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___________________________________________________________________________ 

1.1 Context of the thesis  
 
The development of aluminum alloys with increased strength and ductility is an ongoing 
challenge for automotive and aerospace applications, as those illustrated in Figure ��1.1. Improved 
properties are achievable through increased refinement of the microstructure, i.e. higher cooling 
rates (rapid solidification), as well as through alloying additions. The combination of using 
alloying additions and rapid solidification often results in a solidified primary phase that is 
supersaturated in alloying elements.  This has been shown to occur in a number of aluminum 
alloys [HEN2010][ROY2005].  

 
Figure ��1.1 Examples of products with an aluminum alloy body for automotive and aerospace 

applications. 
 
An undercooled melt corresponds to a non-equilibrium state of the liquid. Upon undercooling, 
driving forces are present in the melt. The number of possible solidification modes increases 
with undercooling, making accessible a broad range of metastable microstructures and 
structurally different phases.  Crystal and dendrite growth velocities vary significantly with 
undercooling.  Hence, models of the solidifying microstructure are tools to help in developing 
structure-property relationships for aluminum alloys under a range of high cooling rate 
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conditions.  These models provide valuable insight into the relationship between process and 
material performance for the development of the next generation of aluminum alloys. 
 
This study has been performed in the framework of MIMOSA (Microstructural Modelling of 
Rapidly Solidified Droplets and Spray Formed Strips of Aluminum-Copper-Scandium Alloys), a 
project funded by the French National Research Agency (ANR, France) in collaboration with the 
Natural Sciences and Engineering Research Council of Canada (NSERC, Canada). 
The 3-year project is a collaborative effort between Canada and France involving three teams of 
researchers. Powder and spray formed samples were generated using Impulse Atomization, a 
rapid solidification technique of Al -Cu alloy was used.  
 
The solidified samples were characterized using Scanning Electron Microscopy (SEM), X-Ray 
diffraction, differential scanning calorimetry and microhardness at AMPL  (UofA, Edmonton, 
Canada). In addition, advanced characterizations were carried out, such as neutron diffraction 
and 3D-micro tomography together with automatic indexing of electron backscatter diffraction 
patterns (EBSD) at AMPL  (UofA) and IM2NP ���8�Q�L�Y�� �G�¶�$�L�[�� �0�D�U�H�L�O�O�H���� �0�D�U�V�H�L�O�O�H���� �)�U�D�Q�F�H��. . 
The characterization data collected were also intended to be used for comparison with the 
models. Finally, Direct modelling of the dendritic microstructure for an Al -Cu binary alloy 
processed by atomization was developed at ARMINES CEMEF (MinesParisTech, Sophia 
Antipolis, France) using the phase-field method. This is the goal of the present work  
 
1.2 Atomized droplets  

 
Impulse Atomization (IA) is a single fluid atomization process. This technique has been 
extensively used for making metal powders, spray deposits, metal-matrix composites and spray 
refining of pig iron [DIN1997], [ELL2004], [HER2007], [PRA2006], [PRA2009]. It consists of 
a 0.5 m diameter and 4 m height cylindrical chamber, as schematized in Figure ��1.2. This 
chamber is atmospherically sealed and can be filled with the gas of choice. In the case of 
atomization, an inert gas (such as He, N2 or Ar) is used. The top portion of the chamber consists 
of an impulse unit where the material is melted at a controlled temperature and subsequently 
pushed through small orifices. The ensuing discontinuous melt streams break down into small 
droplets that fall through the gas in the chamber. The droplets attain a free-fall situation in the 
initial stages and therefore there is no gravity induced convection in these droplets. Droplets 
completely solidify as they fall through 3.5 m of the gas filled chamber and are collected in glass 
beakers filled with oil. It has been shown that IA produces rapidly solidified droplets and it is a 
useful technique for studying rapidly cooled systems, but also for varying alloy composition as it 
is more important to the fraction of phase distribution than cooling rate [PRA2009]. Successful 
pilot scale tests have been carried out with IA for the atomization of zinc through up to 400 
orifices operating for 3 continuous hours, showing its potential as in the total process. 
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Figure ��1.2 Schematic representation of an Impulse Atomization Unit and the atomized material 

before and after being melted [ELL2004]. 
 
Since the atomization temperature of an Al -Cu system is above 1 000 K, the liquid droplets may 
loose heat by radiation. However, since the droplets cool rapidly, the radiation heat loss 
component decreases, and therefore, has a small effect on the total heat loss [PRA2009]. The gas 
being stagnant, its primary function is to withdraw the heat from the liquid droplets, although the 
surface tension between the gas and liquid metal does play a part in breaking the liquid stream 
into droplets. Wiskel et al. [WIS2002] have shown that the cooling rate of Al-4.5wt%Cu 
atomized in He varies from 325 to 2 400 Ks-1 for droplets of diameter 950 to 275 �Pm, 
respectively. On the other hand, the same range of droplets sizes atomized under N2 shows 
cooling rates from 150 to 800Ks-1. Because of the better conductivity of He gas compared to N2, 
the cooling rate is higher. Thus, a droplet of a given size in He shows a finer structure compared 
to the same droplet size atomized in N2. The data also shows that the microstructure length scale 
decreases as the droplet size decreases, since smaller droplets cool at a faster rate. These cooling 
rate values show that IA can produce rapidly solidified powders. 
 
To provide a better description of the microstructures, let us present shortly the experimental 
results �R�E�W�D�L�Q�H�G���E�\���0�L�P�R�V�D�¶�V���S�U�R�M�H�F�W���S�D�U�W�Q�H�U�V [BED2015]. Firstly, IA leads to a size distribution 
of the droplets with diameter from less than 200 µm to more than 1 mm in the same batch. The 
droplets are thus sieved into several size classes by the technique described in [FED2012]. 
The microstructure morphologies were then investigated for different size ranges and for the two 
cooling gases, He and Ar. For this purpose, synchrotron X-ray micro-tomography was used post-
mortem [NGU2012]. This technique provides a three-dimensional reconstruction of the droplets 
microstructure as the grey level depends on the X-ray transmission of the phase. The primary Al  
phase being less absorbing than the eutectic (mixture of the Al phase + the Al2Cu intermetallic), 
the latter appears in lighter grey in the tomography reconstructions. The resolution used was of 
0.56 µm/pixel (field of view of 1146.88 µm), which enables to study several small droplets at 
once. The statistical analysis of the droplet morphology has been carried out using the ImageJ 
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software [ABR2004]. The final droplet microstructure is the result of a complex three 
dimensional competition between dendrite arms, interdendritic intermetallic, as well as porosity. 
Therefore, only the cross-sections showing characteristic morphologies are shown in Figure ��1.3, 
where four distinct morphologies were observed in the more than hundred studied droplets.  

    
(a) highly branched 

(HB) 
(b) highly branched 

with <111> primaries 
 

(c) dendritic (d) finger bundle 

Figure ��1.3 Examples of the four morphologies identified in the Al-4.5wt.%Cu droplets, of 
diameter between 250 and 300 µm: (a) highly branched morphology, (b) highly branched 

morphology with primary arms oriented along <111> directions, (c) dendritic morphology and 
(d) finger bundle morphology. The nucleation position noted O is shown by a white dot and the 
primary arms noted OA and OB by white arrows [BED2015]. Grey level has been inverted, the 

dendritic structure appearing darker than the eutectic region. 
 
A major result of the synchrotron X-ray micro-tomography analysis was the variety of dendrite 
morphologies for Al -Cu droplets solidifying under the same process conditions, as shown in 
Figure ��1.3. These morphologies were described in [BED2015] so only their main characteristics 
are here reminded. Some of the droplets grow in the usual <100> directions and present a highly 
branched microstructure, as illustrated in Figure ��1.3(a). A structure growing first in <111> 
directions and then in <100> directions can also be observed as in Figure ��1.3(b). The two other 
types of morphologies are fully growing along <111> directions, with a dendritic (Figure ��1.3(c)) 
or a finger-bundle (Figure ��1.3(d)) morphology. The growth orientations for this microstructure 
were validated by EBSD analyses [BED2015]. 
Interpretation given was that the first solid grow along the <111> direction if its growth velocity 
reaches values beyond a growth orientation transition. Eventually, its growth velocity decreases 
and the last part of the droplet would grow in the <100> direction, as observed in Figure ��1.3(b). 
At lower velocity, the usual <100> is observed, as in standard foundary technologies.  
 
1.3 Solidification  

 
Solidification is the phase transformation studied here. It is involved in at least one of the 
manufacturing stages of almost every man-made object [KUR1998], [LUD2004]. Some 
important processes which involve solidification are 
- casting: continuous, ingot, form, precision, die; 
- welding: arc, resistance, plasma, electron beam, laser, friction; 
- soldering/brazing; 

O 
B 

B 

A 

O 

A 

O 
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- rapid solidification processing: melt spinning, planar flow casting, atomization, bulk 
undercooling, remelting surface and atomization; 
- directional solidification: Bridgman, liquid metal cooling, Czochralski, electroslag remelting. 
 
In the forming of aluminum alloys, solidification is a transformation step during which the metal, 
initially liquid, gradually becomes solid upon cooling. The typical stages are: nucleation, primary 
growth dendritic structure, and secondary and further growth (peritectic or eutectic) [LUD2004]. 
Once a nucleus is formed, it is limited by capillarity and transport of heat and mass, leading to a 
morphological instability of the s/l interface and dendritic growth. 
Figure ��1.4 shows a temperature history measured of an Al-4wt%Cu melt. It reveals (I) heat 
transfer until the undercooling state appears and the nucleus is created, (II) recalescence due to 
dendritic growth, (III) another cooling, (IV) secondary nucleation of an eutectic structure and its 
associated reference and (V) cooling of the fully solid structure. 
 

 
Figure ��1.4 Temperature profile during solidification of an Al-4wt%Cu alloy [GAN2008]. 

 
The energy of the system is changed by heat extraction in several ways: firstly, there is a 
decrease in the enthalpy of the liquid and solid phases due to cooling; second, the transformation 
from liquid to solid releases the latent heat of fusion. But the transformation from the liquid to 
the solid also creates a curved and mobile solid/liquid interface, defined as an intermediate zone 
between the solid and the liquid, the thickness which is composed of a few atoms [MEC2010]. 
The curvature introduces capillary effects and microscopic heat and mass flows and the 
solid/liquid interface area is associated with an excess of interfacial energy. Therefore, systems 
that have a large interface have a higher energy. 
 
In the case of an alloy, both heat and solute are rejected at the solid/liquid interface. Solute is 
released not only into the interdendritic liquid but also accumulates in a boundary layer outside 
the mushy zone or grain envelope. This is demonstrated by post mortum analysis of the average 
composition of Cu, as shown in Figure ��1.5, revealing a non uniform distribution. 
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Figure ��1.5 Cross-section through the center of a 250 �Pm diameter Al�±10 wt.%Cu droplet, 

produced by atomization in nitrogen showing, (a) dendritic microstructure as observed with 
scanning electron microscope and (b) corresponding average composition map (%Cu) deduced 

from microprobe analysis [HER2006]. 
 
Figure ��1.5 shows, on the left, a dendrite structure in grey surrounded with the interdendritic 
structure in white. On the right, the distribution map of Cu, with the presence of 10wt% of Cu in 
the alloy. Finally, diffusion flux is present at the very large scale of the dendritic arm. 
 
1.4 Dendrites  

 
The most frequently observed primary solidified microstructure is the dendrite. The descriptive 
�W�H�U�P�� �³dendrite�  ́derives from the greck �³�G�H�Q�G�U�R�Q��� ,́ a tree, with highly branched, arborescent 
appearance. It consists generally of a primary branch or trunk, secondary arms, eventually with 
tertiary branches growing from the secondaries and so on. This growth morphology is 
characterized by its paraboloid-like tip. There are different types of dendrites: the equiaxed 
dendrites that freely grow and are governed by solute and thermal diffusion, and the columnar 
alloy dendrites constrained by a temperature gradient and controlled by solute diffusion. In 
undercooled solidification processing, the highest nucleation temperature and the highest growth 
rate control the final appearance of microstructures and phases.  
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Figure ��1.6 Equiaxed dendritic growth of a pure metal and an alloy showing the evolution of the 

temperature and composition in the liquid [KUR1998]. 
 
The growth of equiaxed dendrites of pure metals occurs under conditions where only heat flows 
from the interface to the surrounding liquid. The temperature gradient is negative at the interface 
and a thermal undercooling �' TT exists. In the case of equiaxed alloy growth, there exists a 
negative temperature gradient and solute accumulation ahead of the dendrite tip leading to 
thermal and solutal undercooling, respectively �' Tc and �' Tt, as shown in Figure ��1.6. 
 
In the solidification of binary a alloy system, physical phenomena are usually described by 
stating the conservation for energy and the conservation for the solute species in each phase and 
using the Gibbs-Thomson relation to establish the normal velocity of propagation of the s/l 
interface [BOE2002], [TAN2006], [ZAR2009]. The mathematical description of these 
phenomena is given here after, while its approximation will be detailed later, in chapters 2-4. 

�¯
�°
�°
�®
�°
�°
�

� c̃ s

� t̃  = D s �' ��c s                                         Species composition conservation in the solid

� c̃ l

� t̃  = D l �' ��c l                                         Species composition conservation in the liquid

� T̃��s

� t̃  = �D s �'  T��s                                        Energy conservation in the solid

� T̃��l

� t̃  = �D l �'  T l                                   Energy conservation in the liquid

(c��l �� c��s)�Qn = (D s �’ c��s ����D l �’ c��l)·n     Composition conservation at the s/l interface

�UL�Qn = (�N s �’  T��s �����N l �’  T��l )·n              Energy conservation at the s/l interface

Ti
 = TM + m c

l
i �� �*�Nr �� �Qn /�P�N                  Gibbs-Thomson equation at the s/l interface

 

(��1.1) 

(��1.2) 

(��1.3) 

(��1.4) 

(��1.5) 

(��1.6) 
(��1.7) 
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Here, T is the temperature and c the alloy composition����s and l are the solid and liquid phases, t is 
the time, Ds and Dl are the solute diffusion in the solid and in the liquid, �Ds and �Dl are the thermal 
diffusion in the solid and liquid, �UL is the latent heat, �Qn is the normal velocity to the s/l interface 
(�Qn = v·n), �N��s and �N��l are the thermal conductivity in the solid and liquid, �Pk is the kinetic 
coefficient, n is the unit normal vector to the interface, �* is the Gibbs-Thomson coefficient 

related to the surface energy �J by the relation �* = 
�JTM

�UL  , �Nr is the interface curvature term, m is the 

slope of the liquidus curve of the phase diagram for the alloy. Ti is the interface temperature,  
TM is the melting temperature of the pure solvent and cli is the concentration on the liquid side of 
the interface. This system of equations provides the sharp interface formulation of our 
solidification problem. In a diffuse interface context, instead of solving the equations for each 
phase with the given interface conditions, we may obtain a set of equations valid in the whole 
domain [KAR1998].  

 
A few measurements have been reported for alloy dendrites. A number of researchers have 
performed experiments to measure the dendrite tip velocity and radius for transparent alloy 
systems [AST2009], [BOU1989], [CHA1987], [CHO1988], [DOU1988], [GLI1988], 
[KAH1970]. Only the succinonitrile-acetone (SCN-acetone) experiments of Chopra et al. 
[CHO1988] resulted in data over a sufficiently large range of undercoolings and solute 
concentrations to allow a detailed comparison with theory.  
 
Macroscopic conditions (such as undercooling upon equiaxed growth) affect the solidification 
but microcoscopic internal characteristics play also an important role. The most important factors 
of internal characteristics are the anisotropy of the properties at the s/l interface, key parameters 
affecting the evolution of crystal morphology [HOU2008]. Anisotropy at the s/l interface 
includes the energy, �J, and the kinetic coefficient, �Pk [MUL1964]. 
 
1.5 Models used for the simulation  of dendritic growth  

 
Modeling of dendritic growth in solidification of pure metals and alloys remains a significant 
challenge in materials science and applied physics. Successful modelling of dendritic 
solidification requires both the solution of a complex free-boundary problem and an accurate 
account of the interface energy and kinetic anisotropy. The first task is difficult because of the 
difference in orders of length scale between the thickness of the diffusion boundary layer of 
heat/solute that surrounds the dendrite tip and grain envelope, and the microscopic capillary 
scale, while the second task is complicated by the need to compute the curvature of the interface 
[ZAB2006]. Figure ��1.7 shows different scales for the s/l interface, experimental view and 
numerical modeling. The various scales are illustrative and not directly comparable, because all 
these quantities vary with the material, especially between metals and organic alloys. The 
smallest scale is for the atomic interface that can be simulated using molecular dynamics models, 
the dendritic scale is at the micrometer size, simulated often using phase-field methods, the grain 
structure which can be simulated using the CAFE (cellular automaton-finite element) model and 
the process scale of many meters simulated with finite volume or finite element methods.   
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Figure ��1.7 Different scales for the s/l interface (top), and corresponding description of the 
microstructure with illustrations from experimental observations (middle) and numerical 

simulations (bottom) [CAR2012]. 
 
In the last years, special attention has been givento the development of modeling techniques at 
various length scales for deeper understanding of microstructure formation. In the literature, at 
least four different approaches applied to dendritic growth can be identified. Firstly, sharp 
interface models [BAN1994], [NAK2006], [SAI1988], [UDA1999] are used to precisely 
reproduce the surface between solid and liquid by a dynamically refined mesh of the s/l 
interface. Secondly, phase-field (PF) models deal with the solid-liquid interface by introducing a 
continuous transitional layer of finite thickness using an additional quantity, thus eliminating the 
problem of explicitly tracking the interface and avoiding direct computations of the curvature. 
Several reviews on the methodology and capabilities of the PF models are available [AST2009], 
[BOE2002], [FRI2009], [HEC2004]. Thirdly, microscopic cellular automata (CA) were also 
employed for simulation of dendritic growth. When coupled with finite element modelling, this 
technique is referred to as CA-FE modeling [GAN1999], [RAP1993] and is then used to predict 
the development of the grain envelope, not directly simulating dendritic morphologiy. Fourthly, 
coarser-grained models have been developed at the mesoscale to predict the unsteady growth of 
dendritic grains and their internal solid fraction [STE1999], [STE2005], [ZAL2013], in 2D and 
3D. These models track the evolution of the envelope of the dendritic grain, defined as an 
imaginary surface that passes through the tips of primary branches. However, they do not resolve 
exactly interactions between individual branches. Fifhtly, the mean-field approach, which cannot 
follow dendrite morphologies, but may give us an equivalent grain envelope, and repartition of 
phase fractions inside/outside the envelope as well as average solution fields, studied in 1D 
dimension by [TOU2009]. Other authors developed a virtual front tracking (VFT) method of the 
solid-liquid interface [BEL2003], [BEL2004]. Discretization methods most often used are the 
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finite element method (FEM), the finite volume method (FVM), the finite difference method 
(FDM) and the average volume method (AVM). One finds, in the literature, computations using 
structured isotropic meshes, structured anisotropic meshes (squares divided in smaller squares or 
triangles) as illustrated in Figure ��1.8 (a), in 2D and 3D [BAN1994], [TON1998a], [XIE2013] 
and unstructured anisotropic meshes [NAR2007] as illustrated in Figure ��1.8 (b). 

    
                          (a)                                                                             (b) 

 
                                                                           (c) 

Figure ��1.8 Examples of dendritic growth using: (a) the front tracking approach with an 
anisotropic structured mesh [BAN1994], (b) the phase-field approach with unstructured 

anisotropic adaptive mesh [NAR2007], (c) a microscopic cellular automaton method 
[CHO2012]. 

 
1.5.1 Front tracking through level -set approach es 
 
These models are mainly based on the use of the level-set functions, classically employed in 
many areas where it is necessary to follow an interface [BAN1994]. A level-set function, �ILS, is a 
signed function that varies continuously from a positive value inside a phase, to a negative value 
outside. The interface is defined by the isovalue �ILS = 0. Most often, �ILS is the signed distance to 
the interface. Interface is displaced by the resolution of the level-set equation: 

� �̃ILS

� t̃  + vLS |�’ �ILS | = 0   

where vLS is the velocity field, determined from the Gibbs-Thomson condition for solidification 
problems. After the position of the front is calculated, the energy and solute conservation 
equations are solved. The main advantage of the level-set method is its ability to represent 
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complex topological changes. This method can be used to simulate growth with fluid flow 
[ZAB2006]. 
Among its claimed advantages, fairly easy implementation and fast computation time can be 
mentioned. However, the error associated with the estimation of curvature from the divergence 
of the normalized gradient of �I is large (10-30%). Since preferred growth directions and dendrite 
tip kinetics are governed by the small anisotropy of the interfacial energy (1-10% in metallic 
alloys), such methods can only give qualitative results, unless mesh sizes around the interface 
become very small in the perpendicular direction to it. The later condition may then become 
incompatible with the fast computation time advantage. 
 
1.5.2 Phase-field  approach  
 
This method introduces a function �I which continuously varies from a constant value in a phase 
(eg. solid) to another constant in the other phase (eg. liquid). Most generally, the phase-field 
variable, �I, varies smoothly from -1 to 1 between the two phases over the diffused-interface 
region, which has a small but numerically resolvable thickness, WPF. The phase-field method 
derives its attractiveness from the fact that explicit tracking of the interface and satisfaction of 
the interfacial boundary conditions are avoided. Furthermore, computation of interface normal 
and curvature is also avoided by solving an evolution equation for the phase-field variable which 
may be derived from the free energy or entropy formulation and coupled to the evolution of heat 
and solute. The fundamental difference with a classical level-set method is that a thickness WPF 
is thus given to the interface itself, which becomes diffuse. The principle is to minimize the free 
energy of the system by stating: 

� �̃I
� t̃  = �� M�I 

� F̃H (�I)
� t̃  (��1.8) 

where M�I is the mobility of the phase-field, FH is the Ginzburg-Laudau free energy and is 
defined by a Ginzburg-Laudau type of integration in the domain: 

FH = 
�´
�µ
�¶
�:

  �©�¨
�§

�¹�¸
�· fH (�I) + 

W(n)2

2  |�’ �I |2  d�:  (��1.9) 

fH(�I) is the Helmholtz free energy and W(n) represents the anisotropy at the interface. The 
gradient term is introduced because of the representation of the diffuse interface. The derivation 
of these equations allows to move the interface and to minimize the energy, FH. The results are 
poor when using a large interface: it should be less than the capillary length to converge to a 
sharp interface solution [XIE2013], which may be problematic in problems with fluid flow, in 
particular without remeshing or grid adaptation [PRO1999].  
Karma and Rappel [KAR1996] improved asymptotic coefficients for the thin-interface limit of 
the phase-field equations, which ameliorate the convergence of the method for a coarser grid 
density. It lowers the range of undercooling and allows the use of a larger width of the diffuse 
interface region (compared with the capillary length), and gives the possibility to choose the 
model parameters in a way to make interface kinetics vanishing. Other recent changes have been 
added to these methods such as the use of an adaptive FEM formulation that refines the zone 
near the diffuse interface [PRO1998] or the use of a stochastic Monte Carlo treatment of the 
large scale diffusion field [PLA2000b]. This method was implemented by adding fluid flow 
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effects [TON1998a], [TON1998b], as well as used to represent eutectic solidification 
[ELD1994], [KAR1994], [WHE1996] and the peritectic reaction [LO2001], i.e. including 
multiple solid phases. Yet, phase-field simulations are limited to represent growth at a grain 
scale, especially for concentrated alloys that need a large solidification range and have a low 
supersaturation.  
 
For a classical problem of dendritic crystal growth, several multi-grid [BRA1997] or adaptive 
meshing algorithms [SCH1996] have been proposed in recent years. One particularly cited 
method proposed by Provatas et al. [PRO1998] uses the phase-field model on a regular grid to 
compute the dendrite, whereas the temperature diffusion field is integrated on an adaptive mesh 
using finite element techniques. While this method appears to be promising, it has yet to be 
implemented in three dimensions, where the difficulty of adaptive meshing becomes 
significantly enhanced.  
 
1.5.3 Cellular automaton approach  
 
The cellular automaton microscopic methods have been applied to the prediction of dendritic 
structures during solidification [CAR2012]. By the fact that global fields throughout the area 
(temperature, composition) indirectly influence the local state of the cells, these models were 
baptized Modified Cellular Automata, MCA. Several versions have been developed, but the most 
common models are based on the same principle as the phase-field. The difference is that the 
interface thickness is simply equal to a row of cells, that may have different sizes [KRA2009], 
[NAS1999], and they have been developed for their computational speed and their ability to be 
used on larger areas than the phase-field. Their main disadvantage is the anisotropy induced by a 
regular grid of cells (square or cubic), not obvious to erase. However, these methods were shown 
to achieve quantitative results [CHO2012], [YIN2011], [ZHU2007]. Finally, we note the 
existence of cellular automata models where the kinetics of the interface is calculated from 
analytical equations, such as the KGT method [ZHU2001].  
 
1.5.4 Mesoscopic appraoch  
 
The mesoscopic modeling technique consists on coupling numerical calculation of the 
temperature field at the macroscopic scale with an analytical model of dendrite tip growth. A 
Representative Elementary Volume (REV) is used and is large enough to include a 
representative sampling of the microscopic structures and, at the same time, small enough to 
enable a continuum description of the variables averaged over the REV on the macroscopic 
scale. This model can predict the evolution of the grain shapes, the growth interactions between 
multiple grains, and the nature of the thermal field in the melt between the dendrites.  With this 
method, the computational power requirements are reduced compared to a direct microstructure 
simulation on a microscopic scale. A schematic illustration of the various length scales present, 
at the mesoscopic modeling scale, in equiaxed dendritic growth, is shown in Figure ��1.9 (a).  
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Figure ��1.9 Schematic illustration of equiaxed dendritic growth: (a) unit cell, where �G1 is the 

microscopic scale and �G2 is the mesoscopic scale; (b) grain envelope and stagnant film 
[STE1999]. 

 
The prediction of the tip growth speeds and radii requires the resolution of the thermal field at 
the scale �G1, accomplished using a local analytical solution. The growth velocities of the grain 
envelope can be obtained from dendrite tip speeds. The Ivantsov solution is used. The 
supercooling is applied at a confocal isothermal paraboloid located at a finite distance �Gf away 
from the dendrite tip and moving with the same speed as the tip. The tip speeds are calculated for 
every point on the envelope. Solid fraction can be deduced from the temperature gradient at the 
envelope.  

 
Figure ��1.10 Example of the evolution of the dendrite envelope for a single equiaxed dendrite 

[STE2005]. 
 
The model was later used for two-phase representation with a volume-averaged Euler-Euler 
method that consists of two parts: a macroscopic part with momentum, mass, heat, solute mass, 
and grain population conservation equations, and a microscopic part that describes the nucleation 
and growth of grains.  
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1.5.5 Mean-field  approach  
 
This model tracks the evolution of the envelope of the dendritic grain, defined as an imaginary 
surface that passes through the tips of primary branches. However, interactions between 
individual branches are not exactly solved. Moreover, conservation equations are solved by 
projecting the dendrite in 1D and are based on the average volume method. This model and its 
combination with finite element or finite difference methods may also be used to study 
microstructural selection mechanisms, such as the dendritic spacing selection and its history 
dependence, but do not approximate the microstructure selection within a grain under non-
steady-state growth conditions. It requires dendrite arms spacings as an input, which have an 
influence on microsegregation [TOU2011a][TOU2011b] and macrosegregation [BEC2002]. 
This model is detailed in Chapter 5. 
 
1.6 Motivations and Objectives  

 
An adaptive phase-field model is developed and presented in this thesis.  
The aims of this present work are thus 
- to describe the finite element implementation and programming of the proposed phase-field 
model with different homogenization schemes in a finite element code; 
- to use parallel computing and automatic adaptive anisotropic unstructured meshes available 
with a C++ library developed at CEMEF, MINESParisTech, and their importance on the 
computational cost (time and memory); 
- to obtain quantitative results using this model; 
- to simulate dendritic growth for Al-Cu droplets;  
- to start comparisons with a mean-field approach, and justify the differences, i) of macroscopic 
integration (Thesis of Thi-Thuy-My NGUYEN [NGU2015]), ii) of computational time. This is 
based on the phase-field methodology, known to be quantitative.  
- to show that we have a difficulty to do a computation for an Al-4.5wt%Cu system of big size. 
- to justify the advanced numerical methods (parallel computation, mesh adaptation, timestep 
adaptation, number of elements adaptation). 
 
This manuscript is organized as follows, to model dendritic growth in a solidifying droplet as 
discussed in this chapter. Chapter 2 describes the phase-field model, for the solidification of a 
pure substance, by detailing the numerical resolution used for the diffusion, including mesh 
adaptation and parallel computation. Validation in 2D is presented, as well as capillary 
anisotropy implementation. Some symmetry assumptions are assumed for 3D simulations. 
Chapter 3 extends the phase-field model to represent the isothermal solidification of a binary 
alloy, explaining the difference from the previous one, in the numerical resolution and in the 
construction of the adapted mesh. Validations in 1D and 2D and sensitivity studies of the 
numerical parameters are presented. Chapter 4 couples thermal and solutal diffusion for a binary 
alloy. Finally, chapter 5 applies the model to the solidification of Al -Cu droplets and shows 
comparisons with a macroscopic mean-field model. 
A general conclusion summarizes the study and opens perspectives. 
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Résumé 
Dans cette introduction, le cadre des travaux de thèse, ainsi que différentes définitions, sont 
introduits. Nous présentons le procédé �G�¶�D�W�R�P�L�V�D�W�L�R�Q���G�H���J�R�X�W�W�Hs pendant lequel la solidification a 
lieu. La morphologie dendritique est alors décrite, aussi bien que les méthodes numériques 
utilisées dans la littérature pour sa simulation. Nous terminons par définir les objectives et les 
motivations de ces travaux: simulation de la croi�V�V�D�Q�F�H�� �G�H�Q�G�U�L�W�L�T�X�H�� �G�¶�X�Q�H�� �J�R�X�W�W�H���G�¶Al -Cu en 
utilisant le modèle de champs de phase et la méthode des éléments finis avec remaillage et calcul 
parallèle ainsi que �G�¶�D�X�W�U�H�V���R�S�W�L�P�L�V�D�W�L�R�Qs pour diminuer le temps de calcul.  
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In this chapter, we present the mathematical model used for solidification of a pure substance 
under anisothermal conditions. The model is based mainly on a continuous formulation of the 
phase-field method, given in [KAR1998]. It is developed for solidification, assuming local 
thermal equilibrium. We use the equations in a dimensionless form, and show its numerical 
solution. Thermal dendritic growth is illustrated with a validation in 2D, including sensitivity 
studies for the computational time and capillary anisotropy magnitude, and also through 3D 
simulations. 
 

2.1 Model equations  
 
Let us consider conservation equations written for the sharp interface problem and limited to a 
pure substance, with a solid, s, growing in the liquid, l. In the absence of phase motion, they 
lead to:  

�wT s

�wt  = �D��s �' T s  (��2.1) 

�wT l

�wt  = �D��l �' T l  (��2.2) 

�ULvn = (�N��s �’ T s �� �N l �’ T l )�Ân (��2.3) 

Ti����= TM�� �� �*�Nr �� vn /�Pk (��2.4) 

We have supposed that the pure substance has constant and equal density, �U��[kg·m-3],  thermal 
conductivity, �N [Wm-1K-1], and specific heat at constant pressure, cp [J·K-1kg-1], in both solid 
and liquid phases and thus constant, as well as an equal thermal diffusivity, �D =�N/�Ucp [m

2s-1]. 
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Here, �Nr = �’_.n  [m-1] is the curvature term, �Pk [m·s-1K-1] the kinetic coefficient, �* the Gibbs-

Thomson coefficient related to the surface energy �J [Jm-2]by the relation �* = 
�JTM

�UL  [mK], TM 

[K] the melting temperature of the pure solvent, Ti [K]  the interface temperature, T [K] the 
temperature, t [s] the time, �UL [J·m-3] the latent heat and �Qn = v·n [m·s-1] the normal velocity 
to the s/l interface. 
It is convenient to define the dimensionless variable �T, measure of the undercooling, TM �± T, 
as: 

�T = 
T �� TM

L/cp
 (��2.5) 

To use non-dimensional coordinates, in space and time, for the simulation, we define x* as 

x* = x/W0 (��2.6) 

and���W as a dimensionless time:  

�W = 
t
�W0

 (��2.7) 

where �W0 is the phase-field relaxation time, in [s]. 
 
The free-boundary problem described above becomes (Appendix A): 

�w�T��s

�w�W��= �D��s *�' �T��s  

�w�T��l

�w�W��= �D��l *�' �T��l  
(��2.8) 

vn = �D��� (�’ �T s �� �’ �T��l ) (��2.9) 

�T i�� = �� d�� �Nr �� �E��vn (��2.10) 

where �D* is the thermal diffusivity:  

�D* = 
�D �W0
W0 

2 (��2.11) 

The thermal capillarity length d0 [m] is defined as: 

d0 = 
�*

�UL/�Ucp
 = 

�J��TM�U cp

���UL2  (��2.12) 

and �J [J·m-2] is the excess free energy of the solid/liquid interface. The kinetic coefficient �E 
[m-1s] is defined as:  

�E = 
cp

�Pk L
 (��2.13) 

In this approach, W0, the thickness of the interface, is assumed small compared to the scale of 
the microstructure pattern, but not smaller than d0, the capillarity length. 
 
The phase-field equation presented was derived for the anisothermal case, but has to be 
coupled to the energy equation. Let us consider equal diffusivities in the solid and in the 
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liquid, so <�D> = �D��s = �D��l = cte, as well as equal heat capacities <���Ucp > = �Ucp
s =�Ucp

l = cte. The 
average equation of energy, developed in Appendix A, becomes: 

�wT
 �wt �� �D �' T = �� 

1
2 

(�UL)s/l

 �U cp 
 
�w�I
 �wt (��2.14) 

Where (�UL)s/l is the latent heat associated with the transformation s�: l. As defined before, the 
dimensionless temperature �T is used and the equation to solve becomes: 

�w�T
 �w�W �� �D

� �' �T = �� 
1
2 

�w�I
 �w�W (��2.15) 

Let us define �I��as a function which describes the presence of the liquid and the solid phases in 
the computational domain �Ÿ, made by the two subdomains, �Ÿ s in the solid and �Ÿ l in the 
liquid. An interface �Ÿ s/l is defined between �Ÿ s and �Ÿ l. The �I function varies between ���� and 
1 as illustrated by Figure ��2.1, and��is defined as: 

�I = �� tanh 
�©
�¨
�§

�¹
�¸
�·�K

W0
* 2

 (��2.16) 

In this expression, W0
* is a non dimensional interface thickness (W0

* = W/W0), where W0, as 
previously introduced, measures a physical width and W represent the variable of this physical 
width. It is convenient to consider that it characterizes the diffuse solid/liquid interface, where 
x is the physical coordinate system and W0 is a physical arbitrarly chosen length. 

 
Figure ��2.1 Variation of the phase function �I with the signed distance �K to a stationary flat 

liquid-solid interface, with W = W0. 
 
The variable �K used in expression (��2.16) is the signed distance to the solid/liquid interface. It 
is defined as 

�K = 
�¯�°
�®
�°�d(x*,�W)         if           x* �• �:  s

   0            if           x�• �:  s/l 
�� d(x*,�W)      if           x* �• �:  l

 
(��2.17) 

 

where d(x*,�W) is the distance of x* to the interface �Ÿ s/l at time �W. 
 
Let us define the free energy functional F(�I,�T��), which must decrease during any 
thermodynamic process, as [KAR1998]��
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F(�I,�T ) =  
�´
�µ�¶
�Ÿ

 F int dV  (��2.18) 

with Fint = f (�I���T��) + 
W(n)2

2  |�’ �I��| 2. Fint is the sum of the volumetric energy given by the free 

energy density, f(�I,�T ), and the interfacial energy, respectively. W(n) is a measure of the 

anisotropy in the surface energy and n = - 
�’ �I

|�’ �I��| , the normal vector, and may be defined as 

follows [KAR1998]:  

W��n�� = W0
*(1 �� 3�H4) �¬

�«
�ª

�¼
�»
�º

1 + 
4�H4

1 �� 3�H4
 
(�wx* �I)4+ (�wy* �I)4

���_�’ �I���_��   in 2D (��2.19) 

or 

W��n�� = W0
*(1 �� 3�H4) �¬

�«
�ª

�¼
�»
�º

1 + 
4�H4

1 �� 3�H4
 
(�wx* �I)4+ (�wy* �I)4 + (�wz* �I)4

���_�’ �I���_��   in 3D (��2.20) 

The instability of the solid/liquid interface that forms the dendrites is influenced by the 
anisotropy of the solid/liquid interfacial energy presented by the parameter �H4 
Allen-Cahn equation [CAH1979] may be used to guarantee that the total free energy 
decreases with time due to an excess in the interfacial energy: 

�wF(�I,�T��)
�w�W  �d0      �Ê�W > 0 (��2.21) 

The Allen-Cahn equation is written by deriving the free energy to obtain, finally, the phase-
field equation: 

�w�I
 �w�W = �� M�I 

�GF
�G�I  = �� M�I �©

�¨
�§

�¹
�¸
�·�wFint

�w�I  �� �’  .
�wFint

���w�’ �I  (��2.22) 

where M�I is a positive mobility parameter. The free energy density, f(�I,�T ), for a pure 
material, can be given by: 

f (�I,�T ) = g(�I) + �O�T��p(�I) (��2.23) 

�O is a dimensionless parameter that controls the strength of the coupling between the phase 
and diffusion fields. It is typically of the order of unity. This term can correct the contribution 
of the heat added and ensure that the relation ([15/8(�Op(+1)) �± 15/8(�Op(-1))]/2= 1) is verified, 
whatever p(�I) is chosen. In this expression of the free energy density of a pure element, p(�I) 
is a function of �I��that guarantees �wf /�w�I � ���� for �I��� ��������and for �I��� ���� and for all temperatures. 
Furthermore, g(�I) must provide the energy hump between the solid and liquid phases, with a 
maximum value at the interface and a minima at �I = ±1. Hence, the following functions have 
been suggested by Karma and will be used in our model [KAR1998]: 

 

g(�I) = �� 
�I����

2  + 
�I����

4  
(��2.24) 

p(�I) = �I���� 
2�I��3

3  + 
�I��5

5  �� (��2.25) 
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Figure ��2.2 Illustration of the variations of f(�I,�T��), g(�I) and p(�I) with �O = 2 and �T = - 0.5. 

 
From Eq.(��2.22), the evolution equation for variable �I, defining the position of the interface 
[EIK2010], is: 

�w�I
�w�W = ����M�I 

�GF
�G�I = ����M�I�� �¬

�«
�ª

�¼
�»
�º�wFint 

�w�I  �� �’  
�©
�¨
�§

�¹
�¸
�·�wFint

���w�’ �I   = 

����M�I�� �¬
�«
�ª

�¼
�»
�º�wf

�w�I �� 
�w

�wx* �©
�¨
�§

�¹
�¸
�·�wFint

���w x* �I
  ����

�w
�wy* �©

�¨
�§

�¹
�¸
�·�wFint

���w y* �I
  �� 

�w
�wz* �©

�¨
�§

�¹
�¸
�·�wFint

���w z* �I
  

(��2.26) 

Since 
�wFint

�w�I  = 
�w
�w�I �©�¨

�§
�¹�¸
�·

��f (�I���T��) + 
W(n)2

2  |�’ �I��| 2  = 
�wf
�w�I + 0 = 

�wf
�w�I , then 

�wf
�w�I = 

�wg(�I)
�w�I �������O�T����

�wp(�I)
�w�I �� (��2.27) 

This derivation is equal to 
�wf
�w�I =  ���I + �I���� + �O�T���������� 2�I���� + �I��������  (��2.28) 

and a factorization is used to obtain the simple form 
�wf
�w�I = �I�����I�������������� + �O�T���������� �I��������2  = �������� �I�������� (�O�T���������� �I������������ �I)  (��2.29) 

Replacing in equation (��2.26), one obtains: 

�W��n����
�w�I
�w�W �����’ ���� W������n�����’ �I����= [�I �����O�T���������� �I��������]�������� �I�������� �� 

�w
�wx* �©

�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wx* �I)

����
�w

�wy* �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wy* �I)

 ����
�w

�wz* �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wz* �I)

��
(��2.30) 

where �W��n�� = 
1

���0 �I
 . 

Our attention is focused on the growth in the limit of vanishing interface kinetics. This limit is 
obtained by setting �W(n) and �O equal to the values [KAR1998]: 

�W��n�� = �W������¬
�«
�ª

�¼
�»
�º

(1 �� 3�H4) �¬
�«
�ª

�¼
�»
�º

1 + 
4�H4

1 �� 3�H4
 
(�wx* �I)4+ (�wy* �I)4+ (�wz* �I)4

���’ �I����  
2

  (��2.31) 

�O = 
�D�W��

 W��
��
��a����

��� ��
�D���

��a����
  (��2.32) 
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This second expression is related with the fact that one may redefine the coefficient �E to 
include the variation of �T across the interface using the asymptotic analysis:  

�E = a1 �¬
�«
�ª

�¼
�»
�º�W0

�OW��
 �� 

a2W0

�D  (��2.33) 

which vanishes when kinetic effects are eliminated. Langer [LAN1986] and then Caginalp 
[CAG1989] have derived: 

d0 = a1 
W0

�O (��2.34) 

In these expressions, �W�� is the characteristic time of attachment of atoms at the interface (10-13 

s for metallic systems), a1 is a positive constant of order unity that depends on the details of 
the assumed form of free energy computed from the asymptotic analysis, a2 is a positive 
constant of order unity that depends on the details of the functional forms chosen for f(�I), g(�I) 
and p(�I). Karma and Rappel [KAR1998] deduced from the asymptotic analyses that a1 = 
0.8839 and a2 = 0.6267. 
 
To do the simulation of the dendritic growth, one needs to compute the value of 

�’ W��n����
�w

�wx*  �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wx* �I)

, 
�w

�wy*  �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wy* �I)

 and 
�w

�wz* �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wz* �I)

, derived 

from the anisotropy form of the interface, W(n). We can write W(n) in different forms as 
defined in eq.(��2.70) and eq(��2.71) for 2D, eq(��2.72) and eq(��2.73) for 3D where �H1 and �H2 define 
the intensity of the anisotropy like �H4. We compute �’ W��n�� numerically and for the others we 
have implemented their analytical derivation in our code to use it directly. The derivation 
forms are shown below in Table ��2.1: 
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Anisotropy  
Expression W(n) 

Derivation terms  
�w

�wx*  �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wx* �I)

 

 (��2.70)  �� 
�w

�wx*( )W��n�� (W��n����' �wy* �I )  

(��2.71)  
�w

�wx*  �©
�¨
�§

�¹
�¸
�·

W��n����W0
*
 4�H4 �¬

�«
�ª

�¼
�»
�º4(�wx* �I����

���_�’ �I���_����  �� 
(4�wx* �I) ((�wx* �I)4 + (�wy* �I)4)

�_�’ �I���_����    

(��2.72) 
�w

�wx*  �©
�¨
�§

�¹
�¸
�·

W��n����W0
*
 4�H4 �¬

�«
�ª

�¼
�»
�º4(�wx* �I����

���_�’ �I���_����  �� 
(4�wx* �I) ((�wx* �I)4 + (�wy* �I)4 + (�wz* �I)4)

�_�’ �I���_����     

(��2.73) 

W0
* W(n) 

�¬
�«
�ª

�¼
�»
�º

4�H1 �©
�¨
�§

�¹
�¸
�·�wx* �I����

|�’ �I |2 �� 
�wx* �I (�wx* �I�����������wy* �I�����������wz* �I������

|�’ �I |4  +

W0
* W(n) �¬�«

�ª
�¼�»
�º12�H2 �©�¨

�§
�¹�¸
�·�wx*�I����

|�’ �I |2 �� 
�wx*�I (�wx*�I�����������wy*�I�����������wz*�I������

|�’ �I |4  + 132�H2 �©�¨
�§

�¹�¸
�·�wx*�I���wy*�I�������wz*�I����

|�’ �I |4  �� 
3 �wx*�I�������wy*�I�������wz*�I����

|�’ �I |6  

 

Anisotropy  
expression W(n) 

Derivation terms  
�w

�wy*  �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wy* �I)

 

 (��2.70)  
�w

�wy*  ( )W��n�� (W��n����' �wx* �I )  

(��2.71)  
�w

�wy*  �©
�¨
�§

�¹
�¸
�·

W��n����W0
*
 4�H4 �¬

�«
�ª

�¼
�»
�º4(�wy* �I����

���_�’ �I���_����  �� 
(4�wy* �I) ((�wx* �I)4 + (�wy* �I)4)

�_�’ �I���_����    

(��2.72) 
�w

�wy*  �©
�¨
�§

�¹
�¸
�·

W��n����W0
*
 4�H4 �¬

�«
�ª

�¼
�»
�º4(�wy* �I����

���_�’ �I���_����  �� 
(4�wy* �I) ((�wx* �I)4 + (�wy* �I)4  + (�wz* �I)4)

�_�’ �I���_����    

(��2.73) 

W0
* W(n) 

�¬
�«
�ª

�¼
�»
�º

4�H1 �©
�¨
�§

�¹
�¸
�·�wy* �I����

|�’ �I |2 �� 
�wy* �I (�wx* �I�����������wy* �I�����������wz* �I������

|�’ �I |4  +

W0
* W(n) �¬�«

�ª
�¼�»
�º12�H2 �©�¨

�§
�¹�¸
�·�wy*�I����

|�’ �I |2 �� 
�wy*�I (�wx*�I�����������wy*�I�����������wz*�I������

|�’ �I |4  + 132�H2 �©�¨
�§

�¹�¸
�·�wx*�I�������wy*�I�����wz*�I����

|�’ �I |4  �� 
3 �wx*�I�������wy*�I�������wz*�I����

|�’ �I |6  

 
Anisotropy 

expression W(n) 
Derivation terms  

�w
�wz* �©

�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wz* �I)

 

 (��2.70)  - 
(��2.71)  - 

(��2.72) 
�w

�wz* �©
�¨
�§

�¹
�¸
�·

W��n����W0
*
 4�H4 �¬

�«
�ª

�¼
�»
�º4(�wz* �I����

���_�’ �I���_����  �� 
(4�wz* �I) ((�wx* �I)4 + (�wy* �I)4 + (�wz* �I)4)

�_�’ �I���_����     

(��2.73) 

W0
* W(n) 

�¬
�«
�ª

�¼
�»
�º

4�H1 �©
�¨
�§

�¹
�¸
�·�wz* �I����

|�’ �I |2 �� 
�wz* �I (�wx* �I�����������wy* �I�����������wz* �I������

|�’ �I |4  +

W0
* W(n) �¬�«

�ª
�¼�»
�º12�H2 �©�¨

�§
�¹�¸
�·�wz*�I����

|�’ �I |2 �� 
�wz*�I (�wx*�I���������wy*�I���������wz*�I������

|�’ �I |4  + 132�H2 �©�¨
�§

�¹�¸
�·�wx*�I�������wy*�I�������wz*�I

|�’ �I |4  �� 
3 �wx*�I�������wy*�I�������wz*�I����

|�’ �I |6  

 

Table ��2.1 Analytical derivation for the anisotropy expression needed for the phase-field 
simulations 
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2.2 Numerical resolution  

 
We present here the numerical methods used to solve the phase-field equation and the energy 
conservation equation. The finite element method (FEM) is used for the spatial discretization 
and the Galerkin method for the approximation, with SUPG stabilization techniques. First 
order simplex elements are used (triangles P1) and we compute a metric defined to obtain an 
unstructured anisotropic adaptive mesh. Parallel computations reduce the computational time 
and time step adaptation and a variation of the number of elements used in the mesh during 
computation, improve simulations. The numerical methods are implemented in the C++ based 
library, CimLib, developed at CEMEF.  
 
2.2.1 Finite elem ent solver  
 
Galerkin classical formulation 
The weak formulation of the problem is presented here [HAC2009]. 
The FEM is distinguished from other methods because it is more capable of dealing with 
complex geometries, and it allows the use of non structured grids and more natural imposition 
of the boundary conditions. The principle of the FEM consists first in decomposing the spatial 
domain under consideration into a set of elements of arbitrary shape and size. This 
decomposition is commonly called a grid or a mesh, as shown in Figure ��2.3. 

 
Figure ��2.3 Schematic example of a two dimensional mesh composed of triangles with 

different sizes [RAP2003]. 
 
In the phase-field equation, eq(��2.30), W2(n) depends on �I through eq (��2.19) or (��2.20). 
Equation (��2.30) is developed as follows: 

�W��n����
�w�I
�w�W ����W������n�����' �I����������W����n�� �’ W����n�����’ �I��= [�I �����O�T���������� �I��������]�������� �I�������� �� 

�w
�wx* �©

�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wx* �I)

����
�w

�wy* �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wy* �I)

 ����
�w

�wz* �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wz* �I)

��
(��2.35) 

For a matter of simplicity, we note C = ��������W����n���’ W����n���������W(n), D = W2(n) / �W(n), and  
f = �³Source term�  ́the right hand side of the equation (��2.35). The strong formulation for our 
problem can be generally written as: 

� �̃I
 � �̃W + C.�’ �I �� �’ . (D.�’ �I) = f   in �: �u(0,T) 

�I (x*,0) = �I0 in �: ��
(��2.36) 
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The same solver is used for the energy equation (��2.15), since one may show that we have the 
same type of equation, the only difference being that C = 0 in this last case. In order to solve 
the equations using the FEM, we may define: the Sobolev space, H1(�: ), of functions with 
square integrable derivatives; the Lebesgue space, L2(�: ); H0

1(�: ), the space of functions in 
H1(�: ) with vanishing values on the boundary � �̃: ����L�f ���:���� a space that contains measurable 
bounded functions. Hence,  

H1(�: ) = {�\ ���•  L2 (�: ) , �’ �\ ���•  L2 (�: )}  

L2(�: ) = {�\ ���� 
�´
�µ�¶
�Ÿ

 �\ �� d�:  < �f  }  

H0
1(�: ) = {�\ ���•  H1(�: ) , �\ ��� ������on � �̃: }  
L�f (�: ) = {�\ , �\ ��(x*)���d��cte������ x*}  

(��2.37) 

The weak formulation can be written as: find �I �•V:=H0
1(�: ) / �� �\ �•V such that: 

� �̃I
 � �̃W���\  + C.�’ �I���\  �� D�' �I���\  = f �\   �� (��2.38) 

Integrating over �:  leads to. 

�´
�µ�¶
�Ÿ

 
� �̃I
 � �̃W���\  dV + 

�´
�µ�¶
�Ÿ

 C.�’ �I���\  dV �� 
�´
�µ�¶
�Ÿ

 D�' �I���\  dV = 
�´
�µ�¶
�Ÿ

 f���\  dV �� (��2.39) 

We know that using the Green formula, we have: 

�� 
�´
�µ�¶
�Ÿ

 �' �I��D�\  dV  = 
�´
�µ�¶
�Ÿ

 �’ �I���’ (D�\ ) dV �� 
�´
�µ�¶
� �̃Ÿ

 
� �̃I
� ñ��·��D�\  dS  = 

�´
�µ�¶
�Ÿ

 �’ �I���’ (D�\ ) dV �� (��2.40) 

Since 
� �̃I
� ñ��� �����’ �I����n�!��� ���� �R�Q���˜�: �����Whe integration becomes: 

�´
�µ�¶
�Ÿ

 
� �̃I
 � �̃W���\  dV + 

�´
�µ�¶
�Ÿ

 C.�’ �I���\  dV + 
�´
�µ�¶
�Ÿ

 D�’ �I���’ �\  dV = 
�´
�µ�¶
�Ÿ

 f���\  dV �� (��2.41) 

The weak formulation can be written clearly as: for a given f�•H-1(�: ) and C,D�•L�f (�: ),  
find �I �•V:=H0

1(�: ), such that 

(
� �̃I
� �̃W ,�\ ) +  (C.�’ �I,�\��) + ( D�’ �I,�’ �\��) = (f,���\  )

H0
1(�: )

�� (��2.42) 

For the spatial discretization, let us consider the finite element mesh Th, triangulating �:  into a 
set of Nel elements K, such that they cover the domain and are either disjointed or share a 
complete edge. Using this partition, the above defined functional space V can be approached 
by a finite dimensional space Vh, spanned by continuous piecewise polynomials. Thus, 

Vh = { �\��h�•H0
1(�: ), �\��h is linear for �� K�•  Th }  (��2.43) 

The Galerkin discrete problem consists now in finding �I h�•Vh such that: 

(
� �̃I h

� �̃W,�\��h) +  (C.�’ �I h,�\��h��) + ( D�’ �I h,�’ �\��h��) = (f,���\��h)�� (��2.44) 
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Rewriting it in the integral form: 
�´
�µ�¶
�Ÿ

 
� �̃I h

 � �̃W���\��
h dVh + 

�´
�µ�¶
�Ÿ

 C.�’ �I h���\  h dVh + 
�´
�µ�¶
�Ÿ

 D�’ �I h���’ �\  h dVh = 
�´
�µ�¶
�Ÿ

 f���\  h dVh �� (��2.45) 

Each integral is the sum over the element of �: . The equation can be written as: 

�¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 
� �̃I h

 � �̃W���\��
h dVh + �¦  

e=1
 

Nel

 
�´
�µ�¶
�Ÿe

 C.�’ �I h���\  h dVh + �¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 D�’ �I h���’ �\  h dVh = 

�¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 f���\  h dVh  ��

(��2.46) 

Since we are using the first order linear triangle element, we can replace �I h = �¦  
i=1

  
N

 �Iih Ni and 

�’ �I h = �¦  
i
   �Iih �’ Ni. Taking (Ni)i� �����«��N, the finite element vector space basis, �Iih, are computed 

locally in each node of the triangle element. 

�¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 �¦  
i=1

 
N

  
� �̃Iih

 � �̃W Ni��Nj dVh + �¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 �¦  
i=1

 
N
  C.�I ih�’ Ni��Nj dVh + �¦  

e=1
 

Nel

 
�´
�µ�¶
�Ÿe

 �¦  
i=1

 
N

  D�I ih�’ Ni���’ Nj dVh 

= �¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 f��Nj dVh   

(��2.47) 

We write this last equation as: 

�¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 Ni��Nj dVh �¦  
i=1

 
N

  
� �̃Iih

 � �̃W + �¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 C. �’ Ni��Nj dVh �¦  
i=1

 
N

  �Iih + �¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 D�’ Ni���’ Nj dVh �¦ i=1

N
  �Iih 

= �¦  
e=1
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�´
�µ�¶
�Ÿe

 f��Nj dVh   

(��2.48) 

By simplify ing the sum we obtain: 

�¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 Ni��Nj dVh 
� �̃I h

 � �̃W + �¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 C. �’ Ni��Nj dVh �I h + �¦   
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 D�’ Ni���’ Nj dVh �I h 

= �¦  
e=1

 
Nel

 
�´
�µ�¶
�Ÿe

 f��Nj dVh   

(��2.49) 

The linear matrix system reads, after assembly of the element matrices, a system of first order 
differential equations: 

Mm�)  
.
  + Kc���)  + Kd���)  = F (��2.50) 

where �)  is the vector of nodal unknowns, Mm is the mass matrix, Kc is the stiffness matrix 
issued from the conductive term, Kd is the stiffness matrix generated from the diffusive term 
and F is the term load vector. The finite element matrix equations must be solved with an 
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appropriate set of boundary conditions. The coefficient matrices and load vector are defined 
as follows: 

Mm = A 
e=1

 
Nel

 
�´
�µ�¶
Ke

 Ni Nj dK  

Kc = A 
e=1

 
Nel

 
�´
�µ�¶
Ke

 C �’ Ni Nj dK  

Kd = A  
e=1

 
Nel

 
�´
�µ�¶
Ke

 D �’ Ni �’ Nj dK  

F = A 
e=1

 
Nel

 
�´
�µ�¶
Ke

 f Nj dK  

A is the matrix assembly operator defined such that one has: K = A 
e=1

 
Nel

 Ke , where K is an 

element and Ke is a sub-element. 
 
SUPG stabilization method 
 
The original SUPG method was first designed for the steady version as a method to avoid the 
numerical oscillations found using the Galerkin approach when the diffusion term is small 
(mainly in convection dominated problems).  
Let us apply the backward implicit Euler method to equation (��2.44): given �I n, find �I n+1

 

satisfying the boundary conditions and �� �\��h �•Vh such that 

(
�I hn+1

�' �W,�\��h) +  (C.�’ ���I hn+1,�\��h��) + ( D�’ �I hn+1,�’ �\��h��) = (
�I hn

�' t ,�\��h) + <f,���\��h > (��2.51) 

One may add a streamline upwind perturbation, acting in the flow direction, to the test 
function: 

�\  ~ h = �\  h + C.�W�.  �’ �\��h (��2.52) 

Where the parameter �WK, is often called �µ�L�Q�W�U�L�Q�V�L�F���W�L�P�H�¶ which can determine and calibrate the 
amount of upwinding weighting locally in each element. 
Inserting it in equation (��2.51), its stabilized form becomes: 

(
�I hn+1

�' �W,�\��h) +  (C.�’ �I hn+1,�\��h��) + ( D�’ �I hn+1,�’ �\��h��) + �¦
K

 (R(�I h),�WKC.�’ �\��h)  

= (
�I hn

�' t ,�\��h) + <f,���\��h >  
(��2.53) 

In this equation, R (�I h ) is the appropriate residual of the finite element components �I h. We 

can see that this method is consistent in the sense that the additional stabilizing term is zero if 
uh

 is the solution of the continuous equation. 
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SSUPG = �¦
K
 (R(�I h),�W��KC�’ �\��h) = �¦

K
  �WK (

�I hn+1

�' �W +  C.�’ �I hn+1 ��  D�' �I hn+1 �� 
�I hn

�' t  �� f, C�’ �\��h)K  (��2.54) 

This method has been used in convection dominated problems by introducing the streamline 
diffusion in the context of weighted residual methods. The added stabilizing terms are 
indicated by a subscript K which denotes integration over the element. Note that the third term 
vanishes in (��2.54) when using linear interpolations. We still have to define how to compute 

the parameter �WK.  

A computation of �WK is often proposed on the basis of the convergence and error analysis of 
the method. The definition of the stabilization parameters directly implemented in our finite 
element code is [HAC2009]: 

�WK = 
h

2||C ||�[(Pe)   (��2.55) 

where �[(Pe), a function of the Péclet number Pe = ||C||h/2�D*, is derived from nodal exactness 
as: 

�[(Pe) = max �©�¨
�§

�¹�¸
�· 

1
tanh(Pe) �� 

1
Pe ; 1    (��2.56) 

h is defined for each element as: 

h = 
�©�¨
�¨�§

�¹�¸
�¸�·�¦  

j

Nj

  
C i
||C|| 

�˜Nj

 � x̃i
 

-1

 with  ||C|| = �¦
i=1

 
2
 C i2 (��2.57) 

Ci is the i coordinate of the vector C. Nj��is the basis function associated with the local node j. 
The linear system of equations issuing from the discretization is solved implicitly using the 
conjugate bi gradient-least squares method (BCGSL). There is also preconditioning to the 
resolution using the Jacobi method with incomplete factorization LU per block of size 2. For 
that, the PETSC library [BAL2015] has been interfaced with Cimlib.  
 
2.2.2 Mesh adaptation  
 
The mesh is initially (and throughout time) adapted using a topological mesher [COU2011], 
[COU2014] based on a metric field and given at the nodes of the mesh. M is a unit metric 
field associated with any unstructured mesh, built using the affine transformation to a 
reference element in a Riemanian space which has to be equilateral of edge length equal to 
unity. It provides both the size and the stretching of the elements. In our case, this field can be 
computed using the edge vectors of the mesh, Xij  = Xj �± Xi, i and j being the extreme nodes of 
the edge. Starting from an existing mesh, the new nodal metrics field M i, computed and given 
to the mesher, is: 

M i = 
�©
�¨
�§

�¹
�¸
�·

 
1
q �6

j
 

�*(i)

 sij
2 X ij

 �… X ij 
��1

  (��2.58) 

q being the space dimension, �*(i) being the set of nodes connected to node i. sij  is the 
stretching factor applied to obtain the new edge size. The edge stretching factor, sij , is 
obtained from the a posteriori estimated error, and is given by 

sij = ( )�/ /eij

1/p
    (��2.59) 
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where e represents the commited edge error and p a stretching exponent, 1 < p < q. A 
constraint is applied here for the choice of sij based on hmin, the minimal mesh size, sij = 

min �©
�¨
�§

�¹
�¸
�·

sij  ; 
hij

hmin
 with hij = 

(i,j)
 ||Xij ||  . Starting from a given element, we examine what 

information we can construct from the set of edges. Since more than only two edges can be 
encountered for a node, it is necessary then to find an approximation or an averaging process 
of the information. For this reason, they first state that the length size of the edges sharing a 
given node is exactly the interpolation of the continuous length distribution function defined 
in the space at the considered point. Using this, �/  is given by the error along and in the 
direction of each edge eij,  

�/  = 
�©
�¨
�§

�¹
�¸
�·

 �6
i
    �6

j
 

�*(i)
 eij

p
p+2/NEM 

p+2
p

   (��2.60) 

NE is the number of elements, NEM is the number of edges and it is defined as NEM = NE x 3 x 2 
in 2D and NEM = NE x 4 x 3 in 3D. The error is computed using the recovered gradient of the 
solution on which we wish to adapt (phase field, temperature, composition, or all). In the case 
of temperature and phase-field computation, we construct a solution vector (�[ = (�I,�T��)) which 
contains the fields to adapt with and we compute its gradient. 

In fact, eij = max(|�’ �[ . Xij |; emin|Xij |
2)  and �’ �[ = (Xi)

-1.�[i, where Xi = 
1

|�*(i)| �6j 
�*(i)

Xij �…Xij  is the 

edge length distribution tensor and �[ i =  �6
j
 

�*(i)
�[ij ��Xij. emin is a chosen constant.  

Figure ��2.4 illustrates this metric field construction through an example on adaptation on a 
phase-field function defining a circle. One may observe that mesh sizes are smaller at the 
interface and larger outside. In this figure, the red color represents the solid, the blue one 
represents the liquid, the green one is the thickness of the interface and the black one 
represents the s/l interface. 

 
Figure ��2.4 Example of mesh adaptation on a circle shape of radius 0.4, using only �I (which 
defines the circle inner and outer parts) as the field for error estimation. In this example, the 
domain size is [0;1] x [0;1], emin = 10-9, hmin = 0.001, NE = 50 000, W0

* = 0.005 and R0 = 0.4. 
 
In this adaptation loop, the thickness W0

* will be important, because it provides the measure of 
the recovered gradient. To control the adaptation and the value of the metric field, other 



30 | C h a p t e r2  T h e r m a l  m o d e l 

 

parameters are provided:  hmin, the minimum mesh size; emin  for computing the error eij  by 
imposing a minimum error so that one controls the background mesh size; the number of 
elements NE, because error minimization is performed under this constraint.   
 
To see the influence of the thickness W0

*, let us consider a domain size of [0;1] x [0;1], with 
an initial seed of R0 = 0.05, Figure ��2.5 shows the difference between the mesh for three 
different values, showing that it follows well this parameter. When W0

* increases, the interface 
thickness also increases and so does the green zone (varying one between maximum and 
minimum values).  

 
            (a)                                               (b)                                              (c) 

Figure ��2.5 Adapted mesh with NE = 20 000, emin = 10-4, hmin = 0.001 for different interface 
thicknesses, (a) W0

* = 0.005, (b) W0
* = 0.01, (c) W0

* = 0.05. 
 
In what concerns the other referred numerical parameters, when the total number of elements 
is increased, the mesh is enriched around the interface as well as outside the circle, as 
illustrated in Figure ��2.6. If we continue increasing the number of elements, the mesh size 
outside the interface thickness will continue decreasing. Adaptation thus begins enriching 
there because the computed error around the interface has reached its objective.   

 
 (a)                      (b)                                          (c) 

Figure ��2.6 Adapted mesh with emin = 10-4, hmin = 0.001, W0
* = 0.01 for different number of 

elements, (a) NE = 1000, (b) NE = 10 000, c) NE = 40 000 
 
In Figure ��2.7, the influence of the value of emin, which controls the background mesh size is 
illustrated, showing that the mesh size outside the interface thickness increases when this 
parameter decreases. 
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            (a)              (b)                                     (c) 

Figure ��2.7 Adapted mesh with NE = 20 000, hmin = 0.001, W0
* = 0.01 for different background 

errors, a) emin = 10-1, b) emin = 10-4, c) emin = 10-9 
 
In Figure ��2.8, the influence of the value of hmin, which controls the mesh size at the interface 
is illustrated, showing that when hmin is smaller or equal to W0

*, the circle is well represented 
and when it decreases, more elements are added at the interface. When hmin is bigger than W0

* 
some big elements are at the interface which are not sufficient to represent the circle. Instead 
we have a square, which is a bad representation.  

 
            (a)              (b)                                     (c) 

Figure ��2.8 Adapted mesh with NE = 20 000, emin = 10-9, W0
* = 0.01 for different minimal 

mesh size, a) hmin = 0.02, b) hmin = 0.01, c) hmin = 0.001. 
 
We have studied the influence of hmin by using an example of a growing circle under a 
constant radial velocity, equal to 0.02. We have considered a computational domain of size of 
[0;1] x [0;1], with a geometry of the circle defining  the interface; Circle(O,R0), with O(0.5;0.5), 
emin = 10-4 and R0 = 0.05. The relative error between the analytical radius and the numerical one 
was computed while growing and compared (Figure ��2.9). 
Here, we plot the relative error evolution with time, computed as: 

Relative error = 
|Analytical radius �± Numerical radius |

Analytical radius   
                     
(��2.61) 
 

Initially, an anisotropic mesh has been built, which consists of triangular elements with different 
sizes, Figure ��2.7.b.  
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Figure ��2.9 Growth of a circular seed with a constant radial velocity equal to 0.02, with mesh 
adaptation on the circle position, given by a phase-field function �I�� at �W = 0, �W = 0.2, �W = 0.45, 

with NE = 20 000, hmin = 0.001, W0
* = 0.01 and �' �W = 0.01. 

 
One may observe that the error on the position capture decreases when increasing the number 
of nodes, as shown in Figure ��2.10, where the error converges with NE = 20 000 and 40 000. 
To see the influence of hmin, we trace the blue line, the case of NE = 20 000 and we start from 
the same case with W0

* = 0.01, hmin = 0.001, as seen in Figure ��2.10.(a). When decreasing the 
value of hmin the error decreases, as seen in Figure ��2.10.(b). If we take a small hmin and we 
increase W0

*, we will have more elements to represent the interface and the error decreases 
more, because it is well represented, as seen in Figure ��2.11Figure ��2.10.(c). 

   
( 

Figure ��2.10 Error evolution on the position capture during the growth of a circle, with W0
* = 

0.01, hmin = 0.001 and with different number of required elements, error measured using the 
radius (a) in the direction of a 0�q angle, (b) in the direction of a 45�q angle. 

 
                   (a)                                           (b)                                             (c) 

Figure ��2.11 Error evolution measured in the directions of 0° (ErrorX), 45° (ErrorXY) and 90° 
(ErrorY) with NE = 20 000, (a) W0

* = 0.01 and hmin = 0.001, (b) W0
* = 0.01 and hmin = 0.0005, 

(c) W0
* = 0.05 and hmin = 0.0005. 
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For a matter of CPU time optimization, we have defined a remeshing frequency, which 
introduces one other numerical parameter, FR. To compute it in an appropriate way, we use 
the estimated velocity, inspired from the Gibbs-Thomson velocity, neglecting �E, over the 
entire domain as: 

vtip = max( ���T ����d0K) (��2.62) 
 

with d0 = 
a1W(n)

�O  , where K = �’ T·n is the curvature, �’ T is the tangential divergence and n the 

outward unit normal to the interface, n = �� 
�’ �I

||�’ �I���_�_ . 

One may also compute the velocity at the interface directly in the computation, as  

vtip = max 
�©
�¨
�§

�¹
�¸
�·�G�I 

� �̃I�������t̃
� �̃I������� x̃  

                     
(��2.63) 
 

where �G�I is a dirac function, given by �G�I = 

�¯�°
�®
�°�

0       if           �I���!���H�I
1

2�H�I
    if         �I �• [�����H�I�����H�I] 

0       if         �I�����������H�I

  

Comparison of these two velocities showed that the estimation was bigger than the directly 
computed velocity.  
To obtain FR, the displacement vtip.�' t is computed and added to the displacements of the 
previous time steps. When the sum of the displacements exceeds 3W0

*/ 2 (half the green zone 
at the interface, that is equal to 3W0

*), mesh adaptation is activated.  
 
2.2.3 Parallel comput ing 
 
We use parallel computation to do our simulations and reduce the computional time. We 
explain here how we use the memory in parallel to subdivise the job between many cores. 
There are two methods to perform parrallelization: 
-a shared memory model, using OpenMP; 
-a distributed memory model, the two standards being PVM (Parallel Virtual Machine) and 
MPI (Message Passing Interface). 

 
Figure ��2.12 Two management models for Parallel use of memory: (a) shared, where memory 

is in common for all compute nodes and (b) distributed, where memory is managed 
independently by each node, according to [DIG2001]. 
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Shared memory management, presented in Figure ��2.12(a), allows a unique space 
addressing: each computing unit, or "core", can access a common centralized memory. Cores 
are physically grouped into nodes. The nodes are similar to conventional servers linked to the 
network, and typically contain a few tens of cores. Modifications of a core in the memory are 
directly visible by all other units. This is a simple way to parallelize a calculation code, but is 
restricted to shared memory machines. These are usually limited to less than 32 cores. Note 
also that the calculation code is parallelized semi-automatically by the compiler, which can do 
so on pieces of relatively simple codes. The management of the so-called distributed memory, 
presented in Figure ��2.12(b) separates the contrary memory between compute nodes. The 
addressing space is multiple, that means each computing unit will have its own memory that 
may change independently. PVM and MPI standards are based on the one-time exchange of 
messages between the computing units, which must be explicitly specified by the 
programmer. This leaves a lot of flexibility in the design of code that can be optimized to 
perfection. This is the best approach today to better performance and massively parallel 
computing. It is more complex to implement because the programmer itself must manage and 
optimize communications between the cores. 
 
Here, we will use the MPI based implementation developed by [DIG2001], [DIG2003] to 
solve our equations and for the representation of the dendritic growth. CIMLib contains a 
mesh partitioning/ repartitioning algorithm called MeshMigration, that allows to balance well 
the number of mesh entities (vertices or elements) per processor [MES2009]. 
It is important to notice that in the script files used there is no reference to any parallel 
instruction. The user has only to specify over how much processors he wants to run using the 
traditional "mpirun" command. 
 
In what concerns meshing, we use a sequential mesher MTC [COU2000a] and it is partitioned 
in several sub-domains. The chosen parallelization procedure uses the sequential mesher in a 
massive parallel context, by following an iterative two successive steps procedure 
[COU2000b]: independent adaptive meshing of each subdomain with blocked interfaces; 
constrained repartitioning and interface displacement. When a good quality mesh is obtained, 
a finite element load-balancing repartitioning step is performed. All fields defined on the 
initial mesh may then be mapped on the new one.  
For linear system resolution, parallelization has been performed by interfacing the parallel 
partitionner with the PETSc library [BAL2015] and also by applying a multi-grid 
preconditionner. Figure ��2.14  shows this strategy applied to a simple square with 4 processors. 
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Figure ��2.13 Illustration of the strategy used to parallelize the mesher. We have here the 
partition of the domain [DIG2003] H.Digonnet, T. Coupez, «Object-oriented programming 
for "fast and easy" development of parallel applications in forming processes simulation», 2nd 
MIT Conference on Computational Fluid and Solid Mechanics, pp.1922-1924, 2003  

[DIG2007]. 
 
For complex 3D geometries and complex physical laws, parallel computation remains 
essential. It allows us to run complete simulations with a reasonable precision, inaccessible 
(for memory and time limits) with sequential runs. It also makes possible to speed up the 
simulation run such that the global computation time will still be acceptable. In the last years, 
�S�U�R�F�H�V�V�R�U�¶�V���S�H�U�I�R�U�P�D�Q�F�H���K�D�V���Q�R�W���L�Q�F�U�Hased by improving the clock rate but by multiplying the 
number of cores in a CPU. Most of the computation time is spent on remeshing and on the 
resolution of several large linear systems. 
 
2.2.4 Validation on benchmark : temperature diffusion in  a corner  
 
To validate the coupled phase-field and energy solvers, let us consider the example of the 
temperature diffusion in a corner [RAT1971], as shown in Figure ��2.14. We study in this 
example a Stephan problem (which is a free boundary problem) for controlled heat flow. 

 
Figure ��2.14 Representation of a square domain with an initial temperature �T��0 = 0.3 cooled 

from its left corner with an imposed temperature �T imp = ��1 at its left and bottom boundaries.  

The square domain [0;1]x[0;1] is defined and composed of a mesh with 20 000 elements. 
Mesh adaptation depends on �I and �T and the phase-field function used here, 
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(0.1;0.1). We use the thermal diffusivity �D������ ��������
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In this expression �I is built in a slightly different way from the classical phase-field 
formulation, leading to a different source term in equation (��2.64). The energy equation is the 
same as previously: 

�w�T
 �w�W �� �D

� �' �T = �� 
1
2 

�w�I
 �w�W  and �T = 

T �� TM

 TM �� Timp
 with TM = 0 K 

                     
(��2.65) 
 

Boundary conditions are imposed on the left and on the bottom sides (�T imp = ��1), and the 
initial temperature in the domain is �T��0 = 0.3. 
 

   
Figure ��2.15 Phase field and temperature field with interface position for E = 0.01, W0

* = 1, 
hmin = 0.001, emin = 10-5, �' �W��= 10-7 at �W = 0.018. 

 
Starting from the initial conditions, interface evolves from the corner, as illustrated in 
Figure ��2.15. Numerical results obtained may be compared with the analytical solutions 
developed in Appendix B in the x-y direction. 
 
The error between the numerical and analytical temperature profiles is computed as follows: 

Error �T = 
|�T Analytic  �± �T Numeric |

|�T Analytic|
  

                     
(��2.66) 

 
In the first case, the influence of hmin and NE on the thermal solver is studied by considering 
only the energy equation and not solving the phase-field one. The comparison is done for 
different cases as presented in Table ��2.2. Results are shown at �W = 0.0192 in Figure ��2.16 and 
Figure ��2.17.  
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Parameter Symbol (a) (b) (c) (d) Unit 
Type of mesh - Isotropic Anisotropic Anisotropic Anisotropic - 
Number of elements NE 5 000 5 000 5 000 20 000 - 
Mesh size hmin 0.02 0.02 0.001 0.001 - 
Interface thickness E  0.01 0.01 0.01 0.01 - 
Domain RD

* 1 1 1 1 - 
Numerical initial temperature �T��0 0.3 0.3 0.3 0.3 - 
Numerical thermal diffusivity �D����� ���� ���� ���� 1 - 
Minimal error emin�� ���������� ���������� ���������� 10-5 - 
Time step �' �W�� ���������� ���������� ���������� �������� - 

Table ��2.2 Parameters for temperature diffusion in a corner for the different cases presented in 
Figure ��2.16 and Figure ��2.17. 

 

 
                                     (a)                                                        (b) 

 
                                    (c)                                                       (d) 
Figure ��2.16 Temperature distribution and interface position added at �W = 0.0192 for different 
numerical parameters, a) Isotropic mesh with h = 0.02 and NE = 5 000, b) Anisotropic mesh 
with hmin = 0.02 and NE = 5 000, c) Anisotropic mesh with hmin = 0.001 and NE = 5 000, d) 

Anisotropic mesh with hmin = 0.001 and NE = 20 000. 
 
By a comparison of the temperature fields, one may observe that both isotropic as well as 
anisotropic meshes may be used, as confirmed by drawing the �T profile along the x-y direction 
in Figure ��2.17. Similar results are obtained using these two different types of meshes. 
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                                       (a)                                                                        (b) 

 
                                      (c)                                                                        (d) 
Figure ��2.17 Numerical and analytical temperature profiles in the direction of the diagonal of 

the square with a) isotropic mesh with h = 0.02 and NE = 5 000, b) anisotropic mesh with hmin 
= 0.02 and NE = 5 000, c) anisotropic mesh with hmin = 0.001 and NE = 5 000, d) anisotropic 

mesh with hmin = 0.001 and NE = 20 000. 
 
As observed in Figure ��2.18, by comparing the red and green curves, the error increases when 
decreasing hmin, because we are asking for smaller mesh sizes without adding more elements 
to capture the good temperature profile. When increasing the number of elements while 
decreasing hmin, the error decreases (blue curve). The same error exists between isotropic and 
anisotropic meshes when hmin is small and a sufficient number of elements NE is used.  

 
Figure ��2.18 Error profiles between the numerical and analytical profiles, using different 

meshes, as illustrated in Figure ��2.16 and Figure ��2.17. 
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Both phase-field and energy equations are now solved, and interface position is thus 
dynamically tracked. Sensivity to the different numerical parameters was also studied. Firstly, 
we consider three different cases, as presented in Table ��2.3, to see the influence of hmin value 
as illustrated in Figure ��2.19 for �W = 0.05. The mesh is adapted on both �T and �I. 
 

Parameter Symbol (a) (b) (c) Unit 
Type of mesh - Anisotropic Anisotropic Anisotropic - 
Number of elements NE 20 000 20 000 20 000 - 
Mesh size hmin 0.01 0.001 0.00025 - 
Interface thickness E  0.01 0.01 0.01 - 
Domain RD

* 1 1 1 - 
Numerical initial temperature �T��0 0.3 0.3 0.3 - 
Numerical thermal diffusivity �D����� ���� ���� ���� - 
Minimal error emin�� ���������� ���������� ���������� - 
Time step �' �W�� ���������� ���������� ���������� - 

Table ��2.3 Parameters for temperature diffusion in a corner for the different cases presented in 
Figure ��2.19, Figure ��2.20 and Figure ��2.21. 

 
 

One may notice that larger values of hmin provide poorer results, but when decreasing this 
value, analytical and numerical profiles become similar. Error on temperature computation 
decreases from 14% to 5% when decreasing the minimal mesh size (Figure ��2.20), at different 
instants of the computation. 
 
The interface position is plotted in Figure ��2.21, for different times and for the prescribed hmin 
values. Numerically obtained profiles are far from analytical ones in term of temperature, and 
become coincident only at the lowest given hmin. For large hmin value, we will have big 
elements at the interface and not a sufficient number of meshes to represent the interface 
thickness. The numerical and analytical results do not match. 
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                                         (a)                               (b)                                             (c) 
Figure ��2.19 Numerical and analytical temperature profiles in the direction of the diagonal of 

the square for���W = 0.05 with, a) hmin = 0.01, b) hmin = 0.001, c) hmin = 0.00025. 
 

 
                                       (a)                                 (b)                                            (c) 

Figure ��2.20 Temperature error profiles for a) hmin = 0.01, b) hmin = 0.001, c) hmin = 0.00025, 
plotted at different instant (�W) values. 

 

 
                         (a)                                                (b)                                             (c) 

Figure ��2.21 Numerical and analytical interface position for a) hmin = 0.01, b) hmin = 0.001,  
c) hmin = 0.00025. 

 
Looking at the sensitivity of the results to the mesh adaptation type (isotropic, anisotropic 
adapting on �I and �T or anisotropic adapting on �I only), Figure ��2.22, shows that for �' �W = 10-6 
and for the parameters taken from Table ��2.4. 
- for the same hmin, isotropic and anisotropic adaptation does not influence the result; 
- computing �T and �I in two different meshes (one adapted on �I and the other isotropic) 
provide similar results. 
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This shows that anisotropic adaptation may be used to do the simulation with the same results 
as using an isotropic mesh. 

 
                                    (a)                                                       (b) 

 
                                                                  (c)                                                              

Figure ��2.22 Phase field and temperature field with interface position at �W = 0.05 with a) 
isotropic mesh with h = 0.0002 and NE = 20 000, b) anisotropic mesh with hmin = 0.00025 and 

NE = 20 000, c) anisotropic mesh for �I with hmin = 0.001 and NE = 20 000 and an isotropic 
mesh for �T��with h = 0.02 and NE = 5 000��  

 
Parameter Symbol (a) (b) (c) Unit 
Type of mesh - Isotropic Anisotropic Anisotropic+Isotropic - 
Number of elements NE 20 000 20 000 20 000 - 
Mesh size hmin 0.0002 0.00025 0.001 - 
Interface thickness E  0.01 0.01 0.01 - 
Domain RD

* 1 1 1 - 
Numerical initial temperature �T��0 0.3 0.3 0.3 - 
Numerical thermal diffusivity �D����� ���� ���� ���� - 
Minimal error emin�� ���������� ���������� ���������� - 
Time step �' �W�� ���������� ���������� ���������� - 

Table ��2.4 Parameters for temperature diffusion in a corner for the different cases presented in 
Figure ��2.22, Figure ��2.23, Figure ��2.24 and Figure ��2.25. 

 
We can conclude from Figure ��2.23 and Figure ��2.24, that we have the same profiles using an 
isotropic mesh or two meshes for the different fields with the same maximum error, so no 
need to have two meshes. And using an anisotropic mesh for the two fields gives a similar 
result as using the isotropic mesh but with a bigger maximum error of 5 %. We can still use 
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the mesh adaptation having results needed with a small error. Using an isotropic mesh the 
computational time is equal to 210 h, but for the anisotropic mesh used the computational 
time is equal to 179h. If we use a smaller emin it should decrease the number of elements and 
the computational time, because we will have bigger elements outside the interface. 

 
                                          (a)                              (b)                                          (c)                                                                        

Figure ��2.23 Temperature profile at �W = 0.05, in the direction of the diagonal of the square, 
using a) an isotropic mesh with h = 0.0002 and NE = 20 000, b) an anisotropic mesh with hmin 
= 0.00025 and NE = 20 000, c) an anisotropic mesh for �I with hmin = 0.001 and NE = 20 000 

and an isotropic mesh for �T��with h = 0.02 and NE = 5 000. 

  
                            (a)                                           (b)                                           (c)                                                                        
Figure ��2.24 Error on temperature profile between the analytical and the numerical solution at  
�W = 0.05 using a) an isotropic mesh with h = 0.0002 and NE = 20 000, b) an anisotropic mesh 

with hmin = 0.00025 and NE = 20 000, c) an anisotropic mesh for �I with hmin = 0.001 and  
NE = 20 000 and an isotropic mesh for �T��with h = 0.02 and NE = 5 000. 

 
                            (a)                                             (b)                                          (c) 

Figure ��2.25 Numerical and analytical comparison for the interface positions at �W = 0.02, �W = 
0.03, �W = 0.04 and �W = 0.05 using a) an isotropic mesh with h = 0.0002 and NE = 20 000, b) an 
anisotropic mesh with hmin = 0.00025 and NE = 20 000, c) an anisotropic mesh for �I with hmin 

= 0.001 and NE = 20 000 and an isotropic mesh for �T��with h = 0.02 and NE = 5 000. 
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Even if the error is slightly higher in the anisotropic case (5% against 4%), interface using an 
anisotropic mesh are better followed, as shown in Figure ��2.25. No sensitivity study to emin has 
been performed here (it will be given for a different test case in the next section). But one may 
already conclude that dynamic anisotrpic adaptation, on both �I and �T, is accurately performed 
for the Stephan problem. This anisotropic method may not give us the best results but it can 
be used in problems where the isotropic method can not be used. Is it better to use anisotropic 
mesh for various problems with a 5% error or is it better to use isotropic mesh for some 
problems.  
 
2.3 Thermal dendritic growth  

 
A first example has been simulated to show how a dendrite pattern can develop, starting from 
a small nucleus (Figure ��2.26), which grows in an undercooled melt. The material property is 
chosen with an interface anisotropy term to develop a four arms dendrite. 
 

  
(a)                                                                 (b) 

  
                                (c)                                                                   (d) 

Figure ��2.26 Example of simulation of dendritic growth using the parameters defined in 
Table ��2.5 at, a) �W = 0, b) �W = 64, c) �W = 96, d) �W = 128. 

 
Simulations were performed in a [��200,200]x[��200,200] domain. Parameters taken here are 

presented in Table ��2.5 with the anisotropy form: W(n) = W0
* 
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4 arctan 
�wy* �I
�wx* �I 

. This 

simulation is done with 25 cores with a computational time equal to 25 h 30 min. 
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Parameter Symbol value Unit 
Number of elements NE 150 000 - 
Mesh size hmin 0.4 - 
Interface thickness W0

*  1 - 
Unit time �W0*  1 - 
Domain RD

* 400 - 
Nucleus radius R0

* 5 - 
Numerical initial temperature �T��0 -0.55 - 
Numerical thermal diffusivity �D����� ���� - 
Anisotropy frequancy �H���� ���������� - 
Time step �' �W�� ������������ - 
Cores number - 25 - 
CPU time tCPU 25h30min - 

Table ��2.5 Parameters for thermal dendritic growth shown in Figure ��2.26. 
 

Thermal dendritic growth has been studied by comparing results obtained using the finite 
difference method with an isotropic structured grid (model developed in Matlab) and the finite 

element method with parallel computation and an isotropic unstructured mesh and an 
anisotropic unstructured adaptive mesh (CimLib) in terms of CPU time and dendritic 

morphology, as illustrated in  
Figure ��2.27. Simulations were performed in a [��200,200]x[��200,200] domain and parameters 
are shown in Table ��2.6. 

    

   
�W = 256 �' �W = 0.008   �W = 256 �' �W = 0.016       �W = 256.168 �' �W = hmin/(10·vtip) 
NE = 1 000 000   NE = 1 250 000                      NE = 2.Vinterface/hmin

2 + 20 000 
3h 34 min (Matlab)(1 core)  44h (15 cores) 660h(1 core)  7 min (15 cores) 1h 54min (1 core) 

 
Figure ��2.27 Simulations using the finite difference and the finite element method with 

isotropic and anisotropic meshes, illustration at one growth instant. �W = 256 and the 
parameters used are shown in Table ��2.6. 
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Parameter Symbol Matlab Isotrope Anisotrope Unit 
Number of elements NE 1 000 000 1 250 000 2.Vinterface/hmin

2 + N2 - 
Constant number of element N2 - - 20 000 - 
Mesh size hmin 0.4 0.4 0.4 - 
Interface thickness W0

*  1 1 1 - 
Unit time �W0*  1 1 1 - 
Domain RD

* 400 400 400 - 
Nucleus radius R0

* 5 5 5  
Numerical initial temperature �T��0 -0.55 -0.55 -0.55 - 
Numerical thermal diffusivity �D����� ���� 4 4 - 
Minimal error emin�� ���� - 10-9 - 
Anisotropy frequancy �H���� ���������� 0.05 0.05 - 
Time step �' �W�� ������������ 0.016 hmin/(10·vtip) - 
Cores number - 1 15; 1 15 ; 1 - 
CPU time tCPU 3h34min 44h; 660h 7min ; 1h54min - 

Table ��2.6 Parameters for thermal dendritic growth shown in Figure ��2.27 and Figure ��2.28. 
 
Firstly, one can observe that using an isotropic unstructured mesh and the finite element 
method takes more time than the simulation done with the finite difference method, for almost 
the same number of degrees of freedom. 
Using adaptive meshing, one has 16 201 nodes instead of 1 million for the isotropic case, so 
we have reduced the space needed in the memory to store the results and the computational 
time decreases from 3h 34 min to 7 min when using 15 cores. 
 

 
Figure ��2.28 Solid/liquid interface position using the finite difference method and the finite 
element method, with isotropic and anisotropic meshes, as well as further optimisations, at  

�W = 256   
 
Figure ��2.28 shows that the two interface positions, using the finite difference method and the 
finite element method provide the same results.  
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2.3.1 Timestep and number of element s adaptation  
 
Improvements on CPU time have been obtained by automatic adjustment of the time step �' �W 
to the interface velocity evolution, by: 

�' �W = hmin/(�E �¶��vtip) 
                     
(��2.67) 

hmin is the minimal mesh size and �E �¶���L�V���D���F�K�R�V�H�Q���F�R�Q�V�W�D�Q�W���W�R��ensure that this equation verifies 
the CFL (Courant-Friedrichs-Lewy) condition, that is �' �W must satisfy the relation: 

�' �W < hmin/vtip 
                     
(��2.68) 

At the beginning of growth, a small time step is needed. Then growth velocity decreases, and 
larger time steps are authorized.  
 
This optimization was put in place because, during dendritic growth, the number of elements 
should increase since the surface of the interface increases, more elements are needed to 
represent it. An estimation of t�K�H���³�L�Q�W�H�U�I�D�F�H���Y�R�O�X�P�H�´�����G�H�I�L�Q�H�G���D�V���W�K�H���Y�R�O�X�P�H���R�F�F�X�S�L�H�G���E�\���W�K�H��
�³interface thickness�  ́of the phase field function, Vinterface (a surface in 2D) can be obtained as 
follows: 

VInterface = 
�´
�µ�¶

���f

 

�f

�G�I  dV , with �G�I = 

�¯�°
�®
�°�
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1

2W0
* cos 
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�¨
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W0
*      for����W0

* < �I�� < W0
*

0                                     for �I > W0
*

  
                     
(��2.69) 

 
In our computations, W0

* = 1. The number of elements needed within this volume may be 
computed as:  
N1 = SInterface/Selement = 2.Sinterface/hmin

2      in 2D 
or 
N1 = VInterface/Velement = 6.Vinterface/hmin

3      in 3D 
 
One may then estimate the total number of elements needed as NE = N1 + N2, with N2 a 
constant to add a certain number of elements outside the interface thickness. Using this 
expression, NE may be variable throughout computation, and given at each mesh adaptation 
step.  
 
Assuming symmetrical growth only ¼ of the domain is used, reducing the computational time 
and the memory used. Figure ��2.29 illustrates mesh adaptation following the solid/liquid 
interface and the temperature profile. The number of element is increasing during the 
computation to capture these profiles. Parameters used in this simulation are shown in 
Table ��2.10. 
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Parameter Symbol value Unit 
Number of elements NE 2.Vinterface/hmin

2 + N2 - 
Constant number of element N2 50 000 - 
Mesh size hmin 0.4 - 
Interface thickness W0

*  1 - 
Unit time �W0*  1 - 
Domain RD

* 120 - 
Nucleus radius R0

* 5 - 
Numerical initial temperature �T��0 -0.55 - 
Numerical thermal diffusivity �D����� ���� - 
Minimal error emin ���������� - 
Anisotropy frequancy �H���� ���������� - 
Time step �' �W�� hmin/(10·vtip)�� - 
Cores number - 8 - 
CPU time tCPU 10 min - 

Table ��2.7 Parameters for thermal dendritic growth shown in Figure ��2.29 and Figure ��2.30. 
 

 
Figure ��2.29 Dendritic mesh at �W = 0, �W = 56, �W = 132, �W = 200, for an evolving NE. Parameters 

are shown in Table ��2.10. 
 
Figure ��2.30 shows the variation of the time step and the number of elements with time during 
thermal dendritic growth. We can see clearly that the time step and the number of element are 
increasing with growth. The time step will stagnates when we reach the stationary velocity 
and the number of elements is increasing linearly with time. 

 
Figure ��2.30 Variation of �' �W and NE with time during thermal dendritic growth with �D� = 4 

and N2 = 50 000. Parameters are shown in Table ��2.10. 
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2.3.2 Convergence of the tip velocity  
 
We now compare our results with the results presented in [KAR1998], where an analytical 
solution in 2D for thermal dendritic growth has been computed with the Green function 
method. 
Let us consider a rectangular domain of size [0;1000]x[0;300] on which an initial nucleus of 
size 5 is placed in the left bottom corner, a rectangular is chosen instead of a square of 
[0;1000]x[0;1000] to follow the dendrite velocity until it stabilizes with a small computational 
time and a smaller NE. To check the convergence toward a steady state regime, the tip 
velocity in the x direction is computed. The simulation parameters are given in Table ��2.8.  
 

Parameter Symbol value Unit 
Number of elements NE 2.Vinterface/hmin

2 + N2 - 
Constant number of element N2 25 000 - 
Unit time �W0*  1 - 
Nucleus radius R0

* 5 - 
Numerical initial temperature �T��0 -0.65 - 
Numerical thermal diffusivity �D����� ���� - 
Minimal error emin ���������� - 
Anisotropy frequency �H���� ���������� - 
Time step �' �W�� hmin/(10·vtip)�� - 
Capillarity length d��

��� 0.554 - 

Table ��2.8 Parameters for thermal dendritic growth shown in Figure ��2.31 and Figure ��2.32. 
 
We will study the influence of varying W0

* and hmin. In the following, we compare the 
solution for different values of the minimal mesh size hmin. 
 

    
                                            (a)                                                                      (b) 
Figure ��2.31 a) Evolution of dimensionless tip velocity as a function of time for different hmin, 
b) dimensionless tip velocity, when it stabilizes, as a function of grid spacing. The red line 

corresponds to the value obtained from the Green function calculation [KAR1998]. 
Parameters of the simulations are given in Table ��2.8. 
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In Figure ��2.31 (a), we observe that the tip velocity decreases with time to a constant value, 
named the steady-state velocity. When the tip reaches the border of the domain this value 
changes, meaning that the computation no longer fits the hypothesis behind the analytical 
solution. In Figure ��2.31 (a)���� �W�K�H�� �V�H�Q�V�L�W�L�Y�L�W�\�� �R�I�� �W�K�H�� �V�R�O�X�W�L�R�Q�� �W�R�� �W�K�H�� �P�H�V�K�¶�V�� �P�L�Q�L�P�D�O�� �V�L�]�H is 
represented. In Figure ��2.31 (b), the steady-state velocity computed value is compared with the 
value obtained using the Green function calculation. One observes that when decreasing the 
minimal mesh size in the interface, the velocity converges to the analytical solution in red. 

   
(a)                                                                    (b) 

Figure ��2.32 a) Evolution of dimensionless tip velocity as a function of time for different W0
*, 

b) dimensionless tip velocity, when it stabilizes, as a function of interface thickness. The red 
line corresponds to the value obtained from the Green function calculation [KAR1998]. 

Parameters of the simulations are given in Table ��2.8. 
 
The same type of study is done, but by varying W0

* as illustrated in Figure ��2.32. When W0
* 

decreases, the velocity tip converges towards the analytical one, drawn in red. This 
convergence can be established using a small W0

*/d0
*. Decreasing �D*  is equivalent to 

decreasing simultaneously W0
*/d0

* showing that our results are independent of interface 
thickness. This shows that our phase-field model can quantitatively predict results for the 
thermal dendritic growth velocity.  
 
2.3.3 Computational time  
 
To reduce the CPU time, numerical methods and different optimization previously described 
are used, such as parallel computation, time step adaptation, number of mesh elements 
variation and adaptive meshing itself. We check the influence on the CPU time of these 
different optimizations in thermal dendritic growth, in 2D, and using 15 cores. 
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           (a)                                  (b)                                (c) 

     
                                   (d)                                                      (e)  
Figure ��2.33 Thermal dendritic growth on a [��200,200] square, supposing the initial nucleus in 
the middle of the square and using different optimizations, for hmin = 0.4, a) isotropic mesh, b) 

anisotropic adaptive meshing (each �' �W) with �' �W = 0.016, NE = 100 000 and emin = 10-4, c) 
anisotropic adaptive meshing with FR, �' �W = 0.016, NE = 100 000 and emin = 10-4, d) 

anisotropic adaptive meshing with FR, �' �W = hmin/(10·vtip), NE = 100 000 and emin = 10-4, e) 
anisotropic adaptive meshing with FR, �' �W = hmin/(10·vtip), NE = 2·Vinterface/hmin

2 + 25 000 and 
emin = 10-9. 

Parameter Symbol (a) (b) (c) (d) (e) 
Number of elements NE 1 000 000 N1 + N2 N1 + N2 N1 + N2 N1 + N2 
Constant number of element N2 - 100 000 100  000 100 000 20 000 
Mesh size hmin 0.4 0.4 0.4 0.4 0.4 
Interface thickness W0

*  1 1 1 1 1 
Unit time �W0*  1 1 1 1 1 
Nucleus radius R0

* 5 5 5 5 5 
Numerical initial temperature �T��0 -0.65 -0.65 -0.65 -0.65 -0.65 
Numerical thermal diffusivity �D����� ���� 1 1 1 1 
Minimal error emin ���� �������� �������� �������� �������� 
Anisotropy frequancy �H���� ���������� 0.05 0.05 0.05 0.05 
Time step �' �W�� 0.016�� 0.016 0.016 hmin/(10·vtip) hmin/(10·vtip) 
Capillarity length d��

��� 0.554 0.554 0.554 0.554 0.554 
Cores number - 16 16 16 16 16 
CPU time tCPU 44h 15h30min 1h55min 32min 7min 

Table ��2.9 Parameters for thermal dendritic growth shown in Figure ��2.33, Figure ��2.34 and  
Figure ��2.35. 

 
Figure ��2.34 schematically provides the CPU time decrease obtained for all the conditions.  
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Figure ��2.34 Variation of the CPU time for the examples shown in Figure ��2.33, illustrating the 

influence of the different optimizations. 
 
To further extend this analysis, differences on the computational time for different numerical 
parameters are shown for a rectangular domain [1000;300] with the same parameters of 
Table ��2.9. 
 

Case VTip NE hmin Nb_Proc Fr  
Adapt 
Time 

Adapt NE TCPU 

1 0.0469 4 638 842 0.4 1 No No No 36 000 h* 
2 0.0469 4 638 842 0.4 4 No No No 13 000 h* 
3 0.0469 4 638 842 0.4 16 No No No 3 480 h 
4 0.0485 100 000 0.4 16 1 No No 504h 
5 0.051 80 000 0.4 16 Yes No No 80h 
6 0.05 80 000 0.4 16 Yes Yes No 13h 

7 0.0469 46 000 0.4 16 Yes Yes 
Yes(N2 = 
25000) 10h 

* Predicted time  
Table ��2.10 Computational times for different test conditions using the parameters of Table ��2.9. 
 
The predicted time is computed as follows: for case 1 the simulation is done arriving to 
(1000/12.5 = 80) of the domain taking 2880h; prediction time is equal to 2880*(1000/12.5) 
using cross multiplication to reach the domain. The same prediction is done for cases 2 and 3. 
Parrallel computing gain is observed on the CPU time on the first three cases, using 1, 4 or 16 
processors. From case 3 and case 4, we show CPU time decrease due to mesh adaptation. 
From case 4 to case 5, we show the influence of the mesh adaptation with the frequency 
computed above depending on the velocity. In cases 6 and 7 we have added the time 
adaptation and the number of element evolution. Results obtained are plotted in Figure ��2.35.    
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Figure ��2.35 CPU times obtained for the different conditions (Table ��2.10) taken which 

simulate the same dendritic growth. 
 
Table ��2.11 presents a study when varying, �T0 or material parameters �D* or �H4. It reveals that, 
one may obtain exactly the same tip velocity Vtip, as computed using the Green function 
Vtip

GF. We can obtain a negligible error for the velocity tip in each case by choosing the right 
number of elements (the right N2 to represent the mesh outside the interface). When we have 
small thermal diffusion or small initial undercooling or a small anisotropy, we need to do the 
simulation with a larger domain and the computation takes more time to reach a steady state 
regime. 
 

�T���� �H4 �D��*�� d0
*/W0

* VTip VTip
GF % error  Domain NE TCPU 

0.65 0.05 1 0.554 0.0469 0.0469 0 [1000;300] 46 000 10h 
0.55 0.05 2 0.277 0.017 0.017 0 [1000;300] 44 000 6h 30min 
0.55 0.05 4 0.139 0.017 0.017 0 [500;150] 34 000 2h 30 min 
0.45 0.05 4 0.139 0.00545 0.00545 0 [1000;300] 50 000 5h 50 min 
0.55 0.02 2 0.277 0.00685 0.00685 0 [1000;300] 30 000 7h 30 min 

Table ��2.11 Ccomparison on the tip velocity value for different physical parameters. 
 

2.3.4 Study of the capillary anisotropy  
 
Patterns forming in solidification are linked to the solid/liquid interface. Perturbations are 
done on the equilibrium structure due to the additional free energy of the solid/liquid 
interface. If this excess in energy is isotropic, the area of the interface will be minimized. 
Since the solid is crystalline, �J is anisotropic depending on the growth orientation. The 
instability of the solid/liquid interface that forms the dendrites is influenced by the anisotropy 
of the solid/liquid interfacial energy presented by the parameter �H4.  
Several expressions for the capillary anisotropy, W(n), may be defined. They can be written 
[KAR1998], [FRI2009]: 

W��n�� = W0
*
 �©
�¨
�§

�¹
�¸
�·

1 �� �H4 cos 
�©
�¨
�§
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�¸
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�º
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���_�’ �I���_����  In 3D (��2.72) 



53 | C h a p t e r2  T h e r m a l  m o d e l 

 

W(n) = W0
* 

 �¬�«
�ª

�¼�»
�º1 + �H1 �©�¨

�§
�¹�¸
�·Q �� 

3
5  + �H2 �©�¨

�§
�¹�¸
�·3Q + 66S �� 

17
7  In 3D (��2.73) 

with��Q = nx
4 + ny

4 + nz
4 = 

�wx* �I�����������wy* �I�����������wz* �I����

|�’ �I |4  and S = nx
2ny

2nz
2 = 

�wx* �I�������wy* �I�������wz* �I����

|�’ �I |6 ��

�H4 represents the intensity of the anisotropy, Arm is the number of primary branches or arms 
and W0

* is the initial thickness of the interface. When �H4 increases, the anisotropy increases, as 
illustrated in Figure ��2.36. The number of arms changes with the value of Arm (Figure ��2.37).  

 
 (a)                                      (b)                                        (c) 

Figure ��2.36 Thermal dendritic growth morphology for different values of �H4, for Arm = 4:  
a)���H4 = 0.01, b) �H4 = 0.05, c) �H4 = 0.1. 

 
(a)                                      (b)                                        (c) 

Figure ��2.37 Thermal dendritic growth morphomogy obtained for different number of arms for 
�H4 = 0.1: a) Arm = 4, b)  Arm = 8, c)  Arm = 16. 

 
In 2D, the principle growth direction may be imposed by adding an angle of rotation to 
equation (��2.70), and the expression of the capillary anisotropy may be written as: 

W(n) = W0
*
 (1 �� �H4 cos (4(�4 �� �4��)))  (��2.74) 

Where �4 = arctan 
�w�Iy*

�w�Ix* 
 and �4�� is the prescribed angle which provides the growth direction. 

Figure ��2.38 illustrates the effect of this rotation and also certifies that the result is not 
depending on it. In fact mesh evolves with adaptation during growth and follows the interface 
in all directions, unlike classical phase-field approaches, for which results may be grid 
dependent. 
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(a)                                                                                    (b)                                    

    
(c)                                                                                     (d) 

Figure ��2.38 Four cases of dendritic growth, in 2D, with initial growth direction that has an 
angle with the horizontal axis of a) 0°, b) 30°, c) 45°, d) 75°. 

 
Solid/liquid interfaces for the different growth prescribed directions are superposed in  
Figure ��2.39. For each direction growth we take the interface and we rotate it to obtain a 0° 
oriented dendrite then we superpose the different interfaces and we see that they are the same.   

 
Figure ��2.39 Superposed solid/liquid interfaces for the different growth directions. 

 
2.3.5 3D thermal dendritic growth  
 
We now solve the equations of the model in 3D using the anisotropy expression for the 3D 
case. We have a growing dendrite with arms in the <100> directions corresponding to the 
main XYZ axes. We can have dendrite growing from the center of the domain or at the border 
of the domain. Computational time is higher in 3D then in 2D and the adaptive mesh is more 
complicated. 
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Because of the cubic symmetry case for the directions <100>, simulation can be performed on 
1/8 of the cube or even on 1/48 of it in the zxy symmetry plane. When the computational 
domain is 1/8 of the overall one, it is a cubic subdomain of linear size equal to half the 
domain size and we suppose the initial nucleus in the corner of coordinates (0,0,0). When the 
simulation is finished, we reconstruct the whole cubic domain to represent the dendrite by 
doing a symmetry %X = 0 and %Y = 0 and %Z = 0. 
In the case of 1/48, one has a tetrahedral subdomain and the initial nucleus appears in the 
vertex of the tetrahedron of coordinates (0,0,0). Some rotations and symmetries operations 
(rotation 45° %X  symmetry %Y rotation -45° %X, rotation -45° %Y  symmetry %X rotation 
45° %Y, rotation 45° %Z  symmetry %X rotation -45° %Z) are performed to obtain the 1/8 of 
the cube then we do the three symmetries described before to obtain the cube.  
 
To check the influence of using these symmetry propreties, thermal dendritic growth is 
simulated using the finite element method on an isotropic structured mesh and an anisotropic 
unstructured adaptive mesh corresponding to 1/8 of the domain and on an anisotropic 
unstructured adaptive mesh corresponding to 1/48 of the domain. We use a domain of size 
[0;100]x[0;100]x[0;100]. Parameters a present in Table ��2.12. The computational time reduces 
from the first case (1/8, isotrope), to the last cited one (1/48, anisotrope) from 160 h to 27 
min, as shown in Figure ��2.40. The number of elements NE for the 1/8 and the 1/48 cases are 
linked as follows: NE(1/8)= 6 NE(1/48). 
 

Parameter Symbol (a) (b) (c) 
Number of elements NE 2 000 000 2.Vinterface/hmin

2 + N2 2.Vinterface/hmin
2 + N2 

Constant number of element N2 - 600 000 100 000 
Mesh size hmin 1 0.4 0.4 
Interface thickness W0

*  1 1 1 
Unit time �W0*  1 1 1 
Nucleus radius R0

* 5 5 5 
Numerical initial temperature �T��0 -0.65 -0.65 -0.65 
Numerical thermal diffusivity �D����� ���� 1 1 
Minimal error emin ���� �������� �������� 
Anisotropy frequency �H���� ���������� 0.05 0.05 
Time step �' �W�� 0.016�� hmin/(10·vtip) hmin/(10·vtip) 
Cores number - 20 20 20 
Number of iterations - 1 410 1 410 1 410 
CPU time tCPU 160h 7h43min 27min 

Table ��2.12 Parameters for thermal dendritic growth shown in Figure ��2.40 and Figure ��2.41. 
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                  (a)                               (b)                       (c) 

 
                  (d)                                              (e)                                       (f) 
Figure ��2.40 3D thermal dendritic growth computation using 20 cores, drawn at �W = 256 for a) 
a structured mesh for 1/8 of the domain with �' �W = 0.016 and hmin = 1, NE = 2 000 000, tCPU = 

160 h, b) an unstructered anisotropic adaptive 1/8 mesh with �E �¶��� ����������N2 = 600 000, NE = 
782 000, tCPU = 7 h 43 min c) an unstructered anisotropic adaptive 1/8 mesh with �E �¶��� ����������N2 

= 100 000, NE = 132 000, tCPU = 27 min. 
 
Figure ��2.41 provides the comparison, for a developed state of the morphology of the 
solid/liquid interface in the <100> direction growth. We have the same growth for 1/8 or 1/48 
domain with a small difference at the dendrite tip. We can use 1/48 instead of 1/8 to reduce 
the CPU time and the memory in case of pure thermal dendritic growth. 

 
Figure ��2.41 Zoom of the dendrite tip to show the difference between computations performed 

in 1/8 (anisotropic) and 1/48 (anisotropic) of the domain. 
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3D simulation for dendrite using 1/48 of a cube is further studied to benefit from this 
symmetry. A domain of size [0;1000]x[0;1000]x[0;1000] is used and parameters a present in 
Table ��2.13. Mesh adaptation is based on (�I,�T). Results are shown in Figure ��2.42, after the 
reconstruction of the whole domain. 
 

Parameter Symbol Value 
Number of elements NE 2.Vinterface/hmin

2 + N2 
Constant number of element N2 2 000 000 
Mesh size hmin 0.4 
Interface thickness W0

*  1 
Unit time �W0*  1 
Nucleus radius R0

* 1 
Numerical initial temperature �T��0 -0.59 
Numerical thermal diffusivity �D����� 3.3897 
Minimal error emin �������� 
Anisotropy frequency �H���� 0.02 
Time step �' �W�� hmin/(10·vtip) 
Cores number - 30 
Number of iterations - 2 000 
CPU time tCPU 288h 

Table ��2.13 Parameters for thermal dendritic growth shown in Figure ��2.42. 
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(a) 

                    
(b) 

     
(c) 

Figure ��2.42 3D thermal dendritic growth showing: on the left, the solid/liquid interface and 
the computed temperature projected on this interface; on the right, the temperature 

distribution in the computational domain at a) �W = 421.148, b) �W = 526.361, c) �W = 933.7. 
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2.4 Conclusion  
 
Two equations are solved for the simulation of thermal dendritic growth: the  
phase-field equation and the energy conservation equation. These equations are solved after 
reformulating them with dimensionless variables: 

�W��n����
�w�I
�w�W �������’ ���� W������n�����’ �I����= [�I �����O�T ���������� �I��������]�������� �I�������� �� 

�w
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(��2.75) 

 
�w�T
 �w�W �� �D

� �' �T��= �� 
1
2 

�w�I
 �w�W (��2.76) 

with  

�T = 
T �� TM

L/cp
 (��2.77) 

and 

�I = �� tanh 
�©
�¨
�§

�¹
�¸
�·�K

W0
* 2

 (��2.78) 

We have used the finite element method with anisotropic unstructured adaptive meshing and 
parallel computing. The numerical methods used in our simulations, can reduce the CPU time 
compared with finite difference method using one core in Matlab by 1.8 times and using 16 
cores about 30.5 times. Next chapter focuses on dendritic growth of metallic alloys mainly 
controlled by solutal exchanges. 
 
 
 
 
 
 
 

Résumé 
Dans ce chapitre, nous avons présenté les équations utilisées dans le modèle dévelopé, basé 
sur une approche champs de phase pour la croissance dendritique thermique. La 
représentation de l�¶interface solide/liquide utilise une fonction de tangente hyperbolique. 
Deux équations sont résolues ���� �O�D�� �F�R�Q�V�H�U�Y�D�W�L�R�Q�� �G�H�� �O�¶�p�Q�H�U�J�L�H���� �S�R�X�U�� �R�E�W�H�Q�L�U�� �O�D��distribution de 
�O�¶�p�Q�H�U�J�L�H �����O�¶�p�T�X�D�W�L�R�Q���G�H���F�K�D�P�S�V���G�H���S�K�D�V�H�����S�R�X�U���D�Y�R�L�U���O�¶�p�Y�R�O�X�W�L�R�Q���G�H���O�¶�L�Q�W�H�U�I�D�F�H���V�R�O�L�G�H���O�L�T�X�L�G�H����
Plusieurs paramètres physiques influencent la morphologie obtenue. Nous avons, montré le 
rôle de la définition �G�H���O�¶�D�Q�L�R�W�U�R�S�L�H���F�D�S�L�O�O�D�L�U�H et de la diffusion thermique �D*  et le coefficient 
de capillarité d0

*. La résolution numérique est présentée avec la méthode de remaillage 
utilisée et le calcul parallèle en utilisant diférentes optimisations �G�¶�D�G�D�S�W�D�W�L�R�Q�� �G�X�� �S�D�V�� �G�H��
temps, du nombre de maille et des symétries du problème. A la fin une croissance dendritique 
est présentée en 2D avec une validation et une étude sur le temps de calcul. Une simulation en 
3D est donnée.  
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3.1 Model equations  

 
Let us consider the phase diagram of a diluted binary alloy as schematized in Figure ��3.1, 
where a single phase dominates the microstructure of the material. The system contains two 
components: the solvent (A) and the solute (B). 
The Liquidus and Solidus transitions are approximated by straight lines of slope m and m/k, 
respectively, where k is the partition coefficient defined as the ratio of the concentrations at 
the interface and m is the Liquidus slope. 

 
Figure ��3.1 Phase diagram of a diluted binary alloy of average solute concentration c�f . TM is 

the melting temperature of the pure body, TL and TS, are respectively, the Liquidus and solidus 
temperatures. For the considered alloy, the partition coefficient is k < 1 and the Liquidus slope 

is m < 0. 
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Let us consider now the isothermal solute growth for the binary alloy. Supposing a zero solid-
state solute diffusivity, the standard equations for the sharp interface model consists in: 

�wc
�wt = D l �' c  (��3.1) 

ci (1 �� k)vn = �� D l�’  ci (��3.2) 

Ti
 = TM + m ci �� �*�Nr �� �Qn /�P�N (��3.3) 

where c is the phase composition, ci is the composition at the interface, with cl as cs = kcl. 
One may then define again the dimensionless variables [RAM2004], U and �T, as: 

U = 
�¬
�«
�ª

�¼
�»
�º2c/c�f

1 + k �� (1 �� k)�I ������ ��
�©
�¨
�§

�¹
�¸
�·1

1 �� k  (��3.4) 

�T = 
T �� TM �� mc�f

L/cp
 (��3.5) 

c�f  is the value of c far from the interface and is equal to the initial concentration of the alloy 
solute element. According to the above definitions, U is the dimensionless measure of the 
solute concentration. 
 
The above free-boundary problem may be rewritten: 

�wU
�w�W = D*

 �' U  (��3.6) 

[1+ (1 �� k)U l ] vn = �� D*
 �’ U l (��3.7) 

�T i����+ Mc�f  Ui = �� d���Nr �� �E��vn (��3.8) 

In these equations, the dimensionless solute diffusivity is defined as:  

D* = 
D�W0
W0 

2 (��3.9) 

where the scaled magnitude of the liquidus slope is: 

M = 
�� m (1 �� k)

L/cp
 (��3.10) 

As formulated previously, one may define the the free energy as a function of the non-
dimensional composition U. Supposing a constant temperature, it may be given by: 
��

F(�I,TM,c ) = 
�´
�µ�¶
�Ÿ

 
W(n)2

2  |�’ �I��| 2 + f (�I��TM��c��) dV = 
�´
�µ�¶
�Ÿ

 F int dV  (��3.11) 

We use the same double-well potential g(�I) as before to obtain the expression of f��(�I��TM��c) as: 

f (�I,TM,c ) = g(�I) + 
RgTM

v0
 (clnc �± c) + �H��c��

__
 + g

_
(�I) 

�' �H
�� c  (��3.12) 

By applying the same reasoning as previously, one derives the Allen-Cahn equation for the 
phase-field function evolution, after performing the variable change of c in U: 
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�W��n����
�w�I
�w�W �����’ ���� W������n�����’ �I������= [�I �����O(�T + Mc�fU)���������� �I��������]�������� �I�������� �� �w

�wx* �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wx* �I)

����
�w

�wy* �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wy* �I)

 ����
�w

�wz* �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wz* �I)

 
(��3.13) 

Comparing the phase-field equation (��2.75) for the thermal case and equation (��3.13) for the 
isothermal solutal case, one observes the existence of a right-hand side expression, which is a 
functionof U and �T, even if �T is a constant 
 
3.1.1 Mass conservation  equation  
 
Determination of c is obtained by solving the mass conservation equation. The final form used 
in this work has been derived like in [RAM2004] and its resolution has been coupled to the 
one of the phase-field equation. In the following, an additional term for anti-trapping, reported 
by Ramirez [RAM2004], has also been considered. 
 
We have previously shown how to obtain the phase-field equation from the free energy form 
using the Allen-Cahn equation [CAH1958]. The Cahn-Hilliard framework is also used to 
derive the mass conservation equation form considered here: 

�wc
 �wt = �’ .

�©
�¨
�§

�¹
�¸
�·

Mc �’  
�GF
�Gc �� jat  = �’ .

�©
�¨
�§

�¹
�¸
�·

Mc �’  
�©
�¨
�§

�¹
�¸
�·

 
�wFint

�wc  �� �’  � ̃
�wFint

���w�’ c  �� jat  = �’ .( )Mc �’ �P�( �� jat   (��3.14) 

where Mc is the positive mobility related to the composition, jat the antitrapping term  is used 
to recover local equilibrium at the interface and to eliminate interface stretching and surface 
diffusion effects that arise when the solutal diffusivities are unequal in the solid and liquid and 
µE is the chemical potential. This equation may be also expressed as follows. This equation 
may be expressed as follows: 

�wc
 �wt = �’ .

�©
�¨
�§

�¹
�¸
�·

Mc�’ �©
�¨
�§

�¹
�¸
�·RgTM

v0
 lnc + �H��

_
 + g

_
(�I) 

�' �H
��   �� jat   (��3.15) 

Here, �H��
_
 = (�Hs + �Hl) / 2, being �Hs the energy density in the solid and �Hl the energy density in the 

liquid; and g
_
(�I) is a function of �I verifying that g

_
(±1) = ±1 when �I = ±1, which corresponds 

�W�R���W�K�H���V�R�O�L�G���D�Q�G���O�L�T�X�L�G���S�K�D�V�H�V�����8�V�L�Q�J���)�L�F�N�¶�V���O�D�Z���R�I���G�L�I�I�X�V�L�R�Q���L�Q���W�K�H���O�L�T�X�L�G�����W�K�H���I�R�U�P 

Mc = 
�Q0

RgTM
 D q(�I) c   (��3.16) 

is chosen, where q(�I) is the dimensionless function that dictates how the solute diffusivity 
varies through the diffuse interface. Equation (��3.15) becomes: 

�wc
 �wt = �’ .

�©
�¨
�§

�¹
�¸
�·�Q0

RgTM
 D q(�I) c �’

�©
�¨
�§

�¹
�¸
�·RTM

v0
 lnc + g

_
(�I) 

�' �H
��   �� jat  (��3.17) 

This equation may be simplified to obtain: 

�wc
 �wt = �’ .

�©
�¨
�§

�¹
�¸
�·

D q(�I) c �’
�©
�¨
�§

�¹
�¸
�·

 lnc + g
_
(�I) 

�Q0
RgTM

 
�' �H
��   �� jat  (��3.18) 
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From equation (��3.14), it is known that: 

lnk = �� 
v0�' �H
RgTM

 (��3.19) 

It finally leads to: 

�wc
 �wt = �’ .

�©
�¨
�§

�¹
�¸
�·

D q(�I) c �’
�©
�¨
�§

�¹
�¸
�·

 lnc �� g
_
(�I) 

lnk
��   �� jat  (��3.20) 

From this latter, one other form for the mass conservation equation may be derived: 

 
�wc
 �wt = �’ .( )D q(�I) c �’ u  �� jat  (��3.21) 

Considering a first variable change, such that u = ln 
�©
�¨
�§

�¹
�¸
�·2 c

c�f  ( )1+ k �� (1 �� k)�I 
   

The following expressions for q(�I) and jat were chosen: 

q(�I) = 
1 �����I 

1+ k �� (1 �� k) �I  (��3.22) 

jat = 
�� c�f  (1 �� k) W0

2 2
 exp(u) 

�w�I
 �wt 

�’ �I
 |�’ �I��|   (��3.23) 

A second variable change brings us back to the dimensionless solute concentration chosen and 
given by equation (��3.4), U, by computing:  

U = 
expu ������
(1 �� k)  (��3.24) 

This means also that => u = ln[(1 �� k)U + 1] and ln
�©
�¨
�§

�¹
�¸
�·2 c

c�f  ( )1+ k �� (1 �� k) �I  
  = ln[(1 �� k)U + 1] 

From this, one deduces that 
2 c

c�f  ( )1+ k �� (1 �� k) �I  
  = (1 �� k)U + 1 

and c = [(1 �� k)U + 1] 
c�f

2  ( )1+ k �� (1 �� k) �I  . Derivation of c with respect to time provides: 

�wc
 �wt = 

c�f

2  
�©
�¨
�§

�¹
�¸
�·

 (1 �� k) (1+ k �� (1 �� k) �I  ) 
�wU
 �wt  + 

�©
�¨
�§

�¹
�¸
�·

�� (1 �� k) [(1 �� k)U + 1] 
�w�I
 �wt    (��3.25) 

This expression is then used in the mass conservation equation to obtain the evolution 
equation of the dimensionless solute concentration, U, as: 

c�f

2  
�©
�¨
�§

�¹
�¸
�·

 (1 �� k) (1+ k �� (1 �� k) �I  ) 
�wU
 �w�W + 
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�¸
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 D*  1 �����I 
������+��k �� (��������k)���I 

c�f

2  [(1 �� k)U + 1] ( 1+ k �� (1 �� k) �I  ) �’ U 
1 �� k

(1 �� k)U + 1  

+ �’ .
�©
�¨
�§

�¹
�¸
�·

c�f  
W��n��

2 2
 (1 �� k) [(1 �� k)U + 1] 

�w�I
 �w�W 

�’ �I
 |�’ �I��|    

(��3.26) 

This equation can be simplified to obtain: 
1
2 ( )1 + k �� (1 �� k)�I  

�wU
�w�W �� �’ . 

�©
�¨
�§

�¹
�¸
�·

 D* 
1 �����I 

����  �’ U  =

�’ ��
�©
�¨
�§

�¹
�¸
�·W(n)

2 2
 (1 + (1 �� k))U 

�w�I
�w�W 

�’ �I
�_�’ �I���_  +��

1
2 ( )1 + (1 �� k)U  . 

�w�I
�w�W 

(��3.27) 

Which is the final chosen form, solved using our finite element library. 
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3.2 Numerical resolution  
 
The phase-field equation is solved using the same methods as in the thermal case. The only 
difference is that the divergence term on the left hand-side of the solute equation is not further 
developed, since D*(1 �� �I)/2 does not depend on the unknown U. In the following, resolution 
of the mass conservation equation (3.27) is detailed, even if close to the resolution of the 
energy equation, since both are of the convection-diffusion-reaction type.  
 
3.2.1 Finite element resolution of the mass conservation equation  
 
For a sake of simplicity, we note D = D*(1 �� �I)/2, and f as the source term, which represents 
the right hand side of equation (��3.27). The strong formulation for our problem can be thus 
written as: 

�¯�°
�®
�°� 

�˜U
 � �̃W �� �’ �Â(D�’ U) = f  in �: �u(0,T)

 U = 0 �R�Q���˜�: �u(0,T)
 U(.,0) = U0in �:

 (��3.28) 

The corresponding weak formulation is: find U�•V:=H0
1(�: ) / �� �\ �•V, such that 

�˜U
 � �̃W���\  �� �’ �Â(D�’ U)���\  = f �\   �� (��3.29) 

Integration over �: ��gives, 

�´
�µ�¶
�Ÿ

 
�˜U
 � �̃W���\  dV �� 

�´
�µ�¶
�Ÿ

 �’ �Â(D�’ U)���\  dV = 
�´
�µ�¶
�Ÿ

 f���\  dV �� (��3.30) 

Using the integration by parts, one obtains: 

�� 
�´
�µ�¶
�Ÿ

 �’ �Â(D�’ U)���\  dV  = 
�´
�µ�¶
�Ÿ

 D�’ U���’ �\  dV + 
�´
�µ�¶
� �̃Ÿ

 D�’ U��·���\  dS  = 
�´
�µ�¶
�Ÿ

 D �’ U���’ �\  dV �� (��3.31) 

And since �\  = 0 �R�Q���˜�: ����integration becomes: 

�´
�µ�¶
�Ÿ

 
�˜U
 � �̃W���\  dV + 

�´
�µ�¶
�Ÿ

 D�’ U���’ �\  dV = 
�´
�µ�¶
�Ÿ

 f���\  dV �� (��3.32) 

The weak formulation can be written clearly as: for a given f�•H-1(�: ) and D�•L�f (�: ), find 
U�•V:=H0

1(�: ) such that 

(
�˜U
� �̃W,�\ ) + ( D�’ U,�’ �\��) = (f,���\  )

H0
1(�: )

�� (��3.33) 

As previously, we consider the discretization Th of �:  into a set of elements Nel elements K 
and we approach the functional space V by a finite dimensional one, Vh, spanned by 
continuous piecewise polynomials:        Vh = { �\��h�•H0

1(�: ), �\��h is linear for K�•  Th }  

The Galerkin discrete problem consists now in finding Uh�•Vh such that: 

(
�˜Uh

� �̃W,�\��h) + ( D�’ Uh,�’ �\��h��) = (f,���\��h )�� (��3.34) 

 



66 | C h a p t e r  3 S o l u t a l  m o d e l 

 

This may be rewritten in the integral form: 
�´
�µ�¶
�Ÿ

 
�˜Uh

 � �̃W���\��
h dVh + 

�´
�µ�¶
�Ÿ

 D�’ Uh���’ �\  h dVh = 
�´
�µ�¶
�Ÿ

 f���\  h dVh �� (��3.35) 

Each integral is the sum over the element of �: �� leading to: 

�¦ e=1
Nel

 
�´
�µ�¶
�Ÿe

 
�˜Uh

 � �̃W���\��
h dVh + �¦ e=1

Nel
 
�´
�µ�¶
�Ÿe

 D�’ Uh���’ �\  h dVh = �¦ e=1
Nel

 
�´
�µ�¶
�Ÿe

 f���\  h dVh  �� (��3.36) 

Since we are using the first order linear interpolation for unknowns and test function, we can 

replace Uh = �¦ i=1
N

  Ui
h Ni  and �’ Uh = �¦ i=1

N
  Ui

h �’ Ni  taking (Ni)i� �����«��N the finite element vector 

space basis, Ui
h are computed locally in each node. 

�¦ e=1
Nel

 
�´
�µ�¶
�Ÿe

 �¦ i=1
N

  
�˜Ui

h

 � �̃W Ni��Nj dVh + �¦ e=1
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�´
�µ�¶
�Ÿe

 �¦ i=1
N
  DUi

h�’ Ni���’ Nj dVh 

= �¦ e=1
Nel

 
�´
�µ�¶
�Ÿe

 f��Nj dVh   

(��3.37) 

Previous system is rewritten as: 

�¦ e=1
Nel

 
�´
�µ�¶
�Ÿe

 Ni��Nj dVh �¦ i=1
N

  
�˜Ui

h

 � �̃W + �¦ e=1
Nel

 
�´
�µ�¶
�Ÿe

 D�’ Ni���’ Nj dVh �¦ i=1
N
  Ui
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�´
�µ�¶
�Ÿe

 f��Nj dVh   

(��3.38) 

After simplification, we obtain: 

�¦ e=1
Nel

 
�´
�µ�¶
�Ÿe

 Ni��Nj dVh 
�˜Uh

 � �̃W + �¦ e=1
Nel

 
�´
�µ�¶
�Ÿe

 D�’ Ni���’ Nj dVh U
h = �¦ e=1

Nel
 
�´
�µ�¶
�Ÿe

 f��Nj dVh   (��3.39) 

The final linear matrix system obtained reads; 

MmU
.
   + KdU  = F (��3.40) 

Where U  is the vector of nodal unknowns, Mm is the mass matrix, Kd is the stiffness matrix 
and F is the internal source vector. This system must be solved to obtain the numerical 
boundary conditions. The coefficient matrices and the load vector are defined as follows: 

Mm = A i=1
Nel�´

�µ�¶
Ki

 Ni Nj dK  

Kd = A i=1
Nel�´

�µ�¶
Ki

 D �’ Ni �’ Nj dK  

F = A i=1
Nel�´

�µ�¶
Ki

 f Nj dK  
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With Ni the linear interpolation function at node i and A is the matrix assembly operator, 

defined in such a way that we have: K = A i=1
Nel

 Ki . 

The linear system of equations issuing from the discretization is solved implicitly using the 
conjugate bi gradient-least squares method (BCGSL). There is also preconditioning to the 
resolution using the Jacobi method with incomplete factorization LU per block of size 2. 
 
A small indication to explain why we are using the developed form of the divergence term for 
the phase-field equation and the non-developed form of the divergence for the solute 
equation. 
 
Remark: 
The diffusion term for the phase-field equation depends on �I����so the equation is non linear. On 
the other hand, the diffusion term for the solute equation does not depend on U, so we have a 
linear equation. The same finite element solver has been used for both equations and is based 
on the construction of a linear system. To accelerate convergence, the divergence term in the 
left hand-side of the phase-field equation has been developed and rewritten allowing the 
elimination of the diffusion term inside it. Figure ��3.2 recalls the results obtained for 
convergence during thermal growth when this development has not been considered, showing 
that the high non-linearity on the phase-field equation needs this special treatment (which 
avoids also the implementation of a particular non-linear scheme). The blue line represents 
the variation of the adapted number of element depending on the dendritic growth for each 
case. When we increase hmin/W0

* the number of element N1 decreases because we have bigger 
elements, but when we increase W0

*/d0
*, N1 increases because the interface thickness increase 

and we have more element inside with the size of hmin. 

        
                                    (a)                                                                          (b) 

Figure ��3.2 Dimensionless tip velocity as a function of the grid spacing hmin and interface 
thickness W0

* for �' ��= 0.65, d0
*/W0

* = 0.554 and N2 = 25 000. The red line corresponds to the 
value obtained from the Green function calculation. a) W0

* = 1, b) hmin = 0.4. 
 
3.2.2 Mesh adaptation  
 
The methodology developed to build the metric field, described in section 2.2.2, is used to 
minimize the error on �I and U, by computing the error on the vector �] = (�I,U). Mesh sizes are 
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small at the solid/liquid interface, following the high gradient of �I, but the mesh is also fine in 
the part of the domain where the solute composition gradient is high, as illustrated in 
Figure ��3.3, where one may observe that the mesh size transition well follows the solute 
diffusion layer around the solid/liquid interface.   

 
Figure ��3.3 Illustration of the obtained adapted mesh, using �I and U solutions of a solutal 

dendritic growth, drawn at a final stage of the growth simulation. 
 
3.2.3 1D validation  
  
To validate the developed solver and check the sensitivity of the methodology to certain 
numerical features, the proposed solutal model was applied to a 1D case. Numerical solutions 
for the composition profiles and the growth velocity are thus compared to the analytical ones, 
which have been developed in Appendix C. The analytical form for the steady-state solute 
composition, as a function of the interface position coordinate, x0

*, is given by [AAR1970]: 

c(x*,�W) = c�f  + (cl/s �� c�f ) 
Erfc 

�©
�¨
�§

�¹
�¸
�·�Oc (x* �� x0

*)
2 (x0t

* �� x0
*)

 Erfc �©
�¨
�§

�¹
�¸
�·�Oc

2

  
                     
(��3.41) 

Here, x* is the non-dimensional position, x0t
* is the non-dimensional position at instant t, �Oc is 

a constant in one-diemsional solution- stationary interface position and Erfc is the erf 
function, detailed in Appendix B. This analytical equation is true forthe non-stationnary 
velocity case and a planar precipitate. This means that solute compositions in the solid and in 
the liquid are different and that the growth velocity decreases with respect tothe steady case, 
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where v = 
�Oc D*

2 �W
, and will tend towards zero. The solution obtained for the composition 

fields is schematically plotted in Figure ��3.4. 

 
Figure ��3.4 Composition profile at a certain time for a non-stationary velocity, when k < 1 and 

�: c < 1. 
 
Simulation of solidification has been performed in a [-1600;1600] 1D domain [ref], with �' x* 

= 0.4. The function �I = �� tanh 
�©
�¨
�§

�¹
�¸
�·x*

W0
* 2

 has been used to to represent the solid, the liquid and 

their interface. We have considered �T0 = �� 0.340, 8 000 nodes, x0
* = -1500, k = 0.15, Mc�f  = 

0.15, D * = 2, �' �W = 0.008, �E = 1.5, U0 = 2 and �O = 1. The solid/liquid interface diffuses from 
the initial position x0

* to the end of the domain, with the composition field. To study the 
analytical and numerical comparison when �: c�:���� ��c

s
 = cl ), we have chosen different values 

for �: c.. For that, we compute, for a certain c�f  (initial composition in the domain) and k, the 
composition in the solid cs and the composition that we should have at the interface cl/s

 for a 
constant temperature, using the equation for the supersaturation �: c, given by: 

�: c = 
c�f  �� c

l/s

cs �� cl/s 
                     
(��3.42) 

cl/s = 
T0 �� TM

m  = 

�T����(1 �� k)
��M  + c�f

 c�f
    and cs = kcl/s 

                     
(��3.43) 

To start the simulation, we also need �T 0, computed from the equations above, and U0 obtanied 
from c�f  using equation (��3.4). Figure ��3.5 shows the different composition profiles in the liquid 
for different �: c at different adimensional instants (�W1 = 800, �W2 = 4 000, �W3 = 8 872, �W4 = 
19 776, �W5 = 34 400 and �W6 = 69 256). 

 



70 | C h a p t e r  3 S o l u t a l  m o d e l 

 

   
(a)                                                                     (b) 

   
(c)                                                                     (d) 

Figure ��3.5 Analytical and numerical profiles of liquid composition around the interface for, a) 
c�f  = 2.7, cs = 2.682, cl/s

 = 17.88, �Oc = 44.654361 and �: c = 0.999, b) c�f  = 2.7, cs = 2.105, cl/s
 = 

14.033, �Oc = 5.882473 and �: c = 0.950, c) c�f  = 2.7, c
s = 0.69825, cl/s

 = 4.655, �Oc = 0.849279 
and �: c = 0.494, d) c�f  = 2.7, cs = 0.439, cl/s

 = 2.9268, �Oc = 0.109295 and �: c = 0.091. The 
different curves on each plot represent different instants: (�W1 = 800, �W 2 = 4 000, �W 3  = 8 872,  

�W4 = 19 776, �W�� = 34 400 and �W 6 = 69 256. In the first case, a zoom at the interface region has 
been done. 

 
Analytical (blue) and numerical (red) solutions are ploted in Figure ��3.5. In the numerical 
profile, we observe that the value of cl/s is not the same as the analytical computed one, but 
after some iteration, when the velocity decreases and small variations occur, the numerical 
composition at the interface converges to the analytical one. As we have a constant 
temperature, when we reach the analytical cl/s, the composition profile cannot have higher 
values than this one, but its slope continues increasing. In addition, the growth velocity 
decreases when decreasing �: c. Figure ��3.6 shows the variation of the velocity for different �: c. 
One observes that the analytical velocity is always the same. However, for �: c �§����, we notice 
that this analytical velocity has not been reached for the assumed size of the computational 
domain. To overcome with this problem, the domain has been increased to obtain the same 
velocity in the numerical simulation as the analytical one, and the graph of the composition 
comparison has been drawn.  
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(a)                                                                     (b) 

   
(c)                                                                     (d) 

Figure ��3.6 Evolution of the growth velocity as a function of time for, a) �: c = 0.999, b) �: c = 
0.950, c) �: c = 0.494, d) �: c = 0.091. 

 
After validating the numerical results concerning the growth velocity, one must compare the 
exponential analytical solution to the Erfc analytical one, for the composition profile, to see if 
we obtain the same profiles when �: c �:��������Figure ��3.7 shows that the Erfc and the exponential 
profiles are not comparable when �: c is far from 1. The more we approach from �: c = 1, the 
more they become coincident.  
To obtain an analytical expression for the dimensionless composition U, we must solve the 
following equation 

vn
st��

�wU
�wx* + D*��

�w2U
�wx*2  = 0  

                     
(��3.44) 
 

with the interface condition: 

[1 + (1 �� k) Ui] vn
st = �� D*���wx*U|l  

                     
(��3.45) 

and the far-field boundary condition: 

lim U (x*) = U0 when x* �:���� �f  
                     
(��3.46) 

The following 1D differential equation having U as variable is solved: 

D*U�´������vn
st U�¶��� ���� 

                     
(��3.47) 

The solution for this equation can be written as: 
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U = c1 exp(ax*) + c2 exp(bx*) with a = 0 and b = �� vn
st /D* 

                     
(��3.48) 

or U = c1 + c2 exp 
�©�¨
�§

�¹�¸
�·��vn

st x*

D*   

 
The boundary and interface conditions are used to find the constant values c1 = U0 and  

c2 = 
1 + U0 (1 �� k)

k   , leading thus the final form of the analytical solution for the dimensionless 

solute composition distribution: 

UAnal = U0 + 
1 + U0 (1 �� k)

k  exp
�©�¨
�§

�¹�¸
�·��vn

st x*

D*   
                     
(��3.49) 

One may demonstrate analytically that this exponential equation fits with the Erfc solution 
when �: c�����:�� ���� ���R�U���Oc �:�� �f ) as obtained in the numerical results. Replacing in (C5)in 
Appendix C, we have: 

�S
2  �Oc exp �©

�¨
�§

�¹
�¸
�·�Oc 2

4  Erfc �©
�¨
�§

�¹
�¸
�·�Oc

2  �§������ 
                     
(��3.50) 

 Defining r = x* �± x0
*
 and R = x0t

* �± x0
*
 , 
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4

   
                     
(��3.51) 

After simplification, 
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�·r
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�§

�¹
�¸
�·�Oc
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 �§ 
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�·1

4 
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�¸
�·�Oc����  ����
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(��3.52) 
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(��3.53) 
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2 D* �W

 Erfc �©
�¨
�§

�¹
�¸
�·�Oc

2
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R
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�·1

4 
�©
�¨
�§

�¹
�¸
�·(R �� r) (R �� r)

D* �W  
                     
(��3.54) 

 

Near the interface r ~ R so we obtain: 
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Erfc 
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�¸
�·r
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�·r
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�¸
�·�Oc
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(��3.56) 

Velocity can be expressed as: 

v = 
�Oc D*

2 �W
 = 

R
2�W 

                     
(��3.57) 

Then equation (��3.56) becomes: 

Erfc 
�©
�¨
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�¹
�¸
�·r
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 Erfc �©
�¨
�§
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�¸
�·�Oc
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�·

�©
�¨
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�¹
�¸
�·�� (r �� R)

D*  v  
                     
(��3.58) 

Replacing the value of Erfc by this exp equality in the analytical expression (C6) in  
Appendix C, we obtain the following analytical expression, valid for �: c = 1: 

U (1 �� k) + 1  = U0 (1 �� k) + 1 + �©
�¨
�§

�¹
�¸
�·U0 (1 �� k) + 1

k  �� U0 (1 �� k) �� 1  exp �©
�¨
�§

�¹
�¸
�·�� (r �� R)

D*  v   
                     

(��3.59) 
Which may lead to: 

U  = U0 + 
�©
�¨
�§

�¹
�¸
�·U0

k  + 
1

k (1 �� k) �� U0 �� 
1

 (1 �� k)  exp �©
�¨
�§

�¹
�¸
�·�� (r �� R)

D*  v   
                     
(��3.60) 

 

U  = U0 + 
�©
�¨
�§

�¹
�¸
�·U0 (1 �� 2 k + k 2) + (1 �� k)

k (1 �� k)  exp �©
�¨
�§

�¹
�¸
�·�� (r �� R)

D*  v   
                     
(��3.61) 

Finally, 

U  = U0 + �©
�¨
�§

�¹
�¸
�·1+ U0 (1 �� k )

k  exp �©
�¨
�§

�¹
�¸
�·�� (r �� R)

D*  v   
                     
(��3.62) 

This is equivalent to equation (��3.49) when �Oc �: �f  or �: c �:����  
 



74 | C h a p t e r  3 S o l u t a l  m o d e l 

 

   
(a)                                                                     (b) 

   
(c)                                                                     (d) 

Figure ��3.7 Liquid composition profiles around the interface: comparison between numerical 
and analytical (exp and Erfc values) for, a) �: c = 0.999, b) �: c = 0.950, c) �: c = 0.494, d) �: c = 

0.091. 
 
This shows that 1D numerical solution agree with analytical ones for 1D growth due to solutal 
exchange. Now, the same set of equations will be used to represent 2D solutal dendritic 
growth and will be �Y�D�O�L�G�D�W�H�G�� �E�\�� �F�R�P�S�D�U�L�Q�J�� �W�K�H�� �U�H�V�X�O�W�V�� �R�E�W�D�L�Q�H�G�� �Z�L�W�K�� �R�W�K�H�U�� �D�X�W�K�R�U�¶�V��
simulations. 
 
3.3  2D dendritic growth  

 
3.3.1 Comparison with a model of direct growth  
 
Let us consider a square domain [0;240]x[0;240], on which we place an initial circle seed of 
size 22d0

* where d0
* represents the dimensionless capillarity. To study the convergence of our 

method, the tip velocity along the x direction has been extracted. The anisotropy function used 

for growth isW��n�� = W0
* (1 �� 3�H4) �¬

�«
�ª

�¼
�»
�º

1 + 
4�H4

1 �� 3�H4
 
(�wx* �I)4+ (�wy* �I)4 

���_�’ �I���_���� , with �H4 = 0.02. The other 

simulation parameters are: U0 = �� 0.55; k =0.15; �E�¶��� ��������; �' �W = hmin/(�E�¶·vtip); �T is taken equal 
to zero; Mc�f  = 1. In the following, the variation of the tip velocity and composition profiles 
computed with CimLib are compared with the results obtained in [KAR2001] using a finite 
difference Eulerian method, with a structured mesh of �' x* = 0.4 and a constant timestep,  
�' �W = 0.008. 
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Figure ��3.8 Compared plots of scaled dendrite tip velocity vtipd0

*/D* vs scaled time �WD*/d0
*2 for 

different values of d0
*. 

   
Figure ��3.9 Compared plots of solute profiles in the solid along the central dendrite axis. 

 
The dimensionless dendrite tip velocity Vtipd0

*/D* is plotted vs the dimensionless time 
�WD*/d0

*2 in Figure ��3.8 for the two models and the scaled composition cs/cl
0 in the solid vs the 

scaled position x*/d0
* in the x direction is plotted for the two types of numerical resolution in 

Figure ��3.9, for different values of the solute diffusion, at �W = 3010 for D* = 1 and �W = 400 for 
D* =2. We know that D* = a1a2/d0

*, so for D* = 1 we have d0
* = 0.544 and for D* = 2 we have 

d0
* = 0.277. The results of [KAR2001] concern the growth velocity and the composition, and 

present small oscillations in the beginning of the computation for the composition. 
Oscillations can be also seen in Figure ��3.3, in the corner, where one observes a trace of 
adaptation and thus mesh size changes. These results show also that the solutions converges 
for the two values of d0

*, especially when comparing the composition profile with the one 
arising from Gibbs-Thomson relation: cs/cl

0 = k [1 �� (1 �� k)d0
*/�Utip] where �Utip is the dendrite 

tip radius.  This will be further detailed in chapter 4. 
 
3.3.2 Comparison with other models  
 
We have done a comparison of the results using our model with grid and time adaptation 
(named here CS) and the results obtained in [KAR2001] (named here DT) with the anti-
trapping term using the finite difference method based on [KAR2001], Kar�P�D�¶�V�� �P�H�W�K�R�G�� �L�V��
done without grid or time adaptation. The results present the same convergent evolution. 
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Figure ��3.10 Compared plots of scaled dendrite tip velocity vtipd0

*/D* vs scaled time �WD*/d0
*2 

for different values of d*
0. 

    
Figure ��3.11 Compared plots of solute profiles in the solid along the central dendrite axis, as a 

function of x*/d0. 
 
Parallel computations at CEMEF have been done on a Cluster equiped with bi-processors 
AMD Opteron Magny-Cours 2.3 Ghz with 8 cores and 32 Go of �5�$�0�����:�����*�R�����F�Rre) and a 
146 Go disk local SAS.  
[KAR2001] computations have also been done in parallel, but on GPUs, on a Cluster GeForge 
GTX 680 using 1536 cores and on a GTX TITAN using 2688 cores.  
Computational times were longer in our case, but scalability should be further studied to 
check if times became closer if more CPU ressources were available. 

 d0
*/W0

* 
Cores  

(CPU or GPU) tCPU or tGPU 

CEMEF 0.544 32 1h 15 min 

CEMEF 0.277 32 34 min 

Damien (GTX 680) 0.544 1536 9 min 21 s 
Damien (GTX 680) 0.277 1536 2 min 5 s 

Damien (GTX TITAN) 0.544 2688 8 min 11 s 

Damien (GTX TITAN) 0.277 2688 4 min 32 s 

Table ��3.1 Compared computational times using: our finite element code, parallelized using 
MPI and run on a CPU cluster; [KAR2001] code, parallelized and run on GPU clusters. 
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In our simulations, the time step has been increased while decreasing the velocity and 
increasing the number of elements needed to represent the interface, as shown in Figure ��3.12. 

  
Figure ��3.12 Number of elements and time step profiles during the simulation for d0

* = 0.544. 
 
3.3.3 Parameter sensitivity study  
 
The influence of the different numerical parameters on the results has been studied. Firstly, 
the number of fixed elements has been changed by changing N2, emin, and �E�¶�����:�H���G�H�G�X�F�H���W�K�D�W��
we cannot greatly reduce N2 because there will not be enough elements to represent the 
�G�H�Q�G�U�L�W�H�¶�V�� �V�K�D�S�H�� ���D�V�� �R�E�V�H�U�Y�H�G�� �L�Q��Figure ��3.13 (f)). The same happens for �E�¶���� �L�W�� �F�D�Q�Q�R�W�� �E�H��
decreased because the time step will increase in such a way that computation diverges and 
dendrite morphology is not attained. For emin, it will not influence the result; it will only affect 
the mesh size outside the solid liquid interface and the solute diffusion layer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Error! Reference source not found. shows that, when the number of elements decreases, the 
ip velocity decreases from the converged value of the velocity. The velocity profiles shown 
represent the tip velocity computed directly in the simulation as in equation (��2.63) (in red) 
compared to the tip velocity computed with a geometrical method, implemented in Matlab (in 
black), after finishing the simulation. When N2 = 1 000, the tip velocity (��2.63) is above the 

   
                                 (a)                                                         (b)                                                       (c) 

 
                                 (d)                                                         (e)                                                          (f) 

Figure ��3.13 Tip velocity obtained for different N2 values, with emin = 10-9 and �E�¶� �������������D����N2 = 100 000, b) N2 = 50 
000, c) N2 = 10 000, d) N2 = 5 000, e) N2 = 2 500, f) N2 = 1 000. 
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Figure ��3.13 shows that, when the number of elements decreases, the tip velocity decreases 
from the converged value of the velocity. The velocity profiles shown represent the tip 
velocity computed directly in the simulation as given by equation (��2.63) (in red) compared to 
the tip velocity computed with a geometrical method, implemented in Matlab (in black), after 
finishing the simulation. When N2 = 1 000, the tip velocity (��2.63) is above the converged 
value of the velocity and the other computed velocity is below it with a large difference. 
Below N2 = 10 000 we loose the dendrite shape. The dendrite profiles are plotted in 
Figure ��3.14 for these referred values of N2, where we can observe that when we decrease N2, 
dendrite shape deteriorates. Figure ��3.14 shows also the variation of the number of elements 
computed to represent the interface (N1), the total number of elements to be used (NE) and the 
real number of elements used in the simulation obtained after mesh adaptation (NEReal). In 
reality the number of elements used in the simulation is smaller that the computed and 
imposed one to the mesh adaptation. In fact, the constraint on a fixed number of elements is 
not always respected when the minimum error and the minimum mesh size given, combined 
with the adaptation on several fields, are also activated and too restrictive. We can see also 
that the number of elements decreases when decreasing N2, from 100 000 to 1 000. At the 
latter, we do not have enough elements to represent the dendrite. In addition, the real number 
of elements used in the simulation approaches from the computed one when decreasing the 
number N2. 
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                                  (e)                                                                 (f) 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                         

                      

        
                           (a)                                                              (b)                                                  (c) 

                                

                 
                                (d)                                                        (e)                                                      (f) 
Figure ��3.14 Dendrite profile drawn and variation of number of elements, for different values of N2 with emin = 10-9 

and �E�¶� �������������D����N2 = 100 000, b) N2 = 50 000, c) N2 = 10 000, d) N2 = 5 000 , e) N2 = 2 500, f) N2 = 1 000. 
 

 
                             (a)                                                      (b)                                                    (c) 

Figure ��3.15 Tip velocity profile for different values of �E�¶�����Z�L�W�K��N2 = 10 000 and emin = 10-9:  
a) �E�¶� �������������E�����E�¶� �������������F�����E�¶� ���������� 
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Figure ��3.15 shows that the tip velocity decreases when decreasing �E�¶. While decreasing �E�¶ the 
computed timestep, using equation (��2.67), increases from 0.008 to 0.04, as shown in  
Figure ��3.16. When a small value for �E�¶ (as 100) is used, a large timestep arises, up to 0.1, 
which is large enough to break the dendritic growth and the simulation will stop. 
 
 
 
 
 (a)                                                          (b) 

 
                                                                   
 
 
 
 
 
                                   
 
 
 
 
 
 
 
                     

(a)                                                      (b) 
 
    

Figure ��3.17 shows that changing the value of emin with the values given here does not affect 
the convergency toward the steady state value. In particular, one attains the analytical solution 
and the convergence speed is not altered, as well. 
 
We can see also the influence of the use of the parallel computation by making the same 
solutal simulation using 8, 16 and 32 cores. When we add more cores, the simulation takes 
less time to be finished as in Figure ��3.18. We finish the simulation for d0

* = 0.277 before the 
other simulation because D* is bigger and thus the computational case in the red line will be 
smaller. But the two lines are decreasing while adding the number of cores used in the 
simulation. The graphs are shown at �W = 3010 for d0

* = 0.544 and �W = 400 for d0
* = 0.277 

using N2 = 10 000. 

                                  
                              (a)                                                        (b)                                                        (c) 

Figure ��3.16 Time step evolution for different �E�¶�����Z�L�W�K��N2 = 10 000 and emin = 10-9: a) �E�¶� ������������ 
b) �E�¶� �������������F�����E�¶� ���������� 

  
                              (a)                                                     (b)                                                    (c) 

Figure ��3.17 Evolution of the tip velocity for different values of emin, with N2 = 50 000 and  
�E�¶��� �������������D����emin = 10-6,b) emin = 10-9, c) emin = 10-11. 
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Figure ��3.18 Computational time using 8, 16 and 32 cores when d0

* = 0.544 and d0
* = 0.277. 

 
The difference between the simulation using d0

* = 0.277 and d0
* = 0.544, is due not only to 

the growth velocity but also to the number of elements used since we have a smaller number 
of elements for d0

* = 0.277, as illustrated in Figure ��3.19. 
 

 
Figure ��3.19 Variation of the number of elemnts with time using d0

* = 0.544 and d0
* = 0.277. 

3.4 Conclusion  
 
In conclusion, there are two equations that need to be solved to simulate solutal dendritic 
growth: the phase-field equation and the mass conservation equation. They were here 
rewritten with dimensionless variables: 
 

�W��n����
�w�I
�w�W �������’ ���� W������n�����’ �I����= [�I �����O(�T + Mc�f U)���������� �I��������]�������� �I�������� �� 
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(��3.63) 
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With  
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U = 
�¬
�«
�ª

�¼
�»
�º2c/c�f

1 + k �� (1 �� k)�I ������ ��
�©
�¨
�§

�¹
�¸
�·1

1 �� k  (��3.65) 

�T = 
T �� TM �� mc�f

L/cp
 (��3.66) 

And 

�I = �� tanh 
�©
�¨
�§

�¹
�¸
�·�K

W0
* 2

 (��3.67) 

We have validated its resolution in 1D by comparing the numerical results with analytical 
ones and by comparing them to other numerical resolutions in 2D. The solutal equation may 
now be fully coupled to heat transfer to study thermo-solutal dendritic growth, by combining 
the three problems presented before. 

 

 

 

 

 

 

 

 

 

 

 

Résumé 
Dans ce chapitre, nous avons présenté les équations utilisées dans le modèle de champs de 
phase et leur développement pour la croissance dendritique solutale. Nous avons défini deux 
équations à résoudre : �O�¶�p�T�X�D�W�L�R�Q���Gu �F�K�D�P�S���G�H���S�K�D�V�H���H�W���O�¶�p�T�X�D�W�L�R�Q���G�H���F�R�Q�V�H�U�Y�D�W�L�R�Q���G�H���P�D�V�V�H����
La résolution numérique est présentée en montrant le remaillage utilisée, qui minimise 
�O�¶�H�U�U�H�X�U���V�X�U �I et U. Un cas 1D a été présenté pour valider les équations en 1D. A la fin, une 
croissance dendritique a été présentée en 2D avec une validation et une étude paramétrique 
(numérique).  
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4.1 Model equations  

 
Phase-field energy and mass conservation equations are coupled and presented here for  
thermo-solutal dendritic growth simulations. The solved system of equations has been derived 
from the ones stated by [RAM2004]. Combining the solute and thermal cases, the standard set 
of sharp-interface equations consists in: 

�wc
�wt = D l �' c  (��4.1) 

�wT 
�wt  = �D�� �' T  (��4.2) 

ci (1 �� k)vn = �� D l�’  ci (��4.3) 

�ULvn = (�N��s �’ T s �� �N l �’ T l ) (��4.4) 

Ti
 = TM + m ci �� �*�Nr �� �Qn /�P�N (��4.5) 

As previously, the following dimensionless variables are defined: 
 

U = 
�¬
�«
�ª

�¼
�»
�º2c/c�f

1 + k �� (1 �� k)�I ������ ��
�©
�¨
�§

�¹
�¸
�·1

1 �� k  (��4.6) 

�T = 
T �� TM �� mc�f

L/cp
 (��4.7) 

In terms of these variables, the free-boundary problem becomes: 
�w�W U = D*

 �' U (��4.8) 

�w�W���T��= �D 
*�' �T  (��4.9) 

[1+ (1 �� k)Ui ] vn = �� D*  �’ U l (��4.10) 
vn = �D��* (�’ �T s �� �’ �T��l) (��4.11) 

�T i����+ Mc�f  Ui = �� d���Nr �� �E��vn (��4.12) 

We define the free energy functional as,��
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F(�I,T,c) = 
�´
�µ
�¶
�Ÿ

 
W(n)2

2  |�’ �I��|2 + fAB (�I,T,c) dV = 
�´
�µ
�¶
�Ÿ

 F int dV  (��4.13) 

In the same way as before, the variational derivatives of F must satisfy the following 
equations for equilibrium: 

�GF
�Gc = 

�wFint

�wc  �� �’  � ̃
�wFint

���w�’ c =�PE = constant  

�P�(��is the chemical potential 
(��4.14) 

�GF
�G�I = 

�wFint

�w�I  �� �’  . 
�wFint

���w�’ �I � ����  
(��4.15) 

We use the Allen-Cahn and Cahn-Hilliard framework [CAH1958],[CAH1979] to derive the 
equations: 
�wc
 �wt = �’ .

�©
�¨
�§

�¹
�¸
�·

Mc �’  
�GF
�Gc �� jat  = �’ .

�©
�¨
�§

�¹
�¸
�·

Mc �’  
�©
�¨
�§

�¹
�¸
�·

 
�wFint

�wc  �� �’  � ̃
�wFint

���w�’ c  �� jat  = �’ .( )Mc �’ �P�( �� jat  (��4.16) 

�w�I
 �w�W = �� M�I 

�GF
�G�I  = �� M�I �©

�¨
�§

�¹
�¸
�·�wFint

�w�I  �� �’  .
�wFint

���w�’ �I  (��4.17) 

M�I and Mc are positive mobilities, parameters related, respectively, to the interface kinetic 
coefficient and to the solute diffusion coefficient. Adding together the energy and solute 
contributions yields to write fAB(�I,c,T) as follows: 

fAB(�I,T,c ) = g(�I) + 
RgTM

v0
 (clnc �± c) + �H��c��

__
 + g

_
(�I) 

�' �H
�� c  (��4.18) 

We deduce then the three equations to be solved [RAM2004].: 

�W��n����
�w�I
�w�W �������’ ���� W������n�����’ �I����= [�I �����O(�T + Mc�f U)���������� �I��������]�������� �I�������� �� 

�w
�wx*
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�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wx* �I)

����
�w

�wy*
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�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wy* �I)

 ����
�w

�wz*
�©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wz* �I)

 
(��4.19) 

 
�w�T
 �w�W �� �D

� �' �T��= �� 
1
2 

�w�I
 �w�W (��4.20) 

 1+ k �� (1 �� k) �I
��  

�wU
 �w�W  = 

�’ .
�©
�¨
�§

�¹
�¸
�·

 D* 
1 �����I 

����  �’ U + 
W��n��
2 2

 [(1 �� k)U + 1] 
�w�I
 �w�W 

�’ �I
 |�’ �I��|   + 

1
 2 (1 + (1 �� k)U) 

�w�I
 �w�W 

(��4.21) 

 

 

Notations used for each parameter were given in chapters 2 and 3. 
As done for the pure thermal and solutal cases, validation of the model and its implementation 
will be done in the 1D and 2D cases. 
 

4.2 1D thermo -solutal validation  
 
Results obtained are compared with the analytical solutions in 1D presented in [RAM2004], 
corresponding to the planar front evolution problem. Solidification computation was 
performed using a 1D mesh with a mesh size �' x* = 0.4, and by defining again initially the 
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function �I = �� tanh 
�©
�¨
�§

�¹
�¸
�·x*

W0
* 2

 to represent the solid/liquid interface, as illustrated in Figure ��4.1. 

The interface diffuses from an initial position x0
*. 

 

 

 
Figure ��4.1 1D rectangular domain (below) and detail of the function �I at the initial time �W0. 

 
To obtain the analytical form for the steady-state energy and solute solutions in the 
adimensional case, the following equations are solved: 

vn
st��

�wU
�wx* + D*��

�w2U
�wx*2  = 0  

                     
(��4.22) 

vn
st��

�w�T
�wx*  + �D*��

�w2�T
�wx*2  = 0  

                     
(��4.23) 

with the interface conditions: 

[1 + (1 �� k) Ui] vn
st = �� D*���wx*U|l  

                     
(��4.24) 

vn
st = �� �D*���wx*�T��|l  

                     
(��4.25) 

�Ti + Mc�f Ui = �����E vn
st 

                     
(��4.26) 

and the far-field boundary conditions: 

lim U (x*) = 0 when x* �:���� �f  
                     
(��4.27) 

lim �T��(x*) = �����'  when x* �:���� �f  
                     
(��4.28) 

Thus, the differential equation for U  to be solved is, 

D*U�´������vn
st U�¶��� ���� 

                     
(��4.29) 

Its solution can be written as: 

U = c1e
ax* + c2e

bx* with a = 0 and b = �� vn
st /D* 

                     
(��4.30) 

Leading to U = c1 + c2e
��vn

st x*

D*  . We use the boundary and the interface conditions to find the 

constant values c1 = 0 and c2 = 1/k, which provide the analytical solution for the solute as: 
 

UAnal = 
1
 k e

��vn
st x*

D*   
                     
(��4.31) 

The differential equation for �T evolution is: 

�D* �T���´������vn
st�T���¶��� ����  (��4.32) 
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And its solution is of the form: 

�T = c1e
ax* + c2e

bx* with a = 0 and b = �� vn
st /�D* 

                     
(��4.33) 

which gives �T = c1 + c2e
 
��vn

st x*

�D*   

As for the solute composition, boundary and interface values allow the determination of c1 

and c2, being c1 = �� �'  and c2 = 1. 
The analytical solution for the adimensionalized temperature is: 

�TAnal = e 
��vn

st x*

�D* ���� �'   
                     
(��4.34) 

Firstly, we start with diffusing the interface by solving the set of three equations (��4.19), (��4.20) 
and (��4.21). The analytical solutions are defined as in equations (��4.31) and (��4.34), slightly 
changed since it is spatially located relatively to x0

*: 

�TAnal = exp �©�¨
�§

�¹�¸
�·vn

stx0
*

D*  ����
vn

stx*

��D*  �����'   
                     
(��4.35) 

UAnal = 
1
k exp �©�¨

�§
�¹�¸
�·vn

stx0
*

D*  ����
vn

stx*

D*  
                     
(��4.36) 

The 1D rectangular domain is of dimension [����������;1600]. The initial values and parameters 
considered are (mostly taken from [RAM2004]): �T��0 = �TAnal, U0 = UAnal, NbNodes = 8000,  
x0

* = �� 1500, �D* = 2,��D* = 2, �E = 1.5, �'  = 2.3, Mc�f  = 0.15, k = 0.15 and �' �W  = 0.008. 
Numerical resolution has been detailed in the previous chapters, and post-process includes 

computing the interface velocity given by vn
st = 

�'  �� 1 �� Mc�f /k
�E  (with �O = 1) at the steady state. 

This last decreases with time until stabilization, as illustrated in Figure ��4.2. When the steady 
state velocity is reached, numerical and analytical profiles of temperature and composition 
around the interface can be compared. 

 
Figure ��4.2 Computed interface velocity in 1D with �'  = 2.3, k =0.15, Mc�f = 0.15 and �E = 1.5. 

Steady state value is reached for �W = 6 000 and is 0.2. 
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Figure ��4.3 Comparison between analytical and numerical solutions for �T��and U at �W = 6 400, 

in the region around the interface, x* �•  [-200;200]. 
 
Numerical and analytical profiles very well agree for the temperature and the solute 
composition, as shown in Figure ��4.3, which well validate the model and its numerical 
implementation. 
 
The dimensional composition value c, may be computed during post-process by: 

c/c�f  = 
1
2 [1 + k �� (1 �� k)�I ] [(1 �� k)U + 1 ]  

                     
(��4.37) 

As well as the liquid and solid compositions: 

cs/c�f  = 
1
2 [1 + k �� (1 �� k) ] [(1 �� k) U S + 1 ]  

                     
(��4.38) 

cl/c�f  = 
1
2 [1 + k �� (1 �� k) ] [(1 �� k)U L + 1 ]  

                     
(��4.39) 

with U S and U L the values of the adimensional composition in the solid and liquid, 
respectively. Figure ��4.4 illustrates the composition, interface and temperature around the 
interface at �W = 2 800. The liquid and solid compositions are both represented to well 

demonstrate that cs = c�f  and cl = c�f  �¬
�«
�ª

�¼
�»
�º

1 + 
1 �� k

k  exp�©�¨
�§

�¹�¸
�·��

vn
stx0

*

D*  �� 
vn

stx*

D* . Results clearly match the 

ones presented by [RAM2004]. 
 

 
Figure ��4.4 On the left, �I, �T��and U at �W = 2 800 and, on the right, the dimensional 

compositions, both around the interface. 
 



88 | C h a p t e r  4 T h e r m o- s o l u t a l  m o d e l 

 

 
An important remark must be underlined: simulations performed start with the initial 
temperature and composition values identical to the analytical ones. During the transient 
phase, one observes a slight deviation from the theoretical composition profile, showing a 
bump (Figure ��4.5.) that with time becomes stable, particularly when the steady-state growth 
velocity is reached. In this example, the analytical and numerical profiles do not exactly 
superpose. Some simulations with different parameters have been made and we have observed 
that this bump changes while changing the form of �W(n) and �O, which may also lead to 
differences in the growth velocity. A deeper study of the influence of the initial parameters 
should be done to clearly enhance the influence of these two factors.  In our opinion, 
simulations using larger domains will overcome this last problem, because stationary velocity 
has not been yet reached in the considered domain ([-400;400])(small). 

 
Figure ��4.5 Non-dimensional composition profile at an instant of growth showing the deviation 

in a [-400;400] 1D domain, plotted before staeady-state is reached. 
 

4.3 Thermo -solutal dendritic growth  
 
4.3.1 Mesh adaptation  
 
The same method of metric construction is used to adapt the mesh using an error estimation  
and minimization procedure, but now on the vector �] = (�I,�T,U). We have small meshes at the 
interface solid/liquid following the gradient of �I and smaller meshes than the whole domain 
where we have composition and temperature gradient, as illustrated in Figure ��4.6. The mesh 
captures thus the three diffusion profiles.  
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Figure ��4.6 Thermo-solutal dendritic mesh, obtained by minimizing the error on �I�����T and U. 

 
We can see that the mesh is adapted following the solid/liquid interface, the temperature 
visualized outside the dendrite but also we can see that we have small meshes inside the 
dendrite because of the composition gradient, which did not happen for the pure thermal 
growth case. 
 
4.3.2 2D thermo -solutal dendritic growth  
 
An example of 2D thermo-solutal dendritic growth is now detailed to enhance each of the 
thermal and solute diffusion rates and show how mesh adaptation on the three parameters fits 
and improve the simulation. The set of equations solved during this simulation is composed of 
Equations (��4.19), (��4.20), (��4.21) and Equations (��4.19), (��4.20), (��4.21) and 

 U = 0   �R�Q���˜�:  
�T = �� 0.55  �R�Q���˜�:  
�I = ����1  �R�Q���˜�:  

U (.,0) = U0 
�T (.,0) = �T 0 

�I (.,0) = �I 0  

(��4.40) 

Computation has been performed in a square domain of size [0;320]x[0;320], with: �T��0 = �� 
0.55, emin = 10-9, N2 = 50 000, hmin = 0.4, k = 0.15, Mc�f  = 0.5325, U0 = 0, �' �W = hmin/(300·vtip),  
D* = 5, �D* = 250 and starting from a nucleus of radius 1, the boundary conditions given above 
and by setting mesh adaptation parameters to take into account the solutions of (�I, �T,U). An 
illustration of the results obtained after growth, is shown in Figure ��4.7. 
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Figure ��4.7 Thermo-solutal dendritic growth at �W = 328.862, showing the difference between 

the thermal and solute diffusions and the adapted mesh. The parameters used are listed above. 
 
Figure ��4.7 shows that the temperature profile diffuses in a wider way than the composition 
one, since there is a ratio of 50 between the two diffusion coefficients, as also given by the 
Lewis number, Le = �D*/D*. Moreover, one observes that the mesh is well adapted following 
the three variables, as referred above: enriched around the interface and sizes varying with the 
gradient in the diffusion layer. 
 
Figure ��4.8 plots the variation of the solid and liquid compositions in the x direction for y = 0: 
constant in the solid since Ds = 0; decreasing in an exponential way in the liquid, as expected. 

 
Figure ��4.8 For 2D thermo-solutal dendritic growth, composition profiles at���W = 328.862 

measured along the x direction for y = 0. 
 
Results obtained may be compared with the ones from [RAM2004], where the authors have 
provided a 2D solution for thermo-solutal growth, computed with the phase-field method and 
by adding an anti-trapping term, using the finite difference method. 
To study the convergence of our method, let us consider different square domains 
([0;120]x[0;120], [0;160]x[0;160] and [0;240]x[0;240]), on which an initial seed of size 65d0

* 
is placed. Tip velocity evolution in the x direction is studied. The anisotropy function 

considered isW��n�� = W0
* (1 �� 3�H4) �¬

�«
�ª

�¼
�»
�º

1 + 
4�H4

1 �� 3�H4
 
(�wx* �I)4+ (�wy* �I)4 

���_�’ �I���_���� , with �H4 = 0.02. The other 

simulation parameters are: �T0 = �� 0.55, U0 = 0, k =0.15, Mc�f  = 0.5325, �E�¶�� � �� �����������' �W = 
hmin/(�E�¶·vtip). Figure ��4.9 shows the variation of the tip velocity, the tip radius �Utip and �V*  (the 
tip selection parameter) where one observes that results are very close to the ones obtained in 
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[RAM2004]. The plots are shown for different �O as defined in chapter 1 as �O = a1W0/d0, this 
parameter represents the variation of d0. 

 
Figure ��4.9 Temporal evolution of various growth parameters for two-dimensional dendritic 

solidification of a binary alloy in an undercooled melt, with coupled heat and solute diffusion 
(Le = 1, Mc�f  = 0.5325, k = 0.15, �H4 = 0.02 and �'  = 0.55) and for different �O = a1W0/d0. The 

lines in each graph correspond to different �O (directly related with the interface width). 
 
In these plots, �V*  is computed using the tip velocity, the solute diffusion, the capillarity and 

the tip radius, �Utip, �V* = 
2D*d0

*

�Utip vtip
. To compute the tip radius, a subset  

A = {y*/ y* > ymax
* �� 3r0}  has been taken, where ymax

* is the ordinate of the dendrite tip, r0 is 
the first estimation of the radius. The tip is approached with a parabola (P) of equation: 

 y* = c1x
*2 + c2x

* + c3  (��4.41) 

c1, c2 and c3 are computed using the least squares method and used to obtain r �����  
(1 + c2

2)3/2

2c1
 . 

Finally, r1 allows to refine the subset A, to have a subset B = {y* / y* > ymax
* �± Const· r1} , and 

so on. Const is initialized with 2 and decreases with iterations. This new subset is fitted with 
the parabola (P) to compute r1. We refit while decreasing Const until �F2 < e and then �Utip = r 1 

is assumed. �F is the sum of the squared residuals and �Ntip is the curvature. At the end: 

�Ntip���  
y''*

(1 + y'* 2 ) 
3

2

 = 
2c1

(1 + c2 
2 ) 

3

2

  for x* = 0 and ���Utip = 
1

�Ntip
  = 

(1 + c2 
2 ) 

3

2

2c1
  (��4.42) 

Sensitivity of the results to the heat extraction (or the undercooling) has been studied. The 
problem to solve is the same as above, where we have included the heat extraction on the 
boundary as: 

�D��’ �T = hext
*(�T �� �T��ext)    �R�Q���˜�:   (��4.43) 
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Let us consider a square domain of size [0;320]x[0;320] with a different in-itial temperature  
�T��0 = �� 0.5 and �T Nucl = �� 0.55, emin = 10-9, N2 = 50 000, hmin = 0.4, k = 0.15, Mc�f  = 0.5325,  
U0 = 0, �' �W = hmin/(300·vtip), hext

* = 163.3·10-4, �T ext = �� 2, D* = 5, �D* = 250. At the beginning of 
the computation, nucleation has not occurred, we have only liquid. 
We observe that with the heat extraction, average temperature decreases. When the corner 
temperature is equal to the nucleus temperature, a nucleus of radius one appears in the 
domain, and solidification starts, maintaining the heat extraction. 
Results obtained are shown in Figure ��4.10 and  Figure ��4.11. 

   

    
Figure ��4.10 Thermo-solutal dendritic growth with heat extraction, plotted at �W = 0-80, 

640.703, 975.205, 1 677.21, 3 137.88, 5 197.26, for the conditions given in (��4.40), showing 
the phase function distribution. 

  

   
Figure ��4.11 Thermo-solutal dendritic growth with heat extraction, plotted at �W = 0, 80, 

640.703, 975.205, 1 677.21, 3 137.88, 5 197.26, showing the phase function distribution with 
the adapted mesh. 
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At the beginning, there is only liquid; after nucleation, the solid fraction begins to increase 
and the liquid fraction begins to decrease. The computed dendrite tip velocity decreases 
�Z�L�W�K���W�L�P�H�����)�X�U�W�K�H�U�P�R�U�H�����R�Q�H���R�E�V�H�U�Y�H�V���Q�X�F�O�H�D�W�L�R�Q���D�Q�G���W�K�H���³�U�H�F�D�O�H�V�F�H�Q�F�H�´���L�Q���W�K�H���W�H�P�S�H�U�D�W�X�U�H��
evolution. Temperature decreases before nucleation, because we are extracting heat but 
when nucleation occurs the grain starts to solidify and temperature starts to increase with 
the phase change and the heated dendrite. During phase change, either the stationary 
growth velocity is reached or the border of the domain is attained. At this point, the 
primary tip stops its growth which implies again a decrease of the temperature, as seen in 
Figure ��4.12. We can also see that with the formation of the nucleus the solid fraction, gs, 
increases and the liquid fraction, gl, decreases because the liquid zone is solidifying and 
transforming into solid. The fraction g z of a phase z inside V is obtained through: 

g z�� = 
1
V 

�´
�µ�¶
V

 �F z dV = 
V z

V  = 
<�[ z >

<���[ z > z (��4.44) 

 
Figure ��4.12 Thermo-solutal dendritic growth with heat extraction at �W = 5 197.26, showing the 
evolution of the averaged temperature and the solid fraction, liquid fraction and the dendrite 

tip velocity. 
 
Supposing symmetry, simulations have been performed in 1/4 of the domain in 2D and 1/8 or 
1/48 in 3D (even if this imposition is not a restrictive condition). 
Growth starts using a radius small enough to have a real dendrite without splitting (i.e. 
primary dendrite splits from the border), as well as enough elements. N2 should be computed 
automatically to fix this problem. To enhance the main problem arising when these two points 
are not verified, Figure ��4.13 provides two tested configurations in 2D, under the same 
physical conditions, but different domain sizes. One observes that, for a given nucleus radius 
(R0 = 10 with N2 = 50 000), for a normalized domain of radius equal to 500, there is splitting 
of the primary arms, avoided by decreasing the initial nucleus radius to 1.5 or by using the 
whole domain. For a larger computational domain (with a radius equal to 1000), we should 
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have even smaller initial nucleus radius and increase the number of elements (in this case N2 = 
150 000). 

 
R0 = 10          R0 = 10                      R0 = 1.5 
N2 = 50 000        N2 = 150 000          N2 = 50 000 
�W = 97.29          �W = 67.8724         �W = 281.68 

          
R0 = 10     R0 = 0.167   R0 = 0.167 
N2 = 50 000     N2 = 50 000                  N2 = 150 000 
�W = 357.35    ���W = 142.94                �W = 166.36 
Figure ��4.13 2D simulations showing the splitting and how to solve these numerical problems 
by reducing the initial radius and adding enough elements to do the simulations.The size of 

the computational domain is equal to 500 in the top row and 1000 in the bottom one. 
 
4.3.3 3D thermo -solutal dendritic growth  
 
3D simulations for dendritic growth have been performed. Figure ��4.14 illustrates the thermo-
solutal dendritic growth for a domain of size [0;1000]x[0;1000] x[0;1000], with �T��0 = �� 0.65, 
emin = 10-9, N2 = 2 000 000, hmin = 0.4, �H4 = 0.05, D* = 4, �D* = 40, an initial nucleus of  
radius 1, and remeshing following �I, �T������U solutions and �' �W = hmin/(10·vtip). 
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Figure ��4.14 3D thermo-solutal dendritic growth at �W = 164.976, 320.871, 416.195, showing 

cuts of  the temperature and the composition profiles, as well as the mesh on the left, and the 
morphology development on the right. 

 
Results are in agreement with previous 2D simulations (Figure ��4.15). Numerical accuracy 
(different arm splitting), still depends on the numerical parameters taken. A strategy to impose 
this may be to further ameliorate adaptivity by establishing a relationship between the 
imposed (and wanted) equidistributed error and the number of elements. 
Figure ��4.15 shows two simulations (growth in the <100> and <111> directions), using 1/48 
and 1/8 of the domain. In the cases using 1/48, splitting rapidly occurs to finally loose the 
dendrite form. Same thing occurs for the 1/8 case but we will reach the splitting situation 
after. Thus, more studies should be done on supposing symmetry for the thermo-solutal case 
when the model will be applied for the physical parameters representing the Al-4.5wt%Cu 
droplet. Otherwise, it is better to do the simulation for the whole droplet and to ensure strictly 
the necessary number of elements.   
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                (a)                                                                             (b) 

   
                (c)                                                                               (d) 

Figure ��4.15 3D simulations showing the splitting with 1/48 and 1/8 of the domain, a)��1/48,  
�W = 12.3 and �H4 =  0.02, b) 1/8, �W = 11.9 and �H4 = ����0.02, c) 1/48,���W = 13.35 and �H4 =  0.02, d) 

1/8, �W = 14.09 and �H4 = ����0.02. 
 
4.4 Conclusion  

  
In conclusion, there are three equations that need to be solved to simulate thermo-solutal 
dendritic growth: the phase-field equation, the energy equation and the mass conservation 
equation. These equations are reformulated here with dimensionless variables. This model has 
been validated in 1D and 2D for different types of growth. We have seen that we can do 3D 
thermo-solutal growth but sensitivity studies to obtain the optimal parameters should be made 
on the parameters of the simulation. Solid and liquid fractions may be deduced, as well as the 
temperature profile, and one may study the �Q�X�F�O�H�D�W�L�R�Q�� �D�Q�G�� �³�U�H�F�D�O�H�V�Fen�F�H�´�� �S�K�H�Q�R�P�H�Q�D����
Simulations in 3D for thermo-solutal growth to validate the model should be done in the 
future. Nevertheless, model can now be used to try to do simulations for physical growth of 
an Al-4.5wt%Cu alloy. In the next chapter, we will show the results for this alloy in 2D. 
 
To conclude, the algorithm used to do a complete thermo-solutal dendritic growth is given 
below. 
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Résumé 
Dans ce chapitre nous avons présenté les équations du modèle thermo-solutale qui combine 
les trois mécanismes décrits auparavant. Nous avons fait des calculs en 1D et 2D pour valider 
les équations utilisées en comparant les résultats numériques avec des résultats analytiques ou 
considérés comme cas test. A la fin du chapitre, nous avons montré que nous pouvons faire 
des calculs 3D et extraire les profils de températures ou de compositions et les fractions solide 
et liquide, et des paramètres comme le rayon �G�H���O�D���S�R�L�Q�W�H���H�W���G�¶�D�X�W�U�Hs�«  
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Chapter 5 
5 Physical simulation s 

__________________________________________________ 
 
5.1 Modeling of equiaxed solidification in alloys ......................................................... 100 

5.1.1 Phase-field model (PF) description .................................................................. 101 
5.1.2 Mean-field model (MF) description ................................................................. 104 

5.2 PF and MF simulations and methodologies for comparisons .................................. 110 

5.2.1 Studied configurations ...................................................................................... 110 
5.2.2 Phase-field simulation ...................................................................................... 113 
5.2.3 Grain envelope extration .................................................................................. 121 
5.2.4 Computation of average and representative quantities..................................... 123 
5.2.5 Mean-field simulation ...................................................................................... 125 

5.3 Parametric study ...................................................................................................... 130 

5.3.1 Microstructure parameter ................................................................................. 131 
5.3.2 Droplet radius ................................................................................................... 134 
5.3.3 Initial droplet velocity ...................................................................................... 135 
5.3.4 Nucleation temperature .................................................................................... 136 
5.3.5 External temperature ........................................................................................ 137 
5.3.6 Atomisation gas ................................................................................................ 138 
5.3.7 Timestep and initial radius ............................................................................... 139 

5.4 Conclusion ............................................................................................................... 140 

___________________________________________________________________________ 
 
To model equiaxed solidification, several approaches have been considered in the literature, 
such as the previously described phase-field method [AST2009], [BOE2002], [FRI2009], 
[HEC2004], or others like the mean-field method [TOU2009], front tracking techniques (like 
the levelset one) [BAN1994], [NAK2006], [SAI1988], [UDA1999], or cellular automata 
[GAN1999], [RAP1993]. Other coarse-grained models have been developed at the mesoscale 
to predict the unsteady growth of dendritic grains, like the dendritic needle network model 
(DNN) [TOU2013] and their internal solid fraction [STE1999], [STE2005], [ZAL2013]. 
Between all these approaches, the mean-field method as developed by Tourret [TOU2009] 
has been applied to droplet solidification accounting for dendritic, peritectic and eutectic 
growth. Other applications of the latter include prediction of macrosegregation and 
microsegregation for columnar and equiaxed growth, like described in the thesis of Nguyen 
[NGU2015] and Leriche [LER2015] for heavy ingots solidification,as well as applications to 
multicomponent alloys 
 
In this part, phase-field (PF) simulations with the present model are compared with mean-
field (MF) computations using the developments presented in [TOU2009]. The test case 
considered is the simulation of a droplet of composition Al-4.5wt%Cu. To compare both 
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numerical simulations in a given configuration, we have supposed a cylindrical geometry in 
MF, whereas the geometry is a 2D disk for PF. There are several objectives when performing 
this comparison: firstly, it allows a more complete validation of our PF model; secondly, it 
helps improving the MF model through a better understanding of the approximations and the 
choice of various parameters. One other important motivation is the difference in the 
computation time between both implementations. We know that the phase-field model is yet 
not usable on very large domains, since typical systems require high performance computing 
capabilities available during long computation times to attain quantitative physical results. 
Looking at the domain of validity of each method will allow the choice of which is more 
pertinent, when considering the ratio accuracy/available computational power, as done by 
[NGU2015], [LER2015]. Typically, computations on the same configurations run on several 
days of CPU time using several processors using the phase-field approach, whereas mean-
field one have a duration of a few seconds using one processor. 
 
In the following, the PF model described previously is shortly summarized. Then, the MF 
model, as developed and implemented by Tourret [TOU2009], is presented. Results for both 
techniques on a given configuration are compared. Input data as the physical and numerical 
parameters needed to simulate solidification for the considered Al-Cu alloy are detailed, and 
outputs, like the topological and averaged quantities of certain variables, are given. For the 
latter, post-processing of phase-field results is necessary and described in the following. 
Finally, comparisons and a study on the sensitivity to model parameters are shown.   
 
5.1 Modeling of equiaxed solidification  in  alloys  

 
To perform direct simulations of Al-Cu samples, heat and mass balance equations are solved 
using the PF method. In parallel, by considering microscopic phenomena in macroscopic 
configurations, the MF model is applied. For both types of simulations, the following general 
assumptions were considered: 
(i) the chemical diff usion in the solid is neglected; 
(ii) a 2D disk (PF) envelope is assumed, representative of a transverse section of a cylindrical 
MF domain; 
(iii) the alloy is binary, i.e. a single chemical species is designated as the solute of the alloy; 
(iv) physical properties of the phases are constant. For example, density is assumed uniform, 
constant and equal in all the phases; 
(v) nucleation takes place and growth starts at the center of the domains; 
(vi) the computational domain is initially full of liquid, with uniform temperature, and heat is 
extracted from its boundary until a prescribed nucleation temperature is reached at the center 
of the domain;  
(vii) a closed system is supposed with respect to the mass balance, meaning that the global 
composition of the domain remains constant;  
(viii) the solidus and liquidus lines of the phase diagram are supposed linear; 
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(ix) diffusion takes place in the liquid, and a diffusion layer �G is formed ahead of the growing 
envelope, which is computed with the PF model and be evaluated using an overall balance of 
solute with the MF model. 
Furthermore, thermodynamic descriptions of the system were established with the CALPHAD 
method (for Calculation of Phase Diagrams). For that purpose, the THERMOCALC software 
has been used to extract constant physical propreties used in the simulations. 
 
5.1.1 Phase-field model  (PF) description  
 
The phase-field (PF) model has been extensively presented in the previous chapters. It 
consists in taking a function �I to represent the distribution of the solid and liquid phases in the 
domain. A system of three equations is then solved: conservation of energy; conservation of 
the solute species; phase propagation to obtain the interface dynamics. To solve this sytem, a 
finite element method has been used. 
As referred above, �I��is the function that describes the presence of the liquid and the solid 
phases in the computational domain �Ÿ, composed of the two subdomains, the solid, �Ÿ s, and 
the liquid, �Ÿ l, with �Ÿ s/l their interface. �I varies between ���� and +1 and��may be defined as: 

�I = �� tanh 
�©
�¨
�§

�¹
�¸
�·�K

W0
* 2

 (��5.1) 

In this expression, W0
* is a non dimensional interface thickness (W0

* = W/W0), where W0, as 
previously introduced, measures a physical interface width.  
The variable �K used in this expression is the signed distance to the solid/liquid interface, given 
by 

�K = 
�¯�°
�®
�°�d(x*,�W)         if           x* �• �:  s

   0            if           x�• �:  s/l 
�� d(x*,�W)      if           x* �• �:  l

 
(��5.2) 

 

where d(x*,�W) is the distance of x* to the interface �Ÿ s/l, at time �W. 
 
Let us consider the phase diagram of a dilute binary alloy. The system contains two 
components: the solvent (A) and the solute (B). Conservation equations may be written 
supposing a sharp interface, with the solid, s, growing in the liquid, l. Phase-field, energy, and 
solute equations are then coupled to give, at our scale, the thermo-solutal dendritic growth 
problem. Combining the solute and thermal cases, the standard set of sharp-interface 
equations consists in: 

�wc
�wt = D l �' c  (��5.3) 

�wT 
�wt  = �D�� �' T  (��5.4) 

ci (1 �� k)vn = �� D l�’  ci (��5.5) 

�ULvn = (�N��s �’ T s �� �N l �’ T l ) (��5.6) 

Ti
 = TM + m ci �� �*�Nr �� �Qn /�P�N (��5.7) 
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where all the variables were previously defined in chapters 2 to 4 and are given in the List of 
Variables. The dimensionless alloy solute composition U and temperature �T are defined as: 

U = 
�¬
�«
�ª

�¼
�»
�º2c/c�f

1 + k �� (1 �� k)�I ������ ��
�©
�¨
�§

�¹
�¸
�·1

1 �� k  (��5.8) 

�T = 
T �� TM �� mc�f

L/cp
 (��5.9) 

In terms of these variables, one may rewrite the free-boundary problem (��5.3)-(��5.7) as: 
�w�W U = D*

 �' U (��5.10) 

�w�W���T��= �D 
*�' �T  (��5.11) 

[1+ (1 �� k)Ui ] vn = �� D*  �’ U l (��5.12) 
vn = �D��* (�’ �T s �� �’ �T��l) (��5.13) 

�T i����+ Mc�f  Ui = �� d���Nr �� �E��vn (��5.14) 

From the free energy functional and its derivation using the Cahn-Hilliard framework, we 
deduce the three equations to be solved as [RAM2004]: 

�W��n����
�w�I
�w�W �������’ ���� W������n�����’ �I����= [�I �����O(�T + Mc�f U)���������� �I��������]�������� �I�������� �� 

�w
�wx*

�©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n��
�wW��n��
�w���wx* �I)

����
�w

�wy*
�©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wy* �I)

 ����
�w

�wz*
�©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wz* �I)

 
(��5.15) 

 
�w�T
 �w�W �� �D

� �' �T��= �� 
1
2 

�w�I
 �w�W (��5.16) 

 1+ k �� (1 �� k) �I
��  

�wU
 �w�W  = 

�’ .
�©
�¨
�§

�¹
�¸
�·

 D* 
1 �����I 

����  �’ U + 
W��n��
2 2

 [(1 �� k)U + 1] 
�w�I
 �w�W 

�’ �I
 |�’ �I��|   + 

1
 2 (1 + (1 �� k)U) 

�w�I
 �w�W 

(��5.17) 

 

 

 
W(n) is a measure of the anisotropy in the surface energy, and may be defined as follows 
[KAR1998]:  

W��n�� = W0
*(1 �� 3�H4) �¬

�«
�ª

�¼
�»
�º

1 + 
4�H4

1 �� 3�H4
 
(�wx* �I)4+ (�wy* �I)4

���’ �I����   in 2D (��5.18) 

or 

W��n�� = W0
*(1 �� 3�H4) �¬

�«
�ª

�¼
�»
�º

1 + 
4�H4

1 �� 3�H4
 
(�wx* �I)4+ (�wy* �I)4 + (�wz* �I)4

���’ �I����   in 3D (��5.19) 

where �H4 is the constant intensity of anisotropy that define how the secondary dendrite arms 
grow. 
The dimensionless solute diffusivity D* is written as:  

D* = 
D�W0
W0 

2 (��5.20) 

The dimensionless thermal diffusivity �D* is given by:  

�D* = 
�D �W0
W0 

2 (��5.21) 
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whereas the scaled magnitude of the liquidus slope is: 

M = 
�� m (1 �� k)

L/cp
 (��5.22) 

To perform simulations with non-dimensional coordinates, in space and in time, we define x* 
as 

x* = x/W0 (��5.23) 

and���W as a dimensionless time:  

�W = 
t
�W0

 (��5.24) 

where �W0 is the phase-field relaxation time, in [s]. 
 
The thermal capillarity length d0 [m] is given by: 

d0 = 
�*

�UL/�Ucp
 = 

�J��TM�U cp

���UL2  (��5.25) 

where �J [J·m-2] is the excess free energy of the solid/liquid interface. The kinetic coefficient �E 
[m-1s] is:  

�E = 
cp

�Pk L
 (��5.26) 

This expression is related to the fact that one may redefine the coefficient �E to include the 
variation of �T across the interface using an asymptotic analysis [KAR1998]:  
 

�E = a1 �¬
�«
�ª

�¼
�»
�º�W0

�OW��
 �� 

a2W0

�D  (��5.27) 

which vanishes when kinetic effects are eliminated. Langer [LAN1986] and then Caginalp 
[CAG1989] have derived: 

d0 = a1 
W0

�O (��5.28) 

In these expressions, �W�� is the characteristic time of attachment of atoms at the interface  
(10-13 s for metallic systems), a1 and a2 are positive constants of the order of the unity that 
depends on the details of the assumed form of the expression for the free energy. Karma and 
Rappel [KAR1998] deduced, from the assymptotic analysis, that a1 = 0.8839 and a2 = 0.6267.  
�O is a dimensionless parameter that controls the strength of the coupling between the phase 

and diffusion fields. It is taken as �O = 
a1W0

d0
 . 

 
Like detailed in the previous chapters, we have computed numerically �’ W��n������and 

implemented the analytical form of 
�w

�wx*  �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wx* �I)

, 
�w

�wy*  �©
�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wy* �I)

 and 

�w
�wz* �©

�¨
�§

�¹
�¸
�·

|�’ �I |2W��n����
�wW��n��
�w���wz* �I)

 . The derivation forms are shown in Table ��2.1. 
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5.1.2 Mean-field model ( MF) description  
 
To be able to take into account the microstructure scale (e.g. dendrite tip radius of the order of 
the micrometer), and phenomena at a larger scale (e.g. heat and mass transfer), which may go 
up to considering a whole metallurgical process or product (typically 0.01 to 1 meter), volume 
averaging or mean-field methods may be used. The physical quantities are averaged over an 
intermediate size between the process and the microstructure, and local conservation 
equations are replaced by equations on average quantities. When this representative domain is 
large enough so that fluctuations at the scale of the microstructure are averaged but not too 
large compared to macroscopic changes, the averaging domain is referred to as Representative 
Elementary Volume (REV). 
�,�Q���7�2�8�5�5�(�7�¶�V���Z�R�U�N problem, the whole physical domain of the size of a metallic sample is 
considered. The growth of an equiaxed grain is based on a 1D spherical approximation 
whereas the growth in a columnar grain is approximated by a 1D cylindrical geometry. The 
domain size thus corresponds to the radius of a spherical droplet for the spacing between 
primary dendrites trunks. Microsegregation takes place throughout dendrite arms. A planar 
geometry for the secondary dendrite spacing �O2 is considered, which is the feature size of the 
microstructure. A one-dimensional configuration may then be obtained on a domain of 
dimension �O2/2, as illustrated in Figure ��5.1. 

 
Figure ��5.1 Growth of a zone (intra) of coordinates R(intra) in a domain of dimension R and of 

symmetry (a) spherical, (b) cylindrical [TOU2009]. 
 
The general local equations of the total mass conservation and the solute mass conservation in 
each phase are: 

�w
�wt (�U) + div(�Uv) = 0  (��5.29) 

�w
�wt (�Uc) + div(�Ucv) + div(j) = Q

.
  (��5.30) 

 
Where �U is the phase density, v is the phase velocity, c is the phase composition expressed as 
a mass fraction of solute of the binary alloy, j is the diffusion flux in the given phase. 
 
In the following, assumptions considered are:  
(i) the solid/liquid interface is supposed at the thermodynamic equilibrium;  
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(ii ) in metal alloys, thermal diffusion is very fast compared to chemical diffusion. The 
temperature of the system is assumed to be homogeneous; 

(iii) creation solution term Q
.
  is neglected in the solute mass conservation equation. 

 
To establish the equations of the problem to be solved, the following averages need to be 
defined: 

�x average value < �[��> on the domain V of a quantity �[ 

< �[��> = 
1
V 

�´
�µ�¶
V

 �[ dV  (��5.31) 

�x average value < ��z > in the domain V of a quantity �[ in a phase z, being �F z a 
distribution function for phase z (0 outside z and 1 inside z); 

< �[z��> = 
1
V 

�´
�µ�¶
V

 �[�F��z dV  (��5.32) 

�x intrinsic average value < �[��z�� > z��specific for each subdomain V z
, is: 

< �[ z��> z = 
1
V z 

�´
�µ�¶
V

 �[�F z dV  (��5.33) 

�x volume fraction g z of a phase z inside V is obtained through: 

g z�� = 
1
V 

�´
�µ�¶
V

 �F z dV = 
V z

V  = 
<�[ z >

<���[ z > z (��5.34) 

Before introducing the derived system of equations, it is also necessary to define: 
�x v z/w as the average of the normal component of the velocity at the interface z/w 

between the phases z and w;   
�x cz/w as  the average of the composition of phase z at the interface z/w;  
�x Sz/w as the interface density, such that 

Sz/w = Sw/z = Az/w /V (��5.35) 

with A��z/w the surface of the interface z/w. 
The different combinations of zones used are shown in Figure ��5.2. They consist of the solid 
(s), the intradendritic (l (intra)) and the extradendritic liquid (l (extra)) phases. Thus the 
interface densities are S s/l (intra) = S l (intra) /s and S l(extra)/l (intra) = S l (intra) /l(extra), given by: 

S s/l (intra) = S l (intra) /s = As/l (intra) /V (��5.36) 

S l(extra)/l (intra) = S l (intra) /l(extra) = Al(extra)/l (intra) /V (��5.37) 

�x l  z/w is the diffusion length (for composition) at the interface z/w, defined as 

�’�í���ê L
�Ö�å���â �?�´ �Ö�å�µ�å

�?
� �Î�å

� �”�å���â
���å���â

 (��5.38) 

where �” �í���ê is the unit normal at the interface z/w directed from w to z. Different diffusion 
lengths are defined at the different interfaces s/ l(intra), l(intra)/s, l(intra)/l(extra), 
l(extra)/l(intra) through: 
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 l l (intra) /s = 
c l (intra) /s����������c��l (intra)���!��l (intra)

 �� 
�wc��l (intra)

�wn l (intra) /s | l (intra) /s 
��

   
(��5.39) 

l s/ l (intra) = 
c s/ l (intra)����������c��s�!��s

 �� 
�wc��s

�wn s/ l(intra) | s/ l (intra) ��
   

(��5.40) 

l l(extra)/ l (intra) = 
c l (extra)/ l(intra)����������c��l (extra)���!��l (extra)

 �� 
�wc��l (extra)

�wn l (extra) / l(intra) | l (extra) / l(intra) ��
 = l l (intra)/ l(extra) 

(��5.41) 

 
Figure ��5.2 (a) Dendritic growth in a spherical geometry; (b) 1D schematic representation of 

the interface between s /l (intra) and of the boundary between l (intra)/l (extra) zones [TOU2009]. 
 
Solid fraction (gs), total liquid (gl), made of intra liquid (gl(intra)) plus extra liquid (gl(extra)) 
fraction are computed by solving the total mass conservation equations. We can also 
determine the composition in the solid (cs), intra liquid (cl(intra)) and extra liquid (cl(extra)) 
through the resolution of the solute mass conservation equations. 
 
As detailed in [TOU2009] and taking into account the assumptions described above, the total 
mass conservation equations, in the phases, s, l(intra), l(extra) and at the interfaces  
s/l(intra), l(intra)/s and l(intra)/l(extra), l(extra)/l(intra) are given, respectively, by: 

�wgs

 �wt  = S s/l (intra) v s/l (intra)���� (��5.42) 

�wg l(intra)

 �wt  = S l(intra)/s v l(intra)/s������S l(intra)/ l(extra) v l(intra)/ l(extra)�� (��5.43) 

�wg l(extra)

 �wt  = S l(extra)/l (intra) v l(extra)/l (intra)�� (��5.44) 

v s/l(intra) + v l(intra)/s = 0  (��5.45) 

v l(extra)/ l(intra) + v l(intra)/ l(extra) = 0 (��5.46) 
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The solute mass conservation equations, in the phases, s, l(intra), l(extra) and at the interface  
s/l(intra), l(intra)/s, l(intra)/l(extra), l(extra)/l(intra) are also written as: 

gs  
�w
 �wt ( )<cs>s  = �6

s/ l(intra) [ ]S s/l(intra) ( )c s/l(intra) �� <c s > s  ( )v s/l(intra)����   (��5.47) 

g l(intra) 
�w
 �wt ( )<c l(intra)> l(intra)  = �¬�«

�ª
�¼�»
�ºS l(intra)/s ( )c l(intra)/s �� <c l(intra) > l(intra)  �©�¨

�§
�¹�¸
�·v l(intra)/s������

Dl

l l(intra)/s
��   

+ �¬�«
�ª

�¼�»
�ºS l(intra)/ l(extra) ( )c l(intra)/ l(extra) �� <c l(intra) > l(intra)  �©�¨

�§
�¹�¸
�·v l(intra)/ l(extra)������

Dl

l l(intra)/ l(extra)
��    

(��5.48) 

g l(extra)  
�w
 �wt ( )<c l(extra)> l(extra)  = 

�¬�«
�ª

�¼�»
�ºS l(extra)/ l(intra) ( )c l(extra)/ l(intra) �� <c l(extra) > l(extra)  �©�¨

�§
�¹�¸
�·v l(extra)/ l(intra)��������

Dl

l l(extra)/ l(intra)
�� �� 

(��5.49) 

(c s/l(intra)���� c l(intra)/s���� v s/l(intra)  + 
D l

l l(intra)/s��( )c l(intra)/s �� <c l(intra) > l(intra)  = 0  (��5.50) 

(c l(extra)/ l(intra)���� c l(intra)/ l(extra)���� v l(extra)/ l(intra) + 
D l

l l(extra)/ l(intra)��( )c l(extra)/ l(intra) �� <c l(extra) > l(extra)  

+ 
D l

l l(intra)/ l(extra)��( )c l(intra)/ l(extra) �� <c l(intra) > l(intra)  = 0  
(��5.51) 

 
In this approach, the total mass exchanges and the solute mass take place in the direction of 
structure growth, and throughout the microstructure scale. A planar geometry in a secondary 
dendrite spacing of ��2 is then considered, as already cited above and illustrated in Figure ��5.3. 
All the geometrical factors defined above, such as the volume element area A, the interface 
densities (S z/w) and the diffusion length (l z/w), are expressed using ��2.  

 
Figure ��5.3 Secondary dendrite spacing in a dendritic area [TOU2009], real case and 1D 

representation. 
 

In a volume element area A of side length ��2/2, the ratio of area/volume based on the volume 
of the zone (intra), V (intra), is: 

As/l(intra)/V (intra) = 2/��2 (��5.52) 

The interface densities present in the balance equations are expressed based on the total 
volume of the domain, V. The interface densities are then given by: 
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S s/l(intra) = 
V (intra)

V  
As/l(intra)

V (intra)  = g(intra) 
2
 ��2

  (��5.53) 

S l(extra)/ l(intra) = 
2R (intra)

��R2   (��5.54) 

The diffusion length for the solid or intra dendritic liquid phases in zone (intra) depends also 
on �O2 as follows: 

l l(intra) / s = 
1
��3 

g l(intra) 

��g (intra) 
�O2
����  

(��5.55) 

l s / l(intra) = 
1
��3 

g s 

��g(intra) 
�O2
����   

(��5.56) 

 
These expressions are deduced assuming a parabolic profile in the phases [TOU2009]. 
A sensitivity study on the value of �O2 is described in section 5.3, showing its influence on the 
growth pattern. 
 
The diffusion length in l(intra) and l(extra), at the interfaces l(intra)/l(extra), l(extra)/l(intra), can be then 
written as follows [TOU2009]: 

l l(intra)/ l(extra) = l l(extra) / l(intra) =  
R(intra)

Pe2 - Pe(intra)2 [ 
Pe2 

Pe(intra) Iv(Pe(intra)) - Pe Iv(Pe)exp(Pe - Pe(intra)) + (1 + Pe)exp(Pe - Pe(intra)) - 1 - Pe(intra)] 
(��5.57) 

Pei and Pee are Peclet numbers given by Pe(intra) = R(intra) v(intra) / Dl and Pe = R v(intra) / Dl 
with Ri and Re, respectively, the interior and the exterior radius of the zone containing the 
considered liquid. Function Iv(Pe) in equation (��5.57) is the 3D Ivantsov function Iv(P) = 
Pexp(P) E1(P)). On the mushy dendritic growth zone (intra), the dendrite tip kinetic is 
imposed using the 2D Ivantsov approximation. Its equation is established in [KUR1986]: 

v(intra) = vtip
MF = �� 

Dl mL c
l/s (1�� k )

�S2�*��  [ ]Iv2D
-1 (�: ��s/l)  2 (��5.58) 

with Dl the liquid chemical diffusion coefficient, mL the slope of the liquidus line in the 
equilibrium diagram, cl/s the compositions at the intragranular liquid boundary given by the 
equilibrium at the considered temperature and �+ the Gibbs-Thomson coefficient of the 
interface s/l.  
The function Iv-1 is the inverse of the Ivantsov function, and the supersaturation �:  s/l is 
computed as: 

�: ��s/l = 
cl(intra)/s �� <cl(extra)> l(extra)

 cl(intra)/s �� cs/l(intra)   (��5.59) 

where the average extragranular liquid composition l(extra), < cl(extra) > l(extra),  is taken as the 
liquid composition far from the interface s/l(intra). Note that for 2D growth, Iv2D(x) = (�S��x)1/2 
exp(x) Erfc(x1/2) is used. 
 
To perform comparisons with the phase-field model, one computes the tip velocity, the phase 
fractions and the compositions in the different zones (solid (s), whole liquid (l), divided into 
intradendritic liquid (l(intra)) and extradendritic liquid (l(extra)), by solving the conservation 
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equations. Surface and the perimeter of the dendritic grain are also determined, by computing 
the grain radius.  
 
The position Rintra, Figure ��5.1, corresponds to the tip radius of the solid zone, which may be 
determined from the domain size and the solid fraction:. 

Rintra = R (g s)1/2  (��5.60) 

Finally, evolution of the temperature is obtained by solving the energy balance equation. 
�&�R�Q�V�L�G�H�U�L�Q�J�� �D�� �K�H�D�W�� �H�[�F�K�D�Q�J�H�� �Z�L�W�K�� �W�K�H�� �H�[�W�H�U�L�R�U�� �G�R�P�D�L�Q�� �D�Q�G�� �D�F�F�R�U�G�L�Q�J�� �W�R�� �)�R�X�U�L�H�U�¶�V�� �O�D�Z����the 
overall energy balance of the system, for a heat extraction coefficient, hext, is: 

cp 
dT
dt  �� �' Hf 

�wgs

dt  = Sext hext (T �� Text)  (��5.61) 

where T is the system temperature, Text is the exterior temperature, Sext = Sext/V is the external 
interface dendity with Aext the exchange surface of heat with the exterior and V the system 
volume, cp and �' Hf are the heat capacity of the system and the solid fusion latent heat, 
respectively. 
 
The external interface density Sext is defined as follows: 

Sext = 
Aext

V  = 
2
R  (��5.62) 

The heat extraction coefficient has been computed as [TOU2009]: 
hext  =  

�Nf
2R 

�©
�¨
�§

�¹
�¸
�·

 2 
�©
�¨
�§

�¹
�¸
�·B

�Next (m + 1) 
T m+1 �� Text

m+1

T �� Text
  + (0.4 Re1/2 + 0.06 Re2/3) Pr0.4 

�P�f

���Pp

0.25  
(��5.63) 

 

 
In this equation,���Nf is the thermal conductivity of the atomization gas, evaluated at the system 
temperature. �Next is the thermal conductivity of the atomization gas outside, Re = 2R�Uf v/�Pf is 
the Reynolds number, where R is the droplet radius�����Uf is the density of the atomizing gas, v is 
the velocity of the particle and���Pf is is the kinematic viscosity of the atomizing gas. Pr = �Pf /�Uf 
�Df is the Prandtl number, where �Df  is is the thermal diffusivity of gas. �P�’  is the kinematic 
viscosity of the atomizing gas away from the droplet, �Pp is the kinematic viscosity of the 
atomizing gas at the surface. To compare with the phase-field model, where we use hext 
constant, we have taken the initial value given by eq(��5.63). This is reasonable, as hext does not 
vary much during the solidification time computed. The same has been done for other 
physical parameters, such as the solute diffusion. 
 
The overall equations for the mean-field model were implemented in C ++ and coupled to the 
TQ version 7.0 of THERMOCALC software (version S) by [TOU2009]. Nevertheless, no 
coupling with THERMOCALC and constant properties of the phase diagram and phases have 
been assumed in this work.  
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5.2 PF and MF simulations  and methodologies for co mparisons   
 
In this section, a review of the computations is performed (including the used material and 
numerical parameters) and comparisons between phase-field and mean-field simulations are 
detailed. 
 
5.2.1 Studied configuration s 

 
As referred before, we consider a binary Al -Cu alloy and a 2D approximation, meaning that 
the physical studied domain corresponds to the transverse section of a cylinder. Different 
configurations are presented in Table ��5.1 for the 2D standard case (STD 2D), the 3D standard 
case (STD 3D) and 2D cases changing different parameters. In the following, details on the 
material and numerical parameters chosen are given, in particular for phase-field simulations. 
  
Material  parameters  
 
Physical parameters of the alloy are hereafter given and converted to the non-dimensional 
ones used in the PF simulation. For that, let us consider the Al -Cu phase diagram, shown in 
Figure ��5.4 (obtained with Thermo-Calc [BOG2013]), linearized with a constant liquidus slope 
m and a segregation coefficient k (i.e. solidus slope m/k) and illustrated through the red dashed 
lines. The melting temperature TM, the liquidus temperature TL = TM + mc�f , the liquidus slope 
m and the segregation coefficient k are also indicated in Figure ��5.4. 

 
Figure ��5.4 Phase diagram of the Al -Cu system, calculated with Thermo-Calc [BOG2013]. 

 
Parameter values extracted and used are listed in Table ��5.1. Latent heat, �UL, heat capacity �Ucp, 
heat diffusion coefficient �D��l, solute diffusion Dl, and Gibbs-Thomson coefficient �* are 
provided in [GAN2008] and [HER2006]. Temperatures can be deduced from the phase 
diagram for different concentrations of Cu. Capillary length is calculated from �*, �Ucp and �UL 

as d0 = 
�Ucp�*
���UL  . The liquidus temperature TL is read according to the above phase diagram by 

choosing the nominal composition c�f  = 4.5 wt% Cu. Diffusion Ds of Cu in the Al solid has 






















































































































