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Chapter 1
1 Introduction
1.1 Context of the theSIS........oooiii i e 1
1.2 y N (0] a1 =To I o [ £0] 0] =3 1SS 2
1.3 STo] [T [ or=1 1 o] o [P PP PP RRTTPPR 4
14 D=7 o 1 (=TT PP TP TP PP PPP R UUPPRPPP 6
15 Models used for the simulation of dendritic growth..............oooooiiiicce i 8
1.5.1 Front tracking through levedetapproaches............cccccevvviviiicceeeeeeeeeeiiinns 10
1.5.2 Phasdield approach...........ccccooeiiiiiiiiiceee e 11
1.5.3 Cellular automaton approach.............cccceeeiiiisieeeeiiiiee e eeeere e 12
1.5.4 Meanfield approach..........cccceeiiiiiiiiiieeee e 14
1.6 Motivations and ODJECtIVES..........oooo i 14

1.1 Context of the thesis

The development of aluminum alloys with increased strength and ductility is an ongoing
challenge for automotive and aerospace applicat@sthose illustratedn|[Figure 1.1] Improved
properties are achievable through increased refinement of the microstructure, i.e. higher cooling
rates (rapid solidification), sawell as through alloying additions. The combination of using
alloying additions and rapid solidification often results in a solidified primary phase that is
supersaturated in alloying elements. This has been shown to occur in a number of aluminum
alloys|[HEN201Q|ROY2004.

Figurel.1 Examples oproducts withanaluminum alloybodyfor automotive and aerospace
applications

An undercooled melt corresponds to a +egpilibrium state othe liquid. Uponundercooling

driving forcesare present in the melthe number of possible soligiition modes increases

with undercooling, making accessible a broad range of metastable microstructures and
structurally different phases. Crystal and dendrite growth velocities vary significantly with
undercooling. Hence, models of the solidifying ragtructure ee tools to help in developing
structureproperty relationships for aluminum alloys under a range of high cooling rate
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conditions. These modefwovide valuable insight into the relationship between process and
material performance for the ddepmentof the next generation of aluminuatioys.

This study has been performed in the framework of MIMQ®HhcrostructuralModelling of
Rapidly Solidified Droplets and Spray Formed StripsAdiiminum-CopperScandium Alloys), a
project funded by thérench National Research Agency (ANRancg in collaboration with the
Natural Sciences and Engineering Research Council of CéN&i#RC, Canada)

The 3year project isa collaborative efforbetween Canada and France involving thremseaf
researchersPowder and spray formed samplegre generatedising Impulse Atomizatigna
rapid solidification technique @l-Cu alloywasused

The solidified samplewere characterized usin§canning Electron MicroscopyEM), X-Ray
diffraction, differentialscannirg calorimetry and microhardness A¥IPL (UofA, Edmonton,

Canada). In addition,advancedcharacterizatiom were carried ousuch aseutron diffraction

and 3D-micro tomography together with automatic indexing of electron backscatter diffraction
patterns (EBSD) aAMPL (UofA) andIM2NP 8QLY GY$L[ ODUHLOOH .0DUVHL
The characterization data collectegtre also intended to be used for comparison with the
models Finally, Direct modelling of thedendritic microstructurefor an Al-Cu binary alloy
processed by atomization was developedBMINES CEMEF (MinesParisTech, Sophia
Antipolis, France) using the phaséeld method. This is the goal of the presentkvor

1.2 Atomized droplets

Impulse Atomization (IA) is a single fluid atomization proce3#is technique has been
extensively used for making metal powders, spray deposits,-maték composites and spray
refining of pig iron|DIN1997], [ELL2004|, [HER2007, [PRA200§, |[PRA2009. It consists of

a 0.5 m diameterand 4 m height cylindrical chamber, as schematizeEilgure 1.2| This
chamber is atmospherically sealed and can be filled with the gas of choice. In the case of
atomization, an inert gas (such as He 0NAr) is used. The top portion of the chamber consists

of an impulse unit where the material is meltda contrded temperatur@and subsequently
pushed through small orifices. The ensuing discontinuous melt streams break down into small
dropletsthat fall through thegas in the chambeThe droplets attain a freall situation in the

initial stages and therefortbere is no gravity induced convection in these drop@teplets
completely solidify as they fall through 3% of the gas filled chamber and are collected in glass
beakers filled with oil. It has been shown that IA produces rapidly solidified dropldtd & a

useful technique for studying rapidtpoled systemsut alsofor varying alloy compositioms it

is more imprtant to the fraction of phasistributionthan cooling rat4PRA2009. Successful

pilot scale tests have been carried out with IA for the atomization of zinc through up to 400
orifices operating for 3 continuous hours, showing its potential as in the total process.
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Figurel.2 Schematic representation of an Impulse Atomization &imit theatomizedmaterial

beforeand aftetbeingmelted|ELL2004].

Since the atomizatiotemperature adénAl-Cu system isbovel 000 K, theliquid droplets may
loose heat byradiation. However, since the droplets cool rapidly, the radiation heat loss
component decreasemd therefore, has a small effect on the total hea{R282009. The gas
beingstagnantits primaryfunction is to withdraw the heat from the liquid droplets, although the
surface tension between the gas and liquid metal does glast &n breakinghe liquid stream

into droplets. Wiskel et al. have sbwn that the cooling rate of Al.5wt%Cu
atomized in He variesrom 325 to 2400 Ks™ for droplets ofdiameter950 to 275 Fn,
respectively. On the other hand, the same range of droplets sizes atomized ustens\
cooling rates from 150 to 800KsBecause of the better conductivity of He gas compared,to N
the cooling rate iigher Thus, a droplet of a given size in He shows a finer structure compared
to the same droplet size atomized ixn Whe data also shows that tmécrostructure length scale
decreases as the droplet size decreases, since smaller droplets cool at a faEteseat®ling

rate values show th#h can produce rapidly solidified powders.

To provide a bettedescription of themicrostructrres, let uspresentshortly the experimental
resutsREWDLQHG E\ OLP RV DfBEDS0UR Mrktly, WA I8adidkt\aGideisivibution

of the droplets witldiameter from less than 200 pm to more than 1 mm in the same batch. The
dropletsare thussieved into several size classes by the technique descrifféeD2013.
Themicrostructuremorphologiesvere thennvestigated for different size ranges and fortihe
cooling gasesHe andAr. For this purpose, synchrotronrdy micro-tomographywasusedpost
mortem{NGU2013. This techniqueprovidesa threedimensionakeconstruction of the droplets
microstructure athe grey level depends on therXy transmission of the phase. The primaty
phase being less absorbing than the eutettixtre of the Al phase + the Alu intermetallig,

the latterappears in lighterrgy in the tomography reconstructioi$e resolutiorused was of
0.56 um/pixel (field of view of 11488 um), which enables to study several small droplets at
once. The statistical analysis of the droplet morphology hes d¢sried out usinghe ImageJ
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software [ABR2004. The final droplet microstructure is the result of a complex three
dimensional corpetition between dendrite armaterdendritic intermetallicas well as porosity.
Therefore only the crosssections showig characteristic morphologies aigown h
where four distinct morphologiegereobserved in the more théwundredstudied droplets.

(a) highly branched (b) highly branched (c) dendritic (d) finger bundle
(HB) with <111> primaries

Figure1.3 Examples of the four morphologies identified in the4d®wt.%Cu dropletof
diameter between 250 and 300 um: (a) highly branched morphology, (b) brghighed
morphology withprimary arms oriented along <111> directions, (c) dendritic morphology
(d) finger bundle morphology. The nucleation position noted O is showmbyte dot and the
primary arms noted OA and OB by whieows[BED2019. Grey level has been inverted, t

dendritic structure appearing darker than the eutectic region.

A major result of the synchrotroX-ray micratomography analysis wake variety of dendrite
morphologies forAl-Cu droplets solidifying under the same pess conditionsas shown in
These morphologieseredescribed ifBED201§ soonly their main characteristics
areherereminded Some of the droplets grow in the usual <100> directions and present a highly
branched microstructure, as illustratedRigure 1.3[a). A structure growingifst in <111>
directions and then in <100> directions can also be observe(ﬂinaguire 1.3[b). The two other
types of morphologies are fully growing along <111>ediions, with a dendriti{jjgure 1.3{0))
or a fingerbundle (Figure 1.3[d)) morphology. The growth orientatierior this microstructure
werevalidated by EBSDmaIysslBEDZOlg.

Interpretation givenvas thatthe first solid grow along the <111> direction if its grow#iocity
reaches values beyd agrowth orientation transitioriEventually, itsgrowth velocity decreases
and the last part of the droplet wid grow in the <100> directigras observeih|[Figure 1.3{b).
At lower velocity, the usual <100> is observed, as in standard foundary technologies

1.3 Solidification

Solidification is thephase transformatiostudied here. It isnvolved in at least one dahe
manufactuing stages of almost every mamade object|KUR199d, |[LUD2004. Some
important processeshich involve solidification are

- casting:continuaus, ingot, form, precision, die;

- welding: arc, resistance, plasmaectron beam, laser, friction;

- soldering/bazing
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- rapid solidification processing: melt spinninglanar flow casting, atomizah, bulk
undercoolingremeltingsurfaceand atomization
- directional solidification: Bridgman, liquid metal cooling, Czochralski, electroslag remelting.

In theforming of aluminum alloyssolidification is atransformatiorstepduringwhich the metal,
initially liquid, graduallybecomesolid uponcooling. Thetypical stagesare nucleationprimary
growth dendriticstructure and secondary and further growpieitecticor eutectig [LUD2004.

Once a nucleus is formed.,igtlimited by capillarity andtransport of heat and mass, leadiog
morphological instability of the/l interface and dendritic growth.

[Figure 1.4] shows a temperature history measured of adwPoCu melt. It reveals (Ipeat
transfer untilthe undercooling state appeanrsd the nucleus is creatgdl) recalescence due to
dendritic growth, (111) another cooling, (IV) secondary nucleation of an eutectic structure and its
associated reference and (V) cooling of the fully solid structure.

Figurel.4 Temperaturgrofile during solidificationof an AF4wt%Cu alloy] GAN2009.

The energy of theystemis changed byheat extractionin severalways: firstly, there is a
decreasén the enthalpy of the liquid arsblid phaseglue to cooling second, thdrarsformation
from liquid to solidreleaseghe latent heat of fusiorBut the transformatiorfrom the liquid to
the solidalsocreaesa curvel and mobile solid/liquid interfagedefined asanintermediate zone
between thesolid and the liquidthe thicknesswhich is composed of a fevatoms[MEC2014.
The curvature introdusecapillary effects and microscopic heand mass flow and the
solid/liquid interface area is associated wath excess fanterfacial energy. Thereforgystems
that have a largmterfacehave ahigherenergy.

In the case of an allpyoth leat and solute are rejected at Hudid/liquid interface. Slute is
releasechot only into the interdendritic liquid but alseccamulatesn a boundary layeputside
the mushy zone or grain envelogéis is demonstrated by post mortum anadysf the average
composition ofCu, asshown ifFigure 15| revealing a non uniform distribution.
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Figurel1.5 Crosssection through the centef a 250 Fn diameter A0 wt.%Cu droplet,
produced by atomization in nitrogehowing,(a) dendritic microstructureas observed with
scanningelectron microscope and (byrresponding average composition nfggCu)deduced

from microprobeanalysis|HER2004.

Figure 1.5[shows, on the left, a dendrite structure in grey surrounded with the interdendritic
structure in white. On the right, the distribution map of @ith the presence of 10wt@f Cuin
the alloy Finally, diffusion flux is present athe very largescale of the dendritic arm.

1.4 Dendrites

The most fequently observegdrimary solidified microstructure is the dendrit&€he descriptive

W H déhdfite” delives fromthe greck 3 G H Q G UeRi@e,with highly brarched, arborescent
appearancdt consistsgenerallyof a primary branclor trunk secondary arm&ventuallywith
tertiary branchesgrowing from the secondarieand so on This growth morphology is
characterizedby its paraboloidike tip. There aredifferent types of dendrige the equiaxed
dendrites thafreely grow andare governedby solute and thermal diffusipand thecolumnar
alloy dendritesconstrained by a temperature gradient and contrdie solute diffusion.in
undercooled solidification processirtge highest nucleation temperature and the highest growth
rate control the final appearance of microstructures and phases.
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Figure 1.6 Equiaxed dendritic growth of a pure metal and an alaywingthe evolution of the

temperature and composition in the liq{kUR1994.

The growth of equiaxed dendrites of pure metals occurs under conditions where only heat flows
from the interface to the surrounding liquid. The temperature gradient is negative at the interface
and a thermal undercoolingTr exists. In the case of equiaxedloy growth, there exists a

negative temperature gradient and solute accumulation ahead of the dendrite tip leading to

thermal and solutal undercooling, respectively and ' T;, as shown ifFigure 1.6|

In the solidification of binarya alloy system, physical phenomena arsually described by
statingthe conservatiorfor energyand the conservation for the solsigecies in each phasand
using the GibbsThomson relation to establish tm®rmal velogy of propagation of theyl
interface [BOE2003, |TAN200§, [ZAR2009. The mathematicaldescription of these
phenomenés given here after, whilgs approximation will be detailed lategn chapters 4.

- St =D®'c?® Species ompositionconservationri the slid (1.3)

:%I =D' ¢! Species empositionconservation in the liquid  (1.2)
*~|;5= i Energyconservation in the solid (1.3)

§

o) ~t| =pD"'T Energyconservation in the liquid (1.4)

dc' ¢ @=(D°'c® D''c').n Composition conservation at tis# interface (1.5)

U =(N'T° N’'T'n Energyconservation at thel interface (16)
Ti=Tu+mc; *N Q/ Ay GibbsThomson equation at tisd interface (1.7
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Here,T is the emperaturandc the alloy compositions and| arethe solidandliquid phasest is
the time,D® andD' are the solute diffusion in the solid and in the liquiland bare the thermal
diffusion in the solid and liquid i/ is the latent heat@is the normal velocity to the/l interface
(@=v-n), NN and N are the thermal conductivity in the solid and liquiis the kinetic
coefficient, n is the unit normal vector to the interfacd,is the GibbsThomson coefficient
related to the surface energhy the relation *= %‘Z" , Mis the interface curvature termm,is the
slope of the liquidus curve of the phase diagram for the allag. the interface temperatuye
Tu is the melting temperature the pure solverand § is the concentration on the liquid side of
the interface This system of equatienprovides the sharp interface formulation of our
solidification problem.n a diffuse interface context, instead of solving the equafimnsach
phasewith the given interface conditionsve may obtain a set of edigms valid in the whole

domain.

A few measurements have been reported for alloy dendAtesumber of researchers have
performed experiments to measure the dendrite tip velocity and radius for transplnent
systems |AST2009, [BOU1989, [CHA1987, [CHO198%, [DOU198¢, [GLI1984,
KAH1970]. Only the succinonitrileacetone (SCN-acetone) experiments of Chopra et al.
CHO198§ resulted in data over a sufficiently large range of undercoolings and solute
concentrationso allow a detailed comparison with theory.

Macrosc@ic conditions (such as undercoolingon equiaxed growjhaffect thesolidification
but miaocoscopidnternal characteristigslay also an important ral&he most important facter
of internal characteristicarethe anisotropyf the propertiesit theg/l interface key parameter

affecting the evolution of crystal morpholodiHOU200§. Anisotropy at the &/l interface
includesthe energy,/andthe kineticcoefficient R|MUL1964].

1.5 Models used for the simulation of dendritic growth

Modeling of dendritic growth in solidification of pure metals and alloys remains a significant
challenge in materials science and applied ysSuccessful modelling of dendritic
solidification requires both the solution of a complex {fbeendary problemral an accurate
account of the interface energynd kinetic anisotropy. The first task is difficliecause of the
difference in order®f length scale between the thickness of the diffusion boundary layer of
heat/stute that surrounds the dendrit@ and grain envelopeand the microscopic capillary
scale while the second task is complicated by the nee@nmapcie the curvature of thiaterface
|ZAB2006|. [Figure 1.7| shows different scalefor the &/l interface, experimental view and
numerical modeling. Theariousscales are illustrative and not directly comparable, beclse
these quantiés vary with the materialespecially between metals and organic alloyise
smallest scale is for the atomic interface that can be simulated using molecular dynadets

the dendritic scale is at tmeicrometer sizesimulatedoftenusing phasdield methods, the grain
structure which can be simulated using the CAFE (tzellautomatofiinite element) model and
the process scale of many meters simulated with finite volurfieite elementnethods.
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Figurel1.7 Different scales for the/l interface(top), andcorresponding description of the
microstructure with illustrations from experimental observat{omsldle) and numerical

simulatiors (bottom)|CAR2014.

In thelast yearsspecial attention has begiveno the development afmodeling techniqueat
various length scalefor deer understanding of microstructureriation. In the literatureat
least four different approachespplied to dendritic growtltan be iéntified Firstly, sharp
interface models [BAN1994], |[NAK2006|, |[SAI198d, |[UDA1999 are used to precisel
reproducethe surfacebetween solid and liquidby a dynamically refined mesbf the g/l
interface Seconty, phasefield (PF) models deal with the soliilquid interface by introducing a
continuous transitional layer of finite thickness using an additiqoantity, thus eliminating the
problem of explicitly tracking the interfacand avoiding direct computations difie curvature
Several reviews on the methodology and capabilities of the PF models are aJAi&¥2609,
|[BOE2003, |[FRI2009, [HEC2004. Thirdly, microscopc cellular automa (CA) were also
employed forsimulation of dendritic growthWhen oupled with finite element modang, this
technique is referred to as @7E modeihg [GAN1999, [RAP1993 and is therused to predict

the development ahe grain eavelope not directly simulatinglendriticmorphologiy.Fourthly,
coarse-grained models have bedeveloped at the mesoscale to predict the unsteady growth of
dendritic grains and their internal solid fractifBTE1999, [STE200%, [ZAL2013], in 2D and

3D. These models track the evolution of the envelope efdéndritic grain, defined as an
imaginary surface that passes tigh the tips of primary branches. However, they do not resolve
exactlyinteractions between individual branchEghtly, the mearfield approach, which cannot
follow dendrie morphologies, but may give us an equivalent grain envelope, and repartition of
phase fractions inside/outside the envelope as well as average solutionshadtisdin 1D
dimensionby [TOU2009. Other aithors developed a virtual front tracking (VFT) mettwdhe
solid-liquid interface|BEL2009, |[BEL2004. Discretizationmethods most oftemsed are the
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finite element method (FEMjhe finite volume method (FVM), the finite difference method
(FDM) and the average volume method (AVNDnefinds, in the literaturecomputations using
structured isotropic mesB, structured anisotropic meslitsquares dividedn smalkr squares or
triangles)as illustrated ifFigure 1.8|(a), in 2D and 3D[BAN1994, [TON199&j, [XIE2013
and unstructured anisopic mesleslNARZOOa as illustrated i|1_:igurel.8|(b).

(@) (b)

(©)
Figure1.8 Examples of dendritic growtihrsing (a) the front tracking approachith an
anisotropicstrucured mesiBAN1994, (b) the phasdield approactwith unstru¢ured
anisotropic adaptive me¢NAR2007, (c) amicroscopic cellular automaton method

ICHOZOla.

1.5.1 Fronttracking through level -set approach es

These mdelsare mainlybased on theise of thelevelset functions classically employedh
many areas where it is cessary to follow an interfa. A levelset function £s,is a
signed function that varies continuoustpm a positive value inside a phase, to a negative value
outside.The interface is defined lihe isovalue{s= 0. Mostoften {sis the sgned distance to
the interface. Intdaceis displacedoy theresolutionof thelevelset equation:

“1 |
TS"' Vis|” 4s|=0

wherevs is the velocity field determined from the GibbBhomson conditioror solidification

problems After the position of the fronis calculated, the energgnd soluteconservation

equatiors are solved. Themain advantage of the lewslet methods its ability to represent
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complex topologal changes. Thisnethod can be usd to simulategrowth with fluid flow
(782008,

Among its claimedadvantagesfairly easy implementation anfst computationtime can be
mentioned. However, the error associateth the estimation of curvature from the divergence
of the normalized gradient ofis large (1630%). Shce preferred growth directiomsd dendrite

tip kinetics are governed by the small anisotropy of the interfaciaben(@10% in metallic
alloys), such methods aaonly give qualitative results, unless mesh sizes around the interface
become very smalh the perpendicular direction to iThe later condition may then become
incompatible with the fast computation time advantage.

1.5.2 Phase-field approach

This methodintroduces a function /which continuously varies from a constant value phase
(eg. ®lid) to another constant in the other phdsg. liquid. Most generally, e phasdield
variable / varies smoothly from1 to 1 between the two phases over the diffusgdrface
region, which has a small but numerically resolvable thicknéss. The phasefield method
derives its attractiveness from the fact that explicit tracking of the interface and satisfaction of
the interfzial boundary conditions are avoided. Furthere computation of interface normal
and curvature is also avoided by solvimgesolution equation for the phas$eld variablewhich
may be derived fronthe free energy or entropy formulatiand coupled tohe evolution of heat
andsolute The fundamental difference with classicalevelset method is that thicknessWee

is thus given to the interface itselfhich becomes diffus@he principleis to minimize the free
energy of he sysem by stating

"/ F
where M, is the mobility of the phaséeld, Fy is the GinzburgLaudaufree energyand is
defined by a Ginzburgaudau type of integration in the domain:

. 2
FH=H%H(I)+M2DLI’ /P d: (1.9)

fu( ) is the Helmholtz free energy anM(n) represents the anisotropy at the interfatke
gradient term is introduced because of the representation of the diffuse interface. The derivation
of theseequations allow$o movethe interfaceandto minimize the energyFy. The results are
poor whenusing a large interface: ghouldbe less tlan thecapillary length to converge to a
sharp interface solutiofXIE2013, which may beproblematic in problems witfiuid flow, in
particularwithout remeshingpr grid adaptapn [PRO199).

Karma and RappgKAR199€] improved asymptotic coefficients for the thirterface limit of

the phasefield equations, whichamelioratethe convergence of the method for a coarser grid
density.It lowersthe range of undeooling andallows the use ofa larger width of the diffuse
interface region (compared with the capilldength), andgives the possibility to choesthe
model parameterns a way tomake interface kinetics vanisig. Other recent changes have been
adced to these methodssuch as the use ohadaptive FEM formulation that refines the zone

near the diffuse interfaclPR0O1998 or the use of a stochastic Monte Carlo treatment okth

large scale diffusion fielPLA200M|. This method wasmplemented by adding fluid flow
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effects [TON199&), [TON199®)|, as well asused to represent eutectic solidification
[ELD1994, [KAR1994, [WHE199§ and the peritectic eaction {[LO2007, i.e. including
multiple solid phases. Ygephasefield simulationsare limited to represengrowth ata grain
scale especiallyfor concentrated alloys thateeda large solidification range arfthvea low
supersaturation.

For aclassi@l problem of dendritic crystal growth, several mugjtid or adaptive
meshing algorithmgSCH199¢ have been pposed in recent years. One particularly cited
method proposed bigrovatas et a!PR0199§3 usesthe phasdield model on a regular gritb
computethe dendrite, whereas themperaturaliffusion field is integrated on an adaptive mesh
using finite elementtechniques. While this method appears to be promising, it has yet to be
implemented in three dimensignsvhere the difficulty of adaptive meshing becomes
significantly enhanced.

1.5.3 Cellular automaton approach

The cellular automaton micraggic methods have beeapplied to the prediction of dendritic
structures duringolidification [CAR2013. By the fact thatglobal fields throughout tharea
(temperature, compositionpdirectly influence the local state of the cells, these models were
baptized Modified Cellular Automata, MCA. Several versions have been developed, but the most
common models are based on the same principle as the-fiifldsd@he difference is that the
interface thickness is simply equal to a row of celiat may have differersizes{KRA2009,
[NAS1994, and theyhave been developed for themmputationakpeed and their ability to be
used on larger areas than the pHasd. Their main disadvantage is the anisotropyoetl by a
regular grid of cellg§square or cubj¢ not obvious to erase. Howeyé#nese methodsere shown

to achieve quantitative resulfCHO2013, [YIN2011], [ZHU2007. Finally, we note the
existence of cellular autoneatmodels wherehe kinetics of the interfaces calculated from

analytical equations, su@sthe KGT method|ZHU2007.

1.5.4 Mesoscopic appraoch

The mesoscopic modeling techniqueonsists on couplinghumerical calculation of the
temperature @éld at the macroscopic scaleith an analytical model ofiendrite tip growh. A
Representative IEmentary Volume (REV) is used and is large enough to include a
representativesampling of the microscopic structures aatthe samdime, small enough to
enable a continuum description of the varialdesraged over the REV on the macroscopic
scale.This model carpredictthe evolution of thegrain shapes, the growth indetions between
multiple grains, and the nature thie thermal ®ld in the melt between the dendrité&/ith this
method, the computianal powerrequirements are reducedmpaed to a direct microstructure
simuation on a microscopic scal@. schematic illustration of the various lengthales present

at the mesoscopic modeling scafegquiaxed dendritic growtiis shown iffFigure1.9](a).



13|Chapterl Introduction

Figurel.9 Schematic illustration of equiaxed dendritic growth: (a) unit cell, whgiethe
microscopic scale andsis the mesoscopic scale; (b) grain envelope and stagnant film

[STEL%)

The prediction of the tip growth speealsd radii requires the resolution of the theriineld at
the scale g accompliskd using alocal analytical solutionThe growth vebcities of the grain
envelope can be obtained frodendrite tip speedsThe Ivantsov solutionis used The
supercodhg is applied at a cdacal isothermal paraboloid locatet afinite distance Gaway
from the dendrite tip and movingith the same speed as the fipe tipspeeds arealculated for

every point on the envelop8olid fraction can be deduced frdire temperaturgradient at the
envelope

Figurel.10 Example of the evolution of theendriteenvelope for a sigle equiaxed dendrite

[STE200%

The model wadater used for twephase representationith a volumeaveraged EuleEuler
methodthat consists of two parts: a macroscgpact with momentum, mass, heat, solute mass,

and grain population conservation equations, and a microsgapithat describes the nucleation
and growthof grains.
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1.5.5 Mean-field approach

This modeltracks the evolution of the envelope ofetldendritic graindefined as ammaginary
surface that passes through the tips of primary branches. Howatenactions between
individual branchesare notexactly solved. Moreover, onservation equatienare solved by
projecting the dendrite in 1Bndarebased orthe average volumenethod This model al its
combination with finite element or finitelifference methods maglso be used to study
microstructural selection mechanisnssich as the dendritic spacing selection and its history
dependencebut do not approximatethe microstructure selection within a grain unademn
steadystate growth conditiondt requires derdrite arms spacings as an input, which have an
influence on microsegregationTOU201%|[TOU201b] and macrosegregatiofBEC2003.
This model is diiled iriChapterS]

1.6 Motivations and Objectives

An adaptivegphasefield modelis developedand presented in this thesis

The aims of this present work ateis

- to describethe finite element implementation and programming of the proposed-fiblase
model with differet homogenization schemes in a finite element code;

- to use parallel computingnd automatic adaptive anisotropic unstructured eseabailable
with a C++ library developedat CEMEF, MINESParisTech and theirimportanceon the
compuational cost (time and memory);

- to obtain quantative results using this model,

- to simulatedendritic growth for AFCu droplets;

- to start comparisonsith a mearfield approach, and justify the differences, i) of macroscopic
integration (Thesis of THThuy-My NGUYEN [NGU2015)), i) of computational time. This is
based on the phageld mettodology, known to be quantitative.

- to showthat we have a difficulty to do a computation for ardf8wt%Cu system of big size

- to justify the advanced numerical methods (parallel computation, mesh adaptation, timestep
adaptation, number of elemeiatdaptation).

This manuscript i®organized as follows, tmodel dendritic growth in a solidifying droplet as
discussed in this chapteChapter 2 describebe phasefield model| for the solidification ofa
pure substanceby detailingthe numerical resotion used for the diffusignincluding mesh
adaptationand parallel compudtion Validation in 2D is presentedas well as capillary
anisotropy implementation Some gmmetry assumptionsare assumedfor 3D simulations.
Chapter 3extendsthe phasdield modé to represent thésothermalsolidification ofa binary
alloy, explaining the differencé&om the previous onan the numerical resolution and the
construction of the adapted mesHalidations in1D and 2Dand sensitivitystudes of the
numerical parameteexe presentedChapter 4couples thermal and solutdiffusion fora binary
alloy. Finally, chapter 5applies the model tthe solidification of Al-Cu dropletsand shows
comparisons with a macroscopieanfield model

A generd&conclusion summarizes the study and opens perspectives.
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Résumeé

Dans cetteintroduction le cadre de travaux dethése ainsi que diférentesdéfinitions sont
introduits Nous présentons le procédz D W R P L V D WslpBnQar® [equeRsoifidtdon a

lieu. La morphologie dendritique est alors décrite, aussi bien que les méthodes numériques
utiliséesdans la littératurgpour sa simulationNous terminons par définir les objectives et les
motivationsde ces travauxsimulation de la croV VDQFH GHQGULWIGRXGl eB 1 XQH
utilisant le modele de charape phase ealméthode degéléments finis avec remaillagécalcul
paralléleainsi queG 1D XW U HV RWSWdinknugrDewempBsQle calcul.
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In this chapterwe present the mathematical model ukedsolidification of a pure substance
under anisothermal conditionBhe model is based mainly @continuous formulation ahe
phasefield method given in [KAR199§. It is developed for solidificatignassuring local
thermal equilibriumWe use the equations ia dimensionless formand show its numerical
solution. Thermal dendritic growth is illustrated with a validation in 2D, including sensitivity
studies for the computational time and capillary anisotropy magnitude, and also through 3D
simuations.

2.1 Model equations

Let us consideconservatiorequations writteror the sharp interface problem and liedto a
pure substang¢eavith a solid, s, growing in the liquid). In the absence of phase motidney
lead to:

W S e

w=0'T (2.1)

A

e D'T (2.2)
Wh=(N'TS N'THA (2.3)
Ti=Tw *N W/R (2.4)

We havesupposd that the puresubstancéasconstant anequaldensity, Jkg-m™], thermal
conductivity A'Wm™K™], and specific heat at constant pressgsl-K'kg™], in both solid
and liquidphasesand thus constanas well as aequal thermal diffusivity, D= & &, [m*s™].
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Here A/=-n [m™] is the curvature term,R[m-s'K™] the kinetic coefficient, *the Gibbs

- _ J
Thomson coefficient related to the surface enetfiym?|by the relation *= d;/l [MK], Twu

[K] the melting temperature of the pure solveht|K] the interface temperaturg, [K] the

temperaturet [s] the time, & [J-m™] the latent heat and@= v-n [m-s?] the normal velocity
to thed/l interface.

It is convenient to dme the dimensionless variabl@ measure of the undercoolinfy =T,

as

T Tw

7= e, (2.5)
To usenondimensionaktoordinatesin space and timéor the simulationwe definex as
X* = X/Wo (2-6)
and s a dimensionless time:
t
W— :
W (27)
where Wlis the phasdield relaxation time, in [s].
The freeboundary problendescribed aboveecomedAppendixA):
w7 .
WA Oo'F
(2.8)
Wb
wiA/
w=D(CF 71 (2.9)
= d N Bn (2.10
where Dis the thermal diffusivity
_Dw
D= Wo 2 (2.11)
The thermal capillarity lengttl, [m] is defined as:
* Jv &

and JJ-m? is the excess freenergy of the solid/liquid interfaceThe kinetic coefficientE
[m™s] is definedas:
C
:7;{ (2.13)
In this approachW, the thickness of the interfads,assumed small compared to the scale of
themicrostructuregpattern, but not smaller thal, the capillarity length

The phasdield equation presented was derived for the anisothermal basehas to be
coupled to the energy equation. Let us consider equal diffusivities in the solid and in the
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liquid, so < = D= D = cte, as well as equal heat capacitie@s> = @,°= @, = cte. The
average equation of enetgieveloped ifAppendixA] becomes:
W LT w
w P 2w w

Where (&)% is the latent heat associated with the transformatioh As defined before, the
dimensionless temperaturBs used and the equation to solve becomes:
w7 - 1w
w2 2w (219
Let us define/asa function which describes the presence of the liquid and the solid phases in
the computational domair¥, made by theéwo subdomains Y ® in the solid and¥ ' in the
liquid. An interface Y¥' is defined betweer¥*and Y'. The /function varies between and
1 asillustrated b andis defined as
§ K .
/= tanh>— 2.16
Bo\21 (216
In this expressionWo* is a non dimensionahterfacethickness(Wo* = WIW), whereW, as
previously introducedneasursa physical widthandW represent the variable of this physical
width. It is convenient to consider that it characteribesdiffusesolid/liquid interface, where
x is the physical coordinate system afglis a physical arbitrarly chosen length.

(2.14)

Figure2.1 Variation of the phase functiofwith thesigneddistance kto a stationey flat
liquid-solid interfacewith W= W.

Thevariable Kused inexpressiois the signed distance to tkelid/liquid interface.It
is definedas
4, W if X e: S
P ® O if Xe* s/l (217)
A, Wi X oo
whered(x', Wis thedistance ok to the interfaceY ¥ at time W

Let us define the free energy functionaF(/ 7), which must decrease during any
thermodynamigrocess, agKAR1998
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F(AT= §F ™ dv 2.18)
¥

L W(n)? it . .
with F™ =f(/ 7j + —gL |’ /|% F™is thesum of thevolumeric energy giverby the free

energydensity,f( / 7), and the interfaal energy,respectively W(n) is a measure othe

anisotropy in the stace energyandn = -

follows:
a 44 (w ) (w)to

Wn =W, (1 3ér7<1+1 34 S i/‘{nZD (2.19

/ .
m, the normal vectgrandmay bedefined as

or

44 (w )+ (w )+ (w )to
1 34 o /‘!n 3D (2.20)
The instability of the solid/liquid interface that forms the dendrites is influenced by the
anisotropy of the solid/liquid interfacial energy presented by the paraméter
Allen-Cahn equation| CAH1979] may be usedio guarantee that the total free energy
decreasewith time due toan excess in the interfaciahergy

W(/. T -
W d EWO

Wn =Wo' (1 34 <1+

(2.21)

The Allen-Cahnequation is writterby deriving the free energy tbtain finally, the phase
field equation: _ _
W/ G §E|nt \Elnt .

wr Mg Migw " Twis (229)

where M, is a positive mobility parameter The free energy density( /, 7), for a pure
material, can be given by:

FCAT=9()+ Op() (2.23)

As a dimensionless parameter that controls the strength of the coupling roétegehase
and diffusion field. It is typically ofthe order of unity.This term can corre¢he contribution
of the heatadded and ensure thhe relation (15/8( @(+1)) +15/8( @(-1))]/2= 1)is verified,
whateverp( /) is chosen|n this expression of the free energy density pure elemenp( /)
is a function of /thatguarantees/ w  for / and for /  and for all temperatures.
Furthermoreg( /) must provide the energy hump betwelasolid and liquid phases, with a
maximumvalue at the interface aradminimaat /= +1 Hence thefollowmg functionshave

beensuggestethy Karma and will be used in our mo

o) = é+% (2.24)

2/ /P
p()=/1 3 +5 (2.25)
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Figure2.2 lllustration of the variations off( / 7), g( /) andp( A with & 2and 7=- 0.5.

From Eq(2.22)| the evolution equation for variablé defining the positin of the interface
EIK2010Q], is:

ayint int 0
ﬂ/: M/E: M, «\‘F , W >~
wiWW/ € -wW ©ow /i,
M aw W §\E|nt . W §\Elnt . W §w—(_|nt o)
" W o/t W ow /o ow /D

=03 (/T —LL| /)2 ——+o—i’ then——ﬂéf M 2.27)

(2.26)

This derlvatlon s equal to
W
—= I+ / + 0 2/ +/ (2.28)
w/
andafactorizationis usedo obtain tle simple form

L 2

w- ! +or | %= /I (or 1 ) (2.29)
Replacingin equatio oneobtairs:
W%/W' Wn/=[/ Oof 1] I i}/|2an\f‘//\\:\;‘,)1 2
va% JPwWn V\?,A\;n/); E:N% JPwWn V\?,A\;n/); (2.30)
where 4 —%/

Our attentionis focusedn the growth in the limit of vanishing interface kinetics. This limit is

obtained by settingi!) and (dqual to the valugdKAR1999:

W = W@ 3,£g<1+1 ?H(W’“(‘?*/’“(W”% 2.31)
DwW D

&= = (2.32)

W a a
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This second expression is related with the fact that one may redefine the coeffittent
include the variation of7across the interface using the asymptotic analysis:

a W aWpo
Fa <y Z;%_ (2.33)

which vanishes when kinetic effects are eliminateahger [[AN1986] and then Caginalp
have derived

Wo
a1 ~ 0
In these expressiong/is the characteristic time of attachment of atoms at the interfacé (10
s for metallic systemsh; is a positive constant of order unity that depends on the details of
the assumed form of free energy computed from the asympiodilysis a, is a positive
constant of order unity that depends on the details of the functional forms choeh &fr)
and p( ). Karma and Rapp deduced from the asymptotic analyses that a
0.8839 and a= 0.6267.

do = (2.34)

To do the simulation of the dendritic growtlcnne need to compute the value of

- _W 2 2 BLLALE
le)f %MW WW’)* Wn /)Iderlved

from the anisotropy form of the interfgc&/(n). We can erteV\/(n) in dlfferent forms as

defined in e{n_(2.70)|and 2.71)|for 2D, ef{2.72)|and e2.73)|for 3D where #fand A/define

the intensity of the anisotropy liké/ We compute’ W n numericaly and for the others we
haveimplemened their analytical derivation in our code to use it directly. The derivation

forms are shown belowl|ifiable2.1

W n
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Anisotropy o W i} 2 WV n
ExpressionMn) Derivation terms W /'Wn wWw ) ¢
w
(2.70) w*(Wn Wn " w )
W LA ] (Aw ) ((w )+ 4 o.
.70 *%\,n Wo4ér/<_<|(_,/_ ( /)((_,//)_ (Wl))i}a
w e B (A ) (W )+ (W )t () o
279 W*%\/n We'4 b - )
x a o aw/  w/(w/ w/ w/ .o
(2.73 . a am/  w/(w/  w/l  w/l . an/w/ w/ 3w/ w/ w/ .0
Wo  W(N) Q24 g 7 IF + 1326 g F P P
Anisotropy Derivation t w% JRW
expressiot\(n) erivation terms ™ "W n —WW )
w
(2.70) W (Wn (Wn ' wJ)
w B0 (Aw ) ((we )t (e )Y o
2.7)) W*gvn Wo' 4 b/ o %
w WL (A ) ((we Dt (e )t (w )Y o
272 *g\/n We'4 b - )
x a aw/ W/ (w/ w/ w/ .o
(2.73 . a aw/  w/(w/  w/  w/ . av/ W/ w/ 3w/ w/ w/ .0
Wo W(n) §25/© /|2 |, /|4 1+132&/© |, /|4 |1 /|6 3_1
Ani .
exprnelzgit(r)(:\i)(/n) Derivation terms;t’y % /PWn V\)\\I/\\;n/) .
[(2.70)| -
12.77) -
w 0w L (A ) (e ) (e ) (w ) o
272 W*gvn We'4 Bt - 2
« a au/ w /(W / w / w/ .0
WO W(n) f’H@ /|2 |1 /|4 1{}1‘
(2.73) . a aw/  w/(w/ w/l wl . aw/ w/ w/ 3w/ w/ w/ .0
Wo Wn) 428 &7 p 7 1826 TP 7

Table2.1 Analytical derivation for the anisotropy expression needed fopltasefield

simulatiors
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2.2 Numerical resolution

We presenterethe numerical methods used to solve the pifiate equationandthe energy
conservation equatiofhe finite element methodFEM) is usedfor the spatialdiscretization
and the Galerkin method for thepproximation,with SUPG stabilization thniques.First

ordersimplexelemants are usedt(ianglesP1) and we compute a metréefinedto obtainan

unstructured amotropic adaptive mesiRarallel computations reduce the computadidime

and time ste@daptatiorand avariation of the number of elements used in the nuesing

computationjmprove simulationsThe rumeical methodsareimplementedn the C++ based
library, CimLib, developed at CEMEF

2.2.1 Finite elem ent solver

Galerkin classical formulation

The weakformulation of the probleris presentedere[HAC2009.

The FEM is distinguishedfom other method®ecause it isnore capablef dealing with
complex geometriesand itallows theuseof non structured grids and more natural imposition

of the boundary condition3he principle of the FEMonsists firsin decomposinghe spatial
domain under consideration into a set of elements of arbitrary shape and size. This

decomposibn is commonly cdéd a grid or a meslas shownn|Figure2.3

Figure2.3 Schematic example oftavo dimensional mestomposed ofriangles with

different size4RAP2003.

In the phasdield equation ef2.30)] W(n) depend on / through ed(2.19)] or [(2.20)|
Equation)(2.30)|is developed as follows

w . : s w8 o Wn .
W -—yWn '/ Wn'wn’'/=[/ OT /] / w*%/lwnwwl)i(zw
—"*V% /Pwn NN —Vl’% /Pwn D
W Wy )t Wy ) 2
For a matter ofsimplicity, we noteC = Wn 'Wn \u), D=W(®n)/ M), and

f = Source termi the right hand side of the equati.35)| The strong formulation for our
problem can bgenerallywritten as:

%’ch / .D." h=f in: 0T
/(X,00= 4 in:

(2.36)
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The same solves used fotthe energy equatid2.15)] since one may show that we have the
same type of equation, the only difference being @at0 in this last casdn order to solve
the euations using the FEMve may definethe Sobolev spacéd’(:), of functions with
squareintegrable derivativeshe Lebesgue spack?(:); Ho'(:), the space of functions in
HY(:) with vanishing values on theoundary~: L' : a spacehat containaneasurable
bounded functionddence,

HY () ={ 1« L2(:), " | = L2(:)}
L’ (:)={1 WI d:<f}
¥

(2.37)
Ho'(:)={1 «HY:), 1 on~:}
L'(:)={1, I (X) dcte X}
The weak formulatiorcanbe writtenas:find / «V:=Hg'(:)/ |V such that
- | |
TM}+C. /1 D" /1=f1 (2.38)

Integraing over : leads to

ﬁm}dw lIfC /1av ln\D /1dv= H'F Y (2:39)
Y Y Y Y

We know that using ther@en formulawe have:

W /DI = g @D yDIdS= /D DAV (2.40)
Y Y Y Y
Since~—n/ "/n! R Q: "Wk integration becomes:
, ~/ s , s ’ ' _ z
HTM}dV+ HC. / 1dV+ HD [’ 1dv= H'F [ dV (241
Y Y Y Y

The weakformulation can be writtertlearly as: for a givenfeH?(:) and C,D+L'(:),
find / «V:=H¢'(: ), such that

& H+© LD =6 1) @42

Ho'( 1)
For the spatial discretizatiolet usconsider the finite elememeshTy, triangulating: into a

set of Ng elementsK, such thatthey cover the domain and are either disjointed or share a
complete edge. Using this partition, the above defined furaitgpaceV can be approaeh

by a finite dimensional spa&é, spanned by continuous piecewise polynomigltais,

Vi ={ I "eHo'(:), I "islinear for Ke Ty} (2.43)
The Galerkin discrete problem consists now in findifite VV, such that:

(

~ /h
LN+ @ Py A M= 1 (2.44)
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Rewriting it in the integral form

] -/ h h |h i h h ] h
= M) dvy+ HC.” /7 1" dV, + B A o \ Y/ (o \V/% (2_45)
f f § f
Each integral is the sum over the element ofrhe equation can be written as:

Nel © ~ Nel ~ Nel ~
:eI Y fhm)“dvh+ :eI Hc.’ /M 1" AV, + :e' HD’ M1 AV, =
e1 . el | el .

Ye Ye Ye

, (2.46)
R
fI"dv
L e
Ye
N
Sincewe areusing the first order linear triangle element wan replace = : f"N; and
i=1
' /"= | f"'N. Taking \)i «n, the finite element vector space basi#, are computed
i
locally in each node of the triangle element.
Ne|,N~/Ih Ne|,N Ne|,N
: lff-: SNVt | W CAT NNV W DTN N dVy
e=1 i=1 e=1 Jli=1 e=1 Jli=1
'}lel Ve ( " 7)
= fN; dV,
L TN
Ye
We write this lastequationas
e Vo e o0 Ch
1 ) . . ) R ) R )
° ¢ o - € (2.48)
N v
BT A
Ye
By amplifying the sum we obtain:
l}lel ’ ~ h '}lel ’ o 'I\lel . o
e!:1 HNi deVhTM'yel:l HC. N; deVh [+ e|:1 HD N; deVh/
Ye Ye Ye
N (2.49
el

|
= fN; dV,
I AR
Ye

The linear matrix system regdster assembly of the element matric@system of first order
differential equations:

M) +Kc ) +Kg ) =F (2.50)

where ) is the vector of nodal unknownMy, is the mass matriX is the stiffness matrix
issuedfrom the conductive ternky is the stiffnessnatrix generatedrom the diffusive term
andF is theterm load vectarThe finite element matrix equati®must be solvedvith an
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appropriate set dboundary conditions. The cifieient matrices and load vector are defined
as follows:

NeI .
Mm:/‘i\lK%Ni Nj dK
Ne *
KC:/A\I %C ’Ni Nj dK
e=1
Ke
Ne ~
Ke=A 4D N Nk
e=1
Ke
Nel .
F=A dfNdK
eleH'f Jd

Nel
A is the matrix assembly operatdefined suchthat one hask = A K¢, whereK is an

e=1

elementandK. is a subelement.

SUPG stabilization method

The original SUPG method was first designed forsteady version as a method to avoid the
numerical oscillations found using the Galerkin approach when the diffusion term is small
(mainlyin convectiondominatedproblems)
Let usapply the backward implicit Euler method to equafi@4)| given /", find /™!
satisfying the boundary conditions and! " «Vi,such that
/hn+1

. w
One may adda streamline upwind perturbatioacing in the flow direction, to the test
function:

n
M+ (€.’ ™ 1IN+ (D M lh):(/.—ht,lh)+<f, [ (2.51)

Th= 1"+ P (2.52)

Where he paameter i/isoftencalled pL Q W U L QWiithH-caw ddeerhfinand calibrate the
amount of upwinding weighting locally in each element.
Inserting itin equation(2.51)| its stabilized form becomes
/hn+1
- w

,h)+ (C1 /hn+1, ,h)+(Di /hn+1,’ ,h)+lg|(R(/h), m.a ,h)

4 (2.53
=(,—ht, I +<f, 1">

In this equation/R (/) is the appropriate residual of the finite element componéhtgve

can see that this method is consistent in the sense that the additional stabilizing term is zero if
u"is the solution ofhe continuous equation.
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/hn+1

n
SSUPG: IJ (R( /h)’ '/M:l , h) - Ij '—M/+ C. ’ /hn+1 DI /hn+1 /_h

eIk (2.54)
This method has been used in convection dominated problems by introducing the streamline
diffusion in the context of weighted residual methods. The added stabilizing terms are
indicated by a subscript which denots integration over the elememote thathe third term
vanishes if(2.54)|when using linear interpolationdVe still have to defindhow to compute

the paameter W/
A computation of |dfs often poposed on the basis of the convergence and error analysis of
the methodThe definition of the stabilization parameters directly implemented in outefi

element code iHAC2009:
h
£ [P
W=21cn AP (2.55

where [(Pe), afunction of the Péclet numb@e = |IC||h/2 D, is derived from nodal exactness
as:

i

(P& = MaX GanrPg Pe

(2.56)

h is definedfor each elemerds:

_ § &ﬂ'_l - _ 2
h= @; ICll i . with [IC]| = i|=1Ci (2.57)

Ci is thei coordinate of the vectdC. N;is the basigunction associated with tHecal nods.

The linear system of equations issuing from the discretization is solved implicitly using the
conjugate bigradientleast squares method (BCGSL). There is also preconditioning to the
resolution using the Jacobi method with incomplete factorization LU per block of dtoe 2.

that, the PETSC libraffBAL2015]]has been interfaced with Cimlib.

2.2.2 Mesh adaptation

The mesh is initially (and throughout time) adapted using a topological m€Ber201],
based on a metric fieldnd given at the nodes of the me$.is a unit metric
field associated with any unstructured mebhilt using the affine transformation to a
reference elemenh a Remanian spac&hich has to be equilateral of edge length equal to
unity. It provides both the size and the stretchinghefelements. In our caséyis field can be
computed using the edge vectors of the mEgk, X; +X; i andj being theextreme nodes of
the edge. Starting from an existing mesh, the new nodal metricdfietdmputed and given
to the mesheis:
_ §l i) 5 .1

M, = Q@ j6 Sj Xij ...Xij N (2.58)
g being the space dimension%(i) being theset of nodes connected to nodes; is the
stretching factor applied to obtain the new edge siie edge stretching factos;, is
obtained from tha posterioriestimated error, and is given by

1/
si=(/g;) P (2.59)
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where e represents theommitededge errorand p a stretchingexponent1l <p <g. A
constraint is applied here for the choicespfbased ommin, the minimal mesh sizes; =

min % ; %]%1 with by ?ij) |Xijl] . Starting from a given element, we examine what
information we can construct from the set of edges. Since more than only two edges can be
encountered for a node, it is necessary then to find an approximation or an averaging process
of the information. Forhis reasontheyfirst state that the length size of the edges sharing a
given node is exactly the interpolation of the continuous length distribution function defined

in the space at the considered poldsing this, / is given bythe error along and in the

direction of each edgg,

p+2
p

0 o2
/= 26 j6 & INEy | (2.60)

NEis the number of elementdEy is the number of edges and it is defirrsNEy = NEx 3 x 2
in 2D andNEy = NEx 4 x 3in 3D. The error is computed using the recovered gradient of the
solution on which we wish to adapt (phase field, temperatorapositionor all). In the case
of temperature and phafield computation, w construct a solution vectoy= ( /, 7)) which
contains thdields to adapt withand we compute its gradient
1 W .
In fact,e; = max(' /. X;l; emnlX;) and’ [= (X)™ f, where X = o] j6 X . X is the
)
edge lengthistributiontensorand /i- 6 fi Xij. eminis @ chosen constant.
j

[Figure 2.4]illustrates this metric field construction through an example on adaptation on a
phasefield function defining a circle. One may observe that mesh sizes are satatter
interface and larger outsidén this figure, he red color represents the solid, thiee one
represents the liquidkhe green one is ththickness of the interface and the black one
represerdthed! interface.

Figure2.4 Example of meslhdaptation om circle shape of radius Qudsing only /(which
definesthe circle inner and outer paregthefield for error estimationln this exanple, the
domain size is [0;1] X [0;1FBmin = 10°, hmin = 0.001,NE = 50000, Wy = 0.005andR, = 0.4

In this adaptation loophe thickness\ will be important, because it provisithe measure of
the recovered gradient.o control the adaptatiomnd the value of the metriteld, other
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parametersare provided: hyi,, the minimum mesh sizeenin for computingthe errore; by
imposing a minimum erroso that onecontrok the backgroundmesh sizethe number of
elementd\NE, because error minimization is performed under this constraint.

To see the influence of the thicknask , let us considea domain sizeof [0;1] x [0;1], with

an initial seed o, = 0.05[Figure 2.5| shows the difference between the mesh for three
different values, showing that it follows well this parameféhenW, increasesthe interface
thicknessalso increasesand so does the greaone (varying one between maximum and
minimum values)

(a) (b) (€)
Figure2.5 Adaptedmesh withNE = 20000, enin = 10%, hmin = 0.001for different interface
thickneses (a) W, = 0.005, (bW, = 0.01, (c)\W, = 0.05.

In what concerns the other refernegmericalparameters, tventhetotal number of elements
is increasedthe mesh is enriched around theerfaceas well as outside the cirglas
ilustratedin [Figure 2.6] If we continue increasing the number efementsthe mesh si
outside the interfacéhicknesswill continuedecreasingAdaptationthus beginsenriching
therebecause the computed error around the interface has reached its abjective

() (b) (c)
Figure2.6 Adaptedmesh withenin = 10% hpin = 0.001W, = 0.01for different number of
elements(a)NE = 1000, (b)NE= 10000, c)NE= 40000

In|Figure 2.7| the influence of thevalue ofenin, Which controls the background mesh size is
illustrated, showing thathe mesh size outside the interfatt@cknessincrease when this
parameter decreases
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(@) (b) (c)
Figure2.7 Adaptedmesh withNE = 20000, hyin = 0.001,W, = 0.01for different background
errors a)emin = 10%, b) enin = 10%, ) emin = 10°

In[Figure 2.8] the influence of the value diy», which controls the mesh size at the interface
is illustrated, showing that whemi,is smaller or equal té , the circle is well represented
and when idecreasesnore elemerst are added at the interface. Wina, is bigger tharig
some big elements are at the interface whiehnot sufficiento represent theircle. Instead
we havea squargwhich is a bad representation

() (b) (©)
Figure2.8 Adapted mesh withNE = 20000, enin = 10°, Wy = 0.01 for different minimal

We have studiedhe influence ofhmin by using an example of a growing ciramder a
constantradial velocity, equal t00.02. We have considered computational domaiof size of
[0;1] x [0;1], with a geometry of the circle defining the interface; CirclB{) with O(0.5;0.5),
enin= 10% andRy = 0.05.The relative error ieveen the analytical radiwnd the numerical one
was computeevhile growingand compare :

Here we plotthe rehtive error evolution with timesomputed as:

|Analytical radius £Numerical radiug
Analytical radius

Relative error= (2.62)

Initially, an anisotropic meshas been built, which consists of triangutéements with different

szes{FigueaT.
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Figure2.9 Growth ofa circular seedvith aconstant radiakelocity equal t00.02, with mesh
adaptatioron the circle position, given by a phessd function / at 1#0, 14/0.2, 1#0.45
with NE = 20000, hyin = 0.001,W, = 0.01and ' 1470.01

One may observihat the erroon the position capturdecreases whencreasing the number
of nodes asshown iffFigure 2.10] where the error converges wittE = 20000 and 4®00.
To see the influence &k, we tracethe blueline, the casef NE = 20000 and we start from
the same case withy = 0.01,hni, = 0.001 as seen i|rIFigure2.10|(a). When decreasing the
value ofhy,n the error de@asesas seen i|figure 2.10|(b). If we take a smalh,, and we
increaseW, , we will have more elements to represent the interface and thedecgases
more because it is well represented, as sefffigare2.1]Figure2.10(c).

Figure2.10 Error evolution on the position captutaringthe growth ofacircle, withWy =
0.01,hmin = 0.001 and with different number fquiredelements, error measured using the
radius (a)n the direction o0 cangle, (b) in the direction @45 gangle.

(@) (b) (c)
Figure2.11 Error evolutionmeasured in the directions @f (ErrorX), 45°(ErrorXY) and 90°
(ErrorY) with NE = 20000, (a) Wo = 0.01andhmi, = 0.001, (b) Wy = 0.01andhyi, = 0.0005
(c) Wy = 0.05andhp, = 0.0005.
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For a matter of CPU time optimization, weve defined a remesimg frequency which
introduces one other numerical paramgefd®. To computeit in an appropriate way, we use
the estimatedvelocity, inspiredfrom the GibbsThomson velocity neglecting £ over the
entire domairas:

Vip=max_ 7 doK) (2.62
: aaW(n . : g
with do= = 0 whereK = ’r-n is the curvature, 1 is the tangential divergena@ndn the
. . i
outward unit normal to the interfage= ”—/
One may als@ompute the velocity at the interfadeectly in the computatioras
_ 8.1 T
Vip = Max (G= =~ (263

0 if /Y H

(<)
where Gis a dirac function, given byz= @_/ if l[ HH

0 if / H
Comparison of these two velocities showed that the estimation was bigger than the directly
computed velocity.
To obtainFR, the displacementy,. 't is conputed and added to thesglacements of the
previoustime steg. When the sum of the displacemeaiseeds B4 / 2 (half the green zone
at the interfacethat is equal to\B ), mesh adaptatiois activated

2.2.3 Parallel comput ing

We use parallel computation to do our simuladi@amd reduce the computional time. We
explain here how we use the memory argllel tosuldivise the job between many cores.
There are two methado perform parrallelizatian

-ashared memory modalsing OpenMP;

-a distributed memory modethe two standards beirlgvM (Parallel VirtualMaching and
MPI (Message Passirgterface).

Figure2.12 Two management modeisr Paralleluse ofmemory: (a) shared, where memory
is in common for all compute nodes and (b) distributed, where memory is managed

independently byach node, according [p1G2001].
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Shared memory management, presented|Figure 2.12(a), allows a unique space
addressing: each computing unit, or "core", can access a common centralized memory. Cores

are physically grouped into nodes. The nodes are similar to conventional servers linked to the
network, andypically contain a few tens of cores. Modifications of a core in the memory are
directly visible by all other units. This is a simple way to parallelize a calculation code, but is
restricted to shared memory machinésese are usually limited to less thda cores. Note

also that the calculation code is parallelized samomatically by the compiler, which can do

S0 on pieces of relatively simple cod&ae management of the-salled distribuéd memory,
presented ifFigure 2.12]b) separates the contrary memory between compute nodes. The
addressing space is multiple, tma¢anseach computing unit will have its own memory that
may change independentlyVM and MPI standards are based on thetome exchange of
messages between the computing units, which must be explicitly specified by the
programmer.This leaves a lot of flexibility in the design of code that can be optimized to
perfection. This is the best approach today to better performance and massively parallel
computing. It is more complex to implement because the programmer itself must manage and
optimize communications between the cores.

Here,we will use the MPlbased implementatiodevelopedby |[DIG2001,{[DIG2003]| to

solve our equatiamand for the representation of thendetic growth. CIMLib contains a
mesh partitioning/ repartitioning algorithm called MeshMigration, that alkowsalance well

the number of mesh entities (vertices or elements) per pro¢bHs82009]

It is important to notice that in the script filesed there is no reference to any parallel
instruction. Theuserhas only to specify over how much processors he wants to run using the
traditional "mpirun” command.

In what concerns meshingie use a sequential mesher MEXDU2000] |and itis partitioned

in several sadlomains The chosen parallelization procedure uses the sequential mesher in a
massive parallel context, by following an iterative two successive steps procedure
[COU2000b] independent adaptive meshing of each subdomain with blocked interfaces;
constrained repartitioning and interface displacement. When a good quality mesh is pbtained
a finite element loatbalancing repartitioning step is performed. All fields defined on the
initial mesh may then be mapped on the new one.

For linear system resolution, parallelization has been performed by interfacing the parallel

partitonner with tle PETSc library][BAL2015]| and also by applying a muigrid
preconditionnefFigure2.14| shows this strategy applied to a simple square with 4 processors.
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Figure 2.13 lllustration of the strategy used to parallelize the mesWé&r. havehere the

partition of the domaifjDIG2003] H.Digonnet, T. CoupezcObjectoriented programminfy

for "fast and easy" development of parallel applications in forming processes simylatdt

MIT Conference o€omputational Fluid and Solid Mechanjq.19221924, 2003 |
[DIG2007]|

=

For complex 3D geometries and complex physical laws, parallel computation remains
essential. It allows us to run complete simulations with aoredde precision, inaccessible

(for memory and time limits) with sequential runs. It also makes possible to speed up the
simulation run such that the global computation time will still be acceptable. In the last years,
SURFHVVRUTV SHUIR bsBdby imidrokimy\the xRk ratedet b multiplying the
number of cores in a CPU. Most of the computation time is spent on remeshing and on the
resolution of several large linear systems.

2.2.4 Validation on benchmark :temperature diffusionin a corner

To validate the coupled pha$ield and energy solvers, let us considire example of the

temperature diffsion in a corer |RAT197], as shown ifFigure 2.14 We study in this

example a Stephan problemhich is afree boumlary problem¥or controlled heat flow.

Figure2.14 Representationf a square domawvith an initial temperature’y = 0.3cooled
from its left cornewith an imposed temperaturg,, = 1 at its leftand bottom boundaries.

The squaredomain[0;1]x[0;1] is defined and composed af mesh with 2000 ekments.
Mesh adaptationdepend on / and 7 and the phasdield function used here
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K . . : . .
/ (tanh ?@/T ; Remeshing parameters dign, the interface thickness introducdttre as
E=0.01 enin=10° ' 147 10° The corner is the intersection ofdylanes placed at the point
(0.1,0.1). We use the thermal diffusivityy
We solvethe phasefield equation with amodified source term and without anisotrppging

Wy =1

W / §2. 3 §/2.

W' E Bd i Ty Td G (2.64)

In this expression/ is built in a slightly different way from the classical phéistd
formulation, leading to a different source term in equi®64)| The energyequation isthe
same as previously:

L 1 W S B [V I _
D' T= 5 wl/l?ndT_TM TimpW'thT'V'_OK (2.65)

Boundaryconditionsare imposedn the left ancon the bottom side( 7imp = 1), andthe
initial temperature in the domain i% = 0.3.

Figure2.15 Phase field and temperature field witherface psitionfor E = 0.01 Wy = 1,
Pimin = 0.001,€min = 10> ' 147107 at 14/0.018

Starting from the initial conditions, interface evolves from the corasr illustrated in
|Figure 2.15| Numerical results obtainechay be comparedvith the analytical solution

developed i|§ppendixB|in thex-y direction.

The error between the numerical and analytical temperature pisfdesmputeds follows:

- | 7,-Analytic * 7Rlumericl

E =
fror | 7,Z\nalyticl (266)

In the first casethe influence ohyi, andNE on the thermal solver is studied by considering
only the energy equatioand not solving the phadield one The comparison is donker

different cases as presente(liable 2.2 Results are shown a4 0.0192 in|Figure 2.16{and
Figure2.17,
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Parameter Symbol (a) (b) (c) (d) Unit
Type of mesh - Isotropic  Anisotropic  Anisotropic  Anisotropic -
Number of elements NE 5000 5000 5000 20 000 -
Mesh size Pimin 0.02 0.02 0.001 0.001 -
Interface thickness E 0.01 0.01 0.01 0.01 -
Domain Ro 1 1 1 1 -
Numerical initial temperature 7, 0.3 0.3 0.3 0.3 -
Numerical thermal diffusivity p 1 -
Minimal error Emin 10° -
Time step /4 -
Table2.2 Parameterfor temperature diffusion in a cornfer the different cases presented in
[Figure2.16/andFigure2.17|
(a) (b)
(c) (d)

Figure2.16 Temperature distributioand interface position added 147 0.0192 for different

numerical parametera) Isotropic mesh with = 0.02 andNE = 5 000, b) Anisotropic mesh

with hmin = 0.02 andNE = 5 000, ¢) Anisotropic mesh with,ir = 0.001 andNE =5 000,d)
Anisotropic mesh wittnmi, = 0.001 andNE = 20000.

By a comparison of the temperature figldgsie may observe that botsotropic as well as
anisotropic mests may be used, as confirmagdrawing the 7profile along thex-y direction
in|Figure2.17| Similar resultsareobtainedusing these two differerypes of meshes.
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(@) (b)

(c) ) (d
Figure2.17 Numerical and analytitdemperature profiles the direction of the diagonaf
the squarevith a) isotropic mesh witlh = 0.02 andNE = 5 000, b) aisotropic mesh witln,,
= 0.02 andNE = 5 000, c) aisotropic mesh witl,;; = 0.001 andNE = 5 000,d) anisotropic
mesh withhpyi, = 0.001 andNE = 20000.

As observedn|Figure2.18| by comparing the red and green cuntés, error increases when
decreasindmin, because we are asking for smealinesh sizewithout adding more elements
to capture the gootemperature profileWhen increagng the number of elementwhile
decreasindnn, the error decreasd€blue curvg. The same erroexists between isotropand
anisotropic mests wherhn, is smalland a sufficient number of elemseiNE is used

Figure2.18 Error profiles between the numerical and analytical profilesingdifferent
meshesasillustratedin|Figure2.16{andFigure2.17|
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Both phasefield and energy equatisnare now solved, andinterface position is thus
dynamically trackedSensivity to the different numerical parameters was stlsdied. Firstly,
we considethree different caseas presented [hable2.3| to seethe influence ohy, value

asillustrated inFigure2.19jfor 147 0.05 The mesh isdapted on bothvand /

Parameter Symbol (a) (b) () Unit
Type of mesh - Anisotropic  Anisotropic  Anisotropic -
Number of elements NE 20 000 20 000 20 000 -
Mesh size Prmin 0.01 0.001 0.00025 -
Interface thicknes E 0.01 0.01 0.01 -
Domain Ro 1 1 1 -
Numerical initial temperature 7, 0.3 0.3 0.3 -
Numerical thermal diffusivity D -
Minimal error €min -
Time step /4 -

Table2.3 Parameterfor temperature diffusion in a cornfer the different cases presented in
[Figure2.19||Figure2.20landFigure2.21]

One may notice that larger values hgfi, provide poorer results, but when decreasing this
value, analytical and numerical profiles become similar. Error on temperature computation
decreases fror4% to 5% when decreiag the minimalmesh sizdFigure2.20), at different
instans of the computation

The interface position is plotted[Figure2.21] for differenttimesand for the prescribelghn

values. Numerically obtained profiles are far from analytceds in term ofemperature, and
become coincident only at the lowest givem, For largehmi, valug we will have big
elements at the interface and not a sufficient number of meshes to represent the interface
thicknessThe numerical and analytical results do not match
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(a) (b) (©
Figure2.19 Numerical and analyticaémperaturgrofilesin the direction othe diagonal of
the squardéor K0.05with, a) hmin = 0.01, b)hmin = 0.001, chmin = 0.00025

(a) (b) (©)
Figure2.20 Temperature errgorofilesfor a) hmin = 0.01, b)hyin = 0.001, chmin = 0.00025
plotted at different instant)iWalues.

() (b) (©)
Figure2.21 Numerical and analytical interfag®sitionfor a) hmi, = 0.01, b)hy,in = 0.001,

Looking at the sensitivity of the results to the mesh adaptation type (isotropic, anisotropic
adapting on/and 7or anisotropic adapting ortonly),[Figure2.22| shows that for 14 10°

and for the parameters taken fridimble2.4

- for the samd,;n, isotropicand anisotropic adaptation does not influence the result;
- computing 7and /in two different meshes (one adapted émnd the other isotropjic
providesimilar results.
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This shows that anisotropic adaptation may be used to do the simulation with thesalise
as using an isotropic mesh.

(@) (b)

(c)

Figure2.22 Phase field and temperature field with interface posdioi# 0.05 witha)
isotropic mesh witl = 0.0002 andNE = 20000, b) anisotropic mesh with,, = 0.0025and
NE = 20000, c)anisotropic mesh forwith hyin = 0.001 andNE = 20000 and arisotropic
mesh for with h = 0.2 andNE = 5000

Parameter Symbol (a) (b) (c) Unit
Type of mesh - Isotropic  Anisotropic  Anisotropic+lsotropic -
Number of elements NE 20000 20 000 20 000 -
Mesh size Prmin 0.0002 0.00025 0.001 -
Interface thickness E 0.01 0.01 0.01 -
Domain Ro 1 1 1 -
Numerical initial temperature 7, 0.3 0.3 0.3 -
Numerical thermal diffusivity D -
Minimal error €min -
Time step 4 -

Table2.4 Parameterfor temperature diffusion in a cornfer the different cases presented in
|Figure2.22|[Figure2.23||Figure 2.24{anqFigure2.25|

We can conclude froffigure 2.23|andFigure 2.24] that we have the same profiles usiag
isotropic mesh or two meshes for tti#ferent fields with the same maximum efreo no
need to have two meshesnd using an anisotropic mesh for the two fields gives a similar
resultas using the isotropic me$lt with a bigger maximum er of 5%. We can still use
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the mesh adaptatiolmaving resultsneededwith a small errarUsing an isotropic mesthe
computational time is equal to 210 lbut for the anisotropic mesh used the computational
time is equal to 179Hf we use a smallegy, it should decrease the number of elements and
the computational time, because we will have bigger elesoeitside the interface

(@ (b) (c)

Figure2.23 Temperature profile at47 0.05 in the direction of the diagonal of the square
using a) an isotropic mesh with= 0.0002andNE = 20000, b)an anisotropic mesh withy,
= 0.0M25andNE = 20000, c) an anisotropic mesh fofwith hn,j, = 0.001 andNE = 20000

and ansotropic mesh forAwith h = 0.2 andNE = 5 000.

(a) (b) (c)
Figure2.24 Error ontemperaturerofile between the analigal and the numerical solutiat
¥ 0.05using a) an isotropic mesh witih= 0.0002 andNE = 20000, b) an anisotropic mesh
with hpmin = 0.0M25andNE = 20000, ¢) an anisotropic mesh f@with hpi, = 0.001 and
NE = 20000 and an isotropic mesh fawith h = 0.02 andNE = 5 000.

(a) (b) (c)

Figure2.25 Numerical and analytica@lomparison for the interface positioais 147 0.02, ¥
0.03, ¥ 0.04 and I470.05using a) an isotropic mesh with= 0.0002 and\NE = 20000, b) an
anisotropic mesh withy,i, = 0.00025 andNE = 20000, c¢) an anisotropic mesh fdwith hpy;,

= 0.001 andNE = 20000 and an isotropic mesh fafwith h = 0.02 andNE = 5 000.



43|Chapter Thermal model

Even if the error is slightly higher in tranisotropic case (5% against 4%), interface using an

anisotropic mesh are better followed, as showRigure2.25( No sensitivity study t@nn has
been performed here (it will be given for a different test case in ttiesaetion). But one may

already conclude that dynamic anisotrpic adaptation, dm banhd 7is accurately performed

for the Stephan problenilhis anisotropic method may not give us the best results but it can
be used in problems where the isotropic method can not be used. Is it better to use anisotropic
meshfor various problems with 8% erroror is it better to use isotropic mesh for some
problems

2.3 Thermal dendritic growth

A first examplehas been simulated show howa dendritepatterncandevelop,starting from

a small nucleusgFigure 2.26), which grows in an undeczooled melt. The material propgrs
chosen with an interfaanisotropy ternto develop dour armsdendrite

(@) (b)

(€) (d)

Figure2.26 Example of simulation oflendriic growthusing the parameters defined in
Tablezs|at, a) U0, b) 4764, c) 14796, d) 147128

Simulations were performedin a [ 200,200k 200,200]domain Parametersaken hereare
presented ifTable 2.5(with the anisotropy form\W(n) = Wy ?C) hfcos %arctan—w\;—/ 4y This
simulation is done with 25 cores with a computational time equal to 25 h 30 min.
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Parameter Symbol value Unit
Number of elements NE 150 000 -
Mesh size Pmin 0.4 -
Interface thickness Wo 1 -
Unit time %74 1 -
Domain Ro 400 -
Nucleus radius Ro 5 -
Numerical initial temperature 7, -0.55 -
Numerical thermal diffusivity p -
Anisotropyfrequancy H -
Time step /4 -
Cores number - 25 -
CPU time tcpu 25h30min -

Table2.5 Parameterfor thermal dendritic growth shown|l¥1’gure2.26|

Thermal dendritic growthas been studied by comparing results obtairsgag he finite
difference method with an isotropic structured grid (model developeaitalyland the finite
element method with parallel computati@md an isotropic unstructured mesh and an

anisotropic unstructured adaptive m¢&8imLib) in terms of CPU time and dendritic
morphology, as illustrated fin |

|Figure2.27| Simulations were performed in a 200,200 200,200]domainand parameters

are shown iﬁ able2.6|

14256 ' 1470.008 14256 "' 14#70.016 147 256.168" 147 hiyin/(10-Vip)
NE =1 000 000 NE=1 250 000 NE = 2 Vintertacdhmin + 20 000
3h 34 min(Matlab)(1 core) 44h(15 cores) 660h(1 core)7 min (15 cores) 1h 54min (1 core)

Figure2.27 Simulations using the finite difference and the finite element metiitbd
isotropic and anisotropic mes$iillustration at one growth instant4” 256 and the

parameters used are show|Table2.6
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Parameter Symbol Matlab Isotrope  Anisotrope Unit
Number of elements NE 1000 000 1250000 2Vierfacdhmin® + N -
Constant number of element N, - - 20 000 -
Mesh size Pmin 0.4 0.4 0.4 -
Interface thickness Wo' 1 1 1 -
Unit time V174 1 1 1 -
Domain Ro 400 400 400 -
Nucleus radius Ro 5 5 5

Numerical initialtemperature 7, -0.55 -0.55 -0.55 -
Numerical thermal diffusivity D 4 4 -
Minimal error Emin - 10° -
Anisotropy frequancy H 0.05 0.05 -
Time step "W 0.016 Nimin/ (10 Vip) -
Cores number - 1 15;1 15;1 -
CPU time tcpu 3h34min  44h;660h 7min; 1h54min -

Table2.6 Parameteror thermal dendritic growth shown|Figure2.27/andFigure2.28|

Firstly, onecan observe thausing an isotropic unstructured meahd the finite dement

methodtakes more time than the simulation done \lifinite difference methodor almost

the same number of degrees of freedom

Using adaptive meshg, one hasl6 201 mdes instead of 1 milliofor the isotropiccase so

we have reduced thepace needed in the memory to store the reanlihe computational
time decreasefom 3h 34 min to 7 minwhen using 15 cores

Figure2.28 Solid/liquid interfacgositionusing the finite difference athod and the finite
element methgdvith isotropic and anisotropic mess$y as well as further optimisations, at
4 256

Figure 2.28/shows that the two interface positionsjng the finite difference method and the
finite element methogrovide the same results
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2.3.1 Timestep and number of element s adaptation

Improvements on CPU timeave beermbtained byautomatic adjustment adfie time step’ W
to the interface velocity evolution, by

" W Nind ( E Viip) (2.67)

hmin IS the minimal mesh sizend £ LV D FKRYVH énskiR QA Wi &Qustion terifies
the CFL (CourantFriedrichsLewy) condition that is' IWust satisfy the relation:
' l/4{hmin/Vtip (2.68)

At the beginning of growtha small time steps neededThengrowth velocity decreasgand
larger time steps are authorized.

This optimization was put in pladeecause, during dendritic growtihe number of elements

should increasaince the surface dhe interfaceincreasesmore elementsare neededo

represent itAn estimation of KH 3SLQWHUIDFH YROXPH" GHILQHG DV WKI
interface thicknessof the phase field function,i\errace(@ Surface in 2Dxanbe obtained as

follows:

X 0 for /1< Wp
. 11 §S/. . .
Vineriace= | G AV, with G= @Y=+ 5y cos gy=y for Wo < /<Wo ) o0
f 0 for />Wo

In our computations\p, = 1. The number of elements needeithin this volumemay be

computedas

N1 = Snterfacd Selement= 2-Smterface””lmin2 in 2D
or

N1 = Vinterfacd Velement= 6-Vinterl‘ace,(l'1min3 in 3D

One may then estimathe total number of elementheeded asNE = N; + Np, with N; a
constantto add a certain number of elememutside theinterface thicknessUsing this
expressionNE may be variable throughout computation, and given at each mesh adaptation
step.

Assuming symmetrical growtbnly ¥4 of the domaims usedreducingthe computational time
and the memory usefFigure 2.29|illustrates mesh adaptatidiellowing the solid/liquid

interface and the temperature profile. The number of element is incredgimy the
computationto capture these profilef?arameteraused in this simulation are shown i
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Parameter Symbol value Unit
Number of elements NE 2 VintertacdNmin? + N2 -
Constant number aflement N, 50000 -
Mesh size Pmin 0.4 -
Interface thickness Wo' 1 -
Unit time "4 1 -
Domain Ro 120 -
Nucleus radius Ro 5 -
Numerical initial temperature 7, -0.55 -
Numerical thermal diffusivity p -
Minimal error €min -
Anisotropyfrequancy H -
Time step "W Pimin/ (10 Vip) -
Cores number - 8 -
CPU time tcpu 10 min -

Table2.7 Parameteror thermal dendritic growth shown|Figure2.29/andFigure2.30|

Figure2.29 Dendritic mesh atl#7 0, 1456, 147132, 14200, for an evolvingNE. Parameters

are shownri

[Figure2.30]shows the variation of the time step and the number aheles with time during
thermaldendritic growth. We can see clearly that the time step and the numddemant are
increasing withgrowth. The time step will stagnates when we reach the stationary velocity
and the number of elements is increasing linearlij time.

Figure2.30 Variation of ' Il&hdNE with time during thermadlendritic growth withD =4
andN, = 50000 Parameters are showr|Table2.10
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2.3.2 Convergence of the tip velocity

We nowcompare our results witthe resultspresented ifKAR1998, where an analytical
solution in 2D for thermablendritic growth has beencomputed withthe Green function
method.

Let us consider a rectangular domainsize[0;1000]x[0;300] on which an initiahucleusof

size 5is placedin the left botom corner a rectangular is chosen instead of a square of
[0;1000]x[0;1@0] to follow the dendrite velocity until it stabilizes with a small computational
time and a smalleNE. To checkthe convergencéoward a steady state regipthe tip
velocity in thex directionis computedThesimulation parameters ageven ifTable2.g]

Parameter Symbol value Unit
Number of elements NE 2 VintertacdNmin” + N> -
Constant number of element N, 25 000 -
Unit time %74 1 -
Nucleus radius Ro 5 -
Numerical initial temperature 7, -0.65 -
Numerical thermal diffusivity D -
Minimal error €min -
Anisotropy frequacy H -
Time step "W Pimin/ (10 -Viip) -
Capillarity length d 0.554 -

Table2.8 Parameterfor thermal dendritic growth shown|Figure2.31landFigure2.32|

We will study the influence of varyingfM, and hmin. In the following, we comparehé
solution for different values of the minimal mesh dizg.

(a) (b)

Figure2.31 a) Evolution of dmensionless tip velocitgs a function of time for differetyy,
b) dmensionless tip velocifywhen it stabilizesas a function of grid spacinghe red line
corresponds to the value obtained from the Green function calcdﬁ@@l%a.
Parameters of the simulations are givelfmblez.sl
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In [Figure 2.31] (a), we observe that the tip velocity decreases with tima constantvalue,

named the steaetate velocity. Wen the tip reaches the border of the donthis valie
changesmeaning that the computation no longer fits the hypothesis dahe analytical

solution In[Figure2.3](a) WKH VHQVLWLYLW\ Rl WKH VROXSLRQ WF
representedn|Figure2.31|(b), the steadistate velocity computed valigcompared with the

value obtained usinthe Green function calculatiorDne observethat whendecreasing the

minimal mesh size in the interfigdhe velocity converges to the analytical solutiomed

(@) (b)

Figure2.32a) Evolution of émensionless tip velocitgs a function of time for differems
b) dmensionless tip velocifywhen it stabilizesas a function ointerface thickness he red
line corresponds to the value obtained from the Green function calcuf#dr199g.
Parameters of the simulations are giveln'étmlez.sl

The sameype ofstudy is dongbut by varyingW asillustratedin[Figure 2.32] WhenWs
decreass, the velocity tip converges towardhe analytical one drawn in red. This

convergence can be established using a sihglid, . Decreasing @ is equivalent to
decreasing simultaneoush 'd,” showing that our results are independent of interface
thickness This shows thaour phasdield model can quantitatively predictesults for the
thermal dendritic growtkelocity.

2.3.3 Computational time

To reduce the CPU tim@&umerical methods and different optimization previously described
are usedsuch as parallel computatiotime stepadaptation,number of mesh elemens
variation and adaptie meshng itself. We checkthe influence on the CPU time of these
differentoptimizationsin thermal dendritic growthn 2D, andusing 5 cores.
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(@) (b) ()

(d) (e)
Figure2.33 Thermal dendritic growttona [ 200,200] squaresupposingheinitial nucleus in
the middle of the squasndusingdifferent optimizationsfor hyin = 0.4, a) isotropic mesh, b)
anisotropic adaptive meisly (each' Mvith ' 1470.016,NE = 100 000 an@n, = 10%, c)
anisotropic adaptive meisty with FR, ' 140.016,NE = 100 000 an@n, = 10%, d)
anisotropic adaptive meisty with FR, ' 14 hi/(10Vp), NE = 100 000 aneyin, = 10% e)
anisotropic adaptive meisig with FR, " 14 hmin/(10-V4p), NE= 2 Vinterfacdmirz + 25 000 and

€min = 10°.
Parameter Symbol (a) (b) (c) (d) (e)
Number of elements NE 1000000 N;+Ny N1 + Np N1 + Np Ni + No
Constant number of element N, - 100 000 100 000 100 000 20 000
Mesh size Amin 0.4 0.4 0.4 0.4 0.4
Interfacethickness Wo' 1 1 1 1 1
Unit time "4 1 1 1 1 1
Nucleus radius Ro 5 5 5 5 5
Numerical initial temperature 7, -0.65 -0.65 -0.65 -0.65 -0.65
Numerical thermal diffusivity D 1 1 1 1
Minimal error €min
Anisotropy frequancy H 0.05 0.05 0.05 0.05
Time step "W 0.016 0.016 0.016 hmin/(L0Vtip) P/ (10tip)
Capillarity length d 0.554 0.554 0.554 0.554 0.554
Cores number - 16 16 16 16 16
CPU time tcpu 44h 15h30min  1h55min 32min 7min

Table2.9 Parameterfor thermal dendritic growth shown|(Figure2.33|[Figure2.34|and

Figure2.35

Figure2.34|schematically provides the CPU time decrease obtained for all the conditions.
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Figure2.34 Variation of the CPU time for thexampleshown inFigure2.33| illustratingthe

influence of the different optimizations

To further extend this analysidifferences on the computational time fdifferentnumerical
parametersare shown for a recangdar domain [1000;300] with the same parameters of

Case  Vrp NE  hmn Nb_Proc Fr 293P0 \GaptNE  Tepu
Time

1 0.0469 4638842 0.4 1 No  No No  36000h*
2 00469 4638842 0.4 4 No  No No  13000h*
3 0.0469 4638842 0.4 16 No  No No  3480h
4 00485 100000 0.4 16 1 No NO 504h
5 0051 80000 0.4 16 Yes No NO 80h
6 005 80000 04 16 Yes Yes NO 13h
7 00469 46000 0.4 16 Yes Yes Y;ch()'g'zo): 10h

* Predicted time

Table2.10 Computational times for different test conditions using the paramej€ebleb.9

The predicted time is computed as follows: for case 1 the simulation is done arriving to
(1000/12.5 = 80) of the domain taking 2880h; prediction time is equal to 2880*(1000/12.5)
using cros multiplication to reach the domain. The same prediction is done for cases 2 and 3.
Parrallel computing gain is observed on the CPU tim#herfirst three cases, using 1, 4 or 16
processors. From case 3 and case 4, we $SZBW timedecrease due tmesh daptation.

From case 4 to case 5, we show the influence of the mesh adaptation with the frequency
computed above depending on the velocity. In £&eand 7 wehave addced the time
adaptation and the number of elemevilution Results obtained are plotteqFigure2.35]



52|Chaptenr Thermal model

[/

Figure2.35 CPU times obtained for thdifferent conditiongTable2.10) takenwhich
simulate the same dendritic growth.

[Table 2.11]presents a study when varying; or material parameter® or 4/ It reveas that

one mayobtain exactly the same tip velocitW;p, as computed using the r@en function
VquF. We can obtaira negligibleerror for the velocity tipn each case by choosing the right
number of elemest(the rightN,to represent the mesh outside the intejfadthen we have
small thermal diffusion or small initialndercoolingor a small anisotropy, we need to do the
simulaion with alargerdomain and the computatidgakes more time to reach a steady state
regime.

T H D do/MWy, Vpp Vr,®" % error  Domain NE Tepu
0.65 0.05 1 0.554 0.0469 0.0469 0 [1000;300] 46 000 10h

0.55 005 2 0.277 0.017 0.017 0 [1000;300] 44 000 6h 30min
0.55 0.05 4 0.139 0.017 0.017 0 [500;150] 34 000 2h 30 mir
0.45 0.05 4 0.139 0.00545 0.00545 0 [1000;300] 50 000 5h 50 mir

0.55 0.02 2 0.277 0.00685 0.00685 O [1000;300] 30 000 7h 30 mir
Table2.11 Ccomparison on the tip velocity value for different physical parameters

2.3.4 Study of the capillary anisotropy

Patters forming in solidification are linked to the solid/liquid interface. Perturbations are
done on the equilibrium structure due to the additional free enefgye solid/liquid
interface If this excess in energy is isotropic, the area of the interfacebwilninimized.
Since the solid is crystalline/Jis anisotropic depending on the growth orientatidhe
instability of the solid/liquid interface that forms the dendrites is influenced by the anisotropy
of the solid/liquid interfacial energy presented bg parametert/

Severalexpressiongor the capillary anisotropywW(n), may be definedThey can be written
|KAR1994, |FRI2009:

. /-
Wn =W é) hfos érmarctan—“va /uln 2D (2.70)
e & _4H (w )M (w)to
Wn =W (1 34 <_1|+1 34/ e i}J”ZD (2.71)

. a  Af (w ) ()t (w o
Wn =W (1 34 d+3 3:517'( ) (_,W/’)_( ')%nsD 2.72)
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. a 3. 17.0
W) =Wg d+ KB £+ 4 3Q+665 = 3D 273
| I owil wl I wl w/
withQ=nl+n*+n,*= ¥ val 5 WL ands= nny’n,” = - |\,M/|6 ¥

kfrepreserd the intensity of the anisotroppsrm is the number oprimary branches or arms
andW, is the initial thickness of the interface. Whdfincreass, the anisotropy increasess

illustrated inFigure2.36| The number of armshangesvith the value ofArm (Figure2.37).

(a) (b) (c)
Figure2.36 Thermaldendritic growthmorphology for different values off for Arm= 4.
a) £#=0.01, b) 4=005,c) #=0.1.

(@) (b) (©)
Figure2.37 Thermaldendritic growthmorphomogy obtained for different numberaomsfor
#=0.1 a)Arm=4,b) Arm=8,c) Arm= 16.

In 2D, the principle growth direction may be imposed by adding an amigletation to
equatior)(2.70)| and the expression die capillary anisotropgnaybe written as:
W(N) =W, (1 4kos(4(4 4))) (2.74)

Where 4= arctan%&f and 4 is the prescribed angle which provides the growth direction.

Figure 2.38| illustrates the effect of this rotation and also certifies that the result is not
depending on itin fact mesh evolves with adaptation during growth and follows the interface

in all directims, unlike classical phaseld approaches, for which results may be grid
dependent.
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(@) (b)

(©) (d)
Figure2.38 Four cases of dendritic growtim 2D, with initial growth direction that has an
angle with thehorizontal axis of)0°, b) 30°,c) 45°,d) 75°.

Solid/liquid interfaces for the different growtlprescribed directionsare superposed in
Figure 2.39] For each direction growth we tw@khe interface and we rotate it to obtain a 0°
oriented dendrite then we superpose the different interfaces and we see that they are the same.

Figure2.39 Swerposed solid/liquid interfacésr the differengrowthdirections.
2.3.5 3D thermal dendritic growth

We now solve the equations of theodel in 3D using the anisotropy expression for the 3D
case. We have a growing dendrite with arms in the <100> directiorresponding to the
mainXYZ axes We can have dendrite growing from the center of the domain or at the border
of the doma. Computational time is highén 3D then in 2D and the adaptive mesh @ren
complicated
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Because of the cubic symmetrgse for the directions <100stmulation can be performedn
1/8 of the cubeor even on 1/48 of iin the zxy symmetryplane When the computational
domain is1/8 of the overall one, it isa cubicsuldomainof linear size equal tchalf the
domain sizeand wesuppose the initial nuclets the corner of coordinates (0,0,8)hen the
simulation is finishedwe reconstruct the whole cubic domain to represent the dendrite by
doing asymmetry %X = 0 and %Y 6 and %Z =0

In the caseof 1/48, one hasa tetrahedrasuldomain andhe initial nucleusappears in the
vertex ofthe tetrahedron of coordinates (0,0,8pme rotations and symmetrieperations
(rotation 45° %X symmetry %Y rotatiod5° %X, rotation-45° %Y symmetry %X rotation
45° %Y, rotation 45° %Z symmetry %X rotatiefs° %Z)are peformedto obtain the 1/8 of
the cubehenwe do the three symmetridsscribed befort obtain the cube.

To check the influence of using these symmetry propretiegmal dendritic growths
simulatedusing the finite element method omasotropicstructured meshndan anisotropic
unstructured adaptive megtorresponding to 1/8 of the domaand onan anisotropic
unstructured adaptive mesbrresponding to 1/48 of the domaiWe use a domain of size
[0;100]x[0;100K[0;100]. Parameters a presenfliable2.12] The computational time reduse
from the first cas€1/8, isotrope)to thelast cited one (1/48, anisotropidpm 160 h to 27
min, as shown ifFigure2.40| The number of elementsE for the 1/8 and the 1/48 cases are
linked as followsNE(1/8)= 6 NE(1/48).

Parameter Symbol (a) (b) (c)
Number ofelements NE 2000 000 2Viertacdhmin® + N2 2. Vinterfacdhmin® + N2
Constant number of element N, - 600 000 100 000
Mesh size Rimin 1 0.4 0.4
Interface thickness Wo 1 1 1

Unit time %74 1 1 1

Nucleus radius Ro 5 5 5
Numerical initial temperature 7, -0.65 -0.65 -0.65
Numerical thermal diffusivity p 1 1

Minimal error €min

Anisotropy frequacy H 0.05 0.05

Time step "W 0.016 Pmin/ (10 iip) Pimin/ (10 Viip)
Cores number - 20 20 20
Number of iterations - 1410 1410 1410
CPUtime tcpu 160h 7h43min 27min

Table2.12 Parameteror thermal dendritic growtshown infFigure2.40jandFigure2.41)
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(a) (b) (c)

(d) (e) V)

Figure2.40 3D thermal dendritic growtbomputation usin@0 coresdrawn at l4 256for a)
a structureanesh for 1/8 of the domaimith ' 147 0.016 and,in= 1, NE=2000000,tcpy =
160 h, b) an unsBuctered anisotropic adaptive 1/8 megth £ N, = 600000, NE=
782 0004tcpy = 7 h 43 mirc) an unstructered anisotropic adaptive 1/8 mesh with N
= 100000 NE = 132 000fcpy = 27 min.

provides the comparison, for a developed state of the morphology of the
solid/liquid interface in the <100> direction growilve have the same growth for 1/8 or 1/48
domain with a small difience at the dendrite tip. We can use 1/48 instead of 1/8 to reduce
the CPU time and the memarycase of pure thermal dendritic growth

Figure2.41 Zoom of the dedrite tip to show the difference betweeomputations performed
in 1/8 (anisotropic)and 1/48anisotropic) of the domain
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3D simulation for dendritausing 1/48 of a cubés further studiedto benefit from this
symmetry A domainof size[0;1000]x[0;1000%[0;1000]is usedand parameters a present in

Table 2.13| Mesh adaptation is based 01 J. Results are shown |Rigure 2.42| after the

reconstruction of the whole domain

Parameter Symbol Value
Number of elements NE 2 Vintertacdmin + No
Constant number of element N, 2 000 000
Mesh size Amin 0.4
Interfacethickness Wo 1

Unit time %74 1

Nucleus radius Ry 1
Numerical initial temperature 7, -0.59
Numerical thermal diffusivity pD 3.3897
Minimal error €min
Anisotropyfrequency H 0.02

Time step 4 Pimin/ (10 Vip)
Cores number - 30
Number ofiterations - 2 000

CPU time tcpu 288h

Table2.13 Parameterfor thermal dendritic growtshown h|Figure2.42|
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(@)

(b)

(©)
Figure2.42 3D thermal dendritic growtshowing: on the left, the solid/liquid interface and
the computed temperature projected on this interface; on the right, the temperature

distribution in the computational domaaba) 14 421.148)p) 14#526.361c) 14/933.7.
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2.4 Conclusion

Two equations aresolved for the simulation of thermal dendritic growth: the
phasefield equationandthe energy conservation equation. These equations are sdteed
reformulating thenwith dimensionless vaables:

W —_ wsg WV n
W -, Wono/=[/ o 1] I /|anwl)i
w w (2.75)
—rg /|2Wn i /PWn
L% W\ /)1 wwbi
w7 - 1w
vaD 7= > W (2.76)
with
_ T Twm
7= Lic, (2.77)
and
8§ K -
/= tanh =— 2.7

We haveusd the finite element method with anisotropinstructurecadaptive meshg and
parallel computig. The numerical methods ed in our simulationsan reduce the CPU time
compared with finite differencenethod using one coiia Matlabby 1.8 times and using6
cores about 30.5 timedlext chapter focuses on dendritjrowth of metHic alloys mainly
controlled bysolutal exchanges.

Résumeé

Dans ce chapittenous avons présentés équations utilisées dans le modddeelopé, basé

sur une approchechams de phase pour la croissance dendritique thermiquee. L
représentatiorde Ifhterface solide/liquideutilise une fonction de tangente hyperbolique

Deux équations sont résoluesOD FRQVHUYDWLRQ GH OlfspiQubdod iEH SR X
OTpQHOMPWLRQ GH FKDPSV GH SKDVH SRXU DYRLU OfpYRC(
Plusieurs parametres physiques iafinent la morphologie obtenudous avonsmontré le

réle de la définitionGH O D Q L R W UeR Gellaldiffusisr_tbethiguddeét le coefficient

de capillaritédy . La résolution numérique est présentée avec la méthode de remaillage
utilisée et le calcul parallele en utilisant diférentgptimisatios GIDGDSWDWLRQ GX
temps, du nombre de maille et des symétries du problraefin une croissance dendritique

est présentée en 2D avec une validation et une étude sur le tenajfzuldéoe simulationen

3D estdonnée.
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Chapter 3

3 Solutal model
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3.1 Model equations

Let us considethe phase diagram of a diluted binary allag schematized ifFigure 3.1]
where a single phase dominates the microstructure of the matdréakytem containgwo
components: the solvent YAand the soluteB)).

The Liquidus andSolidustransitionsare approximattby straight lines of slopen and vk,

respectivelywherek is the partition coefficient defined as the ratio of the concentrations at

the interface andhis theLiquidus slope

Figure3.1 Phasaliagram of a diluted binary alloy of averagmuteconcentratiorcs. Ty is
themelting temperature @ghepure body T, andTs, are respectivelyheLiquidus and solidus
temperatureg-or the onsideedalloy, the partition coefficiens k < 1 and thd.iquidus slope

ism<O0.
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Let us consider nowheisothermal solute growth fdhe binary alloy Supposinga zero solid
state solute diffusivitythe standard equatiofisr the sharp interface modebnsistan:

W

TN:D' 'c (3.1)
(1l Kwvw= D'’g (3.2)
Ti=Tw+ma  *N QA (3.3)

wherec is the phase compositiog,is the composition at the interfaseith ¢ asc® = kc.
One maythendefineagainthe dimensionless varialslfRAM2004], U and Tas

2 2c/ct °cgl .
U=k @ 0/ o ke (3.4)
_ T Tm Mg
= e, (35)

Ct is the value ot far from the interface and is equal to the initial concentration of the alloy
solute element According to the above definitions) is the dimensionless measure of the
soluteconcentration

Theabovefree-boundary problenmay be rewritten

W .
o D 'U (3.6)
[1+1 KU'lwv,= D 'U' (3.7)
T+Mc/Ui= d N Bn (38)
In these equationfhe dimensionless solute diffusivity definedas:
« D W
D = W2 (3.9
wherethe scaled ngnitude of the liquidus slogs:
. _m@1 K
M= Lic, (3.10

As formulated previously, one may define the the free energy as a function of the non
dimensional compositiod. Supposing a constant temperature, it may be given by:

W2 -
F(/Tuc) = HJZDH /|2+f(/Tyc)dV = HF " dv (3.11)
Y Y
We use the same doubhell potentialg( ) as before to obtain the expressiori o7 Ty C) as.

f(/,TM,c):g(/)+Bf/?(clnc )+ K+ g(l)l—/c_;/ (3.12

By applying the same reasoning as previously, one derives the@dlen equation for the
phasefield function evolution, after performing the variable changeiofU:
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/ wWn .
W= wWn'/=[/ @RMcU) /] 1 WYY%/FWn

W WG ) ¢
—Wi) /fwn WD —Wi) /fwn D
W Wy )t ww )t
Comparing the phadeeld equation(2.75)(for the thermal case and equati313)|for the
isothermal solutal case, one observes the exis@geighthand side expression, which is a

functionofU and Teven if 7is a constant

(3.13)

3.1.1 Mass conservation equation

Determination ot is obtained by solving the mass conservation equation. The final form used
in this work has been derived like [RAM2004] and its resolution has been coupled to the
one of the phasteld equation. In the following, aadditional term for artirapping reported

by Ramirez|RAM2004), has also been considered

We havepreviouslyshown how to obtain the phaBeld equation from the free energy form
using theAllen-Cam equation| CAH1958. The Can-Hilliard framework is also usedto
derive the mass conservation equafanm considered here

int int
_ﬁ/: ’-%lc ’ % jat1: ,-%Ic ’ ?@\fm ’ \’\‘/FVC N Jat1 ’-(Mc ’ P( jat) (3.19)
whereM. is the positive mobility related to the compositippthe antitrapping terms used
to recoverlocal equilibrium at the interface and to eliminate interface stretching and surface
diffusion effects that arise when the solutal diffusivities are unequal in the solid andaiglid
Me is the chemical potentialhis equation may be also expressed as folldwss equation
may be expressea:ls follows:

— = %I “Inc+ F+ g(l)'—H1 jatl (3.15

Here, A= ( &+ £/ 2, being &the energy density in the solehd fthe energy density in the

liquid; andg( A is a function of /verifying thatg(x1) = £1when /= £1, which corresponds
WR WKH VROLG DQG OLTXLG SKDVHV 8VLQJ )LFNYV ODZ R (

_@
RgT Da(hc (3.16)
is chosen, wherg( /) is the dimensionless function thdictates how the solute diffusivity
varies tlmough the diffuse interface gtdatiorn(3.15)[becomes:

Tm H- .
NV ERDa)e gt ineg() T (3.17

This equation may b&mplified to obtain

—\\';,:’_éq(l)c’énc+§(l)Rg%'—/i jat; (3.18)
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From equatiof(3.14)| it is known that:
Vo' H

Ink = RoTw (3.19
It finally leads to
W _, o Ink - -
L= bac dnc g()"™ ] (320
From this latter, one othéorm for the mass conservation equation may be derived:
w , :
= @al)cu ja) (3.21)

8 2C .
©r (1+ k (1 K /) 1
The following expressions fay( /) andj,: were chosen

Consideringa first variable change, such theat In

1
A=k @ K/ (322

| K :

jar=—" (21 @)Woexp(u) —V\V,&/,—l, ,/| (323

A second variable change brings us back to the dimensionless solute concentration chosen and
given by equatioff3.4)| U, by computing:

U= %‘”—k) (3.24)

§ 2C .
©(1+k (L k) /)1

This means also thatu=In[(1 Kk)U + 1] andin =In[(1 kU + 1]

2¢c
ci(l+k 1 Kk /)

From this, mededucs that =1 KU+1

andc=[(1 KU+1] C—2f(1+ k (1 Kk) /). Derivation ofc with respect to time provides:

—ﬁ/:c—zf%l K (1+k (1 k)/)%ﬁé(l k) [(1 k)U+1]_V\V,&/,;; (3:29)

This expression is then used the mass comsvation equation to obtain the evolution
eqguation of the dimensionless solute concentratipms

C—Zf%l WAk (1 K /)%W%(l ) [(1 k)u+1]ﬂvcw'{;:
D e MU @R ) U 326)
+ ’.©f\év—\/”-2(1 k) [(1 k)u+1]ﬂv\f,/”,,'—//| )
This equatiorean be simplified to obtain
%(1+k (1 k)/)%w " gou ' =
’ g\%a +H(1 KU %’W%;%(l +1 WU) o 20

Whichis the final chosen form, solved using our finite element library.
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3.2 Numerical resolution

The phasdield equation is solved using the samethods as in the thermal ca3d&e only
difference is that the divergence term on the left ksidd of the solute equation is not further
developed, sinc®’(1  )/2 does not depend on the unknownin the following, resolution
of the mass conservation equation (3.27) is detadedn if close to the resolution of the
energy equation, since both are of the convedliffusion-reaction type.

3.2.1 Finite element resolution of the mass conservation equation

For a sake of simplicity, we no2=D"(1  }/2, andf as the source term, vah represents
the right hand side of equatiffB.27)| The strong formulation for our problem can be thus
written as:

°¥W' 'U)=fin: (OT)

- 3.28
@J =0 RQ: UO,T) (3.29)
U(.,0) = Ugin :
The corresponding @ak formulatioris: find U «V:=Ho'(: )/ [V, such that
U N
TWL "O'U) [ =f | (3.29
Integrationover : gives
ﬁm}dv % D'V) ldv= H'F [ dV (3.30)
Y \ Y
Using theintegration by partsone obtains
''U) Idv=p’U "’ |dV+ gD'U- [dS= D" U’ [adV (3.31)
y i goru e

And since | =0 R Q: “integration becomes:

Ve

U ,
yTM}dV+ irD’U ' ,dV:jF | dV (3.32)

The weak formulation can be writtartearly as: for a givenfsH™(:) andD «L'(:), find
U «V:=Ho'( ;) such that

E 1 1 [—
Fp) (DU =)

As previously we consider theliscretizationT of : into a set of elemestNg elementsK
and we approach th&nctioral spaceV by a finite dimensional oney;, spanned by
continuous piecewispolynomials: ~ Vp={ | "eHo}(:), | "is linear forK s Ty}
The Galerkin discrete problem consists now in findite V,, such that:
~Uh
(TWlh)+(D’Uh,’ IMy=@ 1M (3.34)

(339
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This may berewrltten in the mtegral form:

lff_'/') dVi, + HD U 1"dvy= W "V, (3.35)

Each integral is the sum over the element olleading to
NeI

|e:1&f M} th+ :ezl HTD Uh’ ,thh— Ie:l hlf ' th (336)
Sincewe are using the first order lineiterpolationfor unknowns and test functipwe can

N N
replaceU"= | i-;U"N; and " U"= | i5,U" "N taking ()i «n the finite element vector
space basjdJ;" are compted locally in each node

Nei N "ybh Nei N
: =1 H—f : i=1 ~IM>|i N; dVj, + : 1 H : =2 DUM Ny " N; dVi,
Ye Ye
N , (3.37)
= fN; dVv,
| e=1 j h
]
Previous system is rewritten as:
Nel N ~yh Nej N
: o1 HNi N; dVi, : i=1 ~IM7 : 1 H—fD "N " N; dVj, : iz U
, (3.38)
] Nel
= el H.rf Nj dVy
After simplification,we obtain:
Nel = U Ne Nel =
| e BN N V= | DN N, dVaU'= ! ot 4N v, (3:39)
Thefinal linear matrix systernobtainedreads
MmlU +KqU =F (3.40)

Where U is the vector of nodal unknownM,, is the mass matriXq is the stiffnessnatrix

and F is the internal sourceector This systemmust be solved to obtain the numerical
boundary conditions. The coefficient matrices #meload vector are defined as follew

Nel i
M = Ai:l HTNI Nj dK
Ne
Ka=Ais WD N NjdK

F=AL pf N ok
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With N; the linear interpolation function at nodend A is the matrix assembly operator,

defined insuch a way thawe haveK = A.’\iel' Ki .

The linear system of equations issuing from the discretization is solved implicitly using the
conjugate bi gradiefleast squares method (BCGSL). There is also preconditioning to the
resolutbn using the Jacobi method with incomplete factorization LU per block of size 2.

A small indication to explain why we are using the developed form of the divergence term for
the phasdield equation and the neseveloped form of the divergence for the usel
equation.

Remark:

The diffusion term for the phadeld equation depends oh so the equation is non linear. On

the other hand, the diffusion term for the solute equation does not dep&hdonve have a

linear equation. The same finite element solver has been used for both equations and is based
on the construction of a linear system. To accelerate convergence, the divergence term in the
left handside of the phaskeld equation has beenedeloped and rewritten allowing the
elimination of the diffusion term inside recalls the results obtained for
convergence during theahgrowth when this development has not been considered, showing
that the high notlinearity on the phasteld equation needs this special treatment (which
avoids also the implementation of a particular Hinear scheme)The blue line represent

the varation of the adapted number of element depending on the dendritic growth for each
case. When we increabgi/Wo the number of elemei; decreases because we have bigger
elements, but when we increask /dy , Ny increases because the interface thickniesrease

and we have more element inside with the sizg.@f

(a) (b)
Figure3.2 Dimensionless tip velocity as a functiontb&égrid spacindh, andinterface
thickness\Wy for ' = 0.65,do /Wo = 0.554 andN, = 25 000. The red line corresponds to the
value dtained from the Green function calculati@W, = 1, b)hmin = 0.4.

3.2.2 Mesh adaptation

The methodology develeg to build the metric fieldjescribed in section 2.2.% used to
minimize the error on/andU, by computing the error on the vectpr ( /U). Mesh sizes are
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smal at the solid/liquid interfacegollowing the high gradient of, but the mesh is also fine in

the part of the domain where the solute composition gradient is high, as illustrated in
where one may observe that the mesh size transition well follows the solute
diffusion layer around the solid/liquid interface.

Figure3.3 lllustration of the obtaineddaptedmesh using /andU solutions of a solutal
dendritic growth, drawn at a final stage of the growth simulation

3.2.3 1D validation

To validate the developed solver and check the sensitivity of the methodology to certain
numerical features, the proposed solutal model was applied to a 1D case. Numerical solutions
for the composition profiles and the growth velocity are thus compartbe @nalytical ones,
which have been developed[Appendix C| The analytical form for the steadyate solute
composition, as a function of the interface position coordinateis given bjfAAR1970]
Erre 5O %) -
rfc : %
c(X, Wci + (Cys  Ci) @l X))
’ §@- (3.4

Erfc Q1

Here,x is the nonrdimensional positionsy is the nordimensional position at instant @is
a mnstant in onaliemsional solution stationary interface positiomand Erfc is theerf

function, detailed ifAppendix B| This analytical equation is true forthe nstationnary
velocity case and a planar precipitate. This means that solute compositions in the solid and in

the liquid are different and th#te growth velocity decreases with respect tothe steady case,
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D’

wherev = 2\/_W and will tend towards zerdlrhe solution obtained for the composition

fields is schematically plotted|ifigure3.4

Figure3.4 Composition profileat a certain timéor a nonstationary velocitywhenk < 1 and
o< 1.

Simulation of solidification has been performed in#6p0;1600] 1D domain [reflyith ‘X

= 0.4. The function/= tanh ‘Ew)f—\/é;has been used to to represent the solid, the liquid and
0

their interface. We have considerefi= 0.34Q 8 000 rodes xo = -150Q k = 0.15 Mc; =

015D =2 ' W0.008 £ 1.5 Uy = 2and & 1. The solid/liquid interface diffuses from

the initial positionx, to the end of the domain, with the composition field. To study the

analytical and numerical comparison whep: ¢ =c' ), we have chosen different values

for : .. For that, we compute, for a certasq (initial composition in the domajrandk, the

composition in the solid® and the composition that we should have at the intedSder a

constant temperature, using the equation for the supersaturafigiven by:

. Cs C
et b (3.42)
T(1 K
MG
s = To mTM: - andc® = kd® (343

To start the simulation, we also neggl computed from the equations above, Blgabtanied
from ¢ using equatiof§3.4)|[Figure 3.5|shows the different composition profiles in the liquid
for different : . at different adimensional instantsyle 800, W= 4000, k= 8872 W=
19776, K~ 34400and K& 69256).
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(@) (b)

(©) (d)
Figure3.5 Analytical and numericgbrofiles of liquid compositioraround the interfacir, a)
ci=2.7,c=2.682c"°=17.88 @=44.654361and : .= 0.999, b)x; = 2.7, c°= 2.105c"°=
14.033 @=5.882473and : .= 0.950, c)c; = 2.7,c°= 0.69825c/°= 4.655 @= 0.849279
and : ¢ = 0.494, d)c; = 2.7, ¢ = 0.439 ¢'°= 2.9268 @=0.109295%nd : .= 0.091.The
different curves on each plot represent different instérig: 800, 14~ 4 000, l4/= 8 872,
£ 19 776, NE 34 400 andld~ 69 256. In the first case, a zoontla interface region has
been done.

Analytical (blue) and numericalred) solutionsare ploted i In the numerical
profile, we observehat the value of” is not the same as the analyticamputedone but
after some iteratignwhen the velocitydecreases ansimall variationsoccur, the numerical
composition atthe interface converges to thanalytical one. As we have eonstant
temperature, when we @ the analyticat’s, the compositiorprofile cannot have higher
values than this one, but its slope continues increadimgaddition, the growth velocity
decreases vémdecreasing: .[Figure3.6|showsthe variation of the velocitjor different : ..
One observethat the analytical velocity ialwaysthe sameHowever, for: . 8§ , we notice
that thisanalyticalvelocity has not beeneached for the assumed size of the computational
domain. To overcome with this problethe domainhas been increasedd obtain thesame
velocity in the numerical simation as the analytical one, atite graph of the composition
comparisorhas been drawn.
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(@)

()

(b)

(d)

Figure3.6 Evolution of the growth velocitgs a function of timéor, a) : c = 0.999, b): .=

0.950, C): ¢ = 0.494, d): ¢ = 0.091.

After validating the numerical results concerning the growth velocity, one must compare the
exponential analytical solution to the Erfc analytical one, for the composition profile, to see if
we obtain the same profiles when :  [Figure3.7]shows that the Erfc and the exponential
profiles are not comparable when is far from 1. The more we approach frorg = 1, the

more they become coincident.

To dbtain an analytical expression for the dimensionless compositiome must solve the

following equation

W U
VnSt *+D *D :0
W

with the interface conditian
[1+(1 KU]lw'= D wU|
and the farfield boundary condition

lim U (X) =Uowhenx : f

Thefollowing 1D differential eqation havingU as variable is solved:

D'U" v tUuq

The solution for this equation can be written as:

(3.44)

(3.45)

(3.46)

(3.47)
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_ * . _ — st *
U = cyexp(axt) + coexp(bX) witha=0 ando= v, /D (3.49)

_ . Vnstx* .

orU=c;+cexp ©§—*—D .

The boundary andnterface conditionsare usedto find the constant values = Uy and
1+Ug(l K . . . . : .

C= Ok , leading hus the final form othe analytical solutiofior thedimensionless

solute composition distribution:

( ) st ¥
UAnaI:UO+1+UOk1 : eXp©VE)’X 1

(3.49
One may demonstrate analytically that this exponential equation fits with the Erfc solution
when : ¢ : RW : f) as obtained in the numerical results. Replacin n
AppendixC| we have:
S §& - . §O-
l2E QeXp gy 1EMMC 4 8 (350)
Definingr =X #xo andR=xo, +Xo ,
gsr . 2\Dw s r 2
Erfc = - exp =
@D wls r ©2\D" W
g 2§50 (351)
Erfc Q1 \/_S Qexp © 4 ¢
After simplification,
Erfc 21—
@\/D*W§Q\/D_*W 45 .
50- r Pe D w (3.52)
Erfc Q
Erfc 31— )
@D W§B 4R ..
50- “r*Pe o WD m (353
Erfc a:
§r .
Erfc =
@\D W R g8 NR
so- ree DwWw = (354)
Erfc a:

Near the interface ~ R so we obtain:
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Erfc T
@D’ WR &R NER -

Xp *
Erfc %Q; r o D W u (3.55
g§r -
Erfc =
@+/D W§B gR R ..
0. “r¥P @D 2u (3.56)
Erfc Q
Velocity can be expressed as:
,- @D _R
TN w 2w (3.57)

Then equatioﬁ3.56) becomes

Erfc 31—
\D" W r R -
—e\b b 8exp g R Y
§0- @ D i (3.58
Erfc a:
Replacing the value of Erfc bythis exp equality in the analytical expressid€C6)| in

AppendixC| we obtain thdollowing analytical expressigwvalid for : . = 1:
1 kK+1 . r R .
U@ Q+1=Up K+1+ S HEL 1 exp Sty

© k © D (3.59)
Whichmay lead to:
_ §o 1 1 . 8§ R -
UsUot & *k@a v Y @ 0:PPo D Vs (3.60)
_ 81 2k+kH+@ k- s R .
U=Up+ ° K@ K X0 oD Vs (3.61)
Finally,
_ g+Uo( K)- 8§ R
U=Up+ © Kk &P 5 Vs (362)

Thisis equivalent to equati¢3.49)(when @: for :. :
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() (b)

(€) (d)
Figure3.7 Liquid composition profiles around the interface: comparison between numerical
and analytical (exp and Erfc valuds), a) : . = 0.999, b): .= 0.950, ¢): . =0.494, d): . =
0.091.

This $hows that 1D numerical soluti@gree with analytical ones for 1D growth due to solutal
exchange. Now, the same set of equations will be used to represent 2D solutal dendritic
growth and will be YDOLGDWHG E\ FRPSDULQJ WKH UHVXOWYV
simulations.

3.3 2D dendritic growth
3.3.1 Comparison with a model of direct growth
Let us consider aquaredomain [0240X0;240, on which we place an initiatircle seed of

size 22y whered, represents the dimensionless dapity. To study the convergence of our
method, the tip velocitglong thex directionhas beemxtracted The anisotropy functionsed

a A4 (wh+(w)to

for growth iSVn =Wy (1 34 &+ ; » with 4= 0.@. The dher
- 1 34 2 /a
simulation parameters ardyp = 0.55 k=0.15 A ;" W hil ( Bfvip);  Tis taken equal

to zerg Mct = 1. In the fdlowing, the variationof thetip velocity and compositioprofiles
computedwith CimLib are compareavith the results obtained iKAR2001] using a finite
difference Elerian methodwith a structured mesh ofx = 0.4 and a constant tirsep,
" 1470.008

R
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Figure3.8 Compared plots of scaled dendrite tip velogifyd, /D" vs scaled timel/d, * for
different values ofl, .

Figure3.9 Compared plots of solute profiles in the solid along thérakdendrite axis.

The dimensionless dendrite tip velociwipdo*/D* is plotted vs the dimensionless time
B /dy? infor the two models and the scaled compositi%qoin the solid vs the
scaled positiorx /dy in thex directionis plotted for the two types of numerical resolution in

for different values of the solute diffusion, & 3010 forD™ = 1 and 4 400 for

D" =2.We know thaD" = aya,/dy , so forD” = 1 we haved, = 0.544 and foD" = 2 we have

do = 0.277. The results concernthe growth velocity and the composition, and
present small oscillationsn the beginning of the computation for the composition.
Oscillations can be also seen[figure 3.3] in the corner, where one observes a trace of
adaptation and thus mesh size changes. These results show also that the solutions converges
for the two values ofl,, especially when comparirthe composition profile with the one
arising from GibbsThomson relationc¥c®=k[1 (1 K)do/ &p] where &, is the dendrite

tip radius. This will be further detailed in chapter 4.

3.3.2 Comparison with other models

We have done a comparison of thesults using our modetith grid and time adaptation
(named here CS) and the results oted in |KAR2001] (named here DT) with the anti
trapping term using the finite difference method base(ll@cRZOO}], KarPDYV PHWKRG L\
donewithout grid or time adaptation. The results present the same convergent evolution.
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Figure3.10 Compared plots of scaled dendrite tip velogiiydy /D" vs scaled time/dy >
for different values ofl .

Figure3.11 Compared plots of solute profiles in the solid along the central dendriteaaxas
function ofx /do.

Parallel computations at CEMHBkave been donen a Cluster equiped with kprocessors
AMD Opteron MagnyCours 2.3 Ghz with 8 cores and 32 Go®$0 : *R régBnd a

146 Go di& local SAS

computationdave also beedone in parallel, but on GPUsn aClusterGeForge

GTX 680 using 1536 cores and on a GTX TITAN using 2688 cores.

Computational times were longer in our case, but scalability should be further studied to
check if times became closer if oOCPU ressources were available.

L. Cores

do /Mo | (CPU or GPU) | tcpuorteru
CEMEF 0.544 32 1h 15 min

CEMEF 0.277 32 34 min
Damien (GTX 680) | 0.544 1536 9min21s
Damien (GTX 680) | 0.277 1536 2min5s
Damien (GTX TITAN)| 0.544 2688 8minlls
Damien(GTX TITAN) | 0.277 2688 4 min 32 s

Table3.1 Compared computational times using: our finite element code, parallelized using
MPI1 and run on a CPU clustqKAR2001] code, parallelized and run on GPU clusters.
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In our simulationsthe time stefhas been increase¢hile decreasing the velocity and
increagng the number of elements needed to represent the inteafsbown ifFigure3.12

Figure3.12 Number of elements and time step profiles during the simulatiody for0.544.
3.3.3 Parameter sensitivity study

The influence of the different numerical parameters on the results has been studied. Firstly,

the number of fixed elements has been changed dygitgNy, €min, and AT :H GHGXFH WKL
we cannot greatly reducs, because there will not be enough elements to represent the
GHQGULWHTV VK D YHgurdB3RE VTHeUstieGhapgens fofl LW FDQQRW
decreased because the time step will increase in such a way that computation diverges and
dendrite morphology is not attained. &y, it will not influence theresult;it will only affect

the mesh size outside the solid liquid interface and the solute diffusion layer.

(a) (b) (©)
(d) (e) ()
Figure3.13 Tip velocity obtained for differerit, values, withemi, = 10°and A ND =100 000, bN.=50

000, )N = 10000, d)N, =5 000, €N, = 2 500, )N, = 000 |



78|Chapter 3 Solutal model

[Figure 3.13shows that, when the number of elements decreases, the tip velocity decreases
from the converged value of the velocity. The velocity profiles shown represent the tip
velocity computed diregflin the simulation as given by equatj@h63)|(in red) compared to

the tip velocity computed with a geometrical method, implemented in Matlala@k)pafter
finishing the simulation. Whei, = 1000, the tip velocit}(2.63)]is above the converged

value of the velocity and the other computealoeity is below it with a large difference.
Below N, = 10000 we loose the dendrite shape. The dendrite profiles are plotted in
[Figure3.14]for these referred values b, where we can observe that when we decrbiase
dendrite shape deterioratfSgure 3.14]shows also the variation of the number of elements
computed to represent the interfabk)( the total number of elements to be ugeH)(and the

real number of elements used in the simulation obtained after meshtiataftze,). In

reality the number of elements used in the simulation is smaller that the computed and
imposed one to the mesh adaptation. In fact, the constraint on a fixed number of elements is
not always respected when the minimum error and the mmimesh size given, combined

with the adaptation on several fields, are also activated and too restrictive. We can see also
that the number of elements decreases when decrddsirigpm 100000 to 1000. At the

latter, we do not have enough elements toaggnt the dendrite. In addition, the real number

of elements used in the simulation approaches from the computed one when decreasing the
number,.
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(@) (b) (€)
(d) (e) (f)
Figure3.14 Dendrite profile drawn and variation of number of elements, for different valuésvaith e, = 10°
and A Np= 100 000, bN, =50 000, cN,= 10000, d)N,=5 000, e)N,=2 500, f)N,= 1 000.
(@) (b) (©)

Figure3.15 Tip velocity profile for different values o]  Z N)&% K0000 andeyi, = 10°:
a) A =] B
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Figure3.15/showsthat the tip velocity decreases when decreadifiyVhile decreasing=lthe
computed timestep, using equatig®.67)| increass from 0.008 to 0.04, as shown in

Figure 3.16| Whena small value for£f(as 100) is used, a large timestep arises, up to 0.1,
which is large enough to break the dendritic growth and the simulation will stop.

(a) (b) (©)
Figure3.16 Time step evolution for differenf]  Z NA% KO000 andeni» = 10°%: a) A
b) £ B
(a) (b) (©)
Figure3.17 Evolution of the tip velocity for different values ef;», with N, = 50000 and
Al efh = 10°b) enin = 10°, ) &nin= 10

Figure 3.17|shows that changing the value &fi, with the values given here does not affect
the convergency toward the steady state value. In particular, one attains the analytical solution
and the convergence speed is not altered, as well.

We can see also the influence of the use of the parallel d¢atigguby making the same
solutal simulation using 8, 16 and 32 cores. When we add more cores, the simulation takes
less time to be finished as[ffigure3.18 We finish the simulation fody' = 0.277 before the

other simulation becaud#®* is bigger and thus the computational case in the red line will be
smaller. But the two lines are decreasing while adding the number of cores used in the
simulation. he graphs are shown &t 3010 fordy, = 0.544 and W 400 ford, = 0.277
usingN, = 10 000.
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Figure3.18 Computational time using 8, 16 and 32 cores wher 0.544 andl, = 0.277.

The difference between the simulation usilag= 0.277 anddy = 0.544, is due not only to
the growth velocity but also to the number of elements used since we have a smaller number

of elements fod, = 0.277, as illustrated iIRigure3.19

Figure3.19 Variation of the number of elemnts with time usd@E;: 0.544 andl, = 0.277.

3.4 Conclusion

In conclusion, thee are two equationghat need to be solvetb simulatesolutal dendritic
growth: the phasdield equation andthe mass conservation equation. Thewere here
rewrittenwith dimersionless variables

/ wWn .
W= " Wn'/=[/ OFMcU) /] I VY?@’ /PW n

wW/ W Ww ) 2 363
3.63
Vl’i)’ /pwn W0 —Wi) /Rwn VD
W Wy )1 Wi )2
1 W L1
S(1+k (1 k)/)T\/I/V1'§©D—1U1:
(3.64)

’g\%(ua k))u%wﬁ;%(u(l yu) -

With
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2 2c/ct °cgl .
U=k @ 07/ o ke (3.69)
_T Tv MG
e, (3.66)
And
§ K -
/= tanh 2= .
an AN (3.67)

We have validated its resolution in 1D by comparing the numerical results with analytical
ones and by comparing them to other numerical resolutions in 2D. The solutal equation may
now be fully coupled to heat transfer tady thermesolutal dendritic growth, by combining

the three problems presented before.

Résumeé

Dans ce chapittenous avongrésent les équations utilisées dans le modéle de champs de

phase et leur développemgrttur la croissance dendritique solaetdllous avons défindeux

equations a résoudreO TpTXDWKR®SGGH SKDVH HW OfpTXDWLRQ GH F
La résolution numérique est présentée en montrant le remaillage utdiséeninimise

O THU U HetU. UnXak 1D a étprésenté pour valider les équations en ADa fin, une

croissance dendritiqua étéprésentée en 2D avec une validateirune étude parameétrique
(numérique)



83|Chapter 4 Thermo-solutal model

Chapter 4
4 Thermo -solutal model
4.1 1Y/ F o L] =0 {8 = U1 o] o =SSO 83
4.2 1D thermesolutal Validation...............eeeieiiiiiiiieeiiiiiiicee e 84
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4.3.2 2D thermesolutal dendritic growth...........ooooriiiiiiiiiiiee e 89
4.3.3 3D thermesolutal dendritic growth...........ooooriiiiiiiiiiime e 94
4.4 (0] o Tod 1§17 T0] o 1 70PN 96

4.1 Model equations

Phasefield energy and mass conservatiequatiors are coupled and presented here for
thermaosolutal dendritic growtlsimulatiors. The solved system of equations has been derived
from the ones stated §iRAM2004). Combining the solute and thermal cases, the standard set
of sharpinterface equations consisis

w I

W c 4.0

w .
w=D0'T (4.2)
Gl Kv,= D'’g (4.3)
W,=(N'TS N'T (4.4)
Ti=Tw+ma *N QA (4.5)

As previously, the followinglimensionless variablese defined

a  2clc osl .
U= 7 (1f 57 i}gﬁ(l (4.6)
R T|_“7cp et @4.7)

In terms of these variables, three-boundary problem becomes:

wi=D" 'U (4.8)
w= D' T (4.9)
[1+(1 KU]v,= D 'U' (4.10)
wWw=DOC TP ' 1 (4.12)
F+McsU= d N B (4.12

We ddfine the free energy functionag
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o .
F(/T,0) = 5W(2n) | /P +fas(4T,c) dV = \_ij"“ dv (4.13

In the same wayas before the variational derivatives oF must satisfy the following
equations for equilibrium

G \Eint \Eint

e w wc_ [E= constant (4.14)
R is the chemical potential
G; \E‘im ’ \Eint
G w w / (4.15)

We usethe Allen-Cahn and Cahlilliard framework [CAH1954,[CAH1979] to derive the
equations

u , , G . . , , §\H|nt ’ \Emt , | ‘
Tl %h: @ a7 %Ic ©w woe t jat M’ A ja) (4.16)
ﬂ/_ E _ §Eint , \Elnt .
wr Mg Migw R (4.17)

M, and M. are positivemobilities parameters related, respectively, to the interface kinetic
coefficient and to the solute diffusion coefficiedtdding together the energy and solute
contributions yield$o writefag( /c,T) asfollows:

T 1
fae £T.C) =g( )+ 2 (cine +0) + FE+G( ) —C (419
We deducehenthe three equations e solved [RAM2004.:
ﬂ/ i) ) — ﬁ\(_N ) 2 \M/n '
ws S WonI=[ QFEMeU) /] Wi/anWWoi
(4.19)
WW )i w W ) 1
w7 1w
w2 2w (420
14k (1 K /W _
wi/
1 'y (4.21)

— U+ \/-[(1 KU + 1]WW i 2(1+(1 k)U)WW

Notations used for each parameter were given in chapters 2 and 3.
As done for the pure thermal and solutal cases, validation of the moded andlementation
will be done in thelD and 2D cases.

4.2 1D thermo -solutal validation

Resultsobtained are comparemth the analytical solutions in 1D presented RAM2004,
corresponding to theplanar front evolution problem. Solidification computation was
performed using@ 1D meshwith a mesh size'x = 0.4 and bydefining againinitially the
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function /= tanh ey \/—2 “to represent the soliehuid interface as illustratedn|Figure4.1

The interfacaliffuses from an initial positiono .

Figure4.1 1D rectanguladomain (below) and detailf the function /at the initial time g/

To obtain the analytical form for theteadystate energy and solute solutions the
adimensional ase the following equations are solved

VAS W \KU =0
W (4.22
\K/ T
St W D *2 :
(4.23)
with the interface conditions:
) st _ *
1+ KU]v, D" wU| (4.24)
st _
W= Dw Tl (4.25)
= st
f+MeUi= B (4.26)
and thefar-field boundary conditions:
limU(x)=0whenx : f 4.27)
lim 7(x) = whenx : f (4.29)
Thus,thedifferential equation folJ to besolvedis,
11 st
U™ wUT (4.29)
Its solution can be written as:
— axx bx* - _ _ st in®
U=ce" +ce” witha=0andb= v, /D (4.30)

vStX
Leading toU=c;+ce p° . We se theboundaryand the interface conditions to find the

constant values; = 0 andc; = 1k, which providethe analytical solution for the soluas

vt x

1 Y X
Uanai =7 € D (4.31)
The differential equatiofor 7evolution is

DT vTY (4.32)



86|Chapter 4 Thermo-solutal model

And itssolution is of the form

=™ + ™ witha=0andb= v,/ D 433
whichgives =c;+ e p
As for the solute congsition, baundaryand interfacevaluesallow the determination of;
andcy, beingc; =  "andc; =1
The analytical solution for thedimensionalized temperature is

VSt
ka=€ p ' (4.34)

Firstly, we start with diffusing the interfad®y solving theset of three equatiof{g.19)|[(4.20)]
and The analytical solutionsire defined as inequatiors|(4.31)| and|(4.34)| slightly
changed since it is spatially located relativelyfo

Knal— exp tho_ Vn '

©D Dt (4.35)
_1 o g% X -
UAnal Kk exp ©D D (4.36)
The 1D rectanguladomain isof dimension [ ;1600] The nitial valuesand parameters

considered are (mostly taken fro): 7o = Fna, Uo = Uana, NbNodes= 8000,
X = 1500, O=2,D =2, E=15,"' = 2.3,Mcr = 0.15,k = 0.15 and' W= 0.008
Numerical resolution has been detailed in the previoustetsgpand pogprocess includes
" 1 Mce/k
E

This lastdecreasewith time until stabiliation, asillustratedin[Figure 4.2] Whenthe steady
statevelocity is reachednumerical and analytical profgeof temperature and composition
around the irdrface can be compared

computing the interface velocity given ly' = (with & 1) at the steady state

Figure4.2 Computed interfaceelocity in 1D with ' = 2.3,k =0.15,Mc¢= 0.15 and&= 1.5
Steady state value is reached fidr 6 000 and is 0.2.
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Figure4.3 Comparison betweeanalytical and numerical solutisfor 7andU at 14 6 400,
in the region around the interface, * [-200;200]

Numerical and analytical profilesery well agreefor the temperature and thsolute
composition as shown inFigure 4.3 which well validate the modehnd its numerical
implementation

The dimensionatompositiorvaluec, may be computeduringpostprocess by

c/cf:%[1+k @ KL KU+1]

(4.37)
As well astheliquid andsolid compositios:
1
cJer=5[1+k (1 WIL KUS+1] (4.39)
1
clcr=5[1+k (1 KI[A KU“+1] (4.39)

with U ° and U " the values of theadimensionalcomposition in the solid and liquid
respectively|Figure 4.4| illustratesthe composiobn, interface and temperatusround the

interfaceat £ 2800. The liquid and solid compositia are both represented tavell
k X VX .0
expg”DT)*(O D~ ipResults clearly match the

a 1
demonstrate that;= cs andg = c¢ 51' + K

ones presented iRAM2004].

Figure4.4 On the left, /, 7andU at #2800 and on the rightthedimensional
compositiors, both aroundhe interface.
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An important remark must be underlined: simulations performed start with the initial
temperature angomposition values identical to the analytical ones. During the transient
phase, one observes a slight deviation from the theoretical composition profile, showing a
bump [Figure 4.5]) that with time becomes stable, particularly when the stetatg growth
velocity is reached. In this example, the analytical and numerical profiles do not exactly
superpose. Some simulations with different parameters have been made and we have observed
that this bump changes while changing the form idf) and @ which may also lead to
differences in the growth velocity. A deeper study of the influence of the initial parameters
should be done to clearly enhance the influence of these two factors. lopioion,
simulations using larger domains will overcome this last propbenause stationary velocity

has not been yet reached in the considered domaO{{00])(small).

Figure4.5 Nornrdimensional omposition profileat an instant of growtehowing thedeviation
in a [[400;400] 1D domainplotted before staeadbtate is reached.

4.3 Thermo -solutal dendritic growth
4.3.1 Mesh adaptation

The same method of metrionstruction is usetb adapt the meshsing a error estimation
and minimization procedure, but nam the vector/= ( / 7U). We have small meshes at the
interface slid/liquid following the gradiat of /and smaller meshes théme whole domain
where we haveomposition and temperature gradjesstillustratedin{Figure4.6| The mesh
captureghusthe three diffusion profiles.
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Figure4.6 Thermosolutal dendritic mestobtained by minimizing the error oh a@ndU.

We can see thahe mesh is adapted following tlselid/liquid interfac, the temperature
visualized outside the dendrite but also we can see that we have small meshes inside the
dendrite because of the composition gradievitich did not happeffor the pure thermal

growth case.

4.3.2 2D thermo -solutal dendritic growth

An example of2D thermaosolutal dendritic growths now detailed to enhance each of the
thermal and solute diffusiomtesandshowhow mesh adaption on thehree parameteffis

and improve the simulatioifhe set of equations solved during this simulation is composed of
Equation§4.19)|((4.20)||(4.21)|andEquation§{4.19)|[(4.20)||(4.21)|and

Uu=o0 RQ: "
= 055 RQ:~
/= 1 RQ: "
U(.0) =Us (4.40)
M.0)=T
/(.,0) = /o

Computationhas been performed i square domain of size [0;320]x[0;320jith: 7=
0.55, emin= 10°, N, = 50000, hyin = 0.4 k= 0.15 Mc = 0.5325Up = 0, A Niyin/ (300 V),
D' =5, D= 250andstating from a nucleus of radius 1, the boundary conditions given above

and by setting mesh adaptation parameters to take into account the solutigngws. An
illustration of the resultebtainedafter growth, isshownin|Figure4.7
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Figure4.7 Thermosolutaldendritic growthat 147 328.862 showing the difference between
the thermal and solute diffusisand the adapted mesthe parameters used are listed above.

[Figure 4.7]shows that the temperature profile diffuses in a wider way than the composition
one, since there is a ratio of 50 between the two diffusion coefficients, as also given by the
Lewis numberLe = L/D". Moreover, one observes that the mesh is well adapted following
the three variables, as referred above: enriched around the interface and sizes varying with the
gradient in the diffusion layer.

Figure4.8|plotsthe variation of thesolid and liquidcompositios in the x direction fory = O:
constanin the solidsinceD® = 0; decreasingn an exponentialvayin the liquid, as expected

Figure4.8 For 2D hermaosolutaldendritic growth composition profiles ati4 328.862
measured along thedirection fory = 0.

Resultsobtained may be comparedth the ones fronfRAM2004, wherethe authors have
provided a 2Dsolution for thermesolutal growth, computed withthe phasefield methodand
by addinganantitrapping termusingthefinite difference methad

To study the convergence of our methodgt lus considerdifferent square domairs
([0;120140;120, [0;160/x{0;160 and[0;240x[0;240]), on whichan initial seed of size &l
is placed. Tp velocity evolution in the x direction is studied The anisotropy function
46 (w )+ (w)o

a
consideredisWn =Wy (1 34 §+1 34/ T iZWlth &= 0.2. The dher
simulation parameters are§f = 0.55,Ug = 0, k =0.15, Mc; = 0.5325, A "W

hmir/( Blvip)-|Figure 4.9|shows the variationof thetip velocity, the tip radius &) and V¥ (the
tip selection parametewhere oneobserve thatresultsare very close to the onebtained in
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[RAM2004. The plots are shown for differentas defined in chapter 1 a8 a;Wy/do, this
parameter represents the vaoatdfdp.

Figure4.9 Temporalevolutionof various growth parameters for tvdimensional dendritic
solidification of a binary alloy iran undercooled mehvith coupled heat and solute diffusion
(Le=1,Mc¢ =0.5325k = 0.15, 4~=0.02 and' = 0.55)and for different & a;Wo/do. The
lines in each graph correspond to differadtirectly related with thanterface width).

In these plots, ¥ is computedusing the tip velocity, the solutiffusion, the capillarity and
. . 2D do . .
the tip radius &, V:TV‘_) . To compute the tip radius,a subset
tip
A={y/!y >ymax 3ro} has been taken, wheyg., is theordinate of the dendrite tipois
thefirst estimation of the radiughe tipis approachedith a parabola (P) of equation:

y* = Clx*2 + C2X* + C3 (4_41)
(1 +022)3/2
2C, '
Finally, r, allows torefine the subsea, to have a subset B 5y{/ y > ymax *Const-ri}, and
so on.Constis initialized with 2 and decreases with iteratiofikis new subset is fitted with
the parabola (P) to compute We refit while decreasinGonstuntil £ < e andthen bh=r1
is assumed As the sum othesquared residuand A is the curvatureAt the end:
3
. 1+¢%)5
Y -2 forx =0and M:—:g (4.42)
@+y'2); (L+e?); LB |

Sensitivity of the results to the heat extraction (or the undercooling) has been studied. The
problem to solve is the same as above, where we have included the heat extraction on the
boundary as:

1, C; andczare computedisingthe least squasemethod andised to obtaim

D' Fhe (T Tox) RQ:~ (4.43)
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Let us considea square domain of size [0;320]x[0;320] waldifferent ir-itial temperature
o= 0.5and Rug= 0.55 enin= 10° N, = 50000, hmin = 0.4 k = 0.15 Mc; = 0.5325
Uo=0, ' W hyin/(300Vip), hext = 163.3-10°, Tx= 2,D =5, D= 25Q At the beginning of

the computation, nucleation has not occurmee have only liquid

We observe that with the heat extracti@veragetemperature decreas. \\hen the corner

temperatureis equal tothe nucleus temperatyra nucleusof radius one appears in the
domain,and solidificatiorstarts,maintaining the heat extraction.

Results obtained are shownFigure4.10jand|Figure4.11]

Figure4.10 Thermaosolutal dendritic growth with heat extractipplotted at 147 0-80,
640.703, 975.205, 1 677.21, 3 137.88, 5 197@6the conditions given j(¥.40)| showing
the phase functiomlistribution

Figure4.11 Thermaosolutaldendritic growth with heat extractipplotted at 1470, 80,
640.703, 975.205, 1 677.21, 3 137.88, 5 19K6RB6wing theohase function distributiowith
the adapted mesh.
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At the beginning, there is only liquid; after nucleation, the solid fraction begins to increase
and the liquid fraction begins to dease. The computed dendrite tip velocity decreases

ZLWK WLPH )XUWKHUPRUH RQH REVHUYHV QXFOHDWLRQ

evolution. Temperature decreases before nucleation, because we are extracting heat but
when nucleation occurs theagn starts to solidify and temperature starts to increase with

the phase change and the heated dendrite. During phase change, either the stationary
growth velocity is reached or the border of the domain is attained. At this point, the
primary tip stops & growth which implies again a decrease of the temperature, as seen in
We can also see that with the formation of the nucleus the satitioh, g,
increases and the liquid fractiogl, decreases because the liquid zone is solidifying and
transforming into solidThe fractiong” of a phase insideV is obtained through:

el e VI <[>
9" =y YEV=y =" (4.44)
\

Figure4.12 Thermasolutal dendritic growth with heat extractiat 145 197.26showing the
evolutionof the averaggtemperature and the solid fraction, liquid fraction and the dendrite
tip velocity.

Supposing symmetry, simulations have been performed in 1/4 of the domain in 2D and 1/8 or
1/48 in 3D (even if this imposition is not a restrictive condition).

Growth starts using a radius small enough to have a real dendrite without splitting (i.e.
primary dendrite splits from the border), as well as enough elenidygould be computed
automatically to fix this problem. To enhance the main problem arising when these two points
are not verified[Figure 4.13) provides two tested configurations in 2D, under the same
physical conditions, but different domain sizes. One observes that, for a given nucleus radius
(Ro = 10 withN, = 50000), for a normalized domain of radius equal to 500, there is splitting

of the primary ams, avoided by decreasing the initial nucleus radius to 1.5 or by using the
whole domain. For a larger computational domain (with a radius equal to 1000), we should
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have even smaller initial nucleus radius and increase the number of elements (in tRjscase
150000).

Ro=10 Ro=10 Ro=1.5
N2 = 50000 N2 = 150000 N2 = 50000
4 97.29 4 67.8724 147 281.68
Ro=10 Ro=0.167 Ry =0.167
N, = 50000 N, = 50000 N, = 150000
4 357.35 14 142.94 14 166.36

Figure4.13 2D simulations showing the splitting and how to solve these numerical problems
by reducing the initial radius aradiding enouglelements to do the simulations.The size of
the computational domain is equal to 500 in the top row and 1000 in the bottom one.

4.3.3 3D thermo -solutal dendritic growth

3D simulations for dendritic growth have been perforffegure4.14illustrates the thermo
solutal dendritic growth for a domain of sigg1000]x[0;1000] x[01000], with 75= 0.65,
énin= 10°, N; = 2 000000, hyin = 0.4 4= 0.06, D' = 4, D = 40, an initial nucleus of
radius 1, andeamesing following / 7 U solutionsand ' 4 hyi/(10-Viip).
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Figure4.14 3D thermasolutaldendritic growthat 147164.976, 320.871, 41105,showing
cuts of the temperaturandthe compositiomprofiles, as well athe meston the left, and the
morphology development on the right.

Results are in agreement with previous 2D simulatifFiigufe 4.15). Numerical accuracy
(different arm splitting), still depends on the numerical parameters taken. A strategy to impose

this may be to fuhter ameliorate adaptivity by establishing a relationship between the
imposed (and wanted) equidistributed error and the number of elements.

[Figure 4.15/shows two simulations (growth in the <100> and <111> directions), using 1/48
and 1/8 of the domain. In the cases using 1/48, splitting rapidly occurs to finally loose the
dendrite form. Same thing occurs for the 1/8 case but we will reach the spiittiagjon

after. Thus, more studies should be done on supposing symmetry for the-todubabcase
when the model will be applied for the physical parameters representing-th&wA%Cu
droplet. Otherwise, it is better to do the simulation for the whadplet and to ensure strictly

the necessary number of elements.
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(a) (b)

(c) (d)
Figure4.15 3D simulations showing the splitting with 1/48 and 1/8 of the dopagity48,
4 12.3 and4/= 0.02, b) 1/8,14#11.9 and4/= 0.02 c) 1/48, K/13.35 and4/= 0.02, d)
1/8, 1414.09 and4/= 0.02.

4.4 Conclusion

In conclusion, thee are tiree equationsthat needto be solvedto simulae thermasolutal

dendritic growth:the phasdield equation,the energy equation arttie mass conservation
equation. These equations aeéormulated hergith dimensionless variable¥his modelhas

been validated in 1D ar2D for different typs of growth We hawe seen that we can do 3D
thermosolutal growth busensitivity studies to obtain the optimal parameters should be made

on the parametsiof the simulation.Solid and liquid fractionsnay be deduced, as well e
temperature profileand one may studthe QXFOHDWLRQ eDRHc I KHPROAHMFD
Simulationsin 3D for thermasolutal growth to validate the modalhould be donein the

future Neverthelessmodel camow be used to try to do simulations for physical growth

an Al-4.5wt%Cualloy. In the next chaptewe will show the results fahis alloy in 2D.

To concludethe algorithm used to do a complete thersotutal dendritic growths given
below.
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Init. time w w
Init. fields /W /(), TW 8: U W Uo
Compute NE
Remesh
Resolution of PhasEield equation lw w
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Resolution ofSolute equation Uw
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w8 Tw w
UuB Uu w
Compute ' W hoin/( EMeip)
Yes
W' W > ey
m w'w

Résumé

Dans ce chapitre nous avopesent les equations du modele thernsolutale qui combine

les troismécanismeslécrits auparavaniNous avongait des calculs en 1D et 2D pour valider

les équations utilisées en comparant les résultats numeériques avec des résultats amalytiques
considérés comme cas teAtla fin du chapitrenous avons montré que nous pouvéaise

des calculs 3D et extraites profils de températuresi de compositiongt les fractionsolide

et liquide & des paramétres comme lerayéH OD SRLQWH HW GYDXWUH
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To modelequiaxed solidificationseveral approaches have been considered in the literature,
such asthe previously describegbhasefield method [AST2009, [BOE2003, [FRI2009,
[HEC2004, or others likethe meanfield method[TOU2009, front trackingtechniqueglike
the levelsetone) [BAN1994, [NAK2006|, [SAI198d, |UDA1999, or cellular automat
|GAN1999, [RAP1993. Other coarsegrained modelfiave beemleveloped athe mesoscale
to predict he unsteady growth of dendritic grajdi&e the dendritic needle network model
(DNN) and their internal solid fractiofSTE1999, [STE200%, [ZAL2013].
Between all these approaches, the rifeeld methodas developed byTourret
has been applied tdroplet solidification accounting for dendritic, peritecdod eutectic
growth. Other applicatian of the latter include prediction of macrosegregation and
microsegregation focolumnarand equiaxedyrowth like described irthe thesis of Nguyen

NGU2015| and Leriche{[ER201] for heavy ingotssolidificationas well as apptations to

multicomponent alloys

In this part phasefield (PF) simulationswith the present modelre compared with mean
field (MF) computations using the developments presentefT@U2009. The test case
considered is the simulation of a droplet of compositiort Alwt%Cu. To compare both
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numeri@l simulationsin a given cafiguration we have supposed a cylindrical geometry in
MF, whereas the geometry is a 2D disk Rt There are several objectives when performing
this comparison: firstly, it allows a more complete validation of BEmMmodel; secondly, it
helps improving théiF model through a better understanding of the approximations and the
choice of various paramets. One other importaninotivation is the difference in the
computation time between both implementations. We know that the-filasenodel is yet

not usable on very large domains, sitgacal systems require high performance computing
capabilities avidable during long computation times to attain quantitative physical results.
Looking at the domain of validity of each method will allow the choice of which is more
pertinent, when considering the ratio accuracy/available computational power, as done by
[NGU2015|, [LER201§. Typically, computations on the same configurations ruseveral

days of CPU tire using several processors using the pffiate approach, whereas mean
field one have a duration of a few seconds using one processor.

In the following, thePF model described previously is shordymmarized. Then, the MF
model, as developed and implemted by Tourre{TOU2009, is presented. &ults for both
techniques ora givenconfiguraton are compared. Input data as the physical and numerical
parameters needed to simulatdidification for the considered ATu dloy are detailed, and
outputs, like the topological and averaged quantities of certain variables, are given. For the
latter, postprocessing of phadeeld results is necessary and described in the following.
Findly, comparisons and a study on the sensitivity to model parameters are shown.

5.1 Modeling of equiaxed solidification in alloys

To perform direct simulations of ATu samplesheat andnassbalance equations are solved
using the PF method In parallel, by considering microscopic phenomena in macroscopic
configurations, the Minodel is appliedfFor both types of simulations, the following general
assumptions were considered:

() thechemical dff usion in the solid is neglected;

(i) a 2D disk(PF)envelope is assumed, representative of a transverse section of a cylindrical
MF domain;

(ii) the alloy is binary, i.easingle chemical species is designated as the solute of the alloy;
(iv) physical properties of the phases are constant. For dgangmsity is assumed uniform,
constant and equal in all the phases;

(v) nucleation takes place agdowth starts at the center of ttlemains

(vi) the computational domain is initially full of liquid, with uniform temperature, and heat is
extracted fromits boundary until a prescribed nucleation temperature is reathbd center

of the domain

(vii) a closed system is supposetth respect to the mass balanoeeaning that the global
composition of the domain remains constant;

(viii) the solidus andiquidus lines of the phase diagram are supposed |inear
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(ix) diffusion takes placén the liquid, and aiffusion layer Gs formedahead of thgrowing
envelopewhichis computedvith the PF model and be evaluategsingan overall balance of
solutewith the MF model

Furthermore, thermodynaendescriptions of the system wegstablished with the CALPHAD
method (for Calculation of Phase Diagrams). fat purpose, the THERMOCALSEbftware
has been used to extract constant physical propreties usedimthations.

5.1.1 Phase-field model (PF) description

The phasefield (PF) modelhas been extensively presented in the previous chapters. It
consistsm taking a function/to represent thdistribution of the solicandliquid phasesn the
domain A system of three equations is then solved: conservation of energy; conservation of
the solute species; phasmpagatiorto obtain the interface dynamics. To solve this sytem, a
finite element method hagén used
As referred above,/is the function tha describes the presence of the liquid and the solid
phases irthe computational domaitY, composed of the two subdomains, the solid, and
the liquid, Y', with Y their interface./varies between and+1 and may bedefined as
K .

/= tanh “;/O* \/51 (5.1)
In this expressionWo* is a non dimensionahterface thickness\No* = WIW), whereW, as
previously introduced, measures a physictdrfacewidth.
Thevariable Kused in thigexpression is the signed distance togbikd/liquid interface, given
by

4o, Wi X e:S
k= ®0 if xe: S (5.2)
A, Wi X oo
whered(X’, Wis thedistance ok to the interfaceY ™, at time W

Let us considerthe phase diagram of a dilutbinary alloy. The system contains two
components: the solvent (A) and the solute (B)nservation equations may be written
supposing a sharp interface, with the sdadjdyrowing in the liquid]. Phasdield, energy, and
solute equations are then coupled to give, at our scale, the tseflatal dendritic growth
problem. Combining thesolute and thermal cases, the standard set of -ghtarface
equations consists in:

w 1

W:D' c (5.3)

W :

W D'T (5.4)
(1l Kva= D'’g (5.5)
Wn=(N'TS N'ThH (5.6)

Ti=Tu+mc *N QA (5.7)
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where all the variables were previously defined in chapters 2 to 4 and are given in the List of
Variables. The dimensionless alloy solute compositiand temperature/are defined as:

a  2clc og1l
=Sk @ R/ if&ﬁa (5.8)
= %Cpmcf (5.9)
In terms of these variablesne may rewrit¢he freeboundary problengs.3)j(5.7)|as:
wi=D 'U (5.10)
wi= D' T (5.11)
[1+(1 KU ]v,= D 'U' (5.12)
=0 7F P (5.13)
T +McrUi= d N B (514)

From the free energy functionahd its derlvatlorusmgthe CahnHilliard framework we
deduce the three equations to be solveRad :
w/ w

W —_ .o WWn
Wy, Won o /=[) @FMeU) /] 1 —XT /Pwn le)i( i
5.1
_’22 /PW n —";"i’ JPwn —2 0
vy 7 ww )
WL 1w
LD S (5.16)
14k (1 K /W
wiA/ (5.17
§.1 /  Wn W w '
.éo— U+ [ KU+ 1 (1+(1 U)o

W(n) is a measure of the anisotropy in the surface energy, and may be defined as follows

[RARTSOG

46 (w )+ (w)o
Wn =Wy (1 34 <’J_+1 3 4 7 i)anD (5.18)
or
+ + 0
Wn =Wo'(1 34 <1+ 44 (w0 (w )+ (w ) pin 3D (5.19)
1 34 /
where f4fis the constant intensity of anisotropy that define how the secondadyitdesrms
grow.
The dimensionless solute diffusiviy is written as
. D W
D = = W2 (5.20
The dimensionless thermal diffusivit§?is given by
p=2Y (5.21)

T W’
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whereas the scaled magnitude of the liquidus skpe

. _m@ K
M= Lic, (5.22
To perform simulations with nedimensional coordinates, in space and in time, we define
as

X =x/Wh (5.23
and W6 a dimensionless time:
t
W — 24
W (5.24)

where Wlis the phasdield relaxation time, in [s].

The thermal capillarity lengttl, [m] is given by

* Jv &
“wa” 7z (5.29)
where JJ-m?] is the excess free energy of the solid/liquid interface. The kinetic coeffi&ent
[ms] is

do

C
= PL (5.26)
This expression igelated tothe fact that one may redefine the coefficiefib include the

variation of 7across the interface usiagasymptotic analysifKAR199§:

a aW, ©
Ea WW ZDO 2, (5.27)

which vanishes when kinetic effects are eliminated. Lang&N[L986| and then Caginalp
CAG1989 have derived:

Wo
a 1)
In these expressionsilis the characteristic time of attachment of atoms at the interface
(10" s for metallic systems); anda, are positive constants of the order of the unity that
depends on the details of the assumed form of the expressiom foe¢henergy. Karma and
Rappel|[KAR199§ deduced, from the assymptotic analysis, that 8.8839 and.a= 0.6267.

(s a dimensionless parameter that controls the strength of the coupling between the phase

and dffusion fields. t istaken asG ag\gvo )

do = (5.29)

Like detailed in the previous chaptersje have computed numerically Wn and
Wn - _w§g o n_-
W )Y % IPWn g ps 2
n

w wWwWn . o
— i) /PWn —— .. The derivatiorforms are shown [able2.1
: AR

implemented the analytical form o\ﬁvg /PW n
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5.1.2 Mean-field model ( MF) description

To be able to take into account the microstructure seale dendrite tip radiusf the order of
the micromete), andphenomena at a larger scéeg. heat and mass transfevhich may go
up to considering a wholaetallurgicalprocesor product (typically 0.01 to 1 meter), volume
averaging or meafield methods may be usetlhe physical quantities are averaged over a
intermediate size betweenthe process and the microstructure, dondal conservation
equatias are replaced by equatioms average quantities. When this representaloraain is
large enouglso that fluctuations ahe scale othe microstructure are averagedt not too
large conpared to macroscopic changdise averaging domain is referred toRepresentative
Elementary Volume (REV)

,Q 72855 (71 VprddkebhNhe whole physical domain of the sizeahetallic samplés
considered The growth of an equiaxed grais based ora 1D spherical approximation
whereaghe growth in a columnagrain is approximated by a 1D cylindrical geometry. The
domain sizethus correspond to theradius of a spherical droplet for tlpacingbetween
primary dendrites trunks. Micregregation takeplace throughout dendrite asmA planar
geometryfor the secondary dendrite spacin@is considered, which is the feature sifehe
microstructure.A onedimensional configuratiormay then beobtained ona domain of

dimension @2, as illustrated ifFigure5.1|

Figure5.1 Growth of a zoneifitra) of coordinates™? in a domain of dimensioR and of

symmetry (a) spherical, (b) cylindridalOU2009.

The generalocal equations ofhetotal mass conservaticand thesolute mass conservatian
each phasare:

—\“f/"( W+ div( &) =0 (5.29)

—\‘,:/V( @) + div( @) + div(j) = Q (5.30)

Where Us thephasedensity,v is thephasevelocity, c is thephasecompositionexpressed as
a mass fraction of solutd the binary alloyj is the diffusion fux in the given phase

In the following, assumptions considered are:
() the solid/liquid interface is supposed at the rti@ilynamic equilibrium;
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(i) in metal alloys, thermal diffusion is very fast compared to chemical diffusion. The
temperature of the sysh is assumed to be homogeneous

(iii) creation solution tern@ is neglectedn the solute mass conservation equation

To establish the equatiors the problemto be solvedthe following averages need to be
defined:

X average valu& /> on the domain V of guantity /
[>=y lﬁ[ av (5.32)

X average value <? > in the domaan of a quantity /in a phasez, being F* a
distribution function for phase(0 outsidez and 1 inside);

1
< f> =y H,f[FZ dv (5.32
v
X intrinsic average value /* > “specific for each subdomairt is:
1
< [Z>Z:V—z H.r[/fdv (5.33
Y

x volume fractiong” of aphasezinsideV is obtainedthrough

Vi <[>
=V H/fdv‘——j[% (5.34)

Before introducing the derived system of equations, it is also necessafjnie
x v " as the average of the nmal component of the velocity #he interfacez/w
between the phaseandw;
z/lw

X c”"as the average of theompositionof phasez at the interface/w;
x S™asthe interface densitysuch that

W= gVz= APy (5.35)

with A?" the surface of the interfacéw.
The differentcombinations of zones used at@own irfFigure5.2| They consist othe solid
(), the intradendritic I((intra)) and the extradendritic liquid (extrg) phasesThus the
interface densities a@sll (intra) _ SI (intra) /s a‘I,.K.jsl(extra)ll (intra) _ SI (intra) ll(extra), givenby:

Ss/l (intra) _— SI (intra) /s As/l (intra) N (5.36)
gl(extral (intra) _ gl (intra) /i(extrd) — pl(extra/ (intra) p\ s (5.37)
x 1?%is the diffusion lengtlfor composition)at the interface/w; defined as
i 8 G’l a 2’ 031 a
oL (5.39)
343 aa

where” ' € s the unit normal at thimterfacez/w directedfrom w to z Different diffusion
lenghs are defined at the different interfaces & I(intra), I(intra)/s, l(intra)/I(extra),
[(extra@)/l(intra) through
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| (intra) /s CI (intra) I | (intra)

| | (ntra) /s _ c .
= g (ntra _ 5.39
s | | (intra) s (5:39)
I o1 (intra) c g | (intra) CS I S
B w® : 5.40
LRl Pl (intra) (540
c | (extra)/ I(intra) CI (extra) | I (extrg)
| I(extra)/ | (intra) — 1) : = | (intra)/ |(extra)
U (541

ruceael | (extra) ;i(intra)

Figure5.2 (a) Dendritic growth in a spherical geometfty) 1D schematic representatioh
the interface betweesyl ™ and of the boundaryetween ™/ ©? zoned TOU2009.

Solid fraction ), total liquid (g'), made ofintra liquid @ ™) plus extra liquid ')
fraction are computed by solving the total mass conservation equations. We can also
determine the composition in the solicf)( intra liquid €™®) and extra liquid ¢©3)
through the resolution of the solute mass conservation equations.

As detailed in [TOU2009] and taking into account the assumptiessribedabove, hetotd
mass conservation equations, the phaes s, I(intra), l(extrd and at the interfase
dl(intra), I(intra)/s andl(intra)/l(extra), |(extra)/l(intra) aregiven respectiely, by:

AN — g9 (intra) | o/ (intra) (5.42)
w
I(intra) ] ) X .

g " - S|(|ntra)/svl(|ntra)/s Sl(lntra)/l(extra) Vl(lntra)/l(extra) (5_43)

I(ext
L) (\e; " — Sl(extra)ll (intra) Y [(extra)/l (intra) (5.44)
v Slinta) o\ Intra)'s — (5.45)
Y I(extra)/ I(intra) Y I(intra)/ I(extra) — 0 (5_46)
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The solute mass conservation equatiomshe phasess, I(intra), [(extra) and at the interface
dl(intra), I(intra)/s, I(intra)/l(extra), I(extra)/l(intra) arealso writtenas

gs _w(<cs>5) — S/q(intra) [Ssll(lntra) (C dl(intra) <c Ss s) (V dl(intra) ) ] (5.47)
I
g I(intra) _x(<cl(intra)> I(intra)) — %I(intra)/s (C I(intra)/s <c I(intra) S I(intra) ) %I(intra)/s | |Ir:12ra < ;;}4
. | . . . D' o (5.48)
+ §I(lntra)/ I(extra) (C I(intra)/ 1(extra) <c I(intra) > I(intra) ) %I(lntra)/ [(extra) rﬂm . 174
g I(extra) _\VNY ( <c I(extra)> I(extra)) —
R | | _ D' . (5.49
§I(extra)/ I(intra) (C I(extra)/ I(intra) <c I(extra) > I(extra) ) %I(extra)/ I(intra) _R_51)7T(_5| = T 1174
|
(C dl(intra) c I(intra)/s v s/l(intra) + Wi[%% (C [(intra)/s <C [(intra) > [(intra) ) =0 (5.50)
I
(C I(extra)/ I(intra) c I(intra)/ 1(extra) v |(extra)/ I(intra) + I_R%ﬂ_(m)_ (C I(extra)/ I(intra) <c I(extra) > I(extra) )
D! (5.51)
+ | AT TTERT (C I(intra)/ | (extra) <c I(intra) > I(intra) ) =0

In this approach, the total mass exchanges and the soluteaakaptace in the direction of
structure growth, and throughout the microstructure séaf@anar geometry in a secondary

dendrite spacing of; is then considereds already cited above and illustratefFigure5.3
All the geometrical factors defined aboweich as theolume element ared, theinterface

densities (%) and he diffusion lengthl(*"), are expressed using

Figure5.3 Secondary dendrite spacing in a dendritic §#€U2009, real case and 1D
representation.

In a volume element are®of sidelength 2/2, the ratio of area/volumeased on the volume
of the zondintra), V™ is;
As/l(intra)/v (intra) =9/ ) (5.52)

The interface densities present in the balance equatinexpressed based on the total
volume of the domairV. The interface densities are thginen by
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] V(intra) As/l(intra) ] 2
sll(intra) _ — intra) = 5.53
S V; V(mtra) g 5 ( )
) 2R(intra)
I(extra)/ I(intra) _
S == (5.59)

The diffusion length for the solid amtra dendriticliquid phassin zone {ntra) depend also
on Qas follows:

I(|ntra)/s l (Intra) (5 55)
3 intra .

[ s/l(intra) _ l (5 56)
3 intra) ~— .

These expressions are deduced assuming a parabolic profile in the|plRas2609.
A sensitivity study on the value ofis described in section 5.3, showing its influence on the
growth pattern.

The diffusion length i1 andI®"3, at the interfacel™?/|®xa | (). can he then

written as followdTOU2009:

| I(intra)/ 1(extra) = I(extra) / I(intra) —
R(lntra)

P pagma [ Zﬁzt@ V(P - Pelv(PeexpPe- PE™®) + (1 + Peexp(Pe- PE"®) - 1 - pdina)]

Pe andPe; are Peclet numbegiven byPd"™® = Rina) \{na) ; pl gndpe= R V@ / D!
with R and Re, respetively, the interior and the exter radiusof the zone containinghe
considered liquid Function Iv(Pe)in equatiorff(5.57)]is the 3D Ivantsov functiov(P) =
PexpP) E1(P)). On the mushy dendritic growth zonét(a), the dendritetip kinetic is
imposed using the 2D Ivantsov approximation. Its equatiestablished in[KUR198§:

yaintra) — VtipMF - D' m_CVs (]_ k) [| (: s/|)] 2 (5.59)

(5.57)

with D' the liquid chemical diffusion coefﬁment,m_ the slope of the liquidus line in the
equilibrium diagramc”® the compositionst the intragranulardiquid boundary given by the
equilibrium at the consideretemperatureand + the GibbsThomson coefficient of the
interfaced/!I.

The function Iv! is the inverse of thévantsovfunction, and the supersaturation ¥ is

computed as
CI(intra)/s <CI (extra)> I(extra)

(- CI(intra)/s Cs/l(intl’a) (559)

wherethe average extragranuléguid compositionl(extra), < ¢ > & s taken aghe
liquid composition far from the interfac(intra). Note that for 2D growth, bs(X) = ( S()l’2
exp) Erfc(x?) is used.

To perform comparisons witie phasdield model, one computes the tip velocity, the phase
fractions and the compositions in the different zosedid (), whole liquid (), divided irto
intradendritic liquid [(intra)) and extradendritic liquidl(extra)), by solving the conservation
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equations. Surfacend the perimeter of the dendrigcain are also determined, by computing
the grain radius.

The positionR™?, [Figure 5.1] corresponds to the tip radius of the solid zone, which may be
determined fromthedomain sizeand the solid fraction:

Rintra =R (g 5)1/2 (5.60)

Finally, evolution of the temperature is obtained by solving the energy balance equation.
&RQVLGHULQJ D KHDW H[FKDQJH ZLWK WKH H[WHtheLRU GRF
overall energy balance of the systdar,a heat extraction coeffiaig hexs IS:
dT °

Co E "Hy %t_ = SextNext (T Tex) (5.61)
whereT is the system temperaturBy: is the exterior temperatur&y = Sx/V is the external
interface dendity withAc the exchange stiace of heat with the exterior anfithe system
volume, ¢, and 'H; are the heat capacity of the system and the solid fusion latent heat,
respectively

Theexternal interface densiis defined as follows:

Aexi_ 2
St = Vt R (5.62
The heat extraction coefficient has been computdd@@s2009:
Next =
5.63)
Ng§ B T™ T 2 13y 5,04 025 * (
RS WamrD) T Toa (0.4R€” + 0.06RE™) Pr R

In this equation, s the thermal conductivity of the atomization gas, evaluated alydtiem
temperature.f: is the thermal conductivity of the atomization gas outdtk= 2R N/ RPis

the Reynolds numbewhereR is the droplet radius {¥s the density of the atomizing gagis

the velocity of the particle an@is is thekinematic viscosity of the atomizing g&& = £/ &/

Ris the Prandtl numberyhere & isis the thermal diffusivity of gasP is the kinematic
viscosity of the atomizinggas away from the dropletRis the kinematic viscosity of the
atomizing gasat the surfaceTo compare with the phadeld model, where we ushBey
constant, we have takdémeinitial valuegiven by This is reasonable, &s,: does not

vary much during the solidification time computed. The same has been done for other
physical parameters, such as the solute diffusion.

The overall equadns for the meafiield modelwereimplemented in C ++ and coupled to the

TQ version 7.0 of THERMOCALC software (version 8) [TOU2009. Nevertheless, no
couplingwith THERMOCALC and constant properties of the phase diagram and phases have
been assumed in this work.
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5.2 PF and MFsimulations and methodologies for co mparisons

In this sectiona review of the computatiosiis performed (including theised material and
numericalparameterspnd comparisondetweenphasefield and mearfield simulations are
detailed

5.2.1 Studied configuration s

As referredbefore, ve considera binary Al-Cu alloy and a 2D approximation, meaning that
the physicalstudied domain corresponds to ttriansverse section of a cylindeDifferent
configurations are presentedTiable5.1]for the 2D standard cas$TD 2D), the 3D standard
case(STD 3D)and 2D cases changing different parametershe following, details on the
material and numerical parameters chosen are given, in particular forfhisemulations.

Material parameters

Physical @rameters othe alloy are hemdter given and converted to the naiimensional
onesused inthe PFsimulation. For that, let us consider the-Cu phase diagtm, shown in

Figure5.4|(obtained with Therm&alc [BOG2013), linearizedwith a constant liquidus slope

m anda segregation coefficiet(i.e. solidus slopavk) andillustrated through the red dashed
lines. The nelting temperaturdy, the liquidus temperaturg - Ty + mc:, theliquidus slope
mandthesegregation coefficietarealso indicatedn|Figure5.4

Figure5.4 Phase diagramaf the Al-Cu system, calculated with Therat@alc [BOG2013.

Parameter values extracted and used are lisfédhle5.1] Latent heat,d/, heat capacity@,,
heat diffusion coefficientD, solute diffusionD', and GibbsThomson coefficient * are

provided in |[SAN200§ and |[HER200§. Temperatures can be deduced from the phase
diagram for different concentrations of Cu. Capillary length is calculated ffoitd, and &

U The liquidustemperaturel_ is readaccording to the above phase diagram by

choosing thenominal compositiorcs = 4.5wt% Cu. DiffusionD® of Cu in the Al solid has

asdy=

















































































































































































