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Résumé de la thèse

Cette thèse porte sur la modélisation des plasmas de silane-hydrogène entretenus par décharge à
couplage capacitif radiofréquence. Un tel modèle est requis pour la compréhension et le contrôle
de la formation et du transport des nanoparticules (1-10 nm) générées dans les plasmas de silane
typiquement utilisés pour la déposition de films minces de silicium pour applications photovoltaïques.

Dans une première partie de la thèse, une dérivation complète des équations fluides pour un
plasma réactif bi-température, partiellement ionisé, poly-atomique, magnétisé, est effectuée dans le
cadre de la théorie cinétique des gaz. A partir d’une analyse asymptotique de l’équation de Boltz-
mann, la méthode de Chapman-Enskog a permis d’obtenir les équations d’ordre zéro en le nombre
de Knudsen, qui correspondent au régime “Euler”, et les équations d’ordre un qui correspondent
au régime “Navier-Stokes-Fourier”. Le développement asymptotique repose sur l’hypothèse fonda-
mentale selon laquelle la racine carrée du rapport des masses est proportionnelle au nombre de
Knudsen. En outre, les temps caractéristiques des collisions inélastiques électrons-lourds ont été
supposés grands devant les temps caractéristiques des collisions élastiques, induisant ainsi une ther-
malisation plus rapide des électrons que des espèces lourdes. Les flux de transport sont exprimés en
termes des gradients des variables macroscopiques, pour le cas d’un plasma faiblement magnétisé.
Les coefficients de transports associés sont obtenus au moyen de crochets intégraux. De nouveaux
couplages entre les degrés d’énergie interne et les forces de diffusion électroniques ont ainsi été mis
en évidence dans le cas d’un plasma poly-atomique.

Un logiciel de simulation numérique pour un procédé de dépôt chimique en phase vapeur (CVD)
a ensuite été implémenté en langage FORTRAN. Etant donné la configuration axisymétrique du
problème, une solution auto-similaire de l’écoulement est recherchée le long de l’axe du réacteur,
dans l’hypothèse isobare posée dans la limite d’un faible nombre de Mach. Les équations sont
discrétisées à l’aide d’une méthode de différences finies. Une solution stationnaire est obtenue au
moyen d’un schéma temporel implicite de Newton. Les propriétés de transport sont calculées grâce
à la librairie EGLIB, et les données de chimie du gaz sont implémentées dans Chemkin. Un excellent
accord est trouvé avec les résultats du cas test de réacteur CVD.

L’outil de simulation numérique est ensuite étendu du cas d’un gaz composé d’espèces neutres au
cas d’un plasma radiofréquence bi-température. Les équations générales obtenues dans le cadre de la
théorie cinétique des plasmas bi-température sont simplifiées. L’équation de Poisson pour le potentiel
électrique et l’équation d’évolution pour la température électronique ont été couplées aux équations
de transport des électrons et des espèces lourdes. Le modèle fluide, couplé à un mécanisme chimique
bi-température du gaz, est mis en oeuvre dans les conditions typiques de l’épitaxie par plasma basse
température. Les densités des principales espèces sont en accord avec les données expérimentales
de la littérature. Une nouvelle condition aux limites pour le potentiel est implémentée, permettant
l’étude de la tension d’auto-polarisation apparaissant au niveau de l’électrode RF sous l’effet de
formes d’ondes asymétriques sur mesure, pour la première fois pour un plasma de silane.

Le code a ensuite été enrichi à l’aide d’un modèle sectionnel pour la distribution en tailles et en
charges des nanoparticules de silicium. La comparaison avec les résultats expérimentaux existants a
permis d’étudier l’influence du coefficient d’accommodation du silane sur la croissance surfacique des
nanoparticules. L’étude de la phase initiale de développement des nanoparticules a mis en évidence
l’accumulation rapide de particules négatives et, dans une moindre mesure, de particules neutres. En

iii



RÉSUMÉ

revanche, à ce stade du processus, et pour le mécanisme réactionnel étudié, les particules positives
sont en proportion négligeable devant les particules négatives ou neutres, et leur contribution au
dépôt est marginale.

Le modèle développé dans cette thèse ouvre ainsi la voie à une étude systématique de l’évolution
du plasma en fonction des conditions de dépôt et de l’influence des nanoparticules sur les propriétés
physico-chimiques du plasma.

iv



Contents

1 Introduction 1
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Kinetic Theory of Non-Thermal Reactive Polyatomic Plasmas 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Kinetic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Species distribution functions . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Boltzmann equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Heavy-species reference frame . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Conservation laws and reciprocity relations . . . . . . . . . . . . . . . . . . . 17
2.2.5 Collisional invariants of the scattering operator . . . . . . . . . . . . . . . . 18
2.2.6 Scattering cross-sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Asymptotic Expansion of the Boltzmann Equations . . . . . . . . . . . . . . . . . . 20
2.3.1 Choice of scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Scaled Boltzmann equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Scaled collisional invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.4 Asymptotic expansion of collision operators . . . . . . . . . . . . . . . . . . 27

2.4 Chapman-Enskog Expansion of the Species Distribution Functions . . . . . . . . . . 32
2.4.1 Chapman-Enskog method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Electron thermalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.3 Heavy-species thermalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.4 First-order perturbation function for electrons . . . . . . . . . . . . . . . . . 38
2.4.5 Scaling for inelastic collision cross-sections . . . . . . . . . . . . . . . . . . . 40
2.4.6 Zeroth-order macroscopic equations for electrons . . . . . . . . . . . . . . . . 43
2.4.7 Zeroth-order macroscopic equations for the heavy species . . . . . . . . . . . 45
2.4.8 First-order perturbation for the heavy species . . . . . . . . . . . . . . . . . 46
2.4.9 Second-order perturbation for electrons . . . . . . . . . . . . . . . . . . . . . 47
2.4.10 First-order macroscopic equations for electrons . . . . . . . . . . . . . . . . . 48
2.4.11 First-order macroscopic equations for the heavy species . . . . . . . . . . . . 49
2.4.12 Chemistry source terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Transport Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.1 Electron transport coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5.2 Heavy-species transport coefficients . . . . . . . . . . . . . . . . . . . . . . . 53
2.5.3 Properties of the heavy-species transport coefficients . . . . . . . . . . . . . 57
2.5.4 Electron Kolesnikov transport coefficients . . . . . . . . . . . . . . . . . . . . 59

2.6 Fluid Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.6.1 Conservation of mass, momentum, and energy . . . . . . . . . . . . . . . . . 63
2.6.2 Transport fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.7 Center-of-Mass Reference Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



CONTENTS

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Numerical Simulation of Silicon Chemical Vapor Deposition 73
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Chemical Vapor Deposition Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.1 State law and mixture variables . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.2 Enthalpy and entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.3 Enthalpy and temperature equations . . . . . . . . . . . . . . . . . . . . . . 77
3.4.4 Thermodynamic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.6 Transport Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7 Low Mach Number Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.7.1 Momentum equation and pressure splitting . . . . . . . . . . . . . . . . . . . 84
3.7.2 Temperature equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.7.3 Isobaric equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8 Strained Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.8.1 Self similar solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.8.2 Traditional variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.9 Transport Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.9.1 Molecular parameters and collision integrals . . . . . . . . . . . . . . . . . . 88
3.9.2 Shear viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.9.3 Diffusion coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.9.4 Thermal conductivity and thermal diffusion ratios . . . . . . . . . . . . . . . 90

3.10 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.11 Surface Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.12 Numerical Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.13 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 Simulation of a Silane-Hydrogen Radio-Frequency Plasma Discharge 103
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Radio-Frequency Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 General Equations for a Multicomponent Plasma . . . . . . . . . . . . . . . . . . . 105

4.3.1 Conservation equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.3.2 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.3.3 Transport fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Simplified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.4.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.2 Self similar formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.3 Transport fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Transport coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.6 Silane-Hydrogen Plasma Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.7 Energy exchange term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.8 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.9 External Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.10 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.10.1 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

vi



CONTENTS

4.10.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.11 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.11.1 Symmetric Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.11.2 Asymmetric Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Nanoparticle Formation in a Silane-Hydrogen Plasma Discharge 139
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2 Sectional Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3 Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.4 Coagulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.5 Nanoparticle Surface Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5.1 Sectional growth rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.5.2 Average surface flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.6 Charge fluctuations rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.7 Nanoparticle Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.8 Plasma-Nanoparticle Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.9 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.9.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.9.2 Investigation of nanoparticle surface growth rate . . . . . . . . . . . . . . . . 153
5.9.3 Study of a silane-hydrogen discharge during the early stages of nanoparticle

formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Conclusion and Perspectives 163

vii





Chapter 1

Introduction

Plasma processing covers a wide variety of processes used in industrial applications, including
semiconductor processing, production of flat panel displays, but also plasma treatments used in
aerospace, automotive, biomedical, or waste management industries. Many examples of plasma
processing applications can be found in [LL05] [CC02]. Plasma is generally described as a fourth
state of matter, in which molecules and atoms are ionized into freely moving charged particles,
namely electrons and ions. Plasma discharges used for industrial applications are generally obtained
via electric or magnetic excitation of a feedstock gas. In most industrial applications, plasmas are
low-temperature, in the sense that the heavy species temperature remains close to the room temper-
ature, while electron temperature is of the order of a few eVs. Such plasmas are in general weakly
ionized.

Figure 1.1 – Schematics of various crystalline solar cell structures, as presented in [Sag10]. (a) PERL.
(b) HIT. (c) BC-BJ. (d) Interdigitated back-contact (IBC) cell. (e) Buried-contact cell structure.

Plasma enhanced chemical vapor deposition (PECVD) is commonly used in the production
of photovoltaic solar cells. This technique has indeed a lot of advantages for the deposition of
thin-film semiconductor materials. Compared to thermal chemical vapor deposition, PECVD is
a low-temperature process, which can be required when depositing over a temperature-sensitive
structure, or over a multilayer structure with different thermal expansion coefficients. Besides,
plasma discharge processes in general allow to enhance gas-phase and heterogeneous reactions,
possibly resulting in an increase in the deposition rate and a better use of feedstock gas. In particular,
PECVD is commonly used in crystalline silicon (c-Si) solar cells manufacturing for anti-reflective
coating and passivation by SiNx deposition.
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Figure 1.2 – PECVD cluster with six plasma chambers, a sputtering and a vacuum characterization
chamber, used in LPICM facility [Car14]. The equipment was bought by Total and is shared with
LPICM.

As illustrated in Figure 1.1, the structure of crystalline silicon solar cells has evolved considerably
over the last decades, allowing for a dramatic improvement of cell efficiency. The fabrication process
now involves a complex step-by-step procedure similar to semiconductor devices, and in many cases
plasma processing is seen as an interesting alternative to other available deposition or texturing
techniques. Figure 1.2 shows a picture of a cluster tool used in Laboratoire de Physique des Interfaces
et des Couches Minces (LPICM), allowing for automated multi-step processing of solar cells without
breaking the vacuum. Many kinds of plasma processing techniques may be used depending on the
technology. Aside from PECVD, plasma may be used in texturing, sputtering, etching or cleaning
processes.

The apparition of nanoparticles and microparticles in silane plasma discharges has been observed
very early and is now well referenced [BB93] [PBEL94] [BBH96] [Bou99]. In semiconductor manu-
facturing, the need for size reduction made such “dust” particles highly undesirable. Semi-conductor
industry is now heading towards devices of 10 nm or smaller [ITR15], a scale at which even “small”
nanometer-sized particles are a potential threat to material quality. Although solar cell fabrication
does not require so far such a high-resolution material processing as semiconductors, electronic de-
faults are an important source of efficiency reduction and lifetime degradation, and micrometer or
nanometer-sized particles may also have undesirable effects during solar cell fabrication processes.

It is well known that the particle formation process generally occurs in three distinct phases
[BB93] [RiCNTD+07]. In the first phase, nanoparticles are rapidly nucleated with radius up to 10 nm
and concentrations up to 109-1010 cm−3. In a second phase, particles tend to agglomerate and form
clusters with up to 50−60 nm diameter, and the nanoparticle density decreases drastically. In the last
phase, large particles continue to grow by surface deposition of SiHx molecular species. As illustrated
in Figure 1.3, dust formation also strongly depends on pressure. For low values of pressure, no dust
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Figure 1.3 – Deposition rate of silicon thin films as a function of pressure for a 3 % silane in hydrogen
mixture at 250 ◦C under an RF power of 22 W. The deposition rate of a standard a-Si:H film is also
given for comparison. [RiCNTD+07].

formation occurs, while increasing the pressure lowers the time for onset of nanoparticle coagulation.
In this thesis we are interested in the transition between pristine conditions, corresponding to the
deposition of amorphous silicon, and conditions of dust formation, where deposition is strongly
perturbed by the presence of dusts in the reactor. This transition is associated with an optimum in
the deposition rate, as can be seen in Figure 1.3, and material quality [RiCNTD+07].

Several studies have proved that the presence of nanoparticles, initially seen as a device killer,
can actually enhance the deposition rate or improve the material property. In particular, for the
conditions of Figure 1.3, when the pressure is around 2 Torr, it is possible to maintain a high nanopar-
ticle nucleation rate while still avoiding powder formation [RiCNTD+07]. Under such conditions,
silicon thin films with improved material properties can be obtained, also called “polymorphous sili-
con”, or “pm-Si” [RiCHS+98] [RiCFiMP02]. Polymorphous films consist in an amorphous matrix in
which nanometer-scaled crystalline structures are embedded. They exhibit optical properties similar
to those of standard amorphous silicon (a-Si:H), but improved transport properties and stability
[RiCHS+98] [LKRiC+98], generally attributed to the embedded microstructures. On the other hand,
microcrystalline silicon is made of an amorphous matrix with embedded crystalline domains of up
to several nanometers, and exhibits poor optical properties compared to amorphous silicon, but
improved electrical properties and stability. Polymorphous silicon thus combines the advantages
of both amorphous silicon and microcrystalline silicon [RiCHS+98], with intermediate properties
between a-Si:H and µc-Si:H [SHSRiC98].

Similarly, when a (100) crystalline substrate is used under conditions close to powder formation,
low-temperature plasma enhanced epitaxy can be achieved with a deposition rate above 1 Å.s−1, a
sharp porous interface, and film thickness up to 2 − 4 µm [CLRiC11] [RCL12]. Figure 1.4 shows
images obtained via high resolution transmission electron microscopy (HRTEM) of an epitaxial
silicon layer (epi-Si) on a crystalline silicon (c-Si) wafer [Car14], assessing the quality of the epitaxial
layer. Such an epitaxial growth of ultrathin crystalline silicon is now seen as an interesting technique
to reduce further material cost in the production of crystalline silicon solar cells. Indeed, reducing
the thickness of the active material up to a few µm requires to develop new techniques, since
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e
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Figure 1.4 – HRTEM cross section image of the epi-Si/c-Si interface (Left), and diffraction patterns
obtained in the bulk of the epitaxial layer (Upper right), respectively in the substrate (Lower right)
[Car14].

traditional wafer slicing techniques are reaching their limit of capability and induce a significant
material waste. Besides, low cost ultra thin silicon layers are required to develop flexible solar cells
or large area electronics. Encouragingly, a transfer process of PECVD-grown ultrathin crystalline
silicon layer onto a glass substrate has been developed, thus allowing for potential reuse of the
single-crystal parent substrate for several epitaxial growth [CCCB+16]. The ability to control the
thickness and doping profile of the epitaxial layer is also an interesting possibility for photovoltaic
applications. Finally, epitaxy of silicon on GaAs has also been achieved, opening the path for an
improved integration of III-V semiconductors with silicon in photovoltaic tandem devices [CCM+16].

Due to the extreme complexity of PECVD process and the relatively scarce experimental char-
acterizations available, numerical modeling is highly desirable for studying chemically reactive non-
thermal plasma discharges. Two main approaches are generally followed, depending on the Knudsen
number, which is the ratio of the characteristic mean free path l0 to the reference macroscopic length
L0

kn =
l0

L0
.

The kinetic approach is required for high values of the Knudsen number, although it might reveal
computationally expensive, and fluid models are usually preferable for low values of kn. In this
thesis, the pressure considered range from 600 mTorr to 2 or 3 Torr. For such relatively high
pressures, the Knudsen number is sufficiently high to justify the use of a fluid model. An upper
bound for the mean free path in a weakly ionized mixture can be estimated from the carrier gas
characteristic density n0 and the characteristic elastic scattering collision cross-section σ0, as

l0 =
1

n0σ0
.

An estimation of the Knudsen number for a 2 cm-gap hydrogen plasma discharge reactor, at a
gas temperature of 500 K is presented for different values of pressure in Table 1.1. The results

4



confirm that the fluid approximation is justified in this work. Additionally, fluid models are less
computationally intensive than kinetic models.

Table 1.1 – Estimation of the Knudsen number for different pressures in a 2 cm-gap hydrogen plasma
discharge reactor, at a gas temperature of 500 K. The molecular radius of hydrogen is taken equal
to 1.372 Å [CC70].

p (Torr) n (cm−3) kn

0.5 9.5× 1015 8.9× 10−2

0.75 1.4× 1016 5.9× 10−2

1.0 1.9× 1016 4.4× 10−2

2.0 3.8× 1016 2.2× 10−2

2.5 4.8× 1016 1.8× 10−2

An important challenge is then the full derivation of macroscopic fluid equations from the Boltz-
mann equation for non-thermal plasmas. The first derivation of fluid equations for multicomponent
partially ionized two-temperature plasmas from the kinetic theory was achieved by Magin and
coworkers [MD04] [GMM09]. They work used a scaling proposed by Petit and Darrozes [DP75]
accounting for the strong disparity of masses between electrons and heavy species, thus filling the
gap between the Lorentz gas model and traditional Chapman-Enskog theory of multicomponent gas
mixtures. The effect of magnetic field and chemical reactions were also taken into account [GG03]
[GMM09] [GGMM10]. The description of internal energy levels is also an important feature of a
multicomponent reacting gas mixture [WT62] [MYM63] [Gio99]. Therefore, an extension of two-
temperature kinetic theory of partially ionized reactive plasmas to the case of polyatomic mixtures
is highly desirable.

In both pure silane and silane-hydrogen plasma discharges the complexity is increased due to the
combined presence of silicon containing molecules of various sizes and charges, and light molecules
such as atomic and molecular hydrogen, and hydrogen ions. The chemical kinetics of hydrogen
plasma has been extensively studied and a number of numerical studies have been carried out on
H2 plasma discharges. We mention in particular the tremendous work carried out by Capitelli and
coworkers from Università degli Studi di Bari [GCC+92] [DCL05] [LD09], and also by Hassouni
and coworkers from Université de Villetaneuse [HGCL99] [HGG99] [HLG+05], on hydrogen plasma
chemical kinetics and hydrogen discharge modeling. On the other hand, silane plasma discharges
have also been investigated numerically [Kus88] [SGA02] [LAM06]. However, due to the very large
number of chemical species involved, the chemical kinetics of silane plasma discharges is not known
with such a high precision as for pure H2 discharges, and comparison with experimental data are
scarcer than for H2. Investigation of regimes in which nanoparticle nucleate and grow have also been
carried out for different conditions. The main contributions to the description of particle formation
and particle dynamics are due to Girshick and coworkers [BKG03] [WG07] [AG12] from University
of Minnesota, and to Bogaerts and coworkers [dBGG04] [dBG06] from Universiteit Antwerpen.

In this thesis, a model for a radio-frequency silane-plasma discharge reactor has been developed,
implemented, and applied successfully to the study of silicon thin films deposition by PECVD. A
new fluid model for multicomponent non-thermal polyatomic reactive plasmas has been derived from
the kinetic theory. This derivation extends the pioneering work of Magin and coworkers [MD04]
[GMM09] to the case of polyatomic molecules and ions. In the limiting case of neutral multicom-
ponent gas mixtures one retrieves classical multicomponent Navier-Stokes-Fourier equations and
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self-consistent expressions for transport coefficients [Gio99] [GMM09]. The latter “neutral” model
has been implemented numerically, and applied to the modeling of chemical vapor deposition of
silicon for validation against a benchmark model from the literature. The CVD numerical model
has then been extended to the modeling of radio-frequency silane plasma discharges in the Torr
regime. The software has been used to study the deposition of amorphous silicon by PECVD under
discharge conditions intermediate between a-Si:H and µc-Si:H, that is conditions where nucleation
of nanoparticles is enhanced but coagulation remains controlled. Results are in line with available
numerical and experimental data. The influence of silane dilution ratio and RF power has also been
investigated. The study of the DC bias potential under asymmetric excitation was also carried out
for the first time in silane-hydrogen. Finally, the model was enriched with a sectional model for
nanoparticles with sections of size and charge, following the work of Girshick and coworkers [WG07]
[AG12]. The nanoparticle surface growth rate was tested against experimental data, and simulations
have been performed under conditions close to powder formation in the early stages of nanoparticle
growth. The outline of this work is detailed below.

In Chapter 2, a self-consistent fluid two-temperature plasma model for a multicomponent re-
active polyatomic mixture is derived from the kinetic theory of gases. A generalized Chapman-
Enskog method is used on the basis of an asymptotic analysis of the Boltzmann equation taking
into account the strong mass disparity of masses between electrons and heavy plasma species. The
zeroth-order “Euler-type” and the first-order “Navier-Stokes-type” fluid equations, are given along
with self-consistent expressions for transport fluxes in terms of macroscopic variable gradients and
transport coefficients. The transport coefficients are expressed as bracket products of the perturbed
species distribution functions. This complete model derived from kinetic theory is a generaliza-
tion of standard non-thermal plasma fluid models, and opens the path for an improvement of low
temperature plasma fluid modeling.

In Chapter 3, a numerical implementation of a chemical vapor deposition (CVD) model is car-
ried out. A software has been written in FORTRAN, and has been validated against a numerical
benchmark for thermal chemical vapor deposition of silane. The results show an excellent agreement
with the benchmark model.

In Chapter 4, the software is enriched and applied to the modeling of a radiofrequency discharge
in silane-hydrogen. The equations derived in Chapter 2 are simplified and standard fluid plasma
equations are retrieved. Conditions close to powder formation are investigated. The results are
in good qualitative agreement with previous studies of nanoparticle nucleation in silane-hydrogen
discharge. A self-consistent calculation of the DC bias voltage is further implemented, to evaluate
the effect of the discharge chemistry on the DC bias under asymmetric electrical excitation.

In Chapter 5, the model is enriched with a sectional model for nanoparticles. The effects of
nucleation, coagulation, surface growth, transport and charging of nanoparticles are taken into
account. The software is fully coupled and fully non-stationary, thus allowing for an investigation of
the early phase of nanoparticle formation. The influence of the nanoparticle surface growth rate on
nanoparticles is studied, and compared to experimental data. The temporal evolution of the main
plasma and nanoparticle species density profiles are also investigated.

Finally, in Chapter 6, this work is summarized and perspectives are drawn for future work.
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Chapter 2

Kinetic Theory of Non-Thermal Reactive
Polyatomic Plasmas

2.1 Introduction

One of the main challenges in the field of plasma fluid modeling is the comprehensive derivation of
macroscopic fluid equations. At the kinetic scale, the plasma is well described by the fundamental
Boltzmann equations. Thus, the full derivation from the kinetic theory is the only way to develop
a self-consistent fluid model for a given plasma regime on a sound basis. Moreover, only the kinetic
theory yields the transport coefficients for fluid models, and the knowledge of the mathematical
structure of the conservation equations is desirable for the design of appropriate numerical methods.

Two main methods may be used for the derivation of fluid equations from kinetic models [Str05]:
the moment-based method [Gra58] [Zhd02], and the Chapman-Enskog procedure [CC70] [FK72]
[HCB64], which have notably proven successful in the analysis of multicomponent neutral gas mix-
tures. Both methods rely on approximating the Boltzmann equations by using a finite number of
moments of the species distribution functions. They differ in the choice of moments and the closure.

The Chapman-Enskog method was first developed by Chapman [Cha16] and Enskog [Ens17]
separately, for a simple gas or a binary gas mixture of monoatomic molecules. The method was
then extended to multicomponent monoatomic gas mixtures by Hellund [Hel40], Hirschfelder and
Curtiss [CH49], and Waldmann [Wal58], to simple polyatomic gases by Wang Chang and Uhlen-
beck [WCU51], and finally to multicomponent mixtures of polyatomic molecules by Waldmann and
Trübenbacher [Wal58] [WT62] and by Monchick, Yun and Mason [MYM63]. A fully quantum me-
chanical treatment was given by McCourt and Snider [MS64] [MS65] using the quantum mechanical
Boltzmann equation derived by Waldmann [Wal57] and Snider [Sni60]. Later on, chemically reac-
tive collisions have been taken into account in the case of monoatomic [PX49] or polyatomic gas
mixtures [LH60] [ACG94] [GG95] [EG94].

On the other hand, the moment method was first developed by Grad [Gra58], and had been
put aside for a long time, because the associated entropy production rate was not positive. Recent
developments in the field of rarefied gases have led to the derivation of a 13 moments regularized sys-
tem, also called “R13” [Str05], which has the desirable entropy structure [ST07] [Tor12], and yields
smooth shock structures at all Mach numbers [TS04]. Such moment equations are a good candidate
for bridging the gap between the microscopic or molecular Boltzmann equation and the macroscopic
Euler or Navier-Stokes-Fourier equations, unlike the Burnett and Super-Burnett equations corre-
sponding to the second-order and third-order of the Chapman-Enskog expansion, respectively, which
are known to yield an unproper entropy structure and are unstable [Bob82] [Tor16]. In this work
we will consider fluid models corresponding to the first-order Chapman-Enskog expansion, because
Navier-Stokes type equations are sufficient for the modelling of silicon deposition processes.

The first kinetic model for a binary gas mixture composed of light and heavy species was derived
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by Lorentz [Lor05] [CC70]. This model, also referred to as the “Lorentzian gas”, assumed that the
heavy molecules were not altered by their collisions with light particles, and that mutual encounters
between light particles were of negligible influence compared to encounters with heavy molecules.
However, when considering a multiscale analysis of the Boltzmann equations for ionized gases in the
fluid regime, both the Knudsen number kn and the ratio of the electron mass over the heavy-species
characteristic mass

ε =

√
m0
e

m0
h

(2.1.1)

tend to zero. As shown by Petit and Darrozes [DP75], the Boltzmann equations exhibit a singularity
in the limit ε → 0,kn → 0, which might be solved upon assuming that the Knudsen number is
proportional to the small parameter ε

kn ∝ ε. (2.1.2)

Such a scaling accounting for the disparity of masses allows for thermal non-equilibrium between
light and heavy species, and is the scaling considered in the present work. This scaling was first
applied by Degond and Lucquin [DLD96] [Deg07] to the derivation of a two-temperature macroscopic
fluid model for a binary mixture made of electrons and positive ions.

Another important feature of multicomponent plasmas is the influence of the magnetic field,
which induces anisotropic transport fluxes [CC70] [FK72]. Giovangigli and Graille [GG03] [GG09]
derived macroscopic equations together with expressions for transport fluxes and transport coeffi-
cients for magnetized plasmas. Their work included the effects of internal degrees of freedom and
chemically reactive collisions, along with new symmetric formulation of the nonisotropic transport
coefficients, but they did not take into account the strong disparity of masses nor the possibly
associated thermal non-equilibrium between electrons and heavy species.

In the meantime, Magin and Degrez [MD04] developed a model for multicomponent non-thermal
plasmas, where they introduced the scaling of Petit and Darrozes [DP75] in order to account for
thermal non-equilibrium. Their model was improved by Graille, Magin and Massot [GMM09], who
further investigated the strongly magnetized case. They also accounted for electron impact and
ion or neutral impact ionization reactions [GMM08] [MGM09]. However, none of these models
considered the case of polyatomic molecules and ions.

In this chapter, we derive from kinetic theory a unified multicomponent fluid model for partially
ionized plasmas taking into account the following features

• Thermal non-equilibrium between electrons and heavy species, namely neutrals,
negative or positive ions.

• Presence of polyatomic molecules with excitation or de-excitation of the heavy
species’ internal degrees of freedom.

• Influence of the external electro-magnetic field E and B on the plasma, under the
assumption that the magnetic field is weak.

• Occurrence of chemically reactive collisions.

We will follow the framework adopted in [GG03] [GMM09], generalizing the Chapman-Enskog
procedure in the wake of a dimensional analysis of the Boltzmann equation.

In section 2.2, we introduce the kinetic framework. In section 2.3, we set the scaling hypotheses
and derive an asymptotic expansion of the Boltzmann equations. In section 2.4, the Chapman-
Enskog procedure is applied on the basis of the proposed scaling. The transport fluxes are ex-
pressed in terms of macroscopic variable gradients and transport coefficients in section 2.5. Finally,
section 2.6 synthesizes the macroscopic equations obtained.
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2.2. KINETIC FRAMEWORK

2.2 Kinetic Framework
We consider a plasma composed of electrons and a mixture of heavy species, namely atoms, molecu-
les, or ions. We adopt a semi-classical framework, in which the translational motion of the particles
is treated classically, whereas the internal degrees of freedom are treated quantum mechanically
[Wal58] [WT62] [Gio99]. Moreover, the system is considered to be sufficiently dilute so that one can
consider only binary collisions.

2.2.1 Species distribution functions

The plasma is described as a multicomponent gas mixture of electrons, neutrals, and ions. To each
species is associated a corresponding distribution function. The electron has only one internal degree
of freedom, namely its ground state, and its distribution function reads fe (t,x, ce), where t is the
time, x is the three-dimensional spatial coordinate, and ce the velocity of the electron. The quantity
fe (t,x, ce) dxdce represents the expected number of electrons in the volume element dx located at
x, whose velocity lies in dce about velocity ce at time t.

On the other hand, we denote by H the indexing set of heavy species, which can be ionized or
not. For each i ∈ H, we introduce the set of internal degrees of freedom associated with the ith
heavy speciesQi. The distribution function for the ith heavy species then reads fi (t,x, ci, i), where ci
denotes the velocity of the molecule, and i ∈ Qi its quantum state. The quantity fi (t,x, ci, i) dxdci
represents the expected number of molecules of the ith heavy species, having internal state i, in the
volume element dx located at x, and whose velocity lies in dci about velocity ci, at time t. Finally,
we denote by S = H ∪ {e} the indexing set of the plasma species.

In the kinetic framework, the macroscopic properties of the mixture can be recovered as moments
of the species distribution functions. Indeed, for each k ∈ S, the number density of the kth species,
i.e., the number of particles per unit volume, is given by

nk =
∑
k∈Qk

∫
fk dck, (2.2.1)

so that the mass density of the kth species is

ρk = mknk =
∑
k∈Qk

∫
mkfk dck, (2.2.2)

where we have denoted by mk the mass of the kth species. We also introduce the molar mass of the
kth species

mk = Namk. (2.2.3)

The hydrodynamic velocity of the mixture v is given by

ρv =
∑
k∈S

∑
k∈Qk

∫
mkckfk dck, (2.2.4)

where ρ =
∑

k∈S ρk is the total density. Finally, the internal energy per unit volume of the mixture
E is given by

1
2
ρ v ·v + E =

∑
k∈S

∑
k∈Qk

∫ (
1
2
mkck · ck + Ekk

)
fk dck, (2.2.5)

where Ekk is the internal energy of the kth species in the kth quantum state.
The species distribution functions are then governed by generalized Boltzmann equations that

take into account the reactive aspect of the mixture.

13



CHAPTER 2. KINETIC THEORY OF POLYATOMIC PLASMAS

2.2.2 Boltzmann equations

We denote by fh = (fi)i∈H the family of heavy-species distribution functions, and by f = (fk)k∈S =
(fe, fh) the complete family of species distribution functions. The subscript “h” refers to the set
of heavy species. The Boltzmann equations governing the species distribution functions read in an
inertial reference frame [CC70] [FK72] [Gio99] [GMM09]

∂tfe + ce ·∂xfe +
qe
me

[E + ce ∧B] ·∂cefe = Se (f) + Ce (f) , (2.2.6)

∂tfi + ci ·∂xfi +
qi
mi

[E + ci ∧B] ·∂cifi = Si (f) + Ci (f) , i ∈ H. (2.2.7)

For k ∈ S, the term Sk (f), denotes the scattering or nonreactive source term for the kth species,
Ck (f) the chemically reactive source term, and qk the charge carried by the kth species, while E
and B refer to the electric and magnetic fields, respectively. We will often formulate the Boltzmann
equations (2.2.6), (2.2.7) in the more condensed version

Dk(fk) = Sk(f) + Ck(f), k ∈ S, (2.2.8)

where Dk denotes the usual streaming differential operator

Dk(fk) = ∂tfk + ck ·∂xfk +
qk
mk

[E + ck ∧B] ·∂ckfk. (2.2.9)

Scattering source term The general scattering source term Sk for the kth species, where k ∈ S,
accounts for the change in the kth species distribution function due to nonreactive collisions with
any other species l ∈ S. Since we have assumed that the system is dilute, we can consider only
binary collisions, and Sk is in the form

Sk (f) =
∑
l∈S

Skl (fk, fl) , (2.2.10)

where Skl denotes the scattering source term for the kth species due to nonreactive collisions with
molecules of the lth species

Skl (f) =
∑

k′∈Qk
l,l′∈Ql

∫ (
f ′kf

′
l

akkall
akk′all′

− fkfl
)
|ck − cl|σklk′l′

kl dω′kldcl. (2.2.11)

The variables ck, c′k represent the velocities of the kth species respectively before and after collision,
k,k′ refer to the internal energy states of the kth species respectively before and after collision, cl, c′l
represent the velocities of the lth collision partner, and l, l′ refer to the internal energy states of the
lth species, respectively before and after the collision

(ck,k) + (cl, l)→ (c′k,k
′) + (c′l, l

′). (2.2.12)

For k ∈ S, k ∈ Qk, akk is the degeneracy of the kth quantum energy shell of the kth species,
and fk = fk(t,x, ck,k), f ′k = fk(t,x, c

′
k,k

′) denote the distribution functions of the kth species,
respectively before and after collision. We have also introduced the directions of the relative velocities
respectively before and after collision

ωkl =
ck − cl
|ck − cl|

, ω′kl =
c′k − c′l
|c′k − c′l|

, (2.2.13)

and we have denoted by σklk′l′
kl the collision cross-section, also called the “differential cross-section”,

associated with a binary collision between the kth and lth species. One could also work with transition
probabilities Wklk′l′

kl rather than with classical collision cross-sections σklk′l′
kl . Transition probabili-

ties are notably interesting with reactive collisions, since the term Ck(f) is then much easier to write.
For binary collisions, we also have the identity [LH60] [ACG94] [GG95]

|ck − cl|σklk′l′
kl dω′kl =Wklk′l′

kl dc′kdc
′
l. (2.2.14)
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2.2. KINETIC FRAMEWORK

Reactive source term For the reactive, or chemistry, source term Ck(f), we consider a chemical
reaction mechanism composed of an arbitrary number of elementary reactions. Unlike for the
scattering process, we take into account multiple reactive collisions, including triple reactive collisions
since recombination reactions cannot often proceed otherwise [Kuš91] [ACG94] [GG95]. If we denote
by R the set of reactions, each chemical reaction r ∈ R can be written in the form∑

k∈Fr

Mk 

∑
k∈Br

Mk, r ∈ R, (2.2.15)

where Mk denotes the chemical symbol of the kth species, and where Fr and Br are, respectively,
the indices for the reactant and product species in the rth elementary reaction, counted with their
order of multiplicity. The letters Fr and Br are mnemonic for the forward and backward directions,
respectively. We denote by νf

kr and νb
kr the stoichiometric coefficients of the kth species among

reactants and products, respectively, and we also denote by fr and br the indices of internal energy
states for reactants and products, respectively. In other words, the forward and backward coefficients
νf
kr and νb

kr are the order of multiplicity of the kth species in Fr and Br, respectively. For a given
k ∈ S, Frk denotes the set of reactant indices where the index for the kth species has been removed
only once and we introduce a similar notation for Br

k, frk and brk.
The reactive source term, Ck(f), then reads

Ck(f) =
∑
r∈R

Crk(f), (2.2.16)

where Crk(f) is the source term for the kth species due to the rth elementary reaction

Crk(f) = νrfk
∑
frk,br

∫ ( ∏
j∈Br

fj

∏
j∈Br

βjj∏
i∈Fr

βii
−
∏
i∈Fr

fi
)
Wfrbr

FrBr

∏
i∈Fr

k

dci
∏
j∈Br

dcj (2.2.17)

+ νrbk
∑
fr,br

k

∫ (∏
i∈Fr

fi −

∏
j∈Br

βjj∏
i∈Fr

βii

∏
j∈Br

fj
)
Wfrbr

FrBr

∏
i∈Fr

dci
∏
j∈Br

k

dcj.

In these expressions, the statistical weight βkk is given by

βkk =
h3

p

akkm3
k

, (2.2.18)

where hp is the Planck constant, mk is the mass of the kth species, and akk the degeneracy of the kth

energy shell of the kth species. Finally, Wfrbr

FrBr is the transition probability for a reactive collision in
which the reactants Fr with internal energy states fr are transformed into products Br with internal
energy states br. The sums over fr, respectively frk, represent the sums over i ∈ Qi for all i ∈ Fr,
respectively i ∈ Frk. Similarly, the sums over br, respectively brk, represent the sums over j ∈ Qj

for all j ∈ Br, respectively j ∈ Br
k. Several examples for different types of reactions are given in

[Gio99].

2.2.3 Heavy-species reference frame

Given the strong disparity of masses between electrons and heavy species, it is natural to choose a
reference frame associated with the motion of the heavy species [GMM09]. We thus introduce the
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mean electron velocity and mean heavy-species velocity

ρeve =

∫
mecefe dce, (2.2.19)

ρhvh =
∑
j∈H

∑
j∈Qj

∫
mjcjfj dcj, (2.2.20)

where the subscript “h” refers to the set of heavy species. The heavy-species mass density reads
ρh =

∑
j∈H ρj, so that

ρ = ρe + ρh. (2.2.21)

The hydrodynamic velocity of the fluid defined in (2.2.4) is then such that

ρv = ρeve + ρhvh. (2.2.22)

We also introduce the peculiar velocity of the kth species with respect to the heavy-species reference
frame

Ck = ck − vh, k ∈ S, (2.2.23)

and denote by fk(t,x,Ck,k) the distribution function of the kth species in the new reference frame.
In this frame, the streaming operator Dk reads

Dk(fk) = ∂tfk + (Ck + vh) ·∂xfk +
qk
mk

[E + (Ck + vh) ∧B] ·∂Ck
fk (2.2.24)

− Dvh
Dt
·∂Ck

fk − (∂Ck
fk ⊗Ck) : ∂xvh,

where D
Dt

is the time derivative following the heavy-species velocity reference frame

D

Dt
= ∂t + vh ·∂x. (2.2.25)

The scattering source term (2.2.11) may be rewritten using the new velocities Ck, k ∈ S, in the
form

Skl (fk, fl) =
∑
l∈S

∑
k′∈Qk
l,l′∈Ql

∫ (
f ′kf

′
l

akkall
akk′all′

− fkfl
)
|Ck −C l|σklk′l′

kl dω′kldC l, (2.2.26)

where σklk′l′
kl is the collision cross-section in the new reference frame, and the unit vectors read

ωkl =
Ck −C l

|Ck −C l|
, ω′kl =

C ′k −C ′l
|C ′k −C ′l|

. (2.2.27)

Finally, the reactive source term (2.2.17) now reads in the new reference frame

Crk(f) = νrfk
∑
frk,br

∫ ( ∏
j∈Br

fj

∏
j∈Br

βjj∏
i∈Fr

βii
−
∏
i∈Fr

fi
)
Wfrbr

FrBr

∏
i∈Fr

k

dCi

∏
j∈Br

dCj (2.2.28)

+ νrbk
∑
fr,br

k

∫ (∏
i∈Fr

fi −

∏
j∈Br

βjj∏
i∈Fr

βii

∏
j∈Br

fj
)
Wfrbr

FrBr

∏
i∈Fr

dCi

∏
j∈Br

k

dCj.
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From now on, we will remain in the heavy-species reference frame. The full electron scattering
source term Se then reads

Se (f) = See +
∑
j∈H

Sej,

=

∫
σeẽ |Ce − C̃e|

(
f ′ef̃

′
e − fef̃e

)
dω′eẽdC̃e (2.2.29)

+
∑
j∈H

∑
j,j′∈Qj

∫
σjj′
ej |Ce −Cj|

(
f ′ef

′
j

ajj
ajj′
− fefj

)
dω′ejdCj,

where C̃e denotes the velocity of the electron collision partner over which the integration is carried
out, f̃e = fe(t,x, C̃e) denotes the distribution function of the electron collision partner, ωeẽ =
Ce−C̃e

|Ce−C̃e|
, and so forth. As well, the full scattering source term Si for the ith heavy species in the ith

internal energy state reads

Si (f) = Sie +
∑
j∈H

Sij,

=
∑
i′∈Qi

∫
σii′
ie |Ci −Ce|

(
f ′if
′
e

aii
aii′
− fife

)
dω′iedCe, (2.2.30)

+
∑
j∈H

∑
i′∈Qi

j,j′∈Qj

∫
σiji′j′
ij |Ci −Cj|

(
f ′if
′
j

aiiajj
aii′ajj′

− fifj
)

dω′ijdCj.

2.2.4 Conservation laws and reciprocity relations

In the above formulations of the scattering operator Skl, variables before and after collision are
implicitly linked by the following conservation relations

Mk = M′
k, Ml = M′

l, (2.2.31)

mkCk + mlC l = mkC
′
k + mlC

′
l, (2.2.32)

1

2
µklg

2
kl + Ekk + Ell =

1

2
µklg

′2
kl + Ekk′ + Ell′ , (2.2.33)

where Mk is the symbol for molecules of the kth species, and gkl = |Ck−C l| and g′kl = |C ′k −C ′l| are
the relative velocities of colliding species respectively before and after collision. The first relation
(2.2.31) states the conservation of the chemical species during a binary scattering collision. The
second relation (2.2.32) states the conservation of total momentum during the collision process,
written in the heavy-species reference frame. The third relation (2.2.33) states the conservation of
energy during the collision, written in the center-of-mass frame. Such conservation relations are
taken into account by means of dirac delta functions in the collision cross-sections [LH60] [ACG94]
[GG95] [Gio99].

As is classical, the forward and reverse collision cross-sections exhibit reciprocity relations in the
form [Wal58] [WT62] [EG94]

akkall g
2
kl σ

klk′l′
kl = akk′all′ g

′2
kl σ

k′l′kl
kl . (2.2.34)
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Since from (2.2.32) (2.2.33)

g′kl dCkdC ldω
′
kl = g′kl d(Ck −C l)dC ldω

′
kl

= g′klg
2
kl dgkldωkldC ldω

′
kl

= gklg
′2
kl dg

′
kldωkldC ldω

′
kl

= gklg
′2
kl dg

′
kldω

′
kldC

′
ldωkl

= gkl d(C ′k −C ′l)dC ′ldωkl
= gkl dC

′
kdC

′
ldωkl,

we have consequently [Wal58] [WT62] [CC70] [FK72]

akkall gkl σ
klk′l′
kl dCkdC ldω

′
kl = akk′all′ g

′
kl σ

k′l′kl
kl dC ′kdC

′
ldωkl. (2.2.35)

Similarly, the reactive transition probabilitiesWfrbr

FrBr exhibit symmetry properties [LH60] [GG95]
[ACG94] [Gio99]. Indeed, for a given reaction r ∈ R

Wfrbr

FrBr

∏
j∈Br

βjj =Wbrfr
BrFr

∏
i∈Fr

βii. (2.2.36)

Unlike for the nonreactive source term, the species are not conserved during reactive collisions, and
only elements are conserved [Gio99]∑

k∈S

νrfk akl =
∑
k∈S

νrbk akl, r ∈ R, l ∈ A, (2.2.37)

where akl is the number of lth atom in the kth species, and A denotes the indexing set for the
atoms present in the mixture. The conservation of total mass during reactive collisions follows from
equation (2.2.37) ∑

k∈S

νrfk mk =
∑
k∈S

νrbk mk. (2.2.38)

2.2.5 Collisional invariants of the scattering operator

Collisional invariants are associated with macroscopic conservation equations and are therefore of
fundamental importance. Collisional invariants of the scattering operator S appearing in the Boltz-
mann equation (2.2.6)-(2.2.7) are functionals ψ = (ψl)l∈S, where ψl = ψl(t,x,C l, l) is a scalar or
tensor function of t, x, C l, and l, whose values summed over the particles involved in a nonreactive
collision do not change during the collision:

ψk + ψl = ψ′k + ψ′l, k, l ∈ S, (2.2.39)

where ψ′k = ψk(t,x,C
′
k,k

′) and ψ′l = ψl(t,x,C
′
l, l
′).

There are ns + 4 linearly independent scalar collisional invariants, which can be taken in the
form [WT62] 

ψk = (δkl)l∈S , k ∈ S,

ψn
s+ν = (mlClν)l∈S , ν ∈ {1, 2, 3} ,

ψn
s+4 =

(1

2
mlC l ·C l + Ell

)
l∈S

.

(2.2.40)

where ns is the number of species in S, and Clν is the component of C l in the νth spatial coordinate.
The three kinds of collisional invariants thus defined correspond respectively to the conservation of
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chemical species, the conservation of momentum, and the conservation of energy during nonreactive
collisions. For micropolar fluids there is an additional linearly independent summational invariant,
accounting for the conservation of angular momentum [Gra04] [KA61], but we only consider in
this study isotropic mixtures, so that there is no micropolar effects. We name I the space of
collisional invariants with respect to the scattering operator S, i.e., the space spanned by the family
(ψp)1≤p≤ns+4.

We further introduce a tensorial product defined for scalar functions ξ = (ξl)l∈S and ζ = (ζl)l∈S
as

⟪ξ, ζ⟫ =
∑
k∈S

∑
k∈Qk

∫
ξkζk dCk, (2.2.41)

and more generally for tensors ξ = (ξl)l∈S and ζ = (ζl)l∈S as

⟪ξ, ζ⟫ =
∑
k∈S

∑
k∈Qk

∫
ξk � ζk dCk, (2.2.42)

where � stands for the fully contracted product in space [EG94] [Gra04].
The scattering operator S and the corresponding collisional invariants then satisfy the relations

⟪ψp,S(f)⟫ = 0, p ∈ {1, . . . , ns + 4} . (2.2.43)

Indeed, using the reciprocity relation (2.2.35) and symmetrizing between k and l, one can establish
that for any ψ = (ψl)l∈S

4⟪ψ,S(f)⟫ =
∑
k,l∈S

∑
k,k′∈Qk

∑
l,l′∈Ql

∫ (
ψk + ψl − ψ′k − ψ′l

)
(2.2.44)

×
(
f ′kf

′
l

akkall
akk′all′

− fkfl
)
gkl σ

klk′l′
kl dω′kl dCkdC l,

which is zero as soon as ψ is a collisional invariant.
For our case of interest, it turns out that we have additional orthogonality relations, by con-

sidering pairwise interaction terms separately. Indeed, we can decompose the scalar product ⟪ · ⟫
as

⟪ξ, ζ⟫ = ⟪ξe, ζe⟫e + ⟪ξh, ζh⟫h, (2.2.45)

where

⟪ξe, ζe⟫e =

∫
ξe � ζe dCe, (2.2.46)

⟪ξh, ζh⟫h =
∑
j∈H

∑
j∈Qj

∫
ξj � ζj dCj, (2.2.47)

and obtain, as in [GMM09], the following orthogonality property for pairwise interactions:

⟪ψpe ,See⟫e = 0, (2.2.48)

⟪ψph,She⟫h +
∑
j∈H

⟪ψpe ,Sej⟫e = 0, (2.2.49)∑
j∈H

⟪ψph,Shj⟫h = 0, (2.2.50)

for any p ∈ {1, . . . , ns + 4}.

19



CHAPTER 2. KINETIC THEORY OF POLYATOMIC PLASMAS

2.2.6 Scattering cross-sections

The differential cross-section is taken the following form [Wal58] [CC70] [FK72] [GMM09]:

σklk′l′
kl = σklk′l′

kl

(
µklg

2
kl

kbT 0
,ωkl ·ω′kl

)
, (2.2.51)

where µkl = mkml

mk+ml
is the reduced mass of the pair of particles, gkl = |Ck − C l| = |ck − cl| is

their relative velocity, T 0 is a reference temperature, which is common to all species, and kb is the
Boltzmann constant.

2.3 Asymptotic Expansion of the Boltzmann Equations
Dimensional analysis is a necessary preliminary to the Chapman-Enskog procedure. In this regard,
we follow the scaling first introduced by Petit and Darrozes [DP75]. We take as small parameter ε
the square root of the ratio between the characteristic masses. As shown by Petit and Darrozes, when
both the Knudsen number kn and the mass ratio ε tend to zero, kn must be chosen proportional
to ε. The scaling introduced here will serve as a basis for the derivation of a scaled Boltzmann
equation, in which the different terms will depend on the small parameter ε [CC70] [FK72] [Gio99]
[GMM09].

2.3.1 Choice of scaling

The reference quantities used in the scaling are denoted by the superscript "0". Most of the ref-
erence quantities are common to all species, though it is necessary to distinguish between electron
and heavy-species respective characteristic masses, velocities, and kinetic timescales. Also, the
characteristic cross-section for inelastic scattering of electrons against heavy species is denoted by
σin,0
eh = σin,0

he , while the characteristic cross-section for other scattering processes is denoted by σ0.

Mass ratio The ratio of the electron mass m0
e = me to the characteristic heavy-species mass m0

h

is such that √
m0
e

m0
h

= ε� 1. (2.3.1)

The non-dimensional number ε will be the key parameter driving the asymptotic analysis of the
plasma.

Temperatures The reference temperature is the same for electrons and heavy species [GMM09]:

T 0
e = T 0

h = T 0. (2.3.2)

This means that the electron temperature Te and the heavy-species temperature Th will remain of
the same order of magnitude in the model.

Velocities As a consequence of assumptions (2.3.1)-(2.3.2), electrons exhibit a larger thermal
speed than heavy species

C0
h =

√
kbT 0

m0
h

, (2.3.3)

C0
e =

√
kbT 0

m0
e

=
1

ε
C0
h. (2.3.4)
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Table 2.1 – Reference quantities [GMM09].

Physical entity Common to all species

Temperature T 0

Number density n0

Charge q0

Scattering cross-section σ0

Mean free path l0 = 1
n0σ0

Macroscopic time scale t0

Hydrodynamic velocity v0

Macroscopic length L0 = v0t0

Electric field E0

Magnetic field B0

Reactive source term C0
k , k ∈ S

Electrons Heavy species

Mass m0
e = me m0

h

Thermal speed C0
e C0

h

Kinetic timescale t0e = l0

C0
e

t0h = l0

C0
h

Hybrid

Inelastic scattering cross-sections σin,0
he

Besides, the pseudo-Mach number, defined as the reference hydrodynamic velocity v0 divided by the
heavy-species thermal speed C0

h, is of order one [GMM09]:

Mh =
v0

C0
h

∝ 1. (2.3.5)

In other words, there is only one reference velocity for the heavy species.

Densities As stated in [DP75], the “weakly ionized” limit is not singular with respect to the limits
kn → 0 and

√
m0
e/m

0
h → 0. Therefore, we adopt the same scaling for both electron and heavy-species

densities:
n0
e = n0

h = n0. (2.3.6)

The results for a weakly ionized plasma will then follow by taking the limit n0
e/n

0
h → 0.

Mean free path The characteristic mean free path [GMM09]

l0 =
1

n0σ0
. (2.3.7)

is imposed by the carrier gas density n0 and the reference elastic scattering cross-section σ0 [CC70]
[FK72], and is thus common to all species [GMM09]. The reference elastic scattering cross-section
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is taken common to all species, since the species molecular diameters are of the same order of
magnitude, and Coulomb collisions are negligible in the plasma regime we consider [Hag16a].

Time scales From (2.3.3) and (2.3.4), the kinetic timescales, or the relaxation times of the dis-
tribution functions towards their respective quasi-equilibrium states, are given by

t0e =
l0

C0
e

, (2.3.8)

t0h =
l0

C0
h

, (2.3.9)

and therefore [GMM09] t0e = εt0h. The macroscopic timescale t0 is one order of magnitude higher
than the heavy-species kinetic timescale t0h, so that there are three distinct relevant time scales
[GMM09]

t0e = εt0h = ε2t0. (2.3.10)

Inelastic scattering cross-sections As can be seen from (2.3.10), the thermalization of the
electrons is the fastest process corresponding to the kinetic scale t0e. This thermalization is ensured
by scattering collisions between electrons, and elastic collisions between electrons and heavy species,
which given the strong mass disparity do not involve any energy exchange at the lowest order, but
allow for isotropization of the electron distribution function in the heavy-species reference frame
[GMM09]. Since the heavy species’ internal degrees of freedom thermalize at Th, further allowing
for energy exchange between these internal degrees of freedom and electrons at the lowest order
would actually require Te = Th. Thus the reference differential cross-section associated with inelastic
scattering between heavy species and electrons σin,0

he must be negligible compared to the reference
cross-section σ0 for other scattering collisions.

The second fastest kinetic process is the thermalization of heavy species [GMM09], corresponding
to the time scale t0h = ε−1t0e as described in (2.3.10). This thermalization arises from elastic and
inelastic collisions between heavy species, while elastic collisions with electrons are of negligible
influence at this order due to the strong mass disparity. Again, since the heavy species’ internal
degrees of freedom thermalize at Th, inelastic collisions between electrons and heavy species must
be neglibible at the lowest order of the Chapman-Enskog expansion for heavy species, otherwise one
would have Th = Te. In other words, σin,0

he must be negligible before εσ0.
Therefore, the inelastic scattering collisions between electrons and heavy species are assumed to

be two orders of magnitude slower than the corresponding elastic collisions

σin,0
he = ε2σ0. (2.3.11)

The latter requirement will be discussed in more details in subsection 2.4.5, and other regimes are
addressed in the conclusion.

Knudsen number The macroscopic length scale is based on a reference convective length

L0 = v0t0. (2.3.12)

As a consequence of the proposed scaling, the Knudsen number

kn =
l0

L0
=

ε

Mh

(2.3.13)

is small compared to 1, justifying the choice of a continuum description of the gas.

22



2.3. ASYMPTOTIC EXPANSION OF THE BOLTZMANN EQUATIONS

Electric field The reference electrical and thermal energies are of the same order of magnitude,
namely

q0E0L0 = kbT
0. (2.3.14)

Magnetic field The intensity of the magnetic field is related to the Hall numbers of electron
and heavy species, defined as the Larmor frequencies, respectively q0B0

me
and q0B0

m0
h
, multiplied by the

corresponding kinetic timescales. The magnetic field is assumed to be proportional to a power of ε
by means of an integer 0 ≤ b ≤ 1:

βe =
q0B0

m0
e

t0e = ε1−b, (2.3.15)

βh =
q0B0

m0
h

t0h = εβe. (2.3.16)

The case b = 1 corresponds to strongly magnetized plasmas, the case b = 0 to weakly magnetized
plasmas.

Table 2.2 – Relative scales for the main plasma physical properties.

Reference quantity Scaling relationships

Characteristic masses m0
e = ε2 m0

h

Time scales t0e = ε t0h = ε2 t0

Length scales l0 = ε
Mh

L0

Velocities v0 = MhC
0
h = εMhC

0
e

Energies m0
e

(
C0
e

)2
= m0

h

(
C0
h

)2
= q0E0L0 = kbT

0

Larmor frequencies q0B0

m0
h
t0h = ε q

0B0

m0
e
t0e = ε2−b

Differential cross-sections σin,0
he = σin,0

eh = ε2σ0

Reactive source term C0
k = ε n0

t0(C0
k)3

, k ∈ S

Chemistry The chemical reactions are slow compared to other plasma phenomena, and the reac-
tive source term for the kth species Ck(f) is of order 1 in ε

C0
k = ε

n0

t0(C0
k)3

, k ∈ S, (2.3.17)

where C0
k is the order of magnitude of the kth species peculiar velocity, irrespective of the detailed

scaling properties of each chemical reaction r. The reference quantities and the scaling adopted are
summarized in Table 2.1 and Table 2.2, respectively.

Remark The range of applicability of the fluid model developed here is subject to the assumption
of Maxwellian equilibrium distributions that will be obtained in the following section. Apart from
the thermal non-equilibrium between electrons and heavy species, two kind of deviation from the
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local thermal equilibrium might occur. First, when the ratio of the electric field over the pressure
E
p
is “too high”, namely when the assumption q0E0l0 = εkbT

0
e = εkbT

0 is not valid, or when E/p &
(σ0/q)(T 0

e /T
0) [Rax05], the electron distribution function can depart strongly from a Maxwellian

distribution. Second, in the case of high frequency oscillations, namely when the collision frequencies
1/t0e and 1/t0h = ε1/t0e are comparable with the electric field frequency νRF , the species distribution
function may also depart strongly from the Maxwellian equilibrium [Rax05]. In both cases, one
would need a kinetic model rather than a fluid model.

2.3.2 Scaled Boltzmann equations

The dimensional analysis above is applied to Boltzmann equations (2.2.8), written in the heavy-
species reference frame. For each variable φ, we denote by

φ̂ =
φ

φ0
(2.3.18)

the corresponding adimensionalized quantity. The adimensionalized Boltzmann equations then read

∂t̂f̂e +
1

ε

(
Ĉe + ε v̂h

)
·∂x̂f̂e + ε−(1+b) q̂e

m̂e

[(
Ĉe + ε v̂h

)
∧ B̂

]
·∂Ĉe

f̂e

+
(1

ε

q̂e
m̂e

Ê− ε Dv̂h
Dt̂

)
·∂Ĉe

f̂e −
(
∂Ĉe

f̂e ⊗ Ĉe

)
: ∂x̂v̂h (2.3.19)

=
1

ε2
Ŝee(f̂e, f̂e) +

1

ε2

∑
j∈H

Ŝej(f̂e, f̂j) + ε Ĉe(f̂),

∂t̂f̂i +
(
Ĉi + v̂h

)
·∂x̂f̂i + ε1−b q̂i

m̂i

[(
Ĉi + v̂h

)
∧ B̂

]
·∂Ĉi

f̂i

+
( q̂i
m̂i

Ê− Dv̂h

Dt̂

)
·∂Ĉi

f̂i −
(
∂Ĉi

f̂i ⊗ Ĉi

)
: ∂x̂v̂h (2.3.20)

=
1

ε2
Ŝie(f̂i, f̂e) +

1

ε

∑
j∈H

Ŝij(f̂i, f̂j) + ε Ĉi(f̂), i ∈ H.

The Chapman-Enskog method is applied to the adimensionalized Boltzmann equations (2.3.19)-
(2.3.20) [GMM09]. For the sake of simplicity the Mach number, which is of order 1 from (2.3.5), can
be taken equal to 1, and the “hat” symbol can be dropped, without affecting the fluid equations and
transport fluxes derived. Alternatively, equations (2.3.19)-(2.3.20) can be redimensionalized before
applying the Chapman-Enskog method, keeping the parameter ε as a formal parameter driving
the asymptotic expansion. In this case, ε is equal to 1, eventually. For both methods, the scaled
Boltzmann equations are thus written as

∂tfe +
1

ε
(Ce + εvh) ·∂xfe + ε−(1+b) qe

me

[(Ce + εvh) ∧B] ·∂Cefe

+
(1

ε

qe
me

E− ε Dvh
Dt

)
·∂Cefe − (∂Cefe ⊗Ce) : ∂xvh (2.3.21)

=
1

ε2
See (fe, fe) +

1

ε2

∑
j∈H

Sej (fe, fj) + ε Ce (f) ,

∂tfi + (Ci + vh) ·∂xfi + ε1−b qi
mi

[(Ci + vh) ∧B] ·∂Ci
fi

+
( qi
mi

E− Dvh
Dt

)
·∂Ci

fi − (∂Ci
fi ⊗Ci) : ∂xvh (2.3.22)

=
1

ε2
Sie (fi, fe) +

1

ε

∑
j∈H

Sij (fi, fj) + ε Ci (f) , i ∈ H,
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where the partial scattering operators Skl, k, l ∈ S, depend on ε, and are analyzed as follows.
For electron electron collisions the scaled scattering source term reads

See(fe, f̃e) (Ce) =

∫
σeẽgeẽ

(
f ′ef̃

′
e − fef̃e

)
dω′eẽdC̃e, (2.3.23)

where fe = fe(t,x,Ce), f ′e = fe(t,x,C
′
e), f̃e = fe(t,x, C̃e), f̃ ′e = fe(t,x, C̃

′
e), where

ωeẽ =
Ce − C̃e

|Ce − C̃e|
, ω′eẽ =

C ′e − C̃
′
e

|C ′e − C̃
′
e|
, (2.3.24)

geẽ = |Ce − C̃e|, g′eẽ = |C ′e − C̃
′
e|, and where

σeẽ = σee

(
1

2
meg

2
eẽ,ωeẽ ·ω′eẽ

)
.

The formula for electron heavy-species scattering source term is similar, although we have to
distinguish between elastic and inelastic collisions:

Sei (fe, fi) (Ce) =
∑
i∈Qi

∫
σii
eigei

(
f ′ef

′
i − fefi

)
dω′eidCi (2.3.25)

+ ε2
∑

i,i′∈Qi

i′ 6=i

∫
σii′
ei gei

(
f ′ef

′
i

aii
aii′
− fefi

)
dω′eidCi,

where fe = fe(t,x,Ce), f ′e = fe(t,x,C
′
e), fi = fi(t,x,Ci, i), f ′i = fi(t,x,C

′
i, i
′), where

ωei =
Ce − εCi

|Ce − εCi|
, ω′ei =

C ′e − εC ′i
|C ′e − εC ′i|

, (2.3.26)

gei = |Ce − εCi|, g′ei = |C ′e − εC ′i|, and where

σii′
ei = σii′

ei

(
µeig

2
ei,ωei ·ω′ei

)
,

with µie = memi/(mi + ε2me).
We obtain as well the source term corresponding to collisions of heavy species against electrons

Sie (fi, fe) (Ci, i) =

∫
σii
iegie

(
f ′if
′
e − fife

)
dω′iedCe (2.3.27)

+ ε2
∑
i′∈Qi
i′ 6=i

∫
σii′
ie gie

(
f ′if
′
e

aii
aii′
− fife

)
dω′iedCe,

where gie = |εCi −Ce|, g′ie = |εC ′i −C ′e|, where

ωie =
εCi −Ce

|εCi −Ce|
, ω′ie =

εC ′i −C ′e
|εC ′i −C ′e|

, (2.3.28)

and where

σii′
ie = σii′

ie

(
µieg

2
ie,ωie ·ω′ie

)
,

with µie = µei = memi/(mi + ε2me).
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Finally, we obtain for collisions between two heavy species

Sij (fi, fj) (Ci, i) =
∑
i′∈Qi

∑
j,j′∈Qj

∫
σiji′j′
ij gij

(
f ′if
′
j

aiiajj
aii′ajj′

− fifj
)

dω′ijdCj, (2.3.29)

where
σiji′j′
ij = σiji′j′

ij

(
µijg

2
ij,ωij ·ω′ij

)
,

Unlike for the nonreactive source terms just stated, we do not consider the different orders of
magnitude in ε associated with the motion of heavy species and electrons when computing the
chemistry source terms. We only consider as a first approximation that chemical reactions occur
“slowly”, namely at order ε, and thus retain expression (2.2.28) for Ce(f), Ci(f), i ∈ H.

2.3.3 Scaled collisional invariants

We also apply the scaling above to the space I of collisional invariants of the scattering operator. The
space of collisional invariants after scaling, denoted by Iε, is spanned by the family ψl = (ψle, ψ

l
h),

l ∈ {1, . . . , ns + 4}, defined as
ψke = δke, ψkh = (δkj)j∈H , k ∈ S,

ψn
s+ν

e = ε meCeν , ψn
s+ν

h = (mjCjν)j∈H , ν ∈ {1, 2, 3} ,

ψn
s+4

e =
1

2
meCe ·Ce, ψn

s+4
h =

(1

2
mjCj ·Cj + Ejj

)
j∈H

.

(2.3.30)

From now on, ψl, l ∈ {1, . . . , ns + 4} will refer only to the collisional invariants after scaling. We
have seen in the previous section that the nonreactive collision operator can be written as

S =

(
1

ε2
Se,

1

ε
Sh
)
, (2.3.31)

where Se = See +
∑

j∈H Sej and Si = 1
ε
Sie +

∑
j∈H Sij, i ∈ H, are the full scattering source terms for

electron and heavy-particle species, respectively. We also recall the expression of the scalar product
defined above (2.2.45):

⟪ξ, ζ⟫ = ⟪ξe, ζe⟫e + ⟪ξh, ζh⟫h
=

∫
ξe � ζe dCe +

∑
j∈H

∑
j∈Qj

∫
ξj � ζj dCj.

The orthogonality relations (2.2.48), (2.2.49), (2.2.50) remain valid after scaling, and the cross-
collision identities (2.2.49) now read∑

j∈H

⟪ψee,Sej⟫e = 0, ⟪ψih,She⟫h = 0, i ∈ H, (2.3.32)

⟪mhChν ,She⟫h + ε
∑
j∈H

⟪meCeν ,Sej⟫e = 0, ν ∈ {1, 2, 3} , (2.3.33)

⟪ψns+4
h ,She⟫h +

∑
j∈H

⟪ψns+4
e ,Sej⟫e = 0. (2.3.34)

We also introduce two vector spaces obtained by projection of the space of collisional invariants
I. For all ε, Iεe is the space spanned by

ψee = 1,

ψn
s+ν

e = ε meCeν , ν ∈ {1, 2, 3} ,

ψn
s+4

e =
1

2
meCe ·Ce,

(2.3.35)
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and Ih is the space spanned by
ψih = (δij)j∈H ,

ψn
s+ν

h = (mjCjν)j∈H , ν ∈ {1, 2, 3} ,

ψn
s+4

h =
(1

2
mjCj ·Cj + Ejj

)
j∈H

.

(2.3.36)

The macrosopic properties of the fluid mixture can then be expressed as partial scalar products of
the partial distribution functions fe and fh with the electron and heavy-species collisional invariants,
respectively. When taking into account the scaling, one obtains

⟪fe, ψee⟫e = ne
1

ε
⟪fe,meCeν⟫e = ρe (veν − vhν) , ν ∈ {1, 2, 3}

⟪fe, ψns+4
e ⟫e = Ee + ε2 1

2
ρe (ve − vh) · (ve − vh)

(2.3.37)

for electrons, and  ⟪fh, ψjh⟫h = nj, j ∈ H
⟪fh, ψns+ν

h ⟫h = 0, ν ∈ {1, 2, 3}
⟪fh, ψns+4

h ⟫h = Eh
(2.3.38)

for the heavy species, where Ee and Eh denote the respective internal energies per unit volume.
Note in particular that, in the limit ε → 0, the space of electron collisional invariants Iεe , is

reduced to the space of isotropic invariants, denoted by I0
e , which is spanned by

ψee = 1,

ψn
s+4

e =
1

2
meCe ·Ce.

(2.3.39)

In other words, the electron momentum collisional invariant vanishes in the limit ε → 0. This
is because electron momentum is negligible before heavy-species momentum, and is related to the
isotropization of the zeroth-order electron distribution function, as shall be seen later. The relevant
sets of collisional invariants for our purpose are thus I0

e and Ih.

2.3.4 Asymptotic expansion of collision operators

We now derive asymptotic expansions in powers of ε for the scattering operators Sei and Sie, i ∈ H.
Conservation of momentum and energy during a binary collision between an electron and a molecule
of the ith heavy species read, when taking into account the scaling with respect to ε

miCi + ε meCe = miC
′
i + ε meC

′
e,

1

2
me

1(
1 + ε2 me

mi

)g2 + Eii =
1

2
me

1(
1 + ε2 me

mi

)g′2 + Eii′ ,
(2.3.40)

where we have denoted by g = gie = gei = |εCi−Ce| and by g′ = g′ie = g′ei = |εC ′i−C ′e| the relative
velocities of colliding species respectively before and after collision. Setting ∆Eii′ = Eii′ − Eii, we
rewrite the latter expression in the form

miCi + ε meCe = miC
′
i + ε meC

′
e,

∆Eii′ +
1

2
me

1(
1 + ε2 me

mi

)(g′2 − g2
)

= 0.
(2.3.41)
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Scattering of the heavy species against electrons

The scattering operator for ith-heavy-species electron collisions Sie was stated above in equation
(2.3.27). The change of variable C(0)

e = Ce−εCi(
1+ε2 me

mi

) 1
2
, with

dCe =
(

1 + ε2me

mi

) 3
2

dC(0)
e ,

allows us to eliminate the dependance in ε of the differential cross-section [GMM09], yielding

Sie (fi, fe) (Ci, i) =

∫
σii
ie|C(0)

e |
(

1 + ε2me

mi

)2(
f ′if
′
e − fife

)
dω′iedC

(0)
e (2.3.42)

+ ε2
∑
i′∈Qi
i′ 6=i

∫
σii′
ie |C(0)

e |
(

1 + ε2me

mi

)2(
f ′if
′
e

aii
aii′
− fife

)
dω′iedC

(0)
e ,

where

σii′
ie = σii′

ie

(
me|C(0)

e |2,
C(0)
e

|C(0)
e |
·ω′ie

)
. (2.3.43)

The variable C(0)
e is the zeroth-order electron velocity before collision.

Expansion of the species velocities Conservation equations (2.3.41) associated with collisions
between molecules of the ith heavy species and electrons read, after change of variable


C ′i = Ci + ε

me

mi

1(
1 + ε2 me

mi

) 1
2

(
C(0)
e + |C(0)

e |
(

1− ∆Eii′

1
2
me|C(0)

e |2
) 1

2
ω′ie

)
,

C ′e = εCi −
1(

1 + ε2 me

mi

) 1
2

(
|C(0)

e |
(

1− ∆Eii′

1
2
me|C(0)

e |2
) 1

2
ω′ie − ε2me

mi

C(0)
e

)
,

(2.3.44)

yielding the following asymptotic expansion:


C ′i = Ci − ε

me

mi

(C ′(0)
e −C(0)

e ) +O(ε3),

C ′e = C ′(0)
e + εCi −

ε2

2

me

mi

(C ′(0)
e − 2C(0)

e ) +O(ε4),

Ce = C(0)
e + εCi +

ε2

2

me

mi

C(0)
e +O(ε4),

(2.3.45)

where C ′(0)
e is the zeroth-order electron velocity after collision

C ′(0)
e = −|C ′(0)

e |ω′ie = −|C(0)
e |
(

1− ∆Eii′

1
2
me|C(0)

e |2
) 1

2
ω′ie. (2.3.46)
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We thus obtain an expansion of the distribution functions

fi (C
′
i, i
′) = fi (Ci, i′)− ε

me

mi

∂Ci
fi (Ci, i′) · (C ′(0)

e −C(0)
e ) (2.3.47)

+
ε2

2

m2
e

m2
i

∂CiCi
fi (Ci, i′) : (C ′(0)

e −C(0)
e )⊗ (C ′(0)

e −C(0)
e ) +O(ε3),

fe (C ′e) = fe(C
′(0)
e ) + ε∂Cefe(C

′(0)
e ) ·Ci +

ε2

2
∂CeCefe(C

′(0)
e ) : Ci ⊗Ci (2.3.48)

− ε2

2

me

mi

∂Cefe(C
′(0)
e ) · (C ′(0)

e − 2C(0)
e ) +O(ε3),

fe (Ce) = fe(C
(0)
e ) + ε∂Cefe(C

(0)
e ) ·Ci +

ε2

2
∂CeCefe(C

(0)
e ) : Ci ⊗Ci (2.3.49)

+
ε2

2

me

mi

∂Cefe(C
(0)
e ) ·C(0)

e +O(ε3).

Expansion of Sie Upon introducing the asymptotic development (2.3.47)-(2.3.49) in expression
(2.3.42), the collision operator Sie, i ∈ H, can be expanded in the form

Sie = ε S1
ie + ε2 S2

ie + O(ε3). (2.3.50)

The zeroth-order collision operator S0
ie cancels. Indeed, from (2.3.42)

S0
ie (fi, fe) (Ci, i) =

∫
σii
ie|C(0)

e |
(
fi(Ci, i)fe(C ′(0)

e )− fi(Ci, i)fe(C(0)
e )
)

dω′iedC
(0)
e

= fi(Ci, i)
∫
σii
ie|C(0)

e |
(
fe(−|C(0)

e |ω′ie)− fe(C(0)
e )
)

dω′iedC
(0)
e ,

where σii
ie was given in (2.3.43). The successive changes of variable C(0)

e = −|C(0)
e |ωie, with dC(0)

e =
|C(0)

e |2 d|C(0)
e |dωie, and (ωie

′,ωie)↔ (ωie,ωie
′), then yield

S0
ie (fi, fe) (Ci, i)

= fi(Ci, i)
∫
σii
ie|C(0)

e |3
(
fe(−|C(0)

e |ω′ie)− fe(−|C(0)
e |ωie)

)
d|C(0)

e |dωiedω′ie

= fi(Ci, i)
∫
σii
ie|C(0)

e |3
(
fe(−|C(0)

e |ωie)− fe(−|C(0)
e |ω′ie)

)
d|C(0)

e |dωiedω′ie

= −S0
ie (fi, fe) (Ci, i) ,

where σii
ie = σii

ie(me|C(0)
e |2,ωie ·ω′ie), so that finally

S0
ie (fi, fe) (Ci, i) = 0, i ∈ H, i ∈ Qi. (2.3.51)

From similar calculations, the first-order term S1
ie (fi, fe) (Ci, i) reads, for i ∈ H, i ∈ Qi

S1
ie (fi, fe) (Ci, i) = −me

mi

∂Ci
fi(Ci, i) ·

∫
Σ(1)

ii (|Ce|2) |Ce| fe(Ce)Ce dCe, (2.3.52)

where we have dropped the upperscript (0) on the integration variable Ce for the sake of simplicity.
The generalized momentum cross-section in thermal non-equilibrium context Σ

(l)
ii′ is defined, for

given i ∈ H, i ∈ Qi and i′ ∈ Qi, by

Σ
(l)
ii′ (|Ce|2) = 2π

(
me

mi

)l ∫ π

0

σii′
ie

(
me|Ce|2, cos θ

) (
1− cosl θ

)
sin θ dθ, l ∈ N∗, (2.3.53)
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where the symbol θ represents the angle between the vectors ω′ie = εC ′i −C ′e and ωie = εCi −Ce.
For l = 1, this cross-section represents the average momentum transferred in encounters between
electrons and molecules of the ith heavy species with initial quantum state i and final quantum state
i′, for a given initial value of the electron kinetic energy me|Ce|2. We also define

Σ
(0)
ii′ (|Ce|2) = 2π

∫ π

0

σii′
ie

(
me|Ce|2, cos θ

)
sin θ dθ, i ∈ H, i, i′ ∈ Qi. (2.3.54)

Finally, the second-order term can be decomposed into an elastic and an inelastic contributions:

S2
ie = S2,el

ie + S2,in
ie . (2.3.55)

The elastic contribution S2,el
ie (fi, fe) (Ci, i) reads, for i ∈ H, i ∈ Qi

S2,el
ie (fi, fe) (Ci, i) = (2.3.56)

− me

mi

∂Ci
(fi(Ci, i)Ci) :

∫
Σ(1)

ii (|Ce|2) |Ce|
(
Ce ⊗ ∂Cefe(Ce)

)
dCe

+
1

4

m2
e

m2
i

∂CiCi
fi(Ci, i) :

∫
Σ(2)

ii (|Ce|2) |Ce| fe(Ce)
(
|Ce|2 I− 3Ce ⊗Ce

)
dCe

+
m2
e

m2
i

∂CiCi
fi(Ci, i) :

∫
Σ(1)

ii (|Ce|2) |Ce| fe(Ce)
(
Ce ⊗Ce

)
dCe,

while the inelastic term can be written as

S2,in
ie (fi, fe) (Ci, i) (2.3.57)

=
∑
i′∈Qi
i′ 6=i

∫
σii′
ie |Ce|

(
fi(Ci, i′)fe(C ′(0)

e )
aii
aii′
− fi (Ci, i) fe(Ce)

)
dω′iedCe

=
∑
i′∈Qi
i′ 6=i

∫ (
Σ

(0)
i′i (|Ce|2)fi(Ci, i′)− Σ

(0)
ii′ (|Ce|2)fi(Ci, i)

)
|Ce|fe(Ce) dCe.

Scattering of electrons against the heavy species

The electron heavy-species scattering term Sei was stated above in (2.3.25). Unlike for the heavy-
species electron case, there is no change of variable allowing to eliminate the dependance in ε of the
scattering cross-section σii′

ei , and we retain the set of variables (Ce,Ci,ω
′
ei).

Expansion of the species velocities Conservation equations (2.3.41) for collisions between
electrons and molecules of the ith heavy species yield the following asymptotic expansion:

g′ei = g
′(0)
ei + ε g

′(1)
ei + ε2 g

′(2)
ei +O(ε3), (2.3.58)

C ′e = C ′(0)
e + ε C ′(1)

e + ε2 C ′(2)
e +O(ε3), (2.3.59)

C ′i = C
′(0)
i + ε C

′(1)
i + ε2 C

′(2)
i +O(ε3), (2.3.60)
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where the coefficients for the amplitude of the relative velocity after collision g′ei read in terms of
the variables (Ce,Ci,ω

′
ei)

g
′(0)
ei = |Ce|

(
1− ∆Eii′

1
2
me|Ce|2

) 1
2
,

g
′(1)
ei = −Ce ·Ci

g
′(0)
ei

,

g
′(2)
ei =

1

2

|Ci|2

g
′(0)
ei

(
1− ∆Eii′

1
2
mi|Ci|2

)
− 1

2

(Ce ·Ci)
2(

g
′(0)
ei

)3 ,

(2.3.61)

and the coefficients for the velocities after collisions C ′e, C
′
i are given by C ′(0)

e = g
′(0)
ei ω

′
ei, C

′(1)
e = Ci + g

′(1)
ei ω

′
ei, C ′(2)

e = C
′(1)
i + g

′(2)
ei ω

′
ei,

C
′(0)
i = Ci, C

′(1)
i =

me

mi

(
Ce −C ′(0)

e

)
, C

′(2)
i = −me

mi

C ′(1)
e .

(2.3.62)

Expansion of Sei Relations (2.3.58)-(2.3.60) allow one to determine, after a few calculations, the
asymptotic expansion of the electron heavy-species scattering operator

Sei = S0
ei + ε S1

ei + ε2 S2
ei + O(ε3).

The zeroth-order collision operator reads

S0
ei (fe, fi) (Ce) = (2.3.63)∑

i∈Qi

(∫
fi(Ci, i) dCi

)∫
σii
ei |Ce|

(
fe(|Ce|ω′ei)− fe(Ce)

)
dω′ei,

where

σii
ei = σii

ei

(
me|Ce|2,

Ce

|Ce|
·ω′ei

)
.

The first-order term S1
ei (fe, fi) (Ce) reads

S1
ei (fe, fi) (Ce) = (2.3.64)

+
∑
i∈Qi

∫
fi(Ci, i)Ci dCi ·

∫
σii
ei |Ce|

(
∂Cefe(|Ce|ω′ei)− ∂Cefe(Ce)

)
dω′ei

−
∑
i∈Qi

∫
fi(Ci, i)Ci dCi ·∂Ce

[∫
σii
ei |Ce|

(
fe(|Ce|ω′ei)− fe(Ce)

)
dω′ei

]
.

Finally, the second-order term can be decomposed into an elastic and an inelastic contributions

S2
ei = S2,el

ei + S2,in
ei . (2.3.65)

The elastic term reads

S2,el
ei (fe, fi) (Ce) =

me

mi

∑
i∈Qi

(∫
fi(Ci, i) dCi

)
K i,1
ei (Ce) (2.3.66)

+
1

2

∑
i∈Qi

∫
fi(Ci, i)Ci ⊗Ci dCi : K i,2

ei (Ce),
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where

K i,1
ei (Ce) = ∂Ce ·

[∫
σii
ei |Ce| (Ce − |Ce|ω′ei) fe(|Ce|ω′ei) dω′ei

]
(2.3.67)

− 1

2
|Ce|Ce ·

∫
∂Ceσ

ii
ei

(
fe(|Ce|ω′ei)− fe(Ce)

)
dω′ei,

and

K i,2
ei (Ce) = ∂CeCe

[∫
σii
ei |Ce|

(
fe(|Ce|ω′ei)− fe(Ce)

)
dω′ei

]
(2.3.68)

+ 2

∫
∂Ce [|Ce|σii

ei]⊗
(
∂Cefe(Ce)− ∂Cefe(|Ce|ω′ei)

)
dω′ei

+ |Ce|
∫
σii
ei

(
∂CeCefe(Ce) + ∂CeCefe(|Ce|ω′ei)

)
dω′ei

− 2|Ce|
∫
σii
ei ∂CeCefe(|Ce|ω′ei) ·ω′ei ⊗

Ce

|Ce|
dω′ei.

The inelastic term reads

S2,in
ei (fe, fi) (Ce) = (2.3.69)∑

i,i′∈Qi

i′ 6=i

∫
σii′
ei |Ce|

(
fe(C

′(0)
e )fi(Ci, i′)

aii
aii′
− fe(Ce)fi(Ci, i)

)
dω′eidCi,

where

σii′
ei = σii′

ei

(
me|Ce|2,

Ce

|Ce|
·ω′ei

)
,

C ′(0)
e = |Ce|

(
1− ∆Eii′

1
2
me|Ce|2

) 1
2

ω′ei.

2.4 Chapman-Enskog Expansion of the Species Distribution
Functions

In this section, we apply the classical procedure proposed by Enskog [CC70] [FK72] [Gio99], adapted
to non-thermal plasmas [DLD96] [GMM09]. The species distribution functions are expanded in pow-
ers of the Knudsen number ε and injected in the Boltzmann equations (2.3.21)-(2.3.22). Projection
of the electron Boltzmann equation at order ε−2 yields electron thermalization and isotropization in
the heavy-species reference frame. As well, projection of the heavy-species Boltzmann equations at
order ε−1 yields the thermalization of heavy species. Euler type equations arise from the expansion
of macroscopic equations at order ε0, while expansion at order ε1 yields Navier-Stokes type equa-
tions. As is classical, the closure of the equations is ensured by assuming that the perturbation of
the distribution function from its Maxwellian equilibrium is orthogonal to the collisional invariants
of the scattering operator [CC70] [FK72] [Gio99].
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2.4.1 Chapman-Enskog method

We derive an approximate solution to the Boltzmann equations by expanding the species distribution
functions as

fe = f 0
e

(
1 + εφe + ε2φ2

e

)
+O(ε3), (2.4.1)

fi = f 0
i (1 + εφi) +O(ε2), i ∈ H. (2.4.2)

Traditionally, in the Chapman-Enskog’s method [CC70] [FK72] [Gio99], the zeroth-order distribution
function f 0

e is assumed to yield the same local macroscopic properties as fe in the limit ε → 0
[GMM09], namely { ⟪f 0

e , ψ
e
e⟫e = ne

⟪f 0
e , ψ

ns+4
e ⟫e = Ee

(2.4.3)

for electrons, and as well  ⟪f 0
h , ψ

j
h⟫h = nj, j ∈ H

⟪f 0
h , ψ

ns+ν
h ⟫h = 0, ν ∈ {1, 2, 3}

⟪f 0
h , ψ

ns+4
h ⟫h = Eh

(2.4.4)

for heavy species, where Ee and Eh denote the respective internal energies per unit volume.
The Boltzmann equations (2.3.21),(2.3.22) can be written in the compact form

De(fe) =
1

ε2
See (fe, fe) +

1

ε2

∑
j∈H

Sej (fe, fj) + ε Ce (f) , (2.4.5)

Di(fi) =
1

ε2
Sie (fi, fe) +

1

ε

∑
j∈H

Sij (fi, fj) + ε Ci (f) , i ∈ H. (2.4.6)

We have derived in the previous paragraph asymptotic expansions for the scattering operators
See,Sej,Sje,Sij, i, j ∈ H. We also expand the streaming operators D as

De =
1

ε2
D−2
e +

1

ε
D−1
e +D0

e + ε D1
e +O(ε2), (2.4.7)

Di = D0
i + ε D1

i +O(ε2), i ∈ H, (2.4.8)

where

D−2
e (fe) = δb1

qe
me

[Ce ∧B] ·∂Cefe, (2.4.9)

D−1
e (fe) = Ce ·∂xfe + δb0

qe
me

[Ce ∧B] ·∂Cefe + δb1
qe
me

[vh ∧B] ·∂Cefe (2.4.10)

+
qe
me

E ·∂Cefe,

D0
e(fe) = ∂tfe + vh ·∂xfe + δb(−1)

qe
me

[Ce ∧B] ·∂Cefe + δb0
qe
me

[vh ∧B] ·∂Cefe (2.4.11)

− (∂Cefe ⊗Ce) : ∂xvh,

D1
e(fe) = δb(−2)

qe
me

[Ce ∧B] ·∂Cefe + δb(−1)
qe
me

[vh ∧B] ·∂Cefe −
Dvh
Dt
·∂Cefe, (2.4.12)

and

D0
i (fi) = ∂tfi + (Ci + vh) ·∂xfi + δb1

qi
mi

[(Ci + vh) ∧B] ·∂Ci
fi (2.4.13)

+
( qi
mi

E− Dvh
Dt

)
·∂Ci

fi − (∂Ci
fi ⊗Ci) : ∂xvh,

D1
i (fi) = δb0

qi
mi

[(Ci + vh) ∧B] ·∂Ci
fi. (2.4.14)
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Equations (2.4.5), (2.4.6) are then projected against collisional invariants in Iεe , Ih. Making use
of orthogonality properties (2.2.48), (2.2.50), one obtains

⟪ψee,De(fe)⟫e = ε⟪ψee, Ce(f)⟫e, (2.4.15)

⟪εmeCeν ,De(fe)⟫e =
1

ε2

∑
j∈H

⟪εmeCeν ,Sej⟫e + ε⟪εmeCeν , Ce(f)⟫e, ν ∈ {1, 2, 3} , (2.4.16)

⟪ψns+4
e ,De(fe)⟫e =

1

ε2

∑
j∈H

⟪ψns+4
e ,Sej⟫e + ε⟪ψns+4

e , Ce(f)⟫e, (2.4.17)

for electrons, and

⟪ψih,Dh(fh)⟫h = ε⟪ψih, Ch(f)⟫h, i ∈ H, (2.4.18)

⟪ψns+ν
h ,Dh(fh)⟫h =

1

ε2
⟪ψns+ν

h ,She⟫h + ε⟪ψns+ν
h , Ch(f)⟫h, ν ∈ {1, 2, 3} , (2.4.19)

⟪ψns+4
h ,Dh(fh)⟫h =

1

ε2
⟪ψns+4

h ,She⟫h + ε⟪ψns+4
h , Ch(f)⟫h, (2.4.20)

for heavy species. Equations (2.4.15) and (2.4.18) account for conservation of matter, equations
(2.4.16) and (2.4.19) for conservation of momentum, and equations (2.4.17) and (2.4.20) for con-
servation of energy. These equations are completed with the cross-collision orthogonality relations
(2.3.32), (2.3.33), (2.3.34), together with the macroscopic constraints (2.4.3), (2.4.4).

2.4.2 Electron thermalization

We solve the electron Boltzmann equation (2.4.5) at order ε−2, corresponding to the kinetic timescale
t0e. We obtain the following equation for f 0

e :

δb1
qe
me

(Ce ∧B) ·∂Cef
0
e = See

(
f 0
e , f

0
e

)
+
∑
j∈H

S0
ej

(
f 0
e , f

0
j

)
. (2.4.21)

Multiplying this equation by ln f 0
e and integrating over Ce, we get

Γ0
ee +

∑
j∈H

Γ0
ej + δb1 kb

qe
me

∫
(Ce ∧B) ·∂Cef

0
e ln f 0

e dCe = 0,

where Γ0
ee and Γ0

ej are the zeroth-order entropy production rates for electron electron and electron
jth-heavy-species collisions, respectively

Γ0
ee = −kb

∫
See
(
f 0
e , f

0
e

)
(Ce) ln

(
f 0
e (Ce)

)
dCe, (2.4.22)

Γ0
ej = −kb

∫
S0
ej

(
f 0
e , f

0
j

)
(Ce) ln

(
f 0
e (Ce)

)
dCe, j ∈ H. (2.4.23)

Noting that
∂Cef

0
e ln f 0

e = ∂Ce

[
f 0
e ln f 0

e − f 0
e

]
,

and integrating by parts we obtain∫
(Ce ∧B) ·∂Cef

0
e ln f 0

e dCe =

∫
(Ce ∧B) ·∂Ce

[
f 0
e ln f 0

e − f 0
e

]
dCe

=

∫
∂Ce ·

[
(f 0
e ln f 0

e − f 0
e )(Ce ∧B)

]
dCe,
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since ∂Ce · [Ce ∧B] = 0. Now, for a given R > 0, if B(0, R) is the ball of center 0 and radius R in
the electron velocity space (Ce ∈ R3), and S (0, R) is the corresponding sphere, then∫

B(0,R)

∂Ce ·
[
(f 0
e ln f 0

e − f 0
e )(Ce ∧B)

]
dCe =

∫
S (0,R)

(f 0
e ln f 0

e − f 0
e )(Ce ∧B) · Ce

|Ce|
dCe

= 0,

and this holds for all R > 0, so that∫
∂Ce ·

[
(f 0
e ln f 0

e − f 0
e )(Ce ∧B)

]
dCe = 0.

More generally, the latter statement can also be proven for any kind of force instead of the Lorentz
force qeCe∧B, upon assuming that the electron distribution function fe decreases sufficiently rapidly
when |Ce| → +∞ [Gra04]. Thus, one gets finally

Γ0
ee +

∑
j∈H

Γ0
ej = 0. (2.4.24)

Using the reciprocity relation (2.2.35) and symmetrizing, a classical derivation [GMM09] yields

Γ0
ee =

kb

4

∫
σeẽgeẽΩ(fef̃e, f

′
ef̃
′
e) dω′eẽdCedC̃e, (2.4.25)

where f̃e = fe(t,x, C̃e) and f̃ ′e = fe(t,x, C̃
′
e), and where

Ω(x, y) = ln
(x
y

)
(x− y) (2.4.26)

is a nonnegative function. Similarly, the electron jth-heavy-species entropy production term is
expressed by means of (2.3.63) as

Γ0
ej = −kb

∫
S0
ej

(
f 0
e , f

0
j

)
(Ce) ln

(
f 0
e (Ce)

)
dCe

= −kb

∑
j∈Qj

(∫
f 0
j (Cj, j) dCj

)
×
∫
σjj
ej |Ce|

(
f 0
e (|Ce|ω′ej)− f 0

e (Ce)
)

ln
(
f 0
e (Ce)

)
dω′ejdCe,

which again by reciprocity relations and symmetrization is equal to

Γ0
ej =

kb

2

∑
j∈Qj

(∫
f 0
j (Cj, j) dCj

)∫
σjj
ej|Ce| Ω

(
f 0
e (|Ce|ω′ej), f 0

e (Ce)
)

dω′ejdCe ≥ 0. (2.4.27)

A sum of positive terms is equal to zero if and only if each term of the sum is zero itself, thus the
entropy production rates vanish: Γ0

ee = 0, and Γ0
ej = 0 for all j ∈ H.

Since Γ0
ee = 0, one can see from expression (2.4.25) and the definition of Ω that ln(f 0

e ) must be
a collisional invariant associated with the electron electron scattering operator, i.e., must lie in the
space Iεe , spanned by ψee = 1, ψns+ν

e = εmeCeν , ν ∈ {1, 2, 3}, and ψn
s+4

e = 1
2
meCe ·Ce. Similarly,

one can see from expression (2.4.27) that f 0
e has to be an isotropic function of Ce, so that finally

ln(f 0
e ) ∈ I0

e = Span

(
1,

1

2
meCe ·Ce

)
.
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Using the macroscopic constraints (2.4.3) for conservation of matter and energy, we obtain finally
the expression for the zeroth-order electron distribution function

f 0
e (Ce) = ne

(
me

2πkbTe

) 3
2

exp

(
− me

2kbTe
Ce ·Ce

)
. (2.4.28)

The electron population thus thermalizes to a quasi-equilibrium state described by a Maxwell-
Boltzmann distribution at some temperature Te, defined as

Ee =
3

2
nekbTe. (2.4.29)

The Maxwellian distribution (2.4.28) is such that See(f 0
e , f

0
e ) = 0 and S0

ej(f
0
e , f

0
j ) = 0, for j ∈ H.

Finally, if one defines the electron partial pressure pe as

pe I =

∫
meCe ⊗Ce f

0
e dCe =

(
1

3

∫
meCe ·Ce f

0
e dCe

)
I, (2.4.30)

where the latter equality comes from the isotropy of f 0
e , one retrieves the perfect gas law for the

electrons
ρe =

peme

RTe
, (2.4.31)

where me = Name is the molar mass of the electron, and R is the universal gas constant.

2.4.3 Heavy-species thermalization

Now we solve the ith-heavy-species equation (2.4.6) at order ε−1. Since S0
ie = 0 from (2.3.51), this

yields, for all i ∈ H

S1
ie(f

0
i , f

0
e ) +

∑
j∈H

Sij
(
f 0
i , f

0
j

)
= 0.

Since f 0
e is isotropic, the term S1

ie(f
0
i , f

0
e ) given in (2.3.52) vanishes, in order that∑
j∈H

Sij
(
f 0
i , f

0
j

)
= 0. (2.4.32)

Multiplying this equation by ln(βiif
0
i ), integrating over Ci, summing over i ∈ Qi and then over

i ∈ H, we get
Γ0
hh = 0, (2.4.33)

where Γ0
hh is the zeroth-order entropy production rate associated with heavy-species collisions

Γ0
hh = −kb

∑
i,j∈H

∑
i∈Qi

∫
Sij
(
f 0
i , f

0
j

)
(Ci) ln

(
βiif

0
i (Ci)

)
dCi. (2.4.34)

From expression (2.3.29) for Sij, and using the reciprocity relation (2.2.35) and symmetrization, the
latter term can be written in the form

Γ0
hh =

kb

4

∑
i,j∈H

∑
i,i′∈Qi

∑
j,j′∈Qj

∫
σiji′j′
ij gij Ω

( aiiajj
aii′ajj′

f 0′

i f
0′

j , f
0
i f

0
j

)
dω′ijdCidCj. (2.4.35)

Since Ω is nonnegative, each term in the sum has to be zero, i.e.,

aiiajjf
0′

i f
0′

j = aii′ajj′f
0
i f

0
j , i, j ∈ H, i, i′,∈ Qi, j, j′ ∈ Qj.
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In other words,
(

ln(βiif
0
i )
)
i∈H is a collisional invariant of the heavy-species scattering operator:(

ln(βiif
0
i )
)
i∈H ∈ Ih,

i.e., there exists constants αi, i ∈ H, w, and γ such that

ln(βiif
0
i ) = αi −w ·miCi − γ

(1

2
miCi ·Ci + Eii

)
, i ∈ H, i ∈ Qi.

The constants αi, i ∈ H, w, and γ are obtained from the macroscopic constraints (2.4.4) for
conservation of matter, momentum and energy, yielding the following expression for the zeroth-
order heavy-species distribution function

f 0
i (Ci, i) = ni

(
mi

2πkbTh

) 3
2 aii
Qint
i

exp

(
− mi

2kbTh
Ci ·Ci −

Eii
kbTh

)
, i ∈ H, i ∈ Qi, (2.4.36)

where Th is the heavy-species temperature, given by

3

2
nhkbTh =

∑
i∈H

∑
i∈Qi

∫
1

2
miCi ·Ci f

0
i dCi, (2.4.37)

and where we have introduced the partition function for internal energy of the ith species

Qint
i =

∑
i∈Qi

aii exp

(
− Eii
kbTh

)
. (2.4.38)

Alternatively, one can write

f 0
i (Ci, i) = ni

1

βiiQi

exp

(
− mi

2kbTh
Ci ·Ci −

Eii
kbTh

)
, i ∈ H, i ∈ Qi, (2.4.39)

where the statistical weights βii are given by

βii =
h3

p

aiim3
i

, i ∈ H, i ∈ Qi, (2.4.40)

and where the translational and full partition functions per unit volume read

Qtr
i =

(
2πmikbTh

h2
p

) 3
2

, Qi = Qtr
i Q

int
i , i ∈ H. (2.4.41)

The Maxwellian distribution (2.4.36) is such that Sij(f 0
i , f

0
j ) = 0, for i, j ∈ H.

As a consequence of expression (2.4.36), the heavy-species internal energy per unit volume reads

Eh =
∑
i∈H

ni(
3

2
kbTh + Ei), (2.4.42)

where
Ei =

∑
i∈Qi

aiiEii
Qint
i

exp

(
− Eii
kbTh

)
(2.4.43)

is the mean excitation energy of the ith species.
Finally, defining the heavy-species partial pressure as

ph I =
∑
i∈H

∑
i∈Q

∫
miCi ⊗Ci f

0
i dCi =

(
1

3

∑
i∈H

∑
i∈Q

∫
miCi ·Ci f

0
i dCi

)
I, (2.4.44)
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we retrieve the perfect gas law for heavy species

ρh =
phmh

RTh
, (2.4.45)

where mh is the mean heavy-species molar mass, given by
ρh
mh

=
∑
i∈H

ρi
mi

, (2.4.46)

mi = Nami being the molar mass of the ith heavy species.

2.4.4 First-order perturbation function for electrons

We introduce the electron linearized collision operator Fe, defined as

Fe(φe) = − 1

f 0
e

[
See(φef 0

e , f
0
e ) + See(f 0

e , φef
0
e ) +

∑
j∈H

S0
ej(φef

0
e , f

0
j )

]
. (2.4.47)

The sum of the first two terms on the right hand side can be computed from (2.3.23) as follows:

− 1

f 0
e

[
See(φef 0

e , f
0
e ) + See(f 0

e , φef
0
e )
]

=

− 1

f 0
e

∫
geẽσeẽ

(
φ′ef

0′

e f̃
0′

e − φef 0
e f̃

0
e + f 0′

e φ̃
′
ef̃

0′

e − f 0
e φ̃ef̃

0
e

)
dω′eẽdC̃e,

where ψ̃e = ψe(t,x, C̃e) and ψ̃′e = ψe(t,x, C̃
′
e) for any function ψe of t, x and Ce. The conservation

of energy for electron-electron collisions reads

1

2
me|Ce|2 +

1

2
me|C̃e|2 =

1

2
me|C ′e|2 +

1

2
me|C̃

′
e|2,

so that from (2.4.28)
f 0′

e f̃
0′

e = f 0
e f̃

0
e , (2.4.48)

and thus

− 1

f 0
e

[
See(φef 0

e , f
0
e ) + See(f 0

e , φef
0
e )
]

= − 1

f 0
e

∫
geẽσeẽf

0
e f̃

0
e

(
φ′e − φe + φ̃′e − φ̃e

)
dω′eẽdC̃e.

Similarly, from expression (2.3.63) of S0
ej, the last term on the right hand side reads

− 1

f 0
e

∑
j∈H

S0
ej(φef

0
e , f

0
j )

= − 1

f 0
e

∑
j∈H

∑
j∈Qj

(∫
f 0
j (Cj, j) dCj

)∫
σjj
ej |Ce|

(
φef

0
e (|Ce|ω′ej)− φef 0

e (Ce)
)

dω′ej

= − 1

f 0
e

∑
j∈H

∑
j∈Qj

nj
ajje

−εjj

Qint
j

∫
σjj
ej |Ce|

(
φef

0
e (|Ce|ω′ej)− φef 0

e (Ce)
)

dω′ej,

where expression (2.4.36) for the zeroth-order jth-heavy-species distribution function f 0
j has been

integrated over Cj, and where we have introduced the reduced internal energy

εjj =
Ejj
kbTh

, j ∈ H, j ∈ Qj. (2.4.49)
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Since f 0
e is isotropic, f 0

e (|Ce|ω′ej) = f 0
e (Ce), and the electron linearized collision operator finally

reads

Fe(φe) =−
∫
geẽσeẽf̃

0
e

(
φ′e + φ̃′e − φe − φ̃e

)
dω′eẽdC̃e (2.4.50)

−
∑
j∈H

∑
j∈Qj

nj
ajje

−εjj

Qint
j

∫
σjj
ej |Ce|

(
φe(|Ce|ω′ej)− φe(Ce)

)
dω′ej.

The kernel of Fe coincides with the set of electron collisional invariants I0
e . Indeed, if Fe(φe) = 0,

then multiplying expression (2.4.50) above by φef 0
e , integrating over Ce, and using the reciprocity

relation (2.2.35) and symmetrization one obtains

φe(|Ce|ω′ej) = φe(Ce)

φe(C
′
e) + φe(C̃

′
e) = φe(Ce) + φe(C̃e),

for all Ce, C̃e, ω′eẽ, ω′ej, i.e., φe ∈ I0
e .

Furthermore, Fe is isotropic, i.e., it transforms a tensor constructed from Ce into another tensor
of the same type [Wal58] [Gra04] [GG09]. This will be of great importance for the calculation of
transport coefficients. We also introduce the associated integral bracket operator:

Jξe, ζeKe = ⟪f 0
e ξe,Fe(ζe)⟫e, (2.4.51)

which can be expressed in the form

Jξe, ζeKe =
1

4

∫
geẽσeẽf

0
e f̃

0
e

(
ξ′e + ξ̃′e − ξe − ξ̃e

)(
ζ ′e + ζ̃ ′e − ζe − ζ̃e

)
dω′eẽdCedC̃e (2.4.52)

+
1

2

∑
j∈H

∑
j∈Qj

nj
ajje

−εjj

Qint
j

×
∫
σjj
ej |Ce|f 0

e (Ce)
(
ξe(|Ce|ω′ej)− ξe(Ce)

) (
ζe(|Ce|ω′ej)− ζe(Ce)

)
dω′ejdCe.

From expression (2.4.52), the bracket operator J · Ke is readily seen to be symmetric, i.e.,

Jξe, ζeKe = Jζe, ξeKe, (2.4.53)

positive semi-definite:
Jξe, ξeKe ≥ 0, (2.4.54)

and its kernel is seen to coincide with the kernel of Fe:

Jξe, ξeKe = 0⇔ Fe(ξe) = 0⇔ ξe ∈ I0
e . (2.4.55)

The electron Boltzmann equation (2.4.5) is now projected at order ε−1. As long as f 0
e is an

isotropic function of Ce, respectively f 0
j is an isotropic function of Cj, from (2.3.63) the term

S0
ej(f

0
e , φjf

0
j ) is shown to vanish:

S0
ej(f

0
e , φjf

0
j ) = 0, (2.4.56)

respectively from (2.3.64)
S1
ej(f

0
e , f

0
j ) = 0. (2.4.57)

Thus, the first-order electron perturbation function φe is solution to the following linear equation:

Fe(φe) + δb1
qe
me

(Ce ∧B) ·∂Ceφe = Ψe, (2.4.58)
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where
Ψe = −D−1

e (ln f 0
e ). (2.4.59)

Equation (2.4.58) must be completed with constraints (2.4.3) in order to be well posed

⟪φef 0
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (2.4.60)

Indeed, the streaming operator Ψe = −D−1
e (ln f 0

e ) on the right hand side of (2.4.58) is orthogonal
to the electron collisional invariants [GMM09], and the second term on the left hand side of (2.4.58)
is orthogonal to the electron isotropic collisional invariants [GG03] [Gra04] [GMM09], since if f 0

e

decreases sufficiently rapidly as |Ce| → +∞, then∫
f 0
e ψ

l
e (Ce ∧B) ·∂Ceφe dCe = −

∫
f 0
e φe ∂Ce · (ψleCe ∧B) dCe,

= −
∫
f 0
e φe (Ce ∧B) ·∂Ceψ

l
e dCe,

= 0,

for l ∈ {e, ns + 4}. Besides, the relation

⟪f 0
e φe, (Ce ∧B) ·∂Ceφe⟫e =

∫
f 0
e φe (Ce ∧B) ·∂Ceφe dCe,

=

∫
f 0
e (Ce ∧B) ·∂Ce

(1

2
φ2
e

)
dCe,

= 0,

ensures that the set of solutions of the homogeneous linear equation associated with the linear
equation (2.4.58) coincides with the kernel of Fe, I0

e .

2.4.5 Scaling for inelastic collision cross-sections

We can now discuss in more details the choice of scaling adopted for σjj′
je , j ∈ H, j, j′ ∈ Qj,

j 6= j′. We consider the two possible alternative scaling σin,0
he = σ0 and σin,0

he = εσ0, instead of
σin,0
he = ε2σ0. Other things being equal, in the former case the electron thermalization requires that

the electron temperature is equal to the heavy-species temperature Te = Th, while in the latter case
the thermalization of the heavy species induces Th = Te.

Electron thermalization

First, if the inelastic reference collision scaled as

σin,0
he = σ0, (2.4.61)

that is to say if there was only one relevant characteristic cross-section, then the right hand
side of the electron Boltzmann equation at order ε−2 (2.4.21) would contain the additional term∑

j∈H S
2,in
ej

(
f 0
e , f

0
j

)
. Thus, equation (2.4.24) for electron thermalization would be replaced by

Γ0
ee +

∑
j∈H

Γ0
ej +

∑
j∈H

Γ2,in
ej = 0, (2.4.62)
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where the entropy production rate due to inelastic scattering of electron against the jth heavy species
reads

Γ2,in
ej = −kb

∫
S2,in
ej

(
f 0
e (Ce), f

0
j (Cj)

)
ln
(
f 0
e (Ce)

)
dCe, (2.4.63)

Γ2,in
ej = −kb

∑
j,j′∈Qj

j′ 6=j

∫
σjj′
ej |Ce|

(
f 0
e (C ′(0)

e )f 0
j (Cj, j′)

βjj′

βjj
− f 0

e (Ce)f
0
j (Cj, j)

)
(2.4.64)

× ln
(
f 0
e (Ce)

)
dω′ejdCedCj,

where C ′(0)
e = |Ce|

(
1 − ∆Ejj′/

1
2
me|Ce|2

)1/2
ω′ej is the zeroth-order electron velocity after collision.

Using again the reciprocity relation (2.2.35) in the form

βjj′|Ce|σjj′
ej dω′ejdCedCj = βjj|C ′(0)

e |σj′j
ej dωejdC

′(0)
e dCj, (2.4.65)

and symmetrizing, Γ2,in
ej may be expressed as

Γ2,in
ej = kb

∑
j,j′∈Qj

j′ 6=j

∫
σjj′
ej |Ce|

[
ln
(
f 0
e (Ce)

)
− ln

(
f 0
e (C ′(0)

e )
)]
f 0
e (Ce)f

0
j (Cj, j) dω′ejdCedCj. (2.4.66)

Now, for the alternative scaling σin,0
he = σ0, the projection of the heavy species Boltzmann equation

(2.3.22) at order ε−2 would be non trivial, and would yield

0 = S2,in
je (f 0

j , f
0
e ) =

∑
j′∈Qj

j′ 6=j

∫
σjj′
je |Ce|

(
f 0
e (C ′(0)

e )f 0
j (Cj, j′)

βjj′

βjj
− f 0

e (Ce)f
0
j (Cj, j)

)
(2.4.67)

× dω′jedCedCj.

Multiplying the latter equation by ln (βjjf
0
j (Cj, j)), integrating over Cj and summing over j ∈ Qj,

and noting that ωje = −ωej, ω′je = −ω′ej, and σjj′
je = σjj′

ej , one would obtain

0 =
∑

j,j′∈Qj

j′ 6=j

1

βjj

∫
σjj′
ej |Ce| ln

(
βjjf

0
j (Cj, j)

)
(2.4.68)

×
(
βjj′f

0
e (C ′(0)

e )f 0
j (Cj, j′)− βjjf 0

e (Ce)f
0
j (Cj, j)

)
dω′ejdCedCj,

which by reciprocity and symmetry would yield

0 =
∑

j,j′∈Qj

j′ 6=j

1

βjj

∫
σjj′
ej |Ce|

[
ln
(
βjj′f

0
j (Cj, j′)

)
− ln

(
βjjf

0
j (Cj, j)

)]
(2.4.69)

×
(
βjj′f

0
e (C ′(0)

e )f 0
j (Cj, j′)− βjjf 0

e (Ce)f
0
j (Cj, j)

)
dω′ejdCedCj,

so that the entropy production rate due to inelastic scattering of electron against the jth heavy
species would read

Γ2,in
ej =

kb

2

∑
j,j′∈Qj

j′ 6=j

1

βjj

∫
σjj′
ej |Ce|Ω

(
βjj′f

0
e (C ′(0)

e )f 0
j (Cj, j′), βjjf 0

e (Ce)f
0
j (Cj, j)

)
(2.4.70)

dω′ejdCedCj,
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where Ω is the function defined in (2.4.26). Since Ω is nonnegative, the ε−2 electron Boltzmann
equation (2.4.62) would yield the thermalization of electrons (2.4.28) as in subsection 2.4.2. Besides,
the electron jth-heavy-species inelastic entropy production rate would vanish

Γ2,in
ej = 0, j ∈ H, (2.4.71)

which would require

ajjf
0
e (C ′(0)

e )f 0
j (Cj, j′) = ajj′f

0
e (Ce)f

0
j (Cj, j), j ∈ H, j, j′ ∈ Qj, j′ 6= j, (2.4.72)

for Ω is nonnegative. From expression (2.4.28) for the electron Maxwellian distribution function,
the latter equation is rewritten

ajjf
0
j (Cj, j′) = exp

(
− ∆Ejj′

kbTe

)
ajj′f

0
j (Cj, j), j ∈ H, j, j′ ∈ Qj, j′ 6= j. (2.4.73)

Assuming that the zeroth-order heavy-species distribution functions f 0
j , j ∈ H, would still be

Maxwellian of the form (2.4.36), equation (2.4.73) would be equivalent to

∆Ejj′

kbTh
=

∆Ejj′

kbTe
, j ∈ H, j, j′ ∈ Qj, j′ 6= j,

which would imply Te = Th.

Heavy-species thermalization

In the preceding paragraph it was shown that, other things being equal, the inelastic collisions
between electrons and heavy species must be at least one order of magnitude slower than the
corresponding elastic collisions. We now consider the alternative scaling

σin,0
he = εσ0. (2.4.74)

For such a scaling electron thermalization would proceed as in 2.4.2, since equation (2.4.24) would re-
main unchanged, and hence the zeroth-order electron distribution function f 0

e would be a Maxwellian
of the form (2.4.28).

The heavy-species Boltzmann equation at order ε−1 (2.4.32) would contain the additional term
S2,in
ie (f 0

i , f
0
e ), so that equation (2.4.33) for heavy-species thermalization would be replaced by

Γ0
hh + Γ2,in

he = 0, (2.4.75)

where we have introduced the entropy production rate due to inelastic scattering of heavy species
against electrons

Γ2,in
he = −kb

∑
i∈H

∑
i∈Qi

∫
ln
(
βiif

0
i (Ci, i)

)
S2,in
ie

(
f 0
i , f

0
e

)
dCi. (2.4.76)

From expression (2.3.57) for S2,in
ie , this inelastic entropy production rate is expanded as

Γ2,in
he = −kb

∑
i∈H

∑
i∈Qi

∫
σii′
ie |Ce| ln

(
βiif

0
i (Ci, i)

)
×
(
f 0
i (Ci, i′)f 0

e (C ′(0)
e )

βii′

βii
− f 0

i (Ci, i)f 0
e (Ce)

)
dω′iedCidCe,

Γ2,in
he =

kb

2

∑
i∈H

∑
i∈Qi

∫
σii′
ie |Ce|

[
ln
(
βii′f

0
i (Ci, i′)

)
− ln

(
βiif

0
i (Ci, i)

)]
(2.4.77)

×
(
f 0
i (Ci, i′)f 0

e (C ′(0)
e )

βii′

βii
− f 0

i (Ci, i)f 0
e (Ce)

)
dω′iedCidCe,
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where we have used the reciprocity relation (2.4.65) and symmetrization.
Now, for the scaling σin,0

he = εσ0 proposed, equation (2.4.58) obtained from the projection of the
Boltzmann equation at order ε−1 would remain valid, but the source term Ψe would read

f 0
eΨe = −D−1

e (f 0
e ) +

∑
j∈H

S1
ej(f

0
e , f

0
j ) +

∑
j∈H

S2,in
ej (f 0

e , f
0
j ), (2.4.78)

where f 0
j would remain unknown at this point. Since the streaming operator, the electron linearized

collision operator Fe, and the term (Ce∧B) ·∂Ceφe are orthogonal to the electron isotropic collisional
invariants I0

e

⟪D−1
e (fe), ψ

l
e⟫e = 0, l ∈ {e, ns + 4} , (2.4.79)

⟪f 0
eFe(φe), ψle⟫e = 0, l ∈ {e, ns + 4} , (2.4.80)

⟪f 0
e (Ce ∧B) ·∂Ceφe, ψ

l
e⟫e = 0, l ∈ {e, ns + 4} , (2.4.81)

and since ln f 0
e belongs to I0

e , multiplying (2.4.78) by ln f 0
e and integrating over Ce one would obtain∑

j∈H

⟪S1
ej(f

0
e , f

0
j ), ln f 0

e ⟫e +
∑
j∈H

⟪S2,in
ej (f 0

e , f
0
j ), ln f 0

e ⟫e = 0. (2.4.82)

The first term on the left hand side would be shown to vanish since from expression (2.3.64)
S1
ej(f

0
e , f

0
j ) = 0 as long as f 0

e is given by a Maxwellian of the form (2.4.28). Thus, the second
term on the left hand side would be zero:

0 =
∑
j∈H

⟪S2,in
ej (f 0

e , f
0
j ), ln f 0

e ⟫e

=
∑
j∈H

∑
j∈Qj

∫
σjj′
je |Ce| ln

(
f 0
e (Ce)

)
×
(
f 0
j (Cj, j′)f 0

e (C ′(0)
e )

βjj′

βjj
− f 0

j (Cj, j)f 0
e (Ce)

)
dω′ejdCjdCe,

= −1

2

∑
j∈H

∑
j∈Qj

∫
σjj′
je |Ce|

[
ln
(
f 0
e (C ′(0)

e )
)
− ln

(
f 0
e (Ce)

)]
×
(
f 0
j (Cj, j′)f 0

e (C ′(0)
e )

βjj′

βjj
− f 0

j (Cj, j)f 0
e (Ce)

)
dω′jedCjdCe.

Combining the latter equation with equation (2.4.77), the heavy-species electron inelastic entropy
production rate would finally read

Γ2,in
he =

kb

2

∑
i∈H

∑
i∈Qi

∫
σii′
ie |Ce|Ω

(βii′
βii
f 0
i (Ci, i′)f 0

e (C ′(0)
e ), f 0

i (Ci, i)f 0
e (Ce)

)
dω′iedCidCe, (2.4.83)

Since Ω is nonnegative, equation (2.4.75) would induce the thermalization of the heavy species as in
subsection 2.4.3, and additionnally we would retrieve (2.4.73), and thus Th = Te as in the preceding
paragraph.

A possible extension where some of the heavy species internal modes thermalize at Te is discussed
in the conclusion.

2.4.6 Zeroth-order macroscopic equations for electrons

Equations (2.4.15), (2.4.16), (2.4.17) are now expanded at order ε0. Conservation of matter and
energy yield a system of Navier-Stokes type drift-diffusion equations for electrons, from which the
equation for conservation of momentum uncouples.
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Equation (2.4.15) for conservation of matter yields at order ε0 the following mass conservation
equation for electrons:

∂tρe + ∂x ·
(
ρevh + ρeV0

e

)
= 0, (2.4.84)

where we have introduced the electron zeroth-order diffusion velocity

neV0
e =

∫
Ceφef

0
e dCe. (2.4.85)

On the other hand, the energy conservation equation (2.4.17) yields at order ε0

∂tEe + ∂x · (Eevh) = −pe∂x ·vh − ∂x ·Q0
e + J0

e ·E′ + ∆E0
eh, (2.4.86)

where pe = nekbTe is the electron partial pressure, J0
e = neqeV0

e is the zeroth-order electron con-
duction current density in the heavy-species reference frame, and E′ is the electric field expressed
in the heavy-species reference frame

E′ = E + δb1vh ∧B. (2.4.87)

We have denoted by Q0
e the zeroth-order electron heat flux

Q0
e =

∫
φef

0
e

(1

2
meCe ·Ce

)
Ce dCe, (2.4.88)

while ∆E0
eh is an energy exchange term due to scattering collisions between electrons and heavy

species
∆E0

eh =
∑
j∈H

⟪ψns+4
e ,S2

ej(f
0
e , f

0
j )⟫e, (2.4.89)

where S2
ej is the second-order electron jth-heavy-species scattering source term (2.3.65). The zeroth-

order electron mean velocity in the inertial reference frame is defined as

v0
e = vh + V0

e. (2.4.90)

Finally, momentum conservation equation (2.4.16) yields the following momentum relation:

∂xpe = neqeE + δb1j
0
e ∧B + F 0

eh, (2.4.91)

where j0
e = neqev

0
e is the zeroth-order electron current density in the inertial reference frame, and

F 0
eh =

∑
j∈H

⟪S0
ej(φef

0
e , f

0
j ),meCe⟫e (2.4.92)

is the average force exerted by the heavy species on electrons due to scattering collisions, which can
be expressed as

F 0
eh =

∑
j∈H

njF
0
ej, (2.4.93)

where F 0
ej is the average force exerted by the jth heavy species on electrons. We can further

decompose

F 0
ej =

∑
j∈Qj

ajje
−εjj

Qint
j

F j,0
ej , (2.4.94)

where F j,0
ej is the average force exerted on electrons by molecules of the jth heavy species in the jth

internal state:
F j,0
ej = −me

∫
Σ(1)

jj (|Ce|2)|Ce|φe(Ce)f
0
e (Ce)Ce dCe. (2.4.95)

Equation (2.4.91) thus provides an expression for the average force F 0
eh in terms of the macroscopic

variable gradients and external fields, which will be useful in the derivation of the heavy-species
momentum equation.
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2.4.7 Zeroth-order macroscopic equations for the heavy species

We now expand equations (2.4.18), (2.4.19), (2.4.20) at order ε0. First, equation (2.4.18) yields the
following mass conservation equation:

∂tρi + ∂x · (ρivh) = 0, i ∈ H. (2.4.96)

Then, expansion of equation (2.4.19) at order ε0 reads

∂t (ρhvh) + ∂x · (ρhvh ⊗ vh + ph I) = nhqhE + δb1 j
0
h ∧B + F 0

he, (2.4.97)

where ph = nhkbTh is the heavy-species partial pressure, nh =
∑

j∈H nj the heavy-species density,
nhqh =

∑
j∈H njqj the heavy-species charge density, j0

h = nhqhvh the zeroth-order heavy-species
current density in the inertial reference frame, and

F 0
he = ⟪S1

he(f
0
h , φef

0
e ) + S2

he(f
0
h , f

0
e ),mhCh⟫h (2.4.98)

is the average force exerted by electrons on the heavy species due to scattering collisions. Indeed,
we recall that from (2.3.51) S0

ie = 0, and from (2.3.52) it is readily seen that

S1
ie(φif

0
i , f

0
e ) = 0, (2.4.99)

as long as f 0
e is isotropic. Due to orthogonality relation (2.3.33), the following reciprocity relation

holds:
F 0
he = −F 0

eh. (2.4.100)

As a consequence, making use of the electron momentum relation (2.4.91), the momentum conser-
vation equation (2.4.97) for the heavy species can be rewritten

∂t (ρhvh) + ∂x · (ρhvh ⊗ vh + p I) = nqE + δb1 j
0 ∧B, (2.4.101)

where p = ph + pe is the total pressure, n = nh + ne the total density, nq = nhqh + neqe the total
charge density, and j0 = j0

h + j0
e is the zeroth-order current density in the inertial reference frame.

Finally, equation (2.4.20) yields the following energy conservation equation at order zero:

∂tEh + ∂x · (Ehvh) = −ph ∂x ·vh + ∆E0
he, (2.4.102)

where ∆E0
he = ⟪S2

he(f
0
h , f

0
e ), ψn

s+4
h ⟫h is an energy exchange term due to scattering collisions between

heavy species and electrons. Given orthogonality property (2.3.34), energy exchange terms are
shown to be symmetric as momentum exchange terms in (2.4.100):

∆E0
he = −∆E0

eh. (2.4.103)

The energy exchange term splits into an elastic and an inelastic contributions:

∆E0
he = ∆E0,el

he + ∆E0,in
he . (2.4.104)

The elastic term ∆E0,el
he = ⟪S2,el

he (f 0
h , f

0
e ), ψn

s+4
h ⟫h is computed from expression (2.3.56) for the second-

order ith-heavy-species electron elastic scattering source term S2,el
ie , and reads

∆E0,el
he =

3

2
nhkb(Te − Th)

1

τ el , (2.4.105)
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where τ el is the average collision time at which elastic energy transfer occurs:

1

τ el =
2

3

∑
i∈H

ni
nh

me

mi

νel
ie, (2.4.106)

νel
ie =

∑
i∈Qi

aiie
−Eii/kbTh

Qint
i

ν ii
ie, (2.4.107)

ν ii
ie =

me

kbTe

∫
Σ(1)

ii (|Ce|2) |Ce|3 f 0
e (Ce) dCe. (2.4.108)

The inelastic contribution can be expressed using (2.3.57) as

∆E0,in
he =

1

2

∑
i∈H

∑
i,i′∈Qi

i′ 6=i

∆Eii′
niaii
Qint
i

ν ii′
ie

(
e−Eii/kbTh − exp

(∆Eii′

kbTe

)
e−Eii′/kbTh

)
, (2.4.109)

where ν ii′
ie is the collision frequency between a molecule of the ith heavy species with initial quantum

state i and final quantum state i′ and an electron:

ν ii′
ie =

∫
Σ

(0)
ii′ (|Ce|2) |Ce| f 0

e (Ce) dCe, i′ 6= i. (2.4.110)

Expression (2.4.109) can be rewritten in terms of the temperature difference Te − Th

∆E0,in
he =

3

2
nhkb(Te − Th)

1

τ in , (2.4.111)

where τ in is the average collision time at which inelastic energy transfer occurs:

1

τ in =
2

3

Th
Te

∑
i∈H

ni
nh
ν in
ie , (2.4.112)

ν in
ie =

∑
i,i′∈Qi

i′ 6=i

(∆εii′)
2

2

aiie
−εii

Qint
i

g
(

∆εii′
(
1− Th

Te

))
ν ii′
ie , (2.4.113)

where ∆εii′ = εii′ − εii =
∆Eii′
kbTh

, and where we have introduced the function g defined by
g(u) =

1− e−u

u
, u 6= 0,

g(0) = 1.
(2.4.114)

We can also formulate ∆E0
he as

∆E0
he =

3

2
nhkb(Te − Th)

1

τ
, (2.4.115)

where
1

τ
=

1

τ el +
1

τ in . (2.4.116)

2.4.8 First-order perturbation for the heavy species

As for electrons, we introduce the heavy-species linearized collision operator Fh = (Fi)i∈H, defined
as

Fi(φh) = − 1

f 0
i

∑
j∈H

[
Sij(φif 0

i , f
0
j ) + Sij(f 0

i , φjf
0
j )
]
, i ∈ H. (2.4.117)
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Again, using the reciprocity relation (2.2.35) and symmetrization [CC70] [FK72] [GMM09], the
linearized collision operator is expressed as

f 0
i Fi(φh) =

∑
j∈H

∑
i′∈Qi

∑
j,j′∈Qj

∫
gijσ

iji′j′
ij f 0

i f
0
j

(
φi + φj − φ′i − φ′j

)
dω′ijdCj. (2.4.118)

The kernel of Fh coincides with the set of heavy-species collisional invariants Ih. We also introduce
the associated integral bracket operator

Jξh, ζhKh = ⟪f 0
hξh,Fh(ζh)⟫h =

∑
i∈H

∑
i∈Qi

∫
f 0
i ξiFi(ζh) dCi, (2.4.119)

which can be expressed in the form

Jξh, ζhKh =
1

4

∑
i,j∈H

∑
i,i′∈Qi

∑
j,j′∈Qj

(2.4.120)

×
∫
gijσ

iji′j′
ij f 0

i f
0
j

(
ξ′i + ξ′j − ξi − ξj

) (
ζ ′i + ζ ′j − ζi − ζj

)
dω′ijdCjdCi.

From expression (2.4.120), the bracket operator J · Kh is shown to be symmetric, i.e.,

Jξh, ζhKh = Jζh, ξhKh, (2.4.121)

positive semi-definite:
Jξh, ξhKh ≥ 0, (2.4.122)

and its kernel is seen to coincide with the kernel of Fh:
Jξh, ξhKh = 0⇔ Fh(ξh) = 0⇔ ξh ∈ Ih. (2.4.123)

Projecting the heavy-species Boltzmann equations (2.4.6) at order ε0, the first-order heavy-
species perturbation function φh is shown to be solution to the following linear equation:

Fi(φh) = Ψi, i ∈ H, (2.4.124)

where
Ψi = −D0

i (ln f
0
i ) +

1

f 0
i

S1
ie(f

0
i , φef

0
e ) +

1

f 0
i

S2
ie(f

0
i , f

0
e ). (2.4.125)

Indeed, S0
ie = 0, and S1

ie(φif
0
i , f

0
e ) = 0 since f 0

e is isotropic. Equation (2.4.124) must be completed
with the constraints (2.4.4) in order to be well posed [CC70] [FK72] [Gio99]

⟪φhf 0
h , ψ

l
h⟫h = 0, l ∈ H ∪ {ns + 1, . . . , ns + 4} . (2.4.126)

2.4.9 Second-order perturbation for electrons

We project the electron Boltzmann equation (2.4.5) at order ε0 and after a few calculations, the
second-order electron perturbation function φ2

e is found to be solution to the following linear integral
equation [GMM09]:

f 0
eFe(φ2

e) + δb1
qe
me

(Ce ∧B) ·∂Ce(φ
2
ef

0
e ) = Ψ2

e, (2.4.127)

where

Ψ2
e =−D0

e(f
0
e )−D−1

e (φef
0
e ) + See(φef 0

e , φef
0
e ) (2.4.128)

+
∑
j∈H

[
S0
ej(φef

0
e , φjf

0
j ) + S1

ej(f
0
e , φjf

0
j ) + S2

ej(f
0
e , f

0
j )
]
.

Indeed, by (2.3.63) S0
ej(f

0
e , φ

2
jf

0
j ) = 0 since f 0

e is isotropic, and by (2.3.64) S1
ej(φef

0
e , f

0
j ) = 0 since f 0

j

is isotropic. Equation (2.4.127) is completed with the constraints (2.4.3) in order to be well posed

⟪φ2
ef

0
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (2.4.129)
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2.4.10 First-order macroscopic equations for electrons

Equations (2.4.15), (2.4.16), (2.4.17) are now expanded at order ε1. The following first-order drift-
diffusion equations for electrons follow

∂tρe + ∂x ·
(
ρevh + ρeV0

e + ε ρeV1
e

)
= εmewe, (2.4.130)

∂tEe + ∂x · (Eevh) = −pe∂x ·vh − ε∂xvh : Πe − ∂x ·Q0
e − ε∂x ·Q1

e (2.4.131)
+J0

e ·E′ + εJ1
e ·E′ + ε δb0 J

0
e · (vh ∧B) + ∆E0

eh + ε∆E1
eh,

where we have introduced the electron first-order diffusion velocity, heat flux, viscous tensor, and
the electron first-order conduction current density in the heavy-species reference frame, respectively

neV1
e =

∫
φ2
ef

0
e Ce dCe, (2.4.132)

Q1
e =

∫
φ2
ef

0
e

(1

2
meCe ·Ce

)
Ce dCe, (2.4.133)

Πe =

∫
φef

0
e meCe ⊗Ce dCe, (2.4.134)

J1
e = neqeV1

e. (2.4.135)

We have denoted by we the zeroth-order molecular production rate of electrons due to chemically
reactive collisions:

we = ⟪ψee, Ce(f 0)⟫e =

∫
Ce(f 0) dCe, (2.4.136)

and ∆E1
eh is the first-order energy exchange term arising from chemically reactive collisions on the

one hand, and scattering collisions on the other hand:

∆E1
eh = ∆E1,chem

eh + ∆E1,scatt
eh . (2.4.137)

The reactive term reads
∆E1,chem

eh =

∫ (1

2
meCe ·Ce

)
Ce(f 0) dCe, (2.4.138)

and the scattering term is in turn decomposed into an elastic and an inelastic contribution

∆E1,scatt
eh = ∆E1,el

eh + ∆E1,in
eh , (2.4.139)

where

∆E1,el
eh = −⟪ψns+4

h ,S1
he(φhf

0
h , φef

0
e ) + S2,el

he (φhf
0
h , f

0
e ) + S2,el

he (f 0
h , φef

0
e )⟫h, (2.4.140)

∆E1,in
eh = −⟪ψns+4

h ,S2,in
he (φhf

0
h , f

0
e ) + S2,in

he (f 0
h , φef

0
e )⟫h. (2.4.141)

Finally, the momentum electron conservation equation (2.4.16) yields the following first-order
momentum relation for electrons:

∂xpe + ε∂x ·Πe = neqeE + ε δb0 j
0
e ∧B + δb1 (j0

e + εJ1
e) ∧B + F 0

eh + εF 1
eh, (2.4.142)

where F 1
eh is the first-order average force exerted by the heavy species on electrons:

F 1
eh =

∑
j∈H

⟪meCe,S0
ej(φ

2
ef

0
e , f

0
j ) + S0

ej(φef
0
e , φjf

0
j ) + S1

ej(f
0
e , φjf

0
j ) + S2

ej(f
0
e , f

0
j )⟫e. (2.4.143)
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2.4.11 First-order macroscopic equations for the heavy species

Proceeding as for the zeroth-order macroscopic equations, we obtain the following set of Navier-
Stokes type equations for the heavy species:

∂tρi + ∂x · (ρivh + ε ρiV i) = εmiwi, i ∈ H, (2.4.144)
∂t (ρhvh) + ∂x · (ρhvh ⊗ vh + p I) = −ε∂x · (Πe + Πh) + nqE (2.4.145)

+ε δb0 j
0 ∧B + δb1 j

1 ∧B,

∂tEh + ∂x · (Ehvh) = −ph ∂x ·vh − ε∂xvh : Πh − ε∂x ·Qh (2.4.146)
+εJh ·E′ + ∆E0

he + ε∆E1
he,

where we have introduced the diffusion velocity of the ith heavy species V i, the heavy-species viscous
tensor Πh, and the heavy-species heat flux Qh:

niV i =
∑
i∈Qi

∫
φif

0
i Ci dCi, i ∈ H, (2.4.147)

Πh =
∑
j∈H

∑
j∈Qj

∫
φjf

0
j mj Cj ⊗Cj dCj, (2.4.148)

Qh =
∑
j∈H

∑
j∈Qj

∫
φjf

0
j

(1

2
mjCj ·Cj + Ejj

)
Cj dCj. (2.4.149)

We denote by Jh the heavy-species conduction current density in the heavy-species reference frame,
j1
h the first-order heavy-species current density in the inertial reference frame, and j1

e the first-order
electron current density in the inertial reference frame:

Jh =
∑
j∈H

njqjVj, (2.4.150)

j1
h =

∑
j∈H

njqj(vh + εVj) = nhqhvh + εJh, (2.4.151)

j1
e = neqe(vh + V0

e + εV1
e) = neqeve + εJ1

e, (2.4.152)

where J1
e = neqeV1

e is the first-order electron conduction current density in the heavy-species refer-
ence frame. The zeroth-order and first-order current density in the inertial reference frame, j0 and
j1, respectively, are given by

j0 = j0
h + j0

e, (2.4.153)
j1 = j1

h + j1
e. (2.4.154)

Finally, wi, i ∈ H is the zeroth-order molecular production rate of the ith species due to chemically
reactive collisions:

wi = ⟪ψih, Ch(f 0)⟫h =
∑
i∈Qi

∫
Ci(f 0) dCi, (2.4.155)

and ∆E1
he is the first-order energy exchange term, involving both scattering and reactive energy

transfer. Again, due to relation (2.3.34), energy exchange terms are symmetric:

∆E1
he = −∆E1

eh. (2.4.156)
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2.4.12 Chemistry source terms

For k ∈ S, the chemically reactive source term reads

wk =
∑
k∈Qk

∫
Ck(f 0) dCk. (2.4.157)

This term can be expressed as follows. We first recall the decomposition (2.2.16)

Ck(f) =
∑
r∈R

Crk(f), (2.4.158)

where Crk(f) was expressed in (2.2.28). This yields the following decomposition:

wk =
∑
r∈R

(
νrbk − νrfk

)
τr, (2.4.159)

where τr is the reaction rate of progress of the rth reaction, which can be written

τr = Kf
r

∏
l∈S

n
νrfl
l −K

b
r

∏
k∈S

n
νrbk
k , (2.4.160)

where the forward and backward constant rates associated with reaction r read

Kf
r =

1∏
l∈SQ

νrfl
l

∑
fr,br

∫
1∏

l∈Fr

βll
exp

(
−
∑
l∈Fr

1
2
mlC l ·C l + Ell

kbTl

)
(2.4.161)

×Wfrbr

FrBr

∏
l∈Fr

dC l

∏
k∈Br

dCk,

Kb
r =

1∏
k∈SQ

νrbk
k

∑
fr,br

∫
1∏

l∈Fr

βll
exp

(
−
∑
k∈Br

1
2
mkCk ·Ck + Ekk

kbTk

)
(2.4.162)

×Wfrbr

FrBr

∏
l∈Fr

dC l

∏
k∈Br

dCk.

From equation (2.2.38), the production rates wk, k ∈ S satisfy the mass conservation constraint∑
k∈S

mkwk = 0. (2.4.163)

We now distinguish between two cases. First, if the reaction does not involve any electron, one
retrieves the law of mass action. Indeed, in that case, all the species temperatures equal Th, and
the following relation for conservation of energy holds:∑

l∈Fr

(1

2
mlC l ·C l + Ell

)
=
∑
k∈Br

(1

2
mkCk ·Ck + Ekk

)
, (2.4.164)

so that Kf
r and Kb

r read

Kf
r =

Kr∏
j∈HQ

νrfj
j

(2.4.165)

Kb
r =

Kr∏
j∈HQ

νrbj
j

, (2.4.166)
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where

Kr =
1∏

l∈Fr

βll

∑
fr,br

∫
exp

(
−
∑
l∈Fr

1
2
mlC l ·C l + Ell

kbTh

)
(2.4.167)

×Wfrbr

FrBr

∏
l∈Fr

dC l

∏
k∈Br

dCk,

=
1∏

l∈Fr

βll

∑
fr,br

∫
exp

(
−
∑
k∈Br

1
2
mkCk ·Ck + Ekk

kbTh

)
×Wfrbr

FrBr

∏
l∈Fr

dC l

∏
k∈Br

dCk.

If we introduce the equilibrium constant of the rth reaction

Ke
r =

∏
j∈H

Q
νrbj −νrfj
j , (2.4.168)

we have finally

Ke
r =
Kf
r

Kb
r

. (2.4.169)

On the other side, when the reaction r involves one or more electrons, the equilibrium constant
Ke
r is undefined, since in general Te 6= Th. However, in specific cases, depending on the form of

the reaction considered, e.g., electron impact ionization or ion impact ionization, a generalized
law of mass action can be derived where the equilibrium constant might depend on either of the
temperatures Te or Th. For example, for an electron impact ionization in the form

Me + Mn 
Mi + Me + Me, (2.4.170)

where the subscripts e, n, and i refer to the electron, the neutral species and the corresponding
positive ion, respectively, the law of mass action obtained for the monoatomic case in [GMM08] is
a generalization of the well-known “Saha” equation, and reads

Ke
r =
Kf
r

Kb
r

=

(
mi

mn

) 3
2
(

2πmekbTe
h2

p

) 3
2

exp

(
−∆Eioniz

kbTe

)
, (2.4.171)

where ∆Eioniz is the ionization energy associated with reaction (2.4.170). The first two factors of
equation (2.4.171) correspond to the translational partition functions of the respective species at
their respective temperatures, and the term in the exponential factor corresponds to the ionization
energy divided by the electron temperature. Indeed, the colliding electron is providing the energy
required for the ionization to occur [GMM08]. Equation (2.4.171) can also be derived from non-
equilibrium thermodynamics [vdSSP+89] [GC02].

Finally, the energy exchange term ∆E1,chem
eh = −∆E1,chem

he associated with chemically reactive
collisions can be decomposed in the form

∆E1,chem
eh =

∑
r∈R

∆Er =
∑
r∈Re

∆Er, (2.4.172)

where the sum has been reduced to the set of reactions involving one or more electrons Re. Upon
introducing the net average energy ∆Eer gained by electrons during reaction r, defined as

∆Eer =
1

τr

∑
fr,br

∫ (
νrbe

1

2
meC

b
e ·Cb

e − νrfe
1

2
meC

f
e ·C f

e

)
(2.4.173)

×
( ∏
j∈Fr

fj −
∏
k∈Br

fk

∏
k∈Br

βkk∏
j∈Fr

βjj

)
Wfrbr

FrBr

∏
j∈Fr

dCj

∏
k∈Br

dCk,
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where τr is the rate of progress of the rth reaction, and where C f
e, C

b
e denote the electron velocity

where electron is taken as a reactant or product, respectively, one can express the chemistry energy
exchange term as

∆E1,chem
eh =

∑
r∈Re

∆Eerτr. (2.4.174)

As a first approximation, due to the strong mass disparity between electrons and heavy species, the
net energy νrfe

1
2
meC

f
e ·C f

e−νrbe 1
2
meC

b
e ·Cb

e lost by electrons during the rth electron collision reaction
can be taken constant, independent of the velocities C f

e, C
b
e , and equal to the threshold energy

of the collision process considered [GMM08], so that the net average energy lost −∆Eer can be
identified with the threshold energy of the rth reaction. This assumption is customary in practical
applications [Nie98] [KNF+04] [Hag16b].

2.5 Transport Fluxes
In this section, we derive an expression for the transport fluxes, namely the diffusion velocities V i,
i ∈ H, V0

e, V1
e, the viscous tensors Πh, Πe, and the heat fluxesQh, Q0

e, Q1
e, in terms of macroscopic

variable gradients. These expressions involve transport coefficients, which are also stated in terms
of bracket products of the perturbed distribution functions. For the sake of simplicity, we assume
that the plasma is weakly magnetized, i.e., b = 0.

2.5.1 Electron transport coefficients

In the case when b = 0, equation (2.4.58) for the first-order electron perturbation φe becomes

Fe(φe) = Ψe, (2.5.1)

where
Ψe = −D−1

e (ln f 0
e ), (2.5.2)

under the constraints
⟪φef 0

e , ψ
l
e⟫e = 0, l ∈ {e, ns + 4} . (2.5.3)

Given expression (2.4.28) for f 0
e , Ψe can be decomposed into

Ψe = −ΨDe
e · (∂xpe − neqeE)−Ψλ̂e

e ·∂x

(
1

kbTe

)
, (2.5.4)

where 
ΨDe
e =

1

pe
Ce

Ψλ̂e
e =

(
5

2
kbTe −

1

2
meCe ·Ce

)
Ce.

(2.5.5)

Making use of the linearity of the electron linearized collision operator Fe [GG09] [GMM09], we can
expand the first-order perturbation function φe as follows:

φe = −ΦDe
e · (∂xpe − neqeE)−Φλ̂e

e ·∂x

(
1

kbTe

)
. (2.5.6)

For each µ = De, λ̂e, the function Φµ
e is solution to the following system of equations:

Fe(Φµ
e ) = Ψµ

e (2.5.7)
⟪f 0

eΦ
µ
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} , (2.5.8)
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which is well posed since for both values of µ

⟪f 0
eΨ

µ
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (2.5.9)

Additionally, because of the linearity and the space isotropy of Fe, ΦDe
e and Φλ̂e

e can be taken in
the form

ΦDe
e = φDe

e Ce (2.5.10)

Φλ̂e
e = φλ̂ee Ce, (2.5.11)

where φDe
e , φλ̂ee are scalar isotropic functions of Ce ·Ce.

Thanks to this decomposition of φe, the electron viscous tensor Πe can be shown to vanish:

Πe = 0. (2.5.12)

Defining the zeroth-order electron self-diffusion coefficient D0
ee and the zeroth-order electron

electron-temperature thermal diffusion coefficient θ0
ee by

D0
ee =

pkbTe
3

JΦDe
e ,ΦDe

e Ke, (2.5.13)

θ0
ee = −1

3
JΦλ̂e

e ,Φ
De
e Ke, (2.5.14)

respectively, the zeroth-order electron diffusion velocity is expressed in the form

V0
e = −D0

eed̂e − θ0
ee∂x lnTe, (2.5.15)

where we have introduced the unconstrained electron diffusion driving force

d̂e =
1

p
(∂xpe − neqeE) . (2.5.16)

Finally, upon defining the zeroth-order electron self-partial-thermal-conductivity

λ̂0
ee =

1

3kbT 2
e

JΦλ̂e
e ,Φ

λ̂e
e Ke, (2.5.17)

the zeroth-order electron heat flux Q0
e is found in the form

Q0
e = −pθ0

eed̂e − λ̂0
ee∂xTe +

(5

2
kbTe

)
neV0

e. (2.5.18)

2.5.2 Heavy-species transport coefficients

We recall that from (2.4.124) and (2.4.126) the first-order heavy-species perturbation function φh is
solution to the following constrained linear system of integral equations:

Fi(φh) = Ψi, i ∈ H (2.5.19)

⟪f 0
hφh, ψ

j
h⟫h = 0, j ∈ H ∪ {ns + 1, . . . , ns + 4} , (2.5.20)

where Ψi, i ∈ H, is given by (2.4.125). After a lengthy calculation, Ψi can be decomposed into

Ψi =−Ψηh
i : ∂xvh −

1

3
Ψκh
i (∂x ·vh)−

∑
j∈H

Ψ
Dj

i · (∂xpj − njqjE)−ΨDe
i · (∂xpe − neqeE)

−Ψλ̂h
i ·∂x

(
1

kbTh

)
−Ψλ̂e

i ·∂x

(
1

kbTe

)
−ΨΘ

i (Te − Th) , i ∈ H. (2.5.21)
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The expansion coefficients are given by

Ψηh
i =

mi

kbTh

[
Ci ⊗Ci −

1

3
Ci ·Ci I

]
(2.5.22)

Ψκh
i =

2cint

cvkbTh

[
1

2
miCi ·Ci −

3

2
kbTh

]
+

2ctrv
cvkbTh

(Ei − Eii) (2.5.23)

Ψ
Dj

i =
1

pi

[
δij − Y h

i

]
Ci (2.5.24)

ΨDe
i =

me

3

∑
j∈H

∑
j∈Qj

nj
1

pi

(
δijδij − Y h

i

ajje
−εjj

Qint
j

)
Ci (2.5.25)

×
∫

Σ(1)
jj (|Ce|2)|Ce|f 0

e (Ce) Ce ·ΦDe
e dCe

Ψλ̂e
i =

me

3

∑
j∈H

∑
j∈Qj

nj
1

pi

(
δijδij − Y h

i

ajje
−εjj

Qint
j

)
Ci (2.5.26)

×
∫

Σ(1)
jj (|Ce|2)|Ce|f 0

e (Ce) Ce ·Φλ̂e
e dCe

Ψλ̂h
i =

(
5

2
kbTh −

1

2
miCi ·Ci + Ei − Eii

)
Ci (2.5.27)

ΨΘ
i =

3

2

1

τ

1

cvT 2
h

(
1

2
miCi ·Ci + Eii − Ei −

3

2
kbTh

)
(2.5.28)

+
2

3

me

mi

1

kbT 2
h

(
3

2
kbTh −

1

2
miCi ·Ci

)
ν ii
ie +

1

kbTeTh

∑
i′∈Qi
i′ 6=i

∆Eii′ gii′ν
ii′
ie ,

where Y h
i is the mass fraction of the ith species with respect to the heavy species, which is propor-

tional to the mass fraction Yi = ρi
ρ
of the ith species with respect to the whole mixture:

Y h
i =

ρi
ρh

=
ρ

ρh
Yi, i ∈ H, (2.5.29)

and where
gii′ = g

(
∆εii′

(
1− Th

Te

))
. (2.5.30)

We also denote by Xh
i the mole fraction of the ith species with respect to the heavy species. If mi is

the molar mass of the ith heavy species, and mh is the mean molar mass of the heavy species, given
by (2.4.46), then

Xh
i =

ni
nh

=
mh

mi

Y h
i , i ∈ H. (2.5.31)

In (2.5.22)-(2.5.28), the symbol ctrv denotes the translational constant-volume specific heat per
molecule, cint the heavy-species internal specific heat per molecule, cv the heavy-species constant-
volume specific heat per molecule 

ctrv =
3

2
kb

cint =
∑
i∈H

Xh
i c

int
i

cv = ctrv + cint,

(2.5.32)
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and cint
i denotes the internal heat capacity of the ith species

cint
i =

dEi

dT
, i ∈ H. (2.5.33)

As for the first-order electron perturbation, making use of the linearity of the linearized collision
operator, the perturbation functions φi, i ∈ H can be decomposed in the form

φi =−Φηh
i : ∂xvh −

1

3
φκhi (∂x ·vh)−

∑
j∈H

Φ
Dj

i · (∂xpj − njqjE)−ΦDe
i · (∂xpe − neqeE)

−Φλ̂h
i ·∂x

(
1

kbTh

)
−Φλ̂e

i ·∂x

(
1

kbTe

)
− φΘ

i (Te − Th) , i ∈ H. (2.5.34)

Note that one can also expand the coefficient ΨΘ
i as

ΨΘ
i = − 1

2Th

1

τ
Ψκh
i + ΨΘel

i + ΨΘin

i , (2.5.35)

where the elastic and inelastic contributions are given by

ΨΘel

i =
1

kbT 2
h

(
1

τ el −
2

3

me

mi

ν ii
ie

)(
1

2
miCi ·Ci −

3

2
kbTh

)
(2.5.36)

ΨΘin

i =
1

kbT 2
h

1

τ in

(
1

2
miCi ·Ci −

3

2
kbTh

)
+

1

kbTeTh

∑
i′∈Qi

∆Eii′gii′ν
ii′
ie , (2.5.37)

and the corresponding decomposition for φΘ
i reads

φΘ
i = − 1

2Th

1

τ
φκhi + φΘel

i + φΘin

i , i ∈ H. (2.5.38)

For each value of µ = ηh, κh, Dj, j ∈ H, De, λ̂h, λ̂e,Θ,Θ
el,Θin, the functional φµh is solution of the

following constrained linear system of integral equations:

Fi(φµh) = Ψµ
i , i ∈ H (2.5.39)

⟪f 0
hφ

µ
h, ψ

j
h⟫h = 0, j ∈ H ∪ {ns + 1, . . . , ns + 4} , (2.5.40)

which is well posed since

⟪f 0
hΨµ

h, ψ
j
h⟫h = 0, j ∈ H ∪ {ns + 1, . . . , ns + 4} . (2.5.41)

Furthermore, because of the isotropy of the linearized collision operator Fh, each φµh is of the same
tensorial type as Ψµ

h [Gra04].
Upon defining the heavy-species diffusion coefficients, the heavy-species electron diffusion coef-

ficients, the heavy-species heavy-temperature thermal diffusion coefficients, and the heavy-species
electron-temperature thermal diffusion coefficients by

Dij =
pkbTh

3
JΦDi

h ,Φ
Dj

h Kh, i ∈ H, j ∈ H, (2.5.42)

Die = Dei =
pkbTh

3
JΦDi

h ,Φ
De
h Kh, i ∈ H, (2.5.43)

θih = θhi = −1

3
JΦDi

h ,Φ
λ̂h
h Kh, i ∈ H, (2.5.44)

θie = θei = −1

3

Th
Te

JΦDi
h ,Φ

λ̂e
h Kh, i ∈ H, (2.5.45)
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the heavy-species diffusion velocities are expressed in the form

V i = −
∑
j∈H

Dijd̂j −Died̂e − θih∂x lnTh − θie∂x lnTe, i ∈ H, (2.5.46)

where we have introduced the heavy-species diffusion driving forces

d̂i =
1

p
(∂xpi − niqiE) , i ∈ H. (2.5.47)

We also define the shear viscosity, the volume viscosity, and the thermal non-equilibrium viscosity,
respectively:

ηh =
kbTh
10

JΦηh
h ,Φ

ηh
h Kh (2.5.48)

κh =
kbTh

9
Jφκhh , φ

κh
h Kh (2.5.49)

ζ =
kbTh

3
JφΘ

h , φ
κh
h Kh, (2.5.50)

so that the viscous tensor reads

Πh = −ηh
(
∂xvh + (∂xvh)

t − 2

3
(∂x ·vh) I

)
− κh(∂x ·vh) I− ζ(Te − Th) I. (2.5.51)

Finally, if we introduce the heavy-species self-partial-thermal-conductivity, the heavy-species
electron-temperature partial thermal conductivity, respectively

λ̂hh =
1

3kbT 2
h

JΦλ̂h
h ,Φ

λ̂h
h Kh, (2.5.52)

λ̂he =
1

3kbT 2
e

JΦλ̂h
h ,Φ

λ̂e
h Kh, (2.5.53)

and the electron heavy-temperature thermal diffusion coefficient

θhe = θeh = −1

3
JΦλ̂h

h ,Φ
De
h Kh, (2.5.54)

the heavy-species heat flux can be expressed as

Qh = −p
∑
j∈H

θhjd̂j − pθhed̂e − λ̂hh∂xTh − λ̂he∂xTe +
∑
j∈H

(5

2
kbTh + Ej

)
njVj. (2.5.55)

The second and fourth terms of the respective expressions for the heavy-species diffusion veloc-
ities (2.5.46) and the heavy-species heat flux (2.5.55) are the “heavy-species Kolesnikov diffusion
fluxes”. They arise from the coupling between heavy species and electrons as first described by
Kolesnikov [GMM09] [Kol74].

We also introduce the new bracket

Jξh, ζeKhe =
∑
j∈H

∑
j∈Qj

1

3

me

kbTe

(∫
ξj ·Cj f

0
j dCj

)∫
f 0
e |Ce|Σ(1)

jj (|Ce|2) ζe ·Ce dCe, (2.5.56)

which is non trivial when ξh, ζe are vectors but would be trivial for scalars or traceless symmetric
tensors of rank 2. The following relations hold:

Die =
pkbTh

3
JΦDi

h ,Φ
De
h Kh =

pkbTe
3

JΦDi
h ,Φ

De
e Khe, i ∈ H, (2.5.57)

θie = −1

3

Th
Te

JΦDi
h ,Φ

λ̂e
h Kh = −1

3
JΦDi

h ,Φ
λ̂e
e Khe, i ∈ H, (2.5.58)

λ̂he =
1

3kbT 2
e

JΦλ̂h
h ,Φ

λ̂e
h Kh =

1

3kbTeTh
JΦλ̂h

h ,Φ
λ̂e
e Khe, (2.5.59)

θhe = −1

3
JΦλ̂h

h ,Φ
De
h Kh = −1

3

Te
Th

JΦλ̂h
h ,Φ

De
e Khe. (2.5.60)
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We only prove the first one of those relations. The other ones can be derived by similar arguments.
By definition of J · Kh and by (2.5.25), Die reads

Die =
pkbTh

3
JΦDi

h ,Φ
De
h Kh

=
pkbTh

3

∑
k∈H

∑
k∈Qk

∫
f 0
kΦ

Di
k ·Ψ

De
k dCk

=
pkbTh

3

me

3

∑
k∈H

∑
k∈Qk

∑
j∈H

∑
j∈Qj

nj

(∫
f 0
kΦ

Di
k ·

1

pk

(
δkjδkj − Y h

k

ajje
−εjj

Qint
j

)
Ck dCk

)
×
∫

Σ(1)
jj (|Ce|2)|Ce|f 0

e (Ce) Ce ·ΦDe
e dCe

=
pkbTh

3

me

3

∑
j∈H

∑
j∈Qj

nj

(∑
k∈H

∑
k∈Qk

∫
f 0
kΦ

Di
k ·

1

pk

(
δkjδkj − Y h

k

ajje
−εjj

Qint
j

)
Ck dCk

)

×
∫

Σ(1)
jj (|Ce|2)|Ce|f 0

e (Ce) Ce ·ΦDe
e dCe.

Since

∑
k∈H

∑
k∈Qk

Yk
pk

ajje
−εjj

Qint
j

∫
f 0
kΦ

Di
k ·Ck dCk =

1

ρkbTh

ajje
−εjj

Qint
j

∑
k∈H

∑
k∈Qk

∫
f 0
kΦ

Di
k ·mkCk dCk

=
1

ρkbTh

ajje
−εjj

Qint
j

⟪ΦDi
h f

0
h ,mhCh⟫h,

and since ⟪ΦDi
h f

0
h ,mhCh⟫h = 0 by (2.5.40), the ith-heavy-species electron diffusion coefficient reads

finally

Die =
p

3

me

3

∑
j∈H

∑
j∈Qj

∫
f 0
j Φ

Di
j ·Cj dCj

∫
Σ(1)

jj (|Ce|2)|Ce|f 0
e (Ce) Ce ·ΦDe

e dCe,

which completes the proof.

2.5.3 Properties of the heavy-species transport coefficients

The matrix Dh = (Dij)i,j∈H is symmetric, i.e.,

Dij = Dji, i ∈ H, j ∈ H. (2.5.61)

Indeed, Dij = 1
3
pkbThJΦDi

h ,Φ
Dj

h Kh and the bracket J · Kh is symmetric (2.4.121). Dh is also positive
semi-definite, i.e., for any U = (Ui)i∈H:

UtDhU ≥ 0, (2.5.62)

and its kernel is the space spanned by the vector Yh = (Yi)i∈H, i.e.,

N(Dh) = RYh. (2.5.63)
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Indeed, since the bracket J · Kh is bilinear by definition and positive semi-definite by (2.4.122):

UtDhU =
∑
i∈H

∑
j∈H

DijUiUj

=
pkbTh

3

∑
i∈H

∑
j∈H

JΦDi
h ,Φ

Dj

h KhUiUj

=
pkbTh

3
J
∑
i∈H

ΦDi
h Ui,

∑
j∈H

Φ
Dj

h UjKh

≥ 0.

Since the kernel of J · Kh is Ih from (2.4.123), the latter calculation also yields

UtDhU = 0⇔
∑
i∈H

ΦDi
h Ui ∈ Ih.

Since by definition the ΦDi
h , i ∈ H, are orthogonal to Ih with respect to the scalar product ⟪ · ⟫h,∑

i∈H ΦDi
h Ui is orthogonal to Ih as well, and thus

UtDhU = 0⇔
∑
i∈H

ΦDi
h Ui = 0. (2.5.64)

More generally, the space spanned by the vectors ΦDi
h , i ∈ H, is orthogonal to Ih, the kernel of Fh,

so Fh is invertible over this vector space, and∑
i∈H

ΦDi
h Ui = 0⇔ Fh

(∑
i∈H

ΦDi
h Ui

)
= 0⇔

∑
i∈H

ΨDi
h Ui = 0. (2.5.65)

From (2.5.24), the set of solutions to the latter equation is the one-dimensional space RYh, which
proves (2.5.63). Furthermore, since from (2.5.24)

∑
i∈H YiΨ

Di
h = 0, we deduce from (2.5.65) that∑

i∈H

YiΦ
Di
h = 0, (2.5.66)

so that from (2.5.42)-(2.5.45) ∑
i∈H

YiDij = 0, j ∈ H, (2.5.67)∑
i∈H

YiDie = 0, (2.5.68)

and as well ∑
i∈H

Yiθih = 0, (2.5.69)∑
i∈H

Yiθie = 0. (2.5.70)

Finally, from expressions (2.5.48), (2.5.49) and (2.5.52), respectively, the shear viscosity ηh, the
volume viscosity κh, and the heavy-species self-partial-thermal-conductivity λ̂hh, have the same sign
as JΦηh

h ,Φ
ηh
h Kh, Jφκhh , φ

κh
h Kh, and JΦλ̂h

h ,Φ
λ̂h
h Kh, respectively. For µ = ηh, κh and λ̂h, it is readily seen
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that Jφµh, φ
µ
hKh ≥ 0 since the bracket product is positive semi-definite. Moreover, if Jφµh, φ

µ
hKh = 0,

then φµh must be in Ih by (2.4.123). Because of the constraints (2.5.40), φµh must also be orthogonal to
Ih, so that φµh = 0. Now, from expressions (2.5.22), (2.5.23) and (2.5.27), the expansion coefficients
Ψηh
h and Ψλ̂h

h cannot vanish, while the expansion coefficient Ψκh
h can vanish if there is no internal

energy levels. By linearity the same is true for the perturbation coefficients Φηh
h , Φλ̂h

h , and φκhh , so
that finally [Gio99]

ηh > 0, (2.5.71)
κh ≥ 0, (2.5.72)

λ̂hh > 0. (2.5.73)

2.5.4 Electron Kolesnikov transport coefficients

The resolution of the linearized Boltzmann equation for the second-order electron perturbation
function φ2

e yields first-order electron transport fluxes and associated transport coefficients. These
transport fluxes should not be confused with Burnett transport coefficients [GMM09] [FK72], since
one retrieves the first-order Chapman-Enskog expansion for multicomponent mixtures in the limit
Te = Th [GGMM10].

In the case of a weakly magnetized plasma, i.e., when b = 0, equation (2.4.127) for the second-
order electron perturbation function φ2

e becomes

Fe(φ2
e) = Ψ2

e, (2.5.74)

where

Ψ2
e =−D0

e(ln f
0
e )− 1

f 0
e

D−1
e (φef

0
e ) +

1

f 0
e

See(φef 0
e , φef

0
e ) (2.5.75)

+
∑
j∈H

1

f 0
e

[
S0
ej(φef

0
e , φjf

0
j ) + S1

ej(f
0
e , φjf

0
j ) + S2

ej(f
0
e , f

0
j )
]
,

under the constraints
⟪φ2

ef
0
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (2.5.76)

After some lengthy calculations, the right-member Ψ2
e of equation (2.5.74) can be expanded in the

form

Ψ2
e =−Ψηe

e : ∂xvh − δb0ΨDe
e · (−neqevh ∧B) (2.5.77)

− δb0
qe
me

ΦDe
e · [(∂xpe − neqeE) ∧B]− δb0

qe
me

Φλ̂e
e ·
[
∂x

(
1

kbTe

)
∧B

]
− 1

3
ΨκhDe
e · (∂x ·vh) (∂xpe − neqeE)− 1

3
Ψκhλ̂e
e · (∂x ·vh) ∂x

(
1

kbTe

)
−ΨΘDe

e · (Te − Th) (∂xpe − neqeE)−ΨΘλ̂e
e · (Te − Th) ∂x

(
1

kbTe

)
−
∑
j∈H

ΨDj
e · (∂xpj − njqjE)−ΨD2

e
e · (∂xpe − neqeE)

−Ψλ̂h
e ·∂x

(
1

kbTh

)
−Ψλ̂2e

e ·∂x

(
1

kbTe

)
− Ψ̃2

e,
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where Ψ̃2
e is a scalar function of Ce ·Ce. Other expansion coefficients are given by

Ψηe
e =

me

kbTe

[
Ce ⊗Ce −

1

3
Ce ·Ce I

]
(2.5.78)

ΨDi
e =

∑
j∈H

∑
j∈Qj

1

3

me

kbTe
|Ce|Σ(1)

jj (|Ce|2)

(∫
ΦDi
j ·Cj f

0
j dCj

)
Ce (2.5.79)

ΨD2
e

e =
∑
j∈H

∑
j∈Qj

1

3

me

kbTe
|Ce|Σ(1)

jj (|Ce|2)

(∫
ΦDe
j ·Cj f

0
j dCj

)
Ce (2.5.80)

Ψλ̂h
e =

∑
j∈H

∑
j∈Qj

1

3

me

kbTe
|Ce|Σ(1)

jj (|Ce|2)

(∫
Φλ̂h
j ·Cj f

0
j dCj

)
Ce (2.5.81)

Ψλ̂2e
e =

∑
j∈H

∑
j∈Qj

1

3

me

kbTe
|Ce|Σ(1)

jj (|Ce|2)

(∫
Φλ̂e
j ·Cj f

0
j dCj

)
Ce, (2.5.82)

and

ΨκhDe
e =

∑
j∈H

∑
j∈Qj

(∫
φκhj f

0
j dCj

)
|Ce|Σ(1)

jj (|Ce|2)ΦDe
e (2.5.83)

Ψκhλ̂e
e =

∑
j∈H

∑
j∈Qj

(∫
φκhj f

0
j dCj

)
|Ce|Σ(1)

jj (|Ce|2)Φλ̂e
e (2.5.84)

ΨΘDe
e =

∑
j∈H

∑
j∈Qj

(∫
φΘ
j f

0
j dCj

)
|Ce|Σ(1)

jj (|Ce|2)ΦDe
e (2.5.85)

ΨΘλ̂e
e =

∑
j∈H

∑
j∈Qj

(∫
φΘ
j f

0
j dCj

)
|Ce|Σ(1)

jj (|Ce|2)Φλ̂e
e . (2.5.86)

Thanks to the linearity of the linearized collision operator Fe, the following similar expansion holds
for φ2

e:

φ2
e =−Φηe

e : ∂xvh − δb0ΦDe
e · (−neqevh ∧B) (2.5.87)

− δb0
qe
me

ΞDe
e · [(∂xpe − neqeE) ∧B]− δb0

qe
me

Ξλ̂e
e ·
[
∂x

(
1

kbTe

)
∧B

]
− 1

3
ΦκhDe
e · (∂x ·vh) (∂xpe − neqeE)− 1

3
Φκhλ̂e
e · (∂x ·vh) ∂x

(
1

kbTe

)
−ΦΘDe

e · (Te − Th) (∂xpe − neqeE)−ΦΘλ̂e
e · (Te − Th) ∂x

(
1

kbTe

)
−
∑
j∈H

ΦDj
e · (∂xpj − njqjE)−ΦD2

e
e · (∂xpe − neqeE)

−Φλ̂h
e ·∂x

(
1

kbTh

)
−Φλ̂2e

e ·∂x

(
1

kbTe

)
− φ̃2

e.

where for each value of µ = ηe, De, κhDe, κhλ̂e, ΘDe, Θλ̂e, Dj, j ∈ H, D2
e , λ̂h, λ̂2

e, the function φµe is
solution to

Fe(φµe ) = Ψµ
e (2.5.88)

⟪f 0
e φ

µ
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} , (2.5.89)
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while for each value of µ = De, λ̂e, the function Ξµ
e is solution to

Fe(Ξµ
e ) = Φµ

e (2.5.90)
⟪f 0

eΞ
µ
e , ψ

l
e⟫e = 0, l ∈ {e, ns + 4} . (2.5.91)

Furthermore, because of the isotropy of Fe, φ̃2
e is a scalar function of Ce ·Ce, and each φµe , respec-

tively Ξµ
e , is of the same tensorial type [Gra04] as Ψµ

e , respectively Φµ
e .

The first-order electron self-diffusion coefficient, the first-order electron electron-temperature
thermal diffusion coefficient, and the first-order electron self-partial-thermal-conductivity are given
by

D1
ee =

pkbTe
3

JΦDe
h ,ΦDe

e Khe, (2.5.92)

θ1
ee = −1

3
JΦλ̂e

h ,Φ
De
e Khe = −1

3
JΦDe

h ,Φλ̂e
e Khe, (2.5.93)

λ̂1
ee =

1

3kbT 2
e

JΦλ̂e
h ,Φ

λ̂e
e Khe. (2.5.94)

The electron heavy-temperature partial thermal conductivity is given by

λ̂eh =
Te
Th
λ̂he =

1

3kbTeTh
JΦλ̂h

h ,Φ
λ̂e
h Kh, (2.5.95)

where λ̂he is the heavy-species electron-temperature partial thermal conductivity. We also introduce
the additional transport coefficients

Dκh
ee =

pkbTe
9

Jφκhh ,Φ
De
e ,ΦDe

e Khee, (2.5.96)

θκhee = −1

9
Jφκhh ,Φ

λ̂e
e ,Φ

De
e Khee, (2.5.97)

λ̂κhee =
1

9kbT 2
e

Jφκhh ,Φ
λ̂e
e ,Φ

λ̂e
e Khee, (2.5.98)

DΘ
ee =

pkbTe
3

JφΘ
h ,Φ

De
e ,ΦDe

e Khee, (2.5.99)

θΘ
ee = −1

3
JφΘ

h ,Φ
λ̂e
e ,Φ

De
e Khee, (2.5.100)

λ̂Θ
ee =

1

3kbT 2
e

JφΘ
h ,Φ

λ̂e
e ,Φ

λ̂e
e Khee, (2.5.101)

and the magnetic transport coefficients [GG09] [GMM09]

D�ee = −pkbTe
3

((ΦDe
e ,ΦDe

e ))e, (2.5.102)

θ�ee =
1

3
((ΦDe

e ,Φλ̂e
e ))e, (2.5.103)

λ̂�e = − 1

3kbT 2
e

((Φλ̂e
e ,Φ

λ̂e
e ))e, (2.5.104)

where we have introduced the brackets

((ξe, ζe))e =
qe|B|
me

∫
f 0
e ξe � ζe dCe, (2.5.105)

Jξh, ζe, δeKhee =
∑
j∈H

∑
j∈Qj

(∫
ξjf

0
j dCj

)∫
f 0
e |Ce|Σ(1)

jj (|Ce|2) ζe � δe dCe. (2.5.106)
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The following expressions are then derived for the first-order electron diffusion velocity

V1
e =−D1

eed̂e −
∑
i∈H

Deid̂i − θ1
ee∂x lnTe − θeh∂x lnTh (2.5.107)

−
[
Dκh
ee (∂x ·vh) +DΘ

ee (Te − Th)
]
d̂e −

[
θκhee (∂x ·vh) + θΘ

ee (Te − Th)
]
∂x lnTe

− δb0
neqe|B|

p
D0
ee B ∧ vh − δb0D�ee B ∧ d̂e − δb0θ�ee B ∧ ∂x lnTe,

and heat flux

Q1
e =− pθ1

eed̂e − p
∑
i∈H

θeid̂i − λ̂1
ee∂xTe − λ̂eh∂xTh + ne

(5

2
kbTe

)
V1
e (2.5.108)

− p
[
θκhee (∂x ·vh) + θΘ

ee (Te − Th)
]
d̂e −

[
λ̂κhee (∂x ·vh) + λ̂Θ

ee (Te − Th)
]
∂xTe

− δb0neqe|B|θ0
ee B ∧ vh − δb0pθ�ee B ∧ d̂e − δb0λ̂�e B ∧ ∂xTe,

where B denotes the direction of the magnetic field vector

B =
1

|B|
B. (2.5.109)

Except for the last three terms associated with the magnetic field effect on the electrons, all the
terms in expressions (2.5.107) and (2.5.108) for V1

e and Q1
e, respectively, are due to the coupling

between electrons and heavy species. They may thus be referred to as the “electron Kolesnikov
fluxes” [Kol74] [GMM09].

The terms in the first lines of both (2.5.107) and (2.5.108) were already present in the monoatomic
case [GMM09], though the corresponding transport coefficients (2.5.43), (2.5.45), (2.5.54), and
(2.5.92)-(2.5.95) are different. The terms proportional to (∂x ·vh) are new and specific to the
polyatomic case, since the volume viscosity κh vanishes in the monoatomic limit. The terms pro-
portional to (Te − Th) are also new, because the corresponding transport coefficients vanish in the
monoatomic limit [GMM09]. This is because the term∫

φΘ
j f

0
j dCj (2.5.110)

appearing in expressions (2.5.99)-(2.5.101) for DΘ
ee, θΘ

ee and λ̂Θ
ee, respectively, becomes equal to

⟪φΘ
h f

0
h , ψ

j
h⟫h in the monoatomic limit and thus vanishes, since the number of particles in the jth

species is a collisional invariant of the scattering operator. Conversely, in the polyatomic case, the
term (2.5.110) does not necessarily vanish. Indeed, the number of molecules of the jth species in
the jth internal energy state is not conserved in general in scattering collisions, since the elastic
collision cross-section σjj

je may depend on the energy level j. Physically speaking, the transport
fluxes appearing in the second lines of (2.5.107) and (2.5.108) are associated with the nonuniform
diffusion of electrons against the different internal energy states of each heavy species. The last lines
of (2.5.107) and (2.5.108), respectively, embed the magnetic field induced electron transport fluxes,
and have the same structure in the polyatomic and monoatomic cases, for the last two terms were
overlooked in the case b = 0 in [GMM09].

Finally, we obtain the following expression for the first-order energy exchange term due to scat-
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tering collisions:

∆E1,scatt
he =

∑
i∈H

∑
i∈Qi

niV ii ·F I,0
ie (2.5.111)

+
∑
i∈H

∑
i∈Qi

2

3

me

mi

ν ii
ie

∫
f 0
i φi

(3

2
kbTe −

1

2
miCi ·Ci

)
dCi

+
∑
i∈H

∑
i,i′∈Qi

ν ii′
ie∆Eii′

∫
f 0
i φi dCi.

One may prefer the alternative formulation

∆E1,scatt
he = p

∑
j∈H

Djed̂j · d̂e + p
∑
j∈H

θjed̂j ·∂x lnTe (2.5.112)

+ pD1
eed̂e · d̂e + pθ1

eed̂e ·∂x lnTe

+ pθhe∂x lnTh · d̂e + Teλ̂he∂x lnTh ·∂x lnTe

+ pθ1
ee∂x lnTe · d̂e + Teλ̂

1
ee∂x lnTe ·∂x lnTe

+ kbT
2
h⟪f 0

hφh,Ψ
Θ
h ⟫h

+ kb(Te − Th)
∑
i∈H

∑
i∈Qi

me

mi

ν ii
ie

∫
f 0
i φi dCi

+
∑
i∈H

∑
i,i′∈Qi

(
1− Th

Te
gii′
)
ν ii′
ie∆Eii′

∫
f 0
i φi dCi,

where
∫
f 0
i φi dCi can be further expanded in the form∫

f 0
i φi dCi =− (∂x ·vh)

∫
f 0
i φ

κh
i dCi (2.5.113)

− (Te − Th)
∫
f 0
i φ

Θ
i dCi.

2.6 Fluid Equations
In this section, we summarize the macroscopic equations obtained for multicomponent plasmas in
the Navier-Stokes regime. The fluid equations (2.4.130), (2.4.131), (2.4.144), (2.4.145) and (2.4.146)
and the transport fluxes derived from the Chapman-Enskog expansion are redimensionalized. This
is equivalent to setting ε = 1 in the full-dimension equations where ε is taken as a formal parameter.

2.6.1 Conservation of mass, momentum, and energy

The fluid equations (2.4.130), (2.4.131), (2.4.144), (2.4.145) and (2.4.146) are rewritten in the form

∂tρe + ∂x · (ρevh + ρeVe) = mewe, (2.6.1)
∂tEe + ∂x · (Eevh) = − pe ∂x ·vh − ∂x ·Qe + ∆Eeh + J e ·E′ + δb0 J

0
e · (vh ∧B), (2.6.2)
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for electrons, and

∂tρi + ∂x · (ρivh + ρiV i) = miwi, i ∈ H, (2.6.3)
∂t (ρhvh) + ∂x · (ρhvh ⊗ vh + p I) = −∂x ·Πh + nqE + j ∧B, (2.6.4)

∂tEh + ∂x · (Ehvh) = − ph ∂x ·vh − ∂xvh : Πh − ∂x ·Qh + ∆Ehe + Jh ·E′, (2.6.5)

for the heavy species.
The electron diffusion velocity in the heavy-species reference frame is given by

Ve = V0
e + V1

e, (2.6.6)

the electron heat flux in the heavy-species reference frame by

Qe =Q0
e +Q1

e, (2.6.7)

and the electron conduction current density in the heavy-species reference frame by

J e = J0
e + J1

e = neqeVe. (2.6.8)

We also introduce the heat flux
Q =Qe +Qh, (2.6.9)

and conduction current of the mixture

J = J e + Jh = neqeVe +
∑
j∈H

njqjVj, (2.6.10)

and the energy exchange terms

∆Eeh = ∆E0
eh + ∆E1

eh, (2.6.11)
∆Ehe = ∆E0

he + ∆E1
he, (2.6.12)

which satisfy the reciprocity relation
∆Ehe = −∆Eeh. (2.6.13)

We also restate the expressions for the zeroth-order and first-order current densities of the mixture
in the inertial reference frame

j0 = nhqhvh + neqe(vh + V0
e), (2.6.14)

j1 = nhqhvh +
∑
j∈H

njqjVj + neqe(vh + V0
e + V1

e), (2.6.15)

and denote by
j = δb0j

0 + δb1j
1 (2.6.16)

the current density of the mixture in the inertial reference frame.
From equations (2.5.67)-(2.5.70), the heavy species diffusion velocities satisfy the mass conser-

vation constraint ∑
i∈H

ρiV i = 0, (2.6.17)

so that summing equation (2.6.3) over i ∈ H, the equation for conservation of the heavy-species
mass is obtained

∂tρh + ∂x · (ρhvh) =
∑
i∈H

miwi. (2.6.18)
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Since the total mass is conserved in reactive collisions, the conservation constraint

mewe +
∑
i∈H

miwi = 0 (2.6.19)

is satisfied. Thus, the total mass conservation equation is obtained by summing (2.6.1) and (2.6.18),
and reads

∂tρ+ ∂x · (ρv) = 0, (2.6.20)

where
ρ = ρe + ρh (2.6.21)

is the mass density of the mixture, and the mixture-averaged velocity v is given by

ρv = ρeve + ρhvh = ρvh + ρeVe, (2.6.22)

where the mean electron velocity in the inertial reference frame reads

ve = vh + Ve. (2.6.23)

The electron momentum relation (2.4.142) is also rewritten in the form

∂xpe = neqeE + j0
e ∧B + δb1 J

1
e ∧B + F eh, (2.6.24)

where F eh = −F he is the average force exerted on electrons by the heavy species:

F eh = F 0
eh + F 1

eh. (2.6.25)

Finally, summing equations (2.6.2) and (2.6.5), we obtain the following equation for conservation
of the total internal energy E = Ee + Eh:

∂tE + ∂x · (Evh) = − p∂x ·vh − ∂xvh : Πh − ∂x ·Q+ J ·E′ + δb0 J
0
e · (vh ∧B). (2.6.26)

2.6.2 Transport fluxes

The electron diffusion velocity is obtained from (2.5.15) and (2.5.107) in the form

Ve =−Deed̂e −
∑
i∈H

Deid̂i − θee∂x lnTe − θeh∂x lnTh (2.6.27)

−
[
Dκh
ee (∂x ·vh) +DΘ

ee (Te − Th)
]
d̂e −

[
θκhee (∂x ·vh) + θΘ

ee (Te − Th)
]
∂x lnTe

− δb0
neqe|B|

p
D0
ee B ∧ vh − δb0D�ee B ∧ d̂e − δb0θ�ee B ∧ ∂x lnTe,

where the electron self-diffusion coefficient and the electron electron-temperature thermal diffusion
coefficient read

Dee = D0
ee +D1

ee, (2.6.28)
θee = θ0

ee + θ1
ee, (2.6.29)

and the unconstrained diffusion driving force read

d̂e =
1

p
(∂xpe − neqeE), (2.6.30)

d̂i =
1

p
(∂xpi − niqiE), i ∈ H. (2.6.31)
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Similarly, the electron self-partial-thermal-conductivity is given by

λ̂ee = λ̂0
ee + λ̂1

ee, (2.6.32)

and from (2.5.18) and (2.5.108) the electron heat flux thus reads

Qe =− pθeed̂e − p
∑
i∈H

θeid̂i − λ̂ee∂xTe − λ̂eh∂xTh + ne

(5

2
kbTe

)
Ve (2.6.33)

− p
[
θκhee (∂x ·vh) + θΘ

ee (Te − Th)
]
d̂e −

[
λ̂κhee (∂x ·vh) + λ̂Θ

ee (Te − Th)
]
∂xTe

− δb0neqe|B|θ0
ee B ∧ vh − δb0pθ�ee B ∧ d̂e − δb0λ̂�e B ∧ ∂xTe.

The heavy-species diffusion velocities, viscous tensor and heat flux where stated in (2.5.46), (2.5.51)
and (2.5.55), respectively. We recall here their expressions

V i = −
∑
j∈H

Dijd̂j −Died̂e − θih∂x lnTh − θie∂x lnTe, i ∈ H, (2.6.34)

Πh = −ηh
(
∂xvh + (∂xvh)

t − 2

3
(∂x ·vh) I

)
− κh(∂x ·vh) I− ζ(Te − Th) I, (2.6.35)

Qh = −p
∑
j∈H

θhjd̂j − pθhed̂e − λ̂hh∂xTh − λ̂he∂xTe +
∑
j∈H

(5

2
kbTh + Ej

)
njVj. (2.6.36)

2.7 Center-of-Mass Reference Frame
The conservation equations may be rewritten in the center-of-mass reference frame. From the
definition (2.6.22) of v, the heavy-species velocity reads

vh = v − YeVe, (2.7.1)

where Ye = ρe/ρ is the electron mass fraction. Equations (2.6.1) and (2.6.3) expressing the mass
conservation of the respective species thus read in the center-of-mass reference frame

∂tρe + ∂x ·
(
ρev + ρeVv

e

)
= mewe, (2.7.2)

∂tρi + ∂x ·
(
ρiv + ρiVv

i

)
= miwi, i ∈ H. (2.7.3)

where Vv
e and Vv

i , i ∈ H, are the species diffusion velocities in the center-of-mass reference frame:

Vv
e = (1− Ye)Ve (2.7.4)
Vv
i = V i − YeVe, i ∈ H. (2.7.5)

The macroscopic equations (2.6.1)-(2.6.5) read in the center-of-mass reference frame

∂tρe + ∂x ·
(
ρev + ρe(1− Ye)Ve

)
= mewe, (2.7.6)

∂tEe + ∂x ·
(
Ee(v − YeVe)

)
= − pe ∂x · (v − YeVe)− ∂x ·Qe + ∆Eeh + J e ·E′ (2.7.7)
+ δb0 J

0
e ·
(
(v − YeVe) ∧B

)
,

for electrons, and

∂tρi + ∂x ·
(
ρiv + ρi(V i − YeVe)

)
= miwi, i ∈ H, (2.7.8)

∂t
(
ρ(1− Ye)(v − YeVe)

)
+ ∂x ·

(
ρ(1− Ye)(v − YeVe)⊗ (v − YeVe) + p I

)
(2.7.9)

= −∂x ·Πh + nqE + j ∧B,

∂tEh + ∂x ·
(
Eh(v − YeVe)

)
= −ph ∂x · (v − YeVe)− ∂x(v − YeVe) : Πh (2.7.10)
−∂x ·Qh + ∆Ehe + Jh ·E′,
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for the heavy species.
Given that Ye is of order ε2, the latter model is equivalent at first-order in ε to the following one:

∂tρe + ∂x ·
(
ρev + ρeVv

e

)
= mewe, (2.7.11)

∂tEe + ∂x · (Eev) = − pe ∂x ·v − ∂x ·Qv
e + ∆Eeh + Jv

e ·E′ + δb0 J
0
e · (v ∧B), (2.7.12)

∂tρi + ∂x ·
(
ρiv + ρiVv

i

)
= miwi, i ∈ H, (2.7.13)

∂t(ρv) + ∂x · (ρv ⊗ v + p I) = −∂x ·Π + nqE + j ∧B, (2.7.14)
∂tEh + ∂x · (Ehv) = −ph ∂x ·v − ∂xv : Π− ∂x ·Qv

h + ∆Ehe + Jh ·E′, (2.7.15)

where the species diffusion velocities in the center-of-mass reference frame have been taken such as
to satisfy the mass conservation constraint∑

k∈S

ρkVv
k = ρeVv

e +
∑
i∈H

ρiVv
i = 0. (2.7.16)

The viscous tensor may be written in the form

Π = −ηh
(
∂xv + (∂xv)t − 2

3
(∂x ·v) I

)
− κh(∂x ·v) I− ζ(Te − Th) I, (2.7.17)

the electron diffusion velocity and heat flux in the center-of-mass reference frame in the form

Vv
e =−Dv

eed̂e −
∑
i∈H

Dv
eid̂i − θvee∂x lnTe − θveh∂x lnTh (2.7.18)

− (1− Ye)
[
Dκh
ee (∂x ·v) +DΘ

ee (Te − Th)
]
d̂e

− (1− Ye)
[
θκhee (∂x ·v) + θΘ

ee (Te − Th)
]
∂x lnTe

− δb0(1− Ye)
neqe|B|

p
D0
ee B ∧ v − δb0(1− Ye)D�ee B ∧ d̂e

− δb0(1− Ye)θ�ee B ∧ ∂x lnTe,

Qv
e =− pθveed̂e − p

∑
i∈H

θveid̂i − λ̂ee∂xTe − λ̂eh∂xTh + ne

(5

2
kbTe

)
Vv
e (2.7.19)

− p
[
θκhee (∂x ·v) + θΘ

ee (Te − Th)
]
d̂e −

[
λ̂κhee (∂x ·v) + λ̂Θ

ee (Te − Th)
]
∂xTe

− δb0neqe|B|θ0
ee B ∧ v − δb0pθ�ee B ∧ d̂e − δb0λ̂�e B ∧ ∂xTe,

respectively, and the heavy-species diffusion velocities and heat flux in the form

Vv
i = −

∑
j∈H

Dv
ijd̂j −Dv

ied̂e − θvih∂x lnTh − θvie∂x lnTe, (2.7.20)

+ Ye
[
Dκh
ee (∂x ·v) +DΘ

ee (Te − Th)
]
d̂e + Ye

[
θκhee (∂x ·v) + θΘ

ee (Te − Th)
]
∂x lnTe

+ δb0Ye
neqe|B|

p
D0
ee B ∧ v + δb0YeD

�
ee B ∧ d̂e + δb0Yeθ

�
ee B ∧ ∂x lnTe, i ∈ H,

Qv
h = −p

∑
j∈H

θvhjd̂j − pθvhed̂e − λ̂hh∂xTh − λ̂he∂xTe +
∑
j∈H

(5

2
kbTh + Ej

)
njVv

j . (2.7.21)
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The electron conduction current density in the center-of-mass reference frame may be written in the
form

Jv
e = neqeVv

e , (2.7.22)

and the current density in the form
j = δb0j

0 + δb1j
1, (2.7.23)

where

j0 = nqv + neqeV0
e, (2.7.24)

j1 = nqv + neqeVv
e +

∑
i∈H

niqiVv
i . (2.7.25)

The diffusion coefficients Dv
ee, Dv

ei, i ∈ H, Dv
ie, i ∈ H, and Dv

ij, i, j ∈ H, may be expressed in the
form

Dv
ee = (1− Ye)Dee, (2.7.26)

Dv
ei = (1− Ye)Dei, i ∈ H, (2.7.27)

Dv
ie = Die − YeDee, i ∈ H, (2.7.28)

Dv
ij = Dij − YeDej, i, j ∈ H, (2.7.29)

and the thermal diffusion coefficients θvee, θveh, θvie, i ∈ H, θvih, i ∈ H, may be expressed in the form

θvee = (1− Ye)θee, (2.7.30)
θveh = θvhe = (1− Ye)θeh, (2.7.31)
θvie = θvei = θie − Yeθee, i ∈ H, (2.7.32)
θvih = θvhi = θih − Yeθeh, i ∈ H. (2.7.33)

However, one can see from expressions (2.7.26)-(2.7.29) that the diffusion matrix associated with the
center-of-mass reference frame (Dv

kl)k,l∈S is not symmetric, and neither is the heavy-species diffusion
matrix (Dv

ij)i,j∈H. This confirms that the center-of-mass reference frame is not adapted to the study
of non-thermal multicomponent plasmas [GMM09].

2.8 Conclusion
We have derived from the kinetic theory a unified multicomponent fluid model for non-thermal,
partially ionized, polyatomic, chemically reactive plasmas. We have applied the classical Chapman-
Enskog procedure, upon expanding the species distribution functions in powers of ε, where the
ratio ε of characteristic masses was assumed to be proportional to the Knudsen number. For the
scaling adopted here, the equilibrium distribution functions are shown to be Maxwellian, with a
different temperature for electrons and heavy species. We retrieve the zeroth-order and first-order
drift-diffusion equations for the electrons, while the macroscopic equations for the heavy species are
the Euler equations at order zero, and the Navier-Stokes-Fourier equations at order one. Those
equations involve transport fluxes, which are expressed in terms of macroscopic variable gradients
and source terms, by means of transport coefficients.

The inelastic scattering cross-section between electrons and heavy species was assumed to be two
order of magnitude lower than other relevant scattering cross-sections: σin,0

h = ε2σ0. Other things
being equal, it was shown that this assumption is necessary to ensure that the electron and heavy-
species respective temperatures, Te and Th, are distinct. In a future study, an alternative scaling will
be investigated where the assumptions over the inelastic scattering cross-section between electrons
and heavy species are relaxed. For such a new scaling, we expect some of the internal energy states,
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or internal modes, of the heavy species to thermalize at Te, while the others will thermalize at Th.
The Chapman-Enskog expansion will thus require a splitting between the internal energy modes of
the heavy-species. Typically, we may assume that vibrational modes are at equilibrium between
them at Tvib = Te, while rotational and translational modes thermalize at Trot = Th.

The expressions of the transport fluxes for polyatomic plasmas have been derived in the weakly-
magnetized case. The structure of the macroscopic “Navier-Stokes type” equations and associated
transport fluxes are similar to the monoatomic case treated in [GMM09], though expressions of
transport coefficients now involve summations over the internal energy states of the heavy species.
Additional terms in the electron second-order transport fluxes have been derived, associated with
the interaction between the thermal non-equilibrium and the volume viscosity with the electron
diffusion driving force and the electron temperature gradient. In the weakly-magnetized regime,
the electron diffusion velocity and heat flux involve transverse driving forces. In a future study, the
strongly-magnetized case will be investigated. In this regime, the electron transport fluxes exhibit
an anisotropic behaviour with respect to the direction of the magnetic field [GG09] [GGMM10].

The derivation should also be completed with the investigation of the mathematical structure
of the macroscopic equations and of the transport linear systems obtained. In particular, the
entropy conservation equation must be derived, and the sign of the entropy production rate must be
ascertained. Indeed, a positive entropy structure is desirable for numerical stability [Bob82] [Tor16].
Besides, the numerical computation of the transport coefficients derived above, in particular of the
electron zeroth-order and first-order diffusion coefficients, should be carried out and compared to
both experimental and numerical values, when accessible [EG94] [GGMM10]. Such a calculation
will require data for the various collision integrals involved.

The set of equations derived in this chapter, and associated expressions for transport fluxes,
are a sound basis for the numerical modeling of non-thermal plasmas. Indeed, the first-order
Chapman-Enskog expansion for multicomponent gas mixtures is retrieved in the limit where Te = Th
[GGMM10]. Also, as will be seen in Chapter 4, the model derived above from the kinetic theory
encompasses almost all previously existing fluid radio-frequency plasma models.
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Chapter 3

Numerical Simulation of Silicon Chemical
Vapor Deposition

3.1 Introduction

Numerical modeling of neutral chemically reacting flows in the laminar regime is now well understood
and routinely employed in the study of several applications, among which stand out combustion
and materials processing [KCG03]. Both fields share indeed many similarities in their formulation
and numerical treatment, involving in particular complex chemistry, multicomponent transport
processes, and fluid flow, with often strong couplings between them. A detailed presentation of
possible applications and historical developments can be found in [Kle95] [KCG03] [PV05] [Smo13].

In this chapter, a fully coupled numerical model for silicon epitaxy by chemical vapor deposition
(CVD) is implemented in a software and tested. We solve the equations describing a chemically
reacting neutral gas mixture in an axisymmetric finite-gap stagnation flow configuration. The
gas phase chemistry is fully coupled to the flow and transport properties of the mixture. An
heterogeneous reaction mechanism accounts for the deposition process at the substrate boundary.

The primary goal of this chapter is notably to compare the numerical results obtained with
the software to that of the literature in order to demonstrate the correctness of the numerical
solution. Epitaxy by chemical vapor deposition (CVD) indeed provides a good benchmark model
for this purpose. As can be seen from the results of Chapter 2, the fluid equations for a non-
thermal multicomponent plasma exhibit the same structure as standard models of multicomponent
reacting flows [Gio99] [KCG03] [GGMM10]. Besides, an axisymmetric geometry is commonly used
for both kind of processes. In such a configuration, the process flow is a low Mach number laminar
stagnation strained flow, and the corresponding equations can be simplified by a “boundary-layer-
type” approximation.

The software is tested against the benchmark model developed by C. R. Kleijn [Kle00] for
validation. The results obtained are in close agreement with this benchmark and the software is
thus validated. This software will be enriched in Chapter 4 in order to model an axisymmetric
plasma discharge reactor.

The reacting flows model employed in this chapter has been tested and validated in a number of
practical applications. For instance, C. K. Law and coworkers have presented results of numerical
simulation of purely strained planar premixed flames, which they compared to experimental mea-
surements of the temperature, the fluid velocity, and the major species mole fractions [LSYA94].
Their results show an excellent agreement between the experimental data and the numerical simula-
tions. Such a successful comparison with experiment notably requires high quality chemical reaction
mechanism and multi-component transport data, accurate boundary conditions, and a carefully de-
signed experiment. As far as chemical vapor deposition is concerned, comparison with experimental
data is also more difficult, since deposition processes involved are complex and their description is
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often only approximate. In particular, the surface reaction mechanism for chemical vapor deposition
of silicon used in this Chapter assumes that the conditions of thermal epitaxy are satisfied. Besides,
the gas-phase silane chemistry might lead to clustering reactions, which would require to take into
account a more complex chemistry and possibly the presence of nanoparticles in the CVD reactor.
Therefore, the numerical validation of the software achieved in this chapter does not prejudge any
confrontation with experimental data.

The chemical vapor deposition reactor is presented in section 3.2. In section 3.3, the general
conservation equations are stated. The thermodynamic properties are described in section 3.4, the
gas-phase chemical reaction mechanism is detailed in section 3.5, and the transport fluxes are stated
in section 3.6. Then, the low Mach number approximation is derived in section 3.7, yielding the
isobaric equations. In section 3.8, the strained flow equations are obtained as exact self similar
solutions of the isobaric equations. The transport coefficients are expressed in section 3.9, the
boundary conditions in section 3.10, and the surface reaction mechanism is described in section 3.11.
Finally, the numerical method is described in section 3.12. Results are presented and compared with
the benchmark model [Kle00] in section 3.13.

3.2 Chemical Vapor Deposition Reactor
A CVD reactor is considered, a schematic representation of which is shown in Figure 3.1. The
problem is axisymmetric around the z axis, with corresponding polar coordinates r and θ. The inlet
gas mixture, namely silane highly diluted in helium, is injected at atmospheric pressure through
a showerhead with a velocity parallel to the normal axis. The substrate is placed at the bottom
of the reactor and is heated up to temperatures in the range 1,000-1,200 K. The silane molecules
approaching the substrate are thus heated by thermal conduction, and consequently dissociate into
several radical species, which in turn may react with each other, diffuse toward the substrate, and
diffuse backwards in the upstream direction as well. For the process considered here, the silicon
radicals impinging on the substrate induce the deposition of crystalline silicon, at a deposition rate
of the order of one nanometer per second.

3.3 Conservation Equations
The mixture can be considered as neutral, and the electro-magnetic field vanishes. As a consequence,
there are no electrons and the mixture is made only of heavy species. There is only one relevant
temperature, denoted by

T = Th, (3.3.1)

the mixture-averaged velocity coincides with the heavy-species velocity

v = vh, (3.3.2)

the mass density of the mixture is ρ = ρh, the heavy-species partial pressure ph is equal to the total
pressure p, and the internal energy of the mixture coincides with the heavy-species internal energy
E = Eh. As well, the viscous tensor Π and the heat flux Q can be identified with the heavy-species
viscous tensor Πh and the heavy-species heat flux Qh, respectively.

The conservation equations (2.6.1)-(2.6.5) derived in Chapter 2 are now rewritten accordingly,
expressing the conservation of total mass

∂tρ+ ∂x · (ρv) = 0, (3.3.3)

momentum
∂t (ρv) + ∂x · (ρv ⊗ v + p I) + ∂x ·Π = ρg, (3.3.4)
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Figure 3.1 – Schematic representation of the axisymmetric chemical vapor deposition reactor.

and energy of the fluid mixture

∂tE + ∂x · (Ev) + p ∂x ·v + ∂xv : Π + ∂x ·Q = 0, (3.3.5)

as well as the conservation of the gas phase species mass densities

∂t(ρYk) + ∂x · (ρYkv + ρYkVk) = mkωk, k ∈ S. (3.3.6)

Here, ρk is the mass density of the kth species, ρ =
∑

k∈S ρk the density of the mixture, v the
mass-averaged velocity, p the hydrodynamic pressure, Π the viscous tensor, g the gravity vector,
neglected in (2.6.4), E the total energy per unit volume, Q the heat flux, Yk = ρk/ρ is the mass
fraction of the kth species, Vk its diffusion velocity, mk its molar mass, and ωk = wk/Na its molar
production rate due to chemical reactions. Equations (3.3.3)-(3.3.6) may also be derived from the
kinetic theory of multicomponent neutral reactive gas mixtures [WT62] [MYM63] [EG94] [Gio99].

From equation (2.6.17), the species diffusion fluxes

Fk = ρYkVk, k ∈ S, (3.3.7)

satisfy the constraints ∑
k∈S

Fk =
∑
k∈S

ρYkVk = 0, (3.3.8)

and from equation (2.4.163) the molar production rates ωk, k ∈ S, are such that∑
k∈S

mkωk = 0. (3.3.9)

Equations (3.3.8) and (3.3.9) ensure total mass conservation (3.3.3). By definition, the species mass
fractions satisfy the relation ∑

k∈S

Yk = 1. (3.3.10)
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However, as is classical for complex chemistry flows, we may also consider that the variables Yk,
k ∈ S, are formally independent unknowns, so that the mass conservation relation (3.3.10) is a
consequence of equations (3.3.3) and (3.3.6) rather than an a priori assumption [Gio99].

Equations (3.3.3)-(3.3.6) must be completed with expressions for the thermodynamic properties
of the mixture, the transport fluxes, the chemistry source terms, and the boundary conditions.

3.4 Thermodynamics
The model requires the evaluation of the thermodynamic properties of the mixture as a function of
the state variables T , p, ρ, Yk, k ∈ S, at any time and any point of the reactor.

3.4.1 State law and mixture variables

The perfect gas law has been derived in (2.4.45), and may also be obtained from the standard kinetic
theory of neutral gas mixtures [Gio99]

p =
ρRT

m
, (3.4.1)

where T is the mixture temperature, and m is the mean molar mass of the mixture

1

m
=
∑
k∈S

Yk
mk

. (3.4.2)

For convenience, we also introduce here various mixture variables, namely the species mole fractions

Xk =
m

mk

Yk, k ∈ S, (3.4.3)

the species partial pressures

pk =
ρkRT

mk

= pXk, k ∈ S, (3.4.4)

and the species molar concentrations

γk =
pk
RT

=
ρYk
mk

, k ∈ S. (3.4.5)

All these variables may be used to describe the state of the mixture.

3.4.2 Enthalpy and entropy

The mixture enthalpy H is given by
H = E + p, (3.4.6)

and the enthalpy per unit mass, or “specific enthalpy” of the mixture h is such that

ρh = H. (3.4.7)

From equation (2.4.42) and the perfect gas law (3.4.1), the mixture specific enthalpy can be decom-
posed into [Gio99]

ρh =
∑
k∈S

ρkhk, (3.4.8)

where hk is the specific enthalpy of the kth species

hk = hst
k +

∫ T

T st
cpk(T

′) dT ′, (3.4.9)
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and hst
k is the formation enthalpy of the kth species at the standard temperature T st, and cpk is the

constant pressure specific heat of the kth species. The constant pressure specific heat of the mixture
is given by

ρcp =
∑
k∈S

ρkcpk, (3.4.10)

and is related to the constant volume specific heat of the mixture cv given in equation (2.5.32) by

cp = cv +
R

m
. (3.4.11)

Similarly, the entropy of the mixture is given by [Gio99]

ρs =
∑
k∈S

ρksk, (3.4.12)

where sk is the specific entropy of the kth species

sk = sst
k +

∫ T

T st

cpk(T
′)

T ′
dT ′ − R

mk

ln

(
pk
pst

)
, (3.4.13)

and sst
k = sk(T

st, pst) is the formation entropy of the kth species at the standard temperature T st

and standard atmospheric pressure pst = patm, and pk = ρkRT/mk is the partial pressure of the kth

species. Alternatively

sk = satm
k − R

mk

ln

(
pk
pst

)
, (3.4.14)

where satm
k = satm

k (T ) is the specific entropy of the kth species at atmospheric pressure pk = pst = patm

satm
k = sst

k +

∫ T

T st

cpk(T
′)

T ′
dT ′. (3.4.15)

The specific entropies sk, k ∈ S, appear in the equilibrium constants for chemical reactions and are
thus required in the model.

3.4.3 Enthalpy and temperature equations

The energy conservation equation (3.3.5) can also be expressed in terms of the enthalpy or in terms
of the temperature. From the definition of the mixture enthalpy (3.4.6) and the energy conservation
equation (3.3.5), the enthalpy balance equation is in the form

∂t(ρh) + ∂x · (ρhv) + ∂x ·Q = ∂tp+ ∂xp ·v − ∂xv : Π. (3.4.16)

On the other hand, from (3.3.3) the enthalpy derivatives read

∂t(ρh) + ∂x · (ρhv) = ρ∂th+ ρv ·∂xh

= ρ
∑
k∈S

∂t(Ykhk) +
∑
k∈S

ρv ·∂x(Ykhk)

= ρ
∑
k∈S

Ykcpk∂tT +
∑
k∈S

ρv ·Ykcpk∂xT +
∑
k∈S

hk(ρ∂tYk + ρv ·∂xYk)

= ρcp∂tT + ρcpv ·∂xT +
∑
k∈S

hk(ρ∂tYk + ρv ·∂xYk).
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Since by (3.3.6) and (3.3.3)

ρ∂tYk + ρv ·∂xYk = mkωk − ∂x ·Fk,

and ∑
k∈S

hk ∂x ·Fk = ∂x ·
(∑
k∈S

hkFk

)
−
(∑
k∈S

cpkFk

)
·∂xT,

the evolution equation for the temperature is found in the form

ρcp∂tT + ρcpv ·∂xT + ∂x ·
(
Q−

∑
k∈S

hkFk

)
= −Π : ∂xv + ∂tp+ ∂xp ·v (3.4.17)

−
(∑
k∈S

cpkFk

)
·∂xT −

∑
k∈S

hkmkωk.

The term −
∑

k∈S hkmkωk notably represents the heat release due to chemical reactions.

3.4.4 Thermodynamic data

The enthalpy of the mixture can be computed by (3.4.8) from the knowledge of the species specific
enthalpies hk, k ∈ S, and the entropy of the mixture can be computed by (3.4.12) from the
knowledge of the species specific entropies sk, k ∈ S. Thus, thermodynamic data needed are
the species constant pressure specific heats cpk(T ), k ∈ S, the species specific enthalpies hk(T ),
k ∈ S, and the species specific entropies at atmospheric pressure satm

k (T ), k ∈ S. In general, these
quantities are evaluated from their molar counterparts

Cpk(T ) = mkcpk(T ), Hk(T ) = mkhk(T ), Satm
k (T ) = mks

atm
k (T ). (3.4.18)

From expressions (3.4.9) and (3.4.15), the species molar specific heats Cpk(T ), k ∈ S, the species
molar specific enthalpies Hk(T ), k ∈ S, and the species molar specific entropies at atmospheric
pressure Satm

k (T ), k ∈ S, are related by the following relations

Hk(T ) = Hst
k +

∫ T

T st
cpk(T

′) dT ′, (3.4.19)

Satm
k (T ) = Sst

k +

∫ T

T st

cpk(T
′)

T ′
dT ′. (3.4.20)

The molar specific heats Cpk(T ), k ∈ S, are generally evaluated from polynomial approxima-
tions. The corresponding absolute thermodynamic data can be found in the JANAF Tables [SP71]
[CDD+85] [Cha98].

In this work, fourth-order NASA / SANDIA polynomials defined over two temperature intervals
have been used

Cpk(T )

R
=

{
a1k + a2kT + a3kT

2 + a4kT
3 + a5kT

4, T inf
k ≤ T ≤ Tmid

k ,

a′1k + a′2kT + a′3kT
2 + a′4kT

3 + a′5kT
4, Tmid

k ≤ T ≤ T sup
k ,

(3.4.21)

where T inf
k is the temperature lower bound, T sup

k the temperature upper bound, and Tmid
k an inter-

mediate temperature. Two ranges of temperatures are used for a better precision over cpk(T ). The
molar specific enthalpies and the molar specific entropies at atmospheric pressure then read from
(3.4.19) and (3.4.20), respectively

Hk(T )

RT
=

{
a1k + a2kT/2 + a3kT

2/3 + a4kT
3/4 + a5kT

4/5 + a6k/T, T inf
k ≤ T ≤ Tmid

k ,

a′1k + a′2kT/2 + a′3kT
2/3 + a′4kT

3/4 + a′5kT
4/5 + a′6k/T, Tmid

k ≤ T ≤ T sup
k ,

(3.4.22)
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Figure 3.2 – Comparison of the polynomial fits for Cp SiH4 (continuous line) obtained from the
Chemkin Thermodynamic Database [KRM90] and valid over the ranges [T inf, Tmid] and [Tmid, T sup],
where T inf = 300 K, Tmid = 1000 K and T sup = 4000 K, with absolute data (circles) from the
JANAF Thermochemical Tables [Cha98].

Satm
k (T )

R
=

{
a1k lnT + a2kT + a3kT

2/2 + a4kT
3/3 + a5kT

4/4 + a7k, T inf
k ≤ T ≤ Tmid

k ,

a′1k lnT + a′2kT + a′3kT
2/2 + a′4kT

3/3 + a′5kT
4/4 + a′7k, Tmid

k ≤ T ≤ T sup
k ,

(3.4.23)

where the coefficients a1k, a′1k are related in particular to Hst
k and a7k, a′7k to Sst

k .
The polynomial expansion coefficients have been taken from the Chemkin Thermodynamic

Database [KRM90]. For each species k ∈ S, the tables give the temperatures T inf
k , Tmid

k and
T sup
k , and the two sets of coefficients a1k, . . . , a7k, and a′1k, . . . , a′7k corresponding to the respective

temperature ranges [T inf
k , Tmid

k ] and [Tmid
k , T sup

k ]. As an example, Figure 3.2 shows a comparison of
the polynomial fits obtained for the silane molar constant pressure specific heat Cp SiH4 , valid over
the temperature ranges 300-1000 K and 1000-4000 K, with the absolute data from the JANAF
Thermochemical Tables [Cha98]. As can be seen on the figure, the polynomial fit is consistent with
absolute thermodynamic data over the prescribed range of temperatures [T inf

SiH4
, T sup

SiH4
].

3.5 Chemistry

We consider a set of nr chemical reactions, which can be written in the form∑
k∈S

νrfk Mk 

∑
k∈S

νrbk Mk, r ∈ R, (3.5.1)

where R = {1, . . . , nr} is the set of reaction indices, Mk denotes the chemical symbol of the kth

species, and where νrfk , respectively νrbk , denotes the forward, respectively the backward, stoichiomet-
ric coefficient of the kth species in the rth reaction. According to the kinetic theory [EG94] [Gio99],
the molar production rate of the kth species can be decomposed into the different contributions from
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each reaction
ωk =

∑
r∈R

νrkτr, (3.5.2)

where τr is the rate of progress of the rth reaction, and

νrk = νrfk − νrbk (3.5.3)

is the net stoichiometric coefficient of the kth species in the rth reaction. The stoichiometric coeffi-
cients satisfy the relation (2.2.38) for conservation of mass [EG94] [Gio99]∑

k∈S

νrfk mk =
∑
k∈S

νrbk mk, r ∈ R, (3.5.4)

which in turn yields the total mass conservation equation for chemical reactions (3.3.9).

Table 3.1 – List of gas phase reactions with corresponding Arrhenius parameters.

r Reaction Ar (mol,cm3,s) βr Er (cal.mol−1)

1 SiH4 = SiH2 + H2 1.09× 1025 −3.37 61,200
2 SiH4 = SiH3 + H 3.69× 1015 0.0 93,000
3 Si2H6 = SiH4 + SiH2 3.24× 1029 −4.24 58,000
4 SiH4 + H = SiH3 + H2 1.46× 1013 0.0 2,500
5 SiH4 + SiH3 = Si2H5 + H2 1.77× 1012 0.0 4,400
6 SiH4 + SiH = Si2H3 + H2 1.45× 1012 0.0 2,000
7 SiH4 + SiH = Si2H5 1.43× 1013 0.0 2,000
8 SiH2 = Si + H2 1.06× 1014 −0.88 4,500
9 SiH2 + H = SiH + H2 1.39× 1013 0.0 2,000
10 SiH2 + H = SiH3 3.81× 1013 0.0 2,000
11 SiH2 + SiH3 = Si2H5 6.58× 1012 0.0 2,000
12 SiH2 + Si2 = Si3 + H2 3.55× 1011 0.0 2,000
13 SiH2 + Si3 = Si2H2 + Si2 1.43× 1011 0.0 16,200
14 H2SiSiH2 = Si2H2 + H2 3.16× 1014 0.0 53,000
15 Si2H6 = H3SiSiH + H2 7.94× 1015 0.0 56,400
16 H2 + SiH = SiH3 3.45× 1013 0.0 2,000
17 H2 + Si2 = Si2H2 1.54× 1013 0.0 2,000
18 H2 + Si2 = SiH + SiH 1.54× 1013 0.0 40,000
19 H2 + Si3 = Si + Si2H2 9.79× 1012 0.0 47,200
20 Si2H5 = Si2H3 + H2 3.16× 1014 0.0 53,000
21 Si2H2 + H = Si2H3 8.63× 1014 0.0 2,000
22 H + Si2 = SiH + Si 5.15× 1013 0.0 5,300
23 SiH4 + H3SiSiH = Si3H8 6.02× 1013 0.0 0
24 SiH2 + Si2H6 = Si3H8 1.81× 1014 0.0 0
25 SiH3 + Si2H5 = Si3H8 3.31× 1013 0.0 0
26 H3SiSiH = H2SiSiH2 1.15× 1020 −3.06 6,630

The rate of progress (2.4.160) reads

τr = Kf
r

∏
k∈S

γ
νrfk
k −K

b
r

∏
k∈S

γ
νrbk
k , (3.5.5)
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where γk = ρYk/mk is the molar concentration of the kth species, and Kf
r and Kb

r are the forward and
backward rate constants of the rth reaction. As a consequence of detailed balancing and reciprocity
relations (2.2.36), the ratio of the rate constants Kf

r and Kb
r is the equilibrium constant of the rth

reaction, as already stated in (2.4.169)

Ke
r(T ) =

Kf
r(T )

Kb
r (T )

. (3.5.6)

The equilibrium constant also corresponds to the chemical equilibrium proportions, as described by
statistical mechanics [Tol38], as well as classical thermochemistry [SS65] [Kra70], and is given by
(2.4.168)

lnKe
r(T ) = −

∑
k∈S

νrkmk

RT

(
gatm
k (T )− RT

mk

ln (
patm

RT
)
)
, (3.5.7)

where gatm
k , k ∈ S, denote the species specific Gibbs functions at atmospheric pressure

gatm
k (T ) = hk(T )− Tsatm

k (T ), k ∈ S. (3.5.8)

In general, the forward rate constant is approximated by a generalized Arrhenius empirical relation
of the form

Kf
r(T ) = ArT

βr exp
(
− Er
RT

)
, (3.5.9)

where Ar is the pre-exponential factor, βr the pre-exponential exponent and Er ≥ 0 the activation
energy of the rth reaction. The backward rate constant is then deduced from the forward rate
constant (3.5.9) and the equilibrium constant (3.5.7) by applying the law of mass action (3.5.6).

The gas phase reaction mechanism adopted for the present model has been developed by Coltrin
and coworkers [CKE89], as described in [Kle00]. The nr = 26 reversible chemical reactions and
associated Arrhenius parameters are listed in Table 3.1. The gas phase chemical kinetics are driven
by the decomposition of SiH4 into SiH2 and H2 in the hot gas region above the susceptor surface.
This initiates a chain of homogeneous reactions, leading to the formation of many silicon containing
species. Each of these species may diffuse to and react at the surface to form crystalline silicon.
The gas phase chemistry mechanism is implemented within a highly vectorized version [GD88] of
the Chemkin-II FORTRAN software [KRM89].

3.6 Transport Fluxes

The transport fluxes derived in Chapter 2 are now rewritten in the case of a neutral gas mixture.
The electro-magnetic field vanishes and in the absence of electrons the viscous tensor Π and the
heat flux Q are identified with the heavy-species viscous tensor Πh and the heavy-species heat flux
Qh, respectively. From equations (2.6.34)-(2.6.36), the transport fluxes read

Π = −(κ− 2
3
η)(∂x ·v) I− η (∂xv + ∂xv

t), (3.6.1)

Vk = −
∑
l∈S

Dkld̂l − θk∂x lnT, k ∈ S, (3.6.2)

Q =
∑
k∈S

hkFk − λ̂∂xT − p
∑
k∈S

θkd̂k, (3.6.3)

where κ = κh denotes the volume viscosity, η = ηh the shear viscosity, t the transposition operator,
Dkl, k, l ∈ S the multicomponent diffusion coefficients, d̂k the unconstrained diffusion driving force
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of the kth species, θk = θkh the thermal diffusion coefficient of the kth species and λ̂ = λ̂hh the partial
thermal conductivity. The species diffusion driving forces read

d̂k =
1

p
∂xpk = Xk ∂x ln p+ ∂xXk, k ∈ S. (3.6.4)

The first term in the expression (3.6.2) of the diffusion velocity Vk incorporates diffusion effects
due to partial pressure gradients and specific external forces. The second term represents diffusion
due to temperature gradients and is called the Soret effect. The first term in the expression (3.6.3) of
the heat flux Q represents the transfer of energy accompanying species molecular diffusion, whereas
the second term corresponds to Fourier’s law. The third term stands for thermal diffusion due to
concentration gradients, and is referred to as the Dufour effect, which is the symmetric of the Soret
effect. Expressions (3.6.1)-(3.6.3) for transport fluxes may also be derived from the kinetic theory
of multicomponent neutral gas mixtures [WT62] [CC70] [FK72] [EG94] [Gio99].

From the relations (2.5.61)-(2.5.63) and (2.5.67), the diffusion matrix D = (Dkl)k,l∈S, which co-
incides with the heavy-species diffusion matrix Dh when Ye = 0, exhibits the following mathematical
properties

D = Dt, (3.6.5)
N(D) = RY, (3.6.6)
R(D) = Y ⊥, (3.6.7)

D is nonnegative, (3.6.8)

i.e., D is symmetric, nonnegative, its kernel is the one-dimensional space spanned by the vector
Y = (Yk)k∈S, and its range is the orthogonal complement to RY . From the preceding relations
(3.6.5) and (3.6.7), or from (2.5.67), the diffusion matrix D satisfies the relation∑

k∈S

YkDkl = 0, l ∈ S, (3.6.9)

and as well from (2.5.69) the thermal diffusion vector θ = (θk)k∈S satisfies the relation∑
k∈S

Ykθk = 0, (3.6.10)

i.e., it is orthogonal to the space RY .
It is often more practical [CC70] [FK72] [Gio99] to use the constrained diffusion driving forces

dk = ∂xXk + (Xk − Yk)∂x ln p, k ∈ S, (3.6.11)

where Xk = pk/p and Yk = ρk/ρ are the respective mole and mass fractions of the kth species, in
place of the unconstrained diffusion driving forces d̂k, k ∈ S, in expressions (3.6.2) and (3.6.3) for
the species diffusion velocities and heat flux

Vk = −
∑
l∈S

Dkldl − θk∂x lnT, k ∈ S, (3.6.12)

Q =
∑
k∈S

hkFk − λ̂∂xT − p
∑
k∈S

θkdk. (3.6.13)

Both formulations are indeed equivalent, since

dk = d̂k − Yk
∑
l∈S

d̂l, (3.6.14)

82



3.7. LOW MACH NUMBER FLOW

Y ∈ N(D) and 〈Y, θ〉 = 0 by (3.6.9) and (3.6.10). The mass conservation constraint (3.3.8) over
the species diffusion velocities is also a consequence of (3.6.9) and (3.6.10). Correspondingly, the
constrained diffusion driving forces are by definition linearly dependent∑

k∈S

dk = 0, (3.6.15)

as are the species diffusion fluxes Fk = ρYkVk, k ∈ S.
Finally, the diffusion velocities Vk, k ∈ S, and the heat flux Q may be expressed in terms of the

thermal diffusion ratios χk, k ∈ S, and the thermal conductivity λ, instead of the partial thermal
conductivity λ̂ and the thermal diffusion coefficients θk, k ∈ S. The species thermal diffusion ratios
are the solution to the following constrained linear system

Dχ = θ,∑
k∈S

χk = 0,
(3.6.16)

where χ = (χk)k∈S and θ = (θk)k∈S. The system (3.6.16) is well-posed since D is positive definite
over the space U⊥, where U = (1)k∈S is the unit vector [EG94]. The thermal conductivity is then
given by

λ = λ̂− p

T

∑
k∈S

θkχk. (3.6.17)

Expressions (3.6.12) and (3.6.13) for the diffusion velocities and heat flux may then be replaced with
the following alternative expressions

Vk = −
∑
l∈S

Dkl(dl + χl∂x lnT ), k ∈ S, (3.6.18)

Q =
∑
k∈S

hkFk − λ∂xT + p
∑
k∈S

χkVk. (3.6.19)

3.7 Low Mach Number Flow

In the chemical vapor deposition process considered in this Chapter, the macroscopic fluid velocity
v is usually negligible in comparison with the sound speed. In other words, the Mach number, which
is the ratio of a characteristic macroscopic velocity v0 over a characteristic sound speed c0

s, is small
compared to one

ε =
v0

c0
s

� 1. (3.7.1)

For an ideal gas mixture, a characteristic sound velocity may be taken as

c0
s =

√
p0

ρ0
, (3.7.2)

where p0 and ρ0 denote a characteristic pressure and a characteristic mass density of the fluid,
respectively. The characteristic (volume or shear) viscosity is denoted by η0 and the typical hy-
drodynamic length L0 is a viscous length, i.e., a length such that the Reynolds number is of order
unity

L0 =
η0

ρ0v0
, (3.7.3)
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and the corresponding characteristic time is t0 = L0/v0. As stated above, the only external force
acting on the species is gravity. We assume that the associated Froude number is of order unity or
larger

(v0)2

L0g0
& 1, (3.7.4)

where g0 is the order of magnitude of the gravitational acceleration.

3.7.1 Momentum equation and pressure splitting

The scaling introduced above is applied to the momentum equation (3.3.4). The scaled ratio associ-
ated with quantity φ is denoted by φ̂ = φ/φ0. The following momentum equation is obtained after
a little algebra [Gio99]

ε2
(
∂t̂(ρ̂v̂) + ∂x̂ · (ρ̂v̂ ⊗ v̂) + ∂x̂ · Π̂− ρ̂ĝ

)
= −∂x̂p̂. (3.7.5)

From (3.7.5) we deduce that the pressure spatial gradient is of order O(ε2), so that the pressure can
be decomposed into

p̂(t̂, x̂) = p̂0(t̂) + ε2p̂2(t̂, x̂). (3.7.6)

In terms of the original variables, this yields the classical splitting [Gio99]

p(t,x) = p0(t) + ε2p̃(t,x), (3.7.7)

where p0 is a spatially uniform pressure and p̃ is the fluid hydrodynamic perturbation.
Upon introducing this pressure splitting in equation (3.7.5), the following simplified momentum

conservation equation is obtained [Gio99] in terms of the original variables

∂t(ρv) + ∂x · (ρv ⊗ v) + ∂xp̃+ ∂x ·Π = ρg. (3.7.8)

As well, the following simplified state law [Gio99] is obtained from (3.4.1)

ρ =
p0m

RT
, (3.7.9)

where terms of order two or larger in ε have been omitted. With such a simplified state law and
momentum equation, acoustic waves are notably filtered out.

3.7.2 Temperature equation

In the low Mach number limit, the temperature evolution equation (3.4.17) may also be simplified.
The internal energy is associated with molecular velocity fluctuations, so that

c0
pT

0 = (c0
s)

2, (3.7.10)

where c0
p and T 0 are the respective orders of magnitude of the constant pressure specific heat and

temperature. Furthermore, the characteristic thermal conductivity scales as

λ0 = η0c0
p, (3.7.11)

i.e., the Prandtl number is of order one, and the order of magnitude of the diffusion coefficients D0

is such that the Schmidt number is of order one, namely

η0 = ρ0D0. (3.7.12)
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Taking into account these orders of magnitude, the following scaled evolution equation for the
temperature is obtained after some algebra

ρ̂ĉp∂t̂T̂ + ρ̂ĉpv̂ ·∂x̂T̂ + ∂x̂ ·
(
Q̂−

∑
k∈S

ĥkF̂k

)
= ∂t̂p̂0 + ε2

(
∂t̂p̂2 + ∂x̂p̂2 · v̂ − Π̂ : ∂x̂v̂

)
−
(∑
k∈S

ĉpkF̂k

)
·∂x̂T̂ −

∑
k∈S

ĥkm̂kω̂k. (3.7.13)

Finally, expanding equation (3.7.13) at order zero in ε2 yields the following temperature equation
in the low Mach number limit [Gio99], written in terms of the original variables

ρcp∂tT + ρcpv ·∂xT + ∂x ·
(
Q−

∑
k∈S

hkFk

)
= −

(∑
k∈S

cpkFk

)
·∂xT −

∑
k∈S

hkmkωk. (3.7.14)

Note that the uniform pressure in the CVD reactor p0 is independent of time, so that ∂tp0 = 0.
Equation (3.7.14) merely expresses energy balance.

3.7.3 Isobaric equations

The low Mach number scaling, when applied to the species mass conservation equations (3.3.6)
and the total mass conservation equation (3.3.3), does not yield any further simplification. Upon
assuming that the spatially uniform pressure p0 is independent of time, we obtain the so-called
“isobaric equations” (3.3.3), (3.3.6), (3.7.8) and (3.7.14) [Gio99]

∂tρ+ ∂x · (ρv) = 0, (3.7.15)

∂t(ρYk) + ∂x · (ρYkv +Fk) = mkωk, k ∈ S, (3.7.16)

∂t (ρv) + ∂x · (ρv ⊗ v) + ∂xp̃+ ∂x ·Π = ρg, (3.7.17)

ρcp∂tT + ρcpv ·∂xT + ∂x ·
(
Q−

∑
k∈S

hkFk

)
= −

∑
k∈S

cpkFk ·∂xT −
∑
k∈S

hkmkωk. (3.7.18)

In the next section, we seek for self similar solutions of such isobaric equations (3.7.15)-(3.7.18)
in axisymmetric geometry.

3.8 Strained Flow
The chemical vapor deposition process flow considered in this study is a particular case of strained
flows. Strained flows may be obtained by directing two impinging jets one on each other or against
a flat plate. The corresponding equations are usually derived from a boundary layer approximation.
However, in planar or cylindrincal geometries, the strained flow equations may be obtained as exact
solutions [Gio88] [KMEDL88] [Gio99] of the isobaric equations (3.7.15)-(3.7.18).

3.8.1 Self similar solution

We recall that the cylindrical coordinates (r, θ, z), with corresponding unit vectors er, eθ and ez,
are such that ez is normal to the stagnation plane (O, er, eθ), where O is the origin located at the
centre of the substrate (see Figure 3.1). Because of the axial symmetry, the average velocity may be
written in the cylindrical coordinates v = (u, 0, w). We also assume that gravity is either oriented
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in the normal direction, namely g = (0, 0, g), or negligible. In this framework, we seek for a self
similar solution of the isobaric equations (3.7.15)-(3.7.18), of the form

ρ = ρ(t, z) (3.8.1)
u = rû(t, z) (3.8.2)
w = w(t, z) (3.8.3)

p̃ = −J(t)
r2

2
+ p̂(t, z) (3.8.4)

T = T (t, z) (3.8.5)
Yk = Yk(t, z), k ∈ S, (3.8.6)

where J(t) denotes the pressure curvature in the tangential direction.
From expressions (3.6.18) and (3.6.19), the diffusion velocities and heat flux can be expressed in

the form

Vk =
(
0, 0,Vk(t, z)

)
, k ∈ S, (3.8.7)

Q =
(
0, 0,Q(t, z)

)
. (3.8.8)

Upon substituting (3.8.1)-(3.8.6) into the isobaric equations (3.7.15)-(3.7.18), the fluid equations
may be written in the form

∂tρ+ 2ρû+ ∂z(ρw) = 0, (3.8.9)

ρ∂tYk + ρw∂zYk = mkωk − ∂zFk, k ∈ S, (3.8.10)

ρr∂tû+ ρû2r + ρrw∂zû = Jr + ∂z(η∂zû)r, (3.8.11)

ρ∂tw + ρw∂zw = −∂zp̂+ 2η∂zû+ 2∂z

(
(κ− 2

3
η)û
)

+ ∂z

(
(κ+

4

3
η)∂zw

)
+ ρg, (3.8.12)

ρcp∂tT + ρcpw∂zT = ∂z

(
λ∂zT − p

∑
k∈S

χkVk
)
−
∑
k∈S

cpkFk∂zT −
∑
k∈S

hkmkωk, (3.8.13)

where Fk = ρYkVk is the normal coordinate of the kth-species diffusion flux, so that for all k ∈ S,
Fk = (0, 0,Fk). The first two equations are the conservation equations for the fluid density and the
species mass fractions, respectively, the third and fourth equations are the conservation equations
for the tangential and normal velocity components, û and w, respectively, and the fifth equation is
the evolution equation for the temperature.

Equation (3.8.12) for the normal momentum uncouples from the remaining governing equations,
and is usually discarded though it may be used to determine the pressure correction p̂. The equation
for tangential momentum is divided by r, and the system of equations to be solved finally reads

∂tρ+ 2ρû+ ∂z(ρw) = 0, (3.8.14)

ρ∂tYk + ρw∂zYk = mkωk − ∂zFk, k ∈ S, (3.8.15)

ρ∂tû+ ρû2 + ρw∂zû = J + ∂z(η∂zû), (3.8.16)

ρcp∂tT + ρcpw∂zT = ∂z

(
λ∂zT − p

∑
k∈S

χkVk
)
−
∑
k∈S

cpkFk∂zT −
∑
k∈S

hkmkωk. (3.8.17)
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Since p0 is a known parameter, ρ is obtained from the perfect gas law (3.7.9), provided the mass
fractions Yk, k ∈ S, and temperature T are known. Thus, we are left with ns+3 formally independent
unknowns, namely the temperature T , the species mass fractions Yk, k ∈ S, the so-called tangential
velocity û, and the normal velocity w. Equation (3.8.14) determines the normal velocity, equation
(3.8.15) the species mass fractions, equation (3.8.16) the tangential velocity, and equation (3.8.17)
the temperature.

The system of equations (3.8.14)-(3.4.17) is valid provided boundary conditions are compatible
with the self-similarity assumptions (3.8.1)-(3.8.6). The method is easily extended to the case of a
rotating disk reactor. The convection velocity is then taken in the form v = (ru(z, t), rv(z, t), w(z, t))
[KCG03].

3.8.2 Traditional variables

The pressure curvature J is a natural parameter of the laminar flow process that is generally inde-
pendent of time and that is usually specified through the strain rate

α =

√
J

ρin . (3.8.18)

The injected mixture macroscopic properties T in, pin, ρin, (Y in
k )k∈S, are also such that

ρin =
pinmin

RT in , (3.8.19)

where 1/min =
∑

k∈S Y
in
k /mk and the inlet mass fractions must sum up to unity, i.e.,

∑
k∈S Y

in
k = 1.

It is traditional for strained flows to introduce the auxiliary variables

ũ =
û

α
=

u

αr
, (3.8.20)

w̃ = ρw. (3.8.21)

The strained flow isobaric equations (3.8.14)-(3.8.17) then read

∂tρ+ 2ραũ+ ∂zw̃ = 0, (3.8.22)

ρ∂tYk + w̃∂zYk = mkωk − ∂zFk, k ∈ S, (3.8.23)

ρ∂tũ+ w̃∂zũ = α(ρin − ρũ2) + ∂z(η∂zũ), (3.8.24)

ρcp∂tT + cpw̃∂zT = ∂z

(
λ∂zT − p

∑
k∈S

χkVk
)
−
∑
k∈S

cpkFk∂zT −
∑
k∈S

hkmkωk. (3.8.25)

The transport fluxes, namely the species diffusion velocities Vk = Vk(t, z)ez, k ∈ S, the heat
flux Q = Q(t, z)ez, the viscous tensor Π = Π(t, z)ez, have been expressed in section 3.6 in terms
of transport coefficients, whose expressions are given in the following section.

3.9 Transport Coefficients
Transport coefficients have been calculated by means of the multicomponent transport library
“EGLIB” developed by Ern and Giovangigli [EG96a]. In this section, the approximations chosen for
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each transport coefficient are described and compared to those of the benchmark model [Kle00]. For
a thorough description of the mathematical theory of multicomponent transport property evaluation,
the reader is referred to [EG94] [Gio99].

Transport coefficients generally depend on the temperature T , the pressure p, and the species
mass fractions Yk, k ∈ S. In the low Mach number limit, the transport coefficients depend only on
the spatially uniform pressure p0.

3.9.1 Molecular parameters and collision integrals

The practical calculation of transport coefficients requires the choice of the interaction potentials ϕkl
between molecule species pairs (k, l), k, l ∈ S. Generally the Lennard-Jones interaction potentials
are used

ϕkl = 4εkl

[(σkl
r

)12 −
(σkl
r

)6
]
, (3.9.1)

where σkl denotes the collision diameter, εkl the potential well depth, and r the distance between
the molecules. Molecular parameters εkl and σkl, for k, l ∈ S, are usually expressed in terms of pure
species parameters εk and σk, for k ∈ S. The mixture contains exclusively non polar molecules and
for such molecules, the collision diameter and the potential well depth read

εkl
kb

=

√( εk
kb

)( εl
kb

)
, (3.9.2)

σkl =
1

2
(σk + σl). (3.9.3)

The transport linear systems are generally expressed in terms of collision integrals which are
functions of the state variables and of molecular parameters. These quantities are integrals along
collision paths between pairs of molecules which naturally appear in the expression of transport
linear systems and which depend on the dynamics of intermolecular collisions and thus on species
pairs [CC70] [FK72] [EG94]. The species collision numbers ξint

k at 298 K, k ∈ P , where P denotes
the set of polyatomic species, are also required for the evaluation of transport coefficients [EG94].
These collision numbers are associated with energy transfer either between translational degrees of
freedom and internal degrees of freedom or between internal degrees of freedom [EG94] [Gio99], and
arise under the common assumption that complex collisions, i.e., collisions in which there are more
than one quantum jumps, may be neglected [MM62] [MPM65] [EG94].

In this work, the pure species transport properties and the collision integrals needed were calcu-
lated using approximation formulas and a software written at the SANDIA National Laboratories
[KDLW+86]. Lennard-Jones interaction potentials are used as in the benchmark model by Kleijn
[Kle00]. The molecular species parameters have been taken from [KDLW+98], and are listed in
Table 3.2.

The different approximations chosen for each transport coefficient are detailed in the remaining
of this section.

3.9.2 Shear viscosity

In the benchmark model by Kleijn [Kle00], the shear viscosity η is evaluated from Wilke’s empirical
formula [Wil50] [KDLW+98]

ηWilke =
√

8
∑
k∈S

Xkηk∑
l∈SXl(1 + mk/ml)−1/2

(
1 + (ηk/ηl)1/2(ml/mk)1/4)

)2 , (3.9.4)

where ηk, k ∈ S, denote the pure species shear viscosities.
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Table 3.2 – Molecular parameters adopted for the present model.

k Species εk/kb (K) σk (Å) ξint
k (298 K)

1 H 145.0 2.050
2 H2 38.0 2.920 280.0
3 Si 3,036.0 2.910
4 Si2 3,036.0 3.280 1.0
5 Si3 3,036.0 3.550 1.0
6 SiH 95.8 3.662 1.0
7 SiH2 133.1 3.803 1.0
8 SiH3 170.3 3.943 1.0
9 SiH4 207.6 4.084 1.0
10 Si2H2 323.8 4.383 1.0
11 Si2H3 318.2 4.494 1.0
12 H3SiSiH 312.6 4.601 1.0
13 H2SiSiH2 312.6 4.601 1.0
14 Si2H5 306.9 4.717 1.0
15 Si2H6 301.3 4.828 1.0
16 Si3H8 331.2 5.562 1.0
17 He 10.2 2.576

However, as shown by Ern and Giovangigli [EG96b] [Gio99], even a direct resolution of the
symmetric linear system associated with the first “natural” variational space for the shear viscosity,
namely the space of size ns spanned by the basis functions

φ2000k =
(
(wk ⊗wk −

1

3
wk ·wk I)δkl

)
l∈S, k ∈ S, (3.9.5)

is less computationally expensive than Wilke’s formula which involves fourth order roots. Thus,
we prefer applying one step of the conjugate gradient method to the corresponding linear system,
which is faster than a direct numerical inversion, while still ten times more accurate than Wilke’s
formula [EG94] [EG95a] [EG96a].

3.9.3 Diffusion coefficients

The diffusion coefficients are approximated by the first order diffusion coefficients [Gio91] [EG94]
[Gio99]

D = D[0],

associated with the projection of the perturbed distribution functions ΦDi , i ∈ S, on the variational
space of size ns spanned by the functions

φ1000k =
(
wkδkl

)
l∈S, k ∈ S. (3.9.6)

The corresponding transport linear system is made of ns systems of order ns indexed by i ∈ S, of
the form

∆αDi = βDi (3.9.7)
αDi ∈ Y ⊥, (3.9.8)
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where Y = (Yk)k∈S is the mass fraction vector. The system matrix ∆ is common to the ns linear
systems, and is given by

∆kk =
∑
l∈S
l 6=k

XkXl

Dbin
k,l

, k ∈ S, (3.9.9)

∆kl = −XkXl

Dbin
k,l

, k, l ∈ S, k 6= l, (3.9.10)

where Dbin
k,l is the binary diffusion coefficient for species pair (k, l), which only depends on T and p.

The right hand terms of (3.9.7) are given by

βDi
k = δki −

Yk∑
j∈S Yj

, k ∈ S. (3.9.11)

Finally, the approximate diffusion coefficients are evaluated from the following expressions [EG94]
[Gio99]

D
[0]
ij = 〈αDi , βDj〉 = 〈αDj , βDi〉 = αDi

j = α
Dj

i , i, j ∈ S. (3.9.12)

From the preceding relations, and from equation (3.6.18), where D has been replaced by D[0],
the classical Stefan-Maxwell [Wil58] [DL68] [Gio90] equations are retrieved

dk + χk∂x lnT =
∑
l∈S
l 6=k

XkXl

Dbin
k,l

V l −
(∑
l∈S
l 6=k

XkXl

Dbin
k,l

)
Vk, k ∈ S, (3.9.13)

∑
l∈S

YlV l = 0. (3.9.14)

Thus, evaluation of the first order transport coefficients D[0] is equivalent to solving the constrained
linear system (3.9.7)-(3.9.8) or, equivalently, to inverting the Stefan-Maxwell equations (3.9.13)-
(3.9.14) for the diffusion velocities. A more precise description of the mathematical properties
associated with the Stefan-Maxwell equations may be found in [Gio90] [Gio91] [EG94].

Kleijn [Kle00] also considers the Stefan-Maxwell equations corresponding to the first order diffu-
sion coefficients D[0], and proceeds by a direct inversion of a nonsymmetric form of the corresponding
linear system [KDLW+98]. Conversely, we have applied two steps of a projected standard iterative
method to approximate the diffusion coefficients [EG96a], which is ten times to hundred times faster
[EG96b] and should remain within tenths of a percent accuracy with respect to the exact solution
[EG94].

3.9.4 Thermal conductivity and thermal diffusion ratios

It is worth noting that in reference [Kle00] the so-called “thermal conductivity λ” actually refers
to the partial thermal conductivity defined above as λ̂. This difference of nomenclature is also
observable in the Chemkin Transport Package [KDLW+98], which is the reference cited by Kleijn,
where the quantity “λ0” is called the “thermal conductivity”, but actually stands for the partial
thermal conductivity. The original papers by Monchick, Yun and Mason [MYM63] and Dixon-
Lewis [DL68], however, make a clear distinction between the partial thermal conductivity, denoted
by “λ0”, and the thermal conductivity, denoted by “λ∞”. As well, the thermal diffusion coefficients
Dt
k defined by Kleijn [Kle00] following [MYM63] [DL68] [KDLW+98] differ from our definition by

the factor ρYk
Dt
k = ρYkθk, k ∈ S, (3.9.15)
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as shown in [EG94]. Having this in mind, we conserve in the following the notations and terminology
adopted in the preceding sections.

We denote by λ̂[1], θ[1], D[1] the first-order partial thermal conductivity, thermal diffusion vector,
and diffusion matrix derived from the resolution of the constrained linear system arising from the
projection of the perturbed distribution functions Φλ̂, and ΦDl , l ∈ S, on the variational space
[EG94]

AD = Aλ̂ = Span
(
φ1000k, k ∈ S, φ1010k, k ∈ S, φ1001k, k ∈ P

)
,

where the φ1000k, k ∈ S, were given in (3.9.6), and where

φ1010k =
(
(
5

2
−wk ·wk)wkδkl

)
l∈S, k ∈ S (3.9.16)

φ1001k =
(
(εk − εkk)wkδkl

)
l∈S, k ∈ P . (3.9.17)

The set P is the indexing set for polyatomic molecules, nP the number of polyatomic molecules,
and εk = Ek/kbT , k ∈ P . In particular, D[1] is a higher order of approximation than D[0] for the
multicomponent diffusion matrix D.

In the benchmark model [Kle00], the partial thermal conductivity λ̂ and the thermal diffusion
vector θ = (θk)k∈S are evaluated through the direct matrix inversion of the first-order linear system
of size 2ns + nP associated with the variational space Aλ̂ described above, while D is approximated
by D[0] instead of D[1].

The space Aλ̂ can be decomposed into

Aλ̂ = Span
(
φ1000k, k ∈ S

)
⊕Aλ, (3.9.18)

where
Aλ = Span

(
φ1010k, k ∈ S, φ1001k, k ∈ P

)
. (3.9.19)

Ern and Giovangigli [EG95b] have shown that approximating λ̂, θ, D by λ̂[1], θ[1], D[1], respectively,
and defining the approximate thermal conductivity λ[1] and thermal diffusion ratios χ[1]

k , k ∈ S, by
D[1]χ[1] = θ[1],∑
k∈S

χ
[1]
k = 0,

(3.9.20)

λ[1] = λ̂[1] − p

T

∑
k∈S

θ
[1]
k χ

[1]
k , (3.9.21)

is actually equivalent to approximating D by D[1], and λ and χ from the projection of the perturbed
distribution function on the variational space Aλ of size ns + nP .

In other words, the variational space associated with the evaluation of λ and χ uncouples from
the variational space for D. Therefore, we have kept the approximation D = D[0] as in [Kle00] for
the diffusion matrix, but we have chosen the first-order expression for the thermal conductivity and
thermal diffusion ratios

λ = λ[1] (3.9.22)

χk = χ
[1]
k , k ∈ S, (3.9.23)

instead of approximating the partial thermal conductivity and thermal diffusion vector by expres-
sions λ̂[1] and θ[1], as in the benchmark model [Kle00]. Indeed, there is no reason for neglecting the
translational and internal energy when expanding ΦDl for the calculation of the diffusion coefficients,
but not neglecting it for the calculation of λ̂ and θ.
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3.10 Boundary Conditions

We consider now the CVD reactor model illustrated in Figure 3.1 for which we specify relevant
boundary conditions compatible with the self similar formulation. The substrate is at z = 0, while
z = L corresponds to the injection plane.

The temperature at the substrate boundary is assumed constant and equal to

T |t,0 = T s, (3.10.1)

and the temperature at the inlet boundary is equal to the temperature of the inlet gas mixture

T |t,L = T in. (3.10.2)

The inlet flux is assumed to be perfectly normal, since the gas mixture is injected through a
showerhead. Besides, the condition of adherence on the substrate can reasonably be assumed for
such atmospheric pressure flows with convection velocities around 10 cm.s−1. Thus the boundary
conditions for the tangential velocity read

ũ|t,0 = 0, (3.10.3)

ũ|t,L = 0. (3.10.4)

The inlet boundary conditions for the species mass fractions are those of a porous wall(
Ykw̃ + Fk

)∣∣
t,L

= Y in
k w̃

in, k ∈ S, (3.10.5)

where w̃in = w̃|t,L is the inlet mass flow, assumed continuous at the interface and Y in
k , k ∈ S are

the species mass fractions in the injected mixture.
The boundary conditions for the species mass fractions at the substrate are those of a catalytic

plate (
Ykw̃ + Fk

)∣∣
t,0

= mkω̂k, k ∈ S, (3.10.6)

where ω̂k is the surface molar production rate of the kth species.
Physically speaking, the normal velocity is constrained at both ends of the reactor, inlet and

substrate. Indeed, if we neglect the slight variation of the substrate position along the z axis due
to surface growth, the normal velocity at the substrate must be zero or equal to the Stefan flux

w̃|t,0 =
∑
k∈S

mkω̂k (3.10.7)

associated with surface deposition [Gio99] [Kle00] [KCG03]. On the other hand, the inlet velocity
is imposed by the experimentator. Thus, two boundary conditions are specified for the normal
velocity equation (3.8.22), which is only of order one in w̃. The excess boundary condition actually
determines the scalar α. Two methods are then possible in practice. As a first method, the normal
velocity is specified at both ends of the reactor, while the strain rate α is treated as an eigenvalue
of the boundary-value problem [KCG03]. Alternatively, the normal mass flux at the substrate is
set equal to the Stefan flux (3.10.7), and the strain rate α is given as an input parameter to the
numerical solver, while the inlet normal velocity is left unkown. Several numerical simulations are
then run for different values of α until the steady-state normal velocity at the upper boundary
approaches the specified value w̃|t,L = w̃in. The latter method is the method used in this work.
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3.11 Surface Chemistry
The computation of the molar deposition rates ω̂k, k ∈ S, appearing in the substrate boundary
condition (3.10.6) requires the choice of a surface reaction mechanism.

We consider a set R̂ of heterogeneous reactions describing the deposition process, in the form∑
l∈S∪Ŝ

ν̂rfl Ml 

∑
l∈S∪Ŝ

ν̂rbl Ml, r ∈ R̂, (3.11.1)

where Ŝ denotes the set of surface species, and ν̂rfl and ν̂rbl denote the forward and backward
stoichiometric coefficients of the lth species in the rth surface reaction, respectively. The molar
surface production rate is then computed from the rates of progress τ̂r, r ∈ R̂

ω̂k =
∑
r∈R̂

(ν̂rfk − ν̂rbk ) τ̂r, k ∈ S ∪ Ŝ. (3.11.2)

Table 3.3 – Heterogeneous reaction mechanism adopted for the present model and corresponding
sticking probabilities [CKM86] [Kle00].

r kr Surface reaction skr

1 3 Si(g) −→ Si(s) 1.0
2 6 SiH(g) −→ Si(s) + H(g) 1.0
3 7 SiH2(g) −→ Si(s) + H2(g) 1.0
4 8 SiH3(g) −→ Si(s) + H2(g) + H(g) 1.0
5 9 SiH4(g) −→ Si(s) + 2H2(g) 4.44× 10−6

6 4 Si2(g) −→ 2Si(s) 1.0
7 10 Si2H2(g) −→ 2Si(s) + H2(g) 1.0
8 11 Si2H3(g) −→ 2Si(s) + H2(g) + H(g) 1.0
9 12 H3SiSiH(g) −→ 2Si(s) + 2H2(g) 1.0
10 13 H2SiSiH2(g) −→ 2Si(s) + 2H2(g) 1.0
11 14 Si2H5(g) −→ 2Si(s) + 2H2(g) + H(g) 1.0
12 15 Si2H6(g) −→ 2Si(s) + 3H2(g) 4.44× 10−5

13 5 Si3(g) −→ 3Si(s) 1.0
14 16 Si3H8(g) −→ 3Si(s) + 4H2(g) 0.0

The reactions considered are assumed to be irreversible, in the form

SinH2m(g) −→ nSi(s) +mH2(g), (3.11.3)
SinH2m+1(g) −→ nSi(s) +mH2(g) + H(g). (3.11.4)

Thus, each surface reaction r ∈ R̂ is associated with a unique gas-phase reactant species kr ∈ S.
The rate of progress of reaction r ∈ R̂ is simply the consumption rate of species number kr at the
surface, expressed as its thermal flux towards the wall [MW60] [McD64] [CKM86] [Kle00]

τ̂r =
skr

1− skr
2

γkr

√
RT

2πmkr

, r ∈ R̂, (3.11.5)

where γkr = ρYkr/mkr is the molar concentration of the depositing species, and skr is its sticking
coefficient. The reactive probability skr is adjusted by the factor 1− skr/2 in order to remain valid
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in the limit skr → 1, where nearly all the molecules of species kr stick to the wall without being
reflected [MW60] [KCG03].

The silicon deposition rate associated with each surface reaction r ∈ R̂ is then given by

wrSi(s) = VSi
m ν̂

rb
Si(s)τ̂r, (3.11.6)

where ν̂rbSi(s) is the backward stoichiometric coefficient of Si(s) in the rth surface reaction, and VSi
m is

the molar volume of crystalline silicon

VSi
m ' 12.06 cm3.mol−1, (3.11.7)

and, consequently, the total silicon deposition rate reads

wSi(s) =
∑
r∈R̂

wrSi(s) = VSi
m ω̂Si(s). (3.11.8)

The sticking coefficients have been taken from [CKM86], as described in the benchmark model
[Kle00]. The list of surface reactions and the corresponding sticking coefficients are given in Table
3.3. The values correspond to a substrate temperature of T s = 1000 K.

The surface reaction mechanism can be very complex and include adsorption, desorption, com-
plex surface reactions between surface species only or involving also gas-phase species. The accurate
description of surface deposition requires an appropriate surface reaction scheme, along with the
corresponding thermodynamic and reaction data [KCG03]. The present surface reaction mechanism
is thus a first step towards a more consistent numerical modeling of the deposition process.

3.12 Numerical Method
Equations (3.8.22)-(3.8.25) are discretized over a grid along the z axis of the form

Z = {0 = z1 < z2 < · · · < zN = L} , (3.12.1)

where N is the number of grid points. We denote by nc = ns + 3 the number of unknowns. The
solution vector is denoted by

Ξ = (Ξl)1≤l≤nc = (T, ũ, ṽ, Y1, . . . , Yns), (3.12.2)

and the discretized solution vector is denoted by

ΞZ = (Ξl,i)1≤l≤nc,1≤i≤N , (3.12.3)

where Ξl,i = Ξl(zi). The discretized equations are obtained from a three-point finite difference
scheme. The time derivatives are discretized in a fully implicit manner. The convective terms ap-
pearing in the equations for the tangential velocity, the species mass fractions, and the temperature,
are treated by means of an upwind scheme [Pat80].

The steady discretized equations consist in a system of N×(ns+3) nonlinear algebraic equations,
of the form

FZ(ΞZ) = 0. (3.12.4)

A modified Newton method is applied to the latter system of discretized equations. The correspond-
ing iterates are given as

J(Ξk
Z)(Ξk+1

Z − Ξk
Z) = −λkFZ(Ξk

Z), k = 0, 1, 2 . . . , (3.12.5)
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where Ξk
Z is the kth Newton iteration, λk the kth damping parameter calculated according to the

method of Deuflhard [Deu74], and where

J(Ξk
Z) =

∂FZ
∂ΞZ

(Ξk
Z) (3.12.6)

denotes the Jacobian matrix evaluated at Ξk
Z .

The Jacobian matrix is obtained from the evaluation of the finite differences of FZ

J(ΞZ)U =
FZ(ΞZ + δU)− FZ(ΞZ)

δ
(3.12.7)

along vectors of the form U = Uk0,n0 , indexed by k0 ∈ {1, . . . , nc} and n0 ∈ {1, 2, 3}. For each
k0 ∈ {1, . . . , nc} and n0 ∈ {1, 2, 3}, the vector Uk0,n0 = (Uln)k∈{1,...,nc},n∈{1,...,N} is taken such that
its only nonzero components Uln are those for which k = k0 and n ≡ n0 (mod 3). Consequently,
the evaluation of the Jacobian matrix requires merely 3nc + 1 evaluations of FZ . Furthermore, the
thermochemical properties, namely the molar production rates and transport coefficients, need only
be evaluated every three points when evaluating the perturbed terms FZ(ΞZ + δU), provided that
FZ(ΞZ) has been evaluated first.

Also, due to the use of a three-point discretization scheme, the numerical Jacobian is banded,
that is the Jacobian matrix consists in blocks whose nonzero elements appear only in the first three
diagonals. The numerical inversion of such a matrix can be considerably simplified by using an
appropriate decomposition method given by linear algebra.

The steady equations (3.12.4) are solved by the Newton method after a specified number of non-
stationary iterations, provided the non-stationary solution has approached sufficiently the domain
of convergence of the steady equations. The non-stationary equations for the nth iteration at time
t may be written in the form

A(Ξn
Z) ∂tΞ

n
Z + FZ(Ξn

Z) = 0, (3.12.8)

were Ξn
Z denotes the nth iterate over the grid Z, A(Ξn

Z) is a bloc diagonal matrix, and

∂tΞ
n
Z =

Ξn
Z − Ξn−1

Z

tn − tn−1
(3.12.9)

is the discretized time derivative at time tn. These implicit non-stationary equations are solved by
the Newton method, making use of the following Euler predictor

Ξ̃n
Z = Ξn−1

Z + ∆tn ∂tΞ
n−1
Z . (3.12.10)

Accordingly, the time step at iteration n, ∆tn = tn − tn−1, is chosen such that∥∥∥∥∥Ξn
Z − Ξ̃n

Z

∥∥∥∥∥ '
∥∥∥∥∥1

2
(∆tn)2 ∂tΞ

n−1
Z − ∂tΞn−2

Z

tn−1 − tn−2

∥∥∥∥∥ ≤ ε, (3.12.11)

where ε is taken smaller than 1.

3.13 Results and Discussion
The governing equations (3.8.22)-(3.8.25) for the axisymmetric strained CVD reactor are solved for
the configuration presented in Figure 3.1. The inlet mixture is composed of 0.1 % silane diluted in
helium, namely XSiH4 = 0.1 % and XHe = 99.9 %. The pressure is constant and equal to p0 = 1 atm.
The inlet temperature is T in = 300 K and the inlet normal velocity is win = 10 cm.s−1. The strain
rate α has been varied over several numerical simulation in order to obtain the specified normal
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Figure 3.3 – Temperature profile along the axis of symmetry of the reactor. Continuous line, this
work. Circles, simulations by Kleijn [Kle00].
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by Kleijn [Kle00].
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inlet velocity of 10 cm.s−1. The corresponding value is α = 1.22775 s−1. The substrate temperature
is set at T s = 1000 K.

The axial profiles obtained for the temperature, the normal velocity, the tangential velocity, and
the species mole fractions are compared to the results of the benchmark model presented in [Kle00].
The temperature profile along the axis of symmetry of the reactor is shown in Figure 3.3. Figures 3.4
and 3.5 show the normal and tangential velocity profiles, respectively. Finally, Figure 3.6 represents
the mole fractions of several selected species close to the substrate.

The temperature profile shows a strong gradient in the vicinity of the substrate, associated
with thermal conduction. Therefore, chemical reactions occur exclusively in a localized zone close
to the substrate, where the temperature is sufficiently high to initiate silane dissociation. This is
confirmed by the study of the species concentration profiles. Most of the silane dissociation occurs
between z = 0 cm and z = 0.2 cm, and a significant silane depletion can be observed in this
region. The deposition of the radicals on the substrate explains the very sharp gradients observed
at the boundary. The radicals also diffuse backwards in the upstream direction, depending on their
diffusion length.

The profiles in Figures 3.3-3.6 show an excellent agreement with the simulations of Kleijn [Kle00].
Also, the total deposition rate computed does not differ by more than 1 % from [Kle00]. The
slight differences observed might be explained by different choices for approximation of transport
coefficients, formulation of inlet boundary conditions, or discretization schemes. This validates the
sofware developed against standard models for multicomponent reactive gas flows.
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3.14 Conclusion
We have implemented a self-consistent model for chemical vapor deposition of crystalline silicon in
an axisymmetric reactor. The equations for multicomponent reacting neutral gas flows have been
stated, along with thermodynamic properties, chemistry mechanism and transport fluxes. Equa-
tions have then been expanded using the low Mach number approximation, and the strained flow
equations have subsequently been derived as an exact self similar solution of the isobaric equations
in axisymmetric coordinates. The expressions of transport coefficients have been recalled in section
3.9, and have been calculated by means of the library EGLIB [EG96a] using approximations similar
to those made in the benchmark model [Kle00]. The boundary conditions have also been detailed in
section 3.10, and the heterogeneous reactions mechanism has been taken from [Kle00]. The numeri-
cal methods presented in section 3.12 are slightly different from those used in the benchmark model
[Kle00]. All equations are indeed coupled and discretized implicitly. A modified Newton method
has been used for the resolution of the discretized equations.

The results of our numerical simulations are fully consistent with the benchmark model [Kle00]
as well as with the standard SPIN software [CKE+91], with an accuracy within a few percents. The
species density profiles in the vicinity of the substrate are very close to the benchmark profiles. The
maximum mole fraction of main species are also very close, as well as the deposition rate computed
from surface fluxes on the substrate. This validates the software implemented in this chapter.

Chemical vapor deposition of silicon in general might be more complex than the process de-
scribed in this chapter. In particular, we have restrained ourselves to the deposition of crystalline
silicon for the purpose of software validation against the benchmark model [Kle00]. Besides, the
nucleation of silicon nanoparticles might also occur under specific conditions, inducing thereby a
drastic modification of the process properties.

In the next chapter, the software will be enriched and applied to the modeling of silane plasma
discharges. This will require the incorporation of charged species, including electrons, which will be
coupled to the electric field specified by Poisson’s equation, as well as to the electron temperature
equation. The set of species and the set of gas-phase chemical reactions will also be adapted to the
plasma regime, where the gas temperature is in the range 300-500 K, while the electron temperature
is of the order of a few electronvolts. Boundary conditions for charged species will also be taken
into account with care, since the drift induced by the electric field might exceed by one order of
magnitude the diffusion velocity.

Apart from these difficulties specific to plasma discharge modeling, the framework adopted in
this Chapter, the general formulation of the model equations, including transport fluxes, chemistry
mechanism, thermodynamic properties and boundary conditions, as well as the self similar formu-
lation of strained flow equations, will remain unchanged. Also, the numerical methods employed in
this Chapter are sufficiently robust and optimized to be used for the study of an industrial plasma
reactor.
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Chapter 4

Simulation of a Silane-Hydrogen
Radio-Frequency Plasma Discharge

4.1 Introduction

Plasma enhanced chemical vapor deposition, or “PECVD”, is a low-temperature process which
is routinely used to process high quality materials with various optical and electrical properties.
The quality of the deposited material generally depends on the process parameters and the type of
substrate used, and ranges from amorphous silicon to crystalline silicon, passing by microcrystalline,
or so-called “polymorphous silicon” [RiCNTD+07].

Self-consistent modeling of radio-frequency plasma discharges is crucial for the understanding
and optimization of PECVD processes commonly employed in the fabrication of photovoltaic solar
cells. As standard CVD, PECVD is a complex process involving many parameters, such as pressure,
gas flow rates, or applied potential, which in turn drive many coupled physical quantities, several
of which may be difficult to assess experimentally. The PECVD process is also more complex than
the chemical vapor deposition process, because of the thermal non-equilibrium between electrons
and heavy-species, the sharp potential barrier and the sharp electron temperature peaks accross the
plasma sheaths, the strong coupling between charged-species diffusion and electric drift, and the
strong coupling between the charged species and electric potential imposed by Poisson’s equation.
Due to this extreme complexity, and because experimental data on discharges under practical de-
position conditions remain scarce, numerical simulation is highly desirable for the optimization of
silane-hydrogen plasma discharges. In this chapter, we will consider a discharge in which nanopar-
ticles are absent. The modeling of the nanoparticle dynamics and their coupling to other plasma
parameters will be addressed in Chapter 5.

The numerical modeling of radio-frequency plasma discharges has been extensively studied over
the last thirty years [BL04]. Two main methods are generally employed. For low pressures, due
to the strong departure from local thermal equilibrium the resolution of the Boltzmann equation
is necessary. In general, “particle in cell” or Monte Carlo methods are used. Conversely, when the
pressure is too high, the Boltzmann equation becomes impractical due to the high species densities
and collision frequencies, and a fluid model is required. Fluid models are generally valid for pressures
above 500 mTorr [GJ86], which is the case of the process considered here.

One of the first fluid numerical model of radio-frequency discharge was developed by Graves
and Jensen [GJ86], for a discharge containing two species, namely electrons and positive ions. The
model solved the species continuity equations, coupled to the Poisson’s equation for the electric
potential, and the electron temperature equation, and was followed by many similar models for
both electropositive and electronegative discharges [RTS87] [Boe87] [PE90].

Silane hydrogen mixtures are very reactive and produce many different radicals and species.
Models taking into account such a complex chemistry have also been developed and implemented
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numerically. For pure H2 plasma a very detailed description of chemical kinetics can be obtained,
including vibrational kinetics of H2 [GCC+92], negative ion H− and H atom kinetics, and a good
agreement with experiments has been obtained [HGG99] [DEL+14]. Concerning silane discharges,
due to the production of H2 occurring from the dissociation of SiH4, a correct chemical mechanism
must include H2 plasma chemistry. However, due to the large number of different molecules and
ions appearing in silane discharges, the chemical kinetics are generally simplified compared to pure
H2 discharges. Several models have been proposed and some of them have been compared to
experiments [Nie98] [dBGG04] [LAM06].

In this chapter, the model for non-thermal reactive plasma derived in Chapter 2 is simplified in
order to describe silane-hydrogen radio-frequency plasma discharge in the Torr regime. The model
includes thermal non-equilibrium, two-temperature chemistry, and coupling between charged species
and electric potential. The model is then implemented numerically. The chemical vapor deposition
software validated in Chapter 3 is enriched in order to model a radio-frequency silane-hydrogen
plasma discharge. The fluid plasma equations are solved in axisymmetric geometry using a self
similar model, taking into account a two-temperature hydrogen-silane plasma chemistry, including
electron collision reactions and heavy-species reactions. The deposition process is also described by
a simplified surface reaction mechanism. Results are presented for typical conditions used in low-
temperature silicon epitaxy [RCL12]. A self-consistent computation of the DC bias potential is also
implemented, allowing to study the effect of asymmetric excitation on silane-hydrogen capacitively
coupled plasma discharges.

The radio-frequency process is described in section 4.2. In section 4.3, the governing equations
are stated, along with expressions for the transport fluxes. In section 4.4, the model is simplified
and a self similar formulation is derived. Transport coefficients are described in section 4.5, the
chemistry mechanism in section 4.6, and the electron heavy-species energy exchange term in section
4.7. The boundary conditions are given in section 4.8, and the numerical method is presented in
section 4.10. Results are presented in section 4.11.

4.2 Radio-Frequency Reactor

Figure 4.1 – Parallel plate radio-frequency plasma reactor from the GREMI laboratory, in Université
d’Orléans.

A schematic representation of the radio-frequency reactor is shown in Figure 4.2. The reactor is
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axisymmetric around the z axis, with corresponding polar coordinates r and θ. A silane-hydrogen
gas mixture is injected through a showerhead with a normal inlet velocity. The lower electrode
is grounded, while the upper electrode is driven by a periodic applied potential at a frequency of
f = 13.56 MHz, which is the standard frequency used in industrial radio-frequency reactors.

Figure 4.2 – Schematic representation of the axisymmetric radio-frequency reactor.

Before the plasma is ignited, a steady flow is established in the reactor with a prescribed uniform
pressure. After ignition, the oscillating potential induces an oscillating electric field in the plasma
region located near the electrodes, commonly referred to as the “plasma sheath”. Conversely, the
central region of the discharge, called the plasma bulk, is quasi-neutral. The oscillating electric
field accelerates the electrons in the plasma sheaths, which collide with the heavier neutral carrier
gases, inducing in turn ionization, dissociation, or attachment to the carrier gas. The mixture thus
becomes weakly ionized, and subsequent chemical reactions produce radicals and silicon containing
species, which may depose on the reactor walls.

4.3 General Equations for a Multicomponent Plasma

4.3.1 Conservation equations

The governing equations (2.6.1)-(2.6.5) for a non-thermal multicomponent plasma derived in section
2.6 may be written in the form

∂t(ρYk) + ∂x · (ρYkvh + ρYkVk) = mkωk, k ∈ S, (4.3.1)
∂t (ρhvh) + ∂x · (ρhvh ⊗ vh + p I) + ∂x ·Πh = ρg + nqE, (4.3.2)
∂tEe + ∂x · (Eevh) + pe ∂x ·vh + ∂x ·Qe = J e ·E+ΔEeh, (4.3.3)

∂tEh + ∂x · (Ehvh) + ph ∂x ·vh + ∂xvh : Πh + ∂x ·Qh = Jh ·E+ΔEhe, (4.3.4)
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where as in the preceding chapter ρk denotes the mass density, Yk = ρk/ρ the mass fraction, and
nk = ρk/mk the density of the kth species, while ρ =

∑
k∈S ρk denotes the mass density of the

fluid mixture, and vh the heavy-species mass-averaged velocity. For k ∈ S, Vk denotes the diffusion
velocity of the kth species in the mass-averaged velocity reference frame, mk = Namk its molar mass,
and ωk its molar production rate. Besides, pe, ph and p = pe+ph denote the electron partial pressure,
the heavy-species partial pressure, and the total pressure, respectively, where nh =

∑
i∈H ni. The

vector g is the gravity vector, E is the electric field, and q is the average charge of the mixture

nq =
∑
k∈S

nkqk, (4.3.5)

where n =
∑

k∈S nk = ne + nh. Also, Πh denotes the viscous tensor, Ee and Eh denote the electron
and heavy-species energy per unit volume, respectively, Qe and Qh denote the electron and heavy-
species heat flux, respectively, and J e = neqeVe, respectively Jh =

∑
i∈H niqiV i, is the electron,

respectively the heavy-species, conduction current density. Finally, ∆Eeh = −∆Ehe is the energy
exchange rate between electrons and heavy species due to nonreactive or reactive collisions.

The electric potential ϕ is solution of the Poisson’s equation

∂2
xϕ = −nq

ε0

, (4.3.6)

where ε0 is the vacuum dielectric permittivity, and the electric field reads

E = −∂xϕ. (4.3.7)

The magnetic field has been neglected, as the typical discharge dimensions are sufficiently small to
avoid the generation of magnetic waves [CB11].

4.3.2 Thermodynamics

The perfect gas laws (2.4.31) and (2.4.45) derived from the kinetic theory read

ρe =
peme

RTe
, (4.3.8)

ρh =
phmh

RTh
, (4.3.9)

where Th and Te are the heavy-species and electron temperature, respectively, and mh is the mean
heavy-species molar mass

ρh
mh

=
∑
i∈H

ρi
mi

. (4.3.10)

The energy conservation equations (4.3.3), (4.3.4) can also be expressed in terms of the temper-
atures Te, Th. The heavy-species and electron enthalpies per unit mass, hh and he, respectively, are
given by

ρhhh = Eh + ph, (4.3.11)
ρehe = Ee + pe. (4.3.12)

The heavy-species enthalpy can be decomposed into

ρhhh =
∑
i∈H

ρihi, (4.3.13)
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where hi is the specific enthalpy of the ith heavy species already given in (3.4.9)

hi = hsti +

∫ T

T st

cpi(T
′) dT ′, i ∈ H. (4.3.14)

Similarly, we introduce the heavy-species constant pressure specific heat cph, defined by

ρhcph =
∑
i∈H

ρicpi. (4.3.15)

From the definition of the heavy-species enthalpy (4.3.11) and the heavy-species energy conser-
vation equation (4.3.4), the following enthalpy balance equation is obtained

∂t(ρhhh) + ∂x · (ρhhhvh) + ∂x ·Qh = ∂tph + ∂xph ·vh − ∂xvh : Πh + Jh ·E + ∆Ehe. (4.3.16)

On the other hand, the enthalpy derivatives may be expressed as

∂t(ρhhh) + ∂x · (ρhhhvh) =
∑
i∈H

ρi∂thi +
∑
i∈H

ρivh ·∂xhi +
∑
i∈H

hi(∂tρi + ∂x · (ρivh))

= ρhcph∂tTh + ρhcphvh ·∂xTh − ∂x ·
(∑
i∈H

hiF i

)
+
∑
i∈H

cpiF i ·∂xTh +
∑
i∈H

himiωi,

where F i = ρiV i, i ∈ H, are the heavy-species diffusion fluxes. The evolution equation for the
heavy-species temperature Th thus reads

ρhcph∂tTh + ρhcphvh ·∂xTh + ∂x ·
(
Qh −

∑
i∈H

hiF i

)
= ∂tph + ∂xph ·vh (4.3.17)

−Πh : ∂xvh −
(∑
i∈H

cpiF i

)
·∂xTh −

∑
i∈H

himiωi + Jh ·E + ∆Ehe.

We proceed in a similar fashion for the electron temperature. The electron specific enthalpy per
unit mass

he = hst
e +

∫ T

T st
cpe(T

′) dT ′ (4.3.18)

is such that
ρehe = Ee + pe, (4.3.19)

and is thus solution of the following evolution equation

∂t(ρehe) + ∂x · (ρehevh) + ∂x ·Qe = ∂tpe + vh ·∂xpe + J e ·E + ∆Eeh. (4.3.20)

Since

∂t(ρehe) + ∂x · (ρehevh) = ρe∂the + ρevh ·∂xhe + he(∂tρe + ∂x · (ρevh))
= ρecpe∂tTe + ρecpevh ·∂xTe − ∂x · (heF e)

+ cpeF e ·∂xTe + hemeωe,

the electron temperature equation finally reads

ρecpe∂tTe + ρecpevh ·∂xTe + ∂x · (Qe − heF e) = ∂tpe + vh ·∂xpe (4.3.21)
− cpeF e ·∂xTe − hemeωe + J e ·E + ∆Eeh.
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4.3.3 Transport fluxes

The transport fluxes involved in the conservation equations (4.3.1)-(4.3.4) have been stated in Chap-
ter 2. From equations (2.6.27) and (2.6.33), the electron diffusion velocity and heat flux may be
expressed in the form

Ve =−Deed̂e −
∑
i∈H

Deid̂i − θee∂x lnTe − θeh∂x lnTh (4.3.22)

−
[
Dκh
ee (∂x ·v) +DΘ

ee (Te − Th)
]
d̂e −

[
θκhee (∂x ·v) + θΘ

ee (Te − Th)
]
∂x lnTe,

Qe =− pθeed̂e − p
∑
i∈H

θeid̂i − λ̂ee∂xTe − λ̂eh∂xTh + ne

(5

2
kbTe

)
Ve (4.3.23)

− p
[
θκhee (∂x ·v) + θΘ

ee (Te − Th)
]
d̂e −

[
λ̂κhee (∂x ·v) + λ̂Θ

ee (Te − Th)
]
∂xTe,

where the unconstrained electron diffusion driving force reads

d̂k =
1

p
(∂xpk − nkqkE) , k ∈ S. (4.3.24)

The electron self-diffusion coefficient Dee, the electron self-thermal-diffusion coefficient θee, and the
electron self-partial-thermal-conductivity λ̂ee have been expressed in (2.6.28), (2.6.29) and (2.6.32),
respectively. The electron ith-heavy-species diffusion coefficient Dei = Die, the electron heavy-
temperature thermal diffusion coefficient θeh = θhe, the ith-heavy-species electron-temperature ther-
mal diffusion coefficient θei = θie, and the electron heavy-temperature partial thermal conductivity
λ̂eh have been stated in (2.5.43), (2.5.54), (2.5.45), and (2.5.95), respectively. The remaining trans-
port coefficients Dκh

ee , θκhee , DΘ
ee, θΘ

ee, λ̂κhee , and λ̂Θ
ee, have been expressed in (2.5.96)-(2.5.101).

The heavy species diffusion velocities, viscous tensor and heat flux have also been derived in
Chapter 2, and were expressed in equations (2.6.34)-(2.6.36) as

V i = −
∑
j∈H

Dijd̂j −Died̂e − θih∂x lnTh − θie∂x lnTe, i ∈ H, (4.3.25)

Πh = −ηh
(
∂xvh + (∂xvh)

t − 2

3
(∂x ·vh) I

)
− κh(∂x ·vh) I− ζ(Te − Th) I, (4.3.26)

Qh = −p
∑
j∈H

θhjd̂j − pθhed̂e − λ̂hh∂xTh − λ̂he∂xTe +
∑
j∈H

(5

2
kbTh + Ej

)
njVj, (4.3.27)

where the heavy-species diffusion coefficients Dij, i, j ∈ H, the heavy-species heavy-temperature
thermal diffusion coefficients θih, i ∈ H, the heavy-species self-partial-thermal-conductivity λ̂hh,
and the heavy-species electron-temperature partial thermal conductivity λ̂he have been expressed in
(2.5.42), (2.5.44), (2.5.52), and (2.5.53), respectively. Also, the heavy-species shear viscosity ηh and
volume viscosity κh, and the thermal non-equilibrium viscosity ζ, were given in (2.5.48)-(2.5.50).

4.4 Simplified Model

In the case of a radio-frequency axisymmetric reactor, the general plasma model embedded in
equations (4.3.1)-(4.3.2), (4.3.6), (4.3.17) and (4.3.21) can be simplified in several ways. Indeed, it
is generally sufficient as a first approximation to consider the coupled evolution of charged species,
electric potential and electron temperature.
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4.4.1 Equations

The heavy-species convection velocity is generally neglected

vh = 0, (4.4.1)

and the heavy-species temperature can be considered uniform as a first approximation

Th(t,x) = Th, (4.4.2)

where Th independent of t and x. The momentum equation (4.3.2) and the heavy-species temper-
ature equation (4.3.17) are thus discarded, and the system (4.3.1)-(4.3.4) is reduced to a system of
ns + 2 equations, of the form

∂t(ρYk) + ∂x · (ρYkVk) = mkωk, k ∈ S, k 6= H2, YH2 = 1−
∑
k 6=H2

Yk, (4.4.3)

∂2
xϕ = −nq

ε0

, (4.4.4)

∂t

(3

2
nekbTe

)
+ ∂x ·Qe = J e ·E + ∆Eeh. (4.4.5)

The equation for the main carrier gas H2 is taken such as to ensure the total mass conservation in
the mixture, since

∑
k∈S YkVk = YeVe 6= 0 a priori. Also, the pressure is assumed to be uniform in

the reactor
p(t,x) = p0, (4.4.6)

where p0 is independent of t and x, in agreement with the low Mach number approximation. Equa-
tions (4.4.3) may also be written in their nonconservative form

ρ∂tYk + ∂x · (ρYkVk) = mkωk, k ∈ S, k 6= H2, YH2 = 1−
∑
k 6=H2

Yk, (4.4.7)

where the time derivative of ρ, which is proportional to the time derivative of m, has been neglected.
Indeed, in the approximation vh = 0, the total mass conservation equation reads ∂tρ = ∂x · (ρYeVe),
which is proportional to the mass ratio ε2 and is therefore negligible. Alternatively, the center-of-
mass reference frame equations (2.7.11)-(2.7.15) could have been used, and the assumption vh = 0
would have been replaced by v = 0.

4.4.2 Self similar formulation

As can be seen in Figure 4.2, the cylindrical coordinates (r, θ, z), with corresponding unit vectors
er, eθ and ez, are such that ez is normal to the stagnation plane (O, er, eθ), where O is the origin
located at the centre of the substrate (see Figure 4.2). As in Chapter 3, we assume that the gravity
is either oriented in the normal direction: g = (0, 0, g), either negligible. In this framework, we seek
for a self similar solution of equations (4.4.7), (4.4.4) and (4.4.5), of the form

ρ = ρ(t, z), (4.4.8)
Te = Te(t, z), (4.4.9)

Yk = Yk(t, z), k ∈ S, (4.4.10)
ϕ = ϕ(t, z). (4.4.11)
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From the expressions (4.4.18) and (4.4.21) where the pressure p has been replaced by the spatially
uniform pressure p0, which is valid for a low Mach number flow, the diffusion velocities and the
electron heat flux can be expressed in the form

Vk =
(
0, 0,Vk(t, z)

)
, k ∈ S, (4.4.12)

Qe =
(
0, 0,Qe(t, z)

)
. (4.4.13)

Thus, equations (4.4.7), (4.4.4) and (4.4.5) are rewritten

ρ∂tYk + ∂z(ρYkVk) = mkωk, k ∈ S, k 6= H2, YH2 = 1−
∑
k 6=H2

Yk, (4.4.14)

∂2
zϕ = −nq

ε0

, (4.4.15)

∂t

(3

2
nekbTe

)
+ ∂zQe = neqeVeE + ∆Eeh, (4.4.16)

where
E = −∂zϕ (4.4.17)

is the electric field.

4.4.3 Transport fluxes

As far as the transport fluxes are concerned, the heavy-species viscous tensor (4.3.26) and heat flux
(4.3.27) are not required anymore since they do not appear in the simplified system (4.4.3)-(4.4.5).
Also, the remaining transport fluxes (4.3.22)-(4.3.23), and (4.3.25) are simplified. The Soret effect
is neglected, the species diffusion is reduced to the self-species diffusion driving terms, and the
transport coefficients Dκh

ee , DΘ
ee, θκhee , and θΘ

ee are generally neglected. The species diffusion velocities
are thus taken in the form

Vk = −D∗k
∂xYk
Yk

+ µ∗kE, k ∈ S, k 6= H2, (4.4.18)

where D∗k is the self-diffusion coefficient of the kth species, and the mobility coefficient µ∗k is given
by the Einstein relation

µ∗k =
D∗kqk
kbTk

, k ∈ S, (4.4.19)

where Tk is the temperature of the kth species

Tk =

{
Te, k = e,
Th, k 6= e.

(4.4.20)

Equation (4.4.18) corresponds to the first variational approximation to the first-order multicompo-
nent diffusion coefficients (3.9.12) in a neutral gas mixture [OB81] [Gio99], commonly referred to
as the “Hirschfelder-Curtiss approximation” [HC49], except the term ∂xXk/Xk has been replaced
by ∂xYk/Yk, where Yk = Xkmk/m, that is the spatial derivative of m has been neglected. Also, the
correction velocity [OB81] [Gio99] has been dropped since the mass conservation is ensured by the
equation for H2. Thus, the governing equation (4.4.7) for the kth species depends only on the mass
fraction Yk, and not on Yl, l 6= k. Such a diagonal approximation is valid when one of the species is
in excess while all the other species are in trace amounts [Gio90] [EG94].

Concerning the electron heat flux, the Dufour effect is generally neglected, the heavy-species
temperature gradient is zero since Th was assumed to be constant, and the transport coefficients
λ̂κhee , λ̂Θ

ee, θκhee , and θΘ
ee are generally neglected. Thus, Qe can be taken in the form

Qe =
5

2
nekbTeVe − λ̂ee∂xTe, (4.4.21)

where λ̂ee is the electron self-partial-thermal-conductivity.
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4.5 Transport coefficients
The self-diffusion coefficients D∗k, k ∈ S, are taken according to the “Hirschfelder-Curtiss approxi-
mation” [HC49] [OB81] [Gio99], namely

D∗k =
p(1− Yk)∑
l∈N
l 6=k

pl/Dbin
k,l

, k ∈ S, (4.5.1)

where Dbin
k,l is the binary diffusion coefficient for species pair (k, l), and where N ⊂ S denotes the

indexing set for neutral species. In practice, due to the lack of data on charged species binary
diffusion coefficients, we consider that the charged species diffuse against H2 and SiH4 only. This
has no influence on numerical results, since H2 and SiH4 are in excess and other neutral species are
only present in trace amount.

The electron self-partial-thermal-conductivity is given by the following Drude-Lorentz type for-
mula [Lor05]

λ̂ee =
5

2
nekbD

∗
e . (4.5.2)

Equation (4.5.2) can be obtained from the kinetic theory of a Lorentz gas made of Maxwellian
molecules, that is molecules interacting with a potential proportional to r−5, where r is the inter-
molecular distance [CC70].

The electron binary diffusion coefficients are taken equal to

Dbin
e,SiH4

p = 1.2 · 106 cm2.s−1.Torr, (4.5.3)

Dbin
e,H2

p =
kbTe
qe

7.5 · 105 cm2.s−1.Torr. (4.5.4)

The electron mobilities are plotted as a function of Te in Figure 4.3. The continuous lines correspond
to the values obtained with the Bolsig software [HP05] [Hag16] assuming a Maxwellian electron
distribution function, and the dashed lines correspond to the approximation retained in this work.
The figures show a good agreement with the results of the Bolsig software, although the electron
mobility in hydrogen is slightly underestimated at high electron temperatures.

The binary diffusion coefficients of ions with respect to neutral molecules are taken in the form
[PLB96]

Dbin
ij p = 38.7

kbTh
|qi|

Th√
αjmij

cm2.s−1.Torr, i ∈ I, j ∈ N, (4.5.5)

where mij = mimj/(mi + mj) is the reduced mass of the species pair (i, j) in a.m.u., αj the polariz-
ability of the jth species in Å3 [PLB96]

αH2 = 0.805 Å3
, (4.5.6)

αSiH4 = 4.62 Å3
, (4.5.7)

and other variables are in S.I. units. Finally, the binary diffusion coefficients of neutral species are
computed with the “TRANFT” fitting program [KDLW+86], as in Chapter 3.

4.6 Silane-Hydrogen Plasma Chemistry
The chemical reaction mechanism is composed of a set R of elementary reactions, of the form∑

k∈S

νrfk Mk 

∑
k∈S

νrbk Mk, r ∈ R, (4.6.1)
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Figure 4.3 – Electron binary mobilities as a function of the electron temperature. The continu-
ous lines correspond to the values obtained with the Bolsig software [HP05] [Hag16] assuming a
Maxwellian electron distribution function, and the dashed lines correspond to the approximation
retained in this work. The scattering cross-sections were taken from [IST] for H2 and from [SIG] for
SiH4.

where Mk denotes the chemical symbol of the kth species, and where νrfk and νrbk denote the forward
and backward stoichiometric coefficients of the kth species in reaction r, respectively. According to
expression (2.4.159) from the kinetic theory , the molar production rate of the kth species can be
decomposed into the different contributions from each reaction

ωk =
∑
r∈R

(νrfk − νrbk )τr, (4.6.2)

where τr is the rate of progress of the rth reaction.

Table 4.1 – Species included in the plasma model.

Neutral Species Charged Species

H, H2, SiH2, SiH3, SiH4, e, SiH+
3 , H

+
3 , H

+
2 , H+,

H3SiSiH, Si2H5, Si2H6 SiH−2 , SiH
−
3 , Si2H

−
5 , H3SiSiH−

The chemistry mechanism involves two kinds of reactions: electron collision reactions on the
one hand, which depend on electron temperature Te and are assumed to be irreversible, and heavy-
species reactions on the other hand, which depend on the heavy-species temperature Th. We denote
by Re, respectively Rh, the set of electron collision reactions, respectively the set of heavy-species
reactions, so that R = Re ∪Rh.
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The rate of progress (2.4.160) of a reaction r ∈ R reads

τr = Kf
r

∏
k∈S

γ
νrfk
k −K

b
r

∏
k∈S

γ
νrbk
k , (4.6.3)

where γk = ρYk/mk is the molar concentration of the kth species, and Kf
r and Kb

r are the forward
and backward rate constants of the rth reaction.

When r ∈ Rh is a heavy-species reaction, as a consequence of detailed balancing and reciprocity
relations (2.2.36), the ratio of the rate constants Kf

r and Kb
r is the equilibrium constant of the rth

reaction, as already stated in (2.4.169)

Ke
r(Th) =

Kf
r(Th)

Kb
r (Th)

. (4.6.4)

The reaction rate constant corresponds to the chemical equilibrium proportions, as described by
statistical mechanics [Tol38], and is given by (2.4.168)

lnKe
r(Th) = −

∑
i∈H

νrimi

RTh

(
gatm
i (Th)−

RTh
mi

ln (
patm

RTh
)
)
, (4.6.5)

where gatm
i , i ∈ H, denote the species specific Gibbs functions at atmospheric pressure

gatm
i (Th) = hi(Th)− Thsatm

i (Th), i ∈ H. (4.6.6)

In general, the forward rate constant is approximated by a generalized Arrhenius empirical
relation, of the form

Kf
r(Tk) = ArT

βr
k exp

(
− Er
RTk

)
, (4.6.7)

where Tk is the temperature of the kth species, Ar is the pre-exponential factor, βr the pre-exponential
exponent and Er ≥ 0 the activation energy of the rth reaction. Electron collision reactions are
generally assumed irreversible [References]. For heavy-species reactionns, the backward rate constant
is deduced from the forward rate constant and the equilibrium constant (4.6.5) by the law of mass
action (4.6.4). For some of the heavy-species reactions though, both the forward and backward rate
constants are specified directly in Arrhenius form.

The present model takes into account seventeen species, listed in Table 4.1. The model was
adapted from the chemistry mechanism of de Bleecker and coworkers [dB06], itself originating from
the work of Girshick and coworkers [Bha03] [Aga12]. We considered species containing up to 2 silicon
atoms in order to lower the computation time. Previous results by Agarwal [Aga12] suggest that
this is sufficient for a self-consistent calculation of overall negative ion densities and nanoparticle
nucleation rate.

The set of electron collision reactions for silane-hydrogen plasma chemistry is detailed in Table
4.2. Electron collisions include ionization, dissociation, dissociative attachment, detachment, as well
as recombination reactions. In particular, the formation of negative ions leading to clustering is due
to the dissociative attachment reactions. The reaction rate constants have been taken in Arrhenius
form, and the Arrhenius constants for silane plasma chemistry were taken from [BSGK00]. We do
not consider vibrationally excited silane molecules, since vibrational effects are relatively low in the
range of temperatures generally used for silicon epitaxy, i.e., around 500 K [dB06].

Heavy-species reactions are listed in Table 4.3. They comprise cluster growth reactions, neu-
tralization reactions between positive and negative ions, neutral-neutral reactions, and additional
hydrogen reactions. The cluster growth reactions are responsible for the nucleation of nanoparticles
in the discharge, and are therefore of fundamental importance. The clustering rate constants were
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Table 4.2 – Arrhenius parameters for electron collision reactions.

r Electron collision Ar (mol,cm3,s) βr Er (cal.mol−1) Reference

Ionization
1 SiH4 + e ⇀ SiH+

3 + H + 2e 1.510× 1032 −2.930 553,910 [BSGK00]
2 SiH3 + e ⇀ SiH+

3 + 2e 1.355× 1012 0.900 188,396 [BSGK00]
3 H2 + e ⇀ H+

2 + 2e 8.007× 1010 1.100 392,574 [BSGK00]
4 H + e ⇀ H+ + 2e 1.080× 1016 0.000 178,210 [SFG+96]

Dissociation
5 SiH4 + e ⇀ SiH3 + H + e 1.102× 1021 −1.000 245,421 [BSGK00]
6 SiH4 + e ⇀ SiH2 + 2H + e 5.394× 1021 −1.000 245,421 [BSGK00]
7 H2 + e ⇀ 2H + e 1.023× 1016 0.000 238,347 [BSGK00]
8 H+

3 + e ⇀ H+ + 2H + e 1.220× 1017 0.000 179,380 [SFG+96]
9 H+

2 + e ⇀ H+ + H + e 1.460× 1017 0.000 37,460 [SFG+96]
Dissociative attachment

10 SiH4 + e ⇀ SiH−3 + H 2.269× 1021 −1.627 190,540 [BSGK00]
11 SiH4 + e ⇀ SiH−2 + 2H 2.269× 1021 −1.627 190,540 [BSGK00]
12 SiH3 + e ⇀ SiH−2 + H 3.440× 1015 −0.500 44,740 [BSGK00]

Detachment
13 SiH−3 + e ⇀ SiH3 + 2e 1.900× 1014 0.500 32,425 [BSGK00]
14 SiH−2 + e ⇀ SiH2 + 2e 1.900× 1014 0.500 25,921 [BSGK00]

Recombination and dissociative recombination
15 H+ + 2e ⇀ H + e 3.630× 1037 −4.000 0 [SFG+96]
16 H+

3 + e ⇀ 3H 8.000× 1017 −0.404 0 [SFG+96], [KNF+04]
17 H+

3 + 2e ⇀ H + H2 + e 3.170× 1021 −4.500 0 [SFG+96]
18 H+

2 + 2e ⇀ 2H + e 3.170× 1021 −4.500 0 [SFG+96]
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Table 4.3 – Arrhenius parameters for the heavy-species reactions.

r Reaction Ar (mol,cm3,s) βr Er (cal.mol−1) Reference

Cluster growth
19 SiH−3 + SiH4 = Si2H−5 + H2 6.020× 1011 0.000 0 [BSGK00]
20 SiH−2 + SiH4 = H3SiSiH− + H2 6.020× 1011 0.000 0 [BSGK00]

Neutralization reactions
21 SiH−3 + SiH+

3 = SiH3 + SiH3 1.232× 1018 −0.500 0 [BSGK00]
22 SiH−2 + SiH+

3 = SiH2 + SiH3 1.359× 1018 −0.500 0 [BSGK00]
23 Si2H−5 + SiH+

3 = Si2H5 + SiH3 9.648× 1017 −0.500 0 [BSGK00]
24 H3SiSiH− + SiH+

3 = H3SiSiH + SiH3 1.001× 1018 −0.500 0 [BSGK00]
Neutral-neutral reactions

25 SiH4 + H = SiH3 + H2 1.510× 1013 0.000 2,484 [BSGK00]
26 Si2H6 + H = Si2H5+H2 9.630× 1013 0.000 2,484 [BSGK00]
27 Si2H6 + H=SiH3 + SiH4 4.820× 1013 0.000 2,484 [BSGK00]
28 SiH2 + H2 = SiH4 5.260× 1010 0.000 0 [BSGK00]
29 SiH2 + SiH4 = Si2H6 3.620× 1013 0.000 0 [BSGK00]
30 SiH3 + SiH3 = SiH2 + SiH4 9.030× 1013 0.000 0 [BSGK00]
31 H2 + H2 = 2H + H2 8.610× 1017 −0.700 52,530 [SFG+96]

Reverse rate 1.000× 1017 −0.600 0 [SFG+96]
32 H2 + H = 3H 2.700× 1016 −0.100 52,530 [SFG+96]

Reverse rate 3.200× 1015 0.000 0 [SFG+96]
Additional hydrogen reactions

33 H+
2 + H = H+ + H2 3.850× 1014 0.000 0 [SFG+96], [KNF+04]

Reverse rate 1.900× 1014 0.000 21,902 [SFG+96]
34 H2 + H+

2 ⇀ H+
3 + H 1.270× 1015 0.000 0 [SFG+96], [KNF+04]

35 H+ + 2 H2 ⇀ H+
3 + H2 1.950× 1020 −0.500 0 [SFG+96], [KNF+04]
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computed by [Bha03] as the Langevin rates devided by 10, since the Langevin rates are known
to overestimate anion-neutral reaction rates. In [dB06], this clustering reaction rate constant is
divided by 100 compared to [Bha03], on the basis of experimental resuts obtained by Perrin ar al
[PBEL94]. We adopted the latter value since at a temperature of 500 K the data of Perrin et al.
must prevail. Negative ions remain trapped in the plasma due to the strong potential barrier, and
can thus be neutralized due to electron detachment or neutralization reactions. The neutralization
reactions are the main source of negative ion loss [dB06]. Finally, the H2 plasma chemistry was also
enriched compared to the work of de Bleecker, which considered pure SiH4 chemistry, and the work
of Girshick and coworkers, which considered Ar-SiH4 chemistry. The main positive ion in H2 plasma
is indeed H+

3 , due to the fast conversion reaction [DCL05] [MJA07]

H2 + H+
2 → H+

3 + H. (4.6.8)

The vibrationnally excited states of hydrogen have not been taken into account, neither the presence
of H− ion induced by the dissociative attachment on H2 excited states [KNF+04] [DCL05]. The
H− density is indeed negligible compared to silicon hydride anion densities, and H− ions are thus
expected to have a negligible influence on the plasma properties.

4.7 Energy exchange term
The energy exchange term ∆Eeh = −∆Ehe is expressed from equations (2.6.11), (2.4.104), (2.4.137),
and (2.4.139) as

∆Eeh = ∆Eel
eh + ∆Ein

eh + ∆Echem
eh , (4.7.1)

where ∆Eel
eh is the energy exchange term due to elastic scattering of electrons against heavy species,

∆Ein
eh the energy exchange term associated with inelastic scattering of electrons against heavy

species, and ∆Echem
eh the energy exchange term due to reactive electron collisions. The elastic re-

laxation term is induced by the translational non-equilibrium between electrons and heavy species,
and is generally reduced [LE95] to the zeroth-order term (2.4.105)

∆Eel
eh = ∆E0,el

eh = −3

2
nhkb(Te − Th)

1

τ el , (4.7.2)

which is in general negligible for the process we consider [LE93] [Nie98]. As well, the energy exchange
due to electron inelastic scattering against heavy species is generally approximated by the zeroth-
order term (2.4.109), which can be rewritten in the form

∆Ein
eh = ∆E0,in

eh =
1

2

∑
i∈H

∑
i,i′∈Qi

i′ 6=i

(−∆Eii′)τii′ , (4.7.3)

where τii′ is the rate of progress of the inelastic scattering process (e, i)→ (e, i′)

τii′ =
niaii
Qint
i

ν ii′
ie

(
e−Eii/kbTh − exp

(∆Eii′

kbTe

)
e−Eii′/kbTh

)
. (4.7.4)

The energy exchange due to reactive electron collisions was given in (2.4.174) as

∆Echem
eh = ∆E1,chem

eh =
∑
r∈Re

∆Eerτr, (4.7.5)

where ∆Eer is the net average energy gained by electrons during the rth electron collision reaction.
Thus, from expressions (4.7.3) and (4.7.5), and noting Ie the indexing set for inelastic scattering of
electrons against heavy species, the energy exchange term finally reads [Nie98] [KNF+04]

∆Eeh =
∑

r∈Re∪Ie

∆Eerτr, (4.7.6)

116



4.8. BOUNDARY CONDITIONS

where τr and −∆Eer are, respectively, the rate of progress and the net average electron energy loss
in the rth electron collision. The values adopted for the present study are specified in Table 4.4,
along with the associated references.

Table 4.4 – Net average electron energy loss in reactive collisions.

r Electron collision −∆Eer (eV) Reference

Ionization
1 SiH4 + e ⇀ SiH+

3 + H + 2e 12.09 [BGCR87]
2 SiH3 + e ⇀ SiH+

3 + 2e 8.01 [BGCR87]
3 H2 + e ⇀ H+

2 + 2e 15.43 [PLB96]
4 H + e ⇀ H+ + 2e 13.60 [PLB96]

Dissociation
5 SiH4 + e ⇀ SiH3 + H + e 8.00 [PSd+82]
6 SiH4 + e ⇀ SiH2 + 2H + e 8.00 [PSd+82]
7 H2 + e ⇀ 2H + e 10.50 [JLEP87]
8 H+

3 + e ⇀ H+ + 2H + e 14.87 [JLEP87], [CH88]
9 H+

2 + e ⇀ H+ + H + e 8.67 [JLEP87], [PLB96]
Dissociative attachment

10 SiH4 + e ⇀ SiH−3 + H 6.50 [PLB96]
11 SiH4 + e ⇀ SiH−2 + 2H 8.50 [PLB96]
12 SiH3 + e ⇀ SiH−2 + H 5.50 [PLB96]

Detachment
13 SiH−3 + e ⇀ SiH3 + 2e 1.41 [PLB96]
14 SiH−2 + e ⇀ SiH2 + 2e 1.12 [PLB96]

Recombination and dissociative recombination
15 H+ + 2e ⇀ H + e −13.60 [PLB96]
16 H+

3 + e ⇀ 3H 1.27 [PSd+82], [CH88]
17 H+

3 + 2e ⇀ H + H2 + e −9.23 [CH88]
18 H+

2 + 2e ⇀ 2H + e −4.93 [JLEP87], [PLB96]

4.8 Boundary Conditions

The electron temperatures at both electrodes are specified as

Te|t,0 = T s
e , (4.8.1)

Te|t,L = T in
e , (4.8.2)

where T s
e = T in

e = 5000 K ' 0.43 eV, which is representative of a secondary electron emission
temperature [WG07]. Also, for the range of parameters considered here, the discharge remains in
the “α-regime”, in which secondary electron emission is negligible [BB90] [SG91] [dBGG04].

In the base case, the external capacitor is not taken into account. This is perfectly justified for
a geometrically symmetric reactor with a sinusoidal waveform excitation. The electrode located at
z = 0 is grounded, and a sinusoidal voltage with amplitude ϕrf and frequency f = 13.56 MHz is
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imposed on the electrode located at z = L

ϕ|t,0 = 0, (4.8.3)

ϕ|t,L = ϕrf sin (2πft). (4.8.4)

An alternative boundary condition for the potential at the driven electrode is also implemented in
the following.

The boundary conditions for electrons are taken as

Ye|t,0 = 10−20, (4.8.5)

Ye|t,L = 10−20, (4.8.6)

and for negative ions as

Yi|t,0 = 0, i ∈ I−, (4.8.7)

Yi|t,L = 0, i ∈ I−, (4.8.8)

where I− denotes the set of negative ions. For positive ions, the boundary conditions at both
electrodes are

F i ·n = max
(
Fdrift
i ·n,F+,i

)
, i ∈ I+, (4.8.9)

where I+ denotes the set of positive ions, n denotes the unit vector normal to the surface oriented
towards the electrodes, Fdrift

k = ρkVdrift
k is the drift velocity of the kth species

Fdrift
k = ρkµ

∗
kE, k ∈ S, (4.8.10)

and F+,k is the average mass flux of molecules from the kth species [CC70] whose velocity is directed
towards the wall. This average flux is computed as that of Maxwellian molecules, that is

F+,k =
1

2
ρkvth,k, (4.8.11)

where vth,k is the thermal velocity of the kth species, given by [CC70] [FK72]

vth,k =

(
8kbTk
πmk

) 1
2

, k ∈ S. (4.8.12)

Expression (4.8.11) actually corresponds to the surface deposition rate of neutral species as given
in (3.11.5), with a sticking coefficient of 1.

The boundary condition (4.8.9) is such that when the outwards drift velocity Vdrift
i ·n is large

compared to the thermal velocity vth,i, the diffusion velocity at the boundary is merely equal to the
drift velocity, while in the case when the drift velocity is negligible or oriented inwards, the diffusion
flux at the electrode is merely the thermal flux ρivth,i/4 [MW60] [McD64]. This boundary condition
also ensures that the flux of positive ions is always directed outwards the reactor, since secondary
ion emission is negligible for the discharge we consider.

In the dilution approximation, the boundary conditions associated wih the equation for H2 read

YH2|t,0 = 1−
∑
k 6=H2

Yk|t,0 , (4.8.13)

YH2|t,L = 1−
∑
k 6=H2

Yk|t,L . (4.8.14)
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For other neutral species, the boundary conditions at the upper electrode read

Yn|t,L = Y in
n , n ∈ N, (4.8.15)

where Y in
n is the nth species inlet mass fraction, and the boundary conditions at the substrate are

those of a catalytic plate (
ρYnVn

)∣∣
t,0

= mnω̂n, n ∈ N, (4.8.16)

where ω̂n is the surface molar production rate of the nth neutral species.

Table 4.5 – Heterogeneous reaction mechanism adopted for the present model and corresponding
Arrhenius parameters.

i Deposition reaction Ai βi Ei(K) Reference

1 H(g) −→ 1
2
H2(g) 0.01 0.0 0.0 [KNF+04]

2 SiH2(g) −→ Si(s) + H2(g) 0.8 0.0 0.0 [PLB96]
4 SiH3(g) −→ Si(s) + H2(g) + H(g) 0.09 0.0 0.0 [PLB96]
5 SiH4(g) −→ Si(s) + 2H2(g) 5.37× 10−2 0.0 9,400 [CKM86]
6 H3SiSiH(g) −→ 2Si(s) + 2H2(g) 0.8 0.0 0.0 [PLB96]
7 Si2H5(g) −→ 2Si(s) + 2H2(g) + H(g) 0.09 0.0 0.0 [dB06]
8 Si2H6(g) −→ 2Si(s) + 3H2(g) 5.37× 10−1 0.0 9,400 [CKE89]

The molar surface production rates ω̂k, k ∈ S, are obtained from a given set R̂ of heterogeneous
reactions describing the deposition process, in the form∑

l∈S∪Ŝ

ν̂rfl Ml 

∑
l∈S∪Ŝ

ν̂rbl Ml, r ∈ R̂, (4.8.17)

where Ŝ denotes the set of surface species, and ν̂rfl and ν̂rbl denote the forward and backward
stoichiometric coefficients of the lth species in the rth surface reaction, respectively. The molar
surface production rate is then computed from the knowledge of the rates of progress τ̂r, r ∈ R̂

ω̂k =
∑
r∈R̂

(ν̂rfk − ν̂rbk ) τ̂r, k ∈ S ∪ Ŝ. (4.8.18)

The surface reactions are assumed irreversible. Each surface reaction r ∈ R̂ is associated with a
unique gas-phase heavy-species reactant, denoted by ir ∈ H. The rate of progress of reaction r ∈ R̂
is calculated as in (3.11.5)

τ̂r =
sir

1− sir
2

γir

√
RTh

2πmir

, r ∈ R̂, (4.8.19)

where γir = ρYir/mir is the molar concentration of the depositing species, and sir is its sticking
coefficient. As in (3.11.5), the reactive probability sir is adjusted by the factor 1 − sir/2 in order
to remain valid in the limit sir → 1, where nearly all the molecules of species ir stick to the wall
without being reflected [MW60] [KCG03].

The silicon deposition rate (in cm.s−1) associated with each surface reaction r then follows

wrSi(s) = VSi
m ν̂

rb
Si(s)τ̂r, (4.8.20)
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where ν̂rb
Si(s) is the backward soichiometric coefficient of Si(s) in the rth surface reaction, and VSi

m is
the molar volume of crystalline silicon

VSi
m � 12.06 cm3.mol−1, (4.8.21)

and consequently the total silicon deposition rate reads

wSi(s) =
∑
r∈R̂

wr
Si(s) = VSi

m ω̂Si(s). (4.8.22)

The heterogeneous reaction mechanism used in the present software corresponds to the deposition
of amorphous silicon by low temperature PECVD. The sticking coefficients associated with the main
silicon radicals have been taken from [PLB96]. They have been taken in Arrhenius form

γi(Th) = AiT
βi

h exp
(
− Ei

Th

)
, i ∈ H, (4.8.23)

where Ai is the pre-exponential factor, βi the pre-exponential exponent and Ei ≥ 0 the activation
energy in Kelvin. The list of surface reactions and the corresponding Arrhenius parameters are
given in Table 4.5.

4.9 External Circuit

+=

Figure 4.4 – Schematic representation of the discharge and external circuit, including the generator
and blocking capacitor. The potential is decomposed in a “bare” potential ϕlχ and a “relaxation”
potential ϕ0V .

An alternative boundary condition for the potential at the driven electrode was also implemented.
In this new formulation, the external blocking capacitor is taken into account, which will allow for
the determination of the DC bias in an asymmetric discharge. A schematic representation of the
discharge and external circuit is presented in Figure 4.4. For the sake of simplicity, no matching
box is considered. In order to compute the potential at the driven electrode ϕl(t) = ϕ(t, L), the
potential accross the discharge is decomposed in the form

ϕ = ϕ0V + ϕlχ, (4.9.1)

120



4.9. EXTERNAL CIRCUIT

where ϕ0V is the solution of Poisson’s equation with the actual charge distribution in the reactor at
time t, which can be asymmetric, and a driven potential equal to zero

∂2
xϕ0V = −

∑
k∈S

nkqk
ε0

, x ∈ Ω, ϕ|Γ0 = 0, ϕ|Γl = 0, (4.9.2)

and χ is the “bare” potential, that is the solution of the Laplace’s equation accross the reactor

∂2
xχ = 0, x ∈ Ω, χ|Γ0 = 0, χ|Γl = 1, (4.9.3)

which depends only on the geometry of the reactor and can be computed a priori. In the preceding
equations, Γ0 and Γl denote the respective electrode surfaces, and the walls are grounded so the
potentials must vanish at the reactor walls.

The conservation of total current in the circuit can then be written in the form

IRF(t) =
dQc

dt
= Cb

dϕc

dt
= Cb

(
dϕap

dt
− dϕl

dt

)
, (4.9.4)

from which ϕl is solution to

Cb
dϕl

dt
= Cb

dϕap

dt
− IRF(t) (4.9.5)

where ϕap is the applied potential.
The current can be expressed in terms of the physical variables directly as

Irf(t) = −
∫

Γl

(j + ε0∂tE) ·n ds, (4.9.6)

where
j =

∑
k∈S

nkqkvk (4.9.7)

is the conduction current, and ε0∂tE is the displacement current. Alternatively, the following ex-
pression can be obtained [Qui05]

Irf(t) =
1

ϕl(t)
P = −

∫
Ω

∂xχ · j dω + Cv
dϕl

dt
, (4.9.8)

where Cv is the “bare” capacitance of the reactor

Cv = ε0

∫
Γl

∂xχ ·n ds, (4.9.9)

which depends only on the geometry of the reactor and can be computed a priori.
Therefore, the potential ϕl is the solution of the following differential equation

(Cb + Cv)
dϕl

dt
= Cb

dϕap

dt
+

∫
Ω

∂xχ · j dω, (4.9.10)

which is solved self-consistently within the software. In this work, we have preferred expression
(4.9.8) to (4.9.6) since it has revealed more stable numerically. Note that in the one-dimensional
approximation, equation 4.9.10 becomes

(Cb + Cv)
dϕl

dt
= Cb

dϕap

dt
+
S

L

∫ L

0

j dz, (4.9.11)

and the “bare” capacitance reads

Cv =
ε0S

L
, (4.9.12)
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where S is the surface of the electrodes, which is the classical expression for the capacitance of a
parallel plate capacitor. In practice, the geometry of a reactor is complicated, and due to the law
of electromagnetics, even a small feature in the structure of the reactor can change considerably the
value of the “bare” capacitance, so that it is better to measure it experimentally. Besides, since the
blocking capacitance is generally taken large before Cv, the actual value of Cv does not matter and
equation (4.9.10) only depends on Cb.

Figure 4.5 – Picture of the ARCAM multiplasma monochamber reactor in LPICM.

4.10 Numerical Implementation
The numerical implementation follows the same framework as in section 3.12 of the preceding
chapter. We denote by nc = ns + 2 the number of unknowns. The solution vector is denoted by

Ξ = (Ξl)1≤l≤nc = (Te, ϕ, Y1, . . . , Yns), (4.10.1)

The discretized equations are obtained from a three-point finite difference scheme. The time deriva-
tives are discretized in a fully implicit manner. The discretization of the transport fluxes requires
special care, for the electric field acts as a convection velocity.

4.10.1 Discretization

As in Chapter 3, equations (4.4.14)-(4.4.16) are discretized over a grid along the z axis of the form

Z = {0 = z1 < z2 < · · · < zN = L} , (4.10.2)
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Figure 4.6 – Interior of the ARCAM reactor in LPICM (Left); grounded rotating plate (Middle);
RF electrode and plasma box (Right).

where N is the number of grid points. The discretized solution vector is denoted by

ΞZ = (Ξk,i)1≤k≤nc,1≤i≤N . (4.10.3)

Discretization of the species diffusion velocities It is known that, in the case of a neutral gas,
an unproper discretization of the species diffusion flux ρYkvh −D∗k∂zYk, where vh is the convection
velocity, may lead to unstable or less consistent numerical solution. For the sake of stability and
consistency, the discretization must take into account the order of magnitude of the Peclet number

Pk,i+1/2 =
(ρvh∆z

D∗k

)
i+1/2

, k ∈ S, 1 ≤ i ≤ N, (4.10.4)

where (∆z)i+1/2 = zi+1−zi is the mesh size around midpoint zi+1/2 = (zi+zi+1)/2. Several schemes
are possible to avoid such drift-induced instability, more or less consistent, for example the upwind
discretization scheme, the “hybrid” scheme, the “power-law” scheme, or the “exact” exponential
scheme [Pat80].

Similarly, in the plasma case the electric drift behaves as a convection velocity. Indeed, the
species diffusion velocities, expressed in equations (4.4.18), read in the axisymmetric coordinates

Vk = −D∗k
∂zYk
Yk

+ µ∗kE, k ∈ S, k 6= H2. (4.10.5)

Since the electric field in the sheaths may reach fairly large values, namely the associated Peclet
number

Pk,i+1/2 =
(µ∗kE∆z

D∗k

)
i+1/2

, k ∈ S, 1 ≤ i ≤ N, (4.10.6)

may be large compared to 1, the central difference scheme may lead to numerical instability, as for
the convection-diffusion problem. In general, the exponential discretization scheme is adopted to
avoid such instability, in the form

(YkVk)i+1/2 =
(D∗k

∆z

)
i+1/2

Pk,i+1/2
Yk,i e

Pk,i+1/2
2 − Yk,i+1 e

−
Pk,i+1/2

2

e
Pk,i+1/2

2 − e−
Pk,i+1/2

2

, k ∈ S, 1 ≤ i ≤ N, (4.10.7)

where Yk,i denotes the mass fraction of the kth species at grid point zi. The exponential scheme
(4.10.7) is often referred to as the “Scharfetter-Gummel” numerical scheme in the litterature [SG69]
[Boe87].
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Discretization of the electron heat flux Equation (4.4.16) for the electron temperature in-
volves the electron heat flux (4.4.21), which reads in axisymmetric coordinates

Qe =
5

2
nekbTeVe − λ̂ee∂zTe. (4.10.8)

where λ̂e was expressed in equation (4.5.2). As the species diffusion velocities, the electron heat flux
can be discretized by the exponential or “Scharfetter-Gummel” numerical scheme [Pat80] [SG69].
This yields

(Qe)i+1/2 =
( λ̂ee

∆z

)
i+1/2

PQe,i+1/2
Te,i e

PQe,i+1/2
2 − Te,i+1 e

−
PQe,i+1/2

2

e
PQe,i+1/2

2 − e−
PQe,i+1/2

2

, 1 ≤ i ≤ N, (4.10.9)

where PQe,i+1/2 is the corresponding Peclet number

PQe,i+1/2 =
( 5

2
kbneVe∆z
λ̂ee

)
i+1/2

, 1 ≤ i ≤ N. (4.10.10)

4.10.2 Resolution

Contrarily to the chemical vapor deposition process described in Chapter 3, the radio-frequency
discharge problem is fully non-stationary, since the potential imposed on the RF electrode depends
on time. Yet, the applied signal being periodic, after a few cycles the process reaches a pseudo-
stationary state, in which the relevant physical variables, namely the electron temperature Te, the
electric potential ϕ and the species mass fractions Yk, k ∈ S, are periodic with the same period as
the RF signal.

As in Chapter 3, the equations for the nth iteration at time t may be written in the form

A(Ξn
Z) ∂tΞ

n
Z + F Z(Ξn

Z) = 0, (4.10.11)

were Ξn
Z denotes the nth iterate over the grid Z, A(Ξn

Z) is a bloc diagonal matrix, and

∂tΞ
n
Z =

Ξn
Z −Ξn−1

Z

tn − tn−1
(4.10.12)

is the discretized time derivative at time tn. These implicit non-stationary equations are solved by
the modified Newton method already described in section 3.12.

4.11 Results and Discussion

Simulations have been carried out under typical conditions for plasma enhanced low-temperature
epitaxy of silicon [RCL12]. The geometry is that of Figure 4.2. The interelectrode distance is set
equal to 2 cm. For the base case, the inlet gas mixture is composed of 85 % hydrogen and 15 % silane,
that is XH2 = 85 % and XSiH4 = 15 %. The pressure is set at p0 = 2.28 Torr, the heavy-species
temperature is taken equal to Th = 500 K. We first present results for symmetric radio-frequency
waveforms. Then, a self-consistent computation of the DC bias is implemented and the effect of
asymmetric waveforms is studied.
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Figure 4.7 – Pseudo-steady-state electric potential (a), electric field (b), electron temperature (c)
and electron density (d) profiles along the axis of symmetry of the reactor at several instants of the
radio-frequency cycle, namely ft = 0.0, 0.25, 0.5, and 0.75.
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Figure 4.8 – Charged species density profiles along the axis of symmetry of the reactor, averaged
over an RF period.
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Figure 4.9 – Neutral species density profiles along the axis of symmetry of the reactor, averaged
over an RF period.
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4.11.1 Symmetric Discharge

Figures 4.5 and 4.6 depict the ARCAM reactor used in PICM for several decades. This reactor, as
most research reactors, is actually geometrically asymmetric due to the relatively small surface area
of the electrodes. In particular, the reactor walls are grounded, so that the grounded area is larger
than the powered area. This induces an asymmetry in the current flowing into the discharge, which
in turn translates into a DC bias at the powered electrode, due to the accumulation of charge between
the blocking capacitor, illustrated in Figure 4.2, and the reactor. In standard industrial processes,
however, the reactors used have much larger lateral dimensions, and the DC bias induced by the
geometrical asymmetry is generally negligible. This justifies the use of a symmetric one-dimensional
geometry.

The frequency is set at f = 13.56 MHz, and the applied potential amplitude is ϕrf = 100 V.
For those “base case” conditions, the power dissipated in the discharge is equal to 5 W. The initial
profiles are uniform over the reactor length. Time iterations are performed with timesteps bounded
by 0.1 ns, until a pseudo-steady-state is reached, where the relative changes in the main plasma
properties do not exceed 10−5 between two cycles. The electron temperature and electric potential
reach a pseudo-steady-state after a few thousand cycles. The charged species densities reach a
pseudo-periodic state after approximately 20,000 cycles, while some of the neutral species densities
require up to 100,000 cycles to reach a pseudo-steady-state.

The pseudo-steady-state electric potential, electric field, electron temperature, and electron den-
sity profiles along the axis of symmetry of the reactor are shown in Figure 4.7, at four different
instants of the radio-frequency cycle, namely ft = 0.0, ft = 0.25, ft = 0.5 and ft = 0.75. As
can be seen on these figures, the imposed potential induces an oscillating electric field accross the
reactor. The quasi-neutrality is generally ensured in the center of the discharge, called the “bulk”
plasma, so that the electric field is significant mostly in the vicinity of the electrode surfaces, in the
region referred to as the “plasma sheaths”. Also, the potential is quasi-concave because electrons are
more mobile and less easily trapped in the plasma bulk, so that the net charge density is essentially
positive accross the reactor. The electron temperature is in the range 1− 2 eV in the plasma bulk,
and oscillates between 1−2 eV and 6−7 eV in the sheaths. The pseudo-steady-state electron density
is of the order of 109 cm−3, which is relatively low compared to commonly observed radio-frequency
plasma discharges. This is due to the presence of negative ions in silane plasma discharges, which
are the dominant negatively charged species.

The pseudo-steady-state density profiles, averaged over an RF cycle, are shown in Figures 4.8
and 4.9, respectively for charged species and neutrals. The main positive ion is the SiH+

3 ion, and
the ionization ratio of silane is equal to

XSiH+
3

XSiH4

= 3.0× 10−6, (4.11.1)

at the center of the discharge. This result is comparable to the value obtained by Salabas et al. in
[SGA02]. The silane depletion rate accross the reactor length is equal to 4 %.

The main negatively charged species are the negative ions Si2H−5 and H3SiSiH−. These species
are produced from the clustering reactions between the smaller negative ions SiH−2 and SiH−3 and
silane, namely reactions 19 and 20 of Table 4.3. These species are known to be the main precursors
of the nanoparticle nucleation in silane plasma discharges [BSGK00]. The electron density is of the
order of 109 cm−3, that is one order of magnitude lower than the overall negative ion density.

As expected, H+
3 ion is dominant over H2+ and H+ ions, but its density is one order of magnitude

lower than that of silicon containing ions. The hydrogen ionization ratio is equal to

XH+
3

XH2

= 1.7× 10−8 (4.11.2)
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Figure 4.10 – Main radicals (Left) and ion (Right) densities at the center of the reactor as a function
of the silane dilution ratio.

at the center of the discharge. For comparison in [DCL05] Diomede et al. obtained a ratio of the
order of 10−7 for a pure H2 discharge, and Salabas et al. obtained a ratio of roughly 7 · 10−8 in for
a 7 %-93 % SiH4-H2 discharge [SGA02]. A possible explanation for this relatively low ionization
ratio of hydrogen is the presence of silane, which is more easy to ionize than hydrogen, since its
ionization energy is significantly lower. Results are also in good agreement with experimental results
of [HDD+94].

The SiH3 radical produced by the dissociation of silane is the dominant radical, and Si2H6 is the
second most abundant neutral spcies. Atomic hydrogen is also abundantly present in the reactor,
and the dissociation degree of molecular hydrogen is equal to

XH

XH2

= 2.7× 10−5, (4.11.3)

at the center of the discharge.
The influence of the silane dilution in H2 is investigated in Figure 4.10. The pressure and

applied potential have been kept equal to 2.28 Torr and 100 V, respectively, as in the base case.
As can be seen on this Figure, increasing the dilution ratio tends to hinder the rate of clustering
reactions leading to the formation of Si2H−x ions, and also decrease the density of SiH+

3 ion. Also,
the electronegativity decreases as the electron density does not decrease substantially when the
dilution ratio is varied from 15 % to 2.5 %. It is well known that at high H2 dilution ratio, the films
produced tend to be microcrystalline (µc-Si), while at high silane flow rate the films are generally
hydrogenated amorphous silicon a-Si:H. The significant increase in hydrogen atom density as the
dilution is increased could explain the transition to microcrystalline deposition, as H atoms, which
are very reactive, have been shown to enhance crystallization of silicon nanoparticles [VB05] and
are also expected to enhance crystallization within the deposited layer. Interestingly, Si2Hx silicon
radical densities decrease as the dilution ratio is increased, following the trend of Si2H−x ions, while
SiH2 density increases, following the trend of SiH−x ions.
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Figure 4.11 – Main radicals (Left) and ion (Right) densities at the center of the reactor as a function
of the RF voltage.

Finally, the influence of the radio-frequency power is investigated in Figure 4.11. The pressure
and silane inlet mole fraction have been kept equal to 2.28 Torr and 15 %, respectively, as in the
base case. As expected, increasing the power increases the ionization rate as well as the silicon
clustering reaction rates. Also, the plasma tends to become less electronegative, which is consistent
with the increase in the DC bias observed when increasing RF power in an asymmetric discharge
setup under similar conditions [Kim12]. However, from a practical viewpoint, increasing the RF
power also increases ion flux and energy, as well as dust formation, and thus induce impurities in
the deposited layers [Kim12].

4.11.2 Asymmetric Excitation

As mentioned in the preceding subsection, industrial reactors are generally geometrically symmet-
ric. However, the use of asymmetric excitation waveforms is now seen as an interesting tool to
control independently the ion flux and ion energy in a capacitively coupled radio-frequency dis-
charge [DSHC09] [SSC09] [LDJB12]. This kind of waveform generally induce a nonnegligible DC
bias even in a geometrically symmetric discharge, due to the temporal asymmetry of the applied
potential. Additionally, in research reactors the evolution of the DC bias is strongly related to
the formation of nanoparticles and powders [BBH96] [WB12] [Kim12], and is often used as a tool
for controlling the discharge conditions and deposition process. This is a stong motivation for im-
plementing a self-consistent calculation of the DC bias in the plasma fluid model, as described in
section 4.9. In a one-dimensional formulation, no geometrical asymmetry will be observed, so in the
following we will consider “tailored voltage waveforms”.

We first consider a two-frequency waveform that is the sum of a fundamental frequency and its
first harmonic [HCBM08]

ϕap(t) = ϕrf
[

cos (ωt+ ψ0) + cos (2(ωt+ ψ0))
]
, (4.11.4)
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Figure 4.12 – Electric potential profile averaged over a radio-frequency cycle (a) and electron tem-
perature profiles at four different instants of the radio-frequency cycle (b) under a two-frequency
waveform excitation. The fundamental frequency is f = 13.56 MHz and the applied potential
amplitude is ϕrf = 100 V. Other parameters are those of the base case.

where ω = 2πf is the RF pulsation and f = 13.56 MHz. The pressure is set at p = 2.28 Torr, and
the silane inlet mole fraction is kept at X in

SiH4
= 15 %. Simulation results are shown in Figure 4.12.

Under such conditions, the average electric potential is clearly asymmetric, and a DC bias potential
of ϕdc = −29 V has appeared. This in line with the analytical expression of the DC bias derived in
[DSHC09], in the form

ϕdc = −ϕmax + εϕmin

1 + ε
, (4.11.5)

where ε is a geometrical asymmetry parameter. For ε = 1, that is if all the asymmetry could be
attributed to the amplitude asymmetry of the applied signal, the DC bias observed would be of
−25 V [DSHC09] [Bru15]. However, the asymmetry of the signal induces additional asymmetry
between the two electrodes, which explains the difference with this theoretical value. The electron
temperature profile is also strongly asymmetric, with a higher excitation peak occuring in the vicinity
of the powered electrode during the sheath contraction period. This is consistent with the results
of Donkó et al. [DSHC09].

Another type of waveforms has recently been considered, whose asymmetry is not an amplitude
asymmetry, as in the preceding example, but a slope asymmetry. Sawtooth-like waveforms are
obtained by truncating the Fourier series of a “sawtooth” function [BGO+15]

ϕap(t) = ϕrf

Nrf∑
k=1

1

k
sin (kωt). (4.11.6)

This kind of waveform also induces a DC bias on the powered electrode, which has revealed sensitive
to the chemistry employed. In particular, when an electronegative gas is used such as CF4, the sign
of the DC bias is reversed compared to the argon case. When H2 is used as a gas precursor, an
intermediate behavior is observed with a less pronounced asymmetry effect, attributed to the lower
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mass of hydrogen [BLG+16]. Therefore, an investigation of the effect of sawtooth-like waveform on a
silane-hydrogen plasma is desirable, since silane and hydrogen respond differently to such waveforms.

Simulations have been run for a silane-hydrogen discharge excited with sawtooth waveforms
(4.11.6), in a perfectly symmetric reactor with an interelectrode distance of 2.5 cm, a potential
amplitude of ϕrf = 200 V, and at a pressure of 900 mTorr. Those conditions are close to the
conditions used in [BLG+16]. Figure 4.13 shows the values of the normalized DC bias as a function
of the SiH4 dilution ratio. The DC bias is positive, as was the case with CF4. This can be explained
by the electronegativity of silane. Given the very low densities of H+

x positive ions compared to
silicon hydride ions, hydrogen ions do not play a significant role on the bias formation. However,
silane is less electronegative than CF4, and the electron density remains comparable to the main
negative ion densities under the conditions considered. This can explain the relatively low values
of DC bias obtained, compared to CF4 chemistry, although further investigation should be carried
out.
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4.12 Conclusion
The chemical vapor deposition software developed in Chapter 3 has been extended in order to
model self-consistently a radio-frequency discharge in silane-hydrogen. The Poisson’s equation for
the electric potential and the evolution equation for the electron temperature have been incorporated
and coupled to the existing set of equations. The convection velocity has been neglected, and the
expressions for transport fluxes have been simplified using approximations routinely employed in the
modeling of non-thermal plasmas. The self similar formulation in axisymmetric coordinates has been
conserved. A complete chemistry mechanism has been incorporated, taking into account electron
collisions depending on the electron temperature Te, and heavy-species reactions depending on the
heavy-species temperature Th. A surface chemistry mechanism has also been used for modeling the
interaction of the neutral species with the substrate.

Simulations have been performed under typical conditions for plasma-enhanced low-temperature
epitaxy of silicon. The numerical method used in Chapter 3 for chemical vapor deposition has
been conserved. The problem is fully non-stationary, and the plasma parameters are shown to
reach a pseudo-steady-state, in which the discharge properties are quasi-perodic, after a few tens
of thousands of RF cycles. The plasma is electronegative, with a majority of SiH+

3 positive ions
and Si2H−x negative ions. The results obtained are in agreement with previous studies under similar
conditions. A study of the influence of silane dilution ratio and RF power was carried out. The
results are in good qualitative agreement with previous experimental studies under conditions for
deposition of amorphous silicon.

Finally, a self-consistent calculation of the DC bias potential was implemented, by taking into
account the blocking capacitor in the external circuit. This allowed for the study of excitation
by asymmetric waveforms. The effect of amplitude asymmetry was first considered by using a
two-frequency waveform. In this case, the value of the bias potential depends essentially on the
amplitude ratio of the applied signal, and the bias obtained was found to be close to theoretical
predictions and previous results in argon discharges. The effect of a new kind of waveforms, called
“sawtooth” waveforms, was also investigated. The DC bias was found to be of the same sign as for
CF4 chemistry, which can be attributed to the electronegativity of silane. However, the value of
the DC bias is much lower than was observed for CF4 in similar conditions. A possible explanation
is the lower electronegativity of silane. Under the conditions considered, the influence of hydrogen
ions was found to be negligible.

The plasma model will be enriched in Chapter 5 with a sectional model for nanoparticles. The
negative ions containing two silicon atoms Si2H−x are known to be the main precursors of nanoparticle
nucleation [BSGK00], and their rate of clustering with silane molecules will be used as the nucleation
rate for nanoparticles. The incorporation of nanoparticles will induce additional complexity, since
the characteristic time governing the nanoparticle evolution, typically of the order of the µs, far
exceeds the plasma properties characteristic times, of the order of the RF period Trf = 1/f =
7.37× 10−8 s.
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Chapter 5

Nanoparticle Formation in a
Silane-Hydrogen Plasma Discharge

5.1 Introduction

The presence of nanoparticles, microparticles, and possibly powder is an important feature of silane-
hydrogen plasmas, which has a significant impact on silicon thin-film deposition process. If the
deposition of amorphous silicon (a-Si:H) at low pressure and RF power is generally explained by the
contribution of SiH3 radicals [Str05], most models fail at explaining deposition rates and material
properties under conditions where particle nucleation occurs [RiCHS+98]. In particular, the depo-
sition of so-called “polymorphous silicon” (pm-Si:H), as well as low-temperature plasma enhanced
silicon epitaxy are obtained under conditions close to powder formation [RiCHS+98] [RCL12].

The formation and behavior of nanoparticles and microparticles in silane plasma discharges has
been studied extensively over the last decades, both from the experimental and numerical viewpoints.
A more detailed presentation of the historical developments may be found in [Bou99]. We only
mention the pioneering experimental works of Watanabe and coworkers [WSK+96], and Boufendi,
Bouchoule and coworkers [BB94], which led to the identification of the four distinct phases of particle
formation, illustrated in Figure 5.1. J. Perrin and coworkers [PBEL94], following Hollenstein and
coworkers [HDD+94], also accomplished a tremendous experimental work on the study of silane
plasma discharge chemistry, which contributed to identify the main clustering reactions leading to
the nucleation of nanoparticles.

From the numerical point of view, Girshick, Swihart and coworkers developed for the first time
a kinetic model for silicon hydride clustering in low-temperature silane plasma [BSGK00]. Their
model used a group additivity scheme to predict the thermochemical properties of large silicon
hydride clusters, and data from ab initio calculations. Reaction rate constants were estimated
from available experimental data and cross-sections. Clustering was principally due to reactions
between negative ions and neutral species, in accordance with experimental results of Hollenstien
[HDD+94]. Bhandarkar, Kortshagen and Girshick coupled this kinetic model to a sectional model for
nanoparticles in a quasi-one-dimensional formulation for low pressure argon-silane plasmas [BKG03]
[Bha03].

Akdim and Goedheer developed a self-consistent model for the transport of dusts in silane-
hydrogen plasma [AG03], accounting for electric drift, diffusion, ion drag and thermophoresis. Dusts
were assumed to be monodispersed with prescribed radius and corresponding equilibrium charge,
and coupled to a one-dimensional plasma fluid model. Nucleation was not taken into account self-
consistently and the total dust density was taken as an input parameter. They also introduced a
“time splitting” procedure to speed up the convergence towards a quasi-steady state solution [AG03].

Bogaerts, de Bleecker, and Goedheer investigated the nucleation of nanoparticles in silane dis-
charges [dBBGG04] [dBGG04] [dB06]. Their one-dimensional plasma fluid model accounted for the
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chemical kinetics of silicon hydrides containing up to 12 silicon atoms, following the work of Girshick
et al.. According to their model, over 90 % of the dust formation was initiated by the clustering
reaction between SiH−3 and SiH4. They also observed a delay in nucleation when gas temperature
is increased, in agreement with experimental observations. Their model was then coupled to a sec-
tional model accounting for nucleation, coagulation, and transport of nanoparticles. The clustering
reaction rate of the largest silicon anions was taken as a source term for nucleation of nanopar-
ticles [dBG06]. The charge of a nanoparticle of a given size was taken equal to its equilibrium
value, and surface growth of nanoparticles was not taken into account. They obtained quasi-steady-
state nanoparticle density profiles and charge distributions in a pure silane discharge. They also
investigated the effects of different forces on nanoparticles [dBBG04] [dBBG05].

In the meantime, Warthesen and Girshick implemented a self-consistent one-dimensional plasma
fluid model, coupled to a sectional model for nanoparticles accounting for nucleation, coagulation,
and surface growth [WG07] [War06]. The nanoparticles were sorted out in sections of given size
and charge, so that the charging dynamics was modeled self-consistently. They obtained results
for a silane plasma discharge diluted in argon at 100 mTorr. Their model did not consider the
complete chemical kinetics of clustering but imposed a fixed nucleation rate over a short period of
time at the beginning of the simulations, and a fixed surface growth rate. Their results evidenced
four distinct phases of nanoparticle growth, namely a charge-limited phase, a charge accumulation
phase, an early ion drag phase, and a sheath interaction phase. They also showed a qualitative
agreement with laser light scattering experiments by Rózsa et al. [RBG01], although the influence of
coagulation was found to be underestimated. Finally, Agarwal and Girshick [AG11] [AG12] [Aga12]
modified the coagulation rates in order to take into account the image potential between neutral
and charge particles, which can strongly enhance the coagulation [RG09]. They also investigated
the effect of gravity, thermophoresis, and neutral drag. They further incorporated a gas phase
chemical mechanism allowing for a self-consistent evaluation of nucleation and nanoparticle surface
growth rates. Pulsed radio-frequency discharges were also investigated as a way of controlling the
nanoparticle nucleation [LAG17].

More recently, Michau and Hassouni have developed a self-consistent model for carbonaceous
particle formation in an argon graphite cathode dc discharge used for simulating parasitic discharges
expected under tokamak divertor domes [MH10] [MAL+16]. Their model coupled a DC discharge
module base on hybrid Monte Carlo analytic simulations, a cluster module describing the kinetics of
particle formation, and a particle module including nucleation, transport, coagulation, and particle
surface growth, and a self-consistent calculation of average mass and average charge.

The regime of main interest for photovoltaic applications corresponds to the intermediate regime
where the plasma experiences the α→ γ′ transition, as depicted in Figure 5.1. Indeed, this regime
corresponds to improved deposition rate and material quality, and both the deposition of so-called
“polymorphous” silicon and the low-temperature plasma enhanced epitaxy of crystalline silicon are
obtained under such conditions [RiCHS+98] [RCL12]. In this regime, the nanoparticle size remains
generally below 10 nm, which is beyond the current resolution of most experimental techniques. In
particular, it is currently not possible to measure directly the density nor the size distribution of such
a nanoparticle cloud. Furthermore, due to the high surface reactivity of silicon radicals and clusters,
traditional plasma probe measurements are not straightforward in silane-hydrogen discharges. As a
consequence, there is a lack of experimental data on the nanoparticle early coagulation phase, and
previous numerical studies have generally focused on the latest phase of particle cloud formation,
where coagulation is dominant, and where dust particle radius ranges up to 10 − 250 nm, and
possibly higher. In particular, the argon-silane chemistry considered by Girshick and coworkers is
known to enhance powder formation compared to silane or silane-hydrogen chemistry. As well, de
Bleecker and coworkers considered pressures in the range 100−300 mTorr, an interelectrode distance
of 3 cm, a frequency of 50 MHz, and a power of 5 Watts.

In this Chapter, a fully coupled numerical model for nanodusty silane-hydrogen plasma discharge
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Figure 5.1 – Schematic representation of powder formation in silane plasmas. Results from
[RiCNTD+07].

is implemented, and a numerical investigation of the early phase of particle growth is carried out.
The pristine plasma software presented in Chapter 4 has been extended to account for nucleation,
coagulation, surface growth, and transport of nanoparticles. A sectional model with sections of given
size and charge has been used, following the method of Girshick and coworkers [WG07] [AG12]. The
enhancement due to electrostatic interaction between charged particles and the influence of image
potential are taken into account for coagulation. The model is fully coupled and fully non-stationary.

In section 5.2, the sectional model is described and the general sectional equation is stated. In
section 5.3, the computation of the nucleation rate from the gas phase chemical kinetics is described,
and the expression for the coagulation rate is derived in section 5.4. The nanoparticle surface growth
rate due to deposition of plasma species or radicals on nanoparticles is expressed in section 5.5, and
the charging rates due to collection of electrons or ions in section 5.6. The nanoparticle transport
fluxes is given in 5.7, and the self-consistent plasma-nanoparticle equations are summarized in section
5.8. Results are presented and discussed in section 5.9.

5.2 Sectional Model

We denote by nc(t,x, v) the continuous distribution function for aerosol particles of a given charge
number c. The continuous distribution depends on the volume of the particle v, and is a solution
to the general dynamic equation [Fri00]

∂nc
∂t

+ ∂x · (ncVc) +
∂

∂v

(
nc(t, v)Ic(t, v)

)
=

[
∂nc
∂t

]
nuc

+

[
∂nc
∂t

]
coag

+

[
∂nc
∂t

]
charge

, (5.2.1)

where Vc is the diffusion velocity of aerosol particles with charge number c, Ic is the particle current
associated with nanoparticle surface growth, [∂nc

∂t
]nuc is the nanoparticle nucleation source term due

to the cluster growth of plasma species, [∂nc

∂t
]coag is the coagulation source term, and [∂nc

∂t
]charge is the

nanoparticle source term due to charging through ion or electron capture.
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The sectional model consists in sorting the nanoparticles into a finite number of discrete bins of
a given size p = 1, . . . , Np and charge c = −K−, . . . , K+, over which the particle volume density is
assumed to be constant:

vnc(t,x, v) = ypc(t,x), v ∈]vp−1, vp[, (5.2.2)

and solving the evolution equations for the densities in each section

Npc(t,x) =

∫ vp

vp−1

nc(t,x, v) dv = ypc(t,x) ln

(
vp
vp−1

)
, 1 ≤ p ≤ Np, −K− ≤ c ≤ K+, (5.2.3)

The sectional model is thus equivalent to approximating the continuous density by

nc(t,x, v) =

Np∑
p=1

1]vp−1,vp[(v)
Npc(t,x)

v ln
(

vp
vp−1

) , −K− ≤ c ≤ K+, (5.2.4)

for almost every v ∈ R.
Upon introducing the volume contained in each section

Vpc(t,x) =

∫ vp

vp−1

vnc(t,x, v) dv = ypc(t,x)(vp − vp−1), 1 ≤ p ≤ Np, −K− ≤ c ≤ K+. (5.2.5)

the sectional density can be expressed as

Npc(t,x) =
Vpc(t,x)

vp
, 1 ≤ p ≤ Np, −K− ≤ c ≤ K+, (5.2.6)

where vp is the average volume in size section p

vp =
vp − vp−1

ln
(

vp
vp−1

) , 1 ≤ p ≤ Np. (5.2.7)

The equations for the sectional volumes Vpc, 1 ≤ p ≤ Np, −K− ≤ c ≤ K+, are generally obtained
by multiplying the general dynamic equation (5.2.1) by v, and integrating over the volume v:

∂Vpc
∂t

+ ∂x · (VpcVpc) =

[
∂Vpc
∂t

]
nuc

+

[
∂Vpc
∂t

]
growth

+

[
∂Vpc
∂t

]
coag

+

[
∂Vpc
∂t

]
charge

, (5.2.8)

where Vpc is the average diffusion velocity of nanoparticles in section (p, c), and the terms on the
right hand side are the respective source terms associated with nucleation, nanoparticle surface
growth or condensation, coagulation, and charge fluctuations. The equations for the densities Npc,
Npc, 1 ≤ p ≤ Np, −K− ≤ c ≤ K+, are then deduced dividing equation (5.2.8) by vp, and read
[GTS80] [WG07]

∂Npc

∂t
+ ∂x · (NpcVpc) =

[
∂Npc

∂t

]
nuc

+

[
∂Npc

∂t

]
growth

+

[
∂Npc

∂t

]
coag

+

[
∂Npc

∂t

]
charge

. (5.2.9)

5.3 Nucleation
The nucleation rate is taken equal to the production rate of Si3H−x negative ions induced by the
clustering reactions

H3SiSiH− + SiH4 ⇀ Si3H−6 + H2 (5.3.1)
Si2H−5 + SiH4 ⇀ Si3H−7 + H2, (5.3.2)
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that is [
∂Npc

∂t

]
nuc

= δp1δc(−1)(knucnH3SiSiH−nSiH4 + knucnSi2H−5
nSiH4), (5.3.3)

where knuc is the reaction rate constant [dBG06]

knuc = 1.0× 10−12 cm3.s−1. (5.3.4)

The freshly nucleated particles are added to section of size p = 1 and charge c = −1.

5.4 Coagulation
The coagulation term appearing in the general dynamic equation (5.2.1) reads [GTS80][

∂nc
∂t

]
coag

=
1

2

∑
a+b=c

∫ v

0

βab(ṽ, v− ṽ)na(ṽ)nb(v− ṽ) dṽ−
∑
a

∫ v

0

βca(v, ṽ)nc(v)na(ṽ) dṽ, (5.4.1)

where βab(v, ṽ) is the coagulation coefficient of aerosol particles of charge a and volume v with
aerosol particles of charge b and volume ṽ, and where for the sake of simplicity the dependance on
t and x has been dropped. The term βab(t,x, v, ṽ)na(t,x, v)nb(t,x, ṽ) dvdṽ represents the number
of particles of size v + ṽ arising from coagulation of a particle of size v with a particle of size ṽ, at
time t and position x.

In order to compute the net coagulation rate [∂Vpc
∂t

]coag into section (p, c), one has to distinguish
between several subcases, as follows.

1. The mass flux into section (p, c) due to coagulation between particles from sections of size
strictly lower than p reads, when p ≥ 2∑

c1+c2=c

1

2

∫ vp−1

v0

∫ vp−1

v0

δ(vp−1 < u + v < vp)(u + v)βc1,c2(u, v)nc1(u)nc2(v) dudv. (5.4.2)

2. The mass flux into section (p, c) due to coagulation between a particle of size strictly lower
than p and a particle of size p reads, when p ≥ 2∑

c1+c2=c

∫ vp−1

v0

∫ vp

vp−1

δ(u + v < vp)(u + v)βc1,c2(u, v)nc1(u)nc2(v) dvdu. (5.4.3)

3. The mass flux outwards section (p, c) due to coagulation with a particle of size strictly lower
than p, growing into a particle of size p, reads, for any p ∈ {1, . . . , Np}∑

c2

∫ vp−1

v0

∫ vp

vp−1

δ(u + v < vp)uβc,c2(u, v)nc(u)nc2(v) dudv. (5.4.4)

4. The mass flux outwards section (p, c) due to coagulation with a particle of size strictly lower
than p, growing into a particle of size strictly larger than p, reads, when 2 ≤ p ≤ Np − 1∑

c2

∫ vp−1

v0

∫ vp

vp−1

δ(u + v > vp)uβc,c2(u, v)nc(u)nc2(v) dudv. (5.4.5)

5. The mass flux into section (p, c) due to coagulation between particles from sections of size p
reads, when p ≥ 2∑

c1+c2=c

1

2

∫ vp

vp−1

∫ vp

vp−1

δ(u + v < vp)(u + v)βc1,c2(u, v)nc1(u)nc2(v) dudv. (5.4.6)
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6. The mass flux outwards section (p, c) due to coagulation with a particle of the same size p and
of a different charge, growing into a particle of size p, reads, for any p ∈ {1, . . . , Np}∑

c2 6=c

∫ vp

vp−1

∫ vp

vp−1

δ(u + v < vp)uβc,c2(u, v)nc(u)nc2(v) dudv. (5.4.7)

7. The mass flux outwards section (p, c) due to coagulation with a particle of the same size p and
charge c, growing into a particle of size p, reads, for any p ∈ {1, . . . , Np}

1

2

∫ vp

vp−1

∫ vp

vp−1

δ(u + v < vp)(u + v)βc,c(u, v)nc(u)nc(v) dudv. (5.4.8)

8. The mass flux outwards section (p, c) due to coagulation with a particle of the same size p
and of a different charge, growing into a particle of size strictly larger than p, reads, when
p ≤ Np − 1 ∑

c2 6=c

∫ vp

vp−1

∫ vp

vp−1

δ(u + v > vp)uβc,c2(u, v)nc(u)nc2(v) dudv. (5.4.9)

9. The mass flux outwards section (p, c) due to coagulation with a particle of the same size p and
charge c, growing into a particle of size strictly larger than p, reads, when p ≤ Np − 1

1

2

∫ vp

vp−1

∫ vp

vp−1

δ(u + v > vp)(u + v)βc,c2(u, v)nc(u)nc2(v) dudv. (5.4.10)

10. The mass flux outwards section (p, c) due to coagulation with a particle of size strictly larger
than p reads, when p ≤ Np − 1∑

c2

∫ vNp

vp

∫ vp

vp−1

uβc,c2(u, v)nc(u)nc2(v) dudv. (5.4.11)

From the preceding results, the net coagulation rate into section (p, c) reads[
∂Vpc
∂t

]
coag

= (5.4.12)

1

2

Np∑
p1=1

Np∑
p2=1

∑
c1+c2=c

∫ vp1

vp1−1

∫ vp2

vp2−1

δ(vp−1 < u + v < vp)(u + v)βc1,c2(u, v)nc1(u)nc2(v) dudv

−
∑

(p2,c2)6=(p,c)

∫ vp2

vp2−1

∫ vp

vp−1

uβc,c2(u, v)nc(u)nc2(v) dudv

− 1

2

∫ vp

vp−1

∫ vp

vp−1

(u + v)βc,c(u, v)nc(u)nc(v) dudv,

which can be rewritten in the form[
∂Vpc
∂t

]
coag

=
∑
p1<p2

∑
c1+c2=c

βpcp1c1p2c2Vp1c1Vp1c2 +
∑
p1

∑
c1≤c2
c1+c2=c

βpcp1c1p1c2Vp1c1Vp1c2

−
∑
p2

∑
c2

βpcp2c2VpcVp2c2 ,
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where

βpcp1c1p2c2 = (5.4.13)
∫ vp1

vp1−1

∫ vp2

vp2−1

δ(vp−1 < u + v < vp)(u + v)βc1,c2(u, v)

uv(vp2 − vp2−1)(vp1 − vp1−1)
dudv, (p2, c2) 6= (p1, c1),

1

2

∫ vp1

vp1−1

∫ vp2

vp2−1

δ(vp−1 < u + v < vp)(u + v)βc1,c2(u, v)

uv(vp2 − vp2−1)(vp1 − vp1−1)
dudv, (p2, c2) = (p1, c1),

and

βpcp2c2 =

∫ vp2

vp2−1

∫ vp

vp−1

uβc,c2(u, v)

uv(vp2 − vp2−1)(vp − vp−1)
dudv (5.4.14)

are the sectional coagulation coefficients.
The coagulation kernel is expressed as [WG07]

βcd(u, v) = f(qc, qd, r(u), r(v))β(u, v), (5.4.15)

where r(v) is the radius of a ball of volume v

r(v) =
(3v

4π

) 1
3
, (5.4.16)

and β(u, v) is the coagulation kernel between neutral particles in the “free molecular regime”, i.e.,
when the particle diameter dp is negligible compared to the particle mean free path lp [Fri00]

β(u, v) =
( 3

4π

) 1
6
(6kbTh

ρp

) 1
2
(1

u
+

1

v

) 1
2
(
u

1
3 + v

1
3

)2

. (5.4.17)

The neutral coagulation kernel depends on the gas temperature Th and the particle volume density
ρp. For silicon nanoparticles, the volume density is taken equal to [dB06]

ρp = 2.3kg.m−3. (5.4.18)

Equation (5.4.17) can be obtained from the kinetic theory of gases for rigid spherical molecules
[CC70] [Fri00]. The factor f(qc, qd, r(u), r(v)) in (5.4.15) is the enhancement factor due to the
respective charges qc and qd carried by the coalescing particles, and reads [KB99] [AG12]

f(q1, q2, r1, r2) =



1, q1 = q2 = 0,

1− q1q2

4πε0(r1 + r2)kbTh
, q1q2 < 0,

exp
(
− q1q2

4πε0(r1 + r2)kbTh

)
, q1q2 > 0,

E (q1, r1, r2), q2 = 0, q1 6= 0,

(5.4.19)

where E (q1, r1, r2) denotes the image potential for an interaction between a neutral an a charged
particle.

Generally, the charge enhancement factor is taken constant over each nanoparticle size section
[Aga12]

f(qc, qd, r(u), r(v)) = f(qc, qd, rp, rq), u ∈]vp−1, vp[, v ∈]vq−1, vq[. (5.4.20)
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5.5 Nanoparticle Surface Growth

5.5.1 Sectional growth rate

The expression of the sectional growth rate is a critical issue. In the present study, the “orbital motion
limited” theory will be used for the description of charged species interactions with nanoparticles
[All92].

The continuous nanoparticle surface growth rate Ic(t, v) is given by [Fri00]

Ic(t, v) =
(∑
l∈S

ω̂lpcV
Si
mν

l
Si

)
s(v) (5.5.1)

where ω̂lpc is the average molar surface flux of the lth gaseous species on a nanoparticle of size p and
charge c, νlSi is the average number of Si atoms in a molecule of the lth species depositing on the
surface of a nanoparticle upon collision, VSi

m is the molar volume of silicon, and s(v) is the surface
of a sphere of volume v

s(v) = π
1
3 6

2
3v

2
3 . (5.5.2)

The sectional nanoparticle surface growth term is obtained from integration of the particle cur-
rent v ∂

∂v
[n(t, v)Ic(t, v)] over v, which yields integrating by part[

∂Vpc
∂t

]
growth

= −
∫ vp

vp−1

v
∂

∂v

(
nc(t, v)Ic(t, v)

)
dv,

= Hpc(t)Vpc + Ip−1c(t)− Ipc(t),

where
Ipc(t) = vpnc(t, vp)Ic(t, vp) (5.5.3)

is the intersectional growth rate and Hpc(t) is the intrasectional growth rate, which reads

Hpc(t) =
(∑
l∈S

ω̂lpcV
Si
mν

l
Si

)sp
vp
, (5.5.4)

where sp is the average surface of particles of size p

sp =

∫ vp
vp−1

nc(t,x, v)s(v) dv∫ vp
vp−1

nc(t,x, v) dv
=

3

2
π1/362/3

v
2/3
p − v2/3

p−1

ln
( vp
vp−1

) . (5.5.5)

The density at the interface between section p and p+1, nc(t, vp), was left undefined in expression
(5.2.4) and can be chosen arbitrarily, and so is the intersectional growth rate (5.5.3). For the sake of
numerical stability, it is desirable that the total number density be conserved during surface growth
[WS85], namely

Hpc
Vpc
vp

=
Ipc
vp
− Ipc

vp+1

, 1 ≤ p ≤ Np − 1, −K− ≤ c ≤ K+, (5.5.6)

from which the intersectional growth rate reads [WS85]

Ipc =
vp+1

vp+1 − vp
HpcVpc, 1 ≤ p ≤ Np − 1, −K− ≤ c ≤ K+. (5.5.7)

Also, the growth rate into the smallest section must be zero

I0c = 0, −K− ≤ c ≤ K+, (5.5.8)
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and the growth rate out of the largest section is traditionally taken equal to zero

INpc = 0, −K− ≤ c ≤ K+, (5.5.9)

which is valid provided that the mass flux into the largest section is negligible in the timescale
considered.

The nanoparticle surface growth term can then be rewritten in terms of the sectional densities
Npc, 1 ≤ p ≤ Np − 1, −K− ≤ c ≤ K+. This yields[

∂Npc

∂t

]
growth

=
vp−1

vp − vp−1

Hp−1cNp−1c −
vp

vp+1 − vp
HpcNpc. (5.5.10)

5.5.2 Average surface flux

The average molar surface flux ω̂lpc of molecules of the lth species onto particles in section (p, c),
where 1 ≤ p ≤ Np − 1, −K− ≤ c ≤ K+, depends on the respective charges qc and ql.

Surface flux of a neutral species onto a neutral particle When qc = 0 and ql = 0, the
surface flux is equal to the thermal flux [Fri00]

ω̂lpc =
1

4
slpcγlvth,l, (5.5.11)

where γl = nl/Na is the molar concentration of the lth species, slpc is the accomodation coefficient
of the lth species on a particle of section (p, c), and vth,l is the thermal velocity of the lth species

vth,l =
(8kbTl
πml

) 1
2
, l ∈ S. (5.5.12)

Surface flux of a charged species onto a charged particle with opposite signs When
qcql < 0, the surface flux is equal to

ω̂lpc =
1

4
γlvl

(
1− 2

qpqc
4πε0rpmlv

2
l

)
, (5.5.13)

where γl = nl/Na is the molar concentration of the lth species, and where vl is an average macroscopic
velocity of the lth species, given by [dB06]

vl =
(
v2
l + (2vth,l)

2
) 1

2 . (5.5.14)

Surface flux of a charged species onto a charged particle with the same sign When
qcql > 0, the surface flux is equal to

ω̂lpc =
1

4
γlvl exp

(
− 2

qpqc
4πε0rpmlv

2
l

)
. (5.5.15)

Surface flux of a neutral species onto a charged particle When qc 6= 0 and ql = 0, the
surface flux is taken in the form (5.5.11)

ω̂lpc =
1

4
s̃lpcγlvth,l. (5.5.16)

where s̃lpc is an effective accomodation coefficient. In practice most of the surface growth can be
attributed to SiH4, and the corresponding accomodation coefficient is independent of (p, c)

s̃SiH4
pc = s̃SiH4 . (5.5.17)
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Surface flux of an ion onto a neutral particle When qc = 0 and ql 6= 0, the surface flux is
taken according to the Orbital Motion Limited, or “OML” theory, as

ω̂lpc =
1

4
γlvl. (5.5.18)

In a future study, we intend on considering the effect of the image potential on the surface flux of
ions onto neutral nanoparticles.

5.6 Charge fluctuations rate
The source term for charge fluctuations can then be written in the form[

∂Npc

∂t

]
charge

= νep,c+1Np,c+1 +
∑
l∈I−

νlp,c+1Np,c+1 +
∑
l∈I+

νlp,c−1Np,c−1 (5.6.1)

− νepcNpc −
∑
l∈I−

νlpcNpc −
∑
l∈I+

νlpcNpc, (5.6.2)

where I− and I+ denote the sets of negative ions and positive ions, respectively, and νlpc is the
collection frequency of molecules from the lth species by particles in section (p, c)

νlpc = 4πr2
pNaω̂

l
pc. (5.6.3)

5.7 Nanoparticle Transport
Nanoparticle transport is governed by a classical drift-diffusion equation [Fri00]. The sectional
drift-diffusion velocity is taken in the form [Cha43] [Fri00] [AG03]

NpcVpc =
1

fpc
F ext
pc −Dpc∂xNpc, (5.7.1)

where fpc is the friction coefficient of particles in section (p, c), F ext
pc is the sum of external forces

acting on particles in section (p, c), and Dpc is the diffusion coefficient of particles in section (p, c),
given by the Stokes-Einstein expression [Fri00]

Dpc =
kbTh
fpc

. (5.7.2)

In the free molecule range, that is when the particle diameter is negligible compared to the particle
mean free path dp � lp, the friction coefficient follows the Epstein’s law [Eps24] [Fri00]

fpc =
4

3
πr2

pn

√
8kbTm

π

(
1 +

πα

8

)
, (5.7.3)

where n and T are the density and temperature of the background gas, respectively, rp is the average
radius of particles of size p, m is the mean mass of the mixture

1

m
=
∑
l∈S

Yl
ml

, (5.7.4)

and α is an accomodation coefficient representing the fraction of the gas molecules that leave the
surface in equilibrium with the surface, the remaining fraction 1− α being specularly reflected.
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Finally, external forces comprise gravity, ion drag, and electric drift

F ext
pc = F grav

pc + F ion
pc + F drift

pc . (5.7.5)

No neutral drage is considered, since the mixture convection velocity is neglected. The effect of
neutral drag is not significant for the sizes of nanoparticles considered in the following. The gravity
field reads

F grav
pc =

4

3
πr3

pρpg, (5.7.6)

where ρp is the volume density of silicon nanoparticles, and g is the gravity vector. The electric
drift force reads classically

F drift
pc = qcE. (5.7.7)

The ion drag force is decomposed according to the Orbital Motion Limited, or “OML” theory into
a collection force and an orbital force

F ion
pc = F coll

pc + F orb
pc . (5.7.8)

The collection force is the momentum transfer due to collection of ions by nanoparticles in section
(p, c), and reads [BKF+92]

F coll
pc =

∑
l∈I

πb2
cvlnlmlvl, (5.7.9)

where bc is the collection parameter, given by

b2
c =


r2
p

[
1− 2qcql

4πε0rpmlv
2
l

]
, qcql < 0,

r2
p exp

[
− 2qcql

4πε0rpmlv
2
l

]
, qcql > 0,

r2
p, qc = 0.

(5.7.10)

The orbital force is due to the deflection of a nanoparticle induced by ions approaching its surface
without being collecting, and reads [BKF+92]

F orb
pc =

∑
l∈I

4πb2
π/2Γgvlnlmlvl, (5.7.11)

where bπ/2 is the effective impact parameter

bπ/2 = rp

(
− qcql

4πε0rpmlv
2
l

)
, (5.7.12)

Γg is the integral of the Coulomb logarithm from bc to λd

Γg =
1

2
ln
(λ2

d + b2
π/2

b2
c + b2

π/2

)
(5.7.13)

where λd is the linearized Debye length

1

λ2
d

=
1

λ2
e

+
1

λ2
l

, (5.7.14)

which depends on the respective electron and lth ion Debye lengths

λe =
(ε0kbTe
neq2

e

) 1
2
, (5.7.15)

λl =
(ε0mlv

2
l

nlq2
l

) 1
2
, l ∈ I. (5.7.16)
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5.8 Plasma-Nanoparticle Model
The plasma-nanoparticle model describing the coupled evolution of electron temperature, electric
potential, plasma species densities, and nanoparticle densities, is now summarized. The plasma
equations (4.4.3)-(4.4.5) are modified accordingly and solved consistently with equation (5.2.9).
The fully-coupled equations then read

∂t(ρYk) + ∂x · (ρYkVk) = mkωk −
Np∑
p=1

K+∑
c=−K−

mkL
k
pc, k ∈ S, k 6= H2, (5.8.1)

YH2 = 1−
∑
k 6=H2

Yk, (5.8.2)

∂2
xϕ = −nq

ε0

−
Np∑
p=1

K+∑
c=−K−

Npcqc
ε0

, (5.8.3)

∂t

(3

2
nekbTe

)
+ ∂x ·Qe = J e ·E + ∆Eeh −

Np∑
p=1

K+∑
c=−K−

∆Ee
pc, (5.8.4)

∂Npc

∂t
+ ∂x · (NpcVpc) =

[
∂Npc

∂t

]
nuc

+

[
∂Npc

∂t

]
growth

+

[
∂Npc

∂t

]
coag

+

[
∂Npc

∂t

]
charge

, (5.8.5)

where Lkpc is the loss term for the kth species due to deposition onto particles of section (p, c) [War06]

Lkpc = νkpcNpc, k ∈ S, 1 ≤ p ≤ Np, −K− ≤ c ≤ K+, (5.8.6)

and ∆Ee
pc is the electron energy loss term due to collisions with nanoparticles of section (p, c) [War06]

∆Ee
pc = − qcqe

4πε0rp
Lepc. (5.8.7)

The boundary conditions for the plasma variables, namely the electron temperature, electric
potential and plasma species mass fractions, have been given in section 4.8. For the nanoparticles,
the boundary conditions depend on the charge of the section considered. The densities of negative
particles are assumed to vanish at both electrodes

Npc|t,0 = 0, 1 ≤ p ≤ Np, −K− ≤ c ≤ −1, (5.8.8)

Npc|t,L = 0, 1 ≤ p ≤ Np, −K− ≤ c ≤ −1, (5.8.9)

while for positive and neutral particles the density gradients vanish at both electrodes

(∂xNpc ·n)|t,0 = 0, 1 ≤ p ≤ Np, 0 ≤ c ≤ K+, (5.8.10)

(∂xNpc ·n)|t,L = 0, 1 ≤ p ≤ Np, 0 ≤ c ≤ K+, (5.8.11)

where n denotes the unit vector normal to the surface.

5.9 Results and Discussion
The non-stationary plasma-nanoparticle model has been incorporated into the plasma software
described in Chapter 4. Equations (5.8.1)-(5.8.5) are solved iteratively over a specified number of
radio-frequency cycles. Time iterations are performed with time steps bounded by 2.5 × 10−10 s.
Unlike for the pristine plasma, the nanoparticle characteristic time scales being much longer than
the plasma characteristic time scales, no pseudo-steady-state is reached, and transient profiles must
be considered. We consider in particular the early stage of nanoparticle formation, which is believed
to play a crucial role in the silicon deposition process.
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5.9.1 Parameters

The conditions considered in Chapter 4, which are typical conditions for silicon epitaxy [RCL12],
have been conserved. The inlet gas mixture contains 85 % hydrogen and 15 % silane, that is
XH2 = 85 % and XSiH4 = 15 %. The pressure is set at p0 = 2.28 Torr, the heavy-species temperature
is taken equal to Th = 500 K. The frequency is set at f = 13.56 MHz, and the applied potential
amplitude is ϕrf = 100 V. The initial particle profiles are uniform over the reactor length. The cycle-
averaged pseudo-steady-state profiles obtained from the pristine plasma model of Chapter 4 are taken
as initial profiles for electron temperature, electric potential and plasma species mass fractions. The
corresponding density profiles were plotted in Figures 4.8 and 4.9. We adopt logarithmic spacing
for section volumes, namely

vp+1 = γvp, 1 ≤ p ≤ Np. (5.9.1)

The logarithmic spacing factor is taken equal to γ = 2.85. Since we are interested in the early
stages of nanoparticles growth, the absolute charge carried by a nanoparticle does not exceed a few
elementary charges [dB06] [Aga12].
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Figure 5.2 – Temporal evolution of the time-averaged densities of electrons, ions, and nanoparticles
of each charge at the center of the discharge (left) and density profiles of nanoparticles of each size
at the center of the discharge (right), for different values of s̃SiH4 .
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5.9.2 Investigation of nanoparticle surface growth rate

We first consider the influence of the accomodation coefficient s̃SiH4 of silane on charged nanoparti-
cles. Indeed, this is the main parameter driving the nanoparticle growth rate at early stages, and
the values found in the literature may vary significantly. In [War06], a uniform surface growth rate
of 12 nm.s−1 is applied, while in [Aga12], the surface growth rate is computed from the collision
frequency according to the kinetic theory of rigid elastic spherical molecules [CC70] [FK72], multi-
plied by the surface sticking coefficient of the molecule considered, with a sticking coefficient of 10−5

for SiH4. Finally, in [dB06] the nanoparticle surface growth is not taken into account. In order to
shed light on nanoparticle surface growth, the coagulation is turned off, and we consider only five
sections of size, and three sections of charges, namely

qc = −1, 0,+1. (5.9.2)

Figure 5.2 shows the temporal evolution of the main species densities at the center of the dis-
charge during the early stage of particle growth. The accomodation coefficient has been varied
between s̃SiH4 = 1 × 10−5 (above), s̃SiH4 = 5 × 10−4 (middle), and s̃SiH4 = 1 × 10−2 (below). The
densities of negative, neutral, and positive nanoparticles, negative and positive ions, and electrons,
are represented on the left of the figure, while the size distribution of nanoparticles is shown on the
right.

One can see a rapid increase in the density of negative nanoparticles, which tend to replace
negative ions as the main negatively charged species within the plasma. As expected, neutral and
positive nanoparticle densities remain low compared to negative nanoparticle density, since the
latter remain trapped inside the plasma due to the potential barrier. In the meantime, the electron
density slightly decreases, while the positive ions density remains stable or slightly increases, which
is coherent with experimental observations for this phase of particle growth [WB12].

Table 5.1 – Reaction rate constant computed for a molecule of radius 2 Å, and a gas temperature
of 500 K.

s̃SiH4 1× 10−5 5× 10−4 1× 10−2 2.5× 10−2

k (cm3.s−1) 4.3× 10−16 2.2× 10−14 4.3× 10−13 1.1× 10−12

As can be seen in Figure 5.2, the evolution of the main species densities are not affected drastically
by the value of the accomodation coefficient of silane, while the growth rate is very sensitive to
s̃SiH4 . It is readily seen from (5.5.16) that a constant accomodation coefficient induces a constant
radial growth rate ω̂lpcV Si

m , with values of 2 Å.s−1, 95 Å.s−1, 1900 Å.s−1, respectively for the three
cases. Radial growth rate in the range of 1000 Å.s−1 has been achieved experimentally under
similar conditions [NTRiCP07], so that an accomodation coefficient around 1 × 10−2 seems to be
the most appropriate choice for silicon epitaxy conditions. Another confirmation is obtained from
the comparison of the reaction rate constants obtained for the different values of accomodation
coefficient with the rate constants associated with the clustering reactions of the smallest negative
ions, namely

SinH−2n + SiH4 −→ Sin+1H−2n+2 + H2, (5.9.3)
SinH−2n+1 + SiH4 −→ Sin+1H−2n+3 + H2, (5.9.4)

which has been taken equal to knuc = 1.0 × 10−12 cm3.s−1 according to (5.3.4). The reaction rate
constant computed for a molecule of radius 2 Å, and a gas temperature of 500 K, are presented
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in Table 5.1. The rate constant computed is closest to the nucleation rate for an accomodation
coefficient value of s̃SiH4 = 2.5× 10−2, which is consistent with the results above. Therefore, we will
keep in the following the value of

s̃SiH4 = 2.5× 10−2. (5.9.5)

5.9.3 Study of a silane-hydrogen discharge during the early stages of
nanoparticle formation

We now apply the fully consistent software, including coagulation and influence of the image poten-
tial. We consider ten sections of size, as listed in Table 5.2, and five sections of charges, namely

qc = −3,−2,−1, 0,+1. (5.9.6)
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Figure 5.3 – Density profiles of charged plasma species.

Figure 5.3 shows density profiles for charged plasma species, and Figure 5.5 shows the nanopar-
ticle density profiles, as obtained after 6,000 radio-frequency cycles. At this stage, nanoparticles
with one negative elementary charge are dominant, and the first two sections of size are dominant,
so that for the time considered the nanoparticles observed are essentially “large” negative ions or
clusters containing at most a few thousands of silicon atoms.

Due to the strong potential barrier, the negatively charged nanoparticles are trapped at the
center of the discharge, in agreement with previous results [dB06] [Aga12]. The trapped negative
particles have therefore a longer residence time than neutral or positive particles, and continue to
grow and accumulate charge. The density of neutral nanoparticles, which appear mainly due to
neutralization of negative nanoparticles by positive ions, is one or two orders of magnitude lower
than negative nanoparticle density. Positive nanoparticle density is about five orders of magnitude
lower than negative nanoparticle density. Compared to the SiH+

3 ion profile in Figure 5.3, positive
nanoparticles have a negligible density, at least for the time considered. It should be noted that
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Figure 5.4 – Temporal evolution of the positive ion density n+, the sum of negative nanoparticle
density and negative ion density n−+N−, and the sum of all negative species densities n−+N−+ne,
at the center of the reactor.

Table 5.2 – List of sections considered with corresponding average radius and number of silicon
atoms.

Section Average radius (nm) Number of Si atoms

1 0.36 10
2 0.51 28
3 0.72 81
4 1.02 231
5 1.45 659
6 2.06 1,878
7 2.92 5,353
8 4.13 15,256
9 5.86 43,478
10 8.31 123,914

the OML theory describing the charging mechanism still needs to be assessed, as far as nanometric
or subnanometric particles are concerned. Charge fluctuations of such silicon clusters are indeed
very frequent, possibly increasing the number of positive nanoparticles under some specific discharge
conditions. Taking into account UV photodetachment could also modify the charge distribution.
However, a significant density of neutral nanoparticles is observed, which are not trapped in the
plasma and can therefore contribute atively to the deposition process.

The temporal evolution of the main negative species and positive ions densities at the center
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of the reactor are given in Figure 5.4. It is readily seen that the positive ion density increases
as nanoparticles nucleate and grow. This increase is associated with an increase in the density of
negative nanoparticles and ions, a slight decrease in electron density, and an increase in the number
of charges carried on average by a nanoparticle, which explains the difference observed between the
positive ion density and the total negative species density. Nanoparticles with a radius below one
nanometer are so small that they can actually stand a limited number of charges. Calculations with
a charge limit of 1 have been carried out, and the increase in positive ion and negative nanoparticle
densities are also observed under such conditions. The evaluation of the charge limit is discussed in
[Gal00] [LG16]. Since the number of charges considered here remains limited, the charge limit was
discarded so that the charge of the smallest nanoparticles might be overestimated. In experimental
conditions, the charge accumulation may thus be slightly delayed compared to the present results.

The decrease in electron density and increase in electron bulk temperature are notoriously ob-
served in silane-hydrogen plasmas during the nanoparticle nucleation. This change in the plasma
properties may be associated with the beginning of an α→ γ′ transition [BB93] [PBEL94] [BBH96].
Precisely, epitaxy of silicon and deposition of polymorphous silicon thin films occur under conditions
where the discharge is maintained on the verge of nanoparticle agglomeration [SRiC06]. Similarly,
the rapid increase in positive ion density induces an increase in ion fluxes on the substrate, which in
turn induces a dramatic increase in deposition rate. This result is consistent with previous experi-
mental observations, which have pointed out the dominant contribution of ions to the deposition of
polymorphous silicon [HFiMNB00] [NTRiCP07] [KJK+17].
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Figure 5.5 – Transient profiles of nanoparticles as obtained after 6,000 radio-frequency cycles, that
is after 0.5 ms. (a) Density profiles of negative nanoparticles with three elementary charges c = −3.
(b) Density profiles of negative nanoparticles with two elementary charges c = −2. (c) Density
profiles of negative nanoparticles with one elementary charge c = −1. (d) Density profiles of neutral
nanoparticles c = 0. (c) Density profiles of positive nanoparticles with one elementary charge
c = +1.
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5.10 Conclusion
We have implemented a self-consistent and fully coupled numerical model for nanoparticle forma-
tion in silane-hydrogen plasma discharge. The model includes a complete chemistry mechanism for
nucleation of nanoparticles, effect of charge enhancement on coagulation, and transport of nanopar-
ticles. In turn, the influence of the nanoparticles on electric potential, plasma species densities
and electron temperature is accounted for. The model is fully non-stationary, and has been used
to investigate the early phase of nanoparticle formation, where particles’ radii remain below ten
nanometers, under industrial conditions typical of silicon thin-film deposition.

The surface flux of silane on clustering particles has been treated by means of an effective
accomodation coefficient s̃SiH4 . Different values of the accomodation coefficient have been tested,
and s̃SiH4 was found to be in the range 1− 2.5× 10−2. The strong interaction of silane with clusters
can be explained by several reasons. The surface growth rate on particles could be strongly enhanced
by an increased nanoparticle temperature. As supported by molecular dynamics simulations [VB05],
the nanoparticles can be strongly heated due to to hydrogen interaction with nanoparticle surface,
which can adsorb on an existing dangling bond or recombine with an H atom on the cluster surface.
Experimental observations confirm that it is possible to grow crystalline nanoparticles when a high
hydrogen dilution is used [NTRiCP07], although other heating mechanisms could play a role as well.
In turn, an increase in the cluster temperature will enhance drastically the surface accomodation
coefficient of silicon containing species. Additionnally, the polarizability of SiH4 induces a dipole
interaction which can influence the surface flux on charged silicon clusters of a given size. Finally, the
surface flux of silane in general depends on the size and charge of the nanoparticle. It is expected
to decrease rapidly when nanoparticles reach a critical size, and become equal to the standard
accomodation coefficient on the walls, leading to amorphous growth of large nanoparticles once
nucleation has been quenched by coagulation [HDD+94].

The instantaneous nanoparticle density profiles presented are in qualitative agreement with pre-
vious results obtained for different conditions [dBG06] [AG12]. Although the density of neutral
nanoparticles was found to be nonnegligible compared to that of negative particles, positive nanopar-
ticle densities are several orders of magnitude below, so that positive nanoparticles are not expected
to play a significant role in the deposition process. However, a rapid increase in positive ion density
has been observed, and the subsequent increase in positive ion flux may have a significant impact
on silicon thin-film deposition.

Given the very small time scale associated with the radio-frequency excitation, namely Trf =
1

13.56×106
= 7.37×10−8 s, time iterations are time consuming. In a future study, we intend on applying

the “time splitting” procedure of Akdim and Goedheer [AG03], where seperated time integrations
are carried out for “fast” variables, namely the electric potential, the electron temperature and the
charged species densities, and “slow” variables, namely the nanoparticles and most of the neutral
species [dBG06] [War06] [AG12]. The results obtained will be validated by comparison with the
fully coupled method applied in the present version of the software.
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Chapter 6

Conclusion and Perspectives

In this thesis, a fully coupled, fully consistent, and fully non-stationary plasma-nanoparticle model
has been developed and implemented numerically.

A plasma fluid model for a multicomponent reactive two-temperature polyatomic plasma has
been derived from the kinetic theory of gases. For the first time, the internal energy levels of
the heavy plasma species were taken into account, yielding additional terms in the expression for
transport fluxes. This derivation has set a sound basis for the modeling of non-thermal plasmas
accomplished in the remaining of the thesis, and opens new perspectives of applications in the field.

In the limiting case of a neutral mixture, classical models for multicomponent reactive gas flows
have been retrieved. A numerical model for thermal chemical vapor deposition (CVD) of crystalline
silicon was then implemented numerically. A software has been written in FORTRAN and validated
against a benchmark model from the literature. The results are fully consistent with the benchmark
within a few percents accuracy.

The fluid model derived from the kinetic theory has then been simplified to describe a radio-
frequency plasma discharge reactor. The software for CVD modeling has been enriched and adapted
to the modeling of PECVD, including thermal non-equilibrium, a two-temperature chemistry, and
self-consistent calculation of charged species transport and electric potential. Numerical results are
presented in conditions typical of polymorphous silicon deposition, and influence of silane dilution
ratio as well as RF power is studied. A simplified gas phase chemical mechanism was shown sufficient
to reproduce the main plasma properties. A self-consistent calculation of the DC bias was also
incorporated. This allowed to assess the influence of asymmetric waveform excitation on discharge
chemistry and electrical properties in silane-hydrogen.

Finally, a sectional model for nanoparticles with respect to size and charge was derived, and im-
plemented in the software. The surface growth rate of nanoparticles was investigated, and compared
to experimental results from LPICM. The nanoparticle and plasma species transient density profiles
have been studied. Although positive nanoparticle densities remain several orders of magnitude
below the positive ion density, a non-negligible fraction of nanoparticles are neutral and can thus
reach the substrate without beinng trapped in the plasma. Besides, under the conditions considered,
the early phase of nanoparticle is associated with a significant increase in the positive ion density
and subsequent ion flux, which is a possible explanation for the apparition of embedded crystalline
structure in the deposited layers.

Several perspectives of research can be drawn. From a theoretical viewpoint, the derivation
from the kinetic theory will be completed and extended in a future work. In particular, the sign
of the entropy production rate will be asserted, since a positive entropy structure is required for
the sake of numerical stability. In addition, the effect of “strong” magnetic field will be included,
and a scaling where some of the heavy species internal energy modes thermalize at Te while the
others thermalize at Th will be considered. The complete model derived in Chapter 2 still needs
to be implemented and validated against kinetic models and when possible against experimental
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data. For practical applications, the knowledge of transport parameters and thermochemical data is
required, in particular for the computation of collision integrals. If electron collision cross-sections
are generally well referenced for the most current discharge chemistries, transport data for positive
and negative ions in silane discharges is currently scarcely available. As well, existing chemical
reaction rates between silicon hydrides and other plasma species can be improved. The use of
molecular dynamic simulations could be useful as well as new experimental measurements under a
wide range of discharge conditions. However, the model derived from the kinetic theory is general
and can also be applied to different chemistries and processes.

The description of surface processes as well can be improved. In particular, a self-consistent
description of surface kinetics should account for hydrogen surface coverage, and for the impact en-
ergy of ions bombarding the substrate. The derivation of a self-consistent reaction mechanism and
associated reaction rates is a tremendous task, especially in plasma discharges where ion bombard-
ing energy play an important role in the surface processes. A better description of the nanoparticle
surface growth process is also desirable. Indeed, the description by means of an effective accomoda-
tion coefficient has proved to be efficient in explaining the observed nanoparticle radial growth rate
under polymorphous silicon deposition conditions, but does not describe self-consistently the surface
growth kinetics. In particular, H surface coverage and ion impact energies should be accounted for,
while additional complexity could arise from the actual geometry of nanoparticles, the variation
of their surface temperature, as well as polarizability effects and influence of image potential on
surface fluxes. In turn, a better knowledge of reaction rates between clusters and plasma species
would provide a more accurate description of nanoparticle charging. Finally, in this work the full
charge distribution was accounted for by means of a sectional model with sections of size and charge.
The charge distribution of “small” nanometer-sized nanoparticles is particularly narrow, so it would
be interesting to compare the average charge computed from this model to results of models where
only the average charge on each particle of a given size is computed.

Comparison with experiments are also expected. The computation of the DC bias will be vali-
dated against existing results from experiments and kinetic modeling of hydrogen discharges. Ex-
perimental measurements of the DC bias in silane-hydrogen discharges will then be carried out at
LPICM for comparison with simulations under conditions where nanoparticles are absent and in
the presence of nanoparticles. Comparison of deposition rates obtained from simulations and from
experiments is also envisioned. This requires to estimate the contribution of silicon nanoparticles to
growth. As a first approximation, sticking coefficients can be used, until a more precise description
is available. Finally, experimental measurement of positive, neutral and negative cluster densities
under polymorphous deposition conditions, whenever possible, would of great interest.

From a numerical viewpoint, several improvements are possible to accelerate the computations.
The use of the time splitting procedure of Akdim and Goedheer would allow to use much larger
time steps and thus simulate the discharge over a longer period of time. Parallelization of numerical
algorithms would also accelerate considerably the computations. Currently, most of the computa-
tional cost arises from the evaluation of the numerical Jacobian, which requires 3nc + 1 evaluations
of the function FZ , as explained in Chapter 3. Parallelization of those function evaluations, which
are completely independant from each others, would significantly lower the time required for the
Jacobian evaluation. In a second time, parallelization could be applied to accelerate the evaluation
of FZ itself. The gain in computation rate could be used to enrich the discharge chemistry, or could
as well permit to develop a two-dimensional axisymmetric model.
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Résumé : Cette thèse porte sur la modélisation
des plasmas de silane à couplage capacitif pour ap-
plications photovoltaïques.
Une dérivation complète des équations fluides pour
un plasma bi-température poly-atomique a été ef-
fectuée dans le cadre de la théorie cinétique des
gaz. La méthode de Chapman-Enskog a per-
mis d’obtenir les équations du régime Euler à
l’ordre zéro et les équations de type “Navier-Stokes-
Fourier” à l’ordre un. La méthode fournit égale-
ment une expression des flux de transport et des
coefficients de transport associés.
Le modèle ainsi dérivé a été implémenté numérique-
ment en vue de décrire un processus de dépôt chim-
ique en phase vapeur assisté par plasma. Un logi-
ciel a été écrit en FORTRAN et validé numérique-
ment à l’aide d’un cas test issu de la littérature. Le

modèle de plasma a été couplé à un modèle section-
nel en taille et en charges pour les nanoparticules.
Le logiciel a ensuite été mis en oeuvre dans
les conditions de l’épitaxie. Les densités des
principales espèces du plasma sont en accord
avec la littérature. L’influence de la chimie du
silane sur la tension d’auto-polarisation a égale-
ment été étudiée, grâce à l’utilisation de formes
d’ondes asymétriques sur mesure. Enfin, la com-
paraison avec les taux de croissance expérimen-
taux a permis d’étudier l’influence du coefficient
d’accommodation du silane sur les nanoparticules.
Le modèle développé dans cette thèse ouvre ainsi
la voie à une étude systématique de l’évolution
du plasma en fonction des conditions de dépôt et
de l’influence des nanoparticules sur les propriétés
physico-chimiques du plasma.
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Abstract : This thesis addresses the modeling of
radio-frequency capacitively-coupled silane plasma
discharges for photovoltaic applications.
A complete derivation of fluid equations for a two-
temperature polyatomic plasma has been achieved
in the framework of the kinetic theory of gases. The
Chapman-Enskog method was applied to derive
the zeroth-order Euler-type equations and the first-
order Navier-Stokes-Fourier-type equations. Ex-
pressions for transport fluxes and associated trans-
port coefficients have also been obtained.
The model thus derived has been implemented nu-
merically in order to describe a plasma enhanced
chemical vapor deposition process. A software has
been written in FORTRAN and validated against a
benchmark model from the literature. The plasma

model has been coupled with a sectional model ac-
counting for size and charge of nanoparticles.
The software has then been applied to silicon epi-
taxy conditions. The main plasma species densities
are in agreement with experimental data. The in-
fluence of silane plasma chemistry on the DC bias
voltage has also been investigated using tailored
voltage asymmetric waveforms. Finally, a com-
parison with experimental growth rates allowed to
study the influence of the accommodation coeffi-
cient of silane on nanoparticles.
The model implemented in this work opens the
path for a systematic study of the evolution of the
plasma properties as a function of the process con-
ditions and of the influence of nanoparticles on the
plasma physicochemical properties.
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