sont toujours intacts dans les données
externalisées. Nous considérons la notion de récupérabilité comme étant une combinaison des
concepts d’intégrité et de disponibilité des données. Les preuves de récupérabilité (POR)
sont un cas spécial des preuves de stockages et donc héritent des propriétés précedemment
énoncées.

2.1 Modèle de sécurité

Un protocole de POR doit être complet et robuste. L’exigence de complétude signifie que le
protocole ne produit aucun faux négatif, c’est-à-dire qu’un vérificateur accepte toujours une
preuve construite par un serveur honnête. La robustesse caractérise le fait qu’il est impossible
pour un serveur malveillant de faire accepter par un vérificateur des preuves de récupérabilité
contrefaites.

2.2 Aperçu du protocole

En substance, lors de la phase de configuration, pour préparer une version vérifiable F̂ d’un
fichier F , le propriétaire de ce fichier O exécute l’algorithme Encode qui chiffre le fichier et
y insère les chiens de garde générés pseudo-aléatoirement. Le chiffrement garantit que les
blocs de données et les blocs de chiens de garde sont indifférentiables. Par ailleurs, Encode
applique un code correcteur d’erreur sur le fichier pour rendre possible la récupération du
fichier corrompu par de “petites” erreurs. Une fois que la donnée est confiée au serveur S ,
le vérificateur V qui souhaite vérifier la récupérabilité du fichier F interagit avec S dans la
phase de challenge. V exécute l’algoritme Challenge qui génère des requêtes pour plusieurs
chiens de garde, afin de vérifier qu’ils sont toujours intacts dans le fichier F stocké chez

210 Résumé Français

le serveur S . En réponse, celui-ci invoque l’algorithme ProofGen qui traite ces requêtes et
produit les preuves pour les chiens de garde ciblés. Si une partie du fichier est altérée, alors
ces altérations affecteront aussi les chiens de garde avec une grande probabilité.

Notre solution diffère de celle proposée par Juels and Kaliski [107] dans le génération de la
preuve avec l’algorithme ProofGen. Dans l’article [107], le vérificateur V choisit un ensemble
de chiens de garde et envoie leurs positions supposées au serveur S qui retourne les blocs
correspondant à ces positions. Ensuite, V vérifie que les blocs reçus sont bien les chiens de
garde demandés. Cette solution présentée dans [107] ne permet cependant pas un nombre
illimité de vérifications car en révélant la position des chiens de garde au serveur, ces chiens de
garde ne peuvent plus être utilisés pour des vérifications futures. Donc le serveur ne pourrait
garder que les blocs correspondant aux chiens de garde, supprimer les blocs de données et
produire des preuves de récupérabilité correctes alors même que le serveur ne stocke pas la
donnée dans son intégralité.

Pour faire face à ce problème, notre protocole StealthGuard utilise un algorithme de
recherche de mot préservant la vie pricée en combinaison des chiens de garde. Ce type
d’algorithme permet de garantir que le serveur ne découvrira pas quels chiens de garde sont
ciblés par des requêtes de recherche. Par conséquent, V peut envoyer un nombre illimité de
requêtes, même pour le même chien de garde, sans le besoin de mettre à jour les chiens de
garde déjà consommés. De plus, les résultats de la recherche sont illisibles par le serveur qui ne
pourra donc pas savoir si le chien de garde a bien été récupéré ou non. En conséquence, le seul
moyen pour le serveur de convaincre V de la récupérabilité du fichier F est de retourner des
résultats de recherche valides, c’est-à-dire en stockant F dans son intégralité et en exécutant
la recherche correctement.

2.3 Détails du protocole

Comme tout protocole de preuves de stockage, StealthGuard se divise en trois phases :
configuration, challenge et vérification. Nous donnons dans les lignes qui suivent les détails
des opérations effectuées dans chacune des phases.

2.3.1 Configuration

Cette phase prépare une version vérifiable F̂ du fichier F à confier au cloud . Nous invitons
le lecteur à se reporter à la Figure 7.13.

KeyGen : Le propriétaire du fichier O exécute cet algorithme pour générer plusieurs clés : un
clé principale K et n + 3 clés dérivant de K, à savoir Kenc, Kwdog, KpermF et n clés
KpermSi .

Encode : Le proprétaire du fichier O exécute cet algorithme pour générer d’abord un unique
identifiant fid pour le fichier F . Puis, Encode segmente F en n sections {S1, S2, ..., Sn},
où chaque section est divisée en m blocs {bi1, bi2, ..., bim}. Ensuite, l’algorithme Encode
traite le fichier F en plusieurs opérations : (i) l’application d’un code correcteur d’erreurs
sur chaque section; (ii) une permutation appliquée à l’ensemble des blocs du fichier, blocs
de parité inclus; (iii) le chiffrement de chaque bloc de fichier en utilisant un chiffrement
sûr sémantiquement afin de rendre les blocs de données et les chiens de garde indifféren-
tiables; (iv) la création des chiens de garde de façon pseudo-aléatoire; (v) l’insertion de
ces chiens de garde frâıchement créés dans des positions choisies pseudo-aléatoirement
dans le fichier F .

2.3.2 Challenge

Une fois que le fichier vérifiable F̂ est confié au cloud , V souhaite vérifier sa récupérabilité.
Pour ce faire, V crée des requêtes de recherche pour un certain nombre de chiens de garde

2. Preuves de Récupérabilité : StealthGuard 211

 𝑺𝟏 𝑺𝟐 … 𝑺𝒏

…

…

𝒘𝟏𝟏 𝒘𝟏𝐯 𝒘𝟐𝟐 𝒘𝟐𝟐 … 𝒘𝒊𝒊 𝒘𝐢𝐢 𝒘𝒏𝒏 𝒘𝐧𝐧

𝑺�𝟏 𝒘𝟏𝐯 𝒘𝟏𝟏 𝑺�𝟐 𝒘𝟐𝟐 𝒘𝟐𝟐 … 𝒘𝒊𝒊 𝒘𝐢𝐢 𝑺�𝒏 𝒘𝐧𝐧 𝒘𝒏𝒏

 𝑺�𝟏 𝑺�𝟐 … 𝑺�𝒏

Split-level ECC

File-level permutation Π𝑭

Encryption 𝑬(𝑲𝒆𝒆𝒆,𝑺�𝒊)

Watchdog creation and insertion

Split-level permutation Π𝑺

𝐹 =

𝐹� =

𝑚 blocks

𝑑 − 1

𝐶 𝑣 watchdogs

𝐹 �=

𝑚

Figure 7.13: Configuration de StealthGuard

sélectionnés aléatoirement. Grâce à un algorithme de recherche privée, le serveur S traite ces
requêtes sans savoir quels chiens de garde il doit rechercher ni où ceux-ci sont localisés dans le
fichier. Notre algorithme de recherche, WDSearch, s’inspire d’un algorithme existant appelé
Prism [37], lui-même basé sur un mécanisme cryptographique d’extraction privée (PIR).

Avant de décrire comment V crée une requête de recherche pour un chien de garde, voyons
d’abord comment S traite cette requête. S exécute l’algorithme ProofGen. Cet algorithme
crée pour chaque requête reçue un nombre q d’index de recherche correspondant à q matrices
dont le nombre d’éléments est égal au nombre de blocs contenus dans une section Si du fichier
F̂ . Chacune de ces matrices de recherche est remplie avec des bits témoingant de la présence
des blocs dans la section ciblée par la requête : une position (donc un bit) dans chaque matrice
correspond à un bloc dans la section. Ce bit est calculé à l’aide d’une fonction de hachage
prenant en entrée le bloc correspond à la positoin courante et un nonce cryptographique. Le
nombre q correspond au nombre q de bits requis pour la sécurité du protocole.

En se basant sur la requête de recherche générée par l’algorithme Challenge exécuté par
V , ProofGen récupére de maniére privée la valeur des bits à la position correspondant au
chien de garde recherché. Cette opération s’appuie sur l’algorithme d’extraction privée sous-
jacent notre algorithme de recherche privée. En conséquence, l’algorithme Challenge crée une
requête de recherche privée qui traduit, de façon chiffrée, le fait que le serveur doit récupérer
les bits correspondant à la position du chien de garde ciblé par la requête. Finalement, la
preuve de récupérabilité comprend les q bits-témoins correspondant au chien de garde.

2.3.3 Vérification

Une fois que V reçoit de la part de S la preuve de récupérabilité, la phase de vérification
permet vérifier que ladite preuve est valide. Cette opération consiste à vérifier que les bits
retournés par S sont ceux attendus par V .

2.4 Analyse de sécurité

Nous prouvons dans l’analyse de sécurité que notre protocole StealthGuard est complet et
robuste. En particulier, dans le cas de la robustesse de notre solution, nous montrons que
le vérificateur doit créer un nombre γ de requêtes de recherche de chiens de garde afin de
pouvoir décider de la récupérabilité du fichier confié au cloud avec une probabilité proche de

212 Résumé Français

1. Ce nombre γ dépend de plusieurs facteurs parmi lesquels : le paramètre de sécurité de
notre schéma, le taux de correction du code correcteur d’erreur ainsi que le nombre de blocs
contenus dans chaque section du fichier externalisé.

3 Calcul Vérifiable

L’avènement de l’informatique nuagique offre aux particuliers et aux entreprises un paradigme
non seulement pour externaliser le stockage de leurs données potentiellement considérables
mais aussi l’exécution d’opérations très demandeuses en puissance de calcul.

Cependant, externaliser ces opérations peut compromettre leur confidentialité et intégrité,
ce qui peut dissuader finalement l’adoption des technologies du cloud . En effet, comme
mentionné plus hat, le cloud n’est pas digne de confiance. Un des problémes rencontrés est
l’intégrité des calculs externalisés. En particulier, nous consdérons le scénario suivant : un
utilisateur souhaite déléguer au cloud l’exécution d’une operation f de telle sorte que cet
utilisateur peut soumettre des valeurs d’entrée x et recevoir du cloud le résultat y = f(x).
Le problème soulevé dans ce scénario est le suivant : comment l’utilisateur peut-il être sûr
que y correspond de façon légitime à l’exécution de f avec l’entrée x ? En d’autres termes, le
cloud doit non seulement exécuter correctement la fonction demandée mais aussi convaincre
lútilisateur que le résultat est correct. Le défi pour répondre à cette problématique réside
dans le fait que lútilisateur cède la fonction f au cloud . Donc la solution hypothétique
selon laquelle l’utilisateur recalcule y∗ = f(x) et ensuite compare y∗ = y ne peut pas être
considérée. Par ailleurs, cette solution triviale ne serait pas efficace car recalculer y∗ serait
aussi coûteux que calculer y, ce qui annule l’intêret d’externaliser la fonction f au départ.
Pour faire face à ces défis, nous allons concevoir des protocoles pour le calcul vérifiable
dans lesquels le cloud peut convaincre un utilisateur de l’exactitude des calculs de telle sorte
qu’il est toujours plus profitable pour l’utilisateur de déléguer la fonction au cloud plutôt
que de la calculer chez lui. Gennaro et al. [90] a formalisé le concept de calcul vérifiable,
où l’utilisateur délègue l’exécution d’une fonction au cloud et reçoit le résultat accompagné
d’une preuve cryptographique assurant l’exécution correcte de l’opération demandée.

Un protocole de calcul vérifiable doit répondre à plusieurs exigences :

Efficacité : Pour ne pas annuler le bénéfice d’externaliser une fonction au cloud , le coût
pour l’utilisateur de soumettre une valeur d’entrée et de vérifier la preuve de calcul
doit être nettement moindre que celui d’exécuter la fonction localement. De plus,
les protocoles de calcul vérifiable adoptent un modèle d’amortissement qui autorise
l’utilisateur à exécuter une phase de configuration, coûteuse mais unique, préparant la
fonction avant son externalisation. Cette phase de configuration est ensuite amortie
avec un nombre illimité de vérifications de résultats rapides.

Sécurité : Les preuves de calcul doivent satisfaire deux propriétés classiques en cryptogra-
phie : l’exactitude (un serveur honnête ne peut pas être accusé d’avoir mal exécuté la
fonction) et la robustesse (si le serveur dévie d’une correcte exécution de la fonction ex-
ternalisée alors il ne pourra pas créer des preuves factices qu’un vérificateur acceptera).

Autres propriétés : Dans certaines applications où des données publiques sont impliquées,
un protocol de calcul vérifiable peut présenter les propriétés de délégation publique
(n’importe qui peut soumettre une valeur d’entrée qu cloud pour la fonction external-
isée) et de vérification publique (n’importe qui peut vérifier un résultat retourné par le
cloud).

3.1 Définition d’un protocole de calcul vérifiable public

Quatre acteurs sont impliqués dans ce type de protocole :

3. Calcul Vérifiable 213

Le propriétaire O : O externalise l’exécution d’une fonction f appartenant à une famille de
fonctions F à un serveur cloud nommé S . O produit une clé d’évaluation EKf utilisée
par S pour réponde à n’importe quelle requête de calcul sur f. De plus, O peut déléguer
à n’importe qui la capacité de soumettre une valeur d’entrée et de vérifier le calcul : il
publie une clé publique PKf qui permet de créer des requêtes de calcul pour la fonction
f.

Le serveur S : S est censé exécuter la fonction f sur une valeur d’entrée x et produire une
preuve que la valeur de sortie f(x) est correcte.

Le requêteur Q : Ayant accès la clé publique PKf, l’utilisateur Q sollicite S pour exécuter
la fonction f sur l’entrée x du domaine Df de f. Q souhaite obtenir de S l’assurance que
le résultat retouné est correct. Par conséquent, Q génère une clé publique de vérification
VKx associée à l’entrée x.

Le vérificateur V : Par le truchement de la clé publique de vérification VKx, V vérifie que
le résultat f(x) retourné par S est correct.

Étant données les parties impliquées dans un protocole de calcul vérifiable public, nous
donnons ici la définition formelle d’un tel protocole.

Definition 23 (Protocole de calcul vérifiable public). Ce protocole comprend quatre
algorithmes en temps polynomial distribués en trois phases :

I Configuration. Cette phase inclut O uniquement. Il exécute l’algorithme Setup pour
produire les clés nécessaires au protocole et préparer la fonction f avant son external-
isation :

BSetup(1κ, f)→ (param,PKf,EKf): Il s’agit d’un algorithme aléatoire exécuté par O.
Il prend en entrée le paramètre de sécurité 1κ et une description de la fonction
f à externaliser, et renvoie en sortie une liste de paramètres publics param, une
clé publique PKf, et une clé d’exécution EKf.

I Calcul. La phase de calcul comprend deux étapes. Q exécute l’algorithme ProbGen qui
prépare la valeur d’entrée x soumise à S . En retour, le serveur invoque l’algorithme
Compute qui exécute le fonction f sur l’entrée x et génère la preuve de calcul.

BProbGen(x,PKf)→ (σx,VKx) : Étant donné x du domaine Df de la fonction f et la
clé publique PKf, Q appelle cet algorithme pour produire un codage σx de l’entrée
x qui sera transmis à S , et une clé publique de vérification VKx qui sera ensuite
utilisée par le vérificateur V pour vérifier l’exactitude du résultat.

BCompute(σx,EKf)→ σy : Ayant reçu σx et étant donné la clé d’exécution EKf, le
serveur S invoque cet algorithme pour calculer un codage σy du résultat y = f(x).

I Vérification. Après avoir reçu le résultat et la preuve de calcul de la part de S , V
exécute l’algorithme Verify pour vérifier leur validité.

BVerify(σy,VKx)→ outy: V utilise cet algorithme pour vérifier l’exactitude du résul-
tat σy fourni par S . Plus précisément, cet algorithme décode σy, ce qui permet
d’obtenir la valeur y, et ensuite il utilise la clé publique de vérification VKx as-
sociée à σx pour décider si y est égal au résultat attendu f(x). Si c’est le cas,
Verify retourne outy = y signifiant que f(x) = y; autrement l’algorithme retourne
une erreur outy =⊥.

214 Résumé Français

Pour qu’un tel protocole soit viable, il doit être efficace, c’est-à-dire que, étant donné
PKf et pour n’importe quelle entrée x et n’importe quel σx, le temps mis pour exécuter
ProbGen(x,PKf) plus le temps mis pour exécuter Verify(σy,VKx) (où VKx est généré par
ProbGen) est o(T), où T est le temps requis pout calculer f(x).

3.2 État de l’art

Nous avons analysé l’état de l’art en matière de vérification de calcul externalisé. Il existe un
multitude de solutions traitant de ce problème, que nous avons catégorisées ainsi :

Les solutions pour des fonctions arbitraires : Ces solutions sont elles-mêmes classées
selon si le protocole sous-jacent est interactif ou non. Elles ne font pas ou peu d’hypothèses
sur la fonction à externaliser.

Protocoles interactifs : En plus d’être interactives, ces solutions sont probabilistes
du fait que le vérificateur n’est convaincu de l’exactitude du calcul qu’avec une cer-
taine probabilité. Parmi ces solutions, nous pouvons citer les preuves Muggle [98],
où la fonction est traduite en circuit booléen avant son envoi au cloud . Le vérifica-
teur et le serveur entre en interaction de plusieurs tours pour vérifier l’exactitude
du calcul. Nous pouvons également citer les preuves vérifiables en probabilité PCP
[10]. La preuve est codée de telle manière que le vérificateur peut la vérifier en
accédant qu’un nombre constant de bits de la preuve. Les arguments efficaces pro-
posés par Kilian [110, 111] combinent les PCP avec des moyens cryptographiques
afin d’en assurer la robustesse.

Protocoles non-interactifs : Contrairement aux protocoles interactifs, ces solutions
ne nécessitent pas plusieurs tours d’interaction entre le vérificateur et le serveur.
Parmi ces solutions, nous pouvons mentionner les preuves robustes en calcul CS
[126] qui combinent l’idée derrière les PCP avec l’heuristique de Fiat et Shamir [83],
ainsi que les SNARKs qui poursuivent l’idée des preuves CS. Le protocole bap-
tisé Pinocchio [144] combine un outil cryptographique appelé QAP avec un circuit
arithmétique représentant la fonction à externaliser. Gennaro et al. [90] utilise des
circuits Booléens, combinés à un chiffrement totalement homomorphique (FHE).

Les solutions pour des fonctions spécifiques : Plusieurs solutions de l’état de l’art ne
considèrent qu’un certain type de fonctions. En effet, ces protocoles exploitent les pro-
priétés particulières de ces fonctions pour permettre une délégation et une vérification
efficace. Ces fonctions sont : l’évaluation de polynômes [30, 85, 193, 141], la multipli-
cation matricielle [85, 195, 193], les opérations sur les ensembles [52, 140] ainsi que la
recherche de mots-clé [30, 198]. L’attention portée à ces types de fonctions est due au
fait qu’elles sont souvent utilisées comme opérations fondamentales pour des fonctions
plus complexes comme l’exploration de données (data mining) ou le traitement d’image.

De cette analyse de l’état de l’art, nous avons porté notre attention sur les solutions pour
des fonctions spécifiques et nous proposons trois protocoles pour les opérations suivantes :
l’évaluation de polynomes, la multiplication matricielle et la recherche de mots-clés. Nos
solutions sont publiquement délégables et vérifiables.

4 Évaluation de polynômes vérifiable publiquement

Dans le cas de l’évaluation de polynôme, le modèle de protocole de calcul vérifiable public se
traduit ainsi : le propriétaire O souhaite déléguer un polynôme A de degré d pouvant être
très grand et contacte le serveur S pour calculer y = A(x).

La solution que nous proposons s’appuie sur les propriétés de la division euclidienne des
polynômes : pour n’importe quelle paire de polynômes A et B 6= 0 de degré respectif d et 2, il

5. Multiplication matricielle vérifiable publiquement 215

existe une unique paire de polynômes Q et R telle que A = BQ+R et le degré du polynôme
quotient est d− 2 alors que le polynôme reste est de degré inférieur à 1.

Par conséquent, O qui souhaite externaliser l’évaluation du polynôme A de degré d exécute
d’abord l’algorithme Setup qui définit un polynôme B(X) = X2 + b0 pour un b0 choisi

aléatoirement, puis divise A par B pour obtenir le polynôme quotient Q(X) =
d−2∑
i=0

qiX
i et le

polynôme reste R(X) = r1X + r0. Ensuite, O confie les polynômes A et Q à S et publie la
clé publique PKA = (gb0 , gr1 , gr0).

Plus tard, quand un utilisateur Q souhaite évaluer le polynôme A à un certain point
x, celui-ci exécute l’algorithme ProbGen qui calcule et publie la clé publique de vérification
VKx = (VKx,B,VKx,R) = (gB(x), gR(x)), puis transmet σx = x à S . Ce dernier invoque
l’algorithme Compute qui calcule y = A(x) et génère la preuve π = Q(x). Après réception
de la réponse σy = (y, π) de la part de S , un vérificateur V exécute l’algorithme Verify qui
vérifie si gy = (gB(x))πgR(x).

L’efficacité de la vérification découle du fait que B et R ont un degré petit. En effet, pour
vérifier l’exactitude d’un résultat σy, V effectue un nombre faible et constant d’opérations,
contrairement aux O(d) operations pour évaluer le polynôme A.

La robustesse de ce protocole s’appuie sur la confidentialtié des polynômes B et R. Cepen-
dant, puisque B est de degré 2, la confidentialité de ces deux polynômes peut être facile-
ment menacée en divulguant le polynôme quotient Q. Pour remédier à cet inconvénient,
l’algorithme Setup code le polynôme Q en utilisant un codage homomorphe pour l’addition à
sens unique. Plus précisément, chaque coefficient qi du polynôme Q est codé selon hqi . Par
conséquent, EKA comprend tous ces hqi . De cette manière, l’algorithme Compute génère la
preuve π = hQ(x) tout en préservant la confidentialité des polynômes B et R.

Pour finir, nous nous servons des opérateurs de couplage bilinéaires pour permettre à V
de vérifier l’exactitude du résultat retourné par S . Autrement dit, l’algorithme Verify vérifie
que e(g, hy) = e(VKx,B, π)e(g,VKx,R). En conséquence, notre protocole est robuste sous
l’hypothèse bd/2c-forte de Diffie-Hellman (bd/2c-SDH) précisée ci-dessous.

Hypothèse D-SDH

Soient G1, G2 et GT trois groupes cycliques du même ordre premier p tels qu’il existe un
opérateur de couplage bilinéaire e : G1 ×G2 → GT .

L’hypothèse D-forte de Diffie-Hellman (D-SDH) est valable, si étant donné le tuple

(g, gα, h, hα, ..., hα
D

) ∈ G2
1 × GD+1

2 pour un α ∈ F∗p choisi aléatoirement, la probabilité de

générer une paire (β, h1/(β+α)) ∈ Fp\{−α} ×G2 est negligeable.

5 Multiplication matricielle vérifiable publiquement

Dans le cas de la multiplication matricielle, le modèle de protocole de calcul vérifiable public
se traduit ainsi : le propriétaire O souhaite déléguer une matrice M de taille (n,m) (pouvant
être très grande) et contacte le serveur S pour calculer ~y = M~x.

Comme dans l’article publié par Fiore and Gennaro [85], notre protocole de multiplication
matricielle vérifiable publiquement poursuit l’idée suivante. Dans le but de vérifier que le
serveur S multiplie correctement une matrice M de taille (n,m) à éléments Mij avec un
vecteur colonne ~x = (x1, x2, ..., xm)ᵀ, O invoque l’algorithme Setup qui choisit aléatoirement
une matrice secrète R de taille (n,m) à éléments Rij et fournit à S la matrice M et une
matrice auxiliaire N de taille (n,m) telle que Nij = g̃MijgRij (où g̃ = gδ pour un δ généré
aléatoirement).

Par conséquent, quand un utilisateur Q fait appel à l’algorithme ProbGen pour solliciter S
à multiplier la matriceM avec un vecteur ~x de son choix, celui-ci exécute l’algorithme Compute
qui retourne le vecteur ~y = (y1, y2, ..., yn)ᵀ et la preuve de calcul ~π = (π1, π2, ..., πn)ᵀ, de telle

216 Résumé Français

sorte que πi = g̃yig
∑m
j=1Rijxj , si S est honnête. Si on pose πi = gγi et ~γ = (γ1, γ2, ..., γn)ᵀ,

alors le processus de vérification consiste à vérifier si ~γ = δ~y +R~x.
Pour transformer cette intuition en une solution pratique, on doit assurer que le processus

de vérification est beaucoup moins coûteux que la multiplication M~x pour n’importe quel
vectuer ~x. Pour ce faire, nous observons que pour n’importe quel vecteur ~λ = (λ1, λ2, ..., λn),
vérifier que ~λ~γ = δ~λ~y+~λ(R~x) (c’est-à-dire que la projection de l’équation de vérification sur un
vecteur ~λ aléatoire) ne requiert que O(n) de temps si le vecteur ~λR est calculé préalablement.
Donc, nous définissons la clé publique comme un codage à l’exposant de ~λR et la clé publique
de vérification associée au vecteur ~x comme un codage à l’exposant de (~λR)~x.

Plus conrètement, l’algorithme Setup génère les éléments de la matrice auxiliaire N selon

Nij = g̃
Mij

i g
Rij
i avec gi = gλi , et la clé publique PKM est un vecteur à m composantes

PKj = e(
n∏
i=1

g
Rij
i , h). L’algorithme ProbGen calcule la clé de vérification pour le vecteur ~x selon

VKx =
m∏
j=1

PK
xj
j . L’algorithme Compute génère la preuve de calcul en calculant π =

n∏
i=1

m∏
j=1

N
xj
ij

et l’algorithme Verify vérifie que e(π, h) = e(
∏n
i=1 g

yi
i , h̃)VKx. Par conséquent, l’algorithme

ProbGen combiné à l’algorithme Verify ne requiert que O(n + m) opérations, contrairement
aux O(nm) opérations nécessaires pour calculer la multiplication M~x.

La solution que nous proposons dans cette thèse est vérifiable et déléguable publiquement.
Elle est aussi robuste sous l’hypothèse de Diffie-Hellman co-calculatoire (co-CDH).

Hypothèse co-CDH

Soient G1, G2 et GT trois groupes cycliques du même ordre premier p tels qu’il existe un
opérateur de couplage bilinéaire e : G1 ×G2 → GT .

L’hypothèse de Diffie-Hellman co-calculatoire (co-CDH) est valable sur G1, si étant
donné g, gα ∈ G1 et h, hβ ∈ G2 pour α, β ∈ F∗p, la probabilité de calculer gαβ est négligeable.

6 Recherche de conjonction de mots-clés vérifiable publique-
ment

Dans le cas de la recherche de conjonction de mots-clés, le modèle de protocole de calcul véri-
fiable public se traduit ainsi : le propriétaire O souhaite déléguer un ensemble de fichiers F et
contacte le serveur S pour chercher dans F une conjonction de mots-clés W = {ω1, ω2, ..., ωk}.
La figure 7.14 donne un aperçu de notre protocole.

Notre protocole s’appuie sur l’outil cryptographique appelé accumulateur à base de poly-
nômes [132]. Par définition, cet outil permet de représenter un ensemble sous la forme d’un
polynôme unique de telle sorte que les racines du polynôme sont exactement les éléments de
cet ensemble. Plus formellement, soit un ensemble S = {h1, ..., hn} d’éléments dans Fp. Cet
ensemble peut être codé sous la forme d’un unique polynôme PS(X) =

∏
hi∈S (X − hi). Soit

g un générateur quelconque d’un groupe bilinéaire G d’ordre premier p. Étant donné le tuple
(g, gα, gα

2
, ..., gα

D
), où α est choisi aléatoirement dans F∗p et D ≥ n, Nguyen [132] définit

l’accumulateur public des éléments dans S : Acc(S) = gPS(α) ∈ G. Les accumulateurs à base
de polynômes rendent par ailleurs possible un test vérifiable d’appartenance, qui peut être
adapté au problème de recherche vérifiable de mots-clés.

Une approche näıve pour adapter les accumulateurs au problème de recherche serait de
représenter les mots-clés de chaque fichier contenu dans F avec un unique accumulateur pour
chaque fichier. Pour vérifier qu’un mot est présent dans un fichier de F , l’utilisateur Q
envoie d’abord une requête de recherche au serveur S , à partir de laquelle ce dernier génère
une preuve d’appartenance si ce mot-clé existe dans le fichier en question, ou une preuve
de non-appartenance sinon. Cependant, cette solution n’est pas efficace. Étant données les
propriétés des accumulateurs à base de polynômes, la complexité de la recherche dans un

6. Recherche de conjonction de mots-clés vérifiable publiquement 217

Figure 7.14: Aperçu de notre protocole pour la recherche de conjonction de mots-clés vérifiable

seul fichier serait linéaire par rapport au nombre de mots-clés présents dans ce fichier. Par
ailleurs, pour identifier quels fichiers contiennent le mot-clé recherché, Q doit chercher chaque
fichier de F un par un.

Pour éviter cet inconvénient, notre solution combine les accumulateurs avec un arbre de
Merkle [125] pour construire un index authentifié des mots-clés contenus dans l’ensemble F ,
de telle sorte que la recherche côté serveur s’exécute en temps logarithmique. Plus spécifique-
ment, le propriétaire des fichiers O invoque l’algorithme Setup qui organise les mots-clés en un
index de recherche I (comme une table de hachage), où chaque entrée correspond à une bôıte
contenant au plus d mots-clés. Pour construire un index I de façon efficace, notre protocole
utilise le hashage Coucou introduit par Pagh and Rodler [137], et qui garantit une recherche
en temps constant et un minimum de capacité de stockage. Ensuite, O authentifie l’index I
comme suit : (i) pour chaque bôıte de l’index, il calcule un accumulateur des mots-clés qui
sont référencés dans cette bôıte; (ii) et il construit un arbre de Merkle TW qui authentifie
ces accumulateurs. Les fichiers de F ainsi que l’index I et l’arbre TW sont ensuite confiés au
serveur S .

Quand S reçoit un requête de recherche pour un mot-clé ω, il exécute l’algorithme
Search (i.e. l’algorithme Compute pour la recherche), il localise la bôıte correspondant à
ω dans l’index de recherche I, calcule l’accumulateur correspondant, génère une preuve
d’appartenance (ou non-appartenance) et authentifie l’accumulateur en utilisant l’arbre de
Merkle TW. Par ailleurs, n’importe qui possédant la racine de l’arbre TW peut exécuter
l’algorithme Verify permettant de vérifier le résultat de la recherche retournée par S .

Cependant, la solution esquissée ci-dessus ne permet toujours pas d’identifier les fichiers
qui contiennent le mot-clé ω et ni de répondre au problème des requêtes avec des conjonctions
de mots-clés. Donc l’algorithme Setup construit un autre arbre de Merkle TF où chaque feuille
représente un seul mot-clé et est associée à l’accumulateur du sous-ensemble de fichiers qui
contiennent ce mot. O confie alors les fichiers F , l’index I et les deux arbres TW et TF
au serveur S . Étant donnée la racine de l’arbre TF, V va pouvoir identifier quels sous-
ensembles de fichiers contiennent le mot recherché. De plus, puisque les accumulateurs à
base de polynômes permettent de calculer l’intersection d’ensemble de manière vérifiable et

218 Résumé Français

efficace, l’utilisateur Q va pouvoir envoyer des requêtes sur une conjonction de mots-clés sur
les fichiers F .

Notre solution est robuste sous deux hypotèses : l’hypothèse D-forte de Diffie-Hellman
déjà énoncée dans le cas des polynômes et l’hypothèse D-forte de Diffie-Hellman bilinéaire
(D-SBDH) qui se formule ainsi :

Hypothèse D-SDH

Soient G et GT deux groupes cycliques du même ordre premier p tels qu’il existe un opérateur
de couplage bilinéaire e : G1 ×G1 → GT . Soit g un générateur de G.

L’hypothèse D-forte de Diffie-Hellman bilinéaire (D-SBDH) est valable, si étant

donné le tuple (g, gα, ..., gα
D

) ∈ GD+1 pour un α ∈ F∗p choisi aléatoirement, la probabilité de

générer une paire (x, e(g, g)1/(x+α)) ∈ Fp\{−α} ×G est negligeable.

7 Langage de Politiques d’Imputabilié

Alors que les protocoles présentés précédemment traitaient d’outils cryptographiques destinés
à vérifier qu’un serveur de cloud effectue les opérations demandées, notre travail sur le lan-
gage de politiques permet d’étendre le concept de vérifiabilité à celui d’imputabilité. Nous
condirérons l’imputabilité comme étant une notion qui permet de définir la gouvernance des
données au sein de laquelle les entreprises, à qui sont confiées des données personnelles et
sensibles, sont tenues responsables pour stocker, traiter et partager les données selon des obli-
gations contractuelles et règlementaires. L’organisme, sous cette définition de l’imputabilité,
doit implémenter des actions adéquates et prendre en compte des mesures de restauration
dans les cas où cet organisme échoue à agir convenablement [146]. Les obligations proviennent
de plusieurs sources, notamment le Règlement Général sur la Protection des données [80].
Elles permettent de clarifier les relations liées à l’imputabilité dans le cloud , c’est-à-dire qui
est responsable de quoi et envers qui. Donc définir des politiques appropriées représentant
les obligations liées à l’imputabilité est une exigence fondamentale pour des mecanismes de
contrôle dans le sens où les politiques réduisents les risques, à condition que leurs mises en
application et la vérification de leur conformité soient rendues possibles.

Nous étudions alors la conception d’un langage de politiques qui permet d’exprimer les
obligations d’imputabilité. L’objectif de notre travail est d’analyser comment et dans quelle
mesure nous pouvons transmettre des obligations via un langage expressif et déclaratif, de
telle sorte que ces politiques soient faciles à écrire, à gérer, à mettre en œuvre et à valider.
Nous nous intéressons alors à des politiques interpretables par la machine. Nous proposons
donc A-PPL, un nouveau langage de politique basé sur un langage existant PPL, lui-même
basé sur un langage devenu standard, à savoir XACML. A-PPL est à la fois expressif et
déclaratif.

Pour concevoir ce langage, nous avons d’abord analysé les concepts derrière la notion
d’imputabiité. Nous avons aussi étudié les obligations afin d’identifier les exigences pour un
langage de politiques d’imputabilité. Nous avons passé en revue l’état de l’art afin de choisir
un langage, dans le but de l’améliorer afin de répondre aux exigences liées à l’imputabilité.
Finalement, nous proposons nos extensions ainsi que le moteur, l’A-PPL engine, qui permet
de mettre en œuvre une politique d’imputabilité écrite avec A-PPL. Ce travail s’inscrit dans
le projet européen A4Cloud.

7.1 Cadre conceptuel

Le concept d’imputabilité dans le cloud inclut plusieurs notions : des attributs, des pratiques
et des mécanismes.

7. Langage de Politiques d’Imputabilié 219

Les attributs de l’imputabilité sont la responsabilité, la transparence, la vérifiabilité et
la rémédiation. À ces notions s’ajoutent celles des obligations, des comportements et de la
conformité.

Les pratiques désignent le comportement opérationnel qui doit être adopté par un système
imputable afin de mettre en application les attributs identifiés plus hauts. Par exemple, le
cloud doit définir et informer les utilisateurs sur la manière dont les données sont traitées (en
relation avec la transparence). Autre exemple : le cloud doit garantir l’implémentation des
mecanismes afin d’être conforme avec les obligations et de démontrer cette conformité.

Les mécanismes d’imputabilité correspondent aux outils et techniques qui mettent en
œuvre les pratiques et les attributs de l’imputabilité. Ceux-là incluent les techniques de
vérifiabilité présentées dans cette thèse, les techniques de consignations des actions (logging)
et les techniques d’audit.

Chaque acteur du cloud , à savoir le fournisseur de cloud , l’utilisateur et l’auditeur en-
dossent des rôles bien spécifiques et définis dans le Règlement européen [80] : le sujet de la
donnée (data subject - DS), le controleur de la donnée (data controller - DC), le processeur de
la donnée (data processor - DP) et les autorités de protection de la donnée (data protection
authorities - DPA).

7.2 Obligations liées à l’imputabilité

Comme évoqué plus haut, les obligations d’imputabilité proviennent de plusieurs sources :
réglementaire, contractuel et éthique. Ces sources permettent en particulier de définir les
relations entre DS, DC, DP et DPA, et d’identifier plusieurs types de contrôle, à savoir un
contrôle préventif, détectif ou correctif.

À partir d’un scénario bien défini lié à un hôpital désireux de stocker des données de
patients dans un cloud , le projet A4Cloud a déterminé les huit obligations suivantes : (1) le
DS a le droit d’accéder, de corriger et de supprimer les données confiées au cloud ; (2) les
données sont traitées pour une durée et un objectif bien définis; (3) les violations de sécurité
doivent être notifiées; (4) le cloud doit pouvoir fournir des preuves de la suppression correcte
et ponctuelle de données personnelles; et (5) les données doivent être stockées et traitées en
un lieu géographique bien défini et autorisé.

Un langage de politique d’imputbilité doit pouvoir exprimer ces obligations. Par con-
séquent, nous avons étudié les exigences auxquelles doit satisfaire ce langage. Celles-ci sont
représentées dans le tableau 7.8. Elles sont classifiées selon si elles traduisent des critères liés
à la gestion des données ou à l’imputabilité seule.

Critères Categorie

(R1) Exprimer des politiques de respect de la vie privée Gestion de données
(R2) Règles de contrôle d’accès Gestion de données
(R3) Règles de contrôle d’usage Gestion de données
(R4) Période de conservation de données Gestion de données
(R5) Notification et signalement Imputabilité
(R6) Localisation des données Imputabilité
(R7) Auditabilité Imputabilité
(R8) Consignation des actions Imputabilité

Table 7.8: Critères d’un langage de politique d’imputabilité.

7.3 A-PPL

L’approche adoptée par le projet A4Cloud est de développer un langage de politique existant
avec de nouvelles extensions afin de pouvoir exprimer des règles liées à l’imputabilité. Nous

220 Résumé Français

Nom Description

Triggers

TriggerPersonalDataAccessPermitted Déclenché quand l’accès à une donnée est permis

TriggerPersonalDataAccessDenied Déclenché quand l’accès à une donnée est refusé

TriggerEvidenceRequestReceived Déclenché quand le DC reçoit une requête pour
générer des preuves

Actions

ActionNotify Notifie le destinataire avec l’information relative
à l’événement qui déclenche cette action

ActionLog Consigne un événement, c’est-à-dire, écrit dans
un fichier journal les informations détaillées rela-
tives à l’événement qui déclenche cette action

ActionEvidenceCollection Initie la collecte (ou la production) des preuves
demandées

Table 7.9: Extensions d’A-PPL.

avons donc étudié et analysé plusieurs langages de politiques et avons choisi celui qui satisfait
le plus les critères énoncés plus hauts et celui qui peut être facilement extensible. Le meilleur
candidat se trouve être le langage PPL développé, par le projet PrimeLife. PPL est à l’origine
un langage de politique permettant d’exprimer des politiques de protection de la vie privée.
Basé sur XACML, PPL présente de nombreux points d’extension. Il permet de définir des
règles de contrôle d’accès, des autorisations ainsi que des obligations. Une obligation en
langage PPL définit une promesse faire par le DC au DS en relation avec le traitement de
ses données personnelles. Le DC doit tenir sa promesse en exécutant une action particulière
après un événement spécifique, et facultativement, sous certaines conditions. En pratique,
une obligation en PPL s’exprime en termes de Triggers (déclencheur) et d’Actions. Un Trigger
est un événement conditionné qui déclencle une action que le cloud doit réaliser dans le cadre
de l’obligation en question.

Les extensions d’A-PPL. Nous avons d’abord rendu plus explicite la définition des rôles
de chacun des acteurs du cloud à l’aide d’un nouvel attribut subject:role.

Ensuite, le tableau 7.9 compile les nouveaux Triggers et les nouvelles (ou améliorées)
Actions que nous proposons dans notre nouveau langage A-PPL.

7.4 A-PPLE

La mise en œuvre de la potique écrite en A-PPL est l’affaire du moteur appelé A-PPLE.
A-PPLE étend le moteur utilisé par les langages sur lesquels A-PPL est basé, à savoir XACML
et PPL.

En particulier, nous avons développé le composant qui s’occupe de mettre en œuvre les
obligations d’imputabilité comme les notifications ou la consignation des actions. Par ailleurs,
nous avons intégrer nos travaux sur les preuves de récupérabilité avec StealthGuard dans le
moteur A-PPLE afin de permettre des audits du cloud quant à l’intégité des données.

List of Publications 221

List of Publications

• StealthGuard: Proofs of Retrievability with Hidden Watchdogs, Monir Azraoui,
Kaoutar Elkhiyaoui, Refik Molva and Melek Önen. In Computer Security-ESORICS
2014, pages 239–256. Springer International Publishing, 2014.

• Efficient Techniques for Publicly Verifiable Delegation of Computation, Kaoutar
Elkhiyaoui, Melek Önen, Monir Azraoui and Refik Molva. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, AsiaCCS 2016,
pages 119–128. ACM, 2016.

• Publicly Verifiable Conjunctive Keyword Search in Outsourced Databases,
Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen and Refik Molva. SPC 2015, 1st
IEEE Workshop on Security and Privacy in the Cloud. In Proceedings of the 2015
IEEE Conference on Communications and Network Security (CNS), pages 619-627.
IEEE, 2015.

• A-PPL: An Accountability Policy Language, Monir Azraoui, Kaoutar Elkhiyaoui,
Melek Önen, Karin Bernsmed, Anderson Santana De Oliveira, Jakub Sendor. In
Data Privacy Management, Autonomous Spontaneous Security, and Security Assur-
ance, pages 319–326. Springer, 2015.

• A Cloud Accountability Policy Representation Framework, Walid Benghabrit,
Hervé Grall, Jean-Claude Royer, Mohamed Sellami, Monir Azraoui, Kaoutar Elkhiyaoui,
Melek Önen, Anderson Santana De Oliveira, Karin Bernsmed. In CLOSER-4th Inter-
national Conference on Cloud Computing and Services Science, pages 489–498. 2014.

	Acknowledgments
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	Contents
	Introduction
	1 Topic of Research
	2 Problem Statement
	3 Organization

	I Proofs of Storage
	1 Characterization of Proofs of Storage
	1.1 Introduction to Proofs of Storage
	1.2 Definition of a Proof of Storage Protocol
	1.3 Requirements for a POS protocol
	1.4 Security Model of a POS Scheme
	1.5 State of the Art on Proofs of Storage

	2 StealthGuard: Proofs of Retrievability with Hidden Watchdogs
	2.1 Security Model of POR
	2.2 StealthGuard
	2.3 Security Analysis of our Protocol
	2.4 Performance Analysis of StealthGuard
	2.5 Conclusion

	II Efficient Techniques for Verifiable Computation
	3 Charaterization of Verifiable Computation
	3.1 Introduction to Verifiable Computation
	3.2 Motivating Scenario
	3.3 Definition of Verifiable Computation
	3.4 Definition of Publicly Verifiable Computation
	3.5 Adversary Model in Verifiable Computation
	3.6 State of the Art in Verifiable Computation

	4 Verifiable Polynomial Evaluation
	4.1 Introduction to Verifiable Polynomial Evaluation
	4.2 Protocol Overview
	4.3 Building Blocks
	4.4 Protocol Description
	4.5 Security Analysis
	4.6 Performance Analysis
	4.7 Conclusion to Verifiable Polynomial Evaluation

	5 Verifiable Matrix Multiplication
	5.1 Introduction to Verifiable Matrix Multiplication
	5.2 Protocol Overview
	5.3 Protocol Description
	5.4 Security Analysis
	5.5 Performance Analysis
	5.6 Conclusion to Verifiable Matrix Multiplication

	6 Verifiable Conjunctive Keyword Search
	6.1 Introduction to Verifiable Conjunctive Keyword Search
	6.2 Definition of Publicly Verifiable Conjunctive Keyword Search
	6.3 Protocol Overview
	6.4 Building Blocks
	6.5 Protocol Description
	6.6 Security Analysis
	6.7 Performance Evaluation
	6.8 Conclusion to Verifiable Keyword Search

	III Accountability and Verifiability
	7 An Accountability Policy Language
	7.1 Introduction
	7.2 The Concepts of Accountability
	7.3 Motivating Scenario
	7.4 Requirements for an Accountability Policy Language
	7.5 State of the Art on Policy Languages
	7.6 A-PPL: a Policy Language for Accountability
	7.7 A-PPLE: a policy engine for A-PPL
	7.8 Example of A-PPL Statements with respect to our Healthcare Scenario
	7.9 Conclusion

	General Conclusions
	Bibliography
	Résumé Français
	1 Preuves de Stockage
	2 Preuves de Récupérabilité : StealthGuard
	3 Calcul Vérifiable
	4 Évaluation de polynômes vérifiable publiquement
	5 Multiplication matricielle vérifiable publiquement
	6 Recherche de conjonction de mots-clés vérifiable publiquement
	7 Langage de Politiques d'Imputabilié

	List of Publications

