N

N

Query rewriting using views: a theoretical and practical
perspective

loana Ileana

» To cite this version:

Ioana Ileana. Query rewriting using views: a theoretical and practical perspective. Databases [cs.DB].
Télécom ParisTech, 2014. English. NNT: 2014ENSTO0062 . tel-01661323

HAL Id: tel-01661323
https://pastel.hal.science/tel-01661323
Submitted on 11 Dec 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://pastel.hal.science/tel-01661323
https://hal.archives-ouvertes.fr

Parislech

INSTITUT DES SCIENCES ET TECHNOLOGIES TELECO M

PARIS INSTITUTE OF TECHNOLOGY i)<“|\TeCh

—hed

2014-ENST-0062

/

EDITE - ED 130

Doctorat ParisTech

THESE

pour obtenir le grade de docteur délivré par

TELECOM ParisTech

Spécialité « Informatique et Réseaux »

présentée et soutenue publiquement par

loana ILEANA
le 24 Octobre 2014

Réécriture de requétes avec des vues :

une perspective théorique et pratique

Directeur de thése : Bogdan CAUTIS
Co-encadrement de la thése : Pierre SENELLART

Jury
Mme Angela BONIFATI, Professeur, LIFL, Université Lille 1 et Inria Lille Rapporteur
M. Dan OLTEANU, Associate Professor, Dpt. of Computer Science, Oxford University Rapporteur

Mme loana MANOLESCU, Directeur de recherches, LRI, Inria Saclay et Univ. Paris-Sud Examinateur
M. Alin DEUTSCH, Professeur, Dpt. of Computer Science and Electrical Eng., UCSD Examinateur

M. Bernd AMANN, Professeur, LIP6, Université Pierre et Marie Curie Examinateur
M. Fabian SUCHANEK, Maitre de conférences, DBWeb, Télécom ParisTech Examinateur
M. Bogdan CAUTIS, Professeur, LRI, Univ. Paris-Sud et Inria Saclay Examinateur
M. Pierre SENELLART, Professeur, DBWeb, Télécom ParisTech Examinateur

TELECOM ParisTech
école de I'lnstitut Mines-Télécom - membre de ParisTech

46 rue Barrault 75013 Paris - (+33) 1 45 81 77 77 - www.telecom-paristech.fr

To Damien, Dad, Mum and Lidia
(certainly the most patient people in the world)

Acknowledgements

I would like to thank my reviewers and jury for accepting to be my reviewers and jury, and thus
committing to all the work and travel (and headache) this status implies. I also thank my PhD
advisors and the DBWeb team in Telecom ParisTech.

This manuscript has undergone an amount of changes, and I owe a tremendous quantity of
improvements and refinements to Angela and Dan’s reviews. Beyond the formal review system,
such feedback allowed me to importantly improve the structure and clarity of my writing, so I
would like to thank them for the huge formative impact of their feedbacks.

I achieved a very significant part of my knowledge during these three PhD years thanks
to Alin Deutsch’s advising and mentoring. Working with Alin has provided me the chance to
dwelve into some of the most interesting topics of my PhD, which I intend to further pursue
in future research work. I would also like to thank Alin, as well as Pierre, loana, Fabian and
Nicoleta, for their extensive help and advising regarding my career choices and approach of
academia.

Last but certainly not least, I owe the finish line of this thesis, as all my achievements, to
the constant and faultless support of my family (to whom I dedicate this manuscript) and my
friends.

Abstract

The massive amounts of data available nowadays generate an increasing need for optimizing and
speeding up data search and access. Among the most efficient known accelerators, materialized
views have proven for a long time their benefit in speeding up queries, quite often dramatically.
Using views for decreasing data search and access cost raises however a range of complex prob-
lems, amongst which the question of whether and how existing materialized views can be used
to answer a given query: in other words, the problem of query rewriting using views.

This problem can be further placed in the general framework of query reformulation: given
a query () expressed against a source schema .9, find an equivalent query R formulated against
a target schema 7T, by exploiting the relationship between S and 7T'. Accordingly, views can
be seen not only as data access accelerators, but more generally as data access models. This is
for instance the case of scenarios such as security-restricted access through views, data pricing,
mediator-like, multi-storage and multi-model architectures.

In this work, we address the problem of query rewriting using views, by adopting both a
theoretical and a pragmatic perspective. In the first and main chapter, we approach the topic of
finding all minimal (i.e. with no redundant relational atoms) conjunctive query reformulations
for a relational conjunctive query, under constraints expressed as embedded dependencies, in-
cluding the relationship between the source and the target schemas. We present a novel sound
and complete algorithm, the Provenance-Aware Chase & Backchase, that solves the minimal
reformulations problem with practically relevant performance. We provide a detailed theoreti-
cal characterization of our algorithm. We further present the optimized implementation and the
experimental evaluation thereof, and exhibit natural scenarios yielding speed-ups of up to two or-
ders of magnitude between the execution of a best view-based rewriting found by a commercial
DBMS and that of a best rewriting found by our algorithm. We generalize the Provenance-Aware
Chase & Backchase towards directly finding minimum-cost reformulations for monotonic cost
functions, and show the performance improvements this adaptation further enables. With our al-
gorithm, we introduce a novel chase flavour, the Provenance-Aware Chase, which is interesting
on its own, as a means of reasoning about the interaction between provenance and constraints.

In the second chapter, we move to an XML context and revisit the previous work of Cautis,
Deutsch and Onose on the problem of finding XPath query rewritings with a single level of
intersection of multiple views. We enrich the analysis of the rewriting problem by showing
its links to the problems of DAG-tree equivalence and union-freeness. We refine the rule-based
rewriting technique proposed by Cautis, Deutsch and Onose to ensure its polynomial complexity
and improve its completeness, and present a range of optimizations on the rewriting procedures,
necessary to achieve practical performance. We provide a complete implementation comprising
these optimizations and a thorough experimental evaluation thereof, showing the performance
and utility of the polynomial rewriting technique.

Résumé

La quantité massive de données disponibles de nos jours génere un besoin croissant d’optimisa-
tion et accélération de la recherche et de 1’acces a ces données. Les vues matérialisées s’ imposent
depuis longtemps en tant qu’accélérateur souvent tres important des requétes. Leur utilisation
engendre toutefois une gamme de problémes complexes, parmi lesquels la question de savoir si
et comment des vues existantes peuvent étre utiles pour répondre a une requéte - autrement dit,
le probleme de la réécriture de requétes avec des vues.

Ce probleme peut aussi étre placé dans le cadre général de la reformulation de requétes :
étant donnée une requéte () exprimée par rapport a un schéma source S, trouver une requéte
équivalente R formulée sur un schéma cible 7', en exploitant la relation entre S et T". Dans ce
contexte, les vues peuvent étre considérées non seulement comme des accélérateurs, mais de
facon plus générale comme des modeéles de I’acces aux données. Ceci est le cas par exemple
dans des scénarios de restrictions de sécurité de 1’acces par des vues ou de prix associé aux
données, ou dans les architectures multi-stockage et multi-modeles de données.

Dans ce document, nous adressons le probleme de la réécriture de requétes avec des vues,
en adoptant une perspective a la fois théorique et pratique. Dans le premier et principal cha-
pitre, nous approchons le sujet de la recherche de toutes les reformulations minimales (sans
atomes relationnels redondants) pour une requéte relationnelle conjonctive, sous des contraintes
d’intégrité qui incluent la relation entre les schémas source et cible. Nous présentons un nouvel
algorithme, correct et complet, le Provenance-Aware Chase & Backchase, qui résout le probleme
des reformulations avec des performances significatives sur le plan pratique. Nous présentons sa
charactérisation théorique detaillée, son implémentation optimisée et son évaluation, montrant
des gains de performance jusqu’a deux ordres de grandeur par rapport a un SGBD commer-
cial. Nous généralisons notre algorithme pour trouver directement des reformulations de cofit
minimum pour les fonctions de colit monotones, et montrons les gains de performance de cette
adaptation. Avec notre algorithme, nous introduisons également un nouveau type de chase, la
Provenance-Aware Chase, qui comporte son propre intérét théorique, en tant que moyen de rai-
sonnement sur I’interaction entre la provenance et les contraintes.

Dans le deuxiéme chapitre, nous nous placons dans un contexte XML et nous revisitons le
travail de Cautis, Deutsch and Onose sur probleme de la réécriture de requétes XPath par un seul
niveau d’intersection de plusieurs vues. Nous étendons I’analyse de ce probleme en montrant ses
connexions avec les problemes de 1’équivalence DAG-arbre et de la union-freeness d’un DAG.
Nous raffinons un algorithme de réécriture proposé par Cautis, Deutsch and Onose pour obtenir
une complexité polynomiale et améliorer sa complétude, et présentons un ensemble d’optimisa-
tions des procedures de réécriture, necessaires pour atteindre des performances pratiques. Nous
fournissons une implementation compléte comprenant ces optimizations ainsi que son evalua-
tion éxperimentale extensive, montrant la performance et I’utilité de la technique polynomiale
de réécriture.

Contents

Introduction 6

1 A complete yet practical algorithm for finding minimal query reformulations under

constraints 11
1.1 Overview of the Chase & Backchase 12
1.2 A novel algorithm: the Provenance-Aware Chase & Backchase 19
1.3 Formal presentation and guarantees of Provogp . . . « . . o o o o ... 27
1.3.1 Preliminaries: atoms, queries and constraints 28
1.3.2 TheStandardChase 29
1.3.2.1 Bodies 29
1.3.2.2 Homomorphisms of bodies 31
1.3.2.3 Standard Chase steps and sequences 32
1.3.2.4 Properties of the Standard Chase 34
1.3.3 The Conservative Chase 35
1.3.3.1 Skolem terms, sk_bodies and sk_constraints 35
1.3.3.2 Homomorphisms of sk_bodies 40
1.3.3.3 Conservative Chase steps and sequences 42
1.3.3.4 Properties of terminating Conservative Chase sequences . . . 44
1.3.3.5 The Conservative Chase and the Standard Chase 46
1.3.3.6 Termination of the Conservative Chase 51
1.3.3.7 Splitting sk_constraints into sk_unit_constraints 58
1.3.4 The Provenance-Aware Chase 63
1.3.4.1 Provenance formulae and provenance-adorned sk_bodies . . 63
1.3.4.2 Provenance-Aware Chase steps and sequences 66

1.3.4.3 The Provenance Pick, the Provenance-Aware Chase and the
Conservative Chase 68
1.3.4.4 Termination of the Provenance-Aware Chase 73
1.3.4.5 The Provenance-Aware Chase and the Standard Chase 74
1.3.5 The Provenance-Aware Chase & Backchase 74
1.4 TImplementation 77
1.5 EXperiments i e e 78
1.6 Mininum-cost reformulations with Provogp« o ..o 84
1.6.1 Cost-based pruned Provenance-Aware Chase steps 85
1.6.2 Cost-based pruned Provogp - - - « v v v v v v i e e e 86

1.6.3

Initial experimental evaluation 90

1.7 Related work 91

2 A theoretical and practical approach to finding XPath rewritings with a single-level

of intersection of multiple views 93

2.1 View-based rewritings e 94

2.1.1 XP queries and tree patterns 94

2.1.2 xp"—simple [xpN DAG patterns 95

2.1.3 Pattern satisfiability, containment and equivalence 97

2.1.4 Interleavings 98

2.1.5 Union-freeness, dominant interleavings and DAG-tree equivalence . . . 99

2.1.6 The view-based rewriting problem for XP' 100

2.1.7 A sound and complete rewriting algorithm 100

2.1.8 Interesting XP fragments L. 101

2.2 Rewritings, equivalence and union-freeness 102

2.2.1 Rewritings and the DAG-tree equivalence 102

2.2.2 DAG-tree equivalence and union-freeness 102

2.3 A rule-based algorithm for directly constructing the dominant interleaving . . . 103

2.3.1 Global flow of APPLY-RULES 104

2.3.2 The rewrite rules of APPLY-RULES 104

2.3.3 Complexity of APPLY-RULES 109

2.3.4 Using APPLY-RULES for union-freeness, equivalence and rewritings . . 112

2.4 Achieving PTIME completeness 113

2.4.1 Completeness in PTIME for xpn—simple (xp. YDAGS 113

2.4.2 Completeness in PTIME for XP.; queries 115

2.4.3 Completeness in PTIME for XP/, akin patterns 117

2.5 Implementation and optimizations 118

2.6 EXperiments e e e 119

2.6.1 Documents, queries and Views 119

2.6.2 REWRITE vs. EFFICIENT-RW 120

2.63 Rewritetime L 121

2.64 EBEvaluationtime oL 122

2.6.5 Discussion e 123

27 Related Work 124

Conclusions and future directions 125

A Additional topics 128
A.1 Efficient multi-dimensional indexing (the ACM SIGMOD Programming Con-

test 2012) e 128

A.2 Web source selection for wrapper inference 132

4

B Condensé de la these en francais 138

B.1 Introduction 138
B.2 Condensé du premier chapitre 143
B.3 Condensé du deuxieme chapitre L. 156

Introduction

Data search and access: a pragmatic perspective

We are nowadays surrounded by data: personal and enterprise data, sensor-collected data, mas-
sive amounts of data coming from the Web and social networks. Big data has become a com-
monplace in mainstream vocabulary. With the ever increasing storage and computational tech-
nologies available, big data seems easier and easier to digest, and there is a rising tendency of
taking for granted the resources involved in searching and accessing any piece of data.

The cost is however there, and indeed data search and access comes at a cost, even when
one owns the data. From a plain financial angle, this cost can be seen as the prohibitive price of
storage and processing equipment, or alternatively access fees for various cloud-based services,
when the storage and processing power is outsourced. As soon as resources are limited for
financial purposes, the cost becomes visible as the slowness in the search and access of data:
suddenly, one is facing a long wait for the execution of a medium-sized SQL query over a
medium-sized database. This may come as a surprise for the Google user accustomed to an
instantaneous answer to his/her query over the vast World Wide Web.

It is typically in these settings that the need for optimization in data search and access finds
its way back to the spotlight. One realizes the need for clever algorithms that allow diminishing
storage and transfer and speeding up search, without involving additional resources. Search and
access accelerators like caches, materialized views and indexes come back into focus, after being
shadowed by the fake certitude that querying and accessing (big) data is inherently fast. Any
opportunity for optimization in practice becomes a desired goal: efficient in-memory processing,
polynomial or even less exponential algorithms with efficient and well-adapted implementations.

Materialized views as a data search and access enhancer

Among the search and access accelerators, materialized views and caches have been for a long
time known for their benefit in speeding up queries, quite often dramatically. While the term
views has a database-related connotation, cache is an ubiquitous term nowadays, omnipresent in
topics related to Web servers and clients. Both concepts express the notion of short-circuiting
some costly remote access and/or some costly processing involved in the search of data, by
(locally) materializing pre-computed results.

Using views for decreasing the cost of data search and access raises however a range of
questions, such as which views should be materialized for best access efficiency, and how should
these views be efficiently maintained up-to-date. Furthermore, to achieve a gain in performance

by relying on materialized views, the cost of selecting and maintaining them should be such that
it is largely counterbalanced by the speed-up obtained by employing these views for searching
and accessing data. Even when all these issues are dealt with, there remains the paramount
question of whether and how existing materialized views can be used to answer a given query -
in other words, the problem of query rewriting using views.

Rewriting using views and query reformulation

Besides the above classic query optimization scenarios, where the purpose is to accelerate query
execution by relying on previously materialized views, view-based rewriting can be further
placed in the general framework of query reformulation: given a query () expressed against
a source schema S, find an equivalent query R formulated against a target schema 7', by ex-
ploiting the relationship between .S and 71'. Query reformulation further includes several other
problems that have occupied database research and practice for decades, such as physical access
path selection and semantic optimization (e.g. redundant join elimination and other instances of
rewriting queries under integrity constraints).

Accordingly, views can be seen not only as data access accelerators, but more generally
as data access models. For instance, beyond the caching properties, views can also express
secured entry points in a context of security restrictions. In this case, the access through views
is not aimed at because of potential speed-up, but because it becomes the only possible access.
A similar, though more refined setting involves data pricing scenarios, when the access is not
only restricted but furthermore priced differently according to the views employed. Moreover,
mediator-like and multi-storage or multi-model architectures can also be modelled using views
and thus provide a variety of practical settings of query reformulation and view-based rewritings.

Outline and contributions

In this work, we address the problem of query rewriting using views, by adopting both a the-
oretical and a pragmatic point of view. We place an important focus on theoretical analysis,
correctness and complexity; in the same time, we are constantly driven by a pragmatic per-
spective, and many of our theoretical developments stem from the need of achieving practical
performance.

In the first and main chapter of this thesis, we approach the topic of finding minimal
conjunctive query reformulations for relational conjunctive queries, under integrity con-
straints, where these constraints include (but are not limited to) the relationship between the
source and the target schema. A minimal reformulation is such that it does not contain in the
FROM clause elements that are redundant, unnecessary for ensuring equivalence with the to-be-
reformulated query, under the given constraints.

All the reformulation algorithms we are interested in throughout this work are expected to be
sound, that is, to return correct reformulations (equivalent to the input query). In our approach of
the minimal reformulations problem, we further place a major focus on achieving completeness.
In general, for a reformulation algorithm, its completeness (or strong completeness) with respect

to a class of solutions means the capacity of finding all reformulations in the given class. The
immediate and central interest of finding all minimal reformulations is that, under reasonable
cost models, the minimum-cost reformulations will always be a subset of the minimal ones.

Completeness is thus clearly desirable for practical scenarios that define a certain measure of
a query as the overall minimum across a/l its reformulations. For instance, consider the case of
access control enforcement via security views [54, 61], where a query is considered safe only if
it has a total rewriting using a set of safe views. In previous work, the existence of such rewriting
sufficed for the query to be allowed to run (against the base tables, the safe views being virtual).
Let’s refine the scenario by having each view require a certain clearance level, and assume that
an analyst wishes to establish the minimum clearance level required to answer a query so he can
go request it. This involves then finding all possible total rewritings and selecting the minimum-
clearance one(s) among them. The same reasoning can be developed for data pricing [43] sce-
narios, in which the data owner sets the price for several views over his data. Subsequent queries
can then be priced automatically whenever they are determined by the priced views, such that
the query price is that of the cheapest total rewriting. Completeness is also essential in classical
optimization, as the best reformulation among those inspected by an incomplete algorithm can
be significantly worse than the optimum one(s), which a complete reformulation algorithm is
guaranteed to find. Indeed, as our experiments show, even the best reformulation found by a
sophisticated commercial relational optimizer in a natural setting involving materialized views
can execute orders of magnitude slower than an optimum reformulation.

However, given that the particular case of reformulation corresponding to total view-based
rewritings of a query has an NP-hard associated decision problem even in the absence of con-
straints [46], conventional wisdom has held so far that completeness is likely to remain a concept
of mainly theoretical interest. Indeed, for the Chase & Backchase [27], which is the only com-
plete algorithm we are aware of in this context, the search for minimal reformulations does not
scale beyond the low end of the spectrum of practically occurring query and constraint set sizes.
The reason is that, even when there are few actual minimal reformulations for a query, the C& B
inspects a number of candidate reformulations that is often exponential in the size of the query
and number of views, thus launching exponentially many chases. [60] confirms this fact exper-
imentally, then dedicates the bulk of the results to heuristics that dramatically reduce the search
space for minimal reformulations by trading completeness for search speed. Similar trade-offs
are adopted by all other existing implementations for query reformulation, including the opti-
mizers of relational DBMSs and the follow-up C'& B-based implementations for XML query
reformulation in [29, 57, 70].

In this work, we challenge conventional wisdom and hardness results by presenting a novel
sound and complete algorithm, the Provenance-Aware Chase & Backchase, that solves the
minimal reformulations problem with practically relevant performance. We provide its de-
tailed theoretical characterization and its optimized implementation. We further present
its experimental evaluation, and exhibit natural scenarios yielding speed-ups of up to two or-
ders of magnitude between the execution of a best view-based rewriting found by a commercial
DBMS and that of a best rewriting found by Provcg g (which the DBMS misses because of
incomplete reasoning about reformulations). We further show how to adapt our algorithm to-

wards directly finding minimum-cost reformulations for monotonic cost functions, and the
performance gains this adaptation can further induce.

The Provenance-Aware Chase & Backchase transforms the standard Chase & Backchase
algorithm by employing a much more directed, goal-oriented technique for the search of refor-
mulations. The main reason for the performance achieved by Provcg p is the fact that the
potentially exponential number of chases in the original Chase & Backchase is replaced in
the Provcg g by a single chase, employing a novel chase technique, the Provenance-Aware
Chase. As its name implies, the Provenance-Aware Chase is a chase procedure that employs
provenance instrumentation, such that the provenance annotations it produces and maintains
reflect the minimal reformulations we are interested in. The particular provenance flavour em-
ployed corresponds to the minimal-why provenance, introduced for a different purpose in [14].
The design of the Provenance-Aware Chase has been technically challenging, as the standard
chase is not directly suited for provenance instrumentation, creating the need for the design
of an additional, provenance-agnostic chase flavour, which we call the Conservative Chase.
In its statement as the Conservative Chase with provenance annotations, besides its usage in
Provcg g, the Provenance-Aware Chase becomes interesting on its own, as a means of reason-
ing about the interaction between provenance and constraints.

In the second chapter of this thesis we move to an XML context and revisit the previous
work by Cautis, Deutsch and Onose, presented in [16] and detailed in [56], on XPath rewrit-
ings using a single level of intersection of multiple views: that is, rewritings where one first
navigates inside the views, then intersection occurs, and then potential additional navigation
may be applied. The work we revisit provides a complexity analysis for the rewriting problem
in this setting, as well as a sound and complete algorithm for its resolution. Compared to the
setting analysed in the first chapter, the completeness concept targeted is one of weak complete-
ness: an algorithm is complete in this case if it finds at least one reformulation in a given class
C whenever one exists. Note that a weakly complete reformulation algorithm can serve as a
decision procedure for the problem of existence of a reformulation from C, but goes beyond
the requirements of the decision problem by outputting the reformulation. In the case of the
XPath rewriting setting we revisit, this behaviour is desirable and useful for instance for sce-
narios of security-restricted access through views, as those mentioned above (without any cost
refinement), where the access through views is the only possible access, and it is essential to find
such an access as soon as one is available.

Our main motivation for the work presented in the second chapter is that of investigating
and achieving practical performance. Following the proven hardness results, [16] presents and
[56] details the usage of a rule-based procedure for inferring an additional sound algorithm
that solves the rewrite problem, as well as conditions for this sound algorithm to become com-
plete. We refine this rule-based procedure to ensure its polynomial complexity and enhance the
completeness conditions of the corresponding rewriting algorithm. We further present a range
of optimisations of the rewriting techniques, necessary in order to achieve practical perfor-
mance. We provide a complete implementation of the rewriting techniques comprising these
refinements and optimisations, and further present a thorough experimental evaluation thereof,

which shows the practical performance and benefits of the refined and optimized polynomial
rewriting procedure.

As a side effect of our review of the work in [16] and [56], we also enrich the analysis of
the rewriting problem by showing, structuring and clarifying its connections to the problem of
deciding the equivalence between a query expressed by a DAG pattern and a query expressed by
a tree pattern, and further to the problem of union-freeness, i.e. finding any tree pattern query
equivalent to a DAG pattern query.

The first chapter of this thesis builds on, refines and extends our paper [42]: Ileana, Cautis,
Deutsch, Katsis, Complete yet practical search for minimal query reformulations under con-
straints, SIGMOD Conference 2014, 1015-1026.

Our cost-based refined version of Proveg g as described in the first chapter is further in-
tended to provide a main brick of the ESTOCADA system, presented in the paper (currently
under review for CIDR 2015): Bugiotti, Bursztyn, Deutsch, Ileana, Manolescu, Invisible
Glue: Scalable Self-Tuning Multi-Stores.

Finally, the second chapter refines and extends our contribution to the journal paper (cur-
rently under review for TCS): Cautis, Deutsch, Ileana, Onose: Rewriting XPath queries using
view intersections: tractability versus completeness.

Other topics explored during this PhD

While this manuscript’s main focus is on view-based rewritings, this PhD comprises additional
work on several other topics belonging to the broader range of query accelerators.

The main two such topics, explored in detail and presented in Appendix A, are related to in-
dexing. The first one, provided by the ACM SIGMOD Programming Contest 2012, involves
the construction of a multidimensional, high-throughput, in-memory index structure, support-
ing common database operations such as point and range queries as well as data manipulation,
in a highly concurrent setting consisting of many client threads operating queries and updates
in parallel. We present in Section A.1 our work on this topic, which has been rewarded with the
second prize in the contest.

The second indexing-related topic concerns structured Web sources indexing and selec-
tion for Web wrapper inference. Structured Web sources are sets of web pages exhibiting similar,
structured contents, such as the Amazon book pages. Web wrapping involves the extraction of
the pages’ relevant data by relying on their common structure. Web source selection supposes
a user-provided lightweight description of the type of data that is targeted and its usage for se-
lecting, via an index-based structure, a subset of previously crawled sources matching this data
requirement. We present in Section A.2 our work on this topic, developing previous work by
Derouiche, Cautis and Abdelssalem, and supported by the Arcomem project.

Finally, a third topic explored is one that spans both indexing strategies and view-based
rewriting, and concerns the problem of view indexing to the purpose of speeding-up the rewrit-
ing computation. While currently in an early development stage, we believe this topic to be of
interest and worth pursuing in future work, as a means of providing complementary performance
enhancements to our reformulation approaches presented in this manuscript.

10

Chapter 1

A complete yet practical algorithm for
finding minimal query reformulations
under constraints

We present in this chapter the Provenance-Aware Chase & Backchase algorithm (Provcg p)
for finding minimal conjunctive query reformulations for conjunctive queries, under constraints.
The Provcyg p revisits the classic Chase & Backchase (C'& B) algorithm [27] with a clear and
simple aim: preserve completeness (a paramount feature of the original C'& B) but at practically
relevant performance (which the original C'& B fails to achieve).

We recall the problem of query reformulation, as presented in the introductory section: given
aquery @, formulated against a source schema S, find an equivalent query R formulated against
atarget schema 7', by exploiting the relationship between S and 7. The authors of the C'& B start
from the observation that in an important range of instances of the query reformulation problem,
the relationship between the source and the target schemas can be expressed by constraints.
They then present a uniform and generalized solution to such problems, in the form of the C'& B
algorithm, which finds all the minimal reformulations under a set of constraints that includes,
but is not limited to, the relationship between the schemas S and 7. The C'& B applies to rela-
tional conjunctive queries (select-project-join-rename under set semantics) as the language for
specifying the input query and the reformulations, and constraints expressed as embedded impli-
cational dependencies [1, 32]. These include essentially all of the naturally-occurring integrity
constraints on relational databases (keys, foreign keys, referential integrity, inverse relationships,
functional, join, inclusion and multi-valued dependencies, etc.), and are also ideally suited for
capturing physical access paths typically used in query optimization (e.g. materialized views
expressed as conjunctive queries, indexes, access support relations, gmaps) [27].

In a nutshell, the C& B is based on constructing a canonical reformulation called a universal
plan (because it incorporates redundantly all 7-schema elements relevant to the original query),
then searching for reformulations among the candidates given by the subqueries of the universal
plan. The purpose of the search through the subqueries of the universal plan is to eliminate
its redundancy in all possible ways, thus obtaining minimal reformulations, i.e. reformulations

11

containing no elements in the FROM clause (relational atoms) that are redundant for the equiva-
lence to hold under the constraints. The inspected subqueries are checked for equivalence under
the constraints to the original query using the classical chase procedure [1], which in essence
adds to a query elements that are implied by the constraints. The C'& B was shown in [31] to
be complete, that is to return all equivalent minimal reformulations of a query under the given
constraints. Unfortunately, its completeness does not scale beyond the low end of the spectrum
of practically occurring query and constraint set sizes. The main reason is that, even when there
are few actual minimal reformulations for a query, the C'& B inspects a number of candidate
subqueries of the universal plan that is often exponential in the size of the query and number of
views, thus launching exponentially many chases.

In the work presented hereafter, we revisit the C'& B with the aim of preserving completeness
while further achieving practically relevant performance. Our complete query reformulation al-
gorithm, Provcg, g, constructs the same universal plan as the C'& B, but employs a novel, much
more goal-directed search technique, that inspects up to exponentially fewer candidates than the
C& B. This search is based on a novel Provenance-Aware Chase, which tracks provenance in-
formation that serves for tracing the added query elements back to the universal plan subqueries
which are responsible for them being added. This allows Provgg g to directly "read off" the
minimal reformulations from the result of a single chase of the universal plan, saving the expo-
nentially many chases of its subqueries, which the original C'& B would perform. We further
show that with the Provenance-Aware Chase, the cost of running a complete search for minimal
reformulations can be reduced in practice to a small fraction of typical query execution times,
and the benefits are potentially huge in practically relevant settings.

The design of the Provenance-Aware Chase was technically challenging, as it turns out that
the standard chase is not well-suited for instrumentation towards tracking the required prove-
nance. Directly instrumenting the standard chase turns out to compromise the soundness of the
resulting reformulation algorithm (i.e. it would return non-equivalent reformulations). We thus
design the Provenance-Aware Chase based on a different, provenance-agnostic chase flavour,
which we call the Conservative Chase and which, as we formally show, is able to provide the
required sound behaviour, thus ensuring the overall correctness of Provcg p.

The remainder of this chapter is organised as follows: we recall the C'& B in Section 1.1, then
present a high-level overview and a set of essential intuitions on the Provgg g in Section 1.2.
We formally describe the Provog p in Section 1.3, and present its theoretical soundness and
completeness guarantees, as well as a detailed description of the chase procedures it relies on.
We present the implementation of Provgg g in Section 1.4 and its evaluation in Section 1.5.
We further show how to efficiently adapt Provcg g to compute minimum-cost reformulations
by introducing incremental cost-based pruning in Section 1.6. We discuss related work in Sec-
tion 1.7.

1.1 Overview of the Chase & Backchase

We dedicate this section to recalling the C'& B algorithm. We start by recalling the main con-
cepts it relies on:

12

Queries and subqueries. The C'& B algorithm applies to queries and reformulations expressed
as select-project-join-rename (SPJR) queries with set semantics (a.k.a. conjunctive queries). In
other words, these are SQL queries (with no nesting and no aggregation) comprising a SELECT
DISTINCT clause, a FROM clause and a WHERE clause consisting exclusively of equalities
"=") among column names or between column names and constants, combined using "AND".
We refer to the variables in the FROM clause of such query as tuple variables. We call (pro-
Jection) attributes the items in the WHERE clause of the form r. A, where R r is in the FROM
clause and A is a column of the table R.
Given a conjunctive query () as above and a subset of its tuple variables, we will in the fol-
lowing denote by the subguery of Q) induced by the given set of tuple variables, the conjunctive
query Q' obtained as follows:

e the FROM clause of @)’ contains all the FROM clause elements of @) corresponding to the
tuple variables that induce Q’

e the WHERE clause of Q" comprises the (explicit or implicit) equalities in the WHERE
clause of @ that use attributes of (”’s FROM clause elements.

e the SELECT DISTINCT clause of)" contains the same attributes as the SELECT DIS-
TINCT clause of @, potentially replaced by attributes of ', such that)’ is syntactically
correct and any replacement attribute is in the same equivalence class with the original
one, according to the reflexive, symmetric and transitive closure of the equalities in the
WHERE clause of Q.

Remarks. Note first that several replacements of attributes for the third point above might be
possible. The resulting queries being equivalent, we will hereafter refer to the subquery induced
by a subset of tuple variables. Note also that the third point above cannot be achieved for any
subset of the tuple variables of (). Indeed, the construction of a valid SELECT DISTINCT
clause for Q' is achievable iff for any attribute in the SELECT DISTINCT clause of (), there
is at least one other member in its equivalence class such that it is an attribute of Q'’s FROM
clause.

Given a subset of the tuple variables of () for which one cannot construct a syntactically
correct subquery, by a slight abuse of terminology, and to the purpose of ensuring the uniformity
of the developments hereafter, we will refer to such non-valid induced subquery as unsafe.

Example 1.1.1. Consider the schema R(A), S(C, D), T(E) and the query:

Q :select distinct r. A from Rr, S s, T t where s.C =r.Aandt.E = s.D
Then the query:

Q1 : select distinct s.C from S s, T't where t.E = s.D

is a subquery of Q, induced by s and t, and is also a safe subquery. Note the replacement of r. A
by s.C' in the SELECT clause, which is possible because of the corresponding equality in the

13

WHERE clause of Q.

On the other hand, the subquery Qo induced by t alone is unsafe. Indeed, the only attribute of
Qo, t.I, is not equated directly or indirectly to r.A in the WHERE clause of Q.

Constraints. The C'& B algorithm takes as input constraints expressed as embedded dependen-
cies [1], thus comprising TGDs (tuple generating dependencies) and EGDs (equality generating
dependencies), and having the following general form (see Example 1.1.2 for an example of
such constraints):

VT, eo oy TmaT1 E RN ATy €E Ry ANE = 351,...,8,,81 €ES1 A~ Asp, €S, N\ Eo

where Ry, ..., Ry, S1,...,5, are relations in S U 7', the membership predicates r; € R; par-
alleling the contents of the FROM clause of an SQL query, and F; and E5 are conjunctions
of equalities on the attributes of 1 € Ry,...,r, € R, respectively 11 € Ry,...,rm €
Ry, s1 € S1,...,8, € Sy, paralleling the contents of the WHERE clause of a query. Intu-
itively, such constraints enforce the fact that if the tuples rq, ..., 7, exist in a database (in the
corresponding Ry, ..., R, tables) and respect the conditions of equality in E, then the tuples
s1, - .., S, must also exist in the database (in the corresponding tables) and the conditions of E
must be verified as well. If the set of tuple variables s; is empty then the constraint is said to be
an EGD (it only enforces equalities on the tuples r;, as does for instance a key constraint), else
the constraint is a TGD. Section 1.3 further provides a detailed description of constraints, their
normalized form and their usage throughout our theoretical developments.

Equivalence of queries under constraints. We write D |= C if a database instance D satisfies
all the constraints in a set C. A query (); is contained in query ()2 under the set C of constraints
(denoted Q1 C¢ Q2) if and only if Q1 (D) C Q2(D) for every database D |= C, where Q(D)
denotes the result of @ on D. () is equivalent to ()2 under C (denoted Q1 =¢ (J2) if and only

if Q1 Cc Q2 and Q2 T Q1.

Reformulations and minimal reformulations. Let S and 7" be two relational schemas and C a
set of constraints comprising the relationship between S and T'. A T'-reformulation under C of
a query () formulated against S (that is, mentioning only relations/tables from .S in the FROM
clause) is a query R formulated against 7', such that) =¢ R. A reformulation is C-minimal if
it contains no elements in the FROM clause that are redundant under the constraints C, i.e. no
such element can be removed while preserving equivalence (under C) to the original query.

We further present the C'& B by showing its behaviour on an example [26] of query refor-

mulation. !.

'To ensure readability, the example presents a simple setting of query reformulation, namely that of total rewriting
of queries using materialized views, without integrity constraints besides those relating the source and the target
schema. Examples including additional integrity constraints are given in Section 1.5.

14

Example 1.1.2. Assume that a software company stores some of its internal information in the
following schema:

R(A,B,C), S(C,D), T(D,E).

The R table shows software engineers’ assignment to teams, as tuples engineer id(A), engi-
neer role(B), team id(C'). One software engineer can participate in several teams and possibly
hold several roles in a given team. The S table represents teams’ participation on products, as
tuples team id(C), product id(D). A team can of course work on several products, and several
teams may collaborate on a given product. Finally, the T table lists the high priority production
incidents as tuples product id(D), incident id(E).

To achieve rapid incident resolution, the QA manager needs to email all the engineers that
could help fix the incidents. The list of these engineers is determined by issuing the following

query2
Q : select r.A from Rr, S s, T t where r.C=s.C and s.D=t.D,

Now assume that the following views have been materialized:

VRr(A,C): select rA, nC fromRr
Vs(C,D): select 5.C, s.D from S's
Vrs(A,D): select r.A, s.D from Rr, S's where .C=s5.C
Vr(D,E): select t.D, t.E from Tt

Vi shows engineers’ participation in teams, regardless of their role. Vg lists every engi-
neer’s participation on products. It is easy to see that

R;: select v,.A from Vg vy, Vg vs, Vir vy where v,..C=v,.C and vs.D=v;.D
Ry: select vy5.A from Vgyg vrs, VT v where v,s.D=v4.D

are equivalent rewritings of Q) using the views (these are total rewritings, as they use no base
schema tables). Also, each rewriting is minimal, in the sense that none of their FROM clause
elements can be removed while preserving equivalence to (). Note that given a choice of such
FROM clause elements, the equalities among their attributes are uniquely determined for the
resulting query to be a reformulation.

The C& B algorithm analyses the above problem as an instance of the reformulation prob-
lem, for which the source schema is the schema against which the query Q) is formulated (tables
R, S, and T in this example), and the target schema is the schema of the materialized views
(tables Vr, Vs, Vrs and V). The set C of dependencies relating the two schemas is obtained by
unioning the set Ct of integrity constraints (empty in our example) with the set Cy of embedded
dependencies expressing the set V of view definitions. These embedded dependencies are all
TGDs and are presented below. For each of the view definitions, two TGDs are produced, a

2Since all queries in this paper are interpreted under set semantics, we systematically drop the DISTINCT key-
word for conciseness.

15

forward one (denoted by the letter c) and a backward one (denoted by the letter b). Note that
the backward constraints are not full TGDs, that is, they present, right of the implication arrow,
attributes that are undetermined, for instance the r.B attribute in the case of by,.

vy, v, € Ve Avp. A=1r.AN0v,..C =7r.C
dr,re RAr.A=v.. ANr.C =v..C

Jvg,vs € Vg ANvs.C = 5.C ANvg.D = s.D
ds,s € SANs.C =v;,.CNs.D=wvs.D

Fvps, Urs € VR A Ups.A =1 AN vps.D = 8.D
dr,s, re RAs€ SAr.A=uv5A
ANs.D=uv.s.DNr.C=sC

Jvg, v € Ve Ave. D =t. D ANve. E =t.FE
dt,te T ANt.D=v.DANtE =v.E

cvgp: Vr,r € R

bv,: Yo, v, € Vg

cvg: Vs, s €S

byy: Vus,vs € Vg

CVps VT8, T€E RAs€ SAr.C =s.C
bVRS-'VUTs-; Urs € VRS

Ll

Cvp! Vi, t €T
byv,: Vv, v € Vr

Ll

The C'& B algorithm relies on the chase procedure, which essentially adds to a query the
redundant elements implied by the constraints. This is accomplished by repeatedly applying a
syntactic transformation called a chase step. To describe it, we introduce some terminology. We
call relational atoms the membership predicates occurring in the constraints (e.g. » € R in by,
in Example 1.1.2) and use the same name for the variable bindings occurring in the FROM clause
of a query (e.g. R r in query () in Example 1.1.2) because they express the same concept with
different syntax. We call equality atoms the equalities occurring in constraints or the WHERE
clause of a query. The premise of a constraint is the set of atoms left of the implication arrow,
while the conclusion is the set of atoms to its right.

The chase step checks if the premise dp of a constraint d € C matches into the query, in
which case the query is extended with atoms constructed from the conclusion d¢c. The match is
a function h from the premise variables to the query variables, which maps the premise atoms
into query atoms. This function is known as a homomorphism [17]. The extension of the query
involves adding to the FROM clause the relational atoms from d¢ (with fresh variable names
to avoid clashes with existing variables in the FROM clause) and to the WHERE clause the
equalities from d¢ (occurrences of premise variables are replaced by their image under h). If
the standard chase considers that these atoms already exist in the query (i.e. a homomorphism
extension exists), then the chase step is said to not apply, and it turns into a no-op°.

Example 1.1.3. We illustrate a chase step of query Q) from Example 1.1.2 with constraint cy,.
The identity mapping on the premise variables matches the relational atoms r € R and s €
S and the equality atom r.C=s.C into, respectively, the first and second relational atoms in
Q’s FROM clause and the first equality atom in its WHERE clause. The chase step adds the
conclusion atoms to @), yielding:

3In general, when chasing with EGDs, there may exist a third case, besides application and non-application: a
chase step with an EGD may fail if it equates explicitly or implicitly two distinct constants. We consider in the
following only input comprising a to-be-reformulated query and a set of constraints that are compatible, that is, such
failing of a chase step may not occur. Alternatively, when one failing step is encountered in a chase sequence in the
C& B, one could conclude directly to the non-existence of reformulations.

16

Q' : select r.A
from Rr, Ss Tt Vigs vys
where r.C=s.C and s.D=t.D and v,s.A=r.A and v,s.D=5.D.

The result of chasing a query () with a set of constraints C is obtained by applying a sequence
of chase steps until the query can be no longer extended. We denote this result with Q¢.* The
C'& B algorithm proceeds in two phases:

1. Chase: The input query (@ is chased with the constraints C, to obtain a chase result Q°.
Next, the universal plan U is constructed by restricting Q€ to schema T', i.e. by keeping
only T-elements in the FROM clause and the corresponding equalities in the WHERE
clause.

2. Backchase: This phase checks the subqueries of the universal plan U for equivalence
(under C) to (). The equivalence check is performed according to a classical result [1]: it
involves chasing each subquery sq and checking that () has a containment mapping into
5¢¢. A subquery is in the result set of the C'& B if it respects this equivalence check and
furthermore it is minimal.

Example 1.1.4. The chase phase. When chasing QQ with C = Cy, the only chase steps that apply
involve cyy,, Cvy, Cvyp,y Cvgg, yielding the chase result:

Q% : select r.A
from Rwn Ss, Tt Vi v, Vguvs, Vi vy, VR Upg
where r.C=s5.C and s.D=t.D and v,.A=r.A and v,.C = r.C and v;.C=s.C
and vs.D=5.D and v;.D=t.D and vi. E=t.E and v,s.A=r.A and v,s.D=s.D

Restricting Qv to the view schema yields the universal plan>:

U: select v,..A
from Vg v, Vs vs, Vi vy, Vis vrs
where v,..C=v,.C and vs.D=v;.D and v,..A=v,s.A and vs.D=v,5.D

The backchase phase. In this phase, the subqueries of U are inspected. Notice that R, Ra
above are among them, being induced by the sets of tuple variables {v,,vs, v}, respectively
{vrs,v1}. To find out that Ry is equivalent to), the C& B first chases Ry with Cy. The only
applicable chase steps involve by, by, yielding the result:

“While the chase is not guaranteed to terminate in general, we confine ourselves here to terminating chases,
which yield a finite result. It is well-known that the resulting query is not necessarily unique, as it depends on the
non-deterministic choices made during the chase sequence among simultaneously applicable chase steps. However,
the result is unique up to equivalence [1], which suffices for our purposes. We will therefore refer to "the" chase
result hereafter.

SEqualities of terms involving view variables that were implicit in QY are made explicit in U, by taking the
transitive closure of the equality relation.

17

Rg" : select v,4.A
from Vgg vps, Vevy, Ry, Ss, Tt
where v,.s.D=v;.D and rA=v,5.A and s.D=v,s.D and s.C= r.C and t. D=v;.D and t. E=v;.E

Since the identity mapping on variables is a containment mapping from Q) to Rgv, Ry is
equivalent to), and thus a rewriting. Rs is moreover minimal, since none of its subqueries is
a rewriting of Q) (the backchase checks this by trying the subqueries). Ry is therefore output
by the C&B algorithm. Ry is discovered analogously. It turns out that there are no other
minimal rewritings of Q). The backchase phase determines this by systematically checking the
other subqueries of U, but discarding them as not being equivalent to (), or not being minimal.
For instance, the subquery

sq: select v..A from VR v, Vi v,
is not a rewriting of Q) because equivalence doesn’t hold, and the subquery

sq': select vps.A from Vgs vps, Vs vs, Vi vy
where v,s.D=vs.D and vs.D=vs.D

is a rewriting but is not minimal, since by removing the atom Vg vs from the FROM clause
one obtains Ro which is itself a rewriting, therefore the Vg vs is redundant, unnecessary for
equivalence.

The fact that rewritings R; and Ro in Example 1.1.2 are discovered among the subqueries
of U is not accidental. In [27], it was shown that all minimal rewritings of () are (isomorphic to)
subqueries of U, and this result was extended to the presence of integrity constraints expressed
as embedded dependencies, as long as they ensure terminating chases, in [31].

Note that, as further emphasized in Section 1.3, for arbitrary sets C of constraints, the chase
procedure is not guaranteed to terminate. One of the least restrictive and most referenced con-
ditions on C known to date, that is sufficient to ensure chase termination regardless of the input
query @, is called weak acyclicity [33].

Practical performance of the C&B. [60] describes the first C'& B implementation and
identifies the backchase phase as the practical performance bottleneck; this is due to the ex-
ponentially many subqueries of the universal plan that are chased so as to be checked for
equivalence with the original query. To improve performance, the follow-up work then proposes
techniques for pruning the search, the only completeness-preserving pruning technique being
the one sketched in [60] and detailed in [59]. This technique boils down to simply enumerating
subqueries of the universal plan U in a bottom-up fashion, starting with all single-atom sub-
queries, next with two-atom subqueries, etc, pruning thus subqueries that are known to be not
minimal because they already include a minimal reformulation (such as sq’ in Example 1.1.4).

The pruning achieved by the above strategy, in turn, although beneficial, still does not avoid
the chase of a potentially exponential number of subqueries (obviously, at least all those
subqueries with less relational atoms then the smallest minimal reformulation will be chased).

18

Moreover, if no reformulations exist, then no pruning can be applied and all the subqueries of
the universal plan are chased. To avoid the unnecessary effort in this case, [60] proposes to first
check that a rewriting exists. This check is based on the property that a reformulation exists
iff the universal plan is itself a reformulation - that is, if () has a containment mapping into the
result of chasing U with C.

Example 1.1.5. Continuing with Example 1.1.4, a possible chase sequence of U with Cy in-
volves, in order, chase steps with by, by, by, and by, yielding

U : select v,.A
from Vg v, Vg vs, Vo v, Vrs, Urs, R171, S S1, R12, S 89, T't
where v,..C=v5.C and vs.D=v;.D and v,.A=v,s.A and vs.D=v,5.D and r1.A=v,s.A
and s1.D=v,5.D and r1.C=s1.C and r9.A=v,..A and ro.C=v,.C
and s9.C=v,.C and s9.D=v¢.D and t.D = vi.D and t.E = v;.E

There exist two containment mappings from Q to UV, namely hy = {r—ri,s— s1,t—
t} and hy = {r + ra,s — sa,t > t}. Therefore at least one rewriting exists, and one can
further examine the universal plan subqueries in search of minimal rewritings.

Even with the above improvement, the bottom-up search strategy fails to achieve practi-
cally relevant performance, due essentially to the same problem of a large number of chases.
Moreover, and unfortunately, among those subquery chases that are in cause for the decrease
in performance, many turn out to be fruitless, because after chasing no containment mapping
is found, hence the subquery is (expensively) chased only to be discarded by the absence of a
mapping. Moreover, one can note a high degree of redundant chasing, of the atoms and groups
of atoms occurring in common within distinct subqueries. By construction of the C'& B, this
redundancy cannot be avoided.

Example 1.1.6. In Example 1.1.2, the bottom-up search strategy will prune the superqueries of
R, Ry, i.e the subqueries induced by v, vys, v; and vs, vy, Vg, as well as the universal plan
itself. Unsafe subqueries (e.g. those induced by vs, vy, and vs, v;) will also be pruned, since
only safe rewritings are of interest. However, the following 7 subqueries of U (induced by): v,
Urss Upy Usy Up, Vs Up, Upss Vs, Upss Up, Us, Ups Will all be fruitlessly chased, only to discover that
they are not rewritings of Q. Furthermore, the atom Vi vy is redundantly chased multiple times
(with U to determine the existence of a rewriting, with Ry and Ry etc.).

1.2 A novel algorithm: the Provenance-Aware Chase & Backchase

We dedicate this section to showing a different and much more efficient approach of the backchase
phase, and to presenting a high level overview of the resulting novel reformulation algorithm,
the Provenance-Aware Chase & Backchase.

Indeed, we will sketch in the following (and demonstrate with our experimental evaluation)
how, by our new strategy, the performance of a complete search for minimal reformulations can
be significantly more improved than just by the naive bottom-up strategy and the corresponding
pruning. The essential way of achieving such performance improvement is that of replacing

19

the potentially exponential number of subquery chases with a single chase of the universal
plan.

To ensure a sound and complete reformulation algorithm, this single chase should in turn be
able to retain all the relevant effect of the individual subquery chases. To achieve such behaviour,
we will thus instrument this chase with provenance annotations, whose final purpose will be to
reflect the minimal reformulations, that is, the subqueries of the universal plan that turn out
to be (minimally) equivalent to (). The ability to maintain and propagate in an unexpensive
fashion such provenance information during a single chase of the universal plan, would then
spare the exponentially many chases of its subqueries, which constitute the performance issue
in the C&B. By design, such approach will also avoid the fruitlessness and redundancy in
subquery chases.

By attaching provenance annotations to the atoms added during the chase, our goal will be
to identify, for each added atom, the parts of the universal plan (the original T-schema atoms in
the universal plan) that are responsible for creating the atom. Our annotations will then further
allow, once the annotated chase has finished, the minimal reformulations to be directly "read-
off"", by putting together individual atom annotations, and thus obtaining the required minimal
subqueries. The following example sketches the intuition behind this approach:

Example 1.2.1. We revisit Example 1.1.5 and show again the atoms resulting from the chase
of the universal plan, this time adding their corresponding provenance annotations in square
brackets. The view atoms originally in the universal plan are annotated with their correspond-
ing (unique) tuple variables. The atoms corresponding to relations R, S and T are annotated
according to the view atom that, by means of a corresponding chase step, was responsible for
introducing them:

U : select v,.A
from Vr Ur[vr]’ Vs US[US]) Vr Ut[vt]: Vrs Urs[vrs];
R ri[vps], S s1[vps), R ro[vy], S sa[vg], T t[vy]
where v,.C=v,.C and vs.D=v¢.D and v,..A=v,5.A and vs.D=v,s.D and r1.A=v,4.A
and s1.D=v,5.D and r1.C=s1.C and r9.A=v,.A and r9.C=v,..C
and s9.C=v,.C and so.D=vs.D and t.D = v;.D and t.E = v E

Recall the two containment mappings that we have shown from Q to UV, hy comprising
r1, s1 and t, and ho, comprising 9, s and t. The provenance annotations and these mappings
then allow reading off minimal reformulations as follows: the first image of @) puts together
the annotations v,s (two times, redundantly) and v;. Note how these correspond to the tuple
variables inducing the rewriting Ra. The second mapping provides the rewriting Ry as the tuple
variables v, and vs and vy.

Note how a single chase of the universal plan followed by finding the containment mappings
from Q to UV (steps that are already carried out in any efficient implementation of the original
C& B, to verify the existence of a reformulation) have allowed us to directly read-off all the
minimal reformulations available.

Furthermore, we have avoided the chases of these reformulations, as well as the fruitless
chases of the 7 subqueries listed in Example 1.1.6. Note also how the VT v, atom has been chased

20

only once, producing the T t[vi| atom whose provenance is then read through the mappings.
Finally, note how provenance annotations are simply copied from the premise to the added
conclusion.

Provenance-Aware Chase (pa-chase). The idea of the developments hereafter is thus the re-
placement of the large number of isolated chases of the subqueries of the universal plan with a
single chase, which captures via provenance the C& B-relevant effect of the isolated chases of
the U-subqueries. As sketched in Example 1.2.1, the pa-chase starts by annotating each original
relational atom of universal plan U with a provenance term corresponding to the tuple variable
of this atom, and thus uniquely identifying each original relational atom in the universal plan.

Every atom introduced during the pa-chase is further annotated with a provenance formula.
Provenance formulae are DNF boolean formulae, constructed from provenance terms using log-
ical conjunction and disjunction. Indeed, recall that a subquery of the universal plan is uniquely
induced by a subset of the relational atoms of the universal plan. These atoms correspond in turn
to provenance terms. A provenance formula in the form of a conjunction of terms then specifies
the unique subquery of the universal plan that is induced by these terms. A disjunction expresses
alternative such subqueries leading to the construction of the given atom.

Once the universal plan U is pa-chased into result U’, to find minimal reformulations, we first
compute the set # of all containment mappings from @ to U’. For each containment mapping,
we further compute the provenance formula of its image, which is defined as the conjunction
of the individual atoms’ formulae. We then produce the DNF form of the disjunction of the
formulae corresponding to images of these mappings.

Example 1.2.2. Recall the result of the pa-chase of the universal plan in Example 1.2.1, and
note the provenance terms.

U : select v,.A
fmm Vg vy [Ur]: Vs vs [Us]: Vi vy [Ut]: VRrs vrs [UTS]J
Rri[vrs], S si[vrs], Rra[ve], S salvs], T t[vy]
where v,.C=v,.C and vs.D=v;.D and v,..A=v,s.A and vs.D=v,s.D and r1.A=v,5.A
and s1.D=v,5.D and r1.C=s1.C and r9.A=v,..A and ro.C=v,.C
and s9.C=v,.C and so.D=vs.D and t.D = vy.D and t.E = vi.E

Recall also the two containment mappings that we have shown from Q to UV, hy comprising
r1, 1 and t, and hs, comprising 9, s and t. The provenance formula of the image of the first
mapping is then v.s N\ vps N\ vy which simplifies to v,.s N\ vi. The provenance formula of the
image of the second mapping is v, N\ vs A ve. The global DNF formula 11 representing minimal
reformulations is then (v,s A vy) V (vp A vs A vy)

While the examples above show our global approach, we develop hereafter the ideas behind the
pa-chase, and reveal the complexity of the problem of maintaining sound provenance annota-
tions. Indeed, our original motivation in designing the pa-chase was that of directly achieving,
by instrumenting the standard chase with provenance, the following goal:

21

(t) The provenance of an atom constructed during the pa-chase of the universal plan specifies
the set of minimal U -subqueries whose standard chases (conducted in isolation from each
other) would construct the atom.

The benefits of such a design would be that, as sketched in the example above, (i) by restricting
attention to only those universal plan subqueries identified by the provenance annotations we
do not miss any minimal reformulations, thus preserving completeness; and (ii) there is no
need to further chase the provenance-identified subqueries to check their equivalence to the
original query, thus rendering a single chase of U sufficient. This in turn is expected to provide
a significant performance improvement over the original C'& B, due to the replacement of the
expensive backchase phase by a sensibly lighter-weight procedure.

The technical challenge facing the implementation of this idea is raised by the need to care-
fully instrument the chase procedure to correctly track provenance according to our initial design
goal. As detailed shortly, it turns out that as defined the standard chase is not suited for such
direct instrumentation. The main reason for this lack of compatibility is that, intuitively, the stan-
dard chase is too aggressive in the application of its steps, and it will mix up atoms that should
be kept distinct in order to ensure that their respective provenance corresponds to goal (). This
particular problematic behaviour of the standard chase is linked, as we show hereafter, to the
presence of constraints whose conclusion has undetermined attributes. Standard chasing with
such constraints introduces atoms that are wrongly considered as identical and that, as detailed
hereafter, should be kept distinct to ensure the soundness of provenance annotations.

To account for such constraints, we have designed a less aggressive, more conservative chase
variation, which we call the Conservative Chase. It is provenance-agnostic like the standard
chase and essentially equivalent to it in terms of the produced result, and its termination is
guaranteed under weakly acyclic constraints. On the other hand, the important advantage of the
Conservative Chase is that it lends itself to direct provenance-tracking instrumentation for all
the types of embedded dependencies, yielding the pa-chase which is guaranteed to satisfy the
following invariant:

(0) The provenance of an atom constructed during the pa-chase of the universal plan specifies
the set of minimal U-subqueries whose Conservative Chases (conducted in isolation from
each other) would construct the atom.

Invariant (<) will ensure that in the final DNF formula II thus obtained, every conjunct is a
reformulation. While in our simple example it is further the case that these conjuncts are directly
minimal reformulations, in the general case we still need to minimize the resulting reformula-
tions. In general, given a reformulation R of () under C, minimizing R would involve searching
for its subqueries that are still equivalent to () (which in turn would be checked by chasing them
with C). Once again we employ provenance to avoid chasing. To this end, we observe that
conjunct ¢; € II induces a non-minimal U-subquery if and only if there is a conjunct ¢y € II
that subsumes c; in the standard Boolean logic sense: c3’s terms are a subset of ¢;’s (otherwise
said, c; implies c2). All we need to do therefore is to remove from II all subsumed conjuncts,
obtaining what we call the reduced form of 11, rf (II). The conjuncts of rf (II) each induce mini-
mal reformulations. Notice that this minimization not only avoids chasing, but it avoids even the

22

construction of reformulations, involving instead only lightweight manipulations of provenance
conjuncts.

We give a simplified, high level view of Provcg g below:

Provenance-Aware Chase & Backchase (source schema S, target schema 7',
set of weakly acyclic constraints C, query Q)
//chase phase:
1. compute universal plan U
by standard-chasing () with C and keeping only 7'-atoms

//provenance-directed reformulation search:

. compute the result U’ of pa-chasing U with C

. compute the set H of all containment mappings from (Q into U’

. compute IT as the DNF formula of \/, _,, 7(h(Q)), for 7(h(Q)) the formula of the image of h
. compute the reduced form 7f (II) of II

. return the U-subqueries induced by the conjuncts of rf (II).

AN DN B W

Note that, while the requirement of weak acylicity for the input constraints is stated specifi-
cally above, the Provcg g will be sound and complete in general for sets of constraints for which
both the standard chase and the Conservative Chase are guaranteed to terminate. While the
characterization of such (more complex than weak acyclicity) conditions is beyond the scope of
this work, it is certainly a very interesting follow-up direction, as we underline in our conclusions
chapter. We also emphasize there the interest of further refining the complexity analysis, both
time and space-wise, for the Provenance-Aware Chase. Indeed, compared to a non-annotated
chase version, the Provenance-Aware Chase could possibly introduce a significant space over-
head, by the worst case exponential space complexity for the provenance formulae. While we
show with our experimental section that our algorithm exhibits a satisfactory behaviour even in
stress-test practical scenarios, there are an important number of optimization directions worth
exploring in order to further improve the efficiency of our approach.

We present in Section 1.3 the detailed description of Provcg p and its formal guarantees:
namely, we show that Provgg g is sound and complete, thus returning all and precisely the
minimal reformulations of (). We dedicate the remainder of this section to further exploring the
main intuitions behind the central brick of the Provgyg p algorithm, the pa-chase.

Details on pa-chase. The design of the pa-chase walks a fine line between tracking provenance
as desired and ensuring termination of the resulting chase. We detail below some of the intu-
itions and analysis that led to its design. Hereafter, we will denote the provenance formula of an
atom a by m(a). The provenance formula of a set of atoms A (as shown above for the image of
a mapping) is obtained as the logical conjunction of the provenance formulae of its members:

m(A) = Ngea(a).

Recall that our first approach of the design of the pa-chase was an attempt to mimic the be-
haviour of the standard chase, by "plugging in" directly provenance annotations. Accordingly,

23

we present the intuitions below as referring to a fentative pa-chase step (tpa-step), modelled after
the standard chase step. In due course, we identify the need to substitute the standard chase with
the Conservative Chase in the actual definition of a pa-chase step, and Goal (1) with Invariant

().

11: the provenance of the image of the premise is transferred to the atoms introduced by
the chase step. Assume that a sequence of pa-chase steps has yielded a result q. Assume that a
standard chase step s with dependency d using match A applies on ¢, adding a set A of atoms
to g. By definition of the standard chase step, the premise dp therefore has an image h(dp)
in ¢. By Goal (7), the U-subqueries whose chases in isolation create this image are indicated
by m(h(dp)). Since each of these chases creates h(dp) in isolation, they each can be extended
with chase step s, so each of the U-subqueries in 7(h(dp)) when standard-chased in isolation
construct the atoms in A. To record this fact, the tpa-step adds the A-atoms and annotates each
of them with w(h(dp)). For instance, in Example 1.2.1, the pa-chase step with by, matches the
premise against the relational atom Vgg v,s, and it introduces the relational and equality atoms
involving tuple variables 71, s; (shown in U¢V), annotating relational atoms with provenance
Ups-

Towards ensuring termination, the standard chase never applies a step if it attempts to add
atoms that are already there (the step turns into a no-op). The notion of being "already there" is
formalized in the standard chase to mean that the premise’s homomorphic match i compatibly
extends to a homomorphic match of the conclusion. Denoting the extended match as 7/, the
atoms in ¢ that are "already there" are then the atoms in /’(d¢). In designing the pa-chase step,
one would be then tempted to parallel the standard chase step, turning the former step into a
no-op in this case. It turns out however that the pa-chase step must diverge from its standard
counterpart.

12: when the same atom a can be introduced by chasing several alternative U-subqueries,
a’s provenance must reflect this. Consider first the case when the atoms that are "already there"
are identical copies of the set A of atoms the standard chase step (with constraint d, using
premise match i) would attempt to add. Note that when adding relational atoms, the standard
chase step invents fresh names for the tuple variables, so when referring to an atom a € A as an
identical copy of an atom ¢ € h/(d¢), we mean that all their attributes are pairwise equal. Recall
from case 11 that w(a) = w(h(dp)). Now if m(a) contains at least one U-subquery sq that is not
in 7(c), then the isolated chase of sq would never construct ¢, hence the standard chase step con-
structing a would apply. In view of Goal (), the tpa-step records this behaviour by extending
the provenance formula of ¢ with a disjunction with w(h(dp)). We call such a step provenance-
enriching because instead of creating new atoms it only enriches the provenance of existing ones.

13: if the chase step produces atoms that match into q without being identical copies of the
match image, these atoms must be added and their provenance recorded. The technically most
subtle case for defining the pa-chase step is the one in which the atoms that the standard chase
step attempts to add (A) are not identical to those that are "already there" (h'(d¢)).

24

Example 1.2.3. Recall the pa-chase of universal plan U from Example 1.2.1, and assume that
this time the first two chase steps applied involve first by,,, then by, (the standard chase selects
randomly among the applicable steps, so we can observe a chase sequence distinct from the one
in Example 1.2.1). The intermediate result is Uy below, in which the tuple variables are named
to show correspondence to the tuple variables introduced in Example 1.2.1.

Us: select v,..A
from Vg v, Vs vs, Vp vy, Vrs vps, R 1a[vr], S s2(vg]
where v,.C=v,.C and vs.D=v¢.D and v,..A=v,5.A and vs.D=0,5.D
and r9.A=v,.A and r9.C=v,.C and s9.C=v,.C and s9.D=v¢s.D

Now consider a tpa-chase step with by, on U as defined above. The standard chase step
would attempt to add the relational atoms R r1, S s1 as well as all equalities they are involved
in (these can be seen in UV in Example 1.2.1). However the standard chase step would not
apply, as there is a match of r1, s1 into ro, So respectively, which matches the equality atoms
involving r1, s1 into the (explicit or implicit) equality atoms involving ro, so. Notice on the other
hand that ro is not a copy of r1, indeed, the equality r1.B=r2.B does not follow, because the
constraint by, ¢ leaves the B attribute undetermined (by, is not a full TGD).

Where can we then record provenance information of these new, distinct atoms? The intu-
ition offered by the standard chase, illustrated above, would be to add no new atoms, because
they are "already there" in the form of h'(d¢). If we were to follow this intuition, then the nat-
ural way to record the newly discovered provenance would be to enrich the provenance of the
atoms in h'(d¢), paralleling intuition /2. This would be wrong however, as the U-subqueries in
7(h(dp)) are only known to cause the construction of the atoms in A and not of the distinct ones
in 1/ (d¢). The following example shows that for a pa-chase step defined in this way, the result-
ing provenance of the atoms in h’(d¢c) would spuriously contain U-subqueries whose standard
chase does not actually construct them:

Example 1.2.4. Consider the relational schema R(A), S(B, C, D), and the following query
and set of views:

Q : select r. A from Rr, S s where s.B =r.Aand s.C =1 and s.D = 2
Vi(A): selectr.Afrom Rr,S s where s.B =r.Aand s.C =1and s.D = 2
Va(A) . selectr.A from Rr,S s where s.B =r.Aand s.C =1

In the corresponding total-view based rewriting problem, the universal plan is then as fol-
lows (with initial provenance annotations shown in square brackets):

U : select v1.A from Vy vy[v1], Va vo[va] where v1.A = vy. A

Now assume that we enrich the standard chase with direct provenance instrumentation and
consider the chase sequence with the backwards constraints corresponding to Vi and V. The
first chase step with the constraint corresponding to V;:

Yo, v € Vi — dr,s, re RAse€ SArA=1v1.ANs.B=rANs.C=1ANs.D =2

25

leads to the corresponding provenance-annotated result:

U’ :select v1.A from Vi vy[v1], Vo vava], R r1[v1], S s1[v1]
where v1.A = v9.Aand r1. A =vi.Aand s1.B =r1.Aand s1.C = 1 and s1.D =2

A standard chase step with the backward constraint corresponding to Vs:
Yoo, v0 € Vo —> dr,s, r€ RAs€ SArA=um.ANs.B=rANs.C =1

would then not apply, because the standard chase would consider the atoms to be introduced
as being already there. If we were then to record the provenance of these atoms by following the
standard chase, the provenance-annotated result of the chase step would be:

U" : select v1.A from Vi v1|v1], Vo valva], R r1[v1 4+ v2], S s1[v1 + v2]
where v1.A = v9. Aand r1.A = vi.Aand s1.B =r1.Aand s1.C =1 and s1.D = 2

In other words, this step would simply enrich the provenance of the r1 and s, atoms. But
the s1 atom above cannot be constructed using only the subquery induced by vs, that is Vo va,
because V5 does not operate any selection on the D attribute! Accordingly, the provenance
Jormula vy 4 vy of s1 is incorrect.

Still, the provenance of the non-identical atoms that would be introduced by the pa-chase
step has to be recorded somewhere, to ensure completeness of the reformulations. The tpa-
chase chase step should then be allowed to add these atoms, and in this respect behave more
conservatively then the standard chase. For the example 1.2.3, the tpa-chase step is therefore
allowed to add to Us the new atoms 71 and s; resulting from the chase with by, adorning
them with v,., and thus as a final result obtaining the same pa-chased universal plan UV as in
Example 1.2.1:

US: select v,.A
from Vg v, ['Ur]’ Vs vs [USL Vi v [Ut]s VRs vrs [Urs],
R ri[vrs], S s1[vrs], R mafvy], S salvg], T tlvy]
where v,..C=v,.C and vs.D=v;.D and v,..A=v,.sz.A and vs,.D=v,4.D and r1.A=v,5.A
and s1.D=v,.;.D and r1.C=s7.C and r3.A=v,..A and r5.C=0,..C
and s5.C=v,.C and s9.D=v,.D and t.D = v;.D and t.E = v;.E

I4: disallow the infinite reapplication of the same chase step. As seen in Examples 1.2.3 and
1.2.4, case I3 occurs when at least one of the relational atoms in the conclusion of a constraint
d has some undetermined attribute. Undetermined attributes are involved neither directly nor
indirectly in equalities with attributes of the relational atoms in the premise dp, and therefore
their value is not determined by the match of dp. For instance, attribute B of tuple variable r is
undetermined in both by, and by .

While the tentative definition of the pa-chase step according to case I3 above would introduce
distinct atoms and thus keep track of provenance as desired, its divergence from the standard
chase step would immediately lead to non-termination due to same chase step now applying

26

infinitely often. Indeed, in Example 1.2.3 above, the tpa-chase step with by, is allowed to
introduce tuple variables 71, s1 and their atoms A despite their match into r3, so and their atoms,
because for example r1.B=r3.B does not hold. But then the same tpa-chase step can apply again,
introducing fresh tuple variables r’l, s’1 and atoms A’, which match into 71, s; and A without
being identical copies, because r;.B=r1.B does not hold.

To disallow infinitely many reapplications of a chase step with the same constraint d and
premise match h, we normalize d to turn all undetermined attributes in its conclusion into deter-
mined attributes. We employ a classical technique from First-Order Logic, namely normaliza-
tion by equating the undetermined attributes with function calls, corresponding to the classical
Skolem functions one would obtain when eliminating existential quantifiers from the constraints
if written in First-Order Logic form.

Function symbols used in calls must be distinct across constraints (so that the chase step with
a constraint is not mistaken for a reapplication of a chase step with a distinct constraint). While
intuitively function calls should take as arguments all tuple variables of the premise, it turns
out that (as presented in Section 1.3) to soundly distinguish between non-identical atoms for
provenance bookkeeping purposes, it is sufficient to consider fewer function arguments: namely,
those attributes of the premise tuples that also appear in (the equalities of) the conclusion. By
this procedure, the attributes that were undetermined in the original form of the dependencies
become now determined by the Skolem terms, in short Skolem-determined.

Example 1.2.5. We illustrate only for constraint by,,, whose normalization involves setting the
undetermined attribute r.B equal to a function call:
Vop, v, € Vg = Ir,r € RATA=0v..AN1.C =v,.C ANr.B = f(v,.A, v,.C)

The Conservative Chase. We call the provenance-unaware chase flavour conservatively enforc-
ing atom identity as above the Conservative Chase. As detailed in Section 1.3, when checking
whether an atom with a Skolem-determined attribute is "already there", the Conservative Chase
step requires an identical copy thereof in ¢, such that in this copy Skolem function calls only
match calls with the same function symbol and pairwise identical arguments. We will show in
Section 1.3 that the Conservative Chase is essentially equivalent to the standard chase in terms
of its result, thus ensuring invariant (¢) is equivalent to ensuring goal (T). As we will show, the
Conservative Chase has the central benefit of being able to provide soundness for the provenance
annotations and the corresponding reformulations for all embedded dependencies.

Revisiting cases /1 through I3, which prescribe the behaviour of the tentative tpa-chase step,
we adjust this design by making the pa-chase record the provenance of atoms constructed by
the Conservative Chase instead of the standard chase. More specifically, in the description of
the tpa-chase step in cases I/ through /3 above, the standard chase step with dependency d is
replaced by a Conservative Chase chase step with the Skolemized version of d, denoted sk(d).
We detail extensively this construction in the following section.

1.3 Formal presentation and guarantees of Provcgp

We have provided in the previous section a high-level overview of the Provcyg, g, together with a
number of informal details and essential intuitions regarding its global flow. This section will be

27

dedicated to a formal description of the Provcg g and the concepts it relies on (such as atoms,
chase procedures and provenance formulae), as well as to providing its theoretical guarantees.

We start by briefly reviewing, in Subsection 1.3.1, a set of basic notions informally intro-
duced in previous sections. We continue by formally describing the chase procedure in Subsec-
tion 1.3.2. We then present, in Subsection 1.3.3, the Conservative Chase — which, as mentioned
in previous sections, is the chase flavor designed to be compatible with provenance annotations.
Based on the Conservative Chase we introduce, in Subsection 1.3.4, the Provenance-Aware
Chase, which is the essential brick of the Provcg . Finally, in Subsection 1.3.5, we give a
detailed description of the Provcg, g algorithm and show that it is sound and complete, that is,
it finds all and precisely the minimal reformulations of the input query.

1.3.1 Preliminaries: atoms, queries and constraints

Let R be a relational schema and /C a set of constants.

Relational atoms. A relational atom over R is a predicate of the form r € R, where R is a
relation in R and r is called a tuple variable. A valid set of relational atoms over R is a set of
relational atoms over R, {r1 € Ry,...,r, € R,}, such that for ¢ # j, r; # r;, that is, all tuple
variables are distinct.

Projection terms. 1f S is a valid set of relational atoms over R, we denote by the projection
terms of S the set ProjTerms(S)={r;.A;}, where (r; € R;) isin S and A; is an attribute of R;.

Equality atoms. An equality atom over a set A is an equality ¢; = to such that t;,¢; € A. For
E a set of equality atoms over A, we denote by Clos(E) the reflexive, symmetric, and transitive
closure of E. For A’ C A a subset of A, we define the restriction of E to A’ as the subset of E,
E' = E|y,suchthat (t; = t9) € E'iff (t; =t3) € Eand t1,t9 € A'.

Constraints. We consider constraints over R and K expressed as logical implications in the
form:

V7o iy Ty E RN ATy €E Ry ANET = 381,...,80,81 €ES1 A~ ANsp, €Sy A Es(1.1)

where {ri € Ry, ..., ™m € Ry, 51 € S1, ..., Sn € Sy} is a valid set of relational atoms
over R, E; is a conjunction of equality atoms over ProjTerms({r; € Ry,..., 1 € Ry }) U
K and Fj5 is a conjunction of equality atoms over ProjTerms({r; € Ry,...,Tm € Ry }) U

ProjTerms({s; € S1,...,8m € Syu}) UK.

Queries. In the following, we will use the term queries to denote standard Select-From-Where
(SFW) queries over R and K, with set semantics (for conciseness we will omit the DISTINCT
keyword, but it is always implied).

28

1.3.2 The Standard Chase

We will dedicate this subsection to the description of the chase procedure, hereafter called the
Standard Chase. As mentioned in the previous sections, the Standard Chase is an iterative proce-
dure consisting in a sequence of steps. To express the Standard Chase, we will in the following
introduce the concept of body, and show how queries and constraints can be expressed using
bodies.

1.3.2.1 Bodies

Definition 1.3.1 (body). A body B over a relational schema R and a set of constants K consists
in:

1. a valid set of relational atoms over R which we denote by [B] ¢
2. a set of equality atoms over ProjTerms([B].;) U K, which we denote by [B],

We denote by the ruple variables of B the set Tup Var(B) = {r;}, s.t. (r; € R;) isin [B]e.
We denote by the terms of B the set T'(B) = ProjTerms([B];) U K. We further distinguish
the instantiated terms of B, as those terms in 7'(B) that appear in equalities in [B],.

Closed version of a body. In the following, reasoning about equivalence concerning bodies will
always be based on their closed versions. We define the closed version of a body B as the body
B, such that B, = [Bly and [B]eq = Clos([Bleg). We say that a body is closed if B = B.

Example 1.3.2. Consider the relational schema R = { R(A, B), S(C)} and the set of constants
K={1).

Then By ={r € R, s € S, r.A=1,r.B = s.C}is a body over R and I, with [B;],nel =
{re R, s€S) [Bileg={rA=1r.B=s.C}, T(B;)={r.A r.B,s.C, 1}, TupVar(B;)={
sjand By ={re R,se SSrA=rA rB=rB sC=s5C,1=1,rA=11= A
r.B=s.C, s.C =r.B)

However By = {r € R, r € S} is not a body over R and K, because [Bz,={r € R,
r € S} is not a valid set of relational atoms.

Also, By = {r € R, r.X = 1} is not a body over R and K because r.X = 1 is not an
equality atom over ProjTerms([Bs].e;) U K.

Given two bodies By and B, we write By C By to denote the fact that [B;]e, C [Bz]eq
and [By]ye; C [Bz]rer- We define the restriction of a body B to a sub-schema R’ C R as the
maximal body B’ C B such that all relational atoms of B’ are over R’.

We define the union, intersection and difference of two bodies as a set of relational atoms
and a set of equality atoms obtained by pairwise union, intersection and difference of their
corresponding relational and equality atoms. Note that the results of such operations are not
necessarily bodies. However, we extend the notion of inclusion above to such results.

In the following, unless explicitly specified otherwise, we will consider queries, constraints
and bodies over a fixed relational schema R and a fixed set of constants KC; we will thus hereafter

29

consider these parameters common and implicit in the subsequent definitions and theoretical re-
sults.

Constraints expressed with bodies. We associate to a constraint C' of form (1.1), two bodies
defined as follows:

e abody Cprem, called the premise of C, such that:

1. [Cprem]rel = {Tl €eRy, ..., Tm € Rm}
2. [Cprem]eqg = {eq}, s.t. eqin Ej.

e abody C.onel, called the conclusion of C, such that:

[Cconcl]rel = {Tl ERy,....™m € Ry, 51 € Sl, ..., 8pn € Sn}

N =

[Ceoncileq = {€q}, s.t. eq in Es.

Example 1.3.3. Consider the constraint cy, g in Example 1.1.2:

CVps 1 V1,5, TERN s€ SA1r.C =5C— s, 0rs € VR AVps. A =1.AN Vp5.D = 5.D
Then CVRSprem:{’r ER,ses, r.C=sC}

and cyyg ona={r € R, s €S, vps € Vrg, vps. A =1.A, v5.D = 5.D}

Note that for a given constraint C, the couple (Cprem, Ceonc) allows a straightforward and
completely determined reconstruction of the form (1.1) of the constraint. In the following we
will thus refer without ambiguity to the constraint C' as the couple of bodies (Cprem, Ceoncl)-

Normalized form of constraints Without loss of generality, we assume that every constraint C'
has the following normalized form:

e if C,one has no other relational atoms besides those of Clep,, then it contains a single
equality atom ¢; = t9, such that t1,ty € T(Cprem) and we say that C' is an equality
generating dependency (EGD).

e otherwise, all equalities in [Copeieq have at least one term in T'(Ceoner) - T'(Cprem) and
are:

— of the form s;. A = constant, if there is a constant in the equivalence class of s;.A,
as induced by Clos([Cprem|eq U [Ceonet]eq), OF else

— of the form s;.A = projection term in 7T'(Cperm,), if there is a premise projection
term in the equivalence class of s;.A, or else

— of the form s;.A = s;.B, if there is no projection premise term and no constant in
the equivalence class of s;.A.
Moreover, if t; and ¢, are two distinct premise terms occurring in [Ceopei]eq. then the
equality t; = t3 is not in Clos([Cprem]eq)-
In this case we say that C'is a tuple generating dependency (TGD).

30

Distinguished premise terms. Given a constraint C' (in the normalized form above), we define
the distinguished premise terms of C, denoted by DTPrem(C'), as the set of projection terms
of Cprem that appear in the equalities of Cppe;.

Example 1.3.4. Consider again the constraint cy,g in Example 1.1.2,
CVps V18, TERN s€ SA r.C =5C — s, 05 € VRs AVps. A =1.AN vp5.D = 5.D
We have seen that cVRSpmm:{r €ER, seS rC=sCland cyyg,,,.=(" € R, s €
S, Vs € Vrs, Ups. A =1.A, v,5.D = 5.D}.
CVyg 18 then a TGD and the set of distinguished premise terms of ¢y, is DTPrem(cy,,) =
{r.A, s.Dj.

By the above definition of the normalized form of constraints, it follows directly that for a
constraint C, Ceonel N Cprem = [Cprem] rei-

Queries expressed with bodies. For a query (), we denote by body(Q) the body B such that:
1. [Blye; = {ri € R;} s.t. R; r; is in the FROM clause of Q.
2. [Bleq = {eq}, such that eq is in the WHERE clause of Q).

Example 1.3.5. Consider the query) in Example 1.1.2:

Q : select . A from Rr, S s, T t wherer.C = s.C and s.D =t.D
Then B = body(Q)={r € R, s S, tT,r.C =s.C,s.D=tD},
with (Bl ={r € R,s€ S, t €T}

and [Bleg = {r.C = s.C, s.D =t.D}.

It is easy to show that for a syntactically correct SFW query @, body(Q) is indeed a body.
However, in the case of queries, body(Q) does not allow reconstructing () without ambigu-
ity since it is obvious that we miss the projection attributes of). This missing information
can be retrieved if we further associate to @) a subset of ProjTerms([body(Q)]e;), denoted by
Head(Q), and obtained by copying all projection attributes in the SELECT clause of Q.

Given a body B and a subset H of ProjTerms([B],e;), we denote by Query(H, B) the SFW
query "reconstructed" in an unambiguous fashion from H and B.

1.3.2.2 Homomorphisms of bodies

We will characterize the Standard Chase by means of homomorphisms of bodies:

Definition 1.3.6 (homomorphisms of bodies). Let h be a function from the tuple variables of
body B1 to the tuple variables of body Bs. Based on h we can define the following two additional
functions:

1. a function hierms over T(By) such that:

® Nierms(m.A) = h(r).A, for r.A a projection term in T (Bjy)
® hierms(K) = K, for K a constant term in T(By)

2. a function hatoms over Bi, such that:

31

® hatoms(r € R) = (h(r) € R), for (r € R) in [Bi]yel
L4 hatoms(tl = t2) = (hterms(tl) = hterms(t2))’ fOV (tl = t2) in [E]ap

We say that h is a homomorphism iff:
1. for each relational atom a in [By]el, hatoms(a) is in [Bz] el
2. for each equality atom a in [By]ecq, Ratoms(a) is in [Bz]eq.

For a function h defined on the tuple variables of a body B, since h completely determines
hterms and hgioms, in the following, to avoid clutter, we will use the notation h to refer to Aiepms
and hgioms Whenever the domain of application is clear. In particular, for any set of atoms
S C B (evenif S is not a body), we will use the notation h(S)={hatoms(a)}, a € S.

One can show that the composition of two homomorphisms is also a homomorphism. If
there exists h homomorphism from By to By and h' homomorphism from Bs to By, they are
said to be homomorphically equivalent. If there exists h a homomorphism from B to B, and
furthermore A is bijective (on the tuple variables) and h~! is a homomorphism from Bs to By,
we call h an isomorphism and By and By are said to be isomorphic. Note that if two bodies are
isomorphic they are of course homomorphically equivalent.

Compatible homomorphisms. Let h be a homomorphism from a body B; to a body B. Let
I/ be a homomorphism from a body Bs to a body B'. We say that h and h’ are compatible if
h' = hon TupVar(B;) N TupVar(Bg).

Containment and equivalence of queries through homomorphisms of bodies. Given the way of
obtaining bodies from queries, it is easy to show that the following holds:

Proposition 1.3.7. Let Q1 and Q)2 be two queries with the same SELECT clause. Then:

1. Q1 C Q) iff there exists a homomorphism from body(Q2) to body(Q1).

2. Q1 and Q4 are equivalent iff body(Q1) and body(Q2) are homomorphically equivalent.

1.3.2.3 Standard Chase steps and sequences

We are now ready to formally define the Standard Chase steps, using the notions of bodies and
homomorphisms of bodies.

As will be the case for all the other chase flavours presented throughout this paper, we present
Standard Chase steps by first listing their conditions of application and then by specifying their
application, i.e. how their output is constructed from the input.

Definition 1.3.8 (Standard Chase step conditions of application). A standard chase step with
constraint C on a body B applies iff:

1. there exists a homomorphism h from Cprep, to B,

2. there exists no homomorphism h' compatible with h, from Ceoper to B.

32

Definition 1.3.9 (Standard Chase step application). The application of a Standard Chase step
with constraint C, on a body B, given homomorphism h from Cprep, to B, results into a new
body, B' = chase_step_res(B, C, h) such that B’ O B and B' is obtained from B as follows:

1. let B =B

2. add to B’ the relational atoms s € Si,...,s), € S, (if any), using fresh tuple variables
(one for each relational atom specific to Coner)

3. define the function h' from the tuple variables of Cconer into B’ such that

(a) W (r) = h(r) for each tuple variable in Cyrem, N Ceonei

(b) NW(sj) = s, for each remaining tuple variable s; in Ceopel
4. for each equality atom eq in [Ceoncileq, add to B’ the equality atom I (eq)

Example 1.3.10. Let B={r € R, se€ S,t €T, r.C = s.C} (the body corresponding to the
query Q from Example 1.1.2).

Let C = (Cprem, Ceonel), where Cprem={r € R, s € S, r.C' = s.C} and Ceonei={r € R,
s € S, vs € Vrs, vps.A = 1A, vps.D = 5.D} (the constraint cy,g from Example 1.1.2,
expressed as a couple of bodies).

There exists a homomorphism h from Cpren, to B, such that h(r) = r, h(s) = s and
h((r.C =s.C)) = (r.C = s.C).

However, there exists no homomorphism compatible with h from Ceopnel to B (no relational
atom v,., € Vg exists in B).

Thus, the Standard Chase step with C' given h applies on B, yielding B' = {r € R, s € S,
teT, r.C=s.C v, € Vps v, A=r.A v.,D=sD)

It is easy to show that the function h’ constructed in the Standard Chase step application on
a body B, given a constraint C' and a homomorphism h from Cpep, to B, is a homomorphism
compatible with h, from C,,,. to B’. We will hereafter call 4’ the Standard Chase step com-
patible homomorphism for the given step.

Standard Chase sequences. Given a body B and a set of constraints C, a Standard Chase se-
quence consists in producing the bodies By, By, ..., such that:

1. By=B
2. B;is obtained by B;_; by the following operations:

(a) pick C' € C s.t. a Standard Chase step with C' applies on B;_1, with a homomorphism
h from Cprem to Bi_1;

(b) let B;:=chase_step_res(B;—1, C, h);

33

For a finite Standard Chase sequence with a number of steps k, we denote by the result of
the sequence the body By, produced by the last step.

A full Standard Chase sequence consists in applying Standard Chase steps as long as there
exist at least a constraint such that a Standard Chase step applies. A terminating Standard Chase
sequence is a full Standard Chase sequence that terminates after a finite number of steps n - that
is, there exists B,, such that for any constraint in C, and any possible homomorphism h from
Cprem tO B, there exists a compatible homomorphism from C,,,. to B,,.

The Standard Chase of queries. We extend the notion of Standard Chase step in a straightforward
fashion to queries: a Standard Chase step with constraint C' applies on a query () iff there exists
a homomorphism h from Cpyen, to Body(Q). The result of applying such chase step on a query
is the query Q' = Query(Head(Q), chase_step_res(Body(Q), C, h)).

We can further generalize the notion of Standard Chase sequences to queries. It is easy
to show that given a query @, the result)’ of a Standard Chase sequence of) with C is
Q' = Query(Head(Q), B"), where B’ is the result of the corresponding Standard Chase se-
quence on Body(Q).

Given this direct correspondence, we will in the following, unless explicitly stated otherwise,
refer to the Standard Chase as the Standard Chase of bodies. We will refer to the corresponding
queries in the few specific cases where we wish to emphasize this correspondence.

1.3.2.4 Properties of the Standard Chase

We conclude our presentation of the Standard Chase by reminding two known results from the
literature (mentioned briefly in previous sections) regarding the Standard Chase termination and
results.

We have seen that full Standard Chase sequences may not terminate. One of the least re-
strictive and most referenced conditions concerning the termination of all full Standard Chase
sequences over a given input is stated in Theorem 3.9 in [33], and relies on a property known as
the weak acyclicity of a set of constraints.

We remind here the result from [33] regarding weakly acyclic constraints:

Theorem 1.3.11. Let B be a body and C a set of weakly acyclic constraints.
Then there exists a polynomial in the size of B that bounds the length of every full Standard
Chase sequence of B with C. In particular, all such sequences terminate.

Moreoever, note that the choice of steps in a Standard Chase sequence is non-deterministic.
One can thus produce, starting from a given body, full Standard Chase sequences with differ-
ent behaviour, in terms of termination or results. It has been shown however that, on a given
input, even when not all full Standard Chase sequences are guaranteed to terminate, any two
terminating sequences lead to equivalent results, as follows:

Theorem 1.3.12. Let B be a body and C a set of constraints. Let By and By be the results of
two terminating Standard Chase sequences with C over B.
Then By and By are homomorphically equivalent.

34

1.3.3 The Conservative Chase

We have noted in Section 1.2 the fact that the Standard Chase does not directly lend itself to
provenance annotations, creating the need for the design of a different chase flavour, which we
call the Conservative Chase. While Section 1.2 gives an initial overview and a set of essential
intuitions, this section will focus on the formal presentation of the Conservative Chase, hereafter
denoted the cs_chase.

The cs_chase is, similar to the Standard Chase, an iterative procedure consisting in a se-
quence of steps. In the case of the cs_chase however, these steps will be based on a general-
ization of bodies which we will call sk_bodies. Furthermore, the cs_chase steps will employ a
different form of constraints, hereafter called sk_constraints.

1.3.3.1 Skolem terms, sk_bodies and sk_constraints
To describe sk_bodies and sk_constraints, we first introduce the concept of Skolem terms.

Definition 1.3.13 (Skolem terms). Let F be a set of function symbols of fixed arity. We define
recursively the set of Skolem terms induced by F over a set S, denoted by SkTerms(S, F), as
the set {fi(al,...,al")}, where f; € F, n; is the arity of fi, and (a},...,a}") is an ordered
subset (potentially empty) of S U SkTerms(S, F).

Example 1.3.14. Let S ={x} and F= { f}, where the arity of f is 2. Then f(z,x), f(f(x,z),x),
f(f(z, f(z,x)),x) are some of the Skolem terms in SkTerms(S, F).

We define sk_bodies as a generalization of bodies. This generalization mainly consists in
the addition of a special set of equalities called constructive equalities. Constructive equalities
will in turn be expressed over projection terms, constants, and Skolem terms, as follows:

Definition 1.3.15 (sk_body). An sk_body B over a relational schema R, a set of constants KC
and a set of function symbols of fixed arity F consists in:

1. a valid set of relational atoms over R which we denote by [B] ¢
2. a set of equality atoms over ProjTerms([Bye;) U K, which we denote by [B]¢,

3. a set of equality atoms over ProjTerms([B] ;) UK U SkTerms(ProjTerms([Bler), F),
which we denote by [B] constr_eq and call the constructive equalities of B.

The constructive equalities have the property that there exists a subset S of [B] e, such
that:

(a) every constructive equality in [Bonstr_eq 1S Of the formt =/,
where t € ProjTerms([Blre — S)
and t' € ProjTerms(S) U SkTerms(ProjTerms(S),F) UK .

(b) every projection term t in ProjTerms([B|ye; — S) participates in exactly one con-
structive equality (of the form above).

Note that by the definition above the subset .S is unique. For an sk_body we will denote
such subset by [B]p_re;-

35

Example 1.3.16. Consider the relational schema R = {R(A), S(B, C)}, the set of constants IC
= {1} and the set of function symbols F={ f1, fa}.

Then B={r € R, s €S, s.B = fi(r.A), s.C = fa(r.A), s.C = 1}, [Bleonstr_eq={5.B =
f1(r.A), s.C = fa(r.A)}, [Bleg = {5.C = 1} is an sk_body over R, K and F, where [B]}_ |
={r e R}

Sk_bodies as a generalization of bodies. We have mentioned that bodies are a sub-class of
sk_bodies. Indeed, a body B is a special type of sk_body where [B]y_ ej=[B]re; and [B constr_eq
= ¢. To underline the fact that an sk_body is also a body, we will employ the term regular body.

Intuitively, the constructive equalities in an sk_body B will hold the "history of construction"
of the projection terms in B during the Conservative Chase. We will be particularly interested in
Conservative Chase sequences that start from a body. Not surprisingly, the [B],_; part of any
sk_body B thus obtained will consist in the relational atoms of the initial body. Every term that
is "further added" by the Conservative Chase will be connected to this initial body by means of
the constructive equalities.

As we did for bodies, we denote by the tuple variables of B the set Tup Var(B) = {r;}, s.t.
(r; € R;)isin [B¢.

We further denote by the ferms of B the set T (B) = ProjTerms([B]ye;) U K U
SkTerms(ProjTerms([Ble), F). We distinguish the set of instantiated terms of B as those
terms occurring in the equalities of B. Note that not all Skolem terms of B are instantiated:
indeed, according to the definition of an sk_body, only Skolem terms in
SkTerms(ProjTerms([Bly—re), F) will appear in the (constructive) equalities of B.

As we did for bodies, we will in the following assume a fixed relational schema, set of
constants and set of function symbols F, such that moreover F contains an infinite number of
symbols for any given arity.

Constructive terms. Based on the constructive equalities of an sk_body B, we can associate to
every term ¢t in T'(B) its constructive term, ConstrT (t), whichis aterm in ProjTerms([B]p—rer)
U SkTerms(ProjTerms([B]y—rer), F) UK as follows:

1. if ¢ is a constant, ConstrT(t) =t
2. if t is a projection term in ProjTerms([B]p—rer), ConstrT(t) =t

3. if ¢ is a projection term in ProjTerms([Blre; — [Blo—rer), ConstrT(t) =t" where t = ¢/
is the unique constructive equality involving ¢ in [B]constr_eq

4. if t a Skolem term with no argument f(), ConstrT(t) =t

5. if t is a Skolem term of the form f(aq,...,a,), ConstrT(t) =
f(ConstrT(az),..., ConstrT(ay)).

36

Example 1.3.17. Consider the sk_body B = {r € R, s € S, s.B = f1(r.A), s.C = fa(r.A)},
with [B)constr_eq={5.B = f1(r.A), s.C = fa(r.A)}
Then:

e ConstrT(r.

(r.A) =
e ConstrT(s.B) = f1(r.A)
o ConstrT(s.C) = fa(r.A)
o ConstrT(fs(s.C)) = fa(fa(r.A))

Note that according to the definition of constructive terms, every term in T'(B), be it instantiated
or not, has its associated constructive term. Note moreover that if B is a body, then ConstrT (t)
=t for all terms ¢ of B.

Relational atom identity by constructive terms. Collapsible atoms. For two sk_bodies By and
Bs (not necessarily distinct), we further introduce the concept of collapsible atoms. Two rela-
tional atoms (11 € R) € [Bily and (12 € R) € [Bgz],e are collapsible if for each of their
projection terms, ConstrT(r;.A;) = ConstrT(r2.A;). In other words, all their pairwise pro-
jection terms have identical constructive terms.

Example 1.3.18. Consider again the sk_body B = {r € R, s € S, s.B = fi(r.A), s.C =
fa(r.A)}, with [Blconstr_eq={5.B = fi1(r.A), s.C = fa(r.A)}.

LetBi={re R teT, s €68, s1.B= fi(r.A),s1.C = fa(r.A)} with [Bi]constr_eq={51.B =
f1 (T‘.A), 81.0 == fg(’l“A)}

Then the (s € S) atom in B and the (s1 € S) atom in By are collapsible.

Recall that, when providing the initial intuitions on the Conservative Chase, we have men-
tioned the need of (conservatively) enforcing atom identity. Intuitively, two relational atoms will
be considered as "identical" by the cs_chase when they are collapsible.

Closed version of an sk_body. As is the case for bodies, reasoning about equivalence in terms of
sk_bodies will alsg be based on their closed version. We define the closed version of an sk_body
B as the sk_body B such that:

1. [B]rel = [B]rel
2. [P] eq = Clos([B]constr_eq U [B]Bq)|ProjTerms(B)

3. [P] constr_eq = [B]constr_eq

Example 1.3.19. Let B be an sk_body such that [B],e={r € R, t € T, s € S}, [Bconstr_eq =
{s.B = f(r.A), s.C = f(r.A)} and [Bley =t.D = r.A. Note that [Bly_,e; = {r € R, t € T}
Then [B] eq = (8.B = 5.C, t.D = r.A} (and of course all the symmetric of these and the
reflexive equalities).
On the other hand, if, instead of the above, [B]constr ¢q = {5.B =1.A, s.C = f(r.A)}, then
[Bleg = {s.B =1.A, s.B=1t.D, t.D = r.A} (and of course all the symmetric of these and the
reflexive equalities).

37

Note that the regular equalities in the closed version of an sk_body allow "reconstructing"
all possible equalities between projection terms, mixing constructive equalities and regular ones
in the given sk_body. The constructive Skolem terms only participate as a transitivity element
in the above computation.

Note also that if B contains no constructive equalities (and is thus a body), then the definition
of the closed version of B corresponds to the definition of the closed version previously defined
for bodies, thus ensuring the correctness of our notation.

Bodies from sk_bodies. While all bodies are also sk_bodies, the reverse is however not true. We
associate to an sk_body B a canonical body denoted by Body(B) and constructed by removing
constructive equalities from B:

L. [BOdy(B)]rel = [B]rel

2. [Body(B)]eq = [Bleg
Sk_constraints. We have mentioned that the cs_chase steps use a different expression of con-
straints, called sk_constraints. We define sk_constraints as follows:

Definition 1.3.20 (Sk_constraints). An sk_constraint C'is a couple of sk_bodies (Cprem, Ceonci),
called the premise and the conclusion of C, such that:

1. the premise of C'is a regular body ([Cprem]constr_eq = 0),

2. [Cprem]rel - [Cconcl]rel
3. [Cconcl]b—rel = [Cprem]rel-
Furthermore:

1. if Ceonel has no other relational atoms besides those of Cprem, then it is a regular body
containing a single equality atom eq = (t1 = t2), eq € [Ceoncileq [Ceoncilconstr_eq = @
and we say that C'is an sk equality generating dependency, sk_EGD.

2. otherwise, the conclusion of C has only constructive equalities ([Ceonci)eq = @) and there
exists a subset of the projection terms of | Cprem|rel, called the distinguished premise terms,
DTPrem(C) = {a, ..., an}, such that for i # j, (a; = a;) is not in Clos([Cprem]eq),
and for every constructive equality t = t' in the conclusion, t' is either

(a) a constant
(b) a distinguished premise term a;

(c) a Skolem term of the form f(aq,...,an)

In this case we say that C' is a sk tuple generating dependency, sk_TGD.

38

Given the definition of an sk_constraint, it is easy to show that Ceonei N Cprem = [Cprem]rel-

Skolem-determined terms of an sk_TGD. We denote by a Skolem-determined term in the con-
clusion of an sk_TGD C a projection term ¢ of [Ceonet]rer - [Cprem|rer Such that its (unique)
constructive equality in [Ceonct] constr_eq 1S (t = t') where t’ is a Skolem term.

Example 1.3.21. Let Cpyer, = {1 € R}and Ceopei ={r € R, s € S, s.B=r.A,5.C = f(r.A)},
[Cconcl]constrieq = {SB = ’I”.A, s.C = f(TA)}
Then C'is an sk_TGD, DTPrem(C) = {r.A} and s.C'is a Skolem-determined term.

Sk_constraints from regular constraints. Note that while sk_bodies are a generalization of
bodies, this is not the case for sk_constraints vs. regular constraints. We hereafter show how
to "transform" regular constraints into sk_constraints by means of their sk_form:

Definition 1.3.22 (Sk_form of a constraint). Let C' be a constraint in normalized form. We define
the sk_form of C' as the sk_constraint sk(C)=(sk(C) $k(C) coner) Where sk(C') =

prem’ prem
Cprem and:

1. if Cis an EGD, then sk(C),,..; = Cconel

2. else, if Cis a TGD, let E¢pee = {E1, Ea,..., Ey} be the (possibly empty) subset of the
equivalence classes induced by Clos([Ceonel]eq) that contain specific conclusion terms,
but do not contain any distinguished premise term or any constant. Let {t1, ..., ts} be the
set of distinguished premise terms of C.

We associate to each Ej, € E . a Skolem function symbol of arity s fkc . and the Skolem
term fk,C (t1,t2,..., ts). Note that the Skolem function symbols thus produced are distinct
among them and specific to the constraint C.

We construct the sk_body sk(C') by:

concl

o letting [Sk(C) concl] rel = [CCOHCl] rels [Sk(C) concl] constr_eq= (b’ [Sk(C) concl] eq = ¢

e adding to [sk(C) .ppel)constr_eq all equality atoms in [Ceoneileq that contain one
distinguished premise term or one constant

o adding to [sk(C) .pel constr_eq» fOT every si. A € Ey, the equality
Si.A - fkc(tl,tg, ceny ts)

Note that that for a constraint C, the distinguished premise terms of C' are also the distin-
guished premise terms of sk(C').

Example 1.3.23. Consider the TGD by, of Example 1.1.2:
by,: Yo, v, € Vg = Ir,r € RAT A=v,. AN7r.C =v,..C

Let C be the expression using bodies of by,,. Then C'is such that:
L4 Cprem=llvr € Vr/

e Coona=f{v, € Vg, r€ R, r.A=v..A r.C=0.C}

39

The sk_form of C, sk(C'), is then such that:

o sk(C),.. = {vr € Vg

prem
o sk(C)pper ={vr € Vg € R 1 A=0..A r.C =0v.C, r.B = f(v,.A,v,..C)}, where

all equalities are constructive.

Note how producing the sk_form of a TGD involves "providing an identity" for all the terms
of the conclusion. Note further that the following happens:

1. the equalities in the conclusion of C' involving a premise term are transformed into con-
structive equalities (this is the case for the equalities 7.A = v,.A and r.C' = v,..C in the
example above)

2. the other equalities are replaced by individual constructive equalities with a Skolem term
and the corresponding terms, those that were not equated to premise terms, become there-
fore Skolem-determined terms in sk(C'). All terms that do not participate initially in an
equality also become Skolem-determined. This is indeed the case for 7. B in the example
above.

One may wonder if, given that the original equalities of the Skolem-determined terms are
lost, they can be in any way retrieved from the sk_form of C'. The answer to this question is
clearly yes: they can be retrieved on the closed version of the conclusion of sk(C'). Indeed, one
can show that the above procedure of producing the sk_form of a constraint always ensures that
[k (C) sonetlea = [Ceoneil eq- In other words, the following holds:

Proposition 1.3.24. Let C be a constraint. Then C.ppe; =Body(sk(C)

concl)'

Note that the above statement not only specifies that the original equalities can be retrieved,
but it further states that no "parasite" equalities are introduced in the sk_form among projection
terms of the conclusion.

For a set of constraints C, we will denote by sk(C) the set of sk_constraints sk(C) =
{sk(C),C € C}. We will in following sections show that Standard Chasing with a set of
constraints C and Conservative Chasing with their sk_form sk(C) leads to equivalent results. Not
surprisingly, this equivalence will be ensured by Proposition 1.3.24 and by the fact that for each
sk_constraint produced, the Skolem function symbols employed are fresh, thus non-conflicting
with other sk_constraints in sk(C). This will then ensure that no Skolem-determined terms will
be "mixed-up" and wrongly equated in the cs_chase results.

1.3.3.2 Homomorphisms of sk_bodies

As is the case of the Standard Chase, the cs_chase also relies on homomorphisms. Follow-
ing the generalization of bodies to sk_bodies, we hereafter show how to extend the notion of
homomorphism to sk_bodies:

40

Definition 1.3.25 (Homomorphisms of sk_bodies). Let h be a function from the tuple variables
of sk_body By into tuple variables of sk_body Bs. Based on h, we can define two additional
functions:

1. a function hierms over T(By), such that:

® Nyerms(rm.A) = h(r).A, for r.A a projection term in T(Bjy)
® hierms(K) = K, for K a constant term in T'(By)

° hterms(f(tlv ceey tn)) =f(hterms(tl)a ceey hterms(tn)) for f(tla cee >tn) a Skolem
term in T(Bj). In particular, hierms(f()) = f() for a Skolem term with no ar-
gument.

2. a function haioms over Bi, such that:

® hatoms((r € R)) = (h(r) € R), for (r € R) in [Bi]yei
L4 hatoms((tl = t2)) = (hterms(tl) = hterms(t2))» fOl" (tl = t?) in [E] eq

° f@ms((t1 = t2)) = (hterms(t1) = ConstrT (hierms(t2))), for (t1 = to) in
[BJ] constr_eq

Then h is a homomorphism iff:
1. for each relational atom a in By, hatoms(a) is in [Bz]yel.
2. for each equality atom a in [By ¢, the equality atom hatoms(a) is in [Bg)eq.
3. for each equality atom a in [By|constr_eq, the equality atom hatoms(a) is in [Bz]constr_eq-

As we have done for functions defined on the tuple variables of bodies, we will use h to
also denote hierms and hgioms. Note that the above definition is indeed a generalization of
homomorphisms of bodies, where we further impose a restriction on the images of constructive
equalities.

Example 1.3.26. Let B={rc R tcT,sc S, t.D =r.A s.B=rA s.C = f(r.A)} bean
sk_body, where all equalities are constructive. Note that [Bly_e = {r € R}

LetBi={ti €T,51€8S,s5.B=t.D, s51.C = f(tD)}

Then h = {t; — t, s1 — s} is a homomorphism from By to B. Indeed, note that in B,
ConstrT (h(t;.D)) = r.A.

We can further show that the following holds for homomorphisms of sk_bodies:

Proposition 1.3.27. Let h be a homomorphism from an sk_body By to an sk_body Bs. Let a
be atermin T(By). Then ConstrT (h(ConstrT(a)) = ConstrT (h(a)).

Proof. Indeed, if aisin T'([B;]p—re) Or a is a Skolem term without arguments, then ConstrT (a)
= a, and the equality trivially holds.

Else, if a is a projection term, then let « = ConstrT(a) be the unique constructive equality
of a. Since h is a homomorphism, it follows that (h(a) = ConstrT(h(ConstrT(a))) is

41

in [Bs]constr_eq- But since By is an sk_body the only constructive equality of h(a) in By is
h(a) = ConstrT(h(a)). Therefore, ConstrT (h(ConstrT(a)) = ConstrT (h(a)).

If a is a Skolem term of the form f(ay,...,..a,) then h(a) = f(h(a1),...,h(ay)). Then
ConstrT(h(a)) = f(ConstrT(h(ay)), ..., ConstrT(h(ay,))). On the other hand we can fur-
ther develop ConstrT (h(ConstrT (a))) = f(ConstrT(h(ConstrT (a;))), ...,

ConstrT (h(ConstrT(az))) (the above developments are all enabled by the fact that construc-
tive terms and Skolem functions commute). By induction on the Skolem terms arguments we
can thus prove the required equality. O

Based on Proposition 1.3.27, one can show that the composition of two homomorphisms
of sk_bodies is also an homomorphism. If h is bijective (on the tuple variables) and A~ ! is a
homomorphism from By to By, we call h an isomorphism.

Let By and By be two sk_bodies. If there exists an isomorphism between B, to B they are
said to be isomorphic. If there exists h homomorphism from By to By and b’ homomorphism
from By to By, they are said to homomorphically equivalent.

We can further show that the following holds:

Proposition 1.3.28. Let h be a homomorphism from an sk_body B to an sk_body Bs. Then:
1. h is a homomorphism from By to By
2. his a homomorphism from Body(B1) to Body(Bs)

Compatibility of homomorphisms of sk_bodies. We extend the notion of compatibility to
homomorphisms of sk_bodies. Let h be a homomorphism from an sk_body B to an sk_body
B and i/ be a homomorphism from an sk_body Bs to an sk_body B’. We say that h and h' are
compatible if k' = h on TupVar(B;) N Tup Var(Bz).

1.3.3.3 Conservative Chase steps and sequences

We are now ready to formally define the cs_chase steps. A cs_chase step will take as input
an sk_body and an sk_constraint and will yield as output an sk_body. As was the case for
the Standard Chase steps, we will present cs_chase steps by first listing their conditions of
application and then by describing their application, that is, how they produce an output sk_body
given an input sk_body and an sk_constraint.

Definition 1.3.29 (cs_chase step conditions of application). A cs_chase step with sk_constraint
C on an sk_body B applies iff:

1. There exists a homomorphism h from Cprep to B
2. There exists no homomorphism h' compatible with h from Ceopne to B.

Definition 1.3.30 (cs_chase step application). The application of an cs_chase step with
sk_constraint C on an sk_body B, given homomorphism h from Cpyem, to B, results in a new
sk_body B' = CS_Chase_Step_Res(B, C, h) such that B' > B and B' is obtained from B as
Sfollows:

42

1. let B=1B

2. add to B' the relational atoms s € Sy, ..., s, € Sy (if any), using fresh tuple variables
(one for each relational atom specific to Coner)

3. define the function h' from the tuple variables of Cone; into B’ such that

(a) W (r) = h(r) for each tuple variable r in Cprem, N Ceonei

(b) B (s;) = s;-,for each remaining tuple variable s; in Ceopei
4. for each equality atom eq in [Conel] constr_eq» add the equality atom h'(eq) to [B'] constr_eq
5. for each equality atom eq in [Cyonel] g, add the equality atom I (eq) to [B'] .

As was the case for the Standard Chase, it is easy to show that the function /' constructed in
the cs_chase step application on an sk_body B is a homomorphism compatible with h, from
C'eoner to B'. Similar to the case of Standard Chase steps, we will hereafter call i’ the cs_chase
step compatible homomorphism.

Example 1.3.31. Let By = {v, € Vg, vs € Vg, vy € Vp, 0,..C=0v,.C, vs.D=v:.D} be the
sk_body (which is also a body) corresponding to Ry in Example 1.1.2.

Let C be the sk_form of the constraint by, Cprem = {v, € VR/}, and Cionep = {vr € Vg,
re R rA=uv.Ar.C=uv.C,r.B= f(v.Av.C).

Then a cs_chase step with C applies on By, yielding B} = {v, € Vg, vs € Vs, vy € Vp,
r € R, v,.C=v5.C, vs.D=v;.D, 7. A = v,.. A, r.C = v,.C, r.B = f(v,.A,v,.C)}, where

1. [B))yer = {vr € VR, vs € Vg, vy € Vo, r € R}
2. [B}leq = {vr.C=0,.C, v5.D=v;.D}
3. [Bfleonstr_eq = {1 A=v,.A, 1r.C =v,.C, r.B = f(v,.A,0,.C)}

Conservative Chase sequences. Given an sk_body B and a set of sk_constraints C, a cs_chase
sequence consists in producing the sk_bodies By, By, ..., such that:

1. By=B
2. B, is obtained from B;_; by the following operations:

(a) pick C' € C s.t. a cs_chase step with C' applies on B;_1, with a homomorphism h
from Cprem to Bi_1;

(b) let B; :=CS_Chase_Step_Res(B;—;, C, h);

For a finite cs_chase sequence with a number of steps k, we denote by the result of the
sequence the sk_body By produced by the last step.

A full cs_chase sequence consists in applying cs_chase steps as long as there exists at least
an sk_constraint C € C such that a cs_chase with C applies. A terminating cs_chase se-
quence is a full ¢s_chase sequence that terminates after a finite number of steps n — that is, B,

43

is such that for any sk_constraint C'in C, and any possible homomorphism h from Cpep, to

B, there exists a compatible homomorphism from Ciype to By,.

Conservative Chase sequences over bodies and queries. As already mentioned, we will be
particularly interested in the following in those c¢s_chase sequences starting from a regular body.
In particular, we will exhibit strong equivalence results between such sequences and Standard
Chase sequences over the same body.

We cannot however straightforwardly translate intermediate cs_chase steps to correspond-
ing steps on queries. Indeed, the way to infer a query from an sk_body would be to go through
the canonical associated body. On the other hand, the transformation from sk_bodies to bodies
is not lossless (given an sk_body B, Body(B) is in general not equal to B). Then we would
lose some of the conditions of application for the next cs_chase step.

However, we can apply such transformation on the result of a cs_chase sequence. Given a
query Q and a finite cs_chase sequence on body(Q) resulting in an sk_body B’, we thus define
the result of the cs_chase sequence on @ as the query Q' = Query(Head(Q), Body(B')).

1.3.3.4 Properties of terminating Conservative Chase sequences

As is the case for the Standard Chase sequences, full Conservative Chase sequences are not
guaranteed to terminate. We will show hereafter that when they do terminate however, as was
the case of the Standard Chase (Theorem 1.3.12), they lead to equivalent results, as follows:

Theorem 1.3.32. Let B be an sk_body and C a set of sk_constraints. Let By and Bs be the
results of two terminating cs_chase sequences with C over B.
Then By and By are homomorphically equivalent.

To prove the above, we will rely on the fact that, by definition of a cs_chase step, the added
image of the conclusion exhibits a "one to one" correspondence with the (specific part of) the
conclusion. This particular property allows us to derive homomorphisms over the output of a
cs_chase step, based on the existence of homomorphisms on the input of the cs_chase step,
as follows:

Lemma 1.3.33. Let B be an sk_body and C an sk_constraint such that a cs_chase step with C
applies on B with homomorphism h from Cyrem to B, yielding B'=CS_Chase_Step_Res(B, C, h).
Let H be a homomorphism from B to an sk_body D. Let g = H o h be the corresponding
homomorphism from Cprem to D.
If there exists a homomorphism g' compatible with g from C,yy,.; to D, then there exists a
homomorphism from B’ to D.

Proof. Let h' be the cs_chase step compatible homomorphism.

If C is an sk_EGD, then we will show that H itself is a homomorphism from B’ to D.
Indeed, for the unique equality ({1 = t2) in B’ — B, (t1 = t2) = W/ ((t} = t})), where (] = t})
is the unique equality in C\,,c;. Therefore t1 = h'(t]) and to = h'(t2). Then H((t; = t2)) =
(H(ty) = H{(t2)) = (H o K/(t}) = H o (,)) = (H o h(t}) = H o h(t,)) = (9(¢]) = g(t})) =
(d'(t) = ¢'(th)) = ¢ (t} = t}), therefore H((t; = t2)) € D, where we have used the fact that
h' is compatible with h, ¢ is compatible with g and t,t} € T'(Cprem).

44

If C is an sk_TGD, we start by noting that, as mentioned above, the cs_chase compatible
homomorphism creates a one-to-one correspondence between the tuple variables of [Ceoneilre
-[Cprem]rer (ie. the tuple variables specific to the conclusion of C) and the tuple variables of
B’ — B, as well as the corresponding relational atoms. We formalize this observation by stating
that there is a partial inverse of A/, h’~!, such that the following hold:

1. W~=1is a homomorphism from [B']e1-[B]rer 10 [Ceonetl rer-[Corem) el

2. for every (constructive) equality (t; = t2) in B’ — B, (t1 = t2) = /((t} = t,)), where
(tq = t) is an equality in [C'onel] constr_eq» and furthermore:

(a) iftyisin T(B') - T(B), then t; = K/ (t)), t} isin T([Ceonctlrer — [Cprem]rer) and
th = h"1(t)
(b) else, tp isin T'(B), to = ConstrT(h'(t5)), th € T(Cprem)

Based on the observation above, we define the following function from Tup Var(B') to
Tup Var(D):

H(r) = H(r), r € TupVar(B)
g oh'=Y(r), r & TupVar(B') — TupVar(B)

We will show that H' is a homomorphism from B’ to D. It is straightforward that the image
of all the relational atoms in B’ is in D. Moreover, all equalities in B’ — B are constructive and
for every equality atom (¢; = t2) in B’ — B, H'((t1 = t2)) = (H'(t1) = ConstrT(H'(t2))).

But H'(11) = g/ o b= (1) = ¢/ o "~ 0 I (2]) = ¢'(1})

On the other hand ConstrT (H'(tz)) = ConstrT(H (ConstrT(h'(t})))). But then accord-
ing to Proposition 1.3.27, ConstrT (H'(t2)) = ConstrT (H o h'(t})) = ConstrT(H o h(t})) =
ConstrT(g(t,)) = ConstrT(¢'(t})), where we have used the fact that h and /’/, respectively g
and ¢’ are compatible and ¢/, is in T'(Cprem,).

It follows that H'((t1 = t2)) = (H'(t1) = ConstrT(H'(t2))) = (¢'(t}) = ConstrT(¢'(t}))),
therefore, since ¢’ is a homomorphism from Ceypep to D, H'((t1 = t2)) € D. O

Based on the results above, we are now ready to prove Theorem 1.3.32:

Proof of Theorem 1.3.32. Let Sy = B,...,S, = Bjp be the terminating cs_chase sequence
leading to B1. We will show by induction on the cs_chase steps the existence of a homomorphism
h} from S; to Bs.

Indeed, since Sy = B C Bs, h(l] = Id is a homomorphism from Sy to Bs, therefore by
Proposition 1.3.28 from So to Bs.

Assuming the existence of i, we will show the existence of A} ;.

Indeed, t — t + 1 is a cs_chase step with an sk_constraint C € C. Then there exists
a homomorphism h from Cpyen, to Sy. It follows that g = h{ o h is a homomorphism from
Cprem t0 B,. But since By is the result of a terminating cs_chase sequence, it follows that there
exists ¢’ a homomorphism compatible with g, from C,,,,; to By. Then we are in the conditions
of Lemma 1.3.33, and it follows that there exists h%H a homomorphism from Sy41 to Bs. By
Proposition 1.3.28, h%+1 is then also a homomorphism from S; 1 to Bs.

45

Accordingly, there exists a homomorphism h}b from S,, = B; to By. We show in an identical
fashion the existence of a homomorphism from By to B1, thus concluding our proof.
O

1.3.3.5 The Conservative Chase and the Standard Chase

While in the previous subsection we have shown equivalence for terminating cs_chase se-
quences, we dedicate this section to showing that (as announced in Section 1.2 and restated
in previous paragraphs), the Conservative Chase and the Standard Chase lead in essence to
equivalent results, as follows:

Theorem 1.3.34. Let B be a body and C a set of constraints.

Let By be the result of a terminating Standard Chase sequence with C on B. Let B be the
result of a terminating cs_chase sequence with sk(C) on B.

Then By and Body(Bs) are homomorphically equivalent.

While the above theorem may look cryptic in terms of the equivalence it exhibits, we restate
it below, based on Proposition 1.3.7 and the definitions of the corresponding chase flavours on
queries:

Corollary 1.3.35. Let QQ be a query and C a set of constraints.

Let Q1 be the result of a terminating Standard Chase sequence with C on (). Let Q2 be the
result of a terminating cs_chase sequence with sk(C) on Q.

Then Q1 and Q)2 are equivalent.

To prove Theorem 1.3.34, we start by showing how the definition of a Standard Chase step
allows inferring homomorphisms on the output of the chase step, based on the existence of
homomorphisms on the input of the chase step, in a very similar fashion to Lemma 1.3.33:

Lemma 1.3.36. Let B be a body and C' a constraint such that a Standard Chase step with C' ap-
plies on B with homomorphism h from Cpyep, to B, yielding B' = chase_step_res(B, C, h).
Let H be a homomorphism from B to a body D. Let g = H o h be the corresponding
homomorphism from Cprem, to D.
If there exists a homomorphism g’ compatible with g from Ceopner to D, then there exists a
homomorphism from B’ to D.

Proof. Let h/ be the Standard Chase step compatible homomorphism.

If C' is an EGD, then we will show that H is a homomorphism from B’ to D. Indeed,
for the unique equality (t1 = t2) in B’ — B, (t1 = t2) = h((t} = t})), where (¢} = t}) is
the unique equality in Cpppe;. Therefore t1 = h(t)) and to = h'(t2). Then H((t; = t2)) =
(H(t1) = H(ts)) = (H o W'(t5) = H o W(t)) = (H o h(£}) = H o h(ty)) = (g(t5) = g(t3))
= (g'(t)) = ¢'(t)) = ¢'((t) = t})), therefore H((t; = t2)) € D, where we have used the fact
that h is compatible with 7/, ¢ is compatible with g and ¢}, t5 € T(Cprem,).

If C'is a TGD, then we start by noting that the Standard Chase step compatible homomorphism
creates a one-to-one correspondence between the tuple variables of [Conet]ret = [Cprem|rer and

46

the tuple variables of B’ — B, as well as the corresponding relational atoms. We formalize this
observation by stating that there is a partial inverse of i/, h/~!, such that the following hold:

1. W'~1is a homomorphism from [B'],e1-[B]rer 10 [Ceonetlrer-[Corem) rel

2. for every equality (t1 = t2) in B’ — B, (t1 = t2) = W ((t} = t})), where (] = t}) is
an equality in Ci,y, and furthermore if t; € T(B') — T(B) then t; = h'~1(¢;), else
ti = h'(t)) and t; € T(Cprem)

Based on the observation above, we define the following function from Tup Var(B’) to
Tup Var(D):

H(r) = H(r), r € TupVar(B)
g oh'=Y(r), r € TupVar(B') — TupVar(B)

We will show that H’ is a homomorphism from B’ to D. It is straightforward that the image
of all relational atoms in B’ is in D. Moreover, for every equality atom (¢ = t2) in h'(Ceoner),
HI((ty = 1) = (B (1) = H'(£2)).

Ift; € T(B') — T(B),then H'(t;) = ¢’ o h'~1(t;) =

Else, H'(t;) = H(t;) = H o b/ (t}) = H o h(t;) = g(t})
that /' is compatible with /1 and ¢’ is compatible with g.

Then H'((t1 = t2)) = (9/(¢)) = ¢'(t})) = ¢'(t} = t4)). where (] = t3) € [Coonetlegs 50
since ¢’ is a homomorphism from Ceyye to D it follows that H'((t; = t3)) € D O

g ok Loh!(t) =g (t).
= ¢'(t;), where we have used the fact

We will continue by showing that a similar result holds in the case of the cs_chase steps, but
concerning the bodies recovered from the corresponding (closed versions) of the sk_bodies. To
exhibit this result, we first show a set of properties regarding the cs_chase steps and constructive
terms.

We start by showing how cs_chase steps with sk_TGDs can be characterized according to
the constructive terms. Indeed, as a direct consequence of the definition of the cs_chase steps
and sk_constraints, the following holds:

Proposition 1.3.37. Let B be an sk_body and C' an sk_TGD such that a cs_chase step with C
applies on B with homomorphism h from Cprem to B, yielding B' =
CS_Chase_Step_Res(B, C, h). Let I/ be the cs_chase step compatible homomorphism.

Let ay, ..., ay be the distinguished premise terms of C.

Let (t1 = to) be a constructive equality in Ceyper. Then:

1. if t1 = a; then in h’(Ceyper) the unique constructive equality of h'(t1) is (W' (t1) =
ConstrT (h(a;)))

2. else t1 = fr(ai,...,ay) and the unique constructive equality of h'(t1) is (h'(t1) =
frx(ConstrT(h(ay)),..., ConstrT(h(ay)))).

Based on the above, we can show that in a cs_chase sequence starting from an sk_body B
with a set of sk_constraints C, a cs_chase step with an sk_TGD C' € C cannot apply twice for
the same constructive terms of the images of distinguished premise terms.

47

The intuition behind this is simple: since according to Proposition 1.3.37 the constructive
terms in the added image of the conclusion are determined by the constructive terms of the
images of the distinguished premise terms, the image of the conclusion added by a first c¢s_chase
step with the sk_TGD will provide a compatible homomorphism for the second attempt of a
cs_chase step with the same constraint:

Proposition 1.3.38. Ler B be an sk_body and C a set of sk_constraints.

Let By = B, By, ..., By be a cs_chase sequence of B with C. For each cs_chase step, let
C; be the corresponding sk_constraint, h; the homomorphism from Cippep, to B, and I, the
cs_chase step compatible homomorphism.

Let C' € C be a sk_TGD such that a cs_chase step with C applies on By, with a
homomorphism h from Cprem to By,. Let ay, . .., ay be the distinguished premise terms of C.

If there exists C; such that C' = C;, then there exists at least one distinguished premise term

a;j such that ConstrT (h(a;)) # ConstrT (h;(a;))

Proof. Assume that this is not the case. Then according to Proposition 1.3.37, the following
function:
W) h(r), 1€ TupVar(Cprem)
T) =
hi(r), 1€ TupVar(Ceonet) — Tup Var(Cprem)

is a homomorphism compatible with h, from C,y,.; to B,. Then the cs_chase step with C
does not apply. O

Based on Proposition 1.3.38, we will infer a very important result: for a cs_chase sequence
starting from a regular body with the sk_form of a set of constraints C, the following will hold:
for any cs_chase step with an sk_TGD, the constructive terms corresponding to the images
of Skolem-determined terms in the conclusion are new, that is, they cannot be instantiated in
equalities in the input of the chase step.

Intuitively, the reason behind this is that by definition of the sk_constraints, the construc-
tive terms of such Skolem-determined terms will identify uniquely the constructive terms cor-
responding to images of distinguished premise terms as well as the sk_constraint they have
been obtained from, since all sk_constraints in sk(C) are assumed to use fresh Skolem function
symbols. The previous instantiation of such terms would then mean that a c¢s_chase step with
the corresponding constraint has already been applied once, which, as we have previously seen
(Proposition 1.3.38), cannot happen.

Proposition 1.3.39. Let B be an sk_body and C a set of constraints such that B has been
obtained by a cs_chase sequence with sk(C) over a body By.

Let C be an sk_TGD in sk(C) such that a cs_chase step with C applies on B, with a
homomorphism h from Cyrep,, yielding B’ = CS_Chase_Step_Res(By,, C,h). Let I/ be the
cs_chase step compatible homomorphism.

Let t be a Skolem-determined term in Ceoper. Let t' = h/'(t) and (t' = t") be the unique
unique constructive equality of t' in B'.

Then there exists no equality involving t" in B.

48

Proof. By Proposition 1.3.37,t" = f(ConstrT(h(ay)),..., ConstrT(h(ay))), where a1, ...,
an, are the distinguished premise terms.

Assume there exists a constructive equality in B of the form v = " where v is a projection
term of B. Then since the Skolem function symbol f is specific to the constraint C' (because of
the way sk(C) is obtained, and because B is a body, thus contains no initial Skolem terms), it
follows that the equality must have resulted from a previous application of a cs_chase step with
C.

On the other hand, ¢” uniquely determines the constructive terms of the images of the distin-
guished premise terms. It then follows that there must have been a cs_chase step with C' and the
same constructive terms for the images of the distinguished premise terms. But by Proposition
1.3.38 this cannot happen, thus no equality v = " can exist in B. OJ

Note that the idea above has been previously sketched when introducing the sk_form of
constraints. Indeed, the above results correspond to the fact that no "parasite” equalities will
appear among terms that in the original version of the constraints are new and specific to the
conclusion (these will be indeed the Skolem-determined terms in the sk_form of the constraints).
Such terms can only be equated among them in the Standard Chase, and as shown above, this is
equally the case for the cs_chase.

Based on the results exhibited above, we can then state the refinement of Lemma 1.3.33,
regarding the bodies corresponding to the output of a ¢s_chase step, as follows:

Lemma 1.3.40. Let B be an sk_body and C a set of constraints, such that B has been obtained
from a body By by a cs_chase sequence with sk(C).

Let C' € sk(C) be an sk_constraint such that a cs_chase step with C applies on B with
homomorphism h from Cprem to B, yielding B' = CS_Chase_Step_Res(B, C, h).

Let H be a homomorphism from Body(B) to a body D. Let g = Hoh be the corresponding
homomorphism from Cprem, to D.

If there exists a homomorphism g' compatible with g from Body(Ceonel) to D, then there

exists a homomorphism from Body(B') to D.

Proof. The proof of the above lemma is very similar to the proof of Lemma 1.3.33 , with the
additional usage of Proposition 1.3.39 in the case of sk_TGDs.
We first construct the body:

B = Body(?) U h’(Body(%))

where h’ is the cs_chase step compatible homomorphism. Using arguments very similar to
Lemma 1.3.33, we show that there exists a homomorphism G from B” to D (this homomorphism
is either H in the case of an sk_EGD, or H' as defined in the proof of Lemma 1.3.33, using the
"invertibility" property of /’, in the case of an sk_TGD.)

We will further show that the following holds:

Body(B') = B”

49

By the above and proposition 1.3.28 it follows directly that G is a homomorphism from
Body(B’) to D.

It is easy to show that B” C Body(B’), by definition of the closures. The other inclusion is
also easy to show in the case of sk_EGDs, since the only added equality in B” uses projection
terms in B.

We will further show the inclusion Body(B’) C B” for sk_TGDs. Indeed, according to
the definition of the sk_constraints, every equality in Body(B’) is either in Body(B) or of the
form (t1 = t2), where ¢1 and t5 are projection terms and at least one of ¢; is in h/(T'(Ceoner) —
T'(Cprem)), that is, the image of a projection term specific to the conclusion.

We first analyse the case where ¢ is the image of a non-Skolem-determined term in T'(Cppe) —
T(Cprem)- Assume that ¢ is a projection term of B. Let (¢; = ") be the unique equality (con-
structive) concerning 1 in B’. Then by definition of the sk_constraint and the cs_chase step,
there exists t3 € h(T(Cprem)) such that (t3 = ¢”) is the constructive equality of ¢3 in B, and
(t1 = t3) is in A/ (Body(Ceonel)), since t1 and ts are projection terms. But then by definition
of the closure and since no new equalities are introduced by the cs_chase step on the images of
terms of the premise, the equality (t3 = t2) must be in Body(B). It follows that (t; = t3) is
in Body(B) U W (Body(Conet)) = B”. The case where 5 is the image of a non-Skolem deter-
mined term in [Ceonet]rer — [Cprem]rer and 1 is a term of B, as well as the case where both ¢,
and ¢, are the images of non-Skolem determined terms specific to the conclusion can be handled
in a similar fashion.

We further analyse the case where ¢ is the image of a Skolem-determined term in 7'(Ceopner) —
T(Cprem)- Let t; = t” be the unique constructive equality of ¢; in B’. By Proposition 1.3.39
it follows that the only possible way of equating ¢; and ¢, in B is through ¢”, and the equality
to = t" isin h'(Cepner). Accordingly, there must exist equalities (t; = ¢) and (¢}, = t) in Cropels
such that (t; = t”) = h/(t} = t) and (t2 = t") = h/(t = t), and ¢}, t}, are projection terms
specific to the conclusion. Then (¢] = t}) is in Body(Crone)- It follows (t1 = t2) must be in

R (Body(Ctonei)), therefore in B”, therefore in B, which concludes our proof. O

Remember that when presenting the sk_form of the constraints we have noted that C,¢; =
Body(sk(C) ,pe;)- Moreover, recall that Cprer = sk(C) - We can in fact restate the lemma
above as follows:

Corollary 1.3.41. Let B be an sk_body and C a set of constraints such that B has been obtained
from a body By by a cs_chase sequence with sk(C).

Let C € C be a constraint such that a cs_chase step with sk(C') applies on B with
homomorphism h from sk(C)prem to B, yielding B' = CS_Chase_Step_Res(B, C, h).

Let H be a homomorphism from Body(B) to a body D. Let g = Hoh be the corresponding
homomorphism from Cprem to D.

If there exists a homomorphism g' compatible with g from C,yy,e to D, then there exists a
homomorphism from Body(B') to D.

Note the strong resemblance of the above corollary with Lemma 1.3.36. Indeed, we are
saying that, considering solely the bodies of the (closed versions of the) results of cs_chase
steps, the cs_chase behaves like the Standard Chase. We can then prove our main equivalence
result:

50

Proof of Theorem 1.3.34. Let Sg = B, S1, ..., S, = Bj be the terminating Standard Chase
sequence with C on B resulting in Bj.

Let Ko = B, K1, ..., K,, = Bs be the terminating cs_chase sequence with sk(C) on B
resulting in Bs.

A. We will prove by induction on the Standard Chase steps the existence of a homomorphism
h! from S; to Body(Bs).

Since Sy = B = Body(B) = Body(Ky) C Body(B3), we can exhibit h{ = Id.

Assuming that there exists h}, we will show the existence of hi“, based on Lemma 1.3.36
and Proposition 1.3.24.

Indeed, t — t + 1 is a Standard Chase step with a constraint C' € C. Then there exists a
homomorphism h from Cpren, to Sy.

Let g = hY o h. Then g is a homomorphism from Cpepm to Body(Bs), therefore a
homomorphism from Cprepn to Ba. Since Bs is the result of a terminating cs_chase se-
quence with sk(C) on B, and Cprep, = sk(C’)pmm, there must exist a homomorphism ¢
compatible with g from sk(C),,, ., to By, therefore (according to Proposition 1.3.28), from
Body(sk(C) ne) to Body(Bs). By proposition 1.3.24, ¢’ is then a homomorphism compati-
ble with g from C,yy,c; to Body(Bz), therefore from Ciyy,e; to Body(B3).

We are then in the conditions of Lemma 1.3.36, and it follows that there exists hﬁ“ a
homomorphism from Sy, to Body(Bs), therefore from S; ;1 to Body(Bz) = Body(Bs).

B. In a very similar manner, we will also prove the existence of a homomorphism h from
Body(K;) to B;.

Since Body(K()= Body(B) = B =Sy C By, we can exhibit h) = Id.

Assuming that there exists h%, we will show the existence of hg“, based on Lemma 1.3.40
and Proposition 1.3.24.

Indeed, t — t + 1 is a cs_chase step with sk(C'), where C' € C. Then there exists a
homomorphism from sk(C) to K, therefore to Body(K;) (since sk(C') is a regular
body).

Let g = hboh. Then g is a homomorphism from sk(C')

prem prem

prem, 1O By, therefore from Cpyen, to

Bj. Since By is the result of a terminating Standard Chase sequence, it follows that there exists
a homomorphism g’ compatible with g, from C,,,,.; to By, therefore from C,,,; to By. But by
Proposition 1.3.24, ¢’ is then a homomorphism compatible with g from Body(sk(C) ..,e1)
to By. We are then in the conditions of Lemma 1.3.40, and it follows there exists hé“ a
homomorphism from Body(K;+1) to By, which concludes our proof.

0

1.3.3.6 Termination of the Conservative Chase

We dedicate this subsection to characterizing the termination behaviour of the cs_chase. We
start by showing that for a set weakly acyclic constraints C, the termination behaviour of the
cs_chase with the sk_form of the constraints, sk(C), is identical to that of the Standard Chase:
that is, all sequences terminate within the same type of bounds.

51

We will further show that c¢s_chase sequences present a much more regular termination be-
haviour than Standard Chase sequences: that is, we will show that as soon as there exists one
terminating cs_chase sequence, all full cs_chase sequences will terminate.

Weakly acyclic constraints. In the case of weakly acyclic constraints, we present below a result
identical to Theorem 1.3.11 in the case of the Standard Chase.

Theorem 1.3.42. Let B be an sk_body and C a set of weakly acyclic constraints.
Then there exists a polynomial in the size of B that bounds the length of every full cs_chase
sequence of B with sk(C). In particular, all such sequences terminate.

To prove the above theorem we rely on the following additional result, that merely restates
the definition of cs_chase steps conditions of application. Indeed, remember that we have de-
fined a relational atom’s identity by means of the constructive terms of all its projection terms,
and atoms are considered "identical" if collapsible. The following result underlines the fact that,
in order for it to apply, a cs_chase step with an sk_TGD must introduce at least one new rela-
tional atom (otherwise, there would exist a compatible homomorphism over the conclusion).

Proposition 1.3.43. Let B be an sk_body and C an sk_TGD such that a cs_chase step with C
applies on B, with homomorphism h from Cyyen, to B, yielding B'=
CS_Chase_Step_Res(B, C, h).

Then for at least one relational atom a in B' — B, there exists no o' € [B,¢; collapsible with
a.

Based on the result above and Proposition 1.3.38 (stating that a cs_chase step with an
sk_TGD can apply at most once in a sequence), the proof of Theorem 1.3.42 is essentially
identical to the proof of Theorem 3.9 in [33], by replacing the notion of "distinct values" with
the notion of "distinct constructive terms". Indeed, while the proof in [33] was given for the
standard chase, its construction is conservative enough to perfectly account for the cs_chase.

We show below the adaptation of the proof of Theorem 3.9 in [33] to the Conservative Chase.
We start by recalling the notion of weak acyclicity as defined in [33]:

Definition 1.3.44 (Weakly acyclic set of constraints). Let C be a set of constraints over a fixed
schema. Construct a directed graph, called the dependency graph of C, as follows:

1. there is a node for every pair (R, A), where R is a relation in the schema and A is an
attribute of R. Call such pair a position.

2. add edges as follows: for every TGD C' inC:

(a) for every projection term s;.Aj in T(Ceonet)-T (Cprem) (that is, every projection
term specific to the conclusion) and every projection term ri,. Ap, in T'(Cprem,) such
that s;.Aj and r1,. Ay, are in the same equivalence class induced by
Clos([Ceoncileg U [Cprem]eq), add an edge from (R, Ay,) to (S, A;) (if it does not
already exist), where r; € R and s; € S are the relational atoms corresponding to
the given projection terms.

52

(b) in addition, for every projection term s;.Aj in T(Ceonel)-T(Cprem) that has no
premise term and no constant in its equivalence class, and every projection term
Tk-Apm in T(Cprem) that has a distinguished premise term in its equivalence class,

add a special edge from (R, A,,) to (S, Aj).

Then C is said to be weakly acyclic if there is no cycle going through special edges in its
dependency graph.

Note that the notion of weak acyclicity only involves the dependencies among the TGDs in
the set of constraints. Note moreover that the original definition of weakly acyclic constraints
is expressed for their Datalog notation. The above is the strictly equivalent definition of this
concept in the formalism used in this work, the tuple relational calculus.

Finally and importantly, recall that in the sk_form of a set of constraints, all projection
attributes specific to the conclusion that are not equated to a constant are either:

e equated to a distinguished premise term. In this case, in the dependency graph there will
be at least a regular edge from the position corresponding to the distinguished premise
term to the conclusion-specific term.

e equated to a Skolem term, that takes as arguments all the distinguished premise terms. In
this case, in the dependency graph there will be at least special edges from the positions
corresponding to the distinguished premise terms to the conclusion-specific term.

The observations above are intended to underline the following: for a Skolem-determined
term in the conclusion of a constraint, in the dependency graph there will always be at least
special edges from the positions corresponding to the distinguished premise terms to its corre-
sponding position.

Example 1.3.45. Consider the schema R(A), S(B,C),T(D, E) and the sk_body B = {r € R,
s € S, r.A = s.B}, which is also a regular body, that is, it has no constructive equalities.

Now consider the set of constraints C consisting in the unigue TGD C' such that Cprer={r €
R, se S rA=sB}and Ceppe ={r € R, s € S,t € T, t.D = s.B}. Note that there is a
unique distinguished premise term of C, namely s.B.

Then the dependency graph of C will comprise:

o 1wo regular edges, one from (R, A) to (T, D) and one from (S, B) to (T, D).
e 1wo special edges, one from (R, A) to (T, E) and one from (S, B) to (T, E).

On the other hand, the sk_form of C'is such that sk(C'),,.., = Cprem and sk(C) ..., =
{reR seS teT t.D=sDB, tE = f(s.B)}. Note that equalities in sk(C),,,,., are all
constructive.

By examining these two constructive equalities, note how the dependency graph comprises
an edge from the position (S, B) corresponding to s.B to the position (T, D) corresponding to
t.D. It comprises as well a special edge from the position (S, B) corresponding to s.B to the
position (T, E') corresponding to t.E.

53

For conciseness, we will in the following denote by the set of distinct constructive terms of a
position (R, A) in an sk_body B the set of all distinct constructive terms of the projection terms
ri.A, where (r; € R) is a relational atom in B.

Based on the intuitions above, we can informally sketch the flow of our proof adaptation:
we will show that, in the result of any cs_chase sequence with sk(C), where C is a set of weakly
acyclic constraints, there is a bounded number of distinct constructive terms for a given position
(R, A) in the resulting sk_body B’. Combined with Proposition 1.3.43, which states that a
cs_chase step introduces at least some fresh relational atom (that is, one that differs on at least
one constructive term from the other atoms corresponding to the same relation), this will then
ensure the required bound on the cs_chase steps.

We will rely in our proof, as in [33], on the operations of copying and creation as they are
shown by the dependency graph. The value copy (expressed by regular edges) in [33] is in our
case replaced by constructive term copy, from the image of a distinguished premise term to
the added conclusion term. The value creation on the other hand, expressed by special edges,
involves the addition in the cs_chase step of a Skolem determined term, whose constructive
term is in turn, as shown above, completely determined by the Skolem function symbol and the
constructive terms of the images of the distinguished premise terms.

Proof of Theorem 1.3.42. As in [33], we start by analysing the case without EGDs.

In an identical fashion to [33], for every node (R, A) in the dependency graph of C, we
define its rank as the maximum number of special edges of any path in the graph ending in
(R,A). Since C is weakly acyclic, the rank of every node will be finite. As in [33], we denote
by r the maximum of such ranks, and by p the number of positions in the schema. Since the
schema is fixed, we can consider p a constant and we can show that » cannot be higher than p
(otherwise a cycle on the special edges will exist), thus r is bounded by a constant.

We then partition, as in [33], the nodes of the dependency graph into sets Ng, Ny, ..., N,
where the set [V; contains all nodes of rank 7.

Let n be the total number of distinct constructive terms of projection terms in B. Let B’ be
an sk_body obtained from B after some arbitrary cs_chase sequence.

We will prove by induction that for every ¢ there exists a polynomial (); such that the total
number of distinct constructive terms of all positions (R, A) in V; is bounded by @;(n).

If (R, A) is a position in Ny, then there are no incoming paths with special edges. Then no
new constructive terms will be created for a term r;.A corresponding to the position. Indeed,
recall that, since they don’t have any incoming special edges, these terms cannot be Skolem-
determined. When they are added, their constructive terms will then be copies of the constructive
terms of the image of the distinguished premise term they are equated with in the conclusion.

Then, for this sort of positions in B’, the number of their distinct constructive terms will be
at maximum n, corresponding to the initial distinct constructive terms in B.

Assuming that the induction hypothesis holds for a given ¢, we will show that it also holds
for i + 1, by analysing the constructive terms for a position (R, A).

The first type of such constructive terms corresponds to constructive terms that already exist
in B, thus they are at most n.

Furthermore, a constructive term corresponding to a position (R,A), thus to a projection term
r.A where (r € R) is the relational atom comprising r, can be created in two ways: as a copy

54

of some previous constructive term (when applying a cs_chase step with a constraint in which
r.A is not Skolem-determined) or as a new constructive term, if 7. A is Skolem-determined in the
conclusion. This new constructive term is then by definition a Skolem term taking as arguments
the constructive terms of the images of the distinguished premise terms.

Let us first count the number of new distinct constructive terms that can be created for a given
position (R, A). A new constructive term creation corresponds to the presence of (at least) an
incoming special edge. Therefore, the special edge(s) must originate in some position(s) (.5, B)
in Ny U ... U N;. But according to the induction hypothesis, the number of distinct constructive
terms for the positions in Ny U ... U NN; is bounded by P(n) = Qo(n) + .. + Qi(n).

Let C'be a TGD in C and d; be the number of its distinguished premise terms. Note that these
are the same as the distinguished premise terms of sk(C'). We can show that for every distinct
choice of d; constructive terms in the positions of Ny U ... U INV;, a cs_chase step with sk(C')
creates at most one new constructive term for the position (R,A) corresponding to a Skolem-
determined term. Indeed, by Proposition 1.3.38, for a given choice of constructive terms for the
images of the distinguished premise terms, a constraint will apply at maximum once.

Let d be the maximum number of special edges that may enter a position in the whole
dependency graph.

As shown above, by definition of the dependency graph, for each position, d; is lower or
equal than the total number of incoming special edges for a position. Then obviously d; <= d.
Thus the total number of new distinct constructive terms that can be created for a position (R,A)
is at maximum (P(n))%* D, where D is the number of TGDs. Since the schema and the number
of constraints are assumed to be fixed, the above is a polynomial in n. For the total number of
positions (R,A) in N, 1, the number of new distinct constructive terms that can be created is
then bounded by G'(n) = p; * (P(n))¢ * D, where p; ;1 is the number of positions in N;, 1.

Let us now count the number of distinct constructive terms that can be occur for positions
in N;41 by copying. Such copying may only happen from a position in No U .. U N; by the
presence of a non-special edge (a copy from a position with a higher rank would contradict the
hypothesis that the rank of a position in N; 1 is indeed ¢ 4+ 1). Thus, the number of distinct
constructive terms obtained by copying for positions in NV;;1 is bounded by the number of
distinct constructive terms for positions in Ng U ... U N;, which is P,,.

We can then (in an identical fashion as in [33]) take Q;+1(n) = n + G(n) + P(n), the
polynomial that bounds the number of distinct constructive terms for the positions in N, 1.

Since the number of sets IV; is bounded by a constant, it follows that the total number of
distinct constructive terms for all positions in B’ is bounded by a polynomial Q)(n), and therefore
obviously the number of distinct constructive terms for a given position in B’ is itself bounded
by Q(n).

It follows that, for a given relation R in the schema, the number of relational atoms r; € R
differing by at least one constructive term on at least one of their projection terms is bounded by
Q(n)P, where p is the number of positions in the schema and therefore an upper bound for the
number of attributes of R.

To conclude our proof we note that, by Proposition 1.3.43, each cs_chase step with an
sk_TGD introduces at least one relational atom that is non-collapsible with existing atoms. It
follows that the maximum number of cs_chase steps with sk_TGDs is bounded by s * Q(n)?,

55

where s is the number of relations in the schema. Since s and p are assumed to be constants
(fixed schema), it follows that the total number of cs_chase steps is bounded by a polynomial
in n.

Accordingly, we then infer that the number of relational atoms in some resulting sk_body is
always bounded by ¢ * s * Q(n)P, where ¢ is the maximum number of atoms in the conclusion
of a constraint. To further account for sk_EGDs we note that an sk_ EGD will simply equate
two projection terms of existing relational atoms. Since the number of such relational atoms is
always bounded, it follows that the quantity ¢ * s * Q(n)P * p* provides an upper bound for the
number of c¢s_chase steps with EGDs. O

Note that, for the Conservative Chase, the number of special edges on a path between two
positions can be in fact related to the nesting depth of the Skolem constructive terms (one ad-
ditional Skolem function symbol is added with each "new constructive term creation", which
corresponds to at least one incoming special edge).

While the above statement and proof show the termination of the cs_chase under weakly
acyclic constraints, note that the choice of tuple calculus allows for a possibly finer granularity
definition of the dependency graph. Indeed, the equalities stated explicitly in the premise in our
formalism can help distinguish cases where the standard chase in tuple calculus can be shown
to terminate beyond weak acyclicity, by the same reasoning as above, but by modifying the
definition of the dependency graph. The following example illustrates such a case:

Example 1.3.46. Consider the schema R(A),S(B,C),T(D, E), the sk_body(which is also a
regular body) B = {r € R, s € S, r.A = s.B} and the set of constraints C= {C1, Cs}, such
that:

I Ciprem ={r € R, s €S, rA=3sB) Crepna={r € R,s€ S rA=sB1tel,
t.C'=s.B}

2. CQprem = I/t S T}; CQconcl =I/t eT,reR, r.A= tD}

Then, by definition, C is not weakly acyclic. On the other hand, by applying the same rea-
soning as above, with a modified version of the dependency graph, we can show that the stan-
dard chase and the cs_chase terminate. Indeed, by employing a similar procedure as the one
used to produce the sk_form of the constraints, this modified dependency graph will only com-
prise special edges from distinguished premise terms fo undetermined conclusion terms (Skolem-
determined in the sk_form), that is, in our case, from the position (S, B) to the position (T, E).

In this alternative dependency graph there are no cycles going through special edges, thus
the reasoning of the proof for weakly acyclic constraints applies directly and will accordingly
infer chase termination, for both the Standard and Conservative Chase.

We thus note, with the above example, the possibility of a finer analysis of chase termination
conditions, based on the suggested alternative definition of the dependency graph. We leave
such refined analysis to future work.

Stronger termination criteria. While in the above we have shown that for weakly acyclic con-
straints, the cs_chase behaves in an essentially identical fashion to the Standard Chase, we

56

will hereafter show that the termination of full cs_chase sequences is intuitively much more
regular than that of full Standard Chase sequences. Mainly, we will show that given a set of
sk_constraints, if one full cs_chase sequence terminates then all full cs_chase sequences ter-
minate.

The claim of such property is based again on the notion of collapsible atoms and atom
identity. To formalize our results, we further introduce the notion of col_homomorphism:

Definition 1.3.47 (col_homomorphism). . We denote by a col_homomorphism from an sk_body
Bj to an sk_body Ba a homomorphism h from By to By such that for every relational atom a
in By, a and h(a) are collapsible.

Remember that we have seen, by Lemma 1.3.33, that we can infer homomorphisms over
the output of a cs_chase step, based on the existence of of homomorphisms over the input of
the step. We hereafter refine Lemma 1.3.33 to further include col_homomorphisms and show
the following:

Lemma 1.3.48. Let B be an sk_body and C an sk_constraint such that a cs_chase step with C
applies on B with homomorphism h from Cyrem to B, yielding B'=CS_Chase_Step_Res(B, C, h).
Let h/ be the cs_chase step compatible homomorphism.

Let H be a homomorphism from B to an sk_body D. Let g = H o h be the corresponding
homomorphism from Cprem, to D.

If there exists a homomorphism g' compatible with g from C.yp,e; to D, then there exists a
homomorphism H" from B’ to D, such that, moreover, if H is a col_homomorphism then
H" is a col_homomorphism.

Proof. We only need to show that if H is a col_homomorphism, then the homomorphism
H' defined in the proof of Lemma 1.3.33 is also a col_homomorphism. Indeed, for the con-
structive equalities (t; = t2) in h'(Ceoner), We have shown that H'((t1 = t2)) = (H'(t1) =
ConstrT(H (tg))). Since H is a col_homomorphism it follows that ConstrT (H (t2)) =

ConstrT(tg), therefore H'((t1 = t2)) = (H'(t1) = ConstrT(tz)), which makes H' a
col_homomorphism, thus concluding our proof. O

Using Lemma 1.3.48 and Proposition 1.3.43, we can infer the following very strong result
regarding the termination of the cs_chase sequences:

Theorem 1.3.49. Let B be an sk_body and C a set of sk_constraints.
If one full cs_chase sequence with C over B terminates, then all full cs_chase sequences
with C over B terminate.

Proof. Let By be the result of a terminating cs_chase sequence with C over B.

Let So = B, ... be afull cs_chase sequence with C over B.

We will show by induction on the c¢s_chase steps that there exists a col_homomorphism
from S; to By. The reasoning is identical to that of the proof of Theorem 1.3.32, starting from
the identity function which is a col_homomorphism from Sy = B to Bj, and using Lemma
1.3.48 at each step.

On the other hand, by Proposition 1.3.43, every cs_chase step with an sk_TGD must add at
least one new relational atom. Since for every such atom there exists a collapsible atom in By,

57

and Bj has a finite number of relational atoms, it follows that there exists £ such that starting
from k all cs_chase steps in the sequence S, ... are sk_EGD steps. But since Sy has a finite
number of relational atoms itself, and every cs_chase step with an sk_EGD adds an equality
over existing projection terms, it follows that the number of sk_EGD steps is bounded, thus
there exists k; such that no more cs_chase step applies on Si,. Therefore, the Sy = B, ...
cs_chase sequence terminates after k1 steps. O

To conclude, we note that we can refine Theorem 1.3.32 to the following:

Theorem 1.3.50. Let B be an sk_body and C a set of sk_constraints. Let By and By be the
results of two terminating cs_chase sequences with C over B.
Then By and By are col_homomorphically equivalent.

1.3.3.7 Splitting sk_constraints into sk_unit_constraints

We will in the following further distinguish a subclass of sk_constraints which we will call
sk_unit_constraints:

Definition 1.3.51 (Sk_unit_constraints). An sk_constraint C' is an sk_unit_constraint iff:
1. Cisan sk_EGD, or
2. Cis a sk_TGD and the set [Ceoncilrel — [Cprem]rel contains a single relational atom.

Intuitively, sk_unit_constraints have a unit conclusion, in the sense that, ignoring con-
structive equalities, this conclusion comprises a single specific atom. We will show hereafter
that c¢s_chase sequences with sk_unit_constraints exhibit less redundancy and even stronger
equivalence results upon termination. More importantly, we show that we can "transform" any
set of sk_constraints into a set of sk_unit_constraints and the ¢s_chase with the two versions
exhibits essentially similar properties.

We obtain sk_unit_constraints from sk_constraints by producing their split form, as fol-
lows:

Definition 1.3.52 (Split form of an sk_constraint). Let C be an sk_constraint. The split form
of C'is a set of sk_unit_constraints split(C') obtained as follows:

1. if Cis an sk_EGD, then split(C') contains an unique element Cy = C

2. else, letry € Ry,...,ry € Ry, be the relational atoms in Cypep. Then split(C') contains
n sk_unit_constraints C;, which are all sk_TGDs, constructed as follows:

(a) Ciprem = Cprem
(b) [Oiconcl]rel = [Oprem]rel U(Ti € Rz)
(c) [CiCOnCl]COWStT_Eq = {(tl = tg)}, s.1. (tl = t2) S [Cconcl]constr_eq andty =r;. A

Example 1.3.53. Let C be an sk_TGD such that:

58

1. Cprem ={r € R}
2. Coopa={reR seS teT,sB=rA sC=f(rA)tD=rA.

Then the split form of C, split(C), contains two sk_unit_constraints C1 and Cs, both
sk_TGDs, such that:

1. Clprem = O?prem =(r € R}
2. Creona ={r€R s€S, s.B=rAsC=f(rA)
3. Copny={r € REET, t.D = 1A}

For a set of sk_constraints C, we denote by split(C) the resulting set of sk_unit_constraints
corresponding to their split versions, split(C) = Usplit(C'), C' € C. As announced, we will in the
following show that cs_chase sequences with C and c¢s_chase sequences with split(C) behave
in an essentially equivalent fashion.

We start by showing that the results of terminating cs_chase sequences with the two versions
of constraints are strongly equivalent (that is, col_homomorphically equivalent) as follows:

Theorem 1.3.54. Let B be an sk_body and C a set of sk_constraints.

Let By be the result of a terminating cs_chase sequence with C over B. Let Bo be the result
of a terminating cs_chase sequence with split(C) over B.

Then By and By are col_homomorphically equivalent.

Proof. We only need to note the fact that, by definition of the split form of the constraints:

1. for a constraint C' € C, a homomorphism h' from C.,,; to an sk_body D, compatible to
a homomorphism h from Cprep, to D, provides b, ... h,, homomorphisms compatible
with A from Cj .o, to D, where C; € split(C).

2. reversely, if A}, ... hl exist over C;opne, Ci € split(C'), then their union will form a
homomorphism h' from C,,,. to D.

We can then exhibit, based on Lemma 1.3.48, a col_homomorphism to By from (the closed
version of) every intermediate result of the cs_chase sequence with split(C); reversely, we
can exhibit a col_homomorphism from (the closed version of) every intermediate result of the
cs_chase sequence with C to Bs. O

We further show that the termination behaviour of ¢s_chase sequences with C and cs_chase
sequences with split(C) is essentially identical, as follows:

Theorem 1.3.55. Let B be a body and C a set of sk_constraints.
Then the following hold:

1. if there exists one terminating cs_chase sequence with C over B then all cs_chase se-
quences with C and split(C) terminate.

2. if there exists one terminating cs_chase sequence with split(C) over B then all cs_chase
sequences with C and split(C) terminate.

59

Proof sketch. We proceed in the same fashion as we have for linking termination of cs_chase
sequences, based on the col_homomorphisms exhibited from each intermediate cs_chase re-
sult in a sequence to the result of a second, terminating sequence. We have shown in the above
proof that such col_homomorphisms exist in both directions (i.e. from intermediate results of
a sequence using C to a terminating sequence using split(C), and reversely). The reasoning for
inferring the termination is then identical to the proof of Theorem 1.3.49. O

Sk_unit_constraints from regular constraints. Given a set of constraints C, we define their
sk_unit_form as the set of sk_unit_constraints skunit(C) = split(sk(C)).

We can further show that the following holds (the proof is identical to the proof of Theorem
1.3.42):

Theorem 1.3.56. Let B be an sk_body and C a set of weakly acyclic constraints:
Then there exists a polynomial in the size of B that bounds the length of every full cs_chase
sequence of B with skunit(C). In particular, all such sequences terminate.

Furthermore, based on Theorem 1.3.34, Theorem 1.3.54 and Proposition 1.3.28, we can
claim the following:

Theorem 1.3.57. Let B be a body and C a set of constraints.

Let By be the result of a terminating Standard Chase sequence with C on B. Let Bo be the
result of a terminating cs_chase sequence with skunit(C) on B.

Then By and Body(Bs) are homomorphically equivalent.

Accordingly, we can "translate" the above result for queries:

Corollary 1.3.58. Let Q) be a query and C a set of constraints.

Let Q1 be the result of a terminating Standard Chase sequence with C on (). Let Q2 be the
result of a terminating cs_chase sequence with skunit(C) on Q.

Then Q1 and Q2 are equivalent.

Privileging sk_unit_constraints. Given the above equivalence results, we will privilege in the
following the sk_unit_constraints to express the cs_chase, and its provenance-aware version.
Indeed, reasoning in terms of unit conclusions turns out to be simpler. Furthermore, the ad-
vantage of employing the cs_chase with the split version of a set of sk_constraints is that it
produces shorter outputs, in the following sense:

Proposition 1.3.59. Let B be a body. Let C be a set of sk_unit_constraints.
Then the result of any cs_chase sequence with C over B does not contain any collapsible
atoms.

Moreover, as announced in the beginning of this section, for the results of two terminating
cs_chase sequences with a set of sk_unit_constraints, we can show an equivalence result
stronger than for regular sk_constraints. Indeed, we define the notion of col_isomorphism as
follows:

60

Definition 1.3.60 (col_isomorphism). . We denote by a col_isomorphism from an sk_body B
to an sk_body Bs an isomorphism h from By to Bo such that h is furthermore a col_homomorphism.

Note that it is straightforward to show that if h is a col_isomorphism then h™! is also a
col_isomorphism.

We can then show that for sk_unit_constraints the following stronger version of Lemma
1.3.48 holds:

Lemma 1.3.61. Let B be an sk_body and C' an sk_unit_constraint such that a cs_chase step
with C applies on B with homomorphism h from Cprem to B, yielding B'=
CS_Chase_Step_Res(B, C, h).

Let H be an isomorphism from B to a part P of an sk_body D. Let g = H o h be the
corresponding homomorphism from Cprep, to D.

If there exists a homomorphism g compatible with g from C. .y, to D, then there exists
an isomorphism H" from B’ to P U ¢'(Ceoner) such that, moreover, if H is a col_isomorphism
then H" is a col_isomorphism.

Proof. The proof of the above result is very similar to the proof of Lemma 1.3.33 and its refine-
ment Lemma 1.3.48.

Let P' = P U ¢'(Ceoner)- Let I be the ¢s_chase step compatible homomorphism.

If C is an sk_EGD, then we will show, as in the proof of Lemma 1.3.33, that H itself
is an homomorphism from B’ to P’. Indeed, for the unique equality (¢t; = t3) in B’ — B,
(t1 = to) = K ((t} = t})), where (t; = t}) is the unique equality in Cy,e. Therefore
t1 = h/(t}) and to = B/(t2). Then H((t; = t2)) = (H(t1) = H(t2))=(Hoh (t}) = Hoh/(t}))
= (H o h(t) = H o h(th)) = (9(t)) = 9(th)) = (¢/(t5) = g'(t,)) = ¢/(t) = 1), therefore
H(ty = tg) € P’, where we have used the fact that 1’ is compatible with h, ¢’ is compatible
with g and t},t5 € T(Cprem)-

On the other hand, we will also prove that H—! is a homomorphism from P’ to B’. In-
deed, if ¢'(Croner) is not in P, then for the unique equality (t] = t§) in P/ — P, (t{ = t}) =
g'((ty = t5)). Then HH((t] = t5)) = (H~'(¢{) = H '(t5)) = (H 'og'(t}) = H 'og'(t}))
=(H log(ty)=H 'og(th)=(H "o Hoh(t;) = H ' o Hoh(ty)) = (h(t) = h(ty)) =
R'((t) = t4)) = (t1 = t2), which is the unique equality in B’ — B, thus concluding our proof.

If C'is an sk_TGD, we restate the "invertibility" property of A" as in the proof of Lemma
1.3.33: there exists a partial inverse of ’, h’~!, such that the following hold:

1. W'~tis a homomorphism from [B']e1-[B]rer 10 [Ceonetl rer-[Corem) el

2. for every (constructive) equality (1 = t2) in B’ — B, (t; = t2) = h/(t) = t}), where
(th = t5) is an equality in [Cronel] constr_eq» and furthermore:

(a) if t1isin T(B’) - T(B), then t; = A/ (t}), t} is in T([Ceoncilret — [Cprem]rer) and
ty = n'""(t1)

(b) else, tp isin T'(B), to = ConstrT(h'(t5)), th € T(Cprem)

61

We then proceed as in the proof Lemma 1.3.33, that is, we define the following function

from Tup Var(B') to Tup Var(P’):
H(r) = {H(T’), r € TupVar(B)
g oW Y(r), r& TupVar(B') — TupVar(B)

We will show that H' is a homomorphism from B’ to P’, as in the proof of Lemma 1.3.33.
It is straightforward that the image of all the relational atoms in B’ is in P’. Moreover, all
equalities in B — B are constructive and for every equality atom (1 = to) in B'— B, H'((t; =
to)) = (H'(t1) = ConstrT(H'(t2))).

But H'(t1) =g o h ™ (t1) =g o W=t o b/ () = ¢ ()

On the other hand ConstrT (H'(tg)) = ConstrT (H (ConstrT(h'(t5)))). But then accord-
ing to proposition 1.3.27, ConstrT(H'(tg)) = ConstrT(H o h'(t})) = ConstrT(H o h(t})) =
ConstrT (g(t,)) = ConstrT(g'(t;)), where we have used the fact that ~ and 1/, respectively g
and ¢’ are compatible and ¢/, is in T'(Cprem).

It follows that H'((t1 = t2)) = (H'(t1) = ConstrT(H'(t2)))=(¢'(t_1) = ConstrT(¢'(t}))),
therefore , since ¢’ is a homomorphism from Ciype to P/, H'((t1 = t2)) € P'.

In addition to Lemma 1.3.33, we further prove that H’ is in fact an isomorphism. That is,
we will show that H’ is bijective and that its inverse H'~! is a homomorphism from P’ to B’'.

We start by noting that ¢'(Cypne;) cannot be in P. Indeed, otherwise it would be easy to
show that the following function:

W (r) = h(r), r € TupVar(Cprem)
Hog (r), re TupVar(Cepner) — Tup Var(Cprem,)

would be a homomorphism compatible with h from C,,,; to B before the cs_chase step,
thus the cs_chase step would not apply.

On the other hand, since we are dealing with sk_unit_constraints, it follows by the above
that P N ¢’ (Ceonct) = 9([Cprem]rer), in other words, the image of specific part of the conclusion
is disjoint from P (indeed, the single relational atom specific to C.,,.; must be outside P).

We further note that in the case of sk_unit_constraints, every compatible homomorphism
possesses the "invertibility" property stated above for the cs_chase step compatible homomorphism.
In particular, g’ will exhibit such property.

Then it is easy to show that H' is bijective, and for the unique relational atom a in P’ — P,
H'"Y(a)=hog'~'(a) =K (a’), where a’ is the unique relational atom in [Ceonei]ret — [Cprem)rels
therefore H'~!(a) € B'.

Furthermore, let (t/ = t]) be a constructive equality in P' — P . Then (t{ = tJ) = ¢'(t] =
th). Then H'=Y((#] =)= H' Lo g'(t, =th)) = (H' "L o g'(t}) = ConstrT(H'~1 o g'(t})),
where (] = t) is a constructive equality in Ci,,c;. But further H'~tog/(t])=h'og "t og'(t))

=1 (t}).

Moreover, ConstrT(H'~1 o g/(t})) = ConstrT(H 1 o g(t})) = ConstrT(H ! o H o g(t}))
= ConstrT (h(t,)) = ConstrT (h'(t})).

It follows that H'=L((#] = ¢4)) = b/((t}, = t})), therefore H1((¢] = ¢4)) is in B’, thus
concluding our proof that H’ is an isomorphism.

62

To further show that H' is a col_isomorphism if H is a col_isomorphism we use an iden-
tical argument as in the proof of Lemma 1.3.48. O

Based on the above result, we can then show that terminating cs_chase sequences with
sk_unit_constraints lead to col_isomorphic results, as follows:

Theorem 1.3.62. Let B be an sk_body and C a set of sk_unit_constraints. Let By and Bs be
the results of two terminating cs_chase sequences with C over B.
Then By and By are col_isomorphic.

Proof. As we did when proving homomorphic equivalence for the results of two terminating
cs_chase sequences, for every intermediate result .Sy of the cs_chase sequence leading to By
we show inductively, the existence of an isomorphism between S; and a part P of By, based on
Lemma 1.3.61. It follows that there exists an isomorphism h; between Bj and a part of B,.

Reversely, we show the existence of an isomorphism from Bytoa part of B;.

But since isomorphisms are injective it follows that B; and By must have the same number
of tuple variables (and relational atoms), therefore h; is an isomorphism between B; and B,
which concludes our proof. O

1.3.4 The Provenance-Aware Chase

We will describe in this subsection the Provenance-Aware Chase, further denoted pa_chase.
As is the case for the Standard Chase and the Conservative Chase, the pa_chase is an itera-
tive procedure consisting in a sequence of steps. As announced in Section 1.2, the pa_chase
essentially consists in instrumenting the cs_chase with provenance. pa_chase steps will thus
take as input a provenance-adorned sk_body and an sk_unit_constraint® and yield as output a
provenance-adorned sk_body.

1.3.4.1 Provenance formulae and provenance-adorned sk_bodies

To describe provenance-adorned sk_bodies, we will first introduce the concept of provenance
formulae and their associated operations.

Definition 1.3.63 (Provenance formula). Given a finite set of symbols P, called a provenance
vocabulary, a provenance formula over P is either

e True, or
e False, or

® a boolean formula in DNF over the provenance symbols, using the *(AND) and +(OR)
operators: F' = Cy + ... + Cy, where C; = Sil % ...x S S € P and C; is called a
provenance conjunct. We will further call the symbols in ‘P provenance terms.

We denote by ProvForms(P) the set of all provenance formulae over P.

6 According to the previous section, the results below can also be generalized to sk_constraints in general.

63

Note that we can view provenance conjuncts as subsets of P and provenance formulae as
subsets of the power set of P, B(P), such that False = () and True = B(P). We will hereafter
use the standard set operations symbols with straightforward semantics for provenance formulae
and provenance conjuncts.

We also define the subsumption of provenance formulae, as the reverse of logical implica-
tion:

Definition 1.3.64 (Provenance subsumption). A provenance formula Fy over P, F} = C} +
R C}L subsumes a provenance formula F5 over P, Fy = 012 + -+ C?n, denoted F| <F5,
iff Fo — Fy, thatis, iff Vi € {1,..,m} 3j € {1,..,n} s.t. C} C C}.

It is easy to show that by definition of the subsumption, the following hold:

Lemma 1.3.65. Let P, and P» be provenance formulae and P be a provenance conjunct. Then
the following hold:

1. if PL < Py then Py x Py = Ps.
2. if (P % Py) < P, then P, < P and P, < P.
3. if (P1 + Py) < P, then at least one of P, or Py < P.

Using subsumption, we define the reduced form of a provenance formula:

Definition 1.3.66 (Reduced form of a provenance formula). Let F' be a provenance formula over
a vocabulary P. We define the reduced form of F, rf (F), as the formula F' = Cy + ... + Cy,
such that:

1. FFCF
2. FF<F
3. V’L#], CZ%CJandCJ%Cl

The following lemma shows that the reduced form of a provenance formula is well defined
and further provides an operational procedure for its computation

Lemma 1.3.67. Let F = C + ... + C}, be a provenance formula over a vocabulary P. Then
rf (F) is unique and computable by removing from F all conjuncts subsumed by other conjuncts.

Proof. Suppose that there are two formulae Fy = Ct + ... + C} and F, = C} + ... + C
respecting the properties (1)-(3) that define the reduced form of F'. We will show that F, = F7.

Indeed, we will show that F5 C Fj. Let C’i2 be a conjunct in F5. Since F> C F, it follows
that C? € F. But since F} < F, there exists C’} s.t. C’} C C2. Furthermore, because F; C F,
it follows that C; € F. Then there exists C7 € Fy s.t. C7 C C} C C?. But since according to
the definition F does not contain pairwise subsumed conjuncts, i = k and C? = C; =C% It
follows that C’? € .

In a similar manner we show that F} C F5. To conclude the proof of the lemma, it is
straightforward to show that removing subsumed conjuncts from F' leads to a provenance for-
mula respecting the definition of the reduced form. OJ

64

We will use provenance formulae as adornments on sk_bodies as follows:

Definition 1.3.68 (Provenance adornment and provenance-adorned sk_bodies). Let P be a
provenance vocabulary and B an sk_body. Let Prov be a function defined on all atoms of
B, with values in ProvEForms(P). Then Prov is called a provenance adornment of B and the
couple (B, Prov) is called a provenance-adorned sk_body.

We will hereafter refer to the values of Prov on the atoms of B as the provenance of the
atoms of B.

Provenance adornment of terms. The provenance adornment Prov of an sk_body B induces a
function Proviepys from T'(B) to ProvForms(P), called the provenance adornment of terms,
as follows:

1. Provieyms(r.A) = Prov(r € R), for a projection term.
2. Provierms(K) = True, for a constant

3. Provierms(f(ag,...,an)) = [[Provierms(a;) for a Skolem term (and Provierms(f()) =
True, for a Skolem term with no argument)

Since there is no ambiguity, and in order to avoid clutter, we will use in the following the
notation Prov to also denote Provie,ms-

Provenance adornment of the closed version. Based on the provenance adornment Prov of an
sk_body B and the induced provenance adornment of terms, we can further define a provenance
adornment Prov on B, as follows:

1. for a relational atom (r € R) € [Be, Prov(r € R) = Prov(r € R)

2. for a constructive equality atom (t; = t2) € [Bconstr_eq» Prov(ti = t2) =Prov(t; = t2)

3. for an equality atom (¢1 = t2) € [Bl¢,:

(a) if t1 = to, then Prov(t; = t2) = True

(b) else, we define a simple path sp between t1 and to as follows: let s = t1, S1,...,8, =

to be an ordered subset of T'(B), such that the equality (s; = s;41) or its symmetri-
calis in [Bl¢g orin [B]constr_eq-
Let p; = Prov((s; = siy1)) if (8; = si41) is in [Bleg or in [B]eonstr_eq> T€Spec-
tively Prov((sj+1 = s;)) if (si41 = ;) is in [B]eg or in [B]constr_eq-We denote by
Provpen (sp) the product Prov(sy) * - - - % Prov(s,—1) * p; % - - - * pp. Note that the
above product includes all the adornments of equality atoms on the path as well as
all the adornments on the terms on the path except for its extremities.

We denote by SP(t; = t2) the set of all simple paths between ¢; and t5. Then
Prov(ty = tg) = ZSpeSP(tlztz) Provpath(SP)

65

Provenance of a set of atoms. Based on the provenance of the atoms in an sk_body B, we further
define the provenance of any subset of atoms B’ of B as the product of the provenance of all the
atoms in the set (since there is no ambiguity, we will use the same notation Prov).

Full provenance of an atom. Starting from a provenance adornment of an sk_body B, we further
define a function Provy,; on all atoms of B, as follows:

1. Provpy(r € R) = Prov(r € R), for r € R arelational atom in [B]

2. Provg,(t1 = t2) = Prov(t1) * Prov(ts) x Prov(t; = t2), for (t; = t2) an equality in
[B] eq or il’l [B] constr_eq-

We will call the values of Provy,; on an atom the full provenance of the atom. Note that the
full provenance of an equality atom is in general different from its adornment. Note also that
for equality atoms this is the notion of provenance we implicitly refer to in Section 1.2, when
stating invariant (¢) and goal ().

We extend in a straightforward manner the notion of full provenance to a set of atoms: for
B’ a set of atoms,

P?“OUfull(B/) = H PTvaull(a)
aceB’

1.3.4.2 Provenance-Aware Chase steps and sequences

We are now ready to formally define the pa_chase steps, by first listing their conditions of ap-
plication and then by specifying their application, i.e. how they produce an output provenance-
adorned sk_body from an input provenance-adorned sk_body.

Definition 1.3.69 (pa_chase step conditions of application). A pa_chase step with
sk_unit_constraint C' on a provenance-adorned sk_body (B, Prov) applies iff:

1. There exists a homomorphism h from Cprem to B
2. Either:

(a) there exists no homomorphism h' compatible with h from Cyope to B, or

(b) for any such b/, Prov(h’(Ceonet)) A Prov(h(Cprem,))

Definition 1.3.70 (pa_chase step application). Applying a pa_chase step with sk_unit_constraint
C on a provenance-adorned sk_body (B, Prov), given homomorphism h from Cprer, to B, re-
sults in a new provenance-adorned sk_body (B’, Prov’) = Pa_Chase_Step_Res((B, prov), C, h),
such that:

The sk_body B' O B is obtained as follows:

66

1. if no homomorphism compatible with h exists, let B’ = CS_Chase_Step_Res(B, C, h)
and let I/ be the corresponding cs_chase step compatible homomorphism.

2. else, let h' a homomorphism compatible with h and let B' = B U h/(Ceoner)-

The provenance adornment of B', Prov’, is obtained as follows. Let Pyern, = Prov(h(Cprem))-
Then:

1. for constructive equalities in B — B, Prov’ = True
2. for relational atoms and non-constructive equalities in B' — B, Prov’ = Pyrem

3. for relational atoms and non-constructive equalities in B—h (Ceonci — [Cprem]rel), Prov’
= Prov

4. for relational atoms and non-constructive equalities in BOK (Ceoper — [Cpremret), Prov’
= Prov+Pprem.

Provenance enriching and atom creation steps. Let us take a closer look at the definition of a
pa_chase step.

1. If no homomorphism from C,,,. to B exists, then the provenance adornment stays the
same on B and the pa_chase step will introduce all the atoms in h’(Cionei - [Cprem]rei)
with fresh adornments, True in the case of constructive equalities and P, otherwise.
We call such step an atom creation step.

2. else

(a) if the pa_chase step is with an sk_TGD, then B’ = B (according to the closure
definition) and for the unique relational atom in b’([Ceoncirel = [Cprem]rel), its new
adornment Prov’ will be the sum of the old adornment Prov and Ppep,. We will
call such step a provenance enriching step.

(b) else, for an sk_EGD, according to whether h’([Ceonei] eq) is or not in B, B’ can be
equal to B (and the adornment of the equality in B enriched with P, as above)
or contain an additional equality atom, with fresh adornment P,;.,,. Although tech-
nically speaking the latter case involves an atom addition to B, the atom is already
in the closed version of B. We will thus also call this type of pa_chase step a prove-
nance enriching step, and keep in mind that a provenance-enriching step with an
equality addition may be possible only in the case of an sk_EGD.

As was the case for the standard chase and the cs_chase, it is easy to show that the function
I constructed in the pa_chase step application on a provenance-adorned sk_body (B, Prov) is
a homomorphism compatible with h, from C,,,.; to B’. Similar to the case of standard chase
and cs_chase steps, we will hereafter call i’ the pa_chase step compatible homomorphism.

Provenance-Aware Chase sequences. Given an provenance-adorned sk_body (B, Prov) and

a set of sk_unit_constraints C, a pa_chase sequence consists in producing the provenance-
adorned sk_bodies (By, Provy), (B1, Provy), ..., such that:

67

1. (Bg, Provy) = (B, Prov)
2. (B, Prov;) is obtained from (B;_1, Prov;_1) by the following operations:

(a) pick C € C s.t. a pa_chase step with C' applies on (B;_1, Prov;_1), with a
homomorphism h from Cprep, to Bi_1;

(b) let (B;, Prov;) :=Pa_Chase_Step_Res((Bi—1, Provi_;), C, h);

For a finite pa_chase sequence with a number of steps k, we denote by the result of the
sequence the provenance-adorned sk_body (By, Provy,) produced by the last step.

A full pa_chase sequence consists in applying pa_chase steps as long as there exists at least
an sk_unit_constraint C € C such that a pa_chase with C' applies. A terminating pa_chase
sequence is a full pa_chase sequence that terminates after a finite number of steps n — that is,
(Bp, Prov,,) is such that for any sk_unit_constraint C'in C, and any possible homomorphism
h from Cprep, to By, there exists a compatible homomorphism h' from Ciyper to By, such that
furthermore Provy, (h'(Ceonct)) < Provn(h(Cprem))

1.3.4.3 The Provenance Pick, the Provenance-Aware Chase and the Conservative Chase

We dedicate this subsection to showing the essential link between the Conservative Chase and
the Provenance-Aware Chase, via the Provenance Pick operation.

The Provenance Pick allows retrieving sk_bodies from provenance-adorned sk_bodies, by
selecting all the atoms whose full provenance is implied by a conjunct, as follows:

Definition 1.3.71 (Provenance Pick). Let (B, Prov) be a provenance-adorned sk_body over a
provenance vocabulary P and P C P a provenance conjunct. We define Pick(P, (B, Prov))
as the sk_body B’ C B, obtained as follows:

1. [B'lye1 = {r € R}, such that (r € R) € [B]y¢ and Provg,(r € R) <P.
2. [B']constr_eq = {t1 = t2}, such that (t; = t2) € [Blconstr_eq and Provp,(t; = t2) <P.
3. [B']eq = {t1 = ta}, such that (t; = t2) € [Bleq and Prove,(t1 = ta) <P.

One can easily show, given the definition of the full provenance of an atom, that applying
the Pick operation on a provenance-adorned sk_body results indeed in an sk_body.

Remember that we have stated that the Provenance-Aware Chase is essentially the Conser-
vative Chase with provenance annotations. In the following we will show that over provenance-
adorned bodies, the two procedures commute via the Pick operation, as follows:

Theorem 1.3.72. Let B be a body and Prov a provenance adornment of B over a provenance
vocabulary P. Let C be a set of sk_unit_constraints. Let (B', Prov') be the result of a termi-
nating pa_chase sequence with C over (B, Prov).

68

Let P C P be a provenance conjunct. Let B, = Pick(P, (B, Prov)) and By, be the result
of a terminating cs_chase sequence with C over B,,.

Then Biz’) and Pick(P, (B’, Prov’)) are col_isomorphic.

To prove the above, we will show several important results regarding the pa_chase and the
Provenance Pick. We start by noting that the following holds, as a direct consequence of the
definition of provenance of the closure and full provenance:

Proposition 1.3.73. Let (B, Prov) be a provenance-adorned sk_body and (t1 = to) an equality

in [Bleq, such that t # to.
Then Provpu((t1 = t2)) = > e sp(ti=t,) LI Provpu(eqs), where eq; € sp

Using Proposition 1.3.73, we show that the Provenance Pick commutes with the closure, as
follows:

Proposition 1.3.74. Let (B, Prov) be a provenance-adorned sk_body over a provenance vocab-
ulary P.

Let P C P be a provenance conjunct.

Then Pick(P, (B, Prov)) = Pick(P, (B, Prov))

Proof. ltis straightforward to show that [Pick(P, (B, Prov))],e = [Pick(P, (B, Prov))] . In-
deed, Prov(a) = Prov(a) for every relational atom in [B]¢; = [B] ;. We apply the same reason-
ing for constructive equalities.

We further show that [Pick(P, (B, Prov))]e, = [Pick(P, (B, Prov))]e,-

Indeed, let (#1 = t2) be an equality in [Pick(P, (B, Prov))]eq. Then Provp,((t1 = t2)) <
P. But according to the properties of subsumption (Lemma 1.3.65) and Proposition 1.3.73
it follows that there exists a simple path sp from ¢; to t5 such that for every equality eq; &€
sp, Provgu(eq;) < P. Then sp is a simple path in Pick(P, (B, Prov)) and (t; = t) is in
Pick(P, (B, Prov)).

Reversely, for an equality (¢1 = t2) in [Pick(P, (B, Prov)|eq. every simple path will consist
of equalities eg; such that Provg,;(eq;) < P. Then Provs,((t1 = t2)) < P, therefore (1 =
ta) is in Pick(P, (B, Prov)), which concludes our proof. O

We continue by showing that in a pa_chase sequence starting from a body, the provenance
of a term is always subsumed by the provenance of its constructive term:

Proposition 1.3.75. Let By be a body and Provg an adornment of By over a provenance vo-
cabulary P. Let C be a set of sk_unit_constraints and (B’, Prov’) be a provenance-adorned
sk_body resulting from a pa_chase sequence over (By, Provg) with C.

Then for every term t in T(B’), Prov'(ConstrT(t)) < Prov'(t)

Proof. We will show by induction on the pa_chase steps that the above holds. It is clearly the
case for the initial (By, Provg), since By is a body and thus ConstrT(t) = t for all terms.

Let (B, Prov) be the result preceding (B’, Prov’) in the pa_chase sequence. Assuming
the result holds for (B, Prov) we will show that the result holds for (B’, Prov’). Indeed, let
C' be the sk_unit_constraint corresponding to the pa_chase step leading from (B, Prov) to
(B', Prov').

69

If C'is an sk_EGD then the above result is straightforward. Indeed, by definition, pa_chase
steps with sk_EGDs do not change the provenance of terms.

If C' is an sk_TGD, then let h be the homomorphism from Cpyep, to B corresponding to the
pa_chase step and h' be the pa_chase step compatible homomorphism. We will show that the
above property is verified for projection terms in B’. By definition of the constructive terms and
provenance of Skolem terms, it then extends directly to all terms of B’.

If the pa_chase step is an atom creation step, then for every projection term ¢1 in 7 (B’) —
T(B), ConstrT(t;) = ConstrT(h(t,)) where t, € T(Cprem) and h(th) € B. Accord-
ing to our induction hypothesis, Prov(ConstrT (h(t}))) then subsumes Prov(h(t})). On the
other hand, h(t}) € T(h(Cprem)), therefore Prov(h(th)) < Prov(h(Cprem)). But since the
pa_chase step is an atom creation step Prov’(t1) = Prov(h(Cprem)). It then follows that
Prov(ConstrT (h(t}))) < Prov'(t1), so Prov'(ConstrT(t;)) < Prov'(t1)

For a provenance enriching step, the constructive equalities in h/(C\,p) already exist in B.
Furthermore, by definition of the pa_chase step, for each projection term ¢; defined by such
constructive equality, Prov’(t1) = Prov(t1) + Prov(h(Cprem)). On the other hand, since these
equalities exist in B, by induction hypothesis Prov(ConstrT(t;))) < Prov(ty).

Further, as in the case above, we can show that Prov(ConstrT(t;)) < Prov(h(Cprem)).
Since Prov’(ConstrT(t;)) = Prov(ConstrT(t;)), accordingly, Prov’(ConstrT (t;)) <
Prov(h(Cprem))+Prov(ty), therefore Prov'(ConstrT(t;)) < Prov’(t1), which concludes our
proof. OJ

A direct consequence of the above proposition is that in a pa_chase sequence starting from
a provenance adorned body, the full provenance of a constructive equality is always equal to the
provenance of the term it defines:

Proposition 1.3.76. Let (B, Prov) be a provenance-adorned sk_body resulting from a pa_chase
sequence over a provenance-adorned body.
Then for every constructive equality (t = t') in (B, Prov), Provy,;(t =t') = Prov(t)

Indeed, it is enough to notice that all introduced constructive equalities are annotated with
True, by definition of a pa_chase step. The result above then follows from Proposition 1.3.75
and Lemma 1.3.65. This result further allows us to state the following:

Lemma 1.3.77. Let (B, Prov) be a provenance-adorned sk_body resulting from a pa_chase
sequence over a provenance-adorned body.

Let h be a homomorphism from an sk_body D to (B, Prov).

Then Prov(h(D)) = Provs,(h(D)).

Proof. For regular equalities notice that the corresponding projection terms must be in relational
atoms in i (D), therefore the provenance of their end points is already included in the provenance
of those atoms. For constructive equalities in A(D) we rely on Proposition 1.3.76 and we further
note as in the previous case that the provenance of the terms those constructive equalities define
is already included in the provenance of the respective relational atoms. OJ

By mixing the above result with Proposition 1.3.74, we can infer the following:

70

Lemma 1.3.78. Let (B, Prov) be a provenance-adorned sk_body resulting from a pa_chase
sequence over a provenance-adorned body.

Let P be a provenance conjunct.

Let h be a homomorphism from an sk_body D to (B, Prov) such that Prov(h(D)) < P.
Then h is a homomorphism from D to Pick(P, (B, Prov)).

Reversely, let h be a homomorphism from an sk_body D to Pick(P, (B, Prov)). Then h
is a homomorphism from D to (B, Prov) such that Prov(h(D)) < P.

Equally important, based on Proposition 1.3.76, we can note that if a relational atom is
picked according to a conjunct, then all its constructive equalities are picked. Putting together
all the above results we can then provide the following essential characterization of a pa_chase
step and the Provenance Pick:

Lemma 1.3.79. Let (B, Prov) be a provenance-adorned sk_body resulting from a pa_chase
sequence over a provenance-adorned body with a set of sk_unit_constraints C.

Let C be an sk_unit_constraint such that a pa_chase step with C' applies on (B, Prov)
with homomorphism h from Cyrep, to B, yielding (B, Prov’)
= Pa_Chase_Step_Res((B, Prov), C, h). Let Pprem = Prov(h(Cprem)).

Let P C P be a provenance conjunct.

Let B, = Pick(P, (B, Prov)) and B;, = Pick(P, (B, Prov')).

Then:
1. if Pyrem A P then BI’, = B,

2. else, his a homomorphism from Cyrem to By, h' is a homomorphism compatible with
h from Cleppei to Bz’, and furthermore:

(a) either B), = B, or

(b) B, = By UN(Ceonct) arﬂBp N (Ceonct) = h([Cpremrer). Furthermore, let H
be an isomorphism from B), to a part J of an sk_body D. Let g = H o h be the
corresponding homomorphism from Cprem to J.
If there exists a homomorphism g’ compatible with g from Ceope; to D, then there

exists an isomorphism H" from B, to J U g'(Ceoner) such that, moreover, if H is a
col_isomorphism then H" is a col_isomorphism.

Proof. Let Pyrem = Prov(h(Cprem))-

We start by noting that for any atom a in B, Provy,;;’(a) is either Provs,;(a) or
Provgy(a)+Pprem. Indeed, while for an sk_TGD it is a direct consequence of the pa_chase
step and Proposition 1.3.76, for an sk_EGD it follows directly by the fact that for the unique
equality (t1 = t2) in h'(Ceonet), Prov(t1) < Pprem and Prov(ta) < Pyrem.

We can then conclude according to Lemma 1.3.65 that if an atom a is in Pick(P, (B’, Prov’))
then at least one of Provg,;(a) or Ppep, subsumes P. If Pp,.cp, A P, then Provp,;(a) must sub-
sume P, and so a must be in Pick(P, (B, Prov)), thus proving the first point above.

Continuing, if Pp.¢;, < P, then according to Lemma 1.3.78 it follows directly that A is a
homomorphism from Cprep, to E. Furthermore, relying on the above and the definition of a

71

pa_chase step, it is easy to show that for every atom a in h/(Ceoner), Provp’(a) < Pprem. It
then follows that 1/ is a homomorphism from Ceope to B,

Furthermore, if B,; =% B, it is straightforward to show that the unique equality (in the case
of an sk_EGD) or the unique relational atom and its constructive equalities (in the case of an
sk_TGD) in h'(Ceonci — [Cprem]rer) are respectively disjoint from B,,. The rest of the proof of
point 2.b is then identical to the proof of Lemma 1.3.61. O

Note the extreme similarity of the last point of the lemma above with its analogous state-
ments for cs_chase steps. We basically show that on the picked versions of the provenance-
adorned sk_bodies the pa_chase behaves exactly like the cs_chase. Accordingly, we will prove
Theorem 1.3.72 in the same manner than Theorem 1.3.62. Indeed, we will first show that the
following holds:

Lemma 1.3.80. Let B be a body and Prov an adornment of B over a provenance vocabulary
P. Let C be a set of sk_unit_constraints. Let P C P be a provenance conjunct.
Let (B', Prov') be the result of a terminating pa_chase sequence with C over (B, Prov).
Let By = Pick(P, (B, Prov)), By, ... be a cs_chase sequence with C over
Pick(P, (B, Prov)).
Then there exists a col_isomorphism from B; to a part of Pick(P, (B’, Prov’)).

Proof. The proof of the above is very similar to the proof of existence of a col_isomorphism
from the intermediate results of a cs_chase sequence to a part of the result of a terminating
cs_chase sequence. Indeed, since By = Pick(P, (B, Prov)) C Pick(P,(B’, Prov')) we can
exhibit the col_isomorphism hg = Id.

Assuming that a col_isomorphism hy exists from By to a part of Pick(P,(B’, Prov')), we

will show the existence of a col_isomorphism hy1 from By to a part of Pick(P, (B’, Prov’))
based on Lemma 1.3.61. o
It is enough to notice that for A a homomorphism from Cprem, to By, g = hy o his a

homomorphism from Cppep, to Pick(P,(B’, Prov’)). But according to Lemma 1.3.78, g is
then a homomorphism from Cprep, to (B, %’) such that Prov(h(Cprem)) < P. Then
since (B’, Prov’) is the result of a terminating pa_chase sequence it follows that there must
exist at least one homomorphism ¢ compatible with g, from Cyone to (B', Prov’), such that

Prov(g'(Ceonct)) < Prov(g(Cprem))-
Then Prov(g'(Cronet)) < P and according to Lemma 1.3.78 ¢’ is a homomorphism com-

patible with g from C,,,¢; to Pick(P,(B’, Prov’)). We are then in the conditions of Lemma
1.3.61 and it follows that there exists a col_isomorphism from By to a part of Pick(P, (B’, Prov')),
and accordingly from By 1 to a part of Pick(P, (B’, Prov’)), thus concluding our proof. [

Symetrically, we will show that the following holds:

Lemma 1.3.81. Let B be a body and Prov an adornment of B over a provenance vocabulary
P. Let C be a set of sk_unit_constraints. Let P C P be a provenance conjunct.
Let B’ be the result of a terminating cs_chase sequence with P over Pick(P, (B, Prov)).
Let (By = B, Provy = Prov), (By, Provy), ... be a pa_chase sequence with C over
(B, Prov).

72

Then there exists a col_isomorphism from Pick(P,(B;, Prov;)) to a part of B'.

The proof of the above results is quasi-identical to the proof of Lemma 1.3.61, further rely-
ing on Lemma 1.3.79.

Relying on the two above results, we can then prove Theorem 1.3.72 in an identical fashion
to Theorem 1.3.62 (stating isomorphism between results of cs_chase sequences with
sk_unit_constraints), by relying on the injective nature of the exhibited isomorphisms in Lem-
mas 1.3.80 and 1.3.81.

1.3.4.4 Termination of the Provenance-Aware Chase

Based on Lemmas 1.3.80 and 1.3.81 we can further tightly link the termination behaviour of the
pa_chase and the cs_chase as follows:

Theorem 1.3.82. Let B be a body and Prov an adornment of B over a provenance vocabulary
P. Let C be a set of sk_unit_constraints. Then:

1. if there exists a terminating cs_chase sequence of B with C, then all pa_chase sequences
of (B, Prov) with C terminate.

2. reversely, if there exists a terminating pa_chase sequence of (B, Prov) with C then all
full cs_chase sequences with C over B terminate.

Proof. Indeed, it is enough to consider the provenance conjunct P = P.

We will start by proving point (2) above. Let (B, Prov,) be the result of a terminating
pa_chase sequence with C over (B, Prov). Since P = P it follows that B = Pick(P, (B, Prov))
and B,, = Pick(P, (B, Prov,)).

Let By = B, By,... be a cs_chase sequence with C over B. Then it is also a cs_chase
sequence with C over Pick(P, (B, Prov)). Accordingly, by Lemma 1.3.80, there exists a
col_isomorphism between B; and a part of B,,. Since isomorphisms are injective, it follows
that there exists k such that no more relational atom creation occurs in the cs_chase sequence
starting from Bj. Then it follows that there may be only a limited number of equality atom
creation steps (similar to the proof of Theorem 1.3.49) and the cs_chase sequence terminates.

To further prove point (1), let B,, be the result of a terminating cs_chase sequence over B.
Then B,, is also the result of a terminating cs_chase sequence over Pick(P, (B, Prov)).

On the other hand, let (By = B, Provy = Prov), (B1, Provy), ... be a pa_chase sequence
with C over (B, Prov). Then according to Lemma 1.3.81, there exists a col_isomorphism from
B; = Pick(P,(B;, Prov;)) to a part of B,,. But then since isomorphisms are injective it follows
that there exists m1 such that all pa_chase steps after m; cannot be atom creation steps. As a
consequence, starting from (B, , Prov,,,), all pa_chase steps are provenance enriching steps.
On the other hand, recall that the provenance enriching steps can only add some provenance on
atoms of B,,,,. The number of such atoms is finite. Furthermore, since a provenance enriching
step adds at least one provenance conjunct and the number of provenance conjuncts in P is
finite, it follows that there can only be a finite number of provenance enriching steps, therefore
the pa_chase sequence terminates. OJ

73

Remark. While the fact of exhibiting col_homomorphisms in the case of the cs_chase with
sk_constraints that are not necessarily sk_unit_constraints allowed us to derive strong ter-
mination equivalence, the isomorphisms exhibited above, whether among cs_chase sequences
with sk_unit_constraints or cs_chase sequences and pa_chase sequences, are enough to state
the strong termination links existing among such sequences. The fact that the isomorphisms in
question map in fact collapsible atoms can be seen as merely a "bonus" or alternative criteria for
termination.

Weakly acyclic constraints. Theorem 1.3.82, together with Theorem 1.3.56 (stating the termi-
nation of the cs_chase for weakly acyclic constraints) allow us to further derive termination of
pa_chase sequences in the case of weakly acyclic constraints, as follows:

Theorem 1.3.83. Let B be a body and Prov a provenance adornment on B over a provenance
vocabulary P. Let C be a set of weakly acyclic constraints.
Then all full pa_chase sequences on (B, Prov) with skunit(C) terminate.

1.3.4.5 The Provenance-Aware Chase and the Standard Chase

Based on the results linking the the Provenance-Aware Chase and the Conservative Chase, and
the equivalence between the cs_chase and the Standard Chase on bodies, we can further infer
that the Standard Chase and the pa_chase commute via the Provenance Pick as follows:

Theorem 1.3.84. Let B be a body and Prov an adornment of B over a provenance vocabulary
P. Let C be a set of constraints.

Let P C P be a provenance conjunct. Let BZ’, be the result of a terminating standard chase
sequence with C on Pick(P, (B, Prov)).

Let (B, prov’) be the result of a terminating pa_chase sequence with skunit(C) on (B, prov).

Then Bﬁl’) and Body(Pick(P, (B, prov'))) are homomorphically equivalent.

The above result provides the correctness basis for our reformulation algorithm Provcyg g,
as we will see in the following section.

1.3.5 The Provenance-Aware Chase & Backchase

We have presented in Section 1.2 an overall view of our reformulation algorithm, the Provenance-
Aware Chase & Backchase (Provgog p). Based on the concepts and statements of the previous
subsections, we are now ready to detail this algorithm and prove its soundness and complete-
ness. We start by detailing some terminology that allows us to fully explicitate Provog g.

Universal plan and universal body. Given a query () formulated against a source schema S, a
set of constraints C and a target schema T, we denote by QC the result of a terminating standard
chase sequence over () with C.

We further denote by By and call the universal body, the restriction of body(Q°) to the
target schema 7 (recall that this restriction means that we consider the maximal sub-body of
body(QC) induced by the relational atoms in T'). Note that By is a closed body, that is, By =

74

Byr. We will further call the query U = Query(Head(Q)), By) the universal plan. For every
subquery sq of U we denote by By, its corresponding body. Note that By, € By. We recall
below the properties of the universal plan, restating them using bodies:

Proposition 1.3.85. Let QQ be a query formulated against a source schema S, 'I" a target schema,
C a set of weakly acyclic constraints (including the relationship between S and T') and U the
corresponding universal plan. Then:

1. every reformulation of Q over T’ given C is (isomorphic to) a subquery sq of the universal
plan

2. asubquery sq of the universal plan is a reformulation of Q) iff there exists a homomorphism
from body(Q) to ng, where Bscq is the result of a terminating Standard Chase sequence
with C over B,

Canonical provenance vocabulary. Let By be a universal body. We denote by Py, and call the
canonical provenance vocabulary, the provenance vocabulary containing as terms all the tuple
variables of By (and therefore U): r; is in Py iff r; € R; 1s in By.

For every conjunct C; C Py we further denote by sq(C;) the corresponding subquery of
U induced by C; and by By, (C;) the corresponding sub-body of By;. Reversely, we denote
by C(sq) the conjunct corresponding to a universal plan subquery. Note that all these are one-
to-one correspondences between subqueries (and their corresponding bodies) and provenance
conjuncts over Pr;.

Canonical adornment of the universal body. We denote by Prov; the provenance adornment of
By; over Py obtained as follows:

1. Provy((r; € R;)) = 1y, for a relational atom in [By]

2. Provy((t1 = t2)) = True, for an equality atom in [By],

We will call Provy the canonical adornment of Bys. It is easy to show that the following
holds:

Proposition 1.3.86. Let C; C Py be a conjunct over the canonical provenance vocabulary.
Then Byy(c,) = Pick(C;, (By, Provy))

Using the notation above, we are now ready to present our reformulation algorithm Provcg, g:

Proveg. g (Query Q, source schema S, target schema 7', set of weakly acyclic constraints C)

By < Universal Body(Q,C,S,T)

Provy < canonical adornment of By;.

(B', Prov') < the result of a terminating pa_chase sequence over (By, Provy) with skunit(C).
H < {h, his a homomorphism from body(Q) to (B', Prov')}

F + Y Prov'(h(body(Q))
heH
for C; € rf(F)
do
return sq(C;)

[C IR Be) D B W =

75

We further claim the soundness and completeness of Provcg g, as follows:

Theorem 1.3.87. Let QQ be a SFW query formulated over a source schema S, I" a target schema
and C a set of weakly acyclic constraints over S U'T

Then the algorithm Provcyg, p is sound and complete, that is, it returns all and precisely the
minimal reformulations of QQ against T given C.

Proof. The soundness and completeness of Provgg, g can be restated as follows: a subquery sq
of U is a minimal reformulation of @ under C iff C'(sq) € rf(F'). To prove this statement, we
first show that the following hold:

1. Let C be a conjunct in F'. Then sq(C) is a reformulation of Q).

Indeed, by definition of F, there exists h a homomorphism from body(Q) to (B’, Prov’),
such that C € Prov (h(body(Q))). It follows that Prov (h(body(Q))) < C. Then
by Lemma 1.3.78, h is a homomorphism from body(Q) to Pick(C, (B’, prov’)). Since
body(Q) is a regular body, h is then a homomorphism from body(Q) to

Body(Pick(C, (B’, prov'))).

On the other hand, according to Proposition 1.3.86, B,y = Pick(C, (By, Provy)).
Let ng((}) be the result of a terminating Standard Chase sequence on B,) with C. By

Theorem 1.3.84 it follows that qu(c) and Body(Pick(C, (B’, prov’))) are homomorphi-

cally equivalent. In particular, there exists a homomorphism hy from Body(Pick(C, (B’, prov’)))

C
to Bsq(o).

But then A1 o h is a homomorphism from body(Q) to ng(())‘ By Proposition 1.3.85 it

then follows directly that sq(C') is a reformulation of ().

2. Let sq be a reformulation of (). Then there exists a conjunct C/ € rf(F) such that
C" C C(sq).
Indeed, let ng be the result of a terminating Standard Chase sequence with C over By,. It
follows by Proposition 1.3.85 that there exists a homomorphism h from body(Q) to Biscq.
On the other hand, by Proposition 1.3.86, By, = Pick(C(sq),(By, Provy)). Then
according to Theorem 1.3.84, Body(Pick(C(sq), (B’, prov’))) and BS, are homomor-
phically equivalent. In particular, there exists a homomorphism h; from ng to
Pick(C(sq), (B’, prov")).
But then hy = hy o h is a homomorphism from body(Q) to Pick(C(sq), (B’, prov’)).
Then according to Lemma 1.3.78, hy is a homomorphism from body(Q) to (B, Prov/),
such that Prov’ (ha(body(Q)) < C(sq). But by definition of F, Prov' (hy(body(Q)) C
F. Tt follows from the subsumption that there exists C’ € F s.t. C' C C(sq). But
by definition of the reduced form, for every C’ € F, there exists C' € rf(F') such that
ccc.

Using the two points above, we will show that a subquery sq of U is a minimal reformulation
of Q iff C(sq) € rf(F):

76

Indeed, let sq be a minimal reformulation. By point (2) above it follows that there exists
C" € rf(F) such that C" C C(sq). But by point (1) above it follows that s¢’ = sq(C") is also
a reformulation of @Q. Since sq(C") C sq(C'), sq' is a subquery of sq. But sq is minimal so it
must be that sq¢’ = sq, therefore C’ = C'(sq) and therefore C'(sq) € rf(F).

Reversely, let C' € rf (F') be a conjunct of rf (F'). By point (1) above it follows that sq(C') is
a reformulation of @ (since rf (F) C F). If sq(C') is not minimal, that there exists sq’ C sq(C')
s.t. s¢’ is a reformulation. But then by point (2) above there must exist C’ € rf(F) s.t. C' C
C(sq'). This further implies that that C’ C C, which contradicts the definition of the reduced
form of a formula. Therefore, sq(C) must be minimal, which concludes our proof. O

1.4 Implementation

To evaluate our reformulation algorithm, we have set up a proof-of-concept implementation of
Proveg g. We present below some of the key techniques and optimizations employed:

Chase step as query evaluation. A Standard Chase step searches for homomorphic matches
of the premise of constraint C' against the closed version of a body B. The search for homo-
morphic matches of the premise can be modelled as running C’s premise Cipyepn(viewed as a
query) against B (viewed as a symbolic database known in the literature as the canonical in-
stance [1]). We then compile Cj,.y, to a query plan based on relational algebra operators, and
we run it over an internal representation of B using its canonical instance. This technique can
be further adapted to sk_bodies and the cs_chase, where the canonical database corresponds to
Body(B). We can further extend such technique for matching the conclusion of C'in the case
of the Standard Chase or the ¢s_chase with sk_EGDs. For the ¢s_chase with sk_TGDs on the
other hand, such matching is greatly simplified by the fact that, as shown, a possible match of
the conclusion is completely determined by the constructive terms of the images of distinguished
premise terms.

Standard query optimizations. Modelling chase steps as query evaluation problems allows us
to apply standard query optimization techniques borrowed from the relational query optimiza-
tion literature. Our implementation includes among others pushing selections and (duplicate-
eliminating) projections into the joins.

Efficient in-memory query processing. In contrast to general DBMSs that need to account
for large datasets that may not fit in main memory, the chase operates on instances that start from
a single query body and are small enough to fit in main memory. This observation allowed us
to implement the chase engine as an in-memory query processor. To speed up query processing,
we opted for in-memory hash-based implementations of the relational algebra operators (joins
and projections).

Bottom-up query evaluation. In a naive chase engine, one would try to apply every constraint
each time the instance changes. However, some constraints would not be applicable. To reduce
the number of constraints we try to apply, our query processor works in a bottom-up fashion.
Whenever a new tuple is added to a relation, it is being pushed up the query trees that scan this
relation. Thus, for every change in the underlying instance only those queries that might be
affected are evaluated.

77

Incremental query evaluation. A chase sequence involves evaluating repeatedly the same set
of query plans obtained from compiling the constraints. Moreover, these queries are evaluated
over evolutions of the same instance. The effect of each chase step is to evolve the instance by
adding only a few new tuples at a time (these tuples correspond to the atoms constructed by the
step). The majority of the instance is unaffected by the step. This creates the opportunity to
accelerate chasing by employing incremental query evaluation. Instead of evaluating each query
from scratch, we keep its query plan (together with the populated hash tables) in memory and
whenever new tuples are added to the evolving instance, we push them to the affected plans.

Efficient maintenance of equalities. Chasing involves adding equalities between the values
present in an instance. Moreover, it involves checking whether two values are equal. To allow
efficient querying and updating of equalities, we employ a union-find data structure as in [60].

Our Provenance-Aware Chase implementation uses the design choices listed above, together
with handling provenance formulae storage and operations. We have in particular optimized
provenance enriching pa_chase steps, so as to propagate provenance changes without reevalu-
ating the constraints. As a side-effect of our reformulation work, the pa_chase implementation
further delivers a minimal-why-provenance-tracking processor for conjunctive queries (general-
ized to support invention of values using Skolem functions).

1.5 Experiments

We evaluated our Provcg g implementation in a recreation (and extension) of the setting de-
scribed in [60] for query rewriting using materialized views and integrity constraints. We chose
this setting because we believe it is practically relevant, it allows apples-to-apples comparison
with the C'& B, and because its design was parameterized so as to allow scaling to the point of
stress-testing any complete reformulation algorithm by forcing a combinatorial explosion of the
existing minimal rewritings.

Chain-of-stars schemas and queries ([60]) The parameterized setting starts from the fol-
lowing basic building block. Consider the query () given below, which joins relations R; (/K
Aq, Ao,), Ro(K, Ay, Ag) with S5 (A;, B) (1 <4, j < 2). Figure 1.1 depicts ()’s join graph, in
which the nodes represent the query variables and the edges represent equijoins between them.

Q: select s11.8, s12.B, $91.B, s92.8B
from Ri 7y, S11 511, S12 812, R2 72, S21 521, S22 S22
where 7"1.F = TQ.K and 7“1.A1 = 811.A1 and ?"1.A2 = 812.A2
and Y’Q.Al = 821.A1 and TQ.AQ = SQQ.AQ

e
821321‘

Figure 1.1: Join graph for a two-star query

78

One can think of the tables S;; as modeling offered choices in two distinct domains, such
as educational and recreational, grouped by several categories. The tables S1; and S12 could
correspond to the lectures and workshops categories, while S2; and S3» could hold the sports
and movies categories respectively. Categories span a range of subcategories (such as action
movies), expressed by the A; attributes, such that in every subcategory there are potentially
many offered choices (the B attributes).

On the other hand, the tables R; and Rs correspond to individual "preference profiles" in
the respective domains, such that each profile selects, for a given category, either a specific
subcategory or no preference (null). The K attributes are unique profile identifiers, thus primary
keys. The join of R; and Ra constructs global profiles for a group, with R;.F being a foreign
key referencing K in Ry. Think of Ry tuples as describing profiles of a "person" entity, while
R; tuples describe profiles of a "student" entity, with the key-foreign key join implementing the
"isA" relationship.

Towards identifying correlations of offered choices across domains, () finds sets of choices
that represent all categories and that co-occur within the global preference profile of some indi-
vidual.

Assume the existence of materialized views V;(K, By, Bo) (1 <1 < 2), where each V; joins
R; with S;1 and Sj9 and retrieves the B attributes from S;; and S;s together with the key K of
Ri .

Vi: select r.K, s1.B, s9.B
from Ri T, Sil S1, Siz S92
where r.A; =s1.41 and r.Ag = 9. 45

Assuming that only a small fraction of the individuals expresses preferences for all cate-
gories, the extent of the materialized views is expected to be relatively small, all the more so
when considering that the same offering may appear in several subcategories, for instance ac-
tion movies and comedies (recall our convention that all queries have an implicit DISTINCT
keyword).

Since these views discard, for each domain, the unmatching profiles, we would expect them
to be quite useful in speeding up Q)’s execution. It is easy to see that the join of Rs, So1, and Soo
can be replaced by a scan over V5:

Q1: select s11.B, s12.8, v9.81, v9.Bs
from Ry ry, S11 811, S12 s12, V2 02
where 7“1.F = UQ.K and 7“1.141 = 811.A1 and 7“1.142 = 512.A2

However, the join of Rj, Si1, and S5 cannot be blindly replaced by a scan over V7, since
(22, the obvious candidate for a rewriting of () using both 1/ and V5 is not equivalent to () in the
absence of additional semantic information.

Q2 select v1.B1, v1.B2, v9.B1, v2.85
from Rqri, Vi v, Vo g
where r1. K =v1. K and r1.F' = v93. K

79

The reason is that V; does not contain the F' attribute of R, and there is no guarantee that
joining the latter with V; will recover the correct values of F'. On the other hand, if we know
that K is a key in Ry, then ()2 is guaranteed to be equivalent to (), being therefore an additional
(and likely better) plan. V; is usable for rewriting () only by exploiting the key constraint.

Consider now a slightly more complicated version of the above configuration. The query
graph is shaped like a chain of 2 stars, star 7 having R; for its hub and S;; for its corners
(1 <1<2,1< 7 <3). The attributes selected in the output are the B attributes of all corners
S;j. Assume the existence of materialized views V;;(K, By, B2) (1 <1 < 2,1 <[< 2), where
each Vj; joins the hub of star ¢ (R;) with two of its consecutive corners (,S;; and Si(l+1))~ Each
Vi1 selects the B attributes of the corner relations it joins, as well as the K attribute of R;, as
depicted in Figure 1.2.

S11s11 - S21s21
V11 . o
\ V21
SILA
1912512) 522622
) $12.A2=r1.A2 §22.A2=12.A2 a
2.A3
V12 / V22

S13s13 S23s23 -~

Figure 1.2: Chain-of stars configuration with 3 corners

Notice that in this setting all views require the key constraint to be usable in rewriting.

The chain-of-star configuration generalizes to chains of H stars with C' corners each, such
that for each star there are C' — 1 views, each joining the hub with two consecutive corners. As
soon as C'is greater than 2, the key constraint on the hub table is a prerequisite for the usability
of every view involving that hub. Note that the chain-of-star schema shape is inspired by such
patterns as star and snowflake schemas, which are well-represented in practice [45].

Platform All experiments were run on an Intel(R) Core(TM) i7-2760QM CPU @ 2.40GHz
with 8GB of memory.

Experiment 1: Is complete search worthwhile? We investigated whether the potential
overhead induced by running the complete search for rewritings given by Provgg p is justi-
fied by the speedup achieved over the execution of the original query without using Provcg p.
To assess this speedup, we performed a suite of comparative experiments with a well-known
and widely used commercial DBMS. We compared two alternatives: (a) feeding the original
query "as is" to the DBMS, versus (b) feeding it the rewriting obtained by running Provcg, g to
enumerate all minimal rewritings using the views and integrity constraints, then picking among
these one rewriting with the overall minimum number of joins (randomly selecting one if several
exist). Note that we are placing the Provcg g on top of the DBMS, which gives a lower bound
to the speedup potential achievable by a tighter integration with the DBMS’s optimizer.

For the purpose of our experiments, we constructed a chain-of-stars schema, with 5 stars and
5 corners/star, for a total of 30 tables, 20 materialized views, and 5 key constraints. This schema
was then extended with an additional 25 tables and 25 foreign key constraints to a total of 55

80

tables, as described in Experiment 2. The table contents obey the following statistics, which are
compatible with the real-life interpretation of our scenario:

- the cardinality of the views V;; is 10% of that of the tables R;

- we ensure 5% selectivity for the joins between I; and S;;
Over this schema we ran chain-of-stars queries of various complexity levels, up to a maximum
number of 20 joins (the DBMS was timing out too frequently after that), thus leading to the
following configurations (our figures refer to them):

#stars 2| 3] 4 5 2 3 4 5 2| 3] 4 2 3
#corners 2l 20 21 2 3 3 3 3 4 4| 4] 5 5
#joins 5/ 8| 11| 14| 7| 11| 15| 19 9 14| 19| 11| 18

For each query, we measured the following elapsed times:
Qexzec: the time taken by the DBMS to execute (optimize then run) the original query.

RW inq: the time taken by our Provcg g implementation to find all minimal rewritings and
choose one with the fewest joins.

RWgec: the time taken by the DBMS to execute (optimize then run) this rewriting.

We populated each table in our schema with 5K tuples, generated randomly according to our se-
lectivity parameters (the DBMS automatically created indexes on all key attributes). We enabled
the use of materialized views in the optimizer. We set a timeout of 15 minutes (900 seconds) for
query execution times. We used the recommended optimization level, which comes preset out
of the box”.

B Q_exec RW_exec BRW:_find

1000

100

10

Time (sec)

0.1 -

Query
2 2 2 2 3 3 3 3 4 4 4 5 5

Figure 1.3: Elapsed times on one database instance

"For fairness we considered all optimization levels. Out of a total of 7, only 4 consider materialized views, and
two of these are designed for ultra-specialized queries, spending so much time in optimizing our queries that the
optimization time vastly dominates execution time. The remaining two view-aware levels, call L, the recommended
one and L, the alternative, are similar except that L, uses a greedy algorithm while L, uses dynamic programming
for join reordering. The speedups for Provce. s we observed under L, are generally even higher than the ones we
observed under L, (we omit them for space reasons).

81

Figure 1.3 presents the measured values for Qcyec, RWying and RWege, for each of the
tested queries. Query (s, ¢) refers to the configuration with s stars of ¢ corners each. In the
graph, s appears above c. Times RW;,q and RWe,e. are shown stacked into the same bar, as
this is the total time taken when we interpose Provcg g before calling the DBMS. Notice that,
for all the queries, RW;,q is a very small fraction of Q¢zec, Which in turn stays larger than the
sum of RWy;,q and RWeye. even for the smallest query. Also notice that the speedup yielded
by Provcg, g can reach one, and even two orders of magnitude.

The reason we never observe parity between Qcpec and RWeye. is that the minimum-join
rewriting found using Provcg, g uses views extensively (as explained for query (02 above), while
the DBMS fails to detect that views are relevant whenever doing so requires exploiting the
key constraint. The DBMS-provided explanation of the plan choice states that the views were
considered but rejected because of the missing foreign key attribute. The only exception when
a view is indeed used is for the last star of 2-cornered star queries ((2,2) through (5,2)) because
this view is relevant even without the key constraint (recall the discussion for (1 above).

The drop in the measured Qe time from (3,3) to (4,3) is interesting: it is due to the fact
that we imposed no restriction on the join between two consecutive stars, other than it being a
foreign key join (this is consistent with the targeted real-life scenario interpretation described
above). Generally, it may happen that adding a new star to the query actually "filters out" a lot
of results. If the filtering join is performed early enough by the DBMS, its small intermediate
result can propagate its impact to any cross-star intermediate chain of joins. This is exactly
what occurred in this case (as an inspection of the plan explanation confirmed).

This observation called for better accounting of the execution time variations due to the
actual data. We therefore repeated the experiment over 10 different randomly populated database
instances obeying the same table-size and selectivity criteria. For each database instance and
query, we computed the speedup factor, defined as speedup factor = W.

® avg speedup factor 5000 tuples avg speedup factor 10000 tuples
1000

100
1 - - | I
4 5 2 3 4 5 2 3 4 2 3

2 3
2 2 2 3 3 3 3 4 4 4 5 5

Speedup factor

o

Query

Figure 1.4: Average speedup factors on 10 database instances

Figure 1.4 presents, for each query, the speedup factors averaged over the set of 10 database
instances, providing a more robust view of the advantage of the rewritings according to the
query complexity. Notice that the measurements in Figure 1.3 were not a lucky fluke, being
quite typical (the speedups are in many cases below average). Note that the values for queries

82

(5,3), (4,4) and (3,5) are only lower bounds for the speedup, because these queries time out on
several databases.

We remind that, at 5K tuples per table, the database instances are rather small. We repeated
the experiments for larger tables of 10K tuples each (timeouts while measuring (... prevented
us from pushing the experiment any further). Observe that the average speedups increase, a
trend we expect to continue with increasing data size. Timeouts are once again responsible for
the seemingly marginal increases for queries (5,3), (4,4) and (3,5), since the figure only reports
a lower bound for the average speedup.

In conclusion, on small-sized queries the performance of the DBMS’s processing engine,
coupled with the ability of its optimizer to use views (for the last star of 2-cornered configura-
tions, for which the key constraint is not needed) leads to fast query execution. Although for
every database instance and every query we ran, the measured speedup factors are higher than
1 (calling Provcg g still results in a speed-up), on the small-sized queries they are less pro-
nounced. On the other hand, as the query complexity increases, the time ().y¢. dramatically
increases, up to the order of minutes even on relatively small instances, and the speedup factors
become significantly more substantial as using the views makes increasing difference. As Figure
1.4 shows, on more complex queries the view-based plans gain an advantage of one and even two
orders of magnitude (and often more, but this is masked by the timeouts when measuring Q¢zec).

Experiment 2: Performance of the Provgg p implementation We further analyzed the
standalone performance of our implementation. In our evaluation, we also studied the behaviour
of our algorithm beyond key constraints. We extended the chain-of-stars schema to also incor-
porate foreign keys, by adding the tables 7;;(5,C') such that (see Figure 1.5):

- S;j.B is a foreign key referencing T;;. B
- the views output the same attributes, but also contain a join with the 7 tables.

TiLt1l- — — 721121
) V21

Vi1

~

S11s11 T s21s21
AN /

N
521.B=t21.B

S22s22 T22122 !

®

$22.A2=r2.A2 $22.B=t22.B

$12.B=t12.B
 sipAs=riAz | s23.A332A3
@ 5238-1238 y

12 S13s13. . S23s23 “v22
T3U3— — -~ — T23t23

s13.B=t13.B

Figure 1.5: Extended chain-of-stars configuration

The chain-of-stars queries over the new schema, hereafter called the "extended chain-of-stars
schema", stay the same. The views however are now recognizable as relevant for rewriting only
when exploiting both keys and foreign keys constraints. The resulting view-based rewritings are
identical to the ones in Experiment 1. The Provcg g implementation continues to find them,
while the DBMS continues to miss them. This time, the DBMS misses even the views it used to
find for the 2-corner case. Their detection now involves reasoning about the foreign keys, which

83

is evidently incomplete in the DBMS. RW,;.. does not change, while (¢, increases for the
2-corner queries, leading to increased speedups.

H time on chain-of-stars time on extended chain-of-stars
1000 2401
Number of rewritings 2197

—~ 100
v
E
o
£
" 10

1 -

Query 2 3 4 5 2 3 4 5 2 3 4 2 3

Figure 1.6: Rewrite computation times (RW r;y,q)

We omit their values, focusing instead on reporting RW ¢;,,q in Figure 1.6, which shows av-
erage times over the 10 runs (rewriting is unaffected by the database instance, and the measured
times are virtually identical). The graph shows rewrite computation times on the two schemas
(as expected the foreign keys cause more work, but the difference is not substantial). The two
schema types are chosen such that a large number of minimal rewritings is available in the large
configurations, to enable a stress-test of our implementation as it pursues all rewritings. In Fig-
ure 1.6, we annotate each query with the number of minimal rewritings it admits (all of whom
are found) shown as a bar label. On both schemas, our implementation exhibits sub-second run-
ning times. This is true even for configurations with over 2000 minimal rewritings, e.g. (4,4).
Note that the rewrite computation times represent a very small fraction of the query execution
times reported in Experiment 1.

Experiment 3: Savings over the C'& B Recall that the original motivation for the de-
sign of Provog.p was to save the chase sequences launched by the C'& B algorithm during
the backchase phase. We quantify (a lower bound for) these savings here. For both the chain-of-
stars schema and its extended version, the C'& B backchase (called the Full Backchase in [60])
will chase at least each actual minimal rewriting to determine its equivalence to the original
query. The Provcg p saves at least all these chases, whose number is depicted in Figure 1.6 as
bar labels. We note the exponential trend of savings as the number of hubs or corners increases.

1.6 Mininum-cost reformulations with Provcg g
While the previous sections show how Provgg, g allows finding all minimal reformulations of

a query, it is often the case in practice that we are interested in the minimum reformulations
according to a cost function.

A vast majority of the cost functions encountered in practice are monotonic cost functions

84

Definition 1.6.1 (Monotonic cost function). A cost function ~y is said to be monotonic if for every
query Q and every subquery Q' of Q, v(Q") < ¥(Q).

As already mentioned in the introductory section, monotonicity of a cost function has a
strong consequence: it allows us to state that the minimum-cost reformulations of a query () are
always among the minimal ones:

Proposition 1.6.2. Let () be a query formulated against a source schema S and T a target
schema. Let v be a monotonic cost function and Q' a minimum-cost reformulation of () against
T according to .

Then Q' is a minimal reformulation of Q.

The above proposition suggests a simple strategy for computing minimum reformulations
with respect to a monotonic cost function 7. For a query () formulated against a source schema
S, a target schema 7" and a set of weakly acyclic constraints C over S U T":

1. compute RW(Q, S, T,C) = Proveg(Q, S, T,C), the minimal reformulations of Q.
2. return {argmin y(rw;),rw; € RW}.

Note that our strategy for choosing a reformulation in our experimental evaluation (Section
1.5) corresponds to the reasoning above, where the cost function is the number of joins in the
query.

While provably correct according to Proposition 1.6.2 and the soundness and completeness
of Provcyg. g, the naive algorithm above involves however generating all minimal reformulations
before choosing among them a minimum one. While in our experimental evaluation we have
shown that the efficiency of Provcg p allows achieving very satisfactory performance by pro-
ceeding as above, we will show hereafter that we can further speedup computation when the aim
is to find only minimum-cost reformulations.

Indeed, the properties of the pa_chase allow for a more refined approach: the cost-based
pruning of the provenance formulae while chasing, thus significantly reducing the search space
for minimum-cost reformulations. We will dedicate the rest of this section to describing a mod-
ified version of the Provcg p that includes such pruning, and to presenting its soundness and
completeness guarantees.

1.6.1 Cost-based pruned Provenance-Aware Chase steps

Remember that in Provcyg, g, the minimal reformulations of a query are represented by the prove-
nance conjuncts in a formula. The conjuncts of this formula in turn are obtained by multiplying
conjuncts in individual atom provenance adornments.

The first main observation concerning cost-based pruning is that a conjunct in an atom’s
adornment whose (corresponding subquery’s) cost is larger than the minimum cost will never
participate in a minimum-cost rewriting (this is a direct consequence of the monotonicity of the
cost function).

Intuitively, one can thus simply "cut out" these conjuncts from the provenance formulae
while running the pa_chase. Defining the cost of a conjunct to be the cost of the corresponding

85

subquery, we formalize such "cutting out" by means of a pruning function denoted by Prune,
taking as input a threshold 7" and a provenance formula and yielding as output a provenance
formula, as follows:

Definition 1.6.3. Let ' = C + --- + C, a provenance formula, v a cost function and T' a
quantity in the target domain of y called a threshold. Then Prune(T, F)=C;, +---+C;, C F,
s.t. a conjunct Cy; is in Prune(T, F') iff v(C;;) <=T.

Pruned pa_chase steps. Using the function Prune defined above, we hereafter introduce the
notion of pruned pa_chase steps as follows:

Definition 1.6.4 (Pruned pa_chase step conditions of application). A pruned pa_chase step
with sk_unit_constraint C' and threshold T' on a provenance-adorned sk_body (B, Prov) ap-

plies iff:

1. There exists a homomorphism h from Cppem, to B such that Prune(T, Prov(h(Cprem))) #
0

2. Either:

(a) there exists no homomorphism h' compatible with h from Cyope to B, or

(b) for any such b/, Prov(h’(Ceoner)) APrune(T, Prov(h(Cprem)))

Definition 1.6.5 (Pruned pa_chase step application). Applying a pruned pa_chase step with
sk_unit_constraint C' and threshold T on a provenance-adorned sk_body (B, Prov), given
homomorphism h from Cprep, to B, results in a new provenance-adorned sk_body (B', Prov') =
Pruned_Pa_Chase_Step_Res((B, prov), C, h, T'), B' O B, obtained in the exact same man-
ner as for a regular pa_chase step, but employing Pprem = Prune(T, Prov(h(Cprem)))-

1.6.2 Cost-based pruned Provgg s

The second main observation that leads to the design of the modified version of Provcg p
aimed towards finding minimum-cost reformulations, is that we can "incrementally" compute
the provenance formula F' giving the reformulations of a query @, by interlacing computation
of homomorphisms from the body of () to the provenance-adorned sk_body with the pa_chase
steps.

Then, if instead of regular pa_chase steps, we employ cost-based pruned pa_chase steps,
such interlacing will allow us to adjust the threshold corresponding to the pruned pa_chase
steps. We will thus combine cost-based pruned pa_chase steps and incremental reformulation
computation. We present below the resulting algorithm, called PRUNED Provgyg g:

86

PRUNED Proveg p (Query @, source schema S, target schema 7', set of weakly acyclic con-
straints C, monotonic cost function)

1 By «+ Universal Body(Q,C,S,T)

2 Provy < canonical adornment of By

3 (B, Prov') « (By, Provy)

4 RF « GET_RW_FOrRM(Q, (B’, Prov"))

5 Th <+ min~v(C;),C; € RF

6 while there exists at least one sk_unit_constraint C' € skunit(C) s.t. a

pruned pa_chase step with C and T'h applies on (B’, Prov’)
7 do
8 Pick C' € skunit(C) s.t. a pruned pa_chase step with C' and T'h applies on
(B', Prov'), with a homomorphism h from Cpyep, to (B, Prov')

9 (B, Prov') < Pruned_Pa_Chase_Step_Res((B’, Prov’), C, h, Th)
10 RF + GET_RW_ForM(Q, (B, Prov"))

11 Th < minv(C;),C; € RF

12 for rw € argmin v(C;),C; € RF

13 do

14 return sq(rw)

where the brick GET_RW_FORM encompasses the computation of homomorphisms and their
formula, as follows:

GET_RW_FORM (Query Q, provenance-adorned sk_body (B’, Prov’))

1 H « {h, his a homomorphism from body(Q) to (B', Prov')}

2 F+ Y Provl(h(body(Q))
heH
3 return rf (F)

We claim that the above algorithm is sound and complete for computing minimum-cost
reformulations for monotonic cost functions, as follows:

Theorem 1.6.6. Let (Q be a SEFW query formulated over a source schema S, T' a target schema
and C a set of weakly acyclic constraints. Let v be a monotonic cost function.

Then the algorithm PRUNED Provcg g is sound and complete, that is, it returns all and
precisely the minimum-cost reformulations of Q) against T given C and 7.

Proof. Let (By = B, Provg = Prov), (By, Provy), ..., be the sequence of pruned pa_chase
steps in PRUNED Provgg g, and Thg, Thy, ... be the corresponding thresholds.

We will exhibit a "lock-step" pa_chase sequence (B}, = B, Prov, = Prov), (B}, Prov}),
..., such it respects the following properties:

1. there exists an isomorphism H; from B; to Ez’

2. for every atom a in B;, Prov;(a) C Prov;(Hi(a))

3. moreover, if a conjunct cj is in va;(a) and y(cj) < Th; then cj € Prov;(H; '(a)).

87

We first note that if the properties above hold for (B;, Prov;) and (B}, Prov}) then they
also hold for (B;, Prov;) and (B!, Prov;) (this is a direct consequence of isomorphisms and
provenance of closed versions). We further note that Th; 1 > Th,;.

We construct the sequence (B, Prov}), by letting (B, Prov}) =
Pa_Chase_Step_Res((Bl_,, Prov;_,), Ci, H; o h;), where C; is the sk_unit_constraint cor-
responding to the pruned pa_chase step i — 1 — i and h; is the homomorphism from Cjpyep,
to B;_1.

The properties above (existence of an isomorphism, inclusion and preservation of conjuncts
with cost lower or equal to T'h;) obviously hold for ¢ = 0, since the provenance-adorned
sk_bodies are identical. We show inductively that if they hold for ¢ — 1 then they hold for
(and thus the pa_chase sequence is also correctly defined).

Indeed, we first show that if the pruned pa_chase step applies, then the corresponding
pa_chase step applies. For an atom creation step, given the isomorphism H;_1, the property
obviously holds, furthermore allowing us to deduce the isomorphism H; (this is a direct conse-
quence of the cs_chase and Lemma 1.3.61).

Furthermore, by the induction hypothesis it is easy to show that Prov;_1(h;(Cprem)) C

%;,1(Hi_1 o hi(Cprem)) (this is a simple consequence of multiplying pairwise included
boolean formulae). Since pruning only removes some conjuncts from Prov;_1 (hi(Cprem)), for
the newly introduced atoms, which by definition are adorned with the provenance of the image
of the premise, the inclusion property is further respected. Also, note that for every conjunct
cj in %;_1(Hi_1 0 hi(Cprem)) such that y(cj) < Th;, due to the monotonicity of the cost
function and the definition of the provenance of a set of atoms, the following holds: for every
atom a in H;_1 0 h;(Cprem) there exists cj, € Prov' (a) such that v(cj,) < Thi, and cj is equal
to the product of all ¢j,.

But then since T'h;_1 > Th;, according to the induction hypothesis cj, is also in
Prov;_1(H; ! (a)), therefore cj is also in Prov;—1(hi(Cprem)). On the other hand, , by defini-
tion of the pruned pa_chase step, it follows that cj is also in Prune(Thi—;, Provi—1(hi(Cprem))),
thus the preservation of conjuncts is further respected for the newly introduced atoms.

For a provenance enriching step, we will rely on the same type of reasoning as above
by further noting that if A/ is the pruned pa_chase step compatible homomorphism then
H;_1 o R is a pa_chase step compatible homomorphism for the pa_chase sequence, and if
Prune(Thi_l, PTOUi_l (hi(Cpmm))) 75 ¢ and PTOUi_l (h;(Cconcl)) 74
Prune(Thi—1, Provi_1(h;(Cprem))) then it is equally the case that Prov,_(H;_ ohi(Ceonet))
A %Q,l(HH 0 hi(Cprem)). Indeed, since the pruned pa_chase step applies, it means that
conjuncts with cost lower than T'h;_; exist in the provenance of the image of the premise for
the pruned pa_chase step. According to the properties linking the two sequences, it follows that
all such conjuncts also exist for the pa_chase sequence. Assuming the pa_chase step does not
apply, they could only be subsumed by conjuncts with cost lower than T'h;_; in the provenance
of the image of the conclusion %;_I(Hi,l o h}(Ceonei))- Accordingly, all those subsuming
conjuncts would have to exist in Prov;—1(h’(Ceoner)), thus the pruned pa_chase step would not
apply.

It further straightforward to show that if the pa_chase sequence terminates, then the pruned
pa_chase sequence also terminates. Indeed, we have shown that if a pruned pa_chase step ap-

88

plies then the corresponding pa_chase step (through the isomorphism exhibited) must apply.

Given the properties exhibited by the two lock-step sequences, we further note that, given a
query @, they can be extended to homomorphisms from body(Q) to the respective outputs of
chase steps. We can then claim the following:

e for every conjunct ¢j in GET_RW_FORM(Q, (B;, Prov;)), cj is also in
GET_RW_FORM(Q, (B}, Prov})). Furthermore, if ¢j’ is a conjunct in
GET_RW_FORM(Q, (B, Prov})) such that y(cj') < Th;, then ¢j’ is also in
GET_RW_FORM(Q, (B;, Prov;)).

The reasoning is very similar to that applying to individual chase steps, and easily extended
to reduced forms.

Let us now suppose that the pruned pa_chase sequence has terminated after a number &
of steps. Let T'hy be the corresponding threshold as computed by PRUNED Provcg, p. Then
miny(cj),cj € GET_RW_FORM(Q, (By, Provy)) = Thy.

But by the above properties we can conclude that
{argmin 7(cj), ¢j in GET_RW_FORM(Q, (B}, Prov},)) } =
{argmin ~(cj), ¢j in GET_RW_FORM(Q, (By, Provy)) }
and
miny(cj), cj € GET_RW_FORM(Q, (B}, Prov})) =
miny(cj), cj € GET_RW_FORM(Q, (By, Provy)) = Thy,.

To conclude, we further show that for any continuation of the pa_chase sequence with some
pa_chase steps k+ 1, k + 2, ..., no minimum-cost reformulations are added. That is, we show
that for every ¢ > k,

{argmin ~(cj), ¢j in GET_RW_FORM(Q, (B, Prov})) }
{argmin 7(cj), ¢j in GET_RW_FORM(Q, (B}, Prov},)) }.

Indeed, it is enough to show that for every ¢ > k, and every conjunct cj in
GET_RwW_FORM(Q, (B}, Prov})) - GET_RW_FORM(Q, (By,, Prov},)), v(cj) > Thy,.

To prove the above, we show by induction on the pa_chase steps that the following hold:

1. for every homomorphism hfrom Cpyen, to (B, Prov;), if a pa_chase step with h applies,
then for every conjunct ¢j’ € Prov;(h(CpTem)), v(cj") > Thy.

2. every atom a in B} — B, is such that for every conjunct ¢j’ in Provj(a), v(cj’) > Thy,

3. every atom a in By, is such that for every conjunct ¢’ in Prov;(a) — Provi (a), v(cj') >
Thy

We first note that if the first property in the list above holds for ¢, then the second and third
will necessarily hold for ¢ 4+ 1, by definition of the pa_chase step.

The first property obviously holds for the pa_chase step K — k + 1, otherwise we can
easily show that the pruned pa_chase sequence would not have terminated. Then the second

&9

and third properties hold for (By_ |, Prov}). In turn, for the subsequent pa_chase step on
(B, i1 Prov}, 41)» if the mapping of the premise only uses atoms from By, then we can apply
the same reasoning (i.e. non-termination of the pruned pa_chase sequence), coupled to the
third property above. Else, we use the second property above. In the two cases, we can thus re-
infer the first property on (Bj,, ;, Prov},) and in the same inductive manner on all (B;, Prov}).

Putting together the above results,and using the fact that any pa_chase sequence can be ap-
plied in Provcg g, it follows that computing the minimum-cost reformulations on (Bj,, Prov},)
ensures that all and precisely the minimum-cost reformulations are found:

{argmin vy(rw),rw € Proveep(Q,S,T,C)} =

{sq(ci)}, cj € {argmin ~(cj'),cj’ € GET_RW_FORM(Q, (B, Prov},))}
On the other hand, we have shown above that

{argmin (cj), ¢j € GET_RW_FORM(Q, (By,, Prov},)) } =

{argmin 7(cj), ¢cj € GET_RW_FORM(Q, (By, Provy)) }
But PRUNED Provegp(Q, S, T,C) = {sq(cj’)},

cj’ € {argmin y(cj),cj € GET_RW_FORM(Q, (By, Provy))}.

It follows that PRUNED Provegp(Q, S, T,C) = {argmin y(rw),rw € Proveep(Q,S,T,C)},
which concludes our soundness and completeness proof. L

1.6.3 Initial experimental evaluation

To test the benefits of employing PRUNED Provcg g for minimum-cost reformulations, we re-
visit our experimental setting by choosing as a cost function the same cost function as in Section
1.5, that is, the number of joins of the rewriting. We compare the following:

1. the time spent by employing Provcg p for finding all minimal reformulations + the time
(in reality, negligible) of selecting all minimum-cost ones, versus

2. the time spent by employing PRUNED Provcg, g for finding all minumum-cost reformu-
lations.

We employ the same chain-of-stars configurations as in previous experiments (recall that a
query is defined by its number of hubs and corners).

Figure 1.7 shows the time measured for the two strategies employed (for accuracy of com-
parison, the graph is no longer shown on a logarithmic scale). Note that we can obtain up to
six times speedup with PRUNED Provcg, g. Note further that the speedup importantly increases
with the complexity of the query, and that PRUNED Provcg g exhibits extremely high perfor-
mance on all the considered configurations.

90

M ProvC&B ™ Pruned ProvC&B

600

500

400

300

Time(ms)

200

100 L

0 | e S e . L | L I

2,2 32 42 52 23 33 43 53 24 34 44 25 35
Query

Figure 1.7: Comparison of Provcg g and PRUNED Provgg g

1.7 Related work

The problem of query reformulation includes view-based rewriting as particular case. This prob-
lem is fundamental to many classic data management tasks, including query optimization using
materialized views, data security and integration. It represents a fruitful research area and has
been treated in depth for relational databases, for a wide spectrum of model assumptions, from
those pertaining to the language of queries and views [46, 4, 3, 21, 64], to going from set seman-
tics to bag or mixed bag-set semantics (see [23] and the references therein), to adding limited
access patterns for the views [35, 55], or to using potentially infinite sets of views [47]. In the
context of information integration, view-based rewriting has been extended also to finding not-
necessarily equivalent (but maximally-contained) rewritings (see [40] and references therein).

The first complete view-based rewriting algorithm for the SQL fragment considered in this
paper, in the absence of integrity constraints, was given in [46], where the problem was shown
NP-complete. In practice, this leads to either deterministic exponential-time implementations,
or to algorithms that rely on view-matching heuristics (e.g., [36, 44, 71, 8]), which are poten-
tially more efficient but may fail to identify some rewriting opportunities. Such heuristic-based
approaches may also assume an integrated process within the DBMS’s optimizer module, com-
paring the cost of the found rewritings to that of plans without views.

In the presence of constraints, the C'& B [27], discussed at length in this paper, is the only
complete algorithm we are aware of in this setting. As emphasized however, its complete-
ness fails to achieve practical performance because of the important number of subquery chases
launched during the backchase phase. The idea of speeding up the C'& B by using provenance
information was first mentioned in [26], becoming this thesis’ topic due the complexity and the
theoretical depth of the problem, which we reveal in our work.

In the Provenance-Aware Chase, the provenance bookkeeping exploits the analogy between
chase step application and query evaluation, with the provenance annotations coinciding with the
minimal why-provenance flavor introduced for query evaluation in [14], and corresponding to a
particular case of a provenance semiring [38]. Recently, we have witnessed revived interest in the

91

chase, with studies such as [52, 50, 51] focusing in particular on more permissive conditions than
weak acyclicity that can guarantee termination. The Skolemization procedure on the constraints,
that we use in the Conservative Chase to reach the purpose of sound provenance bookkeeping,
is also used in the Semi-Oblivious chase [50, 51], to attain specific termination purposes.

The original C'& B algorithm has been extended in follow-up work to apply beyond con-
junctive queries (see [28] for a survey of these extensions). The extensions allow disjunc-
tion/union [31], nested correlated query blocks, grouping, aggregation, user-defined functions,
and show a uniform way to incorporate any additional language primitives by treating them as
user-defined functions with black-box semantics [57, 70]. Moreover, extensions support addi-
tional data models, such as object-oriented, complex-valued [27] and XML [29, 31, 70]. Not
surprisingly, once the supported language features sufficient expressive power even checking
equivalence becomes undecidable, so all hope is dashed for a complete reformulation algo-
rithm. However, all existing C'& B extensions still guarantee soundness, i.e. only equivalent
reformulations are reported. They also guarantee to continue finding, within a larger query, all
reformulations of the query’s fragments that correspond to some language with complete C'& B
(or extension thereof). All C'& B extensions transfer directly to the Provgg, g algorithm as they
are all reduced to the original C'& B, relying solely on the input-output behaviour of the C'& B
(shared by the Provcg p) and not on its internal working.

Recent work [11] on accommodating non-terminating chase sequences argues trading com-
pleteness in favour of producing low-cost reformulations, emphasizing their practical interest.
While it is beyond the scope of this work, we note that such behaviour can be achieved with
the cost-based pruned version of Provcg g presented in Section 1.6, by merging the chase and
backchase phase in a single provenance-aware, cost-based pruned sequence.

92

Chapter 2

A theoretical and practical approach to
finding XPath rewritings with a
single-level of intersection of multiple
views

We revisit in this chapter the work of Cautis, Deutsch and Onose, presented in [16] and detailed
in [56], on the problem of finding XPath rewritings with a single level of intersection of multiple
views.

XPath [20] is the standard for navigational queries over XML data and it is widely used,
either directly, or as part of more complex languages (such as XQuery [13]). Early studies such
as [68, 48, 65, 69] have considered the problem of rewriting XPath queries by navigating inside
a single view’s output, which is the only possible kind of rewritings supported when in the
materialized views the original node identities are lost. The industrial trend towards enhancing
XPath queries with the ability to expose node identifiers and exploit them using intersection,
supported by such systems as [7], has led to the adoption of intersection as a first-class primitive
of the XPath standard, starting from XPath 2.0 [12] and through the XPath 3.0 standard [62].
The ability of persisting node identifiers in materialized views provides in turn the opportunity of
rewriting for a much larger set of queries than those rewritable using a single view, by employing
the intersection of the results of several materialized views.

The work presented in [16] and detailed in [56] investigates the intersection-aware rewriting
problem, focusing on rewritings with a single level of intersection of multiple views: that is,
rewritings where navigation is performed in the views, then intersection occurs, then potential
additional navigation may be applied. The authors characterize the complexity of this prob-
lem and provide a sound and complete algorithm for its resolution. In the light of the proven
hardness results, they further present a sound rule-based procedure and its usage for inferring a
sound algorithm for the rewriting problem, also describing conditions for this sound algorithm
to become complete.

The main motivation of the contributions presented in this chapter is that of investigating and
achieving practical performance for the rewriting setting presented above. To this purpose, we

93

refine the rule-based procedure to ensure its polynomial complexity, improve the completeness
of the resulting rewrite procedure, and present a range of optimizations that are necessary for
obtaining practically-relevant running time. We further provide a complete implementation of
the rewriting algorithms, employing our refinements and optimizations, as well as a thorough
experimental evaluation thereof, showing the performance and the practical benefits of the re-
fined and optimized polynomial rewriting techniques. As a side effect of reviewing the work in
[16] and [56], we also contribute in enriching the analysis of the rewriting problem by showing,
structuring and clarifying its connections with the problem of deciding the equivalence between
a query expressed as a DAG pattern and a query expressed as a tree pattern, and to the problem
of union-freeness (finding any tree pattern equivalent to a DAG pattern query).

The remainder of this chapter is organized as follows: we start by recalling, in Section
2.1, the rewriting problem and the general sound and complete rewriting algorithm described
in [16]. We dedicate Section 2.2 to showing the strong link between the rewriting problem
and the DAG-tree equivalence and union-freeness problems. In Section 2.3 we present our
refinement of the rule-based algorithm, and show its usage to infer sound polynomial algorithms
for the three related problems described in Section 2.2. We recall and refine conditions for the
completeness of these algorithms in Section 2.4. We describe our complete implementation
of the rewriting procedures and the many optimizations it comprises in Section 2.5, and its
extensive experimental evaluation in Section 2.6. We present related work in Section 2.7.

2.1 View-based rewritings

We dedicate this section to recalling the contents of [16] and [56], defining the rewriting problem
and describing a general sound and complete algorithm for its resolution. In order to ensure read-
ability, we also recall the necessary preliminary notions, and restructure and refine the material
from [16] and [56] to improve the clarity of further theoretical developments.

In the following, according to the approach from [16], an XML document D is considered
as an unranked, unordered rooted tree ¢, modelled by a set of edges EDGES (%), a set of nodes
NODES(?), a distinguished root node ROOT(¢) and a labelling function)\, assigning to each
node a label from an infinite alphabet 3, such that A\;(ROOT(t)) = "doc(” D”)”. Every node n
in the tree has a text value rext(n), possibly empty.

2.1.1 XP queries and tree patterns

We recall in this subsection the subset of XPath considered in [16], denoted by XP. XP comprises
queries with child / and descendant // navigation, without wildcards, whose grammar can be
represented as follows:

apath = doc(“name”)/rpath | doc(“name”)//rpath
rpath = step | rpath/rpath | rpath/ [rpath
step = label pred
pred = €| [rpath] | [rpath = C]|[.//rpath] | |.//rpath = C] | pred pred

94

Expressions in XP are produced from the symbol apath and they correspond to absolute
paths, that is, queries expressed starting from the document root. The rpath symbol generates
relative path expressions, i.e. encoding navigation relative to a given document context. The
sub-expressions inside brackets are called predicates. C terminals stand for text constants, while
“name” is a placeholder for an actual document name.

As noted in [16], XP queries are further representable by an adaptation of the unary tree
patterns [53]:

Definition 2.1.1. A tree pattern p is a non empty rooted tree, with a set of nodes NODES(p)
labelled with symbols from ¥ by a labelling function)y, a distinguished node called the output
node OUT(p), and two types of edges: child edges, labelled by / and descendant edges, labelled
by //. The root of p is denoted ROOT (p). Every node n in p has a test of equality test(n) that is
either the empty word ¢, or a constant C. If n is on a path between ROOT(p) and OUT(p), then
test(n) is €.

For a given XP expression ¢, pattern(q) denotes the associated tree pattern p and xpath(p) =
q the reverse transformation.

2.1.2 xp—simple xp0 DAG patterns

We present in this subsection two extensions of XP with respect to intersection. The first lan-
guage considered, called XP"~*"P!¢ _is obtained by adding the following rule to the grammar
of XP:

cpath ::= apath | cpath N apath

Expressions in XP"'~%P¢ are produced by the symbol cpath which defines a single level of
intersection of XP expressions, e.g. doc(“v1”)/image N doc(“vy")/image. Further enriching the
grammar of XP"~5"Ple with the following rule:

ipath ::= cpath | (cpath)/rpath | (cpath)//rpath

provides the language XP"' , which is the focus of the rewriting study in [16]. Note that ipath
adds to the single-level intersection an rpath expression, thus allowing additional (relative) nav-
igation from the nodes in the intersection result, e.g. (doc(“v,”)/image N doc(“v”)/image)/file.

The XPN—simple language is not presented in a standalone manner in [16] or [56], being
instead implicitly considered as a sublanguage of XP"' . We provide its standalone definition
above as we consider this distinction necessary for the clarity of the developments hereafter.

By XP"—s"mple and XP" expressions over a set of documents D we denote those that use
only apath expressions that navigate inside the documents D (i.e. starting with doc("name")
where name € D). For a fragment £ C XP, by XP"~5"™Pl¢ (L) we will denote XP"—simple
queries that use only apath expressions from L.

While XP queries can be represented by tree patterns, queries in XP"~*"Pl¢ and XP" are
representable [16] by the more general DAG patterns:

95

Definition 2.1.2. A DAG pattern d is a directed acyclic graph, with a set of nodes NODES(d)
labeled with symbols from 3 by a labeling function)y, a distinguished node called the output
node OUT(d), and two types of edges: child edges, labeled by | and descendant edges, labeled
by //. d has to satisfy the property that any n € NODES(d) is accessible via a path starting
from a special node ROOT(d). In addition, all the nodes that are not on a path from ROOT(d)
to OUT(d) (called predicate nodes) have only one incoming edge. Every node n in d has a test
of equality test(n) that is either the empty word €, or a constant C. If n is on a path between
ROOT(d) and OUT(d), then test(n) is always €.

For a query ¢ in XP"'~5"™Pl¢ _the associated DAG pattern can be constructed as follows:

1. for every apath (XP path with no N), dag(apath) is the tree pattern corresponding to the
apath .

2. dag(piNp2) is obtained from dag(p;) and dag(p2) as follows: (i) provided p; and py are
not empty and there are no labeling conflicts between their root and output nodes, by coa-
lescing ROOT(dag(p;)) with ROOT(dag(p2)) and OUT(dag(p1)) with OUT(dag(p2))
respectively, (ii) otherwise, as the empty pattern.

Figure 2.1(a) gives an example of a DAG pattern corresponding to a query in XP"—simple
which intersects the queries doc(“L’)//paper//section[theorem]//image and
doc(“L")/lib/paper//section//figure[caption/label)/image). For the depicted DAG, ROOT(d) is the
doc(L) node and OUT(d) is the image node indicated by a square. Note that in practice an
XPN—simple expression is representable by a non-empty DAG iff the apath expressions are over
the same document and furthermore their end labels coincide.

For queries in XP"' , dag(a/rpath) and dag(x//rpath) are obtained as follows: (i) for non-
empty x, by appending the pattern corresponding to rpath to OUT(dag(z)) with a /- and a
/l-edge respectively, (ii) as z, if = is the empty pattern.

By a slight abuse of terminology, we will use for DAGs corresponding to queries in XP"—simple
the denomination DAGs in XP"~*"™P!¢ and similarly refer to DAGs in XP" . In the following,
unless explicitly stated otherwise, the notion of pattern refers to both DAG and tree patterns. We
recall hereafter several concepts related to patterns.

Main branches and main branch nodes. By the main branch nodes of a pattern d, MBN(d), we
denote the set of nodes found on paths starting with ROOT(d) and ending with OUT(d). We
refer paths between ROOT(d) and OUT(d) as main branches of d. By definition, a tree pattern
p has a unique main branch, which we denote by MB(p).

Predicate subtrees. We call predicate subtree of a pattern p any subtree of p rooted at a non-
main branch node. A /-predicate (resp. //-predicate) is a predicate subtree connected by a /-edge
(resp. //-edge) to a main branch node. As further specialization, by a /-subpredicate st we de-
note a predicate subtree whose root is connected by a /-path to the main branch node to which
st is associated. By a //-subpredicate st we denote a predicate subtree whose root is connected
by a //-edge to a /-path p that comes from the main branch node n to which st is associated (as
inn[...[.//st]]). pis called the incoming /-path of st and can be empty, when st is a //-predicate.

96

Subpatterns. We further denote by a subpattern of a pattern d any pattern that could be obtained
from a pattern d by removing some nodes and edges. For a pattern d and node n € MBN(d), by
SP;(n) we denote the subpattern rooted at n in d.

Prefixes. A prefix p of a tree pattern ¢ is any tree pattern with ROOT(p) = ROOT(q), m =
MB(p) a subpath of MB(q) and having all the predicates attached to the nodes of m in ¢. A
lossless prefix p of a tree pattern g is any tree pattern obtained from ¢ by setting the output node
to some other main branch node (i.e., an ancestor of OUT(q)). Note that this means that the rest
of the main branch becomes a side branch, hence a predicate.

Tokens (/-patterns). A token, also called /-pattern, is a tree pattern that has only child (/) edges
in the main branch. Tokens provide a means of reasoning about tree patterns in general. Indeed,
the main branch of a tree pattern p can be partitioned in tokens by its sub-sequences separated
by //-edges. We can thus see any tree pattern p as a sequence of tokens p = t1//ta// ... //tg.
We call ¢1, the token starting with ROOT(p), the root token of p. The token tj, which ends by
OUT(p), is called the result or output token of p. The other tokens are denoted intermediary
tokens, and by the intermediary part of a tree pattern we denote the sequence of intermediary
tokens.

2.1.3 Pattern satisfiability, containment and equivalence

We summarize in this subsection concepts and results previously presented in literature, re-
garding the satisfiability, containment and equivalence of (tree or DAG) patterns. We start by
recalling the notions of satisfiability, containment and equivalence, as well as those of mappings
between patterns:

Definition 2.1.3. A pattern d is satisfiable if it is non-empty and there exists a tree t over X into
which d has an embedding (i.e., there exists a model with non-empty results).

Definition 2.1.4. A pattern d is contained in another pattern ds iff for any input tree t, d, (t) C
do(t). We write this shortly as di T dy. We say that d; is equivalent to do, and write dy = da,
iff di(t) = da(t) for any input tree t.

Definition 2.1.5. A mapping between two patterns dy and dy is a function h : NODES(d;) —
NODES(d2) that satisfies the following properties:

1. for anyn € MBN(dy), h(n) € MBN(d2)

2. forany n € NODES(d1), Ag,(h(n)) = Ag, (n)

3. for any /-edge (n1,n2) in dy, (h(n1), h(ng)) is a /-edge in dy

4. for any //-edge (nq,n2) in dy, there is a path from h(ny) to h(nz) in ds

5. forany n € NODES(dy), if test(n) = C then test(h(n)) = C

97

A root-mapping is a mapping that further satisfies the following: h(ROOT(d;)) = ROOT(dz2)
A containment mapping is a root-mapping h such that further A(OUT(d;)) = OUT(dz). An iso-
morphism between d; and d is a bijective containment mapping from d; into dy whose inverse
is also a containment mapping, from ds into d;. We recall hereafter several well known results
from previous literature (e.g., [48]) linking containment mappings, containment and equiva-
lence:

Lemma 2.1.6. [fthere is a containment mapping from a pattern d; to a pattern ds then do C d.

Lemma 2.1.7. A tree pattern p is contained in a DAG pattern d iff there is a containment
mapping from d to p.

Lemma 2.1.8. Containment and equivalence for two tree patterns p1 and pa can be evaluated
in PTIME.

2.1.4 Interleavings

We recall in this subsection a central notion for characterizing DAG patterns, namely their in-
terleavings. Interleavings are intuitively "foldings", or "zippings" of a DAG pattern into a tree,
formally defined as follows:

Definition 2.1.9 (Interleaving). An interleaving of a pattern d is any tree pattern p; produced as
Sfollows:

1. choose a string i of ¥ symbols alternating with either / or // (we call such string a code
[10]) and a total onto function f; that maps MBN(d) into ¥-positions of i such that:

(a) fiis label preserving

(b) for any /-edge (ni,n2) in d s.t. n; € MBN(d) and na € MBN(d), the code i is of
the form . .. fz(nl)/fz(ng) e

(c) for any //-edge (n1,mn2) in d s.t. ny € MBN(d) and ny € MBN(d), the code i is of
the form . .. fi(n1) ... fi(na)

2. build the smallest tree pattern p; such that:

(a) i is a code for the main branch MB(p;) (i corresponds to MB(p;)’s string represen-
tation))

(b) forany n € MBN(d) and its image n' in p; (via f;), if a predicate subtree st appears
below n then a copy of st appears below n', connected by same kind of edge.

Two nodes ny, na from MBN(d) are said to be collapsed (or coalesced) if fi(n1) = fi(n2),
with f; as above. The tree patterns p; thus obtained are called interleavings of d and we denote
their set by interleave(d).

Figure 2.1(c) shows an interleaving of the DAG pattern in Figure 2.1(a).

An immediate observation is that if d is satisfiable, then the set interleave(d) is non-empty.
By definition, there is always a containment mapping from a satisfiable pattern into each of its
interleavings. Then, by Lemma 2.1.6, a pattern will always contain its interleavings. Moreover
[37, 10], it also holds that:

98

Lemma 2.1.10. Any DAG pattern is equivalent to the union of its interleavings.

Note that the set of interleavings of a DAG pattern d can be exponentially larger than d.
Indeed, it was shown [10] that a DAG pattern may only be translatable into a union of exponen-
tially many tree patterns.

2.1.5 Union-freeness, dominant interleavings and DAG-tree equivalence

We recall in this subsection a central property of DAG patterns, their union-freeness [16]. A
DAG pattern d is union-free iff there exists a tree pattern p such that d and p are equivalent. We
further define the problem of union-freeness in its decision and functional versions, as follows:

e decision version: Given a DAG pattern d, decide whether d is union-free.

e functional version: Given a DAG pattern d, exhibit a tree pattern equivalent to d iff such
pattern exists. We will call such pattern a tree equivalent of d.

Note that the notion of union-freeness encompasses that of satisfiability. Note also that the
functional version of the union-freeness problem encompasses its decision version. In the fol-
lowing, when referring to the union-freeness problem, we will always designate its functional
version.

Based on union-freeness, we can straightforwardly characterize the equivalence between a
DAG and a tree as follows:

Proposition 2.1.11. A DAG pattern d is equivalent to a tree pattern p iff d is union-free and for
p’ a tree equivalent of d, p is equivalent to p.

We further recall the very strong link that exists between union-freeness and interleavings.
Indeed, by Lemma 2.1.10, a DAG pattern is equivalent to the union of its interleavings. Further-
more, the following also hold!:

Proposition 2.1.12. Let p = U;p; and q = Ujq; be two finite unions of tree patterns. Then
p E qiff vi,3j s.t. pi € g

Proposition 2.1.13. If a tree pattern is equivalent to a union of tree patterns, then it is equivalent
to a member of the union.

Given a DAG pattern d, by the normal form of d we denote the equivalent formulation of
d as the union of incomparable interleavings with respect to containment. It follows that the
union-freeness of a DAG can be characterized as follows:

Lemma 2.1.14. A DAG pattern is union-free iff its normal form contains a single interleaving.
Such interleaving is then a solution for the problem of union-freeness (a tree equivalent of the
given DAG).

In other words, the above result states that a DAG pattern is union-free iff it has an interleav-
ing that contains all the others. We will call such interleaving a dominant interleaving.

'reminiscence of similar results from relational database theory, on comparing conjunctive queries with unions of
conjunctive queries

99

2.1.6 The view-based rewriting problem for XP"

We recall in this subsection the problem of query rewriting using views with rewrite plans in
XP", as described in [16], as well as its complexity, as claimed in [16] and proven in [56].

We consider views defined by queries over a document D. For a view v, by v we denote
the query defining it. We further assume that for each view v, the result of executing v over the
document D is materialized in a corresponding view document v, such that the topmost element
is labelled with doc(“v”) and its children subtrees are Id-preserving copies of the subtrees of
D, rooted at the nodes selected by v over D. Given a set of views) defined by XP queries
over a document D, by Dy we denote the set of view documents {v|v € V}, containing the
materialized results of executing the corresponding queries.

Rewrite plans in XP"' .A rewrite plan in XP"' over Dy is a query r € XP"' over the view
documents Dy, According to the definition of the XP"' language, a rewrite plan r is then of the
form (), ; iz, ((; ; wij)/rpath or ([, ; wij)//rpath, with u;; of the form doc(*“v;”)/p;.

Unfolding rewrite plans. Given a rewrite plan r, its unfolding, denoted unfold(r), is the
XP" query obtained by replacing in r each doc(“v”) label with o, the XP query defining v. Note
that for a rewrite plan in XP"' , unfold(r) will always represent a query in XP"' over a single
document D, which represents the document the views have been defined over.

View-based rewriting problem for XP"' . Relying on the above concepts, the view-based
rewriting problem for XP"' is defined as follows: for ¢ an XP query over a document D and V
a finite set of views over D, find a rewrite plan r in XP"' over Dy, such that unfold(r) and q are
equivalent. Such plan is then called a rewriting.

Example 2.1.15. Given the following query q and views vi and v:
q : doc(“L’)/lib/paper//sectionftheorem]/figure[caption//labell/image/file
vy : doc(“L’)//paper//section[theorem]//image
vy = doc(“L’)/lib/paper//section//figure[caption//labell/image
the query r : (doc(*v1 ”)/image N doc(*v, ”)/image)/file is a rewriting of q in XP"' .

We recall hereafter the complexity result regarding the rewriting problem as stated in [16]
and proven in [56]:

Theorem 2.1.16. The rewriting problem for queries and views from XP and plans in XP"' is
coNP-complete.

2.1.7 A sound and complete rewriting algorithm

We recall in this subsection the sound and complete rewriting algorithm REWRITE presented in
[16]. As in [16], the compensate function generalizes the concatenation operation from [68],
by copying extra navigation from the query into the rewrite plan. For a query » € XP"' and a
tree pattern p, compensate(r, p, n) returns the query obtained by deleting the first symbol from
x = xpath(SP,(n)) and concatenating the rest to 7. For instance, the result of compensating
= a/b with x = b[c][d]/e at the b-node is the concatenation of a/b and [c][d]/e, i.e. a/b[c][d]/e.
We present below the flow of the REWRITE algorithm, in which for clarity we have further
emphasized its sub-algorithm, BUILDINITREWRITECANDIDATE.

100

REWRITE(q, V)

1 for p alossless prefix of pattern(q)

2 do

3 7 <— BUILDINITREWRITECANDIDATE(p, V)
4 d < pattern(unfold(r))

5 ifd=p

6 then return compensate(r, ¢, OUT(p))

7 return fail

BUILDINITREWRITECANDIDATE(p, V)

1 V<o

2 for v € V, h aroot-mapping of pattern(v) into p

3 do

4 b < h(OUT(pattern(v)))

5 V' < V' U compensate (doc(“v")/\,(b), p, b)
6 r< (ﬂvjEV’ vj)

7 returnr

We also recall the soundness and completeness guarantees of REWRITE :

Theorem 2.1.17. REWRITE is sound, that is, if it returns an XP"' expression, then this expression
is a rewriting for q.

Furthermore, REWRITE is complete, that is, if there exists a rewriting in XP"' for q, then
REWRITE will return a result.

Note that the completeness concept as defined by [16] is close to the corresponding decision
problem: indeed, in order to be complete, an algorithm solving the rewrite problem must return
a non-empty result as soon as a rewriting exists.

Note also that in the version of REWRITE provided in [16] and [56], the equivalence test
between d and p appears as a containment test (i.e. if d C p), due to the strategy of construction
for d, ensuring that the opposite containment always holds. We state explicitly the equivalence
test in the above in order to clarify and structure the results in the following.

2.1.8 Interesting XP fragments

We dedicate this subsection to recalling the two XP fragments further considered in the theoret-
ical developments of [16] and [56]:

The fragment XP,;. This fragment comprises queries p called extended skeletons, in which the
usage of //-subpredicates is limited as follows: for any main branch node n # OUT(p) and //-
subpredicate st of n, there is no mapping (in either direction) between the code of the incoming
/-path of st and the one of the /-path following n in the main branch (where the empty code
is assumed to map in any other code). E.g., patterns a[b//c)/d//e or a[b//c//d])/e//d are extended
skeletons, while a[b//c]/b//d, a[b//c]//d, a[.//b]/c//d or a[.//b)//c are not.

101

Observe that the above definition imposes no restrictions on predicates of the output node.
This relaxation was not present in [16]’s definition of extended skeletons but it is easy to show
that it does not affect any of the results that were obtained with the more restrictive definition.
This is because there is only one choice for ordering the output nodes in interleavings of an
XPN—simple jntersection: they are collapsed into one output node.

The fragment XP,. This fragment is an extension of XP,,, where //-predicates attached to main
branch nodes are allowed and the usage of //-subpredicates therein is further freely allowed.

2.2 Rewritings, equivalence and union-freeness

We dedicate this section to showing the tight link that exists between the rewriting problem,
the problem of deciding the equivalence between a DAG pattern and a tree pattern and the
(functional version of the) union-freeness of a DAG pattern. In doing do, we provide a clear and
structured framework for the intuitions and results presented in [16] and detailed in [56]. We
will follow this framework throughout following sections, in order to structure and clarify the
presentation of the results from [16], and to further enhance their applicability.

2.2.1 Rewritings and the DAG-tree equivalence

N—simple

Remember that REWRITE uses as a central brick the equivalence test between a DAG in XP
(corresponding to the unfolding of the rewrite candidate for a prefix) and a tree (the prefix). Note
also that the number of such tests corresponds to the number of prefixes, and is thus linear in the
size of the main branch of the input query.

As a consequence of the proven soundness and completeness of REWRITE it follows directly
that the following holds:

Lemma 2.2.1. The rewriting problem for XP"' rewrite plans has a polynomial-time reduction to
the problem of deciding equivalence between a DAG pattern in XP7 5" and q tree pattern.

In view of the complexity results of the previous section and the above reduction we can
then characterize the complexity of the DAG-tree equivalence problem as follows:

Theorem 2.2.2. The problem of testing equivalence between an XP"~5"™P¢ DAG pattern d and
a tree pattern p in XP is coNP-complete.

Proof. The lower-bound follows directly from Theorem 2.1.16. To show that the problem is in
coNP, we note that a non-deterministic algorithm that decides d # p can guess a tree equivalent
for d and check that u Z p, which can be done in PTIME according to Lemma 2.1.8. O

2.2.2 DAG-tree equivalence and union-freeness

Remember that by Proposition 2.1.11 the DAG-tree equivalence reduces to the (functional ver-
sion of) the problem of union-freeness: A DAG pattern d is equivalent to a tree pattern p iff d is
union-free and for p’ a tree equivalent of d, p’ is equivalent to p.

102

By Lemma 2.1.8 it further holds that the equivalence test for two tree patterns is PTIME.
The following then holds:

Lemma 2.2.3. The DAG-tree equivalence for XP"~5""Pl¢. DAGs and XP trees has a polynomial-
time reduction to the problem of union-freeness for XP"~5""Pl¢. DAGs.

Then, the hardness result of Theorem 2.2.2 transfers to the complexity of the union freeness
problem as follows:

Theorem 2.2.4. The (functional version of the) union freeness problem for a DAG pattern in
XPN—simple g coNP-hard.

Naively solving the problem of union-freeness. How does one go about solving the union-
freeness problem? Remember that by Lemma 2.1.14, a dominant interleaving (or the non-
existence thereof) provides a solution for union-freeness. A naive approach would then be the
following algorithm:

DOMINANT_INTERLEAVING(d)

1 generate all interleavings of d
2 check whether they reduce by containment to a single interleaving
3 if so, output the dominant interleaving, else output ()

It is easy to show that DOMINANT_INTERLEAVING is sound and complete for solving
the union-freeness problem. Given the reductions stated above, we can further use DOMI-
NANT_INTERLEAVING for solving the DAG-tree equivalence problem, as well as the rewriting
problem.

2.3 A rule-based algorithm for directly constructing the dominant
interleaving

While the algorithm DOMINANT_INTERLEAVING presented in the previous section is sound
and complete, it may not be the best choice in terms of computational effort. Indeed, we have
already emphasized the fact that the number of interleavings of a DAG d may be exponentially
larger than d. A central development in [16] concerns the design of an algorithm for directly
constructing the dominant interleaving, without going through the steps of generating all inter-
leavings and checking their reduction by containment.

This approach consists in a series of transformations of the input DAG such that in the end
"it becomes" its dominant interleaving. Each of these transformations is formalized as the appli-
cation of a transformation rule, bringing the DAG one step closer to its dominant interleaving,
if such interleaving exists.

We present hereafter a refinement of the rule-based algorithm in [16]. This refinement, for
which we preserve the original name APPLY-RULES, is aimed towards achieving polynomial
complexity and improving this algorithm’s completeness, as we will show in the following.

103

2.3.1 Global flow of APPLY-RULES

We show below the global form of our refinement of the rule-based algorithm:

APPLY-RULES(d)
1 d=d
2 if one of the patterns intersected in d is a /-pattern
3 then RuleSet = R1, R2, R3, R4, R6, R7

4 else RuleSet = R1, R2, R3, R4, R5, R6

5 repeat

6 while R1 applies on d’

7 do

8 d' = apply R1 on d’

9 if one Ri in RuleSet applies on d’
10 then d’ = apply Ri on d’;
11 else break;

12 return d’

Note that, compared to [16], this flow is modified in order to ensure application of rule R1
after each of the other rules’ application. Indeed, this application is necessary in order to ensure
the uniqueness of /-paths between two nodes, which in turn is necessary for ensuring polynomial
complexity for the individual rules.

Furthermore, the original statement of the rule-based algorithm presents 8 rules, which are
not differentiated to account for the two cases above. In our refinement of the rule-based algo-
rithm, we exhibit such a differentiation and we only employ 7 rules, as follows:

e Rules R1, R2, R3 and R4 stay the same as in [16].
e Rules R5 and RS are further replaced by a new rule R7

e Accordingly, rule R6 in [16] becomes rule R5 in our refinement, and rule R7 in [16]
becomes rule R6.

Rule R7 extends the combined effect of rules R5 and R8 in [16]. Its purpose is twofold: first,
we show that its testing and application can be achieved in polynomial time, property that is not
ensured by the previous rule R8; furthermore, together with the differentiation above, this rule
ensures completeness of the rule-based algorithm for extended skeletons, as analyzed in Section
2.4.

2.3.2 The rewrite rules of APPLY-RULES

We list hereafter the 7 rules employed in APPLY-RULES. Following the approach in [16], each
rule R1-R7 will be presented as a pair formed by a test condition, which checks if the rule is
applicable (i.e. if the input DAG exhibits a required configuration), and a graphical description,
which shows how the rule transforms the DAG. Each transformation either (i) collapses two
main branch nodes n1, ns into a new node n1 o (which inherits the predicate subtrees, incoming

104

and outgoing main branch edges), or (ii) removes some redundant main branch nodes and edges,
or (iii) appends a new predicate subtree below an existing main branch node.

We use the graphical notation of [16]: linear paths corresponding to part of a main branch
are designated by the letter p, nodes are designated by the letter n, the result of collapsing two
nodes n;, n; is denoted n; ;. Simple lines represent /-edges, double lines represent //-edges,
simple dotted lines represent /-paths, and double dotted lines represent arbitrary paths (may
have both / and //). We represent by a rhombus main branch paths that are not followed by any /
(main branch) edge. Paths include their end points.

As in [16], the tree pattern containing just a main branch path p is referred to by p, and
the tree pattern having p as main branch by TP;(p). We recall the definition of immediate
unsatisfiability from [16]: a pattern d is immediately unsatisfiable if by applying to saturation
rule R1 on it we reach a pattern in which either there are two /-paths of different lengths but with
the same start and end node, or there is a node with two incoming /-edges A; /A and A2/ A, such
that A\ # A2. As in [16], two nodes ny, ng are collapsible iff they have the same label and the
DAG pattern collapseq(n1, n2) is not immediately unsatisfiable.

We also recall the notion of similar patterns in [16]:

Definition 2.3.1. Two /-patterns p1, po are similar if (a) their main branches have the same
code, and (b) both have root mappings into any pattern p12 built from p, p2 as follows:

1. choose a code i15 and a total onto function fy5 that maps the nodes of mi2 = MBN(p1) U
MBN(p2) into i12 such that:

(a) f1o preserves labels

(b) forany/-edge (n1,n2) in the main branch of py or pa, the code i12 contains fi2(n1)/ f12(n2)
2. build the minimal pattern p1o such that:

(a) i12 is a code for the main branch MB(p12),

(b) for each node n.in MBN(p1) U MBN(p3) and its image n’ in MB(p12) (via f12), if a
predicate subtree st appears below n then a copy of st appears below n/, connected
by the same kind of edge.

Rule R1. This rule triggers when A\g(n1) = Ag(n2)

R1i) /\ — I
.., n, n,
(RL.ii) \/. E— I

Example 2.3.2. The DAG pattern that would be obtained by intersecting some two tree patterns
doc(“L’)/paper//. .. and doc(“L’)/paper/ ... would be subject to R1’s application, with ny and ns
being its two nodes labeled paper.

Rule R2. This rule triggers if n; and n9 are not collapsible and no is not reachable from n,
(resp. ny is not reachable from no, in the case of R2.ii).

105

(R2.i) n, /\ n, ————
o,
n n n,
(R2.ii) 2\/ R
n

n,

1

Example 2.3.3. Notice the application of rule R2.i in Figure 2.1, with n1 being the node labeled
lib and ny being the node labeled paper in the left branch of the DAG pattern. Symmetrically,
rule R2.ii applies with ny being the node labeled figure and ny being the node labeled section
in the left branch of the DAG pattern.

Rule R3.i. This rule triggers if the following conditions hold:
® P1 = P2,
e cach of ps’s nodes has only one incoming main branch edge,

e TP,(p2) contains TP4(p1).

Example 2.3.4. Notice the application of this rule in Figure 2.1, with ny and ns being the two
nodes labeled paper and the paths p1 and pa consisting of only these nodes.

Rule R3.ii. This rule triggers if the following conditions hold:
® D1 = P2,
e cach of ps’s nodes has only one outgoing main branch edge,
e TP;(p2) contains TP4(p1).

* . " P

: : —_—
: n
nz\/ n, I 12

Rule R4.i This rule triggers if the following conditions hold for all nodes ng:

e n3 has one incoming main branch edge, all other nodes of p2 have one incoming and one
outgoing main branch edge,

e there exists a mapping from TP4(p2) into SP;(n1), mapping all the nodes of py into nodes
of pP1-

106

e the path p2//n4 does not map into p;.

n n
l/\Z—,HII

p] p2

® ﬁ n, p]§
{n,} \ {n,}

Example 2.3.5. The DAG pattern that would be obtained by intersecting some two tree patterns
doc(“L’)/lib/paper/section/. . . /figure[caption] and doc(“L’)//lib[.//caption]//section//theorem//. .. would
be subject to R4.i’s application, with p1 being the path corresponding to lib/paper/section, p
being the path corresponding to lib//section, and n4 being the node labeled theorem.

Rule R4.ii. This rule triggers if the following conditions hold for all nodes n4:

e n3 has only one outgoing main branch edge, all the other nodes of ps have one incoming
and one outgoing main branch edge,

e there exists a mapping from TPy (p2) into TP4(p1), mapping all the nodes of ps into nodes
of P1-

e the path ny//ps does not map into p;.

{m}ﬂ {n4}\
° ;l’;

P, | P, :
; n,
nz\/. o, I

Rule RS. This rule triggers if the following conditions hold:

e n3,n4 have only one incoming main branch edge, all other nodes of p; and p, have one
incoming and one outgoing main branch edge,

e TP;(p1) and TP;(p2) are similar.

0, /\ N Lz

P i D2 P N Ps

n; ¢ én, n; w mn,

Example 2.3.6. The DAG pattern that would be obtained by intersecting some two tree patterns
doc(“L)//lib/paper].//caption]/section//. .. and doc(“L’)//lib[.//figure]/paper/section//... would be
subject to R5’s application, with the paths p1 and p2 corresponding to the lib/paper/section
parts of the queries.

107

R