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oratoire d’Informatique d’École Polytechnique, the supervisors of my master in-
ternship, for guiding my first steps in research and teaching me how to write a
good mathematical text.

I owe my gratitude to all members of the Laboratoire d’Informatique d’École
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Résumé Substantiel

Thème de recherche

Un problème tout aussi fondamental et central que la recherche de consensus est la
dissémination collaborative d’une information d’un agent à tous les autres agents
d’un système distribué. Comme pour la recherche de consensus, ce problème est
particulièrement important lorsque l’on veut obtenir des algorithmes distribués qui
à la fois sont robustes et fonctionnent dans un cadre anonyme, c’est-à-dire sans
supposer que les agents possèdent des identifiants distincts connus. Ce problème,
connu sous le nom de problème de propagation de rumeur, est à la base de nombreux
algorithmes de communication sur des réseaux de capteurs sans-fil [DKM+10] ou
des réseaux mobiles ad-hoc, et est aussi une brique de base centrale pour de nom-
breux algorithmes distribués avancés, e.g., [MS08].

Les méthodes les plus connues pour surmonter les défis de robustesse et d’anony-
mat sont les algorithmes basés sur les ragots (gossip-based algorithms). Il s’agit
d’algorithmes dans lesquels les agents contactent d’autres agents aléatoires pour
échanger de l’information. Bien que dans ce projet nous nous concentrions sur le
problème de la dissémination d’une seule unité d’information, nous devons men-
tionner que les algorithmes basés sur les ragots ont des applications vagues dans les
problèmes plus complexes, comme maintenir la cohérence d’une base de données
distribuée.

Algorithmes de propagation de rumeur

Les algorithmes de propagation de rumeur sont basés sur la paradigme que les
agents contact aléatoirement les autres agents pour envoyer ou récupérer l’informa-
tion. Dans ce travail, nous nous concentrons uniquement sur les protocoles de
temps discret, c’est-à-dire, nous supposons que tous les agents ont l’accès à une
horloge commune. Cette horloge partitionne la durée du procès en tours de com-
munication discrets. Un nombre important des algorithmes différents a été proposé
même avec cette restriction. Ils diffèrent par la manière comment les agents lancent
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iv RÉSUMÉ SUBSTANTIEL

la communication, comment ils font le choix des partenaires de communication et
quelles hypothèses sont faites sur le réseau.

Initiation du contact. En fonction des applications l’une des trois configura-
tions peut être raisonnable : soit les agents déjà informés contactent les autres
(protocole de push), soit les agents non informés cherche les nouvelles en ap-
pelant les autres (protocole de pull), soit tous les agents peuvent faire des appels
indépendamment de leur statut (protocole de push-pull).

Nombre des communications par tour. Bien que dans l’hypothèse typique
chaque agent puisse contacter au plus un partenaire de la communication, il était
proposé d’autoriser plus d’un contact par tour. Pour les certains réseaux de com-
munication (par exemple, les réseaux sociaux) il a été observé une différence con-
sidérable entre les deux approches [DFF12c].

Choix des partenaires de communication. Notamment dans les réseaux avec
les communications non fiables, il est risqué de compter sur les actions précédentes.
Pour cette raison, nous admettons l’hypothèse typique suivante : les agents agis-
sent stochastiquement indépendantes chaque tour. Néanmoins, un certain nombre
d’améliorations a été obtenu pour les réseaux fiables en proposant des protocoles
plus sophistiqués.

Fiabilité du réseau. La structure du réseau est loin d’être fiable dans les appli-
cations typiques de l’algorithme basé sur les ragots comme les réseaux de capteurs
sans-fil ou les réseaux ad-hoc. Pour cette raison l’hypothèse réaliste est que tous
les appels atteignent leurs cibles avec une certaine probabilité positive. Faute
d’un meilleur modèle, nous supposons que les échecs de la communication sont
distribués de manière indépendante.

Jusqu’à présent, toutes les analyses des algorithmes basés sur les ragots étudient
les combinaisons spécifiques de ces variantes. Dans tous les cas la plupart des
recherches étude de manière individuelle la loi de probabilité décrivant le progrès
réalisé en un seul tour. L’objectif de notre travail est d’extraire les conditions
générales qui couvrent la plupart des protocoles et qui permettent de prouver les
garanties de performance basées seulement sur ces conditions. Cette approche
peut simplifier un grand corps des travaux existants aussi bien que prédire les
performances de nouveaux protocoles.
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Nos résultats

Nous avons réussi à analyser une large classe des algorithmes basés sur les ragots.
Pour la classe naturelle des protocoles uniformes qui traitent les agents symétrique-
ment et dans laquelle chaque agent peut communiquer avec tous les autres agents,
nous avons déterminé trois conditions suivantes qui couvrent la plupart des pro-
tocoles qui ont été étudiés précédemment.

Conditions de Croissance et de Contraction

À partir d’ici supposons que n est le nombre d’agents dans notre système multi-
agents. Supposons que tout agent non informé s’informe pendant le tour initié par
k < n agents informés avec la probabilité pk indépendant du choix d’un agent.
Les conditions ci-dessous sont exprimées en forme des probabilités de succès pk et
de covariance ck des variables indicatrices aléatoires pour les événements que deux
agents différents s’informent simultanément (voir Définition II.12).

Conditions de la Croissance Exponentielle. Soit γ un constant positif. Soit
a, b, c ≥ 0 et 0 < f < 1 tels que af < 1. Nous disons que le protocole satisfait les
conditions de la croissance exponentielle, si pour tout n ∈ N assez grand, k < fn
implique

(i) tout agent non informé s’informe pendant le tour initié par k agents informés
avec la probabilité pk = γ k

n
·
(
1± a k

n
± b

lnn

)
;

(ii) ck ≤ c k
n2 .

Conditions de la Contraction Exponentielle. Soit 0 < g < 1 et ρ > 0.
Soit a, c ≥ 0. Nous disons que le protocol satisfait les conditions de la contraction
exponentielle si pour tout n ∈ N assez grand, u < gn implique que

(i) tout agent non informé reste non informé pendant le tour initié par u agents
non informés avec la probabilité 1− pn−u = e−ρ ± au

n
;

(ii) cn−u ≤ c
u
.

Conditions de la Contraction Double Exponentielle. Soit g, α ∈]0, 1[ et
` > 1. Soit a, a′, c ≥ 0. Nous disons que le protocole satisfait les conditions
de la contraction double exponentielle si pour tout n assez grand, pour tout u ∈
[n1−α, n − gn] les conditions suivantes sont satisfaites pour le tour avec u agents
non informés initialement.
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1. La probabilité 1− pn−u qu’un agent non informé reste non informé est borné

entre a
(
u
n

)`−1
et a′

(
u
n

)`−1
;

2. cn−u ≤ c n
u2 .

Il se trouve que la grande majorité des protocoles considérés dans la littérature
peut être décrite par ces trois conditions. Plus précisément, presque tous les des
protocoles satisfont les conditions de la croissance exponentielle, souvent γ = 2
or 3. La plupart des protocoles de push satisfont les conditions de la contraction
exponentielle tandis que dans le cas de communications fiables les protocoles de
pull et de push-pull satisfont les conditions de la contraction double exponentielle.

Estimations Precises de la Performance

Tous les trois conditions assurent l’analyse précise de la performance des algo-
rithmes basés sur les ragots. Elles nous permettent l’espérance du temps nécessaire
pour informer tous les agents ainsi que les valeurs qui bornent ce temps de dissémina-
tion avec une probabilité forte (voir Théorème II.14, II.15 et II.16).

Résultat Principal

(i) Si le protocole satisfait les conditions de la croissance exponentielle, alors
l’espérence du temps jusqu’à fn sont informés est log1+γ n±O(1).

(ii) Si le protocole satisfait les conditions de la contraction exponentielle, alors
l’espérence du temps nécessaire pour informer tous les agents à partir du
moment que au moins (1− g)n agents sont informés, est 1

ρ
lnn±O(1).

(iii) Si le protocole satisfait les conditions de la contraction double exponentielle,
alors l’espérence du temps nécessaire pour informer tous les agents à partir
du moment que au moins (1− g)n agents sont informés, est log` lnn±O(1).

Nous notons que ces estimations sont extrêmement précises, le temps d’exécu-
tion est borné jusqu’à un constant additif. Jusqu’à présent aucune estimation
n’a été autant précise sauf pour le cas basique du protocole de push. Donc en
plus d’une méthode d’analyse très générale, notre travail donne des meilleures
estimations pour la plupart des protocoles existants.

Nous notons aussi que les estimations du temps d’exécution sont indépendants
de la plupart des paramètres introduits dans les conditions. Seulement le taux de
croissance γ pour la croissance exponentielle, le taux de la contraction ρ pour la
contraction exponentielle et l’exposant ` pour la contraction double exponentielle
apparaissent dans les estimations. Donc les autres paramètres ont l’influence qui
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est limitée par un nombre constant de tours et peuvent être négligés facilement.
La preuve de notre résultat principal est décrite en Chapitre III.

Le résultat principal donne immédiatement les estimations du temps pour les
protocoles concrètes. Dans le Chapitre IV nous appliquons les conditions ci-dessus
pour les différents algorithmes de propagation de rumeur.

Protocoles de push. Dans le cas basique connu comme le protocole du push,
chaque agent informé appelle un autre agent aléatoire une fois par tour. Ce pro-
tocole satisfait les conditions de la croissance exponentielle avec γ = 1 et les
conditions de la contraction exponentielle avec ρ = 1. Par conséquent, le temps
d’exécution pour le protocole de push est log2 n + lnn + O(1) (Théorème IV.1).
Si on permet aux agents d’appeler un nombre fixe m d’agents par tour, alors γ et
ρ sont égales à m, c’est-à-dire, le temps d’exécution est log1+m n + 1

m
lnn + O(1)

(Théorème IV.7). Il n’y a aucune différence si chaque agent fait les appels aux m
agents distincts ou aux m agents choisi aléatoirement. Si nous supposons que notre
réseau ne soit pas fiable, c’est-à-dire chaque appel atteint sa destination avec la
probabilité p, alors le temps d’exécution est logpm+1 n+ 1

pm
lnn+O(1). Par ailleurs

il n’y a aucune différence si les appels échoués sont notés et répétés le prochain
tour.

Protocoles de pull. Si chaque tour chaque agent non informé cherche l’informa-
tion en appelant un autre agent aléatoire par tour, alors les conditions de la crois-
sance exponentielle sont toujours satisfaites avec γ = 1. Désormais, les conditions
de la contraction double exponentielle sont satisfaites avec ` = 2, ce que prévoit la
finition très rapide du procès avec la durée total de log2 n+ log2 lnn+O(1) tours
(Théorème IV.2). Pour chaque appel supplémentaire que les agents effectuent par
tour, les taux du procès augment de 1. Donc pour le cas où un agent peut appeler
m voisins, le temps d’exécution est logm+1 n+ logm+1 lnn+O(1).

Cependant, tout cela est vrai seulement si le réseau est complètement fiable. Si
nous supposons que les appels atteignent leurs destinations avec la probabilité p <
1, alors les conditions de la contraction double exponentielle ne sont plus satisfaites.
Par contre, ce protocole satisfait les conditions de la contraction exponentielle. On
en déduit que le temps d’exécution est logpm+1 n+ 1

m ln(1/(1−p)) lnn+O(1).

Protocoles de push-pull. Le protocole de push-pull basique avec tous les
agents appelant d’autres agents aléatoires satisfait les conditions de la croissance
exponentielle avec γ = 2 (deux fois plus efficace que protocoles de push ou de pull
tout seuls) et les conditions de la contraction double exponentielle avec ` = 2 (aussi
efficace que le protocole du pull). Nous en déduisons que le temps d’exécution est
log3 n + log2 lnn + O(1) (Théorème IV.3). Avec m appels par agent par tour,
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le temps s’améliore à log2m+1 n + logm+1 lnn + O(1) (Théorème IV.8). Si nous
supposons une fraction constant des échecs de la communication, la contraction
double exponentielle sera remplacée par l’exponentielle simple, exactement comme
dans le cas du protocole de pull. Avec le taux de réussite des appels p, le temps
d’exécution est logpm+1 n+ 1

m(ln(1/(1−p))+1)
lnn+O(1).

La méthode proposée ci-dessus améliore plusieurs résultats clés obtenus au
passé par différents groupes de chercheurs (par exemple, [Pit87], [KSSV00], and
[DHL13]). Elle permet aussi de déterminer facilement le temps d’exécution de nou-
veaux algorithmes et aide ainsi le développement d’algorithmes de dissémination
supérieurs.

Notons que malgré la ressemblance de certains résultats ci-dessus, les processus
randomisés sont très différents. Par exemple, considérons le premier tour d’un
processus de propagation de rumeur. Dans le cas du protocole de push, exactement
un nouvel agent sera informé presque sûrement. Dans le cas du protocole de pull,
l’espérance du nombre de nouveaux agents informés vaut aussi un. Par contre, la
distribution est très différente, asymptotiquement elle est poissonnien. Désormais,
personne ne sera informé avec une probabilité proche de 1/e. Il est aussi possible
avec une petite probabilité que plusieurs agents seront informés. La méthode
simple qui peut traiter ces protocoles différents est un point fort de notre approche.

Finalement, dans le Chapitre V nous montrons que notre méthode a un po-
tentiel de généralisation sur les processus de propagation de rumeur dans lesquels
les agents peuvent se trouver dans plus que deux états, par exemple les certains
agents informés peuvent devenir inactifs et s’arrêter à faire des appels.
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Chapter I
Introduction

Randomized rumor spreading is one of the core primitives to disseminate informa-
tion in distributed networks. It builds on the paradigm that nodes call random
neighbors and exchange information with these contacts. This gives highly robust
dissemination algorithms belonging to the broader class of gossip-based algorithms
that, due to their epidemic nature, are surprisingly efficient and scalable. Ran-
domized rumor spreading has found numerous applications (see Section 2), among
others, in the consistency maintenance of replicated databases [DGH+87], to dis-
seminate large amounts of data in a scalable manner [MSF+12], and to organize
any kind of communication in highly dynamic and unreliable networks like wireless
sensor networks and mobile ad-hoc networks [IvS10]. Randomized rumor spread-
ing processes are also used to model epidemic processes like viruses spreading over
the Internet [BBCS05], news spreading in social networks [DFF12b], or opinions
forming in social networks [Kle08].

The importance of these processes not only has led to a huge body of experimen-
tal results, but, starting with the influential works of Frieze and Grimmett [FG85]
and Karp, Shenker, Schindelhauer, and Vöcking [KSSV00] also to a large number
of mathematical analyses of rumor spreading algorithms giving runtime or robust-
ness guarantees for existing algorithms and, based on such findings, proposing new
algorithms.

1 What Is Rumor Spreading

To better understand the idea of the rumor spreading algorithms, let us consider
the following problem. There are n people that can communicate only by pairwise
phone calls. Suppose one person knows some information usually called rumor
but the others do not know who is this initially informed person. How fast can he

1
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effectively broadcast the rumor to all remaining people?
Suppose that each person can call anyone, i.e., they form a complete network.

In the most naive approach, the initially informed person can call all the people
one by one. We naturally suppose that nobody can perform more than one out-
going call simultaneously. Thus, it takes time O(n) to inform all people in the
network. Yet a faster deterministic solution is possible, e.g., the first person calls
two people and asks each one to inform a half of the remaining people, they do the
same etc. In the complete network everybody will be informed in time O(log n)
and it is not possible to make it faster (up to a constant factor) using only pair-
wise communications. Nevertheless, the deterministic method has several main
disadvantages. First, each player must know for whom he is responsible, which
requires additional memory and reduces the scalability of the algorithm. Second,
such an algorithm is not robust against communication failures. If one of the first
communications fails, Θ(n) players will never receive the information.

The both disadvantages may be overcome using the rumor spreading or gossip
process. The basic idea that all nodes act independently of the others: at each
moment they communicate with a neighbor chosen at random trying to forward
or retrieve the rumor. In the most basic and best-studied example of such process
called push protocol ([DGH+87], [FPRU90], etc.) the rumor is propagated as
follows: at each time step, every person that knows of the rumor chooses one of its
neighbors uniformly at random, and informs it of the rumor. The push protocol
needs O(log n) time steps or rounds to inform all people in the network. Such
algorithm is simple and perfectly scalable: players do not need any additional
memory or information about the network topology. Finally, the push protocol is
also robust against communication failures.

In this work we discuss the common properties of different rumor spreading
algorithms. Note that by rumor spreading we mean a distributed algorithm that
spreads information over some network and satisfies the following properties (see
also Chapter II, Section 1.1).

• All nodes are allowed to gossip via pairwise communication only.

• There is some sort of the randomness in the choice of the communication
partners.

• The algorithm should be easily scalable on any size or topology of the net-
work.

• The algorithm spreads the rumor reasonably fast compared to the determin-
istic algorithm.

We introduce two more important examples of rumor spreading. In the pull
protocol in each round, every person that still does not know the rumor chooses
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one of its neighbors uniformly at random and tries to retrieve the rumor from
this person. The push-pull protocol is the composition of two previous one: both
informed and uninformed players make calls trying to forward (push) or to retrieve
(pull) the rumor. We use the word “call” to name the communication. Thus, the
call initiated by informed player is push call, otherwise it is pull call.

Note that in this work we consider only synchronized rumor spreading where
players call simultaneously in discrete time steps called rounds. Nevertheless, the
asynchronous model also exists. In that case each node decides to make a call ac-
cording to its inner clock independent on other nodes. The asynchronous versions
of basic algorithms are presented in literature ([BGPS06], [ACMW14], [FPS12]),
but less studied than synchronous ones. We discuss the difference between the
synchronous and asynchronous model in Chapter II, Section 1.3).

2 Motivation

In this section we discuss some known applications of the rumor spreading pro-
cesses. Although the basic goal of the gossip process is rumor-mongering, i.e.,
efficient broadcast of the information, we can find similar processes in different
settings such as database maintenance or some distributed search protocols. Je-
lasity in his review [Jel11] highlighted three main branches of the applications:
rumor-mongering, anti-entropy protocols and protocols that compute aggregates.
We briefly discuss below these areas as well as the other applications, e.g., peer-
to-peer membership management or modelling of the social networks.

Rumor-mongering: It is the most pure and natural application of rumor spread-
ing. The gossip is used to spread information working by flooding agents in the
network. All epidemic algorithms are perfect examples of rumor-mongering, as
they involve nodes in process in some gossip-based way, rather similar to the way
that a viral infection spreads in a biological population. Ideally they should pro-
duce bounded worst-case loads.

One of the key problem of rumor-mongering is to decide when everybody knows
of the rumor, i.e., when informed players should stop flooding the network. This
stoppage problem has been studied by Karp et al. [KSSV00] who proposed the
median counter rumor spreading protocol. We proposed and analyzed single in-
coming call protocol which is another solution to the stop-problem ([DK17] or
Chapter IV, Section 3). Also, we discussed some further solutions in Chapter VI,
which are much simpler than the median counter rumor algorithm and provide the
very similar performance.
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Anti-entropy protocols: The gossiping can be used for repairing replicated
data. In this case it may be hard to define a rumor, the core idea is that
nodes communicate by comparing replicas and reconciling differences. Demers
et al. [DGH+87] were first who proposed an algorithm for maintenance of repli-
cated databases that does not suffer from centralized control and guarantees that
all updates reach all sites with high probability.

Protocols that compute aggregates: Kempe, Dobra, and Gehrke [KDG03]
were the first who analyzed the protocols for computation of sums, averages, ran-
dom samples, quantiles, and other aggregate functions, which are computable by
fixed-size pairwise information exchanges, by sampling information between the
nodes and combining their values. They showed that these protocols converge
exponentially fast to the true answer when using uniform gossip, i.e., when each
node can contact each other with the same probability.

Another known application of computing the aggregates is peer-to-peer con-
tent search within a decentralized and unstructured network such as Gnutella or
KaZaA. The idea of the search algorithm is the following. Suppose that nodes
of the network contain some set of strings and we are looking for a string which
better corresponds some given search pattern queried from some node. Initially
we communicate a new query containing some pattern to one of the nodes. Pe-
riodically they communicate in gossip manner broadcasting the query. If two
communicating nodes are both aware of the pattern, they compare their current
found results and both keep the one that better corresponds to the search pattern.
The difference from the anti-entropy protocol discussed above is that two different
rumor spreading protocols act simultaneously: rumor-mongering for the queries
and anti-entropy that computes the most relevant result. That makes challenging
the precise analysis of such algorithm.

Nevertheless, this idea has been developed in many works. Stoica et al. [SMK+01]
provide a scalable system that can answer queries even if the network is contin-
uously changing, e.g., by joining and leaving nodes. Voulgaris et al.[VKMvS04]
and Tang, Xu, and Dwarkadas [TXD03] optimized the search process by creating
a semantic overlay, i.e., linking the “semantically close” which are interested in
similar documents.

Peer-to-peer membership management: Although basic probabilistic rumor
spreading protocols are proven scalable for the message dissemination, they rely on
a nonscalable membership protocol, i.e., each node should know every other node.
Ganesh, Kermarrec, and Massoulié [GKM03] proposed a fully decentralized gossip-
based protocol which provides each node with a partial view of the membership.
The core idea is that each new member sends a subscription request to one node
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of the network. This node starts gossiping the request. If a node receives the
request, then it adds the requesting node to its partial list of the membership
with probability depending on the current size of the list, so that the view size is
concentrated with high probability around O(log n), where n is the current number
of nodes in the network. Note that the diameter of the network in this model is
also bounded by O(log n) with high probability.

Mathematical theory of epidemics: The mathematical theory of epidemics
has been started many years before the idea of using epidemics for information
spreading. The logarithmic estimates for the time elapsed between infecting the
first individual and involving the whole population (which is supposed to form a
complete network) are known for a long time [KM27]. The key difference is that
in epidemic theory people substantially study the continuous approximation of
the discrete epidemic process and the corresponding differential equations. Never-
theless the epidemic models can be more sophisticated and allow more states for
each individual (infected, not infected, dead, cured, immune, etc.) than the rumor
spreading processes in which nodes typically have only two states: either informed
or uninformed. A great overview of the area is provided in the book by Norman
T. J. Bailey [Bai57].

The first attempt to connect epidemics and the dissemination of information
refers to Goffman and Newill [GN64]. They proposed to use epidemic processes to
design an information retrieval system as an aid to a given population of scientists.

In one of the core articles on rumor spreading Demers et al. [DGH+87] use
the mathematical theory of epidemics to relate the number of gossip targets to
the fraction of group members who eventually receive the gossip message in the
setting with non-reliable communications, i.e., the probability that an arbitrary
group member will receive the message.

Modelling of social networks: Since rumor spreading protocols are inspired
by human communication, they should simulate reasonably well the behavior of
information in social networks. Also, better understanding the propagation of
information in social networks will open new ways in the notification systems from
advertising to alerting.

In the work [DFF12c] some numerical results were obtained for the case of
preferential attachment graph, random attachment and complete graph. As a
result, complete and random-attachment graphs showed the same rate of rumor
spreading. Orkut network is described very well by rumor spreading in preferential
attachment graph which is a little faster than two previous cases. But in Twitter
network the rumors spread surprisingly much faster than all previous cases.
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3 State of the Art

One of the core problem for studying rumor spreading protocols is to compute
the spreading time, i.e., the time elapsed since the appearance of the rumor and
before all nodes are informed. Since the spreading time is a random variable, we
distinguish between its expectation, i.e., average spreading time, and guaranteed
spreading time – the value that bounds the spreading time with high probability. In
this section we summarize the known results for the synchronous rumor spreading
in the complete or dynamic graphs with n vertices being the starting point of our
work.

Classic protocols, robustness: We start from the most basic push, pull, and
push-pull protocols. We recall that in the push protocol, in each round each in-
formed node calls a random node and sends a copy of the rumor to it. In the pull
protocol, in each round each uninformed node calls a random node and tries to
obtain the rumor from it. In the push-pull protocol, all nodes contact random ones
and send the rumor in the direction needed.

For all three protocols precise results are well-known The best known bound
for the push protocol was obtained by Doerr and Künnemann [DK14]:

blog2 nc+ lnn− 1.116 ≤ E[T ] ≤ dlog2 ne+ lnn+ 2.765 + o(1).

Robustness properties for the basic push protocol against the communication
failures are known. Doerr, Huber, and Levavi [DHL13] analyzed the rumor spread-
ing process in which each communication can be lost with constant probability p.
They proved that the rumor spreading time differs from the bound above by a
constant factor depending on p (see the second row of Table 1). Some other theo-
retical works study the robustness against the Byzantine failures1. Hence, Malkhi
et al. [MRRS01] showed that if b nodes suffer from the Byzantine failure, then it
is possible to inform all remaining nodes b times slower than in the reliable case
using the simple idea that a node becomes informed if it receives the same rumor
from b+ 1 different sources.

For the push-pull protocol we do not know any analysis precise apart from an
additive constant. Nevertheless, Karp et al. [KSSV00] estimated the guaranteed
spreading time by T = log3 n ± O(log log n). They also presented the median-
counter algorithm – an improved version of the classic push-pull protocol having
the same runtime in the complete graph, but guaranteeing that all calls will be
stopped a few rounds later after the last node is informed. They showed that

1Byzantine fault tolerance refers to the well-known Byzantine Generals’ Problem. In the
rumor spreading we suppose that some nodes do not respect the protocol trying to sabotage the
rumor spreading. Clearly, the node that initiates the rumor spreading should be reliable
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no transmission failures calls fail indep. with prob. p ∈ (0, 1)

push
protocol

E[T ] = log2 n+ lnn±O(1)
blog2 nc+ lnn− 1.116 ≤ E[T ] ≤
dlog2 ne+ lnn+ 2.765 + o(1) [DK14]

E[T ] = log1+p n+ 1
p lnn±O(1)

T = log1+p n + 1
p lnn ± o(log n) whp.

[DHL13]

pull
protocol

E[T ] = log2 n+ log2 lnn±O(1) E[T ] = log1+p n+ 1
ln 1

1−p
lnn±O(1)

push-
pull
protocol

E[T ] = log3 n+ log2 lnn±O(1)
T = log3 n ± O(log log n) whp.
[KSSV00]

E[T ] = log1+2p n+ 1
p+ln 1

1−p
lnn±O(1)

Table 1: New (red) and previous-best results for rumor spreading time T of the
classic rumor spreading protocols in complete graphs on n vertices. The first line of
each table entry contains the result that follows easily from the method proposed
in this work, the second line states the best previous result (if any).

assuming up to F node failures, the median-counter algorithm informs all but
O(F ) nodes in O(lnn) rounds with high probability.

Surprisingly, the basic pull protocol is not really studied in the literature despite
its simplicity. Anyway, using the same arguments as in [KSSV00], one can easily
see that the guaranteed spreading time for the basic pull protocol is equal to
log2 n+O(ln lnn).

Multiple calls: The variation of the basic push protocol when nodes are al-
lowed to make more than one call was first mentionned by Pittel [Pit87] by the
remark that his original proof is suitable for the setting when each informed node
makes a constant number c ≥ 1 simultaneous independent random calls. The
guaranteed rumor spreading time in such setting is logc n + c−1 lnn + O(1). A
general case was analyzed by Panagiotou, Pourmiri, and Sauerwald [PPS15] who
proposed a variation of the classic protocols in which the number of calls (always
to different nodes) each node performs when active is a positive random variable
R. They mostly assume that for each node, this random number is sampled once
at the beginning of the process. For the case that R has constant expectation
and variance, they show that the rumor spreading time of the push protocol is
log1+E[R] n+ 1

E[R]
lnn± o(log n) with high probability and that the rumor spread-

ing time of the push-pull protocol is Ω(log n) with probability 1− ε, ε > 0. When
R follows a power law with exponent β = 3, the push-pull protocol takes Θ( logn

log logn
)

rounds, when 2 < β < 3, it takes Θ(log log n) rounds.

Dynamic networks: Clementi et al. [CCD+16] have shown that when the net-
work in each round is a newly sampled Erdős-Rényi G(n, p) random graph for
some fixed p, then with high probability the rumor spreading time is Θ(log n/(p̂)),
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where p̂ = min{p, 1/n}. For the more general case that the network is edge-
Markovian graph2 with constant parameters p, q, Clementi et al. have shown that
the rumor spreading time for the push protocol is Θ(log n), even if the network is
disconnected at every time step.

Answering single calls only: While in all protocols above (apart from the one
of [PPS15]) it is assumed that each node can call at most one other node per round,
we tacitly suppose in the pull and push-pull protocols that nodes can answer all
incoming calls. For complete graphs with n vertices, the classic balls-into-bins
theory3 immediately gives that in a typical round there is at least one node that
receives Θ( logn

log logn
) calls. So unlike for the outgoing traffic, nodes are implicitly

assumed to be able to handle very different amounts of incoming traffic in one
round.

The first to discuss this issue are Daum, Kuhn, and Maus [DKM15] (also the
SIROCCO 2016 best paper). Among other results, they show that if only one
incoming call can be answered and if this choice is taken adversarially, then there
are networks where a previously polylogarithmic rumor spreading time of the pull
protocol becomes Ω̃(

√
n). If the choice which incoming call is answered is taken

randomly, then things improve and the authors show that for any network, the
rumor spreading times of the pull and push-pull protocol increase by at most a
factor of O(∆(G)

δ(G)
log n) compared to the variant in which all incoming calls are

answered, where ∆(G) and δ(G) denote the largest and smallest degree of G.

Another possible solution was proposed by Kiwi and Caro [KC17]: nodes keep
all extra pull request in queues and reply them later. They showed that there
might be a very significant performance loss if messages are processed at each
network node in first-in first-out order. In the worst case the slowdown is linear
on the size of the buffer. If we suppose that the buffer is of infinite size, then
Kiwi and Caro showed that there exists a maximum degree 4 graph, such that the
guaranteed spreading time is O(n lnn) for the basic pull protocol and Ω(1)2n/3 for
the pull protocol in the unbounded buffer model.

Note that both results consider the arbitrary graphs. Apart [DK17], we do not
know any tight analysis of these protocols in the complete graphs.

2i.e., a dynamic graph that every time step evolves by the following rule: any existent edge
disappears independently with probability q and any nonexistent one appears independently
with probability p. Thus, a newly sampled G(n, p) random graph is the edge-Markovian one
with q = 1− p.

3The balls-into-bins problem involves m balls and n bins. Each time, a single ball is placed
into one of the bins uniformly at random. The problem is what is the maximum load, i.e., the
number of balls in a single bin after all balls are in the bins. For the case m = n, with high
probability the maximum load is logn

log logn · (1 + o(1)) [KSC78].
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Multiple outgoing calls
E[R] = Θ(1), Var[R] = O(1)

Single incoming call

push
protocol E[T ] = log1+E[R] n+ 1

E[R] lnn±O(1)

T = log1+E[R] n + 1
E[R] lnn ± o(log n)

whp. [PPS15]

—

pull
protocol

—
E[T ] = log2−1/e n+ log2 lnn±O(1)

T = O(log2 n) whp. [DKM15]

push-
pull
protocol

E[T ] = log1+2E[R] n+ log1+` lnn±O(1),
if ` > 0, otherwise,
E[T ] = log1+2E[R] n + 1

E[R]−lnP[R=0] ·
lnn±O(1).
∀ε > 0, T ≥ Ω(log n) w.p. 1−ε [PPS15]

E[T ] = log3−2/e n+ 1
2 lnn±O(1)

without stopping time;
E[T ] = log3−2/e n+ 1

2 lnn±O(1)
for the stopping time R = log3−2/e n

Table 2: New (red) and previous-best results for the spreading time T of the
variations of the classic rumor spreading protocols in complete graph on n vertices.
By ` for the multiple outgoing call push-pull protocol, we denote the smallest
nonnegative integer such that P[R = `] > 0.

4 Our Contribution

The typical analysis of a rumor spreading protocol in the papers cited above is
based on the same idea, but uses different technical arguments. The idea is that
any reasonable rumor spreading process in the complete graph can be split into two
parts or phases with different behavior. While most of the network is uninformed,
rumor spreads exponentially, i.e., each round the number of informed nodes multi-
plies by almost a constant. This is the exponential growth phase. Then, since most
of the nodes are informed, the rumor spreading slows down. This phase is called
shrinking phase, because in one of the typical scenarios, the number of uninformed
nodes shrinks by almost a constant each round.

So far, each rumor spreading algorithm on each network topology was analyzed
with individual arguments relying heavily on the particular rumor spreading algo-
rithm. Even in fully connected networks (complete graphs), the existing analyses
for the basic push protocol [FG85, Pit87, DK14], the push protocol in the presence
of transmission failures [DHL13], the push protocol with multiple calls [PPS15],
and the push-pull protocol [KSSV00] all employ highly specific arguments that
cannot be used for the other processes. Note that the typical analysis of a rumor
spreading protocol in the papers cited above needs between six and eight pages of
proofs. Clearly, this hinders a faster development of the field.

In this work, we make a big step forward towards overcoming this weakness.



10 CHAPTER I. INTRODUCTION

We propose a general analysis method for all symmetric and memoryless rumor
spreading processes in complete networks. It allows to easily analyze all rumor
spreading processes mentioned above and many new one. The key to this generality
is showing that the rumor spreading times for these protocols are determined by
the probabilities pk of a new node becoming informed in a round starting with
k informed nodes together with a mild bound on the covariance on the indicator
random variables of the events that new nodes become informed. Consequently,
all other particularities of the protocol can be ignored. The precise definition
of phases, and also the bounds for the covariance numbers ck are discussed in
Chapter II, Section 2. Despite this generality, our method gives bounds for the
expected rumor spreading time that are tight apart from an additive constant
number of rounds. Such tight bounds so far have only been obtained once, namely
for the basic push protocol [DK14]. We use our method to obtain the following
particular results.

Classic protocols: For the three basic push, pull, and push-pull protocols, both
in the fault-free setting and when assuming that calls fail independently with
probability 1 − p, our method easily yields the expected rumor spreading times
given in Table 1. The comparison with the previous-best result (also given in the
table) is not immediately obvious since most previous works obtained bounds that
hold with high probability 4 (with probability 1 − o(1) or better). Conversely,
we prove that the probability that the rumor spreading times deviates from its
expectation by more than r rounds is exponentially small in r. Nevertheless,
choosing r = ω(1), we see that our results also hold with high probability.

Note that for half of the settings regarded in Table 1 no previous result existed.
In particular, we are the first to find that the double logarithmic shrinking phase
observed by Karp et al. [KSSV00] for the pull and push-pull protocols disappears
when messages fail with constant probability. This increases the message complex-
ity of the push-pull protocol from the theoretically optimal Θ(n log log n) value to
an order of magnitude of Θ(n log n) as observed also for the push protocol (see the
discussion following the proof of Theorem IV.6 for more details).

Multiple calls: The model of Panagiotou, Pourmiri, and Sauerwald [PPS15]
makes sense when assuming that nodes have generally different communication
capacities, i.e., the number of calls each node performs when active is defined
at the beginning of the process. To model momentarily different capacities, e.g.,

4The meaning of “with high probability” is slightly different in different papers. Thus,
it means with probability at least 1 − O(n−c), where c is an arbitrary constant for Karp et
al. [KSSV00], and with probability 1−O

(
n−h(n)

)
with h(n) = o(1) arbitrary slow for Doerr et

al. [DHL13].
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caused by loads with other tasks, we assume that the random variable is resampled
for each node in each round. We also allow R to take the value 0. Again for the
case E[R] = Θ(1) and Var[R] = O(1), we show that the expected rumor spreading
time of the push protocol is log1+E[R] n+ 1

E[R]
lnn±O(1) (see Table 2). The rumor

spreading time of the push-pull protocol depends critically on the smallest value `
which R takes with positive probability. If ` = 0, that is, with constant probability
nodes contact no other node, then there is no double exponential shrinking and the
expected rumor spreading time is log1+2E[R] n + 1

E[R]−lnP[R=0]
lnn± O(1). If nodes

surely perform at least one call, then we have a double exponential shrinking
regime and an expected rumor spreading time of log1+2E[R] n+ log1+` lnn±O(1).

Dynamic networks: As a proof of concept, we also show that our method is
capable of analyzing dynamic networks when the dynamic is memory-less. To see
how our method copes with more dependent network structures, we regard the case
that the network in each round is a newly sampled 2-regular5 simple graph. For this
scenario, we show that the push protocol has an expected rumor spreading time of
log2 n+ log4 n±O(1), the pull protocol takes log2 n+ log2 lnn±O(1) rounds, and
the push-pull protocol finishes after log5/2 n+log2 lnn±O(1) rounds. Interestingly,
the push protocol profits from the dynamicity of the network (compared to the
complete graph), whereas the push-pull protocol needs a longer time by a constant
factor.

For the case when the network is a newly sampled G(n, p) random graph, we
sharpen the result of Clementi et al. [CCD+16] for the most interesting regime that
p = a

n
, a is a positive constant. For this case, we show that the expected rumor

spreading time is log2−e−a n + 1
1−e−a ln(n) + O(1). Our tail bound P[|T − E[T ]| ≥

r] ≤ A′ exp(−α′r) for suitable constants A′, α > 0 implies also the large deviation
statement of [CCD+16] (where for Θ(log n) deviations in the lower tail the trivial
log2(n) lower bound holding with probability 1 should be used).

Answering single calls only: We finally use our method to discuss an aspect
mostly ignored by previous research. While in all protocols above (apart from the
one of [PPS15]) it is assumed that each node can call at most one other node per
round, it is tacitly assumed in the pull and push-pull protocols that nodes can
answer all incoming calls. For complete graphs on n vertices, the classic balls-
into-bins theory immediately gives that in a typical round there is at least one
node that receives Θ( logn

log logn
) calls. So unlike for the outgoing traffic, nodes are

implicitly assumed to be able to handle very different amounts of incoming traffic
in one round.

5A regular graph is a graph where each vertex has the same degree.
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With our generic method, we can easily analyze this aspect of rumor spreading
on complete graphs. We consider the process proposed by Daum et al. [DKM15],
when only one incoming call can be answered and this choice is taken randomly.
While for the pull protocol only the growth phase mildly slows down, giving a
total expected rumor spreading time of E[T ] = log2−1/e n + log2 lnn ± O(1) (see
the second row in Table 2), for the push-pull protocol also the double logarithmic
shrinking phase breaks down and we observe a total runtime of E[T ] = log3−2/e n+
1
2

lnn±O(1) and, similarly as for the push-pull protocol with transmission failures,
an increase of the message complexity to Θ(n log n). The reason, as our proof
reveals, is that when a large number of nodes are informed, then their push calls
have little positive effect (as in the classic push-pull protocol), but they now also
block other nodes’ pull calls from being accepted. This problem can be overcome
by changing the protocol so that informed nodes stop calling others when the
rumor is log3−2/e n rounds old. The rumor spreading time of this modified push-
pull protocol is E[T ] = log3−2/e n+ log2 lnn±O(1) and, when halted at the right
moment, this process takes Θ(n log log n) messages.

5 Plan of the Work

We start by providing an extended state of the art for rumor spreading processes
in Chapter II, Section 1. We make a brief overview of known facts about the
rumor spreading. In particular, we discuss some subtle details of gossiping in the
complete graph in Section 1.5 of the same chapter. Then, in Chapter II, Section 2,
we provide the complete formulation of our method of analysis. Our main result
is contained in Theorem II.14, II.15, and II.16. These theorems provide three
criteria of the different behavior of the rumor spreading process depending only on
success probabilities and covariance numbers which are the global characteristics
depending only on the number of currently informed nodes (see Definition II.12).

In Chapter III, we do all necessary technical work to prove Theorems II.14, II.15,
and II.16. For each theorem we separate upper and lower bounds to the corre-
sponding sections.

In Chapter IV, we justify the strength of our method by analyzing different
variants of push, pull and push-pull rumor spreading protocols and adjusting the
existing runtime estimates in many cases (see Table 1 and 2). The classic versions
of the protocols are discussed in Section 1, the protocols with possible transmission
failures – in Section 2.1, the protocols allowing multiple outgoing call per node –
in Section 2.2. We discuss the classic protocols running on the dynamic graphs in
Section 2.3. Finally, we discuss the limitation on the number of incoming calls in
Section 3.
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In Chapter V, we discuss how is it possible to overcome the memorylessness
limitation of our method. We show that our method might be generalized to the
analysis of multi-parametric protocols that require a constant amount of memory
in addition to the number of informed nodes for the description of their states.
In particular, we propose several of protocols which cannot be analyzed by the
current version of our method because the probability numbers depend not only
on the number of informed nodes but also from one additional parameter. In
Section 3, we provide the exponential growth conditions for the multi-parametric
rumor spreading. Unlike the exponential growth and shrinking conditions from
previous chapters, these ones are mostly a plan of the lemmas that should be
proven to conclude the rumor spreading time.

Finally, in Chapter VI, we provide a brief outlook of our work and discuss the
problems that are left open.





Chapter II
Overview of Gossip Protocols

1 Classic Results

In this section we briefly review what is known about the rumor spreading pro-
cesses. We start by clarifying in which processes refer to rumor spreading and
stating three basic examples – push, pull, and push-pull protocols. Then, we dis-
cuss the difference between synchronous and asynchronous rumor spreading. We
provide some classic results for different network topologies and for both models
of synchronization, that better illustrates the difference between them. Finally
we consider the case of the rumor spreading in the fully connected network. We
discuss the ideas of the proofs for the known estimates of the runtime explaining
why the precise analysis of the rumor spreading time in the complete graph can is
a challenging problem.

1.1 Definition of Rumor Spreading

Despite the intuitiveness, it is hard to define precisely which processes refer to
the rumor spreading. We have not found any general definition in the literature,
so let us propose the following scheme. The rumor spreading is a special class of
dissemination processes in the network. By the dissemination process we mean
the following.

Definition (dissemination process). Let G denote a simple and connected graph
with n vertices. Initially one vertex of G knows the rumor that has to be conveyed
to every other vertex of G. Each node i is controlled by some algorithm Ai which
determines how node i spreads the rumor to its neighbors in G. The spread time
or runtime is the time elapsed before every node knows the rumor.

15
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The set of algorithms Ai determines the concrete process. Very often Ai are the
same, so that the behavior of any node determines the whole process. Intuitively,
if the behavior of Ai is similar to the “real world gossiping”, then they determine
a rumor spreading process. More formally, the rumor spreading is a dissemination
process which satisfies certain requirements.

Definition (Rumor spreading process). We call dissemination process gossip-based
(or rumor spreading) if the following properties are satisfied.

(i) All interactions between nodes are pairwise. Each node can participate in
only limited number of simultaneous communications.

(ii) There is some form of randomness in the choice of communication partners.

(iii) The information exchanged during these interactions is of bounded size.

(iv) The interaction frequency is low compared to typical message latencies so
that the protocol cost is negligible.

The nature of the requirements is the following. First, (i) forbids any node
to instantly broadcast the rumor to all its neighbors. Thus, communications re-
mind the phone calls, hence we name them so.1 Second, (ii) requires the rumor
spreading to be nondeterministic. Due to this condition the reasonable gossip
protocols are simpler and better scalable than their deterministic competitors. In
addition randomized gossip processes are robust, i.e., they work well even if reli-
able communication is not assumed or there are some node failures in the network
(see [FPRU90]). By (iii) and (iv), the duration of each communication is negligible,
i.e., no overflow is possible (see discussion in the Section 3).

In this work we are interested by the runtime analysis for the different rumor
spreading protocols. By the runtime or rumor spreading time we mean the time
elapsed since the rumor appeared in the network until all nodes know of the rumor
(see Definition II.13 for the synchronous model). The rumor spreading time is a
random variable, so we are mostly interesting in the following characteristics.

Definition (Guaranteed and average rumor spreading times). Guaranteed spread-
ing time is the smallest deterministic number t such that for any choice of initially
informed vertex, the whole graph will be informed with high probability after the
time t. Worst average spreading time is the smallest deterministic number t such
that for every choice of initially informed vertex, the expected time until the whole
graph is informed is at most t.

1 In most of the existing works, while the number of outgoing calls performed by a single
node is limited, it is supposed that any node can reply all incoming requests. We discuss this
assumption in Chapter IV, Section 3.
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Remark.

(i) By high probability we understand the probability at least 1− o(1).

(ii) If it does not creates the ambiguity especially for the homogeneous rumor
spreading studied so far, we will omit the word “worst” and say simply av-
erage or expected spreading time.

It is worth to mention that the definition above is suitable for both synchronous
and asynchronous models. The main difference between them is the following.

Synchronous model: Suppose that all nodes share a clock which rings at the
discrete time steps. When the clock rings, a new round begins and nodes commu-
nicate. All communications during the same round are considered simultaneous.
Nevertheless, simultaneous communications are independent, i.e., if x calls y and
y calls z in the same round but only x knows the rumor, then z will remain un-
informed at the end round. If we assume that the time gap between rounds is 1,
then the rumor spreading time is simply the number of rounds passed before all
nodes are informed.

Asynchronous model: Each node decides to make a communication indepen-
dently from the others according to its inner clock typically represented by a
Poisson random variable of rate 1 [ACMW14] (see Section 1.3 of this chapter).
Such model is also known as Richardson’s model [Ric73] after the first who solved
the problem proposed by Eden [Ede61] about the asynchronous rumor spreading
on the square lattice.

1.2 Independent Random Phone-Call Model
Examples of Rumor Spreading Processes

In both synchronous and asynchronous models, the most classic gossip processes
refer to the independent random phone-call model [DGH+87], [BEPS14], [PPS15],
where each node chooses neighbors to call uniformly at random and independently2

from other nodes. Within each call the rumor spreads in a natural way, i.e., if the
call is established between informed and uninformed node, then one of them for-
wards the rumor to another. If both nodes are of the same status, then nothing

2Another possible behavior is quasi-random rumor spreading: we assume that each node has
a cyclic list of its neighbors. Nodes make calls with respect to the order of the list starting from
a random position on it. Doerr et al. [DFS08] showed that that, irrespective of the orders of the
lists, the quasi-random push protocol succeeds to inform all nodes of the complete graph of size
n in time O(log n).
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happens. To distinguish two different mechanisms of informing we say that out-
going call of an informed node is push call. Otherwise it is a pull call. Restricting
the rumor spreading protocol to push-only or pull-only call mechanisms, we obtain
push and pull protocol correspondingly. If both call mechanisms are allowed, we
say that the rumor spreading follows the push-pull protocol.

Definition. Push protocol is the rumor spreading process in which only informed
nodes can make calls. Basic push protocol is the synchronous push protocol in
which each informed node makes exactly one call per round according the inde-
pendent random phone-call model.

Definition. Pull protocol is the independent call gossip process in which only
uninformed nodes can make calls. Basic pull protocol is the synchronous pull
protocol in which each uninformed node makes exactly one call per round according
the independent random phone-call model.

Definition. Push-pull protocol is the independent call gossip process in which
each round every node is allowed to make calls. Basic push-pull protocol is the
synchronous push-pull protocol in which each node makes exactly one call per
round according the independent random phone-call model.

The basic versions of push, pull, and push-pull protocols are the simplest mod-
els of rumor spreading processes. However, the application of basic protocols is
often challenging and leads to certain generalizations.

Transmission failures: Usually the communications are not reliable. This en-
vironment can be modeled by supposing that each call can be lost with respect to
some independent Bernoulli random variable. Doerr et al.[DHL13] analyzed the
push protocol where each call can be lost with the same probability 1 − p. In
Chapter IV, Section 2.1, we also discuss the pull and push-pull protocols.

Multiple calls: Different nodes may have different connection capacities and
might participate in different number of communications per round. Panagiotou et
al. [PPS15] proposed the gossip process where each node can call a random number
of peers per round with respect to some distribution shared by all nodes. They
considered two versions of this process. In the first one, these random numbers
are sampled in the beginning and stay constant for each node. In the second one,
the number of communications re-samples each round for each node. We discuss
the second version in Chapter IV, Section 2.2.
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Stoppage problem for push calls: In the basic push and push-pull protocols,
informed nodes make calls eternally regardless if everybody knows the rumor or
not. One of the possible solution is the median counter algorithm [KSSV00] –
a variance of the push-pull protocol in which informed nodes terminates the ru-
mor spreading since they are principally called by informed nodes rather than by
uninformed ones.

Multiple incoming pull calls: For the basic pull and push-pull protocols we
suppose that if informed node receives several pull requests in one round, then it
has enough time to forward the rumor to all its interlocutors. Sometimes it is worth
to limit the number of transactions per node in one round by constant. Daum et
al. [DKM15] proposed the process where all extra pull request are dropped that
is a natural idea for the phone-call model. In Chapter IV, Section 3, we refined
their analysis for the complete graph.

1.3 Asynchronous Rumor Spreading

Now we discuss the relations between spreading time for the synchronous and
asynchronous rumor speading. The fundamental question is what are the minimum
and maximum spreading times in arbitrary n-vertex graph G? The answer was
given by Acan, Collevecchio, Mehrabian, and Wormald [ACMW14]. Considering
the basic push-pull protocol, they obtained the tight bounds, up to the constant
factor cited in this section as Theorems II.1—II.4.

For the guaranteed and average spreading time we will follow the notation of
Acan et al. Thus, gsta(G) and gsts(G) mean the guaranteed spreading time of
graph G in asynchronous and synchronous modes, respectively. Correspondingly,
wasta(G) and wasts(G) – the worst average spreading time of graph G in asyn-
chronous and synchronous modes. Their first result compares the guaranteed and
the worst average spreading time in the asynchronous setting.

Theorem II.1. The following holds for any n-vertex graph G.

(1− 1/n)wasta(G) ≤ gsta(G) ≤ ewasta(G) lnn,

wasta(G) = Ω(lnn), wasta(G) = O(n),

gsta(G) = Ω(lnn), gsta(G) = O(n lnn).

Moreover, these bounds are asymptotically best possible, up to the constant factor.

The same apart of the Ω(lnn)-lower bounds holds for the synchronous rumor
spreading.
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Theorem II.2. The following holds for any n-vertex graph G.

(1− 1/n)wasts(G) ≤ gsts(G) ≤ ewasts(G) lnn,

wasts(G) = O(n),

gsts(G) = O(n lnn).

Moreover, these bounds are asymptotically best possible, up to the constant factor.

The relationship between the asynchronous and synchronous variants is stated
in two following theorem.

Theorem II.3. For any G we have gsta(G) = O(gsts(G) lnn), and this bound is
best possible.

Theorem II.4. For any α ∈ [0, 1[ we have

gsts(G) ≤ n1−α +O
(
gsta(G)n(1+α)/2

)
.

Corollary II.5. We have

gsts(G)
gsta(G)

= Ω(1/ log n), gsts(G)
gsta(G)

= O
(
n2/3

)
,

and the left-hand bound is asymptotically best possible, up to the constant fac-
tor. Moreover, there exist infinitely many graphs for which this ratio is exactly
Ω
(
n1/3(log n)−4/3

)
.

We can see that the spreading time for the synchronous and asynchronous
environment may significantly differ (see Corollary II.5). In the next section we
will provide some examples illustrating this phenomenon. From wide point of view,
two main factors should be taken into account when we turn from synchronous
to the asynchronous rumor spreading. First, calls can no longer be simultaneous,
that can accelerate the rumor spreading. (Let x is informed and y, z are not. If x
talks to y and after that y talks to z, then both y and z becomes informed. If the
same event happened in one round of the synchronous rumor spreading, then only
y would be informed.) Second, since all nodes decide to make call independently
according to some random timer, it is very likely that one of the nodes waits for a
long time before making the first call. For this reason, the asynchronous push-pull
protocol is slow if G is a star graph (see the corresponding example below).

1.4 Path, Square Lattice, Star, Necklace

In this section we illustrate the difference between different modes of the rumor
spreading providing some classic results for different graphs.

Before getting started with the concrete examples, we recall the most general
upper bound for the spreading time proved by Feige et al. [FPRU90].
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Theorem II.6. Consider a synchronous basic push protocol in graph G with n
vertices. With probability at least 1 − 1/n, all nodes in G are informed after
O(∆(G)(diam(G) + lnn)). 3

Sketch of the proof. The proof is based on the following simple idea. Consider two
adjacent nodes x and y. If one of them is informed, then the probability that the
rumor traverses the edge xy is at least 1/∆(G). Therefore, the probability that
the rumor will not traverse the path of the length k in 3∆(G)(k + 2 lnn) rounds
is bounded by the Chernoff bound by 1/n2 (using the same arguments as in the
proof of Proposition II.7). Since the distance from the initially informed node to
any other vertex is at most diam(G), the probability that the rumor does not reach
all vertices in time O(∆(G)(diam(G) + lnn)) is bounded by 1/n.

The examples below show that this bound is tight. Also note that the same
upper bound holds for the basic pull and push-pull protocols since we did not
use in the proof the exact mechanism of calls. As for the lower bound, Feige et
al. [FPRU90] proved that the guaranteed rumor spreading time at least lnn, that
is tight within a constant factor since O(lnn) iterations suffices for the complete
graph.

Example 1. Path

The simplest example is when G is a path of length n. Theorem II.6 claims that
the guaranteed rumor spreading time is O(n). This bound is tight.

Proposition II.7. Let G be a path of length n. For any of synchronous basic
push, pull, and push-pull protocols, the guaranteed rumor spreading time is equal
to Θ(n).

Proof. For concreteness, consider the push protocol. Observe that the set of in-
formed nodes is always a subpath of G, and at any round the path elongates by
at most one node from each end. Therefore, the rumor spreading time is at least
n/2.

Without loss of generality, suppose that the initially informed node is one of
G’s endpoints, so that the rumor spreads only in one direction. Let Xi be a random
indicator variable for an event that at round i rumor moves forward. Therefore,
the rumor spreading time is the smallest t such that X1 + . . . + Xt ≥ n − 1. Let
X := X1 + . . .+X4n. Since P[Xi = 1] = 1/2 for any i, we have E[X] = 2n. Since
all Xi are independent, we have Var[X] = O(n). Applying Chebyshev’ inequality
to X we obtain

P[|X − 2n| ≥ n] ≤ Var[X]
n2 = O

(
1
n

)
.

3By ∆(G) we denote the maximum degree of the vertices in G. diamG is diameter of G.
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Figure 1: The regular square lattice. All nodes in the horizontal bold path con-
taining the initial node get informed after O(

√
n) rounds with high probability.

Then, each of these nodes acts an initial node for the vertical path containing this
node, so that the rumor spreading time is O(

√
n) with high probability.

Therefore, after 4n rounds at least n nodes will be informed with probability
O
(

1
n

)
.

Acan et al. [ACMW14] showed that same bounds holds for the asynchronous
rumor spreadings. The proof is similar to the one for the synchronous case. Again,
we suppose that the initially informed node is on of endpoints of G. The basic idea
is that the spreading time T is equal to

∑
e∈E T (e), were T (e) is the communication

time via e edge e defined as follows. Let t1 be the first time that one of e’s endpoints
gets the rumor, and t2 is the first time after t1, when a call goes through e. Then,
T (e) := t2 − t1. Since the nodes make calls according to independent memoryless
timers (the exponential random variables of rate 1 are used as timers), T (e) is
bounded by the minimum of two random exponential variables. Since the path of
length n has n − 1 edges, both guaranteed and expected rumor spreading times
are equal Θ(n).

Example 2. Square Lattice

Another classic example for the rumor spreading is square lattice (see Figure 1)
with n vertices (we suppose that n is a square number). The diameter of such graph
is
√
n and the maximum degree is 4. So, Theorem II.6 claims that guaranteed

rumor spreading time is O(
√
n). It is easy to see that the result is tight up to the

constant factor.

Proposition II.8. Let G be
√
n×√n square lattice. For any of synchronous basic

push, pull, and push-pull protocols, the guaranteed rumor spreading time is equal
to O(

√
n).
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The lower bound for the spreading time is trivial – to inform all nodes we need
at least to forward the rumor through a horizontal path containing the initially
informed vertex. The proof for the upper bound follows the same steps as the
proof of Theorem II.6.

Proof. Any node can send the rumor to at most 4 directions. Consider a hori-
zontal path containing an initially informed node. By the same arguments as for
Proposition II.7, all nodes in any horizontal or vertical path will be informed not
later than O(

√
n) rounds after that first node in this path has been informed.

Since, after O(
√
n) rounds there will be at least one informed node in each of

√
n

vertical paths in graph, the rumor spreading time depends on the longest rumor
spreading time in these paths. From the proof of Proposition II.7 follows that for
some c > 0, the probability that one path is not informed after c

√
n rounds is at

most 1/n. Since there are
√
n vertical path which we can consider independently,

the probability that after O(
√
n)+c

√
n rounds at least one node stays uninformed

is bounded by O(1/n).

The guaranteed rumor spreading time in the asynchronous model is alsoO(
√
n),

the result was first proved by Richardson [Ric73]. The proof is based on the similar
idea to the proof for the asynchronous rumor spreading in the path (see Exam-
ple 1).

The most recent results concerning synchronous rumor spreading in the square
lattice were obtained by Fatès and Gerin [FG09].They considered a different pro-
cess, when a node gets involved with probability α if one of its neighbors is already
involved4. They showed that the worst expected runtime for such process in n-
nodes square lattice is bounded between

√
n

8α
and 3

√
n
α

.

Example 3. Star

Star is a perfect example to illustrate the difference between synchronous push,
pull, and push-pull protocols. In addition, the reduction to the coupon collector
problem (see Appendix C), which is also a powerful idea for the analysis of the
rumor spreading in the complete graph, first appears in this example. The star
G with n vertices has n − 1 leaves and a central vertex that is adjacent to every
other vertex.

Consider the synchronous rumor spreading first. Suppose that the central
vertex is informed initially. In the pull process, all leaves will be informed in one
round, because each leaf can call only the central vertex. Unlike, in the push

4 If α = 1/4, then the process almost coincides with the synchronous pull protocol apart from
the side-effects on the outer boundary of the graph. For other values of α it is similar to the pull
protocol with transmission failures or multiple calls with the corresponding protocol parameters.
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protocol, only the central node is active and makes one call per round, trying to
reach all leaves. This is equivalent to the coupon collector problem with n − 1
coupons [FGT92]. Therefore, the spreading time for the push process is equal to
Θ(n lnn) rounds.

Suppose now that initially informed node is a leaf. In the push protocol, the
central vertex will be informed next round, then the rest of the graph will be
informed after Θ(n lnn) rounds with high probability. In the pull process, the
average number of rounds until the central vertex gets informed is Θ(n). However,
only after Ω(n) rounds the central vertex gets informed with high probability. The
probability at least 1 − O(1/n) can be guaranteed only after Θ(n log n) rounds.
The pull calls make all the leaves informed in the next round after informing the
central vertex.

For the push-pull protocol, the rumor spreading time is equal to 1, if the
central vertex is informed initially, otherwise it is equal 2. Therefore, we have the
following.

Proposition II.9. Let G be a star graph with n vertices. Consider one of the
basic synchronous push, pull, and push-pull protocols.

The guaranteed rumor spreading time for the push protocol in G is equal to
Θ(n lnn) and the worst average one is equal to Θ(n lnn).

The guaranteed rumor spreading time for the pull protocol in G is equal to Ω(n)
and the worst average one is equal to Θ(n).

Both guaranteed and worst average rumor spreading times for the push-pull
protocol in G are equal to 2.

Note that Acan et al. showed that both guaranteed and average rumor spread-
ing times for the asynchronous push-pull protocol in G are equal to Θ(lnn) using
the argument that since the central node is informed, the remaining spreading time
is equal to the time the last vertex makes its first call, that is equal to Θ(lnn)
with high probability.

Example 4. Necklace graph

The last example shows the difference between synchronous and asynchronous
push-pull rumor spreading. The necklace graph is constructed as in Figure 2. It
consists of m connected diamonds, each diamond consists of k edge-disjoint paths
of length 2 with the same end vertices. Acan et al. [ACMW14] claim the following.

Proposition II.10. Let G be a necklace graph with m diamonds of k paths each.
Then the worst average rumor spreading time in G is equal to O(ln(km)+mk−1/2)
for the asynchronous push-pull process.
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Sketch of the proof. Consider one of the diamonds in G and suppose that a vertex
with degree 2k is informed. For an edge e, let T (e) denote the communication time
via e (see Example 1 for the definition). For any e, one of endpoints has degree k
and another has degree 2. Then T (e) is stochastically dominated by an indepen-
dent exponential random variable with mean 2. Therefore, the time Td to spread
the rumor from one endpoint of the diamond to another is stochastically domi-
nated by min{X1 + Y1, . . . , Xk + Yk}, where Xi and Yi are independent Exp(1/2)
random variables. Then, by some elementary computations one can obtain that
E[Td] = O

(
k−1/2

)
. Thus, the expected time until all cut vertices in G get the

rumor is equal to O
(
mk−1/2

)
.

Finally, since all cut vertices are informed, any degree 2 vertex gets the rumor
in time Exp(1), so that the expected time until the last node finds out the rumor
is O (ln(km)).

Now suppose k = Θ
(
(n/ lnn)2/3

)
and m = Θ(n1/3

(
lnn)2/3

)
. Since the worst

average rumor spreading time for the synchronous push-pull protocol is at least
2m, we obtain that wasts(G)/wasta(G) = Ω

(
(n/ lnn)1/3

)
. The last expression

shows that the bound in Corollary II.5 is tight.

Figure 2: The necklace graph is a “path” of m diamonds, each of them consists of
k edge-disjoint paths. The asynchronous push-pull protocol is much faster on this
graph than its synchronous variant.

1.5 Complete Graph. Overview of the Proofs

In this section we discuss the important details of previous solutions related to
the base problem of this memoir, that is the analysis of the rumor spreading time
the in complete graph on n vertices. From Theorem II.6 it follows that the rumor
spreading time is at most O(n lnn) (the same result as for the push protocol in
the star graph). However, all reasonable rumor spreading techniques succeed to
inform all nodes in time O(log n) that is the best time possible up to the constant
factor for the synchronous phone-call model.
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Proposition II.11. Let G be a complete graph on n vertices. The average spread-
ing time for the basic push protocol in G is Θ(lnn).

Sketch of the proof. Since each round the number of informed nodes at most dou-
bles, the logarithmic lower bound is trivial.

For the upper bound we use the following argument. Suppose that all calls are
made one by one and their targets are written in a row. This is equivalent to the
coupon collector problem with n coupons5already seen in previous section. Thus,
the total number of calls until all nodes are informed equals O(n lnn) with high
probability. Therefore, since Θ(n) nodes are informed, the round-based process
finishes up within O(lnn) rounds.

Now we show that at with high probability least Θ(n) nodes can be informed
within a logarithmic number of rounds. Consider one round starting with k ≤ n/4
informed nodes. As before, we assume that all calls in this round are made one
by one in some arbitrary order. Then, the probability that the ith call reaches
a node which was not called before is at least 3/4 − i/n ≥ 1/2. Therefore, the
expectation of the number of newly informed nodes is at least k/2. Using one of the
concentration inequalities6, one can see that this number is strongly concentrated
around its expectation, e.g., at least k/3 with the probability which is exponentially
small in k. Therefore, the time elapsed until at least n/4 nodes are informed is
less than log4/3 n that concludes the proof.

This proof is a simplified version of different existing proofs. However, the
proof above reveals a good intuition about the rumor spreading in the complete
graph. As the bound of Θ(n) informed nodes is reached, the process suffers from
the phase transition from the exponential growth of the number of informed nodes
to the exponential shrinking7 of the number of uninformed nodes. To illustrate
the phenomenon we can see the plot on Figure 3: while the number of informed
nodes is relatively small, it doubles each round, but the doubling weakens upon

5These two processes coincide if the target of each call is uniformly distributed among all
nodes, i.e., if nodes are allowed to call themselves. If the loop calls are forbidden, we can use the
similar arguments for the coupon collector process with n− 1 coupons.

6 Classically, Chernoff bound is used that needs the independence between the events corre-
sponding the actions of single nodes. In current proof it suffices to consider an event that node i
calls a node different from k informed ones and from i− 1 nodes that contains all targets of first
i− 1 calls in this round instead of ith calls an informed node. All these nodes are independent.

7 It is slightly technical to show that exponential shrinking of number of uninformed nodes
follows directly from the coupon collector reduction. The informal argument is that since m ≤
n/2 nodes are uninformed, then it will take in expectation n/m calls to inform a new node, then
n/(m+ 1) for the next one, etc. Thus, if we expect to inform j nodes in current round, then the
total number of calls, is approximatively equal to n/m + . . . + n/(m − j) ∼ lnm − ln(m− j).
Since the total number of calls is bounded between n/2 and n, one can see that m−j

m is bounded

between approximatively e−1 and e−1/2.
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the progress; when most of the nodes are informed, the process informs some non-
negligible fraction of uninformed nodes which converges to 1/e upon the progress.
Thus, the usual way to analyze the rumor spreading in the complete graph is to
partition the execution of the process in phases and within each phase to uniformly
estimate the progress. Nevertheless, to get a sharper result, one should overcome
the following sources of the inaccuracy.

(i) Our estimate for the number of newly informed nodes in the beginning of
the process is too rough. When the number of informed nodes is O(

√
n), the

collisions between calls are negligible. Thus, the number of informed nodes
doubles each round. However, this doubling becomes weaker when more than
O(
√
n) nodes are informed. This weakening of the doubling process is one

main difficulty in all previous works.

(ii) We consider the second part of the process from n/2 informed nodes arguing
that the number of calls is at least n/2 each round. However, this number
increases during the process. Together with (i), these two effects are related
with the phase transition that happens when the number of informed and
uninformed nodes are both Θ(n).

(iii) The analysis strongly depends on the concrete process and the arguments
cannot be directly applied to, e.g., the pull protocol. Especially, the inde-
pendence, which is necessary to provide concentration guarantees, is hard to
observe in more sophisticated protocols (single-incoming-call protocol from
Section 3 and push protocol in dynamic graphs from Section 2.3 discussed in
Chapter IV).

Typically, the tighter bounds require more accurate analysis and more phases
to consider. The first strong result appears in Frieze and Grimmett’s paper [FG85]:
by partitioning the execution of the push protocol into 5 phases (see Figure 4),
they showed that the guaranteed rumor spreading time for the push protocol in
the complete graph is log2 n + lnn + o(log n). One of their main observations is
that the middle phase, when the number of informed nodes is between ξn and
n − ηn, requires only O(1) rounds with high probability. Other words, during
the rumor spreading process, either the number of informed nodes is small or the
number of uninformed nodes is small, with high probability. The rest of the proof
was based on the argument that choosing ξ (resp. η) small enough, we can show
that the number of rounds within the exponential growth (resp. shrinking) phase
is arbitrary close to log2 n (resp. lnn), that decreases the inaccuracy term to
o(log n).

Two years later, Pittel [Pit87] gains O(1)-precision by considering 7 phases.
He argues that first, with high probability the number of informed nodes doubles
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Figure 3: The phase transition for the push protocol. On the left, we plot the
average number of newly informed nodes (resp. nodes that stay uninformed) as a
function of the number of informed nodes k on the previous step.
On the right, we plot the rate of informing and the rate of staying uninformed.
The first is defined as α := E[X(k)]/k and shows the relative growth of the number
of informed nodes. The rate of staying uninformed β := E[X]/(n − k) shows the
proportion of newly informed node among all uninformed nodes at the beginning
of the current round, i.e., the relative decrease of the number of uninformed nodes.

N ξn n− ηn n−R n

Exponential growth Exponential shrinking

1

Figure 4: The phase structure of Frieze and Gimmet’s proof [FG85]. N and R are
fixed large numbers, ξ and η are small and positive.

each round until n1 = o(
√
n) nodes are informed. Then, until n2 = n/ log2(n)

nodes are informed, with high probability the number of informed nodes increases
by at least a factor of 2(1− 1

log2(n)
). Consequently, this second phase lasts at most

log2(1− 1
log2(n)

)(n2/n1) rounds. The third phase of the exponential growth lasts at

most log2(1− ε3)(ε3 log2 n) rounds. This, together with two previous ones, implies
that with high probability, at least nε3 nodes will be informed within log2 n+O(1)
rounds for sufficiently small ε3.

The current best result was obtained by Doerr and Künnemann [DK14]. They
use only three different phases and explicitly bound the error term between -2
and 3. Such a simplification could be reached using a different technique for the
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Figure 5: The phase structure of Pittel’s proof [Pit87]. ε3 → 0 slowly such that
nε3 ≥ n

log2 n
and ε4 → 0 slowly such that nε4 ≥ n2/3 log2 n.

exponential growth, covered by the first two phases. They cut the interval between
1 and n/2 informed nodes, in log2 n + O(1) sub-phases so that with probability
1 − qj the protocol spends at most one round in phase j. Until O(

√
n) nodes

are informed they use the birthday paradox: within the start-up phase no two
calls collide with high probability, so the number of informed nodes doubles each
round and the phases are split by the numbers 1, 2, 4, . . . of informed nodes. The
important observation is that the failure probabilities qj during the second phase
are not necessarily small, but their sum is less than 1. Therefore, the number of
rounds spent until n/2 nodes are informed is stochastically dominated by log2 n+

O(1) + Geom
(

1−∑j qj

)
. Together with coupon collector reduction, this yields

the upper bound for the spreading time which is tight up to an additive constant.
Thus, Doerr and Künnemann’s proof also illustrates that artificially large number
of phases is not necessary for precise estimating the spreading time.

Note that a phase-based proof has also been seen for other protocols. For
example, Karp et al. [KSSV00] propose a 4-phase analysis of the push-pull protocol,
the obtained estimate for the rumor spreading time is tight up toO(ln lnn) additive
term (see Figure 6). The main difference between push and push-pull protocols in
the complete graph is that the last does not suffer from the coupon collector effects:
since Θ(n) nodes are informed, the probability that a node stays uninformed in
current round is proportional to the fraction of uninformed nodes. Therefore,
the rest of the nodes can be informed within O(ln lnn) rounds. Such behavior is
common for most of the protocols with pull calls, in Section 2 we will call it the
double exponential shrinking phase8.

Note finally, that the phase structure is much less useful for the asynchronous
rumor spreadings when the informing of any single node is a distinguish event.
However, Janson [Jan99] implicitly proved that the guaranteed rumor spreading
time for the same process is 3/2 lnn+o(lnn). More recently, Acan et al. [ACMW14]
showed for the asynchronous push-pull protocol that the time until a new vertex
is informed is distributed as the minimum of k(n − k) independent exponential

8 For the particular case of the basic push-pull protocol, Karp et al. used the term ”quadratic
shrinking” instead of the double exponential shrinking due to the fact that the fraction of in-
formed nodes squares each round.
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random variables each with rate 2/(n − 1). This implies that the average rumor
spreading time is lnn+O(1).

(lnn)4 n

Exponential growth (Quadratic) double exponential shrinking

1 n
lnn

n−√n(lnn)4

Figure 6: The phase structure of Karp’s proof [KSSV00].

2 Precise Statements of Our Results

As just discussed, the main advantages of our approach are its universality and
the very tight bounds it proves. We now briefly sketch the main new ideas that
lead to this progress. Interestingly, they are rather simpler than the ones used in
previous works.

2.1 Tight Bounds via a Target-Failure Calculus

We first describe how we obtain estimates for the rumor spreading time that are
tight apart from additive constants. Our strategy is close to the one seen in [DK14]
briefly discussed is previous section. It is easy to compute the expected number
E(k) of newly informed nodes in a round starting with k informed nodes, e.g., for
the classic push protocol, E(k) = k − Θ(k2/n). For each number k of informed
nodes, we formulate a pessimistic round target E0(k) that is sufficiently below
or above the expected number E(k) of newly informed nodes. Here “sufficiently
away” means that the probability q(k) to fail the target is small, but not necessarily
o(1) as in all previous analyses. When proving upper bounds on rumor spreading
times, we see that the expected time to go from k to at least E0(k) informed nodes

is at most 1 + q(k)
1−q(k)

, simply with the argument that in the case of a failure, we

can try again (this needs some elementary monotonicity statements for the q(k)
and E0(k)).

The second, again elementary, key argument still in the language of the push
protocol is that when we define a sequence of round targets by k0 := 1, k1 :=
E0(k0), k2 := E0(k1), . . . with suitably defined E0(·), then the ki grow almost like
2i. More precisely, there is a T = log2 n ± O(1) such that kT = Θ(n). Hence
together with the previous paragraph we obtain that the expected number of
rounds to reach kT informed nodes is

∑T−1
i=0 1 + q(ki)

1−q(ki) = T + O(
∑T−1

i=0 q(ki)). So

it suffices that the sum of the failure probabilities q(ki) is a constant (unlike in
previous works, where it needed to be o(1)).
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We remark that this target-failure argument was used already in [DK14], there
however only to give an upper bound for the runtime of the push protocol in the
regime from ns, s a small constant, to Θ(n) informed nodes, that is, the later
part of the exponential growth regime of the push process, in which via Chernoff
bounds very strong concentration results could be exploited. Hence the novelty of
this work with respect to the target-failure argument is that this analysis method
can be used (i) also from the very beginning of the process on, where we have no
strong concentration, (ii) also for the exponential and double exponential shrinking
regimes of rumor spreading processes, and (iii) also for lower bounds.

2.2 Uniform Treatment of Many Rumor Spreading
Processes

As discussed earlier, the previous works regarding different rumor spreading pro-
cesses on complete graphs all had to use different arguments. The reason is that
the processes, even when looking similar, are intrinsically different when looking
at detail. As an example, let us consider the first few rounds of the push and the
pull protocol. In the push protocol, we just have just seen that while there are at
most o(

√
n) nodes informed, then a birthday paradox type argument gives that

with high probability we have perfect doubling in each round. For the pull pro-
cess, in which each uninformed node calls a random node and becomes informed
when the latter was informed, we also easily compute that a round starting with k
informed nodes creates an expected number of (n− k) k

n
= k − k2

n
newly informed

nodes. However, since these are binomially distributed, there is no hope for perfect
doubling. In fact, for the first few rounds, we even have a constant probability
that no single node becomes informed.

The only way to uniformly treat such different processes is by making the anal-
ysis which depends only on general parameters of the process as opposed to the
precise definition. Our second main contribution is distilling a few simple condi-
tions that (i) subsume essentially all symmetric and time-invariant rumor spread-
ing processes on complete graphs and (ii) suffice to prove rumor spreading times
via the above described target-failure method. All this is made possible by the
observation that the target-failure method needs much less in terms of failure prob-
abilities than previous approaches. Consequently, instead of using Chernoff and
Azuma bounds for independent or negatively correlated random variables (which
rely on the precise definition of the process), it suffices to estimate the number of
newly informed nodes via computing the expectation and using Chebyshev’s in-
equality as concentration result. Consequently, to apply our method we only need
to (i) understand (with a certain precision) the probability pk that an uninformed
node becomes informed in a round starting with k informed nodes (recall that we
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assumed symmetry, that is, this probability is the same for all uninformed nodes)
and (ii) we need to have a mild upper bound on the covariance of the indicator ran-
dom variables of the events that two nodes become informed. Note that for most
of the known protocols these events rather tend to be negatively correlated. The
probabilities pk usually are easy to compute from the protocol definition. Also,
we do not know them precisely. For example, for the growth phase of the push
protocol discussed above, it suffices to know that there are constants a < 2 and a′

such that for all k < n/2 we have k
n
(1 − a k

n
) ≤ pk ≤ k

n
(1 + a′ k

n
). This (together

with the mild covariance condition to be detailed later) is enough to show that the
rumor spreading process takes log2 n±O(1) rounds to inform n/2 nodes or more.

We profit from the fact that seemingly all reasonable rumor spreading processes
in complete networks can be described via three regimes:

Exponential growth: Up to a constant fraction fn of informed nodes, pk = γ k
n
(1±

O( k
n
)). The number of informed nodes thus increases roughly by a factor of (1+γn)

in each round, hence the expected time to reach fn informed nodes or more is
log1+γn n±O(1).

Exponential shrinking: From a certain constant fraction u = n − k = gn of un-
informed nodes on, the probability of remaining uninformed satisfies 1 − pn−k =
e−ρn ± O(u

n
). This leads to a shrinking of the number of uninformed nodes by

essentially a factor of 1
ρn

per round. Hence when starting with gn informed nodes,

it takes another 1
ρn

lnn±O(1) rounds in expectation until all are informed.

Double exponential shrinking: From a certain constant fraction u = n− k = gn of
uninformed nodes on, the probability of remaining uninformed satisfies 1−pn−k =
Θ((u

n
)`−1). Now the expected time to go from gn uninformed nodes to no unin-

formed node is log` lnn±O(1).

Due to their different nature, each of these three regimes should be discussed
separately. However, all can be treated with the target-failure method. Hence the
main differences between these regimes lie in defining the pessimistic estimates
for the targets, computing the failure probabilities, and computing the number
of intermediate targets until the goal is reached. All this only needs computing
expectations, using Chebyshev’s inequality, and a couple of elementary estimates.

2.3 Precise Statement of the Technical Results

In this work, we consider only homogeneous rumor spreading processes character-
ized as follows. We always assume that we have n nodes. Each node can be either
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informed or uninformed. We assume that the process starts with exactly one node
being informed. Uninformed nodes may become informed, but an informed node
never becomes uninformed. We consider a discrete time process, so the process
can be partitioned into rounds. In each round each uninformed node can become
informed. Whenever a round starts with k nodes being informed, then the proba-
bility for each uninformed node to become informed is pk, which only depends on
the number k of informed nodes at the beginning of the round.

The main insight of this work is that for such homogeneous rumor spreading
processes we can mostly ignore the particular structure of the process and only
work with the success probabilities pk defined above and the covariance numbers
ck defined as follows.

Definition II.12 (Covariance numbers). For a given homogeneous rumor spread-
ing process and k ∈ [1..n− 1] let ck be the smallest number such that whenever a
round starts with k informed nodes and for any two uninformed nodes x1, x2, the
indicator random variables X1, X2 for the events that these nodes become informed
in this round satisfy

Cov[X1, X2] ≤ ck.

Our main interest is studying after how many round all nodes are informed.

Definition II.13 (Rumor spreading times). Consider a homogeneous rumor spread-
ing process. For all t = 0, 1, . . . denote by It the number of informed nodes at the
end of the t-th round (I0 := 1). Let k ≤ m ≤ n. By T (k,m) we denote the time
it takes to increase the number of informed nodes from k to m or more, that is,

T (k,m) = min{t− s|Is = k and It ≥ m}.

We call T (1, n) the rumor spreading time of the process.

As it turns out, almost all homogeneous rumor spreading processes can be
analyzed via three regimes.

Exponential Growth Regime

Let γn be bounded between two positive constants. Let a, b, c ≥ 0 and 0 < f < 1
with af < 1. We say that a homogeneous rumor spreading process satisfies the
upper (resp. lower) exponential growth conditions in [1, fn[ if for any n ∈ N big
enough the following properties are satisfied for any k < fn.

(i) pk ≥ γn
k
n
·
(
1− a k

n
− b

lnn

)
resp. pk ≤ γn

k
n
·
(
1 + a k

n
+ b

lnn

)
.

(ii) ck ≤ c k
n2 .
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In the case of the upper exponential growth condition, we also require af < 1.

Theorem II.14. If a homogeneous rumor spreading process satisfies the upper
(resp. lower) exponential growth conditions in [1, fn[, then

E[T (1, fn)] ≤ log1+γn n+O(1) resp. E[T (1, fn)] ≥ log1+γn n−O(1).

There exist A′ > 0, α′ > 0 such that for any r ∈ N ,

P[T (1, fn) > log1+γn n+ r] ≤ A′e−α
′r resp. P[T (1, fn) ≤ log1+γn n− r] ≤ A′e−α

′r.

When the lower exponential growth conditions are satisfied, in addition, there exists
an f ′ ∈]f, 1[ such that with probability 1 − O

(
1
n

)
there are at most f ′n nodes

informed after the round which first reaches fn or more informed nodes.

Exponential Shrinking Regime

Let ρn be bounded between two positive constants. Let 0 < g < 1, and a, c ∈
R≥0. We say that a homogeneous rumor spreading process satisfies the upper
(lower) exponential shrinking conditions if for any n ∈ N big enough, the following
properties are satisfied for all u = n− k ≤ gn.

(i) 1− pk = 1− pn−u ≤ e−ρn + au
n

resp. 1− pk = 1− pn−u ≥ e−ρn − au
n
.

(ii) ck = cn−u ≤ c
u
.

For the upper exponential shrinking conditions, we also assume that e−ρn +ag < 1.

Theorem II.15. If a homogeneous rumor spreading process satisfies the upper
(lower) exponential shrinking conditions, then

E[T (n− bgnc, n)] ≤ 1
ρn

lnn+O(1) resp. E[T (n− bgnc, n)] ≥ 1
ρn

lnn−O(1).

There exist A′ > 0, α′ > 0 such that for any r ∈ N ,

P[T (n−bgnc, n) > 1
ρn

lnn+r] ≤ A′e−αr resp. P[T (n−bgnc, n) ≤ 1
ρn

lnn−r] ≤ A′e−αr.

Double Exponential Shrinking

Let g ∈]0, 1], ` > 1, and a, c ∈ R≥0 such that ag`−1 < 1. We say that a ho-
mogeneous rumor spreading process satisfies the upper (lower) double exponential
shrinking conditions if for any n big enough the following properties are satisfied
for all u = n− k ∈ [1, gn].

(i) 1− pn−u ≤ a
(
u
n

)`−1
resp. 1− pn−u ≥ a

(
u
n

)`−1
.
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(ii) cn−u ≤ c n
u2 .

Theorem II.16. If a homogeneous rumor spreading process satisfies the upper
(lower) double exponential shrinking conditions, then

E[T (d(1−g)ne, n)] ≤ log` lnn+O(1) resp. E[T (d(1−g)ne, n)] ≥ log` lnn−O(1).

If the process satisfies the upper double exponential shrinking conditions, then there
exist A′ > 0, α′ > 0 such that for any r ∈ N we have

P[T (d(1− g)ne, n) ≥ log` lnn+ r] ≤ O(n−α
′r+A′).

If the process satisfies the lower double exponential shrinking conditions, then for
any α ∈]0, 1[ there exists r = O(1) such that

P[T (n− dgne, n− bn1−αc) ≤ log` lnn− r] ≤ O(n−1+2α`).

Remark. Note that the large deviation statements for the double exponential
shrinking regime are different. Beyond this regime the process follows the round
targets so accurately that at each round the failure probability that the rumor
spreading over-progress current target is negligible. Hence, with high probabil-
ity the runtime of the process differs by at most O(1) from the number of round
targets between gn and bn1−αc that equals log` lnn+O(1) for any α ∈]0, 1[.

While mostly these three regimes suffice, occasionally it will be necessary or
convenient to separately regard a small, constant time segment between the growth
and the shrinking regime. This is achieved by the following two lemmas.

Lemma II.17. Consider a homogeneous rumor spreading process. Let 0 < ` <
m < n and 0 < p < 1. Suppose for any number ` ≤ k < m, we have pk ≥ p. Then

E[T (`,m)] ≤ n− `
n−m ·

1

p
.

Lemma II.18. Let f, p ∈]0, 1[ and c > 0. Suppose that for any k < fn we have
pk ≤ p and ck ≤ c

n
. Then there exists f ′ ∈]f, 1[ such that with probability 1−O

(
1
n

)
at the end of some round the number of informed nodes will be between fn and
f ′n.

2.4 Applying the Above Technical Results

In this section, we sketch how to use the above tools to obtain some of the results
described in Chapter IV. Since it does not make a difference, to ease the notation
we always assume that nodes call random nodes, that is, including themselves.
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The main observation is that computing the pk is usually very elementary. For the
covariance conditions, often we observe a negative or zero covariance, but when
this is not true, then things can become technical.

For the basic push, pull, and push-pull protocols, we easily observe that all
covariances to be regarded are negative or zero. Knowing that one uninformed
node x1 becomes informed in the current round has no influence on the pull call
of another uninformed node x2. When the protocol has push calls and x1 was
informed via a push call, then this event makes it slightly less likely that x2 becomes
informed via a push call, simply because at least one informed node is occupied
with calling x1.

The success probabilities pk are easy to compute right from the protocol defini-
tion. When k nodes are informed, then for the three basic protocols the probability
that an uninformed node becomes informed are the following.

pk = 1− (1− 1/n)k (push protocol);

pk = k/n (pull protocol);

pk = 1− (1− 1/n)k · n−k
n

(push-pull protocol).

Using elementary estimates like 1− k/n ≤ (1− 1/n)k ≤ 1− k/n+ k2/2n2, we see
that the push and pull protocols satisfy the exponential growth conditions with
γn = 1, whereas the push-pull protocol does the same with γn = 2. The push
protocol satisfies the exponential shrinking conditions with ρn = 1. The pull and
push-pull protocols satisfy the double exponential shrinking conditions with ` = 2.
All growth conditions are satisfied at least up to k = n/2 informed nodes and all
shrinking conditions are satisfied at least for u ≤ n/2 uninformed nodes, so we do
not need the intermediate lemmas.

Faulty communication: The same arguments suffice to analyze these protocols
when messages get lost independently with probability 1− p. The only difference
in terms of the results is that now for the pull and push-pull protocols uninformed
nodes remain uninformed with at least constant probability (namely when their
pull call fails). For this reason, now all three protocols have an exponential shrink-
ing phase.

The push-pull protocol with the restriction that nodes answer only a single
incoming call randomly chosen among the incoming calls is an example where the
exponential growth and shrinking conditions are harder to prove. To compute the
pk we assume that all n calls have a random unique priority in [1..n] and that the
call with lowest priority number is accepted. For fixed priority, the probability of
being accepted is easy to compute, and this leads to the success probability of a pull
call. For the probability to become informed via a push call, the simple argument
that the first incoming call is from an informed node with probability k/n solves
the problem. When showing the covariance conditions, we face the problem that
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it is indeed not clear if we have negative or zero covariance. The event that some
node becomes informed increases the chance that this node received a push call.
This push call cannot interfere with another node’s pull call to an informed node.
So it does have some positive influence on the probability of another uninformed
node to become informed. Fortunately, for our covariance conditions allow some
positive correlation. Because of this, very generally speaking, we can ignore certain
difficult to handle situations when they occur rarely enough.

2.5 Limitations of the Phase Method

It is worth mentioning the main limitations of our method related to the consid-
ering only of the homogeneous rumor spreading processes (see Definition III.1 in
Chapter III) that must satisfy the following properties.

(i) Any node can be in one of the two states: either informed or uninformed.
Thus, we cannot directly apply our method to the multistate processes such
as median counter algorithm [KSSV00] or any other independent stop protocol
discussed in Chapter VI which is a variation of the basic push-pull protocol
when each informed node may decide to stop making the push calls. This
decision is made by each node independently unlike the protocol with the
transition time discussed in Section 3.3 of Chapter IV. However, this limi-
tation seems to be the weakest one, we discuss in Chapter VI how we can
overcome it.

(ii) The studied process should be symmetric, i.e., the probability that an unin-
formed node learns the rumor does not depends on the choice of the node, but
only on the number of informed nodes. Typically, this requirement is satisfied
when we consider rumor spreading on the complete graph (or the random
graph resampled each round). One of the simple example of the asymmet-
ric protocol is pull protocol when different nodes has different outgoing call
capacities [PPS15].

(iii) The strongest limitation is that we consider only memoryless processes. This
means that even for the multistate process discussed in Chapter IV, the result
of the current round should depend only on the macroparameters describing
the number of nodes in each state. For the two state rumor spreading dis-
cussed in the main part of this work, the result of the current round cannot
depend on anything except the number k of informed nodes. As an exam-
ple of non-memoryless protocol, we can propose the quasi-random rumor
spreading [DFS08] when any node cannot call twice the same neighbor.
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As outlined earlier, in this work we attempt to develop a general analysis
technique that covers a large class of rumor spreading problems in perfectly con-
nected networks (complete graphs). To this aim, we define a general class of rumor
spreading processes and then distill three regimes such that most rumor spreading
processes regarded in the literature are covered by these regimes. For each regime,
we prove rumor spreading times sharp apart from additive constants. We shall
treat upper and lower bounds separately, so that in cases where only estimates in
one direction are known, we still obtain this type of bounds.

1 Homogeneous Rumor Spreading Processes

We now characterize the class of rumor spreading processes we aim at analyzing.

Definition III.1 (Homogeneous rumor spreading process). We always assume
that we have n nodes. Each node can be either informed or uninformed. We
assume that the process starts with exactly one node being informed. Uninformed
nodes may become informed, but an informed node never can become uninformed.
We consider a discrete time process, so the process can be partitioned into rounds.

39
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In each round each uninformed node can become informed. Whenever a round
starts with k nodes being informed, then the probability for each uninformed node
to become informed is some number pk, which only depends on the number k of
the informed nodes at the beginning of the round.

The above definition is relatively abstract and, in principle, could be simply
phrased as a Markov process on the number k ∈ [1..n] of informed nodes. We still
find it natural to use the language of rumor spreading. We will discuss many rumor
spreading processes covered by this definition in Sections 1, 2, and 3, so let us for
the moment only remark that the definition covers all processes regarded in the
literature as long as they are memoryless (the events in the current round depend
only on which nodes are informed) and symmetric (only the numbers of informed
and uninformed nodes is relevant, but not which nodes these are). We remark
that our methods can be applied to suitable processes that are not memoryless,
see Section 3.3 for an example that is not memoryless due to the use of a time
counter.

The main insight of this work is that we can mostly ignore the particular
structure of a rumor spreading process and only work with the success probabilities
pk and the covariance numbers ck defines as follows.

Definition III.2 (Covariance numbers). For a given homogeneous rumor spread-
ing process and k ∈ [1..n− 1] let ck be the smallest number such that whenever a
round starts with k informed nodes and for any two uninformed nodes x1, x2, the
indicator random variables X1, X2 for the events that these nodes become informed
in this round satisfy

Cov[X1, X2] ≤ ck.

It turns out that essentially all homogeneous rumor spreading processes have
an exponential growth phase, which is roughly characterized by the fact that for
suitable constants f ∈ (0, 1], c ∈ R and γn > 0 we have for all k ∈ [1..fn− 1] both
pk = γn

k
n
(1±O( k

n
)) and ck ≤ c k

n2 .

This growth phase is followed by one of the following two shrinking regimes.
(i) Exponential shrinking regime: For suitable constants g > 0, c > 0, and ρn > 0,
we have for all u ≤ gn that 1− pn−u = e−ρn ± Θ(u

n
) and cn−u ≤ c

u
. In particular,

in a round starting with u ≤ gn uninformed nodes, we expect the number of
uninformed nodes to shrink by a factor of roughly e−ρn . (ii) Double exponential
shrinking regime: For suitable constants g > 0 and ` > 1, we have that for all
u ≤ gn both 1 − pn−u = Θ((u

n
)`−1) and cn−u ≤ c n

u2 . In particular, we expect the
fraction of uninformed nodes to be raised to some positive power `− 1.

In the following subsections, we shall analyze each of these regimes, treating
separately upper and lower bound guarantees. The very rough analysis idea is
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the same in each subsection, so we present and discuss it in more detail in the
following subsection and then are more brief in the remaining ones.

Before doing so, we define the rumor spreading time and show an elementary
fact that will be convenient several times in the following.

Definition III.3 (Rumor spreading times). Consider a homogeneous rumor spread-
ing process. For all t = 0, 1, . . . denote by It the number of informed nodes at the
end of the t-th round (I0 := 1). Let k ≤ m ≤ n. By T (k,m) we denote the time
it takes to increase the number of informed nodes from k to m or more, that is,

T (k,m) = min{t− s|Is = k and It ≥ m}.

We call T (1, n) the rumor spreading time of the process.

Most homogeneous rumor spreading processes have the property that when
a constant fraction of the nodes is informed, then each uninformed node has a
constant positive probability of becoming informed in one round. In this situation,
the following lemma allows us to argue that an expected constant number of rounds
suffices to go from any constant fraction of informed nodes to any constant fraction
of uninformed nodes. This will be convenient in some the following proofs of upper
bounds for rumor spreading times, namely when the growth or shrinking conditions
are not strong enough near to the middle point of n/2 informed nodes.

Lemma III.4. Consider a homogeneous rumor spreading process. Let 0 < ` <
m < n and 0 < p < 1. Suppose for any number ` ≤ k < m, we have pk ≥ p. Then

E[T (`,m)] ≤ n− `
n−m ·

1

p
.

Proof. Let q := 1− p. We regard a dummy process which coincides with the given
process until the number of informed nodes is at least m. If there are at least m
nodes informed, then the dummy process shall be such that each uniformed node
in each round independently becomes informed with probability p. Obviously,
T (`,m) is the same for both processes, so we consider the dummy process in the
following.

In this dummy process, by the memorylessness of our rumor spreading process,
an uninformed node remains uninformed for r rounds with probability at most
qr. Hence the expected number Ur of uninformed nodes after r rounds is E[Ur] ≤
(n− `)qr and Markov’s inequality gives

P[T (`,m) > r] = P[Ur > (n−m)] <
n− `
n−m · q

r.
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Hence

E[T (`,m)] =
∞∑
r=0

P[T (`,m) > r] <
n− `
n−m

∞∑
r=0

qr =
n− `
n−m ·

1

1− q .

Similarly to the lemma above, the following lemma will be convenient in some
of the proofs of lower bounds for rumor spreading times, again when the growth
and shrinking conditions do not cover the whole process. In this case, the following
lemma allows us to argue that an arbitrarily small, but still constant fraction of
uninformed nodes will be reached at some time.

Lemma III.5. Let f, p ∈]0, 1[ and c > 0. Suppose that for any k < fn we have
pk ≤ p and ck ≤ c

n
. Then there exists f ′ ∈]f, 1[ such that with probability 1−O

(
1
n

)
at the end of some round the number of informed nodes will be between fn and
f ′n.

Proof. Suppose k < fn. Denote by X(k) the number of newly informed nodes
in a round starting with k informed nodes. Since pk ≤ p, we have E[X(k)] ≤
pn(1 − f) ≤ pn. Then by Lemma A.3 we have Var[X(k)] ≤ (p + c)n. Let
f ′ ∈]f + p(1− f), 1[. Applying Chebyshev’s inequality, we compute

P[k +X(k) ≥ f ′n] ≤ P[X(k) ≥ (f ′ − f)n]

≤ P[X(k) ≥ E[X(k)] + n(f ′ − f − p(1− f))]

≤ Var[X(k)]
n2(f ′−f−p(1−f))2 = p+c

n(f ′−f−p(1−f))2 = O
(

1
n

)
.

Therefore, the probability that the process “jumps over” the interval [fn, f ′n] is
O
(

1
n

)
.

2 Exponential Growth Regime

2.1 Upper Bound

In this section and the following, we analyze the runtime of a homogeneous rumor
spreading process in the regime where the number of informed nodes roughly
grows by a constant factor until a linear number fn of nodes is informed. Not
surprisingly, this implies that the process takes a logarithmic time to inform a
linear number of nodes.

The challenge in the following analysis, which was also faced by previous works
([FG85], [Pit87], [KSSV00], etc.), is that in most rumor spreading processes the
dissemination speed reduces when more nodes are informed. So it is not true
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that for all k ∈ [1, fn], a round starting with k informed nodes ends with an
expected number of k + γk nodes, where γ is some constant, but rather that we
only expect Ek = γk(1 − Θ(k/n)) newly informed nodes. This non-linearity also
implies that a round starting with an expected number of k nodes does not end
with an expected number of k + Ek informed nodes, but less. So we also need
to argue that the number of newly informed nodes a round ends with is strongly
concentrated around its expectation, and that thus, we can assume that with
sufficiently high probability we end up not too far below the expectation (which
gives another small loss over the idealized multiplicative increase of the number of
informed nodes).

We overcome these difficulties as follows. (i) We formulate an exponential
growth condition that is satisfied by essentially all homogeneous rumor spreading
processes showing an exponential growth regime. The key observation, which
allows us to treat many protocols with this single analysis is that it is not necessary
that the actions of the nodes show particular independences. It suffices that a
relatively mild covariance condition is satisfied. (ii) We then use (throughout the
whole regime from the first informed node to a linear number of informed nodes)
a simple phase-target argument. (a) We define for each number k of initially
informed nodes a round target E0(k) such that a round starting with k informed
nodes with (sufficiently high) probability 1− qk ends with E0(k) informed nodes.
Hence the expected time to go from k to E0(k) or more informed nodes is tk =
1 + qk

1−qk . (b) From this, we define a sequence of target k0 = 1, k1 = E0(k0), k2 =

E0(k1), . . . , kJ = Θ(n) and argue that the time to reach kJ informed nodes is
just the sum of the expected times tkj . By defining the round targets in a suitable
manner, we ensure that J = log1+γ(n)+Θ(1) and that the sum of the tkj is J+Θ(1).
We note that the phase-target argument was also used in [DK14], there however
only for the push-protocol and only in the regime from ns, s a small constant,
to Θ(n) informed nodes. Consequently, due to the large number of active nodes
acting independently, the phase failure probabilities where ignorable small.

In principle, all the arguments outlined above are very elementary and use
nothing more advanced than expectations and Chebyshev’s inequality. Hence the
main technical progress of this work is formulating an exponential growth condition
(including the covariance condition) that allows these elementary arguments in a
way that the deviations from the idealized “multiply-by-γ” world in the end all
disappear in the Θ(1) term of the dissemination time. These technicalities also
appear in some of the following calculations, which therefore, while all not difficult,
are at times slightly lengthy. Since arguments similar to the ones in this section
are used throughout this work, we give all details in this section and will be more
brief in the following ones.

We start in this section with proving an upper bound for the runtime given that
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we have suitable lower bounds for the probability that an uninformed node becomes
informed. In the following section, we prove a lower bound for the runtime given
that we have suitable upper bounds on the speed of the progress. These bounds
will match apart from additive constants if the growth factor γ is identical.

Exponential Growth Conditions

Throughout this section, we assume that we regard a homogeneous epidemic pro-
tocol which satisfies the following upper exponential growth conditions including a
covariance condition.

Definition III.6 (upper exponential growth conditions). Let γn be bounded be-
tween two positive constants. Let a, b, c ≥ 0 and 0 < f < 1 with af < 1. We say
that a homogeneous epidemic protocol satisfies the upper exponential growth con-
ditions in [1, fn[ if for any n ∈ N big enough the following properties are satisfied
for any k < fn.

(i). pk ≥ γn
k
n
·
(
1− a k

n
− b

lnn

)
.

(ii). ck ≤ c k
n2 .

The main result of this section is that the upper exponential growth conditions
imply that the number of informed nodes multiplies by, essentially, 1 + γn in each
round, and that the expected number of rounds until fn nodes are informed, is at
most log1+γn n+O(1).

Theorem III.7 (upper bound for the spreading time). Consider a homogeneous
epidemic protocol satisfying the upper exponential growth conditions in [1, fn[.
Then there exist constant A′, α′ such that

E[T (1, fn)] ≤ log1+γn n+O(1),

P[T (1, fn) > log1+γn n+ r] ≤ A′e−α
′r for any r ∈ N.

Below we will first introduce all preliminary lemmas, and then we will prove
Theorem III.7 at the end of the section.

Round Targets and Failure Probabilities

Let us introduce the random variable X(k) being equal to the number of newly
informed nodes in a round having k informed nodes at the beginning. Since
E[X(k)] = pk(n − k), the exponential growth conditions imply E[X(k)] ≥ E(k),
where

E(k) := γnk
(
1− (a+ 1) k

n
− b

lnn

)
. (III.1)
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Using Chebyshev’s inequality we can show that the value of X(k) is concen-
trated around its expected value. Lemma III.9 hence claims that with good prob-
ability, X(k) attains at least the target value

E0(k) := E(k)− AkB, (III.2)

where A > 0 and B ∈]0.5, 1[ are some constants chosen uniformly for all values of
k and n. There are no special conditions on B, so we suppose that B is fixed from
now on, e.g., to 3/4. We will, in the following, choose A small enough to ensure
that the −AkB term has a sufficiently small influence on the general bevahior of
E0(k).

Lemma III.8. There exist f ′ > 0 and A′ > 0 such that for n big enough, the
following conditions are satisfied.

• E(·) is increasing up to f ′n, that is, for all i < j ≤ f ′n we have E(i) < E(j);

• When A in equation (III.2) satisfies 0 < A < A′, then also E0(·) is increasing
up to f ′n;

• E0(k) > 0 for all k ∈ [1, f ′n[.

Proof. The first claim follows from the second, so let us regard the derivative of
E0(k),

E ′0(k) = γn − 2γn(a+ 1) k
n
− γn b

lnn
− ABk−1+B.

We see that, for any f ′ < 1
2(a+1)

, any A > 0 small enough, and any n large enough,

E ′0(k) is positive for all k ∈ [1, f ′n[. Therefore, to satisfy the first two parts of the
claim, we pick any f ′ ∈]0, 1

2(a+1)
[ and then any A′ < 1

B
γn(1− 2(a+ 1)f ′).

To show that E0(k) > 0 for all k ∈ [1, f ′n[, it suffices to check this for k = 1.
By possibly lowering A′ further, we obtain for n large enough that

E0(1) = γn
(
1− a+1

n
− b

lnn

)
− A > 0.

We assume in the following that f in Definition III.6 satisfies f < f ′ and that
A in (III.2) was chosen in ]0, A′[.

Lemma III.9. For any k < fn,

P[X(k) ≤ E0(k)] ≤ min
{
q(k), 1

1+1/q(1)

}
,

where q(k) := γn+c
A2 · k−2B+1.
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Proof. By the exponential growth conditions, E[X(k)] ≥ E(k). Applying Cheby-
shev’s inequality, we compute

P[X(k) ≤ E0(k)] = P
[
X(k) ≤ E(k) ·

(
1− AkB

E(k)

)]
≤ P

[
X(k) ≤ E[X(k)] ·

(
1− AkB

E(k)

)]
= P

[
X(k) ≤ E[X(k)]− AkB · E[X(k)]

E(k)

]
≤ Var[X]

(AkB)2 · E(k)2

E[X(k)]2
.

From the covariance condition, it follows that Var[X(k)] ≤ E[X(k)] + ck. Using
E(k)/E[X(k)] ≤ 1 once, we obtain

P[X(k) ≤ E0(k)] ≤
(

1 + ck
E[X(k)]

)
· E(k)
E[X(k)]

· E(k)
A2k2B

≤
(

1 + ck
E(k)

)
· E(k)
A2k2B

= E(k)+ck
A2k2B ≤ γnk+ck

A2k2B .

One can see that for small values of k, q(k) might be more than one. To avoid
such a trivial bound for the failure probability, it suffices to replace Chebyshev’s
inequality in the proof by the Cantelli’s inequality (see Lemma A.5) and bound
the probability by 1

1+1/q(k)
. To finish the proof we note that q(k) is decreasing in

k, so P[X(k) ≤ E0(k)] ≤ min
{
q(k), 1

1+1/q(1)

}
.

The Phase Calculus

Having just defined round targets for all numbers k of initially informed nodes
and the probabilities that these targets are not achieved within a round, we now
proceed to define the sequence kj of round targets which we aim at satisfying one
after the other, ideally within one round per target.

We define recursively

k0 = 1, kj+1 := kj + E0(kj). (III.3)

Lemma III.10. After possibly lowering A′ from Lemma III.8, there exist α > 0
and J = log1+γn n+O(1) such that

fn > kj ≥ α(1 + γn)j,

for all j ≤ J . In particuar, kJ = Θ(n).
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Proof. By definition of kj,

kj = kj−1 + E0(kj−1) = kj−1

(
1 + γn − γn(a+ 1)

kj−1

n
− γn b

lnn
− Ak−1+B

j−1

)
.

Let Γn := 1 + γn − γn b
lnn

. Then,

kj = Γnkj−1

(
1− γn a+1

Γn
· kj−1

n
− A

Γn
· k−1+B

j−1

)
.

Clearly, Γn ≥ (1+γn)(1− b
lnn

). By our assumption on γn, Γn is bounded from above
by a constant and is at least 1 + γn/2 for n big enough. Let hence ã := γn

a+1
1+γn/2

and Ã := A
1+γn/2

. Then, for any big n,

kj ≥ (1 + γn)
(
1− b

lnn

)
kj−1

(
1− ãkj−1

n
− Ãk−1+B

j−1

)
.

We assume that A (resp. Ã) and f are small enough such that the expression in
the brackets is positive. Since k0 = 1, by induction we obtain for all j that

kj ≥ (1 + γn)j(1− b
lnn

)j
j−1∏
i=0

(
1− ãki

n
− Ãk−1+B

i

)
.

By choosing f and A small enough, we can assume that ki > 0 for all i < j.

kj ≥ (1 + γn)j(1− b
lnn

)j

(
1− ã

j−1∑
i=0

ki
n
− Ã

j−1∑
i=0

k−1+B
i

)
.

Let J := log1+γn(fn)−∆r for some positive ∆r = O(1) determined later. For
j ≤ J we have kj ≤ (1 + γn)j by construction, and thus kj ≤ fn. Also we have
(1− b

lnn
)j = Θ(1). In particular this term is at least 2α for some α > 0 and all n

big enough.
We show by induction on j that kj ≥ α(1 + γn)j for all j ≤ J . The base for

j = 0 and k0 = 1 is obvious. Let 1 ≤ j ≤ J and let ki ≥ α(1 + γn)i for all i < j.
By construction, we have ki ≤ (1 + γn)i. Therefore,

kj ≥ 2α(1 + γn)j

(
1− ã

n

j−1∑
i=0

(1 + γn)i − Ãα−1+B

j−1∑
i=0

(1 + γn)i(−1+B)

)
≥ 2α(1 + γn)j

(
1− ã · (1+γn)−∆r

γn
− Ãα−1+B · 1

1−(1+γn)B−1

)
.

By choosing ∆r large enough and Ã (resp. A) small enough, we can bound the
last two expressions by 1/4, and obtain

kj ≥ 2α(1 + γn)j(1− 1/4− 1/4) = α(1 + γn)j.



48 CHAPTER III. MAIN ANALYSIS TECHNIQUE

By Lemma III.8, the kj form a non-decreasing sequence. We say that our
homogeneous rumor spreading process is in phase j for j ∈ {0, . . . , J − 1}, if the
number of informed nodes is in [kj, kj+1[.

Lemma III.11. If our process is in phase j < J , then the number of rounds
to leave phase j is stochastically dominated by 1 + Geom(1 − Qj), where Qj :=

min
{
q(kj),

1
1+1/q(1)

}
.

Proof. By Lemma III.8 we have k +E0(k) ≥ kj +E0(kj) = kj+1 for any kj ≤ k <
fn. By Lemma III.9,

P[k +X(k) ≤ kj+1] < P[k +X(k) ≤ k + E0(k)] < min
{
q(k), 1

1+1/q(1)

}
.

Since q(k) is decreasing,

max
kj+1>k≥kj

P[k +X(k) < kj+1] ≤ Qj,

and this is an upper bound for the probability to stay in phase j for one round.
We can thus bound the number of rounds taken to leave phase j by a random
variable with geometric distribution Geom(1−Qj).

Lemma III.12.
∑J−1

j=0 Qj = O(1).

Proof. We apply the estimate for q(kj) from Lemma III.9 and the bounds for kj
from Lemma III.10. Therefore,

J−1∑
j=0

Qj ≤
J−1∑
j=0

q(kj) ≤ γn+c
A2 ·

J−1∑
j=0

k−2B+1
j

≤ γn+c
A2 · α−2B+1 ·

J−1∑
j=0

(1 + γn)j(−2B+1).

The last sum is a decreasing geometric series as B > 0.5. So,
∑

j Qj = O(1).

Now we can prove the main result of this section.

Proof of Theorem III.7. By Lemma III.10, there exists J = log1+γn n+O(1) such
that kJ = Θ(n). In the following we assume that J ≤ log1+γn +τ for some constant
τ . The phase method allows us to bound the number of rounds until at least
kJ nodes are informed. We denote by the random variable Tj the number of
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rounds spent in the jth phase. By Lemma III.11, Tj is stochastically dominated
by 1 + Geom(1−Qj). With Lemma III.12, we compute

E[T (1, kJ)] ≤
J−1∑
j=0

E[Tj] ≤
J−1∑
j=0

(1 +
Qj

1−Qj )

= J +
J−1∑
j=0

Qj
1−Qj ≤ J + 1

1−Q0

J−1∑
j=0

Qj

= J +O(1).

Since Qj is bounded by a geometric sequence, Lemma A.2 claims that there exist
A′1, α

′
1 such that

P[T (1, kJ) > J + r/2] ≤ A′1e
−α′1r.

If kJ < fn, then we observe that for all k ∈ [kJ , fn[, pk satisfies the conditions
of Lemma III.4. Therefore, T (kJ , fn) = O(1) and there exist A′2, α

′
2 such that

P[T (kJ , fn) > r/2] ≤ A′2e
−α′2r. Combining bounds for T (1, kJ) and T (kJ , fn) we

obtain the following.

E[T (1, fn)] ≤ E[T (1, kJ)] + E[T (kJ , fn)] ≤ log1+γn n+O(1),

P[T (1, fn) > log1+γn n+ r] ≤ A′e−α
′r,

where A′ := (A′1 + A′2)eα
′τ and α′ := min{α′1, α′2}.

2.2 Lower Bound

In this section, we prove a lower bound for an exponential growth regime. We
formulate a condition matching the upper bound condition and show that this
leads to a lower bound on the rumor spreading time that matches the upper bound
apart from a constant number of rounds. We use again the target-phase method.

This is the first time that the target-phase argument is used to prove a lower
bound. In the work closest to ours, [DK14], only the classic push protocol was
regarded. Consequently, there, the simple argument that the number of nodes can
at most double each round was sufficient to obtain a lower bound for the growth
regime. Such an argument, e.g., is not possible for the classic pull protocol.

The main difference to the upper bound proof lies in the final argument. In
the upper bound proof, the failure to reach a round target simply resulted in that
we had to try again to reach this target. For the lower bound, a failure is that the
process gains more than one phase in one round, resulting in that the time usually
spent in these now skipped phases is spared. Arguing that the total time spared
by such events is only O(1) needs a slightly more complicated book-keeping of the
failure events and a slightly more complicated final argument.
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Exponential Growth Conditions

We formulate the lower exponential growth condition in an analoguous way as the
upper one. In particular, the covariance condition is identical.

Definition III.13 (lower exponential growth conditions). Let γn be bounded be-
tween two positive constants and let a, b, c ≥ 0 and 0 < f < 1. We say that a
homogeneous epidemic protocol satisfies the lower exponential growth conditions
in [1, fn[ if for any n ∈ N big enough, the following properties are satisfied for any
k < fn.

(i). pk ≤ γn
k
n
·
(
1 + a k

n
+ b

lnn

)
.

(ii). ck ≤ c k
n2 .

These conditions imply the following lower bounds on the rumor spreading
time.

Theorem III.14. Consider a homogeneous epidemic protocol satisfying the lower
exponential growth conditions in [1, fn[. Then there are constant A′, α′ > 0 such
that

E[T (1, fn)] ≥ log1+γn n−O(1),

P[T (1, fn) ≤ log1+γn n− r] ≤ A′ exp(−α′r) for all r ∈ N.

In addition there exists f ′ ∈]f, 1[ such that with probability 1−O
(

1
n

)
there are at

most f ′n informed nodes after T (1, fn) rounds.

Below we will first introduce all preliminary lemmas, and then we will prove
Theorem III.14 at the end of the section.

Round Targets and Failure Probabilities

As above, we consider a round with k informed nodes initially. We define X(k) to
be the number of newly informed nodes in this round. Since E[X(k)] = pk(n− k),
the exponential growth conditions give E[X(k)] ≤ E(k) with

E(k) := γnk
(
1 + a k

n
+ b

lnn

)
.

Note that we could replace the a above by a−1, giving an expression closer resem-
bling the corresponding one from the previous section. Since all these constants
do not matter, we preferred the simpler version without the extra −1.

Like in the previous section we introduce

E0(k) := E(k) + AkB, (III.4)
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where A > 0 and B ∈]0.5, 1[ are some constants chosen uniformly for all values of
k and n. Unlike in Section 2.1, it is obvious that E(k) and E0(k) are increasing.

Note that we can freely replace f in the definition of the lower exponen-
tial growth conditions by a smaller constant f ′, since showing E[T (1, f ′n)] ≥
log1+γn(n) − O(1) in Theorem III.14 would immediately imply E[T (1, fn)] ≥
log1+γn(n) − O(1). Consequently, let us assume that f is small enough such that
for any n sufficiently large and k < fn,

E(k) ≤ 2γnk. (III.5)

The following lemma will later be used to argue that an unexpectedly fast
progress is unlikely. Different from the upper bound analysis in the previous sec-
tion, we now need a failure probability for different excessive progresses (quantified
by the parameter h below).

Lemma III.15. For any k < fn and h = 0, 1, 2, . . .,

P[X(k) ≥ E(k) + AkB(1 + γn)h] ≤ qh(k) := 2γn+c
A2 · k−2B+1

(1+γn)2h .

Proof. By the exponential growth conditions, E[X(k)] ≤ E(k). By the covariance
condition and (III.5),

Var[X(k)] ≤ E(k) + n2ck ≤ k(2γn + c).

Applying Chebyshev’s inequality, we obtain

P[X(k) ≥ E(k) + AkB(1 + γn)h]

≤ P[X(k) ≥ E[X(k)] + AkB(1 + γn)h]

≤ Var[X(k)]
(AkB)2(1+γn)2h

≤ 2γn+c
A2 · k−2B+1 · 1

(1+γn)2h .

The Phase Calculus

Like in Section 2.1, we define the sequence kj recursively by

k0 = 1, kj+1 := kj + E0(kj),

and obtain the following exponential growth behavior.

Lemma III.16. By taking A small enough in (III.4), there exist α > 0 and
J = log1+γn n−O(1) such that for all j < J

(1 + γn)j ≤ kj ≤ α(1 + γn)j and kj < fn.
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Proof. Note that kj ≥ (1 + γn)j is immediate from the definitions and a simple
induction. So it remains to show the upper bound on the kj. Clearly, by definition
of kj,

kj ≤ (1 + γn)(1 + b
lnn

)kj−1

(
1 + a

kj−1

n

) (
1 + Ak−1+B

j−1

)
.

Since k0 = 1, by induction we obtain

kj ≤ (1 + γn)j(1 + b
lnn

)j
j−1∏
i=0

(
1 + aki

n

) j−1∏
i=0

(
1 + Ak−1+B

i

)
.

Let J := log1+γn n − ∆r for some ∆r = O(1) determined later. If j < J , then

(1 − b
lnn

)j = Θ(1). In particular, it is at most α
4

for some α > 0 and any n big
enough. By the fact that 1 + x ≤ ex for any x > 0, we have

kj ≤ α
4
(1 + γn)j exp

(
j−1∑
i=0

aki
n

)
· exp

(
j−1∑
i=0

Ak−1+B
i

)
. (III.6)

We prove the claim of lemma by induction on j. Assume that for some j < J
we have ki ≤ α(1 + γn)i for any i < j. Since ki ≥ (1 + γn)i for all i, both sums
in (III.6) can be bounded by geometric series. Therefore,

kj ≤ α
4
(1 + γn)j exp

(
j−1∑
i=0

a
n
· α(1 + γn)i

)
· exp

(
j−1∑
i=0

A(1 + γn)i(−1+B)

)
.

Since j < J , by choosing ∆r large enough and A small enough, we can bound both
sums by any positive constant, in particular by ln 2. Therefore, for any j < J ,

kj ≤ α
4
(1 + γn)j exp(ln 2) · exp(ln 2) = α(1 + γn)j.

By definition, the kj form a non-decreasing sequence. Like in Section 2.1, we
say that the rumor spreading process is in phase j for j = 0, . . . , J − 1, if the
number of informed nodes is in [kj, kj+1[.

Lemma III.17. Let h ≥ 2. If the process is in phase j < J at the beginning of
one round, then the probability that the number of informed nodes is at least kj+h
at the end of the round, is at most qh−2(kj).

Proof. For 1 ≤ k ≤ kj+1, we have

k + E(k) + AkB ≤ kj+1 + E(kj+1) + AkBj+1 = kj+2.
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Since kj+h ≥ (1 + γn)h−2kj+2, we have

kj+h ≥ (1 + γn)h−2
(
E(k) + AkB + k

)
≥ k + E(k) + AkB(1 + γn)h−2.

By Lemma III.15, the maximum probability to have at least kj+h informed
nodes at the end of the round is

max
k∈[kj ,kj+1[

P[k +X(k) ≥ kj+h]

≤ max
k∈[kj ,kj+1[

P[k +X(k) ≥ k + E(k) + AkB(1 + γn)h−2]

≤ max
k∈[kj ,kj+1[

qh−2(k) ≤ qh−2(kj).

The last inequality follows from the fact that since B > 1/2, qh−2(·) decreases.

With Lemma III.16 and III.17, we can now prove Theorem III.14.

Proof of Theorem III.14. Let S be the set of visited phases, e.g., if the process does
not jump over any phase, then S = {0, . . . , J − 1}. By τj we denote the number
of rounds spent in the jth phase. So the spreading time T (k0, kJ) =

∑
j∈S τj. We

do not know the size of S, so in order to bound the spreading time below, let us
introduce the random variable ∆j which is equal to the length of the jump from the
jth phase when the process leaves it. Let also dj := ∆j − τj. Since

∑
j∈S ∆j = J ,

we have T (k0, kJ) = J −∑j∈S dj. By definition, for j ∈ S and h > 0, we have
P[dj ≥ h] ≤ P[∆j ≥ h+ 1]. Then, by Lemma III.15 and III.17,

P[dj ≥ h] ≤ qh−1(kj) ≤ 2γn+c
A2

k−2B+1
j

(1+γn)2h−2 .

The above argument shows that T (k0, kJ) stochastically dominates J −D, where
D is the sum of independent non-negative integer random variables D =

∑J−1
j=0 Dj

satisfying P[Dj ≥ h] ≤ 2γn+c
A2

k−2B+1
j

(1+γn)2h−2 for all h ≥ 1. Let Rh := {(r0, . . . , rJ−1) ∈
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ZJ≥0 |
∑J−1

j=0 ri = h} for all h ≥ 1. We compute

P[D ≥ h] ≤
∑
r∈Rh

J−1∏
j=0

P[Dj ≥ rj]

≤ (1 + γn)−2h
∑
r∈Rh

∏
j∈[0..J−1],rj>0

2γn+c
A2

k−2B+1
j

(1+γn)−2

≤ (1 + γn)−2h
∑

M⊆[0..J−1]

∏
j∈M

2γn+c
A2

k−2B+1
j

(1+γn)−2

≤ (1 + γn)−2h
∏

j∈[0..J−1]

(
1 + 2γn+c

A2

k−2B+1
j

(1+γn)−2

)

≤ (1 + γn)−2h exp

( ∑
j∈[0..J−1]

2γn+c
A2

k−2B+1
j

(1+γn)−2

)
≤ (1 + γn)−2hO(1),

where the last estimate uses Lemma III.16. This proves that tail bound statement.
For the claim on the expected rumor spreading time, we compute

E[D] ≤
∑
h≥1

P[D ≥ h] ≤
∑
h≥1

(1 + γn)−2hO(1) = O(1).

Finally, by Lemma III.5, there exists f ′ ∈]f, 1[ such that with probability 1−O
(

1
n

)
there are at most f ′n informed nodes after T (1, fn) rounds.
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3 Exponential Shrinking Regime

3.1 Upper Bound

We now regard the regime that at most gn, g a small constant, nodes are not
informed, and that in each round each of these nodes has an approximately con-
stant chance of becoming informed. From a very distant point of view, this part
of the process vaguely resembles the exponential growth regime with time running
backwards, but the details are too different to simply transfer our previous results
to this setting (e.g., the failure probabilities increase during the process in the
exponential shrinking regime and decrease in the exponential growth).

We start in this section with the upper bound on the runtime. Throughout this
section, we assume that our homogeneous epidemic protocol satisfies the following
upper exponential shrinking conditions including the covariance condition.

Definition III.18 (upper exponential shrinking conditions). Let ρn be bounded
between two positive constants. Let 0 < g < 1 and a, c ∈ R≥0 such that e−ρn+ag <
1. We say that a homogeneous epidemic protocol satisfies the upper exponential
shrinking conditions if for any n ∈ N big enough, the following properties are
satisfied, for all u = n− k ≤ gn.

(i). 1− pk = 1− pn−u ≤ e−ρn + au
n
;

(ii). ck = cn−u ≤ c
u
.

Let us note that in this section we study the number of uninformed nodes
u := n − k instead of k, i.e., the number of informed ones. We will show that u
shrinks by almost a constant factor each round. So the main result of the section
is the following theorem (as above, we first introduce all preliminary lemmas and
then we prove the theorem at the end of this section).

Theorem III.19 (upper bound for spreading time). Consider a homogeneous
epidemic protocol satisfying the upper exponential shrinking conditions. Then there
are constant A′, α′ > 0 such that

E[T (n− bgnc, n)] ≤ 1
ρn

lnn+O(1),

P[T (n− bgnc, n) > 1
ρn

lnn+ r] ≤ A′e−αr for all r ∈ N.

We first note that the upper exponential shrinking conditions imply that nodes
remain uninformed with at most a constant probability. Hence Lemma III.4 shows
that we reach any constant fraction of uninformed nodes in expected constant time.
For this reason, we may conveniently assume that g is an arbitrarily small constant
in the following. We shall also always assume that n is large enough.
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The proof below follows the general principle established in this work, that is,
we define for each number u of uninformed nodes a suitable target E0(u) such that
with sufficiently high probability 1− q(u) (following from the covariance condition
and Chebyshev’s inequality), one round started with at most u uninformed nodes
ends with at most E0(u) uninformed nodes. The choice of E0(u) is such that the
sequence u0 = gn, u1 = E0(u0), u2 = E0(u1), . . . within J = 1

ρn
ln(n) + O(1) steps

reaches a constant uJ and such that failure probabilities q(ui), i = 0, . . . , J − 1,
imply that only an expected constant number of rounds in addition to J are needed
to reach at most uJ nodes. For the constant number of uJ or less remaining
uninformed nodes, we use the simple waiting time argument that each of them
needs an expected constant number of rounds to be informed, adding another
constant number of rounds to the expected spreading time.

Round Targets and Failure Probabilities

Let us introduce the random variable Y (u) being equal to the number of un-
informed nodes at the end of a round started with u uninformed ones. Since
E[Y (u)] = u(1− pn−u), the exponential shrinking conditions imply that

E[Y (u)] ≤ E(u) := u
(
e−ρn + au

n

)
.

As before, the Lemma III.21 shows that with “good” probability, Y (u) is less
than the target value

E0(u) := E(u) + Au1−B, (III.7)

where A > 0 and 0 < B < 1/2 are some constants chosen uniformly for all values
of u and n. In addition we will choose g and A small enough (relative to g) to
ensure that for all u ≤ gn, the target value E0(u) is less than u (see Lemma III.20)
and that the ”chain” of consequent target values forms an exponentially decreasing
sequence (see Lemma III.23).

Lemma III.20. Assume that g and A are sufficiently small constants. Then for
all u ∈ [1, gn], we have E0(u) < u.

Proof. Indeed, it suffices to show that

E0(u)
u

= e−ρn + au
n

+ Au−B < 1.

Since u ∈ [1, gn], we have

E0(u)
u
≤ e−ρn + ag + A.

Clearly there exist positive A and g small enough such that the expression above
is less than 1.
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We assume in the following that g and A are small enough to make the assertion
of the lemma above true. We compute the target failure probabilities as follows.

Lemma III.21. For any 1 ≤ u < gn,

P[Y (u) ≥ E0(u)] ≤ q(u) := (1+a)e−ρn+c
A2 · 1

u1−2B .

Proof. Like in the proofs of Lemma III.9 and III.15, using Chebyshev’s inequality
and taking into account E(u) ≥ E[Y (u)], we compute

P[Y (u) ≥ E0(u)] ≤ P
[
Y (u) ≥ E[Y (u)] + Au1−B] ≤ Var[Y (u)]

(Au1−B)2 .

From Lemma A.3 and the covariance condition it follows that

Var[Y (u)] ≤ E[Y (u)] + cu ≤ E[Y (u)] + cu.

Therefore,

P[Y (u) ≥ E0(u)] ≤ E(u)+cu
A2u2−2B ≤ (1+a)e−ρn+c

A2 · 1
u1−2B .

The Phase Calculus

Let us define the sequence uj recursively by

u0 = gn, uj+1 := E0(uj).

The next observation follows from the definition.

Observation III.22. For any j ≥ 1 we have uj ≥ u0e
−jρn. In particular, for any

j ≤ 1
ρn

lnn we have uj ≥ u0

n
.

Lemma III.23. By choosing A in (III.7) and g sufficiently small, we can assume
that for all j ≤ 1

ρn
lnn, we have uj ≤ 2u0e

−jρn.

Proof. For j = 0, there is nothing to prove. Consider 1 ≤ j ≤ 1
ρn

lnn and assume

that for all i < j we have ui ≤ 2u0e
−iρn . We will show that uj ≤ 2u0e

−jρn . By
definition,

uj = u0e
−jρn

j−1∏
i=0

(
1 + aeρn ui

n
+ Aeρnu−Bi

)
≤ u0e

−jρn
j−1∏
i=0

exp
(
aeρn ui

n
+ Aeρnu−Bi

)
≤ u0e

−jρn exp

(
j−1∑
i=0

aeρn ui
n

+

j−1∑
i=0

Aeρnu−Bi

)
. (III.8)
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We estimate separately the two sums. Since ui ≤ 2u0e
−iρn for i < j, the first sum

can be bounded by a geometric series:

j−1∑
i=0

aeρn ui
n
≤ aeρn

n

j−1∑
i=0

2u0e
−iρn ≤ aeρn · 2u0

n
· 1

1−e−ρn .

This expression is proportional to u0

n
= g, so by choosing g small enough, we can

bound it by ln 2
2

. For the second sum we use Observation III.22 and obtain

j−1∑
i=0

Aeρnu−Bi ≤ Aeρn
j−1∑
i=0

u−B0 eiρnB ≤ Aeρnu−B0

ejρnB

eρnB − 1

≤ Aeρn
(
n
u0

)B
1

eρnB−1
≤ Aeρng−B 1

eρnB−1
. (III.9)

By taking A small enough, the result is also at most ln 2
2

. Substituting the sums
in (III.8) by their bounds of ln 2

2
, we obtain

uj ≤ u0e
−jρn exp

(
ln 2
2

+ ln 2
2

)
= 2u0e

−jρn .

We assume in the following that A and g are as in Lemma III.23. Combining
the lemma above with the definition of q(u) in Lemma III.21, one can easily see
the following.

Corollary III.24. There exists J ≤ 1
ρn

lnn such that (i) q(uJ) < 1
2

and (ii)

uJ = O(1).

By Lemma III.20, uj form a decreasing sequence. We say that the rumor
spreading process is in phase j, j ∈ {0, . . . , J − 1}, if the number of informed
nodes is in [uj+1, uj[.

Lemma III.25. If the process is in phase j < J , then the number of rounds to
leave phase j is stochastically dominated by 1+Geom(1−Qj), where Qj := q(uj+1).

Proof. Consider a round with u uninformed nodes. By definition, the process
leaves the phase j if Y (u) < uj+1 = E0(uj). Since E0(u) is an increasing function,
the upper bound for the probability to stay in phase j in current round is the
following.

max
u∈[uj+1,uj [

P[Y (u) ≥ E0(uj)] ≤ max
u∈[uj+1,uj [

P[Y (u) ≥ E0(u)] ≤ q(uj+1).

So the number of rounds to leave phase j is stochastically dominated by 1 +
Geom(1−Qj).
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Lemma III.26.
∑J−1

j=0 Qj = O(1).

Proof. By Lemma III.21, we have

J−1∑
j=0

Qj ≤ O(1) ·
J∑
j=1

1

u1−2B
j

= O(1),

where the last equality follows as in (III.9), using that J ≤ 1
ρn

lnn.

Now we can proof the main result of this section, i.e., Theorem III.19.

Proof of Theorem III.19. First, let g′ > 0 be smaller than g. Then,

E[T (n− bgnc, n)] ≤ E[T (n− bgnc, n− dg′ne)] + E[T (n− bg′nc, n)].

By Lemma III.4, the exponential shrinking conditions imply that E[T (n−bgnc, n−
dg′ne)] is at most a constant. In addition there exist A′0, α

′
0 > 0 such that P[T (n−

bgnc, n − dg′ne) > r/3] ≤ A′0e
−α′0r. We can hence assume that g is small enough

so that all Lemma III.20 and III.23 are satisfied.
We denote by the random variable Tj the number of rounds spent in phase j.

With Corollary III.24 and Lemma III.26, we compute

E[T (n− bgnc, n− duJe)] ≤
J−1∑
j=0

E[Tj] ≤
J−1∑
j=0

(
1 +

Qj
1−Qj

)
= J +

J−1∑
j=0

Qj
1−Qj ≤ J + 1

1−QJ ·
J−1∑
j=0

Qj

= J +O(1).

Since Qj form a geometrical sequence, it follows from Lemma A.2 that there exist
A′, α′ > 0 such that

P[T (n− bgnc, duJe) > J + r/2] ≤ A′e−α
′r. (III.10)

For the last at most uJ uninformed nodes, we argue as follows. Consider one
uninformed node. From the exponential shrinking conditions it follows that the
expected number of rounds until this node is informed is at most O(1). So, E[T (n−
buJc, n)] ≤ uJ ·O(1) = O(1). Finally,

E[T (n−bgnc, n)] ≤ E[T (n−bgnc, n−duJe)] +E[T (n−buJc, n)] ≤ 1
ρn

lnn+O(1).

To prove the tail bound statement, let q = 1−mink∈[n−uJ ,n] pk. Now we consider
the epidemic protocol with m = O(1) uninformed nodes. Since an uninformed
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node stays uninformed for r/2 rounds with probability at most qr/2, we have
P[T (n−m,n) > r/2] ≤ m · qr/2. Combining the last inequation with (III.10), we
obtain

P[T (n− bgnc, n) > J + r] ≤ (uJ + A′) exp (−r ·min{α′, ln q
2
}) .

Since uJ = O(1), the tail bound statement directly follows as in the proof of
Theorem III.7.

3.2 Lower Bound

Exponential Shrinking Conditions

Definition III.27 (lower exponential shrinking conditions). Let ρn be bounded
between two positive constants. Let 0 < g < 1 and a, c ∈ R≥0. We say that a
homogeneous epidemic protocol satisfies the lower exponential shrinking conditions
if for any n ∈ N big enough, the following properties are satisfied, for all u ≤ gn
(resp. k ∈ [n− bgnc, n]).

(i). 1− pk = 1− pn−u ≥ e−ρn − au
n
;

(ii). ck = cn−u ≤ c
u
.

Theorem III.28 (lower bound of spreading time). Consider a homogeneous epi-
demic protocol satisfying the lower exponential shrinking conditions (see definition
above). There is a constant g′ ∈]0, 1[ and further constants A′, α′ > 0 such that
for any positive g < g′,

E[T (n− bgnc, n)] ≥ 1
ρn

lnn+O(1),

P[T (n− bgnc, n) ≤ 1
ρn

lnn− r] ≤ A′ exp(−α′r) for all r ∈ N.

Below we will first introduce all preliminary lemmas, and then we will prove
Theorem III.28 at the end of the section.

Round Targets and Failure Probabilities

Let Y (u) be the number of uninformed nodes at the end of the round with u
uninformed ones. From the exponential shrinking conditions it follows that

E[Y (u)] ≥ E(u) := u
(
e−ρn − au

n

)
.

We define the target value in the same way as for the upper bound.

E0(u) := E(u)− Au1−B, (III.11)
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where A > 0 and B ∈]0, 1/2[ are some constants chosen uniformly for all values of
u and n. In addition A is required to be small enough to satisfy Lemma III.31.

Lemma III.29. For any u > gn and u ∈ N,

P[Y (u) ≤ E0(u)] ≤ q(u) := e−ρn+c
A2 · 1

u1−2B .

Proof. As before, using Chebyshev’s inequality and taking into account that
E(u) ≤ E[Y (u)], we compute

P[Y (u) ≤ E0(u)] = P
[
Y (u) ≤ E(u) ·

(
1− Au1−B

E(u)

)]
≤ P

[
Y (u) ≤ E[Y (u)]− Au1−B · E[Y (u)]

E(u)

]
≤ Var[Y (u)]

(Au1−B)2 · E(u)2

E[Y (u)]2
.

From covariance condition, it follows that Var[Y (u)] ≤ E[Y (u)] + cu. Therefore,

P[Y (u) ≤ E0(u)] ≤
(

1 + cu
E[Y (u)]

)
· E(u)
E[Y (u)]

· E(u)
(Au1−B)2

≤
(

1 + cu
E(u)

)
· E(u)

(Au1−B)2

= (E(u) + cu) · 1
(Au1−B)2 ≤ e−ρn+c

A2 · 1
u1−2B .

The Phase Calculus

We define the sequence uj recursively by

u0 := gn, uj+1 := E0(uj).

The next observation follows from the definition.

Observation III.30. For any j ≥ 0 we have uj ≤ u0e
−jρn.

Lemma III.31. By choosing A in (III.11) and g sufficiently small, we can assume
that for all j ≤ 1

ρn
n, we have uj ≤ 1

2
u0e
−jρn.

Proof. For j = 0, there is nothing to prove. Consider 1 ≤ j ≤ 1
ρn

lnn and assume

that for all i < j we have ui ≥ 1
2
u0e
−iρn . We will show that uj ≥ 1

2
u0e
−jρn . By

definition,

uj = u0e
−jρn

j−1∏
i=0

(
1− eρnaui

n
− A 1

uBi

)
≥ u0e

−jρn

(
1− eρna

n

j−1∑
i=0

ui − A
j−1∑
i=0

1
uBi

)
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Like in the proof of Lemma III.23, we estimate separately the two sums. Using
Observation III.30, we obtain for the first sum that

eρna
n

j−1∑
i=0

ui ≤ eρnau0

n

∑
i≥0

e−iρn = eρna
1−e−ρn · u0

n
= g ·O(1).

By the hypothesis of induction, for any i < j, ui ≥ 1
2
u0e
−iρn . Since j < 1

ρn
lnn,

A

j−1∑
i=0

1
uBi
≤ A

2BuB0

j−1∑
i=0

e−iρnB ≤ A
2BuB0

· ejρnB

eρnB−1

= A
2B(eρnB−1)

· nB
uB0

= A
2B(eρnB−1)

· g−B = Ag−B ·O(1).

Then, by choosing A and g small enough, we can bound both sums by 1/4, so that

uj ≥ u0e
−jρn (1− 1

4
− 1

4

)
≥ 1

2
u0e

j−ρn .

Having uj bounded from above and below, one can easily see the following.

Corollary III.32. There exists J = 1
ρn

lnn+O(1) such that uJ > 1 for any n big
enough.

By definition, the uj form a non-decreasing sequence. We say that the rumor
spreading process is in phase j, j ∈ {0, . . . , J−1}, if the number of informed nodes
is in [uj+1, uj[.

Lemma III.33. If the process is in phase j < J − 1, then the probability that it
”leapfrogs” phase j + 1 (i.e., proceeds to phase j + 2 or further in current round)
is at most q(uj).

Proof. Consider a round with u ∈ [uj+1, uj[ uninformed nodes. The protocol jumps
over the phase j+ 1, if at the end of current round Y (u) < uj+2 = E0(uj+1). Since
E0 is increasing,

P[u < uj+2] ≤ Pr[u < E0(u)] ≤ q(u).

Since q(u) is a decreasing function, the upper bound for the probability to jump
over phase j + 1 is the following.

max
u∈[uj+1,uj [

P[u < uj+2] ≤ q(uj+1).



4. DOUBLE EXPONENTIAL SHRINKING REGIME 63

Now we can proof the main result of this section, i.e., Theorem III.28.

Proof of Theorem III.28. Let τ be the first round t (of this shrinking phase) in
which the process leapfrogs a phase. Let τ = ∞ if such an event does not occur.
By Corollary III.32, the interval [1, gn] is cut into at least J = 1

ρn
lnn+O(1) phases.

Clearly, if τ < J , then T (n−bgnc, n) ≥ τ , and if τ ≥ J , then T (n−bgnc, n) ≥ J .
If τ = J − t, then the process in phase J − t, that is, from some number

u of uninformed nodes belonging to phase J − t, makes an exceptionally large
progress from. Since q(u) is a decreasing function, we have P[τ = J− t] ≤ q(uJ−t).
Consequently, using the fact that q(uj) forms a decreasing geometric sequence, we
obtain

P[T (n− bgnc, n) ≤ J − t] ≤ P[τ ≤ J − t]
≤ q(u0) + q(u1) + . . .+ q(uJ−t) = O(q(uJ−t)).

Then, using uJ−t ≥ O(1) · uJ · eρnt, we compute

P[T (n− bgnc, n) ≤ J − t] ≤ O(q(uJ−t)) ≤ O(1)u−2B+1
J−t

≤ O(1)(uJe
ρnt)−2B+1 ≤ O(1) exp(−Ω(t)).

Applying Lemma III.29, we obtain

E[T (n− bgnc, n)] ≥ JP[τ > J ] +
J−1∑
t=1

t · P[τ = t] = J −
J−1∑
t=1

tP[τ = J − t]

≥ J −
J−1∑
t=1

tq(uJ−t) ≥ J − eρn+a+c
A2 ·

J−1∑
t=1

t

u1−2B
J−t

.

Since B < 1/2 and uJ−t ≥ O(1) · uJ · eρnt, the sum above converges. Therefore,

E[T (n− bgnc, n)] ≥ J +O(1).

4 Double Exponential Shrinking Regime

4.1 Upper Bound.

In the following two sections we consider the regime in which uninformed nodes
remain uninformed with probability proportional to the fraction uninformed nodes,
or, more generally, some positive power ` − 1 there of. Such a regime typically
occurs in protocols using pull operations. We show that the fraction of uninformed
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nodes is raised to the `-th power each round and that such a regime informs the
last gn nodes (g a small constant) in a double logarithmic number of rounds.

We discuss the upper bound on the runtime first. Throughout this section,
we assume that our homogeneous epidemic protocol satisfies the following upper
double exponential shrinking conditions including the covariance condition.

Definition III.34 (upper double exponential shrinking conditions). Let g, α ∈
[0, 1], ` > 1, and a, c ∈ R≥0 such that ag`−1 < 1. We say that a homogeneous
epidemic protocol satisfies the upper double exponential shrinking conditions if for
any n big enough, the following properties are satisfied for all u ∈ [n1−α, gn].

(i). 1− pn−u ≤ a
(
u
n

)`−1
.

(ii). cn−u ≤ c n
u2 .

Similarly to the exponential shrinking regime we argue with the number u
of uninformed nodes rather than the number k of informed ones. To ease the
notation in the double exponential shrinking regime we use the fraction ε := u

n
of

uninformed nodes instead of the absolute number u. Thus, the double exponential
shrinking conditions turns into the following bounds, valid for all ε ∈ [n−α, g] with
εn ∈ N.

(i). 1− pn(1−ε) ≤ aε`−1.

(ii). cn(1−ε) ≤ ε−2 c
n
.

In the definition above, we cover the rounds starting with a number of unin-
formed nodes between n1−α and gn. While, by taking α = 1 this would allow to
analyze the process until all nodes are informed, it turns out that the crucial part
is reduce the number of uninformed nodes from Θ(n) to n1−α for an arbitrarily
small constant α. For u ∈ [1, n1−α], the double exponential shrinking conditions
can be relaxed: the covariance condition is no longer needed and it is sufficient to
bound uniformly the probability of a node to stay uninformed by n−τ , for some
τ < 1.

The main result of the section is the following theorem.

Theorem III.35. Consider a homogeneous epidemic protocol satisfying the upper
double exponential shrinking conditions in [n−α, g]. Suppose further that there
exists τ > 0 such that 1− pn−u ≤ n−τ for all u ≤ n1−α.

Then there exist constant A′, α′ > 0 such that

E[T (d(1− g)ne, n)] ≤ log` lnn+O(1),

P[T (d(1− g)ne, n) ≥ log` lnn+ r] ≤ O(n−α
′r+A′) for all r ∈ N.

Below we will first introduce all preliminary lemmas, and then we will prove
Theorem III.35 at the end of the section.
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Round Targets and Failure Probabilities

Let the random variable y(ε) denote to the fraction of uninformed nodes at the
end of a round started with εn uninformed ones. The double exponential shrinking
conditions state that

E[y(ε)] ≤ E(ε) := aε`.

Lemma III.36. Var[y(ε)] ≤ 1+c
n

.

Proof. Indeed, Var[y(ε)] = 1
n2 Var[Y (ε)], where Y (ε) := ny(ε) is the number of

uninformed nodes at the end of the round. By Lemma A.3,

Var[Y (ε)] ≤ E[Y (ε)] + (nε)2cn(1−ε) ≤ n+ cn.

The next lemma states that with good probability, y(ε) is less than the target
value 2E(ε).

Lemma III.37. For any fraction of uninformed nodes ε ∈ [n−α, g],

P[y(ε) ≥ 2E(ε)] ≤ q := (1+c)
a2 n2α`−1.

Proof. Applying Chebyshev’s inequality and taking into account that E(ε) ≥
E[y(ε)], we compute

P[y(ε) ≥ 2E(ε)] ≤ P[y(ε) ≥ E[y(ε)] + E(ε)] ≤ Var[y(ε)]
E(ε)2 .

By Lemma III.36 and since ε ≥ n−α,

P[y(ε) ≥ 2E(ε)] ≤ 1+c
n
· 1

(aε`)2 ≤ 1+c
a2 n

2α`−1.

Our choice to analyze the double exponential shrinking regime only up to n1−α

uninformed nodes allows us to define q independent of ε. Since the double ex-
ponential shrinking conditions imply the second assumption of Theorem III.35,
without loss of generality we may assume that α < 1

2`
, and that consequently

q = n−Θ(1).
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The Phase Calculus

Let us define the sequence εj recursively by

ε0 := g, εj+1 := 2E(εj).

The following observation can be obtained by a simple induction.

Observation III.38. For all j ≥ 0, εj = (2a)
`j−1
`−1 g`

j
. In particular, the εj form a

decreasing sequence if g < (2a)
− 1
`−1 .

In the following we assume that g is small enough to ensure that the εj decrease.
Applying logarithm twice to the previous equation one can also see the following.

Corollary III.39. There exists J = log` lnn+O(1) such that for any n big enough

n−α < εJ ≤
(
n−α

2a

)1/`

.

Proof. From Observation III.38 we see that the biggest J such that εJ > n−α is

equal to log` lnn+O(1). Since εJ+1 < n−α, we have εJ <
(
n−α

2a

)1/`

.

We say that the process is in phase j if the fraction ε of uninformed nodes is
in ]εj+1, εj].

Lemma III.40. If the process is in phase j, j < J , then the number of rounds to
leave phase j is stochastically dominated by 1 + Geom(1− q).

Proof. Consider a round starting with εn uninformed nodes. By construction, the
process leaves the phase j if y(ε) ≤ εj+1 = 2E(εj). Since E(·) is an increasing
function, an upper bound for the probability to stay in phase j in the current
round is

max
ε∈]εj+1,εj ]

P[y(ε) > 2E(εj)] ≤ max
ε∈]εj+1,εj ]

P[y(ε) ≥ 2E(ε)] ≤ q.

Hence, the number of rounds the process spends in phase j is stochastically dom-
inated by a random variable with distribution 1 + Geom(1− q).

Let us now prove the main theorem of the section.

Proof of Theorem III.35. From Lemma III.4 it follows that for any g′ < g we have
E[T (n−bgnc, n−dg′ne)] = O(1). So without loss of generality we can assume that

g < (2a)
− 1
`−1 that is required by Observation III.38 and, thus, by Corollary III.39.
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Let the random variable Tj denote the number of rounds spent in phase j. With
Corollary III.39 as well as Lemma III.37 and III.40, we compute

E[T (n− bgnc, n− dεJne)] ≤
J−1∑
j=0

E[Tj]

≤ J
(

1 + q
1−q

)
= log` lnn+O(1) (III.12)

P [T (n− bgnc, n− dεJne) > J + r] ≤ Jq−r = n−Θ(r) . (III.13)

By Corollary III.39, εJ <
(
n−α

2a

)1/`

. Consequently, there exists α′ ∈]0, α[ such

that εJ < n−α
′

for any n large enough. Without loss of generality we can assume
that for any u ≤ n1−α′ we have 1 − pn−u ≤ n−τ (for u ∈ [n1−α, n1−α′ ] it follows
from the double exponential shrinking condition). Now suppose u0 ≤ n1−α′ and
consider T (n − u0, n). By the argument above, any of the u0 uninformed nodes
stays uninformed for r ≥ 1 rounds with probability at most n−τr. Then by the
union bound, we have P[T (n−u0, n) > r] ≤ Pr := min{1, n−τr+1−α′}, that together
with (III.13) proves the tail bound statement.

Finally, E[T (n − u0, n)] ≤ 1 +
∑

r≥1 Pr = O(1), for any u0 ≤ n1−α. Then,
together with (III.12) it proves that E[T (n− bgnc, n)] ≤ log` lnn+O(1).

4.2 Lower Bound.

We now prove that under lower bound conditions comparable to the upper bound
conditions of the previous section, we obtain a lower bound on the runtime equaling
our upper bound apart from an additive constant.

Double Exponential Shrinking Conditions

Throughout this section, we assume that the following lower double exponential
shrinking conditions are satisfied.

Definition III.41 (lower double exponential shrinking conditions). Let g, α ∈]0, 1]
and ` > 1. Let a, c ∈ R≥0. We say that a homogeneous epidemic protocol satisfies
the lower double exponential shrinking conditions if for any n big enough, the
following properties are satisfied for all u ∈ [n1−α, gn].

(i). 1− pn−u ≥ a
(
u
n

)`−1
.

(ii). cn−u ≤ c n
u2 .
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Similarly to the upper double exponential shrinking conditions, we work mostly
with the fraction ε := u

n
of uninformed nodes instead of the absolute number u.

Thus, the double exponential shrinking conditions turns into the following bounds,
valid for all ε ∈ [n−α, g] with εn ∈ N.

(i). 1− pn(1−ε) ≥ aε`−1.

(ii). cn(1−ε) ≤ ε−2 c
n
.

The main result of this section is the following theorem.

Theorem III.42. Consider a homogeneous epidemic protocol satisfying the lower
double exponential shrinking conditions in the interval [n1−α, gn]. Let r be a suffi-
ciently large constant (possibly depending on α). Then,

E[T (n− dgne, n− bn1−αc)] ≥ log` lnn+O(1),

P[T (n− dgne, n− bn1−αc) ≤ log` lnn− r] ≤ O(n−1+2α`),

Below we will first introduce all preliminary lemmas, and then we will prove
Theorem III.42 at the end of the section.

Round Targets and Failure Probabilities

Let again y(ε) denote the fraction of uninformed nodes at the end of a round
started with εn uninformed ones. The double exponential shrinking conditions
state that

E[y(ε)] ≥ E(ε) := aε`.

The next lemma gives that with good probability, y(ε) is at least the target
value E(ε)/2.

Lemma III.43. For any fraction of uninformed nodes ε ∈ [n−α, g],

P
[
y(ε) ≤ 1

2
E(ε)

]
≤ 4+4c

a2ε2n
≤ q := 4+4c

a2 n2α`−1.

Proof. Applying Chebyshev’s inequality and taking into account that E[y(ε)] ≥
E(ε), we compute

P[y(ε) ≤ 1
2
E(ε)] ≤ P

[
y(ε) ≤ E[y(ε)]− 1

2
E(ε)

]
≤ 4 · Var[y(ε)]

E(ε)2 .

By the same arguments like in Lemma III.36, Var[y(ε)] ≤ 1+c
n

. Since ε ≥ n−α, we
have E(ε) ≥ an−α`, and the claim of the lemma directly follows.

Similarly to the upper bound, our choice to analyze the double exponential
shrinking regime only up to n1−α uninformed nodes allows us to define q indepen-
dent of ε. We also assume that α < 1

2`
so that q = n−Θ(1).
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Let us define the sequence εj recursively by

ε0 := g, εj+1 := 1
2
E(εj).

The next observation follows from the definition by a simple induction. The εj
are decreasing simply because εj+1 = 1

2
E(εj) < E[y(εj)] ≤ εj. Note that y(ε) ≤ ε

with probability one for any homogeneous protocol.

Observation III.44. For all j ≥ 1, εj = (a/2)
`j−1
`−1 g`

j
. The εj form a decreasing

sequence.

In the rest of the section we assume that g < (a/2)
− 1
`−1 . Applying logarithm

twice to the previous equation one can also see the following.

Observation III.45. There exists J = log` lnn+O(1) such that εJ > n−α.

As before, we say that the process is in phase j if the fraction ε of uninformed
nodes is in ]εj+1, εj].

Lemma III.46. If the process starts in phase j, j < J , then the probability that
after one round it is in phase j + 2 or higher is at most q.

Proof. Consider a round starting with εn uninformed nodes, where ε ∈]εj+1, εj].
By construction, the process leapfrogs phase j+1 if y(ε) ≤ εj+2 = 1

2
E(εj+1). Since

E(·) is an increasing function, an upper bound for the probability to jump over
phase j + 1 is

max
ε∈]εj+1,εj ]

P[y(ε) ≤ 1
2
E(εj+1)] ≤ max

ε∈]εj+1,εj ]
P[y(ε) ≤ 1

2
E(ε)] ≤ q.

Proof of Theorem III.42. Consider the rumor spreading process starting with ε0n =
gn uninformed nodes. By Lemma III.46, with probability at least (1−q)J ≥ 1−Jq,
the process visits each phase j ∈ [0..J − 1], which naturally takes at least J − 1
rounds. Consequently, by definition of J in Observation III.45, we have

E[T (n− dgne, n− bn1−αc)] ≥ E[T (n− dnε0e, n− bnεJc)]
≥ (J − 1)(1− Jq) = log` lnn+O(1).

The large-deviation statement follows immediately from adding the failure proba-
bilities 4+4c

a2ε2jn
, j = 0, . . . , J − 1, from Lemma III.43.
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1 Classic Protocols

In this section, we define the classic push, pull, and push-pull protocols, give some
background information on them, and show how the methods developed above eas-
ily give very sharp (tight apart from additive constants) rumor spreading times.
For this, we easily convince ourselves that all three protocols satisfy the expo-
nential growth conditions. The push protocol satisfies the exponential shrinking

71
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conditions, whereas the pull and push-pull protocols both satisfy the double expo-
nential shrinking conditions. For all these conditions, we can show for the upper
and lower bound part of the conditions the same value for the critical parame-
ter γn, ρn, and `), which is why we then obtain sharp estimates for the rumor
spreading times.

We stick to the usual convention that for rumor spreading in complete graphs
we allow that nodes call themselves, that is, the random communication partner
is chosen uniformly at random from all nodes. By replacing all (1− 1

n
) terms with

(1 − 1
n−1

), the elementary proofs below can easily be transformed to the setting
where nodes only call random neighbors in the complete graph.

1.1 Push Protocol

The push protocol appeared in the computer science literature first in the works of
Frieze and Grimmett [FG85] (as a technical tool to analyze the all-pairs shortest
path problem on complete digraphs with random edge weights) and, under the
name rumor mongering, Demers et al. [DGH+87] which is the first work that
proposed rumor spreading as a robust and scalable method to maintain consistency
in replicated databases. In the push protocol, in each round each node knowing
the rumor calls a random neighbor and gossips the rumor to it.

The push protocol is the most intensively studied rumor spreading process. It
has been proven that with high probability it disseminates a rumor known to a
single node to all others in time logarithmic in the number n of nodes when the
communication networks is a complete graph (see below), a random graph in the
G(n, p) model with p ≥ (1 + ε) ln(n)/n, that is, only very slightly above the con-
nectivity threshold, or a hypercube [FPRU90], or a random regular graph [FP10]
(and this list is not complete).

For the complete graph, Frieze and Grimmett [FG85] show (among other re-
sults) that with high probability, the rumor spreading time is log2 n+lnn±o(log n).
This estimate was sharpened by Pittel [Pit87], who proved that for any h = ω(1),
the rumor spreading time with high probability is log2 n + lnn ± h(n). The
first explicit bound for the expected runtime, blog2 nc + lnn − 1.116 ≤ E[Sn] ≤
dlog2 ne+ lnn+ 2.765 + o(1) was shown in [DK14]. All these works are relatively
technical (see, e.g., the 9-pages proof of [Pit87]) and heavily exploit particular
properties of the push process (e.g., a birthday paradox argument for the first
log2(o(

√
n)) calls and a reduction to the coupon collector process for the last

roughly lnn rounds in [DK14]).
With the methods developed in this work, we only need to show that the push

protocol satisfies the exponential growth and shrinking conditions (with γn = 1
and ρn = 1), which is very easy. This confirms the bound of [DK14] cited above
apart from the additive constants, but with a, as we believe, much simpler proof.
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Theorem IV.1. The expected rumor spreading time of the push protocol on the
complete graph with n vertices is log2 n + lnn ± O(1). There also exist constants
A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α

′r.

Proof. Consider one round of the protocol. Let x1, x2 be two different uninformed
nodes. Let X1 and X2 be the indicator random variables for events that x1 resp. x2

become informed. Clearly, if we condition on that x1 becomes informed, then it is
slightly less likely that x2 becomes informed. Consequently, Cov[X1, X2] < 0 and
the covariance part of the exponential growth and shrinking conditions is satisfied.

Therefore, it remains to analyze the probability pk of an uninformed node to
become informed.

For the exponential growth regime, suppose that k nodes are informed. An
uninformed node remains uninformed when all informed nodes fail to call it. Con-
sequently, it becomes informed with probability pk = 1 −

(
1− 1

n

)k
. With the

estimates
k
n
− k2

2n2 ≤ pk ≤ k
n

we see that the protocol satisfies the exponential growth conditions with parameter
γn = 1. More precisely, we can take γn = 1, f = 1, b = 0 and c = 0 is both the
upper and lower bound exponential growth condition. Taking a = 1 satisfies the
upper exponential growth condition, taking a = 0 suffices for the lower exponential
growth condition.

For the exponential shrinking conditions, suppose that there are u uninformed
nodes. Again, the probability for a node to stay uninformed is 1 − pn−u =(
1− 1

n

)n−u
. By Corollary B.5, for any u < n we have the following estimate.

1
e
≤ 1− pn−u ≤ 1

e
+ 2

e
· u
n

The push protocol hence satisfies the exponential shrinking conditions (from gn :=
1
2
n uninformed nodes on) with parameter ρn = 1.

By Theorems III.7, III.14, III.19, and III.28, the expected rumor spreading
time of the push protocol is log2 n+ lnn±O(1).

1.2 Pull Protocol

The pull protocol is dual to the push protocol in the sense that now in each round,
each uninformed node calls a random neighbor and becomes informed if the latter
was informed. We are not aware of a convincing practical motivation for this
protocol, however, it has been very helpful in proving performance guarantees for
other protocols, e.g., in [Gia11]. Note that the duality between the two protocols
immediately shows that the probability that the push protocol in t rounds moves a
rumor initially present at a node u to a node v equals the probability that the pull
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protocol gets the rumor from v to u in t rounds, but this does not imply that both
protocols have the same rumor spreading times (as also Theorems IV.1 and IV.2
show).

We are not aware of any performance guarantees proven for the pull protocol.
Some existing results for the push protocol obviously can be transformed into
results for the pull protocol via the duality and union bounds. For complete
graphs, we do not see how this would give bounds stronger than Θ(log n).

Interestingly, the expansion phase of the pull protocol (when viewed from a
distance) resembles the expansion phase of the push protocol—the probability
that an uninformed node becomes informed in a round starting with k informed
nodes is pk = k

n
and thus, for small k, very close to the k

n
−Θ( k

2

n2 ) probability of the
push protocol. Nevertheless, the precise processes are very different. For example,
in the push protocol we almost surely observe a perfect doubling of the number of
informed nodes as long as o(

√
n) nodes are informed. For the pull protocol, the

number of newly informed nodes in the first round is binomially distributed with
parameters n−1 and 1

n
, so the probability for a perfect doubling is asymptotically

equal to 1
e
. For this reason, the existing analyses of the push protocol cannot

easily be transferred to the pull protocol. This is different for our method, which
ignored many details of the process and only relies on the rough characteristics pk
and ck of the process. We show below that the similar values of pk lead to the
same log2 n±O(1) time it takes to inform a constant fraction of the nodes. From
that point on, the double exponential shrinking conditions are obvious, leading to
a double logarithmic remaining time.

Theorem IV.2. The expected rumor spreading time of the pull protocol on the
complete graph with n vertices is log2 n+log2 lnn±O(1). There also exist constants
A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α

′r.

Proof. Clearly, the events that uniformed nodes become informed are mutually
independent. Hence the covariance conditions are exponential growth and double
exponential shrinking regimes are satisfied.

An uninformed node becomes informed if its call reaches an informed node.
Hence for all k ∈ [1..n − 1], we have pk = k/n. This shows that both the upper
and lower exponential growth conditions are satisfied with parameter γn = 1 (and
f = 1, a = 0, b = 0, c = 0).

For the same reason, the probability 1−pn−u that an uninformed node remains
uninformed when u nodes are uninformed, is 1−pn−u = 1−n−u

n
= u

n
. Consequently,

the upper and lower double exponential shrinking conditions are satisfied with
` = 2 (and g = 1, α = 0, a = 1, and c = 0).

By Theorems III.7, III.14, III.35, and III.42, the expected rumor spreading
time is log2 n+ log2 lnn±O(1).
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1.3 Push-Pull Protocol

In the push-pull protocol, both informed and uninformed nodes contact a random
neighbor in each round. If one of the two partners of such a conversation is
informed, then also the other one becomes informed. The push-pull protocol is
popular for a number of reasons.

The push-pull protocol (called anti-entropy there) was found to be very reliable
in the first experimental work on epidemic algorithms [DGH+87]. The seminal pa-
per by Karp et al. [KSSV00] proved that the push-pull protocol disseminates a
rumor in a complete graph in log3 n ± O(log log n) rounds with high probability.
This not only is faster than the push and pull protocols, but it allows implementa-
tions using only few messages per node. The just mentioned rumor spreading time
stems from an exponential growth phase of length roughly log3 n and a double
exponential shrinking phase. Hence by making informed nodes stop their activity
after the exponential growth phase, the total number of messages can be reduced
massively.

The push-pull protocol was also investigated in models for social networks.
Clearly, when modeling human communication, say people randomly meeting at
parties and chatting, a push-pull spreading mechanism makes sense. However,
also from the algorithmic viewpoint, it was observed that in graphs with a non-
concentrated degree distribution the push-pull protocol greatly outperforms the
push and pull protocols. This was first made precise by Chierichetti, Latanzi, and
Panconesi [CLP09], who showed that the push-pull protocol spreads a rumor in a
preferential attachment graph [BA99, BR03] in time O(log2 n), whereas both the
push and the pull protocols need time Ω(nα) for some constant α > 0 to inform
all nodes. The precise rumor spreading time of Θ(log n) of the push-pull protocol
was shown in [DFF11] (see also [DFF12c]). There is was also proven that the
rumor spreading time reduces to Θ( logn

log logn
) when the communication partners are

chosen randomly but with the previous partner excluded. This first sublogarithmic
rumor spreading time was quickly followed up by other fast rumor spreading times
in networks modeling social networks, e.g., [FPS12, DFF12a, MP14].

The push-pull protocol also performs well and admits strong theoretical anal-
yses when the network has certain general expansion properties like a good vertex
expansion [GS12, Gia14] or a low conductance [MS06, CLP10, Gia11].

Theorem IV.3. The expected rumor spreading time of the push-pull protocol on
the complete graph with n vertices is log3 n + log2 lnn ± O(1). There also exist
constants A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α

′r.

Proof. We again discuss the covariance condition first. Consider one round of the
protocol. Let x1, x2 be two different uninformed nodes. For i = 1, 2, let Xi be the
indicator random variable for the event that xi becomes informed in this round, Yi
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the indicator random variable for the event that xi is called by an informed node,
and Zi the indicator random variable for event that xi calls an informed node.
Clearly, Xi = max{Zi, Yi}.

We show Cov[X1, X2] ≤ 0, and thus all covariance conditions, by showing that
P[X1 = 1 | X2 = 1] ≤ P[X1 = 1]. We have

P[X1 =1 | X2 = 1] = P[X1 = 1 | X2 = 1 ∧ Z2 = 1] · P[Z2 = 1 | X2 = 1]

+ P[X1 = 1 | X2 = 1 ∧ Z2 = 0] · P[Z2 = 0 | X2 = 1]. (IV.1)

Since the intersection of events Z2 = 1 ∧X2 = 1 is equivalent to the single event
Z2 = 1 and the outgoing call of the uninformed node cannot inform any node, we
have

P[X1 = 1 | X2 = 1 ∧ Z2 = 1] = P[X1 = 1 | Z2 = 1] = P[X1 = 1]. (IV.2)

When Z2 = 0 ∧X2 = 1 holds, then x2 becomes informed via a push call, which is
not available anymore to inform x1. Hence

P[X1 = 1 | Z2 = 0 ∧X2 = 1] ≤ P[X1 = 1]. (IV.3)

From (IV.1) to (IV.3) we obtain P[X1 = 1 | X2 = 1] ≤ P[X1 = 1].
An uninformed node remains uninformed if it is not called by any informed

node and it calls an uninformed node itself. Hence pk = 1−
(
1− 1

n

)k · n−k
n

. Using
the estimates from Lemma B.2 we obtain

2 k
n
− 3k2

2n2 ≤ pk ≤ 2 k
n

and see that the protocol satisfies the exponential growth conditions with γn = 2.
Likewise, the probability 1− pn−u that an uninformed node stays uninformed

in a round starting with u uninformed nodes is equal to u
n

(
1− 1

n

)n−u
. With

Corollary B.5, we estimate
1
e
· u
n
≤ 1− pn−u ≤ u

n
.

Therefore, the protocol satisfies the double exponential shrinking conditions with
` = 2.

By Theorems III.7, III.14, III.35, and III.42, the expected rumor spreading
time is log3 n+ log2 lnn±O(1).

2 Robustness, Multiple Calls, and Dynamic

Graphs

In this section, we apply our analysis method to settings (i) in which calls fail
independently with constant probability, (ii) in which nodes are allowed to call a
random number of other nodes instead of one as proposed in [PPS15], and (iii) to
a simple dynamic graph setting.
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2.1 Transmission Failures

One key selling point for randomized rumor spreading, and more generally gossip-
based algorithms, is that all these algorithms due to the intensive use of inde-
pendent randomness are highly robust against all types of failures. In this sub-
section, we analyze the performance of the three classic protocols in the presence
of independent transmission failures, that is, when calls are successful only with
probability p < 1. Not unexpectedly, we can show that the rumor spreading times
only increase by constant factors. However, we also observe a structural change,
namely that the extremely fast double exponential shrinking previously seen with
the pull and push-pull protocols is replaces by the slower single exponential shrink-
ing regime. This has the important implication that the message complexity of
the simple push-pull protocol (where messages are counted as in [KSSV00] and
the protocol is assumed to stop when a suitable time limit is reached) increases
from the theoretically optimal value of Θ(n log log n) to Θ(n log n), see the remark
following the proof of Theorem IV.6.

While the robustness of randomized rumor spreading is consistently empha-
sized in the literature, only relatively few proven guarantees for this phenomenon
exist. All results model communication failures by assuming that each call inde-
pendently with probability 1 − p fails to reach its target. The usual assumption
is that the protocol does not take notice of such events. Elsässer and Sauer-
wald [ES09] show for any graph G that if the push protocol spreads a rumor with
probability 1−O(1/n) to all nodes in time T , then the push protocol with failures
succeeds in informing all nodes with probability 1−O(1/n) in time 6

p
T . This was

made more precise for complete graphs in [DHL13], for which a rumor spreading
time of log1+p n + 1

p
lnn ± o(log n) was shown to hold with high probability. The

same result also holds for random graphs in the G(n, p′) model when the edge
probability p′ is ω(log(n)/n), that is, asymptotically larger than the connectivity
threshold [FHP10]. To the best of our knowledge, these few results are all that is
known in terms of proven guarantees for the classic rumor spreading protocols in
the presence of failures.

We now use the methods developed in this work to obtain very sharp estimates
for the runtimes of the classic protocols on complete graphs when calls fail inde-
pendently with probability 1− p, p < 1. As in Sections 1, the growth or shrinking
conditions valid in each case are easily proven, showing again the versatility of our
approach.

Theorem IV.4. The expected rumor spreading time for the push protocol with
success probability p on the complete graph of size n is equal to

log1+p n+ 1
p

lnn±O(1).
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There also exist constants A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α
′r.

Proof. With the same argument as in the proof of Theorem IV.1, we see that the
covariances regarded in the covariance conditions are all negative.

Consider an uninformed node in a round started with k informed nodes. The
probability that it becomes informed in this round is pk = 1 − (1 − p

n
)k. By

Lemma B.2, we estimate
pk
n
− p2k2

2n2 ≤ pk ≤ pk
n

for all k < n and see that the protocol satisfies the exponential growth conditions
in [1, n[ with γn = p.

Similarly, the probability that an uninformed node in a round starting with
u := n − k uninformed nodes stays uninformed, is 1 − pn−u =

(
1− p

n

)n−u
. By

Corollary B.6, we estimate

e−p ≤ 1− pn−u ≤ e−p(1 + 2pu
n

)

for all u < n and thus have the exponential shrinking conditions with ρn = p for
all u ≤ n/2.

By Theorems III.7, III.14, III.19, and III.28, the expected rumor spreading
time is log1+p n+ 1

p
log n±O(1).

The result above and its proof are valid for p = 1 and then coincide with
Theorem IV.1. For the pull protocol and the push-pull protocol, we observe a
substantial change of the process when transmission errors occur. In this case, an
uninformed node stays uninformed with probability at least 1 − p, so the double
exponential shrinking conditions cannot be satisfied. Instead, we observe that the
single exponential shrinking conditions are satisfied.

Theorem IV.5. The expected rumor spreading time of the pull protocol with suc-
cess probability p < 1 on the complete graph of size n is equal to

log1+p n+ 1
ln 1

1−p
lnn±O(1).

There also exist constants A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α
′r.

Proof. As in the proof of Theorem IV.2, the events that uninformed nodes become
informed are mutually independent. Hence all covariance conditions are satisfied
with c = 0. The probability that an uninformed node becomes informed in a
round starting with k informed nodes is pk = p k

n
, hence the protocol satisfies the

exponential growth conditions in [1, n[ with γn = p.
Similarly, the probability that an uninformed node remains uninformed in a

round starting with u uninformed nodes is

1− pn−u = 1− pn−u
n

= 1− p+ pu
n

= exp
(
− ln 1

1−p

)
+ pu

n
.
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Consequently, the protocol satisfies the exponential shrinking conditions with ρn =
ln 1

1−p for all u ≤ gn, g any constant smaller than 1.
By Theorems III.7, III.14, III.19, and III.28, the expected rumor spreading

time is log1+p n+ 1
ln(1/(1−p)) lnn±O(1).

Theorem IV.6. The expected rumor spreading time for the push-pull protocol with
success probability p < 1 on the complete graph of size n is equal to

log2p+1 n+ 1
p+ln 1

1−p
lnn±O(1).

There also exist constants A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α
′r.

Proof. Using the same arguments as for the push-pull protocol without failures,
we observe that the covariances are at most zero, so all covariance conditions are
satisfied. Consider an uninformed node in a round starting with k informed nodes.
The probability that this node does not inform itself via its pull call is 1 − p k

n
.

The probability that it is not successfully called by an informed node is
(
1− p

n

)k
.

Hence pk = 1−
(
1− p k

n

) (
1− p

n

)k
and Corollary B.3 gives

2p k
n
− 3p2k2

2n2 ≤ pk ≤ 2p k
n
.

Thus the protocol satisfies the exponential growth conditions in [1, 2
3
n[ with γn =

2p.
Likewise, the probability 1− pn−u that an uninformed node stays uninformed

in a round starting with u uninformed nodes is equal to
(
1− pn−u

n

) (
1− p

n

)n−u
.

With Corollary B.6 we estimate

(1− p)e−p + pe−p · u
n
≤ 1− pn−u ≤ (1− p)e−p + 3pe−p · u

n
.

Therefore, the protocol satisfies the exponential growth conditions with ρn = p +
ln 1

1−p . Thus by Theorems III.7, III.14, III.19, and III.28, the expected spreading

time is equal to logp+1 n+ 1
p+ln(1/(1−p)) lnn±O(1).

The fact that in the presence of transmission failures the double exponential
shrinking regime ceases to exist has an important implication on the message
complexity. In their seminal paper [KSSV00], Karp et al. show that any address-
oblivious rumor spreading algorithm that informs all nodes of the complete graph
with at least constant probability needs Ω(n log log n) message transmissions in
expectation (we refer to that paper for a discussion of the tricky question how to
count messages in algorithms performing pull calls).

This optimal order of magnitude is attained by the push-pull protocol when
nodes stop sending a rumor that is older than log3 n + O(log log n) rounds. As
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Karp et al. remark, relying on such a time stamp is risky. A mild underestimate of
the true rumor spreading time leaves a constant fraction of the nodes uninformed.
A mild overestimate of the rumor spreading time by ε log n rounds leads to the
situation that for ε log n rounds a constant fraction of the nodes knows and pushes
the rumor, which implies a message complexity of Ω(n log n). For this reason,
Karp et al. propose the more complicated median-counter algorithms which is ro-
bust against a moderate number of adversarial node failures and against moderate
deviations from the uniform choice of the nodes to contact.

Our above analysis of the push-pull protocol in the presences of transmis-
sion faults shows that not only an unexpected deviation from the ideal fault-free
push-pull protocol leads to an increased message complexity, but even a perfectly
anticipated faulty behavior. While we know the expected rumor spreading time
very precisely (and we could with the same arguments also show a tail bound
stating that our upper bound for the expectation is exceeded by λ with proba-
bility exp(−Ω(λ)) only), the “transmit until time limit reached” approach still
leads to a message complexity of Ω(n log n) due to the missing double exponential
shrinking phase. As our analysis shows, after an expected number of log2p+1 n
iterations, a constant fraction of the nodes are informed. However, it takes an-
other 1

p+ln 1
1−p

lnn+O(1) rounds in the exponential shrinking regime until all nodes

are informed. Hence when using the simple “transmit until time limit reached”
approach to limit the number of messages, the exponential shrinking regime alone
would see Ω(n log n) push calls by the Ω(n) informed nodes.

It is not clear how to overcome this difficulty. The median-counter algorithm
of Karp et al. for constant-probability transmission failures also seems to require
Ω(n log n) messages (see the comment right before Theorem 3.1 in [KSSV00]).

2.2 Multiple Calls

In this section, we analyze rumor spreading protocols in which in each round
each node when active calls a random number R of nodes. This was proposed
by [PPS15] to model different data processing speeds of nodes. Unlike in [PPS15],
we assume that each node in each round resamples the number of nodes it may
call. This allows to model changing data processing speed as opposed to nodes
having generally different speeds.

Consider a random integer variable R taking values in [0, n[. We say that a
rumor spreading protocol is an R-protocol if in each round it respects the following
call procedure. Each node which can make calls in current round samples indepen-
dently a new value r from R. Then it calls r different neighbors chosen uniformly
at random.

In this section we consider the R-push protocol and the R-push-pull protocol
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and prove the statements similar to Theorem 1.1, 1.2, and 1.3 from [PPS15]. Note
that by putting R ≡ 1, we obtain the classic push and push-pull protocols.

Theorem IV.7. Assume that R is a distribution with E[R] = Θ(1) and Var[R] =
O(1). Then the expected spreading time for the R-push protocol on the complete
graph of size n is equal to

log1+E[R] n+ 1
E[R]

lnn±O(1).

There also exist constants A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α
′r.

Proof. Consider a round of the protocol started from k informed nodes. Let x1

and x2 be two different uninformed nodes and let X1 and X2 be the indicator
random variables for events that x1 resp. x2 become informed. Suppose that node
y is informed. The probability that x1 and x2 are both called by y is at most∑
j≥2

P[R = j] ·
(
j

2

)
· 1
n(n−1)

≤ 1
n2

∑
j≥2

j2 ·P[R = j] ≤ (Var[R] +E[R]2) · 1
n2 = O

(
1
n2

)
.

Since there are k informed nodes, the probability that x1, x2 are both called by
the same node (not necessary y) is k · O

(
1
n2

)
. In addition, if we condition on

the event that x1 and x2 are not called by the same node, then the probability
that they both get informed is slightly less than p2

k = P[X1 = 1]2. Therefore,
Cov[X1, X2] ≤ k · O

(
1
n2

)
for any k < n which corresponds to the covariance

condition for both exponential growth and exponential shrinking.
Now let us study the probability pk. Since the probability that x does not

belong to a random set of j nodes is equal to(
1− 1

n

) (
1− 1

n−1

)
. . .
(

1− 1
n−j+1

)
= n−j

n
,

the probability that y does not call x is equal to
∑

j≥0 P[R = j] · n−j
n

= 1 − E[R]
n

.
Therefore the probability pk that x gets informed in current round is equal to

1−
(

1− E[R]
n

)k
. (IV.4)

With Corollary B.3 we estimate

E[R] · k
n
− E[R]2 · k2

2n2 ≤ pk ≤ E[R] · k
n
, (IV.5)

for any k ≤ n/E[R]. Therefore, the protocol satisfies the exponential growth
conditions in [1, n/E[R]] with γn = E[R].
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Similarly, the probability that an uninformed node stays uninformed in a round

starting with u := n − k uninformed nodes, is 1 − pn−u =
(

1− E[R]
n

)n−u
. By

Corollary B.6, for all u ≤ n/E[R] we estimate

e−E[R] ≤ 1− pn−u ≤ e−E[R]
(
1 + 2E[R]u

n

)
. (IV.6)

Therefore, the protocol satisfies the exponential shrinking conditions in [n(1 −
1/E[R]), n] with ρn = E[R].

We note that the intervals for the exponential growth and shrinking regime
does not intersect if E[R] > 2. However, we still be able to bound the ex-
pected spreading time. From (IV.5) it follows that pn/E[R] = 1 − 1

e
+ o(1) and

pn(1−1/E[R]) = 1 − e1−E[R] + o(1). Since pk increases, it is bounded uniformly for

any k ∈
[

n
E[R]

, n− n
E[R]

]
. Hence, by Lemma III.4, we have E

[
T
(

E[R]
n
, n− E[R]

n

)]
=

O(1). So by Theorems III.7 and III.19, the expected rumor spreading time is at
most log1+E[R] n+ 1

E[R]
log n±O(1).

Similarly, by Lemma III.5, there exists some f ′ ∈
]
1− 1

E[R]
, 1
[

such that with

probability 1−O
(

1
n

)
the number of informed nodes after some round will belong to[

n− n
E[R]

, f ′n
]
. Then by Theorems III.14 and III.28, the expected rumor spreading

time is at least log1+E[R] n+ 1
E[R]

log n±O(1).

Theorem IV.8. Assume that R is a distribution with E[R] = Θ(1) and Var[R] =
O(1). Let ` be the smallest nonnegative integer such that P[R = `] > 0 and we
suppose that P[R = `] = Θ(1). Then the expected spreading time for the R-push-
pull protocol on the complete graph of size n is at most

log1+2E[R] n+ 1
E[R]−lnP[R=0]

· lnn±O(1), ` = 0;

log1+2E[R] n+ log1+` lnn±O(1), ` > 0.

There also exist constants A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α
′r.

Proof. As usual, we discuss the covariance condition first. Consider one round of
the protocol started from k informed nodes. Let x1, x2 be two different uninformed
nodes. For i = 1, 2, let Xi be the indicator random variables for event that xi
becomes informed in this round, Yi the indicator random variable for the event that
xi is called by an informed node, and Zi the indicator random variable for event
that xi calls an informed node. Since Yi coincides with Xi for the push protocol
from the proof of Theorem IV.7, we have Cov[Y1, Y2] ≤ k · O

(
1
n2

)
. In addition Zi

are pairwise independent and also independent from Yi. Since Xi = max{Zi, Yi}
we have also Cov[X1, X2] ≤ k · O

(
1
n2

)
for any k < n. Therefore, the covariance
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condition is satisfied for exponential growth and both exponential and double
exponential shrinking conditions.

Let us study P[Z1 = 0]. If node x1 calls j different nodes in current round,

then the probability that it does not hit informed node is
(
1− k

n

)
. . .
(

1− k
n−j+1

)
.

Summing over all possible values of j we obtain the following.

P[Z1 = 0] =
n−k∑
j=0

P[R = j] ·
(
1− k

n

)
. . .
(

1− k
n−j+1

)
. (IV.7)

Recall that that
∑n

j=0 j·P[R = j] = E[R] and
∑n

j=0 j
2·P[R = j] = Var[R]+E[R]2 =

O(1). Using estimate from Corollary B.3, we compute for any k ≤ n
2

P[Z1 = 0] ≤
n−k∑
j=0

P[R = j] ·
(
1− k

n

)j
≤

n/k∑
j=0

P[R = j] ·
(

1− j k
n

+ j2 k2

2n2

)
+

n−k∑
j=n/k+1

P[R = j]

=

n/k∑
j=0

P[R = j]− k
n

n/k∑
j=0

j · P[R = j] + k2

2n2

n/k∑
j=0

j2 · P[R = j] +
n−k∑

j=n/k−1

P[R = j]

≤ 1− k
n

E[R]−
n∑

j=n/k−1

j · P[R = j]

+ k2

n2

n−k∑
j=0

j2 · P[R = j]

≤ 1− E[R] · k
n

+ k2

n2

n∑
j=n/k−1

j2 · P[R = j] + k2

n2

n−k∑
j=0

j2 · P[R = j]

≤ 1− E[R] · k
n

+ 2(Var[R] + E[R]2) · k2

n2 .

For any k ≤ n
2

we can similarly bound P[Zi = 0] from below using Bernoulli’s
inequality.

P[Z1 = 0] ≥
n−k∑
j=0

P[R = j]
(

1− k · j
n−j

)
≥

n−k∑
j=0

P[R = j]
(
1− jk

n

(
1 + 2 j

n

))
= 1− E[R] · k

n
+O(1) · k2

n2
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By (IV.5), we estimate P[Y1 = 0] = 1− E[R] · k
n
± O(1) · k2

n2 . Since Y1 and Z1 are
independent, we have

P[X1 = 1] = 1− P[Y1 = 0] · P[Z1 = 0].

Therefore, pk = 2E[R] · k
n
± O(1) · k2

n2 for any k ≤ min
{
n
2
, n
E[R]

}
. Hence the

protocol satisfies the exponential growth conditions with γn = 2E[R] for any k ≤
min

{
n
2
, n
E[R]

}
.

Now we discuss the shrinking conditions. We consider a round started from
u := n− k uninformed nodes. Similarly to (IV.7), we have

P[Z1 = 0] =
∑
j≥0

P[R = j] · u
n
· u−1
n−1
· . . . · u−j+1

n−j+1
.

Assume first that P[R = 0] > 0, i.e., ` = 0. Since x1 might not call in current round,
there is at least a constant probability, that it stays uninformed. With (IV.6) and
estimate

P[R = 0] ≤ P[Z1 = 0] ≤ P[R = 0] + P[R ≥ 1] · u
n
,

we see that P[X1 = 0] = P[R = 0]·e−E[R]±O(1)·u
n

for any u ≤ min
{
n
2
, n
E[R]

}
. In this

case the protocol satisfies the exponential shrinking conditions with ρn = E[R] −
lnP[R = 0]. Applying Lemma III.4 and III.5 in the similar way as in the proof of
Theorem IV.7, one can see that by Theorems III.7, III.14, III.19, and III.28, the
expected rumor spreading time is log1+2E[R] n+ 1

E[R]−lnP[R=0]
lnn±O(1).

Finally, suppose that P[R = 0] = 0, and let ` be the smallest integer such that
P[R = `] > 0. In this case we can easily estimate the probability that x1 stays
uninformed. From below we have

P[X1 = 0] ≥ P[Y1 = 0] · P[R = `] · u`
n`
≥ e−E[R] · P[R = `] · u`

n`
.

From above, P[X1 = 0] ≤ P[Z1 = 0] ≤ u`

n`
. Hence the protocol satisfies the

double exponential shrinking conditions with parameter 1 + `. Again, by The-
orems III.7, III.14, III.35, and III.42 and Lemmas III.4 and III.5, the expected
rumor spreading time is log1+2E[R] n+ log1+` lnn±O(1).

2.3 Dynamic Graphs

We now show that our method can also be applied to certain dynamic graph
settings, that is, when the network structure may be different in each round. While
it is generally agreed upon that dynamic problem settings are highly relevant for
practical applications, it is still not so clear what is a good theoretical model
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for dynamicity. For rumor spreading problems, the only work regarding dynamic
graphs [CCD+16] considers the two models (i) that in each round independently
the network is a G(n, p) random graph and (ii) that each possible edge has its
own independent two-state Markov chain describing how it changes between being
present and not (edge-Markovian dynamic graphs). For both models, it is proven
that the push protocol informs all nodes in logarithmic time with high probability
(when the parameters are chosen reasonably).

2-regular Dynamic Graphs

To show that our methods also allow the analysis of dynamic graph models with
more dependencies, we regard in this section the model where in each round inde-
pendently the network Gt is chosen as a random 2-regular (simple) graph. Regular
random graphs are notorious for the inherent dependencies which already make
sampling them highly non-trivial. For this reason, it is quite clear that the classic
rumor spreading analysis approach of trying to understand the distribution of the
number of newly informed nodes will be tedious. For our method, however, we
only need to take the local view of understanding how likely it is that a new node
becomes informed. For the covariance condition, while we believe it to be true, we
do not need to show that the events of two uninformed nodes becoming informed
are negatively correlated (or independent). Since the covariance conditions allow
a mild positive covariance, we may conveniently ignore rare events like the two
nodes sharing a neighbor and may thus assume that the calls affecting the two
nodes are disjoint and thus independent.

Nevertheless, it turns out that the rumor spreading process in this type of
dynamic graphs is different from the one in complete graphs. This is visible from
the rumor spreading times proven below, but also from the observation that even
in the pull protocol the events that two uniformed nodes become informed are not
independent.

In this subsection, due to the small node degrees, we skip the assumption that
nodes may also call themselves, but assume that contacts are chosen uniformly at
random from all neighbors.

Theorem IV.9. Consider a dynamic graph setting where the network in each
round t independently is a 2-regular random (simple) graph Gt. Then the rumor
spreading times T of the three classic protocols are as follow.

• Push protocol: E[T ] = log2 n+ log4 n±O(1).

• Pull protocol: E[T ] = log2 n+ log2 lnn±O(1).

• Push-pull protocol: E[T ] = log5/2 n+ log2 lnn±O(1).
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There also exist constants A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α
′r.

Proof. We defer the proof of the covariance conditions to the very end. Consider
a round t starting with k informed nodes. Consider a fixed uninformed node x.
Let Ai, i = 0, 1, 2, be the event that i of its 2 neighbors are informed. Since in a
2-regular random graph the two neighbors of x form a random 2-set of the nodes
different from x, we easily compute

P[A0] = n−1−k
n−1

n−2−k
n−2

,

P[A1] = 2n−1−k
n−1

k
n−2

,

P[A2] = k
n−1

k−1
n−2

.

For the push protocol, we compute pk = 1
2
P[A1] + 3

4
P[A2] = k

n−1
(1 − 1

4
k−1
n−2

). As-
suming n to be sufficiently large, the exponential growth condition (apart from
the covariance condition) is satisfied in the whole range k ∈ [1, n[ with γn = 1.
Rewriting the expression for pk, we see that the probability to remain uninformed
in a round starting with u uninformed nodes, is 1− pn−u = 1

4
+ 1

2
u−1
n−2

+ 1
4

(u−1)(u−4)
(n−1)(n−2)

.

Hence for, say u ≤ n/2, the exponential shrinking conditions are satisfied with
ρn = ln 4. Apart from the covariance conditions, this shows our claim for the push
protocol.

For the pull protocol, we have pk = 1
2
P[A1] + P[A2] = k

n−1
and consequently

1−pn−u = u−1
n−1

, showing the exponential growth and double exponential shrinking
conditions to be satisfied in overlapping ranges with γn = 1 and ` = 1.

For the push-pull protocol, we have pk = 3
4
P[A1] +P[A2] = 3

2
k

n−1
(1− 2

3
k−1
n−2

) and

consequently 1−pn−u = u−1
n−1

+ 1
2
u+1
n−1
− 1

2
(u+1)(u−1)
(n−1)(n−2)

, showing the exponential growth
and double exponential shrinking conditions to be satisfied in overlapping ranges
with γn = 3

2
and ` = 1.

It remains to show the covariance conditions. Note first that the covariance
condition of the exponential growth conditions implies the other covariance con-
ditions, so it suffices to show the former.

Let x1, x2 be two uninformed nodes and let X1, X2 be the indicator random
variables for the events of becoming informed in the current round. We have
Cov[X1, X2] = P[X2](P[X1 | X2] − P[X1]) = O( k

n
)(P[X1 | X2] − P[X1]), so it

suffices to show P[X1 | X2]− P[X1] ≤ c/n for some constant c.
Let B be the event that x1 and x2 have distance at least 3 in Gt. Since x2

has at most 4 other nodes in distance 2 or closer, P[B] ≥ 1 − 4
n−1

. By P[X1 |
X2]− P[X1] ≤ P[¬B] + P[X1 | X2 ∧ B]− P[X1 | B], we only need to consider the
case that B holds. In this case, the targets of the calls of x1 and its neighbors are
independent of the event X2. Consequently, the only correlation among X2 = 1
and X1 = 1 stems from the fact that X2 = 1 has an influence on where the



2. ROBUSTNESS, MULTIPLE CALLS, AND DYNAMIC GRAPHS 87

informed nodes are in Gt. More formally, denoting by Aji the event that xj has
exactly i of its two neighbors informed, we have that X2 = 1 has an influence on
the distribution of (A2

i )i which in turn has an influence on the distribution (A1
i )i.

However, regardless which event A2
i2

we condition on, the probability distribution
of (A1

i1
)i1 is only mildly affected. The precise expression for P[A1

i1
| A2

i2
] can be

obtained from the one for P[Ai1 ] above by replacing n by n − 2 and k by k − i2.
Consequently, P[A1

i1
| A2

i2
] = P[Ai1 ] ± O(1/n) for all i1, i2 ∈ {0, 1, 2}. Therefore

P[X1 | X2 ∧ B] = P[X1 | B] + O(1/n) and hence P[X1 | X2]− P[X1] = O(1/n) as
aimed at. This shows the covariance condition of the exponential growth conditions
in the whole range k ∈ [1, n[, and thus also the other two covariance conditions.

Erdős-Rényi Dynamic Graphs

It is clear that the edge-Markovian model due to the time-dependence cannot be
analyzed with our methods. For the other result, we now show that our method
quite easily gives a very precise analysis. We only treat the case of Θ(1/n) edge
probabilities, as this seems to be the most interesting one (the graph is not con-
nected, but has nodes with degrees varying between 0 and Θ(log(n)/ log log(n));
when p ≥ (1 + ε)/n, a giant component encompassing a linear number of nodes
exists).

To make the model precise, we assume that in each round independently, before
the communication starts, the communication graph is sampled as G(n, p) random
graph, where p = a/n for some positive constant a. That is, between any two nodes
there is an edge, independently, with probability a/n. In the communication part
of the round, each informed node chooses a communication partner uniformly at
random from its neighbors in the communication graph and sends a copy of the
rumor to it. Isolated informed nodes, naturally, do not communicate in this round.

We introduce the following notation. We consider one round and aim at show-
ing the exponential growth and shrinking conditions. Let E be the set of edges of
the communication graph G(n, a

n
) of this round. We write xy ∈ E as shorthand

for {x, y} ∈ E. We write x→ y to denote the event that x calls y. By deginf x we
denote the number of informed neighbors of x.

Lemma IV.10. Consider an uninformed node x and an informed node y. Let
` ≤ n/2 and let A` be the event that {y1y, . . . , y`y} ∩ E = ∅. Then

P[y → x | xy ∈ E ∧ A`] = 1−e−a
a

+ (`+ 1) ·O
(

1
n

)
.

Proof. Assume that xy ∈ E. Then the number of other neighbors of y, that
is, the random variable deg y − 1, has a binomial distribution with parameters
n − 2 − ` and a

n
. The probability that y calls x is equal to 1

deg y
. Using the fact
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that
(
m+1
k+1

)
= k+1

m+1

(
m
k

)
, we compute

P[y → x | xy ∈ E ∧ A`] =
n−2−`∑
i=0

1
i+1

(
n− 2− `

i

)(
a
n

)i (
1− a

n

)n−2−`−i

= n
a
· 1
n−2−`+1

·
n−2−`∑
i=0

(
n− 2− `+ 1

i+ 1

)(
a
n

)i+1 (
1− a

n

)n−2−`+1−(i+1)

= 1
a
·
(
1− `+1

n−`−1

)
·
(
1− P[Bin(n− 2− `+ 1, a

n
) = 0]

)
= 1

a
·
(
1− `+1

n−`−1

)
·
(

1−
(
1− a

n

)n−`−1
)

= 1−e−a
a

+ (`+ 1) ·O
(

1
n

)
,

where above we denoted by Bin(m, p) a random variable having a binomial distri-
bution with parameters m and p.

Lemma IV.11. Consider one round starting with k < n informed nodes. The
probability 1− pk that an uninformed node x stays uninformed in this round is at
most (1− 1−e−a

n
)k + k ·O( 1

n2 ).

Proof. Let A be the event that G
(
n, a

n

)
contains no triangle formed by x and two

other informed nodes. By the first moment method, P[A] ≥ 1− k2 · a3

n3 . Let X be
the indicator random variable for the event that x is called by an informed node.
Then

P[X = 0] ≤ P[¬A] + P[X = 0 ∧ A] ≤ k2 a3

n3 + P[X = 0 ∧ A].

We compute P[X = 0∧A] by conditioning on deginf x, which has a binomial distri-
bution with parameters k and a

n
. In addition, we observe that the conditioning on

A makes the actions of the informed neighbors of x independent (in the probability
space composed of the random actions of the nodes and the not yet determined
random edges). Hence

P[X = 0 | deginf x = ` ∧ A] = (1− P[y → x | xy ∈ E ∧ A`−1])`

≤
(

1− 1−e−a
a

+O
(

1
n

))`
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by Lemma IV.10. We compute.

P[X = 0 ∧ A] =
k∑
`=0

P[deginf x = `] · P[A | deginf x = `] · P[X = 0 | deginf x = ` ∧ A]

≤
k∑
`=0

(
k

l

)(
a
n

)` (
1− a

n

)k−` · 1 · (1− 1−e−a
a

+O
(

1
n

))`
≤
[
a
n

(
1− 1−e−a

a
+O

(
1
n

))
+ 1− a

n

]k
=
(

1− 1−e−a
n

)k
+ k ·O

(
1
n2

)
.

Lemma IV.12. Consider one round starting with k < n informed nodes. The
probability pk that an uninformed node x becomes informed in the current round
is at most k

n
·
(
1− e−a +O

(
1
n

))
.

Proof. Consider an uninformed node x and an informed node y. Then, applying
Lemma IV.10 with ` = 0, we compute

P[y → x] = P[xy ∈ E] · P[y → x | xy ∈ E] = a
n
·
(

1−e−a
a

+O
(

1
n

))
.

A union bound over the k informed nodes proves the claim.

Lemma IV.13. Consider one round starting with k = Ω(n) informed nodes. The
probability 1− pk that an uninformed node x stays uninformed in current round is

at least
(

1− 1−e−a
n

)k
−O

(
log2 n
n

)
.

Proof. Let again A denote the event that G
(
n, a

n

)
contains no cycle of length 3

formed by x and two other informed nodes, and let X be the indicator random
variable for the event that x becomes informed. Then P[X = 0] ≥ P[X = 0 ∧ A].
Similar to the proof of Lemma IV.11, we compute P[X = 0] by conditioning on
the number deginf x of its informed neighbors.

P[X = 0 ∧ A] =
k∑
`=0

P[deginf x = `] · P[A | deginf x = `] · P[X = 0 | deginf x = ` ∧ A]

=
k∑
`=0

(
k

l

)(
a
n

)` (
1− a

n

)k−` · (1− a
n

)`2 · (1− 1−e−a
a
− (`+ 1) ·O

(
1
n

))`
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To simplify the notation, we denote x` :=
(
k
l

) (
a
n

)` (
1− a

n

)k−`
and q := 1− 1−e−a

a
.

Then

P[X = 0 ∧ A] ≥
c logn∑
`=0

x` ·
(
1− a

n

)`2 · (q − ` ·O ( 1
n

))`
≥

c logn∑
`=0

x` ·
(
1− a

n

)c2 log2 n (
q −O

(
logn
n

))`
≥
(

1−O
(

log2 n
n

)) c logn∑
`=0

x`q
`.

We recall the maximum vertex degree of G(n, a
n
) is at most O(log n) with high

probability. Thus, from a simple Chernoff bound it follows that there exists c > 0

such that
∑k

`=c logn x`q
` ≤ 1

n
. Since

∑k
`=0 x`q

` =
(

1− 1−e−a
n

)k
, we have

P[X = 0 ∧ A] ≥
(

1−O
(

log2 n
n

))(
1− 1−e−a

n

)k
.

Lemma IV.14. Consider a round starting with k informed nodes. Let x1 and x2

be two uninformed nodes. Then the corresponding random indicator variables X1

and X2 for the events of these becoming informed are negatively correlated.

Proof. By symmetry, we can assume that in this round we first generate the ran-
dom communication graph, then we let each node choose a potential communica-
tion partner (uniformly among its neighbors), and then we decide randomly which
k nodes are informed, and finally those nodes which are informed actually call the
potential partner chosen before. In this joint probability space, let x1 and x2 be
two nodes. We condition in the following on (i) the outcome of the random graph,
(ii) the outcome of the potential communication partners, and (iii) x1 and x2 being
uninformed. In other words, all randomness is already decided except which set I
of k nodes different from x1 and x2 is informed.

Let S1 and S2 be the sets of nodes having chosen x1 and x2 as potential partner.
Now we have X1 = 1 if and only if S1 ∩ I 6= ∅. Similarly, X2 = 1 is equivalent
to S2 ∩ I 6= ∅. Since S1 ∩ S2 = ∅ by construction, X1 and X2 are negatively
correlated.

Theorem IV.15. The expected rumor spreading time for the push protocol in the
dynamic G(n, a

n
) graph is

log2−e−a n+ 1
1−e−a lnn±O(1).
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In addition, there are constant A′α′ > 0 such that for any r ∈ N we have P[|T −
E[T ]| ≥ r] ≤ A′e−α

′r.

Proof. By Lemma IV.14, the covariance conditions are satisfied for both exponen-
tial growth and exponential shrinking.

From Lemma IV.11 together with Corollary B.3 it follows that for any k < n
we have

pk ≥ k
n

(
1− e−a

)
− k2

2n2

(
1− e−a

)2 − k ·O
(

1
n2

)
.

Combining this with Lemma IV.12, we see that the process satisfies the exponential
growth conditions with γn = 1− e−a in interval [1, fn] for any constant 0 < f < 1.

For k = Θ(n), Lemma IV.11 and Lemma IV.13 yield that(
1− 1−e−a

n

)k
−O

(
log2 n
n

)
≤ 1− pk ≤

(
1− 1−e−a

n

)k
+ k ·O

(
1
n2

)
.

Substituting k by n− u and applying Corollary B.6, we obtain for any u < n that

exp
(
e−a − 1

)
−O

(
log2 n
n

)
≤ 1−pn−u ≤ exp

(
e−a − 1

) (
1 + 2

(
1− e−a

)
u
n

)
+O

(
1
n

)
.

Therefore, the protocol satisfies the upper exponential shrinking conditions with
ρn = 1− e−a and the lower exponential shrinking conditions with ρn = 1− e−a +

O
(

log2 n
n

)
in the interval [n− gn, n] for any 0 < g < 1.

Since the intervals of exponential growth and exponential shrinking overlap, it
follows from Theorems III.7, III.14, III.19, and III.28 that the expected spreading
time E[T ] is equal to log1−e−a n+ 1

1−e−a lnn±O(1) and P[|T −E[T ]| ≥ r] ≤ A′e−α
′r

for suitable constants A′, α′ > 0.
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3 Limited Incoming Calls Capacity

For all the protocols discussed above the nodes are allowed to be called several
times in one round. For some processes such as protocols considered in Section 2.3,
the number of calls received by each node is at most constant. However in most of
rumor spreading processes such number can be unbounded. For example, consider
the basic push-pull protocol from Section 1.3 on the complete graph with n vertices.
Since each round all nodes make calls, the maximum number of incoming calls
received by the same node in one round is the same as the maximum load of a bin
in the well-known problem of throwing uniformly and independently at random
n balls into n bills, i.e., logn

log logn
· (1 + o(1)) (see Appendix C). Such phenomenon

can impact the scalability of the rumor spreading process: typically the time gap
between rounds is bounded, but each round with high probability there is at least
one node which have to finish ω(1) transactions.

The simplest solution is to limit the incoming “capacity” of nodes, i.e., the
number of calls they can reply in one round. In this section we propose a single
incoming call setting – any node can reply to only one incoming call per round
chosen uniformly at random among all received calls in current round. All other
calls are considered “dropped”, i.e., they cannot transfer the rumor. Therefore,
each node participates in at most two rumor transactions per round, whatever is
the size of the network.

On the other hand, we expect the noticeable slowdown for the protocols based
on the single incoming call setting compared to the usual unlimited “capacity”
setting. Thus we will show in Section 3.1 that the single incoming call push-
pull protocol satisfies the single exponential shrinking conditions instead of double
exponential shrinking and the corresponding expected rumor spreading time is
equal to log3−2/e n+ 1

2
lnn±O(1). In Section 3.2 we argue that since Θ(n) nodes

are informed, the push calls of informed nodes becomes inefficient and they are
responsible for such considerable slowdown. Finally, in Section 3.3 we combine
a single incoming call push-pull protocol with pull protocol and provide a not
memoryless process with spreading time log3−2/e n+ log2 lnn+O(1).

Before proceeding to the computations, we observe that the following setting
is equivalent to the single incoming call model. In each round we choose uniformly
at random a permutation σ ∈ Sn. The element σn is the order of the outgoing
call of node xi, we write ordi = σi. Each node accepts the call with the lowest
order among its received incoming calls. We call such construction the ordered
calls setting.
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3.1 Single Incoming Call Push-Pull Protocol

The following theorem contains the main result of this section and will be proved
at the end.

Theorem IV.16. The expected spreading time for the single incoming call push-
pull protocol is

log3−2/e n+ 1
2

lnn+O(1).

There also exist constants A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α
′r.

In this section we keep the notation from the previous ones, i.e. Xi is the
random indicator variable corresponding to the event “uninformed node xi gets
informed in the considered round”. As usual, we denote by pk the probability
P[Xi = 1] for the round started with k informed nodes and any i. In addition we
denote by Yi, Zi the indicator random variables for the following events.

Yi “Node i is called and the first incoming call comes from an informed node.”

Zi “The outgoing call of node i is accepted by an informed node.”

Lemma IV.17. Suppose that the fraction f of nodes is informed. Suppose node i
is uninformed. Then

pfn = 2f
(
1− 1

e

)
− f 2

(
1− 1

e

)2
+ f ·O

(
1
n

)
. (IV.8)

Proof. First, we compute the probabilities of the events corresponding to Yi and
Zi. Since each node makes a call in the round, the probability that node xi is not
called is equal to (1− 1

n
)n. Therefore,

P[Yi = 1] = f
(
1−

(
1− 1

n

)n)
= f

(
1− 1

e

)
+ f ·O

(
1
n

)
.

To compute P[Zi = 1] we will use the ordered call model. Suppose that ordi =
`. Then, the outgoing call of node xi is accepted if all calls with orders less than
` do not call the same node. Since the probability that the outgoing call of node
xi has order ` is equal to 1

n
, we compute

P[Zi = 1] = f
n∑
`=1

1
n

(
1− 1

n

)`−1
= f

(
1−

(
1− 1

n

)n)
= f

(
1− 1

e

)
+ f ·O

(
1
n

)
.

Since Xi = max {Yi, Zi}, it remains to compute the probability of the event
Yi = Zi = 1. Suppose that ordi = `. Since the outgoing call of node xi is accepted,
all calls with order less than ` should go away from the xi’s target, i.e., they can
have only n−1 possible targets. We also remark that node xi calls informed node,
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so it cannot call itself. Thus the probability that nobody calls node xi is equal to(
1− 1

n−1

)i−1 (
1− 1

n

)n−i
. Therefore,

P[Zi = 1|Yi = 1, ordi = `] = f
(

1−
(
1− 1

n−1

)i−1 (
1− 1

n

)n−i)
= f

(
1−

(
1− 1

n

)n
+O

(
1
n

))
.

Since the probability above is independent of `, we obtain immediately that node

P[Yi = Zi = 1] = f 2
(
1−

(
1− 1

n

)n)2
+ f 2 ·O

(
1
n

)
= f 2

(
1− 1

e

)2
+ f 2 ·O

(
1
n

)
.

The claim of lemma follows by including-excluding formula.

Lemma IV.18. There exists c ≥ 0 such that for any uninformed nodes xi 6= xj
we have

P[Xi = 1|Xj = 1] ≤ P[Xi = 1] + c
n
. (IV.9)

Proof. We say that nodes xi and xj interact if one calls another or if they both
call the same node. Clearly, P[xi, xj interact|Xj = 1] = O

(
1
n

)
. Since we need to

bound P[Xi = 1|Xj = 1] up to O( 1
n
), without loss of generality we assume for the

rest of the proof that nodes xi and xj do not interact. We say that a call interacts
with a node xj if its target coincides with xj or with xj’s target (by convention a
call does not interact with it source). Denote by Ij the number of calls interacting
with node xj and observe that since xi and xj don’t interact, no node can interact
with both xi and xj. We split the probability P[Xi = 1|Xj = 1] conditioning on
the values of Ij as follows.

P[Xi = 1|Xj = 1] =
n∑
k=1

P[Xi = 1|Xj = 1, Ij = k] · P[Ij = k|Xj = 1].

Our goal is to study P[Xi = 1|Xj = 1, Ij = k]. Since k nodes interact with xj,
there are n− k − 1 independent calls going uniformly to n− 2 remaining targets
(except xj and xj’s target). In addition at least n(f − k+1

n
) of calls are made by

informed nodes. By these two observations we deduce

P[Yi = 1|Xj = 1, Ij = k] =
(
f − k+1

n

) (
1− (1− 1

n−2
)n−k−1

)
= f

(
1−

(
1− 1

n

)n)
+ kO

(
1
n

)
= f

(
1− 1

e

)
+ k ·O

(
1
n

)
.

By the similar analysis we obtain that

P[Zi = 1|Xj = 1, Ij = k] = f
(
1− 1

e

)
+ k ·O

(
1
n

)
;

P[Yi = Zi = 1|Xj = 1, Ij = k] = f 2
(
1− 1

e

)2
+ k ·O

(
1
n

)
.
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Therefore, P[Xi = 1|Xj = 1, Ij = k] = P[Xi = 1] + k ·O
(

1
n

)
. Since E[Ij|Xj = 1] =

O(1), we sum up by k and obtain

P[Xi = 1|Xj = 1] = P[Xi = 1] +
n∑
k=1

kO
(

1
n

)
· P[Ij = k|Xj = 1]

= P[Xi = 1] +O
(

1
n

)
E[Ij|Xj = 1] = P[Xi = 1] +O

(
1
n

)
.

Proof of Theorem IV.16. Consider a round started with k informed nodes. Sub-
stituting f by k/n in (IV.8), we obtain the probability part of the exponential
growth conditions.

pk = 2
(
1− 1

e

)
· k
n

+ k2 ·O
(

1
n2

)
.

Multiplying (IV.9) by pk we get the covariance condition. Therefore the protocol
satisfies the exponential growth conditions with γn = 2(1− 1

e
).

Denote by u := n−k the number of uninformed nodes. Substituting f by 1− u
n

in (IV.8), we compute

P[Xi = 0] = 1− P[Xi = 1] = 1
e2

+O
(

1
n

)
.

Since the covariance condition follows from Lemma IV.18, the protocol satisfies the
exponential shrinking conditions with ρn = 2. Therefore the expected spreading
time is equal to log3−2/e n+ 1

2
lnn+O(1).

3.2 Single Incoming Call Pull-Only Protocol

We showed that the the single call push-pull protocol is significantly slower than
the classic push-pull protocol. Although protocol based on the single incoming
call setting cannot be faster than the classic independent call model, we can make
it noticeably faster using the following trick. Let us consider one round of the
exponential shrinking phase with u uninformed nodes. In such round there are
n − u push calls, each one hits uninformed node with small probability u

n
. On

the other hand, each of u pull calls touches some informed node with probability
1− u

n
. One can conclude that push calls “spam” the network: they “occupy” other

informed nodes making them inaccessible for pull calls of uninformed nodes. This
observation is verified in the following theorem.

Theorem IV.19. The spreading time for the single incoming call pull protocol is

log2−1/e n+ log2 lnn+O(1).

There also exist constants A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α
′r.
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Proof. Consider one round of the protocol. Clearly, if x1 becomes informed it
“occupies” one informed node which cannot inform any other node in current
round. Thus, if we condition on that X1 = 1, then it is slightly less likely that x2

becomes informed. Consequently, Cov[X1, X2] < 0 and the covariance part of the
exponential growth and double exponential shrinking conditions is satisfied.

Again, the call with order ` is accepted with probability
(
1− 1

n

)`−1
. Since in

the round started with k informed nodes only n − k nodes perform calls, ordi is
uniformly distributed in {1, . . . , n− k}. Since the probability to call an informed
node is k

n
, we compute

pk = k
n

n−k∑
`=1

1
n−k

(
1− 1

n

)`−1
= k

n−k

(
1−

(
1− 1

n

)n−k)
. (IV.10)

By Corollary B.5, we have(
1− 1

e

)
k
n
− 4 k

2

n2 ≤ pk ≤
(
1− 1

e

)
k
n

+ 2
(
1− 1

e

)
k2

n2 .

So the protocol satisfies the exponential growth conditions with parameter γn =
1− 1

e
.

If we denote by u the number of uninformed nodes, from (IV.10) follows the
following expression.

1− pn−u = n−u
u

(
1−

(
1− 1

n

)u)
.

With Lemma B.2, we estimate u
n
≤ 1 − pn−u ≤ 3u

2n
. The protocol hence satisfies

the double exponential shrinking conditions with ` = 2.
Therefore, the expected spreading time is equal to log2−1/e n+ log2 lnn+O(1).

3.3 Push-Pull Protocol with Transition Time

Comparing Theorems IV.16 and IV.19 we see that push-pull protocol still is more
efficient until Θ(n) nodes are informed. Suppose now that we join to the rumor
a counter which increases by one each round, so that each informed node knows
the “age” of the rumor. Then the single incoming call push-pull protocol with
transition time R > 0 acts as follows. While the age of the rumor is at most
R, it acts as a single incoming call push-pull protocol. After R rounds of rumor
spreading, all informed nodes stop calling simultaneously, so the protocol acts as
the single incoming call pull protocol until nodes are informed.

Theorem IV.20. The expected rumor spreading time of the single incoming call
push-pull protocol with the transition time R = dlog3−2/e ne on the complete graph
with n vertices is

log3−2/e n+ log2 lnn+O(1).
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There also exist constants A′, α′ such that P[|T − E[T ]| > r] ≤ A′e−α
′r.

Proof. In the proof of Theorem IV.19 we showed that the single incoming call pull
protocol satisfies the double exponential shrinking conditions for all k ∈ [gn, n] for
some 0 < g < 1. Denote by It the number of informed nodes after t rounds. Let
t := max{R, t′}, where t′ is the smallest time such that It′ ≥ gn. By construction,
after round t the transition protocol acts as the pull protocol. Therefore,

E[T (1, n)] ≤ E[t] + E[T (fn, n)] ≤ E[t] + log2 lnn+O(1).

It is easy to see that the transition protocol satisfies the conditions of Lemma III.4
with ` = fn, m = gn for any 0 < f < g < 1. Thus, E[t] ≤ E[T (1, fn)] + O(1)
for any constant 0 < f < 1, i.e., it suffices to analyse the spreading time until fn
informed nodes.

Let us consider a single incoming call push-pull protocol. In the proof of
Theorem IV.16 we showed that the single incoming call push-pull protocol satisfies
the exponential growth conditions with γn = 2− 2

e
. In Section 2.1 we introduced a

sequence kj splitting the interval [1, fn] into phases such that most of the rounds
the rumor spreading process moves to exactly the next phase. Lemma III.10 claims
that the biggest number of phase J = log1+γn n+O(1). Since γn = 2− 2

e
, we have

J = R + O(1). To simplify the proof we suppose that R ≤ J and fn ≤ kR.In
the proof of Theorem III.7 we showed that T (1, kR) ≤ R + ∆r, where ∆r is
stochastically dominated by a random variable with distribution Geom(1− q) for
some constant q < 1. By construction, ∆r is the number of rounds during which
the process stayed it the same phase. Therefore, after at the end of round R
when the protocol switches from push-pull to pull-only, we have IR ≥ kR−∆r. By
Lemma III.10, we have kR−∆r ≥ fn

(3−2/e)∆r .

Consider now the single incoming call pull protocol. Let a sequence k′j defines
the phases for the single incoming call pull protocol. Suppose that R′ is such
that kR′ ≥ fn and that IR belongs to the phase i of the single incoming call
pull protocol. Since the single incoming call pull protocol satisfies the exponential
growth conditions with γn = 1−1/e, we have R′− i = 3−2/e

2−1/e
∆r+O(1). Therefore,

E[T (IR, fn)] ≤ E[T (k′i, k
′
R′)] ≤ 3−2/e

2−1/e
∆r +O(1).

Summing over all possible values of ∆r we compute

E[T (1, fn)] ≤ r +
R∑
s=0

P[∆r = s] ·
(

3−2/e
2−1/e

s+O(1)
)

= R +O(1)

Since ∆r is dominated by a random variable with distribution Geom(1 − q), we
have E[T (1, fn)] ≤ R+O(1). Therefore, E[T (1, n)] ≤ log3−2/e n+ log2 lnn+O(1).
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To prove the lower bound we consider the following protocol. Suppose that
any node knows the total number of informed nodes. The protocol acts as the
single incoming call push-pull protocol until there are at least fn informed nodes
for some 0 < f < 1. Then the protocol acts as the single incoming call pull
protocol. Since we proved Theorems IV.16 and IV.19, the expected spreading
time of such protocol is at least log3−2/e n+ log2 lnn+O(1). It is also easy to see
that such protocol spreads the rumor slightly quicker that the protocol with the
fixed transition time, so the expected spreading time is bounded from below by
the same expression.
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In Chapter III we restricted ourselves to the homogeneous rumor spreading
processes. We recall that these are two-state memoryless processes requiring that
all uninformed nodes learn the rumor with the same probability which depends
only on the number k of currently informed nodes. This uniformity leads us to the
studying the rumor spreading in the complete graphs. However, many processes
cannot be analyzed by our method even in the complete graph. We cannot apply
our method to the multi-state processes such as median counter algorithm proposed
by Karp et al. [KSSV00], neither to the non-symmetric protocols such as the
Panagiotou’s et al. [PPS15] multiple call protocol, when nodes do not change
their outgoing call capacity during the process. On the over hand, we could see in
Section 2.3, Chapter IV that the complete networks can be relaxed to the dynamic
ones, but the memorylessness property requires that the network is a random graph
sampled independently each round.
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In the rest of the chapter, we discuss how can we overcome the restriction to the
homogeneous rumor spreading processes. We will show that the phase method still
be promising for the multi-parametric protocols that require a constant amount of
memory in addition to the number of informed nodes for the description of their
progress.

1 Two-State Multi-Parametric Process

The first multi-parametric protocol that we consider is similar to the multiple call
protocol considered in Chapter IV, Section 2.2. Assume that R is a random integer
variable taking values in [0, n[ such that E[R] = Θ(1) and Var[R] = O(1). When
an uninformed node learns the rumor, it samples a value r from R independently
from other nodes, keeps it and makes r push calls per round. In addition, each
uninformed node makes one pull call per round. For the push calls, this process
follows the setting of [PPS15]: each node has different capacity of outgoing calls
that is unchanged during all rounds of the process. Unlike in [PPS15], for the
pull calls we assume that any uninformed node makes exactly one call per round.
The last assumption implies that the protocol above is faster than the basic pull
protocol. Consequently, for any f ∈]0, 1[, we have E[T ([fn], n)] ≤ log2 lnn+O(1).
Thus, it suffices to study only E[T (1, fn)] for some f ∈]0, 1[.

Consider one round of the protocol starting from k informed nodes. We observe
that the number ` of push calls in this round is different from k and unknown.
Therefore, the success probability pk` that an uninformed node becomes informed
depends on two parameters, k and `, as follows.

pk` = 1−
(
1− 1

n

)` (
1− k

n

)
In this section, we will show that the number of informed nodes in this protocol
performs the exponential growth. Instead of directly applying Theorem III.7, we
will repeat the main steps of its proof to show that the statements similar to ones
from Chapter III, Section 2.1 hold for this multi-parametric protocol.

Theorem V.1. The expected rumor spreading time for the protocol described above
is at most log2+E[R] n+ log2 lnn+O(1).

As usual, we will first state all preliminary lemmas, and state the proof of this
theorem at the end of the section.

Round Targets and Failure Probabilities

Consider an uniformed node in a round starting with k < n/2 informed nodes that
make ` ≤ k calls in current round. First, using the estimates from Lemma B.2, we
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obtain
pk` ≥ `

n
+ k

n
− (`+k)2

2n2 .

Denote by X(k, `) the number of newly informed nodes in current round. Since
E[X] = (n− k)pk`, the expression above implies that

E[X] ≥ E(k, `) := k + `− 3
2
· (k+`)2

n
.

Now we construct the target value X0(k, `) for the number of newly informed
nodes such that X(k, `) ≥ X0(k, `) with good probability. Let A1 > 0 and B ∈
]1/2, 1[ are two constants to be chosen later. Similarly to (III.2), the target value
X0 is defined as follows.

X0(k, `) := E(k, `)− A1(k + `)B. (V.1)

Similarly to Lemma III.9, we bound the probability that X fails to achieve the
target in one round.

Lemma V.2. There exists q(k, `) = O(1) · (k + `)−2B+1 such that

P[X(k, `) ≤ X0(k, `)] ≤ q(k, `).

Sketch of the proof. Using Chebyshev’s inequality we compute

P[X(k, `) ≤ X0(k, `)] = P
[
X(k, `) ≤ E(k, `)− A1(k + `)B

]
≤ P

[
X(k, `) ≤ E[X(k, `)]− A1(k + `)B · E[X(k,`)]

E(k,`)

]
≤ Var[X(k,`)]

(A1(k+`)B)2 · E(k,`)2

E[X(k,`)]2
.

Since the covariance condition is satisfied for both basic pull and push-pull pro-
tocols, the same holds for the pull protocol with 1 push call. Thus, we have
Var[X(k, `)] ≤ E[X] + O(1) · (k + `). Therefore, the computation similar to one
in the proof of Lemma III.9, implies that the failure probability is bounded by
O(1) · (k + `)−2B+1.

Each newly informed node i samples a random number ri from R that con-
tributes to the total number ` of push calls. Denote by Y :=

∑X
i=1 ri the increase

of this number at the end of current round. Since X and ri are independent, we
have E[Y ] = E[X] · E[R] and Var[Y ] ≤ E[Y ]. Similarly to (V.1), we define the
target value Y0 for Y as follows.

Y0(k, `) := E[R] · k + E[R] · `− 3
2
E[R] · (k+`)2

n
− A2(k + `)B. (V.2)

Similarly to Lemma V.2, one can show using Chebyshev’s inequality that

P[Y ≤ Y0] = O(1) · (k + `)−2B+1. (V.3)
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The Phase Calculus

Since the progress of the protocol is described by two parameters, the number k of
informed nodes and the number ` of push calls, we should construct the sequence of
round targets for both parameters. This sequence is defined recursively as follows.

k0 := 1, kj+1 := kj +X0(kj, `j);

`0 := 1, `j+1 := `j + Y0(kj, `j).

This seems to be the typical structure of phase targets for the multi-parametric
process: the recurrent sequences of round targets for k and ` are entangled with
each other. To transform this into the more similar form to (III.3), we will employ
the fact that the sequence above is almost linear. Denote by xj :=

(
kj
`j

)
the vector

of the parameters and let

M :=

(
2 1

E[R] E[R]

)
, u :=

(
3/2

3E[R]/2

)
, v :=

(
A1

A2

)
.

Then, the recursive expression above can be written as

xj+1 := Mxj − 1
n
u‖xj‖2 − v‖xj‖B,

where ‖xj‖ := kj + `j denotes the Manhattan norm of xj. By the elementary
computation, we obtain that M has eigenvalues 1 and 2 + E[R] and that the
corresponding eigenvectors both has positive coordinates. Now we can reformulate
Lemma III.10 for our protocol.

Lemma V.3. After possibly lowering A1 and A2 from (V.1), there exists J =
log2+E[R] n + O(1) such that for any j < J we have kj = Θ(1)(2 + E[R])j and
`j = Θ(1)(2 + E[R])j.

The proof repeats ideas of the proof for Lemma III.10. By convention, we use
symbols 6 and > for the element-wise comparison between vectors.

Proof. To ease the notation, we denote λ := 2 +E[R]. By induction we obtain for
all j ≥ 0 that

xj = M jx0 − 1
n

j∑
i=1

M iu‖xj−i‖2 −
j∑
i=1

M iv‖xj−i‖B. (V.4)

Let J := logλ(fn) − ∆r for some positive ∆r = O(1) determined later. Since A
and elements of M are all nonnegative, we have xj 6 M jx0 element-wise. Thus,
kj = O(1)λj and `j = O(1)λj.
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We show by induction on j that there exists a constant vector w such that
xj > λjw for all j ≤ J . The base for j = 0 and x0 =

(
1
1

)
is trivial. Let 1 ≤ j ≤ J

and suppose xi ≥ wλi for all i < j. Since the elements of M i are O(1) · λi, we
compute both sums in (V.4).

j∑
i=1

M iv‖xj−i‖B = O(v)

j∑
i=1

λi · λ(j−i)B

= O(v)λjB
j∑
i=1

λ(1−B)i = O(v)λj.

By choosing A1 and A2 sufficiently small, we can make the coefficient at λj arbi-
trary small. To compute the second sum, we use the same idea together with the
fact that λj

n
≤ λ−∆r for all j ≤ J .

1
n

j∑
i=1

M iu‖xj−i‖2 = O(u)
n

j∑
i=1

λi · λ2j−2i

= O(u)
n
λ2j

j∑
i=1

λ−i = O(u)λ−∆r · λj

By choosing ∆r large enough, we can make the coefficient at λj arbitrary small.
Therefore, xj = M jx0−O(v)λj −O(u)λ−∆r · λj. Thus we see that there exists w
such that xj ≤ wλj.

Now we are ready to estimate the rumor spreading time.

Proof of Theorem V.1. By Lemma V.3, there exists J = log2+E[R] n + O(1) such
that both kJ = Θ(n) and `J = Θ(n). The round targets kj (resp. `j) cut the
interval [1, kJ ] (resp. [1, `J ]) into J phases. We say that the process achieves phase
j, if x > xj, i.e., both k ≥ kj and ` ≥ `j. Note that this is another difference
between the homogeneous rumor spreading and the multi-parametric process: the
round is failed if any (not all) of the parameters does not reach its target value.

After some elementary computation, one can see that the probability that the
process fails the round being in phase j is at most q(kj, `j). Since by definition
of the process, the number k of informed nodes, as well as the number ` of push
calls never decreases, the number Tj of rounds to leave phase j is stochastically
dominated by 1 + Geom(1 − q(kj, `j)). Consequently, the number of rounds un-

til either k reaches kJ or ` reaches `J
1 is stochastically dominated by

∑J
j=1 TJ .

1It is easy to see that if the number ` of push calls has reached the final phase `J , then the
next round at least Θ(n) nodes will be informed with high probability via only `J push calls.
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By Lemma V.2 and V.3, the expected number of rounds before Θ(n) nodes are
informed is at most J +O(1).

Finally, since the protocol performs the double exponential shrinking, we obtain
that E[T (1, n)] ≤ log2+E[R] n+ log2 lnn+O(1).

2 Multi-State Rumor Spreading. Independent

Stop Process

Another natural and more interesting example of the multi-parametric process is
the multi-state rumor spreading, when the nodes can be in more than two possible
states performing different behavior. For the motivation of the multi-state rumor
spreading, we refer to the stoppage problem: how informed nodes can determine
that most of the nodes in the network are informed, so that they can switch from
the active state when they make push calls to the passive state when they only
reply the pull requests. This requires at least three states: one uninformed and
two informed states, active, and passive. Thus, the rumor spreading protocol that
solves this problem has to be multi-parametric2.

In this section we will consider the independent stop protocol in which an active
informed node can become passive, but passive nodes never become active again.
Unlike the protocol with the transition time, in the independent stop protocol
each node makes the decision independently from others to become passive. We
also require the protocol to be symmetric, so that the probability that one node
transforms from its state A to some state B does not depend on the choice of the
node, but only on the number of nodes in each state. Since the total number n
of nodes in the network is a global parameter, the progress of the independent
stop protocol can be described by at least two parameters, e.g., the number k of
informed nodes and the number ` ≤ k of active ones.

One of the examples of the independent stop protocol is the median counter
algorithm [KSSV00]. This is a O(ln lnn)-parameter process, so that the precise
analysis of such protocol is challenging. Instead of median counter algorithm, we
will consider the following process which are simpler and for which we have the
strong intuition about the rumor spreading time.

Pull protocol with C push calls: In this protocol, when an uninformed node
learns the rumor, it becomes active for the next C rounds and makes one push

2 Note that technically, the protocol with the transition time considered in Section 3.3 of
Chapter IV is also multi-state. However, all informed nodes switch from the active state to the
passive one simultaneously, so that these two states cannot be occurred in the same round, and
the protocol can be analyzed as homogeneous.
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call per round. After C rounds, it becomes passive. Note that in addition to the
number k of informed nodes, we have to keep in memory how many nodes have
been informed at each of the C last rounds. Hence, the pull protocol with C push
calls is C + 1-parameter protocol.

Random stop protocol: In this variation of the basic push-pull process, each
round each informed node decides independently at random with probability q to
stop making push calls. The success probability that one node gets the rumor
depends not only on the number k of informed nodes, but also on the number ` of
active ones. Thus, this is an example of 3-parameter process.

Note that from the outer point of view, the protocols described above are
similar to one from Section 1: they are all the variations of the push-pull protocols
when the number ` of push calls in the round evolves almost independently from
the number k of informed nodes. By this reason, most of the technical statements
are already proved in Section 1. The runtimes of independent stop protocols are
also stochastically bounded between the runtime of the basic pull protocol and
the push-pull one, that makes the analysis simpler. Since both pull and push-pull
protocols performs the double exponential shrinking regime, the independent stop
protocol also performs the double exponential shrinking with rate 2. In addition,
we can omit the covariance numbers routine arguing that we already proved the
corresponding conditions for the both basic protocols.

Observation V.4. Consider the symmetric independent stop protocol in which
each uninformed node makes one pull call per round. For any f ∈]0, 1[ we have

E[T ([nf ], n)] = log2 lnn±O(1).

2.1 One Push Call per Node

We start the analysis of multi-state protocols by the pull protocol with one push call
– the simplest protocol that solves the stoppage problem and does not require any
sharing of the rumor’s “age” among informed nodes. The protocol is a variation
of the basic synchronous push-pull protocol: any node that learns a rumor makes
one push call in the next round and then becomes inactive. Informed nodes reply
all received pull requests even if they do not make push calls.

Note that since n/2 nodes are informed, the number of push calls in current
round does not exceed the number of pull calls in previous round, so the push calls
do not spam the network.

Since the pull protocol with one push call is not memoryless, the challenging
part of the analysis is the exponential growth.
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Round Targets and Failure Probabilities

Consider an uniformed node in a round of the pull protocol with 1 push call starting
with k < n/2 informed nodes that make ` ≤ k calls in current round. Similarly to

the protocol from Section 1, we have pk` ≥ `
n

+ k
n
− (`+k)2

2n2 .
Denote by X(k, `) the number of newly informed nodes in a round started

with k informed nodes that make ` push calls. The definition of the target value
coincides with (V.1) and the arguments used for Lemma V.2 also hold.

Lemma V.5. Let X0 := k + ` − 3
2
· (`+k)2

n
− A(k + `)B for some A > 0 and

B ∈]1/2, 1[. There exists q(k, `) = O(1) · (k + `)−2B+1 such that

P[X(k, `) ≤ X0(k, `)] ≤ q(k, `).

The Phase Calculus

Similarly to Section 1, the progress of the pull protocol with one push call is
described by two parameters, the number k of informed nodes and the number `
of push calls. Observe that the number of push calls in the next round is equal
to the number of newly informed nodes in the current round. Thus, we define
recursively

k0 := 1, kj+1 := kj +X0(kj, `j);

`0 := 1, `j+1 := X0(kj, `j).

This seems to be the typical structure of phase targets for the multi-parametric
process: the recurrent sequences of round targets for k and ` are entangled with
each other. Again, we employ the fact that the sequence above is almost linear.
Denote by xj :=

(
kj
`j

)
the vector of the parameters and let M := ( 2 1

1 1 ), u =
(

3/2
3/2

)
,

and v =
(
A
A

)
. Then, the recursive expression above can be written as

xj+1 := Mxj − 1
n
u‖xj‖2 − v‖xj‖B,

where ‖xj‖ := kj + `j denotes the Manhattan norm. By the elementary computa-

tion we obtain that M has two real eigenvalues 3±
√

5
2

and that the corresponding
eigenvectors both has positive coordinates. Therefore, Lemma V.3 transforms into
the following one which can be proved using exactly the same arguments.

Lemma V.6. Let λ := 3+
√

5
2

. After possibly lowering A from (V.1), there exists
J = logλ n+O(1) such that for any j < J we have kj = Θ(1)λj and `j = Θ(1)λj.

Again, the round targets cut the interval [1, fn] for some f ∈]0, 1[ into phases.
We say that the process achieves the phase j if x > xj, i.e., both k ≥ kj and ` ≥ `j.
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The main difference between the process from Section 1 and the pull protocol with
one push call is that in last one the values of parameters may decrease3. If, for
example, nobody is informed at the end of current round, then there will be no
push calls during the next one. Thus, we need to prove one more statement.

Lemma V.7. Suppose that the process is in phase j. The expected number of
rounds before it proceeds to phase j + 1 or further is 1 +O(1) · q(xj).

Proof. With probability at least 1− q(xj), the process proceeds to the phase j+ 1
or further in one round. If this did not happened, then we consider only pull calls
until the process reaches at least phase j + 1. Since pull protocol satisfies the
exponential growth conditions, the expected number of rounds until at least 3kj
nodes are informed is O(1). Since kj ≥ `j, we have 3kj ≥ 2kj + `j, so that 3kj
belongs to the phase j + 1. Then we wait until at lest 2kj ≥ kj + `j nodes are
informed in one round. It is easy to see that the expected number of rounds to
wait is O(1).

Lemma V.5, V.6 and V.7 together with Observation V.4 imply the following
upper bound for the rumor spreading time.

Theorem V.8. The expected rumor spreading time for the pull protocol with one
push call in the complete graph on n vertices is at most logλ n + log2 lnn + O(1),

where λ = 3+
√

5
2

.

Proof. Since by Lemma V.5 and V.6, we have
∑J−1

j=0 q(x) = O(1), Lemma V.7
implies that E[T (1, kJ)] = J + O(1). The rest of the claim follows immediately
from Observation V.4.

2.2 Pull Protocol with C ≥ 1 Push Calls:

Let us now consider the general case of the pull protocol with C ≥ 1 push calls.
As it was mentioned before, this is a C + 1 parameter process. Thus, we choose
the following parameters to describe the progress of the protocol: the number k of
informed nodes and `(1), `(2), . . . , `(C), where `(i) is the number of nodes that were
informed during round t − i where t is current round. Thus, the number of calls
in current round is ` := `(1) + . . . + `(C). Therefore, the number X(k, `) of newly
informed nodes depends only on k and ` exactly in the same way as for the pull
protocol with one pull call. Therefore, its target value X0 coincides with (V.1):

X0(k,
C∑
i=1

`(i)) :=
C∑
i=1

`(i) + k − 3
2
· (k+

∑C
i=1 `

(i))2

n
− A(k +

C∑
i=1

`(i))B.

3That is also true for all independent stop protocols considered in this section
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The evolution of the parameters goes in the following way. The number k of in-
formed nodes increases by X0. The number `(1) of nodes that were informed during
last round becomes equal to X0. All other `(i) shrink on the right. Therefore, the
sequence of round targets is the following.

k0 := 1, kj+1 := kj +X0(kj,
C∑
i=1

`
(i)
j );

`
(1)
0 := 1, `

(1)
j+1 := X0(kj,

C∑
i=1

`
(i)
j );

`
(i)
0 := 0, `

(i)
j+1 := `

(i−1)
j for all 2 ≤ i ≤ C.

Denote by xj the vector-column (kj, `
(1)
j , . . . , `(C))T of the parameters. Then,

using the notation above, we can write xj+1 := MCxj − 1
n
u‖xj‖2 − v‖xj‖B, where

MC :=



2 1 1 . . . 1 1
1 1 1 . . . 1 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0

0 0 0
... 0 0

0 0 0 . . . 1 0


, u :=


3/2
3/2

...
3/2

 , v :=


A
A
...
A

 .

By induction on C we obtain that the characteristic polynomial of MC is PC(λ) :=
−λC+1 + 3λC − 1. The proposition similar to Lemma V.3 and V.6 also holds for
the pull protocol with C push calls. Therefore, there exists J = logλC n + O(1)
such that kJ = Θ(n).

Like in the pull protocol with one push call, the values of the parameters might
decrease. Proving the statement similar to Lemma V.7 is the most challenging
part. To simplify the technical details we slightly relax the claim of the following
lemma.

Lemma V.9. Suppose that the process is in phase j. The expected number of
rounds before it proceeds to phase j + 1 or further is 1 +O(C) · q(xj).

Sketch of the proof. With probability at least 1 − q(xj), the process proceeds to
the phase j+1 or further in one round. If this did not happened, then we consider
only pull calls until the process reaches at least phase j+1. Since the pull protocol
satisfies the exponential growth conditions, the expected number of rounds until
at least (C + 1)kj nodes are informed is O(C).
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It is easy to see that `
(1)
j+1 ≤ 2kj and `

(i)
j+1 ≤ kj for all 2 ≤ i ≤ C. Therefore,

to proceed into phase j + 1 or further, it suffices that during next C − 1 rounds
there are at least kj newly informed nodes per round, and, 2kj newly informed
nodes during the Cth round. From Chebyshev’s inequality it follows that with
probability at least 1−O(1/C), at least kj uninformed nodes make successful pull
calls in a round starting with at least (C + 1)kj informed nodes. Consequently,
with the probability Θ(1), the process will proceed to phase j + 1 or further after
C rounds.

Thus, the expected number of rounds until the process proceeds to the phase
j + 1 or further is at most 1 +O(C) · q(xj).

The bound for the rumor spreading time immediately follows, the proof of
theorem coincides with the proof of Theorem V.8.

Theorem V.10. The expected rumor spreading time for the pull protocol with C
push calls in the complete graph on n vertices is at most logλC n+log2 lnn+O(C),
where λC is the largest root of λC+1 − 3λC + 1.
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Figure 7: The rumor spreading time versus size of the network. We used the cubic
spline interpolation to get the smooth curve.

It is easy to see that λC ≥ 3 − 2
3C

. Since the pull protocol with C push calls
cannot be faster than the basic push-pull protocol, we have λC ≤ 3. Therefore,
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λC converges to 3 exponentially fast as C increases. We illustrate this effect on
Figure 7 by plotting the rumor spreading time of the pull protocol with C push
calls for C = 1, 2, 3 in the network with up to 100K nodes. For the comparison,
we also plot the spreading time for the basic push, pull and push-pull protocols.
We see that the allowance of even one push call per node in addition to the pull
calls significantly decrease the rumor spreading time. If we allow 3 push calls per
node, we cannot see any difference between the performances of the pull protocols
with 3 push calls and the basic push-pull protocol when the network contains at
most 100K nodes.

2.3 Random Stop Decision

In the pull protocol with C push calls, the active node should keep in memory
how long they are informed, so that instead of three states, any node can be in
C + 2 ones: uninformed, informed and passive, and C informed and active states.
Conversely, the random stop protocol is a true three-state process in which nodes
require only one bit of memory to keep their current state.

The random stop protocol acts similarly to the previous ones from the outer
view. But instead of counting rounds, each active node each round decides with
probability q independently from other nodes to become inactive. Thus, any round
consists of two steps: first, nodes make calls according to their states, then, the
active nodes decide to become inactive according to their random coins.

Note that the behavior of this protocol depends on the choice when nodes
becomes informed: directly after learning the rumor or since the next round, i.e.,
whether newly informed nodes toss a coin immediately. If yes, then a newly
informed node can become inactive bypassing the active state. We call this protocol
type I random stop protocol. If not, then any newly informed node makes at least
one push call. This is a type II protocol.

As above, we will study the random stop protocol based on the classic push-pull
protocol4: active nodes make one random push call per round and uninformed ones
make one pull call per round. Therefore, the rumor spreading time for the push-
pull random stop protocol is stochastically bounded between the spreading time
for the basic pull and push-pull protocols. In particular, the random stop push
pull protocol also performs the double exponential shrinking phase with rate 2.

As before, we denote by n the number of nodes in the network. Consider one
round starting with k informed nodes and suppose that ` of them are active. First,

4 The random stop push protocol is much less reasonable than the push-pull. It is easy to
see that if q = ω

(
1

lnn

)
, then the random stop push protocol fails to inform all nodes with high

probability. Indeed, it follows from the coupon collector reduction that we need at least Θ(n lnn)
calls to inform all nodes. On the other hand, the expected number of the calls in the random
stop push protocol is at most n/q = o(n lnn), that makes a contradiction.
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we observe that the previous statements concerning the number of newly informed
nodes (The expression for the success probability pk`, the expression (V.1) for the
target value X0(k, `), and Lemma V.2) hold for both types of the random stop
protocol. Therefore, the number of newly informed nodes achieves its target value
X0(k, `) with probability q1(k, `) = O(1) · (k + `)1−2B for some B ∈]1/2, 1[. More
precisely, there exists A1 > 0 such that

P[X ≤ k + `− 3
2n

(k + `)2 − A1(k + `)B] ≤ q1(k, `), (V.5)

In addition, the proof of Lemma V.7 is also applicable for both types of the
random stop protocol. Therefore, the expected number of rounds before the pro-
cess proceeds to the next phase or further is at most 1 +O(1) · q(xj) for the round
target sequence xj defined below.

Type I Protocol

The second step when nodes decide to become inactive depends on the type of
the protocol. For the random stop protocol of type I, ` active nodes toss coins
together with all newly informed ones. Let Y denote the number of active nodes
at the end of the round and suppose that X ≥ X0(k, `). Since the probability that
active node becomes inactive is q, we have E[Y ] ≥ (1 − q)(` + X0(k, `)). Since
all nodes make decisions independently, Var[Y ] ≤ E[Y ]. Therefore, applying the
Chebyshev’s inequality, we obtain that there exists A2 > 0 such that

P[Y ≤ (1−q)(`+X0(k, `))−A2`
B] ≤ q2(k, `), where q2 = O(1)·(k+`)1−2B. (V.6)

The expressions (V.5) and (V.6) imply the following construction of the round
target sequence.

k0 := 1, kj+1 := kj +X0(kj, `j);

`0 := 1, `j+1 := (1− q)(`j +X0(kj, `j))− A2`
B.

Let the parameter vector xj be
(
kj
`j

)
. Then, using the previous notation, we can

write x0 =
(

1
1

)
and xj+1 := Mxj − 1

n
u‖xj‖2 − v‖xj‖B, where

M :=

(
2 1

1− q 2− 2q

)
, u :=

(
3
2

(1− q)3
2

)
, v :=

(
A1

(1− q)A1 + A2

)
.

Matrix M has eigenvalues λ = 2 − q ±
√
q2 − q + 1. Then, similarly to the

previously regarded processes, we conclude the rumor spreading time.

Theorem V.11. Let λ = 2−q+
√
q2 − q + 1. Then the expected rumor spreading

time for the type I push-pull protocol with stop probability q in the complete graph
on n vertices is at most

logλ n+ log2 lnn+O(1).
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Although, unlike the pull protocol with C push calls, the parameters achieve
their round targets independently, we employ the fact that k ≥ `, so that no matter
which is parameters achieves first its Jth round target, we have k ≥ `J = Θ(n).

Type II Protocol:

The analysis for the protocol of type II is similar to the previous one. The only
difference is that during the second step only ` nodes that were active at the
beginning of the round toss coins. Therefore, the expected number of active nodes
at the end of the round is at least (1− q)`+X0(k, `) with good probability. Thus,
(V.6) transforms into

P[Y ≤ (1− q)`+X0(k, `)− A2`
B] ≤ q2(k, `), where q2 = O(1) · (k + `)1−2B.

The expression above implies the following definition of the round target sequence.

k0 := 1, kj+1 := kj +X0(kj, `j);

`0 := 1, `j+1 := (1− q)`j +X0(kj, `j)− A2`
B.

We denote by xj the parameter vector
(
kj
`j

)
. With the usual notation, we rewrite

the expression above as x0 :=
(

1
1

)
and xj+1 := Mxj − 1

n
u‖xj‖2 − v‖xj‖B, where

M :=

(
2 1
1 2− q

)
, u :=

(
3/2
3/2

)
, v :=

(
A1

A1 + A2

)
.

The eigenvalues of M are λ = 2 − q
2
− 1

2

√
q2 + 4. Then, we conclude the rumor

spreading time.

Theorem V.12. Let λ = 2− q
2
− 1

2

√
q2 + 4. Then the expected rumor spreading

time for the type II push-pull protocol with stop probability q in the complete graph
on n vertices is at most

logλ n+ log2 lnn+O(1).

Remark V.13. Clearly, if q = 0, then λ = 3 for both protocols. In this case nodes
never become inactive, so that both protocols are equivalent to the basic push-pull
protocol.

For the type I protocol, q = 1 implies λ = 2. In this case all informed nodes
are inactive since they are informed, that is equivalent to the basic pull protocol.

For the type II protocol, q = 1 implies λ = 3+
√

5
2

. In this case any node that
learns the rumor stays active for one round and makes exactly one push call. This
is equivalent to the pull protocol with 1 push call.
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3 Multiparametric exponential growth

The analysis of the processes above yields the intuition that the phase method
is suitable for the multi-parametric exponential growth. However, it is challeng-
ing to provide a general, easy-to-use construction that, similarly to the exponen-
tial growth and shrinking conditions from previous chapters, relate the micro-
parameters such as the probabilities pk of a node to become informed with the
macro-parameters of the process such as the number of informed nodes and, con-
sequently, the rumor spreading time.

Comparing the processes above we see two main problems that prevent from
obtaining such a general method. First, the parameters in different processes may
have different nature. Although for all processes considered above, ` denotes the
number of push calls in current round, it behaves differently in different processes.
In the pull protocol with one push call it is equal to the number of nodes informed
during the previous round. In the random stop protocol as well as in the protocol
from Section 1, this number ` changes at the end of the round and has an additional
source of the randomness independent of the number k of informed nodes. The
second problem is that the parameters in the multi-parametric processes might
decrease, as we have seen for the independent stop process. Thus, it might be
challenging to show that the expected number of rounds until the process moves
from phase j to phase j + 1 or further is at most 1 + q(xj).

By this reason, we have the only choice to remove the atomic success proba-
bilities for single nodes from the phase analysis. We build the multi-parametric
exponential growth conditions based on the macro-parameters described by x.
These conditions should be understood as a plan with the list of statements that,
once proved, yield together an estimate for the spreading time.

To formulate the multi-parametric exponential growth conditions we will use
the following notation. Let n be the number of nodes in the network. Suppose
that the progress of the rumor spreading process is described by m parameters
forming the vector x such that the number k of informed nodes equals Kx, for
some constant vector K. By ‖·‖ we denote the Manhattan norm. Finally, let
y(x) be the values of the parameters at the end of the round staring from x.
The multi-parametric exponential growth conditions contain in the following four
constructions.

Round target operator: Let M be a m × m real matrix. Let u, v be two
vectors with non-negative coordinates. Let 1/2 < B < 1. Then we define round
target operator as

E0(x) := Mx− 1
n
u‖x‖2 − v‖x‖2.
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Error condition: We say that the round target operator E0 satisfies the error
conditions, if there exists a function q(x) = O(1) · ‖x‖1−2B and a vector f with
positive coordinates such that for all x 6 nf element-wise, we have

P[y(x) > E(x) elementwise] ≥ 1− q(x).

Exponential-target conditions: Let matrix M has m eigenvalues and the
largest one is real. Denote it by λ. We define the sequence xj of the round
targets recursively as xj+1 := E0(xj), where x0 consists of the initial values of the
parameters. We say that the round target operator E0 satisfies the exponential
target conditions if there exists J = logλ n+O(1) such that (i) the sequence xj is
increasing for 0 ≤ j ≤ J and (ii) K · xJ = Θ(n).

Transition condition: Suppose that the round target operator E0 satisfies the
exponential-target conditions. Suppose that the protocol is in phase j, i.e., x > xj
element-wise. We say that the transition condition is satisfied if for all j ≤ J ,
the expected number of rounds until the process proceeds to phase j or further is
1 +O(1) · q(xj).
Remark.

(i) The conditions above are equivalent to the main statements in Section 2.1
of Chapter III. The error condition corresponds to Lemma III.9. The
exponential-target conditions correspond to Lemma III.10. The transition
condition corresponds to Lemma III.11. Lemma III.12 follows from the error
condition together with the transition conditions.

(ii) In the exponential-target conditions we require that K ·xJ = Θ(n). To prove
that this is satisfied, one need to compute K · M jx0 and verify explicitly
that for the given initial value x0, the expression for the number of informed
nodes contains the λj term.

Theorem V.14. Consider a multi-parametric rumor spreading protocol. Suppose
that the round target operator satisfies the error condition, the exponential-target
conditions, and the transition condition. Then there exists f ∈]0, 1[ such that the
expected spreading time E[T (1, fn)] = logλ n+O(1).

Proof. From the exponential-target conditions, it follows that the sequence of
round targets xj cuts the progress of the process until at least Θ(n) nodes are
informed into J = logλ n + O(1) phases. From the transition condition it follows
that E[T (1,Θ(n))] = J +O(1) ·∑J−1

j=0 q(xj).
Finally, the error condition together with exponential-target conditions imply

that q(xj) form a decreasing geometric series. Consequently,
∑J−1

j=0 q(xj) = O(1),
that finishes the proof.
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The multi-parametric exponential growth conditions for the lower bound can
be easily obtained from the upper bound conditions similarly to the exponential
growth conditions for the homogeneous rumor spreading in Chapter III. How-
ever, we do not know how to generalize the proof of Theorem III.14 to the multi-
parametric rumor spreading, so we do not provide them.
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1 Outlook

We gave a general, easy-to-use method to analyze homogeneous rumor spreading
processes on complete networks. Such processes are important in many applica-
tions, among others, due to the use of random peer sampling services in many
distributed systems. Such processes also correspond to the fully mixed population
model in mathematical epidemiology.
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The two main strengths of our method are (i) that it requires only under-
standing the probability that an uninformed node becomes informed and a mild
covariance condition, whereas a deeper knowledge of the process is not required
(as opposed to all previous works on this topic), and (ii) that it can determine the
expected rumor spreading time precise apart from additive constants (the only
such analysis for one particular protocol is the predecessor work [DK14]). The key
to our results is distilling the right growth and shrinking conditions, which allow
us to describe essentially all previously regarded homogeneous processes, and to
show, based on these conditions, that the usually present mild deviations from a
perfect exponential growth or shrinking in total cost only a constant number of
rounds.

From the viewpoint of rumor spreading, this work leaves open two desires,
namely overcoming the restrictions to complete networks and to processes without
memory. For the former, random graphs might be a good first object of investi-
gation as there similar rumor spreading times have been observed as in complete
networks. Concerning the memory issue, it has been observed that already a
mild use of memory (not calling the same neighbor twice in a row) can make a
substantial difference, so potentially this is an interesting first object for further
research.

From a broader perspective, this work shows that the traditional approach to
randomized processes of splitting the analysis in several phases and then trying
to understand each phase with uniform arguments might not be the ideal way
to capture the nature of processes with a behavior changing continuously over
time. While we demonstrated that the more careful round-target approach is
better suited for homogeneous rumor spreading processes, one can speculate if
similar ideas are profitable for other randomized algorithms or processes regarded
in computer science.

2 Open Problems

We showed the proof of concept that the phase analysis is a reasonable approach for
the multi-parametric rumor spreading and, especially, for the multi-state processes.
However, we leave the following problems open for the further studies. Solving
them is necessary to transform our intuition into a general method, similar as we
proposed for the single parameter homogeneous rumor spreading.

Improving the exponential growth conditions: For the analysis of the ar-
bitrary multi-parametric process, the transition condition seems to be the most
hard to prove. It is also might be interesting to have some easier-to-use version
of the exponential growth conditions. Our intuition is that it is possible to find
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such conditions for the multi-state protocol when the parameters are the numbers
of nodes belonging to the corresponding states. Also it is worth to provide the
general multi-parametric lower bound conditions.

Multi-parametric shrinking: For all protocols we discussed in this chapter,
the double exponential shrinking behavior trivially follows from the fact that the
independent stop process is “sandwiched” between basic pull and push-pull pro-
tocols. However, for the general method we need the criteria of the behavior of
the process since Θ(n) nodes are informed until the last node learns the rumor.
We suppose that similarly to the single parameter homogeneous rumor spreading,
there are two possible regimes: the exponential shrinking and the double expo-
nential shrinking. Since the single parameter exponential growth conditions are
almost linear, it is probably that the construction for the exponential shrinking
will remind the exponential growth: some parameter vector x is multiplied each
round by almost a constant matrix M with eigenvalues less than 1 by the abso-
lute value. At the same time, the double exponential shrinking conditions are not
linear. The possible construction can be based on the analysis of the behavior of
some dimensionless quantity similar to ‖x‖

n
which is supposed to be powered each

round.

Connection between regimes: Typically, it is hard to prove that the shrinking
regime starts directly the next round after the growth regime ends. For the single
parameter homogeneous rumor spreading, we used Lemma II.17 and II.18 claiming
that the for any 0 < f < g < 1, the transition from fn to gn informed nodes takes
O(1) rounds with high probability. Using them, it suffices to prove that the growth
and shrinking conditions are satisfied only within intervals [1, fn] and [(1− g)n, n]
of informed nodes correspondingly, where f and g might be arbitrarily small.
Proving the similar statements for the multi-parametric rumor spreading seems to
be challenging but important for the simplification of the method, because now we
need to glue together not only the number of informed nodes, but also the value
of all remaining parameters.





Appendix A
Probabilistic notions

Geometric Distribution and Stochastic Domination

Definition. We say that a random integer variable G has a geometric distribution
with success probability p and write G ∼ Geom(p) if P[G = k] = p(1− p)k for any
k ≥ 0.

The geometric distribution corresponds the number of failed Bernoulli trials
until the first success. Recall that if G ∼ Geom(p), then we have E[G] = 1−p

p
and

Var[G] = 1−p
p2 .

Another important concept is the stochastic domination. Informally, a random
variable X dominates a random variable Y if X’s distribution is “to the right” of
the Y ’s distribution.

Definition. Let a pair of random variables X, Y be given. We say that X stochas-
tically dominates Y , and write Y � X, if P[X ≥ x] ≥ P[Y ≥ x] for all x.

The stochastic domination satisfies the following elementary properties.

• if X � Y and Z � T , then X + Y � Z + T .

• if X � Y then EX ≤ EY .

Lemma A.1. Let G1, . . . , Gn be independent random variables with Gi ∼ Geom(1−
qi). Then

∑n
i=1Gi is stochastically dominated by a random variable G with G ∼

Geom(1−∑n
i=1 qi)

Proof. Let G1, G2 be independent geometrically distributed random variables with
success probabilities 1 − q1 and 1 − q2, respectively. By law of total probability,
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we compute for all t ≥ 0,

P[G1 +G2 ≥ t] =

(
t−1∑
k=0

P[G1 = k]P[G2 ≥ t− k]

)
+ P[G1 ≥ t] =

=

(
t−1∑
k=0

(1− q1)qk1q
t−k
2

)
+ qk1 ≤

t∑
k=0

qk1q
t−k
2 ≤

t∑
k=0

(
t

k

)
qk1q

t−k
2 = (q1 + q2)t.

Hence, G1 +G2 � Geom(1− (q1 + q2)). By successive application of this fact, we
obtain

∑n
i=1Gi � Geom(1−∑n

i=1 qi).

The following lemma contains a high probability bound for the sum of geomet-
rically distributed variables in the case when

∑
i qi = O(1), but not necessarily

less than 1.

Lemma A.2. Let ε, δ ∈]0, 1[ and s > 0. Let qj := min{1− ε, sδj}, for any j. Let

G be stochastically dominated by
∑J−1

j=0 Gj, where Gj ∼ Geom(1− qj). Then there
exist constant A,α > 0 such that for any integer r > 0 we have P[G > r] ≤ Ae−αr.

Proof. Let j0 is the smallest such that
∑

j≥j0 qj < 1 − ε. By construction, j0 =

O(1). By Lemma A.1,
∑J−1

j=j0
Gj is stochastically dominated by a random variable

with distribution Geom(ε). Therefore, for any integer r > 0 we have

P

[
J−1∑
j=j0

Gj >
r

j0+1

]
≤ (1− ε)r/(j0+1).

Similarly, for any j < j0 we have P[Gj >
r

j0+1
] ≤ (1− ε)r/(j0+1). We conclude,

P[G > r] ≤ (j0 + 1) · (1− ε)r/(j0+1).

Variance. Chebyshev’s and Cantelli’s Inequalities

We recall that the variance of a discrete random variable X is Var[X] = E[X2]−
E[X]2. By definition it is a measure of how well X is concentrated around its
mean.

We recall that the covariance of two discrete random variables X and Y is
Cov[X, Y ] = E[(X − E[X])(Y − E[Y ])]. It is a measure of how strong X and Y
depends from each other. If X, Y are independent, then Cov[X, Y ] = 0.

In this work we often need to bound a variance of a sum of indicator random
variables. We provide a simple method get the bound if we know the covariance
between indicator random variables.
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Lemma A.3. Let a random variables X =
∑n

i=1 Xi, where Xi are indicator ran-
dom variables. Suppose, for any i 6= j we have Cov[Xi, Xj] ≤ c for some constant
c. Then Var[X] ≤ E[X] + cn2.

Proof. Since Xi is a binary random variable, Var[Xi] ≤ E[Xi]. Therefore,

Var[X] ≤
n∑
i=1

Var[Xi] +
∑
i 6=j

Cov[Xi, Xj] ≤ E[X] + cn2.

The two following inequalities gives the bounds for the “tail” probabilities for
any random variable X.

Lemma A.4 (Chebyshev’s inequality). For all λ > 0,

P
[
|X − E[X]|] ≥ λ

√
Var[X]

]
≤ 1

λ2 .

There is a one-sided version of the Chebyshev inequality attributed to Cantelli,
replacing 1

λ2 by 1
λ2+1

.

Lemma A.5 (Cantelli’s inequality). For all λ > 0,

P
[
X − E[X] ≥ λ

√
Var[X]

]
≤ 1

1+λ2 .

We remark that Cantelli’s inequality gives the bound which is less than one for
any positive λ.





Appendix B
First Order Bounds

In this appendix we collected all simple estimates that we used in Chapter IV and VI
while proving that certain protocols satisfy the corresponding shrinking or growth
conditions.

Lemma B.1. For any n > 0 we have 1
e
− 1

en
≤
(
1− 1

n

)n ≤ 1
e
.

Proof. Let an := 1− 1
n
. It is easy to see that an increases for n ≥ 1. Since an → 1

e

as n→∞, we have an ≤ 1
e
.

Observe now that a′nn :=
(
1− 1

n

)n−1
decreases for n > 1. Since a′n → 1

e
as

n→∞, we have a′n ≥ 1
e
, that is equivalent to the first inequality of the claim.

Lemma B.2. For any k < n we have 1− k
n
≤
(
1− 1

n

)k ≤ 1− k
n

+ k2

2n2 .

Proof. The first part of the claim is well-known as Bernoulli’s inequality. The

second part directly follows from the expansion of
(
1− 1

n

)k
and from the fact that

k/n < 1. It suffices to observe that the coefficient at 1
ni

in obtained alternating

sum does not exceed in absolute value ki

i!
.(

1− 1
n

)k
= 1− k

n
+
(
k
2

)
· 1
n2 −

(
k
3

)
· 1
n3 + . . .

Corollary B.3. Let p > 0. For any k < n/p we have 1 − p k
n
≤
(
1− p

n

)k ≤
1− p k

n
+ p2k2

2n2 .

Proof. Follows directly from Lemma B.2, if we substitute n/p by n for some p >
0.

Lemma B.4. For any 0 ≤ x < 1 we have 1
1−x ≥ 1 + x.

For any 0 ≤ x ≤ 1
2

we have 1
1−x ≤ 1 + 2x.
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Proof. The first inequality is trivially equivalent to 1 ≥ (1 − x)(1 + x) = 1 − x2.
The second one is equivalent to 1 ≤ (1 + 2x)(1−x) = 1 +x−2x2. Clearly, x−2x2

is non-negative if and only if x ∈ [0, 1/2].

Combining the three lemmas above we obtain the following corollary.

Corollary B.5. For any 1 < u < n we have 1
e
≤
(
1− 1

n

)n−u ≤ 1
e

+ 2u
en

.

Proof. 1
e
≤
(
1− 1

n

)n−u
follows directly from Lemma B.1.

By Lemma B.2, we have
(
1− 1

n

)u ≥ 1 − u
n
. Then, from Lemma B.4 it fol-

lows that
(
1− 1

n

)−u ≥ 1 + 2u
n

. Multiplying this expression by the statement of

Lemma B.1, we obtain that
(
1− 1

n

)n−u ≤ 1
e

+ 2u
en

.

Similarly to Corollary B.6, we have the following.

Corollary B.6. Let p > 0. For any u < n/p we have e−p ≤
(
1− p

n

)n−u ≤
e−p
(
1 + 2pu

n

)
.

Proof. Follows directly from Corollary B.5, if we substitute n/p by n for some
p > 0.



Appendix C
Coupon Collector and Ball into Bins

In this appendix we recall two classical combinatoric problem that we used in the
proofs.

Balls into Bins

The problem involves m balls and n bins. Each time, a single ball is placed into
one of the bins. After all balls are placed, we count the load (i.e., the number of
the balls inside) of each bin. The balls into bins problems asks for the maximum
load on a single bin.

For the case m = n that corresponds to a rumor spreading protocol in which
each node makes exactly one call, the result is well known [Gon81].

Lemma C.1. With probability 1−o(1), the maximum load of the bin in the instance
of the problem with n balls and n bins is equal to lnn

ln lnn
· (1 + o(1)).

Coupon Collector

The coupon collector problem is formulated as follows. A company issues coupons
of n different types, each type having a certain probability of being issued. The
coupon collector problem asks for the expected number of coupons that need to be
gathered before a full collection is obtained. The same problem often occurs in
the analysis of the push rumor spreading protocol, e.g., in a star graph or in a
complete graph since most of the nodes are informed.

Let Cn denotes the number of draws necessary to pick a full collection of coupon
starting from the empty initial collection. By Cn(m) we denote the number of
draws needed to collect m remaining coupons, i.e., starting from the collection
of n −m different coupons. The average and high probability bounds for Cn(m)
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are well known, the formulation provided here are from Doerr and Künnemann’s
article [DK14].

Lemma C.2. E[Cn(m)/n] = lnn+ γ+O(1/m), where γ = 0.577 . . . is the Euler-
Mascheroni constant.

Proof. Suppose that we collected all types of coupons except i ones. Since the
probability that the next drawn coupon is not in the collection is i/n, the number
of drawings until we pick a coupon of a new type has the geometric distribution
with success probability i/n. Therefore, Cn = X1 + . . . + Xm, where Xi has
distribution Geom(i/n). Since E[Xi] = n/i, we have that E[Cm] = nHm, where
Hm =

(
1 + 1

2
+ . . .+ 1

m

)
is the mth harmonic number. The claim follows from the

fact that Hm = lnm+ γ +O(1/m).

Lemma C.3. Let 1 ≤ m < n and r > 0. Then,

P[Cn(m) ≥ n ln(m) + rn] ≤ e−r.

Proof. The probability that one coupons is never drawn after t attempts is
(
1− 1

n

)t
.

Thus, the probability that one of m missing coupons is never seen after t :=
n lnm+ rn is at most

m
(
1− 1

n

)n lnm+rn ≤ m · e− lnm−r = e−r.

The two-sided formulation of lemma above is possible by using Chebyshev
inequality.

Lemma C.4. P[|Cn(n)− nHn| ≥ λn] ≤ π2

6λ2 .

We also note that even in a case of non-equal probabilities of drawing each
coupons the result is possible. Flajolet, Gardy, Thimonier [FGT92] proved that
if one draws coupons with respect to some probability distribution pi, then the
expectation of Cn can be estimated as follows.

E[Cn] =

∫ ∞
0

(
1−

n∏
i=1

(1− e−pit)
)
dt.
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Titre : Analyse précise des algorithmes épidemiques
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Résumé : Dans cette thèse nous étudions le problème

de propagation de rumeur, c'est-à-dire la dissémination
collaborative, robuste et anonyme d'une information en-
tre tous les agents d'un système distribué. Ce problème
est à la base de nombreux algorithmes de communi-
cation sur des réseaux de capteurs sans-�l [Dimakis et
al. (2010)] ou des réseaux mobiles ad-hoc. Il est aussi
une brique centrale pour les nombreux algorithmes dis-
tribués avancés [Mosk-Aoyama et Shah (2008)].
Nous proposons une méthode générale d'analyse des
protocoles de la propagation de rumeur dans les graphes
complets. Contrairement aux résultats précédents basés
sur la structure précise des processus étudiés, notre
analyse est basée sur la probabilité et la covariance
des évènements correspondants au fait qu'un agent non-
informé s'informe. Cela nous permet de reproduire les
résultats basiques concernant les protocoles classiques
de push, pull et push-pull ainsi qu'analyser les cer-
taines variations telles que les échecs de communications

ou les communications multiples réalisées par chaque
agent. De plus, nous sommes capables d'analyser les
certains modèles dynamiques quand le réseaux forme un
graphe aléatoire échantillonné à nouveau à chaque étape
[Clementi et al. (ESA 2013)]. Notre méthode nous per-
met de déterminer l'espérance du temps de la di�usion
à une constante additive près, ce qu'il est plus précis
que la plupart des résultats précédents. Nous montrons
que la déviation du temps de la di�usion par rapport
à son espérance est inférieure d'une constante r avec la
probabilité au moins 1 − exp(Ω(r)).
Nous discutons d'une hypothèse classique que les agents
peuvent répondre à plusieurs appels entrants. La re-
striction à un seul appel entrant par agent provoque un
relantissement important de la di�usion pour un proto-
cole de push-pull. Nous proposons une variation simple
du protocole de push-pull qui rétablit une phase double
logarithmique à nouveau et donc le nombre de messages
passés redescend sur sa valeur optimal.

Title : Precise Analysis of Epidemic Algorithms

Keywords : Distributed algorithm, epidemic algorithm, rumor spreading, dynamic graph

Abstract : In epidemic algorithms the agents in the
network involve peers similarly to the spread of epi-
demics. In this work, we focus on the randomized rumor
spreading � a class of epidemic algorithms. We suppose
that nodes of the network communicate with neigh-
bors chosen at random. This approach has found nu-
merous applications from the consistency maintenance
of replicated databases to news spreading in social net-
works. Numerous mathematical analyses of di�erent ru-
mor spreading protocols can be found in the literature.
Although some of them provide extremely sharp esti-
mates for the performance of such processes, most of
them are based on the inherent properties of concrete
protocols.
We develop new simple and generic method to ana-
lyze randomized rumor spreading processes in complete
graphs. In contrast to all previous works, we only need
to understand the probability and the covariance of the
events that uninformed nodes learn the rumor. This uni-
versality allows us to easily analyze the classic push,
pull, and push-pull protocols in their pure version as
well as in several variations such as when messages fail

with constant probability or when nodes call a random
number of others each round. Some dynamic models can
also be analyzed, e.g., when the network is a random
graph sampled independently each round [Clementi et
al. (ESA 2013)]. Despite this generality, our method de-
termines the expected rumor spreading time precisely
apart from additive constants, i.e., more precise than
almost all previous works. We show that a deviation
from the expectation by more than r rounds occurs with
probability at most exp(−Ω(r)).
We further use our method to discuss the assumption
that nodes can answer any number of incoming calls.
Restricting that only one call can be answered, we ob-
serve a signi�cant increase of the runtime of the push-
pull protocol. In particular, the double logarithmic end
phase of the process now takes logarithmic time. This
also increases the message complexity from the asymp-
totically optimal Θ(n log log n) [Karp, Shenker, Schin-
delhauer, Vöcking (FOCS 2000)] to Θ(n log n). We pro-
pose a simple variation of the push-pull protocol that
reverts back to the double logarithmic end phase and
thus to the Θ(n log log n) message complexity.
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