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thèse. Je remercie Julia Meyer et Frank Pollmann d’avoir accepté d’être les rapporteurs
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laume, Godeffroy, Jean-Baptiste, Jeremy, Karlos, Pascal, Pierre-Alain et Simon. J’ai une
pensée particulière pour Alvaro, Florian, Henri et Morgane qui ont réussi à me supporter
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Introduction

Classifying the phases of matter is one of the main goals of physics. From trivial ”real-
life” examples such as evaporation or melting of water to the most abstract theoretical
studies, the properties of these different states and of the transitions between them are of
fundamental importance to understand our world. Condensed matter physics focuses on
studying the wealth of phenomena that appear in liquids and solids, most of the time given
by the collective behavior of the many atoms and electrons that compose them. This be-
havior is a truly many-body, or emergent, effect, where the properties of the macroscopic
system cannot all be understood from the individual particles.
The historical paradigm to describe phases and phase transitions in this context, for both
quantum and classical systems, was formulated by Ginzburg and Landau. Instead of start-
ing from first principles with an unsolvable model, it relies on building effective simpler
theories. The set of symmetries, i.e. the transformations that should leave the system
invariant, and more precisely its energy, limits the possible terms that can appear. One
can then define a local physical observable, the order parameter, whose value changes and
becomes non-zero in the ground states (the lowest-energy states) or the thermal states
at the phase transition, while some of the symmetries enforce that its mean must vanish.
This phenomenon is called a spontaneous breaking of symmetry, as single states seem to
violate the symmetries of the system. Of course, these are not directly broken but the
level at which they are applied change. In the disordered phase, the symmetries are di-
rectly enforced on the states, and the order parameter is zero for all ground states, while
in the ordered phase, they are now enforced on the space of states: the order parameter
can take a non-zero value in some states, but will cancel on average. This usually also
leads to a change in the degeneracy (number) of ground states. Maybe the most sim-
ple example is the following: take a real or complex quantity such as a spin polarization
or a superconducting pairing φ, and a potential energy that only depends on its norm:
V (φ) = r|φ|2 + |φ|4. The system has some symmetries: V is invariant under the change
φ→ −φ if φ is real (resp. φ→ eiθφ if φ is complex). One talks about a Z2 symmetry (resp.
U(1)), from their group representation. Ignoring all dynamics, to minimize the energy is
to minimize V . If r is positive, the minimum of V is reached for φ = 0, which is left
invariant by the aforementioned transformations: it corresponds to a disordered phase.

Conversely, if r is negative, the minimum is reached for |φ| =

√
|r|
2 and is now two-times

(resp. infinitely) degenerate. It corresponds to an ordered phase: the symmetries do not
leave the states invariant but map ground states onto each other.
Landau’s approach to phase transitions was tremendously successful in a wide variety of
models and materials to explain many different phase transitions. Yet, between 1971 and
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2 Introduction

1973, Berezinskii [1, 2], Kosterlitz and Thouless [3, 4] introduced a new phase transition
that could not be described by the breaking of a symmetry, in a two-dimensional classical
magnet. Such a magnet can be described minimally by a plane lattice of ferromagnetic
spins (carried by the atoms) that interact and tend to align with each other. At zero tem-
perature, the spins are perfectly aligned, but when the temperature increases, excitations
consisting in pairs of vortices and anti-vortices start to appear and form a dilute gas. At a
finite critical temperature, a phase transition occurs while the well-known Mermin-Wagner
theorem prevents any breaking of the relevant continuous symmetries. The pairs split, and
isolated vortices appear. These works, that were awarded the Nobel Prize in 2016, shared
with F. Haldane, are the first example of a topological phase transition and of a phase
where topological defects (the vortices) play a fundamental role.
Perhaps even more well-known examples are the Integer and Fractional Quantum Hall
Effects (I/FQHE), discovered in 1980[5] and 1982[6]. These phases arise when confining
a gas of electrons in two dimensions at low temperature and in a strong orthogonal mag-
netic field. When applying a voltage on two sides of the plane, a perpendicular current
is generated. When varying the intensity of the magnetic field, one finds perfect plateaus
for the transverse Hall conductivity while the longitudinal conductivity vanishes. On each
plateau, the conductivity is equal to the quantum of conductance e2

h times an integer (a
rational for the FQHE) to an astonishing precision of 10−9, far beyond what impurities
and defects would normally allow. It is now used in metrology experiment for defining the
hyperfine constant. The current is purely carried by the edges of the sample while the bulk
of the system stays an insulator. No local physical observables can distinguish between
it and an atomic insulator (where the electrons are simply localized on their individual
atoms). Nonetheless, the quantization of the conductance was directly linked by Thouless
et al[7] to the properties of the bulk electronic bands. The quantized term that appears in
the conductance corresponds to a global topological invariant of the band structure (or of
the many-body wave function[8]), that can be used to classify these phases (and cancels
for the trivial atomic insulator). By definition, this invariant is largely independent of
the microscopic details of the system, and highly resilient to the presence of defects and
impurities, as observed experimentally. In the case of the IQHE, the topological invariant,
called the Chern number, also corresponds to the number of gapless edge modes that carry
the orthogonal current. The trivial atomic insulator does not have any edge mode. This
underlying bulk-edge correspondence is at the core of the study of topological materials.
The discovery of these first topological insulators lead to a revolution in condensed matter
studies. In a few decades, more and more different topological materials were discovered.
From the realization that phases similar to the IQHE could be created even in the ab-
sence of strong magnetic fields[9] to the construction of topological superconductors[10],
topology became ubiquitous in theoretical (and experimental) condensed matter physics.
All non-interacting fermionic topological phases were classified according to the spatial di-
mension and their symmetries[11, 12]. The classification of interacting topological phases,
on the other hand, is a much more complicated problem. The FQHE was the first example
of such phases where the interactions lead to the emergence of new exotic quasi-particles.
These excitations behave like fractions of electrons, called anyons. Their charge is a frac-
tion of the electronic charge, and their exchange statistics are neither that of a boson or
a fermion. This fractionalization leads to a robust degeneracy of the ground state, that
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depends only on the genus of the system, and not on the details of its geometry and pa-
rameters.
In the last decade, the rise of quantum information, and especially the race towards quan-
tum computers and simulators lead to additional interest in these fractionalized edge states
or excitations. As a typical example, in the case of topological superconductors (even in
non-interacting systems), zero-energy Majorana modes appear at the edges or as excita-
tions in the core of vortices[10, 13]. The existence of Majorana fermions was first proposed
by the physicist Ettore Majorana[14] in 1937 as a peculiar solution of the Dirac equation:
particles who would be their own antiparticles, though high-energy physics has yet to dis-
cover them. The main obstacle preventing the realization of the fabled quantum computer
is decoherence: the fact that the environment tends to couple to the quantum degrees of
freedom. The quantum information is then dissipated in a macroscopic number of degrees
of freedom, leaving the system in an effective classical state. The topological and frac-
tional nature of the Majorana fermions and other anyonic excitations would strongly limit
such couplings and in principle make them perfect candidates for quantum bits[15]: as no
local observable can distinguish between states differing only by the presence or absence
of such a quasi-particle, the environment cannot be strongly coupled to the system. In-
deed, several schemes have been proposed to realize complete sets of quantum gates and
memories, using superconducting wires with Majorana fermions at each extremities [16–
19]. Direct and decisive experimental proof of the existence of these Majorana fermions
remains, though, an essentially inconclusive problem.

In this thesis

This thesis is devoted to answer some of the questions that arise in this context. We
will study many different aspects of these topological systems: criticality and the signs
of topological phase transitions in generic one- and two-dimensional models, the effect of
large interactions on topological superconductors, and electronic transport mediated by
Majorana fermions.

This manuscript is organized as follows. Chapter 1 and 2 are introductory chapters on
topology and entanglement in condensed matter physics. In Chapter 1, after a detailed
description of the celebrated Kitaev’s chain[13] that we will use as an example throughout
this thesis, we proceed to a general introduction to topological systems. We essentially
limit ourselves to non-interacting two-band fermionic systems, in order to keep a simple
description in terms of homotopic equivalence classes. After presenting the classification
of topological phases in terms of symmetries, the various topological invariants and an
overview of the bulk-edge correspondence, we introduce the different topical examples of
topological systems, in one and two dimensions, that we will use in the thesis. Chapter 2
is then devoted to the concept of entanglement, fundamental to quantum mechanics and
strongly correlated materials. We present there the von Neumann entanglement entropy
and the entanglement spectrum that will be useful to characterize gapless and topological
phases. Finally, we introduce the concept of bipartite fluctuations through the example of
the charge fluctuations in Luttinger Liquids. The bipartite fluctuations are meant to be a
weak, experimentally accessible, measure of entanglement.



4 Introduction

The rest of the thesis is then devoted to our own works. Chapter 3 presents an ex-
tension of the previous works on bipartite charge fluctuations to fluctuations of arbitrary
fermionic bilinears in generic non-interacting symmetry protected topological systems,
where the observed charge is not conserved. We focus on the standard critical points that
describe topological phase transitions, and are able to derive exact properties on the cor-
relation functions and the bipartite fluctuations that allow for a characterization of such
models. We observe quantized, universal logarithmic terms in one and two dimensions,
with, in the latter case, a dependency on the topological properties of the Dirac cones that
appear. We also observe a new volume contribution that is linked to the quantum Fisher
information1, and is a marker of entanglement.
Methods used: exact solutions and integral forms, Hilbert-Sobolev (Fourier) spaces, exact
diagonalization
The following Chapter 4 is concerned with the effects of interactions in such topological
systems. The first part of the Chapter focuses on building a reliable description of the
topological critical point for an interacting topological superconductor, and on the effect
of the interactions on the previously studied bipartite fluctuations. Then, in a second
step, we study the phase diagram of two Coulomb-coupled p-wave paired superconducting
wires. We are interested in their behavior when the interactions are strong enough to
break the topological protection: the interplay between unconventional superconductivity
and interactions leads to the appearance of new exotic phases, characterized by orbital
currents or uncommon gapless excitations.
Methods used: bosonization, renormalization group, exact diagonalization, MPS-based
DMRG
Finally, Chapter 5 is dedicated to the study of the transport properties of a supercon-
ducting island in the presence of Majorana impurities. This device, introduced in Refs.
[20, 21], is meant to be a building block for an eventual quantum computer[22]. The Ma-
jorana fermions affect the statistics of the charge carriers in this multichannel terminal,
which leads to resilient fractionalized transport. We extend previous studies to the charge
degenerate case, when the total number of fermions in the island can fluctuate, and map
it to the well-known Multi-Channel Kondo model.
Methods used: bosonization, renormalization group
Conclusion and perspectives are contained in the final chapter.

1The Quantum Fisher Information, defined as the connected fluctuations of an observable for a pure
state, measures the producibility of the wave function, that is to say how separable the state is in a space
where the observable is local.
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The goal of this chapter is to provide a simple and concise introduction to different basic
aspects of topology in condensed matter physics through a set of examples. This thesis
essentially focuses on theoretical works at (or close to) zero temperature. Generically, a
system in quantum mechanics can be described through its Hamiltonian, an operator or
integral form that gives its energy. A quantum state is an eigenstate of this operator.
While at finite temperature, the system will be described by a weighted sum of such
eigenstates, at zero temperature, it is enough to focus on the ground state (the lowest-
energy state) of the Hamiltonian, which can be degenerate. In this chapter, we will focus
on the properties of these ground states, which can also be directly deduced from the
properties of the Hamiltonian itself. We start by a brief presentation of Kitaev’s wire,
a paradigmatic example of topological superconductors that we will use as a reference
model. We allude through this first example to some of the most important properties
of topological systems. We then follow with the generic formalism we use to describe
non-interacting systems, with a particular focus on two-band models. Then, the main
part of this chapter is a description of topology in non-interacting systems, following
the classification of Ref. [12, 23]. The bulk-edge correspondence, linking the topological
properties of the Hamiltonian to the presence or absence of edge states is briefly addressed.
We conclude with a description of the different models that will be relevant in this thesis.
The last two Sections are meant to be skipped at first reading and refered to when needed.

1.1 Kitaev’s wire

1.1.1 Generalities

The model was proposed in Ref. [13], and is probably one of the simplest examples of topo-
logical models, where the unusual properties associated to topology are directly visible.
There has been several proposals and realizations of this model, for example by coupling
a semiconducting nanowire to the bulk of two- or three-dimensional superconductors via
a strong spin-orbit interaction and by applying a magnetic field to select one spin species
in the wire[19, 23–33]. Other implementations have been discussed with ferromagnetic
metallic chains [34, 35] and ultra-cold atoms [36, 37]. Majorana fermions can also occur
as a result of purely intrinsic attractive interactions [38].
It consists in a chain of spinless fermions, where p-wave superconductivity has been intro-
duced at the mean-field level. It corresponds to the following tight-binding model:

HK = −µ
∑

j

c†jcj − t
∑

j

(c†jcj+1 + c†j+1cj) + (∆c†jc
†
j+1 + ∆∗cj+1cj), (1.1)

where t is a hopping term describing the hopping of electrons from one site to another,

∆ is an a priori complex pairing term, µ is a chemical potential and c
(†)
j are fermionic

annihilation (creation) operators at site j. They verify the standard anti-commutation
rules:

{cj , cj′} = {c†j , c
†
j′} = 0 and {cj , c†j′} = δj,j′ , (1.2)

with δ the Kronecker symbol. We consider a chain of length L and the sum carries on all
sites. We will fix the boundary conditions at a later time.
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The pairing term, breaking charge conservation, represents the formation of Cooper pairs
inside the wire, coming from an infinite reservoir of such pairs. If one neglects the fluctua-
tions in the substrate and if the correlation length of the Cooper pairs is of the order of the
lattice spacing, Eq. 1.1 is a possible approximation for superconductivity by proximity:
by adding a normal semi-conducting wire on the surface of a macroscopic superconductor,
one expects the tunnelling of Cooper pairs into the wire, and vice-versa.
Through a redefinition of the fermionic operator, the phase of the superconducting sub-
strate can be absorbed. For ∆ = |∆|eiφ, the new operators c̃ are defined by:

c̃j = e−i
φ
2 cj . (1.3)

Consequently, without loss of generality, we take in this thesis ∆ positive and real.
Nonetheless, it comes at the price of the loss of this gauge freedom. The broken U(1)
symmetry is equivalent to the broken charge conservation in this model.

1.1.2 Majorana fermions and edge states

Any fermion can be represented as a sum of two Majorana fermions. Those are real
(not complex) fermions, that consequently act as their own anti-particle. They follow the
Clifford algebra:

{γj , γl} = δj,l γj = γ†j (1.4)

We define the Majorana operators corresponding to the real and imaginary part of the c
operators:

γAj =
1√
2

(cj + c†j) γBj =
i√
2

(c†j − cj). (1.5)

The Hamiltonian 1.1 can be straightforwardly rewritten in terms of these operators:

HK = −µ
∑

j

(iγAj γ
B
j +

1

2
) + i

∑

j

[

(∆ + t)γBj+1γ
A
j + (∆− t)γAj+1γ

B
j

]

(1.6)

A simple understanding of the phase diagram can be obtained by looking at an open system
at three different points. First let us consider µ → −∞. In this case, the Hamiltonian is
essentially equivalent to:

HK = −µ
L
∑

j

(iγAj γ
B
j + 1) = −µ

L
∑

j=1

c†jcj (1.7)

Obtaining the ground state is straightforward: all sites of the wire are empty. The system
is therefore in the trivial state |0〉c, defined by:

∀j, cj |0〉c = 0 (1.8)

A second, more interesting point is given by µ = 0, t = ∆. In this limit, one can define
L−1 new fermionic operators dj , by analogy with the previous case, that leads to a simple
Hamiltonian:

dj =
1√
2

(γBj+1 + iγAj ), HK = 2it
L−1
∑

j=1

γBj+1γ
A
j = 2t

L−1
∑

j=1

d†jdj −
1

2
(1.9)
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The two Majorana operators γB1 and γAL do not appear in the Hamiltonian, as represented
in Figure 1.1. One can then define a non-local, boundary fermion d0 = 1√

2
(γB1 + iγAL ) that

has strictly zero energy and commutes with the Hamiltonian. The ground states (and all
other states) are consequently doubly degenerate and a basis of the low-energy subspace

is given by |0〉d and d†0 |0〉d.
This picture stays valid for µ 6= 0: in the thermodynamic limit, the system is always

two-fold degenerate, as long as ∆ 6= 0 and |µ| < 2t [13]. At each extremity of the wire an
exponentially localized Majorana fermion γ̃A/B can be found:

γ̃A =
1

N
∑

j=1

e−mjγAL+1−j , γ̃B =
1

N
∑

j=1

e−mjγBj , (1.10)

such that {H, γ̃A/B} = 0 in the thermodynamic limit. N is a normalization factor and m
a parameter dependent inverse length (m→ +∞ for µ = 0, t = ∆, and m→ 0 when |µ| →
2t). The anti-commutation with the Hamiltonian implies that that d̃0 = 1√

2
(γ̃A + iγ̃B)

still does not appear in the Hamiltonian and has zero energy. When going to a finite

system, there is generally a residual lifting of the degeneracy of order e
−aL

χ , where χ is the
correlation length and a the lattice spacing (taken to 1 in the rest of the thesis).

Sites

γB

γA

Sites

γB

γA

Figure 1.1: Schematic view of the Majorana couplings in Kitaev’s chain. Each fermion
is divided into two Majorana fermions γA (bottom) and γB(top). Ellipses represent the
dominant couplings that build a new local fermion that is either empty or occupied. On
the left, the trivial case when µ ≫ t,∆. The Majorana fermions pair on site, and the
occupied fermions are the physical ones. On the right, the topological phase when t = ∆,
µ = 0. A Majorana fermion couples with another on the neighbouring site, instead of one
on site. Two of them are left uncoupled if the wire has open boundaries.

Finally, it is interesting to consider what happens precisely at the phase transition for
µ = −2t, t = ∆. Then defining the Majorana operators αj such that:

α2j−1 = γBj , α2j = γAj , (1.11)

the Hamiltonian can be rewritten as a simple chain of free Majorana fermions of length
2L:

HK = 2it

2L−1
∑

j=1

αjαj+1 (1.12)

The identification of the critical model is consequently straightforward: at the critical
point, there is precisely one free Majorana mode, which corresponds to the universality
class of the Ising chain. The system is then gapless. Figure 1.2 summarizes the phase
diagram of the Kitaev wire.
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−3 −2 −1 1 2 3

µ
t

−2.0

−1.5

−0.5

0.5

1.5

2.0
|∆|
t

Trivial

Phase

Topological phase I

Topological phase II

Trivial

Phase

Figure 1.2: Phase diagram of Kitaev’s wire. For µ > 2t, ∆ 6= 0, the wire is in a trivial
superconducting phase. For µ < 2t, ∆ 6= 0, the system is in a topological phase, character-
ized by the presence of two Majorana edge states exponentially localized at the boundaries
of the wire. In red are represented the transition lines µ = ±2t. On these lines, the system
is gapless and in the Ising universality class. Finally in blue, the line ∆ = 0 corresponds
to a line of normal metal (free fermions), gapless for |µ| < 2t.

1.1.3 Bogoliubov formalism and bulk topology

An alternative and convenient way to describe Kitaev’s wire can be obtained using periodic
boundary conditions (or by taking formally the thermodynamic limit). It also provides a
simple way to define a topological invariant in this model. It follows the Bogoliubov-de
Gennes formalism, further detailed in Section 1.2. It corresponds to the Bardeen-Cooper-
Schrieffer [39] (BCS) approach to superconductivity.1

Due to translation invariance, the momentum k is a good quantum number. Consequently
we directly work in momentum space with the following convention for the Fourier trans-
form:

cj =
1√
L

∑

k∈BZ
cke

ikj , ck =
1√
L

L
∑

j=1

cje
−ikj , (1.13)

1BCS approach is a mean-field approach to superconductivity: ∆ represents the mean pairing of two
fermions, and is the BCS order parameter. To describe a proper superconductor in BCS theory, we would
also need to check the autocoherence of the mean-field approximation. As ∆ is imposed by a non-described
external substrate, this step is not required here.
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where BZ is the Brillouin Zone associated to the lattice (see Appendix D.1 for a proper
definition). With periodic boundary conditions and for a finite lattice, BZ = {2nπL , n ∈
N, 0 ≤ n ≤ L − 1}, and in the continuum limit, BZ =] − π, π] (and the finite sums
are replaced by integrals). ck verifies the same anti-commutation rules as the original cj
operators. The Hamiltonian can be consequently rewritten in Fourier space as:

HK =
∑

k∈BZ
(−µ− 2t cos k)c†kck + i∆ sin k(c†kc

†
−k − c−kck) (1.14)

= (−µ− 2t)c†0c0 + (−µ+ 2t)c†πcπ +
∑

k∈BZ,0<k<π

(

Ψ†
kh(k)Ψk − µ− 2 cos k

)

,

(1.15)

where

h(k) =

(

−µ− 2t cos k 2i∆ sin k
−2i∆ sin k µ+ 2t cos k

)

, Ψ†
k =

(

c†k, c−k
)

The separation in momentum space is fundamental for describing the system in terms of
bulk bands and finding a simple solution. It is due to the translation-invariance and the
non-interacting nature of the system. Forgetting the modes k = 0, π, the Hamiltonian can
be reinterpreted as a sum of commuting Hamiltonians (each one living in a 4-dimensional
space and described by a 2 × 2 matrix), that can be diagonalized. Ψk is called a spinor.
Introducing the Bogoliubov-De Gennes quasi-particles ηk, the mixing angle θk and the
energy Ek defined by:

cos θk =
−µ− 2t cos k

Ek
, sin θk =

2∆ sin k

Ek
, (1.16)

Ek =
√

(−µ− 2t cos k)2 + (2∆ sin k)2, (1.17)

ηk = cos
θk
2
ck + i sin

θk
2
c†−k, (1.18)

the Hamiltonian admits the simple representation (up to a constant contribution that we
discard), including the modes 0 and π:

HK =
∑

k∈BZ
Ekη

†
kηk (1.19)

Analysis of the results is fairly straightforward: the operators ηk describe the fermionic
quasi-particles in Kitaev’s chain. These excitations are a superposition of an electron
and a hole and carry an energy Ek. Ek cancels either when ∆ = 0 and |µ| ≤ 2t, or for
∆ 6= 0 and |µ| = 2t. Outside these lines, the system is gapped (all excitations have finite,
non-zero energies) and the ground state is unique:

|0〉η = (1 + δµ>−2t(c
†
0 − 1))(1 + δµ>2t(c

†
π − 1))

∏

k∈BZ,0<k<π
(cos

θk
2
− i sin

θk
2
c†kc

†
−k) |0〉c

(1.20)
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The closure of the gap at the aforementioned gapless lines marks phase transitions and
corresponds to those obtained in Figure 1.2. Direct differentiation of the phases from the
periodic ground state is not simple. At first sight, the only difference comes from the
parity of the number of fermions. We introduce the fermionic parity operator:

P = exp(iπ
L
∑

j=1

c†jcj) =
L
∏

j=1

(1− 2c†jcj) =
L
∏

j=1

2iγBj γ
A
j . (1.21)

Neglecting finite size-effects (such as the mode π not existing if L is odd, due to frustration),
〈P 〉 = −1 in the two topological phases and 〈P 〉 = 1 in the trivial phases. The parity here
plays the role of an order parameter for the topological phase transition, yet, as it is not
local, it is not a standard one a la Landau. In fact, no local observables can distinguish
between the two phases: this will be a common and very important feature of topological
models.
To entice the reader, we can nonetheless go further: let us informally define the winding
number of θk by:

ν =

∮

k→θk

dθk
2π

=

∫

k∈BZ

∂θk
∂k

dk

2π
(1.22)

The precise mathematical meaning of the first integral will be made explicit in Section
1.3.4. Physically, ν counts the number of times the path {θk, k ∈ BZ} winds around the
origin. Figure 1.3 provides a visual representation of ν for several values of the parameters
{µ, t,∆}. Inside the topological phases, ν = ±1, while in the trivial phase, ν = 0. The
winding number is a topological property of the function θ, i.e. it is not affected by smooth
deformation of the function, or small local perturbations applied to the Hamiltonian. As
a consequence, the ground states are topologically distinct, and the topological phases can
be differentiated directly from bulk properties.

1.1.4 Quantum Ising model and locality

One-dimensional spinless fermions can be easily mapped onto spin-12 operators through
the Jordan-Wigner transform. For a wire, a possible choice for this transformation is:

σzj = 2c†jcj − 1, σxj = (c†j + cj)e
iπ

∑

k<j

c†kck
, σyj = i(c†j − cj)e

iπ
∑

k<j

c†kck
. (1.23)

The Jordan-Wigner cord e
iπ

∑

k<j
c†kck

= (−1)j−1
∏

k<j

σzk enforces the commutation relations

on different sites:

[σxj , σ
y
j′ ] = 2iδj,j′σ

z
j and circular permutations. (1.24)

The transformation is a bijection, and can actually be generalized to any dimension. The
advantage in one dimension is the cancellation of the cord, that considerably simplifies
the treatment of the spin system.
Using this Jordan-Wigner transformation, Kitaev’s chain with open boundary conditions
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−π/2 π/2 π

π/2

π

−π

−π/2

−π

0

θk

k

µ = −3t
µ = −2t
µ = −t

Figure 1.3: θk as a function of the momentum for different values of µ and ∆ = 2t in
Kitaev’s wire. θk is an angle, and as such is defined on a torus, such that θk ≡ θk + 2π. In
blue, µ = −3t: the wire is in the trivial phase and θk does not wind around the Brillouin
Zone. Conversely, for µ = −t (red), the curve winds −1 times around the BZ. Finally, the
green curve describes precisely the QPT (µ = −2t): θ is ill-defined at k = 0, leading to a
discontinuity, characteristic of such a phase transition.

is actually equivalent to one of the most famous and well-know spin models, the Quantum
Ising model in a transverse field[40]. Its Hamiltonian is given by:

HQIM = −µ
2

∑

j

σzj +
t−∆

2

∑

j

σxj σ
x
j+1 +

t+ ∆

2

∑

j

σyj σ
y
j+1. (1.25)

Its phase diagram is still given by Figure 1.2. The trivial phase corresponds to a param-
agnetic phase polarized in the σz-direction. The two topological phases correspond to an
anti-ferromagnet (for ∆ > 0) in the σy direction or in the σx direction for ∆ < 0. Note
that ferromagnet and anti-ferromagnet are here equivalent through the gauge changes:

σzj → σzj , σxj → (−1)jσxj , σyj → (−1)jσyj . (1.26)

σzj → σzj , σxj → −σyj , σyj → σxj . (1.27)

This model follows the standard Landau paradigm for phase transitions. The order pa-
rameter for the two intermediate phases are simply σyj for ∆ > 0 and σxj for ∆ < 0. It is
a local object, while the corresponding fermionic observable is not. The change in locality
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is essential for the break down of topology: a non-local transformation has no reason to
preserve the topological properties of a Hamiltonian. The two anti-ferromagnetic phases
are not topologically protected. Indeed, while the ground state is two-fold degenerate,
there are no edge states. For example, at µ = 0 and t = ∆, the two ground states are

|+〉 = |←y〉1 |→y〉2 |←y〉3 |→y〉4 ..., |−〉 = |→y〉1 |←y〉2 |→y〉3 |←y〉4 ... (1.28)

The degeneracy is not protected: a small local perturbation such as σyj will directly lift it.

1.2 General band theory for non-interacting fermions

This section contains the formalism we will use to describe both non-interacting super-
conductors and insulators. A particular attention is given to the two-band limit.

1.2.1 Single particle Hamiltonian in Fourier space

As a first step towards topology in quantum materials, we initially start from a non-
interacting fermionic theory, without disorder. Actual physical realizations of course
generically violate both these assumptions, but the topological nature of these systems
means that a good part of the derived properties will remain true, at least for both weak
interactions and weak disorder. More attention will be given to interacting systems in
Chapter 4.
As we consider only non-interacting systems for now, Hamiltonians consist of a sum of
quadratic fermionic terms. The most generic Hamiltonian for non-interacting fermions for
a system S of dimension d can be written as:

H =
∑

~r,~r′∈S2,σ,σ′

H~r,~r′,σ,σ′c†~r,σc~r′,σ′ +
i

2
(A~r,~r′,σ,σ′c†~r,σc

†
~r′,σ′ −A∗

~r,~r′,σ,σ′c~r′,σ′c~r,σ), (1.29)

where H (resp A) is an hermitian (resp. anti-hermitian) matrix of size S×S (S is the total

number of sites), and c
(†)
~r,σ are the fermionic annihilation (creation) operators on sites ~r and

of species σ. The species can represent spin-polarization, but also different types of quasi-
particles or dimerized sites. H includes standard hopping terms and chemical potential
contributions, while A is an anomalous contribution that represents superconductivity at
the mean-field level by electron pairing. We remind the reader that the fermionic operators
follow the following algebra:

{c~r,σ, c†~r′,σ′} = δ
~r,~r′δσ,σ′ {c~r,σ, c~r′,σ′} = 0, (1.30)

where δ is the Kronecker symbol (Dirac delta in a continuum limit). Due to the absence
of disorder, the family of Hamiltonians we study is generically invariant by real-space
translation in the thermodynamic limit or with periodic boundary conditions (PBC). It is
consequently convenient to work in momentum space. Assuming for now perfect transla-
tion symmetry, we define the Fourier transform by:

c~r,σ =
1√
S

∑

~k∈BZ

c~k,σe
i~k.~r, c~k,σ =

1√
S

∑

~r∈S
c~r,σe

−i~k.~r, (1.31)
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where BZ is the Brillouin Zone associated to the lattice and we took the lattice spacing
to be 1. The Brillouin Zone is simply the elementary cell of the reciprocal lattice (see
Appendix D.1 for a proper definition). The unit-cell in real space comports as many
fermions as the number of species2. The total Hamiltonian can then be rewritten as a sum
over (a subset of) the Brillouin zone of small commuting Hamiltonians:

H =
∑

~k∈BZ

h(~k), [h(~k), h(~q)] = 0 (1.32)

Each Hamiltonian h(~k) can be treated separately and is a quadratic form of a small
number of c~k,σ operators. Solving the many-body Hamiltonian H reduces to solving a
parametrized family of few-body Hamiltonians. In this thesis, we will encounter three
different situations. For specific values of ~k, h(~k) will only be a quadratic form of only
one c~k,σ operator, and is therefore trivially solved. Most of the time though, h(~k) will be
a function of two such operators: this leads to what is called the two-band problem and
is detailed in the following section. Finally, we also study a more complex and realistic
model of topological superconductor, the Rashba nanowire, where h(~k) will be a function
of four operators in Section 1.5.3 and 3.2.10.

1.2.2 Two-band Hamiltonians and general solutions

In this section, we give the general solution of two-band Hamiltonians. As mentioned in
the previous part, they correspond to h(~k) being a quadratic form of two c~k,σ operators.

One can conveniently rewrite h(~k) in the following way:

h(~k) = Ψ†
~k

(

E0(~k)1 + ~n(~k).~σ
)

Ψ~k
. (1.33)

1 is the 2× 2 identity matrix and ~σ = (σx, σy, σz) the vector of Pauli matrices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

, (1.34)

and ~n = (nx, ny, nz). Ψ~k
is a 2-fermion spinor. Depending whether we have a supercon-

ductor or an insulator, it will typically take the form

Ψ~k
=

(

c~k
c†−~k

)

or Ψ~k
=

(

c~k,A
c~k,B

)

, (1.35)

where A and B mark two sub-lattices. This form of h(~k) is the most general Hamiltonian
for a two-band problem. Due to the decomposition in terms of Pauli matrices, it can be
simply diagonalized. We define:

E(k) = ||~n(~k)||, (1.36)

θ~k = Arg(nz(~k) + i

√

nx(~k)2 + ny(~k)2), φ~k = Arg(nx(~k) + iny(~k)), (1.37)

2It is chosen in order to have the translation symmetry.
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such that:

~n(~k).~σ = E(~k)

(

cos(θ~k) e−iφ~k sin(θ~k)

eiφ~k sin(θ~k) − cos(θ~k)

)

. (1.38)

θ and φ are simply the spherical coordinates of the vector ~n. The latter matrix has ±1
as eigenvalues and we define the diagonalizing matrix P~k and the Bogoliubov-de Gennes
spinor Υ~k

by:

P~k =

(

cos(
θ~k
2 ) e−iφ~k sin(

θ~k
2 )

−eiφ~k sin(
θ~k
2 ) cos(

θ~k
2 )

)

Υ~k
= P~kΨ~k

, (1.39)

where we define Υ†
~k

=
(

η†~k,+, η~k,−

)

(for superconducting spinors given in Eq. 1.35,

η~k,− = η†−~k). η are still fermionic operators. Up to some discarded constant, we obtain:

h(~k) = (E0(k) + E(k))η†~k,+η~k,+ + (E(~k)− E0(~k))η†~k,−η~k,− (1.40)

η are the annihilation operators for the effective quasi-particles. In BCS superconductors,
the quasi-particles are particle-hole superposition, while in insulators they correspond to
a superposition of fermions of both species. E(~k) ± E0(~k) are the two energy bands and
each quasi-particle state is independently occupied or empty depending on the sign of its
energy. The ground state of the total system is simply obtained from the product of the
ground states of each h(~k)

|GS〉 = (
∏

~k s.t. E(~k)±E0(~k)<0

η†~k,±) |0〉η , (1.41)

where |0〉η is the state where all quasi-particle states are unoccupied, i.e. η~k,± |0〉η = 0

for all ~k ∈ BZ. From now on, we take E0(~k) = 0. It is the case in most of the systems
we consider and considerably simplifies the discussions. Moreover, it does not affect the
topological nature of each band. Everything mentioned in the following can be easily
generalized to non-zero E0(~k). In this limit, the ground state is simply |0〉η.

1.3 Topological approach to band theory

Building from the example of Kitaev’s wire and the general formalism introduced in the
previous Section, we present the complete characterization of the non-interacting fermionic
systems based on their symmetries[11, 12]. Focusing on the bulk properties of two-band
systems, we then give different formulations for the topological invariants.

1.3.1 Introduction to topology

Before studying how one can define topological properties in condensed matter physics, it
is a good idea to give an overview of the basic concepts behind topology. More precisely,
we will be interested in the concept of homotopy, a specific form of topological equivalence
for continuous functions. We start by specifying the proper definition, before concluding
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with a few specific simple examples.
Let E and F be two spaces with a properly defined distance (called topological spaces).
Let f and g be two continuous functions from E to F . An homotopy between f and g is
a continuous function α defined by:

αf,g : E × [0, 1]→ F

(u, t)→ α(u, t) such that α(u, 0) = f(u) and α(u, 1) = g(u) ∀u ∈ E (1.42)

Two functions are said to be homotopically equivalent if there exists such an homotopy
mapping one onto the other. In other words, if f can be continuously deformed into g.
Being homotopic is obviously an equivalence relation:

• f is homotopic to itself (in this case αf,f (u, t) = f(u) ∀t),

• the relation is symmetric (αg,f (u, t) = αf,g(u, 1− t))

• and it is transitive αf,h(u, t) = δt≤0.5αf,g(u, 2t) + δt>0.5αg,h(u, 2t− 1)).

It is therefore possible to define equivalence classes of the mappings from E to F based
on homotopies: these will be called topological classes. In general, we will call a function
(topologically) trivial if it is in the equivalence class of the constant mapping fv(u) =
v ∀u ∈ E.
Finally, without entering into fine details, the so-called homotopy group Π(E,F ) will give
the number and the structure of the equivalence classes with respect to a composition
we detail in the following examples. Physically, this composition will be equivalent to
putting the two physical systems described by f and g together. Two spaces that have the
same homotopy groups are (homotopically) equivalent, and a space where all functions
are trivial (e.g. C) is also called trivial.

A concrete example: let us consider the one-dimensional torus T1. We represent it by
[0, 2π[, and identify 0 and 2π. The continuous functions from T1 to F = C \ {D(0, 1)},
where D(0, 1) is the disc of radius 1 are simply all oriented loops in F . Figure 1.4 represents
examples of loops in distinct topological classes. Let us consider the loop L1 that circles
one time around the origin (its equation is L1(k) = 2eik). If we wanted to deform it onto
L2 (of equation L2(k) = 2 + 0.5eik), we would need to cross the forbidden disk D(0, 1): it
is therefore impossible. Both loops are in different topological classes. Moreover, L2(k) is
topologically trivial: let α2,0 be defined by:

α2,0(k, t) = 2 + 0.5(1− t)eik (1.43)

α2,0 is obviously continuous, takes its values in F , and reduce L2 to a point. A similar
analysis can be performed for L3 and L4: the former winds one time in the anti-radian
direction, while the latter winds twice in the anti-radian direction around the center disk.
These two loops are homotopically distinct from the previous ones: two functions are
equivalent if they wind the same number of times around the forbidden disk, signed by
their direction. This winding number is our first example of topological invariant: a
number that characterizes the topological equivalence class of the loop. It is here a signed
integer. The family Ln1 ,

Ln1 (k) = 2eink for n ∈ Z (1.44)
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gives an example of all equivalence classes, n corresponding to the associated topological
invariant.

Finally, examples of composition are given for L1 ⊗L2 and L1 ⊗L3. The composition
operation is not uniquely defined. As an example, let f and g be two loops. Let f̃ (resp.
g̃) be a continuous deformation of f (resp. g) such that f̃(0) = 2 (resp g̃(0) = 2). Then
we define the composition h = f ⊗ g by:

h(k) =

{

f̃(2k) if k ≤ π
g̃(2k − π) if k > π

(1.45)

Composed loops have a topological invariant equal to the sum of the topological invariant
of the original loops. This structure translates in Π(T1, F ) = Z.

L1

L2

L3

L4

L1 ⊗ L2 L1 ⊗ L3

Figure 1.4: Elementary loops in F = C \ {D(0, 1)}. The black disk is the forbidden hole
D(0, 1). Top left: L1 and L2 are two topologically distinct loops: L2 is trivial while L1
winds one time around the black disk in the radian direction. The associated topological
invariant, counting the number of windings, are ν1 = 0 and ν2 = 1. Top right: L3 and
L4 are also distinct. The number of turns must be counted with its sign: ν3 = −1 and
ν4 = −2. Bottom left: the composition of L1 and L2 belongs to ν = ν1 + ν2 = 1 + 0 = 1.
Bottom right: the composition of L1 and L3 belongs to ν = ν1 + ν3 = 1 + (−1) = 0.
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All of these statements are also valid if we replace F by R2\{0} or the 1-sphere S1 = T1

(the unit circle), though it is slightly less visual. The three spaces are homotopically
equivalent.

1.3.2 Bulk hamiltonians and homotopy

As we are studying generic Hamiltonians, a natural question that arises is under which
conditions do two such Hamiltonians describe the same phase of matter and consequently
are equivalent ?
The Hamiltonian H can be reinterpreted as a mapping from the Brillouin Zone to the space
of Hermitian matrices h(~k) of size n × n (n = 2 in the two-band limit), noted Herm(n).
Taking the thermodynamic limit, or a continuous model, ~k is a continuous variable and
the Brillouin Zone is a torus of dimension d (the physical dimension of the total system
S), noted Td.

h : Td → Herm(n) (1.46)

~k → h(~k)

More generically, one can think of a class of model as a mapping from the parameter
space P (for example a chemical potential, a hopping term etc...) to a mapping from Td

to Herm(n), or equivalently:

H : P × T
d → Herm(n) (1.47)

({µ, t, ...},~k)→ h{µ, t, ...}(~k),

Two Hamiltonians, corresponding to two different values of the parameters, are equivalent
if the functions h can be smoothly deformed into each other. They are then said to be
topologically equivalent or more specifically homotopically equivalent, as defined in the
previous part.
Let us use n = 2 as a test case, and take E0(~k) = 0. An Hamiltonian is then entirely
defined by the three functions ~n(k) introduced in Eq. 1.33, and consequently, h is strictly
equivalent to:

h : Td → R
3 (1.48)

~k → ~n(~k)

As R3 is topologically trivial, all mappings h can be deformed onto each other and all
Hamiltonians are equivalent. The reasoning can be extended to any n and the logical
conclusion is that all phases of electrons are identical.
Obviously, this is wrong: the space of allowed transformations was too large and our
definition of phases insufficient. As previously mentioned in the introduction to this thesis,
we differentiate between gapped systems, that is to say phases where occupied and empty
bands do not touch (are separated by a finite energy). The points in parameter space
where bands touch, and consequently leave the system gapless, corresponds to possible
quantum phase transitions (QPT). If such a transition occurs, the set of parameters is
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called a quantum critical point (QCP). Again, going back to our n = 2 example, we
enforce E(~k) 6= 0 for all ~k and all h. The mappings are now restricted to:

h : Td → R
3 \ {~0} (1.49)

~k → ~n(~k)

or more simply to:

h̃ : Td → S
2 (1.50)

~k → ~n(~k)

E(k)
,

where S2 is the sphere of radius 1 in R3. Indeed, S2 and R3 \{~0} are homotopically equiva-
lent3. The latter form should not come as a surprise: it is nothing but the reformulation of
the two-band problem on the Bloch sphere. As S2 is not homotopically trivial, this leaves
the possibility of different classes of Hamiltonians. In particular, for d = 2, we can point
out that Π(T2, S2) = Z. The phases of non-interacting electrons in dimension d = 2 are
classified by an integer n ∈ Z. As we will see in Section 1.3.4, this integer is the so-called
Chern number.

1.3.3 Symmetry and classification

As we have just seen, restricting the possible transformations and the possible Hamilto-
nians changes the topological classification of our systems. It is consequently natural to
check whether further restrictions can appear for physical reasons. The logical step for
the physically savvy mathematicians is therefore to consider the impact of symmetries
on the topological classification of fermions. We remind the reader that we define here
symmetries in a very large sense: we call a transformation U acting on the Hamiltonian
H a symmetry if it leaves H invariant. Since 1918, we know from Noether’s theorem that
symmetries impose conserved quantities, and consequently a set of quantum numbers that
are conserved during a time evolution. This set of quantum numbers could (or should) a
priori be respected in the smooth deformations we introduced. A complete classification
in function of a set of discrete symmetries was indeed obtained[11, 12] and is summarized
in Table 1.1.

We want to emphasize that the symmetries a priori do not necessarily change the
space F , as restricting transformation to gapped systems did, but limit the authorized
functions and therefore the continuous deformations. As an example, a symmetry can
enforce the parity of a function (e.g. odd). That means that, at all steps t, the function
k → αf,g(k, t), defined in Eq. 1.42 will have to stay odd, which may affect the homotopy
group. Of course, it is sometimes more convenient to reformulate this restriction in terms
of the final space F .

The three symmetries introduced in the classification are the Time-Reversal symmetry
(TRS), the Particle-Hole symmetry (PHS) and the Chiral symmetry (CHS). The first

3In fact, Rn+1 \ {~0} and S
n are always homotopically equivalent.
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System Cartan nomenclature TRS PHS CHS d = 1 d = 2 d = 3

standard A (unitary) 0 0 0 - Z -
(Wygner-Dyson) AI (orthogonal) 1 0 0 - - -

AII (symplectic) -1 0 0 - Z2 Z2

chiral AIII (chiral unitary) 0 0 1 Z - Z

(sublattice) BDI (chiral orthogonal) 1 1 1 Z - -
CII (chiral symplectic) -1 -1 1 Z - Z2

Bogoliubov- D 0 1 0 Z2 Z -
de Gennes C 0 -1 0 - Z -

DIII -1 1 1 Z2 Z2 Z

CI 1 -1 1 - - Z

Table 1.1: Classification of gapped free (non-interacting) fermionic theories as a function
of the Time-Reversal symmetry (TRS), the Particle-Hole symmetry (PHS) and the Chiral
symmetry (CHS). The physical dimension is noted d. The first two columns label the
different families, the next three columns precise the realization of the three symmetries.
If 0, the system does not respect the symmetry. Otherwise, it represents the sign of the
(projective) representation. The last three columns give the homotopy group from Td to
the relevant subset of Hermitian matrices. - notes the trivial group.

two symmetries are anti-unitary4 while the latter is unitary. They are internal (on-site)
symmetries, in the sense that they can be decomposed to act separately on each site. We
will give here a physical interpretation of these symmetries, starting with TRS, in some
simple cases.
In a time-reversal invariant system, the TRS, as the name implies, maps the evolution of
a TRS preserving operator to its evolution in the past. Let T̂ be a representation of the
symmetry in the Hilbert space, that we take irreducible for simplicity’s sake. For any TRS
observable Ô, it is equivalent to:

T̂ Ô(t)T̂−1 = T̂ eiHtÔe−iHtT̂−1 = Ô(−t) if [T̂ , Ô] = 0, (1.51)

and a natural definition for T̂ for a quadratic fermionic Hamiltonian is:

T̂ cj,σT̂
−1 =

∑

j

Uσ,σ′cj,σ, T̂ iT̂−1 = −i, (1.52)

where U must be a unitary matrix to preserve the commutation relations. Naturally, TRS
should square to 1, i.e. leave states invariant if we apply it twice. The gauge freedom
of Quantum Mechanics (|ψ〉 and eiφ |ψ〉 describe the same state) means that we only
require U∗U = eiφ1, with φ an arbitrary complex phase. As U is unitary, it means that
U∗ = eiφU † and equivalently UT = eiφU . Multiplying the two leads to e2iφ = 1. An
Hamiltonian can consequently belong to three symmetry classes: either it is not TRS, or

4A unitary matrix verifies U+U
†
+ = U

†
+U+ = 1. An anti-unitary matrix U− verifies X†U†

−U−Y =

Y †X ∀X,Y . One can always find a matrix U+ such that U− = U+κ, κ being the complex conjugation.
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it is TRS and T̂ 2 = 1 or it is TRS and T̂ 2 = −1. It is represented in Table 1.1 by the
symbols 0, 1 and −1 in the column TRS.
The PHS is very similar. Let us define P̂ its representation in the Hilbert space (taken to
be irreducible). It maps annihilation operators to corresponding creation operators:

P̂ cjP̂
−1 =

∑

j

Uσ,σ′c†j,σ′ , P̂ iP̂−1 = −i, (1.53)

where U is also a unitary matrix. It also consequently maps the sectors with M fermions
c to the sectors with S −M fermions. For the same reason as the TRS, it must square to
±1 and three different symmetry class appear for the PHS.
Finally, the CHS is a unitary transformation product of the TRS and the PHS. There can
be situations where both the latter two are broken but where their product is preserved.
Because it is a unitary transform, it will simply square to 1 if present, leading to the last
separation into two symmetry class.
Taking the interdependencies between the symmetries into account leads to the 10-fold way
of classifying non-interacting fermionic theories given in Table 1.1. Of course, the actual
symmetries that will appear do not necessarily exactly match this physical interpretation.
For example, Kitaev’s wire has a particle-hole symmetry in the Bogoliubov-de Gennes
formalism, but this does not translate into a true particle-hole symmetry for the original
fermions due to the non-zero chemical potential.
For readers that are interested in more details on the derivation of the classification, we
refer to the excellent review by Chiu, Teo, Schnyder and Ryu[41]. The next part focuses
on the derivation of the topological invariant in the few cases that interest us, namely BDI
and D, for d = 1, and the Chern number for d = 2.
In this thesis, we only discuss the so-called Symmetry Protected Topological (SPT) phases,
by opposition to intrinsic and Symmetry Enriched Topological (SET) phases. The intrinsic
topological phases do not require any symmetries to have non-trivial topological phases.
They will present deconfined, fractionalized quasi-particles (anyons) in the bulk. The
SET phases are a generalization that do require symmetries to present these deconfined
quasi-particles. Conversely, the SPT we are interested in may only realize such exotic
states at boundaries. The topological excitations, such as the Majorana fermions we have
encountered, then only exist at boundaries (they are confined in the bulk of the system).
In particular, we will not discuss the Fractional Quantum Hall effect.

1.3.4 Relevant topological invariants for two-band Hamiltonians

In this Section, we derive the topological invariant in the different classes of Hamiltonians
we consider throughout the thesis. We essentially limit ourselves to two-band model, and
refer the readers to Ref. [41] or [42].

Topological invariant for the BDI class in d = 1

We start with the BDI class, whose paradigmatic example is Kitaev’s chain. In this class,
the three aforementioned symmetries are realized and all square to 1. We will start from
their representation in the simple case of Kitaev’s chain before generalizing. The points



22 Chapter 1. A general introduction to topology in Condensed Matter

k = 0 and k = π are special, as the two-band description breaks down. We can nonetheless
safely ignore them in this discussion, and replace them by their limit 0± or π± without
difficulties, as long as the system is gapped.
The time-reversal symmetry for spinless fermions has a simple action:

T̂ cj T̂
−1 = cj , T̂ iT̂−1 = −i, (1.54)

leading to T̂ = κ, where κ is the complex conjugation. Eq. 1.1 is indeed invariant by
TRS5. In Fourier space, it translates into h(k) = h(−k)∗.
Kitaev’s chain has no particle-hole symmetry in the physical space, but the Bogoliubov-de
Gennes formalism introduces an artificial PHS: one can rewrite Eq. 1.15 as:

H =
1

2

∑

k∈BZ
Ψ†
kh(k)Ψk, (1.55)

up to some constant factors. For Kitaev’s chain, we have the equality:

σxΨ−k = (Ψ†
k)
T =

(

c†k
c−k

)

, (1.56)

where the transpose acts on Ψ†
k seen as a 1 × 2 matrix of operators (and not on the c

operators themselves). Applying the equality to Eq. 1.15 leads to

H =
1

2

∑

k∈BZ
(σxΨ−k)

Th(k)(Ψ†
−kσ

x)T (1.57)

= −1

2

∑

k∈BZ
Ψ†

−kσ
xh∗(k)σxΨ−k, (1.58)

which translates into the equality h(−k) = −σxh∗(k)σx. We take this as the definition of
the PHS.
Finally, the chiral symmetry is the composition of the two previous symmetries and trans-
lates into h(k) = −σxh(k)σx. For each quasi-particle of energy E, there must exist a
corresponding quasi-particle of energy −E.
Now, we can start generalizing and extending the previous results to the whole BDI class.
Let us assume that the three symmetries admit the previous representations. What can
we say about h(k) ?
First, we know that h(k) is hermitian and consequently can be written as h(k) = ~n(k).~σ.
Then we can apply the two anti-unitary symmetries:

TRS: h(k) = h∗(−k) ⇒
{

nx(k), nz(k) are even in momentum space6

ny(k) is odd
(1.59)

PHS: h(k) = −σxh∗(−k)σx ⇒
{

nz(k) is even in momentum space
nx(k), ny(k) are odd

(1.60)

5This form of the TRS is only true for ∆ real (i.e. in our chosen gauge). For a complex ∆, one can
always find an alternative representation of TRS that will have similar properties.
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The combination of the two symmetries consequently leaves h(k) = nz(k)σz + ny(k)σy,
nz being even and ny odd. Enforcing that the gap does not cancel leaves us to study the
homotopy group: π(T1,R2 \ {~0}) = π(T1,T1}) = Z. The latter result is actually true for
all BDI hamiltonian: one can always find a basis where the two anti-unitary symmetries
admit the previous representation and consequently h projects Td on T1.
Finally the topological invariant is simple to describe for d = 1: it coincides with the one
defined in Sec. 1.3.1. Two continuous mappings of the unit circle onto himself will be
equivalent if they realize the same number of revolutions around the circle, as represented
in Figure 1.4. The topological invariant is consequently this winding number ν that can
be conveniently expressed in the following way.
Let θk = Arg(nz(k) + iny(k))7. θk is a periodic mapping of the (first) Brillouin Zone to
the torus [0, 2π[, as θk and θk + 2π describes the exact same h(k). It is consequently a
representation of our Hamiltonian and its homotopic properties. Then the winding number
ν is simply given by[43–45]:

ν =

∫

k→θk

dθ where the integral carries on the loop defined by θk (1.61)

=

∫

k∈BZ

∂θk
∂k

dk when θk is C1 by part. (1.62)

Both expressions are equivalent, but can be difficult to evaluate. A more convenient
discrete formulation can actually be obtained. To count the number of turns around the
BZ, it is enough to look at a fixed value θ0 (usually a multiple of π/2), and count the
number of times it is attained, weighted by the direction of the curves (the sign of the
slope). If the slope vanishes at one of the points, simply take another θ0 (or use the second
derivative). In practice, the curve rarely cross a well-chosen θ0 more than twice.

ν =
∑

k0∈θ−1
k (θ0)

sign(
∂θk
∂k

(k0)) ∀θ0
when θk is C1 (can be relaxed)

and ∂θk
∂k (k0) does not cancel.

(1.63)

Similar winding numbers can be determined for higher-dimensional BDI Hamiltonians (or
for other classes of problems) or for multi-bands problems.

Topological invariant for the D class in d = 1

The D class of Hamiltonians can be interpreted as members of the BDI class where a
TRS-breaking term has been added. The topological invariant is no longer an element of
Z but of Z2.
Let us first start with a concrete example to understand the reduction. Let us take two
parallel Kitaev’s wires both in the topological phase with the same parameters and open

7 Note the slight difference with Eq. 1.37: φk can take only the values 0 or π, and the normalized ~n
lives on a unit circle. Consequently, we use polar coordinates instead of spherical coordinates. We will
often use this convention for BDI Hamiltonians
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boundaries8. We note c1 and c2 the fermions operators of each wire. On each extremity
of both wires lives a zero energy Majorana fermion. The ground state is consequently
4 times degenerate. Let −2t < µ < 0 such that γ̃A1/2 and γ̃B1/2 are the four zero-energy

Majorana fermions, following the notations of Eq. 1.10 (the additional index indicates
the wire). We will show that there is no topological protection of the degeneracy of the
ground state, i.e. that we can introduce small local terms in the Hamiltonian that lift the
degeneracy in thermodynamic limit if we break the TRS. To do so, we compute the effect
of the TRS on the Majorana fields:

T̂ γ̃A1/2T̂
−1 = γ̃A1/2 T̂ γ̃B1/2T̂

−1 = −γ̃B1/2 (1.64)

Then we can classify typical two-body terms. Using perturbation theory, we can estimate
the lifting of degeneracy induced by the inclusion of these terms in the Hamiltonian with
amplitude ε much smaller than the gap ∆E = min

k
Ek. We focus on the left-side extremity:

TRS-respecting: iγ̃A1/2γ
B
1,1/2, iγ̃

A
1/2γ

B
2,1/2...→ energy splitting O(ε(

ε

∆E
)L)

TRS-breaking: iγ̃A1 γ̃
A
2 → energy splitting ∝ ε

A similar reasoning can be applied to the right-side extremity. If we do not allow for
TRS-breaking, the degeneracy cannot be lifted by arbitrarily small perturbations in the
thermodynamic limit. The system stays in the BDI class and the topological invariant of
the double Kitaev’s chain is ν = 2. The phase is not equivalent to the trivial one. On the
other hand, if we allow for TRS-breaking, we jump to the D class and we can directly lift
the degeneracy: a phase with ν = 2 is equivalent to the trivial phase (ν = 0). The proper
topological invariant indeed lives in Z2.
Using the representation of the symmetries derived in the previous section, we can general-
ize our results. Classifying the phases in the D class is equivalent to compute a topological
invariant for:

h̃ : T1 → S
2 ≡ R

3 \ {0} (1.65)

~k → ~n

E(k)

Without additional constraints from PHS, all such mapping are trivial. The PHS still
enforces Eq. 1.60.: from it follows that nx(0/π) = ny(0/π) = 0 and consequently h̃(0/π) =
±(0, 0, 1). In other words, the symmetric momenta 0 and π are pinned to the z-axis of
the Bloch sphere. The classification follows naturally. If h̃(0) = h̃(π), the mapping is
trivial: it can be reduced to a constant h̃ for all k: ν = 0. The actual value has no
consequence: by shifting continuously the representation of the PHS, one can inverse the
poles. If h̃(0) 6= h̃(π), h̃ cannot be reduced to a constant mapping: ν = 1. This stays
true even if we change the representation of the PHS as the PHS symmetric points must
stay on the same diameter. Figure 1.5 represents the two classes of mapping. An integral

8Two wires can always be combined to create another one-dimensional system. One either defines a
new unit-cell corresponding to the fusion of the ones of each wire, or just alternates between them and
define longer range terms. Both points of view are equivalent.
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an absence of discrete symmetries (and consequently ~nk is arbitrary as long as it does
not cancel), while the D class has the PHS squaring to 1. It was historically the first
introduced, in the context of the Integer Quantum Hall effect[7].
We consider Hamiltonians in the D or A class, and still consider Ek to be 0. The Hamilto-
nian maps T2 ≡ S2 to R3\{~0} ≡ S2. Noting ñ the normalized vector ~n, a simple expression
has been obtained for the topological invariant:

ν =
1

4π

∫

BZ

d~kñ.(∂kx ñ× ∂ky ñ) (1.68)

ν is an integer, and classify the mappings. It corresponds to the number of times the
initial torus (the BZ) wraps around the sphere. As the integration can be quite technical
for arbitrary functions, it is more convenient to identify the contributions that can give
rise to non-zero Chern number. As S2 is a two-dimensional manifold, the texture of the
vector ñ can be always represented locally in a 2D plane, without affecting the topological
properties. We pick a preferred direction for ñ, here z. Then we place ourselves at the
momenta where ñ is in this direction (if there is none, the mapping does not cover the
whole sphere and is henceforth trivial). In Figure 1.6, we draw the (normalized) orthogonal
component

ñ⊥ =
1

ñ2x + ñ2y
(ñx, ñy)

in the neighborhood of such a momentum, noted ~k0, for the four basic contributions to
the Chern number. As can be seen, this orthogonal component forms a vortex around
~k0. We define here a vortex by a configuration of ñ⊥ with non-zero winding around ~k0,
which is the center of the vortex. Defining θ̃k = Arg(ñx+ iñy), the winding number of the
vortex can be computed using the formula 1.62 or 1.63 on an arbitrary small loop around
k0, oriented according the sign of ñz(k0). We call the winding number of such a vortex its
topological charge.
From these considerations, a discrete formulation for the Chern number can be formulated[46,
47]:

ν =
1

2

∑

k∈n−1
x (0)∩n−1

y (0)

sign((∂kx~n× ∂ky~n).~ez) sign(nz). (1.69)

It can be trivially generalized to any basis choice for ~n. As usual, for multi-bands problem,
the total Chern number can be extracted from the sum of the Chern numbers of all
occupied bands.
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Figure 1.6: Examples of the 4 types of basic topological defects that can appear in h for
d = 2. The normalized vector field corresponds to ñ⊥ = (ñx, ñy) represented in a part
of the Brillouin Zone. The vector ñ⊥ cancels at the red point, that carries a topological
charge sign(nz) on the left and −sign(nz) on the right. The total Chern number of the
band can be obtained by summing the contributions of all such defects.

1.4 Bulk-edge correspondence and edge states

As we have just seen, Hamiltonians can be classified into topological families that cannot
be deformed continuously into each other, depending on the symmetries of the system. An
important question to address is the physical relevance of this classification, or, in other
words, are there any physical consequences to this classification ?
One of the main features of these topological states is the presence of stable zero-energy
bound states or free modes at boundaries, or point-like defects (dislocation of the lattice
in d = 2 for example). Here stable means that weak perturbations have an effect expo-
nentially small with the size of the considered systems. Going through a detailed proof
of the bulk-edge correspondence goes far beyond the limit of this thesis, but we will give
some phenomenological arguments allowing us to make a parallel between the topological
invariant and the number of zero-energy modes. In particular, we show that out of the
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number of zero modes we can build a quantity noted ν̃ that shares a lot of properties with
the topological invariant ν. The Atiyah-Singer index theorem[48] actually states that these
quantities are identical.

1.4.1 D class for d = 1

First, we study the D class in d = 1. Let us consider the usual PHS. We take a generic
Hamiltonian of the form:

H = ~Ψ†H~Ψ, (1.70)

where Ψ is the vector of annihilation and destruction operators, Ψ† = (c†1, ..., c
†
L, c1, ..., cL).

By direct analogy with Eq. 1.60, an Hamiltonian invariant by PHS verifies {P̂ ,H} = 0
(with P̂ the representation of the PHS and Tr(H) = 0). Applying this equality to any
eigenstate |ψε〉 of H of energy ε leads to:

HP̂ |ψε〉 = −εP̂ |ψε〉 . (1.71)

The eigenvalues of H consequently comes in pairs at non-zero energies. Conversely, zero-
energy eigenvalues can always be taken to be eigenvectors of P̂ with eigenvalue 1 and there
can be an odd number of zero-energy eigenvalues9.
First consider an Hamiltonian with a single zero-energy mode, protected by a gap. No
PHS respecting perturbation can change the energy of this mode: if it acquired a non-
zero energy, the energy levels would no longer respect the paired structure. Now let
us consider an Hamiltonian that has M zero-energy eigenstates. Due to the symmetry
ε ↔ −ε, perturbations must leave the parity of M invariant. One can consequently
separate the Hamiltonians invariant by PHS into two families characterized by:

ν̃ = M [2] ∈ Z2 (1.72)

This separation is extremely similar to the homotopy group for the D class in d = 1. To
apply non-trivially this argument to a concrete example such as Kitaev’s wire, one needs
to consider a semi-infinite geometry, with only one boundary. The zero-energy eigenvector
of the Hamiltonian H then corresponds to the zero-energy Majorana at the edge of the
superconductor. A convenient model to do so is the Jackiw-Rebbi model[49], a continuum
version of Kitaev’s chain, with:

H =

∫

drΨ†
r(i∆σ

y∂r +m(r)σz)Ψr, (1.73)

where the mass m(r) changes of sign at the boundary. It describes a domain-wall in a
p-wave superconductor.

It turns out that the number of zero-energy modes at a boundary is indeed given
by the bulk topological invariant. These zero-energy states must be localized close to the
boundaries, as they should not affect the bulk description. Being localized, it is convenient

9As P̂ is anti-unitary, if |ψ〉 is an eigenstate of P̂ with eigenvalue −1, then i |ψ〉 verifies P̂ i |ψ〉 =
−i(− |ψ〉) = i |ψ〉, while representing the same quantum state.
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to have a look at the possible realization of the PHS at the single cell level. For the usual
two-band superconducting models such as Kitaev wire, the unit-cell only comports one
fermion. The only non-trivial PHS objects that can be built out of a single fermion are
Majorana fermions, which are indeed the localized zero-energy bound states. On the other
hand, insulating models have two fermions by unit-cell,and one can build an equivalent
complex fermion that will respect the ”PHS”: the edge states will be normal fermions. It
is the case for the SSH model[50] detailed in Sec. 1.5.1.

1.4.2 BDI class for d = 1

In the BDI class, the system is also TRS and consequently CHS. As the TRS commutes
with H, the CHS anti-commutes with H. Let Ĉ be the representation of CHS. Ĉ also
sends eigenvectors of H with energy ε to eigenvectors with energy −ε. It commutes with
the zero-energy sector of H, which means they can be co-diagonalized. The eigenvalues
±1 of Ĉ classify the zero-energy eigenvectors of H10. Moreover, the trace of Ĉ is zero
on each subspace Span(|ψε〉 , Ĉ |ψε〉), ε > 0. Let M± be the number of zero-energy states
with Ĉ |ψ0〉 = ± |ψ0〉. The trace of Ĉ on the total Hilbert space is simply ν̃ = M+ −M−.
Any perturbation that leaves the system invariant by CHS also leaves its trace invariant
as long as the bulk gap is not closed. ν̃ ∈ Z consequently classifies the Hamiltonians of the
BDI class. Again, in d = 1, it turns out that ν̃ = ν. The nature of the edge states is the
same as in the D class. Non trivial applications should also be done in the semi-infinite
geometries.

1.4.3 D class for d = 2

For this class of problem, we apply a more practical analysis: the topological invariant
directly appears in a concrete observable when considering an open system (with a one-
dimensional boundary), giving rise to the Integer Quantum Hall Effect.[7]
When studying electrons confined to 2 dimensions, at very low temperature and high
magnetic field, the Hall resistivity ρx,y (if we take the magnetic field to be in the vertical
direction z, and apply a small electric field in an orthogonal direction, say x, the Hall
resistivity is the response current in the y direction divided by this electric field:

dIy
dEx

) is
not proportional to the magnetic field (as in the classical limit), but precisely quantized
when bands are fully occupied. The longitudinal resistivity then vanishes. Using Kubo
formula (linear response theory, see Appendix G.2), it is possible to show that:

σx,y =
1

ρx,y
=
ie2~

S

∑

n

〈GS|v̂x|ψn〉〈ψn|v̂y|GS〉 − 〈GS|v̂y|ψn〉〈ψn|v̂x|GS〉
(E0 − En)2

, (1.74)

where we note |GS〉 the ground state of the system, E0 its energy, we sum over all excited
states |ψn〉 of energy En, and v̂x/y is the velocity operator in the x/y direction. Thouless,
Kohmoto Nightingale and den Nijs [7] have shown that the Hall conductance can be
expressed as an integral over the Brillouin Zone of the Berry curvature of the occupied
bands. For our simple two-band models, where the lower-band is occupied, it can be

10The eigenvalues ±1 of C are physical: Ĉ is unitary and therefore linear.
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written has:

σx,y =
e2

h

∫

BZ

(−i)d~k
2π

(∂kx
〈

~r~k
∣

∣)(∂ky
∣

∣~r~k
〉

)− (∂ky
〈

~r~k
∣

∣)(∂kx
∣

∣~r~k
〉

) (1.75)

=
e2

h

1

4π

∫

BZ

d~kñ.(∂kx ñ× ∂ky ñ) for our two-band model (1.76)

= ν
e2

h

For multiple bands, the conductivity can be simply expressed as:

σx,y =
e2

h

∑

all occupied bands p

νp, (1.77)

where νp is the Chern number of the p band. It is thus a topological invariant, which
explains its precise quantization in experiments. No perturbations can change its value as
long as the bulk gap does not close. It also gives us an insight to the nature and number
of edge modes for the D class. The bulk gap being large, no current is carried in the
bulk of the insulator. On the other hand, σx,y corresponds precisely to the conductance
of
∑

p
νp free fermionic chiral modes. It is quite natural to conclude from there that

edges precisely carry
∑

p
νp free fermionic chiral modes. The result can be formalized and

generally proved for the topological insulators of class D[41]. This Chern number can
also be seen by tweaking the boundary conditions of the many-body wave function, a
formulation particularly useful in the interacting case[8].

1.5 Topical examples in 1D

In the following section, we will focus on giving a short overview of the different models
of one-dimensional non-interacting fermions that we will use in the rest of the thesis.
We invite the readers interested in the more general and abstract results of this thesis
to directly pursue to the next chapter. We will refer to the listed models when needed.
While we treat both superconductors and insulators with the same Bogoliubov framework,
we separate them in this section. We first introduce the Shu-Schrieffer-Heeger model for
dimerized fermions[50] as a simple reference model for topological insulators in Section
1.5.1. While it is mathematically quasi-equivalent to Kitaev’s chain, we will precisely
discuss some of the very important differences between the two. In a second time, we
will present two models of topological superconductors. The first one (Section 1.5.2) is a
variation of the Kitaev’s wire with longer-range hopping and pairing terms[51]. It allows
to explore the BDI and D classes in more details. Finally, the last model is the Rashba
spin-orbit topological superconductor proposed by Ref. [23, 24] (Section 1.5.3). Contrarily
to all previous models, it is not a two-band model but requires a more complex treatment.
For some specific range of parameters, it can be projected onto Kitaev’s wire. It has the
physical advantage to be more realistic than Kitaev’s wire.
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1.5.1 The Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger (SSH) model[50] is a model introduced to describe the physics of
polyacetylene, before the rise of topological materials. It consists in a chain of dimerized
spinless fermions. For convenience, we define two species of fermions A and B that leave
on the odd and even sites of the chain. The elementary cell is now composed of two
fermions and the Hamiltonian can be written in the following form:

HSSH =
∑

j

−t1(c†j,Acj,B + c†j,Bcj,A)− t(c†j,Bcj+1,A + c†j+1,Acj,B), (1.78)

where we take t1 and t to be positive. Defining the spinors Ψ†
k as (c†k,A, c

†
k,B), the Hamil-

tonian in momentum space is given by:

HSSH =
1

2

∑

k

Ψ†
k (−2(t1 + t cos(k))σx − 2t sin(k)σy) Ψk (1.79)

This Hamiltonian is identical to Kitaev’s in Eq. 1.55, up to a rotation around the y-axis.
Consequently, the phase diagram is still given by Fig 1.2, taking ∆ = t and µ = 2t1, and
the model belongs to the BDI class. There are nonetheless several differences between the
two models, that are based on the definition of the spinor.
First, we no longer have Ψk = Ψ†

−k, i.e. the particle-hole symmetry that was intrinsic to the
non-interacting superconductors is now a true symmetry, which must be preserved against
disorder perturbations. Its representation is given by P̂ = σzκ, and it is trivially broken
by any alternating chemical potential. The resilience of the SSH model to perturbations
in a physical set-up is consequently very weak as disorder will easily break the PHS.
Secondly, the nature of the edge states changes. It can be trivially seen from analyzing
the limit t1 → 0 which corresponds to the core of the topological phase. The Hamiltonian
is now a sum of commuting terms:

−t(c†j,Bcj+1,A + c†j+1,Acj,B),

that leads to the formation of dimers. Just as it is the case for Majorana fermions in
Kitaev’s model, two fermions do not appear in the Hamiltonian if we take an open chain:
c1,A and cL,B. These are the localized topologically protected edge states of the model.
The change of nature is linked to the change in the unit-cell. While the number of elec-
trons by unit-cell was 1 in Kitaev’s model, it is 2 in the SSH model and the edge states
correspond to half a unit cell in both cases (eigenvalues of the PHS). It implies in turn
that the topological degeneracy of the ground state is 4 for the SSH model. For an equiv-
alent Hamiltonian h, a topological insulator will have doubled edge-states compared to a
topological superconductor.

1.5.2 Longer-range Kitaev’s wire

In this part, we study an extension of Kitaev’s model that presents longer-range hopping
and pairing terms[51]. They present the advantage to realize more phases of the BDI
class (with a topological invariant that can go beyond ±1), and hence can host several
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Majorana fermions at each boundary. The family of models is generically described by
the following Hamiltonian:

HG
K = −µ

∑

j

c†jcj +
∑

l=1





∑

j

−tl(c†jcj+l + c†j+lcj) + ∆l(c
†
jc

†
j+l + cj+lcj)



 (1.80)

With Time-Reversal-Symmetry

In order for HG
K to be invariant by TRS, there must exist a gauge where tl and ∆l are

both reals for all l. In the following, we place ourselves in such a gauge. Following our
Fourier convention, using PBC, the Hamiltonian can be rewritten in k-space as:

HG
K = (−µ− 2

∑

l

tl)c
†
0c0 + (−µ+ 2

∑

l

(−1)ltl)c
†
πcπ +

∑

0<k<π

Ψ†
k~nG(k).~σΨk,

with Ψk =

(

ck
c†−k

)

, ~nG(k) =

(

0,−2
∑

l

∆l sin kl,−µ− 2
∑

l

tl cos kl

)

, (1.81)

where we discarded unimportant constants. The energy spectrum is given by:

E2
k = (2

∑

l

∆l sin kl)
2 + (−µ− 2

∑

l

tl cos kl)2 (1.82)

We focus on models that have finite-range, i.e. there exists lm such that (tlm ,∆lm) 6= 0
and ∀l > lm, (tl,∆l) = 0. Finding the roots of Ek is then equivalent to finding the roots
that lies on the unit circle of the polynomial (take z = eik):

zlm(µ+

lm
∑

l=1

tl(z
l + z−l) + ∆l(z

l − z−l)), (1.83)

which means that Ek can close at up to 2lm different momenta, but also that the system
can be gapped.
We can evaluate the maximum (absolute) value of the winding number of the ground state
of HG. Using the discrete formulation of the winding number in Eq. 1.63 with θ0 = π

2 ,
assuming that the energy spectrum is gapped, the number of terms that appear in the
sum is simply the number of zeros of nz(k) such that ny(k) > 0, or equivalently half the
number of roots lying on the unit circle of:

zlm(µ+

lm
∑

l=1

tl(z
l + z−l)). (1.84)

This number is bounded by lm. The absolute value of the winding number is therefore
also bounded by lm, implying that there can be up to lm zero-energy Majorana fermions
leaving at each extremity of the wire if we have open boundaries. As a general rule, two
phases with winding numbers ν1 and ν2 will be separated by a gapless line where the gap
closes |ν1 − ν2| times. In the following, we present a few simple examples.
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Pure models: first one can consider the simplest models where only one l has (tl,∆l) 6=
0. The system is then equivalent to l independent identical Kitaev’s wires. The phase
diagram is still given by Figure 1.2, where the topological phase now hosts l Majorana
fermions at each extremity (and has a winding number ±l). The gap closes at l different
momenta on the vertical lines and 2l times on the metal line.

t1 − t2: A second more interesting example is given by taking lm = 2. To simplify,
we also assume tl = ∆l. The phase diagram can be straightforwardly computed solving
Ek = 0 and using the known limits of each phase to evaluate each winding number and is
shown in Figure 1.7.

−2 −1 1 2

µ
t1

−2

−1

1

2

t2
t1

ν = 0

ν = 0 ν = −1

ν = −2

ν = −2

Figure 1.7: Phase diagram of the t1−t2 model, assuming ∆l = tl and t1 > 0. The blue and
red lines mark the phase transitions between the different topological phases, of winding
number ν. On the blue lines (of equation 2t2 = −µ ± 2t1), the gap only closes either at
k = 0 or at k = π, while it closes at two non-trivial momenta on the red lines(of equation
2t2 = µ for |µ| > t1). The intersections are special tricritical points where the dispersion
relation stops to be linear at k = 0 or π.

t1 − t3: Our last example will be with lm = 3, tl = ∆l, t2 = 0 and t1 > 0. The richer
phase diagram is explained in Figure 1.8 and will allow us to probe some additional phase
transitions.



34 Chapter 1. A general introduction to topology in Condensed Matter
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Figure 1.8: Phase diagram of the t1− t3 model, assuming ∆l = tl, t2 = 0 and t1 > 0. The
blue and red lines mark the phase transitions between the different topological phases, of
winding number ν. The gap closes only once on the two blue lines, of equations ±µ =

2t1+2t2. It closes at two different momenta on the red lines, of equations µ = ±2t3

√

1− t1
t3

for t3
t1

in ]−∞,−1
3 ] ∪ [1,+∞[. Intersections are special tri-critical points.

Breaking Time-Reversal-Symmetry

Finally, one can break the time-reversal symmetry in this system, in order to get a model
in the D class. Let us consider the simplest of such models, with tj = ∆j = 0 for j ≥ 3.
We still consider t1 = ∆1, and t2 = |∆2|, but we now have ∆2 = it2 an imaginary number.
For non-zero ∆1, the phase of ∆2 cannot be absorbed, and the system is not TRS. The
Hamiltonian is given by:

H =
1

2

∑

k∈BZ
Ψ†
k(−2t2 sin 2k,−2t1 sin k,−µ− 2t1 cos k − 2t2 cos 2k)Ψk (1.85)

For t1 6= 0, the phase diagram has a simple structure. The gap can close only at k0 = 0
and k = π. For µ < −2t1−2t2 and µ > 2t1−2t2, the wire is in a trivial gapped state, while
for −2t1 − 2t2 < µ < 2t1 − 2t2 it is in a topological state (with one protected zero-energy
Majorana edge state at each extremity if we take open boundary conditions).
Compared to the t1 = 0 limit, the topological invariant now lives in Z2: there is up to
one zero-energy, protected Majorana fermion at each extremity. Were we to start with
t1 = 0 = µ, and consequently two Majorana fermions at each edge, an arbitrarily small t1
would couple them together to form a normal fermion of finite energy.
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1.5.3 Rashba spin-orbit superconductors

The Kitaev model for 1D topological superconductors is a toy model that needs to be
replaced by a more realistic model for experimental realization. Among the many dif-
ferent proposals, we focus on the Rashba spin-orbit superconductor[23, 24]. A 1D semi-
conducting wire is deposited on the surface of a 2D or 3D s-wave superconductor. A
strong Rashba spin-orbit interaction is present in the wire and a strong magnetic field,
orthogonal to both the wire and the superconducting substrate is applied. The model is
in the BDI class and carries Majorana edge modes. Such a model has received a lot of
attention from the experimental community as it requires only s-wave superconductors,
and the realization of a one-dimensional semi-conducting wire[25–33]. The actual experi-
mental discovery of Majorana fermions in such a set-up is still debated[52–59].
In this part, we introduce a lattice model for the semi-conducting wire, and present some
of the main ideas behind its solution and its properties.
The system is described in real-space by the Hamiltonian:

HR = −µ
∑

j

c†j,σcj,σ + ∆(c†j,↑c
†
j,↓ + cj,↓cj,↑) +

∑

j,α,β

−t(c†j,σcj+1,σ + h.c.) + V c†j,ασ
z
α,βcj,β

− λ(ic†j,ασ
y
α,βcj+1,β + h.c.) (1.86)

where c are spin-12 fermionic annihilation operator (c↑ represent electrons spin-polarized
in the direction of the external magnetic field), µ is a chemical potential and t a hopping
term. The wire is taken to be in the x-direction. The magnetic field tends to align the
electrons’ spins in its direction through the Zeemann coupling V , while the Rashba spin-
orbit coupling λ favors the y-direction. Finally, due to the proximity of the superconductor,
Cooper pairs can tunnel from the substrate to the wire. This leads to superconducting
correlations represented at the mean-field level by the s-wave pairing ∆, taken to be real.
As it is a non-interacting problem, it can be exactly solved. To do so, we assume PBC
and go to momentum space. Up to some unimportant constants, the Hamiltonian can be
expressed as a sum of 4× 4 matrices. As usual for superconductors, the points k = 0 and
k = π are special and will be ignored in this discussion. Introducing the Nambu 4-spinors
Ψ†
k = (c†k,↑, c

†
k,↓, c−k,↓, c−k,↑), we obtain:

HR =
∑

k

Ψ†
kh(k)Ψk (1.87)

with h(k) =









ε(k) + V −iε2(k) ∆ 0
iε2(k) ε(k)− V 0 −∆

∆ 0 −ε(k) + V −iε2(k)
0 −∆ iε2(k) −ε(k)− V









, (1.88)

where ε(k) = −µ − 2t cos k is the kinetic energy and ε2(k) = 2λ sin k the contribution of
the Rashba term. By squaring twice h(k), the energy spectrum can be determined:

E2
k,± = ∆2 + ε(k)2 + ε22(k) + V 2 ± 2

√

V 2ε(k)2 + ε(k)2ε2(k)2 + ∆2V 2. (1.89)

The bands ±E+ are always gapped and separated from ±E− as long as both ∆ and V
are non-vanishing. We consequently focus on the latter two bands. Closing of the gap is
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equivalent to:
∆2 + ε2(k) = V 2 + ε22(k) (1.90)

The Hamiltonian is a member of the D class, and its topological invariant lives in Z2. For
a non-trivial transition, we consequently require that the gap closes an odd number of
times. Due to the symmetry k ↔ −k, it implies a gap closure at either k = 0 or k = π,
leading to the simple condition:

V 2 = ∆2 + (µ± 2t)2 (1.91)

The topological invariant can be computed[23, 24] using the Berry phase defined in Eq.
1.67. We sum over the two occupied bands:

γ =
∑

ε=±
i

∫

k∈BZ

〈~rk,ε|
d

dk
|~rk,ε〉dk, (1.92)

where |~rk,±〉 is the (occupied) eigenstate of h(k) corresponding to the eigenvalue −Ek,±.
The band + is always trivial, while the band − can have a non-trivial Berry phase. The
system is in a topological phase if:

V 2 > ∆2 + (µ± 2t)2 (1.93)

Various correlations functions of the Rashba nanowire are computed in Appendix D.2.
They will be used in Section 3.2.10.

1.6 Topical examples in 2D

Similarly to the previous section, we will now introduce a few models of non-interacting
fermions that present topological phases or topological excitations for d = 2. In particular,
we will focus on Dirac systems. These systems are characterized by a linear dispersion
of the energy when the bulk becomes gapless, with the formation of the so-called Dirac
cones at a finite number of momenta. These cones are very similar to the aforementioned
vortices, and can carry a topological charge. Transition between two non-equivalent phases
will necessitate the appearance of such cones, and the difference in Chern number of the
two phases can usually be obtained from the winding number of the cones at the QCP.
We will start by a simple model for topological superconductors in d = 2, the p + ip
superconductor taken on a square lattice. It is the generalization to two dimensions of
the Kitaev’s wire, and as a member of the D class, presents topological phase transitions.
We will then pursue with the staple model for Dirac metals: the graphene. While not a
topological system per se, as it is gapless, it is a nice first step to understand the physics
of the Dirac cone and a good stepping-stone to the last model: Haldane’s topological
insulator.

1.6.1 The p+ ip superconductor

The p + ip superconductor[60] is a two-dimensional model of fermionic superconductors
with unconventional superconductivity. For convenience, we limit ourselves to a regular
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square lattice. Its tight-binding Hamiltonian is given by:

Hp+ip = −µ
∑

~r

c†~rc~r− t
∑

<~r,~r′>

(c†~rc~r′ +c†~r′c~r)+
∑

~r

−i∆x(c†~rc
†
~r+~ex
−h.c.)+∆y(c

†
~rc

†
~r+~ey

+h.c.),

(1.94)
where c are spinless fermionic annihilation operators, < ~r, ~r′ > represents the nearest-
neighbor links and ~ex/y the lattice-defining vectors. ∆x and ∆y are taken to be real and
positive and represents mean-field, p-wave superconducting pairing. Experimental real-
ization of such a model proves to be quite difficult and similarly to Kitaev’s wire, requires
complex heterostructures. The most promising is probably inducing superconductivity in
a bulk 3D topological insulator. In that limit, its surface states will naturally realize a
p + ip superconductor by proximity[61]. The system is characterized by the presence of
Majorana fermions at the core of vortex excitations in real space[15, 62, 63], and of free
Majorana modes at the boundaries[10], as shown in Figure 1.10
The system can be straightforwardly diagonalized using our usual Bogoliubov approach.
Defining the spinor Ψ†

~k
= (c†~k, c−~k), the Hamiltonian can be easily rewritten as:

Hp+ip =
1

2

∑

~k∈BZ

Ψ†
~k
~n(~k).~σΨ~k

,

with ~n(~k) = (2∆x sin kx,−2∆y sin ky,−µ− 2t cos kx − 2t cos ky) (1.95)

While the TRS is broken, the PHS, intrinsic to the Bogoliubov formalism for supercon-
ductors, is still present (and has the same representation as in Kitaev’s wire). Hp+ip is
therefore in the D class, which for d = 2 has the Chern number as topological invariant.
For (∆x,∆y) 6= 0, the bulk energy ||~n||2 cancels only for µ = ±4t and µ = 0. Let us focus
first on categorizing the different phases.
Use of the discrete formulation of the Chern number in Eq. 1.68, with the z-axis singu-
larized, leads to:

ν =
1

2

∑

kx=0/π,ky=0/π

sign(− cos kx cos ky)sign(−µ− 2t cos kx − 2t cos ky)

=
1

2
(sign(µ+ 4t) + sign(µ− 4t)− 2sign(µ))

=







1 for −4t < µ < 0
−1 for 0 < µ < 4t
0 for |µ| > 4t

(1.96)

Similarly to Kitaev’s wire, the phase diagram is independent of ∆x and ∆y as long as they
are both different from 0.

At the phase transitions, the gap closes at either 1 or 2 precise momenta, which cor-
responds to PHS points. At µ = −4t, Figure 1.9 represents the band spectrum: the gap
closes at ~k = 0 and the energy forms a cone around this point: this is the so-called Dirac
cone. Linearization of E~k and ~n near ~k = 0 leads to:

δ~n = (2∆xkx,−2∆yky, 0), δE~k = 2
√

∆2
x|kx|2 + ∆2

y|ky|2 (1.97)
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Figure 1.9: Energy spectrum for the p+ ip superconductor at µ = −4t, for ∆x = ∆y = t.
A Dirac cone appears at k = 0, characterized by a linear dispersion, and a non-trivial
winding of the vector (nx, ny) around it. The configuration in this case corresponds to the
one depicted in the top-right corner of Figure 1.6.

The dispersion is linear, and perfectly proportional to ||~k|| in the limit ∆x = ∆y,
which corresponds to restoring the rotation symmetry of the lattice. Near the transition,
at ~k = 0, ~n = (0, 0,−µ − 4t), it is therefore natural to singularize the z direction and
look at the spin texture in the plan Oxy. At µ = −4t, the vector δ~n winds around the
cone, as depicted in the top-right corner of Figure 1.6. It consequently forms a vortex and
has a winding number −1. When µ < −4t, nz(0) is positive, while when 0 > µ > −4t,
it becomes negative. The orthogonal contribution is unchanged, and the local texture
consequently go from a Chern number −1 to a Chern number 1. Taking into account the
factor 1

2 , we recover that the Chern number of the band increase by 1. This analysis can
be extended to any topological model where Dirac cones appear at the transitions: these
cones are the natural points where the homotopic class of the Hamiltonian can change.
The same results extend to µ = 4t.
At µ = 0, the gap now closes twice at ~k+ = (π, 0) and ~k− = (0, π). Two Dirac cones
carrying a charge +1 appear: the total topological charge is 2, consistent with the change
in Chern number observed in Eq. 1.96 (the factor −1 again comes from the change of sign
of nz at the phase transition).
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Figure 1.10: Energy spectrum for the p+ ip superconductor on a cylinder at µ = −t, for
∆x = ∆y = 0.3t. The system is periodic in the x-direction (with an arbitrary length), and
has open boundaries in the y-direction. The energy spectrum is obtained through exact
diagonalization for 100 sites in the y-direction. The continuum of gapped energy states is
represented in grey, while a gapless edge mode appears in red. This edge state is located
on both edges of the cylinder. It corresponds to a free Majorana mode at each edge.

1.6.2 A very brief overview of graphene

As we have seen in the previous example, the physics of Dirac cones is indeed fundamental
for two-dimensional non-interacting topological models, as these cones carries topological
charge, and therefore allows for a change in the topological invariant at the phase transi-
tion. As such, it is a good idea to spend a few paragraphs on graphene, before attacking
Haldane’s constructions of a topological insulator.
The graphene is a purely two-dimensional layer of carbon atoms forming a honeycomb
lattice, depicted in Figure 1.11. This metal was isolated for the first time in 2005[64] and
attracted an enormous attention due to the presence of these Dirac cones: the physics of
the Dirac cones is nothing but the physics of relativistic fermions. The honeycomb can be
interpreted as a triangular lattice with two sites by unit-cell. An effective tight-binding
model is then simply given by:

HG = −t
∑

~r

(c†~r,Ac~r,B + c†~r,Ac~r+~a1,B + c†~r,Ac~r+~a2,B + h.c.), (1.98)
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with the vectors ~a1 = (1, 0) and ~a2 = (−1
2 ,−

√
3
2 ). As the lattice is not square, care

has to be given to the definition of the reciprocal lattice, and of the first Brillouin Zone,
they are presented in Figure 1.11. Defining Ψ†

~k
= (c†~k,A, c

†
~k,B

), the band Hamiltonian is

straightforwardly obtained:

H =
∑

~k∈BZ

Ψ†
~k
~n.~σΨ~k

, with nz = 0, nx + iny = −t(1 + e−ikx + ei(
kx
2
+

√
3

2
ky)) (1.99)

The energy of the quasi particles are ±Ek, with

E2
~k

= t2

(

(1 + cos kx + cos(
kx
2

+

√
3

2
ky))

2 + (sin kx − sin(
kx
2

+

√
3

2
ky))

2

)

,

and consequently closes at K± = ±2π
3 (1,

√
3). The two Dirac cones have each non-zero

vorticity (±1) but opposite signs.

The graphene itself is not a topological insulator, as it is gapless and carries no topo-
logical charge. Yet it is a good starting point for building one. In order to do so, one
should gap only one of the cones. The new material would therefore be at a critical point
separating two topologically different phases, as it would have only one cone of non-zero
vorticity. To do so requires breaking the TRS (which maps one cone onto the other), at
least locally and is at the core of Haldane’s model[9]. Note that it is not the only way to
create a topological phase in the graphene. By adding a spin-orbit coupling, it is possible
to realize the Z2 Quantum Spin Hall effect [65–67]. We will not discuss this phase in the
thesis.

1.6.3 Haldane model for topological insulator

This model was proposed for the first time in 1988[9] as a microscopic model for the
appearance of an Integer Quantum Hall Effect but with 0 net flux, that is to say a model
where the magnetic field, while present, cancels in average at the level of the unit-cell. The
starting point of this model is the aforementioned model of graphene, with a few added
ingredients. First an alternating chemical potential, differentiating between the sites A
and B is added, which gaps the system. A periodic magnetic field is added in order to
break the TRS. The flux is chosen to be 0 on each hexagonal unit-cell. It has consequently
no effect on either the chemical potential or the nearest-hopping terms. Therefore, a
second-nearest neighbour hopping term is added: electrons on site A (resp. B) may hop
directly to the nearest A (resp. B) sites. These acquire a non-trivial phase, as the shortest
closed loops of second-hopping terms only enclose half the unit-cell (and break the local
PHS). The corresponding matrix element acquires a non-trivial phase which explicitly
breaks the TRS. Figure 1.12 sums up the construction of the model and specifies the signs
of the phase of the hopping term. The microscopic Hamiltonian is simply given by (the
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Figure 1.11: Properties of the graphene and the honeycomb lattice. Top left: honeycomb
lattice and the underlying triangular lattice used in diagonalization. In black (resp. blue)
the sites A (resp. B). The ellipses represent the sites for the triangular lattice, and ~a1
and ~a2 define the lattice. Top right: the reciprocal lattice associated. ~b1/2 are defined by
~bi.~aj = 2πδi,j . In red is represented the first Brillouin Zone. Bottom left: energy spectrum
as a function of kx and ky. The Brillouin Zone is represented in black. The gap closes at
K± = ±2π

3 (1, 1√
3
) forming two Dirac cones. Bottom right: the normalized vectors (nx, ny)

on the first Brillouin zone. The two Dirac cones have opposite topological charge.

summation on ~r is implied):

HH = −∆
(

nA,~r − nB,~r
)

− t
(

c†~r,Ac~r,B + c†~r,Ac~r+~a1,B + c†~r,Ac~r+~a2,B + h.c.
)

− t2
∑

σ=A,B

(

eiσφ
[

c†σ,~rcσ,~r−~a1 + c†σ,~r+~a1cσ,~r + c†σ,~rcσ,~r−~a2 + c†σ,~r+~a2cσ,~r

+ c†σ,~rcσ,~r−~a3 + c†σ,~r+~a3cσ,~r
]

+ h.c.
)

, (1.100)

where we note ~a3 = −~a1 −~a2 and eiA/Bφ = ei±φ. ∆ is the alternating chemical potential,
t2 is the strength of the second-neighbour hopping, taken to be real, and φ is a third of the
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flux enclosed by the black loop of Figure 1.12. The Hamiltonian is still non-interacting.
With the spinor Ψ†

k = (c†k,A, c
†
k,B), the Hamiltonian in momentum space is given by:

~n(~k) = (Re(A), Im(A),−∆ + 4t2 sin(φ)Im(B)) (1.101)

E0(~k) = −4t2 cos(φ)Im(B) (1.102)

A = −t(1 + e−ikx + ei(
kx
2
+

√
3
2
ky)) (1.103)

B =

3
∑

j=1

e−i
~k.~aj (1.104)

E0 can safely be ignored for the purpose of determining the topology of the bands. The
gap vanishes when ~n = ~0. As long as t 6= 0, A cancels only at K± = ±2π

3 (1, 1√
3
), which

leads to the condition:
∆ = ∓6t2

√
3 sinφ (1.105)

For a non-zero flux, the gap closes at only one of the two momenta. At this momentum,
a Dirac cone still appears, and has a non-trivial winding number, implying a topological
phase transition. Indeed, using Eq. 1.69 to determine the topological invariant, the phase
diagram can be easily obtained, and is shown in Figure 1.12:

ν =
1

2
(sign(−∆− 6t2

√
3 sinφ)− sign(−∆ + 6t2

√
3 sinφ) (1.106)
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Figure 1.12: Left: structure of the second-nearest neighbour hopping in the Haldane
model. Black arrows carry a phase φ while blue ones carry a phase −φ. The total flux
is zero. Right: phase diagram of the Haldane model for t 6= 0. As long as φ 6= 0, π, the
transition lines are characterized by only one closing of the gap at either K+ or K−.
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Entanglement has, up to now, stayed away from our discussions on topological mate-
rials. Yet, these non-local correlations are the fundamental difference between quantum
and classical systems, and at the core of the topological nature of the ground states.
Historically, the study of entanglement was first reserved to quantum information and
to attempts to understand the consequences of quantum mechanics as a physical theory.
The first experiments, based on verifying the Bell’s inequality, illustrating the Einstein-
Podolsky-Rosen paradox, were meant to check the validity and completeness of quantum
mechanics. Nonetheless, the rushing development of quantum computing and information
during the last decades has yield an increasing amount of new insights on the properties
of entanglement, even in many-body systems. The study of the structure of entanglement
has proved to be invaluable to describe (topological) phase transitions at zero temperature
and (topological) ground states. Indeed, for such systems, the traditional study of corre-
lation functions usually fail to properly describe the changes the system undergoes. The
standard quantum correlations are not sufficient to discriminate between different topo-
logical phases, while the study of entanglement, through for example the entanglement

43
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entropy or the entanglement spectrum gives clear insights on the nature of the different
phases.
This Chapter consists in an introduction to the notion of entanglement in quantum sys-
tems, and more precisely in many-body physics. Section 2.1 starts by introducing the von
Neumann entanglement entropy and other basic entanglement measures. After describing
its global properties through a set of examples, we give an overview of the main ideas
behind the study of entanglement in many-body systems, with a focus on gapless models.
Section 2.2 is dedicated to the entanglement spectrum. It is especially useful for charac-
terizing topological states that possess edge states, as the measure of the entanglement
spectrum is based on the creation of artificial edges. Finally, we present in Section 2.3 an
introduction to the concept of bipartite fluctuations. These fluctuations can be used as a
weak probe of entanglement, that has the added advantage to be experimentally measur-
able. We give a short presentation of previous works on this topic, that focused on normal
Luttinger liquids and other charge-conserving models, before devoting the next Chapter
to our extension to topological models.
To go beyond the short review proposed in this Chapter, we refer the reader to Ref. [68].

2.1 Entanglement entropy

2.1.1 Definition of the von Neumann Entanglement Entropy

Definition

At the core of quantum mechanics is the idea of non-local correlations. Such correlations
correspond, in some sense, to shared information between the different parts of the system.
While we may know perfectly a system S, quantum correlations and superposition may
prevent us from knowing the state of any subpart of the system. The amount of shared
information can be measured, just as in the classical case, by an entropy function. We will
focus on this thesis on the von Neumann entanglement entropy (vNEE), and we will limit
ourselves to the bipartite case, where we measure the entanglement between two different
subsystems.
Let us consider a closed system S at zero-temperature, which is quite naturally in a pure
state |ψ〉 . Let A be a physical subpart of this system, we note A the rest of the system.
The density matrix ρA entirely describes A and its correlations with A:

ρA = TrA(|ψ〉 〈ψ|). (2.1)

|ψ〉 〈ψ| is the projector on the state |ψ〉 in the Hilbert space that describes the total system
S, and the trace carries on all degrees of freedom (all sites for example) that do not belong
to A. The associated vNEE is:

SE(A) = −TrA(ρA ln ρA). (2.2)

The logarithmic term is unique and properly defined as ρA can be diagonalized and has
all its eigenvalues between 0 and 1. It is the direct quantum equivalent of the classical
Shannon entropy.
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0D limit: the case of two spins

Let us directly go through an example before discussing the general properties of the
vNEE. Consider two 1

2 -spins labeled A and B. The subsystem we consider is simply
A = A. If the two spins are independent, the wave function of the total system ( a vector
of C4) can be written as:

|ψ〉 = |ψA〉 ⊗ |ψB〉 , (2.3)

where
∣

∣ψA/B
〉

are two vectors of C2 that describe the state of each spin. The density
matrix of A is simply |ψA〉 〈ψA|, and the corresponding vNEE is SE(A) = 0. Note that
SE(B) = 0 too.
The two spins can also form a singlet:

|ψ〉 =
1√
2

(|↑A〉 |↓B〉 − |↓A〉 |↑B〉) , (2.4)

ρA =
1

2
(|↑A〉 〈↑A|+ |↓A〉 〈↓A|) =

(

1
2 0
0 1

2

)

, (2.5)

and the entanglement entropy is then SE(A) = ln 2 (= SE(B)). The two spins are
maximally-entangled: there is a perfect correlation between the orientation they take
(the two spins form a Bell pair), and consequently the vNEE is maximal. For an arbitrary
state, the vNEE continuously goes from 0 to ln 2.

Generic properties

A first important property of the vNEE is its symmetry, i.e., whatever the subsystem
chosen, SE(A) = SE(A).
Mathematically, it can be easily seen from the Schimdt decomposition of a pure state.
Indeed, linear algebra assures that, if HA is the Hilbert space describing the (sub)system
A, such that HS = HA ⊗HA, then the wave function |ψ〉 can be written as:

|ψ〉 =
M
∑

m=1

√

λm |em〉 ⊗ |em〉 ,
M
∑

m=1

λm = 1 (2.6)

where M is the so-called bond dimension, smaller than min(dimHA, dimHA), λm is a set
of real numbers in ]0, 1] and |em〉 (resp. |em〉) a family of orthonormal vectors of HA (resp.
HA). The equality of the vNEEs follows from this decomposition, as

ρA =
M
∑

m=1

λm |em〉 〈em| , ρA =
M
∑

m=1

λm |em〉 〈em| (2.7)

and SE(A) = SE(A) = −
M
∑

m=1

λm lnλm (2.8)

As S(A) = S(A), the entropy cannot depend on the volume of A, but should be related to
its boundaries, common to A and A. This phenomenological argument (another example
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of the bulk-edge correspondence or holographic principle) can be made rigorous in some
special limits of condensed matter systems, but also in quantum gravity. The holographic
principle states that the physics of some systems is encoded in its boundaries (probably
the most famous examples are the black hole and the AdS-CFT equivalence[69]).

It is also important to mention an additional set of properties that the vNEE verifies.
Similarly to the Shannon entropy, it is actually uniquely specified by the following set of
properties:

• SE must be continuous (with respect to a continuous change in A or in ρA).

• It is invariant under local unitary transformations.

• It must be additive for independent subsystems: if A = A1 ⊗ A2 such that ρA =
ρA1 ⊗ ρA2 , then SE(A) = SE(A1) + SE(A2). It must be sub-additive in the general
case: SE(A) ≤ SE(A1) + SE(A2).

The vNEE can also be extended to non-pure states, and in particular it can be defined
at non-zero temperature for thermal states. Cross-over from T = 0 to large temperature
can be derived easily in the family of models that we will study (conformal models).

Though it is the most fundamental, the vNEE is not the only entropy-like function.
If we relax the sub-additivity assumption, it is possible to define other functions that will
have similar properties (but order differently the entangled states). Typical examples are
the Renyi entropies defined by:

SR,n(A) =
1

1− nTr(ρnA) =
1

1− n
M
∑

m=1

λnm with SE = lim
n→1
SR,n. (2.9)

These entropies measure different properties of the reduced density matrix ρA. Studying
all the Renyi entropies is equivalent to studying our next object of focus, the entanglement
spectrum.

Finally, we introduce the mutual information ISE
of two disjointed regions A and B.

ISE
= SE(A) + SE(B)− SE(A ∪ B) (2.10)

The mutual information can be straightforwardly extended to any entropy-like function
by analogy with Eq. 2.10. It usually has the advantage of being free from artificial
divergences that can appear in continuum theories, at the price of generally requiring the
computation of the multipartite entanglement entropy. In the case of the vNEE, it is
additionally positive and monotonically increasing (if B ⊂ C, ISE

(A,B) ≤ ISE
(A, C)). It

is only exactly known for free, non-interacting fermions in one dimension[70]. It has been
shown that it is not only a function of the central charge, but also of more microscopic
details of the theory, such as the Luttinger parameter of Luttinger Liquids[71, 72].

2.1.2 Entanglement entropy in many-body systems

The entanglement entropy reveals many properties of the many-body ground states. In
this Section, we expose some of the main ideas on how to use entanglement entropy to
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characterize phases and critical theories. We are essentially interested in gapless phases,
where anomalous logarithmic terms appear, that can be used to classify the different
phases. After a first general discussion, we focus on one and two-dimensional models.

Dependence on the boundaries

As we previously mentioned, the entanglement entropy of a subsystem A with the rest
of the system essentially scales with the length of its boundaries. We first derive some
phenomenological physical arguments on the different scalings that can appear for different
many-body systems.

Let us first consider the case of gapped systems, i.e. systems where the excited states
have a finite energy in the thermodynamic limit. The energy gap ∆E, difference of energy
between the ground state and the first excited states naturally defines a length scale
χ ∝ ∆E−1 that will govern the behavior of the system. In particular, one expects an
exponential decrease in the correlations, with a characteristic length proportional to χ.
Now let us consider d-dimensional region A of characteristic length lA such as represented
in Figure 2.1. Then, the vNEE can be seen as a re-summation of the correlations between
A and A: given the exponential decrease in these, its long range behavior should scale at
best as:

∫

∂A

d~r‖

∫

dr⊥e
−αr⊥

χ ≈ |∂A|f(χ) = O(ld−1
A f(χ)), (2.11)

where ∂A is the boundary of A, ~r⊥ the local normal vector to the boundary, α some
numerical constant and f a non-universal function. This indeed corresponds to a dominant
scaling exactly proportional to the boundaries between A and the rest of the system. For
gapped systems, this area-law (by opposition to a volume-law where the entropy would
scale as ldA) has been rigorously proven for both fermions and bosons[73, 74]. It is important
to stress the importance of this result: if we take a random state of the Hilbert space HA,
for dimHA ≪ HA, the vNEE should scale as ln dim HA ∝ VA, the volume of A[75].
Typical ground states of gapped Hamiltonian are very different from random states.

For gapless systems, the analysis is more complex. As the gap vanishes, the correlation
length χ diverges. Typically, two-points correlation functions may scale now as power
laws of the distance between the two points. For free non-interacting fermions, it has been
shown that the leading contributions to the entanglement entropy scales as [76–80]:

SE(A) = αld−1
A ln lA +O(ld−1

A ), (2.12)

with

α =
1

(2π)d−1

1

12

∫

∂Γ

d~k

∫

∂A

d~r|~n∂Γ(~k).~n∂A(~r)|, (2.13)

∂Γ is the Fermi surface, i.e. the surface in momentum space defined by E~k = 0 (E~k is the

energy of the quasi-particle at momentum ~k). It is supposed to be a (d− 1)-dimensional
manifold and ~n∂Γ(~k) is the normal vector to the Fermi Surface at the point ~k. ∂A is the
boundary of the region A, taken to be of volume 1. ~n∂A is its normal vector. We will
develop on this formula in the next two paragraphs. For now, it suffices to say that the
area-law is broken by this additional logarithmic factor. The appearance of a dominant
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A

lA

Aχ~r⊥

~r‖

Figure 2.1: The subregion A is entangled with the rest of the system on a length scale χ.
lA is a characteristic length of A, ~r‖ and ~r⊥ are the tangent and normal vectors to the
contour of A.

logarithmic factor will in fact be taken as a marker of gaplessness.
Finally, we conclude by mentioning that additional sub-leading contributions may also
appear when A has sharp corners and when the dimension of the Fermi surface is smaller
than d− 1. This is in particular the case for the Dirac metals that will be the subject of
Sections 2.1.2 and 3.4.

Gapless systems in one dimension

We start by considering the one-dimensional limit of Eq. 2.13. Let us consider the vNEE
of a segment of length lA in the middle of an infinite wire. Its boundaries are two zero-
dimensional points. Correspondingly, we assumed that the Fermi surface consists in a set
of M points. Then, the formula significantly simplifies to:

SE(A) =
M

6
ln lA +O(1), (2.14)

Let us consider perfectly free, non-superconducting fermions, described by the tight-
binding Hamiltonian:

− µ
∑

j

c†jcj+1 − t
∑

j

(c†jcj+1 + c†j+1cj) =
∑

k

(−µ− 2t cos k)c†kck (2.15)

The energy of each quasi particle is Ek = −µ−2t cos k, and consequently cancels at exactly
two points for |µ| < 2t. The limit |µ| > 2t corresponds to a fully empty or occupied wire,
and is therefore not really interesting. Eq. 2.14 leads to α = 1

3 .
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On the other hand, in Kitaev’s wire (described in Section 1.1), on the lines µ =
±2t,∆ 6= 0, the gap closes only at either k = 0 or k = π . The coefficient in front of the
logarithmic term is now α = 1

6 . Given that their vNEEs differ, these two gapless models
are not equivalent, in other words, they are not in the same universality class.

In fact, the classification through the vNEE of one-dimensional gapless systems is much
more generic. Many critical physical systems are described by a conformal field theory
(CFT)[81]1. One-dimensional critical points can be described entirely by these CFTs. In
particular, the vNEE of a region of size lA for an infinite system with PBC scales as:

SE(A) =
c

3
ln lA +O(1), (2.16)

where c is the central charge of the corresponding CFT[70, 82–84]. It essentially labels the
type of low-energy critical models and defines its universality class. This central charge
does not depend on the microscopic details of the theory, but only on its low-energy
behavior. A change in the central charge means that a phase transition occurred. This
also includes the interacting fermionic theories that we will study in Chapter 3. The two
families that interest us in this thesis are the Ising universality class and the free bosons.
The former corresponds to the Quantum Ising model in a transverse field or the Kitaev’s
chain at the critical point, where c = 1

2 and there is one free Majorana mode. The latter
corresponds to normal free electrons, or alternatively to Luttinger liquids or a free scalar
boson (described in Appendix E), where c = 1 and there is one free complex fermionic
mode.

Slightly away from the gapless point, the length lA is cut-off by the correlation length
χ, that is to say that the entropy saturates at:

c

3
lnχ+O(1) (2.17)

The conformal invariance also allows us to address the two important questions of finite
temperature and finite size, which are essentially the same due to the conformal invariance.
The finite temperature plays the role of a finite length in imaginary time. In these cases,
the logarithm is replaced by the universal terms[70]:

ln

(

L

π
sin(

lπ

L
)

)

for finite size and ln

(

vβ

π
sinh(

lπ

vβ
)

)

for finite temperature, (2.18)

with v the effective celerity, β the inverse temperature and L the total length of the system.
With the latter form, we recover the linear dependence in the size of the system at infinite
temperature, as is physically expected2.

When juxtaposing several independent critical models, their central charge simply
sums. Therefore, two c = 1

2 systems are equivalent to a c = 1 model. Indeed, the two

1Conformal field theories are field theories where the set of conformal symmetries has been enforced.
These symmetries in particular relate the real space behavior of the fields to their behavior in imaginary
or real time[81].

2At infinite temperature, each eigenstate of the Hamiltonian is equally weighted. Each degree of freedom
being in a perfect superposition, the total entropy SE(S) of the system is proportional to its size S. It is
also true on all subregions.
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c = 1
2 models are described at low energy by two free Majorana chains, leading to the

Hamiltonian:

it
∑

j

γ1j γ
1
j+1 + γ2j γ

2
j+1, (2.19)

where γ1/2 are Majorana fermions and the upper index marks the wire. Now, defining the
fermions

c2j =
(−1)j√

2
(γ12j + iγ22j), c2j+1 =

(−1)j√
2

(−γ22j+1 + iγ12j+1), (2.20)

the Hamiltonian can be rewritten as:

t
∑

j

(

c†jcj+1 + c†j+1cj

)

, (2.21)

which indeed describes a free complex fermion at half-filling.

Finally, when considering open systems, such that A is at one of the boundaries, the
coefficient in front of the logarithm is divided by 2 and the dominant contribution to the
fluctuations is:

c

6
ln lA (2.22)

Two-dimensional systems and Dirac metals

The second family of gapless models studied in this thesis are the Dirac metals. These
systems, whose paradigmatic example is the Graphene described in Section 1.6.2, are 2-
dimensional gapless systems where the gap only closes at a finite number of momenta,
with a linear dispersion. The contribution given by Eq. 2.13 actually vanishes and the
dominant term is now of order lA. A simple way to verify this affirmation is to consider
a continuous model of two-dimensional free electrons of spectrum:

E~k = vF |~k| − µ (2.23)

with µ a chemical potential that regulates the number of quasi-particles, and vF the Fermi
velocity. For µ > 0, the Fermi surface is the circle of radius µ

vF
. When µ = 0, the system

is still gapless, but the Fermi surface reduces to a point (we have a Dirac cone). Finally,
for µ < 0, the system is fully gapped. Let A be a disk of radius R. The coefficient α can
be trivially computed for µ > 0 using Equation 2.13

α =
1

3
√
π

µ

vF
,

α vanishes when µ→ 0. This is symptomatic of (d− 2)-dimensional Fermi surfaces. Note
also that α is clearly not universal for two-dimensional systems: the previous model stays
in the same universality class for µ > 0, and yet the coefficient continuously varies.

This problem of universality is general for more than one-dimensional problems. Iso-
lating terms that will be universal (that characterize the low-energy theory) is complex. In
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two-dimensions for point-like Fermi surface, it has been shown that universal sub-leading
logarithmic contribution can still appear in the vNEE:

SE = ClA − α ln lA +O(1) (2.24)

where C is a non-universal term and α only depends on the geometric form of A and the
low-energy theory[79, 85–87]. α is non-zero only if A has sharp corners, and it depends
on the value of the corners’ angles. For example, for a square subsystem, α = 4a(π2 ) while
for a part of a circle of angle ψ, α = a(ψ) + 2a(π2 ), with a the universal contribution of a
single corner (the corner function). As the vNEE is symmetric under A ↔ A, it verifies
a(ψ) = a(2π − ψ). We subsequently take ψ in [0, π]. It has been conjectured[88, 89] then
shown[90–92] that the central charge cT associated with the stress tensor of the CFT[93]
is given by:

cT =
24

π2
lim
ψ→π

a(ψ)

(π − ψ)2
(2.25)

Note however that the central charge is not enough to characterize two-dimensional low-
energy theories: cT = 3

16π2 for both the complex boson and the complex fermions with a
Dirac cone for example (called Dirac fermions in the following). In the limit ψ → 0, a(ψ)
diverges as:

a(ψ → 0) ≈ κ

ψ
, (2.26)

where κ is a universal constant characterizing the CFT. The divergence can be understood
from the following argument[94]: when reducing the corner to a line, A becomes of zero
surface, and the entropy must vanish. The dominant coefficient must vanish, which means
it must be canceled by the sub-leading logarithmic term. This in turn formally requires
a divergence of the logarithmic contribution. This constant κ appears in the universal
entanglement in systems with periodic boundary conditions.

The determination of the exact corner function for generic CFTs is still an open
problem[94], except in a few specific cases. In the rest of this Section, we will focus
on two models: the Dirac fermions and the so-called Extensive Mutual Information model
(EMIm), and start with the latter.

The EMIm is a family of models of free fermions, not defined by their Hamiltonian, but
purely by their conformal invariance and by the extensivity of their mutual information.
It has been useful in analyzing the vNEE of CFTs in higher dimensions3 as it allows
for a geometric computation of the entropy[79, 95]. As the name indicates, the mutual
information of the vNEE is extensive, that is to say:

ISE
(A,B) + ISE

(A, C) = ISE
(A,B ∪ C) for A,B and C disjointed regions. (2.27)

Free complex fermions in one dimension verify this extensivity condition, but not in higher
dimensions. Several more complex models have been proposed to be in this family, such

3In a general fashion, to keep things simple, when we speak of d-dimensional CFT, d is the dimension in
real space of the studied system. In the literature, it is referred as d+1-dimensional CFTs: the imaginary
time is taken into account at the same level as the physical distance.
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as some black hole models. In any case, no more information is needed to compute the
form of the entropy and the corner function that will arise:

aEMIm(ψ) =
π2cT

8
(1 + (π − ψ) cotψ) , κEMIm =

π3cT
8
≈ 3.876cT (2.28)

For 2-dimensional Dirac fermions, no exact form is known for the corner function. It
has been nonetheless thoroughly studied and differs from the EMIm’s. We refer the reader
to Ref. [94] for a review. In particular,

κDirac

cT
≈ 3.800. (2.29)

As a general rule, the difference between the corner functions of Dirac fermions and of
an EMIm with the same central charge remains extremely small for θ > π

2 , and diverges
when θ → 0.

Topological entropy

Finally, it is impossible to talk about entanglement entropy in topological systems without
mentioning the topological entropy that appear in intrinsically topological models. Though
it will not be of direct use in this thesis, we present in this section a brief overview of the
concept.

Discovered in 2006 by Refs. [96, 97], the topological entropy is the constant term that
appears in the vNEE in two-dimensional topologically ordered (intrinsic) system, noted γ:

SE(A) = ClA − γ + o(1). (2.30)

As the system is gapped, no logarithmic contribution appears at the dominant or sub-
leading order. This constant γ depends on the type of anyonic quasi-particle excitations
that can appear in the bulk:

γ =
1

2
ln
∑

α

d2α, (2.31)

where dα is the so-called quantum dimensions of the anyonic sectors. For Abelian anyons,
dα = 1, for non-Abelian anyons, dα > 1. It can be used to partially identify a given phase.
As an example, in Kitaev’s toric code[98], γ = ln 2[99], while in a 1

q -Laughlin state[100]

with odd q, γ = 1
2 ln q.

While theoretically interesting, the topological entropy is actually difficult to extract
numerically, as it requires careful scaling analysis and/or precise re-summations of the
contribution of different zones[101]. It also does not uniquely determine the topological
order in the state: this is why the study of the entanglement spectrum presented in the
next Section is of crucial importance.
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2.2 Entanglement spectrum and topological systems

2.2.1 Definition of the entanglement spectrum

Definition

First introduced in Ref. [102] to study the Fractional Quantum Hall effect, the entan-
glement spectrum (ES) has become a common tool for studying topological systems. It
is nothing but an extension of the entanglement entropy and of the study of the reduced
density matrix of a system. Instead of computing the entropy, the ES reinterprets the
density matrix ρA as a thermal Hamiltonian:

ρA =
1

Z
e−β

∗HA , (2.32)

where β∗ is an effective temperature taken to be 14, and HA is the so-called entanglement
Hamiltonian. This reformulation is possible because the reduced density matrix stays def-
inite positive. The ES is the set of eigenvalues εm = − lnλm of HA, where λm have been
defined in Eq. 2.6. All εm are positive, given that λm < 1. The vNEE can be evidently
rewritten as a sum over the ES, that therefore offers much more information. Computation
of the ES is mathematically strictly equivalent to computation of all the Renyi entropies5.

A core idea proposed in Ref. [102] is the classification of the different energies in
terms of their local quantum numbers. Let Ô be an operator than can be decomposed as
Ô = ÔA + ÔA. Then basic matrix algebra leads to:

TrA([Ô, ρ]) = TrA([ÔA, ρ]) + TrA([ÔA, ρ]) = TrA([ÔA, ρ]) = [ÔA, ρA] (2.33)

If Ô commutes with the Hamiltonian, and hence defines a proper quantum number, then
ÔA commutes with ρA, and the two can be co-diagonalized. The different entanglement
energies are therefore associated to different local quantum numbers associated to ÔA.

The ES has many variants, with different properties, depending on the chosen cut A.
Up to know, we chose a separation of the Hilbert space in terms of physical space, but any
criterion can be used. We note in particular the possibility of choosing the so-called particle
cut, where we integrate out a certain number of particles of the system[104], orbital cuts
where orbitals are removed on each site[105], or cuts in momentum space[106] to study
critical phases. In the rest of this section, we will nonetheless focus on the real-space cut,
that has the most direct application for the one-dimensional systems we study.

The case of two spins

Let us illustrate the properties of the ES by going back to the two-spins example. If A
and B are in the singlet state

|ψ〉 =
1√
2

(|↑A〉 |↓B〉 − |↓A〉 |↑B〉), (2.34)

4The choice of effective temperature has no importance for the computation of the entanglement spec-
trum though it can be relevant for ensuring continuity of thermodynamics quantities[103].

5Basic polynomial analysis for finite systems
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the reduced density matrix of the spin A (or B) is given by:

ρA =

(

1
2 0
0 1

2

)

, (2.35)

and its entanglement spectrum is {ln 2, ln 2}.
If they are in a product state,

|ψ〉 = |ψA〉 |ψB〉 , (2.36)

and the ES is formally {0,+∞}. The infinite values correspond to never occupied states
of the entanglement Hamiltonian, which are conveniently dropped in the following: we are
only interested in non-zero eigenvalues of ρA.

A first difference appears between entangled and non-entangled states directly in the
ES: for non-entangled states, whatever the dimension of the Hilbert space of A, the en-
tanglement spectrum is {0}, while entangled states lead to the appearance of multiple
levels. Maximally entangled states will simply have D = min( dim A, dim A) degenerate
entanglement states with entanglement energy lnD. Counting the number of low-energy
quasi-degenerate eigenvalues and measuring the gap with eventual higher excited energies
is therefore fundamental to describe the entanglement of the studied state.

2.2.2 Entanglement spectrum in topological systems

Generalities in d > 1.

The main idea behind the study of the entanglement spectrum is that it is somehow re-
lated to the boundary physics of the original Hamiltonian. Take a topological system in
a topological phase (gapped), with periodic boundary conditions (no edge states). Trac-
ing out the rest of the system creates artificial boundaries for the region A. For 2 and
3 dimensional models, it was conjectured in Ref. [102], and later proved in a variety of
models by Ref. [107, 108] that the entanglement spectrum coincides with the spectrum of
gapless edge states that would appear in an open system with the same geometry as A. In
particular, one can identify CFT theories through their tower of states, and consequently
identify the topological order of the system. Much more could be said on the properties
of the entanglement spectrum in d > 1, but we will focus on d = 1 in the rest of the section.

Kitaev’s chain and the quantum Ising model

Let us first illustrate the main properties of the entanglement spectrum in one dimensional
systems through the example of Kitaev’s chain. We consider the Hamiltonian introduced
in Eq. 1.1 and place ourselves at the two simple limits P1 = (t = ∆ = 0, µ < 0) and
P2 = (t = ∆ > 0, µ = 0). We consider an open wire of length L, and the region A
corresponds to the first LA > 1 sites.
At the point P1, the system is deep in the trivial phase, its Hamiltonian can be rewritten
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as

H = |µ|
L
∑

j=1

c†jcj , (2.37)

and the ground state of the system is non-degenerate and given by |0〉c. Tracing out A is
straightforward, the density matrix of A is simply given by

ρA =
∣

∣0̃
〉

c

〈

0̃
∣

∣

c
, (2.38)

where the state
∣

∣0̃
〉

c
is the state of A that cancel cj for 1 ≤ j ≤ LA. The entanglement

spectrum is therefore trivial and given by: {0}, whatever the length of A.

Conversely, at the point P2, the system is deep in the topological phase. Its Hamilto-
nian has been rewritten as:

HK = 2t

L−1
∑

j=1

d†jdj with dj =
1√
2

(γBj+1 + iγAj ). (2.39)

The ground state of the Hamiltonian is two times degenerate: the fermion d0 = 1√
2
(γB1 +

iγAL ) does not appear in the previous expression and consequently has zero energy. The

two ground states are |0〉d and d†0 |0〉d, eigenvalues of the total fermionic parity operator.
Following Li and Haldane reasoning, we select one of the two as they are eigenvalues of a
symmetry of the global system[109]:

|even/odd〉 =
1

2
L
2

L
∏

j=1,even/odd

(1 + c†j) |0〉c , (2.40)

where the even/odd index marks that we keep terms with an even/odd number of creation
operators. The convention for the operator products is the following:

L
∏

j=1

(1 + c†j) = (1 + c†L)(1 + c†L−1)...(1 + c†1) (2.41)

We consider the odd ground state that we rewrite as:

|odd〉 =
1

2
L
2

LA
∏

j=1,even

(1 + c†j)
L
∏

j=1+LA,odd

(1 + c†j) |0〉c

+
1

2
L
2

LA
∏

j=1,odd

(1 + c†j)
L
∏

j=1+LA,even

(1 + c†j) |0〉c . (2.42)

We artificially create a boundary by writing the system as a sum of tensor products.
As each term has different fermionic parity in A, they are necessary orthogonal and the
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density matrix is:

ρA =
1

2LA

LA
∏

j=1,even

(1 + c†j) |0〉c 〈0|c
1
∏

j=LA,even

(1 + cj)

+
1

2LA

LA
∏

j=1,odd

(1 + c†j) |0〉c 〈0|c
1
∏

j=LA,odd

(1 + cj) (2.43)

The ES is {ln 2, ln 2} and consequently perfectly degenerate. Out of the possible 2LA

entanglement energies, only two are non-zero. We obtain the same result when considering
the even ground state. When leaving the point P2, new high energy entanglement energies
appear but the spectrum stay exactly twice degenerate as long as the system is in the
topological phase. This degeneracy is a direct consequence of the presence of Majorana
edge states.

Yet, the picture is not complete: if we had computed the entanglement spectrum for
either |±〉 = 1√

2
(|even〉 ± |odd〉), we would have obtained {0}. Imposing the symmetry

is therefore of crucial importance. For Kitaev’s wire, a convenient way to choose a valid
GS is to consider periodic boundary conditions. At P2, the ground state is actually still
given by |odd〉, and consequently the ES is still twice degenerate, with one eigenvalue in
each parity sector. The structure of the entanglement Hamiltonian exactly matches the
boundary Hamiltonian.

It is worth considering the Quantum Ising model before concluding. Kitaev’s chain
with open boundaries at the point P2 is equivalent to the spin-12 quantum Ising model
given by:

H = −
∑

j

σxj σ
x
j+1 (2.44)

The two ground states of the system are obviously |L〉 =
⊗

j |←〉j and |R〉 =
⊗

j |→〉j ,
whether we have periodic or open boundary conditions. The difference in degeneracy
between the Quantum Ising model and Kitaev’s model arises from the non-locality of the
Jordan-Wigner transformation. Periodic boundary conditions on Kitaev’s chain is not
equivalent to periodic boundary conditions on the Quantum Ising model (in fact, one of
the parity sector will be periodic, the other one anti-periodic).
If we choose the eigenstates |L〉 ± |R〉 of the fermionic parity , equivalent here to

∏

j
σzj ,

the ES is exactly twice degenerate, with one eigenstate in each parity sector. If we prefer
the ”physical” ground states |L〉 and |R〉 that maximize the broken symmetry and are
classical states, the ES is trivial. Choosing the proper basis for the computation of the ES
is therefore crucial.6

6Taking the prescription ρ = 1
n

n∑

j=1

|ψj〉 〈ψj |, with |ψj〉 an orthogonal basis of the degenerate low-energy

space, does not really solve the problem. In the case of the Ising model, the entanglement spectrum is then
always twice degenerate. For Kitaev’s wire with OBC, the entanglement spectrum would be the same.
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Entanglement spectrum in topological systems

Let us summarize our previous discussion. The entanglement Hamiltonian is strongly
reminiscent of the boundary Hamiltonian in Kitaev’s chain, and we recover the same
structure with an exactly degenerate ES whether we consider the unique periodic ground
state, or one of the two ground states with open boundaries that are eigenvalues of the
fermionic parity. The exact degeneracy of the ES is therefore a tempting symptom for the
detection of topological phases.
Yet, the example of the Quantum Ising model should be a good warning: studying only
the degeneracy of the ES is not enough. For systems where we can find a local order
parameter and that are well described by a theory a la Landau, i.e. where a symmetry is
broken, it is (retrospectively obviously) more physical to work in a basis where we saturate
the symmetry breaking, instead of a basis where we artificially make it survive.
As a general rule, the entanglement spectrum can give us strong indications that we are in
the topological phase only after a careful treatment and analysis of the low-energy sector.
The degeneracy (in the thermodynamic limit) of the ground states must be checked. The
number of edge states will generally given by the ratio degeneracy of the ES divided
by the degeneracy of the periodic system. In particular, for Kitaev’s chain the two-fold
degeneracy corresponds to the degeneracy of the open system and marks the presence
of Majorana edge states, while for the Su-Schrieffer-Heeger model, the ES would be four
times degenerate in the topological phase.

For a proper derivation of the properties of the entanglement spectrum in topological
system for non-degenerate ground states, we refer the reader to Ref. [110], that gives
a clear and detailed discussion on the relation between the topological phases and their
entanglement spectrum. Our previous example-based discussion will be enough to follow
the rest of this thesis.

2.3 Bipartite fluctuations as a ”weak” measure of entangle-

ment

In this section, we give a definition and an overview of the main properties of the bipartite
(charge) fluctuations (B(C)F), and of some of the works where it has been successfully
applied. We focus on systems where the total charge or spin polarization, whose fluctua-
tions we are measuring, are conserved, through the example of Luttinger Liquids. In this
limit, the BF share some properties with the vNEE and other entanglement probes, and
can be used to partially characterize phases and phase transitions.

2.3.1 The problem of entanglement measure

While the vNEE and the ES are important theoretical tools, these quantities are chal-
lenging to experimentally measure in a generic interacting fermionic system, despite some
recent proposals and experimental efforts[111]. Several schemes[112–114] have been pro-
posed to measure the Renyi entropies or the entanglement spectrum, and we give a brief
overview of the common idea behind them.
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First, let us briefly explain how to measure the vNEE or the entanglement spectrum in
a non-interacting system[115]. The Hamiltonian of such a system is a bilinear of fermionic
operators. All correlation functions are entirely determined by the two-fermion correlators
on different sites, due to Wick’s theorem. We remind the reader the form of Wick’s theorem
for an arbitrary fermionic operator a, and for an eigenstate with fixed fermionic parity (in
particular the ground state):

〈ai1 ...ai2n〉 =
1

n!

∑

σ∈S′2n

(−1)P (σ)〈aσ(i1)aσ(i2)〉...〈aσ(i2n−1)aσ(i2n)〉, (2.45)

where S′2n is the space of the permutations of (1, ..., 2n) such that σ(i2k+1) < σ(i2k+2) for
all k and P (σ) the signature of the permutation σ. A simple example is:

〈c†1c2c†3c4〉 = 〈c†1c2〉〈c†3c4〉 − 〈c†1c†3〉〈c2c4〉+ 〈c†1c4〉〈c2c†3〉 (2.46)

In systems where the charge is conserved, the Wick’s theorem accepts the simpler repre-
sentation, for states that are eigenstates of the fermionic number operator:

〈c†i1 ...c
†
in
cj1 ...cjn〉 = (−1)n−1

∑

σ∈Sn
(−1)P (σ)〈c†i1cjσ(1)

〉...〈c†incjσ(n)
〉, (2.47)

where Sn is the space of the permutations of (1, ..., n). Both versions are also valid for
thermal averages.
Conversely, the entanglement Hamiltonian can be shown to still be a fermionic bilinear,
given that all correlation functions inside the region A are still determined by the two-
fermion correlators of sites included in region A. If the system is described by the density
matrix

ρA = e
−∑

i,j
Hi,jc

†
i cj
,

then the correlation functions are:

〈c†icj〉 = (1 + eH)−1
i,j , or conversely H = ln(C − 1), (2.48)

with C the matrix of correlations in A, Ci,j = 〈c†icj〉. The entanglement spectrum (and
therefore the vNEE) is directly obtained from a measurement of the correlations, and
similarly for the entropy.

For interacting systems, it is in practice much more difficult to measure the entangle-
ment as Wick’s theorem no longer applies. In principle, the entanglement Hamiltonian is
also interacting (and therefore not quadratic).
Several proposals have recently been made in different set-ups, and essentially rely on a
similar trick. To measure either Renyi entropies, or the entanglement spectrum, several
”copies” (in the sense of identical systems) of the studied system are brought together.
Propositions then rely on the existence of a swap operator S that exchange the wave
functions of the systems. In this short presentation, we focus on the case of the second
Renyi entropy SR,2 and the entanglement spectrum that both requires only two copies of
the system. Let the two systems be in the identical state |ψ〉 =

∑

n
λn |Ln〉Aj

⊗ |Rn〉Aj
,
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where the cut is taken at the boundary of the region Aj in each wire j. Assume the swap
operator acts only on the part A. With the swap, the system goes from the state:

|0〉 =

(

∑

n

λn |Ln〉A1
⊗ |Rn〉A1

)

⊗
(

∑

n

λn |Ln〉A2
⊗ |Rn〉A2

)

(2.49)

to
∣

∣0′
〉

=

(

∑

n

λn |Ln〉A1
⊗ |Rn〉A2

)

⊗
(

∑

n

λn |Ln〉A2
⊗ |Rn〉A1

)

, (2.50)

and the overlap between the two is then 〈0′|0〉 =
∑

n
λ4n = e−SR,2 . To measure this overlap,

interferometry of an auxiliary ancilla that conditions the swap is enough.
To perform the measure of the entanglement spectrum, instead of applying directly a
conditioned pulse operator S, one needs to apply sequentially small pulses such that the
system evolves as eiεSρA1⊗ρA2e

−iεS , where S now applies on Aj . After n such operations,
the first system is approximately in the state

e−inερA2ρA1e
inερA2

The first system consequently undergoes a time evolution equivalent to the density matrix
of the second system. Using again an auxiliary ancilla to apply a conditioned swap allows
a measure of interference patterns on the polarization of a single qubit, given by:

∑

m

λm cos(2tnλm), (2.51)

where tn = nε and λm are the eigenvalues of ρ = ρA1 = ρA2 . Fourier analysis of the signal
gives the different eigenvalues, their degeneracy and consequently, the entire ES.

For more than a simple overview of these two experimental proposals, we refer the
reader to the original papers[113, 114]. Our message here is simple: these proposals
rely on creating complex interference patterns between identical systems. While such a
precision may be in principle attained in very controlled set-ups such as cavity or circuit
quantum Electrodynamics, or in cold atoms experiments with a reasonably small number
of atoms, the study of traditional condensed matter systems, with their impurities and
disorder, seems out of reach.

2.3.2 General definition of bipartite fluctuations

Measurement of the vNEE or the entanglement spectrum are therefore challenging, in
particular for condensed matter systems. As these quantities are properties of the reduced
density matrix, it is natural to wonder whether it is possible to acquire similar informations
by looking directly at local observables[116]. In particular, Ref. [117] proposed to look at
the BCF in charge conserving fermionic systems. Let us define a general formalism for
bipartite fluctuations[118–120]. For a region A, we consider an operator Ô that can be
written as Ô = ÔA ⊗ 1 + 1⊗ ÔA. Generally, we will consider operators that as a sum of
local commuting operators acting on a unit-cell:

ÔA =
∑

~r∈A
Ô~r, (2.52)
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where Ô~r the operator for site ~r. We define the bipartite fluctuations of Ô on A, FÔ(A)
by:

FÔ(A) = 〈Ô2
A〉 − 〈ÔA〉2 = 〈(ÔA − 〈ÔA〉)2〉 (2.53)

= Tr(Ô2
Aρ)− Tr(ÔAρ)2 = Tr(Ô2

AρA)− Tr(ÔAρA)2 (2.54)

=
∑

~r,~r′∈A
〈Ô~rÔ~r′〉 − 〈Ô~r〉〈Ô~r′〉, (2.55)

where the average is usually taken in the ground state, but can be extended to any thermal
states. By analogy with usual diagrammatic expansion, we call 〈Ô~rÔ~r′〉 − 〈Ô~r〉〈Ô~r′〉 the

connected average that we note 〈Ô~rÔ~r′〉c (and similarly for 〈Ô2
A〉c).

As defined above, the fluctuations are always positive. They correspond to the variance of
the operator Ô in the ground state (or thermal ensemble), that is to say the second order
cumulants of Ô. They can be generalized to any order by:

(−i∂λ)n ln〈eiλÔA〉|λ=0 (2.56)

Let us focus on the zero-temperature limit where the system is taken in its ground
state, that we take as an eigenstate of Ô. It is a consequence of the commutation of
Ô with the Hamiltonian. Then, the fluctuations verify the following set of entropy-like
properties:

• The fluctuations cancel for a product state |ψ〉A ⊗ |ψ〉A. As the total state is an

eigenstate of Ô, the product state structure requires that both |ψ〉A and |ψ〉A are

eigenstates of ÔA and ÔA. Indeed:

〈Ô2〉c = FÔ(A) + FÔ(A) + 2〈ÔAÔA〉 − 2〈ÔA〉〈ÔA〉
0 = FÔ(A) + FÔ(A),

which are each positive. The converse is of course false: states that cancel the
fluctuations (and even all cumulants) are not necessarily product states. A good
example is the state 1√

2
(|01〉A⊗|10〉A + |10〉A⊗|01〉A) for Ô that counts the number

of 1. Cumulants at all order cancel, but the vNEE is ln 2. Yet, local conservation
of Ô will be rare, and even usually unphysical. The reciprocal statement F(A)Ô =
0⇒ (A and A form a product state) is therefore empirically true.

• The fluctuations are in fact symmetric for pure states: FÔ(A)=FÔ(A).

〈(Ô2
A〉c − 〈(Ô2

A〉c = 〈(Ô − 〈Ô〉)(ÔA − ÔA − 〈ÔA − ÔA〉)〉 = 0 (2.57)

This symmetry is a direct consequence that the fluctuations arise at the boundaries
between A and the rest of the system.

• Fluctuations admit a weak form of sub-additivity: FÔ(A)+FÔ(B) ≥ FÔ(A∪B) = 0,

if Ô is conserved in A ∪ B. It simply comes from F ≥ 0.
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2.3.3 Bipartite charge fluctuations in Luttinger Liquids

Instead of a complete overview of the physical systems previously studied with the help of
bipartite fluctuations, we will focus on the seminal example of the Luttinger liquids (LL)
in one dimension. We note nonetheless that bipartite fluctuations were also used in very
different contexts, such as the superradiant transition[121] or in relation with Many-Body
Localization and disordered systems[122–125]. A brief overview of LL formalism is kept
in Appendix E. We here study the properties of the charge or spin fluctuations in such a
system. We only discuss systems where the total charge is conserved.

Bipartite charge fluctuations

It was initially proposed to take Ô to be either the fermionic charge or equivalently the
spin polarization. This choice follows quite naturally from both theoretical and practical
reasons.

First, for simple non-interacting systems, the vNEE and all Renyi entropies can be
expressed as a sum over the charge cumulants, as was shown in Ref. [126]. As an example,
we give the formula for the vNEE:

SE = lim
M→+∞

M+1
∑

n=1

αn(M)Cn =

+∞
∑

n=1

2ζ(2n)C2n, (2.58)

where Cn is the nth charge cumulant, ζ is the Riemann zeta function and α is defined by:

αn(M) =







2
M
∑

k=n−1

S1(k,n−1)
k!k for n even

0 for n odd

, (2.59)

where S1 are the unsigned Stirling number of the first kind. The two sums are formally
equivalent, but the first one has more convenient convergence properties. Derivation of
this formula is quite technical and we invite the interested reader to consult Ref. [126].

Secondly, the charge and the spin polarization are usually convenient objects to mea-
sure in any kind of systems. A few proposals have been made to implement the measure.
For cavity or circuit QED, or in cold atoms, one can directly probe the two-point correla-
tion functions, in particular of the charge, or even directly the charge of a region[127, 128],
and from there rebuild the fluctuations7. For the more interesting case of condensed mat-
ter systems (the real superconductors and insulators), probing the local charge through
grids or electronic microscopes would be enough.

Fluctuations and entanglement in Luttinger Liquids

Let us consider the simpler case of Luttinger liquids[129–131] (LL) described in Appendix
E. Luttinger liquids are a way of representing one-dimensional fermionic theories in terms
of their bosonic density- and spin-waves. Mapping fermionic theories to bosonic ones

7In practice, it is even enough to extract the long-range behavior of these correlations to get the different
properties and coefficients.
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allows for a convenient perturbative treatment of interactions, but also a convenient way
to compute entropy and BF. LL form a CFT with central charge c = 1 (which corresponds
to the central charge of the non-interacting fermions). Its entanglement entropy for a single
mode is therefore given by:

SE(A) =
1

3
ln lA +O(1), (2.60)

where O(1) represents a non-universal constant, and other sub-leading terms. The con-
sidered one-dimensional system has been taken to be infinite and A far from its edges.

The computation of the fluctuations is actually straightforward in a Luttinger Liquid.
The charge operator corresponds in the continuum limit to the density operator:

ρ(x) = ρ0 −
1

π
∂xφ(x), (2.61)

where ρ0 is the mean density. The total charge in A is straightforwardly expressed as:

Q̂A − 〈Q̂A〉 = − 1

π
(φ(lA)− φ(0)) (2.62)

Using expressions given in Appendix E leads to a simple form for the fluctuations:

FQ̂(A) =
K

π2
ln lA +O(1). (2.63)

The derivation can be alternatively obtained directly from CFT computations (Appendix
F.2), which allows to simply recover that the fluctuations admit the same finite size and
finite temperature form as the entanglement entropy. For the purpose of numerical simu-
lations, in particular for open boundary conditions, these finite-size corrections are crucial
(Friedel oscillations)[70, 117, 132]. About a hundred sites are required to get a precise
value of either the charge central or K.

Interestingly enough, the ratio SE/FQ̂(A) for free fermions is, for lA ≫ 1, given by
π2

3 , which is exactly the limit of α2(M) for M → +∞ in Eq. 2.59. It has been shown
in Ref. [133] that such a ratio holds in any dimension and for all Renyi entropies for
non-interacting fermion gases in the thermodynamic limit8

SR,α(A)

FQ̂(A)
=

(1 + α−1)π2

6
+ o(1) (2.64)

For non-interacting free fermions, in systems where the charge is conserved, measuring the
vNEE or the BCF is essentially equivalent. We will see in the next section an alternative
derivation of F for free fermions.

For interacting systems described by Luttinger liquids, the relation is still fairly straight-
forward. The additional factor K that appears nonetheless means a loss of universality.
Two LL with different Luttinger parameters belong to the same universality class, as they

8The ratio is also valid for other inhomogeneous fermionic systems in one dimension[134]
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are both described by a c = 1 bosonic CFT, yet the coefficients of the logarithmic term
in the fluctuations differ. It is nonetheless not a pure negative point: the BCF give a
very convenient way to measure the Luttinger parameter in LL (for example in numerical
simulations), without any free parameters. The BCF have been used with a lot of success
to characterize LL at phase transitions[135–139].

A final interesting property is the link between the coefficient of the fluctuations and
the compressibility of the charge. We define the compressibility by:

χ =
∂

∂µ
〈ρ〉, (2.65)

with 〈ρ〉 the average value of the charge density taken in its thermal average. Noting bQ̂
the logarithmic coefficient of the charge fluctuations, the compressibility theorem[126, 140]
states that:

bQ̂ =
vχ

π
with v the celerity. (2.66)

In terms of standard thermodynamics, A acts as a reservoir at equilibrium with A, treated
in the grand canonical ensemble. This result is only valid if the total charge is conserved,
i.e. the equality does not stand in the systems studied in Chapter 3[140].

2.3.4 Beyond one dimension

The study of the BCF in generic two dimensional models is still quite an open question.
For non-interacting systems, the methods used in Ref. [126] are still valid, but the required
computations are much more involved. As soon as we go to interacting systems, except
for a few exactly solvable models, numerics are required to compute both the vNEE or
the BCF.
On the other hand, the BCF offer a convenient tool to probe the edge states that appear
in some topological models. A paradigmatic example is the case of the Integer Quantum
Hall effect[141]. It has also been shown that for free fermions, the BCF follow the same
dominant scaling laws as the vNEE[142]. They were also used in various spin models.[139,
143].
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3.4.3 Beyond the single isotropic Dirac cone . . . . . . . . . . . . . . . 110

This Chapter is dedicated to our own work on bipartite fluctuations in non-interacting
topological systems. More specifically, we focus on bipartite fluctuations at and near the
usual critical phases that appear in such systems, as bipartite fluctuations bring more in-
formations for gapless phases. Finding such critical phases is not a guarantee of topological
phase transition, as it is always possible to build convoluted models where they appear
without change in the topology of the system, but it is still a strong signature of these
transitions. Additionally, some gapless systems are themselves topologically protected[41]
(for example, the DIII class in d = 2): the BCF are then a perfect tool for their study.

In this Chapter, we focus on one- and two-dimensional critical systems that are typical
of topological phase transitions. We consider fluctuations of local fermionic bilinears such
as the charge, or the different pseudo-spin polarizations. We start in Section 3.1 by
an overview of the mathematical properties of the fluctuations of such systems in one
dimension. Using Wick’s theorem, one can conveniently express fluctuations as a simple
scalar product of the Green functions modulated by a kernel function, the so-called Fejér
Kernel. This function has very interesting properties that allow us to determine the general
form of the fluctuations for non-interacting systems:

FÔ(A) = iÔlA + bÔ ln lA +O(1), (3.1)

with Ô the considered operator, and lA the length of the subsystem A. We also prove
that iÔ is linked to the Quantum Fisher Information density[144] (QFID). The QFID,
introduced in quantum metrology and information, gives bounds on the reproducibility
of the quantum systems. For the superconductors and two-band insulators that we study
here, we derive strong bounds on this coefficient:

iÔ ≤
qe
2

with qe the charge per unit-cell. (3.2)

The logarithmic term itself can only appear if the system is gapless and is directly related
to the amplitude of the correlation functions and to the symmetries at the gap-closing
momenta.

In Section 3.2 we apply the previously derived formalism to the BDI family of topo-
logical models. Focusing on our two-band models, we compute the fluctuations for the
complete family of local fermionic bilinears. We show that at phase transitions, the lin-
ear coefficient has characteristic cusps that make it particularly convenient to detect the
gapless QPTs. The discontinuity of the derivative can be linked to the speed of the dif-
ferent components of the Hamiltonian. At simple phase transitions, where the gap closes
at only one momentum, we show that the particle-hole (PHS) and time-reversal (TRS)
symmetries enforce that the logarithmic coefficient of the charge fluctuations is universal
and given by:

bQ̂ = − qe
2π2

. (3.3)

The negative sign proves that these fluctuations cannot be described in terms of density
fluctuations of a Luttinger Liquid. For superconductors, qe = 1, and |bQ̂| is half of what
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it would be for free fermions. This factor of two is directly analogous to the one appearing
in the central charge.
When considering more complex phase transitions, with several points at which the gap
closes, we lose universality of the coefficient, thought the cusp in the linear term generally
survives. To recover the exact nature of the QPT, we introduce the structure factor of the
bipartite fluctuations:

SF Ô(A, ψ) = 〈|
∑

j∈A
eiψjÔj |2〉 − |〈

∑

j∈A
eiψjÔj〉|2 (3.4)

This quantity allows us to recover the exact number of gap-closing points and their prop-
erties. Finally, we also address finite-temperature and finite-size corrections. The latter
is especially important in numerical simulations of topological superconductors, as proper
care has to be taken of the special 0- and π-modes. We find the exact corrections for
Kitaev’s model, and check the numerical convergence of fluctuations in Matrix Product
States simulations. We also take the time to treat, as an example of results beyond the two-
band paradigm, the Rashba-nanowire model for topological superconductor introduced in
Section 1.5.3. We find that a proper choice of the charge leads to the same results as in
Kitaev’s simpler model.

Section 3.3 is devoted to the study of the bipartite fluctuations in D class Hamiltoni-
ans. We find that most of the previously derived properties are still valid: cusp at the
phase transitions, quantized logarithmic coefficients...

Finally, we study in Section 3.4 typical models of two-dimensional gapless fermions.
More exactly, we focus on models presenting Dirac cones, that are characteristic of transi-
tions in two-dimensional topological models. We focus on charge fluctuations in two-band
models. We first show, using the 2D analogue of Fejér Kernel, that the fluctuations scale
as:

iÔAA + cÔRA + bÔ ln lA +O(1), (3.5)

with AA the area of the considered subregion and RA and lA two characteristic lengths
(RA is usually the perimeter). We then prove that the area coefficient is still given by
the QFID associated to the charge. It does not present cusps at QPTs, but a logarithmic
divergence of its second derivative. We can extend this result to higher dimensions: for a
point-like Fermi surface and a linear energy dispersion, we expect discontinuity of the dth

derivative in odd dimensions and its logarithmic divergence in even dimensions.
We then focus on the logarithmic term for a single isotropic Dirac cone. b can be non-zero
only if the system is gapless and depends on the winding number m of the Dirac cone.
We also show that, just as for the vNEE, it appears if there are corners in the subsystem
A. Each corner gives independently a contribution of

qem
2

32π2
(1 + (π − ψ) cotψ) ln lA, with ψ the angle of the corner. (3.6)

The function ψ → 1 + (π − ψ) cotψ is called a corner function. It does not correspond to
the corner function that appears in the entropy of Dirac fermions in two dimensions, but
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to the one that appears in the Extensive Mutual Information model. This result, initially
computed on a square lattice, is actually lattice-invariant. Note also the positive sign of
the logarithmic term, which is opposite to the one appearing in the vNEE of the relevant
systems.

We then generalize these results to more complex situations. First, we look at poten-
tially anisotropic Dirac cones. We show that anisotropies in momentum space translate
into anisotropy in real space: fluctuations become dependent on the direction of A, and
the corner function is deformed. Then we conclude by looking at critical points with
several Dirac cones. We show that the structure factor of the fluctuations allows us to
distinguish between a trivial phase such as the graphene, where two cones with opposite
winding number, and the µ = 0 gapless phase of the p+ ip superconductor where the two
cones have the same winding number.

Most of the results in this Chapter were derived directly for tight-binding Hamiltonians,
using symmetries to minimize the importance of the microscopic details of the considered
models. We could have a similar approach using directly Conformal Field Theory rea-
soning directly in terms of Operator Product Expansions and operator dimensions. Our
choice of not going through such a derivation follows from the simple observation that,
for experiments, the way observables map on the conformal fields is just as important as
the behavior of the conformal fields at low energy. Treating directly physical observables
therefore bypass this problem, and the mapping from observables to conformal fields is
straightforward from the quantized coefficients. We also want to point out that the discus-
sion and quantification of the fluctuations can also be expressed in terms of quantification
of the dominant terms in the correlation functions. As a simple example, universality
of the logarithmic coefficient in one dimension for the charge fluctuations in topological
superconductors means that:

〈njnj′〉c = −
bQ̂

2

1

(j − j′)2 + o(
1

(j − j′)2 ). (3.7)

This Chapter is based on Ref. [145] and other works in preparation.

3.1 Bipartite fluctuations in 1D: generalities

3.1.1 Preliminaries on charge-conservation breaking

Before attacking the proper study of bipartite fluctuations in topological systems and at
the topological phase transitions, it is worth spending some time considering the general
properties of the BF when the considered observable Ô is not a global conserved quantity.
Indeed, in Kitaev’s model, only the parity of the total charge is conserved. For other
topological systems, such as the SSH model, we will be interested in the pseudo-spin
polarization, which is also not conserved.

Before studying many-body examples, we can have a look at the similarities with
the vNEE that were obtained in Section 2.3.2. All of these properties break down when
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considering an observable Ô that is not conserved. Let us go through an example of each
violation. We take Ô to count the number of 1 in all the following examples.

• The state 1
2 (|0〉A + |1〉A)⊗

(

|0〉A + |1〉A
)

verifies FÔ(A) = 1
4 6= 0 while it is a product

state.

• The state 1√
2
|0〉A ⊗

(

|0〉A + |1〉A
)

obviously violates the symmetry between A and

A.

• The state 1√
2

(

|0〉A ⊗ |0〉A + |1〉A ⊗ |1〉A
)

breaks the weak sub-additivity.

The consequences for many-body systems are far-reaching: in systems where Ô is not
a conserved number, the absence of symmetries implies that the BF do not follow bound-
ary laws (or even logarithmic corrections to the boundary laws). Indeed, this is what we
observe in the rest of the Section. The bipartite charge fluctuations generally scale at least
linearly with the size of the considered region A.

On the other hand, we can define another object, the mutual fluctuations that still
directly measure the entanglement of the subsystems. By analogy, the mutual fluctuations
for disjointed regions A and B are defined by:

IÔ(A,B) = FÔ(A ∪ B)−FÔ(A)−FÔ(B) (3.8)

= 2
∑

j∈A,j′∈B
〈ÔAÔB〉c (3.9)

The mutual fluctuations still verify (IÔ(A,B) = 0 for all product states). It also follows
from their definition that they are extensive:

IÔ(A,B) + IÔ(A, C) = IÔ(A,B ∪ C) with A, B and C disjointed. (3.10)

It has the added advantage to remove the volume terms, and therefore the logarithmic
contribution is directly visible. We nonetheless keep the focus on the BCF as the dominant
scaling term carries information on the phase transition, and as the generic computation
of I requires the more complex computation of multipartite fluctuations. They also give
a very interesting bound on the mutual entropy[74]:

I(A,B) ≥ 1

8

IÔ(A,B)2

||ÔA||2||ÔB||2
(3.11)

This bound is actually far from exhaustion in the models we consider in this Chapter:
while it will generally guarantee a non-trivial algebraic decay of the mutual entropy, it
is not a precise measurement of the exponent. We generally find that mutual charge
fluctuations and mutual information have the same scaling laws. An improvement on the
latter formula in this context would be interesting, as an experimental signature of the
long range entanglement in the critical phases. From a numerical point of view, it will
also be interesting to measure I(A,A), as it will be dominated by the logarithmic terms
we are interested in.
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3.1.2 Bipartite fluctuations in arbitrary non-interacting systems

In this section, we introduce the general formalism for computing the bipartite fluctuations
in non-interacting systems. We propose the generic derivation first for the fluctuations
in typical insulating systems, then for superconductors, and we limit ourselves here to
two-band models. The bipartite fluctuations are computed directly in the bulk: the goal
is to probe the bulk properties and in particular at phase transitions. Analysis of the
results in different seminal models will follow in the next part. The reader not interested
in the technical discussions can directly refer to Table 3.2 and Eq. 3.17 for the general
expressions of the bipartite fluctuations.

BF in insulators

Let us start with an insulating model with two fermions by unit-cell, noted A and B. We
assume a form of translation symmetry such that the bulk Hamiltonian can be rewritten
as:

H =
1

2

∑

k∈BZ
Ψ†
k~n.~σΨk, with ~n = (nx(k), ny(k), nz(k)) and Ψ†

k =
(

c†k,A, c†k,B

)

. (3.12)

The total charge nj,A + nj,B is locally conserved, and the ground state is always in the
sector nj,A + nj,B = 1. Fluctuations of the total charge are consequently always zero.
Perturbations that lift this symmetry break the PHS.

Instead, it is more interesting to look at the pseudo-spin polarization operators. Ex-
cluding the total charge, a complete basis for these terms is given by:

qe
2

Ψ†
j~σΨj = (c†j,Acj,b + h.c., ic†j,Bcj,A + h.c., nj,A − nj,B), (3.13)

where qe is the charge per unit cell (qe = 2). The interest of this notation will be apparent
when comparing superconductors and insulators.

Computing the fluctuations is straightforward, thanks to Wick’s theorem and charge
conservation. Let Ôj,α,β = c†j,αcj,β , with α and β indexing a sub-lattice. To compute the
general bipartite fluctuations, we need to compute:

lA
∑

m,n=1

〈Ôm,α,βÔn,α′,β′〉c =

lA
∑

m,n=1

〈c†m,αcm,βc†n,α′cn,β′〉c

=

lA
∑

m,n=1

1

L2

∑

k,k′,q,q′
ei(k

′−k)mei(q
′−q)n〈c†k,αck′,βc

†
q,α′cq′,β′〉c

=
1

L2

∑

k,k′,q,q′

1− ei(k′−k)lA
1− ei(k′−k)

1− ei(q′−q)lA
1− ei(q′−q) δk,q′δk′,q〈c

†
k,αck,β′〉〈cq,βc†q,α′〉

=
1

L2

∑

k,q

sin2 k−q
2 lA

sin2 k−q
2

〈c†k,αck,β′〉〈cq,βc†q,α′〉
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GA,A(k) cos2( θk2 ) GB,B(k) sin2( θk2 )

GA,B(k) 1
2 sin(θk)e

−iφk GB,A(k) 1
2 sin(θk)e

iφk

Table 3.1: Green functions for an arbitrary non-interacting two-band insulator at half-
filling.

lA
∑

m,n=1

〈Ôm,α,βÔn,α′,β′〉c =
lA
L2

∑

k,q∈BZ
fF (k − q, lA)Gβ,α′(k)(δα,β′ − Gβ′,α(q)) (3.14)

= lA

∫∫

k,q∈BZ

dkdq

4π2
fF (k − q, lA)Gβ,α′(k)(δα,β′ − Gβ′,α(q)), (3.15)

where fF is the Fejér Kernel, and Gα,β(k) = 〈ck,αc†k,β〉 is the fermionic Green functions.
An overview of the properties of the Fejér Kernel is given in the following Section. No
other contributions appear due to the total charge conservation (anomalous Green func-
tions vanish) and the cancellation of the connected contributions. Eq. 3.14 and 3.15 are
the basic blocks upon which we will build the fluctuations. The continuous version is valid
in the thermodynamic limit, and except when we will consider the finite-size effects, it is
the most convenient.

Taking our usual conventions to compute the Green functions

φk = Arg(nx + iny) and θk = Arg(nz + i
√

n2x + n2y), (3.16)

we obtain an integral form for arbitrary bipartite fluctuations. The Green functions are
listed in Table 3.1 and the integral forms are given in Table 3.2. As a general rule,
these integrals are elliptic and not analytically computable. Depending on what is the
most convenient and explicit, we will indifferently use the notations FÔ for the bipartite

fluctuations of the operator Ô or Fαβ , α, β = X/Y/Z for

〈ÔαAÔβA〉c, with Ôαj =
qe
2

Ψ†
jσ
αΨj

As an example, the bipartite fluctuations of the pseudo-spin density nj,A − nj,B are:

FZZ(A) =
lAqe

4

∫∫

k,q∈BZ

dkdq

4π2
fF (k − q, lA) (1− cos θk cos θq + cos(φk − φq) sin θk sin θq) .

(3.17)

BF in superconductors

For superconductors, the derivations are essentially similar. We consider an Hamiltonian
of the form:

H =
1

2

∑

k∈BZ
Ψ†
k~n.~σΨk, with ~n = (nx(k), ny(k), nz(k)) and Ψ†

k =
(

c†k, c−k
)

. (3.18)
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Term αβ Integral form gαβ
ZZ 1− cos θk cos θq + cos(φk − φq) sin θk sin θq
XX 1 + cos θk cos θq − cos(φk + φq) sin θk sin θq
YY 1 + cos θk cos θq + cos(φk + φq) sin θk sin θq
XZ −4 cosφq sin θq cos θk
YZ −4 sinφq sin θq cos θk
XY −2 sin(φk + φq) sin θk sin θq

Table 3.2: Expressions for the bipartite fluctuations for an arbitrary polarization for the
topological insulators. We take the following convention: if Ô~m = qe

2 Ψ†
j ~m.~σΨj , avec

~m = (mx,my,mz) ∈ R3, then the associated fluctuations are given by: FÔ~m
(A) =

qelA
4

∑

α≤β=x,y,z
mαmβ

∫∫

k,q∈BZ

dkdq
4π2 fF (k − q, lA)gαβ(k, q).

Ψ†
jσ
x/yΨj now vanishes for all sites j, so we only consider the charge fluctuations. The

charge operator is Q̂j = nj− 1
2 = qe

2 Ψ†
jσ
zΨj , with qe the charge by unit cell (qe = 1 ). The

additional constant gives no contribution to the fluctuations. Wick’s theorem now leads
to:

FQ̂(A) =
lA
L2

∑

k,q∈BZ
fF (k − q, lA) (G(k)(1− G(q))−D(k)D∗(−q)) (3.19)

where G(k) = 〈ckc†k〉 is the normal Green function and D(k) = 〈c†kc
†
−k〉 the anomalous one.

Using the standard conventions, the final expression for the charge fluctuations exactly
matches Eq. 3.17.

3.1.3 The Fejér Kernel: properties and consequences

This section is dedicated to the Fejér Kernel as its appearance is fundamental to the
analytical solvability of the BF in non-interacting models.

Main properties of the Fejér Kernel

It is a recurring function in interference problems that has a few very convenient and
powerful properties. As a remarkable example, it appeared in Ref. [78] in the computation
of bounds for the vNEE, that were used to check the violation of the area law for two-
dimensional free fermions with a one-dimensional Fermi surface. We give in this section the
main properties of the Kernel, with a focus on what makes it computable and remarkable.
First, it has a fairly simple expression in terms of Fourier coefficients:

fF (k, l) =
sin2(kl2 )

l sin2(k2 )
=

l
∑

j=−l
(1− |j|

l
)ei(jk). (3.20)
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Secondly, it is a uniform approximation of the Dirac delta for convolutions such that

fF (k, l)→ 2πδ(k) when l→ +∞. (3.21)
π
∫

−π

dk

2π
fF (k − q, l)g(k)→ g(q) when l→ +∞ and g continuous in q. (3.22)

Scaling laws

Let us explore the consequences of these properties for the forms we have derived. All
bipartite fluctuations can be expressed as a sum of terms of the form

lAqe
4

∫∫

k,q∈BZ

dkdq

4π2
fF (k − q, lA)f(k)g(q), (3.23)

that we note 〈〈f, g〉〉. We limit ourselves to f and g continuous by part (which will be
verified in the considered systems). When lA is much larger than 1, Eq. 3.21 translates
into:

〈〈f, g〉〉 =
lAqe

4

∫

k∈BZ

dk

2π
f(k)g(k) + o(lA). (3.24)

For all the considered non-interacting systems, the fluctuations consequently cannot scale
faster than linearly, even though they are initially a quadratic object. Intuitively, each pair
of sites in momentum space contributes independently. The linear coefficient has a simple
analytical form and will be analyzed in various models, close to the phase transitions. It
necessarily vanishes when charge conservation is recovered.

By analogy with the LLs and the vNEE, we are interested in logarithmic contributions
that may appear. These contributions may now be sub-leading, but fortunately, Eq. 3.20
allows us to avoid any perturbative computations.

〈〈f, g〉〉 =
qe
4

lA
∑

j=−lA
(lA − |j|)FT {f}(j)FT {g}(−j) (3.25)

=
qelA

4

lA
∑

j=−lA
FT {f}(j)FT {g}(−j)− qe

4

lA
∑

j=−lA
|j|FT {f}(j)FT {g}(−j) (3.26)

where FT {f} (resp. FT {g}) is the Fourier transform of f (resp. g).
From there, basic Fourier and series analysis prove to be especially useful. A function

f that is periodic and continuous by part (here we take that it can be discontinuous only
at a finite number of points) verifies:

FT {f}(j) = O(
1

j
), (3.27)

while a function that is continuous and of derivative continuous by part verifies

FT {f}(j) = O(
1

j2
). (3.28)
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This well-known property can be of course extended to any order. Using these bounds on
the convergence of the Fourier transform, it is possible to determine when a sub-leading
logarithmic term can arise. Analysis of the second term is straightforward: a logarithmic
term may appear only if FT {f}(j)FT {g}(−j) = O(j−2), that is to say if both are only
continuous by part. Analysis of the first term is slightly more complex: a logarithmic
contribution appears only if a scaling term ln lA/lA appears. As f and g are at least
continuous by part, we only need to evaluate the convergence speed of

∑

j

1
j2

. Given that:

∑

j>l

1

j2
<

+∞
∫

l

dx

x2
=

1

l
, (3.29)

no logarithmic term can appear from the first summation. To summarize, we have proven
that logarithmic contributions to the bipartite fluctuations can only appear only when
f and g are both discontinuous. When considering the previously obtained expressions
for the BF, it means that a logarithmic term can only appear at a gapless point,
even though linear contributions appear both for gapped and gapless phases. Sub-leading
logarithmic terms will consequently be fundamental to characterize the phase transitions.
Additionally, we have proven that the fluctuations in non-interacting one-dimensional
systems are always of the form:

FÔ(A) = iÔlA + bÔ ln lA +O(1) (3.30)

This result can be reinterpreted in terms of correlation functions:

〈ÔjÔj′〉c = − bÔ
2|j − j′|2 + o(

1

|j − j′|2 ) (3.31)

but also for the global mutual fluctuations:

I(A,B) = bÔ ln
lA + lB
lAlB

for A and B connected. (3.32)

Interpretation of the linear coefficient

Given the previously obtained scaling laws, we can present a systematic physical interpre-
tation of the coefficient of the linear term. Indeed, for any observable Ô whose fluctuations
take the form of Eq. 3.23, we have obtained:

lim
lA→+∞

FÔ(A)

lA
= iÔ. (3.33)

This, combined with the integral form for iÔ, implies that

iÔ = lim
L→+∞

1

L

∑

m,n∈S
〈ÔmÔn〉 − 〈Ôm〉〈Ôn〉, (3.34)
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that is to say that the linear coefficient coincides with the density of fluctuations in the
total system in the thermodynamic limit. Measurement of the bipartite fluctuations con-
sequently allows us to measure a global property with a good precision (outside gapless
points, the convergence is fast in 1

lA
).

Remarkably, iÔ coincides at T = 0 and for pure states with the Quantum Fisher Infor-

mation density[144] (QFID) associated to Ô. The Quantum Fisher Information has been
used to characterize several transitions[127, 146–149] or study quenches in the quantum
Ising model[150]. We invite the reader to read Refs. [151, 152] for a complete review on
the Quantum Fisher Information, and its relation with entanglement. Note that, for the
convention used in this review, the QFID corresponds to 4iÔ for Ref. [152]. The QFID
gives a bound, from Cramér-Rao identity, on the precision of measurements. If one per-

forms a small rotation of amplitude θ such that |Ψ〉 → e−iθÔ |Ψ〉, then the precision with
which one can identify θ is given by:

(∆θ)2 ≥ 1

4LiÔ
, (3.35)

and for any operator M̂ ,
iM̂

|∂θ〈M̂〉|2
≥ 1

4LiÔ
. (3.36)

Finally, the Quantum Fisher Information also gives information on the entanglement
of the system, and more precisely a bound on the producibility of the ground state in real
or momentum space[153, 154]. We define a state |Ψ〉 to be r-producible in momentum
space if:

|Ψ〉 =

N/r
⊗

m=1

|ψm〉 , with |ψm〉 = f(c†km,1
, ..., c†km,r

) |0〉 , (3.37)

or in other words, if |Ψ〉 is the tensor product of states involving r fermions. Note that
here N is the total number of fermionic operator (and not sites). Then, for any observable
that can be written Ô =

∑

k∈BZ
Ôk, one has the bound:

〈Ô2〉c =

N/r
∑

m=1

〈(
r
∑

j=1

Ôkmj
)2〉 ≤ L

r
× r2

4
(Omax −Omin)2, (3.38)

where Omax/min is the largest/smallest eigenvalue of Ôk. The definition in real space is
identical up to the basis change. One can apply this bound for our superconductors and
insulators. We limit ourselves to charge and pseudo-spin density fluctuations, but the
bounds will be valid for any polarization. For superconductors, N is the actual number
of sites L, while Ô = Q̂ =

∑

k

c†kck such that Omax −Omin = 1, leading to:

iQ̂ ≤
r

4
. (3.39)

For insulators, we need to slightly adapt our conventions to take into account the two
fermions by unit-cell properly, and obtain the bound

iÔ ≤
r

2
. (3.40)
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The two-band non-interacting systems such as the ones studied in this Chapter are always
2-producible, which lead to the universal bound

iÔ ≤
qe
2
. (3.41)

Additionally, if iÔ > qe
4 , the linear term proves that the ground state is not 1-producible

in real or momentum space, that is to say a simple tensor product of one-fermion wave
functions.

Determination of logarithmic coefficients

Knowing that the logarithmic sub-leading term appears only for discontinuous functions
f and g, we can systematically determine the coefficients of the logarithmic contributions.

First, let us assume that f (resp. g) is discontinuous only at the point k = kf (resp.
kg). We note δf (resp. δg) the amplitude of the discontinuity. We introduce the test
function h defined by:

h(k) =
k

π
for k ∈]− π, π] and periodic. (3.42)

Its Fourier transform is straightforward to obtain: h̃(j) = δj 6=0
i(−1)j

πj . Then we can rewrite

f(k) as fc(k) + δf
2 h(k − π − kf ), where fc is a continuous function, and similarly for g.

The logarithmic contribution can then only arise from:

− qe
4

lA
∑

j=−lA
|j|e−ij(kf+π)h̃(j)eij(kg+π)h̃(−j) = −qeδfδg

8π2

lA
∑

j=1

cos((kf − kg)j)
j

(3.43)

Then, a logarithmic term appears only when kf = kg, and then its coefficient is given by:

bfg = −qeδfδg
8π2

(3.44)

It depends only in the amplitude of the discontinuities of the functions f and g, in a very
simple way. This result allows us to compute the exact coefficient in any system without
having to treat integrals. It can also be expanded to more complex situations. Assume
now that f (resp. g) is discontinuous nf (resp. ng times) at the points kf,j (resp. kg,j)
with amplitude δfj (resp. δgj). A similar approach introducing nf and ng test functions
leads to a logarithmic contribution of weight:

bfg = − qe
8π2

nf
∑

j=1

ng
∑

j′=1

δfjδgj′δkf,j=kg,j′ [2π] (3.45)

With these last two formula, we end this section on the kernel properties, and will now
look at the physical consequences in different classes of problem.
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3.2 One-dimensional BDI class

In this Section, we focus on the bipartite fluctuations in one-dimensional systems that
belong to the BDI class. The PHS and TRS symmetries limit the possible behavior of the
BF, and lead to a set of universal signatures of the phase transitions. After exposition of
the properties for arbitrary Hamiltonians, we conclude with the examples of the (extended)
Kitaev’s chain and the SSH model. We also briefly treat the finite-temperature and finite-
size limits, relevant for both experiments and numerical simulations.

3.2.1 BDI Hamiltonian and fluctuations

From Chapter I, we know that Hamiltonians in the BDI class can be expressed as:

H = Ψ†
k(0,∆k, εk).~σΨk, (3.46)

where Ψk is a fermionic spinor, εk an effective kinetic energy and ∆k an effective pairing
or cross-hopping term. εk is even in momentum space while ∆k is odd. Before addressing
the BF, we introduce an additional mathematical assumption on the functions εk and ∆k.
We assume that these functions can always be Taylor-Lagrange expanded at a non-zero
order. It is not a strong assumption as in most cases, for translation-invariant systems,
these functions are in fact analytical and C∞. In turn, it means that dispersion relations
for ∆k and εk are always of the form (k − k0)n, with n ∈ N, and cannot be, for example,
|k − k0|. All models previously introduced verify these assumptions.

Following the conventions of Section 3.1.2 (even for superconductors), we define

φk =
π

2
sign(∆k) and θk = Arg(εk + i|∆k|)

φk is also odd while θk is even. Though φk is always discontinuous with this definition, a
logarithmic contribution only appears at the phase transition. The discontinuity is regu-
larized by sin(θk) in all other cases. The linear terms can be obtained for all polarizations:

iZZ =
qe
2

∫

k∈BZ

dk

2π
sin2 θk (3.47)

iXX =
qe
2

(3.48)

iY Y =
qe
2

∫

k∈BZ

dk

2π
cos2 θk (3.49)

iXY = iXZ = iY Z = 0 (3.50)

We find that the bounds derived in Eq.3.41 are indeed verified for all models. Only iZZ
can be measured in superconductors. iXX also shows that the ground state cannot be a
pure local product state, as it is expected. Though the coefficients depend on the angle
θk, there is no direct dependency on the winding number or any simple link with the
topological properties of the ground state. A good way to realize this fact is to consider
the following test functions:

θnk = nk for n ∈ N
∗ and θ0k =

π

4
,
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which all verify
∫

k∈BZ

dk
2π sin2 θnk = 1

2 .

By analogy with the vNEE, we are therefore interested in computing the BF at, or
close to, a phase transition.

3.2.2 Discontinuity of the derivative of the linear term

In this section, we focus on the linear coefficient. For now, assume that the gap closes
only at one momentum k0. We can then show that a cusp will appear in both iZZ and
iXX . This cusp is an extremely visible marker of the phase transition. Let us give a proof
of this result.

The PHS enforces either k0 = 0 or k0 = π. Moreover, εk must be even and ∆k odd
at these two points. Close to k0, except for very specific models or at special multicritical
points, εk ≈ 1

mε
(k − k0)2, while ∆0

k ≈ v∆(k − k0), with mε and v∆ non-zero. Slightly
away from the transition, ∆k must still vanish due to parity. The only way to gap the
system through an arbitrarily small continuous deformation is therefore to introduce a
small effective chemical potential δµ such that εk ≈ δµ+ ve(k− k0)2.1 Finally, to describe
different topological phases, we require that δµ is positive in one of the two phases but
negative in the other2. It ensures that the winding number, defined in Section 1.4.2
is different on each side of the QPT. Indeed, as the gap closes only at k0, the small
perturbation does not affect the number of times where θk cancels, except in the vicinity
of k0. On the other hand, θk0(δµ = 0+) = 0 while θk0(δµ = 0−) = π. The discrete
formulation of the winding number given in Eq. 1.63 allows us to conclude.

Let us prove the result for iZZ . The rest will directly follow from iXX = qe
2 − iZZ .

We define DI(x) = ∂δµiZZ |δµ=x. We compute the difference between the derivative on
two sides of the transition. Let x > 0 and ∆DI(x) = 1

qe
(DI(x)−DI(−x)). Let us define

δεk = εk − x, and x is sufficiently small such that δεk only vanishes at k0.

∆DI(x) =

∫

BZ

dk

2π
∆2
k(

x+ δεk
((x+ δεk)2 + ∆2

k)
2
− −x+ δεk

((−x+ δεk)2 + ∆2
k)

2
)

= x

∫

BZ

(Rk(x) +Ak(x))
dk

2π
, (3.51)

where

Rk(x) = −4
δε2k∆

2
k((−x+ δεk)

2 + (x+ δεk)
2 + 2∆2

k)

((−x+ δεk)2 + ∆2
k)

2((x+ δεk)2 + ∆2
k)

2

Ak(x) = ∆2
k

(

1

((x+ δεk)2 + ∆2
k)

2
+

1

((−x+ δεk)2 + ∆2
k)

2

)

Rk(x) is regular in k0 when x = 0 ( lim
k→k0

|Rk(0)| <∞) and consequently |
∫

BZ
dk
2πRk(x)| <∞

when x → 0. Conversely, Ak(k0) ≈ 2
v2∆(k−k0)2 when (k − k0)2 ≪ 1. One can then show

1For completeness, the ”velocities” ve and v∆ may also slightly vary near the phase transition. As it
does not affect the result of our computation, we drop the dependency.

2If δµ has the same sign in both phases, as long as ∂δµiZZ is not zero when δµ 6= 0, there is evidently
a cusp when crossing the ”phase transition”.



Section 3.2. One-dimensional BDI class 79

that
∫

BZ
dk
2πAk(x) diverges as 1

2|v∆|x and then:

lim
x→0

∆DI(x) = lim
x→0

x

∫

BZ

dk

2π
Ak(x) =

1

2|v∆|
(3.52)

The derivative is indeed discontinuous at a phase transition where the winding number of
θk changes.

Another relevant case is εk ∝ (k − k0)2 and ∆k ∝ (k − k0)3. In this case, the cusp
vanishes (in practice, the second derivative is logarithmically divergent). It is nonetheless
a special case that usually corresponds to tricritical points.

More complex phase transitions with the gap closing at several momenta can also occur.
When the transition is driven by an effective chemical potential, the previous computation
stands, with (quasi-)independent contributions of each gap-closing momenta. For middle
of band transitions where both εk and ∆k are linear at the gap closing momentum kF ,
(εk ≈ vε(k − kF ), ∆k ≈ v∆(k − kF ), the contribution to the discontinuity arising from kF
is:

lim
x→0

∆DI(x) =
|v∆|(v2∆ − v2ε)
2(v2∆ + v2ε)

2
(3.53)

Another form of transition is possible, corresponding to the normal line in Kitaev’s
model. ∆k vanishes at the phase transition, while the kinetic energy goes to zero at two
momenta ±kF 3. This time, v∆ play the role of the small varying parameter. We take
DI(x) = ∂v∆iZZ |v∆=x and follow the same procedure. εk is a priori linear close to ±kF :
εk = vε(k − kF ) for k ≈ kF and εk = −vε(k + kF ) for for k ≈ −kF , leading to:

lim
x→0+

∆DI(x) =
∂v∆∆kF

∆kF

|∆kF |
|vε|

= lim
v∆→0+

|∆kF |
v∆|vε|

(3.54)

3.2.3 Logarithmic contributions and generalized fluctuations

First, assume that the gap closes only at one momentum k0 = 0 or k0 = π, with a
quadratic kinetic energy. Then, due to the parities of the functions θk and φk imposed by
the symmetries of the BDI class, we straightforwardly obtain the logarithmic coefficients.
For a linear ∆k (and in fact as long as εk

∆k
→ 0 when k → k0),

bZZ = − qe
2π2

, bXX = − qe
2π2

, bY Y =
qe

2π2
, (3.55)

bXY = bXZ = bY Z = 0, (3.56)

where bαβ is the logarithmic coefficient (following conventions of Section 3.1.2).

The logarithmic contributions take the value

bZZ =
qe

2π2
, bXX = − qe

2π2
, bY Y = − qe

2π2
, bXY = bXZ = bY Z = 0. (3.57)

3We take 0 < kF < π as we are not interested in the special tri-critical points in general. In Kitaev’s
model, they correspond to a fully empty or occupied wire.
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when ∆k cancels faster than εk. It corresponds generally to tri-critical/special points, as
∆k needs to be at least cubic. For a normal model of free fermions with one fermion per
unit cell, and a gap closing at two different momenta ±kF , following the convention for
superconductors, the logarithmic coefficients are:

bZZ =
1

π2
, bXX = − 1

π2
, bY Y = − 1

π2
, bXY = bXZ = bY Z = 0, (3.58)

which corresponds to the coefficients obtained for a non-interacting Luttinger Liquid in
Eq. 2.63. Note that these coefficients are universal: they do not depend on any micro-
scopic details of our theory.

There are consequently two signs of the exotic nature of the critical points: the fact
that |bZZ | is twice as small as in Luttinger Liquids for superconductors, and its change of
sign.
This factor of two is also seen in the central charge: for superconductors, the critical model
has central charge 1

2 and corresponds to a free Majorana field (or equivalently the critical
Ising model), instead of 1 for free normal fermions. The reduction in the number of degrees
of freedom therefore also manifests in the charge fluctuations at the phase transition. To
obtain such an amplitude in an interacting Luttinger Liquid would require a LL parameter
K = 1

2 and therefore strong interactions. Note that we recover (in absolute value) that
for the charge fluctuations:

SE
|bQ̂|

=
π2

3
+ o(1) (3.59)

The extension of the formula of Ref.[133] is consequently valid for the vNEE of these
critical models (and also for the Renyi entropies).

For insulators, we find the same amplitude for the logarithmic coefficient as in LLs.
This was to be expected, the central charge at the QPTs in such models is also c = 1.
On the other hand, for both superconductors and insulators we find the negative sign.
One can show that it is impossible to for charge fluctuations of a Luttinger Liquid to give
rise to such a negative logairhtmic coefficient[155]. In fact, this stays true if considering
an arbitrary number of LLs: one cannot explain such a term as the superposition of any
number of bosonic densities4. The complete demonstration, quite long and technical, is
in Appendix E.2. For the topological superconductors, one can also recover the exact
value of the logarithmic term directly from CFT arguments[155]. The demonstration is in
Section 3.2.4.

When the gap closes at several momenta, universality is initially lost. Let us focus on
the BCF iZZ . Assume that the gap closes at n momenta noted (kj)1≤j≤n. The parity
constraints on θk and φk only limit the values of the functions at 0 or π. Following 3.45,

4As we will see in Chapter 3, it is nonetheless possible to build an equivalent LL, at least for a topological
insulator or two superconductors, though the chosen basis and the equivalent charge are quite different.
Eq. 3.55 tells us that we should try to use the Y polarization as our LL charge.
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the general coefficient of logarithmic contributions is given by:

bZZ = qe

n
∑

j=1

(cos θk+j
− cos θk−j

)2 − (sinφk+j
sin θk+j

− sinφk−j
sin θk−j

)2

8π2
(3.60)

Its absolute value is bounded by qen
2π2 , as expected, but there are no additional constraints.

Identifying the critical model simply by looking at this coefficient is not possible. It is
interesting to note that both our previous topological example and normal free fermions
saturate the inequality. To recover universality, we introduce the structure factor of the
BF in Section 3.2.5.

3.2.4 Conformal origin of the logarithm

We show that one can obtain this logarithmic term directly from the underlying conformal
field theory. We give here the main arguments, and details on the computation are kept
in Appendix F.1. To get the proper value for an observable, one also needs to take into
account the way the model maps onto the low-energy Hamiltonian. To do so, we consider
a Kitaev wire and place ourselves at t = ∆ for simplicity.
The continuous version of the Hamiltonian can be written as:

HK =

∫

dx
iv

2
(γL∂xγL − γR∂xγR)− imγLγR, (3.61)

where γL/R are Majorana fields, v = 2ta the velocity of the Majorana fields and m =
a(µ + 2t) a mass term. a is the lattice spacing. At m = 0 (the critical point), one
can identify the Hamiltonian with the conformal action, and γL/R corresponds to the
holomorphic and anti-holomorphic components of the fields.
Then, we can rewrite the density operator as:

ρ(x) = iγL(x)γR(x), (3.62)

such that the fluctuations are given by:

FA(l) = −
∫∫

[0,l]2

dxdy〈γL(x)γR(x)γL(y)γR(y)〉c (3.63)

Using the Operator Product Expansion (OPE)[81, 130] for the Majorana field directly
yields the result:

FA(l) =

∫∫

[0,l]2

dxdy
1

4π2
1

|x− y|2

≈ − 1

2π2ε2
log l + αl + β. (3.64)

α and β are a priori non-universal constants that arise from the integration, and are linked
to the cut-off of our theory. We recover the minus sign and the value of the coefficient
we predicted in microscopic computations. A comparison with the CFT computations for
the bosonic field is made in Appendix F.2.
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3.2.5 Structure factor of the BCF

Universality can be restored by looking at a generalization of the fluctuations: their struc-
ture factor (SF). The SF is defined for a one-dimensional lattice model by:

SF Ô(A, ψ) = 〈|
∑

j∈A
eiψjÔj |2〉 − |〈

∑

j∈A
eiψjÔj〉|2 = 〈|FTA{Ô}(ψ)|2〉 − |〈FTA{Ô}(ψ)〉|2,

(3.65)

where FTA{Ô} is the Fourier transform of the charge in the region A. The integral form
for the BCF is:

SF Ô(A, ψ) =
lAqe

4

∫∫

dkdq

4π2
fF (k − q − ψ, lA) (1− cos θk cos θq + cos(φk − φq) sin θk sin θq)

(3.66)

=
lAqe

4

∫∫

dkdq

4π2
fF (k − q, lA) (1− cos θk cos θq+ψ + cos(φk − φq+ψ) sin θk sin θq+ψ)

(3.67)

It is identical to the expression of FÔ(A) up to the additional phase ψ in the Fejér Kernel,
or equivalently a translation of ψ of one of the momenta k or q. The additional phase
changes both the behaviour of the linear and the logarithmic term.

Let us first address the logarithmic coefficients. The shift induces oscillations in the
Fourier transforms. For finite-size systems, they suppress the logarithmic terms as soon
as ψ is of order π

L , and in the thermodynamic limit, the logarithmic contribution in-
stantaneously vanishes. Indeed, following the notations of Section 3.1.3, the logarithmic
contributions arise from:

− qe
4

lA
∑

j=−lA
|j|e−ij(ψ+kf+π)h̃(j)eij(kg+π)h̃(−j) = −qeδfδg

8π2

lA
∑

j=1

cos((kf − kg + ψ)j)

j
, (3.68)

and hence the logarithmic contributions are given by:

qe

n
∑

j,j′=1

(cos θk+j
− cos θk−j

)(cos θk+
j′
− cos θk−

j′
)

8π2
δkj−kj′=ψ

−
(sinφk+j

sin θk+j
− sinφk−j

sin θk−j
)(sinφk+

j′
sin θk+

j′
− sinφk−

j′
sin θk−

j′
)

8π2
δkj−kj′=ψ (3.69)

Logarithmic terms may appear whenever ψ corresponds to the difference between two
gap-closing momenta. In particular, given the symmetries of the BDI class, if the gap
closes at kj 6= 0, π, it also closes to −kj . At ψ = 2kj (assuming no other combination
kj − kj′ sums to ψ), a logarithmic term appears, of coefficient:

− qe
4π2

(

1− cos(θk+j
− sign(∆k+j

∆k−j
)θk−j

)
)

(3.70)



Section 3.2. One-dimensional BDI class 83

εk+j
= εk−j

εk+j
= −εk−j

∆k+j
= ∆k−j

∆k+j
= −∆k−j

∆k+j
= ∆k−j

∆k+j
= −∆k−j

ψ = 0 0 − qe
2π2 sin2 θk+j

qe
2π2 cos2 θk+j

qe
2π2 cos 2θk+j

ψ = 2kj 0 − qe
2π2 sin2 θk+j

− qe
2π2 cos2 θk+j

− qe
2π2

Table 3.3: Coefficients of the logarithmic contributions arising from the discontinuities at
±kj in the structure factor SF Q̂(A, ψ). The line ψ = 0 corresponds to the coefficient of
the contribution kj only, while ψ = 2kj takes into account the cross-terms arising from
±kj .

Assuming either a ”bottom of band” transition such that εk is quadratic close to kj while
∆k is linear (or vice versa), or that both ∆k and εk are linear at kj as it is expected in
the middle of a band, the expression simplifies into:

− qe
2π2

, (3.71)

and no longer depends on the microscopic parameters. Except at some fine-tuning points,
these assumptions are generally verified at a topological QPT. Table 3.3 summarizes for
reference all possible logarithmic contributions in the structure factor depending on the
local parity of εk and ∆k near kj .

Let us briefly comment on its effect on the linear term. The expression of the coefficient
is obviously affected by the presence of ψ, and is given for the BCF as an example:

iZZ(ψ) =
qe
4

∫

dk

2π
(1− cos θk cos θk+φ + cos(φk − φk+φ) sin θk sin θk+φ) (3.72)

As a general rule, iÔ(ψ) is much more difficult to analytically compute (as it is an elliptical
form). Discontinuities of ∂ψiÔ(ψ) also occur at ψ = kj − kj′ , and easily mark the points
requiring more careful analysis. We present a short proof for the BCF.

∂ψiZZ(ψ) = qe

n
∑

j=1

sinφkj−ψ sin θkj−ψ(sinφk+j
sin θk+j

− sinφk−j
sin θk−j

)

8π

−
cos θkj−ψ(cos θk+j

− cos θk−j
)

8π
+R(ψ), (3.73)

where R is a continuous function. Then, we note ∆I(ψ0, δψ) = ∂ψiZZ(ψ0 + δψ) −
∂ψiZZ(ψ0 − δψ), and discard R which does not contribute in the limit δψ → 0. It can be
expressed as:

qe

n
∑

j=1

(sinφkj−ψ0−δψ sin θkj−ψ0−δψ − sinφkj−ψ0+δψ sin θkj−ψ0+δψ)

8π

× (sinφk+j
sin θk+j

− sinφk−j
sin θk−j

)−
(cos θkj−ψ0−δψ − cos θkj−ψ0+δψ)(cos θk+j

− cos θk−j
)

8π
(3.74)
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It will take non-zero values only if the gap also closes at kj−ψ0. In particular, for ψ0 = 2kj ,
the discontinuity arising from the term j is:

− qe
(sinφk+j

sin θk+j
− sinφk−j

sin θk−j
)2 + (cos θk+j

− cos θk−j
)2

8π
= − qe

2π
(3.75)

with the same assumptions as in Eq. 3.71.

3.2.6 Bipartite fluctuations in Kitaev’s model and the SSH chain

In this section, we give examples of our previous results in the Kitaev’s model and the
SSH chain.

Kitaev’s model

We use expressions obtained in Section 3.1.2, with φk = 0 and θk = Arg(−µ − 2t cos k +
2i∆ sin k) for Kitaev’s model. The charge correlator corresponds to the physical electronic
charge:

Q̂ =
qe
2

Ψ†
jσ
zΨj = c†jcj −

1

2
, (3.76)

The charge fluctuations take the form:

FQ̂(A) =
lA
4

∫∫

k,q∈BZ

dkdq

4π2
fF (k − q, lA) (1− cos θk cos θq + sin θk sin θq) . (3.77)

The linear coefficient is therefore given by:

iQ̂ =
1

4

∫

k∈BZ

dk

2π

(

1− cos2 θk + sin2 θk
)

=
1

2

∫

k∈BZ

dk

2π
sin2 θk (3.78)

An exact analytical expression can be obtained for iQ̂ [155]:

iQ̂ =







|∆|
2(|∆|+|t|) if |µ| ≤ 2t

2∆2

|µ|+
√
µ2+4∆2−4t2

1√
µ2+4∆2−4t2

if |µ| > 2t
(3.79)

In particular, the linear coefficient does not depend on µ in the topological phase[149, 155].
It is an interesting feature of Kitaev’s model, and a strong experimental signature but it
is not universal to topological models. It can also be used to measure the strength of the
pairing term. Figure 3.1 gives a visual representation of the linear term. In particular,
the cusp is here present at all phase transitions.

The logarithmic contribution itself may only appear on the lines ∆ = 0 or µ = ±2t. Let
us start with the line of normal metal. On this line, the linear coefficient itself vanishes,
as the charge is conserved. For |µ| ≥ 2t, the wire is either totally occupied or empty, and
the system is actually gapped: the logarithmic term is zero, and in fact the fluctuations
themselves cancel. For |µ| < 2t, this model of free fermions is gapless and the gap closes at
the two momenta ±kf = ± arccos −µ

2t . The function sin(θk) is continuous (and uniformly
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Figure 3.1: Left: linear coefficient of the bipartite charge fluctuations in Kitaev’s model
for several values of the pairing term ∆ as a function of the chemical potential µ. The cusp
marks the phase transition at µ = −2t. The linear term is constant inside the topological
phase for Kitaev’s model. Right: linear coefficient of the bipartite charge fluctuations in
Kitaev’s model for several values of µ as a function of ∆. A transition occurs at ∆ = 0
only for |µ| < 2t. The cusp disappears when |µ| > 2t.

zero) while cos(θk) is discontinuous with amplitude ∓2 at ±kf . The logarithmic coefficient
is then given by

1

π2
. (3.80)

We recover the coefficient in non-interacting LLs.

Now we can focus on the topological transition. By symmetry, we will consider only
what happens at µ = −2t. The gap closes only at k = 0, and the sinus is discontinuous
with amplitude −2 while the cosine term is continuous. Hence, the logarithmic coefficient
is given by:

bZZ = − 1

2π2
. (3.81)

SSH chain

The different observables for the SSH model correspond to the pseudo-spin polarizations

qe
2

Ψ†
jσ
zΨj = c†j,Acj,A − c

†
j,Bcj,B,

qe
2

Ψ†
jσ
xΨj = c†j,Acj,B + c†j,Bcj,A,

qe
2

Ψ†
jσ
yΨj = ic†j,Bcj,A − ic

†
j,Acj,B. (3.82)

Note this does not correspond to the previous convention for the bipartite fluctuations, but
a rotated basis. The conventional ”charge” fluctuations corresponds to the σx polarization.
To recover our previous notations, one would need to rotate the fermionic spinors such
that:

σx → σz, σy → −σy, σz → −σx. (3.83)
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Term αβ Linear contributions b at t1 = ±t b at t2 = 0

ZZ 1 − 1
π2 − 2

π2

XX







|t2|
(|t2|+|t|) if |t1| ≤ t

t22
|t1|+
√
t21+t

2
2−t2

1√
t21+t

2
2−t2

if |t1| > t
− 1
π2

2
π2

YY







|t|
(|t2|+|t|) if |t1| ≤ t

1− t22
|t1|+
√
t21+t

2
2−t2

1√
t21+t

2
2−t2

if |t1| > t
1
π2 − 2

π2

XZ 0 None None

YZ 0 None None

XY 0 None None

Table 3.4: Linear and logarithmic coefficients appearing in the bipartite fluctuations for
the SSH model following the convention of Section 3.1.2. The second column gives the
linear coefficient, for the different polarizations. The third column gives the coefficient of
the logarithmic sub-leading term appearing at the topological phase transition, for t1 = ±t.
The last column corresponds to the same coefficient but on the line t2 = 0 and for |t1| < t.
For |t1| > t, they all cancel.

We choose in this Section not to proceed with this rotation and instead give the expression
for the fluctuations in the initial basis for simplicity’s sake. In the SSH model, φk =
Arg(−2(t1 + t cos k) − 2it2 sin k) and θk = π

2 . In the basic model introduced in Section
1.5.1, t2 = t, but we slightly extend it in this section for completeness. Following the
notations obtained in Section 3.1.2, Table 3.4 summarizes the linear and logarithmic terms
appearing in the BF depending on the chosen observable. Taking into account the spin-
rotation, the XX line corresponds to the BCF in Kitaev’s chain: we recover the same
properties and structure, up to a factor qe = 2.

Ising model

Similar computations could be done directly in the Quantum Ising model in a transverse
field, introduced in Section 1.1.4. Bipartite polarization fluctuations have the same defi-
nition:

Fσα(A) =
∑

j,j′∈A
〈σαj σαj′〉c (3.84)

For α = z, these fluctuations exactly correspond to the BCF of the Kitaev model (or
half the XX fluctuations in the SSH model), and consequently, due to the Jordan-Wigner
transformation, have the exact same expression.

Nonetheless, it is interesting to notice that the Jordan-Wigner string does not vanish
for α = x and α = y., and consequently fluctuations do not match those of the SSH model.
In particular, for the Quantum Ising model at the critical point

−
∑

j

σzj −
∑

j

σxj σ
x
j+1,
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following McCoy[156] and Pfeuty[157] computations, the main correlation functions are
given by:

〈σxj σxj+r〉 =
1

4
(
2

π
)r22r(r−1) e

r−1
∑

j=1
4j ln r−j

e

2r−1
∑

j=1
j ln 2r−j

≈ 1

4
e

1
4 2

1
12A−3n−

1
4 (1− 1

64n2
+ o(n−2)), (3.85)

〈σyj σ
y
j+r〉 = − 1

4r2 − 1
〈σxj σxj+r〉 ≈ −

1

16
e

1
4 2

1
12A−3n−

9
4 (1 +

15

64n2
+ o(n−2)), (3.86)

〈σx〉 = 〈σy〉 = 0, (3.87)

with A ≈ 1.2824. From there, long range integrations leads to:

Fσx(A) ≈ 4

21
e

1
4 2

1
12A−3l

7
4
A (3.88)

Fσx(A) is no longer linear in the size of lA. It implies that in the spin-basis, the ground
state is no longer producible, but a pure macroscopically entangled, quantum state. This
is a direct consequence of the non-local nature of the Jordan Wigner transform.

3.2.7 Bipartite fluctuations in the extended Kitaev’s model

The extended Kitaev’s model allows us to probe more complex phase transitions where
the topological number jumps by more than one, while ∆k does not vanish uniformly. It is
therefore a perfect model to consider the structure factor of the bipartite fluctuations. We
consider here the t1− t3 model where phases with up to 3 Majorana fermions can appear,
and take t1 = ∆1 and t3 = ∆3 to simplify the discussion. Section 1.5.2 presents a study
of the phase diagram of the model. We define

εk = −µ− 2t1 cos k − 2t3 cos 3k, ∆k = −2t1 sin k − 2t3 sin 3k (3.89)

As it is a superconducting model, we only consider the BCF.
t1 = 0
For t1 = 0, the phase diagram is the same as Kitaev’s, with transitions at µ ± 2t3. The
two topological phases have winding number ±3, and at the phase transitions, the gap
closes at the three different momenta. For µ = −2t3, these are 0,±2π

3 . Computation of
the linear term is straightforward: a simple change of variables show that they are equal
to those in Kitaev’s model.
Computation of the logarithmic term is just as simple: εk is quadratic at each gap closing
momenta and therefore

bZZ = − 3

2π2
(3.90)

For completeness, we can compute the structure factor of the BCF anyway. Due to the
simple structure of εk and ∆k, the structure factor is periodic in ψ of period 2π

3 , with
discontinuities of the derivative of iZZ(ψ) of amplitude − 3

2π and logarithmic contributions
of coefficient − 3

2π2 at ψ = 0,±2π
3 .

t1 6= 0
For t1 6= 0, the phase diagram is more complex and given in Section 1.5.2. On any gapless
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line between phases with winding number differing by 1, there is a discontinuity of the
derivative of iZZ and bZZ = − 1

2π2 . On transition lines between phases with winding
number differing by 2, the gap closes at two momenta ±kf and bZZ is not universal.
Figure 3.2 represents the variation of the linear term across several phase transitions. The
universality of bZZ can be recovered using the structure factor of the BCF, as shown in
Figure 3.3.
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m−0.75 = 1

m1.5 = 0

m1.5 = 1

m1.5 = 3

m0 = 0

m0 = 1

t3 = 1.5t1

t3 = 0

t3 = −0.75t1

Figure 3.2: Linear contribution iZZ to the bipartite fluctuations in the t1 − t3 Extended
Kitaev model as a function of the chemical potential for several values of t3

t1
with ∆l = tl.

Cusps in the linear term mark each phase transition. m is the winding number associated
to each phase, corresponding to the number of protected Majorana fermions.

3.2.8 Extension to finite length and finite temperature

Just as was done for the vNEE, it is worth spending some time determining the finite-
length and finite-temperature corrections that appear in the BF. The latter is mostly
relevant for physical experiments, while the former is relevant for experiments but also for
numerical simulations. We start by considering the finite-temperature limit.

Finite temperature

At T > 0, each quasi-particle state (corresponding to η†k |0〉η in Bogoliubov formalism) is

populated with probability fD(Ek, β), where Ek is the corresponding eigenenergy, β = 1
T
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Figure 3.3: Example of linear and logarithmic contributions to the structure factor ob-
tained from a numerical fit, as a function of ψ, in the extended Kitaev model[51] for
t3 = −t1, µ = 2

√
2t (on the critical line between m = 0 and m = 2). We consider a sub-

system of up to l = 1000 sites. The gap closes linearly at momenta kF = ±2 arctan(1+
√

2).
The logarithmic coefficient is bounded by 1

π2 but does not saturate (b(0) ≈ −0.6
π2 ). To

recover the band structure, we vary φ. Logarithmic contributions first vanish then reap-
pear as two sharp peaks at ±2kF , and saturate at the universal value − 1

2π2 . The change
in the sign of b close to ψ = 0, and ψ = ±2kj is an artifact of the fit. We also measure
discontinuities of iZZ(φ) at ±2kF .

the inverse temperature5 and fD the Fermi-Dirac distribution:

fD(E, β) =
1

1 + eβE
(3.91)

As Wick’s theorem still applies at finite temperature, the computations are similar and
we only give the final substitution rules:

cos θk → cos θk tanh
βEk

2
(3.92)

sin θk → sin θk tanh
βEk

2
(3.93)

5We take the Boltzmann constant kB = 1. To restore the proper dependencies, replace T by kBT
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Figure 3.4: Evolution in temperature of the linear term of the BCF in Kitaev’s wire
for ∆ = 2t. Left: evolution of the linear term as function of the chemical potential for
different values of the temperature. Right: derivative of the linear term as a function of
µ. Fluctuations due to temperature smoothen the discontinuity at the phase transition.

We then focus as an example on the BCF. In the thermodynamic limit, the term linear
with the size of the system is still given by:

iZZ(β) =
qe
4
− qe

4

∫

k∈BZ

dk

2π
cos 2θk tanh2 βEk

2
(3.94)

In the infinite temperature limit, we recover that the linear term is equal to qe
4 , which is

exactly the fluctuations of independent, on-site fermions, with correction in β2, while at
low-temperature (β−1 ≪ mink Ek), the first corrections are exponentially decreasing in β.
Figure 3.4 and 3.5 summarizes the different behaviors of the linear term in Kitaev’s wire
for ∆ = 2t. In particular, temperature-induced fluctuations smoothen out the cusp at the
phase transition.

At the critical point, a logarithmic term still appears in the fluctuations. Confor-
mal field theory gives the exact dependency of the logarithmic term: β acts as a cut-off
length[70] such that the fluctuations are given by:

iÔ(β)l + bÔ ln

(

vβ

π
sinh

πlA
vβ

)

, (3.95)

where v is the effective velocity. At high temperature β ≪ t, the logarithm transforms in
a term linear with the temperature.

Finite length

In order to proceed to accurate estimations of the different coefficients in numerical sim-
ulations, in particular for interacting systems where the size of the system is a strong
constraint, one needs to carefully compute the corrections to the BF. They have two ori-
gins: the first one is the discretization of the integrals into finite sums, and the second one
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Figure 3.5: Evolution in temperature of the linear term of the BCF for several values of µ
in Kitaev’s wire for ∆ = 2t. At high temperature, δiZZ(β) = iZZ(β)− iZZ(0) is quadratic
in β while at low temperature, it converges exponentially to the zero temperature limit.

is the presence of the 0 and π modes that are not always taken properly into account in
the computations.
We focus as an example on the charge fluctuations in a Kitaev’s wire with L sites and
compute the finite-size density-density correlator at the critical point µ = −2t:

〈c†jcjc
†
j+rcj+r〉c =

1

L2

∑

k,q∈BZ2

ei(q−k)r(−〈c†kc
†
−k〉〈cqc−q〉+ 〈c†kck〉〈cqc†q〉) (3.96)

〈c†kc
†
−k〉 cancels for k = 0, π. On the other hand, for k 6= 0, π, 〈c†kc

†
−k〉 = i sin θk. As

sin θ0± = ±1, for continuity and Riemann sum convergence, we fix sin θ0 = 1. k = π
requires no correction since sin θπ = 0. The first correlator can therefore be rewritten as:

〈c†kc
†
−k〉 =

i

2
(sin θk − δk,0) with δ the Kronecker symbol (3.97)

Similarly, 〈c†kck〉 = 1−cos θk
2 → 1

2 when k → 0. On the other hand, the ground states can
be classified by their parity, and verifies n0 = 0(1) for the even (odd) ground state. One
then need to replace the correlator by:

1− cos θk − εδk,0
2

with ε the parity of the ground state (3.98)

The density-density correlator can then be expressed as:

〈c†jcjc
†
j+rcj+r〉c =

1

4L2

∑

k,q∈BZ2

ei(q−k)r((sin θk − δk,0)(sin θq − δq,0)

+ (1− cos θk − εδk,0)(1 + cos θq + εδq,0)) (3.99)

=
1

4
(δr,0 + FT {sin θk}L(r)|2 − |FT {cos θk}L(r)|2

− 2ε

L
FT {cos θk}L(r)− 2

L2
, (3.100)
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where FT {f}L is the discrete Fourier transform of f with L terms. We can classify
the different terms: the first three leads to the discrete version of our previous integrals.
The main effect of discretization is a smoothening of the cusp at the transition, and the
well-known change in the logarithmic coefficient (from CFT [81])

ln lA → ln

(

L

π
sin

lAπ
L

)

, (3.101)

that arises from:
1

r2
→ 1

(Lπ sin(π rL))2
in the Fourier transforms. (3.102)

The fourth term −2ε
L FT {cos θk}L(r) leads to a small non-universal shift of order 1

L of the
logarithmic coefficient, as FT {cos θk}L(r) = O( 1

r2
) when L → +∞, and the linear term,

that can be easily compensated by taking the average contribution of the even and odd
ground states.
Finally, the constant term − 1

2L2 is the most bothering one. It is a consequence of the
infinite range of the zero mode, and the absence of pairing at this momenta. It leads
to a very small quadratic term in the fluctuations, that must be taken care of before a
proper analysis can be realized. Fortunately, it is parameter-independent and can be easily
removed by numerical analysis of the long range behavior of the density-density correlator.

To summarize, the proper form of the fluctuations for a finite system (once the constant
term has been taken care of) is:

(iQ̂ +O(
1

L
))l + (bQ̂ +

aε

L
+O(

1

L2
)) ln

(

L

π
sin

lAπ
L

)

+O(1) (3.103)

An example is given in Figure 3.6 for Matrix Product States (MPS) simulations[158, 159]
as a benchmark for the precision of our numerics. More details on MPS simulations are
kept in Chapter 4.

3.2.9 A brief comparison with other charge-based measurements

Before concluding this Section, let us compare very briefly our results with other probes
of quantum criticality for topological superconductors. We are especially interested in
charge-based measurements. Most of those focus on direct detection of the Majorana
fermions, notably with the help of small energy splitting of the Majorana fermions[160–
165], but also on the phase transitions. We will be more interested in the latter. Let us
first start by looking at the charge susceptibility.
The charge susceptibility is a conventional, experimentally accessible, observable that
measures how the charge in the wire varies after a slight change in the chemical potential:

χN̂ =
1

L
∂µ〈N̂〉, with N̂ the total charge operator of the system. (3.104)

The average is taken in the ground state at T = 0 and in a thermal state at T > 0. Let
us assume an Hamiltonian of the form

H = H0 − µN̂
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Figure 3.6: Left: finite-size correlation functions obtained from MPS simulations[158, 159]
for a 80-site periodic Kitaev wire at the critical point (µ = −2t and ∆ = t). In red,
correlation functions obtained from the discrete form integrals. In green, the numerical
correlation function before the constant corrections. In blue, the correlation function after
the correction. Right: logarithmic coefficient extracted from the correlation functions as
a function of the total size of the system. Corrections in L−1 have opposite signs in each
ground state and therefore can be easily compensated. Numerics leads to −2π2bQ̂ =
1.0006.

Then, one can show that the susceptibility and the charge fluctuations are linked if the
total charge is conserved[140]. It simply comes from:

χN̂ =
1

L
∂µ

1

Z
Tr(N̂e−β(H0−µN̂)) =

β

L
β

Tr(N̂2e−β(H0−µN̂))

Z
− β

L

(

Tr(N̂e−β(H0−µN̂)

Z

)2

,

χN̂ =
β

L
〈N̂2〉c
(3.105)

where Z = Tr(e−βH) the normalization of the thermal density matrix. The equality will
also essentially stands for partial susceptibilities in the thermodynamic limit.
On the other hand, in the system we considered, the total charge is not conserved, which
means that H0 and N̂ do not commute. Then, we have

χN̂ =
β

L

Tr(
+∞
∑

n=0

1
n!

n−1
∑

j=0
N̂(−βH)jN̂(−βH)n−1−j)

Z
− β

L

(

Tr(N̂e−β(H0−µN̂)

Z

)2

, (3.106)

which should not match the charge fluctuations. The exact microscopic computation can
be done in Kitaev’s model. Starting from:

〈N̂〉
L

=
qe
2
− qe

2

∫

k∈BZ

dk

2π
cos θk tanh(

βEk
2

),
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one trivially obtains:

χN̂ =
qe
2

∫

k∈BZ

dk

2π

sin2 θk
Ek

tanh(
βEk

2
) +

βqe
4

∫

k∈BZ

dk

2π
cos2 θk(1− tanh2(

βEk
2

)). (3.107)

This does not match Eq. 3.94, the finite temperature form of our linear term. For
the gapped phases, at low temperature (T much smaller than the gap), the dominant
contribution is the first integral, with an additional factor 1

Ek
compared to our linear

term. At high temperature, at first order in β, the susceptibility converges to the same
value β

4 and one recovers the standard fluctuation theorem. For gapless phases, one must
be careful in the ordering of the limits β → 0/+∞ and L→ +∞. Taking first L→ +∞, we
obtain similar results. Finally, one can compute the dominant term of the susceptibility at
zero temperature and show that it diverges logarithmically as a function of ||µ| − 2t|[166]:

χN̂ ≈
qe

2πvF
log(1 +

vF
m

),

with Ek ≈ vf |k| + m. For these Z2 models, the charge fluctuations are not equivalent to
the charge susceptibility.
Several proposals were made for measuring the phase transition and the appearance of
the Majorana fermions through charge properties. Refs. [160, 163] proposed to couple
a topological superconductor with a superconducting cavity. The photons of the cavity
couple with the fermionic density, such that one can measure the electronic susceptibility
through a measurement of the transmission coefficient of the cavity. In practice, one can
measure:

Π(t) = − i
L
〈[N̂(t), N̂(0)]〉, (3.108)

where t marks the time dependence of the operators. The presence of the commutator
dramatically changes the behavior of Π compared to the fluctuations. In frequency space,
it transforms into:

Π(ω) = −
∑

ε=±1

∫

k>0

dk

π
sin2(θk)

ε

ω + 2εEk + i0+
(3.109)

In the limit ω → 0, one indeed recovers the charge susceptibility we previously computed,
and therefore a divergence of the real part of Π(ω) at the phase transition (in practice, the
finite frequency at the critical point cut the divergence and split the peak). The imaginary
part of the susceptibility, corresponding to the dissipative strength of the cavity, is given
by:

Π′′(ω > 0) = −sin2 θk
2∂kEk

∣

∣

∣

k=E−1
k (w

2
)
. (3.110)

The imaginary part is non-zero only inside the superconducting band, and it is therefore
easy to probe the transition by looking at low frequencies. Additionally, the maximum
converges towards |µ| = 2t when ω → 0. The peak close to the phase transition is
(partially) due to saturation of sin2 θ0+ to 1 at the phase transition, while it goes to 0
normally (and at non-topological transition). This measure is therefore similar in spirit
to the measure of the quantified b (the discontinuity being imposed by the symmetries,
measuring a non-zero value of sin2 θ0+ is equivalent to measuring a discontinuity), though
the obtained value is non-universal as one only measures at a finite frequency in principle.
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3.2.10 Beyond the two-band paradigm

Studying the D class Hamiltonian gives the opportunity to check the behaviour of the
fluctuations in more realistic and complex systems. In particular, we can study the fluc-
tuations in the Rashba nanowires[23, 24] model introduced in Section 1.5.3. This model
is no longer a two-band but a four-band superconducting model, which is still analytical.
Exact computations of the BCF (up to close formed integrals) are possible, if lengthy. The
different steps of the computation are presented in Appendix D.2, and we only summarize
here the main arguments and results.
Due to the four-bands, there is a much larger variety of local correlators that one can
study. We focus on the charge correlators to keep things simple. Four contributions can
be singularized: N↑, N↓ and N± = N↑ ± N↓. Bipartite fluctuations of these four oper-
ators can be computed and follow the same scaling rules: a dominant linear term, and
a logarithmic sub-dominant contribution appearing at the critical points. The different
linear terms are presented in Figure 3.7 across one of the topological transitions. The
logarithmic coefficient bN− is quantized and given by − 1

2π2 as expected.

−2.0 −1.5 −1.0 −0.5 0.0
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Figure 3.7: Linear coefficient for the four BCF in the Rashba nanowire model, for ∆ = t
and V =

√
2. At the topological phase transition at µ = −t, the gap closes at k = 0.

The system is in a trivial phase for µ < −t. As can be seen, the behaviour of the relative
density is similar to the one of the density in Kitaev’s model. Indeed, we recover a
quantified logarithmic coefficient for these fluctuations. In inset, the energy bands at the
critical point µ = −t.



96 Chapter 3. Bipartite fluctuations in non-interacting topological systems

3.3 One-dimensional D class

3.3.1 Preliminaries

Most of what we derived for BDI Hamiltonian also applies for Hamiltonians in the D class,
due to our unusual definition of φk and θk. Generalization is therefore straightforward.
Hamiltonians in the D class are given by:

H =
1

2

∑

k

Ψ†
k(∆

x
k,∆

y
k, εk).~σΨk, (3.111)

where Ψk is a fermionic spinor, εk an effective kinetic energy and ∆
x/y
k are effective pairing

or cross-hopping terms. εk is still even in momentum space while ∆
x/y
k are odd. We assume

similar analytical structure of εk and ∆
x/y
k than in the previous Section. Following the

conventions of Section 3.1.2, we define

φk = Arg(∆x
k + i∆y

k) and θk = Arg(εk + i|∆x
k + i∆y

k|)

θk is even while φ−k = π + φk The linear terms can be obtained for all polarizations:

iZZ =
qe
2

∫

k∈BZ

dk

2π
sin2 θk (3.112)

iXX =
qe
4

∫

k∈BZ

dk

2π
(1 + cos2 θk − cos 2φk sin2 θk) (3.113)

iY Y =
qe
4

∫

k∈BZ

dk

2π
(1 + cos2 θk + cos 2φk sin2 θk) (3.114)

iXY = −qe
2

∫

k∈BZ

dk

2π
sin 2φk sin2 θk (3.115)

iXZ = iY Z = 0 (3.116)

(3.117)

Previously derived bounds are still valid.

3.3.2 Cusp of the linear term

At phase transitions, one still expects cusps of the different linear terms. Proofs are mostly
still valid as long as both ∆x

k and ∆y
k are linear close to the gap closing momenta (which

is expected due to PHS).

3.3.3 Logarithmic coefficients

At phase transitions, both φk and θk may be discontinuous. Let us first focus on transitions
where the gap closes at one momentum k0 (0 or π due to PHS). Then φk+0

= π + φk−0
,
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while θk±0
= π/2 as long as either ∆x or ∆y is linear (generic case). Then, we obtain:

bZZ = − qe
2π2

, bXX = − qe
2π2

cos(2φk+0
), bY Y =

qe
2π2

cos(2φk+0
) (3.118)

bXY =
qe
π2

sin 2φk+0
, bXZ = bY Z = 0 (3.119)

Only the coefficient of the BCF does not depend on the microscopic details of the theory
and is therefore universal. Measuring the other correlations nonetheless measures the

velocity of the ∆ terms. If ∆
x/y
k ≈ vx/y(k − k0), then,

cos(2φk+0
) =

v2x − v2y
v2x + v2y

and sin(2φk+0
) =

2vxvy
v2x + v2y

(3.120)

These correspond to topological phase transitions. Measuring the different fluctuations
allows us to recover the ratio of vx and vy.
Other transitions may occur, with the gap closing in the middle of the band an even

number of times. Both εk and ∆
x/y
k are generally linear, and just as in the BDI class,

there is no longer universality of the logarithmic term that arises. For a gap closing at
kF , θk+F

= π − θk−F
and φk+F

= π + φk−F
. Taking into account both ±kF , logarithmic

contributions are:

bZZ =
qe
π2

cos 2θk+F
(3.121)

bXX = − qe
π2

(cos2 θk+F
− cos 2φk+F

sin2 θk+F
) (3.122)

bY Y = − qe
π2

(cos2 θk+F
+ cos 2φk+F

sin2 θk+F
) (3.123)

bXY =
2qe
π2

sin 2φk+F
sin2 θk+F

(3.124)

As before, universality is recovered by looking at the structure factor of the BCF.

3.3.4 An example: extended Kitaev model

As a short illustration, we consider the t1 − t2 extended Kitaev model, with t1 = ∆1 ≥ 0,
t2 = |∆2| ≥ 0, ∆2 = i|∆2|. The TRS is explicitly broken and the model is indeed in the
D class, as explained in Section 1.5.2. The topological invariant now leaves in Z2.
The Hamiltonian is given by:

H =
1

2

∑

k∈BZ
Ψ†
k(−2t2 sin 2k,−2t1 sin k,−µ− 2t1 cos k − 2t2 cos 2k)Ψk, (3.125)

and we recall the phase diagram: as long as t1 6= 0, for µ < −2t1−2t2 and µ > 2t1−2t2, the
wire is in a trivial gapped state, while for −2t1 − 2t2 < µ < 2t1 − 2t2 it is in a topological
state (with one protected zero-energy Majorana edge state).
Figure 3.8 gives an example of the linear coefficient to the bipartite fluctuations for t2 =
0.5t1. Cusps are still present at each phase transitions. The logarithmic coefficient bZZ is
still given by − 1

2π2 at the QPTs.
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Figure 3.8: Linear coefficients to the fluctuations for the extended Kitaev model with
complex ∆2. We take t2 = |∆2| = 0.5t1. Though only iZZ admits a proper representation
for superconductors, we also compute iXX and iY Y by analogy with an equivalent insulator
model. At each phase transition, cusps are still present. The logarithmic coefficient bZZ
is still quantized at the QPTs.

3.4 Bipartite fluctuations in 2D Dirac materials

As we have seen in the previous Section, bipartite fluctuations are a very useful tool
to characterize the critical points of topological superconductors and insulators in one
dimension. It is therefore natural to consider extensions to the corresponding 2D models.
These models, such as the p+ ip superconductor, usually present Dirac cones at the phase
transitions. In this Section, we study the behavior of the bipartite fluctuations for Dirac
metals in two dimensions, considering only two-band models:

H2D =
qe
2

∑

~k∈BZ

Ψ†
~k
(∆x

~k
,∆y

~k
, ε~k).~σΨ~k

, (3.126)

where Ψ~k
are the usual spinors (either superconducting or insulating) and ε~k and ∆

x/y
~k

functions we will specify. By convention, ε~k is the kinetic energy.
To simplify the discussion, we will only consider charge fluctuations, but the results can
be extended to any of the previously considered correlators. We note Q̂j = qe

2 Ψ†
jσ
zΨj the

local charge operator, and Q̂ =
∑

j∈S
Q̂j .
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3.4.1 Geometric shape, Kernel functions and Sobolev spaces

Before working on specific models, it is worth working on the generic kernel functions that
appear in two dimensions. We have an additional freedom in the choice of our subsystem
A. We still limit ourselves to regular, connected domains that are compatible with the
lattice geometries (we don’t consider partial covering with holes), but we don’t have to
exactly respect the symmetry of the lattice.

To simplify notations, we assume a superconducting model with spinor Ψ†
~k

= (c†~k, c−~k)
in this Section. Computation of the bipartite charge fluctuations are then straightforward:

FZZ(A) =
1

S

∑

~k,~q∈BZ

∑

~r1,~r2∈A
ei(
~k−~q).(~r1−~r2)

(

G(~k)(1− G(~q))−D(~k)D∗(−~q)
)

,

where S is the total surface of the domain, G (D) the normal (anomalous) Green functions
previously defined. The Kernel function that appears is then:

K(~k,A) =
∑

~r1,~r2∈A
ei
~k.(~r1−~r2) (3.127)

A first example: square lattice

Let us start with the simple case of a square lattice such as in the basic p + ip model
introduced in Section 1.6.1. Figure 3.9 presents three possible choices of A. We consider
the first case of a rectangular shape. One can factorize the Kernel such that:

K(~k,Asq) =

lx
∑

rx,1,rx,2=1

eikx(rx,1−rx,2)
ly
∑

ry,1,ry,2=1

eiky(ry,1−ry,2) = lxlyfF (kx, lx)fF (ky, ly),

(3.128)
where we have taken the lattice spacing to be 1 in any direction. The Kernel function is
in this case simply the product of two Fejér Kernel in the canonic direction.

This result can be extended to any parallelogram defined by the vectors ~a and ~b. If
we consider geometries such as the second example in Figure where A is purely defined
by {~r = na~a+ nb~b, 0 ≤ na < la, 0 ≤ nb < lb}, then, using a similar decomposition leads to
a kernel of the form:

K(~k,Apar) = lalbfF (~k.~a, la)fF (~k.~b, lb) (3.129)

Finally, the third example is more complex. Exactly computing the lattice kernel leads to
the appearance of additional terms to take into account the different sublattices. In the
given example, we obtain:

K(~k,Apar) = lalb(2 + 2 cos~δ.~k)fF (~k.~a, la)fF (~k.~b, lb). (3.130)

The additional factor appears due to the finite-size of the lattice. While it will be of
importance for finite-size numerics and evaluations, it is in practice non-universal. In the
following, when computing contributions from a lattice-based Hamiltonian, we will limit
ourselves to the first and second examples.
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Figure 3.9: Schematics of the different possibilities for the sub-system A. Left: A is simply
a square sub-region of the lattice. It respects the symmetries of the model. Middle: we
can also choose a parallelogram generated by the vectors ~a and ~b. The area of the unit-cell
they generate is one, and therefore the parallelogram is a complete cover of the lattice.
We note ψ the angle between ~a and ~b. Right: another possible choice for ~a and ~b. The
parallelogram is still well defined, but as A

~a,~b
= 2, all sites in A are not an integer linear

combination of ~a and ~b (only those in red). There are corrections to the Kernel due to the
finite lattice that induces a shift between the red and black sub-lattice of A.

Beyond the square lattice

All of the previous reasoning are not significantly affected by the form of the lattice, due
to the effective form we consider when the lattice and A do not simply match. The form of
the lattice therefore only affects the global expression of the bipartite fluctuations. Taking
the thermodynamic limit for an infinite system, we obtain:

FZZ(A) =

∫∫∫∫

d~kd~q

ABZ2

K(~k − ~q,A)
(

G(~k)(1− G(~q))−D(~k)D∗(−~q)
)

, (3.131)

A useful way of computing the low-energy contributions to the theory is to directly go
to a continuous theory. In practice, it is more convenient and less complicated to keep the
original form of K in this limit.

Scaling analysis

The scaling analysis in two dimensions is more complex than in one dimension. The
dominant term is nonetheless still straightforward to obtain. Using the original definition
of the Kernel in Eq. 3.127 or any of the subsequent lattice form, it converges to the Dirac
distribution when A tends to cover the whole system, such that the leading coefficient is
simply given by:

AA

∫∫

~k∈BZ

d~k

ABZ
G(~k)(1− G(~k))−D(~k)D∗(veck), (3.132)
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where AA is the area of A. We still denote the coefficient iZZ as it has the same expression
as the linear coefficient in one dimension:

iZZ =
1

S
〈Q̂2〉c, with Q̂ =

qe
2

∑

~r∈S
Ψ†
jσ
zΨj (3.133)

Discussion of the sub-dominant terms is best done using the example of the square
lattice and using the Kernel form given in Eq. 3.128. Let us consider two arbitrary
functions f and g and compute the ”fluctuations”:

〈〈f, g〉〉 =

∫∫∫∫

~k,~q∈BZ

d~kd~q

A2
BZ
K(~k − ~q)f(~k)g(~q)

=

lx
∑

nx=−lx

ly
∑

ny=−ly
(lx − |nx|)(ly − |ny|)FT {f}(nx, ny)FT {g}(−nx,−ny) (3.134)

= lxly
∑

nx,ny

FT {f}(nx, ny)FT {g}(−nx,−ny)

+ lx
∑

nx,ny

|ny|FT {f}(nx, ny)FT {g}(−nx,−ny)

+ ly
∑

nx,ny

|nx|FT {f}(nx, ny)FT {g}(−nx,−ny)

+
∑

nx,ny

|nx||ny|FT {f}(nx, ny)FT {g}(−nx,−ny) (3.135)

The analogy with the one-dimensional case is direct. We consider diagonal terms 〈〈f, f〉〉
for ease of notations. For gapped phases, the Green functions decrease exponentially and
all four sums in Eq. 3.135 therefore converge, and we trivially obtain:

〈〈f, f〉〉 = if lxly + cxlx + cyly +O(1) = ifAA + cfRA +O(1), (3.136)

where RA is a characteristic length of the region A (usually the perimeter). Contribution
to cf can arise both from finite-sum corrections to the first sum, and directly from the
second and third summation. It is therefore non-universal.
For gapless Hamiltonians, singularities can appear in the different Green functions for
the gap-closing momenta. Let us define the Fermi surface as the manifold δΓ = {~k ∈
BZ, E~k = 0}, where E~k is the energy of the quasi-particle with momentum ~k. Depending
on its dimensions and the order of singularities, FT {f}(n̂) will converge at different speed,
and therefore the scaling laws will change.
For δΓ of dimension 1 (free fermions for example), Green functions will usually exhibit
discontinuities on the one-dimensional manifold. We will therefore have |FT {f}(~n)|2 =

O(||~n|| 32 ). This in turn leads to sub-dominant scaling terms such that:

〈〈f, f〉〉 = ifAA + bf lA ln lA +O(lA), (3.137)

which have been observed for free fermions[136]. This l ln l scaling term is also found in
the entanglement entropy for such models as was explained in Chapter 2[76–79].
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For the models we are interested in, δΓ consists only in a finite number of points. There will
only be point-like singularities, that are not always removable. Then the Green functions
will behave such that to |FT {f}(~n)||2 = O(||~n|2). Then the fourth sum may give rise to
logarithmic discontinuities6 such that the scaling laws will be:

〈〈f, f〉〉 = ifAA + cfRA + bf ln lA +O(1), (3.138)

In both cases, the scaling laws are, except for the eventual dominant area term, identical
to the scaling laws of the vNEE in such systems. By analogy, we will be most interested
by the logarithmic coefficient bf . We will also look at the dominant scaling term.

All this discussion can be reformulated in more mathematical terms with the Hilbert-
Sobolev spaces. We have rephrased the discussion in Appendix C for the more mathe-
matically inclined readers. A complete categorization of the singularities that appear in
the correlation functions, as a function of the different types of Fermi surface and in this
language would be an interesting pursuit, if possible.

3.4.2 Fluctuations for a single isotropic Dirac cone

We start our study by the example of a gapless phase with a single Dirac cone through
the example of the p+ ip superconductor. The basic two-band Hamiltonian is given by:

H2D =
qe
2

∑

~k∈BZ

Ψ†
~k
(∆x

~k
,∆y

~k
, ε~k).~σΨ~k

,

This model is in the D class: if there is only one Dirac cone, due to the PHS, it can
only be at one of the four symmetric momenta (0/π, 0/π) and is partially protected. We
will consider a gap potentially closing at ~k = (0, 0) in the following (corresponding to the
µ = −4t for p+ ip). Indeed, close to these points, the PHS guarantees that both ∆x and
∆y are odd, while ε~k is even. Except at multi-critical points, we can expect

ε~k ≈ vxk
2
x + vyk

2
y + vxykxky, ∆

x/y
~k

= ∆x/y
x kx + ∆x/y

y ky.

This dispersion relation enforces the continuity and regularity of θ~k in ~k = 0 (and θ~0 = π
2 ),

while φ~k can be singular. For the p+ ip superconductor, we have:

φ~k = Arg(∆xkx + i∆yky) (3.139)

In this Section, we will mostly focus on the isotropic case ∆x
x = ∆y

y = ∆ > 0, vx = vy > 0
and ∆y

x = ∆x
y = vxy = 0, which leads to the simple expression φ~k ≈ Arg(kx + iky) close

to ~0. φ~k has a non-resolvable singularity in ~0, corresponding to the vortex texture of the
Dirac cone.
Finally, we recall the expression of the bipartite charge fluctuations for such a system:

FZZ(A) =
qe
4

∫∫∫∫

d~kd~q

ABZ2

K(~k−~q,A)
(

1− cos θ~k cos θ~q + ei(φ~k−φ~q) sin θ~k sin θ~q

)

, (3.140)

We start by considering the case of the square lattice and then proceed to an extension to
any lattice as a conclusion.

6For completeness, we point out that logarithmic terms could appear from the finite-sum corrections of
the first three sums. In practice, it is not the case for Dirac fermions.
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Area law

Let us start with the computation of the area coefficient. Whether at the critical point or
in one of the two gapped phases, the linear coefficient has the simple expression:

iZZ =
1

S
〈Q̂2〉c =

qe
2

∫∫

k∈BZ

d~k

ABZ
sin2 θ~k (3.141)

iZZ still corresponds to the Quantum Fisher information associated to the charge Q̂. It
is therefore bounded for non-interacting systems by qe

2 . The exact computation is more
difficult even in the simpler case of the p + ip superconductor, and Figure 3.10 presents
numerical computations of the area coefficient close to the phase transition. By oppo-
sition to what was obtained in one dimension, there is no cusp at the phase transition:
the derivative of iZZ is continuous and its only the second-derivative that has a weak
logarithmic divergence. The transition is therefore of higher order and the QFID is less
efficient in detecting the QCP. This should not come as a surprise: as the Fermi surface
is still reduced to a point while the physical dimension has increased, singularities in the
thermodynamic quantities must be of higher order. Similar results were observed for the
compressibility and other quantities linked to the thermodynamic potential[167].

Let us present a short proof of this result. We focus on transitions driven by a chemical
potential µ. Close to ~k = ~0, due to the isotropy, we can approximate the low-energy
contribution to iZZ to be

iZZ =
qe
2

Λ
∫

0

k
dk

2π

∆2k2

δµ2 + ∆2k2
= − qe

16π
δµ2 ln δµ+ f(Λ), (3.142)

where Λ is a momentum cut-off to regularize the integral and isolate the ~k = 0 contribution,
and δµ the effective chemical potential such that the QPT occurs at δµ = 0. The second
derivative of iZZ indeed presents a logarithmic divergence. Note that this proof can be
generalized to any dimension. If we didn’t use it in one dimension, it is because it is less
well-controlled in odd dimensions. As a general result, we obtain that for a point-like
isotropic closing of the gap in physical dimension d, the dth derivative of the QFID is
discontinuous if d is odd, while it diverges logarithmically for even d .

Logarithmic coefficient for rectangular A

As a first step, we can compute the logarithmic contributions that appear when con-
sidering a rectangular subsystem A. By analogy with the entropy, we expect a non-zero
coefficient as A has corners. As θk is perfectly regular even for a gapless point, logarithmic
contributions in Eq. 3.140 can only arise from:

qe
4

∫∫∫∫

d~kd~q

ABZ2

K(~k − ~q,A)ei(φ~k−φ~q) sin θ~k sin θ~q.
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Figure 3.10: QFID (left) and its derivative (right) for the p + ip superconductor as a
function of µ/t for several choices of ∆x and ∆y. Phase transitions occurs at µ = −4t and
µ = 0. Each time, there is a logarithmic divergence of the second derivative, which marks
quite clearly the phase transition.

We pose f(~k) = eiφ~k sin θ~k, and as in one dimension we introduce the test function h(~k)
such that f − h is regular. For the previously defined isotropic Dirac cone, we can define

h(~k) =

{

kx+iky√
k2x+k

2
y

(1−
√

k2x + k2y) = z
|z|(1− |z|) if |z| < 1

0 else.
(3.143)

(1 − |z|) play the role of a regularizing smooth cut-off. We directly generalize the test
function to the family hm,j(z) = zm

|z|m (1 − |z|j) that describes and regularizes isotropic

Dirac cones of any topological charge m7. j checks that the dominant logarithmic term
is not affected by the introduced cut-off. Note that for D class Hamiltonians, the PHS

impose odd m. Let us define the vector ~n = (nx, ny) = (n =
√

n2x + n2y, θ~n) and compute

7The name Dirac cone for a winding number |m| > 1 may be a bit abusive. The more natural way to
get such a model is to have ∆x

k + i∆y
k = (kx + iky)

m for m > 0, and the complex conjugate otherwise. As

long as εk vanishes faster than ||~k||m, our computation of the logarithmic coefficient stands. Obviously,
the cone is parabolic (or of higher degree), and not linear. On the other hand, mathematically we can

always take ∆x
k + i∆y

k =
(kx+iky)

m

|kx+iky |m−1 and formally get a linear dispersion of the energy, especially for m

odd where the denominator is a simple polynomial.
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the exact Fourier transform:

FT {hm,j}(~n) =

∫∫

[−π,π]2

d~k

4π2
hm,j(~k)e−i~n.~r =

1

4π2

1
∫

0

k(1− kj)dk
π
∫

−π

dθeimθe−ink cos(θ−θ~n)

=
eim(θ~n−π

2
)

2π

1
∫

0

k(1− kj)Jm(kn)dk

=
eim(θ~n−π

2
)

π2m+2
nm
(

Γ(1 +
m

2
)1F̃2(1 +

m

2
, 2 +

m

2
, 1 +m,−n

2

4
)

− Γ(1 +
j

2
+
m

2
)1F̃2(1 +

j

2
+
m

2
, 2 +

j

2
+
m

2
, 1 +m,−n

2

4
)

)

(3.144)

where Jm is the Bessel function of the first kind, and 1F̃2 is the Hypergeometric PFQ
Regularized function. The large n behavior can be obtained after an asymptotic expansion
of the 1F̃2 function:

FT {hm,j}(~n) =
meim(θ~n−π

2
)

2π

1

n2x + n2y
+O(n−5/2) for all j (3.145)

The supplementary term oscillates regularly. We then evaluate the four sums:

lxly
∑

nx>lx,ny>ly

1

(n2x + n2y)
2
≈
l2x(π2 − arctan( lxly )) + l2y(

π
2 − arctan(

ly
lx

))− 2lxly

4lxly
≈ O(1)

(3.146)

lx
∑

nx>lx,ny>ly

ny
(n2x + n2y)

2
≈ lx

2ly
(
π

2
− arctan(

lx
ly

)) ≈ O(1) (3.147)

∑

nx<lx,ny<ly

nxny
(n2x + n2y)

2
≈ 1

4
ln

(

l2xl
2
y

l2x + l2y

)

, (3.148)

and indeed obtain that only the last sum is divergent, and it diverges logarithmically. The
logarithmic term appearing in the BCF in a 2D Dirac metal with a single cone for a square
lattice and a rectangular subsystem is therefore:

qem
2

8π2
ln

lxly
√

l2x + l2y

(3.149)

For isotropic cones, measure of the fluctuations directly gives the winding number of the
cone, up to a sign. The charge correlation functions scale as:

〈Q̂~rQ̂~r′〉c = qe
m2

16π2
1

|~r − ~r′|4
+ o(

1

|~r − ~r′|4
) (3.150)
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Corner functions

By analogy with the vNEE, we expect that the coefficient of the logarithmic term is actu-
ally a function of the corners of A. Let aQ̂ be this corner function. In the previous section,
we computed the coefficient appearing for a square region A, therefore given by 4a(π2 ).
We here derive the exact corner function by considering successively a parallelogram, then
a quadrant, to obtain

a(ψ) = 1 + (π − ψ) cotψ. (3.151)

The corner function of the BCF is equal to the corner function that appear in the entropy
in the EMIm, but not to the one of Dirac fermions. Finally, we can compute the ratio
between the logarithmic coefficient of the vNEE and the one of the fluctuations. In the
limit ψ → 0, one obtains:

bvNEE

bQ̂
= −3

4
π2, (3.152)

which differs from the result for Fermi gases in Eq. 2.64. Note that we recover, as in one
dimension, that the coefficients have opposite signs.
Logarithmic coefficient for a parallelogram
A first step towards computing the corner functions that appear in the BCF, and to verify
that they are non-trivial, is to compute the fluctuations on a parallelogram. We take A
to be defined by

~r ∈ A ⇔ ~r = na~a+ nb~b, 0 ≤ na < la, 0 ≤ nb < lb

If the area of the unit-cell parallelogram generated by ~a and ~b is equal to the area of the
lattice unit-cell, it is a proper sub-cover of the lattice (it has no hole). We will proceed
nonetheless to a generic computation, as we will be able to simply get rid of the finite-
lattice contributions. We note ψ the angle between the two vectors. The coefficient of the
logarithmic term should therefore be given by ã(ψ) = 2a(ψ) + 2a(π − ψ).
Using the definition of the Kernel, fluctuations require the computations of

〈〈f, g〉〉 =

la
∑

na=−la

lb
∑

nb=−lb
(la − |na|)(lb − |nb|)FT {f}(na, nb)FT {g}(−na,−nb) (3.153)

with FT {f}(na, nb) =

∫∫

~k∈BZ

d~k

ABZ
f(~k)e−i

~k.(na~a+nb
~b). (3.154)

In other words, going from a square to a parallelogram corresponds to a change of basis
for the Fourier transform. Note that as A is a sub-lattice of the total lattice, f(~k) has the
proper periodicity. We can proceed as usual and compute the change in the main Fourier
contribution. The square norm of (na~a + nb~b) is simply (n2a||~a||2 + n2b ||~b||2 + 2nanb~a.~b).
Noting θ~n its polar angle, computations lead to

FT {hm,j}(na, nb) =
meim(θ~n−π

2
)

2π

1

n2a|~a|2 + n2b |~b|2 + 2nanb~a.~b
+ ... (3.155)
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Figure 3.11: Normalized corner function appearing for a parallelogram ã. The red points
correspond to finite-size simulations of the p+ip superconductor at µ = −4t and ∆x = ∆y.

The simulations were realized for subsystems of up to 200 tanψ
1+tanψ × 200 tanψ

1+tanψ sites for a
quasi-infinite square lattice (around 500 million sites).

We then only need to evaluate the four sums. We define ~a.~b = ||~a||||~b|| cosψ, and take
ψ in ]0, π[. The first two still give constant contributions while the last one gives:

1

|~a|2|~b|2

(

1

sin2 ψ
+

cotψ

sin2 ψ
(
π

2
− ψ)

)

ln





l2al
2
b

√

(l2a + l2b + 2 cosψlalb)(l2a + l2b − 2 cosψlalb)





=
1 + (π2 − ψ) cotψ

A2
~a,~b

ln





l2al
2
b

√

(l2a + l2b + 2 cosψlalb)(l2a + l2b − 2 cosψlalb)



 , (3.156)

where A
~a,~b

is the area of the unit-cell parallelogram. Getting the continuous limit contri-

bution (and getting rid of any finite-lattice effect) is therefore as simple as fixing A
~a,~b

= 1.
The logarithmic contribution for a parallelogram is:

qem
2ã(ψ)

64π2
ln





l2al
2
b

√

(l2a + l2b + 2 cosψlalb)(l2a + l2b − 2 cosψlalb)



 (3.157)

with
ã(ψ) = 4 + 4(

π

2
− ψ) cotψ
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ã(ψ) does not match the expression one would obtain for the vNEE for Dirac fermions on
A, but corresponds to the one obtained in the Extensive Mutual Information model. It is
represented in Figure 3.11.
Single corner function
To get the contribution of a single corner, we compute the BCF in the continuous limit
on A(ψ) defined in Figure 3.12 as a quadrant of the disk of radius R, and of angle ψ. The
obtained logarithmic contribution is the sum of a(ψ) + 2a(π2 ). Substraction of ã gives the
proper corner function. Computation of the BCF requires the evaluation of:

〈〈f, f〉〉 =
qe
4

∑

~r,~r′∈R2

1

S2

∑

~k,~q∈BZ2

ei
~k.(~r−~r′)e−i~q.(~r−~r

′)f(~k)f(~q) (3.158)

=
qe
4

∑

~r,~r′∈R2

|FT {f}(~r − ~r′)|2, (3.159)

where R is the observed zone. We use the ansatz

FT {f}(~r) =
m

2π

1

(e2 + |~r|2) , (3.160)

where e is a cut-off length that does not affect the vortex in ~k = 0. The ansatz has the
proper long-range behavior for a vortex of winding number m. The fluctuations scale as:

〈〈f, f〉〉 = if
ψ

2
R2 + cfR+ (a(ψ) + 2a(

π

2
)) lnR+O(1) (3.161)

Instead of directly computing the integral, we evaluate ∂R∂ψ〈〈f, f〉〉 ≈ ifR + 1
R∂ψa(ψ).

Lengthy computations lead to

∂R∂ψ〈〈f, f〉〉 =
1

4π2

R
∫

0

ψ
∫

0

drdθ
rR

(e2 +R2 + r2 − 2rR cos(θ − ψ))2
(3.162)

=
R2

16π2e2
× (

ψ

R
− 2e

R
√
e2 + 4R2

arctan(

√

1 + 4
R2

e2
tanψ/2)

+
2
√

2 sin(ψ)
√

2e2 +R2 −R2 cos(2ψ)

(

arctan

√
2R cosψ

√

2e2 +R2 −R2 cos(2ψ)

+ arctan

√
2R(1− cosψ)

√

2e2 +R2 −R2 cos(2ψ)

)

) (3.163)

Extraction of either the cut-off independent contribution, or of the 1
R coefficient in the

R → +∞ limit allows us to identify the derivative of the corner function. The pre-factor
of the 1

R coefficient is:

1

32π2
∂ψa(ψ) =

1

32π2
(− cotψ + (π − ψ cot2 ψ)) (3.164)

leading to a(ψ) = (π − ψ) cotψ + Cst (3.165)
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Figure 3.12: Left: form of the subsytemA used to determine the single-corner contribution.
Middle: corner function of the fluctuations and of the entropy for Dirac fermions. We have
normalized the latter such that a(ψ2 ) = 1. Right: ψ×a(ψ) for the fluctuations and entropy
of Dirac fermions with the same normalization. It is only at very small angle that there
is a significant difference.

Finally, either using a(π2 ) = 1 or by performing a numerical regression, one obtains the
exact corner function for the BCF:

a(ψ) = 1 + (π − ψ) cotψ (3.166)

which corresponds to the corner function that arises in the vNEE of the Extensive Mutual
Information model in two dimensions. The contribution to the BCF of a corner ψ is
therefore:

qem
2a(ψ)

32π2
lnR =

qem
2(1 + (π − ψ) cotψ)

32π2
lnR, (3.167)

where R will be a characteristic length of the considered subsystem A. For a smooth
boundary, there are no logarithmic contributions.

Extensivity and corner functions
The fact that the corner functions of the BCF and of the vNEE of the EMIm are identical
is an interesting property. We postulate that this equality is the simple consequence of
the extensivity of the BCF and the underlying CFT. Indeed, the mutual fluctuations we
introduced in Section 3.1.1 are always extensive.

Comparison with the vNEE
For Fermi gases, a universal ratio exists between the dominant coefficient of the charge
fluctuations and the vNEE (and all Renyi entropies). We can check that this ratio is
no longer valid for the sub-dominant conformal logarithmic terms. First, as the corner
functions differ, it is a priori impossible to get a constant ratio. There are, though, several
limits one could consider (namely ψ → 0, π2 , π). Using the values given in Ref. [88, 94],
the different ratio are presented in Table 3.5. These ratios differ from Eq. 2.64, and the
dependency in the degree of the Renyi entropy is also different.

where b2/3/4 is the logarithmic coefficient of the second/third/fourth Renyi entropies,
and we have taken |m| = 1.
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ψ α = 1 α = 2 α = 3 α = 4

0 7.26 4.75 4.09 3.79

π
2 7.36 4.73 4.05 3.74

π 3
4π

2 3
2π

20
9
√
3
π 1+6

√
2

8 π

Table 3.5: Ratio between logarithmic contributions in the von Neumann (α = 1) and the

first Renyi entropies and the bipartite fluctuations −bSR,α
(ψ)

bQ̂
for a single Dirac cone with

winding number ±1, for the three angles 0, π2 and π. No simple relation of the form given
in Eq. 2.64 emerges at any of these angles.

Generalization to any lattice

The generalization to any lattice is straightforward once the discrete-lattice effects have
been eliminated.
The QFID is not affected as we kept the normalization in function of the Brillouin Zone
area. Singularities at the QPT are renormalized by the factor 4π2

ABZ
as the low-energy

behavior is not affected by the shape of the Brillouin Zone.
The logarithmic contribution is not affected. First, each of the Fourier coefficient is renor-
malized by 4π2

ABZ
. In a second time, the area of a unit-cell of the real-space lattice also

changes. Taking both effects into account, the logarithmic coefficient is given by:

qem
2a(ψ)

32π2
×
(

4π2

ABZ

)2

× 1

A2
~a,~b

, (3.168)

where ~a and ~b are vectors generating the lattice. As ABZA~a,~b = 4π2, the logarithmic
contribution is lattice-independent:

qem
2a(ψ)

32π2
(3.169)

3.4.3 Beyond the single isotropic Dirac cone

In this section, we extend the results beyond the isotropic Dirac cone. To simplify no-
tations, we will only consider models based on a square lattice in computations, but all
results are straightforwardly extended to any lattice.

Anisotropies and topological invariant

The first natural extension is to consider an anisotropic Dirac cone. In the p + ip su-
perconductor for example, there is no reason to restrict ourselves to ∆x = ∆y. While it
enforces an additional rotational symmetry, it does not change the phase diagram and the
topological classification of the phases. One can actually treat the general case given by:

∆x
~k
≈ ∆x

xkx + ∆x
yky, ∆y

~k
≈ ∆y

xkx + ∆y
yky (3.170)
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close to the Dirac cone. We still consider a quadratic ε~k. Let us define the transformation:

R =

(

∆x
x ∆x

y

∆y
x ∆y

y

)

, R−1 =
1

J

(

∆y
y −∆x

y

−∆y
x ∆x

x

)

and J = det(R) = ∆x
x∆y

y −∆x
y∆y

x

The winding number of the Dirac cone is sign(J). When it cancels, the winding is indeed
0 and there are no logarithmic contributions. The logarithmic contribution to the BCF is
captured by the test function:

hR(~k) =
∆x
xkx + ∆x

yky + i(∆y
xkx + ∆y

yky)

|∆x
xkx + ∆x

yky + i(∆y
xkx + ∆y

yky)|
h̃R(~k), (3.171)

where h̃R is a smooth, arbitrary cut-off function with h̃R(0) = 1. We then compute the
Fourier transform of hR.

FT {hR}(~n) =

∫∫

~k∈BZ

d~k

ABZ
h(~k)e−i

~k.~n

=
1

|J |

∫∫

~k′∈R(BZ)

d~k′

ABZ

k′x + ik′y
|k′x + ik′y|

h̃R(R−1(~k′))e−i
~k′.tR−1~n

R is a smooth transformation, so we can take h̃ such that h̃R(R−1(~k′)) = 1− |~k′| and we
recover:

FT {hR}(~n) ≈ ei(θtR−1~n−
π
2
)

2π|J |
1

|tR−1~n|2 + ... (3.172)

If R is an orthogonal transformation, the logarithmic coefficient is consequently not af-
fected by the transformation ( |J | = 1 and |tR−1~n|2 = |~n|2). It is expected: such a
transformation is equivalent to a simple change of basis in the Pauli matrices basis, and
should not affect the charge fluctuations.

More general transformations deform the corner functions as they locally change the
metric and angles. Moreover, as anisotropies appear, the corner function becomes also
function of the direction of the region A. The most convenient form to recover the coeffi-
cient is:

∑

~r1,~r2∈A

∫∫

~k∈BZ

d~k

ABZ
ei
~k.(~r1−~r2)hR(~k) =

∑

~r1,~r2∈A

∫∫

~k∈R(BZ)

d~k

|J |ABZ
ei
~k.tR−1(~r1−~r2)hR(R−1~k)

=
∑

~r1,~r2∈tR−1(A)

∫∫

~k∈R(BZ)

d~k

|J |ABZ
ei
~k.(~r1−~r2)hR(R−1~k)

One directly sees that deformations of the cone are equivalent to deformations of
the region A. Note that the transformation R cannot make new angles appear: the
contribution still arise from the original angles, but is renormalized. We give two examples.

• Pure anisotropic dilatation: ∆x
y = ∆y

x = 0 and ∆y
y = α∆x

x, α > 0. Let us consider A
a parallelogram define by ~a = |a|(cos θ, sin θ) and ~b = |b|(cos(θ+ψ), sin(θ+ψ)), with
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Figure 3.13: Fourth contribution (source of the logarithmic term) in the p+ ip supercon-
ductor for several values of ∆y and ∆x = t at the critical point µ = −4t. The long range
behavior is independent of the anisotropy when considering an aligned square sub-system
A. lA is here the length of the side of A. We recover the predicted coefficient.

ψ in [0, π2 ]. Then the angle between tR−1~a and tR−1~b is still in the first quadrant
and given by:

ψ̃(ψ, θ) = arcsin
α sinψ

√

(1 + (α2 − 1) sin2 θ)(1 + (α2 − 1) sin2(θ + ψ))
(3.173)

and the associated corner function is simply aα(ψ, θ) = a(ψ̃) with a the corner
function for the isotropic cone. Its coefficient is invariant. ψ in [π2 , π] is obtained by

symmetry. In particular, for ~a = ~ex and ~b = ~ey, the logarithmic coefficient is not
affected, as shown in Figure 3.13.

• Pure deformation: R =

(

1 sinα
0 cosα

)

. Lengthy computations lead to a renormaliza-

tion of ψ in [0, π2 ]

ψ̃(ψ, θ) = arcsin
sinψ cosα

√

(1− sinα sin 2θ)(1− sinα sin(2θ + 2ψ))
(3.174)

and similarly the associated corner function is aα(ψ, θ) = a(ψ̃), while the prefactor
is not affected.
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Note that in both cases we explicitly break the invariance by rotation in real space.

Multiple cones and structure factors

Another natural extension is what happens when there are several Dirac cones, with po-
tentially different winding numbers. The first example is of course Graphene (see Section
1.6.2), but such a QCP also occurs at µ = 0 in the p + ip superconductor, with Dirac
cones opening at momenta (0, π) and (π, 0). There is an important difference between
the two cases. For Graphene, the two cones have opposite winding number (which is why
they can be at the non-PHS-protected momenta K±), while the two cones have the same
topological charge in p + ip. This has strong consequences: Graphene naively describes
a trivial QCP if we add a small chemical potential8 while µ = 0 is a topological phase
transition for the p+ ip, with a Chern number changing by 2.
Therefore, we are interested in computing the logarithmic contributions to the BCF for sev-
eral cones, and in particular in distinguishing whether we have the same winding numbers.
We will limit ourselves to the case of two Dirac cones, but results can be straightforwardly
extended to any number. Let K± be the gap closing momenta, and m± the two winding
numbers. We assume that both cones are isotropic9 and compute fluctuations on a square
subsystem A. The corner functions being universal, they are not affected by the presence
of multiple cones and are a simple global factor that we ignore. Finally, we assume that
ε~k is still quadratic at ~K±.

Logarithmic coefficient of the BCF

Correlation functions now have two singularites at K±. As ε~k is still quadratic in ~K±, the
amplitude of each singularity is still 1. For isotropic simple cones, the proper test function
that capture the long range scaling of the Fourier transform is:

hm+,m−,j(
~k) = hm+,j(

~k − ~K+) + hm−,j(
~k − ~K−) (3.175)

FT {hm+,m−,j} = (m+e
im+(θ~n−π

2
)e−i~n.

~K+ +m−e
im−(θ~n−π

2
)e−i~n.

~K−)
1

2π

1

||~n||2 +O(||~n||− 5
2 )

(3.176)
We straightforwardly obtain:

|FT {hm+,m−,j}|2 ≈
m2

+ +m2
− + 2m+m− cos(~n.( ~K+ − ~K−) + (m+ −m−)(θ~n − π

2 ))

4π2||~n||4
(3.177)

Summing the oscillating terms on fixed ||~n|| contour gives a term proportional to the Bessel
function Jm+−m−(|n|| ~K+ − ~K−|) and therefore gives no contribution to the logarithmic
term. The logarithmic coefficient is then:

bh =
m2

+ +m2
−

8π2
(3.178)

8Graphene can be obviously gapped to form a topological model, as can be seen in Haldane model in
Section 1.6.3, but it requires something more complex than a simple chemical potential

9all results can be generalized to arbitrary cones
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This straighforwardly generalize to multiple cones mj :

bh =
1

8π2

∑

j

m2
j , (3.179)

which means that one cannot always identify the number of cones and their winding
numbers. The case of two cones with the same (in absolute value) winding number has
nonetheless a unique signature.
Structure factor
To go beyond this first result, we again introduce the structure factor of the BCF. In two
dimensions, these correspond to the observable:

SFÔ(~φ,A) = 〈|
∑

~r∈A
ei
~φ.~rÔ~r|2〉 − |〈

∑

~r∈A
ei
~φ.~rÔ~r〉|2 (3.180)

Just as in one dimension, it corresponds to shifting by ~φ one of the Green functions that
appear in the computation. For the charge fluctuations, we obtain:

SFÔ(~φ,A) =
qe
4

∫∫∫∫

d~kd~q

ABZ2

K(~k − ~q,A)
(

1− cos θ~k+~φ cos θ~q + e
i(φ~k+~φ

−φ~q) sin θ~k+~φ sin θ~q

)

(3.181)
This in turn shift the phase of one of the Fourier transforms. Using the same test function
to capture the singularity at k = ~0, the logarithmic term may only arise from:

∑

|nx|<lx,|ny |<ly
|nxny||FT {hm+,m−,j}(~n)|2 cos~n.~φ (3.182)

This time, it is the non-oscillating terms of |FT {hm+,m−,j}|2 that are cancelled by the

additional phase term. For ~φ = ±( ~K+ − ~K−), logarithmic contributions may arise from
the cross-product m+m−. The coefficient can be obtained from the series:

qe
16π2

∑

|nx|<lx,|ny |<ly
|nxny|

m+m− cos((m+ −m−)(θ~n − π
2 ))

||~n||4 (3.183)

If m+ 6= m−, integration on a contour leads to a non constant term, that will depend on
the direction of the corner as well as its angle, and vanishes when m+ −m− is odd. On
the other hand, if m+ = m−, we recover a standard logarithmic contribution:

bh =
qem+m−

8π2
(3.184)

and therefore we can distinguish between the Graphene and the µ = 0 p + ip gapless
phases.
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Up to now, we have only considered non-interacting systems. In this Chapter, we will
focus on adding interactions to topological systems. The interplay between interactions
and topology is extremely rich and complex as is illustrated in the Fractional Quantum
Hall Effect (FQHE). The FQHE is the direct analog of the IQHE, with quantized current
carried by edges, but the conductivity takes precise rational values instead of integers.
This effect, experimentally discovered in [6] with a theoretical interpretation proposed in
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[100], has since received a tremendous amount of attention. Indeed, the non-integer nature
of the conductance is a symptom of the existence of anyons carrying a fractional charge.
These quasi-particles do not verify the bosonic commutation or fermionic anticommuta-
tion relations, but more complex exchange rules.
Another non-trivial consequence of adding interactions is the reduction of the homotopy
groups of the different Hamiltonians classes, and consequently the reduction in the topo-
logical invariant. Perhaps the most famous example of such is Fidkowski and Kitaev’s Z8

reduction[110, 168, 169]. While the different classes of Hamiltonians are still well-defined
in interactions, it has been shown that the topological invariant of the BDI class is no
longer an element of Z but of Z8, just as it reduces to Z2 when breaking the TRS. Let us
illustrate briefly the physical meaning of this reduction. If we take n < 8 Kitaev’s wires
in their topological phase with open boundary conditions, it is not possible to gap the
2n zero-energy Majorana edge modes by adding arbitrarily small interactions that both
preserve TRS and PHS: the 2n Majorana fermions are still protected by the symmetries.
On the other hand, if we take 8 Kitaev wires, it is possible to build interacting terms that
give a finite energy to all zero-energy modes, which are therefore no longer protected.
While the FQHE tells us that interesting new physics can happen at large interactions,
the Z8 classification limits the possible behaviors of our systems when the interactions are
smaller than the gap of the system. In the following, we will focus on an intermediate point
of view: starting from a topological system which is protected by the Z8 classification, we
will be interested in what happens when interactions are large enough that the topological
gap is broken, and in particular in the exotic (non-topological) phases that may arise from
there.

In Section 4.1, we present, as an introduction, methods to treat the interacting versions
of Kitaev’s wires. In particular, we present a bosonization scheme that allows to describe
the critical c = 1

2 point in terms of a Luttinger Liquid. We then use this representation to
compute the effects of interactions in a generic interacting model. We prove analytically
and numerically that the logarithmic term survives in presence of interactions for topo-
logical superconductors, but that its coefficient is renormalized.

The rest of the Chapter is devoted to the study of another interacting model that we
introduced in Ref. [155]. It is based on two Kitaev’s wires, coupled by a density-density
interaction, taken as a minimal implementation of the Coulomb interaction. Section 4.2
introduces the model and its Hamiltonian. After an extended discussion about the physical
aspects of the model, we propose an overview of its phase diagram in Figure 4.3. Due to
the preserved symmetries, the topological phase survives up to large interactions. At weak
chemical potential and large coupling, we find two Mott phases that present unusual orbital
currents. Section 4.3 presents a complete study of these two phases, along the derivation
of their existence. At large chemical potential, the system becomes polarized. Finally, at
an intermediate regime, where interactions and chemical potential are comparable, a new
gapless phase opens. This phase, called Double Critical Ising, is studied in Section 4.4,
and is an extension of the two c = 1

2 points.

This Chapter is largely based on Ref. [155], with some additional new results.
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4.1 Interactions and bipartite fluctuations

In this Section, we present some of the tools and transformation that we use to treat
interacting systems. We present a brief overview of the numerical methods at hand,
then discuss a bosonization scheme more adapted to the study of the critical points in
topological superconductors. We finally use these tools to study bipartite fluctuations in
interacting Kitaev’s chains.

4.1.1 Interacting systems and numerical simulations

Except for special integrable models, most interacting systems cannot be exactly solved,
and one has to rely on perturbative (semi-)analytical methods such as the renormalization
group, or to proceed to strong approximations. As these methods are not always well-
controlled and usually valid only in either very weak or large interactions, it is convenient
to also use numerical computations to check their validity.
Nonetheless, naive numerical simulations of interacting systems through exact diagonal-
ization are extremely time-consuming. Due to the interactions, one can no longer simply
diagonalize the correlation matrix, but needs to diagonalize the full 2L× 2L Hamiltonian.
Taking into account the symmetries of the system, the sparsity of the matrix, and focusing
only on the ground state and the first few excited states reduce slightly the complexity,
but it generally stays exponential with the size of the system, which limits us, as a rule of
thumb, to less than 40 fermions. For a ladder, it means that we can barely reach L = 20,
and therefore the long-range properties of the system can be complex to extract.
Fortunately, in one-dimension, another method can be used: the density matrix renor-
malization group (DMRG), and in particular its variant based on matrix product states
(MPS). We do not give a description of DMRG and MPS representations of many-body
states in this thesis and will only point out the main physical ideas behind this method.
We refer the readers to Ref. [170–172] for an introduction to, and review of the domain.

One dimensional ground-states are characterized by a weak scaling of the bipartite
vNEE.
For gapped phases, the entanglement entropy saturates to a constant (proportional to
the logarithm of the correlation length) when increasing the side of the considered sub-
systems. Very few eigenstates of the density matrix of any subsystem have a significant
weight. Instead of trying to describe exactly the ground state of the system, the idea is
then to approximate it by throwing out the low-entropy states.

For gapless systems, we have seen that the entropy scales logarithmically in the ground
state, which means that the number of relevant entanglement eigenstates grows linearly
with the size of the subsystem. Reaching a good approximation of the ground state should
therefore scale only polynomially with the size of the system. Though one cannot reach
the same precision as in a gapped phase, careful scaling analysis of the MPS results still
allows for very reliable results.

In this Chapter, and in the rest of the thesis, we use the ALPS library[158, 159] for all
our MPS computations (while any exact diagonalization simulations were done with our
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own codes).

4.1.2 Bosonization at the critical point

In this part, we briefly present a method of bosonization we used in Ref. [155] to describe
the critical point of an interacting Kitaev’s wire, inspired by Ref. [173].

Bosonization is one of the most powerful analytical tools at hand to study interacting
one-dimensional fermionic models. Complex fermionic theories (approximately) map to
more conventional bosonic systems that can be perturbatively solved[130, 131]. In the
case of the Kitaev’s model, we are in particular interested in a description of the c = 1

2
critical point and what it becomes when plugging in interactions. Describing such a criti-
cal model with bosonic fields seems difficult: simple bosonic models usually have integer
central charge. To solve this problem, instead of studying one single Kitaev’s wire, we
study two of them, that we leave uncoupled. The critical model having c = 2× 1

2 should
be describable by a free boson.
Nonetheless, as we have seen in Chapter 3, the sign of the logarithmic contribution to the
charge fluctuations is negative in Kitaev’s wire, while it is positive for Luttinger Liquids.
One therefore has to change the fermionic basis before standard bosonization. One can
get an intuition of the right change in basis by looking at the sign of bY Y in a general
BDI insulator: it is positive and therefore a good choice for our bosonic density. Going
from the insulators to the superconductors is non-trivial, but works.

We start at the critical point µ = −2t of Kitaev’s chain and take ∆ = t for conve-
nience. We rewrite the two independent fermionic wires to form two Majorana chains as
discussed in Sec. 1.1 (see Eq. 1.12). With the additional index σ specifying the wires, the
Hamiltonian is

− 2it
∑

j,σ

αj−1,σαj,σ. (4.1)

We then recombine them to form a single fermionic chain with a doubled number of lattice
sites. The new fermions operators, depicted in Figure 4.1, are:

d2j =
(−1)j√

2
(α2j−1,1 + iα2j−1,2) (4.2a)

d2j+1 =
(−1)j+1

√
2

(α2j,2 − iα2j,1). (4.2b)

and we obtain the following final Hamiltonian:

H = −2t
∑

j

(d†jdj+1 + d†j+1dj). (4.3)

The boundary conditions in this basis will depend on those of the initial model. For OBC
in the original model, it will also have OBC in this effective model. For PBC, it will either
have PBC if L is even or anti-periodic boundary conditions (APBC) if L is odd. In the fol-
lowing, we consider L to be even, but the conclusions will remain unaffected by this choice.
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γB2
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µ t

Figure 4.1: Unravelling scheme to obtain the model far from half-filling. The initial
fermions are split into two Majoranas. Each fermionic wire is then reorganized into a
Majorana wire with an alternating hopping term. Finally, recombination of the Majorana
wires into new fermions composed of a Majorana of each wire.

We use an Abelian bosonization approach to get an equivalent model and separate
each fermion field into its left- and right-moving part (see Appendix E for an overview on
the bosonization methods):

dj = eikF jd1,j + e−ikF jd−1,j , dr,j =
Ur√
2πα

e−i(rφj−θj). (4.4)

which leads to:

H =
vF
2π

(

1

K
(∂xφ)2 +K(∂xθ)

2

)

(4.5)

with vF = 4t and K = 1. vF is the Fermi speed of the fermions d, and K the Luttinger
parameter. As the d fermions are non-interacting, it is fixed to 1. For reference, we also
compute the density of the d operators:

d†2jd2j + d†2j+1d2j+1 = i
(

c†j,1cj,2 − c
†
j,2cj,1

)

. (4.6)



120 Chapter 4. Beyond non-interacting systems: a complex interplay

Our intuition was indeed valid: the conserved fermionic number of the d fermions is indeed
the σy pseudo-spin contribution. It marks a ”hidden” U(1) symmetry that appear when
considering the two chains. Finally, let us emphasize that making the change of basis
before bosonization is crucial to obtain such a simple form. We will come back to these
two results in Section 4.2.3 and 4.4.2.

Finally, one can check the validity of our approach by computing, for example, the
bipartite charge fluctuations. As the density operator has a somewhat complex expression
in terms of the d fermions, it is more convenient to consider the fluctuations of nj,± =
nj,1 ± nj,2. Due to the symmetry between the two wires, and as they are uncoupled,

Fn+(A) = Fn−(A) = Fn1(A) + Fn2(A) = 2Fn1(A) = 2Fn2(A). (4.7)

In bosonized form, keeping only non-oscillating and the more relevant terms and with the
convention U †

RUL = −i we obtain:

nj,+ =
1

2π

(

(∂xφ)2 + (∂xθ)
2
)

+
1

πα
cos 2φ (4.8)

nj,− = − 1

2πα
cos 2(φ+ θ)− 1

2πα
cos 2(φ+ θ)− 1

πα
cos 2θ (4.9)

Logarithmic term in the fluctuations can only be induced by cos 2φ and cos 2θ, the two
most relevant terms. It leads to

lA
∑

j,j′=0

〈nj,+nj′,+〉c ≈
1

2π2α2

lA
∫

0

lA
∫

0

dxdye2iφ(x)−2iφ(y)

≈ 1

2π2

∫∫

dxdy
1

(x− y)2 + α2
≈ − 1

π2
ln lA (4.10)

lA
∑

j,j′=0

〈nj,−nj′,−〉c ≈
1

2π2α2

lA
∫

0

lA
∫

0

dxdye2iθ(x)−2iθ(y)

≈ 1

2π2

∫∫

dxdy
1

(x− y)2 + α2
≈ − 1

π2
ln lA (4.11)

We recover the quantized coefficient − 1
π2 , as announced in Eq. 4.7.

4.1.3 Bipartite fluctuations and interactions

Up to now, we have left out the interactions. We focus in this section on intra-wire interac-
tions, that therefore leave the two wires uncorrelated. We assume that the interactions do
not affect significantly the phase transition between the topological phase and the trivial
polarized phase: no intermediate phase opens and the central charge at the critical point
is still c = 1

2 for each wire.
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Then, our previous description of the two wires in terms of a free boson must be still
valid. The Hamiltonian is in fact still given by:

H =
ṽF
2π

(

1

K̃
(∂xφ)2 + K̃(∂xθ)

2

)

. (4.12)

ṽF and K̃ are a priori the only two free parameters of the theory1, ṽF is a priori renor-
malized by the interactions, but one can actually prove that it is pinned to K̃ = K = 1 by
the absence of correlations between the two wires2. Let us compute the bipartite charge
fluctuations in each chain to both prove this result and see the evolution of the different
terms in presence of interactions.

The form of the bosonized expression of the densities in Eqs. 4.8 and 4.9 are not
significantly affected by the presence of interactions. A naive computation for an arbitrary
K̃ transforms the logarithmic term in power laws (we only consider the dominant long
range behavior for K̃ < 2):

〈nj,+nj′,+〉c ∝ |j − j′|−2K̃ and 〈nj,−nj′,−〉c ∝ |j − j′|−2K̃−1
. (4.13)

On the other hand, Eq. 4.7 is still valid as interactions do not couple the two wires. Fn+

and Fn− must therefore have the same scaling laws, which pins K̃ to 1. The logarithmic
term is therefore still present on the c = 1

2 line of an interacting Kitaev wire, whatever
the form of the interactions.
To compute the exact coefficient appearing before the logarithm is actually much more
complex. Indeed, even in presence of weak, non-relevant perturbations, the coefficients in
front of cosine and sine terms are renormalized[131], such that:

n+,j =
A1

πα
cos 2φ+ ..., (4.14)

with A1 a non-universal parameter. Finally, it leads to

〈nj,σnj+l,σ〉C = −|A1|2






1

2L2
+ (

bQ̂

2
+O(

1

L
))

1
[

L
π sin πlA

L

]2






+O(

1
[

L
π sin πlA

L

]4 ), (4.15)

The fact that the constant and l−2 scaling term are multiplied by the same non-universal
ratio allows to recover the universality of the logarithmic coefficient. This coefficient can
also be understood as the square of a quasi-particle weight induced by the interactions.
Note that there is still a cusp in the linear term, though it is quite sensitive to finite-size
effects.
We verified numerically this result using MPS simulations. Results are represented in
Figure 4.2. We considered a density-density interaction of the form:

4U(nj −
1

2
)(nj+1 −

1

2
). (4.16)

This model was thoroughly studied [174–180] and we refer the reader to these articles for
a discussion of its phase diagram and properties.

1Terms such as ∂xφ would break the Z2 symmetry between the wires.
2It is similar to the SU(2) rotation symmetry of the spin sector enforcing Kσ = 1 in the Hubbard
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Figure 4.2: Logarithmic coefficient extracted from the correlation functions in a Kitaev’s
chain with added density-density interactions 4U(nj − 1

2)(nj+1 − 1
2). We take t = ∆ and

consider several values of U (we fix the chemical potential to stay on the critical line).
Simulations were performed using MPS codes from the Alps library, for wires with up to
120 sites. The blue and green curves were obtained in the two parity ground states. In
red, we extracted the value of the coefficient in the thermodynamic limit.



Section 4.2. Model and simple limiting cases 123

4.2 Model and simple limiting cases

In this Section, we start by describing with more details the microscopic model of the Ki-
taev’s ladder we consider. We then directly present the phase diagram we obtained, before
ending the Section with a brief overview of the Hubbard model, a staple of Condensed
Matter, which is the non-superconducting limit of the ladder.

4.2.1 Microscopic model

The model we chose to study is composed of two topological superconducting wires in the
presence of Coulomb-like interactions modeled by an on-site repulsion à la Hubbard. It
is a generic model, in the sense that these interactions will be present in most systems.
Additionally, this ladder is also a step towards building two-dimensional materials.
We take each wire to be described by Kitaev’s Hamiltonian described in Section 1.1. The
two chains are coupled via a Coulomb interaction:

Hint = g
∑

j

(nj,1 −
1

2
)(nj,2 −

1

2
), (4.17)

nj,1/2 is the electron number operator in the first/second wire at site j. Interpreting
the chain index as a spin index, then this can be identified as the well-known Hubbard
interaction, a staple of condensed matter physics thoroughly studied for the last 40 years.
This interaction does not break any of the discrete symmetries of the original problem:
superconducting induced PHS, parity and TRS are preserved. In this model, we ignore the
effect of intra-wire repulsive interactions and assume that the Cooper channel dominates in
each wire. This gives a minimal model, which interpolates between Hubbard and Kitaev
physics, and displays a competition between topological superconducting ordering and
Mott ordering. Reaching the large g limit could be eventually achieved experimentally by
placing an insulating material between the wires, forming a capacitance between the two
parallel wires. Coupling with a bath could also allow to engineer such an interaction term.
More complex interaction terms which allow for exactly solvable points have also been
envisioned recently in Refs. [181, 182]. Note that two side gates could be used to screen
out the interactions along the two wires. We also note that since a Kitaev superconducting
wire can be engineered in ultra-cold atoms through proximity effect [183] or via a Floquet
type approach [184], then a controllable interaction could be achieved between and inside
the two wires.

This problem can also be expressed in terms of two interacting Ising spin-12 chains [40]
(see Section 1.1.4):

− µ

2

∑

j,w

σzj,w +
t−∆

2

∑

j,w

σxj,wσ
x
j+1,w +

t+ ∆

2

∑

j,w

σyj,wσ
y
j+1,w +

g

4

L
∑

j=1

σzj,1σ
z
j,2, (4.18)

where w is a chain index and σx,y,z the Pauli matrices. This model will have the same phase
diagram as its fermionic counterpart, but different physical properties [109]. This repre-
sentation favors another controlled experimental realization with cold atoms [185, 186] or

model.
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using Josephson junctions as pseudo two-level systems [187], allowing to access the large
g limit. Other Majorana-Josephson models, similar to Ising models in transverse fields
have been proposed, see for example Ref. [188]. Such systems would allow us to reach
the high coupling limits, and consequently to probe easily the more exotic features of our
system. Quantum criticality in a Ising chain has also been observed in real materials [189].

Countless variants of such a model could also be considered. Supplementary terms
such as a hopping term between the two wires −t⊥c†1c2 + h.c or an orthogonal pairing

term ∆⊥c
†
1c

†
2 +h.c [190] could be taken into account. These terms become negligible for a

large enough distance d between the wires. The Coulomb repulsion scales like 1/d2. The
hopping amplitude, scaling as exp(−d/χ), with χ being a correlation length, is negligible
for d≫ χ. Similarly, if d is larger than the coherence length of the Cooper pair, one can
safely ignore ∆⊥, as long as both these terms do not break the time-reversal symmetry,
i.e t⊥ and ∆⊥ are real. Several interacting terms have been also considered in the case
of one wire [174, 175, 177, 179, 191]. Spinless fermionic ladders have also given rise to a
plethoric litterature ([192–195] for example).

4.2.2 Phase diagram

In this Section, we directly give the phase diagram we obtained for this model. It will be
easier to follow the different approaches used to retrieve it.

The main result of this Chapter is the phase diagram of our model for ∆ 6= 0 in Fig. 4.3.

We observe the survival of the SPT phase, called 4MF , in the presence of finite in-
teractions. This phase is characterized by two free Majorana fermions at each extremity
of the ladder. Despite their proximity, the symmetries prevent a direct coupling between
the Majorana fermions at each extremity. We consequently observe a four-fold degeneracy
of the ground state of the system with open boundary conditions. Each of these ground
states has a different combination of fermionic parities. We also observe a widening of the
acceptable chemical potential range for weak repulsive interactions (g > 0) and a reduction
of this range for attractive interactions (g < 0), a common feature of these topological
superconducting models[191, 196].

At very large coupling and weak chemical potential, two similar phases appear. Both
of them are Mott-Ising phases related to the Mott phases of the Hubbard model. For
positive g (MI-AF ), the corresponding low-energy model is an Antiferromagnetic Ising
model, which presents orbital currents and a spontaneous breaking of the time reversal
symmetry. For g negative (MI-F ), the low-energy model is a Ferromagnetic Ising model in
a transverse field, which also breaks time reversal symmetry and exhibits currents between
the two wires. At large chemical potential, a polarized trivial phase opens, corresponding
to depleted or full wires.

Finally, at finite positive coupling, an intermediate phase opens between 4MF and the
polarized phase. This is the only gapless phase in this diagram and has a central charge
c = 1. This phase is an extension of the critical point at g = 0, whose critical model is two
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4.3 Close to half-filling: bosonization and RG

In this Section we focus on what happens close to the µ = 0. For µ ≪ t, the fermionic
density will be close to 1

2 , that is to say the ladder will be half-filled. In this limit, we
can make fruitful use of the bosonization methods to perturbatively describe the effects
of interactions in the two wires.

4.3.1 Bosonization at half-filling

We proceed to a standard Abelian bosonization scheme [131], considering both ∆ and g
as perturbations. The notations used for bosonization are summarized in Appendix E.

Assuming that we are close to half-filling and consequently far from the bottom of the
energy band in each wire, the free fermion Hamiltonian is given by:

H =
∑

σ

∫

dτdx
vF
2π

((∂xθσ)2 + (∂xφσ)2) (4.21)

with σ the index of wire (σ = 1, 2), vF = 2tα sin(kF ) the Fermi velocity and α a short
distance cut-off. We take kF = π/2 the Fermi momentum to simplify notations.
We then need to derive the different contributions of the pairing ∆ and the interaction g.
The exact derivation is kept in Appendix E.3.4. We use the representation U †

LU
†
R = i of

the Klein factors.
The contribution of the pairing is given by:

∑

σ=1/2

2∆σ sin(kF )

πα
cos(2θσ), (4.22)

with ∆σ = ∆ while the interactions lead to a renormalization of the Luttinger parameters
and the additional terms:

∑

ε=±

gε
α2

cos(2
√

2φε), (4.23)

where we have define
√

2φ± = φ1 ± φ2 and
√

2θ± = θ1 ± θ2. While the wire basis is
more convenient for treating the non-interacting Hamiltonian, interactions can be better
described in the (charge, pseudo-spin)= (+,−) basis. The total Hamiltonian treated in
this basis is given by:

H =
∑

ε=±

∫

dx
vF,ε
2π

(Kε(∂xθε)
2 +K−1

ε (∂xφε)
2) +

gε
α2

cos(2
√

2φε)

+
∆(1)

α2
cos(
√

2θ+) cos(
√

2θ−). (4.24)

K+ and K− are the Luttinger parameters. g+ and g− appear due to the Coulomb coupling
between the two wires. Both are present in Hubbard model and are responsible for the
Mott-Heisenberg phases. The pairing ∆ plays now the role of a coupling ∆(1) between the
two charge and spin sectors, that cannot be a priori separated. The values of the different
parameters before the renormalization group analysis can be found in Table 4.1, as bare
values.
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Term Dimension Bare value

vF,± - vF
√

1± g
πvF

K± - K±(0) = 1
√

1± g
πvF

cos 2θσ Kσ
2∆ sin(kF )

πα

cos(
√

2θ−) cos(
√

2θ+) 1
2(K−1

+ +K−1
− ) ∆(1)(0) = 4∆α

π

cos(2
√

2θ+) 2K−1
+ ∆

(2)
+ (0) = 0

cos(2
√

2θ−) 2K−1
− ∆

(2)
− (0) = 0

cos(2
√

2φ+) 2K+ g+(0) = −g
2π2

cos(2
√

2φ−) 2K− g−(0) = g
2π2

Table 4.1: Dimensions of the different terms of the bosonized model, and bare values in
the RG flow.

4.3.2 RG analysis

To be able to solve the Hamiltonian in Eq. 4.24, one needs to proceed to a renormalization
group (RG) analysis. A very basic introduction to the philosophy of the RG is kept in
Appendix E.3, and we state here the main physical ideas behind it.

As we are interested in the thermodynamic limit, that is to say the long-range behav-
ior of the system, the small scale details of our Hamiltonian should be ignored. The RG
procedure selects which operators in the Hamiltonian are important in that limit. Those
who are, are called relevant: when increasing the scale at which one looks at the system,
their coefficient is renormalized to∞ at a speed characterized by their ”dimension” (here,
the lesser, the faster they grow). Others, called irrelevant, vanish in the thermodynamic
limit. For the operators we consider in this model, the critical dimension is 2: if their
dimension is larger than 2, they are irrelevant. If it smaller than 2, they are relevant.

Table 4.1 also summarizes the dimension of the different operators that appear in Eq.
4.24. The method to determine it is given in Appendix E.3.3. In the absence of interac-
tions, the operators corresponding to ∆σ are always relevant, and therefore flow to ∞. θσ
are pinned to ±π

2 and the system is gapped as soon as ∆ is non-zero. Adding a chemical
potential only adds a coupling to the φ field, and therefore does not directly affect θ up
to the point when we reach the bottom of the band, where the bosonized picture breaks
down. Again, it matches qualitatively the exact solution: whatever ∆ 6= 0, the phase
transition only occurs when µ = ±2t, that is to say when the chemical potential indeed
reaches the bottom (or top) of the free electron band.

Including the interactions changes the RG equations. We only consider the one-loop
RG equations and we do not take into account the renormalization of the Fermi velocities.
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An additional term appears in the RG computation that must be taken into account4

−
∑

ε=±

∆
(2)
ε

α2
cos(2

√
2θε) (4.25)

∆
(2)
+ and ∆

(2)
− are not initially present in the bare Hamiltonian, but are generated under

RG by ∆(1) . In a diagrammatic language, they correspond to second order contributions
in ∆. The dimensions of the different coefficients are noted in Table 4.1.

We define the renormalization length as: α(l) = αel. The renormalization flow equa-
tions, including all relevant orders, are:

dK±
dl

= −2π2g2±
v2F,±

K2
± +

2π2(∆
(2)
± )2

v2F,±
+
π2(∆(1))2

4vF,+vF,−

dg±
dl

= (2− 2K±)g±

d∆(1)

dl
= (2− 1

2
(K−1

+ +K−1
− ))∆(1)

d∆
(2)
±
dl

= (2− 2K−1
± )∆

(2)
± +

2π2(∆(1))2

vF,∓
. (4.26)

Dimensional analysis of these equations discriminates three different phases at half-
filling, to be analyzed below. To qualitatively compare the effects of gε and ∆(1), we
compare the bare value of the latter, an a priori strongly relevant coupling, and the
effective mass mg obtained by Bethe-Ansatz in the Hubbard model (in other words the
Mott gap in the charge sector), at low coupling [197]

mg

t
= −2 +

|g|
2t

+ 2

∞
∫

0

dω
J1(ω)e−

|g|ω
4t

ω
≈ 4

π

√

|g|
t
e
− 2πt

|g| for |g| ≪ t.,

where J1 is the Bessel function of the first kind.

• If ∆ & |mg|, ∆(1) dominates the g± cos(2
√

2φ±) terms and goes to strong coupling.
Both θ± modes become massive and are locked to the minima of the ∆(1) term. By
continuity with the topological phase at g = 0, we expect this strong coupling fixed
point to correspond to the SPT phase presenting four Majoranas, or 4MF phase.

• If |mg| & ∆ and g > 0, g+ is renormalized to large coupling before ∆(1) reaches
significant values. g− is irrelevant and renormalized to 0. φ+ is consequently locked
to 0 [π/

√
2], corresponding to a Mott ordered phase, and ∆(1) vanishes at this fixed

point. ∆
(2)
− is still relevant and acquires a non-zero value in the initial steps of the

renormalization. It consequently gaps the spin sector and both modes (φ+, θ−) are
eventually locked. This fixed point describes the MI −AF phase.

• If |mg| & ∆ and g < 0, the reasoning is the same as for g > 0 but for an inversion of
the charge and the spin sector. (φ−, θ+) are locked, describing the MI − F phase.

4It was actually already generated in the non-interacting case but id not play an important role.
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As long as we stay close to half-filling, one can use the same bosonization scheme to
determine the effects of a chemical potential. Indeed, one only needs to add a term:

−µ
√

2

π
∂xφ+,

in the Hamiltonian. The effect of this term is two-fold: it reduces the effective dimension
of cos(2

√
2φ+) and renormalizes the Fermi velocity [198]. When the renormalized Fermi

speed approaches 0, it indicates that we are too far from half-filling and that the spectrum
is no longer linear, leading to the breakdown of the bosonization approximation.5 We
summarize the effect of the chemical potential on each of the previously obtained phases:

• If ∆ & |mg|, none of the pinned operators includes a φ+ term, meaning that no
transition occurs before we reach the bottom of the band and the bosonization
procedure breaks down.

• If |mg| & ∆ and g > 0, the umklapp term controlled by g+ starts oscillating. In
the Hubbard model occurring at ∆ = 0, g+ is renormalized to zero at a finite ratio
µ
g , corresponding to a vanishing charge gap and a commensurate-incommensurate
transition to a gapless Luttinger phase [198]. At finite but small ∆, µ weakens g+
by reducing its dimension until ∆(1) dominates the RG process and flows to strong
coupling. This leads to a resurgence of the 4 Majorana phase at finite µ.

• If |mg| & ∆ and g < 0, as with the first phase, a transition does not occur in the
bosonization validity range.

4.3.3 Characterization of the 4 Majorana phase

Based on adiabaticity, we expect the topological properties of the 4MF phase to be well-
described by the g = 0, |µ| < 2t case, i.e. two uncoupled Kitaev wires in their topologically
non-trivial phases. Hence, four zero-energy Majorana end states should be present and
remain uncoupled, corresponding to a four-fold degenerate ground state (each couple of
Majorana fermions can form a complex fermion with 0 energy, that leads to a two-fold
degeneracy of the ground state). We present in this section a few analytical and nu-
merical arguments that support this claim, beyond the Z8 classification of Kitaev and
Fidkowski[110, 168, 169, 199].

A first approach consists in considering the perturbative effect of g on the extremity
of two Kitaev wires in the topological phase. We assume t = ∆ and µ = 0 to get a simpler
picture. Using the notation of Section 1.1, we recall that the free Majorana fermions are
γB1,σ and γAL,σ. The interaction term Eq. (4.17) can be rewritten as: −g∑

j
γAj,1γ

B
j,1γ

A
j,2γ

B
j,2.

Only terms at least of order (gt )
L will directly couple the free Majoranas, which translates

in exponentially small lifting of the degeneracy. This comes from the fact that the inter-
action term does not break the PHS symmetry, as was explained in Section 1.3.4. In the

5One could recover the results from a bosonized theory, but that would require adding higher order
terms that we neglected and cannot treat simply.
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The effective low-energy Hamiltonian is given by:

Heff,g+ =
t2 −∆2

g

∑

j

σzjσ
z
j+1 +

t2 + ∆2

g

∑

j

σyj σ
y
j+1 +

t2 −∆2

g

∑

j

σxj σ
x
j+1. (4.28)

Up to a spin-axis rotation, this effective model is nothing but the standard XXZ model.
∆ breaks the SU(2) rotation symmetry of spins of the Hubbard model, preserving only a
U(1) rotation invariance around the y-axis that can be directly seen in the Hamiltonian.
Moreover, as long as ∆ 6= 0, we stay in the Antiferromagnetic Ising phase of this model (the
Néel phase, where the anisotropy dominates). Our effective model is consequently gapped
in both sectors, and presents a double degeneracy if we have OBC or PBC with an even
number of sites. The fermionic density is also fixed at half-filling as long as we stay in this
phase. Just as for the Hubbard model, small variations of the chemical potential do not
affect the low-energy Hamiltonian, and hence the different observables are left essentially
unaffected. A clear physical picture is obtained when ∆ = t. The effective model is then a
pure Ising model, with trivial ground states:

⊗

j

∣

∣(−1)j
〉y

j
, where σyj |±1〉yj = ± |±1〉yj . This

peculiar order in the y-direction is characteristic of the formation of orbital (alternating
in this case) currents in the ladder. Each of these ground state spontaneously breaks the
time reversal symmetry, as the transverse operator current

JN⊥ = i
∑

j

(−1)j(c†j,1cj,2 − c
†
j,2cj,1) (4.29)

acquires a non-zero expectation value6. This spontaneous symmetry breaking is not in
contradiction with Mermin-Wagner theorem, as time-reversal is a discrete symmetry (Z2).
We want nonetheless to underline that these orbital currents appear in the absence of an
explicit flux, and that they are quite unusual as they correspond to coordinated exchange
of 4 fermions between the two wires. Ref. [193] found a similar Orbital Antiferromagnetic
phase (OAF), induced by the nearest neighbor interaction V njnj+1. It is not surprising
as cos(2

√
2θ−), generated by ∆ in the RG process, is also a contribution of V . The main

difference is in the nature of the spontaneous currents, as direct hopping between the two
wires is allowed in Ref. [193]. The occurrence of orbital currents in two dimensions has
also attracted some attention in the context of high-Tc superconductors due to the inter-
play between the magnetism close to the Mott state and the superconductivity[201–204].
They can also be induced through the creation of magnetic fields and orbital effects as
in superconductors and through artificial gauge fields [205] in ultra-cold atoms [206]. For
recent examples in two-leg ladder systems, see for example Refs. [207–213].
µ does not change perturbatively the effective Hamiltonian Eq. (4.28), as the correspond-
ing term is constant when projected onto the low energy subspace. However, larger µ of
order g are responsible for a resurgence of the 4MF phase as discussed above.

The case g < 0 is very similar in its mathematical structure. We define this time

6Note the alternating (−1)j that differentiates between JN
⊥ and Jy in Eq. 4.20.
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anomalous spin operators:

s
z
j = c†j,1cj,1 + c†j,2cj,2 − 1

s
x
j = c†j,1c

†
j,2 + cj,2cj,1

s
y
j = i(cj,2cj,1 − c†j,1c

†
j,2).

The corresponding effective Hamiltonian is:

Heff,g− =
t2 −∆2

|g|
∑

j

s
z
js
z
j+1 −

t2 + ∆2

|g|
∑

j

s
y
j s
y
j+1 +

∆2 − t2
|g|

∑

j

s
x
j s
x
j+1 − µ

∑

j

s
z
j . (4.30)

The physics is the same as for g > 0, as we can map one to the other with the transfor-
mation: s

z
j → σzj , sxj → (−1)jσxj and s

y
j → (−1)jσyj . In term of these anomalous spins, we

obtain a gapped Ferromagnetic Ising phase in the s
y direction at µ = 0. The ground state

is twice-degenerate, and time reversal symmetry is again spontaneously broken, leading
to global currents from one wire to the other. The relevant operator JA⊥ is obtained by
considering the case ∆ = t:

JA⊥ = i
∑

j

(cj,1cj,2 − c†j,2c
†
j,1). (4.31)

It corresponds to a pair current through the substrate. Ref. [193] does not observe a

similar phase, as V njnj+1 cannot give a contribution similar to ∆
(2)
+ .

Its susceptibility to relative chemical potential (a magnetic field in the language of Hubbard
model) is zero. The chemical potential now plays the role of a transverse field, leading to

a phase transition toward a fully polarized state at µ of order t2+∆2

g .

4.3.5 Nature of the transitions

Finally, we provide numerical and analytical arguments for the nature of the different
phase transitions. We start by considering the transition between the MI-AF and 4MF
phase.

We focus on: g > 0 and mg and ∆ are of the same order. First, we argue that the
mode (φ−, θ−) is not affected by the transition. Indeed, θ− is still locked to θ− = 0 [π/

√
2]

and ∆
(2)
− stays relevant at this transition, whether ∆(1) goes to strong coupling or not.

Consequently, the spin sector knows no phase transition. The description of the transition
of the charge sector at finite value of ∆ is actually a more challenging problem. Let us
start by considering the Hubbard model and the commensurate-incommensurate transi-
tion between the Mott phase and the liquid phase. We know from exact solutions that,
close to the transition, the universal value of the Luttinger parameter for the charge mode
is K+ = 1

2 [214, 215]. We start from this limit and branch a small ∆.

As the spin mode stay gapped, we perform a mean-field approximation in order to
separate the two modes:

∆(1) cos(
√

2θ+) cos(
√

2θ−)→ ∆(1) cos(
√

2θ+)〈cos(
√

2θ−)〉
→ ±∆(1) cos(

√
2θ+).
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The sign depends on the ground state of the spin mode, and has no consequences on the
picture of the transition. We will consequently consider it positive. We then proceed to
a rescaling φ+ → φ+/

√
2 to reach the refermionizable point. The effective model close to

the Hubbard transition line between the Mott-Heisenberg phase and the LL is:

H =

∫

dx
vF,+
2π

((∂xθ+)2 + (∂xφ+)2) +
g+
α2

cos(2φ+) +
∆(1)

α2
cos(2θ+), (4.32)

where g+ is a small effective interacting term, the effective mass. It corresponds to a
g term that has been eventually renormalized by the chemical potential. One can then
refermionize the Hamiltonian as done for example in Refs. [198, 216, 217]. To that end,
we introduce two chiral fermions:

ψR/L =
UR/L√

2πα
e∓i(φ+±θ+), (4.33)

where UR/L are Klein factors and α the short distance cut-off of the theory. We place

ourselves in the representation where U †
RUL = −i. We then use the following identification:

cos(2φ+) = iπα(ψ†
RψL − ψ

†
LψR)

cos(2θ+) = iπα(ψRψL − ψ†
Lψ

†
R).

The effective Hamiltonian is then given by:

H =

∫

dx(−ivF,+)(ψ†
R∂xψR − ψ

†
L∂xψL)

+
ig+π

α

∫

dx(ψ†
RψL − ψ

†
LψR) +

i∆(1)π

α

∫

dx(ψRψL − ψ†
Lψ

†
R). (4.34)

One can finally introduce Majorana modes and obtain the final expression for our effective
Hamiltonian:

ψR/L =
γ0R/L + iγ1R/L√

2

H =
∑

σ=0,1

∫

dx
(−ivF,+)

2
γσR∂dxγ

σ
R − γσL∂dxγσL

+

∫

dx
π(g+ + ∆(1))

α
iγ0Rγ

0
L +

π(g+ −∆(1))

α
iγ1Rγ

1
L. (4.35)

The effective model is consequently very simple: two massive Majorana fermions. A phase
transition consequently occurs when one of the two masses vanishes, i.e g+±∆(1) = 0. At
these two points, one of the Majorana wire is free while the other is massive. The tran-
sition is therefore an Ising transition instead of a Commensurate-Incommensurate tran-
sition, with a central charge c = 1

2 . We argue numerically that this picture is still valid
when ∆ and g are of the same order by computing the central charge on the transition line.
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The transition between the MI-F phase and the 4MF phase follows the same physics
at µ = 0 by symmetry. Again, numerically the picture is still valid when one branches µ.

Finally the direct transition between the MI-F phase and the Polarized phase is
the simplest to describe. As explained in the previous Section, the effective model at
large coupling is a Quantum Ising model in a Transverse Field. The critical model is
consequently also the critical Ising model, with a central charge c = 1

2 .

4.4 The Double Critical Ising phase

In this Section, we focus on the study of the properties and existence of the Double Critical
Ising phase. This phase opens at low-filling, and consequently direct bosonization is not
very well suited to describe it. We propose an analytical description of the phase, and
some numerical results to confirm its existence.

4.4.1 Mean-field precursor to the DCI

While in one dimension, mean-field computations are usually not reliable, they can give us
some insights on the physical properties of a model, and in particular in the existence of
phase transitions. In the absence of Coulomb interaction g = 0, the transition between the
topological and trivial phase is simply given by µ = ±2t and independent of ∆. Due to the
conservation of the fermionic parity in each wire, the only partitioning of the interaction
that one can introduce without explicitly breaking any symmetry is:

g

(

ρ1(j)−
1

2

)

nj,2 + g

(

ρ2(j)−
1

2

)

nj,1,

where ρ1/2 is the fermionic density in each wire. Assuming a symmetry between the two
wires, we obtain a simple equation for the transition lines:

g± =
µ∓ 2t

ρ± − 1
2

(4.36)

where ρ± is the density at the transition point µ = ±2t for the non-interacting Kitaev’s
wire[155]:

ρ+ −
1

2
=











1
π

arcsin(
√

1−∆2/t2)√
1−∆2/t2

if |∆t | ≤ 1

1
π

argsh(
√

∆2/t2−1)√
∆2/t2−1

else
(4.37)

In this limit, the only effect of the transition is a shift of the normal critical points. It can
be reformulated as:

µ± = ±2t± g(ρ+ −
1

2
),

using ρ+ = 1−ρ−. We recover that repulsive interactions widen the range of chemical po-
tential where the topological phase survives, while attractive interactions reduce it. This
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equation reproduces well the numerical transition line for weak interaction.

But one can assume the breaking of the expected symmetry between the two wires
c1 ↔ c2 and allow for different densities. One has now to compare the potential solutions
by minimizing the total energy after solving the following two consistency equations:

ρ1/2 −
1

2
= −

2π
∫

0

dk

4π

−(µ− g(ρ2/1 − 1
2))− 2t cos k

√

(µ− g(ρ2/1 − 1
2) + 2t cos k)2 + 4∆2 sin2 k

.

There is no simple analytical expression to these solutions but a numerical study reveals
the appearance of a set of asymmetrical solutions at finite interaction strength. We find a
whole parameter space where there exists an asymmetrical solution whose energy is lower
than the symmetrical solution. It is an indicator of the opening of a new phase, and roughly
corresponds to the limits of the DCI phase. Nonetheless, as expected, the mean-field
argument does not correctly describe its properties. While the mean-field computation
predicts a finite difference in densities in each wire even in the thermodynamic limit,
numerical simulations assert that the difference in electronic populations between the two
wires is only around 2 fermions, whatever the number of sites we consider. Moreover, while
the numerical simulations predict a gapless phase, here the phase is necessarily gapped.
However, the mean-field approach has the advantage to simply explain the spontaneous
breaking of symmetry between the two wires we observe in numerical simulations: instead
of having a single ground state, we obtain a doubly degenerate ground state with fermionic
parity (even, odd) and (odd, even).

4.4.2 Unraveling the ladder

To find an effective analytical model far from half-filling, we use the same approach as in
Section 4.1.2 and build an effective Luttinger Liquid from manipulations of the Majorana
fermions. The U(1) symmetry discussed in Section 4.2.3 corresponds to the conservation
of the fermionic charge of the d fermions. This charge conservation is extremely convenient
for our analytical analysis.

We now take into account the variation of the chemical potential around µ = −2t that
can be written as:

− iδµ
∑

j,σ

α2j,σα2j−1,σ =
δµ

2

∑

j

(1 + (−1)j)(d†jdj+1 + d†j+1dj). (4.38)

δµ favors dimerization of the d fermions, as expected.
The new interacting term actually has a simple expression in the basis of the d fermions:

− g

2

∑

j

(1 + (−1)j)(nj −
1

2
)(nj+1 −

1

2
). (4.39)

As δµ, g also separates into two contributions, one is alternating and the other is constant.
The former also favors dimerization (this will appear more clearly below using Bosoniza-
tion) and competes with δµ, while the latter tries to impose a uniform charge distribution
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Figure 4.7: Results of the mean-field computations for d = 0.5t, d = t and d = 2t.
We computed the auto-coherent solution of the mean-field equations, and classified them
depending on whether they break the symmetry between the two wires (blue for symmetric
solutions, red for non-symmetric ones). It also correspond to a change in the degeneracy
of the ground state (from no degeneracy to twice degenerate). This criterium does not
discriminate between the opening of the Mott-Ising phase and the DCI. Note that there
are some signs of the gaplessness of the DCI and of the differences between MI and DCI
in the mean-field: presence of several auto-coherent solutions and size of a gap between
the different solutions, but these are not enough to conclude.

in competition with the two dimerization schemes.
While most bosonized terms are standard, obtaining the correct contribution for the al-
ternating part of g is actually more challenging. One has to take special care and proceed
to do the OPE of the term in order to get the correct expression (see for example Ref.
[218] where such terms are included to take into account disorder):

(−1)jnjnj+1 ∝ ∂xφj sin(2φj+1)→ cos(2φj).

The final Hamiltonian is given by:

H =
ṽF
2π

(

1

K
(∂xφ)2 +K(∂xθ)

2

)

− gφ cos(2φ) (4.40)

with ṽF = (4t− δµ)
√

1− 2g
π(4t−δµ) , gφ = ( δµ

2πα + g
2π2α2 ) and K = 1

√

1− 2g
π(4t−δµ)

. The discus-

sion in this Section is in principle restricted to having |δµ| ≪ t, as a too large δµ induces
a dimerization of the kinetic term, and hence invalidate the bosonization approach.

The dimension of cos(2φ) is K. Consequently, as long as K < 2, it is always rele-
vant. The topological nature of the transition is given by which dimerization direction is



Section 4.4. The Double Critical Ising phase 139

preferred:

− gφ cos(2φ) ∝ gφ
∑

j

(−1)j(d†jdj+1 + d†j+1dj)

= igφ
∑

j,σ

(γA,j,σγB,j,σ − γB,j+1,σγA,j,σ).

The critical line is given by gφ = 0, which agrees well with the mean-field result (taking α
the lattice spacing to be 1).
When K > 2, the cosine term stops being relevant: a gapless phase opens around the
line gφ = 0. This phase is a c = 1 Luttinger Liquid in the language of the d fermions
and therefore an extension of the critical point at g = 0. Contrarily to Section 4.1.3, the
Luttinger parameter can be different from 1, as the wires are strongly coupled. While
there is a parallel with the opening of the phase in the mean field, the latter method can
only predict gapped phases.

The opening of this DCI phase can be understood in the following way. δµ and the
alternating part of g tend to form two types of contradictory dimerizations that there-
fore compensate themselves on the critical line. The constant part of g opposes the two
dimerization. When g is large enough, it prevents any of them from occurring.

4.4.3 Large g model

An interesting limit to study is the behavior of the DCI when g ≫ t,∆. Indeed, from
bosonization, one expects it to survive at infinite coupling, at the vicinity of the point
µ = ±g

2 . We focus in this section on µ = −g
2 + δµ, with δµ = O(t). At this point, there is

either zero or one fermion on each rung of the ladder. It is possible to derive an effective
model similar to the t − J model for Hubbard, but we will be interested in the model at
0th order in g.
We define dressed fermions c̃j,σ = cj,σ(1−nj,−σ), where nj,−σ is the number operator at site
j on the wire 2 if σ = 1 (and 1 if σ = 2). These dressed fermions follow a different algebra
than usual but allow for a simple writing of the Hamiltonian (and a direct implementation
for numerics):

{c̄i,σ, c̄j,σ′} = 0 {c̄i,σ, c̄†j,σ} = δi,j(1− nj,−σ)

{c̄i,σ, c̄†j,−σ} = δi,jc
†
j,−σcj,σ = δi,j c̄

†
j,−σ c̄j,σ

H = −δµ
∑

j,σ

c†j,σcj,σ − t
∑

j,σ

(

c̃†j+1,σ c̃j,σ + c̃†j,σ c̃j+1,σ

)

+ ∆
∑

j,σ

(

c̃†j,σ c̃
†
j+1,σ + c̃j+1,σ c̃j,σ

)

. (4.41)

The definition as dressed fermions comes naturally from the restriction to a three
dimensional subspace on each site. It is then just as natural to try to find an equivalent
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system replacing the fermions under constraints by spin one. It is possible to construct a
Jordan-Wigner like transformation that verifies the previous algebra, with Sx, Sy and Sz

the usual spin-1 operators.

c̄†j,↑ = SzjS
+
j e

iπ
∑

k<j
(Sz

k)
2

c̄†j,↓ = −SzjS−
j e

iπ
∑

k<j
(Sz

k)
2

. (4.42)

After some algebra, one has an alternative expression for the Hamiltonian:

H = −µ(Sz)
2 +

∆− t
2
{Sxj Sxj+1, S

z
jS

z
j+1}

− ∆ + t

2
{Syj S

y
j+1, S

z
jS

z
j+1} −

t

2
(Sxj S

x
j+1 + Syj S

y
j+1). (4.43)

Both models can be efficiently treated by numerical means, yet, in contrast to the
(solvable) spin-1 chain models[219–222], this Hamiltonian is not easily solvable and the
Poisson brackets do not simplify. We will therefore resort to a numerical analysis below
showing that the DCI phase becomes well visible in the phase diagram in the limit of large
interactions.

4.4.4 Numerical approach

Existence of the DCI phase

While bosonization affirms the existence of the phase for K > 2, there exist well-known
examples where there is a limiting value for K that is not trivially detectable but appears
when one exactly solves the model. A canonical example is, for example, the limit 1

2 <
K < 2 in the Hubbard model. With such limit, there would be no opening of the DCI
phase at large g. A first numerical approach is to work at fixed g and try to interpolate
the boundaries of our supplementary phase in the thermodynamic limit. To determine
the boundary of the phase, one can consider either the closing of the gaps or the peak
in central charge, as both neighboring phases are gapped. Nevertheless, the most visible
numerical marker of the phase will be the degeneracy of the ground state in the case of
PBC. In that case, the ground state is doubly degenerate, and the ground states have
different fermionic parities: (odd, even) and (even, odd). This spontaneous breakdown of
the symmetry between the wires is allowed, as we break only a discrete symmetry, similarly
to what happens in the two Mott phases. Mean-field computations allow to intuitively
understand this degeneracy. In analogous fermion models (for example the XXZ model),
such a degeneracy was observed for PBC when the length of the wire is a multiple of 4
sites[223, 224].

Figure 4.8 presents the results of such a scaling analysis for ∆ = t and g = 5t. The
width converges towards a finite value 0.06t.

As another element of answer, one can consider the limiting models for g → +∞ we
previously derived. Figure 4.9 presents the first four levels of the Hamiltonian 4.41 for
a range of renormalized chemical potential. The double degeneracy is symptomatic of
the DCI phase. The absence of a gap in this phase is also confirmed by both scaling
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5.1 Motivation and summary

5.1.1 Motivation

The realization and manipulation of Majorana bound states in topological superconduc-
tors has been the focus of numerous studies[16, 17]. One of the key problems is finding
clear experimental signatures of the existence of these elusive quasi-particles: one of the
very facts that make them interesting, their resilience, also makes them difficult to observe.
It was found that these Majorana fermions have characteristic transport properties.
Indeed, the presence of Majorana fermions at the boundary of a superconductor strongly
affects the transport of electrons through the substrate. Depending on what the super-
conductor is connected to, various effects have been observed. In the following, we briefly
review some of them, without trying or hoping to be exhaustive.
First, if one connects the topological superconductor to a trivial metal, the presence of
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the zero-energy fermionic mode due to the Majorana fermions allows for single-electron
hopping. It in particular leads to local-and cross-Andreev reflections[225, 226]. The local
Andreev reflection is a well-known effect of superconductivity: as only Cooper pairs can
propagate in the superconductor, when an incident electron from the metallic lead arrives
at the boundary, it can tunnel into the superconductor only by combining with another
electron. This leads to the appearance of a counter-propagating hole in the lead, and of
an additional Cooper pair in the superconductor. This Cooper pair is then dissipated
in the electric mass. Such an effect can occur in a normal superconductor, but the self-
adjoint character of the Majorana fermion leads to a perfect conduction. This leads to the
celebrated[25–33] quantized zero-bias peak, with a quantized conductance:

2e2

h
. (5.1)

This conductance is nonetheless not a smoking-gun for Majorana fermions, as other type of
sub-gap impurities may give similar results[52, 54–57]. As a general rule, not only the peak
should be observed, but also its resilience (or lack thereof) to perturbations[53, 58, 59].
The cross-Andreev reflexion appears when connecting two leads (with a voltage bias). The
previous hole is reflected in a different lead, which reveals the non-locality of the effec-
tive fermion built out of the Majorana fermions of the superconductor. In principle, it
is a more robust effect[225–228]. Noise measurement of the different currents carry also
information on the fractional nature of the Majorana fermions[229], and connections with
quantum dots have also been explored[44].
Secondly, the presence of Majorana fermions affects the Josephson effect[230]. The Joseph-
son effect simply consists in the following. Take two superconductors separated by a small
insulator, such that Cooper pairs may tunnel between the two. If their superconducting
phase is different, then we observe a current, directly related to the difference in phases:

I = I0 sin(χ1 − χ2), with χ1/2 the superconducting phases. (5.2)

In a ring geometry, this difference in phase would be induced by a magnetic flux inside
the ring. When varying the magnetic flux, we observe a periodicity of the current every
quanta of flux ~

2e . In the presence of Majorana fermions, single electron tunneling and
transport is allowed, leading to the so-called 4π Josephson effect[13, 23, 231–240], where
the period is now twice as large. This is simply due to the reduction of the charge of the
elementary carriers. The fractional Josephson effect is very resilient due to the Majorana
nature of the modes. Variants around this Josephson effect have been considered as probes
of the topological nature of the superconducting phase[241].
Theoretically, recent works have also suggested to observe non-Abelian statistics through
gate engineering [233, 242].
Combining charging effects with Majorana fermions, or Kondo physics with Majorana
fermions [243–245], has already been argued to lead to exotic transport dc [246–249] or ac
properties in quantum RC setting [250, 251]. In particular, the device described in Ref.
[246] is closely connected to the one we will study in this Chapter. Take a superconducting
island, where the total number of electrons is fixed (it is no longer connected to the mass).
Then, if one connects two electronic leads to the island close to two Majorana fermions
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and apply a small voltage bias, one observe a perfect single channel conductance between
the two:

e2

h
. (5.3)

The incoming electrons effectively transition through the zero-energy delocalized fermion
composed of the Majorana fermions which leads to a perfect transmission.

It is therefore natural to study the influence of Majorana fermions on the transport
properties of various mesoscopic structures. In this Chapter, we study a device proposed
in the seminal works of Refs. [20, 21]: a single floating (not grounded) Majorana island
connected to M ≥ 3 reservoir leads, modeled by Luttinger liquids, through separated
Majorana zero modes. It can be understood as a multichannel version of the device
proposed in Ref. [246]. The ”charge”, i.e. number of Cooper pairs plus number of
fermions in the zero energy Majorana manifold on the islands, can be varied through a
gate voltage coupled to the quantum box. Progress in building such mesoscopic boxes have
been made recently[252, 253]. In the non-degenerate case where transport occurs through a
single charge state, an unconventional Kondo[254] screening, named ”Topological Kondo
model”, has been theoretically explored [20, 21, 255–263] where the SO(M) impurity
”spin” is built from the Majorana excitations. Such boxes were proposed as building
blocks of a quantum computer[22].

For a normal island without Majorana fermion, Matveev formulated the charge Kondo
effect [264, 265] in which two degenerate charge states play the role of an effective spin
1/2 and hybridize with electrons either in contacted reservoirs or on the island, realizing
the multichannel Kondo model (M-CKM). Remarkably, in the two-channel Kondo model
emulated with two leads, an unscreened Majorana excitation appears at low energy [266–
270]. It is however an emergent particle and differs from the proximity-induced Majorana
fermions considered in this paper. Recently, the two-channel charge Kondo model has been
realized[271] in a GaAs setting with an unprecedented control over the model parameters.
Two-channel Kondo screening has also been observed with a real spin [272, 273]. In all
cases, it requires fine-tuning which makes its experimental characterization challenging.

The low-energy theory of the Topological Kondo model exhibits non-Fermi liquid ex-
ponents captured by a strong coupling quantum Brownian motion (QBM) picture. In this
analogy, the effective particle is pinned at the minima of a two-dimensional triangular
lattice connected by instantons. Simple expressions for the leading irrelevant operator di-
mensions can thus be derived in agreement with the more involved Conformal Field Theory
approach [274]. The conductance between the different leads is symmetric, fractionnalized
and resilient to perturbations.

In contrast with the topological Kondo effect, the multichannel Kondo model does not
admit a simple QBM description. The effective particle moves on a honeycomb lattice
and the low-energy fixed point is at intermediate (neither weak or strong) coupling which
excludes a full analytical QBM analysis. In addition, this infrared intermediate fixed point
is not robust and requires fine-tuning whereas the topological Kondo non-Fermi liquid
fixed point is at strong coupling and stable against perturbations such as asymmetric lead
couplings. This last point seems to favor the experimental observation of the more robust
topological Kondo effect over the standard multichannel Kondo model.
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where the mobility µ(K), shown in Fig. 5.2, varies between 0 and 1. We recover
the multichannel Kondo fixed point at K = 1/2, with the intermediate mobility
µ(1/2) = sin2[π/(M + 2)].

2. For more than four leads, we recover the critical behaviour of the topological Kondo
model at high mobility, which indicates that the pseudo-spin does not play a role if
the Majorana fermions are already strongly coupled to the leads. A quantum phase
transition thus occurs with maximum conductance on one side. The location of the
transition is perturbatively the same as away from charge degeneracy, improving
with the number of channels M . The difference at degeneracy is that the insulating
phase is replaced by a weakly transmitting phase similar to the continuous line of
fixed points observed for M = 3, 4, where the conductance decreases with M . This
weak coupling regime is in fact analytically connected to a special point at K = 1/2
where we recover exactly the multichannel Kondo model.

Our QBM analysis has identified the pseudo-spin, representing the two-state charge
degeneracy in the box, as the physical ingredient explaining the difference in behaviour
between the charge degenerate and non-degenerate cases. Detuning the system away from
charge degeneracy or increasing the number of channels weakens the pseudo-spin com-
ponent and thus extends topological Kondo physics in the phase diagram. Moreover,
the intermediate fixed point (I) is not robust against channel asymmetries, and there-
fore requires fine-tuning, in contrast with the strong coupling fixed point as discussed in
Ref. [277]. We note that the point K = KC(M) at which the critical line (I) turns over is
not known analytically and remains a conjecture.

5.2 Model and bosonization

5.2.1 Model

We consider the device introduced in Refs. [20, 21] and depicted in Figure 5.4 composed
of a floating mesoscopic superconductor onto which several topological semi-conducting
nanowires have been deposited. They become superconductor by proximity effect (see
Section 1.1 and 1.5.3 for examples of tight-binding models describing them). Driven in its
topologically non-trivial state, each nanowire hosts a pair of zero-energy Majorana bound
states located at its extremities. The superconducting island, also called topological Kondo
box, is tunnel-coupled via their Majorana bound states to M normal leads of spinless
conduction electrons.

The Hamiltonian describing this device is given by H = Hbox +Hleads +Ht. We focus
on low energies, well below the proximity gap induced by the superconducting island on
the nanowires, and keep only the state manifold generated by the Majorana operators.
The Hamiltonian for the box thus is simply given by its charging energy

Hbox = EC(N̂ − ng)2 (5.5)

with the renormalized backgate voltage ng. Formally, ng is the number of holes on the
gate. EC is the charging energy of the box. The number of charges on the box N̂ , is
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written as a sum
N̂ = 2N̂c + n̂,

where N̂c counts the number of Cooper pairs and n̂ the number of fermions in the zero-
energy Majorana manifold on the island. N̂c is conjugate to the superconducting phase χ
as expressed by the commutation relation [χ, 2N̂c] = i. Hence e−2iχ is an operator shifting
the number of Cooper pairs on the island by −1, i.e. it annihilates a Cooper pair. The
Majorana operators can be paired to define fermionic operators, dj = (γ2j−1 + iγ2j)/2. In

this fermionic basis, the Majorana occupation number is simply given by n̂ =
∑N/2

j=1 d
†
jdj ,

where N (even) is the total number of Majorana bound states on island (we consider
N > M , see the Section 5.2.2). For convenience in the notations but without loss of
generality, we assume that the first j = 1, . . . ,M Majorana are tunnel-coupled to the
leads. We are mainly interested in M ≥ 3, where the system is known to present non-
trivial Kondo properties.

The electrons in the mesoscopic box have been polarized due to Zeeman effect[23–
25, 30]. We then assume that the incoming electrons in the leads can penetrate in the
box only if they have the right spin polarization. This justifies the representation as semi-
infinite one-dimensional spinless fermions of the electrons in each lead. At low energy, the
electron field operator in the lead j is

ψj(x) = eikF xψR,j(x) + e−ikF xψL,j(x),

introducing right- and left-movers, where kF is the Fermi momentum. The Hamiltonian
has the form

Hleads = −ivF
M
∑

j=1

+∞
∫

0

dx
(

ψ†
R,j∂xψR,j − ψ†

L,j∂xψL,j

)

+Hint (5.6)

where vF is the Fermi velocity. Hint contains electron-electron intra-wire interactions
and will be included as a Luttinger parameter K in the bosonization procedure[129–131].
Finally, the coupling between the Majorana bound states and the leads are described by
the tunneling Hamiltonian (see Section 5.2.2 for a proper derivation)

Ht = −
M
∑

j=1

tje
−iχψ†

j(0)γj + h.c. (5.7)

tj are the tunneling amplitudes, all taken to be real and positive. The symbol (0) refers
to the position x = 0 of each wire coupled to the island.

5.2.2 Tunelling term and number of Majoranas

In this Section, we detail a rigorous derivation of the tunneling Hamiltonian (5.7). We
will prove that we can explicitly build the aforementioned tunneling operator as long as
we do not couple to all the Majorana fermions present in the box.

First we consider that each lead is coupled to the extremity of a different nanowire,
leading to the existence of at least 2M Majoranas. N (even) is the total number of
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Figure 5.4: Sketch of the Majorana island. A superconducting box (grey) is connected
through localized Majorana modes γj (red dots) to M = 6 normal leads (blue). The
Majorana modes are typically realized as boundary bound states of topological nanowires
deposited on the superconducting box (in black), and therefore come in pairs. In this pro-
posal, only half the Majoranas are coupled to the leads, but only one uncoupled Majorana
is required.

Majorana zero modes on the island. Let γL/R,j be the Majorana fermions at the extremity

of each nanowire, and dj = 1
2 (γL,j + iγR,j) the corresponding delocalized fermion. The

tunneling from the lead to the superconducting island can be written:

− tj(d†j + dje
2iχ)ψj(0) + h.c. (5.8)

While the first term is the usual hopping term of a single fermion, the second one describes
an alternative process where an electron of the lead and an electron on the nanowire
combine to create a Cooper pair in the bulk of the superconducting island.

We wish to define a new operator eiχ̃, verifying

[N̂ , eiχ̃] = eiχ̃, (5.9)

where N̂ = 2N̂C + n̂ is the total number of particles in the box, such that all tunneling
terms can be written as in Eq. 5.7, with γj a Majorana fermion that commutes with eiχ̃.
This operator increases the number of electrons in the box by 1 (and not by 2 as e2iχ

would). For the number of electrons to change by one, the parity of n̂ needs to change
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as there are necessary an even number of electrons in the condensate. There are an
infinite family of operators that invertibly shift this parity and we arbitrarily select the
first fermionic number d†1d1 to serve as our pivot. We then can build the operator eiχ̃

explicitly1.

eiχ̃ = (d†1 + d1e
2iχ)e

iπ
N/2
∑

j=2
d†jdj × Pleads (5.10)

= (d†1 − d1e2iχ)× Ptot (5.11)

where Pleads is the fermionic parity in all leads and Ptot the total fermionic parity. Their
only use is to ensure commutation with all fermionic operators in the leads. eiχ̃ is unitary
(in the limit where N̂c ≫ 1) and verifies the desired commutation relation (5.9). From its
expression, one checks that

eiχ̃e−2iχ = e−iχ̃ and (eiχ̃)2 = e2iχ. (5.12)

In addition,

[eiχ̃, dj ] = [eiχ̃, d†j ] = 0 ∀j > 1 (5.13)

From Eq. (5.13), the tunneling term can be rewritten as

− tjγjeiχ̃ψj(0) + h.c., (5.14)

where

γj = d†je
−iχ̃ + dje

iχ̃ ∀j > 1 (5.15)

γ1 = e
iπ

N/2
∑

j=2
d†jdj × Pleads. (5.16)

The γj operators all commute with N̂ (and with the total number of fermions in gen-
eral), and consequently totally decouple from the charge sector. They can essentially
be understood as involutions mapping the 2N/2−1-dimensional subspace of the states
∏N/2
j=1 d

†νj
j |0〉 , νj = 0/1, with even number of fermions on the one with an odd num-

ber of fermions, while modifying the number of Cooper pairs so that the total number of
electrons in the box is conserved. Finally, they are indeed Majorana fermions as they are
self-adjoint and verify the Clifford algebra

{γj , γk} = 2δj,k (5.17)

They also anti-commute with all fermionic operators in the leads.
Formally, this construction is required because the operator eiχ is not well-defined2.
Nonetheless, for all practical reasons, Eq. 5.12 allows us to identify eiχ̃ and eiχ in the
following. We then recover the Hamiltonian (5.7).

1The only requirement on d1 is that it is connected to only one lead
2Not all operators admit a square root, in particular non-diagonalisable ones as e2iχ.
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This proof can be generalized to the case where we attach leads at both extremities
of the wires, as long as N > M . To do so, we choose the following convention for the
tunneling term:

− t2j(d†j + e2iχdj)ψ2j(0)− t2j−1i(d
†
j − e2iχdj)ψ2j−1(0) + h.c. ∀j ≥ 1, (5.18)

with t1 = 0 (i.e. we choose that an uncoupled Majorana is in the lead 1). Then, the
expression for the operator eiχ̃ is unchanged.

For N = M , one can no longer find enough independent hermitian matrices in the
2M/2−1-dimensional subspace and the γ matrices no longer verify the Clifford algebra:
following the previous convention, γ1 and γ2 commute. We then cannot apply the reasoning
we derive in this Chapter, and the device will have a different response.

5.2.3 Bosonization and Majorana fermions

We take advantage of the one-dimensional character of lead electrons and apply Abelian
bosonization[129–131]. The Klein factors introduced in the bosonization procedure can be
combined with the impurity Majorana fermions to derive a purely bosonic Hamiltonian.
The ensuing technical analysis is considerably simplified.

Introducing a short-distance length α, we use the standard Abelian bosonization[131]
summarized in Appendix E (for semi-infinite leads) such that:

ψR/L,j =
UR/L,j√

2πα
e−i(±φj−θj), (5.19)

In this representation, the lead Hamiltonian (5.6) is written as

Hleads =
∑

j

∫ +∞

0
dx
vF
2π

(K(∂xθj)
2 +

1

K
(∂xφj)

2). (5.20)

=
∑

j

H0{φj , θj ,K} (5.21)

The Luttinger parameter accounts for the electron-electron interactions in the leads. If
they are repulsive, K < 1. The leads stop at x = 0 in the vicinity of the island, imposing
the Dirichlet boundary condition ψR,j(0) = ψL,j(0). Hence there is a single Klein factor
per lead, UR,j = UL,j , and φj(0) = 0. This can also be understood the following way:
instead of considering a wire only from −∞ to 0, we separate the left- and right-moving
modes and consider only a single chiral fermionic wire going from −∞ to ∞, with the
box/impurity at x = 0.

5.3 Quantum Brownian Motion and Topological Kondo model

Before studying the Topological Kondo box at charge degeneracy, we introduce the for-
malism we will use throughout this Chapter: the quantum brownian motion. The one-
dimensional problem of transport with an impurity is mapped to the movement of a
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quantum particle in a M − 1 dimensional lattice. It is an effective 0-dimensional (in
the many-body sense) problem that can be efficiently treated using the Renormalisation
Group. In a second step, we summarize the results obtained by Refs. [20, 21] as a reference
point for our study.

5.3.1 Quantum Brownian Motion

The quantum impurity model we derived in the previous section is a boundary one-
dimensional model. By integrating all modes with x > 0 except the operator at x = 0 in
the action formalism, it can be formulated as a zero-dimensional spatial problem with one
temporal dimension. The integration of these Gaussian bosonic modes[131] transforms
the Euclidean action into

S =
∑

ωm

∑

j

|ωm|K
2πβ

|θj(ωm)|2 +

∫ β

0
dτHP(τ) (5.22)

where β is the inverse temperature and all bosonic fields θj(ωm) are implicitly taken at
x = 0, and

HP = Hbox +Ht. (5.23)

We have introduced the bosonic Matsubara frequencies ωm over which the action is
summed. The first term in this expression ∼ |ωm| describes dissipation caused by electron-
hole excitations in the leads. As we will show in the following, the global mode (Φ,Θ),
Θ/Φ = 1√

M

∑

j θj/φj , separates from the other modes. In a general fashion, we introduce

the M − 1 dimensional bosonic modes ~r and ~k defined by (~r,Θ) = R~θ, (~k,Φ) = R~φ, R
being an orthogonal matrix.

Indeed, the transformation used to decouple the total mode 1√
M

∑

j
θj must satisfy

two criteria. First, it must be an orthogonal transformation to respect the commutation
relations of the bosonic fields. Second, it must generate the total mode within the new
coordinates. For M leads, a convenient matrix R that we shall use is

Ri,j = 0, ∀ i > j + 1 Ri,j =
1

√

i(i+ 1)
, ∀ i ≤ j < M (5.24)

Ri,i+1 =
−i

√

i(i+ 1)
, ∀i < M RM,i =

1√
M
, (5.25)

and (RM,i)1≤i≤M generates the global modes (Φ,Θ). While such matrices R lead to the
same result, this choice simplify some evaluations. We introduce the vectors ~wj defined
by:

~wj = (R1,j , ..., RM−1,j) (5.26)

Dropping the global mode, the action can be rewritten as

S =
∑

ωm

M−1
∑

j

|ωm|K
2πβ

|rj(ωm)|2 +

∫ β

0
dτHP(τ) (5.27)
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The action can be identified with the QBM model[275, 276] where a massless particle
subject to dissipation moves in a M − 1 dimensional space with coordinates ~r. The
potential HP seen by the particle depends not only on the coordinate ~r but also on the
charge configuration N̂ . Depending on the gate voltage, we shall restrict the charge
to a single value, in which case we have a scalar potential, or two degenerate values
represented by a ficticious spin attached to the particle. Following the seminal approaches
of Refs. [275, 276] with the dual action of instanton tunneling [279, 280], we shall use this
analogy to describe the low energy properties of the model in the strong coupling limit.

5.3.2 Far from charge degeneracy: the Topological Kondo limit

Before discussing the degenerate case, let us shortly review the topological Kondo model [20,
21, 255–263] and its QBM solution. This will introduce concepts and notations that will
be useful in the analysis of the degenerate case.

We begin by assuming that the charging energy is the dominant energy scale EC ≫
T, t2j/vF such that only one or two charge states are relevant for transport. We further
assume that ng is close to an integer value n and project the model onto the charge
quantized configuration N̂ = n. Given that Ht changes the number of electrons on the
island by ±1, the Schrieffer-Wolff expansion (see Appendix D.3) allows us to take into
account virtual processes through the neighbouring charge states n + 1 and n − 1. To
second order, we obtain the exchange term

HSW =

M,M
∑

j 6=k
λ̃j,kψ

†
k(0)ψj(0)γjγk, (5.28)

with λ̃j,k = t̃j t̃k

(

1
∆E(n+1) − 1

∆E(n−1)

)

and

∆E(n′) = EC(n′ − n)(n+ n′ − 2ng) (5.29)

the difference in energy Hbox between the charge value n′ and n. The Schrieffer-Wolff
transformation also produces small scattering potential terms ∼ ψ†

jψj that do not change
under renormalization group and can be discarded. We note that the tunneling amplitudes
in the Schrieffer-Wolff Hamiltonian (5.28) are in fact renormalized [247] by the RG process
between the short-time cutoff τc = α/vF and the charging energy EC where they increase
with the scaling exponent 1− 1/(2K) such that t̃j =

√

EC/τc tj(τc/EC)1−1/(2K).

The appellation Topological Kondo model can be understood from this expression[227].
One can build out of the M leads and M Majorana fermions two pseudo-spins:

Jleads,j,k =
i

2
(ψ†

jψk − ψ
†
kψj) and JMajorana,j,k = iγjγk for j 6= k, (5.30)

such that the Schrieffer-Wolff Hamiltonian can be rewritten in the isotropic limit as:

HSW = −λ ~Jleads. ~JMajorana. (5.31)

The symmetry group of the Majorana-based pseudo-spin differs slightly from the usual
SU(M): as Majorana fermions are real fields, it is limited to SO(M).
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In terms of our bosonized fields, the exchange term is reexpressed as

HSW =

M,M
∑

j 6=k
λj,kUkUjγjγke

i(θj−θk), (5.32)

with the notation θj ≡ θj(0) and λj,k =
λ̃j,k
πα . The product pj = iγjUj is the parity

operator associated with the Majorana fermions γj and Uj . The different pj commute
between themselves and with the Hamiltonian, have eigenvalues ±1, but do not conserve
the full parity operator. However, the M − 1 independent products pjpk = ±1 can be
diagonalized simultaneously[21, 257]. The sign of pjpk can be changed by shifting the
bosonic fields by π, we thus fix it arbitrarily to +1. With these conventions and choice of
gauge, the exchange term assumes a fully bosonic form

HSW = −
M,M
∑

j 6=k
λj,k cos(θj − θk), (5.33)

The global mode (Φ,Θ), Φ/Θ = 1√
M

∑

φj/θj , decouples from HSW as anticipated.

One can compute the poor man’s scaling equations for this problem[281], and the
renormalization group (RG) analysis is straightforward

dλj,k
dℓ

=

(

1− 1

K

)

λj,k + 2

M
∑

m 6=j,k
λj,mλm,k, (5.34)

with the flow parameter ℓ = ln τc. Appendix G.1.1 presents a detailed derivation of these
equations.3 Channel asymmetry between the different electron hopping terms λj,k is not
relevant and the RG flow points to a symmetric combination λj,k → λ(1−δj,k). Assuming
channel symmetry reduces the RG equation to

dλ

dℓ
=

(

1− 1

K

)

λ+ 2(M − 2)λ2, (5.35)

where three fixed points can be identified. Figure 5.5 represents a typical RG flow for λj,k.

First, the weak coupling fixed point with λ = 0, noted (O), corresponding to decoupled
leads between which no electric current flows, or, using the Kubo formula detailed in
Appendix G.2,

G
(O)
j,k = 0, (5.36)

where Gj,k is the conductance between the leads j and k. This is an attractive point for
K < 1.

For K ≥ 1, the growth of λ under renormalization suggests to study a strong coupling
limit λ = +∞ noted (S). In this limit, the fields θj are pinned to one of the minima of

3Note the difference with the RG equations of the previous Chapter: the linear term is now proportional
to 1− dg, dg the dimension of the operator, instead of 2− dg. The difference comes from the fact that it
is a boundary term, and therefore the cosine operators are only integrated over imaginary time.
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λ1

λ2

Figure 5.5: Example of normalized vector field induced by the RG equations 5.34. We
consider M = 3 leads, and assume λ1,2 = λ1,3 = λ1, and λ2,3 = λ2 for K = 0.8. The blue

point is the intermediate instable fixed point(I) for λ1 = λ2 = K−1−1
2(M−2) . The red line is

the fixed attractive stable line λ1 = λ2. There are two stable fixed points where all flows
converge: the red point (O) with λ1 = λ2 = 0 that corresponds to uncoupled leads, and
the Topological Kondo Model fixed point λ1 = λ2 = +∞.

the potential described by HSW . Using the Kubo formula, the conductance[275, 276] Gj,k
is now given by (Appendix G.2 for a derivation)

G
(S)
j,k =

2e2K

h

(

1

M
− δj,k

)

. (5.37)

In agreement with the physical picture of strong coupling, this is the maximum conduc-
tance one can reach with the constraint of charge conservation. It indeed corresponds to
a perfect symmetric transmission of incoming electrons. For M = 2, we recover that the
Majorana Kondo box maps onto a problem of resonant tunneling, where the conductance
is simply e2K

h for spinless fermions. The factor
(

1
M − δj,k

)

can be understood in the fol-
lowing way: due to the isometry of the fixed point, an electron arriving on the impurity
is scattered uniformly in all leads, imposing

G
(S)
j,k = G− δj,kG0, (5.38)

where G0 = 2e2K/h. Conservation of the current leads to
∑

j Gj,k = 0, that is to say
G0/G = M , giving us the aforementioned factor. We note that in practice the Luttinger
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liquid wires are ultimately in contact to Fermi liquid reservoirs which has the effect of
renormalizing [282, 283] the Luttinger parameter to K = 1 in Eq. (5.37).

A third fixed point, noted (I), is identified for K < 1 corresponding to the intermediate
coupling

λI =
K−1 − 1

2(M − 2)
. (5.39)

It is unstable against both weak (O) and strong coupling (S) fixed points. The perturbative
RG equation (5.35) justifies the existence of this intermediate unstable point only for K
close but below 1, such that λI remains small.

To check the stability of (S), one can perform an instanton analysis. Given the simple
structure of the potential, the more relevant/less irrelevant operators at (S) are operators
translating one minimum of the potential described by HSW to one of its neighbours.
The variable Θ does not appear in HSW and therefore has a free evolution reflecting
charge quantization [259] on the island. For clarity, we henceforth set Θ = 0. In terms
of the variable ~r, the minima of the potential described by HSW form a (hyper)triangular
lattice, and we can explicitly construct the operators connecting them. For simplicity, we
write these minima in the θj basis. A minimum, R0, and all its nearest-neighbours Rk,
(k = 1...M) are given by

R0 : θj = 0 ∀j

Rk : θk =
2π(M − 1)

M
, θj = −2π

M
∀j 6= k

(5.40)

In a semi-classical analysis, quantum fluctuations around these minima are neglected and
the only low energy processes are instanton solutions connecting them. Introducing the
variable φk (the charge in lead k) canonically conjugated to θk/π,

[φj , θk] = iπδj,k, (5.41)

it is then possible to explicitly construct the instanton operators. The shift from R0 to
Rk is thus realized by the translation operator

Ôk = exp

[

2i

(

φk −
1√
M

Φ

)]

(5.42)

where Φ = 1√
M

∑

k φk is the total charge field. Identifying φk with the field φk(0), we

obtain the following dual action describing the vicinity of (S)

S =
∑

ωm

∑

j

|ωm|
2πKβ

|φj(ωm)|2 − v
∫ β

0
dτ
∑

k

Ôk(τ), (5.43)

where v describes weak backscattering of electrons coming from reservoirs.

The stability of (S) is controlled by the dimension of the operators Ôk. Using the free
part of the action (5.43), one obtains the dimension 2K(M − 1)/M . This result can also
be understood in the QBM picture [275, 276] where the product between the dimension
of the original perturbation ei(θj−θk) (here 1/K) and the leading irrelevant operator at
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strong coupling is fixed to 2(M − 1)/M for a hypertriangular lattice in M − 1 dimension.
We therefore find that (S) is stable for K > M

2(M−1) , and unstable towards (O) for smaller

values of K. Computing the one-loop RG equation, one obtains [276] that the unstable
fixed point (I) departs from (S) for K > M

2(M−1) and disappears below.
The whole phase diagram for the topological Kondo model is summarized in Fig. 5.1.

For M
2(M−1) < K < 1, a first order transition between zero and maximum conductance is

predicted [20] to occur as the coupling to the reservoir is varied. The Kondo temperature
is evaluated from the RG equation (5.35),

TK ≃ Ece−
1

2(M−2)νλ , (5.44)

where ν is the density of states in the wires. TK sets the crossover energy scale between
weak and strong coupling.

5.4 Charge degeneracy point: an exact mapping to the mul-

tichannel Kondo Model

We now turn to the charge degenerate case where the gate voltage is fixed to a half-integer
value ng = n + 1/2. The two charge states n and n + 1 are energetically equivalent and
define a low energy sector akin to a spin-1/2 Hilbert space. Further assuming a large
charging energy EC ≫ T, t2j/vF , we project to this subspace and rewrite the full bosonized
Hamiltonian as

H = Hleads −
M
∑

j=1

2tj√
2πα

(

τ−Ujγj,re
−iθj + h.c.

)

, (5.45)

with the pseudo-spin operator τ−|n + 1〉 = |n〉. Similarly to Eq. 5.28, the hopping terms
are renormalized when reducing the charge sector to an effective pseudo-spin. In terms of

the original bare values of the tunneling, they can be reexpressed as: t̃j ≈ tj (τc/Ec)
1− 1

2K .
In the following, for simplicity, we drop the tilde on tj .

We show in the following that this Hamiltonian can be exactly mapped onto the M-
CKM. First, one can rescale the bosonic fields in order to obtain the correct dimension
for the operators coupled to the pseudo-spin, namely

K̃ = 2K, θ̃j =
θj√

2
, φ̃j =

√
2φj (5.46)

Second, we use the trick presented in the previous section to fuse the Majorana fermions
and the Klein factors. We introduce the operators pj = iγjUj and fix them to 1. Shifting
the θj variables by π/2 to absorb an i factor, we obtain the bosonized form

H = Hleads{φ̃, θ̃, K̃} −
M
∑

j=1

(

J⊥,j
2
τ+e

i
√
2θ̃j + h.c

)

+
vF√

2
Jzτz

M
∑

j=1

∂xφ̃j , (5.47)

where J⊥,j =
4tj√
2πα

and Jz = 0, corresponding to the spin sector of the anisotropic M-

CKM (the charge mode decouples from the impurity spin). Alternatively, contact with
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the M-CKM can be made from Eq. (5.45) with the analogy

Uj,↑ = Uj , Uj,↓ = γj . (5.48)

We note that the Luttinger parameter K̃ in Eq. (5.47) characterizes the spin sector and
requires in the M-CKM the SU(2) spin symmetry to be broken in the leads to be different
from one. By constrast, here, no such symmetry-breaking is necessary as Eq. (5.47)
emerges as an effective model with K̃ 6= 1 as a general case. For non-interacting leads for
example, where K = 1, one has K̃ = 2.

The effective Kondo model (5.47) is strongly anisotropic since Jz = 0. A finite Jz is
nevertheless generated in the RG process. We consider for simplicity the channel-isotropic
case J⊥,j = J⊥, and derive the corresponding RG equations following Anderson, Yuval
and Hamman [284] (see Appendix G.1.2) extended to the interacting case K̃ 6= 1,

dJz
dℓ

= J2
⊥

(

1

K̃
− M

2
Jz

)

, (5.49)

dJ⊥
dℓ

=

(

1− 1

K̃

)

J⊥ + JzJ⊥

(

1− MK̃

4
Jz

)

. (5.50)

These equations are perturbative in J⊥ and exact in Jz. Studying these equations, one sees
that the longitudinal coupling Jz is attracted by the fixed point value Jz = 2

MK̃
at which

Jz ceases to be generated and the RG evolution of J⊥ decouples. An example of such RG
flow is given in Figure 5.6. It corresponds in fact to the standard Emery-Kivelson[266] (or
Toulouse[285]) limit in the M-CKM [275, 276, 286]. It is reached by the RG flow even if
the initial value of Jz is zero. Therefore, it makes sense to start with the model (5.47)
directly at Jz = 2

MK̃
and perform the unitary transformation

U = exp

(

i
K̃Jz
√
M√

2
Θ̃(0)τz

)

, (5.51)

to eliminate the Jz term from Eq. (5.47). The resulting Hamiltonian is

Û †HÛ = Hleads{φ, θ,K} −
M
∑

j=1

(

J⊥,j
2
τ+e

i(θj− 1√
M

Θ)
+ h.c

)

(5.52)

when written again in terms of the old fields, see Eq. (5.46). The use of the unitary
transformation is not only for mathematical convenience but also possesses a physical sig-
nificance. The model (5.52) is now invariant under a global shift of all fields θj which
implies that the total mode Θ = 1√

M

∑

j θj decouples as in the previous section. Although

the present degenerate case does not satisfy a strict charge quantization, the flow of in-
coming electrons must exactly compensate the flow of outgoing electrons since there can
be no charge accumulation in the floating quantum box. As a result, current conservation
also holds as reflected by the free mode Θ.
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Jz

J⊥

Jz

J⊥

Figure 5.6: Normalized RG flow for the M-CKM model at weak coupling based on equa-
tions 5.49 and 5.50. In both graphs, we consider M = 3 leads. The unstable point (O)
at J⊥ = Jz = 0, in blue, is always there. In red, the fixed attractive line Jz = 2

MK̃
.

Depending on the value pf K̃, once the red line is reached, J⊥ is renormalized to either 0
or ∞. Left: K̃ = 0.8. Then J⊥ has an effective dimension of 5

6 and is therefore relevant

and renormalized to +∞/ Right: K̃ = 0.5. J⊥ has an effective dimension 4
3 > 1 and is

therefore irrelevant and renormalized to 0.

5.5 Phase diagram at charge degeneracy

The pertubation operators in Eq. (5.52) have dimension M−1
2MK after the unitary transfor-

mation. Hence, for K < M−1
2M , the system flows towards the uncoupled fixed point (O),

with J⊥ = 0, and the conductance is zero as in Eq. (5.36). For K > M−1
2M , (O) is unsta-

ble and the RG equations (5.49), (5.50) must be supplemented by the next order in J⊥.
Eq. (5.49) is unchanged whereas Eq. (5.50) becomes

dJ⊥
dℓ

=

(

1− 1

2K

)

J⊥ + JzJ⊥

(

1− MK

2
Jz

)

− CM (K)J3
⊥, (5.53)

where CM (K) = O(1) depends on K and the number of channels M . The coefficient
C∗
M = CM [(M − 1)/(2M)] can be evaluated at the threshold for the instability of the

uncoupled point (O) and shown to be always positive [276], demonstrating an intermediate
RG-stable fixed point at JIz = 1/(MK) and

JI⊥ =

√

K − M−1
2M

KC∗
M

, (5.54)

valid for K close to M−1
2M . Figure 5.7 gives an example of such RG flow. At the fixed point

(I), the conductance is non-vanishing, ∝ (JI⊥)2 for small JI⊥. It increases continuously with
the Luttinger parameter K. The way (I) connects with the strong coupling fixed point
(O) depends on the value of M and shall be discussed below where the strong coupling
limit is investigated. At the specific point where K = 1/2, then K̃ = 1 and Eq. (5.52)



164 Chapter 5. Transport in topological systems

represents exactly the non-interacting M-CKM. From conformal theory[274, 287–289], it
is known that the conductance is given in that case by

Gj,k =
2e2K

h
sin2(

π

M + 2
)

(

1

M
− δj,k

)

. (5.55)

The conductance for other values of K is not known analytically.

Jz

J⊥

Figure 5.7: RG flow for the M-CKM model at weak coupling based on Eq. 5.53. We take
M = 3, K̃ = 0.8, and fix CM = 0.15 for convenience of representation. The unstable point
(O) and the fixed line for Jz are present, but the additional stable fixed point (I), in red,
appears due to the third order term.

Let us study the model at strong coupling. In Ref. [276], Eq. (5.52) was argued
to be the dual model of a particle moving in a hyperhoneycomb lattice formed by two
interpenetrating triangular lattices between which the operators τ± alternate. We discuss
here directly the strong coupling limit, noted (0), J⊥,j = +∞ of Eq. (5.52) and construct
explicitely its dual action by taking into account the pseudo-spin wavefunction. In the
spirit of a semi-classical approach, we minimize Eq. (5.52) (without the lead term) with
respect to the fields θj and the spin configuration, whereas the total field Θ factorizes (set
to zero for simplicity) and is free. In the channel-isotropic case, J⊥,j = J⊥, the energy to
minimize has the form

− J⊥
(

0 S
S∗ 0

)

S =
∑

j

e
i(θj− 1√

M
Θ)

(5.56)
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Interestingly, the minima are located at exactly the same field θj positions as in the
topological Kondo model, R0 and its neighbours Rk as given in Eq. (5.40), forming a
triangular lattice in a M − 1 dimensional space orthogonal to the total mode (1, 1, . . . , 1)
direction. But the problem is nevertheless different since there is an additional pseudo-
spin degree of freedom, and each minimum is characterized by a certain spin wavefunction,
(|+〉+|−〉) for R0, and (e−iπ/M |+〉+eiπ/M |−〉) for Rk. The conductance at strong coupling
is still given by Eq. (5.37).

Technically, moving from one minimum to its neighbour rotates the spin direction by
an angle 2π/M around the z axis. Hence, performing a loop starting and ending at R0

exhausting the different neighbour directions, one obtains a rotation of 2π coming with an
overall phase eiπ = −1 resulting from the pseudo-spin Berry phase 4. This sign is in fact
responsible for the change of sign of the second order term in the RG flow for M = 3 (and
the third order term for M = 4), leading to differing phase diagrams for the triangular
and honeycomb lattices. The dual action, representing the instanton solutions connecting
the minima of Eq. (5.52), is constructed in the same way as in Sec. 5.3.2. The leading
irrelevant operators at low energy are thus given by the translations

Ô
(h)
k = exp

[

2i

(

φk −
1√
M

Φ

)]

exp

(

− iπ
M
τz

)

, (5.57)

where the second part accounts for the spin rotation between two consecutives minima,
e.g. R0 and Rk. Its dimension is the same as Ôk in Eq. (5.42), 2K(M − 1)/M . We note

that the minima of the potential Hdual = −v∑j Ô
(h)
k form a hyperhoneycomb lattice for

a given spin projection τz = +1 or −1. The RG analysis of the model at strong coupling,
or v ≪ 1, depends on the dimension M [276]. For M = 3, the RG equation is

dv

dℓ
= (1− 4K/3)v − 2v2 (5.58)

where the last term sign has its origin in the pseudo-spin Berry phase as discussed in the
appendix G.1.2. As a result, the intermediate coupling fixed point (I) occurs for K < 3/4,

with v(I) = 1−4K/3
2 valid for 1− 4K/3≪ 1, and is stable. Its is continuously connected to

the intermediate fixed point (I) found at weak coupling. For M = 4, one obtains

dv

dℓ
= (1− 3K/2)v − (A4 −B4)v

3, A4 > B4 (5.59)

leading to (I) for K < 2/3 and v(I) =
√

1−3K/2
A4−B4

. In both situations, M = 3 and 4,

the phase diagram has the form shown in the upper panel of Fig. 5.2 and the stable
intermediate point (I) connects the weak and strong coupling fixed points as K is varied.

This is in contrast with M ≥ 5 where the RG equation takes the form

dv

dℓ
=

(

1− 2(M − 1)K

M

)

v +BMv
3, (5.60)

4The −1 factor was also interpreted as an effective and alternating ±π flux threading each plaquette of
the triangular lattice [276].
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with BM > 0. The intermediate fixed point exists for K > 2(M − 1)/M and is unstable.
This suggests the phase diagram represented in the lower panel of Fig. 5.2. Comparing
with the non-degenerate case, or topological Kondo model, one observes that exactly the
same RG equation (5.60) holds [276]. The first reason is that the fields θj are pinned at the
same positions irrespective of charge degeneracy. Moreover, the spin wavefunction, and

the corresponding Berry phase, plays a role for a product of at least M − 1 Ô
(0)
k operators

such that perturbation theory differs only for orders above M − 2. The result is that the
critical line (I) is the same at high mobility in both non-degenerate and degenerate cases
for sufficiently large M , i.e. the departures of the dotted lines in Figure 5.1 and Figure 5.2
(lower panel) from strong coupling (mobility µ = 1) are identical. The two curves start to
differ at larger v (or smaller mobility) where the line (I) at charge degeneracy is below the
topological Kondo case 5. At even smaller mobility, the effect of the pseudo-spin Berry
phase becomes prominent: the line (I) eventually turns over and connects with the stable
fixed-point line (I) originating from weak coupling and containing the multichannel Kondo
fixed point at K = 1/2, see Figure 5.2 (lower panel).

The spin wavefunction also provides a physical picture to understand the effect of a
small charge degeneracy δ ≪ 1, with

ng = n+ 1/2 + δ. (5.61)

For example, at strong coupling, the semi-classical energy to minimize is

− J⊥
(

2δEC S
S∗ −2δEC

)

, (5.62)

with eigenvalues ±
√

4(δEC)2 + |S|2. The fields θj are thus pinned at the same positions
R0,k but the spin wavefunction is polarized by δ 6= 0 along the z direction, thereby re-
ducing the impact of the Berry phase. Since δ is relevant on the (I) critical line, as we
know from the M-CKM at K = 1/2, this implies that the system flows at low energy
towards the non-degenerate case, or Figure 5.1. At finite energy (temperature), we expect
a continuous crossover for the (I) critical line between the two limiting cases represented
by Figure 5.1 and Figure 5.2.

Finally, from Eq. 5.53, one can evaluate the one-loop Kondo temperature:

TK ≈ νt
2K

2K−1 , (5.63)

where ν is the density of states and t is the typical bare value of the tunneling term. For
1
2 < K < Kc, it corresponds to the Kondo temperature of the MCKM intermediate fixed
point, while for K > Kc, it characterizes the strong coupling limit. When the leads are
non-interacting (K = 1), we obtain the very physical expression: TK ≈ νt2, characteristic
of a resonant tunneling transport through the superconducting island, in agreement with
Ref. [277].

Up to know we only considered flavor isotropic tunneling, i.e. tj = t ∀j. While flavor
anisotropy was irrelevant in the Topological Kondo model, it is no longer the case at charge

5Nothing prevents the curve at charge degeneracy to cross above the topological Kondo line (non-
degenerate case) for even lower mobility before turning over.
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degeneracy[290, 291] where we are dealing with an intermediate fixed point. Indeed, the
critical model goes from M-CKM to M’-CKM, where M’ is the number of channels with
the largest value of J⊥,j (generally M ′ = 1). Consequently, observing the fractional non-
trivial conductance of M-CKM will require fine-tuning [292] and be experimentally more
challenging than far from charge degeneracy.
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Conclusion

We have studied in this thesis various properties of topological materials, from entangle-
ment markers in correlation functions to their transport properties.
First, we have seen that in one- and two-dimensional non-interacting topological models,
the bipartite fluctuations in typical critical phases are characterized by universal scaling
laws that mimic those of the von Neumann entropy. Due to the absence of charge conser-
vation, an additional volume law is present, with non-analyticities that mark the different
phase transitions. At the critical point, logarithmic terms arise, with a universal coeffi-
cient, independent of any microscopic parameter. In one dimension, it is truly invariant,
and its value and sign show the gap inversion that occurs at a topological phase transi-
tion. In two dimensions, we were able to extract its dependency on the geometry of the
considered subsystem, and we have shown that one can directly recover the winding num-
ber of the different Dirac cones, and probe the topological nature of the transition. The
same quantification can be extracted directly from the connected correlation functions or
from the mutual fluctuations (the analogous of the mutual information). Here, we chose
to limit ourselves to the study of the BDI and D classes, but these observations can be
straightforwardly generalized to the other non-trivial classes. It is for example particularly
relevant for the DIII class of Hamiltonian whose gapless phases are topologically protected
in two dimensions[41].
Still, many questions on the bipartite fluctuations, with or without charge conservation,
are left open. Those quantifications and universalities are possible due to the fact that
the Fermi surface is a zero-dimensional manifold. A similar treatment may therefore
be directly applied to three-dimensional gapless phases, and in particular to Weyl semi-
metals[293, 294]. These materials are characterized by a point-like Fermi surface, with
chiral nodes, i.e. the direct equivalent of Dirac cones in three dimensions. It would be in-
teresting to check whether one can directly probe the chiral charge associated to each node
in the same way we are able to probe the winding number of the Dirac cones. It would be
a direct, unambiguous, measurement of the topological nature of the Weyl semi-metals.
The effect of Fermi arcs on the boundaries of the materials would also be interesting, and
perhaps an even more exciting prospect would be the case of the superconducting Weyl
semi-metals with Majorana nodes and arcs[295]. On a more theoretical side, we have
observed a very good agreement between the scaling of the fluctuations and the entropy.
Yet, the usual bounds on mutual information obtained from mutual fluctuations are far
from exhaustion: it would be interesting to see whether one can build better bounds in
the specific case of the charge fluctuations. That would allow for a direct measurement of
entanglement in experiments. Finally, it would also be particularly interesting to general-
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ize our results to the typical critical points that separate trivial phases from parafermionic
phases[296, 297]. The change in critical model should also be seen directly in the fluctua-
tions, which then may lead to a way of directly measuring these exotic quasi-particles.
In a second step, we have included interactions in our description. The interplay of topol-
ogy and interactions leads to rich physics. We have studied the influence of interactions on
a typical topological superconductor and shown that only the coefficient of the logarithmic
contribution to the fluctuations was renormalized, while its sign, and the fact that there is
a logarithmic term at the phase transition between trivial and polarized phase survive. We
then have introduced and discussed a model of two topological superconductors coupled
by Coulomb interactions. We have shown that, while the topological phase survives the
presence of weak interactions, new phases may open. In particular, we have seen that
Mott phases appear close to half-filling, with unusual orbital currents that spontaneously
break the time reversal symmetry, despite the absence of direct tunnelling from a wire to
the other. We have also shown the opening of an exotic gapless phase, a direct extension
from the standard topological critical point, a rare feature in these models. In a general
fashion, it would be interesting to get a systematic understanding of the interplay of large
interactions and topological superconductivity: we know for example that orbital currents
are not an unusual occurrence when mixing them. Another possible extension, in relation
with the bipartite fluctuations is simply the generalisation to arbitrary systems, and in
particular, the question whether one can truly recover universality of the logarithmic co-
efficient from more concrete observables.
Finally, we have studied an hetero-structure composed of a floating superconducting island
carrying Majorana fermions as impurities, connected to several leads. We have computed
its transport properties and shown that one recovers the physics of the standard multichan-
nel Kondo model, yet at an initially very interacting point. The conductance then takes a
symmetric fractionalized form. We have used the Quantum Brownian Motion formalism,
that allows to tackle both weak- and strong-coupling limits. The existence (and a descrip-
tion) of a critical interaction strength at which the box undergoes a first-order transition
between the multichannel Kondo fixed point and the strong coupling fixed point for large
number of leads is an interesting still-open question, where more numerics methods may
help. Additionally, as this model is thought to be a potential building block for a quantum
computer, we are currently studying the physics of several such boxes coupled together,
which makes very interesting links with still open problems such as the multi-impurity,
multichannel Kondo model. Variants of this box replacing the Majorana fermions by
parafermions or other anyons would also be particularly interesting to investigate[298].
The effect of the Majorana fermions can be understood as a change in statistics compared
to the standard transport problem. Parafermions and anyons would then strongly affect
the transport properties of the box.

This thesis now reaches its conclusion, and my final words will be a simple

Thank you.
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Résumé en français

Introduction

Classifier les différentes phases de la matière est l’un des principaux objectifs de la physique.
Que cela soit dans des exemples de la vie réelle tels que l’évaporation ou la fusion de l’eau
ou pour les études théoriques les plus abstraites de matériaux exotiques, les propriétés
de ces différentes phases et des transitions de l’une à l’autre revêtent une importance
fondamentale pour comprendre notre monde. La physique de la matière condensée se
concentre sur l’étude des propriétés des liquides et des solides. Celles-ci ont, la plupart du
temps, comme origine le comportement collectif des nombreux atomes et électrons qui les
composent. Ce comportement est émergent : les propriétés du système macroscopique ne
peuvent pas toutes être comprises à partir de la description des particules individuelles.
Le paradigme historique pour décrire les phases et les transitions de phase, pour les
systèmes quantiques et classiques, a été formulé par Ginzburg et Landau. Au lieu de
partir d’une parfaite description microscopique, et donc d’un modèle insoluble, il repose
sur la construction de théories effectives simples. Les symétries du système, c’est-à-dire les
transformations qui doivent le laisser invariant, limitent les termes qui peuvent apparâıtre
dans le modèle. On peut alors définir une observable physique locale, le paramètre d’ordre,
dont la valeur change et devient non nulle dans les états fondamentaux (les états de plus
basse énergie) ou les états thermiques à la transition de phase, alors que certaines de ces
symétries imposent que sa moyenne doit être nulle. Ce phénomène est appelé brisure
spontanée de symétrie, car certains états semblent violer les symétries du système. Bien
sûr, les symétries sont toujours respectées, mais le niveau auquel elles sont appliquées
change. Dans la phase désordonnée, les symétries sont appliquées directement sur les
états et le paramètre d’ordre est nul pour tous les états fondamentaux, tandis que dans
la phase ordonnée, elles sont maintenant appliquées sur l’espace (vectoriel) des états: le
paramètre d’ordre peut être différent de zéro dans certains états, mais s’annulera toujours
en moyenne. Cela conduit habituellement à un changement de la dégénérescence (nom-
bre) d’états fondamentaux. L’exemple le plus simple est le suivant: prenez une quantité
réelle ou complexe telle que la polarisation de spin ou la phase supraconductrice φ et une
énergie potentielle qui ne dépend que de la norme de celle-ci : V (φ) = r|φ|2 + |φ|4. Le
système possède certaines symétries: V est invariant sous la transformation φ → −φ si
φ est réel (resp. φ → eiθφ si φ est complexe). On parle d’une symétrie Z2 (resp. U(1)),
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d’après leur représentation de groupe. En ignorant toute dynamique, minimiser l’énergie
du système revient à minimiser V . Si r est positif, le minimum de V est atteint pour
φ = 0, point laissé invariant par les transformations susmentionnées: il correspond à une

phase désordonnée. À l’inverse, si r est négatif, le minimum est atteint pour |φ| =
√

|r|
2 et

maintenant deux fois (resp. infiniment) dégénéré. Cela correspond à une phase ordonnée:
les symétries ne laissent pas les états invariants, mais transforment un état en un autre.
La description de Landau des transitions de phase a eu un incroyable succès dans une
grande variété de modèles et de matériaux, et a permis d’expliquer de nombreuses tran-
sitions de phase différentes. Pourtant, entre 1971 et 1973, Berezinskii [1, 2], Kosterlitz et
Thouless [3, 4] ont décrit une nouvelle transition de phase qui ne pouvait être expliquée
par une brisure de symétrie, dans un aimant classique bidimensionnel . Un tel aimant peut
être décrit de manière minimale par un réseau bidimensionnel de spins ferromagnétiques
(porté par les atomes) qui interagissent entre eux et tendent à s’aligner. À température
nulle, les spins sont parfaitement alignés, mais lorsque la température augmente, des exci-
tations, consistant en paires de vortex et anti-vortex commencent à apparâıtre et forment
un gaz dilué. À une température critique, une transition de phase se produit, alors que
le célèbre théorème de Mermin-Wagner empêche toute brisure des symétries continues
pertinentes dans ce modèle. Les paires se divisent et des vortex isolés apparaissent. Ces
travaux, récompensé par le prix Nobel en 2016, partagé avec F. Haldane, sont le premier
exemple d’une transition de phase topologique et d’une phase où les défauts topologiques
(les vortex) jouent un rôle fondamental.
Les Effets Hall Quantiques Entier et Fractionnaire (I / FQHE), découverts en 1980 [5] et
1982 [6] sont des exemples peut-être encore plus connus de phases topologiques. Ils appa-
raissent lorsque l’on confine un gaz d’électrons en deux dimensions, à basse température,
et en présence d’un fort champ magnétique normal au plan. Lorsque l’on applique une
tension à travers le plan, un courant perpendiculaire est généré. Si l’on varie l’intensité du
champ magnétique, on peut mesurer des plateaux parfaits de la conductivité transversale
de Hall, correspondant à des annulations de la conductivité longitudinale. Sur chaque
plateau, la conductivité est égale au quantum de conductance e2

h multiplié par un entier
(un rationnel pour le FQHE) avec une remarquable précision de 10−9, bien au-delà de ce
que les impuretés et les défauts permettraient normalement. Cette conductance est main-
tenant utilisée en métrologie pour définir la constante hyperfine. Le courant est purement
porté par les bords de l’échantillon tandis que le coeur du système reste isolant. Aucune
observable physique locale ne peut différencier, dans le coeur du système, ces isolants de
Hall d’un isolant atomique (où les électrons sont simplement localisés sur leurs atomes).
Néanmoins, cette quantification de la conductance a été directement liée par Thouless
et al [7] aux propriétés des bandes électroniques dans le coeur du système. Le terme quan-
tifié qui apparâıt dans la conductance correspond à un invariant topologique global de la
structure de bandes (ou de la fonction d’onde à n corps [8]), qui peut être utilisé pour
classifier ces phases (et s’annule dans un isolant atomique). Par définition, cet invariant
est largement indépendant des détails microscopiques du système et très résistant à la
présence de défauts et d’impuretés, comme cela a été observé expérimentalement. Dans
le cas de l’IQHE, l’invariant topologique, appelé nombre de Chern, correspond également
au nombre de modes de bord transportant le courant électrique. Un isolant atomique
ordinaire n’a pas de modes de bord. Cette correspondance sous-jacente entre le coeur du
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système et ses bords est à la base de l’étude des matériaux topologiques.
La découverte de ces premiers isolants topologiques a mené à une révolution de la matière
condensée. En quelques décennies, de plus en plus de matériaux topologiques différents
ont été découverts. Avec la réalisation que des phases similaires à l’IQHE pouvaient être
créées en l’absence de champs magnétiques forts [9], ou la construction de supraconduc-
teurs topologiques [10], la topologie est devenue omniprésente en physique de la matière
condensée théorique (et expérimentale) . Toutes les phases topologiques fermioniques sans
interactions ont été classifiées selon la dimension (spatiale) du système et leurs symétries
[11, 12]. La classification des phases topologiques en interaction est, quant à elle, un
problème beaucoup plus complexe. Le FQHE a été le premier exemple d’une phase où
les interactions permettent l’émergence de nouvelles quasi-particules exotiques. Ces exci-
tations se comportent comme des fractions d’électrons appelées anyons. Leur charge est
une fraction de la charge électronique, et leurs statistiques d’échange ne sont ni celles d’un
boson ni celle d’un fermion. Cette fractionnalisation conduit à une dégénérescence robuste
de l’état fondamental, qui dépend uniquement du genre (de sa topologie) du système, et
non des détails microscopiques.
Au cours de la dernière décennie, le poids grandissant de l’information quantique, et
surtout la course pour la réalisation d’un ordinateur et de simulateurs quantiques ont en-
trainé un surcroit d’intérêt pour ces états de bord ou excitations fractionnalisés. Comme
exemple typique, dans les supraconducteurs topologiques (avec ou sans interactions), des
fermions de Majorana d’énergie nulle apparaissent sur les bords du système ou au cœur
des vortex (excitations) [10, 13]. Ces fermions de Majorana ont d’abord été proposés par
Ettore Majorana [14] en 1937 comme solutions particulières de l’équation de Dirac: des
particules qui seraient leurs propres antiparticules. Initialement pensés pour la physique
des hautes énergies, c’est la matière condensée qui a finalement vu leur première appari-
tion. L’obstacle principal à la construction d’un ordinateur quantique est la décohérence
: l’environnement tend à se coupler aux degrés de liberté quantiques d’un système.
L’information quantique est ensuite dissipée dans un nombre macroscopique de degrés de
liberté, laissant le système dans un état effectivement classique. La nature topologique et
fractionnaire des fermions de Majorana limiterait fortement ces couplages et en principe
les rendrait idéals pour réaliser des bits quantiques [15]: comme aucune observable lo-
cale ne peut distinguer entre des états différant uniquement par la présence ou l’absence
d’une telle quasi-particule, l’environnement ne peut pas être fortement couplé au système.
Plusieurs structures ont été proposées permettant de réaliser des ensembles complets de
portes logiques, ainsi que des mémoires quantiques, en utilisant des fils supraconduc-
teurs avec des fermions de Majorana à chaque extrémité [16–19]. Obtenir une preuve
expérimentale directe et décisive de l’existence de ces fermions de Majorana reste cepen-
dant un problème essentiellement ouvert.

Dans cette thèse

Dans cette thèse, nous étudions d’un point de vue théorique différents aspects de la matière
topologique: la criticalité et les marqueurs des transitions de phase topologiques dans les
modèles génériques unidimensionnels, puis bidimensionnels, l’effet des interactions fortes
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dans les supraconducteurs topologiques et le transport électronique médié par les fermions
de Majorana.

Ce manuscrit est organisé comme suit. Les chapitres 1 et 2 sont des chapitres in-
troductifs sur la topologie et l’intrication en physique de la matière condensée. Dans le
chapitre 1, après une description détaillée de la châıne de Kitaev [13] que nous utilis-
erons comme exemple tout au long de cette thèse, nous présentons une introduction
générale aux systèmes topologiques. Le chapitre 2 est ensuite consacré à l’intrication,
concept fondamental de la mécanique quantique et en particulier dans la description des
matériaux fortement corrélés. Nous introduisons l’entropie d’intrication de von Neumann
et le spectre d’intrication. Ils ont été fondamentaux dans l’étude théorique des systèmes
topologiques, et plus généralement des phases libres. Il est cependant difficile de les
mesurer expérimentalement. L’étude des fluctuations de charge bipartites, aussi définies
dans ce Chapitre, a été proposée afin de remédier à ce problème. Celles-ci permettent
une mesure faible de l’intrication, en particulier pour des modèles unidimensionnels libres
(Liquides de Luttinger).

Le reste de la thèse est ensuite consacré à nos travaux. Nous généralisons dans le
chapitre 3 les précédents travaux sur les Liquides de Luttinger à des familles génériques
de supraconducteurs et isolants topologiques en une et deux dimensions, systèmes dans
lesquels la charge observée n’est plus conservée. Nous montrons que les transitions de
phases topologiques sont caractérisées par certains coefficients universels dans les fluctu-
ations et les fonctions de corrélations. Les systèmes bidimensionnels que nous étudions
présentent des cônes de Dirac, et ces coefficients dépendent de leur enroulement. Cela
nous permet de caractériser la topologie de ces points critiques. Dans tous les cas, les fluc-
tuations suivent une loi de volume, qui a un comportement non-analytique aux transition
de phase.
Dans le chapitre 4, nous nous intéressons aux systèmes en interactions. Nous montrons
tout d’abord que certaines des signatures des transitions topologiques survivent en leur
présence, dans les supraconducteurs topologiques. Nous étudions ensuite le diagramme de
phase de deux fils supraconducteurs couplés par une interaction Coulombienne. Celle-ci
mène à la création de phases exotiques grâce à la compétition avec la supraconductivité
non-conventionnelle. Nous montrons en particulier l’apparition de phases de Mott brisant
spontanément la symétrie de renversement du temps et présentant des courant orbitaux
non-triviaux, ainsi que celle d’une phase de fermions libres, qui est l’extension de deux
châınes de Majorana critiques en interaction.
Enfin, le chapitre 5 est consacré à l’étude des effets de la présence de fermions de Majorana
sur le transport électronique. Nous étudions un ı̂lot supraconducteur où plusieurs de ces
fermions existent. Ce système pourrait être l’un des composants élémentaires d’un éventuel
ordinateur quantique. Les fermions de Majorana changent les statistiques d’échange des
porteurs de charges, ce qui se traduit par une fractionnalisation de la conductance. Celle-
ci se révèle très robuste face aux anisotropies et autres perturbations. Nous étendons
les études précédentes au cas où le nombre d’électrons dans la bôıte peut fluctuer, et
montrons l’équivalence de ce problème avec le modèle Kondo à plusieurs canaux. Nous
réinterprétons alors ce modèle en terme du déplacement d’une particule dans un réseau
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fictif dissipatif.

Chapitre 1

L’objectif de ce chapitre est de fournir une introduction simple et concise à différents
aspects fondamentaux de la topologie en physique de la matière condensée, à l’aide de
divers exemples. Cette thèse se concentre essentiellement sur les travaux théoriques à
température nulle. De façon générale, un système quantique peut être décrit par son
Hamiltonien, un opérateur ou une forme intégrale qui définit son énergie. Un état quan-
tique est une état-propre de cet opérateur. À température finie, le système sera décrit par
une somme pondérée de ces états propres, tandis qu’à température nulle, il suffit d’étudier
l’état fondamental (l’état d’énergie la plus basse) de l’Hamiltonien, qui peut être dégénéré.
Dans ce chapitre, nous nous concentrons sur les propriétés de ces états fondamentaux, qui
peuvent également être directement déduites de celles de l’Hamiltonien lui-même. Nous
commençons par une brève présentation du fil de Kitaev[13], un exemple paradigmatique
de supraconducteur topologique que nous utiliserons comme modèle de référence tout au
long du manuscrit. Nous continuons avec le formalisme générique que nous utilisons pour
décrire les systèmes sans interactions, en mettant l’accent sur les modèles à deux bandes.
Ensuite, l’essentiel de ce chapitre est une introduction à la topologie dans ces systèmes
sans interaction, en suivant la classification des Réfs. [12, 23]. Grace à la description
simple permise par l’absence d’interactions, nous faisons un lien entre systèmes physiques
topologiques et la notion de classe d’homotopie (topologie des lacets). Nous définissons
aussi les divers invariants topologiques pertinents dans ce manuscrit, et abordons rapi-
dement la correspondance entre les bords et le coeur d’un système, liant les propriétés
topologiques de l’Hamiltonien à la présence ou à l’absence d’états de bord est brièvement
abordée.
Nous concluons ce chapitre avec une description des différents modèles, en une et deux
dimensions, qui seront utilisés dans cette thèse. Les deux dernières sections peuvent être
ignorées en première lecture, et consultées quand les modèles présentés sont étudiés.

Chapitre 2

Dans le premier chapitre, nous n’avons pas fait référence à l’intrication. Pourtant, ces
corrélations non-locales sont la différence fondamentale entre les systèmes quantiques et
classiques, et sont responsables de la topologie des états que nous étudions. Historique-
ment, l’étude de l’intrication était initialement réservée à l’information quantique, et aux
études des conséquences de la mécanique quantique en tant que théorie physique. Les
premières expériences, basées sur la vérification des inégalités de Bell, illustrant le para-
doxe d’Einstein-Podolsky-Rosen, visaient à vérifier la validité de la mécanique quantique.
Néanmoins, le rapide développement de l’informatique quantique au cours des dernières
décennies a permis une meilleure compréhension des propriétés de l’intrication, y compris
dans les systèmes mésoscopiques. L’étude de la structure de l’intrication s’est révélée ines-
timable pour décrire les transitions de phase (topologiques) à température nulle et les états
fondamentaux (topologiques) correspondants. En effet, pour de telles transitions et de tels
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états, l’étude des fonctions de corrélation ne permet généralement pas de décrire correcte-
ment les changements subis par le système et ses propriétés globales. Les corrélations
quantiques ne suffisent pas à discriminer entre des phases aux propriétés topologiques
différentes, tandis que l’étude de l’intrication, par exemple l’entropie d’intrication ou le
spectre d’intrication, révèle leur nature.
Ce chapitre est donc une introduction à la notion d’intrication dans les systèmes quan-
tiques, et plus précisément dans la physique à n corps. La section 2.1 définit l’entropie
d’intrication de von Neumann, ainsi que d’autres mesures fondamentales d’intrication.
Après avoir décrit leurs propriétés générales, nous donnons un aperçu des principales
idées sous-jacentes dans l’étude de l’intrication pour les systèmes à n corps, en mettant
l’accent sur les modèles non gappés. La section 2.2 est dédiée au spectre d’intrication. Il
est particulièrement utile pour caractériser les états topologiques qui possèdent des états
de bord, car sa mesure repose sur la création de bords artificiels. Enfin, nous présentons
dans la section 2.3 une introduction au concept de fluctuations bipartites. Ces fluctua-
tions peuvent être utilisées comme une sonde faible de l’intrication, qui a l’avantage d’être
expérimentalement mesurable. Pour une observable locale Ô et une sous-région A du
système total, elles sont définies par:

FÔ(A) = 〈(
∑

~r∈A
Ô~r)

2〉 −
(

∑

~r∈A
〈Ô~r〉

)2

(A.1)

Nous donnons une brève présentation des travaux précédents sur ce sujet, centrés sur les
liquides de Luttinger où la charge totale est conservée, avant de consacrer le prochain
chapitre à notre extension aux modèles topologiques.

Chapitre 3

Ce chapitre est consacré à notre travail sur les fluctuations bipartites dans les systèmes
topologiques sans interactions. Plus précisément, nous nous concentrons sur les fluctua-
tions bipartites à et à proximité des phases critiques qui apparaissent habituellement dans
de tels systèmes, car les fluctuations bipartites apportent plus d’informations pour les
phases non-gappées. Trouver de telles phases critiques n’est pas une garantie de transition
de phase topologique, car il est toujours possible de construire des modèles complexes où
elles apparaissent sans changement dans la topologie du système, mais est néanmoins une
signature importante de ces transitions. En outre, certains systèmes libres sont eux-mêmes
protégés topologiquement [41] (par exemple, la classe DIII pour d = 2): les fluctuations
bipartites sont alors un outil parfait pour leur étude.
Dans ce chapitre, nous nous concentrons sur des systèmes critiques uni- et bidimension-
nels typiques des transitions de phase topologiques. Nous considérons les fluctuations des
bilinéaires fermioniques locaux tels que la charge ou les différentes polarisations de pseudo-
spin. Nous commençons dans la section 3.1 par un aperçu des propriétés mathématiques
des fluctuations de ces systèmes à une dimension. En utilisant le théorème de Wick, on
peut commodément exprimer les fluctuations en tant que simple produit scalaire des fonc-
tions de Green modulé par un noyau, le noyau de Fejér. Cette fonction a des propriétés
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très intéressantes qui nous permettent de déterminer la forme générale des fluctuations
pour les systèmes sans interactions:

FÔ(A) = iÔlA + bÔ ln lA +O(1), (A.2)

avec Ô l’opérateur considéré et lA la longueur du sous-systèmeA. Nous prouvons également
que iÔ est lié à la densité d’information quantique de Fisher [144] (QFID)1. La QFID, ob-
jet initialement défini pour la métrologie et l’information quantique, est une borne de la
reproductibilité des systèmes quantiques. Pour les supraconducteurs et les isolants à deux
bandes que nous étudions ici, nous obtenons la limite suivante pour ce coefficient:

iÔ ≤
qe
2

avec qe la charge dans la cellule unitaire. (A.3)

Le terme logarithmique n’apparait que si le système est non-gappé et la valeur de bÔ est
directement liée aux symétries de l’Hamiltonien et à l’amplitude des discontinuités des
fonctions de corrélation aux moments où le gap se ferme.
Dans la section 3.2, nous appliquons le formalisme dérivé précédemment à la famille de
modèles topologiques BDI, à laquelle appartient le modèle de Kitaev. Nous calculons les
fluctuations pour une base complète des bilinéaires fermioniques locaux dans les système
à deux bandes. Nous montrons que, à la transition de phase, le coefficient linéaire a
des cusps caractéristiques qui permettent une détection facile des transitions de phase.
La discontinuité de la dérivée peut être reliée à la vitesse des différentes composantes de
l’Hamiltonien. Pour des transitions de phase simples, où le gap se ferme à un seul moment,
nous montrons que les symétries de particules-trous (PHS) et de renversement de temps
(TRS) imposent que le coefficient logarithmique des fluctuations de charge est universel
et donné par:

bQ̂ = − qe
2π2

. (A.4)

Le signe négatif prouve que ces fluctuations ne peuvent pas être décrites en termes de fluc-
tuations de densité d’un liquide de Luttinger. Pour les supraconducteurs, qe = 1, et |bQ̂|
est la moitié de ce qu’il serait pour les fermions libres. Ce facteur deux est directement
analogue à celui apparaissant dans la charge centrale.

Lorsqu’on envisage des transitions de phase plus complexes, où le gap se ferme à
plusieurs moments, la valeur du coefficient n’est plus universelle, tandis que le cusp du
terme linéaire survit généralement. Pour identifier exactement la transition de phase, nous
introduisons le facteur de structure des fluctuations bipartites:

SF Ô(A, ψ) = 〈|
∑

j∈A
eiψjÔj |2〉 − |〈

∑

j∈A
eiψjÔj〉|2 (A.5)

Cet objet nous permet de déterminer le nombre exact de points de fermeture du gap
et leurs propriétés. Dès que ψ est différent de zéro, le terme logarithmique disparait.

1L’information quantique de Fisher, définie comme les fluctuations liées d’une observable pour un état
pur, mesure la productibilité de la fonction d’onde, c’est-à-dire la séparabilité de l’état dans un espace où
l’observable est locale.
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Figure A.1: Terme linéaire des fluctuations bipartite de charge dans une variante étendue
du modèle de Kitaev (avec des sauts et un appariement au troisième plus proche voisin), en
fonction du potentiel chimique µ pour plusieurs valeurs du ratio t3

t1
with ∆l = tl. Les cusps

marquent chaque transition de phase. m est le nombre d’enroulement associé à chaque
phase, et correspond au nombre de fermions de Majorana protégés à chaque extrémités.

Lorsque ψ est égal à kj − kj′ , avec kj les moments où le gap se ferme, le terme logarith-
mique réapparait et reprend une valeur universelle.
Enfin, nous discutons également les corrections de température et de taille finie. Ces
dernières sont particulièrement importantes dans les simulations numériques de supracon-
ducteurs topologiques, car il faut prendre en compte précisément les modes 0 et π. Nous
trouvons la forme exacte des corrections pour le modèle de Kitaev et vérifions la conver-
gence numérique des fluctuations grâce à des simulations de type Matrix Product States.
La Section 3.3 est consacrée à l’étude des fluctuations bipartites dans les Hamiltoniens
de classe D. Nous vérifions que la plupart des propriétés précédemment dérivées sont
toujours valides: cusps aux transitions de phase, coefficients logarithmiques quantifiés...
Nous prenons également le temps de traiter, à titre d’exemple de systèmes au-delà du
paradigme à deux bandes, le modèle des fils supraconducteur de Rashba introduit dans
la section 1.5.3. Nous trouvons qu’un choix approprié de la charge observée mène aux
mêmes résultats que dans le modèle plus simple de Kitaev.
Enfin, nous étudions des modèles typiques de fermions non gappés en deux dimensions
dans la Section 3.4. Plus précisément, nous nous concentrons sur des modèles présentant
des cônes de Dirac, caractéristiques des transitions de phase dans les modèles topologiques
bidimensionnels. Nous nous concentrons sur les fluctuations de charge dans les modèles à
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deux bandes. Nous montrons d’abord, en utilisant l’analogue 2D du noyau de Fejér, que
les fluctuations vérifient:

iÔAA + cÔRA + bÔ ln lA +O(1), (A.6)

où AA est l’aire de la région considére, et RA et lA sont deux longueurs caractéristiques
(RA est généralement le périmètre). Nous prouvons alors que le coefficient iÔ est toujours
donné par la QFID associée à la charge électronique. Il ne présente pas de cusps aux
transitions de phase, mais une divergence logarithmique de sa dérivée seconde. Nous
pouvons étendre ce résultat à des dimensions plus élevées : pour une surface de Fermi de
dimension nulle et une dispersion linéaire, on s’attend à une discontinuité de la dérivée
dème en dimension impaire et à une divergence logarithmique de celle-ci en dimension
paire.
Nous nous concentrons ensuite sur le terme logarithmique pour un seul cône de Dirac
isotrope. b est non-nul seulement si le système est non gappé et dépend du nombre
d’enroulement m du cône de Dirac. Nous montrons également que, comme pour la vNEE,
il n’apparait que si la régionA présente des coins. Chaque coin contribue indépendamment,
avec une amplitude:

qem
2

32π2
(1 + (π − ψ) cotψ) ln lA, avec ψ l’angle du coin. (A.7)

La fonction ψ → 1+(π−ψ) cotψ est appelé fonction de coin (corner function). Elle ne cor-
respond pas celle qui apparâıt dans l’entropie des fermions de Dirac en deux dimensions,
mais à celle du modèle d’information mutuelle étendue (Extended Mutual Information
model). Ces résultats ne dépendent pas de la forme du réseau. Il est aussi intéressant de
souligner le signe positif du terme logarithmique, qui est opposé à celui apparaissant dans
la vNEE des systèmes concernés.
Nous généralisons ensuite à des systèmes plus complexes. Tout d’abord, nous considérons
ensuite l’effet de l’anisotropie des cônes sur les fluctuations. Nous montrons que des
anisotropies dans l’espace des moments sont équivalents à des anisotropies dans l’espace
réel: les fluctuations dépendent maintenant de la direction de A, et la fonction de coin
est déformée. Finalement, nous concluons ce chapitre en étudiant des phases critiques
présentant plusieurs cônes de Dirac. Nous montrons que le facteur de structure des fluctu-
ations nous permet de distinguer entre une phase triviale telle que le graphène, présentant
deux cônes avec un nombre d’enroulement opposé, et la phase µ = 0 d’un supraconducteur
p+ ip où les deux cônes ont le même nombre d’enroulement.
La plupart des résultats de ce chapitre ont été dérivés directement pour des Hamiltoniens
spécifiques, en utilisant les différentes symétries pour minimiser les effets des détails micro-
scopiques des modèles considérés. Les mêmes résultats peuvent être obtenus en utilisant
directement la théorie conforme, donnant une description de basse énergie de ces familles
de modèles critiques. Nous avons choisi de ne pas présenter ce type de dérivation car, d’un
point de vue pratique et expérimental, la manière dont les observables se projettent sur les
champs conformes est tout aussi importante que le comportement des champs conformes à
basse énergie. Le traitement des observables physiques permet de ne pas avoir à traiter la
question complexe de cette projection. Il est aussi important de souligner que la quantifi-
cation des fluctuations peut également être réinterprétée en termes de quantification des
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termes dominants des fonctions de corrélation. Par exemple, l’universalité du coefficient
logarithmique en une dimension pour les fluctuations de charge dans les supraconducteurs
topologiques se traduit par:

〈njnj′〉c = −
bQ̂

2

1

(j − j′)2 + o(
1

(j − j′)2 ). (A.8)

Ce chapitre reprend des résultats publiés dans la Réf. [145], ainsi que d’autres travaux en
cours de préparation.
Méthodes utilisées: solutions exactes et calcul intégral, espaces de Hilbert-Sobolev (Fourier),
diagonalisation exacte

Chapitre 4

Le chapitre 4 s’intéresse aux effets des interactions dans les systèmes topologiques. La
première partie du chapitre se concentre sur la construction d’une description fiable du
point critique topologique pour un supraconducteur topologique en interaction et sur
l’effet des interactions sur les fluctuations bipartites étudiées précédemment. Quand in-
teractions et topologie sont présents, de nouvelles phases exotiques peuvent apparâıtre.
L’effet Hall fractionnel en est un exemple parfait: c’est un analogue direct de l’IQHE, où
un courant quantifié circule sur les bords du système, mais la conductivité prend main-
tenant des valeurs rationnelles bien précises plutôt que des valeurs entières. Cet effet,
expérimentalement découvert en 1982 [6] et expliqué théoriquement en 1983[100], a depuis
été le sujet de nombreuses études. En effet, la nature non-entière de la conductance est
un symptôme de l’existence de porteurs de charge fractionnaires. Ces quasi-particules ne
vérifient pas les relations de commutation bosonique ou celles d’anticommutation fermion-
ique, mais des règles d’échange plus complexes.
Une autre conséquence non triviale de l’ajout d’interactions est la réduction des groupes
d’homotopie des différentes classes d’Hamiltoniens et par conséquent la réduction des in-
variants topologiques. Peut-être l’exemple le plus célèbre est celui découvert par Fid-
kowski et Kitaev: la reduction Z8 [110, 168, 169]. Alors que les différentes classes
d’Hamiltoniens restent bien définies en présence d’interactions, il a été démontré que
l’invariant topologique de la classe BDI n’est plus un élément de Z mais de Z8, tout
comme il se réduit à Z2 lors de la rupture de la symétrie de renversement du temps. Il-
lustrons brièvement la signification physique de cette réduction. Si nous prenons n < 8
fils de Kitaev dans leur phase topologique avec des conditions aux bords ouvertes, il n’est
pas possible de coupler les modes de Majorana de bords d’énergie nulle en ajoutant des
interactions arbitrairement faibles, du moment qu’elles préservent les symétries de ren-
versement du temps et particule-trou. Les fermions de Majorana sont protégés par les
symétries. Cependant, si nous considérons 8 fils de Kitaev côte à côte, il est possible de
créer une interaction qui donne une énergie finie à tous les modes d’énergie nulle, qui ne
sont donc plus protégés.
Alors que le FQHE est un effet des interactions fortes, la classification modulo Z8 lim-
ite les comportements possibles de nos systèmes lorsque les interactions sont plus faibles
que le gap du système sans interactions. Dans ce Chapitre, nous étudions un régime
intermédiaire: partant d’un système topologique protégé par la classification Z8, nous
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couplés par une interaction densité-densité, correspondant à une description minimale de
l’interaction Coulombienne. La section 4.2 présente le modèle et son Hamiltonien. Après
une discussion approfondie du modèle, nous proposons un aperçu de son diagramme de
phase (Figure A.2). Comme les symmétries de renversement du temps et la symétrie
particule-trou sont respectées, la phase topologique survit même à des interactions fortes.
À faible potentiel chimique et large couplage, deux phases de Mott apparaissent, présentant
des courants orbitaux exotiques. La section 4.3 présente une étude complète de ces deux
phases, ainsi que la preuve de leur existence. Pour un fort potentiel chimique, le système
est polarisé. Enfin, dans un régime intermédiaire, où les interactions et le potentiel chim-
ique sont comparables, une nouvelle phase non gappée s’ouvre. Cette phase, que nous
dénommons phase critique d’Ising double (Double Critical Ising), est étudiée dans la sec-
tion 4.4, et est une extension des deux points critiques c = 1

2 des chaines de Kitaev sans
interactions. Ce chapitre détaille des résultats publiés dans la Réf. [155], ainsi que quelques
nouveaux résultats complémentaires.
Méthodes utilisées: bosonisation, groupe de renormalisation, diagonalisation exacte, DMRG
basée sur les MPS

Chapitre 5

Enfin, nous nous intéressons dans ce dernier chapitre aux effets de la présence de fermions
de Majorana sur le transport électronique. La manipulation des états de Majorana liés
dans les supraconducteurs topologiques a fait l’objet de nombreuses études [16, 17]. L’une
des principales questions restant à résoudre est de trouver des signatures expérimentales
claires de l’existence de ces quasi-particules insaisissables : la résilience de ces fermions
de Majorana à la décohérence les rend également difficiles à observer. Une façon de
détecter ces fermions de Majorana est de s’intéresser au transport électronique. En effet,
la présence de fermions de Majorana aux extrémités d’un supraconducteur affecte forte-
ment le transport d’électrons à travers le substrat. Selon à quoi est couplé le supracon-
ducteur, différents effets peuvent être mesurés: effet Josephson anormal[13, 23, 230–240],
reflexions d’Andreev parfaites locales[25–33, 53, 58, 59, 225, 226] et transversales[225–
228]. Cependant, ces signaux ne sont pas univoques: les valeurs des conductances et des
périodicités anormales peuvent être obtenues dans des systèmes sans Majoranas. C’est la
résilience de ces valeurs aux perturbations qui marque l’aspect topologique de ces quasi-
particles. D’autres travaux ont également suggéré d’observer directement les statistiques
non-abéliennes des Majoranas à l’aide de portes quantiques[233, 242].
Combiner des effets de charge avec la présence des fermions de Majorana, c’est à dire
la physique de Kondo avec celle des fermions de Majorana [243–245], conduit à des
propriétés de transport exotiques dans les régimes continus [246–249] ou alternatifs
[250, 251]. Dans ce chapitre, nous étudions une généralisation de la structure décrite dans
la Réf. [246]. Nous considérons un ı̂lot supraconducteur, où le nombre total d’électrons
est fixé par une capacitance (l’̂ılot n’est pas directement relié à la masse). Sur cet ı̂lot
est déposé un fil semi-conducteur, de façon à réaliser un supraconducteur topologique par
proximité. On connecte alors une électrode à chaque extrémité du fil, et donc à un fermion
de Majorana et nous appliquons une faible tension. On peut alors observer une conduc-
tivité parfaite quantifiée entre les deux électrodes, correspondant à un canal unique de
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transmission:
e2

h
. (A.9)

Un électron entrant va en fait se délocaliser dans le fermion virtuel d’énergie nulle composé
des deux fermions de Majorana.
Dans ce chapitre, nous étudions le dispositif proposé dans les travaux pionniers des Refs.
[20, 21]: un seul ı̂lot supraconducteur, où plusieurs fils topologiques ont été déposés,
de façon à connecter M ≥ 3 fermions de Majorana à autant d’électrodes, modélisées
par des liquides de Luttinger. La ”charge” de l’̂ılot, c’est-à-dire le nombre de paires de
Cooper plus le nombre de fermions dans l’espace des Majoranas, peut être modifiée par
une tension de grille. Dans le cas non-dégénéré, où la charge de l’̂ılot est fixée et unique,
un effet Kondo [254] non conventionnel, appelé ”modèle topologique de Kondo”, a été
théoriquement exploré [20, 21, 255–263] avec apparition d’un ”spin” SO(M) construit
à partir des fermions de Majorana. De telles bôıtes ont été proposées comme éléments
constitutifs d’un ordinateur quantique[22] et de nombreux progrès ont été faits pour les
réaliser expérimentalement[252, 253].

Pour une ı̂le non-supraconductrice, en l’absence de fermions de Majorana, Matveev a
démontré un effet Kondo de charge[264, 265] dans lequel deux états de charge dégénérés
jouent le rôle d’un spin 1/2 effectif et s’hybridisent avec les électrons des électrodes
ou de l’̂ılot. Le modèle effectif est appelé modèle Kondo multicanal(M-CKM). Remar-
quablement, dans le modèle Kondo à deux canaux, une excitation de Majorana ap-
parâıt à faible énergie [266–270]. Il s’agit cependant d’une particule émergente et diffère
des fermions Majorana induits par supraconductivité par proximité considérés dans ce
chapitre. Récemment, le modèle de Kondo de charge à deux canaux a été réalisé [271]
dans un système de GaAs avec un contrôle sans précédent sur les paramètres du modèle; ou
encore avec un spin ordinaire [272, 273]. Dans tous les cas, la caractérisation expérimentale
est difficile du fait de l’instabilité du modèle. A basse énergie, le modèle Kondo topologique
présente des exposants caractéristiques des non-liquides de Fermi, et qui peuvent être
décrits par un mouvement brownien quantique (QBM) de couplage fort. Dans cette
analogie, une particule effective se déplace d’un minimum à l’autre d’un potentiel, ceux-
ci formant un réseau triangulaire bidimensionnel (modèle d’instanton). Les dimensions
des principaux opérateurs non pertinents peuvent donc être dérivées, en accord avec une
approche de théorie des champs conformes[274]. La conductance entre les différents fils
est symétrique, fractionnalisée et résistante aux perturbations. Contrairement à l’effet
Kondo topologique, le modèle Kondo multicanal n’admet pas une description simple en
terme de QBM. La particule effective se déplace sur un réseau en nid d’abeille et le point
fixe de faible énergie correspond à un couplage intermédiaire, ce qui exclut un traitement
analytique perturbatif complet. De plus, ce point fixe infrarouge intermédiaire n’est pas
robuste alors que le point fixe de Kondo topologique correspond à un couplage fort et est
stable contre les perturbations, telles que les asymétries dans les couplages. Ce dernier
point semble favoriser l’observation expérimentale de l’effet Kondo topologique au lieu de
l’effet multicanal standard.
Dans ce chapitre, nous nous concentrons sur le modèle de Kondo topologique proche de la
dégénérescence de charge, où deux états de charge consécutifs n et n+1 sont énergiquement
équivalents et forment un pseudo-spin. Nous montrons que le réseau QBM qui en résulte
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le point fixe Kondo multicanal pour K = 1/2, avec une mobilité intermédiaire
µ(1/2) = sin2[π/(M + 2)].

2. Pour plus de quatre fils (Figure A.5), nous récupérons le comportement critique
du modèle Kondo topologique à large mobilité, ce qui indique que le pseudo-spin
de charge peut-être ignoré si les fermions de Majorana sont déjà fortement couplés
aux électrodes. Comparé au modèle Kondo topologique, la principale différence est
l’existence d’une ligne point fixe intermédiare stable qui remplace la phase isolante,
et est similaire à celle obtenue pour M = 3, 4.

Notre analyse QBM révèle que le pseudo-spin, représentant les deux états de charge,
est l’ingrédient physique principal expliquant la différence de comportement entre les cas
dégénéré et non-dégénéré. S’éloigner du point dégénéré ou augmenter le nombre de canaux
réduit l’importance de ce pseudo-spin et permet l’appararition de la physique du modèle
Kondo topologique. De plus, le point fixe intermédiaire n’est pas robuste vis à vis des
asymétries de couplage, et nécessite donc un réglage fin des paramètres expérimentaux,
contrairement au point fixe de couplage fort tel que décrit dans Ref.[277]. Nous notons que
le paramètre critique pour lequel la ligne intermédiaire stable tourne et devient instable
n’est pas connu analytiquement et son existence reste une conjecture.

Ce chapitre repose en grande partie sur les résultats publiés dans la Réf. [278].
Méthodes utilisées: bosonisation, groupe de renormalisation

Conclusions

Nous avons étudié dans cette thèse diverses propriétés des matériaux topologiques, allant
des marqueurs d’intrication dans les fonctions de corrélation à leurs propriétés de trans-
port.
Tout d’abord, nous avons vu que, dans les phases critiques typiques des modèles topologiques
sans interactions à une ou deux dimensions, les fluctuations bipartites sont caractérisées
par des lois d’échelle universelles qui imitent celles de l’entropie de von Neumann. En
raison de l’absence de conservation des charges étudiées, le coefficient dominant est une
loi de volume, dont les non-analyticités marquent les différentes transitions de phase. Aux
points critiques, des termes logarithmiques apparaissent, avec un coefficient universel,
indépendent de tout paramètre microscopique. A une dimension, ce coefficient est invari-
ant, et sa valeur et son signe montrent l’inversion du gap qui se produit lors d’une transition
de phase topologique. En deux dimensions, nous avons pu extraire sa dépendance en la
géométrie du sous-système considéré, et nous avons montré que l’on peut récupérer directe-
ment le nombre d’enroulement des différents cônes de Dirac et donc sonder la transition.
Une quantification similaire peut être directement extraite des fonctions de corrélation
connectées ou des fluctuations mutuelles (analogues de l’information mutuelle). Ici, nous
avons choisi de nous limiter à l’étude des classes BDI et D, mais ces observations peuvent
être directement généralisées aux autres classes non-triviales. Ceci est particulièrement
pertinent pour la classe d’Hamiltoniens DIII dont les phases non-gappées sont protégées
topologiquement en deux dimensions [41].
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Pourtant, de nombreuses questions sur les fluctuations bipartites, avec ou sans conser-
vation de la charge, restent ouvertes. Ces quantifications et universalités sont possibles
car la surface de Fermi est de dimension nulle. Un traitement similaire peut donc être
directement appliqué à des phases non-gappées tridimensionnelles, et en particulier aux
semi-métaux de Weyl [293, 294]. Ces matériaux sont caractérisés par une surface de Fermi
présentant des points chiraux, c’est-à-dire l’équivalent direct des cônes de Dirac en trois
dimensions. Il serait intéressant de vérifier si l’on peut directement sonder la charge chi-
rale associée à chaque nœud de la même manière que nous avons pu sonder le nombre
d’enroulement des cônes de Dirac. Ce serait une mesure directe, sans ambigüıté, de la
nature topologique des semi-métaux de Weyl. Etudier l’effet des arcs de Fermi sur les
limites des matériaux serait également intéressant, et peut-être une perspective encore
plus excitante serait l’étude des semi-métaux Weyl supraconducteurs qui présentent des
nœuds et des arcs de Majorana[295]. Sur un plan plus théorique, nous avons observé un
très bon accord entre les lois d’échelle des fluctuations et celles de l’entropie. Pourtant, les
limites habituelles sur l’information mutuelle obtenue à partir des fluctuations mutuelles
sont loin d’être saturées: il serait intéressant de voir si l’on peut construire de meilleures
limites dans le cas particulier des fluctuations de charge. Cela permettrait une mesure
directe de l’intrication dans les expériences. Enfin, il serait particulièrement intéressant de
généraliser nos résultats aux points critiques typiques qui séparent les phases triviales des
phases parafermioniques [296, 297]. La modification du modèle critique devrait également
être observée directement dans les fluctuations, ce qui peut conduire à une mesure directe
de ces quasi-particules exotiques.
Dans un second temps, nous avons inclus les interactions dans notre description des supra-
conducteurs. La présence conjointe de la topologie et des interactions conduit à une
physique riche. Nous avons étudié l’influence des interactions sur un supraconducteur
topologique typique et montré que le coefficient de la contribution logarithmique aux
fluctuations a été seulement renormalisé (son signe et son existence sont conservés). Nous
avons ensuite présenté et discuté un modèle de deux supraconducteurs topologiques couplés
par des interactions coulombiennes. Nous avons montré que, bien que la phase topologique
survive à la présence d’interactions faibles, de nouvelles phases peuvent s’ouvrir. En
particulier, nous avons vu que des phases de Mott apparaissent à et près du demi-
remplissage. Elles présentent des courants orbitaux inhabituels qui brisent spontanément
la symétrie de renversement du temps, malgré l’absence de saut direct d’un fil à l’autre.
Nous avons également montré l’ouverture d’une phase critique exotique, une extension di-
recte du point critique topologique standard. D’une manière générale, il serait intéressant
d’avoir une compréhension systématique de l’effet des interactions sur la supraconductivité
topologique. Une autre extension possible, en relation avec les fluctuations bipartites, est
simplement la généralisation à des systèmes arbitraires et, en particulier, la question de
savoir si l’on peut réellement récupérer l’universalité du coefficient logarithmique et donc
identifier les phases critiques à partir d’observables mesurables.
Enfin, nous avons étudié une hétéro-structure composée d’un ı̂lot supraconducteur por-
tant des fermions de Majorana, reliée à plusieurs électrodes. Nous avons déterminé ses
propriétés de transport et montré que l’on récupère la physique du modèle Kondo mul-
ticanal standard, au prix d’une renormalisation des interactions. La conductance prend
alors une forme fractionnée symétrique. Nous avons utilisé le formalisme du movement
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brownien quantique, qui permet d’aborder à la fois les limites de couplage faible et fort.
L’existence (et une description) du point critique auquel la bôıte subit une transition de
premier ordre entre le point fixe de Kondo multicanal et le point fixe de couplage fort
pour un grand nombre d’électrodes reste un problème ouvert, qu’il serait particulièrement
intéressant d’étudier numériquemnt. De plus, comme ce modèle pourrait être un des blocs
élémentaires d’un éventuel ordinateur quantique, nous étudions actuellement la physique
de plusieurs bôıtes de ce genre couplées entre elles, une physique très similaire à celle
d’anciens problèmes encore ouverts tels que le modèle Kondo multi-impureté, multicanal.
Des variantes de cette bôıte où l’on aurait remplacé les fermions de Majorana par des
parafermions seraient aussi particulièrement intéressantes, y compris d’un point de vue
purement mathématique[298]. L’effet des fermions de Majorana peut être compris comme
un changement de statistiques des porteurs de charge. Parafermions et anyons affecteraient
par conséquent fortement les propriétés de transport de la bôıte.
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Appendix B

Brief summary of abbreviations

• B(C)F: Bipartite (Charge) Fluctuations: see 2.3.2

• BZ: Brillouin Zone: see Appendix D.1.

• ES: Entanglement spectrum: see Section 2.2

• LL: Luttinger Liquids: see Appendix E

• MCKM: Multichannel Kondo model: see Section 5.4

• OBC: Open Boundary Conditions: the system is taken to be open, i.e. it has
boundaries at which it stops.

• PBC: Periodic Boundary Conditions: the system is taken to be periodic.

• QBM: Quantum Brownian Motion: see Section 5.3.1

• QCP: Quantum Critical Point: point in parameter space where a phase transition
occurs.

• QPT: Quantum Phase Transition: (sudden) change in the long-range properties of
the ground state of a quantum system.

• RG: Renormalization Group: see Appendix E.3

• TKM: Topological Kondo Model: see Section 5.3.2

• vNEE: von Neumann Entanglement Entropy: see Section 2.1
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Appendix C

Brief summary on Hilbert-Sobolev

spaces

It is interesting to present an alternate and more complete mathematical point of view on
the different terms that arise in the bipartite fluctuations. In this Appendix, we introduce
the notion of Hilbert-Sobolev spaces[299], which is the proper mathematical characteri-
zation for classifying the different scaling laws and scaling terms in the fluctuations. We
define the Hilbert-Sobolev space Hm(Td) on the d-dimensional torus as the space of the
functions on Td such that:

f ∈ Hm(Td)⇔
∑

~n∈Zd

|FT {f}(~n)|2(1 + |~n|2)m < +∞ (C.1)

These spaces basically categorize the convergence speed of |FT {f}(~n)|2.
Now, recall the expression of the fluctuations in one and two dimensions. For fluctuations
generated by the correlation function f , they are given by:

〈〈f, f〉〉1D = l

l
∑

n=−l
|FT {f}(n)|2 −

l
∑

n=−l
|n||FT {f}(n)|2 (C.2)

〈〈f, f〉〉2D = lxly
∑

nx,ny

|FT {f}(nx, ny)|2 − lx
∑

nx,ny

|ny||FT {f}(nx, ny)|2

− ly
∑

nx,ny

|nx||FT {f}(nx, ny)|2 +
∑

nx,ny

|nx||ny||FT {f}(nx, ny)|2 (C.3)

Classifying the different terms in Eqs. C.2 and C.3 is equivalent to identifying in which
space the function f lives.

Starting with the one-dimensional case, the parallel with the Hilbert-Sobolev space
definition is immediate. Gapped functions are continuous, and therefore in H

1
2 (T), while

in the gapless case, they belonged to H
1
2
−ε(T) for all ε > 0 but not to H

1
2 (T). This leads

to the appearance of a logarithmic term at the gapless points.
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A similar classification can be made in two dimensions. For gapped phases, the Green
functions that appear in the fluctuations are continuous everywhere, and therefore belong
to H1(T2). For such a function f , all four sums in Eq. C.3 therefore converge, and we
trivially obtain:

〈〈f, f〉〉 = if lxly + cxlx + cyly +O(1) = ifAA + cfRA +O(1), (C.4)

where RA is a characteristic length of the region A (usually the perimeter). Contribution
to cf can arise both from finite-sum corrections to the first sum, and directly from the
second and third summation. It is therefore non-universal.
For gapless Hamiltonians, singularities can appear in the different Green functions at
the gap-closing momenta. Let us define the Fermi surface as the manifold δΓ = {~k ∈
BZ, E~k = 0}, where E~k is the energy of the quasi-particle with momentum ~k. Depending
on its dimensions and the order of singularities, f will belong to different Hilbert-Sobolev
spaces, and therefore the scaling terms will change. For δΓ of dimension 1 (free fermions
for example), Green functions will usually exhibit discontinuities on the one-dimensional

manifold. They will therefore belong to H
1
2
−ε(T2) but not to H

1
2 (T2). This in turn leads

to sub-dominant scaling terms such that:

〈〈f, f〉〉 = ifAA + bf lA ln lA +O(lA), (C.5)

which have been observed for free fermions[133, 142]. This l ln l scaling term is also found
in the entanglement entropy for such models as was explained in Chapter 2.
For the models we are interested in, δΓ consists only in a finite number of points. There will
only be point-like singularities, that are not always removable. Then the Green functions
will belong to H1−ε(T2) but not necessarily to H1(T2). Then the fourth sum may give
rise to logarithmic terms such that the scaling laws will be:

〈〈f, f〉〉 = ifAA + cfRA + bf ln lA +O(1), (C.6)

For completeness, we point out that logarithmic terms could appear from the finite-sum
corrections of the first three sums. In practice, it is not the case for Dirac fermions.

This classification can be naturally extended to any dimension. In general, a Fermi
Surface of dimension dF in physical dimension d, we expect that the largest logarithmic
contribution is of order:

ldF−1 ln l, (C.7)

and the relevant correlation functions are in H
d−dF

2
−ε(Td) but not H

d−dF
2

−ε(Td).
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Details on microscopic

computations

D.1 Brillouin Zone and reciprocal lattice

We present here a quick definition of the Brillouin Zone (BZ), and how to determine it
on an arbitrary two-dimensional lattice. The Brillouin Zone, as we introduce it here, is
entirely dependent on the existence of a lattice.
Let us consider a system defined on an arbitrary infinite simple Bravais lattice L in d-
dimensions, such that there exist d vectors ~xj verifying:

~r ∈ L if and only if ~r =
d
∑

j=1

nj~xj , with nj ∈ Z

Each site can consist in a single fermion, as in the case of Kitaev’s wire or the p + ip
superconductor, or it can include several, as in the graphene or the SSH model. We
generically define the unit-cell in order to have this simple structure, and an invariance by
translation of the system that leads to a simplification of the computations in momentum
space.
We then define the reciprocal lattice by the lattice spanned by the vectors ~kj that verifies:

~xj .~kj′ = 2πδj,j′ (D.1)

Though there exist several families of such vectors, the lattice they span is unique. The
reciprocal lattice RL has the simple expression:

~k ∈ RL ⇔ ∃(n1, ...nd) ∈ Z
d, ~k =

d
∑

j=1

nj~kj

The first Brillouin Zone is then simply the unit-cell of RL centered in ~0, that can also be
defined by:

~k ∈ BZ ⇔ ||~k|| = min
~k0∈RL

||~k − ~k0||
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The relation D.1 guarantees that

VBZVUC = (2π)d,

where VBZ (resp. VUC) is the size of the BZ (resp. of the unit-cell), that is to say the
length in one-dimension, area in two dimensions, etc...

For a finite, periodic lattice, the actual definition of the Brillouin Zone may be slightly
more complex and it depends on the exact boundaries imposed. It corresponds to the
momenta of the previously defined BZ that are compatible with the finite size of the
lattice. Assume that there exists a family of vectors ~xj that spans the real-space lattice,
such that

~r ∈ L ⇔ ∃(n1, ..., nd) ∈
∏

j

[0, lj [∩Z, ~r =
d
∑

j=1

nj~xj

and where we identify ~r and ~r+ lj~xj (periodic boundary conditions). Then defining ~kk as
previously, we take the Brioullin Zone to be:

~k ∈ BZ ⇔ ∃(n1, ..., nd) ∈
∏

j

[0, lj [∩Z, ~k =
d
∑

j=1

nj − ⌊ lj−1
2 ⌋

lj
)~kj

These momenta are the one appearing in the proper finite Fourier transform on the lattice.

We conclude with a few relevant examples:

• One-dimensional lattices.
The lattice is spanned by the vector ~x1 = a. The corresponding reciprocal vector ~k1
is simply 2π

a , and the lattice is also one-dimensional. The BZ is simply the segment
]− π

a ,
π
a ].

• Rectangular lattices.
The lattice is spanned by the vector ~x1 = ax(1, 0) and ~x2 = ay(0, 1). Then, we take
~k1 = 2π

ax
(1, 0) and ~k2 = 2π

ay
(0, 1). The BZ is the square ]− π

ax
, πax ]×]− π

ay
, πay ]

• Triangular lattices.
The triangular lattice appears in this thesis as the Bravais formulation of the honey-

comb lattice. As such, it is spanned by the vectors ~x1 = a(1, 0) and ~x2 = −a(12 ,
√
3
2 ).

The corresponding momenta are ~k1 = 2π
a (1,− 1√

3
) and ~k2 = 2π

a (0,− 2√
3
). The BZ is

a regular hexagon, represented in Figure 1.11.

D.2 Diagonalization and correlation functions of the Rashba

nanowires

In this section, we simply expose the main computation steps for diagonalizing the Rashba
nanowire model[23, 24], and the expression for the various correlation functions that ap-
pear in the computation of the BCF.
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The real-space Hamiltonian for the Rashba model for topological superconductor is (sum-
mations on j are implicit):

H = −µc†j,σcj,σ − t(c
†
j,σcj+1,σ + h.c.) + V c†j,ασ

z
α,βcj,β

− iλ(c†j,ασ
y
α,βcj+1,β + h.c.) + ∆(c†j,↑c

†
j,↓ + cj,↓cj,↑), (D.2)

where c are spin-12 fermionic annihilation operator, µ is a chemical potential, t a hopping
term, V a Zeeman field, λ a Rashba spin-orbit coupling and ∆ a s-wave pairing obtained
by proximity.
The model can be exactly diagonalized in the Nambu basis Ψk = (ck,↑, ck,↓, c

†
−k,↓, c

†
−k,↑)

T .
In this basis, the Hamiltonian can be rewritten as:

H =
∑

k

Ψ†
kh(k)Ψk

with

h(k) =









ε(k) + V −iε2(k) ∆ 0
iε2(k) ε(k)− V 0 −∆

∆ 0 −ε(k) + V −iε2(k)
0 −∆ iε2(k) −ε(k)− V









, (D.3)

with ε(k) = −µ− 2t cos(k) and ε2(k) = 2λ sin(k). Defining the Pauli matrices,

τz =

(

I2 02
02 −I2

)

, τx =

(

02 I2

I2 02

)

, σz =

(

σz 02
02 σz

)

the system is diagonalized by:

e−i
γ+
2
R+e−i

γ−
2
R−ei

β
2
τyσz

e−i
α
2
σx
h(k)ei

α
2
σx
e−i

β
2
τyσz

ei
γ+
2
R+ei

γ−
2
R−

=









E+ 0 0 0
0 E− 0 0
0 0 −E− 0
0 0 0 −E+









, (D.4)

where the energy spectrum is given by:

E2
± = ∆2 + ε(k)2 + ε22(k) + V 2 ± 2

√

V 2ε(k)2 + ε(k)2ε2(k)2 + ∆2V 2, (D.5)

the diagonalizing angles by: and the two rotation matrix by:

X+ =









0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0









, X− =









0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0









.

We can express the original fermion in the Bogoliubov basis:










ck,↑
ck,↓
c†−k,↓
c†−k,↓











= ei
α
2
σx
e−i

β
2
τyσz

ei
γ+
2
R+ei

γ−
2
R−











ηk,+
ηk,−
η†−k,−
η†−k,+











, (D.6)
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such that H = Ek,+η
†
k,+ηk,+ + Ek,−η

†
k,−ηk,−. Computation of the relevant two-fermions

correlator in the ground state is straightforward, albeit tedious.

〈c†k,↑cq,↑〉 =
1

4
δk,q (2− cos(β)(cos(γ+) + cos(γ−))

+ cos(α) (cos(γ−)− cos(γ+)) + sin(α) sin(β)(sin(γ+) + sin(γ−)))

〈c†k,↓cq,↓〉 =
1

4
δk,q ((2− cos(β)(cos(γ+) + cos(γ−))

+ cos(α) (cos(γ+)− cos(γ−))− sin(α) sin(β)(sin(γ+) + sin(γ−)))

〈c†k,↑c
†
q,↑〉 =

−i
4
δk,−q (cos(β)(sin(γ−) + sin(γ+))

+ cos(α) (sin(γ+) + sin(γ−)) + sin(α) sin(β)(cos(γ−) + cos(γ+)))

〈c†k,↓c
†
q,↓〉 =

−i
4
δk,−q (cos(β)(sin(γ−) + sin(γ+))

+ cos(α) (sin(γ−)− sin(γ+))− sin(α) sin(β)(cos(γ−) + cos(γ+)))

〈c†k,↑cq,↓〉 =
−i
4
δk,q (cos(α) sin(β)(sin(γ−) + sin(γ+)) + sin(α)(cos(γ+)− cos(γ−)))

〈c†k,↑c
†
q,↓〉 = −1

4
δk,−q (cos(α) sin(β)(cos(γ+) + cos(γ−)))

The BCF for the different charges can be safely computed using Wick’s theorem and the
previous expressions. We focus on the topological transition that occur for −2t < µ < 0
and V =

√

∆2 + (µ+ 2t)2. For large Zeeman field, the system is in a topological phase,
while it is a trivial superconductor at low V . None of the angles gives a good winding
number, but a discontinuity at k = 0 appear in γ− at the phase transition, marking the
topological change.

D.3 Schrieffer-Wolff transformation in Kitaev’s ladder

In this Section, we present the main ideas behind the Schrieffer-Wolff transformation, and
details on the computation for the Kitaev’s ladder in Section 4.3.4. We refer the readers
to Ref. [200] for a complete and detailed review.

The Schrieffer-Wolff transformation is nothing but a variant around degenerate pertur-
bation theory. Given an Hamiltonian H0 with a degenerate low-energy subspace E0, and
a small perturbation V , such that ||V || ≪ ∆E, where ∆E is the gap in energy between
E0 and the next energy subspace, one can derive a systematic expansion of an effective
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Hamiltonian that will act only on E0.
This effective Hamiltonian is given, at second order in V , by:

Heff = P0H0 + V P0 −
1

2

∑

|n〉,|m〉∈E0

∑

|l〉/∈E0

(

1

El − Em
+

1

El − En

)

〈n|V |l〉〈l|V |m〉 |n〉 〈m| ,

(D.7)
where the vectors {|n〉} form an orthogonal eigenbasis of H0 with eigenvalue En, and P0

is the projector on E0.

Now we can apply this method to the Kitaev’s ladder of Chapter 4. We take as H0

the interacting term

g
∑

j

(nj,1 −
1

2
)(nj,2 −

1

2
),

and consider the rest of the Hamiltonian to be a small perturbation.
Let us start with g > 0, g ≫ t,∆µ. Then the low-energy subspace E0 is spanned by the
local vectors

|+〉j = c†j,1 |0〉c and |−〉j = c†j,2 |0〉c . (D.8)

For the many-body states, our convention is to take the c operators by ascending order
of sites. All states generated by this basis have an energy −g

4 . The first order correction
P0HKP0 vanishes. The second order correction can be straightforwardly extracted. The
contribution of the tunnel terms is:

Heff,t = − t
2

2g

∑

j

|+〉j |−〉j+1 〈+|j 〈−|j+1 + |−〉j |+〉j+1 〈−|j 〈+|j+1

− |−〉j |+〉j+1 〈+|j 〈−|j+1 − |+〉j |−〉j+1 〈−|j 〈+|j+1) (D.9)

The contribution of the pairing terms is:

Heff,d =
∆2

2g

∑

j

|+〉j |+〉j+1 〈+|j 〈+|j+1 + |−〉j |−〉j+1 〈−|j 〈−|j+1

+ |+〉j |+〉j+1 〈−|j 〈−|j+1 + |−〉j |−〉j+1 〈+|j 〈+|j+1) (D.10)

The chemical potential is a constant on E0 and can be ignored. Then, we can point out
the following correspondence (it is a true operator equality when restraining ourselves to
E0):

|+〉 〈+| =
1 + σz

2

|−〉 〈−| =
1− σz

2

|+〉j |−〉j+1 〈−|j 〈+|j+1 + |−〉j |+〉j+1 〈+|j 〈−|j+1 =
1

2
(σxj σ

x
j+1 + σyj σ

y
j+1)

|+〉j |+〉j+1 〈−|j 〈−|j+1 + |−〉j |−〉j+1 〈+|j 〈+|j+1 =
1

2
(σxj σ

x
j+1 − σyj σ

y
j+1)
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to obtain, up to constant terms:

Heff,g+ =
t2 −∆2

g

∑

j

σzjσ
z
j+1 +

t2 + ∆2

g

∑

j

σyj σ
y
j+1 +

t2 −∆2

g

∑

j

σxj σ
x
j+1 (D.11)

The same approach can be used for g < 0. The local energy subspace is now given by:

|+〉j = c†j,1c
†
j,2 |0〉c and |−〉j = |0〉c , (D.12)

with the same convention for the low-energy subspace. Defining the operators,

s
z
j = c†j,1cj,1 + c†j,2cj,2 − 1

s
x
j = c†j,1c

†
j,2 + cj,2cj,1

s
y
j = i(cj,2cj,1 − c†j,1c

†
j,2).

we can similarly derive an effective Hamiltonian. The main difference is that the chemical
potential now has a non-trivial effect at first order in perturbation, such that:

Heff,g− =
t2 −∆2

|g|
∑

j

s
z
js
z
j+1 −

t2 + ∆2

|g|
∑

j

s
y
j s
y
j+1 +

∆2 − t2
|g|

∑

j

s
x
j s
x
j+1 − µ

∑

j

s
z
j .

(D.13)
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Luttinger liquids, bosonization

and RG

E.1 Basics of Luttinger Liquids theory

Luttinger Liquids theory was developed to treat perturbatively interacting fermionic prob-
lems in one dimension. It relies in the equivalence between density and spin wave exci-
tations in these models and some bosonic models. It will be of use to us when defining
fluctuations in the standard charge conserving model in Section 2.3.3. We will also use
the formalism throughout Chapters 4 and 5, as it is a convenient way to address inter-
acting models, and compute transport properties. This section is meant to be a quick
cheat sheet for bosonization. We also refer to [129–131] for an in-depth introduction to
abelian bosonization in condensed matter physics. We follow the conventions of the latter
reference.

Formally, we consider fermionic systems whose kinetic energy is a linear function of
the momenta, such as the kinetic part of the Hamiltonian is given by:

vf |k − kf |c†kck. (E.1)

Free fermions on a lattice can be expressed in this form by linearizing the hopping terms
close to the Fermi momenta ±kF = ± arccos µ

2t as long as µ≪ 2t. The fermions are then
separated in two ”subspecies”, the left moving part with momenta close to −kF noted cL
and the right moving part (momenta close to kF ) noted cR.

cj = eikF jcR,j + e−ikF jcL,j . (E.2)

We then introduce two real bosonic fields, conjugate to each other. They therefore verify
the commutation relations:

[φ(x), θ(x′)] = i
π

2
sgn(x′ − x) and [φ(x), φ(x′)] = [θ(x), θ(x′)] = 0. (E.3)

Finally, to ensure commutation relations between different species of fermions, and to take
care of potential change in the number of fermions, we introduce ladder operators UR and
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UL that decrease the number of right- or left-moving fermions. In the thermodynamic
limit, these operators can safely be replaced by Majorana operators that verify.

{Ur, U †
r′} = 2δr,r′ and {Ur, Ur′} = {U †

r , U
†
r′} = 0. (E.4)

The well-known mapping between the fermions and the bosonic fields is given, in the
thermodynamic limit, by:

cR,j =
UR,σ√
2πα

e−i(φj,σ−θj,σ) and cL,j =
UL,σ√
2πα

ei(φj,σ+θj,σ), (E.5)

where α is cut-off distance that corresponds to the lattice spacing. The bosonic LL the-
ory will be treated as a continuum theory and a cut-off is required to avoid unphysical
divergences.

The Hamiltonian in the continuum theory can be expressed in terms of the linearized
fermions:

− ivF
∫

dx
(

c†R,σ(x)∂xcR,σ(x)− c†L,σ(x)∂xcL,σ(x)
)

, (E.6)

where vF = 2tα sin(kF ) is the Fermi velocity. It leads to the final expression in terms of
the bosonic fields:

H0 =

∫

dx
vF
2π

((∂xθσ)2 + (∂xφσ)2) (E.7)

The Hamiltonian H0 is the basic form of a bosonized Hamiltonian. As will be further
detailed in Chapter 4 and Appendix E.3.4, interacting terms can be treated in the same
way. The supplementary interacting terms are replaced by a corresponding expression in
terms of φ and θ. Without entering into details for now, weak interactions that do not
affect the nature of the gapless phase lead to an effective Hamiltonian given by:

HLL =

∫

dx
vF
2π

(K(∂xθ)
2 +

1

K
(∂xφ)2), (E.8)

where K is the so-called Luttinger parameter that quantify the strength of the interactions.
For non-interacting systems, K = 1, for repulsive interactions, K < 1 and for attractive
interactions K > 1.

E.2 Bipartite charge fluctuations of a critical c = m bosonic

model

Let us consider a n-channel fermionic wire. Let (φp, θp)1≤p≤n be the corresponding modes
obtained by bosonization [131]. Suppose that the critical model of the wire is characterized
by a central charge c = m, with m integer, and that we can find m independent real bosonic
modes (φα, θα)1≤α≤m, linear combination of (φp, θp), whose effective Hamiltonian is free.
The n−m other orthogonal modes are of course necessarily gapped. Then, the logarithmic
contribution to the bipartite charge fluctuations in any of the p-channel is positive and
can be expressed in terms of the Luttinger parameters of the α modes. We present a quick
proof for n = 2 and m = 1. The generalization, if fastidious, is self-explanatory.
Let (φ1, θ1) and (φ2, θ2) be the ”good” bosonic modes to describe the system, with (φ1, θ1)
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free while (φ2, θ2) is gapped in φ2. Let F1(l) and F2(l) be their bipartite charge fluctuations.
The typical Hamiltonian, closed to the fixed point, will be given by Hc = H1 +H2, with:

H1 =
vF,1
2π

∫

1

K1
(∇φ1)2 +K1(∇θ1)2

H2 =
vF,2
2π

∫

1

K2
(∇φ2)2 +K2(∇θ2)2 + g cos(αφ2)

with K2, g and α such that g cos(αφ2) is a relevant term that is flowing to strong coupling.
A standard computation[131] gives:

〈eiφ1(l)e−iφ1(0)〉 ≈ e−
K1
2
C(l)

〈eiθ1(l)e−iθ1(0)〉 ≈ e−
K−1

1
2

C(l)

〈(φ2(l)− φ2(0))2〉 = O(1)

〈eiθ2(l)e−iθ2(0)〉 ≈ e−∆̃l

with ∆̃ a non-universal quantity corresponding to the gap of the system, and C a function
defined by[131]:

C(l) =
1

2
log

(

l2 + α2

α2

)

.

α is a short distance cut-off. Other correlators are zero at the fixed RG point. Using the
following equality 〈eiφ(l)e−iφ(0)〉 = e−1/2〈(φ(l)−φ(0))2〉, valid for Gaussian modes, one can
obtain F1 and F2. Consequently, F1(l) scale logarithmically with the length of A, while
F2 is globally constant.

Now let (φa/b, θa/b) be two bosonic modes whose charge fluctuations Fa/b we can actu-
ally access. Assume there exists a unitary hermitian transform mapping the ”good” modes
to those measured. Let φa/b =

∑

i
ui,a/bφi + vi,a/bθi. One can easily express Fa/b as a sum

of correlators of φ1/2 and θ1/2. We introduce the quantity Ji(l) = 1
π2 〈(θi(l) − θi(0))2〉.

Ji is the analogous of Fi, replacing the field φ by its conjugate θ. It corresponds to the
bipartite current fluctuations. It has similar properties. As all cross-correlators cancel
close to the Renormalization Group fixed point, we obtain

Fa/b(lA) =
∑

i

u2i,a/bFi + v2i,a/bJi

Fa/b(lA) = (u21,a/b
K1

π2
+ v21,a/b

K−1
1

π2
) log l + v22,a/b∆̃l +O(1).

As all present bosonic modes are real, all coefficients must also be real. As the transfor-
mations must be invertible, u1,a/b and v1,a/b cannot be all zeros.

Then, there is a logarithmic contribution in at least one of the two observed channels
and it must be positive.

Instead of considering the field (φ2, θ2) gapped in φ2, one can also gap the mode by
fixing θ2. The role of F2 and J2 is then inverted and our conclusion is still valid.
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E.3 RG analysis in bosonized theories

In this Section, we give an overview of the renormalization group procedure, and, through
a simple example, we give the tools for deriving the RG equations in Luttinger Liquids.

E.3.1 Overview

The main idea behind renormalization is the idea of scaling: if we consider a system in
the thermodynamic limit, we are interested in its long-range properties and behavior. The
details of what happens at very small scale are not necessarily relevant to the long-range
physics. To abstract ourselves of these details, instead of considering what happens at a
length scale α, we could consider a minimal length scale α′ = αel with l > 0. One can
then integrate out all the degrees of freedom at a scale smaller than α′, in order to get a
potentially simpler Hamiltonian. A simple lattice based example is:

Initial model → Length scale separation → Large scale effective Hamiltonian

H(1) =
∑

j∈L
Hj

∑

j∈L
3

3
∑

x=1

H3j+x H(3) =
∑

j∈L
3

H̃j

In this example, we change our length scale by a factor of 3. Then we (usually) reduce
the Hamiltonian H̃j by keeping only the relevant low-energy states and discarding the
others, such that the dimension of its Hilbert space is the same as Hj ’s. By iterating
this procedure, we establish effective differential equations in Hamiltonians’ space as a
function of the RG length l, and try to compute their limit when l→ +∞. In practice, we
identify a set of relevant operators that compose the Hamiltonians, and derive differential
equations on their coefficients.

This approach can be generalized to other type of systems, but also other type of cut-
off: one can proceed to a similar renormalization scheme in momentum space or frequency
space by integrating out large momenta (which correspond to small distances). In this
thesis, we will mostly focus on real space and imaginary time renormalization.

E.3.2 Derivation for the sine-Gordon model

The staple model to study how RG behaves in Luttinger Liquids is the sine-Gordon
model[130, 131] described by the Hamiltonian:

HSG =
vf
2π

∫∫

dxdτ
1

K
(∂xφ)2 +K(∂xθ)

2 +
g

α2

∫∫

dxdτ cos(aφ) (E.9)

There are several ways to derive the RG equations of such a model. Following the method
in Ref. [131], we derive the value of an arbitrary correlator at second order in g, neglecting
the renormalization of the Fermi speed. We note 〈...〉g̃ the average taken in the ground
state of Eq. E.9 with g = g̃. We note ~r = (x, τ) the coordinate in real space and imaginary
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time.

〈eibφ(~r1)e−ibφ(~r2)〉g = 〈eibφ(~r1)e−ibφ(~r2)〉0

+
g2

8v2F

∑

ε1,ε2=±1

∫

d~rd~r′〈eibφ(~r1)e−ibφ(~r2)eiaε1φ(~r)eaε2φ(~r2)〉c,0 (E.10)

Then one can use the standard result from the Gaussian theory to compute the previous
correlator:

〈
∏

j

e
i
∑

j
Ajφ(~rj)+Bjθ(~rj)

〉0 = δ∑
j
Aj=

∑

j
Bj=0

e

1
2

∑

j<j′
(AjAj′K+BjBj′K

−1)F1(~rj−~rj′ )−(AjBj′+BjAj′ )F2(~rj−~rj′ )
, (E.11)

with F1 and F2 the functions

F1(x, τ) =
1

2
log(

x2 + (vf |τ |+ α)2

α2
) and F2(x, τ) = −iArg(vfτ + αsign(τ) + ix). (E.12)

After some lengthy computations, in the limit ||~r1 − ~r2|| ≫ α, one obtains:

〈eibφ(~r1)e−ibφ(~r2)〉g = e−
b2K
2
F1(~r1−~r2)



1 +
πK2a2b2g2

16v2Fα
4

∫

r>α

d2r2e−
a2K
2
F1(r)



 . (E.13)

This form can be interpreted as an expansion of the exponential e−
b2K
2
F1(~r1−~r2), i.e. the

correlator at g = 0, with an effective Luttinger parameter given by:

Keff = K − g2π2a2K2

4v2F

∞
∫

α

dr

α

( r

α

)3−a2K
2

(E.14)

From this expression, we can apply the RG procedure. The effective Luttinger parameter
should be left invariant by a change in the cut-off of the integral, as it governs the long
range properties of the system. Let α′ = α+ dα, changing the integral cut-off leads to:

Keff = K − g2π2a2K2

4v2F

dα

α
− g2π2a2K2

4v2F

∞
∫

α′

dr

α

( r

α

)3−a2K
2
. (E.15)

To absorb the change, one can redefine

K(α′) = K(α)− g2π2a2K2

4v2F

dα

α
(E.16)

g(α′)2 = g(α)2
(

α′

α

)4−a2K
2

(E.17)
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Finally, we parametrize the cut-off evolution such that α′ = αel, which leads to the
celebrate equations:

dg

dl
= (2− |a|

2

4
K)g (E.18)

dK

dl
= −g

2π2a2

4v2F
K2 (E.19)

We see that, in the presence of a cosine term, typically generated by interactions, both

the Luttinger parameter and g are renormalized. |a|2
4 K is the (RG) dimension of the

operator
∫∫

dxdτ cos(aφ). Defining D = a2

4 K the dimension and g̃ = gπ
vF

the renormalized
coefficient, the equations take the simple, universal form:

dg̃

dl
= (2−D)g̃ (E.20)

dD

dl
= −g̃2D2 (E.21)

The flow of these equations is depicted and analysed in Figure E.1. We call bare values
the initial values in the original Hamiltonian of the different parameters. Starting from an
infinitesimal g̃, one can distinguish two cases: if D > 2, the dimension of the operator is
larger than the critical dimension Dc = 2, and is therefore renormalized to 0. The operator
is said to be irrelevant, and in the thermodynamic limits, the Hamiltonian is equivalent to
one with g̃ = 0, with some (weakly) renormalized Luttinger parameter. If D < Dc, then
the operator is relevant, and g̃ is renormalized to ∞. To obtain the ground state of the
Hamiltonian, one therefore has to minimize g̃ cos aφ. For g > 0, φ(x, τ) = π

a [2πa ]: the φ
field becomes a constant. We say it is pinned. Due to the commutation relation with θ,
the θ field wildly fluctuates. Finally, the system is gapped as one has to break the cosine
term to obtain an excited state.
The case of an operator cos aθ can be simply obtained by replacing K by K−1.

E.3.3 Beyond the simple sine-Gordon model

To take into account several (competing) cosine and sine operators, one has to be more
careful: operators can feed and help generate others at higher order in the perturbation.
In a formally correct renormalization procedure, one needs to work with a closed family
of operators, such as no new operators appear. In practice, we can usually discard the
strongly irrelevant terms. We will treat three simple examples to illustrate the mechanisms
involved and how to obtain the RG equations.

• A single operator can generate higher-order terms. In fact, our previous analysis
was not absolutely complete: an operator cos(aφ) is going to generate all higher-
order harmonics in the RG procedure. Indeed, if α < |x − y| < α′, the product
cos(aφ(x)) cos(aφ(y)) is no longer separable after the rescaling, and it will contribute
to the appearance of an effective operator cos(2aφ(x)). To derive the RG equations
in such a case, one formally has to add this operator from scratch (with a coefficient
g2) and compute the third order terms:

g2g2
α6
〈eia(φ(x)+φ(y)−2φ(z))〉0 =

g2g(2)

α6
e

a2

2
(F1(x−y)−2F1(x−z)−2F1(y−z)), (E.22)
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g̃

Figure E.1: Normalized flow of Eqs. E.20. The continuous red line marks the continuum
of fixed points with D ≥ 2, where g̃ is renormalized to 0 and the bosons are free. The
discontunous red line marks the unstable non-interacting fixed points. The blue line is
the separatrix and the horizontal black line marks the critical dimension Dc = 2. When
the bare values of g̃ and D are below the separatrix, g̃, the cosine operator is irrelevant
and renormalized to 0. When the bare values are on the left of the vertical discontinuous
blue line, the cosine is relevant and g̃ is therefore renormalized to +∞. The boson is then
gapped and the field φ pinned to the minima of cos aφ. Finally, the region between the
separatrix and the horizontal line is an intermediate regime where the cosine is irrelevant,
but large enough so D is renormalized beyond Dc, which lead to g being, in the end,
renormalized to infinity. The system is then gapped.

for |x− y| < α′ (and also for |y− z| < α′) and comparing it with either e−2a2F1(x−z)

(or e−
a2

2
F1(x−z) . The RG equations will then be of the form:

dg

dl
= (2− |a|

2

4
K)g +A2gg2 (E.23)

dg2
dl

= (2− |a|2K)g2 +B2g
2 (E.24)

dK

dl
= −

(

g2π2a2

4v2F
+
g22π

2a2

v2F

)

K2 (E.25)

The coefficient A2 and B2 are (usually non-universal) coefficients obtained from the
computation of the correlation functions (in this simple case, A2 > 0 and B2 < 0: the
second order term generated by g only should not oppose g). A detailed computation
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for the Kondo problem is given in Appendix G. Even though it is not initially present,
the g2 term will be generated by the source term g2.

• Several independent terms can be present, the seminal example being cos aφ and
cos bθ. In such a case, if limiting ourselves to first-loop computations, one can simply
treat their contribution separately.

• In a general setting though, if several terms are present, they will lead to the ap-
pearance in the RG flow of their product. Following the previous example, one will
generate the entire family:

cos(naφ+mbθ), with n,m ∈ Z
2 (E.26)

Their RG dimension is simply n2a2K
4 + m2b2K−1

4 . In this simple example, the more
relevant operators are the initial ones, and it will (except at some fine tuning points)
be not necessary to include the higher harmonics. On the other hand, if the original
operators were cos aφ and cos(aφ+ bθ), the RG flow would generate the exact same
family of operators and one therefore should take into account the generated cos bθ,
more relevant than the original cos(aφ+ bθ).

E.3.4 Bosonization of the Kitaev-Hubbard model

In this Section, we derive the bosonized form of the different terms that appear in the
Hamiltonian of Section 4.2 and 4.3. We recall that we separate a spinless fermionic operator
cj,σ, j being a site index and σ the wire index, into its left and right components:

cj,σ = e−ikF jcR,j,σ + eikF jcL,j,σ, (E.27)

with kF the Fermi momentum (that will be taken to π
2 , i.e. half-filling), that can then be

bosonized by introducing the fields (φσ, θσ) (that depends on j and τ the imaginary time),
the four Klein factors UL/R,σ (taken to be effective Majorana operators) and α a cut-off
length:

cR,j,σ =
UR,σ√
2πα

e−i(φj,σ−θj,σ) and cL,j,σ =
UL,σ√
2πα

ei(φj,σ+θj,σ). (E.28)

We also recall the useful Naker-Campbell-Hausdorff(-Zassenhaus) formula. For two oper-
ators A and B such that [A,B] commutes with both A and B, then:

eAeB = eA+Be
1
2
[A,B]. (E.29)

and the definition of the charge and pseudo-spin basis (+,−):

φ± =
1√
2

(φ1 ± φ2) and θ± =
1√
2

(θ1 ± θ2) (E.30)

From there, we will sequentially bosonized the different contributions. The hopping term
has been treated previously:

−t
∑

j

c†jcj+1 + c†j+1cj →
vF
2π

∫∫

dxdτ(∂xφ)2 + (∂xθ)
2, with vF = 2t sin(kF )
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The chemical potential transforms into:

−µc†j,σcj,σ = −µρ0 +
µ

π
∂xφj,σ −

µ

πα
cos(2φj,σ − 2kF j)

ρ0 is the average density (a constant we discard). The cosine term is oscillating, and can
be discarded. In the (+,−) basis, the expression is simply

µ

√
2

π
∂xφj,+ (E.31)

The pairing term is given by:

∆c†j,σc
†
j+1,σ + h.c. =

∆

2πα
(U †

L,σe
−i(φj,σ+θj,σ−kF j) + U †

R,σe
i(φj,σ−θj,σ−kF j))

(U †
L,σe

−i(φj,σ+θj,σ−kF (j+1)) + U †
R,σe

i(φj,σ−θj,σ−kF (j+1)))

=
∆

2πα
(
(

U †
L,σU

†
R,σe

−2iθ−ikF + U †
R,σU

†
L,σe

−2iθ+ikF + h.c.
)

+ 2 cos(2φj,σ − 2θj,σ − 2kF j) + 2 cos(2φj,σ + 2θj,σ − 2kF j)

=
∆

2πα
(4 sin kF cos(2θj,σ) + 2 cos(2φj,σ − 2θj,σ − 2kF j)

+ 2 cos(2φj,σ + 2θj,σ − 2kF j)),

where we have taken U †
L,σU

†
R,σ = i (it is a product of two Majorana fermions that will

commute with the Hamiltonian) and neglected higher-order terms. The last two contri-
butions are far less relevant than the first one and are strongly oscillating for kF ≈ π

2 . We
consequently discard them. In the (+,−) basis, the pairing contribution is:

4∆ sin kF
πα

cos
√

2θ+ cos
√

2θ− (E.32)

Finally, the interactions have the traditional Hubbard form g(nj,1 − 1
2)(nj,2 − 1

2). Using
the previous expression for the density, we obtain:

g

(

− 1

π
∂xφj,1 +

1

πα
cos(2φj,1 − 2kF j)

)(

− 1

π
∂xφj,2 +

1

πα
cos(2φj,2 − 2kF j)

)

=
g

π2
∂xφj,1∂xφj,2 +

g

π2α2
cos(2φj,1 − 2kF j) cos(2φj,2 − 2kF j)

=
g

π2
∂xφj,1∂xφj,2 +

g

2π2α2
cos(2φj,1 − 2φj,2) +

g

2π2α2
cos(2φj,1 + 2φj,2 − 4kF j)

In the (+,−) basis, it can be written as:

g

2π2
(

(∂xφj,+)2 − (∂xφj,−)2
)

+
g

2π2α2
cos(2

√
2φj,−) +

g

2π2α2
cos(2

√
2φj,+ − 4kF j) (E.33)

We have discarded all the oscillating term except for cos(2
√

2φj,+ − 4kF j). Close to half-
filling, 4kF → 2π and therefore it is actually not oscillating. When moving away from
half-filling, oscillations progressively make the cosine irrelevant and will renormalize it to
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zero[131]. It is the so-called umklapp term. The first contribution renormalizes the Fermi
speeds and the Luttinger parameters, such that:

vF,± = vF

√

1± g

πvF
and K± =

1
√

1± g
πvF

. (E.34)

Finally, given that the pairing induced term is by far more relevant than the other contri-
butions, we need to take into account higher order contributions (only the second order
will be relevant). In particular, care has to taken has the second harmonic

cos(
√

2θ+(x)) cos(
√

2θ−(x)) cos(
√

2θ+(y)) cos(
√

2θ−(y))

=
1

4
(cos(

√
2(θ+(x)− θ+(y)) + cos(

√
2(θ+(x) + θ+(y)))

× (cos(
√

2(θ−(x)− θ−(y)) + cos(
√

2(θ−(x) + θ−(y)))

In the RG, when α < x − y < α′, the terms cos(
√

2(θ±(x) − θ±(y)) can be essentially
replaced by 1 +O(α2), which indeed will generate the two terms

−∆
(2)
±
α2

cos(2
√

2θ±)

The minus sign comes from the change of order in the expansion of the partition function.
The exact source term in the RG equations, proportional to (∆(1))2, can be obtained with
the methods described in the Appendix G. Its exact value is not relevant for our treatment
of the problem.
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Conformal Theory computations

F.1 Bipartite charge fluctuations for a c = 1
2 model

We are now interested in computing the charge fluctuations in the case of a c = 1
2 model.

We are interested in proving using CFT arguments that the sign of the logarithmic contri-
bution to the charge fluctuations is negative in such a model. The change in the behavior
of these fluctuations comes both from the different underlying critical theory, but also
from the difference on how to express the fermionic density in terms of the primary fields.
Indeed, the difference will subsist in the case of a c = 2× 1

2 theory. The critical conformal
theory of Quantum Ising can be expressed as a theory of a free real (Majorana) fermions
ψ. We only consider the point t = ∆ for simplicity, but the analysis stands at all ∆ 6= 0.

We can reformulate the Hamiltonian in the following way:

HK = 2it
∑

j

γj,B(γj+1,A − γj,A)− iδµ
∑

j

γj,Aγj,B. (F.1)

We first go to continuous limit γj,A/B →
√
αγA/B(x), where α is the lattice spacing. Then

we introduce two chiral fermions:

γR =
γB − γA√

2

γL =
γA + γB√

2
.

Posing v = 2tα and m = αδµ, the Hamiltonian of the system is now given by:

HK =

∫

dx
iv

2
(γL∂xγL − γR∂xγR)− imγLγR. (F.2)

m is the mass of the Majorana field. At m = 0, one can identify this Hamiltonian with
its conformal action counterpart. Introducing z = τ + ix, γL and γR corresponds to the
holomorphic and anti-holomorphic part of the conformal field. The action is given by:

S = ε

∫

dzdz̄γL∂z̄γL + γR∂zγR. (F.3)

211
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ε > 0 is a normalization factor. It will be fixed to 1 (at least in non-interacting systems)
by the correlation functions and commutation relations. The fermionic density operator
(i.e the σz field for the spins) can be written in terms of primary fields as iγL(z)γR(z̄), up to
constant terms that will disappear because we are interested in the connected correlators.
One can consequently rewrite:

FA(l) = −
∫∫

[0,l]2

dxdy〈γL(ix)γR(−ix)γL(iy)γR(−iy)〉c (F.4)

Using the Operator Product Expansion (OPE)[81, 130] γL(z)γL(w) = 1
2πε

1
z−w for the

Majorana field directly yields the result:

FA(l) =

∫∫

[0,l]2

dxdy
1

4π2ε2
1

|x− y|2

≈ − 1

2π2ε2
log l + αl + β. (F.5)

The minus sign in front of the logarithmic contribution can be understood from the (i)2 =
−1 pre-factor in Eq. (23) stemming from the definition of the (electron) density operator
as iγL(z)γR(z). α and β are non-universal constants that arise from the integration, and
are linked to the cut-off of our theory. The results coincide with the expression obtained in
the microscopic computations for ε = 1. This can be confirmed by the computation of the
correlation function corresponding to iγL(ix)γL(iy) in the original Bogoliubov particles
language. One can show that the coefficient of the leading term corresponding to the
OPE expansion of the CFT corresponds indeed to ε = 1 and, moreover, that it does not
depend on ∆/t. In Kitaev’s wire, the logarithmic contributions to the bipartite charge
fluctuations are actually independent from the ratio ∆/t as long as ∆ 6= 0.

F.2 Bipartite charge fluctuations for a c = 1 boson

For reference, we introduce in a few lines the computations of the logarithmic fluctuations
for a free boson, i.e. a Luttinger Liquid, using CFT. Without entering into any details,
the charge density is now given by:

ρ = ρ0 −
1

π
∂xφ, (F.6)

where φ is the bosonic field and ρ0 the average density. The primary fields of the CFT
theory are ∂zφ(z), with z = τ + ix, and of correlators

∂zφ(z)∂wφ(w) = − 1

4πε

1

(z − w)2
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and therefore the fluctuations are given by:

Fρ(A) =
1

π2

∫∫

[0,lA]2

〈∂xφ∂yφ〉 = − 1

π2

∫∫

[0,lA]2

〈∂zφ(z)∂wφ(w)〉 (F.7)

= − 1

π2
1

4πε

∫∫

[0,lA]2

1

(x− y)2
≈ 1

π2
1

2πε
ln lA + ..., (F.8)

where we have neglected the non-universal term. ε, the normalization factor, must be fixed
using either the correlation functions, or the compressibility[126], but its sign is always
positive. In the end, we recover:

Fρ(A) =
K

π2
ln lA (F.9)
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Appendix G

Topological Kondo model

G.1 RG flow

In this appendix, we recall the main steps of the derivation the RG equations for the
M-CKM and the Topological Kondo model. To do so, we use a systematic expansion of
the partition function, following Ref. [276].

G.1.1 RG equations for the Topological Kondo model

Weak coupling

Let us start with the easier case of the Topological Kondo model. We first consider the
topological Kondo model corresponding to the absence of charge degeneracy. We use the
QBM formalism for simplicity. We define the vectors ~wj such that θj = ~wj .~r + 1√

M
Θ.

They verify ~wj . ~wk = δj,k − 1
M . Explicit expressions can be found in Section 5.3.1. The

action governing the model at weak coupling is

S =
∑

ωm

M−1
∑

j

|ωm|K
2πβ

|rj(ωm)|2 −
M,M
∑

j 6=k
λj,k

∫ β

0

dτ

τc
cos((~wj − ~wk).~r), (G.1)

where τc is a short distance imaginary time cut-off. One can then proceed to a systematic
expansion of the partition function using λj,k as a small parameter. At order n, we obtain
the contribution

∫

τ1<..<τl

〈
n
∏

l=1

dτl
τc

M,M
∑

jl 6=kl
λjl,kl cos((~wjl − ~wkl).~r(τl))〉0, (G.2)

where 〈...〉0 is the average value with the unperturbed action. We proceed then to real-
space renormalization in imaginary time, i.e. we increase the cut-off τc to τ ′c = τce

ℓ, and
fuse operators closer than τ ′c. Using the invariance of the action upon renormalization of
the cut-off, we derive the different RG equations. We recall the correlation functions for

215
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the free bosons (we include an infrared cut-off in the integrals):

〈
∏

j

e
i ~wkj

.~r(τj)〉0 = δ∑
j
~wkj

=0

∏

j<l

(

τ2c
(τj − τl)2

)−
~wkj

.~wkl
2K

(G.3)

A first contribution is generic: when τ2 − τ1 ≫ τ ′c,

λj,kλk,j

∫

τ1<τ2

dτ1dτ2
τ2c
〈cos((~wj − ~wk).~r(τ1)) cos((~wk − ~wj).~r(τ2))〉0

= λj,kλk,j

∫

τ1<τ2

dτ1dτ2
τ2c

(

τ2c
(τ1 − τ2)2

)
1
K

This last expression must be cut-off independent, imposing λj,k(ℓ)λk,j(ℓ) = e(2−
2
K
)ℓλj,kλk,j ,

or by symmetry, λj,k(ℓ) = e(1−
1
K
)ℓλj,k

When τ2 − τ1 < τ ′c, the operators are no longer taken separately and fuse together. In
particular, if j1 = k2, k1 6= j2, we generate additional terms cos((~wj2 − ~wk1).~r(τ1)) (al-
ternatively for j2 = k1, k2 6= j1). To rigorously compute the exact coefficient for this
contribution, we use the third order terms λj1,k1λk1,k2λk2,j1 , with τ3 − τ1 ≫ τ ′c. We need
to evaluate, for j 6= k 6= l 6= j:

∫

τc<τ<τceℓ

〈ei(~wj−~wk).~r(τ1)ei(~wk−~wl).~r(τ1+τ)ei(~wl−~wj).~r(τ3)〉0 (G.4)

=

(

τ2c
(τ3 − τ1)2

)
1

2K
∫

τc<τ<τceℓ

(

τ2c
τ2

τ2c
(τ3 − τ1 − τ)2

)
1

2K

=

(

τ2c
(τ3 − τ1)2

)
1
K

ℓ if ℓ≪ 1

(G.5)

We finally obtain for ℓ≪ 1,

λj,k(ℓ) = λj,k + (1− 1

K
)ℓλj,k + 2ℓ

∑

m 6=j,k
λj,mλm,k,

leading to the RG equation (5.34).

Strong coupling

At strong coupling, the action describing instanton excitations is given by Eq. (5.43)
reproduced here,

S =
∑

ωm

∑

j

|ωm|
2πKβ

|φj(ωm)|2 − v
∫ β

0
dτ
∑

k

Ôk(τ), (G.6)

with the operators Ôk = e
2i(φk− 1√

M
Φ)

connecting the lattice of minima. Proceeding with
an expansion in powers of v, the calculation is similar as at weak coupling except for the
replacement K → 1

K .
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For M = 3, we note that Ô1Ô2 = Ô†
3. The computation of the third order coefficient

is identical to Eq. (G.5) and the RG equation is given by

dv

dℓ
=

(

1− 4K

3

)

v + 2v2 (G.7)

For M > 3, the first non-zero terms are at third order in v. The two types contributions
one has to take into account are: Ô1Ô2Ô

†
2 = Ô1 and, for M = 4 only, Ô1Ô2Ô3 = Ô†

4. The
computation of the corresponding terms lead to the RG equation [276]

dv

dℓ
=

(

1− 2(M − 1)K

M

)

v + (BM +A4δM,4)v
3 (G.8)

where BM is a positive coefficient, see also Eq. (G.18). Eqs. (G.7) and (G.8) predict that
for all M ≥ 3, the strong coupling fixed point is unstable for K ≤ M

2(M−1) , while for

K > M
2(M−1) , an unstable fixed point (I) emerges at finite v.

G.1.2 RG equations for the M-CKM

Weak coupling

The Hamiltonian obtained after the unitary transformation (5.51) is given by Eq. (5.47),
and can also be written as

Û †HÛ = Hleads{φ̃, θ̃, K̃} −
M
∑

j=1

(

J⊥,j
2
τ+e

i
√
2~wj .r̃j+

√
2
(

1√
M

− K̃Jz
√
M

2

)

Θ̃
+ h.c

)

. (G.9)

We introduce the notation Mz = 1√
M
− K̃Jz

√
M

2 and compute the RG equations for both

J⊥ and Mz.

We proceed with a similar expansion of the partition function using J⊥ as a small
parameter. The contribution of order n is

(

J⊥
2

)n ∫

τ1<...<τn

dτ1...dτn
τnc

∑

n−loops

exp





n,n
∑

j<k

Vj,k



+ h.c., (G.10)

where
∑

n−loops

signify that we sum over all n-uplets (aj) such that
∑

(−1)j ~waj = 0 and

(using Eq. (G.3))

Vj,k = 2
(−1)j+k

K̃

(

M2
z + ~waj . ~wak

)

log(
τk − τj
τc

) (G.11)

The alternating signs take into account the spin operators. Similarly, we increase the
cut-off τc to τ ′c = τce

ℓ, and fuse the operators when needed. To lowest order, only two
consecutive operators can fuse. The most relevant contribution appears when these two
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contributions have the same ~waj . Let us assume that this happens for the lth and lth + 1
operators and define τ = τl+1 − τl < τ ′c and

Vd(τl, τ, al) =
∑

j<l

Vj,l + Vj,l+1 +
∑

j>l+1

Vl,j + Vl+1,j

≈ 2
∑

j 6=l,l+1

(−1)j+l

K̃

(

M2
z + ~waj . ~wal

)

τ∂τl log(
|τl − τj |
τc

)

Integrating over the two variables τl and τ reduces the n-loop to a n-2 loop and conse-
quently, at order n, we have an additional contribution coming from the order n+2,

(

J⊥
2

)2 n
∑

j=0

∑

a

τj+1
∫

τj

dτ ′

τc

τceℓ
∫

τc

dτ

τc
eVd(τ

′,τ,a)

≈
(

J⊥
2

)2 n
∑

j=0

∑

a

τj+1
∫

τj

dτ ′

τc

τceℓ
∫

τc

dτ

τc
1 + Vd(τ

′, τ, a)

≈
(

J⊥
2

)2




Mβ(eℓ − 1)

τc
− 8M

M2
z (eℓ − 1)

K̃

∑

j<k

(−1)j+k log(
τk − τj
τc

)



 ,

where τ0 = 0 and τn+1 = β. While the first term can be ignored, as it corresponds to a
rescaling of the ground state energy, the second term indeed renormalizes the partition
function. Reexponentiation leads to a correction of Vp,q given by

Vp,q → Vp,q −
MJ2

⊥(eℓ − 1)

K
M2
z (−1)p+q log(

τq − τp
τc

) (G.12)

For small ℓ, we have
Mz(ℓ)

2 = M2
z −MJ2

⊥M
2
z ℓ, (G.13)

or
dJz
dl

= J2
⊥

(

1

K̃
− MJz

2

)

, (G.14)

which is the first RG equation. To obtain the RG equations for J⊥, we simply rescale τc
in both the integrals and Vj,k and extract the n dependency. We obtain

Jn⊥ = Jn⊥(ℓ)e−nℓe
−2ℓ

∑

j<k

(−1)j+k

K̃
(M2

z+~waj . ~wak
)

= Jn⊥(ℓ)e−nℓe
n
K̃
ℓ(M2

z+
M−1
M

)

dJ⊥
dℓ

=

(

1− M − 1

MK̃
− M2

z

K̃

)

J⊥ =

(

1− 1

K̃
+ Jz[1−

K̃JzM

4
]

)

J⊥

Strong coupling

In this case, the vicinity of the strong coupling fixed point (S) is governed by the action

S =
∑

ωm

∑

j

|ωm|
2πKβ

|φj(ωm)|2 − v
∫ β

0
dτ
∑

k

Ô
(h)
k (τ), (G.15)
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where the Ô
(h)
k operators, with dimension 2K(M−1)

M , are given in Eq. (5.57). The difference

with the operators Ôk encountered in the topological Kondo model, see Eq. (G.6), is in
the pseudo-spin rotation e−iπτz/M .

For M = 3, Ô
(h)
1 Ô

(h)
2 = −Ô(h)†

3 , where the minus sign stems from the Berry phase of
the spin wavefunction, e−iπτz = −1. The calculation of the RG equation is this almost
identical to (G.5),

dv2
dℓ

= (1− 4K/3)v − 2v2 (G.16)

except for the sign change in the last term. In general for M > 3, the first non-zero
contribution to the RG equation (apart from a linear term) is third order in v. For M = 4,

there is a competition between two contributions, the contraction Ô
(h)
1 Ô

(h)
2 Ô

(h)†
2 = Ô

(h)
1

in which the spin plays no role, leading to the coefficient

B4 = 6

∫ 1

0
dx

[

x2/3 + x−2/3 − 2

(1− x)2
+

(

x

1− x

)2/3

− 1

]

(G.17)

and the contribution Ô
(h)
1 Ô

(h)
2 Ô

(h)
3 = −Ô(h)†

4 , carrying the spin Berry phase, associated to
the coefficient

A4 = 6

1
∫

0

dx
1

x2/3(1− x)2/3
(G.18)

The RG equation takes the form

dv3
dℓ

=

(

1− 3K

2

)

v − (A4 −B4)v
3 (G.19)

with A4 − B4 > 0 such that the spin wavefunction eventually governs the transition. We
obtain a phase diagram similar to M = 4 as explained in the main text.

ForM ≥ 5, only Ô
(h)
1 Ô

(h)
2 Ô

(h)†
2 = Ô

(h)
1 contributes to third order in v. The RG equation

takes the form (5.60) in the main text, exactly the same as in the charge non-degenerate
case Eq. (G.8), and the phase diagram differs from M ≤ 4.

G.2 Kubo approach to conductance

To compute the conductance in the Majorana island, we will use Kubo formula. We
present in this Appendix a short derivation of the Kubo formula for our model, before
an example of application far from charge degeneracy (see for example Ref [258] for an
alternative derivation). We express the conductance as a correlation function of the initial
bosonic field first, and then as a correlation function of the (~k,Φ) fields.

G.2.1 Kubo formula

We start from linear response theory. Given a small perturbation H ′(t) switched on
adiabatically, the change for the average value of the observable A is:

〈∆A(t)〉 =
−i
~

t
∫

−∞

e−η(t−t
′)〈[A(t), H ′(t′)]〉dt′ (G.20)
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with η → 0+. Let CRA,B(t − t′) = − i
~
θ(t − t′)〈[A(t), B(t′)]〉. To compute CRA,B(ω), we

compute another correlation function and do an analytic continuation. Let CA,B(τ) =
−〈TτA(τ)B(0)〉. Starting with:

A(τ) =
1

β

n=+∞
∑

n=−∞
e−iωnτA(iωn) (G.21)

B(0) =
1

β

n=+∞
∑

n=−∞
B(iωn) (G.22)

we obtain:

CA,B(iωn) = −
β
∫

0

dτeiωnτ 1

β2

∑

m,k

e−iωnτ 〈A(iωm)B(iωk)〉 (G.23)

CA,B(iωn) = − 1

β

∑

k

〈A(iωn)B(iωk)〉. (G.24)

In particular,

CȦ,B(iωn) = − 1

β

∑

k

iωn〈A(iωn)B(iωk)〉. (G.25)

The current operator for the wire j is given by e∂tNj , where Nj is the total charge in
the wire. The linear conductance Gj,k, corresponding to the current in the jth wire due

to a potential in the kth wire is
∂〈∆e∂tNj〉

∂Vk
, where Vk is the potential in the wire k. Given

A = eNj and B = eVkNk, we finally obtain the conductance G(ω):

Gj,k(ω) = −e
2

h

∫

dνω〈Nj(ω)Nk(ν)〉 (G.26)

Finally, as we are interested in the DC conductance, we obtain:

G = −e
2

h
lim
ω→0

∫

dνω〈Nj(ω)Nk(ν)〉 (G.27)

As our action is diagonal in the Matsubara frequencies, it simplifies to:

Gj,k = −e
2

h
lim
ω→0

ω〈Nj(ω)Nk(ω)〉 (G.28)

G.2.2 Application for the strong coupling limit far from charge degen-

eracy

For semi-infinite LL wires, N = φ(x=0)
π . We want to express Nj as a function of (~k,Φ),

dual to (~r,Θ).

Gj,k = − e2

π2h
lim
ω→0

ω〈φj(iω)φk(iω)〉 (G.29)

Gj,k = − e2

π2h

M−1
∑

l,m

~wk(l)~wj(m) lim
ω→0

ω〈kl(iω)km(iω)〉, (G.30)
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where ~wk(l) is the lth component of ~wk. The global mode does not intervene as it is pinned
due to charge conservation, and consequently does not contribute. ~k being the dual of ~r,
when the latter are pinned in the strong coupling limit, ~k is free and one obtains:

lim
ω→0

ω〈kl(iω)km(iω)〉 = 2π2Kδl,m, (G.31)

leading to the celebrated conductance:

Gk,j = −2Ke2

h
~wk. ~wj =

2Ke2

h
(

1

M
− δk,j). (G.32)
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