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1 Introduction

La théorie de la renormalisation basée sur les equations différentielles du
flot [Wil71, WHT73, Pol84] a permit de construire une approche unifiée de
I’analyse de la renormalisabilité pour une grande classe des théories sans
utilisation des graphes de Feynman. Cette méthode a été appliquée pour
demontrer les bornes supérieures dans l’espace des moments de la theo-
rie ¢ [KM02], elle a été aussi utilisée pour prouver la renormalisabilité de
la theorie Yang—Mills SU(2) spontanément brisée [KMO09] et pour établir
des bornes uniformes sur les fonctions de Schwinger pour la theorie ¢* sans
masse [GK11]. Des les premieres publications, [YM54, FP67a, Sla72, Tay71,
LZJ72, tHV72, BRS75, Tyu75, ZJ75] (voir [Lai81] pour plus de références),
une variété de résultats sur la renormalisabilité des théories de jauge non-
abeliennes a été apparu dans la littérature, dans différents contextes et avec
le niveau de rigueur différent. Les papiers sur ce probleme dans le contexte
des equations du flot (FE) comprennent [RW94, Bec96, BDM95, MD96], et,
plus récemment, [FHH16]. Le présent travail traite le problem de la renor-
malisation perturbative et partage certains aspects avec les articles suiv-
ants: de [Bec96] nous empruntons l'idée fructueuse que l'opérateur local
décrivant la violation des identités Slavnov—Taylor (STI) pour les fonctions
irréductibles (1PI) est contraint par la nilpotence de I'opérateur Slavnov clas-
sique [ZJ75, KSZ75]; comme dans [BDM95] (et en contraste avec [FHH16]),
nous définissons les corrélateurs marginaux par les conditions aux bords
physiques en l'absence de cut-off IR et aux moments non exceptionnels;
on s’appuie sur une extension des bornes de [GK11]|. Notre résultat prin-
cipal est une preuve de la renormalisabilité de la théorie Yang—Mills SU(2)
qui complete les traveaux précédents en ce qui concerne des caractéristiques
suivantes:

i Le controle rigoureux du comportement IR et UV des fonctions irréductibles
est établi au moyen de bornes uniformes dans ’espace de moments. Les
bornes donnent aussi l'existence de la limite IR pour les fonctions 1PI
a des moments non exceptionnels et ’existence de la limite UV.

ii Larestauration des identités Slavnov—Taylor dans la limite UV est prouvée;

iii Les conditions de renormalisation sont données explicitement.

Il est remarquable que les FE nous permet de construire toutes les fonc-
tions irréductibles I'* de la théorie en utilisant uniquement les conditions
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de renormalisation. L’observation clé ici est que les FE, voir (99), peuvent
étre résolu perturbativement, c’est a dire, a ’aide de I’expansion formelle en

nombre de boucles ¢ = SR r?. D’abord on doit considérer la construc-
tion des termes irrelevants. On met le cut-off IR A égal au cut-off UV A,.
Nous obtenons ainsi des termes semi-classiques irrelevants qui doivent tous
s’annuler, c’est a dire awrleAo;‘i’ = 0. Ici 9% signifie les dérivées par rapport
aux arguments dans I’espace de moments. Ensuite, nous intégrons le flot par

rapport au A pour trouver ces termes au cut-off A arbitraire

A
Ui — / dX 9O\ (1)

Ao

Comme nous l'avons déclaré, les FE peuvent étre résolue en utilisant la
théorie de la perturbation, donc le coté droite de (1) est donné en termes de
fonctions irréductibles avec les ordres en boucle I” < [. Les termes relevants
doivent étre gérés I'un apres 'autre, de marginaux aux terms strictement
relevants. A partir du point de renormalisation, ces termes sont construits
en intégrant les FE & A arbitraire et en suite interpolant du point de renor-
malisation a des moments arbitraires. De la méme fagon, nous procédons
pour construire les fonctions irréductibles en nombre de boucles suivant.
Pour rendre cette construction significative, nous demontrerons ici que toutes
les étapes ci-dessus sont bien définies en prouvant des bornes sur les fonc-
tions irréductibles. La stratégie de la preuve de ces bournes reste comme
dans [GK11].

Pour prouver la restauration de la symétrie BRST [BRS75, Tyu75], nous
avons commencé l'analyse de les STT en considérant différents points de
renormalisation. Il est devenu évident que différents points nous menent
aux différents types de bornes sur les fonctions irréductibles. Deux can-
didats a ces bornes ont été trouvés et étudiés. Bien que certains points
de renormalisation sont tres attirants pour la physique, ils impliquent des
structures des bornes difficiles a analyser, voir la section 5. Le choix final
a deux vertus importants: la simplicité et la signification physique directe
des conditions de renormalisation. Dans ce schéma, les termes qui corre-
spondent aux terms de la théorie classique Yang—Mills sont explicitement
renormalises aux points physiques sans le cut-off infrarouge, mais les termes
restants sont renormalises en présence d’un régulateur infrarouge, qui est en
effet un outil purement mathématique. Il introduit la dependance indésirable



du régulateur infrarouge sous-jacent. Cependant, comme indiqué dans la
proposition 18, ces conditions moins physiques impliquent 1’annulation des
fonctions irréductibles a un point physique et par conséquent sont équivalent
a des conditions qui auraient pu étre imposées sans le cut-off infrarouge.

Notre preuve se réfere explicitement & la théorie Yang—Mills SU(2). Cepen-
dant, il pourrait étre étendu sans modifications importantes aux autres groupes
de Lie compacts semi-simples.

1.1 Preface

Renormalization theory based on the differential Flow Equations [Wil71,
WHT73, Pol84] has allowed to build a unified approach to the analysis of
renormalizability for a wide class of theories without recourse to Feynman
graphs. This method was applied to show momentum bounds of massive
¢* theory [KMO02], used to prove renormalization of spontaneously broken
SU(2) Yang-Mills [KM09] and to establish uniform bounds on Schwinger
functions of massless ¢* fields [GK11]. Starting with the milestone works,
[YMb54, FP67a, Sla72, Tay71l, LZJ72, tHV72, BRS75, Tyu75, ZJ75] (see
[Lai81] for more references), a variety of results on the renormalizability
of nonabelian gauge theories flourished in the literature, in different contexts
and with different level of mathematical rigor. Work on this problem in the
context of Flow Equations (FE) includes [RW94, Bec96, BDM95, MD96],
and, more recently, [FHH16]. The present work deals with perturbative
renormalizability and shares certain aspects with some of these articles:
from [Bec96] we borrow the fruitful idea that the local operator describing the
violation of Slavnov-Taylor identities (STI) for the one-particle irreducible
(1PI) functions [ZJ75, KSZ75] is constrained by the nilpotency of the under-
lying ”Slavnov differential operator”; as in [BDM95] (and in contrast with
[FHH16]) we define the marginal correlators by physical boundary conditions
at vanishing IR cutoff and nonexceptional momenta; we rely on an extension
of the bounds of [GK11]. Our main result is a proof of the renormalizabil-
ity of Yang—Mills theory that complements the previous work in view of the
following features:

i Rigorous control of the IR and UV behavior of the one-particle irreducible
functions is established by means of uniform bounds in momentum
space. In particular, from the bounds follow the existence of the IR
and UV limits of 1PI functions at nonexceptional momenta.



ii The vanishing of the STI violation in the UV limit is proven;
iii The renormalization conditions are given explicitly.

It is remarkable that the FE allows us to construct all vertex functions ¢
of the theory using only the renormalization conditions. The key observation
here is that the FE, see (99), can be solved using the formal loop expansion

M = S R rf. First one should consider the construction of the irrelevant
terms. By setting the IR cutoff A equal to the UV cutoff Ag we obtain semi-

classical irrelevant terms which are all vanishing, i.e. 9" rleAo;‘b = 0. Here 0%
indicates momentum derivatives. Then we integrate the flow wrt A to find
these terms at arbitrary IR cutoff

A
grried — / dX 9 O\ (2)

Ao

As we have stated the FE can be solved using the theory of perturbation,
thus the rhs in (2) is given in terms of vertex functions with loop order I’ < [.
The relevant terms should be handled sequentially from marginal to strictly
relevant ones. Starting from a renormalization point these terms are con-
structed by integrating the FE to arbitrary A and by interpolating from the
renormalization point to arbitrary momenta. In a similar way we define the
vertex functions in the next loop order. To make this construction meaningful
we shall show that all above steps are well defined by proving corresponding
bounds on the vertex functions. The strategy of the proof of these bounds
remains that of [GK11].

To prove the restoration of the BRST symmetry [BRS75, Tyu75|, we
started the analysis of the STI by considering various renormalization points.
It became clear that different points lead to different types of momentum
bounds on the vertex functions. Two candidates for such bounds were found
and studied. Although some renormalization points look very attractive for
physics, they imply complex structures for the bounds, which are difficult to
analyze, see section 5. The retained choice exhibits both virtues: simplic-
ity and direct physical significance of the renormalization conditions. In
this scheme the terms which have correspondence in the classical Yang—
Mills (YM) theory are explicitly fixed at a physical renormalization point
with no infrared cutoff, but the remaining terms are fine-tuned in presence of



an infrared regulator, which is a pure mathematical tool. It introduces unde-
sired explicit dependence on the underlying infrared regularization. However,
as stated in proposition 18, these less physical conditions imply the vanishing
of corresponding vertex functions at some physical point and consequently
are equivalent to conditions which are imposed without infrared cutoff.

Our proof refers explicitly to SU(2) YM theory. However, it could be ex-
tended without important conceptual changes to other semi-simple compact
Lie groups.

1.2 Outline of the thesis

We proceed as follows. First we fix the notations, introduce the classical
Yang-Mills action, generating functionals and regulators. We define the
BRST transformations. Then we derive the FE of the renormalization group,
for the connected amputated Schwinger functions and for the one-particle ir-
reducible vertex functions. Finally we study the STI, the Antighost Equation
(AGE) and their violation. Remark that in our context gauge invariance is
broken through the presence of the cutoffs.

Our proof of renormalizability of Yang-Mills theory is based on momen-
tum bounds for the vertex functions which permit to take the limits A — 0
(IR-cutoff) and Ay — oo (UV-cutoff) for nonexceptional external momenta.
These bounds are established inductively with the aid of the FE. They are
expressed in terms of tree amplitudes and polynomials of logarithms. For
our trees we only have to consider vertices of coordination numbers 1 and 3.

In section 2 we present the definitions of the tree structures, and we state
the aforementioned bounds. We also have to consider vertex functions with
operator insertions which permit to formulate the violation of the STI. Our
bounds then permit to show that, for suitable renormalization conditions,
the functions describing the violation of the STI vanish in the UV limit.

Section 3 is dedicated to the proof of the bounds of section 2. At loop
order [, the rhs of the FE is a sum of chains, i.e. products of vertex functions
in lower loop order joined by free propagators. Chains are then closed by a
derived propagator and integrated over the circulating loop momentum. Our
technique of proof is based on the fact that applying our inductive bounds
on these chains we reproduce these bounds in the next loop order. The
proof treats irrelevant terms first, then marginal and finally strictly relevant
ones. Particular attention has to be paid to the renormalization conditions.
Section 3 ends with a proof of UV-convergence for Ay — oc.



In section 4 we prove that the renormalization conditions required in
section 3 to prove the bounds of section 2 can actually be imposed. These
renormalization conditions are such that they leave us free to fix the physical
coupling of the theory and the field normalizations. At the same time they
permit us to make vanish the relevant part of all functions describing the
violation of the STI. This is required in the previous proof.

In section 5 we present complementary bounds on vertex functions with
anti-ghost fields. These bounds are more accurate at small momenta and
allow to renormalize all vertex functions at vanishing IR cutoff. Furthermore
the important proposition 18, established in section 2.2, is a simple corollary
of these bounds

In the Appendices A, B, C, D, respectively, we present some facts on
Gaussian measures, examples of chains of vertex functions, an analysis of
linear independence of euclidean tensor structures and a large number of
elementary bounds on integrals we encounter in the proofs. We also add
bounds on the propagators and their derivatives. In the three subsequent
appendices E, F, G we analyse the generating functionals of the (inserted)
vertex functions, as far as they have relevant content. In the last two appen-
dices H, I we present the list of renormalization points and operator insertions
to be considered.

1.3 Notations

N = {0,1,2,...} is the set of nonnegative integers. |S| is the cardinality of
a set S. Furthermore, (a,b,c,...), {a,b,c,...} denote a sequence and a set,
respectively. Unless otherwise stated, sequence stands for finite sequence.
For shortness we set [a : b] :={i € Z:a < i< b} and [b] ;== [1 : b]. Repeated
indices are implicitly summed over, e.g. A%, := ¥,A%,. We choose the
following basis of the Lie algebra

(tc)ab = _i€abca [tav tb] = ieabctca a, b7 cc {17 27 3}7 (3>

where €4, is the Levi-Civita symbol, €193 = 1. In this manuscript we will deal
with tensor fields on R* in Cartesian coordinate systems with metric tensor
duw- If A, B are two Cartesian tensors of R* of rank » with components A
and By, ., , respectively, then the scalar product (A4, B) is the contraction

(A,B):=A B .- (4)
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Given a Cartesian tensor 7', we use the norm
1
T|:= (T, T)>. (5)

For instance, for p € R, [p|* = X,p%. Let T, A, and B be Cartesian
tensors such that Tz = Az By where [i, p, U are multi-indices, for example
i = (p1, ..y ftr). Then using the Cauchy—Schwarz inequality

T2 = D13 AmBl” < 32D | Aml’|Bosl” = [APIBP. - (6)
TAZ )

i pe
The integral over R* of the product of two functions is denoted by
(hotii= [ d'e @), @

and the Fourier transform of a function is defined by

f(p) = / &'z 7 f(x). (8)

The convolution of two functions f, g is denoted as below

(f % g)() = / d'y f(w)g(x — ). (9)

For functions ¢;(p;) and F(py, ..., px) with p; € R?* the symbol (F|¢;...¢; p)
denotes the following integral in momentum space

d4

k k
(Flor--usphi=[2m) 53 03+ 8)F (g1 )0 (0000 [
1:1

Jj=1

We also use the shorthands

(@1 0k p) = (1|1...0x: ), (@1...01) = (1|¢1...¢%; 0). (11)
A cumulative notation for the elementary fields and corresponding sources is
¢ = (Afp Ba, c, éa) ) K = (jza ba, ﬁaa 77a) ) (12)

where ¢, ¢, n, 7 are generators of an infinite-dimensional anticommuting alge-
bra. Furthermore, we use the following shorthand

K- ® = (5%, A%) + (b, B%) + (7% c*) + (&, ). (13)
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We will have to consider one-particle irreducible functions, also known as ver-
tex functions, whose generating functional is denoted by I'. These functions
are translation-invariant in position space. Their reduced Fourier transforms
I'? are defined as follows

N—1

T(p1, ..., pae1) i= / (H d*z; e*ipm> 20, 21,...,25-1), (14)
i=1

where gg := (¢, ..., x_1) 1s a sequence of field labels, ¢; € {A, B, ¢, ¢}, and

-

¢ = 0 J
r (1’0,371, Tt ’xN*l) T <6¢0($0) o 5¢N—1($N—1>>F

The complete Fourier transformed N-point vertex function then satisfies

L, 1)

) 0
5¢0(_p0) o 5¢N—1(_pN—1)

(2m) ), = 5<§pi> rf, ()

where I'? stands for I ‘g(pl, woeyPn—1)- The reduced and complete Fourier trans-
forms with n, > 1 composite operator insertions of sources X' = (X0, ---s Xny~1)

and ¢ = (ény s ---» Pn—1) are correspondingly related by

. n—1 5 ny—1 S n—1 R

where the order of the derivatives d/d¢; is the same as before, the derivatives

d/0x; are ordered with left-to-right increasing indices, and F;’% stands for
Fé(pl, <oeyPn—1)- Note that n — 1 is the total number of arguments, e.g. for

Fii(pl, <yPn—1) We have n =n, + N.

It will be useful to keep a bijective relation between momenta and field
labels (including possible insertion labels), p; <+ ¢;. Hence, we assume that
po is the negative subsum of all other momenta,

n—1 n—1
]P)n = {ﬁe R4n :ﬁ: (p07 “'7pn—1>) Po = — sz}7 |I7|2 = Zp?) (18>
i=1 =0

11



and, referring to (16), (17), we use the notation

P¢(ﬁj = F¢<p17 "'7pN—1)7 ﬁ: (p07 "'7pN—1) € ]P)Na (19>
F%(ﬁ) = F;{z‘(pb "'7pn71)7 ﬁ: (p(J? "'7pn71) € Pn (2())

Moreover, we rely on the multi-index formalism for derivatives with respect
to momenta. Taking in account that there are no derivatives wrt py, we set:

W= (woyl,wo,Q, e wn_1,4), Wi, € N, W,y = 0, (21)
4
w = (wO’ "'7wn—1)7 Wi = Zwi,lm (22>
pn=1
n—1
W, o= fwe {0} x Nl <, ol =S (23)
1=0
n—1 4 8 ws n—1
S| H(é)pi,) r, or = (TTow)r. @

i=0 p=1 i=0

where 0F is the tensor with components d, ...
integer > 4 fixed throughout the paper.
The following shorthands will be helpful:

Op,.,» and w is an arbitrary

: . 9ré
[A8o = g, Mo TI? .=

O ’ %o opi”’
- ) .
So(p) = (2m)* , = ¢(—p), log, x:=logmax(l,z). (26

1.4 Classical Action

[ = 9"T, (25)

In this section we first introduce the general notion of classical gauge theory,
specializing it to a four-dimensional SU(2) Euclidean classical field theory.
Then we briefly present Faddeev’s quantization of gauge theories. Finally,
we show the general form of a quantum Lagrangian including all possible
counterterms compatible with the global symmetries but possibly breaking
the gauge invariance.

Denote by w : T,,P — T.G a connection 1-form on a principal fibre bundle
P 5 P/G with a left action p — up where v € G, p € P and G is a Lie
group. Since the base P/G = R? is a flat space P admits a global section

12



o : R* — P and hence is a trivial bundle. In other words, there exists a
diffeomorphism P — G x R*. Furthermore once a connection w is given
any vector x € T,,P can be uniquely decomposed into vertical and horizontal
components x = x, + xp, so that m,z, = 0 and w(x,) = 0. Suppose now that
f is a Lie algebra valued differential k-form on P. The exterior covariant
derivative of f is defined by Df(xy,...,xx) := df (z1p, ..., Tk ), and then the
curvature 2-form is given by €2 := Dw. Using these definitions one can show
that €2 = dw — w A w in the case of a principal bundle whose structure group
G is a matrix group. Furthermore, if ¢ is a algebra-valued function on P in
the adjoint representation of the Lie group G, i.e. ¢(up) = ud(p)u~!, then
D¢ = d¢p — [w,¢]. To prove this identity we need to show that Yz € T,P
(Do) () = (do)(x) — [w(x), ¢)]. By linearity we need to show it for the two
cases: © = xp and x = x,. Since w(xy) = 0, the first case is trivial. For the
x = x, we have dp(x,) = Fd(up)li=o = Fud(p)u; ' |i=o where u, = €94
with a constant g # 0 and iA € T,G. Consequently do(z,) = ig[A, ¢(p)]. By
definition w(x,) = igA hence the first and second terms cancel one another.
Let o : R* — P be a global section. Then we define the gauge potential A
and the field strength F' as the corresponding pullbacks: 1gA := o*w, igF =
c*Q). Hence F' = dA —igAN A. If ¢’ is another section such that ¢’ = uo for
some transition function u : R* — G then the gauge transformation reads

A = Ludut + uAut. (27)
g
For the purpose of this manuscript we assume that G = SU(2). Using the
exponential map u; = €9 where o : R* — T,G we obtain the infinitesimal
gauge transformation

0

EAQ = da —ig[A, a] . (28)
Cartan’s criterion states that a Lie algebra is semisimple if and only if the
Killing form K(a,b) := Tr(ab) is non-degenerate. Here a, b are elements

of the adjoint representation of the Lie algebra. Furthermore a Lie algebra
over the field of real numbers R generates a compact group if and only if
the Killing form is negative definite. By our convention the generators t* are
hermitian, see (3). Thus Tr(F}, F,,) is non-degenerate and positive definite.
Here F' = F t*dx* Adx”. The classical Langrangian density of SU(2) Yang-

Mills theory is
1
L=-F"F" . (29)

T
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Below we give a contemporary view on the idea proposed by L.D. Fad-
deev [FP67b] to quantize the YM theory. Using new variables £7, A

)

oL
$i=m— = Al =AY ' 1,2
Sz a(aOAza) 0¢ i 7 VZ € { ) 73}7 (30)

the Lagrangian density has the form £ = £*0y Ay — H'(Ao, A, E) where
H'(Ag, A E) .= H(A,E) — AJPY(AE), P AE):=DE, (31)
1
H(Aug) = 5(8385_8;16?)7 B

1

1
= 561‘le’?[ . (32)

In this representation Aj are the Lagrange multipliers corresponding to the
first-class primary constraints P* = 0, see [Dir64]

{Px), P’(y)} = ge*P°(z —y), (33)
{H(2). P*()} = 0™ FLF5o(x —y) = 0. (34)

Here we have no secondary constraints and all A§ are arbitrary. P.A.M. Dirac
[Dir64] noticed that the first-class primary constraints generate infinitesimal
symmetry transformations. If we have a solution of the equation of mo-
tion then because the Af are arbitrary we can obtain a different solution
by taking another functions A§ — A + a“. This leads to a change in the
Hamiltonian H’ and consequently to the change in the canonical variables

5AZ = ab{Pb, AL} =Dpat, 582 = ab{Pb, v} :nge“bcabgi. (35)

Maskawa and Nakajima, see [MN76], showed that in dynamical systems with
second-class constraints it is always possible to find local canonical coordi-
nate variables (@, Q) and their respective conjugates (P,P) such that the
constraints have the form @ = 0, P = 0. For a system with first-class
constraints there exist canonical variables (@, Q, Q') and their respective
conjugates (P,P,P’) such that the constraints read @' = 0, P = P’ = 0.
Moreover the equations of motion for the variables @) and P are indepen-
dent of all other variables. But boundary conditions on the terms 9;"Q with
w € [0,n] given at t = ty do not fix these terms at time ¢ = to+0t, see [GT90].
In the case of the YM theory the sets P’ and Q' are empty. But the canonical
coordinate system (@, P, Q,P) is unknown and hence the explicit separation
of the physical variables (@, P) from the constraints (Q,P) is unfeasible.
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Using the existence of such a canonical coordinate system and converting
the system with first-class constraints to the system with second-class con-
straints by imposing the Coulomb gauge-fixing condition C* = 0.Aj5 L.D.
Faddeev constructed the functional integral for the S-matrix. In this formu-
lation the determinant |[{C,P}| which is nonvanishing for dynamical systems
with second-class constraints appears as the Jacobian of the d-function

(@) = a(0)| 55| = st ie. Pl (36)

The main idea of L.D. Faddeev was to introduce auxiliary ghost fields and
to transform this determinant into local gauge-fixing terms, see [FS93]. Fur-
thermore he extended this approach to the general case of gauge-fixing con-
ditions. Following [FP67b, tH71] the semiclassical Lagrangian density in
Euclidian space with Lorenz gauge-fixing functional takes the form

o 1 a 1a 1 a c a
Ly = ZFWFMV + i(auA;)Q — 0uc"(Dpc)", (37)
(D“C)a — aﬂca 4 gEGStAZCt, (38>
Fi, = 0,A5 — 0,A% + ge**' A% AL, (39)

where £ > 0 is the Feynman parameter. The gauge fixing condition restricts
the gauge transformations a by the equation Ma = 0, where M = 9,D,,.
The kernel of M is said to be a ghost zero-mode and the correspondingly
gauge transformed fields A are known as Gribov copies. In a perturbation
theory M is invertible, M~ = 972 + igd20(AM~1).

We will study the quantum theory in a framework which breaks local
gauge invariance due to the presence of momentum space regulators. The
regularized propagators in momentum space are defined by the expressions

C%@:é@ﬁw—ﬁﬁﬂ CM(p) = Cpu(p) oano (%), (40)

S(p) = = S(p) = Sp)oan (), (4]
Oang (8) = oa,(8) — oa(s), ox(s) = exp(—%) : (42)

The parameters A, Ay, such that 0 < A < Ag, are respectively IR and UV
cutoffs. For shortness we will also write Cy3 instead of (C*4)~. In position
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space we have

() = [ 'y Ci)intw) (43
Cioten) = [ ) (44)

However, the regularized theory still respects global SU(2) symmetry, Eu-
clidean inhomogeneous O(4) and has ghost number zero. We admit all coun-
terterms compatible with these symmetries:
Lo =10 et e + r) PP AL AL 4 oMb An AL
AAAA AAAA
+ AN AL AL A4S AG + AL AD AG AT 4 2eq,r VA4 (0, AG) AL AS

0,AG _ay Ab .4 0Ac_  _abn d 0,6¢ ~a 92
— 1 Ceapd(0u ") AL e — 1y Ceqpac® A0, " + X007

1 1
= S AP0 — 0,0,) A5 + iZ%AA(aqu)Q
1
+ §5m?4AAZAZ — dm2,c"c". (45)

There are eleven marginal and two strictly relevant counterterms. For the
marginal terms we use the letters r and in case of two-point functions 3°.
We use dm? 4, and dm?2, to denote the strictly relevant counterterms.

1.5 Generating functionals and Flow equations

In the next two sections we will introduce the essential structural tools re-
quired for our proof of renormalizability of nonabelian Yang—Mills theory.
These tools are on the one hand the differential Flow Equations of the renor-
malization group, and on the other hand the (violated) Slavnov—Taylor iden-
tities. They are both obtained from the functional integral representation of
the theory.

Although the Lagrangian density in (37) contains all physical degrees of
freedom to construct 1PI functions this form does not allow to establish the
AGE. To preserve unitarity of the S-matrix this equation should be added
by hand. Similarly to the gauge theory in Minkowski space we can add
an auxiliary field B = B“t® to obtain a semi-classical Lagrangian invariant
under nilpotent BRST transformations. Nilpotence is a prerequisite for the
unitarity of the S-matrix, and in fact the AGE will emerge. To see how this
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auxiliary field should be introduced it is helpful to consider the following
example where we restrict the consideration to the gauge fields A omitting
the ghosts and denote by dry,,(A) a Gaussian measure with the covariance
Can, and the Feynman parameter .

e~ 2 Ced) = /dVAAO(A)e;iU A, (46)

To obtain meaningful results we should keep the volume finite. One could
put the system on a torus with periodic boundary conditions.

Lemma 1 Let & be a positive real number. Denote by 7 the requlator o5,
with Ay > Ng. Then there exists a normalization function f(&o,&1) such that

L 1 o »
e Cal) = lim — / dupp, (A)e” e QATTONTEEA )
Ao—no f(&0,&1)
1.1, 1
where & T & + e

The &yp-dependence of the normalization factor f stems from the measure dvyy,(A).

Proof
X(&) :Z/dVAAO(A)e 2h§1<8Ao_laA> %(g,m‘ (48)

First we want to show that for arbitrary Ao > A there exist f(&,&) and
& (&0, &1, p?) such that glim f=1, glim & =& and
1—00 1—00

F(&o,é)e 0% = x(&). (49)
Here dependence of f and & on A, Ag and Ag is omitted. Let y/ : =9 ¢
1
1 S (OAGLOA)+1 (j, A)
— 2h§ n
X = /dVAAO e’ 5(0A, 6 0A)e”
0 . 0 (DAG10A)+E (j,A)
= ~ohey
/dVAAO thl <h6 h06]>
1 4] o
= ha— d 'ho—)x. (50
-5 S (50)
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Then we apply the operator on the rhs in (50) to the lhs of (49)

’ 1 4 d4 s f2~—1 24 A
X = <hL 520'0' <jl“€20 o C,U,CI/]V>>X7 (51>

2hE? (2m)4
where C,, := il L* := [ d*z. On the other hand, application of the derivative
to the lhs in (49) yields
o1
X - (f 2h<]u>€200 Cl/jl/>> (52)

From both equations (51) and (52) we obtain

f_r / d'p & g _ 8
= =— , = =00 ". o3
72 ) g’ “Tg )
The last equation immediately gives us
1y’ 51 1 ot 1
() =-T% = ="+ (54)
&2 &1 & &1 €o

Substituting & (&, &) into the first equation we have

[P Lt dip fooc~! L' [ d'p (1 1
o2 /(2ﬂ)4§1(§1+50051) 2 /(27T)4<51 §1+§0051>' (55)

Finally, using f(&y, 00) = 1 we obtain

4 d4
f=e TR TR := / P 10 g(l+ éh—ocra . (56)
(2m)* &
Finally, it is clear from (54) that lim & = &,. [
A0—>A0

Let us define an auxiliary measure dog, (B)

i 1
e ar(0:Ch) /dﬂg1(3)6”<3’b>a Cp = 5—1‘7/\]\0- (57)
Hence we obtain a naive definition of the measure
lim £ [ due, (A)die, (B)enBo 04 i G A+705) (58)

/~\0—>A0
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Its Fourier transform is a Gaussian characteristic function
f- /dVgo )dve, (B)e #(B.67104) o1 (5,4)+1 (0,B)
=f /d’/so(A)dﬁgl(B — 5—1814)6_2‘561@‘4’&13A>€;;(j,A>+;'L(b,B>
_/dl/&(A)dﬂgl(B)em_éabvf‘)%(bﬁ)

— e*%@ 518b0§2j { B )*%<bCBb> ) (59>

To complete the example we consider the semi-classical Lagrangian den-
sity which corresponds to (58) with the same interaction as in (37) in the
limit A = 0, Ag = o0

1 s

ﬁtot _Foe Fa (0 Aa)

1F i+ 5 G BB —iB0,A; — 0,0(Dye)". (60)

Let 6% := 1+ %. The BRST transformation for the density £& is
&o 0

dA = eDc, deC = elig{c, c}, (61)
1 8 i_
= ¢€(ifB R B@A) 0B = 6150 Ba(Dc) (62)

where € is an element of the Grassmann algebra and {c,c}? = iegpacc®.

Defining the classical operator s by 0.® = es® one shows that s is nilpotent.
To show the BRST invariance of the Langrangian it is convenient to use the
nilpotency of the transformation

Llot = iF;jVFjV - / de 6, { (1;5 D, A% + 52530)} (63)

where & is as in (47). There are two limit cases:
e &y — 00. Thus f=1,& =&. Let £ :=&. Then (60) has the form

1
CtOt ZFSI/FEV + gBaBa Z‘BaaﬂAZ - auéa(DuC)a . (64)

The infinitesimal BRST transformation [BRS75], [Tyu75] is
1
dA=eDc, dc=c¢ 52’9{0, ¢}, oc=eiB, 0B=0. (65)
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e {4 — oo. Here B = 0 and d¢c = —egioauAu. We recover our initial
Lagrangian density (37), but the nilpotence is not conserved.

Unfortunatly, the measure dig,(A) in (58) is not finite in the case & — oo.
This does not allow to take (58) as a definition of the measure. But using our
result in (59) we can give another definition by means of the characteristic
function, see e.g. [DF91],

X(K) = /du(@) et (66)

(0,888 0m) — 5= (5,CM0 5) — 51 (b,b) (67)

AAO(j? b? ﬁ’ n) =€ 2he °

X
Here ® € H @ H.z where H; is a super space. Elements of H 4 are called the
bosonic part. The integral in (66) is a double integral. The integral over H 4
is defined as the limit of multiple Lebesgue integrals with the measure given
by Borel cylinder sets and the exponential Gaussian function, see [GJ87]. In
the case of H.: the Lebesgue integration is replaced by the integral over a
finite subset of generators of the super algebra, see [Ber66, Sal99].

Definition 2 Let duay, be the measure defined by
1

d,LLAAO(A,B,C, 5) = dVAA0<A,B —iEaA,C, E). (68)

For ® = (A, B,¢,¢) and K = (j,b,7,n) and an infinitesimal variation §® =

(0A,0,0¢,0¢), using the properties of Gaussian measures from appendix A,
we have

| 1
dpany (P +69) =djuan, (@) (1+ (2. 514, de) + (02 14,0
1 1 1
~ A CRL0A) — (0B — i¢0A) 5A>) . (69)

Definition 3 The free partition function Z(’)X Ao s defined by

ZEN(K) = / djiang ()ei . (70)
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It follows that

L o1 o
ZéXAO(.]Jb/r]aT/) = XAAO(Z(j - Zgab)72b7lnaln)7 (71>
ZyM(K) = exnKCM0R) (72)

Y

where C*o is a 7x7 matrix,

Ol/t\VAO’ 1 SAAopl“ 07 0
__QAAp (1 _
CAAO = S Dv, 6(1 O-AAO)7 07 O . (73)
()’ 0, 07 _SAAO
0, 0, S 0

For A < Ay, C* is invertible:

_ 1
CA/{O;}LV - Ep/lpV7 _p,m 07 O
C/_\/l\o = DPv, f, O, 0 . (74)
0, 0, 0, SXI{O
0, 0, —Su,, O

We write the bosonic part of CX}\O as PTQMoP, where P is a diagonal matrix
with P, = |p| for each index p € {1,...4} and Ps; = 1. The eigenvalues g,
of QA are:

1
_ Eano £ (ERa, — 4030,)? _

1,23 = UAliou 44,5 = ° 5 —, &ang =&+ E(UA/I\O —1).
The fact that the real part of these eigenvalues is positive is known to be a
prerequisite for the existence of a complex measure for the bosonic part of
the theory, for analysis of complex mesures see [Hal74, Rud&7].
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A useful relation follows from (67), (71):

) )
hdeAAO h% Mo (i(y 25(%) ib,1n,in)
= hﬁe—%wﬁ“ww%<j—i§8b7cAAo(j—i§ab)> + 5 (b.0)
0b
- E(bﬂa@ —Zi‘ab)> ~H SN0+ 5= EO0.CM (=00 + 5l (00
1 5 1/= QAA 1 1 AA 1 1
— ~(p+ino= ) — L (57, 5M0 )+ - (j—i £ 0b,CM0 (i L9b))+ 5k (b.)
£ ( 0]
1 )
5(1)—1-27135 ) Mo iy —zgﬁb) ib, 11, 1n)
4]
g(bﬂh& 5 )ZAAO (75)

Consequently we have

1 1 . 1r.
/ dpian, (®) Bei™® = 3 / dian, (@) (b +i0A) er™® . (76)

Definition 4 The partition function Z*% of SU(2) Yang-Mills field theory
15 given by

ZMo(K) = /d/JAAo( Je~ Lh0R0 (GK® - phobo /d4xﬁA°A°. (77)

The interaction Lagrangian density LMo = Lhoto  phodo g giwen by (45
0 ct
and

2
,CQDAO = gEabc(auAa)Ab AC 6cabecds14a/4b AdAs geabc(aﬂéa)AZCC ) <78>

4 [Vt Zted Vil

Since we restrict to perturbation theory, all generating functionals are formal
series in terms of & and of their source/field arguments. We also emphasize
that £5°* does not depend on the B field.

Definition 5 The generating functional of the Connected Schwinger (CS)
functions is

en VM) = ZMo(K), (79)
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The derivation of the FE is usually given considering the generating func-
tional LA of the connected amputated Schwinger (CAS) functions.

Definition 6 The generating functional LA of CAS functions is

e HEMO@) / dpin (') e HHOR0 (D), (80)
From definition 3 we have for any polynomial P(®)
d h N 4]
— [ dpan, (@) P(®) = = [ dppn,(®){—,1C*°—)P(® 1
T [ dmasn@P@) = 5 [ duas (@) 16 S P@), (s1)
where 5 . e o)
‘) _ ) T Up¢’ 1 ¢7¢€ Caéa
(Dogr = { Sy otherwise . (82)
Using equation (81) one obtains the FE, see e.g. [GJ87], [KKS92],
: h,d .. 4] 1 6L Y . §LAN
LAY(@) = —(—, 1CMo_—y Ao _ — 1CMo—) . 83
(®) 2<6<I>’ 5®> 2< 0P 0P ) (83)
From appendix A on Gaussian measures it follows that
djirng (D — CM05D) = dyipy, (@ )e 2 0T O 1 (02.2) (84)
This gives the relation between the generating functionals W4 and LAMo
1 R
WA(K) = S (K, CYWEK) — LM (1.CM K), (85)

<ic>¢¢/={‘1 ifo=9¢'=c, <ic>¢¢/={‘1 o =0'=c, (g

dp¢r  otherwise, ds¢  Otherwise.

Definition 7 (Legendre transform) For 0 < A < A, let KA (®) be a
solution of the system of equations

W AR W AR
A— =0 B — =0 87
= 0j  lrAo@) o ob  IkMo@) (87)
W AR WA
c— — =0, c+ =0. (88)
o |kAso(@) on  IKMo(@)
The effective action is
LA (@) i= KA0(@) - & — W (KM (@) (89)
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A solution of the above system of equations always exists as formal series in
h and the fields ®. Moreover this solution is unique.

Definition 8 For 0 < A < Ay, let ®*0(®) be a solution of the equation

§LAN
d = Ao :
- ( -C 0P ) Mo (@) (90)
The reduced effective action is
1, §LAMo §LAMo
rAo(@) := (LM(®) — - 1CMo— . 1
(@) ( (®) 2< 0 e ) Mo () (91)
From definitions 7 and 8 it follows that for 0 < A < Ag
1
(@) =T (@) — (2, Cy,, ), (92)
M (@) =1,CHM KA (), (93)
1
AAo (1AM -
M (@) = (LM (@) = S((@ — @), C3}, (2 - ©))) TR CE)

Using equation (90) we see that, before the replacement, the rhs of (94), a

a function of ® for fixed ®, has an extremum at ® = ®*4o(®). Applying 8/\
to equation (94), substltutmg L with the rhs of (83) and using the property
of extremum we obtain

o

. h “ . )
Mo(p) — 2 1Mo 9y 7 AN .
(@) 2<5<I>’ C 5(I>>L AN (P) (95)
Defining
521/ Mo 521 Mo
Whho .— (97)4 Ao — (o4~ -
vk = Sk DT B e geey
it is easy to see that
[ w1 = s ). (97)
This implies that, using similar notations,
- —1
Lt = / d'k T (8(k — p) + 1LCMe(p)riie) (98)
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Eventually, one obtains the FE for the functional [ and also for the functional
I, with one operator insertion of source

. R . _
M= S(C o050 (L+1CH;0,0) ), (99)
5. — g@ (1485057 C1) ™ 6,050,7, (1+1Ca,8,0) "), (100)

where ¢, ¢ € {A, B,c,¢}, and we omit appropriate sums over field labels.
Generalization to X' = (x1,...; Xn,) With n, > 1 is straightforward. The
FE for I' in modern form has been introduced in [Wet93, BDM93, Mor94,
KKS97, KM09]. Flow equations with composite operator insertions have
been introduced in [KK92].

The mass dimension of a vertex function F%w(ﬁj with N fields ¢; €
{A, B, ¢, ¢}, n, insertions of sources y; and ||w|| momentum derivatives is
d:=4-=>"xi] — >i[#:] — ||w|, where [F] stands for the mass dimension
of I’ in position space. We say that such a term is irrelevant if d < 0, as
for example I‘fAC;w for [y] = 2, and relevant otherwise. Furthermore, we
call a relevant term marginal if d = 0, as for example ['*444 or strictly
relevant if d > 0.

Expanding in formal power series in A we have

o) = i RrMo (). (101)
=0

We also note that the FE (99) and (100) admit an inductive structure in
the loop number. This property allows us to prove statements by induction,
first establishing them at tree-level, then proving that if they hold up to loop
order [ — 1 > 0 they are also valid at order [.

The proposition that follows proves that vertex functions I involving B fields

do vanish. We use the notation 35 to denote sequences of field labels with
¢; € {A, B,c, ¢}

Proposition 9 Assume vanishing renormalization conditions for all rele-
vant terms with at least one B field:

rPe () =0, (102)

where ¢ is nonexceptional for marginal terms and vanishing otherwise; for
rank-2 marginal terms only the coefficient of 6,, in the basis {0, Giuqjv} 15
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set to zero. Then, for all qu;, [, w, p, and 0 < A < Ay,

Fpostoe () = 0. (103)

Proof We prove the statement by induction, increasing in the loop order,
I —1+— [. Given [, we proceed by descending from w in the number of

derivatives, ||w|| — |lw| — 1. For fixed | and w, all possible terms rlB‘E;w

are considered. By construction, for fixed [ and Bgzg, the inductive scheme
deals first with the irrelevant terms and continues, if they exist, with the
marginal terms, followed by more and more relevant terms. The identity
[JoAomw (5) = 0 follows from the definition of I'. Assume that the statement
of the theorem holds up to loop order [ — 1 > 0. It follows that at order
[ the rhs of the FE for vertex functions with B fields vanishes. Using the

FE we integrate the irrelevant terms from Ay downward to arbitrary A > 0.

The boundary conditions I’ g;AOAo;w(ﬁ) = 0 and the vanishing of the rhs of
the FE imply that all irrelevant terms with B fields vanish at loop order .

The boundary conditions [P? %" (7) = 0 and the vanishing of the rhs of
the FE imply that all marginal terms vanish at their renormalization point
for arbitrary A > 0. The derivatives wrt momenta of marginal terms are
irrelevant terms. Consequently, we conclude that the marginal rlB‘f*AAO?“’(m
vanish for all p. Similar arguments hold for all strictly relevant terms. [
In the following we will always adopt the renormalization conditions (102).
Consequently, counterterms involving B fields are not generated.
Let us denote by W, Z the functional W, Z with b set to zero.

W(K) = W(]? O’ 7’77"7)7 Z(K) = Z(]? 07 ﬁ? 77)7 K = (]7 /’77 ,’7) ° (104)

The covariance matrix C is obtained from C(73) by removing the column
and row which correspond to b.

Proposition 10
1

L ~ A
WAAO (]7 ba 7, 77) - %a)’ b> + WAAO (] - 25867 m, 77) . (105)
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Proof Using the definition of the partition function Z* one computes

1 ,

20 + i 0,6, m) = e N i b i) (106)
§ & 6

LAoAo .= LAOAO((S—j, 5 %) : (107)

We define the exponential operator in (106) as a formal series expansion.
From definition (67) it follows

ZAA() (j + Z%(‘?b, b, ﬁ, T]) _ 62—,}1&<b,b)€—%]LA()AO6—%(ﬁ,SAA0n)+QLﬁ<j7cAAOj> ) (108)

Observing that the expression multiplying emedh) g M0 (7,m,m) we obtain
~ 1

2 by ) = e300 20 (G — i 0b 7). (109)

Taking the logarithm finishes the proof. |

An important consequence of the proposition is the existence of relations
between CS functions with and without the B-fields:

Corollary 11

HWAN0AA (.
WAy, ) = i ) (110)

ox,
182WAAO;AA(:E y)
AR BB =6(r—y) - - —& . 111
3 (v.9) =0z —y) - ¢ 0,09, (111)
Substitution of W% (105) into the definition of I'*° (89) and integration
by parts give

FAAO(Ay Ea Qa Q) = <b7§ - Z%aA - %b> + fAAO(A) év Q)a (112)
SAAg _ Ry _ _ TrAANo [ =
%A, e ¢) = (j, A) + (1. ¢) + (& m) — W (5,1,m) Kae) (113)

From definition 7 it follows that b = (B — i0A. Consequently, the above
expression becomes

1 .
(A, B,e,c) = 5¢ (6B — I0AEB —i0A) + Md,ec.  (114)
Differentiation wrt A yields an important identity:
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Corollary 12

orido 1 DM
E—Zau(ﬁ _ZEaA )+ 6AZ .

(115)

For & := (Ag, c*, ¢?) the functional [A0(3) is defined from LA0(®) in anal-
ogy with (91). For 0 < A < Ay, it follows that

F () = P (@) + L6, €3, ) (116

Substitution (92) and (116) into (114) yields [*o(®) = A (®). Note also
that at A = Ag we have ® = ¢ and

Phodo(@) = LA (@) = LYoAo(d) = Ao (@) = / d'a (L)% 4 L) (117)

1.6 Violated Slavnov—Taylor identities

We are working in a framework where gauge invariance is broken already
in the classical lagrangian due to the gauge fixing term. It has then been
realized that invariance of the lagrangian under the BRST transformations
ensures the gauge invariance of physical quantities to be calculated from the
theory [Nie75, PS85]. On the level of correlation functions (Green’s func-
tions in the relativistic theory) this invariance leads to a system of identities
between different correlation functions which are called Slavnov Taylor iden-
tities (STI) [Z2J75, Sla72, Tay71]. These identities may be used to argue that
physical quantities obtained from these functions, as for example the pole
of the propagators for all physical fields of the Standard Model, are gauge
invariant [GGO0O].

In our framework gauge invariance is also violated in an even more serious
way by the presence of the regulators in (40), (41). We want to show that
for a suitable class of renormalization conditions, which does not restrict the
freedom in fixing the physical coupling constant and the normalization of the
fields, gauge invariance can be recovered in the renormalized theory. This
means we want to show that the STI hold once we take the limits A — 0
and Ay — oo.

The first step is then to write a system of violated STT suitable for our
subsequent analysis of their restoration. To do so we thus analyse the behav-
ior of the regularized generating functionals of the correlation functions under
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BRST transformations. The infinitesimal BRST transformations can be gen-
erated by composite operator insertions for which we also have a freedom of
normalization, as encoded by the constants R; introduced below [KMO09].

To derive the violated STI we consider the functional Z22° defined with
the modified Lagrangian density

Lot = Lro%0 - ppho Qo Lt = / d*x L35, (118)

vst vst vst

where 7, w are external sources, and

1
P = RYOc — igRY[A, ], QM = Q—igRé\O{c, ¢}, RM=1+0().
(119)

The requirement that at zero loop order ¥*° and Q" correspond to the clas-
sical BRST variation implies that the constants RZAO are equal to one at tree
level. At higher orders we admit counterterms for the BRST transforma-
tion [KMO09]. Performing the change of variables ® +— ® + §.® we obtain the
identity

17040 ApAo

_h/ge(duAAoe—hLvst )enk® _/duAAoe—iLvst TR 5.(®),  (120)
where
0cA == €opp, * PO o= —e ToAg * Qo S = eoop, 1B . (121)

Using formula (69) for an infinitesimal change of variables and substituting
the variation §.® with its explicit form (121) we have

—h8c(dpnny (@) =dpnn, (®) € [0 (®) (122)
i (e RE C@)) e RLUE (@) pho (g (123)
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where

I{\AO( ) :<A C’AAOO-O/\O * w > <E7 SX/{OUOAO * QAO) - Z.<B7 00Ao * SX/{O@
+i(d(B — zE&A), oon, * YY), (124)
6LA0A0 § LMoo
1,°(®) =(00s, * ) — {oon, * ——, Q%)
C
AgAo
(B oon, * ———) + (1, Qo) + (. Q) (125)

Q?’?ﬁ —g(RM — RM)e®s (g, ¢A0)ch

+ gRAORAO € (c*(opp, * O cb) — O0n, * (€°0, &)

+ g2 Ry Ry e ((00n, * (Ac"))e” — Aj (00a, % (%)), (126)
pra =(gR3°)%c* (opp, * (cc?)). (127)

The terms Q50 and Q49 orlglnate from the variations d(y1™0), J.(wQho),
see (118). Substltutlng B — (b +i0A), see (76), we get

J a4 R < [ s ey b,

where

T (@) :

<A C’AA O0Ag * ¢ > <E> SX/{OUOAO * QAO)

1 1
+ E<8A,O'0AO * SXAOC> — ZE(b, O0Ay * (SX/{OC + Q@Z)AO)) . (128)

A Ay 5LA0A0
‘]2 ((I)) ::<0-0A0 * 71/} > - <00A0 *

Qo
de )

§ LMoo
) T (1 Q) + (W QR0) . (129)

5L oo
5A

1
—I— ’Lg<b + z@A, JOAO k

Introducing the operators Q;}O and ng

g LAoho § LMoo 1 §LAoMo
Q;}O = 5A O0Ag * wﬁo — 56 O0Ag * Q 0 — E (5 O0Ag * aA
1
1
+ ACT Iyt — eSTIQM 1 EaAS—lc, (130)
§ LAodo
QY =0, * ( — - awf)) ~ 57, (131)
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we have

A 4 o _ 5<b, QY)Y + (1, Q) + {w, QM) + / P QN(x)

1 1
- ig(@ 0Sxa,€) + (A, 0C 1, ™) — (€, 85,,3,9%) + 5(314 L0Sxp,0) 5 (132)
where (5C’AA = doppr,C 7! (5SXA = 00Ar,STY, dopp, 1= O ¥ UX}\O. We may
now express the lhs of (120) as

€ / dpiang (T4 J30) e REST RS e (DMo Do) ZA% Ly (133)
p,B=0
where
4] o o
Do ::/d4xh +zh b, — +8Sy; —), 134
0 ( ) < (55 AAg 577> ( )
) o 5 0 1,.9 o
AAo .__ -1
Dy .—(5J 6C’AAO 5 —)+ (% 5SAAOFL$> — 2@5 5SAAOFL5 ), (135)
Zas / djing (@) e~ FEEHRED, (136)
Lone® =Lof + pQp" + priQpys + pw Qe + SR (137)
Defining
. ) ~ )
S :=(j, 00, * hﬂ> + (1, Ton, * h5w> i(00n, * h5b7 ), (138)
we write the rhs of (120) in the following form
Lot lKg AA AA,
dpipp, € —Llos K- 00 =—-e57Z,,"=—-€5Z,." o (139)
5=
Using equations (133) and (139) we write identity (120) as follows
(Do + RDMo) ZA = SZMM : (140)
p,3=0 p,3=0
We also define the functionals describing the BRST anomalies
SW Ao
AAo ._ Ao ._ 4, 117 AA
WiRo = X heo Wee .—/d e Wi (141)
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where x € {p,} and 7, w are arbitrary and W = hlog ZA  Then

substituting (109) into (140) and shifting the source j j—l—i%ab we get two
equations

B v 1 ST Ao 1 ST Ao
2z 0 — 4= 142
2£(b, Wi + 0538, —5- ) z€<b, Ton * (0 ot n),  (142)
- §I Ao gWALe gy ALe G Ao
AN -1 -1
JirAMo 5 sSL I
1 + < 5] ) C’AAO 6’}/ > + < 517 ’ SAA() Sw >

1, WAt gy Mo < AAg
g<a§—j, 55AA05—ﬁ> + hA

SW Ao SWAR ] SW Ao
5 ) + (7, oo, * T> + E<0'0A0 * 0 5] ), (143)

= <]7 00Ap *

where

52 WAAO 1 62 WAAO 1 52WAAO

— — —_— _1 —

From the definition of the Legendre transform for any source x € {p, 5,7, w}

AMo = (5C14 (144)

STMo SK§(K - — W) gIyAMo gJi7At (145)
ox  Ox 5K ox  ox
Consequenly,
R Faho = —, (146)
R grAdo— TyA%
- _ =— 147
07y oy ow ow (147)
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Substituting W in (142), (143) with its Legendre transform I' we obtain

. oT A §TAM

FA% —gpy, *( =5 )+55;g0g, (148)
(Sf‘AAO 5f‘AAO 1 5f‘AAO

E)JOAO * T> — (4, CAAOT>

5f‘AAO 5f‘AAO B B 6fAAO
- <5—§»00A0 * 5—w> + <Q, 55/\1{0 * 5—w>

Pt
1 oMo —1 AAAo
_ g@A, Oopg ¥ —=— + 053, ¢) + RA, (149)
52~AAO

oc
3 AN
Ao —((g4,0,0) (1 = 1cg;)

—1 52 FAAO

500y
52|~'AA0 = Ao —1(52rAA0

+ <(0,0A,0)(1+ (@(@’ lcé’é) dDw
-1 62

5

2[AN | _ AA
— (048, 0,0) (1 b 1cé,é?)

) (150)

In section 3.7 using the bounds of theorem 1 we show that jl\in}] Abhosdw — ()
—

at nonexceptional momenta, see (168). To get a more concise form for (148),
(149) we define an auxiliary functional

- ~ 1 ~ -~ -
P = PN Gyl @) (151)

Then (148), (149) yield

. §F Mo §F Mo
ANg .
it =oon, * (T~ 075 ) (152)
CaSFAN SFAN A 57 M
Mt =g oo * 5y ) oo =)
1_ r—AAg ~_
— E<8A, Tong * ) + hAMo (153)

A direct implication of theorem 1, see section 2.2, is that the Cauchy criterion

for the functional 40 to have the limit /l\irr%) [Ado — [0Mo ig satisfied. Hence
_)

[lxir% [ AN — [0 gee (92). In the remaining of the section we consider
—
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this limit. Our aim is to rewrite the rhs of (153) in a such way that it
has no functional derivatives wrt the antighost ¢. For this purpose we shall
combine (152) and (153) into the following expression

- 1 . ST0M 1 ST0Ao
|_(1)Ao + g@A, F%A0> = { 1 + EaaA, T, * 5 )
T T
- < 52 y O0Ag * 5w > (154>
Then defining a new functional T
~0Ao ~0Ao =~ 1
[% = i(Bw) + T, =0y 2l d004),  (159)
and operators
oT 0% 5 ) A 5
— (= = = — 1
SA < 6A 700A0*5’7>+< 57 700A0*5A>7 ( 56)
oT 0% 5 gT 0% 6
= R P, — 1
Se 1= {55 0o * 550 + {5 om0 * 55), (157)
oT 0% 5 gT 0% 5
N — = — 1
Sc < 52 y O0Ag * 5w> + < Sw , 00N X 5Q> ; ( 58)
) ) )
0.0 50 1
éc oc 857’ (159)
we rewrite equations (152) and (154) in the form
. F0Ag L o —one - 0 =04
<Z§; rﬁ > = 585]: = <Zﬁa O0Ag * (5_61: >7 (160)
~ 1 ~~0A0
Ryl =SS, (161)
where
. - - 1 .
S:=8,-38, FOA0 .= 08 4 E<aA, oty (162)

The introduction of the functional I' leads to relation (161) and to the con-
sistency condition given in (164) below. They are important in the analysis
f(l)Ao;qﬁ;w

of the renormalization conditions for , see section 4.
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We have the following algebraic identities
(SiS; + S;S)I™ =0, Vi,j € {A, ¢ é}. (163)
Consequently SQEOAO = 0. Thus application of the operator S to equa-

tion (161) yields -
SFO0 — 0. (164)

Using again (163), we also have
1 ~ ~ 0Ao o 5 0Ag
5(585 + 897 =0, and thus STg+ ogp, * %Fl =0. (165)

Finally we set v,w = 0 in (160), (161) to get the AGE and the STI:

6fOAO A

F0Ao _ L _ ap0ho

FOM — g, * (—5§ or’ ) (AGE),  (166)
~0Ap ~0Ap

~ r ~ 0A ol ~ 0A

B =(Sgmroome x 1) = (oo < L7) (STD). - (167)

The goal is to show that we can arrange for boundary conditions such that
I_%OO =0 and 'Y = 0, in the sense of theorems 3, 4.
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2

Momentum bounds

From now on we use the following conventions:

0 < A < Ay, unless otherwise stated.
M is a fixed mass parameter such that 0 < M < Aq.

We omit the tilda for all vertex functions and insertions, for example
Péw , Déw Fw o [, [w o o0,

We use A, ¢, ¢ instead of A, ¢, ¢, respectively.

A tensor monomial is a tensor product of Kronecker §’s and momentum
variables in p := (p1,...,pn—1), for example d,,p1,p2,. Let {0°p*} be
the set of all monomials being a product of s Kronecker §’s and k

momenta p; and let {§°p*}, be the union of the sets {§*p*} such that
r equals the rank of the monomials: r = 2s + k. For example {6*}, =

{5uu5pa ) 5u05pu ) 5up5ua } .

For p € P,, we define the n-function by

()= _min (| pil, M). (168)

Sepn—l\{@} ieS

where @, 1 denotes the power set of [n — 1] (the sum does not include
Py = —Z?ilpi). A momentum configuration p is said nonexcep-
tional iff n(p) # 0 and exceptional otherwise.

For a fixed constant ¢ such that 0 < ¢ < 1 we define
M, = {p€P,:n(p) >cM and p; < M*Vie [n—1]}.  (169)
Every p € M, is nonexceptional.

Vn > 2, a momentum configuration p’ € M,, is symmetric iff p'e M7,
2

1

. M

(né; —1)Vi,jen—1}.  (170)

Vn > 3, a momentum configuration p’ € M,, is coplanar iff p € M?,

M = {7 € M, : dim(span(po, .. pn 1) =2} (171)
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e In the following, a renormalization point is denoted by ¢ € P,. See
appendix H for the list of all relevant terms and their renormalization
points.

2.1 Weighted trees

The bounds on the vertex functions presented in section 2.2 are expressed
in terms of sets of weighted trees that are introduced by definitions 13, 14
below. As seen from (191), to each edge e of a weighted tree is associated a
factor (|pe| + A)~®), p. being the momentum traversing the edge and 6(e)
being the f-weight of the edge, expressed as a sum of the p and o-weights
of the edge, see (177). The relation (179) expresses the fact that the total
f-weight of a tree is in agreement with power counting. Nonvanishing o-
weights are introduced in order to define viable tree bounds for momentum
derived vertex functions. The definition of the o-weight is inspired by how
momentum derivatives are distributed along a tree, taking care of momentum
conservation. Before giving the definition of the weighted trees we set up
some necessary notations.

e A tree 7 is a connected graph with no cycles. The sets of vertices and
edges of a tree 7 are denoted respectively by V(1) and E(7), or shortly
V', E. In the following, the terms “edge* and “line“ are equivalent.

e Let V,, be the set of vertices of valence m. Then, V = Um>1 V.

e Let E; be the set of edges incident to vertices of valence 1. In other
words, F; is the set of external edges.

e Each tree has a bijection ¢ : {0,...,n— 1} — V}, i — v; and a sequence
of n field labels @ = (¢g, ..., pn_1), @i € {4,¢,¢,v,w,} and n = |V4].
The field label ¢; defines the type of the vertex v; € Vi. Let V, C V}
be the set of all vertices of type ¢, for example V4. Furthermore, let
E, C E; be the set of all edges incident to vertices in V,,, for example E,,
with s € {v,w}.

37



When needed, the edges are labeled by integers and the vertices by
symbols. The edge incident to a vertex v; € V} has the same index 1.
As an example, for the tree above we have:

V =A{co, A1, Ay, e3,u,u'}, Vi = {u/ ul,

Vi = {co, A1, Az, C3}, Va={41, 4}, Ve={ea}, V.={a},

E, ={0,1,2,3}, Ey={1,2}, E.={3}, E.={0}.

e Recalling the definition of P, in (18), for every edge e € E and vertex
v € Vi, the momentum assignments p., p, are functions from the set
P, to R*, with n = |V4|, defined by the following construction:

a) label the vertices in V; by means of ¢ : i — v; and set p,, (p) := p;,
b) apply momentum conservation to all vertices to get p.(p).
We use similar notations for multi-indices: w, = wy-1(,y for w € W,

and v € V;. Given the momentum assignments, a set-valued function
K on FE is defined by

Ope

K. :={veVi\{v}: 9.

£ 0}. (172)

For an edge e € E the momentum p, should be viewed as a function of
all external momenta which flow through the edge. K, is the set of all
vertices corresponding to these momenta. For the tree given above we

have pe, = —(pa, + Pa, + pe;) and

Ko = {A1, Ay, c3}, Ky = {A}, Ky = {As}, (173)
Ky = {&s), Ki = {A), A5} . (174)

Some additional structure is needed, always in view of the bounds.

e The vertices in V3 are additionally labeled either as "regular” (e) or as
"hollow” (o). The sets of regular and hollow vertices are respectively
denoted by V, and V,, hence V3 = Vo U V,. In terms of our bounds,
regular vertices do change the p-weight of incident edges, while hollow
vertices do not, see definition 15. We use hollow vertices for the bounds
on 3-point functions and in the proof of the theorems, see for example
section 3.2 on the junction of weighted trees and definition 25.
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e Edges carry zero or more labels ”*”. Edges are referred to as ” *-edges”
if they have one or more labels ”*”, and as "regular edges” otherwise.
The set of all *-edges is denoted by FE,. The *-edges play a special role
in our bounds, because to each e € F, is associated a supplementary
factor |pe| + A, see (191) and theorem 4.

Definition 13 Let be given a sequence of n > 3 field labels, G = (o, .., on_1),
with ¢; € {A,c,¢,v,w,B}. Let Tz denote the set of all trees that satisfy the
following rules:

e There is a bijection v : {0,....,n — 1} = V4. Each v; € Vi has type ;.
o V=V, UV;.

o [fn=23then V3=1V,.

e |E,| €N.

Definition 14 In the notations of definition 13, let 7;?(8) denote the set of all
trees in Ty with total number of labels ”*” equal to s and such that V3 =V,

whenever n > 3. For shortness we set Tz 1= 7:5(0) and Tig = 7:5(1).

As an example, below we show two trees, 73 € Tica4 and 77 € Taeczana.

Aq

By the following two definitions we introduce p and o weights of an edge.
p and o-weights are numbers. The p-weights of external edges F; are assumed
to vanish. Using an auxiliary function x which associates vertices V, with
incident edges F\E; we define the p-weight of an internal edge equal to 2
minus the number of vertices associated with this edge. The o-weight of
an edge coincides with the number of derivatives wrt the external momenta
which hit the edge.

Definition 15 Fiz a tree from Tg. A p-weight is a function p : E — {0, 1,2}
with the following properties:
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1. Ye € Ey, p(e) = 0.

2. There exists a map x : Vo — E\E) such that
a) if x(v) = e, then e is incident to v,
b) Ve € E\Ey, ple) =2 — x""({e})].

Definition 16 Let be given a tree from Ty and w € W,,, with n = |V;|. A
o-weight is a function o : E — N defined by

ale) = oy(e), (175)

veVy

where (o, : E — N)yev, is a family of functions such that

> oule) =w,, ou(e) =0 ifv € K, . (176)

eckE
By definition (23), wy = 0 for every w € W,,. Hence, o,,(¢) =0 Ve € E.

Definition 17 Let be given a tree 7 € Ty and w € W,,, with n = |V;]. A
0-weight is a function 6 : E — N defined by

0(e) := p(e) + o(e), (177)

where p and o are a p-weight and a o-weight corresponding to w, respectively.
The pair (7,0) is a weighted tree. The total 0-weight of (1,0) is

0(r):=> 0(e). (178)

The set of all O-weights corresponding to given T and w is denoted by OF.
For every tree 7 € 7;3(5) with n > 4 the total 6-weight is given by the formula
() =n+||w| —4. (179)

This relation follows from definitions 14, 15, 16, which give the sum rule
Y e 0(e) = ||w||+2|E\ E1|—|V3|, and from the relations |E\ Ey|—|V3|+1 =0
and |V3| =n — 2.

As an example we consider three trees 7,7, 73 € Taaaa. We give three
different weights 6,, 6, 6., which all correspond to the derivative wrt the
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momentum py, literally w; = 1 and w = (0,1,0,0). We find a family of
weighted trees {(7;,0) : 0 € OF }ic(123), where

07, = 07 = {0, 0, 6.}, 0% = {0,,0.}. (180)
ecE|0,]6,) 0.
0 1101]0
1 01011
2 0]0]O0
3 0]0]O0
4 0O]1]0

2.2 Theorems

We always assume that the renormalization constants are independent of Ag
(though weakly Ag-dependent "renormalization constants” can also be ac-
commodated for, see [KKS92|). From now on we denote » := (¢, ...., 3,,)
with s € {y,w}, n,, > 0.

Hypothesis RC1 We impose on all strictly relevant terms vanishing renor-
malization conditions at zero momentum and A = 0:

oo () = 0, if 2, + N+ |wl| < 4. (181)

Hypothesis RC2 On the following marginal terms we impose renormaliza-
tion conditions at zero momentum and A = M :

rMAQ;CECE(O) — 07 rMAo;CEAA(O) — 07 aAI—MAo;CEA(O) — 0’ (182)
for the notation see (25).

As it will become clear from proposition 18 the condition A = M is not
essential. Since at the renormalization point p = 0 these terms do not depend
on A one could consider the renormalization conditions with A — 0

}Xli% rAAo;cEcé(O) — 0’ }Xl_% rAAO;cEAA(O) — O, /I\IL% aArAAO;cEA(O) =0. (183)

It is important to note that at tree level these terms are incompatible with
BRST invariance and already vanish. Remark that Bose—Fermi symmetry
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and translation invariance imply that 9, M20ce4(0) = 0 iff 9, MMAoi4ee(() = 0.
To prove proposition 18 and theorem 1 all remaining marginal renormaliza-
tion constants are chosen at A = 0 arbitrarily but in agreement with the
global symmetries of the regularized theory: SU(2), Euclidean inhomoge-
neous O(4), ghost number conservation. For instance, all renormalization
conditions must comply with the vanishing of the ghost number violating
functions, like [AAoiccce gp ré\;;é\f;l) for »; € {v,w}. The list of the remain-
ing marginal renormalization constants follows literally from (721) and ap-
pendix F.

Proposition 18 Assume the wvalidity of hypotheses RC1 and RC2. For
all sequences of N > 3 field labels in {A,c,¢} with ¢y_1 = ¢, denoted by
gz;é, all w = (w',0) € Wy, dall (p,0) € Py, and all positive A, Ay s.t.
max(A, M) < Ao,

[ANodew (5 0) = 0, (184)

Note that in (184) the momentum of the indicated antighost ¢ vanishes, and
there is no derivative wrt this momentum.

Proof We prove the statement by induction, increasing in the loop order,
[l -1~ 1. Given [, we proceed by descending from w in the number of
(Z;(_:;w
l

derivatives, ||w| +— ||lw|| — 1. For fixed [ and w, all possible terms 7" are

considered. By construction, for fixed [ and qgé, the inductive scheme deals
first with the irrelevant terms and continues, if they exist, with the marginal
terms, followed by more and more relevant terms. Since the momentum of
the antighost has been assumed to vanish, the statement holds at loop order
[ = 0. The validity of the statement for all loop orders smaller than [ implies

that %" (5,0) = 0. The irrelevant terms have vanishing boundary con-
ditions, hence "% (5 0) = 0. Integrating the FE from Ag downwards to

arbitrary A > 0, we get I'lAAo;d)E;w(ﬁ, 0) = 0 for the irrelevant terms. Next we
consider the marginal terms. Since the corresponding irrelevant terms have
already been shown to vanish at vanishing antighost momentum, we use the
Taylor formula to extend (182) to arbitrary momenta (p,0), still preserving
the vanishing antighost momentum. Then, we integrate the FE from M to ar-
r;\Ao;QSE;w (]3»7 0)

bitrary A > 0, which completes the proof that = 0 for marginal

terms. Similar arguments hold for all the strictly relevant terms I-faw. [ ]
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Corollary 19 The following counterterms in L% vanish, see (45),

0,ccAA 0,éccc __ 0,ccAA O Acc
o1 =0, r =0, Ty =0, ry " = 0. (185)

Proof Using (184) we have, for all py, p3 € R* and A = A (omitted),
[0, p2,ps) =0, T(0,p2,p3) =0,  0p,T(0,p2) =0.  (186)
Recall that [ofo = [Ao%o gee (117). Then the result follows from (45). W

Corollary 20 For all X € {p,1}, %, be, w = (w',0), P, and all posi-
tive A, Ao s.t. max(A, M) < Ay:

radoden (5 0) = 0. (187)

Proof It follows from the definitions of the inserted functions given in (118),
(119), (137) that at tree level rﬁ(/}fli%w(ﬁ 0) = 0. Then using equation (185)
one shows that for all these terms we have vanishing boundary conditions,
r?gjg 92, “(p,0) = 0 Vi. Assuming that the statement is true at the loop order
[ —1 > 0, by induction in [, using (184) and integrating the FE from Ag to
arbitrary A one shows that it holds at the loop order [. [ ]

From now on, for simplicity of notation we write P* to denote polyno-
mials with nonnegative coefficients and degree s where the superscript is a
label to make one polynomial different from another. We define:

A1 A2 .— p(0) max( ‘15] M) (1) )\2
P)Np) == P(), (189)
(@) = [[ O+ Ip)™" (190)
eck
[T (A+Ipe|) [inf Z()H o(P), V1| =3,
Aw — e€Fy 9 o /(4 191
O-) IT (A+pe|) S A, (p), otherwise , (191)
e€E,. fcOw g

where 7 € Ty, w'(i) is obtained from w by diminishing w; by one unit, and,
for nonvanishing w, I := {i : w; > 0}. The following sets are also used in
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theorems 1-4:

Y:L_Z:{(A,AQ)ZO<A<AQaDdA0>M}X]P)n, (192)
¥, =7 ({080 : Ao > M} x {(FE B (@) £0). (193)

Theorem 1 There exists a collection of reqular verter functions r;i;l on
Y., . complying with the global symmetries of the theory, satisfying the
FE and the renormalization conditions given by hypotheses RC1 and RC2,
and with irrelevant terms vanishing at A = Ny. Furthermore, for all qz?, 7,
alll € N, w € Wy, the following bounds hold on Y{ ., :

a) d=0o0orN+n, =2

M2 ()] < (A + [2) PN (@), (194)
b) d <0 .
PAModn ) < ST QA (p) PAG). (195)
T€T5

Here d := 4 —2n,, — N — ||w||. Ifl =0 then r := 0, otherwise r stands for
r(d,l).

2, d>0,
r(d, 1) = {21 —1, d<0. (196)

Theorem 1 shows in particular that the functions rng;‘b;w are bounded uni-

formly in Ag. To prove convergence in the limit Ay — oo we establish the
following bounds for their derivatives wrt Ag.

Theorem 2 Let be given a collection of vertex functions F‘g;l as in theorem 1.
Then, for all gg, %, alll € N, w € Wy, , the following bounds hold on Y}, :

a) d>0o0orN+n, =2

A+ M+ |p]

AA ;_‘;
) < A
0

(A+p)* P (@),  (197)
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b) d<0

on P ()] < A S~ riz pr. (109

Aol 7 2
AO 767}(5

See theorem 1 for the definition of d and r.
Convergence of the limit A — 07 of the terms Fng;‘;;w(ﬁ), 8A0F2A°5£;w(ﬁ)
when p'is nonexceptional (or d > 0) follows from the Cauchy criterion
A
BRI - TS ) < [N g, L (199)
A

and the bounds from theorems 1, 2. Convergence of the limit Ag — oo of the

terms F%*%"(5) when j is nonexceptional (or d > 0) follows from Cauchy
criterion and the bounds from theorem 2,

Af
sbyw Apidsw psw
PO ) oM ) / 0o B, T2 (7). (200)
Ao

In the following we will consider the functions FOAO'QS’“’ rgA°‘¢‘w which

appear on the lhs respectively of the ST identities (167) and of the AGE (166).

The goal of theorems 3, 4 is to show that FOAO‘MJ and FO/}{W“’ vanish in

the limit Ay — oo, which restores the STI and AGE. The renormalization
conditions for these functions at A = 0 are obtained from the rhs of the STI
and AGE. In particular for all strictly relevant terms 'Y from (153) we have

e <lim 30 (JFEA )R o)

A—0 2
P1®Po= %

21Pio= ;4/
w1t w2=wr

i 1
4 |FAAO sediiwi (O)HFA/}O#’%’U}Q (0)|> + = lim Z |FAA° iedaiwa (0)], (201)
w2 & A—0 —
A®¢2:¢7\'
1at+wo=wn

where the sums run over all partitions and permutations such that

01D ¢y = (¢7r(0)7 er) gbﬂ.(n,l)), 2w D iy = (%ﬂ./(l), e %ﬂ/(n%)) . (202)
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Substituting each term in the sum with the bounds of theorem 1 we obtain

: —N1—2n, —|lw1 —No =210, — w2 0 M 1 A
L e G U S R U )
. —N—2n,,—||w 0 M
— lim A% 2 I (Jog, X) —0. (203)

This gives the renormalization conditions for all strictly relevant terms
M2 (0) = 0, N+ 2n,, + |Jw|| < 5. (204)

Substituting the vertex functions on the rhs in (152) with the bounds of
theorem 1 we obtain the renormalization conditions for the stricltly relevant

¢
terms I‘B
rng;(g;w(O) — 07 N -+ Hw” < 3. (205)

In section 4 we show that the required boundary marginal terms I‘?g“‘ﬁ;w, I‘%ﬁ‘;’mw
satisfy the bounds of the theorems under the conditions specified in hypoth-
esis RC3.

Hypothesis RC3 We allow RA44, v 1% to be chosen arbitrarily but the
remaining marginal renormalization constants must satisfy a set of equa-
tions: Ry(425), Ry(444), R3(447), r34(441), R{*(431), R{§44(451), see
appendiz F' and (721) in appendiz E for notations.

For shortness we also introduce the following definition

R () = S S pg (206)
P () = (14 (%)“’)p@ e lflM)PrAA“(ﬁ), (207)

for w see after (24).

Theorem 3 Let be given a collection of vertex functions rﬁ;l, reqular on
Yyin,, complying with the global symmetries of the theory, Satisfying the hy-
potheses RC1, RC2, RC3 and the bounds of theorems 1,2. Let r‘gﬁ;l be a
collection of vertex functions with one insertion of the operator ng (131),
reqular on Y1ixin,, complying with the global symmetries of the theory, sat-
isfying the FE, and s.t. the AGE (166) holds. Then, for all gg, 7z, alll €N,
w € Wi yin,, the following bounds hold on Y1 yip,, :
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a) d>0o0orN+n, =1

P22 (P < (A + [P FAY (7). (208)
b) d<0 )
P2 @) < D QM () FA (7). (209)
TG%;‘&'

Here d :==3—2n,, — N — ||w|| and sg :=0. Ifl =0 then rg := 0 otherwise rz

stands for rz(d,1l).
21, d=>0,
rg(d,l) := {2[ 1 d<o. (210)

We note that the 1-point vertex function with integrated insertion (146)
vanishes, M9 = 0, c¢.g. due to SU(2) symmetry.

Theorem 4 Let be given a collection of verter functions rﬂ 0 r‘gi;l as in

theorem 3. Let I_fﬁ;l be a collection of vertex functions with one integrated
insertion of the appropriate operator among Qﬁo (130), Qf)\g (126), Qﬁg (127),
reqular on Yyin,, complying with the global symmetries of the theory, and
satisfying the FE. Assume that the STI (166) and consistency conditions
(164) and (165) do hold. Then, for all ¢, % alll €N, w € Wyin,,, the
following bounds hold on Yy, :

a) d>0orN+mn, =2

PARG (5)] < (A + ) A (7). (211)
b) d<0
[rAdndie () Z Q" (p) FAY(p) . (212)
TET

Here d :=5—2n, — N — ||w||. Ifl =0 then ry := 0, s; := 0 otherwise ry, s,
stand respectively for r1(d, 1), s1(d,1).

3l d>0
) ) >
md ) =31—1, d=0,  s(d]) = {l_l’l 120 @)
-2 d<0, !
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3 Proof of Theorems 1-4

In this section we will prove theorems 1, 2, 3 and 4 in this order. We proceed
by induction in the loop order [. We first verify that they hold at tree level
[ = 0. Afterwards we assume that they hold true up to loop order [ — 1 > 0,
and we will verify the induction step from [ —1 to [.

Put Dy := 4 for all vertex functions FZ. For all inserted functions rf(;j
with X € {#,1} and ||w|| < w let

3, X =0,
Dy = {57 X_f) dy = Dy — 2, — N — ||w]. (214)
Note that at zero loop order T4 = [iolo. Using (117), (146) and the
definition of L4, in (137) one finds that in momentum space

AoAo;d Ao;d AoAo;d Ao;d AoAo;é Ao

Mot =y, TN =Qr, T =@, (215)

where the momentum variable corresponding to the source p is set to zero.
Everywhere in the following Qﬁo will stand for QQ(OO). From definition of Qﬁo

in (130) it follows that the vertex functions Q;};(l)fo with N = 2 vanish. The
nonvanishing functions Q;\fl’fm 2(};% have the form h,(p,q)(1 — ooa,(p?))
where hg is a homogeneous tensor polynomial of degree s < 2 in the momen-
tum variables p, ¢ € R* which depends at most linearly on the momentum g.
From the definitions of Qﬁg (127) and Q;\g (126) we obtain that Qﬁff;fzo has
the form hg(p)(oor, (P + q)?) — oon, (P?)) with s < 1. For |Jw]| < s (relevant
terms) using inequalities (639), (645), (650) we have

o . s+1-llul e
gl <en ™ (2) <efuar @
Ao AO

For ||w|| > s (irrelevant terms) the same inequalities yield

P < ony (12 0)

Ao
lwll—s
< (| + Al M(@ 1 1) : (217)
Ao \Ap
Since s — ||w|| is the dimension dx we have the following bounds
IFEiZy )] < (A + |71 Fyo* (), X e {1} (218)
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Thus the statements of theorems 1-4 hold at loop number [ = 0. The proof
proceeds by induction on [ and on the number of derivatives ||w||, ascending
in [ and, for fixed [, descending in ||w|| from w to 0.

3.1 Chains of vertex functions

Definition 21 A division in m parts of a finite set 1 is a sequence S =
(85)jemm) of m disjoint sets s; C I, possibly empty, such that Uje[m] s; =L
An ordered partition is a division with all s; nonempty. Given a division
S as above stated, a division of a sequence U = (U;)ier is the sequence of
elements U; := (Vi)ies,, with j € [m].

Definition 22 Let S be a dwision in m parts of a finite set I, and U =

—

(V;)ier be a sequence of labels V; € {A, ¢, ¢ v,w,B,1}. Denote by (¥;) the
division of W induced by S. A chain of vertex functions is then defined by
the expression

Fglon = raha T Cpe, 1995 (219)
=2
where the repeated field labels (;, (; belong to {A,c,e} and are summed over
(as usual).

Using this definition the FE (99) has the form

MY = 5 D () (CFEA 4 S(FF — F')). (220)
s

The sum above runs over all possible divisions of [0 : n — 1], n being
the number of components of U. The symbol 7, denotes the number of
transpositions mod 2 of the anticommuting variables {c, ¢, 5,7, 1} in the per-
mutation i — (i) such that (Wrq),..., Vrm-1)) = U, & ... ® ¥, where
(a1, ..., ap) & (apt1, ..., ag) = (a1, ..., aq). i
A preliminary step toward the proof of theorem 1 is to bound aw(ccc—r@‘@“)

with ||w|| < w.

Proposition 23 Forall0 <k <l,0<w<w, peR?

)(}j%) (M m)ciom) | < ﬁ. (221)
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Proof Using inequality (6) we see that

_ w |

oW (Mo Ao < w: auurCC Aboy) gu— w1CAA0 299
OIS 3 ot [ )
Setting we = w — wy it follows from (692) and the bounds of theorem 1
already proved inductively for k < [ that

dv2 Pj)
! ] NS T pye (223)
Because w < @ the constants cg, d*2 may be absorbed in Pj. [

Definition 24 Let be given
1. a sequence U = (V))ier as in Definition 22;
2. an ordered partition S = (8;)jepm) of I;

3. the sequences of field labels ((;)jepms (G)jem);

4. a multi-index w € W,, and a sequence w := (W;) jcpm) such that w; € W,
and Y ic Wi = W

Then, we define a reduced chain of vertex functions as

m
rC1‘I/1C1;W1 H chéj_erj‘I’jCj?Wj’ (224)
j=2

where [C¥itw = ovi(r v 'E) are derivatives wrt the external momenta appear-
ing in MY and the sequences (Gj)iemm)s (CJ)]E[m] are fized. Introducing the

auziliary quantities T = (T )jcim] and T = ( JC], we denote (224) by

STw or, with some abuse of notations, by SC“I’C’” v

The adjective "reduced” indicates that the chains contain neither 4, e
nor derivatives applied to the propagators C.

It follows from inequalities (692), (221) and theorems 1-4 proved in loop

order [ — 1 that there exists a common bound for the terms qufl;“ﬁwﬁws(}
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and rff’f;wlawz’(crff)awsc. Hence to bound ¥ it is enough to consider a
loop integral with a reduced chain

d*k . Pw o
/W Cgf(k?) ng:lljf’l (k,ps, —k), (225)

where py; = (pi)ics;- As an example we give in Appendix B the complete
list of chains for 44 The appellative "reduced” may be omitted in the
following, since it is always clear from the context whether a chain is reduced
or not.

3.2 Junction of weighted trees

Given a reduced chain ST" we define its amplitude STw by substituting
the vertex functions and propagators with their corresponding bounds taken
from theorems 1-4 and inequalities (692). Recalling that T, := (;V;(;, we
then set

i m 1 AT
ShTw . AT H - GMYw (226)

(A + [p))®, case a,
QYNv,  case b, . (227)

Here the cases a and b refer to the respective parts in theorems 1-4.

The tree structure of the bound is spoiled if there exists an interval J¢ :=
[j* : j* 4+ m® — 1] C [m] such that all S¥V5* for j € J* correspond to a
strictly relevant contribution, associated to the cases a in the theorems. A
workaround for this difficulty will start with the following definition. For
every tree 7 € Ty, set By, := {e € E; : e incident to v}.

Definition 25 Let J be an arbitrary sequence with ¢; € {A, ¢, ¢, B,v,w}. A
tree f € Ty is a fragment if
a) there exists s € N s.t. |V,|+ s equals the total number of 7*” labels,
b) Yv € ‘/O.' |E1;’U| 2 2 and El;v N E* 7A Q)
The set of all such fragments is denoted by .7-";3). Moreover we set Fz := éo)
and Fig = .7-"531).
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For each s € {0,1}, 7:5(8) C ]':(;) C Tg.

With the aid of this definition we will now show that the aforementioned
contributions with relevant parts SAY5w can be bounded by fragment am-
plitudes Q?;w, see (191).

Let be given a subsequence J* := [j* : j*+m®—1] C [m] with any number
of elements m?. Let S and U be as in definition 24. Define the following
restrictions: S = S|pa, w* = wlge. Set w® := 3, . w; and U = (;) with
i € Ujega 55. Then, there exists a set of fragments ]: cTaf such that

Shicweam o Z QN (228)
(‘I’(LC

Here we give a proof of (228) for an example, generalisation is clear. Consider
an amplitude ShA G composed of four elements SGAGw where jed{l, ... 4}
and w = 0. First let us define the following set of fragments F (here s = 0):

1 2 3 4 1 2 3 4
0 5 0 % 5
1 2 3 4 1 2 3 4
0 % * 5 0 * 5

In each fragment the —edge corresponds to a factor A + |p.| in the corre-
sponding amplitude Q ser - One shows the following bound:

0 1 ic| 2 | 3 i 4 5, <22 ZQA“’ 0. (229)
§G1AG §¢2AC02  §C3AC3 §CaAly feF
I (A+[p]) | I (A+Ipxe)
vEV3 3 veVs
. (230)
[T (A+Ipe])? Z (A + [pe])?
e€E\Ey eeE\E1

Here the @-vertices stand each for 544%w=0 see (227); p, indicates the set of
incoming momenta of the vertex v; p, denotes the momentum corresponding
to an edge e; the sum runs over the set of functions x : V3 — E\E; U{ep, €5}
which map every vertex v € V3 to an edge incident to v; the |C|’s stand for
the usual bounds on the corresponding propagators.

Let be given a sequence of fragments f = (f1,..., for) with f; € C\P C

and a sequence W' = (W}) jc( With w; € W,,. We define the amplitude oA 7
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AW Aw n 1 Asw’,
= QM [ 59, - 231
R e IS 25

Lemma 26 Given an amplitude QA?”"/ as above there exists a fragment f €
Fege such that " o
O < Qi (232)

Proof We proceed by induction in m/. If there are no joints, m’ = 1, the
statement is evident. Assume it is true for some m’ — 1 > 0 and consider a
sequence of m’ fragments. Let v, v, € V3 be the left and right vertices of a
joint.

® U, Ur € ‘/3\‘/0
v - e Uy < vy Uy (233)

m, — 11 = 114 234
11,01 (A+ ]p|)2 fr0r f.0 ( )

Here the corresponding external edges has been merged together to
form a new internal edge with #-weight equals to 2. The #-weight of
all other edges is unchanged.

o v € V3\V,, v, € V, or vice versa.

+vz 5 o - _o ;vr% < +Uz T vﬂ (235)

I ETIE (A + [pDTT} 4, = T3, (236)
+—‘ »—% < e (237)
I} 4, m (A + [p IR 4 = (A + |p.])IT}, (238)
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e v, v €V,.

e -

H}\l,el (A +1p|) (A + |P|)H? 6, = H?e (242)

(A -+ |p|)

Hence, by merging two fragments we can decrease the number of joints by
one and then apply the induction hypothesis. |
In the simpler context of ¢* theory, a completely explicit description of the
junction of trees can be found in [GK].

According to equations (625), (631) the loop integral in (225) is bounded
by the following expression

/C?é\oSA;“i‘;w m;\_l < AS*A;?;W ;ﬁp«l/\_l ; (243)
pe,pe=0
AA
N R
Pro=q ', X =05, (244)

P otherwise,

which follows directly from the definition of r, rx, sx given in theorems 1—4.

As can be seen from (243) the loop integration of our bounds leads to a
result reproducing the structure of the bounds where the loop momenta have
been set to zero. This will be a general feature of the subsequent proof, and
we will therefore define the restriction R as follows:

Definition 27 For any function f depending on the variable p:, and other
variables which we need not specify, we define

Re(f(ypes o)) = f(.,0,..0).
Then we set RCE = TR¢o Rg.
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SACT s

Proposition 28 For an amplitude Sg there exists a set of trees such

that
ANCTEw 1s] v
R (SETw) <2 37 R (@), (245)

T€7-C\I‘;E

Proof Using definition (226) and inequalities (228), (232) we obtain that

SQ;C\I@W is bounded by a sum of fragment amplitudes. It remains to show that

for a fragment f € F g there exists a tree 7 € T g such that ch(Q ) <
RCC(QA v). We denote by a double bar line the edges ¢, (.

e The case f € T gz is trivial.

e Otherwise f & 72\174—. Based on the inequality #M < 1 we find

[ ¢
< (246)
* (1,2) (0,1)

[
At any loop order I’ < [ using the bound of theorem 1 and the inequality

1
1< At (A + |pa]) + (A +[p2])) (247)

where p,, + p1 + p2 = 0, one realizes that for the marginal vertex function
[AR0@192 the following inequality holds

il
1 ” ”
rAAlo,¢1¢2 < ( )PA - 248
(AR vury ot ey (248)

Similarly, substituting the relevant terms rgﬁ,o;‘i’””, N + ||lw]] < 3, at loop

number !’ < [ with the bounds of theorem 3 we have

B b1
ANo;p1920 AA
ey < T T, (219)
AAo; AN\
|rﬁ’l/0 ¢1¢2’ 1, b2 + b1 bo F’/‘,(j(lg ; (250)
AANo;p10 AN
Ll I N o (251)
1
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Furthermore using the bounds of theorem 4 which are assumed to be true for

any loop order I’ < [, we obtain the following inequalities for strictly relevant

terms Fjl\é\,o‘ﬁ’ N+ |lw|| < 5,

Alo; & AA
“-1;[ 0;9091 2¢>3| < o b3 b b3 Frl(l9) s1(l) (252)
Alo: A
|r1;l/o ¢0¢1¢2| . o oo 6o T+ oo r1 l(’) ) s1(l7) (253)
AAo; AA
o " otz < b1 a b2 T o v 92 rl(l(’) )s1(l) 2 (254)

o A + |
AAo;d091;w ~AA AAo
LW CHI < A+ pel i @)s@) (255)

where the dots stand for omitted fragments obtained by permuting the A

over the external edges. Substituting the bounds for F(b; with those for

0z Fc‘b’ yields a similar result for the relevant terms F¢”Q with n,, > 0. Con-

sequently the amplitude S Asdiw

fe«/t‘lcp

is bounded by a sum of amplitudes Q ;o with

3.3 Irrelevant terms

The irrelevant terms at arbitrary 0 < A < Ag are reconstructed by using the

FE:
A

P = e+ [ e, (250)
Ao

At A = Ay for all loop orders [ > 0, for all n,, > 0 and dx < 0 we have

- dX Avo
’rAOAO§¢§w(]§*)’ < {(Im +A0) FT‘X Sx X € {57 1}7 (257>

Xl otherwise,

where the upper inequality is obtained using the bounds on relevant terms
from theorem 1.

To integrate the FE from the boundary Ay to A we substitute the chains
S¢P@16 - §6#9¢ with the bounds given in theorem 1 and use inequalities (591),
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(601). Eventually we get

[P (p)] < (A [p)* IRy, [w]] > 2, (258)
| <A+ )Py, [w]| > 1. (259)

AANo;d;w
|r%;l0¢ (p)

In a similar way substitution of S¢#, Sf%qslc— with the bounds of theo-
rems 3, 4 and then integration from Ay to A, using (615), give

AA
|rAAo;¢;w(p) _ erAO%Qﬁ;w(p)l < A |w]| > 2 (260)
Bl Bil (A + |p|)llwl=2" ’
AN
’rAAQ;(z)O(ﬁl;’w(p) _ I—AOAO§¢0¢>1§w<p)| < M Hw“ > 3 (261)
1 1l (A + [p])llwl=3" '

Proposition 29 There exists ¢ > 0 such that
o V7T € 71% where ¢; € {A,c,¢,v,w} and |V1| > 4,
o Vw € W, 15 where we =0, wg =0 and 0(7) > 1,
7 e 7;7(3) and

_ w ¢ Asw

Proof Denote by v, € V\V; the vertices incident to e¢, e € E1. Then
we =w; =0 = o(eg) = o(e¢c) = 0. (263)

Note that once we have proven the statement for the case F, = ) the gen-
eralization to the general case is simple. The case e¢,e; € Ey is trivial. If
{ec,ec} N E, # () then we change the multiplicity of ”*”-labels m. of an
arbitrary edge e of the final tree 7 in this way: me — me. = me +me. + M-
Since p¢ = 0 and p = 0 it follows that

IT O +lp)m™ < T O+ Ipeh)™. (264)

ecE, (T) ecFE, (7:)

First we assume that v # 0. The result of the restriction R¢(QXN%) is the
amplitude of the tree 7 where two edges e; = {uy, v}, es = {ug, v} carry op-
posite momenta. Here {u;, v} denotes the edge which links the vertices u;, v.
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We assume that x(v) = e;. The case x(v) = e, if it is possible, is obtained
by interchanging e; and e;. Thus, a factor of 2 has to be absorbed in the
constant c.

€¢

¢
Furthermore we define a subtree 7’ of the initial tree 7 replacing ey — €

where e}, = {uy,us}, and removing the vertices v, ¢ and the edges ey, e;. Let
us denote this map using the same notation R : T T(S We mark by

o
prime ’ the quantities of the tree 7" which are different from the corresponding

quantities of the original tree 7, for example 0', E'. Repeating the procedure
for the second restriction Ry : T(S — T we complete the proof. However,

a major difference between the two mapplngs is the case |V;| = 4 which arises
as the result of the first mapping for a tree 7 € 72(5% with |V1| = 5. Moreover

the o-weight of the initial tree 7 can be distributed between edges E’ and
the edge e; which will not appear in the final tree 7/. Thus, each restriction
gives us also 2 for the constant c.

pler) = 1.
The identity |pe,| = [pe,| = [pe;| implies

uy| 1+o03 [v 02 uz 92 ug
A

oo Lo 265
,9 >\+ |pe | ,0 ( )
where o'(e})) = 0(62) + o(er) and p'(eh) = p(ea).
p(e1) =0 and p(ez) > 0.
A, = I, (266)

)\+’p52’

where o'(e)) = a(es) + o(ey), p'(ey) = p(es) — 1 and x'(uy) = €.
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p(e1) = p(ez) = 0 and V] > 4.

This implies e; € E;. Because |Vi| > 4 the vertex w; is incident to an
edge e € E'\ F; such that p(e3) > 0.

1
— 11
A+ |p63|

H;\,a - i/,ef ) (267)

where o'(ey) = o(ea) + a(er), p'(es) = ples) — 1 and x'(u1) = es.
Moreover, e3 € E\E, = e3 #e; = ez € E.

Vil =4.
Hence Ve € E p(e) = 0. In this case 0(e) = o(e) and o(e) = 0. Then
1
m, = , 268
T TLO Il ® 26

eck’
Let VI, :={ve V] :w, >0} 0(r) >0 = V[, #0. Yv eV,
de! € F' : o,(e') > 0. ol (¢') := o,(¢/) — 1. One can write (268) in the

form
A ].

11 =
7,0 A + |pe/|

1

I, < inf I, . 269

/.0 )\‘Fﬁvér‘}f’w 7'.0 ( )
Finally we consider the case v = . We denote by e € E\ F; the edge incident
to v and introduce a vertex u € V3 adjacent to v. Hence, x(v) = e = {v,u}.
If 0y, 05 are two f-weights where the only difference is that x(u) = e for the
first and yx(u) # e for the second, then for |V;| > 5
1 1

<My, =——F 112 . (270)
,02 AN+ |peeE| 7,0

If |Vi| = 5 then using that 6(7) > 1 as in (269) we have
1

m, <m, =— 11
TS A+ T

H)\

7-791

o < ———— inf II2 .
" S A7) vy, T

1w

:\z >

(271)
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Proposition 30 Let 7; € 725(7;, ¢; € {A,c,¢,v,w}, Vil >4, k € N and
0(r;) > 2. Then 37y € T such that

Ao
/ DARG(Q) B[ | < QP (272)
A
Proof Using proposition 29
c
Ree(QF") < ————QN", 273
CC( i ) )\O“"nf) Tf ( )

where all momenta correspond to edges of the final tree 7;. Since the initial
tree has the total weight 6(7;) > 2 we always have at least one denominator
in Q" and thus

Aw < A+ |pll| Aw ) (274>

Tf ~ )\_'_ ‘pal Tf
Then we can bound the corresponding A-integral as follows, using inequali-
ties (591) and (601):

"o A A A
/ d)\ Pk |"7:0 < Pk‘-i—l g Pk‘-i-l ) (275)
(Atn)A+1pal) ~ A+n+pal ~ A+ [pdl

|

Inequality (272) can be applied to bound S ANoi#diw Tp this case Ti € Tieng
and the total weight satisfies 0(7;) > 2 — n,.. But in theorem 1 for each
edge e, € E, we have (A + |p,|) as a denominator which is equivalent to an
additional o-weight of the edge e,,. An effective tree 7 with & (e,,) = o(e,,)+1
has 0(7) > 2 and satisfies the conditions of proposition 30. In this case (275)

has the form
Ao A A
/ dA Pk |77:0 < PkJrl ) (276)
A+ A+ pxl) — A+ ps

Using (615) a similar inequality follows for the irrelevant functions rggf;w.
For any 7; € T ¢4 there exists 7 € T,z such that

Ao

[ ARG Byl < QUUEYS, (277)
A
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rAAo;$;w

Before application of (615) to the irrelevant terms we need a minor

change in (275)

Ao
Ao ’ FAA()
A

A+ 1pel ) (A + ) (A + |pal) A+ pe|l ) A+ [pal

where p/, is one out of p,. or p. in such way that |p,| := max(|p.|,|pe|). If
P« = pe the label ”7*” is moved to edge e. Finally, V7; € 7;«—25

Ao
/ AN R (QE") Foi®yyyalp=o < Y QXYF, - (279)
A TE7—1;?$

3.4 Marginal terms

Lemma 31 Let rgj}o;q;?“’ denote a marginal term, n,, < 1. Then VYA < n(p)
AA ;_‘;w A ;_‘;w
M2 (7) = TR ()] < Pai_a(P)- (280)

Proof Note that in theorem 1 for all I’ < [ the bounds for rfﬁ??‘i’?w are more

restrictive than the ones for d; FAAO e . S0 we will only treat the case n,, =0
explicitly. In this case we integrate the FE from n to A

n
i ) - o) < [N )
A

Z /dA)\RCC Q/\w) 2)}_2|77.,:07 (281)
T,

where (1) = 2. For n-point functions with n > 2 we can apply proposition 29
c

A +1n)

In case of 2-point functions Ve € E p(e) = 0 and thus 6(e) = o(e). Further-
more o(ec) = o(ez) = 0. Denoting by p,, py the momenta corresponding to

Ree(QX) < (282)
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the edges with nonvanishing o-weight we again get inequality (282)
1 1

Ree(QNY) = < . 283
Y e TR 29
Using equations (607),(609) for each term of the sum we obtain
/dAMqﬂ k=20—2 (284)
A+n M '
A
|

3.4.1 A4 gnd [eee

The renormalization condition is rlMAo;‘i’(o) = 0. For py,p3 € R* and A’ :=
max (A, n(p)), equation (184) gives Fvam(Oé,pg,pg;) = 0, where the subscript
¢ indicates the momentum of the antighost.

1

MY ()] < / dt [pe| |0:T7 2 (tpe, pa, ps)| - (285)
0

Substituting |8EF;VAO“5| with the bound of theorem 1 and using inequal-
ity (623) we obtain

TN P A7
%) < (1+ log. —2) P ()

Ny < PY(D). (286)

n=0

If A’ = A the proof is finished. Otherwise we use (280).

3.4.2 0ure4

The renormalization condition is " **“*(0) = 0. For ps € R* and A’ =
max(A, n(p)) equation (184) gives 3AF?IA°;CEA(O,pA) = 0.

1

AT A ()] < / dt |pel [0:0aT 1 0 (tpe, pa)] - (287)
0
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We substitute |858Arf,A°;CEA(@)| with the bound from theorem 1 with the
choice w'(2) = (0, 1,0), see after (191) for the definition of w'. Then

A5(0,1,1) 1 1
~ € , , 288
Qe {A/ + tpe| " AN + [tpe +pA|} (288)

and using (623) we obtain the inequality

0AT M (@) < PN (5) < Pa().- (289)
If A’ = A the proof is finished. If not we use (280).

3.4.3 Renormalization at A =0

rcA rAAAA a rccA arAAA aarAA

wilr byl
00r¢e, here denoted by Fﬁ;l . The marginal terms rw and I'ﬁ;l will be dis-
cussed later. ~

Let {6°¢}, be a basis at the renormalization point ¢. We define F%”((j)
in the following way:

M@= > mt+ Y G, (290)

te{65}r tac{§sek>0},

First we consider the marginal terms ¢

where the coefficients r; are fixed by the renormalization conditions, see
appendix H and hypothesis RC3, and the remaining coefficients (; are de-
fined using lemma 35. Then, from the bounds on the irrelevant terms and
lemma 36, see (560), it follows that F¢ ; (¢) complies with theorem 1 at loop
order [. Let A’ := max(A,n(p)). It is easy to verify the following inequalities
A o , A ,
/dA)\JrM <k +log+]/\> /dxlog+ M 2<1+10gk+1 ]j\\J) (201)

A+ M
0 0

Recalling (243), (245) we obtain the following bound

732(1)2(10g+ X )t le 2(10g+(ﬁ))

[ARoidiw (| <
| 7l (q_j| (/\+M)

(292)

This implies that
A/

AT e A
A Aospsw Ao;d;w AMo;d;w 1
FE)0% (q) — Toye (q‘)K/dMF 2 (q”)!éPélZl(lo&M). (203)
0
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Using inequality (623) we get

—_

oo o) — P (@) < 3 1(§) < PR (0), (294)

3

—_

A () — TS (0)] < 37 L) < PR, (205)
=1

I <

<
Il

where I;(g) is the interpolation along the vector g¢;,

j—1
1@ - /dt|qma]r“°’¢’<j>r, Q1) =315, (299
i=1

Here to each vector ¢; € R* is associated ¢; € P, whose components are
(Gi)k = —Qi0k0 + ¢i0k,i- Denoting the integration in (296) over a straight line
from @y to @; by dy — d;, the whole path in (294) is

0=d1(0) = qi(1) = q2(0) = ...4n-1(1) = ¢. (297)

To obtain inequalities (294) and (295) we have substituted |0; F;Afl/\m@ﬂ with
the bounds of theorem 1. If A = A’ we stop here. If not we use (280).

The remaining marginal terms rﬁﬁ;#?w with X € {f,1} can be treat?d

similarly. Note that the bound from theorem 1 for terms of the type 8{?3”“
is the same as the one for the corresponding terms r(f;{ ,- Consequently the
proof of the bounds for the marginal terms I}, [(<,, 9, is the same as
the proof for respectively 0 I'fcfA 00; I'CCC which we shall consider now.
Let us denote by I XA;?"b’ any marginal term without insertions v or w, and
by ¢ € M, the corresponding renormalization point as given in appendix H.
We now anticipate the important fact that the relevant renormalization con-
stants comply with the bounds, which will be proven in section 4. Then using
the bounds on irrelevant terms from theorems 3, 4 and lemma 36, see (560),
we obtain

A
OAw w (1) 2o
@) < 5 P (los, 7). (298)

in agreement with theorems 3, 4.
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Set A’ := max(A, M). To integrate the FE from 0 to A’ we substitute
the chain of vertex functions with the trees from theorems 3, 4. The ghost

number of the marginal terms rg;” is nonzero and thus these terms vanish.

For the remaining terms rg we have

A/
3 @) = T @1 < ) / ARG Fy| - (299)
7€T:¢85 0

The 6-weight of trees 7255 ;5 equals two. Because q € M,,, d¢ > 0 such that

RN
AN+ cM
Using that 0 < ¢ < 1 the integrand in (299) is bounded by polynomials

Ree(QFY) VT € Tiesg- (300)

A+ M+ q] o, <M+|€ﬂ Ao <1+\/EPAA0

N K V5 < - 301
AO()\+CM> 2[—-20 CAOM 21-20 CAO 2[—-20 ( )

Here n = N + 1. Redefining the coefficients of these polynomials the rhs
in (299) has the form

A/

Ao 1 b M N . Ao

+ M) + A_o /d)‘ 7)2(5)—2(10g+ 7) < A_OPQ(l)—Q(log+ M) , (302)
0

where we have used inequality (620). For the terms 'Y we obtain

A/
(@) = T (@ < > / DARGQ") By | - (303)

TET,

¢é 0

The #-weight of trees T, cés equals three and q € M,,.
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1A+ max |g.|
A (A+ceM)?’

Ree(QF") <

Using that |¢.| < |¢] < v/nM and 0 < ¢ < 1 the integrand in (303) is bounded
by polynomials

Ot M 1) o, (M 1)
A0(>\+CM)2 Si=3i-1 = Ao(CM)2

1+n

AA
PBZf%lfl < 2—— 2A

Py, 1. (305)

Redefining the coefficients of these polynomials for the rhs of (303) we have

A
Al
Ao

Ay 1 AN

a M Cc A
Piils(log, =7) + 5= ™ / AN Py 5(log, ) < » T Paallog, 77). (306)

Hence at the renormalization point for the rhs of inequalities (299) and (303)
we have upper bounds (302) and (306), respectively. Then using A’ < A+ M
we write a bound which complies with theormes 3, 4 at loop order [

NG Fw A+M A
@ - @) < SR (s 57)- @00

With fixed A = A’ we sequentially perform two interpolations along the same
path pattern which has been used in (296):

q=dn-1(1) = Gp-1(0) =0, 0=pPn-1(0) = Pp1(1) =7. (308)

First we consider the marginal terms Fg;w. Substitution the irrelevant bounds
from theorem 3 for each j-th segment of the path ¢ — 0 yields

Z/dt\q] QN () FA o(dy), € {l,.on—1}. (309)

€755 0

Here 1; stands for a row with the unit in j-th column and filled with zeros
for all others. The 6-weight of trees ’Tﬁ 3 equals one. Moreover, any such
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tree in the sum contains an edge e with nonvanishing o-weight and such that
v; € K., see (176). Let Vi.,; = {v; : i > j}. The integral in (309) has the
form

1

N+ M+1§;] aa
/dt|%’ ; Py 1o (dj), Z B (310)
J Ao(N + [tg; + gs) €K \Viy

where ¢z € R* is the momentum flowing through the edge e excluding tg;.
Moreover, since |q;| < |¢] < v/nM and A’ = max(A, M) we have

A

ANy (= 0
PYo(d) < PiiL, (1o, 52) - (311)
N+ M+|q;)| <A+ M2+ n). (312)

Furthermore |¢;] < M < A’ and |gs| > ¢M. Then inequality (623) applied
to (310) yields

’ Ao A M !
P59 (0) = PR (@)] < =P (0), (313

The bounds on the integrals I; over the path 0 — p’are similar to (309) and
obtained by the change of the variables q; — p;. In this case

Ao /= max(|p], M) A
P2/;A10( ) le 1( +A+—M> +P21 1<10g+ ]\4()) (314)

N+ M+|p;| <A+2M+ |p]. (315)

Because n(p) < M, we can further simplify (314),

Py o(B;) < Pyl o). (316)
In this case |ps| = 1. Then using again (623) we have
w 'No:biw A + M + ’ﬁ]

PR 0) = FEMT ) < SRR G B1)

In a similar way we proceed for the marginal terms F‘f;w. Integration over
the path ¢ — 0 gives us

n—

PR (0) = P (@) < ) L@, (318)

1
J=1
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1

5@ = [ dtla] 0T (@) (319)

0

For each j-th segment of the path we substitute the irrelevent term OriAeié
with the bounds of theorem 4
1
rwits o N M+, .
s< Y [alglerea) S S G o0

In this case the total §-weight of trees 7, ; equals two. Moreover, as in (309),
each such tree contains an edge e with nonvanishing o-weight such that
v; € K., see (176). As in (310) let g» € R* denote the momentum flowing
through this edge excluding tg;. Then the rhs of (320) has the form

1
/ = /
Jatal e MG Nl
Ao(N + |tg; + gs]) N + |qer]

(d;), (321)

where q., q. are the momenta corresponding to the *-edge and to some edge
¢/ € E which is possibly different from the edge e and the *-edge.

- N + |q.
la. < |d| < g1 < vnM = ,—|q| <1++n. (322)
N+ ge]
Similarly to (311) we have
/ . A
Py 1) < P, (Tog, MO) . (323)

Substituting inequalities (312), (322), (323) into (321), and redefining the
coefficients of the polynomial we obtain

1
A+ M__q) Ao / 451
I;(q) < 1 — dt . 24
1@< =Pl (loge 3p) [l s (329
0

Because |¢;| < A’ then using (623) we eventually get

A+ M

AN Ag;dw A Ag;diw
e o) - e ) < A
0

Py 55(0) (325)
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A bound on the integral [;(p) along the j-th segment of the path 0 — p'is
obtained from (321) by the substitution q; — p,. However, in this case p'is

arbitrary. As compared to the case with rg;‘”, there is an additional factor,

N+ p. AN+ p] D]
< <142 . 326
A+ |pe| N AR (326)

This factor leads to the polynominal P{” in the bounds of theorem 4. From (316)
we get PSZ 0 (B;) < Pa(p), and thus

o g 7 7Y pan, 0
P < (14 0) PO (o) PAS) < PYS LG (320

Having (315), (326) and (327) the bound on the integrals I;(p) has the form

A+ M + |p] |p;]
L) <~ PP 7 / e G

Noting that |ps| = n, we use (623) to estimate the integral on the rhs

A+ M+ |p]

A L), (329)

9 (0) = P9 ()] <

For simplicity, one extends the rhs in (313), (325) to a larger bound
A —|— M

P2 (0) = FYA™(@)] < =——PA™(0). (330)
Putting together (317) and (329) we get
PR (0) = T ()] < B, (). (331)

Both inequalities, (330) and (331), comply with the bounds of theorem 3, 4.
If A = A’ the proof is finished. If not we integrate downwards using the
FE and then substituting the chain with the tree bound from theorems 3, 4.

AAo;fw Ao;fyw “AAg;Bw
rEn e - ) < [yt e
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For the terms rng;&“’ we have
M
|rAAO ¢> w(ﬁ») . ré\{le;¢;w(m| < Z /d)\ A RCC’<Q7)_"w) FQ)z/—\()QU 17:0. (333)
€T 255 A

As in (299) the total 6-weight of trees 7 z55 is two. Using proposition 29 we

can obtain c

Aw
R @) S s

Here compared to (300) the dependence on the momenta appears explicitly.
This inequality also holds for all 7 € 7 z3,

(334)

1 1
< .
(A+1[p))?* ~ A(A+n)

We can further simplify the integrand in (333) by redefining the coefficients
of the polynomials

)\.
QX =

(335)

M + |p] i AN
e < 1 Py
M| <t (14 (5) )R] (336)
Consequently, each term of the sum in (333) has the form
M (1)) / o Paitallog, =) + Pyl (log, 5) o
AQ AO A+ n .
A
To bound this integral we use (611)
M + |p] 171 max(|p}, M)
a0 (5) ) (P22 (e =500)
1 Ao max(|p], M)
+ 7)2([32 < 10g+ M) 10g+ A——l—T]) . (338)

It is clear that b*~2a < b?~' 4 @?~'. Hence the polynomials on the rhs are
bounded by Py™9(p) which is a common bound for all trees in the set T,

¢CBe
Finally, redefining the coefficients of the polynomials we have
5 M + |p]
ANo;d;w M Ag;p;w
T3 (9) = Ty " ()] < A, Py o(p). (339)
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As we have seen already in (326) the analysis of the marginal terms [}
is more involved. We start with an inequality similar to (333)

M

r S - r e E < Y [aaRe@m Bt e

T€Tces A

Here the total 6-weight of trees 7, .z7 is three. For n-point functions with
n > 3 using proposition 29 we have

A+ |pl
A+ 1) (A + [pe])

It is easy to check that it is still valid for 2-point functions, see (335). Because
n (340) A < A < M, for each term in the sum we have

Re(QX") < c (341)

AA
17 AN (A + [P Pyy

w () |m / n=0 42
A+M) ) —1 A+M A+n)A+p) (342)
A

M;O!ﬂ<1+<

Then using |pecg| < |p] we transform the remaining integral into the form

max(|p], 1
A+ |p] /d)\ 5(log, (‘/\ﬁl M)) + P?Ezl3(10g+ %) (343)

A+ |pe| A+

and then apply inequality (611). Therefore for the sum in (340) we get

M + |pl AA
A+ 1p)PyS,_ (P
AO ( |_1 31— 211‘3;A+|p61

M+ |ﬁ1 A+ |p*|
<= Pa@ Y g (344)

0 TET el|

Finally,
i) - iR < RS grepiy, ). ()
TET
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3.5 Strictly relevant terms

If n,, = 0 the notation %Y stands for [{*4, TA44, 9rf4, or. In the case
n, =1, it stands for I'S,;. Moreover we impose I'%[,\lw;w(O) = 0 and denote by
P arbitrary momenta with corresponding 7(p). We integrate the FE upwards
from 0 to A and substitute |3)°%"| with the tree bound of theorem 1. Then

A+n

A A
P2 (0)] < / aX P (0)] < / dAXTIP5(0) < / dAXTIP,(0),
0 0

zl

[e=]

where d > 0. Inequality (620) then gives
P27 O < (A + )Py (0). (346)

Substituting GI_Q_ZZ\WM with the bound from theorem 1 we obtain

1
ANogiw AAodiw AAodrw
P @) - i) < [ delplor i o)
0

1
<|p1/dt (A4t PAER) < T+, (347)
0

where

i max (M, |p))

I:=[pl(A+ |p d‘l/dtP(O) lo : 348
0
A
1" =(A+ |p))* Py (log, 77). (349)
The calculations given in (620) yield
- max (M, |p])
I <Ipl(A + ) PO (log, ———2 12V, 350
[PI(A A+ [p1)™ Py, (log A+ 00) ) (350)
This implies
[F20°7 () = T2 (0)] < (A + [71)* Py (9). (351)

Combining (346) and (351) proves the bounds of theorem 1 to loop order I.

72



3.5.1 or{, ¢ and re
The goal of this section is to explain the expression for the polynomial de-
gree 1. We denote by '™ the following terms: 9reAd, greee [eAAA pedee 4pq

we impose vanishing renormalization conditions at the origin, [ (0) = 0.
From the bounds of theorem 4 one realises that the analysis for I'{¢ is similar
to 0-I“. For an arbitrary p € P, let A’ := max(A, n(p)). Using the FE and
then substituting the bounds from theorem 4

A/
"AgBiw w0 w AN+ M
retos Y [aer er= 0 ene). @)
€T3 0
Consequently,
A/
A+ M

rdedie )] < " (A'P§}13(10g+ %) + / dwg?lg(log+ %)) (353)

0

To bound the integral on the rhs we use (620),

A+ M
M pan o), (354)

N Aodyw
‘rl;l °¢ O)] < (A+mn) A—o 3(1-1)

We extend rﬁ}AO?&“’ from 0 to p using the usual path given in (296)

PP (0) — P *)|<ZI] (355)
L) = [ dtlpl 0,751 (356)

0

We substitute arﬁ}AoW with the tree bound of theorem 4.

1
A/+M+Iﬁ| "w 'A (=
o< Y [apl A Bl gree ) iy ). (e
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The total f-weight of trees 7T, 3 equals one. Moreover, each such tree contains
an edge e with nonvanishing o-weight such that v; € K., see (176).

1
(A’+M+\p]])(A’+|p*]) A An s

dt Py (pi), 358

/ ’ ]| (A’+\tpj+pz!) 3l 11( ) ( )

As in (310) let px € R? denote the momentum flowing through this edge
excluding tp; and p. is the momentum corresponding to the *-edge. The
rational factor in this bound makes these terms different from other strictly
relevant terms, for example 994, T'4* or Org. Noting that |p.| < |B;| < |71
and A" < A +n < A+ [p] we obtain

(A+M+|ﬁ| (A+1p)) / sl Py (B;)
L) < 359
A 2 N e O

™~he o
Furthermore, because A’ > 1(A + 1)
PytB5) < (1+ <|ﬁ1) )PE( 7 ) Pa 85). (360)
3111 A U\ Pae

"Ao max(lﬁla M) Ao

Py (B;) < P§?11<10g+ A—Jrn> + Py 1(1 0g.. M) (361)

Then using inequality (623) and noting that |ps| > 1 we have

1

PpA 2o M

o BB < (1, 2,
J

and it follows that
PR () — TR (0)] < (A + [P Py (5) (363)
If A = A’ the proof is finished. If not we integrate the FE from n to A

P ) — P ) < 3 / DARGQ™ FN,| o (364)

T€Tes A
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where the #-weight of trees is two. For n-point functions with n > 2, propo-
sition 29 yields

cOH ) _ clntlpl) _ 2]

Ree(QF") < < < . 365
(@) AN +17) AA+7) AN +1) (365)
Because A < A <71 < M we also have

0 M +1p] Jaae

Fa'a @) < —3 ”Psl%ll(ﬁ)] N (366)
n=0 0 n=0
Mo o 1p1 1] Mo
B s <1 + <A0> )P <A+ M>P3l3(m‘n:o’ (367)
0 max(|p], M) Ao

P?))z/i?)(ﬁ’) =0 < P?S?Z?) ( 10g+ A——l—’n) P?Ell)?) ( 10g+ M) . (368)

Then we repeat the steps used to show (280), and using (609) we get
PR () = T ()] < 171 Frs (7). (369)

3.5.2 5", T{™ and

In this section we briefly discuss the remaining strictly relevant terms rz;w,
F‘fs and F‘fQ;w denoting all of them by F?gw with X € {f,1}. We impose
renormalization conditions [% %" (0) = 0 and integrate the FE from 0 to A.
We use the bounds of theorems 3,4 and then for an arbitrary p extend the
integration up to A + n(p)

A+ M

P2 (0)] < (A + )™ =
0

A+n A
PrRo(0) . (370)
Integration along the path given in equation (296) and using (620) yields

PAGie () PARGR (0)| < (A + [p) X Fop (F)PA(F).  (371)

3.6 Convergence

We now come to the proof of theorem 2. As was stated after theorem 2 the
bounds of this theorem permit to prove convergence of the functions [* in
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the ultraviolet limit Ag — oo for nonexceptional momenta, using the Cauchy
criterion. )
We first prove the bounds for d4,[®. Then we proceed with the other

functions 0y, I_ﬁ ascending in the number of insertions n,,. We use the same
inductive scheme as before, based on the FE.
We start with the irrelevant terms integrating the FE from Ag to A, using

the boundary conditions F?OAWW = 0 and applying the derivative wrt Ay.
A
W e / X Oy, 5 (372)
Ao

To bound the first term of the expression we substitute into the FE the
irrelevant tree bound

||‘A0AO,¢7 Z QAO,wP;??Ag (373)
7'67:

If n,, =0 then 7 € T3 and 0(7) > 0. Consequently, recalling (190)

A _'_ ‘ﬁ‘ Ao;w < A + ‘ﬁ‘ QA;w‘

%05 < Jow € S

2,(p), and thus Q (374)

Otherwise, the denominator Ay + [p.| with e,, € E,, gives the inequality

1 A+pl 1 (375)
AO + |p%| h AO A + |p%‘ .
In both cases this yields
A+ |p] :
Aoho;d; aw
R < ST DD QR (376)

0 7'67;(5

To analyse the second term we apply 9,0, to the chain of vertex functions
given in definition 22. This gives a chain with the element Oy, ((9y C)I'}/?)
I < I which we bound using (685), (692) and theorem 2.

‘aAO((awl C>rAAO,C¢C wz)’ < ‘aAoawlc‘ |rAAO,C¢C w2| + ]8“’10\ |8A0 r)\AO,§¢§ wQ‘

sl sl sl
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c )\+|pc| MoiCCuw Moi¢éCiuw
SO \pc\)unwln( A 2’)

1 A+ M + |p] A A
< E QT,w2+w1 Pr 0 P). 377
A+lpcl)*  AS @) Nl

TETQC‘Z’Z

We proceed as for the proof of inequality (272) substituting expression (275)
with the integral

& Mo

J VRO 0D S N Arpl P
For any tree 7 € 7,44 the denominator (A + |p,.|) always appears in the
irrelevant bounds Q%, even if |jw|| = 1.
For marginal terms we shall integrate the FE upwards from 0 to A. For
the terms with the antighost we use renormalization conditions (182)

reeEA ) =0, TR =0, 0, 0) =0 (379)

Using equation (184) we obtain that for these terms at A’ = max(A, n(p))

1

B, Ae% ()] < / 0t |pel 1080 DT X5 (1, )
0

/

< A +M+ A+ M+ |p| Z /dt Ipe] QN 1e pAAe MX—2+|ﬁ|P§AO’ (380)
TET; 0

where we have substituted dy, aarf’“”

inequality (623).

The remaining marginal terms [4444 g.[eeA 99 9ore?, ore, are renor-
malized at A = 0 and nonvanishing momentum ¢, chosen in M in all cases
but 4444 for which ¢ € M{. See appendix H for the list of all relevant
terms and their renormalization points. Since the renormalization constants
are independent of Ag, their derivative wrt Ao vanishes: it follows that the
coefficients of d-tensors in the decomposition of dy, ng\l“@w(cj} vanish. Hence
using lemma 36 and the bounds on irrelevant terms we have

0;P;w A0
O or?zAl # (@)] < A2 21 1(10g+ M) (381)

with the bound of theorem 2 and applied
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We integrate the FE from 0 to A’ and substitute the chain with the tree
bound. Using inequalities (291), (292) it is easy to get the following bound

A+ M
Aj

A
Pylillog, 70 (382)

‘8/\ r/} Ao;¢>;w(® — O r(l/\o;@w(q—)‘ <

0" x5l 0" 5l

Integrating back and forth along the path given in equation (296), substi-

8[‘2??0(1’”” with its bounds and using inequal-

tuting the irrelevant term 0y,
ity (623) we obtain

/ 'ﬂ'w ’ 'ﬂ'w A —|— M ’
00T 20" (0) = Oag P2 (D] < =5 Po ™(0), (383)
0
’ .ﬁ.w ’ '%'w A + M +
Oy TN () g, i) < AT M E P pavay (380

Aj

If A = A’ the proof of the bounds on marginal terms is complete. Otherwise
we integrate the FE downwards from 7 to A and repeat the arguments given
to prove inequality (280) with a minor change in the integrand

FoAEM+]a APMco MR [ 2P
/ d\ k= < d\ k72 (385)

SR OO ) S8 ST Al

For the strictly relevant terms we integrate the FE from 0 to A substitut-

ing the vertex functions and propagators with their bounds and extending
the upper limit of integration to A + 7

A+n

A+ M
<27 AP (0), (386)

[0, TAN0% (0] <
0" izl A(%

0
where d > 0. Using inequality (620) we obtain

- A+ M
|6A rﬁAOdL (O)l < T
0

0" x5l

(A +m)" Pyt " (0). (387)

To extend to momentum p we proceed as in (347), the only change being an

additional factor of AJ“]X[—;“W.
0
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3.7 IR limit of M

As follows from (153), to show the existence of the limit /l\ir% Ff?“ in the loop
*> bl

order | we need to show that leir% AMOE — () We expand each of three
%

inverse matrices on the rhs of (150) in power series

o 52 I_AAO R m52rAA0
A ~((2,0,0) 3 (= T 1C8%) 5557 !

m=0

00 52 rAAg A m52rAA0
—_ 1 y 0
+<(070-A70)m0< 5@(5@/ @@) 5@(50))
oo 52[‘AA0 s AAg m §e
_ <(0A8,0,0);<— 5%@,10@,@) 55 (388)
where for m > 1
(52FAA0 A 52rAAO N 52 rAAo -
— = I, [ @ sl NP | @l
(5@5@’ C‘“’) 300D, Core, 50, 100 Coo (389)

In the following we consider a term Ag;w. At tree level rf’jo = 0. It follows
that these series at the loop order [ — 1 contain only a finite number of terms.
The first and second terms on the rhs of (388) have the following form

DD f1 5 ~AA B 1P m 3 Ao Pmdm
;‘ff;lll llcq)l‘% T ;meZ'rln 1C<I){m0q>m %;fm+1tllm+1 : (390>
m+1
Here Z [ =1 — 1 and introducing permutations 7, 7’
k=0
¢1 S ---¢m+1 = (¢TI’(O)7 ceey gbﬂ'(Nfl))a (391)
D .y = (%ﬂl(l), ey %ﬂ/(nz)) . (392)

Using the notation for a chain of vertex functions, see (219), we write (390)
as Fg'?, (@9, ) € {(A,7),(c,w)}. The third term on the rhs of (388) is

—

exactly Fg **1Cqq. Similarly to (243) using the bounds of theorem 1, the
bound on the propagators (692), and inequalities (625), (631) we have the
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following upper bounds for the loop integrals appearing in (388)

/ oASHPP PR < A R (SN) By o (393
/ 0o pSN AP |Co| Pl yy < AP Ruo(SYA95Y) P,y ‘n_o (394)
Using inequality (245) for each of the above terms we obtain
A4 R@o (SA;‘P()(E%;W)
Y AL < AP Ree(QY). 395
) ; @) )
o

The 1-point function A? vanishes due to SU(2) symmetry. For 2-point func-
tions A?? we have two types of trees

=1, =1, (396)

Here the edges with vanishing external momentum are marked by two crosslines.
Consequently for 2-point functions at a nonexceptional momentum, p # 0,

. M)
lim |AM090| < i A3 r(l %) —0. 397
lim | | < lim AP, ( log,. A (397)
Then we consider all remaining terms N + 2n,, + |w|| > 3. Each such tree
T € T;z55 has the total f-weight N +n,. + [|w|| — 2. Moreover, it can have at
most only one internal edge ¢/ € E\F; with vanishing momentum, p., = 0.
The p-weight of this edge is either zero or one.

1
A(A + n)N+2nu+HwH73 )

ReeQY < (398)

At nonexceptional momenta using the notation of theorem 4 we then obtain

max(|p], M)

A N2
lim |AAY9%| < Tim (—) (A+ n)dPT<log+ .

i, b (x5 ) =0 9)
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4 Restoration of the STI

As mentioned before theorems 3, 4 we now consider all nontrivial marginal
terms F?{;‘?fm with X € {#,1} at A = 0. We want to show that these terms
verify the bounds of theorems 3, 4. In this section, since A = 0, we will omit
the parameters A, Ag in the notations wherever this is not ambiguous, i.e.
we write [ for [040?,

The subsequent relations are obtained by projecting the AGE (166) and
the STI (167) on the respective monomial in the fields (for example, ¢ in
section 4.1) to read off the lhs from the rhs, taken at the renormalization
point. We will establish appropriate relations in order to make the coefficients
of the d-tensors wrt the monomial basis at the renormalization point satisfy
the bounds of these two theorems. In this analysis we make particular use of
the consistency conditions, see 4.0.2. In section 4.0.3 we prove the existence
of a solution for the above mentioned system of relations that does not depend
on the UV cutoff. In the remaining sections we treat the different marginal
terms one by one.

4.0.1 Smallness relations

It is helful to introduce the notion of small terms, which vanish in the
limit Ag — oo. For fixed loop order [ and X € {f, 1}, a homogeneous func-

tion f(p, M, Ag) of mass dimension [f] is said small on a subset Y C M,
and denoted by f Xt 0, if for all w € W,, with ||Jw|| < [f], there exists a

polynomial P{Y of degree rx([f] = |wl|, 1), see theorems 3 and 4, such that
the following bound holds for all Ay > M and all p'€ Y, see (169):

M-l Ag

10, f(9, M, Ag)| < A—OPTX (log M) (400)
Furthermore, f "< g iff [f] =[g] and f—g A2 0. Because both relations

Ly and Pt only differ by the degree of polynomials we have f Al g =

1Y,

f 2! g. Since the loop order [ and the renormalization point ¢ are evident
from the context, we write:
frg for [, fRyg for [P (401)
frg for f, fRg for [P (a02)
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Theorem 1 implies that for every vertex function ['%(p) there exists a
constant ¢ such that Vw € W,,, Vp'e M,,, VA > M

0TS ()| < eM-2m—lol (403)

Using also that

0% (00r, — 1)] < cuw A_%)” . Joon, — 1] < <o A%o’ (404)
the terms on rhs of the STT and the AGE satisfy the relations:
[o1w1 902 (g [92) W porwipdams (405)
9° (00n, %) X T, (406)
9" (pooa, ) = proe. (407)

This fact will be useful in the calculations underlying the following sections.

4.0.2 Consistency conditions

Here we establish the consistency conditions implied by the nilpotency, see
(164) and (165). Below we will rely on the validity of theorem 4 at loop
orders " < [ for all terms and at the current order [ only for irrelevant terms:
these properties are true in our inductive scheme. Recall definitions (159),
(169) and (401). Using the AGE (166), the bounds of theorems 1-3, and
(165) we get
$ 5. \¢

(Sr/g) M1 0, and thus <&F1) Mi g (408)
where gz? = (¢1,...,n—1) and ¢; € {A,c,c}. Equation (408), theorems 1, 2,
and the bounds of theorem 4 for irrelevant terms yield

—

) ¢
(5:F10a) ™0, delco.(ced}.  (409)
See appendix G for the definition of Fy,¢ and of the constants u®. In sec-
tion 4.5 it will be shown that u{%4* ~ 0. Equation (409) then gives

cce cccA cccA cccA cccA

e ousee, =200 St s ~uet uit ~ 0. (410)

u’YCC ~ ul
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Let us exploit (164) to obtain more constraints on the renormalization con-
stants u®. At loop order I

SF1y = SoF 1y + Z Si—rFrp. (411)

<l

By induction (Sl—l’Fl;l’)(; "5 0 for all loop orders I < I. Then equation (164)
implies that
(SoF10)? ™ 0, (412)
where
So =(344L, Tong0,a) + (0,4L0, 00a,044)

- <gcdro> UOAUSwd> - <5wd1r0a UOA050d>7 (413)
and recalling notation for d, from (26)

)5 q)) + AL (9) 0or0q® — 40d0) 00, (4°)
@ Absq) + AR ACAL AL ),

oppuv

daa(pLo =g (726" ) + (ips
+ 3€dab<F£LﬁA<QJ i )|

0ya(p Lo =idoc(q) + ge™ (A3 q),
() Lo =ge (ip, & (p) A, + Fu A}, + &°¢% q) — iqu7,i(q) — 2 (0)q*oon, (4*),

c

S oq

6dab<va ~b. >

< 1
wd(q)ro :ig cciq

Here the notation (ip,c®(p)c®; q) corresponds to (¢1¢9; q) with ¢1(p) = ipsc®(p),
g = .
For all ¢, 5 and w such that N + 2n,, 4+ ||w|| = 6 we have

(SoF1)5" = (SoFret) 5 + Y (=)™ Sg 5" AR, (414)
™
where AMO .= F’flAO — Flo the sum runs over the permutations m =

1,rel;l »
(T, Toe, M) such that ¢r, = ¢1 O @2, 5y, = 31 O 3, Wy, = w1 + wy, and
7, is the number of transpositions mod 2 of anticommuting variables in the
permutation 7. Using (413), for the terms in the sum on the rhs of (414) we
have

z. - Ad ' " = 2o 7 o
’S(bl’wlA(éQ’;UQ’ < |r ¢>17w1’0w1 A(}iz,wzy + ’EC¢>1,W1’O.W1 Atéz,wz

0,71 H2; 7150 0Ao — 529y;l 71;0 0Ao = szow;l
Griwy  wi A Agaws Griwy ! A chazws
K 1 b
+ |1:;?1'y;07 UOAOA}?Q;I | + |1:;’21w;0’ o A;?Q;l | (415)
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Let us show that the lhs of (415) is small on M,,. Using appendix G and
the bounds on irrelevant terms of theorems 3, 4 we see that for all marginal
terms

—

AZY ~0, and thus AZY % 0, (416)

)

The relation on the rhs can be obtained by adapting the interpolation in
equations (307)-(331). Define N; := |¢;| and N, = |%;|. Consider the sum
of the first and second terms on the rhs. If 2n,, + No + ||ws|| > 3 then
the bounds of theorems 1, 3, 4 and (416) imply that the sum is small. On
the other hand if 2n,, + Ny + [|wy]| > 3 then ||w{|| > 0 and the bounds of
theorems 1, 3 also give that the sum is small. The analysis of the sum of the
third and fourth term on the rhs is similar. If 2n,, + No + [|wz|| > 4 then
the bounds of theorems 1, 3, 4 and (416) imply that the sum is small. If
2n,,, + Ny + ||wy|| > 2 then ||w|| > 0 and using the bounds of theorems 1, 3
we obtain again that the sum is small. It follows that the lhs of (415) is

small. This fact and (412) imply that (SOFl,rel;l)(g;w 0 for all marginal
terms, which leads to the following equations

cA

gu
gu'YCC ~ _,u/"/ACC’ utllAA + USAA ~ 5 7 (417>
CAAA . cAAA CAAA . cAAA _ , cAAA

ui A~ g us N~ a0 (418)

4.0.3 Existence of a constant solution

By our convention (which is the standard one) the renormalization constants
that are solutions of the relations listed in RC3 are supposed not to depend
on Ayg. We give here a proof of this property, which is not evident because
these relations contain nontrivial functions of Ay, here denoted by CQO. The
relations corresponding to the marginal terms r‘f;;“, r;;,;" have respectively
the general form

¢ +0CTo+ (G0 ~ 0, 3" = 0CyCh + aget, (419)

"+ Vo + G R0, 8=V (420)

Here o = (7’55 w R, YA Y44 %) denotes the relevant terms for vertex func-
tions, see (721) for the list of 7" and appendixes E, F for the remain-

ing terms. The sequence (*° stands for the irrelevant terms listed in ap-
pendixes E, F and for the derivative of rf " R; wrt scalar products of mo-
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menta. Finally, ¢® is a constant, V,% are constant vectors, and C7, 4 are
constant matrices.

At loop order [, the terms Cé}?l depend only on g of loop order I’ < I:
this property holds because each C;gfl is at least linear in the (¢ and because
all the ClA:OO vanish. Moreover, at order [ for each relation we have a distinct
renormalization constant. Consequently, the aforementioned relations have a
solution. The existence of a solution g; independent of Ay follows immediately
if the limit limy, oo Q/}}(} exists: in this case it is enough to choose a solution
of the following equations

" +0CTo+ (g =0, "+ o+ =0. (421)

The convergence of ggg relies on the validity of the bounds of theorem 2

up to order [ for all irrelevant terms rfijw and up to order [ — 1 for all the
relevant ones. This property holds because in our inductive scheme at fixed
loop order the irrelevant terms are treated before the relevant ones.

C
4.1 Fﬁ
The renormalization point is ¢ = (—¢q,q) € M3, see (170).
5(0) 2 0o, (D) T (0) +ipul5 () & =0 F(p%),  (422)
f(z) =2 (1+X%2x) — Ry(z)). (423)

For the marginal term we obtain

ab
_ 5_ r “Puby

3 ™" (p) 226, f'(0%) + dpupn I (0°) - (424)

The coefficient of d,, is small at the renormalization point iff

, . OR, (p?
fl=1-r"—Ry— ¢ Lo, (o (0?) = p2—alp(f ). (425)

This gives the renormalization condition for R;.
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A
4.2 T5

The renormalization point is ¢ = (k, p, ) € M3, see (170). With k = —p —gq,

c® Al B Py . c* Al
I " (0,q) ~ T (p, k) — ik, " (P, 4) (426)
= ie™ I3 (p,q), (427)
I (p, q) = kR (k,p) + pury (k. p) — gk, F*(q,p) - (428)

Let Aﬁf}o = TAMowy I;\Ao;q”. At zero external momenta and A = M we
have A%AO(O) = 0. Then using the bounds of theorem 3 we get

1

AL ()] < / dt Mo Lo, (429)

uv
0

The term Aﬁ,fo obeys the FE, see (152). It remains to integrate the FE from
0 to A and use inequality (620) to obtain

B 5
Agﬁo (q) — A%AO(@) ~ 0, and thus A?f,}o((j) ~0. (430)

Hence in the monomial basis {0°*Q*}, with Q = (p,q) the d-component of
Ifc?‘“ is small at the renormalization point if the following condition holds

R{® — gRy — 3o, L 0. (431)

This gives the renormalization condition for Ri'.

4.3 F%AA and F%CE

The renormalization point is ¢ = (k, [, p,q) € M, see (170).

ct AL AY B eazb At AS . e At AS

T (Lp,q) ~ T (e, p,q) — ik I, (1pog) - (432)
ccte® B eogbetes . ccte’
o (Lp,g) ~T (k. p,q) — koI5 (1 p, q) (433)

At A = M it follows from property (187) that these terms vanish at zero
momenta. Denoting the renormalization point by ¢, using the bounds of
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theorem 3 and integrating the FE from M to 0 we obtain

1

rE) < [adory™ e Lo, s

0

iy T M A s
5@ = T3 @] <Py log 3p) ~ 0. (435)

cécce [cAAAA cce
4.4 [, T and [
These functions do not have nonvanishing marginal terms:

el (plesiedy =0, eP(F@A AP A5 AS) =0, (W) =0.  (436)

Ve Zal VsV

4.5 [gedd

From equation (187) it follows that for A = M the function vanishes if the
antighost momentum is zero. Using the bounds of theorem 4 first we obtain
at the renormalization point [[M720°44(@)| ~ 0 where ¢ € M, and then
integrating the FE from M to 0 we show that the term is small at A = 0.

4.6 T
The renormalization point is ¢ = (—q, q) € M5, see (170).
ct A . ca . ca
ML " (p) ~ i6% Fro, () Rip, = i6pf (7)), (437)
1
f(x) = Z2R (2) 29 (x) . (438)

§

The marginal term satisfies

c@ b. - ca
A% (p) ~ i b(2 F'(0°) Biegeryat) + 4" (0%) (Sreqoppyat) + 8ppppf"’(p2)> :

For the coefficient of §-tensors we have

XA (p?) IR, (p%)
(. 2\ 2 AA/, 2 2 L 2\AA 2 1
61 0) = Balr") (S2107) + 9 a0 ) + S T (439)
Recalling the definition of r{fé“ in appendix E,
orst(p?) 1 0534 (p?)
AA/, 2 AA/, 2 2 2 _ AA/, 2 2 L
r3 (p7) + 117 (p7) +p o _E<EL (p°) +p o ) (440)
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We then obtain the following sufficient condition

A 0= R+ + M ~o, (441)
where ordA () ORy ()
No(2y — 2 (R (p2) 22_\P EZAA2 RlP) 449
R0 = (RO T 5+ PN ) (42)
See appendix G for the definition of u®*. Relation (441) gives us the renor-

malization condition for ’/‘AA.

4.7 T4
The renormalization point is ¢ = (k,p, ) € M3, see (170). With k = —p — ¢,

c® AZAB t ga Ab cSAlb,
M7 (p, q) ~TAA (p +—§£:17AA D5 (kyq),  (443)

Tiup\P

where the sum ), runs over all cyclic permutations of {(u,p, a), (v,q,0)}.

The marginal terms are: [$44%P peAdirs peddad  ging equation (417) we

see that ug ~ 0 = u{* ~ 0. Acting with 9,0, on both sides of (443)
we obtain

w0 = gRy (L) — 2R RMA (N, ~ 0. (444)

This gives the renormalization condition for Rs.

4.8 rCCCA and rCCA
The renormalization point is ¢ = (I,k,q,p) € M, see (170). With [ =
—k—q—p,

I3 cbchs cb

M (kg p) ~ T A0 (1, p, DG, (k) — T 44 (1, p, )T (g)
t t pe Scd
£ DA (g )T (p, ) — T <k,l>r “(5,0)
FAA( )Fcbscdéa(k q,l) +Te tee A3, (l p> (k’ q>

Tyup\P

T (aus, (PTG (k. g.p) (445)
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From equation (410) it follows that u§°4 ~ 0 and
Ut ~ 0 = u ~ 0, us A ~ 0, uS A ~ 0. (446)
Consequently, we need only one condition
Uit ~ 0 = (R = Ry)R{™ + Gaop ~ (447)

This gives the renormalization condition for Rj.

4.9 T{ and 'Y
From equations (410), (417) we have

U~ 0 = W) = W~ ) = Uféc{1,2} ~ 0. (448)

Consequently, the marginal contribution to the functions is small.

4.10 [rgaa4

The renormalization point is ¢ = (I,k,q,p) € MY, see (171). With [ =
—k—q—p,

c* Al Ab Ad a At Ab Ad e
r m%k%$AAAA@ﬂ%Wa@

£ C (k)
cs At Ab
5 P 1), (449)
Z3

where F#4 is defined in (701), and the sum 2, Tuns over all cyclic permu-
tations of {(d, p, k), (b, v, q), (t, 11, p)}. From (418) it follows that we need two
equations

w0 = BRIRMM —AgR R + (N u ~ 0, (450)
w0 = ARRMAM 4 2gR R 4 (a5 ~ 0. (451)

These equations give the renormalization conditions for R{$44.

89



5 Vertex functions with antighosts

In this section we present an extension of the bounds of theorem 1 which
allows us to bypass proposition 18 and at the same time to impose renormal-
ization conditions on the marginal terms with antighosts in the limit A — 0.
So we are able to impose all renormalization conditions at the physical
value A = 0, i.e. in a scheme which is independent of the IR regulator.
Moreover proposition 18 which we have used above in (285), (287), (380)
follows directly from the bounds of theorem 5.

Hypothesis RC4 Let ¢; € R*. We assume that

rOAO;cEcE(O’ 0. q3> — 0, aAFOAo;cEA(O’ Q2) = (), (452)
rOAO;cEAA(O’ 0, Q3) =0, (453)

where T stands for the limit }\iH(l) Ao,
—

To construct the bounds we slightly change the definition of the p-weight for
external edges with ghosts FE,, in this section.

Definition 32 Fiz a tree from Tg. A p-weight is a function p : E — {0, 1,2}
with the following properties:

1 eekb,,
0 otherwise.

1. Ye € Ey, p(e) = {
2. There ezists a map x : V3\Vo, — E\E; such that
a) if x(v) = e, then v and e are incident,

b) Ve € ENE, p(e) =2 =[x ({e})].

Below we give two elements of T.z4 and T..zza44 and the corresponding p-
weights.
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As a consequence of the change of the definition of the p-weight we also
change the definition of Q% for trees with ghosts 7 € ’7;&5:

g 1w, w=0and 7 € Teza,
Q" (p) = Z H [pe| {Q v(p) otherwise, (454)

WHw=w vEVz

_ 1 vE Vs
< b (3]
e S {0, v e\, (455)

where Q%% is now given by (191).

Theorem 5 There exist reqular vertex functions r;f’ with gz_g = (Coy C1y ooy Or_1)
complying with the global symmetries of the theory, satisfying the FE and
the renormalization conditions given by hypotheses RC1 and RCY, and with
irrelevant terms vanishing at A = Ag. Furthermore, for alll € N, w € W,
the following bounds hold on Y :

a)

] pI(A+[p)PAp), w=0,
) < -
(A + |p)> I PA(p),  otherwise.
b)
‘rAAotﬁw ﬁ»)| ZQAmeA(U (457>
TeT5

See theorem 1 for notations.

In the following sections we give the proof of the theorem.

5.1 Chains and junctions

In analogy with (243) we get for the loop integral
/ Cllosh T ph <A (RA A(SATwy AR@(SA%*%WHE)) Py_yy - (458)
It follows directly from the bounds of theorem 5 that
ARCE(SA;c\ﬁE;w+15) _ RAA (‘SA'A;A\I;A;W). (459>
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Consequently we can assume that the edges joined by CMo are always of
bosonic type.

As before, see (226), it is easy to realize that the tree structure is spoiled
by three-point vertex functions. Given a subchain of three-point vertex func-
tions M4 we obtain

c Ao As c c Ag As
*

(=]
o o

_ 1 0
Ao 1| 1| S 43 < el 4 1 1

=

As

Here on the lhs the @-vertices stand for the elements S¢4°¢ of a reduded
chain. The incomming and outgoing arrows denote edges corresponding to
ghost and antighost respectively. Moreover in the chain of vertex functions
on the left an outgoing edge corresponds to the antighost momentum |p,| in
the numerator of the amplitude S¢4i¢. The |S|’s should be substituted with
the corresponding bounds on the ghost propagator. But compared to (229)
the * label appears on an edge e, € E, which is external to the loop integral.
Then using the inequality A+ |p.| < (A+|pal)+(A+|ps|) it is easy to see that
in this case we can bound the chain by the sum of the following fragments.

c Ao c Ag c Az

|1 0 < 1 0 + 1 0

Ag 1

Furthermore due to the diminishing of the multiindex w in the case of 3-point
functions we shall verify the compatibility of the bound on the terms 9“4
with the definition of fragments, see (191) where we pass from w — w’ for
|V1| = 3. It is not obvious that a chain of such terms can be bounded by frag-
ments. Certainly the bound on a chain which involves terms with second or
higher order of derivatives can be obtained from bounds on chains including
terms with first order derivatives by adjusting the o-weights of corresponding
edges. Consequently we shall consider chains containing terms 944 and
9:r°4. Moreover for a given chain such a term can appear in three different
places: on the left, in the middle or on the right. First we give the corre-
sponding examples with a 9474 term. Generalization of these examples to
the case with arbitrary number of vertex functions is then straightforward.
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BN rccA

In the second example the distribution of the p-weights depends on the po-
sition of the edge carrying momentum py wrt to the vertex v:

e If the corresponding derivative can be applied on the left, see (172),
then x(v) = e7, p(er) =1, p(es) = 1 and o(e7) = 1.

e Otherwise x(v) = es, p(er) = 2, p(eg) = 0 and o(eg) = 1.

The remaining chains with 9.4 are given below:
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Here in the last example depending on the position of the py-edge in the
chain, we choose either the first or the second fragment.

5.2 Irrelevant terms

First we consider the irrelevant terms [““* where ||w]| > 2.

Ao AO
| MAoes| < / DY raie B / AAAR(QY") Pyy_y) oy (460)
A T€T¢ee A

Since |p.| = |pe| substituting the bounds from theorem 5 we get

c 1 2
RoAQ (7)) = — Pl | < (461
@) = B G S Ot e Y
To bound the integral we use inequalities (591) and (601)
. P)
|I—lAA0,cc,w(ﬁ¢)| < 2l71(@ (462)

(At [pe T2

For any tree 7 € 7 ¢,z with 6| > 1 the total weight satisfies 6(7) > 1. Thus
using the fact that there are no irrelevant counterterms, i.e. the vanishing
boundary conditions Mof0i¢w — () we integrate the FE from Ay to A and
use proposition 29

Ao
|rlAAo;¢;w(ﬁ>| < Z /d)\)\RCC(Qi?w) P2/\(l—1) N (463)
T€Tces A "~
Inequalities (591) and (601) yield
M (@) < Y QF Poyy (). (464)
€T3

5.3 A4 gng [eece

Using hypothesis RC4 and integrating the FE from 0 to A we see that at

the renormalization point I“IM‘“CE(Mﬁ = 0. Then keeping the first momentum
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argument vanishing we interpolate the two other momenta to arbitrary con-
figuration and obtain Ff\Ao;CEw(O,pg,pg) = 0 Vpa,p3s € RY, A > 0. Thus
in this section we shall prove the bounds of theorem 5 on the remaining
interpolation

p1

[T Moieets (] / a1 [OT M (1 o pa)]. (465)
0

First we substitute the irrelevant terms 8EFZCE¢2 with the bounds of theorem 5.

A;(0,1,0,0) 2 (1 466
QccAA = A—|— ‘ZO‘ ( )
OL0100) |ps] 2 <1 +Z I ) (467)
coee A+ |po| A+l - A+ |l + ¢
Here 792 = {71, 72,73} and the sums run over three elements with ¢ €
&

{p3, p2, p2 + ps}-.
Next we introduce an orthonormal basis e, e,, e, such that the vectors

D2, p3 belong to the zy-plane and pie, = 0, pre, = 0, pre, = 0. And then we
construct the integration path from three linear segments: a, b, c.

[p1]

XY

Denote by 1599 the integration over the corresponding segment « € {a, b, c}

16599 = / dl |9 TN (1 py, ps)|. (468)

(%
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Note that QY@M and Qfgﬁ&l’o’o) differ only by a rational factor which

ccee

remains constant on the integration path.

A5(0,1,00) _ |ps| QA;(O,LO,D) 469
ccee A—'— ‘pQ‘ cCAA . ( )

Consequently, without loss we can consider only the ['**44 function. Let n :=
n(p) and n; := n(li(t), lo(t), p2, ps) where [1(t) : [0,1] — R is an appropriate
function on the corresponding segment, see the figure given above, and ly(t) =
—(li(t) + p2 + p3).

L) V2[lLi(t) + gl > tlpi| + |al, ¥a € {p2, 3, p> + ps}. This implies

A;(0,1,0,0) 2v2(1 + 3v/2) tn
Quzar ™ < : m > —=. (470)
A+ L] + |p2 + psl V2
Substituting it into (468) and then using (574), (585) we obtain
1 P
](;:EAA < /dt 1| Pyl < log <1 n |p1 | )Pé}_l
A+ |p2 + p3| + [palt A+ |p1 + pal
|p1 ( P A 1] A
<——(1+1o —)Pi < Py . (471
A—|—|p0| g+A+|p2—|—p3] 20—1 A+’p0| 21 ( )
L) pr] < @) < V2Ipil, (L) + i = [pal, [1(8) + pa| = |pi] give
. 2(14+2v2 2[11(t
A+ lo(t)] (A [l(1)])
Let pa3 = po + p3. If pipas > 0 then l1py3 > 0 and
4 2 2
[5(t) > pi + pay + 2lipas > {pr] + [pzal)” 2]p23\) > % : (473)
If pi1pag < 0 then p1pes < [1pa3 and
I5(t) = p} + P33 + 2lipas = pj + 2(lipas — pipas) = g - (474)

From (473) and (474) it follows that v/2|lo| > |po|. Hence v/21, > n. Note
that [3(t) = (p2s + (tprey)ey)® + pi = pi. Consequently we obtain

[CEAA g |p1| PA ) 475
b A+ ’p(]’ 20—1 ( )
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I.) Let [1(t) — p1 = e,tA where A > 0. Then Vq € {p1,p2,p1 + p2}
(L) +q)* = (L) —pr +p1+q)* = 2A% + 2tA(e.pr) + (p1 + ). (476)

This implies |lo| > |pol, 7. = n and

tA 2
(h(0) +0)° > A%+ (pr +0)° > 287 42> 22
Then using I; < v/2|p1| and A < |p;| we obtain
AoL00) 2 (1 + M) 478
QCCAA ~ A+|p0| A+7]+At ’ ( )

1

i P A
]gcAA /thQA (0,1,0,0) pA < |p1| 201 (1 1o ) 479
J ceAA 20—1 —+ 7o gy A+ o (479)

Finally, we see that

[ < 5 |fl||po| Py. (480)

5.4 Q0.4

Let ¢ € M3 denote the renormalization point. It follows from lemma 33 that
for a renormalization point q := (g1, ¢2) all the monomial {6°¢*}, and {5°¢*}3
are linearly independent. Consequently each of them forms a basis. The
coefficient of the é-tensor in the monomial decomposition of 9:1'°*4 is fixed
by the renormalization condition and the remaining coefficients by lemma 35
coincide with coefficients of decomposition of the irrelevant terms 04014
and 9:0,'°“4. Using the bounds of theorem 5 on irrelevant terms we have

DL @] < e+l (QU + QUMY P (@, (48D)
where

, 1 lgz| (1 _ 1 3

QUMY < — ( + oinf — )=, 482
S 1 e U Fadtly o) T m (482)
: 1 g 1 3

Q™ < —+ 15 ( +—> ==, (483)
A gel " Jael \lgel ~ la]) M

1
Py (@) < P (1og3) + PY 1 (0) < 5. (484)
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Thus VI, Jes > 0 such that |85I‘106A;0A0 (@) <3
Our next step consists in extending the bounds to arbitrary A > 0:

A
G - AL @) < [ ar ol @) ass)
0

Here again we use the FE and substitute the bounds on chains with the tree
bounds. On can see that Jcy > 0 such that V7 € T zac¢

cy |Gl |9e| ) 3c4
AR (QN" + +1) < . (486
@) < 3 (Aﬂqc! Nt o] N (489)
Then using (291) to bound the integral in (485) we obtain
AAg;ccA A
0 (@) < PL, (logy <) (487)

Next we rotate the vectors ¢+ Rq to satisfy the following conditions:

® p1, D2 € span(qs, ¢2),

o If py £ 0 then Jas > 0 such that asgy = po,

e If po =0 then day > 0 such that ayq1 = py,

e (AP (@Aq) = 0.
i (R - AT @) < [ difafloo Tt (as8)
0
Using the bounds of theorem 5 on the irrelevant terms

1 4] ( 1 : 1 )

A(011 dz

< + + inf —— ), 4389
ccA (_) A + |QC| A + |qc| A —+ |qc| je{1,2} A + |q]‘| ( )

1 | —| ( 1 1 )
A :(0,0,2) dc
cc ~N + + 5 490
SRNUES wam Rl waml Cenmienm (490)

we have

19,0, 04| < (491)

A—l—MPQl 1(10g+ M)
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This means that
cE - A
07 (R) = 0L @) < Py (logy 7). (192)

From now on we assume that ¢ is already oriented as needed and denote by
¢;i(t) = a;(t)g; with t € [0,1] a linear dilatation such that «;(0) = 1 and
[pi] = [4i(1)]. Then

2 1
e ql0) — o @ < Y [ decidrian ™ qte), (199
0

i=1

where &; = 0;c;. To proceed further with the integral on the rhs we need
some elementary estimates. It is easy to see that

max(|g(t)[*, M?) < ZmaX(lqi(t)IQ,MQ) < 3max(|p]*, M?). (494)

And it also follows from (589) of lemma 39 that

2n(q(t)) = min(|q1 (1), lg2(t)], M) = min([ps], |po], M) = n(p),  (495)

1 2 |QE|
< , and thus ————
A+lgl — A+lal A+ g

< 2. (496)
We substitute these inequalities into the bounds on the irrelevant terms

EA 1
006172 ()| < 7 Pa-1 (0, (497)

and obtain an upper bound on the integral in (493)

Di
1+ log, I Ph (P) < PA(p). (498)
A+ M

Rotation of ¢; towards p; will finish the proof. Let now ¢ (t) = R(t)q; with
boundary conditions ¢;(0) = ¢1, ¢1(1) = p1 and qo(t) := —(q:(t) + ¢2)-

1

- - 2 -
) - AL ) < S [t o @] (499)
0
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The bounds on irrelevant terms have a form similar to (490)

21 AAg;cEA [ 1 1] A
T GO < (T * T ) P @)

If p1p2 > q1p2 then lemma 39 implies

+ i ,
lqo(t)| = LZW = |q(t)] = |";|, Vi € {0,1,2}.

If p1ps < @1p2 then
0 (t) = P+ 2(q (t)ps — pip2) = P

Consequently,

n(q(t)) =

In the case p1ps > ¢1po we obtain using (501)

n(P), and thus P (d(t) < PY ().

N)Ir—t

Ip1] 1|

Atlao®)] (A +gq(t)])

Otherwise p1p2 < q1p2.
If |p1]| = 2|po| then |go(t)| = |p1] and consequently

2
<242

p1] 1|

Atfg@®] (A +la(®)])?

<1+1.

If |p1| < 2|ps| then denoting the angle between ¢; and p; by 5 : [0,1] —

where [y < %W we have

()] > (Il + Il sin ) > == (1l + |

Then it follows that

|1 |dt 3/ 3 1|
_PHat o3 22(10 24 1o
/ AtTao(t) A+md+x S WA PN
1 9 \Pl\
/ |p1| dt ‘pl‘ dx < 8|p1|
(A+qo(t 2\ (A+ |po| + )% = A+ |po]

0

100

(500)

(501)

(502)

(503)

(504)

(505)

[0, 0]

(506)

), (507)

(508)



Using (504), (505), (507), (508) we obtain a bound on the rhs of (499)

|p1\

pPA . 509
A—|—|p0‘ 2171(]5) ( )

Py (p) +

Finally we end this section by collecting together intermediate bounds in (487),
(492), (498) and (509)

;cc |p1|
0T ()| < Poy(p) + mpgj}_1(ﬁ)~ (510)

5.5 Q44

Using the FE we extend the corresponding renormalization condition of hy-
pothesis RC4 to arbitrary A and then interpolate to arbitrary ps. As in
section 5.3 this yields 8AFZCEA;AA° (0,p2) =0, Vpo € R* and A > 0. Thus the
goal of this section is to consider the remaining interpolation

p1
T G| < [ dly 0,040 1 o). (511)

0

Using the bound on the irrelevant term 9,041, see theorem 5, we have

; |p1|
QYO () < , (512)
4 A+po] (A + Jpo))?
100400 < QEPTVPS (513)

We introduce an orthonormal basis e,,e,, e, such that the vectors ps, p;
belong to the xy-plane and the integration path which lies in the zp, plane.

Y

[p1l >
L

a C

p1Y Xy

Denote by I, with a € {a, b, c} the integral over the corresponging segment.
Let n := n(p) and n; = n(lo(t),11(t),p2) where I;(t) : [0,1] — R? is an
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appropriate function on one of these segments and lo(t) := —(l1(t) + p2).
L) V2[lo(t)] = [pa| + |pa[t. This implies

. V2 +2 tn
QYT < , > L. 514
T At pl + It "= o

V2

Substituting these inequalities into (511) and using (574), (585) we get

|p1|
-[a < 10g+ (1 + A+ |p2|> 2[;—1
’pﬂ

= A+ pol

1] ) A

(1+10g+A+|p0| 1

|P1 | A

< —F,. (515
A—i—|p0| 21 ( )

L) |pa| < L) < V2|pil, llo(t)] = [p1] and n = n. If pips > 0 then

o

b

B(t) = B(t) + pi 420, (t)py = pT +pi > 5 (516)
If p1p2 < 0 then p1py < I1(t)pe and
12(t) = 12(t) + p2 + 201 (t)ps = p + 2(L(H)ps — p1ps) = P (517)

From inequalities (516), (517) it follows that v/2[lo(t)| > |po|. Consequently

P . (518)

V2|pi] n 2|py | ) A 1|

I, < ( <
"SANA ol (A A+ [po])/

1) 12(t) = p2 + p}t*> = n; > 7. Furthermore |l ()| < v/2|p1|. Hence

|p1 | < \/§ ’pl ’

A+1lo()] = A+ pol + |palt”

1 1
NG P 2
dt —————= < [ dt < . 520
0/ A S WAl e S Al O

(519)

Finally we obtain
P A
[ A + |p0| 20—1

(521)
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5.6 FcEA
Alg;ceA

By the same argument as in sections 5.3 and 5.5 we have I, (0,p2) =0,
Vpy € R* and A > 0.

P1
[TdoieeA () < / dly (9T )| (522)
0

Here the integration path and notations are the same as in section 5.5. Using
the bound in (510) on the marginal term 9,14 we have

A

|85F;\AO;CEA(Z1’p2)| < Pé} + m

Py .. (523)

1) V2|lo| = |pa| + |p1|t and 1y(t) = |pi|t. Tt follows that

] in
<V2, > —. 524

Using inequality (578) we obtain I, < |p1| P
I) |pa] < [2(®)] < V2Ipal, [lo] = 1] and 1 > 7. Consequently

< V2, andthus I, < |pi|P). (525)

L) I3 =pd+pit? = n, >n. Using l; < V2|py| we get

1 1
NIy P o
dt————~ < [ dt < 2|pi|log (14 . (D26
0/A+|zo<t>| [l < 2os (1 ) 620

Finally,
|1 .
L < i B+ I flog (1 7= ) By < mlPR. (520
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Appendices

A Properties of Gaussian measures

In the following dv = dve(A)drs(c, ¢) is the measure given in (66), (67)
dve, o, (A) f(A) = dve, (Ar)dve, (A2) f (AL + As), (528)
dvic(A) f(A) = dvc(A) f(t2A), (529)
dve(A — §A) = dVC(A)e 20 (94 Cnag94) o 1A Ciny 040 (530)
d ) )
Txdvef(4) = duc<5—A RO = F(A), (531)
) )
dve G(A) (AC;/{O - hé_A) F(A) =dve (h(SAG(A)) F(A). (532)

When integrating over Grassmann variables one obtains

dvs, vs,(c,C) f(C,¢) = dvg,(c1,¢1)dvs, (c2,Co) f(C1 + 2, ¢1 + ¢2), (533)
dvis(c.e) f(e,¢) = dvs(c,e) f(t3e, te), (534)

dvs(c — dc,c — d¢) = dv(e, é)e%wé’shlow67%“asﬁoécwwé’sﬁocn, (535)
d—AdI/Sf(C c) = Cll/5<6— hS (5c>f(c c), (536)

dvs G(¢, c) (—CSX/{O + h%) F(E,c¢) = dug (h?zG( )) F(¢,c), (537)

dvs G(¢, c) (SAioc + h%) F(¢,c) = dvg (h?ZG( )) F(Ec).  (538)

Properties (532), (537), (538) are proved for

O =04 F o b4 G e +ae)

Y Y

F — erlen)+' ) . (539)

Y

and extended to polynomials in the fields by functional differentiation.

B Chains of vertex functions

For the purpose of example we give the complete list of reduced chains
which appear in the loop integrals for I'44¢%%  together with the correspond-
ing "dotted” propagators. The external fields are underlined. Moreover,
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k—1 . . . .
Y o w; = w, k being the number of vertex functions in each chain.

CFAAA;wo CFAAA;wl CFAQE;IUQ SrcéA;wg OFAAAAcE;w
) )

ST CAG; Ac; Acg; cA; - cAAcc;

gredeuwn gredsiun gPAcgue CTeAws  GTeeAdesw,

YTAAAA;wg Acc;wy ccAj;wa YT AAAcEwo AAA;w
Ccr Ccr ST Ccr Ccr
Y )
ST cAAEwg Acc;wy cCA;wa 31 Acéec;wo Acc;wy
§TeAAGuo G Acgiwr (peeAws. ST Aczezwo GPAcwn
YT AAcéwo Acc;wy Acc;wa YTVAAAcEwo Acc;wi
CT STAcw: gPAcws ér SrAcw
SFE@A;wO OFAAA;wl OFACQ;'LUQ ST‘AAACQ;'LUO CFAQE;wl (540)
Y )
CVFA@C;UJO SFAQE;tm CFAAA;wQ CFAAACE;wo SFAcé;wl
Y )
SFCEA;IUQ CFAgé;wl SFAcE;wg SFAAAcE;wo CFAcg;wl
) )
Y AceA;swo AAAw AAAwo Y AAcGwe QT AACE;wy
Ccr Ccr CcTr Ccr ST
Y )
SchjE;wo SFAcE;wl SFAcE;w27 SFAACE;wo O]__‘A@awl 7
CFAAAA;wO CFAQEA;wl SFAACE;U}() SFCEQE;UU
s .

C Tensors

For the definition of the tensor monomial sets {0°¢™}, {0°¢"}, see beginning
of page 36.

Lemma 33 Let ¢ = (qi,...,qm) where ¢g € RP are m € N linearly in-
dependent vectors. Then the tensor monomials {0°q"}, of positive rank
r=2s+n<2(D—m)+1 are linearly independent,

Y at=0= ¢ =0,V (541)

t€{55q"}r

Proof Observe that, for m,r, D € N, the inequality r < 2(D —m) + 1
is equivalent to m + s < D for all s,n € N such that r = n + 2s. Let
I = {1,..,r}. Let Py be the set of all divisions of the set I in m + s
pairwise-disjoint, possibly-empty sets,

I= (U vi) U (Uis Sn). (542)

such that Sy = {s}, sz}, s < s, and minS; < ... < minSs. There is a
bijection that maps a division (V}, Si) € Ps to a tensor monomial ¢ € {6°¢™},
constructed by the relation

S

by = H H Qs pao; H 5us]1€usz~ (543)
Jj=1lv;€V;

k
k=1
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Let us first prove the statement of the lemma for orthonormal ¢;. In an
appropriate basis of R”, their components are

=iy, je{l,...m}, pef{l, .., D} (544)

dj;u

Let us assume that ), ¢, t = 0, with t € {§°¢"},. We will proceed by proving
inductively that ¢; = 0 for all t € {6°¢™}, from s = D —m down to s = 0. Fix
5 < D—m and assume that ¢, = 0 for all £ involving more than s Kronecker’s
tensors (which is vacuously true for s = D —m, due to the rank constraint).
Let us prove that ¢; = 0 for an arbitrary ¢ € {0°¢"}, which is associated to a
division (1_/], Si) € Ps. Fix the values of the indices fi;, with i € I, by

_ { 7, if 37 such that i € V}, (545)

Hi=Ym + k, if 3k such that i € Sy,

Note that this choice is possible because m + 5 < D. It is enough to show
that whenever ¢;, 5 # 0 for t € {6°¢"} and s < 5§ (i.e. n > 7n) then s = §
and ¢t = ¢: in fact this property, the inductive hypothesis, and the vanishing
of the sum ), ¢; t imply that ¢; = 0. To prove the aforementioned property,
introduce the division (V}, Sk) € Ps defining the tensor ¢ and, using (544),
correspondingly write

0#ta . p = H H Ojfus, H &siﬂsi' (546)
=1 k=1

j v;€Vj =

Relations (545) and (546) imply that V; C V; for all j, which, together with
the inductive condition n > n, leads to n = n and, because the rank r is
fixed, to s = 5. Relations (545), (546), and s = 5 imply that there is an
injective map f : I — I such that S; = Sf(j). By definition of the S, it
then follows that min gf(l) < ... < min Sf(l); this is only possible if f is the
identity, which concludes the first part of the proof.
Let us now prove the statement for m linearly independent vectors py, ..., pp,.

The sum ), ¢, t = 0, with t € {§°p"},, may be rewritten as

n S

Z Z Z v H<pk7)'“§ H 5“;-9-2]'/—1“;-5-2]" - O’ (547>

2s+n=r 1<k1,....kn<m 7j=1 j'=1

where p1] 1= pir(;) and the sum over 7 runs over the right coset of permutation
groups S, \ (S, x Ssx.S5). Expressing the py in terms of m orthonormal vectors
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Qr, Pr = Arqir, gives a tensor transformation leading to the coefficients in
the {6°¢"}, basis:

et him = Churonm | | Ak (548)

j=1
The validity of equation (541) for the g implies that 0;6,1 .. = 0, which,
by invertibility of the matrix A € GL(m,R), gives ¢k, k,.x = 0. [ |

Note that for m = n, — 1 and D = 4, the condition for linear independence
of the monomials in {§°¢*}, reads

r<2(4—(ny—1))+1=11—2ny. (549)

Lemma 34 Let ¢ = (qi,...,qm) with ¢; € RP and m nonnegative integer.
The tensor monomials {5°q"}, of positive rank r = 2(D —m+1) are linearly
dependent.

Proof It is enough to prove the statement of the lemma for r = 2(D—m+1),
m > 0 which requires m < D. First we prove the statement of the lemma
for orthonormal ¢;. There exist gp1,...,¢p orthonormal vectors such that
in an appropriate basis of R” we have q;., = d;, Vj, n € {1, ..., D}. There is
an identity

S YIRS R S ST R

i<m >m

Define a tensor of rank 2s

6;;1’“.7”23 = Z (—1)N" H 6:_3]'71#2]' (551>
j=1

TESs
where p7 = fir(;) and N, stands for the number of transpositions in the
permutation 7. Forr = 2(D—m+1) one always has §,;, = 0. Substitution

0, with the Ths of (550) implies that 3¢, # 0 such that

> at=0, q:= (1, s @) - (552)

t€{55q"}r
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To generalize the result to arbitrary set of linear independent momenta p; it
is enough to substitute g, with Aggpy., where A € GL(m,R) and to define
new coefficient ¢

/
it him = Churon | | Ak (553)

.....

implies that ¢; # 0. Then VI € N one obtains

> dt@q) =0. (554)

te{ésq"}r

|
The following lemma states a necessary condition for a regular, O(4)-
invariant tensor field.

Lemma 35 Let f(y) be a reqular, O(4)-invariant tensor field of rank r where
Y= (Y1, ., Ym) with y; € RY. Assume that the tensor monomials {5°y*}, as
well as {6%y*},41 are linearly independent pointwise for all y € O where O
is some open set. Then on O we have B

f= > ft. 0if = Y. fwt. (555)
te{ésgk}r tle{ésgk}r+1
Furthermore for every t € {6y}, there exist j and t' € {6°y*},41 such
that ft = fj,t’ on O.

Proof For shortness we consider only the case m = 2. We have

F=> wt+ > Gt (556)

te{s%}r te{d5yk>0},

where u;, (; are regular functions of the scalar parameters X = {%y%, %y%, Y1Ya }-
Apply the operator 9; to both sides of (556). The Leibniz rule gives

0;(u,8°) = " (Douy) 0° Oy, (557)
reX

0;(Go°y*) = (0:¢) 0" yr O + (0° Oy”, (558)
zeX
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where 9;x € {0,y1, 42}, ¥* := yi,-..ys, With 4, € {1,2}, and

k k k
039" = 0; [Twa = _ 054, [ [ var (559)
=1 q=1 =1
l#q
The nonvanishing tensor monomials arising at a given j € {1,2} from the rhs
of (557) and (558) have rank r + 1, are linearly independent by assumption,

and are pairwise different. Each coefficient ¢; of the tensor 0°y;,...y;...y;, in
the decomposition (556) appears also as the coefficient of 6°y;,...0...y;, in the

decomposition (558) for 0, f. |
Lemma 36 below relies on lemma 33, which shows that, for m linearly
independent vectors e = (e, - - - , €,,), the relation r+1 < 9—2m is a sufficient

condition for the linear independence of the tensor monomials {6°¢F}, and
{6°¢*},41, see lemma 34 for a necessary condition. The renormalization
points in appendix H are chosen to comply with the aforementioned relation.
The proof of lemma 36 is in the same spirit as the one of the preceding
lemma 35.

Lemma 36 Let F' be a regular, O(4)-invariant tensor field of rank r € {2,4}
on P,. Let be given ¢ € M,, and m > 2 linearly independent vectors e =
(€1, ,em), such that span(q) = span(e). Assume thatr+1<9—2m. By
lemma 33 there exist unique coefficients Fy such that F(q) = Sieqseery, Fit.
Furthermore,

F@)] < cmax (1)) g5y, (MIOF @ Dreran ), (560)
Y m|gcmax((M|akF<q->|)ke[n_1]). (561)
t€{55§k>0},«

The bounds hold with the same constant ¢ for all F' of equal rank.

Proof The coefficients (‘Ft’)te{és}r in the basis {0°¢*}, do not depend on
the choice of the vectors e. Hence it is enough to prove (560) in the case
when e;e; = M?6;;. For simplicity we assume that m = 2, the extension to
other m being clear.

By hypothesis, there exists a (n — 1) x 2 matrix L such that ¢, = Lye; and

1 1 —~ 3
|L‘ =V Lkszz = M Lkiijeiej = M( qz) ? g (n — 1) .

1

S
—

NI

(562)

e
Il
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Denote by E C R? the linear span of the vectors qq, .., ¢,—;. The matrix
L induces a linear map L : E? — R* ™=V s Ly, where y = (y1,12) and
(Ly)r = Lysys. We also define an auxiliary function on E2: f(y) := F(Ly).
Setting d,, := 0/dy; and 9y := 0/Opy, the Cauchy-Schwarz inequality and
(562) imply that,

Sl f @I < ILP 5 0 F (@ < (n = 1) max(|0:F (@) (563)

For all y1,y, € E, denote as usual by {6°y*} the set of all monomials being
a tensor product of k vectors in y = (y1,2) and of s Kronecker tensors, and
by {6°y*}, the union of all {§°y*} such that 2s +k = r. By (541), whenever

r < 5 and yi, y» are linearly independent, the elements of {0°y*}, are linearly
independent. In this case, we label the tensor monomials by fixing a family of
disjoint sets Ay, s and a family of bijections « + t,, from each Ay s to {§°y*}.
Furthermore, we define the auxiliary sets a

A= ) Ao, A= | Ake, Ap=AT\ALL (564)
2s+k=r 2s+k=r,k>1

For r € {2,4} and y = (y1,y2) in an open neighborhood of ¢ (in E?) for which
Y1, Yo are linearly independent, we write the following tensor decomposition:

F@) = tata+ Y Cata, (565)
a€Ag a€A”

where u,, (, are regular functions of the scalar parameters X = {%y%, %y%, Y12}
Evaluating (565) at y = e and using the general fact that [t| = 2°M* for

t € {6%¢*} we obtain

F@I < Y 2 ual + Y [Cal22M". (566)

acAg a€AT

We now want to prove the existence of a constant ¢; > 0 such that

>l Mt < an( Y |8yl.f(§)|2>1/2. (567)

agA” i€{1,2}
Apply the operator 9,, to both sides of (565). The Leibniz rule gives
0y, (uad®) =Y (Optta) 0° Oy, (568)
zeX
ayi(caésyk) = Z(axga) 0° ykayix + Cad® ayiyk7 (569)
weX
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where 9,7 € {0,y1, 92}, ¥* = vi,...ys, with ; € {1,2}, and

k k k
ayiyk = ayi H Yi, = Z 5i,ij H Yi- (570)
=1 j=1 =1
]
Fix y = e. The nonvanishing tensor monomials arising at a given ¢ € {1,2}
from the rhs of (568) and (569) have rank 7 + 1 € {3,5}, are pairwise differ-
ent, and are a subset of the tensor monomials in A", themselves linearly
independent by (541). Denote by B/ t" C A"*! the subset labeling the mono-
mials of type 0°0; Hl#j y;, arising from (569) and (570) at the given i. By
construction, we can define the maps m; : B/*' — A" with i € {1,2} such
that:
i) if tr,5 € {6%€"} then tz € {0°T'e* "} (in this case, |tr 5| = 2°M* and
|t5| _ 25+1Mk—1);
i) for each 8 € B]*! the coefficient of g in (569) and that of t,,s) in (565)
are the same, namely (r,s);
i) m (Bit) Um(ByT) = A7
The following bound holds at y = e for every tensor W = 3, Wsts/|t5| with
B e A" and v’ < 5, and for every nonempty B C A”:

(U = (U, ) = U5 Gap Up 2 A1 > [WsP =0 ) W) (571)
BeAr’ BEB
where Ay > 0 is the smallest eigenvalue of the Gram matrix of components
Gpp = (tp,tp)/(|ts||tp|), which is positive definite by (541). Application of
(571) to ¥; := 9, f(e) for each i € {1,2}, with »' =7+ 1 and B = B!,
gives

AN .
D10 S@F =M Y [GnaPltel = 55 D Gl @MY, (572)

i€{1,2} ie{1,2} Q€A
BeB; Tt

from which follows the bound (567).
Inequalities (566), (572) and (563) lead to the bounds (560), (561), with a
constant

T .AT,
¢ = max (25\140\, (n—1) %) . (573)
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D Basic estimates

Lemma 37 Let PA>0,n1>0,0<a< AL;T]. The Yk € N dc such that

1

dz a P P
logk < clog(1 1+logh ——). 4
/1—1—@33 Og+A+77;1: ¢log( —l—a)( +Og+A+n> (574)

0

Proof Let 2’ = min(z, a:a) where
sup {z: — =1} k>0,
T 0<z<1
1 k=0,

First we establish a low bound on z,. Note that f(a) = 2%is a convex function
with f” > 0 and f(0) =1, f(1) = 2. Consequently for all 0 < a < 1.

1
xq = —log(l+a). (575)
a

1 1
2°<(14+a) = log2< —log(l+a) = ééma. (576)
a
Furthermore Va > 1 we have log(1 + a) > log(2) > 1. Hence
% 0<a<l,
To 24 | (577)
% a>1.

We also need the following inequality:

: P
= > log z).
o (xz 7 og’ AT a:) og At Vo € (0,7) (578)

Now let I denote the lhs in (574). Using integration by parts and then spliting
the domain of integration of the remaining integral into two intervals [0, 2’|
and |2/, z] we obtain

P
I <log(1+ a)log” Ao + ka / dxlog"™!




If # < x, then 2/ = Z, and (579) yields
I < 2log(1+a). (580)
Otherwise 2’ = x,. If 0 < a < 1 using (577) we have

k

1 P P
< eZ%OogﬁA—m%—l) <62<10gﬁA—+n+1). (581)
0

If 1 < a < £~ then similar to (581) using (577) we obtain

A+n
log® < 3’“(1 +logk i) (582)
TA 4 TA+n/’
k
1 ; P P
—log] < (1+10gh ——).
jzoj! Og+A+nx’ e +Og+A+n (583)
Finally (579) gives
I<elo (1+a)(1+lo ; i) (584)
where ¢ = max(2, kle3 + 3% kle? + 1). |

Lemma 38 Let p,q € R?

p| ( p| ) 1 ( p| )
— 2 (14log, —"— ) > Zlog 1+ . 585
A+ |p+q| g+A+|q| 5% A+ |q| (585)

Proof If A+ |g| < |p| then

|p| |p| 1
> > —, 586
A+lp+aql = A+lg+1[pl ~ 2 (586)
p| p|
1+log—>log<1+ > o87
A+ |qf A+ |qf (587)
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If A+ |q| > |p| then

Ip| Ip| p| ( |p|)
> > > —log 1+ (588
Aiprd o AramC 2ar 2 e arg) s O8

Lemma 39 Let {e;}}_, € R* such that e? =1 and e;e; > —+ if i # j. Then
Va = aze; with o; € R

k
1
EET (58)
i=1
Proof
Lk ) k k Lk
2 2 2 2
a® > EZQZ —l—g((k— 1)20@ —Zala]) > Ezal
=1 =1 1#£] =1
] k k L& P
2 2 ) 2
Fr(B=nX 0 =53 0 rad)) = £ 3 et > (Xl ) - (590)
1=1 i#£] i=1 1=1
|

Lemma 40 Let 0 < g <p < P, k€ N. Then 3C} > 0 such that

oo k+1 P
/ dhlogh £ 1+logy™ 5
( .

< 591
A+p)A+q) " A+p+g (591)
Proof Let I* be the left hand side of the inequality and
/ dA P
Ik = / logh ~. 592
o OD+p)A+q) oFX (592)

a

We begin with the case k > 1.

e A>P, IF=0.
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¢ gSASP IF=1 .

I* < 1 / d\ log* 2P < 2 1 logh*1 2P
A+pJ A+q Aq k+1A+p+q A+q
A
logh*' —— +1), 593
e (o™ £+ ) (59
where 0 i
2(log2+1
A = 594
g k+1 (594)
and we have used the inequality
1 1 2
(1+logh x )
e A<qg< P IF= ][Ij\,q]"'I[IZ,P]-
P P
& 1 d\ 2P 1 d\ 2P
I p < log” < log"
la Ad+p) A+gq Aq A+p A+q A+q
q
< ———(logh™ —— 4+ 1), 596
it ) (506)
q

1 k

P qk! 1 P
If o < /d)\lok—< —log’ —
o (A+p)A+a) ) 2 (A+p)(A+Q);J! *

- ek! (log* 2P +1) < 2ek!
0 _—
A+p & A+gq A+p+gq

(log" i +2). (597)

It remains to consider the case k = 0.

e A > p. This implies 2(A4+¢q) > A +p+2¢ > A+ p, VA > A.

+oo

10:2/(dA <t (598)

Ap)?  A+ptgq
A
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o« A<p I°=10  +1

Al T Lpoc)
a1 3
I <2/—<—<— 599
pored A+p? "p  Atptq (5%9)
P
p
IO<1/d)\<2lO2P
M SATp ) Xbg T ATptg CA+g
A
< (log 2 + log, ——) (600)
— (10 (0] _— .
Atptq e S+ At g

[
Lemma 41 Let 0 < ¢ < p, n:=min(M,q), k € N. Then 3Cy > 0 such that

(601)

400
/ dX logh 3 _ 1+loght! 32 +loght! &
A+p)(A+gq " A+p+g

Proof Denote by I* the lhs of equation (601). If £ = 0 then the inequality
follows from (591) with P = p. Let £ > 1 and p = max(A, M).

e p <A

To2logtx 14 logt A
I* < /d)\ 342\ /d)\f( ) < 2F2klfe———F M “2]4, (602)

A+p A+p+
H H
1okt F 1ogh A
A\) = — M 603
FA) A+p &~ 12 (603)
7=0
e A <p.
P —+00
log 2.Jk 21ogh A
Jk A —>M gk =T /dAJ. 604
/ A+q Ap+yq (A+p)? (604

m

The integral on the rhs of I* is exactly the same as in the case p < A.
For the integral J* using the inequality

(605)

A A A
10g+M <10g2+10g+]\—|——M+10g+M’
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we have

A
Jk < gkt <1 + loght! ——— A +1og’f+1 M) : (606)

Lemma 42 ForO<A<n< M, keN

n
1 A
d\ 1 — < L
/ /\+n0g+M< (607)
A

Proof Denote by I* the lhs of equation (607). If k > 0 then I* = 0. It
remains to consider the integral

7
d\ 2n
— =1 < log 2. 608
/)\Jrn OgA+77 ©8 (608)
A

[
Lemma 43 Let 0 < A <n < P, k€ N. Then 3Cy > 0 such that

n
dA P P
//\+ logh T < C’k(1+log+A ) (609)
A

Proof Denote by If; \ the lhs of equation (609).

7
1 P )z
Tina < Toa < ,,—,/CM logh, - < 2kle? (1 + log} 77+—A> (610)
0
[ |
Lemma 44 Let 0 < A<M < P,0<n< M, keN. Then 3C, > 0 such
that
T d\ P P
1 k—<C’<1 1 k“—)_ 611
/)\+77 Og+)\ (LT 08y A_|_77 ( )
A
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Proof Denote by I* i the lhs of equation (611). If A > 7 then

M

d\ 2P Qk+1 P
5o < 1 < (1 1k+1—>. 612
[A.] /A+n Og+A+n G i (612)
A
Ifn > Athen I* < If§ \+ I} ) where
n
dA P . P
I[%m] /)\+ 10g+x<2k’|6 <1+10g+7’]—|——A)7 (613)
0
M d\ P k+1 P
P) 2
J— log < (1 ] k“—). 614
[, M] /)\+n OB Ty SRAIU TR ATy, (614)

n

|
Lemma 45 For q > 0, k € N, P > 0 there exists a constant Cy > 0 such

that
Ao
A/

Proof Denote by I[]j\,Ao] the lhs of equation (615). If £ = 0 then

P A
log+—<Ck<1+logk“A +1lo g+A—l(—) ) (615)

Ag
Iy pg) < 14 1log, At (616)

For k > 0 and A > ¢

k 2k+1 k+1 P
I[A,Ao] < k——|—1<1 —|—10g+ m) (617)

If £k >0 and A < ¢ then I[AA | < I[Oq] + I[’;AO] where

q
1 P P
][0 d < - /d)\ 10g+ X < kle? <1 + loglfl m), (618)
0
9k+1 P
k k+1
TE Ay < k—ﬂ(l +loght A—> (619)
|
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Lemma 46 Let a,d >0, b >0 and m,k € N. Then 3Cy,, > 0 such that

a

/dw 2™ logh . < Gy ma™tt (1 + log a—+b> (620)
0

Proof By direct calculations it is easy to show that

d Bzl S (m+1Y . d
mlogk — L f = log? . (621
T Og+ b—f—x f7 f (m + 1)k’+1 fo j' 0g+ b—f-l' ( )

Consequently, the lhs of equation (620) is bounded above by f(a),

k

T I
m+1
< (nf:—l];l m“(l—HOng ib) (622)
|
Lemma 47 Letp,q € R*, A’ >0, A’ >n>0. Then

1

/dt % 2<10g4—1—10gJr A,|p| > (623)
0

Proof Let Ij;; denote the lhs of equation (623). There exists ¢; € [0, 1]
such that |tp + q| = |p||t — t1] for all ¢ € [0, 1].

Iio,) =1jo,0y) + L1ty < 2log + |p| < 2log 4 max(1, A’|Z—)k| 77)
2<log4+logJr A/|p| ) (624)
[
Lemma 48 Letr >0, w € N and z,y € R*
e’ w!max(2,1+ )" (625)

Qrle—o)" = (+l)"
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Proof Choosing the Cartesian coordinate system such that one of the basis
vectors ey, is along y we have

e—rx2 e_TtQ
———— < f(t), ) = 7o
(L+ [z =yl (1+ [t —to])®
where t, ty, are the longitudinal coordinates, * = x7 + tey, and y = tger,
to = |y|. If t > to then f is strictly decreasing. If ¢ < o then f(t) = g(t)
where

(626)

g2
ert

t) = ——m— ty :=1+1. 627
g( ) (tl I t)wa 1 + 0 ( )

If £ < t; then g is either increasing or has a local maximum at ¢_.

t A
Gt O (A 0) At <t <ty), te = # (628)
¢ (t) = 0 otherwise , A=t — 2%, (629)
r
Consequently, f(t) < max(g(t_), g(ty)) where

—rt2? 1 \w

e gw  gu . wl(1+ )
t) = <= = , t)) = e " < 2r 630
|

Lemma 49 Let r > 0. There is a constant C such that

) max (M, \/p? + s?) 1 1 max (M, p)
e 2% log, A <C’—|—§10g+;+log+T. (631)
Proof Using the following inequality
M 2 2 M
max( ’A ) < 2max(1, %) max(1, W), (632)
we bound the lhs of the statement by
max (M, p) 1 1 1 s
log+T+log2+§log+;+§e log, 2, z:= VT (633)
The inequality e *log, z < e! finishes the proof. |
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Lemma 50 Let z,y,m > 0, PO(x) = Y cp2® a polynomial of the degree
k=0

n, log,, © := log, max(z,m). Then there exist polynomials PV, P@ of the

degree n such that

P (log,,, /'y + ) < PV (log,, y) + PP (log,, 2). (634)
Proof Substitution of the inequalities

max(/y? + 22, m) < max(y + z,m) < max(y, m) + max(z,m), (635)

max(a + b,1) < max(a, 1) + max(b, 1) < 2max(a, 1) max(b,1),  (636)
into the definition log, a := log max(a, 1) yields

log,, Vy? + 22 < log,, y + log,, * + log 2. (637)
This gives
POlog,, /22 + 12) < cr3k (logfu y + logk o + 1). (638)
k=0
[ |

Lemma 51 For a fixred s € N there exists a constant ¢ such that Yu < w
and Vo € R4

s+1—u <
U ®s - —zt < |x| ) U %x S,
[0 (x (1—e )> [se { 1, otherwise. (639)

Proof First we consider the case u < s

4
0"z (1 —e ")) < |01 —e ) + Y “‘u Joraertie) o=, (640)
u2>0

For the derivatives on the right we have
‘x|s—u+1 |x‘4u2—1

9 ¥z | < (5 + 3uy)! .
O S (s 4 Bue) N y — 1)

(641)
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Furthermore, Vk € N

7x Z ‘I| _ *I4+|x‘ <e. (642)

Noting that 1 — e™*" < ||, we obtain the bound in the case u < s

| s+1—u s+1—u 14w2 3 |
S |;1;’ ' 6’:1:‘ = u (8'—0—' UQ) g C‘$’s+1—u_ (643)
(s—u)!  (s—u-+ ).u2>0 uylug!
For u > s using (642) we have
14u2 3 ! s+3uz—u1
Z uld (s £ 3ux)t o] e < (s +3u)5% < c. (644)
up ! (s + 3ug — uy)!
[

Lemma 52 For a fired s € N\{0} there exists a constant ¢ such that for all
u,v < W and all v = (z1, 22) with z; € R*

v U ®s—1 —x |x|s+1—u—v7 u—+v < S

1920, (xg @ap (1—e 1)> [<e { |z| +1,  otherwise. (645)

Proof First let v € {0,1}. Using lemma 51 we obtain for 0 < u < s
|0 (2 ® 27 (1 — e™))| < el (646)
1020} (w2 ® 27 (1 — e7™))| < ], (647)

and for u > s we also have

0} (w2 @ 27711 — e7™))| < cfa], (648)
10,04 (5 @ 2251 (1 — e ™)) < c. (649)
Finally, for v > 1 90%(z, ® 22°71(1 — e~*1)) = 0. |

Lemma 53 Fors € {0,1} there exists a constant ¢ such that for all u,v < @
and all x = (x1, x2) with x; € R

s+1l—u—v <
050y (2" (et — et ) | < {le CUTUS S (650)

|z| +1,  otherwise.
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Proof First let s = 0. For u = v = 0 put y = 21 + x5 and assume

7| <yl <1
e _ eV — e_x%(l — e_(y4_”’c%)) <yt — :13‘11 < y| < 2|z
Inequality (642) implies that
e < e(3w)!5%.
Consequently for u +v > 0

0501 (71 — e~ @Fm2) )| |ate ™| + [050y e @) L ¢y

Finally, we consider the case s = 1. Using (651) and (652) we get

4

|x1(e""“ _ 6*(w1+m)4>| < 2|LL”2,

195 (21 (€71 — 7142 )| < || By (6771 — e” @) L eyla]
101 (21 (€7 — e @F o)) L yfa]

and for u +v > 1

|00 (a1 (71 — e~ @) | 5+ e

Lemma 54 Let 0 < <1, 2>0 and

1
_ —Bx T
f(z) x<€ e ")
Then Yw € N
w w!
0% f(z)| < 6(1 e
Proof We have an identity
1
8 f(z) = (—1)%gu(@), Gulz) = /d,y o
B
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It follows
1

1
0

0
oo

< em /dz 2Ve = e%. (661)
0
[ |
Lemma 55 Let 0 < <1, 2 >0 and
h(z) = é(e—ﬂxz e (662)
Then Vw € N, ¥C > 1
107 h(z)| < wle(C + 1)((12{%. (663)
Proof
0" h(@)| < 10 (@) + Wi F@), F?) = Th(). (664)

Using an auxiliary variable y
0 a\"
2 = - - 2

k<w k w—2k
=~ 2k — 1 I 0 0

k=0
2k<w

w!

w—k
w_—W(%)“"”“ ((%) W) ly=a2- (665)

k=0

Equation (659) gives

2k<w _
W 2k+1

w w 1 —2k
120V f(2%)| < w!2% Z k' _% (EworEEst (666)
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With an arbitrary constant C' > 1 we have

x C 1 (w—k)! X
2 ST () =50+ w_zm S (667)
Consequently,
2k<w
w2 w!Ce(20)" '~ 1 7w \*F _ w!lCe(2y/eC)”
20" F@) < e kz; Kl <2C2> S Hioen o (068)

Similarly, we obtain
2wle(2/eC)v™!
(14 x)wtt

lwd™ 1 f(2?)] < (669)

Lemma 56 Let f(p?) be a scalar function. Then

2k<w

w! o w—k
< Qw w—2k 2 )
551071 < > M (5E) S0 om0
Proof With the aid of an auxiliary variable y
=0 9 ad 0 0
— — — +2p, — 2. 1
E ) ) H ((%M + 2Py 8y) FW)ly=p (671)

Pp; i=1

A partial derivative wrt p,, contributes only if it can be paired with 2p,, term.
Consequently, we can compute the right hand side by considering the possible
pairs,

0 0 0 ) 9 o\?2
A T 2005 ) (57— + 2057 ) = 2005 + 200200 | 57 ) - 9
(apuz + puz 8y)(6p,uj + pH] ay) Hillj ay + puz p,uj (ay> (67 )
It gives
2k<w 1 w a
kXO:W (w — 2k)!(2k)! MZ:O Qkk;l H < T4 > il;q (2pma—y> , (673)

where the outer and inner sums run over w!, (2k)! permutations, respectively.
Using the inequality |A;By| < |Az||By| we obtain the upper bound. [

Lemma 57 Let C > 1

226302)w
AAo 2 (— 4
’Hapf P < 20O ) e (674)
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Proof We change the variable z, = p,/A

w

0 1 4 0
[[-—5"®) = e I1 o h(z?). (675)
i =1 v

i=1 apl“

Equations (670), (663) yield

2k<w w! (w w2k e w—k
rnat <27+ 3 5 (( _2"“]3)‘ (H(%;C,ZH ~ (670)

[ |
Lemma 58 Let C' > 1
226302)11)
(JAAO < 22wle(C+1+ (E+1)(C*+3 (—. 677
|H ) ( €+ D(C+3) e (670
Proof
0" ()] < 40 SN (p)] + 6 — 1|0 S )L (679)

The first term is bounded in (674). Using z, = p,/A we have an upper
bound for the last term

20" f(a")] + 2Pwl]|0" ™ (2] + 4Pw(w — 1)[0" 7 f(2%)], (679)
where f(x?) is the same as in (659). Equation 659 gives

2wle(24/eC)Y 0 ()] < 23wle(22e1C2)Y

w 2
R e 680)
Consequently,
3
w 4 302 (22C%ed)”

|

Lemma 59 For all p € R?* there exists a constant C such that

. 1 _»?

[CH(p)] < Cgge . (682)
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Proof Using the inequality ze " < ze'™2* = ze!%e* < e~ we obtain

SAAo 1 z2 4 —z p2
|SH(p)| = 4er < Fe , = (683)
: L+ [&—1]
e )] < 4t - (684)
|
Lemma 60 For all p € R* there ewists a constant C' such that
1
YO, CM(p)| < C : 685
| p YAo (p)| AO(AO I ’p‘)ngHw” ( )
Proof Let f,, = e*x4xux,, then using |0%z?| < |0¥x,x,| we have
w AR+ [E-1DIGFST w 4107 f]
1929, A% (p)] < ATl 3 , 10005, S (p)] < <AHMH+3, (686)
0
where introducing C; = 22% (4w + 2)!
02 1 < Cre™ (a2 4 1) < eCre™ (|2 4 1), (687)
Then it is easy to see that for 0 < m < 3w + 2

max(e™ (™ + 1)) < max(e ™ z™) +1 < e? 3D 1 1<y (688)
To go further we need the following inequality for all y > 0 and k € N

gr(y) <K, ge(y) = (1 +y)'e™, (689)

which is obtained looking for the maximum g, = k — 1 and using go(g0) = 1.

96(Uk) = kgi—1(Uk) < kgr—1(Ue—1) = gx(y) < gu(Uk) < k! (690)
Defining C3 := €*CC, and using inequality (689) we have

| | il

9211 < Coe™ < Cog +2m)2 (1M’)ﬁw - (1f§7§4wr (691)

[

Lemma 61 Let C*0 be one of the propagators S™ or C’L/L\lf\o, as defined in

(40), (41). There are positive constants cy, c¢1, d such that for all w € N,
p R 0 <A< Ay, and with ¢ := co + Ecy,

w!d¥c . e 2
(H op )CAAO ‘ < W, ‘CAAO(p)| < A_53€ el (692)
Hi
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Proof The statement follows from (674), (677), (682). |

E The functional ',y

We expand the generating functional T°%(A, ¢, &) of (113) as formal se-
ries in A, ¢, . As usual, we adopt the shorthand notation %% (A, ¢ c) for
%% (4, ¢ c).

4
% = 12, + T3, = ore (69)
n=1

where n counts the number of fields. The functionals F?LAO with n < 4 contain
both relevant and irrelevant terms. We assume hypothesis RC1. In general
the tensorks Ogjlmur appearing in the form factors F l(anMr (p) are elements of
span({6°p""},~0) where p = (p1, ..., Pn—1)-

1. One-point function

There are no local terms that preserve Euclidean invariance and global
SU(2) symmetry. It follows that T'; = 0.

2. Two-point functions

9% — %(FIZ‘/AAZA‘D + (F™c &), (694)
Far(p) == (8,wp” — pubo)(ogn, (0°) + S22 (1))

+ gk, 07) + SH0P) (695)

F(p) == —p* (054, (0*) + E%(p?)). (696)

We assume that the form factors £44 and X% include all loop correc-
tions. Note that for the functional I'9* we have

1 fa cox
l:ng — §<E;‘:‘AZA3> + <Fccéaéa>’ (697)
1
AA . AA
E,u,u (p) T F/u/ (p) - %p,upu . (698)

With p? = M? substitution of the above definitions into the expressions
oon, F A4, on, F appearing in AGE(166) and STI(167) gives
cc g cc
aone () F(p) ~ —p*(1 + T%(p%)), (699)
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B
oone (1) Fi (0) & Fiti, (p) (700)
1
Figu(®) = @up® = pup )1+ Z240%) + 2pap B2 (). (701

Using (116) for the functional M we have

1 o -
re% = SR ALAL) + (Feecner), (702)

1
FAd(p) o= (0up® — pupo) 207 (%) + gpupyzé/%ﬁ) , (703)
F(p) := —p°Z(p?). (704)

For marginal terms we obtain

F570e () =20,05071 + 2(8,p00s + 60p0,0) 5 + Gy . (705)
Fecpebe (p) =26,0r%(p*) + (S (706)
riA(p?) =S4 0%) + p° —82222@2) ) (707)
3 (0?) ¢=%E£‘A(p2) -4 %), (708)
) = - 5 - P . (709)

3. Three-point functions

D3 =(eqpaF i ACAL AD) + (e FPC ASe?),  (710)

puv “iptiptty

F2(k,p, q) :==ipR{“(p, q) + iqury“(p, q), (711)

R{¥*(p,q) =g +r1*(p, q), (712)
FooA (K, p,q) =10 (pp — 4o) R (D, ) + 10k, (D, q)

G (0, ). (713)

RA(p,q) i=3 +r*(p,) (114)

al

Here R444(p, q) is a symmetric function whereas P, q) is antisym-

metric.
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4. Four-point functions

FgAO :<FAAAAAb AbAaAg + FECAAébébAZAZ

opuy ot pttu 1,pv
ccAA=a b fa A ccce=b sb=a za
+ Fy0C chMAlb, + reeeegbebEn ey (715)
Feait i=0,, e 4 (e, (716)
AAAA . pAAAA AAAA
Fap,uz/ ‘_Rap,uz/ + opuy (717>
1
AAA AAAA AAA
R;‘p;ﬁ 325(6;”)51/0 + 00 0pu ) g A4 5MV50pR§4 4
1
+ 5(5/#)51/0 - 5u05pu)<éAAAa (718)
2
T (719)
g2
e L (720)
Here the terms
Ti4A, T?A, znEc7 R.f&éc’ 7,246707 RAAA7 (721>
R{LAAA’ RQAAAA, TiCAA’ ’I"SCAA, ’I“CCCC,

are scalar functions of momenta, Ag, and M. All 11 renormalization constants
are fine-tuned by imposing appropriate renormalization conditions.

F The functionals ',.,<» and [.,<>

With FE[AO (p) = S%(p) rOAo ‘%=07

Fggf?ngz(p) =Ryip.c”(p) + ge™* (F1\| AL e p), (722)

Fi2(k, q) =6, Ra + C)5(k, q), (723)
Gk, q) =kuqu (T + kg™ + kG + qua, (7 (724)
(725)

1 “b s
N (2) =§geab5<33|cbc ;D).

Here Ry, Ry, R3 are scalar functions of momenta, Ay, and M.
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G The functional I

In this section we introduce the notation for the renormalization constants for
the functional F; (162). For this purpose we define the auxiliary functional

FAO ~a vb> + 6sab sde ')/Acc< zzAb vdve>

1rel = dab( WCC|%
<UCA’édAd> + 6dab<Uccc|—d ~a vb) + Edab<UﬁfA édAZAZ>
< ;;?;414 vdAdAaAa> <Uf§fA|ébeéaAZ>
< cccA 7a vb bAa> beduclzécAA<ébceédAaAa>
+ €bed cccAA<vb—avdAaAe> + 6bed CCCAA<éaCe(VZdAZAZ>7 (726)
where
Ug“(l,p, q) :=i(p + q)ou™, (727)
Us (1, p) s=ipop*u™, (728)
U“(l,p,q) :==(p* + ¢*)ui™ + 2pqus™, (729)
U1, p.q) =pups — ¢t ) U5 + 6,0 (0° — ¢°)us™, (730)
U;;?:lAa k,p,q) =i(u AAAk +ucAAApp +u5AAqu) Sy
4 (U3AAA k, + ucAAA a + ugAAApV) S
+ z(u3AAAk: + UCAAApM + ugAAAqM)épy, (731)
UCCCA(Z, k‘, q’p) —Zp,ﬂﬁCCA + Zk’MUECCA + ,Lq,uugccA’ (732)
Uit (1 k, g, p) =ik, — qu)u™ (733)

and the u’s are functions of Ay defined by the marginal renormalization con-

ditions B B
0Ao;p;w Ao;o;w A
Fl;i’? v (@) = Fl(;"edl);?((f) + Z GOt (734)
t€{58§k>0}7~
Here 2n,, + N+ ||w|| = 5, ¢'is the renormalization point defined in section H,
= (ei)ie[m] is an orthogonal basis for the linear span of ¢, r is the tensor

rank of F?Aog(ﬁ;w(q_). The ¢ are the uniquely defined coefficients of tensors ¢.
Note that we implicitly set to zero all constants associated to strictly relevant
renormalization conditions for F;. These constants are not needed because,
thanks to hypothesis RC1, the RHS of the STI and AGE at the current loop
order vanish at zero momenta.
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The renormalization points ¢ are chosen in agreement with the hypotheses
of lemma 36. From lemma 36, theorem 3, and the irrelevant bounds of
theorem 4, for the marginal terms one has

PO () ~ FRS(g). (735)

1,rel;s
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H List of the renormalization points

133

X [ X]|nx|rm|rx ren.p. X |[X]|nx|rx ren.p.
o0r | 0 [2|7|0|A=0,geM;| |[ore|1|2|1|/A=0,7=0
ore |0 2|7[2/A=0,geMj| |or44| 1|2 |3|A=0,7=0
QOr44|1 0 |2 |7]|4|A=0, 7€M reeA 1 11311|A=0,4=0
ree 1 03[5/0/A=0,geMj| T4 1|3[3[A=0,7=0
oale4 1 0|35 |2|A=M, §= re 1 202(0[A=0,¢7=0
041 0 [3|5]2[A=0, 7€M M4 1212(2[A=0,¢4=0
rt 10 13]5]2/A=0,GeM3| [ar5[1|2]1][A=0,7=0
4 10[3|5[3[A=0,7eM;| |goredl 12 3|A=0,7=0
or4441 0 13154 |A=0, 7€ M; rf 11]3][1[a=07=0
reece 1014130/ A=M,q= aree | 113 11[A=0,7=0
reeAd 1 0 1 4(3|12|A=M,3=0 e | 1]3]1/A=0,4=0
444410 1413 |4 |A=0,7eM?| |oread) 1 [3[3|A=0, g=0
org | 0 |2 |7|2|{A=0,geMs| |4 1]4]1]A=0,4=0
QOOTA 0 | 2| 7|4 |A=0,geMy| T4 1 |4 [3|A=0,7=0
o0rs™ | 03|52 |A=0, g€ M; re [2)2]0/A=0,7=0
e, | 013 [5|2/A=0,geM;| [ar"|2|2[2|A=0,7=0
o0rsA41 0 | 3154 |A=0, 7€ M; ree 12 13/0(A=0,7=0
rse |0 ]4](3[/0[A=0,geM;j| [T 2]3]2|A=0,7=0
rc 10]4|3/0/A=0,7eM;j 4 1312[1|A=0,7=0
ret4 104 13[2(A=0, 7eM;

oreeA | 0 432 [A=0, 7€M

Mt 10| 4(3[2]A=0, e M

oreAdal 0 | 4134 |A=0, ge MY

rseece 10 |5|1]0[A=0, 7€M

reeedd 0 | 511 [2°|A=0, 7€ Mg

reAdddl o | 5 11 |4*|A=0, e M




List of all terms preserving the global symmetries, with an arbitrary number
of v, w insertions, and with at most one § or 1 insertion (not both). Notation:
[X] is the mass dimension of X (reduced Fourier transform); rx is the tensor
rank; ny is the total number of fields and sources (not including 1); 0 stands
for a momentum derivative; “ren.p.” stands for “renormalization point”. A x
in the rank entry means that the condition r,, := 11—2nyx > r+1 is violated
for a term X: as stated in Lemma 33 the tensor monomials {§°¢*},,; are
not linearly independent for ¢ = (qo,q) € M, , hence they are not suitable
as a basis for the form-factor decomposition of 9X. See lemma 36 and
sections 4.4, 4.5, 4.10.

I List of insertions

X | [X] | gh(X) | def
o 2 1 [ (119)
vl2 | -1
Q2 | 2 | (119
w? 2 —2
Q, | 5 1 | (130
Qn | 3| 2 |(120)
Q| 3| 3 |27
p | —1 —1
Qs | 3| 1 |(131)
g 11| <1

List of operators and sources, and their quantum numbers. Notation: [X]
stands for the mass dimension of X in position space; the ghost charge of
the ghost field is gh(c) := 1.
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