
HAL Id: tel-01661323
https://pastel.hal.science/tel-01661323v1

Submitted on 11 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query rewriting using views : a theoretical and practical
perspective

Ioana Ileana

To cite this version:
Ioana Ileana. Query rewriting using views : a theoretical and practical perspective. Databases [cs.DB].
Télécom ParisTech, 2014. English. �NNT : 2014ENST0062�. �tel-01661323�

https://pastel.hal.science/tel-01661323v1
https://hal.archives-ouvertes.fr

�

�

�

�

�

2014-ENST-0062

EDITE - ED 130

Doctorat ParisTech

T H È S E

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

Ioana ILEANA
le 24 Octobre 2014

Réécriture de requêtes avec des vues :

une perspective théorique et pratique

Directeur de thèse : Bogdan CAUTIS
Co-encadrement de la thèse : Pierre SENELLART

Jury
Mme Angela BONIFATI, Professeur, LIFL, Université Lille 1 et Inria Lille Rapporteur

M. Dan OLTEANU, Associate Professor, Dpt. of Computer Science, Oxford University Rapporteur

Mme Ioana MANOLESCU, Directeur de recherches, LRI, Inria Saclay et Univ. Paris-Sud Examinateur

M. Alin DEUTSCH, Professeur, Dpt. of Computer Science and Electrical Eng., UCSD Examinateur

M. Bernd AMANN, Professeur, LIP6, Université Pierre et Marie Curie Examinateur

M. Fabian SUCHANEK, Maître de conférences, DBWeb, Télécom ParisTech Examinateur

M. Bogdan CAUTIS, Professeur, LRI, Univ. Paris-Sud et Inria Saclay Examinateur

M. Pierre SENELLART, Professeur, DBWeb, Télécom ParisTech Examinateur

TELECOM ParisTech
école de l’Institut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

To Damien, Dad, Mum and Lidia
(certainly the most patient people in the world)

Acknowledgements

I would like to thank my reviewers and jury for accepting to be my reviewers and jury, and thus

committing to all the work and travel (and headache) this status implies. I also thank my PhD

advisors and the DBWeb team in Telecom ParisTech.

This manuscript has undergone an amount of changes, and I owe a tremendous quantity of

improvements and refinements to Angela and Dan’s reviews. Beyond the formal review system,

such feedback allowed me to importantly improve the structure and clarity of my writing, so I

would like to thank them for the huge formative impact of their feedbacks.

I achieved a very significant part of my knowledge during these three PhD years thanks

to Alin Deutsch’s advising and mentoring. Working with Alin has provided me the chance to

dwelve into some of the most interesting topics of my PhD, which I intend to further pursue

in future research work. I would also like to thank Alin, as well as Pierre, Ioana, Fabian and

Nicoleta, for their extensive help and advising regarding my career choices and approach of

academia.

Last but certainly not least, I owe the finish line of this thesis, as all my achievements, to

the constant and faultless support of my family (to whom I dedicate this manuscript) and my

friends.

Abstract
The massive amounts of data available nowadays generate an increasing need for optimizing and

speeding up data search and access. Among the most efficient known accelerators, materialized

views have proven for a long time their benefit in speeding up queries, quite often dramatically.

Using views for decreasing data search and access cost raises however a range of complex prob-

lems, amongst which the question of whether and how existing materialized views can be used

to answer a given query: in other words, the problem of query rewriting using views.

This problem can be further placed in the general framework of query reformulation: given

a query Q expressed against a source schema S, find an equivalent query R formulated against

a target schema T , by exploiting the relationship between S and T . Accordingly, views can

be seen not only as data access accelerators, but more generally as data access models. This is

for instance the case of scenarios such as security-restricted access through views, data pricing,

mediator-like, multi-storage and multi-model architectures.

In this work, we address the problem of query rewriting using views, by adopting both a

theoretical and a pragmatic perspective. In the first and main chapter, we approach the topic of

finding all minimal (i.e. with no redundant relational atoms) conjunctive query reformulations

for a relational conjunctive query, under constraints expressed as embedded dependencies, in-

cluding the relationship between the source and the target schemas. We present a novel sound

and complete algorithm, the Provenance-Aware Chase & Backchase, that solves the minimal

reformulations problem with practically relevant performance. We provide a detailed theoreti-

cal characterization of our algorithm. We further present the optimized implementation and the

experimental evaluation thereof, and exhibit natural scenarios yielding speed-ups of up to two or-

ders of magnitude between the execution of a best view-based rewriting found by a commercial

DBMS and that of a best rewriting found by our algorithm. We generalize the Provenance-Aware

Chase & Backchase towards directly finding minimum-cost reformulations for monotonic cost

functions, and show the performance improvements this adaptation further enables. With our al-

gorithm, we introduce a novel chase flavour, the Provenance-Aware Chase, which is interesting

on its own, as a means of reasoning about the interaction between provenance and constraints.

In the second chapter, we move to an XML context and revisit the previous work of Cautis,

Deutsch and Onose on the problem of finding XPath query rewritings with a single level of

intersection of multiple views. We enrich the analysis of the rewriting problem by showing

its links to the problems of DAG-tree equivalence and union-freeness. We refine the rule-based

rewriting technique proposed by Cautis, Deutsch and Onose to ensure its polynomial complexity

and improve its completeness, and present a range of optimizations on the rewriting procedures,

necessary to achieve practical performance. We provide a complete implementation comprising

these optimizations and a thorough experimental evaluation thereof, showing the performance

and utility of the polynomial rewriting technique.

1

Résumé
La quantité massive de données disponibles de nos jours génère un besoin croissant d’optimisa-

tion et accélération de la recherche et de l’accès à ces données. Les vues matérialisées s’imposent

depuis longtemps en tant qu’accélérateur souvent très important des requêtes. Leur utilisation

engendre toutefois une gamme de problèmes complexes, parmi lesquels la question de savoir si

et comment des vues existantes peuvent être utiles pour répondre à une requête - autrement dit,

le problème de la réécriture de requêtes avec des vues.

Ce problème peut aussi être placé dans le cadre général de la reformulation de requêtes :

étant donnée une requête Q exprimée par rapport à un schéma source S, trouver une requête

équivalente R formulée sur un schéma cible T , en exploitant la relation entre S et T . Dans ce

contexte, les vues peuvent être considérées non seulement comme des accélérateurs, mais de

façon plus générale comme des modèles de l’accès aux données. Ceci est le cas par exemple

dans des scénarios de restrictions de sécurité de l’accès par des vues ou de prix associé aux

données, ou dans les architectures multi-stockage et multi-modèles de données.

Dans ce document, nous adressons le problème de la réécriture de requêtes avec des vues,

en adoptant une perspective à la fois théorique et pratique. Dans le premier et principal cha-

pitre, nous approchons le sujet de la recherche de toutes les reformulations minimales (sans

atomes relationnels redondants) pour une requête relationnelle conjonctive, sous des contraintes

d’intégrité qui incluent la relation entre les schémas source et cible. Nous présentons un nouvel

algorithme, correct et complet, le Provenance-Aware Chase & Backchase, qui résout le problème

des reformulations avec des performances significatives sur le plan pratique. Nous présentons sa

charactérisation théorique detaillée, son implémentation optimisée et son évaluation, montrant

des gains de performance jusqu’à deux ordres de grandeur par rapport à un SGBD commer-

cial. Nous généralisons notre algorithme pour trouver directement des reformulations de coût

minimum pour les fonctions de coût monotones, et montrons les gains de performance de cette

adaptation. Avec notre algorithme, nous introduisons également un nouveau type de chase, la

Provenance-Aware Chase, qui comporte son propre intérêt théorique, en tant que moyen de rai-

sonnement sur l’interaction entre la provenance et les contraintes.

Dans le deuxième chapitre, nous nous plaçons dans un contexte XML et nous revisitons le

travail de Cautis, Deutsch and Onose sur problème de la réécriture de requêtes XPath par un seul

niveau d’intersection de plusieurs vues. Nous étendons l’analyse de ce probleme en montrant ses

connexions avec les problèmes de l’équivalence DAG-arbre et de la union-freeness d’un DAG.

Nous raffinons un algorithme de réécriture proposé par Cautis, Deutsch and Onose pour obtenir

une complexité polynomiale et améliorer sa complétude, et présentons un ensemble d’optimisa-

tions des procedures de réécriture, necessaires pour atteindre des performances pratiques. Nous

fournissons une implementation complète comprenant ces optimizations ainsi que son evalua-

tion éxperimentale extensive, montrant la performance et l’utilité de la technique polynomiale

de réécriture.

2

Contents

Introduction 6

1 A complete yet practical algorithm for finding minimal query reformulations under
constraints 11
1.1 Overview of the Chase & Backchase . 12

1.2 A novel algorithm: the Provenance-Aware Chase & Backchase 19

1.3 Formal presentation and guarantees of ProvC&B 27

1.3.1 Preliminaries: atoms, queries and constraints 28

1.3.2 The Standard Chase . 29

1.3.2.1 Bodies . 29

1.3.2.2 Homomorphisms of bodies 31

1.3.2.3 Standard Chase steps and sequences 32

1.3.2.4 Properties of the Standard Chase 34

1.3.3 The Conservative Chase . 35

1.3.3.1 Skolem terms, sk_bodies and sk_constraints 35

1.3.3.2 Homomorphisms of sk_bodies 40

1.3.3.3 Conservative Chase steps and sequences 42

1.3.3.4 Properties of terminating Conservative Chase sequences . . . 44

1.3.3.5 The Conservative Chase and the Standard Chase 46

1.3.3.6 Termination of the Conservative Chase 51

1.3.3.7 Splitting sk_constraints into sk_unit_constraints 58

1.3.4 The Provenance-Aware Chase . 63

1.3.4.1 Provenance formulae and provenance-adorned sk_bodies . . 63

1.3.4.2 Provenance-Aware Chase steps and sequences 66

1.3.4.3 The Provenance Pick, the Provenance-Aware Chase and the

Conservative Chase . 68

1.3.4.4 Termination of the Provenance-Aware Chase 73

1.3.4.5 The Provenance-Aware Chase and the Standard Chase 74

1.3.5 The Provenance-Aware Chase & Backchase 74

1.4 Implementation . 77

1.5 Experiments . 78

1.6 Mininum-cost reformulations with ProvC&B 84

1.6.1 Cost-based pruned Provenance-Aware Chase steps 85

1.6.2 Cost-based pruned ProvC&B . 86

3

1.6.3 Initial experimental evaluation . 90

1.7 Related work . 91

2 A theoretical and practical approach to finding XPath rewritings with a single-level
of intersection of multiple views 93
2.1 View-based rewritings . 94

2.1.1 XP queries and tree patterns . 94

2.1.2 XP∩−simple , XP∩ , DAG patterns . 95

2.1.3 Pattern satisfiability, containment and equivalence 97

2.1.4 Interleavings . 98

2.1.5 Union-freeness, dominant interleavings and DAG-tree equivalence . . . 99

2.1.6 The view-based rewriting problem for XP∩ 100

2.1.7 A sound and complete rewriting algorithm 100

2.1.8 Interesting XP fragments . 101

2.2 Rewritings, equivalence and union-freeness 102

2.2.1 Rewritings and the DAG-tree equivalence 102

2.2.2 DAG-tree equivalence and union-freeness 102

2.3 A rule-based algorithm for directly constructing the dominant interleaving . . . 103

2.3.1 Global flow of APPLY-RULES . 104

2.3.2 The rewrite rules of APPLY-RULES 104

2.3.3 Complexity of APPLY-RULES . 109

2.3.4 Using APPLY-RULES for union-freeness, equivalence and rewritings . . 112

2.4 Achieving PTIME completeness . 113

2.4.1 Completeness in PTIME for XP∩−simple (XPes) DAGs 113

2.4.2 Completeness in PTIME for XPes queries 115

2.4.3 Completeness in PTIME for XP// akin patterns 117

2.5 Implementation and optimizations . 118

2.6 Experiments . 119

2.6.1 Documents, queries and views . 119

2.6.2 REWRITE vs. EFFICIENT-RW . 120

2.6.3 Rewrite time . 121

2.6.4 Evaluation time . 122

2.6.5 Discussion . 123

2.7 Related Work . 124

Conclusions and future directions 125

A Additional topics 128
A.1 Efficient multi-dimensional indexing (the ACM SIGMOD Programming Con-

test 2012) . 128

A.2 Web source selection for wrapper inference 132

4

B Condensé de la thèse en français 138
B.1 Introduction . 138

B.2 Condensé du premier chapitre . 143

B.3 Condensé du deuxième chapitre . 156

5

Introduction

Data search and access: a pragmatic perspective

We are nowadays surrounded by data: personal and enterprise data, sensor-collected data, mas-

sive amounts of data coming from the Web and social networks. Big data has become a com-

monplace in mainstream vocabulary. With the ever increasing storage and computational tech-

nologies available, big data seems easier and easier to digest, and there is a rising tendency of

taking for granted the resources involved in searching and accessing any piece of data.

The cost is however there, and indeed data search and access comes at a cost, even when

one owns the data. From a plain financial angle, this cost can be seen as the prohibitive price of

storage and processing equipment, or alternatively access fees for various cloud-based services,

when the storage and processing power is outsourced. As soon as resources are limited for

financial purposes, the cost becomes visible as the slowness in the search and access of data:

suddenly, one is facing a long wait for the execution of a medium-sized SQL query over a

medium-sized database. This may come as a surprise for the Google user accustomed to an

instantaneous answer to his/her query over the vast World Wide Web.

It is typically in these settings that the need for optimization in data search and access finds

its way back to the spotlight. One realizes the need for clever algorithms that allow diminishing

storage and transfer and speeding up search, without involving additional resources. Search and

access accelerators like caches, materialized views and indexes come back into focus, after being

shadowed by the fake certitude that querying and accessing (big) data is inherently fast. Any

opportunity for optimization in practice becomes a desired goal: efficient in-memory processing,

polynomial or even less exponential algorithms with efficient and well-adapted implementations.

Materialized views as a data search and access enhancer

Among the search and access accelerators, materialized views and caches have been for a long

time known for their benefit in speeding up queries, quite often dramatically. While the term

views has a database-related connotation, cache is an ubiquitous term nowadays, omnipresent in

topics related to Web servers and clients. Both concepts express the notion of short-circuiting

some costly remote access and/or some costly processing involved in the search of data, by

(locally) materializing pre-computed results.

Using views for decreasing the cost of data search and access raises however a range of

questions, such as which views should be materialized for best access efficiency, and how should

these views be efficiently maintained up-to-date. Furthermore, to achieve a gain in performance

6

by relying on materialized views, the cost of selecting and maintaining them should be such that

it is largely counterbalanced by the speed-up obtained by employing these views for searching

and accessing data. Even when all these issues are dealt with, there remains the paramount

question of whether and how existing materialized views can be used to answer a given query -

in other words, the problem of query rewriting using views.

Rewriting using views and query reformulation

Besides the above classic query optimization scenarios, where the purpose is to accelerate query

execution by relying on previously materialized views, view-based rewriting can be further

placed in the general framework of query reformulation: given a query Q expressed against

a source schema S, find an equivalent query R formulated against a target schema T , by ex-

ploiting the relationship between S and T . Query reformulation further includes several other

problems that have occupied database research and practice for decades, such as physical access

path selection and semantic optimization (e.g. redundant join elimination and other instances of

rewriting queries under integrity constraints).

Accordingly, views can be seen not only as data access accelerators, but more generally

as data access models. For instance, beyond the caching properties, views can also express

secured entry points in a context of security restrictions. In this case, the access through views

is not aimed at because of potential speed-up, but because it becomes the only possible access.

A similar, though more refined setting involves data pricing scenarios, when the access is not

only restricted but furthermore priced differently according to the views employed. Moreover,

mediator-like and multi-storage or multi-model architectures can also be modelled using views

and thus provide a variety of practical settings of query reformulation and view-based rewritings.

Outline and contributions

In this work, we address the problem of query rewriting using views, by adopting both a the-

oretical and a pragmatic point of view. We place an important focus on theoretical analysis,

correctness and complexity; in the same time, we are constantly driven by a pragmatic per-

spective, and many of our theoretical developments stem from the need of achieving practical

performance.

In the first and main chapter of this thesis, we approach the topic of finding minimal
conjunctive query reformulations for relational conjunctive queries, under integrity con-
straints, where these constraints include (but are not limited to) the relationship between the

source and the target schema. A minimal reformulation is such that it does not contain in the

FROM clause elements that are redundant, unnecessary for ensuring equivalence with the to-be-

reformulated query, under the given constraints.

All the reformulation algorithms we are interested in throughout this work are expected to be

sound, that is, to return correct reformulations (equivalent to the input query). In our approach of

the minimal reformulations problem, we further place a major focus on achieving completeness.

In general, for a reformulation algorithm, its completeness (or strong completeness) with respect

7

to a class of solutions means the capacity of finding all reformulations in the given class. The

immediate and central interest of finding all minimal reformulations is that, under reasonable

cost models, the minimum-cost reformulations will always be a subset of the minimal ones.

Completeness is thus clearly desirable for practical scenarios that define a certain measure of

a query as the overall minimum across all its reformulations. For instance, consider the case of

access control enforcement via security views [54, 61], where a query is considered safe only if

it has a total rewriting using a set of safe views. In previous work, the existence of such rewriting

sufficed for the query to be allowed to run (against the base tables, the safe views being virtual).

Let’s refine the scenario by having each view require a certain clearance level, and assume that

an analyst wishes to establish the minimum clearance level required to answer a query so he can

go request it. This involves then finding all possible total rewritings and selecting the minimum-

clearance one(s) among them. The same reasoning can be developed for data pricing [43] sce-

narios, in which the data owner sets the price for several views over his data. Subsequent queries

can then be priced automatically whenever they are determined by the priced views, such that

the query price is that of the cheapest total rewriting. Completeness is also essential in classical

optimization, as the best reformulation among those inspected by an incomplete algorithm can

be significantly worse than the optimum one(s), which a complete reformulation algorithm is

guaranteed to find. Indeed, as our experiments show, even the best reformulation found by a

sophisticated commercial relational optimizer in a natural setting involving materialized views

can execute orders of magnitude slower than an optimum reformulation.

However, given that the particular case of reformulation corresponding to total view-based

rewritings of a query has an NP-hard associated decision problem even in the absence of con-

straints [46], conventional wisdom has held so far that completeness is likely to remain a concept

of mainly theoretical interest. Indeed, for the Chase & Backchase [27], which is the only com-

plete algorithm we are aware of in this context, the search for minimal reformulations does not

scale beyond the low end of the spectrum of practically occurring query and constraint set sizes.

The reason is that, even when there are few actual minimal reformulations for a query, the C&B

inspects a number of candidate reformulations that is often exponential in the size of the query

and number of views, thus launching exponentially many chases. [60] confirms this fact exper-

imentally, then dedicates the bulk of the results to heuristics that dramatically reduce the search

space for minimal reformulations by trading completeness for search speed. Similar trade-offs

are adopted by all other existing implementations for query reformulation, including the opti-

mizers of relational DBMSs and the follow-up C&B -based implementations for XML query

reformulation in [29, 57, 70].

In this work, we challenge conventional wisdom and hardness results by presenting a novel
sound and complete algorithm, the Provenance-Aware Chase & Backchase, that solves the

minimal reformulations problem with practically relevant performance. We provide its de-
tailed theoretical characterization and its optimized implementation. We further present

its experimental evaluation, and exhibit natural scenarios yielding speed-ups of up to two or-

ders of magnitude between the execution of a best view-based rewriting found by a commercial

DBMS and that of a best rewriting found by ProvC&B (which the DBMS misses because of

incomplete reasoning about reformulations). We further show how to adapt our algorithm to-

8

wards directly finding minimum-cost reformulations for monotonic cost functions, and the

performance gains this adaptation can further induce.

The Provenance-Aware Chase & Backchase transforms the standard Chase & Backchase

algorithm by employing a much more directed, goal-oriented technique for the search of refor-

mulations. The main reason for the performance achieved by ProvC&B is the fact that the

potentially exponential number of chases in the original Chase & Backchase is replaced in

the ProvC&B by a single chase, employing a novel chase technique, the Provenance-Aware
Chase. As its name implies, the Provenance-Aware Chase is a chase procedure that employs

provenance instrumentation, such that the provenance annotations it produces and maintains

reflect the minimal reformulations we are interested in. The particular provenance flavour em-

ployed corresponds to the minimal-why provenance, introduced for a different purpose in [14].

The design of the Provenance-Aware Chase has been technically challenging, as the standard

chase is not directly suited for provenance instrumentation, creating the need for the design

of an additional, provenance-agnostic chase flavour, which we call the Conservative Chase.

In its statement as the Conservative Chase with provenance annotations, besides its usage in

ProvC&B , the Provenance-Aware Chase becomes interesting on its own, as a means of reason-
ing about the interaction between provenance and constraints.

In the second chapter of this thesis we move to an XML context and revisit the previous

work by Cautis, Deutsch and Onose, presented in [16] and detailed in [56], on XPath rewrit-
ings using a single level of intersection of multiple views: that is, rewritings where one first

navigates inside the views, then intersection occurs, and then potential additional navigation

may be applied. The work we revisit provides a complexity analysis for the rewriting problem

in this setting, as well as a sound and complete algorithm for its resolution. Compared to the

setting analysed in the first chapter, the completeness concept targeted is one of weak complete-

ness: an algorithm is complete in this case if it finds at least one reformulation in a given class

C whenever one exists. Note that a weakly complete reformulation algorithm can serve as a

decision procedure for the problem of existence of a reformulation from C, but goes beyond

the requirements of the decision problem by outputting the reformulation. In the case of the

XPath rewriting setting we revisit, this behaviour is desirable and useful for instance for sce-

narios of security-restricted access through views, as those mentioned above (without any cost

refinement), where the access through views is the only possible access, and it is essential to find

such an access as soon as one is available.

Our main motivation for the work presented in the second chapter is that of investigating

and achieving practical performance. Following the proven hardness results, [16] presents and

[56] details the usage of a rule-based procedure for inferring an additional sound algorithm

that solves the rewrite problem, as well as conditions for this sound algorithm to become com-

plete. We refine this rule-based procedure to ensure its polynomial complexity and enhance the
completeness conditions of the corresponding rewriting algorithm. We further present a range
of optimisations of the rewriting techniques, necessary in order to achieve practical perfor-
mance. We provide a complete implementation of the rewriting techniques comprising these

refinements and optimisations, and further present a thorough experimental evaluation thereof,

9

which shows the practical performance and benefits of the refined and optimized polynomial

rewriting procedure.

As a side effect of our review of the work in [16] and [56], we also enrich the analysis of
the rewriting problem by showing, structuring and clarifying its connections to the problem of

deciding the equivalence between a query expressed by a DAG pattern and a query expressed by

a tree pattern, and further to the problem of union-freeness, i.e. finding any tree pattern query

equivalent to a DAG pattern query.

The first chapter of this thesis builds on, refines and extends our paper [42]: Ileana, Cautis,
Deutsch, Katsis, Complete yet practical search for minimal query reformulations under con-

straints, SIGMOD Conference 2014, 1015-1026.

Our cost-based refined version of ProvC&B as described in the first chapter is further in-

tended to provide a main brick of the ESTOCADA system, presented in the paper (currently

under review for CIDR 2015): Bugiotti, Bursztyn, Deutsch, Ileana, Manolescu, Invisible

Glue: Scalable Self-Tuning Multi-Stores.

Finally, the second chapter refines and extends our contribution to the journal paper (cur-

rently under review for TCS): Cautis, Deutsch, Ileana, Onose: Rewriting XPath queries using

view intersections: tractability versus completeness.

Other topics explored during this PhD

While this manuscript’s main focus is on view-based rewritings, this PhD comprises additional

work on several other topics belonging to the broader range of query accelerators.

The main two such topics, explored in detail and presented in Appendix A, are related to in-

dexing. The first one, provided by the ACM SIGMOD Programming Contest 2012, involves
the construction of a multidimensional, high-throughput, in-memory index structure, support-

ing common database operations such as point and range queries as well as data manipulation,

in a highly concurrent setting consisting of many client threads operating queries and updates

in parallel. We present in Section A.1 our work on this topic, which has been rewarded with the

second prize in the contest.
The second indexing-related topic concerns structured Web sources indexing and selec-

tion forWeb wrapper inference. StructuredWeb sources are sets of web pages exhibiting similar,

structured contents, such as the Amazon book pages. Web wrapping involves the extraction of

the pages’ relevant data by relying on their common structure. Web source selection supposes

a user-provided lightweight description of the type of data that is targeted and its usage for se-

lecting, via an index-based structure, a subset of previously crawled sources matching this data

requirement. We present in Section A.2 our work on this topic, developing previous work by

Derouiche, Cautis and Abdelssalem, and supported by the Arcomem project.

Finally, a third topic explored is one that spans both indexing strategies and view-based

rewriting, and concerns the problem of view indexing to the purpose of speeding-up the rewrit-

ing computation. While currently in an early development stage, we believe this topic to be of

interest and worth pursuing in future work, as a means of providing complementary performance

enhancements to our reformulation approaches presented in this manuscript.

10

Chapter 1

A complete yet practical algorithm for
finding minimal query reformulations
under constraints

We present in this chapter the Provenance-Aware Chase & Backchase algorithm (ProvC&B)

for finding minimal conjunctive query reformulations for conjunctive queries, under constraints.

The ProvC&B revisits the classic Chase & Backchase (C&B) algorithm [27] with a clear and

simple aim: preserve completeness (a paramount feature of the original C&B) but at practically

relevant performance (which the original C&B fails to achieve).

We recall the problem of query reformulation, as presented in the introductory section: given

a queryQ, formulated against a source schema S, find an equivalent queryR formulated against

a target schema T , by exploiting the relationship between S and T . The authors of theC&B start

from the observation that in an important range of instances of the query reformulation problem,

the relationship between the source and the target schemas can be expressed by constraints.

They then present a uniform and generalized solution to such problems, in the form of the C&B

algorithm, which finds all the minimal reformulations under a set of constraints that includes,

but is not limited to, the relationship between the schemas S and T . The C&B applies to rela-

tional conjunctive queries (select-project-join-rename under set semantics) as the language for

specifying the input query and the reformulations, and constraints expressed as embedded impli-

cational dependencies [1, 32]. These include essentially all of the naturally-occurring integrity

constraints on relational databases (keys, foreign keys, referential integrity, inverse relationships,

functional, join, inclusion and multi-valued dependencies, etc.), and are also ideally suited for

capturing physical access paths typically used in query optimization (e.g. materialized views

expressed as conjunctive queries, indexes, access support relations, gmaps) [27].

In a nutshell, the C&B is based on constructing a canonical reformulation called a universal

plan (because it incorporates redundantly all T -schema elements relevant to the original query),

then searching for reformulations among the candidates given by the subqueries of the universal

plan. The purpose of the search through the subqueries of the universal plan is to eliminate

its redundancy in all possible ways, thus obtaining minimal reformulations, i.e. reformulations

11

containing no elements in the FROM clause (relational atoms) that are redundant for the equiva-

lence to hold under the constraints. The inspected subqueries are checked for equivalence under

the constraints to the original query using the classical chase procedure [1], which in essence

adds to a query elements that are implied by the constraints. The C&B was shown in [31] to

be complete, that is to return all equivalent minimal reformulations of a query under the given

constraints. Unfortunately, its completeness does not scale beyond the low end of the spectrum

of practically occurring query and constraint set sizes. The main reason is that, even when there

are few actual minimal reformulations for a query, the C&B inspects a number of candidate

subqueries of the universal plan that is often exponential in the size of the query and number of

views, thus launching exponentially many chases.

In the work presented hereafter, we revisit theC&B with the aim of preserving completeness

while further achieving practically relevant performance. Our complete query reformulation al-

gorithm, ProvC&B , constructs the same universal plan as the C&B , but employs a novel, much

more goal-directed search technique, that inspects up to exponentially fewer candidates than the

C&B . This search is based on a novel Provenance-Aware Chase, which tracks provenance in-

formation that serves for tracing the added query elements back to the universal plan subqueries

which are responsible for them being added. This allows ProvC&B to directly "read off" the

minimal reformulations from the result of a single chase of the universal plan, saving the expo-

nentially many chases of its subqueries, which the original C&B would perform. We further

show that with the Provenance-Aware Chase, the cost of running a complete search for minimal

reformulations can be reduced in practice to a small fraction of typical query execution times,

and the benefits are potentially huge in practically relevant settings.

The design of the Provenance-Aware Chase was technically challenging, as it turns out that

the standard chase is not well-suited for instrumentation towards tracking the required prove-

nance. Directly instrumenting the standard chase turns out to compromise the soundness of the

resulting reformulation algorithm (i.e. it would return non-equivalent reformulations). We thus

design the Provenance-Aware Chase based on a different, provenance-agnostic chase flavour,

which we call the Conservative Chase and which, as we formally show, is able to provide the

required sound behaviour, thus ensuring the overall correctness of ProvC&B .

The remainder of this chapter is organised as follows: we recall theC&B in Section 1.1, then

present a high-level overview and a set of essential intuitions on the ProvC&B in Section 1.2.

We formally describe the ProvC&B in Section 1.3, and present its theoretical soundness and

completeness guarantees, as well as a detailed description of the chase procedures it relies on.

We present the implementation of ProvC&B in Section 1.4 and its evaluation in Section 1.5.

We further show how to efficiently adapt ProvC&B to compute minimum-cost reformulations

by introducing incremental cost-based pruning in Section 1.6. We discuss related work in Sec-

tion 1.7.

1.1 Overview of the Chase & Backchase

We dedicate this section to recalling the C&B algorithm. We start by recalling the main con-

cepts it relies on:

12

Queries and subqueries. The C&B algorithm applies to queries and reformulations expressed

as select-project-join-rename (SPJR) queries with set semantics (a.k.a. conjunctive queries). In

other words, these are SQL queries (with no nesting and no aggregation) comprising a SELECT

DISTINCT clause, a FROM clause and a WHERE clause consisting exclusively of equalities

("=") among column names or between column names and constants, combined using "AND".

We refer to the variables in the FROM clause of such query as tuple variables. We call (pro-

jection) attributes the items in the WHERE clause of the form r.A, where R r is in the FROM

clause and A is a column of the table R.

Given a conjunctive query Q as above and a subset of its tuple variables, we will in the fol-

lowing denote by the subquery of Q induced by the given set of tuple variables, the conjunctive

query Q′ obtained as follows:

• the FROM clause ofQ′ contains all the FROM clause elements ofQ corresponding to the

tuple variables that induce Q′

• the WHERE clause of Q′ comprises the (explicit or implicit) equalities in the WHERE

clause of Q that use attributes of Q′’s FROM clause elements.

• the SELECT DISTINCT clause of Q′ contains the same attributes as the SELECT DIS-

TINCT clause of Q, potentially replaced by attributes of Q′, such that Q′ is syntactically
correct and any replacement attribute is in the same equivalence class with the original

one, according to the reflexive, symmetric and transitive closure of the equalities in the

WHERE clause of Q.

Remarks. Note first that several replacements of attributes for the third point above might be

possible. The resulting queries being equivalent, we will hereafter refer to the subquery induced

by a subset of tuple variables. Note also that the third point above cannot be achieved for any

subset of the tuple variables of Q. Indeed, the construction of a valid SELECT DISTINCT

clause for Q′ is achievable iff for any attribute in the SELECT DISTINCT clause of Q, there

is at least one other member in its equivalence class such that it is an attribute of Q′’s FROM

clause.

Given a subset of the tuple variables of Q for which one cannot construct a syntactically

correct subquery, by a slight abuse of terminology, and to the purpose of ensuring the uniformity

of the developments hereafter, we will refer to such non-valid induced subquery as unsafe.

Example 1.1.1. Consider the schema R(A), S(C,D), T (E) and the query:

Q : select distinct r.A from R r, S s, T t where s.C = r.A and t.E = s.D

Then the query:

Q1 : select distinct s.C from S s, T t where t.E = s.D

is a subquery ofQ, induced by s and t, and is also a safe subquery. Note the replacement of r.A
by s.C in the SELECT clause, which is possible because of the corresponding equality in the

13

WHERE clause of Q.

On the other hand, the subquery Q2 induced by t alone is unsafe. Indeed, the only attribute of

Q2, t.E, is not equated directly or indirectly to r.A in the WHERE clause of Q.

Constraints. The C&B algorithm takes as input constraints expressed as embedded dependen-

cies [1], thus comprising TGDs (tuple generating dependencies) and EGDs (equality generating

dependencies), and having the following general form (see Example 1.1.2 for an example of

such constraints):

∀r1, . . . , rm, r1 ∈ R1 ∧ · · · ∧ rm ∈ Rm ∧ E1 ⇒ ∃s1, . . . , sn, s1 ∈ S1 ∧ · · · ∧ sn ∈ Sn ∧ E2

where R1, . . . , Rm, S1, . . . , Sn are relations in S ∪ T , the membership predicates ri ∈ Ri par-

alleling the contents of the FROM clause of an SQL query, and E1 and E2 are conjunctions

of equalities on the attributes of r1 ∈ R1, . . . , rm ∈ Rm, respectively r1 ∈ R1, . . . , rm ∈
Rm, s1 ∈ S1, . . . , sn ∈ Sn, paralleling the contents of the WHERE clause of a query. Intu-

itively, such constraints enforce the fact that if the tuples r1, . . . , rm exist in a database (in the

corresponding R1, . . . , Rm tables) and respect the conditions of equality in E1, then the tuples

s1, . . . , sn must also exist in the database (in the corresponding tables) and the conditions of E2

must be verified as well. If the set of tuple variables si is empty then the constraint is said to be

an EGD (it only enforces equalities on the tuples ri, as does for instance a key constraint), else

the constraint is a TGD. Section 1.3 further provides a detailed description of constraints, their

normalized form and their usage throughout our theoretical developments.

Equivalence of queries under constraints. We write D |= C if a database instance D satisfies

all the constraints in a set C. A query Q1 is contained in query Q2 under the set C of constraints

(denoted Q1 ⊑C Q2) if and only if Q1(D) ⊆ Q2(D) for every database D |= C, where Q(D)
denotes the result of Q on D. Q1 is equivalent to Q2 under C (denoted Q1 ≡C Q2) if and only

if Q1 ⊑C Q2 and Q2 ⊑C Q1.

Reformulations and minimal reformulations. Let S and T be two relational schemas and C a

set of constraints comprising the relationship between S and T . A T -reformulation under C of

a query Q formulated against S (that is, mentioning only relations/tables from S in the FROM

clause) is a query R formulated against T , such that Q ≡C R. A reformulation is C-minimal if

it contains no elements in the FROM clause that are redundant under the constraints C, i.e. no

such element can be removed while preserving equivalence (under C) to the original query.

We further present the C&B by showing its behaviour on an example [26] of query refor-

mulation. 1.

1To ensure readability, the example presents a simple setting of query reformulation, namely that of total rewriting

of queries using materialized views, without integrity constraints besides those relating the source and the target

schema. Examples including additional integrity constraints are given in Section 1.5.

14

Example 1.1.2. Assume that a software company stores some of its internal information in the

following schema:

R(A,B,C), S(C,D), T (D,E).

The R table shows software engineers’ assignment to teams, as tuples engineer id(A), engi-

neer role(B), team id(C). One software engineer can participate in several teams and possibly

hold several roles in a given team. The S table represents teams’ participation on products, as

tuples team id(C), product id(D). A team can of course work on several products, and several

teams may collaborate on a given product. Finally, the T table lists the high priority production

incidents as tuples product id(D), incident id(E).

To achieve rapid incident resolution, the QA manager needs to email all the engineers that

could help fix the incidents. The list of these engineers is determined by issuing the following

query2

Q : select r.A from R r, S s, T t where r.C=s.C and s.D=t.D,

Now assume that the following views have been materialized:

VR(A,C): select r.A, r.C from R r

VS(C,D): select s.C, s.D from S s

VRS(A,D): select r.A, s.D from R r, S s where r.C=s.C

VT (D,E): select t.D, t.E from T t

VR shows engineers’ participation in teams, regardless of their role. VRS lists every engi-

neer’s participation on products. It is easy to see that

R1: select vr.A from VR vr, VS vs, VT vt where vr.C=vs.C and vs.D=vt.D
R2: select vrs.A from VRS vrs, VT vt where vrs.D=vt.D

are equivalent rewritings of Q using the views (these are total rewritings, as they use no base

schema tables). Also, each rewriting is minimal, in the sense that none of their FROM clause

elements can be removed while preserving equivalence to Q. Note that given a choice of such

FROM clause elements, the equalities among their attributes are uniquely determined for the

resulting query to be a reformulation.

The C&B algorithm analyses the above problem as an instance of the reformulation prob-

lem, for which the source schema is the schema against which the query Q is formulated (tables

R, S, and T in this example), and the target schema is the schema of the materialized views

(tables VR, VS , VRS and VT). The set C of dependencies relating the two schemas is obtained by

unioning the set CI of integrity constraints (empty in our example) with the set CV of embedded

dependencies expressing the set V of view definitions. These embedded dependencies are all

TGDs and are presented below. For each of the view definitions, two TGDs are produced, a

2Since all queries in this paper are interpreted under set semantics, we systematically drop the DISTINCT key-

word for conciseness.

15

forward one (denoted by the letter c) and a backward one (denoted by the letter b). Note that

the backward constraints are not full TGDs, that is, they present, right of the implication arrow,

attributes that are undetermined, for instance the r.B attribute in the case of bVR
.

cVR
: ∀r, r ∈ R → ∃vr, vr ∈ VR ∧ vr.A = r.A ∧ vr.C = r.C

bVR
: ∀vr, vr ∈ VR → ∃r, r ∈ R ∧ r.A = vr.A ∧ r.C = vr.C

cVS
: ∀s, s ∈ S → ∃vs, vs ∈ VS ∧ vs.C = s.C ∧ vs.D = s.D

bVS
: ∀vs, vs ∈ VS → ∃s, s ∈ S ∧ s.C = vs.C ∧ s.D = vs.D

cVRS
:∀r, s, r ∈ R ∧ s ∈ S ∧ r.C = s.C → ∃vrs, vrs ∈ VRS ∧ vrs.A = r.A ∧ vrs.D = s.D

bVRS
:∀vrs, vrs ∈ VRS → ∃r, s, r ∈ R ∧ s ∈ S ∧ r.A = vrs.A

∧ s.D = vrs.D ∧ r.C = s.C
cVT

: ∀t, t ∈ T → ∃vt, vt ∈ VT ∧ vt.D = t.D ∧ vt.E = t.E
bVT

: ∀vt, vt ∈ VT → ∃t, t ∈ T ∧ t.D = vt.D ∧ t.E = vt.E

The C&B algorithm relies on the chase procedure, which essentially adds to a query the

redundant elements implied by the constraints. This is accomplished by repeatedly applying a

syntactic transformation called a chase step. To describe it, we introduce some terminology. We

call relational atoms the membership predicates occurring in the constraints (e.g. r ∈ R in bVR

in Example 1.1.2) and use the same name for the variable bindings occurring in the FROM clause

of a query (e.g. R r in query Q in Example 1.1.2) because they express the same concept with

different syntax. We call equality atoms the equalities occurring in constraints or the WHERE

clause of a query. The premise of a constraint is the set of atoms left of the implication arrow,

while the conclusion is the set of atoms to its right.

The chase step checks if the premise dP of a constraint d ∈ C matches into the query, in

which case the query is extended with atoms constructed from the conclusion dC . The match is

a function h from the premise variables to the query variables, which maps the premise atoms

into query atoms. This function is known as a homomorphism [17]. The extension of the query

involves adding to the FROM clause the relational atoms from dC (with fresh variable names

to avoid clashes with existing variables in the FROM clause) and to the WHERE clause the

equalities from dC (occurrences of premise variables are replaced by their image under h). If

the standard chase considers that these atoms already exist in the query (i.e. a homomorphism

extension exists), then the chase step is said to not apply, and it turns into a no-op3.

Example 1.1.3. We illustrate a chase step of query Q from Example 1.1.2 with constraint cVRS
.

The identity mapping on the premise variables matches the relational atoms r ∈ R and s ∈
S and the equality atom r.C=s.C into, respectively, the first and second relational atoms in

Q’s FROM clause and the first equality atom in its WHERE clause. The chase step adds the

conclusion atoms to Q, yielding:

3In general, when chasing with EGDs, there may exist a third case, besides application and non-application: a

chase step with an EGD may fail if it equates explicitly or implicitly two distinct constants. We consider in the

following only input comprising a to-be-reformulated query and a set of constraints that are compatible, that is, such

failing of a chase step may not occur. Alternatively, when one failing step is encountered in a chase sequence in the

C&B , one could conclude directly to the non-existence of reformulations.

16

Q′ : select r.A
from R r, S s, T t, VRS vrs
where r.C=s.C and s.D=t.D and vrs.A=r.A and vrs.D=s.D.

The result of chasing a queryQwith a set of constraints C is obtained by applying a sequence

of chase steps until the query can be no longer extended. We denote this result with QC .4 The

C&B algorithm proceeds in two phases:

1. Chase: The input query Q is chased with the constraints C, to obtain a chase result QC .
Next, the universal plan U is constructed by restricting QC to schema T , i.e. by keeping

only T-elements in the FROM clause and the corresponding equalities in the WHERE

clause.

2. Backchase: This phase checks the subqueries of the universal plan U for equivalence

(under C) to Q. The equivalence check is performed according to a classical result [1]: it

involves chasing each subquery sq and checking that Q has a containment mapping into

sqC . A subquery is in the result set of the C&B if it respects this equivalence check and

furthermore it is minimal.

Example 1.1.4. The chase phase. When chasingQ with C = CV , the only chase steps that apply

involve cVR
, cVS

, cVT
, cVRS

, yielding the chase result:

QCV : select r.A
from R r, S s, T t, VR vr, VS vs, VT vt, VRS vrs
where r.C=s.C and s.D=t.D and vr.A=r.A and vr.C = r.C and vs.C=s.C

and vs.D=s.D and vt.D=t.D and vt.E=t.E and vrs.A=r.A and vrs.D=s.D

Restricting QCV to the view schema yields the universal plan5:

U : select vr.A
from VR vr, VS vs, VT vt, VRS vrs
where vr.C=vs.C and vs.D=vt.D and vr.A=vrs.A and vs.D=vrs.D

The backchase phase. In this phase, the subqueries of U are inspected. Notice that R1, R2

above are among them, being induced by the sets of tuple variables {vr, vs, vt}, respectively
{vrs, vt}. To find out that R2 is equivalent to Q, the C&B first chases R2 with CV . The only

applicable chase steps involve bVRS
, bVT

, yielding the result:

4While the chase is not guaranteed to terminate in general, we confine ourselves here to terminating chases,

which yield a finite result. It is well-known that the resulting query is not necessarily unique, as it depends on the

non-deterministic choices made during the chase sequence among simultaneously applicable chase steps. However,

the result is unique up to equivalence [1], which suffices for our purposes. We will therefore refer to "the" chase

result hereafter.
5Equalities of terms involving view variables that were implicit in QCV are made explicit in U , by taking the

transitive closure of the equality relation.

17

RCV2 : select vrs.A
from VRS vrs, VT vt, R r, S s, T t

where vrs.D=vt.D and r.A=vrs.A and s.D=vrs.D and s.C= r.C and t.D=vt.D and t.E=vt.E

Since the identity mapping on variables is a containment mapping from Q to RCV2 , R2 is

equivalent to Q, and thus a rewriting. R2 is moreover minimal, since none of its subqueries is

a rewriting of Q (the backchase checks this by trying the subqueries). R2 is therefore output

by the C&B algorithm. R1 is discovered analogously. It turns out that there are no other

minimal rewritings of Q. The backchase phase determines this by systematically checking the

other subqueries of U , but discarding them as not being equivalent to Q, or not being minimal.

For instance, the subquery

sq: select vr.A from VR vr, VT vt

is not a rewriting of Q because equivalence doesn’t hold, and the subquery

sq′: select vrs.A from VRS vrs, VS vs, VT vt
where vrs.D=vs.D and vs.D=vt.D

is a rewriting but is not minimal, since by removing the atom VS vs from the FROM clause

one obtains R2 which is itself a rewriting, therefore the VS vs is redundant, unnecessary for

equivalence.

The fact that rewritings R1 and R2 in Example 1.1.2 are discovered among the subqueries

of U is not accidental. In [27], it was shown that all minimal rewritings ofQ are (isomorphic to)

subqueries of U , and this result was extended to the presence of integrity constraints expressed

as embedded dependencies, as long as they ensure terminating chases, in [31].

Note that, as further emphasized in Section 1.3, for arbitrary sets C of constraints, the chase

procedure is not guaranteed to terminate. One of the least restrictive and most referenced con-

ditions on C known to date, that is sufficient to ensure chase termination regardless of the input

query Q, is called weak acyclicity [33].

Practical performance of the C&B . [60] describes the first C&B implementation and

identifies the backchase phase as the practical performance bottleneck; this is due to the ex-
ponentially many subqueries of the universal plan that are chased so as to be checked for

equivalence with the original query. To improve performance, the follow-up work then proposes

techniques for pruning the search, the only completeness-preserving pruning technique being

the one sketched in [60] and detailed in [59]. This technique boils down to simply enumerating

subqueries of the universal plan U in a bottom-up fashion, starting with all single-atom sub-

queries, next with two-atom subqueries, etc, pruning thus subqueries that are known to be not

minimal because they already include a minimal reformulation (such as sq′ in Example 1.1.4).

The pruning achieved by the above strategy, in turn, although beneficial, still does not avoid
the chase of a potentially exponential number of subqueries (obviously, at least all those

subqueries with less relational atoms then the smallest minimal reformulation will be chased).

18

Moreover, if no reformulations exist, then no pruning can be applied and all the subqueries of

the universal plan are chased. To avoid the unnecessary effort in this case, [60] proposes to first

check that a rewriting exists. This check is based on the property that a reformulation exists

iff the universal plan is itself a reformulation - that is, if Q has a containment mapping into the

result of chasing U with C.

Example 1.1.5. Continuing with Example 1.1.4, a possible chase sequence of U with CV in-

volves, in order, chase steps with bVRS
, bVR

, bVS
and bVT

, yielding

UCV : select vr.A
from VR vr, VS vs, VT vt, VRS , vrs, R r1, S s1, R r2, S s2, T t

where vr.C=vs.C and vs.D=vt.D and vr.A=vrs.A and vs.D=vrs.D and r1.A=vrs.A
and s1.D=vrs.D and r1.C=s1.C and r2.A=vr.A and r2.C=vr.C
and s2.C=vs.C and s2.D=vs.D and t.D = vt.D and t.E = vt.E

There exist two containment mappings from Q to UCV , namely h1 = {r 7→ r1, s 7→ s1, t 7→
t} and h2 = {r 7→ r2, s 7→ s2, t 7→ t}. Therefore at least one rewriting exists, and one can

further examine the universal plan subqueries in search of minimal rewritings.

Even with the above improvement, the bottom-up search strategy fails to achieve practi-
cally relevant performance, due essentially to the same problem of a large number of chases.

Moreover, and unfortunately, among those subquery chases that are in cause for the decrease

in performance, many turn out to be fruitless, because after chasing no containment mapping

is found, hence the subquery is (expensively) chased only to be discarded by the absence of a

mapping. Moreover, one can note a high degree of redundant chasing, of the atoms and groups

of atoms occurring in common within distinct subqueries. By construction of the C&B , this

redundancy cannot be avoided.

Example 1.1.6. In Example 1.1.2, the bottom-up search strategy will prune the superqueries of

R1, R2, i.e the subqueries induced by vr, vrs, vt and vs, vrs, vt, as well as the universal plan

itself. Unsafe subqueries (e.g. those induced by vs, vt, and vs, vt) will also be pruned, since

only safe rewritings are of interest. However, the following 7 subqueries of U (induced by): vr;
vrs, vr, vs; vr, vt; vr, vrs; vs, vrs; vr, vs, vrs will all be fruitlessly chased, only to discover that

they are not rewritings of Q. Furthermore, the atom VT vt is redundantly chased multiple times

(with U to determine the existence of a rewriting, with R1 and R2 etc.).

1.2 A novel algorithm: the Provenance-Aware Chase & Backchase

We dedicate this section to showing a different and muchmore efficient approach of the backchase

phase, and to presenting a high level overview of the resulting novel reformulation algorithm,

the Provenance-Aware Chase & Backchase.

Indeed, we will sketch in the following (and demonstrate with our experimental evaluation)

how, by our new strategy, the performance of a complete search for minimal reformulations can

be significantly more improved than just by the naive bottom-up strategy and the corresponding

pruning. The essential way of achieving such performance improvement is that of replacing

19

the potentially exponential number of subquery chases with a single chase of the universal
plan.

To ensure a sound and complete reformulation algorithm, this single chase should in turn be

able to retain all the relevant effect of the individual subquery chases. To achieve such behaviour,

we will thus instrument this chase with provenance annotations, whose final purpose will be to

reflect the minimal reformulations, that is, the subqueries of the universal plan that turn out

to be (minimally) equivalent to Q. The ability to maintain and propagate in an unexpensive

fashion such provenance information during a single chase of the universal plan, would then

spare the exponentially many chases of its subqueries, which constitute the performance issue

in the C&B . By design, such approach will also avoid the fruitlessness and redundancy in

subquery chases.

By attaching provenance annotations to the atoms added during the chase, our goal will be

to identify, for each added atom, the parts of the universal plan (the original T-schema atoms in

the universal plan) that are responsible for creating the atom. Our annotations will then further

allow, once the annotated chase has finished, the minimal reformulations to be directly "read-

off", by putting together individual atom annotations, and thus obtaining the required minimal

subqueries. The following example sketches the intuition behind this approach:

Example 1.2.1. We revisit Example 1.1.5 and show again the atoms resulting from the chase

of the universal plan, this time adding their corresponding provenance annotations in square

brackets. The view atoms originally in the universal plan are annotated with their correspond-

ing (unique) tuple variables. The atoms corresponding to relations R, S and T are annotated

according to the view atom that, by means of a corresponding chase step, was responsible for

introducing them:

UCV : select vr.A
from VR vr[vr], VS vs[vs], VT vt[vt], VRS vrs[vrs],

R r1[vrs], S s1[vrs], R r2[vr], S s2[vs], T t[vt]
where vr.C=vs.C and vs.D=vt.D and vr.A=vrs.A and vs.D=vrs.D and r1.A=vrs.A

and s1.D=vrs.D and r1.C=s1.C and r2.A=vr.A and r2.C=vr.C
and s2.C=vs.C and s2.D=vs.D and t.D = vt.D and t.E = vt.E

Recall the two containment mappings that we have shown from Q to UCV , h1 comprising

r1, s1 and t, and h2, comprising r2, s2 and t. The provenance annotations and these mappings

then allow reading off minimal reformulations as follows: the first image of Q puts together

the annotations vrs (two times, redundantly) and vt. Note how these correspond to the tuple

variables inducing the rewriting R2. The second mapping provides the rewriting R1 as the tuple

variables vr and vs and vt.

Note how a single chase of the universal plan followed by finding the containment mappings

fromQ to UCV (steps that are already carried out in any efficient implementation of the original

C&B , to verify the existence of a reformulation) have allowed us to directly read-off all the

minimal reformulations available.

Furthermore, we have avoided the chases of these reformulations, as well as the fruitless

chases of the 7 subqueries listed in Example 1.1.6. Note also how the VT vt atom has been chased

20

only once, producing the T t[vt] atom whose provenance is then read through the mappings.

Finally, note how provenance annotations are simply copied from the premise to the added

conclusion.

Provenance-Aware Chase (pa-chase). The idea of the developments hereafter is thus the re-

placement of the large number of isolated chases of the subqueries of the universal plan with a

single chase, which captures via provenance the C&B -relevant effect of the isolated chases of

the U -subqueries. As sketched in Example 1.2.1, the pa-chase starts by annotating each original

relational atom of universal plan U with a provenance term corresponding to the tuple variable

of this atom, and thus uniquely identifying each original relational atom in the universal plan.

Every atom introduced during the pa-chase is further annotated with a provenance formula.

Provenance formulae are DNF boolean formulae, constructed from provenance terms using log-

ical conjunction and disjunction. Indeed, recall that a subquery of the universal plan is uniquely

induced by a subset of the relational atoms of the universal plan. These atoms correspond in turn

to provenance terms. A provenance formula in the form of a conjunction of terms then specifies

the unique subquery of the universal plan that is induced by these terms. A disjunction expresses

alternative such subqueries leading to the construction of the given atom.

Once the universal planU is pa-chased into resultU ′, to find minimal reformulations, we first

compute the set H of all containment mappings from Q to U ′. For each containment mapping,

we further compute the provenance formula of its image, which is defined as the conjunction

of the individual atoms’ formulae. We then produce the DNF form of the disjunction of the

formulae corresponding to images of these mappings.

Example 1.2.2. Recall the result of the pa-chase of the universal plan in Example 1.2.1, and

note the provenance terms.

UCV : select vr.A
from VR vr[vr], VS vs[vs], VT vt[vt], VRS vrs[vrs],

R r1[vrs], S s1[vrs], R r2[vr], S s2[vs], T t[vt]
where vr.C=vs.C and vs.D=vt.D and vr.A=vrs.A and vs.D=vrs.D and r1.A=vrs.A

and s1.D=vrs.D and r1.C=s1.C and r2.A=vr.A and r2.C=vr.C
and s2.C=vs.C and s2.D=vs.D and t.D = vt.D and t.E = vt.E

Recall also the two containment mappings that we have shown fromQ toUCV , h1 comprising

r1, s1 and t, and h2, comprising r2, s2 and t. The provenance formula of the image of the first

mapping is then vrs ∧ vrs ∧ vt which simplifies to vrs ∧ vt. The provenance formula of the

image of the second mapping is vr ∧ vs ∧ vt. The global DNF formula Π representing minimal

reformulations is then (vrs ∧ vt) ∨ (vr ∧ vs ∧ vt)

While the examples above show our global approach, we develop hereafter the ideas behind the

pa-chase, and reveal the complexity of the problem of maintaining sound provenance annota-

tions. Indeed, our original motivation in designing the pa-chase was that of directly achieving,

by instrumenting the standard chase with provenance, the following goal:

21

(†) The provenance of an atom constructed during the pa-chase of the universal plan specifies

the set of minimal U -subqueries whose standard chases (conducted in isolation from each

other) would construct the atom.

The benefits of such a design would be that, as sketched in the example above, (i) by restricting

attention to only those universal plan subqueries identified by the provenance annotations we

do not miss any minimal reformulations, thus preserving completeness; and (ii) there is no

need to further chase the provenance-identified subqueries to check their equivalence to the

original query, thus rendering a single chase of U sufficient. This in turn is expected to provide

a significant performance improvement over the original C&B , due to the replacement of the

expensive backchase phase by a sensibly lighter-weight procedure.

The technical challenge facing the implementation of this idea is raised by the need to care-

fully instrument the chase procedure to correctly track provenance according to our initial design

goal. As detailed shortly, it turns out that as defined the standard chase is not suited for such

direct instrumentation. The main reason for this lack of compatibility is that, intuitively, the stan-

dard chase is too aggressive in the application of its steps, and it will mix up atoms that should

be kept distinct in order to ensure that their respective provenance corresponds to goal (†). This
particular problematic behaviour of the standard chase is linked, as we show hereafter, to the

presence of constraints whose conclusion has undetermined attributes. Standard chasing with

such constraints introduces atoms that are wrongly considered as identical and that, as detailed

hereafter, should be kept distinct to ensure the soundness of provenance annotations.

To account for such constraints, we have designed a less aggressive, more conservative chase

variation, which we call the Conservative Chase. It is provenance-agnostic like the standard

chase and essentially equivalent to it in terms of the produced result, and its termination is

guaranteed under weakly acyclic constraints. On the other hand, the important advantage of the

Conservative Chase is that it lends itself to direct provenance-tracking instrumentation for all

the types of embedded dependencies, yielding the pa-chase which is guaranteed to satisfy the

following invariant:

(⋄) The provenance of an atom constructed during the pa-chase of the universal plan specifies

the set of minimal U -subqueries whose Conservative Chases (conducted in isolation from

each other) would construct the atom.

Invariant (⋄) will ensure that in the final DNF formula Π thus obtained, every conjunct is a

reformulation. While in our simple example it is further the case that these conjuncts are directly

minimal reformulations, in the general case we still need to minimize the resulting reformula-

tions. In general, given a reformulation R of Q under C, minimizing R would involve searching

for its subqueries that are still equivalent toQ (which in turn would be checked by chasing them

with C). Once again we employ provenance to avoid chasing. To this end, we observe that

conjunct c1 ∈ Π induces a non-minimal U -subquery if and only if there is a conjunct c2 ∈ Π
that subsumes c1 in the standard Boolean logic sense: c2’s terms are a subset of c1’s (otherwise

said, c1 implies c2). All we need to do therefore is to remove from Π all subsumed conjuncts,

obtaining what we call the reduced form ofΠ, rf (Π). The conjuncts of rf (Π) each induce mini-

mal reformulations. Notice that this minimization not only avoids chasing, but it avoids even the

22

construction of reformulations, involving instead only lightweight manipulations of provenance

conjuncts.

We give a simplified, high level view of ProvC&B below:

Provenance-Aware Chase & Backchase (source schema S, target schema T ,

set of weakly acyclic constraints C, query Q)

//chase phase:

1. compute universal plan U
by standard-chasing Q with C and keeping only T -atoms

//provenance-directed reformulation search:

2. compute the result U ′ of pa-chasing U with C
3. compute the setH of all containment mappings from Q into U ′

4. compute Π as the DNF formula of
∨

h∈H π(h(Q)), for π(h(Q)) the formula of the image of h
5. compute the reduced form rf (Π) of Π
6. return the U -subqueries induced by the conjuncts of rf (Π).

Note that, while the requirement of weak acylicity for the input constraints is stated specifi-

cally above, the ProvC&B will be sound and complete in general for sets of constraints for which

both the standard chase and the Conservative Chase are guaranteed to terminate. While the

characterization of such (more complex than weak acyclicity) conditions is beyond the scope of

this work, it is certainly a very interesting follow-up direction, as we underline in our conclusions

chapter. We also emphasize there the interest of further refining the complexity analysis, both

time and space-wise, for the Provenance-Aware Chase. Indeed, compared to a non-annotated

chase version, the Provenance-Aware Chase could possibly introduce a significant space over-

head, by the worst case exponential space complexity for the provenance formulae. While we

show with our experimental section that our algorithm exhibits a satisfactory behaviour even in

stress-test practical scenarios, there are an important number of optimization directions worth

exploring in order to further improve the efficiency of our approach.

We present in Section 1.3 the detailed description of ProvC&B and its formal guarantees:

namely, we show that ProvC&B is sound and complete, thus returning all and precisely the

minimal reformulations of Q. We dedicate the remainder of this section to further exploring the

main intuitions behind the central brick of the ProvC&B algorithm, the pa-chase.

Details on pa-chase. The design of the pa-chase walks a fine line between tracking provenance

as desired and ensuring termination of the resulting chase. We detail below some of the intu-

itions and analysis that led to its design. Hereafter, we will denote the provenance formula of an

atom a by π(a). The provenance formula of a set of atoms A (as shown above for the image of

a mapping) is obtained as the logical conjunction of the provenance formulae of its members:

π(A) =
∧

a∈A π(a).

Recall that our first approach of the design of the pa-chase was an attempt to mimic the be-

haviour of the standard chase, by "plugging in" directly provenance annotations. Accordingly,

23

we present the intuitions below as referring to a tentative pa-chase step (tpa-step), modelled after

the standard chase step. In due course, we identify the need to substitute the standard chase with

the Conservative Chase in the actual definition of a pa-chase step, and Goal (†) with Invariant

(⋄).

I1: the provenance of the image of the premise is transferred to the atoms introduced by

the chase step. Assume that a sequence of pa-chase steps has yielded a result q. Assume that a

standard chase step s with dependency d using match h applies on q, adding a set A of atoms

to q. By definition of the standard chase step, the premise dP therefore has an image h(dP)
in q. By Goal (†), the U -subqueries whose chases in isolation create this image are indicated

by π(h(dP)). Since each of these chases creates h(dP) in isolation, they each can be extended

with chase step s, so each of the U -subqueries in π(h(dP)) when standard-chased in isolation

construct the atoms in A. To record this fact, the tpa-step adds the A-atoms and annotates each

of them with π(h(dP)). For instance, in Example 1.2.1, the pa-chase step with bVRS
matches the

premise against the relational atom VRS vrs, and it introduces the relational and equality atoms

involving tuple variables r1, s1 (shown in UCV), annotating relational atoms with provenance

vrs.

Towards ensuring termination, the standard chase never applies a step if it attempts to add

atoms that are already there (the step turns into a no-op). The notion of being "already there" is

formalized in the standard chase to mean that the premise’s homomorphic match h compatibly

extends to a homomorphic match of the conclusion. Denoting the extended match as h′, the
atoms in q that are "already there" are then the atoms in h′(dC). In designing the pa-chase step,

one would be then tempted to parallel the standard chase step, turning the former step into a

no-op in this case. It turns out however that the pa-chase step must diverge from its standard

counterpart.

I2: when the same atom a can be introduced by chasing several alternative U -subqueries,

a’s provenance must reflect this. Consider first the case when the atoms that are "already there"

are identical copies of the set A of atoms the standard chase step (with constraint d, using

premise match h) would attempt to add. Note that when adding relational atoms, the standard

chase step invents fresh names for the tuple variables, so when referring to an atom a ∈ A as an

identical copy of an atom c ∈ h′(dC), we mean that all their attributes are pairwise equal. Recall

from case I1 that π(a) = π(h(dP)). Now if π(a) contains at least one U -subquery sq that is not

in π(c), then the isolated chase of sq would never construct c, hence the standard chase step con-

structing a would apply. In view of Goal (†), the tpa-step records this behaviour by extending

the provenance formula of c with a disjunction with π(h(dP)). We call such a step provenance-

enriching because instead of creating new atoms it only enriches the provenance of existing ones.

I3: if the chase step produces atoms that match into q without being identical copies of the

match image, these atoms must be added and their provenance recorded. The technically most

subtle case for defining the pa-chase step is the one in which the atoms that the standard chase

step attempts to add (A) are not identical to those that are "already there" (h′(dC)).

24

Example 1.2.3. Recall the pa-chase of universal plan U from Example 1.2.1, and assume that

this time the first two chase steps applied involve first bVR
, then bVS

(the standard chase selects

randomly among the applicable steps, so we can observe a chase sequence distinct from the one

in Example 1.2.1). The intermediate result is U2 below, in which the tuple variables are named

to show correspondence to the tuple variables introduced in Example 1.2.1.

U2: select vr.A
from VR vr, VS vs, VT vt, VRS vrs, R r2[vr], S s2[vs]
where vr.C=vs.C and vs.D=vt.D and vr.A=vrs.A and vs.D=vrs.D

and r2.A=vr.A and r2.C=vr.C and s2.C=vs.C and s2.D=vs.D

Now consider a tpa-chase step with bVRS
on U2 as defined above. The standard chase step

would attempt to add the relational atoms R r1, S s1 as well as all equalities they are involved

in (these can be seen in UCV in Example 1.2.1). However the standard chase step would not

apply, as there is a match of r1, s1 into r2, s2 respectively, which matches the equality atoms

involving r1, s1 into the (explicit or implicit) equality atoms involving r2, s2. Notice on the other

hand that r2 is not a copy of r1; indeed, the equality r1.B=r2.B does not follow, because the

constraint bVRS
leaves the B attribute undetermined (bVRS

is not a full TGD).

Where can we then record provenance information of these new, distinct atoms? The intu-

ition offered by the standard chase, illustrated above, would be to add no new atoms, because

they are "already there" in the form of h′(dC). If we were to follow this intuition, then the nat-

ural way to record the newly discovered provenance would be to enrich the provenance of the

atoms in h′(dC), paralleling intuition I2. This would be wrong however, as the U -subqueries in

π(h(dP)) are only known to cause the construction of the atoms inA and not of the distinct ones

in h′(dC). The following example shows that for a pa-chase step defined in this way, the result-

ing provenance of the atoms in h′(dC) would spuriously contain U -subqueries whose standard

chase does not actually construct them:

Example 1.2.4. Consider the relational schema R(A), S(B, C, D), and the following query

and set of views:

Q : select r.A from R r, S s where s.B = r.A and s.C = 1 and s.D = 2
V1(A) : select r.A from R r, S s where s.B = r.A and s.C = 1 and s.D = 2
V2(A) : select r.A from R r, S s where s.B = r.A and s.C = 1

In the corresponding total-view based rewriting problem, the universal plan is then as fol-

lows (with initial provenance annotations shown in square brackets):

U : select v1.A from V1 v1[v1], V2 v2[v2] where v1.A = v2.A

Now assume that we enrich the standard chase with direct provenance instrumentation and

consider the chase sequence with the backwards constraints corresponding to V1 and V2. The

first chase step with the constraint corresponding to V1:

∀v1, v1 ∈ V1 −→ ∃r, s, r ∈ R ∧ s ∈ S ∧ r.A = v1.A ∧ s.B = r.A ∧ s.C = 1 ∧ s.D = 2

25

leads to the corresponding provenance-annotated result:

U ′ : select v1.A from V1 v1[v1], V2 v2[v2], R r1[v1], S s1[v1]
where v1.A = v2.A and r1.A = v1.A and s1.B = r1.A and s1.C = 1 and s1.D = 2

. A standard chase step with the backward constraint corresponding to V2:

∀v2, v2 ∈ V2 −→ ∃r, s, r ∈ R ∧ s ∈ S ∧ r.A = v2.A ∧ s.B = r.A ∧ s.C = 1

would then not apply, because the standard chase would consider the atoms to be introduced

as being already there. If we were then to record the provenance of these atoms by following the

standard chase, the provenance-annotated result of the chase step would be:

U ′′ : select v1.A from V1 v1[v1], V2 v2[v2], R r1[v1 + v2], S s1[v1 + v2]
where v1.A = v2.A and r1.A = v1.A and s1.B = r1.A and s1.C = 1 and s1.D = 2

In other words, this step would simply enrich the provenance of the r1 and s1 atoms. But

the s1 atom above cannot be constructed using only the subquery induced by v2, that is V2 v2,
because V2 does not operate any selection on the D attribute! Accordingly, the provenance

formula v1 + v2 of s1 is incorrect.

Still, the provenance of the non-identical atoms that would be introduced by the pa-chase

step has to be recorded somewhere, to ensure completeness of the reformulations. The tpa-

chase chase step should then be allowed to add these atoms, and in this respect behave more

conservatively then the standard chase. For the example 1.2.3, the tpa-chase step is therefore

allowed to add to U2 the new atoms r1 and s1 resulting from the chase with bVRS
, adorning

them with vrs, and thus as a final result obtaining the same pa-chased universal plan UCV as in

Example 1.2.1:

UCV : select vr.A
from VR vr[vr], VS vs[vs], VT vt[vt], VRS vrs[vrs],

R r1[vrs], S s1[vrs], R r2[vr], S s2[vs], T t[vt]
where vr.C=vs.C and vs.D=vt.D and vr.A=vrs.A and vs.D=vrs.D and r1.A=vrs.A

and s1.D=vrs.D and r1.C=s1.C and r2.A=vr.A and r2.C=vr.C
and s2.C=vs.C and s2.D=vs.D and t.D = vt.D and t.E = vt.E

I4: disallow the infinite reapplication of the same chase step. As seen in Examples 1.2.3 and

1.2.4, case I3 occurs when at least one of the relational atoms in the conclusion of a constraint

d has some undetermined attribute. Undetermined attributes are involved neither directly nor

indirectly in equalities with attributes of the relational atoms in the premise dP , and therefore

their value is not determined by the match of dP . For instance, attribute B of tuple variable r is

undetermined in both bVR
and bVRS

.

While the tentative definition of the pa-chase step according to case I3 above would introduce

distinct atoms and thus keep track of provenance as desired, its divergence from the standard

chase step would immediately lead to non-termination due to same chase step now applying

26

infinitely often. Indeed, in Example 1.2.3 above, the tpa-chase step with bVRS
is allowed to

introduce tuple variables r1, s1 and their atomsA despite their match into r2, s2 and their atoms,

because for example r1.B=r2.B does not hold. But then the same tpa-chase step can apply again,

introducing fresh tuple variables r′1, s
′
1 and atoms A′, which match into r1, s1 and A without

being identical copies, because r′1.B=r1.B does not hold.

To disallow infinitely many reapplications of a chase step with the same constraint d and

premise match h, we normalize d to turn all undetermined attributes in its conclusion into deter-

mined attributes. We employ a classical technique from First-Order Logic, namely normaliza-

tion by equating the undetermined attributes with function calls, corresponding to the classical

Skolem functions one would obtain when eliminating existential quantifiers from the constraints

if written in First-Order Logic form.

Function symbols used in calls must be distinct across constraints (so that the chase step with

a constraint is not mistaken for a reapplication of a chase step with a distinct constraint). While

intuitively function calls should take as arguments all tuple variables of the premise, it turns

out that (as presented in Section 1.3) to soundly distinguish between non-identical atoms for

provenance bookkeeping purposes, it is sufficient to consider fewer function arguments: namely,

those attributes of the premise tuples that also appear in (the equalities of) the conclusion. By

this procedure, the attributes that were undetermined in the original form of the dependencies

become now determined by the Skolem terms, in short Skolem-determined.

Example 1.2.5. We illustrate only for constraint bVR
, whose normalization involves setting the

undetermined attribute r.B equal to a function call:

∀vr, vr ∈ VR → ∃r, r ∈ R ∧ r.A = vr.A ∧ r.C = vr.C ∧ r.B = f(vr.A, vr.C)

The Conservative Chase. We call the provenance-unaware chase flavour conservatively enforc-

ing atom identity as above the Conservative Chase. As detailed in Section 1.3, when checking

whether an atom with a Skolem-determined attribute is "already there", the Conservative Chase

step requires an identical copy thereof in q, such that in this copy Skolem function calls only

match calls with the same function symbol and pairwise identical arguments. We will show in

Section 1.3 that the Conservative Chase is essentially equivalent to the standard chase in terms

of its result, thus ensuring invariant (⋄) is equivalent to ensuring goal (†). As we will show, the

Conservative Chase has the central benefit of being able to provide soundness for the provenance

annotations and the corresponding reformulations for all embedded dependencies.

Revisiting cases I1 through I3, which prescribe the behaviour of the tentative tpa-chase step,

we adjust this design by making the pa-chase record the provenance of atoms constructed by

the Conservative Chase instead of the standard chase. More specifically, in the description of

the tpa-chase step in cases I1 through I3 above, the standard chase step with dependency d is

replaced by a Conservative Chase chase step with the Skolemized version of d, denoted sk(d).
We detail extensively this construction in the following section.

1.3 Formal presentation and guarantees of ProvC&B

We have provided in the previous section a high-level overview of the ProvC&B , together with a

number of informal details and essential intuitions regarding its global flow. This section will be

27

dedicated to a formal description of the ProvC&B and the concepts it relies on (such as atoms,

chase procedures and provenance formulae), as well as to providing its theoretical guarantees.

We start by briefly reviewing, in Subsection 1.3.1, a set of basic notions informally intro-

duced in previous sections. We continue by formally describing the chase procedure in Subsec-

tion 1.3.2. We then present, in Subsection 1.3.3, the Conservative Chase – which, as mentioned

in previous sections, is the chase flavor designed to be compatible with provenance annotations.

Based on the Conservative Chase we introduce, in Subsection 1.3.4, the Provenance-Aware

Chase, which is the essential brick of the ProvC&B . Finally, in Subsection 1.3.5, we give a

detailed description of the ProvC&B algorithm and show that it is sound and complete, that is,

it finds all and precisely the minimal reformulations of the input query.

1.3.1 Preliminaries: atoms, queries and constraints

LetR be a relational schema and K a set of constants.

Relational atoms. A relational atom over R is a predicate of the form r ∈ R, where R is a

relation in R and r is called a tuple variable. A valid set of relational atoms over R is a set of

relational atoms over R, {r1 ∈ R1, . . . , rn ∈ Rn}, such that for i 6= j, ri 6= rj , that is, all tuple
variables are distinct.

Projection terms. If S is a valid set of relational atoms over R, we denote by the projection

terms of S the set ProjTerms(S)={ri.Aj}, where (ri ∈ Ri) is in S and Aj is an attribute of Ri.

Equality atoms. An equality atom over a set A is an equality t1 = t2 such that ti, tj ∈ A. For

E a set of equality atoms over A, we denote by Clos(E) the reflexive, symmetric, and transitive

closure of E. For A′ ⊆ A a subset of A, we define the restriction of E to A′ as the subset of E,

E′ = E |A′ , such that (t1 = t2) ∈ E
′ iff (t1 = t2) ∈ E and t1, t2 ∈ A

′.

Constraints. We consider constraints over R and K expressed as logical implications in the

form:

∀r1, . . . , rm, r1 ∈ R1 ∧ · · · ∧ rm ∈ Rm ∧ E1 ⇒ ∃s1, . . . , sn, s1 ∈ S1 ∧ · · · ∧ sn ∈ Sn ∧ E2,(1.1)

where {r1 ∈ R1, . . . , rm ∈ Rm, s1 ∈ S1, . . . , sn ∈ Sn} is a valid set of relational atoms

over R, E1 is a conjunction of equality atoms over ProjTerms({r1 ∈ R1 , . . . , rm ∈ Rm}) ∪
K and E2 is a conjunction of equality atoms over ProjTerms({r1 ∈ R1 , . . . , rm ∈ Rm}) ∪
ProjTerms({s1 ∈ S1 , . . . , sm ∈ Sm}) ∪ K.

Queries. In the following, we will use the term queries to denote standard Select-From-Where

(SFW) queries over R and K, with set semantics (for conciseness we will omit the DISTINCT

keyword, but it is always implied).

28

1.3.2 The Standard Chase

We will dedicate this subsection to the description of the chase procedure, hereafter called the

Standard Chase. As mentioned in the previous sections, the Standard Chase is an iterative proce-

dure consisting in a sequence of steps. To express the Standard Chase, we will in the following

introduce the concept of body , and show how queries and constraints can be expressed using

bodies .

1.3.2.1 Bodies

Definition 1.3.1 (body). A body B over a relational schemaR and a set of constants K consists

in:

1. a valid set of relational atoms overR which we denote by [B]rel

2. a set of equality atoms over ProjTerms([B]rel) ∪ K, which we denote by [B]eq .

We denote by the tuple variables of B the set TupVar(B) = {ri}, s.t. (ri ∈ Ri) is in [B]rel .
We denote by the terms of B the set T (B) = ProjTerms([B]rel) ∪ K. We further distinguish

the instantiated terms of B, as those terms in T (B) that appear in equalities in [B]eq .

Closed version of a body . In the following, reasoning about equivalence concerning bodies will

always be based on their closed versions. We define the closed version of a body B as the body

B, such that [B]rel = [B]rel and [B]eq = Clos([B]eq). We say that a body is closed if B = B.

Example 1.3.2. Consider the relational schema R = {R(A, B), S(C)} and the set of constants

K = {1}.

Then B1 = {r ∈ R, s ∈ S, r.A = 1, r.B = s.C} is a body over R and K, with [B1]rel =
{r ∈ R, s ∈ S}, [B1]eq = {r.A = 1, r.B = s.C}, T (B1)={r.A, r.B, s.C, 1}, TupVar(B1)={r,
s} and B1 = {r ∈ R, s ∈ S, r.A = r.A, r.B = r.B, s.C = s.C, 1 = 1, r.A = 1, 1 = r.A,

r.B = s.C, s.C = r.B}

However B2 = {r ∈ R, r ∈ S} is not a body over R and K, because [B2]rel={r ∈ R,

r ∈ S} is not a valid set of relational atoms.

Also, B3 = {r ∈ R, r.X = 1} is not a body over R and K because r.X = 1 is not an

equality atom over ProjTerms([B3]rel) ∪ K.

Given two bodies B1 and B2, we write B1 ⊆ B2 to denote the fact that [B1]eq ⊆ [B2]eq
and [B1]rel ⊆ [B2]rel . We define the restriction of a body B to a sub-schema R′ ⊆ R as the

maximal body B′ ⊆ B such that all relational atoms of B′ are overR′.
We define the union, intersection and difference of two bodies as a set of relational atoms

and a set of equality atoms obtained by pairwise union, intersection and difference of their

corresponding relational and equality atoms. Note that the results of such operations are not

necessarily bodies . However, we extend the notion of inclusion above to such results.

In the following, unless explicitly specified otherwise, we will consider queries, constraints

and bodies over a fixed relational schemaR and a fixed set of constantsK; we will thus hereafter

29

consider these parameters common and implicit in the subsequent definitions and theoretical re-

sults.

Constraints expressed with bodies . We associate to a constraint C of form (1.1), two bodies

defined as follows:

• a body Cprem , called the premise of C, such that:

1. [Cprem]rel = {r1 ∈ R1, . . . , rm ∈ Rm}

2. [Cprem]eq = {eq}, s.t. eq in E1.

• a body Cconcl , called the conclusion of C, such that:

1. [Cconcl]rel = {r1 ∈ R1, . . . , rm ∈ Rm, s1 ∈ S1, . . . , sn ∈ Sn}

2. [Cconcl]eq = {eq}, s.t. eq in E2.

Example 1.3.3. Consider the constraint cVRS
in Example 1.1.2:

cVRS
: ∀r, s, r ∈ R ∧ s ∈ S ∧ r.C = s.C → ∃vrs, vrs ∈ VRS ∧ vrs.A = r.A∧ vrs.D = s.D

Then cVRS prem={r ∈ R, s ∈ S, r.C = s.C}

and cVRS concl={r ∈ R, s ∈ S, vrs ∈ VRS , vrs.A = r.A, vrs.D = s.D}

Note that for a given constraint C, the couple (Cprem , Cconcl) allows a straightforward and

completely determined reconstruction of the form (1.1) of the constraint. In the following we

will thus refer without ambiguity to the constraint C as the couple of bodies (Cprem , Cconcl).

Normalized form of constraints Without loss of generality, we assume that every constraint C
has the following normalized form:

• if Cconcl has no other relational atoms besides those of Cprem , then it contains a single

equality atom t1 = t2, such that t1, t2 ∈ T (Cprem) and we say that C is an equality

generating dependency (EGD).

• otherwise, all equalities in [Cconcl]eq have at least one term in T (Cconcl) - T (Cprem) and
are:

– of the form si.A = constant, if there is a constant in the equivalence class of si.A,

as induced by Clos([Cprem]eq ∪ [Cconcl]eq), or else

– of the form si.A = projection term in T (Cprem), if there is a premise projection

term in the equivalence class of si.A, or else

– of the form si.A = sj .B, if there is no projection premise term and no constant in

the equivalence class of si.A.

Moreover, if t1 and t2 are two distinct premise terms occurring in [Cconcl]eq , then the

equality t1 = t2 is not in Clos([Cprem]eq).

In this case we say that C is a tuple generating dependency (TGD).

30

Distinguished premise terms. Given a constraint C (in the normalized form above), we define

the distinguished premise terms of C, denoted by DTPrem(C), as the set of projection terms

of Cprem that appear in the equalities of Cconcl .

Example 1.3.4. Consider again the constraint cVRS
in Example 1.1.2,

cVRS
: ∀r, s, r ∈ R ∧ s ∈ S ∧ r.C = s.C → ∃vrs, vrs ∈ VRS ∧ vrs.A = r.A∧ vrs.D = s.D

We have seen that cVRS prem={r ∈ R, s ∈ S, r.C = s.C} and cVRS concl={r ∈ R, s ∈
S, vrs ∈ VRS , vrs.A = r.A, vrs.D = s.D}.

cVRS
is then a TGD and the set of distinguished premise terms of cVRS

is DTPrem(cVRS
) =

{r.A, s.D}.

By the above definition of the normalized form of constraints, it follows directly that for a

constraint C, Cconcl ∩ Cprem = [Cprem]rel .

Queries expressed with bodies . For a query Q, we denote by body(Q) the body B such that:

1. [B]rel = {ri ∈ Ri} s.t. Ri ri is in the FROM clause of Q.

2. [B]eq = {eq}, such that eq is in the WHERE clause of Q.

Example 1.3.5. Consider the query Q in Example 1.1.2:

Q : select r.A from R r, S s, T t where r.C = s.C and s.D = t.D
Then B = body(Q) = {r ∈ R, s ∈ S, t ∈ T , r.C = s.C, s.D = t.D},

with [B]rel = {r ∈ R, s ∈ S, t ∈ T }

and [B]eq = {r.C = s.C, s.D = t.D}.

It is easy to show that for a syntactically correct SFW query Q, body(Q) is indeed a body .

However, in the case of queries, body(Q) does not allow reconstructing Q without ambigu-

ity since it is obvious that we miss the projection attributes of Q. This missing information

can be retrieved if we further associate to Q a subset of ProjTerms([body(Q)]rel), denoted by

Head(Q), and obtained by copying all projection attributes in the SELECT clause of Q.

Given a body B and a subsetH of ProjTerms([B]rel), we denote by Query(H , B) the SFW

query "reconstructed" in an unambiguous fashion from H and B.

1.3.2.2 Homomorphisms of bodies

We will characterize the Standard Chase by means of homomorphisms of bodies:

Definition 1.3.6 (homomorphisms of bodies). Let h be a function from the tuple variables of

body B1 to the tuple variables of body B2. Based on hwe can define the following two additional

functions:

1. a function hterms over T (B1) such that:

• hterms(r.A) = h(r).A, for r.A a projection term in T (B1)

• hterms(K) =K, forK a constant term in T (B1)

2. a function hatoms over B1, such that:

31

• hatoms(r ∈ R) = (h(r) ∈ R), for (r ∈ R) in [B1]rel

• hatoms(t1 = t2) = (hterms(t1) = hterms(t2)), for (t1 = t2) in [B1]eq .

We say that h is a homomorphism iff:

1. for each relational atom a in [B1]rel , hatoms(a) is in [B2]rel .

2. for each equality atom a in [B1]eq , hatoms(a) is in [B2]eq .

For a function h defined on the tuple variables of a body B1, since h completely determines

hterms and hatoms, in the following, to avoid clutter, we will use the notation h to refer to hterms

and hatoms whenever the domain of application is clear. In particular, for any set of atoms

S ⊆ B1 (even if S is not a body), we will use the notation h(S)={hatoms(a)}, a ∈ S.
One can show that the composition of two homomorphisms is also a homomorphism . If

there exists h homomorphism from B1 to B2 and h′ homomorphism from B2 to B1, they are

said to be homomorphically equivalent. If there exists h a homomorphism from B1 to B2, and

furthermore h is bijective (on the tuple variables) and h−1 is a homomorphism from B2 to B1,

we call h an isomorphism and B1 and B2 are said to be isomorphic. Note that if two bodies are

isomorphic they are of course homomorphically equivalent.

Compatible homomorphisms . Let h be a homomorphism from a body B1 to a body B. Let

h′ be a homomorphism from a body B2 to a body B′. We say that h and h′ are compatible if

h′ = h on TupVar(B1) ∩ TupVar(B2).

Containment and equivalence of queries through homomorphisms of bodies . Given the way of

obtaining bodies from queries, it is easy to show that the following holds:

Proposition 1.3.7. Let Q1 and Q2 be two queries with the same SELECT clause. Then:

1. Q1 ⊑ Q2 iff there exists a homomorphism from body(Q2) to body(Q1).

2. Q1 and Q2 are equivalent iff body(Q1) and body(Q2) are homomorphically equivalent.

1.3.2.3 Standard Chase steps and sequences

We are now ready to formally define the Standard Chase steps, using the notions of bodies and

homomorphisms of bodies .

As will be the case for all the other chase flavours presented throughout this paper, we present

Standard Chase steps by first listing their conditions of application and then by specifying their

application, i.e. how their output is constructed from the input.

Definition 1.3.8 (Standard Chase step conditions of application). A standard chase step with

constraint C on a body B applies iff:

1. there exists a homomorphism h from Cprem to B,

2. there exists no homomorphism h′ compatible with h, from Cconcl to B.

32

Definition 1.3.9 (Standard Chase step application). The application of a Standard Chase step

with constraint C, on a body B, given homomorphism h from Cprem to B, results into a new

body , B′ = chase_step_res(B ,C , h) such that B′ ⊃ B and B′ is obtained from B as follows:

1. let B′ = B

2. add to B′ the relational atoms s′1 ∈ S1, . . . , s
′
n ∈ Sn (if any), using fresh tuple variables

(one for each relational atom specific to Cconcl)

3. define the function h′ from the tuple variables of Cconcl into B
′ such that

(a) h′(r) = h(r) for each tuple variable r in Cprem ∩ Cconcl

(b) h′(sj) = s′j , for each remaining tuple variable sj in Cconcl

4. for each equality atom eq in [Cconcl]eq , add to B′ the equality atom h′(eq)

Example 1.3.10. Let B = {r ∈ R, s ∈ S, t ∈ T , r.C = s.C} (the body corresponding to the

query Q from Example 1.1.2).

Let C = (Cprem ,Cconcl), where Cprem={r ∈ R, s ∈ S, r.C = s.C} and Cconcl={r ∈ R,

s ∈ S, vrs ∈ VRS , vrs.A = r.A, vrs.D = s.D} (the constraint cVRS
from Example 1.1.2,

expressed as a couple of bodies).

There exists a homomorphism h from Cprem to B, such that h(r) = r, h(s) = s and

h((r.C = s.C)) = (r.C = s.C).

However, there exists no homomorphism compatible with h from Cconcl to B (no relational

atom v′rs ∈ VRS exists in B).

Thus, the Standard Chase step with C given h applies on B, yielding B′ = {r ∈ R, s ∈ S,
t ∈ T , r.C = s.C, v′rs ∈ VRS , v

′
rs.A = r.A, v′rs.D = s.D}.

It is easy to show that the function h′ constructed in the Standard Chase step application on

a body B, given a constraint C and a homomorphism h from Cprem to B, is a homomorphism

compatible with h, from Cconcl to B
′. We will hereafter call h′ the Standard Chase step com-

patible homomorphism for the given step.

Standard Chase sequences. Given a body B and a set of constraints C, a Standard Chase se-

quence consists in producing the bodies B0, B1, . . . , such that:

1. B0 = B

2. Bi is obtained by Bi−1 by the following operations:

(a) pickC ∈ C s.t. a Standard Chase step withC applies onBi−1, with a homomorphism

h from Cprem to Bi−1;

(b) let Bi:=chase_step_res(Bi−1 ,C , h);

33

For a finite Standard Chase sequence with a number of steps k, we denote by the result of

the sequence the body Bk produced by the last step.

A full Standard Chase sequence consists in applying Standard Chase steps as long as there

exist at least a constraint such that a Standard Chase step applies. A terminating Standard Chase

sequence is a full Standard Chase sequence that terminates after a finite number of steps n - that

is, there exists Bn such that for any constraint in C, and any possible homomorphism h from

Cprem to Bn, there exists a compatible homomorphism from Cconcl to Bn.

The Standard Chase of queries. We extend the notion of Standard Chase step in a straightforward

fashion to queries: a Standard Chase step with constraint C applies on a query Q iff there exists

a homomorphism h from Cprem toBody(Q). The result of applying such chase step on a query

is the query Q′ = Query(Head(Q), chase_step_res(Body(Q),C , h)).
We can further generalize the notion of Standard Chase sequences to queries. It is easy

to show that given a query Q, the result Q′ of a Standard Chase sequence of Q with C is

Q′ = Query(Head(Q), B′), where B′ is the result of the corresponding Standard Chase se-

quence on Body(Q).

Given this direct correspondence, we will in the following, unless explicitly stated otherwise,

refer to the Standard Chase as the Standard Chase of bodies . We will refer to the corresponding

queries in the few specific cases where we wish to emphasize this correspondence.

1.3.2.4 Properties of the Standard Chase

We conclude our presentation of the Standard Chase by reminding two known results from the

literature (mentioned briefly in previous sections) regarding the Standard Chase termination and

results.

We have seen that full Standard Chase sequences may not terminate. One of the least re-

strictive and most referenced conditions concerning the termination of all full Standard Chase

sequences over a given input is stated in Theorem 3.9 in [33], and relies on a property known as

the weak acyclicity of a set of constraints.

We remind here the result from [33] regarding weakly acyclic constraints:

Theorem 1.3.11. Let B be a body and C a set of weakly acyclic constraints.

Then there exists a polynomial in the size of B that bounds the length of every full Standard

Chase sequence of B with C. In particular, all such sequences terminate.

Moreoever, note that the choice of steps in a Standard Chase sequence is non-deterministic.

One can thus produce, starting from a given body , full Standard Chase sequences with differ-

ent behaviour, in terms of termination or results. It has been shown however that, on a given

input, even when not all full Standard Chase sequences are guaranteed to terminate, any two

terminating sequences lead to equivalent results, as follows:

Theorem 1.3.12. Let B be a body and C a set of constraints. Let B1 and B2 be the results of

two terminating Standard Chase sequences with C over B.

Then B1 and B2 are homomorphically equivalent.

34

1.3.3 The Conservative Chase

We have noted in Section 1.2 the fact that the Standard Chase does not directly lend itself to

provenance annotations, creating the need for the design of a different chase flavour, which we

call the Conservative Chase. While Section 1.2 gives an initial overview and a set of essential

intuitions, this section will focus on the formal presentation of the Conservative Chase, hereafter

denoted the cs_chase .

The cs_chase is, similar to the Standard Chase, an iterative procedure consisting in a se-

quence of steps. In the case of the cs_chase however, these steps will be based on a general-

ization of bodies which we will call sk_bodies . Furthermore, the cs_chase steps will employ a

different form of constraints, hereafter called sk_constraints .

1.3.3.1 Skolem terms, sk_bodies and sk_constraints

To describe sk_bodies and sk_constraints , we first introduce the concept of Skolem terms.

Definition 1.3.13 (Skolem terms). Let F be a set of function symbols of fixed arity. We define

recursively the set of Skolem terms induced by F over a set S, denoted by SkTerms(S ,F), as
the set {fi(a

1
i , . . . , a

ni

i)}, where fi ∈ F , ni is the arity of fi, and (a1i , . . . , a
ni

i) is an ordered

subset (potentially empty) of S ∪ SkTerms(S ,F).

Example 1.3.14. Let S ={x} andF= {f}, where the arity of f is 2. Then f(x, x), f(f(x, x), x),
f(f(x, f(x, x)), x) are some of the Skolem terms in SkTerms(S ,F).

We define sk_bodies as a generalization of bodies . This generalization mainly consists in

the addition of a special set of equalities called constructive equalities. Constructive equalities

will in turn be expressed over projection terms, constants, and Skolem terms, as follows:

Definition 1.3.15 (sk_body). An sk_body B over a relational schema R, a set of constants K
and a set of function symbols of fixed arity F consists in:

1. a valid set of relational atoms overR which we denote by [B]rel

2. a set of equality atoms over ProjTerms([B]rel) ∪ K, which we denote by [B]eq

3. a set of equality atoms over ProjTerms([B]rel)∪K∪SkTerms(ProjTerms([B]rel),F),
which we denote by [B]constr_eq and call the constructive equalities of B.

The constructive equalities have the property that there exists a subset S of [B]rel , such
that:

(a) every constructive equality in [B]constr_eq is of the form t = t′,
where t ∈ ProjTerms([B]rel − S)
and t′ ∈ ProjTerms(S) ∪ SkTerms(ProjTerms(S),F) ∪ K .

(b) every projection term t in ProjTerms([B]rel − S) participates in exactly one con-

structive equality (of the form above).

Note that by the definition above the subset S is unique. For an sk_body we will denote

such subset by [B]b−rel .

35

Example 1.3.16. Consider the relational schema R = {R(A), S(B, C)}, the set of constants K
= {1} and the set of function symbols F={f1,f2}.

Then B = {r ∈ R, s ∈ S, s.B = f1(r.A), s.C = f2(r.A), s.C = 1}, [B]constr_eq={s.B =
f1(r.A), s.C = f2(r.A)}, [B]eq = {s.C = 1} is an sk_body over R, K and F , where [B]b−rel
= {r ∈ R}

Sk_bodies as a generalization of bodies. We have mentioned that bodies are a sub-class of

sk_bodies . Indeed, a body B is a special type of sk_body where [B]b−rel=[B]rel and [B]constr_eq
= φ. To underline the fact that an sk_body is also a body , we will employ the term regular body .

Intuitively, the constructive equalities in an sk_body B will hold the "history of construction"

of the projection terms inB during the Conservative Chase. We will be particularly interested in

Conservative Chase sequences that start from a body . Not surprisingly, the [B]b−rel part of any
sk_body B thus obtained will consist in the relational atoms of the initial body . Every term that

is "further added" by the Conservative Chase will be connected to this initial body by means of

the constructive equalities.

As we did for bodies , we denote by the tuple variables of B the set TupVar(B) = {ri}, s.t.
(ri ∈ Ri) is in [B]rel .

We further denote by the terms of B the set T (B) = ProjTerms([B]rel) ∪ K ∪
SkTerms(ProjTerms([B]rel),F). We distinguish the set of instantiated terms of B as those

terms occurring in the equalities of B. Note that not all Skolem terms of B are instantiated:

indeed, according to the definition of an sk_body , only Skolem terms in

SkTerms(ProjTerms([B]b−rel),F) will appear in the (constructive) equalities of B.

As we did for bodies , we will in the following assume a fixed relational schema, set of

constants and set of function symbols F , such that moreover F contains an infinite number of

symbols for any given arity.

Constructive terms. Based on the constructive equalities of an sk_body B, we can associate to

every term t inT (B) its constructive term,ConstrT (t), which is a term inProjTerms([B]b−rel)
∪ SkTerms(ProjTerms([B]b−rel),F) ∪K as follows:

1. if t is a constant, ConstrT (t) = t

2. if t is a projection term in ProjTerms([B]b−rel), ConstrT (t) = t

3. if t is a projection term in ProjTerms([B]rel − [B]b−rel), ConstrT (t) = t′ where t = t′

is the unique constructive equality involving t in [B]constr_eq

4. if t a Skolem term with no argument f(), ConstrT (t) = t

5. if t is a Skolem term of the form f(a1, . . . , an), ConstrT (t) =
f(ConstrT (a1), . . . ,ConstrT (an)).

36

Example 1.3.17. Consider the sk_body B = {r ∈ R, s ∈ S, s.B = f1(r.A), s.C = f2(r.A)},
with [B]constr_eq={s.B = f1(r.A), s.C = f2(r.A)}

Then:

• ConstrT (r .A) = r.A

• ConstrT (s.B) = f1(r.A)

• ConstrT (s.C) = f2(r.A)

• ConstrT (f3 (s.C)) = f3(f2(r.A))

Note that according to the definition of constructive terms, every term in T (B), be it instantiated
or not, has its associated constructive term. Note moreover that if B is a body , then ConstrT (t)
= t for all terms t of B.

Relational atom identity by constructive terms. Collapsible atoms. For two sk_bodies B1 and

B2 (not necessarily distinct), we further introduce the concept of collapsible atoms. Two rela-

tional atoms (r1 ∈ R) ∈ [B1]rel and (r2 ∈ R) ∈ [B2]rel are collapsible if for each of their

projection terms, ConstrT (r1 .Aj) = ConstrT (r2 .Aj). In other words, all their pairwise pro-

jection terms have identical constructive terms.

Example 1.3.18. Consider again the sk_body B = {r ∈ R, s ∈ S, s.B = f1(r.A), s.C =
f2(r.A)}, with [B]constr_eq={s.B = f1(r.A), s.C = f2(r.A)}.

LetB1 = {r ∈ R, t ∈ T , s1 ∈ S, s1.B = f1(r.A), s1.C = f2(r.A)} with [B1]constr_eq={s1.B =
f1(r.A), s1.C = f2(r.A)}.

Then the (s ∈ S) atom in B and the (s1 ∈ S) atom in B1 are collapsible.

Recall that, when providing the initial intuitions on the Conservative Chase, we have men-

tioned the need of (conservatively) enforcing atom identity. Intuitively, two relational atoms will

be considered as "identical" by the cs_chase when they are collapsible.

Closed version of an sk_body . As is the case for bodies , reasoning about equivalence in terms of

sk_bodies will also be based on their closed version. We define the closed version of an sk_body

B as the sk_body B such that:

1. [B]rel = [B]rel

2. [B]eq = Clos([B]constr_eq ∪ [B]eq)|ProjTerms(B)

3. [B]constr_eq = [B]constr_eq

Example 1.3.19. Let B be an sk_body such that [B]rel={r ∈ R, t ∈ T , s ∈ S}, [B]constr_eq =

{s.B = f(r.A), s.C = f(r.A)} and [B]eq = t.D = r.A. Note that [B]b−rel = {r ∈ R, t ∈ T }

Then [B]eq = {s.B = s.C, t.D = r.A} (and of course all the symmetric of these and the

reflexive equalities).

On the other hand, if, instead of the above, [B]constr_eq = {s.B = r.A, s.C = f(r.A)}, then
[B]eq = {s.B = r.A, s.B = t.D, t.D = r.A} (and of course all the symmetric of these and the

reflexive equalities).

37

Note that the regular equalities in the closed version of an sk_body allow "reconstructing"

all possible equalities between projection terms, mixing constructive equalities and regular ones

in the given sk_body . The constructive Skolem terms only participate as a transitivity element

in the above computation.

Note also that ifB contains no constructive equalities (and is thus a body), then the definition

of the closed version of B corresponds to the definition of the closed version previously defined

for bodies , thus ensuring the correctness of our notation.

Bodies from sk_bodies. While all bodies are also sk_bodies , the reverse is however not true. We

associate to an sk_body B a canonical body denoted by Body(B) and constructed by removing

constructive equalities from B:

1. [Body(B)]rel = [B]rel

2. [Body(B)]eq = [B]eq

Sk_constraints. We have mentioned that the cs_chase steps use a different expression of con-

straints, called sk_constraints . We define sk_constraints as follows:

Definition 1.3.20 (Sk_constraints). An sk_constraint C is a couple of sk_bodies (Cprem ,Cconcl),

called the premise and the conclusion of C, such that:

1. the premise of C is a regular body ([Cprem]constr_eq = ∅),

2. [Cprem]rel ⊆ [Cconcl]rel

3. [Cconcl]b−rel = [Cprem]rel .

Furthermore:

1. if Cconcl has no other relational atoms besides those of Cprem , then it is a regular body

containing a single equality atom eq = (t1 = t2), eq ∈ [Cconcl]eq , [Cconcl]constr_eq = φ
and we say that C is an sk equality generating dependency, sk_EGD.

2. otherwise, the conclusion of C has only constructive equalities ([Cconcl]eq = φ) and there

exists a subset of the projection terms of [Cprem]rel , called the distinguished premise terms,

DTPrem(C) = {a1, . . . , an}, such that for i 6= j, (ai = aj) is not in Clos([Cprem]eq),
and for every constructive equality t = t′ in the conclusion, t′ is either

(a) a constant

(b) a distinguished premise term ai

(c) a Skolem term of the form f(a1, . . . , an)

In this case we say that C is a sk tuple generating dependency, sk_TGD.

38

Given the definition of an sk_constraint , it is easy to show that Cconcl ∩ Cprem = [Cprem]rel .

Skolem-determined terms of an sk_TGD. We denote by a Skolem-determined term in the con-

clusion of an sk_TGD C a projection term t of [Cconcl]rel - [Cprem]rel such that its (unique)

constructive equality in [Cconcl]constr_eq is (t = t′) where t′ is a Skolem term.

Example 1.3.21. LetCprem = {r ∈ R} andCconcl = {r ∈ R, s ∈ S, s.B = r.A, s.C = f(r.A)},
[Cconcl]constr_eq = {s.B = r.A, s.C = f(r.A)}.

Then C is an sk_TGD, DTPrem(C) = {r.A} and s.C is a Skolem-determined term.

Sk_constraints from regular constraints. Note that while sk_bodies are a generalization of

bodies , this is not the case for sk_constraints vs. regular constraints. We hereafter show how

to "transform" regular constraints into sk_constraints by means of their sk_form:

Definition 1.3.22 (Sk_form of a constraint). LetC be a constraint in normalized form. We define

the sk_form of C as the sk_constraint sk(C)=(sk(C)prem , sk(C)concl), where sk(C)prem =

Cprem and:

1. if C is an EGD, then sk(C)concl = Cconcl

2. else, if C is a TGD, let Efree = {E1, E2, . . . , Ef} be the (possibly empty) subset of the

equivalence classes induced by Clos([Cconcl]eq) that contain specific conclusion terms,

but do not contain any distinguished premise term or any constant. Let {t1, . . . , ts} be the

set of distinguished premise terms of C.

We associate to eachEk ∈ Efree a Skolem function symbol of arity s fCk . and the Skolem

term fCk (t1, t2, . . . , ts). Note that the Skolem function symbols thus produced are distinct

among them and specific to the constraint C.

We construct the sk_body sk(C)concl by:

• letting [sk(C)concl]rel = [Cconcl]rel , [sk(C)concl]constr_eq= φ, [sk(C)concl]eq = φ

• adding to [sk(C)concl]constr_eq , all equality atoms in [Cconcl]eq that contain one

distinguished premise term or one constant

• adding to [sk(C)concl]constr_eq , for every si.A ∈ Ek, the equality

si.A = fCk (t1, t2, . . . , ts)

Note that that for a constraint C, the distinguished premise terms of C are also the distin-

guished premise terms of sk(C).

Example 1.3.23. Consider the TGD bVR
of Example 1.1.2:

bVR
: ∀vr, vr ∈ VR → ∃r, r ∈ R ∧ r.A = vr.A ∧ r.C = vr.C

Let C be the expression using bodies of bVR
. Then C is such that:

• Cprem={vr ∈ VR}

• Cconcl={vr ∈ VR, r ∈ R, r.A = vr.A, r.C = vr.C}.

39

The sk_form of C, sk(C), is then such that:

• sk(C)prem = {vr ∈ VR}

• sk(C)concl = {vr ∈ VR, r ∈ R, r.A = vr.A, r.C = vr.C, r.B = f(vr.A, vr.C)}, where

all equalities are constructive.

Note how producing the sk_form of a TGD involves "providing an identity" for all the terms

of the conclusion. Note further that the following happens:

1. the equalities in the conclusion of C involving a premise term are transformed into con-

structive equalities (this is the case for the equalities r.A = vr.A and r.C = vr.C in the

example above)

2. the other equalities are replaced by individual constructive equalities with a Skolem term

and the corresponding terms, those that were not equated to premise terms, become there-

fore Skolem-determined terms in sk(C). All terms that do not participate initially in an

equality also become Skolem-determined. This is indeed the case for r.B in the example

above.

One may wonder if, given that the original equalities of the Skolem-determined terms are

lost, they can be in any way retrieved from the sk_form of C. The answer to this question is

clearly yes: they can be retrieved on the closed version of the conclusion of sk(C). Indeed, one
can show that the above procedure of producing the sk_form of a constraint always ensures that

[sk(C)concl]eq = [Cconcl]eq . In other words, the following holds:

Proposition 1.3.24. Let C be a constraint. Then Cconcl =Body(sk(C)concl).

Note that the above statement not only specifies that the original equalities can be retrieved,

but it further states that no "parasite" equalities are introduced in the sk_form among projection

terms of the conclusion.

For a set of constraints C, we will denote by sk(C) the set of sk_constraints sk(C) =
{sk(C), C ∈ C}. We will in following sections show that Standard Chasing with a set of

constraints C and Conservative Chasing with their sk_form sk(C) leads to equivalent results. Not

surprisingly, this equivalence will be ensured by Proposition 1.3.24 and by the fact that for each

sk_constraint produced, the Skolem function symbols employed are fresh, thus non-conflicting

with other sk_constraints in sk(C). This will then ensure that no Skolem-determined terms will

be "mixed-up" and wrongly equated in the cs_chase results.

1.3.3.2 Homomorphisms of sk_bodies

As is the case of the Standard Chase, the cs_chase also relies on homomorphisms . Follow-

ing the generalization of bodies to sk_bodies , we hereafter show how to extend the notion of

homomorphism to sk_bodies:

40

Definition 1.3.25 (Homomorphisms of sk_bodies). Let h be a function from the tuple variables

of sk_body B1 into tuple variables of sk_body B2. Based on h, we can define two additional

functions:

1. a function hterms over T (B1), such that:

• hterms(r.A) = h(r).A, for r.A a projection term in T (B1)

• hterms(K) =K, forK a constant term in T (B1)

• hterms(f(t1, . . . , tn)) =f(hterms(t1), . . . , hterms(tn)) for f(t1, . . . , tn) a Skolem

term in T (B1). In particular, hterms(f()) = f() for a Skolem term with no ar-

gument.

2. a function hatoms over B1, such that:

• hatoms((r ∈ R)) = (h(r) ∈ R), for (r ∈ R) in [B1]rel

• hatoms((t1 = t2)) = (hterms(t1) = hterms(t2)), for (t1 = t2) in [B1]eq

• hatoms((t1 = t2)) = (hterms(t1) = ConstrT (hterms(t2))), for (t1 = t2) in

[B1]constr_eq

Then h is a homomorphism iff:

1. for each relational atom a in B1, hatoms(a) is in [B2]rel .

2. for each equality atom a in [B1]eq , the equality atom hatoms(a) is in [B2]eq .

3. for each equality atom a in [B1]constr_eq , the equality atom hatoms(a) is in [B2]constr_eq .

As we have done for functions defined on the tuple variables of bodies , we will use h to

also denote hterms and hatoms. Note that the above definition is indeed a generalization of

homomorphisms of bodies , where we further impose a restriction on the images of constructive

equalities.

Example 1.3.26. Let B = {r ∈ R, t ∈ T , s ∈ S, t.D = r.A, s.B = r.A, s.C = f(r.A)} be an

sk_body , where all equalities are constructive. Note that [B]b−rel = {r ∈ R}

Let B1 = {t1 ∈ T , s1 ∈ S, s1.B = t.D, s1.C = f(t.D)}.
Then h = {t1 → t, s1 → s} is a homomorphism from B1 to B. Indeed, note that in B,

ConstrT (h(t1 .D)) = r.A.

We can further show that the following holds for homomorphisms of sk_bodies:

Proposition 1.3.27. Let h be a homomorphism from an sk_body B1 to an sk_body B2. Let a
be a term in T (B1). Then ConstrT (h(ConstrT (a)) = ConstrT (h(a)).

Proof. Indeed, if a is inT ([B1]b−rel) or a is a Skolem termwithout arguments, thenConstrT (a)
= a, and the equality trivially holds.

Else, if a is a projection term, then let a = ConstrT (a) be the unique constructive equality

of a. Since h is a homomorphism , it follows that (h(a) = ConstrT (h(ConstrT (a))) is

41

in [B2]constr_eq . But since B2 is an sk_body the only constructive equality of h(a) in B2 is

h(a) = ConstrT (h(a)). Therefore, ConstrT (h(ConstrT (a)) = ConstrT (h(a)).
If a is a Skolem term of the form f(a1, . . . , ..an) then h(a) = f(h(a1), . . . , h(an)). Then

ConstrT (h(a)) = f(ConstrT (h(a1)), . . . ,ConstrT (h(an))). On the other hand we can fur-

ther develop ConstrT (h(ConstrT (a))) = f(ConstrT (h(ConstrT (a1))), . . . ,
ConstrT (h(ConstrT (a1))) (the above developments are all enabled by the fact that construc-

tive terms and Skolem functions commute). By induction on the Skolem terms arguments we

can thus prove the required equality.

Based on Proposition 1.3.27, one can show that the composition of two homomorphisms

of sk_bodies is also an homomorphism . If h is bijective (on the tuple variables) and h−1 is a

homomorphism from B2 to B1, we call h an isomorphism.

Let B1 and B2 be two sk_bodies . If there exists an isomorphism between B1 to B2 they are

said to be isomorphic. If there exists h homomorphism from B1 to B2 and h′ homomorphism

from B2 to B1, they are said to homomorphically equivalent.

We can further show that the following holds:

Proposition 1.3.28. Let h be a homomorphism from an sk_body B1 to an sk_body B2. Then:

1. h is a homomorphism from B1 to B2

2. h is a homomorphism from Body(B1) to Body(B2)

Compatibility of homomorphisms of sk_bodies . We extend the notion of compatibility to

homomorphisms of sk_bodies . Let h be a homomorphism from an sk_body B1 to an sk_body

B and h′ be a homomorphism from an sk_body B2 to an sk_body B′. We say that h and h′ are
compatible if h′ = h on TupVar(B1) ∩ TupVar(B2).

1.3.3.3 Conservative Chase steps and sequences

We are now ready to formally define the cs_chase steps. A cs_chase step will take as input

an sk_body and an sk_constraint and will yield as output an sk_body . As was the case for

the Standard Chase steps, we will present cs_chase steps by first listing their conditions of

application and then by describing their application, that is, how they produce an output sk_body

given an input sk_body and an sk_constraint .

Definition 1.3.29 (cs_chase step conditions of application). A cs_chase step with sk_constraint

C on an sk_body B applies iff:

1. There exists a homomorphism h from Cprem to B

2. There exists no homomorphism h′ compatible with h from Cconcl to B.

Definition 1.3.30 (cs_chase step application). The application of an cs_chase step with

sk_constraint C on an sk_body B, given homomorphism h from Cprem to B, results in a new

sk_body B′ = CS_Chase_Step_Res(B ,C , h) such that B′ ⊃ B and B′ is obtained from B as

follows:

42

1. let B′ = B

2. add to B′ the relational atoms s′1 ∈ S1, . . . , s
′
n ∈ Sn (if any), using fresh tuple variables

(one for each relational atom specific to Cconcl)

3. define the function h′ from the tuple variables of Cconcl into B
′ such that

(a) h′(r) = h(r) for each tuple variable r in Cprem ∩ Cconcl

(b) h′(sj) = s′j , for each remaining tuple variable sj in Cconcl

4. for each equality atom eq in [Cconcl]constr_eq , add the equality atom h′(eq) to [B ′]constr_eq

5. for each equality atom eq in [Cconcl]eq , add the equality atom h′(eq) to [B ′]eq .

As was the case for the Standard Chase, it is easy to show that the function h′ constructed in

the cs_chase step application on an sk_body B is a homomorphism compatible with h, from
Cconcl to B

′. Similar to the case of Standard Chase steps, we will hereafter call h′ the cs_chase
step compatible homomorphism .

Example 1.3.31. Let B1 = {vr ∈ VR, vs ∈ VS , vt ∈ VT , vr.C=vs.C, vs.D=vt.D} be the

sk_body (which is also a body) corresponding to R1 in Example 1.1.2.

Let C be the sk_form of the constraint bVR
, Cprem = {vr ∈ VR}, and Cconcl = {vr ∈ VR,

r ∈ R, r.A = vr.A, r.C = vr.C, r.B = f(vr.A, vr.C)}.
Then a cs_chase step with C applies on B1, yielding B

′
1 = {vr ∈ VR, vs ∈ VS , vt ∈ VT ,

r ∈ R, vr.C=vs.C, vs.D=vt.D, r.A = vr.A, r.C = vr.C, r.B = f(vr.A, vr.C)}, where

1. [B ′1]rel = {vr ∈ VR, vs ∈ VS , vt ∈ VT , r ∈ R}

2. [B ′1]eq = {vr.C=vs.C, vs.D=vt.D}

3. [B ′1]constr_eq = {r.A = vr.A, r.C = vr.C, r.B = f(vr.A, vr.C)}

Conservative Chase sequences. Given an sk_body B and a set of sk_constraints C, a cs_chase
sequence consists in producing the sk_bodies B0, B1, . . . , such that:

1. B0 = B

2. Bi is obtained from Bi−1 by the following operations:

(a) pick C ∈ C s.t. a cs_chase step with C applies on Bi−1, with a homomorphism h
from Cprem to Bi−1;

(b) let Bi :=CS_Chase_Step_Res(Bi−1 ,C , h);

For a finite cs_chase sequence with a number of steps k, we denote by the result of the

sequence the sk_body Bk produced by the last step.

A full cs_chase sequence consists in applying cs_chase steps as long as there exists at least

an sk_constraint C ∈ C such that a cs_chase with C applies. A terminating cs_chase se-

quence is a full cs_chase sequence that terminates after a finite number of steps n – that is, Bn

43

is such that for any sk_constraint C in C, and any possible homomorphism h from Cprem to

Bn, there exists a compatible homomorphism from Cconcl to Bn.

Conservative Chase sequences over bodies and queries. As already mentioned, we will be

particularly interested in the following in those cs_chase sequences starting from a regular body .

In particular, we will exhibit strong equivalence results between such sequences and Standard

Chase sequences over the same body .

We cannot however straightforwardly translate intermediate cs_chase steps to correspond-

ing steps on queries. Indeed, the way to infer a query from an sk_body would be to go through

the canonical associated body. On the other hand, the transformation from sk_bodies to bodies

is not lossless (given an sk_body B, Body(B) is in general not equal to B). Then we would

lose some of the conditions of application for the next cs_chase step.

However, we can apply such transformation on the result of a cs_chase sequence. Given a

query Q and a finite cs_chase sequence on body(Q) resulting in an sk_body B′, we thus define

the result of the cs_chase sequence on Q as the query Q′ = Query(Head(Q), Body(B′)).

1.3.3.4 Properties of terminating Conservative Chase sequences

As is the case for the Standard Chase sequences, full Conservative Chase sequences are not

guaranteed to terminate. We will show hereafter that when they do terminate however, as was

the case of the Standard Chase (Theorem 1.3.12), they lead to equivalent results, as follows:

Theorem 1.3.32. Let B be an sk_body and C a set of sk_constraints . Let B1 and B2 be the

results of two terminating cs_chase sequences with C over B.

Then B1 and B2 are homomorphically equivalent.

To prove the above, we will rely on the fact that, by definition of a cs_chase step, the added

image of the conclusion exhibits a "one to one" correspondence with the (specific part of) the

conclusion. This particular property allows us to derive homomorphisms over the output of a

cs_chase step, based on the existence of homomorphisms on the input of the cs_chase step,

as follows:

Lemma 1.3.33. LetB be an sk_body andC an sk_constraint such that a cs_chase step withC
applies onB with homomorphism h fromCprem toB, yieldingB′=CS_Chase_Step_Res(B ,C , h).

LetH be a homomorphism from B to an sk_body D. Let g = H ◦ h be the corresponding

homomorphism from Cprem to D.

If there exists a homomorphism g′ compatible with g from Cconcl to D, then there exists a

homomorphism from B′ to D.

Proof. Let h′ be the cs_chase step compatible homomorphism .

If C is an sk_EGD, then we will show that H itself is a homomorphism from B′ to D.

Indeed, for the unique equality (t1 = t2) in B
′−B, (t1 = t2) = h′((t′1 = t′2)), where (t′1 = t′2)

is the unique equality in Cconcl . Therefore t1 = h′(t′1) and t2 = h′(t2). Then H((t1 = t2)) =
(H(t1) = H(t2)) = (H ◦ h′(t′1) = H ◦ h′(t′2)) = (H ◦ h(t′1) = H ◦ h(t′2)) = (g(t′1) = g(t′2)) =
(g′(t′1) = g′(t′2)) = g

′(t′1 = t′2), therefore H((t1 = t2)) ∈ D, where we have used the fact that

h′ is compatible with h, g′ is compatible with g and t′1, t
′
2 ∈ T (Cprem).

44

If C is an sk_TGD, we start by noting that, as mentioned above, the cs_chase compatible

homomorphism creates a one-to-one correspondence between the tuple variables of [Cconcl]rel
-[Cprem]rel (i.e. the tuple variables specific to the conclusion of C) and the tuple variables of

B′ −B, as well as the corresponding relational atoms. We formalize this observation by stating

that there is a partial inverse of h′, h′−1, such that the following hold:

1. h′−1 is a homomorphism from [B ′]rel -[B]rel to [Cconcl]rel -[Cprem]rel

2. for every (constructive) equality (t1 = t2) in B
′ − B, (t1 = t2) = h′((t′1 = t′2)), where

(t′1 = t′2) is an equality in [Cconcl]constr_eq , and furthermore:

(a) if t1 is in T (B ′) - T (B), then t1 = h′(t′1), t
′
1 is in T ([Cconcl]rel − [Cprem]rel) and

t′1 = h′−1(t1)

(b) else, t2 is in T (B), t2 = ConstrT (h ′(t ′2)), t
′
2 ∈ T (Cprem)

Based on the observation above, we define the following function from TupVar(B ′) to

TupVar(D):

H ′(r) =

{

H(r), r ∈ TupVar(B)

g′ ◦ h′−1(r), r ∈ TupVar(B ′)− TupVar(B)
.

We will show thatH ′ is a homomorphism fromB′ toD. It is straightforward that the image

of all the relational atoms in B′ is inD. Moreover, all equalities in B′ −B are constructive and

for every equality atom (t1 = t2) in B
′ −B, H ′((t1 = t2)) = (H ′(t1) = ConstrT (H ′(t2))).

But H ′(t1) = g′ ◦ h′−1(t1) = g
′ ◦ h′−1 ◦ h′(t′1) = g

′(t′1)
On the other hand ConstrT (H ′(t2)) = ConstrT (H (ConstrT (h ′(t ′2)))). But then accord-

ing to Proposition 1.3.27, ConstrT (H ′(t2)) = ConstrT (H ◦ h ′(t ′2)) = ConstrT (H ◦ h(t ′2)) =
ConstrT (g(t ′2)) = ConstrT (g ′(t ′2)), where we have used the fact that h and h′, respectively g
and g′ are compatible and t′2 is in T (Cprem).

It follows thatH ′((t1 = t2)) = (H ′(t1) = ConstrT (H ′(t2))) = (g′(t′1) = ConstrT (g ′(t ′2))),
therefore, since g′ is a homomorphism from Cconcl to D, H ′((t1 = t2)) ∈ D.

Based on the results above, we are now ready to prove Theorem 1.3.32:

Proof of Theorem 1.3.32. Let S0 = B, . . . , Sn = B1 be the terminating cs_chase sequence

leading toB1. We will show by induction on the cs_chase steps the existence of a homomorphism

h1t from St to B2.

Indeed, since S0 = B ⊆ B2, h
1
0 = Id is a homomorphism from S0 to B2, therefore by

Proposition 1.3.28 from S0 to B2.

Assuming the existence of h1t , we will show the existence of h1t+1.

Indeed, t −→ t + 1 is a cs_chase step with an sk_constraint C ∈ C. Then there exists

a homomorphism h from Cprem to St. It follows that g = h1t ◦ h is a homomorphism from

Cprem to B2. But since B2 is the result of a terminating cs_chase sequence, it follows that there

exists g′ a homomorphism compatible with g, from Cconcl toB2. Then we are in the conditions

of Lemma 1.3.33, and it follows that there exists h1t+1 a homomorphism from St+1 to B2. By

Proposition 1.3.28, h1t+1 is then also a homomorphism from St+1 to B2.

45

Accordingly, there exists a homomorphism h1n from Sn =B1 toB2. We show in an identical

fashion the existence of a homomorphism from B2 to B1, thus concluding our proof.

1.3.3.5 The Conservative Chase and the Standard Chase

While in the previous subsection we have shown equivalence for terminating cs_chase se-

quences, we dedicate this section to showing that (as announced in Section 1.2 and restated

in previous paragraphs), the Conservative Chase and the Standard Chase lead in essence to

equivalent results, as follows:

Theorem 1.3.34. Let B be a body and C a set of constraints.

Let B1 be the result of a terminating Standard Chase sequence with C on B. Let B2 be the

result of a terminating cs_chase sequence with sk(C) on B.

Then B1 and Body(B2) are homomorphically equivalent.

While the above theorem may look cryptic in terms of the equivalence it exhibits, we restate

it below, based on Proposition 1.3.7 and the definitions of the corresponding chase flavours on

queries:

Corollary 1.3.35. Let Q be a query and C a set of constraints.

Let Q1 be the result of a terminating Standard Chase sequence with C on Q. Let Q2 be the

result of a terminating cs_chase sequence with sk(C) on Q.

Then Q1 and Q2 are equivalent.

To prove Theorem 1.3.34, we start by showing how the definition of a Standard Chase step

allows inferring homomorphisms on the output of the chase step, based on the existence of

homomorphisms on the input of the chase step, in a very similar fashion to Lemma 1.3.33:

Lemma 1.3.36. LetB be a body and C a constraint such that a Standard Chase step with C ap-

plies on B with homomorphism h from Cprem to B, yielding B′ = chase_step_res(B ,C , h).
Let H be a homomorphism from B to a body D. Let g = H ◦ h be the corresponding

homomorphism from Cprem to D.

If there exists a homomorphism g′ compatible with g from Cconcl to D, then there exists a

homomorphism from B′ to D.

Proof. Let h′ be the Standard Chase step compatible homomorphism .

If C is an EGD, then we will show that H is a homomorphism from B′ to D. Indeed,

for the unique equality (t1 = t2) in B′ − B, (t1 = t2) = h((t′1 = t′2)), where (t′1 = t′2) is

the unique equality in Cconcl . Therefore t1 = h(t′1) and t2 = h′(t2). Then H((t1 = t2)) =

(H(t1) = H(t2)) = (H ◦ h′(t′1) = H ◦ h′(t′2)) = (H ◦ h(t′1) = H ◦ h(t′2)) = (g(t′1) = g(t′2))
= (g′(t′1) = g′(t′2)) = g

′((t′1 = t′2)), therefore H((t1 = t2)) ∈ D, where we have used the fact

that h is compatible with h′, g′ is compatible with g and t′1, t
′
2 ∈ T (Cprem).

IfC is a TGD, then we start by noting that the Standard Chase step compatible homomorphism

creates a one-to-one correspondence between the tuple variables of [Cconcl]rel - [Cprem]rel and

46

the tuple variables of B′ − B, as well as the corresponding relational atoms. We formalize this

observation by stating that there is a partial inverse of h′, h′−1, such that the following hold:

1. h′−1 is a homomorphism from [B ′]rel -[B]rel to [Cconcl]rel -[Cprem]rel

2. for every equality (t1 = t2) in B′ − B, (t1 = t2) = h′((t′1 = t′2)), where (t′1 = t′2) is

an equality in Cconcl , and furthermore if ti ∈ T (B ′) − T (B) then t′i = h′−1(ti), else
ti = h′(t′i) and t

′
i ∈ T (Cprem)

Based on the observation above, we define the following function from TupVar(B ′) to

TupVar(D):

H ′(r) =

{

H(r), r ∈ TupVar(B)

g′ ◦ h′−1(r), r ∈ TupVar(B ′)− TupVar(B)
.

We will show thatH ′ is a homomorphism fromB′ toD. It is straightforward that the image

of all relational atoms in B′ is in D. Moreover, for every equality atom (t1 = t2) in h
′(Cconcl),

H ′((t1 = t2)) = (H ′(t1) = H ′(t2)).
If ti ∈ T (B ′)− T (B), then H ′(ti) = g′ ◦ h′−1(ti) = g′ ◦ h′−1 ◦ h′(t′i) = g

′(t′i).
Else, H ′(ti) = H(ti) = H ◦ h′(t′i) = H ◦ h(t′i) = g(t

′
i) = g

′(t′i), where we have used the fact

that h′ is compatible with h and g′ is compatible with g.
Then H ′((t1 = t2)) = (g′(t′1) = g′(t′2)) = g

′((t′1 = t′2)), where (t′1 = t′2) ∈ [Cconcl]eq , so
since g′ is a homomorphism from Cconcl to D it follows that H ′((t1 = t2)) ∈ D

We will continue by showing that a similar result holds in the case of the cs_chase steps, but

concerning the bodies recovered from the corresponding (closed versions) of the sk_bodies . To

exhibit this result, we first show a set of properties regarding the cs_chase steps and constructive

terms.

We start by showing how cs_chase steps with sk_TGDs can be characterized according to

the constructive terms. Indeed, as a direct consequence of the definition of the cs_chase steps

and sk_constraints , the following holds:

Proposition 1.3.37. Let B be an sk_body and C an sk_TGD such that a cs_chase step with C
applies on B with homomorphism h from Cprem to B, yielding B′ =
CS_Chase_Step_Res(B ,C , h). Let h′ be the cs_chase step compatible homomorphism .

Let a1, . . . , an be the distinguished premise terms of C.

Let (t1 = t2) be a constructive equality in Cconcl . Then:

1. if t1 = ai then in h’(Cconcl) the unique constructive equality of h′(t1) is (h′(t1) =
ConstrT (h(ai)))

2. else t1 = fk(a1, . . . , an) and the unique constructive equality of h′(t1) is (h′(t1) =
fk(ConstrT (h(a1)), . . . ,ConstrT (h(an)))).

Based on the above, we can show that in a cs_chase sequence starting from an sk_body B
with a set of sk_constraints C, a cs_chase step with an sk_TGD C ∈ C cannot apply twice for

the same constructive terms of the images of distinguished premise terms.

47

The intuition behind this is simple: since according to Proposition 1.3.37 the constructive

terms in the added image of the conclusion are determined by the constructive terms of the

images of the distinguished premise terms, the image of the conclusion added by a first cs_chase

step with the sk_TGD will provide a compatible homomorphism for the second attempt of a

cs_chase step with the same constraint:

Proposition 1.3.38. Let B be an sk_body and C a set of sk_constraints .

Let B0 = B,B1, . . . , Bn be a cs_chase sequence of B with C. For each cs_chase step, let

Ci be the corresponding sk_constraint , hi the homomorphism from Ci prem to Bi and h
′
i the

cs_chase step compatible homomorphism .

Let C ∈ C be a sk_TGD such that a cs_chase step with C applies on Bn, with a

homomorphism h from Cprem to Bn. Let a1, . . . , an be the distinguished premise terms of C.

If there exists Ci such that C = Ci, then there exists at least one distinguished premise term

aj such that ConstrT (h(aj)) 6= ConstrT (hi(aj))

Proof. Assume that this is not the case. Then according to Proposition 1.3.37, the following

function:

h′(r) =

{

h(r), r ∈ TupVar(Cprem)

h′i(r), r ∈ TupVar(Cconcl)− TupVar(Cprem)

is a homomorphism compatible with h, from Cconcl to Bn. Then the cs_chase step with C
does not apply.

Based on Proposition 1.3.38, we will infer a very important result: for a cs_chase sequence

starting from a regular body with the sk_form of a set of constraints C, the following will hold:

for any cs_chase step with an sk_TGD, the constructive terms corresponding to the images

of Skolem-determined terms in the conclusion are new, that is, they cannot be instantiated in

equalities in the input of the chase step.

Intuitively, the reason behind this is that by definition of the sk_constraints , the construc-

tive terms of such Skolem-determined terms will identify uniquely the constructive terms cor-

responding to images of distinguished premise terms as well as the sk_constraint they have

been obtained from, since all sk_constraints in sk(C) are assumed to use fresh Skolem function

symbols. The previous instantiation of such terms would then mean that a cs_chase step with

the corresponding constraint has already been applied once, which, as we have previously seen

(Proposition 1.3.38), cannot happen.

Proposition 1.3.39. Let B be an sk_body and C a set of constraints such that B has been

obtained by a cs_chase sequence with sk(C) over a body B0.

Let C be an sk_TGD in sk(C) such that a cs_chase step with C applies on B, with a

homomorphism h from Cprem , yielding B′ = CS_Chase_Step_Res(Bn ,C , h). Let h
′ be the

cs_chase step compatible homomorphism .

Let t be a Skolem-determined term in Cconcl . Let t′ = h′(t) and (t′ = t′′) be the unique

unique constructive equality of t′ in B′.

Then there exists no equality involving t′′ in B.

48

Proof. By Proposition 1.3.37, t′′ = f(ConstrT (h(a1)), . . . ,ConstrT (h(an))), where a1, . . . ,
an are the distinguished premise terms.

Assume there exists a constructive equality in B of the form v = t′′ where v is a projection

term of B. Then since the Skolem function symbol f is specific to the constraint C (because of

the way sk(C) is obtained, and because B is a body , thus contains no initial Skolem terms), it

follows that the equality must have resulted from a previous application of a cs_chase step with

C.

On the other hand, t′′ uniquely determines the constructive terms of the images of the distin-

guished premise terms. It then follows that there must have been a cs_chase step with C and the

same constructive terms for the images of the distinguished premise terms. But by Proposition

1.3.38 this cannot happen, thus no equality v = t′′ can exist in B.

Note that the idea above has been previously sketched when introducing the sk_form of

constraints. Indeed, the above results correspond to the fact that no "parasite" equalities will

appear among terms that in the original version of the constraints are new and specific to the

conclusion (these will be indeed the Skolem-determined terms in the sk_form of the constraints).

Such terms can only be equated among them in the Standard Chase, and as shown above, this is

equally the case for the cs_chase .

Based on the results exhibited above, we can then state the refinement of Lemma 1.3.33,

regarding the bodies corresponding to the output of a cs_chase step, as follows:

Lemma 1.3.40. Let B be an sk_body and C a set of constraints, such that B has been obtained

from a body B0 by a cs_chase sequence with sk(C).
Let C ∈ sk(C) be an sk_constraint such that a cs_chase step with C applies on B with

homomorphism h from Cprem to B, yielding B′ = CS_Chase_Step_Res(B ,C , h).

LetH be a homomorphism fromBody(B) to a body D. Let g = H◦h be the corresponding

homomorphism from Cprem to D.

If there exists a homomorphism g′ compatible with g from Body(Cconcl) to D, then there

exists a homomorphism from Body(B′) to D.

Proof. The proof of the above lemma is very similar to the proof of Lemma 1.3.33 , with the

additional usage of Proposition 1.3.39 in the case of sk_TGDs.

We first construct the body :

B′′ = Body(B) ∪ h′(Body(Cconcl))

where h′ is the cs_chase step compatible homomorphism . Using arguments very similar to

Lemma 1.3.33, we show that there exists a homomorphism G fromB′′ toD (this homomorphism

is either H in the case of an sk_EGD, or H ′ as defined in the proof of Lemma 1.3.33, using the

"invertibility" property of h′, in the case of an sk_TGD.)

We will further show that the following holds:

Body(B′) = B′′

.

49

By the above and proposition 1.3.28 it follows directly that G is a homomorphism from

Body(B′) to D.

It is easy to show that B′′ ⊆ Body(B′), by definition of the closures. The other inclusion is

also easy to show in the case of sk_EGDs, since the only added equality in B′′ uses projection

terms in B.

We will further show the inclusion Body(B′) ⊆ B′′ for sk_TGDs. Indeed, according to

the definition of the sk_constraints , every equality in Body(B′) is either in Body(B) or of the
form (t1 = t2), where t1 and t2 are projection terms and at least one of ti is in h

′(T (Cconcl)−
T (Cprem)), that is, the image of a projection term specific to the conclusion.

We first analyse the case where t1 is the image of a non-Skolem-determined term inT (Cconcl)−
T (Cprem). Assume that t2 is a projection term of B. Let (t1 = t′′) be the unique equality (con-

structive) concerning t1 in B′. Then by definition of the sk_constraint and the cs_chase step,

there exists t3 ∈ h(T (Cprem)) such that (t3 = t′′) is the constructive equality of t3 in B, and

(t1 = t3) is in h′(Body(Cconcl)), since t1 and t3 are projection terms. But then by definition

of the closure and since no new equalities are introduced by the cs_chase step on the images of

terms of the premise, the equality (t3 = t2) must be in Body(B). It follows that (t1 = t3) is

in Body(B) ∪ h′(Body(Cconcl)) = B′′. The case where t2 is the image of a non-Skolem deter-

mined term in [Cconcl]rel − [Cprem]rel and t1 is a term of B, as well as the case where both t1
and t2 are the images of non-Skolem determined terms specific to the conclusion can be handled

in a similar fashion.

We further analyse the case where t1 is the image of a Skolem-determined term inT (Cconcl)−
T (Cprem). Let t1 = t′′ be the unique constructive equality of t1 in B′. By Proposition 1.3.39

it follows that the only possible way of equating t1 and t2 in B′ is through t′′, and the equality

t2 = t′′ is in h′(Cconcl). Accordingly, there must exist equalities (t′1 = t) and (t′2 = t) in Cconcl ,

such that (t1 = t′′) = h′(t′1 = t) and (t2 = t′′) = h′(t′2 = t), and t′1, t
′
2 are projection terms

specific to the conclusion. Then (t′1 = t′2) is in Body(Cconcl). It follows (t1 = t2) must be in

h′(Body(Cconcl)), therefore in B′′, therefore in B′′, which concludes our proof.

Remember that when presenting the sk_form of the constraints we have noted that Cconcl =

Body(sk(C)concl). Moreover, recall that Cprem = sk(C)prem . We can in fact restate the lemma

above as follows:

Corollary 1.3.41. LetB be an sk_body and C a set of constraints such thatB has been obtained

from a body B0 by a cs_chase sequence with sk(C).
Let C ∈ C be a constraint such that a cs_chase step with sk(C) applies on B with

homomorphism h from sk(C)prem to B, yielding B′ = CS_Chase_Step_Res(B ,C , h).

LetH be a homomorphism fromBody(B) to a body D. Let g = H◦h be the corresponding

homomorphism from Cprem to D.

If there exists a homomorphism g′ compatible with g from Cconcl to D, then there exists a

homomorphism from Body(B′) to D.

Note the strong resemblance of the above corollary with Lemma 1.3.36. Indeed, we are

saying that, considering solely the bodies of the (closed versions of the) results of cs_chase

steps, the cs_chase behaves like the Standard Chase. We can then prove our main equivalence

result:

50

Proof of Theorem 1.3.34. Let S0 = B, S1, . . . , Sn = B1 be the terminating Standard Chase

sequence with C on B resulting in B1.

Let K0 = B, K1, . . . , Km = B2 be the terminating cs_chase sequence with sk(C) on B
resulting in B2.

A.Wewill prove by induction on the Standard Chase steps the existence of a homomorphism

ht1 from St to Body(B2).

Since S0 = B = Body(B) = Body(K0) ⊆ Body(B2), we can exhibit h01 = Id.

Assuming that there exists ht1, we will show the existence of ht+1
1 , based on Lemma 1.3.36

and Proposition 1.3.24.

Indeed, t → t + 1 is a Standard Chase step with a constraint C ∈ C. Then there exists a

homomorphism h from Cprem to St.

Let g = ht1 ◦ h. Then g is a homomorphism from Cprem to Body(B2), therefore a

homomorphism from Cprem to B2. Since B2 is the result of a terminating cs_chase se-

quence with sk(C) on B, and Cprem = sk(C)prem , there must exist a homomorphism g′

compatible with g from sk(C)concl to B2, therefore (according to Proposition 1.3.28), from

Body(sk(C)concl) to Body(B2). By proposition 1.3.24, g′ is then a homomorphism compati-

ble with g from Cconcl to Body(B2), therefore from Cconcl to Body(B2).

We are then in the conditions of Lemma 1.3.36, and it follows that there exists ht+1
1 a

homomorphism from St+1 to Body(B2), therefore from St+1 to Body(B2) = Body(B2).

B. In a very similar manner, we will also prove the existence of a homomorphism ht2 from

Body(Kt) to B1.

Since Body(K0)= Body(B) = B = S0 ⊆ B1, we can exhibit h02 = Id.

Assuming that there exists ht2, we will show the existence of ht+1
2 , based on Lemma 1.3.40

and Proposition 1.3.24.

Indeed, t → t + 1 is a cs_chase step with sk(C), where C ∈ C. Then there exists a

homomorphism from sk(C)prem to Kt, therefore to Body(Kt) (since sk(C)prem is a regular

body).

Let g = ht2◦h. Then g is a homomorphism from sk(C)prem toB1, therefore from Cprem to

B1. Since B1 is the result of a terminating Standard Chase sequence, it follows that there exists

a homomorphism g′ compatible with g, from Cconcl to B1, therefore from Cconcl to B1. But by

Proposition 1.3.24, g′ is then a homomorphism compatible with g from Body(sk(C)concl)
to B1. We are then in the conditions of Lemma 1.3.40, and it follows there exists ht+1

2 a

homomorphism from Body(Kt+1) to B1, which concludes our proof.

1.3.3.6 Termination of the Conservative Chase

We dedicate this subsection to characterizing the termination behaviour of the cs_chase . We

start by showing that for a set weakly acyclic constraints C, the termination behaviour of the

cs_chase with the sk_form of the constraints, sk(C), is identical to that of the Standard Chase:

that is, all sequences terminate within the same type of bounds.

51

We will further show that cs_chase sequences present a much more regular termination be-

haviour than Standard Chase sequences: that is, we will show that as soon as there exists one

terminating cs_chase sequence, all full cs_chase sequences will terminate.

Weakly acyclic constraints. In the case of weakly acyclic constraints, we present below a result

identical to Theorem 1.3.11 in the case of the Standard Chase.

Theorem 1.3.42. Let B be an sk_body and C a set of weakly acyclic constraints.

Then there exists a polynomial in the size of B that bounds the length of every full cs_chase

sequence of B with sk(C). In particular, all such sequences terminate.

To prove the above theorem we rely on the following additional result, that merely restates

the definition of cs_chase steps conditions of application. Indeed, remember that we have de-

fined a relational atom’s identity by means of the constructive terms of all its projection terms,

and atoms are considered "identical" if collapsible. The following result underlines the fact that,

in order for it to apply, a cs_chase step with an sk_TGD must introduce at least one new rela-

tional atom (otherwise, there would exist a compatible homomorphism over the conclusion).

Proposition 1.3.43. Let B be an sk_body and C an sk_TGD such that a cs_chase step with C
applies on B, with homomorphism h from Cprem to B, yielding B′=
CS_Chase_Step_Res(B ,C , h).

Then for at least one relational atom a inB′−B, there exists no a′ ∈ [B]rel collapsible with

a.

Based on the result above and Proposition 1.3.38 (stating that a cs_chase step with an

sk_TGD can apply at most once in a sequence), the proof of Theorem 1.3.42 is essentially

identical to the proof of Theorem 3.9 in [33], by replacing the notion of "distinct values" with

the notion of "distinct constructive terms". Indeed, while the proof in [33] was given for the

standard chase, its construction is conservative enough to perfectly account for the cs_chase .

We show below the adaptation of the proof of Theorem 3.9 in [33] to the Conservative Chase.

We start by recalling the notion of weak acyclicity as defined in [33]:

Definition 1.3.44 (Weakly acyclic set of constraints). Let C be a set of constraints over a fixed

schema. Construct a directed graph, called the dependency graph of C, as follows:

1. there is a node for every pair (R,A), where R is a relation in the schema and A is an

attribute of R. Call such pair a position.

2. add edges as follows: for every TGD C in C:

(a) for every projection term si.Aj in T (Cconcl)-T (Cprem) (that is, every projection

term specific to the conclusion) and every projection term rk.Am in T (Cprem) such
that si.Aj and rk.Am are in the same equivalence class induced by

Clos([Cconcl]eq ∪ [Cprem]eq), add an edge from (R,Am) to (S,Aj) (if it does not

already exist), where ri ∈ R and si ∈ S are the relational atoms corresponding to

the given projection terms.

52

(b) in addition, for every projection term si.Aj in T (Cconcl)-T (Cprem) that has no

premise term and no constant in its equivalence class, and every projection term

rk.Am in T (Cprem) that has a distinguished premise term in its equivalence class,

add a special edge from (R,Am) to (S,Aj).

Then C is said to be weakly acyclic if there is no cycle going through special edges in its

dependency graph.

Note that the notion of weak acyclicity only involves the dependencies among the TGDs in

the set of constraints. Note moreover that the original definition of weakly acyclic constraints

is expressed for their Datalog notation. The above is the strictly equivalent definition of this

concept in the formalism used in this work, the tuple relational calculus.

Finally and importantly, recall that in the sk_form of a set of constraints, all projection

attributes specific to the conclusion that are not equated to a constant are either:

• equated to a distinguished premise term. In this case, in the dependency graph there will

be at least a regular edge from the position corresponding to the distinguished premise

term to the conclusion-specific term.

• equated to a Skolem term, that takes as arguments all the distinguished premise terms. In

this case, in the dependency graph there will be at least special edges from the positions

corresponding to the distinguished premise terms to the conclusion-specific term.

The observations above are intended to underline the following: for a Skolem-determined

term in the conclusion of a constraint, in the dependency graph there will always be at least

special edges from the positions corresponding to the distinguished premise terms to its corre-

sponding position.

Example 1.3.45. Consider the schema R(A), S(B,C), T (D,E) and the sk_body B = {r ∈ R,

s ∈ S, r.A = s.B}, which is also a regular body , that is, it has no constructive equalities.

Now consider the set of constraints C consisting in the unique TGD C such that Cprem={r ∈
R, s ∈ S, r.A = s.B} and Cconcl ={r ∈ R, s ∈ S, t ∈ T , t.D = s.B}. Note that there is a

unique distinguished premise term of C, namely s.B.

Then the dependency graph of C will comprise:

• two regular edges, one from (R,A) to (T,D) and one from (S,B) to (T,D).

• two special edges, one from (R,A) to (T,E) and one from (S,B) to (T,E).

On the other hand, the sk_form of C is such that sk(C)prem = Cprem and sk(C)concl =

{r ∈ R, s ∈ S, t ∈ T , t.D = s.B, t.E = f(s.B)}. Note that equalities in sk(C)concl are all

constructive.

By examining these two constructive equalities, note how the dependency graph comprises

an edge from the position (S,B) corresponding to s.B to the position (T,D) corresponding to

t.D. It comprises as well a special edge from the position (S,B) corresponding to s.B to the

position (T,E) corresponding to t.E.

53

For conciseness, we will in the following denote by the set of distinct constructive terms of a

position (R,A) in an sk_body B the set of all distinct constructive terms of the projection terms

ri.A, where (ri ∈ R) is a relational atom in B.

Based on the intuitions above, we can informally sketch the flow of our proof adaptation:

we will show that, in the result of any cs_chase sequence with sk(C), where C is a set of weakly

acyclic constraints, there is a bounded number of distinct constructive terms for a given position

(R,A) in the resulting sk_body B′. Combined with Proposition 1.3.43, which states that a

cs_chase step introduces at least some fresh relational atom (that is, one that differs on at least

one constructive term from the other atoms corresponding to the same relation), this will then

ensure the required bound on the cs_chase steps.

We will rely in our proof, as in [33], on the operations of copying and creation as they are

shown by the dependency graph. The value copy (expressed by regular edges) in [33] is in our

case replaced by constructive term copy, from the image of a distinguished premise term to

the added conclusion term. The value creation on the other hand, expressed by special edges,

involves the addition in the cs_chase step of a Skolem determined term, whose constructive

term is in turn, as shown above, completely determined by the Skolem function symbol and the

constructive terms of the images of the distinguished premise terms.

Proof of Theorem 1.3.42. As in [33], we start by analysing the case without EGDs.

In an identical fashion to [33], for every node (R,A) in the dependency graph of C, we

define its rank as the maximum number of special edges of any path in the graph ending in

(R,A). Since C is weakly acyclic, the rank of every node will be finite. As in [33], we denote

by r the maximum of such ranks, and by p the number of positions in the schema. Since the

schema is fixed, we can consider p a constant and we can show that r cannot be higher than p
(otherwise a cycle on the special edges will exist), thus r is bounded by a constant.

We then partition, as in [33], the nodes of the dependency graph into sets N0, N1, ..., Nr,

where the set Ni contains all nodes of rank i.

Let n be the total number of distinct constructive terms of projection terms in B. Let B′ be
an sk_body obtained from B after some arbitrary cs_chase sequence.

We will prove by induction that for every i there exists a polynomial Qi such that the total

number of distinct constructive terms of all positions (R, A) in Ni is bounded by Qi(n).

If (R, A) is a position in N0, then there are no incoming paths with special edges. Then no

new constructive terms will be created for a term ri.A corresponding to the position. Indeed,

recall that, since they don’t have any incoming special edges, these terms cannot be Skolem-

determined. When they are added, their constructive terms will then be copies of the constructive

terms of the image of the distinguished premise term they are equated with in the conclusion.

Then, for this sort of positions in B′, the number of their distinct constructive terms will be

at maximum n, corresponding to the initial distinct constructive terms in B.

Assuming that the induction hypothesis holds for a given i, we will show that it also holds

for i+ 1, by analysing the constructive terms for a position (R,A).

The first type of such constructive terms corresponds to constructive terms that already exist

in B, thus they are at most n.

Furthermore, a constructive term corresponding to a position (R,A), thus to a projection term

r.A where (r ∈ R) is the relational atom comprising r, can be created in two ways: as a copy

54

of some previous constructive term (when applying a cs_chase step with a constraint in which

r.A is not Skolem-determined) or as a new constructive term, if r.A is Skolem-determined in the

conclusion. This new constructive term is then by definition a Skolem term taking as arguments

the constructive terms of the images of the distinguished premise terms.

Let us first count the number of new distinct constructive terms that can be created for a given

position (R,A). A new constructive term creation corresponds to the presence of (at least) an

incoming special edge. Therefore, the special edge(s) must originate in some position(s) (S,B)
in N0 ∪ ... ∪Ni. But according to the induction hypothesis, the number of distinct constructive

terms for the positions in N0 ∪ ... ∪Ni is bounded by P (n) = Q0(n) + ..+Qi(n).

LetC be a TGD in C and dj be the number of its distinguished premise terms. Note that these

are the same as the distinguished premise terms of sk(C). We can show that for every distinct

choice of dj constructive terms in the positions of N0 ∪ ... ∪ Ni, a cs_chase step with sk(C)
creates at most one new constructive term for the position (R,A) corresponding to a Skolem-

determined term. Indeed, by Proposition 1.3.38, for a given choice of constructive terms for the

images of the distinguished premise terms, a constraint will apply at maximum once.

Let d be the maximum number of special edges that may enter a position in the whole

dependency graph.

As shown above, by definition of the dependency graph, for each position, dj is lower or

equal than the total number of incoming special edges for a position. Then obviously dj <= d.
Thus the total number of new distinct constructive terms that can be created for a position (R,A)

is at maximum (P (n))d ∗D, whereD is the number of TGDs. Since the schema and the number

of constraints are assumed to be fixed, the above is a polynomial in n. For the total number of

positions (R,A) in Ni+1, the number of new distinct constructive terms that can be created is

then bounded by G(n) = pi ∗ (P (n))
d ∗D, where pi+1 is the number of positions in Ni+1.

Let us now count the number of distinct constructive terms that can be occur for positions

in Ni+1 by copying. Such copying may only happen from a position in N0 ∪ .. ∪ Ni by the

presence of a non-special edge (a copy from a position with a higher rank would contradict the

hypothesis that the rank of a position in Ni+1 is indeed i + 1). Thus, the number of distinct

constructive terms obtained by copying for positions in Ni+1 is bounded by the number of

distinct constructive terms for positions in N0 ∪ ... ∪Ni, which is Pn.

We can then (in an identical fashion as in [33]) take Qi+1(n) = n + G(n) + P (n), the
polynomial that bounds the number of distinct constructive terms for the positions in Ni+1.

Since the number of sets Ni is bounded by a constant, it follows that the total number of

distinct constructive terms for all positions inB′ is bounded by a polynomialQ(n), and therefore

obviously the number of distinct constructive terms for a given position in B′ is itself bounded

by Q(n).

It follows that, for a given relation R in the schema, the number of relational atoms ri ∈ R
differing by at least one constructive term on at least one of their projection terms is bounded by

Q(n)p, where p is the number of positions in the schema and therefore an upper bound for the

number of attributes of R.

To conclude our proof we note that, by Proposition 1.3.43, each cs_chase step with an

sk_TGD introduces at least one relational atom that is non-collapsible with existing atoms. It

follows that the maximum number of cs_chase steps with sk_TGDs is bounded by s ∗ Q(n)p,

55

where s is the number of relations in the schema. Since s and p are assumed to be constants

(fixed schema), it follows that the total number of cs_chase steps is bounded by a polynomial

in n.
Accordingly, we then infer that the number of relational atoms in some resulting sk_body is

always bounded by c ∗ s ∗ Q(n)p, where c is the maximum number of atoms in the conclusion

of a constraint. To further account for sk_EGDs we note that an sk_EGD will simply equate

two projection terms of existing relational atoms. Since the number of such relational atoms is

always bounded, it follows that the quantity c ∗ s ∗Q(n)p ∗ p2 provides an upper bound for the

number of cs_chase steps with EGDs.

Note that, for the Conservative Chase, the number of special edges on a path between two

positions can be in fact related to the nesting depth of the Skolem constructive terms (one ad-

ditional Skolem function symbol is added with each "new constructive term creation", which

corresponds to at least one incoming special edge).

While the above statement and proof show the termination of the cs_chase under weakly

acyclic constraints, note that the choice of tuple calculus allows for a possibly finer granularity

definition of the dependency graph. Indeed, the equalities stated explicitly in the premise in our

formalism can help distinguish cases where the standard chase in tuple calculus can be shown

to terminate beyond weak acyclicity, by the same reasoning as above, but by modifying the

definition of the dependency graph. The following example illustrates such a case:

Example 1.3.46. Consider the schema R(A), S(B,C), T (D,E), the sk_body(which is also a

regular body) B = {r ∈ R, s ∈ S, r.A = s.B} and the set of constraints C= {C1, C2}, such

that:

1. C1 prem = {r ∈ R, s ∈ S, r.A = s.B}, C1 concl = {r ∈ R, s ∈ S, r.A = s.B, t ∈ T ,

t.C = s.B}

2. C2 prem = {t ∈ T }, C2 concl ={t ∈ T , r ∈ R, r.A = t.D}

Then, by definition, C is not weakly acyclic. On the other hand, by applying the same rea-

soning as above, with a modified version of the dependency graph, we can show that the stan-

dard chase and the cs_chase terminate. Indeed, by employing a similar procedure as the one

used to produce the sk_form of the constraints, this modified dependency graph will only com-

prise special edges from distinguished premise terms to undetermined conclusion terms (Skolem-

determined in the sk_form), that is, in our case, from the position (S,B) to the position (T,E).
In this alternative dependency graph there are no cycles going through special edges, thus

the reasoning of the proof for weakly acyclic constraints applies directly and will accordingly

infer chase termination, for both the Standard and Conservative Chase.

We thus note, with the above example, the possibility of a finer analysis of chase termination

conditions, based on the suggested alternative definition of the dependency graph. We leave

such refined analysis to future work.

Stronger termination criteria. While in the above we have shown that for weakly acyclic con-

straints, the cs_chase behaves in an essentially identical fashion to the Standard Chase, we

56

will hereafter show that the termination of full cs_chase sequences is intuitively much more

regular than that of full Standard Chase sequences. Mainly, we will show that given a set of

sk_constraints , if one full cs_chase sequence terminates then all full cs_chase sequences ter-

minate.

The claim of such property is based again on the notion of collapsible atoms and atom

identity. To formalize our results, we further introduce the notion of col_homomorphism:

Definition 1.3.47 (col_homomorphism). . We denote by a col_homomorphism from an sk_body

B1 to an sk_body B2 a homomorphism h from B1 to B2 such that for every relational atom a
in B1, a and h(a) are collapsible.

Remember that we have seen, by Lemma 1.3.33, that we can infer homomorphisms over

the output of a cs_chase step, based on the existence of of homomorphisms over the input of

the step. We hereafter refine Lemma 1.3.33 to further include col_homomorphisms and show

the following:

Lemma 1.3.48. LetB be an sk_body andC an sk_constraint such that a cs_chase step withC
applies onB with homomorphism h fromCprem toB, yieldingB′=CS_Chase_Step_Res(B ,C , h).
Let h′ be the cs_chase step compatible homomorphism .

LetH be a homomorphism from B to an sk_body D. Let g = H ◦ h be the corresponding

homomorphism from Cprem to D.

If there exists a homomorphism g′ compatible with g from Cconcl to D, then there exists a

homomorphism H ′′ from B′ to D, such that, moreover, if H is a col_homomorphism then

H ′′ is a col_homomorphism .

Proof. We only need to show that if H is a col_homomorphism , then the homomorphism

H ′ defined in the proof of Lemma 1.3.33 is also a col_homomorphism . Indeed, for the con-

structive equalities (t1 = t2) in h′(Cconcl), we have shown that H ′((t1 = t2)) = (H ′(t1) =
ConstrT (H (t2))). Since H is a col_homomorphism it follows that ConstrT (H (t2)) =
ConstrT (t2), therefore H ′((t1 = t2)) = (H ′(t1) = ConstrT (t2)), which makes H ′ a
col_homomorphism , thus concluding our proof.

Using Lemma 1.3.48 and Proposition 1.3.43, we can infer the following very strong result

regarding the termination of the cs_chase sequences:

Theorem 1.3.49. Let B be an sk_body and C a set of sk_constraints .

If one full cs_chase sequence with C over B terminates, then all full cs_chase sequences

with C over B terminate.

Proof. Let B1 be the result of a terminating cs_chase sequence with C over B.

Let S0 = B, . . . be a full cs_chase sequence with C over B.

We will show by induction on the cs_chase steps that there exists a col_homomorphism

from Si to B1. The reasoning is identical to that of the proof of Theorem 1.3.32, starting from

the identity function which is a col_homomorphism from S0 = B to B1, and using Lemma

1.3.48 at each step.

On the other hand, by Proposition 1.3.43, every cs_chase step with an sk_TGD must add at

least one new relational atom. Since for every such atom there exists a collapsible atom in B1,

57

and B1 has a finite number of relational atoms, it follows that there exists k such that starting

from k all cs_chase steps in the sequence Sk, . . . are sk_EGD steps. But since Sk has a finite

number of relational atoms itself, and every cs_chase step with an sk_EGD adds an equality

over existing projection terms, it follows that the number of sk_EGD steps is bounded, thus

there exists k1 such that no more cs_chase step applies on Sk1 . Therefore, the S0 = B, . . .
cs_chase sequence terminates after k1 steps.

To conclude, we note that we can refine Theorem 1.3.32 to the following:

Theorem 1.3.50. Let B be an sk_body and C a set of sk_constraints . Let B1 and B2 be the

results of two terminating cs_chase sequences with C over B.

Then B1 and B2 are col_homomorphically equivalent .

1.3.3.7 Splitting sk_constraints into sk_unit_constraints

We will in the following further distinguish a subclass of sk_constraints which we will call

sk_unit_constraints:

Definition 1.3.51 (Sk_unit_constraints). An sk_constraint C is an sk_unit_constraint iff:

1. C is an sk_EGD, or

2. C is a sk_TGD and the set [Cconcl]rel − [Cprem]rel contains a single relational atom.

Intuitively, sk_unit_constraints have a unit conclusion, in the sense that, ignoring con-

structive equalities, this conclusion comprises a single specific atom. We will show hereafter

that cs_chase sequences with sk_unit_constraints exhibit less redundancy and even stronger

equivalence results upon termination. More importantly, we show that we can "transform" any

set of sk_constraints into a set of sk_unit_constraints and the cs_chase with the two versions

exhibits essentially similar properties.

We obtain sk_unit_constraints from sk_constraints by producing their split form, as fol-

lows:

Definition 1.3.52 (Split form of an sk_constraint). Let C be an sk_constraint . The split form

of C is a set of sk_unit_constraints split(C) obtained as follows:

1. if C is an sk_EGD, then split(C) contains an unique element C1 = C

2. else, let r1 ∈ R1, . . . , rn ∈ Rn be the relational atoms in Cconcl . Then split(C) contains
n sk_unit_constraints Ci, which are all sk_TGDs, constructed as follows:

(a) Ci prem = Cprem

(b) [Ci concl]rel = [Cprem]rel ∪(ri ∈ Ri)

(c) [Ci concl]constr_eq = {(t1 = t2)}, s.t. (t1 = t2) ∈ [Cconcl]constr_eq and t1 = ri.A

Example 1.3.53. Let C be an sk_TGD such that:

58

1. Cprem = {r ∈ R}

2. Cconcl = {r ∈ R, s ∈ S, t ∈ T , s.B = r.A, s.C = f(r.A), t.D = r.A}.

Then the split form of C, split(C), contains two sk_unit_constraints C1 and C2, both

sk_TGDs, such that:

1. C1 prem = C2 prem = {r ∈ R}

2. C1 concl = {r ∈ R, s ∈ S, s.B = r.A, s.C = f(r.A)}

3. C2 concl = {r ∈ R, t ∈ T , t.D = r.A}

For a set of sk_constraints C, we denote by split(C) the resulting set of sk_unit_constraints

corresponding to their split versions, split(C) = ∪split(C), C ∈ C. As announced, we will in the

following show that cs_chase sequences with C and cs_chase sequences with split(C) behave
in an essentially equivalent fashion.

We start by showing that the results of terminating cs_chase sequences with the two versions

of constraints are strongly equivalent (that is, col_homomorphically equivalent) as follows:

Theorem 1.3.54. Let B be an sk_body and C a set of sk_constraints .

Let B1 be the result of a terminating cs_chase sequence with C over B. Let B2 be the result

of a terminating cs_chase sequence with split(C) over B.

Then B1 and B2 are col_homomorphically equivalent .

Proof. We only need to note the fact that, by definition of the split form of the constraints:

1. for a constraint C ∈ C, a homomorphism h′ from Cconcl to an sk_body D, compatible to

a homomorphism h from Cprem to D, provides h′1, . . . h
′
n homomorphisms compatible

with h from Ci concl to D, where Ci ∈ split(C).

2. reversely, if h′1, . . . h
′
n exist over Ci concl , Ci ∈ split(C), then their union will form a

homomorphism h′ from Cconcl to D.

We can then exhibit, based on Lemma 1.3.48, a col_homomorphism toB1 from (the closed

version of) every intermediate result of the cs_chase sequence with split(C); reversely, we

can exhibit a col_homomorphism from (the closed version of) every intermediate result of the

cs_chase sequence with C to B2.

We further show that the termination behaviour of cs_chase sequences with C and cs_chase

sequences with split(C) is essentially identical, as follows:

Theorem 1.3.55. Let B be a body and C a set of sk_constraints .

Then the following hold:

1. if there exists one terminating cs_chase sequence with C over B then all cs_chase se-

quences with C and split(C) terminate.

2. if there exists one terminating cs_chase sequence with split(C) over B then all cs_chase

sequences with C and split(C) terminate.

59

Proof sketch. We proceed in the same fashion as we have for linking termination of cs_chase

sequences, based on the col_homomorphisms exhibited from each intermediate cs_chase re-

sult in a sequence to the result of a second, terminating sequence. We have shown in the above

proof that such col_homomorphisms exist in both directions (i.e. from intermediate results of

a sequence using C to a terminating sequence using split(C), and reversely). The reasoning for

inferring the termination is then identical to the proof of Theorem 1.3.49.

Sk_unit_constraints from regular constraints. Given a set of constraints C, we define their

sk_unit_form as the set of sk_unit_constraints skunit(C) = split(sk(C)).
We can further show that the following holds (the proof is identical to the proof of Theorem

1.3.42):

Theorem 1.3.56. Let B be an sk_body and C a set of weakly acyclic constraints:

Then there exists a polynomial in the size of B that bounds the length of every full cs_chase

sequence of B with skunit(C). In particular, all such sequences terminate.

Furthermore, based on Theorem 1.3.34, Theorem 1.3.54 and Proposition 1.3.28, we can

claim the following:

Theorem 1.3.57. Let B be a body and C a set of constraints.

Let B1 be the result of a terminating Standard Chase sequence with C on B. Let B2 be the

result of a terminating cs_chase sequence with skunit(C) on B.

Then B1 and Body(B2) are homomorphically equivalent.

Accordingly, we can "translate" the above result for queries:

Corollary 1.3.58. Let Q be a query and C a set of constraints.

Let Q1 be the result of a terminating Standard Chase sequence with C on Q. Let Q2 be the

result of a terminating cs_chase sequence with skunit(C) on Q.

Then Q1 and Q2 are equivalent.

Privileging sk_unit_constraints . Given the above equivalence results, we will privilege in the

following the sk_unit_constraints to express the cs_chase , and its provenance-aware version.

Indeed, reasoning in terms of unit conclusions turns out to be simpler. Furthermore, the ad-

vantage of employing the cs_chase with the split version of a set of sk_constraints is that it

produces shorter outputs, in the following sense:

Proposition 1.3.59. Let B be a body . Let C be a set of sk_unit_constraints .

Then the result of any cs_chase sequence with C over B does not contain any collapsible

atoms.

Moreover, as announced in the beginning of this section, for the results of two terminating

cs_chase sequences with a set of sk_unit_constraints , we can show an equivalence result

stronger than for regular sk_constraints . Indeed, we define the notion of col_isomorphism as

follows:

60

Definition 1.3.60 (col_isomorphism). . We denote by a col_isomorphism from an sk_body B1

to an sk_body B2 an isomorphism h fromB1 toB2 such that h is furthermore a col_homomorphism .

Note that it is straightforward to show that if h is a col_isomorphism then h−1 is also a

col_isomorphism .

We can then show that for sk_unit_constraints the following stronger version of Lemma

1.3.48 holds:

Lemma 1.3.61. Let B be an sk_body and C an sk_unit_constraint such that a cs_chase step

with C applies on B with homomorphism h from Cprem to B, yielding B′=
CS_Chase_Step_Res(B ,C , h).

Let H be an isomorphism from B to a part P of an sk_body D. Let g = H ◦ h be the

corresponding homomorphism from Cprem to D.

If there exists a homomorphism g′ compatible with g from Cconcl to D, then there exists

an isomorphismH ′′ from B′ to P ∪ g′(Cconcl) such that, moreover, ifH is a col_isomorphism

then H ′′ is a col_isomorphism .

Proof. The proof of the above result is very similar to the proof of Lemma 1.3.33 and its refine-

ment Lemma 1.3.48.

Let P ′ = P ∪ g′(Cconcl). Let h
′ be the cs_chase step compatible homomorphism .

If C is an sk_EGD, then we will show, as in the proof of Lemma 1.3.33, that H itself

is an homomorphism from B′ to P ′. Indeed, for the unique equality (t1 = t2) in B′ − B,

(t1 = t2) = h′((t′1 = t′2)), where (t′1 = t′2) is the unique equality in Cconcl . Therefore

t1 = h′(t′1) and t2 = h′(t2). ThenH((t1 = t2)) = (H(t1) = H(t2)) = (H ◦h′(t′1) = H ◦h′(t′2))
= (H ◦ h(t′1) = H ◦ h(t′2)) = (g(t′1) = g(t′2)) = (g′(t′1) = g′(t′2)) = g′(t′1 = t′2), therefore
H(t1 = t2) ∈ P ′, where we have used the fact that h′ is compatible with h, g′ is compatible

with g and t′1, t
′
2 ∈ T (Cprem).

On the other hand, we will also prove that H−1 is a homomorphism from P ′ to B′. In-

deed, if g′(Cconcl) is not in P , then for the unique equality (t′′1 = t′′2) in P ′ − P , (t′′1 = t′′2) =

g′((t′1 = t′2)). ThenH
−1((t′′1 = t′′2)) = (H−1(t′′1) = H−1(t′′2)) = (H−1◦g′(t′1) = H−1◦g′(t′2))

= (H−1 ◦ g(t′1) = H−1 ◦ g(t′2)) = (H−1 ◦H ◦ h(t′1) = H−1 ◦H ◦ h(t′2)) = (h(t′1) = h(t′2)) =
h′((t′1 = t′2)) = (t1 = t2), which is the unique equality in B′ −B, thus concluding our proof.

If C is an sk_TGD, we restate the "invertibility" property of h′ as in the proof of Lemma

1.3.33: there exists a partial inverse of h′, h′−1, such that the following hold:

1. h′−1 is a homomorphism from [B ′]rel -[B]rel to [Cconcl]rel -[Cprem]rel

2. for every (constructive) equality (t1 = t2) in B′ − B, (t1 = t2) = h′(t′1 = t′2), where

(t′1 = t′2) is an equality in [Cconcl]constr_eq , and furthermore:

(a) if t1 is in T (B ′) - T (B), then t1 = h′(t′1), t
′
1 is in T ([Cconcl]rel − [Cprem]rel) and

t′1 = h′−1(t1)

(b) else, t2 is in T (B), t2 = ConstrT (h ′(t ′2)), t
′
2 ∈ T (Cprem)

61

We then proceed as in the proof Lemma 1.3.33, that is, we define the following function

from TupVar(B ′) to TupVar(P ′):

H ′(r) =

{

H(r), r ∈ TupVar(B)

g′ ◦ h′−1(r), r ∈ TupVar(B ′)− TupVar(B)
.

We will show thatH ′ is a homomorphism from B′ to P ′, as in the proof of Lemma 1.3.33.

It is straightforward that the image of all the relational atoms in B′ is in P ′. Moreover, all

equalities in B′−B are constructive and for every equality atom (t1 = t2) in B
′−B,H ′((t1 =

t2)) = (H ′(t1) = ConstrT (H ′(t2))).
But H ′(t1) = g′ ◦ h−1(t1) = g

′ ◦ h′−1 ◦ h′(t′1) = g
′(t′1)

On the other hand ConstrT (H ′(t2)) = ConstrT (H (ConstrT (h ′(t ′2)))). But then accord-

ing to proposition 1.3.27, ConstrT (H ′(t2)) = ConstrT (H ◦ h ′(t ′2)) = ConstrT (H ◦ h(t ′2)) =
ConstrT (g(t ′2)) = ConstrT (g ′(t ′2)), where we have used the fact that h and h′, respectively g
and g′ are compatible and t′2 is in T (Cprem).

It follows thatH ′((t1 = t2)) = (H ′(t1) = ConstrT (H ′(t2))) = (g′(t_1) = ConstrT (g ′(t ′2))),
therefore , since g′ is a homomorphism from Cconcl to P

′, H ′((t1 = t2)) ∈ P
′.

In addition to Lemma 1.3.33, we further prove that H ′ is in fact an isomorphism. That is,

we will show that H ′ is bijective and that its inverse H ′−1 is a homomorphism from P ′ to B′.
We start by noting that g′(Cconcl) cannot be in P . Indeed, otherwise it would be easy to

show that the following function:

h′′(r) =

{

h(r), r ∈ TupVar(Cprem)

H−1 ◦ g′(r), r ∈ TupVar(Cconcl)− TupVar(Cprem)
.

would be a homomorphism compatible with h from Cconcl to B before the cs_chase step,

thus the cs_chase step would not apply.

On the other hand, since we are dealing with sk_unit_constraints , it follows by the above

that P ∩ g′(Cconcl) = g([Cprem]rel), in other words, the image of specific part of the conclusion

is disjoint from P (indeed, the single relational atom specific to Cconcl must be outside P).

We further note that in the case of sk_unit_constraints , every compatible homomorphism

possesses the "invertibility" property stated above for the cs_chase step compatible homomorphism .

In particular, g′ will exhibit such property.

Then it is easy to show that H ′ is bijective, and for the unique relational atom a in P ′ − P ,

H ′−1(a) = h′◦g′−1(a) = h′(a′), where a′ is the unique relational atom in [Cconcl]rel−[Cprem]rel ,
therefore H ′−1(a) ∈ B′.

Furthermore, let (t′′1 = t′′2) be a constructive equality in P ′ − P . Then (t′′1 = t′′2) = g
′(t′1 =

t′2). Then H
′−1((t′′1 = t′′2)) = H

′−1 ◦ g′(t′1 = t′2) = (H ′−1 ◦ g′(t′1) = ConstrT (H ′−1 ◦ g ′(t ′2)),
where (t′1 = t′2) is a constructive equality in Cconcl . But furtherH ′−1 ◦g′(t′1) = h

′ ◦g′−1 ◦g′(t′1)
= h′(t′1).

Moreover,ConstrT (H ′−1 ◦ g ′(t ′2)) =ConstrT (H−1 ◦ g(t ′2)) =ConstrT (H−1 ◦H ◦ g(t ′2))
= ConstrT (h(t ′2)) = ConstrT (h ′(t ′2)).

It follows that H ′−1((t′′1 = t′′2)) = h′((t′1 = t′2)), therefore H
−1((t′′1 = t′′2)) is in B′, thus

concluding our proof that H ′ is an isomorphism.

62

To further show that H ′ is a col_isomorphism if H is a col_isomorphism we use an iden-

tical argument as in the proof of Lemma 1.3.48.

Based on the above result, we can then show that terminating cs_chase sequences with

sk_unit_constraints lead to col_isomorphic results, as follows:

Theorem 1.3.62. Let B be an sk_body and C a set of sk_unit_constraints . Let B1 and B2 be

the results of two terminating cs_chase sequences with C over B.

Then B1 and B2 are col_isomorphic.

Proof. As we did when proving homomorphic equivalence for the results of two terminating

cs_chase sequences, for every intermediate result St of the cs_chase sequence leading to B1

we show inductively, the existence of an isomorphism between St and a part P of B2, based on

Lemma 1.3.61. It follows that there exists an isomorphism h1 between B1 and a part of B2.

Reversely, we show the existence of an isomorphism from B2 to a part of B1.

But since isomorphisms are injective it follows that B1 and B2 must have the same number

of tuple variables (and relational atoms), therefore h1 is an isomorphism between B1 and B2,

which concludes our proof.

1.3.4 The Provenance-Aware Chase

We will describe in this subsection the Provenance-Aware Chase, further denoted pa_chase .

As is the case for the Standard Chase and the Conservative Chase, the pa_chase is an itera-

tive procedure consisting in a sequence of steps. As announced in Section 1.2, the pa_chase

essentially consists in instrumenting the cs_chase with provenance. pa_chase steps will thus

take as input a provenance-adorned sk_body and an sk_unit_constraint6 and yield as output a

provenance-adorned sk_body.

1.3.4.1 Provenance formulae and provenance-adorned sk_bodies

To describe provenance-adorned sk_bodies, we will first introduce the concept of provenance

formulae and their associated operations.

Definition 1.3.63 (Provenance formula). Given a finite set of symbols P , called a provenance

vocabulary, a provenance formula over P is either

• True, or

• False, or

• a boolean formula in DNF over the provenance symbols, using the *(AND) and +(OR)

operators: F = C1 + ... + Cn, where Ci = S1
i ∗ ... ∗ S

ni

i , S
j
i ∈ P and Ci is called a

provenance conjunct. We will further call the symbols in P provenance terms.

We denote by ProvForms(P) the set of all provenance formulae over P .

6According to the previous section, the results below can also be generalized to sk_constraints in general.

63

Note that we can view provenance conjuncts as subsets of P and provenance formulae as

subsets of the power set of P , P(P), such that False = ∅ and True = P(P). We will hereafter

use the standard set operations symbols with straightforward semantics for provenance formulae

and provenance conjuncts.

We also define the subsumption of provenance formulae, as the reverse of logical implica-

tion:

Definition 1.3.64 (Provenance subsumption). A provenance formula F1 over P , F1 = C1
1 +

· · · + C1
n subsumes a provenance formula F2 over P , F2 = C2

1 + · · · + C2
m, denoted F1 ≺F2,

iff F2 −→ F1, that is, iff ∀i ∈ {1, ..,m} ∃j ∈ {1, .., n} s.t. C
1
j ⊆ C2

i .

It is easy to show that by definition of the subsumption, the following hold:

Lemma 1.3.65. Let P1 and P2 be provenance formulae and P be a provenance conjunct. Then

the following hold:

1. if P1 ≺ P2 then P1 ∗ P2 = P2.

2. if (P1 ∗ P2) ≺ P , then P1 ≺ P and P2 ≺ P .

3. if (P1 + P2) ≺ P , then at least one of P1 or P2 ≺ P .

Using subsumption, we define the reduced form of a provenance formula:

Definition 1.3.66 (Reduced form of a provenance formula). Let F be a provenance formula over

a vocabulary P . We define the reduced form of F , rf (F), as the formula F ′ = C1 + ... + Cm

such that:

1. F ′ ⊆ F

2. F ′ ≺ F

3. ∀i 6= j, Ci ⊀ Cj and Cj ⊀ Ci

The following lemma shows that the reduced form of a provenance formula is well defined

and further provides an operational procedure for its computation

Lemma 1.3.67. Let F = C1 + ... + Cm be a provenance formula over a vocabulary P . Then

rf (F) is unique and computable by removing from F all conjuncts subsumed by other conjuncts.

Proof. Suppose that there are two formulae F1 = C1
1 + ... + C1

n and F2 = C2
1 + ... + C2

p

respecting the properties (1)-(3) that define the reduced form of F . We will show that F2 = F1.

Indeed, we will show that F2 ⊆ F1. Let C
2
i be a conjunct in F2. Since F2 ⊆ F , it follows

that C2
i ∈ F . But since F1 ≺ F , there exists C1

j s.t. C1
j ⊆ C2

i . Furthermore, because F1 ⊆ F ,

it follows that C1
j ∈ F . Then there exists C2

k ∈ F2 s.t. C2
k ⊆ C1

j ⊆ C2
i . But since according to

the definition F2 does not contain pairwise subsumed conjuncts, i = k and C2
k = C1

j = C2
i . It

follows that C2
i ∈ F1.

In a similar manner we show that F1 ⊆ F2. To conclude the proof of the lemma, it is

straightforward to show that removing subsumed conjuncts from F leads to a provenance for-

mula respecting the definition of the reduced form.

64

We will use provenance formulae as adornments on sk_bodies as follows:

Definition 1.3.68 (Provenance adornment and provenance-adorned sk_bodies). Let P be a

provenance vocabulary and B an sk_body . Let Prov be a function defined on all atoms of

B, with values in ProvForms(P). Then Prov is called a provenance adornment of B and the

couple (B,Prov) is called a provenance-adorned sk_body.

We will hereafter refer to the values of Prov on the atoms of B as the provenance of the

atoms of B.

Provenance adornment of terms. The provenance adornment Prov of an sk_body B induces a

function Provterms from T (B) to ProvForms(P), called the provenance adornment of terms,

as follows:

1. Provterms(r.A) = Prov(r ∈ R), for a projection term.

2. Provterms(K) = True, for a constant

3. Provterms(f(a0, . . . , an)) =
∏

Provterms(ai) for a Skolem term (and Provterms(f()) =
True, for a Skolem term with no argument)

Since there is no ambiguity, and in order to avoid clutter, we will use in the following the

notation Prov to also denote Provterms .

Provenance adornment of the closed version. Based on the provenance adornment Prov of an

sk_body B and the induced provenance adornment of terms, we can further define a provenance

adornment Prov on B, as follows:

1. for a relational atom (r ∈ R) ∈ [B]rel , Prov(r ∈ R) = Prov(r ∈ R)

2. for a constructive equality atom (t1 = t2) ∈ [B]constr_eq , Prov(t1 = t2) =Prov(t1 = t2)

3. for an equality atom (t1 = t2) ∈ [B]eq :

(a) if t1 = t2, then Prov(t1 = t2) = True

(b) else, we define a simple path sp between t1 and t2 as follows: let s0 = t1, s1, . . . , sn =
t2 be an ordered subset of T (B), such that the equality (si = si+1) or its symmetri-

cal is in [B]eq or in [B]constr_eq .

Let pi = Prov((si = si+1)) if (si = si+1) is in [B]eq or in [B]constr_eq , respec-
tively Prov((si+1 = si)) if (si+1 = si) is in [B]eq or in [B]constr_eq .We denote by

Provpath(sp) the product Prov(s1) ∗ · · · ∗Prov(sn−1) ∗ pi ∗ · · · ∗ pn. Note that the

above product includes all the adornments of equality atoms on the path as well as

all the adornments on the terms on the path except for its extremities.

We denote by SP (t1 = t2) the set of all simple paths between t1 and t2. Then

Prov(t1 = t2) =
∑

sp∈SP (t1=t2)
Provpath(sp)

65

Provenance of a set of atoms. Based on the provenance of the atoms in an sk_body B, we further

define the provenance of any subset of atoms B′ of B as the product of the provenance of all the

atoms in the set (since there is no ambiguity, we will use the same notation Prov).

Prov(B′) =
∏

a∈B′

Prov(a)

Full provenance of an atom. Starting from a provenance adornment of an sk_body B, we further

define a function Provfull on all atoms of B, as follows:

1. Provfull (r ∈ R) = Prov(r ∈ R), for r ∈ R a relational atom in [B]rel

2. Provfull (t1 = t2) = Prov(t1) ∗ Prov(t2) ∗ Prov(t1 = t2), for (t1 = t2) an equality in

[B]eq or in [B]constr_eq .

We will call the values of Provfull on an atom the full provenance of the atom. Note that the

full provenance of an equality atom is in general different from its adornment. Note also that

for equality atoms this is the notion of provenance we implicitly refer to in Section 1.2, when

stating invariant (⋄) and goal (†).

We extend in a straightforward manner the notion of full provenance to a set of atoms: for

B′ a set of atoms,

Provfull (B
′) =

∏

a∈B′

Provfull (a)

1.3.4.2 Provenance-Aware Chase steps and sequences

We are now ready to formally define the pa_chase steps, by first listing their conditions of ap-

plication and then by specifying their application, i.e. how they produce an output provenance-

adorned sk_body from an input provenance-adorned sk_body.

Definition 1.3.69 (pa_chase step conditions of application). A pa_chase step with

sk_unit_constraint C on a provenance-adorned sk_body (B,Prov) applies iff:

1. There exists a homomorphism h from Cprem to B

2. Either:

(a) there exists no homomorphism h′ compatible with h from Cconcl to B, or

(b) for any such h′, Prov (h’(Cconcl)) ⊀Prov (h(Cprem))

Definition 1.3.70 (pa_chase step application). Applying a pa_chase step with sk_unit_constraint

C on a provenance-adorned sk_body (B,Prov), given homomorphism h from Cprem to B, re-

sults in a new provenance-adorned sk_body (B′,Prov ′) = Pa_Chase_Step_Res((B , prov),C , h),
such that:

The sk_body B′ ⊇ B is obtained as follows:

66

1. if no homomorphism compatible with h exists, letB′ = CS_Chase_Step_Res(B ,C , h)
and let h′ be the corresponding cs_chase step compatible homomorphism .

2. else, let h′ a homomorphism compatible with h and let B′ = B ∪ h′(Cconcl).

The provenance adornment ofB′,Prov ’, is obtained as follows. LetPprem = Prov(h(Cprem)).
Then:

1. for constructive equalities in B′ −B, Prov ’ = True

2. for relational atoms and non-constructive equalities in B′ −B, Prov ’ = Pprem

3. for relational atoms and non-constructive equalities inB−h′(Cconcl− [Cprem]rel), Prov ’
= Prov

4. for relational atoms and non-constructive equalities inB∩h′(Cconcl− [Cprem]rel), Prov ’
= Prov+Pprem.

Provenance enriching and atom creation steps. Let us take a closer look at the definition of a

pa_chase step.

1. If no homomorphism from Cconcl to B exists, then the provenance adornment stays the

same on B and the pa_chase step will introduce all the atoms in h’(Cconcl - [Cprem]rel)
with fresh adornments, True in the case of constructive equalities and Pprem otherwise.

We call such step an atom creation step.

2. else

(a) if the pa_chase step is with an sk_TGD, then B′ = B (according to the closure

definition) and for the unique relational atom in h’([Cconcl]rel - [Cprem]rel), its new

adornment Prov ’ will be the sum of the old adornment Prov and Pprem. We will

call such step a provenance enriching step.

(b) else, for an sk_EGD, according to whether h’([Cconcl]eq) is or not in B, B′ can be

equal to B (and the adornment of the equality in B enriched with Pprem as above)

or contain an additional equality atom, with fresh adornment Pprem. Although tech-

nically speaking the latter case involves an atom addition to B, the atom is already

in the closed version of B. We will thus also call this type of pa_chase step a prove-

nance enriching step, and keep in mind that a provenance-enriching step with an

equality addition may be possible only in the case of an sk_EGD.

As was the case for the standard chase and the cs_chase , it is easy to show that the function

h′ constructed in the pa_chase step application on a provenance-adorned sk_body (B,Prov) is
a homomorphism compatible with h, from Cconcl to B

′. Similar to the case of standard chase

and cs_chase steps, we will hereafter call h′ the pa_chase step compatible homomorphism .

Provenance-Aware Chase sequences. Given an provenance-adorned sk_body (B,Prov) and

a set of sk_unit_constraints C, a pa_chase sequence consists in producing the provenance-

adorned sk_bodies (B0,Prov0), (B1,Prov1), . . . , such that:

67

1. (B0,Prov0) = (B,Prov)

2. (Bi,Prov i) is obtained from (Bi−1,Prov i−1) by the following operations:

(a) pick C ∈ C s.t. a pa_chase step with C applies on (Bi−1,Prov i−1), with a

homomorphism h from Cprem to Bi−1;

(b) let (Bi,Prov i) :=Pa_Chase_Step_Res((Bi−1 ,Prov i−1),C , h);

For a finite pa_chase sequence with a number of steps k, we denote by the result of the

sequence the provenance-adorned sk_body (Bk,Provk) produced by the last step.

A full pa_chase sequence consists in applying pa_chase steps as long as there exists at least

an sk_unit_constraint C ∈ C such that a pa_chase with C applies. A terminating pa_chase

sequence is a full pa_chase sequence that terminates after a finite number of steps n – that is,

(Bn,Provn) is such that for any sk_unit_constraint C in C, and any possible homomorphism

h from Cprem to Bn, there exists a compatible homomorphism h′ from Cconcl to Bn such that

furthermore Provn(h
′(Cconcl)) ≺ Provn(h(Cprem))

1.3.4.3 The Provenance Pick, the Provenance-Aware Chase and the Conservative Chase

We dedicate this subsection to showing the essential link between the Conservative Chase and

the Provenance-Aware Chase, via the Provenance Pick operation.

The Provenance Pick allows retrieving sk_bodies from provenance-adorned sk_bodies, by

selecting all the atoms whose full provenance is implied by a conjunct, as follows:

Definition 1.3.71 (Provenance Pick). Let (B,Prov) be a provenance-adorned sk_body over a

provenance vocabulary P and P ⊆ P a provenance conjunct. We define Pick(P , (B ,Prov))
as the sk_body B′ ⊆ B, obtained as follows:

1. [B ′]rel = {r ∈ R}, such that (r ∈ R) ∈ [B]rel and Provfull (r ∈ R) ≺P .

2. [B ′]constr_eq = {t1 = t2}, such that (t1 = t2) ∈ [B]constr_eq and Provfull (t1 = t2) ≺P .

3. [B ′]eq = {t1 = t2}, such that (t1 = t2) ∈ [B]eq and Provfull (t1 = t2) ≺P .

One can easily show, given the definition of the full provenance of an atom, that applying

the Pick operation on a provenance-adorned sk_body results indeed in an sk_body .

Remember that we have stated that the Provenance-Aware Chase is essentially the Conser-

vative Chase with provenance annotations. In the following we will show that over provenance-

adorned bodies , the two procedures commute via the Pick operation, as follows:

Theorem 1.3.72. Let B be a body and Prov a provenance adornment of B over a provenance

vocabulary P . Let C be a set of sk_unit_constraints . Let (B′,Prov ′) be the result of a termi-

nating pa_chase sequence with C over (B,Prov).

68

Let P ⊆ P be a provenance conjunct. Let Bp = Pick(P , (B ,Prov)) and B′p be the result

of a terminating cs_chase sequence with C over Bp.

Then B′p and Pick(P , (B ′,Prov ′)) are col_isomorphic.

To prove the above, we will show several important results regarding the pa_chase and the

Provenance Pick. We start by noting that the following holds, as a direct consequence of the

definition of provenance of the closure and full provenance:

Proposition 1.3.73. Let (B,Prov) be a provenance-adorned sk_body and (t1 = t2) an equality

in [B]eq , such that t1 6= t2.
Then Prov full ((t1 = t2)) =

∑

sp∈SP (t1=t2)

∏

Provfull (eqi), where eqi ∈ sp

Using Proposition 1.3.73, we show that the Provenance Pick commutes with the closure, as

follows:

Proposition 1.3.74. Let (B,Prov) be a provenance-adorned sk_body over a provenance vocab-

ulary P .

Let P ⊆ P be a provenance conjunct.

Then Pick(P , (B ,Prov)) = Pick(P , (B ,Prov))

Proof. It is straightforward to show that [Pick(P , (B ,Prov))]rel = [Pick(P , (B ,Prov))]rel . In-
deed, Prov (a) = Prov (a) for every relational atom in [B]rel = [B]rel . We apply the same reason-

ing for constructive equalities.

We further show that [Pick(P , (B ,Prov))]eq = [Pick(P , (B ,Prov))]eq .
Indeed, let (t1 = t2) be an equality in [Pick(P , (B ,Prov))]eq . Then Prov full ((t1 = t2)) ≺

P . But according to the properties of subsumption (Lemma 1.3.65) and Proposition 1.3.73

it follows that there exists a simple path sp from t1 to t2 such that for every equality eqi ∈
sp, Provfull (eqi) ≺ P . Then sp is a simple path in Pick(P , (B ,Prov)) and (t1 = t2) is in

Pick(P , (B ,Prov)).
Reversely, for an equality (t1 = t2) in [Pick(P , (B ,Prov)]eq , every simple path will consist

of equalities eqi such that Provfull (eqi) ≺ P . Then Prov full ((t1 = t2)) ≺ P , therefore (t1 =
t2) is in Pick(P , (B ,Prov)), which concludes our proof.

We continue by showing that in a pa_chase sequence starting from a body , the provenance

of a term is always subsumed by the provenance of its constructive term:

Proposition 1.3.75. Let B0 be a body and Prov0 an adornment of B0 over a provenance vo-

cabulary P . Let C be a set of sk_unit_constraints and (B′,Prov ′) be a provenance-adorned

sk_body resulting from a pa_chase sequence over (B0,Prov0) with C.
Then for every term t in T (B ′), Prov ′(ConstrT (t)) ≺ Prov ′(t)

Proof. We will show by induction on the pa_chase steps that the above holds. It is clearly the

case for the initial (B0,Prov0), since B0 is a body and thus ConstrT (t) = t for all terms.

Let (B,Prov) be the result preceding (B′,Prov ′) in the pa_chase sequence. Assuming

the result holds for (B,Prov) we will show that the result holds for (B′,Prov ′). Indeed, let

C be the sk_unit_constraint corresponding to the pa_chase step leading from (B,Prov) to

(B′,Prov ′).

69

If C is an sk_EGD then the above result is straightforward. Indeed, by definition, pa_chase

steps with sk_EGDs do not change the provenance of terms.

If C is an sk_TGD, then let h be the homomorphism from Cprem to B corresponding to the

pa_chase step and h′ be the pa_chase step compatible homomorphism . We will show that the

above property is verified for projection terms in B′. By definition of the constructive terms and

provenance of Skolem terms, it then extends directly to all terms of B′.

If the pa_chase step is an atom creation step, then for every projection term t1 in T (B ′) −
T (B), ConstrT (t1) = ConstrT (h(t ′2)) where t′2 ∈ T (Cprem) and h(t′2) ∈ B. Accord-

ing to our induction hypothesis, Prov(ConstrT (h(t ′2))) then subsumes Prov(h(t′2)). On the

other hand, h(t′2) ∈ T (h(Cprem)), therefore Prov(h(t′2)) ≺ Prov(h(Cprem)). But since the

pa_chase step is an atom creation step Prov ′(t1) = Prov(h(Cprem)). It then follows that

Prov(ConstrT (h(t ′2))) ≺ Prov ′(t1), so Prov ′(ConstrT (t1)) ≺ Prov ′(t1)

For a provenance enriching step, the constructive equalities in h′(Cconcl) already exist in B.

Furthermore, by definition of the pa_chase step, for each projection term t1 defined by such

constructive equality, Prov ′(t1) = Prov(t1) +Prov(h(Cprem)). On the other hand, since these

equalities exist in B, by induction hypothesis Prov(ConstrT (t1))) ≺ Prov(t1).

Further, as in the case above, we can show that Prov(ConstrT (t1)) ≺ Prov(h(Cprem)).
Since Prov ′(ConstrT (t1)) = Prov(ConstrT (t1)), accordingly, Prov

′(ConstrT (t1)) ≺
Prov(h(Cprem))+Prov(t1), therefore Prov

′(ConstrT (t1)) ≺ Prov ′(t1), which concludes our

proof.

A direct consequence of the above proposition is that in a pa_chase sequence starting from

a provenance adorned body , the full provenance of a constructive equality is always equal to the

provenance of the term it defines:

Proposition 1.3.76. Let (B,Prov) be a provenance-adorned sk_body resulting from a pa_chase

sequence over a provenance-adorned body .

Then for every constructive equality (t = t′) in (B,Prov), Provfull (t = t′) = Prov(t)

Indeed, it is enough to notice that all introduced constructive equalities are annotated with

True, by definition of a pa_chase step. The result above then follows from Proposition 1.3.75

and Lemma 1.3.65. This result further allows us to state the following:

Lemma 1.3.77. Let (B,Prov) be a provenance-adorned sk_body resulting from a pa_chase

sequence over a provenance-adorned body .

Let h be a homomorphism from an sk_body D to (B,Prov).

Then Prov(h(D)) = Provfull (h(D)).

Proof. For regular equalities notice that the corresponding projection terms must be in relational

atoms in h(D), therefore the provenance of their end points is already included in the provenance

of those atoms. For constructive equalities in h(D) we rely on Proposition 1.3.76 and we further

note as in the previous case that the provenance of the terms those constructive equalities define

is already included in the provenance of the respective relational atoms.

By mixing the above result with Proposition 1.3.74, we can infer the following:

70

Lemma 1.3.78. Let (B,Prov) be a provenance-adorned sk_body resulting from a pa_chase

sequence over a provenance-adorned body .

Let P be a provenance conjunct.

Let h be a homomorphism from an sk_body D to (B,Prov) such that Prov(h(D)) ≺ P .

Then h is a homomorphism from D to Pick(P , (B ,Prov)).
Reversely, let h be a homomorphism from an sk_body D to Pick(P , (B ,Prov)). Then h

is a homomorphism from D to (B,Prov) such that Prov(h(D)) ≺ P .

Equally important, based on Proposition 1.3.76, we can note that if a relational atom is

picked according to a conjunct, then all its constructive equalities are picked. Putting together

all the above results we can then provide the following essential characterization of a pa_chase

step and the Provenance Pick:

Lemma 1.3.79. Let (B,Prov) be a provenance-adorned sk_body resulting from a pa_chase

sequence over a provenance-adorned body with a set of sk_unit_constraints C.
Let C be an sk_unit_constraint such that a pa_chase step with C applies on (B,Prov)

with homomorphism h from Cprem to B, yielding (B′,Prov ′)
= Pa_Chase_Step_Res((B ,Prov),C , h). Let Pprem = Prov(h(Cprem)).

Let P ⊆ P be a provenance conjunct.

Let Bp = Pick(P , (B ,Prov)) and B′p = Pick(P , (B ′,Prov ′)).

Then:

1. if Pprem ⊀ P then B′p = Bp.

2. else, h is a homomorphism from Cprem to Bp, h
′ is a homomorphism compatible with

h from Cconcl to B
′
p and furthermore:

(a) either B′p = Bp, or

(b) B′p = Bp ∪ h
′(Cconcl) and Bp ∩ h

′(Cconcl) = h([Cprem]rel). Furthermore, let H

be an isomorphism from Bp to a part J of an sk_body D. Let g = H ◦ h be the

corresponding homomorphism from Cprem to J .

If there exists a homomorphism g′ compatible with g from Cconcl to D, then there

exists an isomorphism H ′′ from B′p to J ∪ g′(Cconcl) such that, moreover, if H is a

col_isomorphism then H ′′ is a col_isomorphism .

Proof. Let Pprem = Prov(h(Cprem)).
We start by noting that for any atom a in B′, Provfull

′(a) is either Provfull (a) or
Provfull (a)+Pprem. Indeed, while for an sk_TGD it is a direct consequence of the pa_chase

step and Proposition 1.3.76, for an sk_EGD it follows directly by the fact that for the unique

equality (t1 = t2) in h
′(Cconcl), Prov(t1) ≺ Pprem and Prov(t2) ≺ Pprem.

We can then conclude according to Lemma 1.3.65 that if an atom a is inPick(P , (B ′,Prov ′))
then at least one of Provfull (a) or Pprem subsumes P . If Pprem ⊀ P , then Provfull (a)must sub-

sume P , and so a must be in Pick(P , (B ,Prov)), thus proving the first point above.

Continuing, if Pprem ≺ P , then according to Lemma 1.3.78 it follows directly that h is a

homomorphism from Cprem to Bp. Furthermore, relying on the above and the definition of a

71

pa_chase step, it is easy to show that for every atom a in h′(Cconcl), Provfull
′(a) ≺ Pprem. It

then follows that h′ is a homomorphism from Cconcl to B
′
p.

Furthermore, if B′p 6= Bp, it is straightforward to show that the unique equality (in the case

of an sk_EGD) or the unique relational atom and its constructive equalities (in the case of an

sk_TGD) in h′(Cconcl − [Cprem]rel) are respectively disjoint from Bp. The rest of the proof of

point 2.b is then identical to the proof of Lemma 1.3.61.

Note the extreme similarity of the last point of the lemma above with its analogous state-

ments for cs_chase steps. We basically show that on the picked versions of the provenance-

adorned sk_bodies the pa_chase behaves exactly like the cs_chase . Accordingly, we will prove

Theorem 1.3.72 in the same manner than Theorem 1.3.62. Indeed, we will first show that the

following holds:

Lemma 1.3.80. Let B be a body and Prov an adornment of B over a provenance vocabulary

P . Let C be a set of sk_unit_constraints . Let P ⊆ P be a provenance conjunct.

Let (B′,Prov ′) be the result of a terminating pa_chase sequence with C over (B,Prov).
Let B0 = Pick(P , (B ,Prov)), B1, . . . be a cs_chase sequence with C over

Pick(P , (B ,Prov)).

Then there exists a col_isomorphism from Bi to a part of Pick(P , (B ′,Prov ′)).

Proof. The proof of the above is very similar to the proof of existence of a col_isomorphism

from the intermediate results of a cs_chase sequence to a part of the result of a terminating

cs_chase sequence. Indeed, since B0 = Pick(P , (B ,Prov)) ⊆ Pick(P , (B ′,Prov ′)) we can

exhibit the col_isomorphism h0 = Id.
Assuming that a col_isomorphism ht exists from Bt to a part of Pick(P , (B ′,Prov ′)), we

will show the existence of a col_isomorphism ht+1 fromBt+1 to a part ofPick(P , (B ′,Prov ′))
based on Lemma 1.3.61.

It is enough to notice that for h a homomorphism from Cprem to Bt, g = ht ◦ h is a

homomorphism from Cprem to Pick(P , (B ′,Prov ′)). But according to Lemma 1.3.78, g is

then a homomorphism from Cprem to (B′,Prov
′
) such that Prov(h(Cprem)) ≺ P . Then

since (B′,Prov ′) is the result of a terminating pa_chase sequence it follows that there must

exist at least one homomorphism g′ compatible with g, from Cconcl to (B′,Prov
′
), such that

Prov(g′(Cconcl)) ≺ Prov(g(Cprem)).
Then Prov(g′(Cconcl)) ≺ P and according to Lemma 1.3.78 g′ is a homomorphism com-

patible with g from Cconcl to Pick(P , (B ′,Prov ′)). We are then in the conditions of Lemma

1.3.61 and it follows that there exists a col_isomorphism fromBt+1 to a part ofPick(P , (B ′,Prov ′)),

and accordingly from Bt+1 to a part of Pick(P , (B ′,Prov ′)), thus concluding our proof.

Symetrically, we will show that the following holds:

Lemma 1.3.81. Let B be a body and Prov an adornment of B over a provenance vocabulary

P . Let C be a set of sk_unit_constraints . Let P ⊆ P be a provenance conjunct.

Let B′ be the result of a terminating cs_chase sequence with P over Pick(P , (B ,Prov)).
Let (B0 = B,Prov0 = Prov), (B1,Prov1), . . . be a pa_chase sequence with C over

(B,Prov).

72

Then there exists a col_isomorphism from Pick(P , (Bi ,Prov i)) to a part of B′.

The proof of the above results is quasi-identical to the proof of Lemma 1.3.61, further rely-

ing on Lemma 1.3.79.

Relying on the two above results, we can then prove Theorem 1.3.72 in an identical fashion

to Theorem 1.3.62 (stating isomorphism between results of cs_chase sequences with

sk_unit_constraints), by relying on the injective nature of the exhibited isomorphisms in Lem-

mas 1.3.80 and 1.3.81.

1.3.4.4 Termination of the Provenance-Aware Chase

Based on Lemmas 1.3.80 and 1.3.81 we can further tightly link the termination behaviour of the

pa_chase and the cs_chase as follows:

Theorem 1.3.82. Let B be a body and Prov an adornment of B over a provenance vocabulary

P . Let C be a set of sk_unit_constraints . Then:

1. if there exists a terminating cs_chase sequence of B with C, then all pa_chase sequences

of (B,Prov) with C terminate.

2. reversely, if there exists a terminating pa_chase sequence of (B,Prov) with C then all

full cs_chase sequences with C over B terminate.

Proof. Indeed, it is enough to consider the provenance conjunct P = P .

We will start by proving point (2) above. Let (Bn,Provn) be the result of a terminating

pa_chase sequence with C over (B,Prov). SinceP = P it follows thatB =Pick(P , (B ,Prov))
and Bn = Pick(P , (Bn ,Provn)).

Let B0 = B,B1, . . . be a cs_chase sequence with C over B. Then it is also a cs_chase

sequence with C over Pick(P , (B ,Prov)). Accordingly, by Lemma 1.3.80, there exists a

col_isomorphism between Bi and a part of Bn. Since isomorphisms are injective, it follows

that there exists k such that no more relational atom creation occurs in the cs_chase sequence

starting from Bk. Then it follows that there may be only a limited number of equality atom

creation steps (similar to the proof of Theorem 1.3.49) and the cs_chase sequence terminates.

To further prove point (1), let Bm be the result of a terminating cs_chase sequence over B.

Then Bm is also the result of a terminating cs_chase sequence over Pick(P , (B ,Prov)).
On the other hand, let (B0 = B,Prov0 = Prov), (B1,Prov1), . . . be a pa_chase sequence

with C over (B,Prov). Then according to Lemma 1.3.81, there exists a col_isomorphism from

Bi = Pick(P , (Bi ,Prov i)) to a part ofBm. But then since isomorphisms are injective it follows

that there exists m1 such that all pa_chase steps after m1 cannot be atom creation steps. As a

consequence, starting from (Bm1
,Provm1

), all pa_chase steps are provenance enriching steps.

On the other hand, recall that the provenance enriching steps can only add some provenance on

atoms of Bm1
. The number of such atoms is finite. Furthermore, since a provenance enriching

step adds at least one provenance conjunct and the number of provenance conjuncts in P is

finite, it follows that there can only be a finite number of provenance enriching steps, therefore

the pa_chase sequence terminates.

73

Remark. While the fact of exhibiting col_homomorphisms in the case of the cs_chase with

sk_constraints that are not necessarily sk_unit_constraints allowed us to derive strong ter-

mination equivalence, the isomorphisms exhibited above, whether among cs_chase sequences

with sk_unit_constraints or cs_chase sequences and pa_chase sequences, are enough to state

the strong termination links existing among such sequences. The fact that the isomorphisms in

question map in fact collapsible atoms can be seen as merely a "bonus" or alternative criteria for

termination.

Weakly acyclic constraints. Theorem 1.3.82, together with Theorem 1.3.56 (stating the termi-

nation of the cs_chase for weakly acyclic constraints) allow us to further derive termination of

pa_chase sequences in the case of weakly acyclic constraints, as follows:

Theorem 1.3.83. Let B be a body and Prov a provenance adornment on B over a provenance

vocabulary P . Let C be a set of weakly acyclic constraints.

Then all full pa_chase sequences on (B,Prov) with skunit(C) terminate.

1.3.4.5 The Provenance-Aware Chase and the Standard Chase

Based on the results linking the the Provenance-Aware Chase and the Conservative Chase, and

the equivalence between the cs_chase and the Standard Chase on bodies , we can further infer

that the Standard Chase and the pa_chase commute via the Provenance Pick as follows:

Theorem 1.3.84. Let B be a body and Prov an adornment of B over a provenance vocabulary

P . Let C be a set of constraints.

Let P ⊆ P be a provenance conjunct. Let B′p be the result of a terminating standard chase

sequence with C on Pick(P , (B ,Prov)).

Let (B′, prov′) be the result of a terminating pa_chase sequence with skunit(C) on (B, prov).
Then B′p and Body(Pick(P , (B ′, prov ′))) are homomorphically equivalent.

The above result provides the correctness basis for our reformulation algorithm ProvC&B ,

as we will see in the following section.

1.3.5 The Provenance-Aware Chase & Backchase

We have presented in Section 1.2 an overall view of our reformulation algorithm, the Provenance-

Aware Chase & Backchase (ProvC&B). Based on the concepts and statements of the previous

subsections, we are now ready to detail this algorithm and prove its soundness and complete-

ness. We start by detailing some terminology that allows us to fully explicitate ProvC&B .

Universal plan and universal body. Given a query Q formulated against a source schema S, a
set of constraints C and a target schema T , we denote by QC the result of a terminating standard

chase sequence over Q with C.
We further denote by BU and call the universal body, the restriction of body(QC) to the

target schema T (recall that this restriction means that we consider the maximal sub-body of

body(QC) induced by the relational atoms in T). Note that BU is a closed body , that is, BU =

74

BU . We will further call the query U = Query(Head(Q), BU) the universal plan. For every

subquery sq of U we denote by Bsq its corresponding body . Note that Bsq ⊆ BU . We recall

below the properties of the universal plan, restating them using bodies:

Proposition 1.3.85. LetQ be a query formulated against a source schema S, T a target schema,

C a set of weakly acyclic constraints (including the relationship between S and T) and U the

corresponding universal plan. Then:

1. every reformulation ofQ over T given C is (isomorphic to) a subquery sq of the universal

plan

2. a subquery sq of the universal plan is a reformulation ofQ iff there exists a homomorphism

from body(Q) to BCsq, where BCsq is the result of a terminating Standard Chase sequence

with C over Bsq.

Canonical provenance vocabulary. Let BU be a universal body. We denote by PU , and call the

canonical provenance vocabulary, the provenance vocabulary containing as terms all the tuple

variables of BU (and therefore U): ri is in PU iff ri ∈ Ri is in BU .

For every conjunct Ci ⊆ PU we further denote by sq(Ci) the corresponding subquery of

U induced by Ci and by Bsq(Ci) the corresponding sub-body of BU . Reversely, we denote

by C(sq) the conjunct corresponding to a universal plan subquery. Note that all these are one-

to-one correspondences between subqueries (and their corresponding bodies) and provenance

conjuncts over PU .

Canonical adornment of the universal body. We denote by ProvU the provenance adornment of

BU over PU obtained as follows:

1. ProvU ((ri ∈ Ri)) = ri, for a relational atom in [BU]rel

2. ProvU ((t1 = t2)) = True, for an equality atom in [BU]eq

We will call ProvU the canonical adornment of BU . It is easy to show that the following

holds:

Proposition 1.3.86. Let Ci ⊆ PU be a conjunct over the canonical provenance vocabulary.

Then Bsq(Ci) = Pick(Ci , (BU ,ProvU))

Using the notation above, we are now ready to present our reformulation algorithm ProvC&B :

ProvC&B (Query Q, source schema S, target schema T , set of weakly acyclic constraints C)

1 BU ← Universal Body(Q, C, S, T)
2 ProvU ← canonical adornment of BU .

3 (B′,Prov ′)← the result of a terminating pa_chase sequence over (BU ,ProvU) with skunit(C).

4 H ← {h, h is a homomorphism from body(Q) to (B′,Prov
′
)}

5 F ←
∑

h∈H

Prov
′
(h(body(Q))

6 for Ci ∈ rf (F)
7 do
8 return sq(Ci)

75

We further claim the soundness and completeness of ProvC&B , as follows:

Theorem 1.3.87. LetQ be a SFW query formulated over a source schema S, T a target schema

and C a set of weakly acyclic constraints over S ∪ T
Then the algorithm ProvC&B is sound and complete, that is, it returns all and precisely the

minimal reformulations of Q against T given C.

Proof. The soundness and completeness of ProvC&B can be restated as follows: a subquery sq
of U is a minimal reformulation of Q under C iff C(sq) ∈ rf (F). To prove this statement, we

first show that the following hold:

1. Let C be a conjunct in F . Then sq(C) is a reformulation of Q.

Indeed, by definition of F , there exists h a homomorphism from body(Q) to (B′,Prov
′
),

such that C ∈ Prov
′
(h(body(Q))). It follows that Prov

′
(h(body(Q))) ≺ C. Then

by Lemma 1.3.78, h is a homomorphism from body(Q) to Pick(C , (B ′, prov ′)). Since

body(Q) is a regular body , h is then a homomorphism from body(Q) to

Body(Pick(C , (B ′, prov ′))).

On the other hand, according to Proposition 1.3.86, Bsq(C) = Pick(C , (BU ,ProvU)).

Let BC
sq(C) be the result of a terminating Standard Chase sequence on Bsq(C) with C. By

Theorem 1.3.84 it follows thatBC
sq(C) andBody(Pick(C , (B

′, prov ′))) are homomorphi-

cally equivalent. In particular, there exists a homomorphism h1 fromBody(Pick(C , (B ′, prov ′)))

to BC
sq(C).

But then h1 ◦ h is a homomorphism from body(Q) to BC
sq(C). By Proposition 1.3.85 it

then follows directly that sq(C) is a reformulation of Q.

2. Let sq be a reformulation of Q. Then there exists a conjunct C ′ ∈ rf (F) such that

C ′ ⊆ C(sq).

Indeed, let BCsq be the result of a terminating Standard Chase sequence with C over Bsq. It

follows by Proposition 1.3.85 that there exists a homomorphism h from body(Q) to BCsq.

On the other hand, by Proposition 1.3.86, Bsq = Pick(C (sq), (BU ,ProvU)). Then

according to Theorem 1.3.84, Body(Pick(C (sq), (B ′, prov ′))) and BCsq are homomor-

phically equivalent. In particular, there exists a homomorphism h1 from BCsq to

Pick(C (sq), (B ′, prov ′)).

But then h2 = h1 ◦ h is a homomorphism from body(Q) to Pick(C (sq), (B ′, prov ′)).

Then according to Lemma 1.3.78, h2 is a homomorphism from body(Q) to (B′,Prov
′
),

such that Prov
′
(h2(body(Q)) ≺ C(sq). But by definition of F , Prov

′
(h2(body(Q)) ⊆

F . It follows from the subsumption that there exists C ′ ∈ F s.t. C ′ ⊆ C(sq). But

by definition of the reduced form, for every C ′ ∈ F , there exists C ∈ rf (F) such that

C ⊆ C ′.

Using the two points above, we will show that a subquery sq of U is a minimal reformulation

of Q iff C(sq) ∈ rf (F):

76

Indeed, let sq be a minimal reformulation. By point (2) above it follows that there exists

C ′ ∈ rf (F) such that C ′ ⊆ C(sq). But by point (1) above it follows that sq′ = sq(C ′) is also

a reformulation of Q. Since sq(C ′) ⊆ sq(C), sq′ is a subquery of sq. But sq is minimal so it

must be that sq′ = sq, therefore C ′ = C(sq) and therefore C(sq) ∈ rf (F).

Reversely, let C ∈ rf (F) be a conjunct of rf (F). By point (1) above it follows that sq(C) is
a reformulation of Q (since rf (F) ⊆ F). If sq(C) is not minimal, that there exists sq′ ⊂ sq(C)
s.t. sq′ is a reformulation. But then by point (2) above there must exist C ′ ∈ rf (F) s.t. C ′ ⊆
C(sq′). This further implies that that C ′ ⊂ C, which contradicts the definition of the reduced

form of a formula. Therefore, sq(C) must be minimal, which concludes our proof.

1.4 Implementation

To evaluate our reformulation algorithm, we have set up a proof-of-concept implementation of

ProvC&B . We present below some of the key techniques and optimizations employed:

Chase step as query evaluation. A Standard Chase step searches for homomorphic matches

of the premise of constraint C against the closed version of a body B. The search for homo-

morphic matches of the premise can be modelled as running C’s premise Cprem (viewed as a

query) against B (viewed as a symbolic database known in the literature as the canonical in-

stance [1]). We then compile Cprem to a query plan based on relational algebra operators, and

we run it over an internal representation of B using its canonical instance. This technique can

be further adapted to sk_bodies and the cs_chase , where the canonical database corresponds to

Body(B). We can further extend such technique for matching the conclusion of C in the case

of the Standard Chase or the cs_chase with sk_EGDs. For the cs_chase with sk_TGDs on the

other hand, such matching is greatly simplified by the fact that, as shown, a possible match of

the conclusion is completely determined by the constructive terms of the images of distinguished

premise terms.

Standard query optimizations. Modelling chase steps as query evaluation problems allows us

to apply standard query optimization techniques borrowed from the relational query optimiza-

tion literature. Our implementation includes among others pushing selections and (duplicate-

eliminating) projections into the joins.

Efficient in-memory query processing. In contrast to general DBMSs that need to account

for large datasets that may not fit in main memory, the chase operates on instances that start from

a single query body and are small enough to fit in main memory. This observation allowed us

to implement the chase engine as an in-memory query processor. To speed up query processing,

we opted for in-memory hash-based implementations of the relational algebra operators (joins

and projections).

Bottom-up query evaluation. In a naive chase engine, one would try to apply every constraint

each time the instance changes. However, some constraints would not be applicable. To reduce

the number of constraints we try to apply, our query processor works in a bottom-up fashion.

Whenever a new tuple is added to a relation, it is being pushed up the query trees that scan this

relation. Thus, for every change in the underlying instance only those queries that might be

affected are evaluated.

77

Incremental query evaluation. A chase sequence involves evaluating repeatedly the same set

of query plans obtained from compiling the constraints. Moreover, these queries are evaluated

over evolutions of the same instance. The effect of each chase step is to evolve the instance by

adding only a few new tuples at a time (these tuples correspond to the atoms constructed by the

step). The majority of the instance is unaffected by the step. This creates the opportunity to

accelerate chasing by employing incremental query evaluation. Instead of evaluating each query

from scratch, we keep its query plan (together with the populated hash tables) in memory and

whenever new tuples are added to the evolving instance, we push them to the affected plans.

Efficient maintenance of equalities. Chasing involves adding equalities between the values

present in an instance. Moreover, it involves checking whether two values are equal. To allow

efficient querying and updating of equalities, we employ a union-find data structure as in [60].

Our Provenance-Aware Chase implementation uses the design choices listed above, together

with handling provenance formulae storage and operations. We have in particular optimized

provenance enriching pa_chase steps, so as to propagate provenance changes without reevalu-

ating the constraints. As a side-effect of our reformulation work, the pa_chase implementation

further delivers a minimal-why-provenance-tracking processor for conjunctive queries (general-

ized to support invention of values using Skolem functions).

1.5 Experiments

We evaluated our ProvC&B implementation in a recreation (and extension) of the setting de-

scribed in [60] for query rewriting using materialized views and integrity constraints. We chose

this setting because we believe it is practically relevant, it allows apples-to-apples comparison

with the C&B , and because its design was parameterized so as to allow scaling to the point of

stress-testing any complete reformulation algorithm by forcing a combinatorial explosion of the

existing minimal rewritings.

Chain-of-stars schemas and queries ([60]) The parameterized setting starts from the fol-

lowing basic building block. Consider the query Q given below, which joins relations R1(K,

A1,A2, F),R2(K,A1,A2) with Sij (Ai,B) (1 ≤ i, j ≤ 2). Figure 1.1 depictsQ’s join graph, in

which the nodes represent the query variables and the edges represent equijoins between them.

Q: select s11.B, s12.B, s21.B, s22.B
from R1 r1, S11 s11, S12 s12, R2 r2, S21 s21, S22 s22
where r1.F = r2.K and r1.A1 = s11.A1 and r1.A2 = s12.A2

and r2.A1 = s21.A1 and r2.A2 = s22.A2

����� �����

��������	

������
������

������
������

������������

������������
������������

������������

� �

Figure 1.1: Join graph for a two-star query

78

One can think of the tables Sij as modeling offered choices in two distinct domains, such

as educational and recreational, grouped by several categories. The tables S11 and S12 could

correspond to the lectures and workshops categories, while S21 and S22 could hold the sports

and movies categories respectively. Categories span a range of subcategories (such as action

movies), expressed by the Aj attributes, such that in every subcategory there are potentially

many offered choices (the B attributes).

On the other hand, the tables R1 and R2 correspond to individual "preference profiles" in

the respective domains, such that each profile selects, for a given category, either a specific

subcategory or no preference (null). TheK attributes are unique profile identifiers, thus primary

keys. The join of R1 and R2 constructs global profiles for a group, with R1.F being a foreign

key referencing K in R2. Think of R2 tuples as describing profiles of a "person" entity, while

R1 tuples describe profiles of a "student" entity, with the key-foreign key join implementing the

"isA" relationship.

Towards identifying correlations of offered choices across domains, Q finds sets of choices

that represent all categories and that co-occur within the global preference profile of some indi-

vidual.

Assume the existence of materialized views Vi(K, B1, B2) (1 ≤ i ≤ 2), where each Vi joins
Ri with Si1 and Si2 and retrieves the B attributes from Si1 and Si2 together with the key K of

Ri :

Vi: select r.K, s1.B, s2.B
from Ri r, Si1 s1, Si2 s2
where r.A1 = s1.A1 and r.A2 = s2.A2

Assuming that only a small fraction of the individuals expresses preferences for all cate-

gories, the extent of the materialized views is expected to be relatively small, all the more so

when considering that the same offering may appear in several subcategories, for instance ac-

tion movies and comedies (recall our convention that all queries have an implicit DISTINCT

keyword).

Since these views discard, for each domain, the unmatching profiles, we would expect them

to be quite useful in speeding upQ’s execution. It is easy to see that the join of R2, S21, and S22
can be replaced by a scan over V2:

Q1: select s11.B, s12.B, v2.B1, v2.B2

from R1 r1, S11 s11, S12 s12, V2 v2
where r1.F = v2.K and r1.A1 = s11.A1 and r1.A2 = s12.A2

However, the join of R1, S11, and S12 cannot be blindly replaced by a scan over V1, since
Q2, the obvious candidate for a rewriting ofQ using both V1 and V2 is not equivalent toQ in the

absence of additional semantic information.

Q2: select v1.B1, v1.B2, v2.B1, v2.B2

from R1 r1, V1 v1, V2 v2
where r1.K = v1.K and r1.F = v2.K

79

The reason is that V1 does not contain the F attribute of R1, and there is no guarantee that

joining the latter with V1 will recover the correct values of F . On the other hand, if we know

thatK is a key in R1, then Q2 is guaranteed to be equivalent to Q, being therefore an additional

(and likely better) plan. V1 is usable for rewriting Q only by exploiting the key constraint.

Consider now a slightly more complicated version of the above configuration. The query

graph is shaped like a chain of 2 stars, star i having Ri for its hub and Sij for its corners

(1 ≤ i ≤ 2, 1 ≤ j ≤ 3). The attributes selected in the output are the B attributes of all corners

Sij . Assume the existence of materialized views Vil(K, B1, B2) (1 ≤ i ≤ 2, 1 ≤ l ≤ 2), where

each Vil joins the hub of star i (Ri) with two of its consecutive corners (Sil and Si(l+1)). Each

Vil selects the B attributes of the corner relations it joins, as well as the K attribute of Ri, as

depicted in Figure 1.2.

����� �����

��������	

������

������

������
������

������������

������������ ������������

������������

������
������

������������ ������������

��

��

��

��

Figure 1.2: Chain-of stars configuration with 3 corners

Notice that in this setting all views require the key constraint to be usable in rewriting.

The chain-of-star configuration generalizes to chains of H stars with C corners each, such

that for each star there are C − 1 views, each joining the hub with two consecutive corners. As

soon as C is greater than 2, the key constraint on the hub table is a prerequisite for the usability

of every view involving that hub. Note that the chain-of-star schema shape is inspired by such

patterns as star and snowflake schemas, which are well-represented in practice [45].

Platform All experiments were run on an Intel(R) Core(TM) i7-2760QM CPU @ 2.40GHz

with 8GB of memory.

Experiment 1: Is complete search worthwhile? We investigated whether the potential

overhead induced by running the complete search for rewritings given by ProvC&B is justi-

fied by the speedup achieved over the execution of the original query without using ProvC&B .

To assess this speedup, we performed a suite of comparative experiments with a well-known

and widely used commercial DBMS. We compared two alternatives: (a) feeding the original

query "as is" to the DBMS, versus (b) feeding it the rewriting obtained by running ProvC&B to

enumerate all minimal rewritings using the views and integrity constraints, then picking among

these one rewriting with the overall minimum number of joins (randomly selecting one if several

exist). Note that we are placing the ProvC&B on top of the DBMS, which gives a lower bound

to the speedup potential achievable by a tighter integration with the DBMS’s optimizer.

For the purpose of our experiments, we constructed a chain-of-stars schema, with 5 stars and

5 corners/star, for a total of 30 tables, 20 materialized views, and 5 key constraints. This schema

was then extended with an additional 25 tables and 25 foreign key constraints to a total of 55

80

tables, as described in Experiment 2. The table contents obey the following statistics, which are

compatible with the real-life interpretation of our scenario:

- the cardinality of the views Vij is 10% of that of the tables Ri

- we ensure 5% selectivity for the joins between Ri and Sij
Over this schema we ran chain-of-stars queries of various complexity levels, up to a maximum

number of 20 joins (the DBMS was timing out too frequently after that), thus leading to the

following configurations (our figures refer to them):

����� � � � � � � � � �

������� � � � � � � � � �

����� � � �� �� � �� �� �� � �� �� �� ��

For each query, we measured the following elapsed times:

Qexec: the time taken by the DBMS to execute (optimize then run) the original query.

RWfind: the time taken by our ProvC&B implementation to find all minimal rewritings and

choose one with the fewest joins.

RWexec: the time taken by the DBMS to execute (optimize then run) this rewriting.

We populated each table in our schema with 5K tuples, generated randomly according to our se-

lectivity parameters (the DBMS automatically created indexes on all key attributes). We enabled

the use of materialized views in the optimizer. We set a timeout of 15 minutes (900 seconds) for

query execution times. We used the recommended optimization level, which comes preset out

of the box7.

!" !" !" !" #" #" #" #" $" $" $" %" %"

!"#$

#$

#!$

#!!$

#!!!$

%$ &$ '$ ($ %$ &$ '$ ($ %$ &$ '$ %$ &$

!
"#

$
%&
'$
()
%

*+$,-%

)*+,+-$./*+,+-$./*012$

!"#$%&'

Figure 1.3: Elapsed times on one database instance

7For fairness we considered all optimization levels. Out of a total of 7, only 4 consider materialized views, and

two of these are designed for ultra-specialized queries, spending so much time in optimizing our queries that the

optimization time vastly dominates execution time. The remaining two view-aware levels, call Lr the recommended

one and La the alternative, are similar except that La uses a greedy algorithm while Lr uses dynamic programming

for join reordering. The speedups for ProvC&B we observed under La are generally even higher than the ones we

observed under Lr (we omit them for space reasons).

81

Figure 1.3 presents the measured values for Qexec, RWfind and RWexec, for each of the

tested queries. Query (s, c) refers to the configuration with s stars of c corners each. In the

graph, s appears above c. Times RWfind and RWexec are shown stacked into the same bar, as

this is the total time taken when we interpose ProvC&B before calling the DBMS. Notice that,

for all the queries, RWfind is a very small fraction of Qexec, which in turn stays larger than the

sum of RWfind and RWexec even for the smallest query. Also notice that the speedup yielded

by ProvC&B can reach one, and even two orders of magnitude.

The reason we never observe parity between Qexec and RWexec is that the minimum-join

rewriting found using ProvC&B uses views extensively (as explained for queryQ2 above), while

the DBMS fails to detect that views are relevant whenever doing so requires exploiting the

key constraint. The DBMS-provided explanation of the plan choice states that the views were

considered but rejected because of the missing foreign key attribute. The only exception when

a view is indeed used is for the last star of 2-cornered star queries ((2,2) through (5,2)) because

this view is relevant even without the key constraint (recall the discussion for Q1 above).

The drop in the measured Qexec time from (3,3) to (4,3) is interesting: it is due to the fact

that we imposed no restriction on the join between two consecutive stars, other than it being a

foreign key join (this is consistent with the targeted real-life scenario interpretation described

above). Generally, it may happen that adding a new star to the query actually "filters out" a lot

of results. If the filtering join is performed early enough by the DBMS, its small intermediate

result can propagate its impact to any cross-star intermediate chain of joins. This is exactly

what occurred in this case (as an inspection of the plan explanation confirmed).

This observation called for better accounting of the execution time variations due to the

actual data. We therefore repeated the experiment over 10 different randomly populated database

instances obeying the same table-size and selectivity criteria. For each database instance and

query, we computed the speedup factor, defined as speedup factor = Qexec

RWfind+RWexec.
.

!"

!#"

!##"

!###"

$"

$"

%"

$"

&"

$"

'"

$"

$"

%"

%"

%"

&"

%"

'"

%"

$"

&"

%"

&"

&"

&"

$"

'"

%"

'"

!
"
#
#
$
%
"
&'
(
)*
+
,&

-%#,.&

()*"+,--./,"0(1234"'###"2/,5-+" ()*"+,--./,"0(1234"!####"2/,5-+"

Figure 1.4: Average speedup factors on 10 database instances

Figure 1.4 presents, for each query, the speedup factors averaged over the set of 10 database

instances, providing a more robust view of the advantage of the rewritings according to the

query complexity. Notice that the measurements in Figure 1.3 were not a lucky fluke, being

quite typical (the speedups are in many cases below average). Note that the values for queries

82

(5,3), (4,4) and (3,5) are only lower bounds for the speedup, because these queries time out on

several databases.

We remind that, at 5K tuples per table, the database instances are rather small. We repeated

the experiments for larger tables of 10K tuples each (timeouts while measuring Qexec prevented

us from pushing the experiment any further). Observe that the average speedups increase, a

trend we expect to continue with increasing data size. Timeouts are once again responsible for

the seemingly marginal increases for queries (5,3), (4,4) and (3,5), since the figure only reports

a lower bound for the average speedup.

In conclusion, on small-sized queries the performance of the DBMS’s processing engine,

coupled with the ability of its optimizer to use views (for the last star of 2-cornered configura-

tions, for which the key constraint is not needed) leads to fast query execution. Although for

every database instance and every query we ran, the measured speedup factors are higher than

1 (calling ProvC&B still results in a speed-up), on the small-sized queries they are less pro-

nounced. On the other hand, as the query complexity increases, the time Qexec dramatically

increases, up to the order of minutes even on relatively small instances, and the speedup factors

become significantly more substantial as using the views makes increasing difference. As Figure

1.4 shows, on more complex queries the view-based plans gain an advantage of one and even two

orders of magnitude (and often more, but this is masked by the timeouts when measuringQexec).

Experiment 2: Performance of the ProvC&B implementation We further analyzed the

standalone performance of our implementation. In our evaluation, we also studied the behaviour

of our algorithm beyond key constraints. We extended the chain-of-stars schema to also incor-

porate foreign keys, by adding the tables Tij(B,C) such that (see Figure 1.5):

- Sij .B is a foreign key referencing Tij .B

- the views output the same attributes, but also contain a join with the T tables.

����� �����

��������	

������
������

������
������

������������

������������ ������������

������������

������
������

������������ ������������

������� �������

������� �������

�����������
�����������

�����������

�������

����������������������

�����������

�����������

�������
��

�� ��

��

Figure 1.5: Extended chain-of-stars configuration

The chain-of-stars queries over the new schema, hereafter called the "extended chain-of-stars

schema", stay the same. The views however are now recognizable as relevant for rewriting only

when exploiting both keys and foreign keys constraints. The resulting view-based rewritings are

identical to the ones in Experiment 1. The ProvC&B implementation continues to find them,

while the DBMS continues to miss them. This time, the DBMS misses even the views it used to

find for the 2-corner case. Their detection now involves reasoning about the foreign keys, which

83

is evidently incomplete in the DBMS. RWexec does not change, while Qexec increases for the

2-corner queries, leading to increased speedups.

!"
#"

$%"
&'" $%"

%!"

'(%"

$)'!"

!*"

&!&"

'!)$"

$%*"

'$*+"

$"

$)"

$))"

$)))"

'"

'"

&"

'"

!"

'"

("

'"

'"

&"

&"

&"

!"

&"

("

&"

'"

!"

&"

!"

!"

!"

'"

("

&"

("

!
"#

$
%&
#
'(
%

)*$+,%

,-."/0"123405/6578397" ,-."/0".:8.0;.;"123405/6578397"

!"#$%&'()'&%*&+,-./'

Figure 1.6: Rewrite computation times (RWfind)

We omit their values, focusing instead on reporting RWfind in Figure 1.6, which shows av-

erage times over the 10 runs (rewriting is unaffected by the database instance, and the measured

times are virtually identical). The graph shows rewrite computation times on the two schemas

(as expected the foreign keys cause more work, but the difference is not substantial). The two

schema types are chosen such that a large number of minimal rewritings is available in the large

configurations, to enable a stress-test of our implementation as it pursues all rewritings. In Fig-

ure 1.6, we annotate each query with the number of minimal rewritings it admits (all of whom

are found) shown as a bar label. On both schemas, our implementation exhibits sub-second run-

ning times. This is true even for configurations with over 2000 minimal rewritings, e.g. (4,4).

Note that the rewrite computation times represent a very small fraction of the query execution

times reported in Experiment 1.

Experiment 3: Savings over the C&B Recall that the original motivation for the de-

sign of ProvC&B was to save the chase sequences launched by the C&B algorithm during

the backchase phase. We quantify (a lower bound for) these savings here. For both the chain-of-

stars schema and its extended version, the C&B backchase (called the Full Backchase in [60])

will chase at least each actual minimal rewriting to determine its equivalence to the original

query. The ProvC&B saves at least all these chases, whose number is depicted in Figure 1.6 as

bar labels. We note the exponential trend of savings as the number of hubs or corners increases.

1.6 Mininum-cost reformulations with ProvC&B

While the previous sections show how ProvC&B allows finding all minimal reformulations of

a query, it is often the case in practice that we are interested in the minimum reformulations

according to a cost function.

A vast majority of the cost functions encountered in practice are monotonic cost functions

84

Definition 1.6.1 (Monotonic cost function). A cost function γ is said to be monotonic if for every

query Q and every subquery Q′ of Q, γ(Q′) ≤ γ(Q).

As already mentioned in the introductory section, monotonicity of a cost function has a

strong consequence: it allows us to state that the minimum-cost reformulations of a query Q are

always among the minimal ones:

Proposition 1.6.2. Let Q be a query formulated against a source schema S and T a target

schema. Let γ be a monotonic cost function and Q′ a minimum-cost reformulation of Q against

T according to γ.
Then Q′ is a minimal reformulation of Q.

The above proposition suggests a simple strategy for computing minimum reformulations

with respect to a monotonic cost function γ. For a query Q formulated against a source schema

S, a target schema T and a set of weakly acyclic constraints C over S ∪ T :

1. compute RW (Q,S, T, C) = ProvC&B (Q,S, T, C), the minimal reformulations of Q.

2. return {argmin γ(rwi), rwi ∈ RW}.

Note that our strategy for choosing a reformulation in our experimental evaluation (Section

1.5) corresponds to the reasoning above, where the cost function is the number of joins in the

query.

While provably correct according to Proposition 1.6.2 and the soundness and completeness

of ProvC&B , the naive algorithm above involves however generating all minimal reformulations

before choosing among them a minimum one. While in our experimental evaluation we have

shown that the efficiency of ProvC&B allows achieving very satisfactory performance by pro-

ceeding as above, we will show hereafter that we can further speedup computation when the aim

is to find only minimum-cost reformulations.

Indeed, the properties of the pa_chase allow for a more refined approach: the cost-based

pruning of the provenance formulae while chasing, thus significantly reducing the search space

for minimum-cost reformulations. We will dedicate the rest of this section to describing a mod-

ified version of the ProvC&B that includes such pruning, and to presenting its soundness and

completeness guarantees.

1.6.1 Cost-based pruned Provenance-Aware Chase steps

Remember that inProvC&B , the minimal reformulations of a query are represented by the prove-

nance conjuncts in a formula. The conjuncts of this formula in turn are obtained by multiplying

conjuncts in individual atom provenance adornments.

The first main observation concerning cost-based pruning is that a conjunct in an atom’s

adornment whose (corresponding subquery’s) cost is larger than the minimum cost will never

participate in a minimum-cost rewriting (this is a direct consequence of the monotonicity of the

cost function).

Intuitively, one can thus simply "cut out" these conjuncts from the provenance formulae

while running the pa_chase . Defining the cost of a conjunct to be the cost of the corresponding

85

subquery, we formalize such "cutting out" by means of a pruning function denoted by Prune,
taking as input a threshold T and a provenance formula and yielding as output a provenance

formula, as follows:

Definition 1.6.3. Let F = C1 + · · · + Cn a provenance formula, γ a cost function and T a

quantity in the target domain of γ called a threshold. Then Prune(T, F)=Ci1 + · · ·+Cik ⊆ F ,

s.t. a conjunct Cij is in Prune(T, F) iff γ(Cij) <= T .

Pruned pa_chase steps. Using the function Prune defined above, we hereafter introduce the

notion of pruned pa_chase steps as follows:

Definition 1.6.4 (Pruned pa_chase step conditions of application). A pruned pa_chase step

with sk_unit_constraint C and threshold T on a provenance-adorned sk_body (B, Prov) ap-

plies iff:

1. There exists a homomorphism h fromCprem toB such thatPrune(T,Prov(h(Cprem))) 6=
∅

2. Either:

(a) there exists no homomorphism h′ compatible with h from Cconcl to B, or

(b) for any such h′, Prov (h’(Cconcl)) ⊀Prune(T,Prov(h(Cprem)))

Definition 1.6.5 (Pruned pa_chase step application). Applying a pruned pa_chase step with

sk_unit_constraint C and threshold T on a provenance-adorned sk_body (B,Prov), given
homomorphism h fromCprem toB, results in a new provenance-adorned sk_body (B′,Prov ′) =
Pruned_Pa_Chase_Step_Res((B , prov),C , h,T), B′ ⊇ B, obtained in the exact same man-

ner as for a regular pa_chase step, but employing Pprem = Prune(T,Prov (h(Cprem))).

1.6.2 Cost-based pruned ProvC&B

The second main observation that leads to the design of the modified version of ProvC&B

aimed towards finding minimum-cost reformulations, is that we can "incrementally" compute

the provenance formula F giving the reformulations of a query Q, by interlacing computation

of homomorphisms from the body ofQ to the provenance-adorned sk_body with the pa_chase

steps.

Then, if instead of regular pa_chase steps, we employ cost-based pruned pa_chase steps,

such interlacing will allow us to adjust the threshold corresponding to the pruned pa_chase

steps. We will thus combine cost-based pruned pa_chase steps and incremental reformulation

computation. We present below the resulting algorithm, called PRUNED ProvC&B :

86

PRUNED ProvC&B (Query Q, source schema S, target schema T , set of weakly acyclic con-

straints C, monotonic cost function γ)

1 BU ← Universal Body(Q, C, S, T)
2 ProvU ← canonical adornment of BU

3 (B′,Prov ′)← (BU ,ProvU)
4 RF ← GET_RW_FORM(Q, (B′,Prov ′))
5 Th← min γ(Ci), Ci ∈ RF
6 while there exists at least one sk_unit_constraint C ∈ skunit(C) s.t. a

pruned pa_chase step with C and Th applies on (B′,Prov ′)
7 do
8 Pick C ∈ skunit(C) s.t. a pruned pa_chase step with C and Th applies on

(B′,Prov ′), with a homomorphism h from Cprem to (B′,Prov
′
)

9 (B′,Prov ′)← Pruned_Pa_Chase_Step_Res((B ′,Prov ′),C , h,Th)
10 RF ← GET_RW_FORM(Q, (B′,Prov ′))
11 Th← min γ(Ci), Ci ∈ RF
12 for rw ∈ argmin γ(Ci), Ci ∈ RF
13 do
14 return sq(rw)

where the brick GET_RW_FORM encompasses the computation of homomorphisms and their

formula, as follows:

GET_RW_FORM (Query Q, provenance-adorned sk_body (B’, Prov ’))

1 H ← {h, h is a homomorphism from body(Q) to (B′,Prov
′
)}

2 F ←
∑

h∈H

Prov
′
(h(body(Q))

3 return rf (F)

We claim that the above algorithm is sound and complete for computing minimum-cost

reformulations for monotonic cost functions, as follows:

Theorem 1.6.6. Let Q be a SFW query formulated over a source schema S, T a target schema

and C a set of weakly acyclic constraints. Let γ be a monotonic cost function.

Then the algorithm PRUNED ProvC&B is sound and complete, that is, it returns all and

precisely the minimum-cost reformulations of Q against T given C and γ.

Proof. Let (B0 = B,Prov0 = Prov), (B1,Prov1), . . . , be the sequence of pruned pa_chase

steps in PRUNED ProvC&B , and Th0, Th1, . . . be the corresponding thresholds.

We will exhibit a "lock-step" pa_chase sequence (B′0 = B,Prov ′0 = Prov), (B′1,Prov
′
1),

. . . , such it respects the following properties:

1. there exists an isomorphism Hi from Bi to B′i

2. for every atom a in Bi, Prov i(a) ⊆ Prov
′

i(Hi(a))

3. moreover, if a conjunct cj is in Prov
′

i(a) and γ(cj) ≤ Thi then cj ∈ Prov i(H
−1
i (a)).

87

We first note that if the properties above hold for (Bi,Prov i) and (B′i,Prov
′
i) then they

also hold for (Bi,Prov i) and (B′i,Prov
′

i) (this is a direct consequence of isomorphisms and

provenance of closed versions). We further note that Thi−1 ≥ Thi.

We construct the sequence (B′i,Prov
′
i), by letting (B′i,Prov

′
i) =

Pa_Chase_Step_Res((B ′i−1 ,Prov
′
i−1),Ci ,Hi ◦ hi), whereCi is the sk_unit_constraint cor-

responding to the pruned pa_chase step i− 1 −→ i and hi is the homomorphism from Ci prem

to Bi−1.

The properties above (existence of an isomorphism, inclusion and preservation of conjuncts

with cost lower or equal to Thi) obviously hold for i = 0, since the provenance-adorned

sk_bodies are identical. We show inductively that if they hold for i − 1 then they hold for i
(and thus the pa_chase sequence is also correctly defined).

Indeed, we first show that if the pruned pa_chase step applies, then the corresponding

pa_chase step applies. For an atom creation step, given the isomorphism Hi−1, the property

obviously holds, furthermore allowing us to deduce the isomorphism Hi (this is a direct conse-

quence of the cs_chase and Lemma 1.3.61).

Furthermore, by the induction hypothesis it is easy to show that Prov i−1(hi(Cprem)) ⊆

Prov
′

i−1(Hi−1 ◦ hi(Cprem)) (this is a simple consequence of multiplying pairwise included

boolean formulae). Since pruning only removes some conjuncts from Prov i−1(hi(Cprem)), for
the newly introduced atoms, which by definition are adorned with the provenance of the image

of the premise, the inclusion property is further respected. Also, note that for every conjunct

cj in Prov
′

i−1(Hi−1 ◦ hi(Cprem)) such that γ(cj) ≤ Thi, due to the monotonicity of the cost

function and the definition of the provenance of a set of atoms, the following holds: for every

atom a inHi−1 ◦hi(Cprem) there exists cja ∈ Prov
′
(a) such that γ(cja) ≤ Thi, and cj is equal

to the product of all cja.

But then since Thi−1 ≥ Thi, according to the induction hypothesis cja is also in

Prov i−1(H
−1
i−1(a)), therefore cj is also in Prov i−1(hi(Cprem)). On the other hand, , by defini-

tion of the pruned pa_chase step, it follows that cj is also inPrune(Thi−i,Prov i−1(hi(Cprem))),
thus the preservation of conjuncts is further respected for the newly introduced atoms.

For a provenance enriching step, we will rely on the same type of reasoning as above

by further noting that if h′i is the pruned pa_chase step compatible homomorphism then

Hi−1 ◦ h
′
i is a pa_chase step compatible homomorphism for the pa_chase sequence, and if

Prune(Thi−1,Prov i−1(hi(Cprem))) 6= φ and Prov i−1(h
′
i(Cconcl)) ⊀

Prune(Thi−1,Prov i−1(hi(Cprem))) then it is equally the case thatProv
′

i−1(Hi−1◦h
′
i(Cconcl))

⊀ Prov
′

i−1(Hi−1 ◦ hi(Cprem)). Indeed, since the pruned pa_chase step applies, it means that

conjuncts with cost lower than Thi−1 exist in the provenance of the image of the premise for

the pruned pa_chase step. According to the properties linking the two sequences, it follows that

all such conjuncts also exist for the pa_chase sequence. Assuming the pa_chase step does not

apply, they could only be subsumed by conjuncts with cost lower than Thi−1 in the provenance

of the image of the conclusion Prov
′

i−1(Hi−1 ◦ h
′
i(Cconcl)). Accordingly, all those subsuming

conjuncts would have to exist in Prov i−1(h
′
i(Cconcl)), thus the pruned pa_chase step would not

apply.

It further straightforward to show that if the pa_chase sequence terminates, then the pruned

pa_chase sequence also terminates. Indeed, we have shown that if a pruned pa_chase step ap-

88

plies then the corresponding pa_chase step (through the isomorphism exhibited) must apply.

Given the properties exhibited by the two lock-step sequences, we further note that, given a

query Q, they can be extended to homomorphisms from body(Q) to the respective outputs of

chase steps. We can then claim the following:

• for every conjunct cj in GET_RW_FORM(Q, (Bi,Prov i)), cj is also in

GET_RW_FORM(Q, (B′i,Prov
′
i)). Furthermore, if cj′ is a conjunct in

GET_RW_FORM(Q, (B′i,Prov
′
i)) such that γ(cj′) ≤ Thi, then cj

′ is also in

GET_RW_FORM(Q, (Bi,Prov i)).

The reasoning is very similar to that applying to individual chase steps, and easily extended

to reduced forms.

Let us now suppose that the pruned pa_chase sequence has terminated after a number k
of steps. Let Thk be the corresponding threshold as computed by PRUNED ProvC&B . Then

min γ(cj), cj ∈ GET_RW_FORM(Q, (Bk,Provk)) = Thk.

But by the above properties we can conclude that

{argmin γ(cj), cj in GET_RW_FORM(Q, (B′k,Prov
′
k)) } =

{argmin γ(cj), cj in GET_RW_FORM(Q, (Bk,Provk)) }
and

min γ(cj), cj ∈ GET_RW_FORM(Q, (B′k,Prov
′
k)) =

min γ(cj), cj ∈ GET_RW_FORM(Q, (Bk,Provk)) = Thk.

To conclude, we further show that for any continuation of the pa_chase sequence with some

pa_chase steps k+ 1, k+ 2, . . . , no minimum-cost reformulations are added. That is, we show

that for every i ≥ k,
{argmin γ(cj), cj in GET_RW_FORM(Q, (B′i,Prov

′
i)) } =

{argmin γ(cj), cj in GET_RW_FORM(Q, (B′k,Prov
′
k)) }.

Indeed, it is enough to show that for every i > k, and every conjunct cj in

GET_RW_FORM(Q, (B′i,Prov
′
i)) - GET_RW_FORM(Q, (B′k,Prov

′
k)), γ(cj) > Thk.

To prove the above, we show by induction on the pa_chase steps that the following hold:

1. for every homomorphism h fromCprem to (B′i,Prov
′

i), if a pa_chase step with h applies,

then for every conjunct cj′ ∈ Prov
′

i(h(Cprem)), γ(cj′) > Thk.

2. every atom a in B′i −B
′
k is such that for every conjunct cj′ in Prov ′i(a), γ(cj

′) > Thk

3. every atom a in B′k is such that for every conjunct cj′ in Prov ′i(a)− Prov ′k(a), γ(cj
′) >

Thk

We first note that if the first property in the list above holds for i, then the second and third

will necessarily hold for i+ 1, by definition of the pa_chase step.

The first property obviously holds for the pa_chase step k −→ k + 1, otherwise we can

easily show that the pruned pa_chase sequence would not have terminated. Then the second

89

and third properties hold for (B′k+1,Prov
′
k+1). In turn, for the subsequent pa_chase step on

(B′k+1,Prov
′
k+1), if the mapping of the premise only uses atoms from Bk, then we can apply

the same reasoning (i.e. non-termination of the pruned pa_chase sequence), coupled to the

third property above. Else, we use the second property above. In the two cases, we can thus re-

infer the first property on (B′k+1,Prov
′
k+1) and in the same inductive manner on all (B′i,Prov

′
i).

Putting together the above results,and using the fact that any pa_chase sequence can be ap-

plied in ProvC&B , it follows that computing the minimum-cost reformulations on (B′k,Prov
′
k)

ensures that all and precisely the minimum-cost reformulations are found:

{argmin γ(rw), rw ∈ ProvC&B (Q,S, T, C)} =

{sq(cj)}, cj ∈ {argmin γ(cj′), cj′ ∈ GET_RW_FORM(Q, (B′k,Prov
′
k))}

On the other hand, we have shown above that

{argmin γ(cj), cj ∈ GET_RW_FORM(Q, (B′k,Prov
′
k)) } =

{argmin γ(cj), cj ∈ GET_RW_FORM(Q, (Bk,Provk)) }

But PRUNED ProvC&B (Q,S, T, C) = {sq(cj′)},

cj′ ∈ {argmin γ(cj), cj ∈ GET_RW_FORM(Q, (Bk,Provk))}.

It follows that PRUNED ProvC&B (Q,S, T, C) = {argmin γ(rw), rw ∈ ProvC&B (Q,S, T, C)},
which concludes our soundness and completeness proof.

1.6.3 Initial experimental evaluation

To test the benefits of employing PRUNED ProvC&B for minimum-cost reformulations, we re-

visit our experimental setting by choosing as a cost function the same cost function as in Section

1.5, that is, the number of joins of the rewriting. We compare the following:

1. the time spent by employing ProvC&B for finding all minimal reformulations + the time

(in reality, negligible) of selecting all minimum-cost ones, versus

2. the time spent by employing PRUNED ProvC&B for finding all minumum-cost reformu-

lations.

We employ the same chain-of-stars configurations as in previous experiments (recall that a

query is defined by its number of hubs and corners).

Figure 1.7 shows the time measured for the two strategies employed (for accuracy of com-

parison, the graph is no longer shown on a logarithmic scale). Note that we can obtain up to

six times speedup with PRUNED ProvC&B . Note further that the speedup importantly increases

with the complexity of the query, and that PRUNED ProvC&B exhibits extremely high perfor-

mance on all the considered configurations.

90

�
							 �
 ��
 ��

� � �� ��
�� �� ���
�� ��

�

���

��

��

���

���

���

������� ������	�������

�����

�
 !

�
"!

#
$

Figure 1.7: Comparison of ProvC&B and PRUNED ProvC&B

1.7 Related work

The problem of query reformulation includes view-based rewriting as particular case. This prob-

lem is fundamental to many classic data management tasks, including query optimization using

materialized views, data security and integration. It represents a fruitful research area and has

been treated in depth for relational databases, for a wide spectrum of model assumptions, from

those pertaining to the language of queries and views [46, 4, 3, 21, 64], to going from set seman-

tics to bag or mixed bag-set semantics (see [23] and the references therein), to adding limited

access patterns for the views [35, 55], or to using potentially infinite sets of views [47]. In the

context of information integration, view-based rewriting has been extended also to finding not-

necessarily equivalent (but maximally-contained) rewritings (see [40] and references therein).

The first complete view-based rewriting algorithm for the SQL fragment considered in this

paper, in the absence of integrity constraints, was given in [46], where the problem was shown

NP-complete. In practice, this leads to either deterministic exponential-time implementations,

or to algorithms that rely on view-matching heuristics (e.g., [36, 44, 71, 8]), which are poten-

tially more efficient but may fail to identify some rewriting opportunities. Such heuristic-based

approaches may also assume an integrated process within the DBMS’s optimizer module, com-

paring the cost of the found rewritings to that of plans without views.

In the presence of constraints, the C&B [27], discussed at length in this paper, is the only

complete algorithm we are aware of in this setting. As emphasized however, its complete-

ness fails to achieve practical performance because of the important number of subquery chases

launched during the backchase phase. The idea of speeding up the C&B by using provenance

information was first mentioned in [26], becoming this thesis’ topic due the complexity and the

theoretical depth of the problem, which we reveal in our work.

In the Provenance-Aware Chase, the provenance bookkeeping exploits the analogy between

chase step application and query evaluation, with the provenance annotations coinciding with the

minimal why-provenance flavor introduced for query evaluation in [14], and corresponding to a

particular case of a provenance semiring [38]. Recently, we have witnessed revived interest in the

91

chase, with studies such as [52, 50, 51] focusing in particular on more permissive conditions than

weak acyclicity that can guarantee termination. The Skolemization procedure on the constraints,

that we use in the Conservative Chase to reach the purpose of sound provenance bookkeeping,

is also used in the Semi-Oblivious chase [50, 51], to attain specific termination purposes.

The original C&B algorithm has been extended in follow-up work to apply beyond con-

junctive queries (see [28] for a survey of these extensions). The extensions allow disjunc-

tion/union [31], nested correlated query blocks, grouping, aggregation, user-defined functions,

and show a uniform way to incorporate any additional language primitives by treating them as

user-defined functions with black-box semantics [57, 70]. Moreover, extensions support addi-

tional data models, such as object-oriented, complex-valued [27] and XML [29, 31, 70]. Not

surprisingly, once the supported language features sufficient expressive power even checking

equivalence becomes undecidable, so all hope is dashed for a complete reformulation algo-

rithm. However, all existing C&B extensions still guarantee soundness, i.e. only equivalent

reformulations are reported. They also guarantee to continue finding, within a larger query, all

reformulations of the query’s fragments that correspond to some language with complete C&B

(or extension thereof). All C&B extensions transfer directly to the ProvC&B algorithm as they

are all reduced to the original C&B , relying solely on the input-output behaviour of the C&B

(shared by the ProvC&B) and not on its internal working.

Recent work [11] on accommodating non-terminating chase sequences argues trading com-

pleteness in favour of producing low-cost reformulations, emphasizing their practical interest.

While it is beyond the scope of this work, we note that such behaviour can be achieved with

the cost-based pruned version of ProvC&B presented in Section 1.6, by merging the chase and

backchase phase in a single provenance-aware, cost-based pruned sequence.

92

Chapter 2

A theoretical and practical approach to
finding XPath rewritings with a
single-level of intersection of multiple
views

We revisit in this chapter the work of Cautis, Deutsch and Onose, presented in [16] and detailed

in [56], on the problem of finding XPath rewritings with a single level of intersection of multiple

views.

XPath [20] is the standard for navigational queries over XML data and it is widely used,

either directly, or as part of more complex languages (such as XQuery [13]). Early studies such

as [68, 48, 65, 69] have considered the problem of rewriting XPath queries by navigating inside

a single view’s output, which is the only possible kind of rewritings supported when in the

materialized views the original node identities are lost. The industrial trend towards enhancing

XPath queries with the ability to expose node identifiers and exploit them using intersection,

supported by such systems as [7], has led to the adoption of intersection as a first-class primitive

of the XPath standard, starting from XPath 2.0 [12] and through the XPath 3.0 standard [62].

The ability of persisting node identifiers in materialized views provides in turn the opportunity of

rewriting for a much larger set of queries than those rewritable using a single view, by employing

the intersection of the results of several materialized views.

The work presented in [16] and detailed in [56] investigates the intersection-aware rewriting

problem, focusing on rewritings with a single level of intersection of multiple views: that is,

rewritings where navigation is performed in the views, then intersection occurs, then potential

additional navigation may be applied. The authors characterize the complexity of this prob-

lem and provide a sound and complete algorithm for its resolution. In the light of the proven

hardness results, they further present a sound rule-based procedure and its usage for inferring a

sound algorithm for the rewriting problem, also describing conditions for this sound algorithm

to become complete.

The main motivation of the contributions presented in this chapter is that of investigating and

achieving practical performance for the rewriting setting presented above. To this purpose, we

93

refine the rule-based procedure to ensure its polynomial complexity, improve the completeness

of the resulting rewrite procedure, and present a range of optimizations that are necessary for

obtaining practically-relevant running time. We further provide a complete implementation of

the rewriting algorithms, employing our refinements and optimizations, as well as a thorough

experimental evaluation thereof, showing the performance and the practical benefits of the re-

fined and optimized polynomial rewriting techniques. As a side effect of reviewing the work in

[16] and [56], we also contribute in enriching the analysis of the rewriting problem by showing,

structuring and clarifying its connections with the problem of deciding the equivalence between

a query expressed as a DAG pattern and a query expressed as a tree pattern, and to the problem

of union-freeness (finding any tree pattern equivalent to a DAG pattern query).

The remainder of this chapter is organized as follows: we start by recalling, in Section

2.1, the rewriting problem and the general sound and complete rewriting algorithm described

in [16]. We dedicate Section 2.2 to showing the strong link between the rewriting problem

and the DAG-tree equivalence and union-freeness problems. In Section 2.3 we present our

refinement of the rule-based algorithm, and show its usage to infer sound polynomial algorithms

for the three related problems described in Section 2.2. We recall and refine conditions for the

completeness of these algorithms in Section 2.4. We describe our complete implementation

of the rewriting procedures and the many optimizations it comprises in Section 2.5, and its

extensive experimental evaluation in Section 2.6. We present related work in Section 2.7.

2.1 View-based rewritings

We dedicate this section to recalling the contents of [16] and [56], defining the rewriting problem

and describing a general sound and complete algorithm for its resolution. In order to ensure read-

ability, we also recall the necessary preliminary notions, and restructure and refine the material

from [16] and [56] to improve the clarity of further theoretical developments.

In the following, according to the approach from [16], an XML document D is considered

as an unranked, unordered rooted tree t, modelled by a set of edges EDGES(t), a set of nodes

NODES(t), a distinguished root node ROOT(t) and a labelling function λt, assigning to each

node a label from an infinite alphabet Σ, such that λt(ROOT(t)) = ”doc(”D”)”. Every node n
in the tree has a text value text(n), possibly empty.

2.1.1 XP queries and tree patterns

We recall in this subsection the subset of XPath considered in [16], denoted by XP. XP comprises

queries with child / and descendant // navigation, without wildcards, whose grammar can be

represented as follows:

apath ::= doc(“name”)/rpath | doc(“name”)//rpath

rpath ::= step | rpath/rpath | rpath//rpath

step ::= label pred

pred ::= ǫ | [rpath] | [rpath = C] | [.//rpath] | [.//rpath = C] | pred pred

94

Expressions in XP are produced from the symbol apath and they correspond to absolute

paths, that is, queries expressed starting from the document root. The rpath symbol generates

relative path expressions, i.e. encoding navigation relative to a given document context. The

sub-expressions inside brackets are called predicates. C terminals stand for text constants, while

“name” is a placeholder for an actual document name.

As noted in [16], XP queries are further representable by an adaptation of the unary tree

patterns [53]:

Definition 2.1.1. A tree pattern p is a non empty rooted tree, with a set of nodes NODES(p)
labelled with symbols from Σ by a labelling function λp, a distinguished node called the output

node OUT(p), and two types of edges: child edges, labelled by / and descendant edges, labelled

by //. The root of p is denoted ROOT(p). Every node n in p has a test of equality test(n) that is
either the empty word ǫ, or a constant C. If n is on a path between ROOT(p) and OUT(p), then
test(n) is ǫ.

For a given XP expression q, pattern(q) denotes the associated tree pattern p and xpath(p) =
q the reverse transformation.

2.1.2 XP∩−simple , XP∩ , DAG patterns

We present in this subsection two extensions of XP with respect to intersection. The first lan-

guage considered, called XP∩−simple , is obtained by adding the following rule to the grammar

of XP:

cpath ::= apath | cpath ∩ apath

Expressions in XP∩−simple are produced by the symbol cpath which defines a single level of

intersection of XP expressions, e.g. doc(“v1”)/image ∩ doc(“v2”)/image. Further enriching the

grammar of XP∩−simple with the following rule:

ipath ::= cpath | (cpath)/rpath | (cpath)//rpath

provides the language XP∩ , which is the focus of the rewriting study in [16]. Note that ipath

adds to the single-level intersection an rpath expression, thus allowing additional (relative) nav-

igation from the nodes in the intersection result, e.g. (doc(“v1”)/image ∩ doc(“v2”)/image)/file.

The XP∩−simple language is not presented in a standalone manner in [16] or [56], being

instead implicitly considered as a sublanguage of XP∩ . We provide its standalone definition

above as we consider this distinction necessary for the clarity of the developments hereafter.

By XP∩−simple and XP∩ expressions over a set of documents D we denote those that use

only apath expressions that navigate inside the documents D (i.e. starting with doc("name")

where name ∈ D). For a fragment L ⊆ XP, by XP∩−simple (L) we will denote XP∩−simple

queries that use only apath expressions from L.
While XP queries can be represented by tree patterns, queries in XP∩−simple and XP∩ are

representable [16] by the more general DAG patterns:

95

Definition 2.1.2. A DAG pattern d is a directed acyclic graph, with a set of nodes NODES(d)
labeled with symbols from Σ by a labeling function λd, a distinguished node called the output

node OUT(d), and two types of edges: child edges, labeled by / and descendant edges, labeled

by //. d has to satisfy the property that any n ∈ NODES(d) is accessible via a path starting

from a special node ROOT(d). In addition, all the nodes that are not on a path from ROOT(d)
to OUT(d) (called predicate nodes) have only one incoming edge. Every node n in d has a test

of equality test(n) that is either the empty word ǫ, or a constant C. If n is on a path between

ROOT(d) and OUT(d), then test(n) is always ǫ.

For a query q in XP∩−simple , the associated DAG pattern can be constructed as follows:

1. for every apath (XP path with no ∩), dag(apath) is the tree pattern corresponding to the

apath .

2. dag(p1∩p2) is obtained from dag(p1) and dag(p2) as follows: (i) provided p1 and p2 are

not empty and there are no labeling conflicts between their root and output nodes, by coa-

lescing ROOT(dag(p1))with ROOT(dag(p2)) and OUT(dag(p1))with OUT(dag(p2))
respectively, (ii) otherwise, as the empty pattern.

Figure 2.1(a) gives an example of a DAG pattern corresponding to a query in XP∩−simple

which intersects the queries doc(“L”)//paper//section[theorem]//image and

doc(“L”)/lib/paper//section//figure[caption//label]/image). For the depicted DAG, ROOT(d) is the
doc(L) node and OUT(d) is the image node indicated by a square. Note that in practice an

XP∩−simple expression is representable by a non-empty DAG iff the apath expressions are over

the same document and furthermore their end labels coincide.

For queries in XP∩ , dag(x/rpath) and dag(x//rpath) are obtained as follows: (i) for non-

empty x, by appending the pattern corresponding to rpath to OUT(dag(x)) with a /- and a

//-edge respectively, (ii) as x, if x is the empty pattern.

By a slight abuse of terminology, we will use for DAGs corresponding to queries in XP∩−simple

the denomination DAGs in XP∩−simple , and similarly refer to DAGs in XP∩ . In the following,

unless explicitly stated otherwise, the notion of pattern refers to both DAG and tree patterns. We

recall hereafter several concepts related to patterns.

Main branches and main branch nodes. By the main branch nodes of a pattern d, MBN(d), we

denote the set of nodes found on paths starting with ROOT(d) and ending with OUT(d). We

refer paths between ROOT(d) and OUT(d) as main branches of d. By definition, a tree pattern

p has a unique main branch, which we denote by MB(p).

Predicate subtrees. We call predicate subtree of a pattern p any subtree of p rooted at a non-

main branch node. A /-predicate (resp. //-predicate) is a predicate subtree connected by a /-edge

(resp. //-edge) to a main branch node. As further specialization, by a /-subpredicate st we de-

note a predicate subtree whose root is connected by a /-path to the main branch node to which

st is associated. By a //-subpredicate st we denote a predicate subtree whose root is connected

by a //-edge to a /-path p that comes from the main branch node n to which st is associated (as

in n[. . . [.//st]]). p is called the incoming /-path of st and can be empty, when st is a //-predicate.

96

Subpatterns. We further denote by a subpattern of a pattern d any pattern that could be obtained

from a pattern d by removing some nodes and edges. For a pattern d and node n ∈ MBN(d), by
SPd(n) we denote the subpattern rooted at n in d.

Prefixes. A prefix p of a tree pattern q is any tree pattern with ROOT(p) = ROOT(q), m =
MB(p) a subpath of MB(q) and having all the predicates attached to the nodes of m in q. A

lossless prefix p of a tree pattern q is any tree pattern obtained from q by setting the output node

to some other main branch node (i.e., an ancestor of OUT(q)). Note that this means that the rest

of the main branch becomes a side branch, hence a predicate.

Tokens (/-patterns). A token, also called /-pattern, is a tree pattern that has only child (/) edges

in the main branch. Tokens provide a means of reasoning about tree patterns in general. Indeed,

the main branch of a tree pattern p can be partitioned in tokens by its sub-sequences separated

by //-edges. We can thus see any tree pattern p as a sequence of tokens p = t1//t2// . . . //tk.
We call t1, the token starting with ROOT(p), the root token of p. The token tk, which ends by

OUT(p), is called the result or output token of p. The other tokens are denoted intermediary

tokens, and by the intermediary part of a tree pattern we denote the sequence of intermediary

tokens.

2.1.3 Pattern satisfiability, containment and equivalence

We summarize in this subsection concepts and results previously presented in literature, re-

garding the satisfiability, containment and equivalence of (tree or DAG) patterns. We start by

recalling the notions of satisfiability, containment and equivalence, as well as those of mappings

between patterns:

Definition 2.1.3. A pattern d is satisfiable if it is non-empty and there exists a tree t over Σ into

which d has an embedding (i.e., there exists a model with non-empty results).

Definition 2.1.4. A pattern d1 is contained in another pattern d2 iff for any input tree t, d1(t) ⊆
d2(t). We write this shortly as d1 ⊑ d2. We say that d1 is equivalent to d2, and write d1 ≡ d2,
iff d1(t) = d2(t) for any input tree t.

Definition 2.1.5. A mapping between two patterns d1 and d2 is a function h : NODES(d1) →
NODES(d2) that satisfies the following properties:

1. for any n ∈ MBN(d1), h(n) ∈ MBN(d2)

2. for any n ∈ NODES(d1), λd2(h(n)) = λd1(n)

3. for any /-edge (n1, n2) in d1, (h(n1), h(n2)) is a /-edge in d2

4. for any //-edge (n1, n2) in d1, there is a path from h(n1) to h(n2) in d2

5. for any n ∈ NODES(d1), if test(n) = C then test(h(n)) = C

97

A root-mapping is a mapping that further satisfies the following: h(ROOT(d1)) = ROOT(d2)
A containment mapping is a root-mapping h such that further h(OUT(d1)) = OUT(d2). An iso-

morphism between d1 and d2 is a bijective containment mapping from d1 into d2 whose inverse

is also a containment mapping, from d2 into d1. We recall hereafter several well known results

from previous literature (e.g., [48]) linking containment mappings, containment and equiva-

lence:

Lemma 2.1.6. If there is a containment mapping from a pattern d1 to a pattern d2 then d2 ⊑ d1.

Lemma 2.1.7. A tree pattern p is contained in a DAG pattern d iff there is a containment

mapping from d to p.

Lemma 2.1.8. Containment and equivalence for two tree patterns p1 and p2 can be evaluated

in PTIME.

2.1.4 Interleavings

We recall in this subsection a central notion for characterizing DAG patterns, namely their in-

terleavings. Interleavings are intuitively "foldings", or "zippings" of a DAG pattern into a tree,

formally defined as follows:

Definition 2.1.9 (Interleaving). An interleaving of a pattern d is any tree pattern pi produced as

follows:

1. choose a string i of Σ symbols alternating with either / or // (we call such string a code

[10]) and a total onto function fi that maps MBN(d) into Σ-positions of i such that:

(a) fi is label preserving

(b) for any /-edge (n1, n2) in d s.t. n1 ∈ MBN(d) and n2 ∈ MBN(d), the code i is of

the form . . . fi(n1)/fi(n2) . . . ,

(c) for any //-edge (n1, n2) in d s.t. n1 ∈ MBN(d) and n2 ∈ MBN(d), the code i is of
the form . . . fi(n1) . . . fi(n2)

2. build the smallest tree pattern pi such that:

(a) i is a code for the main branch MB(pi) (i corresponds to MB(pi)’s string represen-

tation))

(b) for any n ∈ MBN(d) and its image n′ in pi (via fi), if a predicate subtree st appears
below n then a copy of st appears below n′, connected by same kind of edge.

Two nodes n1, n2 from MBN(d) are said to be collapsed (or coalesced) if fi(n1) = fi(n2),
with fi as above. The tree patterns pi thus obtained are called interleavings of d and we denote

their set by interleave(d).

Figure 2.1(c) shows an interleaving of the DAG pattern in Figure 2.1(a).

An immediate observation is that if d is satisfiable, then the set interleave(d) is non-empty.

By definition, there is always a containment mapping from a satisfiable pattern into each of its

interleavings. Then, by Lemma 2.1.6, a pattern will always contain its interleavings. Moreover

[37, 10], it also holds that:

98

Lemma 2.1.10. Any DAG pattern is equivalent to the union of its interleavings.

Note that the set of interleavings of a DAG pattern d can be exponentially larger than d.
Indeed, it was shown [10] that a DAG pattern may only be translatable into a union of exponen-

tially many tree patterns.

2.1.5 Union-freeness, dominant interleavings and DAG-tree equivalence

We recall in this subsection a central property of DAG patterns, their union-freeness [16]. A

DAG pattern d is union-free iff there exists a tree pattern p such that d and p are equivalent. We

further define the problem of union-freeness in its decision and functional versions, as follows:

• decision version: Given a DAG pattern d, decide whether d is union-free.

• functional version: Given a DAG pattern d, exhibit a tree pattern equivalent to d iff such

pattern exists. We will call such pattern a tree equivalent of d.

Note that the notion of union-freeness encompasses that of satisfiability. Note also that the

functional version of the union-freeness problem encompasses its decision version. In the fol-

lowing, when referring to the union-freeness problem, we will always designate its functional

version.

Based on union-freeness, we can straightforwardly characterize the equivalence between a

DAG and a tree as follows:

Proposition 2.1.11. A DAG pattern d is equivalent to a tree pattern p iff d is union-free and for

p′ a tree equivalent of d, p′ is equivalent to p.

We further recall the very strong link that exists between union-freeness and interleavings.

Indeed, by Lemma 2.1.10, a DAG pattern is equivalent to the union of its interleavings. Further-

more, the following also hold1:

Proposition 2.1.12. Let p = ∪ipi and q = ∪jqj be two finite unions of tree patterns. Then

p ⊑ q iff ∀i, ∃j s.t. pi ⊑ qj .

Proposition 2.1.13. If a tree pattern is equivalent to a union of tree patterns, then it is equivalent

to a member of the union.

Given a DAG pattern d, by the normal form of d we denote the equivalent formulation of

d as the union of incomparable interleavings with respect to containment. It follows that the

union-freeness of a DAG can be characterized as follows:

Lemma 2.1.14. A DAG pattern is union-free iff its normal form contains a single interleaving.

Such interleaving is then a solution for the problem of union-freeness (a tree equivalent of the

given DAG).

In other words, the above result states that a DAG pattern is union-free iff it has an interleav-

ing that contains all the others. We will call such interleaving a dominant interleaving.

1reminiscence of similar results from relational database theory, on comparing conjunctive queries with unions of

conjunctive queries

99

2.1.6 The view-based rewriting problem for XP∩

We recall in this subsection the problem of query rewriting using views with rewrite plans in

XP∩ , as described in [16], as well as its complexity, as claimed in [16] and proven in [56].

We consider views defined by queries over a document D. For a view v, by v̄ we denote

the query defining it. We further assume that for each view v, the result of executing v̄ over the

documentD is materialized in a corresponding view document v, such that the topmost element

is labelled with doc(“v”) and its children subtrees are Id-preserving copies of the subtrees of

D, rooted at the nodes selected by v̄ over D. Given a set of views V defined by XP queries

over a document D, by DV we denote the set of view documents {v|v ∈ V}, containing the

materialized results of executing the corresponding queries.

Rewrite plans in XP∩ .A rewrite plan in XP∩ over DV is a query r ∈ XP∩ over the view

documents DV , According to the definition of the XP∩ language, a rewrite plan r is then of the

form
⋂

i,j uij , (
⋂

i,j uij)/rpath or (
⋂

i,j uij)//rpath, with uij of the form doc(“vj”)/pi.
Unfolding rewrite plans. Given a rewrite plan r, its unfolding, denoted unfold(r), is the

XP∩ query obtained by replacing in r each doc(“v”) label with v̄, the XP query defining v. Note

that for a rewrite plan in XP∩ , unfold(r) will always represent a query in XP∩ over a single

document D, which represents the document the views have been defined over.

View-based rewriting problem for XP∩ . Relying on the above concepts, the view-based

rewriting problem for XP∩ is defined as follows: for q an XP query over a document D and V
a finite set of views over D, find a rewrite plan r in XP∩ over DV such that unfold(r) and q are

equivalent. Such plan is then called a rewriting.

Example 2.1.15. Given the following query q and views v1 and v2:

q : doc(“L”)/lib/paper//section[theorem]//figure[caption//label]/image/file

v1 : doc(“L”)//paper//section[theorem]//image

v2 : doc(“L”)/lib/paper//section//figure[caption//label]/image

the query r : (doc(“v1”)/image ∩ doc(“v2”)/image)/file is a rewriting of q in XP∩ .

We recall hereafter the complexity result regarding the rewriting problem as stated in [16]

and proven in [56]:

Theorem 2.1.16. The rewriting problem for queries and views from XP and plans in XP∩ is

coNP-complete.

2.1.7 A sound and complete rewriting algorithm

We recall in this subsection the sound and complete rewriting algorithm REWRITE presented in

[16]. As in [16], the compensate function generalizes the concatenation operation from [68],

by copying extra navigation from the query into the rewrite plan. For a query r ∈ XP∩ and a

tree pattern p, compensate(r, p, n) returns the query obtained by deleting the first symbol from

x= xpath(SPp(n)) and concatenating the rest to r. For instance, the result of compensating r
= a/b with x = b[c][d]/e at the b-node is the concatenation of a/b and [c][d]/e, i.e. a/b[c][d]/e.

We present below the flow of the REWRITE algorithm, in which for clarity we have further

emphasized its sub-algorithm, BUILDINITREWRITECANDIDATE.

100

REWRITE(q,V)

1 for p a lossless prefix of pattern(q)
2 do
3 r ← BUILDINITREWRITECANDIDATE(p,V)
4 d← pattern(unfold(r))
5 if d ≡ p
6 then return compensate(r, q,OUT(p))
7 return fail

BUILDINITREWRITECANDIDATE(p,V)

1 V ′ ← φ
2 for v ∈ V , h a root-mapping of pattern(v̄) into p
3 do
4 b← h(OUT(pattern(v̄)))
5 V ′ ← V ′ ∪ compensate (doc(“v")/λp(b), p, b)

6 r ←
(

⋂

vj∈V ′ vj

)

7 return r

We also recall the soundness and completeness guarantees of REWRITE :

Theorem 2.1.17. REWRITE is sound, that is, if it returns an XP∩ expression, then this expression

is a rewriting for q.
Furthermore, REWRITE is complete, that is, if there exists a rewriting in XP∩ for q, then

REWRITE will return a result.

Note that the completeness concept as defined by [16] is close to the corresponding decision

problem: indeed, in order to be complete, an algorithm solving the rewrite problem must return

a non-empty result as soon as a rewriting exists.

Note also that in the version of REWRITE provided in [16] and [56], the equivalence test

between d and p appears as a containment test (i.e. if d ⊑ p), due to the strategy of construction

for d, ensuring that the opposite containment always holds. We state explicitly the equivalence

test in the above in order to clarify and structure the results in the following.

2.1.8 Interesting XP fragments

We dedicate this subsection to recalling the two XP fragments further considered in the theoret-

ical developments of [16] and [56]:

The fragment XPes. This fragment comprises queries p called extended skeletons, in which the

usage of //-subpredicates is limited as follows: for any main branch node n 6= OUT(p) and //-

subpredicate st of n, there is no mapping (in either direction) between the code of the incoming

/-path of st and the one of the /-path following n in the main branch (where the empty code

is assumed to map in any other code). E.g., patterns a[b//c]/d//e or a[b//c//d]/e//d are extended

skeletons, while a[b//c]/b//d, a[b//c]//d, a[.//b]/c//d or a[.//b]//c are not.

101

Observe that the above definition imposes no restrictions on predicates of the output node.

This relaxation was not present in [16]’s definition of extended skeletons but it is easy to show

that it does not affect any of the results that were obtained with the more restrictive definition.

This is because there is only one choice for ordering the output nodes in interleavings of an

XP∩−simple intersection: they are collapsed into one output node.

The fragment XP//. This fragment is an extension of XPes, where //-predicates attached to main

branch nodes are allowed and the usage of //-subpredicates therein is further freely allowed.

2.2 Rewritings, equivalence and union-freeness

We dedicate this section to showing the tight link that exists between the rewriting problem,

the problem of deciding the equivalence between a DAG pattern and a tree pattern and the

(functional version of the) union-freeness of a DAG pattern. In doing do, we provide a clear and

structured framework for the intuitions and results presented in [16] and detailed in [56]. We

will follow this framework throughout following sections, in order to structure and clarify the

presentation of the results from [16], and to further enhance their applicability.

2.2.1 Rewritings and the DAG-tree equivalence

Remember that REWRITE uses as a central brick the equivalence test between a DAG in XP∩−simple

(corresponding to the unfolding of the rewrite candidate for a prefix) and a tree (the prefix). Note

also that the number of such tests corresponds to the number of prefixes, and is thus linear in the

size of the main branch of the input query.

As a consequence of the proven soundness and completeness of REWRITE it follows directly

that the following holds:

Lemma 2.2.1. The rewriting problem for XP∩ rewrite plans has a polynomial-time reduction to

the problem of deciding equivalence between a DAG pattern in XP∩−simple and a tree pattern.

In view of the complexity results of the previous section and the above reduction we can

then characterize the complexity of the DAG-tree equivalence problem as follows:

Theorem 2.2.2. The problem of testing equivalence between an XP∩−simple DAG pattern d and

a tree pattern p in XP is coNP-complete.

Proof. The lower-bound follows directly from Theorem 2.1.16. To show that the problem is in

coNP, we note that a non-deterministic algorithm that decides d 6≡ p can guess a tree equivalent

for d and check that u 6≡ p, which can be done in PTIME according to Lemma 2.1.8.

2.2.2 DAG-tree equivalence and union-freeness

Remember that by Proposition 2.1.11 the DAG-tree equivalence reduces to the (functional ver-

sion of) the problem of union-freeness: A DAG pattern d is equivalent to a tree pattern p iff d is

union-free and for p′ a tree equivalent of d, p′ is equivalent to p.

102

By Lemma 2.1.8 it further holds that the equivalence test for two tree patterns is PTIME.

The following then holds:

Lemma 2.2.3. The DAG-tree equivalence for XP∩−simple DAGs and XP trees has a polynomial-

time reduction to the problem of union-freeness for XP∩−simple DAGs.

Then, the hardness result of Theorem 2.2.2 transfers to the complexity of the union freeness

problem as follows:

Theorem 2.2.4. The (functional version of the) union freeness problem for a DAG pattern in

XP∩−simple is coNP-hard.

Naively solving the problem of union-freeness. How does one go about solving the union-

freeness problem? Remember that by Lemma 2.1.14, a dominant interleaving (or the non-

existence thereof) provides a solution for union-freeness. A naive approach would then be the

following algorithm:

DOMINANT_INTERLEAVING(d)

1 generate all interleavings of d
2 check whether they reduce by containment to a single interleaving

3 if so, output the dominant interleaving, else output ∅

It is easy to show that DOMINANT_INTERLEAVING is sound and complete for solving

the union-freeness problem. Given the reductions stated above, we can further use DOMI-

NANT_INTERLEAVING for solving the DAG-tree equivalence problem, as well as the rewriting

problem.

2.3 A rule-based algorithm for directly constructing the dominant
interleaving

While the algorithm DOMINANT_INTERLEAVING presented in the previous section is sound

and complete, it may not be the best choice in terms of computational effort. Indeed, we have

already emphasized the fact that the number of interleavings of a DAG d may be exponentially

larger than d. A central development in [16] concerns the design of an algorithm for directly

constructing the dominant interleaving, without going through the steps of generating all inter-

leavings and checking their reduction by containment.

This approach consists in a series of transformations of the input DAG such that in the end

"it becomes" its dominant interleaving. Each of these transformations is formalized as the appli-

cation of a transformation rule, bringing the DAG one step closer to its dominant interleaving,

if such interleaving exists.

We present hereafter a refinement of the rule-based algorithm in [16]. This refinement, for

which we preserve the original name APPLY-RULES, is aimed towards achieving polynomial

complexity and improving this algorithm’s completeness, as we will show in the following.

103

2.3.1 Global flow of APPLY-RULES

We show below the global form of our refinement of the rule-based algorithm:

APPLY-RULES(d)

1 d′ = d
2 if one of the patterns intersected in d is a /-pattern

3 then RuleSet = R1, R2, R3, R4, R6, R7

4 else RuleSet = R1, R2, R3, R4, R5, R6

5 repeat
6 while R1 applies on d′

7 do
8 d′ = apply R1 on d′

9 if one Ri in RuleSet applies on d′

10 then d′ = apply Ri on d′;
11 else break;

12 return d′

Note that, compared to [16], this flow is modified in order to ensure application of rule R1

after each of the other rules’ application. Indeed, this application is necessary in order to ensure

the uniqueness of /-paths between two nodes, which in turn is necessary for ensuring polynomial

complexity for the individual rules.

Furthermore, the original statement of the rule-based algorithm presents 8 rules, which are

not differentiated to account for the two cases above. In our refinement of the rule-based algo-

rithm, we exhibit such a differentiation and we only employ 7 rules, as follows:

• Rules R1, R2, R3 and R4 stay the same as in [16].

• Rules R5 and R8 are further replaced by a new rule R7

• Accordingly, rule R6 in [16] becomes rule R5 in our refinement, and rule R7 in [16]

becomes rule R6.

Rule R7 extends the combined effect of rules R5 and R8 in [16]. Its purpose is twofold: first,

we show that its testing and application can be achieved in polynomial time, property that is not

ensured by the previous rule R8; furthermore, together with the differentiation above, this rule

ensures completeness of the rule-based algorithm for extended skeletons, as analyzed in Section

2.4.

2.3.2 The rewrite rules of APPLY-RULES

We list hereafter the 7 rules employed in APPLY-RULES. Following the approach in [16], each

rule R1-R7 will be presented as a pair formed by a test condition, which checks if the rule is

applicable (i.e. if the input DAG exhibits a required configuration), and a graphical description,

which shows how the rule transforms the DAG. Each transformation either (i) collapses two

main branch nodes n1, n2 into a new node n1,2 (which inherits the predicate subtrees, incoming

104

and outgoing main branch edges), or (ii) removes some redundant main branch nodes and edges,

or (iii) appends a new predicate subtree below an existing main branch node.

We use the graphical notation of [16]: linear paths corresponding to part of a main branch

are designated by the letter p, nodes are designated by the letter n, the result of collapsing two

nodes ni, nj is denoted ni,j . Simple lines represent /-edges, double lines represent //-edges,

simple dotted lines represent /-paths, and double dotted lines represent arbitrary paths (may

have both / and //). We represent by a rhombus main branch paths that are not followed by any /

(main branch) edge. Paths include their end points.

As in [16], the tree pattern containing just a main branch path p is referred to by p, and
the tree pattern having p as main branch by TPd(p). We recall the definition of immediate

unsatisfiability from [16]: a pattern d is immediately unsatisfiable if by applying to saturation

rule R1 on it we reach a pattern in which either there are two /-paths of different lengths but with

the same start and end node, or there is a node with two incoming /-edges λ1/λ and λ2/λ, such
that λ1 6= λ2. As in [16], two nodes n1, n2 are collapsible iff they have the same label and the

DAG pattern collapsed(n1, n2) is not immediately unsatisfiable.

We also recall the notion of similar patterns in [16]:

Definition 2.3.1. Two /-patterns p1, p2 are similar if (a) their main branches have the same

code, and (b) both have root mappings into any pattern p12 built from p1, p2 as follows:

1. choose a code i12 and a total onto function f12 that maps the nodes ofm12 = MBN(p1)∪
MBN(p2) into i12 such that:

(a) f12 preserves labels

(b) for any /-edge (n1, n2) in the main branch of p1 or p2, the code i12 contains f12(n1)/f12(n2)

2. build the minimal pattern p12 such that:

(a) i12 is a code for the main branch MB(p12),

(b) for each node n in MBN(p1) ∪ MBN(p2) and its image n′ in MB(p12) (via f12), if a
predicate subtree st appears below n then a copy of st appears below n′, connected
by the same kind of edge.

Rule R1. This rule triggers when λd(n1) = λd(n2)

n1,2

(R1.ii)

n1,2

(R1.i)

n1
n2

n1 n2

Example 2.3.2. The DAG pattern that would be obtained by intersecting some two tree patterns

doc(“L”)/paper//. . . and doc(“L”)/paper/ . . . would be subject to R1’s application, with n1 and n2
being its two nodes labeled paper.

Rule R2. This rule triggers if n1 and n2 are not collapsible and n2 is not reachable from n1
(resp. n1 is not reachable from n2, in the case of R2.ii).

105

n1

n1

n2n2

n1
n1

n2

n2

(R2.ii)

(R2.i)

Example 2.3.3. Notice the application of rule R2.i in Figure 2.1, with n1 being the node labeled

lib and n2 being the node labeled paper in the left branch of the DAG pattern. Symmetrically,

rule R2.ii applies with n1 being the node labeled figure and n2 being the node labeled section

in the left branch of the DAG pattern.

Rule R3.i. This rule triggers if the following conditions hold:

• p1 ≡ p2,

• each of p2’s nodes has only one incoming main branch edge,

• TPd(p2) contains TPd(p1).

p2p
1

n1 n2 n1,2

p
1

p2

Example 2.3.4. Notice the application of this rule in Figure 2.1, with n1 and n2 being the two

nodes labeled paper and the paths p1 and p2 consisting of only these nodes.

Rule R3.ii. This rule triggers if the following conditions hold:

• p1 ≡ p2,

• each of p2’s nodes has only one outgoing main branch edge,

• TPd(p2) contains TPd(p1).

p2 p
1

n1n2
n1,2

p
1

p2

Rule R4.i This rule triggers if the following conditions hold for all nodes n4:

• n3 has one incoming main branch edge, all other nodes of p2 have one incoming and one

outgoing main branch edge,

• there exists a mapping from TPd(p2) into SPd(n1), mapping all the nodes of p2 into nodes

of p1.

106

• the path p2//n4 does not map into p1.

p2p
1

{n4}

p
1

{n4}

n1

n3

n1 n2

Example 2.3.5. The DAG pattern that would be obtained by intersecting some two tree patterns

doc(“L”)/lib/paper/section/. . . /figure[caption] and doc(“L”)//lib[.//caption]//section//theorem//. . . would

be subject to R4.i’s application, with p1 being the path corresponding to lib/paper/section, p2
being the path corresponding to lib//section, and n4 being the node labeled theorem.

Rule R4.ii. This rule triggers if the following conditions hold for all nodes n4:

• n3 has only one outgoing main branch edge, all the other nodes of p2 have one incoming

and one outgoing main branch edge,

• there exists a mapping from TPd(p2) into TPd(p1), mapping all the nodes of p2 into nodes

of p1.

• the path n4//p2 does not map into p1.

p2 p
1

n1
n2

{n4}

p
1

{n4}

n1

n3

Rule R5. This rule triggers if the following conditions hold:

• n3, n4 have only one incoming main branch edge, all other nodes of p1 and p2 have one

incoming and one outgoing main branch edge,

• TPd(p1) and TPd(p2) are similar.

p2p1

n1 n2 n1,2

p1 p2

n3 n4
n3

n4

Example 2.3.6. The DAG pattern that would be obtained by intersecting some two tree patterns

doc(“L”)//lib/paper[.//caption]/section//. . . and doc(“L”)//lib[.//figure]/paper/section//. . . would be

subject to R5’s application, with the paths p1 and p2 corresponding to the lib/paper/section

parts of the queries.

107

Rule R6. This rule triggers if the following conditions hold:

• the nodes of p2 have only one incoming and one outgoing main branch edge,

• there exists a mapping from TPd(p2) into SPd(n1), such that the nodes of p2 are mapped

into nodes of p1.

p2 p1 p1

n1

n3

n4

Example 2.3.7. Notice the application of this rule iFigure 2.1, with p1 and p2 corresponding to

the two paths paper//section//figure in parallel.

Rule R7. This rule triggers if the following conditions hold:

• the nodes of p2 have only one incoming and one outgoing main branch edge,

• Q is a /-predicate attached to a node in p2, such that its presence on the node n would

verify the condition of extended skeletons

• for all mappings ψ of p2 into p1, for d
′ being the pattern obtained from d by collapsing

each n′ ∈ p2 with ψ(n′), pattern(λd(n)[Q]) has a root-mapping into SPd′(n).

Example 2.3.8. The DAG pattern that would be obtained by intersecting some two tree patterns

doc(“L”)/lib/section/section/section[figure]/image and doc(“L”)//section[figure]/section[figure]//image

would be subject to R7’s application, with predicate Q being [figure] and the node n corre-

sponding to the second node labeled section in the former view. Note that only after adding Q
on node n R6 can apply, removing the branch from the latter view and yielding a tree pattern

doc(“L”)/lib/section/section[figure]/section[figure]/image.

Figure 2.1 shows how the unfolding of the intersection of views v1 and v2 from Example

2.1.15 is rewritten into a prefix of q2 (Figure 2.1.(c)).

108

(a) d = v1 ∩ v2

Figure 2.1: Running the rules on Example 2.1.15.

While in next sections we will show conditions for the rule-based algorithm to produce

indeed the dominant interleaving, we note hereafter an essential property of APPLY-RULES, of

always producing as output a DAG d′ equivalent to the input DAG d:

Proposition 2.3.9. Let d be a DAG and d′ = APPLY-RULES(d). Then d′ ≡ d.

Proof. For the first six rules, we point the reader to the corresponding proofs in [56]. For rule

R7, notice that its conditions imply that in any possible interleaving of d, in particular in any

interleaving of the parts p1 and p2, the predicate [Q] will be verified at the position where it

is copied. This means that each of the interleavings of d′ is equivalent to the corresponding

interleaving of d, and accordingly that d′ and d are equivalent.

2.3.3 Complexity of APPLY-RULES

We will show hereafter that the complexity of APPLY-RULES is polynomial in the size of the

input DAG. To this purpose, we first recall a result from [16]:

Lemma 2.3.10. The rewriting of a DAG d using APPLY-RULES always terminates, and it does

so in O(|NODES(d)|2) steps.

The proof of the above result is a direct adaptation of the one provided in [56], by further

noting that the number of applications of the newly introduced rule R7 is bounded by the com-

bination of nodes and predicates.

We further claim that each rule’s testing and application can be achieved in polynomial time.

Note that this particular property was not investigated in the previous analysis in [16] and [56].

Our refinement of the rule-based algorithm stems in part from the development of this analysis,

leading to the replacement of two of the rules by a new, provably polynomial one, as well as to

the novel design of a polynomial testing procedure for rule R6.

Lemma 2.3.11. The complexity of testing and applying the rules of APPLY-RULES is bounded

by a polynomial in the size of the input DAG.

Proof. It is easy to show that rule application is polynomial. We focus in the following on

proving polynomial complexity for the testing procedures.

We claim that each of the rules R1-R5 can be tested in polynomial time. For the rules R2-R5,

this is based on the unicity of the paths involved and on testing the existence or non-existence of

109

mappings, which can be done in polynomial time. Similarity can also be tested in polynomial

time, since the number of patterns p12 to be considered is linear in the size of the two /-patterns

p1 and p2. Note that unicity of /-paths is ensured by the repeated application of rule R1 after

other rules’ application, part of the our refinement of the rule-based algorithm.

We further exhibit a polynomial testing procedure for R6. Indeed, the test for R6 is more

involved, since part of its input, namely the p1 candidates, is not easily identifiable. To exhibit a

polynomial testing strategy, we start from the essential observation that it is sufficient to test the

existence of such candidates and to handle them implicitly, contrary to p2 candidates which can

be found uniquely according to the rule’s description.

Given a p2 candidate, any mapping of p2 nodes in the DAG rooted at node n1 will also

determine at least one such path p1; one then only needs to keep ensure that the images of nodes

of p2 in a mapping from p2 to the subpattern rooted at p1 are limited to the subgraph induced by

n1 and the common descendant of n1 and p2’s nodes. We argue that the computation of such a

restricted mapping is polynomial, involving an adaptation of the classic dynamic programming

procedure. As soon as such restricted mapping exists, we can infer the existence of some p1 and

safely remove p2, according to the rule.

We discuss next how R7 can be tested in polynomial time. Indeed, the predicate Q can have

the following form (Figure 2.2): a /-path l1/ . . . /lk followed by either (a) one or more //-edges,

(b) one or more //-edges and one or more /-edges, or (c) one or more /-edges. In other words, lk
denotes the highest node having either several outgoing edges (of either kind) or one outgoing

edge, of the // kind.

l2

…

lk-1

lk

l1

Q1 Q2 Qs
…

l2

…

lk-1

lk

l1

Q1 Q2 Qs
…

l2

…

lk-1

lk

l1

Q1 Q2 Qs
…

Figure 2.2: The possible configurations for predicate subtree Q.

Case a. If Q is of the first kind, since at node n in p1 the predicate Q would verify XPes,

it means that n is followed by a main branch that is incompatible with l1/l2/ . . . /lk. Let

l1/ . . . /lk′ , for 1 ≤ k′ < k, be the maximal prefix that is compatible with the main branch (if

one exists). This means that the main branch below n starts by a sequence of labels l1/ . . . /lk′/l,
where l 6= lk′+1.

For Q to hold at n in each interleaving of p2 with p1, it means that in it we have either:

1. Q (or a predicate into which Q can map) attached to n itself (i.e. we do not need the main

branch descendants of n and their predicates), or

2. the predicate l2/ . . . /lk[Q1] . . . [Qs] (or a predicate into which it can map) attached to n’s
main branch child n′ (i.e. we do not need the main branch descendants of n′ and their

predicates), or

110

3. the predicate l3/ . . . /lk[Q1] . . . [Qs] (or a predicate into which it can map) attached to n’s
main branch descendant at distance 2, n′′ (i.e. we do not need the main branch descendants

of n′′ and their predicates), or so on, . . .

(k’) the predicate lk′+1/ . . . /lk[Q1] . . . [Qs] (or a predicate into which it can map) attached to

n’s main branch descendant at distance k′, n(k
′), (i.e. we do not need the main branch

descendants of n(k
′) and their predicates).

Accordingly, in order to test that Q holds at n in each interleaving of p2 with p1, we need to

test the non-existence of a mapping from p2 into p1 that would not bring a predicate as the ones

described above on any of the nodes n, n′, n′′, . . . , n(k
′). This test can be done in polynomial

time, top-down and one token at a time, by choosing as long as possible for each token of p2 the

highest-possible image that does not contribute any predicates like the ones described above.

Case b. This case is similar to the previous since we have the same setting, i.e., n is followed

by a main branch that is incompatible with l1/l2/ . . . /lk and we have at most a prefix of it

l1/ . . . /l
′
k, for 1 ≤ k

′ < k, that is compatible (if such a prefix exists).

Case c. If n is followed by a main branch that is incompatible with l1/l2/ . . . /lk, then the

same reasoning of the two previous cases applies here as well. Otherwise, for Q to hold at n in

each interleaving of p2 with p1, it means that in each interleaving we have either:

1. Q (or a predicate into which Q can map) attached to n itself (i.e. we do not need the main

branch descendants of n and their predicates), or

2. predicate l2/ . . . /lk[Q1] . . . [Qs] (or one into which it can map) attached to n’s main

branch child n′ (i.e., we do not need the main branch descendants of n′ and their predi-

cates), or so on, . . .

(k) the predicate lk[Q1] . . . [Qs] (or a predicate into which it can map) being present (as a

predicate) on n’s main branch descendant at distance k, n(k), (i.e. we do not need the

main branch descendants of n(k) and their predicates), or

(k+1) all the predicates [Q1], . . . , [Qs] verified at n’s main branch descendant at distance k + 1,
n(k+1).

So a similar test for the non-existence of a mapping has to be done, but with some minor adjust-

ments. Top-down, we will chose a mapping image for each token of p2 into p1, as long as we do

not arrive at the position of n(k+1) or below it (i.e. we will chose an image for a token if it does

not overpass this position and does not contribute predicates like the ones described by the items

(1) to (k) above). Then, for the remaining suffix of p2, we check the existence of a mapping for it

that would (i) not contribute predicates like the ones given in conditions (1) to (k), and (ii) would

not contribute all the predicates of the last condition, i.e., that there is a mapping for the remain-

ing part of p2 in the remaining part of p1 s.t. among Q1, . . . , Qs there is at least one predicate

Qi which will not be verified at n(k+1) after coalescing p2’s nodes with their mapping images.

This can be seen as a recursive call, that can be run for each Qi individually, and will take us

back to the three cases depending on the shape of Qi. (Note that all the predicates Q1, . . . , Qs

at node n(k+1) on p1 will verify the condition for extended skeletons.)

111

A dynamic programming approach can be used to perform all these tests in polynomial time,

based on the to-be-mapped suffix of p2, the target suffix of p1 and the predicate to be tested (it

is not necessary to perform the test several times for a given such triple).

2.3.4 Using APPLY-RULES for union-freeness, equivalence and rewritings

Since APPLY-RULES preserves equivalence, it can be directly used as a brick for solving the

union-freeness problem for a DAG d as well as the equivalence problem as follows:

UF(d)

1 p1 ← APPLY-RULES(d);

2 p2 ← DOMINANT_INTERLEAVING(p1);
3 if p2
4 then return p2
5 else return ∅

EQUIV(d, p)

1 p1 ← APPLY-RULES(d);

2 p2 ← DOMINANT_INTERLEAVING(p1);
3 if p2 and p2 ≡ p
4 then return TRUE
5 else return FALSE

Also, REWRITE can be changed to incorporate APPLY-RULES. We show below the resulting

modified version of REWRITE , detailing and clarifying its previous presentation in [16]:

REWRITE(q,V)

1 for p a lossless prefix of pattern(q)
2 do
3 r ← BUILDINITREWITECANDIDATE(p,V)
4 d← dag(unfold(r))
5 p1 ← APPLY-RULES(d);

6 p2 ← DOMINANT_INTERLEAVING(p1);
7 if p2 and p2 ≡ p
8 then return compensate(r, q,OUT(p))
9 return fail

While the soundness and completeness of the above algorithms is straightforward, the prob-

lems they solve stay hard, and DOMINANT_INTERLEAVING can be very expensive. One can

however use APPLY-RULES to design sound, polynomial versions of the above procedures. We

give below the resulting algorithms for union-freeness and equivalence:

112

EFFICIENT-UF(d)

1 p1 ← APPLY-RULES(d);

2 if p1 is a tree

3 then return p1
4 else return φ

EFFICIENT-EQUIV(d, p)

1 p1 ← APPLY-RULES(d);

2 if p1 is a tree and p1 ≡ p
3 then return TRUE
4 else return FALSE

We further recall the sound algorithm described in [16] for solving the rewriting problem:

EFFICIENT-RW(q,V)

1 for p a lossless prefix of pattern(q)
2 do
3 r ← BUILDINITREWITECANDIDATE(p,V)
4 d← dag(unfold(r))
5 p1 ← APPLY-RULES(d);

6 if p1 is a tree and p1 ≡ p
7 then return compensate(r, q,OUT(p))
8 return fail

2.4 Achieving PTIME completeness

In the light of the hardness results of Theorem 2.1.16 (and Theorems 2.2.2 and 2.2.4), one cannot

hope of obtaining sound and complete polynomial algorithms for the problems we analyse.

The approach taken by [16] is that of identifying restrictions for which completeness is

efficiently achievable in solving the rewriting problem. We dedicate this section to recalling and

enriching these completeness conditions, showing also how they apply to the equivalence and

union-freeness problems.

2.4.1 Completeness in PTIME for XP∩−simple (XPes) DAGs

This subsection will focus on DAGs obtained by an XP∩−simple intersection of extended skele-

ton queries, that is, queries in the fragment XPes. We will present below a refinement of the

results claimed in [16] and proven in [56], showing how completeness is achievable for such

DAGs. We start by showing the following:

Theorem 2.4.1. Let d be a DAG in XP∩−simple (XPes), such that one of the patterns intersected

is a /-pattern. If d is union-free then APPLY-RULES rewrites it into a tree.

113

Proof. Let v2, v3, . . . vn be the n XPes patterns intersected in d, where v1 has only one token.

Without loss of generality, we can consider that v2, v3, . . . vn have more than one token. This is

because intersecting several /-patterns reduces easily to a single pattern by repeated applications

of rule R1.

Supposing that d′, the output of the rewriting algorithm, it not a tree, we can then claim the

existence in d of a subpattern sd as in the figure below, such that the /-path p1 is the unique

/-path between n1 and n4 (part of v1) and the intermediate nodes on p2 (part of one of the other

patterns) have only one incoming and one outgoing main branch edge.

��

����

��

����	�

��
��

���� ��

Indeed, note that the existence of this configuration is ensured by the application of the rules

in the rule set corresponding to the presence of a /-pattern R1, R2, R3, R4, R6, R7. In particular,

if at least one of v2, . . . , vn has a root token with more than one main branch node, this token

will be collapsed by R1 with the corresponding part of v1; any subsequent collapsing of this

main branch with the main branches of the other patterns will, according to the definition of R2,

R3 and R4, not go beyond this token. If none of the multi-token patterns posesses such root

token, then the initial configuration is preserved, modulo some applications of R6 that remove

entire branches. The same reasoning stands for result tokens.

Since R1 does not apply, we further infer that the first and last edges on p2 are //-edges. Let

us assume that d is union-free. Since R6 doesn’t apply on sd, it means that the tree corresponding

to p2 does not fully map into the subpattern corresponding to p1. This means that a dominant

interleaving i, built by some choice ψ of mapping p2’s main branch nodes into p1’s main branch

nodes (note that this is is the only possible format of the dominant interleaving because of p1
being a /-path), must for at least some node n7 in p2 and /-predicate Q attached to it (note that

for extended skeletons we cannot have //-predicates attached to the main branch nodes) collapse

n7 with n8 = ψ(n7) of p1, even though pattern(λd(n7)[Q]) does not map into SPd′(n8). In this

interleaving, Q will then further be present at n8.

SinceQ respects the extended skeletons condition on n7, it means further that it respects this

condition when added to n8 (because the /-paths following the nodes must be indetical) . But

then rule R7 is supposed to have added Q on n8, if it held in all interleavings. According to the

above this is not the case (i.e. or else rule R6 would apply), which then means that there exists at

least one interleaving i′ of d such thatQ does not hold at n8 in i′. Then i cannot map into i′, and
thus i′ cannot be contained in i. It follows that therefore i cannot be a dominant interleaving,

and accordingly d cannot be union-free.

Note that the absence of rule R5 from the set of rules applicable in such setting (as presented

in our refinement of APPLY-RULES) is important for the above proof to hold. Indeed, an appli-

114

cation of rule R5 on two of the multi-token views could prevent the existence of a subpattern as

the one exhibited above, by adding edges to the nodes of p2 and thus preventing the conditions

of applicability of the rules R6 and R7.

We then recall a result from [16] and [56]:

Theorem 2.4.2. Let d be a DAG in XP∩−simple (XPes), such that all the intersected patterns are

multi-token. If d is union-free then APPLY-RULES rewrites it into a tree.

The proof of the above result is provided in [56]. Note that this proof uses only the corre-

sponding set of rules for this case presented in our refinement of APPLY-RULES.

Putting together the above results and the equivalence preserving property of APPLY-RULES,

we can prove the following claim, as adapted and clarified from [16]:

Theorem 2.4.3. Let d be a DAG in XP∩−simple (XPes). Then d is union-free iff APPLY-RULES

rewrites it into a tree.

Accordingly, we can characterize the union-freeness and equivalence problems as follows:

Corollary 2.4.4. For a DAG d in XP∩−simple (XPes), the union-freeness problem is PTIME and

the algorithm EFFICIENT-UF is complete.

Corollary 2.4.5. Deciding equivalence between a DAG pattern d in XP∩−simple (XPes) and an

XP query is PTIME and the algorithm EFFICIENT-EQUIV is complete.

We cannot however directly extend the result above to the rewriting problem. The reason is

that the compensation applied on the views by BUILDINITREWRITECANDIDATE may violate

the extended skeletons condition on the resulting compensated patterns, even if the input query

and views are in XPes. [56] proposes an adjustment in order to account for such cases, that is

further adaptable for our relaxation of XPes. With this adjustment, [56] then proves the claim

from [16] that the rewriting problem is PTIME for queries and views in XPes. We provide below

a stronger result, by showing that as soon as the input query is in XPes, the rewriting problem is

PTIME for views in XP, thus extending the previous result targeting only views from XPes.

2.4.2 Completeness in PTIME for XPes queries

We hereafter show how Theorem 2.4.3 can be used to derive additional PTIME results for two

of the problems investigated here, namely the DAG-tree equivalence problem and the rewriting

problem. As a side result of the analysis hereafter, we enhance the completeness conditions in

[16] and [56].

As in [16] and [56], the extended skeleton of a pattern p is denoted by s(p) and represents

the pattern obtained by pruning out all the //-subpredicates violating the XPes condition. We

start by recalling a result from [56]:

Lemma 2.4.6. Let d be a DAG pattern in XP∩−simple . If s(d) is not union-free then d is not

union-free.

115

We further emphasize the strong link that exists between a tree pattern in XP and its extended

skeleton, regarding containment in a tree pattern in XPes:

Proposition 2.4.7. Let p be a tree pattern in XP and q a tree pattern in XPes.

Then p ⊑ q iff s(p) ⊑ q

Proof. Since p ⊑ s(p), if s(p) ⊑ q then obviously p ⊑ q. The rest of the proof is a direct

adaptation of part of the proof of Lemma 2.4.6 in [56].

Indeed, if p ⊑ q, suppose that s(p) 6⊑ q. Recall that for tree patterns containment is equiv-

alent to containment mapping in the opposite direction. Any containment mapping from q into

p should then use at least one of the //-subpredicates of p, st′, which is not in s(p). But for

the //-subpredicate st in q that maps in st′, its incoming /-path as well as the /-path following

the corresponding main branch node must be identical to their image in p. It follows that if st′

violates the extended skeleton condition, then st violates the extended skeleton condition, thus

leading to a contradiction. Therefore s(p) ⊑ q.

We further note [56] the strong correspondence between the interleavings of a DAG d and

those of its extended skeleton s(d):

Proposition 2.4.8. Let d be a DAG pattern in XP∩−simple .

Then for each pi ∈ interleave(d) there exists p′i ∈ interleave(s(d)) such that s(pi) = p′i and
reversely, for every interleaving p′i ∈ interleave(s(d)) there exists pi ∈ interleave(d) such that

p′i = s(pi).

Based on the above and Lemma 2.1.12, we can directly extend Proposition 2.4.7 to DAGs:

Lemma 2.4.9. A DAG pattern d in XP∩−simple is contained in a tree pattern q in XPes iff

s(p) ⊑ q.

Let us examine the above results. They do not provide an additional complete characteriza-

tion of the union-freeness problem for DAGs in XP∩−simple (that is, intersecting queries in XP).

However, they do allow characterizing the equivalence problem for such DAGs and a tree in

XPes, by essentially reducing this problem to the union-freeness problem of s(d). We can thus

modify EFFICIENT-EQUIV as follows:

EFFICIENT-EQUIV(d, p)

1 p1 ← APPLY-RULES(s(d));

2 if p1 is a tree and p1 ⊑ p and p ⊑ d
3 then return TRUE
4 else return FALSE

We claim that the above algorithm is polynomial. Indeed, containment of a tree pattern in a

DAG pattern is witnessed by containment mapping, which can be tested in PTIME. Furthermore,

by Lemmas 2.4.9 and 2.4.6 and Theorem 2.4.3, we can infer that the above algorithm is sound

and complete and state the following:

116

Theorem 2.4.10. Equivalence between an XP∩−simple DAG pattern d and an XPes tree pattern

p is PTIME and the algorithm EFFICIENT-EQUIV (with the changes above) is complete.

Proof. Indeed, by Lemma 2.4.6, if s(d) is not union-free then d cannot be union-free, so the

equivalence wouldn’t hold. But according to Theorem 2.4.3, s(d) is union-free iff p1 is a tree.

So if p1 is not a tree then the equivalence cannot hold. On the other hand, if p1 is a tree, since p1
is equivalent to s(d), by Lemma 2.4.9, d ⊑ p iff p1 ⊑ p.

We extend the above to the rewriting problem and produce the following modified version

of EFFICIENT-RW , which is, by the same criteria, sound and complete:

EFFICIENT-RW(q,V)

1 for p a lossless prefix of pattern(q)
2 do
3 r ← BUILDINITREWITECANDIDATE(p,V)
4 d← dag(unfold(r))
5 p1 ← APPLY-RULES(s(d));

6 if p1 is a tree and p1 ⊑ p
7 then return compensate(r, q,OUT(p))
8 return fail

Note that, as emphasized earlier, we do not need the containment test p ⊑ d (although it

is polynomial), since by construction of the rewrite plans, the containment holds. We can then

state the following:

Theorem 2.4.11. The rewriting problem for queries in XPes and views in XP is PTIME and the

algorithm EFFICIENT-RW (with the changes above) is complete.

2.4.3 Completeness in PTIME for XP// akin patterns

To further extend the completeness results beyond XPes, [16] considers the fragment XP//. While

it is shown that the rewriting problem for queries and view in XP// is coNP-complete, [16] further

considers an additional restriction, regarding XP// akin patterns.

Two (or several) tree patterns are said to be akin ([16]) if their root tokens have the same main

branch codes. We recall below the main result claimed in [16] and proven in [56] regarding XP//
akin patterns:

Theorem 2.4.12. For a DAG pattern in XP∩−simple intersecting XP// akin patterns, if dag(d)
is union-free then APPLY-RULES rewrites it into a tree.

Note that the prove of the above in [56] holds for our refinement of the rule-based algo-

rithm. Following this result, we can further infer the following results for the union-freeness and

equivalence problems:

Corollary 2.4.13. For a DAG pattern in XP∩−simple intersecting XP// akin patterns, the union-

freeness problem is PTIME and the algorithm EFFICIENT-UF is complete.

117

Corollary 2.4.14. For a DAG pattern in XP∩−simple intersecting XP// akin patterns, and a query

p in XP, the DAG-tree equivalence problem is PTIME and the algorithm EFFICIENT-EQUIV is

complete.

We also recall the result from [16] regarding the rewriting problem:

Corollary 2.4.15. For queries and views in XP//, EFFICIENT-RW is complete, provided there is

at least one rewriting r such that the patterns intersected in unfold(r) are akin.

2.5 Implementation and optimizations

The main motivation behind the work in this chapter was the desire to achieve practical per-

formance for the presented rewriting techniques. The review of previous work under such

pragmatically-driven considerations is indeed the source of the presented refinements in the

rule-based algorithm, towards ensuring polynomial complexity and enhancing completeness.

The first tentative implementation of the rewrite algorithms (the sound and complete algorithm,

as well as the sound polynomial one) revealed furthermore a vast range of possible optimizations

toward ensuring practical performance.

A first category of such improvements concerns the construction of candidate plans. Indeed,

note that due to the compensation steps, many redundant predicates may be present on nodes

of the initial plan. These predicates can be pruned out before the APPLY-RULES subroutine,

in this way making the various mapping tests for rule applications lighter. Note also that in

the case of XP// queries and plans involving akin XP// views, completeness is guaranteed for

EFFICIENT-RW ; on the other hand, the strategy of constructing rewrite candidates can cause

an important redundancy in the candidate plans. We have therefore identified as beneficial the

testing of sub-plans involving akin patterns for equivalence to the prefix considered (if this is the

case, then global plan equivalence follows). To generally minimize the redundancy in the plans,

we can also employ containment tests that remove compensated views that participate in the

candidate plans and whose results contain the results of some other compensated views. Finally,

note that we can use some efficient tests to detect plans that cannot be equivalent to the input

query and can be discarded before the APPLY-RULES subroutine. For example, in the case of an

input queries with only /-edges in the main branch, a view having that same main branch must

be available. Similar tests on the main branches of the root and output tokens of the query and

the plan’s views can be used to discard plans.

While the optimizations in the construction of candidate plans are useful in gaining perfor-

mance, the most complex and challenging task in order to achieve practically relevant run speed

consisted in the implementation of the rule-based algorithm. Each rule testing and application

can be indeed seen as a "sub-algorithm" on its own. A central brick of the testing procedures for

the rules consists in the mapping computations between tree patterns, for which we have imple-

mented and optimized the dynamic programming approach in [53]. We have further developed

optimized implementations for a range of mapping variations, such as those from DAG patterns

to tree patterns, where the DAG nodes are stored in topological order, as well as mappings from

paths to DAGs, such as those needed for the rules R4 and R6. The polynomial testing strate-

gies for the rules R6 and R7, which we present with our complexity analysis, were developed

118

in tight connection with the performance requirements of our implementation. To importantly

improve the runtime speed for rule R2, we changed the test from collapsible nodes from its for-

mal definition, based on the observation that we can in fact bypass the computation of tentative

DAGs and simply compare the incoming and outgoing /-paths for the tested nodes. If these

paths are the same up to a common ancestor or descendant or until the shortest of the two sizes

if such "meeting point" doesn’t exist, we can conclude to applicability of R2, without applying

the formal immediate unsatisfiability condition. For the rule R4, we have further mutualized the

computation of mappings from parts of p2 to parts of p1, so as to detect candidate paths for the

application of this rule as early as possible.

An important number of general adjustments that proved to be useful for the overall perfor-

mance are related to the usage of dedicated data structures, such as adjacency lists for incoming

and outgoing main branch edges, predicates, child and descendant edges, as many of the rules

involve iterating on specific children types, as well as lists of topologically-sorted nodes, built

with the candidate plan and updated only when needed, after certain rules were applied. The

pre-computation/update-only-when-needed is a general optimization direction that we further

used for structures such as mapping matrixes and paths.

2.6 Experiments

We performed our experiments on an Intel(R) Core(TM) i7-2760QM@2.40GHz machine, with

8G of RAM and the Ubuntu 11.10 operating system. We evaluated the performance and scala-

bility of our the procedures, focusing on:

• the rewrite time, i.e., the time necessary to find an equivalent rewriting, when one exists

• the improvements on evaluation time, i.e., the comparison between the evaluation time

of the input query over the data, on one hand, and the rewrite time cumulated with the

evaluation time of the rewriting, over the view documents, on the other hand.

In the space of analysis, we looked at how these two performance indicators vary with the size

and the type of input queries (w.r.t. several XP fragments discussed in the paper), the size of the

view set that may give a rewriting, and the size of the input document.

2.6.1 Documents, queries and views

Our experimental setup was guided by our focus on measuring rewrite time as well as improve-

ments on evaluation time, as well as the intention to stress-test our implementation for perfor-

mance evaluation purposes. We thus needed:

• queries (spanning the XP fragments analyzed in our theoretical study) and views to mate-

rialize

• a set of documents the queries and views would apply to,

• the ability to scale query, view set and document sizes, for performance assessment.

119

Given our needs in terms of variation of query types, we could not benefit from existing

benchmarks or real-life settings publishing queries and views. Therefore we designed our own

synthetic query and views generator, suiting our testing purposes. Starting from a given XML

input document, this generator produces queries and views over that document (i.e. yielding a

non-empty result), controlling their structure, number and size, as well as pair-wise containment.

While our synthetic queries and views generator can be plugged on any XML document,

our need to scale with the document size limited the usefulness of existing XML documents.

We have therefore adopted in our experiments the extensively cited XMark document generator

[63]. This generator allows varying the size while ensuring similar structure and properties

across the XML documents it produces. Three input documents were generated with the XMark

generator, of sizes 41KB, 91MB and 18GB. On each of the documents, we used our custom

generator to produce input queries and view sets.

We generated, for each of the documents, input queries of main branch size 5, 7 and 9
(the XMark documents have a maximal depth of 11). We considered input queries from three

categories: XPes, beyond XPes but in XP//, and in XP but beyond XP//, i.e., without restrictions.

Each possible pairing of main-branch size and category was used to generate 10 random input

queries, for a total of 90 input queries. Importantly, these queries were generated from the data,

in a way that ensures that they all have a non-empty result on the three input documents. This was

to avoid meaningless evaluation time measurements and to preclude the case when an alternative

detection of unsatisfiability would shortcut the rewrite time.

For the generation of views, to each of the input queries we associated five randomly gener-

ated view sets of variate size, namely consisting of 40, 80, 160, 320, or 640 views, for a total of

450 view sets. We had the following guidelines in the generation of view sets:

1. While we wanted many views, we wanted to control the percentage of views that would

be useful in a rewriting; more precisely, all the view sets consisted of 10% useful views

(for the rewriting), while the remaining 90% were useless (i.e., they did not map in the

input query)2.

2. We wanted views that were not equivalent to the input query nor a prefix thereof, and

did not allow single-view rewritings, in order to test precisely the targeted multiple-view

rewriting problem.

Note that, although all views have a non-empty result by construction, the size of their result and

their selectivity could vary significantly and were not controlled in the generator. Other aspects

that were not controlled by our query generator were (i) the overall size of input queries (only

the size of the main branch was chosen), (ii) the overall size of the views, and (iii) the overall

size of the candidate plans.

2.6.2 REWRITE vs. EFFICIENT-RW

As a first experiment, through the random generation of sets of views, we took a first step towards

understanding how often one may lose completeness in practice by employing EFFICIENT-RW

2We adopted this 10%− 90% ratio as a reasonable one for most practical scenarios.

120

rather than REWRITE . This is important for input queries from XP// and XP, as the computation

of interleavings – potentially exponentially many – is expected to represent the main overhead

in the search for a rewriting.

To this end, the random generation flow was the following: (a) a set of views would be

generated, for a given input query (in XP// or XP) and a given view set size, and (b) REWRITE

would be run (in its version employing APPLY-RULES) within a limit of 30 minutes of execution

time.

This experiment gave us valuable insight : within the time limit, for the 300 configurations

tested, we obtained no view set that did provide an equivalent rewriting, but only by performing

interleavings, after APPLY-RULES. Note that this computation of interleavings is the essential

difference between REWRITE and EFFICIENT-RW . In about a third (112) of the tested cases,

the interleaving computation process reached the timeout without concluding.

Our experiment shows on one hand that completeness of EFFICIENT-RW extends in prac-

tice beyond the considered restrictions. Moreoever, according to our evaluation, the significant

amount of time spent in interleaving computation does not show essential utility in practice. In-

deed, for the timeout cases where one cannot not decide on the completeness of EFFICIENT-RW

the very high running time importantly lowers the interest of such computation in practically

relevant scenarios.

We have consequently continued our empirical evaluation using the EFFICIENT-RW rewrit-

ing procedure. We further focused on sets of views on which EFFICIENT-RW is guaranteed to

provide a rewriting for the input query, and on measuring how fast such rewriting is found and

how beneficial the rewriting proves in practice.

2.6.3 Rewrite time

For this set of measurements, for each input query size and category, for the corresponding 10
input queries, we recorded the average time to find a rewriting using EFFICIENT-RW for each

possible size of the view set (among the 5 sizes given previously). We present our measurements

for the rewrite time in Figure 2.3. We give one set of results (a sub-figure) for each query length.

In each sub-figure, we give five groups of three columns. A group corresponds to one possible

size of the view set, and in each group the first column corresponds to XPes input queries, the

second column corresponds to XP// input queries, and the third column corresponds to input

queries without restrictions.

We can draw several important conclusions from the results of in Figure 2.3. First, our

implementation of EFFICIENT-RW can process efficiently, in a fraction of a second, queries of

significant size – up to 9 nodes in the main branch, with 3−4 predicates in average on each main

branch node and with predicates of average depth of 3 – and view sets of significant size as well

(order of hundreds). Note that the measurements follow closely a linear progression with respect

to the size of the view set. With respect to varying the query size, the observed progression is

even less pronounced – for example, for queries without restrictions, from 110ms to 210ms to

250ms.

121

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!" '!" $(!")%!" (&!"

!
"
#
$%
&"
'(
)
"
'*
)
+,
'

-.)/"$'01'2%"#+'*304'+563",'

789.&':."$;'+%<"='>'

*+,-" *+.." *+"

!"

#!"

$!!"

$#!"

%!!"

%#!"

)!!"

&!" '!" $(!")%!" (&!"

!
"
#
$%
&"
'(
)
"
'*
)
+,
'

-.)/"$'01'2%"#+'*304'+563",'

789.&':."$;'+%<"='?'

*+,-" *+.." *+"

!"

#!"

$!!"

$#!"

%!!"

%#!"

)!!"

)#!"

&!" '!" $(!")%!" (&!"

!
"
#
$%
&"
'(
)
"
'*
)
+,
'

-.)/"$'01'2%"#+'*304'+563",'

789.&':."$;'+%<"='@'

*+,-" *+.." *+"

Figure 2.3: Rewrite time results.

2.6.4 Evaluation time

Regarding evaluation time, we compared the time necessary to evaluate an input query over the

input documents with the time necessary to build, test and then evaluate the rewriting over the

view documents. For each document size, we have generated one maximum-size query in XP

(9 nodes in the main branch), and further generated for its original, XPes and XP// versions,

sets of views of increasing size such that, as in the previous experiment, a rewriting is available

and produced by EFFICIENT-RW with the considered views. Query evaluation was done using

the SAXON query engine (http://saxon.sourceforge.net), which we extended with the Id-based

JOIN functionality across multiple documents (the view documents), as SAXON’s ability to

perform this task was incomplete.

We present our measurements in Figure B.7. We give one set of results (a sub-figure) for

each document size. As before, in each sub-figure, we give five groups of three columns, with

one group for each possible size of the view set. Since the time necessary to run the input query

over the input documents does not depend on the views and further stays roughly the same for

its three versions, it is represented by a horizontal line in the plot.

A first important aspect to be noted in Figure B.7 is that, over all input documents, the time

necessary to evaluate the rewriting is smaller than the one for the input query, for all sizes of

view sets. Moreover, the evaluation time based on view documents exhibits a linear progression

and, overall, remains quite low.

One can note the intuitive trend indicating that the larger the set of views in the rewriting,

the less important the performance benefit over the original query plan (note that we measured

the plans consisting of all the useful views). In our results, this trend is enforced by the way

we set up the experiments, doubling at each step the number of views that were applicable in

a rewriting (while this seems to be an unlikely scenario in practice, it represents a suited stress

test). As a partial explanation of such trend, note also that in our experimental configuration

many views means inevitably many opened documents, hence the overhead related to managing

them, which for SAXON starts being noticeable. Note also that within one group of columns,

the differences in evaluation time between the three categories of queries are mainly due to

the variations in terms of selectivity and view documents’ size. For instance, on the smallest

122

!"

#!!"

$!!"

%!!"

&!!"

'!!"

&!" (!" #)!" %$!")&!"

!
"
#
$%
&&
'#
(
#
)*
+
,
-
'+
.
#
'/
.
01
'

2*.3#$',4'"5#60'/&,7'0)%'

8,)*.#-9'05:#;'<=>?''

*+,-".,/.01," *+,-",234" *+55".,/.01," *+55",234" *+".,/.01," *+",234"

!"

'!!"

#!!!"

#'!!"

$!!!"

$'!!"

&!" (!" #)!" %$!")&!"!
"
#
$%
&&
'#
(
#
)*
+
,
-
'+
.
#
'/
.
01
'

2*.3#$',4'"5#60'/&,7'0)%'

8,)*.#-9'05:#;'@=A?'

*+,-".,/.01," *+,-",234" *+55".,/.01," *+55",234" *+".,/.01," *+",234"

!"

#!!!"

$!!!"

%!!!"

&!!!"

&!" (!" #)!" %$!")&!"!
"
#
$%
&&
'#
"
%
&*
%
+
,
-
'+
.
#
'/
.
01
'

2*.3#$',4'"5#60'/&,7'0)%'

8,)*.#-9'05:#;'=BC?'

*+,-".,/.01," *+,-",234" *+55".,/.01," *+55",234" *+".,/.01," *+",234"

Figure 2.4: Global time results (rewrite time plus evaluation time).

document, the views randomly generated for the XPes version of the query were significantly

less selective, yielding view documents almost two times larger than the ones corresponding

to the other two categories. Similar differences could be observed for the second document,

between views for the XPes and XP// queries on one hand, with larger view documents, and the

views for XP queries on the other hand.

2.6.5 Discussion

Our main conclusions from this experimental evaluation are the following:

• Our optimized implementation of the refined and polynomial algorithm EFFICIENT-RW

scales to large sets of views, with rewrite time under one second in all cases. Moreover,

the rewrite time represents a small percentage of the evaluation time. At the same time,

there are many scenarios (e.g., with security views) where rewriting is not done for perfor-

mance purposes, and in which the comparison between rewrite time and evaluation time

is immaterial.

• The evaluation of the rewriting, including the rewrite time, is significantly more efficient

than the evaluation of the input query; despite the fact that views were generated without

controlling their selectivity or how they may “cover” the input query, the rewriting was

evaluated two to three times faster than the input query. Note that for stress-test purposes

the percentage of useful views was increased exponentially, which is certainly not what

one would expect in practice. Finally, the evaluation time depends undoubtedly on the

123

particular query engine that is used, and it is not clear whether the one that we relied on

had an optimal behaviour when handling many opened, large documents.

• The practical benefit of the refined and optimised polynomial rewriting technique is signif-

icant. Indeed, while according to theoretical results, for input queries outside XPesinterleaving

computation is necessary to achieving completeness, our experiments show that complete-

ness extends beyond these restrictions, and furthermore that the benefit of computing inter-

leavings is clearly limited in practice; EFFICIENT-RW then stands out as a good candidate

for practical, performance-oriented rewriting scenarios.

2.7 Related Work

Several studies have analyzed the problem of XPath rewriting using only one view [68, 48, 65,

69, 67], possibly in the presence of DTD constraints [6]. Rewriting more expressive queries

using views, but without considering intersection, was studied in [18, 30, 58]. Fan et al [34]

define views using DTDs instead of queries and study the problem of rewriting an XPath using

one view DTD. [2] describes a sound but incomplete algorithm for finding equivalent rewritings

as unions of single-view rewritings, for an XPath fragment including wildcards.

[49] describes complete rewriting procedures for multiple views for tree pattern queries with

value joins and multiple arity, language where equivalence is intractable and no complete rewrit-

ing algorithm can go below the exponential bound. Closure under intersection is analyzed in [10]

for various XPath fragments, all of which use wildcard. Satisfiability of XPath is analyzed and

proven NP-complete in [41] in the presence of the intersect operator and of wildcards, and also

analyzed in [9] for fragments including negation and disjunction, which could together simulate

intersection, but lead to coPSPACE-hardness for checking containment. Richer sublanguages of

XPath 2.0, including path intersection and equality, are considered in [66], where complexity

of checking containment goes up to EXPTIME or higher. A different approach, taken by [39],

is to replace intersection by using a rich set of language features, and then try to simplify the

expression using heuristics.

We revisit in this chapter the work presented in [16] and detailed in [56], which analy-

ses a fragment of XPath without wildcards, and provides the first complexity analysis for the

single-level intersection rewriting problem in this setting. We enrich the previous analysis by

showing, structuring and clarifying the links between the rewriting problem and that of deciding

the equivalence between a DAG and a tree pattern, as well as the union-freeness problem for a

DAG. An essential contribution of [16] and [56] is in investigating efficient rewriting techniques,

thus going beyond the stated hardness results. We refine these techniques to ensure their polyno-

mial complexity and improve their completeness, and further optimize them to achieve practical

performance, thus showing their potential and utility in practically oriented scenarios.

124

Conclusions and future directions

We have described in the first and main chapter of this thesis a global and efficient approach for

computing all the minimal conjunctive query reformulations of a relational conjunctive query

under integrity constraints, by the Provenance-Aware Chase and Backchase algorithm. We

have also presented a set of theoretical results guaranteeing the soundness and completeness

of ProvC&B . In particular, for the purpose of our reformulation algorithm, we have intro-

duced a novel chase flavour, called the Provenance-Aware Chase, and its underlying Conser-

vative Chase procedure. We have shown how the Provenance-Aware Chase allows us to directly

"read-off" minimal reformulations from the result of a chase sequence, and further shown how

the Provenance-Aware Chase is particularly suited for cost-based pruning interleaved with the

chase steps, thus providing additional speed-up opportunities.

We will continue investigating additional theoretical results regarding the Provenance-Aware

Chase (and the underlying Conservative Chase) complexity and termination. Indeed, as sketched

with the initial presentation of ProvC&B , additional termination conditions for the Conservative

Chase (and accordingly for the Provenance-Aware Chase), beyond weak acyclicity, would allow

extending the range of the inputs guaranteeing soundness and completeness for ProvC&B . On

the other hand, a refined complexity analysis, both regarding time and space requirements, would

allow us to better characterize the practical performance in relation with theoretical properties.

We also intend to investigate the usage of the cost-based pruned version of our algorithm

in a unified approach of the chase and backchase phases, thus extending the provenance-aware

approach to settings where the chase does not terminate. Furthermore, while the particular

provenance flavour that we employ corresponds to minimal-why provenance [14], we aim at

analysing the possibility of adapting the Provenance-Aware Chase to other existing provenance

flavours, thus enlarging and generalizing its theoretical framework.

On the other hand, recall that we were driven in our design of the ProvC&B by the prag-

matic need of achieving performance. Our experimental results confirm the practical interest of

our solution, both concerning its standalone performance and the global benefits attainable by

its usage with a DBMS. However, a lot of optimizations are still directly available. As empha-

sized when presenting our implementation, we exploit therein the analogy between chase steps

and query evaluation, and thus can further optimize our approach by refining techniques for

constructing the query plans. We estimate that practical performance can also be improved by

employing more efficient storage and search structures for boolean formulae, extensively used in

theProvC&B . Furthermore, one can also envision a compact, "folded" version of the provenance

formulae. These could be then unfolded in a Datalog-like fashion and solely when "reading-off"

minimal reformulations, thus reducing the cost of formulae manipulation and speeding up the

125

global Provenance-Aware Chase execution. A refined analysis and handling of boolean formu-

lae could also be envisioned not only as a practical performance enhancer but, from a theoretical

perspective, as a means to formally reduce the worst-case exponential space bound induced by

DNF provenance formulae storage.

We intend to implement these optimizations and investigate, from both a theoretical and

practical standpoint, the gain in performance that they can provide. We also intend to improve

and widen the applicability of our algorithm towards some of the numerous practical settings

requiring view-based rewritings under constraints, such as those mentioned in the introductory

section. While our experiments evaluate ProvC&B in a traditional query processing setting,

where partial rewritings are of interest, we estimate that scenarios requiring completeness where

the search space for rewritings is very large but few rewritings exist (such as total view based

rewritings for access control enforcement or data pricing) provide an ideal applicative setting for

ProvC&B .

In the second chapter of this thesis, we revisited the previous work of Cautis, Deutsch and

Onose, presented in [16] and detailed in [56], on the problem of rewriting XPath queries using a

single-level of intersection of multiple views, enriching the analysis of this problem by showing

its connections to the equivalence between DAG and tree patterns, and the union-freeness of a

DAG pattern. The main motivation of the work presented in the second chapter was that of inves-

tigating and achieving practical performance for the rewriting techniques. To this purpose, we

have refined a previously proposed rule-based procedure towards ensuring its polynomial com-

plexity and improving the completeness of the resulting rewriting algorithm. We have further

provided a range of optimizations necessary for achieving practical performance, and included

these refinements and optimizations in a complete implementation, which we have then evalu-

ated experimentally.

While our experiments have shown very promising overall performance and speed-up com-

pared to the execution of the original (non-rewritten) query, we estimate that a lot of optimiza-

tions are further achievable. These optimizations stand on the fine frontier between theoretical

and practical improvements, and involve among others the analysis of the impact on global per-

formance of the order of rules application, an investigation of the locality of changes produced

by individual rules, a study of the most suitable data structures. Moreover, while we have seen

that the completeness of the rewrite algorithm employing the rules extends in practice beyond

the considered theoretical restrictions, we believe it to be of interest to further explore from a

theoretical point of view such behaviour. This could also allow establishing a tight tractability

frontier for the considered problems.

Last but not least, recall that the soundness and completeness concept in [16] and [56]

amounts to finding a rewriting if (at least) one exists. The candidate rewrite plans constructed can

be very redundant. While we have shown several practical optimizations to remove redundancy,

we note further that these plans do provide all the necessary space for finding all rewritings and

in particular the minimal ones. It then becomes interesting to investigate the usage of techniques

such as those presented in the first chapter, adapted to an XML setting.

126

As the title of this thesis suggests, the two chapters approach the problem of view-based

rewritings and query reformulation from a theory-oriented as well as practically-driven perspec-

tive. In our vision, these two perspectives must be interleaved and constantly enforce one another

to achieve meaningful results. We further believe that, although they have long been of general

interest in database research, the topics investigated in this work will never run out of new, more

complex or larger scale applicative scenarios, thus continuously providing new opportunities

and challenges for both theoretical and practical optimization.

127

Appendix A

Additional topics

We present in the following two additional topics that have been explored during this PhD. Al-

though the topics exposed hereafter diverge from the problem of view-based rewriting, they stay

in the broader range of query acceleration, being essentially concerned with indexing strategies.

A.1 Efficient multi-dimensional indexing (the ACM SIGMOD Pro-
gramming Contest 2012)

A.1.1 Problem description

The task proposed by the 2012 ACM SIGMOD programming contest (http://wwwdb.inf.tu-

dresden.de/sigmod2012contest) is an interesting revisiting of a classical scenario, concerning

multi-dimensional indexing. The contest requirement consists in the design and implementation

of a multidimensional, high-throughput, in-memory index structure and its surrounding database

layers, such that the resulting system should support common database operations such as point

and range queries as well as data manipulation. An important particularity of this problem is the

targeted highly concurrent setting, comprising many client threads operating queries and updates

in parallel.

All index structures and indexed data are required to fit entirely in main memory; a maximum

of 32 indexes can be created in parallel, for a data-to-RAM ratio of 10%. The indexes have to

support transactions, each containing point and range queries (possibly with wildcards) as well

as updates (for a maximal update rate of 40%).

The total amount of indexed data is expected to go up to billions of tuples, the maximal

number of dimensions per tuple being 32, and the type of attributes being either 4 bytes inte-

ger values, 8 bytes integer values, or string/VARCHAR (for details, see http://wwwdb.inf.tu-

dresden.de/sigmod2012contest/#task-overview). Importantly, the output of range and partial-

match point queries have to be order preserving (lexicographical byte order for VARCHARs).

A.1.2 Proposed solution

Analysing the problem specification, as well as testing the performance of a draft design,

has allowed us to identify two major factors impacting performance: (a) the highly parallel setup

128

and (b) the “ORDER BY” implicit constraint imposed, i.e. the fact that results are required to

be returned according to their global order.

The latter point has a strong consequence on the efficiency of the chosen index structure.

Indeed, an important variety of multi-dimensional index structures described in the literature

implicitly impose, by their construction, other types of ordering on the data. To reconcile the

natural retrieval order of these methods with the imposed output order, one would then have to:

(a) always search the entire structure, and (b) re-sort the results, hence adding complexity and

significantly decreasing performance.

A.1.2.1 Global structures, iterators, transactions

With our solution, we targeted simplicity and robustness. Our global architecture thus uses

per-thread data such as transactions, iterators and index handles, as well as "shared" data, that

is, indexes themselves. Figure A.1 shows a high level view of these architectural bricks.

� �

����������

�	�	
��

��������

�������	

�������

������

�����	

�����������

�����

������ �����������

�����������

�����

������ �����������

�����������

�����

������ �����������

� �

���������	�

���
�� �
�
�
 ���
�� ����
 ���
�����������	
�

����
	���

��
���	�

�
�����

����	������
���

�
�����

����	������

�
�����

����	������

�����
������

�
�
�����

����
��

�����
�����
�

��
���	�

����
�

Figure A.1: Architectural bricks

An important design point concerns transaction handling for write operations. Given the

isolation level required (read committed) and the highly parallel context, our approach is to: (a)

buffer the write operations through the transaction lifecycle and (b) either discard them upon

abort or execute them atomically upon transaction commit (note however that this does not

forbid granular locking strategies). Conceptually, this induces an order of all transactions on a

timeline and makes one transaction’s write execution “instantaneous”, corresponding thus to a

point on the time axis.

Another important design choice concerns iterators. First of all, all results stored in the

iterator result array are always sorted according to global order. Our design also fixes a maximal

bound on the number of results (according to the query type). A query yielding more results

than this maximal bound will be executed in several steps - whenever an iterator access beyond

that bound occurs, a new search is issued. This new search will however only consider results

starting from a minimal value, corresponding to the maximal value of the previous step. Such

multi-step execution is in turn enabled by the global ordering that is natively ensured by our

design.

One last point concerning iterators is connected to the choice of handling transactions. The

iterator is first filled with persistent results from the index; then, before any result is available to

129

the client, the iterator’s contents are adjusted according to the current transaction’s write buffer,

as these operations should be visible in the current transaction.

Our choices concerning transactions and iterators have a lot of useful consequences. Our

approach on transaction handling removes the need for any temporary index copy or rollback

management. Fixing a bound on the iterators allows control of queries returning a large number

of results; moreover, results are gradually made available in fast increments. We temporarily

stop the search whenever the iterator is full, while still making the whole result set available if

necessary. This behaviour is achieved furthermore in a completely transparent manner from a

client point of view.

The drawbacks of our approach are the delay of write operations execution for committed

transactions and the lack of adaptiveness for the iterator capacity. We note however that the latter

point could be easily managed by adding a “LIMIT” parameter to the provided query API.

A.1.2.2 Core index structure

As underlined above, the global ordering turns out to be of major importance performance-

wise. To adapt to this essential requirement, we have thus designed an index structure that

natively preserves this global ordering, while of course aiming at the best speed and space effi-

ciency.

In a nutshell, our core index structure is constructed as follows: data is stored in a globally

ordered array, further divided in pages, thus providing a page array. All data inside one page

and among pages is stored and maintained in a manner that respects the global order. The global

index structure can thus be seen conceptually as a huge ordered array, and operationally as a

two-level tree. Accordingly, we allow for insertion and locking granularity, while avoiding the

overhead caused by the depth of a full tree.

On the page level, two different structures are used for handling queries. The first one is

the so-called RecordInfos, an array storing pointers to original keys and payloads, as well as a

status field related to records’ visibility (they may be not visible due to deletion or in-process

transactions). RecordInfos are of course always sorted according to the global order on keys.

The second structure on page level consists in the DimInfos, two arrays for each dimension,

holding indices in the RecordsInfos array and values on the corresponding dimension. Figure

A.2(a) shows the index structure, while Figure A.2(b) details the per-page arrays for a simple

example of two records in a two-dimensional setup.

Any insertion in these structures corresponds to a classical sorted array insertion and com-

prises 3 steps: a new incoming record will be first inserted in the RecordInfos array; then, we

update the indices array; as a final step, we insert in both the indices and values array.

Pages have a maximal size. Upon reaching this size, a new page is created and the original

full page’s contents redispatched between the two, with respect to the ordering imposed on

both RecordInfos and DimInfos. Due to the page structure, this split operation is linear and

straightforward. The new page is then inserted immediately after the original page in the page

array, ensuring that the global order among pages is thus preserved.

Insertions, deletions, updates, and “fully-specified” point queries (that is, queries that have

as input a complete key, without wildcards) are handled by binary search on the page array, then

on the page level. The sorted DimInfos come in use when handling range and wildcard point

130

� �

����������	 ���������
����������

������ �����	 �����

������

����������

����������

������

����������

���������� �

������

�����

���������� ��������	� �

����������� ��������	�
�����

������	��� ������	�	� ���

�������	��� ������	�	�

�����

��

�����!

��������

����

������

���

"���

(a)

� �

�������

���	
������

���������

�������

���	
������

���������

���
��

���
�

� �

��� ��

�����

� �

�� ��

�����

���

���
��

��������

����

��	��

����

�	
��������� �	
���������

(b)

Figure A.2: Index structure

queries. We first binary search the page array using the value on the first dimension (which

corresponds to the global order) and possibly the iterator’s first value when dealing with a multi-

step query. On the selected pages, we further proceed to a binary search for each dimension

by using the values arrays, and fill a page-local bitmask using the indices array. Bits set in the

bitmask are those corresponding to results valid on every dimension (a binary and operation)

and they thus correspond to valid results. The order of the bits set in the bitmask is of course the

global order, since it corresponds to the order in the RecordInfos array.

Given the fact that, by the design of our structures, the results are ordered from the very

beginning, no reordering is necessary – these results can thus be added gradually to the itera-

tor; moreover, when the iterator reports as full, the search can stop while guaranteeing that no

intermediate data has been missed. The simple two level structure further ensures locking gran-

ularity, thus lowering insertion cost without the overhead that would be induced by cascading

splits.

A.1.2.3 Lower-level optimizations

As our extensive evaluation has shown, memory management is particularly important in

conjunction with specific data structures, as it can boost them or significantly slow them down.

When dealing with a large data set and performance critical implementations, malloc (dlmalloc)

is too complex and therefore not adapted, calling for a dedicated allocator.

In the setting we target, we handle a small set of object types and we can benefit from a

simple and specific allocation policy. In practice, this means that we can for instance choose

to dedicate a maximal amount of memory to the application and book this amount by mapping

it and then allocating in constant time, by simply moving a cursor. Further, for speeding up

allocation and object disposal we can set up object pools.

NUMA (non uniform memory access: memory is divided into two NUMA nodes corre-

sponding to the two processors; one processor can access its local memory -node- much faster

than non-local memory) can be leveraged in a multi-threaded setup by imposing a concept of

locality. We can achieve this by first separating memory for each index (this means no shared

memory areas), and then dispatching indexes and their attending threads on matching proces-

131

sors/nodes, so that a thread would always use its processor’s local memory. This strategy can in

turn be implemented in a simple round-robin fashion.

Finally, cache analysis by relying on tools such as Valgrind/Cachegrind and VTune proved

to be very useful for increasing the runtime speed of our system and identifying performance

bottlenecks (last level cache misses, split stores, etc.). We note that the indices and values arrays

(the DimInfos), although apparently redundant (key contents is copied in the values array), are

well adapted to cache usage and therefore turn out to provide very satisfactory performances.

Iterating in a predefined order through pages also makes prefetching useful (as the next page to

be treated is always known in advance).

A.1.3 Conclusions

The contest’s setting essentially shows that performance improvement is always achievable,

even in the resolution of a classical problem, and further underlines the paramount impact of

optimization when dealing with very large amounts of data.

The work presented above has lead us to important insights on the interconnections between

theoretical complexity and low-level optimizations, and emphasized the need for efficient data

structures that are further designed so as to efficiently fit hardware constraints. Our solution,

rewarded with the second prize, proved to be, according to the benchmarking scenarios, 5 to 10

times faster than the reference solution based on Berkeley DB.

A.2 Web source selection for wrapper inference

A.2.1 Structured Web sources and wrapper inference

We are witnessing today the presence of an important amount of structured, "schematized" Web

sites. These sites usually publish sets of pages (sources) generated dynamically, by means of

a formatting template over a database, and the regularity and often uniform typing of the data

fields make it possible to develop dedicated techniques for extracting their published data, called

wrapper inference techniques.

A wrapper’s output target is thus a set of complex, possibly hierarchically organized objects,

whose attributes are extracted from the input pages. From the early, "manual" approaches, most

of the time asking for expert users and the knowledge of dedicated programming languages,

through user-friendly interfaces and semi-supervised approaches using various learning tech-

niques, wrapper inference has evolved towards fully automatic approaches.

If we consider the to-be-wrapped pages as the result of formatting data by means of a tem-

plate, as stated above, the automatic-wrapping process may be seen as an attempt to recover this

template, be it explicitly or implicitly. Recent techniques such as those employed by RoadRun-

ner [22], ExAlg [5], or DEPTA [72] make use of the regularity of pages, at the text, HTML

encoding/DOM tree and even visual rendering level; they use textual patterns or tree matching

algorithms as well as geometrical layout analysis.

The general methodology employed in most recent works consists roughly in two sequential

steps, data extraction and data labelling. In practice, this generic approach suffers from short-

comings that often limit the usability of the collected data in real-life scenarios. Thus, without

132

insight over its content, data resulting from the extraction may mix values corresponding to

distinct attributes of the implicit schema, making the subsequent labelling phase tedious and

error-prone. Moreover, a lot of “useless” (from a final user point of view) data may be extracted,

even if it corresponds to valid attributes of the page objects.

In [25], by means of the ObjectRunner system, the authors address these shortcomings by

proposing a wrapping approach that exploits prior knowledge over the data that should be ex-

tracted, in what could be seen as targeted wrapping and extraction. In the a first step, of struc-

ture specification, users provide an intentional description of the data that is targeted – called

a Structured Object Description (SOD). SODs describe nested relational data with multiplicity

constraints, starting from atomic types with associated recognizers (such as regular expressions

or dictionary-based). This flexible and lightweight initial specification allows discarding “super-

fluous” data; the dictionary-based atomic type recognizers may be related to a general purpose

knowledge base/ontology, thus bringing data semantics earlier in the process of the wrapping.

Extraction is operated by adding data annotations (according to the recognizers) and improv-

ing the techniques from [5] (equivalence class definition and refinement as a means of expressing

regularity) by the insight given by the information in the SOD, to properly select targeted data.

The authors’ extensive experimental evaluation of the system thus built shows a significant im-

provement in accuracy when compared to state-of-the-art wrapper systems.

A.2.2 Selecting relevant sources for wrapper inference

When considering automatic wrapper inference – be it very accurate – in a practical, end-

to-end scenario, there is however one major problem complementary to the wrapping strategy:

how does one find and select data sources for wrapping? Indeed, several large repositories of

crawled Web data are available nowadays. However, applying a general-purpose wrapper on this

massive amount of data would mean completely ignoring any “user data need” and wasting a lot

of computational resources, be it at the CPU or storage level.

ObjectRunner’s targeted extraction paradigm offers a means to discard superfluous data,

accelerate the wrapping process and improve accuracy. However, when specifying an SOD for

extraction, we implicitly wish to use Web sources conforming to a certain schema, and although

ObjectRunner’s extraction strategy would theoretically discard unmatching sources, we would

still have to examine the whole set of sources available. Moreover, we would have to do this

every time we face a new data need expressed in the form of an SOD.

To improve performance, we would then benefit from a lightweight (in terms of computa-

tional resources consumption) yet effective processing of the available sources, so that when

presented with a targeted extraction task (SOD) we could rapidly select the most promising can-

didates for this task. In doing so we further wish to go beyond traditional text-based indexation

techniques, by capturing not only matching content but matching structure as well. In defining

this task, we identify the source processing as an "offline" step, that could be coupled with the

crawling, whereas source retrieval is to be done “online”; the two performance constraints are

therefore different (the online step should be very fast), but we further target global minimization

of the execution time and storage requirements.

The source selection problem can then be formally defined as follows: starting from a very

large repository of Web sources (sets of pages), given an input SOD s, find the k most relevant

133

sources for the extraction of instances of s. The main idea of our joint work with Nora Der-

ouiche on this topic is, as sketched above, that of producing a lightweight representation for a

given web source – a source signature – and further assembling these signatures in an index,
from which online retrieval would be fast and accurate.

A.2.3 Source signatures

In our first attempt to model this process, we have restricted the SOD’s atomic types defini-

tion, in order to achieve a more lightweight and general language for the signature. Thus, our

technique takes as additional input a general purpose knowledge base (ontology) organized in

a hierarchy of concepts and instances thereof, which provides the reference for the dictionary-

based recognizers; the query SOD’s atomic types are then expressed in terms of concepts from

the reference ontology.

Since we deal with HTML pages and complex, nested objects, a natural way of representing

source content is by means of a tree. Furthermore, given the assumption of a similar structure

across different pages for the structured sources we consider, as well as on page level for pages

listing several objects, we would like the tree’s hierarchy to reflect the common hierarchy of

page blocks, such as object fields and objects themselves. In order to map the structure to our

search vocabulary, this tree’s leaves would bear, instead of text and HTML tags, corresponding

instances from the reference ontology, such that the content is “translated” in the query language

(that of the SOD). These instances could further have additional features, such as multiplicities

or confidence scores.

Our initial approach in building such a tree-like signature, also presented in [24], consists

in applying a decomposition in visual blocks on a sample of pages from the source using the

visual segmentation algorithm of VIPS [15]. We further reduce this visual tree by applying a

radical simplification in order to retain the data rich page segment, by heuristically choosing

as the relevant page tree root the first level child with the largest and most central rectangle.

The resulting visual trees (one for each page of the sample) are then merged using a range of

heuristics based on the HTML id and class attributes, as well as rectangle sizes. The merge

process is done exclusively on leaves; for the set of leaves identified as belonging to the same

class according to these heuristics, we assign the first VIPS Dewey Id encountered (in the order

of sample pages, and for each page in its own induced order). Leaf classes that have the same

VIPS Dewey Id are then further merged.

The VIPS Dewey Ids on the classes of leaves induce a virtual tree-like structure, where

there is an implicit parent-child relationship; this tree’s nodes correspond to the blocks in our

definition of signature, and we call the initial leaves before merging block instances. Figure

A.3[24] shows a schematic representation of the tree for a given source.

Deriving a common structure for the page blocks is a non-trivial problem, closely related to

the common workflow of modern wrapping approaches, in the steps of data-rich region identi-

fication and record segmentation. At the same time, our approach aimes at avoiding the costly

process of wrapper inference, and could thus stop at a “coarser” level, tolerating a higher error

rate in terms of page segmentation. Reversely, while our initial approach relies on the visual

segmentation produced by VIPS, VIPS’s granularity parameter (the Degree of Coherence) tunrs

out in some cases to be insufficient for our needs of tree decomposition, thus potentially calling

134

S1

b1.1

b1.1.1 b1.1.2

b1.2

b1.2.1 b1.2.2 b1.2.3

I1.2.3.1

t1

I1.2.3.2

t1 t2

I1.2.3.3

t2

I1.2.3.4

t1 t2
types ↓

instances ↓

ancestors ↑

Figure A.3: Source signature: blocks, instances, types

for "light versions" of other segmentatio algorithms, such as DEPTA[72]’s record identification

technique.

A.2.4 Semantic annotation and scoring

In our initial approach, all pieces of text between tags in the leaf instances are matched

against the input ontology’s instances. However, types/categories in an ontology have a lot of

common, identically-spelled instances (e.g. "Madonna"), so a natural further step would be a

disambiguation one, allowing us to better assign a type to specific object fields. To this end, for

a given leaf block instance, we can merge together all annotations occurring at the same relative

tag path (starting from the assumption that they represent the same object attribute). We then

count for each such tag path the occurrences of the various types and we use a mix of WordNet

similarity measures between types to end with the final best type assignment per tag path:

bestType(i) = argmax
c∈O

∑

c′∈O

score(i, c′) · Tsim(c, c′) (A.1)

Then, the only type retained in the instance for a given tag path will be the best scoring type.

Thus, our leaf instances will be bags of pairs (tag path, associated type). We then mutualize

instance information for a given block, while still keeping the type-assignment per-tag-path, so

that we end with each block represented as a set of tag-paths, each having an associated count

for a given type. We then assign to each type in a block a classic tf-idf score, at the granularity

level of blocks.

sc(t, b) = tf(t, b) · idf(t) (A.2)

where, in order to intuitively counterbalance segmentation errors (slightly different relative tag

paths) and avoid mixing object fields, term frequency tf is computed cosidering the dominant

tag-path for a given type:

tf(t, b) =

max
path

{count(t, b, path)}

∑

t′∈T

max
path

{count(t′, b, path)}
(A.3)

The semantic annotation of data is also a challenging matter, raising a range of sub-problems.

One obvious issue, which can be addressed by employing offline indexes such as Patricia tries,

135

is the important quantity of ontology data, which we need to be able to search fast to keep our

overall performance target. A promising direction for reducing the search space is to perform

"best domain(s)" detection for each source, supposing we deal with ontologies structured by

domains. Domain detection can also improve the disambiguation of text matching instances that

appear in several categories and thus implicitly improve the annotation accuracy. Regarding the

variation in spelling of ontology instances, basic, light NLP processing (e.g. stemming) could

also be beneficial in a number of cases; however all these steps have to be carefully chosen in

order to keep the fine balance of better accuracy versus higher cost.

Merging block instance semantic information is in our initial approach done only as a final

step. Bringing together instance annotations for the same block would possibly provide a better

manner to designate best types for a given tag path. At the same time, delaying this merge

could provide the opportunity of deriving common structure by taking into account annotations

as wellm in addition to visual layout structure.

The scoring strategy is also related to the above issues, raising the question of whether one

should consider the significance of a type at the instance, block or even source level; an ad-

ditional question is related to the choice of a scoring strategy that would allow decreasing the

importance of the useless data (e.g. page content that has been wrongly identified as belonging

to the data-rich region).

A.2.5 Signature indexing

By encoding the source content in the above general signature tree-like form, using the

reference ontology language, we can benefit from techniques of top-k keyword search (since we

have reduced our content vocabulary to ontology types). The simplest approach would be to

consider the set of distinct atomic types in the SOD and do a full top-k keyword search (TA,

NRA) on an inverted index containing the annotated leaf blocks.

However, we would like to go one step further and capture the tree-like structure of the pub-

lished objects and the input SOD. In doing so, one possible approach is to adopt the techniques

described in [19] for top-k keyword search in XML trees, which also consider intermediate

(LCA) blocks. Indeed, this algorithm matches our setting (scored keywords in tree nodes) but

also considers a score on parent nodes by means of child scores aggregation and the usage of a

damping function.

The choice of an index for source retrieval is connected to all the other steps of the designed

solution, as the performance for a given index structure depends heavily on the segmentation,

annotation and scoring performed. A basic inverted index would intuitively provide more accu-

rate answers if the granularity of the deduced blocks is coarser than that of the input SOD (in

a way, if leaf blocks encompass data objects, so that all queried types are grouped together in

the leaves). On the other hand, an LCA-aware index with aggregation and damping functions

would better capture hierarchy and allow for a more flexible block segmentation; however, lev-

els in this hierarchy may be purely syntactical (HTML) and unrelated to the searched object’s

structure, thus intuitively unsuited for the application of certain damping functions; on the other

hand, useless data’s contribution may be (by the same kind of mechanism) artificially increased.

These latter issues are also related to the targeted data object’s representation and the nesting

and multiplicities present in the SOD; if we go beyond the representation of the query as a bag

136

of keywords, we then face a range of schema-matching problems that constitute in themselves a

complex topic.

A.2.6 Conclusions

The problem of structured Web sources indexing and selection proves to be a challenging

topic. While our initial system jointly developed with Nora Derouiche, built using the naive

choices listed previously, shows encouraging performances, in the above we underline a few

of the many possibilities of improving speedup and accuracy that are worth exploring in an

optimized implementation and empirical evaluation.

Assessing the performance and accuracy of such a system can in turn follow several axis.

Retrieval accuracy could be indirectly measured by running a wrapping system over the selected

sources, and matching its output against the query SOD. Speed can be measured by comparison

with wrapping techniques but also with indexing platforms such as Apache’s Lucene. Finally,

obtaining relevant massive datasets for testing purposes, a non-trivial issue on its own, is further

planned to be achieved by operating a deployment and integration with the large Web archiving

platform of the Internet Memory Foundation.

137

Annexe B

Condensé de la thèse en français

B.1 Introduction

B.1.1 Recherche des données et accès aux données : une perspective pragmatique

Notre époque est caractérisée par l’abondance des données : données personnelles, données

d’entreprise, données générées par des capteurs, quantités massives de données venant du Web

et des réseaux sociaux. Le terme big data fait maintenant partie du vocabulaire courant. Grâce

aux capacités toujours croissantes de stockage et calcul, ces big data semblent toujours plus

faciles à traiter, et il y a une tendance croissante à ne pas prendre en compte les ressources

impliquées dans la recherche et l’accès à ces données.

Le coût est pourtant là. D’un point de vue purement financier, ce coût peut être vu comme

le prix prohibitif de l’équipement de stockage et calcul, ou des frais d’accès à des services

cloud si le calcul et le stockage sont externalisés. Dès que les ressources sont limitées par des

considérations financières, ce coût devient visible en tant que manque de performance dans la

recherche et l’accès aux données : soudain, on est face à 15 minutes d’attente pour l’exécution

d’un requête SQL de taille moyenne sur une base de données de taille plus que raisonnable. Cela

peut fortement surprendre l’utilisateur de Google habitué à une réponse instantanée à sa requête

sur le vaste World Wide Web.

C’est typiquement dans ces situations que le besoin d’optimisation dans la recherche et l’ac-

cès aux données revient au premier plan. On devient conscient de la nécessité d’avoir des al-

gorithmes performants qui permettent de diminuer le stockage et le transfert et de rendre les

recherches plus rapides, sans impliquer des ressources additionnelles. Les accélérateurs de la

recherche et de l’accès comme les caches, les vues matérialisées et les indexes retrouvent leur in-

térêt, après avoir été négligés à cause de la fausse certitude que la recherche et l’accès à n’importe

quelles données soient intrinsèquement rapides. Toute opportunité d’améliorer les performances

pratiques devient un but désiré : un traitement efficace en mémoire principale, des algorithmes

polynomiaux ou même moins exponentiels, des implémentations adaptées et optimisées.

138

B.1.2 Les vues matérialisées : un moyen d’améliorer la recherche et l’accès aux
données

Parmi les accélérateurs de la recherche et de l’accès, les vues matérialisées et les caches

sont depuis longtemps connus pour leur capacité à améliorer les performances des requêtes.

Alors que le terme vues a une connotation liée aux bases de données, cache est de nos jours un

terme omniprésent, par exemple dans les clients et serveurs Web. Les deux termes expriment

fondamentalement la notion de court-circuiter une opération coûteuse d’accès distant et/ou de

calcul, nécessaire dans la recherche ou l’accès aux données, en matérialisant (potentiellement de

façon locale) des résultats pré-calculés.

L’utilisation des vues pour baisser le coût de la recherche et de l’accès aux données génère

en revanche un ensemble de problèmes complexes, comme par exemple la question de savoir

quelles sont les vues qu’il faudrait matérialiser pour maximiser l’efficacité de l’accès, et com-

ment ces vues doivent être maintenues à jour de façon efficace. Aussi, pour obtenir un gain de

performance en utilisant des vues matérialisées, le coût de leur sélection et maintenance doit être

largement contrebalancé par l’accélération obtenue en les employant dans la recherche et l’ac-

cès aux données. Supposant tous ces problèmes résolus, il reste la question essentielle de savoir

si et comment des vues existantes peuvent être utilisées pour répondre à une requête donnée :

autrement dit, le problème de la réécriture de requêtes avec des vues.

B.1.3 Réécriture de requêtes avec des vues et reformulation de requêtes

Outre les scénarios classiques d’optimisation, dont le but est d’accélérer l’exécution d’une

requête en se basant sur des vues matérialisées, la réécriture de requêtes avec des vues peut aussi

être placée dans le cadre général de la reformulation de requêtes : étant donnée une requête Q
formulée sur un schéma source S, trouver une requête équivalente R exprimée par rapport à un

schéma cible T , en exploitant la relation entre S et T . La reformulation de requêtes comprend

de nombreux autres problèmes qui ont préoccupé la recherche en bases de données pendant

des décennies, comme la sélection de chemin d’accès physique et l’optimisation sémantique

(élimination des jointures redondantes et autres instances de réécriture de requêtes sous des

contraintes d’intégrité).

Les vues peuvent ainsi être considérées non seulement comme des accélérateurs, mais aussi

de façon plus générale comme des modèles de l’accès aux données. Par example, les vues

peuvent être utilisées pour exprimer des points d’accès sécurisés dans un contexte de restriction

d’accès. Dans ce cas, l’accès par les vues n’est pas ciblé pour le gain potentiel en performance,

mais essentiellement parce qu’il constitue le seul accès possible. Un scénario similaire, mais

plus complexe, est celui du prix associé aux données ; dans ce cas, l’accès n’est pas uniquement

restreint, il comporte aussi un prix diffèrent en fonction des vues employées. Les systèmes de

type médiateur et les architecture multi-stockage et multi-modèle peuvent aussi être décrits avec

des vues, fournissant ainsi une variété d’occurrences pratiques du problème de reformulation de

requêtes et de réécriture de requêtes avec des vues.

139

B.1.4 Structure du manuscrit et contributions

Dans ce document, nous adressons le problème de la réécriture de requêtes avec des vues,

en adoptant une perspective en égale mesure théorique et pratique. Nous accordons un poids

important à l’analyse théorique, à la correction et à la complexité ; en même temps, nous gar-

dons constamment une démarche pragmatique, et une partie importante de nos développements

théoriques sont motivés par le besoin d’atteindre l’efficacité sur un plan pratique..

Dans le premier et principal chapitre de cette thèse, nous approchons le sujet de la recher-
che de reformulations minimales conjonctives pour des requêtes relationnelles conjonc-
tives, sous des contraintes d’intégrité, qui incluent (mais ne sont pas limitées à) la relation

entre les schémas source et cible. Une reformulation est dite minimale si elle ne contient pas

dans sa clause FROM des éléments redondants, qui ne sont pas nécessaires pour assurer son

équivalence avec la requête d’origine, sous les contraintes données.

Tous les algorithmes de reformulations auxquels nous nous intéressons dans ce travail doivent

être corrects, c’est-à-dire de retourner des reformulations valides. Dans le premier chapitre, nous

accordons aussi une importance majeure au concept de complétude. De façon générale, la com-

plétude (ou complétude forte) d’un algorithme de reformulation, par rapport à une classe de

solutions, désigne sa capacité à trouver toutes les reformulations dans cette classe. L’intérêt im-

médiat et central de trouver toutes les reformulations minimales est le fait que, pour une vaste

majorité des modèles de coût, les reformulations de coût minimum seront toujours parmi les

reformulations minimales.

La complétude est ainsi clairement souhaitable dans les scénarios pratiques qui définissent

la mesure d’une requête comme le coût minimum de toutes ses reformulations. Considérons

par exemple le renforcement du contrôle d’accès par des vues de sécurité [54, 61], où une re-

quête est autorisée uniquement si elle a une réécriture qui utilise un ensemble de vues autorisées.

Supposons un raffinement de ce scénario, où l’accès à chaque vue demande un niveau d’auto-

risation, et où un analyste a besoin de connaître, pour le demander auprès des responsables, le

niveau minimum d’autorisation nécessaire pour exécuter une requête. Ceci implique de trouver

toutes les réécritures de la requête en question, et de sélectionner parmi elles celle qui demande

le niveau minimum d’autorisation. Le même type de raisonnement peut être appliqué dans les

scénarios de prix associé aux données [43], où le propriétaire des données fixe le prix pour un

ensemble de vues sur ses données. Le coût d’une requête peut par la suite être établi de façon

automatique comme le prix minimum des reformulations possibles. La complétude est aussi es-

sentielle dans le cadre de l’optimisation classique de requêtes, car la meilleure reformulation

parmi celles trouvées par un algorithme incomplet peut être de façon significative moins rapide

à l’exécution que celle de coût optimum, qui est garantie par un algorithme complet. En effet,

comme le montre notre évaluation expérimentale, le temps d’exécution de la meilleure reformu-

lation trouvée par un optimiseur sophistiqué dans un SGBD commercial peut être jusqu’à deux

ordres de magnitude plus élevé que celui nécessaire pour l’exécution de la reformulation de coût

minimum.

Toutefois, étant donné que dans le cas particulier du problème de reformulation qui cor-

respond à la réécriture totale avec des vues d’une requête, le problème de décision associé est

NP-difficile même en l’absence des contraintes [46], le point de vue général jusqu’à présent a

140

été celui de considérer la complétude comme un concept d’intérêt purement théorique. En effet,

pour l’algorithme Chase & Backchase [27], à notre connaissance le seule algorithme complet

dans ce contexte, la recherche de reformulations minimales ne peut pas passer à l’échelle en

dépassant le spectre inférieur des tailles de requêtes et contraintes rencontrées en pratique. Ceci

est dû au fait que, même si très peu de reformulations minimales existent, le Chase & Backchase

inspecte un nombre de candidats qui est souvent exponentiel dans la taille de la requête et le

nombre de vues, lançant ainsi un nombre exponentiel de séquences de chase. [60] confirme ce

fait de manière expérimentale, puis consacre la majeure partie de ses résultats à des approches

heuristiques qui réduisent l’espace de recherche en sacrifiant la complétude pour gagner en per-

formance. Des démarches similaires sont adoptées par toutes les implémentations existantes de

la recherche de reformulations, y inclus les optimiseurs des SGBD et les implémentations basées

sur le Chase & Backchase pour trouver les reformulations de requêtes XML [29, 57, 70].

Dans ce travail, nous remettons en question les opinions précédentes sur l’incompatibilité

entre la complétude et la performance, en présentant un nouvel algorithme correct et complet,
le Provenance-Aware Chase & Backchase, qui résout le problème des reformulations minimales

avec des performances significatives sur le plan pratique. Nous fournissons sa caractérisa-
tion théorique détaillée et son implémentation. Nous présentons par la suite son évaluation
expérimentale, montrant des gains de performance jusqu’à deux ordres de magnitude entre

l’exécution d’une reformulation optimale trouvée par un SGBD commercial et de celle trou-

vée par notre algorithme (que le SGBD manque de trouver avec son algorithme incomplet).

Nous montrons ensuite comment adapter notre algorithme pour trouver directement des re-
formulation de coût minimum, pour des fonctions de coût monotones, et les améliorations

supplémentaires de performance que cette adaptation rend possibles.

Le Provenance-Aware Chase & Backchase transforme le Chase & Backchase en employant

une technique beaucoup plus ciblée de recherche de reformulations. La raison principale de la

performance atteinte par le Provenance-Aware Chase & Backchase est le fait que le nombre de

séquences de chase potentiellement exponentiel dans le Chase & Backchase est remplacé dans

notre algorithme par une seule telle séquence, employant une nouvelle technique de chase,
la Provenance-Aware Chase. Comme son nom l’indique, la Provenance-Aware Chase est une

procédure de chase qui utilise des informations de provenance, permettant de retrouver les re-

formulations minimales recherchées. Le type de provenance utilisé correspond à laminimal-why

provenance, introduite dans un but différent dans [14]. La conception de la Provenance-Aware

Chase a été complexe et difficile sur le plan théorique. En effet, la technique standard de chase

n’est pas compatible avec les annotations de provenance, créant le besoin de conception d’une

technique additionnelle, non-annotée, qui puisse respecter les propriétés désirées, et que nous

appelons la Conservative Chase. Dans sa description en tant que la Conservative Chase ins-

trumentée avec de la provenance, outre son usage dans notre algorithme de reformulation, la

Provenance-Aware Chase devient intéressante en soi, comme moyen de raisonnement sur l’in-
teraction entre la provenance et les contraintes.

Dans le deuxième chapitre de cette thèse nous nous plaçons dans un contexte XML et nous

revisitons le travail précédent de Cautis, Deutsch et Onose, présenté en [16] et détaillé en [56],

sur le sujet des réécritures de requêtes XPath avec des vues. Le type de réécritures analysées

141

comprend un seul niveau d’intersection de plusieurs vues : il s’agit donc de réécritures com-

prenant de la navigation dans les vues, une intersection, et potentiellement une dernière étape de

navigation supplémentaire. Le travail que nous revisitons présente une analyse de complexité du

problème et un algorithme correct et complet pour sa résolution. Comparé au contexte analysé

dans le premier chapitre, le concept de complétude ciblé ici est celui de faible complétude : un

algorithme est dit complet dans ce cas s’il trouve au moins une reformulation dans une classe

donnée C dans tous les cas où (au moins) une telle reformulation existe. On peut remarquer

qu’un algorithme (faiblement) complet de reformulation peut servir en tant que procédé de dé-

cision pour l’existence d’une reformulation en C, tout en étant plus riche car il doit être aussi

capable de retourner la reformulation. Ce comportement peut être très utile en pratique, par

exemple dans les scénarios d’accès restreint par des vues de sécurité mentionnés précédemment

(dans leur version initiale, sans niveau d’autorisation associé). L’accès par les vues étant le seul

accès possible, il est essentiel dans ce contexte de trouver une reformulation dès qu’une refor-

mulation (c’est-à-dire, un accès possible) existe.

Notre principale motivation pour le travail présenté dans le deuxième chapitre est celle de

trouver et appliquer des stratégies pour atteindre des performances significatives sur le plan pra-

tique. Suite à l’analyse de complexité montrant la difficulté du problème, [16] présente et [56]

détaille l’utilisation d’une technique à base de règles pour inférer un algorithme plus rapide

mais uniquement correct pour le problème de réécriture, ainsi que des conditions pour que cet

algorithme devienne complet. Nous raffinons la technique à base de règles pour assurer sa com-
plexité polynomiale et améliorons les conditions de complétude de l’algorithme de réécriture

correspondant. Nous présentons ensuite un ensemble d’optimisations des techniques de ré-

écriture, nécessaires pour atteindre des performances pratiques. Nous fournissons une implé-
mentation complète des techniques de réécriture, comprenant les optimisations et raffinements

proposés, et présentons son évaluation expérimentale extensive, montrant ses performances et

son utilité.

Notre investigation du travail en [16] et [56] a aussi une conséquence importante sur le plan

théorique : nous enrichissons l’analyse du problème de réécriture en montrant, structurant et

clarifiant ses connections avec le problème de décision de l’équivalence entre une requête expri-

mée par un DAG pattern et une requête exprimée par un tree pattern, et avec le problème de la

union-freeness d’un DAG pattern, c’est-à-dire de trouver une requête tree pattern équivalente à

une requête DAG pattern.

Le premier chapitre de cette thèse étend notre article [42] : Ileana, Cautis, Deutsch, Katsis,
Complete yet practical search for minimal query reformulations under constraints, SIGMOD

Conference 2014, 1015-1026.

Notre raffinement de ProvC&B pour trouver directement les reformulations de coût mini-

mum, présenté dans le premier chapitre, est au cœur du système ESTOCADA, présenté dans

le papier (couramment sous revue pour CIDR 2015) : Bugiotti, Bursztyn, Deutsch, Ileana,
Manolescu, Invisible Glue : Scalable Self-Tuning Multi-Stores.

Enfin, le deuxième chapitre étend notre contribution à l’article de journal (couramment sous

revue pour TCS) : Cautis, Deutsch, Ileana, Onose : Rewriting XPath queries using view in-

tersections : tractability versus completeness.

142

B.1.5 Autres sujets explorés par ce travail de thèse

Alors que ce manuscrit se focalise sur le problème des réécritures de requêtes avec des vues,

le travail de cette thèse comprend également d’autres sujets, appartenant à la gamme plus large

des accélérateurs de requêtes.

Les deux principaux tel sujets, explorés en détail, et présentés dans l’Annexe A, sont liés

à l’indexation. Le premier sujet, fourni par le Concours de Programmation ACM SIGMOD
2012, concerne la conception d’une structure d’index multi-dimensionnelle, efficace et sto-

ckée en mémoire principale, qui puisse répondre à des requêtes de type point ou intervalle, ainsi

que traiter des modifications de données, dans un contexte fortement concurrentiel, consistant
en de nombreux threads client qui effectuent des requêtes et des modifications en parallèle. Nous

présentons dans la Section A.1 notre travail sur ce sujet, qui a été récompensé par le second prix
dans le concours.

Le deuxième sujet lié à l’indexation concerne l’indexation et la sélection de sources Web
structurées pour l’inférence de wrappers. Les sources Web structurées sont des ensembles de

pages Web qui ont un contenu structuré similaire, comme par exemple les pages des livres sur

Amazon.com. LeWeb wrapping consiste en l’extraction des données de ces pages, en s’appuyant

sur leur similarité structurelle. La sélection de sources suppose une description sommaire, four-

nie par l’utilisateur, du type de données qu’on souhaite extraire, et l’usage de cette description

pour sélectionner, en passant par une structure d’index, parmi les sources Web préalablement

parcourues et indexées, celles qui publient le type de données requis. Nous présentons dans

la Section A.2 notre travail sur ce sujet, qui étend le travail précédent de Derouiche, Cautis et

Abdelssalem, et qui a été effectué dans le cadre du projet Arcomem.

Finalement, un troisième sujet exploré est un sujet qui se situe au croisement des stratégies

d’indexation et des réécritures avec des vues. Ce sujet concerne le problème de l’indexation
de vues, ayant comme but l’accélération du calcul de réécritures. Alors que notre étude de ce

sujet en est encore à ses debuts, nous considérons cette approche particulièrement intéressante

à poursuivre dans un futur travail de recherche, en tant que moyen de fournir des gains complé-

mentaires en performances pour les stratégies de réécriture présentées dans ce manuscrit.

B.2 Condensé du premier chapitre

Dans le premier chapitre de cette thèse, nous présentons l’algorithme Provenance-Aware Chase

& Backchase (ProvC&B), pour trouver des reformulation minimales conjonctives pour des re-

quêtes relationnelles conjonctives, sous des contraintes d’intégrité. Le ProvC&B transforme l’al-

gorithme classique de Chase & Backchase (C&B) [27] dans un but simple et clair : préserver la

complétude (une propriété essentielle du C&B), mais atteindre des performances significatives

sur le plan pratique (que le C&B manque de fournir).

B.2.1 Rappel de l’algorithme Chase & Backchase

Le C&B est un algorithme qui trouve toutes les reformulations minimales conjonctives pour

une requête conjonctive, sous des contraintes d’intégrité qui incluent la relation entre le schéma

source S et le schéma cible T . Cet algorithme se remarque par sa complétude, c’est-à-dire sa

143

capacité à trouver toutes les reformulations minimales. Les contraintes traitées par le C&B

couvrent la gamme des embedded dependencies [1], comprenant donc les TGDs (tuple gene-

rating dependencies) et les EGDs (equality generating dependencies). Nous allons présenter le

fonctionnement du C&B en montrant son comportement sur un exemple simple, comprenant la

description d’un problème de réécriture totale avec des vues, où on est donc intéressé à trouver

toutes les réécritures minimales qui utilisent uniquement les tables correspondant aux vues.

Exemple B.2.1. Imaginons qu’un éditeur de logiciels représente une partie de ses données in-

ternes par le schéma suivant :

R(A,B,C), S(C,D), T (D,E).

La table R table montre l’appartenance des ingénieurs logiciel à des équipes, en tant que

tuples id ingénieur(A), rôle ingénieur(B), id équipe (C). Un ingénieur peut participer dans

plusieurs équipes et peut potentiellement tenir plusieurs rôles au sein d’une même équipe. La

table S représente la participation des équipes sur les produits, en tant que tuples id équipe

(C), id produit (D). Une équipe peut bien sur travailler sur plusieurs produits, et plusieurs

équipes peuvent collaborer sur un produit donné. Enfin, la table T table énumère les incidents

de production de haute priorité, en tant que tuples id produit (D), id incident(E).

Pour une résolution rapide des incidents, le responsable QA doit envoyer des e-mails à tous

les ingénieurs qui pourraient aider dans la résolution de ces incidents. La liste de ces ingénieurs

peut être obtenue par la requête suivante1 :

.

Q : select r.A from R r, S s, T t where r.C=s.C and s.D=t.D,

Supposons maintenant l’existence des vues matérialisées :

VR(A,C) : select r.A, r.C from R r

VS(C,D) : select s.C, s.D from S s

VRS(A,D) : select r.A, s.D from R r, S s where r.C=s.C

VT (D,E) : select t.D, t.E from T t

VR montre la participation des ingénieurs dans les équipes (sans tenir compte de leur rôle).

VRS montre la participation des ingénieurs sur les produits. Il est facile de vérifier que les re-

quêtes suivantes :

R1 : select vr.A from VR vr, VS vs, VT vt where vr.C=vs.C and vs.D=vt.D
R2 : select vrs.A from VRS vrs, VT vt where vrs.D=vt.D

sont des réécritures équivalentes de Q avec les vues données (ce sont des réécritures totales,

qui utilisent uniquement les vues). Ce sont aussi des réécritures minimales, et elles constituent

l’ensemble des réécritures minimales possibles.

1Toutes les requêtes dans ce travail ont une sémantique set, donc le SELECT est un SELECT DISTINCT ; on

omet le mot DISTINCT pour des raisons de concision.

144

Le C&B analyse ce problème comme un problème de reformulation où le schéma source

est celui de la requête Q (tables R, S, et T) et le schéma cible est celui des vues matérialisées

(tables VR, VS , VRS et VT) – on rappelle qu’il s’agit d’un problème de réécriture totale avec des

vues. Dans ce cas simple, il n’existe pas de contraintes supplémentaires à part celles qui relient

les deux schémas. L’ensemble de contraintes C reliant les deux schémas est obtenu à partir de la

définition des vues comme suit :

cVR
: ∀r, r ∈ R → ∃vr, vr ∈ VR ∧ vr.A = r.A ∧ vr.C = r.C

bVR
: ∀vr, vr ∈ VR → ∃r, r ∈ R ∧ r.A = vr.A ∧ r.C = vr.C

cVS
: ∀s, s ∈ S → ∃vs, vs ∈ VS ∧ vs.C = s.C ∧ vs.D = s.D

bVS
: ∀vs, vs ∈ VS → ∃s, s ∈ S ∧ s.C = vs.C ∧ s.D = vs.D

cVRS
:∀r, s, r ∈ R ∧ s ∈ S ∧ r.C = s.C → ∃vrs, vrs ∈ VRS ∧ vrs.A = r.A ∧ vrs.D = s.D

bVRS
:∀vrs, vrs ∈ VRS → ∃r, s, r ∈ R ∧ s ∈ S ∧ r.A = vrs.A

∧ s.D = vrs.D ∧ r.C = s.C
cVT

: ∀t, t ∈ T → ∃vt, vt ∈ VT ∧ vt.D = t.D ∧ vt.E = t.E
bVT

: ∀vt, vt ∈ VT → ∃t, t ∈ T ∧ t.D = vt.D ∧ t.E = vt.E

A chaque définition de vue on associe deux contraintes : une depuis le schéma source vers

le schéma cible (indiquée par la lettre c), et une deuxième dans le sens inverse (indiquée par la

lettre b).
Le C&B est basé sur la procédure de chase [1], qui ajoute à une requête les éléments im-

pliqués par les contraintes. Ceci est réalisé par l’application répétée d’une transformation syn-

taxique appelée chase step. Un chase step va chercher un mapping de la prémisse (la partie

gauche d’une contrainte) dans la requête, et va enrichir la requête pour assurer l’existence par la

suite d’une extension de ce mapping depuis la conclusion (la partie droite de la contrainte) vers

la requête ainsi résultante. Un chase step ne s’applique pas si une telle extension existe déjà. Le

résultat (unique jusqu’à équivalence homomorphique) d’une séquence complète de chase (c’est-

à-dire une application répétée de chase steps jusqu’à ce qu’aucun chase step ne s’applique plus)

sur une requête Q avec un ensemble de contraintes C est noté QC . Le C&B comporte deux

étapes :

1. Chase : On applique une séquence complète de chase à Q et on construit le plan uni-

versel en limitant QC au schéma T . Le plan universel a la propriété essentielle de fournir

l’intégralité de l’espace de recherche pour les reformulations minimales : en effet, il a été

montre que toutes les reformulations minimales sont isomorphiques à des sous-requêtes

du plan universel.

2. Backchase : On examine toutes les sous-requêtes du plan universel U pour savoir si elles

sont équivalentes à Q. La vérification d’équivalence est réalisée en appliquant une sé-

quence complète de chase à chaque sous-requête et en cherchant ensuite un containment

mapping [1] de Q au résultat de la séquence de chase. Si un tel containment mapping

existe et la sous-requête est en plus minimale, alors elle fait partie des résultats retournés

par le C&B .

Exemple B.2.2. Continuant avec notre exemple, l’étape de chase consiste d’abord à appliquer

une séquence complète de chase sur Q, qui donne le résultat :

145

QC : select r.A

from R r, S s, T t, VR vr, VS vs, VT vt, VRS vrs
where r.C=s.C and s.D=t.D and vr.A=r.A and vr.C = r.C and vs.C=s.C

and vs.D=s.D and vt.D=t.D and vt.E=t.E and vrs.A=r.A and vrs.D=s.D

Le plan universel résultant (en ne gardant que les éléments de la clause FROM correspondant

aux vues, donc au schéma cible) est le suivant :

U : select vr.A
from VR vr, VS vs, VT vt, VRS vrs
where vr.C=vs.C and vs.D=vt.D and vr.A=vrs.A and vs.D=vrs.D

Dans la phase de backchase, toutes les sous-requêtes de U sont analysées pour déterminer leur

équivalence à Q. Ceci consiste en une séquence complète de chase suivie de la recherche d’un

containment mapping. Pour R2, le résultat de la séquence complète de chase est :

RC2 : select vrs.A
from VRS vrs, VT vt, R r, S s, T t

where vrs.D=vt.D and r.A=vrs.A and s.D=vrs.D and s.C= r.C and t.D=vt.D and t.E=vt.E

La fonction identité étant un containment mapping de Q vers RC2 , la sous-requête R2 est

identifiée comme une réécriture. Le C&B vérifie qu’il s’agit aussi d’une réécriture minimale et,

ceci étant le cas, ajoute R2 dans la liste de ses résultats. La réécriture R1 est découverte de la

même façon, et les autres sous-requêtes sont analysées puis rejetées car l’équivalence n’est pas

vérifiée.

Performance pratique du C&B . La première implémentation du C&B est décrite dans [60],

et la phase de backchase est identifiée comme problématique pour les performances, en raison

du nombre potentiellement exponentiel de séquences complètes de chase (coûteuses) qui sont

lancées. En effet, comme on a vu, ces séquences doivent être appliquées sur chaque sous-requête

du plan universel.

La seule amélioration pratique identifiée qui soit capable de préserver la complétude de

l’algorithme consiste à parcourir les sous-requêtes dans un ordre croissant de leur taille. On

évite ainsi d’examiner les sous-requêtes dont une sous-requête propre est déjà établie comme

réécriture - ces sous-requêtes dont une partie est déjà identifiée comme résultat ne seront pas

minimales.

Pour optimiser le cas où il n’existe aucune reformulation, cas dans lequel la stratégie ci-

dessus n’améliore en rien les performances, [60] propose en plus de vérifier si le plan universel

est lui même une reformulation. En effet, il a été montre que des reformulations peuvent exister

si et seulement si le plan universel lui-même est une reformulation. La vérification du plan

universel s’effectue de la même façon que pour les sous-requêtes : on y applique d’abord une

séquence complète de chase, puis on recherche un containment mapping deQ vers le résultat de

cette séquence.

146

Exemple B.2.3. Continuant avec les exemples précédents, une séquence de chase sur U avec

bVRS
, bVR

, bVS
et bVT

donnera :

UC : select vr.A
from VR vr, VS vs, VT vt, VRS , vrs, R r1, S s1, R r2, S s2, T t

where vr.C=vs.C and vs.D=vt.D and vr.A=vrs.A and vs.D=vrs.D and r1.A=vrs.A
and s1.D=vrs.D and r1.C=s1.C and r2.A=vr.A and r2.C=vr.C
and s2.C=vs.C and s2.D=vs.D and t.D = vt.D and t.E = vt.E

Il existe deux containment mappings de Q vers UC , donc au moins une reformulation existe,

et l’analyse des sous-requêtes peut commencer.

B.2.2 Un nouvel algorithme : Provenance-Aware Chase & Backchase

Les optimisations du C&B présentées ci-dessus, seules à pouvoir préserver sa complétude,

ne suffisent pas, malgré leur rôle positif certain, pour assurer des performances pratiques pour

le C&B ainsi raffiné. En effet, il arrive très souvent en pratique que, malgré ces optimisations,

le C&B aie à analyser un nombre restant exponentiel de sous-requêtes, qui sont donc toutes

soumises à la procédure de chase, très coûteuse, pour vérifier leur équivalence avec la requête à

reformuler.

Malheureusement, en plus d’être coûteuse, cette procédure est souvent appliquée pour uni-

quement constater par la suite la non-existence d’un containment mapping, et par conséquent

rejeter la sous-requête en question. On note aussi une importante redondance dans la chase des

sous-requêtes qui ont des parties communes, redondance que par sa construction le C&B ne

peut pas éviter.

Dans cette thèse, on présente une approche alternative de la phase coûteuse et pénalisante de

backchase. Notre approche consiste essentiellement à effectuer pendant la phase de backchase

une seule séquence de chase sur le plan universel. On va ainsi éviter le nombre exponentiel de

séquences de chase sur les sous-requêtes, qui constitue le problème de base dans le manque de

performances du C&B . On va aussi, implicitement, éviter les séquences de chase inutiles et la

redondance.

Alors que cette idée semble très prometteuse pour gagner en performance, la question na-

turelle qui se pose est celle de savoir comment cette unique séquence de chase peut-elle nous

permettre de retrouver les reformulations minimales. En effet, la séquence de chase effectuée

par le C&B sur le plan universel permet juste de décider si le plan universel est lui-même une

reformulation.

La réponse à cette question est que notre séquence de chase sera en revanche enrichie avec

des annotations de provenance. Le but de ces annotations sera de montrer directement, pour

chaque atome (élément d’une requête) comment cet atome peut être obtenu en appliquant des

procédures de chase à des sous-requêtes du plan universel.

Ainsi, le point de départ de notre séquence de chase annotée sera un plan universel où chaque

élément de la clause FROM (atome) est annoté avec lui-même, au moyen de sa variable (qui

l’identifie de façon unique). Ce type d’annotations combinées vont servir à déterminer des sous-

requêtes : en effet, une sous-requête est identifiée de façon unique par un sous-ensemble des

147

éléments de la clause FROM du plan universel, donc par un ensemble de ces annotations ini-

tiales.

Le comportement qu’on souhaite est celui de pouvoir identifier, à la fin de la séquence de

chase annotée, par les containment mappings depuis la requête initiale vers le résultat annoté de

la séquence, toutes les sous-requêtes qui sont des reformulations minimales. Ceci sera effectué

en combinant les annotations individuelles des atomes dans l’image d’un containment mapping.

Pour mieux comprendre le procédé global qu’on souhaite, on montre ci-dessous l’intuition der-

rière notre approche, en reprenant notre exemple de l’editeur de logiciel.

Exemple B.2.4. Continuant avec notre exemple de problème de réécriture, la séquence de chase

annotée commencera avec le plan universel où les atomes correspondant aux vues sont annotés

avec eux mêmes (la variable qui leur correspond de façon unique). Par la suite, les atomes

correspondant aux relations R, S et T sont annotés de façon à identifier l’atome initial qui,

par un chase step avec la contrainte correspondante, a été responsable de leur ajout dans la

requête :

UC : select vr.A
from VR vr[vr], VS vs[vs], VT vt[vt], VRS vrs[vrs],

R r1[vrs], S s1[vrs], R r2[vr], S s2[vs], T t[vt]
where vr.C=vs.C and vs.D=vt.D and vr.A=vrs.A and vs.D=vrs.D and r1.A=vrs.A

and s1.D=vrs.D and r1.C=s1.C and r2.A=vr.A and r2.C=vr.C
and s2.C=vs.C and s2.D=vs.D and t.D = vt.D and t.E = vt.E

On rappelle qu’il existe deux containment mappings de Q à UC . Le premier est h1, com-

prenant dans son image r1, s1 et t, et le deuxième est h2, avec r2, s2 et t. Ces mappings et

les annotations de leurs images fournissent donc les reformulations minimales comme suit : le

premier mapping fournit vrs (deux fois) et vt, ce qui donne R2. Le deuxième mapping fournit

R1 par vr, vs et vt.

L’exemple ci-dessus donne une idée globale de notre approche, montrant comment après

une seule séquence de chase, propageant les annotations conformément aux chase steps, on

arrive à directement lire les reformulations recherchées. Dans ce cas très simple, il suffit en effet

d’annoter la procédure standard de chase pour obtenir le bon résultat.

Malheureusement dans le cas général, ceci n’est pas possible, car la procédure standard de

chase est trop agressive dans son application. En effet, dans la procédure standard de chase, un

chase step ne s’applique pas si les atomes correspondants sont considérés comme déjà existants.

La notion d’identité sur les atomes (cette notion qui identifie un atome à ajouter comme étant

identique à un atome déjà présent, et donc considère l’atome à ajouter comme déjà existant)

est dans le cadre de la chase standard insuffisamment granulaire pour nos besoins d’annotation,

comme le montre l’exemple suivant :

Exemple B.2.5. Considérons le schéma R(A), S(B, C, D), et la requête et les vues suivantes :

Q : select r.A from R r, S s where s.B = r.A and s.C = 1 and s.D = 2
V1(A) : select r.A from R r, S s where s.B = r.A and s.C = 1 and s.D = 2
V2(A) : select r.A from R r, S s where s.B = r.A and s.C = 1

148

Pour le problème de réécriture totale avec des vues, le plan universel initialement annoté sera :

U : select v1.B from V1 v1[v1], V2 v2[v2] where v1.A = v2.A

En instrumentant directement la chase standard avec provenance on obtient d’abord, en

effectuant un chase step avec la contrainte associée à V1 :

∀ v1 ∈ V1 −→ ∃ r ∈ R, s ∈ S, r.A = v1.A and s.B = r.A and s.C = 1 and s.D = 2

le résultat :

U ′ : select v1.A from V1 v1[v1], V2 v2[v2], R r1[v1], S s1[v1]
where v1.A = v2.A and r1.A = v1.A and s1.B = r.A and s1.C = 1 and s!.D = 2

. En essayant d’appliquer ensuite un chase step avec la contrainte associée à V2 :

∀ v2 ∈ V2 −→ ∃ r ∈ R, s ∈ S, r.A = v2.A and s.B = r.A and s.C = 1

ce chase step ne sera pas appliqué, car pour la chase standard les atomes correspon-

dants sont déjà présents. Dans ce cas la seule solution de notre stratégie d’annotation est celle

d’enrichir l’annotation des atomes déjà présents, comme suit :

U ′′ : select v1.A from V1 v1[v1], V2 v2[v2], R r1[v1 + v2], S s1[v1 + v2]
where v1.A = v2.B and r1.A = v1.A and s.B = r.A and s.C = 1 and s.D = 2

En essayant de lire les reformulations en utilisant le containment mapping de Q vers U ′′

on va donc obtenir comme reformulations possibles la sous-requête correspondant à v1 et celle

correspondant à v2. Mais cela est faux, car la sous-requête correspondant à v2 n’est pas équi-

valente à Q ! En effet, dans la vue V2 il manque la sélection avec 2 sur s.D. Les annotations de

provenance propagées en annotant directement la chase standard sont donc incorrectes.

La Conservative Chase. Pour obtenir des annotations correctes, il faudrait donc trouver un

autre type de procédure de chase, qui soit capable de mieux renforcer l’identité des atomes.

Dans ce but, nous proposons dans cette thèse la Conservative Chase. Cette nouvelle procédure

de chase est basée sur une modification des contraintes pour renforcer l’identité des attributs

non-déterminés (c’est-à-dire les attributs des atomes de la conclusion qui ne sont pas rendus

égaux dans la contrainte à un attribut de la prémisse ou à une constante). En effet, on peut

montrer que c’est précisément la présence dans les contraintes de tels attributs qui empêche la

chase standard de fonctionner correctement avec des annotations de provenance.

Ce renforcement d’identité correspond à un procédé classique en logique du premier ordre,

la Skolemisation. Les attributs non déterminés sont rendus égaux à des termes Skolem, qui

consistent en un symbole de fonction et des arguments. Les symboles de fonctions doivent etre

distincts pour des contraintes distinctes. Le choix d’arguments dans notre cas correspond aux

attributs dans la prémisse qui apparaissent aussi dans les égalités de la conclusion. Ce choix

d’arguments peux sembler surprenant, néanmoins il fournit la base de nos résultats théoriques

exposés par la suite.

Nous présentons ci-dessous la forme Skolemisée (appelée par la suite sk_form) des contraintes

qui s’appliquent dans la chase annotée du plan universel, dans l’exemple de l’éditeur de logiciel :

149

bVR
: ∀vr, vr ∈ VR →∃r, r ∈ R ∧ r.A = vr.A ∧ r.C = vr.C

∧ r.B = f1(vr.A,vr.C)
bVS

: ∀vs, vs ∈ VS →∃s, s ∈ S ∧ s.C = vs.C ∧ s.D = vs.D
bVRS

:∀vrs, vrs ∈ VRS →∃r, s, r ∈ R ∧ s ∈ S ∧ r.A = vrs.A ∧ s.D = vrs.D
∧ r.C = f2(vrs.A,vrs.D)
∧ s.C = f2(vrs.A,vrs.D)
∧ r.B = f3(vrs.A,vrs.D)

bVT
: ∀vt, vt ∈ VT →∃t, t ∈ T ∧ t.D = vt.D ∧ t.E = vt.E

En partant de la sk_form d’un ensemble de contraintes, nous obtenons par la suite leur

sk_unit_form, qui est un ensemble de contraintes à un seul atome principal dans leur conclu-

sion, et qui est le résultat d’une division des contraintes en sk_form en plusieurs contraintes

unitaires.

La Conservative Chase avec la sk_form ou la sk_unit_form d’un ensemble de contraintes

demande à ce que deux atomes soient considérés identiques uniquement si tous leur attributs

sont égaux. Alors que la chase standard ignore cette propriété pour les attributs non-déterminés,

la Conservative Chase utilise les termes Skolem correspondants et demande à ce que les termes

Skolem soient égaux aussi. Malgré cette apparente divergence de comportement entre les deux

procédures, nous prouvons dans cette thèse le résultat suivant, qui pose la base de correction de

notre nouvel algorithme de reformulations :

Théorème B.2.6. Le résultat d’une séquence complète de chase standard et celui d’une sé-

quence complète de Conservative Chase (avec la sk_form ou la sk_unit_form des contraintes

originales) sont équivalents.

D’un autre coté, le choix des arguments des termes Skolem est essentiel pour assurer une

autre propriété très importante de la Conservative Chase : sa terminaison pour des contraintes

faiblement acycliques. En effet, il est bien connu que pour un ensemble arbitraire de contraintes,

les séquences de chase standard peuvent être infinies. Ceci est également vrai pour la Conserva-

tive Chase. Une des conditions les moins restrictives et les plus utilisées sur les contraintes, qui

assure que toutes les séquences complètes de chase standard soient finies, est la faible acycli-

cité de l’ensemble de contraintes. Par sa construction, la Conservative Chase garantit la même

propriété, comme suit :

Théorème B.2.7. Pour un ensemble faiblement acyclique de contraintes, toute séquence com-

plète de Conservative Chase (avec leur sk_form ou leur sk_unit_form) est finie, et comporte la

même borne supérieure que la chase standard, polynomiale dans la taille de la requête initiale.

La Provenance-Aware Chase (pa_chase). En reprenant notre idée initiale d’annotations, mais

en utilisant à la place de la chase standard la Conservative Chase avec la sk_unit_form des

contraintes, on obtient la forme finale de notre procédure de chase annotée, appelée la Provenance-

Aware Chase. C’est donc la pa_chase qu’on appliquera en une seule séquence au plan universel

dans notre algorithme de reformulations.

Dans la pa_chase , les annotations de provenance sont maintenues en tant que formules

booléennes en FND (forme normale disjonctive) : chacune des conjonctions dans la formule

150

associée à un atome dénotera une partie du plan universel (sous-requête) qui par sa chase stan-

dard individuelle peut générer l’atome en question. Ces conjonctions peuvent être combinées

par l’opération logique de et pour construire d’autres conjonctions et ainsi designer d’autres

sous-requêtes.

L’application d’un chase step dans le cas de la Provenance-Aware Chase transfère (copie)

la provenance de l’image de la prémisse (qui est la conjonction des atomes dans l’image) sur

la conclusion. Si la conclusion n’est pas présente, elle sera ajoutée. Dans le cas contraire, son

annotation sera enrichie avec la nouvelle formule, au moyen d’un ou logique, et la formule ré-

sultante sera une disjonction. On rappelle que la notion de conclusion déjà présente est celle de

la Conservative Chase, et emploie les termes Skolem.

Lecture des reformulations. Une fois la Provenance-Aware Chase du plan universel terminée,

on lit les reformulations minimales comme suggéré dans les exemples précédents, mais avec une

étape supplémentaire, comme suit :

• on calcule tous les containment mappings deQ au résultat de la pa_chase du plan univer-

sel

• on calcule la FND de la disjonction des formules des images de cesmappings. On rappelle

que chacune des formules d’une image est elle-même la conjonction logique des formules

individuelles des atomes dans l’image.

• on calcule la forme réduite de cette FND, en y enlevant toutes les conjonctions qui im-

pliquent logiquement d’autres conjonctions déjà présentes dans la FND.

A noter, la dernière étape ci-dessus n’est pas visible sur notre exemple, mais elle est néces-

saire dans le cas général, car la formule FND construite peut contenir des réécritures valides

mais non minimales. Alors que la vérification de la minimalité d’une reformulation peut en gé-

néral être très coûteuse, nos opérations s’effectuent uniquement sur des formules booléennes et

l’élimination des conjonctions non-minimales est ainsi très rapide.

L’algorithme de reformulation Provenance-Aware Chase & Backchase. En se basant sur les

concepts présentés précédemment, on montre ci-dessous une vue haut-niveau de notre nouvel

algorithme de reformulation ProvC&B :

ProvC&B (schéma source S, schéma cible T ,

ensemble faiblement acyclique de contraintes C, requête à reformuler Q)

//étape de chase :

1. calcul du plan universel U comme dans le C&B

par une séquence de chase standard sur Q avec C et retenant ensuite uniquement les atomes de T

//recherche des reformulations (remplace l’étape de backchase) :

2. calcul du résultat U ′ d’une séquence de pa_chase sur U avec la sk_unit_form de C
3. calcul de l’ensembleH de tous les containment mappings de Q à U ′

151

4. calcul de Π, la FND de
∨

h∈H π(h(Q)) (π(h(Q)) représente la provenance de l’image)

5. calcul de la forme réduite rf (Π) de Π
6. résultat : toutes les sous-requêtes de U correspondant aux conjonctions présentes dans rf (Π).

Le principal résultat théorique concernant notre algorithme de reformulation est le suivant :

Théorème B.2.8. ProvC&B est correct et complet : il trouve toutes et exactement les reformu-

lations minimales de la requête initiale sous les contraintes données.

Comme souligné précédemment, la correction et la complétude étaient dans notre démarche

des buts obligatoires dans la conception de notre nouvelle technique de recherche de reformu-

lations minimales. En revanche, un but essentiel était également celui d’atteindre des perfor-

mances significatives sur le plan pratique.

Évaluation expérimentale. Pour estimer ces performances, on a procédé à une implémentation

de notre algorithme, dont on a mesuré le comportement pratique. Pour ce faire, on a re-créé et

étendu le cadre expérimental présenté dans [60]. On a choisi ce cadre pour son intérêt pratique,

sa facilite de paramétrisation et aussi pour sa capacité à fournir un outil de stress-test pour notre

algorithme.

Notre contexte expérimental consiste donc en des schémas et requêtes de type chaîne-

d’étoiles [60], dont la forme la plus simple est la suivante :

����� �����

��������	

������
������

������
������

������������

������������
������������

������������

� �

FIGURE B.1: Schéma et requête de type chaîne-d’étoiles avec deux étoiles à deux coins.

Ce type de schémas et de requêtes peut être paramétré par le nombre d’étoiles et le nombre

de leur coins. Il comporte des contraintes provenant des vues, qui couvrent chacune une combi-

naison centre + deux coins consécutifs d’une étoile, ainsi que des contraintes de clé (sur l’attribut

K qui est spécifique au centre d’une étoile) et de clé étrangère entre deux centres consécutifs

dans la chaîne. Le problème posé est celui de trouver toutes les réécritures minimales partielles

avec les vues et sous les contraintes. Il s’agit ainsi de réécritures qui peuvent utiliser aussi bien

les vues que les tables originales (centres et coins des étoiles).

Notre première mesure vise à déterminer l’intérêt global sur le plan pratique de notre
algorithme. Dans ce contexte, on a effectué une comparaison avec un SGBD commercial, en

calculant le rapport entre :

152

• le temps que le SGBD prend pour trouver une reformulation et l’exécuter, quand on lui

fournit directement la requête initiale.

• le temps nécessaire pour que notre algorithme trouve toutes les reformulations minimales

+ le temps (en réalité négligeable) de choisir parmi elles une de celles qui comporte le

moindre nombre d’éléments dans la clause FROM (stratégie heuristique visant a choisir

une reformulation de coût très bas, potentiellement optimal) + le temps d’exécuter cette

reformulation dans le SGBD.

On présente ci-dessous la moyenne des mesures obtenues pour ce rapport (appelée avg spee-

dup factor) sur 10 instances de base de données générées aléatoirement. La population des bases

de données assure les propriétés suivantes : l’évaluation des reformulations est de façon signi-

ficative plus rapide que celle des requêtes, et plus une reformulation emploie des vues, plus

son coût décroit, ce qui correspond aux scénarios pratiques d’utilisation des vues matérialisées

dans l’optimisation des requêtes. Comme spécifié précédemment, les requêtes (de type chaîne-

d’étoiles) sont paramétrées par leur nombre d’étoiles et de coins :

!"

!#"

!##"

!###"

$"

$"

%"

$"

&"

$"

'"

$"

$"

%"

%"

%"

&"

%"

'"

%"

$"

&"

%"

&"

&"

&"

$"

'"

%"

'"

!
"
#
#
$
%
"
&'
(
)*
+
,&

-%#,.&

()*"+,--./,"0(1234"'###"2/,5-+" ()*"+,--./,"0(1234"!####"2/,5-+"

FIGURE B.2: Facteurs de gain moyens sur 10 instances de bases de données

On note l’écart impressionnant entre les performances en utilisant notre algorithme et celles

obtenues en se basant uniquement sur le SGBD. Le gain de performances induit par notre al-

gorithme va jusqu’à deux ordres de magnitude, et manifeste une tendance croissante avec la

taille de la base de données. Ce gain est essentiellement dû à la complétude de notre algorithme,

qui permet de proposer une reformulation de coût très bas, par rapport à la meilleure reformula-

tion trouvée par le SGBD, dont l’algorithme est incomplet, et qui trouve donc une reformulation

restant coûteuse à s’exécuter (cette reformulation n’emploie pas toutes les vues disponibles).

D’un autre coté, la même reformulation peu coûteuse trouvée par le ProvC&B en raison

de sa complétude, aurait pu être trouvée en employant le C&B original, car on rappelle que

le C&B est lui-aussi complet. Le gain aurait en revanche été perdu car le C&B aurait mis un

temps de calcul beaucoup trop long pour justifier l’intérêt du gain en exécution. En effet, l’inté-

rêt de notre algorithme est celui de préserver la complétude à un coût qui ne la rende pas inutile !

153

Notre deuxième mesure vise justement le temps passé par notre algorithme pour trouver
toutes les reformulations minimales. On reprend ainsi le cadre expérimental précèdent, et on

l’enrichit aussi avec des contraintes de clé étrangère et des tables supplémentaires, pour obtenir

ce qu’on appelle une configuration chaîne d’étoiles étendue :

����� �����

��������	

������
������

������
������

������������

������������ ������������

������������

������
������

������������ ������������

������� �������

������� �������

�����������
�����������

�����������

�������

����������������������

�����������

�����������

�������
��

�� ��

��

FIGURE B.3: Chaîne d’étoiles étendue

Pour les deux types de configurations et pour des requêtes paramétrées de la même façon

par le nombre d’étoiles et de coins, on présente ci-dessous le temps nécessaire à ProvC&B pour

trouver toutes les reformulations minimales :

!"
#"

$%"
&'" $%"

%!"

'(%"

$)'!"

!*"

&!&"

'!)$"

$%*"

'$*+"

$"

$)"

$))"

$)))"

'"

'"

&"

'"

!"

'"

("

'"

'"

&"

&"

&"

!"

&"

("

&"

'"

!"

&"

!"

!"

!"

'"

("

&"

("

!
"#

$
%&
#
'(
%

)*$+,%

,-."/0"123405/6578397" ,-."/0".:8.0;.;"123405/6578397"

!"#$%&'()'&%*&+,-./'

FIGURE B.4: Temps de calcul de toutes les reformulations minimales

.

Ces résultats montrent que notre algorithme est non seulement utile mais aussi très rapide,

trouvant en moins d’une seconde toutes les reformulations minimales, même dans les cas ou

il en existe des milliers (ces cas font partie de notre évaluation dans le but de stress-test). Sa

rapidité est d’autant plus soulignée en la comparant aux temps d’exécution des requêtes sur le

SGBD, qui dans les cas analysés sont de l’ordre des minutes.

Rafinement de ProvC&B pour les reformulations de coût minimum. Dans la plupart des cas

en pratique, l’intérêt de trouver les reformulations minimales est, comme souligné précédem-

ment, celui de retrouver parmi elles celles de coût minimum. Dans la version de base de notre

154

algorithme, ceci peut être réalisé en trouvant d’abord toutes les reformulations minimales, puis

en mesurant leur coût et en choisissant celle du moindre coût. C’est en effet la stratégie appliquée

dans notre évaluation expérimentale précédente, où la fonction de coût correspond au nombre

d’éléments dans la clause FROM.

En revanche, par sa construction, notre algorithme permet aussi de trouver de façon plus

directe les reformulations de cout minimum dans le cas des fonctions de coût monotones. Pour

cela, on procède à une adaptation de la Provenance-Aware Chase basée sur les idées suivantes :

• une conjonction correspondant à une reformulation de coût non-minimum n’est pas utile

à maintenir dans les formules de provenance

• le calcul de reformulations peut être entrelacé avec la Provenance-Aware Chase, de façon à

raffiner une quantité seuil, représentant intuitivement le coût de la meilleure reformulation

trouvée jusqu’au pa_chase step courant. Ce coût sera bien sur supérieur ou égal au coût

minimum et donc peut servir pour filtrer les conjonctions comme indiqué précédemment.

Ces observations donnent lieu à une version modifiée et allégée de notre algorithme, qu’on

appelle PRUNED ProvC&B et dont les performances sont présentées ci-dessous, pour la même

fonction de coût que précédemment (le nombre d’éléments de la clause FROM), et les mêmes

requêtes de type chaîne-d’étoiles :

�
							 �
 ��
 ��

� � �� ��
�� �� ���
�� ��

�

���

��

��

���

���

���

������� ������	�������

�����

�
 !

�
"!

#
$

FIGURE B.5: Comparaison de ProvC&B et PRUNED ProvC&B

On note que la version adaptée de notre algorithme permet d’obtenir des temps d’exécution

jusqu’à six fois plus bas que sa version initiale (qui exhibait déjà, on le rappelle, des perfor-

mances significatives).

L’ensemble de nos mesures nous permet d’affirmer que, malgré les opinions précédentes,

la complétude (avec ses effets extrêmement bénéfiques sur les performances) est atteignable

en pratique, qui plus est à un coût très bas, et largement contrebalancé par les gains obtenus.

On estime aussi que les gains (déjà impressionnants) en performances peuvent être encore plus

accentués par une intégration de nos techniques directement dans les SGBD, évitant ainsi les

coûts d’interface entre la recherche de la reformulation et son exécution.

155

B.3 Condensé du deuxième chapitre

Dans le deuxième chapitre de cette thèse nous revisitons, développons et améliorons le travail de

Cautis, Deutsch et Onose, présenté dans [16] et détaillé dans [56], sur le problème des réécritures

de requêtes XPath comprenant un seul niveau d’intersection de plusieurs vues.

B.3.1 Réécritures à un seul niveau d’intersection

Nous commençons par rappeler le problème de la réécriture à un seul niveau d’intersection de

plusieurs vues [16], et les concepts qui permettent de définir ce problème.

Documents XML. Un document XML D est considéré comme un arbre dont les nœuds sont

étiquetés avec des symboles d’un alphabet infini Σ, et dont la racine (le nœud document) est

étiquetée avec doc(D) (on considère que tous les symboles de type doc(nom) font partie de Σ).

Requêtes et vues, tree patterns. Le sous-langage de XPath considéré pour les requêtes et les

vues dans [16] et [56] est appelle XP et correspond à des requêtes XPath sans wildcards, avec

de la navigation enfant (/) et descendant (//), en partant de la racine d’un document donné D
(commençant donc par doc(D)). Les vues sont des requêtes dont le résultat a été matérialisé

dans un document qui porte leur nom.

Les requêtes dans XP sont représentables par des tree patterns. Un tree pattern p [16] est un

arbre comprenant un ensemble de nœuds NODES(p) étiquetés avec des symboles de Σ par une

fonction λp, un nœud special racine ROOT(p) et un noeud special output OUT(p), et des arêtes
enfant (/) ou descendant (//).

Intersections et DAG patterns. Pour formaliser les intersections, nous considérons deux lan-

gages : XP∩−simple qui comprend de la navigation suivie par une intersection, et XP∩ [16] qui

comprend de la navigation, une intersection, et potentiellement de la navigation supplémentaire.

Le langage XP∩−simple ne figure pas dans les analyses précédentes, mais il est nécessaire dans

le travail que nous présentons ici pour structurer les résultats théoriques.

Sous certaines conditions (même étiquette pour la racine et l’output) les requêtes avec inter-

section sont représentables par des DAG patterns. Un DAG pattern d [16] est un graphe orienté

acyclique, comprenant un ensemble de nœuds NODES(d) étiquetés avec des symboles de Σ par

une fonction λd, un nœud special racine ROOT(p) et un nœud special output OUT(d), et des
arêtes de type enfant (/) ou descendant (//). Un DAG pattern a les propriétés suivantes : chacun

de ses nœuds est accessible depuis la racine, et les nœuds depuis lesquels OUT(d) n’est pas

accessible, appelés des nœuds prédicat, ont une seule arête rentrante. On utilisera par la suite le

terme pattern pour designer les tree patterns et les DAG patterns.

Branches principales. Dans un pattern, un chemin entre le nœud racine et le nœud output est ap-

pelé une branche principale, et les nœuds sur ce type de chemins sont appelés nœuds de branche

principale. Pour un chemin p1 comprenant une partie de branche principale dans un pattern d,
on dénote par TPd(p1) le tree pattern qui a comme branche principale p1.

156

Fragments intéressants de XP. [16] distingue deux fragments intéressants de XP, pour lesquels

on peut obtenir des résultats théoriques supplémentaires. Le premier de ces fragments, appelé

XPes, dont nous présentons ici un raffinement, correspond aux requêtes de type extended skele-

tons. Ces requêtes sont telles que dans le tree pattern correspondant pour chaque sous-prédicat

de type // rattaché à un nœud de branche principale différent de l’output, il n’existe aucun map-

ping entre la branche / rentrante du prédicat et la branche / sortante du nœud.

Le fragment XP// étend le fragment XPes ; les //-prédicats directement rattachés aux nœuds

de branche principale y sont autorisés et l’usage des //-sous-prédicats à l’intérieur de ces prédi-

cats est libre.

Réécritures dans XP∩ . [16] et [56] se focalisent sur le probleme des reecritures dans XP∩ . Pour

un ensemble DV de documents correspondant à des vues définies sur un document D, un plan

de réécriture dans XP∩ est une requête dans XP∩ utilisant les documents des vues. L’expansion

d’un tel plan r, notée unfold(r), est une requête dans XP∩ ou chaque doc(vi) est remplacé par

la définition de la vue vi. Un plan de réécriture est appelé une réécriture d’une requête q si son

expansion est équivalente à q (ils produisent les mêmes résultats sur tous les documents).

Un algorithme correct et complet de réécriture. [16] présente un algorithme de réécriture où la

navigation est réalisée par la fonction compensate (qui concatène de la navigation sous la forme

d’une partie de requête existante) et un préfixe sans perte est un préfixe de la branche principale

d’un tree pattern tel que le suffixe restant est transformé en prédicat. On présente ci-dessous la

forme clarifiée de l’algorithme REWRITE qui vise à trouver une réécriture dans XP∩ pour une

requête q et un ensemble de vues V :

REWRITE(q,V)

1 for p un préfixe sans perte de pattern(q)
2 do

3 r ← BUILDINITREWRITECANDIDATE(p,V)
4 d← pattern(unfold(r))
5 if d ≡ p
6 then return compensate(r, q,OUT(p))
7 return ∅

BUILDINITREWRITECANDIDATE(p,V)

1 V ′ ← φ
2 for v ∈ V , h un mapping racine de pattern(v̄) a p
3 do

4 b← h(OUT(pattern(v̄)))
5 V ′ ← V ′ ∪ compensate (doc(“v")/λp(b), p, b)

6 r ←
(

⋂

vj∈V ′ vj

)

7 return r

157

B.3.2 Réécritures, équivalence et union-freeness

Malheureusement, malgré sa correction et complétude montrées dans [16] et [56], REWRITE

n’est pas performant. En effet, il est affirmé dans [16] et prouvé dans [56] que le problème de

réécriture en XP∩ est coNP-complet. On va par la suite montrer comment cette analyse du pro-

blème de réécriture nous permet d’investiguer deux autres problèmes : l’équivalence DAG-tree

et la union-freeness d’un DAG.

Equivalence DAG-tree. Une brique principale de REWRITE consiste dans le test d’équivalence

entre un DAG pattern dans XP∩−simple et un tree pattern. Ce test est effectué un nombre de fois

qui correspond aux nombre de préfixes de la requête initiale. En se basant sur cette remarque,

on peut donc affirmer que le problème de la réécriture a une réduction polynomiale au problème

de décision de l’équivalence entre une requête exprimée par un DAG pattern dans XP∩−simple et

une requête exprimée par un tree pattern. On va appeler par la suite ce problème le problème de

l’équivalence DAG-tree.

Union-freeness. On montre également que le problème de l’équivalence DAG-tree a une ré-

duction polynomiale au problème de la union-freeness d’un DAG, qui consiste à trouver un tree

pattern équivalent à unDAG pattern donné, si un tel tree pattern existe. On peut ainsi étendre les

résultats de complexité du problème de réécriture pour caractériser les problèmes d’équivalence

et union-freeness comme suit :

Théorème B.3.1. Le problème de l’équivalence entre un DAG pattern dans XP∩−simple et

un tree pattern est coNP-complet. Le problème de la union-freeness d’un DAG pattern dans

XP∩−simple est coNP-difficile.

Les liens entre les problèmes montrés ci-dessus nous permettent aussi de baser la résolution

du problème de réécriture sur la résolution de la union-freeness. Pour trouver une solution au

problème de la union-freeness, on va utiliser la notion de interleaving, qui consiste intuitivement

en un pliage d’un DAG pattern en un arbre (tree pattern).

En effet, il a été montré qu’un DAG pattern est équivalent à l’union de ses interleavings. Il

s’en suit qu’un DAG pattern possède un tree pattern équivalent si et seulement si il possède un

interleaving dominant, c’est-à-dire un interleaving qui contient tous les autres. Cet interleaving

dominant constitue donc une solution au problème de la union-freeness. Une façon naïve de

résoudre le problème de la union-freeness est donc en employant l’algorithme suivant :

DOMINANT_INTERLEAVING(d)

1 génération de tous les interleavings de d
2 vérification de l’existence d’un interleaving qui contient tous les autres

3 si c’est le cas, retourner l’interleaving dominant, sinon retourner ∅

On appelle l’approche ci-dessus naïve car pour un DAG pattern donné il peut y avoir un

nombre exponentiel de interleavings, correspondant à un nombre exponentiel de pliages pos-

sibles. La génération de tous ces interleavings et leur comparaison peuvent donc être très coû-

teuses.

158

B.3.3 Un algorithme à base de règles pour construire le interleaving dominant

Comme alternative moins coûteuse à la procédure naïve qui consiste à générer et tester tous

les interleavings, [16] propose un algorithme qui consiste en l’application itérative d’un en-

semble de règles, visant à transformer le DAG pattern progressivement, jusqu’à en obtenir le

interleaving dominant. Chacune de ces règles effectue ainsi intuitivement un pliage du DAG

pattern courant.

Dans cette thèse nous reprenons et améliorons cet algorithme, pour assurer sa complexité

polynomiale et améliorer les conditions de complétude résultantes. Nous présentons ci-dessous

la forme globale de l’algorithme modifié, tout en gardant son nom précèdent, APPLY-RULES.

APPLY-RULES(d)

1 d′ = d
2 if un des tree patterns intersectés dans d est un /-pattern

3 then RuleSet = R1, R2, R3, R4, R6, R7

4 else RuleSet = R1, R2, R3, R4, R5, R6

5 repeat

6 while R1 s’applique sur d′

7 do

8 d′ = appliquer R1 sur d′

9 if une règle Ri dans RuleSet s’applique sur d′

10 then d′ = appliquer Ri sur d′

11 else break

12 return d′

Dans notre version de APPLY-RULES, nous avons modifié le flux global et raffiné les cas

d’utilisation des règles. Nous avons également remplacé deux des règles précédentes par une

nouvelle règle, qui les englobe et qui possède la propriété essentielle d’être testable en temps

polynomial. Nous présentons ci-dessous l’ensemble résultant des règles :

Règle R1. Cette règle s’applique quand λd(n1) = λd(n2).

n1,2

(R1.ii)

n1,2

(R1.i)

n1
n2

n1 n2

Règle R2. Cette règle s’applique si n1 et n2 ne sont pas unifiables et n2 n’est pas atteignable

depuis n1 (resp. n1 n’est pas atteignable depuis n2, dans le cas de R2.ii).

159

n1

n1

n2n2

n1
n1

n2

n2

(R2.ii)

(R2.i)

Règle R3.i. Cette regle s’applique sous les conditions suivantes : (1) p1 ≡ p2, (2) chacun des

noeuds de p2 a une seule arête de branche principale rentrante, (3) TPd(p2) contient TPd(p1).

p2p
1

n1 n2 n1,2

p
1

p2

Règle R3.ii. Cette règle s’applique sous les conditions suivantes : (1) p1 ≡ p2, (2) chacun des

nœuds de p2 a une seule arête de branche principale sortante, (3) TPd(p2) contient TPd(p1).

p2 p
1

n1n2
n1,2

p
1

p2

Règle R4.i. Cette règle s’applique sous les conditions suivantes, qui doivent être valides pour

tous les nœuds n4 : (1) n3 a une seule arête rentrante de branche principale, les autres nœuds de

p2 ont une seule arête de branche principale rentrante et une seule arête de branche principale

sortante, (2) il existe un mapping de TPd(p2) vers SPd(n1), tel que l’image de tous les nœuds de

p2 est dans p1, (3) le chemin p2//n4 n’a pas de mapping dans p1.

p2p
1

{n4}

p
1

{n4}

n1

n3

n1 n2

Règle R4.ii. Cette règle s’applique sous les conditions suivantes, qui doivent être valides pour

tous les nœuds n4 : (1) n3 a une seule arête de branche principale sortante, tous les autres nœuds

de p2 ont une seule arête de branche principale rentrante et une seule arête de branche principale

sortante, (2) il existe un mapping de TPd(p2) vers TPd(p1), tel que l’image de tous les nœuds de

p2 est dans p1, (3) le chemin n4//p2 n’a pas de mapping dans p1.

p2 p
1

n1
n2

{n4}

p
1

{n4}

n1

n3

160

Règle R5. Cette règle (anciennement R6) s’applique sous les conditions suivantes : (1) n3, n4
ont une seule arête de branche principale rentrante, tous les autres nœuds de p1 et p2 ont une

seule telle arête rentrante et une seule sortante, (2) TPd(p1) et TPd(p2) sont similaires [16].

p2p1

n1 n2 n1,2

p1 p2

n3 n4
n3

n4

Règle R6. Cette règle (anciennement R7) s’applique sous les conditions suivantes : (1) les nœuds

de p2 ont une seule arête de branche principale rentrante et une seule arête de branche principale

sortante, (2) il existe un mapping de TPd(p2) vers SPd(n1), tel que l’image des nœuds de p2 est

dans p1.

p2 p1 p1

n1

n3

n4

Règle R7. Cette règle est nouvelle. Elle remplace, englobe et corrige les précédentes règles R5

et R8. Elle s’applique sous les conditions suivantes : (1) les nœuds de p2 ont une seule arête de

branche principale rentrante et sortante, (2) Q est un /-prédicat tel que sa présence sur n vérifie

la condition des extended skeletons, (3) pour tous les mappings ψ de p2 dans p1, d
′ étant le DAG

obtenu en unifiant chaque nœud n′ ∈ p2 avec ψ(n′), pattern(λd(n)[Q]) a un mapping racine

dans SPd′(n).

Des algorithmes de réécriture en utilisant APPLY-RULES

Notre nouvelle version de APPLY-RULES préserve l’importante propriété de sa version anté-

rieure, celle de produire un DAG équivalent en sortie. Elle peut donc être utilisée pour produire

une version correcte et complète de REWRITE en remplaçant le test d’équivalence DAG-tree

par une application de APPLY-RULES et ensuite de DOMINANT_INTERLEAVING, pour tester

par la suite l’équivalence entre le résultat de DOMINANT_INTERLEAVING et la requête initiale.

On rappelle que le test d’équivalence entre deux tree patterns est une opération efficace car

réalisable en temps polynomial.

D’un autre coté, nous montrons dans cette thèse que notre version modifiée de APPLY-

RULES a une complexité polynomiale. Alors que suite aux résultats de complexité du problème

161

de réécriture on ne peut pas espérer à la complétude polynomiale dans le cas général, notre ver-

sion de APPLY-RULES peut être utilisée pour obtenir un algorithme correct de réécriture, comme

suggéré dans [16], mais qui soit en plus polynomial :

EFFICIENT-RW(q,V)

1 for p un préfixe sans perte de pattern(q)
2 do

3 r ← BUILDINITREWITECANDIDATE(p,V)
4 d← dag(unfold(r))
5 p1 ← APPLY-RULES(d) ;

6 if p1 est un arbre et p1 ≡ p
7 then return compensate(r, q,OUT(p))
8 return ∅

Complétude. Dans [16] et [56] on montre que cet algorithme est également complet pour des

requêtes et des vues dans le fragment XP//, quand les plans considères intersectent des requêtes

akin (c’est-à-dire, qui commencent par la même /-séquence, aussi appelée token). Dans cette

thèse on montre également une version de cet algorithme qui est complète pour résoudre le

problème de réécriture pour des requêtes dans XPes et des vues dans XP. On utilise dans la

description ci-dessous la notation s(d) pour designer la forme extended skeleton d’un pattern d,
qui consiste à y enlever les prédicats qui ne respectent pas la condition XPes.

EFFICIENT-RW(q,V)

1 for p a lossless prefix of pattern(q)
2 do

3 r ← BUILDINITREWITECANDIDATE(p,V)
4 d← dag(unfold(r))
5 p1 ← APPLY-RULES(s(d)) ;

6 if p1 est un arbre et p1 ⊑ p
7 then return compensate(r, q,OUT(p))
8 return ∅

Evaluation experimentale

La motivation principale du travail présenté dans le deuxième chapitre de cette thèse a été celle

d’atteindre des performances significatives sur le plan pratique. Ceci a conduit aux amélio-

rations de APPLY-RULES pour atteindre une complexité polynomiale, mais également à une

gamme importante d’optimisations sur l’application des règles, présentées en détail dans le ma-

nuscrit. Nous avons intégré ces optimisation dans une implémentation complète des algorithmes

de réécriture (REWRITE , EFFICIENT-RW et sa version pour le fragment XPes), évaluée ensuite

comme suit :

• Nous avons généré avec XMark trois documents XML, de tailles 41KB, 91MB et 18GB

162

• Nous avons construit notre propre générateur de requêtes et de vues pour un document

donné, que nous avons ensuite utilisé pour produire des requêtes appartenant aux trois

fragments XPath analysés (en XPes, en XP// sans être en XPes, en XP sans être en XP//),

de longueur de branche principale 5, 7 et 9 (la profondeur des documents XMark est 11),

avec pour chaque couple catégorie et longueur 10 requêtes générées. Pour chaque requête

on a généré des ensembles de vues de taille 40, 80, 160, 320, et 640, dont 10% qui ont un

mapping dans la requête (sont donc incluses dans au moins un plan candidat) sans en être

équivalentes (pour ainsi cibler uniquement des réécritures comprenant plusieurs vues).

REWRITE vs. EFFICIENT-RW . Le premier aspect investigué a été celui de comparer l’algo-

rithme complet mais pas performant REWRITE et sa version polynomiale EFFICIENT-RW qui

n’est complète que dans certaines conditions. Nous avons testé ces algorithmes sur 300 configu-

rations pour des requêtes dans les fragments XP// et XP, en imposant un timeout de 30 minutes

pour REWRITE . Le résultat de cette évaluation est très intéressant : dans aucun des cas testés

nous n’avons obtenu une réécriture en passant uniquement par DOMINANT_INTERLEAVING

(qui, nous le rappelons, constitue la différence coûteuse entre les deux algorithmes). Dans un

tiers des cas analysés le timeout a été atteint sans terminaison de REWRITE . Nous pouvons

en déduire que (i) la pratique confirme que la complétude de EFFICIENT-RW s’étend outre les

conditions théoriques, mais aussi que (ii) dans les situations où cela peut ne pas être le cas (celles

où le timeout a été atteint sans conclusion), le temps passé dans le calcul des interleavings est

d’un ordre tel que ce calcul perd tout intérêt pratique.

Temps de réécriture et evaluation. Nous avons continué notre évaluation en nous focalisant

sur des requêtes et des ensembles de vues qui fournissent une réécriture par EFFICIENT-RW

et nous avons mesuré les performances de réécriture ainsi que le gain global en évaluation.

Les mesures du temps que prend EFFICIENT-RW pour trouver des réécritures sont illustrées ci-

dessous, pour les ensembles de requêtes et de vues mentionnées précédemment, générées à partir

du document de taille 91MB. Pour les comparaisons de temps d’évaluation, nous avons retenu

une requête de taille maximale (9) et ses versions XPes et XP//, et nous avons comparé, sur les

trois documents, le temps cumulé pour le calcul de la réécriture et son évaluation sur les vues,

au temps d’évaluation de la requête initiale. L’ensemble des mesures est présenté ci-dessous.

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!" '!" $(!")%!" (&!"

!
"
#
$%
&"
'(
)
"
'*
)
+,
'

-.)/"$'01'2%"#+'*304'+563",'

789.&':."$;'+%<"='>'

*+,-" *+.." *+"

!"

#!"

$!!"

$#!"

%!!"

%#!"

)!!"

&!" '!" $(!")%!" (&!"

!
"
#
$%
&"
'(
)
"
'*
)
+,
'

-.)/"$'01'2%"#+'*304'+563",'

789.&':."$;'+%<"='?'

*+,-" *+.." *+"

!"

#!"

$!!"

$#!"

%!!"

%#!"

)!!"

)#!"

&!" '!" $(!")%!" (&!"

!
"
#
$%
&"
'(
)
"
'*
)
+,
'

-.)/"$'01'2%"#+'*304'+563",'

789.&':."$;'+%<"='@'

*+,-" *+.." *+"

FIGURE B.6: Temps de réécriture

163

!"

#!!"

$!!"

%!!"

&!!"

'!!"

&!" (!" #)!" %$!")&!"

!
"
#
$%
&&
'#
(
#
)*
+
,
-
'+
.
#
'/
.
01
'

2*.3#$',4'"5#60'/&,7'0)%'

8,)*.#-9'05:#;'<=>?''

*+,-".,/.01," *+,-",234" *+55".,/.01," *+55",234" *+".,/.01," *+",234"

!"

'!!"

#!!!"

#'!!"

$!!!"

$'!!"

&!" (!" #)!" %$!")&!"!
"
#
$%
&&
'#
(
#
)*
+
,
-
'+
.
#
'/
.
01
'

2*.3#$',4'"5#60'/&,7'0)%'

8,)*.#-9'05:#;'@=A?'

*+,-".,/.01," *+,-",234" *+55".,/.01," *+55",234" *+".,/.01," *+",234"

!"

#!!!"

$!!!"

%!!!"

&!!!"

&!" (!" #)!" %$!")&!"!
"
#
$%
&&
'#
"
%
&*
%
+
,
-
'+
.
#
'/
.
01
'

2*.3#$',4'"5#60'/&,7'0)%'

8,)*.#-9'05:#;'=BC?'

*+,-".,/.01," *+,-",234" *+55".,/.01," *+55",234" *+".,/.01," *+",234"

FIGURE B.7: Comparaison des temps d’evaluation.

Discussion. Notre évaluation expérimentale nous permet de constater que notre implémentation

de la version modifiée et optimisée de EFFICIENT-RW exhibe des performances significatives

sur le plan pratique, et peut passer à l’échelle pour des ensembles de vues de taille importante.

On remarque également le gain de performance important en utilisant une réécriture et une éva-

luation sur les vues. Enfin, EFFICIENT-RW se remarque par son intérêt pratique pour le fragment

XP, malgré sa complétude théorique limitée, en fournissant une solution rapide et bénéfique pour

les scénarios de réécriture en général.

B.4 Conclusions et futures directions de recherche

Le premier et principal chapitre de cette thèse présente une approche globale et efficace
pour trouver toutes les reformulations minimales d’une requête relationnelle conjonctive, sous
des contraintes d’intégrité. Nous y montrons notre nouvel algorithme, correct et complet, ap-
pelé le ProvC&B (Provenance-Aware Chase & Backchase), et nous présentons sa caractérisation
théorique détaillée. Avec notre algorithme, nous introduisons un nouveau type de technique de
chase, la Provenance-Aware Chase, et sa technique sous-jacente appelée la Conservative Chase,
et nous montrons comment les annotations de provenance nous permettent de retrouver directe-
ment les reformulations minimales. Nous montrons également comment notre algorithme peut
être adapté pour trouver de façon plus directe et plus performante les reformulations de coût
minimum.

164

Nous estimons qu’il serait intéressant de continuer l’investigation théorique des nouvelles
techniques de chase introduites dans cette thèse, et de leur similarité ou divergence par rapport à
la chase standard. Une direction très prometteuse sur le plan théorique est aussi celle concernant
l’adaptation de la Provenance-Aware Chase à d’autres types de provenance, par exemple pour
les bases de données probabilistes.

Sur un plan pratique, nous montrons les performances de notre algorithme et de notre implé-
mentation, pouvant induire des gains jusqu’à deux ordres de magnitude par rapport à un SGBD
commercial. Il existe toutefois un potentiel important d’optimisation qui reste encore à exploiter
sur le plan pratique, notamment concernant les structures de données efficaces pour la gestion
des formules booléennes, ainsi que la construction des plans pour le prémisses des contraintes.
Nous allons explorer ces directions dans nos prochaines implémentations, et élargir l’utilisation
de notre algorithmes aux nombreux scénarios de reformulation de requêtes rencontrés en pra-
tique.

Dans le second chapitre de cette thèse, nous revisitons et enrichissons le travail de Cautis,
Deutsch et Onose, présenté dans [16] et détaillé dans [56], sur la réécriture de requêtes XPath
avec un seul niveau d’intersection de plusieurs vues. Nous développons l’analyse de ce problème
en montrant ses connections avec le problème de l’équivalence DAG-tree et le problème de la
union-freeness d’un DAG.

Notre principale motivation étant celle d’atteindre des performances pratiques, nous raffi-
nons l’algorithme à base de règles proposé par [16] pour assurer sa complexité polynomiale et
améliorer sa complétude. Nous fournissons une implémentation des algorithmes de réécriture, et
son évaluation expérimentale extensive. Pour atteindre les performances exhibées, nous présen-
tons également un ensemble important d’optimisations, à la frontière de la théorie et la pratique.
Même si nos résultats expérimentaux sont très prometteurs, le potentiel d’optimisation des règles
reste important, et nous estimons qu’une étude théorique de l’impact et de l’interaction de ces
règles permettrait de raffiner leur caractérisation et d’améliorer encore les performances. Ceci
pourrait aussi servir à définir une frontière de tractabilité et son extension à des plans de réécri-
ture plus complexes.

Comme suggéré par le titre de cette thèse, les deux chapitres approchent le problème de
la réécriture des requêtes avec des vues et de la reformulation des requêtes, d’une perspective
en égale mesure théorique et pratique. Dans notre vision, ces deux points de vue doivent être
entrelacés et se renforcer constamment pour acquérir des résultats significatifs. Nous pensons
aussi que, même s’ils ont été depuis longtemps traités dans la recherche en bases de données,
les sujets analysés dans cette thèse seront constamment remis à jour par des scénarios applicatifs
nouveaux, plus complexes et à plus grande échelle, fournissant ainsi de nouvelles opportunités
et défis d’optimisation théorique et pratique.

165

Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] F. Afrati, M. Damigos, and M. Gergatsoulis. Union rewritings for XPath fragments. In Proceedings

of the 15th Symposium on International Database Engineering, IDEAS ’11, pages 43–51, 2011.

[3] F. N. Afrati, R. Chirkova, M. Gergatsoulis, and V. Pavlaki. Finding equivalent rewritings in the
presence of arithmetic comparisons. In EDBT, pages 942–960, 2006.

[4] F. N. Afrati, C. Li, and P. Mitra. Answering queries using views with arithmetic comparisons. In
PODS, 2002.

[5] A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In SIGMOD Confer-

ence, 2003.

[6] P. Aravogliadis and V. Vassalos. On equivalence and rewriting of XPath queries using views under
DTD constraints. In DEXA (2), pages 1–16, 2011.

[7] A. Balmin, F. Özcan, K. S. Beyer, R. Cochrane, and H. Pirahesh. A framework for using material-
ized XPath views in XML query processing. In VLDB, pages 60–71, 2004.

[8] R. G. Bello, K. Dias, A. Downing, J. Feenan, J. L. Finnerty, W. D. Norcott, H. Sun, A. Witkowski,
and M. Ziauddin. Materialized views in Oracle. In VLDB, pages 659–664, 1998.

[9] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs. In PODS, pages
25–36, 2005.

[10] M. Benedikt, W. Fan, and G. Kuper. Structural properties of XPath fragments. Theor. Comput. Sci.,
336(1):3–31, 2005.

[11] M. Benedikt, B. ten Cate, and E. Tsamoura. Generating low-cost plans from proofs. In Proceed-

ings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,

PODS’14, Snowbird, UT, USA, June 22-27, 2014, 2014.

[12] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and J. Siméon. XML
path language (XPath) 2.0, 2007.

[13] S. Boag, D. Chamberlain, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon. XQuery 1.0: An
XML query language, 2007.

[14] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of data provenance. In
ICDT, pages 316–330, 2001.

[15] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Extracting content structure for web pages based on visual
representation. APWeb, 2003.

166

[16] B. Cautis, A. Deutsch, and N. Onose. Xpath rewriting using multiple views: Achieving complete-
ness and efficiency. In 11th International Workshop on the Web and Databases, WebDB 2008,

Vancouver, BC, Canada, June 13, 2008, 2008.

[17] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational data
bases. In STOC, 1977.

[18] L. Chen and E. A. Rundensteiner. XCache: XQuery-based caching system. InWebDB, pages 31–36,
2002.

[19] L. J. Chen and Y. Papakonstantinou. Supporting top-k keyword search in xml databases. In ICDE,
2010.

[20] J. Clark and S. DeRose. XML path language (XPath), 1999.

[21] S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries with arbitrary aggregation functions using views.
ACM TODS, 31(2), 2006.

[22] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards automatic data extraction from
large web sites. In VLDB, 2001.

[23] D. DeHaan. Equivalence of nested queries with mixed semantics. In PODS, pages 207–216, 2009.

[24] N. Derouiche. Recherche des objets complexes dans le web structuré. 2012.

[25] N. Derouiche, B. Cautis, and T. Abdessalem. Automatic extraction of structured web data with
domain knowledge. In ICDE, pages 726–737, 2012.

[26] A. Deutsch and R. Hull. Provenance-directed chase&backchase. In In Search of Elegance in the

Theory and Practice of Computation - Essays Dedicated to Peter Buneman, 2013.

[27] A. Deutsch, L. Popa, and V. Tannen. Physical data independence, constraints, and optimization with
universal plans. In VLDB, 1999.

[28] A. Deutsch, L. Popa, and V. Tannen. Query reformulation with constraints. SIGMOD Record,
35(1):65–73, 2006.

[29] A. Deutsch and V. Tannen. Mars: A system for publishing xml from mixed and redundant storage.
In VLDB, pages 201–212, 2003.

[30] A. Deutsch and V. Tannen. MARS: A system for publishing XML from mixed and redundant
storage. In VLDB, pages 201–212, 2003.

[31] A. Deutsch and V. Tannen. Reformulation of XML queries and constraints. In ICDT, 2003.

[32] R. Fagin. Horn clauses and database dependencies. J. ACM, 1982.

[33] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query answering.
In ICDT, 2003.

[34] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewriting regular XPath queries on XML views.
In ICDE, pages 666–675, 2007.

[35] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the presence of limited
access patterns. In SIGMOD, pages 311–322, 1999.

[36] J. Goldstein and P.-Å. Larson. Optimizing queries using materialized views: A practical, scalable
solution. In SIGMOD, 2001.

[37] G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. In PODS, 2004.

167

[38] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS, pages 31–40, 2007.

[39] S. Groppe, S. Böttcher, and J. Groppe. XPath query simplification with regard to the elimination of
intersect and except operators. In ICDE Workshops, page 86, 2006.

[40] A. Halevy. Answering queries using views: A survey. VLDB J., 2001.

[41] J. Hidders. Satisfiability of XPath expressions. In DBPL, pages 21–36, 2003.

[42] I. Ileana, B. Cautis, A. Deutsch, and Y. Katsis. Complete yet practical search for minimal query
reformulations under constraints. In International Conference on Management of Data, SIGMOD

2014, Snowbird, UT, USA, June 22-27, 2014, 2014.

[43] P. Koutris, P. Upadhyaya, M. Balazinska, B. Howe, and D. Suciu. Query-based data pricing. In
PODS, pages 167–178, 2012.

[44] P.-Å. Larson, J. Goldstein, H. Guo, and J. Zhou. MTCaches: Mid-tier database caching for SQL
Server. IEEE Data Eng. Bull., 27(2), 2004.

[45] M. Levene and G. Loizou. Why is the snowflake schema a good data warehouse design? Informa-

tion Systems, 28(3):225 – 240, 2003.

[46] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering queries using views. In
PODS, pages 95–104, 1995.

[47] A. Y. Levy, A. Rajaraman, and J. D. Ullman. Answering queries using limited external query
processors. J. Comput. Syst. Sci., 1999.

[48] B. Mandhani and D. Suciu. Query caching and view selection for XML databases. In VLDB, pages
469–480, 2005.

[49] I. Manolescu, K. Karanasos, V. Vassalos, and S. Zoupanos. Efficient XQuery rewriting using mul-
tiple views. In ICDE, pages 972–983, 2011.

[50] B. Marnette. Generalized schema-mappings: from termination to tractability. In PODS, pages
13–22, 2009.

[51] B. Marnette and F. Geerts. Static analysis of schema-mappings ensuring oblivious termination. In
ICDT, pages 183–195, 2010.

[52] M. Meier, M. Schmidt, and G. Lausen. On chase termination beyond stratification. PVLDB,
2(1):970–981, 2009.

[53] G. Miklau and D. Suciu. Containment and equivalence for a fragment of XPath. J. ACM, 51(1):2–
45, 2004.

[54] A. Motro. An access authorization model for relational databases based on algebraic manipulation
of view definitions. In ICDE, 1989.

[55] A. Nash and B. Ludäscher. Processing first-order queries under limited access patterns. In PODS,
2004.

[56] N. Onose. Uncovering the full potential of data services. 2009.

[57] N. Onose, A. Deutsch, Y. Papakonstantinou, and E. Curtmola. Rewriting nested xml queries using
nested views. In SIGMOD, 2006.

[58] N. Onose, A. Deutsch, Y. Papakonstantinou, and E. Curtmola. Rewriting nested XML queries using
nested views. In SIGMOD, pages 443–454, 2006.

168

[59] L. Popa. Object/relational Query Optimization with Chase and Backchase. PhD thesis, University
of Pennsylvania, 2000.

[60] L. Popa, A. Deutsch, A. Sahuguet, and V. Tannen. A chase too far? In SIGMOD, pages 273–284,
2000.

[61] S. Rizvi, A. O. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting techniques for
fine-grained access control. In SIGMOD, pages 551–562, 2004.

[62] J. Robie, D. Chamberlin, M. Dyck, and J. Snelson. XML path language (XPath) 3.0, 2010.

[63] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark: A benchmark
for XML data management. In VLDB, pages 974–985, 2002.

[64] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy. Answering queries with aggregation using
views. In VLDB, 1996.

[65] J. Tang and S. Zhou. A theoretic framework for answering XPath queries using views. In XSym,
pages 18–33, 2005.

[66] B. ten Cate and C. Lutz. The complexity of query containment in expressive fragments of XPath
2.0. In PODS, pages 73–82, 2007.

[67] X. Wu, D. Theodoratos, and W. H. Wang. Answering XML queries using materialized views re-
visited. In Proceedings of the 18th ACM conference on Information and knowledge management,
CIKM, pages 475–484, 2009.

[68] W. Xu and Z. M. Özsoyoglu. Rewriting XPath queries using materialized views. In VLDB, pages
121–132, 2005.

[69] L. H. Yang, M. L. Lee, and W. Hsu. Efficient mining of XML query patterns for caching. In VLDB,
pages 69–80, 2003.

[70] C. Yu and L. Popa. Constraint-based xml query rewriting for data integration. In SIGMOD, pages
371–382, 2004.

[71] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and M. Urata. Answering complex SQL
queries using automatic summary tables. In SIGMOD, pages 105–116, 2000.

[72] Y. Zhai and B. Liu. Web data extraction based on partial tree alignment. In WWW, 2005.

169

