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pour toutes les fois où je n’ai pas pu répondre présent ou rendre la pareille à vos invitations parce
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E.1.2 Les représentations irréductibles du groupe symétrique . . . . . . . . . . . 172
E.1.3 Etude des distributions de probabilité sur Sn . . . . . . . . . . . . . . . . 176
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Chapter 1

Introduction

“With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.”

John Von Neumann

By this joke, John Von Neumann meant that with enough parameters one can fit any dataset;
for all that, the resulting model does not necessarily represent the underlying data generating
process well. In modern terms, one would say that John Von Neumann’s elephant is overfitted
with five parameters. How many parameters should be used to describe the world then? The
question remains at the heart of all the data analysis literature.

More precisely, it has become common sense that the number of parameters should be small,
turning the question into: what representation of the data leads to models with the fewest
parameters? This approach is well exemplified in sparsity methods, where one approximates any
function with a linear combination of a small number of “atoms” from a “dictionary”. The goal
is then to come up with the dictionary that yields the best sparse approximations of a large
class of functions. Focus is thus made on the representation that the dictionary provides for the
data rather than on the models, which have a simple expression in the representation. Many
contributions have therefore introduced representations for a wide variety of applications. With
the impressive success of deep learning, numerous recent methods even go a step further and
seek to learn directly the representation from the data.

In this thesis, we introduce a new representation for ranking data. Much less considered than
vector data, they actually arise in a large variety of applications and a tremendous literature is
dedicated to their analysis, spreading across many scientific fields such as social choice theory,
psychometry, statistics, economics, operations research, artificial intelligence or machine learning.
Most approaches involve however “parametric” modeling of probability distributions over rank-
ings. Though they lead to satisfying results, they lack flexibility: by essence, parametric models
make an assumption on the data and do not enable to interpret outside of it. Some contributions
have therefore developed “nonparametric” frameworks to enable general interpretation of the
data and design inference methods based on regularity assumptions. Examples include Fourier
analysis on the symmetric group, introduced in Diaconis (1988), or the HodgeRank framework,
introduced in Jiang et al. (2011b) (refer to Chapter 6 for connections with the present work).
Both are however fitted for a specific type of ranking data, full and partial rankings for the
former and pairwise comparisons for the latter (see Chapter 2 for the definitions).

9



10 CHAPTER 1. INTRODUCTION

The representation we introduce is fitted for incomplete rankings. Generalizing pairwise com-
parisons, such rankings have a canonic multiscale structure. Our representation is thus naturally
analogous to a multiresolution analysis. First formalized in Mallat (1989), multiresolution anal-
ysis has led to a tremendous number of applications in statistics and signal processing, and has
been extended in many ways with remarkable success. Recent literature has dedicated a special
interest for multiresolution analyses on non-vector data (Coifman and Maggioni, 2006; Gavish
et al., 2010; Hammond et al., 2011; Rustamov and Guibas, 2013; Kondor et al., 2014) and the
first multiresolution analysis on the symmetric group was introduced in Kondor and Dempsey
(2012). Our work is of course inspired by all these contributions. It relies however on a very
different mathematical construction and involves a specific notion of information localization
developed at length in the thesis.

Our representation provides several new insights on ranking data analysis and offers a flex-
ible framework to design efficient statistical procedures. We precise however that we do not
introduce a generic method that outperforms the state-of-the-art in all applications. In partic-
ular we present numerical experiments with the naive application of the representation, which
outperforms the state-of-the-art in small-scale settings but is dominated by classic parametric ap-
proaches in large-scale ones (see Chapter 5). This is no surprise because the representation does
not make any assumption on the data, leading to a naive application with an important number
of parameters. It therefore has a much larger variance than estimators based on parametric
models with few parameters. By contrast, our representation offers a great design flexibility and,
combined with the adapted regularization procedure for each application, should provide better
inference methods for large-scale settings. This is why we provide a global survey of the ranking
data analysis literature (Chapter 2) and detail numerous future research directions (Chapter 7).

From a general point of view, I believe that ranking data analysis will continue to know many
new developments and applications, and will benefit from the advances of numerous mathematical
areas. I hope that the present work will help in that trend.

Outline. The thesis is organized as follows.

• We first provide a global survey of ranking data analysis in Chapter 2 and introduce the
general notations for this thesis.

• Then in Chapter 3 we formalize the general setting for the analysis of incomplete and detail
at length the motivations for the present work.

• Chapter 4 is certainly the heart of this thesis: it introduces our new representation and
develops in details its properties, algorithms, and associated interpretations.

• In Chapter 5 we introduce a general framework to use the representation for the statistical
analysis of incomplete rankings and present some applications.

• Several connections with other mathematical constructions are established in Chapter 6,
in particular with Fourier analysis and Kemeny rank aggregation.

• At last Chapter 7 contains the informal description of several future directions, and a
general conclusion to this thesis.

Related articles. This thesis has lead or will lead to several papers. First, the core content
was developed in the unpublished manuscripts Clémençon et al. (2014) and Sibony et al. (2016).
Second, several specific parts were contained in the following papers accepted in conferences.

• Section 5.3 is based on Sibony et al. (2014)
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• Most results of Subsections 6.3.2 and 6.3.3 were present in Sibony (2014)

• Section 5.2 and some results of Section 4.2 are from Sibony et al. (2015)

At last, we plan to submit the following articles to different journals.

• A survey on ranking data analysis based on Chapter 2, planned to be submitted to Foun-
dations and Trends in Machine Learning.

• An article that details the construction of the MRA representation, based on Chapter 4
and Section 3.2, planned to be submitted to the SIAM Journal on Discrete Mathematics.

• An article for the statistical analysis of incomplete rankings, based on Chapter 5 and
Section 3.1, planned to be submitted to the Journal of Machine Learning Research.

• An article about the connections with Fourier analysis and other constructions, based on
Chapter 6, planned to be submitted to Applied and Computational Harmonic Analysis.
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Chapter 2

Ranking data analysis

We begin this thesis with a general overview of ranking data analysis. First we introduce the
definitions and notations that will be used throughout the thesis. Then in Section 2.2 we describe
the major domains of application where ranking data is analyzed. In Section 2.3, we formalize
the main problems of ranking data analysis. We then use Section 2.4 to detail the specificities of
these problems and the associated challenges. At last we describe in Section 2.5 the models that
have been introduced in the literature to tackle these issues. We precise that because of the great
importance of the ranking data analysis literature, our description is certainly not exhaustive.
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2.5.1 Parametric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Nonparametric models . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 Modeling, definitions and notations

We first introduce the main definitions and notations that we use in this thesis. We also try at
the most to develop interpretation for the mathematical objects we consider.

2.1.1 General definition

Ranking data represent ordinal comparisons. They model for instance the preferences of cus-
tomers on different products, the ordering of participants in the results of a competition or the
relative performance of several methods in different experiments (examples of applications are
detailed in Subsection 2.2). From a mathematical point of view, comparisons are made between
elements of a set. The first major dichotomy in the literature concerns the model for the set:
is it finite or infinite? In the latter case, elements are usually characterized by a list of features
so that the set is equal to a product space, typically Rd. In the former case, elements are usu-
ally given an identifier, a number between 1 and n, the total number of elements, which solely
characterizes them. The choice between the two models usually corresponds to the considered
application and leads to specific mathematical developments. Many models for ranking data
analysis can however be applied to both settings.

In this thesis we mainly consider the case where the set of elements is finite and each element
is solely characterized by its identifier. Applications to an infinite set where each element is
characterized by features are discussed in Chapter 7. Here and throughout the thesis, the set is
denoted by JnK := {1, . . . , n}, where n ≥ 1 is the total number of elements.

Definition 1 (Ranking). A ranking is a strict partial order on JnK: a nonempty collection
of pairwise comparisons a ≺ b with a, b ∈ JnK that satisfies the following properties (the last
property is implied by the first two).

• Irreflexivity: for all a ∈ JnK, a 6≺ a

• Transitivity: for all a, b, c ∈ JnK, if a ≺ b and b ≺ c then a ≺ c

• Asymmetry: for all a, b ∈ JnK, if a ≺ b then b 6≺ a

We denote by Rn the set of all rankings on JnK.

The reader can refer for instance to Stanley (1986) for more details about strict partial orders.
By convention, a � b means that element a is preferred to or ranked higher than element b.
Though a strict partial order is defined mathematically as a collection of pairwise comparisons,
we will usually characterize it by an expression involving the following short notations: for
a, b, c ∈ JnK, a � b, c means that a � b and a � c, and a � b � c means by transitivity that
a � b, b � c and a � c. One can easily represent a ranking on JnK by its Hasse diagram: each
element of JnK is a node, and an arrow is drawn from element a to element b if a � b and there
is no element c such that a � c � b. By convention, elements ranked higher are placed above in
the diagram. Table 2.1 shows the Hasse diagram of all the possible rankings on JnK for n = 3.

Remark 2 (Modeling of ties). Definition 1 of a ranking enables to model ties in the following
way: if some elements a1, . . . , ak ∈ JnK are all compared with the same outcome to an element
b ∈ JnK but no comparison is given between them, they have equal rank. For instance in the



2.1. MODELING, DEFINITIONS AND NOTATIONS 17

1 � 2 � 3 1 � 3 � 2 2 � 1 � 3 2 � 3 � 1 3 � 1 � 2 3 � 2 � 1

1

2

3

1

3

2

2

1

3

2

3

1

3

1

2

3

2

1

1 � 2,3 2 � 1,3 3 � 1,2 2,3 � 1 1,3 � 2 1,2 � 3

1

2 3

2

1 3

3

1 2

2 3

1

1 3

2

1 2

3

1 � 2 2 � 1 1 � 3 3 � 1 2 � 3 3 � 2

1

2

3

2

1

3

1

3

2

3

1

2

2

3

1

3

2

1

Table 2.1: Possible rankings on J3K and their Hasse diagrams

ranking 1 � 2, 3 on J3K, the element 1 is placed first and the elements 2 and 3 are placed
equal second. We point out that this notion of tie is relative to the elements involved in the
comparison. For instance in the ranking 1 � 2, 3 and 4, 5 � 6 on J6K, the elements 2 and 3 are
placed equal second with respect to the element 1 and the elements 4 and 5 are placed equal
first with respect to the element 6. In particular, Definition 1 of a ranking does not enable to
represent the sole observation of a tie between two elements. This possibility could be useful in
some applications (to represent a tie in a sports game for instance) but taking it into account
leads to specific mathematical developments. While some contributions tackle this issue (see for
instance Rao and Kupper, 1967; Davidson, 1970; Batchelder and Bershad, 1979), most of the
literature consider rankings in the scope of Definition 1.

2.1.2 Classes of rankings

The rankings on JnK are quite heterogeneous objects, and studying them in a general framework
is very complex. Fortunately, some subclasses of rankings are much more homogeneous, in the
sense that their elements share common properties. Contributions in the literature thus usually
focus on one subclass and represents the rankings by equivalent but more practical mathematical
objects. Some particular subclasses of rankings have attracted most of the attention. They each
correspond to a row in Table 2.1 for n = 3, and we now detail their formal definitions. The
vocabulary we use is, up to our knowledge, the most classic one in the literature (see Marden,
1996; Alvo and Yu, 2014).

Full rankings. Arguably the most studied subclass of rankings are full rankings, of the form

a1 � · · · � an,
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where a1 is the element of JnK ranked first and an is the element of JnK ranked last. A full
ranking corresponds to a total order ≺ on JnK: for any distinct elements a, b ∈ JnK, either a � b
or a ≺ b. It is also called a linear order, because its Hasse diagram is a chain involving all the
elements of JnK, namely a1 → · · · → an. Full rankings on J3K are represented by the first row
in Table 2.1. There is also a one-to-one correspondence between full rankings and permutations
of JnK that is to say bijective mappings σ : JnK → JnK. More specifically, we associate the full
ranking a1 � · · · � an with the permutation σ that maps an element to its rank in the ranking:
σ is defined by σ(ai) = i for i = 1, . . . , n. With this correspondence, a � b is equivalent to
σ(a) < σ(b). The set of permutations of JnK is called the symmetric group and denoted by Sn.
We do not distinguish between a full ranking and its associated permutation thereafter.

Partial rankings. A first generalization of full rankings are partial rankings, of the form

a1,1, . . . , a1,n1
� · · · � ar,1, . . . , ar,nr with r ≥ 1 and n1 + · · ·+ nr = n.

Such rankings represent full rankings with ties, in the sense that all the elements of JnK are
ranked but for some pairs of elements, the order is not specified. They are the rankings with
connected Hasse diagrams. Strict partial rankings are represented by the second row in Table
2.1 for n = 3. A partial ranking can also be viewed as an ordered partition (A1, . . . , Ar) of JnK
where the elements of A1 are placed equal first and the elements of Ar are placed equal at rth

rank. The subsets Ai are sometimes called “buckets” and the partial rankings bucket orders. Of
special interest are the top-k rankings, either ordered, of the form a1 � · · · � ak � the rest, or
unordered, of the form a1, . . . , ak � the rest, with 1 ≤ k ≤ n.

Incomplete rankings. Another generalization of full rankings are incomplete rankings, of the
form

a1 � · · · � ak with 2 ≤ k ≤ n.

They correspond to full rankings restricted to a subset of elements only, and are also called
subset rankings. Their Hasse diagrams are chains that only involves a subset of elements, the
other elements being isolated nodes. Strict incomplete rankings are represented by the third row
in Table 2.1 for n = 3. Pairwise comparisons, of the form a1 � a2, are an important particular
case of incomplete rankings. They are the simplest strict partial orders one could consider. Of
course the strict incomplete rankings on J3K are pairwise comparisons. For 2 ≤ k ≤ n and
distinct elements a1, . . . , ak ∈ JnK, we simply denote the incomplete ranking a1 � · · · � ak by
the expression π = a1 . . . ak. Such an expression is called an injective word, its content is the set
c(π) = {a1, . . . , ak} and its length or size is the number |π| = k. The rank of element i ∈ c(π)
in the ranking π is denoted by π(i). We denote by Γn the set of all incomplete rankings on JnK
and by Γ(A) = {π ∈ Γn | c(π) = A} the set of incomplete rankings with content A, for any
A ∈ P(JnK). Notice that Γ(JnK) corresponds to Sn and that Γn =

⊔
A∈P(JnK) Γ(A).

Remark 3 (Incomplete and partial rankings). More generally, one can also consider incomplete
and partial rankings, of the form a1,1, . . . , a1,n1 � · · · � ar,1, . . . , ar,nr with r ≥ 1 and n1 +
· · ·+ nr ≤ n. We point out that the class of such rankings remains strictly included in Rn: for
instance the ranking 1 � 2, 3 and 4, 5 � 6 on J6K does not belong to it.

2.1.3 General notations

We finish this section with general notations that we use in the thesis.
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Generic. The cardinality of a finite set E is denoted by |E|. The disjoint union of two sets A
and B is denoted by AtB and the strict inclusion of A in B by A  B. The indicator function
of any event E is denoted by I{E}. For x ∈ R \ {0} we define sign(x) = 1 if x > 0 and −1 if
x < 0.

Functions on finite sets. For a set E of finite cardinality |E| < ∞, we set P(E) = {A ⊂
E | |A| ≥ 2} and denote by L(E) = {f : E → R} the linear space of real-valued functions on
E. It is equipped with the canonic inner product 〈f, g〉E =

∑
x∈E f(x)g(x) and the associated

Euclidean norm ‖ · ‖E . The indicator function of a subset S ⊂ E is denoted by 1S in general
and by δx when S is the singleton {x}, in which case it is called a Dirac function. The support
of a function f ∈ L(E) is the set supp(f) := {x ∈ E | f(x) 6= 0}.

Probabilistic modeling. A probability distribution on a finite set is identified with its prob-
ability mass function. For a random variable X on a finite set E and a probability distribution
p over E, the expression X ∼ p means that X is drawn from p or equivalently that p is the law
of X. If X takes its values in a vector space, we denote by E[X] its expectation and by E[X|B]
its conditional expectation with respect to the σ-algebra B.

Symmetric group. The set Sn of permutations of JnK is equipped with the composition
operation Sn ×Sn → Sn, (σ, τ) 7→ στ defined by στ(i) = σ(τ(i)) for all i ∈ JnK. This makes it
a group, with unity equal to the identity permutation id defined by id(i) = i for all i ∈ JnK. The
inverse of a permutation τ ∈ Sn is denoted by τ−1.

Linear algebra. Here and throughout the thesis, we consider linear operators on finite-dimensional
vector spaces. The composition of two operators T and T ′ is denoted by TT ′, and the application
on a vector x is denoted by Tx or T (x). The null space of a linear operator T between vector
spaces V and W is defined by kerT = {x ∈ V | Tx = 0}. The identity operator on a vector
space V is usually denoted by IdV and the identity matrix of size d by Id.

2.2 Applications

The statistics literature and more generally all the scientific literature involved with data analysis
mostly focus on vector data. This is of course justified by the fact that vectors model the vast
majority of observation types. It can therefore be surprising to see how many applications involve
ranking data. We propose some general reasons for that.

• Transitivity of preferences is very natural for human beings. If a person considers
that three elements a, b and c are comparable and consciously prefers a to b and b to c,
then she will necessarily consciously prefer a to c. Now of course, her preferences can vary
through time or depending on the situation, but for a given context, they will be transitive.
It is therefore easy to ask people to express their preferences as partial orders.

• Many objects are naturally represented by partial orders. Examples include : lists
of distinct elements (such as results of a query, words, genes, tasks), matchings between
two sets of same cardinality (represented by permutations), rankings (such as competition
results or preference judgments).

• Partial orders are generic mathematical objects, naturally constructed from
cardinal values. In order to aggregate different pieces of cardinal data (such as results
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of experiments or users ratings), transforming them into rankings is a universal way to
normalize them and can also provide more robust features.

These factors may explain why ranking data analysis has been the subject of such a large litera-
ture, spreading across so many domains, from social choice theory to machine learning, through
psychology, economics, statistics, artificial intelligence or operations research. Without being
exhaustive, we describe here the main applications that have been considered.

2.2.1 Social choice

The analysis of ranking data first appeared in the 18th century, with the study of an election
system for the French Académie des Sciences. In such an election setting, JnK is a set of candidates
and voter express their opinions under the form of a rankings on JnK. The goal is then to elect
one or several winners. In Borda (1781), Borda showed that the classic plurality voting rule1

suffers from important drawbacks and introduced a new voting rule, now called the Borda Count,
which satisfies several desirable properties. Condorcet showed however in Condorcet (1785) that
in some cases, a candidate who wins against all the others in pairwise duels is not elected by
the Borda Count. He therefore introduced an example of voting rule that does not suffer from
this drawback (such a voting rule is called today a Condorcet Method) but does not satisfy in
exchange all the desirable properties of the Borda Count. Though the French Académie des
Sciences chose to use the Borda Count, this started the still open Borda-Condorcet debate (see
for instance Risse, 2005), and more generally the study of election systems in social choice theory.

The field took its modern form with the seminal contribution Arrow (1950). The latter defines
a general framework to study voting rules through their axiomatic properties. A first result is
the well-known “impossibility theorem” (Arrow, 1951): no rule can satisfy simultaneously a
predefined set of reasonable properties. Hence, as there is no “good voting rule”, each voting
rule deserves to be analyzed, with its advantages and drawbacks. This has led the researchers
to introduce new voting rules (Copeland, 1951; Young, 1977; Tideman, 2006; Goldsmith et al.,
2014), to establish properties for existing ones (Fishburn, 1977; Young and Levenglick, 1978;
Barthélémy and Montjardet, 1981), to develop new interpretations and connections (Young,
1988; Saari, 2000; Saari and Merlin, 2000; Kalai, 2002; Daugherty et al., 2009; Lahaie and Shah,
2014), to make empirical comparisons between different voting rules (Mattei, 2011; Popov et al.,
2014), or to extend Arrow’s framework (Sen, 1970; Gibbard, 1973; Satterthwaite, 1975; Sen,
1977; Balinski and Laraki, 2010; Prasad et al., 2015).

In the early 1990s, Bartholdi et al. (1989, 1992) showed that methods and concepts from
computer science were relevant for social choice theory. More and more contributions then
developed this approach to end up with the creation of the new field of Computational Social
Choice with the first COMSOC workshop in 2006. Contributions have for instance studied
the computational complexity of winner determination and manipulation (Hemaspaandra et al.,
1997; Conitzer et al., 2006; Procaccia and Rosenschein, 2006; Conitzer et al., 2007; Faliszewski
et al., 2009; Faliszewski and Procaccia, 2010), the stability of voting procedures under different
perturbations (Erdélyi et al., 2011; Lu and Boutilier, 2011b; Procaccia et al., 2012; Caragiannis
et al., 2014), introduced new families of voting rules (Conitzer and Sandholm, 2005; Conitzer
et al., 2009; Zwicker, 2008; Xia and Conitzer, 2008; Caragiannis et al., 2013; Elkind et al., 2015)
and made some connections with machine learning (Dwork et al., 2001; Soufiani et al., 2014b).

1Voters only vote for their favorite candidate, the winner is the candidate with the maximal number of votes.
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2.2.2 Psychometry, statistics and competitions

In the late 19th century, psychologists observed variability and imprecision in human judgments
(see Fechner, 1860; Titchener, 1901). In an attempt to model this phenomenon and move into
the realm of preferences, Thurstone (1927a) introduced the first probabilistic model for ranking
data. This seminal contribution laid out the basis of a general approach to psychometry based on
paired comparisons (see Guilford, 1954; Torgerson, 1958; Nunnally et al., 1967), which has been
applied to analyze value judgments, such as the pleasantness of different colors (Titchener, 1901),
seriousness of crimes (Thurstone, 1927b), scenic beauty of forest scenes (Buhyoff and Leuschner,
1978) or seriousness of environmental losses (Brown et al., 2002).

The method of paired comparisons has been developed more generally in the statistics liter-
ature by many contributions (see Kendall and Babington Smith, 1940; Babington Smith, 1950;
Mosteller, 1951; Bradley and Terry, 1952; Slater, 1961; David, 1963; Bock and Jones, 1968; Tver-
sky and Russo, 1969; Saaty, 1977). Several monographs and surveys give a global view of the
subject (see Bradley, 1976; Davidson and Farquhar, 1976; Böckenholt, 2006; Cattelan, 2012).

Among the numerous applications of the developed methods, there has been a particular
focus on tournaments and competitions (Kendall, 1955; Buhlmann and Huber, 1963; Jech, 1983;
Glickman and Jensen, 2005), with applications to sports Keener (1993); Masarotto and Varin
(2012); Cattelan et al. (2013); Barrow et al. (2013), racing Plackett (1975); Henery (1981); Benter
(1994); Ali (1998) or chess and gaming (Zermelo, 1929; Elo, 1978; Batchelder and Bershad, 1979;
Henery, 1992; Herbrich et al., 2006; Dangauthier et al., 2007; Weng and Lin, 2011; Nikolenko
and Sirotkin, 2011).

2.2.3 Economic choices

Choice modeling arose in economics in the second half of the 20th century as a new approach to
analyze the demand. In Marschak (1959), Thurstone’s model was given the economic interpreta-
tion of a Random Utility Model (RUM), together with Luce’s model introduced in Luce (1959).
The latter was then fully characterized and used as a conditional logit model, today called the
Multinomial logit model (MNL), in McFadden (1974a). This seminal contribution introduced
a framework for the economic analysis of choice behavior, leading to a tremendous number of
developments (Manski, 1977; McFadden, 1980; Guadagni and Little, 1983; Hausman and McFad-
den, 1984; Berry et al., 1995; McFadden and Train, 2000; Walker and Ben-Akiva, 2002; Train,
2009; Soufiani et al., 2013a), with a specific focus on travel demand analysis (McFadden, 1974b;
Williams, 1977; Ben-Akiva and Lerman, 1985; Ben-Akiva and Bierlaire, 1999).

Discrete choice models have also been extensively studied in operations research, with the
typical problem of assortment optimization: how to optimize the set of proposed items to a cus-
tomer in order to maximize the revenue. Contributions have mainly focused on introducing new
choice models together with algorithmic procedures to fit and use them (Talluri and Van Ryzin,
2004; Zhang and Cooper, 2005; Natarajan et al., 2009; Li and Huh, 2011; Blanchet et al., 2013;
Farias et al., 2013; Gallego et al., 2014; Désir et al., 2015; Berbeglia, 2016).

2.2.4 Decision analysis

In the years 1970, more and more researchers tried to help people facing complex decisions by
formalizing their possible alternatives and finding their best solutions. As critical cases arise
when decisions are evaluated through multiple criteria, which can in addition contradict, this
led to the creation of a new field in operations research called Multiple Criteria Decision Mak-
ing/Analysis (MCDM or MCDA) with a first conference in 1972 (proceedings published in Zeleny
and Cochrane, 1973). It has known an important number of developments and applications since
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then, with the introduction of different methods and theories such as outranking methods (Roy,
1968, 1991), multi attribute utility theory (Dyer et al., 1992; Wallenius et al., 2008), fuzzy sets
(Carlsson and Fullér, 1996) or rough sets (Greco et al., 2001). Several surveys give a good
overview (Figueira et al., 2005; Velasquez and Hester, 2013).

Using the article Luce and Tukey (1964) on conjoint measurement, Green and Rao (1971)
established conjoint analysis as a subfield of marketing research. The main considered problems
are to understand how buyers make complex purchase decisions, to estimate preferences and
importances for product features, and to predict buyer behavior, based on the exploitation of
ranking data representing preferences over items with multiple features. Many authors have
contributed to the development of the field since then, introducing new methods and algorithms
(Louviere, 1988; Swait and Louviere, 1993; Lenk et al., 1996; Louviere et al., 2000) or considering
new applications (Wittink and Cattin, 1989; Adamowicz et al., 1994; Ryan, 1999; Ryan and
Farrar, 2000; Soutar and Turner, 2002). Many surveys have provided overviews of the field
(Green and Srinivasan, 1978, 1990; Green et al., 2001; Netzer et al., 2008).

2.2.5 Computer systems

Computer systems have revitalized ranking data analysis since the beginning of the 21st century.
With the abundance of information has come the need for the selection of items best fitted for
a certain purpose. Companies have thus designed ranking systems to present items in the best
order, either in a search or a recommendation setting.

Search engines are the central application of information retrieval (IR). Though their concept
dates back at least to the mid-20th century (Maron and Kuhns, 1960), they have of course
attracted more attention with the development of computer systems and the Web (Deerwester
et al., 1990; Baeza-Yates and Ribeiro-Neto, 1999). The principle of fitting ranking functions on
datasets labeled by human annotators (Fuhr, 1992; Cooper et al., 1992) or click-through data
(Joachims, 2002) has then lead to a tremendous number of machine learning-based methods
(see Liu, 2009, for a survey), even more boosted by the Yahoo! Learning to Rank Challenge
(Chapelle and Chang, 2011). If many of these contributions exploit labels as cardinal values
and thus do not correspond to ranking data analysis, a significant number of them deal with
ordinal comparisons and therefore perform ranking data analysis. A description of the literature
is provided in Subsection 2.3.2.

The metasearch problem of combining the results of different search engines has also attracted
a great deal of attention. Formalizing it as a rank aggregation problem (see Section 2.3) has
enabled to apply classic voting rules and introduce new ones with efficiency (Aslam and Mon-
tague, 2001; Dwork et al., 2001; Renda and Straccia, 2003; Fagin et al., 2003; Agrawal et al.,
2006; Akritidis et al., 2011; Desarkar et al., 2016).

In recommender systems, the goal is to select for each user items from a catalog that they
would like. The central problem is thus to infer maximal knowledge, from available data, about
the tastes or equivalently the preferences of each user. Research about recommender systems
was however boosted by the Netflix challenge, between 2006 and 2009, where the problem was
formulated as the prediction of the rating that a user would give to an item at a certain date.
Impressive advances were made on the problem of matrix completion, in particular about the
use of matrix factorization methods and Restricted Boltzmann Machines (Salakhutdinov et al.,
2007; Koren et al., 2009). Many important recommending tasks were however left aside, such
as how to rank recommendations, how to exploit other feedback than ratings (implicit feedback
in particular), how to increase the diversity of recommendations or how to perform cold-start
recommendations (see Shani and Gunawardana, 2011, for a general overview). These various
problems can be tackled by methods from ranking data analysis and have therefore driven the
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literature over the recent years (Jin et al., 2003; Kamishima, 2003; Weimer et al., 2007; Liu and
Yang, 2008; Rendle et al., 2009; Baltrunas et al., 2010; Balakrishnan and Chopra, 2012; Volkovs
and Zemel, 2012; Sun et al., 2012; Yi et al., 2013; Wang et al., 2014; Kapicioglu et al., 2014; Lee
et al., 2014; Lu and Negahban, 2014; Park et al., 2015).

From a global perspective, most of the aforementioned contributions involve Preference Learn-
ing, and there has been many efforts to gather them in a global framework (see Fürnkranz and
Hüllermeier, 2011).

Remark 4 (Ranking on graphs and manifolds). With the Success of the PageRank algorithm
(Page et al., 1999) used by Google, there has been a dedicated interest in the literature for
ranking on graphs and manifolds for search engines (Zhou et al., 2004; Agarwal, 2006; Xu et al.,
2011a). Such methods do not however deal with ranking data and this is why we do not take
them into account into our description of the field.

2.2.6 Crowdsourcing

Crowdsourcing problems have attracted more and more attention in the last few years, facilitated
by the Amazon Mechanical Turk marketplace. They consist in dividing a global task into several
ones, give them to individual “workers” and aggregate the results. Several ranking applications
are well tackled by this approach, such as subjective labeling (Bennett et al., 2009; Xu et al.,
2011b; Chen et al., 2013; Xu et al., 2014; Stoyanovich et al., 2015; Park et al., 2015), human
computation (Pfeiffer et al., 2012; Mao et al., 2013) or peer grading (Walsh, 2014; Raman and
Joachims, 2015).

2.2.7 Biological data

With the development of microarrays in the recent years, it has become possible to measure
the simultaneous level of expression of thousands of genes or proteins in biological experiments.
Such data is of interest to better understand the role of each gene or protein under different
conditions. The measured levels of expression can however vary a lot between experiments so
that normalization is key to efficiently aggregate observations. For that purpose, exploiting the
data as lists of genes or proteins ordered by level of expression and applying methods from ranking
data analysis has shown to be a simple and powerful approach (Breitling et al., 2004; Geman
et al., 2004; Tan et al., 2005; DeConde et al., 2006; Boulesteix and Slawski, 2009; Kolde et al.,
2012; Kim et al., 2014; Jiao and Vert, 2015). With its democratization in the bioinformatics
literature, ranking data analysis has found other applications, such as nanotoxicology (Patel
et al., 2013) or brain data analysis (Shadi et al., 2015).

2.2.8 Mathematical applications

Rankings and permutations arise in many mathematical problems so that methods to analyze
them have naturally been found an interest. In machine learning and statistics, they have been
applied for instance to multi-class classification (Friedman, 1996; Hastie and Tibshirani, 1998;
Huang et al., 2006), feature selection (Wu et al., 2009; He and Yu, 2010; Prati, 2012; Dittman
et al., 2013), metric learning (Schultz and Joachims, 2004; Chechik et al., 2010; Zheng et al.,
2013), reinforcement learning (Akrour et al., 2011; Cheng et al., 2011; Wilson et al., 2012), al-
gorithms benchmarking (Hornik and Meyer, 2007; Eugster et al., 2014; Mersmann et al., 2015),
or the analysis of nonparametric statistical tests (Haunsperger and Saari, 1991; Diaconis et al.,
2001; Bargagliotti, 2009; Bargagliotti and Saari, 2010). In combinatorial optimization, though
the classic Quadratic Assignment Problem has been extensively studied through a quadratic
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programming approach (Pardalos et al., 1994), new insights and methods have come from per-
mutation analysis (Barvinok and Vershik, 1988; Kondor, 2010). At last, permutation analysis is
naturally involved the study of symmetries (Viana, 2006; Jiang et al., 2014).

2.2.9 Diverse

Ranking data and permutations analysis have found many other applications such as multi-
object and identity tracking (Kondor et al., 2007; Jiang et al., 2011a), image segmentation (Yu,
2009; Maire, 2010; Yu, 2012), photo sequencing (Basha et al., 2012), image association (Pachauri
et al., 2012, 2014) or geometric model fitting (Wong et al., 2013) in image processing, but also
seriation (Fogel et al., 2013; Lim and Wright, 2014) link prediction in complex networks (Pujari
and Kanawati, 2012; Tabourier et al., 2014) or data coding (Barg and Mazumdar, 2010; Helmi
et al., 2012; Wang et al., 2013; Farnoud et al., 2014).

2.3 Classic problems in ranking data analysis

In this section we formalize the main problems that have been considered in ranking data analysis.
We differentiate between problems on rankings of elements without features and problems on
rankings of elements with features or with context. Though the contributions of this thesis apply
more directly to the former setting, they could be applied to the latter (examples of directions are
described in Chapter 7). This is why we describe the main problems considered in the literature
for both settings.

2.3.1 Rankings of elements without features

In its widest generality, a dataset of rankings is a collection of N ≥ 1 rankings (π(1), . . . , π(N)) ∈
RN
n . Though it is not always necessary, it is natural to model it as a collection of random rankings
DN = (Π(1), . . . ,Π(N)) ∈ RN

n drawn IID from a probability distribution µ over Rn. The task
can then be to describe, summarize or visualize the dataset or to infer some target part of the
probability distribution µ. The former corresponds to descriptive statistics or data visualization,
and the latter corresponds to inferential statistics or unsupervised learning. Most of the usual
tasks on vector data can be considered on ranking data but they usually require the definition of
specific concepts and the design of dedicated methods. Other tasks are also particular to ranking
data. In addition, while most of the tasks can be considered for any subclass of rankings, they
can be much more interesting and/or challenging for some subclasses compared to others. The
main problems are described below.

Rank aggregation. Rank aggregation was the first problem to be considered on ranking data
and has been the most widely studied one in the literature. The goal is to find one full ranking
σ∗ ∈ Sn that best “represents” the data. While traditional vector data is naturally represented
by its mean, there is no equivalent concept for ranking data and there are many ways to state
the problem of rank aggregation formally. One approach widely considered in the literature is to
look for consensus rankings (Kemeny, 1959). Given a dissimilarity measure ∆ on Rn, they are
defined in the following ways.

• Summary setting. A consensus ranking for a dataset DN = (Π(1), . . . ,Π(N)) ∈ RN
n is a

permutation σ∗ ∈ Sn solution of

min
σ∈Sn

N∑
t=1

∆
(
σ,Π(t)

)
. (2.1)
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• Inference setting. A consensus ranking for a probability distribution µ over Rn is a
permutation σ∗ ∈ Sn solution of

min
σ∈Sn

∑
π∈Rn

∆(σ, π)µ(π). (2.2)

Though less common, Inference setting (2.2) is considered for instance in Prasad et al. (2015) or
Rajkumar and Agarwal (2014). For two full rankings σ, σ′ ∈ Sn, ∆(σ, σ′) is typically equal to
a distance on Sn (see Subsection 2.4.4 for examples), and for a pairwise comparison i � j, one
typically takes ∆(σ, i � j) = I{σ(i) > σ(j)}.

The most widely considered case is arguably the Summary setting (2.1) for full rankings
with dissimilarity measure equal to the Kendall’s tau distance on Sn (refer to Subsection 2.4.4
for the definition). It has indeed been shown that the voting rule that maps a dataset to its
associated consensus(es) for this setting, called Kemeny’s rule, is the unique rule that satisfies
some desirable axiomatic properties (Young and Levenglick, 1978) and that the consensus(es) are
the maximum likelihood estimator(s) for the Mallows model (Young, 1988), refer to Subsection
2.5 for the definition. Kemeny rank aggregation, the problem of finding a Kemeny consensus, is
however NP-hard (Bartholdi et al., 1989; Dwork et al., 2001; Hudry, 2008). Many contributions
have thus tackled this complexity by establishing theoretical guarantees for existing procedures
(see Diaconis and Graham, 1977; Saari and Merlin, 2000; Coppersmith et al., 2006; Freund and
Williamson, 2015), complexity bounds for exact recovery under hypothesis on the dataset (see
Davenport and Kalagnanam, 2004; Conitzer et al., 2006; Brandt et al., 2015) or if some quantity
is known on the dataset (see for instance Betzler et al., 2008, 2009; Karpinski and Schudy, 2010;
Fernau et al., 2010; Cornaz et al., 2013; Betzler et al., 2014). Many others have introduced
alternative rank aggregation procedures (in addition of the voting rules already mentioned in
Subsection 2.2.1), seen as approximations of Kemeny’s rule (Van Zuylen and Williamson, 2007;
Kenyon-Mathieu and Schudy, 2007; Ailon et al., 2008; Van Zuylen and Williamson, 2009) - with
comparisons on numerical experiments (Schalekamp and van Zuylen, 2009; Ali and Meila, 2012)
- or not necessarily (Blin et al., 2011; Niu et al., 2013; Aledo et al., 2013; Deng et al., 2014;
Lorena et al., 2014; Volkovs and Zemel, 2014; Bedo and Ong, 2014). Some contributions have
also considered the rank aggregation problem with other distances (Chin et al., 2004; Bachmaier
et al., 2013; Farnoud and Milenkovic, 2014).

With large-scale modern applications (see Section 2.2), another important literature has been
devoted to aggregation from pairwise comparisons (Braverman and Mossel, 2008; Gleich and Lim,
2011; Jiang et al., 2011b; Yu, 2012; Negahban et al., 2012; Wauthier et al., 2013; Rajkumar and
Agarwal, 2014; Xu et al., 2014; Cucuringu, 2015; Shah and Wainwright, 2015) or partial rankings
(Fagin et al., 2004; Ailon, 2010; Brandenburg et al., 2012; Procaccia and Shah, 2015) or both
(Ammar and Shah, 2012).

Partial rank aggregation. Aggregating rankings into a full ranking can sometimes be too
hard and unnecessary. This is why the literature has also considered the problem of aggregating
rankings into a top-k ranking or a more general partial ranking. The latter states as (2.1) except
that one looks for a partial ranking π∗ instead of a full ranking σ∗ (Gionis et al., 2006; Feng et al.,
2008; Kenkre et al., 2011). A “parametric” ranking model is usually assumed in the former (see
Subsection 2.5.1 for examples). As classic parametric models have a natural associated ordering
of the elements of JnK, the problem is then to construct an estimator of the top-k elements from
the dataset and its accuracy is measured by the probability that it is correct under the model. An
extension of the Mallows model is used in Procaccia et al. (2012) while the Plackett-Luce model
is used in Chen and Suh (2015); Jang et al. (2016). A “nonparametric” setting (see Subsection
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2.5 for a definition) is also considered in Rajkumar et al. (2015) where the considered problem is
to recover the winners (for some criterion) of the true ranking model, under several “regularity
assumptions”.

Estimation. Estimating the probability distribution that underlies the data generation is the
central task of statistical ranking data analysis. Any introduction of a new model thus usually
comes with an associated inference procedure, that we describe in Section 2.5. We simply point
out that most of the literature do not seek to estimate the probability distribution µ over Rn. The
latter is indeed usually decomposed as a product between a ranking model and an observation
design and the goal is to estimate the ranking model (see Section 3.1 for the proper definitions).

While many contributions have extended existing ranking models and estimation methods or
introduced new ones, very few have developed a statistical theory for ranking data analysis. This
is of course due to its many challenges and specificities (see Section 2.4). We however point out
several contributions, that have introduced notions of “confidence interval” (Patil and Taillie,
2004; Hall and Miller, 2010; Volkovs and Zemel, 2014), focused on bounds for existing methods
(Maystre and Grossglauser, 2015b; Khetan and Oh, 2016) or established minimax-optimality
results (Hajek et al., 2014; Shah et al., 2015b).

Clustering. Clustering is a natural problem in ranking data analysis, especially in the numer-
ous applications where the data represent the preferences of a users population (see Section 2.2).
The dataset is assumed to be of the formDN = ((Π(1,1), . . . ,Π(1,N1)), . . . , (Π(m,1), . . . ,Π(m,Nm))) ∈
RN
n , where m is the number of users, (Π(j,1), . . . ,Π(j,Nj)) is the collection of preferences expressed

by user j for each j ∈ {1, . . . ,m} and N = N1 + · · · + Nm is the total number of observations.
Two tasks are involved in the clustering problem:

1. Divide the dataset DN into clusters.

2. Affect each (potentially new) user j with preferences (Π(j,1), . . . ,Π(j,N1)) to a cluster.

The vast majority of the literature tackle this problem via the estimation of a mixture of ranking
models, such as extensions of the Mallows model (Murphy and Martin, 2003; Meila and Chen,
2010; Lee and Yu, 2012; Awasthi et al., 2014; Jacques and Biernacki, 2014; Chierichetti et al.,
2015; Ding et al., 2015a), of the Plackett-Luce model (Busse et al., 2007; Gormley and Murphy,
2008, 2009; Oh and Shah, 2014; Tran and Venkatesh, 2014; Wu et al., 2015; Oh et al., 2015; Mollica
and Tardella, 2015) or of the Thurstone model (Abbasnejad et al., 2013). A non parametric
approach is also proposed in Clémençon et al. (2011).

Ranking prediction and collaborative ranking. Ranking prediction has mostly been con-
sidered in the setting of collaborative ranking. Mainly applied to a recommendation setting with
m users, the goal is to predict a full ranking on JnK for each user, based on their feedback on some
elements of JnK. Feedback can be given as ratings or ordinal preferences. The latter case can be
formally stated in a supervised learning setting: feedback from user j is modeled by a random
ranking Πj drawn from probability distribution µj over Rn and the objective is to minimize the
theoretical risk defined for a tuple of m full rankings (σ1, . . . , σm) ∈ Sm

n by

R (σ1, . . . , σm) :=

m∑
j=1

E
[
l
(
σj ,Π

j
)]

=

m∑
j=1

∑
π∈Rn

l (σj , π)µj(π),
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where l : Sn × Rn → R+ is a given loss function. Of course the true distributions µj are not
known and one considers the empirical version of the risk defined for (σ1, . . . , σm) ∈ Sm

n by

RN (σ1, . . . , σm) =

m∑
j=1

Nj∑
t=1

l
(
σ(m),Π(j,t)

)
,

where the Π(j,t)’s for t = 1, . . . , Nj are drawn IID from µj for each user j. For arbitrary
probability distributions µj , this problem would be equivalent to m independent ones. Empirical
data shows however that they have some similarities and that it is more efficient solve the
problem at once with some regularization scheme. Contributions in the literature have thus
applied methods from machine learning (Liu and Yang, 2008; Rendle et al., 2009; Volkovs and
Zemel, 2012; Kuang et al., 2016), especially matrix factorization techniques (Weimer et al., 2007;
Balakrishnan and Chopra, 2012; Yi et al., 2013; Wang et al., 2014; Kapicioglu et al., 2014; Lu
and Negahban, 2014; Lee et al., 2014; Park et al., 2015; Barjasteh et al., 2015; Oh et al., 2015).

Active ranking and preference elicitation. Active learning has been applied to ranking
data analysis in mainly two problems. Active ranking consists in a rank aggregation problem
(full or partial), usually from pairwise comparisons, where the ranker can choose which pairs to
observe. Formally, for each chosen pair {at, bt} ⊂ JnK, he observes the ranking Π(t) ∈ {at �
bt, at ≺ bt} =: Γ({at, bt}) drawn from a probability distribution P{at,bt} over Γ({at, bt}). The
performance of a method is measured by the number of queries required to recover the target
(exactly or approximately). Contributions in the literature have introduced several methods
depending on the considered target and a possible assumption on the P{a,b}’s (Jamieson and
Nowak, 2011; Ailon, 2012; Eriksson, 2013; Busa-Fekete et al., 2013, 2014b).

The second problem is called Preference elicitation. Assuming a parametric model on the
data, the goal is to choose pairs to observe in order to best approximate the parameters in a
minimum number of queries. Contributions in the literature have introduced observation schemes
for the Thurstone-Mosteller model or its generalizations (Brochu et al., 2008; Guo and Sanner,
2010; Guo et al., 2010; Pfeiffer et al., 2012; Houlsby et al., 2012; Soufiani et al., 2013a) or the
Mallows model (Busa-Fekete et al., 2014a).

On-line permutation learning. On-line permutation learning is the following problem: at
each step t = 1, . . . , N , a learner predicts a permutation Σ(t), usually generated by a stochastic
algorithm, suffers a loss lt(Σ

(t)), and is revealed some feedback. The performance of the learner
is measured by the difference between its expected total over the N rounds and the total loss of
the optimal static permutation in hindsight:

R
(

Σ(1), . . . ,Σ(N)
)

=

N∑
t=1

E
[
lt

(
Σ(t)

)]
− min
σ∈Sn

N∑
t=1

lt(σ).

In Yasutake et al. (2012), a permutation σ(t) ∈ Sn is revealed to the learner at each step and
the latter suffers the loss lt(σ) = dKT (σ, σ(t)), where dKT is the Kendall’s tau distance on Sn

(see Subsection 2.4.4 for the definition). On-line permutation learning it this case can then be
seen as a rank aggregation problem where the ranker is presented the rankings of a collection
(σ(1), . . . , σ(N)) ∈ RN

n one-by-one and asked at each step to take a guess on the consensus for
the full collection. Other losses and types of feedback have been considered in the literature for
which the contributions have each introduced specific methods (Helmbold and Warmuth, 2009;
Yasutake et al., 2012; Ailon, 2014; Ailon et al., 2014; Chaudhuri and Tewari, 2015).
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Visualization. Visualizing ranking data is of course very useful for its analysis but it rep-
resents a great challenge, because of its combinatorial nature and high dimensionality. Several
contributions in the literature have thus proposed visualization methods, mainly based on dimen-
sionality reduction (Yu and Chan, 2001; Ukkonen, 2007; Kidwell et al., 2008; Sun et al., 2010) or
graphical techniques (Shi et al., 2012; Gratzl et al., 2013; Behrisch et al., 2013; Lei et al., 2016).

2.3.2 Rankings of elements with features or with context

In this subsection we consider the main problems of ranking data analysis with features. Because
they do not constitute direct applications of our results, we only describe some of the problems
encountered in the abundant associated literature.

Label ranking. Let X represent an input set (typically X = Rd) and let JnK represent a set of
“labels”. Label ranking consists in learning a function f that predicts a ranking πx ∈ Rn on JnK
for each input x ∈ X , from the observations of IID samples of a random couple (X,Π) ∈ X ×Rn.
The performance of the function f is evaluated by its risk

R(f) = E[l(f(X),Π)],

where l : Rn ×Rn → R+ is a loss function. This setting generalizes multi-class and multi-label
classification: in the former, observations are top-1 rankings (the preferred element being the
class of the input) and in the latter, observations are of the form a1, . . . , ak � b1, . . . , bn−k (the
ai’s corresponding to the labels equal to 1 for the given input and the bi’s to the labels equal
to 0). Methods introduced in the literature rely for instance on kernels (Elisseeff and Weston,
2001; Chu and Ghahramani, 2005b), decomposition on pairwise comparisons (Fürnkranz, 2002;
Hüllermeier et al., 2008; Destercke, 2013), boosting (Dekel et al., 2003), local regularity (Brinker
and Hüllermeier, 2007; Cheng et al., 2009, 2010) or on-line procedures (Crammer and Singer,
2003; Shalev-Shwartz and Singer, 2007; Grbovic et al., 2013).

Ordinal regression, instance/object ranking and learning to rank. In this paragraph
we consider an infinite set X of elements to be ranked, each characterized by its features, typically
X = Rd. A scoring function f : X → R induces a strict partial order on X through x � x′ if and
only if f(x) > f(x′). From a general point of view, ordinal regression, instance/object ranking
and learning to rank all consist in learning a scoring function f : X → R from observations of
potentially different types:

• Pointwise feedback. (x, r) with x ∈ X an element and r ∈ R a rating or a relevance
level.

• Pairwise feedback. x � x′ with x, x′ ∈ X two distinct elements.

• Listwise feedback. x1 � · · · � xk with x1, . . . , xk ∈ X k distinct elements and k ≥ 2.

Many methods in the literature transform feedback from one type to another and many loss
functions have been introduced to take each setting into account (see Liu, 2009). One can nev-
ertheless globally differentiate between pointwise methods (Crammer and Singer, 2001; Shashua
and Levin, 2002; Chu and Ghahramani, 2005a; Cossock and Zhang, 2006; Li et al., 2007), pair-
wise methods (Herbrich et al., 1999; Cohen et al., 1999; Freund et al., 2003; Burges et al., 2005;
Pahikkala et al., 2007; Ailon and Mohri, 2010) and listwise methods (Burges et al., 2006; Cao
et al., 2007; Xu and Li, 2007; Yue et al., 2007; Taylor et al., 2008; Xia et al., 2008; Cossock
and Zhang, 2008; Pareek and Ravikumar, 2014). Theoretical guarantees have also been studied
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(Clémençon and Vayatis, 2007; Clémençon et al., 2008; Ravikumar et al., 2011; Duchi et al.,
2013). Refer to Liu (2009); Busa-Fekete et al. (2012); Tax et al. (2015) for surveys and compar-
isons. Because they deal with ranking data, pairwise and listwise methods can be considered as
part of ranking data analysis.

2.4 Specificities and challenges of ranking data analysis

Many of the problems described previously can be stated in a traditional statistics or ma-
chine learning setting. Solving them for ranking data needs however to deal with specific
challenges. We illustrate them on the estimation task in the case of full rankings. Let then
p be a probability distribution on the symmetric group Sn. We assume to observe a dataset
DN = (Σ(1), . . . ,Σ(N)) ∈ SN

n of N IID samples from p and the goal is to recover p.

Example 5 (German dataset). As a running example, we will consider a real dataset obtained
from Croon (1989) and studied for example in Diaconis and Sturmfels (1998) or Yao and Böck-
enholt (1999). After the fall of the Berlin wall, a survey of German citizens was conducted where
they were asked to rank four political goals:

1. Maintain order

2. Give people more say in government

3. Fight rising prices

4. Protect freedom of speech

This dataset contains the answers of 2,262 respondents, summarized in the following table.

Ranking Answers Ranking Answers
1234 137 3124 330
1243 29 3142 294
1324 309 3214 117
1342 255 3241 69
1423 52 3412 70
1432 93 3421 34
2134 48 4123 21
2143 23 4132 30
2314 61 4213 29
2341 55 4231 52
2413 33 4312 35
2431 39 4321 27

Throughout the thesis, this dataset is called the German dataset.

2.4.1 Difference with multivariate analysis

A permutation σ ∈ Sn can be represented by the vector (σ(1), . . . , σ(n)) ∈ Rn. One can therefore
see each sample Σ(i) as the random vector (Σ(i)(1), . . . ,Σ(i)(n)) and estimate p using techniques
from multivariate analysis. This is however infringed by two critical differences.

• The variables Σ(1), . . . ,Σ(n) of a random permutation Σ are far from being independent.
More specifically, their dependence structure is of combinatorial nature: they must take
their values in JnK and these values must be different. It is not captured well by classic
techniques from multivariate analysis.
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• The average of two permutation vectors (σ(1), . . . , σ(n)) and (σ′(1), . . . , σ′(n)) is usually
not a permutation vector. The Law of Large Numbers and Central Limit Theorems can
therefore not be applied.

2.4.2 Exploding cardinality of Sn

From another point of view, the symmetric group Sn is a finite set. The distribution p can thus
simply be estimated by the histogram of the frequencies of observation, formally by the following
empirical estimator

p̂N =
1

N

N∑
t=1

δΣ(t) ,

where we recall that δσ is the Dirac function on σ. Problem is that Sn has exploding cardinality:
|Sn| = n!. This approach thus becomes irrelevant very quickly when n increases. For instance in
the sushi dataset from Kamishima (2003) with 5000 permutations of J10K, the maximal number
of observations for one permutation is 3. The exploding cardinality of Sn also brings of course
a daunting computational challenge, an omnipresent burden of ranking data analysis.

2.4.3 Difference with probability density function estimation

If Sn is too big to be treated as a finite set, one could treat it as an infinite set and apply methods
from probability density function estimation. Figure 2.1 gives an example of a kernel-based
estimator for the German dataset. There is however no natural way to order the permutations
along an axis and two different orderings can lead to very different results. Figure 2.2 displays the
smoothed estimator obtained on the German dataset with the same kernel but after a reordering
of the permutations along the axis. The comparison between the two smoothed estimators is
provided in Figure 2.3. This example illustrate how arbitrary such an approach is.

2.4.4 Absence of a canonical structure

In vector data analysis, statistical estimation usually relies on an hypothesis about the rela-
tionship between the probability distribution and some geometrical or topological structure of
the space. This hypothesis can take the form of an explicit formula in a parametric approach
(e.g. a Gaussian model on Rd is defined with respect to the Euclidean distance) or a regularity
assumption in a non-parametric approach (e.g. a differentiability assumption on Rd exploits the
infinitesimal structure of Rd). The same principle applies to Sn, but the problem is that there
are many possible geometrical or topological structures and none is canonical.
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Figure 2.1: Kernel-based estimation on the German dataset
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Figure 2.2: Kernel-based estimation on the German dataset
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Figure 2.3: Comparison of the two smoothed estimators on the German dataset

Distances. Many distances can be defined on Sn, each one having its own interest. Some
classic examples are, for σ, σ′ ∈ Sn:

Kendall’s tau distance d(σ, σ′) =
∑

1≤i<j≤n

I{(σ(j)− σ(i))(σ′(j)− σ′(j)) < 0}

Spearman’s footrule (l1 distance) d(σ, σ′) =

n∑
i=1

|σ(i)− σ′(i)|

Spearman’s rho (l2 distance) d(σ, σ′) =

√√√√ n∑
i=1

(σ(i)− σ′(i))2

Hamming distance (l0 distance) d(σ, σ′) =

n∑
i=1

I{σ(i) 6= σ′(i)}

Refer to Deza and Huang (1998) for more examples.

Graph structures. The symmetric group can also be given a graph structure: each permuta-
tion is seen as a vertex and two permutations are linked if they satisfy some relationship. The
usual approach is to consider a Cayley graph, where permutations σ and σ′ are linked if and only
if σ−1σ′ belongs to a given generating subset S ⊂ Sn. Among the many possibilities, examples
are:

All transpositions : S = {(i j) | 1 ≤ i < j ≤ n}
Adjacent transpositions : S = {(i i+ 1) | 1 ≤ i ≤ n− 1}

Star graph : S = {(i n) | 1 ≤ i ≤ n− 1}

Embeddings. Another approach is to embed Sn in a space V equipped with a particular struc-
ture, typically a Euclidean space, and transfer this structure to Sn. Here again, the possibilities
are numerous, classic examples being:

Embedding as a permutation vector: Sn → Rn, σ 7→ (σ(1), . . . , σ(n))

Embedding as a permutation matrix: Sn → Rn×n, σ 7→ Pσ = [I{σ(i) = j}]1≤i,j≤n
Embedding as an acyclic graph: Sn → Rn(n−1)/2, σ 7→ (sign(σ(j)− σ(i)))1≤i<j≤n
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2.4.5 Interest for an interpretation

Not being specific to the domain, interpretable models are particularly valued in ranking data
analysis. This is surely due to two aspects mentioned previously.

• Ranking data is very natural for human beings and represent in many situations preferences
expressed by individuals.

• Many statistical problems enter an unsupervised setting, thus where the ground truth is
unknown.

As a consequence, the exploitation of one structure or another on Sn should be motivated by
an explicit reason.

2.5 Models

We now describe the main models that have been introduced in the literature to analyze ranking
data. We differentiate between parametric and nonparametric models. This distinction may be
surprising because a parametric model in statistics is usually defined as a a collection of proba-
bility distributions that can be injected into a finite-dimensional vector space. As Rn is a finite
set, any probabilistic model on ranking data is parametric under this definition. The distinc-
tion we make here rather relies on the associated statistical modeling approaches. In parametric
modeling, the model is defined by an explicit formula with parameters and its complexity is char-
acterized by the number of parameters. In nonparametric modeling the model does not always
have an explicit expression and more importantly its complexity is characterized by a regular-
ity assumption. This general distinction in statistics applies to ranking data analysis. Another
difference is that parametric models on ranking data are usually motivated by a psychological
interpretation whereas nonparametric models by a mathematical interpretation.

2.5.1 Parametric models

Parametric modeling constitutes the vast majority of the ranking data analysis literature. Per-
haps surprisingly however, the contributions can be divided for the major part into three category,
each related to a seminal model. We also describe some other parametric models that have been
introduced in the literature at the end of this subsection.

The Thurstone-Mosteller-RUM model. The first probabilistic model on ranking data was
introduced in Thurstone (1927a). Therefore called the Thurstone model, it states in its most
general form as follows. Given a random vector X = (X1, . . . , Xn) ∈ Rn with probability density
function f : Rn → R+, the probability of a full ranking σ = σ1 . . . σn ∈ Sn is equal to

p(σ) = P[Xσ1
> · · · > Xσn ] =

∫
x1>···>xn

f(x1, . . . , xn)dx1 . . . dxn.

Without any further assumption, this formulation is of course useless because there are much
more probability density functions f on Rn than probability distributions p on Sn. Two main
assumptions are usually made:

1. The Xi’s are independent, each with density fi : R→ R+, or equivalently f is the product
of the fi’s: f(x1, . . . , xn) = f1(x1) . . . fn(xn) for all (x1, . . . , xn) ∈ Rn. In addition the fi’s
are usually assumed to be of the same parametric form with different parameters.
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2. f is a multivariate normal distribution of mean vector µ ∈ Rn and covariance matrix
Σ ∈ Rn×n.

While a specific case of the first assumption leads to the Plackett-Luce model (see next para-
graph), most of the literature that uses the Thurstone model considers the second assumption.
Many contributions even consider the simplest case where Σ = sIn, with s ∈ R and In the iden-
tity matrix of size n, that is to say where the Xi’s are independent and all with same standard
deviation s. This setting is called case V in Thurstone (1927a) and a least squares regression
method was introduced in Mosteller (1951) to fit it on the data. It is usually referred to as the
Thurstone-Mosteller in the literature on paired comparisons.

The initial goal of Thurstone was to model the psychological mechanism that leads to people’s
comparisons. Under case V assumption the interpretation is the following: when a person is
presented elements of the set JnK, she has an unconscious rating µi for each element i ∈ JnK
but makes comparisons with the noisy versions Xi = µi + ε where ε is a Gaussian centered
noise of standard deviation s. The Thurstone model was then given an economics interpretation
in Marschak (1959) and called the Random Utility Model (RUM). Many contributions have
then extended it (Takane, 1987; Böckenholt, 1992; Maydeu-Olivares, 1999; Yu and Chan, 2001;
Walker and Ben-Akiva, 2002; Böckenholt, 2006; Herbrich et al., 2006) or studied and introduced
inference methods (Yao and Böckenholt, 1999; Tsai and Yao, 2000; Alberto Maydeu-Olivares and
Hernández, 2007; Weng and Lin, 2011; Soufiani et al., 2014a).

The Bradley-Terry-Luce-Plackett-MNL model. The Bradley-Terry model, introduced in
Bradley and Terry (1952), is certainly with the Thurstone-Mosteller model the most widely used
model for exploiting pairwise comparisons. Given positive parameters w1, . . . , wn, it models a
pairwise probability as

P[a � b] =
wa

wa + wb
,

and is classically fitted through maximum likelihood estimation. Interestingly, the same model
was already considered in Zermelo (1929) (but it was not known from the Anglo-Saxon literature
until the 1960s) and was introduced independently in Ford (1957). In Luce (1959), the author
generalizes the model and give it at the same time a new meaning. He shows that it is derived
from any choice model (see Section 2.3) that satisfies the Choice axiom: for A,B ∈ P(JnK)
with A ⊂ B and a ∈ A, the probability of choosing a among A is equal to the probability of
choosing a among B conditional on A having been chosen. This axiom leads more generally to
a probabilistic model over full rankings, given for σ = σ1 . . . σn ∈ Sn by

p(σ) =

n∏
i=1

wσi∑n
j=i wσj

.

Independently and with a completely different interpretation and motivation (related to horse
race betting), Plackett (1975) introduced a generalized versions of this model. This is why it is
often called the Plackett-Luce model in the literature and this is the name we use in the rest of
this thesis. In an economics context where elements have features, McFadden (1974a) has shown
that it can be seen as a Multinomial Logistic (MNL) model and this name is widely used in the
economics and Operations Research literature.

The Plackett-Luce model has been extensively studied and under many aspects. It was
shown in Block and Marschak (1960) that it is a specific case of the Thurstone model with an
implicit proof. Then McFadden (1974a) and Yellott (1977) showed that the Plackett-Luce model
is derived from the Thurstone model when the random variables are independent and follow a
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Gumbel distribution and reciprocally that the latter is the only distribution that leads to the
Plackett-Luce model.

Luce’s choice axiom, which can be seen as a probabilistic version of Independence or Irrelevant
Alternatives (IIA) (one of the axioms in Arrow’s impossibility theorem Arrow, 1950), has also
been widely discussed (Debreu, 1960; Restle, 1961; Saari, 2005) and several contributions have
generalized it (Tversky, 1972; Samuelson, 1985; Gul et al., 2014) or developed statistical methods
to overcome its limitations (Ieong et al., 2012; Takahashi and Morimura, 2015).

At last, a wide literature has been devoted to extend the Plackett-Luce model (Henery, 1981;
Benter, 1994; Liqun, 2000; Caron and Teh, 2012; Caron et al., 2014) or to design efficient inference
procedures (Hunter, 2004; Guiver and Snelson, 2009; Caron and Doucet, 2012; Soufiani et al.,
2013b; Maystre and Grossglauser, 2015a).

The Mallows model. In Babington Smith (1950), the author proposes to construct a proba-
bilistic model over full rankings as proportional to the product of probabilities over pairwise com-
parisons. Formally, denoting by Pa,b the probability that a � b for distinct elements a, b ∈ JnK,
the model is defined for a full ranking σ ∈ Sn by

p(σ) = C
∏

1≤a<b≤n

P
I{σ(a)<σ(b)}
a,b (1− Pa,b)I{σ(a)>σ(b)}. (2.3)

where C > 0 is a normalizing constant. Judging this general model too cumbersome, Mallows
(1957) proposes several ways to specialize it. The author considers first a Bradley-Terry model
for the Pa,b’s leading to the sometimes called Mallows-Bradley-Terry model (we point out that
this model for full rankings is different from the Plackett-Luce model). Then he follows a second
approach and introduces the Mallows φ-model, defined for σ ∈ Sn by

p(σ) = C(φ)
∏

1≤a<b≤n

φsign(σ(b)−σ(a)), (2.4)

where φ > 0 and C(φ) is a normalizing constant. In this model, the ranking 1 . . . n is seen as
the standard and for any 1 ≤ a < b ≤ n, the probability Pa,b that the pairwise comparison fits
with the standard a � b is assumed to be constant, equal to φ/(φ+ φ−1). More generally when
a ranking σ∗ ∈ Sn is seen as the standard, the Mallows model is usually written as

p(σ) = C(γ)e−γdKT (σ∗,σ), (2.5)

where dKT is the Kendall’s tau distance (see Subsection 2.4.4) and the connection with (2.4) is
made with γ = 2 log(φ). Formulation (2.5) shows that the Mallows model is an exponential model
and can also be interpreted as a “Gaussian” model where the central permutation σ∗ corresponds
to the mean and the spread parameter γ > 0 to the inverse of the standard deviation.

Many contributions in the literature have studied or extended the Mallows model (Feigin
and Cohen, 1978; Fligner and Verducci, 1986, 1988; Diaconis, 1988; Chung and Marden, 1993;
McCullagh, 1993; Lebanon and Lafferty, 2002, 2003; Doignon et al., 2004; Meila and Bao, 2008;
Meilă and Bao, 2010; Qin et al., 2010; Plis et al., 2011; Meek and Meila, 2014) or introduced
procedures to fit it on the data (Meila et al., 2007; Lu and Boutilier, 2011a; Ceberio et al., 2014).
From a social choice perspective, the Mallows model can be interpreted as if there exists an ideal
ranking σ∗ for the social good but voters do not know it and make mistakes in their ballots
independently for each pair of candidates with constant probability 1/(1+φ2) with φ from (2.4).
This interpretation leads Young (1988) to say that the Mallows model was already present as an
intuition in Condorcet (1785).
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Remark 6 (On the Babington Smith model). The general Babington Smith model has been
few considered in the literature (Joe and Verducci, 1993). We point out however the approach
introduced in Cheng et al. (2012) where the authors study when thresholding probabilities of
pairwise comparisons leads to a strict partial order. Though there is no direct relationship
with the Babington Smith model, we find the analogy between the two modeling approaches
interesting.

Other models. We mention some parametric models introduced in the literature indepen-
dently from the work previously cited. We can identify mainly two families of models. The
first one assumes a parametric law for the rank of each element of JnK in a full ranking (D’Elia,
2000, 2003; Fasola and Sciandra, 2015). The second family models the generation of a random
ranking via an recursive insertion process of the elements of JnK into a full ranking (Ailon, 2008;
Biernacki and Jacques, 2013).

2.5.2 Nonparametric models

In contrast to parametric models, nonparametric models are quite diverse and use various math-
ematical structures. We try here to describe the main contributions in the literature but we are
probably not exhaustive.

Metrics. Defining a metric on ranking data enables to formalize a wide variety of problems
and perform for instance many statistical tests (Critchlow, 1985; Feigin and Alvo, 1986). The
study of such distances is thus already important (Diaconis and Graham, 1977) in particular for
partial rankings where their definition can become complex (Critchlow, 1985; Fagin et al., 2006;
Webber et al., 2010). Metrics have also been used to construct kernels for estimation (Lebanon
and Mao, 2008; Sun et al., 2012).

Independence modeling. A natural approach to tackle the complexity of ranking data is to
exploit some form of independence assumption. This has been done in the literature using the
L-decomposability property defined in Critchlow et al. (1991) (Csiszár, 2008, 2009b), Fourier
analysis (Huang et al., 2009b) or the concept of riffled independence (Huang and Guestrin, 2009,
2012; Huang et al., 2012).

Sparsity. Inspired by the achievements of sparsity-inducing methods in machine learning and
compressed sensing, several contributions have introduced inference methods under the assump-
tion of a ranking model with sparse support on Sn (Jagabathula and Shah, 2008; Farias et al.,
2009; Jagabathula and Shah, 2011; Ding et al., 2015b). One specificity when applied to ranking
data is that recovery conditions must cope with the combinatorial structure of Sn.

Fourier analysis. Fourier analysis on rankings exploits the algebraic structure of the symmet-
ric group Sn. First introduced in the seminal contributions Diaconis (1988, 1989), it has known
many developments since then. Using group representation theory, it defines an abstract Fourier
transform F that maps a function f over Sn to a collection of Fourier coefficients Ff = (f̂(λ))λ
(refer to Subsection 3.2.5 for more details). Though it exhibits some differences with the classic

Fourier transform (the two main ones being that the Fourier coefficients f̂(λ) are matrices and
that the “frequencies” λ are not numbers) it shares some fundamental properties: F is an isom-
etry and turns convolution product into pointwise product. Many contributions have therefore
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used Fourier analysis to design statistical procedures, such as nonlinear approximation (Diaco-
nis, 1989; Lawson et al., 2006), band-limited approximation (Huang et al., 2009a; Irurozki et al.,
2011), kernel methods (Kondor and Barbosa, 2010), phase-magnitude decomposition (Kakarala,
2011, 2012) or multiresolution decomposition (Kondor and Dempsey, 2012).

Markov bases. Several statistical tests on data require to sample from conditional distri-
butions. Markov bases are an efficient tool for this purpose and several contributions in the
literature have provided methods to construct them for different probabilistic models over rank-
ings (Diaconis and Sturmfels, 1998; Diaconis and Eriksson, 2006; Csiszár, 2009a; Sturmfels and
Welker, 2012).

Linear Ordering Polytope. Let Pa,b denote the probability distribution on the pairwise com-
parison between elements a and b induced by the probability distribution p over Sn (see Section
3.1 for the formal definitions, Pa,b is called a pairwise marginal of p). The admissible region
for the vector (Pa,b)1≤a<b≤n ∈ [0, 1]n(n−1)/2 is a convex polytope called the Linear Ordering
Polytope. Many contributions in the literature have studied its geometrical properties and its
relationships with ranking models (Reinelt, 1985; Grötschel et al., 1985; Cohen and Falmagne,
1990; Suck, 1992; Fishburn, 1992; Koppen, 1995; Zhang, 2004).

Nonparametric modeling of pairwise comparisons. Several contributions have also con-
sider specifically the nonparametric modeling of pairwise comparisons. Among them the HodgeR-
ank framework, introduced in Jiang et al. (2011b) and then further developed (Xu et al., 2012;
Dalal et al., 2012; Osting et al., 2013), exploits the topological structure of the pairwise com-
parison graph. A connection with our work is established in Subsection 6.3.1. Other approaches
include for instance approximation of pairwise comparison matrices (Koczkodaj and Orlowski,
1997; Chu, 1998; Koczkodaj and Or lowski, 1999; Dopazo and González-Pachón, 2003; Fülöp,
2008) or probabilistic modeling (Volkovs and Zemel, 2014; Shah et al., 2015a).
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Chapter 3

Motivations for a new
representation

In this chapter we describe in details the motivations for the present work. The first one is the
statistical analysis of incomplete rankings. Section 3.1 states the problem formally and highlights
the challenges. The other motivation is more general: to localize the parts of information involved
in relative marginals. It is explained in Section 3.2.
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3.1 Analysis of incomplete rankings

The practical motivation for this thesis is the application to the analysis of incomplete rankings.
This section states the problem and its associated challenges in details.

3.1.1 Context

As described in Section 2.2, many modern applications naturally involve ranking data analysis.
For instance in a recommendation setting, ranking data represent the users preferences and the

39
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ordered list of recommendations. The ideal situation for such an application would be to know
the probability

“Prob( ranking π over A | subset of items A; user u; context c)”

of a ranking π that user u would affect to items of A in context c. In the footsteps of the ranking
data analysis literature, the natural theoretical approach would be to derive these probabilities
from ranking models over Sn (see Subsection 3.1.2 for the definition). These applications however
occur in a large-scale setting: the number n of elements is typically around 104 or 106. They
therefore present daunting statistical and computational challenges and this is why contributions
in the literature have considered either simpler problems or restricted models (see Section 2.3).

Generic probabilistic modeling should nonetheless enable more flexibility and thus lead to
better result, if it is tractable. Fortunately, though n can be very large in these applications,
the size of the subset A is usually small, typically around 10. Users express their preferences
on small subsets of items and only look at a small number of recommendations. The number
of parameters to capture the variability of the data should thus be much more manageable and
statistical procedures should be able to capture it.

Such an approach inscribes itself in the statistical analysis of incomplete rankings. Perhaps
surprisingly, very few contributions have been devoted to this subject, while the analysis of full
rankings, partial rankings or pairwise comparisons have been extensively studied (see Chapter
2). Besides parametric models (see Subsection 3.1.5 for a description of their application), we
are only aware of three nonparametric approaches that can handle incomplete rankings, namely
those introduced in Yu et al. (2002), Kondor and Barbosa (2010) and Sun et al. (2012) in order
to perform statistical tests, estimation and prediction respectively. The principles underlying
these approaches are described at length in Subsection 3.1.5.

The purpose of the present work is to introduce a new representation for incomplete rankings
that enables to construct flexible probabilistic models and associated statistical procedures (refer
to Chapters 4 and 5). In the rest of this section, we properly define the problem and explain the
associated challenges.

3.1.2 Ranking model and consistency assumption

A ranking model is a family of probability distributions that characterize the variability of a
statistical population of rankings. In the case of full rankings, the statistical population is only
composed of random permutations, and a ranking model reduces to one probability distribution
p over the symmetric group Sn. But when one considers partial or incomplete rankings, they
usually are of various types, and the global variability of the statistical population is characterized
by a family of probability distributions, one over the rankings of each type. In the case of top-k
rankings for instance, the number k usually varies from 1 to n− 1 between observations, and the
global variability of the statistical population is characterized by a family (Pk)1≤k≤n−1 where
for each k ∈ {1, . . . , n− 1}, Pk is a probability distribution over the set of k-tuples with distinct
elements (see Busse et al., 2007, for instance).

Incomplete rankings are rankings on subsets of elements. The varying parameter in a statisti-
cal population of incomplete rankings is thus the subset of elements involved in each ranking. A
ranking model for incomplete rankings is then a family (PA)A∈P(JnK) where for each A ∈ P(JnK),
PA is a probability distribution over the set Γ(A) of rankings on A.

Example 7. For n = 3,

Γ3 = {12, 21} t {13, 31} t {23, 32} t {123, 132, 213, 231, 312, 321}

Γ({1, 2}) Γ({1, 3}) Γ({2, 3}) Γ({1, 2, 3}) ≡ S3
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so that a ranking model for incomplete rankings on J3K is a family (P{1,2}, P{1,3}, P{2,3}, P{1,2,3}).

If there were no relationship between the different probability distributions of a ranking model,
the statistical analysis of partial and/or incomplete rankings would boil down to independent
analyses for each type of ranking. Yet one should be able to transfer information from the
observation of one type of ranking to another. In a context of top-k rankings analysis, if for
instance element a appears frequently in top-1 rankings, it is natural to expect that it is ranked in
high position in top-k rankings with larger values of k, and reciprocally, if it is usually ranked high
in top-k rankings, then its probability of being top-1 should be high. The same intuition holds
for incomplete rankings. If element a is usually preferred to element b in pairwise comparisons
then rankings on {a, b, c} that place a before b should have higher probabilities than the others.
Reciprocally if such rankings appear more frequently than the others, then element a should be
preferred to element b with high probability in a pairwise comparison.

The literature on ranking data analysis generally makes one fundamental assumption: the
observed rankings in a statistical population of interest are induced by full rankings drawn from a
single probability distribution p over Sn. Permutation σ ∈ Sn induces ranking ≺ or equivalently
is a linear extension of ranking ≺ if for all a, b ∈ JnK, a � b⇒ σ(a) < σ(b). The probability that
a random permutation Σ drawn from p induces a ranking ≺ is thus equal to

P [Σ ∈ Sn(≺)] =
∑

σ∈Sn(≺)

p(σ), (3.1)

where Sn(≺) is the set of linear extensions of ≺. The consistency assumption then stipulates
that the probability distributions of a ranking model are all given by Eq. (3.1), thus forming a
projective family of distributions. For instance, the set of linear extensions of the top-k ranking
a1 � · · · � ak � the rest, where k ∈ {1, . . . , n− 1} and a1, . . . , ak are distinct elements in JnK, is
equal to {σ ∈ Sn | σ−1(1) = a1, . . . , σ

−1(k) = ak}. The probability Pk(a1, . . . , ak) is thus given
by

Pk(a1, . . . , ak) = P
[
Σ−1(1) = a1, . . . ,Σ

−1(k) = ak
]

=
∑
σ∈Sn

σ−1(1)=a1,..., σ
−1(k)=ak

p(σ).

A permutation σ induces an incomplete ranking π on A ∈ P(JnK) if it ranks the elements
of A in the same order as π, that is if σ(π1) < · · · < σ(π|π|). More generally, we say that
word π′ is a subword of word π if there exist indexes 1 ≤ i1 < · · · < i|π′| ≤ |π| such that
π′ = πi1 . . . πi|π′| , and we write π′ ⊂ π. Hence, permutation σ induces ranking π if and only

if π ⊂ σ. In addition, it is clear that for a word π ∈ Γn and a subset A ∈ P(c(π)), there
exists a unique subword of π of content A. We denote it by π|A and call it the induced ranking
of π on A. The set of linear extensions of a ranking π ∈ Γ(A) with A ∈ P(JnK) is then
Sn(π) = {σ ∈ Sn | π ⊂ σ} = {σ ∈ Sn | σ|A = π} and the probability PA(π) is given by

PA(π) = P
[
Σ(π1) < · · · < Σ(π|π|)

]
=

∑
σ∈Sn(π)

p(π) =
∑
σ∈Sn
π⊂σ

p(σ) =
∑
σ∈Sn
σ|A=π

p(σ). (∗)

Example 8. Let n = 3. For σ = 231, one has σ|{1,2} = 21, σ|{1,3} = 31 and σ|{2,3} = 23. For
A = {1, 3} and π = 31, one has

P{1,3}(31) = P [Σ(3) < Σ(1)] = p(231) + p(321) + p(312).

We call Eq. (∗) the consistency assumption for the statistical analysis of incomplete rankings.
It implies that all the PA’s in the ranking model are marginal distributions of the same probability
distribution p over Sn. Abusively, p is also called the ranking model thereafter .
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We also extend the definition of a marginal to any function of incomplete rankings. As
Γn =

⊔
A∈P(JnK) Γ(A), we embed all the spaces L(Γ(A)) into L(Γn), identifying a function F

on Γ(A) to the function f on Γn equal to F on Γ(A) and to 0 outside of Γ(A). One thus has
L(Γn) =

⊕
A∈P(JnK) L(Γ(A)).

Definition 9 (Marginal operator). The marginal operator on a subset A ∈ P(JnK) is the operator
MA : L(Γn)→ L(Γ(A)) defined for any F ∈ L(Γn) by

MAF (π) =
∑

σ∈Γn, π⊂σ
F (σ) for π ∈ Γ(A). (3.2)

Notice that one has in particular MAp = PA for all A ∈ P(JnK) and MAF = 0 if F ∈ L(Γ(B))
with A 6∈ P(B).

Remark 10 (On the consistency assumption). In this remark we discuss the origin of the consis-
tency assumption in the literature. It first appeared with the study of the relation between
choice models and ranking models in Georgescu-Roegen (1958) and Luce (1959) (see Luce,
1977). A choice model is a family (CA)A∈P(JnK) where CA is a probability distribution on A
with CA(a) representing the probability that a is chosen among A for all a ∈ A. The consistency
assumption for choice models is: there exists a probability distribution p over Sn such that
CA(a) =

∑
σ∈Sn, σ|A(a)=1 p(σ). It was shown in Block and Marschak (1960) that it is equiva-

lent to a general Thurstone model (see Subsection 2.5.1 for the definition). Then, because the
latter is already very flexible and provides a nice interpretation, the consistency assumption was
largely endorsed in the ranking data analysis literature (Marley, 1968; Regenwetter and Marley,
2001; Ailon, 2008). An enlightening example is the Mallows model (see Subsection 2.5.1 for the
definition). It was initially introduced following the approach of Babington Smith (1950) to de-
fine a probability distribution p over Sn from probabilities on pairwise comparisons. It happens
however that this approach does not satisfy the consistency assumption: the initial probabilities
on pairwise comparisons used to construct p are not equal to its pairwise marginals (it is easy
to check that this can never be the case except for a Dirac distribution on Sn). Most of the
contributions using the Mallows model have then chosen to take the pairwise probabilities equal
to the marginals and not the initial ones (see for instance Lu and Boutilier, 2011a). At last, we
point out that alternative assumptions have also been considered for pairwise comparisons (see
for instance Luce and Suppes, 1965; Fishburn, 1973; Rajkumar and Agarwal, 2014).

3.1.3 Probabilistic setting

A dataset of full rankings is naturally modeled as a collection of random permutations (Σ1, . . . ,ΣN )
drawn IID from a ranking model p. The latter thus fully characterizes the statistical population
as well as its observation process. This property does not hold true in the statistical analysis
of incomplete rankings, where the ranking model characterizes the statistical population, but
it does not entirely characterize the generating process of this population. More specifically, it
characterizes the variability of the observations on each subset of elements A ∈ P(JnK), but it
does not account for the variability of the observed subsets of elements.

Example 11. A ranking model p for incomplete rankings on J3K induces the probability distribu-
tions P{1,2}, P{1,3}, P{2,3} and P{1,2,3} = p. For each A ∈ P(J3K), a random ranking on A can
thus be drawn from the probability distribution PA. But the PA’s do not induce a probability
distribution on P(J3K) that would generate the samplings of the subsets A.

To model this double variability, we represent the observation of an incomplete ranking by
a couple of random variables (A,Π), where A ∈ P(JnK) is the observed subset of elements and
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Π ∈ Γ(A) is the observed ranking per se on this subset of elements. Let ν be the law of A over
P(JnK). A dataset of incomplete rankings is then a collection ((A1,Π

(1)), . . . , (AN ,Π
(N))) of IID

samples of (A,Π) drawn from the following process:

A ∼ ν then Π|(A = A) ∼ PA. (3.3)

The interpretation of probabilistic setting (3.3) is that first the subset of elements A ∈ P(JnK)
is drawn from ν and then the ranking Π ∈ Γ(A) is drawn from PA. It can be reformulated
by exploiting the consistency assumption (∗). The latter stipulates that for A ∈ P(JnK), the
distribution of the random variable Π on Γ(A) is the same as that of the induced ranking Σ|A of
a random permutation Σ drawn from p. A drawing of (A,Π) can thus be reformulated as

Σ ∼ p then A ∼ ν and Π = Σ|A. (3.4)

Reformulation (3.4) leads to the following interpretation: first a random permutation Σ ∈ Sn is
drawn from p then the subset of elements A is drawn from ν and the ranking Π is set equal to
Σ|A. The permutation Σ can then be seen as a latent variable that expresses the full preference
of a user in the statistical population but its observation is censored by A. We point out that
this interpretation motivates the broader probabilistic setting introduced in Sun et al. (2012).
The authors model more generally the observation of any partial and/or incomplete ranking as
the drawing of a latent random permutation Σ from p followed by a censoring process that can
depend on Σ. In the context of incomplete rankings observation, their probabilistic setting can be
defined as: Σ ∼ p then A ∼ νΣ and Π = Σ|A, where νσ is a probability distribution over P(JnK)
for each σ ∈ Sn. Probabilistic setting (3.3) fits into this broader one by setting all distributions
νσ equal to ν or, equivalently, assuming that Σ and A are independent.

The independence between Σ and A corresponds to the missing at random assumption in
the general context of learning from incomplete data (see Ghahramani and Jordan, 1995). This
assumption is not realistic in all situations, particularly in settings where the users choose the
items on which they express their preferences, their choices being naturally biased by their tastes
(see Marlin et al., 2007, for instance). It remains however realistic in many situations where the
subset of items proposed to the user is determined by the context: the available items in stock in
a specific store or the possible recommendations in a specific area for instance. This assumption
is thus made in many contributions of the literature (see for instance Lu and Boutilier, 2014;
Rajkumar and Agarwal, 2014; Ding et al., 2015b).

Remark 12. We maintain furthermore that making a dependence assumption is incompatible
with the principle of the statistical analysis of incomplete rankings. Indeed, the purpose of
assuming that A and the latent variable Σ are not independent is to infer from the observation
of Π = Σ|A some more information on Σ than just Σ|A. For instance, to model the fact that
the expression of user’s preferences could be biased by their tastes, one can assume that the full
ranking Σ is censored to elements that have a low expected rank (meaning that they have a high
probability to be ranked in the first positions). The subset of elements A could then be obtained
by sampling elements without replacement from a distribution over JnK of the form ησ(i) ∝
e−ασ(i), where α ∈ R is a spread parameter, conditioned upon Σ = σ. The observed ranking Π
on a subset A = {a1, . . . , ak} ∈ P(JnK) would then not only provide information on the relative
ordering Σ|A of the elements of A but even more on their absolute ranks (Σ(a1), . . . ,Σ(ak)) in the
latent full ranking Σ. Exploiting this additional information requires to analyze Π as a partial
ranking. Thus it cannot be done in a setting of statistical analysis of incomplete rankings.
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3.1.4 Challenges of the statistical analysis of incomplete rankings

We now formalize the general setting for the statistical analysis of incomplete rankings. One
observes a dataset DN = ((A1,Π

(1)), . . . , (AN ,Π
(N))) of N incomplete rankings drawn IID from

the process (3.3) with p a ranking model and ν a probability distribution over P(JnK). The
ranking model p is unknown and the goal is to summarize or recover some part of it. The
probability distribution ν is assumed to be known, it is indeed not the purpose of ranking data
analysis in general to infer it (though it may be an interesting problem). It remains however the
censoring process that generates the design of observations and we thus call it the observation
design (by analogy with random design regression in classic statistics). It has a major impact
on the parts of p that can be inferred from the dataset DN (a deeper analysis is provided in
Subsection 3.1.6).

Characterizing separately the variability of the observed subset A leads to an unexpected
analogy with supervised learning: in the couple (A,Π), the subset A can be seen as an input
generated by the distribution ν and the ranking Π can be seen as the output generated by the
ranking model p given the input A. Analyzing incomplete rankings data thus requires to face
two classical issues in statistical learning, which can be easily formulated in the context of binary
classification, the flagship problem in machine-learning theory.

• Consolidate knowledge on already seen subsets of elements. For an observed subset
A ∈ P(JnK), one must consolidate all the observations on A in order to recover a maximum
amount of information about PA. The corresponding task in binary classification is to
consolidate all the outputs y for a given input x (or very close inputs) that was observed
many times, where x and y are the values taken by IID samples of a random couple (X,Y ).
Its difficulty depends on how much the value P [Y = 1|X = x] is close to 1/2: the closer the
more difficult. Analogously, the difficulty of consolidating observations on a given subset
of elements A depends on the complexity of the marginal PA. If PA is a Dirac function, it
is easy to recover. If PA is more complex, its recovery is more challenging.

• Transfer knowledge to unseen subsets of of elements. For a new unseen subset, one
needs to transfer a maximum amount of acquired information from the observed subsets.
In binary classification, one faces an analogous problem when trying to predict the output
y related to an input value x never observed before and potentially far from all previously
observed inputs. The difficulty of this task then depends on the “regularity” of the function
η : x 7→ P [Y = 1|X = x]: it is easier to infer the value of P [Y = 1|X = x] for an unobserved
x when η is “regular”, in the sense that η(x) does not vary unexpectedly when x varies.
Similarly for incomplete rankings, it is easier to transfer information to an unobserved
subset of elements A when the function B 7→ PB does not vary unexpectedly when B
varies in P(JnK).

These two tasks require to cope with two different sources of variability and can be tackled
independently in a theoretical setting. But in a statistical setting, they must be handled simul-
taneously in order to best reduce the sampling noise of a dataset DN . It is better indeed to
transfer between subsets information that has been consolidated on each subset and conversely,
it is better to consolidate information on a subset with information transferred from other sub-
sets. A major difficulty however remains: incomplete rankings are heterogeneous. They can have
different sizes and for a given size they can be observed on different subsets of elements. Con-
solidating and transferring information for incomplete rankings is thus far from being obvious,
and represents the main statistical challenge of the analysis of incomplete rankings.

Example 13. Let n = 4 and assume that one observes rankings on {1, 3}, {1, 3, 4} and {2, 4}. In-
formation could be consolidated on each of these three subsets independently and then transferred
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to unobserved subsets. It would certainly be more efficient however to consolidate information
on these subsets simultaneously, transferring at the same time information between them. The
question is now to find a way to achieve this.

The consistency assumption (∗) defines the base structure to transfer information between
subsets of elements. Namely for two subsets A,B ∈ P(JnK) with B ⊂ A, it stipulates that
MBPA = PB . The knowledge of PA thus implies the knowledge of PB . Information must
therefore be transferred from A to B through the marginal operator MB . The condition is
slightly more subtle in the other direction: information must be transferred from B to A through
the constraint on PA to satisfy MBPA = PB . Hence, the knowledge of PB does not imply
the knowledge of PA, but it provides some part of it. More generally, the knowledge of any
marginal PA provides some information on p through the constraint MAp = PA. How to transfer
information from A to a subset C such that neither C ⊂ A nor A ⊂ C is however a priori unclear.

Example 14. Coming back to the previous example, information on {1, 3, 4} should be used to
consolidate information on {1, 3} through the relationship M{1,3}P{1,3,4} = P{1,3}. Information
on {1, 3} should be used to enforce a constraint in consolidating information on {1, 3, 4} through
the same relationship. Information on each subset can be used to enforce a constraint on the
global ranking model p. It is however unclear if or how information should be transferred between
{2, 4} and {1, 3} or {1, 3, 4}.

In addition to this major statistical challenge, practical applications also raise a great com-
putational challenge. The analysis of incomplete rankings always involve at some point the
computation of a marginal of a ranking model. Performed naively using Definition 9, the com-
putation of MAp(π) for A ∈ P(JnK) and π ∈ Γ(A) requires n!/|A|! operations (the number of full
rankings that extend π). This is by far intractable in practical applications where |A| is around
10 and n is around 104.

3.1.5 Limits of existing approaches

We now review the existing approaches in the literature for the statistical analysis of incomplete
rankings and outline their limits.

Parametric models. The most widely used approaches rely on parametric modeling (see
Subsection 2.5.1). One considers a family of models {pθ | θ ∈ Θ}, where Θ is a parameter space,
and assumes that p = pθ∗ for a certain θ∗ ∈ Θ. The goal is then to recover θ∗ from the dataset
DN . One standard method is to take the parameter that maximizes the likelihood of the model
on the dataset. For θ ∈ Θ, let Pθ be the distribution of a random permutation Σ corresponding
to the ranking model pθ, that is to say the distribution defined by Pθ [Σ ∈ S] =

∑
σ∈S pθ(σ) for

any subset S ⊂ Sn. The relevance of a candidate model pθ on the dataset DN is thus measured
through the conditional likelihood

L(θ|A1, . . . ,AN ) =

N∏
i=1

Pθ
[
Σ|Ai

= Π(i)
]

=
N∏
i=1

MAi
pθ

(
Π(i)

)
.

One then compute θ̂N = argmaxθ∈Θ L(θ|A1, . . . ,AN ) exactly or approximately and uses the
ranking model p̂N := pθ̂N . In this approach, the consolidation of information is performed
implicitly through the selection of the ranking model from the family {pθ | θ ∈ Θ} that best
explains the data. It is then transferred to any subset of elements B ∈ P(JnK) through the
marginal MB p̂N . The computational challenge is easily overcome when using the Plackett-Luce
model because the marginals of the latter have a closed-form expression. The Thurstone model
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is naturally fitted by breaking the incomplete rankings into pairwise comparisons. It is much
less straightforward for the Mallows model, but a dedicated method was introduced in Lu and
Boutilier (2011a). From a global point of view, approaches based on a parametric model have the
advantage to offer a simple framework for all applications of the statistical analysis of incomplete
rankings. Their major drawback however is to rely on a rigid assumption on the form of the
ranking model, which is rarely satisfied in practice.

Nonparametric methods based on identifying an incomplete ranking with the set
of its linear extensions. The three nonparametric methods introduced in the literature to
analyze incomplete rankings all face the heterogeneity of incomplete rankings the same way:
they represent an incomplete ranking π ∈ Γn by the set of its linear extensions Sn(π) ⊂ Sn. Yu
et al. (2002) generalize a distance d on Sn to a distance d∗ on Γn by setting d∗(π, π′) proportional
to
∑
σ∈Sn(π)

∑
σ′∈Sn(π′) d(σ, σ′) for two incomplete rankings π, π′ ∈ Γn and use it to perform

statistical tests. In Sun et al. (2012), the Kendall’s tau distance is generalized in the same way
and then used to define a kernel-based estimator of p. Finally, Kondor and Barbosa (2010)
define kernels on Γn based, for two incomplete rankings π, π′ ∈ Γn, on the Fourier transform of
the indicator functions of the sets Sn(π) and Sn(π′). Broadly speaking, these three approaches
transfer information between different incomplete rankings through a given similarity measure
between their sets of linear extensions. They overcome some part of the computational challenge
through explicit simplifications of the extended distance d∗ or the Fourier transform of the
indicator function of an incomplete ranking. They are however fundamentally biased. To best
illustrate this point, let us consider the following estimator:

p̂N =
1

N

N∑
i=1

|Ai|!
n!

1Sn(Π(i)). (3.5)

It corresponds to the natural empirical estimator of p when one represents an incomplete ranking
by the set of its linear extensions. In this representation indeed, one considers that the observation
of an incomplete ranking Π indicates that the underlying permutation Σ should belong to Sn(Π).
The amount of knowledge about Σ is thus modeled by the uniform distribution on Sn(Π).
The estimator p̂N is then the average of the uniform distributions over the sets Sn(Π(i)) for
i ∈ {1, . . . , N}. As stated in the following proposition, it is always strongly biased, except in a
few specific situations, irrelevant in practice.

Proposition 15. Let N ≥ 1 and p̂N be the estimator defined by equation (3.5). Then for any
σ ∈ Sn,

E [p̂N (σ)] =
∑
σ′∈Sn

 ∑
A∈P(JnK)

ν(A)
|A|!
n!
I{σ′|A = σ|A}

 p(σ′).

Proof. Using the reformulation (3.4) of the data generating process producing the observations,
one has for any σ ∈ Sn

E [p̂N (σ)] =
1

N

N∑
i=1

E
[
|Ai|!
n!

I{Σ|Ai
= σ|Ai

}
]

=
∑

A∈P(JnK)

ν(A)
|A|!
n!

∑
σ′∈Sn

p(σ′)I{σ′|A = σ|A}.

A simple sum inversion concludes the proof.

Proposition 15 says that unless p is a Dirac distribution (which is a too restrictive assumption)
or ν is solely concentrated on JnK (which boils down to statistical analysis on full rankings),
E [p̂N (σ)] is fundamentally different from p(σ) for σ ∈ Sn.
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Example 16. Let n = 4 and ν with support {{1, 3}, {2, 4}, {1, 3, 4}}. Then for any N ≥ 1,

E [p̂N (2134)] =
ν({1, 3})

12

[
p(2413) + p(4213) + p(2134) + p(4132) + p(1324) + p(1342)

]
+
ν({2, 4})

12

[
p(1324) + p(3124) + p(1243) + p(3241) + p(2413) + p(2431)

]
+
ν({1, 3, 4})

4

[
p(2134) + p(1342)

]
.

We point out that Proposition 15 says more specifically that p̂N is actually an unbiased
estimator of Tνp, where Tν is the matrix of similarity defined by

Tν(σ, σ′) =
∑

A∈P(JnK)

ν(A)
|A|!
n!
I{σ|A = σ′|A} for σ, σ′ ∈ Sn,

In particular, if ν is the uniform distribution over the pairs of JnK, Tν(σ, σ′) simply reduces to
an affine transform of the Kendall’s tau distance between σ and σ′.

Learning from incomplete rankings as a regularized inverse problem. A general frame-
work for the statistical analysis of incomplete rankings could take the paradigmatic form of a
regularized inverse problem. Assume first that one knows exactly some of the marginals of the
ranking model p, for a collection of subsets A ⊂ P(JnK). He could try to recover p through the
minimization problem

min
q:Sn→R
q≥0∑

σ∈Sn q(σ)=1

Ω(q) subject to MAq = PA for all A ∈ A, (3.6)

where Ω is a penalty function that measures a certain level of regularity, so that p should be a
solution of (3.6). Information from the PA’s would then be transferred to an unknown subset
B ∈ P(JnK) through the computation of MBp

∗, where p∗ is an exact or approximate solution of
(3.6). In a statistical setting, one cannot know exactly the marginals of p. The natural extension
is then to consider the naive empirical estimator defined for an observed subset A by

P̂A(π) =
|{1 ≤ i ≤ N | Π(i) = π}|

N̂A
for π ∈ Γ(A), (3.7)

where N̂A denotes the number of times that A was observed in DN , and to consider the following
generic minimization problem

min
q:Sn→R
q≥0∑

σ∈Sn q(σ)=1

∑
A∈P(JnK)

N̂A>0

N̂A
N

∆A

(
MAq, P̂A

)
+ λNΩ(q), (3.8)

where ∆A is a dissimilarity measure between two probability distributions over Γ(A)1 and λN
is a regularization parameter. Information is then simultaneously consolidated on the observed
subsets into an exact or approximate solution p̂N and can then be transferred to unobserved
subsets by computing MB p̂N .

Though this approach is quite common in the machine learning literature, where Ω(q) typ-
ically enforces the sparsity of q in a certain basis, it has been applied to the ranking literature

1One can take for instance an lp norm or the Kullback-Leibler divergence.
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only in a few contributions. In Jagabathula and Shah (2011) for instance, the problem of recov-
ering the ranking model p from the observation of its first-order absolute marginals P [Σ(i) = j]
for i ∈ JnK and j ∈ {1, . . . , n} (see Section 3.2 for the general definition) is considered under
a sparsity assumption over Sn. A maximal entropy assumption is made in Ammar and Shah
(2012) in order to recover the ranking model p either from its first-order absolute marginals or
from its pairwise relative marginals P [a � b] for a, b ∈ JnK, a 6= b.

In the setting of the statistical analysis of incomplete rankings, this approach has the ad-
vantage to allow less restrictive assumptions than parametric modeling and to avoid the bias of
the aforementioned nonparametric approaches. It suffers however from a major drawback: it
requires to compute the marginal operators. It is therefore inapplicable on practical datasets if
this computation is performed naively through Definition 9.

All the existing approaches follow the same two steps: first, information from the dataset DN
is consolidated and transferred into a ranking model p̂N ∈ L(Sn). Then it can be transferred
to any subset of elements B ∈ P(JnK) through the marginal MB p̂N . This is of course the most
natural method to exploit the consistency assumption (∗) and try to overcome the statistical
challenge of the analysis of incomplete rankings. It does not provide however any help to overcome
the challenge of the computation of the marginal. This is why each approach requires a specific
trick to be applicable.

In Chapter 5 we introduce a general framework that enables to handle both the computa-
tional and statistical challenges of the analysis of incomplete rankings. Instead of consolidating
information into a ranking model p̂N ∈ L(Sn), observations are first represented into a feature
space, which we call the MRA representation, fitted to exploit the consistency assumption and
to compute the marginal operator efficiently. The framework then provides many possibilities to
consolidate and transfer information in this feature space. The MRA representation is entirely
model-free, it simply arises from the natural multiscale structure of the marginal operators and
its algebraic and topological properties (see Chapter 4).

3.1.6 Impact of the observation design

Depending on the application, the observation design ν may or may not be known. In any
case, as explained in Subsection 3.1.4, it is not the goal of the statistical analysis of incomplete
rankings to learn it. It is rather seen as a parameter that adds some noise to the observations
through the censoring process (3.4). It has nonetheless a direct impact on the complexity of the
analysis, both on the statistical and computational points of view, especially through its support
A = {A ∈ P(JnK) | ν(A) > 0}. The first one is on the number of parameters required to store a
dataset DN .

Lemma 17. The number of parameters required to store the dataset DN is upper bounded by
min(N,

∑
A∈A |A|!).

Refer to the Appendix for the proof of Lemma 17. The number min(N,
∑
A∈A |A|!) given by

Lemma 17 is a measure of the “complexity” of the dataset DN , in the sense that any procedure
that exploits all the information contained in DN will necessarily require at least as many oper-
ations. Notice that the number

∑
A∈A |A|! is entirely characterized by A. It increases both with

its “spread” |A| and its “depth” K = maxA∈A |A|, and is bounded by |A| ×K!. In particular if
A = {A ∈ P(JnK) | |A| ≤ K} then this bound is of order O(K!nK). Figures 3.1 and 3.2 show
two examples of n = 5 with the associated number

∑
A∈A |A|!. The elements in A are in black

whereas the elements of P(JnK) \ A are in gray.
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{1, 2, 3, 4, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

Figure 3.1: Example of an observation design A for n = 5,
∑
A∈A |A|! = 28

{1, 2, 3, 4, 5}

{1, 2, 3, 4} {1, 2, 3, 5} {1, 2, 4, 5} {1, 3, 4, 5} {2, 3, 4, 5}

{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5} {1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

{1, 2} {1, 3} {1, 4} {1, 5} {2, 3} {2, 4} {2, 5} {3, 4} {3, 5} {4, 5}

Figure 3.2: Example of an observation design A for n = 5,
∑
A∈A |A|! = 54

The observation design also impacts the accessible amount of information about the ranking
model p. Indeed, if one makes a structural assumption on p and seeks to recover some part of it
from the observation of incomplete rankings drawn from (3.3), the complexity of this task will
significantly depend on the interplay between p and ν.

Example 18. As a toy example, consider the very simple case where one observes the exact
induced rankings of one full ranking π∗ on J5K, on the subsets {1, 2, 3}, {3, 4} and {4, 5}.
The goal is then to recover the ranking model p = δπ∗ through the observation design A =
{{1, 2, 3}, {3, 4}, {4, 5}}. If π∗ = 12345, then the observed induced rankings are 123, 34 and 45.
It happens that there is only one full ranking on J5K that induces these three rankings, namely
12345, and π∗ is recovered with certainty. Now, if π∗ = 24153 for instance, the observed rankings
are 213, 43 and 45. In that case, there are twelve full rankings on J5K that can induce these three
rankings. The amount of information provided by these observations is therefore not sufficient
for recovering π∗.

In a general context, one may assume that p has a more general structure than a Dirac
function on Γ(JnK) and that the observations are made in the presence of a statistical noise.
But the principle illustrated by Example 18 remains valid. Quantifying the amount of accessible
information with respect to the interplay between p and A is however not obvious because the
latter is of a complex combinatorial nature. When no structural assumption is made on p,
the accessible information can be characterized exactly through the MRA representation, by
Theorem 99 in Section 5.1.
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3.2 Localization of relative rank information

The other motivation for this thesis is more theoretical. It is about providing the tools to exploit
the multiscale structure of marginals and “localize relative rank information”. This section
explains the related concepts in details and shows the interest for such a contribution.

3.2.1 Marginals of a ranking model

In Section 3.1, we showed that under the natural consistency assumption (∗) and probabilistic
setting (3.3), the marginals of the ranking model p are the only statistics one can access when
observing incomplete rankings. This would also be true when observing top-k or more general
partial rankings, once the analogues for marginals, consistency assumption and probabilistic
setting are defined. In the other way round, even if one knows the ranking model p, marginals
provide useful summary statistics for it. This interpretation is developed at length for marginals
associated to partial rankings in Diaconis (1989) or Huang (2011) for instance.

In both cases, a natural question is: how much information does a marginal of p, or more
generally a collection of marginals of p, contain about p? To answer this question in general,
one should first define what is a marginal of p. This requires however the introduction of many
concepts and notations, and it is not necessary for the purpose of this thesis. Instead, we give
here an informal definition for general marginals and a proper definition for marginals associated
to partial rankings, that we call absolute marginals, in Subsection 3.2.2.

Permutations, or full rankings, are complex objects. There are indeed n! different full rankings
of JnK so the specification of one is the specification of one element among n! possibilities. The
total part of information related to this knowledge can however be decomposed in simpler parts,
each accessible by a “query”. For instance one can ask about a full ranking σ ∈ Sn: what is the
rank σ(a) of element a? What are the two first elements {σ1, σ2}? What is the relative order
σ|{a,b} of elements a and b?

Example 19 (Queries on a full ranking). Here are the answers to some queries about the full
ranking

σ = 2143

Query Answer
What is the rank σ(4) of element 4? 3
What are the two first elements {σ1, σ2}? {2,1}
What is the relative order σ|{2,3} of elements 2 and 3? 2 ≺ 3

In the case of a random full ranking Σ drawn from a probability distribution p over Sn, the
analogous queries are: what is the law of the rank Σ(a) of element a? What is the law of the
two first elements {Σ1,Σ2}? What is the law of the relative order Σ|{a,b} of elements a and b?

Example 20 (Queries on a random full ranking). Here are the answers to the queries analogous
to the ones of Example 19, for a random full ranking Σ drawn from the distribution below (p
from the German dataset).
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The answers to queries on Σ are the marginals of p. They are probability distributions
obtained from p. They include the marginals on subsets defined in Section 3.1. Indeed for
A = {a1, . . . , ak} ∈ P(JnK), the answer to the query “what is the law of the relative order Σ|A
of elements a1, . . . , ak?” is by definition MAp. This informal definition of general marginals also
includes the class usually considered in the literature, that we call absolute marginals.

3.2.2 Absolute marginals

What we call absolute marginals correspond to the marginals usually considered in the literature
(see for instance Diaconis, 1988). We give them a specific name here to differentiate from the
marginal operators MA, and explain it in Subsection 3.2.3. Absolute marginals are related to
queries about partitions of JnK.

Definition 21 (Partition of JnK). A partition of JnK is a collection B = {B1, . . . , Br} of non-
empty and two-by-two disjoint subsets of JnK such that

⊔r
i=1Bi = JnK, with 1 ≤ r ≤ n. We

denote by Part(JnK) the set of all partitions of JnK.

For a partition B = {B1, . . . , Br} of JnK, one can ask the following queries about a fixed
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permutation σ ∈ Sn (respectively a random permutation Σ drawn from the ranking model p):

What is the set of ranks σ(Bi) (respectively the law of the set of ranks Σ(Bi))

of the elements of each subset Bi?
(3.9)

What is the set of elements σ−1(Bi) (respectively the law of the set of elements Σ−1(Bi))

ranked at positions bi,1, . . . , bi,|Bi| for each Bi = {bi,1, . . . , bi,|Bi|}?
(3.10)

Example 22. For n = 5, σ = 52314 and B = {{1}, {2, 3, 5}, {4}}, Query (3.9) corresponds to
asking:

− what is the rank of element 1?

− what is the set of ranks of elements {2, 3, 5}?

− what is the rank of element 4?

and Query (3.10) corresponds to asking:

− what element is ranked at position 1?

− what is the set of elements ranked at positions {2, 3, 5}?

− what element is ranked at position 4?

Query (3.10) is certainly most natural when partition B is of the form B1 = {1, . . . , n1},
B2 = {n1 + 1, . . . , n1 + n2}, . . . , Br = {

∑r−1
i=1 ni + 1, . . . , n}. When applied to a deterministic

full ranking σ, it then becomes: what are the n1 first elements, n2 second elements, . . . , nr last
elements in σ? The answer to this query is the only partial ranking of the form a1,1, . . . a1,n1 �
· · · � ar,1, . . . , ar,nr that admits σ as a linear extension. The answer to the analogous query
about a random permutation Σ drawn from a ranking model p is thus naturally the marginal of
p on partial rankings of this form.

Example 23. For k ∈ {1, . . . , n − 1}, the answer to Query (3.10) on a full ranking σ for B =
{{1}, . . . , {k}, {k + 1, . . . , n}} is the ordered top-k ranking σ1 � · · · � σk � the rest induced by
σ. Other example, for n = 7 and B = {{1, 2, 3}, {4, 5}, {6, 7}}, the answer to Query (3.10) on a
full ranking σ ∈ S7 is the ranking σ1, σ2 � σ3, σ4, σ5 � σ6, σ7.

We now give a rigorous definition for general absolute marginals. We call the shape of
partition B = (B1, . . . , Br) ∈ Part(JnK) the tuple shape(B) = (λ1, . . . , λr) obtained by sorting
the tuple (|B1|, . . . , |Br|) in decreasing order. It is easy to see that the shape of a partition of
JnK is a partition of n, a classic object in combinatorics, the definition of which is recalled here.

Definition 24 (Partition of n). A partition of n is a tuple λ = (λ1, . . . , λr) ∈ Nr such that
λ1 ≥ · · · ≥ λr ≥ 1 and

∑r
i=1 λi = n. The notation λ ` n means that λ is a partition of n.

For λ = (λ1, . . . , λr) ` n, we define the set Partλ(JnK) = {B ∈ Part(JnK) | shape(B) = λ}.
Equipped with these notations, we give a rigorous definition for absolute marginals.

Definition 25 (Absolute marginals). Let Σ be a random permutation drawn from a ranking
model p, B ∈ Part(JnK) be a partition of JnK and λ = shape(B).

• The direct marginal of p on B is the law of Σ(B) on Partλ(JnK), that is the collection of
probabilities

P[Σ(B) = B′] =
∑

σ∈Sn, σ(B)=B′
p(σ) for B′ ∈ Partλ(JnK).
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• The reciprocal marginal of p on B is the law of Σ−1(B) on Partλ(JnK), that is the collection
of probabilities

P[Σ−1(B) = B′] =
∑

σ∈Sn, σ−1(B)=B′
p(σ) for B′ ∈ Partλ(JnK).

Both are called absolute marginals of shape λ. Given an ordering of the elements of Partλ(JnK),
we define the |Partλ(JnK)| × |Partλ(JnK)| square matrix

Mλp =

(
P[Σ(B) = B′]

)
B,B′∈Partλ(JnK)

.

The matrix Mλp contains all the absolute marginals of p of shape λ: the row indexed by B is the
direct marginal of p on B and the column indexed by B′ is the reciprocal marginal of p on B′.

Definition 25 can seem intricate at first sight but it actually includes some simple and natural
cases. Let us first consider the case λ = (n− 1, 1). Elements of Part(n−1,1)(JnK) are necessarily
of the form (JnK \ {i}, {i}), with i ∈ JnK. Then for (i, j) ∈ JnK2, we have the simplification

P
[
Σ(JnK \ {i}) = JnK \ {j}, Σ({i}) = {j}

]
= P [Σ(i) = j] .

The direct marginal of p on (JnK \ {i}, {i}) is thus the probability distribution (P[Σ(i) = j])j∈JnK
on JnK, that is to say the law of the rank Σ(i) of element i, and the reciprocal marginal of p on
(JnK \ {j}, {j}) is the probability distribution (P[Σ−1(j) = i])i∈JnK on JnK, that is to say the law

of the element Σ−1(j) ranked in jth position. The matrix M(n−1,1)p is given by

M(n−1,1)(p) =

 P[Σ(1) = 1] · · · P[Σ(n) = 1]
...

. . .
...

P[Σ(1) = n] · · · P[Σ(n) = n]

 .

The same reasoning shows that the matrix Mλp is given by

M(n−2,2)p =
(
P[Σ({i, i′}) = {j, j′}]

)
1≤i<i′≤n
1≤j<j′≤n

for λ = (n− 2, 2),

and M(n−2,1,1)p =
(
P[Σ(i) = j,Σ(i′) = j′]

)
1≤i 6=i′≤n
1≤j 6=j′≤n

for λ = (n− 2, 1, 1).

More generally, for λ = (λ1, . . . , λr) ` n and B = (B1, . . . , Br) ∈ Partλ(JnK), the partition σ(B)
is entirely characterized by (σ(B1), . . . , σ(Br−1)). A marginal of shape λ is thus the answer to
a query that concerns the ranks of n− λ1 elements (for a direct marginal) or the elements that
are ranked at n− λ1 positions (for a reciprocal marginal).

3.2.3 Absolute versus Relative Marginals

Here and throughout the rest of this section, we call the marginals MAp of a ranking model p
relative marginals to contrast with absolute marginals. The justification for these terms is the
following. For A = {a1, . . . , ak} ∈ P(JnK), the query to which MAp is the answer is “what is the
relative order of elements a1, . . . , ak in a random full ranking Σ drawn from p?” The marginal
MAp thus contains the part of information related to the ranks of elements a1, . . . , ak in the
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ranking Σ|A. These ranks are relative: they only characterize the relative position of an element
of A compared to the others.

By contrast, absolute marginals contain parts of information related to the ranks of elements
in the full ranking Σ, that is to say their absolute ranks. Let λ ` n and B ∈ Partλ(JnK). The
direct marginal of p on B is the law of Σ(B). It thus contains information about the absolute
ranks of the elements of each Bi. The reciprocal marginal of p on B is the law of Σ−1(B). It
contains information about the elements that are placed at the absolute positions specified by
each Bi. Such information thus also has an absolute nature.

The previous explanation is quite intuitive but not very formal. We now provide a rigorous
interpretation using group actions and translations: we show that under a relabeling of the
elements of JnK, absolute marginals are stable but relative marginals are not. A relabeling of the
elements of JnK is naturally defined as the action of a permutation (we refer the reader to Fulton
and Harris, 1991, for background on group theory).

Definition 26 (Action of Sn over Γn and Part(JnK)). Let τ ∈ Sn be a permutation.

• The action of τ on an incomplete ranking π = π1 . . . πk ∈ Γn is defined by τ(π) =
τ(π1) . . . τ(πk).

• The action of τ on a partition B ∈ Part(JnK) of JnK is defined by τ(B).

It is easy to see that the mappings π 7→ τ(π) and B 7→ τ(B) are both actions of Sn, respectively
on Γn and Part(JnK). The proof is left to the reader.

Example 27. Let τ ∈ S5 be the permutation defined by τ(1) = 3, τ(2) = 1, τ(3) = 5, τ(4) =
4, τ(5) = 2. Then for π = 3421 and B = {{1, 3}, {2, 4}, {5}}, one has

τ(π) = 5413 and τ(B) = {{3, 5}, {1, 4}, {2}}.

Remark 28 (Right action of Sn). The action of a permutation τ on a full ranking σ = σ1 . . . σn ∈
Sn is by Definition 26 equal to τ(σ1) . . . τ(σn). We point out that if σ is seen as a permutation
with σi ≡ σ−1(i) for each i ∈ JnK then the permutation associated to the ranking τ(σ) is the
permutation σ′ such that σ′−1(i) = τ(σ−1(i)), namely σ′ = στ−1. The action σ 7→ τ(σ) on Sn

is thus equivalent to the right action of Sn on itself.

Having defined the action of Sn on Γn and Part(JnK) we can now define the associated
translation operators on the spaces L(Γn) and L(Part(JnK)).

Definition 29 (Translation operators). Let τ ∈ Sn.

• We define the translation operator Tτ on L(Γn) by Tτδπ = δτ(π) for all π ∈ Γn or equiva-
lently by

TτF (π) = F (τ−1(π)) for all F ∈ L(Γn) and π ∈ Γn.

• We define the translation operator Tτ on L(Part(JnK)) by TτδB = δτ(B) for all B ∈ Part(JnK)
or equivalently by

Tτf(B) = f(τ−1(B)) for all f ∈ L(Part(JnK)) and B ∈ Part(JnK).

The translation under a permutation τ ∈ Sn of a function F ∈ L(Γn) or a function f ∈
L(Part(JnK)) is the function obtained after relabeling the elements of JnK according to τ .

Example 30. With the same permutation τ ∈ Sn as in Example 27, one has for instance

Tτ (0.2δ3421 + 0.3δ2413 + 0.5δ4312) = 0.2δ5413 + 0.3δ1435 + 0.5δ4531

Tτ
(
0.6δ{{1,3},{2,4},{5}} + 0.4δ{{1,3,4},{2},{5}}

)
= 0.6δ{{3,5},{1,4},{2}} + 0.4δ{{3,5,4},{1},{2}}.
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Equipped with these definitions, we can now state the different stability properties of the
marginals, justifying even more the names “absolute” and “relative” marginals.

Proposition 31 (Stability / Instability under relabeling). Let p be a ranking model and τ ∈ Sn.

• For A ∈ P(JnK),

τ(σ)|A = τ
(
σ|τ−1(A)

)
for all σ ∈ Sn and thus MATτp = TτMτ−1(A)p.

• For B′ ∈ Part(JnK),

(τ(σ))−1(B′) = τ
(
σ−1(B′)

)
for all σ ∈ Sn and thus MB′Tτp = TτMB′p,

where MB′ is the operator associated to reciprocal marginals.

Proof. Let σ ∈ Sn. By definition

τ(σ)|A = (τ(σ1) . . . τ(σn))|A = τ(σi1) . . . τ(σi|A|)

where 1 ≤ i1 ≤ · · · ≤ i|A| ≤ n are all the indexes such that τ(σij ) ∈ A or equivalently such
that σij ∈ τ−1(A). In other words, σi1 . . . σi|A| = σ|τ−1(A). Hence τ(σ)|A = τ(σ|τ−1(A)) and the
extension to marginals is immediate. For the second property we recall that τ(σ) is equal to the
permutation στ−1, so that

(τ(σ))−1(B′) = (στ−1)−1(B′) = (τσ−1)(B′) = τ
(
σ−1(B′)

)
.

Again, the extension to marginals is immediate.

Proposition 31 shows that absolute reciprocal marginals are stable under relabeling. For
B′ ∈ Part(JnK) indeed, relabeling the elements of JnK and then computing the reciprocal marginal
gives the same result as doing it in the other way round. By contrast, the relative marginal of
p on a subset A ∈ P(JnK) is stable under the action of a permutation τ ∈ Sn only if τ(A) = A.
These properties are an additional justification for the terms “absolute” and “relative” marginals.
The former are stable under relabeling of the elements, hence they carry global or absolute rank
information. The latter are highly sensitive to relabeling of the elements: they carry local or
relative rank information.

3.2.4 Rank information localization

We now come back to the question: how much information does a marginal of a ranking model
p, or more generally a collection of marginals of p, contain about p? We address it for absolute
or relative marginals.

In particular one would like to know if the knowledge of a certain collection of marginals
implies the knowledge of p. If p = δσ∗ is the Dirac distribution on a permutation σ∗ ∈ Sn, then
marginals of p are the answers to queries on σ∗ and it is well known that the exact knowledge
of σ∗ can be recovered from a collection of simple queries. For example, the knowledge of
σ∗(1), . . . , σ∗(n − 1), the answers to n − 1 n-ary queries, is sufficient to characterize σ∗. Other
example, the knowledge of (σ∗|{a,b})1≤a<b≤n, the answers of n(n−1)/2 binary queries, is sufficient

to characterize σ∗.2

2It is well known that one actually only needs O(n logn) binary queries to characterize a full ranking, see for
instance Knuth (1973).
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This is however not true for a general ranking model p. A simple dimensional argument can
show it. As a probability distribution over a set of n! elements, p is a vector characterized by
n! − 1 parameters. Each pairwise marginal M{a,b}p of p being a probability distribution over
a set of 2 elements, it is characterized by 1 parameter. Thus the knowledge of all the pairwise
marginals of p enables to characterize at most n(n− 1)/2 parameters of p, not enough to freeze
the n!− 1 degrees of freedom.

This argument only provides part of the answer to the question. If one observes a collection
of marginals of p, it may be indeed that the sum of the number of parameters characterized by
each marginal exceeds n!− 1. The parameters characterized by different marginals may however
not be linearly independent so that this situation would not necessarily mean that p is entirely
characterized.

The relevant question that one should turn to is therefore: given a family of marginals of p,
how much more information about p does a marginal contain? To answer this question, one must
exploit the natural structure of absolute or relative marginals. The description of the structure
of absolute marginals first requires the introduction of the dominance order, a classic structure
in combinatorics (see for instance Stanley, 1986).

Definition 32 (Dominance order on partitions of n). For two partitions λ = (λ1, . . . , λr), µ =

(µ1, . . . , µs) ` n, we say that λ is dominated by µ and write λ E µ if s ≤ r and
∑j
i=1 λi ≤

∑j
i=1 µi

for all j ∈ {1, . . . , s}. It is easy to see that E is a partial order over the set of partitions of JnK
and we denote by C its associated strict partial order.

The top of the dominance order is: (n) D (n − 1, 1) D (n − 2, 2) D (n − 2, 1, 1) D . . .
The Hasse diagram of the dominance order is represented on Figure 3.3 for n = 6 (the reversed
order is actually represented, for reasons detailed below). The structure of absolute and relative
marginals is characterized in the following proposition, the proof of which is left in Appendix.

Proposition 33 (Structure of absolute and relative marginals). Let p be a ranking model and
Σ be a random permutation drawn from p.

1. For A,B ∈ P(JnK) with B ⊂ A, one has for all π ∈ Γ(B)

MBp(π) =
∑

π′∈Γ(A), π′|A=π

MAp(π
′)

2. For λ, µ ` n with µ D λ, there exists a linear operator Mλ,µ : R|Partλ(JnK)|×|Partλ(JnK)| →
R|Partµ(JnK)|×|Partµ(JnK)| such that

Mµp =Mλ,µMλp.

Proposition 33 establishes some structural relationships between the relative marginals of a
ranking model p or between its absolute marginals. For relative marginals, it implies that the
knowledge of the marginal MAp of p on a subset A ∈ P(JnK) induces the knowledge of the
marginal MBp on any subset B ∈ P(A). For absolute marginals, it says that the knowledge of
the matrix Mλp of all the marginals of p of shape λ ` n induces the knowledge of the matrix of
all the marginals Mµp for µ D λ.

In both cases, when the knowledge of a marginal induces the knowledge of another, it is
natural to say that the first one carries more information. The question is then: how much
more information? or more precisely what additional part of information does it carry? In other
words, from the knowledge of the second marginal, what additional part of information is needed
to recover the first one?
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(1, 1, 1, 1, 1, 1)

(2, 1, 1, 1, 1)

(2, 2, 1, 1)

(3, 1, 1, 1) (2, 2, 2)

(3, 2, 1)

(4, 1, 1) (3, 3)

(4, 2)

(5, 1)

(6)

Figure 3.3: Reversed Hasse diagram of the dominance order on partitions of n for n = 6

{1, 2, 3, 4, 5, 6}

{1, 2, 3, 4, 5} {1, 2, 3, 4, 6} {1, 2, 3, 5, 6} {1, 2, 4, 5, 6} {1, 3, 4, 5, 6} {2, 3, 4, 5, 6}

{1, 2, 3, 4}{1, 2, 3, 5}{1, 2, 3, 6}{1, 2, 4, 5}{1, 2, 4, 6}{1, 2, 5, 6}{1, 3, 4, 5}{1, 3, 4, 6}{1, 3, 5, 6}{1, 4, 5, 6}{2, 3, 4, 5}{2, 3, 4, 6}{2, 3, 5, 6}{2, 4, 5, 6}{3, 4, 5, 6}

{1, 2, 3}{1, 2, 4}{1, 2, 5}{1, 2, 6}{1, 3, 4}{1, 3, 5}{1, 3, 6}{1, 4, 5}{1, 4, 6}{1, 5, 6}{2, 3, 4}{2, 3, 5}{2, 3, 6}{2, 4, 5}{2, 4, 6}{2, 5, 6}{3, 4, 5}{3, 4, 6}{3, 5, 6}{4, 5, 6}

{1, 2} {1, 3} {1, 4} {1, 5} {1, 6} {2, 3} {2, 4} {2, 5} {2, 6} {3, 4} {3, 5} {3, 6} {4, 5} {4, 6} {5, 6}

Figure 3.4: Hasse diagram of the elements of P(JnK) for the partial order defined by the subset
inclusion, for n = 6

To quantify this part of information, one needs to finely exploit the structure of the marginals
and their associated partial order, namely the dominance order on partitions of n for absolute
marginals and the partial order defined by subset inclusion on P(JnK) for relative marginals.
We provide a representation of their Hasse diagrams on Figures 3.3 and 3.4. On Figure 3.3
we represent the inverse dominance order so that partitions associated to marginals with more
information appear higher.

We show in Subsection 3.2.5 that Fourier analysis on the symmetric group is exactly suited to
quantify the additional part of information between absolute marginals, but not between relative
marginals. This is the purpose of the MRA representation introduced in this thesis.
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3.2.5 Fourier analysis localizes absolute rank information but not rel-
ative rank information

Abstract Fourier analysis consists in representing functions as sums of projections onto spaces
that are invariant under translations (see Diaconis, 1989). By Proposition 31, absolute marginals
are stable under translation operators Tτ for τ ∈ Sn. It is therefore natural to expect that Fourier
analysis localizes absolute rank information. Though it was already explained in details in the
literature (see for instance Diaconis, 1988; Huang et al., 2009a), we develop this interpretation
here with a slightly different point of view to fit with the general approach of this thesis.

A transitive action3 (g, x) 7→ g · x of a group G on a finite set X naturally defines a family
of translation operators Tg on L(X ) by Tgδx = δg·x or equivalently by Tgf(x) = f(g−1 · x) for
any f ∈ L(X ) and x ∈ X . As a permutation matrix, Tg is diagonalizable for each g ∈ G. If
G is commutative then the translation operators two-by-two commute and a classic result from
linear algebra states that there exists a basis of L(X ) in which all the translation operators are
diagonal. This basis is a Fourier basis (see for instance Diaconis, 1989).

When G is not commutative, this result does not hold anymore (if there existed a basis where
all the translation operators are diagonal then they would commute to-by-two and G would be
commutative). One however has Tgg′ = TgTg′ for any g, g′ ∈ G. This means that the mapping
g 7→ Tg is a representation of G on L(X ). A classic result from group representation theory then
says that the following decomposition holds

L(X ) ∼=
⊕
ρ

mρVρ, (3.11)

where each ρ is an irreducible representation of G, Vρ its associated linear space and mρ a
nonnegative integer. Here and throughout the rest of the thesis, the symbol ∼= in (3.11) means
that the two spaces are isomorphic as representations (of the group G in the present case). In
the particular case where X = G, one has mρ = dimVρ for each irreducible representation
ρ. Equation (3.11) means in practice that there exists an isomorphism of representations Φ :⊕

ρmρVρ → L(X ) such that any function f ∈ L(X ) admits a unique decomposition

f = Φ
∑
ρ

Pρf with Pρf ∈ mρVρ for each irreducible representation ρ. (3.12)

For each ρ, Pρf can be seen as a “projection” of f onto mρVρ, which thus localizes a certain
part of information about f that is invariant under translations. We develop this interpretation
for the symmetric group.

Representations of the symmetric group have been thoroughly studied in the literature (see
for instance James and Kerber, 1981; Ceccherini-Silberstein et al., 2010; Sagan, 2013). Each
irreducible representation of Sn is indexed by a partition of n (see Definition 21). The spaces
of the irreducible representations are called the Specht modules. They are denoted by Sλ and
their dimensions by dλ for λ ` n. Decomposition (3.11) for Sn then gives the following result.

Proposition 34 (Fourier decomposition of L(Sn)). The following decomposition holds

L(Sn) ∼=
⊕
λ`n

dλS
λ with dλ = dimSλ for each λ ` n.

The best way to formulate properly Equation (3.12) for the symmetric group, is to use
the Fourier transform. In practice, each space dλS

λ in the decomposition of Proposition 34 is

3an action (g, x) 7→ g · x of a group G on a finite set X is transitive if it has only one orbit or equivalently if
for any x, x′ ∈ X , there exists g ∈ G such that g · x = x′
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replaced by the isomorphic space Rdλ×dλ of dλ-square matrices. Let ρλ be a representative of
the irreducible representation indexed by λ ` n. By definition, the latter is a mapping ρλ : G→
Rdλ×dλ such that ρλ(id) = Idλ , the identity matrix of size dλ, and ρλ(ττ ′) = ρλ(τ)ρλ(τ ′). In
particular ρλ(τ) is invertible for any τ ∈ Sn with ρλ(τ)−1 = ρλ(τ−1). One can also choose
ρλ such that ρλ(τ) is an orthogonal matrix for all τ ∈ Sn, a classic example being the Young
Orthogonal Representation (see for example James and Kerber, 1981).

Definition 35 (Fourier transform). Let f ∈ L(Sn). For each λ ` n, the Fourier coefficient of f
indexed by λ is the dλ × dλ matrix defined by

f̂(λ) =
∑
τ∈Sn

f(τ)ρλ(τ).

The Fourier transform is the mapping F : L(Sn)→
⊕

λ`nRdλ×dλ , f 7→ (f̂(λ))λ`n.

A classic result in group representation theory is that the Fourier transform is an isometry.
In particular it is invertible, the inverse Fourier transform being given by the following formula.

Proposition 36 (Inverse Fourier transform). Let f ∈ L(Sn). For any σ ∈ Sn, one has

f(σ) =
1

n!

∑
λ`n

dλ tr
[
ρλ(σ)>f̂(λ)

]
,

where for any matrix M , M> denotes its transpose and tr(M) its trace.

Proposition 36 is a statement of Equation (3.12) for functions of Sn. More precisely, the

correspondence is made with Pρλf := f̂(λ) for any λ ` n and Φ :
⊕

λ`nRdλ×dλ → L(Sn) the
operator defined by Φ((Fλ)λ`n)(σ) = (1/n!)

∑
λ`n dλ tr

[
ρλ(σ)>Fλ

]
for all σ ∈ Sn.

Propositions 34 and 36 are the statements of Equations (3.11) and (3.12) for functions of Sn.
To show that the Fourier transform localizes absolute rank information, we also need to state
them for functions of Part(JnK). From now on, we fix a partition λ ` n. It is easy to see that
the action of Sn on Part(JnK) from Definition 26 is transitive on each subset Partλ(JnK). The
translation operators Tτ from Definition 29 can thus all be restricted to L(Partλ(JnK)) and the
mapping τ 7→ Tτ defines a representation of Sn on the latter. Its isomorphism class is called a
Young module and denoted by Mλ in the literature. The equivalent of Decomposition (3.11) for
Mλ is given by Young’s rule, a classic result in the representation theory of the symmetric group
(see for instance James and Kerber, 1981).

Proposition 37 (Young’s rule). For λ ` n

Mλ ∼=
⊕
µDλ

Kµ,λS
µ,

where the Kµ,λ’s are nonnegative integers called the Kotska’s numbers, with Kλ,λ = 1.

Example 38 (Decomposition of some Young modules). Proposition 37 provides the following
decompositions

M (n) ∼= S(n)

M (n−1) ∼= S(n−1,1) ⊕ S(n)

M (n−2,2) ∼= S(n−2,2) ⊕ S(n−1,1) ⊕ S(n)

M (n−2,1,1) ∼= S(n−2,1,1) ⊕ S(n−2,2) ⊕ 2S(n−1,1) ⊕ S(n).
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Obtaining an explicit equivalent of (3.12) for functions of Mλ is tedious and not necessary for
our purpose. We only use a part of James’ Submodule Theorem (see Huang et al., 2009a). For
m square matrices F1, . . . , Fm of respective sizes d1, . . . , dm we define the (d1 + · · ·+ dm)-square
matrix

m⊕
i=1

Fi =

 F1

. . .

Fm

 .

Theorem 39 (James’ Submodule Theorem). There exists an orthogonal matrix Cλ such that
for all f ∈ L(Sn),

Mλf = Cλ

⊕
µDλ

Kµ,λ⊕
l=1

f̂(µ)

C>λ .
The correspondence with (3.12) is obtained with PρµMλf = f̂(µ) for any µ D λ and f ∈

L(Sn) and Φλ((Fµ)µDλ) = Cλ[
⊕

µ.λ

⊕Kµ,λ
l=1 Fµ]C>λ . As Kλ,λ = 1 one thus has

Mλf = Φλ((f̂(µ))µDλ) or equivalently Φλf̂(λ) = Mλf − Φλ((f̂(µ))µ.λ). (3.13)

Equation (3.13) shows first that if one knows the Fourier coefficients f̂(µ) for all µ D λ then
he knows Mλf , that is to say all the absolute marginals of f of shape λ. In other words the part
of information related to absolute marginals of shape λ is divided over the Fourier coefficients
of partitions µ D λ. The second formula of Equation (3.13) then shows that if one knows all
the Fourier coefficients of f for partitions µ . λ, or equivalently all the absolute marginals of
f of shape µ . λ, the missing part of information to know the absolute marginals of shape λ is
contained in f̂(λ). The Fourier coefficient f̂(λ) thus localizes the part of information of f specific
to its absolute marginals of shape λ.

At last, the part of information carried by each Fourier coefficient being by construction
invariant under translations, it cannot be specific to a relative marginal. It is the purpose of the
MRA representation to localize specific information of relative marginals.
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Chapter 4

Multiresolution analysis of
incomplete rankings

This chapter introduces the multiresolution analysis (MRA) of incomplete rankings, the major
theoretical contribution of this thesis. First, Section 4.1 establishes the fundamental result about
the multiresolution decomposition of any space L(Γ(A)) for A ∈ P(JnK). This result is used in
Section 4.2 to construct the MRA representation and the wavelet transform. Section 4.3 treats
the associated computational aspects. At last, Section 4.4 introduces a wavelet basis consistent
with the multiresolution decomposition.
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4.1 Multiresolution decomposition

In this section we introduce the main objects of the multiresolution analysis of incomplete
rankings and establish the central result about the multiresolution decomposition. We recall
that the null space of any operator T is denoted by kerT and for any finite set E, we set
P̄(E) := P(E)∪{∅}. We denote by convention 0̄ the unique injective word of content ∅ and length
0, and set Γ̄n := Γn∪{0̄}. We extend naturally the marginal operators to the space L(Γ̄n) and de-
fine by convention the marginal operator on ∅ by M∅ : L(Γ̄n)→ L(Γ(0̄)), F 7→ (

∑
π∈Γ̄n

F (π))δ0̄.

4.1.1 Main definitions

The multiresolution analysis (MRA) of incomplete rankings is built on two central objects: the
spaces HB and the operators φA, for A,B ∈ P̄(JnK).

Definition 40 (Spaces HB). We set H∅ = R0̄ = L(Γ(0̄)) and define for B ∈ P(JnK) the linear
space

HB = {F ∈ L(Γ(B)) |MB′F = 0 for all B′ ( B} = L(Γ(B)) ∩
⋂

B′(B
kerMB′ .

As we shall show thereafter, HB is the space where “live” the components that localize specific
information of marginals on B, for B ∈ P̄(JnK). It can already be seen at first sight as a good
candidate for this purpose since two functions F and G in L(Γ(B)) have the same marginals on
all strict subsets of B if and only if F −G ∈ HB . Thus the projection of F onto HB (in parallel
to any space supplementary to HB) contains information about F that is specific to B. The
results in this section will show that for any A ∈ P(JnK), the structure of the space L(Γ(A)) is
somehow equivalent to that of the sum of spaces

⊕
B∈P̄(A)HB .

Example 41. In this example, we denote by Fπ the value of a function F ∈ L(Γ̄n) on a ranking
π ∈ Γ̄n. For B = {1, 2}, the space H{1,2} is simply equal to the one-dimensional space

H{1,2} = {(F12, F21) ∈ R2 | F12 + F21 = 0}.

For B = {1, 2, 3}, H{1,2,3} is the space of vectors (F123, F132, F213, F231, F312, F321) ∈ R6 that
satisfy the system

F123 + F132 + F213 + F231 + F312 + F321 = 0
F123 + F132 + + + F312 + = 0
F123 + F132 + F213 + + + = 0
F123 + + F213 + F231 + + = 0

It is easy to show that H{1,2,3} has dimension 2. Calculating the dimension of HB for any
B ∈ P(JnK) is not straightforward however. The result is given by Theorem 51.

The other central objects of the MRA are the operators φA for A ∈ P̄(JnK). Their definition
relies on the following concept.

Definition 42 (Contiguous subword). Word π′ ∈ Γn is a contiguous subword of word π ∈ Γn
if there exists i ∈ {1, . . . , |π| − |π′| + 1} such that π′ = πiπi+1 . . . πi+|π′|−1. This is denoted by
π′ @ π.

Example 43. The contiguous subwords of π = 2314 are 23, 31, 14, 231, 314 and 2314. Notice
that 214 is a subword of π but not a contiguous subword.
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Definition 44 (Operators φA). For A ∈ P̄(JnK), we define the linear operator φA : L(Γ̄n) →
L(Γ(A)) on the Dirac function of a ranking π ∈ Γ̄n by

φAδ0̄ =
1

|A|!
1Γ(A) and φAδπ =

1

(|A| − |π|+ 1)!
1{σ∈Γ(A) | π@σ} if π 6= 0̄.

Though the operator φA for A ∈ P̄(JnK) is defined as a mapping from L(Γ̄n) to L(Γ(A)),
we shall see it as an “embedding operator”. Indeed one has by Definition 44, φAF = 0 for
any F ∈ L(B) with B 6⊂ A. This means that φA maps

⊕
B 6∈P̄(A) L(Γ(B)) to 0 and that it is

only relevant to consider its effect on
⊕

B∈P̄(A) L(Γ(B)). In practice, it will be used to embed⊕
B∈P̄(A)HB into L(Γ(A)).

Example 45. For A = {1, 2, 3, 4} and π = 24 one has

φ{1,2,3,4}δ24 =
1

6
(δ1324 + δ3124 + δ1243 + δ3241 + δ2413 + δ2431) .

This is represented by the following graphics.

δ42 → φJ4Kδ42

0

1

24 42
0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Definition 44 is certainly not intuitive for an embedding operator. A more natural definition
would certainly be to send the Dirac function of a ranking π to the (normalized) sum of the Dirac
functions of all the rankings that admit π as a subword, not just as a contiguous subword. A
detailed comparison with this operator and explanation for that choice is provided in Subsection
4.1.3.

The normalization coefficient in Definition 44 comes from the following Lemma. Its normal-
ization purpose will however become clear in the proof of Lemma 49.

Lemma 46. For A ∈ P(JnK) and π ∈ Γn with c(π) ⊂ A, the number of rankings in Γ(A) that
admit π as a contiguous subword is equal to

|{σ ∈ Γ(A) | π @ σ}| = (|A| − |π|+ 1)!.

Proof. A ranking σ ∈ Γ(A) such that π @ σ is of the form σ = a1 . . . aiπai+1 . . . ak with k =
|A| − |π|. It can thus be seen as a linear order over the set {a1, . . . , ak} ∪ {π}. As there are
(k + 1)! such linear orders, this concludes the proof.

4.1.2 Main result

The following theorem exploits the properties of both the spaces HB and operators φA. It is the
base of the entire MRA of incomplete rankings.

Theorem 47 (Multiresolution decomposition). For any A ∈ P̄(JnK), one has the decomposition

L(Γ(A)) =
⊕

B∈P̄(A)

φA (HB) .

In addition, for B ∈ P̄(A),



66 CHAPTER 4. MULTIRESOLUTION ANALYSIS OF INCOMPLETE RANKINGS

1. φA is injective on HB: kerφA ∩HB = {0},

2. for all F ∈ HB and A′ ∈ P̄(A), MA′φAF = φA′F ,

3. dimHB = d|B|, where for k ∈ {2, . . . , n}, dk is the number of fixed-point free permutations
(also called derangements) on a set with k elements.

Example 48. For A = J4K, the multiresolution decomposition of L(S4) writes as

L(S4) = φJ4K



H{1,2,3,4}

H{1,2,3} ⊕H{1,2,4} ⊕H{1,3,4} ⊕H{2,3,4}

H{1,2} ⊕H{1,3} ⊕H{1,4} ⊕H{2,3} ⊕H{2,4} ⊕H{3,4}

H∅


.

The proof of Theorem 47 relies on two key properties, one about the spaces HB and the other
about the operators φA. We start with the latter, given by the following lemma. For A ⊂ JnK
with |A| = 1 we set by convention L(Γ(A)) = H∅ and MA = M∅.

Lemma 49 (Commutation between marginal and wavelet synthesis operators). Let A,B ∈
P(JnK), F ∈ L(Γ(A)) and C ∈ P(JnK) such that A ∪ B ⊂ C. Then MBφCF = φBMA∩BF . In
other words, the following diagram is commutative.

L(Γ(A))

L(Γ(C))

L(Γ(A ∩B))

L(Γ(B))

φC MB

MA∩B φB

The diagram actually represents the restrictions of the operators to the involved spaces but we do
not notify them for clarity’s sake.

Lemma 49 says in a way that the embedding operators φA commute with the marginal
operators MB . As its proof is purely technical, we leave it to the Appendix. We however provide
an illustrating example.

Example 50. Let A = {1, 2, 3}, B = {1, 2, 4} and C = {1, 2, 3, 4}. Then for π = 123 for instance,

MBφCδπ = M{1,2,4}φ{1,2,3,4}δ123 =
1

2
M{1,2,4} [δ4123 + δ1234] =

1

2
[δ412 + δ124]

and φBMA∩Bδπ = φ{1,2,4}M{1,2}δ123 = φ{1,2,4}δ12 =
1

2
[δ412 + δ124] .

Notice that with A, B, C and F as in Lemma 49, if |A ∩ B| ≤ 1 then MBφCF = φBM∅F .
Now by definition, φBM∅F is the constant function on L(Γ(B)) equal to

∑
π∈Γ(A) F (π). This

means that when |A ∩ B| ≤ 1, MBφCF does not contain any information about F besides its
mean value. More generally, Lemma 49 implies the localization properties of the operators φA
and therefore the MRA. A deeper interpretation is developed in Subsection 4.1.3. In practice,
we use Lemma 49 to prove, for A ∈ P̄(JnK), the three following properties.
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1. For B ∈ P̄(A), φA is injective on HB , i.e. kerφA ∩HB = {0}.

2. For B ∈ P̄(A), F ∈ HB and A′ ∈ P̄(A), MA′φAF = φA′F .

3. The sum of spaces (φA(HB))B∈P̄(A) is direct.

Proof. We prove each property separately.

1. Let F ∈ kerφA ∩HB . Applying Lemma 49 to A,B := B and C := A gives

φBMBF = MBφAF i.e. F = 0 because F ∈ kerφA,

which concludes the proof.

2. Applying Lemma 49 to A := B, B := A′ and C := A gives

MA′φAF = φA′MB∩A′F.

If B ⊂ A′ then B ∩ A′ = B and one obtains MA′φAF = φA′MBF = φA′F because
F ∈ L(Γ(B)). If B 6⊂ A′ then B ∩ A′  B and MB∩A′F = 0 because F ∈ HB . Hence
MA′φAF = 0 = φA′F .

3. Let (FB)B∈P̄(A) ∈
⊕

B∈P̄(A)HB such that∑
B∈P̄(A)

φAFB = 0. (4.1)

We need to show that FB = 0 for each B ∈ P̄(A). We do it recursively on |B| by applying
property 2. to (4.1) for different subsets A′. First, applying M∅ cancels all the terms φAFB
for B ∈ P(A), leading to F∅ = 0. Then for any A′ ⊂ A with |A′| = 2, applying MA′ cancels
all the terms φAFB for B ∈ P(A) \ {A′}, leading to FA′ = 0. The proof is concluded by
induction.

The second key ingredient of the proof of Theorem 47 is the following theorem. We recall
that for k ∈ {2, . . . , n}, dk is the number of derangements on a set of k elements.

Theorem 51 (Dimension of the space HJkK). For k ∈ {2, . . . , n}, dimHJkK = dk.

Theorem 51 is proved in Reiner et al. (2014), whereHJkK is denoted by kerπJkK (see proposition
6.8 and corollary 6.15). As simple as it may seem, this result is far from being trivial. It is actually
shown in Reiner et al. (2014) that HJkK is isomorphic to the top homology space of the complex
of injective words on JkK. The calculation of the dimension of the latter relies on the Hopf trace
formula for virtual characters and the topological properties of the partial order of subword
inclusion, proved in several contributions of the algebraic topology literature (see Farmer, 1978;
Björner and Wachs, 1983; Reiner and Webb, 2004).

Example 52. One recovers the values dimH{1,2} = 1 and dimH{1,2,3} = 2. Some more values of
dk are given in Table 4.1.

Theorem 51 enables to conclude the proof of Theorem 47 with a dimensional argument. First
observe that for k ∈ {2, . . . , n}, all the spaces HB for B ⊂ JnK with |B| = k are isomorphic to
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k 0 1 2 3 4 5 6
k! 1 1 2 6 24 120 720
dk 1 0 1 2 9 44 265

Table 4.1: Values of k! and dk

HJkK (this is obvious, but also properly established by Proposition 61). Thus dimHB = d|B| for
all B ∈ P̄(JnK). Combining this result with Properties 1 and 3, one obtains for any A ∈ P(JnK),

|A|! = dimL(Γ(A)) ≥ dim
⊕

B∈P̄(A)

φA (HB) ≥
∑

B∈P̄(A)

d|B| =

|A|∑
k=0

(
|A|
k

)
dk = |A|!, (4.2)

where the last equality is a classic result in elementary combinatorics. All the inequalities in
(4.2) are therefore equalities, and the proof of Theorem 47 is finished.

4.1.3 Interpretation of the embedding operators φA

Here we provide some more insights about the embedding operators φA. Their definition is
indeed not intuitive as mentioned previously. For A,B ∈ P(JnK) with B ⊂ A, the most natural
way to embed a Dirac function δπ with π ∈ Γ(B) into L(Γ(A)) would rather be to map it to
the uniform distribution over all the rankings on A that extend π, that is to use the following
operator

φ′A : δπ 7→ |B|!
|A|!

∑
σ∈π, π⊂σ

δσ. (4.3)

Example 53. For π = 42 and A = J4K:

φAδπ =
1

6
[δ1342 + δ3142 + δ1423 + δ3421 + δ4213 + δ4231]

φ′Aδπ =
1

12
[δ1342 + δ3142 + δ1423 + δ3421 + δ4213 + δ4231 + δ1432 + δ3412 + δ4132 + δ4312 + δ4123 + δ4321]

The operator φ′A is used implicitly in shuffling interpretations of rankings (see Diaconis, 1988;
Huang and Guestrin, 2012). It corresponds to mapping a ranking π to the uniform distribution
over all the possible shuffles between π and a random ranking on Γ(A \ B). Notice also that
for A = JnK, φ′n : π 7→ (|π|!/n!)1Sn(π). In other words, φ′JnK maps an incomplete ranking to the
uniform distribution on the set of its linear extensions. It is thus also involved implicitly in the
approaches introduced in Yu et al. (2002), Kondor and Barbosa (2010) and Sun et al. (2012)
described in Subsection 3.1.5. For these two reasons, φ′A can be considered as the most intuitive
embedding operator. As a matter of fact, one can show that φ′A also establishes an isomorphism
between the spaces

⊕
B∈P̄(A)HB and L(A), leading to another multiresolution decomposition

(this is done in Section 6.2). This decomposition does not however satisfies the localization
properties of Theorem 47. This is because the operator φ′A does not satisfy the key Lemma 49,
whereas the embedding operator φA does.

Example 54. Coming back to Example 50 with A = {1, 2, 3}, B = {1, 2, 4} and C = {1, 2, 3, 4},
we recall that, for π = 123 for instance,

MBφCδπ =
1

2
M{1,2,4} [δ4123 + δ1234] =

1

2
[δ412 + δ124] ,

φBMA∩Bδπ = φ{1,2,4}δ12 =
1

2
[δ412 + δ124] .
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By contrast,

MBφ
′
Cδπ =

1

4
M{1,2,4} [δ4123 + δ1423 + δ1243 + δ1234] =

1

4
[δ412 + δ142 + 2δ124]

φ′BMA∩Bδπ = φ{1,2,4}δ12 =
1

3
[δ412 + δ142 + δ124] .

Even if the operators φ′A were normalized differently, they would still not satisfy Lemma 49. In
the example, the difference comes from the fact that the element δ1243 leads to an additional
term δ124 in the end.

We now develop a more intuitive interpretation of the localization properties induced by the
operators φA. Let us consider for instance π = 12 ∈ Γ({1, 2}) and C = J5K, and let σ ∈ Γ(J5K)
be a ranking that extends π. It induces rankings on all subsets B ∈ P(J5K) with in particular
σ|{1,2} = π. Now consider a perturbation that changes σ to σ′ such that σ′|{1,2} = 21. It
necessarily changes the relative positions of elements 1 and 2 in σ and more generally in all the
subwords of σ that contain 1 and 2. The question is then: how does it affect the other induced
rankings σ′|B for B ∈ P(J5K) such that {1, 2} 6⊂ B? If B ∩ {1, 2} = ∅, σ′|B is different from σ|B
if and only if the perturbation also modifies the relative order of some elements in B. This is
independent from the action on 1 and 2. Now, for B ∈ P(J5K) such that |B ∩{1, 2}| = 1, the key
observation is that it depends on the elements that are placed between 1 and 2 in σ. For instance
if σ = 41523, any perturbation that changes the relative positions of 1 and 2 will necessarily
impact the relative position of at least 1 and 5 or 2 and 5. By contrast, if σ = 45123 for instance,
swapping elements 1 and 2 will not have any impact on σ|B for all B such that |B ∩ {1, 2}| = 1.
Therefore among the rankings that extend 12, only the ones in which 1 and 2 are adjacent can
be perturbed such that only the ranking induced on {1, 2} is affected and not the ones on the
subsets B with |B ∩ {1, 2}| ≤ 1. A similar interpretation holds for subsets of elements of any
size. Developing a general theory of perturbations for rankings would certainly be an interesting
future research direction.

4.2 MRA representation

We now introduce the MRA representation, constructed from the multiresolution decomposition
established in Section 4.1. The terminology used here and throughout the article is borrowed
from wavelet theory. Though it can appear peculiar at first reading, the analogy is explained at
length in Subsection 4.2.3.

4.2.1 Vocabulary and definitions

The MRA representation is constituted of four main objects: signal space, feature space, wavelet
transform and embedding operators.

Signal space. The MRA representation applies to functions of incomplete rankings, which
are seen as “signals” in order to borrow the language of standard MRA in wavelet theory for
interpretation purpose (refer to Mallat, 2008). Any space L(Γ(A)) for A ∈ P̄(JnK) is seen as a
local signal space and they are all embedded into the global signal space defined by

L(Γ̄n) =
⊕

A∈P̄(JnK)

L(Γ(A)).
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Elements of the signal space are seen as collections of functions F = (FA)A∈P̄(JnK). The global

support of an element F is the set supp(F ) = {A ∈ P̄(JnK) | FA 6= 0}, and we usually identify
an element F with the collection restricted to its global support (FA)A∈supp(F ).

Feature space. The feature space is defined by

Hn =
⊕

B∈P̄(JnK)

HB .

Since dimHB = d|B| (the number of derangements on a set of |B| elements, see Theorem 47),

one has dimHn =
∑n
k=0

(
n
k

)
dk = n! by elementary combinatorics. Elements of the feature space

are viewed as collections of vectors X = (XB)B∈P̄(JnK). The global support of an element X is

the set supp(X) = {B ∈ P̄(JnK) | XB 6= 0}, and we usually identify an element X with the
collection restricted to its global support (XB)B∈supp(X).

Wavelet transform. We first construct the wavelet transform implicitly from Theorem 47
(an explicit recursive construction is detailed in Subsection 4.2.6). For any A ∈ P̄(JnK) and F ∈
L(Γ(A)), the latter establishes the existence of a unique element (ΨA

BF )B∈P̄(A) ∈
⊕

B∈P̄(A)HB

such that

F =
∑

B∈P̄(A)

φAΨA
BF. (4.4)

Property (4.4) defines for any B ∈ P̄(JnK) the linear operator ΨB : L(Γ̄n) → HB on each
subspace L(Γ(A)) for A ∈ P̄(JnK) as the mapping

ΨB : F 7→ ΨA
BF if B ⊂ A and 0 otherwise. (4.5)

The operator ΨB is called the wavelet projector on HB for B ∈ P(JnK). The wavelet projections
ΨBF of a signal F ∈ L(Γ̄n) are considered as its features. The wavelet transform is then defined
as the collection of all the wavelet projectors. In other words, it maps a signal F to all its
features.

Definition 55 (Wavelet transform). The wavelet transform is the operator Ψ : L(Γ̄n) → Hn
constructed from the operators ΨB defined in (4.5) as

Ψ : F 7→ (ΨBF )B∈P̄(JnK) .

Embedding operators The embedding operators are the φA’s defined for each A ∈ P̄(JnK)
in Definition 44. In the context of the MRA representation, they can also be considered as
synthesis operators: they reconstruct a signal in the local space L(Γ(A)) from its features. This
is summarized by the following properties, direct consequences of Property (4.4):

φAΨ(F ) = F for any F ∈ L(Γ(A)),

and ΨφJnK(X) = X for any X = (XB)B∈P̄(JnK) ∈ Hn.

Example 56. In this example we illustrate the objects of the MRA representation for n = 4.
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Signal space Feature space

L(Γ({1, 2, 3, 4}))

L(Γ({1, 2, 3}))⊕ L(Γ({1, 2, 4}))

L(Γ({1, 3, 4}))⊕ L(Γ({2, 3, 4}))

L(Γ({1, 2}))⊕ L(Γ({1, 3}))⊕ L(Γ({1, 4}))

L(Γ({2, 3}))⊕ L(Γ({2, 4}))⊕ L(Γ({3, 4}))

L(Γ(0̄))

Wavelet transform
Ψ
−→
←−

Embedding operators
(φA)A∈P̄(J4K)

H{1,2,3,4}

H{1,2,3} ⊕H{1,2,4}

H{1,3,4} ⊕H{2,3,4}

H{1,2} ⊕H{1,3} ⊕H{1,4}

H{2,3} ⊕H{2,4} ⊕H{3,4}

H∅

By construction, the spaces HB , the operators φA and the wavelet transform Ψ satisfy, for
all A,B ∈ P̄(JnK), FA ∈ L(Γ(A)) and XB ∈ HB ,

ΨBFA = 0 if B 6⊂ A
φAXB = 0 if B 6⊂ A.

For B ∈ P̄(JnK), we define the set Q(B) = {A ∈ P̄(JnK) | B ⊂ A}. One then has, for any
A,B ∈ P(JnK), F ∈ L(Γ̄n) and X ∈ Hn,

ΨB(F ) =
∑

A∈Q(B)

ΨBFA and φA(X) =
∑

B∈P̄(A)

φAXB .

In words, this means that the wavelet projection of a signal on a space HB is the sum of the
wavelet projections of the components of this signal on subsets that include B, and the embedding
of a vector from the feature space in a local signal space L(Γ(A)) is the sum of the embeddings
of all the components of the vector on subsets that are included in A.

4.2.2 Main properties

The strength of the MRA representation comes from the relationship between the wavelet trans-
form, the embedding operator and the marginal operator, summarized in the following theorem.
For any collection of subsets S ⊂ P̄(JnK), we define the subspace of Hn:

H(S) =
⊕
B∈S

HB .

Theorem 57 (Fundamental properties of the MRA representation). Let A ∈ P̄(JnK) and F ∈
L(Γ(A)). The MRA representation satisfies the following properties.

• ΨF is the unique element in H(P̄(A)) such that

F = φAΨF =
∑

B∈P̄(A)

φAΨBF. (4.6)

• For any A′ ∈ P̄(A),

MA′F = φA′ΨF or equivalently ΨBMA′F = ΨBF for all B ∈ P̄(A′). (4.7)
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Figure 4.1: Wavelet projections of p from the German dataset

Proof. Property (4.6) and the first part of Property (4.7) are direct consequences of Theorem
47 and Definition 55. To prove the second part of Property (4.7), observe that the first part
applied to F gives MA′F =

∑
B∈P̄(A′) φA′ΨBF and (4.6) applied to MA′F gives MA′F =∑

B∈P̄(A′) φA′ΨBMA′F . The uniqueness of the decomposition concludes the proof.

Example 58. We illustrate Theorem 57 on the distribution p from the German dataset (n =
4). First, Figure 4.1 provides graphical representations for each wavelet projection ΨBp for
B ∈ P(J4K) (we do not represent Ψ∅p because it is simply equal to δ0̄). Then Figure 4.2
illustrates the decomposition of p with graphical representations for each component φJ4KΨBp
for B ∈ P̄(J4K), and of M{1,3,4}p with graphical representations for each component φ{1,3,4}ΨBp
for B ∈ P̄({1, 3, 4}).

Theorem 57 has several implications in practice. First, Property (4.6) says that a function
F ∈ L(Γ(A)) with A ∈ P(JnK) can be reconstructed from its wavelet transform ΨF . The latter
thus contains all information related to F or in other words, the knowledge of ΨF implies the
knowledge of F . In addition, this piece of information is decomposed between all the wavelet
projections ΨBF , and Property (4.7) says that this decomposition is consistent with the marginal
operator: the marginal MA′F of F on any subset A′ ∈ P̄(A) can be reconstructed from the
wavelet transform of F restricted to the subsets B ∈ P̄(A′). Figure 4.3 illustrates these properties
for a ranking model p over S3 with marginals P{1,2}, P{1,3} and P{2,3}.
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Figure 4.2: MRA decomposition of p and M{1,3,4}p from the German dataset
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Signal space

p

Wavelet transform

Feature space

Ψ{1,2,3}p

Ψ{2,3}p

Ψ{1,3}p

Ψ{1,2}p

Ψ∅p

Signal space

p = φ{1,2,3}Ψp

Synthesis operator

P{2,3} = φ{2,3}Ψp

P{1,3} = φ{1,3}Ψp

P{1,2} = φ{1,2}Ψp

Figure 4.3: Illustration of Theorem 57 for n = 3

4.2.3 Multiresolution interpretation

We now show that the MRA representation exploits the natural multiscale structure of the
marginals, justifying the use of terms “MRA representation” and “wavelet transform”. Property
1. of Proposition 33 can be reformulated into the following relationships for any subsets A,B ∈
P(JnK) with B ⊂ A:

(MA)L(Γ(A)) = IdL(Γ(A)) and MBMA = MB , (4.8)

where (MA)L(Γ(A)) denotes the restriction of MA to L(Γ(A)) and IdL(Γ(A)) is the identity

operator on L(Γ(A)). Relationships (4.8) actually mean that the collection of linear spaces
(L(Γ(A)))A∈P(JnK) together with the collection of linear operators (MA)A∈P(JnK) form a projec-
tive system. The partial order associated with this projective system is the inclusion order on
P(JnK). It is canonically graded with the rank function A 7→ |A|. This defines a notion of scale
for the marginals, and this is why we call the projective system defined by relationships (4.8)
the multiscale structure of the marginals. Figure 4.4 provides an illustration for n = 4.

Scale 4

Scale 3

Scale 2

F

M{1,2,3}F M{1,2,4}F M{1,3,4}F M{2,3,4}F

M{1,2}F M{1,3}F M{1,4}F M{2,3}F M{2,4}F M{3,4}F

Figure 4.4: multiscale structure of the marginals of a function F ∈ L(Γ(J4K))

From a practical point of view, the scale of a marginal corresponds to the number of items
in the subset on which the marginal is considered. By equation (4.8), a marginal on a subset
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B ∈ P(A) induces the marginals on all the subsets C ∈ P(B). The collection of marginals
(MBF )B⊂A, |B|=k for F ∈ L(Γ(A)) and k ∈ {2, . . . , |A|} thus induces all the marginals on subsets
C ⊂ A with |C| ≤ k − 1. Hence we say that (MBF )B⊂A, |B|=k contains all the information of
F at scale up to k. This notion of scale can be naturally compared to the usual notion in image
analysis: its version in low resolution can be recovered from a higher resolution. The version
of the image in the higher resolution thus contains more information than the version in low
resolution.

The same as for images, the piece of information gained when increasing the scale corresponds
to an additional level of details. For instance, if one has access to the triple-wise marginals of a
ranking model p then one has access to the information contained in the pairwise marginals plus
the piece of information of scale 3. This decomposition can be further refined: marginals of the
same scale on different subsets provide different additional pieces of information. For instance,
compared to the marginal on {1, 4}, the marginals on {1, 2, 4} and {1, 3, 4} both provide an
additional but different level of details. Pursuing the analogy with images, this decomposition
of the information into pieces related to subsets of items can be compared with the space de-
composition of an image: for each resolution level, an image can be spatially decomposed into
different components. Therefore, through their multiscale structure, the marginals of a function
F ∈ L(Γ(A)) for A ∈ P(JnK) each contain a part of its total information, both delimited in scale
and in space.

The multiresolution representation enables to localize, in each of these parts, the component
that is specific to the marginal. First, one has Ψ∅F = (

∑
π∈Γ(A) F (π))δ0̄, this is proven in

Subsection 4.2.6. The projection Ψ∅F can thus be seen as containing the piece of information
of F at scale 0. Then for a pair {a, b} ⊂ A, applying Eq. (4.6) to M{a,b}F combined with (4.7)
gives

Ψ{a,b}F = M{a,b}F − φ{a,b}Ψ∅F. (4.9)

Hence, starting from Ψ∅F , Ψ{a,b}F contains the exact additional piece of information to recover
M{a,b}F . This is the part of information that is specific to M{a,b}F . For a triple {a, b, c} ⊂ A,
the same calculation gives

Ψ{a,b,c}F = M{a,b,c}F − φ{a,b,c}
[
Ψ∅F + Ψ{a,b}F + Ψ{a,c}F + Ψ{b,c}F

]
. (4.10)

The projection Ψ{a,b,c}F of F thus contains all the additional piece of information to get from
the pairwise marginals M{a,b}F , M{a,c}F and M{b,c}F to the triple-wise marginal M{a,b,c}F .
More generally, for B ∈ P(A), ΨBF contains the piece of information that is specific to MBF ,
or equivalently the part of the information of F that is localized on scale |B| on the subset B.

Example 59. Let p be a ranking model over Γ(J3K) and Σ a random permutation drawn from
p. For clarity’s sake, we denote by P [a1 � · · · � ak] the probability of the event {Σ(a1) < · · · <
Σ(ak)}. One has for instance (see Subsection 4.2.6 for the general formulas):

P [2 � 1 � 3] = p(213)

= φJ3KΨ∅p(213) + φJ3K

[
Ψ{1,2}p+ Ψ{1,3}p+ Ψ{2,3}p

]
(213) + φJ3KΨJ3Kp(213)

= 1
6 + 1

2

[(
P [2 � 1]− 1

2

)
+
(
P [1 � 3]− 1

2

)]
+ ΨJ3Kp(213).

In this decomposition, the first term is the value of the uniform distribution over Γ(J3K), it
represents information at scale 0. The second term represents the part of information at scale 2
of p that is involved in the probability of the ranking 2 � 1 � 3. The last term represents the
part of information involved at scale 3.
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In wavelet analysis on a Euclidean space, each wavelet coefficient of a function f contains a
specific part of information, localized in scale and space. In the present context, for F ∈ L(Γ(A))
with A ∈ P(JnK) and B ∈ P̄(A), the coefficient ΨBF contains the part of information that is
specific to the marginal MBF , or in other words localized at scale |B| and subset B. This is
why we call the operator Ψ the wavelet transform and more generally the construction the MRA
representation.

This analogy is based on the concept of information localization, in space and scale. Tradi-
tional multiresolution analysis on Rd is also characterized by its interplay with translation and
dilation operators: translations enable to “move” in one resolution level and dilations to change
between resolution levels. To develop the analogy, we define the following spaces.

Definition 60 (Space Hk). For k ∈ {0, . . . , n} \ {1}, we define

Hk =
⊕

B⊂JnK, |B|=k

HB , so that Hn =

n⊕
k=0
k 6=1

Hk.

For k ∈ {0, . . . , n} \ {1} the space Hk localizes all relative rank information of scale k.
Analogously to classic multiresolution analysis, one can “move” inside a space Hk between
different subsets of elements with the translation operators.

Proposition 61. Let A,B ∈ P̄(JnK) and τ ∈ Sn. The three following properties hold.

1. TτφA = φτ(A)Tτ

2. TτΨB = Ψτ(B)Tτ

3. Tτ (HB) = Hτ(B).

Beyond the insights it provides, Proposition 61 is very useful for computations (see Section
4.3). Refer to the Appendix for its proof. Notice that it directly implies that the spaces Hk are
invariant under translations: for k ∈ {0, . . . , n} \ {1} and τ ∈ Sn one has

Tτ (Hk) = Tτ

 ⊕
B⊂JnK, |B|=k

HB

 =
⊕

B⊂JnK, |B|=k

Tτ (HB) =
⊕

B⊂JnK, |B|=k

Hτ(B) = Hk. (4.11)

This means in particular that Hk is a representation of Sn and admits a Fourier decomposi-
tion. This property is developed in details in Section 6.1. The relationship between the MRA
and Fourier analysis is another common point with classic multiresolution analysis. By con-
trast, operators that enable to “move” between the scales like the dilation operators in classic
multiresolution analysis do not exist in the present context.

Remark 62 (Non orthogonality of the MRA decomposition). We point out that the MRA decom-
position is not orthogonal. More specifically, for any A ∈ P(JnK) the subspaces (φA(HB))B∈P(A)

of L(Γ(A)) are not two-by-two orthogonal. This is not the case either for the spaces φA(Hk) =⊕
B⊂A,|B|=k φA(HB) for k = 2, . . . , |A|. Only the space φA(H∅) = φA(H0) is orthogonal to all

the φA(HB)’s for B ∈ P(A). As a consequence, one has for F ∈ L(Γ(A))

‖F‖2A = ‖φAΨ∅F‖2A+

∥∥∥∥∥ ∑
B∈P(A)

φAΨBF

∥∥∥∥∥
2

A

with in general

∥∥∥∥∥ ∑
B∈P(A)

φAΨBF

∥∥∥∥∥
2

A

6=
∑

B∈P(A)

‖ΨBF‖2B ,

where ‖ · ‖B is the abbreviated notation for the Euclidean norm ‖ · ‖Γ(B) on L(Γ(B)) for any
B ∈ P(JnK) that we use here and throughout the rest of the thesis.
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4.2.4 Approximation in the MRA representation

Traditional wavelet analysis is naturally used together with linear or nonlinear approximation
(see for instance Donoho et al., 1996; DeVore, 1998; Mallat, 2008). To illustrate the general
principles, let B = {φ0} ∪ {ψj,k}1≤k≤2j−1,1≤j≤m be a wavelet basis of R2m with m ≥ 1. Since B
is orthonormal, any function f ∈ R2m satisfies

f = 〈f, φ0〉φ0 +

m∑
j=1

2j−1∑
k=1

〈f, ψj,k〉ψj,k and ‖f‖2 = 〈f, φ0〉2 +

m∑
j=1

2j−1∑
k=1

〈f, ψj,k〉2 ,

where ‖ · ‖ denotes here the canonical Euclidean norm on R2m . The two usual approximation
schemes are defined as follows.

• Linear approximation. For J ∈ {0, . . . ,m}, the linear approximation of f at scale J is

fJ = 〈f, φ0〉φ0 +

J∑
j=1

2j−1∑
k=1

〈f, ψj,k〉ψj,k with error ‖f − fJ‖2 =

m∑
j=J+1

2j−1∑
k=1

〈f, ψj,k〉2 .

• Nonlinear approximation. To define the nonlinear approximation, we first give an
arbitrary labeling to the wavelet basis: B = {ψi}1≤i≤2m . For M ∈ {1, . . . , 2m}, let fM be
the linear combination of the form

∑
i∈I 〈f, ψi〉ψi with |I| = M with minimal error:

fM =
∑

i∈I(M)

〈f, ψi〉ψi with I(M) = argmin
I⊂{1,...,2m}, |I|=M

∥∥∥∥∥f −∑
i∈I
〈f, ψi〉ψi

∥∥∥∥∥
2

.

The function fM is called the best M-term approximation of f . Because B is orthonormal,
fM is obtained by keeping in f only the terms with highest absolute value of their coefficient:

fM =

M∑
l=1

fB[l]ψ[l] and its error is ‖f − fM‖2 =

2m∑
l=M+1

fB[l]2,

where fB[l] denotes the coefficient 〈f, ψi〉 with lth highest absolute value and ψ[l] denotes
the associated basis element.

A function f ∈ R2m is well approximated by the linear approximation scheme if ‖f − fJ‖2
decreases rapidly with J and by the nonlinear approximation scheme if ‖f − fM‖2 decreases
rapidly with M . Of course, functions that are well approximated by the linear scheme are also
well approximated by the nonlinear scheme. The latter is thus more powerful in the sense that
it provides good approximations for more functions. Its utility on real data depends however
on the basis. Nonlinear approximation in a Fourier basis is rarely used, because the functions
that are well approximated by it but not by linear approximation rarely appear in real data. In
other words, real data that would be well approximated by the nonlinear scheme in a Fourier
basis are usually also well approximated by the linear scheme. One strength of wavelet bases
is precisely that many of the functions from real data that are not well approximated by the
nonlinear scheme in a Fourier basis are well approximated in them (see for instance Donoho,
1993).

It is natural to study analogous approximation schemes for the MRA representation. This
is what we do next, pointing out at the same time several important differences with classic
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wavelet analysis. Let F ∈ L(Γ(A)) with A ∈ P(JnK) be a function to approximate. Its wavelet
decomposition writes as

F =
∑

B∈P̄(A)

φAΨBF.

As running example, we take p from the German dataset.

Error measure. As the MRA decomposition is not orthogonal, measuring the approximation
error with the Euclidean norm is not necessarily the most natural. We consider more generally
lr norms for r ≥ 1, denoting by ‖ · ‖A,r the lr norm on L(Γ(A)) in this subsection. More
importantly, a first difference with classic wavelet analysis is that depending on the application,
F can be seen as a signal itself, or as a function that generates signals in local spaces L(Γ(B))
for B ∈ P̄(A) through its marginals. While in the first case one would naturally define the error
of an approximation F̃ ∈ L(Γ(A)) by ‖F̃ −F‖A,r, an error for the second case would rather be of

the form
∑
B∈P̄(A) wB‖MB(F̃ −F )‖B,r, where the wB ’s are weighting coefficient. Such an error

naturally arises for instance in the statistical problem of estimating the marginals of a ranking
model (see Section 5.2).

Linear approximation. With the notion of scale defined in Subsection 4.2.3 and by analogy
with classic wavelet analysis, it is natural to consider the linear approximation scheme that keeps
only the lower scales. We thus define the linear approximation at scale k of F by

Fk =
∑

B∈P(A),|B|≤k

φAΨBF = φAΨ∅F +

k∑
j=2

∑
B⊂A,|B|=j

φAΨBF

for k = 1, . . . , n. Table 4.2 shows the results of the linear approximation scheme on p from
the German dataset. Errors l2 and l1 correspond to classic errors measured by ‖ · ‖J4K,2 and
‖ · ‖J4K,1 respectively. Errors l2m and l1m are the average of errors on the marginals defined by
(1/11)

∑
B∈P(J4K) ‖MB(Fk − F )‖B,r for r = 1, 2. What is certainly most interesting from Table

4.2 is that p3 is a bad approximation of p for the l2 and l1 errors compared to p2 and even
to p1. It is however better for the l2m and l1m errors. This highlights the fact that the MRA
representation does not provide the localization properties one can be used to. The fact that
the components φAΨBF do not contain information about F “local in the space Γ(A)” can also
be observed on Figure 4.2: their support is diffuse and not restricted to a few rankings only.
The difference between the localization properties of the MRA and the ones of classic wavelet
analysis is further developed in Section 4.3.

Nonlinear approximation. For M = 1, . . . , 2n − n and a given error E , the best M -term
approximation of F is defined by

FM =
∑

B∈S(M)

φAΨBF with S(M) = argmin
S⊂P̄(A), |S|=M

E

(
F −

∑
B∈S

φAΨBF

)
.

As the MRA representation is not orthogonal, finding FM is not easy, even if E = ‖·‖JnK,2. Indeed
even in this case, keeping the M terms in F with highest value of ‖ΨBF‖B,2 does not give FM
in general. We however use here the latter procedure because it enables us to highlight another
specificity of the present setting: the wavelet projections are vectors, not scalars. The question
is then: on what quantity should we base the selection of the components? As a heuristic,
we propose to consider for a subset B ∈ P(A) the quantity E(φAΨBF ). For E = ‖ · ‖A,r and
E =

∑
A′∈P(A) wA′‖MA′ · ‖A′,r, this quantity is computed using the following Lemma.
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Scale l2 l2m l1 l1m pk

1 0.21 0.27 0.77 0.51
-0,15

0

0,15

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

2 0.15 0.06 0.66 0.16
-0,15

0,00

0,15

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

3 0.24 0.02 0.99 0.09
-0,15

0,00

0,15

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

4 0 0 0 0
-0,15

0,00

0,15

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Table 4.2: Linear approximation on the German dataset
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(a) l2 error
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(b) l1 error
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(d) l1m error

Figure 4.5: Nonlinear approximation on the German dataset
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Rank l2 l1 l2m l1m Borda Count
1 {1, 2, 3, 4} ∅ ∅ ∅ ∅
2 ∅ {1, 2, 3, 4} {3, 4} {3, 4} {3, 4}
3 {3, 4} {3, 4} {1, 4} {1, 4} {1, 4}
4 {1, 4} {1, 4} {2, 3} {2, 3} {1, 2, 3, 4}
5 {2, 3} {2, 3} {1, 2} {1, 2} {2, 3}
6 {1, 2} {1, 2} {2, 4} {1, 2, 3, 4} −→ {1, 2}
7 {1, 2, 4} {1, 2, 4} {1, 2, 3, 4} {1, 2, 4} {1, 2, 4}
8 {1, 3, 4} {1, 3, 4} {1, 2, 4} {1, 3, 4} {1, 3, 4}
9 {2, 3, 4} {2, 3, 4} {1, 3, 4} {2, 4} {2, 4}
10 {1, 2, 3} {1, 2, 3} {2, 3, 4} {2, 3, 4} {2, 3, 4}
11 {2, 4} {2, 4} {1, 2, 3} {1, 2, 3} {1, 2, 3}
12 {1, 3} {1, 3} {1, 3} {1, 3} {1, 3}

Figure 4.6: Orderings of the components for different errors on the German dataset

Lemma 63. Let A ∈ P̄(JnK), (XB)B∈P̄(A) ∈ H(A) and r ≥ 1.

1. For all B ∈ P(A),

‖φAX∅‖A,r =
1

|A|!1−1/r
|X∅(0̄)| and ‖φAXB‖A,r =

1

(|A| − |B|+ 1)!1−1/r
‖XB‖B,r.

2. Let (wA′)A′∈P(A) ∈ R2|A|−|A|−1. For all B ∈ P(A),

∑
A′∈P(A)

wA′‖MA′φAX∅‖A′,r =

 ∑
A′∈P(A)

wA′

|A′|!1−1/r

 |X∅(0̄)|

and
∑

A′∈P(A)

wA′‖MA′φAXB‖A′,r =

 ∑
A′∈P(A)∩Q(B)

wA′

(|A′| − |B|+ 1)!1−1/r

 ‖XB‖B,r

where we recall that Q(B) = {A ∈ P(JnK) | B ⊂ A} for any B ∈ P(JnK).

Refer to the Appendix for the proof of Lemma 63. Figure 4.5 shows some of the nonlinear
approximations of p from the German dataset for several errors E . An interesting question that
usually comes with nonlinear approximation is: can we “summarize” F into a small number of its
components (see Diaconis, 1989). Unfortunately this question is ill-posed in the present setting
because the MRA representation is not orthogonal and there are several ways of measuring how
a sum of some components would approximate it or equivalently “summarize” it. Figure 4.6
shows the ordering of the components with respect to the value E(φJ4KΨBp) for several errors E ,
as well as the aggregated ordering obtained by Borda Count (refer to Subsection 6.3.3 for the
definition), which can be seen as providing the “average representativeness” of a component.

Remark 64 (Algorithms for nonlinear approximation). One could certainly apply methods from
nonlinear approximation in a general dictionary (such as Orthogonal Matching Pursuit) but they
should be adapted in the present setting where there is no dictionary per se. Otherwise, one
could apply methods from combinatorial optimization such as branch and bound algorithms.
This could constitute an interesting direction for future work.
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4.2.5 Solving linear systems involving the marginal operator

One of the main consequences of Theorem 57 is that the MRA representation “simultaneously
block-diagonalizes” the marginal operators MA. To be more specific, let MA : Hn → Hn be
the operator defined by MA = ΨMAφJnK for A ∈ P(JnK). The following proposition is a direct
consequence of Theorem 57.

Proposition 65 (Marginal operator in the feature space). Let A ∈ P(JnK). For all F ∈ L(Γ̄n),

ΨMAF =MAΨF.

In other words, the operator MA is such that the following diagram is commutative.

L(Γ̄n) Hn

HnL(Γ(A))

Ψ

MA MA

Ψ

Proof. Let A ∈ P(JnK) and F ∈ L(Γ̄n). By definition of the operator MA,

MAΨF = ΨMAφJnKΨF.

Now, applying Property (4.7) successively to φJnKΨF and F gives

MAφJnKΨF = φAΨφJnKΨF = φAΨF = MAF,

where we recall that ΨφJnKX = X for any X ∈ Hn. Hence MAΨF = ΨMAF .

Proposition 65 says that applying the operator MA in the feature space is equivalent to
applying the marginal operator MA in the signal space. This is why we call MA the marginal
operator in the feature space. Now, Theorem 57 also implies that this operator is actually a
simple projection.

Proposition 66 (Simultaneous block-diagonalization). For A ∈ P(JnK), MA is the projection
on H(P̄(A)): for any (XB)B∈P̄(JnK) ∈ Hn,

MA

(
(XB)B∈P̄(JnK)

)
= (XB)B∈P̄(A).

Equivalently, the matrix ofMA in any basis of Hn consistent with the decomposition
⊕

B∈P̄(JnK)HB

is of the form 
H∅ ··· HJnK

H∅ m∅ · · · 0
...

...
. . . 0

HJnK 0 · · · mJnK

,
where for B ∈ P̄(JnK), mB = IB, the matrix of the identity operator IdHB on HB, if B ⊂ A and
mB = 0 otherwise.



82 CHAPTER 4. MULTIRESOLUTION ANALYSIS OF INCOMPLETE RANKINGS

Proof. Let A ∈ P(JnK) and X ∈ Hn. Applying Property (4.7) to φJnKX one obtains

MA(X) = ΨMAφJnK(X) = ΨφA(X) = Ψ
∑

B∈P̄(A)

φAXB = (XB)B∈P̄(A) ,

which concludes the proof.

Example 67. The matrix of M{1,2,4} in any basis of H4 consistent with the decomposition⊕
B∈P̄(J4K)HB is equal to



H∅ H{1,2} H{1,3} H{1,4} H{2,3} H{2,4} H{3,4} H{1,2,3} H{1,2,4} H{1,3,4} H{2,3,4} HJ4K

H∅ I∅ 0 0 0 0 0 0 0 0 0 0 0
H{1,2} 0 I{1,2} 0 0 0 0 0 0 0 0 0 0
H{1,3} 0 0 0 0 0 0 0 0 0 0 0 0
H{1,4} 0 0 0 I{1,4} 0 0 0 0 0 0 0 0
H{2,3} 0 0 0 0 0 0 0 0 0 0 0 0
H{2,4} 0 0 0 0 0 I{2,4} 0 0 0 0 0 0
H{3,4} 0 0 0 0 0 0 0 0 0 0 0 0
H{1,2,3} 0 0 0 0 0 0 0 0 0 0 0 0
H{1,2,4} 0 0 0 0 0 0 0 0 I{1,2,4} 0 0 0
H{1,3,4} 0 0 0 0 0 0 0 0 0 0 0 0
H{2,3,4} 0 0 0 0 0 0 0 0 0 0 0 0
HJ4K 0 0 0 0 0 0 0 0 0 0 0 0


Proposition 66 says at the same time that the marginal operator in the MRA representation

boils down to a simple filter, and that all the marginal operators are “block-diagonalized” in the
MRA representation. These properties mean that the MRA representation is best fitted to solve
linear systems that involve the marginal operator. This is formalized in the following theorem.
For any collection S ⊂ P(JnK), we set

P̄(S) :=
⋃
A∈S
P̄(A).

Theorem 68 (Solutions to linear systems). Let A ∈ P(JnK) and F0 ∈ L(Γ(A)).

• For A′ ∈ P(A), the solutions to the problem

Find F ∈ L(Γ(A)) such that MA′F = MA′F0 (4.12)

are all of the form

φA
∑

B∈P̄(A′)

ΨBF0 + φAX,

with X ∈ H(P̄(A)\P(A′)). In particular the space of solutions has dimension dimH(P̄(A)\
P(A′)) = |A|!− |A′|!.

• More generally for S ⊂ P(A), the solutions to the problem

Find F ∈ L(Γ(A)) such that MA′F = MA′F0 for all A′ ∈ S (4.13)

are all of the form

φA
∑

B∈P̄(S)

ΨBF0 + φAX

with X ∈ H(P̄(A)\P(S)). In particular the space of solutions has dimension dimH(P̄(A)\
P(S)) = |A|!−

∑
A′∈S d|A′|.
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Proof. It is sufficient to prove the theorem for problem (4.13). Let F ∈ L(Γ(A)). For any A′ ∈ S,

MA′F = MA′F0 ⇔ ΨMA′F = ΨMA′F0 by Theorem 57
⇔ MA′ΨF =MA′ΨF0 by Proposition 65
⇔ ΨBF = ΨBF0 for all B ∈ P̄(A′) by Proposition 66.

Thus MA′F = MA′F0 for all A′ ∈ S if and only if ΨBF = ΨBF0 for all B ∈ P̄(S). Applying
Theorem 57 one last time concludes the proof.

Example 69. We illustrate Theorem 68 for the ranking model p from the German dataset. Let
us assume that one does not know the ranking model p, but knows exactly some of its marginals
MAp for subsets A in the observation design A = {{1, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 3, 4}}. One
then has P(J4K) \ P̄(A) = {{1, 2, 4}, {2, 3, 4}, {1, 2, 3, 4}}. Theorem 68 thus tells us that the
functions on S4 that have the same marginal as p for all subsets A ∈ A are of the form

F = φJ4K

∑
B∈P̄(A)

ΨBp+ φJ4K

[
X{1,2,4} +X{2,3,4} +X{1,2,3,4}

]
with XB ∈ HB ,

where the XB ’s can be arbitrary. The set composed of such functions is therefore a linear space
of dimension d4 + 2d3 = 13. Examples of such functions with their marginals are represented in
Figure 4.7. The graphs on the left represent the function with XB = 0 and the graphs on the
right represent a function obtained with XB ’s sampled randomly.

4.2.6 Explicit construction of the wavelet transform

Definition 55 relies on an implicit construction. We now provide an explicit construction of the
wavelet transform. First, observe that Property (4.6) of Theorem 57 applied to A = ∅ implies
that for any F ∈ L(Γ(0̄)), Ψ∅F = F . Applying Property (4.7), one obtains for any F ∈ L(Γ̄n),

Ψ∅F = Ψ∅M∅F = M∅F =

∑
π∈Γ̄n

F (π)

 δ0̄. (4.14)

On the other hand, one has φAF = F for any A ∈ P̄(JnK) and F ∈ L(Γ(A)), so that by Theorem
57,

ΨAF = F −
∑

B∈P̄(A)\{A}

φAΨBF. (4.15)

We use Eq. (4.14) and (4.15) to construct the wavelet projections ΨB by induction. To this
purpose, first observe that by Property (4.7) of Theorem 57, one has ΨBF = ΨBMBF for any
B ∈ P̄(JnK) and F ∈ L(Γ̄n). This justifies the following definition.

Definition 70 (Alpha coefficients). For B ∈ P̄(JnK) and π, π′ ∈ Γ(B), we define the alpha
coefficient

αB(π, π′) = ΨBδπ′(π) so that ΨBF (π) =
∑

π′∈Γ(B)

αB(π, π′)MBF (π′) for any F ∈ L(Γ̄n).

The coefficients αB(π, π′) from Definition 70 entirely characterize the wavelet projections and
are easier to handle. Their recursive calculation requires the following lemma. For a ranking
π = π1 . . . πk ∈ Γn and two indexes 1 ≤ i < j ≤ k, we denote by πJi,jK the contiguous subword
πi . . . πj of π.
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Figure 4.7: Function F and its marginals, with XB = 0 on the left and XB drawn randomly on
the right.

Lemma 71. Let A ∈ P̄(JnK) with |A| = k and X = (XB)B∈P̄(A) ∈ Hn. Then for all π ∈ Γ(A),∑
B∈P̄(A)

φAXB(π) =
1

k!
X∅(0̄) +

∑
1≤i<j≤k

1

(k − j + i)!
Xc(πJi,jK)

(
πJi,jK

)
.

Proof. First, one clearly has
∑
B∈P̄(A) φAXB(π) = 1

k!X∅(0̄) +
∑
B∈P(A) φAXB(π). Now by defi-
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nition of operator φA, one has for any B ∈ P(A)

φAXB(π) =
∑

π′∈Γ(B)

XB(π′)
I{π′ @ π}

(k − |π′|+ 1)!
= XB(π|B)

I{π|B @ π}
(k − |B|+ 1)!

.

Thus only the terms φAXB(π) where B is such that π|B is a contiguous subword of π are
potentially not null in the sum

∑
B∈P(A) φAXB(π). As the contiguous subwords of π are all of

the form πJi,jK with 1 ≤ i < j ≤ k, this concludes the proof.

The recursive formula for the coefficients αB(π, π′) for π, π′ ∈ Γ(B) and B ∈ P̄(JnK) is then
given by the following theorem.

Theorem 72 (Recursive formula for the alpha coefficients). The coefficients (αB(π, π′))π,π′∈Γ(B), B∈P(JnK)

are given by the following recursive formula:

• α∅(0̄, 0̄) = 1

• for all B ∈ P(JnK) and π, π′ ∈ Γ(B),

αB(π, π′) = I{π = π′} − 1

|B|!
−

∑
1≤i<j≤|B|
j−i<|B|−1

1

(|B| − j + i)!
αc(πJi,jK)

(
πJi,jK, π

′
|c(πJi,jK)

)
.

Proof. Eq. (4.14) directly implies that α∅(0̄, 0̄) = 1. Now, Eq. (4.15) gives for B ∈ P(JnK) and
π, π′ ∈ Γ(B)

ΨBδπ′(π) = δπ′(π) −
∑

B′∈P̄(B)\{B}

φBΨB′δπ′(π).

Combined with Lemma 71, this leads to the desired result.

Example 73. As an example, we provide the matrix (αB(π, π′))π,π′∈Γ(B) for B = {1, 2} and
B = {1, 2, 3}:

[
α{1,2}(π, π

′)
]
(π,π′)

=

[ 12 21

12 1/2 −1/2
21 −1/2 1/2

]
and

[
α{1,2,3}(π, π

′)
]
(π,π′)

=



123 132 213 231 312 321

123 1/3 −1/6 −1/6 −1/6 −1/6 1/3
132 −1/6 1/3 −1/6 1/3 −1/6 −1/6
213 −1/6 −1/6 1/3 −1/6 1/3 −1/6
231 −1/6 1/3 −1/6 1/3 −1/6 −1/6
312 −1/6 −1/6 1/3 −1/6 1/3 −1/6
321 1/3 −1/6 −1/6 −1/6 −1/6 1/3

.

We conclude this subsection with the following natural property, which will be useful to
reduce the complexity of computations.

Lemma 74. Let B ∈ P(JnK) and τ ∈ Sn a permutation that keeps the order of the items in B,
i.e. such that for all b, b′ ∈ B, b < b′ ⇒ τ(b) < τ(b′). Then for all π, π′ ∈ Γ(B),

αB(π, π′) = ατ(B)(τ(π), τ(π′)).
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Example 75. Let B = {2, 4, 5} and τ ∈ Sn such that τ(2) = 1, τ(4) = 2 and τ(5) = 3. Then for
π, π′ ∈ Γ({2, 4, 5}), α{2,4,5}(π, π′) = α{1,2,3}(τ(π), τ(π′)).

Proof. By Definition 70 one has ΨBδπ′ =
∑
π∈Γ(B) αB(π, π′)δπ. Applying Tτ then gives

TτΨBδπ′ =
∑

π∈Γ(B)

αB(π, π′)δτ(π).

On the other hand, Proposition 61 gives

TτΨBδπ′ = Ψτ(B)δτ(π′) =
∑

π∈Γ(τ(B))

ατ(B)(π, τ(π′))δπ =
∑

π∈Γ(B)

ατ(B)(τ(π), τ(π′))δτ(π).

Identifying the coefficients concludes the proof.

4.3 Fast wavelet transform

The MRA representation would be of little interest without efficient procedures to compute the
wavelet transform of a function F ∈ L(Γ̄n) an the synthesis of an element X ∈ Hn. Fortunately,
such procedures exist and we now describe them in details. They are directly inspired by the
Fast Wavelet Transform (FWT) introduced in Mallat (1989). We first recall some background
about it.

4.3.1 Background on FWT in classic wavelet theory

In classic multiresolution analysis on l2(Z)1, one is given a scaling basis (φj,k)j,k∈Z and a wavelet
basis (ψj,k)j,k∈Z, so that any function f ∈ l2(Z) decomposes as

f =
∑
k∈Z
〈f, φj0,k〉φj0,k +

+∞∑
j=j0

∑
k∈Z
〈f, ψj,k〉ψj,k

for any j0 ∈ Z (see Mallat, 2008, for the details). The scalars dj [k] := 〈f, ψj,k〉 are the wavelet
coefficients and the scalars aj [k] := 〈f, φj,k〉 are called the approximation coefficients. The fast
wavelet transform computes efficiently the wavelet coefficients by exploiting the two following
properties of wavelet bases.

• All the wavelet coefficients at scale j can be computed from the approximation coefficients
at scale j via a linear operator h:

dj [k] = (haj)[k] (4.16)

• All the approximation coefficients at scale j can be computed from the approximation
coefficients at scale j + 1 via a linear operator g:

aj [k] = (gaj+1)[k] (4.17)

The operator g computes local averages of the signal and is therefore called a low-pass filter.
The operator h computes local differences of the signal and is therefore called a high-pass filter.
The FWT then consists in applying recursively these filters in two steps:

1l2(Z) = {f : Z→ R |
∑

m∈Z f(m)2 <∞}.
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1. Apply the high-pass filter h to aj to obtain the wavelet coefficients dj

2. Apply the low-pass filter g to aj to obtain aj−1

This procedure is illustrated by Figure 4.8 (the wavelet coefficients are highlighted in blue). It
is called “fast” because it computes all the coefficients of a same scale at the same time.

f = aJ h

g

dJ

aJ−1 h

g

dJ−1

aJ−2 h

g

dJ−2

aJ−3

Figure 4.8: Fast Wavelet transform with filter banks

In practice for a function f ∈ l2(Z) with finite support, the number of wavelet and approxi-
mation coefficients decreases with the scale. The application of the filters g and h at scale j then
only involve the operations with the finite vector aj . The implementation of the FWT therefore
uses families of filters (gj)j and (hj)j where gj and hj are the operators applied effectively on
aj .

Example 76 (FWT for the Haar wavelets). The following diagram illustrates the fast Haar wavelet
transform of a signal f = (f1, . . . , f8) ∈ R8.



f1

f2

f3

f4

f5

f6

f7

f8


h3

g3

d3 =


f1 − f2

f3 − f4

f5 − f6

f7 − f8



a2 =


f1 + f2

f3 + f4

f5 + f6

f7 + f8

 h2

g2

d2 =

[
a2[1]− a2[2]
a2[3]− a2[4]

]

a1 =

[
a2[1] + a2[2]
a2[3] + a2[4]

]
h3

g3

d1 = [a1[1]− a1[2]]

a0 = [a1[1] + a1[2]]

4.3.2 FWT for the MRA representation

We now define the FWT for the MRA representation. We first consider the wavelet trans-
form of a function F ∈ L(Γ(A)) with A ∈ P(JnK). For k ∈ {2, . . . , |A|} we denote by ΓkA :=⊔
B⊂A, |B|=k Γ(B) the set of all incomplete rankings of k items of A.

• The analogues of the approximation coefficients of F at scale j ∈ {2, . . . , |A|} are the
marginals MBF for B ⊂ A with |B| = j. The vector of approximation coefficients of F at
scale j is defined by

M jF = (MBF (π))π∈Γ(B),|B|=j = (Mc(π)F (π))π∈ΓjA
∈ R|A|!/(|A|−j)!. (4.18)
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• The wavelet coefficients of F at scale j ∈ {2, . . . , |A|} are the wavelet projections ΨBF for
B ⊂ A with |B| = j. The vector of wavelet coefficients of F at scale j is defined by

ΨjF = (ΨBF (π))π∈Γ(B),|B|=j = (Ψc(π)F (π))π∈ΓjA
∈ R|A|!/(|A|−j)!. (4.19)

Same as in classic wavelet theory, the FWT for the MRA representation also relies on two major
relationships between the wavelet and approximation coefficients, analogous to Formulas (4.16)
and (4.17). The analogue of Formula (4.17) stems from the properties of the marginal operators.
For π = π1 . . . πj ∈ Γn with c(π)  A, one has

Mc(π)F (π) = Mc(π)∪{b}F (bπ1 . . . πj) +Mc(π)∪{b}F (π1b . . . πj) + · · ·+Mc(π)∪{b}F (π1 . . . πjb)
(4.20)

for any b ∈ A \ c(π). In addition one has M∅F (0̄) = M{a,b}F (ab) +M{a,b}F (ba) for any a, b ∈ A
with a 6= b. We therefore define the low-pass filters as follows.

Definition 77 (Low-pass filters). We define the order 2 low-pass filter g2
A : L(Γ2

A) → R0̄ on
A ∈ P(JnK) by

g2
AF (0̄) = F{a,b}(ab) + F{a,b}(ba) for any F ∈ L(Γ2

A),

where a and b are distinct items in A (we take the two smallest by convention). For j ∈
{3, . . . , |A|} we define the order j low-pass filter gjA : L(ΓjA)→ L(Γj−1

A ) on A by

gjAF (π1 . . . πj−1) = F (bππ1 . . . πj−1) + F (π1bπ . . . πj−1) + · · ·+ F (π1 . . . πj−1bπ)

for any F ∈ L(ΓjA) and π = π1 . . . πj−1 ∈ Γj−1
A , where bπ is any item in A \ c(π) (we take the

smallest by convention).

The high-pass filters are constructed with the alpha coefficients from Definition 70.

Definition 78 (High-pass filters). Let A ∈ P(JnK). For k ∈ {2, . . . , |A|}, the high-pass filter on
A at scale j is the operator hjA : L(ΓjA)→ L(ΓjA) defined by

hjAF (π) =
∑

π′∈Γ(c(π))

αc(π)(π, π
′)F (π′) for any F ∈ L(ΓjA) and π ∈ ΓjA.

The analogues of Formulas (4.17) and (4.16) are then given by the following proposition. As
it is a direct consequence of Definitions 77 and 78, its proof is left to the reader.

Proposition 79. Let A ∈ P(JnK) and F ∈ L(Γ(A)).

• The wavelet coefficients ΨjF of F at scale j ∈ {2, . . . , |A|} can all be computed from the
approximation coefficients M jF at scale j through the high-pass filter hjA:

ΨjF = hjAM
jF. (4.21)

• The approximation coefficients M jF of F at scale j ∈ {2, . . . , |A| − 1} can all be computed
from the approximation coefficients M j+1F at scale j + 1 through the low-pass filter gj+1

A :

M jF = gj+1
A M j+1F. (4.22)

Formulas (4.21) and (4.22) are the respective analogues of Formulas (4.16) and (4.17) in
classic wavelet analysis. The FWT for the MRA representation can then be formulated as the
FWT in classic wavelet theory: starting from the highest scale, apply recursively the high-pass
filter on the approximation coefficients to obtain the wavelet coefficients and the low-pass filter
to obtain the approximation coefficients of lower scale. The procedure is formalized in Algorithm
1.
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Algorithm 1 FWT for a function F ∈ L(Γ(A)) with A ∈ P(JnK)

Require: F ∈ L(Γ(A)) with A ∈ P(JnK)
M |A|F = F
for j from |A| to 2 do

ΨjF = hjAM
jF

M j−1F = gjAM
jF

end for
return ΨF = {M1F} ∪ (ΨjF )2≤j≤|A|

Example 80 (FWT for the MRA representation). The following diagram illustrates the FWT for
a function F ∈ L(Γ(J3K)). For any F ′ ∈ L(Γ̄n) and π ∈ Γ̄n, the value F ′(π) is denoted by F ′π.


F123

F132

F213

F231

F312

F321

 h3
J3K

g3
J3K

Ψ3
J3KF =



∑
π∈Γ(J3K) αJ3K(123, π)Fπ∑
π∈Γ(J3K) αJ3K(132, π)Fπ∑
π∈Γ(J3K) αJ3K(213, π)Fπ∑
π∈Γ(J3K) αJ3K(231, π)Fπ∑
π∈Γ(J3K) αJ3K(312, π)Fπ∑
π∈Γ(J3K) αJ3K(321, π)Fπ



M2F =


F123 + F132 + F312

F213 + F231 + F321

F132 + F123 + F213

F312 + F321 + F231

F231 + F213 + F123

F321 + F312 + F231

 h2

g2

Ψ2
J3KF =


(M2F )12 − (M2F )21

(M2F )21 − (M2F )12

(M2F )13 − (M2F )31

(M2F )31 − (M2F )13

(M2F )23 − (M2F )32

(M2F )32 − (M2F )23


Ψ∅F = [(M2F )12 + (M2F )21]

Same as the FWT in classic wavelet theory, we call Algorithm 1 a “fast” wavelet transform
because it computes all the coefficients of a same scale at the same time. Several differences are
worth being pointed out though. We refer the reader to Mallat (2008) for background on classic
wavelet theory.

• Forest structure instead of tree structure. The classic FWT involves a recursive
partitioning of the signal space: at each scale j, the vector of approximation coefficients aj
is partitioned into sub-vectors and each sub-vector is averaged to output the approximation
coefficients at scale j − 1. This structure is encoded in the definition of the low-pass filter,
Example 76 provides an illustration. The recursive partitioning can be represented by a
tree, as shown by Figure 4.9. By contrast, the FWT for the MRA representation follows
more a “forest structure”, namely the multiscale structure of the marginals represented by
Figure 4.4. At scale j, each approximation coefficient can be computed as the average of
several subsets of approximation coefficients of scale j+1, as shown by Equation (4.20). As
a consequence, the low-pass filters from Definition 77 are defined up to a convention. They
correspond to a certain choice of a spanning tree for the forest structure of the marginals,
as illustrated by Figure 4.10.

• Downsampling. The FWT in classic wavelet theory more specifically relies on a binary
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f1 f2 f3 f4 f5 f6 f7 f8

f1 + f2 f3 + f4 f5 + f6 f7 + f8

f1 + f2 + f3 + f4 f5 + f6 + f7 + f8

f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

Figure 4.9: Tree structure of the FWT in classic wavelet theory

F

M{1,2,3}F M{1,2,4}F M{1,3,4}F M{2,3,4}F

M{1,2}F M{1,3}F M{1,4}F M{2,3}F M{2,4}F M{3,4}F

M∅F

Figure 4.10: Forest structure of the FWT for the MRA representation for A = J4K. The spanning
tree highlighted in blue is the one obtained for bπ = minA \ c(π) in the Definition 77 of the low-
pass filters.
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tree structure. At each step, the low-pass filter therefore divides the number of approxima-
tion (and thus also wavelet) coefficients by 2. Example 76 provides an illustration. In the
MRA representation, the number of approximation and wavelet coefficients of a function
F ∈ L(Γ(A)) with A ∈ P(JnK) at scale j ∈ {2, . . . , |A|} is equal to |A|!/(|A| − j)!, as shown
by Equations 4.18 and (4.19). Hence at scale j, the FWT divides the number of coefficients
by (|A| − j).

• Support of the high-pass filters. In classic wavelet theory, each wavelet coefficient
at scale j is computed from a specific subset of approximation coefficients at scale j.
Equivalently, each approximation coefficient is involved in the computation of only one
wavelet coefficient. As a consequence, the computation of all the wavelet coefficients at
scale j can be done in one convolution of the vector aj . The structure of the high-pass filter
is a little more complicated in the MRA representation: for a function F ∈ L(Γ(A)) with
A ∈ P(JnK) and a subset B ∈ P(A), the computation of each of the wavelet coefficients
ΨBF (π) for π ∈ Γ(B) involves all the approximation coefficientsMBF (π′) for π′ ∈ Γ(B), by
Definition 78 of the high-pass filters. This means that for j ∈ {2, . . . , |A|}, the application
of the high-pass filter hjA requires j! convolutions of the vector M jF .

Remark 81 (Further Optimization of the FWT). We point out that the FWT could be further
optimized. Indeed for B ∈ P(JnK), the space HB has dimension d|B|, whereas the wavelet ΨBF
projection of a function F ∈ L(Γ̄n) on HB is a vector of size |B|!. A fully optimized procedure
would therefore compute only d|B| scalar coefficients and not |B|!. This could be done for instance
with the use of a wavelet basis (see Section 4.4 for more details). This direction is left for future
work.

The aforementioned differences between the FWT in classic wavelet theory and the FWT for
the MRA representation are due to the specific combinatorial structure of the latter. They also
stem from the differences between the notions of information localization. In classic multires-
olution analysis, the wavelet coefficients are localized in “space” and “scale”, where “space” is
the very object the signal is defined on. In other words, the metric in this space corresponds
to the difference between the indexes of the coordinates: for a signal f = (f1, . . . , fm) ∈ Rm, fi
and fi′ corresponds to the values of the function f at points that are separated by a distance of
|i′ − i|. Then at each scale, the coordinates are partitioned recursively into subsets of adjacent
coordinates (see Figure 4.9), defining a metric for the scale that is coarser but consistent with the
metric of the higher scales. Each wavelet coefficient is thus localized in space and scale because
its computation only involves a small number of approximation coefficients that are close with
respect the scale.

The notion of information localization in the MRA representation is fundamentally different.
The signal is defined on rankings but the wavelet coefficients are localized in “items” and “scale”.
They thus do not localize components of the signal in the “space of rankings”. In other words
each wavelet coefficient is not computed from a subset of the signal’s coordinates that are “close”.
Instead, they are computed from subsets of coordinates that lead to the localization properties
through the marginal operators that we described at length in the previous subsections.

Algorithm 1 computes the wavelet transform of a function F ∈ L(Γ(A)) with A ∈ P(JnK).
To extend it for any function F ∈ L(Γ̄n), recall that ΨF =

∑
A∈supp(F ) ΨFA, where supp(F ) =

{A ∈ P̄(JnK) | FA 6= 0} is the global support of F (see Subsection 4.2.1). We naively extend the
FWT by applying Algorithm 1 to each FA and summing all the wavelet transforms ΨFA. This
procedure is formalized by Algorithm 2.

Algorithm 2 is of course not optimal to compute the wavelet transform of any function
F ∈ Γ̄n. Indeed, if there exists B ∈ P(JnK) included in at least two subsets of items in supp(F ),
then the computation of the wavelet coefficients ΨBF (π) for π ∈ Γ(B) will involve redundant
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Algorithm 2 FWT for a function F ∈ L(Γ̄n)

Require: F ∈ L(Γ̄n)
for A ∈ supp(F ) do

Compute ΨFA with Algorithm 1
end for
return ΨF =

∑
A∈supp(F ) ΨFA

applications of the high-pass filters of scale |B| whereas it requires only one. The definition of an
optimal FWT for any function F ∈ L(Γ̄n) necessitates however to introduce new definitions and
notations. For clarity’s sake, we leave it to the reader. In addition, we assert that the optimal
FWT would still have a complexity of same order of magnitude as the one of Algorithm 2 (see
below).

4.3.3 Algorithmic complexity

We now turn to the analysis of the complexity of the FWT and related computations. First,
the high-pass filters hjA are constructed from the alpha coefficients given by Definition 70. They
can be computed efficiently once and for all using Theorem 72 and Lemma 74. The following
proposition gives an upper bound for the associated complexity. Its proof is left in Appendix.

Proposition 82 (Complexity of the computation of alpha coefficients). For k ∈ {2, . . . , n}, the
computation of all coefficients αB(π, π′) for π, π′ ∈ Γ(B) and B ∈ P̄(JnK) with |B| ≤ k has
complexity bounded by (1/2)k2k!.

Once the alpha coefficients and therefore the high-pass filters are precomputed, one can apply
the FWT, the complexity of which is bounded by the following proposition. We recall that the
support of a function F ∈ L(Γ̄n) is defined by supp(F ) = {π ∈ Γ̄n | F (π) 6= 0} whereas its global
support is defined by supp(F ) = {A ∈ P(JnK) | FA 6= 0}.

Proposition 83 (Complexity of the FWT for the MRA representation). Let F ∈ L(Γ̄n) and
k = max{|A| | A ∈ supp(F )}. The complexity of Algorithm 2 applied to F is bounded by∑

A∈supp(F )

[e |A|! + |A|(2|A|−1 − 1)]| supp(FA)| ≤ [e k! + k(2k−1 − 1)]| supp(F )|.

Proof. We first prove the proposition for a function F ∈ L(Γ(A)) with A ∈ P(JnK). Let k = |A|
and j ∈ {2, . . . , k}. At scale j, Algorithm 1 involves

• the application of the high-pass filter hjA on M jF , with complexity equal to∑
B⊂A,|B|=j

∑
π∈Γ(B)

| supp(MBF )| = j!
∑

B⊂A,|B|=j

| supp(MBF )|;

• the application of the low-pass filter gjA on M jF , with complexity bounded by∑
π∈ΓjA

I{π ∈ supp(M jF )}j = j| supp(M jF )|.

Indeed, each coefficient M jF (π) for π ∈ ΓjA is involved in the computation of at most j
approximation coefficients of scale j−1, namely the approximation coefficients M j−1F (π′)
for π′ ⊂ π with |π′| = j − 1.
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Now, it is easy to see that for any B ∈ P(JnK), | supp(MBF )| ≤ | supp(F )|. One therefore has
| supp(M jF )| =

∑
B⊂A,|B|=j | supp(MBF )| ≤

(
k
j

)
| supp(F )| and the complexity of Algorithm 1

is bounded by

| supp(F )|
k∑
j=2

(
k

j

)
(j! + j) .

Classic combinatorial calculations then give

k∑
j=2

(
k

j

)
j! =

k∑
j=2

k!

(k − j)!
≤ k!

+∞∑
j=0

1

j!
= e k! and

k∑
j=2

(
k

j

)
j = k(2k−1 − 1).

For a function F ∈ L(Γ̄n), the complexity of Algorithm 2 is then clearly bounded by∑
A∈supp(F )

[e |A|! + |A|(2|A|−1 − 1)]| supp(FA)| ≤ [e k! + k(2k−1 − 1)]| supp(F )|.

We finish this subsection with the analysis of the wavelet synthesis. In classic multiresolution
analysis, the inverse wavelet transform can be computed with a “dual” procedure of the FWT.
In the present context, it happens that the synthesis operator φA involves computations that are
not similar to the ones involved in the wavelet transform. The application of Lemma 71 leads
however directly to the following bound. The proof is left to the reader

Proposition 84 (Complexity of the wavelet synthesis). Let A ∈ P(JnK) and X ∈ Hn. The

computation of φAX(π) can be done with complexity bounded by
(|A|

2

)
for any π ∈ Γ(A), and the

computation of φAX with complexity bounded by |A|!
(|A|

2

)
.

The complexity bounds of Propositions 82 and 83 can appear a little high at first glance,
as they involve powers and factorials. We however point out that the value of the exponent or
under the factorial is the size of the subset of items considered. This size is actually small in
practical applications typically around 10, and the complexity thus does not explode.

Remark 85 (Connection with the Fourier transform). In classic multiresolution analysis, the
wavelet transform is connected to the Fourier transform. As we shall see in Chapter 6, it happens
that some connections exist too in the present context between the MRA representation and Sn-
based harmonic analysis. The algorithms we introduced in this section do not however use the
Fourier transform on Sn at all. The design of such procedures would certainly be an interesting
direction for future work.

4.4 Wavelet basis

As already mentioned, the features of the wavelet transform ΨF of a function F ∈ L(Γ̄n) are
the vector wavelet projections ΨBF for B ∈ P̄(JnK). In practice, one may need to decompose
a vector ΨBF on a basis of the space HB . This section introduces a generative algorithm to
explicitly construct such a basis.

Here we adopt an alternative notation for elements of L(Γ̄n): we write them as chains (also
called free linear combinations of words). The function F =

∑
π∈Γ̄n

F (π)δπ is therefore denoted
by F =

∑
π∈Γ̄n

Fππ. It does not change anything about the mathematical objects but it makes
the calculations easier.
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4.4.1 Generative algorithm

To define the basis, we use an algorithm adapted from Ragnarsson and Tenner (2011). The latter
requires some definitions about cycles and permutations. A cycle on JnK is a permutation γ ∈ Sn

for which there exist m distinct elements a1, . . . , am ∈ JnK, with m ≥ 2, such that γ(ai) = ai+1

for i = 1, . . . ,m − 1, γ(am) = a1, and γ(b) = b for all b ∈ JnK \ {a1, . . . , am}. The cycle γ is
then denoted by (a1 . . . am), its support is the set {a1, . . . , am} and its length is l(γ) = m. For
B ∈ P(JnK), we denote by Cycle(B) the set of all cycles with support B. It is well known that a
permutation τ ∈ Sn admits a unique decomposition as a product of cycles with distinct supports
τ = γ1 . . . γr (fixed-points are not represented). This decomposition can though be written in
several ways, depending on the order of the cycles and the first element of each cycle.

Definition 86 (Standard cycle form). A permutation is written in standard cycle form if it is
written as a product of disjoint cycles so that the minimum element of a cycle appears at the
leftmost letter in that cycle, and the cycles are arranged from left to right in increasing values
of minimum letters.

Example 87. The permutation (134)(25) is written in standard cycle form, while the alternative
representations (413)(25) or (25)(134) are not.

For a permutation τ ∈ Sn, we denote by cyc(τ) the number of its cycles, define its support
by supp(τ) = {i ∈ JnK | τ(i) 6= i} and its length by l(τ) = | supp(τ)|. These definitions extend
the ones of the support and the length for a cycle, and if γ1 . . . γcyc(τ) is the cycle decomposition
of τ , l(τ) = l1 + · · ·+ lcyc(τ). For B ∈ P(JnK), we define

Der(B) = {τ ∈ Sn | supp(τ) = B},

and we set by convention D∅ = {id}, where id ∈ Sn is the identity permutation on JnK. If
τ ∈ Sn is a permutation and B ⊂ JnK is a subset such that τ(B) = B then the restriction of τ to
B is a permutation of B, called the induced permutation of τ on B. By definition, a permutation
τ ∈ Der(B) induces a fixed-point free permutation, also called a derangement, on B. The set
Der(B) is thus the natural embedding of the set of derangements on B in Sn. In order to state
the generative algorithms, one requires some other definitions.

Definition 88 (Concatenation product). Let π, π′ ∈ Γ̄n be two injective words. Their concate-
nation product is then defined by

ππ′ :=

{
π1 . . . π|π|π

′
1 . . . π

′
|π′| if c(π) ∩ c(π′) = ∅,

0 if c(π) ∩ c(π′) 6= ∅.

It naturally extends to two elements X,Y ∈ L(Γ̄n) as

XY =
∑
π∈Γ̄n

∑
π′∈Γ̄n

XπYπ′ππ
′.

The algorithm of Ragnarsson and Tenner (2011) computes a basis for the top homology space
of the complex of injective words over the field F2 = Z/2Z of two elements. It uses the operation
on F2-valued chains “x � y = xy + yx”. In the present setting, we use the following definition.

Definition 89 (Diamond operator). For X,Y ∈ L(Γ̄n), we define

X � Y = XY − Y X.
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The algorithm of Ragnarsson and Tenner (2011) takes a derangement of {1, . . . , k} as input
and outputs an element of the top homology space of the complex of injective words. It happens
that the same algorithm with the diamond operator of definition 89 maps a derangement of
{1, . . . , k} to an element of HJkK, as we shall show in Subsection 4.4.2. More, we extend the
algorithm to take a permutation τ ∈ Der(B) as input and output an element Xτ of the space
HB , for any B ∈ P(JnK). For clarity’s sake, we write the algorithm as a procedure and not in
pseudo-code.

Algorithm 3 Generative algorithm for a basis of HB

Let B ∈ P(JnK). The input is a permutation τ ∈ Der(B) written in standard cycle form, and
the output is a chain Xτ ∈ HB .

Step 1. Between each consecutive pair of letters in each cycle of τ , insert
the symbol ?.

Step 2. If there are no ? symbols in the string, then HALT. Otherwise,
determine which symbol ? has the largest right-hand neighbor.

Step 3. Suppose that the symbol located in Step 2 is between quantities
Q and R; that is, it appears as Q ? R. Then replace Q ? R by
(Q �R).

Step 4. GOTO Step 2.

Example 90. Let A = {1, 2, 3, 4, 5} and τ = (134)(25). Algorithm 3 gives the following sequence
of steps.

(1 ? 3 ? 4)(2 ? 5)
(1 ? 3 ? 4)(2 � 5)

(1 ? (3 � 4))(2 � 5)
(1 � (3 � 4))(2 � 5)

Expanding the concatenation and diamond operations, one obtains:

X(134)(25) = (1 � (3 � 4))(2 � 5)

= (1 � (34− 43))(25− 52)

= (134− 143− 341 + 431)(25− 52)

= 13425− 13452− 14325 + 14352− 34125 + 34152 + 43125− 43152.

4.4.2 Wavelet basis

As announced, the following theorem shows that Algorithm 3 generates a basis for the space
HB , for each B ∈ P(JnK). For τ = id ∈ Sn, one has supp(τ) = ∅ and we define by convention
Xid = δ0̄.

Theorem 91. The two following property holds

1. For all τ ∈ Sn, Xτ ∈ Hsupp(τ).

2. For all B ∈ P̄(JnK), (Xτ )Der(B) is a basis of HB.

As a consequence, (Xτ )τ∈Sn is a basis of the feature space Hn and more generally for any
collection S ⊂ P̄(JnK), (Xτ )τ∈Der(B), B∈S is a basis of H(S).
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The proofs of Theorem 91’s Properties 1 and 2 are entirely analogous to the ones of lemma
4.3 and theorem 5.2 in Ragnarsson and Tenner (2011). We reproduce the one of Property 1 in
Appendix with the notations of the present paper to give some insights. The proof of Property
2 requires by contrast the introduction of several new concepts, hence we let the reader adapt it
from Ragnarsson and Tenner (2011). In Table 4.3 we provide a graphical representation of all
the elements of the wavelet basis of HJkK for k = 2, 3, 4.

We now establish some properties about the wavelet chains Xτ . The first result provides
some general characterizations.

Proposition 92. Let τ ∈ Sn \ {id}, k = |τ | and r = cyc(τ). The two following properties hold.

1. Xτ (π) ∈ {−1, 0, 1} for all π ∈ Γ(supp(τ)).

2. | supp(Xτ )| = 2k−r.

Proof. The proof is a simple analysis of algorithm 3. For a cycle γ = (a1 . . . ak), the associated Xγ

is equal to an expression of the form a1 � · · · �ak with a particular way to put parentheses. When
expanded, this expression gives 2k−1 terms with sign + or − between them. It could happen that
some of the terms are the same and thus add or balance. But actually, for X ∈ L(Γ(A)) with
A ⊂ JnK, 1 ≤ |A| ≤ n−1 and b ∈ JnK\A, supp(x�b) = {πb | π ∈ supp(x)}t{bπ | π ∈ supp(x)}. By
recursion, we obtain that | supp(xγ)| = 2k−1, meaning also that all the terms in the expanded
version of a1 � · · · � ak are different. Furthermore, for x ∈ L(Γ(A)) and y ∈ L(Γ(B)) with
A,B ⊂ JnK, A,B 6= ∅ and A ∩ B = ∅, we have | supp(xy)| = | supp(x)|| supp(y)|. Now, let
τ = γ1 . . . γr be a permutation written in standard cycle form, with γi = (ai,1 . . . ai,ki). Then
xτ = (a1,1 � · · · �a1,k1

) . . . (ar,1 � · · · �ar,kr ), and this expression expands in 2k1−1 . . . 2kr−1 = 2k−r

different terms. This shows both that | supp(xτ )| = 2k−r and that xτ takes its values in {−1, 0, 1}.
Applying φn concludes the proof.

Proposition 92 provides some general intuition about the wavelet basis. In particular, prop-
erty 1. is interesting because it means that all the properties of a wavelet function simply depend
on the sign of its values and on the combinatorial structure of its support. Notice that both prop-
erties of Proposition 92 can be verified on the examples of wavelet basis given in Table 4.3. The
second property we establish concerns the relationship between wavelet chains and translation
operators.

Proposition 93. Let τ ∈ Sn and τ0 ∈ Sn a permutation that preserves the order of the elements
of supp(τ), that is if supp(τ) = {a1, . . . , ak} with a1 < · · · < ak, then τ0(a1) < · · · < τ0(ak).
Then we have

Tτ0Xτ = Xτ0ττ
−1
0
.

Proof. If τ = id, ψid is invariant under translations and the equality is trivially verified. We
assume τ 6= id, thus ψτ = φn xτ . By Proposition 61, Tτ0φn xτ = φn Tτ0xτ . Let γ1 . . . γr be
the standard cycle form of τ with γi = (ai,1 . . . ai,ki). Then it is easy to see that Tτ0xτ is the
output of Algorithm 3 when taking as input the permutation with cycle form γ′1 . . . γ

′
r where

γ′i = (τ0(ai,1) . . . τ0(ai,ki)). The order-preserving condition on τ0 assures that this is a standard
cycle form. The proof is concluded by the classic result (or the simple verification) that this is
the cycle form of the permutation τ0ττ

−1
0 .

As the same Algorithm 3 is used to generate the basis for each space HB , it is natural that one
can obtain the wavelet basis on one space as a translated version from the basis on another space.
Algorithm 3 requires however that the input permutation τ ∈ Sn be written in standard cycle
form. This is why Proposition 93 requires a specific assumption. Table 4.4 provides graphical
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Wavelet basis of H{1,2}

X(12)
12− 21

-1

0

1

12 21

Wavelet basis of H{1,2,3}

X(123)
123− 132− 231 + 321

-1

0

1

123 132 213 231 312 321

X(132)
132− 213 + 231− 312

-1

0

1

123 132 213 231 312 321

Wavelet basis of H{1,2,3,4}

X(1234)
1234− 1243− 1342 + 1432− 2341 + 2431 + 3421− 4321

-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

X(1243)
1243− 1324 + 1342 + 1423− 2431 + 3241− 3421 + 4231

-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

X(1324)
1324− 1342− 2413 + 2431− 3124 + 3142 + 4213− 4231

-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

X(1342)
1342− 1432− 2134 + 2143 + 2341− 2431 + 3412− 4312

-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

X(1423)
1423− 1432− 2314 + 2341 + 3214− 3241− 4123 + 4132

-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

X(1432)
1432− 2143 + 2314− 2341 + 2413− 3142 + 3412− 4132

-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

X(12)(34)
1234− 1243− 2134 + 2143

-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

X(13)(24)
1324− 1342− 3124 + 3142

-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

X(14)(23)
1423− 1432− 4123 + 4132

-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Table 4.3: Wavelet bases of HJ2K, HJ3K and HJ4K
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Scale 2
X(12) X(13) X(14) X(23) X(24) X(34)

12 − 21 13 − 31 14 − 41 23 − 32 24 − 42 34 − 43

-1

0

1

12 21

-1

0

1

13 31

-1

0

1

14 41

-1

0

1

23 32

-1

0

1

24 42

-1

0

1

34 43

Scale 3
X(123) X(124) X(134) X(234)

123 − 132 − 231 + 321 124 − 142 − 241 + 421 134 − 143 − 341 + 431 234 − 243 − 342 + 432

-1

0

1

123 132 213 231 312 321

-1

0

1

124 142 214 241 412 421

-1

0

1

134 143 314 341 413 431

-1

0

1

234 243 324 342 423 432

X(132) X(142) X(143) X(243)

132 − 213 + 231 − 312 142 − 214 + 241 − 412 143 − 314 + 341 − 413 243 − 324 + 341 − 423

-1

0

1

123 132 213 231 312 321

-1

0

1

124 142 214 241 412 421

-1

0

1

134 143 314 341 413 431

-1

0

1

234 243 324 342 423 432

Table 4.4: Wavelet bases of each HB for B ∈ P(J4K) \ J4K

representations of the wavelet bases of the spaces HB for B ⊂ J4K at scales |B| = 2, 3. One can
easily verify Proposition 93 on these examples.

One can also be interested in using a wavelet basis for a signal space L(Γ(A)) for A ∈
P(JnK), that would refine the multiresolution decomposition L(Γ(A)) =

⊕
B∈P̄(A) φA(HB) given

by Theorem 47. As the latter shows that φA is injective on HB for all B ∈ P̄(A), the following
result is a direct consequence of Theorem 91. Its proof is left to the reader.

Corollary 94. For all A ∈ P(JnK), (φAXτ )τ∈Der(B), B∈P̄(A) is a basis of L(Γ(A)) consistent with
the multiresolution decomposition. In particular, (φJnKXτ )τ∈Sn is a basis of L(Sn) consistent
with the multiresolution decomposition.

Table 4.5 provides a graphical representation for the elements of the wavelet basis of L(S4)
at scales 0, 2 and 3. Graphical representations form the elements of scale 4 are given in Table
4.3.

Remark 95 (Non orthogonality of the wavelet basis). We point out that neither the basis
(Xτ )τ∈Der(B) of HB for B ∈ P(JnK) nor the basis (φAXτ )τ∈Der(B), B∈P̄(A) of L(Γ(A)) for

A ∈ P(JnK) is orthogonal. One has for instance
〈
X(123), X(132)

〉
= −2.

4.4.3 Wavelet coefficients

We now refine the wavelet projections by decomposing them in the wavelet basis.

Definition 96 (Wavelet coefficients). For any F ∈ L(Γ̄n) and B ∈ P̄(JnK), we define the wavelet
coefficients (cτ (F ))τ∈Der(B) as the coefficients of the wavelet projection ΨBF in the wavelet basis
(Xτ )τ∈Der(B) of HB . In other words, (cτ (F ))τ∈Der(B) are the only scalars such that

ΨBF =
∑

τ∈Der(B)

cτ (F )Xτ .
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Scale 0

φJ4KXid
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Scale 2

φJ4KX(12)

-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(13)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(14)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(23)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(24)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(34)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Scale 3

φJ4KX(123)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(132)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(124)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(142)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(134)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(143)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(234)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

φJ4KX(243)
-1

0

1

1234 1243 1324 1342 1423 1432 2134 2143 2314 2341 2413 2431 3124 3142 3214 3241 3412 3421 4123 4132 4213 4231 4312 4321

Table 4.5: Elements of the wavelet basis of L(S4) at scales 0, 2 and 3
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Theorem 57 naturally reformulates with wavelet coefficients.

Corollary 97 (Fundamental properties of the wavelet coefficients). Let A ∈ P̄(JnK) and F ∈
L(Γ(A)). The wavelet coefficients satisfy the following properties.

• (cτ (F ))τ∈Der(B),B∈P̄(A) is the unique element in R|A|! such that

F =
∑

B∈P̄(A)

∑
τ∈Der(B)

cτ (F )φAXτ . (4.23)

• For any A′ ∈ P̄(A), B ∈ P̄(A′) and τ ∈ Der(B),

cτ (MA′F ) = cτ (F ). (4.24)

As the wavelet basis is not orthogonal, the wavelet coefficients must be calculated by inverting
a linear system. More specifically, for any B ∈ P(JnK) and F ∈ L(Γ̄n), the wavelet coefficients
(cτ (F ))τ∈Der(B) are the solutions of the system of equations∑

τ∈Der(B)

Xτ (π)cτ (F ) = ΨBF (π) (4.25)

for π ∈ Γ(B). For instance for B = {1, 2} ⊂ JnK, System (4.25) writes as{
X(12)(12)c(12)(F ) = Ψ{1,2}F (12)

X(12)(21)c(12)(F ) = Ψ{1,2}F (21)

which gives, by Algorithm 3 and Example 73,

c(12)(F ) = Ψ{1,2}F (12) =
1

2

(
M{1,2}F (12)−M{1,2}F (21)

)
.

For B = {1, 2, 3}, System (4.25) writes as

X(123)(123)c(123)(F ) +X(132)(123)c(132)(F ) = Ψ{1,2,3}F (123)

X(123)(132)c(123)(F ) +X(132)(132)c(132)(F ) = Ψ{1,2,3}F (132)

X(123)(213)c(123)(F ) +X(132)(213)c(132)(F ) = Ψ{1,2,3}F (213)

X(123)(231)c(123)(F ) +X(132)(231)c(132)(F ) = Ψ{1,2,3}F (231)

X(123)(312)c(123)(F ) +X(132)(312)c(132)(F ) = Ψ{1,2,3}F (312)

X(123)(321)c(123)(F ) +X(132)(321)c(132)(F ) = Ψ{1,2,3}F (321)

which gives, by Algorithm 3 and Example 73,
c(123)(F ) = Ψ{1,2,3}F (123) =

1

6
(2F123 − F132 − F213 − F231 − F312 + 2F321)

c(132)(F ) = Ψ{1,2,3}F (213) =
1

6
(−F123 − F132 + 2F213 − F231 + 2F312 − F321) ,

where Fπ is a short notation for M{1,2,3}F (π) for π ∈ Γ({1, 2, 3}). Solving System (4.25) in
general is however much harder and finding an explicit formula for its solutions or designing an
efficient algorithm that can generate them would certainly be an interesting direction for future
research.

Fortunately, the wavelet basis is already useful in practice even without the coefficients.
It enables indeed to obtain an element of HB for any B ∈ P(JnK) as the linear combination∑
τ∈Der(B) cτXτ for any collection (cτ )τ∈Der(B). This could be used for instance to design sta-

tistical procedures.
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Remark 98 (Connection with Lyndon words, Lie algebras and Hopf monoids). In this remark
we explicit an interesting connection with some other algebraic objects. Let γ = (a1 . . . an) ∈
Cycle(JnK) be a cycle of support JnK written in standard cycle form, so that a1 = 1. The
expression a1 . . . an is thus an injective word on JnK that starts with 1. It is therefore a Lyndon
word (Chen et al., 1958). Now, it happens that Algorithm 3 applied on γ to output Xγ is exactly
equivalent to the standard bracketing (see for instance Diaconis et al., 2014) of a1 . . . an which
therefore outputs the same chain. Applying a standard result from Lothaire (1983); Reutenauer
(1993), this means in particular that {Xγ}γ∈Cycle(JnK) spans the nth homogenous component
of the free Lie algebra over JnK and is its canonical basis. Another connection exists with the
construction of Aguiar and Lauve (2011): the basis {Xτ}τ∈Der(JnK) is exactly the same as the
basis constructed for what the authors call “the Hopf kernel of the canonical morphism of Hopf
monoids between the species of linear orders and the exponential species” (see part 5.3). These
connections may bring new insights or lead to new results for the MRA framework.
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Chapter 5

Application to the statistical
analysis of incomplete rankings

This chapter is about the application of the MRA representation to the statistical analysis of
incomplete rankings. First we define in Section 5.1 a general framework fitted for many statistical
tasks. Then we develop its application to the estimation of the marginals of a ranking model in
Section 5.2 and to the prediction of rankings on subsets of elements in 5.3.

Contents
5.1 General MRA framework for the statistical analysis of incomplete

rankings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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5.2.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Ranking prediction on a subset . . . . . . . . . . . . . . . . . . . . . 112
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5.1 General MRA framework for the statistical analysis of
incomplete rankings

We first describe a general framework to apply the MRA representation to the statistical analysis
of incomplete rankings, in the setting defined in Section 3.1. Here and throughout the chapter
we consider a dataset DN = ((A1,Π

(1)), . . . , (AN ,Π
(N))) drawn IID from the process (3.3) with

p an unknown ranking model and ν a known probability distribution over P(JnK) called the
observation design.

103
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For A ∈ P(JnK), let ÎA = {1 ≤ i ≤ N | Ai = A} be the set of indexes i such that Ai = A

and let N̂A = |ÎA| be the number of times the subset A was observed. The empirical observation

design is the empirical probability distribution ν̂ over P(JnK) defined by ν̂(A) = N̂A/N . Its

support is the set ÂN = supp(ν̂) = {A ∈ P(JnK) | N̂A > 0} of all observed subsets in DN . It
is necessarily included in the support A of the observation design ν. We denoted by BνN the σ-

algebra generated by ν̂. By construction ÂN , ÎA and N̂A are BνN -measurable for all A ∈ P(JnK).
Unless otherwise specified, the expectation sign E in this chapter denotes the expectation taken
with respect to the drawing of DN .

5.1.1 Identifiability issues

In several applications mentioned in Section 2.3, the goal is to recover a certain target part of p.
In the context of full ranking analysis, one observes drawings of a random permutation Σ that
provide a direct access to global information about p. The task is then to best approximate the
target part of p from global information about p. In the context of incomplete ranking analysis,
the target part of p must be recovered from the observation of drawings of a random couple
(A,Π) drawn from the process (3.3). This brings an additional difficulty as information about
p is then censored by the probability distribution ν. One must therefore deal with two types of
uncertainty:

1. Remove the noise from the observation process (3.3) to gain access to information about p.

2. Recover the target part of p from the accessible part of information about p.

By the law of large numbers, it is obvious that the (asymptotically) accessible part of infor-
mation about p (as N grows to infinity) are the marginals PA for observable subsets of items A,
that is to say subsets of items in the observation design A. The second problem then boils down
to recover the target part of p from the knowledge of the marginals (PA)A∈A.

Depending on the target part and the observation design A, this task can require a structural
assumption on p. Suppose for instance that one seeks to recover the full ranking model p from
the observation of pairwise comparisons only. In other words, with an observation design A
included in the set of pairs of JnK. Each pairwise marginal P{a,b} for {a, b} ⊂ JnK being a
probability distribution on a set with two elements, it is characterized by one parameter. The
number of accessible parameters is therefore at most

(
n
2

)
, whereas characterizing the full ranking

model p requires n!− 1 parameters. This task thus requires to stipulate an additional structural
assumption on p, so that p becomes identifiable from the knowledge of its pairwise marginals
only.

In a general context, we consider the following question: without any structural assumption,
what part of p can be recovered from the knowledge of the marginals (PA)A∈A? The following
theorem provides the answer. Being a direct consequence of Theorem 68, its proof is left to the
reader.

Theorem 99 (Identifiable parameters). The knowledge of (PA)A∈A characterizes the component

(ΨBp)B∈P̄(A) ∈ H(P̄(A))

of the ranking model p. In particular, it has a number of degrees of freedom equal to dimH(P̄(A)) =∑
B∈P̄(A) d|B|.

Through Theorem 99, the MRA representation allows to quantify the part of p that is identi-
fiable without any structural assumption in the statistical setting introduced in Section 3.1. This
justifies the general method we introduce for the statistical analysis of incomplete rankings.
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5.1.2 General method for the statistical analysis of incomplete rank-
ings

The MRA framework we now introduce is performed in two steps, one to perform each of the
two tasks mentioned in the previous Subsection.

Definition 100 (MRA framework). The MRA framework for the statistical analysis of incom-
plete rankings is described by the following general procedure.

1. Construct from the dataset DN the wavelet empirical estimator X̂ ∈ H(P̄(A)) defined for
each B ∈ P̄(A) as the simple average of the wavelet projections of the δΠ(i) :

X̂B =
1∑

A∈Q(B) N̂A

N∑
i=1

ΨBδΠ(i) (5.1)

where we recall that Q(B) = {A ∈ P(JnK) | B ⊂ A} and that ΨBδπ = 0 if B 6⊂ c(π) by

construction. By convention, X̂B = 0 if
∑
A∈Q(B) N̂A = 0. As shown in Subsection 5.1.3,

X̂ is an unbiased estimator of the accessible component (ΨBp)B∈P̄(A) of p.

2. Perform the task related to the considered application in the feature space Hn using X̂ as
empirical distribution.

Beyond this decomposition in two steps, the major novelty of the MRA framework is to offer
the possibility to perform the analysis of the data in the feature space Hn. This is a radical
change from existing approaches that all rely on the construction of a ranking model p̂N over
Sn (see Subsection 3.1.5). Subsections 5.1.3 and 5.1.4 respectively show how this method allows
to overcome the statistical and computational challenges.

5.1.3 Overcoming the statistical challenge

We now describe the advantages of the MRA framework for the statistical analysis of incomplete
rankings. First, X̂ is an unbiased estimator of (ΨBp)B∈P̄(A).

Proposition 101 (Expectation of the wavelet empirical estimator). For all B ∈ P̄(A),

E
[
X̂B

]
= ΨBp.

Proof. Let B ∈ P̄(A). Recalling that BνN is the σ-algebra generated by ν̂, one has by definition

E
[
X̂B

]
= E

[
E

[
1∑

A∈Q(B) N̂A

N∑
i=1

I{B ⊂ Ai}ΨBδΠ(i)

∣∣∣∣∣BνN
]]

= E

[
1∑

A∈Q(B) N̂A

N∑
i=1

I{B ⊂ Ai}E
[
ΨBδΠ(i)

∣∣∣BνN]
]
.

Now, reformulation (3.4) of the statistical process (3.3) ensures that for each i ∈ {1, . . . , N}, Π(i)

has the same law as Σ
(i)
|Ai

, where Σ(1), . . . ,Σ(N) are random permutations drawn IID from p. We

recall in addition that for any permutation σ ∈ Sn and any subset A ∈ P(JnK) with B ⊂ A, one
has ΨBδσ|A = ΨBδσ by Property (4.7) of Theorem 57. One therefore has

E
[
ΨBδΠ(i)

∣∣∣BνN] = E
[
ΨBδΣ(i)

|Ai

∣∣∣BνN] = E
[
ΨBδΣ(i)

∣∣∣BνN] = E [ΨBδΣ(i) ] = ΨBE [δΣ] = ΨBp.

This concludes the proof.
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Proposition 101 ensures that X̂ is a good representative of the accessible part (ΨBp)B∈P̄(A)

of the ranking model p, whatever it is. This advantage is to be compared to existing methods:

• Methods based on parametric models are necessarily biased when the ranking model does
not satisfy the structural assumption.

• Methods that identify an incomplete ranking with the set of its linear extensions are fun-
damentally biased by the censoring process ν, as shown in Subsection 3.1.5.

In a sense, one can say that the MRA framework allows to remove the noise due to the censoring
process ν whatever the ranking model p.

The other statistical advantage of the MRA framework is that it allows to fully exploit the
consistency assumption (∗). As explained in Subsection 3.1.4, the consistency assumption in-
duces two rules to transfer information between subsets of items A,B ∈ P(JnK) with B ⊂ A:
information is transferred from A to B through the marginal operator MB , and information is
transferred from B to A as the constraint that PA must satisfy MBPA = PB . By Theorem 68,
this constraint is equivalent to ΨB′PA = ΨB′PB for all B′ ∈ P̄(B). The second rule can thus be
reformulated as: information is transferred from B to A through the operators (ΨB′)B′∈P̄(B).
In other words, the MRA representation enables to quantify the amount of information in the
constraints imposed by the consistency assumption. The wavelet empirical estimator X̂ there-
fore naturally exploits more information than other empirical estimators, as illustrated by the
following comparison.

• Naive empirical estimator. For an observed subset A (N̂A > 0), we recall that the
naive empirical estimator is defined in (3.7) by

P̂A =
1

N̂A

N∑
i=1

I{A = Ai}δΠ(i) .

The P̂A’s are two-by-two independent. Each P̂A consolidates information on A but no
information is transferred between subsets. In other words, the naive empirical estimator
does not exploit the consistency assumption at all. For instance if rankings are observed
on {1, 2} and {1, 2, 3}, neither information is transferred from {1, 2, 3} to {1, 2} nor in the
other way round.

• Marginal-based empirical estimator. For a subset B ∈ P̄(JnK) included in at least one

observed subset (
∑
A∈Q(B) N̂A > 0), we define the marginal-based empirical estimator by

P̃B =
1∑

A∈Q(B) N̂A

N∑
i=1

I{B ⊂ Ai}MBδΠ(i) .

The marginal-based empirical estimator exploits the consistency assumption but only in
one sense, from a subset of item A to its subsets B ∈ P̄(JnK). For instance if rankings are
observed on {1, 2} and {1, 2, 3}, information is transferred from {1, 2, 3} to {1, 2} but not
in the other way round.

• Wavelet empirical estimator. For a subset B ∈ P̄(JnK) included in at least one observed

subset (
∑
A∈Q(B) N̂A > 0), we recall that the wavelet empirical estimator is defined by

X̂B =
1∑

A∈Q(B) N̂A

N∑
i=1

I{B ⊂ Ai}ΨBδΠ(i) .
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Thanks to the wavelet transform, the wavelet empirical estimator fully exploits the consis-
tency assumption. For instance if rankings are observed on {1, 2} and {1, 2, 3}, information
is transferred from {1, 2, 3} to {1, 2} and in the other way round.

5.1.4 Overcoming the computational challenge

The following proposition gives a theoretical bound on the complexity of the computation of the
wavelet empirical estimator X̂.

Proposition 102 (Complexity of the computation of the wavelet empirical estimator). Let

K = maxA∈A |A|. The complexity of the computation of X̂ is bounded by

[eK! + (K + 4)2K−1] min

(
N,
∑
A∈A
|A|!

)
.

Proof. Defining the function F̂N =
∑N
i=1 δΠ(i) and the scalars ẐN,B =

∑
A∈Q(B) N̂A, one has for

any B ∈ P̄(A),

X̂B =
1

ẐN,B
ΨBF̂N .

The computation of X̂ can thus be decomposed into three steps:

1. Computation of F̂N and (ẐN,B)B∈P̄(A): this is performed in one loop over the dataset with
complexity bounded by ∑

π∈supp(F̂N )

|P̄(c(π))| ≤ 2K | supp(F̂N )|.

2. Computation of ΨF̂N : this is performed using Algorithm 2. By Proposition 83, its com-
plexity is bounded by

[eK! +K2K−1]| supp(F̂N )|.

3. Division of ΨBF̂N by ẐN,B for each B ∈ P̄(A) such that ẐN,B 6= 0: this is performed in

one loop over the subsets B with ẐN,B > 0 with complexity bounded by

|P̄(supp(F̂N ))| ≤ 2K | supp(F̂N )|.

To conclude the proof, notice that | supp(F̂N )| is exactly the number of parameters required to
store the dataset DN . Lemma 17 therefore ensures that it is bounded by min(N,

∑
A∈A |A|!).

Although the bound in Proposition 102 is not small, it is sufficient to ensure that the com-
putation of the wavelet empirical estimator is tractable in common situations. In practical
applications indeed, the number of items n can be large, say around 104, but the parameter K,
which represents the maximal size of an observed ranking, is fairly small, typically less than 10.
The factor [eK! + K2K−1] then does not represent too much of an issue. On the other hand,
the term min

(
N,
∑
A∈A |A|!

)
is smaller than the number N of observations, which is always

tractable. For instance if one has a dataset of one billion rankings that each involve less than 5
items then the number of required operations is bounded by 5× 1011, which is still tractable.

From a theoretical point of view, the interesting aspect of the bound in Proposition 102
is that it does not depend directly on the number of items n. Only the term

∑
A∈A |A|! can
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indeed depend on n through the observation design A, as explained in Subsection 3.1.6. More
particularly, this term is exactly the bound on the number of parameters required to store the
dataset DN from Lemma 17. We can therefore say in a sense that the computation of the wavelet
empirical estimator deals with the complexity of the data itself.

More generally, this can be considered as the great achievement of the MRA framework. As
explained in Subsection 3.1.4, the analysis of incomplete rankings necessarily involves at some
point the computation of the marginal MAq of a ranking model over Sn on a subset of items
A ∈ P(JnK). If q is represented as the vector of its values (q(σ))σ∈Sn , the computation of
MAq(π) for π ∈ Γ(A) using Formula (∗) requires n!/|A|! operations. Now, if q is represented by
its wavelet transform Ψq, Theorem 57 tells us that MAq(π) = φAΨq(π). The computation then

has complexity bounded by
(|A|

2

)
, by Proposition 84. This bound shows that the dependency in

n is an artifact of the theoretical framework of ranking models over Sn: when the ranking model
is not represented as a function on Sn but by its wavelet transform, this dependency vanishes.

5.2 Estimation of marginals

In this section we apply the MRA framework to the estimation of the marginals of a ranking
model. It is certainly the problem where the MRA framework can be applied in the most
straightforward manner. We thus use it to show the application of the MRA framework on a
concrete problem but also to study some of its general properties.

5.2.1 Problem Statement and application of the MRA framework

As explained in Subsection 5.1.1, the accessible components of p when observing incomplete
rankings drawn from Process (3.3) are the wavelet projections ΨBp for B ∈ P̄(A) or equivalently
the marginals PA = MAp for A ∈ A, where we recall that A = supp(ν) is considered to be
known. The simplest problem we can consider is thus to estimate the marginals (MAp)A∈A. For

each A ∈ A we evaluate the quality of an estimator Q̂A of PA by the mean squared error (MSE)

E[‖Q̂A − PA‖2A]. We then define the error of a collection of estimators as the sum of the errors
on each A ∈ A weighted by ν.

Definition 103 (Definition of the error). The error of a collection of estimators Q̂ = (Q̂A)A∈A
with Q̂A ∈ L(Γ(A)) for each A ∈ A is measured by

EN
(
Q̂
)

:=
∑
A∈A

ν(A)E
[
‖Q̂A − PA‖2A

]
.

Remark 104 (Possible negativity of the estimators). In the present setting, we don’t impose

to each estimator Q̂A to be a probability distribution over Γ(A) for A ∈ A. In particular for

the MRA-based estimator, it can happen that a Q̂MRA
A takes negative values. This can be

unfortunate in practice, if for instance one would like to use it to sample rankings or to compute
conditional probabilities. This problem is actually classic in nonparametric statistics, usual
methods to face it consist in approximating the estimator that takes negative values with the
closest probability distribution in some sense (see for instance Huang et al., 2007). The drawback
of such methods is of course that the final estimator is harder to control.

5.2.2 Application of the MRA framework

As announced, the application of the MRA framework to this setting is straightforward. The
first step is to compute the wavelet empirical estimator X̂ ∈ H(P̄(A)) from the dataset DN using



5.2. ESTIMATION OF MARGINALS 109

equation (5.1). Then one naturally defines an estimator of each PA using Theorem 57.

Definition 105 (MRA-based estimator). We define the MRA-based estimator Q̂MRA = (Q̂MRA
A )A∈A

by

Q̂MRA
A = φAX̂ = φA

∑
B∈P̄(A)

X̂B for each A ∈ A.

Before illustrating the application on numerical experiments, we provide some theoretical
guarantees about the error and the computational complexity of the MRA-based estimator.

Theorem 106 (Statistical guarantees). The MRA-based estimator (Q̂MRA
A )A∈A satisfies the two

following properties.

1. It is “asymptotically unbiased”, in the sense that:

lim
N→∞

E
[
Q̂MRA
A

]
= PA for all A ∈ A.

2. Its error decreases with a rate of order O(1/N):

EN
(
Q̂MRA

)
≤ C1

N
+ C2ρ

2N for all N ≥ 1,

where 0 < ρ < 1 is a constant that only depends on ν and C1 and C2 are positive constants
that only depend on p and ν, given by ρ = 1−minB∈P(A) ν[Q(B)],

C1 = 2
∑

B∈P(A)

νφ(B)

ν[Q(B)]

(
‖Ψ2

Bp‖B,1 − ‖ΨBp‖2B,2
)

and C2 =
∑

B∈P(A)

νφ(B)‖ΨBp‖2B,2,

where Ψ2
B : L(Γ̄n)→ L(Γ(B)) is the linear operator defined by Ψ2

BF (π) =
∑
σ∈Γ̄n

α2
B(π, σ|B)F (σ)

for any F ∈ L(Γ̄n), νφ(B) :=
∑
A∈Q(B) 2|A|ν(A)/(|A| − |B|+ 1)! for any B ∈ P(JnK) and

ν[S] :=
∑
A∈S ν(A) for any collection of subsets S ⊂ P(JnK).

Refer to the Appendix for the proof of Theorem 106. Property 1. is a natural consequence of
Proposition 101. Property 2. relies on explicit calculations. If the constants C1, C2 and ρ only
depend on p and ν, and not directly on n, this is because the MRA representation enables to
exploit only the part of information related to the observed dataset. We point out however that
the more diffuse ν is, the more degrees of freedom the dataset has, and the bigger they are. The
same interpretation applies to computational aspects.

Proposition 107 (Computational guarantees). Let K = maxA∈A |A| be the maximal size of an
observed ranking.

1. Storage. The storage of the wavelet empirical estimator X̂ requires a number of parameters
upper bounded by K! 2K min(N, |A|).

2. Learning. The complexity of the computation of X̂ is bounded by

[eK! + (K + 4)2K−1] min

(
N,
∑
A∈A
|A|!

)
.

3. Prediction. The computation of φAX̂(π) for A ∈ P(JnK) and π ∈ Γ(A) needs less than
|A|(|A| − 1)/2 operations.
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Proof. By construction the MRA-based estimator can be stored as the collection of estimators
(X̂B)B∈P(ÂN ). The number of parameters to be stored is thus upper bounded by∑

B∈P(ÂN )

|B|! ≤ K! |P(ÂN )| ≤ K!
∑
A∈ÂN

2|A| ≤ K! 2K |ÂN | ≤ K! 2K min(N, |A|).

As for the other properties, Property 2 is already given by Proposition 102 and Property 3 is a
direct consequence of Lemma 71.

As in Theorem 106, the bounds in Proposition 107 do not depend directly on n, they only
depend on the complexity of A, the support of the observation design ν. To give some more
insights, the following example make the comparison with the empirical model (3.5) related to
the approaches in Kondor and Barbosa (2010) and Sun et al. (2012).

Example 108. Consider the empirical model p̂N defined in Equation (3.5). It can be rewritten
as

p̂N =
∑
A∈ÂN

ν̂N (A)
∑

π∈Γ(A)

P̂A(π)1Sn(π).

Its most efficient storage is under the form of the collections of parameters (ν̂N (A))A∈ÂN and

(P̂A(π))A∈ÂN , π∈Γ(A), and the learning procedure is naturally in O(N). But then, each compu-

tation of the marginal probability of a ranking π′ ∈ Γn involves the computation of all the inner
products

〈
1Sn(π′),1Sn(π)

〉
for π ∈

⊔
A∈ÂN Γ(A). This is at the root of the main computational

limitation of the approaches introduced in Kondor and Barbosa (2010) and Sun et al. (2012).

5.2.3 Numerical Experiments

Here we examine the performance of the MRA-based estimator in numerical experiments and
compare it with three others: the Plackett-Luce model (estimated by means of the MM algorithm
from Hunter (2004)), the estimator from Sun et al. (2012), called SLK (we take the bandwidth
of the kernel equal to

(
n
2

)
+ 1 to be sure that the smoothing is applied to the entire dataset), and

the collection of naive empirical estimators (P̂A)A∈A.
Each experiment is characterized by a ranking model p, a probability distribution ν and a

number of observations N . We consider two theoretical ranking models, namely a Plackett-
Luce model defined with parameter vector w = (w1, . . . , wn) drawn uniformly at random on
the simplex {x ∈ [0, 1]n |

∑n
i=1 xi = 1} and a Mallows model defined for σ ∈ Sn by p(σ) ∝

e−dKT (σ0,σ) where σ0 = 12 . . . n, and one empirical model, namely the distribution of the 5738
votes in the APA dataset (from Diaconis, 1989) that we consider as a ground truth ranking model.
In all the experiments, n = 5. For each ranking model, we examine the four different settings
where ν is the uniform probability distribution on {A ⊂ J5K | 2 ≤ |A| ≤ k} for k = 2, 3, 4, 5,
and let the size N of the drawn dataset DN vary between 500 and 5000. We then evaluate the
performance of an estimator Q̂ constructed from DN through a Monte-Carlo estimate of EN (Q̂)
averaged from 100 drawings of DN .

Figure 5.1 depicts the experimental results. As explained in Subsection 3.1.5, the SLK ranking
model applies a strong smoothing which leads to a very small variance but an important bias
when p differs from the uniform distribution on Sn. This is why it converges rapidly and its
performance is almost constant through the experiments for N ≥ 500. The Plackett-Luce model
relies on a structural assumption and is thus naturally biased when p is not a Plackett-Luce
model. This explains why it does not perform best in the latter case. The MRA-based estimator
and the naive empirical estimators are both asymptotically unbiased whatever the underlying



5.2. ESTIMATION OF MARGINALS 111
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Figure 5.1: Evolution of the performance EN
(
Q̂
)

with N for each estimator: MRA-based in

black squares (written WLS), Naive empirical estimator in black diamonds, Plackett-Luce in
red triangles and SLK in blue circles, with different underlying ranking models: APA dataset
(first column), Mallows (second column), Plackett-Luce (third column) and with probability ν
uniform on {A ⊂ J5K | 2 ≤ |A| ≤ k} with k = 2, 3, 4, 5 (from top to bottom). For the Mallows
and Plackett-Luce models, the results are represented on a logarithmic scale.
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ranking model p and have similar behaviors, except that the MRA-based estimator has reduced
variance and thus converges faster. Globally, the MRA-based estimator quickly outperforms its
competitors when N grows.

5.3 Ranking prediction on a subset

In this section we consider the problem of ranking prediction: for any subset of elements A ∈
P(JnK) we want to predict the “best” ranking π ∈ Γ(A) on A. In an e-commerce setting, this
ranking could correspond to the order in which the items of A should be presented to the users
of a homogeneous population to best fit their preferences.

5.3.1 Problem statement

This problem is naturally stated in a supervised learning framework: the input space is P(JnK),
the output space Γn, and a classifier is a mapping P(JnK) → Γn, with the particularity that
it must map a subset of elements A to a ranking on A. An equivalent point of view is to
see a classifier as a collection π̂ = (π̂A)A∈P(JnK) where π̂A ∈ Γ(A) is a ranking on A for each
A ∈ P(JnK).1 We thus define the hypothesis space H as

H =
∏

A∈P(JnK)

Γ(A).

We assume to observe incomplete rankings as samples of a random couple (A,Π) drawn according
to Process (3.3) from a ranking model p and a probability distribution ν over P(JnK). The
ranking model p is unknown and characterizes the preferences of the statistical population. The
probability distribution ν is known but imposed. In an e-commerce setting, this means that
users express their preferences as incomplete rankings, over subsets of items that they choose or
that stem from an independent context (defined by navigation filters for instance).

The accuracy of a classifier is thus evaluated against incomplete rankings that represent the
ground truth with a loss function of the form:

d :
⊔

A∈P(JnK)

Γ(A)× Γ(A)→ R+.

We assume that d is such that for each A ∈ P(JnK), the restriction d|Γ(A)2 of d to Γ(A)2 is
a distance on Γ(A) (refer to Subsection 2.4.4 for examples of distances). In order to ensure a
consistent evaluation on varying subsets, of potentially different sizes, we assume that d satisfies
three conditions:

1. It is invariant under relabeling of the elements of JnK: for any A ∈ P(JnK), π, π′ ∈ Γ(A)
and τ ∈ Sn, d(τ(π), τ(π′)) = d(π, π′).

2. It is normalized so that max(π,π′)∈Γ(A)2 d(π, π′) = 1 for all A ∈ P(JnK).2

3. All the restrictions d|Γ(A)2 “represent the same distance” for A ∈ P(JnK), in the sense that
if d|Γ(A)2 is for example the Kendall’s tau distance on Γ(A) then d|Γ(B)2 is the Kendall’s
tau distance on Γ(B) for all B ∈ P(JnK).

1We acknowledge that the notation ·̂ can be misleading because it is used in the rest of this thesis to designate
stochastic objects. In most cases though, π̂ will designate a classifier constructed from a dataset and therefore
the notation will be consistent.

2This choice is arbitrary but it is not our purpose here to analyze its impact.
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The theoretical risk for the problem of incomplete rankings prediction is then defined, for a
classifier π̂, as the expectation

R(π̂) = EA,Π[d (π̂A,Π)] =
∑

A∈P(JnK)

ν(A)
∑

π∈Γ(A)

d (π̂A, π)PA(π). (5.2)

As in the classic supervised learning framework, the goal of incomplete ranking prediction is
to find a classifier that minimizes this theoretical risk. Of course, as the ranking model p
is not known, we are led to consider the empirical version of the risk, defined for a dataset
DN = ((A1,Π

(1)), . . . , (AN ,Π
(N))) of N IID samples of (A,Π) by

R̂N (π̂) =
1

N

N∑
i=1

d
(
π̂Ai ,Π

(i)
)
. (5.3)

We point out that because rankings can only be observed on subsets A ∈ A a classifier π̂ ∈ H
is only evaluated through its values π̂A for A ∈ A.

5.3.2 General analysis and application of the MRA framework

Here we provide more insights about the challenges at stake in the problem of ranking prediction
on a subset and detail the application of the MRA framework.

Optimality and empirical risk minimization. The first result we give exhibits an optimal
classifier for the stated problem. Its proof is straightforward and left to the reader.

Proposition 109 (Optimal classifier). Let π̂∗ be a classifier such that π̂∗A is a solution of the
minimization problem

min
π∈Γ(A)

∑
π′∈Γ(A)

d(π, π′)PA(π′) (5.4)

for all A ∈ A. Then, the classifier π̂ has minimum risk (5.2).

We point out that problem (5.4) is a rank aggregation problem, it corresponds for each A ∈ A
to (2.2) with rankings in Γ(A) and distance d. In particular an optimal classifier π̂∗ always exists:
the set Γ(A) is of finite cardinality and, thus, there always exists a solution to the minimization
problem (5.4). It is however not necessarily unique.

Remark 110. The present setting resembles the one of multi-class classification, but the def-
inition (5.4) of the optimal classifier depends here on the loss function. For the 0 − 1 loss
function defined by d(π, π′) = I{π 6= π′}, equation (5.4) becomes minπ0∈Γ(A)

∑
π 6=π0

PA(π) =
minπ0∈Γ(A) (1− PA(π0)), and the optimal classifier π̂∗ is defined by π̂∗A = argmaxπ∈Γ(A) PA(π),
that is to say π̂∗ is equal to the optimal Bayes classifier for the corresponding multi-class classi-
fication problem. This is not true in general.

As in classic supervised learning, one cannot of course compute an optimal classifier π̂∗

in practice because the PA’s are not known. The usual approach to define a classifier that
approximates π̂∗ is through empirical risk minimization. This principle can be applied directly
for the general hypothesis space of all possible classifiers H =

∏
A∈P(JnK) Γ(A) in the present

setting, since it is finite. It characterizes however a classifier only for the subsets of elements A
that were observed: A ∈ ÂN . For any A ∈ P(JnK) we define ÎA = {1 ≤ i ≤ N | Ai = A} the set

of indexes that correspond to the observation of A, so that A ∈ ÂN is equivalent to ÎA 6= ∅.
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Definition 111 (Empirical risk minimization over H). The solutions to the empirical risk min-

imization problem minπ̂∈H R̂N (π̂) are the classifiers π̂ERM that satisfy for each A ∈ ÂN

π̂ERMA = min
π∈Γ(A)

∑
i∈ÎA

d
(
π,Π(i)

)
. (5.5)

While the rankings of an optimal classifier are solutions of an inference rank aggregation
problem of type (2.2), each ranking π̂ERMA is a solution to (5.5), which corresponds to (2.1) for
rankings in Γ(A) and distance d. Each ranking π̂ERMA is thus obtained from “local” aggregation
on A of the rankings (Ai,Π

(i))i∈ÎA . Now, as the dataset DN can be partitioned into a collection

of observations on a same subset A ∈ ÂN : DN =
⊔
A∈ÂN (Ai,Π

(i))i∈ÎA , the π̂ERMA are all
independent. Therefore they do not consolidate information between observations on different
subsets and can be highly variable. For instance if a subset A ∈ P(JnK) only appears once in DN
then the ERM classifier will predict on A the sole ranking it has observed on A. It would not try
to infer what could be potential observations on A from other drawings of DN from observations
on other subsets. This motivates the design of other classifiers.

Remark 112 (Comparison with multi-task/transfer learning). Incomplete ranking prediction can
be seen as a multi-task learning problem, where each task corresponds to the prediction on a
fixed subset A ∈ P(JnK). These tasks are related here by the consistency assumption (∗). As in
multi-task learning, the efficiency is increased when all the tasks are learned jointly.

Rank aggregation. A natural approach to consolidate information between observation on
different subsets is to perform global rank aggregation over JnK and use the obtained full ranking
to induce rankings on any subset. This approach is formalized in the following definition.

Definition 113 (Global aggregation-based classifier). A global aggregation-based classier is a
classifier π̂agg ∈ H defined from a full ranking σ ∈ Sn by

π̂aggA = σ|A for each A ∈ P(JnK).

The most natural way to construct the full ranking σ from the dataset DN would certainly
be to compute it such that the associated classifier minimizes the empirical risk (5.3). It would
thus be a solution of the minimization problem

min
σ′∈Sn

N∑
i=1

d
(
σ′|Ai

,Π(i)
)
. (5.6)

Problem (5.6) can be too costly to solve exactly in practice but many approaches exist to compute
an approximate solution, either via a parametric model (see Subsection 2.5.1) or with a specific
procedure for rank aggregation from incomplete rankings (see 2.3).

The strength of the global aggregation-based classifiers paradigm is that it provides a simple
approach to consolidate information from observations on different subsets. It imposes however
the strong constraint on the obtained classifier π̂agg that all the rankings π̂aggA must be consistent:
for any pair of elements {a, b} ⊂ JnK and subsets A,A′ ⊂ JnK that contain {a, b}, the rankings
π̂aggA and π̂aggA′ must rank a and b in the same order. Yet, while the PA’s must satisfy the
consistency assumption (∗), there is no reason that an optimal classifier π̂∗ should satisfy this
constraint. This is illustrated by the following example.

Example 114. Let n = 4 and p be the ranking model defined by

p =
1

4
[δ1234 + δ4123 + δ3412 + δ2341] .
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Notice that on a pair of elements {a, b} ⊂ JnK, π̂{a,b} is the ranking π ∈ {ab, ba} that has maximal
probability P{a,b}(π), whatever the distance d. One thus has in the present example.

Pair {a, b} P{a,b}(ab) P{a,b}(ba) π̂∗{a,b}
{1, 2} 3/4 1/4 12
{1, 3} 1/2 1/2 {13, 31}
{1, 4} 1/4 3/4 41
{2, 3} 3/4 1/4 23
{2, 4} 1/2 1/2 {24, 42}
{3, 4} 3/4 1/4 34

There is no full ranking σ ∈ S4 such that

σ{1,2} = 12, σ{2,3} = 23, σ{3,4} = 34, and σ{1,4} = 41.

For a general n, the ranking model p = (1/n)[δ12...n + δn1...(n−1) + · · ·+ δ23...1] satisfies the same
property.

Example 114 can seem a little artificial but numerical experiments show that this phenomenon
happens on empirical datasets (see Subsection 5.3.3).

Plug-in paradigm. We now introduce a general approach to construct a classifier from the
dataset without imposing the constraint of global aggregation. It is based on the following
intuition: as an optimal classifier is obtained as local consensuses for the true marginals PA,
computing local consensuses for good estimators of the PA’s should provide a good classifier. The
approach we propose thus consists in first constructing estimators for the PA’s then computing
the local consensuses. We first introduce the following definition.

Definition 115 (Generalized consensus). Let A ∈ P(JnK) and d be a metric on Γ(A). A ranking
π∗ ∈ Γ(A) is a consensus for a function F ∈ L(Γ(A)) if it satisfies

π∗ = argmin
π∈Γ(A)

∑
π′∈Γ(A)

d(π, π′)F (π′).

We denote by Cd(F ) ⊂ Γ(A) the set of consensus rankings for F ∈ L(Γ(A)) with respect to d.

Definition 115 corresponds to (2.2) for rankings on a subset A ∈ P(JnK) and distance d,
generalized to functions (not just probability distributions). Though it is not common to consider
this concept of generalized consensuses in the literature, it was previously introduced (for instance
in Saari, 2000). It is exploited to give more insights about rank aggregation in Subsection 6.3.3
but here we mostly use it to introduce the following definition.

Definition 116 (Plug-in paradigm). For a family of functions Q = (QA)A∈P(JnK) with QA ∈
L(Γ(A)) for each A ∈ P(JnK), an associated plug-in classifier π̂(Q) ∈ H is a classifier such that
π̂A(Q) ∈ Cd(QA) for all A ∈ P(JnK).

As explained previously, optimal classifiers and minimizers of the empirical risk can be seen as
plug-in classifiers. It is also the case for global aggregation-based classifiers, because Cd(δπ) = {π}
for any subset A ∈ P(JnK) ranking π ∈ Γ(A) and distance d. One thus has, for an optimal
classifier π̂∗, a minimizer of the empirical risk π̂ERM and a global aggregation-based classifier
π̂agg constructed from the full ranking σ ∈ Sn

π̂∗ = π̂
(
(PA)A∈P(JnK)

)
, π̂ERM = π̂

(
(P̂A)A∈P(JnK)

)
and π̂agg = π̂

(
(δσ|A)A∈P(JnK)

)
.
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The plug-in paradigm we develop here is analogous to the classic plug-in paradigm in supervised
learning, (see Audibert and Tsybakov, 2007; Clémençon and Robbiano, 2011). It relies on the fact
that if (QA)A∈P(JnK) is close in a certain sense to (PA)A∈P(JnK) then the risk of π̂((QA)A∈P(JnK))
should be close to the risk of π̂((PA)A∈P(JnK)), that is to say the minimum risk. This is guaranteed
by the following proposition. For A ∈ P(JnK), we define the |A|!×|A|! matrix DA by DA(π, π′) =
d(π, π′) for π, π′ ∈ Γ(A) and denote by ‖ · ‖A,∞ the infinity norm on L(Γ(A)), defined by
‖F‖A∞ = maxπ∈Γ(A) |F (π)| for any F ∈ L(Γ(A)).

Proposition 117. Let π̂∗ be an optimal classifier. Then for any family of functions Q =
(QA)A∈P(JnK),

R(π̂(Q))−R(π̂∗) ≤ 2
∑
A∈A

ν(A)‖DA (QA − PA) ‖A,∞

Proof. By definition for any classifier π̂ = (π̂A)A∈P(JnK) ∈ H

R(π̂) =
∑
A∈A

ν(A)
∑

π∈Γ(A)

d(π̂A, π)PA(π) =
∑
A∈A

ν(A)DAPA(π̂A).

Let A ∈ P(JnK). For π ∈ Cd(QA) and π∗ ∈ Cd(PA),

DAPA(π)−DAPA(π∗) = DA(PA −QA)(π) +DAQA(π)−DAPA(π∗)

= DA(PA −QA)(π) + min
π′∈Γ(A)

DAQA(π′)− min
π′∈Γ(A)

DAPA(π′)

≤ max
π′∈Γ(A)

DA(PA −QA)(π) + max
π′∈Γ(A)

(QA − PA)(π′)

≤ 2‖DA (QA − PA) ‖A,∞.

Summing over the subsets A gives the desired result.

MRA-based classifier. We now define the MRA-based classifier.

Definition 118 (MRA-based classifier). The MRA-based classifier is the plug-in classifier asso-

ciated with the MRA-based estimator Q̂MRA from Definition 105

π̂MRA := π̂
(
Q̂MRA

)
.

The statistical guarantees about the MRA-based estimator Q̂MRA transfer into statistical
guarantees about the MRA-based classifier.

Theorem 119 (Theoretical guarantees). Let π̂∗ be an optimal classifier. One then has

E
[(
R
(
π̂MRA

)
−R (π̂∗)

)2] ≤ 4C2

(
C1

N
+ C2ρ

N

)
,

where C =
∑
π∈Γ(JKK) d(1 . . . k, π) with K = maxA∈A |A| and C1, C2 and ρ are the constants

from Theorem 106.

Proof. By Proposition 117 one has

E
[(
R
(
π̂MRA

)
−R (π̂∗)

)2] ≤ E
(2

∑
A∈A

ν(A)
∥∥∥DA

(
Q̂MRA
A − PA

)∥∥∥
A,∞

)2
 .
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For A ∈ A, ‖DA

(
Q̂MRA
A − PA

)∥∥∥
A,∞
≤ ‖DA‖∞‖Q̂MRA

A − PA
∥∥∥
A,∞

, where ‖DA‖∞ is the matrix

norm of DA induced by ‖ · ‖A,∞. It is well known that ‖DA‖∞ = maxπ∈Γ(A)

∑
π′∈Γ(A) |d(π, π′)|.

Since d is invariant under relabeling, one has ‖DA‖∞ =
∑
π∈Γ(J|A|K) d(1 . . . |A|, π) ≤ C. Injecting

this result and using the Cauchy-Schwarz inequality one obtains

E
[(
R
(
π̂MRA

)
−R (π̂∗)

)2] ≤ 4C2E

[(∑
A∈A

ν(A)

)(∑
A∈A

ν(A)
∥∥∥Q̂MRA

A − PA
∥∥∥2

A,∞

)]

≤ 4C2E

[∑
A∈A

ν(A)
∥∥∥Q̂MRA

A − PA
∥∥∥2

A

]
,

where the last inequality uses the facts that
∑
A∈A ν(A) = 1 and ‖F‖A,∞ ≤ ‖F‖A for all

F ∈ L(Γ(A)) with A ∈ P(JnK). The proof is concluded using Theorem 106.

The computational guarantees of the MRA-based estimator from Proposition 107 directly
apply to the MRA-based classifier. One must simply add to the prediction on a subset A ∈ P(JnK)

the cost to compute π̂A from Q̂A, that is to say to compute a consensus for Q̂A. As predictions
are made on small subsets, this can be made with a brute-force search with complexity |A|!.

5.3.3 Numerical experiments

We present the results of numerical experiments conducted on data generated from two real
datasets, the Sushi dataset (n = 10) and the Netflix dataset (n = 17, 770). In both cases, we
generate from raw data incomplete rankings of size 2 to 5 (the maximum size 5 is a consequence
of the rating scale in the Netflix dataset).

Evaluation setting. The predictions are evaluated through four different distances: the 0− 1
loss, Kendall’s tau, Spearman’s footrule and Spearman’s rho (see Subsection 2.4.4). All these
distances are invariant under relabeling of the items, and can thus evaluate the accuracy of the
predictions on different subsets of items of the same size in a consistent manner. In order to
be fully consistent when dealing with subsets of different sizes, we use their normalized versions
defined for π, π′ ∈ Γ(A) with A ∈ P(JnK) by d(π, π′) = d(π, π′)/d|A|, where d is one of the four
distances and dk = maxπ,π′∈Γ({1,...,k}) d(π, π′) for k ∈ {2, . . . , 5}.

A classifier is evaluated by its empirical risk on a test dataset with respect to a loss function.
As a baseline, we compute the expectation and standard deviation of the risk of the uniformly
random classifier that predicts a ranking in Γ(A) drawn uniformly at random, for any subset of
items A ∈ P(JnK). We compare the performance of the MRA-based classifier with the classifier
based on global aggregation by the Plackett-Luce model (fitted by means of the MM algorithm
from Hunter (2004)), which happens to be the same as the plug-in classifier based on the Plackett-
Luce model for all considered distances (this fact surely has a theoretical explanation but we are
not aware of it, it may constitute an interesting direction for future research).

Experiments based on the Sushi dataset. The Sushi dataset from Kamishima (2003)
is composed of 5000 full rankings on 10 sushi varieties. By drawing from each full ranking
210 incomplete rankings of size 2 to 5 uniformly at random, we generate a global dataset of
1, 260, 000 incomplete rankings, for which we keep 80% as a training set and 20% as a test set.
We evaluate the estimator p̃N and also its truncated versions to scales k = 2, 3, or 4, where the
X̂B ’s are put equal to 0 for |B| > k. The results are shown on Figure 5.2. They represent the
empirical risks on the test set for the plug-in classifiers of the five probabilistic models for the
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Figure 5.2: Empirical risk of the plug-in predictors on the Sushi dataset

0− 1 loss Kendall’s tau Spearman’s footrule Spearman’s rho
Expectation 0.8208 0.5000 0.6145 0.6156

Standard deviation 6.6× 10−4 6.7× 10−4 7.1× 10−4 6.8× 10−4

Table 5.1: Expectation and standard deviation of the uniformly random classifier for the Sushi
dataset

four loss functions. All plug-in classifiers are computed exactly. As a baseline, the expectation
and standard deviation of the uniformly random predictor are given in Table 5.1.

In each case, the risk of the worst model is lower than that of the uniformly random predictor
by hundreds of standard deviations. This is surely explained by the fact that all statistical models
manage to leverage information from historical data to make better predictions than random,
and the amount of the difference is due to the large size of the test set (252, 000). For all four
distances, all the multiresolution classifiers outperform the one based on the Plackett-Luce model.
This demonstrates the pertinence and accuracy of our approach. An interesting observation is
that for each loss function, the risk of the truncated multiresolution-based predictor decreases
with the scale. This means that each scale contains a specific part of information that is useful
to make better predictions. It shows in particular that reducing the observations to pairwise
comparisons inherently degrades the available information, and proves the interest to exploit
higher order information.

Experiments based on the Netflix dataset. The Netflix dataset was issued for the Netflix
Prize. The training set contains 100, 480, 507 ratings given by 480, 189 users to 17, 770 movies.
Each rating is an integer between 1 and 5. We use the training set to generate incomplete
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rankings, on the following simple paradigm: if a user gave respectively the ratings ra and rb to
movies a and b with ra > rb then it means that she prefers movie a to movie b. More generally
if she gave the ratings r1 > · · · > rk to the movies a1, . . . , ak, her preference over the subset of
movies a1, . . . , ak is given by the ranking a1 . . . ak. As the grades are on a scale from 1 to 5, the
obtained incomplete rankings are of maximum size 5. For each user, we consider the list of the
ratings she gave, draw uniformly at random subsets of movies, and generate the corresponding
incomplete rankings. We keep the first 80% ratings for training and the last 20% for test. We
then aggregate the data to obtain a training set and a test set of respectively 153, 703, 541 and
38, 665, 610 incomplete rankings.

For computational reasons, we only tested the predictive rule consisting in choosing the
ranking with higher probability, for both the MRA-based classifier and the one based on the
Plackett-Luce model. We nevertheless evaluated their performance through the four loss func-
tions considered in the previous section. The results, as well as the expectation and standard
deviation of the uniformly random classifier, are presented in table 5.2.

0− 1 loss Kendall’s tau Spearman’s footrule Spearman’s rho
Expectation 0.7388 0.5000 0.6059 0.5867

Standard deviation 6.5× 10−5 6.1× 10−5 6.6× 10−5 6.3× 10−5

Plackett-Luce 0.5579 0.3598 0.3934 0.3865
MRA 0.6042 0.3938 0.4425 0.4328

Table 5.2: Results for the Netflix dataset

Again, both statistical models outperform by far the random classifier. Contrary to the
Sushi dataset, the Plackett-Luce model performs better than the MRA-based estimator for all
loss functions. This is surely due to the fact that the classifier based on the global aggregation
from the Plackett-Luce model captures global effects on the full set JnK, namely the average
rank of a movie in any incomplete ranking. It is indeed highlighted in Koren (2009) that the
tendencies of some movies to receive higher ratings than others captures much of the information
in the Netflix dataset. On the contrary the MRA-based classifier is best fitted to capture pure
relative preferences effects. Its application in such large-scale settings should thus be made with
a regularization procedure (see Section 7.1 for some propositions). In any case, this experiment
demonstrates the good scalability of the MRA framework.
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Chapter 6

Connections and other
interpretations

Perhaps surprisingly, the MRA representation draws connections between many mathematical
constructions related to permutations and rankings. We detail them in this chapter, together with
the insights they provide. First, the connection with Fourier analysis is made in Section 6.1. Then
in Section 6.2 we establish many connections with diverse constructions (related to card shuffling,
generalized Kendall’s tau distances) through the study of the alternative embedding operator
from Subsection 4.1.3. At last we focus on the component related to pairwise information in
Section 6.3 and establish new results about Kemeny rank aggregation.
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6.1 Connection with Fourier analysis

We begin with the connection between the MRA representation and Fourier analysis (refer to
Subsection 3.2.5 for some background about Fourier analysis on Sn).

6.1.1 Background on Young tableaux

We recall that in the Fourier decomposition of L(Sn) (see Proposition 34), each irreducible
representation Sλ appears with multiplicity dλ for λ ` n. It happens that dλ is also the number

121
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of different standard Young tableaux of shape λ. One can therefore enumerate the copies of a same
irreducible representation Sλ with such objects, which will be useful to establish the connection
with the MRA. Let us introduce some definitions to be more specific. A Young diagram (or a
Ferrer’s diagram) of size n is a collection of boxes of the form

λ1

λ2

...
λr

where if λi denotes the number of boxes in row i, then λ = (λ1, . . . , λr), called the shape of the
Young diagram, must be a partition of n. The total number of boxes of a Young diagram is
therefore equal to n, and each row contains at most as many boxes as the row above it. A Young
tableau is a Young diagram filled with all the integers 1, . . . , n, one in each boxes. The shape
of a Young tableau Q, denoted by shape(Q), is the shape of the associated Young Diagram, it
is thus a partition of n. There are clearly n! Young tableaux of a given shape λ ` n. A Young
tableau is said to be standard if the numbers increase along the rows and down the columns.

Example 120. In the following figure, the first tableau is standard whereas the second is not.

1 2 3

4 5

6

1 3 5

4 2

6

Notice that a standard Young tableau always has 1 in its top-left box, and that the box
containing n is necessarily at the end of a row and a column. We denote by SYTn the set of all
standard Young tableaux of size n and by SYTn(λ) = {Q ∈ SYTn | shape(Q) = λ} the set of
standard Young tableaux of shape λ, for λ ` n. By construction, SYTn =

⊔
λ`n SYTn(λ). Now,

a classic result in the representation theory of the symmetric group states that dλ = |SYTn(λ)|
for each λ ` n. The decomposition of Proposition (34) is then refined into:

L(Sn) ∼=
⊕
λ`n

⊕
Q∈SYTn(λ)

S shape(Q) ∼=
⊕

Q∈SYTn

S shape(Q). (6.1)

Figure 6.1 represents all the standard Young tableaux of size n = 4, gathered by shape.

6.1.2 The MRA representation and Fourier analysis provide “orthog-
onal” decompositions of rank information

As explained before, the spaces Sλ localize parts of absolute rank information whereas the spaces
HB localize parts of relative rank information. There exists however a connection between the
two types of rank information that we detail here. For k ∈ {0, . . . , n} \ {1}, recall that the space
Hk =

⊕
B⊂JnK, |B|=k from Definition 60 is invariant under translations, by Equation (4.11). It is

thus also the case of the feature space Hn and both can be decomposed as a sum of irreducible
representations Sλ:

Hk ∼=
⊕
λ`n

κkλS
λ and Hn ∼=

n⊕
k=0
k 6=1

⊕
λ`n

κkλS
λ, (6.2)
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3
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1

(4) (3,1)

1 2 3 4 2

1 3 4

3

1 2 4

4

1 2 3

Figure 6.1: Standard Young tableaux of size n = 4

where the κkλ’s are nonnegative integers. Eq. (6.2) means that the space Hk also localizes some
absolute rank information, quantified through the multiplicities κkλ of the Sλ’s. The connection
with the Fourier decomposition of L(Sn) is provided in the following proposition.

Proposition 121 (Representation isomorphism). The spaces L(Sn) and Hn are isomorphic as
representations of Sn: L(Sn) ∼= Hn. In particular one has

n∑
k=0
k 6=1

κkλ = dλ for all λ ` n.

Proof. Theorem 47 shows that φJnK is a linear isomorphism between Hn and L(Sn), and Propo-
sition 61 shows that for any τ ∈ Sn, TτφJnK = φτ(JnK)Tτ = φJnKTτ .

The multiplicity κkλ of each irreducible in Hk can actually be calculated through a combina-
torial formula. This is one of the major results established in Reiner et al. (2014). Its statement
requires an additional definition. Notice that any standard Young tableau Q contains a unique
maximal subtableau of the form

l +m

l + 1

1 2 l

with 1 ≤ l ≤ n and 0 ≤ m ≤ n− l. The authors of Reiner et al. (2014) thus define (in the proof
of Proposition 6.23) the following quantity:

eig(Q) =

{
l if m is even,

l − 1 if m is odd.
(6.3)

This definition enables to specify the Fourier decomposition of each space Hk.



124 CHAPTER 6. CONNECTIONS AND OTHER INTERPRETATIONS

L(S4) ∼= U (4) ⊕ U (3,1) ⊕ U (2,2) ⊕ U (2,1,1) ⊕ U (1,1,1,1)

∼= ∼= ∼= ∼= ∼= ∼=

H4 ∼= S
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⊕ ⊕ ⊕ ⊕
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1 4

⊕ ⊕ ⊕

H2 ∼= S
4

1 2 3

⊕ S
4

3

1 2

⊕

H0 ∼= S
1 2 3 4

Figure 6.2: Harmonic analysis and MRA decompositions of L(S4)

Theorem 122 (Fourier decomposition of the spaces Hk). For k ∈ {0, . . . , n} \ {1} and λ ` n,
the multiplicity of Sλ in Hk is given by κkλ = |{Q ∈ SYTn | eig(Q) = n − k}|. In other words,
the following decomposition holds

Hk ∼=
⊕

Q∈SYTn
eig(Q)=n−k

S shape(Q).

In the notations of Reiner et al. (2014), HB = kerπB , so that Theorem 122 is a reformulation
of their theorem 6.26. It provides a new decomposition of rank information. For λ ` n we denote
by Uλ the component dλS

λ in the decomposition of Proposition (34) of L(Sn) (it is usually
called an isotypic component). Then gathering Proposition (34) with Theorem 122 gives

L(Sn) ∼=
⊕

Q∈SYTn

Sshape(Q) ∼=
⊕
λ`n

Uλ ∼=
n⊕
k=0
k 6=1

Hk. (6.4)

The first decomposition in Equation (6.4) is the full decomposition of L(Sn) into irreducible
representations, each localizing an “elementary” part of absolute rank information. The second
decomposition, into components Uλ, corresponds to the Fourier decomposition where for each
λ ` n, Uλ localizes the part of absolute rank information specific to marginals of shape λ.
The last decomposition, into spaces Hk, corresponds to the MRA decomposition where for each
k ∈ {0, . . . , n} \ {1}, Hk localizes the part of absolute information specific to scale k. These
different decompositions are illustrated for n = 4 in Figure 6.2.

Using the combinatorial formula of Theorem 122 to calculate the multiplicities κkλ, one can
obtain some further properties. They are given in the following proposition.

Proposition 123 (Properties of the multiplicities κkλ). Let k ∈ {0, . . . , n} \ {1}. One has the
following properties:
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1. The part of absolute rank information of scale k (in terms of MRA) is included in the part
of absolute rank information of order k (in terms of Fourier analysis): for any λ ` n such
that λ1 < n− k, κkλ = 0.

2. There is exactly one copy of the Specht module S(n−1,1) in each of the decompositions of
the spaces Hk for k ∈ {2, . . . , n}.

Proof. To show Property 1., notice that for Q ∈ SYTn(λ), one necessarily has eig(Q) ≤ λλ1
by

definition (6.3). Thus if λ1 < n − k then |{Q ∈ SYTn | eig(Q) = n − k}| = 0 and therefore
κkλ = 0 by Theorem 122. Property 2. is given by proposition 6.34 from Reiner et al. (2014).

Notice that the decompositions illustrated by Figure 6.2 satisfy all properties from Proposi-
tions 121 and 123.

6.2 Alternative construction

In this section we provide some further insights about the alternative embedding φ′JnK considered
in Subsection 4.1.3, especially its connection with Sn-based harmonic analysis, card shuffling
and generalized Kendall’s tau distances.

6.2.1 Alternative embedding of the MRA decomposition into L(Sn)

We recall that the alternative embedding operator φ′JnK is defined in Equation (4.3) by

φ′JnK : L(Γ̄n)→ L(Sn), F 7→
∑
π∈Γ̄n

|π|!
n!
F (π)1Sn(π).

We also recall that Sn(π) is the set of linear extensions of π ∈ Γ̄n, which can be seen as the set
of full rankings that induce π on c(π) or as the set of all the possible configurations obtained
by shuffling π with any ranking π′ ∈ Γ(JnK \ c(π)). The former interpretation is behind the
approaches introduced in Yu et al. (2002), Kondor and Barbosa (2010) and Sun et al. (2012)
and more specifically the empirical ranking model p̂N defined in Equation (3.5) is actually equal

to p̂N = 1
N

∑N
i=1 φ

′
JnK (δΠ(i)). Huang et al. (2009a) also follows this interpretation and define

probabilistic models on Sn as linear combinations of elements of the form α1Sn(ij)+(1−α)1Sn(ji)

with 1 ≤ i < j ≤ n and 0 ≤ α ≤ 1. We show that the part of information contained in these
models can be decomposed into components that localize the same part of information as the
spaces Hk.

For k ∈ {2, . . . , n}, we recall that ΓkJnK is the set of all incomplete rankings of size k. Set

V 0 = R1Sn the space of constant functions on Sn and define for k ∈ {2, . . . , n} the space
V k = φ′JnK(L(ΓkJnK)) = span{1Sn(π) | π ∈ ΓkJnK}. One has the following nested sequence of spaces

V 0 ⊂ V 2 ⊂ · · · ⊂ V n = L(Sn).

Indeed, 1Sn = 1Sn(ab) + 1Sn(ba) for any distinct a, b ∈ JnK, and for k ∈ {2, . . . , n − 1}, π =
π1 . . . πk and a 6∈ c(π), one clearly has 1Sn(π) = 1Sn(aπ1...πk) + 1Sn(π1a...πk) + . . .1Sn(π1...πka).
We then define the space W 2 as the orthogonal supplementary of V 0 in V 2 and for k ∈ {3, . . . , n}

the space W k as the orthogonal supplementary of V k−1 in V k. One thus has V 0
⊥
⊕W 2 = V 2 and

V k−1
⊥
⊕W k = V k for all k ∈ {3, . . . , n} so that L(Sn) = V 0 ⊕

n⊕
k=2

W k.
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One would be highly tempted to say that for k ∈ {2, . . . , n}, W k localizes the part of information
specific to scale k and V k localizes the part of information of scales lower or equal than k.
Fortunately, the following theorem establishes this statement.

Theorem 124 (Decomposition associated to the alternative embedding). One has

V 0 = φ′JnK(H
0) and W k = φ′JnK(H

k) for all k ∈ {2, . . . , n}.

In addition, φ′JnK establishes an isomorphism of representations of Sn between Hn and L(Sn),
so that

V 0 ∼= S(n) and W k ∼= Hk for all k ∈ {2, . . . , n}.

Refer to the Appendix for the proof of Theorem 124. The latter draws the connection between
the MRA decomposition and the models that involve the embedding operator φ′JnK. In particular

it allows to say that for π ∈ Γ̄n, the indicator function 1Sn(π) contains absolute rank information
up to scale |π|. It also naturally recovers some already known results. For instance applying
Theorem 122 to W 2 gives Proposition 16 in Huang et al. (2009a), or applying Property 1. of
Proposition 123 to W k can be seen as a corollary of Proposition 7 in Kondor and Barbosa (2010).

6.2.2 Connection with card shuffling and generalized Kendall’s tau dis-
tances

The spaces W k also have an interesting connection with card shuffling, more specifically with
random-to-random shuffles. The analysis of card shuffling was introduced in the seminal contri-
butions Aldous and Diaconis (1986) and Bayer and Diaconis (1992). It sees a configuration of a
deck of n cards as a permutation of JnK. The uncertainty about the configuration is then captured
by a probability distribution over Sn. The principle of the analysis of card shuffling is to study
the properties of a Markov chain on Sn that represents a particular shuffle. The random-to-
random shuffle, studied in depth in Uyemura-Reyes (2002), consists in picking a card at random
from the deck and replacing it at random in the deck. More generally for k ∈ {1, . . . , n− 2}, the
k-random-to-random shuffle consists in picking k cards at random from the deck and replacing
them at random positions (and in a random order) in the deck. It happens that the transition
matrices of the k-random-to-random shuffles can be expressed with incomplete rankings.

Proposition 125 (Connection with card shuffling). For k ∈ {2, . . . , n−1}, the transition matrix
Rk of the (n− k)-random-to-random shuffling satisfies for any f ∈ L(Sn):

Rkf = (n− k)!

(
k!

n!

)2 ∑
π∈Γk

〈
f,1Sn(π)

〉
1Sn(π).

Proof. If one picks n− k cards from a configuration σ ∈ Sn, the configuration of the remaining
deck is σ|A, where A is the subset of k cards that were not picked. Then replacing the n−k cards
at random positions and in a random order in the deck can lead to any configuration σ ∈ Sn(π).
The n − k-random-to-random shuffle applied to the Dirac function δσ therefore decomposes as
the sequence of mappings

δσ 7→ 1(
n
k

) ∑
A⊂JnK, |A|=k

δσ|A 7→ 1(
n
k

) ∑
A⊂JnK, |A|=k

k!

n!
1Sn(σ|A).

Thus for f =
∑
σ∈Sn f(σ)δσ, one has

Rkf =
∑
σ∈Sn

f(σ)
1(
n
k

) ∑
A⊂JnK, |A|=k

k!

n!
1Sn(σ|A) =

1(
n
k

) k!

n!

∑
π∈Γk

1Sn(π)

∑
σ∈Sn

f(σ)I{π ⊂ σ}.
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This concludes the proof.

By Proposition 125, it is clear that for k ∈ {2, . . . , n − 1} the image space of Rk is included
in V k and that its null space contains all spaces W j for k < j ≤ n: ImRk ⊂ V k and kerRk ⊃⊕n

j=k+1W
j . These results can actually be refined using the ones from Reiner et al. (2014). The

connection is established via the following proposition.

Proposition 126 (Connection with matrices from Reiner et al. (2014)). Let k ∈ {2, . . . , n− 1}.
For σ, σ′ ∈ Sn, Rk(σ, σ′) is proportional to the number of subwords of size k that σ and σ′ have
in common:

Rk(σ, σ′) = (n− k)!

(
k!

n!

)2

|{A ⊂ JnK with |A| = k | σ|A = σ′|A}|.

Proof. Noticing that
〈
δσ,1Sn(π)

〉
= 1Sn(π)(σ) = I{π ⊂ σ} for any π ∈ Γ̄n and σ ∈ Sn, one

obtains

Rk(σ, σ′) = Rkδσ′(σ) = (n− k)!

(
k!

n!

)2 ∑
π∈Γk

I{π ⊂ σ′}I{π ⊂ π},

which gives the desired result.

The number |{A ⊂ JnK with |A| = k | σ|A = σ′|A}| of subwords of size k ∈ {2, . . . , n − 1}
that σ ∈ Sn and σ′ ∈ Sn have in common is equal to noninvk(σ′−1σ) where noninvk is the
statistics on Sn defined in Reiner et al. (2014). Proposition 126 thus says that the matrix Rk
is proportional to the matrix ν(k,1n−k) considered by the authors of Reiner et al. (2014). Now,
one of their major results is that these matrices are symmetric positive semidefinite and pairwise
commute. They can thus be simultaneously diagonalized and the following result establishes a
connection between their eigenspaces and the W k’s.

Theorem 127 (Null spaces of the matrices Rk). Each of the spaces V 0, W 2, . . . , Wn is stable
for all the matrices Rk for k ∈ {2, . . . , n − 1}. It is thus a direct sum of their eigenspaces. In
addition, one has

kerRk =

n⊕
j=k+1

W j for all k ∈ {2, . . . , n− 1}.

Proof. It is proven in Uyemura-Reyes (2002) that dim kerRn−1 = dn, the number of derange-
ments on a set of n elements. Since Wn ⊂ kerRn−1 and dimWn = dn by Theorem 124, one
has kerRn−1 = Wn and ImRn−1 = V n−1. Now , in Reiner et al. (2014), the authors define in
equation (22) the space Vn,j = kerRn−j−1∩ ImRn−j for j ∈ {1, . . . , n−2}. They show that each
space Vn,j is stable for all matrices Rk. They show in addition that for each j ∈ {1, . . . , n− 2},
dimVn,j =

(
n
j

)
dn−j . For j = 1 one then has

Vn,1 = kerRn−2 ∩ V n−1 and kerRn−2 ⊃Wn−1 ⊕Wn so that Vn,1 ⊃Wn−1.

Again, by Theorem 124, dimWn−1 = ndn−1 = dimVn,1 so that Vn,1 = Wn−1 and therefore
kerRn−2 = Wn−1⊕Wn. By induction, one obtains that for all j ∈ {1, . . . , n− 2}, Vn,j = Wn−j

and kerRn−j =
⊕j−1

i=0 W
n−i. This concludes the proof.

The goal of a shuffle is to mix cards so that the configuration of the deck after several iterations
is closest to a purely random configuration. By definition, the component of a probability
distribution over Sn that lies in the null space of a shuffle is mixed after one iteration (on
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average). Theorem 127 therefore says that the space W k localizes the part of information that
is preserved by the j-random-to-random shuffles for 1 ≤ j ≤ n− k but mixed by the j-random-
to-random shuffles for n− k + 1 ≤ j ≤ n− 2.

Finally, notice that by Proposition 126, R2(·, ·) is proportional to
(
n
2

)
− dKT (·, ·) where dKT

is the Kendall’s tau distance. It thus has the same null space as the matrix (dKT (σ, σ′))σ,σ′∈Sn .
More generally for k ∈ {2, . . . , n− 1}, Proposition 126 gives

Rk(σ, σ′) = (n− k)!

(
k!

n!

)2((
n

k

)
− dk(σ, σ′)

)
,

where dk(σ, σ′) := |{A ⊂ JnK | |A| = k and σ|A 6= σ|A′} is the number of k-wise disagreements
between σ and σ′, and can therefore be seen as an extension of the Kendall’s tau distance. Hence
the matrices of the distances dk for k ∈ {2, . . . , n − 1} pairwise commute and their null spaces
are given by Theorem 127.

To conclude this section, we summarize the interpretations that can be given to the spaces
V 0,W 2, . . . ,Wn and thus to the different scales of the MRA. For k ∈ {2, . . . , n}:

• W k is the space spanned by the 1Sn(π)’s for π ∈ Γk that localizes the part of absolute rank
information specific to scale k.

• W k localizes the part of information preserved by the j-random-to-random shuffles for
1 ≤ j ≤ n− k but mixed by the j-random-to-random shuffles for n− k + 1 ≤ j ≤ n− 2.

• W k localizes the part of additional information captured by the distance dk compared to
dk−1.

6.3 Absolute rank information at scale 2 and social choice
theory

In this section we analyze in particular the part of absolute rank information at scale 2 or in other
words the part of information contained in pairwise marginals. We then develop the connection
with social choice theory.

6.3.1 Decomposition of absolute rank information at scale 2

By Theorem 122, one has the isomorphism H2 ∼= S(n−1,1) ⊕ S(n−2,1,1). We give an explicit
construction of subspaces of H2 that correspond to this decomposition. First we recall that
H2 =

⊕
{a,b}⊂JnKH{a,b} with dimH{a,b} = 1 for each pair {a, b} ⊂ JnK, so that dimH2 =

(
n
2

)
.

The following proposition gives an explicit basis for each H{a,b} and thus for H2. Its proof is
straightforward and left to the reader.

Proposition 128 (Canonical basis of H2). For any a, b ∈ JnK with a 6= b, the element xa�b =
δab − δba generates the space H{a,b}. By convention, we choose for each pair {a, b} ⊂ JnK with
a < b the element xa�b to be the canonical basis of H{a,b}. The canonical basis of H2 is then
given by the family (xa�b)1≤a<b≤n.

We use the canonical basis introduced in Proposition 128 to construct the two following
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subspaces of H2:

H2
1 = span

{
ea :=

∑
b∈JnK, b 6=a

xa�b

∣∣∣∣∣ a ∈ JnK

}

and H2
2 = span

{
fa,b :=

∑
c∈JnK, c 6∈{a,b}

(xa�b + xb�c + xc�a)

∣∣∣∣∣ {a, b} ⊂ JnK

}
.

(6.5)

The following theorem shows that they provide a decomposition of H2 isomorphic to S(n−1,1) ⊕
S(n−2,1,1). Its proof is left in Appendix.

Theorem 129 (Explicit decomposition of H2). The spaces H2
1 and H2

2 defined in Equation (6.5)
satisfy the following properties:

H2 = H2
1 ⊕H2

2 with H2
1
∼= S(n−1,1) and H2

2
∼= S(n−2,1,1).

It happens that the spaces H2
1 and H2

2 defined in Equation (6.5) appear in several other
mathematical constructions and therefore have different interpretation. First they are connected
with social choice theory, this is explained in the remaining of this Section. The second connection
we detail is with the HodgeRank framework. Introduced in Jiang et al. (2011b), it models a
collection of pairwise comparisons as an oriented flow on the graph with vertices JnK where two
items are linked if the pair appears at least once in the comparisons. The collection of observed
pairwise comparisons is the observation design A of our present setting. The space of edge
flows considered in Jiang et al. (2011b) is then equal to the space H(A) =

⊕
{a,b}∈AH{a,b}.

The HodgeRank framework then decomposes any element of this space as the sum of three
components: a “gradient flow” that corresponds to globally consistent rankings, a “curl flow”
that corresponds to locally inconsistent rankings, and a “harmonic flow”, that corresponds to
globally inconsistent but locally consistent rankings. The following proposition establishes the
connection with the present work.

Proposition 130 (Connection with HodgeRank). In the particular case where A = {{a, b} ⊂
JnK}, the space of edge flows in the HodgeRank framework is equal to H2, the space of gradient
flows to H2

1 , the space of curl flows to H2
2 and the space of harmonic flows is null. The Hodge

decomposition then boils down to H2 = H2
1⊕H2

2 . There is no particular connection in the general
case.

Proof of Proposition 130. Following the notations of Jiang et al. (2011b), we denote by G the
complete graph on JnK and by KG its clique complex. The space of “edge flows” on G is defined
by C1(KG,R) := {(Xi,j)i,j ∈ Rn×n | Xi,j = −Xj,i}. Identifying index (i, j) with ij, one clearly
has C1(KG,R) = H2. The HodgeRank decomposition, established by theorem 2 in Jiang et al.
(2011b), is then given by

H2 = Im(grad)
⊥
⊕ Im(curl∗) = Im(grad)

⊥
⊕ Im(grad)⊥,

where by definition Im(grad) = {
∑

1≤i<j≤n(si− sj)xi�j | s ∈ Rn}. Now, Lemma 146 shows that
for any s ∈ Rn, an element of the form {

∑
1≤i<j≤n(si − sj)xi�j is of the form

∑
i∈JnK siei and

reciprocally. This means that Im(grad) = H2
1 , which concludes the proof.

6.3.2 Decomposition of W 2 into eigenspaces of R2

In this subsection we introduce some notations and results to explain the connection with social
choice theory. By Theorem 124, W 2 = φ′JnK(H

2) and φ′JnK is an isomorphism between Hn and
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L(Sn). Combined with Theorem 129, this gives the following decomposition of W 2:

W 2 = φ′JnK(H
2
1 )⊕ φ′JnK(H

2
2 ).

For a, b ∈ JnK with a 6= b, let Ka,b, Ba and C(a,b) be the respective embeddings of xa�b, ea and
C(a,b) with respect to φ′JnK:

Ka,b = φ′JnK(xa�b) Ba = φ′JnK(ea) Ca,b = φ′JnK(fa,b).

One has by construction Ba =
∑
c6=aKa,c and Ca,b =

∑
c 6∈{a,b}(Ka,b + Kb,c + Kc,a) and the

following lemma gives explicit expressions for these elements as functions of Sn. Its proof is left
in Appendix. We recall that sign(u) = u/|u| for u ∈ R \ {0}.

Lemma 131. Let a, b ∈ JnK with a 6= b and σ ∈ Sn. The following properties hold.

(i) Ka,b = 1Sn(ab) − 1Sn(ba) or equivalently Ka,b(σ) = sign(σ(b)− σ(a))

(ii) Ba =

n∑
r=1

(n+ 1− 2r)1{σ(a)=r} or equivalently Ba(σ) = n+ 1− 2σ(a)

(iii) Ca,b = nKa,b + Bb − Ba =

n−1∑
r=1

(n − 2r)
(
1{σ(b)−σ(a)=r} − 1{σ(b)−σ(a)=−r}

)
or equivalently

Ca,b(σ) = n sign(σ(b)− σ(a)) + 2(σ(a)− σ(b)).

In the following definition, we simply give specific notations for the embeddings of H2
1 and

H2
2 with respect to φ′JnK.

Definition 132 (Spaces Bn and Cn). We define the spaces

Bn = φ′JnK(H
2
1 ) = span(Ba)1≤a≤n and Cn = φ′JnK(H

2
2 ) = span(Ca,b)1≤a6=b≤n.

As φ′JnK establishes an isomorphism of representations of Sn between Hn and L(Sn) by

Theorem 124, one has Bn
∼= S(n−1,1), so dim Bn = n − 1, and Cn ∼= S(n−2,1,1) so dim Cn =

(n − 1)(n − 2)/2. They are given social choice interpretations in the next subsection. Here, we
show that they are eingenspaces of R2.

Theorem 133 (Eigenstructure of R2). The following table summarizes the full eigenstructure
of R2:

Eigenvalue Eigenspace Dimension

1 V 0 1

n+ 1

3
(
n
2

) Bn n− 1

1

3
(
n
2

) Cn

(
n− 1

2

)
0

n⊕
k=3

W k n!−
(
n

2

)
− 1
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The proof of Theorem 133 is left in Appendix. We point out however that it was already
proven in Renteln (2011). Indeed in the latter, the author fully characterizes the eigenstructure
of the distance matrix D of the Cayley graph on Sn generated by adjacent transpositions (see
Subsection 2.4.4 for the definition). Now, it is well known that the metric of this graph is the
Kendall’s tau distance: D(σ, σ′) = dKT (σ, σ′) for all σ, σ′ ∈ Sn. Since R2 is proportional to(
n
2

)
J −D where J is the n! × n! with only ones, the results from Renteln (2011) directly apply

here. We chose however to construct the eigenspaces Bn and Cn with our own notations in
order to better interpret and exploit them. For instance the following lemma, proved using their
explicit construction, will be useful thereafter. Its proof is left in Appendix.

Lemma 134. The orthogonal projections of an element p ∈ L(Sn) on Bn and Cn are given by

pBn =
3

n(n+ 1)!

∑
a∈JnK

〈p,Ba〉Ba and pCn =
3

n2.n!

∑
{a,b}⊂JnK

〈p, Ca,b〉Ca,b.

6.3.3 Connection with social choice theory

In this subsection we study Kemeny rank aggregation. For clarity’s sake, we denote by d the
Kendall’s tau distance on Sn. We recall that a permutation σ∗ is a (generalized) Kemeny
consensus for a function p ∈ L(Sn) if σ∗ = argminσ∈Sn

∑
σ′∈Sn d(σ, σ′)p(σ′) and that the set

of such consensuses is denoted by Cd(p) (see Definition 115). By Proposition 126, this can be
reformulated in

Cd(p) = argmax
σ∈Sn

R2p(σ). (6.6)

Formula (6.6) shows that the Kemeny rank aggregation problem for a function p ∈ L(Sn) is
entirely characterized by R2p. Formally, let p = pkerR2

+ p(kerR2)⊥ be the decomposition of p on
the null space kerR2 of R2 and its orthogonal supplementary. One then has R2p = R2p(kerR2)⊥ .
All information from p filtered by R2 thus does not have any impact on the problem. We therefore
call (kerR2)⊥ the effective space of Kemeny rank aggregation (as in Saari, 2000; Daugherty et al.,
2009; Crisman, 2014). By Theorem 133, it admits the following orthogonal linear decomposition

(kerR2)⊥ = V 0 ⊕Bn ⊕ Cn.

Next we show that the two components Bn and Cn have a specific meaning from the point of
view of social choice theory.

Borda space Bn. As in Saari (2000); Crisman (2014), we call Bn the Borda space (or com-
ponent). Let us introduce some more definitions to justify this name. For a collection of N ≥ 1
permutations (σ1, . . . , σN ) ∈ SN

n , the Borda Count is the voting rule that consists in affecting

to element a ∈ JnK the score
∑N
t=1 σt(a) and then produce a full ranking of the candidates by

sorting them in increasing order of these scores (notice that this does not define a unique output
as some candidates may receive the same score). The Borda Count is generalized to the case
of a function p ∈ L(Sn) by replacing the score of the candidate a ∈ JnK by

∑
σ∈Sn σ(i)p(σ) or

equivalently by −〈p,Ba〉 by Lemma 131. The set BC(p) of the outputs of the Borda Count for
p is therefore fully characterized by pBn . The following proposition refines this observation.

Proposition 135. For p ∈ L(Sn), BC(p) = argmaxσ∈Sn pBn(σ) = Cd(pBn).

Proof. By Lemma 134 one has,

argmax
σ∈Sn

pBn(σ) = argmax
σ∈Sn

3

n(n+ 1)!

∑
a∈JnK

〈p,Ba〉Ba(σ) = argmax
σ∈Sn

∑
a∈JnK

(−〈p,Ba〉)σ(a).
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Now, it is well known that for any x1, . . . , xn ∈ R, the maximum of
∑n
i=1 xiσ(i) is obtained for

permutations σ ∈ Sn such that xσ−1(n) ≥ · · · ≥ xσ−1(1). This provides the first equality. For the
second one, Theorem 133 implies that

R2pBn
=
n+ 1

3
(
n
2

) pBn
so that Cd(pBn

) = argmax
σ∈Sn

R2pBn
(σ) = argmax

σ∈Sn
pBn

(σ).

Proposition 135 says that the outputs of the Borda Count for p are exactly the modes of
pBn

and also exactly the Kemeny consensuses of pBn
. This surely justifies the name of “Borda

space” for Bn.

Condorcet space Cn. The space Cn is responsible for the Condorcet paradox and we thus call
it the Condorcet space, as in Chandra and Roy (2013); Crisman (2014). The Condorcet paradox
says that in an election, it can happen that candidate a wins on average in pairwise duels against
candidate b, candidate b wins on average in pairwise duels against candidate c but candidate c
wins on average in pairwise duels against candidate a. Formally for a function p ∈ L(Sn), it can
happen that

P{a,b}(ab) > P{a,b}(ba) P{b,c}(bc) > P{b,c}(cb) but P{a,c}(ca) > P{a,c}(ac),

where PB is a short notation forMBp. This situation is all the more paradoxical than |P{a,b}(ab)−
P{a,b}(ba)+P{b,c}(bc)−P{b,c}(cb)+P{a,c}(ca)−P{a,c}(ac)| is big. For distinct elements a, b, c ∈ JnK
we define

Cyc{a,b,c}(p) = |P{a,b}(ab)−P{a,b}(ba) +P{b,c}(bc)−P{b,c}(cb) +P{a,c}(ca)−P{a,c}(ac)|. (6.7)

It is easy to see that this quantity does not depend on the ordering of a, b, c and is thus well
defined. It measures the “amount of inconsistency” or equivalently the amount of “cyclic votes”
in p on {a, b, c}. The following proposition shows that the total amount of inconsistencies in p is
controlled by the orthogonal projection of p on Cn.

Proposition 136. For p ∈ L(Sn),

n2n!

3(n− 2)
‖pCn‖∞ ≤

∑
{a,b,c}⊂JnK

Cyc{a,b,c}(p) ≤
n(n− 1)(n− 2)

2

√
3n!‖pCn‖2.

In particular, pCn = 0 if and only if Cyc{a,b,c}(p) = 0 for all distinct elements a, b, c ∈ JnK.

Refer to the Appendix for the proof of Proposition 136. The latter implies that the component
pCn is entirely responsible for the presence of cyclic votes in p and therefore for a possible
Condorcet paradox with p. This certainly justifies the name “Condorcet space” for Cn.

Borda Count approximation of Kemeny’s Rule and pairwise voting inconsistencies
In summary for a function p ∈ L(Sn), Proposition 136 implies that pCn is responsible for a
possible Condorcet paradox and Proposition 135 says that the Kemeny consensus(es) of p− pCn

are given by the Borda Count on p. These facts were already known (through different results)
and used as a justification for removing the Condorcet component from the data or using the
Borda Count (Saari and Merlin, 2000; Chandra and Roy, 2013). Here we use the precedent results
to obtain a quantitative bound on the error of the Borda Count when seen as an approximation
of Kemeny’s rule. For p ∈ L(Sn) we denote by Rp(σ) =

∑
π∈Sn d(σ, π)p(π) the approximation

cost of a permutation σ ∈ Sn and by R∗p = minσ∈Sn Rp(σ) the optimal cost or equivalently the
cost of a Kemeny consensus.



6.3. ABSOLUTE RANK INFORMATION AT SCALE 2 133

Theorem 137. For p ∈ L(Sn) and σBC ∈ BC(p),

Rp
(
σBC

)
−R∗p ≤

n− 2

n2

∑
{a,b,c}⊂JnK

Cyc{a,b,c}(p).

Proof. By proposition 135, σBC ∈ Cd(pBn
). Notice also that Cd(q+C) = Cd(q) for any q ∈ L(Sn)

and C ∈ R. We therefore consider that σBC ∈ Cd(pBn
+ pV 0) where pV 0 is the orthogonal

projection of p on V 0 equal to (〈p,1Sn〉 /n!)1Sn . Proposition 117 then gives

Rd,p
(
σBC

)
−R∗d,p ≤ 2‖D(p− pBn

− pV 0)‖∞ = 2‖DpCn‖∞

where D is the n! × n! matrix defined by D(σ, σ′) = d(σ, σ′) for σ, σ′ ∈ Sn. As D =
(
n
2

)
J −

(n!
(
n
2

)
/2)R2, where J is the n! × n! matrix of ones, and JpCn = 0, one has ‖DpCn‖∞ =

(n!
(
n
2

)
/2)‖R2pCn‖∞. The proof is then concluded by injecting Theorem 133 and Proposition

136.

Theorem 137 provides a theoretical bound on the Kemeny approximation cost of the Borda
Count. As one could expect with the previous developments, this bound is proportional to the
total amount of inconsistencies

∑
{a,b,c}⊂JnK Cyc{a,b,c}(p) in the function p, where Cyc{a,b,c}(p)

is defined in Equation (6.7) for distinct elements a, b, c ∈ JnK.
This bound has to be compared with the state-of-the-art guarantee established in Copper-

smith et al. (2006). The latter contribution shows that the Borda Count is a 5-approximation of
Kemeny’s rule, that is to say for any p ∈ L(Sn) and σBC ∈ BC(p),

Rp
(
σBC

)
≤ 5R∗p. (6.8)

We point out two differences between the bounds. The first is that the bound from Theorem 137
is additive whereas the one from (6.8) is multiplicative as are classic bounds for approximation
algorithms. This may mean that the bound from Theorem 137 is not tight enough when R∗p is
small. Finding a multiplicative equivalent for it would be an interesting future direction. The
other difference is that the bound from Theorem 137 depends on p. This is a major advantage
because it means that it can be very small for functions p with few inconsistencies. In particular
it is equal to 0 for functions p ⊥ Cn. A drawback however is that in practice, it requires to be
computed on each dataset, and its computation has complexity O(n3).

Ultimately, the central question remains: which bound is the tightest? As we do not have
theoretical results we provide here the results of some numerical experiments, performed both on
simulated (probability distributions p drawn uniformly at random on the simplex) and empirical
data (probability distributions p from the Sushi dataset). Table 6.1 shows that the classic bound
of 4R∗p for Rp

(
σBC

)
− R∗p is much bigger than the one from Theorem 137. This is due to the

fact that in many cases the output of the Borda Count is equal to a Kemeny consensus or has
a cost close to the minimal cost, as one can see on the values of the difference Rp

(
σBC

)
−R∗p

in Table 6.1. The classic bound then remains big while the bound from Theorem 137 adapts to
the data and becomes much smaller.

Another interesting point of view is to assess what would be the constant C > 0 such that
the bound from Theorem 137 is equal to CR∗p. Figure 6.3 provides boxplots for the value of the

ratio n−2
n2

∑
{a,b,c}⊂JnK Cyc{a,b,c}(p)/R∗p for p drawn uniformly at random on the simplex or from

the Sushi dataset. The fact that the ratio seems to be decreasing on random p’s and increasing
for p’s from the Sushi dataset is surprising and may require further investigation. Be that as it
may, the ratio remains much smaller than 4 in both cases.
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(a) Random p

n = 3 n = 4 n = 5 n = 6
4R∗p 4.24± 0.85 10.06± 0.77 18.54± 0.51 29.16± 0.22

Bound from Theorem 137 0.06± 0.04 0.16± 0.09 0.17± 0.07 0.12± 0.04
Rp
(
σBC

)
−R∗p 0.02± 0.05 0.03± 0.04 0.03± 0.03 0.02± 0.02

(b) Sushi dataset

n = 3 n = 4 n = 5 n = 6
4R∗p 4.10± 0.94 8.21± 1.46 13.68± 1.99 20.52± 2.42

Bound from Theorem 137 0.08± 0.05 0.35± 0.15 0.83± 0.28 1.54± 0.41
Rp
(
σBC

)
−R∗p 0.002± 0.009 0.004± 0.014 0.006± 0.014 0.007± 0.012

Table 6.1: Comparison of Kemeny approximation bounds for the Borda Count
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Figure 6.3: Ratio n−2
n2

∑
{a,b,c}⊂JnK Cyc{a,b,c}(p)/R∗p
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Chapter 7

Future directions and conclusion

In this last chapter we describe interesting future directions related this thesis. Section 7.1
proposes some ideas to define regularization procedures for the MRA framework and Section 7.2
discusses extensions of the MRA representation to more general types of ranking data. At last,
we give a general conclusion to this thesis in Section 7.3.
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7.1 Regularization procedures

Here we describe some regularization procedures that one may consider but the list is of course
non exhaustive. Our suggestions are based on intuition and analogy with classic regularization
procedures on other types of data. Hence they do not come with any theoretical guarantees.
Finding a good regularity assumption and the associated regularization procedure in the feature
space Hn largely remains an open problem.

7.1.1 Kernel-based smoothing

The most usual way to define a notion of regularity is to say that a function f is regular if
“f(x) ' f(y)” for “x ' y”. In this case, the knowledge of f(x) can be used to infer some
knowledge about f(y). Indeed if one has an estimation of f at some point x and assumes that f
is regular, he can obtain estimations for points y ' x. A typical approach is then to regularize
an initial estimator by applying a smoothing kernel Kh that will “diffuse” the knowledge of f(x)

137
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{3, 4}

Figure 7.1: Graph on pairs of items for n = 5

to points y close to x. The parameter h is usually a window parameter that controls both the
“speed and the range of the diffusion”. As we detailed in Subsection 3.1.5, kernel smoothing for
incomplete rankings is already used in Kondor and Barbosa (2010) and Sun et al. (2012). The
difference here is that we propose to define kernels on the feature space Hn instead of the space
L(Sn).

Here we propose an approach to transpose these ideas for the feature space Hn. By analogy,
one wants to say that an element X = (XB)B∈P̄(JnK) is regular if “XB ' XB′” for “B ' B′”.
The first step is therefore to define relevant meanings for “XB ' XB′” and “B ' B′”. We assert
that the MRA representation already exploits the consistency assumption to transfer information
between included subsets and therefore between different scales. Transferring information be-
tween elements XB and XB′ indexed by two subsets of different size is then not relevant. Hence
we define a notion of regularity for each subspace Hk and from now on we fix k ∈ {0, 2, . . . , n}.
First we propose to consider the distance Dk defined for B,B′ ∈ P̄(JnK) with |B| = |B′| = k by

Dk(B,B′) =
1

2
(k − |B ∩B′|)

(the proof that Dk is a distance on {B ⊂ JnK | |B| = k} is left to the reader). Two subsets B,B′

with |B| = |B′| = k thus have distance 1 if they have k − 1 items in common, 2 if they have
k− 2 items in common, . . . , and k if they have no item in common. The distance Dk is also the
distance on the graph with set of nodes {B ⊂ JnK | |B| = k} and where B and B′ are connected
if they have k−1 items in common. An illustration of this graph for n = 5 and k = 2 is provided
on Figure 7.1.

We now define a relevant meaning for “XB ' XB′”. The difficulty is that for B 6= B′, the
elements XB and XB′ lie in different spaces and how they should be compared is not obvious.
To tackle this problem we propose to send one to the space of the other and then to compare
them. For B,B′ ∈ P̄(JnK) we define the set

Bij(B,B′) = {τ : B → B′ bijection | τ(b) = b for all b ∈ B ∩B′}.

For τ ∈ Bij(B,B′) we denote by τ(π1 . . . πk) := τ(π1) . . . τ(πk) and define for XB ∈ HB the
element τ ·XB :=

∑
π∈Γ(B)XB(π)δτ(π). With a proof similar to the one of 61, it is easy to show

that τ ·XB ∈ HB′ . We then say that “XB ' XB′” if

XB′ '
1

|Bij(B,B′)|
∑

τ∈Bij(B,B′)

τ ·XB in HB′ .
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The kernels associated to the regularity assumption “XB ' XB′” for “B ' B′” are then functions
Kh : Hk → Hk defined by

Kh : XB 7→
∑
|B′|=k

qh(Dk(B,B′))

|Bij(B,B′)|
∑

τ∈Bij(B,B′)

τ ·XB ,

where qh : N → R is a nonnegative function such that
∑
π∈Γk KhXB(π) =

∑
π∈Γ(B)XB(π).

Since for any B′ ⊂ JnK with |B′| = k and τ ∈ Bij(B,B′),
∑
π∈Γk τ ·XB(π) =

∑
π∈Γ(B)XB(π),

the condition on qh boils down to∑
|B′|=k

qh(Dk(B,B′)) = 1 i.e.

k∑
j=0

qh(j)

(
k

j

)(
n− k
j

)
= 1.

One can take for instance qh(j) = [(h+ 1)
(
k
j

)(
n−k
j

)
]−1 if 0 ≤ j ≤ h and 0 otherwise.

7.1.2 Penalty minimization and sparsity

Another classic approach to define regularization procedure is through the minimization of a
penalty function. One chooses a dissimilarity measure ∆ on Hn, and then defines a regularized
version of an initial element X ∈ Hn as the solution of a minimization problem of the form

min
X′∈Hn

∆(X,X′) + λΩ(X′), (7.1)

where Ω : Hn → R is a penalty function and λ > 0 is a regularization parameter. As Hn is
constructed as

⊕
B∈P̄(JnK)HB , it is natural to define a dissimilarity measure ∆ of the form

∆(X,X′) =
∑

B∈P̄(JnK)

∆B(XB , X
′
B),

where for each B ∈ P̄(JnK), ∆B is a dissimilarity measure on HB . If one takes ∆B = ‖ · ‖2B then
∆ := ‖·‖2

Γ̄n
, the Euclidean norm on L(Γ̄n). The challenge in this approach lies more in the defini-

tion of a “good” penalty function Ω. If one wants to enforce the regularity assumption described
previously, one can use the Tikhonov regularization approach and take Ω(X′) = ‖KhX

′−X′‖2
Γ̄n

.

The use of a penalty function can also force the solution of (7.1) to be sparse in a certain basis
or dictionary. The first challenge is then to define a dictionary where “regular” elements of Hn
should be sparse in. As explained previously, such a dictionary should not contain elements that
lie in one single space HB only. In other words, “regular” elements of Hn should not have the
form

∑s
i=1 αiXBi with a small s, where for i ∈ {1, . . . , s}, Bi ∈ P̄(JnK), XBi ∈ HBi and αi ∈ R.

Instead, we advocate to define atoms of the form Xk
B =

∑
B∈BXB with B ⊂ {B ⊂ JnK | |B| = k}

and XB ∈ HB for each B ∈ B. As an example, we consider for distinct items a, b ∈ JnK the
following element (defined in Proposition 128):

xa�b = δab − δba ∈ H{a,b}.

Then one can consider a dictionary with atoms

X2
a,B =

∑
b∈B

xa�b ∈
⊕
b∈B

H{a,b} for a ∈ JnK and B ⊂ JnK \ {a}.

Such an atom localizes the part of rank information that says that item a is preferred to each of
the items of B in pairwise comparisons in the sense that for i, j ∈ JnK with i 6= j,

φ{i,j}X
2
a,B =

{
δab − δba if {i, j} = {a, b} with b ∈ B

0 otherwise.
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7.1.3 Fourier band-limited approximation

Another classic regularization procedure is to compute the Fourier transform of a function,
truncate it to the low frequencies, and output its inverse. The performance of this procedure for
functions on Euclidean spaces stems from the fact that the Fourier spectrum of irregularities is
usually localized in high frequencies. Keeping only the low frequencies of the Fourier spectrum
of a function f therefore leads to a regularized version of f . The analogue of this approach
can been applied for functions on the symmetric group, using Sn-based harmonic analysis (see
Huang et al., 2009a; Irurozki et al., 2011). The additional challenge is that “frequencies” are
then partitions of n (see Subsection 3.2.5) and thus are not naturally ordered. Fortunately the
dominance order (see Definition 32) is a partial order on partitions of n that orders Fourier
coefficients by a certain level of “smoothness”. Hence the band-limited approximation procedure
has been proven to be efficient on real datasets (see Huang et al., 2009a; Irurozki et al., 2011).

This regularization procedure can also be applied to the statistical analysis of incomplete
rankings:

1. Compute the wavelet empirical estimator X̂ ∈ Hn
2. Apply the procedure to φJnKX̂ ∈ L(Sn)

3. Compute its wavelet transform to obtain a regularized wavelet estimator X̃ ∈ Hn
This procedure is theoretical because it would not lead to tractable computations. For that, one
needs to find a way to obtain X̃ from X̂ without passing by φJnKX̂. We point out this direction
however because we assert that this regularization procedure gains a new interpretation when
applied to the statistical analysis of incomplete rankings: it allows to regularize small pieces of
relative rank information into global parts of absolute rank information. Assume for instance that
one observes pairwise comparisons and keeps only absolute rank information of level 1. Besides
the piece of rank information of level 0, there are n(n− 1)/2 potential degrees of freedom in the
data, one for the piece of relative rank information related to each pair in JnK. By contrast, there
are only n− 1 degrees of freedom in the part of absolute rank information localized in the copy
of S(n−1,1) that appears in the decomposition of H2 (see Subsection 6.1.2). Keeping only this
component therefore allows to enforce the regularity constraints of absolute rank information on
the pieces of relative rank information captured by X̂.

7.1.4 Local regularization

In some applications, one is only interested in using an estimator to make local predictions on
small subsets of items. One then does not have to regularize the full wavelet empirical estimator
X̂ but can regularize only the coefficients involved in each prediction. For A ∈ P(JnK), we

recall that the estimation of the marginal PA of the true ranking model p provided by X̂ is
equal to φA

∑
B∈P̄(A) X̂B . One therefore only needs to regularize the coefficients (X̂B)B∈P̄(A) ∈

H(P̄(A)) to improve the estimation of PA. Thanks to the multiscale nature of P(JnK), the three
aforementioned families of regularization procedures naturally apply to H(P̄(A)). Notice however
that if one wants to apply the the Fourier band-limited approximation procedure, she will have
to use the Fourier transform based on SA, the group of permutations of A. The regularization
then will involve “absolute rank information on A” and not absolute rank information on JnK.

The drawbacks of a local regularization procedure is of course that it does not allow to transfer
information from subsets of items not included in A to subsets of items included in A. The major
advantage however is the much lower computational cost: the parameter n that would appear in
any of the procedures when regularizing globally becomes |A| when regularizing locally, which is
much smaller in practical applications.
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7.2 Extensions and constructions

In this section we describe some interesting constructions or extensions that could be made on
the MRA representation.

7.2.1 Exponential models

The same as one can construct exponential parametric models based on Fourier analysis (see
Diaconis, 1988), this could be based on the MRA representation. The general approach would
be the following. Let p be a probability distribution over Sn that we want to model. We assume
that p is always positive: p(σ) > 0 for all σ ∈ Sn. Instead of decomposing p in the MRA
representation, we can decompose log p:

log p =
∑

B∈P̄(JnK)

φJnKΨB log p.

Then to obtain a model with few parameters, one can truncate the decomposition of log p. For
instance truncating at scale 2 leads to the following model, by Lemma 71:

px(σ) =
1

Zn(x)
e
∑n
i=1 xσi,σi+1 for all σ ∈ Sn,

where x = (xi,j)1≤i 6=j≤n ∈ Rn(n−1) with xj,i = −xi,j for all i 6= j and Zn(x) is the normalizing
factor such that

∑
σ∈Sn px(σ) = 1. The model px has n(n − 1)/2 free parameters. Up to our

knowledge, it has never been considered in the literature. Studying it can be an interesting future
direction.

7.2.2 Extension to the analysis of incomplete rankings with ties

In practical applications, one may observe incomplete rankings with ties. For instance if a user
chooses some items a1, . . . , ak among a selection of proposed items {a1, . . . , ak, b1, . . . , bl} then
one can model her preference by the ranking a1, . . . , ak � b1, . . . , bl. More generally, incomplete
rankings with ties are partial orders of the form

a1,1, . . . , an1,1 � · · · � a1,r, . . . , anr,r with r ≥ 1 and

r∑
i=1

ni < n. (7.2)

Observations then cannot be represented as incomplete rankings anymore, but as incomplete
rankings with ties, and the MRA framework needs to be extended before it can be applied. To
do so,observe that an incomplete ranking with ties of the form (7.2) can be seen as a partial
ranking on the subset of items {a1,1, . . . , anr,r}. We therefore propose to extend the MRA
framework as follows:

1. Construct an estimator Q̂A on each observed subset of items A using any method to analyze
partial rankings from the literature

2. Compute the wavelet transforms of all the Q̂A’s and average them to obtain a wavelet
estimator X̃

3. Perform the task related to the considered application in the feature space Hn using X̃ as
empirical distribution

Of course, this extended framework needs to be developed for each statistical application with
respect to the considered method to analyze partial rankings.



142 CHAPTER 7. FUTURE DIRECTIONS AND CONCLUSION

7.2.3 Application to label ranking

In label ranking (see Subsection 2.3) from incomplete rankings, one considers a dataset of N IID
observations

DN = ((x1,A1,Π
(1)), . . . , (xN ,AN ,Π

(N)))

of a random triple (x,A,Π) where x is a random variable on an input space X and (A,Π)|x = x
is drawn from process (3.3) with ranking model px and observation design νx. The input space
is equipped with a structure (typically X = Rd) and the general principle is to exploit some
kind of regularity of the function x 7→ px with respect to this structure. In simple terms, one
should have “px ' px′” for “′x ' x′”. We propose to apply the MRA framework to label ranking
in a k-nearest neighbors regression approach. For a given metric on X , k ≥ 1 and x ∈ X we
denote by DkN (x) = ((Ai1 ,Π

(i1)), . . . , (Aik ,Π
(ik))) the sub-dataset of DN of couples (Ai,Π

(i))
that corresponds to the k closest xi to x. We then define the k−nn MRA classifier as the wavelet
empirical estimator (5.1) for the dataset DkN (x):

X̂k
B(x) =

1∑k
j=1 I{B ⊂ Aij}

k∑
j=1

ΨBδΠ(ij) .

7.2.4 Extension to an infinite set of elements with features

We now turn to the extension of the MRA framework to rankings on an infinite set of elements
with features, say Rd. We thus consider a dataset of N IID observations

DN = ((A1,Π
(1)), . . . , (AN ,Π

(N))),

of a random couple (A,Π) except that now A = {x1, . . . ,xk} ⊂ Rd is a subset of Rd with
k = |A| ≥ 2. In the most general setting, one can still assume that (A,Π) is drawn from
(3.3) except that the law ν of A is now a probability distribution over finite subsets of Rd
(for instance a spatial Poisson point process) and that Π|A = A is drawn from a probability
distribution PA over Γ(A) with A a finite subset of Rd. The infinite family (PA)A⊂Rd,|A|<∞ can
still be considered as a “ranking model”. Consistency assumption (∗) does not however have a
natural analogue in this setting. In any case, probabilistic modeling in this setting should not
lead to an infinite number of parameters. The general assumption is that for two “similar” finite
subsets A,A′ ⊂ Rd, the random rankings Π|A = A and Π|A = A′ should have “similar laws”.

A major difficulty is in the definition of similarity of two finite subsets: not only the subsets
should have similar geometric properties but also one is interested in matching the elements
of one subset to the ones of the other. For instance one could characterize the geometry of a
pair A = {x, y} by the line R(y − x), compare it to another pair A′ = {x′, y′} through the
quantity | 〈y − x, y′ − x′〉 |‖y − x‖‖y′ − x′‖ and if it is big enough assume the correspondence
(x, y) ≡ (x′, y′) if 〈y − x, y′ − x′〉 > 0 and (x, y) ≡ (y′, x′) if 〈y − x, y′ − x′〉 < 0. This modeling
approach becomes however harder for subsets with more than two elements.

We propose an approach in two steps: first perform a clustering of all the xi’s that appear
in the dataset, then apply the MRA framework on the set of n clusters. More specifically,
let xi,1, . . . ,xi,ki be the elements of Ai with for i = 1, . . . , N . We propose to first perform a
clustering on the dataset x1,1, . . . ,xi,k1 , . . . ,xN,1, . . . ,xN,kN into clusters C1, . . . , Cn. Each cluster
should represent elements that are not comparable or considered as equivalent. The clustering
should therefore naturally be based on the structure of Rd but also exploit the additional part
of information provided by the dataset DN : elements xi,1, . . . ,xi,ki in a same observed subset
Ai should all belong to different clusters. These requirements can for instance be satisfied by a
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constrained clustering algorithm (see Wagstaff et al., 2001). The MRA framework would then
naturally apply to the set JnK where element i ∈ JnK represents cluster Ci.

7.3 Conclusion

In this thesis we have introduced a new representation for ranking data, more specifically a
multiresolution analysis (MRA) representation for functions of incomplete rankings. We have
established its construction (using recent results from algebraic topology), explained in details
the localization properties it offers (comparing with classic MRA and with Fourier analysis on
the symmetric group), described an associated Fast Wavelet Transform, developed a framework
for statistical applications and shown connections with several other mathematical constructions.

In our point of view, the MRA representation brings many new insights to ranking data
analysis and provides a novel, flexible and general framework for many applications. Though we
have not demonstrated its power on empirical large-scale settings, we are convinced that highly
efficient methods can be constructed with the adapted extensions. This is why we have also
provided a global survey of ranking data analysis and detailed many future directions, to best
settle this work in the related literature and facilitate its developments.

From a general perspective, I find ranking data analysis fascinating. It provides a unique
combination of constraints and possibilities: so many traditional approaches from vector data
analysis do not apply to ranking data but at the same time the extraordinarily rich structure of
rankings and permutations offers a formidable playground to apply results from various mathe-
matical areas. I hope that the present work will be helpful for the future developments of this
field.

To conclude, I believe that the ubiquity of ranking data may not be a mere coincidence. In
some sense, classification and clustering, central tasks in machine learning and pattern recogni-
tion, are related to probabilistic modeling on equivalence relations. Ranking data analysis on
the other hand is related to probabilistic modeling on order relations. Now, these two are the
main binary relations considered in mathematics, no other binary relation has attracted similar
attention. This is why I believe that the study of ranking data will continue to play a major role
in the mathematical sciences.
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Appendix A

Proofs of Chapter 3

A.1 Proofs of Section 3.1

Proof of Lemma 17. We use the notations introduced in Section 5.1. On the one hand, the
number of parameters to store DN is obviously bounded by N . On the other hand, a dataset DN
is characterized by the probability distribution ν̂ and the collection of naive empirical estimators
(P̂A)A∈ÂN . The number of parameters required to store ν̂ is |ÂN |, thus at most equal to |A|.
The number of parameters required to store (P̂A)A∈ÂN is equal to

∑
A∈ÂN | supp(P̂A)|, thus at

most equal to
∑
A∈A(|A|!− 1). Summing these two quantities gives the desired result.

A.2 Proofs of Section 3.2

Proof of Proposition 33. Property 1 is a direct consequence of Definition 9 of the marginal op-
erators MA. To prove Property 2 we use Theorem 39. The latter stipulates that there exist
orthogonal matrices Cλ and Cµ of respective sizes |Partλ(JnK)| and |Partµ(JnK)| such that

Mλf = Cλ

⊕
ξDλ

Kξ,λ⊕
l=1

f̂(ξ)

C>λ and Mµf = Cµ

⊕
ξDµ

Kξ,µ⊕
l=1

f̂(ξ)

C>µ .
Now, one has Kξ,λ ≥ Kξ,µ for any ξ ` n because µ D λ (see for instance Sagan, 2013). We

can thus define the linear operator Ξλ,µ that extracts
⊕

ξDµ

⊕Kξ,µ
l=1 f̂(ξ) from

⊕
ξDλ

⊕Kξ,λ
l=1 f̂(ξ).

Defining Mλ,µ by

Mλ,µ : R|Partλ(JnK)|×|Partµ(JnK)|, M 7→ CµΞλ,µ
(
C>λMCλ

)
C>µ

then concludes the proof.
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Appendix B

Proofs of Chapter 4

B.1 Proofs of Section 4.1

Lemma 49 is a cornerstone in the construction of the MRA representation. Its proof relies on the
exploitation of the combinatorial structure of the embedding operators. Let Γ∗n := Γ̄n ∪ JnK be
the set of all injective words on JnK, including the words of length 1 of the form a, with a ∈ JnK.
We extend Definition 88 of the concatenation product to words π, π′ ∈ Γ∗n:

ππ′ :=

{
π1 . . . π|π|π

′
1 . . . π

′
|π′| if c(π) ∩ c(π′) = ∅,

0 if c(π) ∩ c(π′) 6= ∅.

The following lemma gives a combinatorial expression for the embedding operator.

Lemma 138. Let π ∈ Γn and A ∈ P(JnK) such that c(π) ⊂ A. Then one has

φAδπ =
1

(|A| − |π|+ 1)!

∑
A1,A2⊂A

A1tA2=A\c(π)

∑
ω∈Γ(A1)
ω′∈Γ(A2)

δωπω′ .

Proof. The proof only consists in noticing that

{σ ∈ Γ(A) | π @ σ} = {ωπω′ | (ω, ω′) ∈ Γ(A1)× Γ(A2) with A1 tA2 = A \ c(π)}.

Lemma 49 then relies on the two following lemmas. The proof of the first one is straightfor-
ward and left to the reader.

Lemma 139. Let A,A ⊂ JnK be two disjoint subsets and (π, π′) ∈ Γ(A)× Γ(A′). Then for any
B ∈ P(JnK) such that B ∩A 6= ∅ and B ∩A′ 6= ∅ one has

(ππ′)|B = π|B∩Aπ
′
|B∩A′ .

Lemma 140. For any n, r, s ∈ N, one has the identity

n∑
k=0

(
k + r

r

)(
n− k + s

s

)
=

(
n+ r + s+ 1

n

)
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Proof. Denote the sum by Sn(r, s). By Pascal’s rule, one has

Sn(r + 1, s) =

n∑
k=0

(
k + r + 1

k

)(
n− k + s

s

)

=

(
n+ s

s

)
+

n∑
k=1

(
k + r

k

)(
n− k + s

s

)
+

n∑
k=1

(
k + r

k − 1

)(
n− k + s

s

)

=

n∑
k=0

(
k + r

k

)(
n− k + s

s

)
+

n−1∑
k=0

(
k + r + 1

k

)(
n− 1− k + s

s

)
= Sn(r, s) + Sn−1(r + 1, s).

One thus has Sn(r+1, s)−Sn−1(r+1, s) = Sn(r, s) and, noticing that S0(r, s) = 1 for all r, s ∈ N,
one obtains by a telescoping sum

Sn(r + 1, s) =

n∑
k=0

Sk(r, s).

The identity is now proven by induction on r using the well-known identity

n∑
j=k

(
j

k

)
=

(
n+ 1

k + 1

)
(B.1)

(it can be proven by induction on n with Pascal’s rule). For r = 0 one has

Sn(0, s) =

n∑
k=0

(
n− k + s

s

)
=

n+s∑
j=s

(
j

s

)
=

(
n+ s+ 1

s+ 1

)
,

which satisfies the identity. Assuming the identity true for all k ≤ r, one has

Sn(r + 1, s) =

n∑
k=0

(
k + r + s+ 1

r + s+ 1

)
=

n+r+s+1∑
j=r+s+1

(
j

r + s+ 1

)
=

(
n+ r + s+ 2

r + s+ 2

)
,

where the last equality also stems from identity (B.1). This concludes the proof.

Proof of Lemma 49. Let A,B,C ∈ P(JnK) such that A ∪ B ⊂ C and π ∈ Γ(A). We need to
prove that MBφCδπ = φBMA∩Bδπ. Lemma 138 gives on the one hand

φBMA∩Bδπ = φBδπ|A∩B =
1

(|B| − |A ∩B|+ 1)!

∑
B1,B2⊂B

B1tB2=B\A

∑
ω∈Γ(B1)
ω′∈Γ(B2)

δωπ|A∩Bω′

and on the other hand

(|C| − |A|+ 1)!MBφCδπ = MB

∑
C1,C2⊂C

C1tC2=C\A

∑
ω∈Γ(C1)
ω′∈Γ(C2)

δωπω′ =
∑

C1,C2⊂C
C1tC2=C\A

∑
ω∈Γ(C1)
ω′∈Γ(C2)

δ(ωπω′)|B .

Now, by Lemma 139, one has for any C1, C2 ⊂ C such that C1 t C2 = C \ A and (ω, ω′) ∈
Γ(C1)× Γ(C2),

(ωπω′)|B = ω|B∩C1
π|A∩B ω

′
|B∩C2

.
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Therefore, doing the change of variables B1 := C1 ∩ B, B2 := C2 ∩ B, υ := ω|B∩C1
and υ′ :=

ω′|B∩C2
, one obtains

MBφCδπ =
1

(|C| − |A|+ 1)!

∑
B1,B2⊂B

B1tB2=B\A

∑
υ∈Γ(B1)
υ′∈Γ(B2)

c(B1, B2, υ, υ
′)δυπ|A∩Bυ′ ,

where the coefficient c(B1, B2, υ, υ
′) is given by

c(B1, B2, υ, υ
′) =

∑
C1,C2⊂C

C1tC2=C\A

∑
ω∈Γ(C1)
ω′∈Γ(C2)

I{C1 ∩B = B1, C2 ∩B = B2, ω|B1
= υ, ω′|B2

= υ′}

=
∑

C1,C2⊂C
C1tC2=C\A

I{C1 ∩B = B1, C2 ∩B = B2}
|C1|!
|B1|!

|C2|!
|B2|!

=
|C1|!
|B1|!

|C2|!
|B2|!

|C|−|A∪B|∑
k=0

(k + |B1|)!(|C| − |A ∪B| − k + |B2|)!

= (|C| − |A ∪B|)!
|C|−|A∪B|∑

k=0

(
k + |B1|
|B1|

)(
|C| − |A ∪B| − k + |B2|

|B2|

)
= (|C| − |A ∪B|)!

(
|C| − |A ∪B|+ |B1|+ |B2|+ 1

|C| − |A ∪B|

)
,

where the last equality is given by Lemma 140 for n := |C| − |A ∪ B|, r := |B1| and s := |B2|.
The proof is concluded by noticing that for B1, B2 ⊂ B such that B1tB2 = B \A, |B1|+ |B2| =
|B| − |A ∩B| and |A ∪B| − |B1| − |B2| = |A|, so that(

|C| − |A ∪B|+ |B1|+ |B2|+ 1

|C| − |A ∪B|

)
=

(|C| − |A|+ 1)!

(|C| − |A ∪B|)!(|B| − |A ∩B|+ 1)!
.

B.2 Proofs of Section 4.2

Proof of Proposition 61. We prove Property 3 first then Property 1 then Property 2.

• Property 3. Since |σ(B)| = |B|, dimHσ(B) = dimHB . It is thus sufficient to prove
that Tσ(HB) ⊂ Hσ(B). For F ∈ L(Γ(B)), it is clear that TσF =

∑
π∈Γ(B) F (π)δσ(π) ∈

L(Γ(σ(B))). We just need to show that MCTσF = 0 for any C ∈ P̄(σ(B)) \ {σ(B)} or
equivalently Mσ(B′)TσF = 0 for any B′ ∈ P̄(B) \ {B}. This is proven by noticing that for
any π ∈ Γ(B), (σ(π))|σ(B′) = σ(π|B′).

• Property 1. For π ∈ Γ̄n and π′ ∈ Γ(A) it is clear that π @ π′ ⇒ τ(π) @ τ(π′). Hence, the
mapping π′ 7→ τ(π′) being injective, τ({π′ ∈ Γ(A) | π @ π′}) = {π′ ∈ Γ(τ(A)) | τ(π) @ π′}
and one has

(|A| − |π|+ 1)!TτφAδπ = Tτ1{π′∈Γ(A) | π@π′}

= 1τ({π′∈Γ(A) | π@π′})

= 1{π′∈Γ(τ(A)) | τ(π)@π′}

= (|A| − |π|+ 1)!φτ(A)δτ(π).
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• Property 2. Let B′ ∈ P̄(JnK) with B ⊂ B′ and F ∈ L(Γ(B′)). By Theorem 57 one
has F = φB′

∑
B∈P̄(B′) ΨBF . Applying the operator Tτ and using the previous result one

obtains
TτF = TτφB′

∑
B∈P̄(B′)

ΨBF = φτ(B′)

∑
B∈P̄(B′)

TτΨBF

where for each B ∈ P̄(B′), TτΨBF ∈ Hτ(B) by Property 3. On the other hand, applying
Theorem 57 to TτF ∈ L(Γ(τ(B′))) gives

TτF = φτ(B′)

∑
B∈P̄(τ(B′))

ΨBTτF = φτ(B′)

∑
B∈P̄(B′)

Ψτ(B)TτF.

The uniqueness of the MRA decomposition concludes the proof.

Proof of Lemma 63. Let B ∈ P(A). By Definition 44 of the embedding operator

φAX∅ =
X∅(0̄)

|A|!
1Γ(A) and φAXB =

∑
π∈Γ(B)

XB(π)

(|A| − |B|+ 1)!
1{π′∈Γ(A),π@π′}.

One thus has ‖φAX∅‖rA,r = (|X∅(0̄)|/|A|!)r × |A|! = |X∅(0̄)|r/(|A|!r−1) and

‖φAXB‖rA,r =
∑

π∈Γ(B)

∣∣∣∣∣ XB(π)

(|A| − |B|+ 1)!

∣∣∣∣∣
r

× (|A| − |B|+ 1)! =
‖XB‖rB,r

(|A| − |B|+ 1)!r−1
,

giving Property 1. Property 2 is a direct consequence, using Theorem 57 to have MA′φAXB =
φA′XBI{B ⊂ A′} for all A′, B ∈ P(A).

B.3 Proofs of Section 4.3

Proof of Proposition 82. First, Lemma 74 implies two simplifications:

• First, for k ∈ {2, . . . , n}, the coefficients (αB(π, π′))π,π′∈Γ(B) are obtained directly from
the (αJkK(π, π

′))π,π′∈Γ(JkK) for all B ⊂ JnK with |B| = k.

• Second, forB = {b1, . . . , bk} ∈ P(JnK) with b1 < · · · < bk, the coefficients (αB(π, π′))π′∈Γ(B)

are obtained directly from the (αB(b1 . . . bk, π
′))π′∈Γ(B) for any π ∈ Γ(B).

With the precedent simplifications, one only needs to compute and store the j! coefficients
(αJjK(12 . . . j, π))π∈Γ(JjK) for each j ∈ {2, . . . , k}. These coefficients are computed using the
recursive formula from Theorem 72. Let j ∈ {2, . . . , k}. If all coefficients the αJj′K(12 . . . j′, π)
for π ∈ Γ(Jj′K) and 2 ≤ j′ ≤ j − 1, it is easy to see that the computation of each αJjK(12 . . . j, π)

for π ∈ Γ(JjK) then has complexity bounded by
(
j
2

)
. The global complexity of the computation

of the coefficients (α{1,...,j}(12 . . . j, π))π∈Γ(JjK),2≤j≤k is therefore bounded by

k∑
j=2

(
j

2

)
j! ≤ k − 1

2

k∑
j=2

[(j + 1)!− j!] ≤ 1

2
k2k!.

This establishes Proposition 82.
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B.4 Proofs of Section 4.4

Proof of Theorem 91’s Property 1. First, we define the content of a chain X ∈ L(Γ̄n) as the
union of contents of the rankings in its support: c(X) =

⋃
π∈supp(X) c(π). Notice then that for

X,Y ∈ L(Γ̄n) with c(X) ∩ c(Y ) = ∅, and for A ∈ P(JnK),

MA(XY ) = MA(X)MAY and MA(X � Y ) = MA(X) �MAY. (B.2)

In particular MA(X � Y ) = 0 if A ⊂ c(X). Let now B ∈ P(JnK) and τ ∈ Der(B). We need to
show that for all B′  B, MB′Xτ = 0. Let B′  B and τ = γ1 . . . γr be the standard cycle form
of τ . By definition of Algorithm 3, Xτ = Xγ1

. . . Xγr . Applying Equation (B.2) thus gives

MB′Xτ = MB′∩supp(γ1)Xγ1
. . .MB′∩supp(γr)Xγr .

Now, by definition of Der(B), {supp(γ1), . . . , supp(γr)} is a partition of B. Thus there exists at
least an index i ∈ {1, . . . , r} such that B′ ∩ supp(γi)  supp(γi). Let b ∈ supp(γi) \B′. Since γi
is a cycle, its support contains at least two elements, and thus Xγi contains a product b � Y or
Y � b with b 6∈ c(Y ). Then MB′∩supp(γi)Xγi contains the product Mc(Y )∩B′∩supp(γi)(b � Y ). Now
the important fact is that b 6∈ c(Y ) ∩B′ ∩ supp(γi), so that

Mc(Y )∩B′∩supp(γi)(b � Y ) = 0 by Equation (B.2).

This implies that MB′∩supp(γi)Xγi = 0 and so that MB′Xτ = 0, which concludes the proof.



154 APPENDIX B. PROOFS OF CHAPTER 4



Appendix C

Proofs of Chapter 5

C.1 Proofs of Section 5.2

The proof of Theorem 106 requires the following Lemmas.

Lemma 141 (Conditional variance properties). Let d ≥ 1, X a random variable on Rd with
E[‖X‖2] < ∞ and B a sigma-algebra included in the Borel σ-algebra on Rd. We define the
conditional variance of X with respect to B by Var[X|B] = E

[
‖X − E[X|B]‖2|B

]
.

1. For all vector a ∈ Rd,

E
[
‖X − a‖2

]
= E

[
‖E[X|B]− a‖2

]
+ E [Var[X|B]] .

2. For all matrix M ∈ Rd′×d and i ∈ {1, . . . , d′},

Var [MXi|B] =

d∑
j=1

M2
i,jVar[Xj |B] +

∑
1≤j 6=k≤d

Mi,jMi,kCov[Xj , Xk|BνN ],

where Cov[Y,Z|B] = E[(Y − E[Y |B])(Z − E[Z|B])|B] for any real random variables Y,Z.

Proof. As E[‖X‖2] < ∞, E[X|B] is equal to the orthogonal projection of X onto the space
L2(B,R2) of squared-integrable B-measurable random vectors on Rd. Property 1 is thus the
Pythagorean theorem applied to X−a. For Property 2, one has for M ∈ Rd′×d and i ∈ {1, . . . , d′}

Var [MXi] = Var

 d∑
j=1

Mi,jXj

 =

d∑
j=1

M2
i,jVar [Xj ] +

∑
1≤j 6=k≤d

Mi,jMi,kCov[Xj , Xk|BνN ].

A simple sum inversion then concludes the proof.

Lemma 142. For A ∈ P(JnK) and π, π′ ∈ Γ(A) with π 6= π′,

E
[
P̂A

∣∣∣BνN] = I{A ∈ ÂN}PA

Var
[
P̂A(π)

∣∣∣BνN] =
I{A ∈ ÂN}

N̂A
PA(π)(1− PA(π))

and Cov
[
P̂A(π), P̂A(π′)

∣∣∣BνN] = − I{A ∈ ÂN}
N̂A

PA(π)PA(π′).
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Proof. Let A ∈ P(JnK) and π ∈ Γ(A). Rewriting the empirical estimator P̂A as

P̂A =
I{A ∈ ÂN}

N̂A

∑
i∈ÎA

δΠ(i) ,

it is easy to see that P̂A(π)|BνN has the law of I{A ∈ ÂN}Ẑπ, where N̂AẐπ is a Binomial variable

of parameters N̂A and PA(π). This gives the expectation and the variance. For the covariance

one has if A ∈ ÂN

P̂A(π)P̂A′(π) =
1

N̂2
A

∑
1≤i,j≤N̂A

I{Π(i) = π,Π(j) = π′} =
1

N̂2
A

∑
1≤i 6=j≤N̂A

I{Π(i) = π}I{Π(j) = π′}

where conditionally to BνN , I{Π(i) = π} and I{Π(j) = π′} are independent Bernoulli variables of
respective parameters PA(π) and PA(π′). Thus

Cov
[
P̂A(π), P̂A(π′)

∣∣∣BνN] = E
[
P̂A(π)P̂A(π′)

∣∣∣BνN]− E [P̂A(π)
∣∣∣BνN]E [P̂A(π′)

∣∣∣BνN]
= I{A ∈ ÂN}

N̂A − 1

N̂A
PA(π)PA(π′)− I{A ∈ ÂN}PA(π)PA(π′)

= − I{A ∈ ÂN}
N̂A

PA(π)PA(π′).

Lemma 143. For B ∈ P(JnK),

P
[
B ∈ P(ÂN )

]
= 1− (1− ν[Q(B)])

N
and E

[
I{B ∈ P(ÂN )}∑

A∈Q(B) N̂A

]
≤ 2

ν[Q(B)](N + 1)
,

where ν[S] =
∑
A∈S ν(A) for any collection of subsets S ⊂ P(JnK).

Proof. Let B ∈ P(JnK). It is easy to see that the random variable

ẐN,B =
∑

A∈Q(B)

N̂A =
∑

A∈Q(B)

∑
i∈ÎA

I{Ai = A} =

N∑
i=1

I{Ai ∈ Q(B)}

is binomial with parameters N and ν[Q(B)] and that I{B ∈ P(ÂN )} = I{ẐN,B ≥ 1}. One thus
has

P
[
B ∈ P(ÂN )

]
= 1− P

[
ẐN,B = 0

]
= 1− (1− ν[Q(B)])

N

and

E

[
I{B ∈ P(ÂN )}∑

A∈Q(B) N̂A

]
= E

[
I{ẐN,B ≥ 1}

ẐN,B

]
≤ E

[
2

ẐN,B + 1

]
,

where the last inequality stems from the fact that z + 1 ≤ 2z for all z ≥ 1. Now, Chao
and Strawderman (1972) provides the following closed-form expression, for a binomial random
variable Z of parameters (n, p),

E
[

1

Z + 1

]
=

1− (1− p)n+1

p(n+ 1)
.

Injecting it concludes the proof.
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Proof of Theorem 106. Property 1 being a direct consequence of Property 2, we only show the
latter. First, the Cauchy-Schwarz inequality combined with Lemma 63 and the fact that X̂∅ =
0̄ = Ψ∅p lead to the following bound.

EN
(
Q̂MRA

)
≤

∑
B∈P(A)

 ∑
A∈Q(B)

2|A|ν(A)

(|A| − |B|+ 1)!

E [‖X̂B −ΨBp‖2B
]
. (C.1)

Let now B ∈ P(A). Lemma 141 provides the decomposition

E
[
‖X̂B −ΨBp‖2B

]
= E

[
‖E[X̂B |BνN ]−ΨBp‖2B

]
+ E

[
Var[X̂B |BνN ]

]
, (C.2)

so that we can bound independently E
[
‖E[X̂B |BνN ]−ΨBp‖2B

]
and E

[
Var[X̂B |BνN ]

]
. For that,

we first rewrite the wavelet empirical estimator as

X̂B =
∑

A∈Q(B)

N̂A∑
A′∈Q(B) N̂A′

ΨBP̂A.

The first part of Lemma 142 then gives

E
[
X̂B

∣∣∣BνN] =
∑

A∈Q(B)

N̂A∑
A′∈Q(B) N̂A′

ΨBE
[
P̂A|BνN

]

=
∑

A∈Q(B)

N̂A∑
A′∈Q(B) N̂A′

I{A ∈ ÂN}ΨBPA

=
∑

A∈Q(B)

N̂A∑
A′∈Q(B) N̂A′

ΨBp

= I{B ∈ P(ÂN )}ΨBp

so that

E
[
‖E[X̂B |BνN ]−ΨBp‖2B

]
= P

[
B 6∈ P(ÂN )

]
ΨBp. (C.3)

The second part of Lemma 142 gives first

Var
[
X̂B

∣∣∣BνN] =
∑

A∈Q(B)

(
N̂A∑

A′∈Q(B) N̂A′

)2

Var
[
ΨBP̂A

∣∣∣BνN]

because the variables (N̂A/
∑
A′∈Q(B) N̂A′)ΨBP̂A for A ∈ Q(B) are two-by-two independent

conditionally to BνN . Now, for A ∈ Q(B) and π ∈ Γ(B), one has by Definition 70 of the alpha
coefficients

ΨBP̂A(π) =
∑

π′∈Γ(B)

αB(π, π′)MBPA(π′) =
∑

π′∈Γ(B)

αB(π, π′)
∑

σ∈Γ(A)
σ|B=π′

p(π′) =
∑

σ∈Γ(A)

αB(π, σ|B)PA(σ).
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Lemmas 141 and 142 then give

Var
[
ΨBP̂A(π)

∣∣∣BνN] =
∑

σ∈Γ(A)

αB(π, σ|B)2Var
[
ΨBP̂A(π)

∣∣∣BνN]
+

∑
σ,σ′∈Γ(A)
σ 6=σ′

αB(π, σ|B)αB(π, σ′|B)Cov
[
P̂A(σ), P̂A(σ′)

∣∣∣BνN]

=
I{A ∈ ÂN}

N̂A

 ∑
σ∈Γ(A)

αB(π, σ|B)2PA(σ)(1− PA(σ))

−
∑

σ,σ′∈Γ(A)
σ 6=σ′

αB(π, σ|B)αB(π, σ′|B)PA(σ)PA(σ′)


=
I{A ∈ ÂN}

N̂A

(
Ψ2
Bp(π)−ΨBp(π)2

)
,

where Ψ2
B : L(Γ̄n)→ L(Γ(B)) is the linear operator defined by Ψ2

BF (π) =
∑
σ∈Γ̄n

α2
B(π, σ|B)F (σ)

for any F ∈ L(Γ̄n). One thus has

Var
[
X̂B

∣∣∣BνN] =
∑

A∈Q(B)

(
N̂A∑

A′∈Q(B) N̂A′

)2
I{A ∈ ÂN}

N̂A

(
‖Ψ2

Bp‖B,1 − ‖ΨBp‖2B,2
)

so that

E
[
Var

[
X̂B |BνN

]]
= E

[
I{B ∈ P(ÂN )}∑

A∈Q(B) N̂A

](
‖Ψ2

Bp‖B,1 − ‖ΨBp‖B,22

)
. (C.4)

Combining Equations (C.1), (C.2), (C.3), (C.4) together with Lemma 143 concludes the proof.



Appendix D

Proofs of Chapter 6

D.1 Proofs of Section 6.2

The proof of Theorem 124 relies on the properties of the embedding operator φ′A, given by the
following lemma. For A ∈ P(JnK) and π′ ∈ Γ|A|, we define the operator TA→π′ : L(Γ̄n) → Γ̄n
that maps the Dirac function of a ranking π ∈ Γ̄n to the Dirac function of the ranking obtained
by replacing π|A by π′ if A ⊂ c(π) or to 0 otherwise.

Lemma 144. Let A ∈ P(JnK) and π ∈ Γ(A). The following properties hold.

1. For all A′, C ∈ P(JnK) such that A ⊂ A′ ⊂ C,

φ′Cδπ = φ′Cφ
′
A′δπ.

2. For all B,C ∈ P(JnK) such that A ∪B ⊂ C,

MBφ
′
Cδπ = MBφ

′
A∪Bδπ.

3. For all B ∈ P(JnK),

MBφ
′
A∪Bδπ =

∑
A1⊂A\B
B1⊂B\A
|A1|=|B1|

λ|B1|
∑

π′∈Γ(B1)

φ′BM(A∩B)tB1
TA1→π′δπ,

where λt = (|A|!|B|!)/(|A ∪B|!(|A ∩B|+ t)!) for any t ∈ N.

4. For all τ ∈ Sn

Tτφ
′
A = φ′τ(A)Tτ

Proof. We prove the properties in the order.
1. Let A′, C ∈ P(JnK) such that A ⊂ A′ ⊂ C. One has

φ′Cφ
′
A′δπ =

|A|!
|A′|!

φ′C
∑

π′∈Γ(A′)
π⊂σ

δπ′ =
|A|!
|A′|!

|A′|!
|C|!

∑
π′∈Γ(A′)
π⊂π′

∑
σ∈Γ(C)
π′⊂σ

δσ =
|A|!
|C|!

∑
σ∈Γ(C)
π⊂σ

δσ = φ′Cδπ.

159
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2. Let B,C ∈ P(JnK) such that A ∪ B ⊂ C. By definition of the marginal operator and by
Property 1., one has

MBφ
′
Cδπ = MBMA∪Bφ

′
Cφ
′
A∪Bδπ.

Now, for any A′ ∈ P(C) and π′ ∈ Γ(A′), it is clear that MA′φ
′
Cδπ′ = δπ′ . Applied to A∪B, this

concludes the proof of Property 2.
3. This is certainly the longest part of the proof. We introduce two new operators. First, the
deletion operator

%a : δπ 7→ δπ\{a} for a ∈ c(π),

where π \{a} is the ranking obtained by deleting the item a in π. Second, the insertion operator

%∗b : δπ →
|π|+1∑
i=1

δπCib for b 6∈ c(π),

where πCi b is the ranking obtained by inserting item b at the ith position. Then for A′ ∈ P(A)
with A \A′ = {a1, . . . , ar}, and B such that A ⊂ B with B \A = {b1, . . . , bs}, one has

MA′δπ = %a1
. . . %arδπ and φ′Bδπ =

|A|!
|B|!

%∗b1 . . . %
∗
bs .

Property 3. is then equivalent for any B ∈ P(JnK) to

%a1
. . . %ar%

∗
b1 . . . %

∗
bsδπ =

min(r,s)∑
k=0

∑
A1t{ai1 ,...,air−k}={a1,...,ar}
B1t{bj1 ,...,bjs−k}={b1,...,bs}

|A1|=|B1|=k

∑
π′∈Γ(B1)

%∗bj1 . . . %
∗
bjs−k

%ai1 . . . %air−kTA1→π′δπ, (D.1)

where {a1, . . . , ar} = A \ B and {b1, . . . , bs} = B \ A. We prove Formula (D.1) in three steps.
First for r = s = 1, one has

%a%
∗
bδπ =

|A|+1∑
i=1

%aδπCib = δπC1b\{a} + · · ·+ δπCπ(a)b\{a} + δπCπ(a)+1b\{a} + · · ·+ δπC1b\{a}.

The ranking πCπ(a) b\{a} is the ranking obtained by inserting b at the left of a in π and then by
deleting a. The ranking πCπ(a)+1 b \ {a} is the ranking obtained by inserting b at the right of a
in π and then by deleting a. It is clear that they are both equal to the ranking π{a}→b obtained
by changing a to b in π. Hence one has

%a%
∗
bδπ = %∗b%aδπ + T{a}→bδπ

and Formula (D.1) is satisfied. We now show by induction on s ∈ {1, . . . , |B \A|} that

%a%
∗
b1 . . . %

∗
bsδπ = %∗b1 . . . %

∗
bs%aδπ +

s∑
i=1

%∗b1 . . . %
∗
bi−1

%∗bi+1
. . . %∗bsT{a}→biδπ. (D.2)

Notice that for any A1  A\B, π′ ∈ Γ(B1) with B1 ⊂ B\A, a ∈ A\(A1tB) and b ∈ B\(AtB1)
one clearly has

%aTA1→π′δπ = TA1→π′%aδπ %∗bTA1→π′δπ = TA1→π′%
∗
bδπ. (D.3)
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Therefore, assuming (D.2) true for s ≤ |B \A| − 1, one has

%a%
∗
b1 . . . %

∗
bs+1

δπ = %a%
∗
b1 . . . %

∗
bs

(
%∗bs+1

δπ

)
= %∗b1 . . . %

∗
bs%a

(
%∗bs+1

δπ

)
+

s∑
i=1

%∗b1 . . . %
∗
bi−1

%∗bi+1
. . . %∗bsT{a}→bi

(
%∗bs+1

δπ

)
= %∗b1 . . . %

∗
bs+1

%aδπ + %∗b1 . . . %
∗
bsT{a}→bs+1

+

s∑
i=1

%∗b1 . . . %
∗
bi−1

%∗bi+1
. . . %∗bs+1

T{a}→biδπ

= %∗b1 . . . %
∗
bs+1

%aδπ +

s+1∑
i=1

%∗b1 . . . %
∗
bi−1

%∗bi+1
. . . %∗bs+1

T{a}→biδπ,

which concludes the proof of (D.2). At last, we show (D.1) by induction on r ∈ {1, . . . , |A \B|}.
Assuming it true for r ≤ |A \B| − 1, one has

%a1
. . . %ar+1

%∗b1 . . . %
∗
bsδπ

= %ar+1

[
%a1

. . . %ar%
∗
b1 . . . %

∗
bsδπ

]

= %ar+1


min(r,s)∑
k=0

∑
A1t{ai1 ,...,air−k}={a1,...,ar}
B1t{bj1 ,...,bjs−k}={b1,...,bs}

|A1|=|B1|=k

∑
π′∈Γ(B1)

%∗bj1 . . . %
∗
bjs−k

%ai1 . . . %air−kTA1→π′δπ

 .

If r ≤ s, Equations (D.2) and (D.3) give

%a1
. . . %ar+1

%∗b1 . . . %
∗
bsδπ

=

r∑
k=0

∑
A1t{ai1 ,...,air−k}={a1,...,ar}
B1t{bj1 ,...,bjs−k}={b1,...,bs}

|A1|=|B1|=k

∑
π′∈Γ(B1)

[
%∗bj1 . . . %

∗
bjs−k

%ar+1
%ai1 . . . %air−kTA1→π′δπ

+

s−k∑
i=1

%∗bj1 . . . %
∗
bji−1

%∗bji+1
. . . %∗bjs−k

T{ar+1}→bji%ai1 . . . %air−kTA1→π′δπ

]

=

r∑
k=0

∑
A1t{ai1 ,...,air+1−k}={a1,...,ar+1}
B1t{bj1 ,...,bjs−k}={b1,...,bs}

|A1|=|B1|=k
ar+1 6∈A1

∑
π′∈Γ(B1)

%∗bj1 . . . %
∗
bjs−k

%ai1 . . . %air+1−k
TA1→π′δπ

+

r+1∑
k=1

∑
A1t{ai1 ,...,air−k}={a1,...,ar+1}
B1t{bj′1 ,...,bj′s−k−1

}={b1,...,bs}
|A1|=|B1|=k+1

ar+1∈A1

∑
π′∈Γ(B1)

%∗bj′1
. . . %∗bj′

s−k−1

%ai1 . . . %air−kTA1→π′δπ

=

r+1∑
k=0

∑
A1t{ai1 ,...,air+1−k}={a1,...,ar+1}
B1t{bj1 ,...,bjs−k}={b1,...,bs}

|A1|=|B1|=k

∑
π′∈Γ(B1)

%∗bj1 . . . %
∗
bjs−k

%ai1 . . . %air+1−k
TA1→π′δπ.
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If s < r, Equations (D.2) and (D.3) give

%a1
. . . %ar+1

%∗b1 . . . %
∗
bsδπ

=

s−1∑
k=0

∑
A1t{ai1 ,...,air−k}={a1,...,ar}
B1t{bj1 ,...,bjs−k}={b1,...,bs}

|A1|=|B1|=k

∑
π′∈Γ(B1)

[
%∗bj1 . . . %

∗
bjs−k

%ar+1%ai1 . . . %air−kTA1→π′δπ

+

s−k∑
i=1

%∗bj1 . . . %
∗
bji−1

%∗bji+1
. . . %∗bjs−k

T{ar+1}→bji%ai1 . . . %air−kTA1→π′δπ

]
+

∑
A1t{ai1 ,...,air−s}={a1,...,ar}

|A1|=s

∑
π′∈Γ({b1,...,bs})

%ar+1
%ai1 . . . %air−sTA1→π′δπ

=

s∑
k=0

∑
A1t{ai1 ,...,air+1−k}={a1,...,ar+1}
B1t{bj1 ,...,bjs−k}={b1,...,bs}

|A1|=|B1|=k

∑
π′∈Γ(B1)

%∗bj1 . . . %
∗
bjs−k

%ai1 . . . %air+1−k
TA1→π′δπ.

In both cases the proof is concluded.
4. The proof of Property 4. is fully analogous to the one of Proposition 61. It is left to the
reader.

Property 3 from Lemma 144 is the analogue of Lemma 49. It allows to prove Theorem 124.

Proof of Theorem 124. One clearly has φ′JnK(H
0) = V 0 and V 0 ∼= S(n). Let k ∈ {2, . . . , n} and

A ∈ P(JnK) with |A| = k. We define the space W k
A = W k ∩ span{1Sn(π) | π ∈ Γ(A)}. We first

prove that φ′JnK(HA) ⊂ W k
A. Let F ∈ HA and let B ∈ P(JnK) with |B| ≤ k − 1. By definition

φ′JnK(HA) ⊂ span{1Sn(π) | π ∈ Γ(A)}. We then need to prove that MBφ
′
JnKF = 0. Properties 2.

and 3. of Lemma 144 give

MBφ
′
JnKF = MBφ

′
A∪BF =

∑
A1⊂A\B
B1⊂B\A
|A1|=|B1|

∑
π′∈Γ(B1)

φ′BM(A∩B)tB1
TA1→π′F.

The space Hk being stable under translations, one has TA1→π′F ∈ Hk for any A1 ⊂ A and
π′ ∈ Γ|A1|. Now, for any B1 ⊂ B \ A, |(A ∩ B) t B1| = |A ∩ B| + |B1| ≤ |B| ≤ k − 1. Hence
M(A∩B)tB1

TA1→π′F = 0 and MBφ
′
JnKF = 0. One therefore has φ′JnK(HA) ⊂ W k

A. In addition,

for F ∈ HA such that φ′JnKF = 0, property 2. of Lemma 144 gives 0 = MAφ
′
JnKF = F . The

operator φ′JnK is thus an injection from HA to W k
A and thus dimW k

A ≥ dk by Theorem 51. Now,

by construction W k =
⊕
|A|=kW

k
A, so that

n! = dim

V 0 ⊕
n⊕
k=2

⊕
|A|=k

W k
A

 ≤ 1 +

n∑
k=2

(
n

k

)
dk = n!.

Hence all the inequalities are equalities and therefore φ′JnK(H
k) = W k. Property 4. of Lemma

144 then ensures that W k ∼= Hk.
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D.2 Proofs of Section 6.3

D.2.1 Proofs of Subsection 6.3.1

The proofs of Theorem 129 and Proposition 130 require the two following lemmas. The proof of
the first one is straightforward and left to the reader.

Lemma 145. For a, b, c ∈ JnK with b 6= c one has

〈ea, eb〉 =

{
−1 if a 6= b

n− 1 if a = b
and 〈ea, xb�c〉 =


1 if a = b

−1 if a = c

0 if a 6∈ {b, c}

Lemma 146. For a, b ∈ JnK with a 6= b and s ∈ Rn one has∑
1≤i<j≤n

(si − sj)xi�j =
∑
i∈JnK

siei and fa,b = nxa�b + eb − ea.

Proof. Recalling that for any i, j ∈ JnK with i 6= j, xj�i = −xi�j , straightforward calculations
give∑
1≤i<j≤n

(si − sj)xi�j =
1

2

∑
1≤i6=j≤n

(si − sj)xi�j =
∑
i∈JnK

si
∑
j 6=i

xi�j +
∑
j∈JnK

sj
∑
i 6=j

xj�i =
∑
i∈JnK

siei

and

fa,b =
∑

c6∈{a,b}

(xa�b + xb�c + xc�a) = (n− 2)xa�b + (eb − xb�a)− (ea − xa�b) = nxa�b + eb − ea.

Proof of Theorem 129. We first show that the spaces H2
1 and H2

2 are orthogonal. Let a, b, c ∈ JnK
with b 6= c. By Lemmas 145 and 146, one has

〈ea, fb,c〉 = n 〈ea, xb�c〉+ 〈ea, ec〉 − 〈ea, eb〉 =


n− 1− (n− 1) = 0 if a = b

−n+ (n− 1) + 1 = 0 if a = c

0− 1 + 1 = 0 if a 6∈ {b, c}
.

Next we prove that H2
1 and H2

2 are both representations of Sn, or equivalently stable under
translations. For a, b ∈ JnK with a 6= b and τ ∈ Sn one has by definition Tτxa�b = xτ(a)�τ(b), so
that

Tτea =
∑
c 6=a

xτ(a)�τ(c) =
∑
c6=a

xτ(a)�c = eτ(a)

and

Tτfa,b =
∑

c6∈{a,b}

(xτ(a)�τ(b) + xτ(b)�τ(c) + xτ(c)�τ(a))

=
∑

c6∈{a,b}

Tτ (xτ(a)�τ(b) + xτ(b)�c + xc�τ(a)) = fτ(a),τ(b).

Now, Theorem 122 ensures that H2 ∼= S(n−1,1) ⊕ S(n−2,1,1) as representations of Sn, where
S(n−1,1) and S(n−2,1,1) are both irreducible representations. Since H2

1 6= {0}, one then necessarily
has H2

1
∼= S(n−1,1) and H2

2
∼= S(n−2,1,1) or H2

2
∼= S(n−1,1) and H2

1
∼= S(n−2,1,1). To conclude,

notice that since H2
1 = span{ea | a ∈ JnK}, dimH2

1 ≤ n <
(
n−1

2

)
and one cannot have H2

1
∼=

S(n−2,1,1). Hence the other alternative is true and this concludes the proof.
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D.2.2 Proofs of Subsection 6.3.2

Proof of Lemma 131. We prove the formulas in order.

(i) By definition xa�b = ab − ba so Ka,b = φ′JnK(xa�b) = 1Sn(ab) − 1Sn(ba) and Ka,b(σ) =

I{σ(a) < σ(b)} − I{σ(a) > σ(b)}.

(ii) One has

Ba(σ) =
∑
c6=a

Ka,c(σ) =
∑
c 6=a

I{σ(a) < σ(c)} − I{σ(a) > σ(c)} =

n∑
j=σ(a)+1

1−
σ(a)−1∑
j=1

1.

(iii) By Lemma 146 one has Ca,b = φ′JnK(nxa�b + eb − ea) = nKa,b +Bb −Ba. Then

Ca,b(σ) = n sign(σ(b)−σ(a))+(n+1−2σ(b))−(n+1−2σ(a)) = n sign(σ(b)−σ(a))−2(σ(b)−σ(a)).

Equivalently,

Ca,b =

n−1∑
r=−n+1
r 6=0

(n sign(r)−2r)1{σ(b)−σ(a)=r} =

n−1∑
r=1

(n−2r)
(
1{σ(b)−σ(a)=r} − 1{σ(b)−σ(a)=−r}

)
.

The proofs of Theorem 133 and Lemma 134 will extensively use the following lemma.

Lemma 147 (Inner products). Let a, b, c, d ∈ JnK with a 6= b and c 6= d. All the values of the
inner products between Ki,j’s, Bi’s and Ci,j’s are given in the following tables.

Condition 〈Ba,Kc,d〉 〈Ba, Bc〉 〈Ba, Cc,d〉

a = c (n+ 1)!/3 (n− 1)(n+ 1)!/3 0

a = d −(n+ 1)!/3 −(n+ 1)!/3 0

a 6∈ {c, d} 0 0 0

Condition 〈Ka,b,Kc,d〉 〈Ca,b,Kc,d〉 〈Ca,b, Cc,d〉

|{a, b} ∩ {c, d}| = 2 a = c, b = d n! (n− 2)n!/3 (n− 2)nn!/3

|{a, b} ∩ {c, d}| = 2 a = d, b = c −n! −(n− 2)n!/3 −(n− 2)nn!/3

|{a, b} ∩ {c, d}| = 1 a = c, b 6= d n!/3 −n!/3 −nn!/3

|{a, b} ∩ {c, d}| = 1 a 6= c, b = d n!/3 −n!/3 −nn!/3

|{a, b} ∩ {c, d}| = 1 a = d, b 6= c −n!/3 n!/3 nn!/3

|{a, b} ∩ {c, d}| = 1 a 6= d, b = c −n!/3 n!/3 nn!/3

|{a, b} ∩ {c, d}| = 0 0 0 0
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Proof. First we calculate the inner product between Ka,b and Kc,d.

〈Ka,b,Kc,d〉 =
〈
1Sn(ab) − 1Sn(ba),1Sn(cd) − 1Sn(dc)

〉
= |Sn(ab) ∩Sn(cd)| − |Sn(ab) ∩Sn(dc)| − |Sn(ba) ∩Sn(cd)|+ |Sn(ba) ∩Sn(dc)|

Now one has

|Sn(ab) ∩Sn(cd)| =



(if a = c, b = d) |Sn(ab)| = n!/2

(if a = d, b = c) |∅| = 0

(if a = c, b 6= d) |Sn(a � b, d)| = n!/6 + n!/6 = n!/3

(if a 6= c, b = d) |Sn(a, c � d)| = n!/6 + n!/6 = n!/3

(if a = d, b 6= c) |Sn(c � a � b)| = n!/6

(if a 6= d, b = c) |Sn(a � b � d)| = n!/6

(if {a, b} ∩ {c, d} = ∅) |Sn(a � b and c � d)| = n!/4

Injecting these values provides all the results. Then we calculate

1. 〈Ba,Kc,d〉 using Ba =
∑
b6=aKa,b and 〈Ka,b,Kc,d〉

2. 〈Ba, Bc〉 using Bc =
∑
d6=cKc,d and 〈Ba,Kc,d〉

3. 〈Ba, Cc,d〉 using Cc,d = nKc,d +Bd −Bc, 〈Ba, Bc〉 and 〈Ba,Kc,d〉

4. 〈Ca,b,Kc,d〉 using Ca,b = nKa,b +Bb −Ba, 〈Ka,b,Kc,d〉 and 〈Ba,Kc,d〉

5. 〈Ca,b, Cc,d〉 using Ca,b = nKa,b +Bb −Ba, 〈Ka,b,Kc,d〉, 〈Ba,Kc,d〉 and 〈Ba, Bc〉

Proof of Theorem 133. We first give another formulation of R2f for any f ∈ L(Sn). By Propo-
sition 125,

R2f = (n− 2)!

(
2

n!

)2 ∑
1≤a6=b≤n

〈
f,1Sn(ab)

〉
1Sn(ab).

Then, using the fact that 21Sn(ab) = 1Sn +Ka,b for any a, b ∈ JnK with a 6= b,∑
1≤a6=b≤n

〈
f,1Sn(ab)

〉
1Sn(ab) =

∑
1≤a<b≤n

〈
f,1Sn(ab)

〉
1Sn(ab) +

〈
f,1Sn(ba)

〉
1Sn(ba)

=
1

2

∑
1≤a<b≤n

〈
f,1Sn(ab)

〉
(1Sn +Ka,b) +

〈
f,1Sn(ba)

〉
(1Sn −Ka,b)

=
1

2

∑
1≤a<b≤n

〈f,1Sn〉1Sn + 〈f,Ka,b〉Ka,b.

This gives the following formula

R2f =
1

n!
〈f,1Sn〉1Sn +

1

2
(
n
2

)
n!

∑
1≤a6=b≤n

〈f,Ka,b〉Ka,b. (D.4)
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Injecting Lemma 147 in Formula (D.4) then gives, for any a, b ∈ JnK with a 6= b, (notice that as
〈Ka,b,1Sn〉 = |Sn(ab)| − |Sn(ba)| = 0, 〈Ba,1Sn〉 = 〈Ca,b,1Sn〉 = 0):

R21Sn = 1Sn , R2Ba =
(n+ 1)

3
(
n
2

) Ba and R2Ca,b =
1

3
(
n
2

)Cc,d.
This shows that V 0, Bn and Cn are included in the eigenspaces of R2 for the respective eigenval-
ues 1, (n+1)/(3

(
n
2

)
) and 1/(3

(
n
2

)
). Now, dimV 0+dim Bn+dim Cn = 1+(n−1)+

(
n−1

2

)
= 1+

(
n
2

)
and dim kerR2 = n! −

(
n
2

)
− 1 by Theorem 127. Hence all the inclusions are equalities and the

proof is concluded.

Proof of Lemma 134. For any subspace V of L(Sn), the orthogonal projection of p on V is
the unique element p′ of V such that 〈p− p′, q〉 = 0 or equivalently that 〈p, q〉 = 〈p′, q〉 for all
q ∈ V . As Bn = span(Ba)1≤a≤n and Cn = span(Ca,b)1≤a6=b≤n, it is sufficient to show that
〈p,Ba〉 = 〈pBn , Ba〉 and 〈p, Ca,b〉 = 〈pCn , Ca,b〉 for all a, b ∈ JnK with a 6= b. This is done using
Lemma 147.

D.2.3 Proofs of Subsection 6.3.3

Proof of Proposition 136. We begin with the left inequality. For σ ∈ Sn one has by Lemma 134

|pCn(σ)| = 3

n2n!

∣∣∣∣∣ ∑
{a,b}⊂JnK

〈p, Ca,b〉Ca,b(σ)

∣∣∣∣∣ ≤ 3(n− 2)

n2n!

∑
{a,b}⊂JnK

| 〈p, Ca,b〉 |,

because ‖Ca,b‖∞ = (n − 2) for any a, b ∈ JnK with a 6= b by Lemma 131. Now, by definition of
Ca,b,

| 〈p, Ca,b〉 | =

∣∣∣∣∣
〈
p,

∑
c 6∈{a,b}

Ka,b +Kb,c +Kc,a

〉∣∣∣∣∣ ≤ ∑
c 6∈{a,b}

Cyc{a,b,c}(p).

Combining the two gives the left inequality. For the right inequality, let a, b, c ∈ JnK be distinct
elements. First observe that

Ca,b + Cb,c + Cc,a = n(Ka,b +Kb,c +Kc,a)

by Lemma 131. One therefore has

Cyc{a,b,c}(p) = | 〈p,Ka,b +Kb,c +Kc,a〉 | ≤
1

n

(
| 〈p, Ca,b〉 |+ | 〈p, Cb,c〉 |+ | 〈p, Cc,b〉 |

)
.

Hence

∑
{a,b,c}⊂JnK

Cyc{a,b,c}(p) ≤
3(n− 2)

n

∑
{a,b}⊂JnK

| 〈p, Ca,b〉 | ≤
3(n− 2)

n

(
n

2

) ∑
{a,b}⊂JnK

〈p, Ca,b〉2
1/2

,

where the last part comes from the Cauchy-Schwarz inequality. On the other hand one has

‖pCn‖22 = 〈pCn , pCn〉 =
3

n2n!

∑
{a,b}⊂JnK

〈p, Ca,b〉 〈pCn , Ca,b〉 =
3

n2n!

∑
{a,b}⊂JnK

〈p, Ca,b〉2 ,

where the last equality comes from the fact that pCn is the orthogonal projection of p onto
Cn = span(Ca,b)1≤a<b≤n and therefore satisfies 〈pCn , Ca,b〉 = 〈p, Ca,b〉 for all a, b ∈ JnK with
a 6= b. Combining the two concludes the proof.



Appendix E

Condensé en français

Introduction

On s’intéresse aux problèmes de ranking sur un nombre fini (mais potentiellement grand) d’éléments.
Le cadre naturel de modélisation est donc le suivant :
On dispose de n objets numérotés arbitrairement de 1 à n. Un ranking de ces n objets est une
façon de les ordonner, ce que l’on peut modéliser par une permutation σ de {1, . . . , n}, où

• σ(i) est le rang de l’objet numéroté i

• σ−1(i) est le numéro de l’objet classé à la ième place

Dans les applications visées, on est naturellement amené à manipuler des probabilités sur
l’ensemble des permutations de {1, . . . , n}, noté Sn. Le principal problème est qu’une telle prob-
abilité nécessite n! − 1 paramètres pour être caractérisée et donc stockée. Or, cette quantité
dépasse les capacités de stockages actuelles dès que n dépasse 15. Et nous aimerions avoir n =
1 000 000. . .

Notre problème est donc : Trouver une représentation efficace pour les probabilités
sur le groupe symétrique.

Cette représentation doit permettre, en plus de pouvoir représenter les probabilités sur le
groupe symétrique avec peu de paramètres, de résoudre les problèmes classiques :

• raisonnement bayésien

• apprentissage supervisé

• clustering

• optimisation

En outre, il faut pouvoir l’utiliser pour différents types d’observations sur la probabilité :

• les valeurs pour quelques permutations

• des coefficients de fourier

• des rankings partiels et/ou incomplets

167
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E.1 Cadre général

E.1.1 Définitions

Algèbre de convolution Soit G un groupe fini. Un signal sur G est modélisé au sens large
par une fonction de G dans C.
On note C[G] = {f : G→ C}.
Pour g ∈ G, on note δg sa fonction indicatrice.
Chaque élément de C[G] se décompose ainsi de manière canonique :

f =
∑
g∈G

f(g)δg

C[G] est donc naturellement isomorphe à l’espace vectoriel hermitien C|G| et hérite du produit
scalaire et de la norme :

〈φ, ψ〉 =
∑
g∈G

φ(g)ψ(g) et ‖φ‖ =

∑
g∈G
|φ(g)|2

 1
2

La base canonique {δg, g ∈ G} est orthonormée pour ce produit scalaire.
On définit le produit de convolution de deux éléments de C[G] par :

(φ ∗ ψ) (g) =
∑
h∈G

φ
(
gh−1

)
ψ(h)

On a : ∀g, h ∈ G, δg ∗ δh = δgh.
(C[G],+, ∗) est alors une algèbre, on l’appelle l’algèbre du groupe G.

La représentation régulière gauche, ou l’action des translations A tout g ∈ G, on peut
associer la translation Tg ∈ L (C[G]) définie par

Tgf = δg ∗ f, i.e. ∀h ∈ G, Tgf(h) = f(g−1h)

C’est une application inversible avec (Tg)
−1

= Tg−1 .
De plus, on a : ∀g, h ∈ G, TgTh = Tgh.
Ainsi, g 7→ Tg est un morphisme de groupes entre G et GL (C[G]), que l’on note ρreg.
(C[G], ρreg) est appelée la représentation régulière gauche du groupe G.

G étant un groupe fini, il admet un nombre fini de représentations irréductibles inéquivalentes.
Le théorème de Mashke nous dit que toute représentation (sur C) est équivalente à une somme
de ces représentations irréductibles. Dans le cas de la représentation régulière, on peut être plus
précis. On note ρ1, ..., ρm un représentant de chaque représentation irréductible, où ρk agit sur
un espace de dimension dk. On a alors :

ρreg '
m⊕
k=1

dkρ
k

De plus, on sait qu’il est possible de représenter chaque ρk par une matrice unitaire Rk ∈
GLdk(C). On pose alors :

pour k ∈ {1, ...,m} , i, j ∈ {1, ..., dk} , εkij : g 7→

√
dk
|G|

Rkij(g)



E.1. CADRE GÉNÉRAL 169

Et d’après le lemme de Schur (cf Diaconis), la famille
{
εkij | k ∈ {1, ...,m} , i, j ∈ {1, ..., dk}

}
est

une base orthonormée de C[G]. De plus, pour tout g ∈ G, la matrice de ρreg(g) dans cette base
est diagonale par blocs avec :

Les projection sur les sous-espaces isotypiques et la transformée de Fourier Pour
k ∈ {1, ...,m} et j ∈ {1, ..., dk}, on pose :

V kj = V ect
(
εk1j , ε

k
2j , ..., ε

k
dkj

)
et V k =

dk⊕
j=1

V kj

Comme nous l’avons vu, chaque V kj est stable sous l’action de {ρreg(g), g ∈ G}, et donc V k aussi.

On l’appelle le sous-espace isotypique associé à la représentation irréductible ρk.
Pour f ∈ C[G], on note πkf sa projection (orthogonale) sur V k.{
εkij | k ∈ {1, ...,m} , i, j ∈ {1, ..., dk}

}
étant une base orthonormée, on a les formules :

〈φ, ψ〉 =

m∑
k=1

∑
16i,j6dk

〈
φ, εkij

〉 〈
ψ, εkij

〉

‖f‖ =

 m∑
k=1

∑
16i,j6dk

|
〈
f, εkij

〉
|2
 1

2

f =

m∑
k=1

∑
16i,j6dk

〈
f, εkij

〉
εkij
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πkf =
∑

16i,j6dk

〈
f, εkij

〉
εkij

La projection de f sur V k est ainsi donnée par les coefficients
{〈
f, εkij

〉
| 1 6 i, j 6 dk

}
. Il est

donc naturel de considérer la matrice
(〈
f, εkij

〉)
16i,j6dk

∈Mdk (C). En fait, on pose :

f̂
(
ρk
)

=

√
|G|
dk

(〈
f, εkij

〉)
16i,j6dk

Ce qui donne :

f̂
(
ρk
)

=
∑
g∈G

f(g)Rk(g)

On appelle f̂ la transformée de Fourier de f . On la note aussi Ff .
On munit Mdk (C) du produit scalaire 〈A,B〉 = Tr (A∗B).

Il s’agit du produit scalaire coordonnée par coordonnée, donc f̂
(
ρk
)

hérite pour ce produit
scalaire de toutes les propriétés de πkf en tant que projection orthogonale. On obtient ainsi les
formules dites respectivement de Plancherel, d’isométrie, et d’inversion :

〈φ, ψ〉 =
1

|G|

m∑
k=1

dk

〈
φ̂
(
ρk
)
, ψ̂
(
ρk
)〉

‖f‖2 =
1

|G|

m∑
k=1

dk‖f̂
(
ρk
)
‖2

f(g) =
1

|G|

m∑
k=1

dk

〈
Rk(g)f̂

(
ρk
)〉

=
1

|G|

m∑
k=1

dkTr
[
Rk(g−1)f̂

(
ρk
)]

Pour la dernière formule, on a utilisé le fait que Rk est unitaire. En particulier, on a aussi :

πkf(g) =
dk
|G|

Tr
[
Rk(g−1)f̂

(
ρk
)]

Enfin, comme pour les fonctions réelles, la transformée de Fourier transforme le produit de
convolution en produit (ici matriciel) :

φ̂ ∗ ψ
(
ρk
)

= φ̂
(
ρk
)
ψ̂
(
ρk
)

Graphes de Cayley et Laplacien Dans le cas des fonctions réelles, la transformée de Fourier
interagit agréablement avec la dérivation, ou aussi, avec le laplacien. D’ailleurs, la décomposition
de Fourier dans L2 ([0, 1]) peut s’obtenir par l’étude spectrale du laplacien, vu comme opérateur
auto-adjoint compact et positif. Dans le cas d’un groupe fini, il est possible de faire un lien
entre la transformée de Fourier définie précédemment et le laplacien sur certains graphes, dits
de Cayley.

Soit S ⊂ G. On note Γ (G,S) le graphe qui a pour ensemble de noeuds G, et où g est relié à
h (que l’on note g ∼ h) si hg−1 ∈ S. Les propriétés suivantes sont immédiates :

• Γ (G,S) est sans boucle ssi id /∈ S

• Γ (G,S) est non orienté ssi S−1 = S
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• Γ (G,S) est connexe ssi 〈S〉 = G

Si S vérifie ces 3 hypothèses, on dit que Γ (G,S) est un graphe de Cayley. Dans ce cas, on a en
particulier que chaque noeud a exactement |S| voisins (on dit que le graphe est |S|-régulier).
Si de plus, S est invariante par conjugaison, on dit que Γ (G,S) est quasi-abélien.

On suppose dans la suite que Γ (G,S) est de Cayley. On définit sa matrice d’adjacence comme
la matrice A(G,S) telle que A(G,S)g,h = 1{g∼h}. C’est une matrice |G| × |G|, donc on peut la
voir comme un opérateur sur C[G], avec :

A(G,S) δg =
∑
h∼g

δh =
∑
s∈S

δsg =
∑
s∈S

ρreg(s)δg

Ainsi,

A(G,S) =
∑
s∈S

ρreg(s)

On peut aussi écrire, pour f ∈ C[G] :

(A(G,S) f) (g) =
∑
h∼g

f(h)

On définit le laplacien du graphe Γ (G,S) par L(G,S) = |S|I|G|−A(G,S). En tant qu’opérateur
:

L(G,S) f(g) =
∑

h tqh∼g

(f(g)− f(h))

Par définition, les valeurs propres et vecteurs propres du laplacien sont directement reliés à ceux
de la matrice d’adjacence. Ces deux matrices sont symétriques réelles, donc diagonalisable dans
R avec des valeurs propres réelles. De plus, on a :

〈f,L(G,S) f〉 =
1

2

∑
(g,h) tq g∼h

|f(g)− f(h)|2

Donc L(G,S) est un opérateur positif, et ses valeurs propres sont positives.

Lien entre les valeurs propres du laplacien et la transformée de Fourier On a vu que
A(G,S) =

∑
s∈S ρreg(s), donc elle se décompose simplement dans la base

{
εkij
}

et ses valeurs

propres et vecteurs propres sont donc directement reliés à ceux des 1̂S
(
ρk
)
. Ainsi, l’étude spec-

trale du laplacien revient à l’étude spectrale des éléments matriciels de la transformée de Fourier
d’une fonction de G dans C.

Dans le cas où Γ (G,S) est quasi-abélien, S est invariante par conjugaison, donc 1S est une
fonction centrale (constante sur les classes d’équivalence). On sait alors que c’est une combi-
naison linéaire des caractères des représentations irréductibles, et qu’elle agit sur chaque espace
isotypique comme une homothétie. Plus précisément, on a que pour tout graphe quasi-abélien,
εkij est un vecteur propre de A(G,S) de valeur propre : Λk = 1

dk

∑
s∈S χ

k(s) (où χk = Tr
(
ρk
)

est le caractère de la représentation irréductible ρk).



172 APPENDIX E. CONDENSÉ EN FRANÇAIS

Dans le cas général, on sait que 1̂S
(
ρk
)

est diagonalisable (en tant que restriction de A(G,S)
à V k).
On note λk1 , λ

k
2 , ..., λ

k
dk

ses valeurs propres et uk1 , u
k
2 , ..., u

k
dk

des vecteurs propres associés.

Alors : λki est valeur propre de A(G,S) avec multiplicité dk et vecteurs propres

φkij =

dk∑
l=1

(
uki
)
l
εklj pour j = 1, ..., dk

Malheureusement, il n’existe pas a priori de formule permettant de calculer les λki ou les uki .
Une piste pour les étudier est peut-être la suivante. On prend une fonction f ∈ C[G] et une
représentation irréductible ρ, qui agit sur un espace de dimension d. On note λ1, λ2, ..., λd les
valeurs propres de f̂(ρ). On a alors :

d∑
i=1

λpi = Tr [(Ff(ρ))
p
]

= Tr [F(f ∗ · · · ∗ f) (ρ)]

= Tr

∑
g∈G

(f ∗ · · · ∗ f)(g)ρ(g)


=
∑
g∈G

(f ∗ · · · ∗ f)(g)χ(g)

=
〈
f ∗ · · · ∗ f, χ

〉
Ce qui donne le système : 

λ1 + λ2 + . . .+ λd =
〈
f, χ

〉
λ2

1 + λ2
2 + . . .+ λ2

d =
〈
f ∗ f, χ

〉
...

λd1 + λd2 + . . .+ λdd =
〈
f ∗ · · · ∗ f, χ

〉
E.1.2 Les représentations irréductibles du groupe symétrique

Soit n ∈ N∗

Lien avec les partitions d’entiers Une partition de n est un r-uplet d’entiers λ = (λ1, . . . , λr)
tels que :

r∑
i=1

λi = n et λ1 > . . . > λr > 1

On note λ ` n.
Une permutation σ ∈ Sn se décompose de manière unique en produit de r cycles à supports dis-
joints (on prend en compte les points fixes). Si on les ordonne par taille de support décroissante,
le r-uplet des tailles des cycles est alors une partition de n. On l’appelle la structure de cycles
de σ.
On peut alors montrer que deux permutations σ1, σ2 ∈ Sn sont conjuguées ssi elles ont la même
structure de cycles.
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Ainsi, l’ensemble des classes de conjugaison de Sn est en bijection avec l’ensemble des partitions
de n {λ ` n}. On note p(n) son cardinal.

Un résultat classique de la théorie des représentations de groupes dit que le nombre de représentations
irréductibles (ou pour être plus précis de classes d’équivalence de représentations irréductibles)
d’un groupe G est égal au nombre de ses classes de conjugaison.
Ainsi, Sn admet p(n) représentations irréductibles et on peut les indexer par les partitions de
n. On note Rn l’ensemble des représentations irréductibles de Sn.

L’objectif est double :

• Décrire les représentations irréductibles

• Les ordonner

Partitions d’entiers et tableaux de Young Une partition λ de n se représente par un di-
agramme de Young :

Comme λ est une partition de n, le diagramme a exactement n cases.

Un tableau de Young de forme λ, encore appelé λ-tableau, est le diagramme de Young de λ
rempli avec les nombres 1, 2, ..., n. On note T (λ) l’ensemble des λ-tableaux. On a clairement
|T (λ)| = n!.
Un tableau de Young standard est un tableau de Young dont les entrées sont (strictement)
croissantes au sein des lignes (de gauche à droite) et des colonnes (de haut en bas). On note
T S(λ) l’ensemble des λ-tableaux standards.
Un tableau de Young semistandard est un diagramme de Young rempli avec des entiers > 1
de manière croissante au sein d’une ligne et strictement croissante au sein d’une colonne.
Un tableau de Young semistandard de type µ = (µ1, µ2, ..., µs) (de forme λ) est un tableau
semistandard (de forme λ) qui contient µi fois le nombre i, pour i = 1, ..., s.

Pour deux partitions de n λ = (λ1, . . . , λr) et µ = (µ1, µ2, ..., µs), on définit la relation d’ordre :

λD µ si ∀j ∈ {1, ...,min(r, s)} ,
j∑
i=1

λi 6
j∑
i=1

µi

(Attention la convention n’est pas prise ici dans le même sens que dans Diaconis).
Elle définit un ordre partiel sur {λ ` n}.
On note λB µ si λD µ et λ 6= µ.

On appelle nombre de Kostka-λµ, noté Kλµ, le nombre de tableaux semistandards de forme λ
et de type µ. On a alors :

Kλµ 6= 0 ⇔ λE µ et Kλλ = 1
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Action de Sn sur les tableaux de Young Sn agit naturellement sur {1, ..., n} par σ·i = σ(i).
Cette action s’étend canoniquement aux parties de {1, ..., n} à k éléments par :

σ · {i1, ..., ik} = {σ (i1) , ..., σ (ik)}

ou encore aux k-uplets par :

σ · (i1, ..., ik) = (σ (i1) , ..., σ (ik))

On peut en fait généraliser l’approche.

On fixe λ ` n.
On dit que deux λ-tableaux t1, t2 sont équivalents si chaque ligne de t1 contient les mêmes nom-
bres que la ligne de t2 correspondante.
Une classe d’équivalence pour cette relation s’appelle un λ-tablöıde. On note T (λ) l’ensemble
des λ-tablöıdes. Un élément t ∈ T (λ) peut se voir comme un λ-tableau dont les entrées des
lignes ne sont pas ordonnées.
On voit facilement que |T (λ) | = n!

λ1!...λr!

Dans le cas de certaines partitions λ, on peut interpréter les t ∈ T (λ) de manière simple :

• Si λ = (n− k, k), T (λ) est en bijection avec les parties de {1, ..., n} à k éléments en
associant à t la partie constituée des éléments de sa deuxième ligne.

• Si λ =
(
n− k, 1k

)
, T (λ) est en bijection avec les k-uplets de {1, ..., n} à k éléments en

associant à t le k-uplet formé des éléments de chacune de ses lignes excepté la première.

Dans le cas général, T (λ) est en bijection avec l’ensemble des partitions de {1, ..., n} en r parties
de cardinaux λ1, λ2, . . . λr.

Maintenant, l’action de Sn sur {1, ..., n} s’étend aussi naturellement sur T (λ) (c’est donc une
généralisation de l’approche précédente).
On note Mλ = {f : T (λ)→ C}.
Il est engendré par les fonctions indicatrices de chaque λ-tablöıde δt.
On considère alors l’action régulière de Sn sur T (λ), notée ρλ :

ρλ(σ)δt = δσ·t i.e. (ρλ(σ)f)
(
t
)

= f
(
σ−1 · t

)
Les représentations irréductibles de Sn : les modules de Specht Soit λ ` n et t ∈ T (λ)
un λ-tableau.
On note Ct le sous-groupe de Sn constitué des permutations qui laissent stable les colonnes de
t (en autorisant un réordonnement).
On définit le polytablöıde associé à t comme l’élément et ∈Mλ :

et =
∑
σ∈Ct

ε(σ)δσ·t =

(∑
σ∈Ct

ε(σ)ρλ(σ)

)
(δt) =

( ∑
σ∈Sn

(ε1Ct) (σ)ρλ(σ)

)
(δt)

On définit le module de Specht Sλ = V ect {et | t ∈ T (λ)} .
Alors, un des résultats principaux de la théorie des représentations du groupe symétrique assure
que les Sλ sont des représentations irréductibles inéquivalentes de Sn.
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Ainsi, on a réussi à décrire toutes les représentations irréductibles de Sn en les indexant
automatiquement par les partitions de n. On peut décrire les espaces Sλ un peu plus précisément
: {et | t ∈ T S(λ)} est une base de Sλ. Ainsi :

dimSλ = |T S(λ)|

Il se trouve qu’on dispose de deux formules pour calculer ce nombre. La formule déterminantale
:

dimSλ = n! det

(
1

(λi − i+ j)!

)
16i,j6r

avec
1

k!
= 0 si k < 0

Et la formule des équerres. Pour cela, on définit, pour u une case du λ-diagramme (on note
u ∈ λ), son équerre comme l’ensemble des cases à sa droite et en-dessous (elle y compris). Le
nombre de cases dans l’équerre est appelé la longueur d’équerre de u, on la note hλ(u). On a
alors :

dimSλ =
n!∏

u∈λ hλ(u)

Ordonner les représentations irréductibles Jusque-là, nous avons réussi à décrire les
représentations irréductibles de Sn en les indexant par les partitions de n. Par ailleurs, nous
avons définit un ordre partiel sur ces partitions de n. Nous allons donc voir comment on peut
interpréter l’ordre sur les espaces Sλ. Nous allons nous appuyer sur un théorème, appelé la règle
de Young :

Mµ '
⊕
λ`n

KλµS
λ

Or, nous avons vu que Kλµ 6= 0 ⇔ λ E µ et Kλλ = 1. On peut donc réécrire la règle de
Young :

Mµ ' Sµ ⊕
⊕
λCµ

KλµS
λ

Voyons comment interpréter la formule pour les petites fréquences. On a le diagramme :
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On a donc :

M (n) = S(n)

M (n−1,1) ' S(n) ⊕ S(n−1,1)

M (n−2,2) ' S(n) ⊕ S(n−1,1) ⊕ S(n−2,2)

M (n−3,3) ' S(n) ⊕ S(n−1,1) ⊕ S(n−2,2) ⊕ S(n−3,3)

M (n−2,1,1) ' S(n) ⊕ 2S(n−1,1) ⊕ S(n−2,2) ⊕ S(n−2,1,1)

M (n−4,4) ' S(n) ⊕ S(n−1,1) ⊕ S(n−2,2) ⊕ S(n−3,3) ⊕ S(n−4,4)

M (n−3,2,1) ' S(n) ⊕ 2S(n−1,1) ⊕ 2S(n−2,2) ⊕ S(n−2,1,1) ⊕ S(n−3,2,1)

On peut donc écrire :

M (n) = S(n)

M (n−1,1) 'M (n) ⊕ S(n−1,1)

M (n−2,2) 'M (n−1,1) ⊕ S(n−2,2)

M (n−3,3) 'M (n−2,2) ⊕ S(n−3,3)

M (n−2,1,1) 'M (n−2,2) ⊕ S(n−1,1) ⊕ S(n−2,1,1)

M (n−4,4) 'M (n−3,3) ⊕ S(n−4,4)

M (n−3,2,1) 'M (n−2,1,1) ⊕ S(n−2,2) ⊕ S(n−3,2,1)

Ainsi, on obtient le même diagramme pour les inclusions des espaces Mλ que pour la rela-
tion d’ordre des partitions de n. De plus, la “différence” entre deux espaces Mλ comparables
s’exprime en fonctions d’espaces Sλ.

E.1.3 Etude des distributions de probabilité sur Sn

Décomposition en marginales On a défini précédemment l’action régulière de Sn sur Mλ

par :

ρλ(σ)δt = δσ·t i.e. (ρλ(σ)f)
(
t
)

= f
(
σ−1 · t

)
En notant Rλ(σ) la matrice de ρλ(σ) dans la base

{
δt | t ∈ T (λ)

}
, on voit que c’est une matrice

de permutation de M|T (λ)| (R), avec :

Rλ(σ)u,t = 1{σ·t=u}

Soit maintenant f ∈ C [Sn] une distribution de probabilité et P sa probabilité associée, i.e. telle
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que P (σ = σ0) = f (σ0). Elle induit une mesure sur T (λ)× T (λ) par :

P
[
σ · t = u

]
=
∑
σ·t=u

f(σ)

=
∑
σ∈Sn

f(σ)1{σ·t=u}

=
∑
σ∈Sn

f(σ)Rλ(σ)u,t

=

( ∑
σ∈Sn

f(σ)ρλ(σ)

)
u,t

On note comme avant :
f̂ (ρλ) =

∑
σ∈Sn

f(σ)ρλ(σ)

On l’appelle la matrice des λ-marginales. On définit aussi les fonctions λ-marginales par :

ft : T (λ)→ C, u 7→
∑
σ·t=u

f(σ)

Ce sont toutes des distributions de probabilités. On voit que ce sont les vecteurs colonnes de la
matrice des λ-marginales, ce qui justifie son nom.

Marginales d’ordre k On dit qu’une λ-marginale (ou une partition λ) est d’ordre k si λ1 =
n − k. Ces partitions sont en bijection avec les partitions de k, il y en a donc autant, et elles
ne sont pas totalement ordonnées. Il y a cependant deux partitions particulières, qui peuvent se
comparer à toutes les autres :

• la plus petite : (n− k, k)

• la plus grande :
(
n− k, 1k

)
De plus, la partition

(
n− k, 1k

)
est plus grande que toutes les partitions d’ordre j, pour j 6 k.

On note Ak l’ensemble des k-arrangements de {1, ..., n} (i.e. l’ensemble des k-uplets sans
répétition). On a |Ak| = n(n− 1)...(n− k + 1).

On a vu que T
(
n− k, 1k

)
est en bijection avec Ak. Donc on identifie les fonctions de M(n−k,1k)

aux fonctions Ak → C.

L’ordre partiel permet en quelque sorte de comparer la quantité d’information contenue dans
les marginales. On peut le voir par exemple au sein des marginales d’ordre k. Soit λ une partition
d’ordre k. On assimile comme précédemment un λ-tablöıde t ∈ T (λ) à sa partition ordonnée
(A1, ..., Ar), où {A1, ..., Ar} est une partition de {1, ..., n} avec |Ai| = λi. On note x1, ..., xλ2

les
éléments de A2, xλ2+1, ..., xλ2+λ3

ceux de A3, et ainsi de suite.
On pose alors :

Πλ : M(n−k,1k) →Mλ

f 7→ fλ

avec fλ (A1, ..., Ar) =
∑

σ∈S({x1,...,xk})
σ·(A2,...,Ar)=(A2,...,Ar)

f (σ (x1) , ..., σ (xk))
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E.2 Fonctions prolate

E.2.1 Généralités

Définitions et notations

Notations : Pour f ∈ C [Sn], on note

• supp(f) = {σ ∈ Sn| f 6= 0} son support

• supp
(
f̂
)

=
{
λ ` n| f̂(λ) 6= 0

}
le support de sa transformée de Fourier

Projection dans le domaine “temporel” : On définit une première opération de projection
qui consiste simplement à tronquer une fonction f ∈ C [Sn] à un sous-ensemble S ⊂ Sn donné :

ΠS : f 7→ f1S

ΠS est clairement un projecteur, et on voit facilement qu’il est autoadjoint donc orthogonal.

Projection dans le domaine “fréquentiel” : On définit une deuxième opération de pro-
jection qui consiste à tronquer une fonction f ∈ C [Sn] à un sous-ensemble de ses coefficients de
Fourier Λ ⊂ {λ ` n} donné. On veut donc :

P̂Λf(λ) = f̂(λ)1λ∈Λ

= F (f ∗ ψΛ) (λ) avec ψ̂Λ (λ) = Idλ1λ∈Λ

On pose donc :

PΛ : f 7→ f ∗ ψΛ

En regardant les transformées de Fourier, on voit facilement que PΛ est un projecteur, et qu’il
est autoadjoint donc orthogonal.

Opérateurs prolate : Enfin, on définit l’opérateur AS,Λ = PΛΠS que l’on note simplement A
s’il n’y a pas d’ambigüıté.
Son opérateur adjoint est alors A∗ = Π∗SP

∗
Λ = ΠSPΛ.

On a aussi :

AA∗ = PΛΠSPΛ et A∗A = ΠSPΛΠS

Ces deux derniers opérateurs sont naturellement autoadjoints et positifs. De plus, en notant |||.||| la
norme d’opérateur (subordonnée à la norme hermitienne), comme ΠS et PΛ sont des projecteurs
orthogonaux, on a :

|||AA∗||| 6 |||PΛ||||||ΠS ||||||PΛ||| 6 1 et |||A∗A||| = |||ΠS ||||||PΛ||||||ΠS ||| 6 1

Toutes leurs valeurs propres sont donc dans [0, 1].
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Les fonctions prolate On dispose d’une fonction f ∈ C [Sn], et on aimerait pouvoir localiser
l’information qu’elle contient en temps et en fréquence, au sein d’un produit scalaire. Supposons

qu’il existe une fonction φ ∈ C [Sn] telle que supp(φ) ⊂ S et supp
(
φ̂
)
⊂ Λ. On a alors :

〈f, φ〉 =
∑
σ∈S

f(σ)φ(σ)

=
1

n!

∑
λ∈Λ

dλ〈f̂(λ), φ̂(λ)〉

On voit donc que, connaissant φ, le produit scalaire 〈f, φ〉 ne contient que l’information de f sur
S et sur Λ.
Le problème, c’est que φ doit respecter l’inégalité d’incertitude :

|supp(φ)|
∑

λ∈supp(φ̂)

(dλ)
2 > n!

Il n’est donc pas possible de restreindre φ à S et Λ s’ils sont petits. L’idée est alors de chercher
φ restreinte seulement à l’un des deux, mais dont la restriction à l’autre a une norme maximale.
On est donc amené à considérer les deux problèmes suivants :

max
‖f‖=1

supp(f̂)⊂Λ

∑
σ∈S
|f(σ)|2 et max

‖f‖=1
supp(f)⊂S

1

n!

∑
λ∈Λ

dλ‖f̂(λ)‖2

(où ‖.‖ désigne aussi bien la norme hermitienne sur C [Sn] que la norme de Frobénius surMd(C)).
Une fonction qui optimise l’un des deux problèmes est appelée fonction prolate. On peut les
réécrire avec les opérateurs de projections :

max
‖f‖=1
PΛf=f

‖ΠSf‖2 et max
‖f‖=1
ΠSf=f

‖PΛf‖2

Maintenant, le premier se transforme de la façon suivante :

max
‖f‖=1
PΛf=f

‖ΠSf‖2 = max
‖f‖=1
PΛf=f

‖ΠSPΛf‖2

= max
‖f‖=1

‖ΠSPΛf‖2

= max
‖f‖=1

〈A∗f,A∗f〉

= max
‖f‖=1

〈AA∗f, f〉

(le passage de la première à la deuxième ligne se justifie en disant que si φ = argmax {‖ΠSPΛf‖| ‖f‖ = 1}
alors ‖ΠSPΛφ‖ > ‖ΠSPΛ

PΛφ
‖PΛφ‖‖ i.e. ‖PΛφ‖ > 1 donc PΛφ = φ)

Ainsi, comme AA∗ est autoadjoint positif, max
‖f‖=1
PΛf=f

‖ΠSf‖2 est égal à sa plus grande valeur propre,

et il est atteint pour les vecteurs propres associés.
De même, max

‖f‖=1
ΠSf=f

‖PΛf‖2 est égal à la plus grande valeur propre de A∗A et est atteint pour les

vecteurs propres associés.
Il suffit donc d’appliquer l’algorithme des puissances itérées aux matrices AA∗ et A∗A pour
résoudre numériquement les deux problèmes initiaux.
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Etude des opérateurs AA∗ et A∗A Nous allons maintenant exprimer la matrice de A∗A.
Soit σ ∈ Sn. On a :

ΠSδσ = δσ1σ∈S

PΛδσ = δσ ∗ ψΛ =
∑
σ′∈Sn

ψΛ

(
σ−1σ′

)
δσ′

D’où :

A∗Aδσ = ΠSPΛΠS δσ = 1σ∈S
∑
σ′∈S

ψΛ

(
σ−1σ′

)
δσ′

On numérote les permutations de Sn en commençant avec les permutations de S : σ1, σ2, ..., σs.
La matrice de A∗A dans la base canonique est alors :

(
M 0
0 0

)
avec M =

 ψΛ

(
σ−1

1 σ1

)
· · · ψΛ

(
σ−1
s σ1

)
...

. . .
...

ψΛ

(
σ−1

1 σs
)
· · · ψΛ

(
σ−1
s σs

)


On peut détailler un peu plus en développant la fonction ψΛ par la formule d’inversion de Fourier
:

ψΛ(σ) =
1

n!

∑
λ∈Λ

dλχλ
(
σ−1

)
=

1

n!

∑
λ∈Λ

dλχλ(σ)

On peut alors écrire :

M =
1

n!

∑
λ∈Λ

dλXλ avec Xλ =

 χλ
(
σ−1

1 σ1

)
· · · χλ

(
σ−1
s σ1

)
...

. . .
...

χλ
(
σ−1

1 σs
)
· · · χλ

(
σ−1
s σs

)


En ce qui concerne AA∗, comme il a le même polynôme caractéristique que A∗A, il a les mêmes
valeurs propres. De plus, si α 6= 0 est une valeur propre, en notant Eα l’espace propre associé
pour A∗A et Fα l’espace propre associé pour AA∗, on a :

dimEα = dimFα et Fα = A (Eα)

Donc les vecteurs propres de AA∗ s’obtiennent facilement à partir de ceux de A∗A.

E.2.2 Propriétés à regarder

Localisation Soit S ⊂ Sn et Λ ⊂ {λ ` n}. On note :

α = max
‖f‖=1

supp(f̂)⊂Λ

∑
σ∈S
|f(σ)|2 = max

‖f‖=1
supp(f)⊂S

1

n!

∑
λ∈Λ

dλ‖f̂(λ)‖2

Ainsi que φ1 une fonction qui atteint le premier max, et φ2 une fonction qui atteint le deuxième.
L’intuition initiale était que φ1 et φ2 permettent de localiser au mieux une fonction f ∈ C [Sn]
à travers ses produits scalaires. On aimerait donc avoir :

|〈ΠSf,ΠSφ1〉| ' max
‖g‖=1

supp(ĝ)⊂Λ

|〈ΠSf,ΠSg〉|

|〈PΛf, PΛφ2〉| ' max
‖g‖=1

supp(g)⊂S

|〈PΛf, PΛg〉|
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Mais φ1 et φ2 ne dépendent pas de f , donc il n’y a pas de raison que ce soit le cas a priori. Par
contre, si on suppose que f est une variable aléatoire sur C [Sn], on pourrait avoir un résultat
du type :

E [|〈ΠSf,ΠSφ1〉|] = max
‖g‖=1

supp(ĝ)⊂Λ

E [|〈ΠSf,ΠSg〉|]

E [|〈PΛf, PΛφ2〉|] = max
‖g‖=1

supp(g)⊂S

E [|〈PΛf, PΛg〉|]

Sinon, on peut peut-être montrer que la fonction g qui maximise s’écrit comme une combi-
naison linéaire de tous les vecteurs propres de l’opérateur associé.

Valeurs propres et vecteurs propres Dans la même optique, si on suppose que les valeurs
propres mesurent la quantité d’information que l’on peut coder, on peut étudier plusieurs chose
:

• CNS sur S et Λ pour que 1 soit valeur propre (ou valeur propre multiple)

• Etudier la décroissance des valeurs propres en fonction de S et Λ (le but étant de savoir
dans quels cas une grosse part de l’information est donnée par peu de valeurs propres)

E.2.3 Applications possibles

Reconstruction de fonction (problème de Shah) ou approximation Soit f ∈ C [Sn]
une fonction inconnu que l’on observe partiellement sous plusieurs formes possibles :

• on observe quelques coefficients de Fourier

• on observe quelques valeurs de sa transformée de Radon

• on observe quelques valeurs sur les permutations

On veut la retrouver ou l’approcher en supposant en plus une condition dessus (sinon il y a trop
de solutions) :

• elle est sparse

• son gradient est sparse

• elle est à bande limitée

Dans chaque cas, on peut :

• déterminer les types de fonctions pour lesquelles il est possible de les retrouver exactement

• donner une procédure algorithmique d’approximation

• donner des bornes d’approximation (pour la procédure et en général)
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Echantillonnage On se donne une distance d sur Sn. On se prend (ou on cherche) un T ⊂ Sn

tel que :

∀τ, τ ′ ∈ T, d(τ, τ ′) > 1

∀σ ∈ Sn, ∃τ ∈ T, d(σ, τ) 6 1

Le but est alors d’échantillonner une fonction f ∈ C [Sn] en une fonction dont le support est
dans T .
L’idée est de prendre la fonction ΠT (f ∗ φ), où φ est la fonction prolate associée à T et un
ensemble de fréquences (typiquement les basses fréquences)

Transformée en ondelettes Soit S une partition de Sn.
Soit L une partition de {λ ` n}.
Pour chaque couple (S,Λ) ∈ S × L, on note φ1

S,Λ, ..., φ
s
S,Λ (avec s = |S|) les vecteurs propres de

A∗A.
On a alors :

• A (S,Λ) fixé,
{
φkS,Λ

}
16k6s

est une base orthonormée des fonctions de C [Sn] à support

dans S

• Pour S 6= S′, les fonctions sont orthogonales

• La famille totale forme un dictionnaire de C [Sn]

Le but est de trouver S et L tels que le dictionnaire soit le plus efficace pour la compression de
signaux sur C [Sn].

E.3 Analyse multi-résolution

E.3.1 Généralités

Définitions et notations Soit n > 1.
Pour k ∈ J1, n− 1K, on note Ak = {(i1, ..., ik) ∈ J1, nKk : ip 6= iq pour p 6= q}.
On note aussi A0 = {0}.

|Ak| =
n!

(n− k)!
= n (n− 1) ... (n− k + 1)

Pour i = (i1, ..., ik) et j = (j1, ..., jk) des éléments de Ak, on note σ(i) = j si σ(ip) = jp pour
tout p ∈ J1, kK.
Pour k ∈ J0, n − 1K, on note Sn−k le groupe symétrique sur {1, ..., n − k}, que l’on assimile à
{σ ∈ Sn : σ(n− p) = n− p pour p ∈ J0, k − 1K}.
On a ainsi une suite de sous-groupes embôıtés : {id} = S1 6 S2 6 ... 6 Sn.

Soit k ∈ J0, n− 1K.
Pour i = (i1, ..., ik) et j = (j1, ..., jk) des éléments de Ak, on note :

Ai = {σ ∈ Sn : σ(n− p+ 1) = ip pour p ∈ J1, kK}
Bi = {σ ∈ Sn : σ−1(n− p+ 1) = ip pour p ∈ J1, kK}
Ci,j = {σ ∈ Sn : σ(ip) = jp pour p ∈ J1, kK}
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(On pose A0 = B0 = Sn). {Ai : i ∈ Ak} et {Bi : i ∈ Ak} sont des partitions de Sn en |Ak|
éléments de cardinal (n− k)!.
De plus, ({Ai : i ∈ Ak})06k6n−1 forme une suite de partitions embôıtées, avec

Ai =
⊔

x∈J1,nK\{i1,...,ik}

Ai1,...,ik,x

En choisissant pour chaque i ∈ Ak un élément πi ∈ Ai, on obtient un système de générateurs
pour les classes à gauches de Sn−k dans Sn, i.e. :

∀i ∈ Ak, Ai = πiSn−k

De la même façon, les Bi sont les classes à droites de Sn−k dans Sn.

Représentation orthogonale de Young et transformée de Fourier On prend comme
représentation associée la représentation orthogonale de Young, notée ρλ. Elle présente plusieurs
avantages :

• Les ρλ sont des matrices orthogonales

• La règle de branchement de Young s’exprime sans changement de base

• Elle est de plus adaptée à un ordre total simple sur ST (λ) dit ”last letter sequence”

Soit k ∈ J0, n− 1K.

Pour f ∈ L(Sn−k) et µ ` n, on note f̂(µ) le “coefficient de Fourier” de f en µ :

f̂(µ) =
∑

σ′∈Sn−k

f(σ′)ρµ(σ′)

Et on définit :

Fk : L(Sn−k)→
⊕

µ`n−k

Mdµ(R)

f 7→
⊕

µ`n−k

f̂(µ)

C’est un isomorphisme d’algèbre (isométrique pour la mesure de Plancherel). On a les formules
suivantes :

f̂ ∗ g(µ) = f̂(µ)ĝ(µ)

‖f‖2 =
∑

µ`n−k

dµ
(n− k)!

‖f̂(µ)‖2

〈f, g〉 =
∑

µ`n−k

dµ
(n− k)!

〈f̂(µ), ĝ(µ)〉

f(σ) =
∑

µ`n−k

dµ
(n− k)!

Tr
[
ρµ(σ−1)f̂(µ)

]
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Décomposition suivant une partition Soit k ∈ J0, n− 1K.
On choisit un système de représentants pour les classes à gauches {πi}i∈Ak .
(Pour k = 0, on prend π0 = id).
Pour f ∈ L(Sn−k) et i ∈ Ak, on définit la fonction :

fi : Sn−k → R
σ′ 7→ f(πiσ

′)

C’est en quelque sorte la restriction de f à Ai. On définit alors l’application :

Φk : L(Sn)→ L(Sn−k)|Ak|

f 7→ (fi)i∈Ak

C’est un isomorphisme d’espace vectoriels et une isométrie :

‖f‖2 =
∑
i∈Ak

‖fi‖2

On définit maintenant l’application qui à f associe toutes les transformées de Fourier des fi :

Fk : L(Sn)→

 ⊕
µ`n−k

Mdµ(R)

|Ak|

f 7→

 ⊕
µ`n−k

f̂i(µ)


i∈Ak

C’est encore un isomorphisme d’espaces vectoriels et une isométrie :

‖f‖2 =
∑
i∈Ak

∑
µ`n−k

dµ
(n− k)!

‖f̂i(µ)‖2

Analyse temps-fréquence Soit f ∈ L(Sn). Chaque k ∈ J0, n − 1K donne une partition de
“l’espace des temps” Sn, et les partitions sont embôıtées. Donc plus on augmente k, plus on
raffine la décomposition de f .
Pour k ∈ J0, n− 1K et i ∈ Ak donnés, fi contient “l’information temporelle locale” de f sur Ai.

Chaque coefficient de Fourier f̂i(µ) contient alors “l’information fréquentielle d’ordre µ” de fi.
Il contient donc une information localisée en temps et en fréquence.
Grâce aux propriétés d’isométrie, on peut écrire :

‖f‖2 =
∑
λ`n

dλ
(n)!
‖f̂(λ)‖2 (à l’ordre 0)

...

=
∑
i∈Ak

∑
µ`n−k

dµ
(n− k)!

‖f̂i(µ)‖2 (à l’ordre k)

...

=
∑
σ∈Sn

f(σ)2 (à l’ordre n− 1)
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A l’ordre k, ‖f‖2 se décompose en une somme de |Ak| · p(n− k) termes.

On choisit pour chaque k ∈ J0, n−1K un système de représentants des classes à gauches {πi}i∈Ak .
Pour k ∈ J0, n− 1K, i ∈ Ak et µ ` n− k, on pose :

φki,µ : Sn →Mdµ(R)

σ 7→ 1Ai(σ)ρµ(π−1σ)

On a en particulier :

• pour k = 0 : φ0
0,λ = ρλ

• pour k = n− 1 : φn−1
σ,(1) = δσ

La décomposition précédente de f à l’ordre k correspond donc à la décomposition de f sur

la famille
(
φki,µ

)
i∈Ak,µ`n−k

, qui est une base de l’espace
(⊕

µ`n−kMdµ(R)
)|Ak|

, isomorphe à

L(Sn).
On dispose donc d’un dictionnaire {

(
φki,µ

)
i∈Ak,µ`n−k

: k ∈ J0, n − 1K}, permettant de localiser

en temps et en fréquence, par des “produits scalaires”, l’information de f .

L’idée est donc de construire une procédure d’approximation consistant à calculer les
∑n−1
k=0 |Ak| ·

p(n− k) termes
dµ

(n− k)!
‖f̂i(µ)‖2 et à n’en garder que certains.

E.3.2 Quelques propriétés

Décomposition temporelle et transformée de Fourier Soit k ∈ J0, n− 1K. Soit λ ` n et
µ ` n− k.
On dit que λ domine µ si son diagramme contient celui de µ. On écrit λ < µ.
On choisit un système de représentants des classes à gauches {πi}i∈Ak .
On a alors, pour tout f ∈  L(Sn),

f̂(ρλ) =
∑
i∈Ak

ρλ(πi)
⊕

µ`n−k
µ4λ

f̂i(ρµ)

Calcul des normes Soit k ∈ J0, n−1K. Pour µ ` n−k, on définit la matrice Xµ ∈M(n−k)!(R)
par Xµ

σ,τ = χµ(στ−1).
On a alors, pour tout f ∈  L(Sn−k),

‖f̂(ρµ)‖2 =
∑

σ,τ∈Sn−k

f(σ)f(τ)χµ(στ−1)

= fTXµf

E.3.3 Algorithme de Coifman-Wickerhauser

Principe général On se place dans l’espace CN .
On suppose qu’on peut le décomposer de manière récursive en une suite de décomposition orthog-
onales embôıtées. On représente cette suite de décompositions par un arbre, où chaque nœud
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représente un sous-espace.
Pour chaque sous-espace on dispose d’une base orthonormée. On en fait l’union pour obtenir
ainsi un dictionnaire de fonctions normées D = {φp}p∈Γ.
Soit alors f ∈ CN . On veut trouver la base qui soit optimale en un certain sens pour représenter
f (typiquement pour obtenir la représentation la plus sparse possible).

On choisit une fonction de coût C : R+ → R+, et on définit le coût de f dans la base B = {φp}p∈ΓB

par

C(f,B) =
∑
p∈ΓB

C (|〈f, φp〉|)

on veut alors résoudre le problème d’optimisation :

min
B⊂D

C(f,B)

Si on veut que la solution de ce problème donne une représentation sparse, il vaut donc mieux
choisir C telle que C(0) = 0.

L’algorithme :

1. Initialisation : Calcul de tous les C(f,B) pour les bases B associées aux nœuds

2. Actualisation : On démarre avec la base composée de la réunion des bases associées aux
feuilles de l’arbre. Pour chaque nœud supérieur, on compare le coût de sa base associée
avec la somme des coûts des bases associées aux nœuds fils. S’il est inférieur, on remplace
par la base, sinon on garde.

Cet algorithme résout le problème d’optimisation précédent.

Dans notre cas L’espace global est L(Sn).
Pour k ∈ J0, n− 1K et i ∈ Ak, on note Vi = {f ∈ L(Sn) : supp(f) ⊂ Ai}.
Les (Vi)i,k forment une suite de décompositions orthogonales embôıtées.

Chaque Vi est muni de sa “base de Fourier” Bi =
(
φki,µ

)
µ`n−k.

Pour une fonction f donnée, on veut trouver la base composée d’éléments de {φki,µ : i ∈ Ak, µ `
n− k, k ∈ J0, n− 1K} dans laquelle f admet la décomposition (matricielle) la plus sparse.

Un choix possible pour la fonction de coût est de prendre l’entropie de la décomposition dans
une base : pour k ∈ J0, n− 1K et i ∈ Ak,

C(f,Bi) = −
∑

µ`n−k

dµ
(n− k)!

‖f̂i(µ)‖2 log

(
dµ

(n− k)!
‖f̂i(µ)‖2

)

A la fin de la procédure, la base obtenue est de la forme
⋃
k∈K

⋃
i∈Ik{φ

k
i,µ}µ`n−k, oùK ⊂ J0, n−1K

et Ik ⊂ Ak.
Par transformée de Fourier inverse, f se décompose :

f(σ) =
∑
k∈K

∑
i∈Ik

∑
µ`n−k

dµ
(n− k)!

Tr
[
ρµ(σ−1)f̂i(ρµ)

]
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E.4 Localisation de l’information

E.4.1 Introduction

Notre objectif est de construire une analyse multirésolution et une base d’ondelettes qui perme-
ttent de “localiser l’information d’une fonction f ∈ L(Sn) sur des sous-groupes d’objets”. Avec
le recul, je pense qu’on peut donner deux sens à cette expression :

1. Décomposer f sur des composantes ψ constantes par morceaux sur les ensembles Sn(π)
de permutations qui étendent un ranking, localisées sur les rankings d’un sous-ensemble
d’objets (dans l’idée d’une décomposition de Haar)

2. Décomposer f sur des composantes ψ qui localisent l’information qu’on va récupérer de
f en prenant les produits scalaires avec les indicatrices 1Sn(π), c’est-à-dire l’information
contenue dans les marginales de f .

Ces deux points de vue mènent à des constructions similaires mais différentes, sauf pour la
localisation en “échelle”. Jusqu’à maintenant, on n’a considéré que la première construction
(mais avec un point de vue un peu flou entre les deux). La deuxième est nouvelle. On va voir
que la différence se situe en fait simplement dans la façon d’injecter L(SA) dans L(Sn). La
première construction va correspondre à l’opération élémentaire (définie sur les châınes)

φb : π 7→ 1

|π|+ 1

|π|+1∑
i=1

π /i b,

où π /i b est le mot obtenu en insérant b à la ième place dans π, et la deuxième à

φ̃b : π 7→ 1

2
(π /1 b+ π /|π|+1 b) =

1

2
(bπ + πb).

Je rappelle quelques notations pour la suite : on note ΓkA l’ensemble des mots injectifs de taille k

sur A et ΓA =
⋃|A|
k=1 ΓkA (on note Γkn et Γn au lieu de ΓkJnK et ΓJnK). On définit aussi les espaces de

châınes (les fonctions sur les mots) Ck(ΓA) = {x : ΓkA → R}, et C(ΓA) =
⊕|A|

k=1 Ck(ΓA). Le Dirac
en π est encore noté π. L’opérateur de suppression est défini sur les Diracs par %a : π 7→ π \ {a}.

E.4.2 Comparaison des décompositions multirésolution

Localisation en échelle.

1. Dans le premier point de vue, on veut décomposer sur des fonctions constantes sur les
ensembles Sn(π). On définit donc naturellement l’espace de résolution k par

V k = span {1Sn(a1≺...≺ak) | a1, ..., ak ∈ JnK, ai 6= aj}.

2. Dans le deuxième point de vue, on veut isoler l’information contenu dans les marginales.
On commence donc par définir l’opérateur de projection sur les marginales d’ordre k par

Mk : L(Sn)→
⊕

A∈Pk(JnK)

L(SA)

f 7→ (fA)A∈Pk(JnK),

où fA(π) =
〈
f,1Sn(π)

〉
, puis on définit l’espace de résolution k par

V k = (kerMk)⊥.
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Il se trouve que ces deux définitions cöıncident (ce qui rend la différence entre les deux points

de vue moins évidente). Ensuite on fait la construction classique V k+1 = V k
⊥
⊕W k+1. Dans les

deux cas, l’espace W k représente l’information gagnée à l’échelle k.

Localisation en objets.

1. Au sein de l’espace W k, on localise les fonctions qui ne font intervenir les indicatrices de
Sn(π) que pour les rankings π relatifs à un sous-ensemble d’objets A. On définit donc
W k
A = W k ∩ V kA , où V kA = span{1Sn(π) | π ∈ SA}. On montre ensuite que W k

A est
simplement caractérisé par

W k
A = {f ∈ V kA | f ⊥ V kB pour tout B  A},

grâce à la grosse formule combinatoire de transfert que j’ai démontrée. C’est cette propriété
qui montre que pour tout sous-ensemble d’objets A, W k

A est isomorphe à l’espace Hk défini
sur les châınes par

Hk = {x ∈ Ck(Γk) | %ax = 0 for all a ∈ JkK},

à travers l’application

φ : C(Γn)→ L(Sn)

π 7→ |π|!
n!

1Sn(π).

Si π ∈ SA et JnK \ A = {b1, ..., bl}, on a φ(π) = φbl ◦ ... ◦ φb1(π), où les φbi commutent.
On utilise ensuite le résultat de Reiner (dans l’article de memoirs of AMS) qui dit que
dimHk = dk, ce qui démontre la décomposition L(Sn) = V 0 ⊕

⊕n
k=2

⊕
|A|=kW

k
A.

2. Au sein de l’espace W k, on localise les fonctions qui ont toutes leurs marginales nulles sur
les sous-ensembles d’objets B qui ne contiennent pas A. On définit donc l’espace

W̃ k
A = {f ∈W k | f ⊥ V kB pour tout B + A}.

Ce que j’ai remarqué, c’est qu’on a aussi une relation du type W̃ k
A = W k ∩ Ṽ kA , si on définit

bien l’espace Ṽ kA . Pour ça, notons Sn[π] l’ensemble de toutes les permutations σ ∈ Sn qui
“contiennent” π. Rigoureusement, on le définit en termes de permutations par

Sn[π] = {σ ∈ Sn | ∃i0 ∈ {1, ..., n− k + 1},
σ−1(i0) = π−1(i0), ..., σ−1(i0 + k − 1) = π−1(i0 + k − 1)},

ou en termes de mots injectifs par

Sn[π] = {σ ∈ Γnn | ∃ω1, ω2 ∈ Γn ∪ {0}}, σ = ω1πω2},

où 0 désigne le mot vide. Par exemple,

S5[123] = {45123, 54123, 41235, 51234, 12345, 12354}.

On définit alors Ṽ kA = span{1Sn[π] | π ∈ SA}, et on montre que W̃ k
A = W k ∩ Ṽ kA et même

que
W̃ k
A = {f ∈ Ṽ kA | f ⊥ V kB pour tout B  A}
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(la démonstration repose sur le fait que les opérations π 7→ bπ et π 7→ πb commutent avec
l’opération de suppression %a pour a 6= b). On obtient alors que W̃ k

A est isomorphe à Hk à
travers l’application

φ̃ : C(Γn)→ L(Sn)

π 7→ 1

(n− |π|+ 1)!
1Sn[π]

(il est facile de voir que |Sn[π]| = (n − k + 1)!). La démonstration de cette deuxième
décomposition multirésolution repose alors exactement sur les mêmes résultats mathématiques
(à savoir celui de Reiner), et on a pareil L(Sn) = V 0 ⊕

⊕n
k=2

⊕
|A|=k W̃

k
A.

Synthèse : comparaison des structures multirésolution. Les deux décompositions ont la
même structure “verticale” de décomposition en échelle

L(Sn) = V 0 ⊕
n⊕
k=2

W k,

mais ont des structures “horizontales” de décomposition en objets différentes, la première étant
localisée par rapport aux indicatrices des ensembles Sn(π)

W k =
⊕
|A|=k

W k ∩ V kA ,

alors que la deuxième l’est par rapport aux indicatrices des ensembles Sn[π]

W k =
⊕
|A|=k

W k ∩ Ṽ kA .

Dans les deux cas, la décomposition est orthogonale en échelle mais pas en objets.

E.4.3 Comparaison des ondelettes

La différence entre les deux constructions réside juste dans la façon d’injecter les châınes sur
les mots injectifs dans les fonctions sur les permutations. Tous les résultats qui concernent
les châınes sont donc valables dans les deux cas. C’est le cas de l’algorithme de construction
de nos ondelettes. Plus rigoureusement, notons xτ la châıne obtenue par l’algorithme pour la
permutation τ , qui est donc un dérangement sur le complémentaire de l’ensemble de ses points
fixes, que je note A. L’ondelette correspondante est alors définie par :

1. dans la première construction,

ψτ =
∑
π∈SA

xτ (π)1Sn(π),

2. dans la deuxième construction

ψ̃τ =
∑
π∈SA

xτ (π)1Sn[π].
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Forme des ondelettes. Si τ ∈ Sn a k points non fixes et r cycles, | suppxτ | = 2k−r. On a
donc

| supp (ψτ ) | = 2k−r
n!

k!
et

∣∣∣ supp
(
ψ̃τ

) ∣∣∣ = 2k−r(n− k + 1)!.

Dans la première construction, si γ = (a1 ... ak) et b 6∈ {a1, ..., ak}, alors pour tout j ∈ {1, ..., k},
supp(ψγ·(b aj)) ⊂ supp(ψγ). Donc au sein d’un chemin de cycles (a1 a2), ..., (a1 ... ak), les on-
delettes ψ associées ont une forme d’ondelettes de Haar combinatoires. Ce n’est pas le cas des
ondelettes ψ̃. La figure suivante montre la forme des ondelettes associées aux cycles (12), (123)
et (1234) dans les deux constructions.

Calcul de la transformée en ondelettes. J’appelle transformée en ondelettes d’une fonction
f ∈ L(Sn) l’ensemble des produits scalaires avec les ondelettes (c’est apparemment la terminolo-
gie consacrée, même dans le cas d’ondelettes non orthogonales). Dans les deux cas, le calcul de
la transformée se fait d’abord sur les ondelettes indexées par des cycles, puis sur celles indexées
par des permutations à au moins deux cycles. Ce qui change, ce sont les ondelettes qui vont
intervenir. Soit σ ∈ Sn et τ ∈ Sn avec supp(τ) = A. Le produit scalaire du Dirac δσ avec
l’ondelette associée à τ est égal à

1. 〈δσ, ψτ 〉 =
∑
π∈SA xτ (π)1Sn(π)(σ) dans la première construction,

2. 〈δσ, ψτ 〉 =
∑
π∈SA xτ (π)1Sn[π](σ) dans la deuxième.

Or, pour tout A, il existe un unique π ∈ SA tel que 1Sn(π)(σ) 6= 0 (c’est σ|A), alors qu’il n’existe
un π ∈ SA tel que 1Sn[π](σ) 6= 0 que si tous les éléments de A sont collés dans l’écriture de
σ, auquel cas il est unique. Pour i, j ∈ {1, ..., n} avec i < j, notons σJi,jK = σ−1(i)...σ−1(j) le
sous-mot contigu de σ entre les rangs i et j, et σ−1(Ji, jK) = {σ−1(i), ..., σ−1(j)}. Le calcul de la
transformée en ondelettes de δσ se fait alors à chaque étape

1. en énumérant tous les σ|A pour A ⊂ JnK, 2 ≤ |A| ≤ n, dans la première construction,

2. en énumérant tous les σJi,jK pour 1 ≤ i < j ≤ n, dans la deuxième construction.

Ce qui mène aux complexités suivantes, en notant

1. NA(σ) le nombre de cycles γ ∈ Cycle(A) tels que ψγ(σ|A) 6= 0
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2. Ni,j(σ) le nombre de cycles γ ∈ Cycle(σ−1(Ji, jK)) tels que ψγ(σJi,jK) 6= 0.

1. Première construction

• Pour les ondelettes indexées par des cycles

n∑
k=2

∑
|A|=k

NA(σ) ≤
n∑
k=2

(
n

k

)
2k−2 = O(3n).

• Pour les ondelettes indexées par des produits de cycles

n∑
k=4

∑
|A|=k

bk/2c∑
r=2

∑
k∈Σr(k)

I{Ik(σ|A) ∈ Standr(A)}
r∏
i=1

NAi(σ)

≤
n∑
k=4

∑
|A|=k

bk/2c∑
r=2

(
k − r − 1

r − 1

)
2k−2r ≤ O

((
7

2

)n)
.

2. Deuxième construction

• Pour les ondelettes indexées par des cycles∑
1≤i<j≤n

Ni,j(σ) ≤
∑

1≤i<j≤n

2j−i−1 = O(2n).

• Pour les ondelettes indexées par des produits de cycles

n∑
k=4

n−k+1∑
i=1

bk/2c∑
r=2

∑
k∈Σr(k)

I{Ik(σJi,jK) ∈ Standr(σ
−1(Ji, jK))}

r∏
i=1

NAi(σ)

≤
n∑
k=4

n−k+1∑
i=1

bk/2c∑
r=2

(
k − r − 1

r − 1

)
2k−2r ≤ O

((
5

2

)n)
.

E.4.4 Localisation de l’information

La principale différence entre les deux constructions est bien sûr la façon de localiser l’information.
Regardons dans le cas où n = 3. Le tableau suivant donne les deux bases d’ondelettes (non
normalisées),

ψid ψ(12) ψ(13) ψ(23) ψ(123) ψ(132) ψ̃id ψ̃(12) ψ̃(13) ψ̃(23) ψ̃(123) ψ̃(132)

123 1 1 1 1 1 0 1 1 0 1 1 0
132 1 1 1 -1 -1 1 1 0 1 -1 -1 1
213 1 -1 1 1 0 -1 1 -1 1 0 0 -1
231 1 -1 -1 1 -1 1 1 0 -1 1 -1 1
312 1 1 -1 -1 0 -1 1 1 -1 0 0 -1
321 1 -1 -1 -1 1 0 1 -1 0 -1 1 0

et celui-là donne les coefficients de décomposition pour une probabilité p sur S3
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Ψ Ψ̃

id 1
6

1
6

(12) 1
4 (2P [1 ≺ 2]− P [1 ≺ 3] + P [2 ≺ 3]− 1) 1

2

(
P [1 ≺ 2]− 1

2

)
(13) 1

4 (2P [1 ≺ 3]− P [1 ≺ 2]− P [2 ≺ 3]) 1
2

(
P [1 ≺ 3]− 1

2

)
(23) 1

4 (2P [2 ≺ 3] + P [1 ≺ 2]− P [1 ≺ 3]− 1) 1
2

(
P [2 ≺ 3]− 1

2

)
(123) 1

2

(
P [1 ≺ 2 ≺ 3 ou 3 ≺ 2 ≺ 1]− 1

3

)
1
2

(
P [1 ≺ 2 ≺ 3 ou 3 ≺ 2 ≺ 1]− 1

3

)
(132) 1

2

(
1
3 − P [2 ≺ 1 ≺ 3 ou 3 ≺ 1 ≺ 2]

)
1
2

(
1
3 − P [2 ≺ 1 ≺ 3 ou 3 ≺ 1 ≺ 2]

)
Les coefficients d’ordre 3 sont les mêmes puisque dans les deux cas ya pas d’injection. Par contre,
on voit que les coefficients d’ordre 2 sont différents : ils font intervenir les trois probabilités
P [1 ≺ 2], P [1 ≺ 3] et P [2 ≺ 3] dans la première construction alors qu’ils sont complètement
localisés dans la deuxième. Mais dans chaque construction, l’ensemble des coefficients d’ordre
2 localise toute l’information d’ordre 2 (les deux structures verticales étant les mêmes). En
l’occurrence, notons

p = cidψid + c(12)ψ(12) + c(13)ψ(13) + c(23)ψ(23) + c(123)ψ(123) + c(132)ψ(132)

= c̃idψ̃id + c̃(12)ψ̃(12) + c̃(13)ψ̃(13) + c̃(23)ψ̃(23) + c̃(123)ψ̃(123) + c̃(132)ψ̃(132).

Supposons qu’on connaisse parfaitement p jusqu’à l’ordre 2. On peut alors l’estimer par

1. p1 = cidψid + c(12)ψ(12) + c(13)ψ(13) + c(23)ψ(23) dans le premier cas,

2. p2 = c̃idψ̃id + c̃(12)ψ̃(12) + c̃(13)ψ̃(13) + c̃(23)ψ̃(23) dans le deuxième.

Si maintenant on veut estimer P [2 ≺ 1 ≺ 3] par exemple, on obtient

〈p1, δ213〉 = cid − c(12) + c(13) + c(23)

=
1

6
+

1

2
(−P [1 ≺ 2] + P [1 ≺ 3])

dans le premier cas et

〈p2, δ213〉 = c̃id − c̃(12) + c̃(13)

=
1

6
+

1

2
(−P [1 ≺ 2] + P [1 ≺ 3])

dans le deuxième. On obtient donc la même chose, mais en sommant moins de coefficients. Plus
généralement, pour une probabilité p sur Sn, en notant toujours cτ et c̃τ les coefficients dans la
base associée, on a, après calcul, cid = c̃id = 1/(n!) et pour 1 ≤ i < j ≤ n,

c(i j) =
1

n+ 1

(n− 1)P[i ≺ j] +
∑
s<i

P[s ≺ i]−
∑
s>i
s6=j

P[i ≺ s]−
∑
r<j
r 6=i

P[r ≺ j] +
∑
r>j

P[j ≺ r]


c̃(i j) =

1

(n− 1)!

(
P[i ≺ j]− 1

2

)
,

ce qui donne encore〈
p1,1Sn(2≺1≺3)

〉
=
〈
p2,1Sn(2≺1≺3)

〉
=

1

6
+

1

2
(−P [1 ≺ 2] + P [1 ≺ 3]) .
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Cela montre que l’information d’ordre 2 utile pour estimer 2 ≺ 1 ≺ 3 est uniquement contenue
dans P [1 ≺ 2] et P [1 ≺ 3]. Or, dans la première construction, on la récupère en faisant la
somme de tous les coefficients c(i j) tels que

〈
ψ(i j),1Sn(2≺1≺3))

〉
6= 0, à savoir tous les c(i j) avec

{i, j} ∩ {1, 2, 3} 6= ∅, soit 3n − 8 coefficients, alors que dans la deuxième construction, on la
récupère en faisant la somme de seulement 2 coefficients, c̃(12) et c̃(13). Plus généralement, on
montre facilement que la composante d’ordre 2 dans la probabilité P[a1 ≺ ... ≺ ak] est donnée
par :

1

(k − 1)!

(
k−1∑
i=1

(−1)I{ai>ai+1}P[ai ≺ ai+1] +
as(π)− ds(π)

2

)
,

où π = a1 ≺ ... ≺ ak, as(π) =
∑k−1
i=1 I{ai < ai+1} est le nombre de montées (ascents)

de π, et ds(π) =
∑k−1
i=1 I{ai > ai+1} est le nombre de descentes (descents) de π. Dans

la première construction, cette information est répartie sur tous les coefficients c(i j) tels que
{i, j} ∩ {a1, ..., ak} 6= ∅, soit k(n− k) + 1 coefficients, alors qu’elle est répartie sur les coefficients
c(a1 a2), ..., c(ak−1 ak) (soit k − 1 coefficients) dans la deuxième.

Un autre point intéressant est que l’information d’ordre 2 qui intervient dans P[a1 ≺ ... ≺ ak]
n’est donc contenue que dans les probabilités des classements sur les paires adjacentes dans
a1 ≺ ... ≺ ak. D’ailleurs, on peut montrer facilement que la fonction 1|π(i)−π(j)|=2 est d’ordre 3,
i.e que sa projection sur W 2 est nulle, ou de manière équivalente que ses marginales d’ordre 2
sont toutes uniformes. Plus généralement, la fonction 1|π(i)−π(j)|=k est d’ordre k − 1, même si
elle ne fait intervenir que 2 objets. En fait elle est d’ordre 2 dans la décomposition de Fourier,
puisqu’on a

1|π(i)−π(j)|=k =
∑

1≤i′ 6=j′≤n
|i′−j′|=k

1{π(i)=i′,π(j)=j′},

mais elle est d’ordre k dans la notre (ou celle de Reiner). Une interprétation (avec les mains)
que je propose est que si on ne stocke que des informations relatives, alors pour savoir que
π(i)− π(j)| = k, on doit parcourir toute la liste des objets entre i et j, soit k+ 1 éléments, alors
que si on stocke des informations absolues (les rangs), il suffit de regarder le rang de i et le rang
de j, soit 2 éléments.

Conséquences en pratique. On considère le problème général de l’estimation, que l’on a
formulé comme un problème inverse. On suppose donc qu’on a une probabilité p sur Sn que l’on
observe à travers certaines marginales pA (où les sous-ensembles A sont dans le support de la
mesure µ) et on veut estimer les probabilités des rankings sur un sous-ensemble B. On veut donc
récupérer l’information contenue dans les observations, la synthétiser (pour réduire la variance
ou la débruiter), et la transférer sur B. Supposons d’abord que l’on connaisse parfaitement les
marginales observées (pas de bruit). Alors on peut décomposer aussi bien sur la première ou
sur la deuxième base, l’information transférée sera la même. Or, par définition de la deuxième
construction, l’information observée qui aura une influence sur B est contenue dans les espaces

W̃
|A|
A pour A ∈ supp(µ) et A ⊂ B. Autrement dit, on ne peut estimer des rankings sur B qu’avec

de l’information d’ordre inférieure, et strictement inférieure si B n’a pas été observée. En effet, il
n’y aurait pas de sens à ce que l’information d’ordre 3 relative aux classements sur {1, 2, 3} soit
utile pour prédire quelque chose sur {1, 2, 4} puisque justement elle est relative aux interactions
entre 1, 2 et 3 et pas seulement 1 et 2.

Cela pose a priori un problème si |B| = 2, puisque avec la deuxième construction on ne peut
alors rien dire sur B. Et pourtant, on aurait envie de dire que si on observe 1 ≺ 2 et 2 ≺ 3 avec
grande probabilité, alors on devrait avoir 1 ≺ 3 avec grande probabilité. Mais cette intuition
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repose sur l’idée que la relation de transitivité devrait être “préservée” par la probabilité. Or
en fait ce n’est pas nécessairement le cas, et pour le savoir, il faut appliquer la décomposition
de Hodge de l’article Statistical ranking and combinatorial hodge theory qui décompose une
probabilité p de notre espace V 2 sur trois composantes :

• une composante acyclique qui préserve la transitivité (correspond au gradient),

• une composante localement cyclique qui casse la transitivté locale (correspond au rotation-
nel),

• une composante localement acyclique mais globalement cyclique (correspond au laplacien).

En l’occurrence, si les composantes acycliques sont fortes, la transitivité n’est pas nécessairement
conservée. Par exemple, la probabilité

p =
1

3
(δ123 + δ231 + δ312)

est telle que P[1 ≺ 2] = 2/3 et P[2 ≺ 3] = 2/3 mais P[1 ≺ 3] = 1/3. Bref, pour prédire des
comparaisons par paires, il faut faire une autre décomposition de V 2. Plus généralement, si on
veut prédire sur un ensemble B pour lequel on n’a pas pu inférer l’information d’ordre 2, il faut
encore décomposer, sinon la deuxième décomposition est suffisante.

Enfin, d’un point de vue computationnel, si on observe une marginale sur A avec |A| = k, sa

décomposition dans la première base va potentiellement impliquer tous les espaces W
|A′|
A′ avec

|A′| ≤ k et A′ ∩ A 6= 0. Ce qui fait potentiellement O(nk−1) espaces, et donc O(nk−1(7/2)k)

coefficients. Dans le cas de la deuxième construction, les espaces impliqués sont les W̃
|A′|
A′ pour

A′ ⊂ A, ce qui revient à calculer la transformée en ondelettes de la marginale, donc avec
complexité O((5/2)k). Grâce à sa forte localisation, la deuxième construction permet donc
de s’affranchir d’une complexité en n, et de calculer localement les transformées en ondelettes de
chaque marginale observée.
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Clémençon, S., Gaudel, R., and Jakubowicz, J. (2011). Clustering rankings in the fourier domain.
In Machine Learning and Knowledge Discovery in Databases, pages 343–358. Springer.



202 BIBLIOGRAPHY
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Meilă, M. and Bao, L. (2010). An exponential model for infinite rankings. Journal of Macine
Learning Research, 11:3481–3518.

Mersmann, O., Preuss, M., Trautmann, H., Bischl, B., and Weihs, C. (2015). Analyzing the
bbob results by means of benchmarking concepts. Evol. Comput., 23(1):161–185.



216 BIBLIOGRAPHY

Mollica, C. and Tardella, L. (2015). Bayesian mixture of plackett-luce models for partially ranked
data. arXiv preprint.

Mosteller, F. (1951). Remarks on the method of paired comparisons: I. the least squares solution
assuming equal standard deviations and equal correlations. Psychometrika, 16(1):3–9.

Murphy, T. B. and Martin, D. (2003). Mixtures of distance-based models for ranking data.
Computational statistics & data analysis, 41(3):645–655.

Natarajan, K., Song, M., and Teo, C.-P. (2009). Persistency model and its applications in choice
modeling. Management Science, 55(3):453–469.

Negahban, S., Oh, S., and Shah, D. (2012). Iterative ranking from pair-wise comparisons. In
Advances in Neural Information Processing Systems, pages 2474–2482.

Netzer, O., Toubia, O., Bradlow, E., Dahan, E., Evgeniou, T., Feinberg, F., Feit, E., Hui, S.,
Johnson, J., Liechty, J., Orlin, J., and Rao, V. (2008). Beyond conjoint analysis: Advances in
preference measurement. Marketing Letters, 19(3):337–354.

Nikolenko, S. and Sirotkin, A. (2011). A new bayesian rating system for team competitions.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
601–608.

Niu, S., Lan, Y., Guo, J., and Cheng, X. (2013). Stochastic rank aggregation. In Proceedings
of the Twenty-Ninth Conference Annual Conference on Uncertainty in Artificial Intelligence
(UAI-13), pages 478–487. AUAI Press.

Nunnally, J. C., Bernstein, I. H., and Berge, J. M. F. (1967). Psychometric theory, volume 226.
JSTOR.

Oh, S. and Shah, D. (2014). Learning mixed multinomial logit model from ordinal data. In
Advances in Neural Information Processing Systems, pages 595–603.

Oh, S., Thekumparampil, K. K., and Xu, J. (2015). Collaboratively learning preferences from
ordinal data. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R.,
editors, Advances in Neural Information Processing Systems 28, pages 1909–1917. Curran
Associates, Inc.

Osting, B., Brune, C., and Osher, S. (2013). Enhanced statistical rankings via targeted data
collection. In Journal of Machine Learning Research, W&CP (ICML 2013), volume 28 (1),
pages 489–497.

Pachauri, D., Collins, M., Kondor, R., and Singh, V. (2012). Incorporating domain knowledge
in matching problems via harmonic analysis. In ICML 2012.

Pachauri, D., Kondor, R., Sargur, G., and Singh, V. (2014). Permutation diffusion maps (pdm)
with application to the image association problem in computer vision. In Advances in Neural
Information Processing Systems, pages 541–549.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank citation ranking:
Bringing order to the web. Technical report.

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., and Salakoski, T. (2007). Learning to
rank with pairwise regularized least-squares. In SIGIR 2007 workshop on learning to rank for
information retrieval, volume 80, pages 27–33. Citeseer.



BIBLIOGRAPHY 217

Pardalos, P. M., Rendl, F., and Wolkowicz, H. (1994). Quadratic Assignment and Related Prob-
lems: DIMACS Workshop, May 20-21, 1993, volume 16. American Mathematical Soc.

Pareek, H. H. and Ravikumar, P. K. (2014). A representation theory for ranking functions. In
Advances in Neural Information Processing Systems, pages 361–369.

Park, D., Neeman, J., Zhang, J., Sanghavi, S., and Dhillon, I. (2015). Preference completion:
Large-scale collaborative ranking from pairwise comparisons. In Proceedings of the 32nd In-
ternational Conference on Machine Learning (ICML-15), pages 1907–1916.

Patel, T., Telesca, D., Rallo, R., George, S., Xia, T., and Nel, A. E. (2013). Hierarchical
rank aggregation with applications to nanotoxicology. Journal of Agricultural, Biological, and
Environmental Statistics, 18(2):159–177.

Patil, G. P. and Taillie, C. (2004). Multiple indicators, partially ordered sets, and linear ex-
tensions: Multi-criterion ranking and prioritization. Environmental and Ecological Statistics,
11(2):199–228.

Pfeiffer, T., Gao, X. A., Chen, Y., Mao, A., and Rand, D. G. (2012). Adaptive polling for
information aggregation. In AAAI.

Plackett, R. L. (1975). The analysis of permutations. Applied Statistics, 2(24):193–202.

Plis, S. M., Mccracken, S., Lane, T., and Calhoun, V. D. (2011). Directional statistics on
permutations. In Proceedings of the Fourteenth International Conference on Artificial Intelli-
gence and Statistics (AISTATS-11), volume 15, pages 600–608. Journal of Machine Learning
Research - Workshop and Conference Proceedings.

Popov, S., Popova, A., and Regenwetter, M. (2014). Consensus in organizations: Hunting for
the social choice conundrum in apa elections. Decision, 1(2):123–146.

Prasad, A., Pareek, H., and Ravikumar, P. (2015). Distributional rank aggregation, and an
axiomatic analysis. In Blei, D. and Bach, F., editors, Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), pages 2104–2112. JMLR Workshop and Confer-
ence Proceedings.

Prati, R. C. (2012). Combining feature ranking algorithms through rank aggregation. In Neural
Networks (IJCNN), The 2012 International Joint Conference on, pages 1–8. IEEE.

Procaccia, A. D., Reddi, S., and Shah, N. (2012). A maximum likelihood approach for selecting
sets of alternatives. In Proceedings of the Twenty-Eighth Conference Annual Conference on
Uncertainty in Artificial Intelligence (UAI-12), pages 695–704, Corvallis, Oregon. AUAI Press.

Procaccia, A. D. and Rosenschein, J. S. (2006). Junta distributions and the average-case com-
plexity of manipulating elections. In Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, pages 497–504. ACM.

Procaccia, A. D. and Shah, N. (2015). Is approval voting optimal given approval votes? In
Advances in Neural Information Processing Systems, pages 1792–1800.

Pujari, M. and Kanawati, R. (2012). Supervised rank aggregation approach for link prediction
in complex networks. In Proceedings of the 21st international conference companion on world
wide web, pages 1189–1196. ACM.



218 BIBLIOGRAPHY

Qin, T., Geng, X., and Liu, T.-Y. (2010). A new probabilistic model for rank aggregation. In
Advances in Neural Information Processing Systems 23, pages 1948–1956.

Ragnarsson, K. and Tenner, B. E. (2011). Homology of the boolean complex. Journal of Algebraic
Combinatorics, 34(4):617–639.

Rajkumar, A. and Agarwal, S. (2014). A statistical convergence perspective of algorithms for
rank aggregation from pairwise data. In Proceedings of the 31st International Conference on
Machine Learning.

Rajkumar, A., Ghoshal, S., Lim, L.-H., and Agarwal, S. (2015). Ranking from stochastic pair-
wise preferences: Recovering condorcet winners and tournament solution sets at the top. In
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pages 665–673.

Raman, K. and Joachims, T. (2015). Bayesian ordinal peer grading. In Proceedings of the Second
(2015) ACM Conference on Learning@ Scale, pages 149–156. ACM.

Rao, P. and Kupper, L. (1967). Ties in paired-comparison experiments: A generalization of the
bradley-terry model. Journal of the American Statistical Association, 62(317):194–204.

Ravikumar, P. D., Tewari, A., and Yang, E. (2011). On ndcg consistency of listwise ranking
methods. In International conference on artificial intelligence and statistics, pages 618–626.

Regenwetter, M. and Marley, A. A. J. (2001). Random relations, random utilities, and random
functions. Journal of Mathematical Psychology, 45(6):864–912.

Reinelt, G. (1985). The linear ordering problem: algorithms and applications, volume 8. Helder-
mann.

Reiner, V., Saliola, F., and Welker, V. (2014). Spectra of symmetrized shuffling operators.
Memoirs of the American Mathematical Society, 228(1072).

Reiner, V. and Webb, P. (2004). Combinatorics of the bar resolution in group cohomology. J.
Pure Appl. Algebra, 190:291–327.

Renda, M. E. and Straccia, U. (2003). Web metasearch: rank vs. score based rank aggregation
methods. In Proceedings of the 2003 ACM symposium on Applied computing, pages 841–846.
ACM.

Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2009). Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on
uncertainty in artificial intelligence, pages 452–461. AUAI Press.

Renteln, P. (2011). The distance spectra of cayley graphs of coxeter groups. Discrete Mathemat-
ics, 311(8–9):738 – 755.

Restle, F. (1961). Psychology of judgment and choice: A theoretical essay.

Reutenauer, C. (1993). Free Lie algebras, volume 7 of London Mathematical Society Monographs.
New Series. The Clarendon Press Oxford University Press, New York.

Risse, M. (2005). Why the count de borda cannot beat the marquis de condorcet. Social Choice
and Welfare, 25(1):95–113.



BIBLIOGRAPHY 219

Roy, B. (1968). Classement et choix en présence de points de vue multiples. Revue française
d’automatique, d’informatique et de recherche opérationnelle. Recherche opérationnelle,
2(1):57–75.

Roy, B. (1991). The outranking approach and the foundations of electre methods. Theory and
decision, 31(1):49–73.

Rustamov, R. M. and Guibas, L. J. (2013). Wavelets on graphs via deep learning. In Advances
in Neural Information Processing Systems 26., pages 998–1006.

Ryan, M. (1999). Using conjoint analysis to take account of patient preferences and go beyond
health outcomes: an application to in vitro fertilisation. Social Science & Medicine, 48(4):535
– 546.

Ryan, M. and Farrar, S. (2000). Using conjoint analysis to elicit preferences for health care.
British Medical Journal, 320(7248):1530.

Saari, D. G. (2000). Mathematical structure of voting paradoxes. Economic Theory, 15(1):1–53.

Saari, D. G. (2005). The profile structure for luce’s choice axiom. Journal of Mathematical
Psychology, 49(3):226–253.

Saari, D. G. and Merlin, V. R. (2000). A geometric examination of kemeny’s rule. Social Choice
and Welfare, 17(3):403–438.

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of math-
ematical psychology, 15(3):234–281.

Sagan, B. (2013). The symmetric group: representations, combinatorial algorithms, and sym-
metric functions, volume 203. Springer Science & Business Media.

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted boltzmann machines for col-
laborative filtering. In Proceedings of the 24th international conference on Machine learning,
pages 791–798. ACM.

Samuelson, L. (1985). On the independence from irrelevant alternatives in probabilistic choice
models. Journal of Economic Theory, 35(2):376–389.

Satterthwaite, M. A. (1975). Strategy-proofness and arrow’s conditions: Existence and corre-
spondence theorems for voting procedures and social welfare functions. Journal of economic
theory, 10(2):187–217.

Schalekamp, F. and van Zuylen, A. (2009). Rank aggregation: Together we’re strong. In Pro-
ceedings of the Eleventh Workshop on Algorithm Engineering and Experiments, pages 38–51.

Schultz, M. and Joachims, T. (2004). Learning a distance metric from relative comparisons. In
Thrun, S., Saul, L. K., and Schölkopf, B., editors, Advances in Neural Information Processing
Systems 16, pages 41–48. MIT Press.

Sen, A. (1970). Collective choice and social welfare.

Sen, A. (1977). On weights and measures: informational constraints in social welfare analysis.
Econometrica: Journal of the Econometric Society, pages 1539–1572.

Shadi, K., Bakhshi, S., Gutman, D. A., Mayberg, H. S., and Dovrolis, C. (2015). A symmetry-
based method to infer structural brain networks from tractography data. arXiv preprint.



220 BIBLIOGRAPHY

Shah, N. B., Balakrishnan, S., Guntuboyina, A., and Wainright, M. J. (2015a). Stochasti-
cally transitive models for pairwise comparisons: Statistical and computational issues. arXiv
preprint.

Shah, N. B., Parekh, A., Balakrishnan, S., Ramchandran, K., Bradley, J., and Wainwright, M.
(2015b). Estimation from pairwise comparisons: Sharp minimax bounds with topology de-
pendence. In Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics, pages 856–865.

Shah, N. B. and Wainwright, M. J. (2015). Simple, robust and optimal ranking from pairwise
comparisons. arXiv preprint.

Shalev-Shwartz, S. and Singer, Y. (2007). A unified algorithmic approach for efficient online
label ranking. In AISTATS, pages 452–459.

Shani, G. and Gunawardana, A. (2011). Evaluating recommendation systems. In Recommender
systems handbook, pages 257–297. Springer.

Shashua, A. and Levin, A. (2002). Ranking with large margin principle: Two approaches. In
Advances in neural information processing systems, pages 937–944.

Shi, C., Cui, W., Liu, S., Xu, P., Chen, W., and Qu, H. (2012). Rankexplorer: Visualization of
ranking changes in large time series data. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2669–2678.

Sibony, E. (2014). Borda count approximation of Kemeny’s rule and pairwise voting inconsis-
tencies. In Proceedings of the NIPS 2014 Workshop on Analysis of Rank Data.

Sibony, E., Clemencon, S., and Jakubowicz, J. (2014). Multiresolution analysis of incomplete
rankings with applications to prediction. In Big Data (Big Data), 2014 IEEE International
Conference on, pages 88–95.
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Analyse multirésolution de données de classements
Éric SIBONY

RESUME : Cette thèse introduit un cadre d’analyse multirésolution pour les données de classements.
Initiée au 18e siècle dans le contexte d’élections, l’analyse des données de classements a attiré un inté-
rêt majeur dans de nombreux domaines de la littérature scientifique : psychométrie, statistiques, économie,
recherche opérationnelle, apprentissage automatique ou choix social computationel entre autres. Elle a de
plus été revitalisée par des applications modernes comme les systèmes de recommandation, où le but est
d’inférer les préférences des utilisateurs pour leur proposer les meilleures suggestions personnalisées. Dans
ces contextes, les utilisateurs expriment leurs préférences seulement sur des petits sous-ensembles d’ob-
jets variant au sein d’un large catalogue. L’analyse de tels classements incomplets pose cependant un défi
important, tant du point de vue statistique que computationnel, poussant les acteurs industriels à utiliser
des méthodes qui n’exploitent qu’une partie de l’information disponible. Cette thèse introduit une nouvelle
représentation pour les données, qui surmonte par construction ce double défi. Bien qu’elle repose sur des
résultats de combinatoire et de topologie algébrique, ses nombreuses analogies avec l’analyse multiréso-
lution en font un cadre naturel et efficace pour l’analyse des classements incomplets. Ne faisant aucune
hypothèse sur les données, elle mène déjà à des estimateurs au-delà de l’état-de-l’art pour des petits ca-
talogues d’objets et peut être combinée avec de nombreuses procédures de régularisation pour des larges
catalogues. Pour toutes ces raisons, nous croyons que cette représentation multirésolution ouvre la voie à de
nombreux développements et applications futurs.

MOTS-CLEFS : Classements, Apprentissage des préférences, Analyse multirésolution, Ondelettes

ABSTRACT : This thesis introduces a multiresolution analysis framework for ranking
data. Initiated in the 18th century in the context of elections, the analysis of ranking
data has attracted a major interest in many fields of the scientific literature : psycho-
metry, statistics, economics, operations research, machine learning or computational
social choice among others. It has been even more revitalized by modern applications
such as recommender systems, where the goal is to infer users preferences in order
to make them the best personalized suggestions. In these settings, users express their
preferences only on small and varying subsets of a large catalog of items. The analysis
of such incomplete rankings poses however both a great statistical and computational
challenge, leading industrial actors to use methods that only exploit a fraction of avai-
lable information. This thesis introduces a new representation for the data, which by
construction overcomes the two aforementioned challenges. Though it relies on results
from combinatorics and algebraic topology, it shares several analogies with multireso-
lution analysis, offering a natural and efficient framework for the analysis of incomplete
rankings. As it does not involve any assumption on the data, it already leads to over-
performing estimators in small-scale settings and can be combined with many regula-
rization procedures for large-scale settings. For all those reasons, we believe that this
multiresolution representation paves the way for a wide range of future developments
and applications.

KEY-WORDS : Rankings, Preference learning, Multiresolution analysis, Wavelets
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