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Abstract

Business Rules (BRs) are a commonly used tool in industry for the automation of

repetitive decisions. The emerging problem of adapting existing sets of BRs to an

ever-changing environment is the motivation for this thesis. Existing Supervised

Machine Learning techniques can be used when the adaptation is done knowing

in detail which is the correct decision for each circumstance. However, there is

currently no algorithm, theoretical or practical, which can solve this problem when

the known information is statistical in nature, as is the case for a bank wishing to

control the proportion of loan requests that its automated decision service forwards

to human experts. We study the specific learning problem where the aim is to

adjust the BRs so that the decisions are close to a given average value.

To do so, we consider sets of Business Rules as programs. After formalizing

some definitions and notations in Chapter 2, the BR programming language defined

this way is studied in Chapter 3, which proves that no algorithm exists to learn

Business Rules with a statistical goal in the general case. We then restrain the

scope to two common cases where BRs are limited in some way: the Iteration

Bounded case in which no matter the input, the number of rules executed when

taking the decision is less than a given bound; and the Linear Iteration Bounded

case in which rules are also all written in Linear form. In those two cases, we later

produce a learning algorithm based on Mathematical Programming which can solve

this problem. We briefly extend this theory and algorithm to other statistical goal
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learning problems in Chapter 5, before presenting the experimental results of this

thesis in Chapter 6. The latter includes a proof of concept to automate the main

part of the learning algorithm which does not consist in solving a Mathematical

Programming problem, as well as some experimental evidence of the computational

complexity of the algorithm.

Although the algorithms used in Business Rules management systems have

been studied and compared, the theoretical study of BR as a programming lan-

guage has not attracted interest from the research community before now. We

dedicate Chapter 3 to this study. We prove the Turing-completeness of this lan-

guage, which is often assumed but was never proven before, to the best of our

knowledge. Of the two proofs we provide, we use the constructive proof to define

a canonical equivalence between BR programs and WHILE programs. We use the

WHILE form of BR programs to describe a Structural Operational Semantics for

BR programs, and showcase the usefulness of this semantics by using it to prove

the termination of some BR programs. The last property of BR programs we prove

in that chapter has a proof based on the Turing-completeness of BR programs and

answers part of the question which motivated this thesis: there is no algorithm

which learns Business Rules with a statistical goal in the general case.

The contents of Chapter 4 alternate definitions and algorithms. We describe It-

eration Bounded Business Rules (IBBR) programs, which are such that the number

of Business Rules executed to take any given decision is bounded by a known value.

We exhibit a Mixed-Integer Programming (MIP) problem such that, for IBBR pro-

grams, solving it is equivalent to solving the statistical goal learning problem. Sim-

ilarly, we describe Linear Iteration Bounded Business Rules (LIBBR) programs,

which are Iteration Bounded Business Rules programs such that the Business Rules

follow a given linear template. The associated algorithm produces a Mixed-Integer

Linear Programming (MILP) problem. We evaluate the theoretical complexity of



iii

this algorithm.

We extend the formalism and learning algorithms presented so far to a different

class of learning problems in Chapter 5. We exhibit a Mathematical Programming

equivalent to LIBBR programs in the case where the known information is over a

quantized frequency distribution of the decisions taken, rather than over the aver-

age decision taken. In two specific such cases, that of the distribution respecting

an upper bound on the frequency of a specific decision and that of the distribution

being almost uniform, we also exhibit a MILP problem which is equivalent when

the BR program is a LIBBR program.

In Chapter 6, we provide the proof of concept showing how our learning algo-

rithm can be automated to be integrated into a BR management software. The

numerical part of our experimental work is in turn entirely dedicated to evaluat-

ing the MILP obtained from a LIBBR program using the algorithm described in

Chapter 4. The evidence obtained shows that this direct application cannot be

scaled up to industrial BR programs. We evaluate the validity of our algorithm by

testing the number of randomly generated BR programs that our algorithm can

solve. We also evaluate the performance by varying different characteristics of the

learning problem and observing the CPU time taken by a standard Mathematical

Programming solver to solve the learning problem.



Résumé

Les Règles Métiers (Business Rules en anglais, ou BRs) sont un outil communé-

ment utilisé dans l’industrie pour automatiser des prises de décisions répétitives.

Le problème de l’adaptation de bases de règles existantes à un environnement en

constante évolution est celui qui motive cette thèse. Des techniques existantes

d’Apprentissage Automatique Supervisé peuvent être utilisées lorsque cette adap-

tation se fait en toute connaissance de la décision correcte à prendre en toutes

circonstances. En revanche, il n’existe actuellement aucun algorithme, qu’il soit

théorique ou pratique, qui puisse résoudre ce problème lorsque l’information con-

nue est de nature statistique, comme c’est le cas pour une banque qui souhaite

contrôler la proportion de demandes de prêt que son service de décision automa-

tique fait passer à des experts humains. Nous étudions spécifiquement le problème

d’apprentissage qui a pour objectif d’ajuster les BRs de façon que les décisions

prises aient une valeur moyenne donnée.

Pour ce faire, nous considérons les bases de Règles Métiers en tant que pro-

grammes. Après avoir formalisé quelques définitions et notations dans le Chapitre

2, le langage de programmation BR ainsi défini est étudié dans le Chapitre 4, qui

prouve qu’il n’existe pas d’algorithme pour apprendre des Règles Métiers avec un

objectif statistique dans le cas général. Nous limitons ensuite le champ d’étude à

deux cas communs où les BRs sont limités d’une certaine façon : le cas Borné en

Itérations dans lequel, quelles que soient les données d’entrée, le nombre de règles
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exécutées en prenant la décision est inférieur à une borne donnée ; et le cas Linéaire

Borné en Itérations dans lequel les règles sont de plus écrites sous forme Linéaire.

Dans ces deux cas, nous produisons par la suite un algorithme d’apprentissage

basé sur la Programmation Mathématique qui peut résoudre ce problème. Nous

étendons brièvement cette formalisation et cet algorithme à d’autres problèmes

d’apprentissage à objectif statistique dans le Chapitre 5, avant de présenter les

résultats expérimentaux de cette thèse dans le Chapitre 6. Ce dernier inclut une

preuve de concept pour l’automatisation de la partie principale de l’algorithme

d’apprentissage qui n’est pas celle où l’on résout un problème de Programmation

Mathématique, ainsi que des indications expérimentales sur la complexité compu-

tationelle de l’algorithme.

Bien que les algorithmes utilisés dans les systèmes de gestion des Règles Métiers

aient été étudiés et comparés, l’étude théorique des BRs en tant que langage de pro-

grammation n’a pas attiré l’intérêt de la communauté scientifique jusqu’à présent.

Nous dédions le Chapitre 3 à cette étude. Nous prouvons la Turing-complétude

de ce langage, qui est souvent supposée vraie mais n’a jamais été prouvée à ce

jour, autant que nous le sachions. Des deux preuves que nous fournissons, nous

utilisons la preuve constructive pour définir une équivalence canonique entre les

programmes BR et les programmes WHILE. Nous utilisons la forme WHILE des

programmes BR pour décrire une Sémantique Opérationnelle Structurelle pour les

programmes BR, et mettons en évidence l’utilité de cette sémantique en l’utilisant

pour prouver la terminaison de quelques programmes BR. La dernière propriété

des programmes BR que nous prouvons dans ce chapitre a une preuve basée sur la

Turing-complétude des programmes BR et répond à une partie de la question qui

a motivé cette thèse : il n’existe pas d’algorithme qui apprend les Règles Métiers

avec un objectif statistique dans le cas général.

Le Chapitre 4 contient une alternance de définitions et d’algorithmes. Nous
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y décrivons les programmes de Règles Métiers Bornés en Itérations (Iteration

Bounded Business Rules en anglais, soit IBBR), qui sont tels que le nombre de

Règles Métiers exécutées pour prendre une décision donnée est borné par une

valeur connue. Nous exhibons un problème de Programmation Mixte en Nom-

bres Entiers (Mixed-Integer Programming en anglais, ou MIP) tel que le résoudre

soit équivalent, pour un programme IBBR, à résoudre le problème d’apprentissage

à but statistique. De la même façon, nous décrivons les programmes de Règles

Métiers Linéaires Bornés en Itérations (Linear Iteration Bounded Business Rules

en anglais, soit LIBBR), qui sont des programmes IBBR tels que les Règles Métiers

suivent un modèle linéaire donné. L’algorithme associé produit un problème de

Programmation Linéaire Mixte en Nombres Entiers (Mixed-Integer Linear Pro-

gramming en anglais, ou MILP). Nous évaluons la complexité théorique de cet

algorithme.

Nous étendons le formalisme et les algorithmes d’apprentissage présentés jusque

là à une classe de problèmes d’apprentissages différente dans le Chapitre 5. Nous

exhibons un équivalent en Programmation Mathématique aux programmes LIBBR

dans le cas où l’information connue couvre une distribution quantisée des décisions

prises, plutôt que la moyenne des décisions prises. Dans deux cas spécifiques, celui

où la distribution respecte une borne supérieure sur la fréquence d’une décision par-

ticulière et celui où la distribution est presque uniforme, nous exhibons également

un problème MILP qui est équivalent lorsque le programme BR est un programme

LIBBR.

Dans le Chapitre 6, nous produisons une preuve de concept qui montre com-

ment notre algorithme d’apprentissage peut être automatisé pour être intégré dans

un logiciel de gestion de BR. La partie numérique de notre travail expérimental est

quant à elle dédiée entièrement à l’évaluation du MILP obtenu à partir d’un pro-

gramme LIBBR en utilisant l’algorithme décrit dans le Chapitre 4. Les indications
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obtenues montrent que cette application directe ne peut pas être mise à l’échelle

pour s’appliquer à des programmes BR industriels. Nous évaluons la validité de

notre algorithme en testant le nombre de programmes BR générés aléatoirement

que notre algorithme peut résoudre. Nous évaluons également la performance en

faisant varier différentes caractéristiques du problème d’apprentissage et en obser-

vant le temps CPU qu’un solver de Programmation Mathématique standard met

à résoudre le problème d’apprentissage.
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Chapter 1

Introduction

This thesis is concerned with tuning parameters in Business Rules programs so

that a given statistical measure over all the decisions taken by a given Business

Rules (BR) program satisfies a given objective. Business rules are used in industry

today as a functional way to formally encode corporate policies and regulations.

For example, the decision of whether to grant a loan request, refuse it, or mark it

for further review by a human expert is often made by a BR program. Of course,

the decision should be made on a per-customer basis, and yet there may be reasons

on a corporate scale to wish for a certain proportion of all loans to be reviewed by

human experts, while the rest can be treated automatically. We investigate how

the rules in a BR program can be tuned automatically, e.g. to adapt to changes in

the reviewing policy or to evolutions in the market.

In this introduction, we first explain the reasons motivating this thesis, then

we outline the main contributions of this thesis, including publications. Finally,

we give an overview of the methodology followed in this manuscript.

1



CHAPTER 1. INTRODUCTION 2

1.1 Motivation

This PhD was sponsored by IBM France Lab, the R&D unit in IBM which is

responsible for the development and support of IBM Operational Decision Man-

agement (ODM), one of the most popular Business Rules Management System

(BRMS) on the market [57]. A very common request clients make to the ODM

support team is help in creating a BR program which outputs the correct deci-

sions for the example inputs they already have, while keeping the structure of the

rules modeled by their business experts. The defining characteristics of a correct

decision differ from client to client.

The main motivation for this thesis was the realization that many of IBM’s

clients have a statistical definition of what makes a decision model ‘correct’. No

tool or theory exists to parametrize an existing BR program with the objective of

“thirty percent of decisions must be reviewed manually over the example cases”.

Studying the possibility and practicality of creating such a tool is the main objec-

tive of this thesis from the point of view of IBM.

Outside the specific environment of BRMS vendors such as IBM, other situ-

ations also call for this type of statistical parametrization. In many situations,

the existence of an algorithm for learning a program with a statistical goal would

be very practical, as is the case in the medical field when trying to match ADN

sequences and genetic predisposition to illnesses. Learning statistical goals is a

problem with many important industrial applications, yet little formal research.

In this thesis, we explore a possible solution to this problem when applied to BR

programs.
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1.2 The contributions

During this thesis, we have proved that no algorithm can ever guarantee an exact

conformance to given statistics over all possible cases: the task of learning the

behavior of BR programs in general is formally impossible. This general result

does not prevent some subset of BR programs to be learnable, including some

that are of particular interest to us: BR programs that have a bounded execution

time and BR programs that have only linear rules. This result stems from the

Turing-completeness of the BR programming language, which is widely known yet

had avoided published formal proof for a long time.

From the Turing-completeness of the BR programming language, we have de-

scribed a WHILE form of BR programs which we used to define a Structural

Operational Semantics (SOS) for BR programs. We have shown that this SOS can

be used to prove properties of BR programs such as termination over a range of

inputs.

The most relevant result for out initial research question is the creation of a

learning algorithm for the statistical goal learning problem applied to Iteration-

Bounded BR (IBBR) programs. This algorithm based on Mathematical Program-

ming can be used to transform a statistical goal learning problem into Mixed-

Integer Linear Problems (MILPs) in the case of Linear IBBR (LIBBR) programs.

We have applied this algorithm and evaluated its algorithmic complexity using em-

pirical solving times obtained with a standard MILP solver. We have also extended

the original algorithm to different statistical goals that the one it was originally

created for, and used it to solve two additional types of statistical goal learning

problems.

The theoretical impossibility result was published with a formal proof of the

Turing-completeness in [140]. The description and testing of the original learning

algorithm was published in [138]. The general statistical goal learning problem
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and the extension of the algorithm to different statistical goals was published in

[139].

1.3 The approach

In Chapter 2, we define the notions and notations which will be used in the rest of

this thesis, and present the existing research relevant to our work in the domains of

Business Rules, Machine Learning and Mathematical Programming. We notably

present a formal definition of Business Rules in Sec. 2.1, then a formal definition

of the statistical goal learning problem in Sec. 2.2.

We then seek to answer the question of the existence of an algorithm which can

solve the learning problem of interest in this thesis, that of learning parameters

of a BR program when given a statistical goal, in the general case. Chapter 3

is dedicated to studying this question. We give a negative answer in Sec. 3.1 by

proving the Turing-compleness of BR programs, and derive a useful operational

semantics for BR programs from our proof. This operational semantics can in

particular be used to prove termination of a BR program over an interval of values,

by encoding the BR semantics into an inference engine such as Prolog [99], as

demonstrated in Subsec. 3.2.3. We then further generalize the nonexistence of a

learning algorithm in Sec. 3.3 by proving not only PAC-unlearnability, but an even

stronger unlearnability property.

In the rest of the thesis, we study a MP-based algorithm for solving the sta-

tistical learning problem when restricted to some subclasses of BR programs. We

introduce Iteration Bounded BR programs (IBBR) and Linear Iteration Bounded

BR programs (LIBBR) in Chapter 4. In each case, we provide an equivalent MP

problem to the learning problem formalized in Sec. 2.2. We show that this problem

can be solved for a LIBBR program by a MILP solver in Sec. 4.4.
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We briefly touch on different forms of statistical learning problems in Chapter

5. In particular, we provide MP formulations for two different problems: the

problem where the proportion of outputs taking a particular value (e.g. o1) is

bounded, i.e. card({q ∈ Q | P (p, q) = o1})/card(Q) ≤ g, and the problem where

the outputs must respect an almost uniform distribution. Those formulations are

also MILP problems when the BR programs are LIBBR programs.

We also cover some practical tests to evaluate the practicality of our algorithm

in Chapter 6. We include a practical way of creating the MILP problem for a BR

program written with IBM Operational Decision Management (ODM), as well as

a few tests on the different forms of statistical learning problems.

We conclude this thesis with a discussion of our contributions and of the re-

search perspectives this work opens in Chapter 7.



Chapter 2

Definitions and state of the art

In this Chapter we introduce the three key concepts which we make use of in this

thesis: Business Rules (BRs), Machine Learning (ML), and Mathematical Pro-

gramming (MP). In the first section, we introduce the notion of Business Rules

used in industry and research, then formally define BR programs. In the second

section, we formalize our learning problem and relate our problem to conventional

Machine Learning theory. The third section introduces Mathematical Program-

ming definitions and conventions, as MP is the main component of the learning

algorithm introduced in this thesis.

2.1 Business Rules (BRs)

BRs are a rules-based programming language in which writing a program consists

of defining rules such as “If the person requesting this loan has negative balance

on a bank account, Then refuse this loan request and watch that account”. BRs

are very popular in corporate environments as a way of automating decision man-

agement.

In this section, we first informally explore the uses of BRs in industry and

6
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research, and how they relate to this thesis. We then formally define BR programs

and their interpreters, and we justify the simplifications used in the rest of the

thesis compared to the BR execution algorithms used in commercial products.

2.1.1 BRs in industry and research

Any organization, from the smallest start-up to the largest governmental agency,

must constantly make decisions of all kinds, from the most convoluted budget

assignment to the simplest YES/NO binary choice. Automated decision manage-

ment has existed for years as a way to save time and rationalize some of the most

repetitive decisions an organization must take. This mostly applies to large com-

panies which have well-defined business policies to be applied in circumstances

where either traceability or compliance is needed.

Used for automated decision management, Business Rules are a popular way

of modeling operational decisions, such as generating quotes for insurance com-

panies, transaction processing for financial companies, or price computation in

retail. Business Rules Management Systems (BRMS) such as IBM Operational

Decision Management (ODM), previously known as ILOG JRules, are used by

corporations of all sizes to let business experts automate their expertise while still

using an easily understandable approximation of natural language [91]. BRMS are

commercialized in multiple forms, which also include FICO Decision Management

Suite [42], TIBCO Business Process Management Suite [123], Pega Robotic Pro-

cess Automation [96], RedHat JBoss BRMS [61], OpenRules [93], and ServiceNow

[112], and others. The Java Rules engine JESS [62] also sees some industrial use.

One of the most popular characteristics of BRMS is their ease of use: business

processes are defined by business analysts who do not often have a Computer Sci-

ence background, which justifies the choice of BRs – as a “programming language

for non-programmers” – to encode the decisions which are part of those processes.
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This ease of use stems from the fact that BRs have a streamlined syntax which

makes writing BR programs as elegant as declarative programming languages.

This characteristic is emphasized by using pseudo-natural language to bridge the

gap between the machine definition of objects (both classes and methods) and

their business definition. Every sector of business can find uses for BRMS, from

banks (e.g. for loan validation) to car companies (e.g. for car models and options

pricing) to insurance companies (e.g. for fraud detection).

The primary strength of BRs compared to other decision management sys-

tems lies in its agility. As business environments change, business policies must

inevitably adapt. It has become increasingly frequent due to globalization, which

accelerates regulation and market changes. Organizations have to conform with

more and more regulations, market demand evolves faster and faster, and com-

petition reacts and must be reacted to with increasingly short delays. BRMS

allow business experts with no advanced computer knowledge to write and modify

BRs, after the initial intervention of the I.T. department to devise semi-natural,

domain-specific rule languages. Furthermore, BRMS include practical lifecycle

management of BR programs such as modifying BRs which are already deployed

to production, along with the usual versioning and collaborative working features.

The initial idea which later led to BRs appeared under the name of Production

Rules in the 1970s as a knowledge representation system [37] originating as a psy-

chological model of human reasoning behavior [85, 86]. In the 1980s, the Artificial

Intelligence research community implemented the knowledge representation sys-

tem used in Production Rules as defined by the modeling community into Expert

Systems. They were first theorized [29, 74] then implemented in expert systems

such as R1 [143], MYCIN [21, 83], EMYCIN [21, 40], or OPS5 [94, 95]. OPS5

in particular was based on the Rete algorithm [43], which is still in use in many

BRMS today. The commercial successors of OPS5 included CLIPS [30], Jess [62],
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Nexpert [87], and ILOG Rules [59], which evolved into the BR engine currently

used by ODM.

As the popularity of Expert Systems faded, the utility of Production Rules as a

business decision modeling tool was quickly apparent to the business community,

where they gained the name of Business Rules. Although Ronald Ross wrote the

very first book about business rules in 1994 [107] and claims to be “the father of

business rules” [108], a number of other authors contributed to the definition and

expanded use of business rules as an approach to representing business knowledge

[53, 54, 18], going as far back as Knolmayer in 1993 [68]. Methodologies have been

defined, in particular the Business Rules Manifesto by the Business Rules Group

[19].

Expert Systems were progressively replaced by the current form of BRMS, as

the decline in popularity of Expert Systems led to the use of standardized BR

engines as direct implementations of BRs as defined by the business modeling

community: where once Rules engines aimed to intelligently produce a handful

of strategic or expert decisions, they now automate thousands of operational and

routine decisions.

The defining characteristics of BRMS which any further improvement must take

into account and respect are thus automation – the ability to apply one specified

action to any number of relevant examples – and accessibility – an ease of use

which can allow a Business Analyst to use the interface without issue. The goal of

this thesis is to investigate the use of Machine Learning (ML) to modify BRs in an

automated fashion. This would allow BRMS to combine their natural advantage –

the ease of programming which makes them understandable by business experts –

with their ML competitors’ best advantage – the ability to take advantage of the

vast amounts of data naturally produced by businesses in the age of the Internet.

Rules related programming languages in computer science today can broadly
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be separated in two categories, which must not be confused [136]:

• Inference systems are closest to logic programming languages, they use Logic

Rules and allow for both forward and backward chaining to deduce facts or

prove theorems given rules and facts. Prolog [99] is an example of rule-based

inference system. Datalog [36] can also be used as a query language for

deductive databases. Logic Rules are also used in constraint programming,

e.g. in the form of Constraint Handling Rules [27].

• Production systems are closest to standard imperative programming lan-

guages, they use Production Rules which can dynamically affect the value of

variables at execution time. In query languages such as Datalog¬¬ [1], which

use inference engines, this means allowing for negations in heads of rules, in-

terpreted as deletions of facts. In expert systems such as OPS5 [94], which

use production engines, this means using assignment operations. In terms

of logic programming, the presence of assignments means that inference in

production systems can be non-monotonic.

The Business Rules we study are part of the second family, they have side effects

which in turn affect the conditions of other rules, thus making logical inference

impractical (in particular backwards chaining).

Inference systems have been explored in many different ways. Multiple infer-

ence languages exist [1] with different reasoning systems, which allow backward

chaining, forward chaining, and negation as failure to different degrees. While our

focus is not on Logic Rules, it must be noted that many applications of Rules

systems use Logic Rules rather than Production Rules – or rather, they fall into

the overlap which consists of two functionally equivalent classes of Rule systems:

Business Rules where actions do not modify existing variable values; and Logic

Rules which only consider forward chaining, with neither backward chaining nor
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negation as failure. One such example is the research in using a rule-based repre-

sentation system to organize and execute legal reasoning [71, 70].

Recent research in Production Rules systems has been mostly limited to their

applications as a knowledge representation method, such as in [110]. An important

part of that focus is dedicated to the combination of Production Rules and Ontolo-

gies, as two complementary and synergistic knowledge representations methods:

Production Rules focus on the description and execution of business logic while

Ontologies focus on the description and structure of domain knowledge [92, 82, 8].

This has led to the SWRL standard proposal [122], which combines the OWL on-

tology format with the RuleML rules format. Other areas of research in Production

Rules systems include handling uncertainty [2] and automated explanation.

We choose to focus on BRs as a commonly used way of encoding business

knownledge and automating decisions [46, 58] of interest to IBM. While Produc-

tion Rules can be represented by declarative logic programs [105, 119], such a

transformation does not bring us closer to a learning algorithm for our problem:

existing Logic Rules learning algorithms aim to learn relationships, in the fash-

ion of association rule learning (see Sec. 2.2). As we are trying to refine existing

BR programs so as to satisfy a statistical goal, we wish to learn parameters in

Production Rules rather than to learn Rules themselves, which makes relationship

learning irrelevant to our research.

To avoid confusion, we hereafter call Business Rules (BRs) the constituents of

a computer program meant to be executed by a BRMS or similar BR execution

engine, while what is called a business rule by the Business Rules Group is referred

to explicitly as a business modeling rule when necessary. In the example from
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earlier, the business modeling rule

“Loan requests made while the borrower has a negative balance on one of his

bank accounts are to be refused, and such accounts must then be watched”

might be decided by a business analyst. Such rules can be written in natural

language using an if-then template:

If the person requesting this loan has

negative balance on a bank account,

Then refuse this loan request

and watch that account

(2.1)

In this example, the phrase “the person requesting this loan has negative balance

on a bank account” is the condition, and the phrase “refuse this loan” is the action

associated with this business modeling rule. A set of such rules can be written as

a BR program given an appropriate representation of the business objects referred

to in business modeling rules, e.g. as a well-defined set of objects and classes, called

a Business Object Model in ODM.

2.1.2 A formal definition of BRs

The origin of BRs as a knowledge representation system and the later focus on

implementations of BRs as business tools have lead to a lack of studies on BRs

as a programming language. That is the starting point we choose to use for the

contributions in this thesis. A BR is an if-then statement in which if is followed

by a boolean expression, called the condition, and then is followed by a sequence of

assignment instructions, called the action1. This action can include non monotonic
1 In practice, actions can include all sorts of instructions. However, we disregard

side-effects such as print instructions, as our only interest lies in the evolution
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effects, unlike the consequence clause of Logic Rules.

The syntax of BRs is straightforward, as it is aimed at non-programmers. In

particular, it avoids explicit occurences of loops and function calls, which non-

programmers may find difficult to understand. BRs eliminates the need for explicit

loops – by making them implicit in the interpreter – and can fulfill the role of

function calls (code factorization) by using what we call in this thesis typed meta-

variables.

Most BRMS use typed meta-variables to simplify their users’ task. We explain

how those work, then show that the expressive power of such a BR programming

language is the same as one that does not use meta-variables at all.

In the rest of this thesis, we often use self-explanatory pseudo-code to describe

programming language behavior. The use of the keywords if ... then .. end if, while

... do ... end while, True and False as well as the function type() and the symbol

← do not refer to a specific implementation of computer instructions, but rather

to familiar concepts of computer science, namely if-then statements, while loops,

Boolean values, variable type evaluation and affectation of a value to a variable.

We also use basic arithmetic and boolean syntax.

The existence of typed meta-variables in BRMS is intended to simplify the

translation of the production rules defined by a business analyst into BRs used

by the software. Let us continue with our example of a bank using BRs to decide

whether to automatically accept or reject a loan request. One of the production

rules the program must implement might be the one in Eq. 2.1. Without using

meta-variables, the BR program must use as many BRs as there are account types,

with many rules such as:

if thisRequest.borrower.has_saving_account()

∧ thisRequest.borrower.saving.balance < 0 then

of the Working Memory.
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thisRequest.accepted ← False

thisRequest.borrower.saving.watched ← True

end if

and

if thisRequest.borrower.has_checking_account()

∧ thisRequest.borrower.checking.balance < 0 then

thisRequest.accepted ← False

thisRequest.borrower.checking.watched ← True

end if

However, using meta-variables we can condense these BRs into the definition of

the ‘account’ variable type and a single BR with a meta-variable:

# The header of the BR program contains all type

# declarations, including this new one:

type(α)← Account

# The set of Business Rules is now simplified:

if thisRequest.borrower = α.owner() ∧α.balance < 0 then

thisRequest.accepted ← False

α.watched← True

end if

When the appropriate BR engine reads this rule, it finds the meta-variable ‘α’

and matches it to each object with the appropriate typing, in this case each ac-

count in the input database, identified by having the object type ‘Account’. By

contrast, the original items in the database such as ‘thisRequest.borrower’ and

‘thisRequest.accepted’ are input variables with appropriate typing in the database,

e.g. ‘Client’ and ‘Boolean’ respectively. The variable ‘thisRequest’ can be seen as

a variable with the appropriate typing ‘LoanRequest’, or as the vector of input

variables x to make a parallel with the formal definitions introduced below.
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In many of the BRMS cited in Subsec. 2.1.1, BRs are written using those meta-

variables as well as input variables. We will keep explicitly calling the former

meta-variables, while shortening the latter to simply variables. Both are typed in

those BR languages: every meta-variable and variable has a type, declared at the

beginning of the BR program. A BR program consists in a set of type, variable and

meta-variable definitions, including type declarations, and a set of rules (called in

ODM the BOM and the Ruleset respectively). A type declaration consists of the

assignment of a type to a variable (type(var) ← type), where var can be either a

variable or a meta-variable. In our example, the type of ‘accepted’ is Boolean, and

both the variable ‘thisRequest.borrower.saving’ and the meta-variable ‘α’ are of

type ‘Account’.

Definition 2.1 (General form of BRs). Given α ∈ Λ the vector of typed meta-

variables and x ∈ X the vector of typed variables, with X being the set of possible

values of x, the general form of a Business Rule is written:

if T (α, x) then

α′ ←
meta

A(α, x)

x′ ← B(α, x)

end if

where T is a boolean function called the condition of the BR; α′ (resp. x′) represents

the value of the variables assigned to α (resp. the value of the variables x) after

the execution of the BR; and the couple (A, B) of functions from Λ × X to X

describes the action of the BR, the action itself being the assignment instructions.

By extension, we often simply call (A, B) the action of the BR as well.

The above definition is a proposed format for consistent description of BR pro-

grams which is applicable to all BR languages, but is particularly appropriate for

adapting BR programs written using the ODM software developped by IBM. The

function A corresponds to assignments of new values to variables (components of
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x), such as assigning False to ‘accepted’ in our example. The function B corre-

sponds to assignments of values to meta-variables. More precisely, it corresponds

to assignment of new values to the variables which were matched to the meta-

variables. In our example, we watch the account matched to ‘α’. Many BRMS

allow for the use of an else clause in BRs, with the resulting rule having the form:

if T (α, x) then

α′ ←
meta

A(α, x)

x′ ← B(α, x)x

else

α′ ←
meta

C(α, x)

x′ ← D(α, x)x

end if

where C and D are also functions from Λ× X to X. This is naturally equivalent

to having the two BRs:

if T (α, x) then

α′ ←
meta

A(α, x)

x′ ← B(α, x)x

end if

if ¬T (α, x) then

α′ ←
meta

C(α, x)

x′ ← D(α, x)x

end if

Consequently, we assume in this thesis that all BRs have the form described in

Def. 2.1.

Definition 2.2 (General form of BR programs). The general form a BR program

is:
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# Type definitions

# Input Variables declaration

# Meta-variables declaration

# Type declarations

# Business Rules

At least one of the input variables is selected so that its final value is the output

of the BR program.

In our example, this corresponds to a BR program being written with the

following parts:

# ‘LoanRequest’, ‘Client’ and ‘Account’ are defined to be types, with their

respective fields and their type, e.g. ‘Account’ has fields ‘balance’ (an integer)

and ‘watched’ (a boolean)

# ‘thisRequest’ is defined to be the name of the input variable

# α is defined to be a meta-variable, potentially among others

# ‘thisRequest’ is declared to be a ‘LoanRequest’, thus the vector of input

variables includes ‘thisRequest.borrower.saving.balance’, among others

α is declared to be an ‘Account’, other meta-variables are typed as well

# The Business Rules

We now give an example of a BR program with two rules. It uses the same

variables ‘thisRequest.borrower’ and ‘thisRequest.accepted’ as above, as well as

the two meta-variables α and β, both of type ‘Account’:

if thisRequest.accepted = False

∧ thisRequest.borrower = α.owner() ∧α.balance < 0

∧ thisRequest.borrower = β.owner() ∧ β.balance ≥ 10, 000 then

thisRequest.accepted = True

α.watched← True

end if
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if thisRequest.borrower = α.owner() ∧α.balance < 0 ∧ α.watched ̸= True then

thisRequest.accepted ← False

α.watched← True

end if

When the initial value of ‘thisRequest.accepted’ is always True, and no account is

initially watched, this BR program encodes the following business modeling rules:

If the person requesting this loan has

negative balance on a bank account

and balance exceeding $10,000 on another,

Then accept this loan request

and watch that account

If the person requesting this loan has

negative balance on a bank account

and no acount with balance over $10,000,

Then refuse this loan request

and watch that account

If the person requesting this loan has

no account with negative balance,

Then accept this loan request

When executing a BR program, meta-variables are stored in a different symbol

table than the variables. The meta-variable table matches variables appearing in

a BR to variable names, and the variable table matches the latter to stored values.

The matching from meta-variables to variables is typed: each meta-variable can

only match to a variable of the same type.

In our example, suppose we treat the loan request from John, a customer with

two accounts. We call ‘thisRequest.borrower.checking’ his checking account, with
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$-10, and we call ‘thisRequest.borrower.saving’ his saving account, with $15,000.

The BR program’s Working Memory initially contains:

Variable thisRequest thisRequest thisRequest thisRequest

.borrower .borrower .borrower .accepted

.checking .saving

Matched John’s customer {balance=-10; {balance=5000; True

Value information watched=False} watched=False}

When evaluating the first BR’s condition, it contains this symbol table and an

additional table for meta-variables. The latter first contains:

Meta-Variable α β

Matched Variables thisRequest.borrower thisRequest.borrower

.checking .saving

which lets the condition evaluate to True, and then contains:

Meta-Variable α β

Matched Variables thisRequest.borrower thisRequest.borrower

.saving .checking

which lets the condition evaluate to False. After checking the conditions of the

second rule as well, the rule which is executed is found to be the first one with

α = thisRequest.borrower.checking and β = thisRequest. borrower.saving. At the

end of the first rule’s execution, the two symbol tables are thus:

Variable thisRequest thisRequest thisRequest thisRequest

.borrower .borrower .borrower .accepted

.checking .saving

Matched John’s customer {balance=-10; {balance=5000; True

Value information watched=True} watched=False}
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Meta-Variable α β

Matched Variables thisRequest.borrower thisRequest.borrower

.checking .saving

John’s loan will be accepted, but his checking account will be watched by the bank.

In the rest of this thesis, we assume the header of a BR program to be implicitly

complete and coherent: all types, variables and meta-variables are defined; and

all variables and meta-variables are typed. Consequently, we often refer to a BR

program as a set a BRs, and vice-versa.

A rules engine is an interpreter for a set of rules. Abstract interpretation for

a BR program is in two stages: first, the BR program is turned into a set of ele-

mentary rules, where the meta-variables are replaced by corresponding variables;

then, elementary rules are run by an execution algorithm, which includes a conflict

resolution strategy to decide the order of rule execution. In practice, those two

stages are merged for the sake of computational efficiency: not all elementary rules

are generated, instead the rules are instantiated at execution time using the Rete

algorithm [43]2. We choose to describe the theoretical interpreter for clarity, as we

only focus on expressive power for the moment.

To create the elementary rules derived from each rule, α is replaced by every

type-feasible reordering of the x variable vector. For x ∈ X ⊆ Rd, i.e. a BR

program with d ∈ N variables, the explicit set of elementary rules compiled from

one rule of the form in Def. 2.1 is the type-feasible part of the following code

fragments, using (σj | j ∈ {1, ..., d!}) the permutations of {1, ..., d}:

if T ((xσ1(1), ..., xσ1(d)), (x1, ..., xd)) then

(xσ1(1), ..., xσ1(d))← A((xσ1(1), ..., xσ1(d)), (x1, ..., xd))

(x1, ..., xd)← B((xσ1(1), ..., xσ1(d)), (x1, ..., xd))
2 Readers who have experience with the Rete algorithm will identify the process of matching

meta-variables to variables as being part of passing through the Alpha network, while instanti-
ation of BRs happens in terminal nodes of the Beta network.
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end if

. . .

if T ((xσd(1), ..., xσd(d)), (x1, ..., xd)) then

(xσd(1), ..., xσd(d))← A((xσd(1), ..., xσd(d)), (x1, ..., xd))

(x1, ..., xd)← B((xσd(1), ..., xσd(d)), (x1, ..., xd))

end if

The size of this set varies. The typing of the variables and meta-variables matters,

and depending on T , A and B, some of these if-then statements might also be

computationally equivalent. The number of elementary rules compiled from a

given rule can be 0 for an invalid rule (∀α, x, T (α, x) = False), 1 for a static rule

(T (α, x) and B(α, x) do not vary with α, A(α, x) = α), and up to d! for some rules

if every variable has the same type.

In our example BR program, the set of elementary rules created with this

method would contain four rules:

if thisRequest.accepted = False ∧ thisRequest.borrower.checking.balance < 0

∧ thisRequest.borrower.saving.balance ≥ 10, 000 then

thisRequest.accepted = True

thisRequest.borrower.checking.watched← True

end if

if thisRequest.accepted = False ∧ thisRequest.borrower.saving.balance < 0

∧ thisRequest.borrower.checking.balance ≥ 10, 000 then

thisRequest.accepted = True

thisRequest.borrower.saving.watched← True

end if

if thisRequest.borrower.checking.balance < 0

∧ thisRequest.borrower.checking.watched ̸= True then

thisRequest.accepted ← False
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thisRequest.borrower.checking.watched← True

end if

if thisRequest.borrower.saving.balance < 0

∧ thisRequest.borrower.saving.watched ̸= True then

thisRequest.accepted ← False

thisRequest.borrower.saving.watched← True

end if

Definition 2.3 (Simplified BR). Given x the vector of variables, the form of an

elementary Business Rule (BR) is written:

if T (x) then

x← A(x)

end if

The simplified BR form of BR programs is simply obtained by taking the set of

elementary rules obtained from the original BRs in a BR program as a new set of

rules, which are more numerous and often less meaningful to a business manager,

yet are functionally equivalent.

In the rest of this thesis, we will use the fact that a BR program can be written

without loss of generality as a set of elementary BRs, i.e. as a set of rules of the

type:

if T (x) then

x← A(x)

end if

The second part of a BR program interpreter is the execution algorithm. We

only consider execution algorithms which include a main loop. The standard

pattern followed by an execution algorithm with a main loop is conceptually simple:

1. Select as executable rules all the instances of elementary rules for which the
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condition is True, using the current values of the variables

2. Check a preset Halting condition and stop if it is True

3. Use a preset conflict resolution strategy to select a single rule instance from

the set of executable rules selected in step 1.

4. Execute the action of the selected executable rule

5. Restart from step 1.

In the rest of this thesis as well as in all commercial BRMS, the default Halting

condition in step 2 is True if and only if (iff) there is no executable rule identified

in step 1, i.e. if all conditions are False. In some BRMS, the Halting condition can

also be True if alternate conditions are fulfilled. However, such alternate Halting

conditions can always be replaced by the default one, by embedding the Halting

test in the rules’ conditions. Let the Halting condition be H(x), we simply add

an extra condition to each BR. Given a BR with condition T (x), we replace it by

¬H(x) ∧ T (x). We can then replace H(x) by the default Halting condition. As a

consequence, we describe no such alternate conditions in this thesis.

The most basic interpreter I0 for a BR program follows this pattern. The

conflict resolution strategy it uses in its execution algorithm consists in a preset

total order over all possible elementary rules, which lets the interpreter select the

greatest elementary rule for that order relation. The order of elementary rules

used is defined by the lexicographic order derived from a predefined order on the

rules in the rule set to execute and a predefined order on input variables. This is

illustrated in Fig. 2.1. In this thesis, we only consider the basic interpreter, as we

can use it to simulate any more complicated ones.

The most common conflict resolution strategies combine one or more of the

following three elements [137]:
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Figure 2.1: Control flow corresponding to the basic interpreter

• Refraction which prevents an elementary rule from being selected by the

conflict resolution algorithm after it is executed unless its condition clause

has been reset in the meantime.

• Priority which is a partial order on rules, leading of course to a partial order

on elementary rules.

• Recency which orders elementary rules in decreasing order of continued va-

lidity duration (when elementary rules are created at run time, it is often

expressed as increasing order of elementary rule creation time).
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These elements can be simulated by the basic interpreter by adding more types,

variables or rules, in broad strokes:

• Refraction is simulated with the use of an additional boolean variable (e.g.

needsReset) per rule per variable permutation (i.e. per elementary rule),

an additional test clause and assignment action in each rule, and an ad-

ditional rule per rule r (if needsResetx,r = True ∧ Tr(α, x) = False then

needsResetx,r ← False).

• Priority results in one additional integer variable p, an additional test clause

in each rule (p = πr), an additional action clause in each rule (p← pmax), and

two additional rules that come dead last in the predefined order on rules (if

p > 0 then p← p− 1; if p = 0 then Stop). The second of those additional

rules can in turn be transformed into an additional test clause in each rule,

as mentioned earlier.

• Recency is the most complicated. A possible simulation could involve an

additional integer variable validityStart per elementary rule, an additional

integer variable timer, an additional action clause in each rule (timer ←

timer + 1) and a similar setup to the one suggested for priority, using an

integer variable priorV alidity which would this time start at 0 and end at

timer.
The Business Rules transformed and created by those modifications, with any pre-

defined order which puts the rules created to increment the p and priorV alidity

counters at the very bottom, simulates an interpreter with those conflict resolution

elements in I0. We call IS the standard BR interpreter which uses the aforemen-

tioned execution loop as well as those three conflict resolution strategy elements.

It is illustrated in Fig. 2.2.

Some degenerate execution algorithms do not include a main loop, as many

users of BRMS do not require the recursive ability of the standard interpreter.
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Figure 2.2: Control flow corresponding to the standard interpreter

In fact, any BR program in which the BRs have only monotonous actions, in the

sense that the actions only affect variables which do not appear in the condition of

any BR, can be executed by a simplified non-looping algorithm without changing

the output. In particular, any direct translation of a decision tree (in which the

leaves do not affect the tested attributes) into BRs can be executed on any input

with a single check of each condition. This has led to the appearance of simplified

execution modes in BRMS, such as the sequential execution mode in ODM, which

uses the algorithm illustrated in Fig. 2.3:

• Order the elementary BRs according to their “priority” property
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• Take each BR in order, and for each evaluate its condition then execute its

action if the condition is True

Another example of such is the “FastPath” algorithm available as an execution

mode in ODM, which simply evaluates the BRs’ conditions all at once, then ex-

ecutes the actions of each BR r such that Tr = True in an often preset arbitrary

order. Such algorithms are popular in some industrial contexts as they simplify

the BR engine to the point where the BR program does exactly what the non-

programmer thinks it does, instead of doing so most of the time. However, BR

languages defined using such algorithms are not as expressive as BR languages

which use a main loop, as non-degenerate execution algorithms must evaluate

an unbound number of evaluations of BR conditions, which leads to possible non-

terminating inputs. In other words, non-looping execution algorithms are degener-

ate in the sense that they do not allow for any inference, whether forward-chaining

or backwards-chaining.

An example of the execution a BR program using the basic interpreter I0 is

described in Fig. 2.4, using the toy example of a BR program which takes as input

the value amount of a requested loan (including interest), the yearly income of

the requester and the duration (in years) of the repayment, then outputs either

the original values (if the request is valid), an alternate loan which can be repaid,

or an amount of zero if there is no possible repayment plan. This toy example

supposes that the compound interest rate is 10% per year.

2.2 Machine Learning (ML)

The problem examined in this thesis, the parametrization of a BR program in light

of a statistical objective, can be seen as a ML problem. The main purpose of using

ML in our work is to provide an existing framework to examine our problem, as
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Figure 2.3: Control flow corresponding to the sequential execution algorithm from
ODM

well as use the known results pertaining to the learnability of function classes to

prove that it cannot be solved in the general case.

Research linking Production Rules and Machine Learning has recently focused

on transforming the product of ML techniques, such as decision trees or associa-

tion rules, into executable production rules [124, 102, 11]. Past efforts have also

used Production Systems as learning systems themselves, among other works on

learning by doing [9, 141]. The ML problem of modifying an existing computer

program or complex function to account for new data is sometimes called theory
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The Rules (in order)
R1 :

if (duration ≥ 10)
then (amount← 0)

R2 :
if (amount ≥ income× duration)

then (amount← 1.1× amount;
duration← duration + 1)

The input Variables
amount ← 100
income ← 10
duration ← 9

The Execution
Iteration 1:

Truth value of conditions:

t(R1) = False

t(R2) = True

Rules selected (in order): R2

Rule executed: R2

Variable values:

amount = 110

income = 10

duration = 10

Iteration 2:

Truth value of conditions:

t(R1) = True

t(R2) = True

Rules selected (in order): R1; R2

Rule executed: R1

Variable values:

amount = 0

income = 10

duration = 10

Iteration 3:

Truth value of conditions:

t(R1) = False

t(R2) = False

Rules selected (in order) None

Rule executed: None

END

Figure 2.4: Example illustrating the execution algorithm: smallest loan payment
plan

revision [51]. The theory revision problem restricted to modifying parameters of

the existing theory is similar to our problem. An approach to the non-statistical

theory revision applied to Business Rules appears in [31], working with CLIPS-R.

Answers to the theory revision problem with access to labeled data points (with

a known label for each input) appear in [4, 64, 65]. We work on extending work

made on this problem to statistical goal learning problems in Production Rules

systems, in particular BR systems.

In this section, we first formally express our problem and contrast it to existing

ML formulations. We then present some existing results we will use in Chapter 3
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pertaining to the learnability of function classes.

2.2.1 Statistical goal learning

One of the challenges of BR systems in the current industry is maintaining the

flexibility that has lead to its adoption as the automatic decision management

tool of choice by many organizations. While BRMS make it simple to maintain

and modify BR programs, they do not offer a way to predict the effect of any

modification, nor do they supply a framework for Machine Learning (ML) of BR

programs in view of a goal. Business Users must rely on their knowledge of the

business process and the goal to implement any modifications to the BRs on their

own. In a digitalized world where ML and “big data” are becoming more than

buzzwords, this can undermine the agility of BRMS, or at least make it costly and

inefficient.

The goals of such modifications can be of a statistical nature, e.g. adjusting the

average decision over a given set of inputs. For example, a bank might require that

no more than a certain percentage, e.g. 30%, of all requested loans be examined

manually, due to human resource concerns. As the number of manually examined

loan requests should always be as high as possible, the goal is in fact to have the BR

program which determines such things assign 30% of all loan requests to manual

examination. Such a requirement could be fulfilled by automatically learning the

“right values” of some adjustable parameters in the corresponding BR program. If

the output of the BR program is a binary variable using 1 for manual evaluation

and 0 for automatic evaluation of a loan request, the learning problem would be

to find the values of the parameters which satisfy the statistical goal: “average of

all outputs is 0.3”. This could arise as a consequence of exceptional circumstances,

e.g. a new legislation, or of natural trend evolution, e.g. the client base changing

so that too many or too few loan requests are evaluated automatically.
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Such a learning problem is what we henceforth call a statistical goal learning

problem, as the goal is not over the output of the system but over the average of

that output given a set of inputs. A broader definition of statistical goal learning

goes beyond the average, and involves target statistical distributions in the outputs

given a certain statistical distribution of inputs. An algorithm for the “narrower”

version of the statistical goal learning problem will be discussed in Chapter 4. The

broader version will be discussed in Chapter 5.

In the rest of this thesis, we characterize a BR program which must be learned

this way by its input, output and parameters. The input is the initial value of

the variables when executing the BR program, the output is the final value of

the scalar variable chosen as the BR program’s result and the parameters are the

elements of the BRs which can be modified by the learning algorithm.

Definition 2.4 (Family of BR program). We call family of BR programs derived

from a BR program the set of functions P (p, .) with values in R, where p ∈ π is a

parameter or vector of parameters of the BRs, such that for any valid input x ∈ X

of the BR program, the output of the BR program modified by using the values p

in place of predefined elements of BRs x is P (p, x).

Let P (p, .) be a family of BR programs parametrized over p ∈ π ⊆ Rϕ, with

input x ∈ X ⊆ Rd. Let g ∈ R be the desired goal. The “narrower” statistical goal

learning problem can then be formalized as:

min
p
∥p− p0∥∣∣∣Eq∈Q

[
f

(
P (p, q)

)]
− g

∣∣∣ ≤ ε,

 (2.2)

where ∥ · ∥ is a given norm, E is the usual notation for the expected value, Q is a

training set of inputs and ε is a given tolerance.

This formalization is closer to the reality of BR users than the alternative
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(minimizing E(P )−g while constraining p−p0), as corporations will often consider

goals more rigidly than changes to the business process, and the value of the

objective will speak to them more as a kind of quantification of the changes to be

made. The form this quantification takes, from minimizing the variation of each

parameter in p to minimizing the number of parameters whose value is modified,

depends on the definition of the norm ∥ · ∥. In terms of business modeling rules,

this means that we can for example choose to try and change the rules minimally

with many rules being changed, or we can try to change a minimal number of

rules, even if the change is very big.

ML has many existing approaches and algorithms depending on what is to be

learned and how it may be learned [80], the commonality being that ML aims

to use training data in order to predict the behavior of other inputs, usually by

learning a predictor function. In general, one may divide ML approaches into

Supervised Learning and Unsupervised Learning [131], with problems of Semi-

Supervised Learning straddling the line. In Supervised Learning, the training

data is labeled, meaning the known data consists of both inputs and outputs of

the function we wish to learn. In contrast, Unsupervised Learning only provides

inputs, i.e. uses unlabeled training data and assumptions about the outputs (such

as the number of classes in classification problems). In Semi-Supervised Learning

problems, only some of the data is labeled. Those problems are usually studied

as either imperfect Supervised Learning problems or constrained Unsupervised

Learning problems.

Our problem lies somewhere between the two main approaches, as we do have

information beyond the simple input data: we know both the original output of

the BR program and the statistical distribution of the outputs we wish to achieve.

The specificity of our problem however is that this information does not take the

form of labels over data points, as in Supervised Learning. Instead, the informa-
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tion we have is closer to ‘statistical labels’, i.e. labels over data sets instead of

data points. Just as in Unsupervised Learning, the relevance of the training data,

usually historical data, lies solely in its statistical properties: the specific values

are not important, as they are not individually labeled. The information we have

about the desired distribution of outputs is also comparable to a (non-standard)

assumption about the output made by Unsupervised Learning algorithms. Semi-

Supervised Learning problems however are entirely unrelated to ours, since the

problem is not one of partial labeling. While both the Supervised and Unsu-

pervised approaches have been studied extensively, the Unsupervised Learning

approach mostly focuses on classification problems, whether through clustering

algorithms such as the k-means algorithm [47] or through association algorithms

such as the Apriori algorithm [3]. Furthermore, using an Unsupervised approach

would lead to disregarding the information encoded in the existing BR program.

Such an approach is more applicable to initial learning of BRs, as some software

(like IBM SPSS Modeler [117, 118]) can do in a limited fashion.

Consequently, similarities to our problem are better found among Supervised

Learning problems. The traditional Supervised Learning problems are regression,

for continuous outputs, and classification, for discrete outputs. The standard su-

pervised learning algorithms are summarized by Hastie, Tibshirani and Friedman

in [78]. The best known algorithms are Support Vector Machines [120], neural nets

[84], logistic regression, naive bayes [106], k-nearest neighbors [67], random forests

[104], and decision trees. Those methods, among others, are compared in [79] for

the classification problem.

All of these methods consider the “classic” supervised learning problem, of

which a generic formulation is the following, with a function f to be learned:

min
f̂∈F

∥∥∥∥(
f̂(x)− y(x)

)
x∈X

∥∥∥∥ (2.3)
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where F is a class of functions we are assuming contfains f (or a good approxi-

mation thereof), X is a finite learning set, y(x) is the set of corresponding labels

and ∥·∥ is a norm over the sequence of outputs, usually L2 over RX . The different

algorithms make different assumptions over F , whether it be the linearity of func-

tions in it (linear regression), the countability of the output set (classification vs

regression), or others. We assume in this thesis that all problems can be learned

by using a class F taking the form of a set {fp}, with p a vector of parameters.

The difference between the supervised learning problem and the proposed sta-

tistical goal learning problem lies in the constraint imposed by the known informa-

tion: while the known information applies directly to the outputs in the “classic”

problem, it is a statistical derivative of the outputs in the statistical problem. More

precisely, the problem in Eq. 2.2 cannot be translated into the form of Eq. 2.3 be-

cause we do not have individual labels y(x). The equivalent form would involve

reworking the norm used in Eq. 2.3 to be a statistical measure of f̂ , which makes

using standard supervised learning algorithms impractical for our purposes.

2.2.2 Computational Learning theory

Describing ML algorithms and their applicability to different problems is the

purview of computational learning theory. There exist several approaches to this

task, which can be broadly divided in two: those that specify that a successful

learning algorithm must learn f̂ exactly equal to f , and those that accept learn-

ing an approximation of f and thus use a definition of probability. In the first

category, we find algorithmic learning theory [5] and exact learning [41], which

both assume an unbounded (although finite) number of labeled samples to use.

In the second category, we find well-known forms of learning theories such as the

Vapnik—Chervonenkis theory [134], bayesian inference [14], and the Probably Ap-

proximatively Correct (PAC) framework [132], which is the one we use to prove
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our theorems.

A PAC learning algorithm identifies a function of the form f : X → {0, 1}

among a subset C of all such functions called a concept class. An algorithm A

is an (ϵ, δ)-PAC learning algorithm for C if for any set of labeled data (S, Ω) of

sufficient large size λ = card(S), with ωs ∈ Ω the label corresponding to s ∈ S,

the algorithms learns a function h = A(S, Ω) such that:

P
[
A(S, Ω) = h | P[h(x) ̸= f(x) | x ∈ X] ≤ ϵ

]
≥ 1− δ (2.4)

• A is said to be efficient if the time complexity of A and h are polynomial in

1/ϵ; 1/δ; and λ.

• A is said to weakly learn C if there exist some polynomials pϵ(λ); pδ(λ) for

which ϵ ≤ 1
2 −

1
pϵ(λ) and δ ≤ 1− 1

pδ(λ) .

• We say a concept class is PAC-learnable if it is both efficiently and weakly

learnable. Otherwise, we say that the concept class is PAC-unlearnable.

This formalism translates to our statistical goal learning problem by using the

correct concept class. In the rest of this thesis, we assume that the set P refers

to a set of functions of the form P (p, .) where P is a family of BR programs

and p ∈ π ⊆ Rϕ parametrized this family. We consider the concept class whose

members are indicator functions over P, i.e. c ∈ C are functions such that ∀p ∈

π, c(P (p, .)) ∈ {0, 1}. We now wish to learn a specific member of C : the mapping

h which identifies BR programs satisfying the constraint from Eq. 2.2.

∀p ∈ π, h(P (p, .)) = 1⇔
∣∣∣Eq∈Q

[
f

(
P (p, q)

)]
− g

∣∣∣ ≤ ε (2.5)

Learning this concept leads naturally to learning the optimal parameter p solving

Eq. 2.2, while being unable to learn it leads to the statistical goal learning problem
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being unsolvable. The problem of the learnability of the statistical learning prob-

lem is thus the problem of the existence of a PAC-algorithm A which can learn

C.

The broadest class of functions we know how to define formally is that of

Turing-computable functions, as expressed by the Church-Turing thesis [66]. Pseu-

dorandom functions (PRF), introduced by Goldreich, Goldwasser and Micali [50],

are indexed families of functions Fp for which there exists a polynomial-time al-

gorithm to evaluate Fp(x), but no probabilistic polynomial-time algorithm can

distinguish the function from a truly random function Frand without knowing p,

even if allowed access to an oracle. The existence of PRFs relies on the assump-

tion of the existence of one-way functions, i.e. functions which can be evaluated in

polynomial time but cannot be inverted in polynomial time [49]. This assumption

is stronger than the usual NP ̸= P assumption.

It is known that PRF are not PAC-learnable [50, 34], which in turn means that

the set of all Turing-computable functions is also not PAC-learnable. We use this

result in Chapter 3.

2.3 Mathematical Programming (MP)

The approach we use to learn the parameters of BR programs is to treat the

learning problem in Eq. 2.2 as an optimization problem. A common approach to

optimization, which we adopt in this thesis, is called Mathematical Programming

(MP) [142]. MP is the practice of using Mathematical Programs (or MP problems)

to model and solve problems. Among those Mathematical Programs, we are make

particular use of the Mixed-Integer Linear Programming (MILP) problems, which

can be solved particularly well by existing optimization solvers.

In this section, we first introduce MP problems as well as some well-known
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classes of MP problems. We then mention the associated state of the art solvers

and explain our choice of using CPLEX to test our algorithm (in Ch. 6).

2.3.1 MP formalism

An Optimization Problem can be written as:

minimize
x

f(x)

subject to

∀i ∈ {1, . . . , nI}, gi(x) ≤ 0

∀i ∈ {1, . . . , nE}, hi(x) = 0

x ∈ X

where f , gi and hi are real-valued functions of the vector of decision variables x,

nI ∈ N and nE ∈ N are respectively the number of inequality constraints and

equality constraints in the problem, and X is a Cartesian product of intervals of

R and finite subsets of N. The function f is called the objective function. Any

x ∈ X is called a solution. If x ∈ X satisfies ∀i ∈ {1, . . . , nI}, gi(x) ≤ 0 and

∀i ∈ {1, . . . , nE}, hi(x) = 0, it is called a feasible solution. A feasible solution x∗

is optimal if f(x∗) ≤ f(x) for all feasible solutions x.

A problem with no feasible solutions is called infeasible. Additionally, our prob-

lems are all derived from Eq. 2.2 in Sec. 2.2, which means the objective function

f is always positive. In this thesis, we call trivial any optimization problem such

that there exists an optimal solution x∗ such that f(x∗) = 0. This corresponds

to the optimization problems derived from trivial statistical learning problems,

i.e. problems where the value of p0 already satisfies the statistical goal.

Approaches for solving Optimization Problems are different for different classes

of problems. The two most common criteria to classify MP problems are the exis-
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tence of integrality constraints and the use of linear/convex/non-convex functions

in the objective function and the constraints. Problems with integrality constraints

such that all decision variables are integers are called Integer Programming prob-

lems. When some decision variables are continuous and some are discrete, the

problem is a Mixed-Integer Programming (MIP) problem. Similarly, we call Linear

Programming the branch of MP in which all the constraints gi, hi and the objective

function f are linear, with Linear Programs often referring to non-integer linear

programming problems. Quadratic Programming [89] and Convex Programming

[32] are also well-researched branches of MP. The most general form of MP prob-

lems are nonconvex Mixed-Integer Nonlinear Programming (MINLP) problems.

In our thesis, we first describe a MIP formulation of the statistical goal pro-

gramming problem from Sec. 2.2 for a subset of BR programs (Sec. 4.2), then we

linearize the problem for a subset of even those (Sec. 4.4) in order to have a MILP

problem which can be solved using standard solvers.

2.3.2 MP solvers

Solving MP problems can be done using exact methods, such as the simplex

method for Linear Programming problems [115], or using converging approxi-

mations, such as the outer approximation method for Mixed-Integer Nonlinear

Problems [39]. There are many algorithms for solving different MP problems. Al-

gorithms based on heuristics perform the best in testing, although (as heuristics

are bound to do) their exact performance depends on the MP problem which is

being solved.

Different solvers implement different algorithms and recognize different classes

of MP problems. We choose to use CPLEX as it is one of the state-of-the-art

solvers for solving MILP problems [77] (the fact that it is developed by IBM at

the France Lab, which is funding this thesis, is a bonus). Other commercial MILP
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solvers include FICO Xpress [42], Gurobi [52] and MOSEK [24]. Academic, non-

commercial solvers are also competitive, including SCIP [111], CBC [25], GLPK

[48] and LPSolve [73].

While our problems are too unwieldy to solve directly with general MIP solvers

(a.k.a. MINLP solvers), especially as scalability is a concern for the applications

of the statistical goal learning problem suggested in Sec. 2.1, MIP solvers are

also available. The solvers SCIP, COUENNE [33], Antigone [7], Baron [12] and

LindoGlobal [72] solve general nonconvex MINLP problems to global optimality.

Others, such as Alpha-ECP [44] and Bonmin [17], guarantee global optimality only

for convex problems, but can be used as heuristic solvers for nonconvex problems.



Chapter 3

BR programming language:

Properties and learnability

In this chapter, we study the question of the learnability of BR programs, in the

statistical goal learning sense. More precisely, we question the existence of an

algorithm A which, using the notations from Subsec. 2.2.2, learns an indicator

function h satisfying Eq. 2.5, in the PAC-learning sense of Eq. 2.4. We do so by

first studying the BR programming language and its expressive power.

Any study of BRs as a programming language is meaningless without adding

some constraints over the form of the conditions T and actions A of BRs, as we

could perform any complex computations by phrasing them as a function oth-

erwise. As an example, suppose we wish to program the arbitrary real-valued

function f , a possible BR program when using the basic interpreter would be:

if switch = True then

x← f(x)

switch ← False

end if

In the rest of this thesis, unless otherwise mentioned we suppose that all condi-

40
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tions T and all actions A of BRs have a polynomial computational complexity.

This assumption is realistic when considering industrially used BR programs, as

automated decision making is by and large a task which is time sensitive and must

be executed promptly.

In the first section, we prove that BR programs are Turing-complete when

using an interpreter with a non-degenerate loop. We then provide an alternate,

constructive proof and use it to describe a Structural Operational Semantics (SOS)

over BR programs. We also showcase the usefulness of this semantics by demon-

strating that the termination of some BR programs can be proven automatically

using Prolog. Finally, we answer the main question of this chapter in the negative:

our statistical goal learning problem is not PAC-learnable in the general case. In

fact, it is even completely unlearnable, as we exhibit an example of a BR program

which no algorithm can learn with a confidence rate of more than 50%, no matter

how many oracle calls we allow.

3.1 Turing-Completeness of BR programs

Within the panorama of programming languages, one can distinguish two main

categories: imperative languages and declarative languages. Since both categories

contain Turing-complete languages, a separation of the two categories according

to computational expressive power is impossible. On the other hand, by looking at

three basic building blocks present in all imperative languages (assignments, tests

and loops), we can informally segment programming languages more finely: purely

imperative languages have explicit constructs for all three, and purely declarative

languages do not have explicit constructs for any of those building blocks. However,

programming languages can also fall somewhere between the two. One of the

earliest computational models, lambda-recursive functions [69], is a declarative
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language which has explicit constructs for both assignments and tests. While it

can be thought to embody loops right within the language itself by its recursion

axiom, and tests and assignments have to somehow be “simulated”. Prolog [99],

Constraint Programming [10], and MP [142] are also declarative in that sense, in

the sense that the language itself does not provide constructs of assignments, tests

or loops. Perhaps the “purest” form of a purely declarative language is given by

systems of Diophantine equations, famously shown to be Turing-complete when

Hilbert’s 10th problem was solved in the negative [75]. In this taxonomy, BRs

taken as a programming language explicitly provides assignments and tests, but

has no explicit loop construct.

The study of BR as a programming language starts with the fundamental ques-

tion of its computational expressive power. The first thing we ask is whether BR

programs are Turing-complete, i.e. whether we can decide if the execution of a BR

program terminates at all. Asking the same question of any programming lan-

guage amounts to asking whether the Halting Problem (halt) can be solved

on the class of Turing Machines (TM) that the programming language is able

to describe, since halt cannot be solved for Universal TMs (UTMs). Turing-

completeness further provides an estimate of expressive power, since the widely

accepted Church-Turing thesis [28, 128, 45] postulates that any effectively calcu-

lable function is Turing-computable. In other words, no device or program can

compute a function that a UTM cannot.

Among the other programming languages we mentioned, recursive functions

have been famously proved to be equivalent to Turing Machines (TM) by none

other than Turing himself [126]; for Logic rules, including Prolog, we refer the

reader to [116]. For MP, see [130].
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3.1.1 Turing-Completeness

A Universal Turing Machine (UTM) is a TM which can simulate any other TM

on arbitrary input [113, 127]. Let L be a programming language for the UTM

U , described for example by its grammar. By means of a special program I

called interpreter, programs written in L can be executed on U [76]. If a pro-

gramming language L can be used to program all possible programs of a UTM via

an interpreter, then L is said to be Turing-complete.

Definition 3.1 (Turing-completeness [127]). Let U be a UTM, which takes as

input a string (T, x) consisting of a TM description and its input. A programming

language L is Turing-complete if there exists an interpreter I such that for each

possible input (T, x) of U there is a program p in L with I (p) = (T, x).

We can replace “UTM” in Defn. 3.1 by any universal computer described in any

Turing-complete language L′, since interpreters can be composed. More precisely:

(i) let I ′ be the interpreter from L′ to a UTM U ′, (T ′, x′) be an input of U ′, and

p′ be a program in L′ with I ′(p′) = (T ′, x′); (ii) let I be an interpreter from L

to L′. If there exists a program p in L such that I (p) = p′, then I (I ′(p)) =

(T ′, x′) meaning L is a UTM.

Moreover, since a UTM is defined as a TM which is able to simulate any other

TM, we prove a programming language L Turing-complete by showing that for

any TM, L can be used to describe that TM via its interpreter, as was done in

[35].

3.1.2 Basic Turing-completeness Proof

We now prove the Turing-completeness of BR programs in a two different ways:

A straightforward construction of a UTM and a constructive reduction to WHILE

programs. We wish to prove the expressive power of BR programs themselves,



CHAPTER 3. BR PROGRAMS 44

as opposed to the expressive power of the syntax allowed in the conditions and

actions of BRs. For that reason, we maintain the restriction on the complexity

of conditions and actions of BRs: they are at most polynomial. This avoids any

simple but uninteresting BR programs which amount to:

if True then

Solve the Halting problem

end if

Theorem 3.1 (Turing-completeness of BRs). The BR language restrained to poly-

nomial complexity conditions and actions in BRs, when using the basic interpreter,

is Turing-complete. Furthermore, any non-trivial BR interpreter involving a loop

is also Turing-complete, as it can simulate the basic interpreter.

We prove theorem 3.1 in a straightforward way by providing a BR program

which simulates a UTM. We use the usual definition of a Turing Machine [129].

We note the states of a TM q1, . . . , qQ, its tape symbols s1, . . . , sS, its blank symbol

sb, its transition function (qi, si)→ (qf , sf , act) where act ∈ {“left", “right", “stay"},

its initial state q0, and its accepting states Ter. An initial tape T0 is said to be

accepted by a TM if the TM reading this tape stops and has a final state in Ter.

A BR program which simulates a UTM by being able to simulate any TM is

described in Fig. 3.1. It uses the same notations, with initial values of q = q0;

of T a truncated T 0 containing a finite number of symbols, containing T 0
0 and

containing all non-blank symbols of T 0; of l = size(T ); and of p = 0.

Some simplifications have been made for the sake of clarity: R1 should clearly

be at least three different rules each replacing act with one of “left", “right", “stay".

The complete formally correct form would in fact have two more rules, in order to

increase the length of the tape as needed, using the variable sb.

Theorem 3.2. the BR program described in Fig. 3.1 simulates any TM given an
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We suppose the variables include the following:
• many (static) state objects of type "state": q1, . . . , qQ

• many (static) symbol objects of type "symbol": s1, . . . , sS

• a (static) finite set of terminal states of type "terminal": Ter

• a (static) blank symbol of type "symbol": sb

• a (static) set of Turing rules of type "rules", of the form
(stateinitial, symbolinitial, right|left|stay, statenext, symbolwritten):
R = {(qi

r, si
r, actr, qf

r , sf
r ) | actr ∈ {"left", "right", "stay"}}r

• the current state of type "state": q
• the length of the visible tape data, of type "length": l
• the current visible tape data of type "tape": T = {(i, si) | i ∈ N, 0 ≤ i ≤

l − 1} where l is the length of the visible tape data
• the current place on the tape of type "position": p

We use the following meta-variables in the BR program that simulates a UTM:
• αqf of type "state"
• αsf of type "symbol"

The rule set to simulate a UTM is then written in a compact form:

R1:
if

(q, T (p), act, αqf , αsf ) ∈ R
then

q ← αqf

T ← (T \ {(p, T (p))}) ∪ {(p, αsf )}
p← p± 1(Depending on the value of act)
l← l ± 1(Depending on the respective values of act, p and l)

R2:
if

(q ∈ Ter)
then

Stop;

Figure 3.1: A BR program which describes a UTM.

accepted tape. The final value of the tape and the final symbol of the TM will be

identical to the final values of T and q.

Proof. We prove that the simulation is correct by induction over the number of
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steps n taken by the TM.

Before the TM takes any step (n = 0), its tape is identical to the value of T

in the BR program before it executes any rule, as that tape is given to the BR as

an input value. Similarly, the place on the tape at that point is the value of p and

the state of the TM is equal to the value of q.

Assume that the tape, the position on it, and the state of the TM after step

n are accurately represented by the BR program after n rule executions. We call

T T M the sequence representing the tape, pT M the current place on the tape, and

qT M the current state of the TM.

If the TM halts, that means ∀(act, qf , sf ), (qT M , T T M
pT M , act, qf , sf ) /∈ R. Thus,

the BR does not execute R1. Further, as the initial tape is accepted by the TM, we

have qT M ∈ Ter, which fulfills the condition for R2. The BR program terminates at

the same time as the TM, and its output is correct as R2 does not modify values.

Otherwise, the TM will follow a rule in R. Let us call it

r = (qT M , T T M
pT M , act, qf , sf ).

In this case, the next BR executed will be R1, and the only member of R to match

will be r. In other words, the only relevant elementary rule is:

R1:

if (q, T (p), act, qf , sf ) ∈ R

then q ← qf

T ← (T \ {(p, T (p))}) ∪ {(p, sf )}

p← p± 1(Depending on the value of act)

l← l ± 1(Depending on the respective values of act, p and l)
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because q = qT M and T (p) = T T M
pT M . As the action on this BR instance corresponds

exactly to the modifications to the state and tape of the TM, the values stored on

the tape of the TM after n + 1 steps will again be the same as the values in the

BR program.

3.2 Constructive proof and resulting

Operational Semantics

We propose an alternative proof of Turing-completeness, using a constructive sim-

ulator of WHILE programs in BR, since the Turing-Completeness of WHILE pro-

grams is well-known [55]. This proof underlines the relation between the BR lan-

guage and standard imperative programming languages such as C or Java, which

include a while instruction, which leads to establishing a canonical WHILE form

of BR programs. We describe it in Subsec. 3.2.2.

As there exists a well-known Operational Semantics for WHILE programs [98],

we can use this transformation from BR programs to WHILE programs to de-

scribe the Operational Semantics of BR programs. We characterize a Structural

Operational Semantics for BR programs and use it to automatically decide the

termination of some BR programs in Subsec. 3.2.3.

3.2.1 BR form of WHILE programs

A WHILE program has the canonical (recursive) form:

while T0(x) do

ifblock1(T1, A1, x)

. . .

ifblockK(TK , AK , x)
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end while

where, for each k ≤ K, ifblockk(Tk, Ak, x) is defined either as:

if T1
k(x) then

x← A1
k(x)

ifblock(Tk, Ak, x)

end if

or as an empty command. The interpretation of the symbols Ti
k(x) and Ai

k(x)

is: T are tensors of Boolean conditions on the variables x, which evaluate to True

or False, and A is a tensor of functions of x yielding values to be assigned to the

variables.

In other words, a WHILE program is a single conditional loop containing a

sequence of embedded test conditions followed by a conditional assignment action.

We prove the Turing-completeness of BR programs by showing that a generic

WHILE program can be interpreted into a BR program. The only requirement of

the interpretation is to be computable. We first prove this for WHILE programs

without embedded if statements, then we exhibit a sequence of syntactical steps

on the symbols of a generic WHILE program which transforms it into a WHILE

program without embedded if statements. As WHILE programs are themselves

Turing-complete [55], this proof also shows that BR programs and WHILE pro-

grams compute the same functions.

Lemma 3.3. Any WHILE program without embedded if statement can be simu-

lated using a BR program.

Proof. Given the following WHILE program without embedded if statements:

1: while T0(x) do

2: if T1(x) then

3: x← A1(x)
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4: end if

5: . . .

6: if TK(x) then

7: x← AK(x)

8: end if

9: end while

We can write an equivalent rule set with 2 K−1 rules and an additional variable

c, which takes as value the index of the last action Ak executed and has initial

value 0:

if c < 2 ∧ T2(x1, ..., xn) then

x← A2(x)

c← 2

end if

. . .

if c < K ∧ TK(x1, ..., xn) then

x← AK(x)

c← K

end if

if T0(x1, ..., xn) ∧ T1(x1, ..., xn) then

x← A1(x)

c← 1

end if

if T0(x1, ..., xn) ∧ T2(x1, ..., xn) then

x← A2(x)

c← 2

end if

. . .



CHAPTER 3. BR PROGRAMS 50

if T0(x1, ..., xn) ∧ TK(x1, ..., xn) then

x← AK(x)

c← K

end if

We prove by induction that this BR program using the basic interpreter executes

the same assignment actions as the WHILE program.

As the initial value of c is c = 0, the first action executed by the BR pro-

gram is the assignment x ← Ak(x) such that k is the smallest integer satisfying

T0(x1, ..., xn) ∧Tk(x1, ..., xn) = True. If T0(x1, ..., xn) = False, then there is no such

k and the BR program does nothing, which is the same as the WHILE program

since it cannot enter the loop at all. Suppose T0(x1, ..., xn) = True. If k does not

exist, both the WHILE program and the BR program do nothing. If k exists, then

we have:
Tk(x1, ..., xn) = True

and ∀h < k, Th(x1, ..., xn) = False

which is identifies exactly the first if-then statement to be executed in the WHILE

program.

We now assume at least one assignment was executed in the WHILE program,

and that the actions executed by the BR program are exactly those executed by

the WHILE program so far. The value of c is the index of the last executed action.

Let k ≤ K be such that the next action executed by the WHILE program is

x← Ak(x).

If k does not exist, we have:

T0(x1, ..., xn) = False

and ∀h > c, Th(x1, ..., xn) = False

which means that each condition in the BR program is False. Both the WHILE
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program and the BR program halt at this point.

If k > c, we have:

Tk(x1, ..., xn) = True

and ∀c < h < k, Th(x1, ..., xn) = False

because the WHILE program reaches the assignment indexed by k without entering

any if-then block in between. This with the definition of c means the first rule in

the BR program to have a True condition is:

if c < k ∧ Tk(x1, ..., xn) then

x← Ak(x)

c← k

end if

and the next assignment to be executed in the BR program is the same as the one

in the WHILE program: x← Ak(x).

If k ≤ c, we have:

T0(x1, ..., xn) = True (1)

and Tk(x1, ..., xn) = True (2)

and ∀c < h, Th(x1, ..., xn) = False (3)

and ∀h < k, Th(x1, ..., xn) = False (4)

because the WHILE program reaches the end of the loop, passes the looping test,

then reaches the assignment indexed by k without entering any if-then block in

between. The conditions of the first K − 1 BRs in the BR program are evaluated

to False because of (3) and the value of c. The equalities (1), (2) and (4) combine

to show that the first rule in the BR program to have a True condition is:

if T0(x1, ..., xn) = True ∧ Tk(x1, ..., xn) then
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x← Ak(x)

c← k

end if

and the next assignment to be executed in the BR program is again the same as

the one in the WHILE program: x← Ak(x).

The BR program and the WHILE program execute exactly the same assign-

ment instructions, they are thus equivalent.

Lemma 3.4. Any WHILE program can be transformed into an equivalent WHILE

program without embedded if statements.

Proof. We prove the lemma by reasoning on the ifblocks. We consider the asser-

tion: Any ifblock can be transformed into a finite sequence of ifblocks without

embedded if statements.

We reason inductively on the depth of the deepest embedded if statement. If

it is 0 or 1, the property is trivial (one is a pass instruction and the other already

of the correct form).

Let n ∈ N such that we can transform any ifblock of depth n into a sequence

of if statements. Let us consider an ifblock of depth n + 1. It can be written as:

if T1(x) then

x← A1(x)

if T2(x) then

x← A2(x)

ifblock(T3, A3, x)

end if

end if

where ifblock(T3, A3, x) is an ifblock of depth n − 1. It is equivalent to the

following:
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if T1(x) ∧ T2(x) then

x← A2(A1(x))

ifblock(T3, A3, x)

end if

if T1(x) ∧ ¬T2(x) then

x← A1(x)

end if

Which is a sequence of two ifblocks of depth n. As we can tranform each of them

into a sequence of ifblocks without embedded if statements, we have the property

for ifblocks of depth n + 1, and the induction is valid.

The property applied to each ifblocks of a WHILE program transforms it into

the form we wanted.

We can now prove Th. 3.1 constructively, as any WHILE program can be

transformed into a WHILE program without embedded ifs and thus into a BR

program. This proves that BR programs can compute any WHILE program.

Since WHILE programs are Turing-complete [55], BR programs are indeed Turing-

complete.

3.2.2 WHILE form of BR programs

We can now extend this constructive proof to the existence of a canonical WHILE

form of BR programs for the basic interpreter I0. The Fig. 3.2 shows the WHILE

form of the example in Fig. 2.4.

Theorem 3.5 (WHILE form of BRs). Any BR program executed using the basic

interpreter I0 can be written as a WHILE program using a canonical transforma-

tion.
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Proof. A canonical WHILE program equivalent to a BR program is easy to es-

tablish when using the basic execution algorithm. The main idea is to introduce

an additional integer variable x0 to serve as a control variable, and to write each

elementary rule explicitly in the WHILE program itself.

For a BR program in which there are ρ BRs called R1, . . . , Rρ with condi-

tions T1, . . . , Tρ and actions A1, . . . , Aρ and the variable is x, the WHILE program

equivalent to the BR program executed with the basic interpreter I0 is written as

below. It uses a single additional integer variable x0.

1: x0 ← −1

2: while x0 ̸= 0 do

3: if x0 = −1 then

4: if T1(x) = True then

5: x0 ← 1

6: else if . . . then

7: . . .

8: else if Tρ(x) = True then

9: x0 ← ρ

10: else

11: x0 ← 0

12: end if

13: else if x0 = 1 then

14: x← A1(x)

15: x0 ← −1

16: else if . . . then

17: . . .

18: else if x0 = ρ then

19: x← Aρ(x)
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20: x0 ← −1

21: else

22: x0 ← 0

23: end if

24: end while

This WHILE program is well-defined and obviously simulates the execution of the

BR program, with two consecutive iteration of the while loop corresponding to one

iteration of the BR program’s execution loop.

The input Variables
amount ← 100
income ← 10
duration ← 9

The WHILE program
1: x0 ← −1
2: while x0 ̸= 0 do
3: if x0 = −1 then
4: if duration ≥ 10 then
5: x0 ← 1
6: else if amount ≥ income× duration then

7: x0 ← 2
8: end if
9: else if x0 = 1 then
10: amount← 0
11: x0 ← −1
12: else if x0 = 2 then
13: amount← 1.1× amount
14: duration← duration + 1
15: x0 ← −1
16: else
17: x0 ← 0
18: end if
19: end while

Figure 3.2: WHILE form of the rule set in Fig. 2.4

3.2.3 A Structural Operational Semantics for BR

programs

Since any BR program can be rewritten as a WHILE program, the WHILE form of

BR programs can be used to describe a clear and well-known Structural Operation

Semantics (SOS) over BR programs. Let us consider the SOS described by Plotkin

in [98] applied to WHILE programs. It describes the execution of a program as a

finite automaton, with each simple command corresponding to a state transition

relation. Its usefulness in proving properties of programs, such as sets of input
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resulting in termination or non-termination, has been established [22]. Fig. 3.3

shows the state transition relations corresponding to the WHILE language under

an easily readable form, using a Logic Rule syntax wherein the premises are listed

above a horizontal line, the conclusion below, and the condition, if present, to its

right.

Termination of a program for a given input is one of the easiest properties of

programs to look into using SOS. Because of the Turing-completeness of the BR

language, our methodology for proving (or disproving) termination will obviously

not give results on every BR program.

We use an example to demonstrate that the transformation of a BR program

into a WHILE program can be used to prove properties of BR programs through

those same SOS methods. Consider the simple example of a loan request applica-

tion with three integer variables: amount, duration and income. We use the naive

rule described in Fig. 3.4. The input value of amount is the requested loan value,

while its final value is the total repaid sum.

We use Prolog [99] to code the SOS of the WHILE programming language as

rules in a rule inference engine using the form displayed in Fig. 3.3, with similar

rules encoding the evaluation of Boolean and Numerical variables. The choice of

Prolog is due to the way it allows for both natural encoding of logical inference

rules and clearly formulated complex queries. The latter are used in our case to

describe the WHILE program and the set of inputs for which the termination of

the BR program is being investigated. The existence of non-terminating Prolog

programs [100] is no obstacle to this application, since it is known that proving

the termination of a given program is an undecidable problem [126].

In our example, we encode the WHILE program itself as a Prolog term1. Asking

Prolog about the termination of this program is as simple as querying about the
1Notably, we use the variables X = Amount × 10i and Y = income × 10i where i is the

number of times the rule executes, so as to benefit from Prolog’s CLP(FD) library [125].
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Supposing C are commands, E are expressions and s are memory states, the
following logic rules encode the Operational Semantics of the commands of the
WHILE language.

The assignment command:

< E, s >→e< E ′, s′ >

< x← E, s >→c< x← E ′, s′ >

< x← n, s >→c< skip, s[x = n] >

The sequential composition command:

< C1, s >→c< C ′1, s′ >

< (C1; C2), s >→c< (C ′1; C2), s′ >

< (skip; C2), s >→c< C2, s >

The if command:

< if True then C1 else C2, s >→c< C1, s >

< if False then C1 else C2, s >→c< C2, s >

< B, s >→b< B′, s′ >

< if B then C1 else C2, s >→c< if B′ then C1 else C2, s′ >

The while command:

< while B do C, s >→c

⟨ if B then (C; while B do C)
else skip , s

⟩
Figure 3.3: The logic rules encoding the Operational Semantics of commands in
WHILE, starting from a state s of the machine’s memory

truth value of the set of assertions {X0_fin = 0, X_in = Amount, Y _in =

10, Dur_in = 5}.

The general procedure to check the termination of a BR program is clearly

shown by the example: given a BR program, we transform it into its WHILE
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The Rule
R:

if (amount ≥ income× duration)
then (amount← 1.1× amount,

duration← duration + 1)

The WHILE program
1: x0 ← −1
2: while x0 ̸= 0 do
3: if x0 = −1 then
4: if amount ≥ income× duration then
5: x0 ← 1
6: else
7: x0 ← 0
8: end if
9: else if x0 = 1 then
10: amount← 1.1× amount
11: duration← duration + 1
12: x0 ← −1
13: else

14: x0 ← 0
15: end if
16: end while

The Prolog encoding
We use the variables X = amount × 10i and Y =
income× 10i where i is the number of times the rule
executes.

1: C = seq(C1,C2)
2: C1 = assign(‘X0’,-1)
3: C2 = whiledo(neq(‘X0’,0),C3)
4: C3 = ifthenelse(eq(‘X0’,-1),C4,C5)
5: C4 = ifthenelse(geq(‘X’,mult(‘Y’,‘Dur’)),

assign(‘X0’,1),assign(‘X0’,0))
6: C5 = ifthenelse(eq(‘X0’,1),seq(seq(seq(

assign(’Dur’,add(‘Dur’,1)),
assign(‘X’,mult(‘X’,11))),
assign(‘Y’,mult(‘Y’,10))),
assign(‘X0’,-1)),
assign(‘X0’,0))

Figure 3.4: A naive BR program for Loan Applications

form, which we then use to derive the SOS. We implement the SOS as a set of

constraints in a Prolog dialect, and finally we use the corresponding interpreter to

try and establish feasibility or infeasibility of the constraint set.

We coded the WHILE programs for three examples in Prolog. We then used

SWI-Prolog [121] to test termination for an interval range of inputs by using a

Prolog query containing the input and the specific output x0 = 0 (i.e. the WHILE

loop ends). The results from Fig. 3.7 for the BR program in Fig. 3.4 show some

of the advantages and limits of this method. For some intervals of values for

amount, we can prove in a few seconds of CPU time that for duration = 5 and

income = 10, the BR program always terminates. On the other hand, for this

particular BR program and variable, we are unable to prove non-termination on

an interval. We remark, however, that the most useful contribution of an SOS is to

prove termination of programs (rather than non-termination). Amongst its many

advantages, our semantics can be used for automatic validation of a BR program,

for example. In our example, a search algorithm could also be used to identify the
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cutoff point of amount ≤ 62 as containing every terminating input, if one were to

know of the existence of such a cutoff point.

Along with the example from Fig. 3.4, a slightly more realistic example is given

in Fig. 3.5, adding the boolean variable approval and the integer variable age to the

BR program. On the other hand, Fig. 3.6 is a less trivial example: a BR program

that chooses the interest rate interest depending on the credit score score using a

made-up algorithm which simulates the logistic map, where score ∈ [300, 850].

The Rules
R1:

if (approval = True ∧ age < 18)
then (approval← False)

R2:
if (approval = True ∧ duration > 10)
then (approval← False)

R3:
if (approval = True ∧ amount ≥ income× duration)
then (amount← 1.1× amount,

duration← duration + 1)

The input Variables
boolean approval = True
int age, duration, income

float amount

The WHILE program
1: x0 ← −1
2: while x0 ̸= 0 do
3: if x0 = −1 then

4: if approval = True ∧ age < 18 then
5: x0 ← 1
6: else if approval = True ∧ duration > 10

then
7: x0 ← 2
8: else if approval = True ∧ amount ≥

income× duration then
9: x0 ← 3
10: else
11: x0 ← 0
12: end if
13: else if x0 = 1 then
14: approval← False
15: x0 ← −1
16: else if x0 = 2 then
17: approval← False
18: x0 ← −1
19: else if x0 = 3 then
20: amount← 1.1× amount
21: duration← duration + 1
22: x0 ← −1
23: else
24: x0 ← 0
25: end if
26: end while

Figure 3.5: A more realistic BR program for Loan Applications, the input should
always have approval = True

The results for the examples in Fig. 3.4 and Fig. 3.5 are displayed in Fig. 3.7,

while the results for the example in Fig. 3.6 are in Fig. 3.8. Fig. 3.7 is indicative of

a practical use of studying the termination of BR programs this way: a bank might

wish to check that their loan application BR program terminates for a given range

of values. Studying unexpected failures can point out a missing rule or variable in

the BR program.
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The Rules
R1:

if (n ≤ 1000)
then (x← r · x(1− x))

R2:
if (x ≥ 0.51)
then (x← r · x(1− x))

R3:
if (x ≤ 0.49)

then (x← r · x(1− x))

The Variables
float r = 4 score

850 ∈ [0, 4]
float x = 0.48 + interest ∈ [0, 1]
int n = 1

The WHILE program
1: x0 ← −1
2: while x0 ̸= 0 do
3: if x0 = −1 then

4: if n ≤ 1000 then
5: x0 ← 1
6: else if x ≥ 0.51 then
7: x0 ← 2
8: else if x ≤ 0.49 then
9: x0 ← 3
10: else
11: x0 ← 0
12: end if
13: else if x0 = 1 then
14: x← a · x(1− x)
15: x0 ← −1
16: else if x0 = 2 then
17: x← a · x(1− x)
18: x0 ← −1
19: else if x0 = 3 then
20: x← a · x(1− x)
21: x0 ← −1
22: else
23: x0 ← 0
24: end if
25: end while

Figure 3.6: A nontrivial ruleset and corresponding WHILE program, the input
should always have n = 1

On the other hand, the results from Fig. 3.8 are somewhat more difficult to

interpret. While the BR program in Fig. 3.6 is somewhat contrived, it shows that

some failures can be not only unexpected, but unpredictable. The ERROR: Out of

local stack looks like yet another inconclusive answer, but tracing the execution

of the Prolog interpreter shows that these errors are the result of infinitely repeated

goals, and a simple alteration to the Prolog interpreter can detect most infinite

recursion loops of that kind [133]. In other words, a slight modification of the

Prolog interpreter leads to our method providing a successful non-termination

proof in cases like this one. These are non-terminating inputs that might be

found by looking at the internal states of a classic BR engine, but the automation

provided by existing research on SOS and Prolog remains valuable and time-saving.

The BR program in Fig. 3.6 actually simulates the fixed points of the logistic map,

defined as the sequence xn+1 = r · · ·xn(1 − xn), and falls into a infinite recursion

of goals if no fixed point is within [0.49, 0.51]. The bifurcation diagram in Fig. 3.9
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is well-known, and represents those fixed points. While it makes the situation

clear for r ∈ [1.41, 3.57], i.e. score∈ [300, 758], the following values fall within the

chaotic part of the logistic map. In particular, some specific values have a periodic

behavior, such as the tested r = 3.82843 (score = 813.541375). The use of SOS

derived from the WHILE form of BR programs helps in this and similar cases by

automatically identifying with certainty non-terminating inputs, assuming Prolog

is configured to identify infinite recursive goals.

Methods exist to analyze the termination of Prolog programs [101, 135]. How-

ever, I do not believe the termination of the Prolog program itself is of interest

to our case, as there are many infinite data structures that can be created by

queries constructed by our method and they do not all have the same meaning for

the termination of the BR program itself. Notably, either of the errors in Figures

3.7 and 3.8 stem from infinite data structures, but only the error in Figure 3.8

indicate non-termination of the input in question – although there is in fact a non-

terminating input in the range 60 ≤ amount ≤ 70 from Figure 3.7, that cannot be

discerned from the execution of the Prolog program.

Input range amount ≤ 50 50 ≤ amount ≤ 60 60 ≤ amount ≤ 70 amount ≤ 62 63 ≤ amount
Naive program True True ERROR: True ERROR:

(Fig. 3.4) ‘Out of global stack’ ‘Out of global stack’
Realistic program True True True True True

Figure 3.7: Results of the Prolog query containing the SOS of WHILE forms of
the BR programs in Fig. 3.4 and Fig. 3.5 as well as facts about the input (duration
= 5, income = 10, and age = 20 when relevant) and about the output (x0 = 0)
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Input value r = 3 r = 3.22 r = 3.67 r = 3.82843
Equivalent score = 637.5 score = 684.25 score = 779.875 score =
credit score 813.541375
Query result ERROR: Out of True True ERROR: Out of

local stack local stack

Figure 3.8: Results of the Prolog query containing the SOS of WHILE forms of
the BR programs in Fig. 3.6 as well as facts about the input (x = 5, n = 1) and
about the output (x0 = 0) All values in this table are exact values

Figure 3.9: Bifurcation Diagram for the Logistic Map
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3.3 Learnability of the statistical goal learning

problem

In this section, we first use the Turing-completeness of BR programs to prove that

the learning problem in Eq. 2.2 is not PAC-learnable. Furthermore, we then use

the same example of a known chaotic map, the logistic map [26], to prove that the

statistical learning problem is completely unlearnable in the general case.

3.3.1 PAC-Learnability

The exploration of BRs as a programming language leads to some basic insight

related to the learnability of BR programs in the general case. The Turing-

completeness of BRs means that halt is undecidable for BR programs, thus mak-

ing any learning problem over the general class of all BR programs unsolvable. In

the rest of this thesis, we thus limit ourselves to learning problems over classes of

BR programs known to terminate.

Pseudorandom functions (PRF), introduced by Goldreich, Goldwasser and Mi-

cali [50], are indexed families of functions Fp for which there exists a polynomial-

time algorithm to evaluate Fp(x), but no probabilistic polynomial-time algorithm

can distinguish the function from a truly random function Frand without knowing

p, even if allowed access to an oracle. It is known that PRF are unlearnable using

PAC algorithms [50, 34].

As PRFs can be described by Turing-complete programming languages, the

fact that BR programs in general are not PAC-learnable is trivial.

We now consider the PAC-learnability problem from Eq. 2.4 in Sec. 2.2 in the

context of our statistical goal learning problem. We have (P (p, .))p∈π a class of

terminating BR programs indexed by p, Q a list of items from the input domain

X with card(Q) = λ, g a goal for the value of the average output Eq∈Q[f(P (p, q))],



CHAPTER 3. BR PROGRAMS 64

and ϵ the tolerance for the learning problem. We consider C the concept class

whose members are c : (Pp)p∈π → {0, 1}.

We now wish to learn a specific member of C : the mapping h defined in Eq. 2.5,

which outputs 1 iff the BR program P (p, .) satisfies the constraint from Eq. 2.2:∣∣∣Eq∈Q

[
f

(
P (p, q)

)]
− g

∣∣∣ ≤ ε. Learning this concept leads naturally to learning the

optimal parameter p solving Eq. 2.2, while being unable to learn it leads to Eq. 2.2

being unsolvable.

Theorem 3.6. The concept class C is unlearnable: specifically, the concept h ∈ C

defined as h(p) = 1 iff
∣∣∣Eq∈Q

[
f

(
P (p, q)

)]
− g

∣∣∣ ≤ ε cannot be learned using a PAC

learning algorithm in the general case.

In other words, there is no practically viable algorithm that can learn a BR

program out of a class of BR programs in the general statistical goal learning case,

even with access to a perfect oracle. This is a consequence of both the Turing-

completeness of BR programs and the unlearnability of PRF.

Proof. As BR programs are Turing-complete, we choose the family P (p, .) to be

a PRF. Any algorithm that learns C also learns (1f (p))p ⊂ C, where 1f (p) = 1

iff Pp = f . Learning the latter is trivially the same as learning a PRF, which is

proven to be impossible.

The specific example mentioned in the theorem answers the question of PAC-

learnability for the statistical BR learning problem in the general case. Even if the

concept we wish to learn is described more broadly than by providing an oracle

for a specific BR program, it is impossible to adjust the statistical behavior of BR

programs according to a predefined goal.
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3.3.2 Complete unlearnability

While PAC-learnability has been disproved, we also prove that there exist Turing-

computable functions which suffer from actual unlearnability – in the sense that

no PAC algorithm can learn a concept class, whether or not that algorithm learns

it weakly or efficiently. This is stronger than what was proved for PRFs in [34].

We have used the fact that PRFs are not PAC-learnable in the sense that no

PAC algorithm can efficiently and weakly learn a PRF. We now demonstrate an

example of a concept class that cannot be learned by PAC algorithms at all, thus

proving that Turing-complete languages cannot be learned by PAC algorithms in

the general sense. This example is based on the intuition that chaos cannot be

predicted, and so cannot be learned. This in turn also means that the statistical

learning problem cannot be learned by PAC algorithms in the general case.

We use a known chaotic map, the logistic map fn+1(x) = afn(x)(1 − fn(x)),

f0(x) = x, with the parameter a = 4. Some of its properties are presented by

Berliner [26]. We call (Cn)n∈N the concept class such that ∀x ∈ X = [0, 1] , Cn(x) =

1 iff fn(x) ≥ 0.5 and Cn(x) = 0 otherwise, where x follows the arcsine distribution,

i.e. the probability density function is p(x) = 1
π
√

x(1−x)
, and n follows the uniform

distribution.

Theorem 3.7. The concept class (Cn)n cannot be learned with any accuracy. To

be precise, for all algorithms A calling the oracle Cn(x) a finite number of times,

we have:

Pn∈N(Px∈X(A(Cn)(x) ̸= Cn(x)) = 0.5) = 1

Proof. The proof relies heavily on Berliner’s paper [26]. From it, we know that

as the logistic map is chaotic, each sequence (fn(x))n is either eventually periodic

or is dense in [0, 1]. We also know that as X follows the arcsine distribution, the

Cn(X) are i.i.d. Bernoulli random variables, such that Px∈X(Cn(x) = 1) = 0.5.
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Suppose A calls Cn(x) for values of x ∈ {x1, . . . , xk}. We call n0 the value

such that A(Cn) = Cn0 . As Px∈X(Cn0(x) = 1) = 0.5 does not depend on n0,

and the Cn(X) are i.i.d., we have Px∈X(Cn0(x) ̸= Cn(x)) = 0.5 iff n0 ̸= n and

Px∈X(Cn0(x) ̸= Cn(x)) = 0 otherwise. The theorem is thus the same as saying that

A almost certainly (in the probabilistic sense) cannot match n0 to the exact value of

n. We now prove that there almost always exists n1 ̸= n which is indistinguishable

from n by A, i.e. Cn1(x1) = Cn(x1), . . . , Cn1(xk) = Cn(xk).

Let us call Y 1
i = Ci(x1), . . . , Y k

i = Ci(xl) with i ∈ N. Some of the sequences

Y j are periodic after some rank, and some are not. Without loss of generality,

we assume Y 1, . . . , Y k1 are periodic, and Y k1+1, . . . , Y k are not. Almost certainly,

each sequence (Y 1)i≥n, . . . , (Y k1)i≥n is periodic (n is big enough). Using P ∈ N to

denote the smaller common multiple of those sequences’ periods, we notice that

Cn+P i(x1) = Cn(x1), . . . , Cn+P i(xk1) = Cn(xk1). We note yi = n + Pi.

As the sequences Y k1+1, . . . , Y k are not eventually periodic, we know that each

sequence (fn(xk1+1))n, . . . , (fn(xk))n is dense in [0, 1]. Consequently, for any se-

quence of k − k1 bits, there exists a countable number of n1 ∈ (Yi)i∈N such that it

is equal to Y k1+1, . . . , Y k. In particular, if this sequence is Cn(xk1+1), . . . , Cn(xk),

any of those n1 different from n proves the theorem.

In the case of the statistical goal learning problem in Sec. 2.2, we also have the

same unlearnability. Consider the degenerate family of BR programs defined by

the following BR program, and parametrized by p ∈ [0, 1]:

if switch = True then

x← fn(p)

switch = False

end if

where switch is a Boolean variable which always have the initial value True, n is

a natural number whose value is used by the BR program but cannot be known,
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and fn is still the logistic map. This is a completely unpractical BR program

as the output does not depend on the input variables at all. We obviously have

∀x ∈ R, P (p, x) = fn(p). Supposing we use a tolerance ε = 0.5, the statistical goal

learning problem in Eq. 2.2 is in this case:

min
p
∥p− p0∥

fn(p) ≤ 0.5,


According to Subsec. 2.2.2, learning this problem with a PAC-algorithm amounts

to finding a concept h satisfying Eq. 2.5. With this family of BR programs, we

have:

∀p ∈ [0, 1], h(p) = 1⇔ fn(p) ≤ 0.5

which is obviously a member of (Cn)n. As we have proved that (Cn)n is unlearnable,

there are unlearnable statistical goal learning problems.

It must be noted that no practical application would ever try to learn this

type of concept class. A key part of the proof is allowing the concept class to

be infinite and indexed by a natural number, without bounding that index at all.

This is unlikely to happen for computational reasons, the usual way to represent

a natural number being with integer or long typed variables.

The existence of such extreme cases of unlearnability is nevertheless a thing

to be careful of. It must be noted that none of the aforementioned computational

difficulties are impossibilities, and that such unlearnable concepts are thus possible

problems for BR programs, among other Turing-complete programming languages.

An agorithm able of answering our statistical BR learning problem is thus im-

possible to define in the general case. However, subsets of BR programs can be

defined in such a way that they are both industrially relevant and computationally

learnable. BR programs used in industry to automate decision making must ter-
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minate over every possible input. Moreover, they must terminate in a finite and

even bounded time, so as to produce useful decisions. We thus decide to focus on

BR programs for which the execution loop has a bounded number of iterations, as

they are representative of industrial BR programs.



Chapter 4

A Mathematical Programming

based algorithm

In this chapter, we provide a learning algorithm applicable to subsets of BR pro-

grams which are often used in industry. In Sec. 4.1, we define Iteration Bounded

BR (IBBR) programs using our basic BR interpreter, and characterize them in

terms of the standard interpreter as well as using a declarative constraint-based

formalism. In Sec. 4.2, we describe a learning algorithm based on MP which

transforms the statistical learning problem from Eq. 2.2 into a Mixed-Integer Pro-

gramming (MIP) problem. In Sec. 4.3, we define Linear IBBR programs, or LIBBR

programs, and characterize them both in terms of the basic interpreter and the

standard interpreter. We further use a common form taken by industrial BR pro-

grams to confirm the relevance of using such a restrained subset of BR programs.

We then transform the MIP problem from Fig. 4.3 into an equivalent Mixed-Integer

Linear Programming (MILP) problem for LIBBR programs in Sec. 4.4, and discuss

its theoretical complexity in Sec. 4.5.

69
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4.1 General Iteration Bounded BR programs

We work on the subset of BR programs which is the set of Iteration Bounded BR

programs, henceforth called IBBR, that is to say BR programs that have a higher

bound on the number iteration of the execution loop their execution requires, for

all possible inputs.

BR programs used in industry almost always have a strictly bounded number of

rule executions, since the automated decisions BRs are used for must be taken in a

fixed and limited time window. In this section, we define IBBR programs in terms

of both the basic and the standard interpreter, and clarify the relationship between

IBBR programs in those two programming languages, clarify the expressive power

of IBBR programs, then use Constraint Programming to describe IBBR programs

in a declarative form.

4.1.1 IBBR programs in two BR languages

We prove that IBBR programs, interpreted by a standard BR interpreter IS from

Sec. 2.1, are exactly equivalent to IBBR programs in our simplified BR interpreter

I0.

Theorem 4.1. The Iteration Bounded BR programs in IS are exactly Iteration

Bounded BR programs in I0.

Proof. Let P be a BR program meant to be executed using IS over inputs x ∈ X.

We note its rules Rr, indexed by r ∈ {1, . . . , ρ} with ρ ∈ N, and we suppose

without loss of generality that the rules have the form:

if Tr(x) then

x← Ar(x)

end if
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As IS includes partial priority, we suppose each rule has an additional priority

value πr such that a rule with lower π values is never selected if a rule with higher

π value could be selected instead. As those are relative values, we suppose without

loss of generality that πr ∈ N and 0 < πr ≤ R.

When executed using I0, the BR program P0 found in Fig. 4.1 is equivalent to

P , with r ∈ {0, . . . , R} and the new inputs being timer = 0, priorV alidity = 0,

p = R, needsReset = (False, . . . , False), as well as validityStart = (−1, . . . ,−1).

The value of x ∈ X when executing P0 is naturally the same as the input of P .

This is true by definition of the Refraction, Priority and Recency conflict resolution

strategy elements.

If there exists n ∈ N s.t. the execution of P (x) executes less than n rules for

any x ∈ X, then the execution of P0 for any valid input executes at most these

rules:

• R rule executions to initialize the validityStartr values

• n rule executions corresponding to the n rules executed in P

• n×R executions of the last rule (exploration of the priority levels)

• n× R × n executions of the next to last rule (searching for the oldest valid

rule)

• n rule executions to reset the value of needsResetr (once after each execution

of a rule from P )

• n rule executions to reset the value of validityStartr (once after each execu-

tion of a rule from P )

Consequently, P0 is iteration bounded, with an upper bound on the number of rule

executions 3n + R + nR + n2R.

Conversely, a BR program meant to be executed in I0 is naturally equivalent

to the same program with each rule repeated twice in IS, since repeating the
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if T1(x) = False ∧ needsReset1 then
needsReset1 ← False
validityStart1 ← −1

end if
. . .
if Tρ(x) = False ∧ needsResetρ then

needsResetρ ← False
validityStartρ ← −1

end if
if T1(x) ∧ needsReset1 = False ∧ validityStart1 = −1 then

validityStart1 ← timer
end if
. . .
if Tρ(x) ∧ needsResetρ = False ∧ validityStartρ = −1 then

validityStartρ ← timer
end if
if T1(x) ∧ needsReset1 = False ∧ p = π1 ∧ validityStart1 = priorV alidity then

x← A1(x); p← ρ

timer ← timer + 1; priorV alidity ← 0
needsReset1 ← True

end if
. . .
if Tρ(x) ∧ needsResetρ = False ∧ p = πρ ∧ validityStartρ = priorV alidity then

x← Aρ(x); p← ρ

timer ← timer + 1; priorV alidity ← 0
needsResetρ ← True

end if
if priorV alidity ≤ timer then

priorV alidity ← priorV alidity + 1
end if
if p > 0 then

p← p− 1
priorV alidity ← 0

end if

Figure 4.1: BR program equivalent to the Iteration Bounded program P
when executed using I0, with inputs being:
(x ∈ X, timer = 0, priorV alidity = 0, p = R,
needsReset = (False, . . . , False), validityStart = (−1, . . . ,−1))

same rule twice negates the refraction element, with each rule having a distinct
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priority level corresponding to its position in the original formulation. Given a BR

program meant to be executed in I0 which executes at most n ∈ N rules for each

of its inputs, this equivalent program in IS also executes at most n rules. IBBR

programs in I0 are thus equivalent to iteration bounded programs in IS.

4.1.2 Complexity of IBBR programs

We now explore the expressive power of IBBR programs. Firstly, it must be

noted that without the restriction over the complexity of conditions and actions of

BRs, IBBR programs remain Turing-complete, as we can use a Turing-undecidable

function as part of the action of a rule. For example, suppose f(x, T ) is a function

modeling the halting problem: given an input x and a Turing machine T , it returns

0 if T halts on input x and 0 otherwise. We recall the BR program described at

the beginning of Chapter 3, and use it to simulate f . The resulting BR program

takes as input a value x, a Turing machine T and an initially True boolean switch,

and contains the single following rule:

if switch = True then

x← f(x, T )

switch ← False

end if

This BR program is both an IBBR and undecidable, as it executes at most one

rule yet is equivalent to the halting problem, which is undecidable [126]. However,

it does not respect the restrictions we use over the complexity of actions in BRs,

as the action x← f(x, T ) is as complex as the halting problem.

We now suppose again that all BR have a condition T and an action A which

can be computed in polynomial time.

Theorem 4.2. Let τ be an upper bound on the computational complexity of any
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one condition or action of a BR in the BR program P (p, .). The complexity of

executing P (p, x) with the basic interpreter for any x ∈ X is O(τ n ρ), where n

is the upper bound on the number of iterations of the execution loop and ρ is the

number of BRs in the BR program.

Proof. The proof is a direct consequence of the structure of the execution loop

as we described it in Sec. 2.1.2. The complexity of the execution is at most the

complexity of executing ρ tests of complexity τ and an action of complexity τ

during each loop, of which there are at most n by definition of IBBR programs.

The maximal complexity is thus n τ (ρ + 1).

4.1.3 Declarative form of an IBBR programs

When a BR program has a bounded number of iterations of the execution loop, we

can write a Constraint Satisfaction Problem such that its resolution is equivalent

to the execution of the BR program. This is done by explicitly naming the values

of x after each rule execution. When this Constraint Satisfaction Problem is easy

to solve, the statistical goal learning problem can also be solved by simply adding

a few constraints and an objective function, transforming the learning problem

into a Mathematical Optimization problem.

Let us consider an iteration bounded BR program made up of ρ rulesRr, which

we assume without loss of generality are of the form:

if Tr(x) then

x← Ar(x)

end if

We exhibit in Fig. 4.2 a set of constraints modeling the execution of the BR

program for an input q ∈ X. The iterations of the execution loop are indexed by

i ∈ I = {1, . . . , n} where n − 1 is the upper bound on the number of iterations,
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the final value of x corresponds to iteration n. The rules are indexed by r ∈ R =

{1, . . . , ρ}. We use an auxiliary binary variable yi,r with the property: yi,r = 1 iff

the rule Rr is executed at iteration i. We conflate the boolean and binary truth

values: True = 1 and False = 0.

We note (C1), (C2), etc. the constraints related to the evolution of the execution

and (IC1), (IC2), etc. the constraints related to the initial conditions of the BR

program:

• (C1) represents the evolution of the value of the variable x

• (C2) represents the property that at most one rule is executed per iteration

• (C3) represents the fact that a rule whose condition is False cannot be exe-

cuted

• (C4) represents the fact that the first rule whose condition is True must be

executed

• (IC1) represents the initial value of x

∀i ∈ I\{n} xi+1 =
∑
r∈R

Ar(xi)yi,r + (1−
∑
r∈R

yi,r)xi (C1)

∀i ∈ I
∑
r∈R

yi,r ≤ 1 (C2)

∀(i, r) ∈ I×R yi,r ≤ Tr(xi) (C3)
∀(i, r) ∈ I×R yi,r ≥ Tr(xi)−

∑
r′<r

yi,r′ (C4)

x1 = q (IC1)
∀i ∈ I xi ∈ X

∀(i, r) ∈ I×R yi,r, ∈ {0, 1}

Figure 4.2: Set of Constraints Modeling the Execution of a BR Program
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Theorem 4.3. The constraints from Fig. 4.2 correctly model the execution of an

IBBR program s.t. n−1 is the upper bound on the number of iterations, with input

q. The value of xn after applying the constraints is then the output of the BR

program.

Proof. We begin by proving that for a given i ∈ I, it is true that yi,r = 1 iff xi

fulfills the condition for rule Rr and does not fulfill the condition for any rule Rr′

where r′ < r. Suppose yi,r = 1. (C3)⇒ Tr(xi) = 1 = True, meaning that xi fulfills

the condition for rule Rr. Let us now set r′ < r.

(C2)⇒ yi,r′ = 0 ∧
∑

r′′<r′
yi,r′′ = 0

(C4)⇒ yi,r′ ≥ Tr′(xi)−
∑

r′′<r′
yi,r′′

This in turn gives us Tr′(xi) = 0 = False, meaning that xi does not fulfill the

condition for rule Rr′ .

Conversely, suppose that xi fulfills the condition for rule Rr and does not fulfill

the condition for any rule Rr′ where r′ < r. Reasoning by induction over r′, we

see that assuming ∑
r′′<r′

yi,r′′ = 0 (which is true for r′ = 1) we have:

C4⇒ yi,r′ = 0

because the condition for Rr′ is not fulfilled. We thus have ∑
r′<r

yi,r′ = 0. This and

the fact that the condition for Rr is fulfilled means that yi,r = 1.

A simple inductive proof over the i ∈ I then proves that the xi are the successive

values taken by x during the execution of the BR program as long as ∑
r∈R

yi,r = 1

and that the value of xi does not change as long as ∑
r∈R

yi,r = 0, which corresponds

to the stopped execution of the BR program. This also proves that the final value

xn is the output of the BR program.
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4.2 A learning algorithm: MP

Learning the parameters that solve the statistical goal learning problem from

Eq. 2.2 in such a BR program can then be achieved by solving a derived Mathe-

matical Optimization problem. In this section, we describe an MP problem which

is exactly equivalent to Eq. 2.2 for IBBR programs.

Let us assume that a family of BR programs indexed by p is iteration bounded.

We wish to modify a given program indexed by p0. We write each BR program

P (p, .) and assume that the execution of P (p, q) iterates the execution loop strictly

less than n ∈ N times, for any q ∈ X. In other words, n − 1 is the upper bound

on the number of iterations. We index the instances in the set of known inputs Q

with j ∈ J = {1, . . . , m}, where m = card(Q) is the number of instances in the

training set. The parameter p is now one of the variables.

Every constraint numbered as before fulfills the same role, adding the indexa-

tion j, with the simple change that Ar and Tr become Ap,r and Tp,r. The additional

constraints are:

• (C5) represents the need for the computation to have terminated after n− 1

executions

• (C6) represents the goal from Eq. 2.2, that is a constraint over the average

of the final values of x.

Theorem 4.4. The MP problem from Fig. 4.3 finds a value of p that satisfies

Eq. 2.2.

Proof. The proof derives directly from Th. 4.3. As we reuse all the constraints

from Fig. 4.2, we know that xn,j = P (p, x1,j). Furthermore, let p∗ be an optimal
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minimize
p,x,y

∣∣∣p0 − p
∣∣∣

subject to
(C1), (C2),(C3), (C4), (IC1)

∀j ∈ J
∑
r∈R

yn,j,r = 0 (C5)∣∣∣∣∣∣ 1
m

∑
j∈J

f(xn,j)− g

∣∣∣∣∣∣ ≤ ε (C6)

∀(i, j) ∈ I×J xi,j ∈ X

p ∈ R
∀(i, j, r) ∈ I×J×R yi,j,r, ∈ {0, 1}

Figure 4.3: Mathematical Optimization Problem Formulation for Eq. 2.2

solution to the MP problem in Fig. 4.3. From constraint (C6), we know that:

∣∣∣∣∣∣ 1
m

∑
j∈J

f(xn,j)− g

∣∣∣∣∣∣ ≤ ε

This is directly equivalent to:

∣∣∣Eq∈Q

[
f(P (p, q))

]
− g

∣∣∣ ≤ ε

Consequently, p∗ is a member of the following set S:

S = {p ∈ π |
∣∣∣Eq∈Q

[
f(P (p, q))

]
− g

∣∣∣ ≤ ε}

To satisfy Eq. 2.2, p∗ now needs to be a lower bound of that set.

Let p ∈ S. From Th. 4.3 and the fact that all constraint of Fig. 4.2 are in



CHAPTER 4. MP BASED ALGORITHM 79

Fig. 4.3, we can say:

∀q ∈ Q, j ∈ J, x1,j = q ⇒ xn,j = P (p, x1,j)

With that information, p ∈ S gives us:

∣∣∣∣∣∣ 1
m

∑
j∈J

f(xn,j)− g

∣∣∣∣∣∣ ≤ ε

which is exactly (C6). The proof of Th. 4.3 also proves that the yi,j,r have the

property: for a given i ∈ I, it is true that yi,j,r = 1 iff xi,j fulfills the condition for

rule Rr and does not fulfill the condition for any rule Rr′ where r′ < r. As the

family of BR programs P is assumed in this Section to be Iteration Bounded with

at most n − 1 iterations, we know that xn,j does not fulfill the condition for any

rule. Consequently,

∀j ∈ J, r ∈ R, yn,j,r = 0

which gives us (C6). Th. 4.3 already gives us (C1) through (C4). We now know

that p is a feasible solution of the MP problem in Fig. 4.3. By the definition of an

optimal solution, we thus have:

∀p ∈ S, p∗ ≤ p

We have proved that p∗ is a minimum of set S, which defines exactly a solution

of Eq. 2.2.

As modifying the parameter means modifying the BR program, solving this

mathematical optimization problem is predicated on having entire families of

BRs which are proven to be iteration bounded. In practice however, industrial

applications produce families of BR programs which are not explicitly iteration
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bounded: instead, the BR program using the existing parameter value p0 is iter-

ation bounded, and the desired BR program with the ‘correct’ parameter value p

must be iteration bounded, with a numerical bound on the number of iterations per

execution. In such cases, when the solution needs to be iteration bounded, proving

that the whole family of BR programs is iteration bounded is not necessary, as

this formulation only finds solutions which terminate in less than n− 1 iterations.

Our algorithm is thus useful even in cases where the family of BR programs in not

known to be iteration-bounded, provided that the original BR program on which

the family is based (in the sense of Def. 2.2) is itself iteration-bounded.

The feasibility of using such a method to solve Eq. 2.2 is somewhat difficult

to evaluate, as it strongly depends on the form of the BRs we wish to learn,

i.e. the form of the conditions and actions. In particular, Linear BR programs

have an easily linearizable MP form which we explore in the next chapter. Some

IBBR programs are still unlearnable, of course, since IBBR programs in the most

general sense are still Turing-complete, as seen in Subsec. 4.1.2. Even when only

considering polynomial conditions and actions, however, it seems very difficult to

scale such a method for a greater number of rules ρ, training input values m, or

iterations n as the number of variables and constraints is directly correlated to

those values.

While industrial applications often have a limited value of n (n ≤ 100), the

same cannot be said about the number of rules: some BR programs have over

10,000 rules! The value of m can be adjusted according to the difficulty of the

mathematical program, but of course the quality of the learning is better the more

training data is included.
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4.3 Linear Iteration Bounded BR programs

We now seek to refine our subset of BR programs further in order to make the

MP based algorithm from the previous chapter into an algorithm which can be

used automatically using standard MP solvers. In particular, we are interested in

linearity properties of the MIP problem in Fig. 4.3.

In this section, we define Linear IBBR programs, or LIBBR programs, and

characterize them both in terms of the basic interpreter and the standard inter-

preter. We prove that Decision Trees in BR form, as are often created by BRMS

users, are LIBBR programs.

4.3.1 Linear BR programs

We define Linear BR programs as programs with input in X ⊂ Rd which can be

written entirely using Linear BRs, i.e. BRs of the form:

if L ≤ x ≤ H then

x← Ax + B

end if

with L, H, B ∈ Rd and A ∈ Rd×d. Note that while this form does not have meta-

variables, BR programs written entirely with rules of the form:

if Lα ≤ α ≤ Hα ∧ L ≤ x ≤ H then

α← Aαα + Bα

x← Ax + B

end if

are also linear BR programs, since they can be rewritten by simply re-using the

set of elementary rules as a set of rules.

While many industrial BR programs use complex functions, such as scoring

functions in loan validation programs, many simpler decision making processes
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are also often automated using BRs. Any BR program which simply applies a

decision table, for example, can be written as a linear BR program.

The computational complexity of LIBBR programs is linear in both n and ρ.

In the next theorem, we assume that the complexity of a scalar comparison, a

scalar multiplication and a scalar addition are all 1.

Theorem 4.5. The computational complexity C of a LIBBR program P (p, .) with

ρ rules and inputs in X ⊆ Rd when executed using our basic interpreter is:

C ≤ 2 n d (ρ + d)

where n is the upper bound on the number of iterations of the iteration loop.

Proof. We prove this theorem using a direct application of the execution loop.

As P (p, .) is a LIBBR program, it iterates at most n times. Each iteration has

complexity at most the sum of:

• 2ρ d (two comparisons for each evaluated condition)

• d (2 d− 1) (the naive matrix multiplication A x)

• d (the addition of B)

Doing the sum of those terms, we indeed find that the upper bound on the com-

plexity is n times 2 d (ρ + d).

A better performance can be obtained by storing the results of the tests per-

formed in the condition of the rules, and only re-evaluating the conditions involving

the components of x which have been modified by the previous assignment action

– this is the basis of the Rete algorithm [43]. The complexity gain by such an algo-

rithm relies on assumptions of sparseness in the actions (in particular of sparseness

in the matrix A of each rule). We refrain from any such assumption and only note

that in all industrial cases, d ≪ ρ: we consider the complexity of executing a

LIBBR program to be O(n d ρ).
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We now prove that linear BR programs, interpreted by a standard BR in-

terpreter IS, are exactly equivalent to linear BR programs in our simplified BR

interpreter I0.

Theorem 4.6. Linear Iteration Bounded BR programs in IS are exactly Linear

Iteration Bounded BR programs in I0.

Proof. The idea stems from the remark that the BR program in Fig. 4.1 has almost

only linear additions compared to the initial BR program as written for interpreter

I0. We use the same pattern as in the proof of Th. 4.1.

Given a LIBBR program P meant to be executed by IS, with rules indexed

by r ∈ {1, . . . , ρ} and n the maximum number of iterations of the execution loop

P (x) for any x ∈ X, the only non-linear parts of the BR program P0 described in

Fig. 4.1 are the conditions:

• validityStartr = priorV alidity

• priorV alidity ≤ timer

The first item is an equality condition between bounded integers and can thus be

linearized by enumerating couples of integers in {0, . . . , n}. The second item can

be linearized in the same way using the conditions priorV alidity ≤ k ∧ timer = k

for each k ∈ {0, . . . , n}. The BR program P0 can be transformed into a linear

program and is also iteration bounded as shown in the proof of Th. 4.1. As the

two transformations do not add any iteration to the execution loop in I0 (the

number of actions executed stays the same), P can be expressed as a LIBBR in

I0.

Conversely, the same transformation used in the proof of Th. 4.1 to prove that

an IBBR program P0 in I can be expressed as an IBBR PS in IS proves the same

for LIBBR programs. Repeating each BR of a P0 twice does not change the form

of the BRs, so PS is still Linear. As it is also iteration bounded from the proof of

Th. 4.1, PS is a LIBBR in IS which is equivalent to P0 in I.
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4.3.2 Example: Decision Trees

A specific application of studying iteration bounded BR program is found in a

commonly used form of decision-making process: decision trees. Decision trees are

easily learned from scratch using supervised learning algorithms found in software

such as IBM SPSS Modeler [117] or R [103]. The most famous such algorithms are

C4.5 [23] and its predecessor ID3 [56]. Such decision trees can then be modeled

in BRMS, whether automatically (as can be done using IBM SPSS Modeler and

IBM ODM [118]) or manually.

All decision trees can be modeled directly as an iteration bounded Linear BR

program. We use the definition of decision trees given by Quinlan in [124].

Definition 4.1. A decision tree is either a leaf assigning a constant value to a

variable x0, or a structure of the form:

if C1 then

D1

else if C2 then

D2

. . .

else if Cn then

Dn

end if

such that the Ci are mutually exclusive conditions and the Di are themselves

decision trees, where the conditions all have the form xk < t or xk > t if xk is

continuous; or xk ∈ V ⊂ Xk if xk is discrete with values in Xk.

Any decision tree can be written as a set of production rules (i.e. BRs) [124].

Furthermore, detailed reading of Quinlan’s article provides the proof that for de-

cision trees of the provided form, the BRs are indeed Linear. We prove that these
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BR programs are also iteration bounded, and are thus LIBBR programs.

Theorem 4.7. Let D be a Decision Tree. Then D can be written as an LIBBR

program.

Proof. We prove our theorem by inductively constructing a BR program which

simulates D. Note that this does not produce an efficient rewrite as in [124] or

[102]. We suppose that the vector of variables x is indexed from 1 to K and use

x0 to encode the output class given by the Decision Tree.

Suppose D is already a leaf of a decision tree, i.e. it simply states an output

class y. It is simulated by a BR program using a single BR in IS, which is

obviously iteration bounded and Linear:

if True then

x0 ← y

end if

We now suppose that a decision tree of depth d can be simulated by an iteration

bounded Linear BR program. Suppose D has a depth of d with d > 1, it has the

form:

(if T1(x) then D1, . . . , if Tn(x) then Dn)

where the Tk(x) are mutually exclusive tests. We note the BRs encoding the

iteration bounded Linear BR program which simulates Dk as rules indexed by i:

if Ti,k(x) then

x0 ← yi,k

end if

If the Tk are tests over a continuous variable, then the form prescribed by the

theorem is linear and the following Linear BR program simulates D:

if Tk(x) ∧ Ti,k(x) then

x0 ← yi,k
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end if

If the Tk are tests over a discrete variable, then noting each Tk(x) as xt ∈ Vk

and indexing Vk over j, the following Linear BR program simulates D:

if vj,k ≤ xt ≤ vj,k ∧ Ti,k(x) then

x0 ← yi,k

end if

Furthermore, as the Tk are mutually exclusive, execution of either of these BR

program on a given input x has the same number of iterations of the execution

loop as the execution of the BR program simulating one of the Dk. As each of

those is iteration bounded, this BR program is also iteration bounded, with the

bound being the maximum of the bounds for the programs of each sub-tree.

Users of decisions trees will note that this theorem does not hold for some

accepted variants of decision trees. Two popular extensions are tests including

more than one variable, which can lead to non-linear conditions; and branching

incorporating actions between two condition nodes of the decision tree, which can

lead to loss of the iteration bounded property.

4.4 An algorithm for LIBBR programs

In this section and in Chapter 5, we use reformulations of various constraints we

introduced in Sec. 4.2. In such cases, we suffix ‘primes’ (or other qualifiers) to

the constraint names. For example, (C1) was nonlinear in Fig. 4.2 because of the

unspecified function Ar(xi); in Fig. 4.4 the function A(·) is instantiated in (C1′),

and in Fig. 4.5 the remaining products are linearized exactly in (C1′′1), (C1′′2) and

(C1′′3). If a constraint needs to be split, its name is indexed by an ordinal, e.g.

(C4) becomes (C41), (C42) and (C43) in Fig. 4.4.
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In the rest of this chapter, we study an LIBBR program P (p, q) with inputs

q ∈ X ⊂ Rd, d ∈ N, and with a rule set {Rr | r ≤ ρ} containing rules of the form:

if Lr ≤ x ≤ Hr then

x← Arx + Br

end if

with rule R1 being instead:

if L1 ≤ x ≤ H1 then

x← Ap
1x + B1

end if

where Ap
1 is a d× d matrix satisfying:

 ∀h, k ∈ D, h ̸= 1 ∨ k ̸= 1⇒ (Ap
1)h,k = (A1)h,k

(Ap
1)1,1 = p

with D = {1, . . . , d}. We also assume that X is bounded, which given that the BR

program is bounded imposes the existence of a big M , an upper bound on the ab-

solute value of any scalar appearing during the execution of P (p, q). Furthermore,

we assume that the statistical goal learning problem we wish to solve considers

the relevant output to be x1, i.e. f(P (p, q)) = P (p, q)1.

In the rest of this thesis, we concatenate indices so that (Lr)k = Lrk, (Gr)k =

Grk, (Ar)hk = Arhk and (Br)k = Brk. We assume that rules are meaningful, such

that Lk ≤ Gk.

In this section, we first transform the MIP problem from Fig. 4.3 for the case

where Eq. 2.2 learns the straight average of a single output, using the output

function f(P (p, q)) = P (p, q)1, in the LIBBR case. The resulting MIP problem is

linearizable, and we prove the equivalence to a MILP formulation in Subsec. 4.4.2.

Finally, we evaluate the applicability to our algorithm to industrial problems by
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estimating its theoretical complexity.

4.4.1 A learning algorithm: MIP

The Constraint Satisfaction Problem from Subsec. 4.1.3 can be written as the set

of MIP constraints from Fig. 4.3 and still model the execution of the BR program.

In turn, this means the MP formulation from Fig. 4.3 can be transformed into the

MIP problem described in Fig. 4.4.

Like before, the iterations of the execution loop are indexed by i ∈ I =

{1, . . . , n} where n − 1 is the upper bound on the number of iterations, the final

value of x corresponds to iteration n. The rules are indexed by r ∈ R = {1, . . . , ρ}.

The binary variable yijr still has the property: yir = 1 iff the rule Rr is executed

at iteration i in the execution of the program on the input j. We now use the

vectors of binary variables yH
ijr and yL

ijr to enforce this property. In the problem

we examine, the parameter is assumed to take the place of A1,1,1, so we note a an

additional variable initialized to a = A except for a1,1,1 = p. We assume that a

value for the big M is known, it could for example be M ≥ 2sup
x∈X

(|x|). Similar sets

of constraints exists for when the parameter p takes the place of a scalar in Br,

Hr or Gr.

Every constraint numbered as before fulfills the same role. The additional

constraints are:

• (C1′) still represents the evolution of the value of the variable x

• (C3′) still represents the fact that a rule whose condition is False cannot be

executed

• (C4′1) through (C4′3) represent the fact that the first rule whose condition is

True must be executed
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• (C6′) still represents the goal from Eq. 2.2

• (IC2) through (IC4) represent the initial value of A

minimize
p,a,x,y,yH ,yL

∣∣∣p0 − p
∣∣∣

subject to
(C2), (C5),(IC1)

∀(i, j) ∈ I\{n}×J xi+1,j =
∑
r∈R

(arx
i,j + Br)yijr + (1−

∑
r∈R

yijr)xi,j (C1′)

∀(i, j, r) ∈ I×J×R Lr −M(1− yijr)e ≤ xi,j ≤ Hr + M(1− yijr)e (C3′)
∀(i, j, r, k) ∈ I×J×R×D xi,j

k ≥ Hrk −MyH
ijrk −M

∑
r′<r

yijr′ (C4′1)

∀(i, j, r, k) ∈ I×J×R×D xi,j
k ≤ Lrk + MyL

ijrk + M
∑
r′<r

yijr′ (C4′2)

∀(i, j, r) ∈ I×J×R 2d− 1 + yijr ≥
∑
k∈D

(yH
ijrk + yL

ijrk) (C4′3)∣∣∣∣∣∣ 1
m

∑
j∈J

xn,j
1 − g

∣∣∣∣∣∣ ≤ ε (C6′)

∀r ∈ {2, . . . , ρ}, ar = Ar (IC2)
a1,1,1 = p (IC3)

∀(h, k) ∈ D2 \ {1, 1}, a1hk = A1hk (IC4)
∀(i, j) ∈ I×J xi,j ∈ X

∀k ∈ R ak ∈ Rd×d

p ∈ R
∀(i, j, r, k) ∈ I×J×R×D yijr, yH

ijrk, yL
ijrk ∈ {0, 1}

Figure 4.4: MIP Formulation for Solving Eq. 2.2 with e = (1, . . . , 1) ∈ Rd a
vector of all ones

Theorem 4.8. The MIP problem from Fig. 4.4 finds a value of p that satisfies

Eq. 2.2.

The proof derives directly from Th. 4.4 and is expanded in App. A.1. Solving

this MIP problem using standard Branch-and-Bound algorithms is always possible,

but it can become expensive very fast as n, m and ρ increase.
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4.4.2 A learning algorithm: MILP

Careful examination of the MIP problem in Fig. 4.4 reveals that it is almost

linearizable. In fact, a Mixed-Integer Linear Programming (MILP) formulation of

the problem is always possible for iteration bounded, linear BR program given a

simple restriction:

∀r ∈ R, (h, k) ∈ K2, Arhk = p⇒ Arhk ∈ {0, 1} (4.1)

As MILP problems are much easier to solve than general MIP problems, this is

a simple step to take. Furthermore, this restriction does not always apply if x

is a mixed vector of continuous and integer variables. Supposing k ∈ K such

that x1, . . . , xk are discrete variables and xk+1, . . . , xd are continuous variables, the

restriction on A becomes:

∀r ∈ R, Ar =
(A1

r 0

A2
r A3

r

)

with A1
r ∈ Nk×k, A2

r ∈ R(d−k)×k and A3
r follows the condition in Eq. 4.1.

A straightforward linear reformulation of Fig. 4.4 exists for when the parameter

p takes the place of a scalar in Br, Lr or Gr. Fig. 4.5 describes such a MILP problem

when p takes the place of B1,1. We linearize the products of Arx
i,j + br by yijr

and xi,j by yijr in (C1) using factorization and an auxiliary variable w ∈ RI×J×R.

We arrange to have wijr = (Arx
i,j + br − xi,j)yijr, i.e. wijr = Arx

i,j + br − xi,j (the

difference between the new and the old values of xj) iff rule r is executed, and 0

otherwise. The value of M should increase accordingly.

Theorem 4.9. The MILP problem in Fig. 4.5 finds a value of p that satisfies

Eq. 2.2, when p takes the place of B11. A similar MILP problem exists for when p

takes the place of another scalar in Brk, Lrk and Grk.



CHAPTER 4. MP BASED ALGORITHM 91

minimize
p,b,x,y,yH ,yL,w

∣∣∣p0 − p
∣∣∣

subject to
(C2), (C3′), (C4′1),(C4′2), (C4′3), (C5), (IC1)

∀(i, j) ∈ I\{n}×J xi+1,j =
∑
r∈R

wijr + xi,j (C1′′1)

∀(i, j) ∈ I×J×R −Myijre ≤ wijr ≤Myijre (C1′′2)
∀(i, j, r) ∈ I×J×R Arx

i,j + br − xi,j −M(1− yijr)e
≤ wijr ≤ Arx

i,j + br − xi,j + M(1− yijr)e (C1′′3)

−ε ≤ 1
m

∑
j∈J

xn,j
1 − g ≤ ε (C6′′)

∀r ∈ {2, . . . , ρ} br = Br (IC2′)
b1,1 = p (IC3′)

∀k ∈ {2, . . . , d} b1k = B1k (IC4′)
∀(i, j) ∈ I×J xi,j ∈ X

∀(i, j, r) ∈ I×J×R br, wijr ∈ Rd

p ∈ R
∀(i, j, r, k) ∈ I×J×R×D yijr, yH

ijrk, yL
ijrk ∈ {0, 1}

Figure 4.5: MILP Formulation with p Taking the Place of B11 with e =
(1, . . . , 1) ∈ Rd a vector of all ones

The proof derives directly from Th. 4.8, by factoring constraint (C1) in Fig. 4.4

and studying the possible values of yijk. It is expanded in App. A.2.

When the parameter takes the place of A1,1,1, the linear formulation is only

possible if A1,1,1 is a discrete variable. For readability purposes, we assume there-

after that p only takes the place of a component in Ar, r ∈ R when we have

∀r ∈ R, A ∈ {0, 1}d×d. The associated MILP problem is in Fig. 4.6. In that case,

we have the additional product of ax to linearize, so we use another auxiliary vari-

able z ∈ RI×J×R×D2 such that zijrhk = arhkxi,j
k . Again, the value of M increases in

most cases.

Theorem 4.10. The MILP problem in Fig. 4.6 finds a value of p that satisfies

Eq. 2.2, when p takes the place of A111 and A1hk are binary variables.

The proof derives from Th. 4.9 and a study of the possible values of A1hk and
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minimize
p,a,x,y,yH ,yL,w,z

∣∣∣p0 − p
∣∣∣

subject to
(C1′′1), (C1′′2),(C2), (C3′), (C4′1), (C4′2), (C4′3)
(C5), (C6′′),(IC1), (IC2), (IC3), (IC4)

∀(i, j, r, h) ∈ I×J×R×D
∑
k∈D

zijrhk + Brh − xi,j
h −M(1− yijr)

≤ wijrh ≤
∑
k∈D

zijrhk + Brh (C1′′′3 )

− xi,j + M(1− yijr)
∀(i, j, r) ∈ I×J×R −Mar ≤ zijr ≤Mar (C1′′′4 )
∀(i, j, r, h, k) ∈ I×J×R×D2 xi,j

k −M(1− arhk)
≤ zijrhk ≤ xi,j

k (C1′′′5 )
∀(i, j, r, h, k) ∈ I×J×R×D2 xi,j, zijrhk ∈ X

∀(i, j, r) ∈ I×J×R wijr ∈ Rd

∀r ∈ R ar ∈ {0, 1}d×d

p ∈ {0, 1}
∀(i, j, r, k) ∈ I×J×R×D yijr, yH

ijrk, yL
ijrk ∈ {0, 1}

Figure 4.6: MILP Formulation with p Taking the Place of A111 with e =
(1, . . . , 1) ∈ Rd a vector of all ones

yijr. It is expanded in App. A.3.

We can trivially expand the MILP problem to optimize over more than one

parameter, adding constraints similar to constraints (IC2), (IC3) and (IC4) or

(IC2′), (IC3′) and (IC4′) in Fig. 4.4 or Fig. 4.9 as necessary and having an objective

of ∑
p
∥p0 − p∥.

The feasibility of our approach for such a class of BR programs is examined

in the next part. Note that, as in Sec. 4.2, the iteration bounded property of the

BR program is an intrinsic part of the mathematical program. As such, even BR

programs which were not originally iteration bounded (or which did not stop after

only n iterations) can be learned this way, although the existence of a feasible

solution is much less certain than otherwise.
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4.5 Theoretical complexity

How useful is the algorithm defined in Sec. 4.2 and Sec. 4.4? The answer depends

on the complexity of the Optimization Problem derived from the BR program.

The complexity of parsing an iteration bounded linear BR program to obtain an

Optimization Problem is relatively small, being O(ρ), where ρ is the number of

rules in the BR program.

To evaluate the rest of the algorithm, we first analyze the descriptive complexity

of the MILP problem for an iteration bounded linear BR program. We then provide

the complexity of solving the MILP problem in the worst case using an off-the-shelf

solver such as CPLEX, and estimate how much improvement might be obtained

by using custom heuristics for the task.

Let P be an iteration bounded linear BR program. We assume that P has

ρ rules. Its inputs x ∈ X ⊆ Rd are vectors of d variables. n is the maximum

number of times P executes a rule. The learning problem defined in Eq. 2.2 is

defined by p a vector of ϕ parameters and a testing set Q of cardinality m. In

the MILP problem described in Fig. 4.6, the number of variables is O(nmρd2),

as z is the variable with the most indices. Similarly, the number of constraints is

also O(nmρd2) because of (C1′′′5 ). Note that ϕ does not influence the theoretical

descriptive complexity of the MILP problem in Fig. 4.6, but it strongly limits the

complexity reduction reachable by pre-processing methods.

Currently we have no NP-hardness proof of the MILP problem in Fig. 4.6.

However, as solving MILP problems is in general an NP-hard problem [63], we

expect the worst case complexity of our methodology to be exponential in any of

the dimensions n, m, d, ρ and ϕ. If we fix all of the ϕ values in the parameter vector

p, solving the resulting MILP problem is equivalent to running the corresponding

LIBBR program for n iterations over each of the m training sets, which can be

done in polynomial time O(n m ρ d). This is a consequence of Th. 4.5.
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By contrast, this no longer holds if any of the parameters are not fixed. Empir-

ically, our methodology does not scale all that well as ϕ grows, as seen in Fig. 6.6

and Fig. 6.7. Luckily however, ϕ does not attain large values in practical cases from

industry, as there cannot be too many changes to a process at a time. Usually,

the value is ϕ ≤ 3.

While we use the standard CPLEX solver in our experiments in Chapter 6,

a brute force approach would be to use the BR engine to test O(2ϕ) values of

the vector p, and solve the BR for each of them. Noting C ≤ 2 n, d (ρ + d) the

complexity of an execution of the BR program as defined in Th. 4.5 (C is small by

necessity in real-world applications), the complexity of this approach would be is

thus O(C m 2ϕ). Since our MP based algorithm explores the configuration space

implicitly, it is likely to be better than this brute force approach, which explores

the configuration space explicitly.



Chapter 5

Theoretical framework for

learning frequency distributions

A variation on the problem considered in previous sections is generalized statistical

goal learning. While looking to approach a set average decision is useful, a lot of

industrial problems have more specific requirements. Goals that may be considered

as statistical are for example: ‘Having at least 30% of loan requests accepted

automatically, and at most 50% of loan requests rejected automatically’; or ‘Having

the statistical distribution of the age of accepted loan owners be within 5% of a

normal distribution’. Formally, we call a learning problem with a function class

P (p, .), p ∈ π and a set of input data Q a statistical goal learning problem if the

goal is to find a p such that Q̃ = P (p, Q) follows a statistical distribution P such

that ∥g(P(Q̃))− g0∥ < ϵ, where g is a real function of statistical distributions.

The most restrictive goal possible among such learning problems is when g(P)

is the statistical distance between P and a given distribution, in which case the

problem is essentially to learn a function over probability distributions. On the

other hand, having the goal be g(P(Q̃)) = f(E(Q̃)) corresponds exactly to the

learning problem explored in previous chapters.
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Research related to learning probability distributions can be found in a different

form, although learning a probability distribution without learning the specific

probabilities of each data point has not been studied in ML before.

Many ML techniques naturally produce probabilistic classifiers when solving a

classification problem [79]. Some of those classifiers are naturally biased, but can

be corrected with proper calibration techniques [88]. Other ML algorithms such as

Support Vector Machines produce classifier scores, which can also be transformed

into probabilities using different techniques [81], Platt scaling being the best known

one [97].

Another appearance of probabilities within the scope of ML is of course the

application cases where the object to be learned is a probability distribution. Even

then, the widely studied application case learns transition or relatedness proba-

bilities in networks, such as social networks [60], which amounts to learning the

individual probabilities of each transition.

For all statistical goal learning problems, the same general approach will also

yield an acceptable learning algorithm: transforming the condition over the sta-

tistical distribution of the output into a set of MP constraints while using the

constraints from Fig. 4.2 to model the execution of the BR program produces an

optimization problem, which can for most forms of statistical goals be solved using

standard methods in the case of LIBBR programs.

In this chapter, we examine a different formalization of the statistical goal

learning problem which applies to all problems which model the goal using boxes

to quantize the output of the BR program. In the first section, we formalize

the general form of the problem and provide a MIP problem which is linear as

long as the statistical constraints over the quantized output are linear. We then

produce an example of an MP based learning algorithm for each of two problems

that are representative of common requests among BR engine users, which both
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enter this category of problems: (1) the learning problem where the output value

of a certain variable can match a given value in at most g × m of the cases,

where m = card(Q); (2) the learning problem where the output values of a given

variable must follow a distribution that is as close to uniform as possible, i.e. where

∀s, t ∈ {1, . . . , N},
∣∣∣νs − νt

∣∣∣ ≤ 1.

5.1 Learning quantized distributions

A common variation of the statistical goal learning problem is the quantized form.

In this form, we divide the output space P (π, X) into N intervals or boxes.

We then use the number of outputs P (p, q), q ∈ Q in these categories, noted

as ν1(p), . . . , νN(p), to define the statistical constraint, i.e. we have g(P(Q̃)) =

g′(ν1(p), . . . , νN(p)). This corresponds broadly to cases where the relevant output

has discrete values and to cases where the relevance of continuous outputs can be

viewed in histograms. We can formalize this learning problem as:

min
p
∥p− p0∥

C (ν1(p), . . . , νN(p))

 (5.1)

with the same notations as in 2.2, and with C a constraint or set of constraints.

While this formulation uses the number of outputs rather than the probabilities

themselves, the relation between the two is simply a ratio of 1/m, where m =

card(Q) is the number of training data points.

The MIP problem from Fig. 5.1 models the problem from Eq. 5.1 when the

only relevant output is x1. With the same notations as before, we also note O =

{1, . . . , N}, such that ∀t ∈ O, νt = card{j ∈ J | x1
n,j ∈ [βt−1, βt]}. We enforce this

definition of νt by using an auxiliary binary variable stj with the property: stj = 1

iff x1
n,j ∈ [βt−1, βt]]. The other auxiliary binary variables sU

tj and sL
tj are used to
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enforce this property.

The constraints are mostly similar to the ones in Fig. 4.3. We simply add

the goal of minimizing the variation of the parameter value and the constraints

C (ν1(p), . . . , νN(p)) from Eq. 5.1. The new constraints (C7hist) through (C11hist)

represent the definition of ν1, . . . , νN .

That solving the MIP problem in Fig. 5.1 also solves the problem in Eq. 5.1 is a

direct consequence of the fact that the constraints in Fig. 4.2 simulate P (p, q). The

proof is simple since (C7hist) through (C11hist) trivially represent the definition of

ν1, . . . , νN . However, this formulation is still quite abstract, as it depends heavily

on the form of C . We do note that assuming C is linearizable, the MP problem

is in fact linearizable using the transformations which have led from Fig. 4.3 to

Fig. 4.6 in Chapter 4. The MP problem in Fig. 5.1 can almost always be simplified

given a particular constraint over the quantized distribution, as we see in the rest

of this part.

5.2 Upper bound on a specific output value’s

probability

One of the requests that are made of the business analysts maintaining a BR

program is that the program respect an upper bound on the number of outputs

which have a given value. In the loan approval example, we may have a BR

program used to decide whether the bank will investigate the loan request further

or simply accept the automated decision taken by an expert system. That BR

program has a binary output value. This bank’s high-level strategy requires that

no more than 50% of loans are treated manually (because of the limited availability

of bank managers, for example), but 60% of loans are currently flagged to be

treated manually.



CHAPTER 5. GENERAL STATISTICAL GOAL LEARNING 99

minimize
p,a,x,y,s,sU ,sL,o

∣∣∣p0 − p
∣∣∣

subject to
(C1), (C2), (C3),(C4), (C5), (IC1)

C (ν1, . . . , νN)
∀(t, j) ∈ O×J βt−1 −M(1− stj) ≤ xn,j

1 ≤ βt + M(1− stj) (C7hist)
∀(t, j) ∈ O×J xn,j

1 ≥ βt −MsU
tj (C8hist)

∀(t, j) ∈ O×J xn,j
1 ≤ βt−1 + MsL

tj (C9hist)
∀(t, j) ∈ O×J stj ≥ sU

tj + sL
tj (C10hist)

∀t ∈ O νt =
∑
j∈J

stj (C11hist)

∀(i, j) ∈ I×J xi,j ∈ X

p ∈ R
∀(i, j, r, k) ∈ I×J×R×D yijr ∈ {0, 1}
∀(t, j) ∈ O×J stj, sU

tj, sL
tj ∈ {0, 1}

∀t ∈ O νt ∈ N

Figure 5.1: Mixed-Integer Program solving Eq. 2.2

This scenario can be formulated as:

min
p
∥p− p0∥1

Eq∈Q

[
P (p, q)

]
≤ g

 (5.2)

where P has an output in {0, 1}, using the same notations as before. We provide a

MILP problem which is equivalent to solving this type of learning problem, when

the BR program is linear and iteration bounded.

As in Section 4.4, we consider linear BR programs with a known bound (n−1)

on the number of iterations of the loop, with ρ rules and with a parameter p =

A1,1,1. The MILP problem described in Fig. 5.2 is a reformulation of Eq. 5.2. In the

case of this problem, we can remove some superfluous variables, since only one of

the νt is relevant. The resulting MILP problem is very similar to the one in Fig. 4.6,
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simply replacing the constraint involving ε by a simple inequality constraint. As

before, an equivalent MILP problem can be found for p taking the place of a scalar

in Br, Hr or Gr.

Every constraint numbered as before fulfills the same role. The additional

constraints are:

• (C6′hist) represents the goal from Eq. 5.2, that is a constraint over the average

of the final values of x. It replaces C (ν1, . . . , νN) and all the constraints used

to define νt from the MIP problem in Fig. 5.1.

minimize
p,a,x,y,yU ,yL,w,z

∣∣∣p0 − p
∣∣∣

subject to
(C1′′1), (C1′′2), (C1′′′3 ),(C1′′′4 ), (C1′′′5 ), (C2), (C3′′)
(C4′1), (C4′2), (C4′3),(C5), (IC1), (IC2), (IC3), (IC4)∑

j∈J

xn,j
1 ≤ mg (C6′hist)

∀(i, j, r, h, k) ∈ I×J×R×D2 xi,j, zijrhk ∈ X

∀(i, j, r) ∈ I×J×R wijr ∈ Rd

∀r ∈ R ar ∈ {0, 1}d×d

p ∈ {0, 1}
∀(i, j, r, k) ∈ I×J×R×D yijr, yU

ijrk, yL
ijrk ∈ {0, 1}

Figure 5.2: MILP Formulation for Solving Eq. 5.2

Solving the MILP problem in Fig. 5.2 solves the learning problem in Eq. 5.2

when the BR program is LIBBR. The proof directly derives from Th. 4.10, as it

is the exact same MILP problem using (C6′hist) instead of (C6′′). The problem it

solves is almost the same as the problem solved by the MILP problem in Fig. 4.6,

i.e. Eq. 2.2 with the difference being that the constraint is not
∣∣∣Eq∈Q

[
f

(
P (p, q)

)]
−

g
∣∣∣ ≤ ε but (C6′hist): that problem is exactly Eq. 5.2.
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5.3 Almost uniform distribution

Another common statistical goal learning problem found among BR users consists

of needing the output values to be distributed in a fashion close to the uniform

distribution, for integer outputs. In the loan example, a bank might use a BR

program to accept, reject, or assign a bank manager to the loan request, and

therefore has a trinary return value, represented by an integer in {0, 1, 2}. That

bank’s strategy requires that the proportion of each output is {1/3, 1/3, 1/3}, but

it is currently {1/4, 1/4, 1/2}.

This scenario can be formalized as:

min
p,x
∥p− p0∥1

∀t, τ ∈ {1, . . . , N},
∣∣∣νt − ντ

∣∣∣ ≤ 1

 (5.3)

Note that the solution to this problem is not always a truly uniform distribution,

simply because there is no guarantee that m is divisible by N . However, it will

always be as close as possible to a uniform distribution, since the constraint imposes

that all the outputs will be reached by either floor(m/N) or ceil(m/N) data

points. Again, we use numbers of outputs instead of true probabilities without

loss of information, which allows us to use the fact that the former are integers.

We provide a MILP problem which is equivalent to solving this type of learning

problem, when the BR program is linear and iteration bounded.

We again consider linear BR programs with a known bound (n − 1) on the

number of iterations of the loop, with ρ rules and with a parameter p = A1,1,1.

The MILP problem in Fig. 5.3 solves Eq. 5.3. As before, an equivalent MILP

problem can be found for p taking the place of a scalar in Br, Hr or Gr.

Every constraint numbered as before fulfills the same role. The additional

constraints are:
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• (C7′′hist) through (C9′′hist) are the adaptation of (C7hist) through (C11hist) to

the relevant case of integer outputs

• (C6′′hist) represents the equivalent to C from Eq. 5.1.

This MILP problem is obviously equivalent to solving Eq. 5.3, since it is for the

most part a straight linearization of the MIP problem in Fig. 5.1. A more intuitive

proof consists of again comparing this MILP problem to the one in Fig. 4.6, and

remarking that the MILP problem in Fig. 5.3 solves:

min
p,x
∥p− p0∥1

(C6′′hist), (C7′′hist), (C8′′hist), (C9′′hist)


which is equivalent to Eq. 5.3.

minimize
p,b,x,y,yU ,yL,w,s,sL,sg

∣∣∣p0 − p
∣∣∣

subject to
(C1′′1), (C1′′2), (C1′′′3 ),(C1′′′4 ), (C1′′′5 ), (C2), (C3′)
(C4′1), (C4′2), (C4′3),(C5), (IC1), (IC2), (IC3), (IC4)

∀(t, τ) ∈ O2 −1 ≤ νt − ντ ≤ 1 (C6′′hist)
∀(t, j) ∈ O×J t−M(1− stj) ≤ xn,j

1 ≤ t + M(1− stj) (C7′′hist)
∀(t, j) ∈ O×J xn,j

1 ≥ t−MsU
tj (C8′′hist)

∀(t, j) ∈ O×J xn,j
1 ≤ t + MsL

tj (C9′′hist)
∀(i, j) ∈ I×J xi,j ∈ X

∀r ∈ R ar ∈ {0, 1}d×d

p ∈ {0, 1}
∀(i, j, r, k) ∈ I×J×R×D yijr, yU

ijrk, yL
ijrk ∈ {0, 1}

∀(t, j) ∈ O×J stj, sU
tj, sL

tj ∈ {0, 1}
∀t ∈ O νt ∈ N

Figure 5.3: MILP Formulation for Solving Eq. 5.3



Chapter 6

Experimental work

The existence of an algorithm which can solve the most common of statistical goal

learning problems on LIBBR programs is the most important result of this thesis.

From the point of view of BRMS vendors such as IBM, however, the possibility of

applying this algorithm to their clients’ BR programs as an integral and automatic

part of their product is also a crucial part of what this thesis was meant to do.

In this chapter, we first present the Proof of Concept (POC) Java program

which was developed during this thesis. It is a simple parser which reads a set

of BRs in ODM Business Rules archive format and provides the MILP problem

in AMPL format in a couple of files. A simple AMPL script can then solve the

MILP problem using existing solvers, such as CPLEX for example. We then use the

experimental data obtained by solving the MILP problem our algorithm associates

with randomly generated LIBBR programs (see Fig. 4.6) to gain some insight into

the properties of this algorithm in terms of accuracy, scalability and complexity.

Finally, we briefly look at the performance of the MILP problems associated with

the maximum percentage problem in Sect. 5.2 (Fig. 5.2) and the almost uniform

distribution problem in Sect. 5.3 (Fig. 5.3).

103
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6.1 Parsing ODM

One of the most interesting points about the algorithm presented in Chapter 4.4 is

that it can be automated. The pipeline in Fig. 6.1 shows the organization such an

automated learning process would have. The input of the statistical goal learning

problem (BR program, statistical goal and learning data) is first transformed into

an optimization problem, which is then solved using a standard solver. Each step

in this pipeline can be automated. We provide a Proof of Concept (POC) program

demonstrating this automation for the first step of transforming the BR program

into constraints in the case of a LIBBR program written in ODM.

Figure 6.1: Execution pipeline for an entirely automated application of the statis-
tical goal learning algorithm

As the MILP problem to solve has a fixed form, it can be written as a fixed

mod file written using the standard AMPL syntax [6]. The Proof of Concept

(POC) Java program we created takes as input an ODM Business Rules archive

in jar form, and gives as output the dat file containing the correctly formatted

input to this mod file, with the input data Q being randomly generated – making
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the program parse another file containing preset values of Q has been partially

programmed, but the lack of industrial data to parse has made the point moot.

We suppose for simplicity of the POC that the ODM BR Project follows the

following conditions:

• it uses only primitive Java types in its ODM parameters

• the input variables are defined as IN/OUT or OUT ODM parameters; the

parameters are coded as IN ODM parameters (ODM parameter is the name

used in ODM for any value that is not fixed before compile-time, when

writing the ruleset)

• each rule is linear

• each rule’s condition has only conjunctions; any disjunction must be written

as two rules

• each rule’s base conjunct that uses a Binary operator such as = or ≤ must

have the variable on the left-hand side and the values or parameters on the

right-hand side

The resulting RulesetArchive file is obtained in ODM 8.5.1 by right-clicking the

BR project and choosing the ”Export7→Ruleset Archive” option, from the Rules

perspective.

Note that the resulting output file cannot directly be used by AMPL, since it

is missing both the testing set inputs Q and the goal g. However, these values can

simply be directly appended to the resulting file in text format using the AMPL

grammar. Additionally, we are unable to parse the default values of the ODM

parameters, thus the p0 value of any parameter must be added by modifying the

dat file. In the absence of such a modification, those values are assumed to be

randomly generated.



CHAPTER 6. EXPERIMENTAL WORK 106

The example program displayed in Fig. 6.2 is very simple, as it includes only

one integer variable and one integer parameter. The resulting dat file is displayed in

Fig. 6.3. Note that the OPL file has twice as many rules because of the Refraction

clause in IS: we double each rule in the BR program to obtain a program which

is meant to be executed in I0, as explained in the proof of Th. 4.1. Similarly,

there is one additional variable per rule because of this same clause. Note that we

assume that the implicit priority is absolute in our parsing, making the Recency

clause inactive.

Our method is efficient as it simply uses the existing infrastructure of ODM

IlrRulesetArchive and IlrWriter classes to explore the BR program (for our chosen

example, less than a second). The variables and parameters are created in advance

by using the structure embedded in the ODM archive, then the POC explores each

condition and action to obtain the values of the relevant OPL parameters, while

keeping the integer and non-integer variables separate:

• LB in the dat corresponds to L in Fig. 4.5

• HB in the dat corresponds to H in Fig. 4.5

• A in the dat corresponds to A in Fig. 4.5

• B in the dat corresponds to B in Fig. 4.5

An important part of the POC was automating the transition from integer vari-

ables to binary variables, which are necessary for the MP problem to be lineariz-

able. This is done by transforming A into a tensor rather than a matrix, making

A[r,i,j,k] a vector corresponding to the value of Ar,i,j,k in binary representation.

This POC can be developed further by integrating more of the native function-

alities of ODM which make it so interesting, regardless of the limitations of the

learning algorithm. In particular, the use of non-primitive variables can be done
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Figure 6.2: Screenshots of the ODM 8.5.1 Eclipse environment displaying a simple
BR program

by making use of more advanced ODM developer tools. While this is of extreme

interest for industrial applications, it is not the purview of this thesis.

Another avenue of development is by adding more complex elements such as

Recency or recognition of default parameter values in the RulesetArchive. These
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are developer tasks. Additionally, a number of more industrially relevant advances

might make it into such a POC. In particular, automated transformation of dis-

junctions in BR conditions into multiple BRs (see Fig. 6.4), automated use of

additional boolean variables to compute conditions such as:

if num ≥ 3 ∧ num ≥ param1 then

end if

or direct inclusion of the goal and testing input set are all feasible features to add.

6.2 Experimental data on learning LIBBR

In this section, we use the experimental data obtained by solving the MILP

problem our algorithm associates with randomly generated LIBBR programs (see

Fig. 4.6) to gain some insight into the properties of this algorithm in terms of ac-

curacy, scalability and complexity. We also look at the performance of the MILP

problems associated with the maximum percentage problem in Sect. 5.2 (Fig. 5.2)

and the almost uniform distribution problem in Sect. 5.3 (Fig. 5.3).

In the first subsection, we describe in detail the setup of the experiments,

notably the generation of the BR programs. In the second subsection, we explore

the accuracy of the algorithm by trying to vary the value of the ε which appears in

Eq. 2.2. We then check on various elements linked to scalability, from the number

of rules ρ to the bound on the number of iterations of the loop n. We complete the

chapter with some data taken from running the MILP problems associated with

other statistical goal learning problems.

6.2.1 Experimental setup

Randomly generated BR programs have been obtained from a Python script. We

define the space X as X ⊆ R × R × Z. The BR programs are sets of a variable
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number ρ of linear BRs:

if Lr ≤ x ≤ Hr then

x← Arx + Br

end if

where Lr, Hr, Br are vectors of scalars in [−5, 5]; Lr ≤ Hr and Ar are d × d

matrices of binary variables. We call d the dimension of the BR program. We

also use n the upper bound on the number of iterations of the execution loop (see

Sec. 4.1) and m the size of the training set (see Sec. 2.2). The instances are vectors

qj with values in [−5, 5]. All values are generated using a uniform distribution.

We use a variable value of ε, as it appears in Eq. 2.2. For each BR program, we

try to obtain a goal g = 0 by optimizing over ϕ randomly chosen parameters.

We randomly generate samples of 100 linear BR programs and corresponding

sets of instances with d = 3, n = 10 and m = 100.

We use these BR programs to study the computational properties of the MILP

problem. The value of M used is customized according to each constraint, and is

ultimately bounded by 51 (strictly greater than five times the range of possible

values for x). We write the MILP problem as an AMPL model, and solve it using

the CPLEX solver version 12.6.1.0 on a Dell PowerEdge 860 running CentOS

Linux, with 4 CPU cores of frequency 2400MHz with a RAM of 8GB.

6.2.2 Validating the learning algorithm

We test the validity of the proposed learning algorithm by solving the MILP prob-

lem obtained from many randomly generated BR programs with varying values of

ε.

We fix the number of rules to ρ = 4 and so the number of parameters is

20. This is much lower than the number of rules used by BR programs destined

to industrial usage. We observe the average solving time and the proportion of
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solvable MILP problem instances among all instances for different values of ε. For

ease of comparison, we do not generate a different set of BR programs for each

value of ε. Instead, the tests in this subsection are executed on a single set of one

hundred BR programs for different statistical goals: the MILP problems we solve

have the same values of Lr ≤ Hr, Ar and Br but different values of ε.

For each BR program, we start with ε = 1. This corresponds to a very high

tolerance (20 % of the range of possible values). If the instance is solvable, we

decrease ε using ε ← ε − 0.2 until we reach an unsolvable instance; otherwise we

increase ε using ε ← 1.5ε until we reach a solvable instance or ε ≥ 5, whichever

happens first.

An instance is considered unsolvable if it is infeasible or it has no integer

solution after fifteen minutes (900s) of solver time.

Fig. 6.5 shows the proportion of solvable instances as a function of ε. Being

careful of the nonlinear scale of the figure, ε seems to have a greater influence on

solvability when small and a reduced influence as it grows. In other words, our

method will relatively easily find the best parameter in most cases, but difficult

problems remain difficult even when allowing for a greater distance to the desired

average f .

Furthermore, with random BR problems that include both unsolvable and al-

ready optimal situations, we solve 50 percent of problems with ε = 0.4 which

means allowing E(f) ∈ [−0.4, 0.4]. This is too low for industrial applications, but

approaching the desired average by 8 percent of the possible range in half the cases

is a promising start. Our method as it is described cannot currently be used as a

general tool as too many BR programs cannot be solved accurately.

The restriction to n = 10 for those orders of ρ accurately models real business

processes where BRs rarely loop. The sample size of m = 100 is much lower than

would be realistic, as the training data must be statistically representative of the
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expected input value distribution. The dimension d = 3 is arbitrary and much

lower than can be expected in actual business processes, where dimensionality can

be over an order of magnitude higher.

6.2.3 Testing performance

Using the same source of randomly generated BR programs, we try to look at the

performance of the MILP problem in Fig. 4.6. We set a fixed ε value of 1, which

is the highest tolerance used in the previous subsection.

A naive approach is to believe that BR programs can be learned entirely. In this

approach, the number of parameters ϕ increases proportionally with the number of

rules ρ, as each rule can be parametrized separately. We suppose that the number

of parameters is ϕ = 5ρ.

We observe the average solving time and optimal objective for different values

of ρ (Tab. 6.1) among the solvable MILP instances. An instance is considered

unsolvable if it is infeasible or it has no integer solution after one hour (3600s) of

solver time.

Value of ρ Proportion of Average solver Average objective
instances solvable times over values over

in an hour solvable instances solvable instances
1 1.00 2.09 0.98
2 0.98 22.98 2.14
3 0.96 265.35 4.04
4 0.89 737.67 6.98
5 0.66 929.32 7.77

Table 6.1: Experimental values for the scalability of the MILP method

While it could be argued that the increase in the number of parameters has

an obvious effect over the difficulty of the problem, the study of an increase in ρ

without the proportional increase in ϕ leads to a drastic and predictable increase
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in infeasible instances. Even with our setup, the proportion of solvable instances

is lower as ρ increases, although that is mostly due to the solver exceeding the

time limit. As a high value of ρ is the main issue when scaling up to industrial

BR programs, it still seems worth studying.

Unfortunately, we observe that the direct solving of the MILP problem de-

scribed in Section 4.4.2 is not practical for learning all or even a majority of the

parameters in industrial-sized BR programs. Furthermore, the increase in compu-

tational time is not linear with the number of ρ, but rather exponential as seen

on Fig. 6.6. The increase in the optimal objective value is intuitive and does not

seem drastic, which indicates that the experimental setup is somewhat realistic.

Luckily, industrial BRs do not need to be parametrized entirely – oftentimes, the

number of control parameters is simply 1!

We now wish to consider the influence of each characteristic of a statistical goal

learning problem applied to an iteration bounded linear BR program on the com-

putational complexity of the MILP problem generated by our learning algorithm,

irrespective of its feasibility or accuracy.

We again randomly generate 100 LIBBR programs for each value of the problem

characteristics, and display the average solving time taken by CPLEX to solve the

resulting MILP problems. Note that this does not take into account the time

taken by the automated pre-processing done by CPLEX (‘presolve’). While the

pre-processing can at times be long, it does not accurately reflect the complexity

of the learning since the model given to CPLEX is written in a very general way,

with all meaningful information conveyed by the data file. This makes the pre-

processing more costly than it would be in practical applications, since tasks such

as defining the values in L, H, A, b that are not parameters as constants would

otherwise be done beforehand.

We have chosen the values of the problem characteristics to be somewhat realis-
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tic, with at least some feasible MILP problems in each case. For each BR program,

we have the common characteristics of chosing values in [−5, 5], with ε = 1, and

the number of integer dimensions of X being dint = 1.

Fig. 6.7 shows the evolution of the solving time with ϕ. We have fixed the

values of the other problem characteristics at n = 10, m = 100, d = 3, ρ = 4,

and make ϕ vary from 1 to 12. We observe an exponential growth in line with our

theoretical expectations from Sec. 4.5. In particular, we observe that for ϕ ≤ 5,

the average solving time is less than a second, which is very much realistic for

real-world applications.

Fig. 6.8 shows the evolution of the solving time with n. We have fixed the

values of the other problem characteristics at m = 100, d = 3, ρ = 4, ϕ = 1, and

make n vary from 6 to 14. We observe an exponential growth, which is a concern

but expected (at least in the worst case) when using the default solver settings, as

explained in Sec. 4.5. However, given the fact that most industrial BR programs

satisfy n ≤ ρ (because of decision tables), we can see that n should not be the

cause of unpractical average solving times in real-world applications.

Fig. 6.9 and 6.10 show the evolution of the solving time with m. We have fixed

the values of the other problem characteristics at m = 100, d = 3, ρ = 4, ϕ = 1,

and make n vary from 6 to 14. We observe an irregular growth which is in part

explained by the lack of feasible MILP problem for values m ≥ 500. For both p = 1

and p = 3, a single MILP problem is feasible at m = 2000, which explains the drop

in average solving time. Notably, none of the MILP problems we tried to solve

reached the upper limit on solving time (3600s, i.e. one hour). The stagnation in

solving time for p = 1 is probably due to the lack of feasible BRs (only seven BRs

over the whole curve are feasible). We do observe an exponential growth for as

long as there are feasible BRs on the other curves, more obviously on Fig. 6.10.

Fig. 6.11 shows the evolution of the solving time with d, to be precise we vary
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dfloat the number of real-valued dimensions of X. We have fixed the values of the

other problem characteristics at n = 10, m = 100, ρ = 4, ϕ = 1, and make d vary

from 3 to 5. We observe a stable, slightly decreasing curve which is very promising

as d is one of the most variable characteristics of industrial BRs, depending strongly

on the application. It correlates with an increase in feasible instances and a sharp

decrease in nontrivial instances, indicating that this decreasing curve is due to a

greater number of the randomly generated BRs being already optimized.

Fig. 6.12 shows the evolution of the solving time with ρ. We have fixed the

values of the other problem characteristics at n = 10, m = 100, d = 3, ϕ = 5, and

make n vary from 4 to 10. We observe an exponential growth which stabilizes for

values of ρ ≥ 12, despite the fact that the values for which no MILP problem has

a feasible solution are ρ ≥ 9. This indicates a sort of higher bound above which

ρ does not influence the computational complexity anymore, maybe because the

increased number of rules is matched by an increased number of rules eliminated

by pre-processing. However, as this threshold is greater than the one limiting the

existence of feasible solutions, this has no direct interest for industrial applications.

We additionally try to correlate the average solving time with the ratio n/ρ,

i.e. the ratio of the number of rules executed (or an upper bound thereof, at least)

over the number of rules written in the BR program. For each of four values of this

ratio, we run the tests for four values of ρ. A simple approximation of this ratio

for industrial applications is to take the average width of the decision tables found

in the BR program, since a decision table is simply a series of mutually exclusive

rules, such as in Fig. 6.13. We display the results in Fig. 6.14, with the time

displayed being the average solving time divided by 2n. This division contracts

the points obtained when running the tests, so that for each value of the ratio the

solving time over 2n is constant. This in turn means that n dominates the solving

time, to the point where the value of ρ could be considered to only matter insofar
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as it helps determine n.

6.2.4 Testing other statistical goal learning problems

In Chapter. 5, we have proposed MILP problems for solving two examples of

learning problems of a different form. We examine their behavior in some test cases

to have an idea of whether the MP approach is appropriate for those statistical

problems.

We randomly generate samples of 100 instances of linear BR programs for each

of the problems from Eq. 5.2 and Eq. 5.3. BR programs corresponding to the

problem in Eq. 5.2, resp. Eq. 5.3, are called P1, resp. P2. Each sample corresponds

to a different number of control parameters c, each instance having a corresponding

set of randomly generated inputs with d = 3, n = 10 and m = 100. The number

of control parameters serves as an approximation of the complexity of the BR

program to optimize: a more complex program will have more buttons to adjust,

thus increasing the complexity, yet be more likely to have the goal be reachable

at all, i.e. have the MILP problem be feasible. We define the space X as X ⊆

R×R×Z. The BR programs are sets of ρ = 10 rules, where Lr, Hr, Br are vectors

of scalars in an interval range and Ar are d × d matrices of binary variables. In

P1, we use range = [0, 1] and in P2, we use range = [0, 3]. All input values q are

generated using a uniform distribution in range.

We use these BR programs to study the computational properties of the MILP

problems in Fig. 5.2 and Fig. 5.3. The value of M used is customized according to

each constraint, and is ultimately bounded by 6 and 16 in P1 and P2 respectively

(strictly greater than five times the range of possible values for x). We write the

MILP problem as an AMPL model, and solve it using the CPLEX solver on a Dell

PowerEdge 860 running CentOS Linux.

We observe the proportion of solvable instances of P1 for c between 5 and 10



CHAPTER 6. EXPERIMENTAL WORK 116

and c = 15 in Tab. 6.2. We use the MILP problem in Fig. 5.2 to solve Eq. 5.2

with the goal set to g = 0.5.

An instance is considered solvable if CPLEX reports an integer optimal solution

or a (non-)integer optimal solution. We separate the instances where the optimal

value is 0 from the others, as those indicate that the randomly generated BR

program already fulfills the goal condition. We expect around fifty of those for

any value of c.

In Fig. 6.15 and Fig. 6.16, we observe the success rate and the average solving

time when considering only the non-trivial, non-timed out instances of P1. The

success rate increases steadily, as expected. The solving time seems to indicate

a non-linear increase for c greater than 6, even with its values being somewhat

unreliable due to the small sample. Knowing that average industrial BRs are more

complex than our toy examples, regularly having thousands of rules, this approach

to the Maximum Percentage problem does not seem applicable to industrial cases.

Number of control parameters c 5 6 7 8 9 10 15
Trivial solvable instances

(objective = 0) 52 53 49 49 58 48 46

Non-trivial solvable instances
(objective ̸= 0) 5 6 5 13 6 6 8

Infeasible instances 43 43 40 36 31 35 14

Timed out instances 0 0 7 2 5 11 32

Table 6.2: Experimental Values for the Max Percentage problem

We now study the experimental results collected from testing the MILP prob-

lem in Fig. 5.3, which corresponds to the problem in Sec. 5.3. We observe the

proportion of solvable instances of P2 for c between 5 and 10 and c = 15 in

Tab. 6.3. We use the MILP problem in Fig. 5.3 to solve Eq. 5.3 with N = 2.

Again, we separate instances where the goal is already achieved before optimiza-
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tion, identifiable by being solved quickly with a value of p = p0, i.e. an optimal

value of zero.

In Fig. 6.17 and Fig. 6.18, we display the success rate and average solving

time over the non-timed out, non-presolved instances for all three values of c. We

observe a sharply non-linear progression, with the average problem taking about

nine minutes with 15 control parameters. Knowing that average industrial BRs are

much more complex than our toy examples, regularly having thousands of rules,

we conclude that this method can only be used infrequently, if at all.

Number of control parameters c 5 6 7 8 9 10 15
Trivial solvable instances

(objective = 0) 8 2 1 1 4 7 4

Non-trivial solvable instances
(objective ̸= 0) 9 2 8 5 4 15 32

Infeasible instances 83 96 91 93 92 77 63

Timed out instances 0 0 0 1 0 1 1

Table 6.3: Experimental Values for the Almost Uniform Distribution
problem
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% These are f i x e d by the r u l e s e t
param num_rules := 4 ; param num_dim_int := 3 ;
param num_dim_float := 0 ; param num_bits_A := 2 ;

param LB_int : 1 2 3 := param HB_int : 1 2 3 :=
1 92 0 0 1 101 0 1
2 −1 1 0 2 101 0 1
3 −1 0 0 3 88 1 0
4 −1 0 1 ; 4 101 1 1 ;

param A_int :=
[ 1 , 1 , ∗ , ∗ ] : 1 2 3 := param B_int : % ETC.
1 1 0 0 param LBparam_int : % ETC.
2 0 0 0 param HBparam_int : % ETC.
3 0 0 1 param Aparam_int := % ETC.
% ETC. param Bparam_int : % ETC.

[ 4 , 2 , ∗ , ∗ ] : 1 2 3 :=
1 0 0 0
2 0 0 0
3 0 0 0 ;

param LB_float ; param HB_float ;
param A_float ; param B_float ;
param LBparam_float ; param HBparam_float ;
param Aparam_float ; param Bparam_float ;
param M1 := 1 0 1 . 0 ; param M2 := 2 0 1 . 0 ;
param M3 := 3 0 1 . 0 ; param M4 := 4 0 1 . 0 ;
param M5 := 5 0 1 . 0 ;

% These are ove rwr i t t en by the t e s t i n g s e t input data
param max_iter := 5 ; param num_exec := 6 ;
param goa l := 3 . 0 ; param goal_type := 1 ;
param e p s i l o n := 1 0 . 0 ;
param input_int : 1 2 3 :=

1 56 0 0
% ETC.

6 67 0 0 ;
param input_f loa t ;

Figure 6.3: Abridged display of the output of the ODM-to-OPL parser run over
the ODM ruleset in Fig. 6.2
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Figure 6.4: Transforming a BR with disjunctions into multiple conjunction-only
BRs

Figure 6.5: Proportion of solvable instances for varying values of ε
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Figure 6.6: Variation of computational time (in seconds) with ρ (the number of
rules in the BR program)



CHAPTER 6. EXPERIMENTAL WORK 121

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13

av
er

ag
e 

so
lv

in
g 

ti
m

e 
 (

s)

number of parameters (ϕ)

Average over all BRs

Average over nontrivial
feasible BRs
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Figure 6.13: A decision table template (source: http://www.seilevel.com)



CHAPTER 6. EXPERIMENTAL WORK 127

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.5 1 1.5 2 2.5

av
er

ag
e 

so
lv

in
g 

ti
m

e 
o

ve
r 

2
n

ratio of number of rules to number of iterations of the execution algorithm (n/ϱ)
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Figure 6.17: Success rate over non-trivial solvable P2 for varying values of c in
seconds
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Figure 6.18: Average solving time over non-trivial solvable P2 for varying values
of c in seconds



Chapter 7

Discussion

In this thesis we have searched for a ML algorithm which can solve the statistical

goal learning problem in Eq. 2.2 for BR programs. After having introduced relevant

concepts and formalizations relating to both ML and BRs, we have first explored

BRs as a programming language, proving that no such algorithm exists in the

general case. We then have looked at one of the most common sub-classes of

BR programs, iteration bounded BR programs, and outlined an algorithm which

can solve the statistical goal learning problem in theory. We refined our work by

making the algorithm easier to solve in practice, at the cost of further restraining

the type of BR programs we can learn to linear BRs. We have then explored some

related learning problems, before providing some experimental data.

In this chapter, we first discuss the value of our contributions in the area of

BR research, then we compare our algorithm to existing methods for solving the

same problem. We also discuss the value of our thesis from the point of view of

BRMS developers such as IBM. Finally, we conclude this thesis with some possible

avenues of further research.

132
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7.1 A formal study of BRs

One of the most flagrant gaps in existing research about BRs is the lack of theo-

retical study of BRs as a programming language. While the semantics and perfor-

mance of BRMS has been tested [137, 90, 20], and the business modeling aspect

of Production Rules has been formalized [108], we have not found any compilation

of interpreters or comparison of expressive power.

In the process of our work, we have syntactically defined the BR language and

provided two different interpreters which make that language Turing-complete.

While modern BRMS implement both the standard execution algorithm IS (of-

ten wrongly called the ’Rete’ algorithm) and so-called ’sequential’ algorithms, the

latter in fact correspond to degenerate interpreters with an upper bound on the

number of iterations of the execution loop. The existing work done on analyz-

ing this non-standard semantics did not compare the expressive power of these

languages, or even consider them as distinct programming languages [15].

Furthermore, we have linked the Operational Semantics of the BR language

to the standard SOS used in most imperative programming languages [98]. We

have shown that this can be used to automatically decide termination of a BR

program for given ranges of inputs in some cases. Other Operational Semantics

for BR programs exist [137, 16], however they are always considered on their own

and require specific analysis tools that must be developed for each BRMS. In

particular, a use of our SOS that they cannot achieve directly is the automatic

comparison or even translation of BR programs written in a BR language variant

(given a different syntax or interpreter) to another.

We have provided an explanation for the fact that most BRs use typed meta-

variables, as well as proved that they do not influence the expressive power of BRs.

This makes formal study of the BR language much easier, however we have not

quantified the loss of computational performance due to not using typed meta-
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variables. Further research seeking to examine how BR sets defined in BRMS

behave as BR programs could pursue this avenue.

7.2 New learning algorithms

We have introduced a new learning problem which is prominent in business inter-

ests but has not been explored much in the ML research community. The “nar-

row” version of the statistical goal learning problem we examined in detail can

be treated as a straighforward black-box or derivative-free optimization problem

[114, 38], when written in the following form:

min
p

∣∣∣Eq∈Q

[
f

(
P (p, q)

)]∣∣∣
∥p− p0∥ ≤ ε,

 (7.1)

Not only is this form much less useful to industrial applications of BR programs,

the properties of the function Eq∈Q(P (., q)) are not always clear in the case where

P is a BR program. This makes relying on established methods very hit-or-miss

and as the cost of the simulation is quite high for industrial BR programs, we

provide an alternative algorithm adapted for specific classes of BR programs.

The more general statistical goal learning problems do not always correspond to

the basic variation of the usual black-box optimization problem, in which only the

objective function is black-boxed. For example, the case where we impose a max-

imum percentage of a given output only corresponds to a black-box optimization

problem where the objective is known, and it is the constraint Eq∈Q

[
P (p, q)

]
≤ g

which is a black-box [13].

Another possible approach to the same problem is that of trying to learn

a statistical distribution. Given D(p) the statistical distribution of the values
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P (p, q), q ∈ Q, we can use the following formulation:

min
d∈D(π)

∥d−D(p0)∥

f(d) ≤ 0,

 (7.2)

where f is a function of statistical distributions over Q and π is the set of possible

values for the parameter p. The equivalence between the distance over distributions

and the distance over π used in Eq. 2.2 is not always true, however both can be

equally useful in application cases. By relaxing this approach to having d be any

distribution of RQ (assuming P has scalar output), the difficulty of simulating the

BR program becomes the difficulty of reverse computing p from d, which depending

on the BR can be easier or harder than the initial problem.

7.3 Industrial applications

A very relevant result of our thesis is that of the theoretical feasibility of the

original problem, which has great industrial relevance, notably to IBM and other

BRMS vendors in terms of answering their client’s needs. Furthermore, the proof

of concept work we have done demonstrates how a statistical goal learning problem

can be solved in an entirely automated way, from parsing the set of BRs to getting

a new value of the parameter. The last step towards true automation, reinjecting

the new value of the parameter in the ruleset, can also be automated – although

it probably should not, as human control is often required before modifying the

ruleset.

The main limitation of our algorithm which makes a direct application to ODM

or other BRMS unlikely is the lack of scalability. While our data indicates a severe

lack in this respect, the MILP problem associated with specific rulesets that need

to be learned regularly can always be studied specifically – using reformulations
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or heuristics linked to properties of the ruleset. Improvements to the general

performance of the learning algorithm may be found either through reformulation

or by further limiting the class of BRs we consider. A notable reformulation which

may have a very variable effect depending on the BR program is to start the

simulation at the first occurrence of a rule being executed with a priority equal or

higher than that of the rule in which the parameter p is relevant. This reduction

in size would depend on the input Q and be difficult to automate, as it would

remove an unequal number of x1,j, . . . , xstart,j for each j.

Relevant existing heuristics may also be used to find at least feasible solutions.

Fulfilling the requested constraint on the BR program without minimizing the dis-

tance to the original parameters in this way may be more relevant to BRMS users,

if fast enough, than a more exact solution. Other custom heuristics, e.g. taking

advantage of the fact that many values are fixed until the first occurrence of p in

the BR execution, may also help. The infeasibility of the statistical learning prob-

lem Eq. 2.2 appearing in Sec. 2.2 is also a relevant information to BRMS users:

assuming the tolerance ε is well-chosen (or imposed externally), infeasibility of

the MILP problem produced by our algorithm indicates that the structure or the

ruleset prevents the stated goal. The recommended action in this case is to modify

the BR program by removing (or in some cases adding) a BR.

My intuition is that our algorithm can be useable in commercial BRMS given

some work over the aforementioned aspects. This is because we can reasonably

suppose that industrial BR programs are likely to be easier to learn on average

than randomly generated BR programs, and in my opinion are in fact much easier

to learn than such BR programs. An indication that industrial problems might

be solvable is the fact that most industrial business processes do not use complex

rules, but rather many rules each applying to one or two components of the variable

x. This corresponds to using sparse matrices for L, G, A and B, which appropriate
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solvers can use to their advantage. Furthermore, the scalability needed is not as

high as it appears at first glance, as industrial programs can often be preprocessed

by removing some irrelevant rules, e.g. where the actions are side effects (the

affected variables are not the output and are never tested); and elements of the

training set, e.g. where the execution algorithm terminates without ever having the

opportunity to execute a rule where a parameter appears. As for rules in which no

parameter appears, I do not believe they can be removed unobtrusively: the truth

value of their condition is always dependent on the current value of the variables,

which is never guaranteed to be independant from the parameters p.

7.4 Conclusion

The original question asked by users of IBM ODM about the possibility and prac-

ticality of using ML to satisfy statistical goals when parametrizing BR programs

has been answered in a few different ways. The general case has proved to be im-

possible to learn. We have provided an algorithm for the practical cases of Linear

Iteration Bounded BR programs as well as an idea of the restrictions over any

industrial application. The work needed to improve scalability is the improvement

on the computational complexity of solving the MILP problem associated with our

algorithm, with the most interesting avenue being finding a custom heuristics.

In the process, we have also formally proven a commonly accepted but never

proven properties of BR programs: they are Turing-complete. This comes with a

Sequential Operational Semantics which can be used to prove termination of a BR

program over an interval of inputs. Further exploiting this SOS to automatically

convert a BR program to another language, or even to another BR language (using

a different interpreter), is another possible continuation of our work.

Finally, restricting the class of BRs we wish to be learning even further might
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lead to simplifications in the MILP problem associated with our algorithm. As

many BR programs used by businesses are simple variations on Decision Trees,

studying those variations and creating algorithms for the statistical learning prob-

lem associated with these specific BR programs can be a practical area of research

for BRMS developers to be interested in.

We have proved that such algorithms are outright necessary to address the

needs of BR users in terms of statistical goal learning, as no general algorithm

exists. We have provided a learning algorithm for the problem in Eq. 2.2 in Sec. 2.2,

which can in the future be adapted by BRMS developers such as IBM into practical

products.



Appendix A

Complete proof of some theorems

This appendix contains the complete proofs for Theorems 4.8, 4.9 and 4.10, which

are simple but tedious, and were not included in extenso in the text for that reason.

We have instead chosen to give the idea of each proof in the text, and the fully

detailed proof in the following Sections.

A.1 Complete proof of Theorem 4.8

In this section, we prove Theorem 4.8 from Subsection 4.4.1. To be precise, we

prove that any optimal solution p to the MIP problem from Fig. 4.4 is also a

solution to Eq. 2.2, given a LIBBR program of the form described in Section 4.3

and a statistical goal which only considers one relevant output in the form of x1,

i.e. f(P (p, q)) = P (p, q)1.

As Theorem 4.4 shows that the MP problem in Fig. 4.3 solves Eq. 2.2, a simple

transcription of this MP problem using the LIBBR and statistical goal assumptions

shows that the MIP problem in Fig. A.1 also does. Consequently, we only have

to prove that the MIP problem in Fig. 4.4 is a reformulation of the problem in

Fig. A.1.

139
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minimize
p,x,y

∣∣∣p0 − p
∣∣∣

subject to
(C2), (C3),(C4), (C5), (IC1)

∀(i, j) ∈ I\{n}×J xi+1,j =
∑
r∈R

(Ar(p) xi,j + Br(p)) yijr

+ (1−
∑
r∈R

yijr)xi,j

∣∣∣∣∣∣ 1
m

∑
j∈J

xn,j
1 − g

∣∣∣∣∣∣ ≤ ε

∀(i, j) ∈ I×J xi,j ∈ X

p ∈ R
∀(i, j, r) ∈ I×J×R yijr, ∈ {0, 1}

Figure A.1: Initial reformulation of the MP problem in Fig. 4.3 under the
assumptions of Subsection 4.4.1

Using the assumption that the only parameter p takes the place of A1,1,1, we

know that the values of Ar(p) are defined as in (IC2), (IC3) and (IC4):

∀r ̸= 1, Ar(p) = Ar

A1(p)1,1 = A1,1,1

∀(h, k) ̸= (1, 1), A1(p)h,k = A1hk

and that the values of Br(p) are simply the same as the original Br. The first non-

numbered constraint in the formulation in Fig. A.1 is thus equivalent to (C1′),

(IC2), (IC3) and (IC4). Furthermore, the second non-numbered constraint in that

formulation is exactly constraint (C6′) from Fig. 4.4.

We now prove that replacing {(C3), (C4)} by {(C3′), (C4′1), (C4′2), (C4′3)} is a

reformulation of the MP problem. In other words, we now prove that the MP
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problem in Fig. 4.4 and the problem in Fig. A.1 have the same feasible solutions.

We proceed by first proving that feasible solution of the first problem are also

feasible solution in the second, then proving the reverse.

Lemma A.1. Feasible solutions of Fig. 4.4 are feasible solutions of Fig. A.1.

Proof. Suppose p, a, x, y, yL, yH a feasible solution for the problem in Fig. 4.4. As

discussed above, p, x, y satisfies every constraint in Fig. A.1 except for (C3) and

(C4). We proceed by induction over the rule r ∈ R.

For the first rule R1, satisfying (C3) and (C4) is equivalent to having yij1 =

T1(xi,j). In the case yij1 = 1, the constraint (C3′) from Fig. 4.4 gives us directly

L1 ≤ xi,j ≤ H1, i.e. T1(xi,j) = 1. In the case yij1 = 0, we have according to (C4′3):

∃k ∈ D | yH
ij1k = 0 ∨ yL

ij1k = 0

Using either constraint (C4′1) or constraint (C4′2), we have (barring the equality

case1):

∃k ∈ D | L1k > xi,j
k ∨ xi,j

k > H1k

which is exactly the definition of T1(xi,j) = 0 for LIBBR.

We now suppose that (C3) and (C4) are satisfied for any i ∈ I, j ∈ J , and

r′ < r, where r ∈ R. We again consider both cases yijr = 1 and yijr = 0, and

prove that the constraints are satisfied.

We first consider the case yijr = 1. The equality Lr ≤ xi,j ≤ Hr is a direct

consequence of (C3′), thus we have Tr(xi,j) = 1. The constraints (C3) and (C4)

are thus trivially satisfied, as ∑
r′<r

yi,r′ is positive.

In the case yijr = 0, (C3) is trivially satisfied. According to constraint (C4′3),
1We suppose that the equality case is irrelevant for continuous x variables
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we have as in the case r = 1:

∃k ∈ D | yH
ijrk = 0 ∨ yL

ijrk = 0

Using either constraint (C4′1) or constraint (C4′2) as appropriate, we thus have:

∃k ∈ D | xi,j
k ≥ Hrk ∨ xi,j

k ≤ Lrk ∨
∑
r′<r

yijr′ = 1

Remarking that the first parts of this Boolean conjunction can be expressed in

terms of Tr(xi,j), we have in fact Tr(xi,j) = 0∨ ∑
r′<r

yijr′ = 1. Consequently, we have

0 ≥ Tr(xi,j)− ∑
r′<r

yijr′ , which ensures that (C4) is satisfied.

The induction thus proves that the constraints (C3) and (C4) are satisfied for

all r ∈ R. Since p, x, y satisfies every constraint in Fig. A.1, it is indeed a feasible

solution for that problem.

Lemma A.2. Feasible solutions of Fig. A.1 are also feasible solutions of Fig. 4.4.

Proof. Suppose p, x, y a feasible solution for the problem in Fig. A.1. As discussed

above, it satisfies every constraint in Fig. 4.4 except for (C3′), (C4′1), (C4′2), and

(C4′3). For any i ∈ I, j ∈ J , r ∈ R, we now consider the two cases yijr = 1 and

yijr = 0.

In the case where yijr = 1, we have Tr(xi,j) = 1, i.e. Lr ≤ xi,j ≤ Hr. Constraint

(C3′) is thus satisfied. Regardless of which value is taken by yH and yL, constraint

(C4′3) is also satisfied. A choice of yH
ijrk = yL

ijrk = 1 for all k ∈ D suffices for (C4′1)

and (C4′2) to also be satisfied.

In the case where yijr = 0, the constraint (C3′) is always satisfied. Furthermore,

constraint (C4) of Fig. A.1 gives us Tr(xi,j) ≤ ∑
r′<r

yijr′ . This can also be expressed

as:

Tr(xi,j) = 0 ∨
∑
r′<r

yijr′ = 1
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We consider separately the case where each clause of this conjunction is true.

In the first case, we have:

∃k ∈ D | Lrk > xi,j
k ∨ xi,j

k > Hrk

We note h ∈ D satisfying this property. As (C4′1) and (C4′2) are symmetrical,

we assume without loss of generality that Lrh > xi,j
h . Assigning the values ∀k ∈

D, yH
ijrk = 1, ∀k ̸= h, yL

ijrk = 1 and yL
ijrh = 0 satisfies the constraints (C4′1) and

(C4′2) for all values of k. Furthermore, since ∑
k∈D

(yH
ijrk +yL

ijrk) = 2d−1, this solution

also satisfies (C4′3).

In the second case, we have ∑
r′<r

yijr′ = 1, which automatically satisfies both

constraint (C4′1) and constraint (C4′2) for every k ∈ D. We can thus choose

yH
ijrk = yL

ijrk = 0 and also satisfy (C4′3).

Using the constructed values for yL and yH , the solution p, a, x, y, yL, yH sat-

isfies every constraint in Fig. 4.4, it is thus a feasible solution. Note that there is

no chance of our construction for yL and yH hitting a contradiction, since we have

only ever chosen values once for each (i, j, r, k) tuple.

We have proven that the MIP problem in Fig. 4.4 is a reformulation of a

problem known to solve Eq. 2.2, which proves Theorem 4.8.

A.2 Complete proof of Theorem 4.9

In this section, we prove Theorem 4.9 from Subsection 4.4.1. To be precise, we

prove that any optimal solution p of the MILP in Fig. 4.5 is is also a solution to

Eq. 2.2, given a LIBBR program of the form described in Section 4.3, a statistical

goal which only considers one relevant output in the form of x1, i.e. f(P (p, q)) =

P (p, q)1 and a parameter p which takes the place of B1,1.
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As was proven above in Section A.1, the MIP program in Fig. 4.4 solves Eq. 2.2

when the parameter takes the place of A1,1,1. Simply changing which element of

the BR program is a parameter provides the MIP program in Fig. A.2, which thus

solves Eq. 2.2 when the parameter takes the place of B1,1. Consequently, we only

have to prove that the MILP problem in Fig. 4.5 is a reformulation of the problem

in Fig. A.2.

minimize
p,a,x,y,yH ,yL

∣∣∣p0 − p
∣∣∣

subject to
(C1′), (C2), (C3′),(C4′1), (C4′2), (C4′3)

(C5), (C6′)(IC1)
∀r ∈ {2, . . . , ρ}, br = Br (IC2′)

b1,1 = p (IC3′)
∀k ∈ {1, . . . , d}, b1k = B1k (IC4′)
∀(i, j) ∈ I×J xi,j ∈ X

∀k ∈ R ak ∈ Rd×d

p ∈ R
∀(i, j, r, k) ∈ I×J×R×D yijr, yH

ijrk, yL
ijrk ∈ {0, 1}

Figure A.2: MIP Formulation with p Taking the Place of B11 with e =
(1, . . . , 1) ∈ Rd a vector of all ones

Constraint (C6′) is trivially equivalent to its linearized form (C6′′). We now

prove that replacing (C1′) by {(C1′′1), (C1′′2), (C1′′3)} is a reformulation of the MP

problem. To do so, we simply prove that for any feasible solution p, b, x, y, yL, yH , w

of Fig. 4.5, we have:

∀i ∈ I, j ∈ J, r ∈ R, wijr = (Arx
i,j + br)yijr (A.1)

In such a feasible solution, let us consider the two cases where yijr = 1 and
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yijr = 0. In the first case, we have thanks to (C1′′3):

Arx
i,j + br − xi,j ≤ wijr ≤ Arx

i,j + br − xi,j

which gives us directly Eq. A.1. In the second case, we use (C1′′2) to get the value

of the variable we need: wijr = 0. This is also the value which matches Eq. A.1.

As the only difference between (C1′′1) in Fig. 4.5 and (C1′) in Fig. A.2 is re-

placing w with the value expressed in Eq. A.1, this both proves that any feasible

solution p, b, x, y, yL, yH , w of Fig. 4.5 is also a feasible solution to Fig. A.2. Any

feasible solution to the latter is also a feasible solution to the first by choosing the

value of w to be wijr = (Arx
i,j + br)yijr.

As the MIP problem in Fig. A.2 solves Eq. 2.2, the MILP problem in Fig. 4.5

also does, as its reformulation.

A.3 Complete proof of Theorem 4.10

In this section, we prove Theorem 4.10 from Subsection 4.4.1. To be precise, we

prove that any optimal solution p of the MILP in Fig. 4.6 is is also a solution to

Eq. 2.2, given a LIBBR program of the form described in Section 4.3, a statistical

goal which only considers one relevant output in the form of x1, i.e. f(P (p, q)) =

P (p, q)1 and a parameter p which takes the place of A1,1,1.

As was proven above in Section A.1, the MIP program in Fig. 4.4 from Sub-

section 4.4.1 solves Eq. 2.2. Consequently, we only have to prove that the MILP

problem in Fig. 4.6 is a reformulation of the problem in Fig. 4.4.

Constraint (C6′) is trivially equivalent to its linearized form (C6′′). We now

prove that replacing (C1′) by {(C1′′1), (C1′′2), (C1′′′3 ), (C1′′′4 ), (C1′′′5 )} is a reformula-

tion of the MP problem. To do so, we simply prove that for any feasible solution
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p, b, x, y, yL, yH , w of Fig. 4.5, we have:

∀i ∈ I, j ∈ J, r ∈ R, (k, h) ∈ D2, zijrhk = zarhkxi,j
k

∀i ∈ I, j ∈ J, r ∈ R, (k, h) ∈ D2, zijrhk = arhkxi,j
k

(A.2)

which we then use to prove Eq. A.1 is still true:

∀i ∈ I, j ∈ J, r ∈ R, wijr = (arx
i,j + Br)yijr (A.3)

In such a feasible solution, we first consider the two cases where arhk = 1 and

arhk = 0. In the first case, we have thanks to (C1′′′5 ):

zijrhk = xi,j
k = arhkxi,j

k

which gives us directly Eq. A.2. In the second case, we use (C1′′′4 ) to get the value

of the variable we need: zijrhk = 0. This is also the value which matches Eq. A.2.

Given Eq. A.2, the matrix product arx
i,j is thus expressed:

arx
i,j =

∑
h∈D

arhkxi,j
k =

∑
h∈D

zijrhk

When considering the two cases where yijr = 1 and yijr = 0, we use this to prove

Eq. A.1. In the case yijr = 1, we have thanks to (C1′′′3 ):

arx
i,j + Br − xi,j ≤ wijr ≤ arx

i,j + Br − xi,j

which gives us directly Eq. A.1. In the second case, we use (C1′′2) to get the value

of the variable we need: wijr = 0. This is also the value which matches Eq. A.1.

As the only difference between (C1′′1) in Fig. 4.6 and (C1′) in Fig. 4.4 is replacing

w with the value expressed in Eq. A.1, this both proves that any feasible solution
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p, b, x, y, yL, yH , w, z of Fig. 4.6 is also a feasible solution to Fig. 4.4. Any feasible

solution to the latter is also a feasible solution to the first by choosing the values

of z and w to be:
zijrhk = aijrhkxi,j

k

wijr = ( ∑
k∈D

zijrhk + br)yijr

As the MIP problem in Fig. 4.4 solves Eq. 2.2 from Th. 4.8, the MILP problem

in Fig. 4.6 also does, as its reformulation.
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Titre : Modèles de Règles Adaptatifs : Apprentissage Statistique pour les Systèmes à Base de Règles
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Résumé : Les Règles Métiers (Business Rules en
anglais, ou BRs) sont un outil communément utilisé dans
l’industrie pour automatiser des prises de décisions répéti-
tives. Le problème de l’adaptation de bases de règles ex-
istantes à un environnement en constante évolution est
celui qui motive cette thèse. Des techniques existantes
d’Apprentissage Automatique Supervisé peuvent être util-
isées lorsque cette adaptation se fait en toute connaissance
de la décision correcte à prendre en toute circonstance. En
revanche, il n’existe actuellement aucun algorithme, qu’il
soit théorique ou pratique, qui puisse résoudre ce prob-
lème lorsque l’information connue est de nature statistique,
comme c’est le cas pour une banque qui souhaite contrôler
la proportion de demandes de prêt que son service de déci-
sion automatique fait passer à des experts humains. Nous
étudions spécifiquement le problème d’apprentissage qui a
pour objectif d’ajuster les BRs de façon à ce que les déci-
sions prises aient une valeur moyenne donnée.
Pour ce faire, nous considérons les bases de Règles Métiers

en tant que programmes. Après avoir formalisé quelques
définitions et notations dans le Chapitre 2, le langage de
programmation BR ainsi défini est étudié dans le Chapitre
4, qui prouve qu’il n’existe pas d’algorithme pour appren-
dre des Règles Métiers avec un objectif statistique dans
le cas général. Nous limitons ensuite le champ d’étude à
deux cas communs où les BRs sont limités d’une certaine
façon : le cas Borné en Itérations dans lequel, quelles que
soit les données d’entrée, le nombre de règles exécutées en
prenant la décision est inférieur à une borne donnée ; et le
cas Linéaire Borné en Itérations dans lequel les règles sont
de plus écrite sous forme Linéaire. Dans ces deux cas, nous
produisons par la suite un algorithme d’apprentissage basé
sur la Programmation Mathématique qui peut résoudre ce
problème. Nous étendons brièvement cette formalisation
et cet algorithme à d’autres problèmes d’apprentissage à
objectif statistique dans le Chapitre 5, avant de présenter
les résultats expérimentaux de cette thèse dans le Chapitre
6.

Title: Adaptive Rules Models: Analytics Learning for Rule-Based Systems
Keywords: business rules, machine learning, statistical goal learning, optimization

Abstract: Business Rules (BRs) are a commonly used
tool in industry for the automation of repetitive decisions.
The emerging problem of adapting existing sets of BRs to
an ever-changing environment is the motivation for this
thesis. Existing Supervised Machine Learning techniques
can be used when the adaptation is done knowing in de-
tail which is the correct decision for each circumstance.
However, there is currently no algorithm, theoretical or
practical, which can solve this problem when the known
information is statistical in nature, as is the case for a bank
wishing to control the proportion of loan requests its au-
tomated decision service forwards to human experts. We
study the specific learning problem where the aim is to
adjust the BRs so that the decisions are close to a given
average value.
To do so, we consider sets of Business Rules as programs.
After formalizing some definitions and notations in Chap-
ter 2, the BR programming language defined this way is

studied in Chapter 3, which proves that there exists no
algorithm to learn Business Rules with a statistical goal
in the general case. We then restrain the scope to two
common cases where BRs are limited in some way: the
Iteration Bounded case in which no matter the input, the
number of rules executed when taking the decision is less
than a given bound; and the Linear Iteration Bounded case
in which rules are also all written in Linear form. In those
two cases, we later produce a learning algorithm based
on Mathematical Programming which can solve this prob-
lem. We briefly extend this theory and algorithm to other
statistical goal learning problems in Chapter 5, before pre-
senting the experimental results of this thesis in Chapter
6. The last includes a proof of concept to automate the
main part of the learning algorithm which does not con-
sist in solving a Mathematical Programming problem, as
well as some experimental evidence of the computational
complexity of the algorithm.
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