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Chapter 1

Introduction

The context that brought up this thesis was the wish to provide a full ab-initio description of the sec-
ond harmonic generation (SHG). So far, ab-initio calculations in solids of both bulk [1] and surfaces [2]

were already available. The aim of this thesis was then to include in that description the SHG re-
sponse induced by a static field, which can be especially important in some materials. This work will
present this analytical calculation and application, which was first done for the linear response before
applying it for SHG.

This chapter introduces the different nonlinear optical phenomena present in this thesis, in par-
ticular the linear electro-optic and electric-field induced second harmonic responses.

1.1 Nonlinear Optics

Optical properties of a material come from the interaction of light with matter, where the charged
particles inside the medium interact with this electric field and create a polarization. Under usual
circumstances, the response of a material induced by the electric field of the light is linear. With
the invention of the laser in the 1960’s, the optical power increased enough that the response of the
medium started to deviate from this linear behavior (figure 1.1). Nonlinear optics (NLO) correspond

Non-linear 

regime

Linear 

regime

Figure 1.1: Evolution of the polarization with the strength of the input electric field E.

to phenomena where the polarization induced inside a material is not linear with respect to the electric
field of the light. This can only be observed when the material is submitted to an intense light, such
as the one provided by lasers. There is however some cases where it is possible to observe nonlinear
optical processes without the presence of laser, such as (a) the static Kerr effect (also referred as the
quadratic electro-optic effect) observed for the first time in 1875 by John Kerr [3], and (b) the Pockels
effect discovered in 1893 by Friedrich Carl Alwin Pockels [3], that will later be referenced in this thesis
as the linear electro-optic effect (LEO). Both these phenomena correspond to a change in the refractive
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CHAPTER 1. INTRODUCTION

index of a material submitted to a static or low frequency electric field. They are often not counted
among the nonlinear optical effects since they are still linear with respect to the field of the light and
therefore, as previously stated, do not require a laser. The first nonlinear process obtained with a
laser was in 1961, with the discovery of the second harmonic generation (SHG) by Peter Franken et
al. [4], where they detected the frequency doubling of a red laser going through a nonlinear media.
Many others nonlinear phenomena have since then been discovered, including the third harmonic
generation (THG) by New et al. [5] in 1967 and the electric field induced second harmonic (EFISH) by
Lee et al. [6], which will both be presented in more details later on in this chapter.

In the nonlinear regime, the polarization can be expanded in a Taylor series in terms of the total
field. The induced polarization of the material is written as

P = χ(1)E + χ(2)EE + χ(3)EEE + . . . (1.1)

where χ(1), χ(2) and χ(3) are respectively the first, second and third order susceptibility and corre-
spond to a tensor. This expansion of the polarization is correct if we are in the perturbation regime,
meaning that the higher we go in the order of the susceptibility χ(n), the less intense the response
will be. This cease to be true when looking at high harmonic generation (HHG) where, past a certain
point, the harmonics all reach the same intensity. This explains why a strong field is needed to be able
to detect nonlinear effects. However, there is a limitation to how strong a field can be used. Indeed, if
the field applied is too intense, the perturbation regime would not hold anymore. However for solids,
applying a field that strong would usually provoke the destruction of the material.

There are many nonlinear optical processes which are partially referenced in table 1.1 for the sec-
ond and third order. The highlighted blue rows correspond to the phenomena studied during this
thesis. In general, susceptibilities exhibit different types of symmetry: time-reversal symmetry and

Nonlinear process Susceptibilities1

Sum-Frequency Generation SFG χ(2)(−(ω1 + ω2);ω1, ω2)

Difference-Frequency Generation DFG χ(2)(−(ω1 − ω2);ω1,−ω2)

Second-Harmonic Generation SHG χ(2)(−2ω;ω, ω)

Optical Rectification OR χ(2)(0;ω,−ω)

Linear Electro-Optic LEO χ(2)(−ω;ω, 0)

Four-Wave Mixing FWM χ(3)(−(ω1 + ω2 + ω3);ω1, ω2, ω3)

Third-Harmonic Generation THG χ(3)(−3ω;ω, ω, ω)

Two-Photon Absorption TPA Im[χ(3)(−ω;ω, ω,−ω)]

Quadratic Electro-Optic QEO χ(3)(−ω;ω, 0, 0)

Electric-Field Induced Second Harmonic EFISH χ(3)(−2ω;ω, ω, 0)

Table 1.1: Different second and third order optical phenomena that can occur when one or more beams
are propagating inside nonlinear media.

permutation symmetry, which are fundamental properties of χ and symmetry in space, which re-
flects the structural properties of the medium. One of the consequence of the spacial symmetry is that
even-order susceptibilities χ(2n) are canceled in media with inversion symmetry in the electric dipole
approximation. In such materials, the residual χ(2n), due to higher multipole processes (quadrupolar
polarization), is often too weak to be observed.

1We use the convention where the frequency of the emitted signal is written on the left side of a semicolon with a minus
sign.
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1.2. LINEAR ELECTRO-OPTIC

1.2 Linear Electro-Optic

The linear electro-optic effect (LEO) is a change in the dielectric properties, in particular the refractive
index, of a material proportional to an electrostatic field E . This field can be created by appling a
voltage on the material or already be present due to the structure of the material (see Figure 1.2).

a- b-

Figure 1.2: Creation of an dc-field inside the material by (a) applying a voltage on the material, (b) an
accumulation of charge at an interface.

This phenomenon cannot be observed on every materials. Indeed it is calculated through a second
order susceptibility χ(2), hence it requires a lack of inversion symmetry to obtain a non-zero response.
This susceptibility is not a simple scalar quantity. It connects the different components of the two
electric fieldsE(ω) andE with the components of the polarizationP, which is why it can be considered
as a rank 3 tensor χ(2)

ijk with 27 components.

Pi(ω) =
∑
jk

2χ
(2)
ijk(−ω;ω, 0) Ej(ω) Ek (1.2)

where i, j, k are related to the axis orientation x, y, z and Ek is the dc-field along the k-direction. The
factor 2 before the susceptibility appears when the two input frequencies are not equal, meaning for
the sum- or difference-frequency generation (see Appendix A). Here this factor is not included in the
susceptibility [7], so that we have the relation

lim
ω→0

χ
(2)
SHG(−2ω;ω, ω) = lim

ω→0
χ

(2)
LEO(−ω;ω, 0) (1.3)

The refractive index corresponds to the ratio between the speed of light in vacuum and the one in
a medium, which is slowed down by the interaction with the charge density inside the material. This
can be altered by a static or low frequency electric field which would perturbe the electron distribution
and therefore change the propagation of the light inside the material. This phenomenon can be tuned
by changing the applied voltage. Such dc-tunable optical devices have a lot of applications. Most of
which are electro-optic modulators (EOM), which control the light by changing the phase, amplitude
or polarization of the beam. They usually contain one or two Pockels cells and possibly other optical
elements such as polarizers. The simplest one is a phase modulator with only one Pockels cell (see
Figure 1.3). EOM can also be used as fast optical switches where, instead of a gradual variation, the
transmission is switched on or off. These different components are useful for optical communication
or signal-processing applications.

The change in the refractive index is usually very small, but it can be significant for wave propa-
gating on a distance far greater than the wavelength. This change is more important when materials
have high intrinsic refractive indices.
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CHAPTER 1. INTRODUCTION

Electric
 field

Light

EO material

Figure 1.3: The static field changes the refractive index of the material, changing the light traveling
though it.

The electro-optic effect can be considered as a correction to the linear response when the system
is submitted to a dc-field. As such it needs to be included in the first order equation.

Pi(ω) =
∑
jk

[
χ

(1)
ij (−ω;ω) + 2χ

(2)
ijk(−ω;ω, 0) Ek

]
Ej(ω) (1.4)

The linear optical properties of a material, which include phenomena such as absorption, dispersion,
reflection and scattering, are obtained through the macroscopic dielectric tensor ε, which relates to
the linear susceptibility χ(1)(ω) to the refractive index n by2

n2(ω) = ε(ω) = 1 + 4πχ(1)(−ω;ω), (1.5)

The real and imaginary part of the dielectric function (or refractive index) describe respectively the
refraction and absorption of the light and is defined as

D(ω) = E(ω) + 4πP(ω) =
↔
ε(ω)E(ω), (1.6)

where D is the electric displacement and E is the total electric field. If the medium is anisotropic, the
dielectric constant is not a scalar quantity anymore and becomes a rank two tensor. When the static-
field is turned on, we can define an effective dielectric function ε̃ij(ω) that contains the electro-optic
correction,

ε̃ij(ω) = εij(ω) +
∑
k

8π χ
(2)
ijk(−ω;ω, 0)Ek, (1.7)

which clearly shows that the variation of the refractive index will depend on the strength of the dc-
field. The usual electro-optic coefficients are defined in term of the impermeability tensor ηij(ω) [8],
which is the inverse of the permittivity εij(ω):

ηil(ω) εlj(ω) = δij (1.8)

We then get a similar expression than eq. (1.7) for the impermeability,

η̃ij(ω) = ηij(ω) + rijk(ω)Ek, (1.9)

where rijk(ω) is the linear electro-optic coefficient. The relation between the LEO susceptibility and
coefficient is then given by:

χ
(2)
ijk(−ω;ω, 0) = − 1

8π
n2
i (ω)n2

j (ω)rijk(ω) (1.10)

2The equation are here written in atomic units, the 4π being absent from the formula in SI units.
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1.3. SECOND-HARMONIC GENERATION

where n(ω) is the refractive index of the medium.
The LEO correction is considered over a wide range of frequency. The presence of a static field

usually induces a motion of the lattice. However, in the materials studied in this thesis, such as silicon
or silicon carbide, this effect is quite weak and since we are only interested in the electronic part of the
optical response, the motion of atoms is neglected. This corresponds to performing calculations with a
near-static field that has a frequency high enough that the motion can be considered as frozen but low
enough to avoid the dispersion induced by the field. Some early ab-initio calculations were already
performed in the 90s, also using the “clamped lattice” approximation [7]. However the formalism used
does not allow the inclusion of local fields or excitonic effects that will be discussed later.

1.3 Second-Harmonic Generation

Second harmonic generation (SHG) is one of the most widely used nonlinear optical phenomenon.
It involves the absorption of two photons of the same frequency and the creation of a polarization at
twice this frequency as shown in figure 1.4. It is a three-level interaction which takes place in a single

Figure 1.4: Scheme of SHG process: on the left, scheme of the material with the two transmitted beams
at ω and 2ω; on the right, energy level description. The dashed lines represent virtual states.

step. It should not be confused with the two-photon absorption that comes from the imaginary part
of a third order susceptibility χ(3), and can be described by a similar sketch, in which the highest level
would correspond to an excited state. In that case, there would be a true absorption of photons that
would only occur if there is an excited state at twice the energy of the incoming photons. While in
harmonic generation, several photons interact but without any actual absorption. In a real crystal,
this three-level description is too simple, since many-body effects arise and more levels are involved.
This phenomenon is described by a second-order susceptibility χ(2), which, as for LEO, is a tensor
with 27 components.

Pi(2ω) =
∑
jk

χ
(2)
ijk(−2ω;ω, ω) Ej(ω) Ek(ω) (1.11)

The number of independent and non-zero components is entirely determined by the symmetry of the
material studied. In the special case of SHG, the last two indices are interchangeable: χ(2)

ijk = χ
(2)
ikj .

This optical process has found a lot of different applications over the years. One of the most heard
of is the wavelength conversion of laser light, which can be used to reach frequencies where there is
no regular laser sources available.

An important symmetry aspect of even-order susceptibilityχ(2n) is that it is canceled in media with
inversion symmetry. For such materials, SHG is employed to probe surfaces and interfaces which are
the only parts giving non-zero responses since they break the inversion symmetry. It is also used in
microscopy, offering a contrast between molecules or particles with different symmetries, making it
ideal for imaging tissues. However only dense non-centrosymmetric media can generate a second
harmonic response, which can limit the applications. Experimentally, in order to have an efficient
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CHAPTER 1. INTRODUCTION

response that is large enough to be detected, it is required to fulfill the phase-matching conditions
∆k = k2ω − 2kω = 0, where kω and k2ω are wave vectors for the incoming and outgoing photons,
respectively. Otherwise, the incident power is not converted efficiently and part of the signal is lost
due to interference, making it difficult to detect anything. If the system exhibits a resonance at ω0, the
SHG signal will display two resonances at ω0 and ω0/2. Enhanced responses as well as dispersion ef-
fects are expected close to those resonances, as shown in figure 1.5. For a semiconductor, the resonant

Figure 1.5: Variation of the real and imaginary part of SHG around the resonant frequencies.

frequency ω0 corresponds to the gap between valence and conduction bands.
The ab-initio description of SHG for bulk and surfaces has already been well developed, including

many-body effects [9;10]. But it is not yet the case for systems submitted to a static field.

1.4 Electric Field Induced Second Harmonic

Following the same idea as the linear electro-optic effect, which is a correction to the linear response
when submitted to a static field, a similar phenomenon happens for the second harmonic called “Elec-
tric Field Induced Second Harmonic” (EFISH), which, as the name implies, corresponds to the gen-
eration of a second harmonic response in the presence of a dc-electric field. It is obtained through a
third-order susceptibility, meaning that, unlike SHG, it does not depend on the centrosymmetry of
the system.

Pi(2ω) =
∑
jkl

3χ
(3)
ijkl(−2ω;ω, ω, 0) Ej(ω) Ek(ω) El (1.12)

The factor 3 before the susceptibility comes from the fact that one of the input frequencies is different
from the other two (see Appendix A). Regarding the EFISH susceptibility, the indices j and k are
interchangeable, as in SHG, resulting in χ(3)

ijkl(−2ω;ω, ω, 0) = χ
(3)
ikjl(−2ω;ω, ω, 0).

When the material under measurements presents an inversion symmetry, SHG is typically used to
probe surfaces or interfaces that break said symmetry since the usual more significant response from
the bulk is zero. But when an interface is present in the system, as previously discussed for LEO,
there is an accumulation of charges that occurs around it and a natural electrostatic field is created
(see figure 1.2-b). And this static field induces an EFISH response from the bulk. Therefore, unlike
SHG, EFISH is not surface-sensitive unless the static field only exists at the surface (or interface). The
same phenomenon can occur with the laser, when performing experiments, which can also induce
an accumulation of charges inside the material [11]. It then becomes necessary, when studying semi-
conductors where static fields are present, intrinsic to the material or voluntary applied, to be able to
distinguish between SHG and EFISH contributions. This can be aided by the fact that, unlike SHG,
EFISH has a clear voltage dependence. This also means that it can be a tool to study internal electric

8



1.5. THIRD-HARMONIC GENERATION

fields. It is then essential, when aiming to provide accurate theoretical predictions for the second
harmonic, to be able to determine this EFISH response.

Among the applications, EFISH has been widely used on molecular systems to investigate the
second harmonic. In the experiments, the molecules are dissolved in a solvent and put in a optical cell
with electrodes applied on both side. The generated electrostatic field orients the polar molecules and,
by doing so, breaks the centrosymmetry of the system. It can then be used to probe the reorientation
of molecules in an electric field [12]. Furthermore, EFISH was shown to be sensitive enough to the
adsorption of molecule to be considered as a tool to monitor surface and interface contamination.

Since EFISH is considered as a correction to the second harmonic, it needs to be included in the
second-order equation.

Pi(2ω) =
∑
jkl

[
χ

(2)
ijk(−2ω;ω, ω) + 3χ

(3)
ijkl(−2ω;ω, ω, 0) El

]
Ej(ω) Ek(ω) (1.13)

For a second-order response, the quantity describing the optical properties of the system is the macro-
scopic second order susceptibility χ(2). In a similar fashion to equation (1.7) for the dielectric function
ε(ω), an effective SHG susceptibility can be defined in the presence of a dc-field,

χ̃
(2)
ijk(−2ω;ω, ω) = χ

(2)
ijk(−2ω;ω, ω) +

∑
l

3χ
(3)
ijkl(−2ω;ω, ω, 0) El, (1.14)

which then becomes dependent on the strength of the static field.
Although no ab-initio calculations have been previously done for EFISH, a general third-order

formula with different frequencies was given by Aversa and Sipe [13]. However no spectrum was cal-
culated using this formula, which has proven to be difficult for computational calculations, presenting
a lot of convergence issues. Furthermore, as will be discussed later, the third order is much more sen-
sible to the form of the expression than the lower order. Indeed, depending on the way the formula
is written, the spectrum can be plagued by divergences in the energy terms that, if not cancelled
properly, increase wrongly the intensity of the full spectrum.

1.5 Third-Harmonic Generation

The third harmonic generation (THG), often called ’frequency tripling’, is a nonlinear optical phe-
nomenon that involves the absorption of three photons at the same frequency and creates a polariza-
tion of thrice this frequency, as shown in figure 1.6. It is calculated through a third-order susceptibility,

Figure 1.6: Scheme of THG process: on the left, scheme of the material with the two transmitted
beams at ω and 3ω; on the right, energy level description. The dashed lines represent virtual states.
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CHAPTER 1. INTRODUCTION

which corresponds to a 3× 3× 3× 3 tensor of 81 components,

Pi(3ω) =
∑
jkl

χ
(3)
ijkl(−3ω;ω, ω, ω) Ej(ω) Ek(ω) El(ω), (1.15)

where the three indices j, k, l are interchangeable: χ(3)
ijkl = χ

(3)
ijlk = χ

(3)
ikjl = χ

(3)
iklj = χ

(3)
iljk = χ

(3)
ilkj . This

specific phenomenon is of interest to us since it is a third-order process like EFISH, which give us the
relation

lim
ω→0

χ
(3)
THG(−3ω;ω, ω, ω) = lim

ω→0
χ

(3)
EFISH(−2ω;ω, ω, 0) (1.16)

This process is presented in this thesis in order to validate the range of intensity of the EFISH spectrum
and confirm the value at ω = 0. Furthermore, since it is a harmonic it is more easily calculated both
analytically and computationally than a susceptibility with different frequencies like EFISH.

Also it has been calculated in order to compare it with EFISH, THG has nonetheless a lot of ap-
plications of its own. But, its applications are less spread than SHG due to the fact that this process
is more difficult to observe since it is one order higher in the expansion (1.1), meaning that it far less
intense. This is the reason why it is usually not used as such for the the tripling of the laser frequency
into ultraviolet light. Instead, this is often realized in two steps. First, the input frequency is doubled
and then frequency tripling is reached by a second-order process: sum-frequency generation of the
original and doubled beam (see Figure 1.7).

Figure 1.7: Scheme of frequency tripling realized through SFG.

There are nonetheless applications using THG, for which the signal can be enhanced by several
mechanisms such as a refractive index mismatch originated from an interface. Another one is res-
onance enhancement, where the wavelength of the produced THG signal is absorbed by the mate-
rials, leading to an increase intensity by resonance processes. One of the main application is THG
microscopy, which uniquely provides 3D-imaging of the sample by detecting interfaces and hetero-
geneities. Since it is a nonlinear process, THG is induced only in close proximity to the focal point of
the excitation laser, resulting in a high lateral resolution. Unlike SHG which is specific to centrosym-
metry media, THG can be used on all materials since third-order susceptibilities are non-zero in any
materials.

Some ab-initio calculations were already published for THG by C. Attaccalite and M. Grüning,
using real-time approach [14;15] based on density-polarization functional theory. In that formalism,
the polarization is not perturbative with respect to the field, meaning all orders are treated together,
giving us access to all harmonics. However the results presented so far, using this method, do not
include the value at ω = 0 that we want.

10



Chapter 2

Density Functional Theory

This chapter reviews the basis of DFT, used to describe the electronic structure of many-body systems,
as well as it time-dependent counterpart TDDFT, both of which are necessary for the calculation of
optical properties.

2.1 Many-Body Problem

The many-body problem consists of a system of particles that all interact with each other, resulting in
a coupled motion. It means that to solve the problem, one has to consider all the particles together,
increasing considerably the difficulty of the problem with each new particle.

The starting point is the Hamiltonian describing a system of interacting electrons and nuclei in
the non-relativistic limit,

Ĥ = −
∑
i

~2∇i
2me

+
1

2

∑
i 6=j

e2

|ri − rj |
−
∑
I

~2∇I
2MI

+
1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
−
∑
i,I

ZIe
2

|ri −RI |
(2.1)

where the electrons are denoted by the subscript (i, j) and the nuclei by the upper case subscripts
(I, J).

Born-Oppenheimer approximation

The mass of the nucleus MI is considerably larger than the mass of an electron me, meaning that the
motion of the electrons is much faster and can therefore be decoupled from the motion of the nuclei.
In this approximation, when looking at the electronic part, the nuclei appear as frozen, which means
that the nuclear positions RI are described as constant parameters. The electronic Hamiltonian can
then be written as

Ĥ = −
∑
i

~2∇i
2me

+
1

2

∑
i 6=j

e2

|ri − rj |
−
∑
i,I

ZIe
2

|ri −RI |
(2.2)

where the three terms correspond in order to the kinetic energy T̂ , the electron-electron interaction
Û and the interaction V̂ext with the static potential vext created by the ions.

V̂ext =

∫
dr vext(r) ρ̂(r) (2.3)

If we were to solve the previous equation (2.1) for a system of N particles, we would obtain wave-
functions ψ(r1, . . . , rN ) of 3N variables all interconnected. As a result, the complexity of the problem
growths exponentially with the size of the system, which would make it impossible to solve realistic
macroscopic system.

11



CHAPTER 2. DENSITY FUNCTIONAL THEORY

Many approaches exist to find an approximate solution to the many-body problem. One of them is
the density functional theory (DFT) and its time-dependent counterpart (TDDFT), used to investigate
respectively ground state and dynamical properties. In the following, we review the basis of the
theory [16].

2.2 Density Functional Theory

Density functional theory (DFT) has become the method of choice for the investigation of medium
and large scale systems. The main idea of DFT is the introduction of the electronic density as a fun-
damental variable instead of the many-body wavefunctions, allowing DFT, while formally exact, to
be computationally very efficient.

2.2.1 Hohenberg-Kohn theorems

The key quantity calculated is the electronic density which allows the basic description of materials
through the ground-state. It is important to incorporate all the essential contributions to the kinetic
and potential energies, while balancing with the efficiency of the calculations. DFT aims to describe
the ground-state of a system of N electrons in the presence of the external potential vext of the ions,
static in time. The total energy can be obtained by solving the time-independent Schrödinger equation,

Ĥ
∣∣ψ0

〉
= E0

∣∣ψ0

〉
(2.4)

where Ĥ = T̂ + Û + V̂ext is the Born-Oppenheimer Hamiltonian written in eq. (2.2). Since T̂ and
Û are the same for all physical system, the Hamiltonian is entirely determined by the potential vext,
which is an external single-particle potential. This means that all the properties of the system are also
determined by the external potential like the ground-state wavefunctions ψ0 and density ρ0(r). The
inverse is also true as stated in the first Hohenberg-Kohn theorem.

Theorem 2.2.1. (Hohenberg and Kohn I, 1964, [17])
The ground-state density ρ0(r) of a system of interacting particles in some external potential vext(r) determines
this potential uniquely, except for a constant.

Therefore every observables, as well as the ground state many-body wavefunctions ψ0, become a
functional of the density, in particular the total energy Ev0 [ρ] =

〈
ψ0[ρ]

∣∣T̂ [ρ] + Û [ρ] + V̂0[ρ]
∣∣ψ0[ρ]

〉
.

Thus reducing the Schrödinger equation (2.4) to a functional of ρ, a three-variables quantity. Origi-
nally for non-degenerate systems, this theorem has now been extended for different cases to include
degenerate states and the spin. The Rayleigh-Ritz principle leads us to the second theorem.

Theorem 2.2.2. (Hohenberg and Kohn II, 1964, [17])
A functional for the total energy E[ρ] of the electronic density ρ(r) can always be defined for any external po-
tential vext(r). The density that minimizes this functional is the exact ground-state density ρ0(r) for a given
v0(r): Ev0 [ρ] ≥ Ev0 [ρ0].

We went from solving the Schrödinger equation (2.4) to minimizing the energy functional with re-
spect to ρ(r), a task that would prove trivial if this so-called functional was known. The difficulty of
the problem is now to find a suitable approximation for Ev0 [ρ].

Another theory, based on the same idea of using the density as the main variable, was already
formulated in the late 1920s by Thomas and Fermi. While less accurate than DFT, it still presents a lot

12



2.2. DENSITY FUNCTIONAL THEORY

of similarities. In this model, the electron-electron interaction Û was approximated by the classical
Hartree potential vH and the kinetic energy T̂ by the one of an homogeneous electron gas, using the
local density approximation (LDA) also encountered in modern DFT. The electron correlation is also
completely neglected as in the Hartree-Fock method. This theory yields good results for atoms but
is rather inaccurate for more complex systems since it fails to consider the actual structure of atomic
orbitals, which is needed to correctly describe molecular bonding. This approach could be considered
as an approximation to the modern DFT theory.

2.2.2 Kohn-Sham equations

Kohn and Sham (KS), instead, introduced an auxiliary system of independent particles for which the
electronic density and other properties would correspond to the ones of the real system. In principle,
it should lead to exact calculations of those properties. However, in practice many approximations
are needed to perform actual calculations. This is expressed as the following

Definition 2.2.3. (Kohn and Sham, 1965, [18])
Any systems of interacting particles in the external potential v0 can be mapped to a system of fictitious, non-
interacting Kohn-Sham particles in the effective local potential vS such that both have the same ground state
density ρ0 : Ĥ = T̂ + Û + V̂0

ρ0←−→ ĤS = T̂S + V̂S

The KS Hamiltonian ĤS has the usual kinetic operator T̂S and a local single-particle potential vs(r),
with

V̂S =

∫
dr vs(r) ρ̂(r) (2.5)

If this potential was known exactly, it would be easy to solve the Schrödinger equation (2.4) inde-
pendently for each particle of the fictitious system. This would give us the KS wavefunctions φi(r),
thus allowing the calculation of the ground-state density ρ0,

ρ0(r) =

N∑
i

|φi(r)|2 (2.6)

and all related properties. In the Kohn-Sham approach, as in the Thomas-Fermi model, the electron-
electron interaction Û is approximated by the Hartree energy EH ,

EH [ρ] =
1

2

∫
dr dr′

ρ(r)ρ(r′)

|r− r′|
(2.7)

But DFT is an exact theory, so we introduce an exchange-correlation operator EXC , containing all
the electron correlation neglected in the Thomas-Fermi model, which is the difference between the
interacting many-body Hamiltonian and the approximated non-interacting one,

EXC [ρ] = T [ρ] + U [ρ]− TS [ρ]− EH [ρ] (2.8)

However, the exact form of this operator is unknown and would need to be approximated, which
would be the only fundamental approximation in DFT. The ground-state energy functional of the
interacting system can then be written as

Ev0 [ρ] = TS [ρ] + EH [ρ] + V0[ρ] + EXC [ρ], (2.9)
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CHAPTER 2. DENSITY FUNCTIONAL THEORY

which becomes the same for the KS auxiliary system at their minimum when ρ = ρ0.

vS([ρ0], r) =
δEH
δρ(r)

∣∣∣∣
ρ=ρ0

+ v0(r) +
δEXC
δρ(r)

∣∣∣∣
ρ=ρ0

= vH([ρ0], r) + v0(r) + vXC([ρ0], r)

(2.10)

Hence the problem is reduced to solving the single-particle Schrödinger equation where the KS
potential vS([ρ], r) is found in a self-consistent way with respect to the density, as illustrated in Fig-
ure 2.1. This procedure would give the exact ground-state density, were the exchange-correlation

Figure 2.1: Self-consistent scheme in DFT

functional EXC [ρ] known.

2.2.3 Exchange-correlation potential

The long-range interaction is contained in the Hartree term. Therefore what remains in the exchange-
correlation functional EXC [ρ] is nearly local. In its general form, it is written as

EXC [ρ] =

∫
dr εXC([ρ], r) ρ(r) (2.11)

where εXC([ρ0], r) is the energy per electron depending on the density around r. Since this term is
not known, we need to use an approximation to evaluate it. Over the years, many approximations
for the XC-functional have come to light with different degrees of accuracy. There is nowadays no
universal XC-functional that works to calculate correctly all the properties of every materials. There
is always a case where it fails. Here, we will only discuss the simplest one, which is the local density
approximation (LDA), for which we consider that the exchange-correlation energy at one point r is the
same as the one of an homogeneous electron gas with the same density in that point. The exchange-
correlation functional EXC [ρ] can then be approximated as a local functional of the density.

ELDAXC [ρ] =

∫
dr εLDAXC (ρ(r)) ρ(r) (2.12)

where εLDAXC (ρ) is a local function of the density at r and not a functional. Usually it is split in an
exchange and correlation part, εXC(ρ) = εx(ρ) + εc(ρ). The exchange part is given by the Dirac func-
tional [19]. Various parametrizations exist to calculate εc(ρ) which are based on Monte Carlo simula-
tions on homogeneous electron gases at different densities. The exchange-correlation potential vXC
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2.2. DENSITY FUNCTIONAL THEORY

used in eq. (2.10) to determine the Kohn-Sham potential vS can be written as

vLDAXC ([ρ0], r) = εLDAXC (ρ0(r)) + ρ0(r)
δεLDAXC (ρ(r))

δρ(r)

∣∣∣∣
ρ=ρ0

(2.13)

In LDA the inhomogeneities in the density around r are completely neglected. But despite the
drastic nature of the approximation, it can work quite well for extended systems due to the fact that it
respects the sum rule for the exchange-correlation hole, stating that the hole should have the charge
of one electron. However it is not accurate enough for molecules since it tends to overbind. Other ap-
proximations exist to overcome the failures of LDA like GGA (Generalized Gradient Approximation),
where the inhomogeneities in the electron density are taken into account, or hybrid functionals, which
correct the exchange part of the potential. Yet, for the purpose of this thesis, which is the calculation
of optical properties of semiconductors, the quality of the XC-approximation in the ground-state is
not so important and LDA is more than enough.

2.2.4 Bandstructure and band-gap problem

A well-known issue of DFT is the underestimation of the theoretical gap between valence and con-
duction bands compared to the experimental one. It is an important point for us since the correct
relative eigenvalues of occupied and unoccupied states is required to calculate rather accurate optical
responses, as it is aimed in this thesis. In fact, static DFT is not meant to describe excited properties
of the system such as the optical band-gap. In theory, this correct band gap should be obtained at the
TDDFT level had we had a good enough approximation for the time-dependent exchange-correlation
potential. Moreover there is no physical interpretation for the KS eigenenergies with the exception of
the highest occupied KS state in a finite system that should correspond to the ionization energy of the
system in exact DFT. However, it is not always the case due to the self-interaction error (SIE) caused
by the electron interacting with itself in equation (2.7). This error is introduced in the Hartree energy
and not corrected by the xc-potential. In Hartree-Fock methods however, the exchange term is calcu-
lated exactly, which enables the cancellation of the Coulomb self-interaction. This could be partially
solved by using hybrid functionals, which introduce a certain amount of Hartree-Fock exchange that
cancels part of the SIE, thus leading to the relocalization of the density and increasing the band-gap.

In practice, including the correction to the band gap at the TDDFT level is not doable since we
do not have an approximation for the time-dependent exchange-correlation potential that will treat
this issue, which is why we want to start from the correct band gap before any TDDFT calculation.
To obtain the real band-gap measured in photo-emission (PE) experiments, one should look at quasi-
particle energies and not the Kohn-Sham ones. A common approach to access to the PE-band-gap
consists in performing GW calculation. This method takes into account the fact that, when an elec-
tron is excited, it leaves a hole positively charged that attracts the surrounding electrons, which can be
represented as a cloud of opposite charge particles. This can be interpreted as a screening of the hole.
The particle and its screening cloud are referred to as quasiparticle. GW calculations are equivalent to
performing an Hartree-Fock calculation that includes the screening. Therefore it does not contain the
self-interaction error and it includes the interaction of particles, leading to a much better description
of the band-gap, which usually agrees with experiments. For many systems the quasiparticle and KS
bandstructures are actually quite similar regarding the shape of the bands and only differ in the size
of the gap. Consequently, a much simpler procedure to solve the band-gap problem is to use the scis-
sor approximation, where a rigid shift in energy is applied to the conduction band (see Figure 2.2), in
the form of a non-local operator added to the Hamiltonian.
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Figure 2.2: Bandstructure of silicon: (a) left panel: comparison between DFT (green) and G0W0 (red)
calculation; (b) right panel: comparison between G0W0 (red) and DFT+scissor (blue), with a scissor
∆ = 0.9 eV.

2.3 Numerical details

Most of the density functional theory calculations performed on solids are based on pseudopotentials
and a plane-wave basis set which includes explicitly periodic boundary conditions.

2.3.1 Bloch’s theorem

To perform realistic calculations of electronic structure for solids, it is important to reduce the large
number of electrons (proportional to the Avogadro number) by considering the periodicity of the sys-
tem. This implies that the material under study is crystalline. In that case, only the atoms within the
crystallographic unit cell are explicitly considered, and periodic boundary conditions are accounted
for by exploiting the translational symmetry of the crystal. Such kind of approach is based on the
Bloch’s theorem which states that, for a potential with the periodicity of the lattice,

vS(r) = vS(r + R), where R is a lattice vector, (2.14)

the eigenstates of the single-particle Hamiltonian can be defined by,

ψn,k(r) = eik·r un,k(r) (2.15)

where un,k is a periodic function in the unit cell, ie. un,k(r) = un,k(r + R). Bloch states of equation
(2.15) are defined by two indices n and k which represent the band index and the crystal momentum,
respectively. The dependence of the Bloch states which respect to k can be limited to the first Brillouin
zone (FBZ) of the reciprocal space without any loss of information. Thanks to the Bloch theorem, the
initial problem of solving the KS equations for an infinite number of electrons, ie. n→∞ in equation
(2.9), transforms to calculating for a finite number of bands at an infinite number of k-points, ie. to
integrate the expression of the energy over the FBZ, that is

EKS[ρ] =
1

VFBZ

∫
FBZ

dk Ek[ρk] (2.16)

where VFBZ is the volume of the first Brillouin zone. However, considering that energy and related
properties are expected to smoothly vary with respect tok, the integration overk can be approximated
by a finite sampling of the FBZ.
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2.3.2 Plane-wave basis set

The method used to solve equation (2.9) depends on the basis set used to expand the KS orbitals
which, in equation (2.15) are defined by un,k. Among the many possibilities, two families can be
identified, which depend somewhat on the scientific background/culture. Chemists would prefer
to expands KS orbitals in a sum of atom-centered functions using the standard “linear combination
of atomic orbitals” (LCAO), whereas condensed matter physicists tend to use plane-wave as basis
set. The use of plane-waves presents several advantages compared with localized basis functions: (i)
their mathematical expression is very simple, (ii) they are mutually orthogonal, meaning that there
is no overlap between them, (iii) they intrinsically account for periodic boundary conditions, and
most importantly (iv) they allow for systematic —monotonic— convergence of the energy. The main
drawback are related to their delocalized nature which (i) avoid “empty space” as required when
dealing with 2D or 1D periodic systems, and (ii) they are not chemically intuitive —they are not
atom-like functions— and involved development of relocalization algorithms to interpret KS orbitals
or density in terms of chemical bonds. Using plane-wave basis set, the KS orbitals are expressed as,

ψn,k(r) =
∑
G

cn,k(G) ei(k+G)r (2.17)

where the sum is performed over all possible reciprocal lattice vectors G, and the set of coefficients
{cn,k} are determined by diagonalizing the matrix form of eq. (2.9) for each k-point. To limit the
expansion in equation (2.17), the sum over G is limited to a set of reciprocal lattice vectors contained
in a sphere of radius |k + G|, which is usually defined by the kinetic energy cutoff,

~|k + G|2

2m
≤ Ecut (2.18)

Therefore, the convergence of the calculation is easily controlled by simply increasing the energy
cutoff.

2.3.3 Pseudopotential approximation

Based on the fact that electrons principally involved in chemical bonding are those occupying the
valence states, it is allowed to consider core electrons as spectators of the interactions of atoms in
molecules or solids. The frozen-core approximation states that the core-electrons are not affected by
their environment, ie. they are “frozen” and considered with the nuclei as rigid ion cores. This re-
duces the number of electronic degrees of freedom and decreases the computational time needed
to solve the KS equations. Because atomic valence wavefunctions must be orthogonal to the core
wavefunctions, they present strong oscillations (nodes) within the region close to the nucleus. This
requires a large number of plane-waves to correctly reproduce this oscillating behavior. It is therefore
more convenient to replace the nucleus and frozen core-electron potentials by an “ionic potential”
also called pseudopotential which releases the constraints of orthogonality between valence and core
states. The fact that core oscillations of valence electrons have now disappeared reduces the need for
plane-waves with large kinetic energy components, and consequently reduces Ecut defined in equa-
tion (2.18). As depicted on Figure 2.3, the pseudo-wavefunctions vary smoothly in the core region
and, unlike all-electron wavefunctions, present no nodes. The drawback of this approach is that most
pseudopotentials are non-local to allow different states to feel different potentials. In contrast, local
pseudopotentials act the same way on all the wavefunctions, making it less accurate and not very
often used. The introduction of this non-local part in the potential means that the velocity operator v̂
is no longer the same as the momentum operator p̂. Indeed, we have

v̂ = i[Ĥ, r̂] = p̂ + i[V̂nl, r̂] (2.19)
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where V̂nl is the non-local contribution of the pseudopotential. This nonlocal contribution needs to
be included in the optical response.

rrc

Ψpseudo

Ψall

Figure 2.3: All-electron ψall (dashed line) vs pseudo-wavefunctions ψpseudo (solid line).

The two most common pseudopotentials used in plane-waves DFT codes are the norm-conserving
(NCPP) [20] and ultrasoft (USPP) [21] pseudopotentials. During the generation of NCPP, the atomic
pseudo-wavefunctions φ̃i are enforced to respect the norm-conservation with respect to their all-
electron analogues φi, ∫

dr φ̃i(r)φ̃j(r)−
∫
dr φi(r)φj(r) = 0, for |r| < rc (2.20)

and to match exactly above a certain cutoff radius rc,

φ̃i(r) = φi(r), for |r| ≥ rc (2.21)

Increasing rc naturally tends to decrease the number of plane-waves needed to reach convergence.
Due to the norm-conservation constraints, NCPP cutoff are generally small. For USPPs, which were
not used in this thesis, the constraint of equation (2.20) is relaxed in order to limit the number of
necessary plane-waves to the cost of introducing a generalized eigenvalue problem,

Ĥ
∣∣ψi〉 = εiŜ

∣∣ψi〉, (2.22)

where Ŝ is the hermitian overlap operator.

2.4 Time-Dependent Density Functional Theory

DFT has been extended by Runge and Gross in 1984 to include situations where the system is sub-
mitted to a time-dependent perturbation [22]. It is actually a generalization of the static Kohn-Sham
method. I will briefly present it in this section, and afterwards its corrections since it was later proven
to not be entirely correct.

2.4.1 Runge-Gross Theorem

We now start from the time-dependent Schrödinger equation:

i~
∂

∂t

∣∣ψ(t)
〉

= Ĥ
∣∣ψ(t)

〉
, Ĥ = T̂ + Û + V̂ext(t) (2.23)

where the external potential vext(r, t) includes a time-dependent perturbation to the system in ad-
dition to the static ionic potential. As in DFT, one can establish a one-to-one mapping between the
time-dependent electron density ρ(r, t) and the external potential vext(r, t).
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Theorem 2.4.1. (Runge and Gross I, 1984, [22])
The density ρ(r, t) evolving from an initial state

∣∣ψ0

〉
under the influence of a Taylor expandable potential

vext(r, t) determines this potential uniquely, except for a time-dependent constant.

This time-dependent constant only changes the random phase of the wavefunctions, which should not
influence the calculation. This theorem is the time dependent equivalent to the first Kohn-Hohenberg
theorem 2.2.1. However, it is not possible anymore to minimize the total energy with respect to the
density, as it was done in DFT, since the energy is no longer a conserved quantity. Hence the quantum-
mechanical action A is introduced as an analogue to the total energy in the static case and is defined
as

A[ρ] =

∫ T

0
dt
〈
ψ[ρ]

∣∣∣i~ ∂
∂t
− Ĥ(t)

∣∣∣ψ[ρ]
〉

(2.24)

The action is a unique functional of the density. The time-dependent Kohn-Sham equations can be
derived from the principle of stationary action:

Theorem 2.4.2. (Runge and Gross II, 1984, [22])
For a given state

∣∣ψ0

〉
, the actionA[ρ] becomes stationary at the density ρ0(r, t) that corresponds to the external

potential V0(r, t).

This translates as
δAv0 [ρ]

δρ(r, t)

∣∣∣∣
ρ=ρ0

= 0 (2.25)

and means that, finding the density for which the action is stationary, corresponds to finding the
solution of the system. Thus the minimization of the total energy is replaced by the search of the
stationary points of the action. However the action is an unknown functional.

2.4.2 Kohn-Sham equations

To determine the action A[ρ], in a similar fashion to the static case, Runge and Gross [22] introduced
an auxiliary system of independent particles, that fulfill the time-dependent Schrödinger equation,

i~
∂

∂t

∣∣φi(t)〉 = (T̂S + V̂S)
∣∣φi(t)〉 (2.26)

where φi(r, t) are the time-dependent Kohn-Sham wavefunctions, which are used to calculate the
time-dependent density ρ(r, t). As previously, the same density ρ0 is solution of both the real and
auxiliary system and is given by:

ρ0(r, t) =

N∑
i

|φi(r, t)|2 (2.27)

The action functional can be decomposed in the same fashion as the total energy in equation (2.9):

Av0 [ρ] = TS [ρ] +AH [ρ] +A0[ρ] +AXC [ρ] (2.28)

where AXC includes all the non-trivial many-body parts of the action and is defined in similar way
to equation (2.8) in the static case. When reaching the stationary point at the density ρ0(r, t), both the
action of the real and KS systems become equal allowing us to write the following expression for the
KS potential:

vS([ρ0], r, t) = vH([ρ0], r, t) + v0(r, t) + vXC([ρ0], r, t) (2.29)
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This set of equations are self-consistent and can be solved iteratively with an approximation for the
exchange-correlation potential vXC . This self-consistency must be built into the time-propagation
scheme. The time-dependent potential vXC is more complex than the static one. Indeed, the depen-
dence with the electron density is nonlocal in time and space. Moreover, in addition to its depen-
dence on the density, vXC formally also depends on the initial many-body and KS wavefunctions,∣∣ψ0

〉
and

∣∣φi〉. One of the easiest choice for the xc-functional is the adiabatic local-density approx-
imation (ALDA), which is an extension of LDA in DFT. It greatly simplifies the problem since vXC
becomes local in time and space and the dependence on the initial conditions is neglected. However
this simple approximation is known to fail when looking at the optical responses of solids. A more
accurate alternative for optical spectra was found for fxc, which is defined as fxc = δvXC/δρ and is
applied through the Dyson equation, that is later introduced in section 2.4.4. This alternative consists
in a long-range fxc, also referred to as the α-kernel [23],

fxc(q) = − α
q2
, (2.30)

containing, as its name suggest, a long-range contribution (LRC), which is completely absent within
ALDA. However there is no corresponding form for vXC . One of the drawback of this kernel is that
it is a static approximation with no frequency-dependence.

2.4.3 Correction to the Runge-Gross theorem

The one-to-one mapping between the density and the potential in the demonstration of the Runge-
Gross theorem 2.4.1. was not entirely valid. It was only proven that for two systems with the same
initial state ψ0 and two-particle interaction Û , if they had different potentials then they could not
have the same density (see Figure 2.4). It was then not proven that the same density ρ(r, t) could not

ψ1(t0) = ψ2(t0) = ψ0

Û1 = Û2 = Û

V̂1(t) 6= V̂2(t) + c(t) =⇒ ρ1(t) 6= ρ2(t)

Figure 2.4: Runge-Gross theorem

be reproduced by the potential of a system with different ψ0 and Û . Consequently any expectation
value was a functional of the density and the initial state. However, in a non-interactive system,
such as the KS auxiliary system, the interaction Û = 0, is usually different than the one in the real
system Û 6= 0, meaning that, only considering the Runge-Gross theorem, for the same density, the
two systems didn’t necessarily have the same potential, and thus questioning the validity of the time-
dependent KS approach. However, this is actually not a problem since this theorem was later extended
by van Leeuwen [24] for systems with different initial states and two-particle interactions, providing
the formal justification for the KS approach.

It was also demonstrated that the definition of the action in equation (2.24) led to causality-symmetry
problem in the definition of the action derivative. Indeed, if as suggested by Runge and Gross, the
potential was written as a functional derivative of the action, it would lead to

vext([ρ], r, t) =
δA[ρ]

δρ(r, t)
=⇒ δvext([ρ], r, t)

δρ(r′, t′)
=

δ2A[ρ]

δρ(r, t)δρ(r′, t′)
, (2.31)
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which is not possible since the derivative of the potential is causal, ie zero for t′ > t, while the second
derivative of the action is symmetric in term of t, t′. Furthermore, it was shown that the action func-
tional, as it was defined, was actually not stationary [25]. So the variational principle for the density
did not require it to be zero but equal to another functional, thus meaning that the potentials vext,
vS and vXC are not merely functional derivatives of Av0 but contain an additional term. Another ap-
proach was then developed by van Leeuwen [26] with a different definition of the action that avoid this
causality-symmetry problem.

2.4.4 Linear response theory

In the following, I will show that to access the susceptibility, we don’t actually need to solve the time-
dependent equations presented in the previous sections, which would imply to evaluate the propa-
gation in time of the wavefunctions as it is done, for instance, in the TDDFT code Octopus [27].

We consider a system previously in its ground-state, for which an external perturbation vext(t) has
been switch on at t0. The density and wavefunctions of the ground-state for t < t0 can be uniquely
determined by DFT. If the perturbation is small, one could use perturbation theory, that will be fully
described in the next chapter, instead of solving the full Kohn-Sham equations. In linear response
theory, the goal is to evaluate the density-response χ of the fully-interacting system to the perturba-
tion. The response of the fictitious Kohn-Sham system to the effective potential vS is referred to as the
independent-particle susceptibility χ0.

χ =
δρ

δvext
, χ0 =

δρ

δvS
(2.32)

Since the densities of both the real and non-interacting systems are identical, we can link the two
response functions,

χ =
δρ

δvext
=

δρ

δvS

δvS
δvext

= χ0
δ(vext + vH + vXC)

δvext
= χ0

[
1 +

δvH
δρ

δρ

δvext
+
δvXC
δρ

δρ

δvext

]
, (2.33)

which gives us the Dyson-equation for the first order,

χ = χ0 + χ0(v + fxc)χ, (2.34)

with v = δvH/δρ and fxc = δvXC/δρ. Similar equations could be written for every orders, each
time increasing the difficulty by linking the nth-order susceptibility χ(n) with all the previous inter-
acting and non-interacting susceptibilities χ(n−i) and χ(n−i)

0 . From the Dyson-equation, the simplest
approximation is to set both v and fxc to zero, which corresponds to the independent-particle approx-
imation (IPA), where all the many-body effects are neglected, leaving only the Kohn-Sham response:
χ(n) = χ

(n)
0 . Only putting fxc = 0 and keeping the Coulomb interaction corresponds to the random-

phase approximation (RPA), which includes the effects of the local fields induced by the perturbation
inside the material. In both approximations, the exchange and correlation effects are still present at
the DFT level, they are only neglected in TDDFT in the Dyson-equation.

At this point, one could also include in the Dyson equation a term representing the screening
effect, instead of using GW or scissor approximations mentioned in section 2.2.4. However, as for fxc,
this screening term is a priori unknown and, how to evaluate it, is not so trivial. It has so far proven
more effective to continue using either G0W0 or the scissor approximation, both introduced in the
form of a non-local operator in the Hamiltonian and included in the IPA response χ0.
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Chapter 3

Theoretical framework

In this chapter, I describe the theoretical background needed in this thesis, which includes time-
dependent perturbation theory as well as the link between macroscopic and microscopic response.

3.1 Perturbation Theory

We consider a system that we know how to solve and apply a small perturbation on it. Here “small”
implies that the effect on the system is weak and that the quantum states would change very little. In
that case, we can use perturbation theory to describe the change in the energy spectrum (see Figure
3.1), the aim being to express the perturbed solution as function of the unperturbed one.

Unperturbed
states

Perturbed
states

Figure 3.1: Effect of the perturbation on the energy levels using time-independent perturbation theory.

3.1.1 Interaction picture

In time-independent perturbation theory, the system is submitted to a perturbation which results in
the addition of a term ĤP to the Hamiltonian, Ĥ = Ĥ0 + ĤP . One can then calculate the correction
to the eigenvalues and eigenstates induced by this perturbation. With time-dependent perturbation
theory, the goal is to look at the time evolution of this perturbed system, whether the perturbation
itself depends on time or not. It is assumed that the unperturbed eigenvalues and eigenstates of the
‘bare’ Hamiltonian H0 are known and usually constitute the starting point of the system.

In the Schrödinger picture, the propagator is attached to the state vectors |ψS(t)〉. The time evo-
lution of these states is specified through the Schrödinger equation, while the observables ÔS do not
evolve in time,

i~
d

dt

∣∣ψS(t)
〉

= ĤS

∣∣ψS(t)
〉
, i~

d

dt
ÔS = 0 (3.1)
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In most cases, it is usually more convenient to work in the interaction picture, where the time-dependence
is split between the ket states and the operator. The transformation from the Schrödinger to the inter-
action picture is given as,  ĤP

I (t) = eiĤ0t/~ ĤP
S e−iĤ0t/~∣∣ψI(t)〉 = eiĤ0t/~
∣∣ψS(t)

〉 , (3.2)

where Ĥ0 stays the same in every picture. Using both equations (3.1) and (3.2), we can then obtain
the time evolution of the state in the interaction picture:

i~
d

dt

∣∣ψI(t)〉 = ĤP
I (t)

∣∣ψI(t)〉 (3.3)

This corresponds to the Schrödinger equation in the interaction picture, which is similar to the one in
the Schrödinger picture (3.1), except for the fact that the perturbed Hamiltonian is used instead of the
total one. There is another picture developed by Heisenberg, working independently of Schrödinger,
where the full propagator is, this time, attached to the observable, which will not be used in this thesis.
The time dependence in the different pictures has been summarized in table 3.1.1.

picture Schrödinger Interaction Heisenberg

observables ÔS ÔI(t) = eiĤ0t/~ ÔS e
−iĤ0t/~ ÔH(t) = eiĤt/~ ÔS e

−iĤt/~

state vector
∣∣ψS(t)

〉 ∣∣ψI(t)〉 = eiĤ0t/~
∣∣ψS(t)

〉 ∣∣ψH〉 = eiĤt/~
∣∣ψS(t)

〉
Table 3.1: Time-dependence and transformation for the three pictures.

At this point, we only have access to the unperturbed wavefunctions ψ0. So we need to write
the connection between them and the time-dependent wavefunctions in the interaction picture ψI(t).
They are related through the time-evolution operator UI(t), i.e.

∣∣ψI(t)〉 = UI(t)
∣∣ψ0

〉
, which must

satisfy equation (3.3) so that

i~
d

dt
UI(t) = ĤP

I (t) UI(t) (3.4)

Since we know the starting point
∣∣ψ0

〉
, which is the state vector for t0 in all the pictures, we can use

the boundary condition UI(t0) = 1, to write equation (3.4) as an integral equation,

UI(t) = 1− i

~

∫ t

t0

dt′ HP
I (t′) UI(t

′), (3.5)

which is self-consistent for UI(t). Solving it iteratively provides us with the following expansion in
powers of ĤP

I :

UI(t) = 1 +

∞∑
n=1

(
−i
~

)n ∫ t

t0

dt′
∫ t′

t0

dt′′· · ·
∫ tn−1

t0

dtn Ĥ
P
I (t′) ĤP

I (t′′) . . . ĤP
I (tn), (3.6)

which is called the Dyson series. It is related to the full time-evolution operator US(t), that links
the Schrödinger wavefunctions

∣∣ψS(t)
〉

to the time-independent ones
∣∣ψ0

〉
, by the relation US(t) =

e−iH0t/~UI(t). While the definition of an operator is different in every picture (cf. Table 3.1.1), the
resulting expectation value needs to be independent of the chosen framework and should stay the
same in all pictures. In the interaction picture, it is defined as follows:

O(t) =
〈
ψI(t)

∣∣∣ÔI(t)∣∣∣ψI(t)〉 , (3.7)
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which can be recast using eq. (3.6),

O(t) =
〈
ψ0

∣∣ÔI(t)∣∣ψ0

〉
+

∞∑
n=1

(
−i
~

)n ∫ t

t0

dt′· · ·
∫ tn−1

t0

dtn

〈
ψ0

∣∣∣[[ÔI(t), ĤP
I (t′)

]
. . . , ĤP

I (tn)
]∣∣∣ψ0

〉
(3.8)

3.1.2 Response function

The response function corresponds to the change induced in the expectation value of an operator α̂
by a perturbation v(t), which is not necessarily the same as the perturbed Hamiltonian ĤP . To obtain
the response functions, we expand the observable α̂ with respect to the perturbation,

α̂I([v], 1) = α̂0(1) +

∫ t1

t0

d2
δα̂I(1)

δv(2)
v(2) +

1

2

∫ t1

t0

d2

∫ t2

t0

d3
δ2α̂I(1)

δv(2)δv(3)
v(2)v(3)

+
1

6

∫ t1

t0

d2

∫ t2

t0

d3

∫ t3

t0

d4
δ3α̂I(1)

δv(2)δv(3)δv(4)
v(2)v(3)v(4) + . . . (3.9)

where we adopt the notation (1) ≡ (r1, t1) to have a more concise expression. The expansion coeffi-
cients corresponds to the response function of the system χ

(i)
α ,

χ(1)
α (1, 2) =

〈
ψ0

∣∣∣δα̂I(1)

δv(2)

∣∣∣ψ0

〉
, χ(2)

α (1, 2, 3) =
〈
ψ0

∣∣∣ δ2α̂I(1)

δv(2)δv(3)

∣∣∣ψ0

〉
, . . . (3.10)

They represent the variation of the operator α̂ with respect to the perturbation v but do not explicitly
depend on the perturbing quantity. The form of these response functions depends on the coupling be-
tween the system and the perturbation. We consider the general case where this coupling is expressed
through another operator Ô in the following way

ĤP
I (t) =

∫
dr ÔI(r, t) v(r, t) (3.11)

The linear response function χ(1)
α (1, 2) depending on the coupling Ô becomes

χ
(1)
αO(1, 2) = −iθ(t1 − t2)〈ψ0|[α̂I(1), ÔI(2)]|ψ0〉 (3.12)

which was derived by Kubo in 1957 [28]. θ(t) is the step function which is zero if t < 0 and 1 otherwise.
The theory has later been generalized to higher order [29]:

χ
(n)
αO(1, 2, . . . , n) = (−i)nθ(t1, t2, . . . , tn)T 〈ψ0|[[[α̂I(1), ÔI(2)], ÔI(3)] . . . , ÔI(n)]|ψ0〉 (3.13)

where θ(t1, t2, . . . , tn) = θ(t1− t2)θ(t1− t3) . . . θ(t1− tn) and T is the time-ordering operator that acts
on indices 2, 3, . . . , n. The response functions are causal and depend only on time differences and not
on absolute times, as long as the perturbing field remains small, so that

χ
(n)
αO(r1, t, r2, t2, . . . , rn, tn) = χ

(n)
αO(r1, r2, . . . , rn, t1 − t2, . . . , t1 − tn) for t1 > t2, . . . , t1 > tn (3.14)

If we now consider the coupling to be the sum of different operator: Ô = β̂ + γ̂ + δ̂, to get a more
general form for the response functions, we obtain

χαβ(1, 2) = −iθ(t1 − t2)〈[α̂I(1), β̂I(2)]〉

χαβγ(1, 2, 3) = −θ(t1 − t2) θ(t1 − t3) T
〈[[

α̂I(1), β̂I(2)
]
, γ̂I(3)

]〉
χαβγδ(1, 2, 3, 4) = i θ(t1 − t2) θ(t1 − t3) θ(t1 − t4) T

〈[[[
α̂I(1), β̂I(2)

]
, γ̂I(3)

]
, δ̂I(4)

]〉 (3.15)

where we use the notation 〈Ô〉 = 〈ψ0|Ô|ψ0〉.
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3.1.3 Light as a perturbation

In this part, the perturbation is chosen as the light that shines on the material and interacts with the
system. The unperturbed Hamiltonian H0 is the one-particle hamiltonian composed of kinetic and
potential energies.

Ĥ0 =
∑
i

[
p2
i

2m
+ V (ri)

]
(3.16)

The system is then put inside an electromagnetic field corresponding to the light, and represented by
perturbing electric EP and magnetic fields BP ,

EP = −∇ϕP − 1

c

∂A

∂t

P

, BP = ∇×AP (3.17)

whereϕP andAP are respectively scalar and vector potentials. This interaction with the external field
of the light means the addition to the total Hamiltonian of a vector potential that moves together with
the momentum p→ p− e/cA(r, t) and of a scalar potential, both associated with the perturbation.

Ĥ(r, t) =
1

2m

∑
i

[
pi −

e

c
AP (ri, t)

]2
+
∑
i

V (ri) +
∑
i

eϕP (ri, t) (3.18)

We recast the perturbing Hamiltonian ĤP (t) to be expressed as function of the charge density ρ̂
and current density ĵ,

ĤP (t) = −1

c

∫
dr ĵ(r)AP (r, t) +

e

2mc2

∫
dr ρ̂(r)

[
AP (r, t)

]2
+

∫
dr ρ̂(r) ϕP (r, t), (3.19)

where the charge density operator ρ̂(r) and the current density operator ĵ(r) are defined as
ρ̂(r) = e

∑
i

δ(r− ri)

ĵ(r) =
e

2m

∑
i

[pi δ(r− ri) + δ(r− ri) pi]
(3.20)

To access the different susceptibility shown in table 1.1, we need to calculate the polarization of
the system which is linked to the induced current density by the relation

jind(r, t) =
∂

∂t
P(r, t)

FT−−−→ jind(r, ω) = −iωP(r, ω) (3.21)

Moreover the charge and current densities induced by the external field are related together by the
charge conservation law,

∂

∂t
ρind(r, t) +∇ · jind(r, t) = 0, (3.22)

making it equivalent for us to calculate one or the other. However this statement is only true if the
field is longitudinal, which will be explained in section 3.3. They reflect the induced motion of par-
ticles inside materials as well as their spatial structure. Using equations (3.8) and (3.19), we get the
expectation value for the induced current operator at the first order:

j
(1)
ind(r, t) = − e

mc
〈ρ̂(r)〉AP (r, t)− i

∫
dt′ θ(t− t′)

∫
dr′

〈[̂
jI(r, t), ρ̂I(r

′, t′)
]〉
ϕP (r′, t′)

+
i

c

∫
dt′ θ(t− t′)

∫
dr′

〈[̂
jI(r, t), ĵI(r

′, t′)
]〉

AP (r′, t′) (3.23)
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We can identify the response function from their definition in equation (3.15) where α, β, γ and δ are
either the current or density operator ĵ and ρ̂. All the response functions are not independent of each
other and can be related using gauge-invariance. It is more convenient for us to work in the frequency
domain rather than in the time domain. After doing a time Fourier transform using the previously
mentioned time translational invariance for the response functions χαβ(r, t, r′, t′) = χαβ(r, r′, t − t′),
we obtain for the induced current:

j
(1)
ind(r, ω) =

ie

mω
〈ρ̂(r)〉EP (r, ω) +

i

ω

∫
dr′ χjj(r, r

′, ω) EP (r′, ω) (3.24)

This formula, expressed in terms of the electric field, is gauge-invariant and is formally obtained by
replacing the potentials by [30] 

ϕ̄P = ϕP − 1

c

∂

∂t
Λ(r, t)

ĀP = AP − ∂

∂r
Λ(r, t)

(3.25)

The passage from the potential to the electric field EP creates an apparent divergence in ω. If left in
the formula, that divergence will appear in the spectrum when ω → 0. However we know that for the
first order, the correct spectrum of semiconductors should not be divergent. It is then important to
remove this unphysical divergence by writing the formula in a different way. For metals though, there
is a natural divergence. But it is important to note that all the formulae shown in this work are only
for insulators or semiconductors since during the analytical calculation, we make the assumption that
there is a gap.

The microscopic first order polarization is defined in terms of the perturbing field as

P(1)(r, ω) =

∫
dr′ α̃(1)(r, r′, ω) EP (r′, ω), (3.26)

where α̃(1) is the linear quasipolarizability that can be expressed from equation (3.24) and (3.21) as

α̃(1)(r, r′, ω) = − 1

ω2

[ e
m
〈ρ̂(r)〉 δ(r− r′) + χjj(r, r

′, ω)
]

(3.27)

We can write similar expressions for the induced current density at the second and third orders:

j
(2)
ind(r, ω) = −

∫
dr′ dr′′

∫
dω′ dω′′

δ(ω − ω′ − ω′′)
ω′ω′′

EP (r′, ω′) EP (r′′, ω′′)

×
[
e

m
χρj(r, r

′, ω′) δ(r− r′′) +
e

2m
χjρ(r, r

′, ω) δ(r′ − r′′) +
1

2
χjjj(r, r

′, r′′, ω′, ω′′)

]
(3.28)

j
(3)
ind(r, ω) = i

∫
dr′ dr′′ dr′′′

∫
dω′ dω′′ dω′′′

δ(ω − ω′ − ω′′ − ω′′′)
ω′ω′′ω′′′

EP (r′, ω′) EP (r′′, ω′′) EP (r′′′, ω′′′)

×
[
− e2

2m2
χρρ(r, r

′, ω′ + ω′′′) δ(r′ − r′′′) δ(r− r′′)− e

2m
χρjj(r, r

′, r′′, ω′, ω′′) δ(r− r′′′)

− e

4m
χjjρ(r, r

′, r′′, ω′, ω′′ + ω′′′) δ(r′′ − r′′′)− e

4m
χjρj(r, r

′, r′′, ω′ + ω′′′, ω′′) δ(r′ − r′′′)

−1

6
χjjjj(r, r

′, r′′, r′′′, ω′, ω′′, ω′′′)

]
(3.29)

Regarding the second and third order response, we can only get rid of the apparent divergence in
ω′ω′′ . . . in specific cases, which include all the phenomena presented in this thesis, since some pro-
cesses are known to present true divergences that have a physical meaning (see for instance the optical
rectification).

Likewise, one could show similar formulae for the charge density.
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3.2 Nonlocal operators

The addition of nonlocal operators to the Hamiltonian, introduced by pseudopotentials or the scissor
approximation used to correct the band-gap, needs to be included within the IPA response. 1

3.2.1 Pseudopotentials

The use of pseudopotentials in DFT calculations introduces a nonlocal part to the potential that was
so far considered to be local. In practice it means that the potential Vnl does not commute with the po-
sition operator r̂ anymore, thus adding corrections to the momentum operator. The velocity operator
is then defined as

v̂ = [Ĥ0, ir] = p̂− i[r̂, V̂nl] (3.30)

A nonlocal potential is then added in the perturbing Hamiltonian [31] of equation (3.19),

ĤP (r, t) = − 1

2c

{
p ·AP (r, t) + AP (r, t) · p

}
+

1

2c2

[
AP (r, t)

]2
+ ϕP (r, t) + V P

nl , (3.31)

where V P
nl is defined as

〈
r
∣∣V P
nl

∣∣r′〉 = Vnl(r, r
′)
∞∑
k=1

1

k!

(
i

c

∫ r

r′
AP (x, t) dx

)k
(3.32)

Since we are interested in calculating the third-order susceptibility χ(3) for the EFISH response, we
need to write the perturbing Hamiltonian up to the third-order.

H(1)(r, t) = − 1

2c

{
p ·AP (r, t) + AP (r, t) · p

}
+ ϕP (r, t) +

i

c
Vnl(r, r

′)

∫ r

r′
AP (x, t) dx

H(2)(r, t) =
1

2c2

[
AP (r, t)

]2 − 1

2c2
Vnl(r, r

′)

(∫ r

r′
AP (x, t) dx

)2

H(3)(r, t) = − i

6c3
Vnl(r, r

′)

(∫ r

r′
AP (x, t) dx

)3

(3.33)

When going through the charge density calculation, we have direct access to the density-response
function χρρ, that we want to calculate in TDDFT, by putting AP = 0.

ρ
(1)
ind(r, ω) =

∫
dr′ χρρ(r, r

′, ω) V P (r′, ω)− 1

c

∫
dr′ χρj(r, r

′, ω) AP (r′, ω) (3.34)

To calculate the integral over x, we use the long-wavelength approximation, mentioned in section
3.3.1, for which AP (r, t)→ AP (t) and we obtain

H(1) = −1

c
AP (t) v̂ + ϕP (r, t)

H(2) =
1

2c2

[
AP (t)r̂,AP (t)v̂

]
H(3) =

1

6c3

[
AP (t)r̂,

[
AP (t)r̂,AP (t)v̂

]] (3.35)

When comparing the above expressions with the ones without this nonlocal contribution to the po-
tential, we see that using pseudopotentials means that the momentum operator p̂ must be replaced
by the velocity one v̂ in the Hamiltonian p̂→ v̂ = p̂− i[r̂, V̂nl]. This statement stays true even for the
third order and above since the commutator [r̂, [r̂, p̂]] is zero, explaining why there is no third order
Hamiltonian when the potential is local.

1From this point, atomic units are used (e = m = ~ = 1).
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3.2.2 Scissor operator

To include the screening in the following calculations and correct the band-gap problem as discussed
in section 2.2.4, I will use the scissor approximation. In practice, this is done by adding a scissor
operator Ŝ to the unperturbed Hamiltonian ĤKS

0 :

ĤΣ
0 = ĤKS

0 + Ŝ (3.36)

This operator Ŝ is nonlocal and is used to apply a rigid shift ∆ to the conduction bands. The value of
this shift depends on the material and is based on a previous GW calculation. It is written in the form

Ŝ = ∆
∑
k

∑
n

(1− fn,k)
∣∣φn,k〉〈φn,k∣∣, (3.37)

where fn,k is the occupation number of the band which is either 1 or 0. The unscissored and scis-
sored Hamiltonian both satisfy a Schrödinger equation for the same set of wavefunctions and gives
respectively unscissored and scissored energies.{

ĤKS
0

∣∣φn,k〉 = En,k
∣∣φn,k〉

ĤΣ
0

∣∣φn,k〉 = EΣ
n,k

∣∣φn,k〉 (3.38)

The shift in the energies is given by

EΣ
n,k = En,k + (1− fn,k)∆ (3.39)

Since the scissor operator is nonlocal, it is now included in the definition of the velocity operator in a
similar fashion as for the nonlocal part of the pseudopotential.

v̂Σ = [ĤΣ
0 , ir̂] = p̂− i[r̂, V̂nl]− i[r̂, Ŝ] (3.40)

For the diagonal elements of the velocity matrix, there is no scissor effect.

〈φn,k|v̂Σ|φn,k〉 = 〈φn,k|v̂|φn,k〉 (3.41)

It is important to note that, unlike for the linear case, implementing the scissor operator to higher
order is not as straightforward as to swap every Kohn-Sham energies by their scissored counterparts
and requires a lengthy analytical calculation that will be explained later on.

3.3 Longitudinal fields

In general, an electric field E is composed of a longitudinal and transverse component. Longitudinal
and transverse fields propagate respectively along and perpendicular to the direction of the wave
vector k. Photons are described by a transverse field, illustrated in figure 3.2, while longitudinal fields
can represent electrons in plasmon oscillations. Therefore, for optical response, both the incoming and
outgoing fields should be transverse, which then corresponds, for the linear case, to the transverse-
transverse component of the macroscopic dielectric tensor εTT .(

DL

DT

)
=

(
εLLM εLTM
εTLM εTTM

)(
EL

ET

)
(3.42)

Although a transverse field could also in principle create a longitudinal field, corresponding to the
transverse-longitudinal component εTL, this is not the one we are interested in when looking at the
optical response. Yet TDDFT is a theory that can only gives us access to the longitudinal-longitudinal
part of the dielectric function εLL. The transverse part could be calculated through the current density
j obtained from TDCDFT (Time-Dependent Current-Density-Functional Theory), which is far less
developed than TDDFT.
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E

B k

Figure 3.2: Scheme of an electromagnetic wave

3.3.1 Optical limit

The incident light used for the measurement and theoretical calculation of the optical response usually
corresponds to visible or UV light with a wavelength of about λ ∼ 103Å, while the typical size of the
lattice parameter is of the order of 1Å. Since the wavelength of the light is large in comparison to the
unit cell, it means that the field is almost constant over the cell. Therefore an approximation can be
made that λ → ∞, which is called the long-wavelength limit. For periodic crystals, the momentum
vector k is defined as k = q + G, where q is a vector of the first Brillouin zone and G is a reciprocal
lattice vector. For an electromagnetic radiation, the wave vector q, that indicates the direction of the
light propagation, is related to the wavelength and the frequency ω by the relation

q =
2πn

λ
=
nω

c
, (3.43)

where n is the refractive index of the medium. The long-wavelength limit, also referred as the optical
limit, is then equivalent to say that q → 0. In that limit, the fields do not propagate anymore, which
means that the transverse and longitudinal direction determined by q are no longer distinguishable.
However the electric field still keeps a direction, which is the only meaningful one. Since, the dielectric
tensor can be calculated in any basis, by choosing different q, one could compute the entire dielectric
tensor from a longitudinal response [1]. This means that TDDFT can be used to compute the different
susceptibilities, assuming we are in the optical limit. Working in the framework of TDDFT means that
we need to evaluate density response functions χ(1)

ρρ , χ(2)
ρρρ, χ(3)

ρρρρ, while in TDCDFT one would need
to consider current response functions χ(1)

jj , χ(2)
jjj , χ(3)

jjj . The full current response functions cannot
be obtained with TDDFT since the charge conservation law only relates the charge density to the
longitudinal part of the current,

q χjj(q,q, ω) q = −χρρ(q,q, ω). (3.44)

3.4 Macroscopic response

In the previous section 3.1.3, microscopic response functions were introduced. But the quantities that
can be compared with experiments are macroscopic. Making the link between the two requires to
average the microscopic quantities over a large distance. They can be different due to fluctuations
on a microscopic scale. However, in the independent-particle approximation, used in this thesis and
introduced in section 2.4.4, they only differ by a factor that depends on the symmetry. Nonetheless it
is important to talk about it to determine those coefficients for the different symmetries.

So far, the induced current, related to the microscopic polarization by equation (3.21), was ex-
pressed in terms of the perturbing field. We now want to express the macroscopic polarization in
terms of the total field. For that, we need to find the link between the perturbing field and the to-
tal field. The perturbing field created by the incident light is defined from the external field Eext,
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3.4. MACROSCOPIC RESPONSE

following the formalism of Del Sole et al. [32], as

EP = Eext + Ei,T = E−Ei,L (3.45)

where E and Ei are the total and induced field and the subscripts T and L stands for transverse
and longitudinal. In that definition, the external and perturbing field are not the same since the
induced transverse field Ei,T , coming from the retarded electron interaction, is not accounted for in
the unperturbed Hamiltonian H0 and therefore must be included in the perturbation.

From Maxwell equation, we get the relation between the perturbing and total field in the reciprocal
space,

EPG(q, ω) = EG(q, ω) + 4π q̂ + G PL(q, ω), (3.46)

where q̂ + G is the direction of the momentum: q̂ + G = (q+G)/|q+G|. In practice, the macroscopic
average in reciprocal space consists of putting G = 0. After some analytical calculation that will not
be detailed here but is explained in Ref. [9], we obtain the following relations when considering a
longitudinal field, 

EP0 (q, ω) = εLLM (q, ω) E0(q, ω)

P
(2)
M (q, ω) = εLLM (q, ω) P

(2)
0 (q, ω)

P
(3)
M (q, ω) = εLLM (q, ω) P

(3)
0 (q, ω)

(3.47)

with the longitudinal dielectric function expressed as

εLLM (q, ω) =
1

1− 4πα̃
(1),LL
0,0 (q,q, ω)

(3.48)

and α̃
(1),LL
0,0 corresponds to the macroscopic component of the quasipolarizability defined in the re-

ciprocal space as
P

(1)
G (q, ω) =

∑
G1

α̃
(1)
G,G1

(q,q, ω) EPG1
(q, ω) (3.49)

3.4.1 Components

The second-order microscopic polarization is expressed as

P
(2)
0 (q, ω) =

∑
q1

δq−q1−q2

∫
dω1 δ(ω − ω1 − ω2) α̃

(2)
0,0,0(q,q1,q2, ω1, ω2) EP (q1, ω1) EP (q2, ω2) (3.50)

Using equation (3.47), we can recast equation (3.50) to display the macroscopic polarization in terms
of the total field, which is otherwise defined as

P
(2),L
M (q, ω) =

∑
q1

δq−q1−q2

∫
dω1 δ(ω − ω1 − ω2) q̂

↔
χ

(2)
(ω1, ω2) q̂1E1(ω1) q̂2E2(ω2), (3.51)

where χ(2) is the macroscopic second order susceptibility. Using the following relation,

q̂ α̃
(2)
0,0,0(q,q1,q2, ω1, ω2) q̂1q̂2 = − i

2
χρρρ(q̂, q̂1, q̂2, ω1, ω2), (3.52)

we can establish the link between χ(2) and the fully-interacting density response function χρρρ,

q̂
↔
χ

(2)
(ω1, ω2) q̂1 q̂2 = − i

2
εLLM (q̂, ω) χρρρ(q̂, q̂1, q̂2, ω1, ω2) εLLM (q̂1, ω1) εLLM (q̂2, ω2) (3.53)
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Using the second-order Dyson-like equation, within IPA, the εLLM functions are compensated, leaving
only

q̂
↔
χ

(2)
(ω1, ω2) q̂1 q̂2 = − i

2
χ

(2)
0 (q̂, q̂1, q̂2, ω1, ω2) (3.54)

where χ(2)
0 is the IPA response function and q = q1 + q2. From there, one can evaluate the suscepti-

bility of any symmetry. For instance, if we consider an hexagonal symmetry (6mm), the polarization
is

P
(2),L
M (q, ω) = q̂

 χ
(2)
xxz(ω1, ω2) q̂1x q̂2z + χ

(2)
xzx(ω1, ω2) q̂1z q̂2x

χ
(2)
yyz(ω1, ω2) q̂1y q̂2z + χ

(2)
yzy(ω1, ω2) q̂1z q̂2y

χ
(2)
zxx(ω1, ω2) q̂1x q̂2x + χ

(2)
zyy(ω1, ω2) q̂1y q̂2y + χ

(2)
zzz(ω1, ω2) q̂1z q̂2z

E1(ω1)E2(ω2)

(3.55)

Depending on the value of q1 and q2, we can access any components. For example, by choosing
q1 = x̂ and q2 = ẑ, we would get

χ(2)
xxz(ω, 0) = − i√

2
χ

(2)
0 (

x̂ + ẑ√
2
, x̂, ẑ, ω, 0), (3.56)

which is true since χ(2)
zxz is zero in this symmetry.

Similar equations to (3.50) and (3.51) can be written for the third-order response. We then define
the third-order quasipolarizability in terms of the density response function χρρρρ as

q̂ α̃
(3)
0,0,0,0(q,q1,q2,q3, ω1, ω2, ω3) q̂1q̂2q̂3 =

1

6
χρρρρ(q̂, q̂1, q̂2, q̂3, ω1, ω2, ω3), (3.57)

which gives us the relation between the third-order susceptibility and the microscopic IPA response
function,

q̂
↔
χ

(3)
(ω1, ω2, ω3) q̂1 q̂2 q̂3 =

1

6
χ

(3)
0 (q̂, q̂1, q̂2, q̂3, ω1, ω2, ω3). (3.58)

For the cubic, hexagonal and tetragonal symmetries, the only non-vanishing componentsχ(3)
ijkl(ω1, ω2, ω3)

are of the type: (i = j = k = l), (i = j, k = l), (i = k, j = l), (i = l, j = k).

P
(3),L
M (q, ω) = q̂

 χ
(3)
xxxx q̂1x q̂2x q̂3x + χ

(3)
xxyy q̂1x q̂2y q̂3y + χ

(3)
xzxz q̂1z q̂2x q̂3z + . . .

χ
(3)
yyyy q̂1y q̂2y q̂3y + χ

(3)
yyzz q̂1y q̂2z q̂3z + χ

(3)
yxyx q̂1x q̂2y q̂3x + . . .

χ
(3)
zzzz q̂1z q̂2z q̂3z + χ

(3)
zzxx q̂1z q̂2x q̂3x + χ

(3)
zyzy q̂1y q̂2z q̂3y + . . .

E1(ω1)E2(ω2)E3(ω3)

(3.59)
This gives two different cases:

(a) if all subscripts ijkl are the same. For instance, we set q1 = q2 = q3 = ẑ

χ(3)
zzzz =

1

6
χ

(3)
0 (ẑ, ẑ, ẑ, ẑ, ω, ω, 0) (3.60)

(b) if the subscripts are equal two by two. For example, we choose q1 = q3 = x̂ and q2 = ŷ

χ(3)
yxyx =

√
5

6
χ

(3)
0 (

2x̂ + ŷ√
5

, x̂, ŷ, x̂, ω, ω, 0) (3.61)
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Chapter 4

Microscopic response: IPA calculations

The simplest level of approximation for the calculation of the susceptibility χ(n) is the independent
particle approximation (IPA) where both the local field and excitonic effects are neglected and only
the Kohn-Sham response is present. Despite its simplicity, IPA actually captures the main effect in the
spectrum and can be a rather good approximation. Indeed, it is known to work quite well for the bulk
response, since, for a large class of materials, the effect of the local fields is proven to be negligible,
regarding both the linear and SHG computation. However this effect is rather large when looking at
the surface response, which will not be the case here.

4.1 Polarized ground-state

The goal of this thesis was to calculate optical responses of materials under a static field. To evaluate
such a response, two feasible ways emerged. Since a dc-field is a static perturbation with no time
dependence, it should be possible to take it into account at the ground-state level and then calculate
the response function of the (n − 1)-order of the one desired. For instance, one could calculate the
first order response function χ̃(1)(ω) of a polarized medium to obtained the linear electro-optic effect
instead of having to calculate the second order susceptibility χ(2)(ω, 0) of an unpolarized medium.
The quantity then calculated would contained all the orders in terms of the static field E since it will
not be treated as a perturbation.

χ̃(1)(ω) = χ(1)(−ω;ω) + χ(2)(−ω;ω, 0)E + χ(3)(−ω;ω, 0, 0)EE + . . . (4.1)

Apart for the first term in the expansion, the response of the system depends on the dc-field. For a
reasonable value of the static field, the dominating term is the unpolarized first order susceptibility
χ(1)(ω), meaning that the accuracy on the remaining term of the expansion, much smaller, may not
be as good.

It poses the problem of applying a static field on a periodic system, given that the scalar potential
associated with the dc-field, V (r) = −eE·r, is non-periodic, due to the position operator r̂. Furthermore,
the matrix elements of r̂ are ill-defined with Bloch functions, that are commonly used for periodic
systems. Moreover, the potential is also unbound from below, meaning that the energy of the system
could always be lowered by Zener tunneling, illustrated in Figure 4.1, which corresponds to a charge
transfer from the valence to the conduction bands at different momentums. It is rendered possible due
to the tilting of the bands by the dc-field, shown in Figure 4.1. As a consequence, an infinite system
submitted to a static field has no ground state. The importance of this Zener tunneling is linked to
the strength of the static field. Therefore, if the field is small enough, this tunneling is negligible on
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Figure 4.1: Zener tunneling: charge transfer from the valence to the conduction band.

the relevant time scale and the system remains in a polarized long-lived resonant state that retains its
periodicity.

The problem of calculating the ground-state can then be solved for field-polarized Bloch functions
by minimizing the energy functional, introduced in Ref. [33],

E[{u(E)
n,k};E] = E(0)[{u(E)

n,k}]− ΩE ·P[{u(E)
n,k}], (4.2)

where E(0) is the Kohn-Sham energy of the system, Ω the unit-cell volume and P is the macroscopic
polarization defined using the Modern Theory of Polarization (MTP) [34;35].

In the MTP, the total change in polarization per unit volume, induced by an adiabatic change in
the potential, represented by the parameter λ, is defined as

∆P =

∫ λ2

λ1

∂P

∂λ
dλ = P(λ2) −P(λ1), (4.3)

with the polarization P(λ) given as a sum over the occupied bands of Berry phases,

P(λ) = − ie

8π3

∑
n

∫
dk fn,k

〈
u

(λ)
n,k

∣∣∣∣ ∂∂k
∣∣∣∣u(λ)
n,k

〉
, (4.4)

where fn,k is the occupation number. Here the parameter λ is the dc-electric field E . Thus both
the KS energy and the polarization depends only on the occupied bands of the system. It means
that minimizing the functional in equation (4.2) gives us access to the occupied field-polarized Bloch
functions, which was already implemented in the DFT code ABINIT [36]. And the derivative of this
functional with respect to the electric field can then provide static susceptibilities, also implemented
in ABINIT.

Now, to go beyond the static response, one needs to determine the polarized-conduction bands as
well, meaning that we have to diagonalized the Hamiltonian

H[ρ(E)] = H(0)[ρ(E)] +H int[ρ(E)]. (4.5)

where H(0) is the usual KS Hamiltonian but calculated for the polarized density and H int contains
the interaction with the static field and corresponds to the scalar potential V (r). The challenge, here,
is then to determine this Hamiltonian H int. In the rest of this section, I will present the two main
attempts of finding a valid representation ofH int for Bloch functions. Although this way of calculating
electro-optic responses was not successful in the end, I still present here the main difficulties I have
faced.
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4.1.1 Velocity operator

For convenience, the Hamiltonian (4.5) is written in the basis of the non-polarized wavefunctions, for
which H(0) is diagonal. Since the position operator r̂ is ill-defined in periodic systems, we need to
find a new way to write it:

〈
φm,k′

∣∣r̂∣∣φn,k〉 =

〈
φm,k′

∣∣[H, r̂]
∣∣φn,k〉

Em,k′ − En,k
= −i

〈
φm,k′

∣∣v̂∣∣φn,k〉
Em,k′ − En,k

, (4.6)

with the matrix elements set to zero when En,k = Em,k′ . In principle, one could think about using
the velocity to represent the position operator as it is done for the calculation of optical response.
However, in that case, a few issues arise.

During the diagonalization of the Hamiltonian, the eigenvalues are uniquely determined while the
eigenstates depends on a phase which is randomly assigned:

∣∣ũn,k〉 =
∣∣un,k〉eiαn,k . In the calculation

of optical responses, this phase is canceled with the others matrix elements 〈φn,k|v̂|φm,k〉 〈φm,k|v̂|φn,k〉.
Looking at each individually, they may seem ill-defined, due to the discontinuity in their values oc-
curring around degeneracies, as shown in Figure 4.2 around X for the bands 1 and 2 of silicon where
the energies are equal. The full bandstructure was plotted in Figure 2.2. However it can be simply

L Γ X Γ
0

4
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12
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er

gy
(e

V
)

|〈φ1,k|v̂|φ2,k〉|
|E2,k − E1,k|

Figure 4.2: Plot of the matrix elements of the velocity operator (in blue) and the energy difference (in
red) between the band 1 and 2 of silicon.

explained by the fact that the phase is brutally changed at the degeneracy while it is slowly varying
in k-points everywhere else, since the basis is not uniquely determined at that point. We could ex-
pect this discontinuity in the phase to be a problem when solving the Hamiltonian. But actually, this
should not matter considering that these phases are random and are not suppose to have specific re-
lations between k-points. Indeed, using velocity matrix elements would lead to solve an Hamiltonian
for one k-point of the form

H =

 H11 H12e
i(α2−α1) H13e

i(α3−α1)

H21e
i(α1−α2) H22 H23e

i(α3−α2)

H31e
i(α1−α3) H32e

i(α2−α3) H33

 , (4.7)

where the phase are explicitly written and will be canceled during the diagonalization, leading to
phase-free eigenvalues. Thus, finally, contrary to what one might think, the phase of the wavefunc-
tions is not an issue here.

The problem resides in the division by the energy difference (En,k − Em,k). Indeed, around a
degeneracy, the term added to the Hamiltonian would tends to infinity and have a huge impact on the
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bandstructure by creating divergences in energy there. Even if a tolerance was added on the energy
differences, making 〈φn,k|r̂|φm,k〉 go to zero if (En,k − Em,k) was bellow the tolerance, it would only
shift the divergences that would still appear on the bandstructure and the shape would be highly
depend on the value of this tolerance (see Figure 4.3). Thus this form of the matrix elements is not
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Figure 4.3: Field-polarized bandstructure of silicon using velocity matrix elements, with a tolerance
of 2.5 · 10−2 eV on the energy difference |En,k − Em,k| and with a static field of 2.6 · 106 V.cm−1.

suitable here to replace the position operator.

4.1.2 Derivative over k: ∂/∂k

Another possibility would be to follow the idea of Ref. [33] to find the Hamiltonian H int containing
the interaction with the static field expressed for Bloch functions. The energy functional of equation
(4.2) is develop using the definition of the polarization presented in equation (4.4),

E[{u(E)
n,k};E] =

1

8π3

∫
dk
∑
n

fn,k

[〈
u

(E)
n,k

∣∣∣H(0)
k

∣∣∣u(E)
n,k

〉
+

〈
u

(E)
n,k

∣∣∣∣ieE ∂

∂k

∣∣∣∣u(E)
n,k

〉]
, (4.8)

which corresponds to the expectation value of the following operator:

Hk = H
(0)
k + ieE ∂

∂k
, (4.9)

where Hk is the Hamiltonian of the periodic part of the Bloch functions un,k, defined by the relation
on the eigenvalues,En,k = 〈φn,k|H|φn,k〉 = 〈un,k|Hk|un,k〉. Furthermore, we know from Ref. [13] that
the position operator can then be written as〈

φm,k′
∣∣r̂∣∣φn,k〉 = δ(k′ − k)

〈
um,k

∣∣∣∣i ∂∂k
∣∣∣∣un,k〉+ δnm i

∂

∂k
δ(k′ − k) (4.10)

This relation is easily obtained for (m 6= n) and (k = k′) through the velocity operator

〈φm,k|v̂|φn,k〉 =

〈
um,k

∣∣∣∣[ ∂∂k , Hk

]∣∣∣∣un,k〉 = − (Em,k − En,k)

〈
um,k

∣∣∣∣ ∂∂k
∣∣∣∣un,k〉 (4.11)

But in that case the random phase, mentioned before, may be an issue due to the derivative over k:〈
ũp,k

∣∣∣∣i ∂∂k
∣∣∣∣ũn,k〉 =

[〈
up,k

∣∣∣∣i ∂∂k
∣∣∣∣un,k〉− δpn∂αn,k∂k

]
ei(αn,k−αp,k), (4.12)

Indeed, the phase is here a problem for the diagonal part of the matrix elements, that were set to
zero as a first approximation when using the velocity operator instead in the previous section. It is
illustrated on a simple model.
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Hubbard model

We use the same model as the one introduced in Ref. [33], which is a simple 1D two-site periodic
model, displayed in Figure 4.4. The on-site terms are −∆/2 and ∆/2 for the site 1 and 2 respectively,

Figure 4.4: Sketch of the Hubbard model.

and the hopping between sites is characterized by the hopping integral t. The k-points sample the
first Brillouin zone, between −π/a and π/a, where a is the unit-cell period. To simplify the problem,
we choose to have ∆ and a equal to 1. This gives us the following Hamiltonian

H
(0)
k =

(
−1

2 2t cos(k2 )

2t cos(k2 ) 1
2

)
(4.13)

The energy eigenvalues, obtained by diagonalization of this Hamiltonian (4.13) are given by

E
(0)
v,k = −1

2

[
1 + 16 t2 cos2(

k

2
)

]1/2

, E
(0)
c,k = −E(0)

v,k (4.14)

and the corresponding eigenstates are∣∣∣u(0)
v,k

〉
=

(
cos Θk

sin Θk

)
eiαvk ,

∣∣∣u(0)
c,k

〉
=

(
sin Θk

− cos Θk

)
eiαck (4.15)

with 

cos Θk =
2t cos(k2 )[(

2t cos(k2 )
)2

+
(

1
2 + E

(0)
v,k

)2
] 1

2

=
2t cos(k2 )[

E
(0)
v,k

(
2E

(0)
v,k + 1

)] 1
2

sin Θk =
1
2 + E

(0)
v,k[(

2t cos(k2 )
)2

+
(

1
2 + E

(0)
v,k

)2
] 1

2

=
1
2 + E

(0)
v,k[

E
(0)
v,k

(
2E

(0)
v,k + 1

)] 1
2

(4.16)

eiαnk is the random phase associated to the eigenstates
∣∣un,k〉 during the diagonalization of the Hamil-

tonian.
We now add the static field on the system

Hk = H
(0)
k +H int

k = H
(0)
k + ie E

∂

∂k
, (4.17)

and write this Hamiltonian in a basis for which H(0)
k is diagonal,

Hk =

(
E

(0)
v,k − eE

∂αvk
∂k ieE∂Θk

∂k ei∆αk

−ieE∂Θk
∂k e−i∆αk −E(0)

v,k − eE
∂αck
∂k

)
(4.18)

with
∂Θk

∂k
=
t sin(k2 )

4(E
(0)
v,k)2

(4.19)
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One can notice that, in this model, the phase-free matrix elements 〈un,k|∇k|un,k〉 of equation (4.12) are
zero and only the derivative of the phase∇k eiαn,k remains for the diagonal part. After diagonalizing
this Hamiltonian, the calculated eigenvalues are

E
(E)
v,k = E

(0)
v,k − eE

∂αvk
∂k

+

[
eEt sin(k2 )

]2[
2E

(0)
v,k

]3

E
(E)
c,k = E

(0)
c,k − eE

∂αck
∂k
−
[
eEt sin(k2 )

]2[
2E

(0)
v,k

]3

(4.20)

Unlike, all the cases previously discussed, the eigenvalues here depend on the random phase of the
wavefunctions. This leads to the discontinuity shown in Figure 4.5 for k = 0. This can be avoided if
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4

k-point

En
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gy
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(0)
n,k

E
(E)
n,k

Figure 4.5: Bandstructure of the periodic two-site model with (red curve) and without (green curve)
an electrostatic field. Parameters: t = 2, E = 0.5, αvk = αck = arcsin(cos(k/2)).

the derivative over k is done on a phase-free quantity such as ∂
∂k

(∣∣um,k〉 〈um,k|) as suggested in Ref.
[33]. It can be done easily for the matrix elements between two different bands,〈

uc,k

∣∣∣∣ ∂∂k
∣∣∣∣uv,k〉 =

〈
uc,k

∣∣∣∣( ∂

∂k
|uv,k〉 〈uv,k|

)∣∣∣∣uv,k〉〈
uv,k

∣∣∣∣ ∂∂k
∣∣∣∣uc,k〉 =

〈
uv,k

∣∣∣∣( ∂

∂k
|uc,k〉 〈uc,k|

)∣∣∣∣uc,k〉 , (4.21)

that do not pose any problem here but might when writing the derivative over k as a finite-difference
expansion:

∂

∂k

∣∣un,k〉 =
1

2∆k

(∣∣un,k+

〉
−
∣∣un,k−〉) , (4.22)

with ∆k = k+ − k = k − k−. But, as for in any gauge, the diagonal matrix elements are ill-defined
and cannot be recast in such a way.

In a first approximation, the problematic diagonal part of H int was set to zero, which seems like
a good approximation for this model considering that the phase-free part of the diagonal elements
is zero. However, when applied on real materials, the calculation appeared to be wrong since some
components which were supposed to be zero due to the symmetry were not: the quantity χ̃(1)−χ(1) of
equation (4.1) should be quadratic with the dc-field for bulk silicon, since χ(2) is zero for this material
and the dominating term is χ(3), and it should be linear for silicon carbide, for which the leading term
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is χ(2). However, in the end, both showed a linear dependence with the static field, which would
indicate that the calculation was erroneous. Moreover, the relations between the components of the
χ(2) tensor for SiC were not respected either.

It is important to note, even if it was not used in this thesis, that different papers treated the issue
of the k derivation [37;38], and could potentially offer insights on understanding the problem in our
calculation. However at this point, it was decided that we should follow a different route and directly
calculate a χ(2) and χ(3) for LEO and EFISH, respectively.

4.2 From an unpolarized ground-state

In this section, the static field is considered as the limit of the time-dependent field,

E = 2E(0) = lim
ω→0

E(ω), (4.23)

and is treated at the same level as the optical field.
In the framework of TDDFT, where the perturbation is described by a scalar potential, what we are

interested in is the calculation of density response functions: χρρ, χρρρ, and χρρρρ, respectively for the
first-, second- and third-order susceptibilities. There are two different ways to evaluate those quanti-
ties. It can be obtained directly from the charge density ρ or one could use the charge conservation
law to get it through the current density j. Either one of those calculations brings many challenges.

Indeed, if choosing the charge density path, taking the long-wavelength limit will require the use
of the k·p perturbation theory in order to evaluate this kind of matrix elements:

〈
φn,k

∣∣e−iqr∣∣φm,k+q

〉
,

for which the analytical calculation can be quite lengthy. However, this kind of terms could also
be evaluated by taking a very small and finite q, representing then the difference between k-points,
q = k − k′, usually from two different grids with one slightly shifted compared to the other. This
works quite well for the first order but is much more complicated for the second order and require
high numerical accuracy beyond single machine precision. Regarding the first order response, the
expression contains the product of two matrix elements that should be proportional to q2, while for
the second order, it contains the product of three matrix elements that should be proportional to
q3 (assuming q1 = q2). For this to be true means that all previous order in q are zero. This exact
cancellation, occurring when using the k ·p theory, then needs to be reached numerically, meaning
that the chosen grids should explicitly contain all the symmetry or they should directly be included
in the formula.

On the other hand, if one were to choose to go through the calculation of the current density, the
treatment of the long-wavelength limit response would be quite straightforward, but after using the
charge conservation law,

− iω ρind(q, ω) + iq jind(q, ω) = 0, (4.24)

here written in the reciprocal space, the expression will show an apparent divergence in ω that one
must get rid of before performing actual calculations.

Depending on the process, we followed either both routes to check the validity of the analytical
calculation or just one when it became too complicated.

4.2.1 Linear Electro-Optic effect

For the LEO calculation, both paths were followed resulting in the same analytical formula. The
LEO calculation from the current density is described in appendix C. Here, I will only discuss the
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calculation using the second-order charge density,

ρ(2)(r, ω) =
1

2

∫
dr1 dr2

∫
dω1 dω2 δ(ω − ω1 − ω2) χρρρ(r, r1, r2, ω1, ω2)ϕP (ω1, r1) ϕP (r2, ω2) (4.25)

where ϕP is the scalar potential of the perturbation introduced in section 3.1.3. Using perturbation
theory, we obtain the non-interacting response function in the reciprocal space:

χρρρ(q,q1,q2, ω1, ω2) =
1

V

∑
n,m,p

∑
k

〈
φn,k

∣∣e−iqr∣∣φm,k+q

〉
En,k − Em,k+q + ω1 + ω2 + 2iη

〈
φm,k+q

∣∣eiq1r1
∣∣φp,k+q2

〉
×
〈
φp,k+q2

∣∣eiq2r2
∣∣φn,k〉( fn,k − fp,k+q2

En,k − Ep,k+q2 + ω2 + iη
+

fm,k+q − fp,k+q2

Ep,k+q2 − Em,k+q + ω1 + iη

)
+
(
(q1, ω1)↔ (q2, ω2)

)
(4.26)

with q = q1 + q2. This relation contains a symmetric term so that it is written as χ(2)
ijk(−ω;ω1, ω2) +

χ
(2)
ikj(−ω;ω2, ω1). Both terms need to be present to account for the fact that we don’t know which

electric field was applied first. In the case of SHG, these two terms are equals. The variable η acts as
a broadening but also determines the intensity of the spectrum near a resonance. It should have no
effect however in the gap region – at low frequency.

Since we only work with cold semiconductors, we can neglect the momentum dependence in the
occupation factor: fm,k+q → fm. In the optical limit, q tends to zero, so we can do an expansion in
terms of q for the matrix elements and for the energy denominators using k·p perturbation theory〈

φn,k
∣∣e−iqr∣∣φm,k+q

〉
= 〈φn,k|φm,k〉+

〈
φn,k

∣∣∣q φ(1)
m,k

〉
+
〈
φn,k

∣∣∣q2φ
(2)
m,k

〉
1

En,k − Em,k+q
=

1

En,k − Em,k
+

qE
(1)
m,k

(En,k − Em,k)2

(4.27)

Performing the above expansion around q = 0 to the first non-vanishing order is known as the dipole
approximation. The first and second order Hamiltonian in terms of q are obtained by replacing k by
k + q in the expression of the band energies:

En,k+q = 〈φn,k+q|H|φn,k+q〉 = 〈un,k+q|Hk+q|un,k+q〉 (4.28)

where the Hamiltonian is H = p2/2 + Vnl with a nonlocal potential due to the pseudopotential as
discussed in section 3.2.1 and un,k is the periodic part of the Bloch function defined in equation (2.15).
We take the limit q→ 0 to the second order for the term e−i(k+q)r Vnl e

i(k+q)r and obtain

Hk+q =
1

2
k2 + k · q +

1

2
q2 − ik∇− iq∇− 1

2
∇2 + e−ikr Vnl e

ikr +
[
e−ikr Vnl e

ikr, iqr
]

− 1

2
e−ikr Vnl e

ikr (qr)2 + qr e−ikr Vnl e
ikr qr− 1

2
(qr)2 e−ikr Vnl e

ikr (4.29)

which gives us H1 = qv̂ and H2 = − [iqr̂,qv̂] /2. We then use perturbation theory to obtain the first
and second order in the wavefunction expansion [1]:∣∣qφ(1)

n,k

〉
=
∑
m/∈Dn

〈φm,k|qv̂|φn,k〉
En,k − Em,k

∣∣φm,k〉 (4.30)

∣∣q2φ
(2)
n,k

〉
=
∑
m/∈Dn

∑
p/∈Dn

〈φm,k|qv̂|φp,k〉 〈φp,k|qv̂|φn,k〉
(En,k − Ep,k)(En,k − Em,k)

∣∣φm,k〉− 1

2

∑
m/∈Dn

〈φm,k|[iqr̂,qv̂]|φn,k〉
En,k − Em,k

∣∣φm,k〉
− 〈φn,k|qv̂|φn,k〉

∑
m/∈Dn

〈φm,k|qv̂|φn,k〉
(En,k − Em,k)2

∣∣φm,k〉− 1

2

∑
m/∈Dn

|〈φm,k|qv̂|φn,k〉|2

(En,k − Em,k)2

∣∣φn,k〉, (4.31)
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where Dn is the degenerate subspace with
∣∣φn,k〉. While it was shown that the commutator [ir̂, V̂nl],

appearing in the definition of the velocity, can have a significant role in the description of optical
responses [39;40], this is not the case for the double commutator [iqr̂, [iqr̂, V̂nl]], introduced in the sec-
ond term of equation (4.31), which is very small with no visible impact on the spectrum [41] and will
therefore be neglected in the following calculation.

In the two-band contribution, the terms containing a square or cube to the energy denominator
(En,k −Em,k + ω + iη) can be more difficult to converge in terms of k-points and are therefore recast
using the relation

−∆nm,k(q)

(En,k − Em,k + ω + iη)2
= q

∂

∂k

1

(En,k − Em,k + ω + iη)
, (4.32)

with ∆nm,k(q) = 〈φn,k|qv̂|φn,k〉 − 〈φm,k|qv̂|φm,k〉, as a sum of three- and two-band terms.
As mentioned in section 3.4, the electric field is longitudinal meaning that its direction is along q,

therefore one can write E(q) = q̂E(q). In the dipole approximation, the momentum q tends to zero,
therefore its norm should be very small but its actual value is not relevant to the calculation, only its
direction is important to determine the one of the electric field and consequently which components
of the χ(2) tensor will be calculated, as shown is section 3.4.1. After a lengthy calculation, detailed in
appendix B, we obtain the final term for the IPA density-response function:

χ
(2)
0 (q̂, q̂1, q̂2, ω, 0) =

1

V

∑
k

∑
n,m,p

σn,m,p r̂nm,k(q̂)
[
r̂mp,k(q̂1) r̂pn,k(q̂2)

(
− fnp

(Enm,k + ω̃)Enp,k

− fmp
(Enm,k + ω̃)(Epm,k + ω̃)

+
1

2

fnm Enp,k
(Enm,k + ω̃)(Enm,k)2

− 1

2

fnm Epm,k
(Enm,k + ω̃)2Enm,k

+
1

2

fmp Enp,k
(Epm,k + ω̃)(Epm,k)2

+
1

2

fmp Enm,k
(Epm,k + ω̃)2Epm,k

+
1

2

fnp (Epm,k + Enm,k)

(Enp,k + ω̃)(Enp,k)2

)
+ r̂pn,k(q̂1) r̂mp,k(q̂2)

(
− fnp

(Enm,k + ω̃)(Enp,k + ω̃)
− fmp

(Enm,k + ω̃)Epm,k

+
1

2

fnp Epm,k
(Enp,k + ω̃)(Enp,k)2

− 1

2

fnm Epm,k
(Enm,k + ω̃)(Enm,k)2

+
1

2

fnm Enp,k
(Enm,k + ω̃)2Enm,k

+
1

2

fnp Enm,k
(Enp,k + ω̃)2Enp,k

+
1

2

fmp (Enp,k + Enm,k)

(Epm,k + ω̃)(Epm,k)2

)]
(4.33)

with σn,m,p = 1 if n, m and p are all different and σn,m,p = 0 otherwise and using the short notation

fnm = fn − fm, Enm,k = En,k − Em,k, ω̃ = ω + iη

r̂nm,k(q̂) = 〈φn,k|iq̂r̂|φm,k〉 , v̂nm,k(q̂) = 〈φn,k|q̂v̂|φm,k〉
(4.34)

to shorten the formula. The different terms are colored depending on the kind of denominators they
have. The red terms corresponds to interband contributions as defined in Ref. [42], while the rest
corresponds to intraband transitions. The matrix elements of the position operator r̂ are calculated as
matrix elements of the velocity operator v̂ and are defined as

〈φn,k|ir̂|φm,k〉 =


〈φm,k|v̂|φm,k〉
En,k − Em,k

if En,k 6= Em,k

0 if En,k = Em,k

(4.35)

It is interesting to note that in the LEO case, after modifying the problematic terms following
equation (4.32), there is no two-band contribution left, unlike what could be observed for the second
harmonic. The LEO and SHG formula are different and, while it is not so easy to prove analytically,
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Figure 4.6: Comparison between second-order optical responses in 3C-SiC below the band gap:
module of the xyz component of the LEO tensor χ(2)

xyz(−ω;ω, 0) (red line) and SHG susceptibility
χ

(2)
xyz(−2ω;ω, ω) (green line).

it appears obvious that the two should yield the same result for ω = 0 (see equation (1.3)), which was
confirmed computationally, as shown in figure 4.6. The SHG curve rises at lower frequency that LEO,
which is expected since the resonance starts at half the gap for SHG.

Scissor operator

The scissor operator introduced in section 3.2.2 accounts for the screening of particles inside mate-
rials and is a correction to the IPA response. The matrix elements of the position operator r̂ remain
unchanged when applying a scissor:

〈φn,k|ir̂|φm,k〉 =

〈
φn,k

∣∣v̂Σ
∣∣φm,k〉

EΣ
n,k − EΣ

m,k

=
〈φn,k|v̂|φm,k〉
En,k − Em,k

(4.36)

For the linear optical response, introducing a scissor operator is quite straightforward, since it amounts
to simply replacing the KS energies in the denominator by scissored energies,

χρρ(q,q, ω) = − 1

V

∑
k

∑
n,m

(fn,k − fm,k)
〈φn,k|iqr̂|φm,k〉 〈φm,k|iqr̂|φn,k〉

EΣ
n,k − EΣ

m,k + ω + iη
. (4.37)

As a consequence, the peaks generated on the linear spectrum are simply shifted to higher energy,
as illustrated in Figure 4.7 (first row). For second-order responses, however, it is not as straightfor-
ward [43], since more matrix elements are involved leading to larger consequences on the final spec-
trum. For instance, regarding the second harmonic response, applying a scissor introduce a shift to
higher energy as well, but also changes the weight of the peaks (see 2nd row of Figure 4.7). In prac-
tice, regarding the analytical calculation, the difference only arises in terms containing the commuta-
tor
[
ir̂, v̂Σ

]
that appear in the second-order wavefunction correction

∣∣φ(2)
n,k

〉
and when modifying the

two-band term using equation (4.32). The calculation is detailed in appendix B.3. As a consequence,
the final two-band contribution is no longer zero when a scissor is applied,

χ
(2),2bnd
0 (q̂, q̂1, q̂2, ω, 0) =

1

V

∑
k

∑
n,m

fnm

(EΣ
nm,k + ω̃)

[
∆nm,k(q̂1) r̂nm,k(q̂2) r̂mn,k(q̂)

+ ∆nm,k(q̂) r̂nm,k(q̂2) r̂mn,k(q̂1)
]( 1

(EΣ
nm,k)2

+
1

EΣ
nm,k Enm,k

− 2

(Enm,k)2

)
, (4.38)
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using the short notation of equation (4.34). And the three-band term becomes

χ
(2),3bnd
0 (q̂, q̂1, q̂2, ω, 0) =

1

V

∑
k

∑
n,m,p

{
r̂nm,k(q̂) r̂mp,k(q̂1) r̂pn,k(q̂2)

[
− fnp

(EΣ
nm,k + ω̃)EΣ

np,k

− fmp

(EΣ
nm,k + ω̃)(EΣ

pm,k + ω̃)
− 1

2

fnmEpm,k

(EΣ
nm,k + ω̃)2Enm,k

+
1

2

fmpEnm,k

(EΣ
pm,k + ω̃)2Epm,k

+
fmpEnp,k

(EΣ
pm,k + ω̃)Epm,k

(
1

EΣ
pm,k

− 1

2Epm,k

)
+

fnmEnp,k

(EΣ
nm,k + ω̃)Enm,k

(
1

EΣ
nm,k

− 1

2Enm,k

)

+
1

2

fnp(Epm,k + Enm,k)

(EΣ
np,k + ω̃)(Enp,k)2

]

+ r̂nm,k(q̂) r̂mp,k(q̂2) r̂pn,k(q̂1)

[
− fnp

(EΣ
nm,k + ω̃)(EΣ

np,k + ω̃)
− fmp

(EΣ
nm,k + ω̃)EΣ

pm,k

+
1

2

fnmEnp,k

(EΣ
nm,k + ω̃)2Enm,k

+
1

2

fnpEnm,k

(EΣ
np,k + ω̃)2Enp,k

+
fnpEpm,k

(EΣ
np,k + ω̃)Enp,k

(
1

EΣ
np,k

− 1

2Enp,k

)

−
fnmEpm,k

(EΣ
nm,k + ω̃)Enm,k

(
1

EΣ
nm,k

− 1

2Enm,k

)
+

1

2

fmp(Enp,k + Enm,k)

(EΣ
pm,k + ω̃)(Epm,k)2

]}
, (4.39)

following the same color code as in equation (4.33). If the scissor operator is zero (∆ = 0 in equa-
tion (3.37)), scissored and unscissored energies become equal and this expression returns to equation
(4.33).

The effect of the scissor on different susceptibilities is shown in Figure 4.7. For the first order, this
effect corresponds to a shift of the spectrum towards higher energies, while for the second harmonic,
the peaks are shifted but the weight repartition of each peak is also changed. This is due to the fact
that, in the SHG formula, two types of denominators appear: (Enm,k + 2ω) and (Enp,k +ω), meaning
that, for a given energy transitionEnm,k, two peaks appear, one atEnm,k and the other atEnm,k/2. By
introducing the scissor, we change the weight of those two peaks. However for LEO, there is only one
kind of denominator: (Enm,k + ω), creating only one peak. Therefore, in that case, the same weight
redistribution is not possible since there is only one kind of peak.

Nonetheless since, for LEO, all eigenvalues En,k are not simply replaced by scissored ones EΣ
n,k

like for the first order, one could still expect some change in the shape of the spectrum due to the
modification in the coefficients (cyan terms). However the effect of the scissor on the LEO plot, finally,
just corresponds to a simple rigid shift of the peaks, displayed in Figure 4.7 (3rd row), like for the first
order. And the effect of the presence of both scissored and unscissored energies is, in the end, simply
negligible.
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Figure 4.7: Effect of the scissor on the LR, SHG and LEO susceptibilities, respectively on the 1st, 2nd

and 3rd row, applied on silicon carbide, cubic (3C-SiC) on the left and hexagonal (2H-SiC) on the right.
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4.2.2 Third-order response

When regarding the calculation of the third order susceptibility, it appears, a priori, easier to go
through the current density instead of the charge density, since the calculation of the optical limit
in the charge density formula, using the k·p perturbation theory, is very long and complicated. For
the current density, however, the long-wavelength limit can be done directly and the difficulty comes
from removing the divergence in frequency in the formula. The third-order current density relates to
the quasipolarizability by the relation,

j
(3)
ind(q, ω) = −iω

∫
dω1

∫
dω2

∫
dω3 δ(ω − ω1 − ω2 − ω3)

∑
q1,q2,q3

α̃(3)(q,q1,q2,q3, ω1, ω2, ω3)

EP (q1, ω1) EP (q2, ω2) EP (q3, ω3). (4.40)

From the continuity equation (4.24), one get the relation with the density response function:

q̂ α̃(3)(q,q1,q2,q3, ω1, ω2, ω3) q̂1q̂2q̂3 =
1

6
χρρρρ(q̂, q̂1, q̂2, q̂3, ω1, ω2, ω3) (4.41)

Then using time-dependent perturbation theory, detailed in appendix D, one can get the general ex-
pression for the third-order density response function obtained from the current,

χρρρρ(q̂, q̂1, q̂2, q̂3, ω1, ω2, ω3) =
1

V

1

(ω1 + ω2 + ω3)ω1ω2ω3

∑
k

∑
n,m,p,l

〈φn,k|q̂v̂|φm,k〉
En,k − Em,k + ω1 + ω2 + ω3 + 3iη

〈φm,k|q̂1v̂|φp,k〉 〈φp,k|q̂2v̂|φl,k〉 〈φl,k|q̂3v̂|φn,k〉

×
[

1

En,k − El,k + ω3 + iη

(
fn,k − fp,k

En,k − Ep,k + ω2 + ω3 + 2iη
+

fp,k − fl,k
El,k − Ep,k + ω2 + iη

)
+

1

Ep,k − Em,k + ω1 + iη

(
fl,k − fm,k

El,k − Em,k + ω2 + ω1 + 2iη
+

fp,k − fl,k
El,k − Ep,k + ω2 + iη

)]
+
(
(q1, ω1)↔ (q2, ω2)↔ (q3, ω3)

)
, (4.42)

withq = q1+q2+q3. The double commutator [iq1r̂, [iq2r̂, V̂nl]] and triple commutator [iq1r̂, [iq2r̂, [iq3r̂, V̂nl]]]

have already been neglected in the above formula but one should consider those terms if adding a
scissor operator. The third order expression contains the permutation of the three fields that cor-
responds to six symmetric terms, displayed in Figure 4.8. Equation (4.42) presents a divergence in

Figure 4.8: All scheme representing third order processes.

(ω1 + ω2 + ω3)ω1ω2ω3, which is not always physical and should not be there for phenomena such as
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THG or EFISH, which are known to be finite when applied on semiconductors. One must then get rid
of it by writing the formula in a different way to obtain the correct spectrum at low frequency, where
this divergence occurs. In our formalism, it is not so obvious to remove the divergence in the general
case, where all frequencies are different, which is why it has be done for specific cases.

Third harmonic generation

One of the simplest case for the third order would be the third harmonic generation (THG), obtained
by setting ω1 = ω2 = ω3 in equation (4.42). The resulting expression then displays a divergence in
ω4, that occurs when ω → 0, which is taken care of by writing an expansion that follows the idea of
Ghahramani and Sipe for the second harmonic in Ref. [44],

1

Enm,k + 3ω̃

[
1

Enl,k + ω̃

(
fnp

Enp,k + 2ω̃
+

fpl
Elp,k + ω̃

)
+

1

Epm,k + ω̃

(
flm

Elm,k + 2ω̃
+

fpl
Elp,k + ω̃

)]
= A + ω̃B + ω̃2C + ω̃3F + ω̃4J(ω), (4.43)

where the terms A, B C and F must be zero to effectively remove all divergence. They are presented
in appendix E. These kinds of terms have been shown to be zero for the first and second order in
general, which is why we are confident that they should also vanish for the third order. The terms
associated with B and F are easily canceled with their symmetric terms in the permutation using
time-reversal symmetry. While the terms associated with A and C were not formally proven to be
zero, the computation of those terms indicates that they are vanishing, in the limit of the accuracy
of the numerical procedure, which will be later confirmed by the comparison between the divergent
and divergence-free formula.

This development gives us a simple formula for THG, free of any divergences, that contains all the
four-, three- and two-band terms but depends on the matrix elements of the velocity, which, unlike
those of the position operator, are modified when applying a scissor.

χ
(3)
0 (q̂, q̂1, q̂2, q̂3, ω, ω, ω) =

1

V

∑
k

∑
n,m,p,l

v̂nm,k(q̂) v̂mp,k(q̂1) v̂pl,k(q̂2) v̂ln,k(q̂3)

×
[
− 243fnm

(Enm,k − 3Enl,k)(Enm,k − 3Epm,k)(Enm,k + 3ω̃)(Enm,k)4

− fnl
3(Enm,k − 3Enl,k)(Enl,k − Elp,k)(Enl,k + ω̃)(Enl,k)4

+
64fnp

3(2Enl,k − Enp,k)(2Enm,k − 3Enp,k)(Enp,k + 2ω̃)(Enp,k)4

− fpm
3(Enm,k − 3Epm,k)(Epm,k − Elp,k)(Epm,k + ω̃)(Epm,k)4

+
64flm

3(2Epm,k − Elm,k)(2Enm,k − 3Elm,k)(Elm,k + 2ω̃)(Elm,k)4

+
fpl

3(Enl,k − Elp,k)(Epm,k − Elp,k)(Elp,k + ω̃)(Elp,k)4

]
+
(
q1 ↔ q2 ↔ q3

)
(4.44)

In their paper [13], Aversa and Sipe presented general compact formulae for the second and third
order, which appear to be free of divergence in general. While the second-order expression presents
a good agreement regarding the computation of the second harmonic, the third-order one is difficult
to use in practice due to major convergence issue. Some of the terms may be plagued by internal
divergence in the energy denominators that are not properly canceled. As a matter of fact, no actual
spectra, computed from this formula, were presented.
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The divergent and divergence-free formulae, that should be similar at high energies, are then com-
pared, in Figure 4.9 for the linear response, second and third harmonic generation, in order to check
the validity of the formula (4.44) for THG. For all orders, the divergence that was plaguing the formu-
lae so far only seems to affect the spectra in the band-gap region and perfectly reproduces the correct
spectrum at higher energies. Nonetheless this treatment was necessary to obtain the correct value
for ω = 0 to later compare with the EFISH response, since for the first and third order, the divergent
curves act in a way that makes it difficult to evaluate the value at ω = 0, while it could easily be
extrapolated for the second harmonic. This could imply that the ω-divergence has a bigger effect on
odd-order susceptibilities than it has on even-order ones. This may be explained by the fact that one
could view odd-order response as the addition of different terms, and even-order ones as a subtrac-
tion of terms, which leads to its cancellation for centrosymmetric materials. And this subtraction of
terms instead of addition would lead to a better cancellation of the effect of the divergence at ω → 0.
However to confirm this trend, one would need to look at the effect on the fourth order.
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• Linear response (LR)
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Figure 4.9: Spectra of cubic (3C-SiC) and hexagonal (2H-SiC) silicon carbide generated from the for-
mula before (green curve) and after (red curve) getting rid of the divergence in ω for LR, SHG and
THG.
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Electric Field Induced Second Harmonic

The kind of development of equation 4.43 will not remove the divergences in the general case where
all frequencies are different. In the case of EFISH, we partially loose the symmetry in frequency that
we had for THG since one of the frequencies is different from the other two: we want to set ω3 = 0

and ω1 = ω2 = ω. To do that, we first need to remove the divergence in ω3. For that we come back to
the definition of the time-dependent electric field,

E(t) = E0

(
eiωt + e−iωt

)
. (4.45)

The first term corresponds to the absorption while the second corresponds to the emission of a pho-
ton, as shown in Figure 4.10. When looking at the linear response, only the first term intervenes, since

Ground state

Excited states

Energy

Figure 4.10: Absorption and emission of a photon from the ground state.

we only look at the absorption and not the emission from the ground state, for which the probability
is zero. For the second order, when a single field is present, one would get three kinds of processes,
displayed in Figure 4.11a, where only the first one corresponds to the second harmonic. The second
one illustrates the optical rectification and the third one, while theoretically possible since only virtual
states are involved, does not corresponds to SHG, which only describes the emission of a photon at
2ω and not the absorption. However, when considering a static field, both the absorption and emis-
sion becomes equivalent and should be accounted for. Therefore, regarding LEO, there would be four
schemes, shown in Figure 4.11b, describing both the absorption and emission corresponding to the
static field and only the absorption corresponding to the optical field, and includes the permutation
of the two input fields. A similar sketch can be done for EFISH that would involve six different pro-
cesses. This effect of the static field can be expressed by writing the following relation for the response
function

lim
ω3→0

χ(3)(ω1, ω2, ω3) = lim
ω3→0

1

2

[
χ(3)(ω1, ω2, ω3) + χ(3)(ω1, ω2,−ω3)

]
, (4.46)

which gives us an expression no longer divergent in ω3. Note that it makes no difference which fre-
quency is set to zero since the expression contains all the permutations:

χ
(3)
0 (q̂, q̂1, q̂2, q̂3, ω, ω, 0) =

1

V

∑
k

∑
n,m,p,l

1

ω4
v̂nm(q̂) [v̂mp(q̂1)v̂pl(q̂2)v̂ln(q̂3) f1(ω, ω, 0)

+v̂mp(q̂3)v̂pl(q̂2)v̂ln(q̂1) f2(0, ω, ω) + v̂mp(q̂1)v̂pl(q̂3)v̂ln(q̂2) f3(ω, 0, ω)]

+
(
q1 ↔ q2

)
(4.47)

The second term f2 corresponds to the permutation (q2, ω2) ↔ (q3, ω3) and the third term f3 corre-
sponds to the permutation in the first term of (q1, ω1)↔ (q3, ω3). The first and third permutations f1
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a- b-

Figure 4.11: Scheme of optical second-order processes. Panel a shows the different second-order
phenomena corresponding to one input field at ω, while panel b describes all the LEO scheme with
δω → 0.

and f3 are symmetric in +ω/ − ω, while the second permuation f2 is symmetric with itself. We can
then set ω3 = 0 in the expression and obtain a formula that only depends on ω. However a special
treatment must be granted for the case Enl,k = 0 in f1 and Epm,k = 0 in f3, since each term contained
respectively (Enl,k +ω3) and (Epm,k +ω3) at the denominator. Indeed setting ω3 = 0 in the following
term (f1) does not pose any problem,

1

Enl,k + ω̃3

(
fnp

Enp,k + ω̃2 + ω̃3
+

fpl
Elp,k + ω̃2

)
, (4.48)

since this term is canceled when En,k = El,k. However applying equation (4.46) on it will make a
square appear for (Enp,k + ω̃2) and not for (Elp,k + ω̃2). Therefore it will no longer cancels when
En,k = El,k, creating a new divergence. To avoid that, these two cases need to be treated separately
from the rest, for which En,k = El,k is set directly in equation (4.42) before using equation (4.46).
Doing that, we obtain the following ω-divergent EFISH formula

χ
(3)
0 (q̂, q̂1, q̂2, q̂3, ω, ω, 0) =

1

V

∑
k

∑
n,m,p,l

{v̂nm,k(q̂)v̂mp,k(q̂1)v̂pl,k(q̂2)v̂ln,k(q̂3)

×
[
− σnl

2ω3(Enm,k + 2ω̃)Enl,k

(
fnp

(Enm,k + 2ω̃)(Enp,k + ω̃)
+

fnp
(Enp,k + ω̃)2

+
fnp

(Enp,k + ω̃)Enl,k

+
fpl

(Enm,k + 2ω̃)(Elp,k + ω̃)
+

fpl
(Elp,k + ω̃)Enl,k

)
− σnl

4ω4(Enm,k + 2ω̃)Enl,k

(
fnp

(Enp,k + ω̃)

+
fpl

(Elp,k + ω̃)

)
− 1

2ω3(Enm,k + 2ω̃)2(Epm,k + ω̃)

(
flm

Elm,k + 2ω̃
+

fpl
Elp,k + ω̃

)
− 1

4ω4(Enm,k + 2ω̃)(Epm,k + ω̃)

(
flm

Elm,k + 2ω̃
+

fpl
Elp,k + ω̃

)
+

δnl
2ω3(Enm,k + 2ω̃)(Enp,k + ω̃)2

(
fnp

(Enm,k + 2ω̃)
+

fnp
(Enp,k + ω̃)

)
+

δnl
4ω4

fnp
(Enm,k + 2ω̃)(Enp,k + ω̃)2

]
+ v̂nm,k(q̂) v̂mp,k(q̂1) v̂pl,k(q̂3) v̂ln,k(q̂2)

[
− 1

2ω3(Enm,k + 2ω̃)(Enl,k + ω̃)
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×

(
fnp

(Enm,k + 2ω̃)(Enp,k + ω̃)
+

fnp
(Enp,k + ω̃)2

+
fpl

(Enm,k + 2ω̃)Elp,k
+

fpl
E2
lp,k

)

− 1

4ω4(Enm,k + 2ω̃)(Enl,k + ω̃)

(
fnp

(Enp,k + ω̃)
+

fpl
Elp,k

)
− 1

2ω3(Enm,k + 2ω̃)(Epm,k + ω̃)

(
flm

(Enm,k + 2ω̃)(Elm,k + ω̃)
+

flm
(Elm,k + ω̃)2

+
fpl

(Enm,k + 2ω̃)Elp,k
+

fpl
E2
lp,k

)
− 1

4ω4(Enm,k + 2ω̃)(Epm,k + ω̃)

(
flm

(Elm,k + ω̃)
+

fpl
Elp,k

)]

+ v̂nm,k(q̂) v̂mp,k(q̂3) v̂pl,k(q̂2) v̂ln,k(q̂1)

[
− σpm

2ω3(Enm,k + 2ω̃)2(Enl,k + ω̃)

(
fnp

(Enp,k + 2ω̃)

+
fpl

(Elp,k + ω̃)

)
− σpm

4ω4(Enm,k + 2ω̃)(Enl,k + ω̃)

(
fnp

(Enp,k + 2ω̃)
+

fpl
(Elp,k + ω̃)

)
− 1

2ω3(Enm,k + 2ω̃)Epm,k

(
flm

(Enm,k + 2ω̃)(Elm,k + ω̃)
+

flm
(Elm,k + ω̃)2

+
flm

(Elm,k + ω̃)Epm,k

+
fpl

(Enm,k + 2ω̃)(Elp,k + ω̃)
+

fpl
(Elp,k + ω̃)Epm,k

)
− 1

4ω4(Enm,k + 2ω̃)Epm,k

(
flm

Elm,k + ω̃

+
fpl

Elp,k + ω̃

)
+
δpm
2ω3

(
flm

(Enm,k + 2ω̃)2(Elm,k + ω̃)2
+

flm
(Enm,k + 2ω̃)(Elm,k + ω̃)3

)
+
δpm
4ω4

flm
(Enm,k + 2ω̃)(Elm,k + ω̃)2

]}
+
(
q1 ↔ q2

)
(4.49)

where σnl is zero when n = l and 1 otherwise. The remaining divergence in ω4 is taken care of by
writing a similar expansion to equation 4.43,

f1(ω, ω, 0) = A1 + ωB1 + ω2C1 + ω3F1 + ω4J1(ω), (4.50)

where the terms associated with A, B C and F are all zero. After some algebra, we obtain the final
formula for EFISH, which is fully displayed in appendix F. Since it is quite a large formula, I only
present here part of the four-band term:

χ
(3),4bnd
0 (q̂, q̂1, q̂2, q̂3, ω, ω, 0) =

1

V

∑
k

∑
n,m,p,l

[
r̂nm,k(q̂) r̂mp,k(q̂1) r̂pl,k(q̂2) r̂ln,k(q̂3)

×
(
− fnl

(Enm,k + 2ω̃)(Enp,k + ω̃)Enl,k
−

fpl
(Enm,k + 2ω̃)(Enp,k + ω̃)(Elp,k + ω̃)

− flm
(Enm,k + 2ω̃)(Epm,k + ω̃)(Elm,k + 2ω̃)

−
fpl

(Enm,k + 2ω̃)(Epm,k + ω̃)(Elp,k + ω̃)

−
fnp(Enm,k + Enp,k)

2(Enp,k + ω̃)Enl,k(Enp,k)2
−

fpl(Enm,k + Elp,k)

2(Elp,k + ω̃)Enl,k(Elp,k)2
+ . . .

)
+ r̂nm,k(q̂) r̂mp,k(q̂1) r̂ln,k(q̂2) r̂pl,k(q̂3)

(
− fnp

(Enm,k + 2ω̃)(Enl,k + ω̃)(Enp,k + ω̃)

−
fpl

(Enm,k + 2ω̃)(Enl,k + ω̃)Elp,k
−

fpl
(Enm,k + 2ω̃)(Epm,k + ω̃)Elp,k

− flm
(Enm,k + 2ω̃)(Epm,k + ω̃)(Elm,k + ω̃)

+
fnp

(Epm,k + ω̃)(Enp,k + ω̃)2

− fnm
(Enm,k + 2ω̃)2(Epm,k + ω̃)

+ . . .

)
+ r̂nm,k(q̂) r̂ln,k(q̂1) r̂pl,k(q̂2) r̂mp,k(q̂3)

(
− fnp

(Enm,k + 2ω̃)(Enl,k + ω̃)(Enp,k + 2ω̃)
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− fpm
(Enm,k + 2ω̃)(Elm,k + ω̃)Epm,k

−
fpl

(Enm,k + 2ω̃)(Enl,k + ω̃)(Elp,k + ω̃)

−
fpl

(Enm,k + 2ω̃)(Elp,k + ω̃)(Elm,k + ω̃)
−

flm(Enm,k + Elm,k)

2(Elm,k + ω̃)Epm,kE
2
lm,k

−
fpl(Enm,k + Elp,k)

2(Elp,k + ω̃)Epm,kE
2
lp,k

+ . . .

)]
+ · · ·+

(
q1 ↔ q2

)
(4.51)

For the third order, the computation seems a lot more sensitive to the way the formula is written than
for the second or first order. While removing the divergence in frequency ω that occurs at ω → 0, we
added new divergences in the energy terms of the typeEnn′,k whenEn,k = En′,k that occurs for every
frequency, corresponding to the cyan terms in equation (4.51). Usually for the previous order, the dif-
ference in the occupation numbers fnm matched the difference in energiesEnm,k at the denominators,
meaning that, in this term, Enm,k was always greater than the gap. For the third order however, there
are energy differences, colored in purple in equation (4.51), that don’t match the occupation numbers.
In that case, when the divergence occurs, it should be canceled by another term, like for the last two
terms of equation (4.51), colored in cyan, which are both separately divergent when Epm,k = 0 but
together compensate. This means that the expression should be written so that this kind of terms are
all compensated around each divergence.

It is not possible for EFISH to write a shorter formula, containing all the four-, three- and two-band
terms together, like for THG in equation (4.44) since, here, this kind of expression would be divergent
in energy. We then need to develop each term and treat the four-, three- and two-band terms sepa-
rately. The first four terms, colored in red, in each of the permutations of equation (4.51) corresponds
to what is referred to as the interband transitions in Ref. [42; 9], while the rest corresponds to the
intraband contribution. The same color code was used for the LEO formula in equation (4.33).

Like for the other responses, we plot the comparison between the divergent formula (4.49) and
the final expression (4.51) in Figure 4.12, which shows a good agreement between the two formulae.
Using the divergent-free fromulae, it is then possible to compare the value at ω = 0 of THG and
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Figure 4.12: EFISH spectrum of cubic silicon and silicon carbide (3C-SiC) generated from both the
ω-divergent (green curve) and divergent-free formula (red curve).

EFISH, displayed in Figure (4.13), which should be the same (see equation (1.16)). This results in a
good agreement between the two susceptibilities with a value of 2 · 102 a.u. at ω = 0 for cubic silicon
carbide, which again validate the final expression (4.51) calculated for EFISH.

54



4.2. FROM AN UNPOLARIZED GROUND-STATE

0 1 2 3 4 5
0

2

4

·103

ω (eV)

|χ
(3

)
z
z
z
z
(−

(2
ω

+
ω
′ )

;ω
,ω
,ω
′ )
|(

a.
u.

)

THG: ω′ = ω

EFISH: ω′ = 0
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Chapter 5

Applications

In this chapter, I will show numerical results based on the formalism introduced in the previous chap-
ters for the linear electro-optic effect and the electric-field induced second harmonic. The interest for
both is to study the intensity of the response for a reasonable static field to determine their importance
in comparison to other effects.

5.1 Linear Electro-Optic effect

The susceptibilities calculated in this thesis were first tested on simple semiconductors such as silicon
and silicon carbide, and then on more complex materials such as Si/Ge superlattices and strained
materials. I present in this section the application on this different systems. All the results contain a
scissor unless stated otherwise. The spectrum of silicon is not plotted for LEO since it is zero due to
the centrosymmetry of the system.

The non-vanishing components of the χ(2) for the symmetry of interest in this section are reported
in Table 5.1.

Symmetry International Schoenflies Nonvanishing Compoundsclass notation notation tensor components

Cubic 43m Td
xyz = xzy = yzx = yxz

= zxy = zyx
(1) 3C-SiC, GaAs

Hexagonal 6mm C6v

xzx = yzy, xxz = yyz,

zxx = zyy, zzz
(4) 2H-SiC

Tetragonal 42m D2d

xyz = yxz, xzy = yzx,

zxy = zyx
(3) Si/Ge

4mm C4v

xzx = yzy, xxz = yyz,

zxx = zyy, zzz
(4) strained Si

Table 5.1: List of non-zero components of χ(2)(ω1, ω2) for some symmetry class.

5.1.1 Silicon carbide

Silicon carbide is a compound that exists in many different crystalline forms. Its most symmetric one
is 3C-SiC, also referred to as β-SiC, which displays a Zinc blende crystal structure, illustrated in Figure
5.1, that corresponds to a cubic symmetry 43m. Since the system is isotropic in this symmetry, the
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Figure 5.1: Unit cell of cubic silicon carbide 3C-SiC that displays a Zinc blende structure. The blue
atoms corresponds to silicon and the brown ones to carbon.

dielectric tensor is diagonal and we have εlr = εxx = εyy = εzz ,

↔
εM (ω) =

 εlr(ω) 0 0

0 εlr(ω) 0

0 0 εlr(ω)

 , lr = linear response (5.1)

If a static field is then added to the system, electro-optic effects are induced and appear in the dielctric
tensor in the form of off-diagonal matrix element εleo(ω). If this field is chosen to be along the z-
direction for example, this off-diagonal term is expressed as εleo(ω) = 8πχ

(2)
xyz(−ω;ω, 0)Ez , and the

dielectric tensor becomes

↔
ε

(Ez)

M (ω) =

 εlr(ω) εleo(ω) 0

εleo(ω) εlr(ω) 0

0 0 εlr(ω)

 (5.2)

with εleo = ε
(Ez)
xy = ε

(Ez)
yx . All the extra-diagonal terms are equal since all the non-vanishing χ(2)

components are equivalent in this symmetry (see the first row of Table 5.1). Here the quadratic electro-
optic effect and beyond are neglected. This symmetry is also represented by GaAs, GaP, etc.

I present here the real and imaginary part of these two components for 3C-SiC in Figure 5.2. The
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Figure 5.2: Components of the dielectric tensor already present (green curve, intensity scaled on the
left side) or induced by a static field (red curve, intensity scaled on the right side) of 7 · 105 V.cm−1 for
cubic silicon carbide with a scissor of ∆ = 0.84 eV.

field-induced component εleo represents the extra-diagonal part of the tensor, for which its imaginary
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part, unlike the diagonal element, does not have to be greater than zero. A strong static field was cho-
sen here, but still weak enough in order not to destroy the material through an electrical breakdown
(see Appendix G). Since the intensity of the component εleo is considerably lower than the one of the
diagonal component εlr, the two are here displayed on different scales. Indeed if the two components
were plotted on the same scale, the off-diagonal one would not be visible.

From the χ(2)
xyz(−ω;ω, 0), one can also extract the electro-optic coefficient rxyz(ω) using equation

(1.10), that is plotted in Figure 5.3. The experimental value of this coefficient was reported at 2 eV for
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Figure 5.3: Electro-optic coefficient of cubic silicon carbide.

3C-SiC in Ref.[45] to be 2.7 ± 0.5 pm/V. In our calculation however, we find it to be around 1 pm/V.
However, this calculation does not include local field and excitonic effects. The influence of these two
contributions has not been investigated so far for LEO but it has been for both the linear response
and the second harmonic. We know that it has little effect on the value of ε at 2 eV [46] that stays
around 7, while it has a larger effect on the second harmonic. Indeed, for SHG, the local fields tend
to decrease the intensity, while the α-kernel acts in the opposite way and increases it [9]. Around the
resonant peak, the resulting effect is an increase in intensity but the value of α in the long-range kernel
is chosen to reproduce correctly the resonant peak and is know to overestimate the static value. This
problem is due to the static approximation made in the α kernel that is not frequency-dependent.
Nonetheless, looking at the value for the second harmonic at 2 eV, the χ(2) goes from 38 pm/V for
IPA, to 33 pm/V for RPA (with local fields) and finally reaches 74 pm/V for the excitonic calculation
using the α kernel, leading to a factor 2 between the independent-particle approximation and the final
calculation of χ(2). A similar trend is expected for LEO which, with the 10% difference on ε, would
explain the difference between the experimental measurement and this theoretical value.

Another polytype of silicon carbide, 2H-SiC, was studied. It is arranged in a wurtzite struc-
ture, displayed in Figure 5.4 that corresponds to an hexagonal symmetry 6mm. This new system
is anisotropic, meaning that the dielectric tensor will present different diagonal components,

↔
εM (ω) =

 εlrxx(ω) 0 0

0 εlrxx(ω) 0

0 0 εlrzz(ω)

 . (5.3)

Now, applying a dc-field, this tensor becomes

↔
ε

(E)

M (ω) =

 εlrxx(ω) + εleoxx (ω) 0 εleoxz (ω)

0 εlrxx(ω) + εleoxx (ω) εleoxz (ω)

εleozx (ω) εleozx (ω) εlrzz(ω) + εleozz (ω)

 (5.4)
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Figure 5.4: Representation of the wurtzite crystal structure of hexagonal silicon carbide 2H-SiC. The
blue atoms corresponds to silicon and the brown ones to carbon.

Again QEO effects are not included here, otherwise the whole matrix would be filled. Different com-
ponents are plotted in Figure 5.5, where the blue and green curves depend on the strength of static
field. The two part of ε(E)

xx are shown separately.
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Figure 5.5: Real and imaginary parts of the components of the dielectric tensor already present (black
and red curves, intensity scaled on the left side) or induced by a static field (green and blue curves,
intensity scaled on the right side) of 3 · 105 V.cm−1 for 2H-SiC with a scissor of ∆ = 0.8 eV.

As previously stated, a strong dc-field was chosen but not intense enough to destroy the material
(see Appendix G) and the two field-induced components are also plotted on a different scale since
they are very small and would not be seen otherwise. Therefore adding the extra part on the diag-
onal component (green curve, intensity scaled on the right side) would have no visible effect on the
spectrum (black curve, intensity scaled on the left side). One can notice that the imaginary part of εleoxx
is not positive, but only the total component ε(E)

xx = εlrxx + εleoxx needs to be. Moreover, it is important
to note that, while the dc-field chosen here is only half of the one used for the cubic polytype, the
intensity of the LEO response is one order of magnitude smaller, meaning that the linear electro-optic
effect has a bigger influence on the cubic polytype than on the hexagonal one.

5.1.2 Gallium arsenide

Bandstructures and LEO spectra were already calculated by Sipe in the 90’s for GaAs and GaP, using
the second order formula shown in Ref. [13]. The results were displayed in Ref. [7] only below the
band-gap and included a scissor. However, it was later shown in 2005 [43] by the same authors that

60



5.1. LINEAR ELECTRO-OPTIC EFFECT

the scissor was, at that time, not correctly introduced and that it really affected the SHG spectrum,
including the value at ω = 0, which is the same for LEO (see equation (1.3)). This would indicate that
the second-order results presented in that article for both SHG and LEO are not correct, despite the
fact that there was a good agreement with the LEO experiments.

I report here the different experimental and theoretical results obtained for GaAs in Figure 5.6.
The experimental results are given in the form of electro-optic coefficients rxyz(ω) and converted into
a second-order susceptibility χ(2)(−ω;ω, 0) by the relation (1.10).
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Figure 5.6: Comparison between the LEO spectrum of GaAs calculated in this work (green curve) and
the one displayed in Ref. [7] (blue curve) along with the experimental results compiled in Ref. [47]
(red dots).

As previously stated, despite the fact that the theoretical calculations from Ref. [7] seem to match
the experiments, we now know them to be wrong. And unlike what we discussed in the case of silicon
carbide, the excitonic effects described by the α-kernel, and absent in our calculation, will not, here,
get us closer to the experimental values. In fact, the trend will most likely be an increase in intensity,
taking us even farther away from the measurements.

We know that, in the band-gap region, the SHG susceptibility of GaAs is higher in intensity than
the one of 3C-SiC, which is confirmed by experimental results. This would mean that the LEO sus-
ceptibilities, which are the same as the SHG ones at ω = 0, should have the same trend, which is what
is actually observed in our calculations. But, the experimental results indicate that the 3C-SiC linear
electro-optic coefficient are higher than the one of GaAs [45].

This disagreement could have many origins. One of the explanation may be that the phonons,
which are more important in GaAs than in SiC, play here a larger role and have a greater influence on
the experimental results. Another will be that GaAs, as any III-V semiconductors of zinc-blende struc-
ture, is a piezoelectric material [48] and that the dc-field applied for the LEO measurement changed
the volume of the cell, which altered the results. The effect of such a change in volume is shown in
Figure 5.7, which displays a huge impact on the spectrum. One could note that the decrease in vol-
ume of 9%, shown in Figure 5.7, is significantly larger than the difference between the theoretical and
experimental volume of the unit-cell (only 1%), meaning that the disagreement between experiments
and theory is not due to a wrong value taken for the volume. But this kind of change in volume would
only occur if the static field was applied similarly in every direction.

A more realistic effect of the piezoelectricity would be that the static field, applied in one direction,
could have induced a displacement of atoms, thus creating stress inside the material. This would then
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Figure 5.7: Effect of the variation of the volume on the theoretical LEO spectrum of GaAs: (i) no
change in volume (green curve), (ii) 9% decrease in the unit-cell volume (purple curve) and (iii) the
experimental results from Ref. [47] (red dots).

generate new components in the χ(2) tensor, that were previously zero, due to the symmetry of the
system, and possibility change the already existing one. Therefore, if such a displacement occurred,
the experimental linear electro-optic coefficient rxyz would have been wrongly defined and include
other components, that are no longer vanishing due to the strain. And the different components
may have had destructive interferences with each other, thus reducing the experimental value. The
effect this would have on the susceptibility could be determined by performing calculation on strained
GaAs, as it is done for Si in section 5.1.4, which were not done here by lack of time.

5.1.3 Si/Ge interfaces

A previous study on Si/Ge superlattices was realized in Ref. [49] for the second harmonic using
the same formalism. The same optimized cells were used here to investigate the linear electro-optic
response generated in this kind of layered materials.

Nowadays, microelectronic components are based on silicon. But it presents a lot of limitations,
which is why a lot of researches have been centered around developing Si-compatible photonics to
be integrated onto silicon chips, that can overcome these limitations. For instance, some of those
shortcomings have been dealt with by introducing SiGe alloys and strained Si. But one of the main
issue of Si or SiGe alloys is the fact that their fundamental band-gap is indirect in nature. To that
effect, short-period Si/Ge superlattices have been widely studied in the 90’s due to the possibility to
engineer the band-gap to fit one’s criteria due to quantum confinement, by varying the number of
Si and Ge layers, which can lead to interesting electronic and optical properties. They are also an
interesting type of materials to study for us since they display multiple interfaces that can effectively
create an electrostatic field inside the material. Moreover, some results are already available for the
second harmonic both experimental [50;51;52;53] and theoretical [54;44]. Some experimental work was also
realized for LEO [55] but it was focused around the excitonic peak, whose effect is missing in this
calculation.

Sin/Gen superlattices are created from the structure of bulk silicon, illustrated in Figure 5.8. The
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Figure 5.8: Bulk silicon unit cell corresponding to the diamond structure.

system then undergoes a π/4 rotation of the axis a and b in the plane (x,y),
a′ = 1

2(a + b)

b′ = 1
2(−a + b)

c′ = ñc

, (5.5)

which can be viewed as a rotation of −π/4 around the z-axis on the atom coordinates,

r′ =

 x′ = 1√
2
(x+ y)

y′ = 1√
2
(−x+ y)

z′ = z

 ; a′ =
a√
2

; c′ = ña, (5.6)

where ñ = n if the index n is odd, and ñ = n/2 if n is even. The silicon atoms are then partially
replaced by germanium atoms so that the number of alternated layers of each corresponds to the
index n. For an odd number n of layers, the tetragonal unit cell contains 2 set of layers of each, as
shown in Figure 5.9, while it can be reduced to one set for an even number n (see Figure 5.10). It

Figure 5.9: Different views of the Si3/Ge3 tetragonal unit cell in the basis (a′,b′, c′). Blue spheres
represents Si atoms and gray spheres Ge atoms.

means that the tetragonal unit cell contains 12 atoms for Si3/Ge3, 8 atoms for Si4/Ge4, 20 for Si5/Ge5,
etc. A way to reduce those numbers, for an odd number of layers, would be to consider a triclinic cell
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with the same basis (a′,b′) and change the remaining axis as c′′ = (a′+b′+c′)/2 = (b+nc)/2. Doing
that decreases the symmetries of the unit cell, but, considering that those symmetries are not explicitly
taken into account when calculating the nonlinear response, it doesn’t matter. And the symmetries of
the χ(2) would still correspond to those of a tetragonal system. The cells were then relaxed following
Ref. [54]: the in-plane lattice parameter a′ was kept fixed and was taken to be 5.389Å, corresponding
to the one of bulk silicon to simulate the growth of this superlattice on top of a Si(001) substrate and
the lattice parameter c′ was relaxed.

Note that unrelaxed cells with an even numbern of layers, illustrated in Figure 5.10, are centrosym-
metric and, as such, do not generate a dipole second-order response. But when they are relaxed, the
symmetry of the system is broken and a small χ(2) response can arise. However, SHG calculations
showed that it was very small for the even Si4/Ge4 compared to the signal obtained for Si3/Ge3 and
Si5/Ge5

[54].

Figure 5.10: Si4/Ge4 tetragonal unit cell.

The LEO spectrum of relaxed Si3/Ge3 is displayed in Figure 5.11. From that spectrum and LEO

0 2 4 6 8 10
0

50

100

150

200

250

ω (eV)

|χ
(2

)
x
y
z
(−
ω

;ω
,0

)|
(p

m
/V

)

Si3/Ge3

Figure 5.11: LEO susceptibility of the relaxed Si3/Ge3 superlattice with a scissor operator of ∆ = 1.1

eV.

measurements, one could extrapolate the value of the static field created at the interfaces.
In the LEO experiments in Ref. [55], the value provided corresponds to the variation of the refrac-

tive index at 0.8 eV, below the excitonic peak, which is of about n = 10−3 for a static field of 9 · 104

V.cm−1. But the refractive index is only defined when ↔εM is diagonal, which is no longer the case
with the LEO correction. This means that, to observe the change in the refractive index, we first need
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to diagonalize this matrix:

↔
ε

(E)

M (ω) =

 εlrxx(ω) εleoxy (ω) εleoxz (ω)

εleoxy (ω) εlrxx(ω) εleoxz (ω)

εleozx (ω) εleozx (ω) εlrzz(ω)

→
 ε

(E)
x′x′(ω) 0 0

0 ε
(E)
y′y′(ω) 0

0 0 ε
(E)
z′z′(ω)

 , (5.7)

which amounts to redefining the optical axes of the system. The index variation is then displayed in
Figure 5.12 in the band-gap region, where the matrix in equation (5.7) is real and therefore diagonal-
izable. To find an index variation of about 10−3, we need a field around 107 V.cm−1, which is two

0 0.5 1 1.5 2
−4

−2

0

2

·10−3

ω (eV)

∆
n

(ω
)

∆nx
∆ny
∆nz

Figure 5.12: Refractive index variation for a dc-field of 9 · 106 V/cm.

orders of magnitude higher than what is found experimentally in Ref. [55]. The difference can be ex-
plained by the fact that the system are not the same, which can influence the susceptibility. Also their
measurement is done near the excitonic peak, which cannot be reproduced here since the excitonic
effects are not included at this level of approximation. And finally, the value of the static field given
was the one applied on the material, which do not account for the electric field already present at the
interfaces of the material. Therefore the total field may have been higher.

5.1.4 Strained silicon

Silicon, shown in Figure 5.8, is a centrosymmetric material, meaning that the dipole contribution of
the χ(2) is zero for the bulk. Therefore, the only non-vanishing term comes from the surface. In order
to generate a response from the bulk, one needs to break the symmetries of the system. This can
be done either by creating a static field inside the material (EFISH), which will be discussed in the
next section or it could be achieved by applying a strain on the system. This was already thoroughly
investigated for the second harmonic [56;57] and I now wish to present some results for LEO.

In this simulation, the strain is applied inside the unit cell and is represented by an atom displace-
ment, which is done in a way that no stress is created at the boundary of the cell, that is then repeated
in space. This corresponds to a periodic microscopic stress, which is different from the macroscopic
stress applied on the material in experiments [58]. Nonetheless, one can still observe some general ten-
dencies. Different kinds of strain were applied on Si, either along an axis (1D), or applied on a plane
(2D) effectively creating a shear stress inside the material.

The strain is applied on bulk Si, for which we switch from the diamond-like unit cell (see Figure
5.8) to the tetragonal cell introduced in the previous section for the Si/Ge superlattice (see Figure 5.9),
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using the same transformation of equations (5.5) and (5.6) with ñ = 2, leading to a 8-atom unit cell.
The strain is then generated by moving atoms, initially in their bulk positions, leading to an increase or
decrease of the bonds lengths, thus creating a tensile or compressive strain, respectively. In practice, it
is atom 7 in Figure 5.13 that is moved along the z-axis for the uniaxial strain and in the (y’,z) plane for
the biaxial strain, thus creating the elongation or shortening of the bond 6-7 and 7-8. Atom 8 is also

Figure 5.13: Scheme of the strain applied inside the tetragonal unit cell: atom 7 is moved creating a
compressive or tensile strain on the yellow bonds between atoms 6-7 and 7-8.

moved along the z-axis to have a more precise control over the compressive or tensile strain applied
on the yellow bonds in Figure 5.13. The lattice parameter c’ is then slightly increased or decreased,
following the motion of atom 8 to preserve the boundary conditions by keeping the same distance
between two neighboring cells in z, meaning conserving the bond length between atom 8 and atom 1
of the next cell.

The different structures are designated as in Ref. [57], where C and T refer to a compressive or
tensile strain, respectively, with a percentage of elongation or compression of the bond compared to
the bulk value. For instance, the structure C1.8 T3.0 refers to a compressive bond of 1.8% between
atoms 6-7 and a tensile bond of 3.0% between atoms 7-8. If the strain is the same in the two bonds, for
instance C3.0 C3.0 then the system is still centrosymmetric, despite the strain applied, and the second-
order susceptibility remains zero. However the pressure inside the material is not zero. Now, if the
strain in the two bonds is opposite, for instance C3.0 T3.0, then the pressure is compensated inside
the material but χ(2) is non-zero. The spectra for different uniaxial strains are shown in Figure 5.14.
The band-gaps of the different systems are situated around 1 eV. Therefore the peak observed at this
energy in each spectrum corresponds to the transition in the gap, which is induced by the strain, while
the second one around 4 eV corresponds to the absorption peak in the linear response for bulk Si. For
the second peak, the highest intensities are reached by the systems that are the farther away from the
centrosymmetry with the lowest pressures of the type CT or TC, while a compressive strain seems to
be what is more effective to generate the first peak, which is smaller in general.

The spectra for the biaxial strained system are displayed in Figure 5.15. The letter Y is added to the
denomination of the different systems for the biaxial stress to indicate an additional strain along the
y-axis. The component χ(2)

zzz (in Figure 5.15) displays similar characteristics with the same component
shown for the uniaxial strain in Figure 5.14, while the new non-zero component χ(2)

yyy, induced by the
additional strain along Y, shows an increase in intensity for the first peak around 1 eV. From that,
one can conclude that a biaxial strain is more effective to generate a high intensity response in the
band-gap region, whereas a uniaxial stress is enough if one is interested in the peak around 4.2 eV,
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Figure 5.14: Linear electro-optic spectra for uniaxial strained silicon with a scissor ∆ = 0.6 eV.
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Figure 5.15: Linear electro-optic spectra for biaxial strained Si with a scissor ∆ = 0.6 eV. Solid line:
component zzz, dotted-dashed line: component yyy.

corresponding to the position of the peak in the linear response spectrum of unstrained silicon.

Although the way to apply the strain on the material is different, we can still have a general com-
parison with the LEO experiments in Ref. [58], where a compressive strain is applied by a straining
layer deposited on top of silicon. They found an induced coefficient of 15 pm.V−1 at 0.8 eV, which can
then be enhanced by the experimental setup, like for example guiding the light in a photonic crystal
waveguide. The order of magnitude corresponds here to what is found for the C0.7 C3.0 Y system,
which is at 11 pm.V−1.

5.2 Third-order response

In this section, I present some results for the χ(3), calculated at the IPA level without a scissor. The
non-vanishing components of the third-order susceptibility for the symmetry classes of interest are
reported in Table 5.2.
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Symmetry International Schoenflies Nonvanishing
class notation notation tensor components

Cubic 43m Td

xxxx = yyyy = zzzz,

(4)yyzz = zzyy = zzxx = xxzz = xxyy = yyxx,

yzyz = zyzy = xyxy = yxyx = xzxz = zxzx,

xzzx = zxxz = yzzy = zyyz = xyyx = yxxy

Hexagonal 6mm C6v

zzzz, xxxx = yyyy, xxyy = yyxx,

(11)xyyx = yxxy, xyxy = yxyx, yyzz = xxzz,

zzyy = zzxx, zyyz = zxxz, yzzy = xzzx,

yzyz = xzxz, zyzy = zxzx

Table 5.2: List of non-zero components of χ(3)(ω1, ω2, ω3) for some symmetry class.

5.2.1 Third Harmonic Generation

Since the third harmonic was not really the focus of this thesis, it was not applied on advance materials
or really analyzed. Nonetheless, I present here, in Figure 5.16, the comparison between the formalism
introduced in the previous chapter and another developped by C. Attaccalite and M. Grüning in Ref.
[14; 15], based on real-time propagation of the equations of motion, where the χ(3) is extracted from
the total polarization, as defined in equation (1.1). The peaks appear to be positioned at the same
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Figure 5.16: Comparison of THG for bulk Si within IPA between equation (4.44) with η = 0.07 eV (red
curve) and Ref. [15] (green curve).

energies. The general agreement between the two curves is relatively good, although not as good as
the agreement reached between the two formalisms for the second harmonic. The difference between
the intensity of the peaks could come from the broadening, which is not introduced in the same way
in the two method. Indeed, it is known to affect the intensity of the peaks and may have a larger
influence on higher order.

5.2.2 Electric-Field Induced Second Harmonic

EFISH can be used as a way to generate a “second harmonic“ response in centrosymmetric material,
for which χ(2) is zero in the dipole approximation. But it can also be used as a probe to determine the
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magnitude of the dc-field created at the interfaces of a material. There are a few experimental works
focusing on the measurement of EFISH inside Si/SiO2 interface [59;60;61;62], for which the strength of
the response is known to be quite important compared to other materials.

Since it is a third order response, it is expected to be a lot smaller than the χ(2). And it would take
an intense static field for it to become of the same magnitude. However, for centrosymmetric material,
the second-order response only comes from the surface and is usually smaller since there is far less
surface than bulk. We are not discussing here about nanoparticles, for which the ratio surface/volume
is very high. In that case, the EFISH response from the bulk could be one of the main contributions.

When considering the cubic symmetry of silicon and silicon carbide (see Figures 5.8 and 5.1), the
χ(2) tensor without a static field is

↔
χ

(2)
(ω, ω) =

 0 0 0 χ
(2)
xyz χ

(2)
xzy 0 0 0 0

0 0 0 0 0 χ
(2)
yzx χ

(2)
yxz 0 0

0 0 0 0 0 0 0 χ
(2)
zxy χ

(2)
zyx

 , (5.8)

which is here written in its more convenient 9× 3 matrix form instead of the 3× 3× 3 tensor, where
the 9 columns correspond to xx, yy, zz, yz, zy, zx, xz, xy, yx, respectively. In this symmetry, all
the non-vanishing components of the tensor are equal, meaning that there is only one independent
component.

Then adding a static field along the z-direction, new components of the tensor are created through
equation (1.14),

↔
χ

(2)Ez
(ω, ω) =

 0 0 0 χ
(2)
xyz χ

(2)
xzy χ

(2)Ez
xzx χ

(2)Ez
xxz 0 0

0 0 0 χ
(2)Ez
yyz χ

(2)Ez
yzy χ

(2)
yzx χ

(2)
yxz 0 0

χ
(2)Ez
zxx χ

(2)Ez
zyy χ

(2)Ez
zzz 0 0 0 0 χ

(2)
zxy χ

(2)
zyx

 , (5.9)

filling part of the tensor of equation (5.8) that was previously zero with three independent compo-
nents: 

χ(2)Ez
zzz (ω, ω) = 3χ(3)

zzzz(ω, ω, 0) Ez

χ(2)Ez
xzx (ω, ω) = 3χ(3)

xzxz(ω, ω, 0) Ez

χ(2)Ez
zxx (ω, ω) = 3χ(3)

zxxz(ω, ω, 0) Ez

, (5.10)

shown for silicon and silicon carbide in Figure 5.17. Note that there is no additional contribution due
to EFISH for the χ(2)

xyz component. One can see that the two components χ(3)
xzxz and χ(3)

zxxz are the same
for silicon, which was expected at ω = 0 due to Kleinman symmetry [63], but not at higher energies.
Indeed, only the indices j and k are interchangeable in the EFISH susceptibility χ(2)

ijkl(−2ω;ω, ω, 0), in
addition to the natural symmetries of the system shown in Table 5.2 (1st row). The equality between
these two components in silicon comes from the fact that the material presents an inversion symmetry.
For silicon carbide, which is not centrosymmetric, these two components cease to be equal beyond 2.3
eV where the first resonance start at half the value of the band gap. Moreover, in the two materials,
the χ(3)

xzxz component shows an intensity of half the one of the χ(3)
zzzz .

In order to compare the intensity of SHG and EFISH, I looked at a non-centrosymmetric material:
silicon carbide, for which I plotted the only non-vanishing χ(2) component with the field-induced χ̃(2)

zzz

in Figure 5.18. The strength of the static field was chosen here at the same value as for LEO in Figure
5.2. And, in that case, we can actually compare the SHG and EFSIH components on the same scale,
unlike what was done for LEO. This means that the field-induced component, while smaller than the
other one, is far from being negligible.

Finally, I compare the EFISH intensity of the χ(3)
zzzz component in Si and 3C-SiC, shown in Figure

5.19 , which displays a factor 10 difference between the two, clearly showing that the EFISH response
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Figure 5.17: Different components of the EFISH susceptibility of bulk silicon and cubic silicon carbide.
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Figure 5.18: Comparison for SiC between the two χ(2) component xyz coming from SHG (blue curve)
and zzz coming from EFISH (red curve) with a static field of Ez = 7 · 105 V/cm

in silicon is larger. In fact, using the same strength for the static field as in Figure 5.18, the field-induced
χ̃

(2)
zzz thus generated would be even larger than the χ(2)

xyz of SiC.
Finally, using a static field seems to be a more effective way to generate a non-vanishing dipolar

contribution for the second-harmonic than to apply a strain on the material, although both those
contributions depend on an external parameter, which is the strength of the dc-field for EFISH and
the pressure inside the system for strained Si, making the comparison somewhat arbitrary. For a
hydrostatic pressure of about 2 GPa, the second-order susceptibility reaches a value of 30 pm.V−1 [57],
while it will reach 140 pm.V−1 for a field of 5 · 105 pm.V−1.
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Figure 5.19: Comparison of the EFISH response between Si and 3C-SiC for the zzzz component.
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Chapter 6

Conclusion

This thesis aimed to describe nonlinear optical responses induced by an electrostatic field, in particu-
lar the linear electro-optic response and the electric-field induced second harmonic. The main result
is the independent-particle description of this two phenomena. The first approach presented to de-
scribe these processes was to include the static field at the ground-state level, which seemed a priori
easier since a polarized-second-order response would give us the EFISH correction instead of having
to calculate a third-order susceptibility. However, it proved to not be so easy and was, in fine, not suc-
cessful due to the problem of correctly defining the Hamiltonian in periodic conditions with Bloch
functions, and then for the susceptibility generated from this Hamiltonian to behave accordingly with
the symmetries of the system.

The second approach was then to describe each of these phenomena with their respective suscep-
tibility. Having already done it for SHG, the density calculation was quite straightforward for LEO,
since there were little more difficulties than for SHG. The same calculation for the third-order was
however not so managable, which is why it was performed through the current density. But this led
to new problems on how to write the formula so that it is free of any unphysical divergences that
may occur. Indeed removing the divergence in ω, naturally present in the current density calculation,
created new divergences in energy terms, which did not happen for the second order. And extra-care
was required to make sure that all these divergences were compensated and did not appear on the
final spectrum. As a result, the final expression showed good agreement with the ω-divergent spectra
after the band-gap region, proving the validity of the formula.

Still part of the many-body effects are missing from this description. However, we know that
regarding bulk materials, the effect of local fields will most likely be negligible. Therefore the main
focus should be to solve the problem of including excitonic effects. This should be relatively easy
for LEO since it was already done for the second harmonic through the second-order Dyson-like
equation,

χ(2) = χ
(2)
0 + χ

(2)
0 (v + fxc) χ

(1) + χ
(1)
0

∂fxc
∂ρ

χ(1)χ(1) + χ
(1)
0 (v + fxc) χ

(2), (6.1)

here written in a simple notation. Therefore, it should not be too difficult to reproduce this calcula-
tion but for two different frequencies. It will however be a lot more complicated for the third order
considering that we first need to determine the third-order Dyson-like equation that will depend on
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both the first and second-order susceptibilities,

χ(3) = χ
(3)
0 + χ

(3)
0 (v + fxc) χ

(1) + χ
(2)
0

∂fxc
∂ρ

χ(1)χ(1) + χ
(2)
0 (v + fxc) χ

(2) + χ
(2)
0

∂fxc
∂ρ

χ(1)χ(1)

+ χ
(1)
0

∂2fxc
∂ρ2

χ(1)χ(1)χ(1) + χ
(1)
0

∂fxc
∂ρ

χ(2)χ(1) + χ
(1)
0

∂fxc
∂ρ

χ(1)χ(2) + χ
(2)
0 (v + fxc) χ

(2)

+ χ
(1)
0

∂fxc
∂ρ

χ(1)χ(2) + χ
(1)
0 (v + fxc) χ

(3), (6.2)

also written in simplify notation.
Although these effects were not included in this thesis, it is still possible to get the general tenden-

cies with the IPA response alone. And one of the main results is the first principles calculation of the
EFISH spectrum for silicon, which appears to be very intense compared to other materials like silicon
carbide and could be, if the dc-field applied is intense enough, one of the main contribution in sec-
ond harmonic experiments. However this remark needs to be dampened by the fact that we did not
assume here any inhomogeneities in the dc-field. But if the static field was, for instance, induced by
an accumulation of charges at an interface then this field would only be located at the interface. This
means that the field-induced response, such as EFISH, would only be induced around this interface
and it would not come from the whole bulk, which would, in that case, diminish the intensity given
here to the EFISH susceptibility.
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Appendix A

Prefactor for the susceptibility

A.1 Second order

For the second harmonic, there is only one input field, which is the same as for the linear response.
The total field can be written as

E(t) = E0

(
e−iωt + eiωt

)
(A.1)

The second-order susceptibility χ(2) which is responsible for the nonlinear optical effects relates the
polarization to the total field. The second-order polarization is quadratically dependent on the total
field E(t) and can be expressed as

P (2) = χ(2)EE = χ(2)E2
0

(
e−2iωt + e2iωt

)
+ 2χ(2)E2

0 (A.2)

The first term corresponds to the second harmonic generation (SHG) and the second term to the
optical rectification (OR). For the general second-order, there are two input electric fields:{

E1(t) = E0,1

(
e−iω1t + eiω1t

)
E2(t) = E0,2

(
e−iω2t + eiω2t

) (A.3)

The total incident field is the sum of all the fields,

E(t) = E0,1

(
e−iω1t + eiω1t

)
+ E0,2

(
e−iω2t + eiω2t

)
(A.4)

We then calculate the second-order polarization and obtain

P (2) = χ(2)E2
0,1

(
e−2iω1t + e2iω1t

)
+ χ(2)E2

0,2

(
e−2iω2t + e2iω2t

)
+ 2χ(2)E2

0,1 + 2χ(2)E2
0,2

+ 2χ(2)E0,1E0,2

(
e−i(ω1+ω2)t + ei(ω1+ω2)t

)
+ 2χ(2)E0,1E0,2

(
e−i(ω1−ω2)t + ei(ω1−ω2)t

)
(A.5)

where the last two terms corresponds respectively to the sum frequency generation (SFG) and the
difference frequency generation (DFG). Written in term of its frequency components we obtain:

P (2) = P shg(2ω1) + P shg(2ω2) + P or(0) + P sfg(ω1+ω2) + P dfg(ω1−ω2) (A.6)

For the linear electro-optic effect (LEO), the total field is

E(t) = E0

(
e−iω1t + eiω1t

)
+ Edc (A.7)

where Edc = lim
ω→0

E2(t) = 2E0,2. The polarization is then

P (2) = χ(2)E2
0

(
e−2iω1t + e2iω1t

)
+ 2χ(2)E2

dc + 2χ(2)E2
0 +2χ(2)E0Edc

(
e−iω1t + eiω1t

)
(A.8)

77



APPENDIX A. PREFACTOR FOR THE SUSCEPTIBILITY

The last term corresponds to linear electro-optic effect.

P (2) = P shg(2ω1) + P shg(0) + P or(0) + P leo(ω1) (A.9)

One can generalize the expression while accounting for the factor 2 that appears for SFG and DFG,

P (2)(ω3) = Kχ(2)E(ω1)E(ω2) (A.10)

where K is the factor that depends on the frequencies ω1 and ω2 of interest. It is equal to 1 when the
frequencies are the same for both input fields and 2 when they are different.

A.2 Third order

For the third harmonic, the total field is the same as for SHG or the linear case (see equation (A.1)).
The third-order polarization has a cubic dependence on the total field and is expressed as followed

P (3) = χ(3)EEE = χ(3)E3
0

(
e−3iωt + e3iωt

)
+ 3χ(3)E3

0

(
e−iωt + eiωt

)
, (A.11)

where the first term corresponds to the third harmonic generation (THG) and the second to degen-
erate four-wave mixing (DFWM), the imaginary part of the latter corresponding to the two-photon
absorption (TPA).

In the EFISH case, there are two input fields, therefore the total field is

E(t) = E0

(
e−iωt + eiωt

)
+ Edc (A.12)

The polarization is then

P (3) = χ3Edc
(
E2
dc + 6E2

0

)
+ χ3E3

0

(
e−3iωt + e3iωt

)
+ 3χ3E3

0

(
e−iωt + eiωt

)
+ 3χ3E2

dcE0

(
e−iωt + eiωt

)
+ 3χ3EdcE

2
0

(
e−2iωt + e2iωt

)
(A.13)

The last two term corresponds to the quadratic electro-optic effect (QEO or static-Kerr effect) and the
electric field induced second harmonic (EFISH).

P (3) = P(0) + P thg(3ω) + P dfwm(ω) + P qeo(ω) + P efish(2ω) (A.14)
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LEO: charge density calculation

The general formula for the second-order density response function obtained from the density is

χρρρ(q + G,q1 + G1,q2 + G2, ω1, ω2) =
1

V

∑
k

∑
n,m,p

〈
φn,k

∣∣e−i(q+G)r
∣∣φm,k+q

〉
En,k − Em,k+q + ω1 + ω2 + 2iη

×
〈
φm,k+q

∣∣∣ei(q1+G1)r1
∣∣∣φp,k+q2

〉〈
φp,k+q2

∣∣∣ei(q2+G2)r2
∣∣∣φn,k〉

×
(

fn,k − fp,k+q2

En,k − Ep,k+q2 + ω2 + iη
+

fm,k+q − fp,k+q2

Ep,k+q2 − Em,k+q + ω1 + iη

)
+
(
(q1, ω1)↔ (q2, ω2)

)
(B.1)

In the independent particle approximation (IPA), the local fields are neglected and all vectors G, G1,
G2 are set to zero. There is no dependence in k-points for the occupation numbers in the case of cold
semiconductors. This calculation is done using the dipole approximation, for which the development
of the limit q → 0 stops to the first non-vanishing order. This should corresponds to the third order
contribution T (3), since they are three matrix elements, in order for χρρρ to be proportional to the
norm of q, q1 and q2. The response function is then expressed as a sum of four terms,

χρρρ =
1

V

∑
k

∑
n,m,p

(
T (0) + T (1) + T (2) + T (3)

)
, (B.2)

where the three first contributions in terms of q, q1 and q2 should be zero. The matrix elements
elements, calculated in the optical limit, are developed to the third order following equation (4.27):


〈
φn,k

∣∣∣e−iqr̂∣∣∣φm,k+q

〉
= δn,m + a′n,m(q) + a′′n,m(q) + a′′′n,m(q)〈

φm,k+q

∣∣eiq2r2
∣∣φp,k+q1

〉
= δm,p + b′m,p(q,q2,q1) + b′′m,p(q,q2,q1) + b′′′m,p(q,q2,q1)〈

φp,k+q1

∣∣eiq1r1
∣∣φn,k〉 = δp,n + c′p,n(q1) + c′′p,n(q1) + c′′′p,n(q1)

(B.3)

We first verify that the zeroth, first and second-order contributions T (0), T (1) and T (2) are zero. It is
straightforward to show that any combination containing two δ of equation (B.3) is canceled with the
occupation numbers, meaning that T (0) and T (1) are zero and we only need to develop the energy
denominator to the first order:

1

En,k − Ep,k+q2 + ω2 + iη
=

1

(En,k − Ep,k + ω2 + iη)
+

q2E
(1)
p,k

(En,k − Ep,k + ω2 + iη)2
(B.4)
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As a consequence, any combination in T (3) containing the third order matrix elements a′′′, b′′′ or c′′′

will also be zero. The second-order contribution is

T2(q,q1,q2, ω1, ω2) = (fn − fp)
b′n,p(q,q2,q1) c′p,n(q1)

(ω1 + ω2 + 2iη)(En,k − Ep,k + ω1 + iη)

+ (fn − fm)
a′n,m(q) c′m,n(q1)

(En,k − Em,k + ω1 + ω2 + 2iη)(En,k − Em,k + ω1 + iη)

+ (fn − fp)
b′n,p(q,q2,q1) c′p,n(q1)

(ω1 + ω2 + 2iη)(Ep,k − En,k + ω2 + iη)

+ (fm − fn)
a′n,m(q) b′m,n(q,q2,q1)

(En,k − Em,k + ω1 + ω2 + 2iη)(En,k − Em,k + ω2 + iη)

+
(
(q1, ω1)↔ (q2, ω2)

)
(B.5)

From equation (4.30), obtained using perturbation theory, we have

a′n,m(q) = 〈φn,k|−iqr̂|φm,k〉
b′m,p(q,q2,q1) = 〈φm,k|i(q− q1)r̂|φp,k〉

c′p,n(q1) = 〈φp,k|iq1r̂|φn,k〉
(B.6)

Since q = q1 +q2, we can replace b′m,p(q,q2,q1) by c′m,p(q2). By exchanging (q1, ω1)↔ (q2, ω2) in the
last two terms and (n↔ p) in the third one, we get

T2(q,q1,q2, ω1, ω2) = (fn − fp)
c′n,p(q2) c′p,n(q1)

(ω1 + ω2 + 2iη)(En,k − Ep,k + ω1 + iη)

+ (fn − fm)
a′n,m(q)

{
c′m,n(q1)− c′m,n(q1)

}
(En,k − Em,k + ω1 + ω2 + 2iη)(En,k − Em,k + ω1 + iη)

− (fn − fp)
c′p,n(q1) c′n,p(q2)

(ω1 + ω2 + 2iη)(En,k − Ep,k + ω1 + iη)

+
(
(q1, ω1)↔ (q2, ω2)

)
, (B.7)

which is zero. Therefore, the only remaining contributions is T (3), which we separate in different
terms:

T (3) = T 3bnd
inter + T 3bnd

intra + T 2bnd
intra + T 2bnd

ene , (B.8)

where Tinter and Tintra contains respectively the interband and intraband contribution and Tene is
similar to T (2) but with the first order energy correction of equation (B.4).

B.1 Three-band term

The interband term is

T 3bnd
inter(q,q1,q2, ω1, ω2) = (fn − fp)

a′n,m(q) b′m,p(q,q2,q1) c′p,n(q1)

(En,k − Em,k + ω1 + ω2 + 2iη)(En,k − Ep,k + ω1 + iη)

+ (fm − fp)
a′n,m(q) b′m,p(q,q2,q1) c′p,n(q1)

(En,k − Em,k + ω1 + ω2 + 2iη)(Ep,k − Em,k + ω2 + iη)

+
(
(q1, ω1)↔ (q2, ω2)

)
, (B.9)
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which gives for LEO, using equation (B.6),

T 3bnd
inter(q̂, q̂1, q̂2, ω, 0) = −(fn − fp)

〈φn,k|iqr̂|φm,k〉 〈φm,k|iq̂2r̂|φp,k〉 〈φp,k|iq̂1r̂|φn,k〉
(En,k − Em,k + ω + iη)(En,k − Ep,k + ω + iη)

− (fm − fp)
〈φn,k|iqr̂|φm,k〉 〈φm,k|iq̂2r̂|φp,k〉 〈φp,k|iq̂1r̂|φn,k〉

(En,k − Em,k + ω + iη)(Ep,k − Em,k)

− (fn − fp)
〈φn,k|iqr̂|φm,k〉 〈φm,k|iq̂1r̂|φp,k〉 〈φp,k|iq̂2r̂|φn,k〉

(En,k − Em,k + ω + iη)(En,k − Ep,k)

− (fm − fp)
〈φn,k|iqr̂|φm,k〉 〈φm,k|iq̂1r̂|φp,k〉 〈φp,k|iq̂2r̂|φn,k〉
(En,k − Em,k + ω + iη)(Ep,k − Em,k + ω + iη)

(B.10)

This term is the easiest to obtain since it is equivalent to replacing the matrix elements containing
the exponential eiqiri , in equation (B.1), by its first order expansion and it is directly proportional to
q q1q2. The intraband contribution contains the remaining three-band term,

T 3bnd
intra(q,q1,q2, ω1, ω2) = (fn − fp)

{
b′n,p(q,q2,q1) γ′′p,n(q1) + β′′n,p(q,q2,q1) c′p,n(q1)

}
(ω1 + ω2 + 2iη)(En,k − Ep,k + ω1 + iη)

+ (fn − fm)

{
a′n,m(q) γ′′m,n(q1) + a′′n,m(q) c′m,n(q1)

}
(En,k − Em,k + ω1 + ω2 + 2iη)(En,k − Em,k + ω1 + iη)

+ (fn − fp)
{
b′n,p(q,q2,q1) γ′′p,n(q1) + β′′n,p(q,q2,q1) c′p,n(q1)

}
(ω1 + ω2 + 2iη)(Ep,k − En,k + ω2 + iη)

+ (fm − fn)

{
a′n,m(q) β′′m,n(q,q2,q1) + a′′n,m(q) b′m,n(q,q2,q1)

}
(En,k − Em,k + ω1 + ω2 + 2iη)(En,k − Em,k + ω2 + iη)

+
(
(q1, ω1)↔ (q2, ω2)

)
, (B.11)

where β′′ and γ′′ are the three-band part of b′′ and c′′ respectively. We replace b′ elements by c′ and
exchange (q1, ω1)↔ (q2, ω2) in the last two terms,

T 3bnd
intra(q,q1,q2, ω1, ω2) = (fn − fp)

{
c′n,p(q2) γ′′p,n(q1) + β′′n,p(q,q2,q1) c′p,n(q1)

}
(ω1 + ω2 + 2iη)(En,k − Ep,k + ω1 + iη)

+ (fn − fm)
a′n,m(q)

{
γ′′m,n(q1)− β′′m,n(q,q1,q2)

}
(En,k − Em,k + ω1 + ω2 + 2iη)(En,k − Em,k + ω1 + iη)

+ (fn − fp)
{
c′n,p(q1) γ′′p,n(q2) + β′′n,p(q,q1,q2) c′p,n(q2)

}
(ω1 + ω2 + 2iη)(Ep,k − En,k + ω1 + iη)

+
(
(q1, ω1)↔ (q2, ω2)

)
. (B.12)

Using equation (4.31), from perturbation theory, we get

β′′m,p(q,q2,q1) =
∑
n/∈Dp

〈φm,k|q1v̂|φn,k〉 〈φn,k|q1v̂|φp,k〉
(Ep,k − En,k)(Ep,k − Em,k)

+
∑
n/∈Dm

〈φn,k|qv̂|φp,k〉 〈φm,k|qv̂|φn,k〉
(Em,k − En,k)(Em,k − Ep,k)

+
∑

n/∈Dp,m

〈φn,k|q1v̂|φp,k〉
Ep,k − En,k

〈φm,k|qv̂|φn,k〉
Em,k − En,k

γ′′p,n(q1) =
∑
m/∈Dp

〈φm,k|q1v̂|φn,k〉 〈φp,k|q1v̂|φm,k〉
(Ep,k − Em,k)(Ep,k − En,k)

(B.13)
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After some lengthy calculation and having obtained an expression proportional to q q1q2, we can
write for LEO,

T 3bnd
intra(q̂, q̂1, q̂2, ω, 0) = 〈φn,k|iqr̂|φm,k〉 〈φm,k|iq̂2r̂|φp,k〉 〈φp,k|iq̂1r̂|φn,k〉

×
[

(fn − fm)(En,k − Ep,k)

(En,k − Em,k + ω + iη)2(En,k − Em,k)
−

(fn − fm)(Ep,k − Em,k)

(En,k − Em,k + ω + iη)(En,k − Em,k)2

−
(fn − fp)(Em,k − Ep,k)

(En,k − Ep,k + ω + iη)(En,k − Ep,k)2
+

(fn − fp)(En,k − Em,k)

(Ep,k − En,k + ω + iη)(En,k − Ep,k)2

−
(fn − fm)(En,k − Ep,k)

(Em,k − En,k + ω + iη)(En,k − Em,k)2

]
+ 〈φn,k|iqr̂|φm,k〉 〈φm,k|iq̂1r̂|φp,k〉 〈φp,k|iq̂2r̂|φn,k〉

[
−

(fn − fm)(Ep,k − Em,k)

(En,k − Em,k + ω + iη)2(En,k − Em,k)

+
(fn − fm)(En,k − Ep,k)

(En,k − Em,k + ω + iη)(En,k − Em,k)2
+

(fn − fp)(Em,k − Ep,k)

(Ep,k − En,k + ω + iη)(En,k − Ep,k)2

−
(fn − fp)(En,k − Em,k)

(En,k − Ep,k + ω + iη)(En,k − Ep,k)2
+

(fn − fm)(En,k − Ep,k)

(En,k − Em,k + ω + iη)(En,k − Em,k)2

]
(B.14)

B.2 Two-band term

Let us now consider the two-band contribution of the intra term,

T 2bnd
intra(q,q1,q2, ω1, ω2) = (fn − fm)

{
b′n,m(q,q2,q1)c′′m,n(q1) + b′′n,m(q,q2,q1) c′m,n(q1)

}
(ω1 + ω2 + 2iη)(En,k − Em,k + ω1 + iη)

+ (fn − fm)
a′n,m(q)

{
c′′m,n(q1)− b′′m,n(q,q1,q2)

}
(En,k − Em,k + ω1 + ω2 + 2iη)(En,k − Em,k + ω1 + iη)

+ (fn − fm)

{
b′n,m(q,q2,q1) c′′m,n(q1) + b′′n,m(q,q2,q1) c′m,n(q1)

}
(ω1 + ω2 + 2iη)(Em,k − En,k + ω2 + iη)

+
(
(q1, ω1)↔ (q2, ω2)

)
, (B.15)

where, here, b′′ and c′′ only contain the two-band part:

c′′m,n(q1) = q1∆nm,k
〈φm,k|q1v̂|φn,k〉
(Em,k − En,k)2

+

〈
φm,k

∣∣− i
2 [q1r̂,q1v̂]

∣∣φn,k〉
Em,k − En,k

− 1

2

∑
m/∈Dm

|〈φm,k|q1v̂|φm,k〉|2

(Em,k − Em,k)2
δmn

b′′m,n(q,q1,q2) = q2∆m,n,k
〈φm,k|q2v̂|φn,k〉
(En,k − Em,k)2

+

〈
φm,k

∣∣− i
2 [q2r̂,q2v̂]

∣∣φn,k〉
En,k − Em,k

+ q∆nm,k
〈φm,k|qv̂|φn,k〉
(Em,k − En,k)2

+

〈
φm,k

∣∣− i
2 [qr̂,qv̂]

∣∣φn,k〉
Em,k − En,k

− 1

2

∑
m/∈Dm

|〈φm,k|q2v̂|φn,k〉|2

(En,k − Em,k)2
δmn −

1

2

∑
m/∈Dm

|〈φm,k|qv̂|φm,k〉|2

(Em,k − Em,k)2
δmn

(B.16)
with ∆nm,k = 〈φn,k|v̂|φn,k〉 − 〈φm,k|v̂|φm,k〉. These terms contain the commutator [r̂, v̂] that will give
extra-contributions if a scissor is present. The expression for LEO is

T 2bnd
intra(q̂, q̂1, q̂2, ω, 0) =

−
q̂1∆nm,k 〈φn,k|iq̂r̂|φm,k〉 〈φm,k|iq̂2r̂|φn,k〉

(En,k − Em,k + ω + iη)(En,k − Em,k)

[
(fn − fm)

(En,k − Em,k + ω + iη)
+

2(fn − fm)

(En,k − Em,k)

]
−

q̂2∆nm,k 〈φn,k|iq̂r̂|φm,k〉 〈φm,k|iq̂1r̂|φn,k〉
(En,k − Em,k + ω + iη)(En,k − Em,k)

[
(fn − fm)

(En,k − Em,k + ω + iη)
+

2(fn − fm)

(En,k − Em,k)

]
, (B.17)
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which is symmetric in (q1,q2). We now consider the term with the energy correction,

T 2bnd
ene (q,q1,q2, ω1, ω2) = (fn − fp)

b′n,p(q,q2,q1) c′p,n(q1) qE
(1)
n,k

(ω1 + ω2 + 2iη)2(En,k − Ep,k + ω1 + iη)

+ (fn − fp)
b′n,p(q,q2,q1) c′p,n(q1) q1E

(1)
p,k

(ω1 + ω2 + 2iη)(En,k − Ep,k + ω1 + iη)2

+
(fn − fm) a′n,m(q) c′m,n(q1) qE

(1)
m,k

(En,k − Em,k + ω1 + ω2 + 2iη)2(En,k − Em,k + ω1 + iη)

+
(fn − fm) a′n,m(q) c′m,n(q1) q1E

(1)
m,k

(En,k − Em,k + ω1 + ω2 + 2iη)(En,k − Em,k + ω1 + iη)2

+
(fn − fp) b′n,p(q,q2,q1) c′p,n(q1) qE

(1)
n,k

(ω1 + ω2 + 2iη)2(Ep,k − En,k + ω2 + iη)

+
(fn − fp) b′n,p(q,q2,q1) c′p,n(q1)

(
q E

(1)
n,k − q1E

(1)
p,k

)
(ω1 + ω2 + 2iη)(Ep,k − En,k + ω2 + iη)2

+
(fm − fn) a′n,m(q) b′m,n(q,q2,q1) qE

(1)
m,k

(En,k − Em,k + ω1 + ω2 + 2iη)2(En,k − Em,k + ω2 + iη)

+
(fm − fn) a′n,m(q) b′m,n(q,q2,q1)

(
q E

(1)
m,k − q1E

(1)
n,k

)
(En,k − Em,k + ω1 + ω2 + 2iη)(En,k − Em,k + ω2 + iη)2

+
(
(q1, ω1)↔ (q2, ω2)

)
, (B.18)

with qE
(1)
n,k = 〈φn,k|qv̂|φn,k〉. After some algebra, we get, for LEO,

T 2bnd
ene (q̂, q̂1, q̂2, ω, 0) = (fn − fm)

q̂∆nm,k 〈φn,k|iq̂2r̂|φm,k〉 〈φm,k|iq̂1r̂|φn,k〉
(En,k − Em,k + ω + iη)(En,k − Em,k)2

− q̂2∆nm,k
〈φn,k|iq̂r̂|φm,k〉 〈φm,k|iq̂1r̂|φn,k〉

(En,k − Em,k + ω + iη)

[
(fn − fm)

(En,k − Em,k)2

+
(fn − fm)

(En,k − Em,k + ω + iη)(En,k − Em,k)
+

(fn − fm)

(En,k − Em,k + ω + iη)2

]
− (fn − fm)

q̂1∆nm,k 〈φn,k|iq̂r̂|φm,k〉 〈φm,k|iq̂2r̂|φn,k〉
(En,k − Em,k + ω + iη)(En,k − Em,k)2

(B.19)

The two-band terms containing a square or cube in the denominator of the type (En,k−Em,k+ω+iη)2

are recast using equation (4.32). For instance, let us consider the following term

Ia = (fn − fm)
q2∆nm,k 〈φn,k|qv̂|φm,k〉 〈φm,k|q1v̂|φn,k〉
(En,k − Em,k + ω + iη)2(En,k − Em,k)3

. (B.20)

Using equation (4.32) and the relation on the derivative fg′ = [fg]′ − f ′g, we get

Ia = −q2
∂

∂k
(fn − fm)

〈φn,k|qv̂|φm,k〉 〈φm,k|q1v̂|φn,k〉
(En,k − Em,k + ω + iη)(En,k − Em,k)3

+
1

(En,k − Em,k + ω + iη)
q2

∂

∂k
(fn − fm)

〈φn,k|qv̂|φm,k〉 〈φm,k|q1v̂|φn,k〉
(En,k − Em,k)3

(B.21)

The first term of (B.21) corresponds to the gradient of a function periodic throughout the BZ. Therefore
the sum over k of this term is zero. From the k · p perturbation theory, we know the derivative of the
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velocity operator to be

q
∂

∂k
〈φn,k|q1v̂|φm,k〉 = −〈φn,k|[iqr̂,q1v̂]|φm,k〉 −

q1∆nm,k 〈φn,k|qv̂|φm,k〉
En,k − Em,k

+
∑

p/∈Dn,Dm

[
〈φn,k|q1v̂|φp,k〉 〈φp,k|qv̂|φm,k〉

Em,k − Ep,k
+
〈φn,k|qv̂|φp,k〉 〈φp,k|q1v̂|φm,k〉

En,k − Ep,k

]
, (B.22)

which contains the commutator [r̂, v̂] that will also give extra-contributions when applying a scissor
operator on the Hamiltonian. From equation (B.21) and (B.22), we obtain a new two-band term

Ia,2bnd = 3(fn − fm)
q2∆nm,k 〈φn,k|iqr̂|φm,k〉 〈φm,k|iq1r̂|φn,k〉
(En,k − Em,k + ω + iη)(En,k − Em,k)2

+ (fn − fm)
q∆nm,k 〈φn,k|iq2r̂|φm,k〉 〈φm,k|iq1r̂|φn,k〉
(En,k − Em,k + ω + iη)(En,k − Em,k)2

+ (fn − fm)
q1∆nm,k 〈φn,k|iqr̂|φm,k〉 〈φm,k|iq2r̂|φn,k〉
(En,k − Em,k + ω + iη)(En,k − Em,k)2

, (B.23)

and a new three-band contribution

Ia,3bnd = (fn − fp)
〈φn,k|iqr̂|φm,k〉 〈φm,k|iq2r̂|φp,k〉 〈φp,k|iq1r̂|φn,k〉 (En,k − Em,k)

(En,k − Ep,k + ω + iη)(En,k − Ep,k)2

− (fp − fm)
〈φn,k|iqr̂|φm,k〉 〈φm,k|iq1r̂|φp,k〉 〈φp,k|iq2r̂|φn,k〉 (En,k − Em,k)

(Ep,k − Em,k + ω + iη)(Ep,k − Em,k)2

+ (fn − fm)
〈φn,k|iqr̂|φm,k〉 〈φm,k|iq1r̂|φp,k〉 〈φp,k|iq2r̂|φn,k〉 (Ep,k − Em,k)

(En,k − Em,k + ω + iη)(En,k − Em,k)2

− (fn − fm)
〈φn,k|iqr̂|φm,k〉 〈φm,k|iq2r̂|φp,k〉 〈φp,k|iq1r̂|φn,k〉 (En,k − Ep,k)

(En,k − Em,k + ω + iη)(En,k − Em,k)2
(B.24)

At this point, assembling all the terms will give us the same expression as the one obtained in the
calculation carried out using the current density, in equation (C.18). Continuing this development for
all the problematic two-band terms will lead to equation (4.33).

B.3 Scissor

The addition of a scissor means that we need to reconsider all the terms that contained the commutator
[r̂, v̂] and were, so far, neglected. For the second-order calculation, it means looking at the commutator
terms in b′′ and c′′ that intervened in T 2bnd

intra and the one appearing in the derivative of the matrix
elements, shown in equation (B.22). For the remaining part of the formula, the energies are replaced
by scissored energies and there is no change in the matrix elements since only the ones of the position
operator and the diagonal ones of the velocity operator appeared in the final form of the expression.

To express the scissored commutator, we use the equivalence in the matrix elements of r̂, written
in equation (4.36), which leads to an equivalence in its derivative:

q1
∂

∂k
〈φn,k|iq2r̂|φm,k〉 = q1

∂

∂k

〈
φn,k

∣∣q2v̂
Σ
∣∣φm,k〉

EΣ
n,k − EΣ

m,k

= q1
∂

∂k

〈φn,k|q2v̂|φm,k〉
En,k − Em,k

, (B.25)
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with

q1
∂

∂k

〈
φn,k

∣∣q2v̂
Σ
∣∣φm,k〉

EΣ
n,k − EΣ

m,k

= −q1∆nm,k
〈φn,k|iq2r̂|φm,k〉
EΣ
n,k − EΣ

m,k

− q2∆nm,k
〈φn,k|iq1r̂|φm,k〉
EΣ
n,k − EΣ

m,k

−
〈
φn,k

∣∣[iq1r̂,q2v̂
Σ
]∣∣φm,k〉

EΣ
n,k − EΣ

m,k

−
∑

p/∈Dn,Dm

〈φn,k|iq2r̂|φp,k〉 〈φp,k|iq1r̂|φm,k〉
EΣ
n,k − EΣ

p,k

EΣ
n,k − EΣ

m,k

+
∑

p/∈Dn,Dm

〈φn,k|iq1r̂|φp,k〉 〈φp,k|iq2r̂|φm,k〉
EΣ
p,k − EΣ

m,k

EΣ
n,k − EΣ

m,k

(B.26)

From equation (B.25) and (B.26), we get an expression for the scissored commutator that only depends
on elements of r̂ that we know how to evaluate and not of v̂Σ,〈

φn,k
∣∣[iq1r̂,q2v̂

Σ
]∣∣φm,k〉 = −q1∆nm,k 〈φn,k|iq2r̂|φm,k〉 − q2∆nm,k 〈φn,k|iq1r̂|φm,k〉

−
∑

p/∈Dn,Dm

〈φn,k|iq2r̂|φp,k〉 〈φp,k|iq1r̂|φm,k〉 (EΣ
n,k − EΣ

p,k)

+
∑

p/∈Dn,Dm

〈φn,k|iq1r̂|φp,k〉 〈φp,k|iq2r̂|φm,k〉 (EΣ
p,k − EΣ

m,k)

+ q1∆nm,k 〈φn,k|iq2r̂|φm,k〉
EΣ
n,k − EΣ

m,k

En,k − Em,k
+ q2∆nm,k 〈φn,k|iq1r̂|φm,k〉

EΣ
n,k − EΣ

m,k

En,k − Em,k

+ δnm
EΣ
n,k − EΣ

m,k

En,k − Em,k
+

∑
p/∈Dn,Dm

〈φn,k|iq2r̂|φp,k〉 〈φp,k|iq1r̂|φm,k〉
(EΣ

n,k − EΣ
m,k)(En,k − Ep,k)

En,k − Em,k

−
∑

p/∈Dn,Dm

〈φn,k|iq1r̂|φp,k〉 〈φp,k|iq2r̂|φm,k〉
(EΣ

n,k − EΣ
m,k)(Ep,k − Em,k)

En,k − Em,k
(B.27)

Using equation (B.27) to replace all the mentioned commutators and, after some algebra, we obtain
the final equation (4.39) and (4.38) for the three- and two-band term.
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Appendix C

LEO: current density calculation

The general formula for the second-order density response function obtained from the current is

χρρρ(q,q1,q2, ω1, ω2) =
1

V

∑
k

∑
n,m,p

1

ωω1ω2

〈φn,k|qv̂|φm,k〉
En,k − Em,k + ω1 + ω2 + 2iη

×
[
〈φm,k|q1v̂|φp,k〉 〈φp,k|q2v̂|φn,k〉

(
fn,k − fp,k

En,k − Ep,k + ω2 + iη
+

fm,k − fp,k
Ep,k − Em,k + ω1 + iη

)
+ 〈φm,k|q2v̂|φp,k〉 〈φp,k|q1v̂|φn,k〉

(
fn,k − fp,k

En,k − Ep,k + ω1 + iη
+

fm,k − fp,k
Ep,k − Em,k + ω2 + iη

)]
− 1

2V

1

ωω1ω2

∑
k

∑
n,m

(fn,k − fm,k)
〈φn,k|qv̂|φm,k〉

En,k − Em,k + ω1 + ω2 + 2iη

×
(
〈φm,k|[iq1r̂,q2v̂]|φn,k〉+ 〈φm,k|[iq2r̂,q1v̂]|φn,k〉

)
− 1

V

1

ωω1ω2

∑
k

∑
n,m

(fn,k − fm,k)

[
〈φm,k|q1v̂|φn,k〉〈φn,k|[iqr̂,q2v̂]|φm,k〉

En,k − Em,k + ω1 + iη

+
〈φm,k|q2v̂|φn,k〉〈φn,k|[iqr̂,q1v̂]|φm,k〉

En,k − Em,k + ω2 + iη

]
− 1

2V

1

ωω1ω2

∑
k

∑
n

fn,k

(
〈φn,k|[qr̂, [q1r̂,q2v̂]]|φn,k〉+ 〈φn,k|[qr̂, [q2r̂,q1v̂]]|φn,k〉

)
(C.1)

Here the permutation
(
(q1, ω1)↔ (q2, ω2)

)
is already included in the formula. If there is no scissor, we

can neglect the terms containing commutator since we neglect the double commutators [iq1r̂, [ir̂, V̂nl]]

coming from the definition of the velocity operator v̂ = p̂− i[r̂, V̂nl] and, for the momentum operator,
we have the relation {

〈φn,k|[iq1r̂,q2p̂]|φm,k〉 = −q2q1δnm

〈φn,k|[qr̂, [q1r̂,q2p̂]]|φn,k〉 = 0
, (C.2)

which is canceled with the difference in occupation numbers (fn,k−fm,k). The formula then becomes

χρρρ(q,q1,q2, ω1, ω2) =
1

V

∑
k

∑
n,m,p

1

ωω1ω2

v̂nm(q)

Enm,k + ω̃1 + ω̃2

×
[
v̂mp(q1)v̂pn(q2)

(
fnp,k

Enp,k + ω̃2
+

fmp,k
Epm,k + ω̃1

)
+ v̂mp(q2)v̂pn(q1)

(
fnp,k

Enp,k + ω̃1
+

fmp,k
Epm,k + ω̃2

)]
,

(C.3)
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using the short notation of equation (4.34). For LEO, we want to set ω2 = 0, so we first need to remove
the divergence in ω2, which is done using the relation

lim
ω2→0

χ(3)(ω1, ω2) = lim
ω2→0

1

2

[
χ(3)(ω1, ω2) + χ(3)(ω1,−ω2)

]
. (C.4)

We then obtain the following ω-divergent LEO expression:

χ2bnd
0 (q̂, q̂1, q̂2, ω, 0) =

1

V

∑
k

∑
n,m,p

[
− 1

ω3
v̂nm,k(q̂)v̂mp,k(q̂1)v̂pn,k(q̂2)

(
ωfnp

(Enm,k + ω̃)2Enp,k

+
ωfnp

(Enm,k + ω̃)E2
np,k

+
ωfmp

(Enm,k + ω̃)2(Epm,k + ω̃)
+

fnp
(Enm,k + ω̃)Enp,k

+
fmp

(Enm,k + ω̃)(Epm,k + ω̃)

)
− 1

ω3
v̂nm,k(q̂) v̂mp,k(q̂2) v̂pn,k(q̂1)

(
ωfnp

(Enm,k + ω̃)2(Enp,k + ω̃)
+

ωfmp
(Enm,k + ω̃)2Epm,k

+
ωfmp

(Enm,k + ω̃)E2
pm,k

+
fnp

(Enm,k + ω̃)(Enp,k + ω̃)
+

fmp
(Enm,k + ω̃)Epm,k

)]
(C.5)

The spectrum obtained from this ω-divergent formula is then compared (in Figure C.1) with the spec-
trum from the divergence-free formula in the density calculation since they should be similar at high
energies. There is a perfect agreement above the band-gap region and the effect of the divergence is

2 4 6 8 10 12
0

50

100

ω (eV)

|χ
(2

)
x
y
z
(−
ω

;ω
,0

)|
(a

.u
.) 3C-SiC

Figure C.1: LEO spectra of cubic silicon carbide (3C-SiC) generated from the ω-divergent formula
(equation (C.5), green curve) and the divergence-free formula (equation (4.33), red dashed curve).

only visible at very small frequency in a similar fashion as SHG (see 2nd row of Figure 4.9).
To get rid of the remaining divergence, we decompose f1 and f2, defined as

χ
(2)
0 (q̂, q̂1, q̂2, ω, 0) =

1

V

∑
k

∑
n,m,p

1

ω3
v̂nm(q̂)

[
v̂mp(q̂1)v̂pn(q̂2)f1(ω, 0)+v̂mp(q̂2)v̂pn(q̂1)f2(0, ω)

]
(C.6)

with {
f1(ω, 0) = A1 + ωB1 + ω2C1 + ω3F1(ω)

f2(0, ω) = A2 + ωB2 + ω2C2 + ω3F2(ω)
, (C.7)
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where A corresponds to f(0, 0) and B and C are the first and second derivative of f with respect to ω,
taken at ω = 0:

A1 = − fnp
Enm,kEnp,k

− fmp
Enm,kEpm,k

; A2 = − fnp
Enm,kEnp,k

− fmp
Enm,kEpm,k

(C.8a)

B1 = − fnp
Enm,kE

2
np,k

+
fmp

Enm,kE
2
pm,k

; B2 =
fnp

Enm,kE
2
np,k

− fmp
Enm,kE

2
pm,k

(C.8b)

C1 =
fnp

Enm,kEnp,k

(
1

Enm,kEnp,k
+

1

E2
nm,k

)
+

fmp
Enm,kEpm,k

(
− 1

E2
pm,k

+
1

E2
nm,k

)
;

C2 =
fnp

Enm,kEnp,k

(
− 1

E2
np,k

+
1

E2
nm,k

)
+

fmp
Enm,kEpm,k

(
1

Enm,kEpm,k
+

1

E2
nm,k

) (C.8c)

F1(ω) = − fnm
(Enm,k + ω̃)E2

nm,kEnp,k

(
1

Enp,k
+

1

Enm,k

)
− fnm

(Enm,k + ω̃)2E2
nm,kEnp,k

+
fmp

(Epm,k + ω̃)E2
pm,kEnp,k

(
1

Epm,k
− 1

Enp,k

)
;

F2(ω) =
fnm

(Enm,k + ω̃)E2
nm,kEpm,k

(
1

Enm,k
+

1

Epm,k

)
+

fnm
(Enm,k + ω̃)2E2

nm,kEpm,k

+
fnp

(Enp,k + ω̃)Epm,kE
2
np,k

(
1

Enp,k
− 1

Epm,k

)
(C.8d)

AllAi,Bi, Ci terms need to vanish for the divergence inω3 to be removed. The terms associated withA

and C are canceled with the corresponding terms in the permutation due to time-reversal symmetry,
in the same fashion as for SHG, detailed in Ref. [44]:

χA1
ρρρ =

∑
k

∑
n,m,p

v̂nm(q̂)v̂mp(q̂1)v̂pn(q̂2)

[
− fnp
Enm,kEnp,k

− fmp
Enm,kEpm,k

]
= −χA2

ρρρ

χC1
ρρρ =

∑
k

∑
n,m,p

v̂nm(q̂)v̂mp(q̂1)v̂pn(q̂2)

[
fnp

Enm,kEnp,k

(
1

Enm,kEnp,k
+

1

E2
nm,k

)

+
fmp

Enm,kEpm,k

(
− 1

E2
pm,k

+
1

E2
nm,k

)]
= −χC2

ρρρ

(C.9)

The same treatment for the term associated with B does not lead to any cancellation:

χB1
ρρρ =

∫
dk
∑
n,m,p

v̂nm,k(q)v̂mp,k(q1)v̂pn,k(q2)

[
fnp

Enm,kE
2
np,k

− fmp
Enm,kE

2
pm,k

]
= χB2

ρρρ (C.10)

We then need to prove that B is zero in a different way. The two- and three-band terms of B are
explicitly written,

χB1
ρρρ + χB2

ρρρ =

∫
dk
∑
n,m,p

v̂nm,k(q)

[
∆mn,k(q1)v̂mn,k(q2)

fnm
E3
nm,k

+ v̂mn,k(q1)∆nm,k(q2)
fnm
E3
nm,k

+σnmpv̂mp,k(q1)v̂pn,k(q2)

(
fnp

Enm,kE
2
np,k

− fmp
Enm,kE

2
pm,k

)

+σnmpv̂pn,k(q1)v̂mp,k(q2)

(
− fnp
Enm,kE

2
np,k

+
fmp

Enm,kE
2
pm,k

)]
, (C.11)
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where σnmp is 1 if n,m, p are different and zero otherwise.
We then consider the second-order tensor

↔
T

↔
T (q1,q2) =

∑
n,m

fnm
v̂nm,k(q1) v̂mn,k(q2)

E2
nm,k

. (C.12)

From the k · p perturbation theory, we know the derivative of the velocity operator to be

q
∂

∂k
v̂nm,k(q1) = qq1δnm −

v̂nm,k(q)∆nm,k(q1)

Enm,k
+

∑
p/∈Dn,Dm

[
v̂np,k(q1)v̂pm,k(q)

Emp,k
+

v̂np,k(q)v̂pm,k(q1)

Enp,k

]
(C.13)

Using equation (C.12) and (C.13), we can write the derivative with respect to k of the tensor T ,

q
∂

∂k
T (q1,q2) =

∑
n,m,p

σnmp

[
−fmp

v̂nm,k(q)v̂mp,k(q2)v̂pn,k(q1)

Enm,kE
2
pm,k

− fnp
v̂nm,k(q)v̂mp,k(q1)v̂pn,k(q2)

Enm,kE
2
np,k

+ fnm
v̂nm,k(q)∆nm,k(q1)v̂mn,k(q2)

E3
nm,k

+ fnp
v̂nm,k(q)v̂mp,k(q2)v̂pn,k(q1)

Enm,kE
2
np,k

+ fmp
v̂nm,k(q)v̂mp,k(q1)v̂pn,k(q2)

Enm,kE
2
pm,k

− fnm
v̂nm,k(q)v̂mn,k(q1) ∆nm,k(q2)

E3
nm,k

−2fnm
∆nm,k(q)v̂nm,k(q1)v̂mn,k(q2)

E3
nm,k

]
(C.14)

This leads us to the relation

χB1
ρρρ + χB2

ρρρ =
1

2

∫
dk

[
q
∂

∂k

(
T (q1,q2)− T (q2,q1)

)
−
∑
n,m

2fnm
∆nm,k(q)

E3
nm,k

×
(
v̂mn,k(q1)v̂nm,k(q2) + v̂nm,k(q1)v̂mn,k(q2)

)]
(C.15)

The second term vanishes from time-reversal symmetry. As for the first term, since
↔
T is a periodic

function over the BZ, its gradient vanishes when integrated over the BZ, as explained in Ref. [44].
Therefore the term associated with B is also zero. As a consequence, equation (C.6) becomes

χ
(2)
0 (q̂, q̂1, q̂2, ω, 0) =

1

V

∑
k

∑
n,m,p

v̂nm(q̂)
[
v̂mp(q̂1)v̂pn(q̂2) F1(ω) + v̂mp(q̂2)v̂pn(q̂1) F2(ω)

]
(C.16)

We separate the two- and three-band contributions and replace the matrix elements of the velocity by
those of the position operator, defined as

r̂nm(q) = 〈φn,k|iqr̂|φm,k〉 =
〈φn,k|qv̂|φm,k〉

Enm,k
= v̂nm(q), (C.17)
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which give us

χρρρ(q̂, q̂1, q̂2, ω, 0) =
1

V

∑
k

∑
n,m,p

σnmp

[
r̂nm,k(q̂) r̂mp,k(q̂1) r̂pn,k(q̂2)

(
− fnp

(Enm,k + ω̃)Enp,k

− fmp
(Enm,k + ω̃)(Epm,k + ω̃)

+
fnmEnp,k

(Enm,k + ω̃)E2
nm,k

−
fnmEpm,k

(Enm,k + ω̃)2Enm,k
+

fmpEnm,k
(Epm,k + ω̃)E2

pm,k

− fmp
(Epm,k + ω̃)Epm,k

)
+ r̂nm,k(q̂) r̂pn,k(q̂1) r̂mp,k(q̂2)

(
fnpEnm,k

(Enp,k + ω̃)E2
np,k

− fnp
(Enp,k + ω̃)Enp,k

− fnp
(Enm,k + ω̃)(Enp,k + ω̃)

−
fnmEpm,k

(Enm,k + ω̃)E2
nm,k

+
fnmEnp,k

(Enm,k + ω̃)2Enm,k
− fmp

(Enm,k + ω̃)Epm,k

)

− r̂nm,k(q̂) ∆nm,k(q̂1) r̂mn,k(q̂2)

(
2fnm

(Enm,k + ω̃)E2
nm,k

+
fnm

(Enm,k + ω̃)2Enm,k

)

− r̂nm,k(q̂) r̂mn,k(q̂1) ∆nm,k(q̂2)

(
fnm

(Enm,k + ω̃)2Enm,k
+

fnm
(Enm,k + ω̃)3

)
+∆nm,k(q̂) r̂mn,k(q̂1) r̂nm,k(q̂2)

2fnm
(Enm,k + ω̃)E2

nm,k

]
(C.18)

The two-band term containing a square term in the denominator of the type (Enm,k + ω̃)2 are known
to be harder to converge than the rest. To avoid this issue those terms are recast as sum of two- and
three-band term, using the fact that

q
∂

∂k

1

(Enm,k + ω̃)
= −

∆nm,k(q)

(Enm,k + ω̃)2
; q

∂

∂k

1

(Enm,k + ω̃)2
= −2

∆nm,k(q)

(Enm,k + ω̃)3
(C.19)

and following the same procedure described in section B.2, which leads to the final expression (4.33).
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Appendix D

Perturbation theory to the third order:
current density calculation

The general definition of the induced current density, obtain through the continuity equation, is

jind(r, t) =
−i
2

∑
i

fi (φ∗i (r, t) [r̂, H]φi(r, t)− φi(r, t) [r̂, H]φ∗i (r, t)) (D.1)

Under a perturbation H(1)
I +H

(2)
I +H

(3)
I , the wavefunctions φi becomes φi + δφi, where

δφi(r, t) =
∑
j

(
c

(1)
j (t) + c

(2)
j (t) + d

(2)
j (t) + c

(3)
j (t) + d

(3)
j (t) + e

(3)
j (t)

)
φj(r, t) (D.2)

and

c
(1)
j (t) = −i

∫
dt′ θ(t− t′)

〈
φj(t

′)
∣∣H(1)

I (t′)
∣∣φi(t′)〉 (D.3a)

c
(2)
j (t) = −

∑
k

∫
dt′θ(t− t′)

∫
dt′′θ(t′ − t′′)

〈
φj(t

′)
∣∣H(1)

I (t′)
∣∣φk(t′)〉 〈φk(t′′)∣∣H(1)

I (t′′)
∣∣φi(t′′)〉 (D.3b)

d
(2)
j (t) = −i

∫
dt′θ(t− t′)

〈
φj(t

′)
∣∣H(2)

I (t′)
∣∣φi(t′)〉 (D.3c)

c
(3)
j (t) = i

∑
k

∑
l

∫
dt′ θ(t− t′)

∫
dt′′ θ(t′ − t′′)

∫
dt′′′ θ(t′′ − t′′′)

〈
φj(t

′)
∣∣H(1)

I (t′)
∣∣φk(t′)〉〈

φk(t
′′)
∣∣H(1)

I (t′′)
∣∣φl(t′′)〉 〈φl(t′′′)∣∣H(1)

I (t′′′)
∣∣φi(t′′′)〉 (D.3d)

d
(3)
j (t) = −

∑
k

∫
dt′θ(t− t′)

∫
dt′′θ(t′ − t′′)

[〈
φj(t

′)
∣∣H(1)

I (t′)
∣∣φk(t′)〉 〈φk(t′′)∣∣H(2)

I (t′′)
∣∣φi(t′′)〉

+
〈
φj(t

′)
∣∣H(2)

I (t′)
∣∣φk(t′)〉 〈φk(t′′)∣∣H(2)

I (t′′)
∣∣φi(t′′)〉]

(D.3e)

e
(3)
j (t) = −i

∫
dt′ θ(t− t′)

〈
φj(t

′)
∣∣∣H(3)

I (t′)
∣∣∣φi(t′)〉 (D.3f)

The third-order current density is

j
(3)
ind(r, t) = j

(3)
Z (r, t) + j

(3)
O (r, t) + j

(3)
D (r, t) + j

(3)
T (r, t) (D.4)
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where

j
(3)
Z (r, t) =

−i
2

∑
i

fi

[
φ∗i (r, t)

[
r̂, H

(0)
I

]
δφ

(3)
i (r, t)− φi(r, t)

[
r̂, H

(0)
I

]
δφ

(3) ∗
i (r, t)

+δφ
(3) ∗
i (r, t)

[
r̂, H

(0)
I

]
φi(r, t)− δφ(3)

i (r, t)
[
r̂, H

(0)
I

]
φ∗i (r, t)

+δφ
(1) ∗
i (r, t)

[
r̂, H

(0)
I

]
δφ

(2)
i (r, t)− δφ(1)

i (r, t)
[
r̂, H

(0)
I

]
δφ

(2) ∗
i (r, t)

+δφ
(2) ∗
i (r, t)

[
r̂, H

(0)
I

]
δφ

(1)
i (r, t)− δφ(2)

i (r, t)
[
r̂, H

(0)
I

]
δφ

(1) ∗
i (r, t)

]
(D.5a)

j
(3)
O (r, t) =

−i
2

∑
i

fi

[
φ∗i (r, t)

[
r̂, H

(1)
I

]
δφ

(2)
i (r, t)− φi(r, t)

[
r̂, H

(1)
I

]
δφ

(2) ∗
i (r, t)

+δφ
(2) ∗
i (r, t)

[
r̂, H

(1)
I

]
φi(r, t)− δφ(2)

i (r, t)
[
r̂, H

(1)
I

]
φ∗i (r, t)

+δφ
(1) ∗
i (r, t)

[
r̂, H

(1)
I

]
δφ

(1)
i (r, t)− δφ(1)

i (r, t)
[
r̂, H

(1)
I

]
δφ

(1) ∗
i (r, t)

] (D.5b)

j
(3)
D (r, t) =

−i
2

∑
i

fi

[
φ∗i (r, t)

[
r̂, H

(2)
I

]
δφ

(1)
i (r, t)− φi(r, t)

[
r̂, H

(2)
I

]
δφ

(1) ∗
i (r, t)

+δφ
(1) ∗
i (r, t)

[
r̂, H

(2)
I

]
φi(r, t)− δφ(1)

i (r, t)
[
r̂, H

(2)
I

]
φ∗i (r, t)

] (D.5c)

j
(3)
T (r, t) =

−i
2

∑
i

fi

[
φ∗i (r, t)

[
r̂, H(3)

]
φi(r, t)− φi(r, t)

[
r̂, H(3)

]
φ∗i (r, t)

]
(D.5d)

Calculation of j(3)
T

Using equation 3.35 and with φi(r, t) = e−iEitφi(r), one gets, in the frequency domain,

j
(3)
T (r, ω) = − i

6c3

∫
dω′

∫
dω′′

∫
dω′′′

∑
i

fi φ
∗
i (r)

[
r̂,
[
A(r, ω′)r̂,

[
A(r, ω′′)r̂,A(r, ω′′′)v

]]]
φi(r)

× δ(ω − ω′ − ω′′ − ω′′′) (D.6)

In the gauge ϕP = 0, we have, in the reciprocal space,

EP (k, ω) =
iω

c
AP (k, ω), (D.7)

that gives

j
(3)
T (k, ω) =

1

V

∑
k′,k′′,k′′′

1

6

∫
dω′

∫
dω′′

∫
dω′′′ δ(ω − ω′ − ω′′ − ω′′′) 1

ω′ω′′ω′′′

∑
i

fi〈
φi

∣∣∣e−ikr [r̂, [eik′rEP (k′, ω′)r̂,
[
eik
′′rEP (k′′, ω′′)r̂, eik

′′′rEP (k′′′, ω′′′)v
]]]∣∣∣φi〉 (D.8)

Calculation of j(3)
D

j
(3)
D (r, t) =

−i
2

∑
ijk

fi

(
c

(1)
j (t) φ∗i (r, t)

[
r, H

(2)
I (r, t)

]
φj(r, t)− c(1) ∗

j (t) φi(r, t)
[
r, H

(2)
I (r, t)

]
φ∗j (r, t)

+c
(1) ∗
j (t) φ∗j (r, t)

[
r, H

(2)
I (r, t)

]
φi(r, t)− c(1)

j (t) φj(r, t)
[
r, H

(2)
I (r, t)

]
φ∗i (r, t)

)
(D.9)
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Using equation (D.3a) and (3.35), one gets, in the frequency domain,

j
(3)
D (r, ω) = lim

η→0

1

2c3

∑
ijk

∫
dr′
∫
dω′

∫
dω′′ δ(ω − ω′ − ω′′ − ω′′′) fi − fj

Ei − Ej + ω′ + iη

× φ∗j (r′) AP (r′, ω′)v̂ φi(r
′)φ∗i (r)

[
r̂,
[
AP (r, ω′′)r̂,AP (r, ω′′′)v̂

]]
φj(r) (D.10)

After a Fourier transform in the reciprocal space and using equation (D.7), we obtain

j
(3)
D (k, ω) =

1

V

∑
k′,k′′,k′′′

lim
η→0

i

2

∑
ijk

∫
dω′

∫
dω′′ δ(ω − ω′ − ω′′ − ω′′′) fi − fj

ω′ω′′ω′′′(Ei − Ej + ω′ + iη)〈
φi

∣∣∣e−ikr [r̂, [eik′′rEP (k′′, ω′′)r̂, eik
′′′rEP (k′′′, ω′′′)v̂

]]∣∣∣φj〉 〈φj∣∣∣eik′r′EP (k′, ω′)v̂
∣∣∣φi〉 (D.11)

Calculation of j(3)
O

j
(3)
O (r, t) =

−i
2

∑
ijk

fi

(
φ∗i (r, t)

[
r, H

(1)
I (r, t)

] (
c

(2)
j (t) + d

(2)
j (t)

)
φj(r, t)

− φi(r, t)
[
r, H

(1)
I (r, t)

] (
c

(2) ∗
j (t) + d

(2) ∗
j (t)

)
φ∗j (r, t)

+
(
c

(2) ∗
j (t) + d

(2) ∗
j (t)

)
φ∗j (r, t)

[
r, H

(1)
I (r, t)

]
φi(r, t)

−
(
c

(2)
j (t) + d

(2)
j (t)

)
φj(r, t)

[
r, H

(1)
I (r, t)

]
φ∗i (r, t)

+ c
(1) ∗
j (t) φ∗j (r, t)

[
r, H

(1)
I (r, t)

]
c

(1)
k (t) φk(r, t)

−c(1)
j (t) φj(r, t)

[
r, H

(1)
I (r, t)

]
c

(1) ∗
k (t) φ∗k(r, t)

)
(D.12)

Using equation (D.3) and (3.35), one gets

j
(3)
O (r, ω) = lim

η→0

1

c3

∑
ijk

∫
dr′
∫
dr′′

∫
dω′

∫
dω′′

∫
dω′′′ δ(ω − ω′ − ω′′ − ω′′′)

×

[
i
φ∗i (r)

[
r̂,AP (r, ω′′′)v̂

]
φj(r)

Ei − Ej + ω′ + ω′′ + 2iη

(
(fi − fk)

φ∗k(r
′) AP (r′, ω′)v̂ φi(r

′) φ∗j (r
′′) AP (r′′, ω′′)v̂ φk(r

′′)

(Ei − Ek + ω′ + iη)

+(fj − fk)
φ∗k(r

′) AP (r′, ω′)v̂ φi(r
′) φ∗j (r

′′) AP (r′′, ω′′)v̂ φk(r
′′)

(Ek − Ej + ω′′ + iη)

)

+
1

2
(fi − fj)

φ∗i (r)
[
r,AP (r, ω′′)v̂

]
φj(r) φ∗j (r

′)
[
AP (r′, ω′′′)r̂,AP (r′, ω′)v̂

]
φi(r

′)

Ei − Ej + ω′ + ω′′′ + iη

]
(D.13)
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j
(3)
O (k, ω) =

1

V

∑
k′,k′′,k′′′

lim
η→0

∑
ijk

∫
dω′

∫
dω′′

∫
dω′′′ δ(ω − ω′ − ω′′ − ω′′′) 1

ω′ω′′ω′′′−
〈
φi

∣∣∣e−ikr [r̂, eik′′′rEP (k′′′, ω′′′)v̂
]∣∣∣φj〉

Ei − Ej + ω′ + ω′′ + 2iη(fi − fk)

〈
φk

∣∣∣eik′r′EP (k′, ω′)v̂
∣∣∣φi〉〈φj∣∣∣eik′′r′′EP (k′′, ω′′)v̂

∣∣∣φk〉
(Ei − Ek + ω′ + iη)

+(fj − fk)

〈
φk

∣∣∣eik′r′EP (k′, ω′)v̂
∣∣∣φi〉〈φj∣∣∣eik′′r′′EP (k′′, ω′′)v̂

∣∣∣φk〉
(Ek − Ej + ω′′ + iη)


+
i

2
(fi − fj)

〈
φi

∣∣∣e−ikr [r, eik′′rEP (k′′, ω′′)v̂
]∣∣∣φj〉〈φj∣∣∣[eik′′′r′EP (k′′′, ω′′′)r̂, eik

′r′EP (k′, ω′)v̂
]∣∣∣φi〉

Ei − Ej + ω′ + ω′′′ + iη


(D.14)

Calculation of j(3)
Z

j
(3)
Z (r, t) =

1

2

∑
ijk

fi

[(
c

(3)
j (t) + d

(3)
j (t) + e

(3)
j (t)

)
φ∗i (r, t) v φj(r, t)

+
(
c

(3) ∗
j (t) + d

(3) ∗
j (t) + e

(3) ∗
j (t)

)
φi(r, t) (vφj(r, t))

∗

+
(
c

(3) ∗
j (t) + d

(3) ∗
j (t) + e

(3) ∗
j (t)

)
φ∗j (r, t) vφi(r, t)

+
(
c

(3)
j (t) + d

(3)
j (t) + e

(3)
j (t)

)
φj(r, t) (vφi(r, t))

∗

+ c
(1) ∗
j (t)

(
c

(2)
k (t) + d

(2)
k (t)

)
φ∗j (r, t) vφk(r, t)

+ c
(1)
j (t)

(
c

(2) ∗
k (t) + d

(2) ∗
k (t)

)
φj(r, t) (vφk(r, t))

∗

+
(
c

(2) ∗
j (t) + d

(2) ∗
j (t)

)
c

(1)
k (t) φ∗j (r, t) vφk(r, t)

+
(
c

(2)
j (t) + d

(2)
j (t)

)
c

(1) ∗
k (t) φj(r, t) (vφk(r, t))

∗
]

(D.15)

j
(3)
Z (r, ω) = − lim

η→0

1

2c3

∑
ijkl

∫
dr′ dr′′ dr′′′

∫
dω′

∫
dω′′

∫
dω′′′ δ(ω − ω′ − ω′′ − ω′′′)

× φ∗i (r) vφj(r) + φj(r) (vφi(r))∗

Ei − Ej + ω′ + ω′′ + ω′′′ + 3iη[
(fi − fk)

φ∗j (r
′) AP (r′, ω′)v φk(r

′) φ∗k(r
′′) AP (r′′, ω′′)v φl(r

′′) φ∗l (r
′′′) AP (r′′′, ω′′′)v φi(r

′′′)

(Ei − Ek + ω′′ + ω′′′ + 2iη)(Ei − El + ω′′′ + iη)

+ (fk − fj)
φ∗j (r

′′′) AP (r′′′, ω′′′)v φl(r
′′′) φ∗l (r

′′) AP (r′′, ω′′)v φk(r
′′) φ∗k(r

′) AP (r′, ω′)v φi(r
′)

(Ek − Ej + ω′′ + ω′′′ + 2iη)(El − Ej + ω′′′ + iη)

+ (fk − fl)
φ∗l (r

′′′) AP (r′′′, ω′′′)v φi(r
′′′) φ∗j (r

′) AP (r′, ω′)v φk(r
′) φ∗k(r

′′) AP (r′′, ω′′)v φl(r
′′)

(Ei − El + ω′′′ + iη)(El − Ek + ω′′ + iη)

+(fl − fk)
φ∗j (r

′′′) AP (r′′′, ω′′′)v φl(r
′′′) φ∗l (r

′′) AP (r′′, ω′′)v φk(r
′′) φ∗k(r

′) AP (r′, ω′)v φi(r
′)

(El − Ej + ω′′′ + iη)(Ek − El + ω′′ + iη)

]
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+ lim
η→0

i

4c3

∑
ijk

∫
dr′ dr′′

∫
dω′

∫
dω′′

∫
dω′′′ δ(ω − ω′ − ω′′ − ω′′′) φ

∗
i (r) vφj(r) + φj(r) (vφi(r))∗

Ei − Ej + ω′ + ω′′ + ω′′′ + 2iη[
(fi − fk)

φ∗j (r
′) AP (r′, ω′)v φk(r

′) φ∗k(r
′′)
[
AP (r′′, ω′′′)r̂,AP (r′′, ω′′)v̂

]
φi(r

′′)

Ei − Ek + ω′′ + ω′′′ + iη

+ (fi − fk)
φ∗j (r

′)
[
AP (r′, ω′′′)r̂,AP (r′, ω′)v̂

]
φk(r

′) φ∗k(r
′′) AP (r′′, ω′′)v φi(r

′′)

Ei − Ek + ω′′ + iη

+ (fj − fk)
φ∗j (r

′′)
[
AP (r′′, ω′′′)r̂,AP (r′′, ω′′)v̂

]
φk(r

′′) φ∗k(r
′) AP (r′, ω′)v φi(r

′)

Ek − Ej + ω′′ + ω′′′ + iη

+(fj − fk)
φ∗j (r

′′) AP (r′′, ω′′)v φk(r
′′) φ∗k(r

′)
[
AP (r′, ω′′′)r̂,AP (r′, ω′)v̂

]
φi(r

′)

Ek − Ej + ω′′ + iη

]
(D.16)

j
(3)
Z (k, ω) = − 1

V
lim
η→0

∑
ijkl

∫
dω′

∫
dω′′

∫
dω′′′ δ(ω − ω′ − ω′′ − ω′′′) i

ω′ω′′ω′′′

∑
k′,k′′,k′′′

×

[ 〈
φi
∣∣e−ikr v∣∣φj〉

Ei − Ej + ω′ + ω′′ + ω′′′ + 3iη(fi − fk)

〈
φj

∣∣∣eik′r′EP (k′, ω′)v
∣∣∣φk〉〈φk∣∣∣eik′′r′′EP (k′′, ω′′)v

∣∣∣φl〉〈φl∣∣∣eik′′′r′′′EP (k′′′, ω′′′)v
∣∣∣φi〉

(Ei − Ek + ω′′ + ω′′′ + 2iη)(Ei − El + ω′′′ + iη)

+ (fk − fj)

〈
φj

∣∣∣eik′′′r′′′EP (k′′′, ω′′′)v
∣∣∣φl〉〈φl∣∣∣eik′′r′′EP (k′′, ω′′)v

∣∣∣φk〉〈φk∣∣∣eik′r′EP (k′, ω′)v
∣∣∣φi〉

(Ek − Ej + ω′′ + ω′′′ + 2iη)(El − Ej + ω′′′ + iη)

+ (fk − fl)

〈
φl

∣∣∣eik′′′r′′′EP (k′′′, ω′′′)v
∣∣∣φi〉〈φj∣∣∣eik′r′EP (k′, ω′)v

∣∣∣φk〉〈φk∣∣∣eik′′r′′EP (k′′, ω′′)v
∣∣∣φl〉

(Ei − El + ω′′′ + iη)(El − Ek + ω′′ + iη)

+(fl − fk)

〈
φj

∣∣∣eik′′′r′′′EP (k′′′, ω′′′)v
∣∣∣φl〉〈φl∣∣∣eik′′r′′EP (k′′, ω′′)v

∣∣∣φk〉〈φk∣∣∣eik′r′EP (k′, ω′)v
∣∣∣φi〉

(El − Ej + ω′′′ + iη)(Ek − El + ω′′ + iη)


+
i

2

〈
φi
∣∣e−ikr v∣∣φj〉

Ei − Ej + ω′ + ω′′ + ω′′′ + 2iη(fi − fk)

〈
φj

∣∣∣eik′r′EP (k′, ω′)v
∣∣∣φk〉〈φk∣∣∣[eik′′′r′′EP (k′′′, ω′′′)r̂, eik

′′r′′EP (k′′, ω′′)v̂
]∣∣∣φi〉

Ei − Ek + ω′′ + ω′′′ + iη

+ (fi − fk)

〈
φj

∣∣∣[eir′k′′′EP (k′′′, ω′′′)r̂, eik
′r′EP (k′, ω′)v̂

]∣∣∣φk〉〈φk∣∣∣eik′′r′′EP (k′′, ω′′)v
∣∣∣φi〉

Ei − Ek + ω′′ + iη

+ (fj − fk)

〈
φj

∣∣∣[eik′′′r′′EP (k′′′, ω′′′)r̂, eik
′′r′′EP (k′′, ω′′)v̂

]∣∣∣φk〉〈φk∣∣∣eik′r′EP (k′, ω′)v
∣∣∣φi〉

Ek − Ej + ω′′ + ω′′′ + iη

+(fj − fk)

〈
φj

∣∣∣eik′′r′′EP (k′′, ω′′)v
∣∣∣φk〉〈φk∣∣∣[eik′′′r′EP (k′′′, ω′′′)r̂, eik

′r′EP (k′, ω′)v̂
]∣∣∣φi〉

Ek − Ej + ω′′ + iη

 (D.17)
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APPENDIX D. PERTURBATION THEORY TO THE THIRD ORDER: CURRENT DENSITY
CALCULATION

Calculation of j(3)
ind(r, ω)

We now assemble all the terms,

j
(3)
ind(k, ω) =

1

6V
lim
η→0

∑
ijkl

∫
dω′

∫
dω′′

∫
dω′′′ δ(ω − ω′ − ω′′ − ω′′′) 1

ω′ω′′ω′′′

∑
k′,k′′,k′′′

×

[
−i

〈
φi
∣∣e−ikr v∣∣φj〉

Ei − Ej + ω′ + ω′′ + ω′′′ + 3iη

×

(fi − fk)

〈
φj

∣∣∣eik′r′EP (k′, ω′)v
∣∣∣φk〉〈φk∣∣∣eik′′r′′EP (k′′, ω′′)v

∣∣∣φl〉〈φl∣∣∣eik′′′r′′′EP (k′′′, ω′′′)v
∣∣∣φi〉

(Ei − Ek + ω′′ + ω′′′ + 2iη)(Ei − El + ω′′′ + iη)

+ (fk − fj)

〈
φj

∣∣∣eik′′′r′′′EP (k′′′, ω′′′)v
∣∣∣φl〉〈φl∣∣∣eik′′r′′EP (k′′, ω′′)v

∣∣∣φk〉〈φk∣∣∣eik′r′EP (k′, ω′)v
∣∣∣φi〉

(Ek − Ej + ω′′ + ω′′′ + 2iη)(El − Ej + ω′′′ + iη)

+ (fk − fl)

〈
φl

∣∣∣eik′′′r′′′EP (k′′′, ω′′′)v
∣∣∣φi〉〈φj∣∣∣eik′r′EP (k′, ω′)v

∣∣∣φk〉〈φk∣∣∣eik′′r′′EP (k′′, ω′′)v
∣∣∣φl〉

(Ei − El + ω′′′ + iη)(El − Ek + ω′′ + iη)

+(fl − fk)

〈
φj

∣∣∣eik′′′r′′′EP (k′′′, ω′′′)v
∣∣∣φl〉〈φl∣∣∣eik′′r′′EP (k′′, ω′′)v

∣∣∣φk〉〈φk∣∣∣eik′r′EP (k′, ω′)v
∣∣∣φi〉

(El − Ej + ω′′′ + iη)(Ek − El + ω′′ + iη)


+

1

2

〈
φi
∣∣e−ikr v∣∣φj〉

Ei − Ej + ω′ + ω′′ + ω′′′ + 2iη

×

(fi − fk)

〈
φj

∣∣∣eik′r′EP (k′, ω′)v
∣∣∣φk〉〈φk∣∣∣[eik′′′r′′EP (k′′′, ω′′′)r̂, eik

′′r′′EP (k′′, ω′′)v̂
]∣∣∣φi〉

Ei − Ek + ω′′ + ω′′′ + iη

+ (fi − fk)

〈
φj

∣∣∣[eir′k′′′EP (k′′′, ω′′′)r̂, eik
′r′EP (k′, ω′)v̂

]∣∣∣φk〉〈φk∣∣∣eik′′r′′EP (k′′, ω′′)v
∣∣∣φi〉

Ei − Ek + ω′′ + iη

+ (fj − fk)

〈
φj

∣∣∣[eik′′′r′′EP (k′′′, ω′′′)r̂, eik
′′r′′EP (k′′, ω′′)v̂

]∣∣∣φk〉〈φk∣∣∣eik′r′EP (k′, ω′)v
∣∣∣φi〉

Ek − Ej + ω′′ + ω′′′ + iη

+(fj − fk)

〈
φj

∣∣∣eik′′r′′EP (k′′, ω′′)v
∣∣∣φk〉〈φk∣∣∣[eik′′′r′EP (k′′′, ω′′′)r̂, eik

′r′EP (k′, ω′)v̂
]∣∣∣φi〉

Ek − Ej + ω′′ + iη


−

〈
φi

∣∣∣e−ikr [r̂, eik′′′rEP (k′′′, ω′′′)v̂
]∣∣∣φj〉

Ei − Ej + ω′ + ω′′ + 2iη

×

(fi − fk)

〈
φk

∣∣∣eik′r′EP (k′, ω′)v̂
∣∣∣φi〉〈φj∣∣∣eik′′r′′EP (k′′, ω′′)v̂

∣∣∣φk〉
(Ei − Ek + ω′ + iη)

+(fj − fk)

〈
φk

∣∣∣eik′r′EP (k′, ω′)v̂
∣∣∣φi〉〈φj∣∣∣eik′′r′′EP (k′′, ω′′)v̂

∣∣∣φk〉
(Ek − Ej + ω′′ + iη)


+
i

2
(fi − fj)

〈
φi

∣∣∣e−ikr [r, eik′′rEP (k′′, ω′′)v̂
]∣∣∣φj〉〈φj∣∣∣[eik′′′r′EP (k′′′, ω′′′)r̂, eik

′r′EP (k′, ω′)v̂
]∣∣∣φi〉

Ei − Ej + ω′ + ω′′′ + iη

− i

2
(fj − fi)

〈
φi

∣∣∣e−ikr [r̂, [eik′′rEP (k′′, ω′′)r̂, eik
′′′rEP (k′′′, ω′′′)v̂

]]∣∣∣φj〉 〈φj∣∣∣eik′r′EP (k′, ω′)v̂
∣∣∣φi〉

Ei − Ej + ω′ + iη

+
1

6
fi

〈
φi

∣∣∣e−ikr [r̂, [eik′rEP (k′, ω′)r̂,
[
eik
′′rEP (k′′, ω′′)r̂, eik

′′′rEP (k′′′, ω′′′)v
]]]∣∣∣φi〉]

+ Sym
(
(q′, ω′), (q′′, ω′′), (q′′′, ω′′′)

)
(D.18)98



Using the following relation, obtained from the continuity equation,

j
(3)
ind(k, ω) = − i

6

∫
dω′

∫
dω′′

∫
dω′′′ δ(ω − ω′ − ω′′ − ω′′′)

∑
k′,k′′,k′′′

ω

kk′k′′k′′′
EP (k′, ω′)

EP (k′′, ω′′) EP (k′′′, ω′′′) χρρρρ(k,k
′,k′′,k′′′, ω′, ω′′, ω′′′), (D.19)

one can extract the third-order density response function χρρρρ. In the reciprocal space, the vector
k can be written as sum q + G, where q is a vector inside the BZ and G a reciprocal lattice vector.
However in the independent-particle approximation all vectors G are considered equal to zero. The
indices i, j, k run over both the bands and k-points and can therefore be separated into two indices,
one that runs over the bands and the other over the k-point. The χρρρρ thus extracted is written in
equation (E.1).
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Appendix E

THG: current density calculation

The general formula for the third-order density response function obtained from the current is

χρρρρ(q,q1,q2,q3, ω1, ω2, ω3) =
1

V

∑
k

∑
n,m,p,l

1

(ω1 + ω2 + ω3)ω1ω2ω3

×
{

〈φn,k|qv̂|φm,k〉
En,k − Em,k + ω1 + ω2 + ω3 + 3iη

[
〈φm,k|q1v̂|φp,k〉 〈φp,k|q2v̂|φl,k〉 〈φl,k|q3v̂|φn,k〉

×
(

1

(En,k − El,k + ω3 + iη)

[
fn,k − fp,k

(En,k − Ep,k + ω2 + ω3 + 2iη)
+

fp,k − fl,k
(El,k − Ep,k + ω2 + iη)

]
+

1

(Ep,k − Em,k + ω1 + iη)

[
fl,k − fm,k

(El,k − Em,k + ω1 + ω2 + 2iη)
+

fp,k − fl,k
(El,k − Ep,k + ω2 + iη)

])
+ 〈φm,k|q1v̂|φp,k〉 〈φp,k|[iq3r̂,q2v̂]|φn,k〉

(
fn,k − fp,k

2(En,k − Ep,k + ω2 + ω3 + 2iη)

+
fm,k − fp,k

2(Ep,k − Em,k + ω1 + iη)

)
+ 〈φm,k|[iq3r̂,q2v̂]|φp,k〉 〈φp,k|q1v̂|φn,k〉

×
(

fn,k − fp,k
2(En,k − Ep,k + ω1 + iη)

+
fm,k − fp,k

2(Ep,k − Em,k + ω2 + ω3 + 2iη)

)]
−

〈φn,k|[iqr̂,q3v̂]|φm,k〉
En,k − Em,k + ω1 + ω2 + 2iη

〈φp,k|q1v̂|φn,k〉 〈φm,k|q2v̂|φp,k〉
(

fn,k − fp,k
(En,k − Ep,k + ω1 + iη)

+
fm,k − fp,k

(Ep,k − Em,k + ω2 + iη)

)
+

1

2
(fn,k − fm,k)

〈φn,k|[iqr̂,q3v̂]|φm,k〉 〈φm,k|[iq2r̂,q1v̂]|φn,k〉
En,k − Em,k + ω1 + ω2 + 2iη

− 1

2
(fm,k − fn,k)

〈φn,k|[iqr̂, [iq2r̂,q3v̂]]|φm,k〉 〈φm,k|q1v̂|φn,k〉
En,k − Em,k + ω1 + iη

−1

6
fn,k 〈φn,k|[iqr̂, [iq1r̂, [iq2r̂,q3v̂]]]|φn,k〉

}
+
(
(q1, ω1)↔ (q2, ω2)↔ (q3, ω3)

)
(E.1)

As previously mentioned, we neglect the double and triple commutator involving the nonlocal po-
tential in the velocity operator and using equation (C.2), we arrive to the general expression (4.42),
when there is no scissor, which lead for the third harmonic to

χρρρρ(q,q1,q2,q3, ω, ω, ω) =
1

V

1

3ω4

∑
k

∑
n,m,p,l

v̂nm(q)v̂mp(q1)v̂pl(q2)v̂ln(q3)

Enm,k + 3ω̃

×
[

1

Enl,k + ω̃

(
fnp,k

Enp,k + 2ω̃
+

fpl,k
Elp,k + ω̃

)
+

1

Epm,k + ω̃

(
flm,k

Elm,k + 2ω̃
+

fpl,k
Elp,k + ω̃

)]
+
(
q1 ↔ q2 ↔ q3

)
, (E.2)
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APPENDIX E. THG: CURRENT DENSITY CALCULATION

Following the development of equation (4.43) to get rid of ω4 in the denominator, we derive the terms
A, B, C and F that need to be proven zero, in the same fashion as in appendix C.

A =
fnp,k

Enm,kEnl,kEnp,k
+

fpl,k
Enm,kEnl,kElp,k

+
flm,k

Enm,kEpm,kElm,k
+

fpl,k
Enm,kEpm,kElp,k

(E.3a)

B = −
fnp,k

Enm,kEnl,kEnp,k

[
1

Enl,k
+

3

Enm,k
+

2

Enp,k

]
−

fpl,k
Enm,kEnl,kElp,k

[
1

Enl,k
+

3

Enm,k
+

1

Elp,k

]
−

flm,k
Enm,kEpm,kElm,k

[
3

Enm,k
+

1

Epm,k
+

2

Elm,k

]
−

fpl,k
Enm,kEpm,kElp,k

[
3

Enm,k
+

1

Epm,k
+

1

Elp,k

]
(E.3b)

C =
fnp,k

Enm,kEnl,kEnp,k

[
3

Enm,kEnl,k
+

2

Enl,kEnp,k
+

6

Enm,kEnp,k
+

1

E2
nl,k

+
9

E2
nm,k

+
4

E2
np,k

]

+
fpl,k

Enm,kEnl,kElp,k

[
3

Enm,kEnl,k
+

1

Enl,kElp,k
+

3

Enm,kElp,k
+

1

E2
nl,k

+
9

E2
nm,k

+
1

E2
lp,k

]

+
flm,k

Enm,kEpm,kElm,k

[
9

E2
nm,k

+
3

Enm,kEpm,k
+

6

Enm,kElm,k
+

1

E2
pm,k

+
2

Epm,kElm,k
+

4

E2
lm,k

]

+
fpl,k

Enm,kEpm,kElp,k

[
9

E2
nm,k

+
3

Enm,kEpm,k
+

3

Enm,kElp,k
+

1

E2
pm,k

+
1

Epm,kElp,k
+

1

E2
lp,k

]
(E.3c)

F = −
fnp,k

Enm,kEnl,kEnp,k

[
6

Enm,kEnl,kEnp,k
+

3

Enm,kE
2
nl,k

+
2

E2
nl,kEnp,k

+
9

E2
nm,kEnl,k

+
18

E2
nm,kEnp,k

+
4

Enl,kE
2
np,k

+
12

Enm,kE
2
np,k

+
1

E3
nl,k

+
27

E3
nm,k

+
8

E3
np,k

]

−
fplk

Enm,kEnl,kElpk

[
3

Enm,kEnl,kElpk
+

3

Enm,kE
2
nl,k

+
9

E2
nm,kEnl,k

+
9

E2
nm,kElpk

+
1

Enl,kE
2
lpk

+
3

Enm,kE
2
lpk

+
1

E3
nl,k

+
27

E3
nm,k

+
1

E2
nl,kElpk

+
1

E3
lpk

]

− flmk

Enm,kEpmkElmk

[
27

E3
nm,k

+
9

E2
nm,kEpmk

+
18

E2
nm,kElmk

+
3

Enm,kE
2
pmk

+
6

Enm,kEpmkElmk
+

12

Enm,kE
2
lmk

+
1

E3
pmk

+
2

E2
pmkElmk

+
4

EpmkE
2
lmk

+
8

E3
lmk

]

−
fplk

Enm,kEpmkElpk

[
27

E3
nm,k

+
9

E2
nm,kEpmk

+
9

E2
nm,kElpk

+
3

Enm,kE
2
pmk

+
3

Enm,kE
2
lpk

+
1

E3
pmk

+
1

E2
pmkElpk

+
1

EpmkE
2
lpk

+
3

Enm,kEpmkElpk
+

1

E3
lpk

]

(E.3d)

The terms associated with B and F are canceled by interchanging indices (n ↔ m) and (p ↔ l) and
by summing over −k instead of k, which leads to χB

ρρρρ = −χB
ρρρρ and χF

ρρρρ = −χF
ρρρρ.

I thought about proving the terms A and C to vanish in the same fashion as for the term B for
the second order (see section C for LEO), by writing it as the derivative over k of a function periodic
throughout the BZ. However, this demonstration was not finished. Nonetheless, I present here the
tensor

↔
T that was introduced to prove the term A zero.

↔
T (q,q1,q2) =

∑
n,m,p

v̂nm,k(q)v̂mp,k(q1)v̂pn(q2)

[
fnp

Enm,kEnp,k
+

fmp
Enm,kEpm,k

]
(E.4)
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Also the terms A and C were not formally proven to be zero, we know that all these terms vanishes
for the first and third order. Moreover, when plotting the initial formula containing the divergence in
ω with the one for which these terms were subtracted, shown in Figure E.1, we find a good agreement
after the gap-region further suggesting that these terms are indeed zero.
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Figure E.1: Comparison between the ω-divergent and final THG formula for silicon.
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Appendix F

EFISH formula

The calculation of the EFISH response starts from the general third-order formula (E.1), for which
the double and triple commutator [ir̂, . . . [ir̂, V̂nl]], that we know to be very small, are neglected. As a
results, all the terms containing a commutator are either canceled with their occupation numbers or
with other terms, leading us to the following formula:

χρρρρ(q̂, q̂1, q̂2, q̂3, ω1, ω2, ω3) =
1

V

1

(ω1 + ω2 + ω3)ω1ω2ω3

∑
k

∑
n,m,p,l

v̂nm(q̂)v̂mp(q̂1)v̂pl(q̂2)v̂ln(q̂3)

Enm,k + ω̃1 + ω̃2 + ω̃3

×
[

1

Enl,k + ω̃3

(
fnp,k

Enp,k + ω̃2 + ω̃3
+

fpl,k
Elp,k + ω̃2

)
+

1

Epm,k + ω̃1

(
flm,k

Elm,k + ω̃1 + ω̃2
+

fpl,k
Elp,k + ω̃2

)]
+
(
(q1, ω1)↔ (q2, ω2)↔ (q3, ω3)

)
, (F.1)

This expression contains all the permutations in q and ω that are then treated separately, except for
the one (q′, ω′)↔ (q′′, ω′′), since, in fine, ω1 and ω2 will be equal.

After getting rid of the divergence in ω′′′ following equation (4.46), and setting ω1 = ω2 and ω3 = 0,
we reach equation (4.49). From there, a development in ω, shown in equation (4.50), is done for each
of the permutation to remove the remaining divergence.

We then also separate the four-, three- and two-band terms.

χ
(3)
0 = χ

(3),4bnd
0,1 + χ

(3),4bnd
0,2 + χ

(3),4bnd
0,3 + χ

(3),3bnd
0,1 + χ

(3),3bnd
0,2 + χ

(3),3bnd
0,3 + χ

(3),2bnd
0 (F.2)

The contribution χ
(3),4bnd
0,1 corresponds to the permutation displayed in equation (F.1) and χ

(3),4bnd
0,2

and χ
(3),4bnd
0,3 corresponds to the permutation (q′′, ω′′) ↔ (q′′′, ω′′′) and (q′, ω′) ↔ (q′′′, ω′′′), respec-

tively. For the three-band contribution, all the permutations are mixed together and it is separated
depending on the position of ∆n,n′,k, either in q, q′ or q′′′.

After a lengthy calculation, the four-band terms obtained is, for the first permutation,

χ
(3),4bnd
0,1 (q̂, q̂1, q̂2, q̂3, ω, ω, 0) =

1

V

∑
nmpl

r̂nm,k(q̂) r̂mp,k(q̂1) r̂pl,k(q̂2) r̂ln,k(q̂3)

×
[
− fnl

(Enm,k + 2ω̃)(Enp,k + ω̃)Enl,k
−

fpl
(Enm,k + 2ω̃)(Enp,k + ω̃)(Elp,k + ω̃)

− flm
(Enm,k + 2ω̃)(Epm,k + ω̃)(Elm,k + 2ω̃)

−
fpl

(Enm,k + 2ω̃)(Epm,k + ω̃)(Elp,k + ω̃)

−
5fnpEpm,kElp,k

4(Enp,k + ω̃)(Enp,k)4
+
fnp(Enm,k + Enl,k − 3Elp,k)

2(Enp,k + ω̃)(Enp,k)3
−
fnp(Enm,k + Enp,k)Elp,k
2(Enp,k + ω̃)2(Enp,k)3

−
fnp(Enm,k + Enp,k)

2(Enp,k + ω̃)Enl,k(Enp,k)2
−

fnpElp,k
(Epm,k + ω̃)(Enp,k + ω̃)2Enp,k

−
fnpElp,k

2(Epm,k + ω̃)(Enp,k + ω̃)(Enp,k)2
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−
fnpElp,k

2(Epm,k + ω̃)Enm,k(Enp,k)2
−

fnpElp,k
2(Enm,k + 2ω̃)(Enp,k + ω̃)(Enp,k)2

−
fnpElp,k

(Enm,k + 2ω̃)Epm,k(Enp,k)2

+
fnp

(Epm,k + ω̃)(Enp,k + ω̃)Enp,k
+

fnp
(Epm,k + ω̃)Enm,kEnp,k

+
4flmEnl,kElp,k

(Elm,k + 2ω̃)(Elm,k)4

−
2flmEnl,k

(Elm,k + 2ω̃)(Elm,k)3
+

2flm(Elm,k − 2Elp,k)

(Elm,k + 2ω̃)Enl,k(Elm,k)2
+

flm
(Elm,k + 2ω̃)(Elp,k + ω̃)Elm,k

− flm
2(Elp,k + ω̃)Epm,kElm,k

+
flmEnm,k

(Epm,k + ω̃)(Elm,k + 2ω̃)(Elm,k)2
−

flmEnm,k
2(Epm,k + ω̃)(Elm,k)2Elp,k

+
fplEnm,k

4(Elp,k + ω̃)(Elp,k)3
−

fpl(Enm,k + Elp,k)

2(Elp,k + ω̃)Enl,k(Elp,k)2
−

fpl
2(Elp,k + ω̃)Epm,kElp,k

+
fplEnm,k

4(Epm,k + ω̃)(Elp,k + ω̃)(Elp,k)2
+

fplEnm,k
4(Epm,k + ω̃)Elm,k(Elp,k)2

+
fpm(Enl,k − Epm,k)

4(Epm,k + ω̃)E3
pm,k

+
fpmElp,k

2(Enm,k + 2ω̃)(Epm,k + ω̃)E2
pm,k

−
fpmElp,k

2(Epm,k + ω̃)Enm,kE
2
pm,k

+
fpmElp,k

(Enm,k + 2ω̃)E2
pm,kEnp,k

− fpm
(Epm,k + ω̃)Enm,kEpm,k

− fpm
2(Epm,k + ω̃)(Elp,k + ω̃)Epm,k

+
fpmEnm,k

2(Epm,k + ω̃)E2
pm,kElp,k

−
fpmEnm,k

4(Epm,k + ω̃)E2
pm,kElm,k

+
4fnmElp,k

(Enm,k + 2ω̃)2E2
nm,k

+
8fnmElp,k

(Enm,k + 2ω̃)E3
nm,k

+
2fnmElp,k

(Enm,k + 2ω̃)2(Epm,k + ω̃)Enm,k
+

fnmElp,k
(Enm,k + 2ω̃)E2

nm,kEpm,k
−

fnmElp,k
(Enm,k + 2ω̃)E2

nm,kEnp,k

− 2fnm
(Enm,k + 2ω̃)(Epm,k + ω̃)Enm,k

−
2fnm(Enm,k − 2Elp,k)

(Enm,k + 2ω̃)E2
nm,kEnl,k

]
(F.3)

for the second permutation,

χ
(3),4bnd
0,2 (q̂, q̂1, q̂2, q̂3, ω, ω, 0) =

1

V

∑
n,m,p,l

r̂nm,k(q̂) r̂mp,k(q̂1) r̂ln,k(q̂2) r̂pl,k(q̂3)

×
[
− fnp

(Enm,k + 2ω̃)(Enl,k + ω̃)(Enp,k + ω̃)
−

fpl,k
(Enm,k + 2ω̃)(Enl,k + ω̃)Elp,k

−
fpl,k

(Enm,k + 2ω̃)(Epm,k + ω̃)Elp,k
−

flm,k
(Enm,k + 2ω̃)(Epm,k + ω̃)(Elm,k + ω̃)

+
5fnpEpm,kEnl,k

4(Enp,k + ω̃)E4
np,k

+
fnp(2Enl,k − Elm,k − Elp,k)

2(Enp,k + ω̃)E3
np,k

+
fnp(Enm,k + Enp,k)Enl,k

2(Enp,k + ω̃)2E3
np,k

+
fnp

(Epm,k + ω̃)(Enp,k + ω̃)2

−
fnpElp,k

(Epm,k + ω̃)(Enp,k + ω̃)2Enp,k
−

fnpElp,k
2(Enp,k + ω̃)(Epm,k + ω̃)E2

np,k

−
fnpElp,k

2(Epm,k + ω̃)Enm,kE
2
np,k

−
fnpElp,k

2(Enm,k + 2ω̃)(Enp,k + ω̃)E2
np,k

−
fnpElp,k

(Enm,k + 2ω̃)Epm,kE
2
np,k

+
fnpEpm,k

2(Enp,k + ω̃)E2
np,kElp,k

+
fnp

(Enp,k + ω̃)Enp,kElp,k
+

fnlEpm,k
4(Enl,k + ω̃)E3

nl,k

−
fnlElp,k

2(Enl,k + ω̃)Enm,kE
2
nl,k

+
fnlElp,k

2(Enm,k + 2ω̃)(Enl,k + ω̃)E2
nl,k

+
fnlElp,k

(Enm,k + 2ω̃)Elm,kE
2
nl,k

−
fnlEpm,k

2(Enl,k + ω̃)E2
nl,kElp,k

− fnl
(Enl,k + ω̃)Enl,kElp,k

+
5flmEpm,kEnl,k

4(Elm,k + ω̃)E4
lm,k

+
flm(2Epm,k − Enp,k − Elp,k)

2(Elm,k + ω̃)E3
lm,k

+
flmEpm,k(Enm,k + Elm,k)

2(Elm,k + ω̃)2E3
lm,k

+
flm

(Enl,k + ω̃)(Elm,k + ω̃)2
−

flmElp,k
(Enl,k + ω̃)(Elm,k + ω̃)2Elm,k

106



−
flmElp,k

2(Elm,k + ω̃)(Enl,k + ω̃)E2
lm,k

−
flmElp,k

2(Enl,k + ω̃)Enm,kE
2
lm,k

−
flmElp,k

2(Enm,k + 2ω̃)(Elm,k + ω̃)E2
lm,k

−
flmElp,k

(Enm,k + 2ω̃)Enl,kE
2
lm,k

+
flmEnl,k

2(Elm,k + ω̃)E2
lm,kElp,k

+
flm

(Elm,k + ω̃)Elm,kElp,k

+
fpmEnl,k

4(Epm,k + ω̃)E3
pm,k

−
fpmElp,k

2(Epm,k + ω̃)Enm,kE
2
pm,k

+
fpmElp,k

2(Enm,k + 2ω̃)(Epm,k + ω̃)E2
pm,k

+
fpmElp,k

(Enm,k + 2ω̃)Enp,kE
2
pm,k

−
fpmEnl,k

2(Epm,k + ω̃)E2
pm,kElp,k

− fpm
(Epm,k + ω̃)Epm,kElp,k

+
4fnmElp,k

(Enm,k + 2ω̃)2E2
nm,k

+
8fnmElp,k

(Enm,k + 2ω̃)E3
nm,k

− fnm
(Enm,k + 2ω̃)2(Epm,k + ω̃)

− fnm
(Enm,k + 2ω̃)2(Enl,k + ω̃)

+
2fnmElp,k

(Enm,k + 2ω̃)2(Epm,k + ω̃)Enm,k

+
2fnmElp,k

(Enm,k + 2ω̃)2(Enl,k + ω̃)Enm,k
+

fnmElp,k
(Enm,k + 2ω̃)E2

nm,kEpm,k
−

fnmElp,k
(Enm,k + 2ω̃)E2

nm,kEnp,k

−
fnmElp,k

(Enm,k + 2ω̃)E2
nm,kElm,k

+
fnmElp,k

(Enm,k + 2ω̃)E2
nm,kEnl,k

]
(F.4)

for the third permutation,

χ
(3),4bnd
0,3 (q̂, q̂1, q̂2, q̂3, ω, ω, 0) =

1

V

∑
n,m,p,l

r̂nm,k(q̂) r̂ln,k(q̂1) r̂pl,k(q̂2) r̂mp,k(q̂3)

×
[
−

fnp,k
(Enm,k + 2ω̃)(Enl,k + ω̃)(Enp,k + 2ω̃)

−
fpm,k

(Enm,k + 2ω̃)(Elm,k + ω̃)Epm,k

−
fpl,k

(Enm,k + 2ω̃)(Enl,k + ω̃)(Elp,k + ω̃)
−

fpl,k
(Enm,k + 2ω̃)(Elp,k + ω̃)(Elm,k + ω̃)

+
4fnp,kEnm,kElp,k
(Enp,k + 2ω̃)E4

np,k

−
2fnp,k(Elm,k + Elp,k)

(Enp,k + 2ω̃)E3
np,k

+
2fnp,k(Enp,k − 2Elp,k)

(Enp,k + 2ω̃)Epm,kE
2
np,k

+
fnp,kEnm,k

(Enl,k + ω̃)(Enp,k + 2ω̃)E2
np,k

−
fnp,kEnm,k

2(Enl,k + ω̃)E2
np,kElp,k

+
fnp,k

(Enp,k + 2ω̃)(Elp,k + ω̃)Enp,k

−
fnp,k

2(Elp,k + ω̃)Enl,kEnp,k
−

5flm,kElp,kEnl,k
4(Elm,k + ω̃)E4

lm,k

+
flm,k(Enm,k + Epm,k − 3Elp,k)

2(Elm,k + ω̃)E3
lm,k

−
flm,kElp,k(Enm,k + Elm,k)

2(Elm,k + ω̃)2E3
lm,k

−
flm,k(Enm,k + Elm,k)

2(Elm,k + ω̃)Epm,kE
2
lm,k

−
flm,kElp,k

(Enl,k + ω̃)(Elm,k + ω̃)2Elm,k

−
flm,kElp,k

2(Enl,k + ω̃)(Elm,k + ω̃)E2
lm,k

−
flm,kElp,k

2(Enl,k + ω̃)Enm,kE
2
lm,k

−
flm,kElp,k

2(Enm,k + 2ω̃)(Elm,k + ω̃)E2
lm,k

−
flm,kElp,k

(Enm,k + 2ω̃)Enl,kE
2
lm,k

+
flm,k

(Enl,k + ω̃)(Elm,k + ω̃)Elm,k
+

flm,k
(Enl,k + ω̃)Enm,kElm,k

+
fpl,kEnm,k

4(Elp,k + ω̃)E3
lp,k

−
fpl,k(Enm,k + Elp,k)

2(Elp,k + ω̃)Epm,kE
2
lp,k

+
fpl,kEnm,k

4(Enl,k + ω̃)(Elp,k + ω̃)E2
lp,k

+
fpl,kEnm,k

4(Enl,k + ω̃)Enp,kE
2
lp,k

−
fpl,k

2(Elp,k + ω̃)Enl,kElp,k
+
fnl,k(Elm,k − Enp,k)

4(Enl,k + ω̃)E3
nl,k

−
fnl,k

(Enl,k + ω̃)Enm,kEnl,k
−

fnl,kElp,k
2(Enl,k + ω̃)Enm,kE

2
nl,k

+
fnl,kElp,k

2(Enm,k + 2ω̃)(Enl,k + ω̃)E2
nl,k

+
fnl,kElp,k

(Enm,k + 2ω̃)E2
nl,kElm,k

−
fnl,kEnm,k

4(Enl,k + ω̃)E2
nl,kEnp,k

+
fnl,kEnm,k

2(Enl,k + ω̃)E2
nl,kElp,k
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−
fnl,k

2(Enl,k + ω̃)(Elp,k + ω̃)Enl,k
+

8fnm,kElp,k
(Enm,k + 2ω̃)E3

nm,k

+
4fnm,kElp,k

(Enm,k + 2ω̃)2E2
nm,k

−
2fnm,k(Enm,k − 2Elp,k)

(Enm,k + 2ω̃)E2
nm,kEpm,k

+
2fnm,kElp,k

(Enm,k + 2ω̃)2(Enl,k + ω̃)Enm,k
−

fnm,kElp,k
(Enm,k + 2ω̃)E2

nm,kElm,k

+
fnm,kElp,k

(Enm,k + 2ω̃)E2
nm,kEnl,k

−
2fnm,k

(Enm,k + 2ω̃)(Enl,k + ω̃)Enm,k

]
(F.5)

The third-band term is

χ
(3),3bnd
0,1 (q̂, q̂1, q̂2, q̂3, ω, ω, 0) = ∆np,k(q̂) r̂pn,k(q̂1) r̂mp,k(q̂2) r̂nm,k(q̂3)

[
fnp,k(Enm,k − 2Emp,k)

4(Enp,k + ω̃)E4
np,k

−
fnp,kEmp,k

4(Enp,k + ω̃)2E3
np,k

−
fnp,k

4(Enp,k + ω̃)E2
np,kEnm,k

−
fnp,kEnm,k

4(Enp,k − ω̃)E4
np,k

−
fpm,kEnp,k

4(Epm,k − ω̃)E4
pm,k

+
fpm,k

4(Epm,k − ω̃)Enm,kE
2
pm,k

]
+ ∆nm,k(q̂) r̂mp,k(q̂1) r̂pn,k(q̂2) r̂nm,k(q̂3)

[
−

4fnm,k(Enp,k − Epm,k)

(Enm,k + 2ω̃)E4
nm,k

−
2fnm,k

(Enm,k + 2ω̃)(Epm,k + ω̃)E2
nm,k

+
fnm,k

(Epm,k + ω̃)E2
nm,kEnp,k

−
fpm,k

4(Epm,k + ω̃)E3
pm,k

−
fpm,k

(Epm,k + ω̃)E2
pm,kEnp,k

+
fpm,k

2(Epm,k + ω̃)Enm,kE
2
pm,k

+
fnp,kEnm,k

4(Enp,k + ω̃)E4
np,k

+
fnp,k

2(Epm,k + ω̃)(Enp,k + ω̃)E2
np,k

+
fnp,k

2(Epm,k + ω̃)Enm,kE
2
np,k

]

+ ∆pm,k(q̂) r̂mp,k(q̂1) r̂pn,k(q̂2) r̂nm,k(q̂3)

[
−

3fpm,kEnp,k
4(Epm,k + ω̃)E4

pm,k

+
fpm,k
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np,k

−
fnp,k

2(Epm,k + ω̃)Enm,kE
2
np,k

−
fnp,k

4(Enm,k + 2ω̃)(Enp,k + ω̃)E2
np,k

−
fnp,k

2(Enm,k + 2ω̃)Epm,kE
2
np,k

]

+ r̂nm,k(q̂) r̂mp,k(q̂1) r̂pn,k(q̂2) ∆pm,k(q̂3)

[
−

8fnm,kEpm,k
(Enm,k + 2ω̃)E4

nm,k

−
4fnm,kEpm,k

(Enm,k + 2ω̃)2E3
nm,k

−
fnm,k

(Enm,k + 2ω̃)2(Epm,k + ω̃)(Enp,k + ω̃)
−

2fnm,k
(Enm,k + 2ω̃)(Epm,k + ω̃)(Enp,k + ω̃)Enm,k

+
fnp,k

4(Enp,k + ω̃)E3
np,k

+
fnp,k

(Epm,k + ω̃)(Enp,k + ω̃)3
+

fnp,k
(Enp,k + ω̃)Enm,kE

2
np,k

+
fnp,k

(Epm,k + ω̃)(Enp,k + ω̃)2Enp,k
+

fnp,k
(Epm,k + ω̃)(Enp,k + ω̃)Enm,kEnp,k

+
fpm,k(8Enm,k + 3Epm,k)

4(Epm,k + ω̃)E4
pm,k

+
fpm,k(5Enm,k + 3Epm,k)

4(Epm,k + ω̃)2E3
pm,k

+
fpm,k(Enm,k + Epm,k)

2(Epm,k + ω̃)3E2
pm,k

+
fpm,k

(Epm,k + ω̃)3(Enp,k + ω̃)

+
fpm,k

(Epm,k + ω̃)2(Enp,k + ω̃)Epm,k
+

fpm,k
(Epm,k + ω̃)(Enp,k + ω̃)E2

pm,k

+
fpm,k

(Enp,k + ω̃)Enm,kE
2
pm,k

−
fpm,k

(Epm,k + ω̃)(Enp,k + ω̃)Enm,kEpm,k

]
(F.8)

The two-band term is

χ
(3),2bnd
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Appendix G

Breakdown field

In this part, I discuss the intensity of the dc-electric field that one can use on the material without
destroying it. Indeed, if the static field applied is too strong, it induces an electrical breakdown inside
the sample, which corresponds to an irreversible and practically always destructive sudden flow of
current. In that case, the Zener tunneling, shown in Figure 4.1 is no longer negligible and the insulator
material becomes electrically conductive.

material symbol breakdown field (V/cm)

silicon Si 3.0 · 105

cubic silicon carbide 3C-SiC 1.0 · 106

hexagonal silicon carbide 2H-SiC 6.0 · 105

gallium arsenide GaAs 4.0 · 105

germanium Ge 1.0 · 105

silicon germanium Si1−xGex < 3.0 · 105

Table G.1: Values of the breakdown field for different materials.
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[20] D. R. Hamann, M. Schlüter, and C. Chiang. Norm-Conserving Pseudopotentials. Phys. Rev. Lett.,
43(20):1494–1497, November 1979.

[21] David Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.
Phys. Rev. B, 41(11):7892–7895, April 1990.

[22] Erich Runge and E. K. U. Gross. Density-Functional Theory for Time-Dependent Systems. Phys.
Rev. Lett., 52(12):997–1000, March 1984.

[23] Silvana Botti, Arno Schindlmayr, Rodolfo Del Sole, and Lucia Reining. Time-dependent density-
functional theory for extended systems. Rep. Prog. Phys., 70(3):357, 2007.

[24] Robert van Leeuwen. Mapping from Densities to Potentials in Time-Dependent Density-
Functional Theory. Phys. Rev. Lett., 82(19):3863–3866, May 1999.

[25] Giovanni Vignale. Real-time resolution of the causality paradox of time-dependent density-
functional theory. Phys. Rev. A, 77(6):062511, June 2008.

[26] Robert van Leeuwen. Causality and Symmetry in Time-Dependent Density-Functional Theory.
Phys. Rev. Lett., 80(6):1280–1283, February 1998.

[27] Xavier Andrade, David Strubbe, Umberto De Giovannini, Ask Hjorth Larsen, Micael J. T.
Oliveira, Joseba Alberdi-Rodriguez, Alejandro Varas, Iris Theophilou, Nicole Helbig, Matthieu J.
Verstraete, Lorenzo Stella, Fernando Nogueira, Alán Aspuru-Guzik, Alberto Castro, Miguel A. L.
Marques, and Angel Rubio. Real-space grids and the Octopus code as tools for the development
of new simulation approaches for electronic systems. Phys. Chem. Chem. Phys., 17(47):31371–
31396, November 2015.

[28] R Kubo. Linear response theory and fluctuafion. dissipation theorem. J. Phys. Soc. Japan,
12:570586, 1957.

[29] R. van Leeuwen. Introduction to time-dependent density functional theory, 2006. Available at
http://www.tddft.org/TDDFT2006/2006tddft/docs/school/vanLeeuwen-I+II.pdf.

114

http://www.tddft.org/TDDFT2006/2006tddft/docs/school/vanLeeuwen-I+II.pdf


BIBLIOGRAPHY

[30] H. Ehrenreich. The optical properties of solids. Academic, New York, 1965.

[31] Sohrab Ismail-Beigi, Eric K. Chang, and Steven G. Louie. Coupling of Nonlocal Potentials to
Electromagnetic Fields. Phys. Rev. Lett., 87(8):087402, August 2001.

[32] R. Del Sole and E. Fiorino. Macroscopic dielectric tensor at crystal surfaces. Phys. Rev. B,
29(8):4631–4645, April 1984.

[33] R. W. Nunes and Xavier Gonze. Berry-phase treatment of the homogeneous electric field pertur-
bation in insulators. Phys. Rev. B, 63(15):155107, March 2001.

[34] R. D. King-Smith and David Vanderbilt. Theory of polarization of crystalline solids. Phys. Rev.
B, 47(3):1651–1654, January 1993.

[35] Raffaele Resta. Macroscopic polarization in crystalline dielectrics: the geometric phase approach.
Rev. Mod. Phys., 66(3):899–915, July 1994.

[36] The abinit code is a common project of the université catholique de louvain, corning incorpo-
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Abstract

A deep understanding of the optical properties of solids is crucial for the improvement of nonlinear
materials and devices. It offers the opportunity to search for new materials with specific properties.
One way to tune some of those properties is to apply an electrostatic field on materials, giving rise to
electro-optic effects. This electrostatic field can be applied voluntarily on the system either to deform
the material or to generate new electro-optic responses. But it is also possible that this dc-field was
already present due to the structure of the material: for instance, an accumulation of charge can be
created at an interface, effectively generating an electrostatic field inside the material. In that case, it
becomes necessary to take into account the presence of this static field, which can induce corrections
during the measurement of different susceptibilities. Furthermore, the measurement of susceptibili-
ties that depend on the dc-field can be used as a tool to determine the value of this static field naturally
generated at an interface.

In this thesis, two optical phenomena were studied: (i) the linear response (LR) that can be gen-
erated with a low intensity light and includes the one-photon absorption (OPA), where a photon is
absorbed at the energy of of the input electric field and (ii) the second harmonic generation (SHG)
that can only be generated from an intense light such as a laser, where two photons are absorbed by
the material and a photon is emitted at twice the energy of the incoming photon. This process, as all
second-order susceptibilities, is very sensitive to the symmetry of the material. Indeed, if the system
studied presents an inversion symmetry then the second harmonic response will be zero.

Using a laser to generate a second-harmonic response will also generate a linear response. But,
considering that these two phenomena happen at different energies, it becomes relatively easy to
distinguish them. However, applying a static field amounts to induce new nonlinear processes hap-
pening at the same energy since it can be viewed as absorbing one or more photons of energy zero.
Considering that these responses are generated at the same energy, it is no longer possible to look at
them separately. Those new susceptibilities induced by the static field are then considered as correc-
tions to the initial response.

The first-order correction in terms of the static field to the optical linear response corresponds to
one of the most known electro-optic effect, namely the Pockel or linear electro-optic effect (LEO). It is
a second order response since it is induced by both an optical field E(ω) and a static field E(0), and
it is described by the susceptibility χ(2)(−ω;ω, 0). Likewise, the first-order correction in terms of the
static field to the second-harmonic generation corresponds to a third order process, named EFISH
(Electric Field Induced Second Harmonic) for which the susceptibility of interest is χ(3)(−2ω;ω, ω, 0).
The static field inside the material is breaking the centrosymmetry which then enable the generation
of a “second-harmonic response“ from every material, whether it has or not an inversion symmetry.

The aim of my thesis was to calculate theoretically and numerically these corrections to the linear
and nonlinear (2nd harmonic) optical responses of materials induced by an electrostatic field, namely
the second- and third-order susceptibilities LEO and EFISH. I calculated those two responses in an
ab-initio framework based on TDDFT (Time-dependent Density Functional Theory), for insulator or
semiconductor materials. It was first applied on simple bulk materials, such as silicon carbide (SiC),
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gallium arsenide (GaAs), etc, to validate the formalism. It has then been applied on more complex
materials of technological interest like Si/Ge superlattices and strained materials.

122



Résumé

La connaissance des propriétés optiques est fondamentale pour l’amélioration des matériaux et des
dispositifs non-linéaires. Elle offre la possibilité de chercher de nouveaux matériaux ayant des pro-
priétés bien spécifiques. Une façon de moduler certaines de ces propriétés est d’appliquer un champ
électrostatique sur les matériaux, donnant lieu à des effets électro-optiques. Ce champs statique peut
être appliqué volontairement sur le système, soit pour déformer le matériau ou pour générer de nou-
velles réponses électro-optiques. Mais il se peut également que ce champs statique soit déjà présent
dû à la structure du matériau : par exemple, une accumulation de charges peut se créer à une interface
générant un champ électrostatique à l’intérieur du matériau. Dans ce cas de figure, il devient alors
nécessaire de prendre en compte la présence de ce champ statique qui peut induire des corrections
lors de la mesure de différentes susceptibilités. De plus, la mesure de susceptibilités dépendantes
du champ statique peut être utiliser comme un outil pour déterminer la valeur de ce champ statique
naturellement générer à une interface.

Dans cette thèse, deux phénomènes optiques ont été étudiés : (i) la réponse linéaire, pouvant être
générer avec une lumière de faible intensitité, qui comprend l’absorption à un photon (OPA) où un
photon est absorbé à l’énergie correspondant à celle du champ électrique incident et (ii) la génération
de seconde harmonique (SHG), qui ne peut être généré qu’avec une lumière très intense tel qu’un
laser, où deux photons sont absorbés par le matériau et un photon est émis à une énergie deux fois plus
grande que celle du photon incident. Ce processus, comme toute susceptibilité du second ordre, est
très sensible à la symétrie du matériau. En effet, si le système étudié présente une symétrie d’inversion
alors la réponse de seconde harmonique sera nulle.

Utiliser un laser pour générer une réponse de seconde harmonique va aussi avoir pour effet de
générer une réponse linéaire. Mais étant donné que ces deux phénomènes se produisent à des énergies
différentes, il devient relativement facile de les distinguer. Cependant appliquer un champ électrostatique
revient à induire de nouveaux processus non-linéaire ayant lieu à la même énergie puisque cela peut
être vu comme absorber un ou plusieurs photons d’énergie nulle. Etant donné que ces réponses sont
générer à la même énergie, il n’est plus possible de les observer séparémment. Ces nouvelles sus-
ceptibilités induites par le champ statique sont donc considérées comme des corrections à la réponse
initiale.

La correction au premier ordre de la réponse optique linéaire en fonction du champ statique cor-
respond à l’un des effets électrostatiques les plus connus, à savoir l’effet Pockels ou effet électro-
optique linéaire (LEO). Il s’agit d’une réponse du second ordre étant donnée qu’elle est induite à
la fois par un champ optique E(ω) et par un champ statique E(0). Ce processus est décrit par la sus-
ceptibilité χ(2)(−ω;ω, 0). De même, la correction au premier ordre en fonction du champ statique de
la génération de seconde harmonique correspond à un processus de troisième ordre appelé EFISH
(Electric Field Induced Second Harmonic) et décrit par la susceptibilité χ(3)(−2ω;ω, ω, 0). Le champ
statique à l’intérieur du matériau permet de briser la centrosymétrie du matériau et ainsi de générer
une réponse de “seconde harmonique“ dans n’importe quels matériaux, qu’ils possèdent ou non un
centre d’inversion.
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Le but de ma thèse était de calculer théoriquement et numériquement ces corrections aux réponses
optiques linéraires et non-linéaires (deuxième harmonique) induite par un champ statique, soient les
susceptibilités du second et troisième ordre LEO et EFISH. J’ai calculé ces deux réponses dans le
cadre d’un formalisme ab-initio, reposant sur la TDDFT (Time-Dependent Density Functional The-
ory), pour des matériaux semi-conducteurs ou isolants. Ces calculs ont, dans un premier temps, été
appliqués à des matériaux massifs simples de type carbure de silicium (SiC), arséniure de gallium
(GaAs), etc, pour valider notre formalisme. Ils ont ensuite été appliqués à des matériaux plus com-
plexes d’intérêt technologiques comme (Si)n/(Ge)n et des matériaux sous contrainte.
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Titre: Description ab-initio de propriétés optiques non-linéaires de matériaux semi-conducteurs soumis
à un champ électrostatique
Mots clés: physique du solide, optique non-linéaire, physique théorique, simulation numérique

Résumé: La connaissance des propriétés op-
tiques est fondamentale pour l’amélioration des
matériaux et des dispositifs non-linéaires. Une
façon de moduler certaines de ces propriétés
est d’appliquer un champ électrostatique sur les
matériaux, donnant lieu à des effets électro-
optiques. Un de ces effets les plus connus est l’effet
Pockels ou effet électro-optique linéaire (LEO). Il
s’agit d’une réponse du second ordre, qui cor-
respond à une correction à la réponse optique
linéaire en présence d’un champ statique. Un im-
portant processus non-linéaire est la génération
de seconde harmonique (SHG), qui est très sen-
sible à la symétrie du matériau. En effet, si le
système étudié présente une symétrie d’inversion
alors la réponse de seconde harmonique sera nulle.
Cependant ajouter un champ statique à l’intérieur
du matériau permettrait de générer une réponse

du second ordre dans n’importe quels matériaux.
Ce phénomène est un processus de troisième or-
dre appelé EFISH (Electric Field Induced Second
Harmonic).
Dans cette thèse sont calculées les réponses op-
tiques linéraires et non-linéaires (deuxième har-
monique) de matériaux soumis à un champ
électrostatique, soient les corrections au premier
et second ordre LEO et EFISH. Ces deux réponses
sont évaluées dans le cadre d’un formalisme ab-
initio, reposant sur la TDDFT, pour des matériaux
semi-conducteurs ou isolants. Ces calculs ont,
dans un premier temps, été appliqués à des
matériaux massifs simples de type carbure de sili-
cium (SiC) et arséniure de gallium (GaAs). Ils ont
ensuite été appliqués à des matériaux plus com-
plexes d’intérêt technologiques comme des inter-
faces Si/Ge et des matériaux sous contrainte.

Titre: Ab-initio description of optical nonlinear properties of semiconductors in the presence of an
electrostatic field
Mots clés: solid state physics, nonlinear optics, theoretical physics, numerical simulation

Résumé: A deep understanding of the optical
properties of solids is crucial for the improvement
of nonlinear materials and devices. One way to
tune some of those properties is to apply an elec-
trostatic field on materials, giving rise to electro-
optic effects. One of the most known is the Pockel
or linear electro-optic effect (LEO). It is a second
order response property, which corresponds to a
correction to the linear response in the presence
of a static field. An important nonlinear process
is the second harmonic generation (SHG), which
is very sensitive to the symmetry of the material.
Indeed, if the system studied presents an inver-
sion symmetry then the second harmonic response
will be zero. However, adding a static field inside
the material would enable a second-order nonlin-

ear response from every material, whether it is
centrosymmetric or not. This happens through a
third order process, named EFISH (Electric Field
Induced Second Harmonic).
In this thesis, the linear and nonlinear (2nd har-
monic) optical responses of materials submitted to
an electrostatic field are calculated, corresponding
to the first and second order correction LEO and
EFISH. Those two responses are evaluated in an
ab-initio framework based on TDDFT, for insulator
or semiconductor materials. It was first applied on
simple bulk materials, such as silicon carbide (SiC)
and gallium arsenide (GaAs), before being applied
on more complex materials of technological inter-
est like Si/Ge superlattices and strained materials.
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