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Abstract

The behavior under compression, either oedometric or isotropic, of model granular ma-

terials (glass beads) wet by a small quantity of liquid forming capillary bridges is studied

both by discrete element numerical simulation (DEM) and by laboratory experiments,

which combine oedometric tests and X-ray microtomography (XRCT). Special attention

is paid to very loose initial states (solid fraction below 30 %) stabilized by capillary

cohesion. XRCT observations involve suitable spherical particle detection adapted to

relatively low resolution images. It enables heterogeneities to be visualized and microsc-

tructural information to be collected. DEM simulations lead to the identi�cation of

parameters that in�uence the plastic compression behavior of the material. Important

factors include in particular the initial coordination number of the loose contact network,

which varies to a large extent as a consequence of the ability of the assembling proce-

dure to restructure cohesive clusters in their aggregation stage; and some possible slight

resistance to rolling and pivoting in the contacts. The macroscopic compression curve

(the void ratio dependence on stress) is controlled by a dimensionless reduced pressure

comparing con�ning stress to capillary forces. In the stress interval corresponding to

irreversible collapse, it assumes the classical logarithmic form of soil mechanics. For

this compression law as well as for various microscopic observations, experiments and

simulations are found to agree semi-quantitatively.

Keywords: DEM, wet granular materials, one-dimensional compression,

isotropic compression, X-ray computed tomography, grain-scale analysis, plas-

tic behavior, microstructure
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Résumé

Le comportement en compression, oedométrique ou isotrope, de matériaux granulaires

(billes de verre) en présence d'une faible quantité d'eau formant des ponts capillaires

est étudié par la simulation numérique aux éléments discrets (DEM) et par des expéri-

ences en laboratoire, combinant essais oedométriques et microtomographie aux rayons X

(XRCT). On porte une attention particulière aux états initiaux très lâches (compacité

inférieure à 30 %) stabilisés par la cohésion capillaire. L'observation par XRCT, fondée

sur une méthode de détection des grains sphériques adaptée aux images relativement

peu résolues, permet de visualiser les hétérogénéités et d'accéder à des informations

microstructurelles. L'approche numérique par DEM permet de dégager les paramètres

in�uençant le comportement de compression plastique du matériau. Parmi ceux-ci la

coordinence initiale du réseau des contacts, plus ou moins élevée selon que le procédé

d'assemblage permet ou non aux amas connectés par la cohésion capillaire de se restruc-

turer, ainsi qu'une éventuelle légère résistance au roulement ou au pivotement dans les

contacts, jouent un rôle déterminant. La courbe de compression macroscopique (varia-

tion de l'indice des vides avec la pression) est régie par une pression réduite qui compare

les e�ets du con�nement à l'attraction capillaire, et prend la forme, dans l'intervalle de

contraintes correspondant à un e�ondrement irréversible, de la loi logarithmique familière

dans les sols cohésifs. Pour cette loi comme pour di�érentes observations microscopiques,

un accord semi-quantitatif est obtenu entre expériences et simulations numériques.

Mots-clés: Modélisation des élements discrets, matériaux granulaires mouil-

lés, compression oedométrique, compression isotrope, microtomographie aux

rayons X, analyse à l'échelle du grain, comportement plastique, microstruc-

ture
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Overview

Granular materials appear in various natural and industrial processes. They are com-

posed of individual grains that vary in shape, size, composition, surface texture, etc.

These granular characteristics can remarkably a�ect the packing and the contact dis-

tribution properties of granular assemblies. Therefore, granular materials may exhibit

quite di�erent behaviors depending on the applied external forces, the size and geom-

etry of the grains, the density and composition of particles, the type of interactions at

the grain scale and many other material properties. Because of these complexities, it

is generally di�cult to relate in a straightforward manner the macroscopic properties

of granular materials to the microscopic properties of their constituents. In the case of

wet granular materials, the existence of liquid menisci between particles plays a key role

in the overall behavior of the assembly. Capillary cohesion bestows to these materials

speci�c mechanical features that do not exist with dry grains, such as the ability to form

stable structures with very low density, and a strong sensitivity to stress intensity as

well as to stress direction. So far, many experimental and numerical studies of bonded

granular materials in general and wet granular materials in particular have been carried

out to tackle the di�culties exposed here above.

Published studies cover a wide range of applications. For instance, some investigate

the mechanical properties of cohesive soils (clays and silts) [1, 2, 3, 4, 5], metallic powder

processing [6] or modeling and treatment of ceramic powders [7, 8, 9]. Assemblies of wet

beads were observed [10, 11, 12], and descriptions of such materials at microscopic scale

were made possible by using numerical and experimental tests [11, 12]. A 2D numerical

investigation into the microstructure and mechanical properties of cohesive powders is

reported in [13, 14]. In addition, some numerical studies of cohesive materials have shown

that the stability of loose structures formed by particles packed under gravity rely on

adhesive forces (see for instance Dong et al. [15]). Other numerical works studied loose

packings stabilized by cohesion and their collapse when subjected to increasing loads

during oedometric compression [16, 17, 18, 19]. Some studies focused on the failure of

bounded particle assemblies in static [20, 21] or dynamic conditions [22]. Other works

on wet bead packs in which cohesion stems from liquid bridges joining neighbouring

particles investigated the structure of poured samples [23], or their shear strength [24].
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Shear �ow of cohesive granular materials has also been simulated [25, 26, 27, 28, 29].

Besides, the collapsible behavior of loessic soils [30, 31, 32], as well as wet sand with

capillary bridges [33, 34, 35] has been investigated experimentally. The contribution of

arti�cial solid bridges to the micro-macroscopic behavior of soils, especially in the case

of cemented sands, has been studied using both numerical simulations and experimental

observations [36, 37, 38, 39, 40, 41, 42]. These works evidenced the link between the

macroscopic mechanical behavior and changes in the microstructure. However, most

studies on wet granular materials have focused on dense states, and few works have

focused on the grain-scale behavior.

Currently, the grain-scale behavior of wet granular materials is usually investigated

using numerical simulations, such as the discrete element method [43], in 2D and/or

3D [44, 45, 17, 29, 24, 46, 27, 47]. These studies characterized precisely the microstructure

in terms of coordination number of contacts, coordination number of distant interactions,

coordination number of compressive and tensile bonds, radial distribution function, force

chains, distribution of forces between particles, etc. The evolution of these microstruc-

tural descriptors with the externally applied pressure was also investigated. However, few

works have quantitatively compared simulations (e.g. with the discrete element method)

with experimental results (e.g. with microstructural observations using the X-ray com-

puted tomography) in order to validate the numerical method [48, 49, 50, 36, 37].

Following the two-dimensional model for cohesive powders which is based on the

discrete element method and developed by Gilabert et al. [13, 14], we propose a three-

dimensional model to investigate the mechanical behavior of a wet granular material at

very loose states of density. On the same material, we also perform one-dimensional

compression tests combined with microstructural observations using X-ray computed

tomography. Thereby, we provide a comprehensive view of the mechanical behavior, as

well as a further insight into microstructure changes of wet granular materials at very

loose states under growing applied external forces. In the present study, we only focus

on the properties of wet granular materials in the pendular state.

This thesis is organized in four chapters, as follows:

In Chapter 1, the mechanical behavior of granular materials is brie�y described.

Several typical experimental and numerical observations of wet granular materials are

then presented in details. The combinations of experiments and simulations which have

been studied in literature are also presented in order to provide a comprehensive view of

wet granular materials.

In Chapter 2, we present two experimental tests on wet spherical beads at very loose

states. The behavior is characterized at the macroscopic scale as well as at the grain

(and pore) scale, by combining one-dimensional compression tests and X-ray computed

tomography.

In Chapter 3, following the 2D model from Gilabert et al. [13, 14], we propose a 3D

model to investigate the mechanical behavior of wet spherical glass beads at very loose
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states under isotropic compression. Three systems, including monodisperse systems

without and with rolling and pivoting resistances and a polydisperse system without

rolling and pivoting resistances, are simulated. The plastic response of the material, as

well as the evolution of microstructure and force transmission, along compression and

decompression paths are then characterized. The in�uence of various micromechanical

parameters have also been investigated.

In Chapter 4, we �rst propose a 3D observation of wet spherical glass beads in

an oedometrically compressed model. We then validate the compaction behavior and

microstructural changes by comparing the results of experiments and simulations.

Finally, some conclusions and perspectives are drawn.





CHAPTER 1

Literature review

In this chapter, the mechanical behavior of granular materials is brie�y described,

with a particular focus on wet granular materials. Several non-destructive tech-

niques to observe the micro-macroscopic behavior of such materials are then

presented. Numerical investigations, which provide a detailed access to the mi-

crostructure of these materials, are then described. A comparison of experimental

and numerical results are �nally presented.
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1.1 Mechanical behavior of granular materials

1.1.1 General considerations

Granular materials are ubiquitous in various �elds, and natural or industrial processes

including soft matter physics, soil mechanics, powder technology, agronomic transfor-

mations, and geological processes. They are composed of individual grains that vary in

shape, size, and surface texture. Because of the wide variety of physicochemical and

morphological grain properties, the fundamental behavior of granular materials should

be investigated under di�erent working environments. The analysis of physical systems

involving granular materials requires a clear understanding of their behavior not only at

the single particle level, but should also consider multi-physics problems involving multi-

scale phenomena from molecular to macroscopic scales. A brief description of granular

materials in general is now given.

Satake and Tobita [51] de�ned granular materials as grains in contact and the sur-

rounding voids. The micromechanical behavior of granular materials is therefore inher-

ently discontinuous and heterogeneous. The macroscopic (overall or averaged) behavior

of granular materials is determined not only by how discrete grains are arranged in space,

but also by what kinds of interactions are operating among them. In order to under-

stand the mechanical behavior of granular materials from a microscopic point of view,

the spatial distribution and orientation of grains and their contact conditions should be

�rst speci�ed.

Lanier [52] described granular materials as an intermediate class of materials between

�uids and solids, that not only �ow like �uids (snow avalanches, emptying silos, etc.) but

also resist to deviatoric stresses (like solids). This type of materials is in the category of

complex structured materials, anisotropic, and strongly heterogeneous. Their mechanical

behavior depends on the interactions occurring at the particle level. Noteworthy is the

fact that this behavior is partially reversible only within a very restricted domain and

that it is non-linear.

After Radjaï and Lanier (in Cambou et al. [53]), granular materials consist of densely

packed solid particles and a pore-�lling material which can be a �uid or a solid matrix.

The particles interact via elastic repulsion, friction, adhesion and other surface forces.

By nature, the length scales involved in these contact interactions are much smaller than

the particle size. External loading leads to particle deformations as well as cooperative

particle rearrangements. For instance, the particle deformations are of particular impor-

tance in powder metallurgy but the particles may be considered as quasi-rigid beyond

the elastic deformation.

From a macroscopic scale point of view, the phenomena that make granular materi-

als interesting are pattern formation, mixing or segregation, clustering (granular gases),

avalanches, rotating �ows, granular convection, and jamming/ unjamming. For example,
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if a granular material is heaped on an inclined plane, then the large scale state of the

system depends on the angle of the plane. For large angles of this plane, the granular

material �ows like a non-Newtonian liquid. For small angles of this plane, the granular

material will behaves like a solid and remain stationary. The critical value of the plane

angle delimiting the two regimes (or phases) depends on the preparation history, and on

the transition between the phases. The fundamental behavior of granular materials has

been widely studied in the literature [54]. The following features have been investigated:

(i) quasi-static deformation characteristics of granular materials at both small and large

strains, with discrete particles considered in the analysis;(ii) e�ects of mechanical pe-

riodic excitation on a granular medium; (iii) advances in the constitutive modeling of

granular materials using a continuum approach; (iv) interactions of particles at elevated

temperatures, including adhesion forces and sintering; (v) critical state starting from dis-

tinct initial conditions using experiments and computer simulations. In summary, there

is a lot of interesting and complex physics to be understood by studying just the large

scale properties of granular assemblies. As the composition of the assembly becomes

more complicated, its behavior becomes even richer.

From a meso-microscopic scale point of view, Radjaï and Lanier (in Cambou et

al. [53]) noted that the geometrical changes of granular texture were at the origin of the

complex rheology of granular materials. These changes were highly nonlinear, involving

creation and loss of contacts, rotation frustration and frictional sliding. They depended

on the dissipative nature of contact interactions and steric exclusions among particles. In

quasi-static deformation, various features of the plastic behavior such as shear strength

and dilatancy could be traced back to the evolution of the granular texture. Therefore,

these authors proposed to analyze and distinguish the variables as follows: granular

texture, kinematics, and force transmission in granular materials.

The granular texture is disordered with many di�erent variants depending on the

composition (particle shapes and sizes), interactions and assembling procedure. The

granular texture evolves with loading. The inhomogeneous distribution of contact forces

re�ects granular disorder in static equilibrium. At the lowest order, the relevant scalar

parameters concern the connectivity of this network. At higher orders, the anisotropy

of the texture is described by fabric tensors. The granular texture evolves mainly due

to contact losses and gains. The fraction of lost and gained contacts depends on the

contact orientation. During the deformation process, the gained contacts tend to move

in the direction of the major principal stress, conversely, the lost contacts are generally

observed in the direction of the minor principal stress [55, 54].

The kinematics are directly linked to the deformation of granular media. In other

words, the kinematics are the displacement of particles. Each grain has six degrees of

freedom (three components of translation and three components of rotation). As an

example, the analysis of the displacement �eld is shown in Fig. 1.1 [56]. A triaxial

compression test was carried out and combined with the X-ray microtomography to get
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Figure 1.1: Particles displacement (color shows the displacement magnitude) during

triaxial compression. Results are shown as vertical slices. Sub�gures from left to right

correspond to increasing vertical stresses (from Andò et al. [56]).

the displacement �eld within the sample.

Figure 1.2: Photoelastic image of a small assembly of disks (from Dantu [57]).

The contact forces are considered like the static variable of granular assemblies. These

forces appear when the granular materials are subjected to an external load. The contact

network and the corresponding contact forces result from the reaction of the granular

material to the applied load and the transmission of internal forces. The inhomogeneity

of these forces in granular assemblies were �rst observed optically in assemblies of pho-

toelastic particles, which have the property to develop birefringence upon the application

of stresses [57], as shown in Fig. 1.2. This precursory experimental study allowed to ob-

serve the load bearing contacts and the establishment of force chains within a granular

material. Since then, other studies have tried to use this technique to measure forces in

such granular assemblies [58]. However, it is di�cult to measure accurately tangential

forces experimentally.

Later, numerical simulations enabled to analyze and provide detailed evidence of

force chains, the classi�cation of force networks in strong and weak networks, and the

exponential distribution of strong forces [59, 60]. Moreover, the force probability density
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function from simulation showed that the weak forces (below the average force) in a

sheared granular system have a nearly uniform or decreasing power-law shape which is

in agreement with experiments [61, 62].

1.1.2 Bonded granular materials

In general, two types of bonding are distinguished in the literature: solid bonding and

liquid bonding. While liquid bonding arises from the presence of capillary meniscii at

the grain contacts, solid bonds between grains may originate from di�erent sources, such

as the process of sedimentation in natural soil and rock deposits or the precipitation of a

solid, having either a natural or an arti�cial origin. During sedimentation, cementation is

often observed during the early diagenesis process [63]. In the case of solid precipitation,

on the one hand, natural cementation takes various forms such as calcite, silica, iron

oxides, or even clays [1, 2, 3, 4, 64, 5]. On the other hand, arti�cial bonded materials are

often encountered in applications involving materials improved by mixing with Portland

cement or lime.

Despite the complicatedness of the formation of the bonds, the e�ects of general

features of solid bonding on the properties of granular materials were widely observed

based on experimental �ndings: (i) the strength (dynamic and static) and small-strain

sti�ness are enhanced [65, 66, 67, 68, 69]; (ii) the stress-strain and volumetric response

become relatively brittle and more dilative, respectively [67, 70, 71]; and (iii) quasi-

preconsolidation pressure or yield stress can be observed in loading path [72, 73]. Fur-

thermore, the mechanical responses of cemented soils are found to depend on the amount

and nature of the cementing agent [74]. At the macroscopic scale, cementation induces

a strength enhancement and the occurrence of volumetric dilation [36, 37]. In addition,

at the grain scale, the contact behavior of bonded materials was also observed by sev-

eral studies using the idealized granules bonded [75, 76], and the arti�cially structured

bonds [77].

Furthermore, liquid bonds were also observed in several experimental investigations.

The e�ect of capillary bonding on the mechanical behavior of granular materials is of

primary importance in powder technology [78, 79, 80] and transformations of geomateri-

als [81, 82, 83]. The e�ects of inter-grain cohesion were also observed in order to present

a general observation of the mechanical properties of wet granular materials [12, 34].

Finally, the dynamics of wet granular matter were clearly reported in the study by Her-

minghaus [84].

Besides, bonded granular materials have been extensively investigated using numer-

ical simulations in various contexts, such as: metallic powder processing [6, 85], mod-

eling and treatment of ceramic powders [7, 8, 9]. Assemblies of wet beads were ob-

served [10, 11, 12], in which some microscopic observations are possible by combining nu-

merical and experimental tests [11, 12]. A 2D numerical investigation into the microstruc-
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ture and mechanical properties of cohesive powders was carried out [13, 14]. Furthermore,

the micro-macroscopic behavior of granular materials containing arti�cial solid bridges,

especially cemented sands, was extensively investigated [36, 37, 40, 41, 86, 42, 87, 88].

In addition, the e�ects of liquid bonds on the mechanical behavior of granular mat-

ter have been extensively studied in the past, and several models of capillary cohesion

have been proposed [89, 90, 91]. The contribution of capillary bridges to the micro-

macroscopic mechanical behavior has been investigated by means of numerical simula-

tions [92, 24, 46, 93, 94, 95, 29, 47].

The most relevant known features of bonded granular materials at the macroscale are

the yield criterion, the stress-strain response, the critical state, the in�uence of cohesion,

etc. Here, we present the in�uence of intergranular cohesion on the overall behavior.

Macroscopic in�uence of cohesion

A non-null cohesion in the Mohr-Coulomb failure criterion has an important con-

sequence since it introduces a stress scale in the behavior of the material. While non-

cohesive materials are essentially sensitive to ratios of stress components, cohesive ones

respond di�erently according to the absolute magnitude of stresses. This is quite re-

markable when dealing with compression tests in which all stress ratios remain constant.

During an oedometric compression test, the vertical stress σ1 increases, while the ra-

dial strain is maintained null. Hence, the stresses are also observed to correspond to

coe�cient of lateral stress ratio σ3/σ1. In addition, it is well recognized that the den-

sity of non-cohesive materials is slightly evolve with growing stresses, while cohesive

ones undergo some irreversible compression under growing average pressure P . In soil

mechanics [2], the irreversible compression curves are usually described using a linear

relationship between the void ratio e (i.e. e = −1 + 1/Φ with Φ = 1− n, Φ is the solid

fraction and n is the porosity) and the logarithm of P :

e = e0 − Cc log

(
P
P0

)
, (1.1)

in which, e0 and P0 are the initial void ratio and initial pressure, respectively. This

relation applies to cohesive materials such as clays and silts [1, 5] and also to cohesive

powders with rather wide intervals of void ratio (e varying normally by a factor of 2).

It was also applied to critical states, characterized by a speci�c value of the stress ratio

σ3/σ1, and the compaction curve is often modeled with the same slope Cc (called the

compression index). Relation (1.1) only applies for the monotonically growing pressures.

The irreversibility of the plastic compression phenomenon implies that it does not apply

to pressure values lower than the highest pressure reached in the past, namely the pre-

consolidation pressure. The reports on bonded materials are similar but the change of

density is considerably lower.
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1.1.3 Wet granular materials

The mechanical properties of granular materials are remarkably a�ected when a small

amount of water is added. For instance, a wet sand can be sculptured into quite stable

structures, for instance a sand castle, while this is impossible when it is dry. However, this

phenomenon signi�cantly depends on the size of particles, as shown in Fig. 1.3 (van der

Waals attraction is computed for an inter-particle separation of 30 Å, the skeletal force

is shown for σ′ = 10 kPa and σ′ = 1 MPa) [96]. These compressive forces mobilize the

electrical repulsion forces and bring particles together until compression and repulsion are

balanced. Changing the pore �uid can alter the inter-particle distance at equilibrium;

the upper part of the �gure shows the strain caused by changing the pore �uid from

fresh-water to seawater concentrations.

Figure 1.3: Skeletal versus contact-level capillary and electrical forces. The upper part

of the �gure shows the strain (axis on right) caused by changing the pore �uid ionic

concentration from fresh-water to seawater conditions. Note slopes: skeletal 2:1, weight

3:1, capillary and van der Waals 1:1 (from Santamarina [96]).

Here, several observations can be made as follows (from Santamarina [96]):

• Particle weight looses relevance with respect to capillary forces for particles smaller

than d ≈ 3 mm (point 1), and with respect to van der Waals attraction for particles

smaller than d ≈ 30 µm (point 2).

• Capillary forces can exceed the contribution of σ′ = 10 kPa con�nement for par-

ticles smaller than d ≈ 20 µm (point 3) and the contribution of σ′ = 1 MPa for

d < 0.2 µm (point 4).

• Particles are considered �coarse� when skeletal forces due to boundary loads prevail.

This is the case for particles larger than d ≈ 20 µm (point 3).
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• Particles are �fine� when contact-level capillary and electrical forces gain relevance.

This is the case when particles are smaller than d ≈ 1− 10 µm.

Therefore, we can see that the smaller the particle size, the stronger the capillary

forces. Even the moisture in the atmosphere may create tiny liquid bridges at the contact

point between particles. The presence of these liquid bridges induces capillary forces that

attract the particles to each other. In reality, because of the asperities on the particles

surfaces, molecular interactions scale down to small adhesive forces, and capillary forces

can be large and dominant.

Unlike in the nanoscale range of adhesive forces, they can apply from an interparticle

distance of the order of the particle size. Such unique properties of capillary interac-

tions lead to remarkable changes in mechanical properties of granular materials in the

appearance of the liquid in their interstitial spaces. Therefore, the presence of liquid

menisci plays a key role in the overall mechanical properties of wet granular materi-

als. Based on the liquid content, wet granular materials can be classi�ed in di�erent

regimes [97, 79, 34], as given in Table. 1.1.

Table 1.1: Schematic diagrams for classi�cation of wet granular materials with various

amount of liquid. In the third column, the black circles represent the grains and the grey

regions represent the interstitial liquid (from Mitarai and Nori [34]).

• Pendular state: When a small amount of liquid is added to the granular material,

the liquid initially collect near the contact point of particles. In this regime, the
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liquid content is limited to the domain where menisci can form without coalescence;

in this domain, the capillary forces are limited to pair-wise interactions.

• Funicular state: As the liquid content is increased further, the neighbor liquid

bridges start to coalesce. The liquid �lls some pores and multiple grains can be in

contact with a given volume of liquid.

• Capillary state: At higher values of liquid content most of the pores �lls with

liquid and large contiguous wet clusters forms.

• Slurry state: In this regime all the pore space are fully saturated and the particles

are completely immersed in the liquid.

In the �rst three regimes, the role of capillary force is very important while it is

negligible in the slurry state.

Many numerical and experimental studies reported that the presence of a small

amount of interstitial liquid strongly a�ects the yield stress of the materials. The ef-

fects of the presence of water on the apparent Coulomb cohesion was widely studied in

the literature. Richefeu et al. [24] studied the Coulomb cohesion in pendular state for

di�erent values of liquid content by using both numerical and experimental observations.

They observed that the Coulomb cohesion increases nonlinearly with liquid content and

saturates to a maximum value, cm ' 600 Pa at wm ' 0.03. They found a constant value

of friction angle ϕ (=tan−1µ), regardless the level of liquid content.

In soil mechanics, Terzaghi [98] proposed the concept of e�ective stress to describe

the mechanical properties of water-saturated soils. Terzaghi's principle states that �all

measurable e�ects of a change of stress of the soil, that is compression, distortion and

change of shearing resistance, are exclusively due to changes in e�ective stress� [99].

E�ective stress σ
′
ij is de�ned as

σ
′

ij = σij − uwδij, (1.2)

with uw is the pore water pressure and the Kronecker's delta δij: δii = 1, δi 6=j = 0.

In the early works of Bishop [100], this principle was extended to unsaturated soils,

as:

σ
′

ij = (σij − uaδij) + χ(ua − uw)δij, (1.3)

where χ is called the e�ective stress parameter or Bishop's parameter, vary from 0 for dry

soils to 1 for saturated soils, and ua is the pore air pressure. The terms σij−uaδij = σnet−ij

and ua−uw = s, de�ne the net stress and the matric suction, respectively. Independently

of the stress state, the capillary forces are assumed to react in an isotropic way, generating

the same pressure in all directions. However, Scholtès et al. reported on their recent

studies [93, 94] that this assumption is not valid. These authors performed numerical

simulations of the triaxial compression of unsaturated granular materials. They assumed
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that the components of the stress tensor includes two terms: the contributions of contact

forces σcij (e�ective stress), and an isotropic stress due to capillary interactions σcapij ,

assuming an isotropic distribution of liquid bridges in the material. The additive e�ect of

capillary forces in stress tensor is veri�ed for an initial isotropic con�guration, although

deformation creates a slight anisotropy in liquid bridge distribution. Therefore, the

contribution of capillary forces to the total stress is not an isotropic pressure, which is

not consistent with the Bishop form of the e�ective stress, or any expression ignoring

the deviatoric e�ect of the forces in liquid bridges.

Moreover, at the microscopic level, the in�uence of liquid bridges on the tensile

strength of unsaturated granular materials was observed in the pendular state by Kim

& Hwang [92] and Gröger et al. [11]. They numerically studied the tensile strength un-

der isotropic pressure. Kim and Hwang [92] measured the actual magnitude of tensile

strength induced by water in moist granular soils with low water contents (w < 4%).

They found that the magnitudes of the measured tensile strength are signi�cantly dif-

ferent from zero. The tensile strength generally increases with increasing water content

and relative density. They also proposed a model to estimate approximately the tensile

strength of an unsaturated granular material. Gröger et al. [11] reported that there was

a large in�uence of the surface roughness on the tensile stresses in wet particle systems.

By means of simulated tensile tests, they have shown that even when the tensile strength

is reached, elastic body contacts supporting the external tensile load still exist. They

also simulated shear tests to compare with tensile test simulations and concluded that

for a small tensile load, the yield locus appeared to be the straight extension of the

graphs for positive loads [11].

In addition, Gilabert et al. [13] reported the in�uences of assembling procedure of

model cohesive powders under low pressure. They also studied the plastic compression,

structural changes of this materials under isotropic loads with the same value of tensile

strength between grains [14]. Under low pressure, the tensile strength plays a key role

to stabilize the loose structures. Moreover, in recent study of Delenne et al. [45], they

numerically investigated the process of growth and coalescence of liquid clusters in a

granular material as the amount of liquid increases under the isotropic compaction. The

most important �nding of their work is that a peak grain pressure induced by capillary

forces in a granular packing occurs inside the funicular state. It presents the transition

from a primary coalescence process, where the volume of the largest cluster remains

small, to a secondary coalescence process governed by the increase of liquid cluster

volumes carrying a larger capillary stress [45].

1.2 Experimental investigations

Aside from the conventional destructive techniques (e.g. shear box, one-dimensional

compression test, biaxial compression test, triaxial compression test, etc.), more and
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more non-destructive methods have been widely applied to observe e�ectively the prop-

erties of granular materials, from macro- to microscopic level. In order to have a general

view of non-destructive techniques, we present here a sketchy history of some recent

advanced techniques (type of imaging techniques) and its applications to granular mate-

rials research, as given in Table 1.2 (following from Al-Raoush & Willson [101]). These

typical studies were carried out over the last thirty years (from 1982 to 2016). The

techniques are brie�y presented and their application will be clearly illustrated in the

following sections.
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Table 1.2: Examples of imaging techniques to porous media systems

Measured properties Material System Resolution Reference

Soil bulk density Soil, glass beads X-ray scanner * Petrovic et al. [102]

Water content variations Sandy and �ne sandy

loam

X-ray computed tomography * Crestana et al. [103]

Water content and soil bulk /den-

sity

Fine sandy loam X-ray miniscanner * Crestana et al. [104]

Volume fractions Bera sandstone X-ray computed tomography * Vinegar and Welling-

ton [105]

Fractures, mud invasion, and

lithololgic characterization

Natural soil X-ray computed tomography * Hunt et al. [106]

Air-�lled porosity and pore size

distribution

Natural soil X-ray computed tomography * Warner et al. [107]

Variation in water content Natural soil X-ray computed tomography * Cassel et al. [108]

Topology and connectivity Fontainebleau sand-

stone

Synchrotron computed tomog-

raphy

10 µm Spanne et al. [109]

Porosity, volume fractions, and

speci�c surface area

Random soil samples Photoluminescence volumetric

imaging

1 µm Montemagno and

Gray [110]

Porosity, volume fractions,

pearmeability and connectivity

Fontainebleau sand-

stone

X-ray computed tomography 7.5 µm Auzerais et al. [111]

Porosity, speci�c surface area and

pore size distribution

Fontainebleau sand-

stone

Synchrotron tomography 7.5 µm Coker et al. [112]
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Porosity, tortuosity, connectivity

and speci�c surface area

Bera sandstone, glass

bead

X-ray computed tomography 5 µm Lindquist et al. [113]

Pore size distribution, coordina-

tion, and speci�c surface area

Uniform glass beads Magnetic Resonance Imaging * Baldwin et al. [114]

Pore size distribution Glass �lter system Magnetic Resonance Imaging * Pauli et al. [115]

Porosity Rock samples X-ray computed tomography

with mercury porosimetry

400 µm Klobes et al. [116]

Visualization of �uid transport

through the sample

Sandy sediment soil Positron emission tomography * Khalili et al. [117]

Porosity and water content Sandstone Synchrotron tomography 30 µm Coles et al. [118]

Porosity and volume fractions Dolomite Gamma-ray computed tomog-

raphy

* Hsieh et al. [119]

Volume fractions Glass beads X-ray computed tomography * Clausnitzer and Hop-

mans [120]

Geometrical analysis Fontainebleau sand-

stone

Synchrotron tomography 6 µm Lindquist and

Venkatarangan [121]

Porosity, permeability, and spe-

ci�c surface area

Silty and clayey

quartz

Scanning electron microscopy 1.6 µm Solymar and Fabricius [122]

Critical angle of sandpiles Spherical glass beads Electron and �uorescence mi-

croscopy

* Mason et al. [33]

Soil structure FEBEX bentonite ESEM and mercury porosime-

try

50 µm Musso et al. [123]

Microstructural change during

sintering

Metal powder X-ray microtomography 2.5 µm Lame et al. [124]
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Liquid bridge coordination num-

bers and liquid bridge volumes

Glass beads Fluorescence microscopy * Kohonen et al. [125]

Localized deformation Sedimentary soil X-ray microtomography 14 µm Viggiani et al. [126]

Agglomerate breakage PVA, NaCl ans Silica

glass

X-ray microtomography 4.555 & 3.904

µm

Golchert et al. [49]

3D particle shape characteriza-

tion

Various X-ray microtomography Various Lin and Miller [127]

Microstructure characterization Acrylic beads X-ray computed tomography 0.03 mm Aste et al. [128]

Network of capillary forces Glass beads Fluorescence microscopy * Fournier et al. [12]

Localized deformation Hostun sand X-ray microtomography and

V-DIC

14 µm Hall et al. [129]

Localized deformation at grain-

scale

Hostun and Caicos

Ooid sands

X-ray microtomography, ID-

Track∗∗ and DIC

15 µm Andò et al. [56]

Water menisci at di�erent relative

humidities

Spherical spheres,

sand, clay

ESEM * Lourenço et al. [130]

Capillary collapse Hostun sand X-ray computed tomography 50 & 25 µm Bruchon et al. [35]

Strain localisation and grain

breakage

Hostun and Ottawa

sands

X-ray tomography 15.6 µm Alikarami et al. [131]

Particle breakage Sand and granite X-ray microtomography 3.3 µm Zhao et al. [132]

Grain-scale behavior Caicos Ooid sand X-ray computed tomography 15.56 µm Lim et al. [133]

* Resolution is of the order of mm or not provided by the author. Abbreviation: PVA, polyvinyl alcohol; ESEM, Environmental Scanning

Electron Microscopy; DIC, Digital Image Correlation; V-DIC, Volumetric Digital Image Correlation; ** Method named by the author.
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1.2.1 Techniques

Among the techniques listed in Table 1.2, three techniques have been extensively ap-

plied to observe the wet granular materials, such as the Fluorescence Microscopy (FM),

the Environmental Scanning Electron Microscopy (ESEM), and the X-ray Computed

Tomography (XRCT).

A Fluorescence Microscopy is an optical microscope that uses �uorescence and phos-

phorescence instead of, or in addition to, re�ection and absorption to study properties of

organic or inorganic substances. The FM refers to any microscope that uses �uorescence

to generate an image, whether it is a simpler set up like an epi�uorescence microscope,

or a more complicated design such as a confocal microscope, which uses optical section-

ing to get better resolution of the �uorescent image. However, in the FM, �uorophores

lose their ability to �uoresce as they are illuminated in a process called photobleaching.

Photobleaching occurs as the �uorescent molecules accumulate chemical damage from

the electrons excited during �uorescence. Photobleaching can severely limit the time

over which a sample can be observed by �uorescent microscopy. Besides, the specimen

must be �uorescent to be suitable for �uorescence microscopy and FM is also limited to

2D observations.

One of the newer and most promising qualitative methods for studying, and, where

possible, quantifying the arrangements of aggregations/particles and voids in unsaturated

soils is the ESEM. ESEM is a special type of scanning electron microscope that works

under controlled environmental conditions and requires no conductive coating on the

specimen. This makes it possible to examine wet samples and to preserve their natural

characteristics for further testing, which is an obvious advantage of ESEM compared to

the conventional SEM. This method enables to observe the surface of moist materials

without pre-treatment, at dimensions from millimeters to micrometers. Nevertheless,

when saturated samples are observed, the presence of a water �lm covering the solid

grains makes image analysis di�cult to carry out, so that little information about the

sample can be collected.

Getting more and more success over recent years, XRCT is a nondestructive technique

for visualizing interior features within solid objects, and for obtaining digital information

on their three-dimensional geometries and properties. A XRCT image is typically called

a slice, as it corresponds to what the object being scanned would look like if it were sliced

open along a plane. An even better analogy is a slice from a loaf of bread, because just

as a slice of bread has a thickness, a XRCT slice corresponds to a certain thickness of

the object being scanned. So, while a typical digital image is composed of pixels (picture

elements), a XRCT slice image is composed of voxels (volume elements). Taking the

analogy one step further, just as a loaf of bread can be reconstituted by stacking all of

its slices, a complete volumetric representation of an object is obtained by acquiring a

contiguous set of XRCT slices.
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The gray levels in a XRCT slice image correspond to X-ray attenuation, which re�ects

the proportion of X-rays scattered or absorbed as they pass through each voxel. X-ray

attenuation is primarily a function of X-ray energy and the density and composition of

the material being imaged.

X-ray source Flat panel 
detector

Rotation stage
Specimen

Rails

Figure 1.4: Schematic view of a laboratory XRCT scanner

A schematic view of a XRCT system is shown in Fig. 1.4. The elements of an X-

ray computed tomography scanner comprise an X-ray source, a detector that measures

X-ray intensity along multiple beam paths, and a rotating stage supporting the object

being imaged. Di�erent con�gurations of these components can be used to create XRCT

scanners optimized for imaging objects of various sizes and compositions.

The great majority of XRCT systems use X-ray tubes, although tomography can also

be done using a synchrotron or gamma-ray emitter as a monochromatic X-ray source.

Important tube characteristics are the target material and peak X-ray energy, which de-

termine the X-ray spectrum that is generated; current, which determines X-ray intensity;

and the focal spot size, which impacts the spatial resolution of the tomography.

Most XRCT detectors utilize scintillators. Important parameters are scintillator

material, size and geometry, and the means by which scintillation events are detected

and counted. In general, smaller detectors provide better image resolution, but reduced

count rates because of their reduced area compared to larger ones. To compensate, longer

acquisition times are used to reduce the signal to noise ratio. Common scintillation

materials are cesium iodide, gadolinium oxysul�de, and sodium metatungstate.

The diagram in Fig. 1.4 illustrates the cone-beam con�guration for laboratory XRCT

scanners. In cone-beam scanning, the linear array is replaced by a planar detector, and

the beam is no longer collimated. Data for an entire object, or a considerable thickness

of it, can be acquired in a single rotation. The data are reconstructed into images using

a cone-beam algorithm. Besides, planar-beam and parallel-beam con�gurations are also
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the most common con�gurations for CT scanners. Further details of the equipment and

applications can be found in Banhart [134], and Hsied [135].

However, as the resolution is limited to about 1000-2000 voxels along the object cross-

sectional diameter, high resolution requires small objects. Finite resolution causes some

blurring of material boundaries. The calibration of gray levels to attenuation coe�cients

is complicated by the presence of polychromatic X-rays. For the large (decimeter) scale,

geological specimens cannot be penetrated by low-energy X-rays, reducing resolving ca-

pability. Not all features have su�ciently large attenuation contrasts for useful imaging

(e.g. carbonate fossils in carbonate matrix, quartz versus plagioclase. . . ). Image arte-

facts (beam hardening) can complicate data acquisition and interpretation. Large data

volumes (in the order of a few gigabytes) can require considerable computer resources

for visualization and analysis.

1.2.2 Typical observations

One of the most popular and basic method to observe the plasticity of granular ma-

terials is the standard one-dimensional compression test. Here, an example of the one-

dimensional compression test, performed in 1990 by Golightly [136], to analyze the yield-

ing and plastic hardening of carbonate and silica sands, is shown in Fig. 1.5. At low

stresses (region 1), the behavior is quasi-elastic, beyond yield (region 2), an approxi-

mately linear normal compression line emerges.

We present here typical studies using the XRCT to investigate the mechanical prop-

erties of wet granular material, from macroscopic to microscopic level.

Several authors reported on the liquid capillary bridges between grains and their

e�ects on the mechanical behavior of wet granular materials [33, 125, 12]. The specimens

were prepared in the pendular state (with very small water content, < 1 %) by using the

random loose/ dense packing method. An example of the liquid bridges between grains

was clearly observed in Fig. 1.6 by using the Fluorescence Microscope by Fournier et

al. [12]. The average number of bridges per bead was then obtained by zooming with the

microscope through the sample and counting the bridges. Besides, they also described

experiments on the dynamic deformation of a wet granular material, which reveal a type

of shear-thinning behavior that they attributed to the shear-rate dependence of liquid

bridge volumes.

More recently, ESEM has been used to observe wet granular materials [137, 138, 123,

139, 130]. This method allows observing water inside the materials. An example [130]

of the use of this method to show clearly the water menisci at contacts of sand grains, is

illustrated in Fig. 1.7. Fig. 1.7(a) shows predominantly concave menisci (corresponding

to tensile capillary pressure) and Fig. 1.7(b) shows predominantly convex menisci (cor-

responding to compressive capillary water pressure). Lourenço et al. [130] observed the

curvature of water menisci in both idealized and natural granular materials with vari-
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Figure 1.5: One-dimensional compression plots for carbonate and silica sands (from

Golightly [136]).

Figure 1.6: Capillary bridges in glass beads (from Fournier et al. [12])

able particle sizes, shapes and nature. They found that the curvature could vary along

the border of a single meniscus or di�er from one point to another separated at the

micrometer scale, and that it is also dependent on the nature of materials and wetting
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history. They con�rm the importance of surface tension in the air/water interfaces (or

�contractile skin�) in holding particles together.

(a) (b)

Figure 1.7: Water menisci form at contacts of sand grains (from Lourenço et al. [130]):

(a) concave menisci; (b) convex menisci.

Maeda et al. [138] also studied the formation and disappearance of liquid bridges

between two surfaces of grains. They reported the slow evaporation and rupture of

liquid bridges relatively to low vapor pressure. They also studied the mechanical (as

opposed to the thermodynamic) stability of liquid bridges. These results shown clearly

the importance of adhesion between surfaces in the presence of liquid bridges. For

example, the rupture distance of such bridges is an important parameter in describing the

dynamic mechanical properties of moist granular materials. This problem was reported

in Ref. [140] and then con�rmed by Seville et al. [141].

Early study performed by Crestana et al. [103], in 1985, used the XRCT to measure

the water content of soil. They also showed that the XRCT can be applied to measure

and follow dynamically the motion of water in soil in three dimensions. An example using

the third-generation of the XRCT for spatial and real-time (dynamic) measurement is

shown in Fig. 1.8. It is seen that in the region of interest (ROI) box 1 the water content

quickly became constant; in ROI box 2, heterogeneities can be seen from the XRCT

scan, but the average water content increases with time and attains a smaller average

value. In ROI 3, there is a continuous increase in water content with a more drastic

relative change. Finally, in ROI 4 where the water had not yet arrived, there was no

change in attenuation [103].

Up to now, XRCT has become a widely used technique and is appropriate for numer-

ous types of materials including particulate and porous materials [124, 142]. Moreover,

this technique has been widely used in several studies to investigate wet granular materi-

als [143, 144, 145, 146, 147, 35]. Figure 1.9 shows an example of XRCT scans of Hostun
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Figure 1.8: The di�erences of water content for di�erent regions 1, 2, 3, and 4 as a

function of time (from Crestana et al. [103]).

sand [148]. Bruchon et al. [35] characterized in 3D the capillary collapse phenomenon

during water in�ltration into a loose unsaturated sand. They used the volumetric digital

image correlation tool to assess the volume of water-�lled pores and deformation of the

granular skeleton.

Figure 1.9: An example of XRCT scans of Hostun sand, with D is the diameter of cell

and r is the resolution of image: (a) D=70 mm, r=50 µm, (b)D=13 mm, r=10 µm

(from Bruchon [148])

Wildenschild et al. [143] also used this technique to characterize phase distribution

and pore geometry for partially saturated media. They obtained qualitative and quan-

titative results with di�erent scanning systems and sample sizes. Furthermore, Wilden-

schild and Sheppard [147] used this technique for quantifying the pore-scale structure
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and processes in subsurface porous medium systems. A pore-network reconstruction is

shown in Fig. 1.10, illustrating the results of applying watershed partitioning and region

merging on the pore and grain space of an unconsolidated sand. However, this method

reveals a major weakness which is the use of spherical structure elements that breaks

down when the grain shapes are very oblate or prolate [147].

Figure 1.10: Examples of partitioning and subsequent ball-and-stick network construc-

tion, applied to an unconsolidated sand imaged at 2.8 µm. (a) Zoom into slice from

original image, (b) segmented image, (c) partition of the pore space using watershed

transform, (d) partition of the grain space, (e) equivalent pore-network of 3D region

surrounding the 2D slice, and (f) equivalent grain network (from Wildenschild and Shep-

pard [147]).

Farber et al. [144] studied the porosity, pore size distribution, and geometric structure

of pores in granulates by using di�erent conditions and materials. In addition, the mor-
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phological information such as pore shape, spatial distribution, and connectivity were

also observed by combining with mercury porosimetry. Kim et al. [145] reported the ef-

fect of particle morphology on water distribution in partially saturated granular porous

media. They also investigated the in�uence of water content in order to evaluate the

water phase-distribution spatially for compacted sand specimens in a aluminum cylinder.

Riedel et al. [146] characterized experimentally the link between partial water satura-

tion and suction in a sand sample at the micro scale. Four di�erent levels of imposed

suction of a sample (with Hostun sand) obtained from trinarised 3D images, as shown

in Fig. 1.11 [146]. The vertical location of the slices is chosen to best highlight di�erent

water retention states. The two slices on the top row show liquid phase continuity for

both saturations. At higher suction, the pendular domain is reached in some parts of

the sample (in bottom left of Fig. 1.11), complete continuity of the liquid phase is lost,

with liquid bridges between the grains. At bottom right of Fig. 1.11, the hygroscopic

domain with only adsorbed water on the surface of the grains. The hygroscopic domain

was also observed in some regions of the sample [146].

Figure 1.11: Four di�erent domains (fully saturated, funicular, pendular and hygro-

scopic) shown in slices from trinarised 3D images of Hostun sand; water in light blue,

air in black and solid in light brown. The degrees of saturation noted are global (from

Riedel et al. [146]).

In a more recent study, Menon et al. [149] used XRCT combined with numerical sim-
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ulation, to quantify the impact of compaction on macroaggregates, mainly on the pore

size distribution and water �ow. The impact of compaction on interpores and intrapores

is presented in the proportion of inter- and intrapores, as shown in Fig. 1.12. Note that

interpores or inter-aggregate pores, are the pores between soil aggregates; intrapores or

intra-aggregates pores, are within soil aggregates (within the solid matrix of soil aggre-

gates). Interpores dominated the total pores volume in comparison to the intrapores,

representing > 90 % of the total pore volume before compaction in pre-compacted sam-

ples. However, after compaction, there was an increase in intrapores proportion in all

cases. In addition, the total surface area of interpores and intrapores were also calcu-

lated. They concluded that in all cases, the decrease in interpores proportion produced

a corresponding increase in intrapores fraction [149]. Moreover, the size distribution of

interpores volumes (i.e. volume of individual interpore) before and after compaction was

also reported. They showed that the soil compaction and moisture content increased

the total number of individual (very small) interpores (< 0.001 mm3) although the total

volume of interpores decreased sharply [149].

Figure 1.12: E�ect of soil compaction on interpores (a) and intrapores (b) volumes from

soil aggregates with varying levels of soil moisture and compaction. Note: W1 refers to

moisture content of 9.3 %, W2 represents 18.3 %; BD1 and BD2 refer to bulk density

increment of 0.28 and 0.71 g.cm−3, respectively (from Menon et al. [149]).

1.3 Numerical investigations

1.3.1 Numerical methods

Over the last decades of the last century, numerical simulations were introduced to study

granular materials. Since then, numerical methods have become a valuable tool to in-
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vestigate the mechanical behavior of granular systems. There were a lot of numerical

methods for analysis of granular and porous materials such as: Smoothed Particles Hy-

drodynamic (SPH), Particle Finite Element Method (PFEM), Material Point Method

(MPM), Lattice Boltzmann Method (LBM), Random Walk Simulation (RWS), Molecu-

lar Dynamics (MD), and Discrete (Distinct) Element Method (DEM). In general, these

methods have been widely used to investigate the macroscopic properties as well as the

internal states of granular systems. In other words, these methods allow to investigate

the behavior of granular systems from the macroscale to the microscale (and even the

nanoscale); this is hardly made possible by using experimental methods.

The most common computer simulation method used to determine �uid �ow and an-

alyze transport properties through porous media is the LBM [150, 151]. LBM may be re-

garded as a digital method equivalent to the traditional Computational Fluid Dynamics.

Several authors used the LBM to investigate �uid �ow and permeability in porous mate-

rials [118, 152, 153, 154, 155, 156]. The permeability and tortuosity of porous materials

were also studied by the RWS [157, 158]. SPH is a meshless Lagrangian computational

technique that was introduced in the astrophysics community to simulate the movement

of masses of material in an unbounded three-dimensional space [159, 160, 161, 162, 163].

SPH is used to obtain approximate numerical solutions of the equations of �uid dynamics

by replacing the �uid by a set of particles. MPM, known as the particle-in-cell method,

combines the strengths of Eulerian and Lagrangian descriptions of the material. The

Lagrangian description is provided by discretizing each body by a collection of material

points, and the Eulerian description is based on a background computational mesh. The

MPM extends these capabilities to materials modeling [164, 165, 166, 167]. PFEM uses a

Lagrangian description to model the motion of nodes (particles) in both the �uid and the

structure domains. Nodes are thus viewed as particles which can freely move and even

separate from the main analysis domain representing, for instance, the e�ect of water

drops. A mesh connects the nodes de�ning the discretized domain where the governing

equations, expressed in an integral form, are solved as in the standard Finite Element

Method (FEM) [168, 169].

The most popular computer simulation methods used to calculate the contact and

the displacement of particles in granular materials is the �discrete element� type. This

method was �rstly introduced in 1979 [43] and has proved to be an e�cient and widespread

tool to observe the micro-structure and micro-mechanical behavior of granular systems.

Two versions of the molecular dynamics simulation method are introduced. The �rst

is the so-called soft sphere molecular dynamic (MD=DEM). It is a straightforward im-

plementation to solve the equations of motion for a system of many interacting par-

ticles [170, 171]. For DEM, both normal and tangential interactions, like friction, are

discussed for spherical spheres. The integration of the dynamic equation is illustrated

in Fig. 1.13. The second method is the so-called Event-Driven (ED) or Contact Dy-

namics (see Jean in [172]) simulation, which is conceptually di�erent from DEM, since
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collisions are dealt with using a collision matrix that determines the momentum change

on physical grounds. For the sake of brevity, the ED method (see McNamara in [172])

is only discussed for smooth spherical particles. In addition, the quasi-static method is

developed based on the sti�ness matrices of the granular assemblages. This method is

appropriate to analyze the granular assemblages at the equilibrium or in the quasi-static

deformation (see Roux and Combe in [172]).

Figure 1.13: The cycle of the DEM calculation

In some cases, a computational method coupling two methods is necessarily applied

to study simultaneously two objects, for instance the �uid and particles �ows. Hence, a

coupling of the SPH and the DEM was proposed in order to simulate the liquid-solid �ows

in granular materials [159, 160]. Another coupling of two methods, used in mechanics of

granular media and �uid dynamics, are the LBM and the DEM, respectively [173, 174,

175, 176, 177, 178]. Besides, several authors proposed a coupling of the DEM and the

FEM to tackle the behavior of granular assemblies from the microscale to the macroscale.

The concept of Representative Elementary Volume (REV) is applied to bridge the micro-

and macro-scales. This computational homogenization (FEM × DEM) has been use to

simulate biaxial tests [179, 180, 181], triaxial tests [182], and for the dynamic analysis

of geomechanics problems [183]. In addition, a coupling between the MPM and the

FEM was implemented to demonstrate a good agreement between explicit and implicit

solutions to the problem of stress wave propagation [166].

1.3.2 Typical observations

The DEM or MD simulation are getting more and more popular in granular material

science, for 2D and 3D applications. However, studies of cohesive granular materials,

especially in loose states, have been investigated less frequently than dense or non-

cohesive granular materials. For instance, Onoda and Liniger [184] studied the random-

loose-packing fraction of uniform spheres at the limit of zero gravitational force. Dong et
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al. [15] then reported on the loose structures formed by particle packed under gravity

and stabilized by adhesion, as illustrated in Fig. 1.14. It can be seen from Fig. 1.14

that the DEM can reasonably reproduce the experimental results for all sized particles,

con�rming the validity of the proposed simulation technique [15].

Figure 1.14: The packing fraction of di�erent sized glass beads as a function of the e�ec-

tive gravitational acceleration. Points are the measured results: triangle, d = 500 µm;

square, d = 250 µm; lozenge, d = 110 µm; and ×, result of [184]. Lines are the simulated
results (from Dong et al. [15]).

Other authors investigated loose packing stabilized by cohesion and the collapse of

such materials under growing loads during compression tests [16, 17, 18, 19]. These

authors studied a dynamical compression regime, and observed a shock wave propagating

through the samples. Fig. 1.15 [17] shows a simulation of a ballistic deposit containing

2746 monodisperse spherical particles, the top �gure is the initial arrangement, the

bottom �gure is the �nal con�guration. The contact between particles includes Coulomb

friction, rolling friction and cohesion. They also compared with the case using only

Coulomb and rolling friction. This comparison con�rms that the e�ect of cohesion on

the porosity is higher if one uses Coulomb and rolling friction. Moreover, the low cohesive

forces lead to similar packings as without cohesion [17].

Gilabert et al. performed a 2D investigation into the microstructure and mechanical

properties of model cohesive powders [13], and also the quasi-static behavior of the

cohesive powders under an isotropic compression test [14]. Fig. 1.16 [14] shows how

this initial in�uence a�ects the beginning of compression curves and fades out later on.

Compression curves are shown in Fig. 1.16 for two values of initial agitation level and

rolling resistance. An increase of rolling resistance (µR/a) stabilizes looser systems under
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Figure 1.15: Ballistic deposit before and after compaction by a constant external force

on the piston. Contact properties include Coulomb friction, rolling friction and cohesion

(from Kadau et al. [17]).

low pressure P ∗, as does a decrease of agitation level (V0/V
∗). However, such a change in

material properties a�ects not only the initial stage (�rst plateau of compaction curve)

but also the macroscopic mechanical behavior at larger densities. As a consequence, the

slope of the compaction curve is lower for larger rolling resistances [14].

Figure 1.16: Compression and decompression curves: e�ect of initial agitation level in

aggregation stage and in�uence of rolling resistance parameter (from Gilabert et al. [14]).

In addition, several studies focused on the fracture of bound particle assemblies

in static [20, 21] or dynamic conditions [22]. The others studied wet beads packs in
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which neighboring particles are joined by liquid bridges, and investigated the structure

of poured samples [23], or shear strength of this material [24]. Besides, the shear �ows of

cohesive granular materials have been also simulated [25, 26, 27, 185, 186]. This means

that with the DEM, it is easily to simulate all the tests with any material.

In the microscopic point of view, the DEM simulation give easily access to the mi-

crostructure of wet granular materials, thus allowing the measurement of intergranular

forces between grains, contact networks, etc. For instance, Richefeu et al. [187] ana-

lyzed stress transmission in wet granular media in the pendular state by means of 3D

molecular dynamics simulations. Fig. 1.17 shows the force network in a narrow slice

whose thickness is nearly three particle diameters. The tensile and compressive forces

are represented by segments of di�erent colors joining particle centers. The line thick-

ness is proportional to the force. It is remarkable that tensile and compressive force

chains could be obviously observed although the slice is quite narrow [187]. Besides, the

distribution of forces and the connectivity of the bond network are the main properties,

that most often are characterized in studies using DEM simulations.

Figure 1.17: A map of tensile (green) and compressive (red) forces in a thin layer cut

out in the packing. Line thickness is proportional to the magnitude of the force (from

Richefeu et al. [187]).
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1.3.3 Some characteristics of wet granular material in DEM simulation

1.3.3.1 Capillary forces

The appearance of a small quantity of water in the intergranular voids, will preferentially

accumulate near the contacts or the narrow interstices, forming liquid bridges that join

contacting grains or near neighbors. These bridges are formed by assuming the shape

of the meniscus as illustrated in Fig. 1.18. This formation may be spontaneous if the

liquid has exchanges with its vapor, present in the surrounding atmosphere. The pressure

di�erence between two sides of a curved liquid-air or liquid-solid interface is determined

by the Laplace-Young equation which is the product of the surface tension Γ and principal

radii of curvature r1 and r2 (as shown in Fig. 1.18(a)):

∆u = ua − uw = Γ

(
1

r2

− 1

r1

)
, (1.4)

in which ua − uw is the pressure di�erence across the �uid interface and Γ is the surface

tension of the air-liquid interface.
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Figure 1.18: Schematic view of liquid bridge between two smooth (a) polydisperse spheres

and (b) monodisperse spheres (not to scale).

The capillary force Fcap due to the liquid bridge can be also calculated according to

the �gorge method� [188]. This force involves e�ects of both the capillary pressure ∆u

and the surface tension Γ over the bridge section, as

FG
cap = πr2

2∆u+ 2πr2Γ = πΓr2

(
1 +

r2

r1

)
. (1.5)
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For the monodisperse case, r1 and r2, respectively denote the radius of the meridian

pro�le and the radius at the neck (Fig. 1.18(b)), are given by

r1 =
h/2 +R(1− cosϕ)

cos(ϕ+ θ)
,

r2 = R sinϕ+ [1− sin(ϕ+ θ)]r1.

(1.6)

The �lling angle ϕ cannot be calculated explicitly and an iterative procedure must be

used to get it as a function of the other parameters. The contact angle θ is illustrated in

the relationship between capillary force, suction, and the gorge's radius (see Fig. 1.19).

The contact angle is null when the gorge's radius is larger than 0.01 to 0.1 mm, the

capillary force varies from 78 µN to 57 µN, and the suction from 23 kPa to 0.3 kPa.

Therefore, the strong variation of suction slightly a�ects the capillary force. Moreover,

when the contact angle increases, the capillary force decreases at the constant of gorge's

radius, and the capillary force reaches a maximum value of 2πΓR cos θ. In experiments

on granular materials, it is really di�cult to determine this contact angle. Hence, for

the simpli�cation, the contact angle is usually considered null in many di�erent models.
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Figure 1.19: Capillary force and capillary pressure as a function of the gorge's radius for

di�erent values of contact angle θ (from Bruchon [148]).

Besides, Soulié et al. [91] also proposed a numerical solution to calculate the capillary

force, as below

Fcap = πΓ
√
R1R2

[
c+ exp

(
a
h

R2

+ b

)]
, (1.7)

where R1 and R2 are the radii of particles and h is also the interparticle distance. The

coe�cients a, b, c are functions of the volume of liquid bridge Vm, the contact angle θ,
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and R2: 

a = −1.1

(
Vm
R3

2

)−0.53

b =

(
− 0.148 ln

(
Vm
R3

2

)
− 0.96

)
θ2 − 0.0082 ln

(
Vm
R3

2

)
+ 0.48

c = 0.0018 ln

(
Vm
R3

2

)
+ 0.078

(1.8)

In the case of a capillary bridge at the contact point between two equally-sized spheres

with radius R (see Fig. 1.18(b)), assuming that the principal radii of curvature are

denoted a and r, relation (1.4) can be rewritten as:

∆u = Γ

(
1

a
− 1

r

)
. (1.9)

As the diameter a of the meniscus is much larger than its meridian radius of curvature

r, ∆u is negative. The liquid is sucked towards the contact region. The angle θ is

the equilibrium contact angle between the liquid and the grain surfaces. In the case of

perfect wettable materials, this contact angle is equal to zero.

The capillary force between equal-sized spheres is approximately equal to the suction

force πa2∆u. If we assume a � r, the pressure di�erence is proportional to −Γ/r. For

the very small grain size, assuming h � R (2h is the distance between grain surfaces),

we �nally obtain the capillary force,

Fcap ' 2πΓR cos θ. (1.10)

The capillary force between two equal-sized spheres in contact is proportional to surface

tension Γ and particle radius R. This relation is remarkably independent of the volume

of meniscus Vm. When the particles are small enough, the in�uence of gravity on the

curvature of the liquid bridge and on the capillary force is negligible [96].

In order to calculate approximately the capillary force, Maugis [189] proposed a sim-

pler formula but less accurate, also called Maugis approximation, by which the capillary

force is expressed as a function of the meniscus volume Vm and the interparticle distance

h (also called separation distance) as below,

Fcap = 2πΓR cos θ

[
1− 1√

1 +
2Vm
πRh2

]
. (1.11)

This formula is chosen to calculate the capillary force of the monodisperse grains in the

present works.

Fig. 1.20 shows a typical example of the evolution of the capillary force with the

relative displacement between two interacting grains for a given capillary pressure. The

capillary force acts exclusively in the axial direction of the interaction (the normal to

the contact plane). Fcap is maximum and remains constant for grains strictly in contact
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(h ≤ 0), assuming small deformations of the contact zone compared with the grain size.

Dr (rupture distance) is the debonding distance de�ned as the maximum distance h

beyond which the Laplace-Young equation has so solution. A hydraulic hysteresis can

be introduced by de�ning Dc (creation distance) as the distance below which a liquid

bridge can form. For numerical simulation, a possible choice is to allow a bridge to form

when particles come strictly in contact Dc = 0, hence neglecting the possible e�ect of

adsorbed water on the grain surface. This assumption is used in our study.

h

Fcap

Dc Dr

Figure 1.20: Evolution of the capillary force Fcap as a function of the interparticle distance

h for a given capillary pressure ∆u: a meniscus can form when h ≤ Dc and breaks down

when h ≥ Dr (from Chareyre and Scholtès in [172]).

The rupture distance Dr can be found in several studies existing. Lian et al. [140]

proposed the following relation between the rupture distanceDr, the liquid bridge volume

Vm and the contact angle θ:

Dr =

(
1 +

θ

2

)
V 1/3
m . (1.12)

The formula proposed by Herminghaus [84] also related to meniscus volume Vm and

contact angle θ, as follows:

Dr =

(
1 +

θ

2

)(
V 1/3
m + 0.1V 2/3

m

)
. (1.13)

The approximate formula of rupture distance, Dr ' V
1/3
m , was also proposed by Willett et

al. [90], and Maeda et al. [138]. This approximate equation has been widely used in the

numerical simulations and it is applied in the present study. An experimental study by

Pitois et al. [190] shows that the rupture distance also varies with the separation velocity.

1.3.3.2 Loose con�guration of adhesive particles

Adhesive particles tend to form tenuous aggregates, which may sustain the increasing

con�ning stress without rearranging, as shown for a 2D model [13] in Fig. 1.21. The
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authors observed that the equilibrated con�gurations of cohesive packing are sensitive

to the applied pressure. The structures can be stabilized for very small applied pressure,

but then collapse when increasing the pressure in some pressure range. This can be

found in the �rst regime of compression curves in 2D models of loose systems [14], and

in 3D ones [47], as shown in Fig. 1.22. Indeed, the �rst part of the compression curves

(see rectangle boxes) con�rms that the initial structure is able to sustain the increasing

pressure without rearranging. Note that the compression curve of Gilabert et al. [14] is

expressed as the relationship between solid fraction Φ and reduced pressure P ∗ instead

of the e− log(P ∗) curve conventionally used in soil mechanics.

Figure 1.21: Loose cohesive assembly of disks (from Gilabert et al. [13]). Force magnitude

is encoded as line thickness, with compressive forces in red and tensile ones in green.

Blue lines correspond to null normal contact forces.
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Figure 1.22: An example of compression curve of loose systems obtained with 2D [14]

and 3D [47] models.

1.4 Experimental investigation versus numerical investigation

1.4.1 Existing studies combining experimental and numerical methods

It is well recognized that experimental methods hardly enable to get insight into the mi-

crostructure of specimens, especially to measure precisely intergranular forces between

particles subjected to growing external forces. However, with the advanced techniques,

we can count accurately the capillary bridges between particles (using FM for instance),

or capture and distinguish clearly convex and concave menisci (using ESEM for instance),

or access and reconstruct completely the microstructure of specimens at dimensions from

millimeters to micrometers (using XRCT for instance). In practice, some factors can con-

siderably and directly a�ect the results. Among other factors, one can cite the technique

itself, the quality and the inherent noise of the equipment, or the environment, which is

of critical importance in the case of in-situ observations. Therefore, we sometimes need

to perform several tests for measuring a given quantity. Generally, it is really di�cult to

overcome the inconvenience of external factors. Conversely, with the numerical simula-

tions, we can idealize the materials and the testing conditions, with minimal disturbance

from external factors. Alternatively, we can simulate in a realistic manner the imperfect

conditions applied or observed while testing physically the specimens. Therefore, the

numerical results will be helpful to get information on unmeasurable quantities or to

interpret non-ideal experiments.

Each method, either numerical or experimental investigations, has its own strengths

as well as inherent limitations. Both could provide useful observations to improve the

general knowledge. As a consequence, the combination of numerical and experimental

observations is not only a way to overcome the shortcomings of each method but also
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an opportunity to complete and validate each other. A summary of the main appli-

cations that have utilized the combination of experimental observations and computer

simulations to study the behavior of porous or granular materials is provided in Table 1.3

(partially succeeding from Moreno-Atanasio et al. [50]). Selected examples (typical stud-

ies) found in the literature are shown in Table 1.3, where are indicated the application,

material and parameter used to link experiment and computer simulation, and appro-

priate referenced works.

The link between experiments and computer simulations is always established through

the exchange of structural information between the two techniques. In Table 1.3, the

link between experimental and numerical investigations mainly focuses on the following

phenomena: �uid �ow and transport properties, mechanical loading of granules and gran-

ular beds, and particle packing. A brief summary of the most characteristic parameters

obtained from XRCT and computer simulations is described below.

Firstly, the study on oil and water distribution within the beads, reported by Sukop et

al. [156], has shown one of the most robust ways of coupling XRCT with computer sim-

ulations. In this study, the initial structure was transferred into the computer software.

The authors then compared the distribution of oil and water by comparing the relative

content of each �uid plane by plane. The distribution of the two phases within spe-

ci�c pores was then visualized. In addition, Selomulya et al. [153] also presented the

transport properties (permeability and tortuosity) of �lter cakes of which XRCT digi-

tal images were transferred into a LBM software. The simulated relative permeabilities

were calculated according to Darcy's law. Moreover, Wang et al. [154], using the LBM

simulations, obtained a similar value of permeability for exactly the same bead which

was used in the experiments by Nakashima and Watanabe [157].

Secondly, Golchert et al. [49, 196] studied the in�uence of the structure of granules

made of glass beads on the compressive behavior of the granule using XRCT and DEM.

They determined particle sizes and positions from the XRCT images and this information

was used to create the computer simulated granule. Besides, Stock [197] suggested that

the displacement of marker particles in powder beads allows the determination of the

�eld displacement. For instance, Fu et al. [193] used marker particles in the study of the

compressive behavior of a bead of sugar particles mixed with some glass particles. They

observed that the markers at the bottom of the bead were displaced less than the markers

near the top of the bead. The authors stated that their results were in agreement with

computer simulation results obtained by other authors using FEM [198]. Therefore, the

comparison was purely qualitative.

Finally, the combination of XRCT and computer simulations allows a direct and

easy comparison and validation of the particle packing predictions by computer mod-

els [48, 193]. The investigated materials include the monodisperse glass spheres, poly-

disperse glass spheres, and irregular polydisperse microcrystalline cellulose particles. By

obtaining di�erent cross sections from the XRCT, the particle size distribution was ob-
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tained, compared to SEM results and provided to DEM simulations. They found a good

agreement for the radial distribution function between experiment and simulation, except

the case for cellulose particles. This work shows a typical case in which limitations in the

computer models are the origin of the di�erences between the data obtained from XRCT

and the predicted simulation data. In contrast to Fu et al. [48, 193], Jia et al. [194, 195]

studied the predicted packing of irregular particles by using the real particle shape as

an input for the computer simulations. Therefore, the link between simulation and ex-

periments presented by these authors is a combination of parametric and imaging link.

Furthermore, a sophisticated algorithm able to produce particulate beads with a speci�c

value of coordination number and packing fraction distribution has been developed [191].

The results were compared to the values obtained from XRCT for a bead made of glass

beads [101]. They also found a good agreement between simulations and experiments in

all cases of monodisperse and polydisperse spheres.
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1.4.2 Combination between the XRCT and the DEM

One of the most suitable simulation techniques to couple with the XRCT in the study

of mechanical properties of granular materials is the DEM. DEM considers particles as

individual entities with physical and geometrical properties (elastic modulus, density,

particle size distribution and di�erent shapes). The DEM simulation could provide a

direct correlation between external load and internal granular behavior with realistic

contact deformation [13]. Therefore, we present brie�y here some of the most important

parameters that are obtained by combining XRCT and DEM, such as particle shape,

porosity distribution and structures of pores, characterization of contact network, radial

distribution function, and particle displacements.

1.4.2.1 Particle shape

The most common way to simplify particle shape is to consider irregular particles as

ellipsoids. Wang et al. [199] applied this technique to study the irregular particles (lime-

stone and sandstone), whose shapes were obtained from XRCT. The model particles were

then characterized by having the same mass and inertia moments as the original parti-

cles. This method was described in terms of a spherical harmonic expansion [200, 201].

By applying the volume of the equivalent ellipsoids, Wang et al. [199] shown that the

ellipsoid volume overestimated the real particle volume meanwhile the reconstructed im-

ages of limestone and sandstone were reproduced qualitatively well by the equivalent

ellipsoidal simulation. Therefore, this combination is extremely useful because it allows

an easy manipulation of irregular particle without making the codes very complex. Sev-

eral algorithms used to describe di�erent particle shape properties (such as roundness

and inertia moments) were also proposed by Al-Raoush [192] and Lin and Miller [127].

Wang et al. [199] also proposed the clumping of spheres method, using XRCT images

to simplify particle shapes, and they can be easily handled by simulations. Fig. 1.23

shows two schematic representations of the clumping of spheres method in which the

tomographic image of a real particle was used to create a computational equivalent par-

ticle. Fig. 1.23(a) illustrates the equivalent particle using the non-overlapping technique.

The overlapping method of clumping the spheres is presented in Fig. 1.23(b). In the �rst

method, the shape and volume of the �nal modeled particle are very di�erent from the

real one because of the presence of pores between the clumped spheres, unlike the real

object. Therefore, the �nal structure is made of clusters of spheres which do not show

a relative motion between them, in principle [199]. However, with the second method,

it allows the overlap of the individual spheres, and therefore avoiding the interstitial

arti�cial pores. Nevertheless, this method may be computationally very expensive de-

pending on the irregularity of the real particle and on the requirement of accuracy of the

simulated particle [50].

Other authors proposed a simple solution and ignored the non-sphericity of particles
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Figure 1.23: (a) Illustration of the clumping of spheres method with no overlapping

particles. From left to right: the tomographic image, the actual clumping method, and

the simpli�cation of particle shape used by DEM. (b) Illustration of the clumping of

shapes method with overlapping particles (from Moreno-Atanasio et al. [50]).

if the particle shape was not strongly elongated [49, 196]. In these cases, the centers

and radii of particles can be obtained directly from XRCT and these parameters are

straightforwardly transferred to computer simulation.

1.4.2.2 Porosity, porosity distribution and structures of pores

Porosity and distribution of porosity in a sample is probably the most common param-

eter used to link XRCT and DEM. This parameter strongly a�ects the mechanical and

physical behavior of materials, such as mechanical strength, �ow-ability, or permeabil-

ity. Therefore, the porosity predicted by simulations necessarily has to be compared and

validated with the values obtained from XRCT. Some typical works reported here have

not been linked with simulations but these works provide the possibility to relate XRCT

and numerical simulations in future works.

The analysis of the bulk or local porosity of the samples exposes some problems: the

scanned areas may not be representative of the whole specimen, the identi�ed algorithm

for di�erentiation between grains and pores (namely, the segmentation process) may be

inaccurate, and the resolution of XRCT images may not be high enough. Therefore, we

can consider di�erent local scans from di�erent parts of the specimen as a representative

value of porosity. We use this value to compare with the bulk porosity of whole sample.
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Selumulya et al. [153] performed six scans of di�erent sample region in order to obtain

an appropriate value of bulk porosity of the material, and compared with the porosity

of the real sample. The authors analyzed the porosity of the sample versus height. This

is the most common way of characterizing the porosity of materials. Interesting studies

regarding the analysis of porosity distribution with height within a cylindrical specimen

has been performed [202, 203].

The characterization of the porosity of samples was also analyzed by the pore net-

work structure in term of the number of pore bodies, pore throat, and the coordination

number of pores [101, 204]. Al-Raoush and Willson [101] considered eight di�erent sys-

tems mainly made of glass beads although some of them were made of natural marine

sand. They found that the di�erences in the number of pores, body pore sizes and pore

coordination number is approximately 50 % despite the fact that the macroscopic value

of porosity was similar in all samples. Interestingly, they also compared the results with

low and high resolution XRCT images and concluded that a good resolution is needed to

minimize the error of the estimation. This is one of the most detailed study in literature

which analyzes clearly pore properties.

Other studies using XRCT, with no comparison with simulation, were performed

to determine parameters such as the average pore diameter, number of pores per cross

sectional area [144, 205]. XRCT results are also compared with the ones obtained from

mercury intrusion porosimetry. One of the most interesting parameter is the pore size dis-

tribution analyzed directly from the tomographic images, as illustrated in Fig. 1.24 [144].

By analyzing di�erent samples with the two techniques, the authors concluded that

XRCT and mercury intrusion porosimetry yield very similar overall porosities; notewor-

thy is the fact that only the largest pores (so-called macropores) were analyzed [144].

Figure 1.24: Pore size distributions of granules produced under high shear (a) calcu-

lated from tomographic images; (b) measured by mercury porosimetry (from Farber et

al. [144]).

Finally, the porosity of granular materials can be characterized in many possible
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ways and using various metrics, such as bulk and local void ratio, spatial distribution of

density, number and size of pores, etc. These quantities do not only complement each

other but also can be favourably injected into computer simulations in general, and the

DEM in particular in order to provide a detailed comparison with XRCT.

1.4.2.3 Microstructure characterization

The characterization of the contact network of granular materials is very important to

understand how the material behaves under an external applied force. One of the most

important characteristic of the contact network is the coordination number of the system.

The coordination number is de�ned as the number of contacts per grain. A contact

network can be characterized not only by the total coordination number of the whole

structure but also by the local values of the number of contacts. In fact, the coordination

number has been characterized in many studies using XRCT [206, 101, 207, 208, 209],

in studies using XRCT and optimization methods [191, 192], and many studies using

the DEM. However, one of the most interesting combination of XRCT and DEM for

analyzing the coordination number can be found in Marmottant et al. [210]. The authors

observed the structure of compacted NaCl irregular powders, the coordination number

is shown in Fig. 1.25.

Figure 1.25: Comparison of coordination measurements on numerical sphere packings

produced by DEM and by analysis of XRCT images of (a) the mean coordination number

z, and (b) the mean contact area A between touching particles normalized by the square

of the particle radius R (from Marmottant et al. [210]).

They show that the coordination number obtained from the digitization algorithm

slightly overestimate the one obtained from DEM computations (see Fig. 1.25(a)). The

measured mean contact areas are also somewhat greater than those given by the DEM
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calculations (see Fig. 1.25(b)). This discrepancy is due to the digitization procedure,

which arti�cially increases the measured area (because of the �nite voxel volume), causing

for example a nonzero area for a point-contact between two particles [210].

The determination of the coordination number in granular media is also a typical sub-

ject in stereology and algorithms for extracting this parameter from digital images [211].

Nevertheless, the estimation of the coordination number and the characterization of the

contact network have not been extensively investigated in engineering applications in

spite of the key role of these parameters to understand comprehensively the behavior of

granular materials under di�erent loading conditions.

1.4.2.4 Radial distribution function

Radial distribution function (RDF) or pair correlation function is also a common way of

comparing the structures obtained from simulations with those from experiments. The

RDF is the probability of �nding a particle center in a spherical shell. Many examples

of the use of RDF can be found in the literature [212]. The detailed information of the

RDF will be also described in Chapters 2 and 3. In this section, we only present a typical

study using both of XRCT and DEM for the RDF.

The in�uence of particle shape on the local packing of particles is studied by Fu et

al. [48, 193]. These authors observed that the �rst peak of the RDF, obtained from

XRCT, was lower than the one obtained from DEM simulations, as illustrated in Fig. 1.26.

The oscillations in the RDF extended through a longer distance in densely packed states

and were quickly damped in the loosely packed states. This fact was attributed to the

presence of large disordered structures when the system was loosely packed.

Figure 1.26: Comparison of the RDFs of (a) the monodisperse glass packing structure,

and (b) polydisperse glass packing structure obtained from XMT (solid curve) and DEM

simulation (dashed curve).

Other studies also observed the RDF, such as the study of bead compression [213],

characterization of packing structure [206], and the analysis of the in�uence of particle
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shape [192]. In summary, the RDF obtained from XRCT can provide extensive informa-

tion for the corroboration of the DEM.

1.4.2.5 Particle displacements

The determination of particle displacements is usually applied in XRCT and DEM to

visualize the changes in the structure of a granular material. Although in most cases,

particle displacements have not been used in conjunction with DEM, it o�ers a direct

way of linking simulations and experiments. Here, Fig. 1.27 shows an example of the

comparison between the DEM and the experiment under triaxial tests of cemented sand.

Fig. 1.27 shows the �nal numerical specimen (a) [86], alongside the equivalent laboratory

sample (b) [214]. A conjugate shear plane can be observed clearly in the laboratory

sample. A similar failure can be seen in the corresponding image of the numerical

sample, which has fairly distinctive non-uniform deformations.

(a) (b)

Figure 1.27: (a) Cemented numerical sample (from de Bono et al. [86]) and (b) laboratory

sample (from Marri et al. [214]) after shearing to 20 % axial strain under 1 MPa con�ning

pressure.

In many studies using XRCT, the 2D/3D Digital Image Correlation (DIC) method

has been extensively applied to analyze the micro-macroscopic displacements of particles
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under di�erent loading conditions [129, 215, 209, 56, 216]. This approach provides an

ideal framework to compare experiments on granular materials and DEM simulations at

both macroscopic and microscopic scales.

In our study, the DEM and the XRCT are chosen to observe the mechanical behavior

of wet granular materials from macroscopic level to microscopic level. We performed oe-

dometric compression tests in order to investigate the di�erences between the irreversible

behavior observed experimentally and the one predicted by numerical simulations.

1.5 Conclusion

In this chapter, we have reviewed the mechanical behavior of bonded granular materials

which were observed by using both experimental and numerical investigations, with a

particular focus put on wet granular materials. A brief description of the behavior of

granular materials is also given. Three common non-destructive experimental methods

and several computer simulation methods which were usually applied to approach the

behavior and the structure of granular materials, from macroscopic to microscopic levels,

are succinctly presented. Among various numerical methods, the DEM is one of the

most popular applied to investigate the behavior of wet granular materials. We have

introduced the following remarks: (i) adhesive granular materials have been observed

less frequently than cohesionless ones; (ii) dense states of granular materials were studied

signi�cantly more than loose or very loose states; (iii) the association of the DEM and

the XRCT is still limited in the study of granular materials in general and wet granular

materials in particular. Therefore, the work presented here will combine DEM and XRCT

to investigate wet granular materials, in very loose states stabilized by the presence of

a very small amount of interstitial liquid. In the following chapters, we will present

experimental and numerical evidences, which will be analyzed at both macroscopic and

microscopic scales.





CHAPTER 2

Experimental investigations

In this chapter, we present the observations of grain-scale behavior of a wet gran-

ular material in very loose state under one-dimensional compression tests, com-

bined with X-ray computed tomography. We �rst describe the global compaction

behavior of this material. A procedure to process images is then presented. It

involves an algorithm to detect spherical structures from 3D tomography images,

and the analysis of microstructure properties. A link between micro and macro-

scopic behavior is �nally discussed to get a better insight into the macroscale

behavior based on the microscale one.
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2.1 Introduction

So far, many authors investigated the macro- and micro-mechanical behavior of wet

granular materials [10, 33, 12, 34, 32, 35] (among others). These works evidenced the

link between the macroscopic mechanical behavior and the changes of microstructure.

However, few works have focused on the grain-scale behavior.

Moreover, among various non-destructive experimental techniques, the XRCT is a

high-resolution non-destructive 3D observation method, that does not require any sample

pre-treatment. This technique can advantageously be combined with mechanical loading

tests. Such a combination constitutes a clear strength of this method. Therefore, several

recent studies used this technique to investigate the microstructure of granular materials

with / without combining mechanical loading or any other test [144, 217, 218, 128, 191,

192, 209, 56, 35]. However, most of these works focus on the analysis of dense packing

of cohesionless particles of large size.

In this chapter, we present an experimental investigation of a wet granular material

assembled in a very loose state by means of XRCT. A cylindrical sample constituted

of thousands of glass beads (average diameter: 100 micron) with liquid bonds in the

pendular state was submitted to an oedometric compression test, which consisted in

various compression steps. At every step, a XRCT scan was performed.

2.2 Material and methods

2.2.1 Material

The studied material is composed by spherical glass beads, an industrial product. Beads

with diameters ranging from 80 µm to 104 µm were chosen. With these diameters,

particle weight looses relevance with respect to capillary forces [96]. Furthermore, the

beads are large enough to be satisfactorily resolved by the XRCT. The speci�c density

of this material is equal to 2,460 kg.m−3. The grain size distribution of the chosen glass

beads is shown in Fig. 2.1.
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Figure 2.1: Cumulative grain size distribution of glass beads.

2.2.2 Specimen preparation

Two types of oedometric cells were used for compression tests. The �rst one is a metallic

cell with 50 mm of internal diameter and 20 mm of height � hereafter called cell φ50,

shown in Fig. 2.2. The second one is a polymethyl methacrylate (PMMA) cell with

20 mm of internal diameter and 10 mm of height � hereafter called cell φ20, shown in

Fig. 2.3. The oedometric cell φ20 mm was made of PMMA to minimize X-ray absorption

through the testing device. This cell was used in combination with XRCT.

(a) (b)

(c) (d)

20 mm
f50 mm

Figure 2.2: Specimen preparation for cell φ50. (a) Metallic cell φ50, (b) specimen

preparation, (c) specimen before testing, and (d) specimen after testing.

The specimens were prepared with the following steps:
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(a) (b)

(c) (d)

10 mm

f20 mm

Figure 2.3: Specimen preparation for cell φ20. (a) PMMA cell φ20, (b) specimen before

testing, and (c) and (d) specimens after testing.

• The glass beads were mixed with water at an initial water content of w0 = 3.5 %,

to ensure that the specimens remained in the pendular regime at any time.

• The oedometric cell was placed on the support system (see Fig. 2.4). It was then

�lled with the wetted glass beads by using a controlled pluviation method, de-

scribed hereafter. The �lling was performed by placing the wetted glass beads on a

�xed sieve with a 200 µm opening. The sieve was vibrated vertically with a vibra-

tion machine. Thanks to the vibration, clusters of glass beads passed sequentially

through the sieve to �nally fall into the cell. The height of free fall (hf ) from the

sieve bottom to the cell bottom was varied between 80 mm and 260 mm.

• All specimens were prepared in an air-conditioned room. The preparation of each

specimen took approximately from 30 to 45 minutes.

• The top surface of the specimen was then perfected by using a small iron wire to

cut the excess soil (see Fig. 2.2(b)). This action must be done carefully and gently

in order to avoid any perturbation to the initial structure. Height of specimen is

20 mm in the case of cell φ50 and 10 mm in the case of cell φ20 (see Figs. 2.2(a)

and 2.3(a)). The specimens before testing are shown in Figs. 2.2(c) and 2.3(b).

• After the compaction test, the water content of the specimens was measured by

oven-drying (wap).

The initial parameters of specimens after preparation are listed in Table 2.1. In

this table, the tests named using pre�x OD are performed with cell φ50 and the tests

named using pre�x CT are carried out with cell φ20. The water content of all specimens
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Figure 2.4: Schematic view of the system for preparing the specimen.

after preparation is strongly a�ected by the height of free fall (hf ). For instance, the

water content after testing is wap = 1.60 % for the highest height (hf = 260 mm), and

wap = 2.71 % for the smallest height (hf = 80 mm). Indeed, with same initial conditions,

the evaporation of samples is proportional to the height of free fall. Clear evidences are

given in Table 2.1: the maximal evaporation amounts to 1.90 % of water content (relative

reduction of ≈ 54.29 %) for the highest height and the minimal evaporation corresponds

to 0.79 % of water content (relative reduction of ≈ 22.57 %) for to smallest height.

Although the water contents after preparation were quite small, the specimens were still

stable in very loose states. The calculated degree of saturation (S < 5 %) con�rms

that the specimens are always maintained in the pendular state. This con�rms that the

capillary forces between grains play a key role to maintain the stability of specimen's

structure.

Moreover, the relationship between initial void ratio e0, initial porosity n and the

height of free fall hf is illustrated in Fig. 2.5. The circle-red points represent the speci-

mens with cell φ50, the square-blue points represent the specimens with cell φ20, and the

triangle-green points represent other specimens which were not used for further analysis.

Fig. 2.5 con�rms that the higher is the height of free fall, the smaller the initial void

ratios are.
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Table 2.1: Initial parameters of selected specimens after preparation. The sample CT03

was prepared for the XRCT tests. wap was measured after testing.

Tests
Parameters

hf (mm) n (%) wap (%) e0 (-) S (%)

OD01 80 70.19 2.71 2.35 1.91

OD02 80 70.12 2.70 2.35 2.12

OD03 120 66.56 2.00 1.99 1.91

OD04 120 66.86 2.30 2.02 2.49

OD05 150 63.72 2.50 1.76 2.49

OD06 150 63.95 2.20 1.77 2.48

OD07 260 60.60 1.80 1.54 1.68

OD08 260 60.02 1.60 1.50 2.19

CT01 80 70.05 2.89 2.34 1.92

CT02 80 69.93 2.85 2.33 1.42

CT03 80 69.67 - 2.30 -

y = 3E-05x2 - 0.0158x + 3.4126
R² = 0.9971
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Figure 2.5: Initial void ratio e0 and initial porosity n versus height of free fall hf .

2.2.3 Oedometric compression tests

After its preparation, the specimen was carefully placed on the loading platform of the

compression system, as shown in Fig. 2.6. In this system, the piston was �xed to the load

cell which has a maximum capacity of 1,000 N. A linear variable di�erential transformer

(LVDT) was installed to measure the displacement of the loading platform. Before
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recording the signals, the cell was moved upward in order to approach the piston. A rate

of 0.5 mm/min was set up for the loading cycle. The maximal applied force was limited

approximately to 700 N. All signals of load cell and LVDT were received by the data

logging system using the software LabVIEW.

Cell

Load cell

Piston

Specimen

Controller 
box

LVDT

Loading platform

Data acquisition 
system

Figure 2.6: Schematic view of oedometric compression system.

After compression, all specimens were taken out from the cell (see Figs. 2.2(d)

and 2.3(d)) to measure their mass and �nal height. These measures were then used

to validate the quantities measured after preparation and shown in Table 2.1. These

�nal measurements allows verifying the �nal state of the specimens after compression.
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Figure 2.7: Applied force versus time during compression process. The inset shows the

signal noise during the initial stage when the specimen approached and touched the

piston.

Fig. 2.7 illustrates a typical evolution of the applied force with time during the

compression process. Based on this curve, the initial vertical stress was speci�ed after
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removing the e�ect of noise (see inset of Fig. 2.7), speci�cally at the moment when the

specimen surface touched the piston. The settlement of specimens was then determined

from the displacement measured by the LVDT. The void ratio was �nally calculated

from the settlement and the initial void ratio of specimens.

2.2.4 X-ray computed tomography tests

2.2.4.1 X-ray scanner in Laboratoire Navier

The CT images of this work were captured on the XRCT laboratory scanner available at

Laboratoire Navier (UltraTom microtomograph from RX-Solutions) using a micro-focus

source Hamamatsu L10801 (230 kV, 200 W, 5 µm) and a �flat-panel� imager Paxscan

Varian 2520 V (1920x1560 pixels, pixel size 127 µm). The hollow rotation stage is able

to support heavy samples (up to 100 kg) and was designed to receive in-situ experiments.

A view of the in-situ experiments performed in the laboratory is illustrated in Fig. 2.8.

Rotation stage

X-ray source

CDD detector

Rails

Specimen

Figure 2.8: Global view of in-situ compression test combined with XRCT at Laboratoire

Navier.

The XRCT images are reconstructed by using the GPU-based reconstruction software

Xact developed by RX-Solutions. Some �lters may be used to correct some artifacts as

ring artifacts.

2.2.4.2 Apparatus

Apart from the cell φ20, several gaskets and pistons were also designed for performing

XRCT scans, as shown in Fig. 2.9. The height of pistons were manufactured with

di�erent values in millimeter, as written in Fig. 2.9(a). Several wedges in paper were
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also made with di�erent values of thickness, as shown in Fig. 2.9(b). These wedges are

used to alter accurately the compressed height during the in-situ compression tests.

Figure 2.9: (a) The PMMA cell with several gaskets and pistons (heights δ given in mm,

see Fig. 2.10 for de�nition of δ). (b) Several wedges with di�erent values of thickness.

2.2.4.3 Scanning procedure

The scanning procedure combined with an in-situ compression test for the sample CT03

(mentioned in Table 2.1) is now described. The specimen was scanned at various stages

of compression; the order of scanned compressed heights is depicted in Fig. 2.10. The

detailed scanning program is given in Table 2.2, in which the void ratio was calculated

from the compressed height and initial parameters of sample CT03. The height of pistons

δ is given in Fig. 2.9.

At each level of the compressed height, a 3D image was scannned at the scale of the

whole specimen (scans hereafter referred to as �global scan� or GS). Besides, at the levels

corresponding to heights h1, h3, h5, and h7, 3D images of the central part of the specimen

(see the 10-mm diameter dashed-region in Fig. 2.10) were also scanned at a �ner scale

for a more detailed view of the grains and the pores (scans hereafter referred to as �local
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scan� or LS). For the global scans, X-ray source voltage and current were respectively

70 kV and 130 µA; the voxel size was 13 µm and a single scan lasted 80 min. For the

local scans, X-ray source voltage and current were respectively 70 kV and 95 µA; the

voxel size was 6.5 µm and a single scan lasted 240 min. 3D images were saved in 16 bits

and subsequently converted into 8 bits in order to reduce memory usage for subsequent

image analyses.
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d 

Figure 2.10: Illustration of the compressed heights of in-situ compaction test that were

scanned for XRCT. The dashed-region corresponds to a 10-mm diameter cylinder and

denotes the central part of specimen imaged during local scans.

Table 2.2: Details of the scanning program. G: global scan, L: local scan.

Scan hi (mm) ei (-) Notation

01 h0 10 2.2963 S01G

02 h1 9.8 2.2303 S02G

03 h1 9.8 - S03L

04 h2 8.7 1.8678 S04G

05 h3 8.5 1.8678 S05G

06 h3 8.5 - S06L

07 h4 7.5 1.4722 S07G

08 h5 7.3 1.4063 S08G

09 h5 7.3 - S09L

10 h6 6.4 1.1096 S10G

11 h7 6.2 1.0437 S11G

12 h7 6.2 - S12L
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2.3 Mechanical behavior under increasing vertical stress

All the tests were carried out on specimens with very loose initial structures, from e0 =

2.35 to e0 = 1.50. Fig. 2.11 shows the compression curves for di�erent values of initial

void ratios. All the tests were duplicated to check repetability. The initial stress at the

bottom of specimens including their weight varies equals 0.048 kPa and 0.024 kPa for

cells φ50 and φ20, respectively.
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Figure 2.11: Void ratio versus vertical stress during oedometric compression tests for

cells φ50 and φ20.

Based on the shape of these curves and the range of vertical stress, three stages can

be identi�ed. During the �rst stage, under low stresses (< 0.1 kPa), void ratio e slightly

decreased. Void ratio then sharply decreased in the intermediate stage. Finally, in the

third stage, void ratio gradually decreased for vertical stresses larger than 10 kPa. In

particular, all curves (except those for cell φ20) are very close in this stage, irrespectively

of the initial void ratio. In other words, when almost no further rearrangement is possible,

the decrease of void ratio was very small and almost limited to the elastic deformation

of grains at the contact points.

For the cell φ20, upon growing of the vertical stress, the decrease of void ratio is

slower than for the cell φ50. This can be explained by the e�ect of the diameter (20 mm

against 50 mm) and the height (10 mm against 20 mm) of the cell, which tend to increase

lateral friction.

It should recognized that the macroscopic behavior of the studied material under 1D

compression tests is very special. Indeed, in soil mechanics [1, 5, 219, 30], only the �rst

two stages are observed in oedometric compression curves. Interestingly, the last stage
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observed in the compaction curve in the present study was also described in the S�shape

curves obtained by Tang et al. [219]. Similarly, three stages are also observed in the

numerical results of isotropic compression with the same material [47].

2.4 Global scan observations

Eight global scans (Table 2.2) were successively captured at various the compaction

steps, and were named as follows: S01G, S02G, S04G, S05G, S07G, S078G, S10G and

S11G. 3D image analyses were carried out by using the open source software Fiji.

2.4.1 3D reconstruction from the image stack

After converting to the 8-bit images, the 3D sample volume at di�erent states of com-

paction was reconstructed, as shown in Fig. 2.12. These 3D images, with diameter 20

mm and height hi, correspond to the global scans given in Table 2.2. A quarter of these

3D images was removed to observe the inside of the specimen. Pores and grains can

be distinguished thanks to grey levels. Lighter grey levels typically correspond to more

absorbing materials, while darker grey levels correspond to less absorbing materials.
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(a)
S01G

(b)
S02G

(c)
S04G

(d)
S05G

(e)
S07G

(f)
S08G

(g)
S10G

(h)
S11G

Figure 2.12: 3D reconstructed images of the specimen at di�erent stages of compaction.

From (a) to (h), the images correspond to the global scans in Table 2.2.
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2.4.2 Segmentation process

From the 3D image stacks of all global scans, the grey level histograms were successively

extracted, as shown in Fig. 2.13. For 8-bit images, grey levels range from 0 to 255.

Depending on compaction steps, the two peaks more or less visible on each histogram

are progressively changed. The �rst one on the left-hand side strongly decreases while

the second one on the right-hand side increases. At the highest level of compaction, the

left peaks of the dark-green curves (continuous and dashed lines) almost no longer exist.

Meanwhile the peaks of these curves on the right-hand side reach the highest level. This

con�rms that the specimen approached a very dense state.
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Figure 2.13: Illustration of grey level histograms for all global scans.

Furthermore, a threshold, shown for illustrative purpose on the same �gure, was used

to delineate a border between air dominated portions of the sample (left of the line) and

aggregates (including water) on the right of the line. Distinct grey-level threshold values

were found in the interval [105:135], depending on the considered compression step. With

this piece of information, the images were segmented to recalculate the total void ratio,

as well as the void ratio distribution during the compaction test. Grey-level threshold

values of 128, 129, 121, 127, 131, 132, 128 and 133 were selected for scans S01G, S02G,

S04G, S05G, S07G, S08G, S10G, and S11G, respectively.

There exist a lot of segmentation methods in the Fiji software. In the present study,

the IsoData algorithm, proposed by Ridler and Calvard [220], was chosen for all analy-

ses. The procedure divides the image into object and background by taking an initial

threshold, then the averages of the pixels at or below the threshold and pixels above are

computed. The averages of those two values are computed, the threshold is incremented

and the process is repeated until the threshold is larger than the composite average.

That is, threshold = (average background + average objects)/2. Fig. 2.14

shows an example (horizontal slice) of the segmentation process corresponding to two
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consecutive stages: a) initial state (original image) and b) segmented image (or bina-

rized image). After thresholding, the aggregates (black) and the air (white) are clearly

distinguished. The void ratio is then recalculated by dividing the number of black voxels

by the total number of voxels of the 3D segmented image.

Figure 2.14: Images at di�erent steps of segmentation: (a) original image, (b) segmented

image (or binarized image).

2.4.3 Heterogeneity

2.4.3.1 General description
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Figure 2.15: Illustration of grey level as a function of the height of specimen.

As shown in Fig. 2.12, it appears clearly that the density is not homogeneous within

the cylindrical sample, especially at the periphery where more voids are observed. A

larger density with less voids at the top and bottom of the specimen is also observed.
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There exist also several large holes in the center of the specimen in the �rst compression

steps (S01G, S02G, S04G, and S05G). This is due to the specimen preparation, and also

to the boundary conditions imposed by the ring. In other words, during the specimen

preparation, the friction between the external ring and the grains opposes to the dis-

placement of other particles. The cohesion of grains also plays a remarkable role to limit

the movement of particles.

At higher levels of compaction (Figs. 2.12(e, f, g, and h)), the structure is strongly

rearranged in the central layers because the densest state is obtained in this region

(horizontal band). Reversely, the structure is slightly a�ected at the bottom and top

layers.

Moreover, the average grey level distributions of all global scans were also extracted

to observe the change of density during compaction. Fig. 2.15 illustrates the average

grey level according to the elevation (h) of all scans during compaction. In general,

the specimen is not homogeneous. Initially, the specimen is fairly homogeneous from

h = 1 mm to h = 7 mm (from bottom to top of specimen). After a slight compaction

(S02G), the density of the upper part of specimen slightly increases while the one at the

lower part (from 0 to 2 mm) is not changed. The upper part of specimen is continuously

compressed at higher compaction (S04G and S05G) while the lower part is negligibly

disturbed. For the highest compaction (S07G, S08G, S10G, and S11G), the central

layers of the specimen are strongly settled, while the bottom layers are insigni�cantly

rearranged.

2.4.3.2 Spatial distribution of void ratio

In order to observe the spatial distribution of void ratio of all global scans during the

compaction test, �ve types of diagram are proposed in Fig. 2.16. Firstly, the sam-

ple is divided in ten equal layers hi (Fig. 2.16(a)). Ten concentric hollow cylinders

with average diameter Ri are then distinguished (Fig. 2.16(b)). Thirdly, the sample

is split into eight equal sectors (Fig. 2.16(c)). Fourthly, �ve di�erent volumes, with

the size L×B×H = 10×10×H mm3 = 770×770×H voxels3 (H is specimen's height)

are investigated (Fig. 2.16(d)). Twelve di�erent volumes according to X and Y direc-

tions are �nally identi�ed (Fig. 2.16(e)). Their size is L×B×H ' 3.25×3.25×H mm3 =

250×250×H voxels3. Hereafter, the �ve above diagrams are referred to as diagram 1,

diagram 2, diagram 3, diagram 4, and diagram 5, respectively.

For the diagram 1 (Fig. 2.16(a)), the void ratio distribution according to the elevation

for di�erent compaction steps is depicted in Fig. 2.17. At the initial state (S01G and

S02G), from bottom to top, the void ratio is largest at the sixth layer (emax = 2.65)

because of the in�uence of the wall in the specimen preparation process. Meanwhile

the sample is denser at the bottom layers and densest at the top layers. This is caused

by the end of preparation process when the grains were widely spread on the surface of
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Figure 2.16: Schematic view of several types of diagram for calculating the heterogeneity.

(a) Ten equal layers, (b) ten concentric cylinders, (c) eight equal sectors, (d) �ve di�erent

volumes, and (e) di�erent volumes according to X and Y directions.

the cell. The top layers are therefore more homogeneous than the other layers. These

observations con�rm that the void ratio in this region is the smallest initially. For

the higher compaction level (S04G and S05G), the structure is notably compacted and

rearranged. Void ratio in the central and top layers is reduced, especially the central

layers of scan S05G. Up to scans S07G and S08G, the structure is signi�cantly perturbed.

The void ratio in the central layers strongly decreases (from e = 2.25 to e = 1.15,

≈ 49.80 %). This reduction is larger than the one observed in the bottom layers and

the top layers (from e = 1.51 to e = 1.15, ≈ 23.25 %). At the densest states (S10G and

S11G), a strong decrease of void ratio is obtained in the central layers (emin = 0.7) while

the structure in the bottom layers is slightly rearranged. Actually, when the specimen

becomes denser in the center, the corresponding layers seem to prevent the displacement

of the top layers. This explains why it is really di�cult to compact this specimen at

S11G although the total void ratio is decreased by approximately 50 % (from e = 2.23 to

e = 1.11). This is already con�rmed via the decrease in the total void ratio in Fig. 2.11

from the loosest state (S01G) to the densest state (S11G).

For the diagram 2 (Fig. 2.16(b)), Fig. 2.18 depicts the spatial distribution of void

ratio which is investigated as a radial function, considering di�erent concentric hollow

cylinders having the same height for each scan. In general, the mean distribution of void

is rather regular, except the center and periphery of the cylinders in the �rst four scans.

Once again, this demonstrates the remarkable e�ect of the wall friction which is already

mentioned above. In the last four scans, void ratio e variation with the distance to

the center is negligible. This re�ects the homogeneity of the specimen under the higher
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Figure 2.17: Void ratio distribution according to the compressed height of sample for

di�erent compaction steps (diagram 1).
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Figure 2.18: Void ratio distribution according to the average radii of the selected cylinders

for di�erent compaction steps (diagram 2).

For the diagram 3 (Fig. 2.16(c)), the void ratio distribution according to eight equal

sectors for di�erent compaction steps is illustrated in Fig. 2.19. In general, the distri-

bution of void ratio is fairly regular at the initial state, except fro sectors S1 and S8 in

�rst four steps (S01G, S02G, S04G and S05G). In these sectors, there exist several large

pores between grains and the wall (see Fig. 2.12). For the denser states (last four steps),

the structure is really homogeneous.

For the diagram 4 (Fig. 2.16(d)), the void ratio distribution according to �ve equal

volumes for di�erent compaction levels is depicted in Fig. 2.20. With this diagram, the
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Figure 2.19: Void ratio distribution according to eight equal sectors for di�erent com-

paction steps (diagram 3).

distribution of void ratio is always homogeneous upon growing of compaction level. Each

volume is approximately equal to one-third of the total volume of the specimen. It can

therefore be considered as a Representative Elementary Volume (REV). We use these

REV for the analyses in Sec. 2.4.4.

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6

V
o

id
 r

a
ti

o
, e

(-
)

Different considered volumes, Vi (-)

S01G S02G S04G S05G

S07G S08G S10G S11G

Figure 2.20: Void ratio distribution according to �ve equal volumes for di�erent com-

paction steps (diagram 4).

For the diagram 5 (Fig. 2.16(e)), the void ratio distribution at di�erent small volumes

along the x and y directions for di�erent compaction steps is shown in Fig. 2.21. At low

compaction steps, a clear di�erence is observed in the void ratio values between the

borders (x = y = 2 mm and 18 mm) and the center along the x direction. A signi�cant

di�erence is noticed along the x direction. It corresponds to the sectors S1 and S8 in
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Fig. 2.16(c). Meanwhile, along the y direction, the distribution of void ratio e is smoother

than the one in x direction.
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Figure 2.21: Void ratio distribution according to the x (a) and y (b) directions for

di�erent compaction steps (diagram 5).

2.4.4 Pore scale deformation

In order to ensure the homogeneity of the specimen during the compaction, the REV

is used to analyze the pore scale deformation. The volume V2, already mentioned in

the diagram 4 (Fig. 2.16(d)), is chosen for this analysis. Moreover, the use of smaller

volume instead of the entire specimen aims to reduce the memory usage during image

processing.

The total volume and the total pore volume of V2 for di�erent compaction steps is

shown in Fig. 2.22. The total pore volume is calculated by method already described in

Sec. 2.4.3. With two adjacent scans, we can obviously observe a slight di�erence of the
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total pore volume (see the blue columns in Fig. 2.22). The variation of the total volume

is also obtained.
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Figure 2.22: Total volume and total pore volume of volume V2 for di�erent steps of

compaction.

(a) (b)

Figure 2.23: An example of the local thickness for volume V2 (a) at step S01G and a

slice (b) extracted from (a).

Besides, the distribution of pore volume is also analyzed. The algorithm �thick-

ness� [221, 222] in the plugin BoneJ of Fiji is applied to compute the local thickness of

3D structures in 3D images. It de�nes the thickness at a point as the diameter of the
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greatest sphere that �ts within the structure and which contains the point. In other

words, the grains and the pores are precisely separated by this algorithm.

Fig. 2.23 shows an example of volume V2 at step S01G after applying the local

thickness algorithm. In Fig. 2.23, the grains (only the black color) and the pores (the

other colors) are clearly distinguished. Bright colors represent the larger pores. This can

be easily observed via the bright volume in Fig. 2.23(a). Based on the histogram of the

3D images, the volumes of di�erent pores are quickly calculated. Nevertheless, we can

only compute the volume of the pores having the same size (or same color). Therefore,

we cannot distinguish exactly the volume of every pore in the volume V2.
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Figure 2.24: Distribution of pore volume of the volume V2 for di�erent levels of com-

paction.

The distribution of pore volume in volume V2 for each of two adjacent scans is

illustrated in Fig. 2.24. Numbers of pores mean the number of all the pores which have

the same size (same colored voxels). In general, the shape of the distribution of pore

volume in all cases is almost similar. More small pore volumes are created under growing

of the compaction step. In each of two adjacent scans, the larger pore volumes are

negligibly decreased while the smaller ones are signi�cantly reduced (see the continuous



74 Chapter 2. Experimental investigations

line and the dashed line in Fig. 2.24). For instance, in the initial stages (S01G and S02G

� red curves), the smallest pore volume varies from 3×10−4 mm3 to 2×10−3 mm3, and in

the �nal stages (S10G and S11G � green curves), the smallest one varies from 10−6 mm3

to 2× 10−4 mm3. Interestingly, in the larger compaction levels (S07G and S08G � violet

curves), several pore volumes from the scan S08G (dashed curve) are larger than the

ones from the scan S07G. This re�ects a strong perturbation of the structure in these

stages. The evidence in Fig. 2.17 also con�rms this phenomenon.

2.5 Local scan observations

2.5.1 General principles

As described in Sec. 2.2.4.3, four local scans, with 10 mm in diameter, were captured

from the central region of the global scans. An example of 3D reconstructed image from

local scan is illustrated in Fig. 2.25. From the 3D tomography images of the local scans,

cubical subregions (edge length = 1.95 mm) were extracted. One such subdomain is

shown in Fig. 2.25(c). Ten such cubes (hereafter so-called Standard Volume, or SV) were

randomly extracted at di�erent positions within the local scan, to take into account the

sample microstructure heterogeneity.

Figure 2.25: Position of the local scan (b) from the global scan (a) and an example of

investigated cube (c).

The 3D reconstructed image of four local scans is shown in Fig. 2.26. The order

of these scans is already given in Table 2.2. The quarter of each image is also cut

for easily observing the structure. In general, these local scans are fairly homogeneous

although there still exist several macropores at initial stages (S03L and S06L). For the

denser stage, S09L, some of the pores are compressed, and the density is increased,

especially in the central layers. The structure seems very homogeneous at the densest
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stage, S12L. Therefore, the local scans are principally used to analyze the connectivity

as well as the geometrical change induced by compaction. For the reason of computer's

con�guration, several small cubes instead of the entire local scan are extracted to perform

the calculations.

(a)

S03L

(b)

S06L

(c)

S09L

(d)

S12L

Figure 2.26: 3D reconstructed image of four local scans. (a) S03L, (b) S06L, (c) S09L,

and (d) S12L.

Image processing was also performed by using the open-source software Fiji. Besides,

the author's codes (using Matlab software, the programming language Python and the

open-source software ParaView) were mainly used for the image analysis. The algorithm

used to detect spherical structures of 3D images, developed by Xie et al. [223] in 3D

is applied with a suitable development. This algorithm was modi�ed from the one of

Peng et al. [224] in 2D and the Adaptive Hough Transform algorithm (original algorithm)
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of Illingworth and Kittler [225]. Furthermore, a 3D skeletonization algorithm, proposed

by Lee et al. [226] and then developed into a plugin of BoneJ in Fiji by Doube et al. [227],

is also applied to plot the contact network of particles.

2.5.2 Algorithm to detect spherical structures

The algorithm to detect spherical structures from tomography images is illustrated in

Fig. 2.27. A 3D image with a cubic shape, and formatted as a 3D array, was �rst extracted

from the local scans. The center's positions of spheres were then directly located within

the 3D array. Afterward, the radii of the spheres (with identi�ed central position) were

identi�ed. Finally, the 3D reconstruction process and analysis were carried out from the

detected spheres.

The detailed description of the main algorithm (the dashed-red square in Fig. 2.27)

will be given in the following subsections.

Create a 3D image in the 
formatting of array

3D tomography images

Locate the center’s 
positions of spheres

Identify the radii Ri of 
spheres

3D reconstruction

Analyze the connectivity

Compute the gradient field of 3D 
array

Transform the gradient field to a 
3D accumulation array

Locate the XYZ positions of the 
peaks in the accumulation array

Compute the signature curve for 
every identified sphere in image

Estimate the radii from the peaks 
of the signature curves

Figure 2.27: The algorithm to detect the spherical structures.

2.5.2.1 Locating the center's position of spheres

The method to compute the center's position of a sphere in the 3D image is �rst to

identify the voxels that belong to that sphere, and then to compute the centroid of

those voxels. The gradient �eld of image intensity is �rstly computed using the following
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equation:

∇I(i, j, k) = (Vx, Vy, Vz)|(x,y,z)
=
[
I(i, j, k)− I(i, j, k − 1), I(i, j, k)− I(i, j − 1, k), I(i, j, k)− I(i− 1, j, k)

]
(2.1)

where (i, j, k) are the voxel indices, ∇I(i, j, k) is the gradient vector at voxel (i, j, k),

which consists of x, y and z components, and I(i, j, k) is the image intensity at voxel

(i, j, k).

In a gradient �eld, the nonzero gradient vectors are either pointing toward the center

of a sphere or away from it. So, a transform is de�ned to convert the gradient �eld to an

accumulation array, in which the voxel intensity corresponds to the probability of that

voxel being the center of a sphere. The accumulation array has the same dimension as

the gradient �eld. In the accumulation image, the maximum intensity represents the

center position of a sphere. The accumulation array is constructed by an adding process,

as shown in Fig. 2.28. In the gradient �eld, for each nonzero gradient vector ∇I(i, j, k),

a weight value is added to the voxels in the accumulation array upon the line segment

which is de�ned by the vector ∇I(i, j, k). The length of the line segment is set to be

the possible maximum diameter of the spheres, and the magnitude of ∇I(i, j, k) is used

as the weight value. The accumulation array is built from the collecting of all nonzero

gradient vectors from many directions. In Fig. 2.28, the darkest voxel has the maximum

weight.

Figure 2.28: Construction of the accumulation array from the gradient �eld (the added

nonzero gradient vector to the accumulation array for the left, and the accumulation

array after adding the nonzero gradient vector in di�erent directions for the right) (not

to scale).
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2.5.2.2 Estimating the radii of spheres

In order to determine the radii of spheres, a signature curve f(r) is de�ned over the

gradient �eld of the sphere's image, where r is the distance to the center position of the

sphere and f(r) is the averaged dot product of the gradient vector and the radial vector.

Figure 2.29: De�nition of the signature curve (not to scale).

Fig. 2.29 depicts the de�nition of the signature curve, in which (ic, jc, kc) is the center

position of a detected sphere. For a voxel (i, j, k) in the neighborhood of (ic, jc, kc), let

V (i, j, k) be the gradient vector of the voxel, (i, j, k) and q(i, j, k) be the vector joining

(ic, jc, kc) to the center of the voxel (i, j, k). A sequence of discrete r values with �xed

interval is selected. It represents distances to the sphere center (ic, jc, kc). For each r

value, f(r) is de�ned by the following equation:

f(r) =

Σ||~q(i,j,k)|−r|<∆r/2

[ ~V (i, j, k).~q(i, j, k)

|~q(i, j, k)|

]
Σ||~q(i,j,k)|−r|<∆r/21

, (2.2)

where the sum is over all the voxels whose distance from (ic, jc, kc) is within the range[
r −∆r/2, r + ∆r/2

]
.

Fig. 2.30 shows an example of the signature curve. From this curve, the radius of the

sphere corresponds to the distance to center position having the highest value of f(r). In

the example shown, the radius equals seven times the voxel size. It is equivalent to 45.5

microns. Besides, other values of radius are also detected: 6 and 8 times the voxel size

(equivalently 39 microns and 52 microns). Note that, in the present work, only rounded

valued of radius were considered.

Fig. 2.31 illustrates an example for one slice in a 3D image. The blue disks are the

detected spheres, and the red points represent their centers. Incomplete white disks at
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Figure 2.30: An example of a signature curve computed from the 3D image.

the border are not used for center detection.

Figure 2.31: A slice in a 3D detected image (not to scale).

2.5.2.3 Estimating the lost contacts after the detection process

After the detection process, the spheres which have a part located outside of the border

of the cube were not identi�ed (see Figs. 2.25(c) and 2.31). Hence, the contacts between

these spheres and their neighbors inside the standard volume were lost. In order to

estimate the lost contacts, a method is proposed as follows. A new cube which is larger

than the SV (see de�nition in Sec. 2.5.1) is created. It is called the Extended Volume (or

EV) with the size b (see Fig. 2.32) which b = a+2dmax, where a is the size of the SV, dmax

is the maximum diameter of the detected spheres. The EVs were then detected with the

same input parameters and compared with the SVs. All grains inside the SVs and the
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Figure 2.32: Method to �nd the lost contacts, inside cube is the standard volume; outside

cube is the extended volume (not to scale).

EVs having the same coordinates were �rst identi�ed. The grains, around the border

of the EVs, which have contacts with the ones inside the SVs, were then distinguished.

The lost contacts N l
C of the SVs were �nally found. They will be used in the analyses of

geometrical changes in the following sections.

2.5.3 3D reconstruction after detection process

Fig. 2.33 shows an example of a 3D reconstructed cube before and after detection. Each

cube, from top to bottom, corresponds to each local scan. On the left-hand side, the

cubes are directly reconstructed from 3D images (before detection); on the right-hand

side, the cubes are reconstructed from the detected spherical structures. As mentioned in

Sec. 2.5.2.3, the incomplete spheres, located on the border of the SVs, are not identi�ed.

Hence, they cannot be seen in the cubes on the right-hand side in Fig. 2.33 (b, d, f, and

h).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.33: Example of 3D reconstructed cubes of four local scans. Left-hand side:

before detection, right-hand side: after detection. Edge length = 1.95 mm.
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2.5.4 Grain size distribution after the detection process

Fig. 2.34 shows the grain size distribution of all the SVs for the four local scans. Three

values of radii (6, 7, and 8 voxels) were obtained after the detection process. In this

process, the 7 voxels-radius occupied a maximum proportion, approximately 80 %, and

the 6 voxels one occupied a minimum proportion, nearly 2.5 %. From the loosest state

(S03L) to the densest state (S12L), the percentage of 7 voxels-radiii increases and it

reaches a maximum at S12L. Meanwhile, the percentage of 6 and 8 voxels-radii decreases

and reaches a minimum also at S12L.
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Figure 2.34: Grain size distribution of the 3D reconstructed specimens.

2.5.5 General description of the structure at grain-scale

Fig. 2.35 illustrates an example of 3D reconstruction for the SV before and after the

detection. The specimens (a) and (b) were directly reconstructed from 3D tomography

images, in which the small cube (b) was extracted from the specimen (a). The specimens

(c) and (d) are reconstructed from 3D binary images, (d) is also a small cube extracted

from the (c). The specimens (e) and (g) were reconstructed from the exact positions of

particles after detection with tolerances of 0 and 1 voxel, respectively. The small cubes

(f) and (h) were extracted from the (e) and (g), respectively.

Fig. 2.35(a) shows the assembled spheres within the specimen, including the stacks

(lighter grey levels) of spheres and the pores (darker grey levels). In this specimen, several

large pores exist corresponding to a size up to 1 mm and a lot of stacks created from

the spheres have dimension ranging from 0.3 to 0.5 mm. X-ray di�raction (the opaque

layers around the spheres) can be precisely shown in Fig. 2.35(b), by zooming in several

spheres in the specimen (a) and reducing the noise of original images. All small cubes

(Figs. 2.35(b, d, f, and h)) show clearly the contact region at the boundary of particles.
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Moreover, the voxel size obtained in the XRCT tests is around 6.5 micrometers. Hence,

as the average diameter of spheres is 100 micrometers, the spheres reconstructed in 3D

tomography images are recomposed by a thickness around 15 voxels (equivalent to 15

layers). It is well observed that these layers are clearly distinguished in Fig. 2.35(d), but

there is no more sphericity due to binarisation. In fact, these thicknesses always have a

spherical shape (see Fig. 2.35(b)).

The contact between spheres can be clearly seen in Figs. 2.35(b) and (d). Some

typical contacts are denoted by the positions (from 1 to 5) to see its change before and

after the detection. It is well recognized that these spheres are always kept in contact

at these positions in the specimen (see Figs. 2.35(b) and (d)). However, because of the

error after the detection, these spheres are no longer in contact, as shown in Figs. 2.35(f).

Hence, after adding a tolerance of 1 voxel to the diameter of all spheres, the contacts

of these spheres are similar to the ones before the detection. A clear evidence is shown

in Figs. 2.35(h). The change of contacts can be easily seen by the color of spheres, as

follows: the red, green, blue, yellow, magenta are represented the spheres have zero, one,

two, three, and four contacts, respectively.
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Figure 2.35: Example of 3D reconstructed specimen: (a) whole specimen in original im-

ages, (b) small cube extracted from (a), (c) solid part of specimen (binarized images), (d)

small cube extracted from (c), (e) and (g) whole reconstructed specimens with tolerance

0 and 1 voxel, and (f) and (h) small reconstructed cubes extracted from (e) and (g).
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2.5.6 Heterogeneity

As mentioned in Sec. 2.5.1, ten SVs were randomly extracted at ten di�erent positions

for each local scan. After the detection process, the number of particles for the ten SVs

considering four steps (S03L, S06L, S09L, and S12L) are obtained, as shown in Fig. 2.36.

During the detection process, all the SVs were set up with the same input parameters.

The results show that the average number of particles at a denser state is higher: at the

loosest state, S03L (e = 2.23), there are approximately 4000 particles in one cube, while

at the densest state, S12L (e = 1.04), there are approximately 7500 particles.
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Figure 2.36: Number of particles of the ten SVs for four local scans after detection

process.

Besides, the macroscopic solid fraction and the average solid fraction of ten SVs

are illustrated in Fig. 2.37. The triangle points are computed from the void ratio of

the whole specimen (see Sec. 2.4.3). The circle points show the average values, which

were directly calculated from the tomography images. In addition, after the detection

process, the solid fraction is easily computed by the volume of all particles and the

volume of the cube. The results show that the macroscopic solid fraction is di�erent

from that estimated at the center of the specimen. That can be partly explained by the

heterogeneity of the microstructure of the sample. Besides, the solid fraction obtained

after the detection process is smaller than that before the detection; the decrease equals

to 0.05, 0.06, 0.07, and 0.1 for the scans S03L, S06L, S09L, and S12L, respectively. It

seems that the detection process underestimate the radii of the spheres and this problem

is more serious at a denser state.

Furthermore, the solid fraction after the detection process is also recalculated with a

tolerance of 1 voxel (6.5 micron) added in the diameter of spheres (the diamond-shaped-
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Figure 2.37: Macroscopic solid fraction (triangle) and the average solid fraction of 4 local

scans before and after the detection process with a tolerance of 0 and 1 voxel. BD denote

before detection, AD denotes after detection.

magenta points). These values are very close to the ones before detection (the circle-red

points). This con�rms that the use of a tolerance of 1 voxel for all analyses of the 3D

images after the detection process is quite suitable.

2.5.7 Geometrical structure analysis

2.5.7.1 Total coordination number

In granular materials, the coordination number z is de�ned as the average number of

force-carrying contacts per grains. IfNC is the number of force-carrying contacts between

N grains, then the coordination number is z = 2NC/N � as product zN counts each

contact twice. In the present analysis, NC is rede�ned as the number of pairs of contacts

between N grains. Pairs of contacts mean two particles which have a distance between

two centers smaller than or equal to the sum of its radii. In order to reduce the error of

the rounded value of diameters in voxel during the detection process, the e�ect of the

resolution of tomography images, a tolerance in voxel value is used when estimating the

coordination number. This tolerance is de�ned as the distance between two surfaces of

particles. Therefore, in the present part, z is called the total coordination numbers. As

mentioned in Sec. 2.5.2.3, the diameters after the detection process are smaller than the

real diameters of material. Hence, a tolerance of 1 voxel is chosen for the reference error

of all calculations.

Fig. 2.38 plots the average total coordination number of four steps for three values

of tolerance (0, 1, and 2 voxels). For a tolerance of 0, z tends to decrease under growing
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Figure 2.38: Average total coordination numbers of 4 local scan with three values of

tolerance (0, 1 and 2 voxels). LC denotes the lost contacts.

stress. This is not reasonable but this con�rms once again the error mentioned above. z

then increases twofold and nearly threefold when the tolerance changes from 0 to 1 voxel.

However, from 1 to 2 voxels, z is gradually raised from a half to nearly one and a half.

The error bars are wider at a denser state or with a higher tolerance.

The new z (with lost contacts) of four steps is also plotted in Fig. 2.38 for the tolerance

of 1 voxel (the triangle-magenta points). The results show that this correction (i.e. using

lost contacts) increases the total coordination number by approximately 10 % for the

four cases. For the following analysis, the lost contacts were not considered for the sake

of simpli�cation.

2.5.7.2 Coordination number of close neighbors

The coordination number of close neighbors, z(h), is the average number of neighbors of

one particle separated by an interstice narrower than h. z(0) is the usual total coordi-

nation number z with tolerance 0. Fig. 2.39 illustrates the average coordination number

of close neighbors of four scans with the dimensionless interparticle distance h/〈d〉, in
which 〈d〉 is de�ned as follows:

〈d〉 =
2dmaxdmin

dmax + dmin

. (2.3)

This distance is equivalently from 0 to 2 voxels.

For each scan, there is a threshold of h below which z(h) increases quickly when

h increases; above this threshold, the z(h) increases with a lower rate. Based on the

shape of these curves, we can suggest that this threshold is around 1 voxel (equivalently
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Figure 2.39: Coordination numbers of close neighbors for four local scans.

h/〈d〉 ≈ 0.07). At this point, four curves start to diverge and the z(h) of the lower

compaction level is smaller than the one of the higher compaction level. This threshold,

applied for all the scans, corresponds to the error induced by the detection process. Below

the threshold, the rate at which z(h) increases with h is independent of the compaction

state because it is related to the error of the detection process. Above the threshold,

the rate at z(h) increases with h is higher for a denser state. Actually, this rate depends

on the structure of the samples. The denser the states, the higher the numbers of close

neighbors.

2.5.7.3 Number of contacts per grain

Fig. 2.40 shows the number of contacts per grain for the three tolerances 0, 1, and 2

voxels. In general, the grains have from one to eight contacts. Firstly, with a tolerance

of 0 voxel, the grains having zero contact occupy the highest quantities, from 30 % to

nearly 40 %. The denser the stages, the higher the percentage of grains without contact.

This is due to the error of the detection algorithm as already mentioned above.

For the tolerance of 1 voxel, the grains having two and three contacts occupy the most

quantities, about 27.5 % for each series. Meanwhile, the quantities of the grains without

contact decrease from threefold to fourfold corresponding to growing of compaction. For

the denser state, the probability to have a high value of NC (3, 4, 5, and 6) is higher

than for the other states. Reversely, the probability to have low values of NC (0, 1,

and 2) is lower for denser states than for looser states. The probability to have NC =

0 is approximately 6 % to 8 %. That can be attributed to the lost contacts mentioned

above, which are not considered in this analysis, where the red spheres have NC = 0 (see

Figs. 2.35(e) and (g)). They are mainly located close to the border of the cube. NC =

7 is the maximal value and it occupies a minimal probability, nearly 0.2 %.
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Figure 2.40: Number of contacts per grain for three tolerances of 0, 1 and 2 voxels.

For the tolerance of 2 voxels, the probabilities P (NC) of four states are signi�cantly

changed for the ones of tolerance of 1 voxel, in which the P (NC) at NC = 3 is negligibly

changed. For the denser state, low value of NC (0, 1, and 2), the P (NC) is notably

decreased while it is considerably increased at high value of NC (4, 5, and 6). The grains

having nine contact exist but the corresponding quantity is very small, approximately

0.004 %.

Several authors reported the distribution of number of contacts (i.e. the coordina-

tion number) [192, 101, 228, 210, 50] by using di�erent methods to detect the contacts

between the spheres. However, calculating the number of contacts is di�cult due to the

uncertainty (due to the di�raction of X-rays at the boundary) when calculating the accu-

rate position of the center of the particle, especially with the small size of grains and low

resolution of the tomography images. That is why the tolerance of 1 voxel is chosen for

all calculations in the present study. This tolerance is close to the interval tolerance by

1-2 voxels1/3 of Aste et al. [128, 228] while their size of particles is bigger than our grains,

and the resolution is not too much di�erent. In several packing studies [191, 218, 228],
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the spheres are at maximum in contact with 11 particles and at minimum with 2. Mean-

while, in our study, the maximum number of contacts is 8 with an average percentage

of 0.01 %, and there still exists a signi�cant percentage (around 7 %) of spheres that

have no contact. We think that this can be explained by two reasons. Firstly, during

the specimen preparation, the spheres are automatically stuck in groups of two or more

grains after passing through the sieve. When falling into the cell, the cohesion of spheres

tends to resist the interpenetration of the other groups, especially in some closed pores.

Hence the structure of the specimen is not homogeneous. Secondly, as mentioned in

Sec. 2.5.2, the spheres located close to the borders of the analyzed volumes are partly

outside the analyzed cubes and thus not detected. Hence some spheres which are in

contact with �incomplete� spheres will be isolated after the detection process.

Interestingly, the sphere having one contact can exist in this structure, as illustrated

in Fig. 2.41. This is a small cube extracted from the Fig. 2.35(a). Furthermore, from

the loosest state (S03L) to the densest state (S12L), NC = 1 occupies a signi�cant

amount, approximately 30 % (tolerance of 0 voxel), 17 % (tolerance of 1 voxel), and

11 % (tolerance of 2 voxels). These spheres (in green) can be clearly seen in Figs. 2.35(e)

and (g). This is explained by the fact that the capillary force between spheres is higher

than the weight of the spheres. Indeed, with the size of diameters is 100 µm, the particle

weight looses relevance with respect to capillary forces [96].

Figure 2.41: An example of a sphere with one contact.

2.5.7.4 Radial distribution function

The Radial Distribution Function (hereafter referred to as RDF), g(r), is the probability

of �nding a particle center in a spherical shell of a radius r, given that there is another
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particle at the origin of the spherical shell [212]. The RDF is related to the average

number of particles by

p(r2)− p(r1) =

∫ r2

r1

g(r)4πr2dr, (2.4)

where p(r) is the average number density of particles in a spherical shell of radius r. In

this formula, the radial distances will be normalized by the average diameter 〈d〉 (given
in Eq. 2.3). The RDF is a useful tool to describe the structure of a system, and it has

been used widely for granular materials, especially in the numerical simulations.
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Figure 2.42: Radial distribution functions for particle centers of four local scans.

Fig. 2.42 shows the radial distribution of particle centers in a spherical shell for four

steps of the dimensionless distance r/〈d〉. Each curve is represented by the average value

of ten SVs. The probability distribution function is nearly similar at various states with

their oscillations and peaks due to large size distribution. At very short r (r/〈d〉 < 1)

the RDF must be zero, because two particles cannot occupy the same space.

The RDF for S03L is rougher than for the other ones. The functions start from

maximum probability of the contact particles at �rst peak r = 〈d〉 with di�erent ampli-

tudes. The functions then decrease to minimum probability at r = 1.2〈d〉, r = 1.3〈d〉,
r = 1.35〈d〉, and r = 1.4〈d〉 upon growing of compaction S03L, S06L, S09L, and S12L,

respectively. These functions increase subsequently to another local peak at r ≈ 1.9〈d〉.
From this peak, these functions continue to vibrate slightly until they approach a con-

stant value at r = 3.0〈d〉. It is clear that g(r) should go to 1 for large r. However, these

RDFs in Fig. 2.42 go asymptotically to 1 for large r. This can explain why spherical shell

cannot include the spheres which are located in the corner of the cube. Besides, due to

the heterogeneity of the SVs, these RDFs slightly oscillate until their value is close to

unity.
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2.5.8 Contact networks

Fig. 2.43 illustrates the contact networks of a typical SV, represented in a narrow slice

of nearly four average particle diameters (4〈d〉 ≈ 50 voxels) thick before detection (on

the left-hand side) and after detection (on the right-hand side). Each pair (before and

after detection) from (a and b) to (g and h) corresponds to growing of compaction, from

S03L to S12L. The contact between particles are represented by segments of di�erent

colors (only for after detection) joining particle centers.

Before detection, the contact network is directly analyzed from the 3D binarized

images by joining the particle centroids. On the left-hand side of Figs. 2.43(a, c, e, and

g), there are still a lot of small blocks. This is due to some small pieces of incomplete

spheres at the borders that are not identi�ed. After detection, the contacts are plotted in

two types (on the right-hand side of Fig. 2.43). The �rst one (red lines) is the contacted

particles including one voxel of diameter (tolerance of 1 voxel). The second one (blue

lines) is the neighbors with their interstitial distance of 1 voxel.

In general, the contacts obtained before the detection process are more than the

ones after detection. This is due to the grains loss during the detection process, already

mentioned in the above sections. Moreover, the lines, joining two particle centroids on

the left-hand side, are spatially connected from many voxels so the contact networks

are rather complex for observing. This con�rms that these lines are not straight. Fur-

thermore, on the right-hand side of Fig. 2.43, the contact between neighbors with their

interstice of 1 voxel are also drawn in order to reduce the e�ect of detection process.

Indeed, the general shape of the contact networks before and after detection are fairly

similar.

A supplemental illustration of contact networks between grains is shown in Fig. 2.44.

A typical slice (4〈d〉) of the typical SV is extracted. It has the same position of the

thickness in Fig. 2.43. For depicting the number of contacts per grains, a tolerance of 1

voxel is computed to the diameters of particles. The number of contacts per grains are

illustrated by di�erent colors. The red, green, blue, dark-yellow, magenta, dark-cyan,

dark-green, dark-purple, black and dark-red represent the spheres having zero, one, two,

three, four, �ve, six, seven, eight, and nine contacts, respectively. In these slices, the

dark-purple, black, and dark-red spheres do not exist but the dark-green spheres having

6 contacts can be easily found. Nevertheless, the red spheres still exist signi�cantly.

Therefore, we can conclude that the number of contact is underestimated because of the

signi�cant in�uence of the lost contacts.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.43: Contact network of a typical SV under growing of compaction. Red lines

denote the contacted grains with tolerance of 1 voxel, blue lines denote the neighbors of

grains with their interstice of 1 voxel.



94 Chapter 2. Experimental investigations

(a) (b)

(c) (d)

Figure 2.44: 3d-slices of the typical SV under growing of compaction. (a) SO3L, (b)

S06L, (c) S09L, and (d) S12L.

2.6 Links between macro and microscopic behaviors

The links between macro and microscopic behavior of specimen under growing of com-

paction can be observed via the compression curves, the global and local observations.

In other words, these links are successively depicted by the Figs. 2.11, 2.12, 2.17, 2.26,

2.36, 2.38, and 2.39.

In the stage 1 of the compaction curve (Fig. 2.11), the void ratio remains nearly

constant and slightly decreases at the end of this regime (equivalently the position of

the scan S02G). This is depicted well by the distribution of void ratio of scans S01G and

S02G in Fig. 2.17.

Under growing of stress in stage 2, the structure of specimen quickly collapses. This

is evidently re�ected by a twofold decrease of void ratio in the central layers of specimen

(see Fig. 2.17). At these regions, there are several big pores which are located at the

periphery and the central zones of the specimen (see Figs. 2.12 and 2.26). Besides, at

higher densities, the number of contacts is larger than the one at lower densities (see

Figs. 2.38 and 2.39).

In the stage 3 of the compaction curve, starting from the S11G and S12L, the structure
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collapses negligibly because of the elastic deformation of grains at contact regions. This

is completely demonstrated by the highest density of S12L and the slight increases of

z and z(h) from the tolerance of 1 voxel (see Figs. 2.38 and 2.39). Furthermore, the

highest density of grains at the central layers of the specimen is also a main factor to

sustain the settlement of the top layers. This is con�rmed by the smallest void ratio of

S11G in Fig. 2.17 and a band in specimen of the scans S10G and S11G (see Fig. 2.12).

2.7 Conclusion

In this chapter, we have performed two observations of wetted glass beads: the �rst

one is the 1D compression test, the second one is the XRCT test combined with in-situ

compression test. Two di�erent scales of scans were performed in order to quantify the

degree of homogeneity and to observe the microstructural changes of specimen under

growing of compaction levels.

Firstly, the results show that a very loose yet stable state of wet granular soils can

be made in laboratory for tests, even using very small water content. This is one the

most interesting aspects of this work as compared to the past studies which were focused

on denser states and/or higher water contents (e.g. Bruchon et al. [35]). Evidently,

the structure of the specimen is heterogeneous but it seems very di�cult to make the

specimen more homogeneous with so low densities.

Secondly, the macroscopic behavior of wet beads at loose state obtained from oe-

dometric compression tests has usually three regimes: (i) at stresses lower than the

preconsoldiation stress, the initial structure can sustain these stresses with a very small

rearrangement; (ii) when the stresses exceed the preconsoldiation stress, the loose struc-

tures collapse and restructure; and (iii) at higher stresses, the elastic deformation of

grains at contact points occurs.

Thirdly, the XRCT investigations of the microstructure allowed quantifying the de-

gree of homogeneity, the distribution of porosity in the specimen as well as the pore-scale

behavior under growing of compaction level.

Finally, a new approach for detecting the spherical structures from tomography im-

ages is proposed in order to characterize the microstructures of loose systems. Several

fundamental microstructural properties are obtained such as total coordination number,

number of close neighbors, and distribution of number of contacts, contact network, and

radial distribution function. Although our results show an underestimated prediction

of several microstructural properties for the other studies, the method presented in this

work provides an interesting characterization of the grain-scale compression behavior of

wet granular soils (with type of spherical shape) at loose state.





CHAPTER 3

Isotropic compression: DEM study

This chapter reports on a 3D numerical study, using the discrete element method,

to investigate the quasistatic response of very loose assemblies of frictional spheri-

cal grains to an isotropic compression. The grains are mixed with a small amount

of an interstitial wetting liquid, which forms capillary menisci causing an at-

tractive intergranular forces. Under growing pressure, the in�uence of the initial

assembling process and of various micromechanical parameters on the plastic com-

pression curves are �rstly studied. The plastic responses along those compression

curves are then shown in particular without and with the appearance of rolling

and pivoting resistances in contacts and also the e�ect of size polydispersity. The

evolution of microstructure and force transmission along the compression curve

are �nally characterized.
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3.1 Introduction

This chapter presents the results of a discrete numerical simulation study of wet beads

under isotropic compression. Capillary cohesion due to the liquid bridges beween neigh-

boring grains stabilizes very loose structures which tend to collapse under growing pres-

sure. The material behavior in compression is thus characterized by strongly irreversible

plastic e�ects, which are investigated at the macroscopic and microscopic levels. This

study is similar to the one carried out by Gilabert et al. [13, 14] in 2D. However, the

numerical model is designed to quantitatively simulate a real material and enables direct

comparisons with laboratory experiments.

The model material, which is the same as in the numerical simulations of Kham-

seh et al. [29], is described in Sec. 3.2. Some basic properties and important relations

in the DEM approach to the mechanical behavior of granular materials are recalled in

Sec. 3.3. The numerical procedure and the choice of parameters use to simulate isotropic

compression are presented in Sec. 3.4. Then the results both for the macroscopic be-

havior and the microstructure evolution are given in Sec. 3.5 in which the in�uence of

various parameters is investigated. The material in which the contacts are endowed with

resistance to rolling and pivoting (RPR), a micromechanical feature which is known to

strongly a�ect the mechanical behavior, is studied in Sec. 3.6.

3.2 Model material and interaction laws

A granular material is de�ned by the grain geometry and the intergranular forces. The

contact law in a granular material is the relationship between the relative motion of two

contacting grains and the contact force. As we deal with particles that may attract one

another at short distance without touching, the law governing intergranular forces and

moments is best referred to simply as the interaction law. Such elements of the numerical

model, designed to simulate wet solid beads, are given here.

3.2.1 Particle shape and size distribution

E�ects of angularity on internal friction are known to be important, and the morphology

of the liquid phase is also expected to be strongly a�ected by the geometry of the

solid grains. Nevertheless this study focusses on spherical grains, as the simplest model

material for which laboratory studies are possible.

One possible way to represent non-spherical particle shape is to implement rolling

and pivoting resistance (RPR), as dealt with in Sec. 3.6, Ref. [229] established a corre-

spondence between rolling resistance of spherical grains and a certain shape parameter

for non-spherical grains. The material behavior reported in Sec. 3.6 might thus be ex-

pected to be similar to the one of assemblies of grains departing from the spherical shape,

although the change in the geometry of liquid menisci is not accounted for.
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Moreover, we mainly consider equal-sized, identical spherical beads of diameter d.

The actual value of d is not relevant for our results, if they are expressed in dimensionless

form. However, in order to provide physical orders of magnitude, results will also often

be reported in dimensional form (e.g. pressures in kPa), in which case they pertain to

glass beads of diameter d = 0.118 mm.

The in�uence of a (moderate) grain polydispersity will be assessed on dealing with

the following probability distribution function (P.D.F) for the distribution of diameter

d, varying between a minimum value dmin and a maximum value dmax:

p(d) =
2d2

mind
2
max

d2
max − d2

min

1

d3
. (3.1)

This distribution is thus uniform by volume, and its �rst moments are given by:

〈d〉 =
2dmindmax

dmax − dmin

; 〈d2〉 =
2d2

mind
2
max

d2
max − d2

min

ln
dmax

dmin

; 〈d3〉 =
2d2

mind
2
max

dmax + dmin

. (3.2)

This diameter distribution is shown in Fig. 3.1, in the form of the cumulated probability

function,

P (d) =

∫ d

dmin

p(x)dx. (3.3)
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Figure 3.1: Grain size distribution of the polydisperse system.

3.2.2 Interaction law: normal forces

3.2.2.1 Elastic normal force: Hertz law

Consider two spherical beads i and j, with respective diameters di and dj, made of

a solid elastic material with Young modulus E and Poisson ratio ν. Using notations
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Ẽ = E/1− ν2 and dij = 2didj/(di + dj), the Hertz law, as implemented in a number of

previous numerical studies [230, 29], adequately describes the normal elastic force, F eN
ij ,

in their contact, depending on de�ection hij, as

FN,e
ij =

Ẽ

3

√
dij|hij|3/2. (3.4)

This corresponds to a de�ection-dependent (or force-dependent) normal sti�ness

Kij
N =

dF eN
ij

d|hij|
=
Ẽ

2

√
dij|hij|1/2. (3.5)

Although this choice does not entail any loss of generality, numerical results in physical

units correspond here to glass beads, with Young modulus E = 70 GPa and Poisson ratio

ν = 0.3. Formulae (3.4) and (3.5) are used with monosized beads (with di = dj = dij = d)

or polydisperse ones with the diameter distribution given in (3.1).

3.2.2.2 Viscous damping

Just like in simulations of dry granular materials [230, 231, 232] we introduce a normal

viscous force in intergranular contacts. The viscous normal force opposes the relative

normal velocity δV ij
N = ḣij of contacting beads, and is chosen as a constant fraction ζ

of the critical damping coe�cient in a linear oscillator with mass m∗ij/2 (de�ning m∗ij as

the harmonic mean 2mimj/(mi + mj) of masses mi and mj of the contacting grains),

and sti�ness constant Kij
N as written in (3.5):

F ij
N,v = 2ζ

√
m∗ijK

ij
NδV

ij
N = ζ(m∗ijẼ)1/2dijh

1/4
ij δVN . (3.6)

This model corresponds to a velocity-independent restitution coe�cient in a binary col-

lision [231]. Such a form of the viscous force is more justi�ed by its computational

convenience than by its physical relevance. In particular, it is not related to the viscos-

ity of the liquid forming the menisci. The viscous forces, anyway, are quite irrelevant

for the quasistatic mechanical properties of the wet bead assemblies, which are studied

here. Their role, in the simulation practice, is to ease the obtaining of equilibrium states

by dissipating the kinetic energy.

3.2.2.3 Capillary forces

The appearance of a small quantity of an interstitial wetting liquid introduces additional

capillary forces, transmitted between contacting or neighboring grains by a liquid bridge,

or meniscus, as depicted in the inset �gure of Fig. 3.2. Our work is limited to the

pendular state of isolated menisci [34], and the capillary forces are pairwise additive,

acting on grains joined by such menisci. These forces are only present if grains have

been in contact [125] and the meniscus has not broken since. A meniscus of volume Vm



102 Chapter 3. Isotropic compression: DEM study

remains until the separation distance reaches its rupture value Dr ' V
1/3
m , as a result of

calculations by Willett et al. [90], Maeda et al. [138], and Herminghaus et al. [84].

In the case of monodisperse grains, the Maugis approximation [189] is chosen to

calculate the attractive force which varies as a function of the distance h between particle

surfaces:

Fcap =



−F0 h ≤ 0

−F0

[
1− 1√

1 +
4Vm
πdh2

]
0 < h ≤ Dr (unbroken meniscus since last contact)

0 0 < h ≤ Dr (no contact in the past, or broken meniscus)

0 h > Dr.

(3.7)

Here, h < 0 corresponds to an elastic de�ection of the particles in contact. F0 = πdΓ cos θ

is the maximum tensile force, involving surface tension Γ of the liquid interface with the

atmosphere (or the ambient continuous �uid phase), and wetting angle θ. Numeri-

cal results below are obtained with Γ = 7.27 × 10−2 N.m−1 (an appropriate value for

pure water at 20oC under atmospheric pressure), and θ = 0, assuming perfect wetting.

Fig. 3.2 shows how the static normal forces, with the repulsive, elastic (Hertzian) and

the attractive, capillary contributions, vary with distance h.

-F0

hDr

FN

0

d
R

h

R q j 

Figure 3.2: Static normal force, FN = F e
N + Fcap, as a function of the interparticle

distance h. Inset: Geometry of a liquid bridge between two particles, with �lling angle ϕ

and contact angle θ. Short-dashed line: normal elastic repulsive force, long-dashed line:

resultant normal force.

Two particles moving away from each other after a collision will only separate if

their receding relative velocity is large enough to overcome the capillary attraction. The

condition that the kinetic energy of the relative normal motion should be larger than
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the potential energy of the capillary force, i.e. sets a threshold relative velocity Vth

proportional to V ∗ [13], with

V ∗ =

√
F0Dr

m
. (3.8)

More precisely, one has

−
∫ Dr

0

Fcap(h)dh = F0

∫ Dr

0

(
1− 1√

1 +
4Vm
πdh2

)
dh. (3.9)

V ∗ is thus equal

V ∗ =

√
kF0V

1/3
m

m
, (3.10)

with Dr ' V
1/3
m and k is a factor from the result of Eq. 3.9, as follows

k =

[
1 +

√
4V

1/3
m

πd
−

√
1 +

4V
1/3
m

πd

]
. (3.11)

For polydisperse beads we resort to the Soulié formula [91], which is a �t to a nu-

merical computation of the capillary force between particles with di�erent diameters.

Eq. (1.7) in Sec. 1.3.3.1 of Chapter 1 is rewritten, for two beads of radii R1 and R2, as

Fcap = F0

√
R1R2

[
c+ exp

(
a
h

R2

+ b

)]
, (3.12)

with 
a = −1.1

(
V ∗m
)−0.53

b =
(
− 0.148 ln

(
V ∗m
)
− 0.96

)
θ2 − 0.0082 ln

(
V ∗m
)

+ 0.48

c = 0.0018 ln
(
V ∗m
)

+ 0.078,

(3.13)

in which V ∗m is the dimensionless ratio of the meniscus volume (proportional to the surface

area of the grain pair) to the cube of the maximum Rmax = max(R1, R2):

V ∗m =
Vm
R3

max

=
V

(0)
m (R2

i +R2
j )

2R2
min

. (3.14)

In all our simulations the volume meniscus is attributed a �xed value Vm: a meniscus

is assumed to form, from the liquid layer coating isolated grains, as soon as a contact

appears. The assumption of a constant volume, while not really justi�ed on physical

grounds, enables calculations to be carried out without having to model the liquid trans-

port. While seemingly a gross oversimpli�cation, it will be shown to have negligible

in�uence on the results. In polydisperse systems, Vm varies according to the radii of the

grains, and is proportional to the available surface area in the pair, as implied in (3.14),

in which V (0)
m denotes the meniscus volume for two beads with the minimum diameter

of the distribution.
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3.2.3 Tangential forces

The tangential elastic force FT
ij, as in [230], relates to the relative tangential displacement

in the contact, δuTij, involving a (de�ection-dependent) tangential sti�ness coe�cient KT

assumed proportional to KN :

dFT
ij = KT

ij d
(
δuTij

)
, with KT

ij =
2− 2ν

2− ν
KN
ij . (3.15)

Tangential sti�nessKT has to be suitably adapted (rescaled) whenever the normal elastic

force decreases, in order to avoid spurious elastic energy creation [233, 230].

Let us recall that the relative displacement at the contact point combines the dis-

placements of both grains, ui and uj, and their (small) rotations ~θi and ~θj, thus, with

transparent notations for the radii, and nij the unit normal vector, which for spherical

objects points from the centre of i to the centre of j:

δuij = ui − uj + (Ri
~θi +Rj

~θj)× nij. (3.16)

The normal component of relative displacement (3.16) is subtracted to de�ne the relative

tangential displacement δuTij appearing in the tangential contact law.

The Coulomb condition enforces inequality

||FT
ij|| ≤ µFN,e

ij , (3.17)

with the friction coe�cient µ set to 0.3 in the present study. It is taken into account

by suitably projecting FT
ij onto the circle of radius µFN,e

ij in the tangential plane, after

applying incremental relation (3.15), whenever necessary.

Normal and tangential contact force components also follow the general motion of

the grain pair in order to ensure the objectivity of the model [234, 230]. It is important

-F0

||FT||

0

µF0

FN

µ

Figure 3.3: Coulomb cone limiting the value of the tangential force.

to note that the Coulomb condition (3.17) applies with the sole elastic contribution FN,e
ij
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to the normal force FN
ij in the right-hand-side. As shown in Fig. 3.3, this entails that

the Coulomb cone corresponding to total static contact forces in the space spanned by

force components FN , FT is shifted to the left , with its tip at FN = −F0, the maximum

tensile force. As a consequence, in the contact between two grains of an isolated pair in

equilibrium, the total normal force vanishes, but a sliding motion might be opposed by

a tangential force as large as µF0.

In all the numerical computations of the present study the friction coe�cient is set

to µ = 0.3.

3.2.4 Resistance to rolling and pivoting (RPR)

The in�uence of rolling and pivoting resistances (RPR) at contacts, as investigated in

2D by Gilabert et al. [14], is also studied. For simplicity, we only implement this feature

with linear contact elasticity. Therefore, the linear elastic repulsive force, FN,e, is de�ned

as:

FN,e = KN |h|, (3.18)

where |h| is the normal de�ection in the contact as the spheres are pressed against

each other, KN is the normal sti�ness coe�cient, related to the elastic moduli of the

material that the grains are made of. In the present study, KN is chosen such that

KNd = 4.108 Pa.m. Likewise, tangential sti�ness KT is de�ection-independent in the

linear elastic contact model, and chosen here equal to KN .

The moment that sphere i exerts onto its contacting neighbour j, of radius Rj, at its

centre, is denoted as Γij. It is �rst due to the tangential contact force, then to a possible

moment Γr
ij of the force density distribution within the contact region, in its centre. One

writes

Γij = FT
ij ×Rjnij + Γr

ij. (3.19)

Γr
ij is most often neglected on dealing with smooth, convex particle shapes, because the

contact region is very small on the scale of the particle radius.

However, non-negligible moments at the contact point Γr
ij might result from particle

surface roughness, as contact regions become larger than the ones deduced from contact

elasticity. Separating tangential and normal components of Γr, one gets the rolling

torque, ΓR (a tangential vector), and the pivoting torque, scalar ΓP = n · Γr. Those

moment components respectively work in rolling and pivoting relative motions. The

rolling velocity δΩR
ij in contact i�j is the tangential part of the di�erence in rotation

velocities, δΩij = Ωi−Ωj, while the pivoting velocity δΩP
ij is its coordinate along normal

vector nij.

The contact law for contact moments, expressing RPR, is similar to the tangential

contact law, it involves spring constants KR, KP and Coulomb-like thresholds with fric-

tion coe�cients µR, µP . Just like the tangent elastic force, ΓR and ΓP are incrementally
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updated in the bead motions, as

∆ΓR = KRδΩ
R∆t

∆ΓP = KP δΩ
P∆t

(3.20)

in each time step ∆t, while the following Coulomb inequalities are enforced whenever

necessary by reducing the norm of vector ΓR and the value of scalar ΓP :

||ΓR|| ≤ µRF
N,e

|ΓP | ≤ µPF
N,e.

(3.21)

�Friction coe�cients� µR and µP have the dimension of a length. They are of the order

of magnitude of the lateral dimension of the contact region, due to surface irregularities.

In practice, they should be equal to a small fraction of the particle radii.

Sti�ness constants KR, KP have the dimension of a force multiplied by a length, or of

an ordinary linear spring sti�ness multiplied by the square of a length. KR andKP should

be such that equality in conditions (3.21) should be reached for small relative rotation

angles (otherwise the integration of rotations should not be carried out as vectors).

Values of order µRRKN (R being the particle radius) are physically reasonable in this

respect.

Just like sliding friction (with Coulomb condition (3.17)), rolling and pivoting friction

involve the normal elastic force in the right-hand-side of inequalities (3.21). One could

thus represent possible contact moment values versus this total static normal force as

a Coulomb cone, with its tip shifted to negative values, at −F0, similar to Fig. 3.3. A

contact between two beads in which the total normal force vanishes may transmit torque

components as large as µRF0 in a tangential direction or µPF0 in the normal direction.

3.3 Basic de�nitions and properties

Basic aspects of DEM simulations are recalled here, which prove useful in the design of

the numerical tests and in the analysis of their results.

3.3.1 DEM equations, boundary conditions and stress control

DEM simulations consist in computing the collective motion of collections of N spherical

beads (with N = 4000 in most cases in this study) by integration of the di�erential

equations resulting from Newton's laws and rigid-body mechanics. Grains are regarded

as homogeneous solids, and thus a bead of diameter d has a mass m proportional to d3

and a moment of inertia I = md2/10.

The grains are enclosed in a cuboidal cell. The cell edges are parallel to the coordinate

axes (xα)α=1,3, with respective lengths (Lα)α=1,3. Periodic boundary conditions (PBC)

are used, thereby avoiding wall e�ects. Two neighboring spheres, i and j, if brought into
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Figure 3.4: Motion of two spheres.

contact or very close to each other, transmit a force ~Fij and a moment Γij onto each other.

More precisely, ~Fij and Γij are exerted by i onto j at the contact point. Simulations do

not model material deformation in a contact region, but consider overlapping particles.

The contact point is de�ned as the center of the intersecting region of the two spheres. In

the case of the capillary interaction between spherical beads without contact, the force

will be normal to the surfaces at the points of nearest approach and therefore carried by

the line of centers.

Let ~ri and ~rj, respectively, denote the position of the centre of spheres i and j,

as shown in Fig. 3.4. ~rij = ~rj − ~ri is the vector joining the centres of i and j and

hij = | ~rij| − (di + dj)/2 is the overlap distance. The degrees of freedom, in addition to

the positions ~ri are the angles of rotation θi, velocities ~vi, angular velocities ωi of the

grains (1 ≤ i ≤ N), the dimensions (Lα)α=1,3 of the cell containing the grains and their

time derivatives, through the strain rates

ε̇α = − L̇α
L0
α

, (3.22)

in which L0
α denotes the initial size for the corresponding compression process. The

time evolution of the particle degrees of freedom are usually governed by the following

equations:

mi
d2~ri
dt2

=
N∑
j=1

~Fij

Ii
dωi
dt

=
N∑
j=1

Γij.

(3.23)

In Eqs. (3.23), only those spheres j interacting with i will contribute to the sums on the

right-hand side. On dealing with periodic, deformable cells, those equations should be

adapted: the linear velocities comprise two terms, one due to the variation of reduced

coordinates x̃α = xα/Lα, the other one due to the variation of Lα. One possibility, used
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in Ref. [230], is to write down an equation for the vector of reduced coordinates exactly

in the form of (3.23), with scaled down forces in the right-hand side. With appropriate

choices of parameters (in particular, of the mass associated with the cell dimensions) the

�classical� form (3.23) of the equations is only very slightly perturbed.

Stresses are measured using the standard formula: for all coordinate index pairs α,

β,

σαβ =
1

Ω

[
N∑
i=1

mvαi v
β
i +

∑
i<j

Fα
ijr

β
ij

]
. (3.24)

Here, Ω = L1L2L3 is the sample volume. Cell lengths (Lα)α=1,3 vary simultaneously

with the grain positions. We use stress-controlled dynamics, requesting cell dimensions

and particle positions to adjust until a mechanical equilibrium state is obtained in which

the diagonal elements of the stress tensor take their prescribed values Σα, 1 ≤ α ≤ 3.

Equations of motion for cell dimensions Lα are written as [230].

ML̈α =
1

Lα

[
L2
α

∑
i

mi

(
r̃

(α)
i

)2

+
∑
i<j

F
(α)
ij r

(α)
ij

]
− Ω

Lα
Σα. (3.25)

The right-hand-side of (3.25) is proportional to σαα−Σα. M denotes a generalized mass

associated with changes in the cell dimensions. It is usually chosen, in compression tests,

of the order of the total mass of all particles in the system. Eq. (3.25) requests the cell

to expand if the stress (evaluated with the sign convention of soil mechanics: tensile

stresses are negative) is too large compared to the prescribed value, and to shrink if it

is too small.

In all equations written here, the periodicity of the simulation cell has to be taken

into account: particles exiting the cell through any boundary are being replaced by

their image (or �copy�) entering the cell through the opposite boundary. Sums over

interacting pairs involving �branch vectors� (centre-to-centre vectors) rij, as in (3.24),

are to be understood with the nearest-image convention: vector rij actually points from

the centre of grain i to the centre of the nearest copy of j within the periodic set of

replica of grain j.

3.3.2 Equilibrium condition

Although numerical simulations of the quasistatic response of granular materials requires

mechanical equilibrium to be reached, equilibrium criteria are sometimes left unspeci�ed

or quite vaguely stated in the literature. However, in order to report on usual quantities

like the coordination number or the force distribution, it is essential to know which

pairs of grains are in contact and which are not. Due to the frequent occurrence of

small contact force values, this requires forces to balance with su�cient accuracy. We

found that the following criteria allowed us to identify the force-carrying structure clearly

enough.
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A typical intergranular force value F1=max(F0, Pd
2) sets the tolerance levels for

individual grain equilibrium, where P is the applied pressure. A con�guration is deemed

equilibrated when the following conditions are simultaneously satis�ed: (i) the net force

(the total force) on each spherical grain is less than 10−4F1; (ii) the total moment on

each sphere is lower than 10−4F1d; (iii) the di�erence between imposed and measured

stresses is less than 10−4F1/d
2; and (iv) the kinetic energy per grain is less than 10−8F1d.

3.3.3 Coordination numbers

In static granular assemblies, the coordination number z is, after solid fraction Φ (which

is the volume occupied by the solid grains divided by the total system volume), the most

important and well-studied variable characterising the material state. It is de�ned as the

average number of force-carrying contacts per grain. If Nc is the number of force-carrying

contacts between N grains, then the coordination number is z = 2Nc/N � as the product

zN counts each contact twice. In general disordered systems, the coordination number

has an upper bound well below the values it may reach in ideal, regular arrangements

like perfect crystals. Thus, disordered packings of spherical beads, in the limit of small

contact de�ections (rigid contact limit), satisfy z ≤ 6 [235, 236, 237, 230]. This upper

bound to z is due to the absence, in generically disordered grain packings, of contact

networks able to carry self-balanced normal forces (the degree of force indeterminacy or

�degree of hyperstaticity� of the contact network is equal to zero if contacts are regarded

as frictionless).

The coordination number z is split into two terms: the average number of contacts

per grain, zc, and the average number of the pairs interacting though a capillary bridge

per grain, zd, so z = zc + zd. Hence, z is also called the total coordination number.

Furthermore, it is interesting to de�ne and to measure a coordination number of

close neighbors, z(h), as the average number of neighbors of one sphere separated by an

interstice ≤ h. z(0) is the usual contact coordination number zc, and z(h) characterizes

the packing geometry in terms of position correlations.

A decomposition of the coordination number of contacts zc is:

zc = z+ + z−, (3.26)

in which z+ is the coordination number of compressive bonds (positive forces) and z− is

the coordination number of tensile bonds (negative forces). Note that z+ includes only

the contacts in which the repulsive elastic force is larger than the capillary force, and z−
includes all the distant interacting pairs and also all the contacts in which the capillary

force dominates.
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3.3.4 Liquid content and limit of pendular state

In wet granular materials, depending on the amount of the liquid in the system and on

its resulting spatial distribution, di�erent de�nitions for the liquid content are possible.

Several authors use the liquid volume fraction or Vl/Ω, de�ned as the total volume of

liquid, Vl, divided by the total sample volume Ω [125, 84]. Denoting as Vg the volume

of all N solid grains in the system, one has Ω = Vg + Vv, in which Vv is the volume

of voids. With Nb liquid bridges of volume Vm, between N particles of diameter d, the

coordination number of liquid bridges is z = 2Nb/N and the solid fraction is Φ = Vg/Ω =

1− Vv/Ω = πN〈d3〉/(6Ω). The liquid content W is then given by

W =
Vl
Ω

=
3zΦVm
π〈d3〉

. (3.27)

Other studies (e.g. in [24]) de�ne the liquid content in terms of masses. It is also

possible to use degree of saturation Sw instead of liquid content [34, 94]. The present

study, like a number of previous ones [24, 238, 93], is restricted to the pendular state of

low saturation, in which the wetting liquid is con�ned in bonds or menisci joining grains

in contact or separated by a small distance. The degree of saturation is therefore de�ned

as the ratio of the liquid volume, Vl, to the void volume Vv and is simply related to liquid

content as

Sw =
Vl
Vv

=
niVm

(1− Φ)V
=

3zVmΦ

(1− Φ)πd3
. (3.28)

d
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p/3
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h

a

j

Figure 3.5: Three spheres connected with liquid bridges.

Fig. 3.5 depicts an example of three spheres connected with the closest possible liquid

bridges in the pendular state. For the liquid bridges not to merge, the �lling angle ϕ

should be smaller than π/6. The volume of the liquid is approximately the volume of

a cylinder with radius a and height h, excluding two small volumes vi. For contacting
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particles so far, h = 2R(1− cosϕ), and hence [140]

Vm = πa2h− 2vi =
2πR3

3
(2 cos3 ϕ− 3 cos2 ϕ+ 1). (3.29)

The volume of the meniscus is therefore approximately 8.10−3d3 when the �lling angle

reaches its maximum value ϕ = π/6. Note that, here, the so-called toroidal approxima-

tion is used: the curves limiting the meniscus in a plane containing its axis of symmetry

are approximated as circular arcs. Formula (3.29) also assumes a contact angle equal

to zero. Eq. (3.28) then predicts a maximum saturation between 0.05 and 0.1, similar

to experimental observations [84, 34]. With the selected value of Vm/d3 = 10−3, used,

as a reference value, in most simulations of this study, Eq. (3.28) predicts the degree of

saturation in this work to be of the order of 10−3.

3.3.5 Average normal force

Given the formula (3.24) for the stress tensor, it is easy to deduce a convenient expression

for the average intergranular normal force [13, 230]. From

P =
1

3Ω

∑
i<j

~Fij · ~rij, (3.30)

one gets, ~rij = (d + hij)~nij, in which ~nij denotes the normal unit vector pointing in

contact i− j.
Eq. (3.30) can be rewritten as:

P =
1

3Ω

∑
i<j

(Ri +Rj)F
N
ij +

1

3Ω

∑
i<j

hijF
N
ij (3.31)

The second term is usually neglected with grains in contact (as the elastic de�ection

hij < 0 is very small). For distant interactions through menisci (hij > 0) it was also

observed [29] to be very small for the range of meniscus volumes corresponding to the

pendular state. Replacing the sums with the average values and using the de�nitions of

Φ, z, and zd gives us:

P =
Φz

πd2
〈FN〉 (3.32)

The relation (3.32) can be accurate in all simulated states with or without cohesion [13].

However, in the presence of cohesion, it cannot be used to predict the typical contact

force when the con�ning pressure is dominated by the attractive forces. Then, contact

forces of order F0 are quite common [187], while the average force is smaller.

In a moderately polydisperse system, (3.32) becomes

P ' zΦ〈d〉
π〈d3〉

〈FN〉, (3.33)

provided the correlation between the force value and the diameters is neglected.
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3.3.6 Dimensionless control parameters

In order to achieve greater generality, dimensionless parameters are used in the presenta-

tion of all simulation results. Some are immediately apparent in the contact law: friction

coe�cient µ, damping coe�cient ζ. From numerical observations [172], it is known that,

while the in�uence of µ on the macroscopic mechanical behavior of model granular ma-

terials is always quite important, ζ is rather irrelevant in the quasistatic regime. Under a

pressure P , the typical contact de�ection |h|, relative to the grain diameter d, is related

to a dimensionless sti�ness parameter, which is conveniently de�ned as

κ =

(
Ẽ

P

)2/3

. (3.34)

It is such that typical values of |h|/d are of order κ−1 [230]. If a linear contact elasticity is

used instead of the Hertz law, then one may simply use κ = KN/(dP ). In all simulations

carried out here, κ is kept large enough along the whole compression curve that the elastic

de�ections are kept very small (κ ≥ 4000). Such κ values hardly a�ect coordination

numbers (due to contact recruitment caused by shrinking intergranular distances) [239].

To those parameters ruling the behavior of dry grains, one should add three new

dimensionless groups which become relevant in the context of the present study, involving

attractive forces.

With capillary forces, an additional dimensionless control parameter associated with

the force law is the ratio of meniscus volume Vm to d3, determining the range of the

corresponding capillary attraction, and consequently the number of liquid bonds. Fig. 3.6

compares function Fcap(h) according to Maugis model and to the Soulié formula.
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Figure 3.6: Capillary force law Fcap(h), for two di�erent meniscus values, according to

the Maugis approximation and the Soulié formula.
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Our simulation procedure, to be detailed below, involves an aggregation stage to form

low pressure initial states, in which grains are agitated with a characteristic velocity V0.

The microstructure of the resulting aggregates, as the initial kinetic energy is gradually

dissipated, depends on whether the initial agitation is strong enough to cause breakage

and restructuration of the contact networks, and thus on dimensionless ratio V0/V
∗, with

V ∗ de�ned in Eq. (3.8). This ratio will be observed to have a strong in�uence on the

initial coordination number.

The third dimensionless group introduced by capillary cohesion, an important control

parameter, is the reduced pressure,

P ∗ =
d2P

F0

, (3.35)

comparing the applied pressure to the tensile strength (maximum attractive force) in

contacts. P ∗ � 1 signals cohesion-dominated systems, for which attractive forces may

stabilize loose structures. Con�ning forces dominate for P ∗ � 1, and attractive forces

become negligible � the bead assembly behaves as a dry granular material. The simu-

lation parameters are chosen such that P ∗ reaches large values before κ−1 decreases to

10−3, and thus the e�ect of pressure in this study is due to the competition between

con�ning stress and capillary forces, not to compression induced contact de�ections.

Additional parameters are µR/d = µP/d in system with RPR, as well as the rotation

angles for which rolling and pivoting friction thresholds are reached (small enough to be

irrelevant in our case).

In the polydisperse system, a reduced pressure is rede�ned as

P ∗po =
〈d2〉P
πΓ〈d〉

. (3.36)

With the chosen diameter distribution (Sec. 3.2.1), one has

P ∗po =
P

πΓ

dmindmax

dmax − dmin

ln

(
dmax

dmin

)
. (3.37)

3.4 Simulation procedures for the compression test

3.4.1 Specimen preparation

Before applying a controlled external pressure, we �rst assemble disordered, loose con-

�gurations in which the grains form connected aggregates spanning the sample.

A preliminary step consists in placing the grains within the cubic, periodic simulation

cell, forming a disordered con�guration without contacts. We thus choose the initial solid

fraction Φ0, which may be set to low values (down to 0.2) compared with the typical

densities of dry granular systems (Φ hardly decreases below range 0.55�0.58, depending

on the friction coe�cient, in con�ned cohesionless bead packs). Several techniques can

be used to obtain disordered con�gurations of non-contacting beads.
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(a)

(b)

(c)

Figure 3.7: Monodisperse system on FCC lattice (Φ0 = 0.3): (a)whole specimen; (b)

small cube extracted from (a); (c) a small cube of maximal density (Φ0 =
π

3
√

2
).

A convenient one uses the �melting� of a regular lattice [230]. In this study we use

samples of N = 4000 (often monodisperse) beads, initially placed on the sites of a Face-

Centered Cubic (FCC) lattice within the cubic cell, as shown in Fig. 3.7. In order to

obtain a disordered system, the beads are �rst regarded as hard objects interacting with

collisions that preserve kinetic energy. Once launched with random velocities, the initial

order is quickly forgotten (provided Φ does not exceed the crystallization value 0.49 for

monosized beads). This initial mixing stage is a purely numerical procedure in which

the mechanical properties of the particles do not conform to the physical model.

Next comes an aggregation stage, for which the grains are endowed with all the prop-

erties of elasticity, friction (possibly RPR) and capillary cohesion as described in Sec. 3.2.

This numerical procedure is supposed to mimic, in some idealized version, the physical

process by which low density equilibrium con�gurations of wet beads are stabilized. Once

attributed random velocities, which are Gaussian distributed with a mean quadratic ve-

locity V0, particles collide, and the capillary attraction causes them stick to one another.

A contact network gradually forms, and kinetic energy gets dissipated. The process is

stopped when all particles are connected, forming one single cluster joined by liquid

bonds, and when all particles reach equilibrium in the sense of Sec. 3.3.2. Typical re-

sulting disordered con�gurations are shown in Fig. 3.8. The same aggregation procedure

applies to polydisperse systems.
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(a) (b)

Figure 3.8: Typical specimens of (a) the monodisperse (Φ0 = 0.30) and (b) the polydis-

perse (Φ0 = 0.24) systems.

3.4.2 Simulation parameters

The sample series and the parameter values for the monodisperse material without RPR

are listed in Table 3.1. Sample F30V1Vm3 is chosen as the reference case, from which

the di�erent control parameters are varied one by one: initial solid fraction Φ0, initial

agitation level V0/V
∗ in the aggregation process, meniscus volume Vm.

Polydisperse samples (without RPR) are prepared with six di�erent initial agitation

intensities, as listed in Table 3.2.

The sample series for the (monodisperse) material with RPR is given in Table 3.3.

The dimensionless rolling friction coe�cient, µR/d, and its pivoting friction counterpart

µP/d are both set to 0.02 for most simulations.
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Table 3.1: Initial parameters of the monodisperse system without RPR

Φ0 V0/V
∗ Vm/d

3 Notation

0.25 F25 0.2041 V1 1.00× 10−3 Vm3 F25V1Vm3

0.30 F30 0.2041 V1 1.00 × 10−3 Vm3 F30V1Vm3

0.4082 V2 F30V2Vm3

1.2247 V3 F30V3Vm3

4.0825 V4 F30V4Vm3

12.2474 V5 F30V5Vm3

40.8248 V6 F30V6Vm3

0.30 F30 0.2041 V1 1.00× 10−2 Vm1 F30V1Vm1

5.00× 10−3 Vm2 F30V1Vm2

5.00× 10−4 Vm4 F30V1Vm4

2.50× 10−4 Vm5 F30V1Vm5

1.25× 10−4 Vm6 F30V1Vm6

6.25× 10−5 Vm7 F30V1Vm7

3.13× 10−5 Vm8 F30V1Vm8

1.56× 10−5 Vm9 F30V1Vm9

7.80× 10−6 Vm10 F30V1Vm10

0.32 F32 0.2041 V1 1.00× 10−3 Vm3 F32V1Vm3

0.35 F35 0.2041 V1 1.00× 10−3 Vm3 F35V1Vm3

0.40 F40 0.2041 V1 1.00× 10−3 Vm3 F40V1Vm3

0.45 F45 0.2041 V1 1.00× 10−3 Vm3 F45V1Vm3

Table 3.2: Initial parameters of the polydisperse system without RPR

Φ0 V0/V
∗ Vm/d

3 Notation

0.24 Po 0.2041 V1 1.00× 10−3 Vm3 PoV1Vm3

0.4082 V2 PoV2Vm3

1.2247 V3 PoV3Vm3

4.0825 V4 PoV4Vm3

12.2474 V5 PoV5Vm3

40.8248 V6 PoV6Vm3
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Table 3.3: Initial parameters of the monodisperse system with RPR

Φ0 V0/V
∗ Vm/d

3 µR/d = µP/d Notation

0.25 F25 0.2041 V1 1.00× 10−3 Vm3 0.02 R2 F25R2V1Vm3

0.30 F30 0.2041 V1 1.00× 10−3 Vm3 0.02 R2 F30R2V1Vm3

0.2041 V1 0.004 R1 F30R1V2Vm3

0.2041 V1 0.1 R3 F30R3V2Vm3

0.2041 V1 0.5 R4 F30R4V2Vm3

0.4082 V2 0.02 R2 F30R2V2Vm3

1.2247 V3 0.02 F30R2V3Vm3

4.0825 V4 0.02 F30R2V4Vm3

12.2474 V5 0.02 F30R2V5Vm3

40.8248 V6 0.02 F30R2V6Vm3

0.32 F32 0.2041 V1 1.00× 10−3 Vm3 0.02 R2 F32R2V1Vm3

0.35 F35 0.2041 V1 1.00× 10−3 Vm3 0.02 R2 F35R2V1Vm3

0.40 F40 0.2041 V1 1.00× 10−3 Vm3 0.02 R2 F40R2V1Vm3

0.45 F45 0.2041 V1 1.00× 10−3 Vm3 0.02 R2 F45R2V1Vm3
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3.4.3 Compression cycle

All assembled samples of the series of Tables 3.1, 3.2 and 3.3 are compressed under grow-

ing external isotropic pressure. A stepwise pressure-controlled loading path is applied.

In each compression step, external reduced pressure P ∗ is multiplied by a constant factor

101/4 ' 1.7783, and one waits until the new equilibrium con�guration is reached, with

the criteria stated in Sec. 3.3.2. The main objective of the present work is to study of the

e�ect of a gradual compression, starting from cohesion-dominated loose states at small

P ∗, and ending in con�nement-dominated denser states at large P ∗. The compression

program is pursued up to P ∗max = 104 (or for some systems, to P ∗max = 103). Then,

the reverse path of P ∗ back to minimum value P ∗ = 10−3 from its highest value is also

simulated.

3.5 Material behavior in isotropic compression

3.5.1 A reference case

3.5.1.1 Macroscopic behavior

The reference test is �rst run with a low initial solid fraction, Φ0 = 0.30. In the present

works, the results are shown in the form of the conventional compression curve showing

void index e versus logP ∗. The compression and decompression curves in the reference

case is shown in Fig. 3.9.

Based on the range of the reduced pressure P ∗, three regimes are identi�ed from the

compression curve (see the inset of Fig. 3.9(a)). A �rst regime (Regime I) is observed

for low reduced pressures, P ∗ ≤ 10−2, in which the initial structure still sustains the

increasing pressure without rearrangement, and void ratio e remains nearly constant

(Fig. 3.9(a)). In a second stage (Regime II), roughly corresponding to interval 2×10−2 ≤
P ∗ ≤ 2×100, the void ratio strongly decreases, and might be described as linearly varying

with logP ∗. The loose structures formed at low P ∗ are no longer able to support the

increasing con�ning pressure, they collapse and restructure. Finally, in Regime III, e

gradually approaches some minimum void ratio emin at the end of the loading process.

The slight decrease of e for P ∗ ≥ 102 is similar to the behavior of cohesionless systems,

and due to elastic de�ections in a stable contact network. The chosen parameters are

such that κ remains large enough not to in�uence the compression process taking place

in Regime II.

The plastic compression behavior of the wet material is closely similar to the 2D

results of Gilabert et al. [14], and to the experimental compression test results on metallic

powders by Poquillon et al. [6]. The void ratio curve in Regime II might be represented

with a linear variation with logP ∗, assuming eref is the void ratio for some reference
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Figure 3.9: (a) e versus logP ∗ for reference system in compression cycle (with schematic

view of three regimes in the inset); (b) comparison of reference case and typical non-

cohesive behavior, with pressure in kPa for glass beads of diameter 0.118 mm wet by

water.

reduced pressure, P ∗ref

e− eref = −λ log
P ∗

P ∗ref
. (3.38)

Coe�cient λ ' 0.36 successfully describes the curve in interval 4× 10−2 ≤ P ∗ ≤ 2× 100.

Eq. 3.38 is usually used in soil mechanics for cohesive materials [5].

Upon decompression, e increases slightly, remaining very close to emin: the com-

paction is essentially irreversible, unlike in the cohesionless granular assembly of Fig. 3.9(b),

for which loading and unloading branches are not distinguishable (as observed in the nu-

merical study of compression cycles of cohesionless spherical beads reported in Ref. [239]).

Note the use of a physical unit of pressure in Fig. 3.9(b), corresponding to glass beads of
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Figure 3.10: E�ect of di�erent (isotropic) unloading and reloading histories on void ratio;

the system does not rearrange along unloading paths BB', CC', DD', EE', which are

reversible; Path 5 causes plastic response in Section CE, along which pressure increases

beyond its past maximum; the primary curves (Path 1) is then retraced.

diameter 118 µm, perfect wetting, and the surface tension of water. With such a system

P ∗ = 1 is obtained for P = 2 kPa.

Upon unloading and reloading at various pressure levels along the compression curve,

a plastic response (irreversible structural rearrangement with density change) under

isotropic pressure is only observed (as illustrated in Fig. 3.10) if the maximum pres-

sure the system has been subjected to in the past (the overconsolidation pressure of soil

mechanics) is exceeded. This maximum pressure value appears to fully characterize the

history dependence of the system in isotropic compression [47].

3.5.1.2 Contact networks and force transmission

As de�ned in Sec. 3.3.3, an important microstructural characteristic, the coordination

number z, de�ned as the average number of interactions per grain, is the sum of the

contact coordination number zc and the coordination number of distant interactions,

through menisci joining non-contacting grains, zd.

Fig. 3.11(a) plots zc, zd, and z versus P ∗ in the compression cycle. Initially, one has

zd = 0, as the velocities in the aggregation process, in the reference case, are low, and do

not allow contact opening (let us recall that distant interaction through menisci without

intergranular contact only appear when contacts open � menisci do not spontaneously

form between non-contacting grains). The obtaining of zc ' 4 at low P ∗ is consistent with

a minimally connected initial network, which does not reorganize or fold onto itself as

aggregation proceeds. The value zc = 4 is the one corresponding to isostaticity in a pack

of frictional beads (although some limited simultaneous amount of force indeterminacy
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Figure 3.11: (a) Coordination numbers z, zc and zd; and (b) coordination numbers zc,

z+, and z− versus P ∗ in compression and decompression cycles.

and velocity indeterminacy � or hyperstaticity and hypostaticity � is not excluded, see

Ref. [230]). zc and zd remain unchanged in Regime I (P ∗ < 10−2), as the initial structure

is maintained. Both coordination numbers start to increase as the structure collapses

and reorganizes in Regime II (10−2 < P ∗ ≤ 2× 100). z exhibits little change in Regime

III (P ∗ > 2 × 100), as the increase of the number of contacts is then mainly due to the

closing of narrow gaps between pairs of grains joined by a meniscus, as the structure is

further compressed � a moderate e�ect. Upon unloading, some contacts are opened and

therefore zd �rst increases while zc decreases a little. Then both coordination numbers

tend to remain constant till to the �nal state at low P ∗, re�ecting the stability of the

dense structure formed at high P ∗.

The coordination number of contacts zc may be split into the contribution of com-

pressive bonds, z+, and the one of tensile bonds, z−. Coordination numbers zc, z+, and
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z− are plotted versus reduced pressure P ∗ in Fig. 3.11(b). At low P ∗, both compressive

and tensile contact forces are present, with similar values of z+ (slightly above 2) and z−
(slightly below 2). Nearly constant in regime I, they vary in opposite directions under

growing P ∗ in regime II, with more and more compressive forces. At high pressure P ∗,

z− gradually vanishes, as the system essentially behaves like a pack of compressed cohe-

sionless beads. z+ and z− vary in opposite ways upon reducing P ∗, without returning to

their initial values.

(a) P ∗ = 10−1 (b) P ∗ = 101 (c) P ∗ = 104

(d) P ∗ = 103 (e) P ∗ = 101 (f) P ∗ = 10−1

Figure 3.12: Contact networks in loading (a, b, and c) and unloading (d, e, and f) cycle.

Line thicknesses for wet contacts (red lines), and for distant interaction (blue lines) are

proportional to the normal force intensity |FN |.

Contact networks may be visualized in order to provide insight on the structural

changes and the evolutions of zc and zd under growing P ∗. Fig. 3.12 shows the networks

of wet contacts and of distant interactions through menisci at six typical stages of P ∗

in the compression cycle. A slice is extracted from the sample with width 3d, its height

and length being those of the whole cuboidal simulation cell. In Fig. 3.12, the red lines

denote the wet contacts (the total normal force FN 6= 0), and the blue lines denote the

interactions through menisci, without direct contact. Along the loading path, under

growing of pressure P ∗, more distant interacting pairs are created, while the network

density is increased (Figs. 3.12, a and b). Numbers of distant interacting pairs are

slightly decreased till the end of loading path (Fig. 3.12(c)). The density of distant
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interacting pairs reaches its maximum near P ∗ = 101, which corresponds to the end

of Regime II. In unloading path, when the system is gradually opened, the numbers of

distant interacting pairs are slightly increased. It remains nearly constant at the end of

unloading path (beyond the stage P ∗ = 10−1. We can see an insigni�cant change in the

density of the blue lines in Figs. 3.12(d, e, and f).

(a) P ∗ = 10−3 (b) P ∗ = 10−1 (c) P ∗ = 101

(d) P ∗ = 104 (e) P ∗ = 100 (f) P ∗ = 10−2

Figure 3.13: Networks of compressive contacts (red lines), tensile ones (green lines), and

contacts with FN = 0 (magenta). Line thicknesses are proportional to normal force

intensity |FN |. Loading path: (a), (b), (c) and (d); unloading path: (e) and (f).

Similarly, compressive and tensile bonds are also depicted in Fig. 3.13. The con-

tact networks of the z+ and z− are selected at several values of P ∗ in compression path

(Fig. 3.13(a, b, c, and d)) and decompression path (Fig. 3.13(e and d)). Initially, at the

beginning of the compaction curve, the density of compressive bonds is higher than one

of tensile bonds. There also exist several pairs having a null normal force (the magenta

lines). This means the normal elastic force F e
N is balanced with the capillary force Fcap.

Upon growing of P ∗, the compressive and tensile bonds are oppositely changed. While

the compressive contacts are dramatically increased, the tensile ones are sharply de-

creased. We can obviously see the increase in the density of the read lines in Figs. 3.13(b

and c). Until the maximal pressure (P ∗ = 104), the compressive ones reach to the max-

imum (at z+ = 5.75, approximately 99 % of the contacts) while the tensile ones reduce

to minimum corresponding to z− = 0.04 (approximately 1 % of the contacts). For the
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unloading cycle (see Figs. 3.13(e and f)), when the system is opened, the compressive

and tensile contacts are inversely increased and reach to a constant values at the end

of unloading path. The densities of the red and green lines at the stage P ∗ = 10−2 are

nearly equalized (Figs. 3.13(f)).
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Figure 3.14: Distribution of normal forces for di�erent values of P ∗ from the compression

path, (a) normalized by the maximum tensile force F0, and (b) normalized by the average

normal force 〈FN〉. Red arrow indicates increasing P ∗.

The distribution of intergranular force values in a granular material in equilibrium [62,

240, 237, 230, 231] has received a lot of attention in the recent literature. The probability

distribution function (hereafter referred to as P.D.F) of normal forces in the reference

system is also investigated, involving: distribution of forces between distant interacting

pairs, distribution of repulsive contact forces and distribution of negative (tensile) contact

forces (see Fig. 3.14). In cohesion dominated con�gurations (F0 � 〈FN〉), the P.D.F is

normalized by the maximum tensile force F0. It is normalized by the average normal
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Figure 3.15: Distribution of normal forces for di�erent values of P ∗ in non-cohesive case,

normalized by the average normal force 〈FN〉. Red arrow denotes increasing P ∗ values.

force 〈FN〉 at larger reduced pressure P ∗. The normal force distributions are roughly

symmetric about zero in the initial states and under low P ∗, (see e.g., the red and dark

green curves). At the beginning of Regime I, P ∗ = 10−3, all of the total normal forces

FN are very small. This is due to the near lack of force indeterminacy: if the network

were exactly isostatic, all forces would vanish under zero pressure. These P.D.Fs widen

and take notable values near FN = −F0 at the end of Regime I, signalling that more and

more contacts are on the verge of opening. At pressure P ∗ = 10−1, all P.D.Fs widen on

the positive (repulsive) side, while the largest tensile force is �xed at F0, thus becoming

dissymmetric, as shown in Fig. 3.14(a). Given relation (3.32), the average normal force

tends to scale with pressure P (up to moderate e�ects of the variations of contact density

zΦ). In the last compression stage (regime III), these P.D.Fs, if normalized by the averge

〈FN〉, become narrower, as apparent in Fig. 3.14(b). This is similar to the behavior of

cohesionless systems, in which those PDF's tend to decrease exponentially, on a scale

given by the average 〈FN〉, the faster the larger the pressure (or the smaller κ) � see

Fig. 3.15. These results are quite similar to the ones obtained in other numerical studies

on cohesive granular materials [187, 13, 14]

3.5.1.3 In�uence of meniscus volume

We now report on investigations of the in�uence of meniscus volume Vm/d3, which is kept

low enough for the material (with a saturation hardly exceeding 1%) to be maintained

in the pendular state. Despite the importance of capillary bridges in the stabilization of

loose structures, the change of meniscus volume seems to have no e�ect on the macro-

scopic behavior of the granular specimens under isotropic compression (no apparent

change in the compression curve, e versus logP ∗), as shown in Fig. 3.16(a). This is cor-
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roborated by the fact that very little change in the coordination number of contacts zc
is observed. Only the coordination number of distant interactions is notably in�uenced

by such a change, especially in Regimes II and III, and in the decompression process,

as depicted in Fig. 3.16(b). As menisci break at larger interparticle distance with larger

meniscus volume, more liquid bonds are present.
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Figure 3.16: Void ratio (a), coordination numbers zc and zd (b) versus P ∗ of the reference

case for di�erent values of meniscus Vm/d3. Red arrow shows direction of increasing Vm
values.

The coordination numbers of compressive bonds z+ and tensile bonds z− for di�erent

values of meniscus volume Vm/d3 are also calculated, as shown in Fig. 3.17. In general,

z+ and z− change similarly (increasing with Vm) in the loading path, upon entering

regime II. However, they change in opposite directions in the end of unloading path

(P ∗ < 100) (see the inset). While z+ is reduced corresponding for decreasing meniscus

volume, z− is increased. The distant interactions through menisci joining non-contacting
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grains are more numerous in systems with larger meniscus volume Vm. They contribute

negatively to the pressure. For smaller Vm, their mechanical role is taken over by some

of the contact forces, carrying net tensile forces.
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Figure 3.17: Coordination numbers of z+ and z− versus reduced pressure P ∗ for di�erent

values of Vm/d3. Inset shows detail with red arrow denoting increasing Vm.

The contact forces, including the wet contacts and contacts through meniscus for

di�erent values of Vm/d3 are also analyzed. However, only the numbers of instant inter-

acting pairs are changed, similar the change in Fig. 3.16. Furthermore, the compressive

and tensile bonds are also analyzed. Nevertheless, they are nearly constant in loading

cycle. They only change in the end of decompression path, when the pressure P ∗ < 100.

The compressive bonds are decreased when the tensile ones are increased according to

the decreasing of meniscus volumes.

Fig. 3.18 plots the distribution of the numbers of contacts per grains (connectivity)

in the reference case for eight di�erent values of meniscus volume during the compression

process. Three representative stages of pressure P ∗ are observed in order to see clearly

the rearrangement of microstructure due to the decrease in liquid content under growing

pressure P ∗. For P ∗ = 10−3, close to the initial state, which is essentially Vm independent

(because of the absence of distant interactions), the connectivity is not a�ected. For

larger pressures, the structure gets somewhat depleted (although this is not a strong

e�ect)

The e�ect of Vm on P.D.Fs of normal forces is also observed to be very small.
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Figure 3.18: Distribution of the number of contacts per grain of the reference case for

di�erent values of Vm/d3 at three typical states of P ∗. Red arrow orders curves by

increasing Vm.

3.5.1.4 Coordination number of close neighbors

Below the rupture distance Dr, the number of distant, interacting pairs in comparison

with the total number of neighbor pairs is also mentioned. The coordination number of

close neighbor z(h) at distance below h (such that z(0) = zc) increases with h as shown

in Fig. 3.19.

Under low pressure P ∗ ≤ 10−2, z(h) is almost similar (red and green curves) because

hardly any structural change takes place in Regime I, and its increase with h is slow,

with a slight upward curvature (convex curve). At P ∗ = 10−1, z(h) slightly increases.

This corresponds to a slight increase of the zc in Fig. 3.11(a). For growing P ∗, function

z(h) gradually retrieves the concave shape observed in cohesionless systems [230], with

larger contact coordination numbers, and correlatively less �incipient contacts� at short

distance. Beyond a few times d/100, z(h) steadily increases with density.

Within the interparticle the meniscus rupture distance Dr, each grain has on average

z(Dr) − zc non-contacting neighbors, among which zd neighbors are interacting by an

attractive force. The ratio of zd to z(Dr)− zc is the proportion of the neighbors within

the range Dr that are bonded by a capillary bridge. This ratio for di�erent values of P ∗

in loading path of the reference case are given in Table 3.4. These values are calculated

for maximum and minimum initial agitation intensities of the loading cycle. For the
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Figure 3.19: Evolution of coordination number of close neighbors z(h) versus dimension-

less interparticle distance h/d for di�erent values of P ∗ in loading path.

unloading cycle, this proportion only negligibly changes.

Under low pressure P ∗ ≤ 10−2, z(h) is almost similar (red and green curves) because

no more contacts or distant interactions are created. At P ∗ = 10−1, z(h) slightly in-

creases. This corresponds to a slight increase of the zc in Fig. 3.11(a). At P ∗ = 10, z(h),

like the coordination number of contact, slightly decreases for very small h/d. This is the

moment that zc starts to increase in Regime III (see Fig. 3.11(a)). Beyond that distance,

z(h) increases with P ∗. Once the interparticle distance h goes up to the meniscus rup-

ture distance Dr, each grain has on average z(Dr)− zc non-contacting neighbors, among

which zd neighbors are interacting by an attractive force. The ratio of zd to z(Dr)− zc
is called as the proportion of the neighbors within the range Dr bonded by a capillary

bridge. This ratio for di�erent values of P ∗ in loading path of the reference case are given

in Table 3.4. These values are calculated for maximum and minimum initial agitation

intensities of the loading cycle. For the unloading cycle, this proportion is negligibly

changed.

These values are similar to the ones of Khamseh et al. [29] and to the proportion of

about 50% reported by Kohonen et al. [125] in static grain packs.
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Table 3.4: Probability of meniscus formation between close neighbors versus P ∗.

P ∗
F30V1Vm3 F30V6Vm3

zd zd/[z(Dr)− zc] zd zd/[z(Dr)− zc]
10−3 0.0000 0.0000 0.2510 0.3990

10−2 0.0005 0.0014 0.2510 0.3990

10−1 0.0515 0.1102 0.2990 0.4262

100 0.9970 0.6115 1.1040 0.6404

101 1.7720 0.7018 1.7990 0.6909

102 1.6830 0.6826 1.8020 0.6875

103 1.4540 0.6462 1.5590 0.6509

104 1.0760 0.5565 1.1680 0.5713

3.5.2 In�uence of drying or of saturating
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Figure 3.20: Void ratio versus pressure P , as cohesive forces are suppressed at the

beginning of unloading, starting at di�erent points on the primary compression curve

(case with initial solid fraction Φ0 = 0.45).

In practice, one may act on a wet system by changing its saturation. The most dras-

tic change should be obtained on entirely suppressing the capillary cohesion, either by

drying, or by completely saturating the intergranular voids by the liquid. In numerical

simulations, one may simply remove all capillary forces, leaving only the interactions

present in a dry system. It is interesting to observe the e�ects of such an ideal transfor-

mation, carried out at various points along the irreversible compression curve. Fig. 3.20

illustrates the resulting void ratio evolution, if the system is suddenly deprived of cap-

illary forces at di�erent pressure levels. This ideal drying or saturation step produces
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a sudden collapse (a brutal compression step), unless all irreversible compression has

already taken place, as for Points F and G in Fig. 3.20. In such cases, one may remove

all capillary forces, as their mechanical role, at high P , is negligible.

A more gradual collapse due to progressive imbibition is reported in some experi-

ments [35].

Remarkably, the �nal state after decompression keeps the same density, whether or

not the system has been deprived of capillary cohesion [47].

3.5.3 In�uence of initial state

The assembling conditions notably a�ect the packing structure and microstructure under

low pressure P ∗. It is therefore necessary to assess the role of initial con�gurations, which

are produced by the initial assembling process in the presence of with capillary bonds.

The e�ects of various micromechanical parameters on the plastic compression curve are

also discussed. The e�ects of both solid fraction Φ0 and initial agitation intensity V0/V
∗

are investigated.

3.5.3.1 In�uence of initial solid fraction

Among the features a�ected by the assembling process, the competition between com-

pression and aggregation is the most important one. Fig. 3.21, obtained with standard

values V0/V
∗ = 0.2041, Vm/d3 = 10−3, compares the compression curves of specimens

with di�erent initial solid fractions Φ0. Denser systems are able to support larger pres-

sures before rearranging, whence larger Regime I plateaus (see Fig. 3.21(a)) in di�erent

intervals of reduced pressure P ∗. For instance, from 10−3 ≤ P ∗ ≤ 4× 10−3 for the small-

est Φ0 value (F25V1Vm3) to 10−3 ≤ P ∗ ≤ 8 × 10−2 for the largest one (F45V1Vm3).

However, in Regime II, these compression curves tend to converge and they very nearly

coincide at the end of the collapse (for P ∗ = 2×100 to P ∗ = 5×100), as clearly apparent

in Fig. 3.21(a), with the di�erent slopes of the six curves corresponding to di�erent Φ0.

In Regime III (P ∗ > 5×100) and along the unloading path, the void ratio of the initially

denser systems is only very slightly lower than the one of the looser systems.

Furthermore, the evolution of coordination numbers of zc and zd remain very sim-

ilar during the loading and unloading paths whatever the initial solid fraction Φ0 (see

Fig. 3.21(b)). zc is only very slightly di�erent in Regime II, depending on the moment

when the collapse started. Meanwhile, in the second half of Regime II, the di�erence

in zd is also quite insigni�cant, with slightly less contact openings leading to distant

interactions in the denser systems. Along the unloading path, the denser the systems,

the lower zd too � but this di�erence is also quite small. One essential conclusion of these

observations is that the coordination numbers depend much more on the system history

(assembling process, loading path), than on its current density.

Looking at the coordination numbers of compressive and tensile bonds (Fig. 3.22),
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Figure 3.21: (a) Void ratio e, and (b) coordination numbers zc and zd versus P ∗ for

di�erent values of initial solid fraction Φ0. Red arrow denotes increasing Φ0.

one also observes quite insigni�cant di�erences for di�erent initial solid fractions. z+ and

z− at the beginning of loading curves (P ∗ < 10−1), despite the di�erent con�guration

geometry. z+ increases to extent, while z− decreases, for larger initial solid fraction

Φ0 (see clearly in the inset). Under growing pressure, z+ and z− evolve in opposite

directions, similarly for all compression curves. System states appear no longer to be

in�uenced at all by the initial density in Regime III and in unloading.

The connectivity, or distribution of the number of contacts per grain, P (NC), is shown

in Fig. 3.23 for di�erent values of Φ0 (similarly to Fig. 3.18). Three �gures correspond

to three typical states of compaction path P ∗ = 10−3, P ∗ = 100 and P ∗ = 101 (see the

label on �gure). At very low pressure P ∗ = 10−3, the P (NC) is almost similar whatever

the initial Φ0 � con�rming, in a more detailed form, the absence of correlation between

density and contact numbers. P (NC) peaks at NC = 4, with a value of approximately
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Figure 3.22: Coordination numbers z+ and z− versus P ∗ for di�erent values of Φ0.

35 % for low pressure. The P (NC) is remarkably changed at P ∗ = 1, as its peak moves

towards NC = 6, except in the densest system Φ0 = 0.45. P (NC) curves tend to get

shifted to larger NC values in initially looser systems. In other words, at the end of

the collapse, less contacts are created in the denser systems. This is con�rmed via

the variations of zc and zd in Fig. 3.21(b). At pressure P ∗ = 10, P (NC) reaches its

maximum at NC = 7 in the looser systems, while peaking at NC = 6 in the denser ones.

This tendency is in agreement with the small di�erence in zd observed in Fig. 3.21(b).

Then, like other state variables, connectivities signal no di�erence in Regime III and

upon unloading.

Fig. 3.24 shows the distributions of normal forces for di�erent values of initial solid

fraction Φ0 at P ∗ = 10−2. At the lowest pressure P ∗ = 10−3, the P.D.Fs are nearly

symmetric about 0 and very similar to one another. At P ∗ = 10−2, these P.D.Fs are also

roughly symmetric about 0, except the P.D.F of case Φ0 = 0.25, because it already tran-

sited to the Regime II, as indicated by the extension of the positive wing to 1.5 and the

�nite value in -1. The delayed approach to Regime II for larger densities causes narrower

P.D.Fs (as indicated according to red arrow in this �gure). For increasing pressure, these

P.D.Fs widen and undergo similar evolutions, approaching the characteristic force PDF

shape of cohesionless systems already described in Sec. 3.5.1.2.
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Figure 3.23: Distribution of the number of contacts per grain for di�erent values of Φ0

at three typical states of P ∗. Red arrow denotes increasing Φ0.
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Figure 3.24: Distribution of normal forces for di�erent values of Φ0 under low pressure

P ∗ = 10−2, is normalized by the F0. Red arrow denotes increasing Φ0.

3.5.3.2 In�uence of initial agitation intensity

Ratio V0/V
∗, characterizing the intensity of initial agitation and its ability to break

adhesive contacts, signi�cantly in�uences the initial assembling process and the resulting

coordination number.
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Figure 3.25: (a) Compression and decompression curves, and (b) coordination numbers

zc and zd for di�erent values of V0/V
∗. Red arrow denotes increasing V0/V

∗.

Fig. 3.25 shows that this parameter mainly a�ects the beginning of the compression

curve. Six di�erent values of V0/V
∗ are used, and the di�erence between minimum and

maximum values is two-hundredfold. Under low P ∗, higher initial agitation velocities

entail wider Regime I plateaus. This corresponds to the intervals of reduced pressure

from 10−3 ≤ P ∗ ≤ 10−2 to 10−3 ≤ P ∗ ≤ 6 × 10−2. If initial velocity V0 is of the

order of V ∗, the initial packing structure is strongly perturbed. zc values in the initial

state depart then from the minimum, one observes zc > 4, reaching zc = 4.75 for the

largest V0. zd is also no longer equal to zero in the initial states. In other words, the

larger the velocities, the stronger the initial structures (see Fig. 3.25(a)). More contacts

are created, larger initial coordination numbers zc and zd are observed at low P ∗ (see

Fig. 3.25(b)). Conversely, with low agitation velocities (V0 ≤ V ∗), grains gently stick to

one another and clusters of aggregated grains, once formed, are not disturbed. Lower
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agitation velocities induce more tenuous aggregates.

As complementary evidence for the change in the numbers of contacts, the coordina-

tion numbers of compressive and tensile bonds are shown in Fig. 3.26. In the compression

cycle, the z+ and z− only di�er in Regime I (see inset). The larger the initial agitation

intensities, the denser the initial network, with more compressive and more tensile bonds.

The subsequent variations of z+ and z− in Regime II, and in the rest of the compression

cycle, cease to be a�ected by the initial V0.
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Figure 3.26: Coordination numbers z+ and z− versus P ∗ for di�erent values of V0/V
∗.

The e�ect of the initial agitation intensity on the initial structure is visualized in

Fig. 3.27, showing the grains contained in a slice of thickness 3d cut through the specimen

(like in Fig. 3.13), at P ∗ = 10−3, for di�erent values of V0/V
∗. For the smaller V0 values,

initial structures are both more tenuous and more homogeneous. Stronger aggregates

formed with larger V0/V
∗ values (corresponding to longer Regime I plateaus, as shown in

Fig. 3.25(a)), are also more heterogeneous, with larger pores. Besides, views of contact

networks would reveal similar features as in Fig. 3.12 and Fig. 3.13.

Connectivities at di�erent pressure levels, P ∗ = 10−3, P ∗ = 10−1, and P ∗ = 100 are

shown in Fig. 3.28 for varying initial V0. The in�uence of initial agitation is quite con-

spicuous in the shift if the distribution to larger NC values at P ∗ = 10−3, and gradually

fades out upon increasing P ∗.

The e�ects of initial agitation velocities V0/V
∗ on the distribution of normal forces

at initial low-pressure states P ∗ = 10−3 are shown in Fig. 3.29. PD.F. are approxi-

mately symmetric about zero, except for the larger V0, as wider positive wings appear,

extending to values above F0. Unlike in the case of Fig. 3.24, wider distributions do not

signal here the approach to the plastic collapse of Regime II. These distribution shapes

are characteristic of the self-balanced forces that appear for large V0 as aggregates are

restructured, fold onto themselves and acquire a signi�cant level of force indeterminacy.
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(a) F30V1Vm3 (b) F30V2Vm3 (c) F30V3Vm3

(d) F30V4Vm3 (e) F30V5Vm3 (f) F30V6Vm3

Figure 3.27: A 3D slice of specimen for di�erent values of V0/V
∗ at the beginning of

loading path (P ∗ = 10−3).

Under compression, those PDF's evolve as in the previous cases, and the initial in�uence

of larger coordination numbers due to stronger agitation in the assembling stage are

gradually forgotten.
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Figure 3.28: Number of contacts per grain for di�erent values of V0/V
∗ at three typical

states of P ∗.
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Figure 3.29: Distribution of normal forces of reference case for di�erent values of V0/V
∗

under low pressure P ∗ = 10−3, normalized by F0. Red arrow denotes increasing V0/V
∗.

3.5.4 E�ects of polydispersity

The polydisperse system (without RPR) is studied with the diameter distribution, such

that dmax = 2dmin, presented in Sec. 3.2.1, and the values of initial parameters given

in Table 3.2. The main objective of this study is to assess whether and to what extent
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a grain size distribution a�ects the main results concerning the compression curve, the

irreversible plastic compression and the correlative internal state evolution and their de-

pendence on initial state and several control parameters. Note that the reduced pressure

P ∗ as used in this section is in fact de�ned as P ∗po by relation (3.36).

3.5.4.1 Some observations on behavior and parameter dependence
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Figure 3.30: (a) Void ratio e and (b) coordination numbers zc and zd versus P ∗ for

di�erent values of V0/V
∗. Red arrow denotes increasing V0/V

∗.

The compression curve, displayed in Fig. 3.30(a), for di�erent values of initial agita-

tion velocity in the aggregation stage, exhibits the same three regimes as in the monodis-

perse case. One apparent di�erence is the reduction of the Regime I plateau for gently

assembled systems (low V0). The evolution of the coordination numbers zc and zd is plot-

ted in Fig. 3.30(b). Under growing pressure P ∗, more contacts are created, zc increases

notably. The evolution of zc and zd is qualitatively the same as in the monodisperse
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case. Towards the end of the irreversible compression stage, as Regime III is reached, zc
and zd are similarly changed whatever the initial values of V0/V

∗.

The contact networks for di�erent values of initial agitations at P ∗ = 10−3 are shown

in Fig. 3.31, within a slice of thickness 3dmin. In Fig. 3.31, the wet contacts are rep-

resented by the red lines, and the distant interactions by the blue lines � both with a

thickness proportional to force intensity. Similarly to the monodisperse case, in the ini-

tial stages, more contacts and distant interactions are created with the larger agitations

(V5 and V6). Observations� albeit, due to the choice of thickness 3dmin, pertaining to a

relatively thinner slice, relative to the average diameter � do not show any qualitative dif-

ference with those made in connection with Fig. 3.27: with larger V0, initial aggregates

are better connected, forming a structure apt to withstand larger pressures, although

comprising larger voids. Similar observations regarding density heterogeneities can be

(a) PoV1Vm3 (b) PoV2Vm3 (c) PoV3Vm3

(d) PoV4Vm3 (e) PoV5Vm3 (f) PoV6Vm3

Figure 3.31: Contacts (red lines) and distant interactions (blue lines) for di�erent values

of V0/V
∗ at P ∗ = 10−3. Line thicknesses proportional to normal force intensity.

gathered from Fig. 3.32, visualizing grains rather than contacts and liquid bonds.
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(a) PoV1Vm3 (b) PoV2Vm3 (c) PoV3Vm3

(d) PoV4Vm3 (e) PoV5Vm3 (f) PoV6Vm3

Figure 3.32: Grains contained in a slice (thickness 3dmin), at low P ∗, for di�erent values

of V0/V
∗.

3.5.4.2 Comparison between polydisperse and monodisperse systems

Previous results show that the introduction of polydispersity does not very notably

change the observed behavior and microstructure evolution of initially loose systems

subjected to a pressure cycle. We now turn to more quantitative comparisons. The

monodisperse case with the initial solid fraction Φ0 = 0.25 is selected to compare with

the polydisperse one. These two cases are compared with the same values of initial

agitation intensity and meniscus volume. One may note that both quantities should

perhaps be adequately rede�ned, accounting for the di�erent grain scale: the meniscus

volume, as mentioned here, is actually the value of Vm corresponding to a pair of par-

ticles of equal diameter dmin, while the meniscus volume is actually proportional to the

surface area of the particle pair; and the value of V ∗ should in principle be modi�ed

too, accounting for size dependences of the mass and of the meniscus rupture distance.

However, reference parameter values pertain to the limit of gentle aggregation, without

cluster restructuration, and to a range of meniscus volumes with very little in�uence on

the behavior, and, consequently, we dispense with rescaling V0 and Vm. Fig. 3.33 directly

confronts the variations of void ratio and of coordination numbers in the compression

cycle for those two di�erent materials, the monodisperse (MDS) and the polydisperse

(PDS) ones.

This comparison reveals quantitatively close behaviors. Slight di�erences can be
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Figure 3.33: (a) Void ratio e and (b) coordination numbers zc and zd versus P ∗ for MDS

and PDS.

noted: the Regime I plateau is narrower and less well de�ned for the PDS, showing a

more fragile initial structure. In Regime II, the structure of PDS appears to collapses

somewhat earlier than for the MDS, but not faster (both curves are nearly parallel).

And the minimum void ratio emin is slightly smaller for the PDS � the solid fraction of

a polydisperse system is usually larger than for monosized grains.

The evolutions of coordination numbers zc and zd for both systems, plotted in

Fig. 3.33(b), are also very close. At the end of the compression zd is somewhat smaller in

the PDS � this could be due to the di�erence in ratios Dr/d. In �nal dense states after

decompression, small di�erences are maintained for zc. Generally, given the geomet-

ric di�erences between monodisperse bead packs, and polydisperse ones with diameters

varying by a factor of 2, it should be concluded that the observed behaviors do not ex-

hibit very signi�cant size distribution e�ects, and thus the study of a mondisperse model
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gives meaningful results which might be applicable in rather generic situations involving

spherical beads with moderate polydispersity.

3.6 The case of wet beads with RPR

Rolling resistance was observed in two-dimensional [17, 13, 14] and three-dimensional [19]

DEM studies to have strong e�ects on loose cohesive granular materials for small P ∗.

We now report on the results of the isotropic compression cycle applied to the systems

of Table [13, 14]. In all simulations with RPR, we set KR/(KNd
2) = 2.5 × 10−2, while

KT/KN = 1 and KN/d = 400 GPa.

3.6.1 In�uence of initial solid fraction
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Figure 3.34: (a) Void ratio e and (b) coordination numbers zc and zd versus P ∗ in

compression cycle for di�erent values of Φ0. Red arrow denotes increasing Φ0.
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Systems with RPR, assembled six di�erent values of the initial solid fraction Φ0, are

subjected to the compression test, with the same procedure as the material without RPR.

The compression cycle is limited to P ∗ ≤ 103. Fig. 3.34 shows the resulting behavior, in

terms of void ratio and coordination numbers.

A �rst observation is, in general, the absence of a plateau for Regime I, except in

the densest case Φ0 = 0.45. The irreversible density increase gradually takes place from

the lowest investigated values of P ∗, (of order 10−3). Under growing pressure P ∗, curves

pertaining to di�erent initial densities converge, until they nearly coincide in Regime III.

The slope of the linear part of the e versus logP ∗ curve is no more an intrinsic material

parameter as in the material without RPR, as it varies with Φ0. The �nal (minimum)

value of the void ratio, reached for large enough P ∗, and (approximately) maintained

upon reducing the pressure, is also dependent on Φ0: one gets emin = 0.75 for Φ0 = 0.40

and emin = 0.70 for Φ0 = 0.45 (see Fig. 3.34(a)). The coordination numbers of contacts

are still equal to the minimum value, which is 2 instead of 4 for systems with RPR: as

noted in 2D systems [13], aggregates of particles with rolling resistance are rigid objects,

and if they do not restructure due to the collisions while additional particles stick to the

growing clusters in the formation stage, as in the case of a small initial agitation velocity

V0, they should be generically devoid of loops, whence zc = 2. Contact loops entails force

indeterminacy. The initial aggregate is an isostatic structure in the limit of small V0.

Fig. 3.34(b) shows that this applies to �V1� (small initial V0) systems whatever the value

of Φ0, and the variation of coordination numbers in the pressure cycle are remarkably

independent on Φ0. Distant interaction coordination numbers, initially equal to zero,

due to the instantaneous stability of aggregated structures, vary a little with Φ0 in the

later stages of the pressure cycle, with slightly less contact openings in denser systems.
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Figure 3.35: Coordination numbers z+ and z− versus reduced pressure P ∗ for di�erent

values of Φ0. Red arrow denotes increasing Φ0.
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As to coordination numbers z+ and z− associated to compressive and tensile contact

froces, Fig. 3.35 shows, apart from a smaller number of contacts, very similar evolutions

as in systems without RPR, and are remarkably insensitive to Φ0.

3.6.2 In�uence of initial agitation intensity
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Figure 3.36: (a) Void ratio e and (b) coordination numbers zc and zd versus P ∗ in

compression cycle for di�erent values of V0/V
∗. Red arrow indicates increasing V0/V

∗.

As in the systems without RPR, the initial agitation intensity strongly a�ects the

initial structures under low pressure P ∗. Fig. 3.36 shows the variations of void ratio

e and coordination numbers zc and zd in the compression cycle for di�erent values of

V0/V
∗.

As noted before Regime I does not exist as a plateau in the compression curves

for small initial agitation level (this applies to two �rst cases � red and green curves
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in Fig. 3.36). The initial tenuous structures (with coordination number approaching

2, i.e., virtually no loop) formed with RPR and low V0 respond with some amount

of plastic collapse at the �rst pressure increment, as shown in Fig. 3.36(a). Regime I

reappears on the pressure scale of Fig. 3.36(a) in systems assembled with larger initial

agitation velocities, which are better coordinated (see Fig. 3.36(b)), and collapse more

abruptly in plastic compression. This large change in the compression curve is due to

strong variations of the initial values of coordination number zc, which nearly doubles,

from approximately 2.15 to nearly 4.25, for increasing initial agitation. Interestingly, the

system assembled with the lower coordination numbers �rst react by plastic compression

with no contact loss, as zd remains equal to zero (no contact opening creating a distant

interaction). As in the 2D systems of Ref. [14], irrecoverable plastic restructuring may

take the form of bending or folding deformation of single particle strands.

Distant interactions are present from the beginning in better coordinated, initially

more strongly agitated systems, with zd = 0.25 for the largest V0. At intermediate

pressures 1 ≤ P ∗ ≤ 10, while zc slightly increases, zd increases faster, before slightly

decreasing in Regime III. zc then reaches its maximum at the end of the loading path.

Upon unloading, many distant interactions replace interparticle contacts. Finally zc and

zd remain constant when P ∗ is smaller than 10.
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Figure 3.37: Coordination numbers z+ and z− versus P ∗ for di�erent values of V0/V
∗

(increasing according to red arrow).

Fig. 3.37 displays the variations of z+ and z− in the compression cycle for six values

of initial agitation level. z+ and z−, just like zc = z+ + z−, strongly depend on V0 in

the beginning of the compression cycle, and increase in parallel with V0, from z− = 0.82

and z+ = 1.30 to z− = 1.95 and z+ = 2.30. As Regime III is approached (P ∗ > 100),

the system becomes denser, the tensile contacts gradually vanish while z+ approach

its maximum. Part of this evolution is reversed along the decompression path, with,



3.6. The case of wet beads with RPR 147

however, is no longer sensitive to the initial state.

(a) F30R2V1Vm3 (b) F30R2V2Vm3

(c) F30R2V3Vm3 (d) F30R2V4Vm3 (e) F30R2V5Vm3

(f) F30R2V6Vm3

Figure 3.38: 3d-slices of specimens assembled with RPR for di�erent values of V0/V
∗,

under P ∗ = 10−3

As in the previous sections, a slice (still with thickness 3d) of the samples obtained for

di�erent values of V0/V
∗, under small pressure, P ∗ = 10−3 is shown in Fig. 3.38. Fairly

homogeneous for low V0 (Fig. 3.38(a, b, and c)), the system exhibits larger dense regions

and larger voids if initially more strongly agitated (Fig. 3.38(d, e, and f)). Meanwhile �

see Fig. 3.36(b) � the coordination number changes from a value near 2 to slightly larger

than 4. Remarkably, despite the larger number of contacts, structures formed under

stronger agitation still exhibit strands (or chains) of single particles � see the blown up
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detail of Fig. 3.38(f) are still present.
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Figure 3.39: Number of contacts per grain for six values of V0/V
∗ at three typical states

P ∗ = 10−3, P ∗ = 10−1, and P ∗ = 101. Red arrow denotes increasing V0/V
∗.

The e�ects of V0/V
∗ on connectivity are shown in Fig. 3.39. In the initial state

(P ∗ = 10−3), grains with just one contact represent ≈ 28% of the whole population.

Those grains are �dead ends� in the network of forces, and are joined to the network

by a single bond carrying, necessarily, a force equal to zero. As discussed in Sec. 3.6.3,

this bond is however able to transmit �nite tangential forces and rolling and pivoting

moments, so that those grains are rigidly �xed to the continuous aggregate. Such 1-

coordinated grains no longer exist in the better coordinated systems assembled with

the largest agitation levels. P (NC) distributions peak at increasing values of NC as the

agitation level increases, from NC = 2 (V1 and V2), to NC = 3 (V3 and V4), and then

NC = 4 (V5 and V6). Under the higher pressure P ∗ = 10−1, the �rst four distributions

(for V1, V2, V3, and V4) shift to larger values, while the ones of V5 and V6 hardly

change, which is typical for the absence of evolution in Regime I. When all systems have

almost completely collapsed (P ∗ = 101), all connectivities become similar as the memory

of initial states fades out.

P.D.F. of normal forces in low-pressure states P ∗ = 10−3 are plotted in Fig. 3.40.

The e�ect of varying V0/V
∗ is quite similar as in the systems devoid of RPR (Fig. 3.29),

with a distribution, roughly symmetric about zero except for the largest values of V0,

which correspond to the largest force indeterminacy, while the distribution width tends
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Figure 3.40: Distribution of normal forces at low pressure P ∗ = 10−3 for di�erent V0/V
∗

(increasing according to red arrow) P.D.F normalized by F0.

to vanish with the degree of force indeterminacy (hyperstaticity), for decreasing V0. The

positive forces between grains dominate the maximum attractive forces at the maximum

velocity (the cyan and brown curves). Like other cases of cohesive and non-cohesive

grains, the stronger the pressure, the wider the P.D.Fs and the in�uence of initial veloc-

ities to force distributions then fade out after the granular structure are compressed to

higher pressures and densities.

3.6.3 In�uence of rolling and pivoting friction coe�cients

DI�erent values of the rolling and pivoting friction coe�cients, µR/d and µP/d, are also

tested in the same systems. The compression curves for four values of µR = µP (see

Table 3.3) ranging from 0.004d (R1) to 0.5d (R4) are shown in Fig. 3.41.

As regards Regime I, for the evolution of void ratio, the e�ect of larger RPR co-

e�cients is somewhat similar to the one of a larger V0, creating more stable initial

con�gurations. That does not exist in the systems of low µR/d (R1 and R2). Coordi-

nation numbers, however, tend to decrease for increasing RPR, with initial states closer

and closer to the isostatic, loopless limit zc = 2. The plastic compression of systems with

larger RPR tends to be slower, both for void ratio and coordination numbers. As the

irreversible compression proceeds, the di�erences between small and large RPR persist,

and survive the complete pressure cycle � high µR = µP values resulting in looser con�g-

urations with smaller coordination numbers. Increasing RPR also alters the microscopic

mechanical behavior which determines the slope of the compression curves.

The distribution of normal forces, normalized by F0, for di�erent values of µR/d, are

shown in Fig. 3.42 under P ∗ = 10−2. Despite the lower contact coordination number,
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Figure 3.41: (a) Void ratio e and (b) coordination numbers zc and zd versus P ∗ for

di�erent values of µR = µP . Red arrow denotes increasing µR/d.

the systems with larger RPR tend to exhibit wider force distributions. This implies

some in�uence of the di�erent density, as large RPR maintains lower densities under

P ∗ = 10−2. Note the large values of the P.D.F. at FN = 0: this should correspond to

grains with one single contact, as remarked in connection with Fig. 3.39.

Some further analysis of the plastic mechanisms by which network break or rearrange

as the system is irreversibly compressed would be necessary to explain the relations

between the evolutions of density, coordination numbers, position correlations and force

distributions. It was suggested in Ref. [14] that the dominant plastic mechanism transits

from tensile rupture to rolling friction mobilization and �plastic bending� of particle

chains as the level of RPR increases.
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Figure 3.42: Distribution of normal forces for di�erent values of µR/d at P ∗ = 10−2. Red

arrow denotes increasing µR/d.

3.6.4 Comparison of bead assemblies with and without RPR

A comparison of compression behavior between two reference systems with and without

(small) RPR is made in Fig. 3.43. The e�ect of initial agitations V0/V
∗ (both minimum

and maximum values) are also shown. For the minimum agitation, the appearance of

RPR in contacts creates denser systems under low P ∗, because plastic collapse sets in

earlier under increasing pressure, but smaller coordination numbers. While the initial

loose structures formed without RPR, which can sustain a small non-vanishing pres-

sure in Regime I, the compression curve of the tenuously connected structures formed

with small RPR and low agitation tend to rearrange immediately. Such structures, are

virtually loopless, with contact coordination numbers approaching 2. This di�erent be-

haviour appears in Fig. 3.43(a). A Regime I plateau reappears on the pressure scale of

Fig. 3.43(a) in systems assembled with larger initial agitations, which are better coordi-

nated (Fig. 3.43(b)), and collapse more abruptly in plastic compression. With RPR, one

may thus obtain a wider range of compression indices Cc in the sense of Eq. (1.1). Plastic

compression, as the pressure increases, might be faster with RPR, for gently assembled

systems with low coordination numbers; or slower with RPR, for systems assembled

under strong agitation, into well connected structures.

Systems with or without RPR also widely di�er by their initial coordination number,

for which the introduction of RPR also entails a larger e�ect of the initial agitation.

Between the minimum and the maximum agitation levels, at lowest pressure P ∗, the

contact coordination number zc increases from 4.08 to 4.75 without RPR and from 2.09

to 4.20 with RPR. The coordination number of distant interactions zd is also increased

from 0.00 to 0.27 both without and with RPR. zc and zd, in both systems vary with
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Figure 3.43: (a) Void ratio e and (b) coordination numbers zc and zd versus P ∗ in

compression cycle for systems both without RPR and with RPR.

similar trends, remaining constant in unloading.
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3.7 Conclusion

The numerical study of isotropic compression of initially loose wet bead systems, forming

continuous, random aggregates stabilized by capillary cohesion, has been carried out for

di�erent model materials: monodisperse or not, possibly with some resistance to rolling

and pivoting in the contacts, and with varying values of initial density, coordination

and connectivity (the latter features being determined by the agitation intensity in the

aggregation stage), and meniscus volume. The plastic behavior of such a model wet

granular materials is characterized at both macroscopic and microscopic levels. The

main conclusions of this chapter are summarized as follows.

Firstly, the irreversible, plastic compression process, controlled by the reduced pres-

sure, P ∗, goes through three regimes. In Regime I, which is sensitive to the assembling

procedure, the microstructure can sustain small, �nite pressure increments with strong

enough without plastic collapse. Those increments are larger for denser initial states and

for stronger initial structures, as obtained as agitation levels in the aggregation process

entails cluster restructuration and reinforcement. Subsequent collapse as the con�ning

pressure is increased and causes tensile contact rupture reduce the void volume in Regime

II, for which the variation of void index with pressure has the same shape as reported

in the soil mechanic literature. The preconsolidation pressure is a plastic threshold be-

low which the quasistatic response of material is approximately elastic (similar to the

behavior of a non-cohesive granular soils under isotropic load). The material eventually

approaches a minimum void ratio (maximum density) in Regime III.

Secondly, our results emphasize the important di�erences between cohesive and non-

cohesive granular assembles. The most important di�erences, which are brought by

cohesion in macroscopic behavior, are the existence of very loose stable structures (with

solid fraction as low as 0.25 with identical spherical beads) and the plastic compression

phenomenon. At the microscopic level, the attractive and repulsive contact forces are

initially of the order of the maximum tensile strength F0, and tend to compensate each

other under low pressure. The compaction path stabilizes self-balanced force networks

with large compression forces.

Thirdly, our results show the remarkable, and somewhat unexpected, in�uence of two

microscopic features. Both strongly a�ect the shape of the compression curve. One is a

material characteristic, the rolling and pivoting resistances at contacts between grains.

Even a small RPR has a strong microstructural role for small P ∗. The other one is

the initial coordination number and internal state of connectivity, as determined by the

assembling process. Coordination and connectivity are quite independent of density, and

also crucially in�uence the plasticity of loose materials.

Finally, the plastic behavior in compression is not very sensitive to the grain size

distribution, as only a very moderate quantitative di�erence is observed between single-

sized grains and polydisperse ones with a diameter distribution ranging from 1 to 2.





CHAPTER 4

Oedometric compression: DEM study

and experimental confrontation

This chapter reports on numerical simulations of oedometric compression tests

with the model material (with monodisperse beads and no RPR). Some speci�c

analyses are introduced to investigate stress anisotropy and its microscopic ori-

gins. Such simulations enable direct comparisons with experiments, both for the

plastic behavior (compression curve) and for some microstructural characteristics.
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confrontation

4.1 Introduction

The objective of this chapter is to investigate the behavior of the numerical material

in oedometric compression, and then to quantitatively confront experiment and DEM

simulation at macro- and microscopic levels, using the experimental results of Chapter 2.

The DEM simulations are carried out with the simplest model material, the monodisperse

one without RPR. The force model and the initial assembling procedure are the same

as the ones de�ned in Chapter 3. Several results of the isotropic compression tests are

also reused for the comparison.

4.2 Simulation of oedometric compression tests

To the same initial samples of 4000 mono-sized spherical beads as for isotropic com-

pression tests, stress and strain conditions are applied in order to simulate oedometric

compression: while σ1 (the axial stress) is increased, ε2 = ε3, the lateral strains are main-

tained at zero. The axial strain rate is also constrained, during the compression, not to

exceed a preset maximum value, in order to model a quasistatic test. This constraint is

expressed through the inertial parameter I = ε̇
√
m/dσ1 where m is the particle mass. I

is requested to remain below 10−3 throughout the compression tests simulation.

Like in the isotropic case, we use di�erent values of material parameters in order

to explore the parameter dependence of the plastic compression behavior: four values

of initial solid fraction (Φ0), di�erent values of initial agitation intensity V0/V
∗ for the

reference initial solid fraction Φ0 = 0.30. As to the meniscus volume, one conclusion of

Chapter 3 is its remarkably weak in�uence on the material behavior, and therefore it is

�xed to Vm/d3 = 10−3 in all oedometric test simulations. The list of numerical samples

subjected to oedometric compression, with the corresponding parameter choice, is given

in Table 4.1.

Table 4.1: Initial parameters of the oedometric simulations (without RPR)

Φ0 V0/V
∗ Vm/d

3 Notation

0.30 F30O 0.2041 V1 1.00× 10−3 Vm3 F30OV1Vm3

0.4082 V2 F30OV2Vm3

1.2247 V3 F30OV3Vm3

4.0825 V4 F30OV4Vm3

12.2474 V5 F30OV5Vm3

40.8248 V6 F30OV6Vm3

0.32 F32O 0.0241 V1 1.00× 10−3 Vm3 F32OV1Vm3

0.35 F35O F35OV1Vm3

0.40 F40O F40OV1Vm3
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The de�nition of a reduced stress used for pressure in Eq. (3.35) of Chapter 3, is

applied, in the oedometric case, to the axial stress, compared to the tensile contact

strength:

σ∗1 =
d2σ1

F0

, (4.1)

The loading program, with controlled steps of externally applied axial stress, is similar

to the isotropic compression cycles of Chapter 3.

4.2.1 Compression of di�erent initial states: initial V0 and coordination.
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Figure 4.1: (a) Void ratio e, and (b) coordination numbers zc and zd versus σ∗1 for

di�erent values of V0/V
∗, in creasing as indicated by red arrow.

Initially assembled states of solid fraction Φ0 = 0.30 but varying values of initial

agitation intensity V0/V
∗, and, consequently, connectivity, are subjected to the oedo-

metric loading program. The compression curves are now shown as the relationship
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between void ratio e and logarithm of reduced axial stress σ∗1, e− log(σ∗1), as plotted in

Fig. 4.1, along with the variations of coordination numbers zc and zd. Three regimes

are identi�ed in the compression cycle (Fig. 4.1(a)), in close analogy with the isotropic

compression behaviour. Let us recall that the initial states are isotropically assembled,

and actually coincide with those studied in Chapter 3. The enduring e�ect, as σ∗1 in-

creases through Regime I, of initial agitation, which creates stronger, better connected

structures (Fig. 4.1(b)) is clearly visible and analogous to the isotropic case.
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Figure 4.2: Coordination numbers of z+ (compressive contacts) and z− (tensile contacts)

versus reduced vertical stress σ∗1 for di�erent values of V0/V
∗, increasing as shown by

read arrow.

Fig. 4.2, showing the σ∗1 dependence of coordination numbers z− and z+ associated

to tensile and compressive contacts, is also closely analogous to its counterparts in the

isotropic case.

The coe�cient of lateral pressure, denoted asK0, is de�ned in oedometric compression

as the ratio of lateral stress, to axial stress:

K0 =
σ3

σ1

. (4.2)

K0, in Fig. 4.3, is plotted on a logarithmic scale in order to observe clearly its vari-

ation along the compression and decompression curves. K0 strongly depends on the

initial state: it is about twice as large, under low σ∗1, in the stronger systems (V4 to V6)

than in the weaker ones (V1 to V3). This might be attributed to the initial isotropic

organization of self-balanced forces of order F0, which cause the strong systems to transit

less anisotropic stresses in Regime I. K0 decreases slightly in Regime I, as the anisotropy

of the loading process a�ects the initially isotropic microstructure more and more. Con-

versely, the collapse taking place in Regime II causes K0 to gradually increase in all

systems. K0 values converge near the end of the collapse stage, at P ∗ = 101. At high
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pressure, in Regime III, K0 remains almost constant (K0 ≈ 0.8) whatever the initial con-

nectivity. In the �rst part of the unloading path, K0 slightly increases (from K0 ≈ 0.7

to K0 ≈ 0.8) with similar values in all cases (the in�uence of the initial state seems now

forgotten). K0 starts to diverge in the latter half of unloading path, when the vertical

stress σ∗1 < 10, reaching values of several tens or several hundreds. This behavior is

simply due to the existence of residual lateral stresses of order F0/d
2, while the axial

stress is requested to decrease to much smaller values: σ∗1F0/d
2, by de�nition of σ∗1. The

di�erent residual lateral stresses observed for di�erent initial coordination (or initial ag-

itation, V1 to V6) correlates with the di�erent density of tensile contacts (see Fig. 4.2)

at the end of the unloading curve in the six specimens.
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Figure 4.3: Coe�cient of lateral pressureK0 versus reduced vertical stress σ∗1 for di�erent

values of V0/V
∗. Red arrow denotes increasing V0/V

∗.

From the Eq. (3.24) of Chapter 3, the contribution of forces to the stress components

can be split in various ways, depending on the distinction between di�erent forces. First

we consider the total stress as a sum of the contributions of the contacts and the distant

interacting pairs, as

σαβ = σcαβ + σdαβ. (4.3)

The contribution of distant interactions to σ22 is illustrated in Fig. 4.4. Due to the

attractive nature of the capillary forces, σd22 is a tensile stress, negative with our sign

convention. It is displayed in a logarithmic relation using the absolute value of σd22 in

order to give a better observation of its contribution. As noted earlier (see Fig. 4.1(b)),

distant interactions are initially absent in the systems with low initial coordination. σd22

is therefore very small in the �rst three cases (V1, V2, V3) at low axial stress, σ∗1 ≤ 10−2.

Conversely, in systems V4 to V6, a signi�cant amount of distant interactions are created

in the aggregation stage. Their contribution to the stress components is naturally of
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Figure 4.4: Contribution of distant interactions to normal stress σ22. Red arrow denotes

increasing V0/V
∗.

order zdF0/d
2, and therefore quite important compared to the total axial stress which is

controlled at a small value of order σ∗1F0/d
2 (even considerably larger for well connected

initial): at σ∗1 = 10−3, values σd22/σ22 = −0.41, σd22/σ22 = −3.65, and σd22/σ22 = −9.53 are

respectively observed in tests F30OV4Vm3, F30OV5Vm3, and F30OV6Vm3. σd22/σ22, in

these three cases, increases in Regime I, which ends, respectively, at σ∗1 ' 3 × 10−2,

σ∗1 ' 7×10−2 and σ∗1 ' 10−1 [Fig. 4.6(a)]. Nevertheless, it is well noted that the increase

in σd22/σ22 is signi�cantly induced by the increase in the total stress σ22, certainly not

by σd22 itself. The constant values of zd demonstrate this phenomenon (see Fig. 4.6(b)).

Upon growing of vertical stress, the system is compressed and more distant interacting

pairs are created. σd22 is therefore decreased while σ22 is remarkably increased. This is

why σd22/σ22 values signi�cantly decrease in the range of vertical stress 2× 10−2 ≤ σ∗1 ≤
3×10−1 for �rst three cases (red, dark-green and blue curves) and in the shorter range of

σ∗1 in the last three cases (magenta, cyan and dark-orange curves). When the con�ning

forces dominate the attractive forces (σ∗1 > 100), this contribution is gradually increased

until the end of loading path. Upon unloading, σd22 is steadily decreased until the end.

This corresponds to the increase in the distant interactions in Fig. 4.1(b).

Another decomposition of total stress is given as follows:

σαβ = σcapαβ + σNeαβ + σTαβ, (4.4)

in which σcapαβ is the contribution of capillary forces (either for the contacts or the dis-

tant interacting pairs), σNeαβ is the contribution of normal elastic forces, and σTαβ is the

contribution of tangential forces.

Fig. 4.5 displays the contributions of tangential forces and capillary forces to the

normal stress σ22. Remarkably, the contribution of tangential stress is almost negative
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(Fig. 4.5(a)). Under growing of vertical stress, the ratio σT22/σ22 increases to approxi-

mately null values at the end of the loading path. It is then reincreased until the end of

the unloading path. Besides, the capillary force being a tensile force, it is always nega-

tive. Its contribution to the total stress σ22 is illustrated in Fig. 4.5(b). As discussed in

Chapter 3, the capillary forces play a key role for stabilizing the specimen in very loose

states. Therefore, the capillary stress are considerably σ22 under low vertical stress.

−σcap22 /σ22 varies approximately from 2 × 102 to 103 at σ∗1 = 10−3. This ratio strongly

decreases to 2 × 10−3 at the end of the loading path. It then increases and recovers a

dominant contribution when the system is unloaded.
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Figure 4.5: (a) Contributions of tangential (a) and capillary (b) interactions to normal

stress σ22. Red arrow denotes increasing V0/V
∗.
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4.2.2 In�uence of initial solid fraction

The in�uence of initial solid fraction Φ0 on the variation of void ratio e and coordination

numbers zc and zd in loading and unloading paths is depicted in Fig. 4.6. All four tests

are started with the same values of initial agitation V0/V
∗ and meniscus volume Vm/d3,

given in Table 4.1. We can easily distinguish the usual three Regimes in the compression

curve. The higher the densities, the larger the plateaus of Regime I (Fig. 4.6(a)). In the

unloading path, void ratio e remains almost constant in the four systems. Furthermore,

zc and zd numbers vary almost similarly during loading and unloading paths (Fig. 4.6(b)).

They are negligibly di�erent in Regime II, depending on the moment threshold of the

collapse.
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Figure 4.6: (a) Void ratio e, and (b) coordination numbers zc and zd versus σ∗1 for

di�erent values of initial solid fraction Φ0. Red arrow denotes increasing Φ0.

The variation of coordination numbers of compressive and tensile contacts for di�er-
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ent values of initial solid fraction is displayed in Fig. 4.7. Initially, under low vertical

stress, the compressive and tensile contacts are approximately balanced. z− and z+ �uc-

tuate around 2. Under growing of vertical stress, the population of compressive contacts

gradually increases while the population of tensile ones is steadily depleted until the

end of loading path. z− and z+ vary in opposite directions upon unloading, the former

decreasing and the latter increasing. At the end of unloading, both z− and z+ remain

almost constant, z+ being larger than z−. The variations of z− and z+ are similar with

the ones obtained for the isotropic system (see Fig. 3.22 of Chapter 3).
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Figure 4.7: Coordination numbers of z+ and z− versus reduced vertical stress σ∗1 for

di�erent values of Φ0. Red arrow denotes increasing Φ0.

Concerning the coe�cient of lateral pressure K0, its variation during the compression

and decompression cycles for di�erent values of Φ0 is illustrated in Fig. 4.8. Initially,

K0 equals 0.4. In other words, the horizontal stress is approximately 40% of the vertical

stress in all cases. K0 is then slightly decreased in Regime I in the stress interval 10−3 ≤
σ∗1 ≤ 10−2 (to 3×10−2). During the collapse of all specimens, K0 is signi�cantly increased

and it approaches to 1 at the end of the collapse (at σ∗1 = 101). Subsequently, in Regime

III (σ∗1 ≥ 101), K0 is negligibly decreased. At the end of loading path, the horizontal

stress is approximately 80% of the vertical one (K0 ≈ 0.8). Upon unloading, K0 is

slightly increased until the vertical stress decreases down to σ∗1 = 100. Since then, K0

strongly increases when the vertical stress decreases to very low values. In other words,

the horizontal stress is higher than vertical one, from sevenfold to thirty-fold. This could

be explained by the increase in the number of tensile contacts z− (see Fig. 4.7). Besides,

the volumetric deformation of each specimen also contributes to the di�erence of K0

when the vertical stress is very low. In other words, the horizontal stress is directly

proportional to the specimen's volume while the vertical one is inversely proportional

to it. In our simulation, the denser the systems, the smaller the total volumes. That
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demonstrates the remarkable di�erence of K0 at the end of the unloading path.
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Figure 4.8: Coe�cient of lateral pressure K0 versus reduced axial stress σ∗1 for di�erent

values of Φ0. Red arrow denotes increasing Φ0.
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Figure 4.9: Contribution of distant interactions to normal stress σ22 for di�erent values

of Φ0. Red arrow denotes increasing Φ0.

The contribution of the distant interacting pairs to the normal stress σ22 for di�erent

Φ0 is depicted in Fig. 4.9. As mentioned for Fig. 4.6(b), no distant interacting pairs zd are

created under very low vertical stress with small initial agitations. σd22 is therefore null in

four cases at the beginning of loading path. σd22 is strongly decreased in the intermediate

interval stress, 2× 10−2 ≤ σ∗1 ≤ 10 when the number of interacting pairs is increased. It

downs to the minimum at σ∗1 = 3× 10−1. Under higher vertical stress, this contribution

to the normal stress σ22 is gradually increased. This is due to the strong increase in the
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total stress σ22 while the stress of distant interactions σd22 is insigni�cantly decreased.

Conversely, the σd22/σ22 is steadily decreased until the end of unloading path. When the

vertical stress decreases to very low values, σ∗1 ≤ 10−1, the σd22/σ22 is remarkably di�erent

in four cases. Because in the looser system, the total stress σ22 is smaller than in the

denser system (as we already mentioned in the discussion on K0). The σd22/σ22 of the

F30OV1Vm3 (red curve) is therefore smaller than for the other cases.

(a)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

10-3 10-2 10-1 100 101 102 103

Co
nt
ri
bu
ti
on
,	σ
T
22
/σ

22
	(
-)

Reduced	vertical	stress,	σ*1	(-)

F30OV1Vm3
F32OV1Vm3
F35OV1Vm3
F40OV1Vm3

(b)

10-3

10-2

10-1

100

101

102

103

10-3 10-2 10-1 100 101 102 103

Co
nt
ri
bu
ti
on
,	-
σc
ap
22
/σ

22
	(
-)

Reduced	vertical	stress,	σ*1	(-)

F30OV1Vm3
F32OV1Vm3
F35OV1Vm3
F40OV1Vm3

Figure 4.10: (a) Contributions of tangential (a) and capillary (b) interactions to normal

stress σ22 for di�erent values of Φ0. Red arrow denotes increasing Φ0.

The contributions of tangential and capillary interactions to the normal stress σ22

for di�erent values of Φ0 are shown in Fig. 4.10. The variation of σcap22 /σ22 is generally

similar with the variation shown in Fig. 4.5(b). σcap22 maximally contributes to σ22 under

low vertical stress. σcap22 then decreases or the ratio σcap22 /σ22 is gradually increased until

the end of loading. Upon unloading, σcap22 /σ22 is steadily decreased in all cases. Distinct

values appear at the end of decompression when σ∗1 ≤ 10−1. The smallest ratio is obtained
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for F30OV1Vm3 (red curve), while the other case have higher ratios (dark-green, blue

and magenta curves). Similar observations were discussed above for the smallest case of

density.

4.3 Oedometric versus isotropic compression
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Figure 4.11: (a) Void ratio e, and (b) coordination numbers zc and zd versus σ∗m for the

minimum and maximum V0/V
∗ in both simulations of oedometric and isotropic tests.

Red arrow denotes increasing V0/V
∗.

Many similarities have been pointed out between isotropic and oedometric compres-

sion tests. We now turn to more direct and quantitative comparisons. The reference case

(Φ0 = 0.30) is chosen with two values of the minimum and maximum initial agitation

intensities V0/V
∗. In this comparison, the mean stress σm = (σ1 + σ2 + σ3)/3 (as well as

the reduced mean stress σ∗m) is used for the two cases. The variations of void ratio e and
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coordination numbers zc and zd along a compression cycle, for the two cases of V0/V
∗,

are illustrated in Fig. 4.11.

In general, plots of e, zd and zc versus reduced mean stress σ∗m, corresponding either

to isotropic or to oedometric compressions, are quite similar. Under low mean stress

σ∗m, the plateaus of Regime I in both systems are almost similar in the interval stress,

10−3 ≤ σ∗m ≤ 10−1 and 10−3 ≤ σ∗m ≤ 7 × 10−1 (see Fig. 4.11(a)). Under growing

of mean stress in Regime II, the collapse of the two systems is slightly di�erent: the

structure of oedometrically compressed systems collapses earlier than in isotropic tests. A

deviator stress thus seems somewhat more e�cient to create rearrangements. Conversely,

in unloading path, when the axial stress decreases, the lateral stresses remain higher

than the axial one. That is why the decompression curves of oedometric tests �nish at

σ∗m ≈ 4 × 10−3 for the F30OV1Vm3, and at σ∗m ≈ 10−2 for the F30OV1Vm3. Numbers

zd and zc vary almost similarly in both models. More contacts and distant interacting

pairs are created for the larger agitations under low vertical mean stress. zd for both

tests only shown a small di�erence in the interval stress 10−1 ≤ σ∗m ≤ 100. At the end of

loading, zd in the oedometric tests (blue and magenta curves) is higher than the one in

the isotropic tests (red and dark-green curves). The opposite stands for zc (Fig. 4.11(b)).
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Figure 4.12: Distribution of normal forces for both oedometric and isotropic models at

low vertical stress, normalized by the maximal tensile force F0. Red arrow denotes the

increasing of stress or pressure.

Additional information on the plateau of Regime I in both oedometric and isotropic

models is provided in Fig. 4.12. In general, all P.D.Fs are roughly symmetric about 0

and diverge near 0 as a power law (with an exponent between 0.2 and 1.0) in the range

of forces between 2× 10−4F0 and 10−3F0). It is clearly apparent that at σ∗1 = 10−2, the

P.D.F of the isotropic case (dark-green curve) is wider than the one of the oedometric

case (magenta curve). The P.D.F of the isotropic case vanishes at −F0 and F0 while



168
Chapter 4. Oedometric compression: DEM study and experimental

confrontation

it vanishes at −0.5F0 and 0.5F0 for the oedometric test. That FN reaches −F0 signals

the onset of in Regime II collapse (red curve in Fig. 4.11(a)). Meanwhile, a distribution

bounded by |FN/F0| ≤ 0.5 in the oedometric case (magenta curve) implies that the initial

network may support further stress increments without rearranging. This explains why

the plateau of Regime I in the oedometric case is wider than the one in the isotropic case

(Fig. 4.11(a)). Under high axial stress, the P.D.Fs of normal forces FN , normalized by

the average normal force 〈F 〉N , for both models, are quite similar, as shown in Fig. 3.14

in Chapter 3.

4.4 Experiment versus simulation

This section aims to confront the results of the experiments of Chapter 2 and the ones

of the simulated oedometric compression test in Sec. 4.2. The comparison is carried out

for the macroscopic compression curve and for microstructural changes. All stresses are

given here in kPa.

4.4.1 Compaction behavior

A comparison of compression behavior between experiment and simulation of oedometric

compression tests for four values of initial solid fraction Φ0 (Φ0 = 0.30, Φ0 = 0.32,

Φ0 = 0.35, and Φ0 = 0.40) is shown in Fig. 4.13. In general, both experimental and

simulated curves have the same S-shape as already mentioned in Chapter 2. Three

regimes can be equally identi�ed in the compression curves, depending on the range of

vertical stress σ1.

Fig. 4.13(a) shows the experimental and simulated compression curves for the initial

solid fraction Φ0 = 0.30 in which the dashed curve (CT01) was obtained with the cell

φ20. The global features of those curves are in agreement. Some di�erences are notable

in the stress corresponding to the onset of plastic collapse, which is larger by a factor of

2 or 3 in the laboratory (whence a lateral shift in comparison to the numerical results);

in the compression index (slope of the fastly decreasing part of the curves in Regime II),

which is somewhat smaller in experimental results; and �nal void ratio, which is larger

in the numerical case.

It is well recognized that Regime I in experimental curves exists in a very short

range of vertical stress. The plateau of Regime I, if it exists, may be at the very low

vertical stress (σ1 < 10−2 kPa). Under low stress, the initial structure of experiment is

slightly collapsed while the one of simulation can sustain the increasing stress without

rearrangement, with a void ratio e remaining almost constant. In Regime II, under

growing of vertical stress, the collapse in simulation happens earlier in comparison with

the experimental curves. This is con�rmed by the slope of three curves in Fig. 4.13(a).

For instance, Regime II of simulated curve exists in interval 4 × 10−2 kPa ≤ σ1 ≤
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8×100 kPa while its intervals in experimental curves are 7×10−2 kPa ≤ σ1 ≤ 2×101 kPa

(OD01), and 7×10−2 kPa ≤ σ1 ≤ 3×101 kPa (CT01). However, for CT01, the void ratio

at the end of the collapse is higher than the ones of OD01 as well as the F30OV1Vm3.

This re�ects the e�ect of the cell's size and the friction between grains and cell. This

friction contributes to prevent the settlement of all grains. Therefore, the collapse of

experimental specimen is slower than the simulated one. Under higher stress, at the end

of loading path, the minimal void ratio of OD01 is lower than the simulated one. With

the cell φ20, the void ratio is still higher than the ones of the cell φ50 and simulation.

This can be explained by the e�ect of the cell size, already mentioned in Chapter 2. In

addition to possible friction on the cide walls, experimental test results are likely a�ected

by initial large scale sample heterogenities evidence in the XRCT-scans of Chapter 2.
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Figure 4.13: Oedometric compression curves in experiments and simulations (no RPR)

for di�erent values of Φ0. (a) Φ0 = 0.30, (b) Φ0 = 0.32, (c) Φ0 = 0.35, (d) Φ0 = 0.40.

For the experiments with Φ0 = 0.32 (Fig. 4.13(b)) and Φ0 = 0.35 (Fig. 4.13(c)), the

plateau of Regime I does not exist. Under low stress, σ1 ≤ 2 × 10−1 kPa, the initial

structures of experiments are remarkably collapsed and void ratios e are lower than sim-

ulated ones. For instance, at σ1 ≈ 1 × 10−2, e = 1.99 in the OD03 as compared with
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e = 2.15 in the F32OV1Vm3, e = 1.76 in the OD05 in comparison with e = 1.85 in the

F35OV1Vm3. In Regime II, under growing of high stress, the experimental specimens

are collapsed later than the simulated ones. The collapse �nishes at σ1 = 101 kPa for

the F32OV1Vm3 and F35OV1Vm3, and at σ1 = 2 × 101 kPa for the OD03 and OD05.

The void ratio of experimental curves decreases down to lower values than the ones of

simulated curves at the end of loading path. For the Φ0 = 0.40 (Fig. 4.13(d)), the initial

structure of experiment (OD074) is stronger than the one of simulation (F40OV1Vm3).

This is re�ected by the starting of the collapse in Regime II, at σ1 = 1 × 10−1 kPa

for the simulated case (F40OV1Vm3) and at σ1 = 100 kPa for the experimental case

(OF07). These two curves nearly merge at the end of the collapse. However, under high

stress, the void ratio e of experimental curve also decreases down to lower values than

the simulated one. The slight di�erence in bead diameters between the experimental

(dexp =80 to 104µm) and the numerical (dnum =115µm) is not su�cient to correct the

horizontal shift between experimental and numerical curves (the same reduced stress σ∗1
should be obtained on multiplying the numerical value by dnum/dexp). The experimen-

tal polydispersity, though, could partly explain the larger �nal density of experimental

systems.

As to the di�erences in compression index and in the reduced stress corresponding

to collapse, the results of the numerical parametric study indicate that it could be re-

duced with a choice of small RPR parameters and an appropriate initial connectivity,

determined by agitation intensity V0. However, a more quantitative assessment of size

and boundary e�ects in experiments is needed.

4.4.2 Geometrical structure change

In this section, only the case F30OV1Vm3 (see more details in Table 4.1) of the oedomet-

ric compression test is chosen in order to compare with the experimental results (from

the local scan observations mentioned in Chapter 2).

Fig. 4.14 plots the coordination numbers of neighbours, z(h), versus axial stress

σ1, and the total coordination number z in the local scan observations (see Sec. 2.5 of

Chapter 2), versus positions of scans along the loading path. The total coordination

number including lost contacts zlcexp is also plotted (brown triangle point). The results

of the case F30OV1Vm3 is only displayed in the loading path with �ve values of h,

denoted as h1 to h5, with h1/d = 0, h2/d = 0.025, h3/d = 0.05, h4/d = 0.075, and

h5/d = 0.1. As mentioned in Chapter 3, when h/d = 0, z(h) is equal to zc, the contact

coordination number (see Sec. 3.5.1 in Chapter 3). The positions of scans are directly

interpolated from the compression curves of Fig. 2.11 in Chapter 2. In general, the order

of magnitude and the general trend of the zexp is well captured by the simulation. At

σ1 ≈ 4 × 10−2 kPa, zexp = 4.75 is remarkably higher than all of the z(h). This could

be explained by the stability of Regime I in the simulated case, where void ratio e is
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Figure 4.14: Coordination numbers of neighbors z(h) versus vertical stress σ1 and the

total coordination number z versus positions of scans.

almost constant and insigni�cantly decreases at the starting of the collapse. Meanwhile,

in Regime I of the experimental case, the initial structure is slightly collapsed with a very

small rearrangement. Moreover, the �rst local scan was performed at h1 = 9.8 mm, not

at the initial height (see Table 2.2 in Chapter 2). zexp is therefore higher than the z(h)

at this stage. For the other scans (S06G, S09G, and S12G), zexp is higher than z(h = 0)

(red curve) while it is globally lower than the other values of z(h). In experiments, a

tolerance of 1 voxel is mainly used in all calculations. This value is equal to h/〈d〉 = 0.07

which is corresponding to z(h4) at h/d = 0.075 (cyan curve). However, zexp at the

S09G and S12G is signi�cantly lower than z(h4). This is due to the heterogeneity of

specimen. There still exists several large pores during the compaction test even at the

highest level of compaction (S12G). This phenomenon is already described in Chapter 2

(see Fig. 2.26). Conversely, in simulation, the specimen is de�nitely homogeneous during

the compression cycle, especially at the high pressure.

Nevertheless, when counting the lost contacts, zlcexp approaches closely to the z(h)4 at

h/d = 0.075, especially for the scan S06G. In other words, the total coordination number

obtained in experiment is fairly underestimated when compared with the coordination

numbers of neighbors in simulation.

4.5 Conclusion

In this Chapter, we have performed the simulation of oedometric compression tests for

the monodisperse system without RPR. The results of this system are then compared in

turn with the ones of the isotropic compression tests (in Chapter 3) and with the ones

of the local scan observations (in Chapter 2).
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Several conclusions can be drawn as follows.

The results obtained from the simulation of oedometric compression tests, including

the compaction behavior and the microstructural characterizations, are globally similar

with the results of isotropic tests, especially if mean stress is regarded as the control

parameter for both tests. The stress ratio, K0, in oedometric compression, as studied

here for initially isotropic states, depends on initial connectivity and goes through a

minimum in the course of oedometric compression, in Regime II (from 0.3 in initially

well connected systems to about 0.5 in barely rigid ones. As the minimum void ratio is

approached, it increases to a common value near 0.8. Strongly overconsolidated states

with small σ∗m may exhibit comparatively very large stresses in some directions, of order

zΦF0/d
2.

A comparison of compression behavior between the oedometric compression test and

the experiments reveals several remarks. Regime I exists in the experimental tests with

a very small rearrangement of the initial structure but the plateau of Regime I does not

exist. In other words, it is really di�cult to maintain the stable-state of initial structure

under very low stress in experiment without rearrangement. Furthermore, the di�erence

of the collapse between simulation and experiment obviously con�rms the signi�cant

e�ect of the friction between the cell and grains during the test.

For the prediction of z, although the experimental result is underestimated in com-

parison to the DEM simulation result, we obtained the correct trends for the changes of

the microstructure in both oedometric simulation and experimental tests.



Conclusions and Perspectives

General conclusions

The present work is a contribution to the understanding of the mechanical behavior

of wet granular materials in very loose states. We have proposed both a numerical tool

based on the DEM and experimental procedures to study the 3D plastic response of glass

beads subjected to isotropic and oedometric compression tests. Microstructural changes

of the specimen induced by increasing applied external force were also characterized in

both experiments and DEM simulations. The main conclusions of this work are brie�y

summarized as follows.

Firstly, we can produce in the laboratory specimens of wet granular soils presenting

a very loose �yet stable- state, even using a very small water content. This is one of the

main originalities of the present work as compared with past studies which focused on

denser states and higher initial water contents (e.g. Bruchon et al. [35]). Similar solid

fractions are obtained by a suitable numerical aggregation process prior to compression.

Secondly, the compression behavior of wet beads at loose states obtained from exper-

iment and DEM simulations (isotropic and oedometric compression tests) has usually

three regimes: (i) at stresses lower than an apparent precompression stress, the initial

structure can sustain the load without any rearrangement (in the DEM simulations)

or with very small rearrangements (in the experiments); (ii) when the stresses exceed

this apparent precompression stress, the loose structures collapse and restructure; and

(iii) at higher stresses, only elastic deformation of grains at contact points occurs. This

behavior abides by the classical logarithmic law of soil mechanics in the intermediate

stage. The compression index is not an intrinsic material property, but depends on its

initial density and connectivity. This latter feature of initial loose states depends on

the aggregation process, and a�ecting the subsequent behavior in the earlier stages of

plastic compression. The properties of wet granular soils in plastic compression in the

later stages of plastic collapse are not too much dependent on the assembling process.

Thirdly, we presented a numerical approach to precisely measure several fundamental

microstructure properties of loose systems from 3D tomography images. Although this

approach underestimates several microstructure properties in comparison with DEM
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simulations and other studies in the literature, it provides an appropriate characterization

of the grain-scale behavior of wet granular soils at very loose state during compression.

Fourthly, we emphasized the important di�erences between cohesive and non-cohesive

granular assembles. The most important di�erences, which are brought by cohesion in

macroscopic behavior, are the existence of stable very loose structures and the response

during compression. Moreover, the in�uence of size polydispersity was investigated only

under isotropic compression. Our results show that the size polydispersity negligibly

a�ects the plastic behavior of wet beads.

Finally, our results also emphasize the remarkable in�uence of the rolling and piv-

oting resistances at contacts between grains. Even a small RPR is enough to produce

strong di�erences in the plastic behavior, with the collapse under growing con�ning stress

becoming notably more gradual.

Perspectives

The research program developed here can be extended in many potential research

directions, as follows.

On the experimental side, in order to increase the accuracy of the microstructural

characteristics in experiments, the entire specimen should be used for the detection

process. However, this process requires a very large memory for the calculation. So the

detection for the REV (mentioned in Sec. 2.4.4 of Chapter 2) is preferably proposed

for the detection process. Moreover, the sub-voxel algorithm could be also applied in

order to increase the resolution of the tomography images. Furthermore, the algorithm

of detection should be improved to obtain the real value of the detected radii instead of

the rounded value.

The pore-scale deformation of specimens during compression can be analyzed in de-

tails by using the Digital Volume Correlation (DVC or 3D DIC) method. This is one of

the most interesting phenomenon of wet granular materials at very loose state. Besides,

the pore size distribution can be directly analyzed from the 3D tomography images based

on the preliminary analyses in Sec. 2.4.4 of Chapter 2.

On the numerical side, the quasistatic behavior of a 3D model, in pendular state,

accounting for the possible e�ect of rolling and pivoting resistances at contacts under

triaxial compression tests where the macroscopic deviatoric stress will play a major role,

is a straightforward extension of the present work. Ref. [47] contains a preliminary com-

parison with the properties of the critical state in quasistatic simple shear �ow. The wide

range of stress and microstructural states between isotropically or oedometrically com-

pressed states and steadily deformed materials at large strains remains to be explored.

In addition, the role played by solid bridges (e.g. cemented granular soils or methane

hydrate soils) instead of capillary bonds should also be investigated.
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