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Résumé substanciel

Les protéines et acides ribonuclèiques sont les principaux acteurs de nombreux pro-
cessus cellulaires. Comprendre leurs fonctions, structures et interactions est un
challenge important. Les méthodes expérimentales fournissent des informations
sur la structure et la dynamique des molécules. Cependant les méthodes expéri-
mentales sont limitées par le nombre de molécules qu’elles peuvent observer et les
moyens qu’elles requièrent. Les travaux présentés dans ce document ont pour ob-
jectif de fournir de nouveaux outils pour l’analyse et la prédiction de la structure de
molécules telles que les protéines et les ARNs (Acide Ribonucléiques).

Les protéines tout comme les ARNs sont des chaines d’éléments : 20 acides am-
inés pour les protéines et 4 nucléotides pour les ARNs. Ces éléments interagis-
sent entre eux pour former des liaisons fortes qui aboutissent à la structure sec-
ondaire. C’est-à-dire la formation d’hélices alpha et de feuillets beta chez la protéine
et d’hélices et de boucles chez l’ARN. Enfin des interactions plus faibles, dont cer-
taines avec le solvant, agencent les structures secondaires dans l’espace. Bien que
non systématique, le lien entre la séquence et la structure des molécules est bien
connu. Cependant alors que la prédiction de structure secondaire donne de bons
résultats, il est encore très difficile de prédire la structure en trois dimensions depuis
la séquence.

Dans un premier temps, nous nous sommes intéressés à l’extension du pro-
gramme KGS (Kino-Geometric Sampling) aux calculs des transitions d’un ARN entre
deux de ses conformations. Pour cela nous considérons que la structure secondaire
est connue et stable. Puis nous déterminons les degrés de liberté de la molécule qui
respectent les contraintes de conservation de sa structure secondaire. Notre procé-
dure est basée sur la cinétique inverse pour trouver une transition entre deux con-
formations d’un ARN. Nous obtenons des résultats comparables à l’état de l’art, ce
qui montre que notre sélection des degrés de liberté est pertinante. De plus, nous
utilisons des données partielles, ce qui permet d’utiliser différents types de résultats
expérimentaux.

Dans un second temps, nous abordons le problème du repliement protéique par
une approche innovante de théorie des jeux. Nous représentons une protéine par un
jeu où les joueurs sont les acides aminés et les stratégies sont les angles dièdres. La
prédiction de structure peut alors être vue comme la recherche d’un équilibre dans
un jeu de potentiel multi-joueur où la fonction de potentiel correspond à la qualité
du repliement.

Pour cela, nous effectuons d’abords une analyse de la convergence de certains
algorithmes. Nous nous intéressons particulièrement aux algorithmes de non-regret
pour des jeux itératifs, non-coopératifs, avec un nombre fini de joueur et de straté-
gies par joueur. De tels algorithmes garantissent à chaque joueur un regret (dif-
férence de ce qu’il a gagné avec ce qu’il aurait pu gagner en conservant la meilleure
des stratégies) sous-linéaire. Ces algorithmes convergent en moyenne vers la classe
des CCE (coarse correlated equilibria) qui contient tous les équlibres de Nash (aucun
joueur n’a intéret à changer seul) mais aussi des équilibres peu rationnels (des straté-
gies dites dominées sont utilisées). Nous étudions en particulier un algorithme de
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poids exponentiels appelé Hedge, et nous montrons qu’il garantit l’élimination des
stratégies dominées et la convergence locale vers un équilibre de Nash ou la conver-
gence globale vers cet équilibre s’il est unique. Puis, en limitant notre analyse aux
jeux de potentiel, nous montrons qu’une classe plus large d’algorithmes, les algo-
rithmes de régularisation, convergent vers un équilibre de Nash presque surement.
Les résultats de convergence sont conservés lorsque les joueurs n’ont accès qu’à une
information imparfaite et/ou bruitée. Nous avons ensuite appliqué cet algorithme
au repliement protéique et obtenu des résultats prometteurs.

Nos travaux appellent à de nouveaux développements. Il serait particulière-
ment intéressant d’utiliser les positions relatives des atomes (distances entre eux)
pour calculer la transition entre deux conformations plutôt que leur position ab-
solue. Cette amélioration va nous permettre dans un futur proche de développer un
outil d’analyse des données DEER. En ce qui concerne le repliement protéique nous
devons amérioler la fonction d’utilité pour qu’elle reflète mieux le repliement de la
protéine. Nous nous confrontons aussi au problème de non-optimalité de certains
équilibres de Nash : un équilibre de Nash peut être éloigné de l’optimum.
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Foreword

This document presents research work on bioinformatics. It addresses subjects that
can seem heterogenous, however, the global motivation under all projects is the
same: to develop theoretically proved methods for addressing difficult molecular
structures challenges. We strongly believe that bioinformatics, and in particular, the
understanding of molecular structures, can benefit from new approaches providing
additional guarantees.

In Chapter 1, we introduce the biological problems we addressed: how to model
the flexibility of a molecule and how to find its three dimensional conformations.
We first present the two kinds of molecules we focus on: proteins and ribonucleic
acids. Then, we explain the challenges that represent the understanding of their
structures. We also present the most used methods to address these problems and
their limitations.

In Chapter 2, we introduce game theory, we present the games and algorithms
which properties we study in Chapter 5 and 6. This chapter starts by a presentation
of games and their equilibria. Then, we introduce the concept of regret minimiza-
tion, and exponential-weights algorithms that we study in Chapter 5 and 6.

In Chapter 3, we present a kinematics-based procedure to morph a ribonucleic
acid molecule between conformational substates. This method is based on a graph
approach and it introduces a new application to morphing with sparse information.
It opens the door to other developments and applications on experimental data.

The Chapter 4 gives an overview of an ongoing project for finding alternative
conformations of ligands in electron density maps. As well as the morphing proce-
dure, we develop here a tool that aims to be used by experimentalists, helping them
to exploit their experimental data.

The Chapters 5 and 6 present new convergence results of a class a no-regret algo-
rithm. No-regret algorithms are extensively studied for their time average property
of no-regret. Here we show that under light assumptions they also converge asymp-
totically. In Chapter 5, we present local convergence on generic games as well as
global convergence results on potential games with a famous instance of no-regret
algorithm called HEDGE. In Chapter 6 we extended our results to more realistic
settings and a boarder class of algorithms.

In Chapter 7, we present a protein folding method based on our results in games’
convergence. We present how a protein can be understood as a multiplayer iterative
game, and we apply HEDGE algorithm to it. We also tested a few utility functions
and obtained encouraging results.
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Chapter 1

Some background in structural
biology
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1.1 Proteins and RNAs presentation

Every single second, thousands of molecular processes and interactions occur in our
cells. They are essential for our heart to beat, our brain to think, our cells to live, etc.
Proteins as well as Ribonucleic Acids (RNAs) are the workhorses of this permanent
activity.

Most of the genetic information of a cell is encoded in its Deoxyribonucleic Acid
(DNA). In eucaryote organisms like Humans, DNA is contained in the nucleus (Fig-
ure 1.1). RNAs are often introduced as messengers between DNA in the nucleus
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and the cell cytoplasm to create proteins. During the transcription, part of a DNA
molecule is copied into RNA. RNA molecules undergo some maturation events and
go through nuclear pores to reach the cytoplasm. Once in the cytoplasm some RNAs
called RNAs messenger are translated into proteins by ribosomes, this is the transla-
tion step. The translation is based on the RNA sequence and requires the interven-
tion of other RNAs and proteins.

3

Introduction: Macromolecules

Short presentation

Cell

Nucleus

DNA

RNA

Protein

Translation

Transcription

FIGURE 1.1: Schematic representation of an eukaryotic cell, and a few
macromolecules.

Non-coding RNAs gather all RNAs that are not translated into protein. How-
ever they are essential and play major role in many cellular mechanisms along with
proteins [1].

In this section, we present the basis of proteins and RNAs, from their sequence
to their structures.

1.1.1 Sequences

Proteins as well as RNAs are chains ( one or an assembly of multiple chains for some
proteins) of residues. Each of those residues are often represented by a one letter
code. They can be seen as a string although proteins and RNAs have a different
alphabet. We will first described proteins sequence and then RNAs sequence.

1.1.1.1 Protein sequence

The protein alphabet has 20 letters corresponding to the 20 Amino Acids (AAs) (table
1.2). AAs are different from one another, but they all have the same central carbon
atom, Cα, an amino group (NH2) and a carboxyl group (COOH) linked to the Cα.
This commun base is called backbone.

AAs are linked by peptide bonds between their amino group (NH2) and their
carboxyl group (COOH). The formation of the peptide bond also forms a water
molecule (H2O) while the amino group and the carboxyl group become respectively
NH and C=O. However, the rest of the AA, called the side chain differs between
AAs. The side chain attached to the Cα is different in the 20 AAs. AAs can be gath-
ered in groups according to the physico-chemical characteristics of their side chain.
A lot of different classifications are possible relying on different criteria and dividing
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the AAs in different number of groups [2]. In our study, described in Chapter 7, we
chose to use a three groups classification : hydrophobic, polar and charged.

This classification is useful as one can consider that AAs of the same group have
the similar properties.

1.1.1.2 RNA sequence

A RNA is a sequence of nucleotides. A nucleotide is formed by a phosphore group,
a five member sugar ring and a base (Figure 1.2). Phosphore group and sugar ring
are the same for all nucleotides. However 4 different bases exist for the RNA (table
1.1).

FIGURE 1.2: Structure of a nucleotide monophosphate with an ade-
nine base.

Category Structure Name Structure Name

Purines
Adenine

A

Guanine

G

Pyrimidines
Uracil

U

Cytosine

C

TABLE 1.1: The 4 RNA nucleobases.

Adenine and guanine are purines, they have two merged rings. Uracil and cy-
tosine are pyrimidines, they only have one ring. Nucleotides can interact and form
pairs. The main base pairs, the more stable, are the Watson-Crick (WC) base pairs
[3] adenine (A) with uracil (U) and cytosine (C) with guanine (G). They are usually
complemented with the less stable Wobble (G-U) base pairs.
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Structure Name Category Structure Name Category

Alanine

Ala / A hydrophobic
Asparagine

Asn / N polar

Glycine

Gly / G hydrophobic
Cysteine

Cys / C polar

Isoleucine

Ile / I hydrophobic
Glutamine

Gln /E polar

Leucine

Leu / L hydrophobic
Histidine

His / H polar

Methionine

Met / M hydrophobic
Serine

Ser /S polar

Phenylaline

Phe / F hydrophobic
Threonine

Thr / T polar

Proline

Pro / P hydrophobic
Tryptophane

Trp / W polar

Valine

Val / V hydrophobic
Tyrosine

Tyr / Y polar

Arginine

Arg / R charged
Glutaminc acid

Glu / E charged

Aspartic acid

Asp / D charged
Lysine

Lys / K charged

TABLE 1.2: The 20 AAs and their category. The glycine side chain is
only an hydrogen atom, not represented here.

1.1.2 Secondary structures

Proteins as well as RNAs have an important secondary structure resulting on strong
interactions between AAs or nucleotides. The secondary structure is very important
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in the three dimensional structure determination.
We start by studying the protein’s secondary structure.

1.1.2.1 Protein secondary structures

Many secondary structures can be distinguished [4] but in the rest of the manuscript
we will only focus on the two main structures [5] (Figure 1.3):

• the α-helix;

• the β-sheet.

Regions not structured into helices or sheets are called loops.

a) b)

FIGURE 1.3: Two main protein’s secondary structures.(a) The alpha
helix. (b) The beta sheet.

Three torsional angles: ω, φ and ψ (1.4), determine the backbone configuration.
The peptide bond region formed by the Cα, C and O of an AA and the NH, and Cα
of the next AA is planar: all atoms lay in the same plane [6].

Because of planarity of peptide bonds, the angle ω is either 0◦ (cis) or 180◦ (trans).
The trans configuration is present in 98% of the cases [8], we therefore consider that
all peptides are in a trans configuration.

Due to steric constraints, some ranges of the angles φ and ψ are unreachable.
These two angles differ between secondary structures. The Ramachandran plot [9]
represents the accessible region for the (φ, ψ) couples. It points out that different
secondary structures reach different areas of the plot (Figure 1.5).

The secondary structure of a protein can be inferred from its three dimensional
structure. Softwares like Dictionary of Protein Secondary Structure (DSSP) [11] can de-
termine the secondary structure based on atoms position. It uses an eight groups
classification that can be easily gathered into helices, sheets and loops. It is also pos-
sible although less accurate to predict the secondary structure from the sequence.
Well-known softwares, like PSIPRED [12], use alignment against sequences with
known secondary structures, relying on the hypothesis that structures are more con-
served than sequences, so two similar sequences are likely to present the same struc-
ture. Other methods rely on learning algorithms like Hidden Markov Model (HMM)
[13] trained on a database to predict new sequences.
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Amino acid 1 Amino acid 2 Amino acid 3

φ1 φ2ψ1 ψ2 ψ3ω3
ω2 φ3

FIGURE 1.4: Three torsional backbone angles of amino acids. Figure
done with PyMol [7].

α-helix 

β-sheet

FIGURE 1.5: Ramachandran plot from [10]. Allowed configurations
are outlined by a bold line and partially allowed conformations, that
are less stable, by a light line. α-helix and β-sheet regions are respec-
tively delimited in red and yellow. Note that the original plot does not
represent the α-helix and β-sheet regions but clouds of points with

different symbols for different secondary structures.

1.1.2.2 RNA secondary structures

The secondary structure of the RNA relies on base interactions. Base pair interac-
tions stabilize the molecule structure because a consequent energy (up to 6kcal/mol
[14]) is needed to break them. The strongest bases interactions are Watson-Crick (A-
U and C-G), but others like Wobble [15] interactions between guanine and uracil also
exist and play an important role. Stability of base pair interactions also depends on
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their orientation. Consecutive base pairs form double-stranded helices that are very
important for RNA structure stability (Figure 1.6). A pseudoknot is an helix with
one strand forming an helix elsewhere. Secondary structure can be represented by a
sequence of parenthesis, a "(" for the first base of a pair, ")" for the last base of a pair
and "." for unpaired bases. Pseudoknots result in intersecting parenthesis (Figure
1.6).

.((((((..((((...(((((((..))))((((........((((..))))[[[[[[.....)))))))...))))))))))..........]]]]]]

Hairpin

Junction

Interior loop

Bulde
loop

Helix

Pseudoknot

FIGURE 1.6: RNA secondary structures with helices and different
kind of junctions. Waston-Crick base pairs are represented by one
or two blue lines, others base pairs are represented by a line with a

circle. Made with VARNA [16]

The RNA secondary structure can be determined from the three dimensional
structure by software like RNAView [17] which finds base pairs interaction and clas-
sifies them according to the Leontis classification [18]. Dynamic programming tech-
niques allow to find the optimal pair matching to maximize the number of interac-
tions (without pseudoknot) since Nussinov in 1978 [19]. Most of those algorithms
do not consider pseudoknots as the problem was shown to be NP-hard [20]. The
stacking energy resulting of the interaction of two base pairs in top of each other,
was taken into account by Zuker [21]. Many other dynamic programming methods
have been released [22], [23] and some can take into account some pseudoknots [24].
A RNA sequence can adopt different secondary structures, new methods tend to
output multiple possible secondary structures with a probability score.

1.1.3 Three dimensional structures

Often, the three dimensional structure of molecules, called also conformation, is es-
sential for their function. However, in some cases, the protein has no main structure.
These proteins are called intrinsically disordered proteins and represent only a 30%
of the proteins [25]. The rest of the proteins adopt a few main conformations, they
fluctuate around those with high frequency and from time to time they can transi-
tion from one to an other. The three dimensional structure of proteins and RNAs
results from the arrangement of the secondary structure into space. The possibilities
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of arrangements are infinite, but a few main classes of folds have been exhibited for
RNAs [26]–[28] as well as for proteins [4], [29].

Proteins known structures can be hierarchically classified according to their folds.
Various databases exist, three of the main databases are CATH [30], SCOP [31] and
Pfam [32]. CATH is a four level hierarchical database: Class, Architecture, Topology
and Homologous superfamily, it contains a total of 1373 different topologies. SCOP
has a slightly different hierarchy: Class, Fold, Superfamily, Family, Domain and
Species. Pfam has also its own hierarchy: Family, Domain, Repeat, Motifs, Coiled-
Coil and Disordered. The main difference of Pfam is that it associates a HMM to
each family.

CATH Topology: Rossman fold
SCOP Domain: PTS-dependent dihydroxyacetone kinase, 
phosphotransferas subunit DhaM
Pfam Description: PTS system fructose IIA component
PDB id: 3CT6

a) b)

PDB id: 17RA

FIGURE 1.7: a) A protein structure 3CT6 and its classifications. b) A
RNA structure 17RA.

The Protein Data Bank (PDB) [33] gathers more than 84, 000 experimentally solved
protein and RNA structures. However some of the structures are redundant or very
similar. A PDB entry often links the structure to its CATH, SCOP and Pfam classifi-
cations (Figure 1.7a). The PDB also contains RNA structures (Figure 1.7b) but with
less cross-informations. Most experimental techniques for determining structures
(see Section 1.2.1) give only one result. However it is well-kwon that proteins as
well as RNAs are flexible and can adopt different structures.

1.1.4 Interactions

Molecules interact with each other. Two peptide chains can interact to form the
proper protein, if the interaction is not suppose to be broken we call it the quaternary
structure, as the protein does not exist without it. On the contrary, some interactions
are only temporary. The formation of complexes and the interaction of molecules is
a key step in many cellular processes like the transcription. It is therefore essential
to understand the interacting process between molecules. There are many kinds of
complexes with different types of molecules. Proteins are often receptors and bind
either a smaller protein or peptide (only a few AAs), a RNA or a ligand which can
be a small molecule like a nucleotide or an ion (Figure 1.8). Interface and binding
pocket refer to the same thing: the nucleotides involved in the interaction.
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a) b)

FIGURE 1.8: a) A protein/RNA complex 2B6G, the interface is en-
circled in purple and inter-molecule hydrogen bonds appear in red
dashed lines. b) A protein/ligand complex, the binding pocket is en-

circled in purple, with hydrogen bonds in red dashed lines.

A RNA can also bind ligands and peptides. The predictions of molecules inter-
actions is a two-fold strategy. First we need to know the structure of each partner
as their structures can change while interacting. Second we also need to find the
interaction site. This second step can be done either by an extensive search (Roset-
taDOCK) [34], or using experimental information (HADDOCK, High Ambiguity
Driven protein-protein DOCKing) [35], or by recognizing AAs that are often in in-
terface areas [36]. Reviews [37] present many other methods to predict molecular
interactions. Critical Assessment of PRediction of Interactions (CAPRI) is a worldwide
competition to assess the quality of interaction predictions [38].

1.2 Structures : determination, prediction and sampling

Determining the structures of molecules is of tremendous importance when one
wants to understand how they participate to cellular processes. Elaboration of drugs
often relies on the structure of the drug and its efficiency depends on its interaction
with others molecules. Experimental methods described in the first subsection can
determine the structure with different accuracy. However theses methods are time
consuming and cannot be applied to any proteins or RNAs. Therefore computa-
tional methods that predict the structure of molecules are of main interest. As for the
interaction prediction, there is a worldwide competition, called Critical Assessment of
Techniques for Protein Structure Prediction (CASP), to assess the quality of structure
prediction and prediction accuracy [39]. This is extremely important as it allows to
test prediction method on new structures. Although the same approach can often
be applied to proteins as well as RNAs, most methods can only consider proteins
some others address only RNAs and only a few can handle both. In this section we
first described different experimental methods, then we will focus on computational
methods.



12 Chapter 1. Some background in structural biology

1.2.1 Experimental techniques

There are several experimental methods for solving a molecule structure. Here we
present three main ones: X-ray crystallography (89.5% of the PDB structures), Nu-
clear Magnetic Resonance (NMR) (9.1% of the PDB structures) and cryo-Electronic Mi-
croscopy (EM) (1.1% of the PDB structures). We also present Small Angles X-Ray Scat-
tering (SAXS) and Double Electron-Electron Resonance (DEER) experiments which do
not solve the molecular structure but give precious insight on the molecule shape.

1.2.1.1 X-RAY

X-ray crystallography is the most used method. It allows to obtain a precise struc-
ture and its resolution. The molecule is purified and then crystallized [40], this step

FIGURE 1.9: Electron density map and a few residues of a X-ray de-
termined protein, 3Q6Y.

is crucial and can be impossible or very difficult for some molecules in particular
RNAs. The crystal is then subjected to an synchrotron X-ray beam. The protein
scatters the X-rays and the pattern is analyzed to calculate an electron density map
(Figure 1.9). Amino acids are fitted into the density to give a structure. In Chapter
4 we present a method to improve the fitting of ligands in their binding pocket. Al-
though this method gives high precision results, it is believed that cristal structure
slightly differ from the structure of in vivo molecules.

1.2.1.2 NMR

When using NMR spectroscopy the purified molecule is placed in a static magnetic
field [41]. With this magnetic field, the space becomes anisotropic and nuclei spins
can be observed. NMR spectroscopy does not requires cristallyzation but it requires
a large sample of molecules as well as enrichment in rare isotopes to observe nuclei
spins. NMR spectroscopy gives precious information that allows to retrieve the con-
formation using suitable software. NMR resolved structures are generally a bundle
of different structures (Figure 1.10). The width of the bundle can be interpreted as
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FIGURE 1.10: NMR bundle of the RNA 17RA.

a local dynamic as well as the accuracy of the prediction [42]. In Chapter 3 we use
NMR bundle to test our morphing procedure.

1.2.1.3 cryo-EM

Cryo-EM uses a small frozen sample and an electron beam. The sample is posi-
tioned along the electron beam. And a detector analyzes the electrons that did not
collide with the sample. Tremendous improvement of the technique occurred in the
last decades. Among others, the detector can now capture movies and reconstruct
precise structures [43]. The final output of this method is really similar to X-ray crys-
tallography (Figure 1.9). Cryo-EM is mainly used on proteins difficult to crystallize
and macromolecular complexes. The resolution is still a bit low compared to X-ray
crystallography but hopefully this gap will be filled in a few years [44].

1.2.1.4 SAXS

SAXS is an experimental method that provides low-resolution structural informa-
tion about macromolecules in solution. Although the provided resolution is very
low compared to X-ray crystallography, NMR spectroscopy or cryo-EM, the method
is very interesting because it uses in solution molecules and can analyse them in
various conditions, for example with and without a ligand. It is also often used for
RNAs as these are more complicated to cristallize [45]. The protocol is similar to the
X-ray crystallography except that the sample is in solution instead of a crystal. This
implies that the signal is isotropic instead of anisotropic. Therefore the output is a
intensity single curve (Figure 1.11). From the curve, one can infer the radius of gira-
tion of the molecule that is about its diameter. Usually the structure is not inferred
form the intensity curve. However it is very easy to compute a curve from a known
structure. The comparison of experimental and theoretical curves allows to choose
which structures among a set of structures were present in the solution [46].



14 Chapter 1. Some background in structural biology

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

q [Å −1]

13

14

15

16

17

18

19

20

21

lo
g
(I

(q
))

FIGURE 1.11: A glutamate receptor and its intensity curves.

1.2.1.5 DEER

DEER is a spetroscopics approach similar to NMR that mesures spin resonance.
Instead of observing nuclei spins, it observes probes or labels spins. Probes are
molecules added at precise points of the molecule. DEER measurements is a distri-
bution of distances between probes. This can be very useful to identify large motion
like the opening of a domain. One drawback is that probes can be long and flexi-
ble. The distance between two probes does not exactly correspond to the distance
between the two anchor points. We use DEER data in an extension of the method
presented in Chapter 3.

Now that we presented experimental methods for structure determination, we
will focus on computational methods.

1.2.2 Structure Prediction

Only around 11% of proteins with a known sequence have an experimentally solved
structure. The PDB database [33] contains 37, 843 protein structures with less than
90% of sequence identity and the UniRef [47] database contains 332, 971 protein se-
quences with less than 90% of identity1.

For RNAs it is even worse with only 1, 226 experimentally solved structures in
the PDB database with less than 90% of sequence identity.

In addition, it is commonly believed that structure can be inferred from sequence
[48]. Therefore, developing structure prediction methods is extremely important for
confirming the assumption that it is possible and for complementing experimental
methods.

The CASP assessment evaluates the quality of protein structure prediction meth-
ods every 2 years and identifies fields of progress and fields that need to be develop
further [39]. There is no such assessment for RNAs although the CAPRI assessment
for interaction prediction usually includes RNAs.

1On the 5th of April 2017



1.2. Structures : determination, prediction and sampling 15

One main issue of molecule structure prediction is the dimension of the problem.
A protein contains mainy degrees of freedom, taking all of them into account at the
same time is extremely challenging. A broadly used way to overcome this problem
is to use a multi-step and coarse-grained approach.

Most methods are developed for proteins but the same approaches could often
be applied to RNAs. Here we present the principles of some methods without con-
sidering if they apply to RNAs or proteins.

1.2.2.1 Coarse-grained approaches

A coarse-grained approach consists of gathering multiple atoms into one single ob-
ject, thus drastically reducing the dimension of the problem. For a more detailed
review of different coarse-grained methods the reader can look into Noid’s survey
[49].

All atoms  Cα, C, Cβ and N One Cα every 3 AA

a) b) c)

FIGURE 1.12: Different levels of corse-graining for protein (example
with PDB id 2N6Y). a) Full atom representation. b) Only four atoms
are represented per AA (only three for the glycine that does not have
Cβ). This representation in very convenient as the backbone and its
dihedral angles are present, the side chain is only represented by its

first atom Cβ . c) Only one Cα atom per tripeptides (three AAs).

The finer is the coarse-grained representation the closer to reality is the model
but the higher is the dimension of accessible conformations. Figure 1.12 illustrates
different levels of representation from all atoms to one points for few residues. A
usual way to take the best of coarse-grained approaches is to use different levels
of coarse-graining in different steps: the scale becoming finer as the computation
avances [50]. However retrieving an all atoms representation from a coarse-grained
structure is challenging [51].

1.2.2.2 Template-based methods

Structure prediction methods can be divided in two main categories: the template-
based methods and the template-free methods. A template-based method as defined
in CASP needs template structures to build the prediction. The definition of a tem-
plate structure is complicated [52] but it mostly lays on sequence identity. A target,
i.e., a sequence with unknown structure, is classified into the template-free category
if there are no homologous proteins with a known structure.
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Dorn et al. [25] did a detailed review of different methods for structure predic-
tion. Analysis of the performance of the best methods can also be found in proceed-
ings of CASP meeting every two years, [53] is the most recent one. Here we give a
short overview of the main methods.

Most template based methods have an approach as described in Figure 1.13. The
sequence is aligned against sequences from a database to find one or more similar
sequences with known structures. The structures of similar sequences are used to
model the structure of the target sequence.

FIGURE 1.13: Schematic representation of a typical process of com-
parative modeling by homology. Initially, template proteins are iden-
tified. Then the sequence of the target protein is aligned against the
sequence of the protein-templates, and then a model is built and val-
idated, obtaining in the end, the 3-D structure of the target protein.
If necessary, the final structure may undergo a refinement process.

Taken from [25].

Although very accurate, template-based methods have a main drawback: they
cannot predict a new fold [39]. Some methods include a refinement steps to refine the
template based model on regions not well covered. This can be done with methods
close to the molecular dynamics (see Section 1.2.3.2) or template-free methods.

1.2.2.3 Template-free methods

Template-free methods are used for sequences with no template structure available
in the PDB database. The most successful methods until recently were fragments
methods (Figure 1.14). This approach comes from the observation that protein struc-
ture can be divided in common structural motifs [54]. Homologous fragments are
assembled according to criteria that depend on the methods and usually involve
local and non-local information. This process can be done multiple times before
reaching a satisfying structure.
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FIGURE 1.14: General schematic representation of a fragment-based
method for the 3D protein structure prediction problem: a target se-
quence is fragmented, models are obtained from the PDB, the frag-
ments are classified, the conformation is constructed and when ap-

propriate, conformation is refined. Taken from [25].

In Chapter 7 we present a template-free approach using small fragments (tripep-
tides) and integrating database statistics for a scoring function. This method is based
on a similar approach for RNAs [55].

Template-free as well as template-based methods tend to incorporate additional
information into their model. For example it is common to use predictions of sec-
ondary structure to biais the prediction process. Coevolutionary informations based
on sequence evolution are used to predict contacts [56] and are also more and more
used and lead to the efficient methods. The best prediction in CASP11 free modeling
was found by Baker’s group incorporating contacts prediction in the score function.

1.2.3 Motion modeling

Motion modeling is a key issue of conformation sampling as well as motion plan-
ning. Here we give an overview of the main approaches: atomic perturbations with
molecular dynamics, and extraction of the main components with normal mode
analysis.

1.2.3.1 Torsional and cartesian coordinates

Most of the methods can use torsional or cartesian coordinates. Cartesian coordi-
nates represent the position of an atom by is 3 dimension vector position.

Torsional coordinates are internal coordinates that correspond to torsional angles
around bonds. Torsional moves approaches in molecular motions only consider tor-
sions, i.e., rotations around bonds, as degrees of freedom. This implies to fix the
value of all bond lengths as well as planar angles, which is generally true.
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This approach can be use as a first step of a coarse-grained method using only
backbone torsion [57]. This is very natural in protein as the two main degrees of
freedom of an AA’s backbone are its ψ and φ torsion angles (see Section 1.1.2). It
is also relevant for RNA even if the backbone has more than two main degrees of
freedom.

In Chapter 3, we present a method that uses torsional moves coordinated such
that the secondary structure of the molecule is preserved. The method for protein
structure prediction presented in Chapter 7 also uses torsional moves.

1.2.3.2 Molecular dynamics

Molecular dynamics is a particular method as it aims at generating a trajectory as
close as possible to a "real" molecular motion. To do so it considers force fields
that apply to any atoms of the molecules. The movement of each atom is usually
determined by numerically solving Newton’s equation of motion.

mi · ai = Fi (1.1)

Where mi is the mass of atom i, ai its acceleration and Fi the forces that applied to
it.

Force field Multiple force fields exist, the main are Assisted Model Building and En-
ergy Refinement (AMBER) [58] and Chemistry at HARvard Macromolecular Mechanics
(CHARMM) [59]. Conservative forces are obtained through the derivation of poten-
tial energy. The potential energy of an atom can usually be divided into bonded and
non-bonded terms. Bonded energy comes from the deformation of a bond between
two atoms (Figure 1.15).

bl

θaψt

FIGURE 1.15: Illustration of bond length and angles in bonded energy

Ubonded =
∑

b∈bonds

1

2
kb(bl−b0)2+

∑
a∈angles

1

2
ka(θa−θ0)2+

∑
t∈torsions

1

2
kt(1+cos(ntψt+ψ0))

(1.2)
The first term corresponds to the harmonic potential with a constant kb and a refer-
ence length b0, bl is the current length of the bond. The second term is the harmonic
angle potential with a constant ka and a reference angle θ0, θa is the current angle.
The last term is the cosine form of the dihedral potential with a constant kt, a ref-
erence angle ψ0 and a multiplicity nt which depend on the bond, ψt is the current
angle.
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The non-bonded energy corresponds to van der Walls interaction (first term) and
the electrostatic interaction (second term).

Unon−bonded =
∑
i

∑
j>i

εij

((
r0ij

rij

)12

− 2

(
r0ij

rij

)6
)

+
∑
i

∑
j>i

qiqj
4πε0rij

(1.3)

Where r0ij is the distance at equilibrium, ε is the depth of the energy, ε0 is the di-
electric constant, qi is the charge of atom i and rij the distance between atom i and
j.

The solvent can either be implicit and considered as an additional term in the
force field or explicit and represented by atoms. Equation 1.1 is a differential equa-
tion (acceleration is the second derivative of the position) and can be solved with
various initialization conditions.

Initialization Initial positions are chosen depending on the simulation goal. The
initial distribution of velocities is usually drawn from the Maxwell-Boltzmann dis-
tribution

P (vi,α) =

√
m

2πkbT
exp

(
−
mv2

i,α

2kbT

)
(1.4)

where vi,α is the α = (x, y, z) component of the velocity of atom i, m is its mass, T
the temperature and kb the Boltzmann constant.

Time scale Equation 1.1 is numerically solved, i.e., the solution is iteratively evalu-
ated with a small time step. This time step is usually on the order of the femtosecond
(10−15s) [60]. Timescale of motion varies from femtoseconds for bond vibrations to
millisecond in the case of large domain motions [61].

Equation 1.1 is a microscopic equation that is solved for each atom. However we
want to estimate macroscopic properties of the system for example its energy. Then
it is important to introduce the concept of an ensemble as "a collection of systems de-
scribed by the same set of microscopic interactions and sharing a common set of macroscopic
properties" [62].

Temperature The instantaneous temperature of a molecular system is related to its
average (over the ensemble) kinetic energy by the equipartition theorem.

1

2

N∑
i=1

mi < v2
i >=

3

2
NkbT (1.5)

Where < v2
i > is the root-mean-square speed of atom i, mi its mass, N is the

number of atoms, kb the Boltzmann constant and T the temperature. Therefore the
instantaneous temperature can be chosen by scaling the velocities.

There exist different kinds of ensembles depending on which macroscopic prop-
erties are preserved.

Microcanonical ensemble The microcanonical ensemble (NVE) is obtained when
the number of particle (N), the volume (V) and the energy (E) are fixed. It is obtained
by integrating equation 1.1.
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The total energy is fixed so the sum of potential energy and kinetic energy is
fixed. The ensemble can be used to find various conformations of the same energy
level. The temperature is not fixed.

Canonical ensemble The canonical ensemble (NVT) is obtained when the number
of particle (N), the volume (V) and the temperature (T) are fixed. This ensemble is
often used as a first step to minimize the energy. Obtaining a constant temperature
involves coupling the system with a heat bath. This can be done by different ways,
all resulting in considering nonconservative forces (forces that do not derived from
a potential) added in equation 1.1.

Isothermal-isobaric ensemble The isothermal-isobaric ensemble (NPT) is obtained
when the number of particle (N), the pression (P) and the temperature (T) are fixed.

Molecular dynamics is very accurate for small time scale motions and limited for
long time scale error as numerically solving the motion equations implies a cumula-
tive error. In addition, in order to apply a molecular dynamics method one needs to
have a good understanding of the system he wants to analyze in order to choose the
right solvent, ensemble and other parameters.

1.2.3.3 Normal Mode Analysis

Physical objects such as molecules have degrees of freedom. A normal mode is a
combinaison of degrees of freedom. From an equilibrium position an object can os-
cillate along normal modes with a given frequency. An object has as many normal
modes as degrees of freedom. "Normal" means that they are independent, an oscil-
lation along a normal mode does not induce oscillations on others. A general move
can be described as a superposition of moves along normal modes.

To find normal modes and their frequencies, the potential energy of a system in
a state S near an equilibrium state S0 is developed in Taylor series. Let consider a
system composed of n atoms a1, . . . , an each one having three degrees of freedom
corresponding to the directions x, y and z.

V (a1, . . . , an)|S = V (a1, . . . , an)|S0 +
∑
i,α

∂V

∂aiα
|S0(aiα − a0

iα)

+
1

2

∑
i,α

∑
j,β

∂2V

∂aiα∂ajβ
|S0(aiα − a0

iα)(ajβ − a0
jβ)

+O(‖a− a0‖3)

(1.6)

where α and β can be x, y or z and aiα is the coordinate of atom i along the direction
α and a0

iα corresponds to the equilibrium state S0.
As S0 is an equilibrium, the second term is null. We can remove the first term

because the potential energy is defined up to an additive constant. So neglecting the
third order terms we obtain.

V (a1, . . . , an)|S =
1

2

∑
i,α

∑
j,β

∂2V

∂aiα∂ajβ
|S0(aiα − a0

iα)(ajβ − a0
jβ) (1.7)
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The study of the Lagrangian equation of motion done in [63] shows that the nor-
mal modes are the eigenvectors of the dynamical matrix D and their frequencies
are the inverse of the associated eigenvalues. Where D is a 3n by 3n matrix corre-
sponding to the Hessian matrix of the potential weighted by the mass of atoms such
that

Diα,jβ =
∂2V

∂aiα∂ajβ
|S0/
√
mimj

Low frequencies modes correspond to collective conformational changes whereas
high frequencies modes correspond to localized displacements.

The usual way of doing a Normal Mode Analysis (NMA) on molecules is to use an
Elastic Network Model (ENM) [63]. Any couple of atoms separated by a distance less
than a specified distance cutoff are considered to be linked by an elastic. Therefore
the potential energy is:

V =
∑
i,j

1

2
ki,j(di,j − d0

i,j)
2 (1.8)

where di,j is the distance between atoms i and j, ki,j is the constant associated to the
spring that models their interaction and d0

i,j is their distance at equilibrium.
Low frequencies modes are then used for sampling the conformational spaces or

finding a trajectory toward a different conformation.

1.2.4 Sampling and morphing strategies

Once that moves are defined, different strategies can be used to choose moves and
sample the conformational space or move toward an other conformation. First we
present the Monte-Carlo method to sample according to a defined distribution. This
method can be combined with other methods like Rapidly exploring Random Trees
(RRTs), presented after.

1.2.4.1 Monte-Carlo

A Monte-Carlo method consists on estimating the average of a function on an en-
semble by sampling the ensemble and then evaluating the function on the samples
and computing the average. Monte-Carlo can use preferential sampling to sample
according to a distribution function giving high probability to important value of
the function so that the variance is reduced. Monte-carlo method is usually coupled
with a Metropolis criterion to sample the probability law. The aim of a Monte-Carlo
protein simulation is to sample conformations according to the Boltzmann distribu-
tion. The Boltzmann distribution is such that the probability to find a protein in a
conformation c with an energy Em at temperature T is :

P(c) =
exp
−Em
kbT∑

c′ exp
−
Ec′
kbT

(1.9)

where kb is the Boltzmann constant.
The simulation is usually done with the number of particles/conformations (N ),

volume (V ) and temperature (T ) fixed and the energy E is the fluctuating variable.
The Monte-Carlo sampling algorithm is a three step algorithm:

1. Select a particle p (the initial if its the first iteration) and compute its energy Ep

2. Randomly perturb p into p′ and compute its energy Ep′
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3. Use the Metropolis criterion to accept or reject p′.

Therefore the Monte-Carlo sampling algorithm can be viewed as a Markov pro-
cess because the generation of a new particle only depends on the current particle
and the matrix acceptation from the Metropolis criterion.

The Metropolis criterion defined the probability to accept a new particle p′:

P(p to p′) = 1 if Ep′ ≤ Ep

P(p to p′) = exp
−
Ep′−Ep
kbT otherwise

(1.10)

This approach is limited by the size on the conformational space but it is often
coupled with other techniques.

1.2.4.2 Tree exploration

A common way to explore a conformational space is to construct a tree from the
initial conformation. Various strategies have been developped to guarantee that the
full space or a pre-defined portion of the space will be explore if the algorithm is ran
long enough.

A widely used approach for that is RRTs [64]. It comes form the area of Robotics.
The construction of a RRT initialized on an initial conformation xinit as steps illus-
trated in Figure 1.16.

1. Generate a random conformation x.

2. Find xnear, the closest conformation to x, already in the tree.

3. Perform a small move from xnear to x that gives xnew.

FIGURE 1.16: RRT extending step. xinit is the first conformation. x
is a randomly generated conformation. xnear is the nearest existing
conformation to x, xnew is the generated conformation. Figure taken

from [64]

All kind of moves can be used to generate the new conformation for example
a combination of normal modes [65] or torsional angles [66]. Also the acceptation
or not of xnew can be based on collision checking by rejecting a conformation if two
atoms are too close [66] or using a metropolis criteria [67].

Tree exploration can be used for blindly sampling the conformational space as
well as for finding a trajectory between two conformations. In the later, biais can be
introduced in the choice of xnear to guide the exploration towards the goal confor-
mation [68].
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Extensions of the classic RRT exist that bring more guarantees such as asymptot-
ically optimal trajectories [69].

1.2.4.3 Other approaches

In Chapter 3 we present a morphing method that does not construct a tree but just a
path. A move is chosen among torsion combinations such that it reduces the distance
to the goal conformation.

iMod [70] uses a NMA approach to generate a trajectory between two conforma-
tion. It biases the motion towards the goal conformation by accepting a move only if
the Root Mean Square Deviation (RMSD) to the goal conformation reduced. Otherwise
it generates a new move by combining normal modes.

Finally some approaches use a hierarchical approach [71] adapting the number
of degrees of freedom to their objective.
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Chapter 2

An introduction to Game theory
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Game Theory appeared as a field in the middle of the 20th century with the
book of John von Neumann and Oskar Morgenstern [72]. At first, game theory was
mainly applied to politics and economy. More recently, it has also found important
applications in biology and telecommunication networks, addressing problems like
population dynamics and ressources allocation (see [73] for examples).

Game theory addresses competitive problems that can be represented by players
choosing a strategy among others. The strategy choice is dependent on other players
actions.

In this chapter, we present the main concepts of game theory. The first section
introduces important notions for game’s definition and representations. The second
section presents different games and equilibria. The third section introduces the
concept of regret minimization. The last section presents a class of games that we
will study later.

2.1 Games presentation

We focus on a certain class of games: the finite non-cooperative games.
Finite means that the number of players is finite and each players has a finite set

of strategies.
Non-cooperative means that each player rationally acts to satisfy his own interest

(players do not form coalitions).



26 Chapter 2. An introduction to Game theory

Players tend to maximise the utitility (also called payoff ) they receive. Games can
mainly be represented in two forms: the extensive form and the normal form.

2.1.1 Extensive form

Extensive form represents games as trees. The game starts at the root, at each node
one of the players (depending on the node) makes a choice. Each edge leaving the
node represents a possible strategy. The game ends at the leaves. The utility of
each player is written at the leaves. This form is very convenient for representing
games where players play sequentially. As an example we can consider the game
illustrated in Figure 2.1. This game is a two player game - a store and a customer.
The store plays first by choosing to put its articles on sale or to keep a normal price.
The customer plays next by choosing to buy or not something. The utility of each
players are written at the leaves.

Two different games can be studied on this example depending on the informa-
tion available to the customer. In the perfect information setting, the customer can
choose to act differently on sale or not. This situation is illustrated in the top tree of
Figure 2.1, the customer knows if he is on the left (sale) or right (normal) node.

Without perfect information the customer does not know if he is on the left (sale)
or the right (normal) node. That situation is represented in the bottom tree, the two
nodes are gathered by the same line symbolizing that the customer can be in either
one.

On
sale
On
sale

b)

a)

FIGURE 2.1: Tree representation of a game in extended form. On top
(a), the customer has perfect information, at the bottom (b) he has
imperfect information. The store has to choose between sale and nor-
mal price. a) In perfect information setting, the customer can choose
differently for both choices of the store. b) In imperfect information
setting, the customer does not know what the store chose. Payoffs are
written at the leaves of the tree. The figures was made with the Game

Theory Explorer website [74].
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2.1.2 Normal form

Normal form is a natural way of representing games where players play simulta-
neously. The game can then be represented by a matrix, which dimensions are the
number of strategies per players. The utilities of players are written in cells.

  

Customer

Store

Sale

Normal

Not to buy on sale
Not to buy

Not to buy on sale
Buy

Buy on sale
Not to buy

Buy on sale
Buy

0 0 4 4

-2 -2 2 2

-10 10 -10 10

5 2 5 2

Customer

Store

Sale

Normal

Not to buy Buy

0 4

-2 2

-10

5

10

2

a) b)

FIGURE 2.2: Matrix of the normal form of the same game. (a) Players
have perfect information, the size of their strategies space grows ex-
ponentially with the number of choices they can do. (b) Players have
imperfect information, the size of the matrix is smaller as the cus-
tomer does not have to make a choice for each strategy of the store.
However the number of distinct payoffs in both information setting

is the same. They are just repeated perfect information.

Sequential games can also be represented in normal form. Figure 2.2 represents
previous two player games in normal form. In this example each row corresponds
to a strategy of the customer and each column to a strategy of the store. When the
customer has imperfect information, the sequential game is equivalent to a one shot
game, the order does not matter. However when players have a perfect information,
the matrix size becomes huge: exponential on the number of choices players can do
(Figure 2.2a). Indeed, to represent an extensive game into a matrix we need to take
into account all the possible choices. In that case the customer can choose between
four different strategies {(buy on sale, buy at normal price), (buy one sale,not to buy
at normal price), (not to buy on sale, buy at normal price),( not to buy on sale, not to
buy at normal price)}.

A normal form game can also be defined as a triplet (N ,S, u), representing the
players, strategies and utility functions. N denotes the set of N players indexed for
1 to N . Each player i has a finite set of strategies (called pure strategies or pure actions)
Si = {si1, si2, . . . , siSi} of cardinal Si. The cartesian product of all Si, S =

∏N
i=1 Si,

denotes all combinaisons of players’ pure strategies. An element of S corresponds to
a pure strategy for each player. A player can also choose a non deterministic strategy
called a mixed strategy.

Definition 2.1. A mixed strategy xi of player i is a Si-dimensional vector, corre-
sponding to the probability of choosing each pure strategy. Letting xis with s ∈ Si
be the components of xi we have

∑
s xis = 1 and 0 ≤ xis ≤ 1.

A mixed strategy of player i is xi, a Si-dimensional vector containing the prob-
ability for player i of playing each of its pure strategy. We denote Xi = ∆Si the
continuous ensemble of mixed strategies of player i and X =

∏N
i=1Xi the game’s

strategy space. An element x of X contains a mixed strategy for each player, it
can be written x = (x1, . . . , xN ) where each xi is a Si dimensional vector. The
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support of a mixed strategy is the pure strategies which probabilities are not null,
supp(xi) = {s ∈ Si, xis > 0} A pure strategy si is also a mixed strategy with only
one non-zero coordinate, i.e. a singleton as support.

Each player i has an utility function (or payoff function) ui : X → R. We only
consider gain games, players want to maximize their utility. A player i aims at max-
imizing its utility ui(x) = ui(x1, . . . , xN ) = ui(xi, x−i) where x−i is the action of all
players except i.

2.2 Dominance and Equilibria

Now that we described what a game is and how games are represented, we will look
into solution concepts. Algorithms are conceived in order to help players reaching
a solution. We can define different solution concepts and so design different algo-
rithms.

Most solutions describe a situation that rational players would choose. An intu-
itive way of characterizing the rationality of players is the elimination of dominated
strategy.

2.2.1 Dominated strategy

A pure strategy is dominated if it is always suboptimal compared to another.

Definition 2.2. A pure strategy si of player i is dominated by s′i (and written si ≺ s′i)
if

ui(si; s−i) ≤ ui(s′i; s−i) for all s−i ∈ S−i ≡
∏
j 6=i Sj , i ∈ N . (2.1)

When the inequality is strict the strategy si is strictly dominated by s′i.

An interesting property for an algorithm is to guarantee that the probability of
playing dominated strategies decreases to 0, thus guaranteeing that players will not
play a suboptimal strategy.

FIGURE 2.3: (a) The prisoner dilemma: the strategy silent is strictly
dominated for both players. The only strategy left is confess, al-
though it leads to a smaller payoff than if both players remain silent.
(b) The strategy C is strictly dominated by strategy B. Once the strat-
egy C is removed, the strategy B is strictly dominated by the strategy
A. After elimination of dominated strategies the only remaining is

strategy A.
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Figure 2.3 illustrates two games in normal form with strictly dominated strate-
gies.

The prisoner dilemma is a two player games: two prisoners. They both have two
possibilities either to confess or to remain silent. If they both remain silent, the po-
lice does not know which one is guilty and they both go to prison for one year. If
one confesses and not the other, the one who confessed walks free in the other is
inculpated for five years. If they both confess they both go to prison for three years.

The silent strategy is strictly dominated by the confess strategy for both player.
The only stable equilibrium is the confess/confess situation, although both players
would do less prison in the silent/silent position. However if a player chooses to
remain silent, the other has interest to confess so the situation is not stable.

The second game is borrowed from [75] and will be taken as example later, its
stable equilibrium can be found by iteratively removing strictly dominated strate-
gies. We can first see that strategy C is strictly dominated by strategy B. Once the
strategy C is removed, the strategy B is strictly dominated by strategy A.

When only one strategy remains after iteratively removing strictly dominated
strategies, the game is said dominance-solvable.

2.2.2 Nash Equilibria

A stronger and famous notion of rationality in a multi-player and non-cooperative
game is a Nash Equilibrium (NE) [76]. In a NE, players have no interest in changing
alone their strategy. Each player will not benefit from changing his strategy while
the others keep their strategy.

Definition 2.3. A strategy x∗ is a NE if and only if:

ui(x
∗
i ;x
∗
−i) ≥ ui(xi;x∗−i) ∀i ∈ N ,∀xi ∈ Xi.

P2

Head Tail

Tail

Head

P1

-1

-1

-1

-1

1

1

1

1

FIGURE 2.4: The matching pennies games. Each player has a penny
and can choose among two strategies - heads and tails. Player 1 wins

if the two pennies match, player 2 wins if they do not.

When the inequality is strict the equilibrium is a strict NE. When the NE is a pure
strategy it is a pure Nash Equilibrium.
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In particular in a NE, strictly dominated strategies of the game have a probability
0 of being played. In the two examples in Figure 2.3 the remaining strategies are
strict pure NE.

John Nash showed that any finite game admits at least a NE, however it does
not have to be pure, it can be mixed. Figure 2.4 illustrates a game with no pure
equilibrium. This game, the matching pennies, involves two players. Each player
has a coin and can choose among two strategies - heads and tails. Player one wins 1
and player 2 wins -1 if the two pennies match. Player one wins -1 and player 2 wins
1 if the two pennies do not match. This game has no pure NE, however playing each
strategy with probability 0.5 is a mixed NE.

The example of the Prisoner dilemma (Figure 2.3) shows that Nash Equilibria can
be unsatisfactory by missing better payoffs because players cannot trust each other.
To overcome this problem, we can study equilibria involving a coordinator.

2.2.3 Correlated Equilibria

Correlated Equilibria are a larger class of equilibria introduced by Robert Aumann
[77]. Correlated equilibria involve a coordinator. The coordinator assigns a proba-
bility p(s) to each strategy in S. A strategy s is then randomly drawn following the
probability p. Each player is informed of the strategy the coordinator chose for him,
si, but not of the others. p is a correlated equilibrium if no player can gain more by
playing an other strategy than si.

P2

Cross Stop

Stop

Cross

P1

-10

1

0

0

1

-10

0

0

FIGURE 2.5: The traffic light games. Two drivers are at an intersec-
tion, each driver has two strategies: cross or stop. If they both cross,
they crash and lose. If one stops and the other crosses the one that

crosses wins.

Definition 2.4. The probability distribution p is a correlated equilibrium if for all
players i ∈ N and for all action si, s′i ∈ Si,∑

s−i∈S−i

ui(si, s−i)p(si, s−i) ≥
∑

s−i∈S−i

ui(s
′
i, s−i)p(si, s−i) (2.2)

The traffic light game (Figure 2.5) has three NE: two corresponding to crossing
for only one car, one driver wins 1 the other wins nothing, one corresponding to
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crossing with probability 1
11 and stoping with probability 10

11 , which leads to crashing
with probability 1

121 , crossing alone with probability 10
121 , so a null expectation. This

game has a correlated equilibrium with a strictly positive expectation equal for both
players and avoiding the crashing situation. It consists in letting one car cross and
stoping the other with probability 1

2 in a coordinated way: exactly what a traffic light
does.

This class is broader than NE. Indeed given a NE, x∗ = (x∗1, . . . x
∗
N ), the proba-

bility distribution p(s) =
∏N
i=1 x

∗
isi
∀s ∈ S such that s = (s1, . . . sN ) is a correlated

equilibrium. A correlated equilibrium also gives 0 probability to strictly dominated
strategies.

2.2.4 Coarse Correlated Equilibria

Correlated equilibria are included in a broader class, Coarse Correlated Equilibrium
(CCE). A probability distribution p(s) chosen by a coordinator is a CCE if no player
could gain more by always playing the same mixed strategy rather than playing the
pure strategies the coordinator tells him to play.

Definition 2.5. The probability distribution p is a CCE if for all players i ∈ N and
for all action x ∈ Xi, ∑

s∈S
ui(s)p(s) ≥

∑
s∈S

ui(x, s−i)p(s) (2.3)

CCE includes correlated equilibria, but, contrary to them, they can attribute non-
zero probability to strictly dominated strategies. For example in the panel b of Fig-
ure 2.3, playing (A,A), (B,B) and (C,C) with probability 1

3 is a CCE, although C is
a strictly dominated strategy. Viossat and Zapechelnyuk [75] even showed that in
some games a CCE can attribute positive probability only to dominated strategies.

2.3 Iterative games and regret minimization

2.3.1 Iterative games

Iterative games can involve one or multiple players. The same game is played a
number of times (time horizon) that can be as large as wanted and even unknown.

Iterative games are very interesting when the utility is not fixed in a matrix or
when players are not aware of the context, for example they do not know the dimen-
sion of the matrix. At each iteration players receive their utilities, and thus acquire
a better knowledge of the game. Players need to find a trade-off between exploring
all the strategies and exploiting the best strategy found so far.

When the utility is not fixed, it can depend on a probability law. It can also be
chosen by an adversary that plays against the player. That case forbids determinis-
tic algorithms because the adversary could predict each action and attribute a low
utility to them.

The utility can also depend of an environnement, for example other players play-
ing at the same game. We will focus latter on this setting. Each player plays as if it
was alone, trying to minimize its regret. However, the utility received by a player
depends on the choice of all players.
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2.3.2 Regret minimization

Regret minimization is a concept in games where players play iteratively and want
to optimize the sum of their payoffs. An algorithm is said to have a no-regret prop-
erty if the regret is sublinear in the number of iterations, so the average over time of
the regret is negative or converges to zero. There exist different definitions of regrets
[78], we present four of them in the following.

2.3.2.1 Internal regret

Definition 2.6. Given a player i with a strategy set Si, an utility function ui, and a
time horizon T , its internal regret is

Ri(T ) = max
s∈Si

max
s′∈Si

(
T∑
t=1

[
ui
(
s′, s−i (t)

)
− ui (si (t) , s−i (t))

]
1s=si(t)

)
. (2.4)

In words, the internal regret is the difference between the payoff of the player
and the maximal payoff he could have earnt by inverting strategies. That is to say,
by playing s′ instead of s each time the coordinator told him to play s. The internal
regret is always positive.

2.3.2.2 External regret

Definition 2.7. Given a player i with a strategy set Si, an utility function ui, and a
time horizon T , its external regret is

Re(T ) = max
s∈Si

(
T∑
t=1

ui (s, s−i (t))− ui (si (t) , s−i (t))

)
. (2.5)

In words, the external regret is the difference between the gain of the player and
the maximal gain he could earn by playing the same strategy at each step. The
external regret can be negative, if the choices of the player are better than following
any fixed strategy at each step.

It has been shown that if all players play according to a no-regret (external) algo-
rithm, then their strategies converge to the Hannan set which is also the set of CCE
[79], [80].

Taking into account that the payoff of an action can be non-deterministic and that
players can also play in a non-deterministic way (mixed strategies), we can define
two other types of regret based on expectation [81].

2.3.2.3 Expected Regret

Definition 2.8. Given a player i with a strategy set Si and an utility function ui, its
expected regret is

Rexp(T ) = Es(t)∼x(t)

[
max
s′∈Si

(
T∑
t=1

ui
(
s′, s−i (t)

)
− ui (si (t) , s−i (t))

)]
. (2.6)

The expected regret is the expectation of the external regret.
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2.3.2.4 Pseudo Regret

Definition 2.9. Given a player i with a strategy set Si and an utility function ui, its
pseudo regret is

Rpseudo(T ) = max
s′∈Si

Es(t)∼x(t)

[
T∑
t=1

ui
(
s′, s−i (t)

)
− ui (si (t) , s−i (t))

]
. (2.7)

Given those definitions we have Rpseudo(T ) ≤ Rexp(T ). In the case of stochastic
utlity, deterministic algorithms were developed to minimize the pseudo regret [82].

2.4 Games under study

We will now present bandit and semi-bandit games that were extensively studied in
terms of regret minimization.

2.4.1 Bandit and semi-bandit game

Bandit and semi-bandit games usually involve one player. The player chooses a
strategy among his strategy set and receives his utility. In bandit game, the player
only knows the utility of the chosen strategy. In contrary, in semi-bandit game, the
player knows (after playing) the utility he would have received by playing any other
strategy.

We will focus on the case when the utility depends on the environnement. More
particularly we focus on multi-player games, so the utility function is a function of
S =

∏N
i=1 Si into R. However players are not aware of other players actions. There-

fore the utility they receive for a strategy can change over time as it also depends of
the strategies played by others players.

2.4.2 Exponential learning and no-regret

We are now presenting an Exponential Weights (EW) algorithm [83] that we will study
in Chapters 5 and 6. EW algorithms attribute a weight to each strategy. The proba-
bility of playing a pure strategy is proportional to the exponential of this strategy’s
weight. At each step the weights of strategies are increased or decreased according
to the utility received. Here we present one example of EW algorithms in the bandit
setting and its no-regret properties.

Algorithm 2.1 HEDGE with time horizon T
1 Initially set ys(1),∀s ∈ S and the initial mixed strategy x(1) = Λ(y(1)) where the logit

map Λ is defined as

Λ(y) =
1∑

s∈S exp(ys)
(exp(ys))s∈S . (2.8)

2 for each round t:
3 The player draws a pure strategy s(t) according to x(t)
4 The player gets his payoff vector v(s(t))
5 The player updates his mixed strategy x via the recursion

y(t+ 1) = y(t) +

√
S

T
v(t),

x(t+ 1) = Λ(yt+1)

(HEDGE)

end for
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Littlestone and Warmuth showed, in 1994, [84] that if the utility is always in [0, 1],
such an algorithm guarantees an external regret of at most 2

√
T log(S) = o(T ) and

hence it is a no-external-regret algorithm. Many variants of this algorithm have been
developed to consider cases when the time horizon is unknown or in bandit setting
[81].

We will study this algorithm and a variant in a multi-players setting in Chapter
5 and 6. However, instead of analyzing the regret of each player, we will analyze
the convergence of the players strategies. We show that while individually playing
a no-regret algorithm, players collectively converge towards a Nash Equilibrium.
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Chapter 3

RNA conformation explorations
with a robotics approach
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In this chapter we present a kinematics-based procedure to morph an RNA molecule
between conformational substates, while avoiding inter-atomic clashes. This proce-
dure led to a publication [85]. Except for Figure 3.1, the figures of this chapter are
taken from this publication.

RNAs and especially non-coding Ribonucleic Acids (ncRNAs) are extremely dy-
namic. Their three dimensional structure, called also conformation, fluctuates a lot
and can access different conformational substates. This ability allows them to mod-
ulate their interaction with others molecules. The flexibility of ncRNAs provides
a challenge for probing their complex three dimensions conformational landscape.



36 Chapter 3. RNA conformation explorations with a robotics approach

However, despite their conformational diversity, many ncRNAs preserve their sec-
ondary structure throughout their conformational changes. Notable counterexam-
ples are studied in secondary structures prediction (Section 1.1.2), but here we focus
on RNAs that preserve their secondary structure almost perfectly (a few base pair
changes can be manually considered).

Our method is based on the observation that junctions between RNA helices are
highly flexible and modulate the tertiary structure. It takes three inputs: the full
atom initial conformation, its secondary structure and a few atom positions of the
goal conformation. Atoms with a known goal position are called marker atoms.
The RNA is represented by a 3D unweighted graph, i.e., lengths of edges are fixed
and play no role in the procedure however vertices have 3D coordinates which di-
rectly correspond to the position of atoms in the molecule. The trajectory is build
iteratively, step by step starting from the initial conformation. The final conforma-
tion gets remarkably close to the full atom goal conformation even when the marker
atoms represent less than 1% of the number of atoms.

The first section presents the graph approach, Kino-Geometric Sampling (KGS),
based on previous work mainly for proteins [86]–[88] but also for RNAs [89]. The
second section presents the computational approach, a least square approach and
compares it to the previous gradient descent approach. The dynamic clash-avoiding
constraints procedure is also described at the end of Section 2. The last section
presents the dataset and the results of the morphing method developed as well as
unpublished extensions.

3.1 Molecule representation

Although the representation holds for proteins as well as for RNAs, we will only
consider RNAs as applications presented at the end of the chapter only concern
RNAs. This is a semi coarse-grained approach: all atoms are represented and taken
into account, but only main degrees of freedom are considered. This allows us to have
the precision of an all atoms trajectory, avoiding collisions between any atoms. How-
ever we sensibly reduce the dimension of the conformational space by freezing mi-
nor degrees of freedom like bond length fluctuations or rotations of double bonds. In
addition, the methods maintains secondary structure which tremendously reduces
the accessible space.

3.1.1 Kinematic graph

We first represent a RNA molecule by a kinematic graph, i.e, a set of vertices con-
nected by edges. Unlike usual graphs in computer sciences, vertices have 3-dimension
coordinates. Each atom is a vertex and each bond of the molecule is an edge of the
kinematic graph. Bonds lengths and planar angles are fixed to their initial value
(value in the initial conformation). The only degrees of freedom are torsions around
bonds.

Therefore, bonds considered non-rotatable are removed and their end-vertices
are collapsed. A vertex is also called a rigid body. Atoms in the same vertex do not
move relatively to each others. Non-rotatable bonds are partial double bonds, bonds
with one extremity that is linked to no other vertices, and bonds in rings (ribose).
This first step represents the RNA molecule by a graph (Figure 3.1a and c).

Then we transform the graph into a tree (Figure 3.1b), i.e a directed graph with
no cycles, by choosing a root and directing each edge so that it goes from the root
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a) b) c)

FIGURE 3.1: a) Kinematic graph on an RNA. Atoms in a same rigid
body are connected and with the same color: red or blue. b) Kine-

matic tree c) Directed graph with hydrogen bonds (green edges).

to leaves. RNAs are first of all linear sequence of nucleotides (see Section 1.1), this
guarantees that the resulting graph is a tree: it does not contains cycles.

Until now, the secondary structure is not taken into account. We add secondary
structure information obtained from the initial conformation with RNAView [17].
A pair of nucleotides is formed by two or three hydrogen bonds between the two
nucleotides. Hydrogen bonds are formed between a donor atom and an acceptor.
The donor has an hydrogen and "share" it with the acceptor. Only hydrogen bonds
participating in a WC base pairs are added to the tree. This creates cycles and trans-
forms the tree into a directed graph (Figure 3.1c).

Notations Let n be the number of edges1 of the tree, also called degrees of freedom.
They are rotatable bonds. Let m be the number of hydrogen bonds. The number of
edges in the final graph (Figure 3.1c) is n+m. A conformation q is fully characterized
by a vector of n angles, q ∈ Rn. Let fI(q) ∈ R3 be the forward endpoint map for atom
I , i.e, fI(q) is the position of atom I in the conformation characterized by q ∈ Rn .

Each hydrogen bond adds five constraints: two contraints on angles and three
contraints to fix the distance between the donor and the acceptor (Figure 3.2).

3.1.2 Secondary structure conservation

The mouvement is performed by rotation around edges. A rotation only affects
atoms that are in rigid bodies below the rotated edge. The nearest common ancestor
of two rigid bodies is their closest common parent. This is an important notion
as any rotation between the root and a common ancestor has the same effect on
both rigid bodies. An hydrogen bond closes a circle (Figure 3.2), which includes the
vertex of the acceptor, VA, the vertex of the donor, VH and their nearest common
ancestor, vertex VNCA. Note that VA and VH are now connected by the hydrogen
bond. Therefore the left rotations, in Figure 3.2, from vertex VNCA to vertex VA as
well as the right rotations from vertex VNCA to vertex VH affect all of their atoms. Let
fRI (q) ∈ R3 (resp. fLI (q) ∈ R3) be the forward endpoint map for atom I that could
be: the acceptor (A), the acceptor neighbor (AA), the hydrogen (H) or the hydrogen
donor (D), relatively to the right (R) (resp. left (L)) rotations. For example fRH(q) is
the position of the hydrogen atom after rotations from the right side of the circle and
fLH(q) is its position after rotations from the left side of the circle.

The angles constraints can be written:

E1(q) = (fRA (q)− fRH(q))T (fLH(q)− fLD(q)) = cos(θ)d(A,H)d(H,D) = c (3.1)
1Note that these notations are not the usual ones in graph theory.
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HA

VH

VNCA

τ

a)

b)

τ
M

FIGURE 3.2: Portion of the kinematic graph. Angle and bond length
constraints of an hydrogen bond. VA and VH are respectively the
vertices of the acceptor and the hydrogen atoms. H is the hydro-
gen atom, and D the donor, A is the acceptor atom and AA is its
first neighbor. Angles τ and θ are planar angles between theses four
atoms. The hydrogen bond imposes a coordinate motion to preserve
angles τ and θ and for the middle point M to have the same position
with the left side rotations and the right side rotations . VNCA is the

nearest commun ancestor of VA and VH .

E2(q) = (fLH(q)− fLA(q))T (fRA (q)− fRAA(q)) = cos(τ)d(A,H)d(A,AA) = t (3.2)

where d(A,H) is the distance between atoms A and H . c and t are two constants
because planar angles and bond lengths are preserved. This gives us two equations
that preserve the orientation of the segment AH .

The three constraints for the equality of the middle point between A and H from
the right and the left side are:

E3(q) = fLH(q).x+ fLA(q).x− fRH(q).x− fRA (q).x = 0

E4(q) = fLH(q).y + fLA(q).y − fRH(q).y − fRA (q).y = 0

E5(q) = fLH(q).z + fLA(q).z − fRH(q).z − fRA (q).z = 0

(3.3)

These 5 equations have to be always satisfied for all bonds. Let J be the 5m ×
n jacobian matrix of all constraints (i.e. hydrogen bonds in WC interactions). A
perturbation δq ∈ Rn is admissible if it satisfies:

Jδq =



∂E11
∂q0

∂E11
∂q1

. . . ∂E11
∂qn

∂E21
∂q0

∂E21
∂q1

. . . ∂E21
∂qn

∂E31
∂q0

∂E31
∂q1

. . . ∂E31
∂qn

∂E41
∂q0

∂E41
∂q1

. . . ∂E41
∂qn

∂E51
∂q0

∂E51
∂q1

. . . ∂E51
∂qn

...
...

. . .
∂E5m
∂q0

∂E5m
∂q1

. . . ∂E5m
∂qn


δq = 0 (3.4)



3.1. Molecule representation 39

when Eij , i ∈ [1, 5], j ∈ [1,m] corresponds to equation Ei of hydrogen bond j, en-
suring that all contraints are satisfied at the first order approximation. All displace-
ments are rotations, we ensure that constraints are satisfied at the first order approx-
imation. Therefore the expected error is quadratic on the rotation amplitude (Figure
3.3).

✏2 = R2 ⇥ ((1 � cos ✓)2

✏ = R ⇥ ✓2

2 + o(✓2)

+(✓ � sin ✓)2)
R✓

A

✏

R✓

Rotation Translation

AT✓

A

AR AR ✏2 = kARATk2

FIGURE 3.3: Illustration of the error between a translation along the
tangent vector and a rotation.

Equation 3.4 is equivalent to say that a small perturbation δq is admissible if it
lays in the nullspace of the matrix J , so if

δq ∈ ker J

The dimension of the nullspace ker J is n − r where r is the rank of J . Both over-
and under-constrained scenarios are possible, i.e., 5m > n or 5m < n, with r ≤
min(5m,n). In practice, hydrogen bonds often add redundant constraints. So even
if 5m > n, r < n leading to n − r remaining internal degrees of freedom in the
nullspace. In rare cases 2, r = n and the nullspace is empty, which means that no
perturbation will stay in the constraint manifold.

To compute the nullspace, N , of J we perform a Singular Value Decomposition
(SVD)

J = UΣV T (3.5)

whereU is a 5m by 5m unitary matrix, Σ is a 5m by n rectangular diagonal matrix
with non-negative real numbers on the diagonal, and V is a n by n unitary matrix.
The diagonal entries σi of Σ are known as the singular values of J .

N ∈ Rn×(n−r) is the n − r last column of V , i.e, the right-singular vectors with
vanishing singular values. A small perturbation δq is admissible if it exists a vector
u ∈ Rn−r such that

δq = Nu. (3.6)

The trajectory is constructed by small steps. A perturbation δq is added to a
conformation q to give a new conformation q′ with δq, q, q′ ∈ Rn. By choosing a
small perturbation parallel to an admissible perturbation, we guarantee that hydro-
gen bonds, important for the secondary structure, are preserved. Note that the jaco-
bian matrix and its nullspace are updated at every step.

2It happens in some case after adding constraints see Section 3.2.1
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3.2 Clash-free directed motion

Once we have defined the manifold in which the small perturbation needs to be, we
can described equations directing the motion towards the goal position of marker
atoms. We want to minimize at each step the distance between the position of
marker atoms and their goal positions. However doing so will inevitably lead to
clashes between atoms. We therefore only use perturbations in a clash avoiding sub-
manifold of the admissible perturbation.

3.2.1 Dynamic Clash-avoiding Constraints

The dynamic clash-avoiding constraints were developed by Budday [68] and they
are used in this method. We define a clash between a pair of atoms whenever the
distance between their centers is less than the sum of their van der Waals radii, scaled
by a parameter cf . To avoid a clash between a pair of atoms A and B, we redirect
their motion by adding temporary, an one-dimensional constraint to forbid uncoor-
dinated motion along nc. Where nc is the direction of the line joining the centers pA
and pB of both atoms. This constraints can be written as:

nTc

(
∂fB
∂q
− ∂fA

∂q

)
δq = 0. (3.7)

FIGURE 3.4: a) Two colliding atoms, resulting in a dynamic Clash-
avoiding Constraint (dCC) that prevents A and B from approaching,
but allows motion in directions orthogonal to nc or jointly along nc.
b) In the top panel, the blue plane represents the secondary-structure
constraint accessible manifold, M, with red patches corresponding to
sterically unfeasible regions. Moving directly from the initial confor-
mation, qI , to the goal, qG , will frequently enter colliding regions. In
the bottom panel, the clash regions are absent in the resulting lower-
dimensional submanifold MdCC (cut-out), and the path between qI

and qG is clash-free.
.

The constraint ensures that (pA − pB).nC does not change after the perturbation
(Figure 3.4.a), so the distance between A and B can only increase. Note that the
constraint also permits independent motion of A and B on the plane perpendicu-
lar to nc. The temporary, additional constraints define a subspace of the secondary
constraint manifold M; motions in this submanifold (MdCC) avoid clashes. Each
perturbation of a conformation starts without temporary constraints, and they are
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added as necessary. We call the additional constraints dynamic Clash-avoiding Con-
straints (dCC); each adds one row to the Jacobian matrix J . This procedure permits
to avoid clashes while moving in the same direction, instead of only reject clashing
conformations, or just moving away from the collisions without keeping the same
direction.

3.2.2 Directed motion

The goal conformation is represented by the coordinates of k given marker atoms
AGi , i = 1, ..., k. Let ∆(q) ∈ R3k be the vector of directions between marker atom
positions in conformation q and in the goal conformation (Figure 3.5).

∆(q) =

 AG1 − fA1 (q)
...

AGk − fAk (q)

 . (3.8)

qG

Δ(q)5

f(q)

Δ(q)4

Δ(q)3

Δ(q)2

Δ(q)1

FIGURE 3.5: 3D representation of an intermediate (f(q), red) confor-
mation and the goal conformation (blue). From the goal conforma-
tion, qG, only the positions of marker atoms (blue spheres) are used
to drive the transition. Black arrows indicate directions ∆(q)i from

the intermediate to the goal position of marker atom i.
.

An small perturbation δq of a conformation q leads to a displacement of atom Ai

positions δfAi =
n−1∑
j=0

∂fAi
∂qj

δqj .

We defineM ∈ R3k×n, the Jacobian matrix of the vector fA = (fA1(q), fA2(q), ..., fAk(q))
as follows:

M =


∂fA1
∂q0

∂fA1
∂q1

. . .
∂fA1
∂qn

...
...

. . .
∂fAk
∂q0

∂fAk
∂q1

. . .
∂fAk
∂qn

 . (3.9)

Let Mδq be an infinitesimal displacement of the marker atoms.

3.2.2.1 Least square motion

Our objective is to obtain a new conformation with marker atoms as close as possible
to their goal positions. This is equivalent to minimizing the difference between the
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displacement of marker atoms Mδq and ∆(q)

min
δq
‖Mδq −∆(q)‖2 , (3.10)

at each step. In addition, to satisfy constraints, δq should also be an admissible
perturbation, i.e. it should follow (3.6), δq = Nu. Substituting into (3.10) we obtain:

min
u
‖MNu−∆(q)‖2 . (3.11)

A least square solution to (3.10) is given by uls = (MN)†∆(q), where (MN)† is a
pseudo-inverse. 3 Therefore

δqls = N(MN)†∆(q) (3.12)

If the norm of δqls is small enough, then δq = δqls, and the goal positions are reached
exactly. Else, δq = εδqls with ε being a scaling factor. While the minimizing direc-
tion, i.e., the infinitesimal perturbation along δqls is calculated exactly, our first-order
approximation to the constraint manifold dictates an iterative approach along this
direction using small steps. This adds a complication, as M , N , ∆(q), and therefore
uls must be updated at each iteration.

3.2.2.2 Comparison with nullspace projection

The previous work on KGS [86]–[89], used a projection into the nullspace of a gradi-
ent descent instead of choosing the perturbation in the nullspace.

a) b)

Least square
Gradient descent
f(x,y)=x2+y2/4

Least square
Gradient descent
f1(x,y)=x2+y2/4
f2(x,y)=x2/9+y2/4

FIGURE 3.6: Comparison between least square and gradient meth-
ods. a) There is only one function to minimize. The gradient descent
and the least square method follow the same path. b) There are two
functions to minimize at the same time (f1 and f2). The least square
method follows a straight line and gets close to the optimum a few

steps before the gradient descent method.
.

3A pseudo-inverse of A is a matrix B such that ABA=A, BAB=B, AB and BA are Hermitian.
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Here we compare these two methods. First, we compute a step in the gradient
method. The function to minimize is:

F (q) = ‖∆(q)‖22
= (AG − fA(q))T (AG − fA(q))

= (AG)TAG − 2(fA(q))TAG + fA(q)T fA(q)

(3.13)

Its gradient is:

∇F (q) = 2∇(fA(q))(fA(q)−AG)

= 2MT (fA(q)−AG)

= −2MT∆(q)

(3.14)

Therefore the perturbation is along −∇F (q) = 2MT∆(q). However we only
accept admissible perturbation, so the perturbation is projected onto the nullspace
with the projection matrix NNT :

δqg = γNNTMT∆(q) (3.15)

With γ being the chosen step size.

Projection into the nullspace Note that for the descent gradient method, working
in the nullspace by finding u such that δq = Nu (3.6) is completly equivalent to
projecting the full space gradient into the nullspace. In deed the gradient in the
nullspace is

ug = γ(MN)T∆(q) (3.16)

Therefore δqg = γNNTMT∆(q).
For the least square method there is a difference. The full space least square

solution is:
vls = (M)†∆(q) (3.17)

Which gives NNT (M)†∆(q) once projected into the nullspace. NT and N † are usu-
ally not equal.

Error comparison We now compute the distance to marker atoms at the next step.
Recall that M is Jacobian matrix of the vector fA = (fA1(q), fA2(q), ..., fAk(q)) so it
corresponds to the first order approximation: translations instead of rotations.

∆(q(t+ 1)) = AG − fA(q(t+ 1))

= AG − fA(q(t))−Mδ(q(t)) + o(δ(q(t))2)

= ∆(q(t))−Mδ(q(t)) + o(δ(q(t))2)

(3.18)

In order to compare the two methods, we compare the distance to marker atoms
after one step for both methods. In the least square case we have

∆(q(t+ 1))ls = ∆(q(t))− εMN(MN)†∆(q) + o(‖εN(MN)†∆(q)‖2). (3.19)

In the gradient method case we have

∆(q(t+ 1))g = ∆(q(t))− γMN(MN)T∆(q) + o(‖γN(MN)T∆(q)‖2). (3.20)



44 Chapter 3. RNA conformation explorations with a robotics approach

Note that to do a fair comparison we need to assume that both steps have the
same norm.

‖δqls‖2 = ‖δqg‖2 = α so
ε

γ
=
‖NNTMT∆(q)‖2
‖NN †M †∆(q)‖2

(3.21)

Let U ′Σ′V ′T be the SVD decomposition of MN . We have MN = U ′Σ′V ′T ,
(MN)T = V ′Σ′U ′T , and (MN)† = V ′Σ′†U ′T . Σ′† is the pseudo inverse of Σ′ so it
is a diagonal matrix with the inverse singulare values as Σ′ when Σ′ has non zero
singular values and 0 elsewhere. Let Id∗ be the identity matrix of size 3k by 3k with
lines of 0 at the bottom such that rank(Id∗) = rank(MN) = rank(Σ′).

Therefore

‖∆(q(t+ 1))ls‖2 = ‖∆(q(t))− εMN(MN)†∆(q) + o(α2)‖2
= ‖U ′U ′T∆(q(t))− εU ′Id∗U ′T∆(q) + o(α2)‖2
= ‖U ′(Id− εId∗)U ′T∆(q(t)) + o(α2)‖2

(3.22)

At first order approximation we have

‖∆(q(t+ 1))ls‖2 = ‖(Id− εId∗)U ′T∆(q(t))‖2

= ‖(Id− γ ‖NV
′Σ′U ′T∆(q)‖2

‖NV ′Σ′†U ′T∆(q)‖2
Id∗)U ′T∆(q(t))‖2

(3.23)

Note that for the least square algorithm to follow a straight line (Figure 3.6b) we
need ∆(q(t + 1))ls and ∆(q(t)) to be parallel. This implies that Id∗ = Id, that is too
say, if rank(MN) = 3k soMN is full rank and has more columns than rows and that
∆(q(t)) is a singular vector of U ′ .

‖∆(q(t+ 1))g‖2 = ‖∆(q(t))− γMN(MN)T∆(q) + o(α2)‖2
= ‖U ′U ′T∆(q(t))− γU ′Σ′2U ′T∆(q) + o(α2)‖2
= ‖U ′(Id− γΣ′2)U ′T∆(q(t)) + o(α2)‖2

(3.24)

At first order approximation we have

‖∆(q(t+ 1))g‖2 = ‖(Id− γΣ′2)U ′T∆(q(t))‖2 (3.25)

The rest of the comparison is done in a first order approximation. We now study
a particular case: assume that N is the full space (i.e. there is no constraint or we
only consider the constrained manifold), that M is invertible, and that U ′T∆(q) =
(1...1)T . σ′i are the singular value of MN , i.e., the value on Σ′ diagonal. Using theses
hypotheses, Equation 3.21 becomes:

ε

γ
=
‖Σ′U ′T∆(q)‖2
‖Σ−1U ′T∆(q)‖2

=

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

,
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and,

‖∆(q(t+ 1))ls‖2 = ‖

Id− γ
√∑3k

i=1 σ
′2
i√∑3k

i=1
1
σ′2i

Id

U ′T∆(q(t))‖2

=
√

3k‖1− γ

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

‖2

‖∆(q(t+ 1))g‖2 = ‖
(
Id− γΣ′2

)
U ′T∆ (q(t)) ‖2

=

√√√√ 3k∑
i=1

(
1− γσ′2i

)2
Let E = ‖∆(q(t + 1))ls‖22 − ‖∆(q(t + 1))g‖22 be the difference between the two

methods, ifE < 0, then the least square method has a smaller error than the gradient
method and if E > 0, then it is the contrary. Note than the assumption that MN is
invertible does not change the value of E. Indeed Σ′ and Id∗ have the same rank so
the same zeros on the diagonal, the corresponding coordinates in ∆(q(t + 1))ls and
∆(q(t+ 1))g are thus equal.

E = 3k

1− γ

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

2

−
3k∑
i=1

(
1− γσ′2i

)2

= 3k − 6kγ

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

+ 3kγ2

∑3k
i=1 σ

′2
i∑3k

i=1
1
σ′2i

− 3k + 2γ
3k∑
i=1

σ′2i − γ2
3k∑
i=1

σ′4i

= γ

−6k

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

+ 2

3k∑
i=1

σ′2i + γ

3k

∑3k
i=1 σ

′2
i∑3k

i=1
1
σ′2i

−
3k∑
i=1

σ′4i


= γ (A+Bγ)

(3.26)

We first study the sign of A = −6k

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

+ 2
3k∑
i=1

σ′2i

A = 2

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

−3k +

√√√√ 3k∑
i=1

σ′2i

3k∑
j=1

1

σ′2j


= 2

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

−3k +

√√√√ 3k∑
i=1

3k∑
j=1

σ′2i
σ′2j


= 2

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

−3k +

√√√√3k +
3k∑
i=1

3k∑
j=i+1

σ′2i
σ′2j

+
σ′2j
σ′2i


(3.27)
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Remark that
σ′2j
σ′2i

> 0 and x+ 1
x ≥ 2 when x > 0, therefore,

A ≥ 2

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

−3k +

√√√√3k +
3k∑
i=1

3k∑
j=i+1

2


≥ 2

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

−3k +

√√√√3k +
3k∑
i=1

(3k − i)2


≥ 2

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

(
−3k +

√
3k + 3k(3k − 1)

)

≥ 2

√∑3k
i=1 σ

′2
i√∑3k

i=1
1
σ′2i

(−3k + 3k)

≥ 0

(3.28)

Now we study the sign of B = 3k

∑3k
i=1 σ

′2
i∑3k

i=1
1
σ′2i

−
3k∑
i=1

σ′4i

B =
1∑3k

j=1
1
σ′2j

3k∑
i=1

 3k∑
j=1

σ′2j −
3k∑
j=1

σ′4i
σ′2j


=

1∑3k
j=1

1
σ′2j

3k∑
i=1

 3k∑
j=1

σ′4j − σ′4i
σ′2j


=

1∑3k
j=1

1
σ′2j

3k∑
i=1

 3k∑
j=1

(σ′2j − σ′2i )(σ′2j + σ′2i )

σ′2j


=

1∑3k
j=1

1
σ′2j

3k∑
i=1

 3k∑
j=i+1

(σ′2i + σ′2j )(1− σ′2i
σ′2j

+ 1−
σ′2j
σ′2i

)


=

1∑3k
j=1

1
σ′2j

3k∑
i=1

 3k∑
j=i+1

(σ′2i + σ′2j )(2− σ′2i
σ′2j
−
σ′2j
σ′2i

)


≤ 0

(3.29)

because
σ′2j
σ′2i

> 0 and x+ 1
x ≥ 2 when x > 0.

Therefore E < 0 implies A+Bγ < 0 and γ > −A
B . For a step size big enough, the

least square methods has a smaller error, however for a small step size, the gradient
method has a smaller error.

Note that if all singular values are equal, E = 0 and the two methods lead to the
same results.

However for the last step, when ‖N(MN)†∆(q)‖2 < α, the least square method
can reach exactly the goal whereas the gradient method needs to adapt its step size
in order to get closer to the goal.
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Computational time The projected gradient method uses the transpose matrix
whereas the least square method uses the pseudo inverse. The transpose matrix
computation (linear) is faster than the pseudo inverse (more than quadratic on each
dimension). In addition, if the nullspace changes (Section 3.2.1), then the least square
method needs to inverse a new matrix whereas the gradient method only needs to
project the direction into the new nullspace. Thus, the computational time of a step
is faster in the gradient method approach. However if the step size is not small
enough, the least square method needs less steps and can reach the goal exactly.

3.2.3 Procedure overview and dataset

3.2.3.1 Procedure overview

The procedure starts with the initial full atoms qI conformation and a few atoms
from the goal qG conformation. Hydrogen bonds between WC pairs are preserved
by guaranteeing that the perturbation belongs to the nullspace of the matrix of con-
straints Jacobian. A minimizing perturbation δu from q0 = qI to qG is computed
from (3.12) and scaled to ‖δu‖∞ = 0.01 to obtain a sufficiently small step size that
maintains hydrogen bonds. We perturb q0 to obtain q′1 = q0 + δq , and check for
clashes. The following two cases can occur:
1. The new conformation q′1 does not have clashes. It is accepted into the sampling
pool.
2. The new conformation q′1 has clashes. We do not accept q′1, but instead we add
a clash-avoiding constraints to the Jacobian. We repeat the procedure to compute a
new conformation q′′1 , and iterate a fixed number of times.

FIGURE 3.7: Flowchart of the morphing procedure.

If, in rare cases, the same atoms are still clashing, but no additional clashes oc-
curred, the dCC is violated owing to our first order approximation, and the desired
direction is sterically inaccessible. Therefore, we perform a random move in MdCC
instead of moving towards marker atom goal positions. Note that clash constraints
cannot be added indefinitely, since they gradually rigidify the molecule.

Finally, a new clash-free conformation q1 is accepted, the clash constraints are re-
moved and a new optimal perturbation is computed starting from q1. Unless other-
wise stated, the procedure is repeated until the RMSD distance to the goal is less than
0.5Å, or 0.01Å when we omit clash avoidance. The van der Waals scaling parameter
is fixed at cf = 0.6, allowing some degree of overlap. Stereochemical constraints
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are often relaxed in conformational sampling, balancing computational speed and
structure quality [90].

3.2.3.2 Dataset

We selected a dataset of RNA molecules from the PDB with one chain and between
15 to 200 nucleotides in length (Table 3.1). All were solved by NMR spectroscopy,
and all had more than one model with identical atoms. We used NMR because it
gives a bundle of conformations for the same sequence of atoms, which allows us to
test our method from one conformation to another. RNA molecules with nucleotides
other than A, U, C, and G were excluded. We selected the first model as the initial
conformation, and selected the model with the highest RMSD (with Biopython [91])
from the first model as the goal conformation. We limited our dataset to RNAs with
an RMSD between initial and goal greater than 2Å. This resulted in a dataset of 78
multi-model molecules, with average heavy atom RMSD between the initial and
goal conformations of 4.14Å (maximum RMSD 28.80Å, minimum RMSD 2.01Å).

3.3 Results

We applied three different protocols on the 78 RNAs dataset.
1. To compare our results with iMOD, a NMA-based morphing procedure [70]
which does not explicitly avoid collisions, we first compute conformational tran-
sitions while ignoring clashes.
2. We evaluate the performance of the clash avoiding procedure using a hierarchi-
cal approach. We first selected a small subset of atoms as marker atoms to guide
the initial conformation toward the goal conformation. We further optimized the
conformational transition using all heavy atoms.
3. We used our procedure to understand to what degree bulges and higher-order
junctions govern 3D helical arrangement.

Finally, we applied our procedure to the Synechococcus elongatus L-glutamine ri-
boswitch, which undergoes a large transition between its free and ligand binding
conformations [92].

3.3.1 Benchmark results

3.3.1.1 Comparison to iMOD

The iMOD morphing tool uses torsion angles and NMA to iteratively minimize the
distance between all pairs of heavy atoms in the initial and goal conformations. We
used the iMOD default parameters setting, except that we used 90% instead of 10%
of modes, since that generally led to lower RMSD to the goal conformation. Con-
formational transitions computed with iMOD are not restricted to the secondary
structure constraint manifold. Instead, all non-bonded atoms are interconnected by
harmonic springs within a 10Å radius [70]. iMOD does not check for clashes, but
its ENM limits the introduction of new clashes for small amplitude motions. To per-
form a direct comparison with iMOD we disabled clash avoidance in KGS, while
instructing it to minimize the distance between all pairs of heavy atoms. We exe-
cuted KGS and iMOD transitions on each of the 78 RNA molecules. We terminated
KGS after 1,000 iterations or when the heavy-atom RMSD was under 0.01Å.

iMOD finished in a few seconds which is faster than KGS which finished in av-
erage on 34 minutes. However, KGS dramatically reduced the RMSD to the goal
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TABLE 3.1: Dataset details and results summary. For each of the 78 single-
strand RNA molecules solved by NMR the sequence length, number of hy-
drogen bonds (Hbond), number of degrees of freedom (DoF) and heavy
atom RMSD between initial and goal conformations are reported. The "No
dCC", "iMOD", "Stage1", "Stage2", "Full" and "hC5" columns represent final
heavy atom RMSD distances based on all heavy atom information (without
clash-avoidance), iMOD, the first stage of sparse information (with clash-
avoidance), the second stage of sparse information (with clash-avoidance),
the all heavy atom experiment with clash-avoidance, and experiments base

on C5 atoms in WC base pairs respectively.
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FIGURE 3.8: Conformational transitions on the secondary structure
constraint manifold, using all heavy atoms as markers but ignoring
clashes. a) The initial RMSD in Å (x-axis) versus the final RMSD (y-
axis) to the goal conformation obtained by KGS. Data points below
the red diagonal indicate improvement towards the goal conforma-
tion. b) Comparison of the performance of iMOD and KGS. The x-axis
shows the fractional RMSD (fRMSD: the RMSD between the final con-
formation and the goal conformation divided by the RMSD between
initial and goal conformations) obtained by iMOD. The y-axis shows
the corresponding ratio for KGS. Data points below the red diagonal
indicate a lower fRMSD and superior performance for KGS than for
iMOD. The red triangle indicates the average fRMSD value over all

78 data points.

conformation. On average by 86%, from 4.14Å RMSD to 0.51Å, compared to 69% for
iMOD (Figure 3.8). That represents an average improvement of 0.55Å RMSD of KGS
over iMOD. Strikingly, for nearly every RNA molecule, 77 out of 78 in the bench-
mark dataset, KGS approached the goal conformation closer in heavy atom RMSD
than iMOD. In one out of 78 cases iMOD approached the target conformation 0.29Å
closer than KGS (PDB ID 1QC8). Although, KGS had not converged within 1,000
steps, and did get closer than iMOD in 2,000 steps.

In many cases, KGS performed significantly better than iMOD. For example, the
initial RMSD for the highly dynamic 23-nucleotide ID3 stem loop of domain 1 of the
ai5γ group II intron (PDB ID 2M12), is 3.98Å. KGS came within 0.55Å of the goal
conformation, 1.64Å closer than iMOD. In particular, iMOD struggled to fit the large
amplitude motions of hairpin loop bases that do not participate in WC interaction.

3.3.1.2 Perfomances using every fifth C5 atom

As helical structure is mostly preserved between RNA substates, we expected that
the dimensionality reduction encoded in our secondary structure constraint mani-
fold would be effective in guiding large fragments of the molecule to their goal con-
formation. We exploited this insight to avoid over-constraining the system, adopting
a hierarchical approach for clash-avoiding transitions. We selected the C5 atom of
every fifth nucleotide to guide the initial to the goal conformation. The C5 atoms
therefore emulate a sparse experimental data set–fewer than 1% of the total number
of atoms. Then, starting from the best conformation at this stage, in a second stage
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FIGURE 3.9: Hydrogen bond deformation and heavy atom RMSD
minimization in KGS clash-free conformational transitions. (a) Distri-
bution of largest acceptor-to-hydrogen distance deformation for WC-
constraints in the benchmark set. (b) Top, heavy atom RMSD im-
provement for morphing with clash-avoidance and one C5 marker
atom every five residues (first stage). Triangles indicate RNAs where
morphing required random moves. Bottom, heavy atom RMSD im-
provement after switching to all heavy atoms (second stage). PDB ID
1S9S is omitted. It has an initial RMSD of 28.80Å, its first stage RMSD

is 21.20Å and its second stage RMSD is 20.17Å.

we selected all heavy atoms as markers to further reduce the distance to the goal
conformation.

We first evaluated the RMSD between the final marker atom positions and their
corresponding goal positions. Out of the 78 RNA structures in our data set, 70 (90%)
reached the goal positions of marker atoms extremely close, to within 0.5Å (Table
3.1). For the remaining eight RNA molecules that did not reach their goal positions
to within 0.5Å, clashes could not be fully resolved, resulting in an excess of random
moves.

3.3.1.3 Maintaining secondary structure between substates

We then verified that KGS properly maintained helical structure between clash-
avoiding conformational transitions. Our mathematical model maintains distance
constraints exactly by calculating admissible velocities in the constraint manifold
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(Subsection 3.2.2). However, the finite step size of the perturbation respects dis-
tance constraints only to first order approximation. We therefore monitored defor-
mation of the hydrogen bond distances in conformational transitions. In 91% of the
RNA molecules the maximal hydrogen bond length deformation was below 10%
(Figure 3.9a). These values are well within the range of expected fluctuations, and
suggest that our conformational transitions stay close to the secondary structure
constraint manifold. This is important as breaking WC base pairs is energetically
unfavorable, making it less likely to occur in a trajectory.

An analysis with Defining the Secondary Structure of RNA (DSSR) [93] confirmed
that A-form helices were maintained along the trajectory. Out of 1275 WC base pairs
among the initial conformations, 486 were classified as A-form, 6 as B-form, and 783
could not be classified (Table 3.2). For the KGS final conformation, 440 were A-form,
7 B-form, and 840 could not be classified. Just over 9% of WC pairs could no longer
be classified at A-form, despite maintaining their constraints. Two pairs picked up
A-form classification. We did not observe A-form to B-form or reverse transitions.

3.3.1.4 Distance to the heavy atom goal positions

FIGURE 3.10: Initial and goal conformations of a 62-nucleotide II-
III-VI three-way junction (PDB ID 2N3Q) with one C5 marker atoms
selected every five nucleotides. A clash-free morphing movie can be
found at https://youtu.be/VwAXm-UaxJg. The heavy atom RMSD
between the initial (tan) and the goal (blue) conformation is 7.50Å.
The heavy atom RMSD between the final and goal conformation is

1.90Å.

To understand to what extent RNA secondary structure guides their all-atom 3D
structure, we calculated the heavy atom RMSD between the best conformation de-
termined by the marker goal positions and the (true) goal conformation. Figure 3.9b
shows that KGS morphing significantly reduced the heavy atom RMSD to the goal
conformation. Strikingly, using fewer than one percent of atoms as markers, the av-
erage heavy atom RMSD from the best KGS conformation to the goal conformation
was 2.83Å, compared to 4.14Å between the initial and goal conformations. 66% of

https://youtu.be/VwAXm-UaxJg
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initial goal KGS final # of WC bp
o o o 576
A A A 370
x x x 69
o A o 62
A o o 49
A o A 39
A A o 27
o A A 15
o o A 12
o x x 9
o - o 6
x o o 6
- x x 5
o x o 4
o o x 3
o o B 3
x x o 3
x A x 2
x A A 2
x o x 2
B o B 2
B B B 2
- o o 2
B o o 2
o o - 2
o - - 2
x - x 2
o A x 1
- o - 1
- A - 1
x o A 1
A A - 1
x x - 1
- A A 1
- x - 1

A 486 482 440
B 6 2 7
Z 0 0 0
x 88 92 93
o 695 700 737
- 11 10 9

# of WC 1275 1276 1277

TABLE 3.2: WC base pairs classification by DSSR [93]. "A", "B" and "Z"
stand for the three helical structures, "o" stands for unclassified base paires,
"x" stands for a backbone gap and "-" means that the base paire is not a WC
base pair in that conformation. The upper part of the table shows the number
of WC base pairs according to their classification in the initial, goal and the
KGS final conformations. The bottom part of the table represents the number

of WC base pairs of each type.

the benchmark set improved the heavy atom RMSD by at least 20%. In some cases,
the improvement is dramatic. For example, the heavy atom RMSD between the ini-
tial (tan) and goal (blue) conformation for the 62-nucleotide VS ribozyme II-III-VI
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three-way junction is reduced from 7.50Å, to 1.90Å (Figure 3.10). The final marker
atoms RMSD is less than 0.01Å.

We then selected all heavy atoms as marker atoms to further refine the distance
to the goal conformation. We used an RMSD threshold of 0.5Å. The final, average
RMSD to the goal conformation was reduced to 1.47Å (from 4.14Å, fRMSD = 0.34).
Figure 3.9b bottom panel, and Table 3.1 summarize the results. By contrast, comput-
ing the conformational transitions using heavy atoms as markers directly resulted in
a final RMSD of 1.90Å, corresponding to and fRMSD of 0.41. With the hierarchical
approach, 64% of the benchmark set improved the heavy atom RMSD by at least
60% compared to 53% using heavy atoms directly.

Our results suggest that the constraint manifold efficiently reduces dimensional-
ity of conformation space, while retaining key structural information that is largely
accessible through a sparse set of marker atoms. A hierarchical approach for con-
formational morphing capitalizing on this insight is more efficient than a direct ap-
proach.

3.3.1.5 Study of 3D helical arrangements

0.0 0.2 0.4 0.6 0.8 1.0
fRMSD on heavy atom
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FIGURE 3.11: Conformational transitions using all hC5 (C5 atoms
in WC pairs) atoms as markers with clash-avoidance. Heavy atom
fRMSD (x-axis) versus hC5 fRSMD (y-axis) suggest heavy atoms
fRMSD is only weakly correlated to 3D helical arrangement. The red
triangle indicates the average fRMSD value over all 41 data points.

Next, to probe the role of bulges and higher-order junctions in 3D helical ar-
rangement, we used only ’helical’ C5 (hC5) atoms as markers, i.e., all C5 atoms in
WC base pairs. The hC5 initial RMSD reports on differences in helical arrangement
between conformations of our benchmark set. We selected a subset of 41 structures
from our benchmark set for which helices of the initial and goal conformations were
separated by at least 2Å. The average hC5 RMSD is 4.28Å. Clash-avoiding morphing
reduced the hC5 RMSD to, on average, 1.69Å, corresponding to an fRMSD of 0.29.
Note that these clash-free motions take place on the secondary structure constraint
manifold MdCC, which is precisely the accessible conformation space when helical
structures are preserved. The small values of helical C5 fRMSD therefore suggest
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that single-stranded motifs play a significant role in modulating 3D helical arrange-
ments through intra-junction, coordinated motions on MdCC.

However, hC5 helical arrangement leaves a substantial fraction of heavy atom
fRMSD unaccounted for. To examine the flexibility of the single-stranded motifs, we
also calculated the overall heavy atom RMSD to the goal conformation. We found
that, using only the hC5 atom markers to rearrange helices, in half of the cases in
the benchmark set the overall heavy atom RMSD was reduced by at least 57%. This
suggests that conformational variability of intra-junction regions remained elevated
for a substantial fraction of the benchmark set, and that their conformations only
weakly correlate with helical arrangements (Figure 3.11). Junctions often bind lig-
ands and are responsible for most function in RNA. While they modulate 3D helical
arrangements, these regions must remain flexible to exchange between conforma-
tional substates and interact with multiple partners.

3.3.2 Conformational exchange of riboswitch glnA

Riboswitches are non-coding domains of messenger RNA, often located in untrans-
lated regions, that bind to a partner and regulate transcription and/or translation [94].
The L-glutamine-binding riboswitch glnA is a three-stem junction, with helices P1,
P2, and P3. L-glutamine-binding riboswitches are implicated in nitrogen metabolism
[95], and found exclusively in cyanobacteria and marine metagenomic sequences.
In a 61 nucleotides construct of the Synechococcus elongatus glnA sensing domain,
binding of L-glutamine results in a large, 13.11Å conformational change from a
’tuning-fork’-shaped, free conformation to an ’L’-shaped bound conformation [92].
The bound form is stabilized by a long-distance base pair G23-C60. In the absence of
L-glutamine, the riboswitch samples the free conformation and a minor conforma-
tion similar to the bound conformation. A molecular dynamic study [92] suggested,
that the exchange between the free and ligand-bound conformations is accompa-
nied by partial melting of the P1 helix, which may be required to access the bound
conformation.

To test the significance of partial P1 melting for exchanging between substates,
we computed clash-free conformational transitions with and without its two dissoci-
ating WC base pairs (C1-G59 and G2-C58) as constraints (Figure 3.12a). Once more,
we took a hierarchical approach. First we selected six C5 atoms as markers, three
each in the apical loops of helices P2 and P3 (Figure 3.12b). Using these marker
atoms, the goal marker positions were reached to within 0.01Å with and without
C1-G59 and G2-C58 as constraints. The heavy atom fRMSD was 0.52 when C1-G59
and G2-C58 were included as constraints, and 0.47 when they were not.

For the second stage, we selected all C5 atoms (one per nucleotide) as markers.
When C1-G59 and G2-C58 were omitted as constraints, our procedure found a clash-
free conformational transition to within 1.73Å heavy atom RMSD of the bound con-
formation. Bases G23 and C60 approach each other in this less-constrained transi-
tion, suggesting a base-pair could form. By contrast, when C1-G59 and G2-C58 were
included, the RMSD remained elevated at 4.44Å. Interestingly, these constraints
were among the most deformed during the transition, with strain exceeding 5%.

Our results suggest that partial melting of P1, proposed in a previous study [92],
is required to adopt the ligand-bound state. While glnA samples a minor confor-
mation similar to the bound conformation, binding of L-glutamine may lower the
free-energy barrier to make the bound state accessible.
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FIGURE 3.12: (a) Secondary structure representation of the L-
glutamine riboswitch. Helix P1 is shown in red; the two WC pairs
C1-G59 and G2-C58 involved in partial melting are encircled in or-
ange. (b) Superposition of the 3D conformations of the L-glutamine
riboswitch. The initial conformation (tan) is the unbound state while
the goal conformation (blue) is the bound state. The marker atoms are
shown in both conformations as spheres. An animation of the motion

with partial melting of P1 is at https://youtu.be/BhJVW0DXLR4.

3.3.3 Run time

The run time of our procedure depends on the size of the molecule (Figure 3.13,
top row) and the number of constraints (Figure 3.13, bottom row), as these values
determine the size of the Jacobian matrix. While the singular value decomposition of
the Jacobian is highly optimized by parallel solvers Intel’s Math Kernel Library (MKL),
it has a significant computational complexity and often dominates run time.

Without dCC, the vast majority of transitions finish within seconds (Figure 3.13,

https://youtu.be/BhJVW0DXLR4
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FIGURE 3.13: Run times of our procedure vs. the number of atoms
(top) and the number of hydrogen bonds (bottom). Run times using
all-atom goal conformations is shown on the left, and run times for
every fifth C5 marker atom and dCC clash avoidance is shown on the

right.

left column). Adding dCC clash-avoidance, but keeping the size of the Jacobian
small by using a sparse set of marker atoms results in reasonable run times for
all systems (Figure 3.13, right column). dCC clash-avoidance in combination with
heavy atom marker atoms results in long run times, up to several hours for some
RNA in our benchmark set.

3.4 Perspectives and conclusions

In this section we present a development that will soon be applied to experimental
data. First, the presented directed motion uses absolute atoms position as goal. Here
we present an other approach that uses distances between pair of atoms as goal.
This approach allows more possibilities and can be applied to distance distributions
obtained from DEER experiments.
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3.4.1 Relative distances

Instead of having k marker atoms and their goal positions, we have k pair of atoms
{A1,1, A1,2, ..., Ak,1, Ak,2} and their goal distances {d1, ..., dk}. Therefore we do not
have anymore a goal conformation. The initial conformation is perturbed to reach
goal distances, and its secondary structure is preseved. The approach stays the same
as in Section 3.2.2.

3.4.1.1 Relative distances approach

The matrix M is Jacobian matrix of the vector (fA1,1(q), fA1,2(q), ..., fAk,2(q)). Only
the definition of ∆(q) changes. The optimal displacement we want to obtain is such
that

−−−−−→
Ai,1Ai,2 +

−−−−−−−−−−−→
∆(q)Ai,1∆(q)Ai,2 =

−−−−−→
Ai,1Ai,2 ×

di

‖−−−−−→Ai,1Ai,2‖
−−−−−−−−−−−→
∆(q)Ai,1∆(q)Ai,2 =

−−−−−→
Ai,1Ai,2 ×

di − ‖
−−−−−→
Ai,1Ai,2‖

‖−−−−−→Ai,1Ai,2‖

(3.30)

with i ∈ [1, k] where ∆(q)Ai,1 (resp. ∆(q)Ai,2 ) is the desired movement of atom Ai,1
(resp. Ai,2), and di the goal distance between the two atoms of the couple i. This can
be obtained with:

∆(q)Ai,1 =
−−−−−→
Ai,1Ai,2 ×

di − ‖
−−−−−→
Ai,1Ai,2‖

2‖−−−−−→Ai,1Ai,2‖

∆(q)Ai,2 = −−−−−−→Ai,1Ai,2 ×
di − ‖

−−−−−→
Ai,1Ai,2‖

2‖−−−−−→Ai,1Ai,2‖

(3.31)

The rest of the computation is the same as in Section 3.2.2.

3.4.1.2 Randomization

Just as the morphing method presented in Section 3.2.2, this approach lacks of ran-
domization. The movement is deterministic except for the random moves when it is
stuck in collisions. To circumvent this problem we can blend the directed perturba-
tion with a random perturbation drawn randomly in the constraints manifold.

This randomization has two main benefits. First, it is more likely to bypass
clashes. Second, multiple runs give different conformations observing the same dis-
tances. We can thus obtain an ensemble of result conformations.

3.4.1.3 Preliminary results

We applied this method to simulate the opening motion of the alpha domain of
GDP-bound G protein. We use the distance distribution of a previous DEER [96]
experiment to generate an ensemble of conformations that could explain the distri-
bution (Figure 3.14).

3.4.1.4 Projected applications

We develop this approach in the idea of applying it to DEER data (see Section 1.2.1).
The benefits can be twofold. An a priori analysis, testing multiple set of couple of
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FIGURE 3.14: Three GDP-bound G protein conformation colored by
domain. The conformations are from the generated ensemble of con-
formations of corresponding to the observed distance distribution
[96] between residues 261 and 112 (yellow dashed lines above the red
domain). The alpha domain in red moves away from the rest of the

protein.

atoms with different range of distances will guide experimentalists in their choices
for positioning labels. Indeed with such simulations, one can test which couple of
atoms have distances that are likely to significantly change.

An a posteriori analysis, knowing exactly to which atoms the labels were attached
and what are the distributions of distances will help understanding the correlation
between distances. Indeed, DEER data give no insight on the simultaneity of dis-
tances, the distance distributions are not temporally linked. We do not know from
this data what is the distance between two probes when two others were at a given
distance. Our relative distance algorithm is able to determine which set of distance
can lead to a feasible conformation and moreover the feasibility also depends on the
initial conformation. That will lead to possible path observing all distance distribu-
tions.

3.4.2 Conclusions

We presented an efficient computational procedure to obtain clash-free structural
transition pathways between conformational substates of RNA. Our procedure is
mathematically rooted in preserving RNA secondary structure by calculating ad-
missible perturbations in a lower-dimensional constraint manifold. The secondary
structure constraint manifold helps guiding the initial conformation to the goal con-
formation from few marker atoms. Stable tertiary motifs, e.g., kissing loops or
pseudo-knots, that further govern conformational flexibility are trivially accommo-
dated as constraints in our framework. Despite the near deterministic nature of the
move sets, our algorithm performed extremely well. Nonetheless, coupling to more
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sophisticated motion planners to explore the conformational landscape [69], [97] will
likely increase the performance, and result in a broader ensemble of transition path-
ways.

Why is it important to efficiently explore helical rearrangements? RNA receptors
can accommodate a diverse set of small molecules binding to interhelical junctions
[98], which often selectively stabilizes helical arrangements [99]. Our results suggest
that helical rearrangement poorly correlates with junction conformation, indicat-
ing functional roles for junctions beyond governing tertiary structure Mapping se-
quence identity and conformational variability of junctions to helical arrangements
and their interconversions can help us understand the molecular mechanisms of
RNA-ligand interactions.

Our algorithm is uniquely positioned to start addressing these important ques-
tions. In contrast to MD simulation, conformational sampling-based approaches can
quickly interrogate the effect of junction sequence identities, conformations, muta-
tions or insertions for thousands of structures. Our L-glutamine-binding riboswitch
glnA example suggests that certain transitions may require Watson-Crick pairs to
break. Likewise, Watson-Crick pairs could (transiently) form. Our approach cur-
rently provides two mechanisms to facilitate evolving constraints.

1. Watson- Crick pairs can be excluded or included explicitly in the input files for
the software, and

2. In practice, we often find that many singular values of the constraint matrix
are very small (10−4), but non-vanishing.

Selecting right-singular vectors corresponding to these small, non-vanishing sin-
gular values as additional basis vectors for the null-space allows for small violations
of constraints. In fact, there is a direct correspondence between the magnitude of the
singular value and the magnitude of the constraint violations it allows. The singu-
lar value cut-off is a user-defined parameter for the software. The glnA application
suggests small constraint violations occur even when working in the true nullspace,
owing to first order approximation.

Furthermore, dCC constraints could act like transient Watson-Crick pairs. While
dCC constraints would unlikely result in fully formed Watson-Crick pairs, it is con-
ceivable that a (one-dimensional) dCC forms between GC or AU pairs. Thus, mon-
itoring constraint formations (dCC) or violations along a pathway could report on
Watson-Crick pairs that form or break to facilitate conformational transitions.

Our procedure can have applications in helping to interpret sparse data, or ex-
ploring conformational landscapes of dynamic ensembles. Conformational transi-
tions can be used as starting models for detailed, but expensive MD simulations.
Adapting our procedure to rely on pair-wise distances between atoms instead of ab-
solute distances will make it a valuable tool for interpreting, for example, DEER or
FRET experiments.
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Most experimental methods for solving protein structures need a post-processing
step to retrieve atoms positions. For example X-ray diffraction experimental meth-
ods give a density map which is a spatial and temporal average of the protein struc-
ture. Fitting methods are developed to retrieve atoms positions from the density
map. However they often focus on finding one position per atom, disregarding the
possibility of alternative positions. An ensemble of distinct conformations can often
explain better the density rather than only one conformation [100]. This is also true
for ligands in the protein binding pocket. While a few softwares attempt to find al-
ternative conformations for proteins, to our knowledge nothing is done for ligands.
We present here an ongoing project for finding ligand’s alternative conformations
based on qFit [101]. qFit finds alternative conformations for proteins, and we extend
the workflow to ligand. In the first section, we present qFit for proteins and the new
challenge for ligands. In the second section, we explain how we sample ligand con-
formations and give quick overview of fitting the density. 1 Then in the last section
we present our first results and discuss limitations.

4.1 Introduction

4.1.1 Fitting the density for proteins

For proteins, alternative side-chains are easy to spot in the density map but they
often involve backbone deviations which are more subtle. qFit not only samples side
chains but also backbone conformations. The algorithm starts without side chains
(only the Cβ atom, that is the first atom of the side chain). For each AA, six trial
positions for theCα atoms (atom in the backbone) are chosen and torsional backbone

1My contribution to this project is only the ligand sampling. I present the rest of the method as a
context.
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angles are adjusted to reach those positions. Then starting from a rotamer 2 each
torsional angle of the side chain is sampled one by one. After each sampling step, a
Multi-integer Quadratic Programming (MIQP) algorithm selects the optimal subset of
a few side chain conformations to fit the density.

The last step consists on building the protein from the different possible confor-
mations of all AAs. The MIQP algorithm is run on each subset of a few consecutive
residues to select collective motions. Then subsets of consecutive residues are gath-
ered into a few alternative protein’s conformations by a Monte-Carlo algorithm.

qFit showed impressive results in automatically finding alternative conforma-
tions. However it does not deal yet with ligands.

4.1.2 Alternate conformation for ligands

Proteins often bind ligands that are crystalized with them. Finding alternative con-
formations for ligands is crucial because it will give a better insight on the binding
interaction and stabilization of protein structure [102]. Unlike AAs this is no ro-
tamers library to gather possible conformations of the ligand, we need to sample the
ligand conformations.

However ligand sampling rises new problems. First of all, alternative confor-
mation of ligands are often colliding with water. Water is usually added to fill unex-
plained density. Therefore density corresponding to alternative ligand conformation
might be filled with water.

In addition, ligands are a bit more complex to sample because there are not al-
ways obvious ways to build ligands and sample them. For AAs, the side chain is
build hierarchically from the backbone, but ligands can have forks that make this
order less natural. Also ligands do not have obvious anchor point, like Cβ for side
chain. Therefore we need to perform a larger three-dimensional search for global
rotations and translations.

4.2 Method presentation

We present the ligand sampling method and an overview of the fitting step. The
overall workflow iteratively uses both methods as illustrated in Figure 4.2.

4.2.1 Ligand sampling

A ligand can have many degrees of freedom. We consider bonds that are not part of
a cycle as rotatable bonds and so, degrees of freedom.

The ligand is constructed hierarchically starting from a root which is chosen at
an extremity. First we try global rotations and translations to find the best position
for the ligand, in term of density fitting and collision with the protein receptor. A
collision occurs when the center of two atoms are too close. Because of the combi-
natorial explosion of samples, we cannot sample all degrees of freedom at the same
time. However, it is important to sample at least two degrees of freedom together to
allow coordinated moves.

Therefore we sample degrees of freedom two by two with an overlap such that
each non-extremal degree of freedom is sampled twice: once with the degree of
freedom before and once with the degree of freedom after. This setup allows for
more flexibility. Sampling is done by step of 10◦.

2A rotamer is a possible conformation of a side-chain.
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3 gobal translations 3 gobal rotations

Selection of the top 3 

10° step rotations around 2 DoFs

Selection of the top 3

10° step rotations around 1 previous 
DoF and 1 new

Selection of the top 3

FIGURE 4.1: Workflow for finding ligand’s alternate conformation.
The ligand is first globally perturbed with global rotations and trans-
lations. From the resulting conformations we select the k best in term
off avoiding collision with the receptor and fitting the density map.
For the figure simplicity k = 3 but for experiments we use k = 5.
Then for each of the k conformations we sample 2 degrees of freedom
with 10◦ step (362 total ) and again select the k best. Then for each of
the k conformations we sample 2 degrees of freedom : one new and
one already sampled the step before, and we select the k best. And so

on until no more degrees of freedom remain to be sampled.
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For non-linear ligand, we first sample one side of the ligand and then the other
side. After each sampling of two degrees of freedom, the ligand is checked for col-
lision. Because we construct the ligand hierarchically, we only consider the atoms
that will not be affected by others rotations for the collision.

DoF 1

DoF 2

DoF 3

Root
Global 
transformations

DoF 1 
rotation

DoF 2 
rotation

DoF 3 
rotation

atoms affected 
by a rotation

atoms constructed 
after a rotation

FIGURE 4.2: Sampling of degree of freedom. The ligand is consid-
ered as a tree, the root is one of the extremities of the ligand. Each
rotation of a rotatable bond affects all atoms below the bond. Atoms
that are not affected by the next rotation are called constructed and are

considered for density fitting and collisions checking.

We reject any colliding conformation, others conformations are fed to fitting pro-
gram.

4.2.2 Fitting the density

The experimental density map is taken as an input. However to choose the best set
of AA conformations we compute their density maps with clipper [103].

Then we use the MIQP solver from IBM CPLEX [104] to retrieve the best combi-
nation. MIQP finds the best occupancy vector q which attributes an occupancy 3 to
each conformation generated. The occupancy vector should only contains values be-
tween 0 and 1, have a sum of 1, and have less non zero values than a predetermined
integer k (we used 5). So q is such that

q = argminq(‖ρ◦ −
∑
i

qiρi‖2) s.t. qi ≥ 0
∑
i

qi = 1
∑
i

1qi>0 ≤ k (4.1)

where ρ◦ is the observed electron density map, and ρi is the computed density
map for the conformations i and k is the maximal number of non-zero values.

3Occupancy can be understood as a probability for the AA to be in that conformation.
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4.3 Preliminary results and Discussions

4.3.1 Results

We tested this method on a few examples with good results: one or more alternative
conformations are found and improved the density fit. Figure 4.3 shows the result
for the protein which PDB id is 2xu3. In this example, the resolution of 0.9 gives
precious information that permits to detect an alternative conformation The blue
ligand conformation is the alternative conformation found. It is mostly similar to
the native ligand (green) but different by the position of one 5-member ring. We can
note that the far right extremity of the ligand reach an unexplained density.

FIGURE 4.3: Alternative ligand for the protein ligand complex 2xu3.
The resolution of 0.9 allows for very precise details that permit to
detect and alternative conformation. The protein is in pink, the main
ligand conformation given in the structure file is in green. The ligand
experimental density in shown in gray mesh. The alternative ligand’s

conformation we found is in blue.

4.3.2 Discussion

Our first results are promising, we can find alternative conformations of ligands that
explain better the density. A validation step would be to test the method on synthetic
data. That is to say to retrieve alternative conformations from density maps that are
generated from a ligand with 2 or more alternate conformations. After that step we
need to select a dataset of interesting complexes, with medical applications, and with
high resolution (any work on density needs a good resolution) to run our method
on.

An important point that we did not address yet is overfitting. How can we know
if alternative conformations correspond to actual ligand conformations or noise on
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the density map? And how can we know how many conformations we are looking
for? We are trying to address this problem by trying different maximal numbers of
conformations (from 1 to 5) and comparing the result set. If they are globally the
same, i.e. for example, if the set of 2 different conformations is included in the set of
3 different conformations, then we assume that the 2 conformations were not due to
noise.

An other perspective is to combine both the protein and ligand fitting. For now
we suppose that the protein is in one conformation to find multiple conformations
of the ligand. However we can easily imagine a collective motion of the ligand
and side chains of the proteins. So alternative protein conformations correspond to
alternative ligand conformations. This is the next thing we want to do.



67

Chapter 5

Multi-player exponential learning
with full information

Contents
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 HEDGE algorithm . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Convergence in generic games . . . . . . . . . . . . . . . . . . . . . 71
5.2.1 Elimination of dominated strategies . . . . . . . . . . . . . . 71

5.2.1.1 Technical Lemma . . . . . . . . . . . . . . . . . . . 71
5.2.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Local convergence towards strict equilibrium . . . . . . . . . 74
5.2.2.1 Logit map properties . . . . . . . . . . . . . . . . . 74
5.2.2.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.3 Global convergence towards an unique strict equilibrium . . 76
5.2.3.1 Kullback-Leiber divergence properties . . . . . . . 77
5.2.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Global convergence in generic potential games . . . . . . . . . . . 80
5.3.1 Asymptotic Pseudotrajectory . . . . . . . . . . . . . . . . . . 81
5.3.2 Global convergence in the continuous dynamics . . . . . . . 82
5.3.3 Global convergence in the potential game . . . . . . . . . . . 83
5.3.4 Convergence Rate . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

In this Chapter we study a special case of multi-player EW learning algorithms
call HEDGE. These algorithms are broadly studied in regret minimization where
only the average matters, not the final state see (Chapter 2). We show here that,
in generic games, such algorithms have the rational property of eliminating domi-
nated strategies at exponential rate. This property leads the algorithm to converge
toward a Nash Equilibrium provided that it has been initialized close enough, or
that the NE is unique. Furthermore by restricting our analysis to potential games we
show that the mixed strategies profile converges toward a NE regardless of initial
conditions. In the first section we introduce notations and the algorithm. The sec-
ond section focuses on the asymptotic local convergence, it corresponds to a paper
recently accepted at SAGT 2017 (Symposium on Algorithmic Game Theory). The third
section brings stronger properties with the global convergence toward equilibria,
restricting the analysis to the class of potential games.
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5.1 Preliminaries

5.1.1 Notations

We recall definitions introduced in Chapter 2. We focus on games that are played by
a finite set N = {1, . . . , N} of N players (or agents). Each player i ∈ N is assumed to
have a finite set of actions (or pure strategies) Si, and the players’ preferences for one
action over another are represented by each action’s utility (or payoff ). Specifically,
as players interact with each other, the individual payoff of each player is given by a
function ui : S ≡

∏
i Si → R of all players’ actions, and each agent seeks to maximize

the utility ui(si; s−i) of his chosen action si ∈ Si against the action profile s−i of his
opponents.1 A game is then called generic if a small change to any of the payoff
does not introduce new Nash equilibria nor remove existing ones. In particular, in
generic games, there are no unilateral payoff ties in the support of Nash Equilibria,
i.e. if ui(si; s−i) 6= ui(s

′
i; s−i) for all Nash Equilibrium x∗, si ∈ supp(x∗i ), s′i ∈ Si,

i ∈ N .
Players can also use mixed strategies by playing probability distributions xi =

(xisi)si∈Si ∈ ∆(Si) over their action sets Si. The resulting probability vector xi is
called the mixed strategy of the i-th player and the setXi = ∆(Si) is the corresponding
mixed strategy space of player i. Based on this, we write X ≡ ∏iXi for the game’s
strategy space, i.e. the space of all mixed strategy profiles x = (xi)i∈N . In this context
(and in a slight abuse of notation), the expected payoff of the i-th player in the mixed
strategy profile x = (x1, . . . , xN ) is

ui(x) =
∑
s1∈S1

· · ·
∑

sN∈SN

ui(s1, . . . , sN )x1s1 · · ·xNsN . (5.1)

Accordingly, if player i plays the pure strategy si ∈ Si, we will write

visi(x) = ui(si;x−i) = ui(x1, . . . , si, . . . , xN ) (5.2)

for the payoff corresponding to si, and vi(x) = (visi(x))si∈Si for the resulting payoff
vector of player i. A player’s expected payoff can thus be written as

ui(x) =
∑
si∈Si

xisivisi(x) = 〈vi(x)|xi〉, (5.3)

where 〈vi(x)|xi〉 denotes the canonical bilinear pairing between vi(x) and xi.
A fundamental rationality principle in the analysis of finite games is that, as-

suming full knowledge of the game, a player would have no incentive to play an
action that always yields suboptimal payoffs with respect to another (fixed) action.
To formalize this, si ∈ Si is called (strictly) dominated by s′i (and written si ≺ s′i) if

ui(si; s−i) < ui(s
′
i; s−i) for all s−i ∈ S−i ≡

∏
j 6=i Sj , i ∈ N . (5.4)

Extending the notion of strategic dominance, the most widely used solution con-
cept in game theory is that of a NE, i.e. a state x∗ ∈ X which is unilaterally stable in
the sense that

ui(x
∗
i ;x
∗
−i) ≥ ui(xi;x∗−i) for all xi ∈ Xi, i ∈ N , (NE)

1In the above (si; s−i) is shorthand for (s1, . . . , si, . . . , sN ), used here to highlight the action of
player i against that of all other players.
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or, equivalently, writing supp(x) for the support of x:

visi(x
∗) ≥ vis′i(x

∗) for all si ∈ supp(x∗i ) and all s′i ∈ Si, i ∈ N . (5.5)

If x∗ is pure (i.e. supp(x∗i ) = {s∗i } for some s∗i ∈ Si and all i ∈ N ), then it is called
a pure equilibrium. In generic games, a pure equilibrium satisfies (5.5) as a strict
inequality for all s′i /∈ supp(x∗i ), i ∈ N , so we sometimes refer to pure equilibria in
generic games as strict.

Such equilibria will play a key role in our analysis, so we provide a convenient
variational characterization below:

Proposition 5.1. In generic games, x∗ is a pure equilibrium if and only if there exists a
neighborhood U of x∗ and

〈v(x)|x− x∗〉 ≤ −1
2a‖x− x∗‖ for some a > 0 and for all x ∈ U, (5.6)

where ‖x‖ =
∑

i

∑
s∈Si |xisi | denotes the L1-norm of x.

Proof. Assume that x∗ is a pure equilibrium. Then, for all i ∈ N , we have

〈vi(x)|xi − x∗i 〉 = ui(xi;x−i)− ui(x∗i ;x−i)
=
∑
si 6=s∗i

xisiui(si;x−i) + xis∗i ui(s
∗
i ;x−i)− ui(s∗i ;x−i)

=
∑
si 6=s∗i

xisi [ui(si;x−i)− ui(s∗i ;x−i)] , (5.7)

where the first line is a consequence of (5.3) while the last one follows by noting that∑
si 6=s∗i

xisi = 1 − xis∗i and rearranging. Equation (5.5) is a strict inequality for all
s′i /∈ supp(x∗i ), i ∈ N for pure equilibrium in generic games. Therefore ui(s∗i ;x

∗
−i) −

ui(si;x
∗
−i) > 0 for all si ∈ Si \ {s∗i }. Now, by continuity there exists a real number

a > 0 and a neighborhood U of x∗ in X such that for all si ∈ Si \ {s∗i }, ui(s∗i ;x−i) −
ui(si;x−i) ≥ a > 0 for all x ∈ U . Therefore:

〈vi(x)|xi − x∗i 〉 ≤ −a
∑
si 6=s∗i

xisi (5.8)

Hence, combining Eqs. (5.7) and (5.8), we get the bound

〈v(x)|x− x∗〉 =
∑
i∈N
〈vi(x)|xi − x∗i 〉 ≤ −a

∑
i∈N

∑
si 6=s∗i

xisi ≤ −
a

2

∑
i∈N
‖xi − x∗i ‖, (5.9)

where the last inequality follows from the fact that x∗isi = 0 if si 6= s∗i so ‖xi − x∗i ‖ =
1− xis∗i +

∑
si 6=s∗i

xisi = 2
∑

si 6=s∗i
xisi .

Assume now that x∗ satisfies (5.6) but is not a strict NE, so visi(x
∗) ≤ vis′i(x

∗) for
some si ∈ supp(x∗i ), s′i ∈ Si \ {si}, i ∈ N . Then, if we take x = x∗ except for tow
coordinates xis′i = x∗is′i

+ λ and xisi = x∗isi − λ with λ > 0 small enough such that
x ∈ U , we get

〈v(x)|x− x∗〉 = 〈vi(x)|xi − x∗i 〉 = λvis′i(x
∗)− λvisi(x∗) ≥ 0, (5.10)

in contradiction to (5.6) which yields 〈v(x)|x− x∗〉 < 0.
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Clearly, if (5.6) holds for all x ∈ X , then x∗ is the unique NE of the game; in
particular, it is easy to verify that this is the case in the Prisoner’s Dilemma and its
variants, potential games with a unique equilibrium, etc.

5.1.2 HEDGE algorithm

The algorithm that we examine is the so-called HEDGE variant of the EW algo-
rithm [83]. In a nutshell, the main idea of the algorithm is as follows: at each
stage t = 1, 2, . . . of the process, players maintain and update a performance score
for each of their actions (pure strategies) based on each action’s cumulative payoff
up to stage t. These scores are then converted to mixed strategies by assigning ex-
ponentially higher probabilities to actions with higher scores; subsequently, a new
action is drawn based on these mixed strategies, and the process repeats.

More precisely, this process can be encoded as follows:

Algorithm 5.1 HEDGE with variable step-size γt
1 Each player i ∈ N has an initial score vector yi(1) and plays with initial mixed strategy

xi(1) = Λi(yi(1)) where the logit map Λi is defined as

Λi(yi) =
1∑

s∈Si exp(yis)
(exp(yis))s∈Si . (5.11)

2 for each round t
3 Each player i ∈ N draws a pure strategy si(t) according to xi(t)
4 Each player i ∈ N gets an estimate v̂i(t) of his payoff vector vi(s(t))
5 Each player i ∈ N updates his mixed strategy xi via the recursion

yi(t+ 1) = yi(t) + γtv̂i(t),

xi(t+ 1) = Λi(yi(t+ 1))
(HEDGE)

end for

Motivated by practical implementation issues (especially in large networks and
telecommunication systems), the formulation of (HEDGE) above tacitly assumes
that players have imperfect knowledge of their payoff vectors vi(x(t)) at each itera-
tion of the algorithm – for instance, contaminated by measurement errors or other
uncertainty factors. To formalize this assumption, we will focus on the general noisy
feedback model

v̂i(t) = vi(s(t)) + ξi(t), (5.12)

where the error process ξ = (ξi)i∈N satisfies the statistical hypotheses

1. Zero-mean:

E[ξ(t)|Ft−1] = 0 for all t = 1, 2, . . . (a.s.). (H1)

2. Finite Mean Square Error (MSE): there exists some σ > 0 such that

E[‖ξ(t)‖2∞|Ft−1] ≤ σ2 for all t = 1, 2, . . . (a.s.). (H2)

In the above, the expectation E[ · ] is taken with respect to the randomness induced
by the players’ mixed strategies and the error process ξ, while Ft denotes the history
of (y(t) x(t), s(t), v̂(t)) up to stage t.2 Put differently, Hypotheses (H1) and (H2)

2In formal mathematical language, Ft is the natural filtration induced by (y(t) x(t), s(t), v̂(t)) [105].
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simply mean that the players’ estimates v̂i are conditionally unbiased and bounded in
mean square, i.e.

E[v̂(t)|Ft−1] = v(x(t)), for all t = 1, 2, . . . (a.s.). (5.13a)

E[‖v̂(t)‖2∞|Ft−1] ≤ L2, for all t = 1, 2, . . . (a.s.). (5.13b)

where L > 0 is a finite positive constant (obviously, in the noiseless case ξ = 0, the
constant L is simply a bound on the players’ maximum absolute payoff). Note here
that (5.13a) is phrased in terms of the players’ mixed strategy profile x(t), not the
action profile s(t) = (si(t); s−i(t)) which is chosen based on x(t) at stage t. To see
that (H1) indeed implies (5.13a) in this context, simply observe that for all i ∈ N ,
si ∈ Si, we have

E[v̂isi(t)|Ft−1] =
∑

s−i∈S−i

[
ui(si; s−i)xs−i(t) + E[ξisi(t)|Ft−1]

]
= ui(si;x−i(t)) = visi(x(t)).

(5.14)

Thus, Hypotheses (H1) and (H2) allow for a broad range of noise distributions,
including all compactly supported, (sub-)Gaussian, (sub-)exponential and log-normal
distributions.

5.2 Convergence in generic games

In this section, we provide our three convergence results for the algorithm (HEDGE);
for simplicity, we assume throughout the analysis that the games under study are
generic, in particular there are no payoff ties between a player’s actions. For each
results we will follow the same presentation: we start with a technical property
needed for the proof, then the statement of the result and its proof and we finish
with a discussion on hypotheses.

5.2.1 Elimination of dominated strategies

We will often use a martingale property that allows the convergence even in pres-
ence of noise.

5.2.1.1 Technical Lemma

The convergence is based on the increasing difference between scores, y(t), of the
strategies in equilibria’s support and other strategies. As defined in the algorithm
ys(t) is the weighted sum of the estimated payoff, v̂s(t). v̂s(t) is subjected to noise,
so the estimated payoff of strategies in the support of an equilibrium can be smaller
than the estimates payoff of other strategies.

If the noise follows the hypotheses (H1) and (H2), we show that the difference
of the weighted sum of the estimated payoff will increase when the difference of the
actual payoff (without noise) is positive.

Lemma 5.2. Suppose that (HEDGE) is run with a step-size sequence such that limn→∞Un =
∞, with Un =

∑n
j=1 γj , and noisy payoff observations satisfying Hypotheses (H1) and

(H2). If there exists some a > 0 such that vs′(x)− vs(x) ≥ a for all x ∈ X then for all c ∈
(0, a), there exists some t0 such that ys′(t+1)−ys(t+1) ≥ c∑t

i=1 γi for all t ≥ t0 (a.s.).



72 Chapter 5. Multi-player exponential learning with full information

The proof of this lemma lays on the Theorem 2.18 of Hall and Heyde 1980 [105],
in particular the equation (2.17). We report here a version of this part of the theorem
adapted to our notations with ζj = v̂s′(j)− vs′(x(j))− [v̂s(j)− vs(x(j))].

Theorem 5.3. [105, Theorem 2.18] If {Sn =
∑n

j=1 γjζj ,Fn, n ≥ 1} is a martingale and
Un =

∑n
j=1 γj is a nondecreasing sequence of positive random variable such that Un is

Fn−1-measurable for each n and limn→∞Un =∞, ∑∞
j=1

E(‖γjζj‖2|Fj−1)

U2
j

<∞ then

limn→∞U
−1
n Sn = limn→∞

∑n
j=1 γjζj∑n
j=1 γj

= 0 (a.s.)

Proof. Proof of Lemma (5.2)
Recall ζj = v̂s′(j)−vs′(x(j))− [v̂s(j)−vs(x(j))]. By assumption there exists a > 0

such that vs′(x)− vs(x) ≥ a for all x ∈ X . Then,

ys′(t+ 1)− ys(t+ 1) = ys′(1)− ys(1) +
t∑

j=1

γj(v̂s′(j)− v̂s(j))

= ys′(1)− ys(1) +
t∑

j=1

γj [vs′(x(j))− vs(x(j))] +
t∑

j=1

γjζj

≥ ys′(1)− ys(1) +
t∑

j=1

γj

[
a+

∑t
j=1 γjζj∑t
j=1 γj

]
.

(5.15)

Now we will use Theorem (5.3) to prove that
∑t
j=1 γjζj∑t
j=1 γj

→t→∞ 0.

The reformulation of Hypothesis (H1) gives :

E[ζj |Fj−1] = E[ξs′(j) + vs′(s(j))− vs′(x(j))− ξs(j)− vs(s(j)) + vs(x(j))|Fj−1]

= E[ξs′(j)− ξs(j)|Fj−1] + E[vs′(s(j))|Fj−1]− vs′(x(j))

− E[vs(s(j))|Fj−1] + vs(x(j))

= 0

ζj is Fj-measurable, meaning that it is fully determined by the information of Fj .
With Sn =

∑n
i=1 γiζi, it follows that

E[Sj |Fj−1] = γjE[ζj |Fj−1] + E[Sj−1|Fj−1] = Sj−1

Therefore {Sn =
∑n

j=1 γjζj ,Fn, n ≥ 1} is a martingale, and as γt depends only on
t and it is positive, Un =

∑n
j=1 γj is a nondecreasing sequence of positive random

variable such that Un is Fn−1-measurable for each n ∈ N. In addition β ≤ 1 gives us
that limn→∞Un =∞.
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We focus now on proving the last hypothesis of Theorem (5.3), i.e.,
∑∞

j=1
E(‖γjζj‖2|Fj−1)

U2
j

<

∞. First we show that E[‖ζ(j)‖2|Fj−1] ≤ 8σ2 + 32D2 where D = maxx∈X ‖v(x)‖∞:

E[‖ζ(j)‖2|Fj−1] = E[‖(ξs′(j) + vs′(s(j))− vs′(x(j))− ξs(j)− vs(s(j)) + vs(x(j)))‖2|Fj−1]

≤ 4maxs∈SE[‖(ξs(j)− vs(s(j)) + vs(x(j)))‖2|Fj−1]

≤ 8σ2 + 8maxs∈SE[‖(vs(s(j)) + vs(x(j)))‖2|Fj−1]

≤ 8σ2 + 32maxs∈SE[‖vs(x(j))‖2|Fj−1]

≤ 8σ2 + 32D2,
(5.16)

according to Hypothesis (H2). Second, γt is decreasing so Un =
∑n

j=1 γj ≥ nγn and
U−2
n ≤ 1

n2γ2n
. Therefore

∞∑
j=1

E(‖γjζj‖2|Fj−1)

U2
j

<

∞∑
j=1

γ2
j (8σ2 + 32D2)

j2γ2
j

= (8σ2 + 32D2)

∞∑
j=1

1

j2
<∞

Therefore all hypotheses are fulfilled and

limn→∞

∑n
j=1 γjζj∑n
j=1 γj

= 0 (a.s.)

So for all c ∈ (0, a) there exist some t0 such that −
∑t
j=1 γjζj∑t
j=1 γj

≤ ys′ (1)−ys(1)∑t
j=1 γj

+ a − c
for all t > t0. Putting that in (5.15) we have :

ys′(t+ 1)− ys(t+ 1) ≥ c
t∑

j=1

γj for all t ≥ t0 (a.s.)

5.2.1.2 Results

We begin our asymptotic analysis with the elimination of dominated strategies:

Theorem 5.4. Suppose that (HEDGE) is run with a step-size sequence of the form γt ∝
1/tβ for some β ≤ 1 (not necessarily positive), and noisy payoff observations satisfying
Hypotheses (H1) and (H2). If si ∈ Si is dominated, there exists some c > 0 such that

xisi(t) = O(exp(−c∑t−1
j=1 γj)) with probability 1. (5.17)

In particular, if β < 1, si becomes extinct exponentially fast (a.s.).

Proof. Proof of Theorem (5.4).
Suppose that si is dominated by s′i for some s′i ∈ Si. There exists some a > 0 such

that vis′i(x) − visi(x) ≥ a for all x ∈ X . We can then apply Lemma (5.2) and obtain
yis′i(t)− yisi(t) ≥ c

∑t−1
j=1 γj for all t ≥ t0 (a.s.). We thus get

xisi(t) =
eyisi (t)∑
s′′i
e
yis′′

i
(t)
≤ eyisi (t)

e
yis′

i
(t)

= e
yisi (t)−yis′i

(t) ≤ e−c
∑t−1
j=1 γj (5.18)

and our proof is complete.
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5.2.1.3 Discussions

It should be noted here that the elimination of dominated strategies with imperfect
knowledge of the game’s payoffs is by no means a given. For instance, if players play
a greedy best response scheme at each round and the payoff observation errors are
not supported on a small, compact set, dominated strategies will be played infinitely
often (simply because at each round, any strategy could be erroneously perceived as
a best response) [75]. With this in mind, the fact that the rate of elimination (5.17)
improves with more aggressive – even increasing – step-size sequences γt is somewhat
surprising because it suggests that players can employ (HEDGE) in a very greedy
fashion and achieve fast dominated strategy extinction rates, even in the presence of
arbitrarily high estimation errors.

Regarding the game’s dimensionality (i.e. the number of players and actions per
player), our proof also shows that c depends only on the player’s payoffs – specifi-
cally, we can take c = 1

2 mins−i∈S−i [ui(s
′
i; s−i) − ui(si; s−i)] > 0. In other words, the

algorithm’s half-life is asymptotically independent of the size of the game, and only
depends on the players’ relative payoff differences.

5.2.2 Local convergence towards strict equilibrium

Before addressing the local convergence towards strict equilibrium we show an im-
portant property of the logit map:

5.2.2.1 Logit map properties

We show that if x∗ is a pure equilibrium, for any x close enough to x∗, for all players
i, the difference between score ys∗i (t) (with s∗i being the support of x∗) of s∗i and any
other pure strategy of player i can be large as we want.

Proposition 5.5. Let S = {1, . . . , n} be a finite set and let ∆ ≡ ∆(S) denote the (n− 1)-
dimensional simplex spanned by S. Then, if x∗ ∈ ∆ is pure (i.e. supp(x∗) = {s∗} for some
s∗ ∈ S), the set UM = {x = Λ(y) : ys − ys∗ ≤ −M} for all s 6= s∗ is a neighborhood of x∗

in ∆◦; furthermore, if M is sufficiently large, UM is contained in any ‖·‖-ball centered at x∗.

Proof. We assume to the contrary that UM is not a neighborhood of x∗ in X ◦. So
there exists a sequence xk = Λ(yk) in X ◦ that converges to x∗, but xk /∈ UM for
all k. By passing to a subsequence if necessary, there exists some s ∈ S such that
yk,s − yk,s∗ > −M and yk,s ≥ yk,s′ for all s′ (simply pick a constant subsequence of
argmaxs′∈S{yk,s′ : yk,s′ − yk,s∗ > −M} if needed). We then get

xk,s =
eyk,s∑
s′ e

yk,s′
=

1

eyk,s∗−yk,s +
∑

s′ 6=s∗ e
yk,s′−yk,s

≥ 1

eM + n− 1
, (5.19)

contradicting the original assumption xk,s → 0 (since xk → x∗).
For the converse implication (namely that UM is contained in a ball around x∗),

fix some δ > 0 and let zs = ys − ys∗ , s ∈ S \ {s∗}. Then, letting x = Λ(y) for some
y ∈ UM , we have

xs∗ =
eys∗∑
s∈S e

ys
=

1

1 +
∑

s 6=s∗ e
zs
≥ 1−

∑
s 6=s∗

ezs ≥ 1− (n− 1)e−M . (5.20)

Thus, for M > |log δ|
2(n−1) , we obtain ‖x− x∗‖ = 2(1− xs∗) ≤ 2(n− 1)e−M ≤ δ, implying

that UM is contained in the ball Bδ = {x : ‖x− x∗‖ ≤ δ}.
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5.2.2.2 Result

We now turn to local convergence properties of (HEDGE) in generic games that ad-
mit pure NE.

Theorem 5.6. Fix a confidence level ε > 0 and suppose that (HEDGE) is run with a
small enough (depending on ε) step-size γt satisfying

∑∞
t=1 γ

2
t < ∞ and

∑∞
t=1 γt = ∞

and imperfect payoff observations satisfying Hypotheses (H1) and (H2). If x∗ is a pure
equilibrium and (HEDGE) is initialized not too far from x∗, we have

P
(
‖x(t+ 1)− x∗‖ ≤ C ′e−c

∑t
j=1 γj for all t

)
≥ 1− ε, (5.21)

where c > 0 is a constant that only depends on the game and C ′ > 0 is a constant that
depends on the initialization of (HEDGE). In particular, under the stated assumptions,
x(t)→ x∗ with probability at least 1− ε.

Proof. Proof of Theorem (5.6).
Write x∗ = (s∗1, . . . , s

∗
N ) for the pure equilibrium under study. x∗ is a pure equi-

librium so there exist a > 0 and a neighborhood U of x∗ in X such that such that for
all si ∈ Si \ {s∗i }, ui(s∗i ;x−i) − ui(si;x−i) ≥ a. By Proposition (5.5) there is a M > 0
such the UM ⊂ U . Let set zisi = yisi − yis∗i then, we have

zisi(t+ 1) = zisi(t) + γt
[
visi(x(t))− vis∗i (x(t))

]
+ γtζisi(t), (5.22)

where ζisi(t) = v̂isi(t)−visi(x(t))−(v̂is∗i (t)−vis∗i (x(t))). Thus, assuming that (HEDGE)
is initialized in U2M and telescoping, we get

zisi(t+ 1) ≤ −2M +
t∑

j=1

γj
[
visi(x(j))− vis∗i (x(j))

]
+

t∑
j=1

γjζisi(j). (5.23)

We now claim that, if γt is chosen appropriately, we have

P(supt
∑t

j=1 γjζisi(j) ≤M) ≥ 1− ε/(N(Si − 1)), (5.24)

where Si = |Si|. Indeed, let Xisi(t) =
∑t

j=1 γtζisi(t) and let Ei(t) denote the event
sup1≤j≤t|Xisi(j)| ≥ M . By Hypothesis (H1), Xisi(t) is a martingale (see proof of
Lemma (5.2)) so Doob’s maximal inequality [105, Theorem 2.1] yields

P(Ei(t)) ≤
E[Xisi(t)

2]

M2
≤

(8σ2 + 32D2)
∑t

j=1 γ
2
j

M2
, (5.25)

where we used the noise variance estimate

E[ζ2
isi(t)] ≤ 8σ2 + 32D2,

proved in the proof of Lemma (5.2) and the fact that E[E[ζisi(t)ζisi(t
′)]|Ft] = 0 if

t > t′. Since Ei(t + 1) ⊆ Ei(t) ⊆ . . . , it follows that the event Ei = ∩∞t=1Ei(t) occurs
with probability P(Ei) ≤ (8σ2+32D2)Γ2/M

2 where Γ2 =
∑∞

t=1 γ
2
t <∞. Thus, if γt is

chosen so that Γ2 ≤ εM2/(N(Si− 1)(8σ2 + 32D2)), we get P(Xisi(t) ≥M for all t) ≤
ε/(N(Si − 1)).

Assume therefore that Γ2 ≤ εM2/(N(Si − 1)(8σ2 + 32D2)). Then, we obtain

P(maxi∈N ,si∈Si suptXisi(t) ≥M) ≤∑i∈N
∑

si 6=s∗i
ε

N(Si−1) ≤ ε. (5.26)
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Hence, going back to (5.23), an induction shows that x(t) ∈ UM for all t with proba-
bility at least 1− ε. As x∗ is a pure equilibrium there exist a > 0 and a neighborhood
U of x∗ in X such that visi(x(j)) − vis∗i (x(j)) < −a for all si 6= s∗i and x ∈ U . Propo-
sition (5.5) ensures that with M large enough UM ⊂ U . When this occurs, we also
have

P(zisi(t+ 1) ≤ −M − a∑t
j=1 γj for all t) ≤ 1− ε. (5.27)

xis∗i (t+ 1) =
1

1 +
∑

si 6=s∗i
exp(zisi(t+ 1))

≥ 1−
∑
si 6=s∗i

exp(zisi(t+ 1)) ≥ 1−
∑
si 6=s∗i

e−Me−a
∑t
j=1 γj , (5.28)

with probability at least 1− ε. Therefore, since ‖xi − x∗i ‖ = 1− xis∗i +
∑

si 6=s∗i
xisi =

2(1− xis∗i ), rearranging (5.28) yields

P
(
‖x(t+ 1)− x∗‖ ≤ 2

∑
i∈N

∑
si 6=s∗i

e−Me−a
∑t
j=1 γj

)
≥ 1− ε,

and our assertion follows.

More specifically if the step-size is of the form γt = γ/tβ , we obtain an expression
for the convergence rate.

Corollary 5.7. With assumptions as above, if (HEDGE) is run with a step-size of the form
γt = γ/tβ for some sufficiently small γ > 0 and β ∈]1/2, 1[, we have

P
(
‖x(t)− x∗‖ = O

(
e−cγt

1−β
))
≥ 1− ε, (5.29)

5.2.2.3 Discussions

We note here that, in contrast to Theorem (5.4), the summability requirements
∑∞

t=1 γ
2
t <

∞ and
∑∞

t=1 γt = ∞ constrain the admissible step-size policies that lead to pure
equilibrium (for instance, constant step-size policies are no longer admissible). In
particular, the most aggressive step-size that can be used in the context of Theorem
(5.6) is γt ∝ t−β for some β close (but not equal) to 1/2, leading to a convergence rate
of λt

1−β
for some λ < 1 (cf. Corollary (5.7)).

The main idea behind the proof of Theorem (5.6) is to use Doob’s maximal in-
equality for martingales to show that the probablity of x(t) escaping the basin of
attraction of a pure NE x∗ can be made arbitrarily small if the algorithm’s step-size
is chosen appropriately. Building on this, we now analyse the global convergence
when the NE is unique. If x∗ satisfies the variational inequality (5.6) throughout X ,
we have the stronger results.

5.2.3 Global convergence towards an unique strict equilibrium

We now study the case where there is an unique strict equilibrium that satisfies (5.6)
for all x ∈ X . Any strict equilibrium is a pure equilibrium.
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5.2.3.1 Kullback-Leiber divergence properties

As opposed to Theorems (5.4) and (5.6), the global convergence toward a pure equli-
birum relies heavily on the so-called Kullback–Leibler (KL) divergence [106], defined
here as

DKL(x∗, x) =
∑
i∈N

∑
si∈Si

x∗isi log
x∗isi
xisi

for all x ∈ X ◦. (5.30)

The KL divergence is a positive-definite, asymmetric distance measure that is par-
ticularly well-adapted to the analysis of the replicator dynamics [107]–[109]. Before
addressing the problem of global convergence towards an unique strict equilibrium
we show an important property of the KL divergence.

Proposition 5.8. Let S = {1, . . . , n} be a finite set and let ∆ ≡ ∆(S) denote the (n− 1)-
dimensional simplex spanned by S . Let x = Λ(y), x′ = Λ(y′) for some y, y′ ∈ Rn and
x∗ ∈ X . Then, we have

DKL(x∗, x′) ≤ DKL(x∗, x) + 〈y′ − y|x− x∗〉+
1

2
‖y′ − y‖2∞. (5.31)

Proof. Let h(x) =
∑

s xs log(xs), x ∈ ∆, and let h∗(y) = maxx∈X {〈y|x〉 − h(x)} =
log (

∑
s e

ys) (see Appendix A for the calculation ) denote the convex conjugate of h
[110], [111]. Then, the derivation yields

∂h∗

∂ys
=

exp(ys)∑
s′ exp(ys′)

= Λs(y), (5.32)

so, by the properties of Legendre transformations [110] (see Appendix A), we get
Λ(y) = argmax{〈y|x〉 − h(x)}. Therefore, taking x = Λ(y), the KL divergence be-
comes

DKL(x∗, x) =
∑
s

x∗s log(x∗s)−
∑
s

x∗s log(xs)

= h(x∗)−
∑
s

xs log(xs) +
∑
s

((xs − x∗s) log(xs))

= h(x∗)− h(x) + 〈∇h(x)|x− x∗〉
= h(x∗) + 〈y|x〉 − h(x)− 〈y|x〉+ 〈∇h(x)|x− x∗〉
= h(x∗) + h∗(y)− 〈y|x∗〉 − 〈y|x〉+ 〈y|x∗〉+ 〈∇h(x)|x− x∗〉
= h(x∗) + h∗(y)− 〈y|x∗〉+ 〈∇h(x)− y|x− x∗〉
= h(x∗) + h∗(y)− 〈y|x∗〉 =: F (x∗, y), (5.33)

where F (x∗, y) is the so-called Fenchel coupling [112], and we used the fact that
y = ∇h(x) + λ1 (recall that x = Λ(y) is defined as the maximizer of the quantity
〈y|x〉 − h(x)).

With this in mind, it suffices to show that

F (x∗, y′) ≤ F (x∗, y) + 〈y′ − y|Λ(y)− x∗〉+
1

2
‖y′ − y‖2∞. (5.34)

However, since h is 1-strongly convex with respect to the L1 norm [111, p. 135], it
follows that its convex conjugate h∗ is 1-strongly smooth with respect to the L∞
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norm (the dual of the L1-norm) [111, p. 148]. Specifically, this implies that

h∗(y′) ≤ h∗(y) + 〈y′ − y|∇h∗(y)〉+
1

2
‖y′ − y‖2∞ (5.35)

Eq. (5.34) then follows by writing out the definition of F (x∗, y′) and then using (5.35)
and (5.32).

5.2.3.2 Results

We show that x∗ is a recurrent point of the process x(t), i.e. x(t) visits any neighbor-
hood of x∗ infinitely many times. We then use an argument similar to the proof of
Theorem (5.4) to show that the process actually converges to x∗ at an asymptotic rate
of O(e−c

∑t
j=1 γj ).

Theorem 5.9. Suppose that the algorithm (HEDGE) is run with a step-size γt such that∑∞
t=1 γ

2
t <∞,

∑∞
t=1 γt =∞ and imperfect payoff observations satisfying Hypotheses (H1)

and (H2). If x∗ satisfies (5.6) for all x ∈ X , then:

1. x(t)→ x∗ (a.s.).

2. There exists a (deterministic) constant c > 0 depending only on the game such that

‖x(t+ 1)− x∗‖ = O
(
e−c

∑t
j=1 γj

)
. (5.36)

Proof. Since
∑∞

t=1 γt =∞, it suffices to prove (5.36). Then, given that x∗ = (s∗1, . . . , s
∗
N )

is pure, we have:

DKL(x∗, x) =
∑
i∈N

∑
si∈Si

x∗si log
x∗isi
xisi

=
∑
i∈N

x∗s∗i log
x∗
is∗
i

xis∗
i

= −
∑
i∈N

log xis∗i

= −
∑
i∈N

log(1− (1− xis∗i ))

= −
∑
i∈N

log(1− ‖xi − x∗i ‖/2) ≥ 1

2
‖x− x∗‖, (5.37)

so it suffices to show thatDKL(x∗, x(t))→ 0. With this in mind, letDt = DKL(x∗, x(t)).
Then, Proposition (5.8) yields

Dt+1 ≤ Dt + γt〈v(x(t))|x(t)− x∗〉+ γtψt +
1

2
γ2
t ‖v̂(t)‖2∞, (5.38)

where we have set ψt = 〈ξ(t)+v(s(t))−v(x(t))|x(t)−x∗〉. Using this bound, we will
show that x(t) visits any neighborhood U of x∗ infinitely many times.

Indeed, assume on the contrary that this is not the case, so for t large enough
there is a α > 0, such that ‖x(t) − x∗‖ > α. Then, by Proposition (5.1), there exists
some δ > 0 such that 〈v(x(t))|x(t) − x∗〉 ≤ −αδ for all sufficiently large t. Hence,
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telescoping (5.38) yields

Dt+1 ≤ D1 − αδ
t∑

j=1

γj +

t∑
j=1

γjψj +
1

2

t∑
j=1

γ2
j ‖v̂(j)‖2∞

≤ D1 −
t∑

j=1

γj

[
αδ −

∑t
j=1 γjψj∑t
j=1 γj

−
∑t

j=1 γ
2
j ‖v̂(j)‖2∞

2
∑t

j=1 γj
.

]
(5.39)

Given that

E[ψj |Fj−1] = E[〈ξ(t) + v(s(t))− v(x(t))|x(j)− x∗〉|Fj−1]

= 〈E[ξj |Fj−1]|x(j)− x∗〉+ 〈E[v(s(t))|Fj−1]− v(x(t))|x(j)− x∗〉 = 0

and
E[ψ2

j |Fj−1] ≤ 2E[‖ξj‖2∞|Fj−1] + 2E[‖v(s(j))− v(x(j))‖2∞|Fj−1]

≤ 2σ2 + 8maxs∈S‖v(x(j))‖∞ = 2σ2 + 8D2

according to Hypothesis (H2). It follows that
∑∞

t=1
E(‖γtψt‖2|Ft−1)

(
∑t
j=1 γj)

2 ≤∑∞t=1
γ2t (2σ2+8D2)

t2γ2t
<

∞
Hence, by Theorem (5.3), it follows that

∑t
j=1 γjψj∑t
j=1 γj

→ 0 (a.s.). Likewise, if we

let St =
∑t

j=1 γ
2
j ‖v̂(j)‖2∞, we get E[St] = E[E[St|Ft]] ≤ L2

∑t
j=1 γ

2
j ≤ Γ2L

2, where
Γ2 =

∑∞
j=1 γ

2
j . Hence, by Doob’s martingale convergence theorem [105, Theorem

2.5], St converges to some (random) finite value (a.s.). Combining the above, we
conclude that the term in the brackets of (5.39) converges to aδ (a.s.). In turn, this
implies that Dt+1 → −∞, a contradiction as the KL divergence is positive.

We have thus shown that x(t) visits infinitely many times every neighborhood U
of x∗ – and hence, in particular, the neighborhood U2M defined in Proposition (5.5).
Since x(t) remains in U2M with positive probability, it follows that the probability
that x(t) exits U2M infinitely many times is zero. We thus get x(t) ∈ U2M for all t
greater than some random (but finite) t0; hence, telescoping

yisi(t+1)−yis∗i (t+1) = yisi(t)−yis∗i (t)+γt
[
visi(x(t))− vis∗i (x(t))

]
+γtζisi(t), (5.40)

where ζisi(t) = v̂isi(t) − visi(x(t)) − (v̂is∗i (t) − vis∗i (x(t))). Futhermore, x∗ is a pure
equilibrium so there exist a > 0 and a neighborhood U of x∗ in X such that such
that for all si ∈ Si \ {s∗i }, ui(s∗i ;x−i) − ui(si;x−i) ≥ a. By Proposition (5.5) there is a
M > 0 such that U2M ⊂ U .

yisi(t+ 1)− yis∗i (t+ 1) ≤ −2M −
t∑

j=t0

γj

a− (

t∑
j=t0

γj)
−1
∑t

j=t0
γjζisi(j)

 . (5.41)

Just as in the proof of Theorem (5.4), the Theorem (5.3) shows that the term in the
brackets of (5.41) converges to a. Our claim then follows as in the proof of Theorem
(5.4) to show that xisi(t) = O(exp(−c∑t

j=1 γj)) if si 6= s∗i .

Corollary 5.10. With assumptions as above, if (HEDGE) is run with a step-size of the form
γt = γ/tβ some β ∈ (1/2, 1), we have ‖x(t)− x∗‖ = O(e

− aγ
1−β t

1−β
).
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5.2.3.3 Discussion

The step-size assumption in the statement of Theorem (5.9) is key in achieving this,
but it is important to note it can be relaxed to the lighter requirement

∑t
j=1 γ

2
j

/∑t
j=1 γt →

0 if the players’ feedback noise is bounded (for instance, if players have access to
their actual pure payoff information). When this is the case, it is possible to achieve
a convergence rate of the formO(e−ct

1−β
) for any β > 0 by using a step-size sequence

of the form γt ∝ 1/tβ . Finally, we should also note that the multiplicative constant
in (5.36) is O(

∑
i∈N |Si|), i.e. it is linear in the dimensionality of the game (just as in

the case of Theorem (5.6)). As for the constant c > 0, our proof shows that it can be
chosen in the same way as the respective coefficient of Theorem (5.4), showing that
the rate of elimination of dominated strategies is the same as that of convergence to
pure equilibria.

5.3 Global convergence in generic potential games

In this section we will only study potential games.

Definition 5.1 (Potential Game). A game is called a continuous potential game if there
exists a C1 function F : K → R such that for all i, s and x,

∂F

∂xis
(x) = ui(s;x). (5.42)

Here we prove that algorithm (HEDGE) ran on a potential game with Hypothe-
ses (H1) and (H2’) (see below) and condition on the step-size γ(t) = γ

tβ
with β ∈ [1

2 , 1]
convergences to a NE of the game.

Our proof is based on Benaim’s study of stochastic approximations [113]. It fol-
lows 4 points:

1. Show that x is an asymptotic pseudo trajectory of a continuous dynamics (The-
orem (5.11)),

2. Show that the potential function of the game is strict Lyapunov function of the
dynamics (Theorem (5.12)),

3. Rest point of the dynamics are restricted NE (Corollary (5.13)),

4. Show that if x converges toward a point it is a NE (Theorem (5.14)).

We need a stronger control on the variance, 3 such that:

P[‖v̂(t)‖2∞ ≥ z|Ft−1] = O( 1
zq ) for all t = 1, 2, . . . with q>2. (H2’)

Hypothesis (H2’) is stronger than (5.13b) indeed, it implies that

P[‖v̂(t)‖2∞ = z|Ft−1] ≤ K

zq
for z big enough

Therefore E[‖v̂(t)‖2∞|Ft−1] ≤ z +K
∫∞
z

t
tq dt = z + 1

(2−q)zq−1 <∞.
As Hypothesis (H2) and (5.13b), Hypothesis (H2’) implies the same kind of bound

for the noise variance. ‖ξ(t)‖2∞ ≤ 2‖v̂(t)‖2∞+2‖v(t)‖2∞, as the game is finite, ‖v(t)‖2∞ ≤
3 This is important to show that x is an asymptotic pseudo trajectory of a continuous dynamics, in

particular to show that x is an approximate Robbins-Monro algorithm.
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D. Therefore

P[‖ξ(t)‖2∞ ≥ 2z + 2D|Ft−1] ≤ P[‖v̂(t)‖2∞ ≥ 2z|Ft−1] = O( 1
(2z)q ) for all t = 1, 2, . . . .

(5.43)

5.3.1 Asymptotic Pseudotrajectory

We start with the first step and show that x(t) defined as the interpolated process of
the sequence (x(n))n∈N in algorithm (HEDGE) is an asymptotic pseudotrajectory of
a continuous dynamic.

Definition 5.2 (Asymptotic Pseudotrajectories). Given a flow φ : R×M →M, (t, x)→
φ(t, x) = φt(x) such that φ0 = Identity and φt+s = φt ◦ φs, a continuous function X :
R→M is an asymptotic pseudotrajectory if

limt→∞sup0≤h≤Td(X(t+ h), φh(X(t))) = 0 for any T > 0

Thus for t large enough, the curve [0, T ] → M : h → X(t + h) is as close as we
want to the φ-trajectory of the point X(h) over the interval [0, T ].

Theorem 5.11. Assume that Hypotheses (H1) and (H2’) are true and if the step size is of
the form γ(t) = γ

tβ
with β ∈ [1

2 , 1], the interpolated process of the sequences (x(n))n∈N is an
asymptotic pseudo trajectory of the solutions of the following ordinary differential equation
4

ẋis(t) = xis(t)

vis(x(t))−
∑
s′∈Si

vis′(x(t))xis′(t)

 (5.44)

Proof. First, we will check whether the stochastic process (x(n))n∈N given by (HEDGE)
is an approximate Robbins-Monro algorithm. Note that xis = Λis(yi) = exp(yis)∑

s∈Si
exp(yis)

,
∂Λis(yi)
∂yis′

= xis(1s=s′ − xis′), and
∂2Λis(yi)
∂yis′∂yis′′

= xis (1s=s′=s′′ − 1s=s′xis′′ − xis′(1s=s′′ + 1s′=s′′ − 2xis′′))

Using Taylor’s Remainder Theorem, we obtain:

xis(n+ 1) = Λis(yi(n+ 1))

= Λis(yi(n) + γnv̂i(n))

= Λis(yi(n)) + γn

(
∇ΛTis(yi(n))v̂i(n) +

1

2
γnv̂

T
i (n)HessΛis(ψi(n))v̂i(n)

)
= xis(n) + γn

(
∇ΛTis(yi(n))v̂i(n) +

γn
2
v̂Ti (n)HessΛis(ψi(n))v̂i(n)

)
where ∇Λis is the gradient vector of Λis, ∇ΛTis is its transposed, HessΛis is the

Hessian matrix of Λis, and ψi(n) is in the line segment going out from yi(n) to the
point yi(n+ 1).

4This is also known as the Replicator Dynamics.
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xis(n+ 1) = xis(n)

+ γn

xis(n)(v̂is(n)−
∑
s′∈Si

xis′(n)v̂is′(n)) +
γn
2
v̂Ti (n)HessΛis(ψi(n))v̂i(n)


= xis(n) + γn

xis(n)(v̂is(n)−
∑
s′∈Si

xis′(n)v̂is′(n)) + γnan


where an = 1

2 v̂
T
i (n)HessΛis(ψi(n))v̂i(n).

By definition of ∂2Λis(yi)
∂yis′∂yis′′

, all components of HessΛis(ψi(n)) are bounded. Let
Eis,n be the event ||v̂is(n)||2 ≥ nα for 1

q < α < 1
2 , with q defined in Hypothesis (H2’).

Hypothesis (H2’) gives us that

∞∑
n=0

P(Eis,n) =
∞∑
n=0

P(‖v̂is(n)‖2 ≥ nα|Fn−1) =
∞∑
n=0

O(
1

nqα
) <∞ (5.45)

The Borel-Cantelli theorem gives us that Eis,n is true for only a finite number of
n ∈ N. Therefore for n > maxm∈N{m;∃i ∈ N , s ∈ Si, Eis,m is true}, ||v̂is(n)||2 <
nα. By hypothesis γn = o(nb) for any b > −1/2. In particular, γn = o(n−α) so
limn→∞ anγn = 0.

xis(n+ 1) = xis(n) + γn

xis(n)(vis(x(n))−
∑
s′∈Si

xis′(n)vis′(x(n)))


+ γn

xis(n)(v̂is(n)− vis(x(n))−
∑
s′∈Si

xis′(n)[v̂is′(n)− vis′(x(n))]) + γnan


Let Ui,n = xis(n)(v̂is(n) − vis(x(n)) −∑s′∈Si xis′(n)[v̂is′(n) − vis′(x(n))]), using

(5.13a) and (5.13b), we get

1. E[Ui,n|Fn−1] = 0 for all n

2. E[‖Ui,n‖2] <∞ for all n

Remark 4.5 and propositions 4.2 and 4.1 of [113] allow us to conclude the proof
(theses propositions and remark are written in Appendix B).

5.3.2 Global convergence in the continuous dynamics

In this subsection, x(t) is not anymore the discret variable defined in the algorithm
but a solution of the dynamics (5.44). We are now going to show that it converges to
rest points of the dynamics (5.44). Let F be the potential function.

Definition 5.3. Given a flow φ, a continuous function F : M → R is called a strict
increasing Lyapounov function if F (φt(y)) weakly increases for all y and is constant
if and only if y is a rest point of φ.

Theorem 5.12. The potential function F of the game is a strict increasing Lyapunov func-
tion of the flow inducted by the dynamics (5.44).
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Proof. We consider the variation of F . We have

Ḟ (x) =
∑
i∈N

∑
s∈Si

∂F

∂xis
(x)ẋis

=
∑
i∈N

∑
s∈Si

vis(x)xis

vis(x)−
∑
s′∈Si

vis′(x)xis′


=
∑
i∈N

∑
s∈Si

∑
s′∈Si

vis(x)xis (vis(x)xis′ − vis′(x)xis′)

=
∑
i∈N

∑
s∈Si

∑
s′∈Si

xisxis′
(
vis(x)2 − vis(x)vis′(x)

)
=
∑
i∈N

∑
s∈Si

∑
s′∈Si
s′>s

xisxis′ [vis(x)− vis′(x)]2

So, we can conclude that Ḟ (x) ≥ 0.
Ḟ (x) = 0 on all rest point of the dynamic. Ḟ (x) = 0 implies ∀i ∈ N ,∀s, s′ ∈

Si, xis = 0 or xis′ = 0 or vis(x) = vis′(x).
ẋis = xis

(
vis(x)−∑s′∈Si vis′(x)xis′

)
so if xis = 0 then ẋis = 0. Otherwise,

vis(x) = vis′(x) for all s′ ∈ Si such that xis 6= 0 and xis′ 6= 0, we have then
ẋis = xis(vis(x)− vis(x)

∑
s′∈Si
xis′ 6=0

xis′) = 0

To conclude, F is increasing and its derivative is null if and only if its evaluated
on a rest point of the dynamics (5.44). F is a strict increasing Lyapunov function of
the dynamics (5.44).

Corollary 5.13. Rest points of the dynamics are restricted NE

Proof. The dynamics (5.44) admits a strict increasing Lyapunov function. We are
now going to show that the rest points of the dynamics correspond to NE. Going
back to the Lyapunov proof, x(t) is a rest point of the dynamics if and only if Ḟ (x) =∑

i∈N
∑

s∈Si
∑

s′∈Si∧s′>s xisxis′ [vis(x)− vis′(x)]2 = 0. That condition is equivalent
to ∀i ∈ N ,∀s, s′ ∈ supp(xi), vis(x) = vis′(x). x respects that condition if and only
if it is a NE of the game restricted to the support of x, that is to say x is a restricted
NE.

Therefore the only rest points of the dynamics are restricted NE.

5.3.3 Global convergence in the potential game

In this section, (x(n))n∈N is the discret process defined in algorithm (HEDGE).
In finite generic potential game the number of NE is finite [114] and isolated. The

number of restricted game of a finite game is finite, so the number of restricted NE is
finite. We can apply Corollary 6.6 of [113] (see Appendix B) to show that the discret
process x(n) induced by (HEDGE) converges to a rest point of the dynamics (5.44)
which are restricted NE.

We now prove that if x(n) converges it is only toward a non-restricted NE.

Theorem 5.14. Assume that Hypotheses (H1) and (H2’) are true, if the step size is of the
form γ(t) = γ

tβ
with β ∈ [1

2 , 1], and the game is a potential game then x(n), defined in
(HEDGE), converges to a NE
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Proof. We proved that the flow induced by the dynamics (5.44) admits a strict Lya-
punov function and has countable rest points. We can apply Corollary 6.6 of [113]
that gives x(n) converges to a restricted NE.

The last step is now to prove that if x(n)→ x∗ then x∗ is a NE.
We show by contradiction that (x(n))n∈N converges to x∗ a NE. Assume that x∗

is not a NE.
∃i ∈ N ,∃s′ ∈ Si, s′ 6∈ supp(x∗i ), s.t., vis′(x∗) > vis(x

∗),∀s ∈ supp(x∗i ).
By continuity of u, there is a neighborhood U of x∗ and a > 0 such that:
∃i ∈ N ,∃s′ ∈ Si, s′ 6∈ supp(x∗i ), s.t., vis′(x) − vis(x) > a, ∀s ∈ supp(x∗i ), x ∈ U .

Using Lemma (5.2), for n0 big enough and n ≥ n0:

yis′(n)− yis(n) ≥ C + b
n−1∑
t=n0

γt →∞ (5.46)

Thus xis′ (n)
xis(n) = exp (yis′(n)− yis(n))→∞

xis(n)→ 0 and s is not in the support of x∗i which is a contradiction.
Therefore x∗ is a NE.

5.3.4 Convergence Rate

Assumption 5.1. Assume that, except for a null set of initial condition, x(n) con-
verges to a pure Nash equilibrium.

We did not prove this assumption but we intuitively consider that it is true. Fig-
ure 5.1 illustrates the evolution of mixed strategy in a two players game. Each player
has two strategies (s1 and s2) and players share the same utility functions.

Any initial conditions give a trajectory that converges towards a pure NE: ei-
ther (s1, s1) or (s2, s2) except for the diagonal between (s1, s2) and (s1, s2). Indeed,
initial conditions in the diagonal between (s1, s2) and (s1, s2) give a trajectory that
converges towards the mixed equilibria.

Theorem 5.15. Under the same assumption, if x(n) converges to x∗ = (s∗1, . . . , s
∗
N ). Then,

for some constants a > 0 and C > 0

1− xs∗(n) ≤ C exp(−
n−1∑
k=n0

γka)

Proof. By continuity of u, there is a neighborhood U of x∗ and a′ > 0 such that:
∀i ∈ N , ∀s′ ∈ Si, s′ 6= s∗i , vis∗i (x) − vis′(x) > a′, x ∈ U . Using Lemma (5.2) for n0

big enough:

yis∗(n)− yis(n) ≥ C + b
n−1∑
t=n0

γt

So, by computation, we can deduce that

∑
s∈Si,s 6=s∗

exp(yis(n)− yis∗(n)) ≤
∑

s∈Si,s 6=s∗
exp(−Cn0 −

n−1∑
k=n0

γka) ≤ C exp(−
n−1∑
k=n0

γka)

where we set C = |Si| exp(−Ct0). Now, we will focus on xs∗(n).
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FIGURE 5.1: Example of a flow and a few trajectories. Player 1 and 2
have each two strategies s1 and s2, the x-axis shows the probability of
Player 1 to play its s1 and the y-axis shows the probability of Player 2
to play its s1. The utility are written in blue u(s1, s1) = u(s2, s2) = 5
and u(s1, s2) = u(s2, s1) = 0. All initial conditions give a trajectory
that converges toward (s1, s1) or (s2, s2), except for the diagonal be-
tween (s1, s2) and (s1, s2) which leads to a trajectory that converged

toward ([ 12s1,
1
2s2], [ 12s1,

1
2s2]). Figure done with [115].

xs∗(n) =
exp(yis∗(n))∑

s∈S
exp(yis(n))

=
1∑

s∈Si

exp(yis(n)− yis∗(n))

=
1

1 +
∑

s∈Si,s 6=s∗
exp(yis(n)− yis∗(n))

xs∗(n) ≥ 1
1+C exp(−

∑n
k=n0

γka)

Since for any z > 0, 1
1+z ≥ 1− z, we obtain

1− xs∗(n) ≤ C exp(−
n−1∑
k=n0

γka)

(For example If γn = 1√
n

, then ln(1− xs∗(n)) = Ω(
√
n))
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5.4 Conclusions

We showed that, in generic games, EW algorithms have the rational property of
eliminating dominated strategies at exponential rate. In addition, the mixed strategy
profile converges toward NE if the NE is unique or if the initial conditions are close
enough.

Then, by restricting our analysis to potential games and using a stronger hypoth-
esis on the noise control, we showed that mixed strategy profile converges toward a
NE irregardless of initialization.

The HEDGE algorithm is an example of dual-averaging regularized algorithms.
The next chapter study the convergence of mixed strategy profile for any multi-
player dual-averaging regularized algorithm.
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Extension to regularized learning
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The previous chapter shows convergence garantees with a particular algorithm
called HEDGE and a full information payoff. In this chapter we show that the pre-
vious results in potential games can be extended to a larger class of algorithms, the
dual-averaging regularized algorithms. Theses algorithms are broadly studied [111],
[112], [116], [117] to cite a few, so it is important to extend our previous results to this
class of algorithms. We also study algorithms with bandit setting, when a player has
only access to the payoff of the chosen strategy.

6.1 Dual-averaging regularized learning

6.1.1 Preliminaries

6.1.1.1 Penalty functions

The greedy method for choosing a player’s best strategy is to choose:

xi(t+ 1) = argmaxxi∈Xi〈yi(t)|xi(t)〉, for all players i ∈ N (6.1)

However the maximum of 〈yi|xi〉 could often be outside Xi. And the maximum
restricted to Xi might be multiple or in the border of Xi.
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To avoid this problem we introduce a penalty function hi : Xi → R and define the
choice map by:

xi(t+ 1) = Qi(yi(t)) = argmaxxi∈Xi(〈yi(t)|xi〉 − hi(xi)). (6.2)

In order to have an unique solution the penalty function needs to be convex, stronger
conditions define a penalty function.

Definition 6.1. Let C be a compact convex subset of a finite-dimensional normed
space V . We say that h : C → R is a penalty function (or regularizer) on C if:

1. h is continuous,

2. h is strongly convex, i.e., there exists some K > 0 such that

h(tx+ (1− t)x′) ≤ th(x) + (1− t)h(x′)− 1

2
Kt(1− t)‖x′ − x‖2

for all x, x′ ∈ C and all t ∈ [0, 1].

For simplicity of the proofs, we add four hypotheses that hi need to satisfy for
each player i ∈ N :

1. hi is steep, i.e. ‖∇(hi(xi))‖ → ∞when xi → ∂Xi where ∂Xi is the boundary of
Xi,

2. h′i is continuous on ]0,∞[,

3. ‖Hess(Qi)‖∞ <∞, where Hess(Qi) is the Hessian matrix of Qi,

4. hi is decomposable, i.e. hi(xi) =
∑

si∈Si hisi(xi).

The first hypothesis makes sure that x is always in the interior of X although it can
convergence to the boundary where pure equilibria belong.

The second hypothesis also implies that ‖Jac(Qi)‖∞ < ∞, where Jac(Qi) is the
Jacobian matrix of Qi.

We believe that the first two hypotheses are not mandatory but we did not do
the proves without theses hypotheses.

We start by presenting a possible penalty function.

Gibbs entropy and the logit map A classical example, studied in Chapter 5, is the
Gibbs entropy:

hi(x) =
∑
si∈Si

xisi log(xisi) for all i ∈ N . (6.3)

hi verify all the conditions: it is continuous decomposable and strongly convex
(see Appendix A.1.2) and∇(hi(xi))si = 1 + log(xisi)→xisi→0 ∞ so hi is steep.

As shown in Appendix A, the corresponding choice map is the previously stud-
ied logit map:

Qi(y(t)) =

(
exp(yis(t))∑

s′∈Si exp(yis′(t))

)
s∈Si

Let xis = Qis(yi) = exp(yis)∑
s′∈Si

exp(yis′ )
. We have ∂Qis(yi)

∂yis′
= xis(1s=s′ − xis′), and

∂2Qis(yi)
∂yis′∂yis′′

= xis (1s=s′=s′′ − 1s=s′xis′′ − xis′(1s=s′′ + 1s′=s′′ − 2xis′′)).

Therefore Qi also verifies its condition as |HessQiss′ | ≤ 3.
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6.1.1.2 Algorithm

The dual-averaging regularized algorithm can be written as follows:

Algorithm 6.1 Dual-averaging regularized algorithm with variable step-size γt
1 Each player i ∈ N has an initial score vector yi(1) and plays with initial mixed strategy

xi(1) = Qi(yi(1)) where the choice map Qi is defined from the penalty function as

Qi(yi(n)) = argmaxxi∈Xi(〈yi(n)|xi(n)〉 − hi(xi(n))). (6.4)

2 for each round n
3 Each player i ∈ N draws a pure strategy si(n) according to xi(n)
4 Each player i ∈ N gets an estimate v̂i(n) of their payoff vector vi(s(n))
5 Each player i ∈ N updates their mixed strategy xi via the recursion

yi(n+ 1) = yi(n) + γnv̂i(n),

xi(n+ 1) = Qi(yi(n+ 1))
(DUAL AVERAGING)

end for

We keep the same noise model as in the previous chapter:

v̂i(n) = vi(s(n)) + ξi(n), (6.5)

where the error process ξ = (ξi)i∈N satisfies the statistical hypotheses

1. Zero-mean:

E[ξ(n)|Fn−1] = 0 for all n = 1, 2, . . . (a.s.). (H1)

2. Finite MSE: there exists some σ > 0 such that

E[‖ξ(n)‖2∞|Fn−1] ≤ σ2 for all n = 1, 2, . . . (a.s.). (H2)

6.1.2 Convergence in potential games

Just like in Chapter 5 to study the global converge to the set of Nash Equilibria, we
limit our study to potential games (see Definition 5.1 Chapter 5 ).

We also need a stronger control on the variance such that:

P[‖v̂(n)‖2∞ ≥ z|Fn−1] = O( 1
zq ) for all n = 1, 2, . . . with q>2. (H2’)

We show here that we can follow the same steps as with algorithm HEDGE.

1. Show that x is an asymptotic pseudo trajectory of a continuous dynamic,

2. Show that the potential function of the game is strict Lyapunov function of the
continuous dynamic,

3. Show that x converges toward a rest point of the continuous dynamic,

4. Show that if x converges toward a point it is a Nash Equilibrium.
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6.1.2.1 Asymptotic Pseudotrajectory

Theorem 6.1. Under Hypotheses (H1) and (H2’), if the step size is of the form γ(n) = γ
nβ

with β ∈ [1
2 , 1], the interpolated process of the sequences (xi(n))n∈N is an asymptotic pseudo

trajectory of the solutions of the following ordinary differential equation

ẋis(t) =
∑
s′∈Si

∇(Qis)s′(yi(t))vis′(x(t)) = ∇QTis(yi(t))vi(x(t))

ẋi(t) = Jac(Qi)(yi(t))vi(x(t)),

(6.6)

where∇Qis is the gradient vector of Qis and Jac(Qi) the Jacobian matrix of Qi.

Proof. First, we will check whether the stochastic process (xi(t)) given by (DUAL AVERAGING)
is an approximate Robbins-Monro algorithm. Using Taylor’s Remainder Theorem,
we obtain:

xis(n+ 1) = Qis(yi(n+ 1))

= Qis(yi(n) + γnv̂i(n))

= Qis(yi(n)) + γn

(
∇QTis(yi(n))v̂i(n) +

1

2
γnv̂

T
i (n)Hess(Qis)(ψi(n))v̂i(n)

)
= xis(n) + γn

(
∇QTis(yi(n))v̂i(n) +

γn
2
v̂Ti (n)Hess(Qis)(ψi(n))v̂i(n)

)
= xis(n) + γn

(
∇QTis(yi(n))vi(x(n)) +∇QTis(yi(n))(v̂i(n)− vi(x(n))) + γnan

)
where∇Qis is the gradient vector of Qis,∇QTis is its transposed, Hess(Qis) is the

Hessian matrix of Qis, ψi(n) is in the line segment going out from yi(n) to the point
yi(n+ 1), and an = 1

2 v̂
T
i (n)Hess(Qis)(ψi(n))v̂i(n).

By hypotheses all components of Hess(Qis)(ψi(n)) are bounded. Let Eis,n be the
event ||v̂is(n)||2 ≥ nα for 1

q < α < 1
2 , with q defined in Hypothesis (H2’). Hypothesis

(H2’) gives us that

∞∑
n=0

P(Eis,n) =
∞∑
n=0

P(‖v̂is(n)‖2 ≥ nα|Fn−1) =
∞∑
n=0

O(
1

nqα
) <∞ (6.7)

The Borel-Cantelli theorem gives us that Eisn is true for only a finite number of
n ∈ N. Therefore for n > maxm∈N{m;∃i ∈ N , s ∈ Si, Eis,m is true}, ||v̂is(n)||2 <
nα. By hypothesis γn = o(nb) for any b > −1/2. In particular, γn = o(n−α) so
limn→∞ anγn = 0.

Let Ui,n = ∇QTis(yi(n))(v̂i(n) − vi(x(n))), using (5.13a) and (5.13b) (from Hy-
potheses (H1) and (H2)) we obtain ‖∇QTis(yi(n))‖∞ < ∞ for all n and the fact
that ∇QTis(yi(n)) is Fn−1-measurable ( because the information of y(n) is included
in Fn−1), we get

1. E[Ui,n|Fn−1] = 0 for all n

2. E[‖Ui,n‖2] <∞ for all n

Remark 4.5 and propositions 4.2 and 4.1 of [113] allow us to conclude the proof
(theses propositions and remark are written in Appendix B).
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Lemma 6.2. With the same assumptions, the interpolated process of the sequences (yi(n))n∈N
is an asymptotic pseudo trajectory of the solutions of the following ordinary differential equa-
tion

ẏi(t) = vi(x(t)) (6.8)

Proof. Recall that

yi(t+ 1) = yi(t) + γtv̂i(t) = yi(t) + γtvi(x(t)) + γt(v̂i(t)− vi(x(t)))

Using Hypothesese (H1) and (H2) in propositions 4.2 and 4.1 of [113] allow us to
conclude the proof.

6.1.2.2 Global convergence with the continuous dynamics

In this subsection, x(t) is not anymore the discreet variable defined in the algorithm
but a solution of the dynamics (6.6).

We are now going to show that x(t) converges to rest points of (6.6). Let F be the
potential function of the game.

Theorem 6.3. The potential function F of the game is a strict increasing Lyapunov function
(see Definition 5.3) of the flow inducted by the dynamics (6.6).

Proof. We consider the variation of F . We have

Ḟ (x(t)) =
∑
i∈N

∂F

∂xi
(x(t))ẋi(t)

=
∑
i∈N

vTi (x(t))ẋi(t)

=
∑
i∈N

∑
s∈Si

vis(x(t))ẋis(t)

(6.9)

We are now going to find an other expression of ẋi(t), to that end we use the
Lagrange multiplier. Recall that Qi(yi) = argmaxxi∈Xi(〈yi(t)|xi(t)〉 − hi(xi(t))), so
Qi can be seen as an optimisation of 〈yi(t)|xi(t)〉 − hi(xi(t)) when

∑
s∈Si xis(t) = 1.

For simplicity we drop the "(t)".

Li(xi, λi) =
∑
s∈Si

(xisyis − his(xis)) + λi(
∑
s∈Si

xis − 1) (6.10)

By derivation we obtain

∂Li
∂λi

= 0 =
∑
s∈Si

xis − 1 (6.11)

and, noting h′is(xis) = dhis
dxis

(xis) we have

∂Li
∂xis

= 0 = yis − h′is(xis) + λi, for all s ∈ Si. (6.12)

Taking the derivative again we get

ẏis = h′′is(xis)ẋis − λ̇i, for all s ∈ Si. (6.13)

Let Hi be the Hessian matrix of hi. As h is strongly convex, its Hessian matrix
is strictly positive and invertible, in particular h′′is(xis) > 0. Let dis = h′′is(xis), we
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obtain:

ẋis =
ẏis
dis

+
λ̇i
dis
, for all s ∈ Si.

0 =
∑
s∈Si

ẋis =
∑
s∈Si

(
ẏis
dis

+
λ̇i
dis

)
(6.14)

Because
∑

s∈Si xis = 1, we can express λ̇i and ẋis.

λ̇i = −
∑

s∈Si
ẏis
dis∑

s∈Si
1
dis

ẋis =
ẏis
dis
− 1

dis

∑
s′∈Si

ẏis′
dis′∑

s′∈Si
1
dis′

=
∑
s′∈Si

ẏis − ẏis′
dis′dis

∑
s′∈Si

1
dis′

(6.15)

Injecting that into (6.9) and using ẏis(t) = vis(x(t)) (Lemma (6.2)):

Ḟ (x(t)) =
∑
i∈N

∑
s∈Si

∑
s′∈Si

v2
is(x(t))− vis′(x(t))vis(x(t))

dis′dis
∑

s′∈Si
1
dis′

Ḟ (x(t)) =
∑
i∈N

∑
s∈Si

∑
s′∈Si,s′ 6=s

(vis(x(t))− vis′(x(t)))2

dis′dis
∑

s′∈Si
1
dis′

Ḟ (x(t)) ≥ 0

(6.16)

If x(t) is a rest point, ẋis(t) = 0 for all i ∈ N , s ∈ Si and Ḟ (x(t)) = 0 using the
Equation (6.9). Let show the reverse, i.e., that if Ḟ (x(t)) = 0 then x(t) is a rest point.
First we remark that Ḟ (x(t)) = 0 if each term of the sum is nul. At least one of three
conditions needs to the true for a term to be null:

1. 1
dis

= 0,

2. 1
dis′

= 0,

3. vis(x(t)) = vis′(x(t)).

Recall that h is steep, is derivative goes to the infinity when reaching the boundary
of X . Therefore the second derivative of h also goes to infinity when reaching the
boundary and dis →xis→0 ∞.

So those three conditions can be gathered in one condition :

Ḟ (x(t)) = 0⇔ ∀i ∈ N , vis(x(t)) = vis′(x(t))∀s, s′ ∈ Si such that
1

dis
6= 0 and

1

dis′
6= 0

Recall that ˙yis(t) = vis(x(t)) (Lemma (6.2)) so this condition applied to (6.15)
gives us that ẋis(t) = 0 ∀i ∈ N , ∀s,∈ Si. Therefore Ḟ (x(t)) = 0 if and only if (x(t))
is a rest point of the dynamics (6.6).

The corollary (5.13) applies as well in the dual-averaging regularized algorithm
because dis →xis→0 ∞ so rest points of the dynamics are Nash Equilibria. And equi-
libria are countable and isolated because the potential game in finite and generic.
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6.1.3 Global convergence in the potential game

In this section, x(n) is again the discreet variable defined in the algorithm.
Just like for (HEDGE) the Corollary 6.6 of [113] allows to conclude that x(n)

converges to a Nash Equilibrium.
We show now that x(n) converges to a Nash Equilibrium of the game (not re-

stricted).

Theorem 6.4. If x(n)→ x∗, x∗ is a Nash Equilibrium.

Proof. We show by contradiction that (x(n))n∈N converges to x∗ a Nash Equilibrium.
Assume that x∗ is not a Nash Equilibrium.
∃i ∈ N , ∃s′ ∈ Si, s′ /∈ supp(x∗i ), s.t., vis′(x∗) > vis(x

∗), ∀s ∈ supp(x∗i ).
By continuity of u, there is a neighborhood U of x∗ and a > 0 such that:
∃i ∈ N , ∃s′ ∈ Si, s′ /∈ supp(x∗i ), s.t., vis′(x) − vis(x) > a, ∀s ∈ supp(x∗i ), x ∈ U .

Using Lemma 5.2, for n0 big enough and n ≥ n0:

yis′(n)− yis(n) ≥ C + b
n−1∑
t=n0

γt →∞ (6.17)

Thus, using (6.12) yis′(n)− yis(n) = h′is′(xis′(n))− h′is(xis(n)) we have

h′is′(xis′(n))− h′is(xis(n)) ≥ C + b

n−1∑
t=n0

γt

And
h′is′(xis′(n))− h′is(xis(n))→n→∞ ∞

That is a contradiction because h′is′(xis′(n)) → −∞ because s′ is not in the sup-
port of x∗ and xis′(n)→ 0 and h′is(xis(n)) is bounded.

Therefore x∗ is a Nash Equilibrium.

6.1.4 Convergence time

Assumption 6.1. Assume that except for a nullset of initial conditions, x(t) con-
verges to a pur Nash equilibrium.

Theorem 6.5. Assume that x(t)→ x∗ = (s∗1, . . . , s
∗
N ). Then,

1− xs∗i (n) ≤
∑

s∈Si,s 6=s∗i

h′
−1
is (O(

n−1∑
k=n0

γk))

Proof. By continuity of u, there is a neighborhood U of x∗ and a′ > 0 such that:
∀i ∈ N , ∀s′ ∈ Si, s′ 6= s∗i , vis∗i (x)− vis′(x) > a′, x ∈ U . Using Lemma 5.2 for n0 big

enough and s ∈ Si, s 6= s∗:

yis∗(n)− yis(n) ≥ C + b
n−1∑
t=n0

γt

So, using (6.12) yis∗(n)−yis(n) = h′is∗(xis∗(n))−h′is(xis(n)) , and that h′is(1) <∞
because h′ is continuous on ]0,∞[, we can deduce that
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h′is∗(xis∗(n))− h′is(xis(n)) ≥ C + b
n−1∑
t=n0

γt

h′is(xis(n)) ≤ h′is∗(xis∗(n))− C − b
n−1∑
t=n0

γt

h′is(xis(n)) ≤ h′is∗(1)− C − b
n−1∑
t=n0

γt

xis(n) ≤ h′−1
is

(
O(

n−1∑
t=n0

γn)

)
(6.18)

6.2 Bandit setting

We consider now the extension to bandit setting. In this setting, a player has only
access to the noisy payoff of the strategy he chooses. This is a more realistic setting
but implies modification in the algorithm.

The payoff received by a player is now :

v̂isi(n) = 1si=si(n)
visi(s(n))

xisi(n)
+ ξisi(n) (6.19)

With such a setting, Hypothesis (H2) does not imply (5.13b) anymore and the
noise is not bounded. To overpass this problem, the algorithm is slightly changed
such that xisi(n) > ε with a ε > 0 parameter of the algorithm. Fixing such an ε also
allow us to use Hypothesis (H2’).

6.2.1 ε-dynamic and ε-equilibrium

The modified algorithm is as follows, with Si being the number of pure strategies in
Si.
Algorithm 6.2 Epsilon dual-averaging regularized algorithm with variable step-size
γt and fixed εi that can differ between players.
1 Each player i ∈ N has an initial score vector yi(1) and plays with initial mixed strategy

xεi(1) = εi
Si

+ (1 − εi)Qi(yi(1)) where the choice map Qi is defined from the penalty
function as

Qi(yi(n)) = argmaxxi∈Xi(〈yi(n)|xi(n)〉 − hi(xi(n))). (6.20)

2 for each round n
3 Each player i ∈ N draws a pure strategy si(n) according to xεi(n)
4 Each player i ∈ N gets an estimate v̂i(n) of their payoff vector vi(s(n))
5 Each player i ∈ N updates their mixed strategy xεi via the recursion

yi(n+ 1) = yi(n) + γnv̂i(n),

xis(n+ 1) = Qi(yi(n+ 1)),

xεis(n+ 1) =
εi
Si

+ (1− εi)xis(n+ 1)

(ε-DA)

end for
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Observation 6.1. For any t ∈ N, ‖xε(n)−x(n)‖2 ≤ Nε where ε = maxi∈N
εi√
Si

, N is the
number of players and Si the number of pure strategies of player i.
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FIGURE 6.1: Evolution of x(n) and xε(n) in a two player game with
two strategies each. The x-axis is the probability of player one to play
its first strategy which is x1s1(n) (resp. xε1s1(n)), the y-axis is the prob-
ability of player two to play its first strategy which is x2s1(n) (resp.

xε2s1(n)).

This ensures that xεis(n + 1) > ε so variances of payoffs are bounded. The ε-
dynamics followed by xε is different than previously studied dynamics as it cannot
converge to pure equilibria. Figure 6.1 represents the simultaneous evolutions of
x(n) (in black) and xε(n) (in violet). The middle point, corresponding to an uni-
formly probability of drawing strategies, is the only point equal in both dynamics.

This rises the notion of ε-equilibrium.

Definition 6.2. A strategy profile x∗ is said to be an ε-Nash equilibrium if it satisfies
the following condition:

ui(x
∗
i ;x
∗
−i) + ε ≥ ui(xi;x∗−i) ∀xi ∈ Xi, i ∈ N . (ε-NE)

The link between the trajectory of x(n) and xε(n) appears clearly in Figure 6.1.
But it is important to state the relation between the convergence of the two.

Lemma 6.6. If (x(n))n∈N converges to x∗ a Nash equilibrium, then (xε(n))n∈N, defined
in (ε-DA), converges to a δ(ε)-Nash equilibrium with δ(ε) → 0 when ε → 0, with ε =
maxi∈N

εi
|Si| .
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Proof. xε is uniquely defined from x by a continuous equation, so (xε(n))n∈N also
converges to a limit xε∗. Observation (6.1) gives us that ‖xε(n) − x(n)‖2 ≤ Nε so
‖xε∗ − x∗‖2 ≤ Nε.

We show that if ‖x− x′‖2 ≤ ε then ‖ui(x)− ui(x′)‖2 ≤ δ(ε)
2 →ε→0 0

|ui(x)− ui(x′)| = |
∑
s1∈S1

· · ·
∑

sN∈SN

ui(s1, . . . , sN )(x1s1 · · ·xNsN − x′1s1 · · ·x′NsN )|

≤
∑
s1∈S1

· · ·
∑

sN∈SN

ui(s1, . . . , sN )|(x1s1 · · ·xNsN − x′1s1 · · ·x′NsN )|

≤
∑
s1∈S1

· · ·
∑

sN∈SN

ui(s1, . . . , sN )|(x1s1 · · ·xNsN − (x1s1 − ε) · · · (xNsN − ε))|

≤
∑
s1∈S1

· · ·
∑

sN∈SN

ui(s1, . . . , sN )|
N∑
k=1

(−ε)k
(
N

k

)
|

=
δ(ε)

2
→ε→0 0

(6.21)

x∗ is a Nash Equilibirum so ui(x∗i ;x
∗−i) ≥ ui(xi;x

∗
−i) for all xi ∈ Xi, i ∈ N . In

addition we have ‖xε∗ − x∗‖2 ≤ Nε and ‖{xi, xε∗−i} − {xi, x∗−i}‖2 ≤ Nε.

ui(x
ε∗
i ;xε∗−i) +

δ(ε)

2
≥ ui(x∗i ;x∗−i) ≥ ui(xi;x∗−i) ≥ ui(xi;xε∗−i)−

δ(ε)

2
ui(x

ε∗
i ;xε∗−i) + δ(ε) ≥ ui(xi;xε∗−i) for all xi ∈ Si, i ∈ N

(6.22)

This result allows us to focus on the convergence of x(n) towards Nash Equi-
librium. We will proceed like in Section 6.1.2, the redundant calculations are not
written again.

6.2.2 Global convergence

The first step is to show that the linear interpolation x(t) of (x(n))n∈N is an asymp-
totic pseudotrajectory of a dynamics.

6.2.2.1 Asymptotic pseudo trajectory

Theorem 6.7. Under Hypotheses (H1) and (H2’), if the step size is of the form γ(t) = γ
tβ

with β ∈ [1
2 , 1], the interpolated process of the sequences (xi(n))n∈N is an asymptotic pseudo

trajectory of the solutions of the following ordinary differential equation

ẋis(t) =
∑
s′∈Si

∇(Qis)s′(yi(t))vis′(x
ε(t)) = ∇QTis(yi(t))vi(xε(t))

ẋi(t) = Jac(Qi)(yi(t))vi(x
ε(t)),

(6.23)

where∇Qis is the gradient vector of Qis and Jac(Qi) the Jacobian matrix of Qi.
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Proof. First, we will check that the stochastic process (xi(n)) given by (ε-DA) is an
approximate Robbins-Monro algorithm. Using Taylor’s Remainder Theorem, we
obtain:

xis(n+ 1) = Qis(yi(n+ 1))

= Qis(yi(n) + γnv̂i(n))

= Qis(yi(n)) + γn

(
∇QTis(yi(n))v̂i(n) +

1

2
γnv̂

T
i (n)Hess(Qis)(ψi(n))v̂i(n)

)
= xis(n) + γn

(
∇QTis(yi(n))v̂i(n) +

γn
2
v̂Ti (n)Hess(Qis)(ψi(n))v̂i(n)

)
= xis(n) + γn

(
∇QTis(yi(n))vi(x

ε(n)) +∇QTis(yi(n))(v̂i(n)− vi(xε(n))) + γnan
)

The following of the proof is the exact same as in (DUAL AVERAGING).

We also have the same result with y(t).

Lemma 6.8. With the same assumptions, the interpolated process of the sequences (yi(n))n∈N
is an asymptotic pseudo trajectory of the solutions of the following ordinary differential equa-
tion

ẏi(t) = vi(x
ε(t)) (6.24)

Proof. Recall that

yi(t+ 1) = yi(t) + γtv̂i(t) = yi(t) + γtvi(x
ε(t)) + γt(v̂i(t)− vi(xε(t)))

Using Hypothesese (H1) and (H2) in propositions 4.2 and 4.1 of [113] allow us to
conclude the proof.

6.2.2.2 Global convergence with the continuous dynamics

In this subsection, x(t) is not anymore the discreet variable defined in the algorithm
but a solution of the dynamics (6.23).

We are now going to show that is converges to rest points of (6.6). Let F be the
potential function of the game.

Theorem 6.9. The potential function F of the game is a strict increasing Lyapunov function
(see Definition (5.3)) of the flow inducted by the dynamics (6.6).

Proof. The calculus are slightly different that in (DUAL AVERAGING) because here
the dynamics is on x but the payoff is evaluated on xε. We consider the variation of
F . We have

Ḟ (xε(t)) =
∑
i∈N

∂F

∂xi
(xε(t))ẋi(t)

=
∑
i∈N

vTi (xε(t))ẋi(t)

=
∑
i∈N

∑
s∈Si

vis(x
ε(t))ẋis(t)

(6.25)

We are now going to find an other expression of ẋi(t), to that end we use the La-
grange multiplier. We don’t write the calculus that are the exact same as in (DUAL AVERAGING).
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ẋis =
ẏis
dis
− 1

dis

∑
s′∈Si

ẏis′
dis′∑

s′∈Si
1
dis′

=
∑
s′∈Si

ẏis − ˙yis′

dis′dis
∑

s′∈Si
1
dis′

(6.26)

With dis = d2his
d2xis

(xis).
Injecting that into (6.25) and using ẏis(t) = vis(x

ε(t)) (Lemma (6.8)):

Ḟ (xε(t)) =
∑
i∈N

∑
s∈Si

∑
s′∈Si

v2
is(x

ε(t))− vis′(xε(t))vis(xε(t))
dis′dis

∑
s′∈Si

1
dis′

Ḟ (xε(t)) =
∑
i∈N

∑
s∈Si

∑
s′∈Si,s′ 6=s

(vis(x
ε(t))− vis′(xε(t)))2

dis′dis
∑

s′∈Si
1
dis′

Ḟ (xε(t)) ≥ 0

(6.27)

It is important to remark here that whereas payoff v are evaluated on xε, dis
corresponds to the second derivative of his evaluated on x. This is because payoffs
are evaluated on the probability used to draw strategies whereas dis comes from
the analysis of the choice map that determines x. The consequences are that dis
convergences to∞when xis → 0 because h is steep, but xεis does not converge to 0.

If xε(t) is an equilibrium, ẋεis(t) = ẋis(t)
1−εi = 0 for all i ∈ N , s ∈ Si and Ḟ (xε(t)) = 0

using the Equation (6.9). Let show the reverse, meaning that is Ḟ (xε(t)) = 0 then
xε(t) is an equilibrium. First we remark that Ḟ (xε(t)) = 0 if each term of the sum is
null. At least one of three conditions needs to the true for a term to be null:

1. 1
dis

= 0,

2. 1
dis′

= 0,

3. vis(xε(t)) = vis′(x
ε(t)).

Recall that h is steep, is derivative goes to the infinity when reaching the boundary
of X , as X is bounded. Therefore the second derivative of h does the same and
dis →xis−>0 ∞.

So those three conditions can be gathered in one condition :

Ḟ (xε(t)) = 0⇔ ∀i ∈ N vis(xε(t)) = vis′(x
ε(t))∀s, s′ ∈ Si such that

1

dis
6= 0 and

1

dis′
6= 0

Recall that ˙yis(t) = vis(x
ε(t)) (Lemma (6.2)) so this condition applied to (6.26)

gives us that ẋis(t) = 0 ∀i ∈ N ,∀s,∈ Si so ẋεis(t) = 0. Therefore Ḟ (xε(t)) = 0 if and
only if (xε(t)) is an equilibrium of the dynamics (6.23).

The corollary (5.13) does not apply here because 1
dis
→ 0 when xis → 0 but the

payoff is evaluated on xε which coordinates are never null. However, finding the
number of rest points of the dynamics is equivalent of finding x ∈ X such that

∀i ∈ N vis(xε(t)) = vis′(x
ε(t))∀s, s′ ∈ Si such that xis > 0 and xis′ > 0

Let supi be the cardinal of the support of xi. Because the game is generic, we obtain,
supi − 1 independent equations per player ( vis′(xε(t)) = vis′′(x

ε(t)) is a combina-
tion of vis(xε(t)) = vis′′(x

ε(t)) and vis(x
ε(t)) = vis′(x

ε(t)) ) and by definition of the
support we also have supi − 1 unknowns per player. Therefore we obtain the same
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number of unknowns and independent equations. We thus have one solution by
different support of x(t) which is a finite number of rest points.

6.2.3 Global convergence in the potential game

In that section x(n) is again the discreet variable defined in the algorithm.
Just like for (HEDGE) the Corollary 6.6 of [113] allows us to conclude that xε(n)

converge to a rest point of the dynamics (6.23).
Then Lemma (6.6) shows that xε(n) converges if and only if x(n) converges.

Theorem 6.10. If xε(n) → x∗ε, x∗ε is a ε-Nash Equilibrium and x(n) → x∗ with x∗ a
Nash Equilibrium, given that ε is sufficiently small.

Proof. When xε(n) converges, x(n) converges too. Applying Lemma 6.6 it suffices
to show that if x(n) → x∗ then x∗ is Nash Equilibrium. We show by contradiction
that (x(n))n∈N converges to x∗ a Nash Equilibrium. Assume that x∗ is not a Nash
Equilibrium.
∃i ∈ N , ∃s′ ∈ Si, s′ 6∈ supp(x∗i ), s.t., vis′(x∗) > vis(x

∗), ∀s ∈ supp(x∗i ).
By continuity of u, there is a neighborhood U of x∗ and a > 0 such that:
∃i ∈ N , ∃s′ ∈ Si, s′ 6∈ supp(x∗i ), s.t., vis′(x) − vis(x) > a, ∀s ∈ supp(x∗i ), x ∈ U .

For ε small enough and for all n big enough, xε(n) ∈ U because ‖xε(n) − x∗‖ ≤
‖xε(n) − x(n)‖ + ‖x(n) − x∗‖ ≤ Nε + ‖x(n) − x∗‖. So, ∃i ∈ N , ∃s′ ∈ Si, s′ 6∈
supp(x∗i ), s.t., vis′(x

ε(n)) − vis(x
ε(n)) > a, ∀s ∈ supp(x∗i ) Using Lemma 5.2, for n0

big enough and n ≥ n0:

yis′(n)− yis(n) ≥ C + b

n−1∑
t=n0

γt →∞ (6.28)

Thus, using (6.12) yis′(n)− yis(n) = h′is′(xis′(n))− h′is(xis(n)) we have

h′is′(xis′(n))− h′is(xis(n)) ≥ C + b

n−1∑
t=n0

γt

and
h′is′(xis′(n))− h′is(xis(n))→n→∞ ∞

That is a contradiction because h′is′(xis′(n)) → −∞ as s′ is not in the support of
x∗ and xis′(n)→ 0 and h′is(xis(n)) is bounded. So s is not in the support of x∗i which
is a contradiction.

Therefore x∗ is a Nash Equilibrium and x∗ε is a ε-Nash Equilibrium.

6.2.4 Convergence time

The asymptotical convergence rate in the bandit setting is the same as in the semi-
bandit setting because the convergence of (xε(n)) is equivalent to the convergence
of (x(n)). However the time from which the convergence rate is reached changes
between the semi-bandit and bandit setting. That is to say the n0 such that xε(n0) ∈
U in the bandit setting and x(n0) ∈ U in the semi-bandit setting. In the bandit
setting n0 is larger than in the semi-bandit game because x(n) needs to be in a smaller
neighborhood for xε(n) to be in U .
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6.3 Conclusions

We showed that dual-averaging regularized algorithms in potential games and un-
der specific assumption on the step size converge toward NE in the semi-bandit
setting and towards ε-NE in the bandit setting. Furthermore, asymptotical conver-
gence rate is exponential in both settings using HEDGE algorithm. For more general
dual-averaging regularized algorithms, the asymptotical converge rate depends on
the penalty function used. As a perspective work, we would like to extend our re-
sults in the bandit setting to a more general noise instance, when only the payoff
of the chosen strategy is affected by noise. We would also like to study the case of
ε−algorithm with ε(t) →t→∞ 0. We believe that under some assumption on ε(t), xε

will converge to a NE instead of a ε−NE as we shown. The next chapter presents an
application of HEDGE algorithm to protein folding.
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From game theory to protein
folding
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Protein folding, i.e, the prediction of the protein structure, can be seen as an
optimisation problem, a search of equilibria. Folded proteins correspond to minima
of the energy landscape [118], [119]. Using the same approach as in [55] with RNA
folding, we attempt to fold proteins. However folding a protein is a much harder
problem than an RNA. Not only are protein sequences much more diverse because
proteins have 20 AAs and RNAs have only 4 nucleotides, so there are much more
parameters to consider, but proteins are also more compact. Also, whereas non-
local interactions are well characterized for RNA (base pairs), side chain interactions
can be very transient. An approximated fold can contain a lot of collisions (atoms
overlapping) and be rejected because it is not biologically correct.

7.1 Game setting

We use a dataset of protein chains to determine how to define players, their strategies
and utility.
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7.1.1 Dataset

As we wanted to obtain a distribution of distances and angles corresponding to
the distribution over all proteins, we chose a low percentage of identity among se-
quence. Thus, all protein chains we studied have less than 20% of sequence identity.
We also restricted the dataset to only keep proteins with at least 2.0 Å of resolution.
The tool, CulledPDB [120], allowed us to easily retrieve all protein chains satisfying
theses conditions.

We then cleaned the 5, 880 chains to keep chains with no gap in the sequence. We
also removed alternate conformations. 1

We obtained a 5, 836 protein chains dataset on which we performed various anal-
ysis. The number of AAs per chain in the dataset is very disparate, from 6 to 500 with
an average of 206.6 and a median of 185 AAs per chain. For the statistics on distances
between AAs we did not consider distances larger than 20 Å as we only find them in
big proteins. We also did not consider the two AAs directly after and before in the
protein chain (the four closets neighbors) because theses distances are the same for
all AAs in any protein.

For our analysis, we made two distinctions - the secondary structure and the
AAs type.

7.1.1.1 Secondary structure

We use DSSP [11] to assign a secondary structure to each AA from the dataset. DSSP
classifies secondary structure into eleven categories, distinguishing between π-helix,
310-helix and α-helix. As we want to be able to apply our method to protein with
unknown structure, we need our classification to correspond to what PSIPRED [12]
can classify. We therefore only distinguished between three secondary structures -
helices (corresponding to "H" in DSSP), strands of β-sheet (corresponding to "E" in
DSSP) and loop (corresponding to all the rest).

When measuring distances between AAs we did not consider AAs in the same
element of secondary structure, for example of the same helix, or the same loop.
We took this measure because our main focus is to determine how the secondary
structures arrange themselves among others.

7.1.1.2 Type of amino acids

AAs have different physico-chemical characteristics that are essential for the folding
of the protein. Indeed a few mutations, i.e. changes in the AA sequence, can result in
a completely different fold [121]. We used the three groups classification described in
Table 1.2. This classification between, charged, polar and hydrophobic AAs keep the
main physico-chemical information. Hydrophobic AAs are usually buried inside the
protein to avoid any interaction with the solvent. Polar AAs participate in hydrogen
bonds and charged AAs can also interact with each other.

7.1.2 Players

We work with two different definitions of players. Both definitions are related to
amino acids. We use a coarse-grained approach, each AAs is represented by only 4
(or 3 for the glycine) of its atoms - N, Cα, C and Cβ (except for the glycine which

1Alternate conformations appear when an atom can have multiple positions. In that case, all poten-
tial positions are written in the structure file with their probability. By removing alternate conforma-
tions we mean keeping the most likely.
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does not have that atom). Bonds length and angles in the backbone of the protein
are almost fixed. We computed them in the dataset and found the values illustrated
in Figure 7.1.

a)

b)

Player 1 Player 2

Player 1 Player 2

FIGURE 7.1: Representation of a player and its 4 atoms. the oxygen
atom (O) is represented for a better understanding of the figure but it
is not in the player description. a) Plan angles between atoms of the

AA. b) Bond lengths.

Theses fixed values allow us to construct the backbone of the protein only from
its sequence.

In the "all AAs" setting each amino acid is a player. In the "tripeptide" setting a
player is a set of three AAs, with no overlap. If the number of AAs is not a multiple
of 3, the last or the two last AAs do not belong to a player.

7.1.3 Strategies

Strategies are the moves that players can perform to fold the protein. We only con-
sider torsional angles, i.e., rotation around bonds. As presented in Chapter 1 two
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torsional angles 2 are allowed in each AA backbone. Therefore in the "all AAs" set-
ting a strategy is a couple of two angles (φ, ψ) and in the "tripeptide" setting a strat-
egy is a tuple of six angles (φ1, ψ1, φ2, ψ2, φ3, ψ3), corresponding to the two torsional
angles of three AAs. The strategy set of each player is defined differently for the
two settings. In both settings the strategy sets of players depends on the secondary
structure of the AA.

7.1.3.1 Strategies in the "all AAs" setting

In this setting we choose the strategy sets according to the accessible torsional angles
in the Ramachandran plot [10]. Ramachandran plots represent the possible couples
of (φ,ψ) angles for an AA. We chose to use bins of 1 degree and computed Ramachan-
dran plots over our dataset for helices, stands and loops (Figure 7.2) by counting the
number of occurrences of each couple.

We chose strategy sets by randomly drawing 100 to 10000 (depending on experi-
ments) couples of angles from each Ramachandran plots. We draw couples of angles
according to the distribution observed in the dataset but without drawing twice the
same couple.

a) b) c)Helix Strand Loop

ψ ψ ψ

φ φ φ

FIGURE 7.2: Ramachandran plots for (a) helices, (b) strands, (c) loop.
Each point correspond to a couple of (φ,ψ) angles. The color scale
indicates the number of AAs in the dataset having a certain couple of

torsional angles.

7.1.3.2 Strategies in the "tripeptide" setting

For the tripeptide setting, we used a database [122] of tripeptide (three AAs) based
on the SCOP database [31]. For each tripeptide possible sequence (203 possibilities
but we only use the ones present in the protein under study) the database contains
the tuples of angles found in the SCOP database as well as their secondary struc-
tures.

For each player we use as strategies the tuples in the database that correspond to
the same secondary structures.

7.1.4 Utility functions

Now that we have chosen players and their strategies, the last step is to define an
utility function. We will mainly use the algorithm from section 5.3 without noise.
Therefore we want our game to be a potential game. A natural way of choosing the
utility function such that the game is a potential game is to choose the same utility

2As presented in Chapter 1 we always set the angle ω to π.
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function for all players. Then the utility function is itself the potential function. The
local minima of the utility function are NE, and thus they are potential limit points
of the algorithm. Therefore the utility function should give high utility to folded
protein. We tried three different functions. The first two are test functions that use
the native (i.e., the folded protein) as input.

7.1.4.1 Root Mean Squared Distance

The natural utility function is the RMSD to the native structure. This utility function
can not be used for preditcion as it needs the native structure. However, it is useful to
assess the quality of our method independently of the quality of the utility function
itself. To compute the RMSD we first need to superimpose the two structures. That
includes translating them so their barycenters are the same point and then find the
best rotation. Once that is done, position of all atoms are compared one by one. The
RMSD between two aligned structures S1 and S2 having the same atoms {a1, . . . , an}
is:

RMSD(S1, S2) =

√√√√ 1

n

n∑
i=1

(
(aS1
ix − aS2

ix )2 + (aS1
iy − aS2

iy )2 + (aS1
iz − aS2

iz )2
)

(7.1)

where aS1
ix the x coordinate of atom ai in the structure S1.

However this would give a minimal utility to the native structure so we used
100 − RMSD(native, S) as a utility function. 3 A drawback of such a function is
that it is only meaningful for small values. For relatively different structures (with
an RMSD greater than 15 Å to 10 Å) having an higher RMSD does not mean that
the structures are more different. This is partly due to the fact that RMSD is highly
sensitive to outliers.

7.1.4.2 BC-score

The Binet-Cauchy score [123] measures similarity between two proteins but does not
use superimposition. The only pre-computing step is to translate both structures so
that their barycenters are at the origin (0, 0, 0). This score is normalized between
1 for exact similarity to −1 for exact anti-similarity (the mirror structure). It can
be seen as a correlation coefficient. The BC-score only considers Cα atoms in the
protein (that is one atom per residue). It compares the volumes of all tetrahedra
formed by the origin and three Cα atoms (there are

(
n
3

)
such tetrahedra in a protein

of n AAs). The volume of such a tetrahedra is 1
6 of the determinant of the 3 × 3

matrix which rows are coordinates of Cα atoms. To compare tetrahedra volumes in
the two structures, the BC-score computes the scalar product of two

(
n
3

)
-vectors each

containing determinants of the 3× 3 matrices. We note Sα1 and Sα2 the n× 3 matrices
of structure S1 and S2, each row is a Cα atom’s coordinates. This calculations have
a complexity of N3.

However BC-score uses the Binet-Cauchy theorem to simplify the computation.
Binet-Cauchy theorem gives that:∑

R⊂1...n

det(Sα1R)det(Sα2R) = det(SαT1 Sα2 ) (7.2)

where the sum is over all subset of three rows.
3100 is arbitrary chosen to be greater than any RMSD we could evaluate.
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As we normalize the BC-score, its formula becomes:

BC(Sα1 , S
α
2 ) =

det(SαT1 Sα2 )

det(SαT1 Sα1 )det(SαT2 Sα2 )

So computing a BC-score is linear on the number of AAs.

7.1.4.3 Distance based

We construct a utility function based on our dataset. Unlike the two previous func-
tions, this function does not need the native structure. We computed over the dataset
the probability of having a given distance (by steps of 0.1 Å) for any couple of two
AAs. We did not consider AAs in the same portion of secondary structure, nor the
two neighbors before and after in the protein’s sequence. We distinguished between
the type of AAs (hydrophobic, polar and charged) and secondary structures (helix,
strand or loop). Then we divided each of the type and secondary structure specific
distribution by the overall distribution in order to highlight particularities (Figure
7.3).
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FIGURE 7.3: Distribution of distances between two Cβ atoms of AAs
hydrophobic in a loop. a) The distribution. b) The same distribution

divided by the distribution over all pairs of AAs.

Also, in order to avoid excessively high values for uncommun distances we
gather all distances under 3.5 Å in the same bin. Then the formula of this utility
function is the sum over all couple of atoms of the probability of their distance given
their type and secondary structure divided by the probability of their distance :

U(S) =
n−2∑
i=1

n∑
j=i+2
si 6=sj

P(d(ai, aj)|ti, tj , si, sj)
P(d(ai, aj))

1(d(ai,aj)<20) (7.3)

where ti, tj and si, sj are the types and secondary structures of atoms ai and aj . The
numerator corresponds to the probability of finding d(ai, aj) between two players
of types and secondary structures ti, tj , si, sj . The denominator corresponds to the
probability of finding d(ai, aj) between two players of any type. This allows to high-
light distances specific to a given couple of players and reduce the noise in hight
distances du to the globular shape.
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Collisions None of these three utility functions avoid collisions. However a struc-
ture with collisions, i.e. overlapping atoms, can not be relevant. Thus we give a
negative utility to structures with collisions. In order to encourage the resolution of
collisions, a colliding utility is also proportional to the number of colliding atoms.

7.2 Algorithm and implementation

7.2.1 Algorithm

We use the HEDGE algorithm as studied in Chapter 5 with a step size γt = 1√
t

and the same utility function for all players. In the "all AAs" setting, we start by
randomly drawing the strategies for each kind of players (helix, strand and loop)
according to the distribution in the Ramachandran plot.

Then in both settings each player randomly initializes its score vector yi(1) and
computes its mixed strategy vector with the logit map.

At each step, each player draws a pure strategy according to its mixed strategy
vector. Then the protein is deformed according to the chosen strategies. Each player
receives the utility of the protein for all of its strategies and updates its score vector
and its mixed strategy for the next step.

7.2.2 Implementation

We use OpenMPI (Message Passing Interface) parallelization to speed-up the com-
putation. The natural way to do this is by parallelizing utility computation. Each
player tries all its strategies and computes its utility. That step is the more time con-
suming because utility is computed many times, but it can also be easily parallelized
by distributing players between nodes.

Thus, in the master node, players choose their pure strategy and the protein is
deformed accordingly. Then the master sends all atom’s positions to all the nodes
(BCAST) so that they can set protein’s conformation. Nodes also receive the number
id of players they are responsible off. Each node computes the payoff vector of
players it is responsible. To do that it just deforms the protein according to each of
the players’s strategies, and it computes the utility. Then each node sends the payoff
vectors it computed to the master (SCATTER). Only the master updates the score
vector of all players and computes their new mixed strategy.

7.3 Results and discussions

Here, we present our first results with the RMSD utility function. The distance based
and the BC-score utility functions did not give good result yet. The BC-score is very
slow to converge, we discuss the possible reasons for that in the discussion part.

We did experiments on the Inria cluster Tompouce, each experiment was paral-
lelized on 24 processes for a few hours (from 12h to 48h). Every experiments was
launched from 2 to 10 times with different seeds.

We tried different settings, but for the results presented here, we used 1000 strate-
gies per players in the "All AAs" setting for loop and strands and 100 for helix. In
both settings, we used a collision threshold of 1 Å. The collision threshold is used
to determine if atoms are colliding: if the center of two atoms are closer than the
threshold, the two atoms are colliding. The secondary structures are found using
PSIPRED.
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7.3.1 Results

We tested the algorithm on two structures from CASP12 [39]: T0892 domain 1 and
T0898 domain 2. In order to compare our result with the result of CASP experiment,
we also computed the GDT_TS score (GlobalDistanceTest_TotalScore). This score is
used by CASP to rank structure prediction. It is based on the percentage of AAs
under a certain cutoff distance from the native structure.

RMSD                5.06
GTD_TS            0.42
BC_SCORE      0.774

RMSD               10.64
GTD_TS            0.261
BC_SCORE      0.28

RMSD                5.105
GTD_TS            0.436
BC_SCORE      0.670

RMSD               11.642
GTD_TS            0.277
BC_SCORE      -0.05

a) b)

c) d)

FIGURE 7.4: Proteins folded using the all AAs setting, native struc-
ture is in cyan, results are in green and violet. a) and b) represent
results for T0898. a) is with RMSD as utility function and b) with the
distance based utility. c) and d) represent results for T0892. c) is with
RMSD as utility function and d) with distance based utility. Scores of

each structure are written underneath them.

T0898 domain 2 This target is a domain of 55AAs with a β-sheet. In CASP12 the
best GDT_TS score was 0.68, the worst was 0.18. Over all groups that submitted
a model in CASP12 our structure determined with RMSD utility would have been
20th out of 109 groups and with our distance based utility 78th(see Figure 7.4).



7.3. Results and discussions 109

T0892 domain 1 This target is mainly a four helix domain of 69AAs. In CASP12
the best GDT_TS score was 0.83, the worst was 0.098. Over all groups that submitted
a model in CASP12 our structure determined with RMSD utility would have been
56th out of 103 groups and with our distance based utility 96th (see Figure 7.4).

RSMD             7.520
GDT_TS         0.319
BC_SCORE    0.722

RSMD             7.163
GDT_TS         0.345
BC_SCORE    0.397

a) b)

    

FIGURE 7.5: Proteins folded using the tripeptide setting and RMSD
as utility function, native structure is in cyan, results are in green and
violet. a)Represent the best result for T0892 and b) for T0898. Scores

of each structure are written underneath them.

Our experiments with the tripeptide setting also leads to good results, in par-
ticular with the RMSD utility function (Figure 7.5). Our best structure would have
arrived 81th and 50th respectively on T0892 and T0898.

Our results are promising, we discuss a few way of improving.

7.3.2 Discussion

We need to identify what we can improve and how.
First it is important to note, that the algorithm converged to local minima and

not the global minima. For instance in the all AAs setting, the closest structure to the
native was less that 2 Å of RMSD from the native. But we did not reach it.

Increasing the number of strategies available improved the quality of the global
minima, but reduced the quality of our results. This could be because the more
strategies we add, the more local minima there are. And the more likely our algo-
rithm will converge to a non-optimal conformation.

The problem with the tripeptide setting was different. The closest structure pos-
sible to the native had collisions. A possible lead would be to increase the number
of possible strategies by duplicating them and perturbing the duplicated by a small
value. When we attempted to fold a globular protein, the native structure atoms are
not colliding but they are close. The structure is therefore highly sensible to small
angle deviations. We need to find a trade-off between increasing the quality of the
global minimum and keeping the average RMSD of the final structure low.

A second point is the convergence speed. As studied in Chapters 5 and 6 the
convergence speed depends on the difference between utility values. This could
explain why the BC-score was long to converge in 48h, its values are small, with
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small changes. We need to scale utility function in order to obtain a good conver-
gence rate, but not too fast to make sure the algorithm is allotted sufficient time for
a comprehensive exploration.
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Chapter 8

Conclusions and perspectives

This thesis presents research results motivated by the same general idea of applying
new theoretical results to structural bioinformatics problems. We can divide our
results in two main research works.

First, we extended a known graph approach (KGS) to the problem of morphing
between two conformations. We developed a kinematics-based procedure to morph
an RNA molecule between conformational substates, while avoiding inter-atomic
clashes. We used a known approach to represent an RNA as a kinematic linkage,
and maintains RNA secondary structure by treating hydrogen bonds between base
pairs as constraints. However, we developed a novel approach by addressing the
problem of finding transition even when we have only sparse information on the
goal conformation. Our results confirm that maintaining secondary structures is an
efficient and reliable way of reducing the number of degrees of freedom. In addition,
our results suggest that molecular junctions can modulate 3D structural rearrange-
ments, while secondary structure elements guide large parts of the molecule along
the transition to the correct final conformation.

We also worked on extending the density fitting approach (qFit) for proteins to
protein-ligand complexes. Although we do not have final results, our first results
are very promising. We can already find alternative ligand conformations that cor-
respond well to the electron density.

Secondly, we try to prove and apply new convergence results in iterative games
to protein folding. Ab-initio protein folding is a very difficult problem which does
not have satisfying answer yet. We started by focusing on theoretical results that are
necessary to start applying the algorithm to our protein problem. We even showed
stronger results than what we needed. Indeed, we stated the convergence of a class
of no-regret algorithms toward Nash Equilibria even in presence of noise (under a
few assumptions). We proved the local (global is the equilibrium is unique) con-
vergence toward Nash Equilibria in generic games with semi-bandit feedback. We
showed global convergence in semi-bandit setting when the game is a potential and
generic game. Finally we proved the convergence to an ε-Nash Equilibrium in the
case of bandit feedback. Most of our convergence results have an exponential rate
of convergence.

Besides raising the problem of convergence in the HEDGE algorithm and its ex-
tensions, protein folding is very challenging in itself. We developed a protein folding
method based on game theory. We represented the folding problem as an equilib-
rium search with a finite number of players playing a no-regret algorithm in the
context of other players. Our method gives encouraging results and finds local equi-
libria. However we need to improve the method to make it less sensible to local
minima.
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Perspectives Our kinematics-based procedure to morph an RNA molecule is aris-
ing interest among experimentalists. We will extend it so that it can satisfy distances
between multiple atom pairs instead or in addition to exact atom positions. This will
allow us to collaborate with experimentalists that are eager to have a tool to suggest
interesting positions for their experimental probes.

Concerning the problem of finding of alternative ligand conformations, we first
want to validate our first results by running the method on synthetic data. Then we
will need to apply it to a few examples of interest and determine how well it can help
experimentalists. We have no doubt that automatizing the "fitting the density" step
for ligand will be a major improvement because this step is still often done manually,
and overwhelmingly time-consumming.

For the convergence results on EW algorithms we would like to work on remov-
ing a few assumptions as well as extending our results to more games. We also want
to generalize the ε−dynamics to a decreasing ε so that this algorithm would also
converge toward Nash Equilibria instead of ε-Nash Equilibria.

To address the protein folding problem, we first need to avoid systematically
converging towards a local minima that can be far from the global minimum. We
could do that, by using a more explorative algorithm. We also need to develop a
more accurate score function to evaluate the fold quality.
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Acronyms

AA Amino Acid. 4–7, 10, 11, 18, 61, 62, 64, 101–109

AMBER Assisted Model Building and Energy Refinement. 18

CAPRI Critical Assessment of PRediction of Interactions. 11, 14

CASP Critical Assessment of Techniques for Protein Structure Prediction. 11, 14–17, 108,
109

CCE Coarse Correlated Equilibrium. 31, 32

CHARMM Chemistry at HARvard Macromolecular Mechanics. 18

DEER Double Electron-Electron Resonance. 12, 14, 57–59

DNA Deoxyribonucleic Acid. 3, 4

DSSP Dictionary of Protein Secondary Structure. 7, 102

DSSR Defining the Secondary Structure of RNA. 52

EM Electronic Microscopy. 12, 13

ENM Elastic Network Model. 21, 48

EW Exponential Weights. 33, 67, 70, 86, 112

HMM Hidden Markov Model. 7, 10

KGS Kino-Geometric Sampling. 36, 42, 48, 50–52, 111

KL Kullback–Leibler. 77, 79

MIQP Multi-integer Quadratic Programming. 62, 64

MKL Intel’s Math Kernel Library. 56

MSE Mean Square Error. 70, 89

ncRNA non-coding Ribonucleic Acid. 35, 36

NE Nash Equilibrium. 29–31, 67–70, 75, 76, 80, 83, 84, 86, 100, 105

NMA Normal Mode Analysis. 21, 23, 48

NMR Nuclear Magnetic Resonance. 12–14, 48

PDB Protein Data Bank. 10, 12, 14, 16, 48, 65
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RMSD Root Mean Square Deviation. 23, 47–55, 105, 107–109

RNA Ribonucleic Acid. 3–6, 8–15, 17, 18, 35–37, 48, 101, 111, 112

RRT Rapidly exploring Random Tree. 21–23

SAXS Small Angles X-Ray Scattering. 12, 13

SVD Singular Value Decomposition. 39

WC Watson-Crick. 5, 37, 38, 47, 50, 52, 54, 55
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Appendix A

Convex conjugates

A.1 Gibbs entropy

A.1.1 Convex conjugate

Let S = {1, 2, . . . , n} be a finite set and let ∆ ≡ ∆(S) denote the (n− 1)-dimensional
simplex spanned by S. Let h(x) =

∑
s∈S xs log (xs) be a function defined on ∆.

Its convex conjugate is h∗(y) = maxx∈∆{〈y|x〉 − h(x)}. We want to find an other
expression of h∗(y).

Using Lagrange multiplier we obtain L(x, λ) = 〈y|x〉−h(x)+λ(
∑

s∈S xs−1). By
derivation we have:

∂L
∂xs

(x, λ) = ys − 1− log (xs) + λ = 0, for all s ∈ S

log (xs) = ys − 1 + λ, for all s ∈ S
xs = exp (ys − 1 + λ), for all s ∈ S

(A.1)

∂L
∂λ

=
∑
s∈S

xs − 1 = 0 (A.2)

Summing (A.1) on s ∈ S we obtain:∑
s∈S

xs =
∑
s∈S

exp (ys − 1 + λ) = exp (λ− 1)
∑
s∈S

exp (ys)

Combining this with (A.2) we obtain:

exp (1− λ) =
∑
s∈S

exp (ys)

Therefore

argmax x∈∆{〈y|x〉 − h(x)} = (xs)s∈S = (
exp(ys)∑
s∈S exp (ys)

)s∈S = Λ(y) (A.3)

And

h∗(y) =
∑
s∈S

(ys
exp(ys)∑
s∈S exp (ys)

)−
∑
s∈S

(
exp(ys)∑
s∈S exp (ys)

)(ys − log(
∑
s∈S

exp (ys)))

= log(
∑
s∈S

exp (ys))
(A.4)
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A.1.2 Strong convexity

Here we show that h(x) = x log(x) is 1-strongly convex on [0, 1].
Recall that h is K-strongly convex if and only of there exists some K > 0 such

that
h(tx+ (1− t)x′) ≤ th(x) + (1− t)h(x′)− 1

2
Kt(1− t)‖x′ − x‖2

First we prove it on ]0, 1] using the Taylor’s theorem on log(x) which is C∞ on
]0, 1]. For x, x′ ∈]0, 1], let x′′ = tx+ (1− t)x′ we have:

h(x′′) = h(tx+ (1− t)x′)
= (tx+ (1− t)x′) log(tx+ (1− t)x′)
= tx log(x+ (1− t)(x′ − x)) + (1− t)x′ log(x′ + t(x− x′))

≤ tx[log(x) + (1− t)(x′ − x)
1

x
− 1

2

1

x2
(1− t)2(x′ − x)2 + (1− t)2o((x′ − x)2)]

+ (1− t)x′[log(x′) + t(x− x′) 1

x′
− 1

2

1

x′2
t2(x− x′)2 + t2o((x′ − x′)2)]

= tx log(x) + (1− t)x′log(x′) + t(1− t)(x′ − x) + t(1− t)(x− x′)

− 1

2
(1− t)t(x′ − x)2(

1− t
x

+
t

x′
) + t(1− t)o((x′ − x)2)

= tx log(x) + (1− t)x′log(x′)− 1

2
(1− t)t(x′ − x)2(

1− t
x

+
t

x′
) + o((x′ − x)2)

h(x′′) ≤ tx log(x) + (1− t)x′log(x′)− 1

2
(1− t)t(x′ − x)2

(A.5)

The last inequality comes from 1
x ≥ 1 and 1

x′ ≥ 1 so 1−t
x + t

x′ ≥ 1
By continuity of the last inequality in 0, h is 1-strongly convex on [0, 1].

A.2 General convex conjugates

Let S = 1, 2, . . . , n be a finite set and let ∆ ≡ ∆(S) denote the (n-1)-dimensional
simplex spanned by S. Let h(x) : ∆ → R a strongly convex function. Its convex
conjugate is h∗(y) = maxx∈∆{〈y|x〉 − h(x)}.

Using Lagrange multiplier we obtain L(x, λ) = 〈y|x〉−h(x)+λ(
∑

s∈S xs−1). By
derivation we have:

∂L
∂xs

= ys −
∂h

∂xs
(x) + λ = 0, for all s ∈ S

∂h

∂xs
(x) = ys + λ, for all s ∈ S

∇h(x) = y + λ1

(A.6)

Where 1 is a vector of ones.
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Appendix B

Properties from [113]

In the following, F : Rm → Rm is a continuous map and {xn}b∈N a time process
living in Rm whose general form can be written as

xn+1 − xn = γn+1(F (xn) + Un+1) (B.1)

where {γn}n≥1 is a given sequence of nonnegative numbers such that∑
k

γk =∞, limn→∞γn = 0.

Un ∈ Rm are perturbations.
τn =

∑n
i=1 γi for f ≥ 1 and Ū is the continuous time process defined by

Ū(τn + s) = Un+1

for all n ∈ N, 0 ≤ s ≤ γn+1.
Proposition 4.1 Let F be a continuous globally integrable vector field. Assume

that:
A 1 For all T > 0

limn→∞sup{‖
k−1∑
i=n

γi+1Ui+1‖ : k = n+ 1, . . . ,m(τn + T )} = 0.

or equivalently
limt→∞∆(t, T ) = 0

with

∆(t, T ) = sup0≤h≤T ‖
∫ t+h

t
Ū(s)ds‖.

A 2 supn‖xn‖ <∞
Then the interpolated process X is an asymptotic pseudotrajectory of the flow Φ

induced by F .

Proposition 4.2 Let {xn} given by B.1 be a Robbins-Monro algorithm. Suppose
that for some q ≥ 2

supnE(‖Un+1‖q) <∞
and ∑

n

γ
1+ q

2
n <∞.

Than assumption A 1 of proposition 4.1 holds with probability 1.
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Remark 4.5 Propositions 4.2 and 4.4 assume a Robbins Monro type algorithm.
However it is not hard to verify that the conclusions of these propositions continue
to hold if {xn} satisfies the more general recursion

xn+1 − xn = γn+1(F (xn) + Un+1 + bn+1)

where Un is a martingale difference noise and limn→∞bn = 0 almost surely.

Let X : R →M be an asymptotic pseudotrajectory of a semiflow Φ. The limit set
L(x) of X is the set of limits of convergent sequences X(tk), tk →∞. That is

L(X) = ∩X̄([t,∞)).

Corollary 6.6 Assume that X is precompact, Φ admits a strict Lyapounov func-
tion, and that there are countable many equilibria in L(X). Than X(t) converges to an
equilibrium as t→∞.
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