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Chapter 1 Introduction

Plasma processing covers a wide variety of processes used in industrial applications, including semiconductor processing, production of flat panel displays, but also plasma treatments used in aerospace, automotive, biomedical, or waste management industries. Many examples of plasma processing applications can be found in [LL05] [START_REF] Chen | Lecture Notes on Principles of Plasma Processing[END_REF]. Plasma is generally described as a fourth state of matter, in which molecules and atoms are ionized into freely moving charged particles, namely electrons and ions. Plasma discharges used for industrial applications are generally obtained via electric or magnetic excitation of a feedstock gas. In most industrial applications, plasmas are low-temperature, in the sense that the heavy species temperature remains close to the room temperature, while electron temperature is of the order of a few eVs. Such plasmas are in general weakly ionized. Plasma enhanced chemical vapor deposition (PECVD) is commonly used in the production of photovoltaic solar cells. This technique has indeed a lot of advantages for the deposition of thin-film semiconductor materials. Compared to thermal chemical vapor deposition, PECVD is a low-temperature process, which can be required when depositing over a temperature-sensitive structure, or over a multilayer structure with different thermal expansion coefficients. Besides, plasma discharge processes in general allow to enhance gas-phase and heterogeneous reactions, possibly resulting in an increase in the deposition rate and a better use of feedstock gas. In particular, PECVD is commonly used in crystalline silicon (c-Si) solar cells manufacturing for anti-reflective coating and passivation by SiN x deposition.

Figure 1.2 -PECVD cluster with six plasma chambers, a sputtering and a vacuum characterization chamber, used in LPICM facility [START_REF] Cariou | Epitaxial growth of Si(Ge) materials on Si and GaAs by low temperature PECVD: towards tandem devices[END_REF]. The equipment was bought by Total and is shared with LPICM.

As illustrated in Figure 1.1, the structure of crystalline silicon solar cells has evolved considerably over the last decades, allowing for a dramatic improvement of cell efficiency. The fabrication process now involves a complex step-by-step procedure similar to semiconductor devices, and in many cases plasma processing is seen as an interesting alternative to other available deposition or texturing techniques. Figure 1.2 shows a picture of a cluster tool used in Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), allowing for automated multi-step processing of solar cells without breaking the vacuum. Many kinds of plasma processing techniques may be used depending on the technology. Aside from PECVD, plasma may be used in texturing, sputtering, etching or cleaning processes.

The apparition of nanoparticles and microparticles in silane plasma discharges has been observed very early and is now well referenced [BB93] [PBEL94] [BBH96] [Bou99]. In semiconductor manufacturing, the need for size reduction made such "dust" particles highly undesirable. Semi-conductor industry is now heading towards devices of 10 nm or smaller [ITR15], a scale at which even "small" nanometer-sized particles are a potential threat to material quality. Although solar cell fabrication does not require so far such a high-resolution material processing as semiconductors, electronic defaults are an important source of efficiency reduction and lifetime degradation, and micrometer or nanometer-sized particles may also have undesirable effects during solar cell fabrication processes.

It is well known that the particle formation process generally occurs in three distinct phases [BB93] [RiCNTD + 07]. In the first phase, nanoparticles are rapidly nucleated with radius up to 10 nm and concentrations up to 10 9 -10 10 cm -3 . In a second phase, particles tend to agglomerate and form clusters with up to 50-60 nm diameter, and the nanoparticle density decreases drastically. In the last phase, large particles continue to grow by surface deposition of SiH x molecular species. As illustrated in Figure 1.3, dust formation also strongly depends on pressure. For low values of pressure, no dust formation occurs, while increasing the pressure lowers the time for onset of nanoparticle coagulation. In this thesis we are interested in the transition between pristine conditions, corresponding to the deposition of amorphous silicon, and conditions of dust formation, where deposition is strongly perturbed by the presence of dusts in the reactor. This transition is associated with an optimum in the deposition rate, as can be seen in Figure 1.3, and material quality [RiCNTD + 07].

Several studies have proved that the presence of nanoparticles, initially seen as a device killer, can actually enhance the deposition rate or improve the material property. In particular, for the conditions of Figure 1.3, when the pressure is around 2 Torr, it is possible to maintain a high nanoparticle nucleation rate while still avoiding powder formation [RiCNTD + 07]. Under such conditions, silicon thin films with improved material properties can be obtained, also called "polymorphous silicon", or "pm-Si" [RiCHS + 98] [START_REF] Roca I Cabarrocas | Growth and optoelectronic properties of polymorphous silicon thin films[END_REF]. Polymorphous films consist in an amorphous matrix in which nanometer-scaled crystalline structures are embedded. They exhibit optical properties similar to those of standard amorphous silicon (a-Si:H), but improved transport properties and stability [RiCHS + 98] [LKRiC + 98], generally attributed to the embedded microstructures. On the other hand, microcrystalline silicon is made of an amorphous matrix with embedded crystalline domains of up to several nanometers, and exhibits poor optical properties compared to amorphous silicon, but improved electrical properties and stability. Polymorphous silicon thus combines the advantages of both amorphous silicon and microcrystalline silicon [RiCHS + 98], with intermediate properties between a-Si:H and µc-Si:H [START_REF] St'ahel | Metastability studies in silicon thin films: from short range ordered to medium and long range ordered materials[END_REF].

Similarly, when a (100) crystalline substrate is used under conditions close to powder formation, low-temperature plasma enhanced epitaxy can be achieved with a deposition rate above 1 Å.s -1 , a sharp porous interface, and film thickness up to 2 -4 µm [CLRiC11] [RCL12]. Figure 1.4 shows images obtained via high resolution transmission electron microscopy (HRTEM) of an epitaxial silicon layer (epi-Si) on a crystalline silicon (c-Si) wafer [START_REF] Cariou | Epitaxial growth of Si(Ge) materials on Si and GaAs by low temperature PECVD: towards tandem devices[END_REF], assessing the quality of the epitaxial layer. Such an epitaxial growth of ultrathin crystalline silicon is now seen as an interesting technique to reduce further material cost in the production of crystalline silicon solar cells. Indeed, reducing the thickness of the active material up to a few µm requires to develop new techniques, since traditional wafer slicing techniques are reaching their limit of capability and induce a significant material waste. Besides, low cost ultra thin silicon layers are required to develop flexible solar cells or large area electronics. Encouragingly, a transfer process of PECVD-grown ultrathin crystalline silicon layer onto a glass substrate has been developed, thus allowing for potential reuse of the single-crystal parent substrate for several epitaxial growth [CCCB + 16]. The ability to control the thickness and doping profile of the epitaxial layer is also an interesting possibility for photovoltaic applications. Finally, epitaxy of silicon on GaAs has also been achieved, opening the path for an improved integration of III-V semiconductors with silicon in photovoltaic tandem devices [CCM + 16].

Due to the extreme complexity of PECVD process and the relatively scarce experimental characterizations available, numerical modeling is highly desirable for studying chemically reactive nonthermal plasma discharges. Two main approaches are generally followed, depending on the Knudsen number, which is the ratio of the characteristic mean free path l 0 to the reference macroscopic length L 0 k n = l 0 L 0 . The kinetic approach is required for high values of the Knudsen number, although it might reveal computationally expensive, and fluid models are usually preferable for low values of k n . In this thesis, the pressure considered range from 600 mTorr to 2 or 3 Torr. For such relatively high pressures, the Knudsen number is sufficiently high to justify the use of a fluid model. An upper bound for the mean free path in a weakly ionized mixture can be estimated from the carrier gas characteristic density n 0 and the characteristic elastic scattering collision cross-section σ 0 , as

l 0 = 1 n 0 σ 0 .
An estimation of the Knudsen number for a 2 cm-gap hydrogen plasma discharge reactor, at a gas temperature of 500 K is presented for different values of pressure in Table 1.1. The results confirm that the fluid approximation is justified in this work. Additionally, fluid models are less computationally intensive than kinetic models. Table 1.1 -Estimation of the Knudsen number for different pressures in a 2 cm-gap hydrogen plasma discharge reactor, at a gas temperature of 500 K. The molecular radius of hydrogen is taken equal to 1.372 Å [CC70]. p (Torr) n (cm -3 ) k n 0.5 9.5 × 10 15 8.9 × 10 -2 0.75 1.4 × 10 16 5.9 × 10 -2

1.0 1.9 × 10 16 4.4 × 10 -2 2.0 3.8 × 10 16 2.2 × 10 -2 2.5 4.8 × 10 16 1.8 × 10 -2

An important challenge is then the full derivation of macroscopic fluid equations from the Boltzmann equation for non-thermal plasmas. The first derivation of fluid equations for multicomponent partially ionized two-temperature plasmas from the kinetic theory was achieved by Magin and coworkers [MD04] [GMM09]. They work used a scaling proposed by Petit and Darrozes [DP75] accounting for the strong disparity of masses between electrons and heavy species, thus filling the gap between the Lorentz gas model and traditional Chapman-Enskog theory of multicomponent gas mixtures. The effect of magnetic field and chemical reactions were also taken into account [GG03] [GMM09] [GGMM10]. The description of internal energy levels is also an important feature of a multicomponent reacting gas mixture [WT62] [MYM63] [Gio99]. Therefore, an extension of twotemperature kinetic theory of partially ionized reactive plasmas to the case of polyatomic mixtures is highly desirable.

In both pure silane and silane-hydrogen plasma discharges the complexity is increased due to the combined presence of silicon containing molecules of various sizes and charges, and light molecules such as atomic and molecular hydrogen, and hydrogen ions. The chemical kinetics of hydrogen plasma has been extensively studied and a number of numerical studies have been carried out on H 2 plasma discharges. We mention in particular the tremendous work carried out by Capitelli and coworkers from Università degli Studi di Bari [GCC + 92] [DCL05] [START_REF] Longo | Modeling of capacitively coupled rf plasmas in h 2[END_REF], and also by Hassouni and coworkers from Université de Villetaneuse [START_REF] Hassouni | Chemical kinetics and energy transfer in moderate pressure h 2 plasmas used in diamond mpacvd processes[END_REF] [HGG99] [HLG + 05], on hydrogen plasma chemical kinetics and hydrogen discharge modeling. On the other hand, silane plasma discharges have also been investigated numerically [Kus88] [SGA02] [START_REF] Lyka | Simulation of the electrical properties of sih 4 /h 2 discharges[END_REF]. However, due to the very large number of chemical species involved, the chemical kinetics of silane plasma discharges is not known with such a high precision as for pure H 2 discharges, and comparison with experimental data are scarcer than for H 2 . Investigation of regimes in which nanoparticle nucleate and grow have also been carried out for different conditions. The main contributions to the description of particle formation and particle dynamics are due to Girshick and coworkers [BKG03] [WG07] [AG12] from University of Minnesota, and to Bogaerts and coworkers [dBGG04] [dBG06] from Universiteit Antwerpen.

In this thesis, a model for a radio-frequency silane-plasma discharge reactor has been developed, implemented, and applied successfully to the study of silicon thin films deposition by PECVD. A new fluid model for multicomponent non-thermal polyatomic reactive plasmas has been derived from the kinetic theory. This derivation extends the pioneering work of Magin and coworkers [MD04] [GMM09] to the case of polyatomic molecules and ions. In the limiting case of neutral multicomponent gas mixtures one retrieves classical multicomponent Navier-Stokes-Fourier equations and self-consistent expressions for transport coefficients [Gio99] [GMM09]. The latter "neutral" model has been implemented numerically, and applied to the modeling of chemical vapor deposition of silicon for validation against a benchmark model from the literature. The CVD numerical model has then been extended to the modeling of radio-frequency silane plasma discharges in the Torr regime. The software has been used to study the deposition of amorphous silicon by PECVD under discharge conditions intermediate between a-Si:H and µc-Si:H, that is conditions where nucleation of nanoparticles is enhanced but coagulation remains controlled. Results are in line with available numerical and experimental data. The influence of silane dilution ratio and RF power has also been investigated. The study of the DC bias potential under asymmetric excitation was also carried out for the first time in silane-hydrogen. Finally, the model was enriched with a sectional model for nanoparticles with sections of size and charge, following the work of Girshick and coworkers [WG07] [AG12]. The nanoparticle surface growth rate was tested against experimental data, and simulations have been performed under conditions close to powder formation in the early stages of nanoparticle growth. The outline of this work is detailed below.

In Chapter 2, a self-consistent fluid two-temperature plasma model for a multicomponent reactive polyatomic mixture is derived from the kinetic theory of gases. A generalized Chapman-Enskog method is used on the basis of an asymptotic analysis of the Boltzmann equation taking into account the strong mass disparity of masses between electrons and heavy plasma species. The zeroth-order "Euler-type" and the first-order "Navier-Stokes-type" fluid equations, are given along with self-consistent expressions for transport fluxes in terms of macroscopic variable gradients and transport coefficients. The transport coefficients are expressed as bracket products of the perturbed species distribution functions. This complete model derived from kinetic theory is a generalization of standard non-thermal plasma fluid models, and opens the path for an improvement of low temperature plasma fluid modeling.

In Chapter 3, a numerical implementation of a chemical vapor deposition (CVD) model is carried out. A software has been written in FORTRAN, and has been validated against a numerical benchmark for thermal chemical vapor deposition of silane. The results show an excellent agreement with the benchmark model.

In Chapter 4, the software is enriched and applied to the modeling of a radiofrequency discharge in silane-hydrogen. The equations derived in Chapter 2 are simplified and standard fluid plasma equations are retrieved. Conditions close to powder formation are investigated. The results are in good qualitative agreement with previous studies of nanoparticle nucleation in silane-hydrogen discharge. A self-consistent calculation of the DC bias voltage is further implemented, to evaluate the effect of the discharge chemistry on the DC bias under asymmetric electrical excitation.

In Chapter 5, the model is enriched with a sectional model for nanoparticles. The effects of nucleation, coagulation, surface growth, transport and charging of nanoparticles are taken into account. The software is fully coupled and fully non-stationary, thus allowing for an investigation of the early phase of nanoparticle formation. The influence of the nanoparticle surface growth rate on nanoparticles is studied, and compared to experimental data. The temporal evolution of the main plasma and nanoparticle species density profiles are also investigated.

Finally, in Chapter 6, this work is summarized and perspectives are drawn for future work.

Chapter 2 Kinetic Theory of Non-Thermal Reactive Polyatomic Plasmas

Introduction

One of the main challenges in the field of plasma fluid modeling is the comprehensive derivation of macroscopic fluid equations. At the kinetic scale, the plasma is well described by the fundamental Boltzmann equations. Thus, the full derivation from the kinetic theory is the only way to develop a self-consistent fluid model for a given plasma regime on a sound basis. Moreover, only the kinetic theory yields the transport coefficients for fluid models, and the knowledge of the mathematical structure of the conservation equations is desirable for the design of appropriate numerical methods.

Two main methods may be used for the derivation of fluid equations from kinetic models [Str05]: the moment-based method [START_REF] Grad | Principles of the kinetic theory of gases[END_REF] [START_REF] Zhdanov | Transport Processes in Multicomponent Plasma[END_REF], and the Chapman-Enskog procedure [CC70] [FK72] [START_REF] Hirschfelder | Molecular Theory of Gases and Liquids[END_REF], which have notably proven successful in the analysis of multicomponent neutral gas mixtures. Both methods rely on approximating the Boltzmann equations by using a finite number of moments of the species distribution functions. They differ in the choice of moments and the closure.

The Chapman-Enskog method was first developed by Chapman [Cha16] and Enskog [START_REF] Enskog | Kinetische Theorie der Vorgänge in mässig verdünnten Gasen[END_REF] separately, for a simple gas or a binary gas mixture of monoatomic molecules. The method was then extended to multicomponent monoatomic gas mixtures by Hellund [START_REF] Hellund | Generalized theory of diffusion[END_REF], Hirschfelder and Curtiss [START_REF] Curtiss | Transport properties of multicomponent gas mixtures[END_REF], and Waldmann [START_REF] Waldmann | Transporterscheinungen in Gasen von mittlerem Druck[END_REF], to simple polyatomic gases by Wang Chang and Uhlenbeck [START_REF] Wang Chang | Transport phenomena in polyatomic gases[END_REF], and finally to multicomponent mixtures of polyatomic molecules by Waldmann and Trübenbacher [Wal58] [WT62] and by Monchick, Yun and Mason [MYM63]. A fully quantum mechanical treatment was given by McCourt and Snider [MS64] [MS65] using the quantum mechanical Boltzmann equation derived by Waldmann [Wal57] and Snider [Sni60]. Later on, chemically reactive collisions have been taken into account in the case of monoatomic [START_REF] Prigogine | On the perturbation of Maxwell distribution function by chemical reactions in gases[END_REF] or polyatomic gas mixtures [START_REF] Ludwig | Boundary layer theory with dissociation and ionization[END_REF] [ACG94] [GG95] [EG94].

On the other hand, the moment method was first developed by Grad [START_REF] Grad | Principles of the kinetic theory of gases[END_REF], and had been put aside for a long time, because the associated entropy production rate was not positive. Recent developments in the field of rarefied gases have led to the derivation of a 13 moments regularized system, also called "R13" [Str05], which has the desirable entropy structure [START_REF] Struchtrup | H theorem, regularization, and boundary conditions for linearized 13 moment equations[END_REF] [START_REF] Torrilhon | H-theorem for nonlinear regularized 13-moment equations in kinetic gas theory[END_REF], and yields smooth shock structures at all Mach numbers [START_REF] Torrilhon | Regularized 13-moment-equations: Shock structure calculations and comparison to Burnett models[END_REF]. Such moment equations are a good candidate for bridging the gap between the microscopic or molecular Boltzmann equation and the macroscopic Euler or Navier-Stokes-Fourier equations, unlike the Burnett and Super-Burnett equations corresponding to the second-order and third-order of the Chapman-Enskog expansion, respectively, which are known to yield an unproper entropy structure and are unstable [Bob82] [Tor16]. In this work we will consider fluid models corresponding to the first-order Chapman-Enskog expansion, because Navier-Stokes type equations are sufficient for the modelling of silicon deposition processes.

The first kinetic model for a binary gas mixture composed of light and heavy species was derived by Lorentz [Lor05] [CC70]. This model, also referred to as the "Lorentzian gas", assumed that the heavy molecules were not altered by their collisions with light particles, and that mutual encounters between light particles were of negligible influence compared to encounters with heavy molecules. However, when considering a multiscale analysis of the Boltzmann equations for ionized gases in the fluid regime, both the Knudsen number k n and the ratio of the electron mass over the heavy-species characteristic mass

ε = m 0 e m 0 h
(2.1.1) tend to zero. As shown by Petit and Darrozes [DP75], the Boltzmann equations exhibit a singularity in the limit ε → 0, k n → 0, which might be solved upon assuming that the Knudsen number is proportional to the small parameter ε k n ∝ ε.

(2.1.2) Such a scaling accounting for the disparity of masses allows for thermal non-equilibrium between light and heavy species, and is the scaling considered in the present work. This scaling was first applied by Degond and Lucquin [START_REF] Degond | Transport coefficients of plasmas and disparate mass binary gases[END_REF] [Deg07] to the derivation of a two-temperature macroscopic fluid model for a binary mixture made of electrons and positive ions.

Another important feature of multicomponent plasmas is the influence of the magnetic field, which induces anisotropic transport fluxes [CC70] [FK72]. Giovangigli and Graille [GG03] [GG09] derived macroscopic equations together with expressions for transport fluxes and transport coefficients for magnetized plasmas. Their work included the effects of internal degrees of freedom and chemically reactive collisions, along with new symmetric formulation of the nonisotropic transport coefficients, but they did not take into account the strong disparity of masses nor the possibly associated thermal non-equilibrium between electrons and heavy species.

In the meantime, Magin and Degrez [MD04] developed a model for multicomponent non-thermal plasmas, where they introduced the scaling of Petit and Darrozes [DP75] in order to account for thermal non-equilibrium. Their model was improved by Graille, Magin and Massot [GMM09], who further investigated the strongly magnetized case. They also accounted for electron impact and ion or neutral impact ionization reactions [START_REF] Graille | Modeling of reactive plasmas for atmospheric entry flows based on kinetic theory[END_REF] [START_REF] Magin | Thermo-chemical dynamics and chemical quasi-equilibrium of plasmas in thermal non-equilibrium[END_REF]. However, none of these models considered the case of polyatomic molecules and ions.

In this chapter, we derive from kinetic theory a unified multicomponent fluid model for partially ionized plasmas taking into account the following features

• Thermal non-equilibrium between electrons and heavy species, namely neutrals, negative or positive ions.

• Presence of polyatomic molecules with excitation or de-excitation of the heavy species' internal degrees of freedom.

• Influence of the external electro-magnetic field E and B on the plasma, under the assumption that the magnetic field is weak.

• Occurrence of chemically reactive collisions.

We will follow the framework adopted in [GG03] [GMM09], generalizing the Chapman-Enskog procedure in the wake of a dimensional analysis of the Boltzmann equation.

In section 2.2, we introduce the kinetic framework. In section 2.3, we set the scaling hypotheses and derive an asymptotic expansion of the Boltzmann equations. In section 2.4, the Chapman-Enskog procedure is applied on the basis of the proposed scaling. The transport fluxes are expressed in terms of macroscopic variable gradients and transport coefficients in section 2.5. Finally, section 2.6 synthesizes the macroscopic equations obtained.

Kinetic Framework

We consider a plasma composed of electrons and a mixture of heavy species, namely atoms, molecules, or ions. We adopt a semi-classical framework, in which the translational motion of the particles is treated classically, whereas the internal degrees of freedom are treated quantum mechanically [START_REF] Waldmann | Transporterscheinungen in Gasen von mittlerem Druck[END_REF] [WT62] [Gio99]. Moreover, the system is considered to be sufficiently dilute so that one can consider only binary collisions.

Species distribution functions

The plasma is described as a multicomponent gas mixture of electrons, neutrals, and ions. To each species is associated a corresponding distribution function. The electron has only one internal degree of freedom, namely its ground state, and its distribution function reads f e (t, x, c e ), where t is the time, x is the three-dimensional spatial coordinate, and c e the velocity of the electron. The quantity f e (t, x, c e ) dxdc e represents the expected number of electrons in the volume element dx located at x, whose velocity lies in dc e about velocity c e at time t.

On the other hand, we denote by H the indexing set of heavy species, which can be ionized or not. For each i ∈ H, we introduce the set of internal degrees of freedom associated with the i th heavy species Q i . The distribution function for the i th heavy species then reads f i (t, x, c i , i), where c i denotes the velocity of the molecule, and i ∈ Q i its quantum state. The quantity f i (t, x, c i , i) dxdc i represents the expected number of molecules of the i th heavy species, having internal state i, in the volume element dx located at x, and whose velocity lies in dc i about velocity c i , at time t. Finally, we denote by S = H ∪ {e} the indexing set of the plasma species.

In the kinetic framework, the macroscopic properties of the mixture can be recovered as moments of the species distribution functions. Indeed, for each k ∈ S, the number density of the k th species, i.e., the number of particles per unit volume, is given by

n k = k∈Q k f k dc k ,
(2.2.1) so that the mass density of the k th species is

ρ k = m k n k = k∈Q k m k f k dc k , (2.2.2)
where we have denoted by m k the mass of the k th species. We also introduce the molar mass of the k th species m k = N a m k .

(2.2.3)

The hydrodynamic velocity of the mixture v is given by

ρv = k∈S k∈Q k m k c k f k dc k , (2.2.4)
where ρ = k∈S ρ k is the total density. Finally, the internal energy per unit volume of the mixture E is given by

1 2 ρ v • v + E = k∈S k∈Q k 1 2 m k c k • c k + E kk f k dc k , (2.2.5)
where E kk is the internal energy of the k th species in the k th quantum state. The species distribution functions are then governed by generalized Boltzmann equations that take into account the reactive aspect of the mixture.

Boltzmann equations

We denote by f h = (f i ) i∈H the family of heavy-species distribution functions, and by f = (f k ) k∈S = (f e , f h ) the complete family of species distribution functions. The subscript "h" refers to the set of heavy species. The Boltzmann equations governing the species distribution functions read in an inertial reference frame [CC70] 

[FK72] [Gio99] [GMM09] ∂ t f e + c e • ∂ x f e + q e m e [E + c e ∧ B] • ∂ ce f e = S e (f ) + C e (f ) , (2.2.6) ∂ t f i + c i • ∂ x f i + q i m i [E + c i ∧ B] • ∂ c i f i = S i (f ) + C i (f ) , i ∈ H. (2.2.7)
For k ∈ S, the term S k (f ), denotes the scattering or nonreactive source term for the k th species, C k (f ) the chemically reactive source term, and q k the charge carried by the k th species, while E and B refer to the electric and magnetic fields, respectively. We will often formulate the Boltzmann equations (2.2.6), (2.2.7) in the more condensed version

D k (f k ) = S k (f ) + C k (f ), k ∈ S, (2.2.8)
where D k denotes the usual streaming differential operator

D k (f k ) = ∂ t f k + c k • ∂ x f k + q k m k [E + c k ∧ B] • ∂ c k f k .
(2.2.9)

Scattering source term The general scattering source term S k for the k th species, where k ∈ S, accounts for the change in the k th species distribution function due to nonreactive collisions with any other species l ∈ S. Since we have assumed that the system is dilute, we can consider only binary collisions, and S k is in the form

S k (f ) = l∈S S kl (f k , f l ) , (2.2.10) 
where S kl denotes the scattering source term for the k th species due to nonreactive collisions with molecules of the l th species

S kl (f ) = k ∈Q k l,l ∈Q l f k f l a kk a ll a kk a ll -f k f l |c k -c l |σ klk l kl dω kl dc l .
(2.2.11)

The variables c k , c k represent the velocities of the k th species respectively before and after collision, k, k refer to the internal energy states of the k th species respectively before and after collision, c l , c l represent the velocities of the l th collision partner, and l, l refer to the internal energy states of the l th species, respectively before and after the collision

(c k , k) + (c l , l) → (c k , k ) + (c l , l ).
(2.2.12)

For k ∈ S, k ∈ Q k , a kk is the degeneracy of the k th quantum energy shell of the k th species, and

f k = f k (t, x, c k , k), f k = f k (t, x, c k , k
) denote the distribution functions of the k th species, respectively before and after collision. We have also introduced the directions of the relative velocities respectively before and after collision

ω kl = c k -c l |c k -c l | , ω kl = c k -c l |c k -c l | , (2.2.13)
and we have denoted by σ klk l kl the collision cross-section, also called the "differential cross-section", associated with a binary collision between the k th and l th species. One could also work with transition probabilities W klk l kl rather than with classical collision cross-sections σ klk l kl . Transition probabilities are notably interesting with reactive collisions, since the term C k (f ) is then much easier to write. For binary collisions, we also have the identity [START_REF] Ludwig | Boundary layer theory with dissociation and ionization[END_REF] 

[ACG94] [GG95] |c k -c l |σ klk l kl dω kl = W klk l kl dc k dc l .
(2.2.14)

Reactive source term For the reactive, or chemistry, source term C k (f ), we consider a chemical reaction mechanism composed of an arbitrary number of elementary reactions. Unlike for the scattering process, we take into account multiple reactive collisions, including triple reactive collisions since recombination reactions cannot often proceed otherwise [START_REF] Kuščer | Dissociation and recombination in an inhomogeneous gas[END_REF] [ACG94] [START_REF] Grünfeld | On a class of kinetic equations for reacting gas mixtures[END_REF]. If we denote by R the set of reactions, each chemical reaction r ∈ R can be written in the form

k∈F r M k k∈B r M k , r ∈ R, (2.2.15)
where M k denotes the chemical symbol of the k th species, and where F r and B r are, respectively, the indices for the reactant and product species in the r th elementary reaction, counted with their order of multiplicity. The letters F r and B r are mnemonic for the forward and backward directions, respectively. We denote by ν f kr and ν b kr the stoichiometric coefficients of the k th species among reactants and products, respectively, and we also denote by f r and b r the indices of internal energy states for reactants and products, respectively. In other words, the forward and backward coefficients ν f kr and ν b kr are the order of multiplicity of the k th species in F r and B r , respectively. For a given k ∈ S, F r k denotes the set of reactant indices where the index for the k th species has been removed only once and we introduce a similar notation for B r k , f r k and b r k . The reactive source term, C k (f ), then reads

C k (f ) = r∈R C r k (f ), (2.2.16) 
where C r k (f ) is the source term for the k th species due to the r th elementary reaction

C r k (f ) = ν rf k f r k ,b r j∈B r f j j∈B r β jj i∈F r β ii - i∈F r f i W f r b r F r B r i∈F r k dc i j∈B r
dc j (2.2.17)

+ ν rb k f r ,b r k i∈F r f i - j∈B r β jj i∈F r β ii j∈B r f j W f r b r F r B r i∈F r dc i j∈B r k dc j .
In these expressions, the statistical weight β kk is given by

β kk = h 3 p a kk m 3 k , (2.2.18)
where h p is the Planck constant, m k is the mass of the k th species, and a kk the degeneracy of the k th energy shell of the k th species. Finally, W f r b r F r B r is the transition probability for a reactive collision in which the reactants F r with internal energy states f r are transformed into products B r with internal energy states b r . The sums over f r , respectively f r k , represent the sums over i ∈ Q i for all i ∈ F r , respectively i ∈ F r k . Similarly, the sums over b r , respectively b r k , represent the sums over j ∈ Q j for all j ∈ B r , respectively j ∈ B r k . Several examples for different types of reactions are given in [Gio99].

Heavy-species reference frame

Given the strong disparity of masses between electrons and heavy species, it is natural to choose a reference frame associated with the motion of the heavy species [GMM09]. We thus introduce the mean electron velocity and mean heavy-species velocity

ρ e v e =
m e c e f e dc e , (2.2.19)

ρ h v h = j∈H j∈Q j m j c j f j dc j , (2.2.20)
where the subscript "h" refers to the set of heavy species. The heavy-species mass density reads ρ h = j∈H ρ j , so that ρ = ρ e + ρ h .

(2.2.21)

The hydrodynamic velocity of the fluid defined in (2.2.4) is then such that

ρv = ρ e v e + ρ h v h . (2.2.22)
We also introduce the peculiar velocity of the k th species with respect to the heavy-species reference frame

C k = c k -v h , k ∈ S, (2.2.23)
and denote by f k (t, x, C k , k) the distribution function of the k th species in the new reference frame.

In this frame, the streaming operator D k reads

D k (f k ) = ∂ t f k + (C k + v h ) • ∂ x f k + q k m k [E + (C k + v h ) ∧ B] • ∂ C k f k (2.2.24) - Dv h Dt • ∂ C k f k -(∂ C k f k ⊗ C k ) : ∂ x v h ,
where D Dt is the time derivative following the heavy-species velocity reference frame

D Dt = ∂ t + v h • ∂ x .
(2.2.25)

The scattering source term (2.2.11) may be rewritten using the new velocities C k , k ∈ S, in the form

S kl (f k , f l ) = l∈S k ∈Q k l,l ∈Q l f k f l a kk a ll a kk a ll -f k f l |C k -C l |σ klk l kl dω kl dC l , (2.2.26)
where σ klk l kl is the collision cross-section in the new reference frame, and the unit vectors read

ω kl = C k -C l |C k -C l | , ω kl = C k -C l |C k -C l | . (2.2.27)
Finally, the reactive source term (2.2.17) now reads in the new reference frame

C r k (f ) = ν rf k f r k ,b r j∈B r f j j∈B r β jj i∈F r β ii - i∈F r f i W f r b r F r B r i∈F r k dC i j∈B r dC j (2.2.28) + ν rb k f r ,b r k i∈F r f i - j∈B r β jj i∈F r β ii j∈B r f j W f r b r F r B r i∈F r dC i j∈B r k dC j .
From now on, we will remain in the heavy-species reference frame. 

+ j∈H j,j ∈Q j σ jj ej |C e -C j | f e f j a jj a jj -f e f j dω ej dC j ,
where C e denotes the velocity of the electron collision partner over which the integration is carried out, fe = f e (t, x, C e ) denotes the distribution function of the electron collision partner, ω eẽ = Ce-Ce |Ce-Ce| , and so forth. As well, the full scattering source term S i for the i th heavy species in the i th internal energy state reads

S i (f ) = S ie + j∈H S ij , = i ∈Q i σ ii ie |C i -C e | f i f e a ii a ii -f i f e dω ie dC e ,
(2.2.30)

+ j∈H i ∈Q i j,j ∈Q j σ iji j ij |C i -C j | f i f j a ii a jj a ii a jj -f i f j dω ij dC j .

Conservation laws and reciprocity relations

In the above formulations of the scattering operator S kl , variables before and after collision are implicitly linked by the following conservation relations

M k = M k , M l = M l , (2.2.31) m k C k + m l C l = m k C k + m l C l , (2.2.32) 1 2 µ kl g 2 kl + E kk + E ll = 1 2 µ kl g 2 kl + E kk + E ll , (2.2.33)
where M k is the symbol for molecules of the k th species, and 

g kl = |C k -C l | and g kl = |C k -C l |
g kl dC k dC l dω kl = g kl d(C k -C l )dC l dω kl = g kl g 2 kl dg kl dω kl dC l dω kl = g kl g 2 kl dg kl dω kl dC l dω kl = g kl g 2 kl dg kl dω kl dC l dω kl = g kl d(C k -C l )dC l dω kl = g kl dC k dC l dω kl , we have consequently [Wal58] [WT62] [CC70] [FK72]
a kk a ll g kl σ klk l kl dC k dC l dω kl = a kk a ll g kl σ k l kl kl dC k dC l dω kl .

(2.2.35)

Similarly, the reactive transition probabilities

W f r b r F r B r exhibit symmetry properties [LH60] [GG95] [ACG94] [Gio99]. Indeed, for a given reaction r ∈ R W f r b r F r B r j∈B r β jj = W b r f r B r F r i∈F r β ii .
(2.2.36)

Unlike for the nonreactive source term, the species are not conserved during reactive collisions, and only elements are conserved [Gio99] k∈S

ν rf k a kl = k∈S ν rb k a kl , r ∈ R, l ∈ A, (2.2.37)
where a kl is the number of l th atom in the k th species, and A denotes the indexing set for the atoms present in the mixture. The conservation of total mass during reactive collisions follows from equation (2.2.37)

k∈S ν rf k m k = k∈S ν rb k m k .
(2.2.38)

Collisional invariants of the scattering operator

Collisional invariants are associated with macroscopic conservation equations and are therefore of fundamental importance. Collisional invariants of the scattering operator S appearing in the Boltzmann equation (2.2.6)-(2.2.7) are functionals ψ = (ψ l ) l∈S , where ψ l = ψ l (t, x, C l , l) is a scalar or tensor function of t, x, C l , and l, whose values summed over the particles involved in a nonreactive collision do not change during the collision:

ψ k + ψ l = ψ k + ψ l , k, l ∈ S, (2.2.39)
where

ψ k = ψ k (t, x, C k , k ) and ψ l = ψ l (t, x, C l , l ).
There are n s + 4 linearly independent scalar collisional invariants, which can be taken in the form

[WT62]            ψ k = (δ kl ) l∈S , k ∈ S,
ψ n s +ν = (m l C lν ) l∈S , ν ∈ {1, 2, 3} , ψ n s +4 = 1 2 m l C l • C l + E ll l∈S .
(2.2.40)

where n s is the number of species in S, and C lν is the component of C l in the ν th spatial coordinate.

The three kinds of collisional invariants thus defined correspond respectively to the conservation of chemical species, the conservation of momentum, and the conservation of energy during nonreactive collisions. For micropolar fluids there is an additional linearly independent summational invariant, accounting for the conservation of angular momentum [START_REF] Graille | Modélisation de mélanges gazeux réactifs ionisés dissipatifs[END_REF] [KA61], but we only consider in this study isotropic mixtures, so that there is no micropolar effects. We name I the space of collisional invariants with respect to the scattering operator S, i.e., the space spanned by the family (ψ p ) 1≤p≤n s +4 . We further introduce a tensorial product defined for scalar functions ξ = (ξ l ) l∈S and ζ = (ζ l ) l∈S as ⟪ξ, ζ⟫ = 

k∈S k∈Q k ξ k ζ k dC k , ( 2 
= (ψ l ) l∈S 4⟪ψ, S(f )⟫ = k,l∈S k,k ∈Q k l,l ∈Q l ψ k + ψ l -ψ k -ψ l (2.2.44) × f k f l a kk a ll a kk a ll -f k f l g kl σ klk l kl dω kl dC k dC l ,
which is zero as soon as ψ is a collisional invariant.

For our case of interest, it turns out that we have additional orthogonality relations, by considering pairwise interaction terms separately. Indeed, we can decompose the scalar product 

Scattering cross-sections

The differential cross-section is taken the following form [START_REF] Waldmann | Transporterscheinungen in Gasen von mittlerem Druck[END_REF] [CC70] [FK72] [GMM09]:

σ klk l kl = σ klk l kl µ kl g 2 kl k b T 0 , ω kl • ω kl , (2.2.51)
where µ kl = m k m l m k +m l is the reduced mass of the pair of particles,

g kl = |C k -C l | = |c k -c l |
is their relative velocity, T 0 is a reference temperature, which is common to all species, and k b is the Boltzmann constant.

Asymptotic Expansion of the Boltzmann Equations

Dimensional analysis is a necessary preliminary to the Chapman-Enskog procedure. In this regard, we follow the scaling first introduced by Petit and Darrozes [DP75]. We take as small parameter ε the square root of the ratio between the characteristic masses. As shown by Petit and Darrozes, when both the Knudsen number k n and the mass ratio ε tend to zero, k n must be chosen proportional to ε. The scaling introduced here will serve as a basis for the derivation of a scaled Boltzmann equation, in which the different terms will depend on the small parameter ε

[CC70] [FK72] [Gio99] [GMM09].

Choice of scaling

The reference quantities used in the scaling are denoted by the superscript "0". Most of the reference quantities are common to all species, though it is necessary to distinguish between electron and heavy-species respective characteristic masses, velocities, and kinetic timescales. Also, the characteristic cross-section for inelastic scattering of electrons against heavy species is denoted by σ in,0 eh = σ in,0 he , while the characteristic cross-section for other scattering processes is denoted by σ 0 .

Mass ratio

The ratio of the electron mass m 0 e = m e to the characteristic heavy-species mass

m 0 h is such that m 0 e m 0 h = ε 1. (2.3.1)
The non-dimensional number ε will be the key parameter driving the asymptotic analysis of the plasma.

Temperatures The reference temperature is the same for electrons and heavy species [GMM09]:

T 0 e = T 0 h = T 0 . (2.3.2)
This means that the electron temperature T e and the heavy-species temperature T h will remain of the same order of magnitude in the model.

Velocities As a consequence of assumptions (2.3.1)-(2.3.2), electrons exhibit a larger thermal speed than heavy species Scattering cross-section σ 0

C 0 h = k b T 0 m 0 h , (2.3.3) C 0 e = k b T 0 m 0 e = 1 ε C 0 h . (2.3.4)
Mean free path

l 0 = 1 n 0 σ 0 Macroscopic time scale t 0 Hydrodynamic velocity v 0 Macroscopic length L 0 = v 0 t 0 Electric field E 0 Magnetic field B 0 Reactive source term C 0 k , k ∈ S

Electrons Heavy species

Mass m 0 e = m e m 0 h Thermal speed C 0 e C 0 h Kinetic timescale t 0 e = l 0 C 0 e t 0 h = l 0 C 0 h Hybrid Inelastic scattering cross-sections σ in,0 he
Besides, the pseudo-Mach number, defined as the reference hydrodynamic velocity v 0 divided by the heavy-species thermal speed C 0 h , is of order one [GMM09]:

M h = v 0 C 0 h ∝ 1. (2.3.5)
In other words, there is only one reference velocity for the heavy species.

Densities As stated in [DP75], the "weakly ionized" limit is not singular with respect to the limits k n → 0 and m 0 e /m 0 h → 0. Therefore, we adopt the same scaling for both electron and heavy-species densities:

n 0 e = n 0 h = n 0 . (2.3.6)
The results for a weakly ionized plasma will then follow by taking the limit n 0 e /n 0 h → 0.

Mean free path

The characteristic mean free path [GMM09]

l 0 = 1 n 0 σ 0 . (2.3.7)
is imposed by the carrier gas density n 0 and the reference elastic scattering cross-section σ 0 [CC70]

[FK72], and is thus common to all species [GMM09]. The reference elastic scattering cross-section is taken common to all species, since the species molecular diameters are of the same order of magnitude, and Coulomb collisions are negligible in the plasma regime we consider [START_REF] Hagelaar | Coulomb collisions in the boltzmann equation for electrons in lowtemperature gas discharge plasmas[END_REF].

Time scales From (2.3.3) and (2.3.4), the kinetic timescales, or the relaxation times of the distribution functions towards their respective quasi-equilibrium states, are given by

t 0 e = l 0 C 0 e , (2.3.8) t 0 h = l 0 C 0 h , (2.3.9)
and therefore [GMM09] t 0 e = εt 0 h . The macroscopic timescale t 0 is one order of magnitude higher than the heavy-species kinetic timescale t 0 h , so that there are three distinct relevant time scales [GMM09] t 0 e = εt 0 h = ε 2 t 0 .

(2.3.10)

Inelastic scattering cross-sections As can be seen from (2.3.10), the thermalization of the electrons is the fastest process corresponding to the kinetic scale t 0 e . This thermalization is ensured by scattering collisions between electrons, and elastic collisions between electrons and heavy species, which given the strong mass disparity do not involve any energy exchange at the lowest order, but allow for isotropization of the electron distribution function in the heavy-species reference frame [GMM09]. Since the heavy species' internal degrees of freedom thermalize at T h , further allowing for energy exchange between these internal degrees of freedom and electrons at the lowest order would actually require T e = T h . Thus the reference differential cross-section associated with inelastic scattering between heavy species and electrons σ in,0 he must be negligible compared to the reference cross-section σ 0 for other scattering collisions.

The second fastest kinetic process is the thermalization of heavy species [GMM09], corresponding to the time scale t 0 h = ε -1 t 0 e as described in (2.3.10). This thermalization arises from elastic and inelastic collisions between heavy species, while elastic collisions with electrons are of negligible influence at this order due to the strong mass disparity. Again, since the heavy species' internal degrees of freedom thermalize at T h , inelastic collisions between electrons and heavy species must be neglibible at the lowest order of the Chapman-Enskog expansion for heavy species, otherwise one would have T h = T e . In other words, σ in,0 he must be negligible before εσ 0 . Therefore, the inelastic scattering collisions between electrons and heavy species are assumed to be two orders of magnitude slower than the corresponding elastic collisions

σ in,0 he = ε 2 σ 0 . (2.3.11)
The latter requirement will be discussed in more details in subsection 2.4.5, and other regimes are addressed in the conclusion.

Knudsen number

The macroscopic length scale is based on a reference convective length

L 0 = v 0 t 0 . (2.3.12)
As a consequence of the proposed scaling, the Knudsen number

k n = l 0 L 0 = ε M h (2.3.13)
is small compared to 1, justifying the choice of a continuum description of the gas.

Electric field

The reference electrical and thermal energies are of the same order of magnitude, namely

q 0 E 0 L 0 = k b T 0 . (2.3.14)
Magnetic field The intensity of the magnetic field is related to the Hall numbers of electron and heavy species, defined as the Larmor frequencies, respectively q 0 B 0 me and q 0 B 0 m 0 h , multiplied by the corresponding kinetic timescales. The magnetic field is assumed to be proportional to a power of ε by means of an integer 0 ≤ b ≤ 1:

β e = q 0 B 0 m 0 e t 0 e = ε 1-b , (2.3.15) β h = q 0 B 0 m 0 h t 0 h = εβ e .
(2.3.16)

The case b = 1 corresponds to strongly magnetized plasmas, the case b = 0 to weakly magnetized plasmas.

Table 2.2 -Relative scales for the main plasma physical properties.

Reference quantity Scaling relationships

Characteristic masses

m 0 e = ε 2 m 0 h Time scales t 0 e = ε t 0 h = ε 2 t 0 Length scales l 0 = ε M h L 0 Velocities v 0 = M h C 0 h = εM h C 0 e Energies m 0 e C 0 e 2 = m 0 h C 0 h 2 = q 0 E 0 L 0 = k b T 0
Larmor frequencies

q 0 B 0 m 0 h t 0 h = ε q 0 B 0 m 0 e t 0 e = ε 2-b Differential cross-sections σ in,0 he = σ in,0 eh = ε 2 σ 0 Reactive source term C 0 k = ε n 0 t 0 (C 0 k ) 3 , k ∈ S
Chemistry The chemical reactions are slow compared to other plasma phenomena, and the reactive source term for the

k th species C k (f ) is of order 1 in ε C 0 k = ε n 0 t 0 (C 0 k ) 3 , k ∈ S, (2.3.17)
where C 0 k is the order of magnitude of the k th species peculiar velocity, irrespective of the detailed scaling properties of each chemical reaction r. The reference quantities and the scaling adopted are summarized in Remark The range of applicability of the fluid model developed here is subject to the assumption of Maxwellian equilibrium distributions that will be obtained in the following section. Apart from the thermal non-equilibrium between electrons and heavy species, two kind of deviation from the local thermal equilibrium might occur. First, when the ratio of the electric field over the pressure E p is "too high", namely when the assumption q 0 E 0 l 0 = εk b T 0 e = εk b T 0 is not valid, or when E/p (σ 0 /q)(T 0 e /T 0 ) [START_REF] Rax | Physique des plasmas[END_REF], the electron distribution function can depart strongly from a Maxwellian distribution. Second, in the case of high frequency oscillations, namely when the collision frequencies 1/t 0 e and 1/t 0 h = ε1/t 0 e are comparable with the electric field frequency ν RF , the species distribution function may also depart strongly from the Maxwellian equilibrium [START_REF] Rax | Physique des plasmas[END_REF]. In both cases, one would need a kinetic model rather than a fluid model.

Scaled Boltzmann equations

The dimensional analysis above is applied to Boltzmann equations (2.2.8), written in the heavyspecies reference frame. For each variable φ, we denote by

φ = φ φ 0 (2.3.18)
the corresponding adimensionalized quantity. The adimensionalized Boltzmann equations then read

∂ t fe + 1 ε C e + ε v h • ∂ x fe + ε -(1+b) qe m e C e + ε v h ∧ B • ∂ Ce fe + 1 ε qe m e E -ε D v h D t • ∂ Ce fe -∂ Ce fe ⊗ C e : ∂ x v h (2.3.19) = 1 ε 2 S ee ( fe , fe ) + 1 ε 2 j∈H S ej ( fe , fj ) + ε C e ( f ), ∂ t fi + C i + v h • ∂ x fi + ε 1-b qi m i C i + v h ∧ B • ∂ C i fi + qi m i E - D v h D t • ∂ C i fi -∂ C i fi ⊗ C i : ∂ x v h (2.3.20) = 1 ε 2 S ie ( fi , fe ) + 1 ε j∈H S ij ( fi , fj ) + ε C i ( f ), i ∈ H.
The Chapman-Enskog method is applied to the adimensionalized Boltzmann equations (2.3.19)-(2.3.20) [GMM09]. For the sake of simplicity the Mach number, which is of order 1 from (2.3.5), can be taken equal to 1, and the "hat" symbol can be dropped, without affecting the fluid equations and transport fluxes derived. Alternatively, equations (2.3.19)-(2.3.20) can be redimensionalized before applying the Chapman-Enskog method, keeping the parameter ε as a formal parameter driving the asymptotic expansion. In this case, ε is equal to 1, eventually. For both methods, the scaled Boltzmann equations are thus written as

∂ t f e + 1 ε (C e + ε v h ) • ∂ x f e + ε -(1+b) q e m e [(C e + ε v h ) ∧ B] • ∂ Ce f e + 1 ε q e m e E -ε Dv h Dt • ∂ Ce f e -(∂ Ce f e ⊗ C e ) : ∂ x v h (2.3.21) = 1 ε 2 S ee (f e , f e ) + 1 ε 2 j∈H S ej (f e , f j ) + ε C e (f ) , ∂ t f i + (C i + v h ) • ∂ x f i + ε 1-b q i m i [(C i + v h ) ∧ B] • ∂ C i f i + q i m i E - Dv h Dt • ∂ C i f i -(∂ C i f i ⊗ C i ) : ∂ x v h (2.3.22) = 1 ε 2 S ie (f i , f e ) + 1 ε j∈H S ij (f i , f j ) + ε C i (f ) , i ∈ H,
where the partial scattering operators S kl , k, l ∈ S, depend on ε, and are analyzed as follows.

For electron electron collisions the scaled scattering source term reads 

S
σ eẽ = σ ee 1 2 m e g 2 eẽ , ω eẽ • ω eẽ .
The formula for electron heavy-species scattering source term is similar, although we have to distinguish between elastic and inelastic collisions:

S ei (f e , f i ) (C e ) = i∈Q i σ ii ei g ei f e f i -f e f i dω ei dC i (2.3.25) + ε 2 i,i ∈Q i i =i σ ii ei g ei f e f i a ii a ii -f e f i dω ei dC i ,
where

f e = f e (t, x, C e ), f e = f e (t, x, C e ), f i = f i (t, x, C i , i), f i = f i (t, x, C i , i ),
where 

ω ei = C e -εC i |C e -εC i | , ω ei = C e -εC i |C e -εC i | , ( 2 
σ ii ei = σ ii ei µ ei g 2 ei , ω ei • ω ei , with µ ie = m e m i /(m i + ε 2 m e ).
We obtain as well the source term corresponding to collisions of heavy species against electrons

S ie (f i , f e ) (C i , i) = σ ii ie g ie f i f e -f i f e dω ie dC e (2.3.27) + ε 2 i ∈Q i i =i σ ii ie g ie f i f e a ii a ii -f i f e dω ie dC e , where g ie = |εC i -C e |, g ie = |εC i -C e |,
where

ω ie = εC i -C e |εC i -C e | , ω ie = εC i -C e |εC i -C e | , (2.3.28)
and where

σ ii ie = σ ii ie µ ie g 2 ie , ω ie • ω ie , with µ ie = µ ei = m e m i /(m i + ε 2 m e ).
Finally, we obtain for collisions between two heavy species

S ij (f i , f j ) (C i , i) = i ∈Q i j,j ∈Q j σ iji j ij g ij f i f j a ii a jj a ii a jj -f i f j dω ij dC j , (2.3.29)
where

σ iji j ij = σ iji j ij µ ij g 2 ij , ω ij • ω ij ,
Unlike for the nonreactive source terms just stated, we do not consider the different orders of magnitude in ε associated with the motion of heavy species and electrons when computing the chemistry source terms. We only consider as a first approximation that chemical reactions occur "slowly", namely at order ε, and thus retain expression (2.2.28) for C e (f ), C i (f ), i ∈ H.

Scaled collisional invariants

We also apply the scaling above to the space I of collisional invariants of the scattering operator. The space of collisional invariants after scaling, denoted by I ε , is spanned by the family ψ l = (ψ l e , ψ l h ), l ∈ {1, . . . , n s + 4}, defined as

           ψ k e = δ ke , ψ k h = (δ kj ) j∈H , k ∈ S,
ψ n s +ν e = ε m e C eν , ψ n s +ν h = (m j C jν ) j∈H , ν ∈ {1, 2, 3} , ψ n s +4 e = 1 2 m e C e • C e , ψ n s +4 h = 1 2 m j C j • C j + E jj j∈H .
(2.3.30)

From now on, ψ l , l ∈ {1, . . . , n s + 4} will refer only to the collisional invariants after scaling. We have seen in the previous section that the nonreactive collision operator can be written as

S = 1 ε 2 S e , 1 ε S h , (2.3.31)
where S e = S ee + j∈H S ej and S i = 1 ε S ie + j∈H S ij , i ∈ H, are the full scattering source terms for electron and heavy-particle species, respectively. We also recall the expression of the scalar product defined above (2. We also introduce two vector spaces obtained by projection of the space of collisional invariants I. For all ε, I ε e is the space spanned by

          
ψ e e = 1,

ψ n s +ν e = ε m e C eν , ν ∈ {1, 2, 3} , ψ n s +4 e = 1 2 m e C e • C e ,
(2.3.35) and I h is the space spanned by

           ψ i h = (δ ij ) j∈H , ψ n s +ν h = (m j C jν ) j∈H , ν ∈ {1, 2, 3} , ψ n s +4 h = 1 2 m j C j • C j + E jj j∈H .
(2.3.36)

The macrosopic properties of the fluid mixture can then be expressed as partial scalar products of the partial distribution functions f e and f h with the electron and heavy-species collisional invariants, respectively. When taking into account the scaling, one obtains

           ⟪f e , ψ e e ⟫ e = n e 1 ε ⟪f e , m e C eν ⟫ e = ρ e (v eν -v hν ) , ν ∈ {1, 2, 3} ⟪f e , ψ n s +4 e ⟫ e = E e + ε 2 1 2 ρ e (v e -v h ) • (v e -v h ) (2.3.37)
for electrons, and

   ⟪f h , ψ j h ⟫ h = n j , j ∈ H ⟪f h , ψ n s +ν h ⟫ h = 0, ν ∈ {1, 2, 3} ⟪f h , ψ n s +4 h ⟫ h = E h (2.3.38)
for the heavy species, where E e and E h denote the respective internal energies per unit volume.

Note in particular that, in the limit ε → 0, the space of electron collisional invariants I ε e , is reduced to the space of isotropic invariants, denoted by I 0 e , which is spanned by

     ψ e e = 1,
ψ n s +4 e = 1 2 m e C e • C e .
(2.3.39)

In other words, the electron momentum collisional invariant vanishes in the limit ε → 0. This is because electron momentum is negligible before heavy-species momentum, and is related to the isotropization of the zeroth-order electron distribution function, as shall be seen later. The relevant sets of collisional invariants for our purpose are thus I 0 e and I h .

Asymptotic expansion of collision operators

We now derive asymptotic expansions in powers of ε for the scattering operators S ei and S ie , i ∈ H. Conservation of momentum and energy during a binary collision between an electron and a molecule of the i th heavy species read, when taking into account the scaling with respect to ε

       m i C i + ε m e C e = m i C i + ε m e C e , 1 2 m e 1 1 + ε 2 me m i g 2 + E ii = 1 2 m e 1 1 + ε 2 me m i g 2 + E ii , (2.3.40)
where we have denoted by g = g ie = g ei = |εC i -C e | and by g = g ie = g ei = |εC i -C e | the relative velocities of colliding species respectively before and after collision. Setting ∆E ii = E ii -E ii , we rewrite the latter expression in the form

       m i C i + ε m e C e = m i C i + ε m e C e , ∆E ii + 1 2 m e 1 1 + ε 2 me m i g 2 -g 2 = 0.
(2.3.41)

Scattering of the heavy species against electrons

The scattering operator for i th -heavy-species electron collisions S ie was stated above in equation (2.3.27). The change of variable

C (0) e = Ce-εC i 1+ε 2 me m i 1 2
, with

dC e = 1 + ε 2 m e m i 3 2 dC (0) e ,
allows us to eliminate the dependance in ε of the differential cross-section [GMM09], yielding

S ie (f i , f e ) (C i , i) = σ ii ie |C (0) e | 1 + ε 2 m e m i 2 f i f e -f i f e dω ie dC (0) e (2.3.42) + ε 2 i ∈Q i i =i σ ii ie |C (0) e | 1 + ε 2 m e m i 2 f i f e a ii a ii -f i f e dω ie dC (0) e ,
where

σ ii ie = σ ii ie m e |C (0) e | 2 , C (0) e |C (0) e | 
• ω ie .

(2.3.43)

The variable C (0) e is the zeroth-order electron velocity before collision.

Expansion of the species velocities Conservation equations (2.3.41) associated with collisions between molecules of the i th heavy species and electrons read, after change of variable

           C i = C i + ε m e m i 1 1 + ε 2 me m i 1 2 C (0) e + |C (0) e | 1 - ∆E ii 1 2 m e |C (0) e | 2 1 2 ω ie , C e = εC i - 1 1 + ε 2 me m i 1 2 |C (0) e | 1 - ∆E ii 1 2 m e |C (0) e | 2 1 2 ω ie -ε 2 m e m i C (0) e , 
(2.3.44) yielding the following asymptotic expansion:

             C i = C i -ε m e m i (C (0) e -C (0) e ) + O(ε 3 ), C e = C (0) e + ε C i - ε 2 2 m e m i (C (0) e -2C (0) e ) + O(ε 4 ), C e = C (0) e + ε C i + ε 2 2 m e m i C (0) e + O(ε 4 ), (2.3.45)
where C (0) e is the zeroth-order electron velocity after collision

C (0) e = -|C (0) e | ω ie = -|C (0) e | 1 - ∆E ii 1 2 m e |C (0) e | 2 1 2 ω ie . (2.3.46)
where σ ii ie was given in (2.3.43). The successive changes of variable C (0) e = -|C (0) e |ω ie , with dC (0) e = |C (0) e | 2 d|C (0) e |dω ie , and (ω ie , ω ie ) ↔ (ω ie , ω ie ), then yield

S 0 ie (f i , f e ) (C i , i) = f i (C i , i) σ ii ie |C (0) e | 3 f e (-|C (0) e |ω ie ) -f e (-|C (0) e |ω ie ) d|C (0) e |dω ie dω ie = f i (C i , i) σ ii ie |C (0) e | 3 f e (-|C (0) e |ω ie ) -f e (-|C (0) e |ω ie ) d|C (0) e |dω ie dω ie = -S 0 ie (f i , f e ) (C i , i) ,
where

σ ii ie = σ ii ie (m e |C (0) e | 2 , ω ie • ω ie ), so that finally S 0 ie (f i , f e ) (C i , i) = 0, i ∈ H, i ∈ Q i . (2.3.51)
From similar calculations, the first-order term

S 1 ie (f i , f e ) (C i , i) reads, for i ∈ H, i ∈ Q i S 1 ie (f i , f e ) (C i , i) = - m e m i ∂ C i f i (C i , i) • Σ (1) ii (|C e | 2 ) |C e | f e (C e ) C e dC e ,
(2.3.52)

where we have dropped the upperscript (0) on the integration variable C e for the sake of simplicity. The generalized momentum cross-section in thermal non-equilibrium context Σ (l)

ii is defined, for given i ∈ H, i ∈ Q i and i ∈ Q i , by

Σ (l) ii (|C e | 2 ) = 2π m e m i l π 0 σ ii ie m e |C e | 2 , cos θ 1 -cos l θ sin θ dθ, l ∈ N * , (2.3.53)
where the symbol θ represents the angle between the vectors ω ie = εC i -C e and ω ie = εC i -C e . For l = 1, this cross-section represents the average momentum transferred in encounters between electrons and molecules of the i th heavy species with initial quantum state i and final quantum state i , for a given initial value of the electron kinetic energy m e |C e | 2 . We also define

Σ (0) ii (|C e | 2 ) = 2π π 0 σ ii ie m e |C e | 2 , cos θ sin θ dθ, i ∈ H, i, i ∈ Q i . (2.3.54)
Finally, the second-order term can be decomposed into an elastic and an inelastic contributions:

S 2 ie = S 2,el ie + S 2,in ie .

(2.3.55)

The elastic contribution S 2,el ie

(f i , f e ) (C i , i) reads, for i ∈ H, i ∈ Q i S 2,el ie (f i , f e ) (C i , i) = (2.3.56) - m e m i ∂ C i (f i (C i , i)C i ) : Σ (1) ii (|C e | 2 ) |C e | C e ⊗ ∂ Ce f e (C e ) dC e + 1 4 m 2 e m 2 i ∂ C i C i f i (C i , i) : Σ (2) ii (|C e | 2 ) |C e | f e (C e ) |C e | 2 I -3C e ⊗ C e dC e + m 2 e m 2 i ∂ C i C i f i (C i , i) : Σ (1) ii (|C e | 2 ) |C e | f e (C e ) C e ⊗ C e dC e ,
while the inelastic term can be written as

S 2,in ie (f i , f e ) (C i , i) (2.3.57) = i ∈Q i i =i σ ii ie |C e | f i (C i , i )f e (C (0) e ) a ii a ii -f i (C i , i) f e (C e ) dω ie dC e = i ∈Q i i =i Σ (0) i i (|C e | 2 )f i (C i , i ) -Σ (0) ii (|C e | 2 )f i (C i , i) |C e |f e (C e ) dC e .

Scattering of electrons against the heavy species

The electron heavy-species scattering term S ei was stated above in (2.3.25). Unlike for the heavyspecies electron case, there is no change of variable allowing to eliminate the dependance in ε of the scattering cross-section σ ii ei , and we retain the set of variables (C e , C i , ω ei ).

Expansion of the species velocities Conservation equations (2.3.41) for collisions between electrons and molecules of the i th heavy species yield the following asymptotic expansion:

g ei = g (0) ei + ε g (1) ei + ε 2 g (2)
ei + O(ε 3 ), (2.3.58)

C e = C (0) e + ε C (1) e + ε 2 C (2) e + O(ε 3 ), (2.3.59) C i = C (0) i + ε C (1) i + ε 2 C (2) i + O(ε 3 ), (2.3.60)
where the coefficients for the amplitude of the relative velocity after collision g ei read in terms of the variables (C e , C i , ω ei )

                 g (0) ei = |C e | 1 - ∆E ii 1 2 m e |C e | 2 1 2 , g (1) 
ei = -

C e • C i g (0) ei , g (2) 
ei = 1 2

|C i | 2 g (0) ei 1 - ∆E ii 1 2 m i |C i | 2 - 1 2 (C e • C i ) 2 g (0) ei 3 ,
(2.3.61) and the coefficients for the velocities after collisions C e , C i are given by

   C (0) e = g (0) ei ω ei , C (1) e = C i + g (1)
ei ω ei , C

(1) i + g

(2)

ei ω ei ,

C (0) i = C i , C (1) i 
= m e m i C e -C (0) e , C (2) 
i = - m e m i C (1) e . 
(2.3.62)

Expansion of S ei Relations (2.3.58)-(2.3.60) allow one to determine, after a few calculations, the asymptotic expansion of the electron heavy-species scattering operator

S ei = S 0 ei + ε S 1 ei + ε 2 S 2 ei + O(ε 3
). The zeroth-order collision operator reads

S 0 ei (f e , f i ) (C e ) = (2.3.63) i∈Q i f i (C i , i) dC i σ ii ei |C e | f e (|C e |ω ei ) -f e (C e ) dω ei ,
where

σ ii ei = σ ii ei m e |C e | 2 , C e |C e | • ω ei .
The first-order term S 1 ei (f e , f i ) (C e ) reads S 1 ei (f e , f i ) (C e ) = (2.3.64)

+ i∈Q i f i (C i , i)C i dC i • σ ii ei |C e | ∂ Ce f e (|C e |ω ei ) -∂ Ce f e (C e ) dω ei - i∈Q i f i (C i , i)C i dC i • ∂ Ce σ ii ei |C e | f e (|C e |ω ei ) -f e (C e ) dω ei .
Finally, the second-order term can be decomposed into an elastic and an inelastic contributions

S 2 ei = S 2,el ei + S 2,in ei .
(2.3.65)

The elastic term reads

S 2,el ei (f e , f i ) (C e ) = m e m i i∈Q i f i (C i , i) dC i K i,1 ei (C e ) (2.3.66) + 1 2 i∈Q i f i (C i , i) C i ⊗ C i dC i : K i,2 ei (C e ),
where The inelastic term reads

K i,1 ei (C e ) = ∂ Ce • σ ii ei |C e | (C
S 2,in ei (f e , f i ) (C e ) = (2.3.69) i,i ∈Q i i =i σ ii ei |C e | f e (C (0) e )f i (C i , i ) a ii a ii -f e (C e )f i (C i , i) dω ei dC i ,
where

σ ii ei = σ ii ei m e |C e | 2 , C e |C e | • ω ei , C (0) e = |C e | 1 - ∆E ii 1 2 m e |C e | 2 1 2 ω ei .

Chapman-Enskog Expansion of the Species Distribution Functions

In this section, we apply the classical procedure proposed by Enskog 

Chapman-Enskog method

We derive an approximate solution to the Boltzmann equations by expanding the species distribution functions as 

f e = f 0 e 1 + εφ e + ε 2 φ 2 e + O(ε 3 ), (2.4.1) f i = f 0 i (1 + εφ i ) + O(ε 2 ), i ∈ H. ( 2 
   ⟪f 0 h , ψ j h ⟫ h = n j , j ∈ H ⟪f 0 h , ψ n s +ν h ⟫ h = 0, ν ∈ {1, 2, 3} ⟪f 0 h , ψ n s +4 h ⟫ h = E h (2.4.4)
for heavy species, where E e and E h denote the respective internal energies per unit volume. The Boltzmann equations (2.3.21),(2.3.22) can be written in the compact form

D e (f e ) = 1 ε 2 S ee (f e , f e ) + 1 ε 2 j∈H S ej (f e , f j ) + ε C e (f ) , (2.4.5) D i (f i ) = 1 ε 2 S ie (f i , f e ) + 1 ε j∈H S ij (f i , f j ) + ε C i (f ) , i ∈ H. (2.4.6)
We have derived in the previous paragraph asymptotic expansions for the scattering operators S ee , S ej , S je , S ij , i, j ∈ H. We also expand the streaming operators D as

D e = 1 ε 2 D -2 e + 1 ε D -1 e + D 0 e + ε D 1 e + O(ε 2 ),
(2.4.7)

D i = D 0 i + ε D 1 i + O(ε 2 ), i ∈ H, (2.4.8)
where

D -2 e (f e ) = δ b1 q e m e [C e ∧ B] • ∂ Ce f e ,
(2.4.9)

D -1 e (f e ) = C e • ∂ x f e + δ b0 q e m e [C e ∧ B] • ∂ Ce f e + δ b1 q e m e [v h ∧ B] • ∂ Ce f e (2.4.10) + q e m e E • ∂ Ce f e , D 0 e (f e ) = ∂ t f e + v h • ∂ x f e + δ b(-1) q e m e [C e ∧ B] • ∂ Ce f e + δ b0 q e m e [v h ∧ B] • ∂ Ce f e (2.4.11) -(∂ Ce f e ⊗ C e ) : ∂ x v h , D 1 e (f e ) = δ b(-2) q e m e [C e ∧ B] • ∂ Ce f e + δ b(-1) q e m e [v h ∧ B] • ∂ Ce f e - Dv h Dt • ∂ Ce f e ,
(2.4.12) and 

D 0 i (f i ) = ∂ t f i + (C i + v h ) • ∂ x f i + δ b1 q i m i [(C i + v h ) ∧ B] • ∂ C i f i (2.4.13) + q i m i E - Dv h Dt • ∂ C i f i -(∂ C i f i ⊗ C i ) : ∂ x v h , D 1 i (f i ) = δ b0 q i m i [(C i + v h ) ∧ B] • ∂ C i f i . ( 2 
⟪ψ i h , D h (f h )⟫ h = ε⟪ψ i h , C h (f )⟫ h , i ∈ H, (2.4.18) ⟪ψ n s +ν h , D h (f h )⟫ h = 1 ε 2 ⟪ψ n s +ν h , S he ⟫ h + ε⟪ψ n s +ν h , C h (f )⟫ h , ν ∈ {1, 2, 3} , (2.4.19) ⟪ψ n s +4 h , D h (f h )⟫ h = 1 ε 2 ⟪ψ n s +4 h , S he ⟫ h + ε⟪ψ n s +4 h , C h (f )⟫ h , ( 

Electron thermalization

We solve the electron Boltzmann equation (2.4.5) at order ε -2 , corresponding to the kinetic timescale t 0 e . We obtain the following equation for f 0 e :

δ b1 q e m e (C e ∧ B) • ∂ Ce f 0 e = S ee f 0 e , f 0 e + j∈H S 0 ej f 0 e , f 0 j . (2.4.21)
Multiplying this equation by ln f 0 e and integrating over C e , we get

Γ 0 ee + j∈H Γ 0 ej + δ b1 k b q e m e (C e ∧ B) • ∂ Ce f 0 e ln f 0 e dC e = 0,
where Γ 0 ee and Γ 0 ej are the zeroth-order entropy production rates for electron electron and electron j th -heavy-species collisions, respectively 

Γ 0 ee = -k b S ee f 0 e ,
(C e ∧ B) • ∂ Ce f 0 e ln f 0 e dC e = (C e ∧ B) • ∂ Ce f 0 e ln f 0 e -f 0 e dC e = ∂ Ce • (f 0 e ln f 0 e -f 0 e )(C e ∧ B) dC e , since ∂ Ce • [C e ∧ B] = 0. Now, for a given R > 0, if B(0, R)
is the ball of center 0 and radius R in the electron velocity space (C e ∈ R 3 ), and S (0, R) is the corresponding sphere, then

B(0,R) ∂ Ce • (f 0 e ln f 0 e -f 0 e )(C e ∧ B) dC e = S (0,R) (f 0 e ln f 0 e -f 0 e )(C e ∧ B) • C e |C e | dC e = 0,
and this holds for all R > 0, so that

∂ Ce • (f 0 e ln f 0 e -f 0 e )(C e ∧ B) dC e = 0.
More generally, the latter statement can also be proven for any kind of force instead of the Lorentz force q e C e ∧B, upon assuming that the electron distribution function f e decreases sufficiently rapidly when |C e | → +∞ [START_REF] Graille | Modélisation de mélanges gazeux réactifs ionisés dissipatifs[END_REF]. Thus, one gets finally

Γ 0 ee + j∈H Γ 0 ej = 0.
(2.4.24)

Using the reciprocity relation (2.2.35) and symmetrizing, a classical derivation [GMM09] yields

Γ 0 ee = k b 4 σ eẽ g eẽ Ω(f e fe , f e f e ) dω eẽ dC e d C e , (2.4.25) 
where fe = f e (t, x, C e ) and f e = f e (t, x, C e ), and where

Ω(x, y) = ln x y (x -y) (2.4.26)
is a nonnegative function. Similarly, the electron j th -heavy-species entropy production term is expressed by means of (2.3.63) as

Γ 0 ej = -k b S 0 ej f 0 e , f 0 j (C e ) ln f 0 e (C e ) dC e = -k b j∈Q j f 0 j (C j , j) dC j × σ jj ej |C e | f 0 e (|C e |ω ej ) -f 0 e (C e ) ln f 0 e (C e ) dω ej dC e ,
which again by reciprocity relations and symmetrization is equal to

Γ 0 ej = k b 2 j∈Q j f 0 j (C j , j) dC j σ jj ej |C e | Ω f 0 e (|C e |ω ej ), f 0 e (C e ) dω ej dC e ≥ 0.
(2.4.27)

A sum of positive terms is equal to zero if and only if each term of the sum is zero itself, thus the entropy production rates vanish: Γ 0 ee = 0, and Γ 0 ej = 0 for all j ∈ H. Since Γ 0 ee = 0, one can see from expression (2.4.25) and the definition of Ω that ln(f 0 e ) must be a collisional invariant associated with the electron electron scattering operator, i.e., must lie in the space I ε e , spanned by ψ e e = 1, ψ The electron population thus thermalizes to a quasi-equilibrium state described by a Maxwell-Boltzmann distribution at some temperature T e , defined as

E e = 3 2 n e k b T e .
(2.4.29)

The Maxwellian distribution (2.4.28) is such that S ee (f 0 e , f 0 e ) = 0 and S 0 ej (f 0 e , f 0 j ) = 0, for j ∈ H. where m e = N a m e is the molar mass of the electron, and R is the universal gas constant.

Heavy-species thermalization

Now we solve the i th -heavy-species equation (2.4.6) at order ε -1 . Since S 0 ie = 0 from (2.3.51), this yields, for all i ∈ H S

1 ie (f 0 i , f 0 e ) + j∈H S ij f 0 i , f 0 j = 0.
Since f 0 e is isotropic, the term S 1 ie (f 0 i , f 0 e ) given in (2.3.52) vanishes, in order that j∈H S ij f 0 i , f 0 j = 0.

(2.4.32)

Multiplying this equation by ln(β ii f 0 i ), integrating over C i , summing over i ∈ Q i and then over i ∈ H, we get

Γ 0 hh = 0, (2.4.33)
where Γ 0 hh is the zeroth-order entropy production rate associated with heavy-species collisions

Γ 0 hh = -k b i,j∈H i∈Q i S ij f 0 i , f 0 j (C i ) ln β ii f 0 i (C i ) dC i .
(2.4.34)

From expression (2.3.29) for S ij , and using the reciprocity relation (2.2.35) and symmetrization, the latter term can be written in the form

Γ 0 hh = k b 4 i,j∈H i,i ∈Q i j,j ∈Q j σ iji j ij g ij Ω a ii a jj a ii a jj f 0 i f 0 j , f 0 i f 0 j dω ij dC i dC j . (2.4.35)
Since Ω is nonnegative, each term in the sum has to be zero, i.e.,

a ii a jj f 0 i f 0 j = a ii a jj f 0 i f 0 j , i, j ∈ H, i, i , ∈ Q i , j, j ∈ Q j .
In other words, ln(β ii f 0 i ) i∈H is a collisional invariant of the heavy-species scattering operator:

ln(β ii f 0 i ) i∈H ∈ I h ,
i.e., there exists constants α i , i ∈ H, w, and γ such that

ln(β ii f 0 i ) = α i -w • m i C i -γ 1 2 m i C i • C i + E ii , i ∈ H, i ∈ Q i .
The constants α i , i ∈ H, w, and γ are obtained from the macroscopic constraints (2.4.4) for conservation of matter, momentum and energy, yielding the following expression for the zerothorder heavy-species distribution function

f 0 i (C i , i) = n i m i 2πk b T h 3 2 a ii Q int i exp - m i 2k b T h C i • C i - E ii k b T h , i ∈ H, i ∈ Q i , (2.4.36)
where T h is the heavy-species temperature, given by

3 2 n h k b T h = i∈H i∈Q i 1 2 m i C i • C i f 0 i dC i , (2.4.37)
and where we have introduced the partition function for internal energy of the i th species

Q int i = i∈Q i a ii exp - E ii k b T h . (2.4.38)
Alternatively, one can write

f 0 i (C i , i) = n i 1 β ii Q i exp - m i 2k b T h C i • C i - E ii k b T h , i ∈ H, i ∈ Q i , (2.4.39)
where the statistical weights β ii are given by

β ii = h 3 p a ii m 3 i , i ∈ H, i ∈ Q i , (2.4.40)
and where the translational and full partition functions per unit volume read

Q tr i = 2πm i k b T h h 2 p 3 2 , Q i = Q tr i Q int i , i ∈ H. (2.4.41)
The Maxwellian distribution (2.4.36) is such that S ij (f 0 i , f 0 j ) = 0, for i, j ∈ H. As a consequence of expression (2.4.36), the heavy-species internal energy per unit volume reads

E h = i∈H n i ( 3 2 k b T h + E i ), (2.4.42)
where

E i = i∈Q i a ii E ii Q int i exp - E ii k b T h (2.4.43)
is the mean excitation energy of the i th species. Finally, defining the heavy-species partial pressure as

p h I = i∈H i∈Q m i C i ⊗ C i f 0 i dC i = 1 3 i∈H i∈Q m i C i • C i f 0 i dC i I, (2.4.44)
we retrieve the perfect gas law for heavy species

ρ h = p h m h RT h , (2.4.45)
where m h is the mean heavy-species molar mass, given by

ρ h m h = i∈H ρ i m i , (2.4.46)
m i = N a m i being the molar mass of the i th heavy species.

First-order perturbation function for electrons

We introduce the electron linearized collision operator F e , defined as

F e (φ e ) = - 1 f 0 e S ee (φ e f 0 e , f 0 e ) + S ee (f 0 e , φ e f 0 e ) + j∈H S 0 ej (φ e f 0 e , f 0 j ) . (2.4.47)
The sum of the first two terms on the right hand side can be computed from (2.3.23) as follows:

- Similarly, from expression (2.3.63) of S 0 ej , the last term on the right hand side reads

1 f 0 e S ee (φ e f 0 e , f 0 e ) + S ee (f 0 e , φ e f 0 e ) = - 1 f 0 e g eẽ σ eẽ φ e f 0
- 1 f 0 e j∈H S 0 ej (φ e f 0 e , f 0 j ) = - 1 f 0 e j∈H j∈Q j f 0 j (C j , j) dC j σ jj ej |C e | φ e f 0 e (|C e |ω ej ) -φ e f 0 e (C e ) dω ej = - 1 f 0 e j∈H j∈Q j n j a jj e -jj Q int j σ jj ej |C e | φ e f 0 e (|C e |ω ej ) -φ e f 0 e (C e ) dω ej ,
where expression (2.4.36) for the zeroth-order j th -heavy-species distribution function f 0 j has been integrated over C j , and where we have introduced the reduced internal energy The electron Boltzmann equation (2.4.5) is now projected at order ε -1 . As long as f 0 e is an isotropic function of C e , respectively f 0 j is an isotropic function of C j , from (2.3.63) the term S 0 ej (f 0 e , φ j f 0 j ) is shown to vanish:

jj = E jj k b T h , j ∈ H, j ∈ Q j . (2.4.49) Since f 0 e is isotropic, f 0 e (|C e |ω ej ) = f 0 e (C e
S 0 ej (f 0 e , φ j f 0 j ) = 0, (2.4.56) respectively from (2.3.64) S 1 ej (f 0 e , f 0 j ) = 0. (2.4.57)
Thus, the first-order electron perturbation function φ e is solution to the following linear equation:

F e (φ e ) + δ b1 q e m e (C e ∧ B) • ∂ Ce φ e = Ψ e , (2.4.58)
where Ψ e = -D -1 e (ln f 0 e ).

(2.4.59) Equation (2.4.58) must be completed with constraints (2.4.3) in order to be well posed ⟪φ e f 0 e , ψ l e ⟫ e = 0, l ∈ {e, n s + 4} .

(2.4.60) Indeed, the streaming operator Ψ e = -D -1 e (ln f 0 e ) on the right hand side of (2.4.58) is orthogonal to the electron collisional invariants [GMM09], and the second term on the left hand side of (2.4.58) is orthogonal to the electron isotropic collisional invariants [GG03] 

Scaling for inelastic collision cross-sections

We can now discuss in more details the choice of scaling adopted for σ jj je , j ∈ H, j, j ∈ Q j , j = j . We consider the two possible alternative scaling σ in,0 he = σ 0 and σ in,0 he = εσ 0 , instead of σ in,0 he = ε 2 σ 0 . Other things being equal, in the former case the electron thermalization requires that the electron temperature is equal to the heavy-species temperature T e = T h , while in the latter case the thermalization of the heavy species induces T h = T e .

Electron thermalization

First, if the inelastic reference collision scaled as

σ in,0 he = σ 0 , (2.4.61)
that is to say if there was only one relevant characteristic cross-section, then the right hand side of the electron Boltzmann equation at order ε -2 (2.4.21) would contain the additional term j∈H S 2,in ej f 0 e , f 0 j . Thus, equation (2.4.24) for electron thermalization would be replaced by

Γ 0 ee + j∈H Γ 0 ej + j∈H Γ 2,in ej = 0, (2.4.62)
where the entropy production rate due to inelastic scattering of electron against the j th heavy species reads

Γ 2,in ej = -k b S 2,in ej f 0 e (C e ), f 0 j (C j ) ln f 0 e (C e ) dC e , (2.4.63) Γ 2,in ej = -k b j,j ∈Q j j =j σ jj ej |C e | f 0 e (C (0) e )f 0 j (C j , j ) β jj β jj -f 0 e (C e )f 0 j (C j , j) (2.4.64) × ln f 0 e (C e ) dω ej dC e dC j ,
where and symmetrizing, Γ 2,in ej may be expressed as

C (0) e = |C e | 1 -∆E jj / 1 2 m e |C e | 2 1
Γ 2,in ej = k b j,j ∈Q j j =j σ jj ej |C e | ln f 0 e (C e ) -ln f 0 e (C (0) e ) f 0 e (C e )f 0 j (C j , j) dω ej dC e dC j .
(2.4.66)

Now, for the alternative scaling σ in,0 he = σ 0 , the projection of the heavy species Boltzmann equation (2.3.22) at order ε -2 would be non trivial, and would yield

0 = S 2,in je (f 0 j , f 0 e ) = j ∈Q j j =j σ jj je |C e | f 0 e (C (0) e )f 0 j (C j , j ) β jj β jj -f 0 e (C e )f 0 j (C j , j) (2.4.67)
× dω je dC e dC j .

Multiplying the latter equation by ln (β jj f 0 j (C j , j)), integrating over C j and summing over j ∈ Q j , and noting that ω je = -ω ej , ω je = -ω ej , and σ jj je = σ jj ej , one would obtain

0 = j,j ∈Q j j =j 1 β jj σ jj ej |C e | ln β jj f 0 j (C j , j) (2.4.68) × β jj f 0 e (C (0) e )f 0 j (C j , j ) -β jj f 0 e (C e )f 0 j (C j , j) dω ej dC e dC j ,
which by reciprocity and symmetry would yield

0 = j,j ∈Q j j =j 1 β jj σ jj ej |C e | ln β jj f 0 j (C j , j ) -ln β jj f 0 j (C j , j) (2.4.69) × β jj f 0 e (C (0) e )f 0 j (C j , j ) -β jj f 0 e (C e )f 0 j (C j , j) dω ej dC e dC j ,
so that the entropy production rate due to inelastic scattering of electron against the j th heavy species would read

Γ 2,in ej = k b 2 j,j ∈Q j j =j 1 β jj σ jj ej |C e |Ω β jj f 0 e (C (0) e )f 0 j (C j , j ), β jj f 0 e (C e )f 0 j (C j , j) (2.4.70) dω ej dC e dC j ,
where Ω is the function defined in (2.4.26). Since Ω is nonnegative, the ε -2 electron Boltzmann equation (2.4.62) would yield the thermalization of electrons (2.4.28) as in subsection 2.4.2. Besides, the electron j th -heavy-species inelastic entropy production rate would vanish

Γ 2,in ej = 0, j ∈ H, (2.4.71)
which would require

a jj f 0 e (C (0) e )f 0 j (C j , j ) = a jj f 0 e (C e )f 0 j (C j , j), j ∈ H, j, j ∈ Q j , j = j, (2.4.72)
for Ω is nonnegative. From expression (2.4.28) for the electron Maxwellian distribution function, the latter equation is rewritten

a jj f 0 j (C j , j ) = exp - ∆E jj k b T e a jj f 0 j (C j , j), j ∈ H, j, j ∈ Q j , j = j.
(2.4.73)

Assuming that the zeroth-order heavy-species distribution functions f 0 j , j ∈ H, would still be Maxwellian of the form (2.4.36), equation (2.4.73) would be equivalent to

∆E jj k b T h = ∆E jj k b T e , j ∈ H, j, j ∈ Q j , j = j,
which would imply T e = T h .

Heavy-species thermalization

In the preceding paragraph it was shown that, other things being equal, the inelastic collisions between electrons and heavy species must be at least one order of magnitude slower than the corresponding elastic collisions. We now consider the alternative scaling σ in,0 he = εσ 0 .

(2.4.74)

For such a scaling electron thermalization would proceed as in 2.4.2, since equation (2.4.24) would remain unchanged, and hence the zeroth-order electron distribution function f 0 e would be a Maxwellian of the form (2.4.28).

The heavy-species Boltzmann equation at order ε -1 (2.4.32) would contain the additional term S 2,in ie (f 0 i , f 0 e ), so that equation (2.4.33) for heavy-species thermalization would be replaced by

Γ 0 hh + Γ 2,in he = 0, (2.4.75)
where we have introduced the entropy production rate due to inelastic scattering of heavy species against electrons

Γ 2,in he = -k b i∈H i∈Q i ln β ii f 0 i (C i , i) S 2,in ie f 0 i , f 0 e dC i .
(2.4.76)

From expression (2.3.57) for S 2,in ie , this inelastic entropy production rate is expanded as

Γ 2,in he = -k b i∈H i∈Q i σ ii ie |C e | ln β ii f 0 i (C i , i) × f 0 i (C i , i )f 0 e (C (0) e ) β ii β ii -f 0 i (C i , i)f 0 e (C e ) dω ie dC i dC e , Γ 2,in he = k b 2 i∈H i∈Q i σ ii ie |C e | ln β ii f 0 i (C i , i ) -ln β ii f 0 i (C i , i) (2.4.77) × f 0 i (C i , i )f 0 e (C (0) e ) β ii β ii -f 0 i (C i , i)f 0 e (C e ) dω ie dC i dC e ,
where we have used the reciprocity relation (2.4.65) and symmetrization. Now, for the scaling σ in,0 he = εσ 0 proposed, equation (2.4.58) obtained from the projection of the Boltzmann equation at order ε -1 would remain valid, but the source term Ψ e would read

f 0 e Ψ e = -D -1 e (f 0 e ) + j∈H S 1 ej (f 0 e , f 0 j ) + j∈H S 2,in ej (f 0 e , f 0 j ), (2.4.78)
where f 0 j would remain unknown at this point. Since the streaming operator, the electron linearized collision operator F e , and the term (C e ∧B) • ∂ Ce φ e are orthogonal to the electron isotropic collisional invariants I 0 e ⟪D -1 e (f e ), ψ l e ⟫ e = 0, l ∈ {e, n s + 4} , (2.4.79) ⟪f 0

e F e (φ e ), ψ l e ⟫ e = 0, l ∈ {e,

n s + 4} , (2.4.80) ⟪f 0 e (C e ∧ B) • ∂ Ce φ e , ψ l e ⟫ e = 0, l ∈ {e, n s + 4} , (2.4.81)
and since ln f 0 e belongs to I 0 e , multiplying (2.4.78) by ln f 0 e and integrating over C e one would obtain

j∈H ⟪S 1 ej (f 0 e , f 0 j ), ln f 0 e ⟫ e + j∈H ⟪S 2,in ej (f 0 e , f 0 j ), ln f 0 e ⟫ e = 0.
(2.4.82)

The first term on the left hand side would be shown to vanish since from expression (2.3.64) S 1 ej (f 0 e , f 0 j ) = 0 as long as f 0 e is given by a Maxwellian of the form (2.4.28). Thus, the second term on the left hand side would be zero:

0 = j∈H ⟪S 2,in ej (f 0 e , f 0 j ), ln f 0 e ⟫ e = j∈H j∈Q j σ jj je |C e | ln f 0 e (C e ) × f 0 j (C j , j )f 0 e (C (0) e ) β jj β jj -f 0 j (C j , j)f 0 e (C e ) dω ej dC j dC e , = - 1 2 j∈H j∈Q j σ jj je |C e | ln f 0 e (C (0) e ) -ln f 0 e (C e ) × f 0 j (C j , j )f 0 e (C (0) e ) β jj β jj -f 0 j (C j , j)f 0 e (C e ) dω je dC j dC e .
Combining the latter equation with equation (2.4.77), the heavy-species electron inelastic entropy production rate would finally read

Γ 2,in he = k b 2 i∈H i∈Q i σ ii ie |C e | Ω β ii β ii f 0 i (C i , i )f 0 e (C (0) e ), f 0 i (C i , i)f 0 e (C e ) dω ie dC i dC e , (2.4.83)
Since Ω is nonnegative, equation (2.4.75) would induce the thermalization of the heavy species as in subsection 2.4.3, and additionnally we would retrieve (2.4.73), and thus T h = T e as in the preceding paragraph.

A possible extension where some of the heavy species internal modes thermalize at T e is discussed in the conclusion.

Zeroth-order macroscopic equations for electrons

Equations (2.4.15), (2.4.16), (2.4.17) are now expanded at order ε 0 . Conservation of matter and energy yield a system of Navier-Stokes type drift-diffusion equations for electrons, from which the equation for conservation of momentum uncouples. Equation (2.4.15) for conservation of matter yields at order ε 0 the following mass conservation equation for electrons:

∂ t ρ e + ∂ x • ρ e v h + ρ e V 0 e = 0, (2.4.84)
where we have introduced the electron zeroth-order diffusion velocity n e V 0 e = C e φ e f 0 e dC e .

(2.4.85)

On the other hand, the energy conservation equation (2.4.17) yields at order ε 0

∂ t E e + ∂ x • (E e v h ) = -p e ∂ x • v h -∂ x • Q 0 e + J 0 e • E + ∆E 0 eh , (2.4.86)
where p e = n e k b T e is the electron partial pressure, J 0 e = n e q e V 0 e is the zeroth-order electron conduction current density in the heavy-species reference frame, and E is the electric field expressed in the heavy-species reference frame

E = E + δ b1 v h ∧ B.
(2.4.87)

We have denoted by Q 0 e the zeroth-order electron heat flux

Q 0 e = φ e f 0 e 1 2 m e C e • C e C e dC e ,
(2.4.88) while ∆E 0 eh is an energy exchange term due to scattering collisions between electrons and heavy species

∆E 0 eh = j∈H ⟪ψ n s +4 e , S 2 ej (f 0 e , f 0 j )⟫ e , (2.4.89) 
where S 2 ej is the second-order electron j th -heavy-species scattering source term (2.3.65). The zerothorder electron mean velocity in the inertial reference frame is defined as

v 0 e = v h + V 0 e .
(2.4.90)

Finally, momentum conservation equation (2.4.16) yields the following momentum relation:

∂ x p e = n e q e E + δ b1 j 0 e ∧ B + F 0 eh , (2.4.91)
where j 0 e = n e q e v 0 e is the zeroth-order electron current density in the inertial reference frame, and

F 0 eh = j∈H ⟪S 0 ej (φ e f 0 e , f 0 j ), m e C e ⟫ e (2.4.92)
is the average force exerted by the heavy species on electrons due to scattering collisions, which can be expressed as

F 0 eh = j∈H n j F 0 ej , (2.4.93)
where F 0 ej is the average force exerted by the j th heavy species on electrons. We can further decompose

F 0 ej = j∈Q j a jj e -jj Q int j F j,0 ej , (2.4.94)
where F j,0 ej is the average force exerted on electrons by molecules of the j th heavy species in the j th internal state:

F j,0 ej = -m e Σ (1) jj (|C e | 2 )|C e |φ e (C e )f 0 e (C e )C e dC e .
(2.4.95) Equation (2.4.91) thus provides an expression for the average force F 0 eh in terms of the macroscopic variable gradients and external fields, which will be useful in the derivation of the heavy-species momentum equation.

Zeroth-order macroscopic equations for the heavy species

We now expand equations (2.4.18), (2.4.19), (2.4.20) at order ε 0 . First, equation (2.4.18) yields the following mass conservation equation:

∂ t ρ i + ∂ x • (ρ i v h ) = 0, i ∈ H. (2.4.96)
Then, expansion of equation (2.4.19) at order ε 0 reads

∂ t (ρ h v h ) + ∂ x • (ρ h v h ⊗ v h + p h I) = n h q h E + δ b1 j 0 h ∧ B + F 0 he , (2.4.97)
where p h = n h k b T h is the heavy-species partial pressure, n h = j∈H n j the heavy-species density, n h q h = j∈H n j q j the heavy-species charge density, j 0 h = n h q h v h the zeroth-order heavy-species current density in the inertial reference frame, and

F 0 he = ⟪S 1 he (f 0 h , φ e f 0 e ) + S 2 he (f 0 h , f 0 e ), m h C h ⟫ h (2.4.98)
is the average force exerted by electrons on the heavy species due to scattering collisions. Indeed, we recall that from (2.3.51) S 0 ie = 0, and from (2.3.52) it is readily seen that

S 1 ie (φ i f 0 i , f 0 e ) = 0, (2.4.99)
as long as f 0 e is isotropic. Due to orthogonality relation (2.3.33), the following reciprocity relation holds:

F 0 he = -F 0 eh . (2.4.100)
As a consequence, making use of the electron momentum relation (2.4.91), the momentum conservation equation (2.4.97) for the heavy species can be rewritten

∂ t (ρ h v h ) + ∂ x • (ρ h v h ⊗ v h + p I) = nqE + δ b1 j 0 ∧ B, (2.4.101)
where p = p h + p e is the total pressure, n = n h + n e the total density, nq = n h q h + n e q e the total charge density, and j 0 = j 0 h + j 0 e is the zeroth-order current density in the inertial reference frame. Finally, equation (2.4.20) yields the following energy conservation equation at order zero:

∂ t E h + ∂ x • (E h v h ) = -p h ∂ x • v h + ∆E 0 he , (2.4.102)
where

∆E 0 he = ⟪S 2 he (f 0 h , f 0 e ), ψ n s +4
h ⟫ h is an energy exchange term due to scattering collisions between heavy species and electrons. Given orthogonality property (2.3.34), energy exchange terms are shown to be symmetric as momentum exchange terms in (2.4.100):

∆E 0 he = -∆E 0 eh . (2.4.103)
The energy exchange term splits into an elastic and an inelastic contributions:

∆E 0 he = ∆E 0,el he + ∆E 0,in he .
(2.4.104)

The elastic term ∆E 0,el he = ⟪S2,el he (f 0 h , f 0 e ), ψ n s +4 h ⟫ h is computed from expression (2.3.56) for the secondorder i th -heavy-species electron elastic scattering source term S 2,el ie , and reads

∆E 0,el he =
where τ el is the average collision time at which elastic energy transfer occurs:

1 τ el = 2 3 i∈H n i n h m e m i ν el ie , (2.4.106) ν el ie = i∈Q i a ii e -E ii /kbT h Q int i ν ii ie ,
(2.4.107)

ν ii ie = m e k b T e Σ (1) ii (|C e | 2 ) |C e | 3 f 0 e (C e ) dC e .
(2.4.108)

The inelastic contribution can be expressed using (2.3.57) as

∆E 0,in he = 1 2 i∈H i,i ∈Q i i =i ∆E ii n i a ii Q int i ν ii ie e -E ii /kbT h -exp ∆E ii k b T e e -E ii /kbT h , (2.4.109)
where ν ii ie is the collision frequency between a molecule of the i th heavy species with initial quantum state i and final quantum state i and an electron:

ν ii ie = Σ (0) ii (|C e | 2 ) |C e | f 0 e (C e ) dC e , i = i. (2.4.110) Expression (2.4.109) can be rewritten in terms of the temperature difference T e -T h ∆E 0,in he = 3 2 n h k b (T e -T h ) 1 τ in , (2.4.111)
where τ in is the average collision time at which inelastic energy transfer occurs:

1 τ in = 2 3 T h T e i∈H n i n h ν in ie , (2.4.112) ν in ie = i,i ∈Q i i =i (∆ ii ) 2 2 a ii e -ii Q int i g ∆ ii 1 - T h T e ν ii ie , (2.4.113)
where

∆ ii = ii -ii = ∆E ii
kbT h , and where we have introduced the function g defined by

     g(u) = 1 -e -u u , u = 0, g(0) = 1.
(2.4.114)

We can also formulate ∆E 0 he as

∆E 0 he = 3 2 n h k b (T e -T h ) 1 τ , (2.4.115)
where

1 τ = 1 τ el + 1 τ in .
(2.4.116)

First-order perturbation for the heavy species

As for electrons, we introduce the heavy-species linearized collision operator

F h = (F i ) i∈H , defined as F i (φ h ) = - 1 f 0 i j∈H S ij (φ i f 0 i , f 0 j ) + S ij (f 0 i , φ j f 0 j ) , i ∈ H.
(2.4.117)

Again, using the reciprocity relation (2.2.35) and symmetrization [CC70] [FK72] [GMM09], the linearized collision operator is expressed as

f 0 i F i (φ h ) = j∈H i ∈Q i j,j ∈Q j g ij σ iji j ij f 0 i f 0 j φ i + φ j -φ i -φ j dω ij dC j . (2.4.118)
The kernel of F h coincides with the set of heavy-species collisional invariants I h . We also introduce the associated integral bracket operator

ξ h , ζ h h = ⟪f 0 h ξ h , F h (ζ h )⟫ h = i∈H i∈Q i f 0 i ξ i F i (ζ h ) dC i , (2.4.119)
which can be expressed in the form

ξ h , ζ h h = 1 4 i,j∈H i,i ∈Q i j,j ∈Q j (2.4.120) × g ij σ iji j ij f 0 i f 0 j ξ i + ξ j -ξ i -ξ j ζ i + ζ j -ζ i -ζ j dω ij dC j dC i .
From expression (2.4.120), the bracket operator • h is shown to be symmetric, i.e.,

ξ h , ζ h h = ζ h , ξ h h , (2.4.121) positive semi-definite: ξ h , ξ h h ≥ 0, (2.4.122)
and its kernel is seen to coincide with the kernel of F h :

ξ h , ξ h h = 0 ⇔ F h (ξ h ) = 0 ⇔ ξ h ∈ I h . (2.4.123)
Projecting the heavy-species Boltzmann equations (2.4.6) at order ε 0 , the first-order heavyspecies perturbation function φ h is shown to be solution to the following linear equation:

F i (φ h ) = Ψ i , i ∈ H, (2.4.124)
where

Ψ i = -D 0 i (ln f 0 i ) + 1 f 0 i S 1 ie (f 0 i , φ e f 0 e ) + 1 f 0 i S 2 ie (f 0 i , f 0 e ).
(2.4.125) Indeed, S 0 ie = 0, and S 1 ie (φ i f 0 i , f 0 e ) = 0 since f 0 e is isotropic. Equation (2.4.124) must be completed with the constraints (2.4.4) in order to be well posed

[CC70] [FK72] [Gio99] ⟪φ h f 0 h , ψ l h ⟫ h = 0, l ∈ H ∪ {n s + 1, . . . , n s + 4} .
(2.4.126)

Second-order perturbation for electrons

We project the electron Boltzmann equation (2.4.5) at order ε 0 and after a few calculations, the second-order electron perturbation function φ 2 e is found to be solution to the following linear integral equation [GMM09]:

f 0 e F e (φ 2 e ) + δ b1 q e m e (C e ∧ B) • ∂ Ce (φ 2 e f 0 e ) = Ψ 2 e , (2.4.127)
where

Ψ 2 e = -D 0 e (f 0 e ) -D -1 e (φ e f 0 e ) + S ee (φ e f 0 e , φ e f 0 e ) (2.4.128) + j∈H S 0 ej (φ e f 0 e , φ j f 0 j ) + S 1 ej (f 0 e , φ j f 0 j ) + S 2 ej (f 0 e , f 0 j ) .
Indeed, by (2.3.63) S 0 ej (f 0 e , φ 2 j f 0 j ) = 0 since f 0 e is isotropic, and by (2.3.64) S 1 ej (φ e f 0 e , f 0 j ) = 0 since f 0 j is isotropic. Equation (2.4.127) is completed with the constraints (2.4.3) in order to be well posed ⟪φ 2 e f 0 e , ψ l e ⟫ e = 0, l ∈ {e, n s + 4} .

(2.4.129)

2.4.10 First-order macroscopic equations for electrons Equations (2.4.15), (2.4.16), (2.4.17) are now expanded at order ε 1 . The following first-order driftdiffusion equations for electrons follow

∂ t ρ e + ∂ x • ρ e v h + ρ e V 0 e + ε ρ e V 1 e = ε m e w e ,
(2.4.130)

∂ t E e + ∂ x • (E e v h ) = -p e ∂ x • v h -ε ∂ x v h : Π e -∂ x • Q 0 e -ε ∂ x • Q 1 e (2.4.131) +J 0 e • E + ε J 1 e • E + ε δ b0 J 0 e • (v h ∧ B) + ∆E 0 eh + ε ∆E 1 eh ,
where we have introduced the electron first-order diffusion velocity, heat flux, viscous tensor, and the electron first-order conduction current density in the heavy-species reference frame, respectively

n e V 1 e = φ 2 e f 0 e C e dC e ,
(2.4.132)

Q 1 e = φ 2 e f 0 e 1 2 m e C e • C e C e dC e , (2.4.133 
)

Π e = φ e f 0 e m e C e ⊗ C e dC e ,
(2.4.134)

J 1 e = n e q e V 1 e .
(2.4.135)

We have denoted by w e the zeroth-order molecular production rate of electrons due to chemically reactive collisions:

w e = ⟪ψ e e , C e (f 0 )⟫ e = C e (f 0 ) dC e , (2.4.136) 
and ∆E 1 eh is the first-order energy exchange term arising from chemically reactive collisions on the one hand, and scattering collisions on the other hand:

∆E 1 eh = ∆E 1,chem eh + ∆E 1,scatt eh .
(2.4.137)

The reactive term reads

∆E 1,chem eh = 1 2 m e C e • C e C e (f 0 ) dC e , (2.4.138)
and the scattering term is in turn decomposed into an elastic and an inelastic contribution

∆E 1,scatt eh = ∆E 1,el eh + ∆E 1,in eh , (2.4.139)
where

∆E 1,el eh = -⟪ψ n s +4 h , S 1 he (φ h f 0 h , φ e f 0 e ) + S 2,el he (φ h f 0 h , f 0 e ) + S 2,el he (f 0 h , φ e f 0 e )⟫ h , (2.4.140) ∆E 1,in eh = -⟪ψ n s +4 h , S 2,in he (φ h f 0 h , f 0 e ) + S 2,in he (f 0 h , φ e f 0 e )⟫ h . (2.4.141)
Finally, the momentum electron conservation equation (2.4.16) yields the following first-order momentum relation for electrons:

∂ x p e + ε ∂ x • Π e = n e q e E + ε δ b0 j 0 e ∧ B + δ b1 (j 0 e + ε J 1 e ) ∧ B + F 0 eh + ε F 1 eh , (2.4.142)
where F 1 eh is the first-order average force exerted by the heavy species on electrons:

F 1 eh = j∈H ⟪m e C e , S 0 ej (φ 2 e f 0 e , f 0 j ) + S 0 ej (φ e f 0 e , φ j f 0 j ) + S 1 ej (f 0 e , φ j f 0 j ) + S 2 ej (f 0 e , f 0 j )⟫ e .
(2.4.143)

2.4.11 First-order macroscopic equations for the heavy species

Proceeding as for the zeroth-order macroscopic equations, we obtain the following set of Navier-Stokes type equations for the heavy species:

∂ t ρ i + ∂ x • (ρ i v h + ε ρ i V i ) = ε m i w i , i ∈ H, (2.4.144) ∂ t (ρ h v h ) + ∂ x • (ρ h v h ⊗ v h + p I) = -ε ∂ x • (Π e + Π h ) + nqE (2.4.145) +ε δ b0 j 0 ∧ B + δ b1 j 1 ∧ B, ∂ t E h + ∂ x • (E h v h ) = -p h ∂ x • v h -ε ∂ x v h : Π h -ε ∂ x • Q h (2.4.146) +ε J h • E + ∆E 0 he + ε ∆E 1 he ,
where we have introduced the diffusion velocity of the i th heavy species V i , the heavy-species viscous tensor Π h , and the heavy-species heat flux Q h :

n i V i = i∈Q i φ i f 0 i C i dC i , i ∈ H, (2.4.147) Π h = j∈H j∈Q j φ j f 0 j m j C j ⊗ C j dC j , (2.4.148) Q h = j∈H j∈Q j φ j f 0 j 1 2 m j C j • C j + E jj C j dC j .
(2.4.149)

We denote by J h the heavy-species conduction current density in the heavy-species reference frame, j 1 h the first-order heavy-species current density in the inertial reference frame, and j 1 e the first-order electron current density in the inertial reference frame:

J h = j∈H n j q j V j ,
(2.4.150)

j 1 h = j∈H n j q j (v h + εV j ) = n h q h v h + εJ h , (2.4.151)
j 1 e = n e q e (v h + V 0 e + εV 1 e ) = n e q e v e + εJ 1 e , (2.4.152)

where J 1 e = n e q e V 1 e is the first-order electron conduction current density in the heavy-species reference frame. The zeroth-order and first-order current density in the inertial reference frame, j 0 and j 1 , respectively, are given by j 0 = j 0 h + j 0 e , (2.4.153)

j 1 = j 1 h + j 1 e .
(2.4.154) Finally, w i , i ∈ H is the zeroth-order molecular production rate of the i th species due to chemically reactive collisions:

w i = ⟪ψ i h , C h (f 0 )⟫ h = i∈Q i C i (f 0 ) dC i , (2.4.155)
and ∆E 1 he is the first-order energy exchange term, involving both scattering and reactive energy transfer. Again, due to relation (2.3.34), energy exchange terms are symmetric:

∆E 1 he = -∆E 1 eh .
(2.4.156)

Chemistry source terms

For k ∈ S, the chemically reactive source term reads

w k = k∈Q k C k (f 0 ) dC k . (2.4.157)
This term can be expressed as follows. We first recall the decomposition (2.2.16)

C k (f ) = r∈R C r k (f ), (2.4.158)
where C r k (f ) was expressed in (2.2.28). This yields the following decomposition:

w k = r∈R ν rb k -ν rf k τ r , (2.4.159)
where τ r is the reaction rate of progress of the r th reaction, which can be written

τ r = K f r l∈S n ν rf l l -K b r k∈S n ν rb k k , (2.4.160)
where the forward and backward constant rates associated with reaction r read

K f r = 1 l∈S Q ν rf l l f r ,b r 1 l∈F r β ll exp - l∈F r 1 2 m l C l • C l + E ll k b T l (2.4.161) × W f r b r F r B r l∈F r dC l k∈B r dC k , K b r = 1 k∈S Q ν rb k k f r ,b r 1 l∈F r β ll exp - k∈B r 1 2 m k C k • C k + E kk k b T k (2.4.162) × W f r b r F r B r l∈F r dC l k∈B r dC k .
From equation (2.2.38), the production rates w k , k ∈ S satisfy the mass conservation constraint k∈S m k w k = 0.

(2.4.163)

We now distinguish between two cases. First, if the reaction does not involve any electron, one retrieves the law of mass action. Indeed, in that case, all the species temperatures equal T h , and the following relation for conservation of energy holds:

l∈F r 1 2 m l C l • C l + E ll = k∈B r 1 2 m k C k • C k + E kk , (2.4.164) so that K f r and K b r read K f r = K r j∈H Q ν rf j j
(2.4.165)

K b r = K r j∈H Q ν rb j j , (2.4.166)
where

K r = 1 l∈F r β ll f r ,b r exp - l∈F r 1 2 m l C l • C l + E ll k b T h (2.4.167) × W f r b r F r B r l∈F r dC l k∈B r dC k , = 1 l∈F r β ll f r ,b r exp - k∈B r 1 2 m k C k • C k + E kk k b T h × W f r b r F r B r l∈F r dC l k∈B r dC k .
If we introduce the equilibrium constant of the r th reaction

K e r = j∈H Q ν rb j -ν rf j j , (2.4.168)
we have finally

K e r = K f r K b r .
(2.4.169)

On the other side, when the reaction r involves one or more electrons, the equilibrium constant K e r is undefined, since in general T e = T h . However, in specific cases, depending on the form of the reaction considered, e.g., electron impact ionization or ion impact ionization, a generalized law of mass action can be derived where the equilibrium constant might depend on either of the temperatures T e or T h . For example, for an electron impact ionization in the form

M e + M n M i + M e + M e , (2.4.170) 
where the subscripts e, n, and i refer to the electron, the neutral species and the corresponding positive ion, respectively, the law of mass action obtained for the monoatomic case in [START_REF] Graille | Modeling of reactive plasmas for atmospheric entry flows based on kinetic theory[END_REF] is a generalization of the well-known "Saha" equation, and reads

K e r = K f r K b r = m i m n 3 2 2πm e k b T e h 2 p 3 2 exp - ∆E ioniz k b T e , (2.4.171)
where ∆E ioniz is the ionization energy associated with reaction (2.4.170). The first two factors of equation (2.4.171) correspond to the translational partition functions of the respective species at their respective temperatures, and the term in the exponential factor corresponds to the ionization energy divided by the electron temperature. Indeed, the colliding electron is providing the energy required for the ionization to occur [START_REF] Graille | Modeling of reactive plasmas for atmospheric entry flows based on kinetic theory[END_REF]. Equation (2.4.171) can also be derived from nonequilibrium thermodynamics [vdSSP

+ 89] [GC02].
Finally, the energy exchange term ∆E 1,chem eh = -∆E 1,chem he associated with chemically reactive collisions can be decomposed in the form

∆E 1,chem eh = r∈R ∆E r = r∈Re ∆E r , (2.4.172)
where the sum has been reduced to the set of reactions involving one or more electrons R e . Upon introducing the net average energy ∆E er gained by electrons during reaction r, defined as

∆E er = 1 τ r f r ,b r ν rb e 1 2 m e C b e • C b e -ν rf e 1 2 m e C f e • C f e (2.4.173) × j∈F r f j - k∈B r f k k∈B r β kk j∈F r β jj W f r b r F r B r j∈F r dC j k∈B r dC k ,
where τ r is the rate of progress of the r th reaction, and where C f e , C b e denote the electron velocity where electron is taken as a reactant or product, respectively, one can express the chemistry energy exchange term as ∆E 1,chem eh = r∈Re ∆E er τ r .

(2.4.174)

As a first approximation, due to the strong mass disparity between electrons and heavy species, the net energy

ν rf e 1 2 m e C f e • C f e -ν rb e 1 2 m e C b e • C b
e lost by electrons during the r th electron collision reaction can be taken constant, independent of the velocities C f e , C b e , and equal to the threshold energy of the collision process considered [START_REF] Graille | Modeling of reactive plasmas for atmospheric entry flows based on kinetic theory[END_REF], so that the net average energy lost -∆E er can be identified with the threshold energy of the r th reaction. This assumption is customary in practical applications [Nie98] [KNF + 04] [Hag16b].

Transport Fluxes

In this section, we derive an expression for the transport fluxes, namely the diffusion velocities

V i , i ∈ H, V 0 e , V 1
e , the viscous tensors Π h , Π e , and the heat fluxes Q h , Q 0 e , Q 1 e , in terms of macroscopic variable gradients. These expressions involve transport coefficients, which are also stated in terms of bracket products of the perturbed distribution functions. For the sake of simplicity, we assume that the plasma is weakly magnetized, i.e., b = 0.

Electron transport coefficients

In the case when b = 0, equation (2.4.58) for the first-order electron perturbation φ e becomes

F e (φ e ) = Ψ e , (2.5.1) 
where Ψ e = -D -1 e (ln f 0 e ), (2.5.2) under the constraints ⟪φ e f 0 e , ψ l e ⟫ e = 0, l ∈ {e, n s + 4} .

(2.5.3) Given expression (2.4.28) for f 0 e , Ψ e can be decomposed into

Ψ e = -Ψ De e • (∂ x p e -n e q e E) -Ψ λe e • ∂ x 1 k b T e , (2.5.4) 
where

       Ψ De e = 1 p e C e Ψ λe e = 5 2 k b T e - 1 2 m e C e • C e C e .
(2.5.5)

Making use of the linearity of the electron linearized collision operator F e [START_REF] Giovangigli | The kinetic theory of partially ionized reactive gas mixtures II[END_REF] [GMM09], we can expand the first-order perturbation function φ e as follows:

φ e = -Φ De e • (∂ x p e -n e q e E) -Φ λe e • ∂ x 1 k b T e .
(2.5.6)

For each µ = D e , λe , the function Φ µ e is solution to the following system of equations: 

F e (Φ µ e ) = Ψ µ e (2.
Π e = 0.
(2.5.12)

Defining the zeroth-order electron self-diffusion coefficient D 0 ee and the zeroth-order electron electron-temperature thermal diffusion coefficient θ 0 ee by

D 0 ee = pk b T e 3 Φ De e , Φ De e e ,
(2.5.13)

θ 0 ee = - 1 3 Φ λe e , Φ De e e ,
(2.5.14) respectively, the zeroth-order electron diffusion velocity is expressed in the form

V 0 e = -D 0 ee de -θ 0 ee ∂ x ln T e , (2.5.15) 
where we have introduced the unconstrained electron diffusion driving force de = 1 p (∂ x p e -n e q e E) .

(2.5.16)

Finally, upon defining the zeroth-order electron self-partial-thermal-conductivity

λ0 ee = 1 3k b T 2 e Φ λe
e , Φ λe e e , (2.5.17) the zeroth-order electron heat flux Q 0 e is found in the form

Q 0 e = -pθ 0 ee de -λ0 ee ∂ x T e + 5 2 k b T e n e V 0 e .
(2.5.18)

Heavy-species transport coefficients

We recall that from (2.4.124) and (2.4.126) the first-order heavy-species perturbation function φ h is solution to the following constrained linear system of integral equations:

F i (φ h ) = Ψ i , i ∈ H (2.5.19) ⟪f 0 h φ h , ψ j h ⟫ h = 0, j ∈ H ∪ {n s + 1, . . . , n s + 4} , (2.5.20)
where Ψ i , i ∈ H, is given by (2.4.125). After a lengthy calculation, Ψ i can be decomposed into

Ψ i = -Ψ η h i : ∂ x v h - 1 3 Ψ κ h i (∂ x • v h ) - j∈H Ψ D j i • (∂ x p j -n j q j E) -Ψ De i • (∂ x p e -n e q e E) -Ψ λh i • ∂ x 1 k b T h -Ψ λe i • ∂ x 1 k b T e -Ψ Θ i (T e -T h ) , i ∈ H. (2.5.21)
The expansion coefficients are given by

Ψ η h i = m i k b T h C i ⊗ C i - 1 3 C i • C i I (2.5.22) Ψ κ h i = 2c int c v k b T h 1 2 m i C i • C i - 3 2 k b T h + 2c tr v c v k b T h (E i -E ii ) (2.5.23) Ψ D j i = 1 p i δ ij -Y h i C i (2.5.24) Ψ De i = m e 3 j∈H j∈Q j n j 1 p i δ ij δ ij -Y h i a jj e -jj Q int j C i (2.5.25) × Σ (1) jj (|C e | 2 )|C e |f 0 e (C e ) C e • Φ De e dC e Ψ λe i = m e 3 j∈H j∈Q j n j 1 p i δ ij δ ij -Y h i a jj e -jj Q int j C i (2.5.26) × Σ (1) jj (|C e | 2 )|C e |f 0 e (C e ) C e • Φ λe e dC e Ψ λh i = 5 2 k b T h - 1 2 m i C i • C i + E i -E ii C i (2.5.27) Ψ Θ i = 3 2 1 τ 1 c v T 2 h 1 2 m i C i • C i + E ii -E i - 3 2 k b T h (2.5.28) + 2 3 m e m i 1 k b T 2 h 3 2 k b T h - 1 2 m i C i • C i ν ii ie + 1 k b T e T h i ∈Q i i =i ∆E ii g ii ν ii ie ,
where Y h i is the mass fraction of the i th species with respect to the heavy species, which is proportional to the mass fraction Y i = ρ i ρ of the i th species with respect to the whole mixture:

Y h i = ρ i ρ h = ρ ρ h Y i , i ∈ H, (2.5.29)
and where

g ii = g ∆ ii 1 - T h T e .
(2.5.30)

We also denote by X h i the mole fraction of the i th species with respect to the heavy species. If m i is the molar mass of the i th heavy species, and m h is the mean molar mass of the heavy species, given by (2.4.46), then

X h i = n i n h = m h m i Y h i , i ∈ H. (2.5.31)
In (2.5.22)-(2.5.28), the symbol c tr v denotes the translational constant-volume specific heat per molecule, c int the heavy-species internal specific heat per molecule, c v the heavy-species constantvolume specific heat per molecule

               c tr v = 3 2 k b c int = i∈H X h i c int i c v = c tr v + c int ,
(2.5.32) and c int i denotes the internal heat capacity of the i th species

c int i = dE i dT , i ∈ H. (2.5.33)
As for the first-order electron perturbation, making use of the linearity of the linearized collision operator, the perturbation functions φ i , i ∈ H can be decomposed in the form

φ i = -Φ η h i : ∂ x v h - 1 3 φ κ h i (∂ x • v h ) - j∈H Φ D j i • (∂ x p j -n j q j E) -Φ De i • (∂ x p e -n e q e E) -Φ λh i • ∂ x 1 k b T h -Φ λe i • ∂ x 1 k b T e -φ Θ i (T e -T h ) , i ∈ H.
(2.5.34)

Note that one can also expand the coefficient Ψ Θ i as

Ψ Θ i = - 1 2T h 1 τ Ψ κ h i + Ψ Θ el i + Ψ Θ in i , (2.5.35)
where the elastic and inelastic contributions are given by

Ψ Θ el i = 1 k b T 2 h 1 τ el - 2 3 m e m i ν ii ie 1 2 m i C i • C i - 3 2 k b T h (2.5.36) Ψ Θ in i = 1 k b T 2 h 1 τ in 1 2 m i C i • C i - 3 2 k b T h + 1 k b T e T h i ∈Q i ∆E ii g ii ν ii ie , (2.5.37) 
and the corresponding decomposition for φ Θ i reads

φ Θ i = - 1 2T h 1 τ φ κ h i + φ Θ el i + φ Θ in i , i ∈ H. (2.5.38)
For each value of µ = η h , κ h , D j , j ∈ H, D e , λh , λe , Θ, Θ el , Θ in , the functional φ µ h is solution of the following constrained linear system of integral equations:

F i (φ µ h ) = Ψ µ i , i ∈ H (2.5.39) ⟪f 0 h φ µ h , ψ j h ⟫ h = 0, j ∈ H ∪ {n s + 1, . . . , n s + 4} , (2.5.40)
which is well posed since

⟪f 0 h Ψ µ h , ψ j h ⟫ h = 0, j ∈ H ∪ {n s + 1, . . . , n s + 4} . (2.5.41)
Furthermore, because of the isotropy of the linearized collision operator F h , each φ µ h is of the same tensorial type as Ψ µ h [START_REF] Graille | Modélisation de mélanges gazeux réactifs ionisés dissipatifs[END_REF]. Upon defining the heavy-species diffusion coefficients, the heavy-species electron diffusion coefficients, the heavy-species heavy-temperature thermal diffusion coefficients, and the heavy-species electron-temperature thermal diffusion coefficients by

D ij = pk b T h 3 Φ D i h , Φ D j h h , i ∈ H, j ∈ H, (2.5.42) D ie = D ei = pk b T h 3 Φ D i h , Φ De h h , i ∈ H, (2.5.43) θ ih = θ hi = - 1 3 Φ D i h , Φ λh h h , i ∈ H, (2.5.44) θ ie = θ ei = - 1 3 T h T e Φ D i h , Φ λe h h , i ∈ H, (2.5.45)
the heavy-species diffusion velocities are expressed in the form

V i = - j∈H D ij dj -D ie de -θ ih ∂ x ln T h -θ ie ∂ x ln T e , i ∈ H, (2.5.46)
where we have introduced the heavy-species diffusion driving forces

di = 1 p (∂ x p i -n i q i E) , i ∈ H.
(2.5.47)

We also define the shear viscosity, the volume viscosity, and the thermal non-equilibrium viscosity, respectively:

η h = k b T h 10 Φ η h h , Φ η h h h
(2.5.48)

κ h = k b T h 9 φ κ h h , φ κ h h h (2.5.49) ζ = k b T h 3 φ Θ h , φ κ h h h , (2.5.50)
so that the viscous tensor reads

Π h = -η h ∂ x v h + (∂ x v h ) t - 2 3 (∂ x • v h ) I -κ h (∂ x • v h ) I -ζ(T e -T h ) I.
(2.5.51)

Finally, if we introduce the heavy-species self-partial-thermal-conductivity, the heavy-species electron-temperature partial thermal conductivity, respectively

λhh = 1 3k b T 2 h Φ λh h , Φ λh h h , (2.5.52) λhe = 1 3k b T 2 e Φ λh h , Φ λe h h , (2.5.53) 
and the electron heavy-temperature thermal diffusion coefficient

θ he = θ eh = - 1 3 Φ λh h , Φ De h h , (2.5.54)
the heavy-species heat flux can be expressed as

Q h = -p j∈H θ hj dj -pθ he de -λhh ∂ x T h -λhe ∂ x T e + j∈H 5 2 k b T h + E j n j V j .
(2.5.55)

The second and fourth terms of the respective expressions for the heavy-species diffusion velocities (2.5.46) and the heavy-species heat flux (2.5.55) are the "heavy-species Kolesnikov diffusion fluxes". They arise from the coupling between heavy species and electrons as first described by Kolesnikov [GMM09] [START_REF] Kolesnikov | The equations of motion of a multicomponent partially ionized twotemperature mixture of gases in an electromagnetic field with transport coefficients in higher approximations[END_REF].

We also introduce the new bracket

ξ h , ζ e he = j∈H j∈Q j 1 3 m e k b T e ξ j • C j f 0 j dC j f 0 e |C e |Σ (1) jj (|C e | 2 ) ζ e • C e dC e , (2.5.56) 
which is non trivial when ξ h , ζ e are vectors but would be trivial for scalars or traceless symmetric tensors of rank 2. The following relations hold:

D ie = pk b T h 3 Φ D i h , Φ De h h = pk b T e 3 Φ D i h , Φ De e he , i ∈ H,
(2.5.57)

θ ie = - 1 3 T h T e Φ D i h , Φ λe h h = - 1 3 Φ D i h , Φ λe e he , i ∈ H, (2.5.58) λhe = 1 3k b T 2 e Φ λh h , Φ λe h h = 1 3k b T e T h Φ λh h , Φ λe e he ,
(2.5.59)

θ he = - 1 3 Φ λh h , Φ De h h = - 1 3 T e T h Φ λh h , Φ De e he .
(2.5.60)

We only prove the first one of those relations. The other ones can be derived by similar arguments. By definition of • h and by (2.5.25), D ie reads

D ie = pk b T h 3 Φ D i h , Φ De h h = pk b T h 3 k∈H k∈Q k f 0 k Φ D i k • Ψ De k dC k = pk b T h 3 m e 3 k∈H k∈Q k j∈H j∈Q j n j f 0 k Φ D i k • 1 p k δ kj δ kj -Y h k a jj e -jj Q int j C k dC k × Σ (1) jj (|C e | 2 )|C e |f 0 e (C e ) C e • Φ De e dC e = pk b T h 3 m e 3 j∈H j∈Q j n j k∈H k∈Q k f 0 k Φ D i k • 1 p k δ kj δ kj -Y h k a jj e -jj Q int j C k dC k × Σ (1) jj (|C e | 2 )|C e |f 0 e (C e ) C e • Φ De e dC e .
Since

k∈H k∈Q k Y k p k a jj e -jj Q int j f 0 k Φ D i k • C k dC k = 1 ρk b T h a jj e -jj Q int j k∈H k∈Q k f 0 k Φ D i k • m k C k dC k = 1 ρk b T h a jj e -jj Q int j ⟪Φ D i h f 0 h , m h C h ⟫ h ,
and since ⟪Φ D i h f 0 h , m h C h ⟫ h = 0 by (2.5.40), the i th -heavy-species electron diffusion coefficient reads finally

D ie = p 3 m e 3 j∈H j∈Q j f 0 j Φ D i j • C j dC j Σ (1) jj (|C e | 2 )|C e |f 0 e (C e ) C e • Φ De e dC e ,
which completes the proof.

Properties of the heavy-species transport coefficients

The matrix

D h = (D ij ) i,j∈H is symmetric, i.e., D ij = D ji , i ∈ H, j ∈ H. (2.5.61) Indeed, D ij = 1 3 pk b T h Φ D i h , Φ D j
h h and the bracket • h is symmetric (2.4.121). D h is also positive semi-definite, i.e., for any U = (U i ) i∈H :

U t D h U ≥ 0,
(2.5.62) and its kernel is the space spanned by the vector

Y h = (Y i ) i∈H , i.e., N (D h ) = RY h .
(2.5.63) Indeed, since the bracket • h is bilinear by definition and positive semi-definite by (2.4.122):

U t D h U = i∈H j∈H D ij U i U j = pk b T h 3 i∈H j∈H Φ D i h , Φ D j h h U i U j = pk b T h 3 i∈H Φ D i h U i , j∈H Φ D j h U j h ≥ 0.
Since the kernel of • h is I h from (2.4.123), the latter calculation also yields

U t D h U = 0 ⇔ i∈H Φ D i h U i ∈ I h .
Since by definition the Φ D i h , i ∈ H, are orthogonal to I h with respect to the scalar product

⟪ • ⟫ h , i∈H Φ D i
h U i is orthogonal to I h as well, and thus

U t D h U = 0 ⇔ i∈H Φ D i h U i = 0.
(2.5.64)

More generally, the space spanned by the vectors Φ D i h , i ∈ H, is orthogonal to I h , the kernel of F h , so F h is invertible over this vector space, and i∈H

Φ D i h U i = 0 ⇔ F h i∈H Φ D i h U i = 0 ⇔ i∈H Ψ D i h U i = 0.
(2.5.65) From (2.5.24), the set of solutions to the latter equation is the one-dimensional space RY h , which proves (2.5.63). Furthermore, since from (2.5.24) i∈H Y i Ψ D i h = 0, we deduce from (2.5.65) that 

i∈H Y i Φ D i h = 0, (2.5 
Y i θ ih = 0, (2.5.69) i∈H Y i θ ie = 0.
(2.5.70)

Finally, from expressions (2.5.48), (2.5.49) and (2.5.52), respectively, the shear viscosity η h , the volume viscosity κ h , and the heavy-species self-partial-thermal-conductivity λhh , have the same sign as

Φ η h h , Φ η h h h , φ κ h h , φ κ h h h
, and Φ λh h , Φ λh h h , respectively. For µ = η h , κ h and λh , it is readily seen that φ µ h , φ µ h h ≥ 0 since the bracket product is positive semi-definite. Moreover, if φ µ h , φ µ h h = 0, then φ µ h must be in I h by (2.4.123). Because of the constraints (2.5.40), φ µ h must also be orthogonal to I h , so that φ µ h = 0. Now, from expressions (2.5.22), (2.5.23) and (2.5.27), the expansion coefficients Ψ η h h and Ψ λh h cannot vanish, while the expansion coefficient Ψ κ h h can vanish if there is no internal energy levels. By linearity the same is true for the perturbation coefficients Φ η h h , Φ λh h , and φ κ h h , so that finally [Gio99] η h > 0,

(2.5.71) κ h ≥ 0,

(2.5.72) λhh > 0.

(2.5.73)

Electron Kolesnikov transport coefficients

The resolution of the linearized Boltzmann equation for the second-order electron perturbation function φ 2 e yields first-order electron transport fluxes and associated transport coefficients. These transport fluxes should not be confused with Burnett transport coefficients [GMM09] [FK72], since one retrieves the first-order Chapman-Enskog expansion for multicomponent mixtures in the limit

T e = T h [GGMM10].
In the case of a weakly magnetized plasma, i.e., when b = 0, equation (2.4.127) for the secondorder electron perturbation function φ 2 e becomes

F e (φ 2 e ) = Ψ 2 e , (2.5.74) 
where

Ψ 2 e = -D 0 e (ln f 0 e ) - 1 f 0 e D -1 e (φ e f 0 e ) + 1 f 0 e
S ee (φ e f 0 e , φ e f 0 e ) (2.5.75)

+ j∈H 1 f 0 e S 0 ej (φ e f 0 e , φ j f 0 j ) + S 1 ej (f 0 e , φ j f 0 j ) + S 2 ej (f 0 e , f 0 j ) ,
under the constraints ⟪φ 2 e f 0 e , ψ l e ⟫ e = 0, l ∈ {e, n s + 4} .

(2.5.76)

After some lengthy calculations, the right-member Ψ 2 e of equation (2.5.74) can be expanded in the form

Ψ 2 e = -Ψ ηe e : ∂ x v h -δ b0 Ψ De e • (-n e q e v h ∧ B) (2.5.77) -δ b0 q e m e Φ De e • [(∂ x p e -n e q e E) ∧ B] -δ b0 q e m e Φ λe e • ∂ x 1 k b T e ∧ B - 1 3 Ψ κ h De e • (∂ x • v h ) (∂ x p e -n e q e E) - 1 3 Ψ κ h λe e • (∂ x • v h ) ∂ x 1 k b T e -Ψ ΘDe e • (T e -T h ) (∂ x p e -n e q e E) -Ψ Θ λe e • (T e -T h ) ∂ x 1 k b T e - j∈H Ψ D j e • (∂ x p j -n j q j E) -Ψ D 2 e e • (∂ x p e -n e q e E) -Ψ λh e • ∂ x 1 k b T h -Ψ λ2 e e • ∂ x 1 k b T e -Ψ2 e ,
where Ψ2 e is a scalar function of C e • C e . Other expansion coefficients are given by

Ψ ηe e = m e k b T e C e ⊗ C e - 1 3 C e • C e I
(2.5.78)

Ψ D i e = j∈H j∈Q j 1 3 m e k b T e |C e |Σ (1) jj (|C e | 2 ) Φ D i j • C j f 0 j dC j C e (2.5.79) Ψ D 2 e e = j∈H j∈Q j 1 3 m e k b T e |C e |Σ (1) jj (|C e | 2 ) Φ De j • C j f 0 j dC j C e
(2.5.80)

Ψ λh e = j∈H j∈Q j 1 3 m e k b T e |C e |Σ (1) jj (|C e | 2 ) Φ λh j • C j f 0 j dC j C e (2.5.81) Ψ λ2 e e = j∈H j∈Q j 1 3 m e k b T e |C e |Σ (1) jj (|C e | 2 ) Φ λe j • C j f 0 j dC j C e , (2.5.82) 
and

Ψ κ h De e = j∈H j∈Q j φ κ h j f 0 j dC j |C e |Σ (1) jj (|C e | 2 )Φ De e
(2.5.83)

Ψ κ h λe e = j∈H j∈Q j φ κ h j f 0 j dC j |C e |Σ (1) jj (|C e | 2 )Φ λe e
(2.5.84)

Ψ ΘDe e = j∈H j∈Q j φ Θ j f 0 j dC j |C e |Σ (1) jj (|C e | 2 )Φ De e
(2.5.85)

Ψ Θ λe e = j∈H j∈Q j φ Θ j f 0 j dC j |C e |Σ (1) jj (|C e | 2 )Φ λe e .
(2.5.86)

Thanks to the linearity of the linearized collision operator F e , the following similar expansion holds for φ 2 e :

φ 2 e = -Φ ηe e : ∂ x v h -δ b0 Φ De e • (-n e q e v h ∧ B) (2.5.87) -δ b0 q e m e Ξ De e • [(∂ x p e -n e q e E) ∧ B] -δ b0 q e m e Ξ λe e • ∂ x 1 k b T e ∧ B - 1 3 Φ κ h De e • (∂ x • v h ) (∂ x p e -n e q e E) - 1 3 Φ κ h λe e • (∂ x • v h ) ∂ x 1 k b T e -Φ ΘDe e • (T e -T h ) (∂ x p e -n e q e E) -Φ Θ λe e • (T e -T h ) ∂ x 1 k b T e - j∈H Φ D j e • (∂ x p j -n j q j E) -Φ D 2 e e • (∂ x p e -n e q e E) -Φ λh e • ∂ x 1 k b T h -Φ λ2 e e • ∂ x 1 k b T e -φ2 e .
where for each value of µ = η e , D e , is of the same tensorial type [START_REF] Graille | Modélisation de mélanges gazeux réactifs ionisés dissipatifs[END_REF] as Ψ µ e , respectively Φ µ e . The first-order electron self-diffusion coefficient, the first-order electron electron-temperature thermal diffusion coefficient, and the first-order electron self-partial-thermal-conductivity are given by

D 1 ee = pk b T e 3 Φ De h , Φ De e he ,
(2.5.92)

θ 1 ee = - 1 3 Φ λe h , Φ De e he = - 1 3 Φ De h , Φ λe e he ,
(2.5.93)

λ1 ee = 1 3k b T 2 e Φ λe h , Φ λe e he .
(2.5.94)

The electron heavy-temperature partial thermal conductivity is given by

λeh = T e T h λhe = 1 3k b T e T h Φ λh h , Φ λe h h , (2.5.95)
where λhe is the heavy-species electron-temperature partial thermal conductivity. We also introduce the additional transport coefficients

D κ h ee = pk b T e 9 φ κ h h , Φ De e , Φ De e hee , (2.5.96) 
θ κ h ee = - 1 9 φ κ h h , Φ λe e , Φ De e hee ,
(2.5.97)

λκ h ee = 1 9k b T 2 e φ κ h
h , Φ λe e , Φ λe e hee , (2.5.98)

D Θ ee = pk b T e 3 φ Θ h , Φ De e , Φ De e hee ,
(2.5.99) The following expressions are then derived for the first-order electron diffusion velocity

θ Θ ee = - 1 3 φ Θ h , Φ λe e ,
V 1 e = -D 1 ee de - i∈H D ei di -θ 1 ee ∂ x ln T e -θ eh ∂ x ln T h (2.5.107) -D κ h ee (∂ x • v h ) + D Θ ee (T e -T h ) de -θ κ h ee (∂ x • v h ) + θ Θ ee (T e -T h ) ∂ x ln T e -δ b0 n e q e |B| p D 0 ee B ∧ v h -δ b0 D ee B ∧ de -δ b0 θ ee B ∧ ∂ x ln T e ,
and heat flux

Q 1 e = -pθ 1 ee de -p i∈H θ ei di -λ1 ee ∂ x T e -λeh ∂ x T h + n e 5 2 k b T e V 1 e
(2.5.108)

-p θ κ h ee (∂ x • v h ) + θ Θ ee (T e -T h ) de -λκ h ee (∂ x • v h ) + λΘ ee (T e -T h ) ∂ x T e -δ b0 n e q e |B|θ 0 ee B ∧ v h -δ b0 pθ ee B ∧ de -δ b0 λ e B ∧ ∂ x T e ,
where B denotes the direction of the magnetic field vector

B = 1 |B| B.
(2.5.109)

Except for the last three terms associated with the magnetic field effect on the electrons, all the terms in expressions (2.5.107) and (2.5.108) for V 1 e and Q 1 e , respectively, are due to the coupling between electrons and heavy species. They may thus be referred to as the "electron Kolesnikov fluxes" [Kol74] [GMM09].

The terms in the first lines of both (2.5.107) and (2.5.108) were already present in the monoatomic case [GMM09], though the corresponding transport coefficients (2.5.43), (2.5.45), (2.5.54), and (2.5.92)-(2.5.95) are different. The terms proportional to (∂ x • v h ) are new and specific to the polyatomic case, since the volume viscosity κ h vanishes in the monoatomic limit. The terms proportional to (T e -T h ) are also new, because the corresponding transport coefficients vanish in the monoatomic limit [GMM09]. This is because the term

φ Θ j f 0 j dC j (2.5.110)
appearing in expressions (2.5.99)-(2.5.101) for D Θ ee , θ Θ ee and λΘ ee , respectively, becomes equal to ⟪φ Θ h f 0 h , ψ j h ⟫ h in the monoatomic limit and thus vanishes, since the number of particles in the j th species is a collisional invariant of the scattering operator. Conversely, in the polyatomic case, the term (2.5.110) does not necessarily vanish. Indeed, the number of molecules of the j th species in the j th internal energy state is not conserved in general in scattering collisions, since the elastic collision cross-section σ jj je may depend on the energy level j. Physically speaking, the transport fluxes appearing in the second lines of (2.5.107) and (2.5.108) are associated with the nonuniform diffusion of electrons against the different internal energy states of each heavy species. The last lines of (2.5.107) and (2.5.108), respectively, embed the magnetic field induced electron transport fluxes, and have the same structure in the polyatomic and monoatomic cases, for the last two terms were overlooked in the case b = 0 in [GMM09].

Finally, we obtain the following expression for the first-order energy exchange term due to scat-tering collisions:

∆E 1,scatt he = i∈H i∈Q i n i V ii • F I,0 ie
(2.5.111)

+ i∈H i∈Q i 2 3 m e m i ν ii ie f 0 i φ i 3 2 k b T e - 1 2 m i C i • C i dC i + i∈H i,i ∈Q i ν ii ie ∆E ii f 0 i φ i dC i .
One may prefer the alternative formulation

∆E 1,scatt he = p j∈H D je dj • de + p j∈H θ je dj • ∂ x ln T e
(2.5.112)

+ pD 1 ee de • de + pθ 1 ee de • ∂ x ln T e + pθ he ∂ x ln T h • de + T e λhe ∂ x ln T h • ∂ x ln T e + pθ 1 ee ∂ x ln T e • de + T e λ1 ee ∂ x ln T e • ∂ x ln T e + k b T 2 h ⟪f 0 h φ h , Ψ Θ h ⟫ h + k b (T e -T h ) i∈H i∈Q i m e m i ν ii ie f 0 i φ i dC i + i∈H i,i ∈Q i 1 - T h T e g ii ν ii ie ∆E ii f 0 i φ i dC i ,
where f 0 i φ i dC i can be further expanded in the form

f 0 i φ i dC i = -(∂ x • v h ) f 0 i φ κ h i dC i (2.5.113) -(T e -T h ) f 0 i φ Θ i dC i .

Fluid Equations

In this section, we summarize the macroscopic equations obtained for multicomponent plasmas in the Navier-Stokes regime. 

∂ t ρ e + ∂ x • (ρ e v h + ρ e V e )
= m e w e , (2.6.1)

∂ t E e + ∂ x • (E e v h ) = -p e ∂ x • v h -∂ x • Q e + ∆E eh + J e • E + δ b0 J 0 e • (v h ∧ B), (2.6.2)
for electrons, and

∂ t ρ i + ∂ x • (ρ i v h + ρ i V i ) = m i w i , i ∈ H, (2.6.3) ∂ t (ρ h v h ) + ∂ x • (ρ h v h ⊗ v h + p I) = -∂ x • Π h + nqE + j ∧ B,
(2.6.4)

∂ t E h + ∂ x • (E h v h ) = -p h ∂ x • v h -∂ x v h : Π h -∂ x • Q h + ∆E he + J h • E ,
(2.6.5)

for the heavy species.

The electron diffusion velocity in the heavy-species reference frame is given by

V e = V 0 e + V 1 e ,
(2.6.6) the electron heat flux in the heavy-species reference frame by

Q e = Q 0 e + Q 1 e ,
(2.6.7)

and the electron conduction current density in the heavy-species reference frame by J e = J 0 e + J 1 e = n e q e V e .

(2.6.8)

We also introduce the heat flux

Q = Q e + Q h , (2.6.9)
and conduction current of the mixture (2.6.13)

J = J e + J h = n e q e V e + j∈H n j q j V j , (2. 
We also restate the expressions for the zeroth-order and first-order current densities of the mixture in the inertial reference frame

j 0 = n h q h v h + n e q e (v h + V 0 e ),
(2.6.14)

j 1 = n h q h v h + j∈H n j q j V j + n e q e (v h + V 0 e + V 1 e ), (2.6.15) 
and denote by j = δ b0 j 0 + δ b1 j 1 (2.6. 16) the current density of the mixture in the inertial reference frame.

From equations (2.5.67)-(2.5.70), the heavy species diffusion velocities satisfy the mass conservation constraint

i∈H ρ i V i = 0,
(2.6.17) so that summing equation (2.6.3) over i ∈ H, the equation for conservation of the heavy-species mass is obtained is the mass density of the mixture, and the mixture-averaged velocity v is given by

∂ t ρ h + ∂ x • (ρ h v h ) = i∈H m i w i . ( 2 
ρv = ρ e v e + ρ h v h = ρv h + ρ e V e , (2.6.22) 
where the mean electron velocity in the inertial reference frame reads

v e = v h + V e .
(2.6.23)

The electron momentum relation (2.4.142) is also rewritten in the form

∂ x p e = n e q e E + j 0 e ∧ B + δ b1 J 1 e ∧ B + F eh , (2.6.24)
where F eh = -F he is the average force exerted on electrons by the heavy species:

F eh = F 0 eh + F 1 eh .
(2.6.25)

Finally, summing equations (2.6.2) and (2.6.5), we obtain the following equation for conservation of the total internal energy E = E e + E h :

∂ t E + ∂ x • (Ev h ) = -p ∂ x • v h -∂ x v h : Π h -∂ x • Q + J • E + δ b0 J 0 e • (v h ∧ B).
(2.6.26)

Transport fluxes

The electron diffusion velocity is obtained from (2.5.15) and (2.5.107) in the form

V e = -D ee de - i∈H D ei di -θ ee ∂ x ln T e -θ eh ∂ x ln T h (2.6.27) -D κ h ee (∂ x • v h ) + D Θ ee (T e -T h ) de -θ κ h ee (∂ x • v h ) + θ Θ ee (T e -T h ) ∂ x ln T e -δ b0 n e q e |B| p D 0 ee B ∧ v h -δ b0 D ee B ∧ de -δ b0 θ ee B ∧ ∂ x ln T e ,
where the electron self-diffusion coefficient and the electron electron-temperature thermal diffusion coefficient read

D ee = D 0 ee + D 1 ee ,
(2.6.28) θ ee = θ 0 ee + θ 1 ee , (2.6.29) and the unconstrained diffusion driving force read de = 1 p (∂ x p e -n e q e E), (2.6.30)

di = 1 p (∂ x p i -n i q i E), i ∈ H.
(2.6.31)

Similarly, the electron self-partial-thermal-conductivity is given by λee = λ0 ee + λ1 ee , (2.6.32) and from (2.5.18) and (2.5.108) the electron heat flux thus reads

Q e = -pθ ee de -p i∈H θ ei di -λee ∂ x T e -λeh ∂ x T h + n e 5 2 k b T e V e
(2.6.33)

-p θ κ h ee (∂ x • v h ) + θ Θ ee (T e -T h ) de -λκ h ee (∂ x • v h ) + λΘ ee (T e -T h ) ∂ x T e -δ b0 n e q e |B|θ 0 ee B ∧ v h -δ b0 pθ ee B ∧ de -δ b0 λ e B ∧ ∂ x T e .
The heavy-species diffusion velocities, viscous tensor and heat flux where stated in (2.5.46), (2.5.51) and (2.5.55), respectively. We recall here their expressions

V i = - j∈H D ij dj -D ie de -θ ih ∂ x ln T h -θ ie ∂ x ln T e , i ∈ H,
(2.6.34)

Π h = -η h ∂ x v h + (∂ x v h ) t - 2 3 (∂ x • v h ) I -κ h (∂ x • v h ) I -ζ(T e -T h ) I,
(2.6.35)

Q h = -p j∈H θ hj dj -pθ he de -λhh ∂ x T h -λhe ∂ x T e + j∈H 5 2 k b T h + E j n j V j .
(2.6.36)

Center-of-Mass Reference Frame

The conservation equations may be rewritten in the center-of-mass reference frame. From the definition (2.6.22) of v, the heavy-species velocity reads

v h = v -Y e V e , (2.7.1) 
where Y e = ρ e /ρ is the electron mass fraction. Equations (2.6.1) and (2.6.3) expressing the mass conservation of the respective species thus read in the center-of-mass reference frame

∂ t ρ e + ∂ x • ρ e v + ρ e V v e = m e w e ,
(2.7.2)

∂ t ρ i + ∂ x • ρ i v + ρ i V v i = m i w i , i ∈ H. (2.7.3)
where V v e and V v i , i ∈ H, are the species diffusion velocities in the center-of-mass reference frame:

V v e = (1 -Y e )V e (2.7.4) V v i = V i -Y e V e , i ∈ H. (2.7.5)
The macroscopic equations (2.6.1)-(2.6.5) read in the center-of-mass reference frame

∂ t ρ e + ∂ x • ρ e v + ρ e (1 -Y e )V e = m e w e ,
(2.7.6)

∂ t E e + ∂ x • E e (v -Y e V e ) = -p e ∂ x • (v -Y e V e ) -∂ x • Q e + ∆E eh + J e • E (2.7.7) + δ b0 J 0 e • (v -Y e V e )
∧ B , for electrons, and

∂ t ρ i + ∂ x • ρ i v + ρ i (V i -Y e V e ) = m i w i , i ∈ H, (2.7.8) ∂ t ρ(1 -Y e )(v -Y e V e ) + ∂ x • ρ(1 -Y e )(v -Y e V e ) ⊗ (v -Y e V e ) + p I (2.7.9) = -∂ x • Π h + nqE + j ∧ B, ∂ t E h + ∂ x • E h (v -Y e V e ) = -p h ∂ x • (v -Y e V e ) -∂ x (v -Y e V e ) : Π h (2.7.10) -∂ x • Q h + ∆E he + J h • E ,
for the heavy species.

Given that Y e is of order ε 2 , the latter model is equivalent at first-order in ε to the following one:

∂ t ρ e + ∂ x • ρ e v + ρ e V v e = m e w e ,
(2.7.11)

∂ t E e + ∂ x • (E e v) = -p e ∂ x • v -∂ x • Q v e + ∆E eh + J v e • E + δ b0 J 0 e • (v ∧ B),
(2.7.12)

∂ t ρ i + ∂ x • ρ i v + ρ i V v i = m i w i , i ∈ H, (2.7.13) ∂ t (ρv) + ∂ x • (ρv ⊗ v + p I) = -∂ x • Π + nqE + j ∧ B,
(2.7.14)

∂ t E h + ∂ x • (E h v) = -p h ∂ x • v -∂ x v : Π -∂ x • Q v h + ∆E he + J h • E , (2.7.15)
where the species diffusion velocities in the center-of-mass reference frame have been taken such as to satisfy the mass conservation constraint

k∈S ρ k V v k = ρ e V v e + i∈H ρ i V v i = 0.
(2.7.16)

The viscous tensor may be written in the form

Π = -η h ∂ x v + (∂ x v) t - 2 3 (∂ x • v) I -κ h (∂ x • v) I -ζ(T e -T h ) I,
(2.7.17)

the electron diffusion velocity and heat flux in the center-of-mass reference frame in the form

V v e = -D v ee de - i∈H D v ei di -θ v ee ∂ x ln T e -θ v eh ∂ x ln T h (2.7.18) -(1 -Y e ) D κ h ee (∂ x • v) + D Θ ee (T e -T h ) de -(1 -Y e ) θ κ h ee (∂ x • v) + θ Θ ee (T e -T h ) ∂ x ln T e -δ b0 (1 -Y e ) n e q e |B| p D 0 ee B ∧ v -δ b0 (1 -Y e )D ee B ∧ de -δ b0 (1 -Y e )θ ee B ∧ ∂ x ln T e , Q v e = -pθ v ee de -p i∈H θ v ei di -λee ∂ x T e -λeh ∂ x T h + n e 5 2 k b T e V v e (2.7.19) -p θ κ h ee (∂ x • v) + θ Θ ee (T e -T h ) de -λκ h ee (∂ x • v) + λΘ ee (T e -T h ) ∂ x T e -δ b0 n e q e |B|θ 0 ee B ∧ v -δ b0 pθ ee B ∧ de -δ b0 λ e B ∧ ∂ x T e ,
respectively, and the heavy-species diffusion velocities and heat flux in the form

V v i = - j∈H D v ij dj -D v ie de -θ v ih ∂ x ln T h -θ v ie ∂ x ln T e ,
(2.7.20)

+ Y e D κ h ee (∂ x • v) + D Θ ee (T e -T h ) de + Y e θ κ h ee (∂ x • v) + θ Θ ee (T e -T h ) ∂ x ln T e + δ b0 Y e n e q e |B| p D 0 ee B ∧ v + δ b0 Y e D ee B ∧ de + δ b0 Y e θ ee B ∧ ∂ x ln T e , i ∈ H, Q v h = -p j∈H θ v hj dj -pθ v he de -λhh ∂ x T h -λhe ∂ x T e + j∈H 5 2 k b T h + E j n j V v j .
(2.7.21)

The electron conduction current density in the center-of-mass reference frame may be written in the form J v e = n e q e V v e , (2.7.22) and the current density in the form j = δ b0 j 0 + δ b1 j 1 , (2.7.23) where j 0 = nqv + n e q e V 0 e , (2.7.24)

j 1 = nqv + n e q e V v e + i∈H n i q i V v i .
(2.7.25)

The diffusion coefficients andD v ij , i, j ∈ H, may be expressed in the form

D v ee , D v ei , i ∈ H, D v ie , i ∈ H,
D v ee = (1 -Y e )D ee , (2.7.26) D v ei = (1 -Y e )D ei , i ∈ H, (2.7.27) D v ie = D ie -Y e D ee , i ∈ H, (2.7.28) D v ij = D ij -Y e D ej , i, j ∈ H, (2.7.29)
and the thermal diffusion coefficients θ v ee , θ v eh , θ v ie , i ∈ H, θ v ih , i ∈ H, may be expressed in the form

θ v ee = (1 -Y e )θ ee , (2.7.30) θ v eh = θ v he = (1 -Y e )θ eh , (2.7.31) θ v ie = θ v ei = θ ie -Y e θ ee , i ∈ H, (2.7.32) θ v ih = θ v hi = θ ih -Y e θ eh , i ∈ H.
(2.7.33) However, one can see from expressions (2.7.26)-(2.7.29) that the diffusion matrix associated with the center-of-mass reference frame (D v kl ) k,l∈S is not symmetric, and neither is the heavy-species diffusion matrix (D v ij ) i,j∈H . This confirms that the center-of-mass reference frame is not adapted to the study of non-thermal multicomponent plasmas [GMM09].

Conclusion

We have derived from the kinetic theory a unified multicomponent fluid model for non-thermal, partially ionized, polyatomic, chemically reactive plasmas. We have applied the classical Chapman-Enskog procedure, upon expanding the species distribution functions in powers of ε, where the ratio ε of characteristic masses was assumed to be proportional to the Knudsen number. For the scaling adopted here, the equilibrium distribution functions are shown to be Maxwellian, with a different temperature for electrons and heavy species. We retrieve the zeroth-order and first-order drift-diffusion equations for the electrons, while the macroscopic equations for the heavy species are the Euler equations at order zero, and the Navier-Stokes-Fourier equations at order one. Those equations involve transport fluxes, which are expressed in terms of macroscopic variable gradients and source terms, by means of transport coefficients.

The inelastic scattering cross-section between electrons and heavy species was assumed to be two order of magnitude lower than other relevant scattering cross-sections: σ in,0 h = ε 2 σ 0 . Other things being equal, it was shown that this assumption is necessary to ensure that the electron and heavyspecies respective temperatures, T e and T h , are distinct. In a future study, an alternative scaling will be investigated where the assumptions over the inelastic scattering cross-section between electrons and heavy species are relaxed. For such a new scaling, we expect some of the internal energy states, or internal modes, of the heavy species to thermalize at T e , while the others will thermalize at T h . The Chapman-Enskog expansion will thus require a splitting between the internal energy modes of the heavy-species. Typically, we may assume that vibrational modes are at equilibrium between them at T vib = T e , while rotational and translational modes thermalize at T rot = T h .

The expressions of the transport fluxes for polyatomic plasmas have been derived in the weaklymagnetized case. The structure of the macroscopic "Navier-Stokes type" equations and associated transport fluxes are similar to the monoatomic case treated in [GMM09], though expressions of transport coefficients now involve summations over the internal energy states of the heavy species. Additional terms in the electron second-order transport fluxes have been derived, associated with the interaction between the thermal non-equilibrium and the volume viscosity with the electron diffusion driving force and the electron temperature gradient. In the weakly-magnetized regime, the electron diffusion velocity and heat flux involve transverse driving forces. In a future study, the strongly-magnetized case will be investigated. In this regime, the electron transport fluxes exhibit an anisotropic behaviour with respect to the direction of the magnetic field [GG09] [GGMM10].

The derivation should also be completed with the investigation of the mathematical structure of the macroscopic equations and of the transport linear systems obtained. In particular, the entropy conservation equation must be derived, and the sign of the entropy production rate must be ascertained. Indeed, a positive entropy structure is desirable for numerical stability [START_REF] Bobylev | The chapman-enskog and grad methods for solving the boltzmann equation[END_REF] [Tor16]. Besides, the numerical computation of the transport coefficients derived above, in particular of the electron zeroth-order and first-order diffusion coefficients, should be carried out and compared to both experimental and numerical values, when accessible [EG94] [GGMM10]. Such a calculation will require data for the various collision integrals involved.

The set of equations derived in this chapter, and associated expressions for transport fluxes, are a sound basis for the numerical modeling of non-thermal plasmas. Indeed, the first-order Chapman-Enskog expansion for multicomponent gas mixtures is retrieved in the limit where T e = T h [GGMM10]. Also, as will be seen in Chapter 4, the model derived above from the kinetic theory encompasses almost all previously existing fluid radio-frequency plasma models.

Chapter 3 Numerical Simulation of Silicon Chemical Vapor Deposition

Introduction

Numerical modeling of neutral chemically reacting flows in the laminar regime is now well understood and routinely employed in the study of several applications, among which stand out combustion and materials processing [KCG03]. Both fields share indeed many similarities in their formulation and numerical treatment, involving in particular complex chemistry, multicomponent transport processes, and fluid flow, with often strong couplings between them. A detailed presentation of possible applications and historical developments can be found in [START_REF] Kleijn | Computational Modeling in Semiconductor Processing, chapter Chemical Vapor Deposition Processes[END_REF] 

[KCG03] [PV05] [Smo13].
In this chapter, a fully coupled numerical model for silicon epitaxy by chemical vapor deposition (CVD) is implemented in a software and tested. We solve the equations describing a chemically reacting neutral gas mixture in an axisymmetric finite-gap stagnation flow configuration. The gas phase chemistry is fully coupled to the flow and transport properties of the mixture. An heterogeneous reaction mechanism accounts for the deposition process at the substrate boundary.

The primary goal of this chapter is notably to compare the numerical results obtained with the software to that of the literature in order to demonstrate the correctness of the numerical solution. Epitaxy by chemical vapor deposition (CVD) indeed provides a good benchmark model for this purpose. As can be seen from the results of Chapter 2, the fluid equations for a nonthermal multicomponent plasma exhibit the same structure as standard models of multicomponent reacting flows [Gio99] [KCG03] [GGMM10]. Besides, an axisymmetric geometry is commonly used for both kind of processes. In such a configuration, the process flow is a low Mach number laminar stagnation strained flow, and the corresponding equations can be simplified by a "boundary-layertype" approximation.

The software is tested against the benchmark model developed by C. R. Kleijn [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF] for validation. The results obtained are in close agreement with this benchmark and the software is thus validated. This software will be enriched in Chapter 4 in order to model an axisymmetric plasma discharge reactor.

The reacting flows model employed in this chapter has been tested and validated in a number of practical applications. For instance, C. K. Law and coworkers have presented results of numerical simulation of purely strained planar premixed flames, which they compared to experimental measurements of the temperature, the fluid velocity, and the major species mole fractions [START_REF] Law | On the structural sensitivity of purely strained planar premixed flames to strain rate variations[END_REF]. Their results show an excellent agreement between the experimental data and the numerical simulations. Such a successful comparison with experiment notably requires high quality chemical reaction mechanism and multi-component transport data, accurate boundary conditions, and a carefully designed experiment. As far as chemical vapor deposition is concerned, comparison with experimental data is also more difficult, since deposition processes involved are complex and their description is often only approximate. In particular, the surface reaction mechanism for chemical vapor deposition of silicon used in this Chapter assumes that the conditions of thermal epitaxy are satisfied. Besides, the gas-phase silane chemistry might lead to clustering reactions, which would require to take into account a more complex chemistry and possibly the presence of nanoparticles in the CVD reactor. Therefore, the numerical validation of the software achieved in this chapter does not prejudge any confrontation with experimental data.

The chemical vapor deposition reactor is presented in section 3.2. In section 3.3, the general conservation equations are stated. The thermodynamic properties are described in section 3.4, the gas-phase chemical reaction mechanism is detailed in section 3.5, and the transport fluxes are stated in section 3.6. Then, the low Mach number approximation is derived in section 3.7, yielding the isobaric equations. In section 3.8, the strained flow equations are obtained as exact self similar solutions of the isobaric equations. The transport coefficients are expressed in section 3.9, the boundary conditions in section 3.10, and the surface reaction mechanism is described in section 3.11. Finally, the numerical method is described in section 3.12. Results are presented and compared with the benchmark model [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF] in section 3.13.

Chemical Vapor Deposition Reactor

A CVD reactor is considered, a schematic representation of which is shown in Figure 3.1. The problem is axisymmetric around the z axis, with corresponding polar coordinates r and θ. The inlet gas mixture, namely silane highly diluted in helium, is injected at atmospheric pressure through a showerhead with a velocity parallel to the normal axis. The substrate is placed at the bottom of the reactor and is heated up to temperatures in the range 1,000-1,200 K. The silane molecules approaching the substrate are thus heated by thermal conduction, and consequently dissociate into several radical species, which in turn may react with each other, diffuse toward the substrate, and diffuse backwards in the upstream direction as well. For the process considered here, the silicon radicals impinging on the substrate induce the deposition of crystalline silicon, at a deposition rate of the order of one nanometer per second.

Conservation Equations

The mixture can be considered as neutral, and the electro-magnetic field vanishes. As a consequence, there are no electrons and the mixture is made only of heavy species. There is only one relevant temperature, denoted by

T = T h , (3.3.1)
the mixture-averaged velocity coincides with the heavy-species velocity

v = v h , (3.3.2)
the mass density of the mixture is ρ = ρ h , the heavy-species partial pressure p h is equal to the total pressure p, and the internal energy of the mixture coincides with the heavy-species internal energy E = E h . As well, the viscous tensor Π and the heat flux Q can be identified with the heavy-species viscous tensor Π h and the heavy-species heat flux Q h , respectively. The conservation equations (2.6.1)-(2.6.5) derived in Chapter 2 are now rewritten accordingly, expressing the conservation of total mass 

∂ t ρ + ∂ x • (ρv) = 0, (3.3.3) momentum ∂ t (ρv) + ∂ x • (ρv ⊗ v + p I) + ∂ x • Π = ρg, ( 3 
∂ t E + ∂ x • (Ev) + p ∂ x • v + ∂ x v : Π + ∂ x • Q = 0, (3.3.5)
as well as the conservation of the gas phase species mass densities

∂ t (ρY k ) + ∂ x • (ρY k v + ρY k V k ) = m k ω k , k ∈ S. (3.3.6)
Here, ρ k is the mass density of the k th species, ρ = k∈S ρ k the density of the mixture, v the mass-averaged velocity, p the hydrodynamic pressure, Π the viscous tensor, g the gravity vector, neglected in (2.6.4), E the total energy per unit volume, Q the heat flux, Y k = ρ k /ρ is the mass fraction of the k th species, V k its diffusion velocity, m k its molar mass, and ω k = w k /N a its molar production rate due to chemical reactions. Equations (3.3.3)-(3.3.6) may also be derived from the kinetic theory of multicomponent neutral reactive gas mixtures

[WT62] [MYM63] [EG94] [Gio99].
From equation (2.6.17), the species diffusion fluxes However, as is classical for complex chemistry flows, we may also consider that the variables Y k , k ∈ S, are formally independent unknowns, so that the mass conservation relation (3.3.10) is a consequence of equations (3.3.3) and (3.3.6) rather than an a priori assumption [Gio99]. Equations (3.3.3)-(3.3.6) must be completed with expressions for the thermodynamic properties of the mixture, the transport fluxes, the chemistry source terms, and the boundary conditions.

F k = ρY k V k , k ∈ S, ( 

Thermodynamics

The model requires the evaluation of the thermodynamic properties of the mixture as a function of the state variables T , p, ρ, Y k , k ∈ S, at any time and any point of the reactor.

State law and mixture variables

The perfect gas law has been derived in (2.4.45), and may also be obtained from the standard kinetic theory of neutral gas mixtures [Gio99] 

p = ρRT m , (3.4.1)
where T is the mixture temperature, and m is the mean molar mass of the mixture

1 m = k∈S Y k m k . (3.4.2)
For convenience, we also introduce here various mixture variables, namely the species mole fractions

X k = m m k Y k , k ∈ S, (3.4.3) 
the species partial pressures

p k = ρ k RT m k = pX k , k ∈ S, (3.4.4)
and the species molar concentrations

γ k = p k RT = ρY k m k , k ∈ S. (3.4.5)
All these variables may be used to describe the state of the mixture.

Enthalpy and entropy

The mixture enthalpy H is given by

H = E + p, (3.4.6)
and the enthalpy per unit mass, or "specific enthalpy" of the mixture h is such that where h k is the specific enthalpy of the k th species

h k = h st k + T T st c pk (T ) dT , (3.4.9)
and h st k is the formation enthalpy of the k th species at the standard temperature T st , and c pk is the constant pressure specific heat of the k th species. The constant pressure specific heat of the mixture is given by ρc p = k∈S ρ k c pk , (3.4.10)

and is related to the constant volume specific heat of the mixture c v given in equation (2.5.32) by

c p = c v + R m . (3.4.11)
Similarly, the entropy of the mixture is given by [Gio99] ρs

= k∈S ρ k s k , (3.4.12)
where s k is the specific entropy of the k th species

s k = s st k + T T st c pk (T ) T dT - R m k ln p k p st , (3.4.13)
and s st k = s k (T st , p st ) is the formation entropy of the k th species at the standard temperature T st and standard atmospheric pressure p st = p atm , and p k = ρ k RT /m k is the partial pressure of the k th species. Alternatively The specific entropies s k , k ∈ S, appear in the equilibrium constants for chemical reactions and are thus required in the model.

s k = s atm k - R m k ln p k p st , (3.4 

Enthalpy and temperature equations

The energy conservation equation (3.3.5) can also be expressed in terms of the enthalpy or in terms of the temperature. From the definition of the mixture enthalpy (3.4.6) and the energy conservation equation (3.3.5), the enthalpy balance equation is in the form

∂ t (ρh) + ∂ x • (ρhv) + ∂ x • Q = ∂ t p + ∂ x p • v -∂ x v : Π. (3.4.16)
On the other hand, from (3.3.3) the enthalpy derivatives read

∂ t (ρh) + ∂ x • (ρhv) = ρ∂ t h + ρv • ∂ x h = ρ k∈S ∂ t (Y k h k ) + k∈S ρv • ∂ x (Y k h k ) = ρ k∈S Y k c pk ∂ t T + k∈S ρv • Y k c pk ∂ x T + k∈S h k (ρ∂ t Y k + ρv • ∂ x Y k ) = ρc p ∂ t T + ρc p v • ∂ x T + k∈S h k (ρ∂ t Y k + ρv • ∂ x Y k ).
Since by (3.3.6) and (3.3.3)

ρ∂ t Y k + ρv • ∂ x Y k = m k ω k -∂ x • F k , and k∈S h k ∂ x • F k = ∂ x • k∈S h k F k - k∈S c pk F k • ∂ x T,
the evolution equation for the temperature is found in the form

ρc p ∂ t T + ρc p v • ∂ x T + ∂ x • Q - k∈S h k F k = -Π : ∂ x v + ∂ t p + ∂ x p • v (3.4.17) - k∈S c pk F k • ∂ x T - k∈S h k m k ω k .
The term -k∈S h k m k ω k notably represents the heat release due to chemical reactions.

Thermodynamic data

The enthalpy of the mixture can be computed by (3.4.8) from the knowledge of the species specific enthalpies h k , k ∈ S, and the entropy of the mixture can be computed by (3.4.12) from the knowledge of the species specific entropies s k , k ∈ S. Thus, thermodynamic data needed are the species constant pressure specific heats c pk (T ), k ∈ S, the species specific enthalpies h k (T ), k ∈ S, and the species specific entropies at atmospheric pressure s atm k (T ), k ∈ S. In general, these quantities are evaluated from their molar counterparts

C pk (T ) = m k c pk (T ), H k (T ) = m k h k (T ), S atm k (T ) = m k s atm k (T ). (3.4.18)
From expressions (3.4.9) and (3.4.15), the species molar specific heats C pk (T ), k ∈ S, the species molar specific enthalpies H k (T ), k ∈ S, and the species molar specific entropies at atmospheric pressure S atm k (T ), k ∈ S, are related by the following relations

H k (T ) = H st k + T T st c pk (T ) dT , (3.4.19) S atm k (T ) = S st k + T T st c pk (T ) T dT . (3.4.20)
The molar specific heats C pk (T ), k ∈ S, are generally evaluated from polynomial approximations. The corresponding absolute thermodynamic data can be found in the JANAF Tables [START_REF] Stull | JANAF Thermochemical Tables: Second Edition[END_REF] [

CDD + 85] [Cha98].
In this work, fourth-order NASA / SANDIA polynomials defined over two temperature intervals have been used

C pk (T ) R = a 1k + a 2k T + a 3k T 2 + a 4k T 3 + a 5k T 4 , T inf k ≤ T ≤ T mid k , a 1k + a 2k T + a 3k T 2 + a 4k T 3 + a 5k T 4 , T mid k ≤ T ≤ T sup k , (3.4.21)
where T inf k is the temperature lower bound, T sup k the temperature upper bound, and T mid k an intermediate temperature. Two ranges of temperatures are used for a better precision over c pk (T ). The molar specific enthalpies and the molar specific entropies at atmospheric pressure then read from (3.4.19) and (3.4.20), respectively where T inf = 300 K, T mid = 1000 K and T sup = 4000 K, with absolute data (circles) from the JANAF Thermochemical Tables [START_REF] Chase | NIST-JANAF thermochemical tables: Fourth edition[END_REF].

H k (T ) RT = a 1k + a 2k T /2 + a 3k T 2 /3 + a 4k T 3 /4 + a 5k T 4 /5 + a 6k /T, T inf k ≤ T ≤ T mid k , a 1k + a 2k T /2 + a 3k T 2 /3 + a 4k T 3 /4 + a 5k T 4 /5 + a 6k /T, T mid k ≤ T ≤ T sup k , ( 
S atm k (T ) R = a 1k ln T + a 2k T + a 3k T 2 /2 + a 4k T 3 /3 + a 5k T 4 /4 + a 7k , T inf k ≤ T ≤ T mid k , a 1k ln T + a 2k T + a 3k T 2 /2 + a 4k T 3 /3 + a 5k T 4 /4 + a 7k , T mid k ≤ T ≤ T sup k , (3.4.23)
where the coefficients a 1k , a 1k are related in particular to H st k and a 7k , a 7k to S st k . The polynomial expansion coefficients have been taken from the Chemkin Thermodynamic Database [START_REF] Kee | The Chemkin thermodynamic data base[END_REF]. For each species k ∈ S, the tables give the temperatures T inf k , T mid k and T sup k , and the two sets of coefficients a 1k , . . . , a 7k , and a 1k , . . . , a 7k corresponding to the respective temperature ranges [T inf k , T mid k ] and [T mid k , T sup k ]. As an example, Figure 3.2 shows a comparison of the polynomial fits obtained for the silane molar constant pressure specific heat C p SiH 4 , valid over the temperature ranges 300-1000 K and 1000-4000 K, with the absolute data from the JANAF Thermochemical Tables [START_REF] Chase | NIST-JANAF thermochemical tables: Fourth edition[END_REF]. As can be seen on the figure, the polynomial fit is consistent with absolute thermodynamic data over the prescribed range of temperatures [T inf SiH 4 , T sup SiH 4 ].

Chemistry

We consider a set of n r chemical reactions, which can be written in the form

k∈S ν rf k M k k∈S ν rb k M k , r ∈ R, (3.5.1)
where R = {1, . . . , n r } is the set of reaction indices, M k denotes the chemical symbol of the k th species, and where ν rf k , respectively ν rb k , denotes the forward, respectively the backward, stoichiometric coefficient of the k th species in the r th reaction. According to the kinetic theory [EG94] [Gio99], the molar production rate of the k th species can be decomposed into the different contributions from each reaction

ω k = r∈R ν r k τ r , (3.5.2)
where τ r is the rate of progress of the r th reaction, and

ν r k = ν rf k -ν rb k (3.5.3)
is the net stoichiometric coefficient of the k th species in the r th reaction. The stoichiometric coefficients satisfy the relation (2.2.38) for conservation of mass

[EG94] [Gio99] k∈S ν rf k m k = k∈S ν rb k m k , r ∈ R, (3.5.4)
which in turn yields the total mass conservation equation for chemical reactions (3.3.9). The rate of progress (2.4.160) reads

τ r = K f r k∈S γ ν rf k k -K b r k∈S γ ν rb k k , (3.5.5) 
where γ k = ρY k /m k is the molar concentration of the k th species, and K f r and K b r are the forward and backward rate constants of the r th reaction. As a consequence of detailed balancing and reciprocity relations (2.2.36), the ratio of the rate constants K f r and K b r is the equilibrium constant of the r th reaction, as already stated in (2.4.169)

K e r (T ) = K f r (T ) K b r (T )
.

(3.5.6)

The equilibrium constant also corresponds to the chemical equilibrium proportions, as described by statistical mechanics [Tol38], as well as classical thermochemistry [START_REF] Shapiro | Mass action law and the gibbs free energy function[END_REF] [Kra70], and is given by (2.4.168)

ln K e r (T ) = - k∈S ν r k m k RT g atm k (T ) - RT m k ln ( p atm RT ) , (3.5.7)
where g atm k , k ∈ S, denote the species specific Gibbs functions at atmospheric pressure

g atm k (T ) = h k (T ) -T s atm k (T ), k ∈ S. (3.5.8)
In general, the forward rate constant is approximated by a generalized Arrhenius empirical relation of the form

K f r (T ) = A r T βr exp - E r RT , (3.5 

.9)

where A r is the pre-exponential factor, β r the pre-exponential exponent and E r ≥ 0 the activation energy of the r th reaction. The backward rate constant is then deduced from the forward rate constant (3.5.9) and the equilibrium constant (3.5.7) by applying the law of mass action (3.5.6).

The gas phase reaction mechanism adopted for the present model has been developed by Coltrin and coworkers [CKE89], as described in [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. The n r = 26 reversible chemical reactions and associated Arrhenius parameters are listed in Table 3.1. The gas phase chemical kinetics are driven by the decomposition of SiH 4 into SiH 2 and H 2 in the hot gas region above the susceptor surface. This initiates a chain of homogeneous reactions, leading to the formation of many silicon containing species. Each of these species may diffuse to and react at the surface to form crystalline silicon. The gas phase chemistry mechanism is implemented within a highly vectorized version [START_REF] Giovangigli | Vector computers and complex chemistry combustion[END_REF] of the Chemkin-II FORTRAN software [START_REF] Kee | Chemkin-II: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics[END_REF].

Transport Fluxes

The transport fluxes derived in Chapter 2 are now rewritten in the case of a neutral gas mixture. The electro-magnetic field vanishes and in the absence of electrons the viscous tensor Π and the heat flux Q are identified with the heavy-species viscous tensor Π h and the heavy-species heat flux Q h , respectively. From equations (2.6.34)-(2.6.36), the transport fluxes read

Π = -(κ -2 3 η)(∂ x • v) I -η (∂ x v + ∂ x v t ),
(3.6.1)

V k = - l∈S D kl dl -θ k ∂ x ln T, k ∈ S, (3.6.2) Q = k∈S h k F k -λ∂ x T -p k∈S θ k dk , (3.6.3)
where κ = κ h denotes the volume viscosity, η = η h the shear viscosity, t the transposition operator, D kl , k, l ∈ S the multicomponent diffusion coefficients, dk the unconstrained diffusion driving force of the k th species, θ k = θ kh the thermal diffusion coefficient of the k th species and λ = λhh the partial thermal conductivity. The species diffusion driving forces read

dk = 1 p ∂ x p k = X k ∂ x ln p + ∂ x X k , k ∈ S.
(3.6.4)

The first term in the expression (3.6.2) of the diffusion velocity V k incorporates diffusion effects due to partial pressure gradients and specific external forces. The second term represents diffusion due to temperature gradients and is called the Soret effect. The first term in the expression (3.6.3) of the heat flux Q represents the transfer of energy accompanying species molecular diffusion, whereas the second term corresponds to Fourier's law. The third term stands for thermal diffusion due to concentration gradients, and is referred to as the Dufour effect, which is the symmetric of the Soret effect. Expressions (3.6.1)-(3.6.3) for transport fluxes may also be derived from the kinetic theory of multicomponent neutral gas mixtures

[WT62] [CC70] [FK72] [EG94] [Gio99].
From the relations (2.5.61)-(2.5.63) and (2.5.67), the diffusion matrix D = (D kl ) k,l∈S , which coincides with the heavy-species diffusion matrix D h when Y e = 0, exhibits the following mathematical properties

D = D t , (3.6.5) N (D) = RY, (3.6.6) R(D) = Y ⊥ , (3.6.7) D is nonnegative, (3.6.8) 
i.e., D is symmetric, nonnegative, its kernel is the one-dimensional space spanned by the vector Y = (Y k ) k∈S , and its range is the orthogonal complement to RY . From the preceding relations (3.6.5) and (3.6.7), or from (2.5.67), the diffusion matrix D satisfies the relation 

d k = ∂ x X k + (X k -Y k ) ∂ x ln p, k ∈ S, (3.6.11)
where X k = p k /p and Y k = ρ k /ρ are the respective mole and mass fractions of the k th species, in place of the unconstrained diffusion driving forces dk , k ∈ S, in expressions (3.6.2) and (3.6.3) for the species diffusion velocities and heat flux

V k = - l∈S D kl d l -θ k ∂ x ln T, k ∈ S, (3 
.6.12)

Q = k∈S h k F k -λ∂ x T -p k∈S θ k d k .
(3.6.13) Both formulations are indeed equivalent, since

d k = dk -Y k l∈S dl , (3.6.14) Y ∈ N (D)
and Y, θ = 0 by (3.6.9) and (3.6.10). The mass conservation constraint (3.3.8) over the species diffusion velocities is also a consequence of (3.6.9) and (3.6.10). Correspondingly, the constrained diffusion driving forces are by definition linearly dependent k∈S d k = 0, (3.6.15)

as are the species diffusion fluxes

F k = ρY k V k , k ∈ S.
Finally, the diffusion velocities V k , k ∈ S, and the heat flux Q may be expressed in terms of the thermal diffusion ratios χ k , k ∈ S, and the thermal conductivity λ, instead of the partial thermal conductivity λ and the thermal diffusion coefficients θ k , k ∈ S. The species thermal diffusion ratios are the solution to the following constrained linear system

       Dχ = θ, k∈S χ k = 0, (3.6.16)
where χ = (χ k ) k∈S and θ = (θ k ) k∈S . The system (3.6.16) is well-posed since D is positive definite over the space U ⊥ , where U = (1) k∈S is the unit vector [EG94]. The thermal conductivity is then given by λ = λp T k∈S θ k χ k .

(3.6.17) Expressions (3.6.12) and (3.6.13) for the diffusion velocities and heat flux may then be replaced with the following alternative expressions

V k = - l∈S D kl (d l + χ l ∂ x ln T ), k ∈ S, (3.6.18) Q = k∈S h k F k -λ∂ x T + p k∈S χ k V k .
(3.6.19)

Low Mach Number Flow

In the chemical vapor deposition process considered in this Chapter, the macroscopic fluid velocity v is usually negligible in comparison with the sound speed. In other words, the Mach number, which is the ratio of a characteristic macroscopic velocity v 0 over a characteristic sound speed c 0 s , is small compared to one

= v 0 c 0 s 1. (3.7.1)
For an ideal gas mixture, a characteristic sound velocity may be taken as

c 0 s = p 0 ρ 0 , (3.7.2)
where p 0 and ρ 0 denote a characteristic pressure and a characteristic mass density of the fluid, respectively. The characteristic (volume or shear) viscosity is denoted by η 0 and the typical hydrodynamic length L 0 is a viscous length, i.e., a length such that the Reynolds number is of order unity

L 0 = η 0 ρ 0 v 0 , (3.7.3)
and the corresponding characteristic time is t 0 = L 0 /v 0 . As stated above, the only external force acting on the species is gravity. We assume that the associated Froude number is of order unity or larger (v 0 )2 L 0 g 0 1, (3.7.4) where g 0 is the order of magnitude of the gravitational acceleration.

Momentum equation and pressure splitting

The scaling introduced above is applied to the momentum equation (3.3.4). The scaled ratio associated with quantity φ is denoted by φ = φ/φ 0 . The following momentum equation is obtained after a little algebra [Gio99] From (3.7.5) we deduce that the pressure spatial gradient is of order O( 2 ), so that the pressure can be decomposed into p( t, x) = p 0 ( t) + 2 p 2 ( t, x).

(3.7.6)

In terms of the original variables, this yields the classical splitting [Gio99]

p(t, x) = p 0 (t) + 2 p(t, x), (3.7.7) 
where p 0 is a spatially uniform pressure and p is the fluid hydrodynamic perturbation. Upon introducing this pressure splitting in equation (3.7.5), the following simplified momentum conservation equation is obtained [Gio99] in terms of the original variables

∂ t (ρv) + ∂ x • (ρv ⊗ v) + ∂ x p + ∂ x • Π = ρg.
(3.7.8)

As well, the following simplified state law [Gio99] is obtained from (3.4.1)

ρ = p 0 m RT , (3.7.9)
where terms of order two or larger in have been omitted. With such a simplified state law and momentum equation, acoustic waves are notably filtered out.

Temperature equation

In the low Mach number limit, the temperature evolution equation (3.4.17) may also be simplified.

The internal energy is associated with molecular velocity fluctuations, so that

c 0 p T 0 = (c 0 s ) 2 , (3.7.10)
where c 0 p and T 0 are the respective orders of magnitude of the constant pressure specific heat and temperature. Furthermore, the characteristic thermal conductivity scales as

λ 0 = η 0 c 0 p , (3.7.11) 
i.e., the Prandtl number is of order one, and the order of magnitude of the diffusion coefficients D 0 is such that the Schmidt number is of order one, namely

η 0 = ρ 0 D 0 .
(3.7.12)

Taking into account these orders of magnitude, the following scaled evolution equation for the temperature is obtained after some algebra

ρ c p ∂ t T + ρ c p v • ∂ x T + ∂ x • Q - k∈S h k F k = ∂ t p 0 + 2 ∂ t p 2 + ∂ x p 2 • v -Π : ∂ x v - k∈S c pk F k • ∂ x T - k∈S h k m k ω k . (3.7.13)
Finally, expanding equation (3.7.13) at order zero in 2 yields the following temperature equation in the low Mach number limit [Gio99], written in terms of the original variables

ρc p ∂ t T + ρc p v • ∂ x T + ∂ x • Q - k∈S h k F k = - k∈S c pk F k • ∂ x T - k∈S h k m k ω k . (3.7.14)
Note that the uniform pressure in the CVD reactor p 0 is independent of time, so that ∂ t p 0 = 0. Equation (3.7.14) merely expresses energy balance.

Isobaric equations

The low Mach number scaling, when applied to the species mass conservation equations (3.3.6) and the total mass conservation equation (3.3.3), does not yield any further simplification. Upon assuming that the spatially uniform pressure p 0 is independent of time, we obtain the so-called "isobaric equations" (3.3.3), (3.3.6), (3.7.8) and (3.7.14) [Gio99]

∂ t ρ + ∂ x • (ρv) = 0, (3.7.15) 
∂ t (ρY k ) + ∂ x • (ρY k v + F k ) = m k ω k , k ∈ S, (3.7.16) ∂ t (ρv) + ∂ x • (ρv ⊗ v) + ∂ x p + ∂ x • Π = ρg,
(3.7.17)

ρc p ∂ t T + ρc p v • ∂ x T + ∂ x • Q - k∈S h k F k = - k∈S c pk F k • ∂ x T - k∈S h k m k ω k .
(3.7.18)

In the next section, we seek for self similar solutions of such isobaric equations (3.7.15)-(3.7.18) in axisymmetric geometry.

Strained Flow

The chemical vapor deposition process flow considered in this study is a particular case of strained flows. Strained flows may be obtained by directing two impinging jets one on each other or against a flat plate. The corresponding equations are usually derived from a boundary layer approximation. However, in planar or cylindrincal geometries, the strained flow equations may be obtained as exact solutions [START_REF] Giovangigli | Structure et extinction de flammes laminaires prémélangées[END_REF] [KMEDL88] [Gio99] of the isobaric equations (3.7.15)-(3.7.18).

Self similar solution

We recall that the cylindrical coordinates (r, θ, z), with corresponding unit vectors e r , e θ and e z , are such that e z is normal to the stagnation plane (O, e r , e θ ), where O is the origin located at the centre of the substrate (see Figure 3.1). Because of the axial symmetry, the average velocity may be written in the cylindrical coordinates v = (u, 0, w). We also assume that gravity is either oriented in the normal direction, namely g = (0, 0, g), or negligible. In this framework, we seek for a self similar solution of the isobaric equations (3.7.15)-(3.7.18), of the form

ρ = ρ(t, z) (3.8.1) u = rû(t, z) (3.8.2) w = w(t, z) (3.8.3) p = -J(t) r 2 2 + p(t, z) (3.8.4) T = T (t, z) (3.8.5) Y k = Y k (t, z), k ∈ S, (3.8.6)
where J(t) denotes the pressure curvature in the tangential direction.

From expressions (3.6.18) and (3.6.19), the diffusion velocities and heat flux can be expressed in the form

V k = 0, 0, V k (t, z) , k ∈ S, (3.8.7) Q = 0, 0, Q(t, z) .
(3.8.8)

Upon substituting (3.8.1)-(3.8.6) into the isobaric equations (3.7.15)-(3.7.18), the fluid equations may be written in the form

∂ t ρ + 2ρû + ∂ z (ρw) = 0,
(3.8.9) 

ρ∂ t Y k + ρw∂ z Y k = m k ω k -∂ z F k , k ∈ S, (3.8 
ρc p ∂ t T + ρc p w∂ z T = ∂ z λ∂ z T -p k∈S χ k V k - k∈S c pk F k ∂ z T - k∈S h k m k ω k , (3.8.13)
where F k = ρY k V k is the normal coordinate of the k th -species diffusion flux, so that for all k ∈ S, F k = (0, 0, F k ). The first two equations are the conservation equations for the fluid density and the species mass fractions, respectively, the third and fourth equations are the conservation equations for the tangential and normal velocity components, û and w, respectively, and the fifth equation is the evolution equation for the temperature. Equation (3.8.12) for the normal momentum uncouples from the remaining governing equations, and is usually discarded though it may be used to determine the pressure correction p. The equation for tangential momentum is divided by r, and the system of equations to be solved finally reads 

∂ t ρ + 2ρû + ∂ z (ρw) = 0, (3.8.14) ρ∂ t Y k + ρw∂ z Y k = m k ω k -∂ z F k , k ∈ S, ( 
ρc p ∂ t T + ρc p w∂ z T = ∂ z λ∂ z T -p k∈S χ k V k - k∈S c pk F k ∂ z T - k∈S h k m k ω k .
(3.8.17)

Since p 0 is a known parameter, ρ is obtained from the perfect gas law (3.7.9), provided the mass fractions Y k , k ∈ S, and temperature T are known. Thus, we are left with n s +3 formally independent unknowns, namely the temperature T , the species mass fractions Y k , k ∈ S, the so-called tangential velocity û, and the normal velocity w. Equation (3.8.14) determines the normal velocity, equation (3.8.15) the species mass fractions, equation (3.8.16) the tangential velocity, and equation (3.8.17) the temperature.

The system of equations (3.8.14)-(3.4.17) is valid provided boundary conditions are compatible with the self-similarity assumptions (3.8.1)-(3.8.6). The method is easily extended to the case of a rotating disk reactor. The convection velocity is then taken in the form v = (ru(z, t), rv(z, t), w(z, t)) [KCG03].

Traditional variables

The pressure curvature J is a natural parameter of the laminar flow process that is generally independent of time and that is usually specified through the strain rate α = J ρ in .

(3.8.18)

The injected mixture macroscopic properties T in , p in , ρ in , (Y in k ) k∈S , are also such that 

ρ in = p in m in RT in , (3.8 
ρ∂ t Y k + w∂ z Y k = m k ω k -∂ z F k , k ∈ S, (3.8.23) ρ∂ t ũ + w∂ z ũ = α(ρ in -ρũ 2 ) + ∂ z (η∂ z ũ), (3.8.24) ρc p ∂ t T + c p w∂ z T = ∂ z λ∂ z T -p k∈S χ k V k - k∈S c pk F k ∂ z T - k∈S h k m k ω k . (3.8.25)
The transport fluxes, namely the species diffusion velocities V k = V k (t, z)e z , k ∈ S, the heat flux Q = Q(t, z)e z , the viscous tensor Π = Π(t, z)e z , have been expressed in section 3.6 in terms of transport coefficients, whose expressions are given in the following section.

Transport Coefficients

Transport coefficients have been calculated by means of the multicomponent transport library "EGLIB" developed by Ern and Giovangigli [START_REF] Ern | EGLIB server and user's manual[END_REF]. In this section, the approximations chosen for each transport coefficient are described and compared to those of the benchmark model [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. For a thorough description of the mathematical theory of multicomponent transport property evaluation, the reader is referred to [EG94] [Gio99].

Transport coefficients generally depend on the temperature T , the pressure p, and the species mass fractions Y k , k ∈ S. In the low Mach number limit, the transport coefficients depend only on the spatially uniform pressure p 0 .

Molecular parameters and collision integrals

The practical calculation of transport coefficients requires the choice of the interaction potentials ϕ kl between molecule species pairs (k, l), k, l ∈ S. Generally the Lennard-Jones interaction potentials are used

ϕ kl = 4 kl σ kl r 12 - σ kl r 6 , (3.9.1)
where σ kl denotes the collision diameter, kl the potential well depth, and r the distance between the molecules. Molecular parameters kl and σ kl , for k, l ∈ S, are usually expressed in terms of pure species parameters k and σ k , for k ∈ S. The mixture contains exclusively non polar molecules and for such molecules, the collision diameter and the potential well depth read

kl k b = k k b l k b , ( 3 
.9.2)

σ kl = 1 2 (σ k + σ l ).
(3.9.3)

The transport linear systems are generally expressed in terms of collision integrals which are functions of the state variables and of molecular parameters. These quantities are integrals along collision paths between pairs of molecules which naturally appear in the expression of transport linear systems and which depend on the dynamics of intermolecular collisions and thus on species pairs [CC70] [FK72] [EG94]. The species collision numbers ξ int k at 298 K, k ∈ P, where P denotes the set of polyatomic species, are also required for the evaluation of transport coefficients [EG94]. These collision numbers are associated with energy transfer either between translational degrees of freedom and internal degrees of freedom or between internal degrees of freedom [EG94] [Gio99], and arise under the common assumption that complex collisions, i.e., collisions in which there are more than one quantum jumps, may be neglected [START_REF] Mason | Heat conductivity of polyatomic and polar gases[END_REF] [MPM65] [EG94].

In this work, the pure species transport properties and the collision integrals needed were calculated using approximation formulas and a software written at the SANDIA National Laboratories [KDLW + 86]. Lennard-Jones interaction potentials are used as in the benchmark model by Kleijn [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. The molecular species parameters have been taken from [KDLW + 98], and are listed in Table 3.2.

The different approximations chosen for each transport coefficient are detailed in the remaining of this section.

Shear viscosity

In the benchmark model by Kleijn [Kle00], the shear viscosity η is evaluated from Wilke's empirical formula [START_REF] Wilke | A viscosity equation for gas mixtures[END_REF] [KDLW + 98]

η Wilke = √ 8 k∈S X k η k l∈S X l (1 + m k /m l ) -1/2 1 + (η k /η l ) 1/2 (m l /m k ) 1/4 ) 2 , (3.9.4)
where η k , k ∈ S, denote the pure species shear viscosities. However, as shown by Ern and Giovangigli [START_REF] Ern | Optimized transport algorithms for flame codes[END_REF] [Gio99], even a direct resolution of the symmetric linear system associated with the first "natural" variational space for the shear viscosity, namely the space of size n s spanned by the basis functions

φ 2000k = (w k ⊗ w k - 1 3 w k • w k I)δ kl l∈S , k ∈ S, (3.9.5)
is less computationally expensive than Wilke's formula which involves fourth order roots. Thus, we prefer applying one step of the conjugate gradient method to the corresponding linear system, which is faster than a direct numerical inversion, while still ten times more accurate than Wilke's formula [EG94] [EG95a] [EG96a].

Diffusion coefficients

The diffusion coefficients are approximated by the first order diffusion coefficients

[Gio91] [EG94] [Gio99] D = D [0] ,
associated with the projection of the perturbed distribution functions Φ D i , i ∈ S, on the variational space of size n s spanned by the functions

φ 1000k = w k δ kl l∈S , k ∈ S.
(3.9.6)

The corresponding transport linear system is made of n s systems of order n s indexed by i ∈ S, of the form

∆α D i = β D i (3.9.7) α D i ∈ Y ⊥ , (3.9.8)
where Y = (Y k ) k∈S is the mass fraction vector. The system matrix ∆ is common to the n s linear systems, and is given by

∆ kk = l∈S l =k X k X l D bin k,l
, k ∈ S, (3.9.9)

∆ kl = - X k X l D bin k,l
, k, l ∈ S, k = l, (3.9.10) where D bin k,l is the binary diffusion coefficient for species pair (k, l), which only depends on T and p. The right hand terms of (3.9.7) are given by

β D i k = δ ki - Y k j∈S Y j , k ∈ S.
(3.9.11)

Finally, the approximate diffusion coefficients are evaluated from the following expressions [EG94] [Gio99]

D [0] ij = α D i , β D j = α D j , β D i = α D i j = α D j i , i, j ∈ S.
(3.9.12)

From the preceding relations, and from equation (3.6.18), where D has been replaced by

D [0] , the classical Stefan-Maxwell [Wil58] [DL68] [Gio90] equations are retrieved d k + χ k ∂ x ln T = l∈S l =k X k X l D bin k,l V l - l∈S l =k X k X l D bin k,l V k , k ∈ S, (3.9.13) l∈S Y l V l = 0.
(3.9.14) Thus, evaluation of the first order transport coefficients D [0] is equivalent to solving the constrained linear system (3.9.7)-(3.9.8) or, equivalently, to inverting the Stefan-Maxwell equations (3.9.13)-(3.9.14) for the diffusion velocities. A more precise description of the mathematical properties associated with the Stefan-Maxwell equations may be found in

[Gio90] [Gio91] [EG94].
Kleijn [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF] also considers the Stefan-Maxwell equations corresponding to the first order diffusion coefficients D [0] , and proceeds by a direct inversion of a nonsymmetric form of the corresponding linear system [KDLW + 98]. Conversely, we have applied two steps of a projected standard iterative method to approximate the diffusion coefficients [START_REF] Ern | EGLIB server and user's manual[END_REF], which is ten times to hundred times faster [START_REF] Ern | Optimized transport algorithms for flame codes[END_REF] and should remain within tenths of a percent accuracy with respect to the exact solution [EG94].

Thermal conductivity and thermal diffusion ratios

It is worth noting that in reference [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF] the so-called "thermal conductivity λ" actually refers to the partial thermal conductivity defined above as λ. This difference of nomenclature is also observable in the Chemkin Transport Package [KDLW + 98], which is the reference cited by Kleijn, where the quantity "λ 0 " is called the "thermal conductivity", but actually stands for the partial thermal conductivity. The original papers by Monchick, Yun and Mason [MYM63] and Dixon-Lewis [START_REF] Dixon-Lewis | Flame structure and flame reaction kinetics: II. Transport phenomena in multicomponent systems[END_REF], however, make a clear distinction between the partial thermal conductivity, denoted by "λ 0 ", and the thermal conductivity, denoted by "λ ∞ ". As well, the thermal diffusion coefficients D t k defined by Kleijn [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF] following [MYM63] [DL68] [KDLW + 98] differ from our definition by the factor ρY k

D t k = ρY k θ k , k ∈ S, (3.9.15)
as shown in [EG94]. Having this in mind, we conserve in the following the notations and terminology adopted in the preceding sections. We denote by λ[1] , θ [1] , D [1] the first-order partial thermal conductivity, thermal diffusion vector, and diffusion matrix derived from the resolution of the constrained linear system arising from the projection of the perturbed distribution functions Φ λ, and Φ D l , l ∈ S, on the variational space [EG94]

A D = A λ = Span φ 1000k , k ∈ S, φ 1010k , k ∈ S, φ 1001k , k ∈ P ,
where the φ 1000k , k ∈ S, were given in (3.9.6), and where

φ 1010k = ( 5 2 -w k • w k )w k δ kl l∈S , k ∈ S (3.9.16
)

φ 1001k = ( k -kk )w k δ kl l∈S , k ∈ P.
(3.9.17)

The set P is the indexing set for polyatomic molecules, n P the number of polyatomic molecules, and k = E k /k b T , k ∈ P. In particular, D [1] is a higher order of approximation than D [0] for the multicomponent diffusion matrix D.

In the benchmark model [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF], the partial thermal conductivity λ and the thermal diffusion vector θ = (θ k ) k∈S are evaluated through the direct matrix inversion of the first-order linear system of size 2n s + n P associated with the variational space A λ described above, while D is approximated by D [0] instead of D [1] .

The space A λ can be decomposed into

A λ = Span φ 1000k , k ∈ S ⊕ A λ , (3.9.18)
where A λ = Span φ 1010k , k ∈ S, φ 1001k , k ∈ P .

(3.9.19)

Ern and Giovangigli [START_REF] Ern | Thermal conduction and thermal diffusion in dilute polyatomic gas mixtures[END_REF] have shown that approximating λ, θ, D by λ[1] , θ [1] , D [1] , respectively, and defining the approximate thermal conductivity λ [1] and thermal diffusion ratios χ

[1] k , k ∈ S, by        D [1] χ [1] = θ [1] , k∈S χ [1] k = 0,
(3.9.20)

λ [1] = λ[1] - p T k∈S θ [1] k χ [1]
k , (3.9.21) is actually equivalent to approximating D by D [1] , and λ and χ from the projection of the perturbed distribution function on the variational space A λ of size n s + n P . In other words, the variational space associated with the evaluation of λ and χ uncouples from the variational space for D. Therefore, we have kept the approximation D = D [0] as in [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF] for the diffusion matrix, but we have chosen the first-order expression for the thermal conductivity and thermal diffusion ratios λ = λ [1] (3.9.22)

χ k = χ [1]
k , k ∈ S, (3.9.23) instead of approximating the partial thermal conductivity and thermal diffusion vector by expressions λ[1] and θ [1] , as in the benchmark model [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. Indeed, there is no reason for neglecting the translational and internal energy when expanding Φ D l for the calculation of the diffusion coefficients, but not neglecting it for the calculation of λ and θ.

Boundary Conditions

We consider now the CVD reactor model illustrated in Figure 3.1 for which we specify relevant boundary conditions compatible with the self similar formulation. The substrate is at z = 0, while z = L corresponds to the injection plane. The temperature at the substrate boundary is assumed constant and equal to

T | t,0 = T s , (3.10.1)
and the temperature at the inlet boundary is equal to the temperature of the inlet gas mixture

T | t,L = T in . (3.10.2)
The inlet flux is assumed to be perfectly normal, since the gas mixture is injected through a showerhead. Besides, the condition of adherence on the substrate can reasonably be assumed for such atmospheric pressure flows with convection velocities around 10 cm.s -1 . Thus the boundary conditions for the tangential velocity read ũ| t,0 = 0, (3.10.3)

ũ| t,L = 0. (3.10.4)
The inlet boundary conditions for the species mass fractions are those of a porous wall

Y k w + F k t,L = Y in k win , k ∈ S, (3.10.5) 
where win = w| t,L is the inlet mass flow, assumed continuous at the interface and Y in k , k ∈ S are the species mass fractions in the injected mixture.

The boundary conditions for the species mass fractions at the substrate are those of a catalytic plate

Y k w + F k t,0 = m k ω k , k ∈ S, (3.10.6)
where ω k is the surface molar production rate of the k th species. Physically speaking, the normal velocity is constrained at both ends of the reactor, inlet and substrate. Indeed, if we neglect the slight variation of the substrate position along the z axis due to surface growth, the normal velocity at the substrate must be zero or equal to the Stefan flux

w| t,0 = k∈S m k ω k (3.10.7) associated with surface deposition [Gio99] [Kle00] [KCG03]
. On the other hand, the inlet velocity is imposed by the experimentator. Thus, two boundary conditions are specified for the normal velocity equation (3.8.22), which is only of order one in w. The excess boundary condition actually determines the scalar α. Two methods are then possible in practice. As a first method, the normal velocity is specified at both ends of the reactor, while the strain rate α is treated as an eigenvalue of the boundary-value problem [KCG03]. Alternatively, the normal mass flux at the substrate is set equal to the Stefan flux (3.10.7), and the strain rate α is given as an input parameter to the numerical solver, while the inlet normal velocity is left unkown. Several numerical simulations are then run for different values of α until the steady-state normal velocity at the upper boundary approaches the specified value w| t,L = win . The latter method is the method used in this work.

in the limit s kr → 1, where nearly all the molecules of species k r stick to the wall without being reflected

[MW60] [KCG03].
The silicon deposition rate associated with each surface reaction r ∈ R is then given by

w r Si(s) = V Si m ν rb Si(s) τ r , (3.11.6)
where ν rb Si(s) is the backward stoichiometric coefficient of Si(s) in the r th surface reaction, and V Si m is the molar volume of crystalline silicon V Si m 12.06 cm 3 .mol -1 , (3.11.7) and, consequently, the total silicon deposition rate reads

w Si(s) = r∈ R w r Si(s) = V Si m ω Si(s) .
(3.11.8)

The sticking coefficients have been taken from [CKM86], as described in the benchmark model [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. The list of surface reactions and the corresponding sticking coefficients are given in Table 3.3. The values correspond to a substrate temperature of T s = 1000 K.

The surface reaction mechanism can be very complex and include adsorption, desorption, complex surface reactions between surface species only or involving also gas-phase species. The accurate description of surface deposition requires an appropriate surface reaction scheme, along with the corresponding thermodynamic and reaction data [KCG03]. The present surface reaction mechanism is thus a first step towards a more consistent numerical modeling of the deposition process.

Numerical Method

Equations (3.8.22)-(3.8.25) are discretized over a grid along the z axis of the form

Z = {0 = z 1 < z 2 < • • • < z N = L} , (3.12.1)
where N is the number of grid points. We denote by n c = n s + 3 the number of unknowns. The solution vector is denoted by Ξ = (Ξ l ) 1≤l≤n c = (T, ũ, ṽ, Y 1 , . . . , Y n s ), (3.12.2) and the discretized solution vector is denoted by

Ξ Z = (Ξ l,i ) 1≤l≤n c ,1≤i≤N , (3.12.3)
where Ξ l,i = Ξ l (z i ). The discretized equations are obtained from a three-point finite difference scheme. The time derivatives are discretized in a fully implicit manner. The convective terms appearing in the equations for the tangential velocity, the species mass fractions, and the temperature, are treated by means of an upwind scheme [Pat80].

The steady discretized equations consist in a system of N ×(n s +3) nonlinear algebraic equations, of the form F Z (Ξ Z ) = 0.

(3.12.4)

A modified Newton method is applied to the latter system of discretized equations. The corresponding iterates are given as

J(Ξ k Z )(Ξ k+1 Z -Ξ k Z ) = -λ k F Z (Ξ k Z ), k = 0, 1, 2 . . . , (3.12.5)
where Ξ k Z is the k th Newton iteration, λ k the k th damping parameter calculated according to the method of Deuflhard [START_REF] Deuflhard | A modified newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting[END_REF], and where

J(Ξ k Z ) = ∂F Z ∂Ξ Z (Ξ k Z )
(3.12.6) denotes the Jacobian matrix evaluated at Ξ k Z . The Jacobian matrix is obtained from the evaluation of the finite differences of

F Z J(Ξ Z )U = F Z (Ξ Z + δU ) -F Z (Ξ Z ) δ (3.12.7)
along vectors of the form U = U k 0 ,n 0 , indexed by k 0 ∈ {1, . . . , n c } and n 0 ∈ {1, 2, 3}. For each k 0 ∈ {1, . . . , n c } and n 0 ∈ {1, 2, 3}, the vector U k 0 ,n 0 = (U ln ) k∈{1,...,n c },n∈{1,...,N } is taken such that its only nonzero components U ln are those for which k = k 0 and n ≡ n 0 (mod 3). Consequently, the evaluation of the Jacobian matrix requires merely 3n c + 1 evaluations of F Z . Furthermore, the thermochemical properties, namely the molar production rates and transport coefficients, need only be evaluated every three points when evaluating the perturbed terms F Z (Ξ Z + δU ), provided that F Z (Ξ Z ) has been evaluated first. Also, due to the use of a three-point discretization scheme, the numerical Jacobian is banded, that is the Jacobian matrix consists in blocks whose nonzero elements appear only in the first three diagonals. The numerical inversion of such a matrix can be considerably simplified by using an appropriate decomposition method given by linear algebra.

The steady equations (3.12.4) are solved by the Newton method after a specified number of nonstationary iterations, provided the non-stationary solution has approached sufficiently the domain of convergence of the steady equations. The non-stationary equations for the n th iteration at time t may be written in the form

A(Ξ n Z ) ∂ t Ξ n Z + F Z (Ξ n Z ) = 0, ( 3 
.12.8) were Ξ n Z denotes the n th iterate over the grid Z, A(Ξ n Z ) is a bloc diagonal matrix, and

∂ t Ξ n Z = Ξ n Z -Ξ n-1 Z t n -t n-1
(3.12.9)

is the discretized time derivative at time t n . These implicit non-stationary equations are solved by the Newton method, making use of the following Euler predictor

Ξ n Z = Ξ n-1 Z + ∆t n ∂ t Ξ n-1 Z .
(3.12.10) Accordingly, the time step at iteration n, ∆t n = t n -t n-1 , is chosen such that

Ξ n Z -Ξ n Z 1 2 (∆t n ) 2 ∂ t Ξ n-1 Z -∂ t Ξ n-2 Z t n-1 -t n-2 ≤ ε, (3.12.11)
where ε is taken smaller than 1.

Results and Discussion

The governing equations (3.8.22)-(3.8.25) for the axisymmetric strained CVD reactor are solved for the configuration presented in Figure 3.1. The inlet mixture is composed of 0.1 % silane diluted in helium, namely X SiH 4 = 0.1 % and X He = 99.9 %. The pressure is constant and equal to p 0 = 1 atm. The inlet temperature is T in = 300 K and the inlet normal velocity is w in = 10 cm.s -1 . The strain rate α has been varied over several numerical simulation in order to obtain the specified normal 
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Figure 3.6 -Axial concentration profiles for some selected species. Continuous line, this work. Circles, simulations by Kleijn [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF].

inlet velocity of 10 cm.s -1 . The corresponding value is α = 1.22775 s -1 . The substrate temperature is set at T s = 1000 K. The axial profiles obtained for the temperature, the normal velocity, the tangential velocity, and the species mole fractions are compared to the results of the benchmark model presented in [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. The temperature profile along the axis of symmetry of the reactor is shown in Figure 3.3. Figures 3.4 and 3.5 show the normal and tangential velocity profiles, respectively. Finally, Figure 3.6 represents the mole fractions of several selected species close to the substrate.

The temperature profile shows a strong gradient in the vicinity of the substrate, associated with thermal conduction. Therefore, chemical reactions occur exclusively in a localized zone close to the substrate, where the temperature is sufficiently high to initiate silane dissociation. This is confirmed by the study of the species concentration profiles. Most of the silane dissociation occurs between z = 0 cm and z = 0.2 cm, and a significant silane depletion can be observed in this region. The deposition of the radicals on the substrate explains the very sharp gradients observed at the boundary. The radicals also diffuse backwards in the upstream direction, depending on their diffusion length.

The profiles in Figures 3.3-3.6 show an excellent agreement with the simulations of Kleijn [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. Also, the total deposition rate computed does not differ by more than 1 % from [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. The slight differences observed might be explained by different choices for approximation of transport coefficients, formulation of inlet boundary conditions, or discretization schemes. This validates the sofware developed against standard models for multicomponent reactive gas flows.

Conclusion

We have implemented a self-consistent model for chemical vapor deposition of crystalline silicon in an axisymmetric reactor. The equations for multicomponent reacting neutral gas flows have been stated, along with thermodynamic properties, chemistry mechanism and transport fluxes. Equations have then been expanded using the low Mach number approximation, and the strained flow equations have subsequently been derived as an exact self similar solution of the isobaric equations in axisymmetric coordinates. The expressions of transport coefficients have been recalled in section 3.9, and have been calculated by means of the library EGLIB [EG96a] using approximations similar to those made in the benchmark model [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. The boundary conditions have also been detailed in section 3.10, and the heterogeneous reactions mechanism has been taken from [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. The numerical methods presented in section 3.12 are slightly different from those used in the benchmark model [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. All equations are indeed coupled and discretized implicitly. A modified Newton method has been used for the resolution of the discretized equations.

The results of our numerical simulations are fully consistent with the benchmark model [Kle00] as well as with the standard SPIN software [CKE + 91], with an accuracy within a few percents. The species density profiles in the vicinity of the substrate are very close to the benchmark profiles. The maximum mole fraction of main species are also very close, as well as the deposition rate computed from surface fluxes on the substrate. This validates the software implemented in this chapter.

Chemical vapor deposition of silicon in general might be more complex than the process described in this chapter. In particular, we have restrained ourselves to the deposition of crystalline silicon for the purpose of software validation against the benchmark model [START_REF] Kleijn | Computational modeling of transport phenomena and detailed chemistry in chemical vapor deposition -a benchmark solution[END_REF]. Besides, the nucleation of silicon nanoparticles might also occur under specific conditions, inducing thereby a drastic modification of the process properties.

In the next chapter, the software will be enriched and applied to the modeling of silane plasma discharges. This will require the incorporation of charged species, including electrons, which will be coupled to the electric field specified by Poisson's equation, as well as to the electron temperature equation. The set of species and the set of gas-phase chemical reactions will also be adapted to the plasma regime, where the gas temperature is in the range 300-500 K, while the electron temperature is of the order of a few electronvolts. Boundary conditions for charged species will also be taken into account with care, since the drift induced by the electric field might exceed by one order of magnitude the diffusion velocity.

Apart from these difficulties specific to plasma discharge modeling, the framework adopted in this Chapter, the general formulation of the model equations, including transport fluxes, chemistry mechanism, thermodynamic properties and boundary conditions, as well as the self similar formulation of strained flow equations, will remain unchanged. Also, the numerical methods employed in this Chapter are sufficiently robust and optimized to be used for the study of an industrial plasma reactor.

Chapter 4

Simulation of a Silane-Hydrogen Radio-Frequency Plasma Discharge

Introduction

Plasma enhanced chemical vapor deposition, or "PECVD", is a low-temperature process which is routinely used to process high quality materials with various optical and electrical properties. The quality of the deposited material generally depends on the process parameters and the type of substrate used, and ranges from amorphous silicon to crystalline silicon, passing by microcrystalline, or so-called "polymorphous silicon" [RiCNTD + 07].

Self-consistent modeling of radio-frequency plasma discharges is crucial for the understanding and optimization of PECVD processes commonly employed in the fabrication of photovoltaic solar cells. As standard CVD, PECVD is a complex process involving many parameters, such as pressure, gas flow rates, or applied potential, which in turn drive many coupled physical quantities, several of which may be difficult to assess experimentally. The PECVD process is also more complex than the chemical vapor deposition process, because of the thermal non-equilibrium between electrons and heavy-species, the sharp potential barrier and the sharp electron temperature peaks accross the plasma sheaths, the strong coupling between charged-species diffusion and electric drift, and the strong coupling between the charged species and electric potential imposed by Poisson's equation. Due to this extreme complexity, and because experimental data on discharges under practical deposition conditions remain scarce, numerical simulation is highly desirable for the optimization of silane-hydrogen plasma discharges. In this chapter, we will consider a discharge in which nanoparticles are absent. The modeling of the nanoparticle dynamics and their coupling to other plasma parameters will be addressed in Chapter 5.

The numerical modeling of radio-frequency plasma discharges has been extensively studied over the last thirty years [START_REF] Birdsall | Plasma Physics via Computer Simulation[END_REF]. Two main methods are generally employed. For low pressures, due to the strong departure from local thermal equilibrium the resolution of the Boltzmann equation is necessary. In general, "particle in cell" or Monte Carlo methods are used. Conversely, when the pressure is too high, the Boltzmann equation becomes impractical due to the high species densities and collision frequencies, and a fluid model is required. Fluid models are generally valid for pressures above 500 mTorr [START_REF] Graves | A continuum model of DC and RF discharges[END_REF], which is the case of the process considered here.

One of the first fluid numerical model of radio-frequency discharge was developed by Graves and Jensen [START_REF] Graves | A continuum model of DC and RF discharges[END_REF], for a discharge containing two species, namely electrons and positive ions. The model solved the species continuity equations, coupled to the Poisson's equation for the electric potential, and the electron temperature equation, and was followed by many similar models for both electropositive and electronegative discharges [START_REF] Richards | Continuum modeling of argon radio frequency glow discharges[END_REF] [Boe87] [START_REF] Park | Analysis of low pressure rf glow discharges using a continuum model[END_REF].

Silane hydrogen mixtures are very reactive and produce many different radicals and species. Models taking into account such a complex chemistry have also been developed and implemented numerically. For pure H 2 plasma a very detailed description of chemical kinetics can be obtained, including vibrational kinetics of H 2 [GCC + 92], negative ion H -and H atom kinetics, and a good agreement with experiments has been obtained [HGG99] [DEL + 14]. Concerning silane discharges, due to the production of H 2 occurring from the dissociation of SiH 4 , a correct chemical mechanism must include H 2 plasma chemistry. However, due to the large number of different molecules and ions appearing in silane discharges, the chemical kinetics are generally simplified compared to pure H 2 discharges. Several models have been proposed and some of them have been compared to experiments [Nie98] [dBGG04] [START_REF] Lyka | Simulation of the electrical properties of sih 4 /h 2 discharges[END_REF].

In this chapter, the model for non-thermal reactive plasma derived in Chapter 2 is simplified in order to describe silane-hydrogen radio-frequency plasma discharge in the Torr regime. The model includes thermal non-equilibrium, two-temperature chemistry, and coupling between charged species and electric potential. The model is then implemented numerically. The chemical vapor deposition software validated in Chapter 3 is enriched in order to model a radio-frequency silane-hydrogen plasma discharge. The fluid plasma equations are solved in axisymmetric geometry using a self similar model, taking into account a two-temperature hydrogen-silane plasma chemistry, including electron collision reactions and heavy-species reactions. The deposition process is also described by a simplified surface reaction mechanism. Results are presented for typical conditions used in lowtemperature silicon epitaxy [RCL12]. A self-consistent computation of the DC bias potential is also implemented, allowing to study the effect of asymmetric excitation on silane-hydrogen capacitively coupled plasma discharges.

The radio-frequency process is described in section 4.2. In section 4.3, the governing equations are stated, along with expressions for the transport fluxes. In section 4.4, the model is simplified and a self similar formulation is derived. Transport coefficients are described in section 4.5, the chemistry mechanism in section 4.6, and the electron heavy-species energy exchange term in section 4.7. The boundary conditions are given in section 4.8, and the numerical method is presented in section 4.10. Results are presented in section 4.11. axisymmetric around the z axis, with corresponding polar coordinates r and θ. A silane-hydrogen gas mixture is injected through a showerhead with a normal inlet velocity. The lower electrode is grounded, while the upper electrode is driven by a periodic applied potential at a frequency of f = 13.56 MHz, which is the standard frequency used in industrial radio-frequency reactors. Before the plasma is ignited, a steady flow is established in the reactor with a prescribed uniform pressure. After ignition, the oscillating potential induces an oscillating electric field in the plasma region located near the electrodes, commonly referred to as the "plasma sheath". Conversely, the central region of the discharge, called the plasma bulk, is quasi-neutral. The oscillating electric field accelerates the electrons in the plasma sheaths, which collide with the heavier neutral carrier gases, inducing in turn ionization, dissociation, or attachment to the carrier gas. The mixture thus becomes weakly ionized, and subsequent chemical reactions produce radicals and silicon containing species, which may depose on the reactor walls.

Radio-Frequency Reactor

General Equations for a Multicomponent Plasma

Conservation equations

The governing equations (2.6.1)-(2.6.5) for a non-thermal multicomponent plasma derived in section 2.6 may be written in the form

∂ t (ρY k ) + ∂ x • (ρY k v h + ρY k V k ) = m k ω k , k ∈ S, (4.3.1) ∂ t (ρ h v h ) + ∂ x • (ρ h v h ⊗ v h + p I) + ∂ x • Π h = ρg + nqE, (4.3.2) ∂ t E e + ∂ x • (E e v h ) + p e ∂ x • v h + ∂ x • Q e = J e • E + ΔE eh , (4.3.3) ∂ t E h + ∂ x • (E h v h ) + p h ∂ x • v h + ∂ x v h : Π h + ∂ x • Q h = J h • E + ΔE he , (4.3.4)
where as in the preceding chapter ρ k denotes the mass density, Y k = ρ k /ρ the mass fraction, and n k = ρ k /m k the density of the k th species, while ρ = k∈S ρ k denotes the mass density of the fluid mixture, and v h the heavy-species mass-averaged velocity. For k ∈ S, V k denotes the diffusion velocity of the k th species in the mass-averaged velocity reference frame, m k = N a m k its molar mass, and ω k its molar production rate. Besides, p e , p h and p = p e +p h denote the electron partial pressure, the heavy-species partial pressure, and the total pressure, respectively, where n h = i∈H n i . The vector g is the gravity vector, E is the electric field, and q is the average charge of the mixture

nq = k∈S n k q k , (4.3.5) 
where n = k∈S n k = n e + n h . Also, Π h denotes the viscous tensor, E e and E h denote the electron and heavy-species energy per unit volume, respectively, Q e and Q h denote the electron and heavyspecies heat flux, respectively, and J e = n e q e V e , respectively J h = i∈H n i q i V i , is the electron, respectively the heavy-species, conduction current density. Finally, ∆E eh = -∆E he is the energy exchange rate between electrons and heavy species due to nonreactive or reactive collisions.

The electric potential ϕ is solution of the Poisson's equation

∂ 2 x ϕ = - nq ε 0 , (4.3.6)
where ε 0 is the vacuum dielectric permittivity, and the electric field reads

E = -∂ x ϕ. (4.3.7) 
The magnetic field has been neglected, as the typical discharge dimensions are sufficiently small to avoid the generation of magnetic waves [START_REF] Chabert | Physics of Radio-Frequency Plasmas[END_REF].

Thermodynamics

The perfect gas laws (2.4.31) and (2.4.45) derived from the kinetic theory read

ρ e = p e m e RT e , (4.3.8) 
ρ h = p h m h RT h , (4.3.9) 
where T h and T e are the heavy-species and electron temperature, respectively, and m h is the mean heavy-species molar mass

ρ h m h = i∈H ρ i m i . (4.3.10)
The energy conservation equations (4.3.3), (4.3.4) can also be expressed in terms of the temperatures T e , T h . The heavy-species and electron enthalpies per unit mass, h h and h e , respectively, are given by

ρ h h h = E h + p h , (4.3.11) ρ e h e = E e + p e .
(4.3.12)

The heavy-species enthalpy can be decomposed into

ρ h h h = i∈H ρ i h i , (4.3.13) 
where h i is the specific enthalpy of the i th heavy species already given in (3.4.9)

h i = h st i + T T st c pi (T ) dT , i ∈ H. (4.3.14)
Similarly, we introduce the heavy-species constant pressure specific heat c ph , defined by

ρ h c ph = i∈H ρ i c pi . (4.3.15)
From the definition of the heavy-species enthalpy (4.3.11) and the heavy-species energy conservation equation (4.3.4), the following enthalpy balance equation is obtained

∂ t (ρ h h h ) + ∂ x • (ρ h h h v h ) + ∂ x • Q h = ∂ t p h + ∂ x p h • v h -∂ x v h : Π h + J h • E + ∆E he . (4.3.16)
On the other hand, the enthalpy derivatives may be expressed as

∂ t (ρ h h h ) + ∂ x • (ρ h h h v h ) = i∈H ρ i ∂ t h i + i∈H ρ i v h • ∂ x h i + i∈H h i (∂ t ρ i + ∂ x • (ρ i v h )) = ρ h c ph ∂ t T h + ρ h c ph v h • ∂ x T h -∂ x • i∈H h i F i + i∈H c pi F i • ∂ x T h + i∈H h i m i ω i ,
where

F i = ρ i V i , i ∈ H,
are the heavy-species diffusion fluxes. The evolution equation for the heavy-species temperature T h thus reads

ρ h c ph ∂ t T h + ρ h c ph v h • ∂ x T h + ∂ x • Q h - i∈H h i F i = ∂ t p h + ∂ x p h • v h (4.3.17) -Π h : ∂ x v h - i∈H c pi F i • ∂ x T h - i∈H h i m i ω i + J h • E + ∆E he .
We proceed in a similar fashion for the electron temperature. The electron specific enthalpy per unit mass

h e = h st e + T T st c pe (T ) dT (4.3.18) is such that ρ e h e = E e + p e , (4.3.19) 
and is thus solution of the following evolution equation

∂ t (ρ e h e ) + ∂ x • (ρ e h e v h ) + ∂ x • Q e = ∂ t p e + v h • ∂ x p e + J e • E + ∆E eh . (4.3.20) Since ∂ t (ρ e h e ) + ∂ x • (ρ e h e v h ) = ρ e ∂ t h e + ρ e v h • ∂ x h e + h e (∂ t ρ e + ∂ x • (ρ e v h )) = ρ e c pe ∂ t T e + ρ e c pe v h • ∂ x T e -∂ x • (h e F e ) + c pe F e • ∂ x T e + h e m e ω e ,
the electron temperature equation finally reads

ρ e c pe ∂ t T e + ρ e c pe v h • ∂ x T e + ∂ x • (Q e -h e F e ) = ∂ t p e + v h • ∂ x p e (4.3.21) -c pe F e • ∂ x T e -h e m e ω e + J e • E + ∆E eh .

Transport fluxes

The transport fluxes involved in the conservation equations (4.3.1)-(4.3.4) have been stated in Chapter 2. From equations (2.6.27) and (2.6.33), the electron diffusion velocity and heat flux may be expressed in the form

V e = -D ee de - i∈H D ei di -θ ee ∂ x ln T e -θ eh ∂ x ln T h (4.3.22) -D κ h ee (∂ x • v) + D Θ ee (T e -T h ) de -θ κ h ee (∂ x • v) + θ Θ ee (T e -T h ) ∂ x ln T e , Q e = -pθ ee de -p i∈H θ ei di -λee ∂ x T e -λeh ∂ x T h + n e 5 2 k b T e V e (4.3.23) -p θ κ h ee (∂ x • v) + θ Θ ee (T e -T h ) de -λκ h ee (∂ x • v) + λΘ ee (T e -T h ) ∂ x T e ,
where the unconstrained electron diffusion driving force reads

dk = 1 p (∂ x p k -n k q k E) , k ∈ S. (4.3.24)
The electron self-diffusion coefficient D ee , the electron self-thermal-diffusion coefficient θ ee , and the electron self-partial-thermal-conductivity λee have been expressed in (2.6.28), (2.6.29) and (2.6.32), respectively. The electron i th -heavy-species diffusion coefficient D ei = D ie , the electron heavytemperature thermal diffusion coefficient θ eh = θ he , the i th -heavy-species electron-temperature thermal diffusion coefficient θ ei = θ ie , and the electron heavy-temperature partial thermal conductivity λeh have been stated in (2.5.43), (2.5.54), (2.5.45), and (2.5.95), respectively. The remaining transport coefficients D κ h ee , θ κ h ee , D Θ ee , θ Θ ee , λκ h ee , and λΘ ee , have been expressed in (2.5.96)-(2.5.101). The heavy species diffusion velocities, viscous tensor and heat flux have also been derived in Chapter 2, and were expressed in equations (2.6.34)-(2.6.36) as

V i = - j∈H D ij dj -D ie de -θ ih ∂ x ln T h -θ ie ∂ x ln T e , i ∈ H, (4.3.25) 
Π h = -η h ∂ x v h + (∂ x v h ) t - 2 3 (∂ x • v h ) I -κ h (∂ x • v h ) I -ζ(T e -T h ) I, (4.3.26) 
Q h = -p j∈H θ hj dj -pθ he de -λhh ∂ x T h -λhe ∂ x T e + j∈H 5 2 k b T h + E j n j V j , (4.3.27) 
where the heavy-species diffusion coefficients D ij , i, j ∈ H, the heavy-species heavy-temperature thermal diffusion coefficients θ ih , i ∈ H, the heavy-species self-partial-thermal-conductivity λhh , and the heavy-species electron-temperature partial thermal conductivity λhe have been expressed in (2.5.42), (2.5.44), (2.5.52), and (2.5.53), respectively. Also, the heavy-species shear viscosity η h and volume viscosity κ h , and the thermal non-equilibrium viscosity ζ, were given in (2.5.48)-(2.5.50).

Simplified Model

In the case of a radio-frequency axisymmetric reactor, the general plasma model embedded in equations (4.3.1)-(4.3.2), (4.3.6), (4.3.17) and (4.3.21) can be simplified in several ways. Indeed, it is generally sufficient as a first approximation to consider the coupled evolution of charged species, electric potential and electron temperature.

Equations

The heavy-species convection velocity is generally neglected

v h = 0, (4.4.1)
and the heavy-species temperature can be considered uniform as a first approximation

T h (t, x) = T h , (4.4.2) 
where T h independent of t and x. The momentum equation (4.3.2) and the heavy-species temperature equation (4.3.17) are thus discarded, and the system (4.3.1)-(4.3.4) is reduced to a system of n s + 2 equations, of the form

∂ t (ρY k ) + ∂ x • (ρY k V k ) = m k ω k , k ∈ S, k = H 2 , Y H 2 = 1 - k =H 2 Y k , (4.4.3) ∂ 2 x ϕ = - nq ε 0 , (4.4.4) ∂ t 3 2 n e k b T e + ∂ x • Q e = J e • E + ∆E eh . (4.4.5)
The equation for the main carrier gas H 2 is taken such as to ensure the total mass conservation in the mixture, since k∈S Y k V k = Y e V e = 0 a priori. Also, the pressure is assumed to be uniform in the reactor

p(t, x) = p 0 , (4.4.6) 
where p 0 is independent of t and x, in agreement with the low Mach number approximation. Equations (4.4.3) may also be written in their nonconservative form

ρ∂ t Y k + ∂ x • (ρY k V k ) = m k ω k , k ∈ S, k = H 2 , Y H 2 = 1 - k =H 2 Y k , (4.4.7) 
where the time derivative of ρ, which is proportional to the time derivative of m, has been neglected. Indeed, in the approximation v h = 0, the total mass conservation equation reads

∂ t ρ = ∂ x • (ρY e V e ),
which is proportional to the mass ratio ε 2 and is therefore negligible. Alternatively, the center-ofmass reference frame equations (2.7.11)-(2.7.15) could have been used, and the assumption v h = 0 would have been replaced by v = 0.

Self similar formulation

As can be seen in Figure 4.2, the cylindrical coordinates (r, θ, z), with corresponding unit vectors e r , e θ and e z , are such that e z is normal to the stagnation plane (O, e r , e θ ), where O is the origin located at the centre of the substrate (see Figure 4.2). As in Chapter 3, we assume that the gravity is either oriented in the normal direction: g = (0, 0, g), either negligible. In this framework, we seek for a self similar solution of equations (4.4.7), (4.4.4) and (4.4.5), of the form ρ = ρ(t, z), (4.4.8) T e = T e (t, z), (4.4.9)

Y k = Y k (t, z), k ∈ S, (4.4.10) ϕ = ϕ(t, z).
(4.4.11)

From the expressions (4.4.18) and (4.4.21) where the pressure p has been replaced by the spatially uniform pressure p 0 , which is valid for a low Mach number flow, the diffusion velocities and the electron heat flux can be expressed in the form

V k = 0, 0, V k (t, z) , k ∈ S,
(4.4.12) Q e = 0, 0, Q e (t, z) .

(4.4.13) Thus, equations (4.4.7), (4.4.4) and (4.4.5) are rewritten

ρ∂ t Y k + ∂ z (ρY k V k ) = m k ω k , k ∈ S, k = H 2 , Y H 2 = 1 - k =H 2 Y k , (4.4.14) ∂ 2 z ϕ = - nq ε 0 , (4.4.15) ∂ t 3 2 n e k b T e + ∂ z Q e = n e q e V e E + ∆E eh , (4.4.16 
)

where E = -∂ z ϕ (4.4.17)
is the electric field.

Transport fluxes

As far as the transport fluxes are concerned, the heavy-species viscous tensor (4.3.26) and heat flux (4.3.27) are not required anymore since they do not appear in the simplified system (4.4.3)-(4.4.5). Also, the remaining transport fluxes (4.3.22)-(4.3.23), and (4.3.25) are simplified. The Soret effect is neglected, the species diffusion is reduced to the self-species diffusion driving terms, and the transport coefficients D κ h ee , D Θ ee , θ κ h ee , and θ Θ ee are generally neglected. The species diffusion velocities are thus taken in the form

V k = -D * k ∂ x Y k Y k + µ * k E, k ∈ S, k = H 2 , (4.4.18)
where D * k is the self-diffusion coefficient of the k th species, and the mobility coefficient µ * k is given by the Einstein relation

µ * k = D * k q k k b T k , k ∈ S, (4.4.19) 
where T k is the temperature of the k th species

T k = T e , k = e, T h , k = e. (4.4.20) 
Equation (4.4.18) corresponds to the first variational approximation to the first-order multicomponent diffusion coefficients (3.9.12) in a neutral gas mixture [OB81] [Gio99], commonly referred to as the "Hirschfelder-Curtiss approximation" [START_REF] Hirschfelder | Flame propagation in explosive gas mixtures[END_REF], except the term ∂

x X k /X k has been replaced by ∂ x Y k /Y k , where Y k = X k m k /m
, that is the spatial derivative of m has been neglected. Also, the correction velocity [OB81] [Gio99] has been dropped since the mass conservation is ensured by the equation for H 2 . Thus, the governing equation (4.4.7) for the k th species depends only on the mass fraction Y k , and not on Y l , l = k. Such a diagonal approximation is valid when one of the species is in excess while all the other species are in trace amounts [Gio90] [EG94].

Concerning the electron heat flux, the Dufour effect is generally neglected, the heavy-species temperature gradient is zero since T h was assumed to be constant, and the transport coefficients λκ h ee , λΘ ee , θ κ h ee , and θ Θ ee are generally neglected. Thus, Q e can be taken in the form

Q e = 5 2 n e k b T e V e -λee ∂ x T e , (4.4.21) 
where λee is the electron self-partial-thermal-conductivity.

Transport coefficients

The self-diffusion coefficients D * k , k ∈ S, are taken according to the "Hirschfelder-Curtiss approximation" [HC49] [OB81] [Gio99], namely

D * k = p(1 -Y k ) l∈N l =k p l /D bin k,l , k ∈ S, (4.5.1) 
where D bin k,l is the binary diffusion coefficient for species pair (k, l), and where N ⊂ S denotes the indexing set for neutral species. In practice, due to the lack of data on charged species binary diffusion coefficients, we consider that the charged species diffuse against H 2 and SiH 4 only. This has no influence on numerical results, since H 2 and SiH 4 are in excess and other neutral species are only present in trace amount.

The electron self-partial-thermal-conductivity is given by the following Drude-Lorentz type formula [Lor05] λee = 5 2 n e k b D * e .

(4.5.2) Equation (4.5.2) can be obtained from the kinetic theory of a Lorentz gas made of Maxwellian molecules, that is molecules interacting with a potential proportional to r -5 , where r is the intermolecular distance [CC70].

The electron binary diffusion coefficients are taken equal to

D bin e,SiH 4 p = 1.2 • 10 6 cm 2 .s -1 .Torr, (4.5.3) 
D bin e,H 2 p = k b T e q e 7.5 • 10 5 cm 2 .s -1 .Torr. 

D bin ij p = 38.7 k b T h |q i | T h √ α j m ij cm 2 .s -1 .Torr, i ∈ I, j ∈ N, (4.5.5) 
where m ij = m i m j /(m i + m j ) is the reduced mass of the species pair (i, j) in a.m.u., α j the polarizability of the j th species in Å 3 [PLB96]

α H 2 = 0.805 Å 3 , (4.5.6) 
α SiH 4 = 4.62 Å 3 , (4.5.7) 
and other variables are in S.I. units. Finally, the binary diffusion coefficients of neutral species are computed with the "TRANFT" fitting program [KDLW + 86], as in Chapter 3.

Silane-Hydrogen Plasma Chemistry

The chemical reaction mechanism is composed of a set R of elementary reactions, of the form where M k denotes the chemical symbol of the k th species, and where ν rf k and ν rb k denote the forward and backward stoichiometric coefficients of the k th species in reaction r, respectively. According to expression (2.4.159) from the kinetic theory , the molar production rate of the k th species can be decomposed into the different contributions from each reaction

k∈S ν rf k M k k∈S ν rb k M k , r ∈ R, (4.6.1) 
ω k = r∈R (ν rf k -ν rb k )τ r , (4.6.2) 
where τ r is the rate of progress of the r th reaction.

Table 4.1 -Species included in the plasma model.

Neutral Species

Charged Species

H, H 2 , SiH 2 , SiH 3 , SiH 4 , e, SiH + 3 , H + 3 , H + 2 , H + , H 3 SiSiH, Si 2 H 5 , Si 2 H 6 SiH - 2 , SiH - 3 , Si 2 H - 5 , H 3 SiSiH -
The chemistry mechanism involves two kinds of reactions: electron collision reactions on the one hand, which depend on electron temperature T e and are assumed to be irreversible, and heavyspecies reactions on the other hand, which depend on the heavy-species temperature T h . We denote by R e , respectively R h , the set of electron collision reactions, respectively the set of heavy-species reactions, so that R = R e ∪ R h .

The rate of progress (2.4.160) of a reaction r ∈ R reads

τ r = K f r k∈S γ ν rf k k -K b r k∈S γ ν rb k k , (4.6.3) 
where γ k = ρY k /m k is the molar concentration of the k th species, and K f r and K b r are the forward and backward rate constants of the r th reaction.

When r ∈ R h is a heavy-species reaction, as a consequence of detailed balancing and reciprocity relations (2.2.36), the ratio of the rate constants K f r and K b r is the equilibrium constant of the r th reaction, as already stated in (2.4.169)

K e r (T h ) = K f r (T h ) K b r (T h ) . (4.6.4)
The reaction rate constant corresponds to the chemical equilibrium proportions, as described by statistical mechanics [Tol38], and is given by (2.4.168)

ln K e r (T h ) = - i∈H ν r i m i RT h g atm i (T h ) - RT h m i ln ( p atm RT h ) , (4.6.5) 
where g atm i , i ∈ H, denote the species specific Gibbs functions at atmospheric pressure

g atm i (T h ) = h i (T h ) -T h s atm i (T h ), i ∈ H. (4.6.6) 
In general, the forward rate constant is approximated by a generalized Arrhenius empirical relation, of the form

K f r (T k ) = A r T βr k exp - E r RT k , (4.6.7) 
where T k is the temperature of the k th species, A r is the pre-exponential factor, β r the pre-exponential exponent and E r ≥ 0 the activation energy of the r th reaction. Electron collision reactions are generally assumed irreversible [References]. For heavy-species reactionns, the backward rate constant is deduced from the forward rate constant and the equilibrium constant (4.6.5) by the law of mass action (4.6.4). For some of the heavy-species reactions though, both the forward and backward rate constants are specified directly in Arrhenius form. The present model takes into account seventeen species, listed in Table 4.1. The model was adapted from the chemistry mechanism of de Bleecker and coworkers [dB06], itself originating from the work of Girshick and coworkers [Bha03] [Aga12]. We considered species containing up to 2 silicon atoms in order to lower the computation time. Previous results by Agarwal [Aga12] suggest that this is sufficient for a self-consistent calculation of overall negative ion densities and nanoparticle nucleation rate.

The set of electron collision reactions for silane-hydrogen plasma chemistry is detailed in Table 4.2. Electron collisions include ionization, dissociation, dissociative attachment, detachment, as well as recombination reactions. In particular, the formation of negative ions leading to clustering is due to the dissociative attachment reactions. The reaction rate constants have been taken in Arrhenius form, and the Arrhenius constants for silane plasma chemistry were taken from [BSGK00]. We do not consider vibrationally excited silane molecules, since vibrational effects are relatively low in the range of temperatures generally used for silicon epitaxy, i.e., around 500 K [dB06].

Heavy-species reactions are listed in Table 4.3. They comprise cluster growth reactions, neutralization reactions between positive and negative ions, neutral-neutral reactions, and additional hydrogen reactions. The cluster growth reactions are responsible for the nucleation of nanoparticles in the discharge, and are therefore of fundamental importance. The clustering rate constants were computed by [Bha03] as the Langevin rates devided by 10, since the Langevin rates are known to overestimate anion-neutral reaction rates. In [dB06], this clustering reaction rate constant is divided by 100 compared to [Bha03], on the basis of experimental resuts obtained by Perrin ar al [PBEL94]. We adopted the latter value since at a temperature of 500 K the data of where ∆E el eh is the energy exchange term due to elastic scattering of electrons against heavy species, ∆E in eh the energy exchange term associated with inelastic scattering of electrons against heavy species, and ∆E chem eh the energy exchange term due to reactive electron collisions. The elastic relaxation term is induced by the translational non-equilibrium between electrons and heavy species, and is generally reduced [START_REF] Lymberopoulos | Two-dimensional self-consistent radio frequency plasma simulations relevant to the gaseous electronics conference rf reference cell[END_REF] to the zeroth-order term (2.4.105)

∆E el eh = ∆E 0,el eh = - 3 2 n h k b (T e -T h ) 1 τ el , (4.7.2)
which is in general negligible for the process we consider [LE93] [Nie98]. As well, the energy exchange due to electron inelastic scattering against heavy species is generally approximated by the zerothorder term (2.4.109), which can be rewritten in the form

∆E in eh = ∆E 0,in eh = 1 2 i∈H i,i ∈Q i i =i (-∆E ii )τ ii , (4.7.3)
where τ ii is the rate of progress of the inelastic scattering process (e, i) → (e, i ) where τ r and -∆E er are, respectively, the rate of progress and the net average electron energy loss in the r th electron collision. The values adopted for the present study are specified in Table 4.4, along with the associated references. 

τ ii = n i a ii Q int i ν ii ie e -E ii /kbT h -exp ∆E ii k b T e e -E

Boundary Conditions

The electron temperatures at both electrodes are specified as where T s e = T in e = 5000 K 0.43 eV, which is representative of a secondary electron emission temperature [WG07]. Also, for the range of parameters considered here, the discharge remains in the "α-regime", in which secondary electron emission is negligible [START_REF] Ph | Transition between different regimes of rf glow discharges[END_REF] [SG91] [dBGG04].

T e | t,0 = T s e , ( 
In the base case, the external capacitor is not taken into account. This is perfectly justified for a geometrically symmetric reactor with a sinusoidal waveform excitation. The electrode located at z = 0 is grounded, and a sinusoidal voltage with amplitude ϕ rf and frequency f = 13.56 MHz is imposed on the electrode located at z = L ϕ| t,0 = 0, (4.8.3) ϕ| t,L = ϕ rf sin (2πf t). and for negative ions as

Y i | t,0 = 0, i ∈ I -, (4.8.7) Y i | t,L = 0, i ∈ I -, (4.8.8)
where I -denotes the set of negative ions. For positive ions, the boundary conditions at both electrodes are

F i • n = max F drift i • n, F +,i , i ∈ I + , ( 4 
.8.9)

where I + denotes the set of positive ions, n denotes the unit vector normal to the surface oriented towards the electrodes,

F drift k = ρ k V drift k
is the drift velocity of the k th species

F drift k = ρ k µ * k E, k ∈ S, (4.8.10) 
and F +,k is the average mass flux of molecules from the k th species [CC70] whose velocity is directed towards the wall. This average flux is computed as that of Maxwellian molecules, that is

F +,k = 1 2 ρ k v th,k , (4.8.11)
where v th,k is the thermal velocity of the k th species, given by [CC70] [FK72]

v th,k = 8k b T k πm k 1 2
, k ∈ S. (4.8.12) Expression (4.8.11) actually corresponds to the surface deposition rate of neutral species as given in (3.11.5), with a sticking coefficient of 1.

The boundary condition (4.8.9) is such that when the outwards drift velocity V drift i

• n is large compared to the thermal velocity v th,i , the diffusion velocity at the boundary is merely equal to the drift velocity, while in the case when the drift velocity is negligible or oriented inwards, the diffusion flux at the electrode is merely the thermal flux ρ i v th,i /4 [MW60] [McD64]. This boundary condition also ensures that the flux of positive ions is always directed outwards the reactor, since secondary ion emission is negligible for the discharge we consider.

In the dilution approximation, the boundary conditions associated wih the equation for H 2 read The heterogeneous reaction mechanism used in the present software corresponds to the deposition of amorphous silicon by low temperature PECVD. The sticking coefficients associated with the main silicon radicals have been taken from [START_REF] Perrin | Cross-sections, rate constants and transport coefficients in silane plasma chemistry[END_REF]. They have been taken in Arrhenius form

Y H 2 | t,0 = 1 - k =H 2 Y k | t,0 , (4.8.13) Y H 2 | t,L = 1 - k =H 2 Y k | t,
γ i (T h ) = A i T β i h exp - E i T h , i ∈ H, (4.8.23)
where A i is the pre-exponential factor, β i the pre-exponential exponent and E i ≥ 0 the activation energy in Kelvin. The list of surface reactions and the corresponding Arrhenius parameters are given in Table 4.5. An alternative boundary condition for the potential at the driven electrode was also implemented. In this new formulation, the external blocking capacitor is taken into account, which will allow for the determination of the DC bias in an asymmetric discharge. A schematic representation of the discharge and external circuit is presented in Figure 4.4. For the sake of simplicity, no matching box is considered. In order to compute the potential at the driven electrode ϕ l (t) = ϕ(t, L), the potential accross the discharge is decomposed in the form

External Circuit

+ =

ϕ = ϕ 0V + ϕ l χ, (4.9.1)
where S is the surface of the electrodes, which is the classical expression for the capacitance of a parallel plate capacitor. In practice, the geometry of a reactor is complicated, and due to the law of electromagnetics, even a small feature in the structure of the reactor can change considerably the value of the "bare" capacitance, so that it is better to measure it experimentally. Besides, since the blocking capacitance is generally taken large before C v , the actual value of C v does not matter and equation (4.9.10) only depends on C b .

Figure 4.5 -Picture of the ARCAM multiplasma monochamber reactor in LPICM.

Numerical Implementation

The numerical implementation follows the same framework as in section 3.12 of the preceding chapter. We denote by n c = n s + 2 the number of unknowns. The solution vector is denoted by

Ξ = (Ξ l ) 1≤l≤n c = (T e , ϕ, Y 1 , . . . , Y n s ), (4.10.1)
The discretized equations are obtained from a three-point finite difference scheme. The time derivatives are discretized in a fully implicit manner. The discretization of the transport fluxes requires special care, for the electric field acts as a convection velocity.

Discretization

As in Chapter 3, equations (4.4.14)-(4.4.16) are discretized over a grid along the z axis of the form where N is the number of grid points. The discretized solution vector is denoted by

Z = {0 = z 1 < z 2 < • • • < z N = L} , ( 4 
Ξ Z = (Ξ k,i ) 1≤k≤n c ,1≤i≤N . (4.10.3)
Discretization of the species diffusion velocities It is known that, in the case of a neutral gas, an unproper discretization of the species diffusion flux

ρY k v h -D * k ∂ z Y k
, where v h is the convection velocity, may lead to unstable or less consistent numerical solution. For the sake of stability and consistency, the discretization must take into account the order of magnitude of the Peclet number

P k,i+1/2 = ρv h ∆z D * k i+1/2
, k ∈ S, 1 ≤ i ≤ N, (4.10.4) where (∆z) i+1/2 = z i+1 -z i is the mesh size around midpoint z i+1/2 = (z i + z i+1 )/2. Several schemes are possible to avoid such drift-induced instability, more or less consistent, for example the upwind discretization scheme, the "hybrid" scheme, the "power-law" scheme, or the "exact" exponential scheme [Pat80].

Similarly, in the plasma case the electric drift behaves as a convection velocity. Indeed, the species diffusion velocities, expressed in equations (4.4.18), read in the axisymmetric coordinates

V k = -D * k ∂ z Y k Y k + µ * k E, k ∈ S, k = H 2 . (4.10.5)
Since the electric field in the sheaths may reach fairly large values, namely the associated Peclet number

P k,i+1/2 = µ * k E∆z D * k i+1/2
, k ∈ S, 1 ≤ i ≤ N, (4.10.6) may be large compared to 1, the central difference scheme may lead to numerical instability, as for the convection-diffusion problem. In general, the exponential discretization scheme is adopted to avoid such instability, in the form 

(Y k V k ) i+1/2 = D * k ∆z i+1/2 P k,i+1/2 Y k,i e P k,i+1/2 2 -Y k,i+1

Resolution

Contrarily to the chemical vapor deposition process described in Chapter 3, the radio-frequency discharge problem is fully non-stationary, since the potential imposed on the RF electrode depends on time. Yet, the applied signal being periodic, after a few cycles the process reaches a pseudostationary state, in which the relevant physical variables, namely the electron temperature T e , the electric potential ϕ and the species mass fractions Y k , k ∈ S, are periodic with the same period as the RF signal.

As in Chapter 3, the equations for the n th iteration at time t may be written in the form

A(Ξ n Z ) ∂ t Ξ n Z + F Z (Ξ n Z ) = 0, (4.10.11)
were Ξ n Z denotes the n th iterate over the grid Z, A(Ξ n Z ) is a bloc diagonal matrix, and

∂ t Ξ n Z = Ξ n Z -Ξ n-1 Z t n -t n-1 (4.10.12)
is the discretized time derivative at time t n . These implicit non-stationary equations are solved by the modified Newton method already described in section 3.12.

Results and Discussion

Simulations have been carried out under typical conditions for plasma enhanced low-temperature epitaxy of silicon [RCL12]. The geometry is that of Figure 4.2. The interelectrode distance is set equal to 2 cm. For the base case, the inlet gas mixture is composed of 85 % hydrogen and 15 % silane, that is X H 2 = 85 % and X SiH 4 = 15 %. The pressure is set at p 0 = 2.28 Torr, the heavy-species temperature is taken equal to T h = 500 K. We first present results for symmetric radio-frequency waveforms. Then, a self-consistent computation of the DC bias is implemented and the effect of asymmetric waveforms is studied. Figures 4.5 and 4.6 depict the ARCAM reactor used in PICM for several decades. This reactor, as most research reactors, is actually geometrically asymmetric due to the relatively small surface area of the electrodes. In particular, the reactor walls are grounded, so that the grounded area is larger than the powered area. This induces an asymmetry in the current flowing into the discharge, which in turn translates into a DC bias at the powered electrode, due to the accumulation of charge between the blocking capacitor, illustrated in Figure 4.2, and the reactor. In standard industrial processes, however, the reactors used have much larger lateral dimensions, and the DC bias induced by the geometrical asymmetry is generally negligible. This justifies the use of a symmetric one-dimensional geometry.

The frequency is set at f = 13.56 MHz, and the applied potential amplitude is ϕ rf = 100 V. For those "base case" conditions, the power dissipated in the discharge is equal to 5 W. The initial profiles are uniform over the reactor length. Time iterations are performed with timesteps bounded by 0.1 ns, until a pseudo-steady-state is reached, where the relative changes in the main plasma properties do not exceed 10 -5 between two cycles. The electron temperature and electric potential reach a pseudo-steady-state after a few thousand cycles. The charged species densities reach a pseudo-periodic state after approximately 20,000 cycles, while some of the neutral species densities require up to 100,000 cycles to reach a pseudo-steady-state.

The pseudo-steady-state electric potential, electric field, electron temperature, and electron density profiles along the axis of symmetry of the reactor are shown in Figure 4.7, at four different instants of the radio-frequency cycle, namely f t = 0.0, f t = 0.25, f t = 0.5 and f t = 0.75. As can be seen on these figures, the imposed potential induces an oscillating electric field accross the reactor. The quasi-neutrality is generally ensured in the center of the discharge, called the "bulk" plasma, so that the electric field is significant mostly in the vicinity of the electrode surfaces, in the region referred to as the "plasma sheaths". Also, the potential is quasi-concave because electrons are more mobile and less easily trapped in the plasma bulk, so that the net charge density is essentially positive accross the reactor. The electron temperature is in the range 1 -2 eV in the plasma bulk, and oscillates between 1-2 eV and 6-7 eV in the sheaths. The pseudo-steady-state electron density is of the order of 10 9 cm -3 , which is relatively low compared to commonly observed radio-frequency plasma discharges. This is due to the presence of negative ions in silane plasma discharges, which are the dominant negatively charged species.

The pseudo-steady-state density profiles, averaged over an RF cycle, are shown in Figures 4.8 and 4.9, respectively for charged species and neutrals. The main positive ion is the SiH + 3 ion, and the ionization ratio of silane is equal to

X SiH + 3 X SiH 4 = 3.0 × 10 -6 , (4.11.1)
at the center of the discharge. This result is comparable to the value obtained by Salabas et al. in [START_REF] Salabas | Two-dimensional fluid modelling of charged particle transport in radio-frequency capacitively coupled discharges[END_REF]. The silane depletion rate accross the reactor length is equal to 4 %. The main negatively charged species are the negative ions Si 2 H - 5 and H 3 SiSiH -. These species are produced from the clustering reactions between the smaller negative ions SiH - 2 and SiH - 3 and silane, namely reactions 19 and 20 of Table 4.3. These species are known to be the main precursors of the nanoparticle nucleation in silane plasma discharges [BSGK00]. The electron density is of the order of 10 9 cm -3 , that is one order of magnitude lower than the overall negative ion density.

As expected, H + 3 ion is dominant over H2 + and H + ions, but its density is one order of magnitude lower than that of silicon containing ions. The hydrogen ionization ratio is equal to . A possible explanation for this relatively low ionization ratio of hydrogen is the presence of silane, which is more easy to ionize than hydrogen, since its ionization energy is significantly lower. Results are also in good agreement with experimental results of [HDD + 94].

X H + 3 X H 2 = 1.7 ×
The SiH 3 radical produced by the dissociation of silane is the dominant radical, and Si 2 H 6 is the second most abundant neutral spcies. Atomic hydrogen is also abundantly present in the reactor, and the dissociation degree of molecular hydrogen is equal to

X H X H 2 = 2.7 × 10 -5 , (4.11.3)
at the center of the discharge. The influence of the silane dilution in H 2 is investigated in Figure 4.10. The pressure and applied potential have been kept equal to 2.28 Torr and 100 V, respectively, as in the base case. As can be seen on this Figure, increasing the dilution ratio tends to hinder the rate of clustering reactions leading to the formation of Si 2 H - x ions, and also decrease the density of SiH + 3 ion. Also, the electronegativity decreases as the electron density does not decrease substantially when the dilution ratio is varied from 15 % to 2.5 %. It is well known that at high H 2 dilution ratio, the films produced tend to be microcrystalline (µc-Si), while at high silane flow rate the films are generally hydrogenated amorphous silicon a-Si:H. The significant increase in hydrogen atom density as the dilution is increased could explain the transition to microcrystalline deposition, as H atoms, which are very reactive, have been shown to enhance crystallization of silicon nanoparticles [VB05] and are also expected to enhance crystallization within the deposited layer. Interestingly, Si 2 H x silicon radical densities decrease as the dilution ratio is increased, following the trend of Si 2 H - x ions, while SiH 2 density increases, following the trend of SiH - x ions. Finally, the influence of the radio-frequency power is investigated in Figure 4.11. The pressure and silane inlet mole fraction have been kept equal to 2.28 Torr and 15 %, respectively, as in the base case. As expected, increasing the power increases the ionization rate as well as the silicon clustering reaction rates. Also, the plasma tends to become less electronegative, which is consistent with the increase in the DC bias observed when increasing RF power in an asymmetric discharge setup under similar conditions [START_REF] Kim | Hydrogenated polymorphous silicon: establishing the link between hydrogen microstructure and irreversible solar cell kinetics during light soaking[END_REF]. However, from a practical viewpoint, increasing the RF power also increases ion flux and energy, as well as dust formation, and thus induce impurities in the deposited layers [START_REF] Kim | Hydrogenated polymorphous silicon: establishing the link between hydrogen microstructure and irreversible solar cell kinetics during light soaking[END_REF].

Asymmetric Excitation

As mentioned in the preceding subsection, industrial reactors are generally geometrically symmetric. However, the use of asymmetric excitation waveforms is now seen as an interesting tool to control independently the ion flux and ion energy in a capacitively coupled radio-frequency discharge [START_REF] Donkó | PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect[END_REF] [SSC09] [START_REF] Lafleur | Separate control of the ion flux and ion energy in capacitively coupled radio-frequency discharges using voltage waveform tailoring[END_REF]. This kind of waveform generally induce a nonnegligible DC bias even in a geometrically symmetric discharge, due to the temporal asymmetry of the applied potential. Additionally, in research reactors the evolution of the DC bias is strongly related to the formation of nanoparticles and powders [BBH96] [WB12] [Kim12], and is often used as a tool for controlling the discharge conditions and deposition process. This is a stong motivation for implementing a self-consistent calculation of the DC bias in the plasma fluid model, as described in section 4.9. In a one-dimensional formulation, no geometrical asymmetry will be observed, so in the following we will consider "tailored voltage waveforms".

We first consider a two-frequency waveform that is the sum of a fundamental frequency and its first harmonic [START_REF] Heil | On the possibility of making a geometrically symmetric RF-CCP discharge electrically asymmetric[END_REF] ϕ ap (t) = ϕ rf cos (ωt + ψ 0 ) + cos (2(ωt + ψ 0 )) , (4.11.4) where ω = 2πf is the RF pulsation and f = 13.56 MHz. The pressure is set at p = 2.28 Torr, and the silane inlet mole fraction is kept at X in SiH 4 = 15 %. Simulation results are shown in Figure 4.12. Under such conditions, the average electric potential is clearly asymmetric, and a DC bias potential of ϕ dc = -29 V has appeared. This in line with the analytical expression of the DC bias derived in [START_REF] Donkó | PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect[END_REF], in the form

ϕ dc = - ϕ max + ϕ min 1 + , (4.11.5)
where is a geometrical asymmetry parameter. For = 1, that is if all the asymmetry could be attributed to the amplitude asymmetry of the applied signal, the DC bias observed would be of -25 V [DSHC09] [START_REF] Bruneau | Control of radio frequency capacitively coupled plasma asymmetries using Tailored Voltage Waveforms[END_REF]. However, the asymmetry of the signal induces additional asymmetry between the two electrodes, which explains the difference with this theoretical value. The electron temperature profile is also strongly asymmetric, with a higher excitation peak occuring in the vicinity of the powered electrode during the sheath contraction period. This is consistent with the results of Donkó et al. [START_REF] Donkó | PIC simulations of the separate control of ion flux and energy in CCRF discharges via the electrical asymmetry effect[END_REF].

Another type of waveforms has recently been considered, whose asymmetry is not an amplitude asymmetry, as in the preceding example, but a slope asymmetry. Sawtooth-like waveforms are obtained by truncating the Fourier series of a "sawtooth" function [BGO + This kind of waveform also induces a DC bias on the powered electrode, which has revealed sensitive to the chemistry employed. In particular, when an electronegative gas is used such as CF 4 , the sign of the DC bias is reversed compared to the argon case. When H 2 is used as a gas precursor, an intermediate behavior is observed with a less pronounced asymmetry effect, attributed to the lower mass of hydrogen [BLG + 16]. Therefore, an investigation of the effect of sawtooth-like waveform on a silane-hydrogen plasma is desirable, since silane and hydrogen respond differently to such waveforms. Simulations have been run for a silane-hydrogen discharge excited with sawtooth waveforms (4.11.6), in a perfectly symmetric reactor with an interelectrode distance of 2.5 cm, a potential amplitude of ϕ rf = 200 V, and at a pressure of 900 mTorr. Those conditions are close to the conditions used in [BLG + 16]. Figure 4.13 shows the values of the normalized DC bias as a function of the SiH 4 dilution ratio. The DC bias is positive, as was the case with CF 4 . This can be explained by the electronegativity of silane. Given the very low densities of H +

x positive ions compared to silicon hydride ions, hydrogen ions do not play a significant role on the bias formation. However, silane is less electronegative than CF 4 , and the electron density remains comparable to the main negative ion densities under the conditions considered. This can explain the relatively low values of DC bias obtained, compared to CF 4 chemistry, although further investigation should be carried out.

Conclusion

The chemical vapor deposition software developed in Chapter 3 has been extended in order to model self-consistently a radio-frequency discharge in silane-hydrogen. The Poisson's equation for the electric potential and the evolution equation for the electron temperature have been incorporated and coupled to the existing set of equations. The convection velocity has been neglected, and the expressions for transport fluxes have been simplified using approximations routinely employed in the modeling of non-thermal plasmas. The self similar formulation in axisymmetric coordinates has been conserved. A complete chemistry mechanism has been incorporated, taking into account electron collisions depending on the electron temperature T e , and heavy-species reactions depending on the heavy-species temperature T h . A surface chemistry mechanism has also been used for modeling the interaction of the neutral species with the substrate.

Simulations have been performed under typical conditions for plasma-enhanced low-temperature epitaxy of silicon. The numerical method used in Chapter 3 for chemical vapor deposition has been conserved. The problem is fully non-stationary, and the plasma parameters are shown to reach a pseudo-steady-state, in which the discharge properties are quasi-perodic, after a few tens of thousands of RF cycles. The plasma is electronegative, with a majority of SiH + 3 positive ions and Si 2 H - x negative ions. The results obtained are in agreement with previous studies under similar conditions. A study of the influence of silane dilution ratio and RF power was carried out. The results are in good qualitative agreement with previous experimental studies under conditions for deposition of amorphous silicon.

Finally, a self-consistent calculation of the DC bias potential was implemented, by taking into account the blocking capacitor in the external circuit. This allowed for the study of excitation by asymmetric waveforms. The effect of amplitude asymmetry was first considered by using a two-frequency waveform. In this case, the value of the bias potential depends essentially on the amplitude ratio of the applied signal, and the bias obtained was found to be close to theoretical predictions and previous results in argon discharges. The effect of a new kind of waveforms, called "sawtooth" waveforms, was also investigated. The DC bias was found to be of the same sign as for CF 4 chemistry, which can be attributed to the electronegativity of silane. However, the value of the DC bias is much lower than was observed for CF 4 in similar conditions. A possible explanation is the lower electronegativity of silane. Under the conditions considered, the influence of hydrogen ions was found to be negligible.

The plasma model will be enriched in Chapter 5 with a sectional model for nanoparticles. The negative ions containing two silicon atoms Si 2 H - x are known to be the main precursors of nanoparticle nucleation [BSGK00], and their rate of clustering with silane molecules will be used as the nucleation rate for nanoparticles. The incorporation of nanoparticles will induce additional complexity, since the characteristic time governing the nanoparticle evolution, typically of the order of the µs, far exceeds the plasma properties characteristic times, of the order of the RF period T rf = 1/f = 7.37 × 10 -8 s.

Chapter 5

Nanoparticle Formation in a Silane-Hydrogen Plasma Discharge

Introduction

The presence of nanoparticles, microparticles, and possibly powder is an important feature of silanehydrogen plasmas, which has a significant impact on silicon thin-film deposition process. If the deposition of amorphous silicon (a-Si:H) at low pressure and RF power is generally explained by the contribution of SiH 3 radicals [Str05], most models fail at explaining deposition rates and material properties under conditions where particle nucleation occurs [RiCHS + 98]. In particular, the deposition of so-called "polymorphous silicon" (pm-Si:H), as well as low-temperature plasma enhanced silicon epitaxy are obtained under conditions close to powder formation

[RiCHS + 98] [RCL12].
The formation and behavior of nanoparticles and microparticles in silane plasma discharges has been studied extensively over the last decades, both from the experimental and numerical viewpoints. A more detailed presentation of the historical developments may be found in [Bou99]. We only mention the pioneering experimental works of Watanabe and coworkers [WSK + 96], and Boufendi, Bouchoule and coworkers [START_REF] Boufendi | Particle nucleation and growth in a low-pressure argon-silane discharge[END_REF], which led to the identification of the four distinct phases of particle formation, illustrated in Figure 5.1. J. Perrin and coworkers [PBEL94], following Hollenstein and coworkers [HDD + 94], also accomplished a tremendous experimental work on the study of silane plasma discharge chemistry, which contributed to identify the main clustering reactions leading to the nucleation of nanoparticles.

From the numerical point of view, Girshick, Swihart and coworkers developed for the first time a kinetic model for silicon hydride clustering in low-temperature silane plasma [BSGK00]. Their model used a group additivity scheme to predict the thermochemical properties of large silicon hydride clusters, and data from ab initio calculations. Reaction rate constants were estimated from available experimental data and cross-sections. Clustering was principally due to reactions between negative ions and neutral species, in accordance with experimental results of Hollenstien [HDD + 94]. Bhandarkar, Kortshagen and Girshick coupled this kinetic model to a sectional model for nanoparticles in a quasi-one-dimensional formulation for low pressure argon-silane plasmas [BKG03] [Bha03].

Akdim and Goedheer developed a self-consistent model for the transport of dusts in silanehydrogen plasma [START_REF] Akdim | Modeling of dust in a silane/hydrogen plasma[END_REF], accounting for electric drift, diffusion, ion drag and thermophoresis. Dusts were assumed to be monodispersed with prescribed radius and corresponding equilibrium charge, and coupled to a one-dimensional plasma fluid model. Nucleation was not taken into account selfconsistently and the total dust density was taken as an input parameter. They also introduced a "time splitting" procedure to speed up the convergence towards a quasi-steady state solution [START_REF] Akdim | Modeling of dust in a silane/hydrogen plasma[END_REF].

Bogaerts, de Bleecker, and Goedheer investigated the nucleation of nanoparticles in silane discharges [dBBGG04] [dBGG04] [dB06]. Their one-dimensional plasma fluid model accounted for the chemical kinetics of silicon hydrides containing up to 12 silicon atoms, following the work of Girshick et al.. According to their model, over 90 % of the dust formation was initiated by the clustering reaction between SiH - 3 and SiH 4 . They also observed a delay in nucleation when gas temperature is increased, in agreement with experimental observations. Their model was then coupled to a sectional model accounting for nucleation, coagulation, and transport of nanoparticles. The clustering reaction rate of the largest silicon anions was taken as a source term for nucleation of nanoparticles [START_REF] De Bleecker | Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges[END_REF]. The charge of a nanoparticle of a given size was taken equal to its equilibrium value, and surface growth of nanoparticles was not taken into account. They obtained quasi-steadystate nanoparticle density profiles and charge distributions in a pure silane discharge. They also investigated the effects of different forces on nanoparticles [dBBG04] [dBBG05].

In the meantime, Warthesen and Girshick implemented a self-consistent one-dimensional plasma fluid model, coupled to a sectional model for nanoparticles accounting for nucleation, coagulation, and surface growth [WG07] [START_REF] Warthesen | Numerical Investigations of Nanodusty Plasmas[END_REF]. The nanoparticles were sorted out in sections of given size and charge, so that the charging dynamics was modeled self-consistently. They obtained results for a silane plasma discharge diluted in argon at 100 mTorr. Their model did not consider the complete chemical kinetics of clustering but imposed a fixed nucleation rate over a short period of time at the beginning of the simulations, and a fixed surface growth rate. Their results evidenced four distinct phases of nanoparticle growth, namely a charge-limited phase, a charge accumulation phase, an early ion drag phase, and a sheath interaction phase. They also showed a qualitative agreement with laser light scattering experiments by Rózsa et al. [START_REF] Rózsa | The location of very small particles in silane RF discharge[END_REF], although the influence of coagulation was found to be underestimated. Finally, Agarwal and Girshick [START_REF] Agarwal | Numerical simulations of nanodusty RF plasmas[END_REF] [AG12] [Aga12] modified the coagulation rates in order to take into account the image potential between neutral and charge particles, which can strongly enhance the coagulation [START_REF] Ravi | Coagulation of nanoparticles in a plasma[END_REF]. They also investigated the effect of gravity, thermophoresis, and neutral drag. They further incorporated a gas phase chemical mechanism allowing for a self-consistent evaluation of nucleation and nanoparticle surface growth rates. Pulsed radio-frequency discharges were also investigated as a way of controlling the nanoparticle nucleation [START_REF] Larriba-Andaluz | Controlled fluxes of silicon nanoparticles to a substrate in pulsed radio-frequency argonâĂŞsilane plasmas[END_REF].

More recently, Michau and Hassouni have developed a self-consistent model for carbonaceous particle formation in an argon graphite cathode dc discharge used for simulating parasitic discharges expected under tokamak divertor domes [START_REF] Michau | Modelling of dust grain formation in a low-temperature plasma reactor used for simulating parasitic discharges expected under tokamak divertor domes[END_REF] [MAL + 16]. Their model coupled a DC discharge module base on hybrid Monte Carlo analytic simulations, a cluster module describing the kinetics of particle formation, and a particle module including nucleation, transport, coagulation, and particle surface growth, and a self-consistent calculation of average mass and average charge.

The regime of main interest for photovoltaic applications corresponds to the intermediate regime where the plasma experiences the α → γ transition, as depicted in Figure 5.1. Indeed, this regime corresponds to improved deposition rate and material quality, and both the deposition of so-called "polymorphous" silicon and the low-temperature plasma enhanced epitaxy of crystalline silicon are obtained under such conditions [RiCHS + 98] [RCL12]. In this regime, the nanoparticle size remains generally below 10 nm, which is beyond the current resolution of most experimental techniques. In particular, it is currently not possible to measure directly the density nor the size distribution of such a nanoparticle cloud. Furthermore, due to the high surface reactivity of silicon radicals and clusters, traditional plasma probe measurements are not straightforward in silane-hydrogen discharges. As a consequence, there is a lack of experimental data on the nanoparticle early coagulation phase, and previous numerical studies have generally focused on the latest phase of particle cloud formation, where coagulation is dominant, and where dust particle radius ranges up to 10 -250 nm, and possibly higher. In particular, the argon-silane chemistry considered by Girshick and coworkers is known to enhance powder formation compared to silane or silane-hydrogen chemistry. As well, de Bleecker and coworkers considered pressures in the range 100-300 mTorr, an interelectrode distance of 3 cm, a frequency of 50 MHz, and a power of 5 Watts.

In this Chapter, a fully coupled numerical model for nanodusty silane-hydrogen plasma discharge In section 5.2, the sectional model is described and the general sectional equation is stated. In section 5.3, the computation of the nucleation rate from the gas phase chemical kinetics is described, and the expression for the coagulation rate is derived in section 5.4. The nanoparticle surface growth rate due to deposition of plasma species or radicals on nanoparticles is expressed in section 5.5, and the charging rates due to collection of electrons or ions in section 5.6. The nanoparticle transport fluxes is given in 5.7, and the self-consistent plasma-nanoparticle equations are summarized in section 5.8. Results are presented and discussed in section 5.9.

Sectional Model

We denote by n c (t, x, v) the continuous distribution function for aerosol particles of a given charge number c. The continuous distribution depends on the volume of the particle v, and is a solution to the general dynamic equation [START_REF] Friedlander | Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics[END_REF] 

∂n c ∂t + ∂ x • (n c V c ) + ∂ ∂v n c (t, v)I c (t, v) = ∂n c ∂t nuc + ∂n c ∂t coag + ∂n c ∂t charge , ( 5 
∂N pc ∂t + ∂ x • (N pc V pc ) = ∂N pc ∂t nuc + ∂N pc ∂t growth + ∂N pc ∂t coag + ∂N pc ∂t charge .
(5.2.9)

Nucleation

The nucleation rate is taken equal to the production rate of Si 3 H - x negative ions induced by the clustering reactions

H 3 SiSiH -+ SiH 4 Si 3 H - 6 + H 2 (5.3.1) Si 2 H - 5 + SiH 4 Si 3 H - 7 + H 2 , (5.3.2) that is ∂N pc ∂t nuc = δ p1 δ c(-1) (k nuc n H 3 SiSiH -n SiH 4 + k nuc n Si 2 H - 5 n SiH 4 ), (5.3.3)
where k nuc is the reaction rate constant [START_REF] De Bleecker | Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges[END_REF] k nuc = 1.0 × 10 -12 cm 3 .s -1 .

(5.3.4)

The freshly nucleated particles are added to section of size p = 1 and charge c = -1.

Coagulation

The coagulation term appearing in the general dynamic equation (5.2.1) reads [GTS80]

∂n c ∂t coag = 1 2 a+b=c v 0 β ab ( ṽ, v -ṽ)n a ( ṽ)n b (v -ṽ) d ṽ - a v 0 β ca (v, ṽ)n c (v)n a ( ṽ) d ṽ, (5.4.1)
where β ab (v, ṽ) is the coagulation coefficient of aerosol particles of charge a and volume v with aerosol particles of charge b and volume ṽ, and where for the sake of simplicity the dependance on t and x has been dropped. The term β ab (t, x, v, ṽ)n a (t, x, v)n b (t, x, ṽ) dvd ṽ represents the number of particles of size v + ṽ arising from coagulation of a particle of size v with a particle of size ṽ, at time t and position x.

In order to compute the net coagulation rate [ ∂Vpc ∂t ] coag into section (p, c), one has to distinguish between several subcases, as follows.

1. The mass flux into section (p, c) due to coagulation between particles from sections of size strictly lower than p reads, when p ≥ 2

c 1 +c 2 =c 1 2 v p-1 v 0 v p-1 v 0 δ(v p-1 < u + v < v p )(u + v)β c 1 ,c 2 (u, v)n c 1 (u)n c 2 (v) dudv. (5.4.2)
2. The mass flux into section (p, c) due to coagulation between a particle of size strictly lower than p and a particle of size p reads, when p ≥ 2

c 1 +c 2 =c v p-1 v 0 vp v p-1 δ(u + v < v p )(u + v)β c 1 ,c 2 (u, v)n c 1 (u)n c 2 (v) dvdu.
(5.4.3)

3. The mass flux outwards section (p, c) due to coagulation with a particle of size strictly lower than p, growing into a particle of size p, reads, for any p ∈ {1, . . . , N p }

c 2 v p-1 v 0 vp v p-1 δ(u + v < v p )uβ c,c 2 (u, v)n c (u)n c 2 (v) dudv.
(5.4.4) 4. The mass flux outwards section (p, c) due to coagulation with a particle of size strictly lower than p, growing into a particle of size strictly larger than p, reads, when 2 ≤ p ≤ N p -1

c 2 v p-1 v 0 vp v p-1 δ(u + v > v p )uβ c,c 2 (u, v)n c (u)n c 2 (v) dudv.
(5.4.5)

5. The mass flux into section (p, c) due to coagulation between particles from sections of size p reads, when p ≥ 2

c 1 +c 2 =c 1 2 vp v p-1 vp v p-1 δ(u + v < v p )(u + v)β c 1 ,c 2 (u, v)n c 1 (u)n c 2 (v) dudv.
(5.4.6)

6. The mass flux outwards section (p, c) due to coagulation with a particle of the same size p and of a different charge, growing into a particle of size p, reads, for any p ∈ {1, . . . , N p }

c 2 =c vp v p-1 vp v p-1 δ(u + v < v p )uβ c,c 2 (u, v)n c (u)n c 2 (v) dudv.
(5.4.7)

7. The mass flux outwards section (p, c) due to coagulation with a particle of the same size p and charge c, growing into a particle of size p, reads, for any p ∈ {1, . . . , N p }

1 2 vp v p-1 vp v p-1 δ(u + v < v p )(u + v)β c,c (u, v)n c (u)n c (v) dudv.
(5.4.8)

8. The mass flux outwards section (p, c) due to coagulation with a particle of the same size p and of a different charge, growing into a particle of size strictly larger than p, reads, when

p ≤ N p -1 c 2 =c vp v p-1 vp v p-1 δ(u + v > v p )uβ c,c 2 (u, v)n c (u)n c 2 (v) dudv.
(5.4.9)

9. The mass flux outwards section (p, c) due to coagulation with a particle of the same size p and charge c, growing into a particle of size strictly larger than p, reads, when p From the preceding results, the net coagulation rate into section (p, c) reads

≤ N p -1 1 2 vp v p-1 vp v p-1 δ(u + v > v p )(u + v)β c,c 2 (u, v)n c (u)n c 2 (v) dudv. ( 5 
∂V pc ∂t coag = (5.4.12) 1 2 Np p 1 =1 Np p 2 =1 c 1 +c 2 =c vp 1 v p 1 -1 vp 2 v p 2 -1 δ(v p-1 < u + v < v p )(u + v)β c 1 ,c 2 (u, v)n c 1 (u)n c 2 (v) dudv - (p 2 ,c 2 ) =(p,c) vp 2 v p 2 -1 vp v p-1 uβ c,c 2 (u, v)n c (u)n c 2 (v) dudv - 1 2 vp v p-1 vp v p-1 (u + v)β c,c (u, v)n c (u)n c (v) dudv,
which can be rewritten in the form

∂V pc ∂t coag = p 1 <p 2 c 1 +c 2 =c β pc p 1 c 1 p 2 c 2 V p 1 c 1 V p 1 c 2 + p 1 c 1 ≤c 2 c 1 +c 2 =c β pc p 1 c 1 p 1 c 2 V p 1 c 1 V p 1 c 2 - p 2 c 2 β pcp 2 c 2 V pc V p 2 c 2 ,
5.5 Nanoparticle Surface Growth

Sectional growth rate

The expression of the sectional growth rate is a critical issue. In the present study, the "orbital motion limited" theory will be used for the description of charged species interactions with nanoparticles [START_REF] Allen | Probe theory -the orbital motion approach[END_REF].

The continuous nanoparticle surface growth rate I c (t, v) is given by [Fri00]

I c (t, v) = l∈S ω l pc V Si m ν l Si s(v) (5.5.1)
where ω l pc is the average molar surface flux of the l th gaseous species on a nanoparticle of size p and charge c, ν l Si is the average number of Si atoms in a molecule of the l th species depositing on the surface of a nanoparticle upon collision, V Si m is the molar volume of silicon, and s(v) is the surface of a sphere of volume v s

(v) = π 1 3 6 2 3 v 2 3 . (5.5.2)
The sectional nanoparticle surface growth term is obtained from integration of the particle current v ∂ ∂v [n(t, v)I c (t, v)] over v, which yields integrating by part

∂V pc ∂t growth = - vp v p-1 v ∂ ∂v n c (t, v)I c (t, v) dv, = H pc (t)V pc + I p-1c (t) -I pc (t),
where

I pc (t) = v p n c (t, v p )I c (t, v p ) (5.5.3)
is the intersectional growth rate and H pc (t) is the intrasectional growth rate, which reads

H pc (t) = l∈S ω l pc V Si m ν l Si s p v p , (5.5.4) 
where s p is the average surface of particles of size p

s p = vp v p-1 n c (t, x, v)s(v) dv vp v p-1 n c (t, x, v) dv = 3 2 π 1/3 6 2/3 v 2/3 p -v 2/3 p-1 ln vp v p-1 . 
(5.5.5)

The density at the interface between section p and p+1, n c (t, v p ), was left undefined in expression (5.2.4) and can be chosen arbitrarily, and so is the intersectional growth rate (5.5.3). For the sake of numerical stability, it is desirable that the total number density be conserved during surface growth [START_REF] Warren | Simulation of aerosol size distribution evolution in systems with simultaneous nucleation, condensation, and coagulation[END_REF], namely 

H pc V pc v p = I pc v p - I pc v p+1 , 1 ≤ p ≤ N p -1, -K -≤ c ≤ K + , ( 5 
I pc = v p+1 v p+1 -v p H pc V pc , 1 ≤ p ≤ N p -1, -K -≤ c ≤ K + .
(5.5.7) Also, the growth rate into the smallest section must be zero 

I 0c = 0, -K -≤ c ≤ K + , ( 5 

Investigation of nanoparticle surface growth rate

We first consider the influence of the accomodation coefficient sSiH 4 of silane on charged nanoparticles. Indeed, this is the main parameter driving the nanoparticle growth rate at early stages, and the values found in the literature may vary significantly. In [START_REF] Warthesen | Numerical Investigations of Nanodusty Plasmas[END_REF], a uniform surface growth rate of 12 nm.s -1 is applied, while in [Aga12], the surface growth rate is computed from the collision frequency according to the kinetic theory of rigid elastic spherical molecules [CC70] [FK72], multiplied by the surface sticking coefficient of the molecule considered, with a sticking coefficient of 10 -5 for SiH 4 . Finally, in [dB06] the nanoparticle surface growth is not taken into account. In order to shed light on nanoparticle surface growth, the coagulation is turned off, and we consider only five sections of size, and three sections of charges, namely q c = -1, 0, +1.

(5.9.2) Figure 5.2 shows the temporal evolution of the main species densities at the center of the discharge during the early stage of particle growth. The accomodation coefficient has been varied between sSiH 4 = 1 × 10 -5 (above), sSiH 4 = 5 × 10 -4 (middle), and sSiH 4 = 1 × 10 -2 (below). The densities of negative, neutral, and positive nanoparticles, negative and positive ions, and electrons, are represented on the left of the figure, while the size distribution of nanoparticles is shown on the right.

One can see a rapid increase in the density of negative nanoparticles, which tend to replace negative ions as the main negatively charged species within the plasma. As expected, neutral and positive nanoparticle densities remain low compared to negative nanoparticle density, since the latter remain trapped inside the plasma due to the potential barrier. In the meantime, the electron density slightly decreases, while the positive ions density remains stable or slightly increases, which is coherent with experimental observations for this phase of particle growth [WB12]. Table 5.1 -Reaction rate constant computed for a molecule of radius 2 Å, and a gas temperature of 500 K.

sSiH 4 1 × 10 -5 5 × 10 -4 1 × 10 -2 2.5 × 10 -2 k (cm 3 .s -1 ) 4.3 × 10 -16 2.2 × 10 -14 4.3 × 10 -13 1.1 × 10 -12

As can be seen in Figure 5.2, the evolution of the main species densities are not affected drastically by the value of the accomodation coefficient of silane, while the growth rate is very sensitive to sSiH 4 . It is readily seen from (5.5.16) that a constant accomodation coefficient induces a constant radial growth rate ω l pc V Si m , with values of 2 Å.s -1 , 95 Å.s -1 , 1900 Å.s -1 , respectively for the three cases. Radial growth rate in the range of 1000 Å.s -1 has been achieved experimentally under similar conditions [START_REF] Th | Study of radial growth rate and size control of silicon nanocrystals in square-wave-modulated silane plasmas[END_REF], so that an accomodation coefficient around 1 × 10 -2 seems to be the most appropriate choice for silicon epitaxy conditions. Another confirmation is obtained from the comparison of the reaction rate constants obtained for the different values of accomodation coefficient with the rate constants associated with the clustering reactions of the smallest negative ions, namely Si n H - 2n + SiH 4 -→ Si n+1 H - 2n+2 + H 2 , (5.9.3) Si n H - 2n+1 + SiH 4 -→ Si n+1 H - 2n+3 + H 2 , (5.9.4) which has been taken equal to k nuc = 1.0 × 10 -12 cm 3 .s -1 according to (5.3.4). The reaction rate constant computed for a molecule of radius 2 Å, and a gas temperature of 500 K, are presented in Table 5.1. The rate constant computed is closest to the nucleation rate for an accomodation coefficient value of sSiH 4 = 2.5 × 10 -2 , which is consistent with the results above. Therefore, we will keep in the following the value of sSiH 4 = 2.5 × 10 -2 .

(5.9.5) 5.9.3 Study of a silane-hydrogen discharge during the early stages of nanoparticle formation

We now apply the fully consistent software, including coagulation and influence of the image potential. We consider ten sections of size, as listed in Table 5.2, and five sections of charges, namely q c = -3, -2, -1, 0, +1. Figure 5.3 shows density profiles for charged plasma species, and Figure 5.5 shows the nanoparticle density profiles, as obtained after 6,000 radio-frequency cycles. At this stage, nanoparticles with one negative elementary charge are dominant, and the first two sections of size are dominant, so that for the time considered the nanoparticles observed are essentially "large" negative ions or clusters containing at most a few thousands of silicon atoms.

Due to the strong potential barrier, the negatively charged nanoparticles are trapped at the center of the discharge, in agreement with previous results [dB06] [Aga12]. The trapped negative particles have therefore a longer residence time than neutral or positive particles, and continue to grow and accumulate charge. The density of neutral nanoparticles, which appear mainly due to neutralization of negative nanoparticles by positive ions, is one or two orders of magnitude lower than negative nanoparticle density. Positive nanoparticle density is about five orders of magnitude lower than negative nanoparticle density. Compared to the SiH + 3 ion profile in the OML theory describing the charging mechanism still needs to be assessed, as far as nanometric or subnanometric particles are concerned. Charge fluctuations of such silicon clusters are indeed very frequent, possibly increasing the number of positive nanoparticles under some specific discharge conditions. Taking into account UV photodetachment could also modify the charge distribution. However, a significant density of neutral nanoparticles is observed, which are not trapped in the plasma and can therefore contribute atively to the deposition process.

The temporal evolution of the main negative species and positive ions densities at the center of the reactor are given in Figure 5.4. It is readily seen that the positive ion density increases as nanoparticles nucleate and grow. This increase is associated with an increase in the density of negative nanoparticles and ions, a slight decrease in electron density, and an increase in the number of charges carried on average by a nanoparticle, which explains the difference observed between the positive ion density and the total negative species density. Nanoparticles with a radius below one nanometer are so small that they can actually stand a limited number of charges. Calculations with a charge limit of 1 have been carried out, and the increase in positive ion and negative nanoparticle densities are also observed under such conditions. The evaluation of the charge limit is discussed in [Gal00] [START_REF] Picard | The effect of single-particle charge limits on charge distributions in dusty plasmas[END_REF]. Since the number of charges considered here remains limited, the charge limit was discarded so that the charge of the smallest nanoparticles might be overestimated. In experimental conditions, the charge accumulation may thus be slightly delayed compared to the present results. The decrease in electron density and increase in electron bulk temperature are notoriously observed in silane-hydrogen plasmas during the nanoparticle nucleation. This change in the plasma properties may be associated with the beginning of an α → γ transition [BB93] [PBEL94] [BBH96]. Precisely, epitaxy of silicon and deposition of polymorphous silicon thin films occur under conditions where the discharge is maintained on the verge of nanoparticle agglomeration [START_REF] Suendo | Plasma diagnostics in silane-methane-hydrogen plasmas under pm-Si 1-x C x :H deposition conditions: Correlation with film properties[END_REF]. Similarly, the rapid increase in positive ion density induces an increase in ion fluxes on the substrate, which in turn induces a dramatic increase in deposition rate. This result is consistent with previous experimental observations, which have pointed out the dominant contribution of ions to the deposition of polymorphous silicon [START_REF] Hamers | Contribution of ions to the growth of amorphous, polymorphous, and microcrystalline silicon thin films[END_REF] 

Conclusion

We have implemented a self-consistent and fully coupled numerical model for nanoparticle formation in silane-hydrogen plasma discharge. The model includes a complete chemistry mechanism for nucleation of nanoparticles, effect of charge enhancement on coagulation, and transport of nanoparticles. In turn, the influence of the nanoparticles on electric potential, plasma species densities and electron temperature is accounted for. The model is fully non-stationary, and has been used to investigate the early phase of nanoparticle formation, where particles' radii remain below ten nanometers, under industrial conditions typical of silicon thin-film deposition.

The surface flux of silane on clustering particles has been treated by means of an effective accomodation coefficient sSiH 4 . Different values of the accomodation coefficient have been tested, and sSiH 4 was found to be in the range 1 -2.5 × 10 -2 . The strong interaction of silane with clusters can be explained by several reasons. The surface growth rate on particles could be strongly enhanced by an increased nanoparticle temperature. As supported by molecular dynamics simulations [VB05], the nanoparticles can be strongly heated due to to hydrogen interaction with nanoparticle surface, which can adsorb on an existing dangling bond or recombine with an H atom on the cluster surface. Experimental observations confirm that it is possible to grow crystalline nanoparticles when a high hydrogen dilution is used [START_REF] Th | Study of radial growth rate and size control of silicon nanocrystals in square-wave-modulated silane plasmas[END_REF], although other heating mechanisms could play a role as well. In turn, an increase in the cluster temperature will enhance drastically the surface accomodation coefficient of silicon containing species. Additionnally, the polarizability of SiH 4 induces a dipole interaction which can influence the surface flux on charged silicon clusters of a given size. Finally, the surface flux of silane in general depends on the size and charge of the nanoparticle. It is expected to decrease rapidly when nanoparticles reach a critical size, and become equal to the standard accomodation coefficient on the walls, leading to amorphous growth of large nanoparticles once nucleation has been quenched by coagulation [HDD + 94].

The instantaneous nanoparticle density profiles presented are in qualitative agreement with previous results obtained for different conditions [START_REF] De Bleecker | Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges[END_REF] [AG12]. Although the density of neutral nanoparticles was found to be nonnegligible compared to that of negative particles, positive nanoparticle densities are several orders of magnitude below, so that positive nanoparticles are not expected to play a significant role in the deposition process. However, a rapid increase in positive ion density has been observed, and the subsequent increase in positive ion flux may have a significant impact on silicon thin-film deposition.

Given the very small time scale associated with the radio-frequency excitation, namely T rf = 1 13.56×10 6 = 7.37×10 -8 s, time iterations are time consuming. In a future study, we intend on applying the "time splitting" procedure of Akdim and Goedheer [START_REF] Akdim | Modeling of dust in a silane/hydrogen plasma[END_REF], where seperated time integrations are carried out for "fast" variables, namely the electric potential, the electron temperature and the charged species densities, and "slow" variables, namely the nanoparticles and most of the neutral species [dBG06] [War06] [AG12]. The results obtained will be validated by comparison with the fully coupled method applied in the present version of the software.

Chapter 6

Conclusion and Perspectives

In this thesis, a fully coupled, fully consistent, and fully non-stationary plasma-nanoparticle model has been developed and implemented numerically. A plasma fluid model for a multicomponent reactive two-temperature polyatomic plasma has been derived from the kinetic theory of gases. For the first time, the internal energy levels of the heavy plasma species were taken into account, yielding additional terms in the expression for transport fluxes. This derivation has set a sound basis for the modeling of non-thermal plasmas accomplished in the remaining of the thesis, and opens new perspectives of applications in the field.

In the limiting case of a neutral mixture, classical models for multicomponent reactive gas flows have been retrieved. A numerical model for thermal chemical vapor deposition (CVD) of crystalline silicon was then implemented numerically. A software has been written in FORTRAN and validated against a benchmark model from the literature. The results are fully consistent with the benchmark within a few percents accuracy.

The fluid model derived from the kinetic theory has then been simplified to describe a radiofrequency plasma discharge reactor. The software for CVD modeling has been enriched and adapted to the modeling of PECVD, including thermal non-equilibrium, a two-temperature chemistry, and self-consistent calculation of charged species transport and electric potential. Numerical results are presented in conditions typical of polymorphous silicon deposition, and influence of silane dilution ratio as well as RF power is studied. A simplified gas phase chemical mechanism was shown sufficient to reproduce the main plasma properties. A self-consistent calculation of the DC bias was also incorporated. This allowed to assess the influence of asymmetric waveform excitation on discharge chemistry and electrical properties in silane-hydrogen.

Finally, a sectional model for nanoparticles with respect to size and charge was derived, and implemented in the software. The surface growth rate of nanoparticles was investigated, and compared to experimental results from LPICM. The nanoparticle and plasma species transient density profiles have been studied. Although positive nanoparticle densities remain several orders of magnitude below the positive ion density, a non-negligible fraction of nanoparticles are neutral and can thus reach the substrate without beinng trapped in the plasma. Besides, under the conditions considered, the early phase of nanoparticle is associated with a significant increase in the positive ion density and subsequent ion flux, which is a possible explanation for the apparition of embedded crystalline structure in the deposited layers.

Several perspectives of research can be drawn. From a theoretical viewpoint, the derivation from the kinetic theory will be completed and extended in a future work. In particular, the sign of the entropy production rate will be asserted, since a positive entropy structure is required for the sake of numerical stability. In addition, the effect of "strong" magnetic field will be included, and a scaling where some of the heavy species internal energy modes thermalize at T e while the others thermalize at T h will be considered. The complete model derived in Chapter 2 still needs to be implemented and validated against kinetic models and when possible against experimental data. For practical applications, the knowledge of transport parameters and thermochemical data is required, in particular for the computation of collision integrals. If electron collision cross-sections are generally well referenced for the most current discharge chemistries, transport data for positive and negative ions in silane discharges is currently scarcely available. As well, existing chemical reaction rates between silicon hydrides and other plasma species can be improved. The use of molecular dynamic simulations could be useful as well as new experimental measurements under a wide range of discharge conditions. However, the model derived from the kinetic theory is general and can also be applied to different chemistries and processes.

The description of surface processes as well can be improved. In particular, a self-consistent description of surface kinetics should account for hydrogen surface coverage, and for the impact energy of ions bombarding the substrate. The derivation of a self-consistent reaction mechanism and associated reaction rates is a tremendous task, especially in plasma discharges where ion bombarding energy play an important role in the surface processes. A better description of the nanoparticle surface growth process is also desirable. Indeed, the description by means of an effective accomodation coefficient has proved to be efficient in explaining the observed nanoparticle radial growth rate under polymorphous silicon deposition conditions, but does not describe self-consistently the surface growth kinetics. In particular, H surface coverage and ion impact energies should be accounted for, while additional complexity could arise from the actual geometry of nanoparticles, the variation of their surface temperature, as well as polarizability effects and influence of image potential on surface fluxes. In turn, a better knowledge of reaction rates between clusters and plasma species would provide a more accurate description of nanoparticle charging. Finally, in this work the full charge distribution was accounted for by means of a sectional model with sections of size and charge. The charge distribution of "small" nanometer-sized nanoparticles is particularly narrow, so it would be interesting to compare the average charge computed from this model to results of models where only the average charge on each particle of a given size is computed.

Comparison with experiments are also expected. The computation of the DC bias will be validated against existing results from experiments and kinetic modeling of hydrogen discharges. Experimental measurements of the DC bias in silane-hydrogen discharges will then be carried out at LPICM for comparison with simulations under conditions where nanoparticles are absent and in the presence of nanoparticles. Comparison of deposition rates obtained from simulations and from experiments is also envisioned. This requires to estimate the contribution of silicon nanoparticles to growth. As a first approximation, sticking coefficients can be used, until a more precise description is available. Finally, experimental measurement of positive, neutral and negative cluster densities under polymorphous deposition conditions, whenever possible, would of great interest.

From a numerical viewpoint, several improvements are possible to accelerate the computations. The use of the time splitting procedure of Akdim and Goedheer would allow to use much larger time steps and thus simulate the discharge over a longer period of time. Parallelization of numerical algorithms would also accelerate considerably the computations. Currently, most of the computational cost arises from the evaluation of the numerical Jacobian, which requires 3n c + 1 evaluations of the function F Z , as explained in Chapter 3. Parallelization of those function evaluations, which are completely independant from each others, would significantly lower the time required for the Jacobian evaluation. In a second time, parallelization could be applied to accelerate the evaluation of F Z itself. The gain in computation rate could be used to enrich the discharge chemistry, or could as well permit to develop a two-dimensional axisymmetric model.
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 11 Figure 1.1 -Schematics of various crystalline solar cell structures, as presented in [Sag10]. (a) PERL. (b) HIT. (c) BC-BJ. (d) Interdigitated back-contact (IBC) cell. (e) Buried-contact cell structure.

Figure 1

 1 Figure 1.3 -Deposition rate of silicon thin films as a function of pressure for a 3 % silane in hydrogen mixture at 250 • C under an RF power of 22 W. The deposition rate of a standard a-Si:H film is also given for comparison. [RiCNTD + 07].

  Figure 1.4 -HRTEM cross section image of the epi-Si/c-Si interface (Left), and diffraction patterns obtained in the bulk of the epitaxial layer (Upper right), respectively in the substrate (Lower right) [Car14].

  .3.26) g ei = |C e -εC i |, g ei = |C e -εC i |, and where
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  dω eẽ d C e , where ψe = ψ e (t, x, C e ) and ψ e = ψ e (t, x, C e ) for any function ψ e of t, x and C e . The conservation of energy for electron-electron collisions reads 1 2 m e |C e | 2 + 1 2 m e | C e | 2 = 1 2 m e |C e | 2 + 1 2 m e | C e | 2 , so that from (2.4.28) ee (φ e f 0 e , f 0 e ) + S ee (f 0 e , φ e f 0 e ) = -1 f 0 e g eẽ σ eẽ f 0 e f 0 e φ e -φ e + φ e -φe dω eẽ d C e .

  ), and the electron linearized collision operator finally reads F e (φ e ) = -g eẽ σ eẽ f 0 e φ e + φ e -φ e -φe dω eẽ d C e (2.4.50) -j∈H j∈Q j n j a jj e -jj Q int j σ jj ej |C e | φ e (|C e |ω ej ) -φ e (C e ) dω ej . The kernel of F e coincides with the set of electron collisional invariants I 0 e . Indeed, if F e (φ e ) = 0, then multiplying expression (2.4.50) above by φ e f 0 e , integrating over C e , and using the reciprocity relation (2.2.35) and symmetrization one obtains φ e (|C e |ω ej ) = φ e (C e ) φ e (C e ) + φ e ( C e ) = φ e (C e ) + φ e ( C e ), for all C e , C e , ω eẽ , ω ej , i.e., φ e ∈ I 0 e . Furthermore, F e is isotropic, i.e., it transforms a tensor constructed from C e into another tensor of the same type [Wal58] [Gra04] [GG09]. This will be of great importance for the calculation of transport coefficients. We also introduce the associated integral bracket operator: ξ e , ζ e e = ⟪f 0 e ξ e , F e (ζ e )⟫ e , (2.4.51) which can be expressed in the form ξ e , ζ e e = 1 4 g eẽ σ eẽ f 0 e f 0 e ξ e + ξ e -ξ e -ξe ζ e + ζ e -ζ e -ζe dω eẽ dC e d C e (2.4.52) ej |C e |f 0 e (C e ) ξ e (|C e |ω ej ) -ξ e (C e ) ζ e (|C e |ω ej ) -ζ e (C e ) dω ej dC e . From expression (2.4.52), the bracket operator • e is readily seen to be symmetric, i.e., ξ e , ζ e e = ζ e , ξ e e , (2.4.53) positive semi-definite: ξ e , ξ e e ≥ 0, (2.4.54) and its kernel is seen to coincide with the kernel of F e : ξ e , ξ e e = 0 ⇔ F e (ξ e ) = 0 ⇔ ξ e ∈ I 0 e . (2.4.55)

  [Gra04] [GMM09], since if f 0 e decreases sufficiently rapidly as |C e | → +∞, then f 0 e ψ l e (C e ∧ B) • ∂ Ce φ e dC e = -f 0 e φ e ∂ Ce • (ψ l e C e ∧ B) dC e , = -f 0 e φ e (C e ∧ B) • ∂ Ce ψ l e dC e , = 0, for l ∈ {e, n s + 4}. Besides, the relation ⟪f 0 e φ e , (C e ∧ B) • ∂ Ce φ e ⟫ e = f 0 e φ e (C e ∧ B) • ∂ Ce φ e dC e , = f 0 e (C e ∧ B) • ∂ Ce set of solutions of the homogeneous linear equation associated with the linear equation (2.4.58) coincides with the kernel of F e , I 0 e .

Figure 3

 3 Figure 3.1 -Schematic representation of the axisymmetric chemical vapor deposition reactor.

  (2.4.163) the molar production rates ω k , k ∈ S, are such that k∈S m k ω k = 0. (3.3.9) Equations (3.3.8) and (3.3.9) ensure total mass conservation (3.3.3). By definition, the species mass fractions satisfy the relation k∈S Y k = 1. (3.3.10)

  4.42) and the perfect gas law (3.4.1), the mixture specific enthalpy can be decomposed into[Gio99] ρh = k∈S ρ k h k , (3.4.8)

  k (T ) is the specific entropy of the k th species at atmospheric pressure p k = p st = p atm

Figure 3

 3 Figure 3.2 -Comparison of the polynomial fits for C p SiH 4 (continuous line) obtained from the Chemkin Thermodynamic Database [KRM90] and valid over the ranges [T inf , T mid ] and [T mid , T sup ],where T inf = 300 K, T mid = 1000 K and T sup = 4000 K, with absolute data (circles) from the JANAF Thermochemical Tables[START_REF] Chase | NIST-JANAF thermochemical tables: Fourth edition[END_REF].

k∈SY

  k D kl = 0, l ∈ S, (3.6.9) and as well from (2.5.69) the thermal diffusion vector θ = (θ k ) k∈S satisfies the relation k∈S Y k θ k = 0, (3.6.10) i.e., it is orthogonal to the space RY . It is often more practical [CC70] [FK72] [Gio99] to use the constrained diffusion driving forces
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 33335 Figure 3.3 -Temperature profile along the axis of symmetry of the reactor. Continuous line, this work. Circles, simulations by Kleijn [Kle00].

Figure 4

 4 Figure 4.1 -Parallel plate radio-frequency plasma reactor from the GREMI laboratory, in Université d'Orléans.

Figure 4

 4 Figure 4.2 -Schematic representation of the axisymmetric radio-frequency reactor.

  are plotted as a function of T e in Figure 4.3. The continuous lines correspond to the values obtained with the Bolsig software [HP05] [Hag16] assuming a Maxwellian electron distribution function, and the dashed lines correspond to the approximation retained in this work.The figures show a good agreement with the results of the Bolsig software, although the electron mobility in hydrogen is slightly underestimated at high electron temperatures.The binary diffusion coefficients of ions with respect to neutral molecules are taken in the form[START_REF] Perrin | Cross-sections, rate constants and transport coefficients in silane plasma chemistry[END_REF] 

Figure 4 . 3 -

 43 Figure 4.3 -Electron binary mobilities as a function of the electron temperature. The continuous lines correspond to the values obtained with the Bolsig software [HP05] [Hag16] assuming a Maxwellian electron distribution function, and the dashed lines correspond to the approximation retained in this work. The scattering cross-sections were taken from [IST] for H 2 and from [SIG] for SiH 4 .

  4.8.1) T e | t,L = T in e , (4.8.2)

  condition for the potential at the driven electrode is also implemented in the following.The boundary conditions for electrons are taken asY e | t,0 = 10 -20 , (4.8.5) Y e | t,L = 10 -20 , (4.8.6)

Figure 4 . 4 -

 44 Figure 4.4 -Schematic representation of the discharge and external circuit, including the generator and blocking capacitor. The potential is decomposed in a "bare" potential ϕ l χ and a "relaxation" potential ϕ 0V .

  Figure 4.6 -Interior of the ARCAM reactor in LPICM (Left); grounded rotating plate (Middle); RF electrode and plasma box (Right).

Figure 4 Figure 4 . 8 -Figure 4

 4484 Figure 4.7 -Pseudo-steady-state electric potential (a), electric field (b), electron temperature (c) and electron density (d) profiles along the axis of symmetry of the reactor at several instants of the radio-frequency cycle, namely f t = 0.0, 0.25, 0.5, and 0.75.

Figure 4 .

 4 Figure 4.10 -Main radicals (Left) and ion (Right) densities at the center of the reactor as a function of the silane dilution ratio.

Figure 4

 4 Figure 4.11 -Main radicals (Left) and ion (Right) densities at the center of the reactor as a function of the RF voltage.

Figure 4

 4 Figure 4.12 -Electric potential profile averaged over a radio-frequency cycle (a) and electron temperature profiles at four different instants of the radio-frequency cycle (b) under a two-frequency waveform excitation. The fundamental frequency is f = 13.56 MHz and the applied potential amplitude is ϕ rf = 100 V. Other parameters are those of the base case.

Figure 4 .

 4 Figure 4.13 -Normalized DC bias as a function of the silane dilution ratio, for a geometrically symmetric discharge excited with sawtooth waveforms. The DC bias has been normalized by the peak to peak voltage.

Figure 5 .

 5 Figure 5.1 -Schematic representation of powder formation in silane plasmas. Results from [RiCNTD + 07].

  .4.10) 10. The mass flux outwards section (p, c) due to coagulation with a particle of size strictly larger than p reads, when p ≤ N p -1 c,c 2 (u, v)n c (u)n c 2 (v) dudv. (5.4.11)

  .5.6) from which the intersectional growth rate reads[START_REF] Warren | Simulation of aerosol size distribution evolution in systems with simultaneous nucleation, condensation, and coagulation[END_REF] 

Figure 5 . 2 -

 52 Figure 5.2 -Temporal evolution of the time-averaged densities of electrons, ions, and nanoparticles of each charge at the center of the discharge (left) and density profiles of nanoparticles of each size at the center of the discharge (right), for different values of sSiH 4 .

Figure 5 . 3 -

 53 Figure 5.3 -Density profiles of charged plasma species.

Figure 5 .Figure 5 . 4 -

 554 Figure 5.3 shows density profiles for charged plasma species, and Figure5.5 shows the nanoparticle density profiles, as obtained after 6,000 radio-frequency cycles. At this stage, nanoparticles with one negative elementary charge are dominant, and the first two sections of size are dominant, so that for the time considered the nanoparticles observed are essentially "large" negative ions or clusters containing at most a few thousands of silicon atoms.Due to the strong potential barrier, the negatively charged nanoparticles are trapped at the center of the discharge, in agreement with previous results[dB06] [Aga12]. The trapped negative particles have therefore a longer residence time than neutral or positive particles, and continue to grow and accumulate charge. The density of neutral nanoparticles, which appear mainly due to neutralization of negative nanoparticles by positive ions, is one or two orders of magnitude lower than negative nanoparticle density. Positive nanoparticle density is about five orders of magnitude lower than negative nanoparticle density. Compared to the SiH + 3 ion profile in Figure5.3, positive nanoparticles have a negligible density, at least for the time considered. It should be noted that

Figure 5 . 5 -

 55 Figure 5.5 -Transient profiles of nanoparticles as obtained after 6,000 radio-frequency cycles, that is after 0.5 ms. (a) Density profiles of negative nanoparticles with three elementary charges c = -3. (b) Density profiles of negative nanoparticles with two elementary charges c = -2. (c) Density profiles of negative nanoparticles with one elementary charge c = -1. (d) Density profiles of neutral nanoparticles c = 0. (c) Density profiles of positive nanoparticles with one elementary charge c = +1. 157

  

  

  The full electron scattering source term S e then reads S e (f ) = S ee +

j∈H S ej , = σ eẽ |C e -C e | f e f e -f e fe dω eẽ d C e (2.2.29)

  .2.41) and more generally for tensors ξ = (ξ l ) l∈S and ζ = (ζ l ) l∈S as ⟪ξ, ζ⟫ =

	ξ k ζ k dC k ,	(2.2.42)
	k∈S k∈Q k	

where stands for the fully contracted product in space

[EG94] [Gra04]

.

The scattering operator S and the corresponding collisional invariants then satisfy the relations ⟪ψ p , S(f )⟫ = 0, p ∈ {1, . . . , n s + 4} .

(2.2.43) Indeed, using the reciprocity relation (2.2.35) and symmetrizing between k and l, one can establish that for any ψ

Table 2 .

 2 1 -Reference quantities[GMM09].

	Physical entity	Common to all species
	Temperature	T 0
	Number density	n 0
	Charge	q 0

  Table 2.1 and Table 2.2, respectively.

  ee (f e , fe ) (C e ) = σ eẽ g eẽ f e f e -f e fe dω eẽ d C e , |C e -C e |, g eẽ = |C e -C e |, and where

								(2.3.23)
	where f e = f e (t, x, C e ), f e = f e (t, x, C e ), fe = f e (t, x, C e ), f	e = f e (t, x, C e ), where
	ω eẽ =	C e -C e |C e -C e |	,	ω eẽ =	|C e -C e | C e -C e	,	(2.3.24)
	g eẽ =						

  2.45): ⟪ξ, ζ⟫ = ⟪ξ e , ζ e ⟫ e + ⟪ξ h , ζ h ⟫ h = ξ e ζ e dC e +

				ξ j ζ j dC j .
			j∈H j∈Q j	
	The orthogonality relations (2.2.48), (2.2.49), (2.2.50) remain valid after scaling, and the cross-
	collision identities (2.2.49) now read				
	⟪ψ e e , S ej ⟫ e = 0,		⟪ψ i h , S he ⟫ h = 0, i ∈ H,	(2.3.32)
	j∈H				
	⟪m h C hν , S he ⟫ h + ε	⟪m e C eν , S ej ⟫ e = 0, ν ∈ {1, 2, 3} ,	(2.3.33)
	j∈H				
	⟪ψ n s +4 h	, S he ⟫ h +	⟪ψ n s +4 e	, S ej ⟫ e = 0.	(2.3.34)
			j∈H		

  e -|C e |ω ei ) f e (|C e |ω ei ) dω ei Ce σ ii ei f e (|C e |ω ei ) -f e (C e ) dω ei , Ce [|C e |σ ii ei ] ⊗ ∂ Ce f e (C e ) -∂ Ce f e (|C e |ω ei ) dω ei + |C e | σ ii ei ∂ CeCe f e (C e ) + ∂ CeCe f e (|C e |ω ei ) dω ei -2|C e | σ ii ei ∂ CeCe f e (|C e |ω ei ) • ω ei ⊗

				(2.3.67)
	-∂ and 1 2 |C e |C e •	
	K i,2 ei (C e ) = ∂ CeCe	σ ii ei |C e | f e (|C e |ω ei ) -f e (C e ) dω ei	(2.3.68)
	+ 2 ∂ C e |C e |	dω ei .

  Finally, if one defines the electron partial pressure p e as p e I = m e C e ⊗ C e f 0

		e dC e =	1 3	m e C e • C e f 0 e dC e I,	(2.4.30)
	where the latter equality comes from the isotropy of f 0 e , one retrieves the perfect gas law for the
	electrons	ρ e =	p e m e RT e	,	(2.4.31)

  /2 ω ej is the zeroth-order electron velocity after collision. Using again the reciprocity relation (2.2.35) in the form β jj |C e |σ jj ej dω ej dC e dC j = β jj |C (0) e |σ j j ej dω ej dC (0) e dC j , (2.4.65)

  De e , φ λe e are scalar isotropic functions of C e • C e . Thanks to this decomposition of φ e , the electron viscous tensor Π e can be shown to vanish:

	⟪f 0 e Ψ µ e , ψ l e ⟫ e = 0,	l ∈ {e, n s + 4} .	(2.5.9)
	Additionally, because of the linearity and the space isotropy of F e , Φ De e	and Φ λe e can be taken in
	the form		
	Φ De e = φ De e C e	(2.5.10)
	Φ λe e = φ λe e C e ,	(2.5.11)
	where φ		

5.7) ⟪f 0 e Φ µ e , ψ l e ⟫ e = 0, l ∈ {e, n s + 4} , (2.5.8) which is well posed since for both values of µ

  Furthermore, because of the isotropy of F e , φ2e is a scalar function of C e • C e , and each φ µ e , respectively Ξ µ

	F e (Ξ µ e ) = Φ µ e		(2.5.90)
	⟪f 0 e Ξ µ e , ψ l e ⟫ e = 0,	l ∈ {e, n s + 4} .	(2.5.91)

e , κ h D e , κ h λe , ΘD e , Θ λe , D j , j ∈ H, D 2 e , λh , λ2 e , the function φ µ e is solution to F e (φ µ e ) = Ψ µ e (2.5.88) ⟪f 0 e φ µ e , ψ l e ⟫ e = 0, l ∈ {e, n s + 4} , (2.5.89) while for each value of µ = D e , λe , the function Ξ µ e is solution to

  fluxes derived from the Chapman-Enskog expansion are redimensionalized. This is equivalent to setting ε = 1 in the full-dimension equations where ε is taken as a formal parameter.

	The fluid equations (2.4.130), (2.4.131), (2.4.144), (2.4.145) and (2.4.146)
	and the transport

2.6.1 Conservation of mass, momentum, and energy

The fluid equations (2.4.130), (2.4.131), (2.4.144), (2.4.145) and (2.4.146) are rewritten in the form

  .6.18) Since the total mass is conserved in reactive collisions, the conservation constraint m e w e +

	m i w i = 0	(2.6.19)
	i∈H	
	is satisfied. Thus, the total mass conservation equation is obtained by summing (2.6.1) and (2.6.18),
	and reads	
	∂ t ρ + ∂ x • (ρv) = 0,	(2.6.20)
	where	
	ρ = ρ e + ρ h	(2.6.21)

Table 3 .

 3 1 -List of gas phase reactions with corresponding Arrhenius parameters. SiH 4 + SiH 3 = Si 2 H 5 + H 2

	r Reaction	A r (mol,cm 3 ,s)	β r	E r (cal.mol -1 )
	1 SiH 4 = SiH 2 + H 2	1.09 × 10 25	-3.37	61,200
	2 SiH 4 = SiH 3 + H	3.69 × 10 15	0.0	93,000
	3 Si 2 H 6 = SiH 4 + SiH 2	3.24 × 10 29	-4.24	58,000
	4 SiH 4 + H = SiH 3 + H 2	1.46 × 10 13	0.0	2,500
	5 1.77 × 10 12	0.0	4,400
	6 SiH 4 + SiH = Si 2 H 3 + H 2	1.45 × 10 12	0.0	2,000
	7 SiH 4 + SiH = Si 2 H 5	1.43 × 10 13	0.0	2,000
	8 SiH 2 = Si + H 2	1.06 × 10 14	-0.88	4,500
	9 SiH 2 + H = SiH + H 2	1.39 × 10 13	0.0	2,000
	10 SiH 2 + H = SiH 3	3.81 × 10 13	0.0	2,000
	11 SiH 2 + SiH 3 = Si 2 H 5	6.58 × 10 12	0.0	2,000
	12 SiH 2 + Si 2 = Si 3 + H 2	3.55 × 10 11	0.0	2,000
	13 SiH 2 + Si 3 = Si 2 H 2 + Si 2	1.43 × 10 11	0.0	16,200
	14 H 2 SiSiH 2 = Si 2 H 2 + H 2	3.16 × 10 14	0.0	53,000
	15 Si 2 H 6 = H 3 SiSiH + H 2	7.94 × 10 15	0.0	56,400
	16 H 2 + SiH = SiH 3	3.45 × 10 13	0.0	2,000
	17 H 2 + Si 2 = Si 2 H 2	1.54 × 10 13	0.0	2,000
	18 H 2 + Si 2 = SiH + SiH	1.54 × 10 13	0.0	40,000
	19 H 2 + Si 3 = Si + Si 2 H 2	9.79 × 10 12	0.0	47,200
	20 Si 2 H 5 = Si 2 H 3 + H 2	3.16 × 10 14	0.0	53,000
	21 Si 2 H 2 + H = Si 2 H 3	8.63 × 10 14	0.0	2,000
	22 H + Si 2 = SiH + Si	5.15 × 10 13	0.0	5,300
	23 SiH 4 + H 3 SiSiH = Si 3 H 8	6.02 × 10 13	0.0	0
	24 SiH 2 + Si 2 H 6 = Si 3 H 8	1.81 × 10 14	0.0	0
	25 SiH 3 + Si 2 H 5 = Si 3 H 8	3.31 × 10 13	0.0	0
	26 H 3 SiSiH = H 2 SiSiH 2	1.15 × 10 20	-3.06	6,630

  It is traditional for strained flows to introduce the auxiliary variables

	ũ =	û α	=	u αr	,	(3.8.20)
	w = ρw.		(3.8.21)
	The strained flow isobaric equations (3.8.14)-(3.8.17) then read	
	∂ t ρ + 2ραũ + ∂ z w = 0,	(3.8.22)

.19) where 1/m in = k∈S Y in k /m k and the inlet mass fractions must sum up to unity, i.e., k∈S Y in k = 1.

Table 3 .

 3 2 -Molecular parameters adopted for the present model.

	k Species	k /k b (K) σ k (Å) ξ int k (298 K)
	1 H	145.0	2.050	
	2 H 2	38.0	2.920	280.0
	3 Si	3,036.0	2.910	
	4 Si 2	3,036.0	3.280	1.0
	5 Si 3	3,036.0	3.550	1.0
	6 SiH	95.8	3.662	1.0
	7 SiH 2	133.1	3.803	1.0
	8 SiH 3	170.3	3.943	1.0
	9 SiH 4	207.6	4.084	1.0
	10 Si 2 H 2	323.8	4.383	1.0
	11 Si 2 H 3	318.2	4.494	1.0
	12 H 3 SiSiH	312.6	4.601	1.0
	13 H 2 SiSiH 2	312.6	4.601	1.0
	14 Si 2 H 5	306.9	4.717	1.0
	15 Si 2 H 6	301.3	4.828	1.0
	16 Si 3 H 8	331.2	5.562	1.0
	17 He	10.2	2.576	

Table 4 .

 4 2 -Arrhenius parameters for electron collision reactions.

	r Electron collision	A r (mol,cm 3 ,s)	β r	E r (cal.mol -1 )	Reference
	Ionization				
	1 SiH 4 + e 2 SiH 3 + e 3 H 2 + e	SiH + 3 + H + 2e SiH + 3 + 2e H + 2 + 2e	1.510 × 10 32 1.355 × 10 12 8.007 × 10 10	-2.930 0.900 1.100	553,910 188,396 392,574	[BSGK00] [BSGK00] [BSGK00]
	4 H + e	H + + 2e	1.080 × 10 16	0.000	178,210	[SFG + 96]
	Dissociation				
	5 SiH 4 + e	SiH 3 + H + e	1.102 × 10 21	-1.000	245,421	[BSGK00]
	6 SiH 4 + e	SiH 2 + 2H + e	5.394 × 10 21	-1.000	245,421	[BSGK00]
	7 H 2 + e	2H + e	1.023 × 10 16	0.000	238,347	[BSGK00]
	8 H + 3 + e 9 H + 2 + e	H + + 2H + e H + + H + e	1.220 × 10 17 1.460 × 10 17	0.000 0.000	179,380 37,460	[SFG + 96] [SFG + 96]
	Dissociative attachment				
	10 SiH 4 + e 11 SiH 4 + e 12 SiH 3 + e	SiH -3 + H SiH -2 + 2H SiH -2 + H	2.269 × 10 21 2.269 × 10 21 3.440 × 10 15	-1.627 -1.627 -0.500	190,540 190,540 44,740	[BSGK00] [BSGK00] [BSGK00]
	Detachment				
	13 SiH -3 + e 14 SiH -2 + e	SiH 3 + 2e SiH 2 + 2e	1.900 × 10 14 1.900 × 10 14	0.500 0.500	32,425 25,921	[BSGK00] [BSGK00]
	Recombination and dissociative recombination		
	15 H + + 2e	H + e	3.630 × 10 37	-4.000	0	[SFG + 96]
	16 H + 3 + e 17 H + 3 + 2e 18 H + 2 + 2e	3H H + H 2 + e 2H + e	8.000 × 10 17 3.170 × 10 21 3.170 × 10 21	-0.404 -4.500 -4.500	0 0 0	[SFG + 96], [KNF + 04] [SFG + 96] [SFG + 96]

  Perrin et al. must prevail. Negative ions remain trapped in the plasma due to the strong potential barrier, and can thus be neutralized due to electron detachment or neutralization reactions. The neutralization reactions are the main source of negative ion loss[dB06]. Finally, the H 2 plasma chemistry was also enriched compared to the work of de Bleecker, which considered pure SiH 4 chemistry, and the work of Girshick and coworkers, which considered Ar-SiH 4 chemistry. The main positive ion in HThe vibrationnally excited states of hydrogen have not been taken into account, neither the presence of H -ion induced by the dissociative attachment on H 2 excited states [KNF + 04][DCL05]. The H -density is indeed negligible compared to silicon hydride anion densities, and H -ions are thus expected to have a negligible influence on the plasma properties.

		2 plasma
	is indeed H + 3 , due to the fast conversion reaction [DCL05] [MJA07]	
	H 2 + H + 2 → H + 3 + H.	(4.6.8)
	4.7 Energy exchange term	
	The energy exchange term ∆E eh = -∆E he is expressed from equations (2.6.11), (2.4.104), (2.4.137),
	and (2.4.139) as	
	∆E eh = ∆E el eh + ∆E in eh + ∆E chem eh ,	(4.7.1)

  ii /kbT h . ∆E er is the net average energy gained by electrons during the r th electron collision reaction. Thus, from expressions (4.7.3) and (4.7.5), and noting I e the indexing set for inelastic scattering of electrons against heavy species, the energy exchange term finally reads[Nie98] [KNF+ 04] 

					(4.7.4)
	The energy exchange due to reactive electron collisions was given in (2.4.174) as	
	∆E chem eh	= ∆E 1,chem eh	=	∆E er τ r ,	(4.7.5)
			r∈Re		
	where ∆E eh =	∆E er τ r ,	(4.7.6)
		r∈Re∪Ie		

Table 4 .

 4 4 -Net average electron energy loss in reactive collisions.

	r Electron collision	-∆E er (eV)	Reference
	Ionization		
	1 SiH 4 + e 2 SiH 3 + e 3 H 2 + e	SiH + 3 + H + 2e SiH + 3 + 2e H + 2 + 2e	12.09 8.01 15.43	[BGCR87] [BGCR87] [PLB96]
	4 H + e	H + + 2e	13.60	[PLB96]
	Dissociation		
	5 SiH 4 + e	SiH 3 + H + e	8.00	[PSd + 82]
	6 SiH 4 + e	SiH 2 + 2H + e	8.00	[PSd + 82]
	7 H 2 + e	2H + e	10.50	[JLEP87]
	8 H + 3 + e 9 H + 2 + e	H + + 2H + e H + + H + e	14.87 8.67	[JLEP87], [CH88] [JLEP87], [PLB96]
	Dissociative attachment		
	10 SiH 4 + e 11 SiH 4 + e 12 SiH 3 + e	SiH -3 + H SiH -2 + 2H SiH -2 + H	6.50 8.50 5.50	[PLB96] [PLB96] [PLB96]
	Detachment		
	13 SiH -3 + e 14 SiH -2 + e	SiH 3 + 2e SiH 2 + 2e	1.41 1.12	[PLB96] [PLB96]
	Recombination and dissociative recombination
	15 H + + 2e	H + e	-13.60	[PLB96]
	16 H + 3 + e 17 H + 3 + 2e 18 H + 2 + 2e	3H H + H 2 + e 2H + e	1.27 -9.23 -4.93	[PSd + 82], [CH88] [CH88] [JLEP87], [PLB96]

  e - denotes the mass fraction of the k th species at grid point z i . The exponential scheme (4.10.7) is often referred to as the "Scharfetter-Gummel" numerical scheme in the litterature [SG69] [Boe87]. Discretization of the electron heat flux Equation (4.4.16) for the electron temperature involves the electron heat flux (4.4.21), which reads in axisymmetric coordinates Q e = 5 2 n e k b T e V e -λee ∂ z T e .

	P k,i+1/2 2 P k,i+1/2 2 where λe was expressed in equation (4.5.2). As the species diffusion velocities, the electron heat flux e P k,i+1/2 2 -e -, k ∈ S, 1 ≤ i ≤ N, (4.10.7) can be discretized by the exponential or "Scharfetter-Gummel" numerical scheme [Pat80] [SG69]. This yields (Q e ) i+1/2 = λee ∆z i+1/2 P Qe,i+1/2 T e,i e P Qe,i+1/2 2 -T e,i+1 e -P Qe,i+1/2 2 e P Qe,i+1/2 2 -e -P Qe,i+1/2 2 , 1 ≤ i ≤ N, (4.10.9) where P Qe,i+1/2 is the corresponding Peclet number where Y k,i (4.10.8) P Qe,i+1/2 = 5 2 k b n e V e ∆z i+1/2 λee , 1 ≤ i ≤ N. (4.10.10)

  .2.1)where V c is the diffusion velocity of aerosol particles with charge number c, I c is the particle current associated with nanoparticle surface growth, [ ∂nc ∂t ] nuc is the nanoparticle nucleation source term due to the cluster growth of plasma species, [ ∂nc ∂t ] coag is the coagulation source term, and [ ∂nc ∂t ] charge is the nanoparticle source term due to charging through ion or electron capture. pc is the average diffusion velocity of nanoparticles in section (p, c), and the terms on the right hand side are the respective source terms associated with nucleation, nanoparticle surface growth or condensation, coagulation, and charge fluctuations. The equations for the densities N pc , N pc , 1 ≤ p ≤ N p , -K -≤ c ≤ K + , are then deduced dividing equation (5.2.8) by v p , and read [GTS80][WG07] 

	∂V pc ∂t	+ ∂ x • (V pc V pc ) =	∂V pc ∂t nuc	+	∂V pc ∂t growth	+	∂V pc ∂t coag	+	∂V pc ∂t charge	,	(5.2.8)
	where V										

Table 5 .

 5 2 -List of sections considered with corresponding average radius and number of silicon atoms.

	Section Average radius (nm) Number of Si atoms
	1	0.36	10
	2	0.51	28
	3	0.72	81
	4	1.02	231
	5	1.45	659
	6	2.06	1,878
	7	2.92	5,353
	8	4.13	15,256
	9	5.86	43,478
	10	8.31	123,914

n h k b (T e -T h ) 1 τ el , (2.4.105)

∂ t( ρ v) + ∂ x • ( ρ v ⊗ v) + ∂ x • Π -ρ g = -∂ x p. (3.7.5)

Remerciements

Surface Chemistry

The computation of the molar deposition rates ω k , k ∈ S, appearing in the substrate boundary condition (3.10.6) requires the choice of a surface reaction mechanism.

We consider a set R of heterogeneous reactions describing the deposition process, in the form

ν rb l M l , r ∈ R, (3.11.1)

where S denotes the set of surface species, and ν rf l and ν rb l denote the forward and backward stoichiometric coefficients of the l th species in the r th surface reaction, respectively. The molar surface production rate is then computed from the rates of progress τ r , r ∈ R

(3.11.2) 4 Si 2 (g) -→ 2Si(s) 1.0 7 10 Si 2 H 2 (g) -→ 2Si(s) + H 2 (g) 1.0 8 11 Si 2 H 3 (g) -→ 2Si(s) + H 2 (g) + H(g) 1.0 9 12 H 3 SiSiH(g) -→ 2Si(s) + 2H 2 (g) 1.0 10 13 H 2 SiSiH 2 (g) -→ 2Si(s) + 2H 2 (g) 1.0 11 14 Si 2 H 5 (g) -→ 2Si(s) + 2H 2 (g) + H(g) 1.0 12 15 Si 2 H 6 (g) -→ 2Si(s) + 3H 2 (g) 4.44 × 10 -5 13 5 Si 3 (g) -→ 3Si(s)

1.0 14 16 Si 3 H 8 (g) -→ 3Si(s) + 4H 2 (g) 0.0

The reactions considered are assumed to be irreversible, in the form

Si n H 2m (g) -→ nSi(s) + mH 2 (g), (3.11.3) Si n H 2m+1 (g) -→ nSi(s) + mH 2 (g) + H(g).

(3.11.4) Thus, each surface reaction r ∈ R is associated with a unique gas-phase reactant species k r ∈ S.

The rate of progress of reaction r ∈ R is simply the consumption rate of species number k r at the surface, expressed as its thermal flux towards the wall

where γ kr = ρY kr /m kr is the molar concentration of the depositing species, and s kr is its sticking coefficient. The reactive probability s kr is adjusted by the factor 1 -s kr /2 in order to remain valid where ω n is the surface molar production rate of the n th neutral species.

Table 4.5 -Heterogeneous reaction mechanism adopted for the present model and corresponding Arrhenius parameters.

i Deposition reaction

The molar surface production rates ω k , k ∈ S, are obtained from a given set R of heterogeneous reactions describing the deposition process, in the form

ν rb l M l , r ∈ R, (4.8.17)

where S denotes the set of surface species, and ν rf l and ν rb l denote the forward and backward stoichiometric coefficients of the l th species in the r th surface reaction, respectively. The molar surface production rate is then computed from the knowledge of the rates of progress τ r , r ∈ R

The surface reactions are assumed irreversible. Each surface reaction r ∈ R is associated with a unique gas-phase heavy-species reactant, denoted by i r ∈ H. The rate of progress of reaction r ∈ R is calculated as in (3.11.5)

where γ ir = ρY ir /m ir is the molar concentration of the depositing species, and s ir is its sticking coefficient. As in (3.11.5), the reactive probability s ir is adjusted by the factor 1 -s ir /2 in order to remain valid in the limit s ir → 1, where nearly all the molecules of species i r stick to the wall without being reflected [MW60] [KCG03].

The silicon deposition rate (in cm.s -1 ) associated with each surface reaction r then follows

where ϕ 0V is the solution of Poisson's equation with the actual charge distribution in the reactor at time t, which can be asymmetric, and a driven potential equal to zero

and χ is the "bare" potential, that is the solution of the Laplace's equation accross the reactor

which depends only on the geometry of the reactor and can be computed a priori. In the preceding equations, Γ 0 and Γ l denote the respective electrode surfaces, and the walls are grounded so the potentials must vanish at the reactor walls.

The conservation of total current in the circuit can then be written in the form

from which ϕ l is solution to

where ϕ ap is the applied potential.

The current can be expressed in terms of the physical variables directly as

is the conduction current, and ε 0 ∂ t E is the displacement current. Alternatively, the following expression can be obtained [Qui05]

where C v is the "bare" capacitance of the reactor

.9.9) which depends only on the geometry of the reactor and can be computed a priori. Therefore, the potential ϕ l is the solution of the following differential equation

which is solved self-consistently within the software. In this work, we have preferred expression (4.9.8) to (4.9.6) since it has revealed more stable numerically. Note that in the one-dimensional approximation, equation 4.9.10 becomes

.9.11) and the "bare" capacitance reads

12)

The sectional model consists in sorting the nanoparticles into a finite number of discrete bins of a given size p = 1, . . . , N p and charge c = -K -, . . . , K + , over which the particle volume density is assumed to be constant:

and solving the evolution equations for the densities in each section

The sectional model is thus equivalent to approximating the continuous density by

for almost every v ∈ R.

Upon introducing the volume contained in each section

the sectional density can be expressed as

where v p is the average volume in size section p

(5.2.7)

The equations for the sectional volumes V pc , 1 ≤ p ≤ N p , -K -≤ c ≤ K + , are generally obtained by multiplying the general dynamic equation (5.2.1) by v, and integrating over the volume v: where

are the sectional coagulation coefficients.

The coagulation kernel is expressed as [WG07]

where r(v) is the radius of a ball of volume v

and β(u, v) is the coagulation kernel between neutral particles in the "free molecular regime", i.e., when the particle diameter d p is negligible compared to the particle mean free path l p [Fri00]

(5.4.17)

The neutral coagulation kernel depends on the gas temperature T h and the particle volume density ρ p . For silicon nanoparticles, the volume density is taken equal to [dB06] ρ p = 2.3kg.m -3 .

(5.4.18) Equation ( 5.4.17) can be obtained from the kinetic theory of gases for rigid spherical molecules [CC70] [START_REF] Friedlander | Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics[END_REF]. The factor f (q c , q d , r(u), r(v)) in (5.4.15) is the enhancement factor due to the respective charges q c and q d carried by the coalescing particles, and reads

where E (q 1 , r 1 , r 2 ) denotes the image potential for an interaction between a neutral an a charged particle.

Generally, the charge enhancement factor is taken constant over each nanoparticle size section

(5.4.20)

and the growth rate out of the largest section is traditionally taken equal to zero

which is valid provided that the mass flux into the largest section is negligible in the timescale considered.

The nanoparticle surface growth term can then be rewritten in terms of the sectional densities

(5.5.10)

Average surface flux

The average molar surface flux ω l pc of molecules of the l th species onto particles in section (p, c), where 1 ≤ p ≤ N p -1, -K -≤ c ≤ K + , depends on the respective charges q c and q l . Surface flux of a neutral species onto a neutral particle When q c = 0 and q l = 0, the surface flux is equal to the thermal flux [Fri00]

where γ l = n l /N a is the molar concentration of the l th species, s l pc is the accomodation coefficient of the l th species on a particle of section (p, c), and v th,l is the thermal velocity of the l th species

(5.5.12)

Surface flux of a charged species onto a charged particle with opposite signs When q c q l < 0, the surface flux is equal to

(5.5.13)

where γ l = n l /N a is the molar concentration of the l th species, and where v l is an average macroscopic velocity of the l th species, given by [dB06]

Surface flux of a charged species onto a charged particle with the same sign When q c q l > 0, the surface flux is equal to

(5.5.15)

Surface flux of a neutral species onto a charged particle When q c = 0 and q l = 0, the surface flux is taken in the form (5.5.11)

where sl pc is an effective accomodation coefficient. In practice most of the surface growth can be attributed to SiH 4 , and the corresponding accomodation coefficient is independent of (p, c)

(5.5.17)

Surface flux of an ion onto a neutral particle When q c = 0 and q l = 0, the surface flux is taken according to the Orbital Motion Limited, or "OML" theory, as

(5.5.18)

In a future study, we intend on considering the effect of the image potential on the surface flux of ions onto neutral nanoparticles.

Charge fluctuations rate

The source term for charge fluctuations can then be written in the form

where I -and I + denote the sets of negative ions and positive ions, respectively, and ν l pc is the collection frequency of molecules from the l th species by particles in section (p, c) ν l pc = 4πr 2 p N a ω l pc .

(5.6.3)

Nanoparticle Transport

Nanoparticle transport is governed by a classical drift-diffusion equation [START_REF] Friedlander | Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics[END_REF]. The sectional drift-diffusion velocity is taken in the form [START_REF] Chandrasekhar | Stochastic problems in physics and astronomy[END_REF] [Fri00] [AG03]

where f pc is the friction coefficient of particles in section (p, c), F ext pc is the sum of external forces acting on particles in section (p, c), and D pc is the diffusion coefficient of particles in section (p, c), given by the Stokes-Einstein expression [Fri00]

In the free molecule range, that is when the particle diameter is negligible compared to the particle mean free path d p l p , the friction coefficient follows the Epstein's law [START_REF] Epstein | On the resistance experienced by spheres in their motion through gases[END_REF] [Fri00]

where n and T are the density and temperature of the background gas, respectively, r p is the average radius of particles of size p, m is the mean mass of the mixture

and α is an accomodation coefficient representing the fraction of the gas molecules that leave the surface in equilibrium with the surface, the remaining fraction 1 -α being specularly reflected.

NANOPARTICLE TRANSPORT

Finally, external forces comprise gravity, ion drag, and electric drift

(5.7.5)

No neutral drage is considered, since the mixture convection velocity is neglected. The effect of neutral drag is not significant for the sizes of nanoparticles considered in the following. The gravity field reads F grav pc = 4 3 πr 3 p ρ p g, (5.7.6) where ρ p is the volume density of silicon nanoparticles, and g is the gravity vector. The electric drift force reads classically F drift pc = q c E.

(5.7.7)

The ion drag force is decomposed according to the Orbital Motion Limited, or "OML" theory into a collection force and an orbital force

(5.7.8)

The collection force is the momentum transfer due to collection of ions by nanoparticles in section (p, c), and reads [BKF + 92]

where b c is the collection parameter, given by

p , q c = 0.

(5.7.10)

The orbital force is due to the deflection of a nanoparticle induced by ions approaching its surface without being collecting, and reads [BKF + 92]

where b π/2 is the effective impact parameter

(5.7.12)

(5.7.13) where λ d is the linearized Debye length 

(5.7.16)

Plasma-Nanoparticle Model

The plasma-nanoparticle model describing the coupled evolution of electron temperature, electric potential, plasma species densities, and nanoparticle densities, is now summarized. The plasma equations (4.4.3)-(4.4.5) are modified accordingly and solved consistently with equation (5.2.9). The fully-coupled equations then read

.8.4)

where L k pc is the loss term for the k th species due to deposition onto particles of section (p, c)

and ∆E e pc is the electron energy loss term due to collisions with nanoparticles of section (p, c)

∆E e pc = -q c q e 4πε 0 r p L e pc .

(5.8.7)

The boundary conditions for the plasma variables, namely the electron temperature, electric potential and plasma species mass fractions, have been given in section 4.8. For the nanoparticles, the boundary conditions depend on the charge of the section considered. The densities of negative particles are assumed to vanish at both electrodes

while for positive and neutral particles the density gradients vanish at both electrodes 5.8.11) where n denotes the unit vector normal to the surface.

Results and Discussion

The non-stationary plasma-nanoparticle model has been incorporated into the plasma software described in Chapter 4. Equations (5.8.1)-(5.8.5) are solved iteratively over a specified number of radio-frequency cycles. Time iterations are performed with time steps bounded by 2.5 × 10 -10 s. Unlike for the pristine plasma, the nanoparticle characteristic time scales being much longer than the plasma characteristic time scales, no pseudo-steady-state is reached, and transient profiles must be considered. We consider in particular the early stage of nanoparticle formation, which is believed to play a crucial role in the silicon deposition process.

Parameters

The conditions considered in Chapter 4, which are typical conditions for silicon epitaxy [RCL12], have been conserved. The inlet gas mixture contains 85 % hydrogen and 15 % silane, that is X H 2 = 85 % and X SiH 4 = 15 %. The pressure is set at p 0 = 2.28 Torr, the heavy-species temperature is taken equal to T h = 500 K. The frequency is set at f = 13.56 MHz, and the applied potential amplitude is ϕ rf = 100 V. The initial particle profiles are uniform over the reactor length. The cycleaveraged pseudo-steady-state profiles obtained from the pristine plasma model of Chapter 4 are taken as initial profiles for electron temperature, electric potential and plasma species mass fractions. The corresponding density profiles were plotted in Figures 4.8 and 4.9. We adopt logarithmic spacing for section volumes, namely v p+1 = γv p , 1 ≤ p ≤ N p .

(5.9.1)

The logarithmic spacing factor is taken equal to γ = 2.85. Since we are interested in the early stages of nanoparticles growth, the absolute charge carried by a nanoparticle does not exceed a few elementary charges [dB06] [Aga12].