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Introduction

The problem of computing a depth map from a pair of stereo images is a classic one in the field of

computer imaging science. Broadly speaking, it is essentially a matter of finding corresponding

pixels in two separate images. Although there have been considerable advances in this area

since the 1970s, recent availability of databases in which images are either devoid of texture, or

are subject to various kinds of defects such as noise or blurriness, has accentuated the need for

new approaches, which place greater emphasis on image pre-processing and for which image

segmentation is brought into play.

In most cases, the segmentation itself, in relation to computing depth maps, consists of

partitioning the images into a set of homogeneous connected components with the aim of

highlighting the potential objects or parts of objects, which compose the scene. Using such

segments within the “matching process” which yields the final depth map, enables algorithms to

take into account their shape or morphology. Furthermore, the segmentation allows some parts

of the ambiguities induced by the occlusion phenomenon to be more easily solved since regions

seldom undergo total occlusions but more often semi-occlusions with respect to one image of the

stereo pair. Finally, regions provide pertinent information about the pieces in which we should

expect the depth function to evolve without discontinuities until a high level of a segmentation

hierarchy is attained.

Using regions for depth computation is however not straightforward and raises some difficul-

ties, the first of which stems from the matching itself. When considering partitions computed

independently for both stereo images, it is not necessarily the case that a one-to-one corre-

spondence exists between the regions. Working with strictly equivalent partitions is therefore

beneficial and this thesis will provide a method for their generation. Nonetheless, as opposed to

point-based approaches, the pairing of regions alone is insufficient to yield a depth map. It is

usually necessary to find the transformation which best superimposes two similar regions. Then,

in order to use a computationally tractable transformation model, several questions need to be

answered. Which level(s) of a segmentation hierarchy should be used? Is it sufficient to base

the registration of two regions on their shape only? What happens if the segmentation fails to

distinguish two separate objects in a scene?
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INTRODUCTION

The purpose of this thesis is to provide answers to these questions, and ultimately to show

the benefits of region-based approaches to the computation of depth maps with respect to two

very different and challenging scenarios. The first is the generation of depth maps from stereo

imagery, in which some areas are out of focus and which is captured by two relatively close

lenses. The second is the application of one of our methods to the new Middlebury 2014 database

which provides wide-baseline stereo imagery with a great many homogeneous and textured areas

comprising both thin and large objects.

An overview of the thesis contents

The thesis is divided into two parts. The first can be viewed as an introduction to depth map

estimation and mathematical morphology, which will prove useful when approaching the second

part. Beyond its introductory aspect, part one details and illustrates key observations on which

our approaches are based.

Stereo image formation The opening chapter is a reminder of the geometrical relationships

which manifest within a pair of stereo images. We shall, in the rest of this text, often discuss and

be interested in the disparity, which measures the displacement of a point across two images.

In fact, disparity and depth are closely related, as will be explained, and simple mathematical

relationships exist between them when the images are rectified, which will always be assumed to

be the case in our study.

The problem of depth map computation Once the stereo pair has been rectified, the compu-

tation of a depth map can take place. The second chapter highlights two sides of the problem.

First, the measurement of disparities: which features are good and which are misleading when

trying to establish correspondences, and what impact does the segmentation scale have on the

establishment of correspondences. Assigning disparity values to parts of an image is equivalent

to warping these parts with the other image of the stereo pair. Unfortunately, because of the

occlusion phenomenon, a warp based solely on the image content is impracticable. Hence the

second side of the problem: estimation.

Mathematical Morphology The final chapter of this introductory part presents the morpholog-

ical operators exploited in this work. We explain how such operators enable the construction of

powerful image filters and segmentation tools. Naturally, a special focus is set on the watershed

transformation controlled by markers. This transformation is utilised at various levels of our

work, in particular for the generation of segmentations suitable for stereo analysis, for the

co-segmentation of stereo images, and for the disparity map interpolation based on distance

functions. This final introductory chapter concludes with the generalised and geodesic distance

functions, which enable interpolations in more complex scenarios.
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The second and main part of this text is devoted to the thorough presentation of our region-

based approaches. Algorithms and results, including intermediate results, are provided through-

out the dissertation.

Segmentation Segments can be considered good for stereo matching if they preserve some

regularity and if they partition the scene into salient regions. In order to segment a scene based

on criteria such as area and contrast while using the watershed transformation, it is first necessary

to compute an appropriate topographical surface which highlights the contours in the scene with

an intensity matching human perception. The enhanced regularised gradient presented in this

chapter satisfies these requirements. Then, following a survey of some morphological segmen-

tations exploiting area and contrast criteria, we present our own adaptive over-segmentation

algorithm whereby each region of the partition has an area above a minimum threshold; a

threshold determined by a function of the region saliency in the scene.

Superimpositions Once the partitions have been computed, one can proceed to find for each

segment a transformation which yields an optimal superimposition with its analogous segment in

the other image of the stereo pair. Two different approaches to the matter are presented. First,

we consider the translational transformations producing regional disparities. We explain how to

compute these from image gradients and lightness, and which geometrical assumptions need to

be fulfilled. Second, we consider local pairings which take into account the shape of the regions.

We show how to extract reliable and sufficiently dense disparity data from these local matches,

based on multi-scale analyses and morphological filtering. At the end of the chapter, we perform

a comparison of these two alternatives.

Co-Segmentations Regional disparities may lack in precision while the disparity maps produced

by our local matching algorithm leave some pixels without a disparity measure. However, it is

possible from such data to generate equivalent segmentations of a pair of stereo images. This

chapter provides full details for the generation of these co-segmentations, with a particular focus

on how semi and total occlusions are handled by the proposed algorithm. Co-segmentations

are important because they provide strong indications about how to further constrain the stereo

pairings, and thus they are used within one of our estimation algorithms.

Estimation Since no disparity can be measured across occluded areas, completing depth maps

involves some estimation procedure. Three main estimation techniques are presented in this

chapter, each illustrated by a particular application with respect to stereo matching. The first

technique is based on a linear estimator called “kriging” and exploits very sparse but accurate

disparity data. We discuss an application where the co-segmentations are used to compute

contour disparities and where kriging analyses these disparities to interpolate the disparity map.

When the data is denser, such as that obtained using the local matches computed across multiple

scales, an interpolation based on distance functions operates effectively to fill the holes of the
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INTRODUCTION

disparity map. Finally, we present an estimator based on the maximum a posteriori inference. This

last proves particularly useful on regional disparity maps and essentially involves the correction

of erroneous disparity measures.
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Observations
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Résumé du chapitre 1

Dans ce chapitre, nous rappelons les relations géométriques caractérisant deux images stéréo-

scopiques. Ces relations permettent de déduire la profondeur d’un point de la scène à partir de ses

projetés dans les deux images stéréoscopiques, ou encore de déduire la fonction de profondeur

associée à un plan de l’espace 3D, étant donné la transformation qui lie ses projections dans les

deux images constituant la paire stéréo.

Les algorithmes de calcul de cartes de profondeur présentés dans cette thèse partent du

principe que les deux images stéréoscopiques sont rectifiées. Autrement dit, les points de la

scène se projettent dans les deux images stéréo avec des ordonnées identiques mais des abscisses

différentes. La différence d’abscisse entre les deux projetés d’un même point 3D correspond à la

disparité, et est inversement proportionnelle à la profondeur de ce point 3D. Ainsi, lorsque nous

calculons une carte de profondeur par rapport à l’une des deux images stéréoscopiques, il est

nécessaire de trouver, pour chaque point de l’image considérée, sa correspondance dans l’autre

image de la paire stéréo. Or, c’est bien là tout le problème du calcul de cartes de profondeur. A ce

titre, le chapitre 2 permettra au lecteur de bien cerner les difficultés liées à l’analyse d’images

stéréoscopiques et d’apprécier la mesure dans laquelle les solutions existantes résolvent ces

problèmes.
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Chapter 1

Geometry of Stereo Images

A pair of stereoscopic images is composed of two images, each representing a different viewpoint

of a real-world scene. The purpose of this chapter is to review the geometrical relationships which

exist between stereo images, and which are important in the context of depth map computation.

Section 1.1 demonstrates the mathematical relations allowing one to recover depth information

related to a point or a plane of the scene, given their projections onto the images of the stereo

pair. Section 1.2 shows how the rectified configuration simplifies most of these relations.

1.1 General relations

In this work, we assume that any image is the product of a pinhole camera. A pinhole camera

is characterised by two distinct properties. The coordinates of the camera centre, as well as its

orientation define the extrinsic parameters of the camera. Both are relative to the world’s origin

and axes orientation. In addition, the camera is virtually associated with an image plane onto

which a point of the scene projects. That image plane is determined by the intrinsic parameters

of the camera, comprising the principal point, defined as the intersection of the image plane

with the optical ray originating from the camera centre, and the focal length, which equals the

distance separating the camera centre from the principal point.

Let P be an arbitrary point of the scene. We call X1 = (X1, Y1, Z1)
ᵀ its coordinates relative

to the centre and orientation axes of camera C1. The coordinates (x1, y1) of the image plane

associated with camera C1 onto which P projects, are defined according to the intercept theorem,

as illustrated in figure 1.1. In homogeneous coordinates, this transformation is driven by the

intrinsic parameters of camera C1 and is expressed as:
x̃1

ỹ1

z̃1

 =


f 0 cx

0 f cy

0 0 1




X1

Y1

Z1

 = KX1 (1.1)
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CHAPTER 1. GEOMETRY OF STEREO IMAGES

optical axis

�Y

P: (XC,YC,ZC)
image plane

principal point

(cx,cy)
(xC,yC)

yC  c– y YC
�Z�C

�y
�If ZC

Figure 1.1: The projection model of a pinhole camera. The coordinate system of camera C is defined in
function of its originOC and its orientation axes {eX,eY ,eZ}. Within this referential, point P has coordinates
(XC, YC, ZC). It projects onto the image plane with coordinates (xC, yC) relative to the image plane origin
OI and orientation axes {ex,ey}. The internal parameters of the camera are the focal length f and the
principal point (cx, cy). According to the intercept theorem, we have (yC − cy)/f = YC/ZC and a similar
relation holds between xC, cx, XC and ZC. Note that in order to simplify the visualisation of the perspective
projection, the X-coordinate has been discarded from the illustration.

where f corresponds to the focal length and (cx, cy) represents the principal point of the image

plane related to camera C1. The image coordinates are retrieved from the homogeneous

coordinates as follows: x1 = x̃1/z̃1 and y1 = ỹ1/z̃1.

1.1.1 Depth from the projections of a 3D point

In the problem of depth map computation, we seek the depth Z1 of the point having (x1, y1) as

projection. Let us now look at how this coordinate Z1 can be recovered using a pair of stereo

images. The extrinsic parameters of a camera enable us to determine the manner in which

the coordinates of a point in the 3D world, map to its equivalent coordinates in respect to the

reference frame of that camera. These parameters are typically characterised by the composition

of a rotation and a translation. Let X = (X, Y, Z)ᵀ be the world coordinates of point P. R1

and t1 are respectively the rotation matrix and translation vector used to transform X into

X1 = [R1 | t1]X. The corresponding transformation in homogeneous coordinates is expressed by:



X1

Y1

Z1

1


=



r
(1)
1,1 r

(1)
1,2 r

(1)
1,3 t

(1)
x

r
(1)
2,1 r

(1)
2,2 r

(1)
2,3 t

(1)
y

r
(1)
3,1 r

(1)
3,2 r

(1)
3,3 t

(1)
z

0 0 0 1





X

Y

Z

1


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1.1. GENERAL RELATIONS

where the r(1)i,j are the entries of R1 for i, j ∈ {1, 2, 3}, and t1 = (t
(1)
x , t

(1)
y , t

(1)
z )ᵀ. We introduce

a new camera C2 to the scene. For the sake of simplicity, we assume that this camera has the

same intrinsic parameters as camera C1 and we let X2 = [R2 | t2]X be the coordinates of point P

with respect to C2. It is easy to derive the rigid transformation [R | t] which maps X1 to X2, since

X2 = [R2 | t2]
(
[R1 | t1]

−1X1
)
.

Given the projections of P onto the image planes of C1 and C2, as well as the aforementioned

calibration parameters, the depth of P can be computed as follows. First, let xk = fx ′k + cx and

yk = fy ′k + cy for any k ∈ {1, 2}. Because of equation 1.1, x ′k = Xk/Zk and y ′k = Yk/Zk. Since

we know how to relate X2 to X1, the former two equations can be developed:

x ′2 =
X2
Z2

=
(r1,1X1 + r1,2Y1 + r1,3Z1) + tx
(r3,1X1 + r3,2Y1 + r3,3Z1) + tz

=
Z1(

E1︷ ︸︸ ︷
r1,1x

′
1 + r1,2y

′
1 + r1,3) + tx

Z1(r3,1x
′
1 + r3,2y

′
1 + r3,3︸ ︷︷ ︸

E3

) + tz
(1.2)

where ri,j are the coefficients of the rotation matrix R for i, j ∈ {1, 2, 3}, and t = (tx, ty, tz)
ᵀ. We

obtain a similar expression for y ′2.

y ′2 =
Z1(

E2︷ ︸︸ ︷
r2,1x

′
1 + r2,2y

′
1 + r2,3) + ty

Z1(r3,1x
′
1 + r3,2y

′
1 + r3,3︸ ︷︷ ︸

E3

) + tz
(1.3)

From relations 1.2 and 1.3, we deduce that Z1 is not defined when t = 0. In other words,

in order to perform depth estimation from a pair of stereo images, it is essential that the

two camera centres should not be the same. Given that E1, E2 and E3 depend solely on the

calibration parameters and the coordinates (x1, y1), Z1 can be expressed as a function of the

image coordinates of the two projections:

x ′2(Z1E3 + tz) = Z1E1 + tx

Z1(x
′
2E3 − E1) = tx − x

′
2tz

Z1 =
tx − x

′
2tz

x ′2E3 − E1
(1.4)

And similarly by developing from y ′2, we obtain that:

Z1 =
ty − y ′2tz
y ′2E3 − E2

(1.5)
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CHAPTER 1. GEOMETRY OF STEREO IMAGES

Either equation 1.4 or 1.5 can be chosen to compute Z1. The preferred choice will depend on

whether the denominator appearing in each relation, is different from zero. Recall that Z1 refers

to the depth of the 3D point of interest, with respect to the coordinate system of camera C1.

When the coordinate systems of C1 and the scene are the same, Z1 will correspond to the depth

coordinate of the point in the scene.

1.1.2 Depth from the projections of a 3D plane

So far, we have learnt how to relate the depth of a 3D point to the coordinates of its projections

onto each of the stereo images. We are now interested in computing a depth function associated

with a plane lying in front of the camera’s objective.

For the rest of this paragraph, we assume that every coordinate is expressed in the referential

of camera C1. Let π be a plane in 3D space defined by equation aX + bY + cZ + k = 0 and

consider the point of coordinates x1 = (x, y, f)ᵀ belonging to the image plane of C1. By tracing

a ray from the optical centre of C1 travelling past x1, it is possible to find an intersection with

π, say X1 = (X1, Y1, Z1)
ᵀ using the following parameterisation: X1(t) = xt, Y1(t) = yt and

Z1(t) = ft. The time at which this ray going past x1 intersects π, is given by equation 1.6.

t(x1, π) =
−k

ax+ by+ cf
(1.6)

Let us call π = 1
k(a, b, c)

ᵀ the plane coordinates. Equation 1.6 reduces to t(x1, π) =

−(πᵀx1)
−1. The relation between X1 and X2, denoting the coordinates of P with reference to

the coordinate systems of cameras C1 and C2 respectively, can now be further developed.

X2 = RX1 + t

= t(x1, π)Rx1 + t

= Rx1 − (πᵀx1)t

= (R− tπᵀ)x1

We observe that x1 represents the de-calibrated homogeneous coordinates of the projection

of X1 into the view associated with C1. Therefore x1 = K−1x̃1, where x̃1 corresponds to the

homogeneous coordinates of the pixel representing X1 in the image plane of C1. Similarly, the

homogeneous coordinates of the pixel corresponding to X2 in the view associated with C2, are

given by x̃2 = KX2. We therefore deduce that:

x̃2 = K(R− tπᵀ)K−1x̃1 (1.7)
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C1

d
LEFT VIEW RIGHT VIEW

P

x1

C2

x2

Figure 1.2: Relation between depth and disparity for a pair of rectified stereo images. Point P projects onto
the left and right views of the stereo pair with the same ordinate but different abscissa. The quantity x1−x2
corresponds to the disparity and is inversely proportional to the depth being searched for. The further
away P is situated from the camera centres, the smaller is the disparity. We see that if x1 = x2 ⇔ d = 0,
then the rays originating from the camera centres C1 and C2, going past x1 and x2 respectively, meet at
infinity.

The linear operator H = K(R− tπᵀ)K−1 transforming homogeneous coordinates x̃1 into x̃2 is a

planar homography, represented as a 3×3 matrix. Therefore, the transformation which warps the

projections of a planar object from one view to another is the homography H. If we are able to

estimate the latter, the plane equation can be recovered from relation πᵀ = 1
3(t

−1)ᵀ(R−K−1HK)

and therefore the depth coordinates of all the points belonging to the plane can be deduced.

1.2 Relations specific to the rectified configuration

Stereo images are said to be rectified when the orientation of the camera axes has been preserved,

i.e. when R is the identity matrix, and when the ordinates of the corresponding points are aligned,

requiring that y1 = y2, which can be achieved for ty = tz = 0, according to equation 1.3. For

that particular choice of parameters, the ratio in equation 1.5 is undefined. Therefore, the depth

must be recovered using equation 1.4. We have E3 = r3,3 = 1, as well as E1 = r1,1x
′
1 = x ′1.

Therefore,

Z1 = −
tx

x ′1 − x
′
2

9
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Recalling that x ′k = (xk − cx)/f, for k ∈ {1, 2}, the depth is ultimately given by equation 1.8.

Z1 = −f
tx

x1 − x2
(1.8)

The quantity x1 − x2 corresponds to what is called the disparity, and is, according to equation

1.8, inversely proportional to the depth being searched for. For the sake of completeness, note

that when C1 and C2 respectively capture the left and right views of a scene, x1 − x2 > 0, but

tx < 0. Therefore, Z1 > 0.

Relation between 3D planes and disparity functions

We can rewrite equation 1.8 more compactly, as:

d(x1) = −f · tx

Z1(x1)

so that d(x1) and Z1(x1) denote respectively the disparity and the depth associated with point

x1 = (x, y, f)ᵀ, belonging to the image plane of camera C1. If we now reconsider the scenario of

section 1.1.2, where Z1(x1) = f · t(x1, π) because x1 is the projection of a point belonging to the

3D plane π, then:

d(x1) = −
tx

t(x1, π)
=
tx

k
(ax+ by+ c) (1.9)

This result is particularly useful, as it shows that the disparity function can be expressed as a

plane equation within any portion of the image domain segmenting an object, which is a plane

in the 3D scene. Of course, the validity of this assertion is contingent upon the stereo images

having been rectified.

Image transformation induced by planes

In the rectified configuration, the homography allowing the warp of the projections of a plane

onto the stereo images, can also be arranged as a much simpler transformation. Setting R to the

identity matrix and ty = tz = 0, one obtains:

I− tπᵀ =


1− tx

a
k −tx

b
k −tx

c
k

0 1 0

0 0 1


which is therefore an affine transformation. Given that the intrinsic calibration matrix K is

defined such that K3,1 = K3,2 = 0, we deduce that the homography H expressed by equation 1.7

becomes an affine transformation under the condition that the stereo images are rectified.
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SUMMARY

Further reading

The process of rectifying an arbitrary pair of stereo images is beyond the scope of this text. It

should be noted that the solution of the rectification problem in stereo is not unique. We refer the

reader to [Ayache and Hansen, 1988], which is one of the pioneer works on image rectification,

as well as to [Loop and Zhang, 1999], where more emphasis is laid on the minimisation of

distortions. The reader can find an additional source of information about stereo image formation

and interpretation in [Horaud and Monga, 1995], as well as a careful treatment of two-views

geometry in [Hartley and Zisserman, 2004].

Summary

In this chapter, we have presented and proved the geometrical relationships characterising stereo

images. Such relationships are useful when relating the correspondences of two image pixels to

the depth of the 3D point they represent, or when relating the transformation which maps the

projections of a 3D plane to its actual depth function.

The algorithms of depth map computation presented in the rest of this thesis, consider the

rectified configuration. This allows us to view the disparity between two corresponding points

as a measure being inversely proportional to the sought depth. The real problem of depth map

computation is however to establish correspondences between the pixels of the two stereo images.

The following chapter reviews many of the methods developed to date, and highlights the main

problems relating to the computation of disparities.
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Résumé du chapitre 2

Ce chapitre passe en revue les difficultés rencontrées dans le cadre de la recherche de mises en

correspondance entre les deux images stéréoscopiques.

En calculant une image des différences absolues entre les fonctions d’intensité associées à la

vue de gauche et à la vue de droite, soit une image contenant des coûts de superposition entre les

deux images stéréo, nous remarquons qu’une ombre de superposition balaye le plan de l’image

de superposition au fur et à mesure que nous décalons la vue de droite vers le bord droit du plan

de l’image. Le décalage pour lequel un pixel de la vue de gauche est recouvert par l’ombre de

superposition correspond à sa disparité réelle.

Afin de mettre cette ombre de superposition en évidence, il peut être utile d’agréger les

coûts de superposition de pixels voisins, et ce pour chaque décalage possible. Dans ce cas,

pour que les agrégations de coûts soient pertinentes, les segmentations des deux images stéréo

doivent être prises en compte. En effet, à chaque coût de superposition correspond deux régions:

l’une provenant de la vue de gauche, et l’autre provenant de la vue de droite. Par souci de

cohérence, seules les agrégations de coûts provenant de la même intersection régionale peuvent

être tolérées. De plus, afin de tenir compte des régions représentant des objets inclinés par

rapport au plan d’image de la caméra, l’agrégation de coûts entre images de superpositions

obtenues pour différents décalages s’avère également essentielle. C’est la raison pour laquelle

nous présentons les volumes de superpositions d’images (DSV), desquels nous espérons extraire

les hyperplans représentatifs des ombres de superposition, sur une base régionale, et au travers

de plusieurs plans de disparités.

Il faut bien retenir que le calcul de cartes de profondeur est un problème inverse. Cela

signifie que, pour une image donnée, il existe des pixels n’ayant pas de correspondance dans

l’autre image de la paire stéréo. Ces pixels sont dits « occultés », car ils correspondent à des

points de la scène qui ne se projettent pas dans l’autre image de la paire stéréoscopique. Il nous

faut donc un modèle d’estimation adéquat pour attribuer à ces pixels, des valeurs de disparités

plausibles. Un bon modèle d’estimation doit également servir à résoudre les ambiguïtés de mises

en correspondance au niveau des zones de l’image qui sont homogènes. Nous avons montré

qu’il est toujours préférable de se fier à des informations de profondeur internes aux régions de

13
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l’image. Lorsque cela n’est pas possible, les disparités de contour peuvent être utilisées en dernier

recours, après avoir déterminé à quelles régions ces contours appartiennent réellement.

Pour que les agrégations régionales soient cohérentes, il serait idéal que les bordures de

régions recouvrent les zones de l’image, là où la disparité réelle subit des discontinuités. Les

chapitres 3 et 4 présentent, à ce titre, les outils de segmentation que nous avons déployés. Les

chapitres 5, 6 et 7 exploitent les observations rassemblées dans ce chapitre lors de la réalisation

de nos méthodes de calcul de cartes de profondeur.
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Chapter 2

Stereo Image Analysis

We shall introduce this chapter with a simple example, as illustrated in figure 2.1. Suppose we are

given a pair of rectified stereo images such that the corresponding structures preserve the same

brightness. We now decide to superimpose the two images, and look at their absolute differences

while incrementally shifting the right view horizontally to the right-hand side of the image plane.

As the intensity of the shift increases, we notice a shadow progressively sweeping the image

plane. In fact, this shadow highlights those areas of the left image which register perfectly with

the shifted version of right image. Therefore, the time at which the shadow travels past a pixel

is closely connected to its actual disparity. Based on that observation, it is tempting to devise

an algorithm capable of tracking this superimposition shadow in order to yield a depth map.

However two problems must first be solved. First, the characterisation of this shadow is not trivial

and involves observing the phenomenon at an appropriate scale, as will be shown in section 2.1.

Second the superimposition of occluded image areas will never be relevant in terms of brightness

comparison. Section 2.2 provides a description and an analysis of the occlusion phenomenon

while section 2.3 concludes this chapter on the estimation aspect of depth map computation

which, due to the unavailability of some correspondences, is essential for the provision of a full

depth map.

In the rest of this chapter, we shall employ the notation and structures presented in table 2.1

and assume that we seek a disparity map D with respect to the left view of the rectified stereo

pair, Il.

2.1 Measuring disparities: a problem of scale

The pixel constitutes the lowest possible scale at which matches can be observed. For instance,

the disparity map could be computed according to equation 2.1 below:

D [x, y](pixel) = arg min
d

|Il [x, y] − Ir [x− d, y]| (2.1)
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Stereo analysis and superimpositions. Images (a) and (b) represent the left and right views
of the Cones scene included in Middlebury 2002 database. Each of the input images has a size of 1800 ×
1500 pixels. The absolute differences between the two images are computed after applying a horizontal
shift to the right view towards the right-hand side of the image plane for a magnitude of (c) 84 pixels, (d)

102 pixels, (e) 136 pixels, (f) 186 pixels. For each shift increment, one can observe a superimposition
shadow sweeping the areas of the stereo images which correspond. Objects which are almost fronto-
parallel to the image plane, like the cones, are entirely swept within a few consecutive horizontal shifts.
Tilted objects such as the mask are swept more progressively with a narrower superimposition shadow.
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2.1. MEASURING DISPARITIES: A PROBLEM OF SCALE

Symbol Description

Scalars

x Pixel abscissa (integer between 0 and image width)

y Pixel ordinate (integer between 0 and image height)

d Left-to-right displacement coordinate (integer)

Stereo images

Il Left view of the stereo pair

Il : (x, y) 7→ Il [x, y], the brightness of pixel (x, y) in Il
Ir Right view of the stereo pair

Ir : (x, y) 7→ Ir [x, y], the brightness of pixel (x, y) in Ir

Structures encoding superimpositions

W Warping Space Volume

W : (xl, xr, y) 7→W [xl, xr, y] = |Il [xl, y] − Ir [xr, y]|

D Disparity Space Volume (DSV)

D : (x, y, d) 7→ D [x, y, d] =W [x, x− d, y]

D Disparity map of the left view Il
D : (x, y) 7→ D [x, y], the disparity allocated to pixel (x, y) in Il

Aggregation

A(xi, xj, y) Aggregation support when matching pixels (xi, y) and (xj, y)

A(xi, xj, y) = {(xk, yk, dk)}
n
k=1, a set of n points referring to D

Regions

R A region of Il, defined as a set of connected pixels

R ′ A region of Ir, defined as a set of connected pixels

R ′(d) A region of Ir, shifted by d pixels towards the right

R ′(d) = {(x, y) | (x− d, y) ∈ R ′}

Table 2.1: Notation for stereo image analysis
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The problem with this equation lies in the fact that there is nothing to prevent very different

disparity values from being allocated to two pixels which are simultaneously neighbours and

projections of the same object in the scene. The phenomenon is further amplified across regions

with constant brightness, which comes as no surprise given that, under those conditions, all pixels

would then share almost identical values. For this reason, we will concentrate in this section

on the analysis of matches at higher scales. In particular, we shall determine how and to what

extent an analysis at a higher scale, i.e. one which considers superimpositions around the pixel

of interest and perhaps for different disparities, may solve ambiguities.

2.1.1 Similarity measures

The scale of observation may be increased first by considering patches centred around the

candidate pixels for which a match is evaluated. Numerous ways of characterising the similarity

or dissimilarity between two patches exist and the we refer the reader to the exhaustive list of

measures presented in [Goshtasby, 2012]. We are going to review those which play an important

role in stereo and discuss when to use them.

The taxonomy of stereo methods elaborated in [Scharstein and Szeliski, 2002] shows that the

sum of squared differences, often referred to as SSD, remains the most popular choice when

dealing with stereo imagery acquired under identical illumination conditions. In fact, computing

the SSD amounts to squaring the absolute differences of intensities between the superimposed

patches and aggregating the results by summation, which is a fairly efficient operation. One can

therefore view the SSD as a means of aggregating individual pixel superimposition costs. The

same kind of observation would be made for the sum of absolute differences (SAD) and Gaussian

convolution.

When image brightness is not preserved across the stereo pair, other measures, which are

not simply based on individual costs or scores aggregation, are favoured. A typical measure is

the normalised cross-correlation, abbreviated as NCC, which exploits the mean and variance

of pixel intensities for each patch. Some extensions to that measure, which remain invariant

to radiometric changes, have been proposed in [Heo et al., 2008]. The NCC is robust across

textured regions due to its locally adaptive normalisation, but is nevertheless insensitive to

homogeneous patches of different greylevels. As a result, NCC does not supersede SSD in that

respect and should not be used on imagery which benefits from preserved brightness across

the stereo pair. Slightly less adaptive than NCC, the intensity ratio-variance may succeed in

recognising homogeneous patches for which intensities have been altered, provided that the

brightness of equivalent pixels remains identical, up to a scaling factor, which would be assumed

to be the case when acquiring images with different exposure times.

Additionaly, alternative measures based on the study of gradient fields have been proposed
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in [Scharstein, 1994, Twardowski et al., 2004]. These are convenient when dealing with stereo

imagery subject to slight illumination discrepancies. However, on images devoid of texture, their

usage requires a proper observation scale and an interpretation of object frontier disparities. In

our work, both requirements have been fulfilled by virtue of the use of pertinent image regions, as

will be presented in section 5.1. Another image representation of the directional gradients, which

stands out as being particularly suitable for computing superimposition costs, is provided by a

procedure called the Census transformation [Zabih and Woodfill, 1994]. This transformation

maps every pixel of the image plane to a binary code, for which each bit encodes any brightness

increase for a particular direction. The pixel-wise superimposition cost is then equal to the

Hamming distance between the two corresponding binary sequences. Combined with a simple

aggregation strategy (summation for instance), the resulting costs are usually quite discriminative.

However, matches based on this transformation are not robust to sensor noise.

The choice of the similarity or dissimilarity measure has a non-negligible impact on the

quality of the disparity measurements. However, our work lays more emphasis on the choice of

appropriate aggregation supports. Thus far, patches have been assimilated to square windows.

This choice is not optimal for two reasons. First, even if the patch centres are correctly superposed,

the patch contents may show extreme discrepancies near boundaries of objects with different

depths. For that reason, using shape information within the aggregation process is key and some

examples will be presented in paragraph 2.1.2. Second, it is unclear how the similarity measure

behaves when increasing the window area. This action would be perfectly adequate for a region

which is fronto-parallel to the image plane, but the measurements would no longer be valid for

tilted regions. The behaviour of tilted regions deserves a thorough study, and is addressed in

paragraph 2.1.3.

2.1.2 Shape-adaptive aggregation

State-of-the-art approaches in stereo consider pruning or at least attenuating the impact of

wrongly superposed pixels during the aggregation phase. In their work, [De-Maeztu et al., 2012]

propose an aggregation scheme based on the use of a geodesic colour distance from the patch

centre to the surrounding pixels. As the geodesic distance increases, the aggregation weight

assigned to the target pixel of the patch decreases. That is to say only those pixels sharing a

colour similar to that of the patch centre and reachable from the patch centre without having to

traverse pronounced colour gradients, are likely to be allocated a significant aggregation weight.

Segmentation seems therefore well adapted to mimic the procedure just mentioned. In fact,

regions have already been used in [Hosni et al., 2010] to constrain the aggregation supports by

pruning pixels which do not belong to the patch centre segment. Our work develops from such

principles.
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Figure 2.2: Scheme illustrating the aggregation consistency problem when patches overlap different
objects for the textured case.

An experiment based on a fronto-parallel assumption

Consider the scenario illustrated in figure 2.2. We are provided with two rectified stereo images

of the same scene: Il and Ir. The red cross enclosed in patch P1 with respect to the left view

matches the red cross enclosed in patch P ′1 in the right view. In a similar way, the red cross

enclosed in patch P2 also corresponds to the red cross enclosed in patch P ′2. For each pair of

corresponding pixels between the two stereo images, we can deduce the disparity related to the

3D scene point which projects onto the two corresponding pixels.

Our goal is to determine a mathematical expression of the superimposition cost between any

two patches – one extracted from the left view, the other extracted from the right view – in such

a manner that the superimposition cost is minimal when the patch centres truly correspond. If

we compare the contents of patches P1 and P ′1, we notice that some parts do not superimpose

well, which could result in a non-relevant dissimilarity cost if the entirety of the patches were

taken into account. The same observation applies for patches P2 and P ′2. Consequently, the

superimposition costs must depend solely on the patch segments which correctly overlap.

To proceed, we segment the scene into regions Ri, Rj and Rk in Il, and into their correspond-

ing regions in Ir, being R ′i, R
′
j and R ′k respectively. We assume that:

• Each region represents a particular object of the 3D scene.
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• Each region stands fronto-parallel to the stereo image planes, meaning that, within a given

region, all pixels are the projections of points having the same depth in the 3D scene.

• Ri is the region lying the farthest away from the camera, while Rk is the closest to the

camera.

We see that patches P1 and P2, as well as P ′1 and P ′2 overlap several regions in each view of

the stereo pair. In order to determine which areas of the patches are appropriate for deducing

that the centres effectively match, we shall concentrate on the intersection between patches and

regions. We investigate two configurations: one for which the images are full of non-repetitive

texture, and another where the regions are totally homogeneous.

Case 1: Textured regions Let (x1, y1) and (x2, y2) be the coordinates of the centres of P1 and

P2 respectively. Suppose that the actual disparity of these centres equals d1 for patch P1, and d2

for patch P2. From the illustrations of figure 2.2, we can make the following observations:

• Rj and R ′j are the regions containing the patch centres of P2 and P ′2 respectively. We notice

that the entirety of (P2 ∩ Rj) and (P ′2 ∩ R ′j)(d2) are correctly superimposed.

• Ri and R ′i are the regions containing the patch centres of P1 and P ′1 respectively. We

notice that only a fraction of (P ′1 ∩ R ′i)(d1) is correctly superimposed with (P1 ∩ Ri), since

(P ′1 ∩ R ′i)(d1) covers an area of the image plane, which is larger than that of (P1 ∩ Ri). We

can explain this phenomenon by the fact that some parts of (P ′1 ∩ R ′i) are occluded in the

left view.

We wish to define the cost of matching pixel (xi, y) in Il, with pixel (x ′i, y) in Ir, as an aggregation

of the lightness differences observed when superimposing the two patches centred at these two

pixels. As observed before, not every lightness difference may be taken into account within that

aggregation. It is important that, if (xi, y) ∈ Ri and (x ′i, y) ∈ R ′i, then the difference in lightness

between pixels (xk, y) and (x ′k, y) can be aggregated to the cost of matching (xi, y) with (x ′i, y),

under the following conditions:

• (xk, y) ∈ Ri with respect to the left view and (x ′k, y) ∈ R ′i with respect to the right view.

• In order to take into account the lightness differences which are observable when the two

patch centres are superimposed, and assuming that the segmented regions are objects

standing fronto-parallel to the image plane, we must ensure that xk − x ′k = xi − x
′
i.

• Let di = xi − x
′
i. The pixel of coordinates (xk, y) must belong to the patch Pi centred

at (xi, y), and the pixel of coordinates (x ′k, y) must belong to the patch P(−di)
i centred at

(x ′i, y).

Therefore, we can express the cost of matching pixel (xi, y) with pixel (x ′i, y) as follows:

c(xi, x
′
i, y) =

1∣∣A(xi, x
′
i, y)

∣∣ ∑
(x,y,d)∈A(xi,x

′
i,y)

|Il [x, y] − Ir [x− d, y]| (2.2)
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Figure 2.3: Scheme illustrating the aggregation consistency problem when patches overlap different
objects for the homogeneous case.

where the aggregation support is the set of voxels defined as:

A(xi, x
′
i, y) =

{
(x, y, di) | (x, y) ∈ (Pi ∩ Ri) ∧ (x− di, y) ∈ R ′i

}
(2.3)

Finally, since we assumed that the regions were representing fronto-parallel objects, there

exists a unique displacement for which two corresponding regions perfectly superimpose, and thus

patch Pi may be discarded from equation 2.3. This type of aggregation being solely controlled by

the left and right image segmentations, will prove essential when computing regional disparities, a

concept which will be developed in chapter 5. In situations where the fronto-parallel assumption

would not be valid, the patch could serve as a remedy to the problem posed by tilted regions.

More complex methods of tackling this will be presented in the following sections.

Case 2: Homogeneous regions Consider the scenario illustrated in figure 2.3. Here, the

regions are homogeneous. The only way to distinguish them is by observing their colour and

the only source of information for measuring disparities comes from the frontiers of the regions.

In practice, some singularities stemming from the contours are always perceivable near region

boundaries. Therefore, by using the aggregation model elaborated for case 1, the aggregation

support assigned to the centres of patch P2 and P ′2 would yield the minimal aggregation cost

as desired, because the region frontiers overlap substantially. However the contour singularities
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observed in Il across (P1 ∩ Ri) do not superimpose well within patch (P ′1 ∩ R ′i)(d1). This is

because the contour perceived in (P1 ∩ Ri) does not represent the physical border of Ri, but an

occlusion border caused by region Rk. A better aggregation cost would be found by superposing

the centres of patches P1 and P∗1 for a disparity equal to the one of Rk. Attributing the disparity

of Rk to the centre of P1 will result in what is commonly referred to as a fattening effect.

In fact, the computation of disparities from the contours described in figure 2.3 is open to

interpretation, so we shall not seek a method for handling that particular extreme configuration.

Nonetheless, this observation is potentially useful, because most images in new datasets comprise

both textured and non-textured areas. Using patches within the aggregation scheme presented

for this case study suggests that some fattening effect may occur when the aggregation support

contains only singularities from a contour which is not the physical frontier of the region under

consideration. In order to avoid fattening artefacts, we will propose methods to prioritise the

disparity measures obtained within a given region, according to the origin of the singularities.

2.1.3 Inclination and disparity planes

We are now interested in expanding the aggregation domain. In the previous example, we showed

that the largest and most relevant aggregation domain, when evaluating a match between two

pixels, could be determined in function of the disparity, by the intersection of the regions of

origin of these pixels, and under the condition that these regions segment all the objects in the

scene and that these objects are positioned fronto-parallel with respect to the image planes of the

stereo cameras. Whilst the fronto-parallel assumption has precise applications for low-baseline

stereo imagery, it is not appropriate when regions are significantly tilted. For instance, the

intersection between two corresponding regions could be large, but only a very small portion of

that intersection would be in phase with respect to the image contents. In reality, costs from good

and bad superimpositions would be mixed together during the aggregation phase, which would

reduce the relevance of the aggregated costs. Therefore, increasing the scale of the aggregation

domain requires inspection of the superimposition costs for different disparities.

The assumption that a region is planar is more flexible than the fronto-parallel one and has

inspired some approaches using disparity plane fitting. One the one hand, [Sinha et al., 2014]

propose resorting to keypoints matched between the images of the stereo pair and compute

hypotheses, consisting of disparity planes sweeping some parts of the image. These hypothe-

ses are then used to control the estimation of the full disparity map. On the other hand,

[Bleyer and Gelautz, 2005] and [Yang et al., 2009] compute initial disparity measures and clus-

ter the different parts of the images into meaningful regions. They then calculate a plane

equation for every region by means of least-squares estimation derived from initial disparity

measures, weighted according to their likelihood. All these approaches however require some
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initial disparity measures, which are generally obtained using standard patch-based correlation

or using keypoint descriptors. A first step towards improving the regional consistency of these

disparity plane estimations, would constitute the retention of the disparity plane which yields

the optimal superimposition between two corresponding regions, but not the disparity plane

which minimises the error with respect to initial disparity measures. To proceed, it would be

necessary to superimpose the image contents of any region of Il with its corresponding region in

Ir, after having performed on the latter, the affine transformation being induced by the estimated

disparity plane (see section 1.1.2). However, this would be computationally more expensive and

would still necessitate initial disparity measures to make disparity plane proposals. And finally,

the model would still be approximate when the objects appearing in the scene are not planar.

In the following subsection, we are going to describe a structure named “disparity space

volume” allowing the study of any kind of superimpositions (tilted and fronto-parallel).

2.1.4 Disparity Space Volumes

The disparity space volume, abbreviated by DSV, is a stack of stereo image superimpositions,

obtained for increasing intensities of left-to-right image displacements. If the superimpositions

are characterised by the absolute differences of the image brightness, then, given the image

coordinates (x, y) in the left view and the disparity d at which a superposition is tested, the DSV

is defined by equation 2.4, as:

D [x, y, d] = |Il [x, y] − Ir [x− d, y]| (2.4)

The DSV should facilitate the analysis of the stereo superimpositions in 3D, and this would be

ideal when processing a region for which the depth function cannot be approximated by a simple

model. But first and foremost, it is essential to know how the patterns encountered in a DSV may

be interpreted.

Analysis of disparity space volumes

Now, let us look at figure 2.4. Figures 2.4(c) and 2.4(d) show a pair of stereo images originating

from Middlebury 2014 database. In red, two corresponding scanlines at y = 60 are highlighted.

The disparity space image or DSI displayed in figure 2.4(b) is a slice of the DSV, representing

the way superimposition costs evolve along the scanline y = 60 for all tested disparities. For

zones B and D, which contain texture, human vision is able, without much difficulty, to localise

the minima which correspond to relevant superimpositions. It is much harder to discern these

minima for zones C, E and G without resorting to a preliminary shape-based aggregation that

takes account of neighbour scanlines, as shown in figure 2.4(a). Finally, zone A is the most
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Figure 2.4: Disparity Space Images generated when warping the scanlines of AustraliaP stereo images
(c) and (d), shown in red. The raw DSI is visualised in (b) using a jet colormap, i.e. with the lowest costs
represented in blue, and the highest costs represented in red. The vertical lines in black help identify
the regions traversed by the scanline in the left view, while the dotted rectangles highlight the areas
of the DSI where the actual superposition should take place. The costs of the DSI shown in (a) stem
from a shape-adaptive aggregation using patches of 11× 11 pixels (see section 2.1.2, equation 2.2) with
fixed displacement. One can readily appreciate how this preliminary aggregation solves some of the
ambiguities.
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Object occlusion
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Figure 2.5: Illustration summarising the main structures to anticipate when analysing disparity space
images. Non-visible registrations will occur across occlusion traces and discontinuities of disparities may
occur upon crossing the physical frontier between two objects in the scene.

difficult to interpret for the three reasons which makes depth map computation a complex

problem:

• the scanline in zone A traverses a relatively homogeneous region. Therefore, the shape-

aggregation constrained by our patch of size 11 × 11 pixels does not suffice to solve the

ambiguities. From xl = 30 to xl = 60, it is impossible to tell where the superimposition

occurs.

• with respect to the right view, a fairly significant area of zone A is occluded by the sphere

appearing in zone B. We can see that the occlusion trace have the same width as zone B, in

zone A of the disparity space image. This trace is characterised by high superposition costs.

Furthermore, if a point with abscissa xi in the left view is assigned disparity d, then the

pixels contained in the set {(xi − τ, d− τ) | τ > 0} belong to the occlusion trace of the DSI

attributed to the scanline of that point.

• the left-hand side of the left view undergoes an image border occlusion. This is the part of

the disparity space image shown in red. Again, no disparities can be measured in this area.

Figure 2.5 illustrates and summarises the main patterns which can be observed from disparity

space images. Early methods of stereo analysis exploited the structures of the filtered disparity

space images, for each scanline of the image. These methods relied on warping techniques, which

are classified as one of the semi-global approaches for depth map computation.
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Scanline warping

Scanline warping provides a way of finding a connected path through the DSI which travels past

the superimposition shadow. It is based on a variant of dynamic time warping [Müller, 2007],

which will be described in this paragraph. For the sake of simplicity, the DSI is first converted to

a Warping Space Image, or WSI, which is a slice of a Warping Space Volume as described in table

2.1. An example of such image is given in figure 2.7(a).

Problem definition In the case of stereo, a valid warping path Γy : {1, . . . , n}→ {(x
(i)
l , x

(i)
r )}ni=1

has the following characteristics:

• The initial point of the path (x
(1)
l , x

(1)
r ) must satisfy x(1)r = 0, so that the first pixel of the

right image scanline must be matched with one pixel of the left image scanline.

• Likewise, the final point of the path (x
(n)
l , x

(n)
r ) must satisfy x(n)l =W − 1, where W is the

width of the image, in order to enforce a match of the rightmost pixel of the left image

scanline, to one pixel of the right image scanline.

• The path must evolve in such a way that only three transitions can occur: either both

abscissa are incremented or only one abscissa is incremented. Doing so guarantees that

all xl > x
(1)
l have been visited, likewise all xr 6 x

(n)
r , and that the ordering constraint

applies, i.e. x(i)l 6 x(i+1)l and x(i)r 6 x(i+1)r for all i ∈ {1, . . . , n− 1}. These transitions are

illustrated in figure 2.6.

• The cost of a path is evaluated as follows:

c(Γy) =

n∑
i=0

W
[
x
(i)
l , x

(i)
r , y

]
︸ ︷︷ ︸
superimposition cost

+

n∑
i=1

Υ(di−1, di)︸ ︷︷ ︸
occlusion penalty

(2.5)

such that the occlusion penalty Υ(di−1, di) between two consecutive disparities di =

x
(i)
l − x

(i)
r and di+1 adds a tiny contribution ξ to the cost as soon as the disparities differ,

i.e. when two consecutive pixels along a scanline merge into one pixel in the other scanline.

Such a phenomenon is often attributed to an occlusion, although it may be due to the

quantisation of disparities across tilted regions. The real purpose of the penalty in this

particular case, is to hinder non-relevant variations of disparities across homogeneous

regions.

We seek a path Γ?y for which the cost c(Γ?y) is the least amongst all valid paths. The solution

consists of computing a distance function from the border of the Warping Space Image, which

contains the set of valid initial points. This distance function depends on two factors: the relief

traversed, which is composed of the superimposition costs, and the available path directions from

any point of the relief. The ending point of the path Γ?y lies in the target WSI border, consisting of

the set of valid ending points, and has the minimum cost or distance.
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(xl, xr) (xl, d = xl - xr)

(xl, xr - 1)

(xl - 1, xr)

(xl - 1, xr - 1)

(xl, d + 1)

(xl - 1, d - 1)

(xl - 1, d)

Aggregation directions in the
Warping Space Image

Aggregation directions in the
Disparity Space Image

Figure 2.6: Directions driving the aggregation of costs within the accumulator array for both the warping
and the disparity space images. The colours highlight the correspondences between these directions
across the two proposed models. Transitions shown in red symbolise pixel occlusions occurring in the
right view. Transitions shown in blue symbolise pixel occlusions occurring in the left view.

A solution based on dynamic programming Let A be called the accumulator image, having

the same dimensions as the WSI generated for the scanline of ordinate y, and containing the

values of the distance function as shown in figure 2.7(b). All distances are initially set to +∞.

Given the constraint on the path evolution, the distance from the set of initial points to a particular

coordinate (xl, xr) of A can be expressed by recurrence as:

A[xl, xr] =W [xl, xr, y] + min


A[xl − 1, xr − 1] (Match, ∆d = 0)

A[xl − 1, xr] + ξ (Left scanline pixels merge, ∆d = +1)

A[xl, xr − 1] + ξ (Right scanline pixels merge, ∆d = −1)
(2.6)

paying particular attention to the initialisation, when xl < 1 or xr < 1 :

A[xl, xr] =

W [xl, xr, y] if xr = 0

+∞ otherwise

The argument of the minimisation in equation 2.6 encodes, for a given point of coordinates

(xl, xr), the previous coordinate of the path of minimum distance which leads to the point of

coordinates (xl, xr). This information is essential when performing backtracing, i.e. the process

of finding the complete optimal path which leads to the chosen point of the WSI. Finally, note by

comparing equations 2.6 and 2.5 that if (x?l , x
?
r) is the ending point of Γ?y, then A[x?l , x

?
r] = c(Γ

?
y).

As a result, the optimal warping path is recovered using backtracing from the match minimising

A[xl, xr] for xl =W − 1.
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Known issues Although the shadow detection presented in figure 2.7(c) is useful, scanline

warping is a far from perfect method. Firstly, the ordering constraint applied to the whole

scanline, is an assumption which retains minimal validity with respect to current datasets. In the

example of figure 2.4, the object lying between zones E and G violates the ordering constraint

along the scanline. This explains the fact that its disparity could not be captured. In fact, the

ordering constraint should not be neglected, but should be applied on a regional basis, where

its scale remains consistent. Secondly, the search for the optimal warp using the end matching

points appears to be a source of potential instabilities: for example, what would happen if the

right-hand side of the left view is occluded in the right view? Thirdly, the cost associated with the

ideal warp between two corresponding scanlines, integrates the superimposition costs occurring

across occluded areas. We observed that such costs take fairly high values. Therefore, if the ideal

warp travels past a large number of occluded points, its overall accumulated cost is likely to be

more significant than that of an optimal warp found by minimising equation 2.5. As a result, the

optimal warp would then be different from the ideal warp. Zone A in figure 2.7(c) illustrates this

phenomenon. Finally, we should be aware that the warping path, when xr remains fixed, does

not correspond to the actual disparity function, but merely encodes the fact that xl is occluded in

the right view. Figure 2.8 illustrates that observation.

Using prior information In their work, [Bobick and Intille, 1999] attribute occlusions to the

portions of the path, for which only one of the two scanline abscissa has been incremented. The

value added to the current path distance when such an occlusion occurs, does not take into

account the superimposition cost, but the occlusion cost ξ only. In order to be coherent, an

occlusion cost which is higher than the typical cost associated with a valid match, should be

chosen. Nonetheless, the authors acknowledge that without any intervention, the optimal warp

remains very sensitive to ξ, in particular when occlusions are significantly large. They show that,

forcing the path to visit reliable matches limits the impact of the occlusion cost. Furthermore,

they adapt the occlusion cost dependent upon whether an edge in the left or right image is

traversed, as a method of improving tolerance of the realisation of an occlusion near edges, which

constitutes a sensible assumption. Nevertheless, the need for ground control points demonstrates

that these global algorithms require good initialisations to function properly.

In short Scanline warping is a method of aggregating superimposition costs which arise from

different disparities. In its standard formulation, only one aggregation cost yields the full disparity

function, but it would be more relevant to perform the operation at a regional level. The occlusion

phenomenon requires special care. Finally, as the preliminary shape-constrained aggregation

has demonstrated, the need for an aggregation that works across different scanlines is real.

Ideally, it should be possible to scale the process described here for one scanline, to work across

multiple scanlines, but the algorithm extensions to 3D are absolutely not straightforward and

29



CHAPTER 2. STEREO IMAGE ANALYSIS

(a) (b)

(c)
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Figure 2.7: Warping the scanlines highlighted in figure 2.4. (a) Warping Space Image representation of
the DSI in figure 2.4(a). The part of the array shown in white denotes points allocated an infinity cost
value. (b) Accumulator array resulting from the aggregation procedure retained for the warping task. The
line in white shows the path that traverses the array with minimum cost. (c) Warping path projection onto
the original DSI.
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Figure 2.8: Comparison between the warping path and the actual disparity function being searched for.
When xr = xl − d remains on a portion of the warping path, that portion of the path is no longer in phase
with the disparity function, but merely encodes that xl is occluded in the right view.

still constitute an active field of research.

Inter-scanline warping

One of the early methods of exploiting the 3D structure of a disparity space volume was proposed

by [Ohta and Kanade, 1985]. For each pair of corresponding scanlines, their algorithm consisted

of warping the two associated sequences of image contour points, so that the resulting warpings

would ensure disparities remained coherent along the image contours crossing different scanlines.

To proceed, the problem was separated into two stages: first, the search for intra-scanline warping

paths using a technique similar to that discussed at the beginning of this section; second, an

aggregation of the accumulator arrays computed for each scanline. This aggregation provides the

inter-scanline consistency constraint required for the selection of the optimal warping paths for

each scanline.

A recent algorithm which exploits warping and inter-scanline consistency is the semi-global

matching or SGM algorithm, proposed by [Hirschmüller, 2008]. Instead of searching for a

unique warp between the horizontal scanlines, the algorithm seeks, for each pixel of the image

plane, a series of warping paths originating from the image border and ending at the pixel of

interest. The directions of the image lines along which the warping procedure takes place are

uniformly sampled. The superimposition costs along all these optimal warps are aggregated to

the pixel of interest for every valid disparity, and are stored inside an accumulator volume. The

arguments minimising the aggregation cost along the disparity axis of the accumulator volume
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yields the disparity map. Furthermore, the author shows that the SGM algorithm approximates

the solution of an energy minimisation problem which constitutes the roots of most of the global

approaches in stereo. These will be addressed in section 2.3. Finally, it should be noted that

SGM often forms an essential ingredient in modern approaches, such as [Sinha et al., 2014] or

[Zbontar and LeCun, 2015].

Inter-scanline warping methods therefore exploit combinations of 2D warpings. They also

require a sampling strategy to determine the sequence of pixels in the left image which has to be

warped, i.e. pixels along a contour, or along a particular trajectory.

2.1.5 Preliminary conclusions

The cost of a warping path is nothing other than an aggregation of the superimposition costs

found in a disparity space volume. Therefore, in the case of standard scanline warping, the cost

associated with the superposition of (x1, y) in Il with (x1 − d, y) in Ir equals the cost of the

optimal warping path going through (x1, d) in the DSI associated with scanline y. The mechanism

proposed by the SGM is more sophisticated, in the sense that the cost associated with the same

superposition is related to the costs of the warping paths ending at (x1, y, d) in the DSV. The fact

that the warping algorithms operate at a global image scale, means that the handling of disparity

discontinuities demands particular attention. In the case of the standard warping algorithm, the

discontinuities can be modelled only by a sequence of occlusions. In the SGM, the handling of

discontinuities is embedded in the computation of the accumulator arrays.

Now, in the light of the shape-based aggregation studied at the beginning of this section, we

notice that the problem with the (semi-)global strategies is that the aggregation of costs has no

meaning with respect to the regions composing the image of interest: indeed the aggregated

cost of a region lying at one end of the image may easily depend on the superimposition cost

computed for a region localised at the other end of the image. If we know which regions constitute

the objects in the scene, we can apply a warping on a regional basis, thereby simplifying the

algorithms so that no handling of discontinuities is needed. Furthermore, we could also constrain

the warpings so that they are limited to the superimposition of regions which truly match.

The measurement of disparities will be a very important aspect of this dissertation and will be

thoroughly discussed in chapter 5. The observations made in this section will be reviewed when

necessary. Another important aspect of the measurement process will be to determine whether it

is possible to measure the disparity of a given pixel. In the following sections, we provide simple

yet efficient techniques to detect and process occlusions. For any pixel left without a disparity

measure, it will be necessary to estimate its disparity value, which we would then be able to

determine in function of the disparities measured in the region to which such a pixel belongs.
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Figure 2.9: Left view of the Cones scene (see figure 2.1) highlighting pixels which are occluded in the
right view. The computation of the occluded areas originates here from the ground truth provided with the
Middlebury 2002 benchmark. The areas shown in red correspond to object occlusions and are hidden
in the right view by a nearby object located closer to the camera. The areas shown in blue correspond
to image border occlusions occurring because the corresponding pixels in the right view lie outside the
definition domain of the image plane. The areas shown in green comprise the pixels for which the ground
truth provides no measure of depth.

2.2 Detecting and handling occlusions

When introducing this chapter, we pointed out that it is not possible to find a match for pixels

appearing just in one view of the stereo pair. In fact, pixels undergoing an occlusion in one

of the views are usually allocated a high superimposition cost for their actual disparity. This

is quite inconvenient when deriving disparities from image superimpositions and furthermore

necessitates a careful reasoning to estimate the disparities. Additionally, to find the exact image

areas which are occluded, as in figure 2.9, the availability of the actual disparity map is required,

yet that is precisely what is being sought. As a result, the method of handling the occlusions

is often dependent on the chosen approach for estimating the disparity maps. Nevertheless,

some dedicated techniques are available to cope with the occlusion phenomenon. It is to these

techniques that we devote this section.

2.2.1 Local handling

We shall concentrate here on two approaches for handling occlusions at the pixel level: first,

cross-checking, which aims to establish matches which are consistent with respect to the disparity

maps measured for the left and right views of the stereo pair; second, adaptive neighbourhood

methods, which aim to estimate disparities of pixels occluded in one view, given the disparities of

non-occluded neighbour pixels.
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(a) (b)

Figure 2.10: Pixels satisfying the cross-checking criterion for (a) the left view of PlaytableP are rep-
resented with their disparities in (b). Other pixels appear in white and mainly cover both border- and
object-occluded areas as well as homogeneous areas across the table and the chair. The DSV from
which the disparity map arises has been obtained using a shape-constrained aggregation.

Cross-checking

Consistent matches between the left and right views can be enforced by an efficient technique

called cross-checking [Fua, 1993], which ensures that every pixel has at most one correspondence

in the other image of the stereo pair provided that correspondences are undirected. This condition

is unlikely to be the case for pixels appearing only in one of the views: they may find a match

which minimises the superimposition cost over all the possibilities in the other view, but that

particular match may have a better, non-occluded correspondence in the initial view. More

formally, a correspondence between (xl, y) in Il and (xr, y) in Ir satisfies the cross-checking

criterion if and only if :

xl = arg min
x
W [x, xr, y] ∧ xr = arg min

x
W [xl, x, y] (2.7)

Correspondences which do not satisfy the cross-checking criterion are said to be invalid. Occluded

points belong to this group, as do points lying in homogeneous areas, as shown in figure 2.10.

Cross-checking can therefore be used as a powerful binary indicator of disparity measurement

reliability. Further applications of cross-checking will be addressed in our methods.

However cross-checking does not systematically prune the fattening artefacts which occa-

sionally appear across the homogeneous image areas being occluded in one of the stereo views.

Consider the illustration presented in figure 2.11. In the two stereo images, Ri corresponds to

R ′i and Rk corresponds to R ′k. All these regions are fully homogeneous, with the exception of

the little halo surrounding the contour separating the two regions in each view. The hatched

area in the left view represents the parts of Ri occluded in the right view. Pixel p1 is therefore

occluded in the right view. Matching p1 with p ′1 would yield the actual disparity of pixel p1,
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Figure 2.11: Cross-checking and fattening artefacts.

but the superimposition cost related to correspondence (a) is meaningless. Because of the halo

surrounding the contours, the pixel which constitutes the best match for p1 in the right view is p ′2.

p ′2 is not occluded in the left view, and genuinely corresponds to p2. But due to the halo effect

observed in the vicinity of p ′2, the match minimising the superimposition cost in the left view is

p1. Due to correspondences (b) and (d), the cross-checking criterion is satisfied when pairing

pixels p1 and p ′2. The measured disparity is identical to that measured for correspondence

(e), which explains the fattening effect observed within the disparity map, even after the bad

measures have been discarded by the cross-checking criterion.

Adaptive neighbourhood

The occlusion state of a single pixel is either visible or occluded. Intuitively, the disparity of

an occluded pixel should be estimated by looking at its neighbour pixels, within the region

to which it belongs. Indeed, sufficiently large regions are prone to undergo semi- rather than

total-occlusions and the pixels remaining visible in both images of the stereo pair should share

consistent disparities. Without resorting to segmentation, shiftable windows [Kang et al., 2001]

have been used to attenuate the occlusion impact on the superimposition costs by testing different

patches not centred at the point of interest. The purpose of this operation was to increase the

chances of having an aggregation support able to capture the superimposition of the region to

which the occluded pixel belongs.
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The work of [Huq et al., 2013] builds on the cross-checking and investigates a filling strategy

for occluded areas, called Neighbour’s Disparity Assignment. Should the disparity map be estimated

for the left view of the stereo pair, it can be observed from figure 2.9 that pixels belonging to

object occlusions must retrieve their disparities from the vicinity of their left, whereas pixels

belonging to border occlusions must refer to the vicinity of their right. In its standard formulation,

NDA searches for the nearest visible neighbour along the scanline and allocates its disparity to

the occluded pixel of interest. It is important to notice that this model assumes the patches being

completed with a disparity are positioned fronto-parallel to the camera. The same authors have

proposed an extension of that model which is based on a regional handling of the occlusion

phenomenon.

2.2.2 Regional handling

Given the region to which a pixel belongs, estimating its disparity amounts to solving an inter-

polation problem. The complexity of that problem depends, of course, on the character of the

scene. For example, if all regions stand fronto-parallel to the image plane, all pixels lying in

the same region, including those occluded, must share the same disparity, and the interpolation

is therefore straightforward. State-of-the-art methods tend to favour plane equations, like the

segmentation-based approach in [Huq et al., 2013] which resorts to least-squares fed by control

points, lying in the vicinity of the occluded pixel and belonging to the same region. Later in this

text, we will consider other interpolation alternatives which offer more flexibility and which are

based on linear estimation.

Border occlusions are slightly more problematic, in that total occlusions are more likely to

occur. In fact, when an entire object disappears from one of the views, there is no available clue as

to how to recover its depth. However, it can be helpful in other cases to fuse the totally occluded

regions with the visible regions lying in their vicinity to obtain some clues for interpolation. This

fusion, of course, is not straightforward and we shall propose an algorithm dedicated to that task

in the second part of this dissertation.

Many stereo algorithms still handle occlusions on the fly using global estimation procedures,

which we will describe in the following section.

2.3 Estimating disparities

Based on empirical observations, a disparity map of an outdoor or indoor scene is nothing other

than a piece-wise continuous topographical surface. The discontinuities of that disparity function

should only occur close to edges delineating the boundaries of objects in the scene, whilst the
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disparities conveyed by the function should yield a warp between the two stereo images which

minimises the superimposition cost as much as possible.

2.3.1 Energy-based formulations and limits

That observation has led to a class of stereo algorithms driven by energy minimisation, for which

the objective function to minimise is expressed by equation 2.8.

Θ(D) =
∑
(x,y)

U (Il [x, y] − Ir [x− d, y])︸ ︷︷ ︸
Superimposition consistency term

+
∑

(x,y), (x ′,y ′)∈N(x,y)

P(d− d ′)

︸ ︷︷ ︸
Smoothness term

(2.8)

d and d ′ represent the disparities D [x, y] and D [x ′, y ′] respectively, while N(x,y) denotes the

set of pixels lying in the direct neighbourhood of (x, y). The function U penalises a disparity

which yields a bad pixel superposition while the term P penalises neighbour disparities inducing

a discontinuity on the disparity map. In general, P has a dependency on the view for which the

disparity map is being estimated, since discontinuity penalties must be attenuated near edges. As

such, this energy-based formulation of the stereo problem involves finding a trade-off between

warping consistency and surface regularisation.

The minimisation of Θ(D) is typically achieved by one of the following methods. The first

category is based on gradient-descent algorithms, for which the penalty term P is driven by

the gradient magnitude [Fua, 1993] or the regional boundaries [Aydin and Akgul, 2010]. The

second category proceeds from the observation that minimising the energy term in equation 2.8

is analogous to inferring a maximum a posteriori from a Markov Field modelling the relationship

between the sought disparities and both the superposition consistency and continuity constraints.

The exact solution to this inference problem is described in [Prince, 2012]. It resorts to a graph-

cut algorithm seeking a segmentation of the disparity space volume into the two groups of voxels:

those lying in front of and those lying behind the surface which encodes the estimated disparity

map. The space and time complexity of this algorithm however renders it unattractive for very

large numbers of voxels, which is the situation with disparity space volumes generated for HD

stereo imagery. Indeed, these volumes can easily reach hundreds of millions of voxels. For

that reason, approximation algorithms, such as alpha-expansion [Boykov et al., 2001] and loopy

belief-propagation [Sun et al., 2005, Zitnick and Kang, 2007, Yang et al., 2009] are generally

favoured to perform that inference. The SGM also belongs to this class of approximation

algorithms, and an extension has recently been suggested by [Facciolo et al., 2015].

The first concern is the way occlusions are handled. Again, the smoothness term plays a

non-negligible role in the context of preventing abrupt disparity changes, which can result from

mismatches across occluded areas. But it is clear that if the surface being occluded is significant
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or larger than that visible for a given region, then the superimposition consistency term U is

likely influence the final estimate. When an estimate of the occlusions is provided, it is useful

to take that into account in order to eliminate the contribution of the term U at each pixel of

the left image being occluded. Such an approach has been proposed in [Yang et al., 2009]. It

consists of performing several hierarchical refinements to provide U with the estimated location

of occluded areas.

Another goal of estimation in depth map computation is the production of plausible disparities

across homogeneous regions. For those with constant intensity, the smoothness term of equation

2.8 is key to providing the estimation of the disparity function, since the superimposition

consistency term will then only yield null penalties when the matched pixels belong to the

same object. Yet, it is necessary to have at least one discriminant feature enclosed within that

region, otherwise the prediction of the energy minimisation behaviour will be a problem, if

all disparity information arises from the region borders, in particular if the borders represent

occlusion contours with respect to one area of the scene.

2.3.2 Dealing with homogeneity

Homogeneous regions continue to be handled imprecisely in current stereo analysis; an inexacti-

tude which constitutes one of the most persistent constraints on dealing with imagery devoid of

texture. We shall end this section with some observations that could be taken into consideration

in that respect.

Consider the illustrations shown in figure 2.12. In the absence of texture, only the object

contours convey the disparity. In theory, any disparity function employing the disparities measured

at the contours would be plausible. The question is whether this disparity function should be

fully or piece-wise continuous. The answer will depend on the way the segmented regions are

interpreted. On the one hand, if regions constitute one single object, then the disparities inside

each region should result from an interpolation of their contour disparities. On the other hand,

if regions denote disconnected objects in the scene, then it is important to determine for each

region whether the contour represents a physical frontier, or whether it is due to an occlusion.

Consequently, for the process of disparity interpolation, a region is limited to using the disparities

provided by contours which represent its physical frontiers. To date, few methods performing

this distinction between physical and occluding contours exist. We can however refer the reader

to the work of [Yamaguchi et al., 2012] which, to this end, analyses the structures of junction

boundaries.

Before concluding this section, it should be noted that matching region contours to obtain

their disparities can, in some cases, introduce a bias to the measured disparity. This bias can be
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Figure 2.12: Estimation of depth from contours. (a) The contour separating C from S has a higher
disparity than does the border of S. We give two interpretations to this observation. Either object C is
spatially connected to object S and the disparity function has to evolve smoothly, or C lies in front of S, in
which case C inherits the disparity from the contours between C and S, whilst S inherits the smallest of the
contour disparities. (b) All contours are measured with the same disparity. We can allocate that disparity
to both regions C and S which would imply that both regions form the same object. Notice that C might be
a region seen through a hole of S. We can deduce no information about that disparity can be said from
the contours. We can search for another region having identical colour properties in the vicinity of S and
transfer its disparity to C.
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Figure 2.13: The self-occlusion phenomenon
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explained by the self-occlusion phenomenon, which occurs on rounded objects, as illustrated

in figure 2.13. For that reason, we may conclude that the use of disparities arising from region

contours requires some reflection in order to determine the appropriate region for employing

these disparities within an interpolation process. Finally, due to the self-occlusion ambiguity,

disparities measured near the contours of homogeneous regions should be used only, when no

disparity clue is available inside the region of interest.

Summary

In this chapter, we introduced depth map computation as a problem of measuring and estimating

disparities between two images of a stereo pair. By superimposing the right view onto that

of the left, we observed that a superimposition shadow sweeps the image plane as the right

view is shifted towards the right. The time at which a pixel in the left view is covered by

this superimposition shadow corresponds to its disparity. In order to highlight this shadow,

it is necessary to aggregate the individual pixel superposition costs in a meaningful way: the

aggregation support of a given pixel should contain only the pixels which are enclosed in the

same region and which are not occluded in the other view. This observation led to the definition

of an unconstrained regional aggregation support, which is, under the fronto-parallel assumption,

identical for all pixels belonging to the same region. We wished to generalise that regional

support for other configurations, and for that reason, we introduced the disparity space volume

from which we proposed to extract the enclosed superimposition surfaces, both at a regional

level and across multiple disparities. To achieve this, distance functions, similar to those used for

the classic warping, could be employed.

It should be borne in mind that depth estimation is an inverse problem, and as such, requires

an estimation model, to predict the disparity values where pixels are occluded and where regions

are homogeneous. In the case of homogeneous regions, we demonstrated that it is essential to

determine to which object or region a contour belongs, before using its disparity. Furthermore,

we devised a prioritisation for the disparity clues, which imposes that disparities along contours

and near homogeneous areas should be considered, only when no internal clue is available.

In conclusion to this second chapter, it should be remembered that regions bring pertinent

information to the measuring and estimation steps required for computing depth maps. The

regions to which we referred were delimiting object boundaries. However, finding a method of

producing a segmentation which truly segments the objects in a scene still constitutes an open

challenge. It is now time to define the operators needed to produce relevant segmentations of

natural scenes.
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Résumé du chapitre 3

L’objectif de ce chapitre est de donner au lecteur un aperçu des opérateurs morphologiques

utiles en traitement d’images. D’une part, nous mettons l’accent sur les opérateurs géodésiques,

desquels il est possible de construire des filtres de nivellement puissants, en se basant sur des

principes de reconstruction d’image. La géodésie est également au cœur du calcul de la Ligne de

Partage des Eaux qui, au moyen de marqueurs judicieusement choisis, permet de contrôler la

segmentation d’images en fonction de besoins spécifiques. D’autre part, nous nous intéressons

aux fonctions distance pouvant être attribuées à un masque binaire. Nous montrons que ces

fonctions distance permettent de résoudre des problèmes de segmentation subjective jouant un

rôle important dans l’interpolation de fonctions.

Une bonne compréhension de ces opérateurs ainsi que des techniques de filtrage et de

segmentation présentées dans ce chapitre permettra de bien appréhender les méthodes proposées

dans la deuxième partie de cette dissertation.
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Chapter 3

Morphological Image Processing

Mathematical morphology provides an original framework for image processing and features

extraction. Too often, image processing is considered as a straightforward extension of signal

processing, which mainly focuses on the analysis and filtering of frequencies. While the latter is

of theoretical and practical importance, it does not include the analysis and processing of shapes.

Morphological image processing aims to address that omission.

This chapter is an introduction to morphological image processing. In section 3.1, we introduce

the reader to dilation and erosion operators from which compounds as well as residual and

geodesic operators are constructed. The next sections focus on particular applications of geodesy.

Image simplification and the process of flooding and razing a topographic surface are presented

in section 3.2. The watershed transformation, which is obtained via a particular kind of flooding,

is presented in section 3.3 and constitutes the pivot of morphological image segmentation. Finally,

generalised distance functions and their use within regularised segmentations are discussed in

section 3.4.

All the concepts presented in this chapter play an essential role in our depth estimation

methodology. The concluding remarks on this chapter provide necessary insights into the way

these morphological operators will be applied to solving correspondence problems in the field of

stereo.

3.1 Operators

In the following section, we present some of the most fundamental operators in mathematical

morphology. For the sake of simplicity, we shall consider in the first instance, that I is a binary

image of widthW and height H, i.e. I :W×H→ {0, 1}. We denote by S(I), the set of pixels being

activated in the binary mask of I, i.e. S(I) = {(x, y) | I[x, y] = 1}. The morphological operators

introduced here are driven by what is called a structuring element B. It is defined as a set of

points S(B) = {(dx, dy)} characterising an arbitrary shape and is centred at the origin.
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(a) (b) (c) (d)

Figure 3.1: Illustration of the dilation process. The points of (a) the input binary image I are shown
as white discs when they belong to S(I), black discs otherwise. (b) The structuring element controlling
the dilation is, in this example, a set of twelve points, comprising its origin highlighted in red. (c) The
structuring element is shifted several times across the image plane, so that its origin superposes with
each point belonging to S(I). The union of these shifted structuring elements yields (d) the output of the
dilation.

Dilation

The binary dilation operator δB controlled by structuring element B, takes as input a binary

image I. It consists of the formation of a binary image δB (I), such that each point (x, y) ∈ S(I)

transforms into the structuring element B, shifted so that its centre superposes with (x, y). The

union of all these shifts of B eventually yields δB (I). The points belonging to such a binary

dilation of I are defined as

S(δB (I)) =
⋃

(dx,dy)∈S(B)

{(x+ dx, y+ dy) | (x, y) ∈ S(I)}

From the above equation, we notice that B enumerates all the translations of I of which the

union constitutes the product of the dilation. The dilation of I then reduces to equation 3.1.

δB (I) : (x, y) 7→ sup
(dx,dy)∈S(B)

I[x− dx, y− dy] (3.1)

Erosion

Compared to the dilation, the erosion operator has exactly the opposite effect on a binary shape.

Let εB (I) be the binary erosion of image I under structuring element B. Any shift of B reduces

itself to at most a single point, being the centre of the shifted structuring element. A shift of B

transforms into a point if and only if every point belonging to the shift of B lies in S(I). In other
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words, the binary erosion εB (I) is defined as

S(εB (I)) =
⋂

(dx,dy)∈S(B)

{(x, y) | (x+ dx, x+ dy) ∈ S(I)}

In the same way as the dilation of an image has been expressed by equation 3.1 as a supremum

of translated images, the above relation leads to equation 3.2 for the erosion.

εB (I) : (x, y) 7→ inf
(dx,dy)∈S(B)

I[x+ dx, y+ dy] (3.2)

Dilations and erosions are associated with a wealth of properties, some of which depend

on the choice of the structuring element. For example, if and only if S(B) contains the centre

point (dx, dy) = (0, 0), then the dilation is extensive, i.e. S(I) ⊆ S(δB (I)) whilst the erosion

is anti-extensive, i.e. S(εB (I)) ⊆ S(I). The reader will find a comprehensive treatment of

morphological operator properties in [Serra, 1983] and [Meyer, 1979].

Compounds

Dilations and erosions serve as the main ingredients for building compound morphological

operators. We describe three which are standard in mathematical morphology and used in our

work.

Dilation and erosion sequences The dilation of size λ ∈ N+ under structuring element B is

written δλB. It is composed of a sequence of dilations applied to the input image.

δλB (I) = δB ◦ . . . ◦ δB︸ ︷︷ ︸
λ times

(I) (3.3)

In the same way, the erosion of size λ ∈ N+, written as ελB, may be defined as a succession

of erosions of elementary size. These thick dilations and erosions play a major role in the

computation of thick gradients, which will be described later in this section.

Opening The opening γB of an image is the composition of an erosion, followed by a dilation,

as defined by equation 3.4.

γB (I) = δB (εB (I)) (3.4)

Closing The closing ϕB of an image is the composition of a dilation, followed by an erosion, as

defined by equation 3.5.

ϕB (I) = εB (δB (I)) (3.5)
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Greyscale image processing

It is common in greyscale morphology to interpret an image I composed of N distinct grey

levels, as a piling of N binary images {I1, . . . , IN} representing the level sets of I, such that

Ii[x, y] = 1 ⇔ I[x, y] > i. All of these operators may therefore be applied to each level set,

meaning equations 3.1 to 3.5 remain valid for greyscale image processing. The structuring

element B, as originally defined, is then said to be flat, since it operates independently on each

level set of image I.

3.1.1 Residues and operators

A residue is defined as the subtraction of an image I ′ from an image I, such that I[x, y] −

I ′[x, y] > 0 for every pixel (x, y) being part of the image domain. The most employed residues in

mathematical morphology include the following:

The morphological gradient The morphological gradient [Rivest et al., 1993] of an image I

is defined as the difference between the products of its dilation and its erosion. Using an isotropic

structuring element H of unitary size, the morphological gradient of image I is defined as:

‖∇I‖ = δH (I) − εH (I) (3.6)

It is of course possible to evaluate the gradient values with respect to a particular direction, by

choosing a structuring element which points only towards the chosen direction. Alternatively,

one could decide to compute a thick gradient, by increasing the size of the structuring element.

The top-hat Using a homothetic structuring element H, denoted as λH for λ ∈ N, the top-hat

transformation enables the extraction of crests and peaks which have a width at least equal to 2λ

pixels with respect to the image lightness function. The top-hat is defined by equation 3.7.

THλ(I) = I− γλH (I) (3.7)

A variant of this transformation enables the extraction of valleys and holes, and is referred to as

the black top-hat. The latter is defined as ϕλH (I) − I.

Residual operators

Residual operators provide a means of aggregating residues computed across different scales;

the scale relating to the size of the structuring element in use. A residual operator is defined

by the combination of two operators denoted as ♦(1) and ♦(2). Both operators need to verify

that ♦(1)
λ (I) −♦(2)

λ (I) is always a residue, whatever the scale λ is. The residual operator yields

the union or the supremum of the residues discovered at each scale, depending on whether the
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Figure 3.2: The white top-hat operator. (a) One-dimensional function with multiple elevation levels. The
structuring element is represented here as a small segment and its origin is assumed to be the centre of
the segment. It operates on the level sets of the function. At the location of the highlighted level cut, we
can see that only one of the three peaks can include the structuring element. (b) At each level set, the
opening suppresses the connected components which cannot include the structuring element. (c) The
subtraction of this opening from the initial function yields to the white top-hat of this function.

Algorithm 3.1 Template for multi-scale residues computation

1: function COMPUTEULTIMATERESIDUES(I, ♦(1), ♦(2))
2: Initialise λ to 0 . scale
3: Initialise Iult to an image filled with 0, having the size of I . ultimate residues
4: Initialise Iarg to an image filled with 0, having the size of I . scale of ultimate residues
5: Initialise convergence to False
6: while convergence = False do
7: Ires ← ♦(1)

λ (I) −♦(2)
λ (I)

8: UPDATEARGUMENT(Ires, Iult, Iarg, λ)
9: Iult ← sup (Ires, Iult)

10: λ← λ+ 1
11: if (♦(1)

λ (I) = ♦(1)
λ−1(I)) then

12: convergence = True
13: return Iult and Iarg

14: function UPDATEARGUMENT(Ires, Iult, Iarg, λ)
15: for all (x, y) belonging to the image domain do
16: if Ires[x, y] > Iult[x, y] then
17: Iarg[x, y]← λ+ 1
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input is a binary or a greyscale image. An argument function that records the scale at which

the residue has been discovered, generally accompanies the output. Algorithm 3.1 gives a full

template enabling the computation of these multi-scale residues. The reader will find a thorough

treatment of numerical residues in [Beucher, 2005].

Example: distance function of a binary image Let D be the distance function computed over

the binary image I. The distance D[x, y] at a given point (x, y) of the image plane corresponds to

the length of the shortest path originating from any point (x0, y0) /∈ S(I) and ending at point

(x, y). This implies that D[x, y] = 0⇔ (x, y) /∈ S(I). The argument function accompanying the

output of the following residual operator

♦(1) : λ→ ♦(1)
λ = ελH

♦(2) : λ→ ♦(2)
λ = ε(λ+1)H

constitutes the desired distance function D. It should be noted that any erosion of I can be

expressed from the distance function itself, i.e. S(ελH (I)) = {(x, y) |D[x, y] > λ}. It is also

possible to obtain a similar relation for the dilation: let D̄ be the distance function of the binary

image 1− I. Then the dilation of I may be expressed as S(δλH (I)) =
{
(x, y) | D̄[x, y] 6 λ

}
.

3.1.2 Geodesic operators

In the above example, the shortest path from (x0, y0) to a point (x, y) could have been defined

by the segment joining these two points. Geodesic operators are designed to control the freedom

to connect two points using any arbitrary path across the whole image domain. They achieve this

by means of a mask function.

In binary morphology, the mask function is represented by a binary image, denoted as Ω.

A geodesic path between two image points (xi, yi) and (xj, yj) within mask Ω is a sequence of

points {(xk, yk)}`k=0 of arbitrary length `, such that:

• the first and final points of the sequence correspond to (xi, yi) and (xj, yj) respectively

• (xk, yk) is a neighbour of (xk+1, yk+1), for any 0 6 k < `

• (xk, yk) ∈ S(Ω), for all 0 6 k 6 `

The geodesic distance DΩ[x, y] controlled by the mask function Ω and computed for the binary

image I, corresponds to the length of the shortest path, amongst all those satisfying the following

properties: the path must originate from a point (x0, y0) | (x0, y0) /∈ S(I) ∧ (x0, y0) ∈ S(Ω),

the path must end at (x, y), and all points of the path must be included in Ω. As illustrated by

figure 3.3, such a path may not exist, in which case DΩ[x, y] = +∞. This geodesic distance

function leads to the definition of geodesic operators, comprising the application of a threshold
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(a) (b) (c)

Figure 3.3: Distance functions. (a) The distance function computed using successive erosions controlled
by an elementary hexagonal structuring element. The erosions have been applied to a binary image
containing just one hole, the location of which is indicated by the white arrow. (b) The mask Ω. Its
introduction enables us to restrict the domain into which morphological operators proceed. (c) The
resulting geodesic distance function from the very same source point. Notice that the distance is infinite
for one of the connected components appearing inΩ since there is no path connecting the source point
to any of its points.

on the geodesic distance values, in a similar manner to that shown in the previous section. The

function to which a geodesic operator is applied is called the marker function and should always

be included in the mask function.

Binary geodesic dilation

Computing the geodesic dilation of the marker function I at scale λ and within mask Ω is

equivalent to computing the geodesic distance function of the inverted image I, up to distance

λ, within the domain defined by Ω. This can be achieved by applying successive elementary

dilations to image I (in place of the erosions on 1 − I) which should never lie external to the

mask function. The geodesic dilation of marker I inside mask Ω and at scale λ, is expressed by

equation 3.8.

DλΩ(I) = δ

. . .
δ
δ(I) ∩Ω︸ ︷︷ ︸

Scale 1

 ∩Ω
︸ ︷︷ ︸

Scale 2

 . . .
 ∩Ω

︸ ︷︷ ︸
Scale λ

(3.8)

Binary geodesic reconstruction

The scale at which the geodesic dilation of a marker function I inside the mask function Ω

reaches idempotence, corresponds to the scale at which marker I has reconstructed mask Ω. Let

RΩ (I) be the geodesic reconstruction of mask Ω by the marker function I. RΩ (I) is expressed by
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Figure 3.4: Geodesic reconstruction of a mask functionΩ by a marker image I

relation 3.9.

RΩ (I) = Dλ
?

Ω(I) | Dλ
?

Ω(I) = Dλ
?+1
Ω (I) (3.9)

In fact, the geodesic reconstruction of binary mask Ω restores the connected components of Ω,

marked by I. We say that two image points (xi, yi) and (xj, yj) belong to the same connected

component of Ω if and only if there exists a geodesic path between them in Ω. Therefore, in

order to reconstruct a particular connected component ofΩ, at least one of its points must belong

to S(I).

Geodesic reconstruction of greyscale images

In the same way as we remarked about the standard morphological operators, a binary geodesic

operator may be applied to each level set of the greyscale marker image, in conjunction with

the corresponding level set of the mask image, to supply the product of its equivalent numerical

operator.

In greyscale image processing, the elementary and the thick geodesic dilations for greyscale

images are defined by relations 3.10 and 3.11 respectively, where the marker and mask functions

are defined such that I[x, y] 6Ω[x, y] across the entire image domain.

DΩ(I) = inf {δ(I) , Ω} (3.10)

DλΩ(I) = DΩ ◦ . . . ◦DΩ︸ ︷︷ ︸
λ times

(I) (3.11)

The expression of the geodesic reconstruction operator R in equation 3.9 remains unchanged.

50



3.1. OPERATORS

Symbol Description

Structuring elements

B a structuring element

H an isotropic structuring element of elementary size

Morphological transformations

δB (f) Dilation of f:

δB (f) [x] = supx ′∈B f[x− x
′]

εB (f) Erosion of f:

εB (f) [x] = infx ′∈B f[x+ x ′]

D1g(f) Geodesic dilation of f inside mask g:

D1g(f) = inf {δH (f) , g}

Rg (f) Geodesic reconstruction of g from marker function f 6 g:

Rg (f) = D+∞
g (f) = D1g

(
. . .
(
D1g(f)

)
. . .
)

R∗g (f) Dual geodesic reconstruction of g from marker f > g:

R∗g (f) = −R−g (−f)

γB (f) Opening of f:

γB (f) = δB (εB (f))

γ
(R)
B (f) Opening by reconstruction of f:

γ
(R)
B (f) = Rf (εB (f))

Table 3.1: Notation for mathematical morphology. It is assumed that f and g both constitute arbitrary
functions, such that x is an antecedent of that function.

Furthermore, a dual geodesic reconstruction is also defined, when I[x, y] >Ω[x, y] for any point

(x, y) of the image domain. It corresponds to the additive inverse of the geodesic reconstruction

of (−I) inside (−Ω) and is written R∗Ω (I) = −R−Ω (−I).

Reconstruction operators on greyscale images have a wide scope of application ranging from

image filtering and simplification to hierarchical segmentation. Some of these will be described

in the next sections of this chapter.

Further reading

By referring to [Beucher, 1990], the reader will find an authoritative treatment of geodesic

operators in mathematical morphology. It should be noted that the implementation of recon-

struction operators by successive geodesic dilations is far from optimal computationally. Fast

algorithms based on priority queues [Beucher and Beucher, 2011] are currently available in good

computer libraries of mathematical morphology. Finally, it is important not to confuse the dual

reconstruction with the succession of geodesic erosions of a marker function inside a particular

mask function. Several definitions exist for the geodesic erosion, as discussed in [Beucher, 2011].
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Figure 3.5: The square grid. (a) The isotropic structuring element is represented by a square composed
of nine points (including the centre). In contrast to the hexagonal grid, the distance between any two
neighbour points varies. (b) The square grid is subject to an ambiguity regarding the interpretation of
connectivity. Either all points coloured in black or all points coloured in white are connected. One can
immediately appreciate the danger of that ambiguity, with respect to the reconstruction of connected
components.

3.1.3 Image processing grids

The morphological operators which we have just presented, will be used throughout the rest of

this work. Before investigating their applications, let us provide some insights about how to use

them with mathematical morphology libraries for 2D image processing.

It is first necessary to define the grid onto which the image will be processed. This grid is

usually either square or hexagonal. In the square grid, a point either shares the eight neighbours

illustrated in figure 3.5(a), or a subset of those in the directions 1, 3, 5 and 7 of the square grid.

The reason for defining two different kinds of connectivities becomes clearer when looking at

figure 3.5(b). We can see that it is impossible to ascertain whether the pixels coloured black form

a single connected component, in which case those coloured white would form two separate

connected components; or if the contrary is true. To solve that ambiguity, it is possible to consider

the 8-connectivity for the white pixels and the 4-connectivity for the black pixels, or vice-versa.

In general, it is preferable to resort to the hexagonal grid illustrated in figure 3.6, which is not

subject to these problems. A point in the hexagonal grid shares six equidistant neighbours. The

hexagonal structuring element of elementary size is then defined as a set of seven points, which

includes the centre, whilst directional structuring elements are segments defined over one of the

six available directions, as shown in figure 3.6(b).
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Figure 3.6: The hexagonal grid and hexagonal structuring elements of unitary size. (a) The isotropic
structuring element is represented by a hexagonal shape composed of seven points (including the centre),
(b) A directional structuring element is represented by a segment composed of the centre point plus
one of the six available directions, (c) A tripod structuring element is composed of three directions, each
separated from one another by an angle of 120◦, (d) A conjugated hexagon.

Towards more isotropic structuring elements

When operating on a hexagonal grid using the unitary hexagon as structuring element, the

dilation of a point of size λ produces a hexagon of size λ. In order to generate further isotropic

dilations, the hexagons can be replaced by dodecagonal structuring elements. Unfortunately,

there is no dodecagon of elementary size defined for the hexagonal grid. [Beucher, 2012] shows

that it is nonetheless possible to construct dodecagons of size λ = λ1 + 2λ2 from the composition

of a dilation based on the hexagonal structuring element of size λ1, and a dilation characterised

by a conjugated hexagonal structuring element of size 2λ2. Conjugated hexagons are obtained

by combining the two tripods available for the hexagonal grid, as shown in figure 3.6(c), and

are consequently always of an even size. According to [Beucher, 2012], a hexagon of size

λ?1 =
√
3(2 −

√
3)λ and a conjugated hexagon of size 2λ?2, where λ?2 = (2 −

√
3)λ, would be

necessary to construct a dodecagon of size λ from a single point. However, λ?1 and λ?2 are not

valid dimensions on a discrete grid. For this reason, λ1 is chosen as either the floor or the ceiling

of λ?1 so that λ1 and λ share the same parity. λ2 is finally deduced as λ2 = 1
2(λ− λ1).

In section 3.1.1, we saw that it is useful to define thick dilations (or erosions) in a recursive

way, in particular when generating distance functions. As we progressively increment the value

of λ, we observe an increment in λ2 every time and only when λ1 is decremented. Therefore, if

we limit ourselves to using hexagons and their conjugates as structuring elements, we need to

remember the two dilations of thickness λ− 1 and λ to deduce the dodecagonal dilation of size

λ+ 1, which renders the iterative process somewhat cumbersome. However, we notice that as

long as λ1 is incremented, it is simple to derive the dilation state from the preceding one, by using

the hexagonal dilation, as figure 3.7 confirms. Therefore, the problem amounts to investigating

whether a particular operator allows us to deduce the dodecagonal dilation at scales where both
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2

6

10

Figure 3.7: Dodecagonal dilations. The partial dilation takes place at scales λ = 2, λ = 6, λ = 10, etc.

λ1 and λ2 are decremented and incremented respectively.

The answer lies in the partial dilation, in which the conjugate hexagon of size 2 is derived

from the regular hexagon of size 1. A point belongs to the partial dilation of a binary image I

if and only if it appears simultaneously in the two dilations of I, each obtained using a distinct

tripod defined for the hexagonal grid. With regard to figure 3.7, the green points contained in

the ellipses with dotted outlines are precisely those which do not belong to the partial dilation of

the shape obtained after iteration steps λ = 1 and λ = 5. We conclude that in order to produce

dodecagonal dilations in a recursive fashion, it is sufficient to replace the standard hexagonal

dilation with a partial dilation every time we observe an increment in λ2.

In short

The consistency between the connectivities of foreground and background pixels is essential

when processing images which use morphological operators, hence the choice of the hexagonal

grid. For some applications, such as the computation of distance functions, the availability of

isotropic structuring elements is also key in order to limit the bias effects resulting from dilations

or erosions across a discrete grid. Unfortunately, isotropic structuring elements of elementary

size are not usually defined on the grid, and they therefore necessitate special constructs, like the

one presented for computing dodecagonal dilations.
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3.2 Image simplification and levelling

The reconstruction operators discussed in section 3.1.2 have several uses in image simplification

and filtering. One of the most common examples is the opening by reconstruction defined in

table 3.1. Unlike the classical opening, the reconstruction step restores the flat zones of the

greyscale function which have not disappeared after the erosion, and does not alter the shape of

the contours which were visible in the original image. With respect to this work, the aim of image

simplification is to facilitate the segmentation of a scene, which makes this latter characteristic

particularly desirable.

Sequential alternate levelling

The geodesic reconstruction and dual reconstruction operators may be used to respectively raze

and flood the topographic surface represented by a greyscale image function I. The parts of the

surface undergoing one of these two phenomena then become flat. The razed parts always lie

under the original surface, whilst the flooded parts cover the original surface.

The composition of a razing and a flooding yields a levelling. Let Rz(I,M) = RI (M) be

the razing of I controlled by marker M 6 I and Fl(I,M) = R∗I (M), the flooding of image I

controlled by marker M > I. The sequential alternate levelling of an image I up to scale λ, is

defined by relation 3.12, where the razing and the flooding order can be swapped according to

the user’s discretion.

Rz

Fl

. . .Rz

Fl

Rz (Fl (I, δI) , εI)︸ ︷︷ ︸
Scale 1

, δ2I

 , ε2I


︸ ︷︷ ︸
Scale 2

. . . , δλI

 , ελI


︸ ︷︷ ︸
Scale λ

(3.12)

We can observe that all flat zones in the current image which do not resist an opening or closing

operation at a given scale are filtered out. In a similar fashion to the opening and the closing

by reconstruction, a flat zone which has not been entirely destroyed by an erosion or a dilation

is reconstructed, which prevents the occurrence of new and false contours. The fact that the

sequential alternate levelling is a scale-adaptive filter enables us to choose the scale at which the

filtering of flat zones should be effective, and, as a result, to employ that within the computation

of a multi-scale gradient (cf. section 4.1).

Image levelling is not restricted to sequential alternate levelling. It is possible to use any other

marker function to generate the required images. The reader will find a careful treatment of

levelling theory and practice in [Meyer, 2004]. Just as with any morphological filters, levelling is

prone to the generation of false colours when applied independently to each channel of a colour
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(a) (b)

(c) (d)

Figure 3.8: A pyramid of alternate sequential levelling. (a) Input image, (b) Output at levelling scale
λ = 5. Small components, such as the dots on the cones are filtered out and the texture across the
scene’s mask is flattened. As the strength of the levelling increases, larger components disappear from
the output, as can be seen for (c) scale λ = 10 and (d) scale λ = 20.
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Figure 3.9: Synchronous flooding based on the depth of lakes. The dual reconstruction of I+h ′ over the
initial topographic surface I is a flooding of I. The resulting lakes are shown in dark blue. Their maximum
depth is either equal to h ′ (cf. catchment basins A, C, D and E) or inferior to h ′ in case of absorption (cf.
catchment basin B). The h ′-minima then correspond to the set of locations where the original topographic
surface has been flooded. We notice that when h > h ′, the h ′-minima of I are contained in the h-minima
of I. This property of inclusiveness is useful when it comes to generating hierarchical segmentations of
an image from the h-minima of its gradient.

image. Several methods exist to improve the levelling quality of colour imagery as detailed in

[Zanoguera Tous, 2001]. Amongst these, the autarkic vectorial levelling approach proposed in

[Gomila, 2001] preserves the colours of the marker and the image functions.

Synchronous flooding and h-minima

So far, we have seen that flooding a topographic surface amounts to performing a dual geodesic

reconstruction. We will now focus on a particular type of flooding. Consider the dual reconstruc-

tion of I by the marker function I+ h, for any h ∈ N+, as illustrated in figure 3.9. This flooding

ensures that all resulting lakes reach a depth equal to or less than h. Lakes which cannot reach

the maximum depth h are absorbed by neighbour lakes. The h-minima of a discrete function I

are represented by a binary image Mh(I) verifying relation 3.13.

S(Mh(I)) = {(x, y) | R∗I (I+ h) [x, y] > I[x, y]} (3.13)
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h-minima are very useful in the context of image segmentation. They can be computed on

the image gradient to extract the image zones which satisfy a certain homogeneity. Small

gradient peaks are indeed covered by the h-minima, for a sufficiently large elevation h, while the

image points which do not belong to the h-minima delineate the original image locations where

the contrast is sharply defined. Furthermore, h-minima satisfy the property that S(Mh(I)) ⊇

S(Mh ′(I)) for any h > h ′, as established in [Beucher, 2013b]. This latter is particularly useful

as it induces a segmentation hierarchy based on the instant, i.e. the depth, at which two

neighbouring lakes merge.

3.3 Markers-driven segmentation

Segmenting an image involves partitioning the latter into a set of disjoint connected components

which together comprise the full image domain. These connected components are often referred

to as regions or cells. The objective of image segmentation depends on the target application.

For instance, if we are interested in segmenting out the homogeneous regions of a scene, then

the partition must be composed of cells which satisfy the desired homogeneous criterion. We

might also be interested in segmenting an image into at least two regions: the foreground which

constitutes an object of interest and the background representing the rest of the image plane.

The ability to localise the areas of interest is convenient for controlling the product of a

segmentation algorithm. As far as the detection of homogeneous regions is concerned, the

h-minima introduced in section 3.2 are likely to constitute good markers of homogeneous areas

when extracted from the image gradient. In morphological image processing, the prime tool for

segmenting images is the watershed transformation [Beucher, 1990, Beucher and Meyer, 1992],

an operator which is capable of being driven by image markers.

The watershed transformation

A marker is a connected component defined over the image domain and is systematically assigned

a label. The label can either identify the connected component or it can convey semantic

information, such as the type of object designated by the marker. All markers are represented by

a label map, denoted by L, which has the same dimensions as the image being segmented. If

(x, y) is contained in a marker, then L[x, y] = `, where ` > 0 is the label of that particular marker.

If (x, y) is not contained in a marker, then L[x, y] = 0.

Let S be an image representing a topographical surface, i.e. S[x, y] encodes the altitude of

the surface point that projects onto pixel (x, y). It is possible to compute the watershed of S

controlled by the markers represented by the label map L. The computation is achieved by a

uniform flooding of the topographic surface from the proposed markers. It works as follows:
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• The number of flooding operations is equal to the number of elevations in S. The operations

are performed in ascending order with respect to the altitude and progressively extend the

label map L by means of the flooding results.

• At a given altitude h, the binary maskΩh is extracted, such that S(Ωh) = {(x, y) |S[x, y] 6

h}. The labelled lakes contained in L propagate inside Ωh in an isotropic fashion. The

label map L is updated at each propagation step. However the propagation of a label to a

point is only effective, if and only if that point has not been allocated a label prior to the

previous propagation step. When two or more lakes with different labels meet, the junction

point becomes part of the final watershed.

• At the end of the process, there is no point in the label map L which has not been assigned

a strictly positive label. Moreover, the labelling provided by the initial markers remains

intact. In order to obtain the watershed, it is of course necessary to retain another image

which provides a record of the points where lakes of different labels meet.

It is worth noting that the watershed transformation is a blend of extended binary geodesic

reconstructions, in the sense that the labelling information of the originating markers remains

intact. In this type of geodesic reconstruction, when two or more lakes with different labels meet,

the points at which they meet lie at an equal geodesic distance from the initial markers. They are

said to belong to the geodesic skeleton of the influence zones of these markers.

Efficient implementations of the watershed driven by markers are available using priority

queues [Beucher and Beucher, 2011], where the priority refers to the elevation value of the

topographic function S.

Segmentation in practice

Figure 3.10 shows an example of the watershed transformation on a topographic surface. In

practice, we need to search for the topographic surface which, once flooded by the appropriate

markers, yields the desired segmentation. In order to segment an image into homogeneous

components, the morphological gradient generally suffices as long as the input image is devoid of

noise, is in focus, and fully exploits the available dynamic range. Several researches have focused

on improving the gradient computed from colour images. [Angulo López, 2003] proposed a raft

of experiments, which combine the gradients of the hue, luminance and saturation channels,

and in his work, [Risson, 2001] showed how clearly the gradient based on perceptual colour

differences improves the quality of segmentation hierarchies. That same gradient was employed

in [Hanbury and Marcotegui, 2006] in a controlled fashion, in order to determine the probability

of a pixel, which conforms to a particular colour difference in its neighbourhood, delineating the

frontier between two objects of interest. The probability map was then used as the topographic

surface on which to perform the watershed transformation.
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(a) (b) (c)

Figure 3.10: The watershed of a topographic surface driven by markers. (a) Image S of 1344 × 1736
pixels encoding the topographic surface of interest. The greyscale value assigned to a particular pixel is
proportional to the altitude of the actual relief and lies between 0 and 255. (b) Visualisation of the chosen
markers over the topographical surface. They have been obtained by computing the h-minima of the
relief, for an elevation value of h = 55. Using the regular reconstruction operators, only those touching the
image border have been retained. Finally, an opening by reconstruction of size 20 pixels has been applied
to eliminate markers which are too small. (c) The final catchment basins obtained after the segmentation
preserve the labels of their respective markers. They constitute the final state of the label map L. The
watershed line is displayed in white.

Unfortunately, the gradient does not always reveal the region contours explicitly. Imagine,

for example, of a binary image containing a circle with a dotted outline from which you aim to

recover the complete circle. A foreground marker is placed inside the circle, while the background

marker delineates the image border. By construction of the segmentation, the flooding induced

by the watershed can lead one of the markers to leak into the opposite region, by exploiting the

contour’s leakages, which would thereby prevent the extraction of the target circle. An initial

response to that problem, which is generalised to greyscale images, is the viscous watershed

[Vachier and Meyer, 2005]. In this approach, the level sets of the gradient undergo a series of

closings in which the size decreases as the elevation increases. As a result, the contours delineated

by the regular watershed associated with the updated gradient, remain accurate where the

gradient takes high elevation values and elsewhere become more regularised. The result, though,

remains sensitive to the parametrisation of the closing sequence. Earlier research in binary

image segmentation focused on subjective contours, and essentially relied on distance functions

[Vincent and Dougherty, 1994], the most famous example being the separation of coffee beans.

The next and last section of this chapter proposes a further investigation into these distance

functions, but this time generalised to greyscale imagery.
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3.4 Generalised distance functions and segmentation

In section 3.1.1, we provided the definition of a distance function D computed from a binary

mask M, which states that, for a given point (x, y) of the image plane, D[x, y] corresponds to

the distance of the shortest path from any point in S(M), leading to the point of coordinates

(x, y). Each pixel along the path had the same weight to the measured length of the path. We

are now interested in adding a constraint to the computation of such distance functions. This

time, it is possible that each pixel may contribute differently to the measured length of the path

under consideration. This means that, when computing the distance function, several iterations

may be necessary to move from one point to a neighbour point. The number of iterations

required to perform such a move is determined by the topographic surface I. In this section, we

present an algorithm for generating generalised distance functions as well as some applications

to segmentation.

Construction

Algorithm 3.2 provides a generic framework for the computation of generalised distances. Let

D be the sought distance function. Initially, D[x, y] = 0 for all (x, y) ∈ S(M) and is set to +∞
otherwise. At any time t of the iteration process, the binary maskMt containing the points which

have already been reached from S(M), is defined such that (x, y) ∈ S(Mt) ⇔ D[x, y] 6= +∞.

Now, in order to find which points to visit next, we need to dilateMt using an isotropic structuring

element. In the binary mask distance computation, all newly discovered points are immediately

allocated a distance equal to t + 1. In the generalised distance computation, a delay, encoded

by the delay function C, indicates the maximum number of iterations remaining before a point

lying in δ(Mt) is eventually reached by one of its already discovered neighbours belonging to

Mt. The delay function is therefore decremented at every iteration in line 10 and furthermore

can never be increased again, as is demonstrated by line 12. When the delay C[x, y] eventually

reaches zero, D[x, y] is updated with the current iteration time in line 15 remaining unchanged

in subsequent iterations. Finally, in line 11, (x, y) will belong to Mt only after it has been visited.

The implementation of the FETCHCLOCKUPDATE routine in line 12 depends mainly on the

target application. Algorithms 3.3 and 3.4 present two particularly useful study cases:

• The generalised distance computed using the clock update mechanism of algorithm 3.3

corresponds to a true geodesic distance on the relief I. Indeed, the propagation delay

between two neighbouring points is determined in function of their difference in altitude

with respect to the topographic surface I. It is of course essential that the measured altitude

and a unitary displacement on the image plane share the same units. The user of algorithm

3.2 can adapt the factor α for that particular purpose.

61



CHAPTER 3. MORPHOLOGICAL IMAGE PROCESSING

Algorithm 3.2 Geodesic distance from a binary image on a topographic surface

1: function COMPUTEGEODESICDISTANCE(I, M, α)
2: Initialise image D with the size of I, all pixels set to +∞ . Distance function
3: Initialise image C with the size of I, all pixels set to +∞ . Delay function

4: for all (x, y) belonging to the image domain do
5: ifM[x, y] = 1 then
6: D[x, y]← 0

7: C[x, y]← 0

8: t← 0 . Iteration time
9: while ∃ (x, y) |C[x, y] > 0 do

10: C← max(0, C− 1)
11: Mt ← FETCHCURRENTMASK(D)
12: C← min{C, α×FETCHCLOCKUPDATE(I,Mt)}

13: t← t+ 1
14: for all (x, y) |C[x, y] = 0 do
15: D[x, y]← min{D[x, y], t}

16: return D

17: function FETCHCURRENTMASK(D)
18: return binary mask M, such that M[x, y] = 1⇔D[x, y] 6= +∞
Algorithm 3.3 Delay update based on the differences of surface elevation

1: function FETCHCLOCKUPDATE(I, M)
2: Initialise η with the size of I, all pixels set to +∞ . Viscosity function
3: for all directional structuring elements of elementary size, h do
4: I ′ ← δh (I) − εh (I)

5: M ′ ← δh (M) − εh (M)

6: for all (x, y) belonging to the image domain do
7: ifM ′[x, y] = 0 then
8: I ′[x, y] = +∞
9: η← min{η, I ′}

10: return η

Algorithm 3.4 Delay update based on the surface elevation

1: function FETCHCLOCKUPDATE(I, M)
2: Initialise η with the size of I, all pixels set to +∞ . Viscosity function
3: M ′ ← δH (M) − εH (M)

4: for all (x, y) belonging to the image domain do
5: ifM ′[x, y] = 1 then
6: η[x, y] = I[x, y]

7: return η
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• The clock update mechanism of algorithm 3.4 is simpler in that the function I directly

indicates the viscosity of the dilations at every pixel of the image plane. In other words, the

more the relief is elevated, the slower the dilations become.

Accelerated computation of generalised geodesic distances

The execution speed constitutes the main limitation of algorithm 3.2: the number of iterations

required to fulfil the computation of the distance function equals the maximum distance value

to be allocated to the distance function. When interested in computing the distance function

according to the update rule of algorithm 3.4, one should note that a faster and much simpler

algorithm is feasible.

Let D? be the geodesic distance function we seek. η represents the viscosity function which

assigns each pixel the positive delay required to be reached by one of its neighbours. N(x,y)

represents the set of points lying in the direct neighbourhood of point (x, y). The properties of

the geodesic distance function D? are summarised as follows:

1. D?[x, y] = 0 for all (x, y) ∈M

2. D?[x, y] = min(x ′,y ′)∈N(x,y)
{D?[x

′, y ′] + η[x, y]} for all (x, y) /∈M

Thus the second property states that if a point (x, y) lies outside the initialisation mask M, its

shortest geodesic distance to the mask by traversing the viscosity field η, equals the shortest

geodesic distance to the mask M from a point lying in the direct neighbourhood (x, y), plus the

delay it takes for this point to be reached by this neighbour. Combining these two properties, we

can write that:

D?[x, y] = min

{
D?[x, y], min

(x ′,y ′)∈N(x,y)

{
D?[x

′, y ′] + η[x, y]
}}

D?[x, y] can be found by reformulating the above equation as a recurrence relation. To

proceed, we define D0 as the initial distance function, so that, in the same way as algorithm 3.2,

D0[x, y] = 0 if and only if (x, y) ∈ S(M), otherwise D0[x, y] = +∞. This initialisation ensures

that the first property related to the geodesic distance function is satisfied. The recurrence

relation is then expressed for t ∈ {1, 2, . . .} as:

Dt[x, y] = min

{
Dt−1[x, y], min

(x ′,y ′)∈N(x,y)

{
Dt−1[x

′, y ′] + η[x, y]
}}

⇔Dt[x, y] = min

{
Dt−1[x, y], min

(x ′,y ′)∈N(x,y)

{
Dt−1[x

′, y ′]
}
+ η[x, y]

}

By observing that εH (Dt−1) [x, y] = min
{
Dt−1[x, y],min(x ′,y ′)∈N(x,y)

{Dt−1[x
′, y ′]}

}
, the last
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(a) (c) (e)

(b) (d) (f)

Figure 3.11: Comparison of regular and generalised distance functions. (a) Topographic surface I, (b)

The minima represent the source points belonging to S(M) within the computation of (c) the regular
distance function and (e) the generalised distance function using the clock update of algorithm 3.4. The
watershed transform is applied to the inverted distance functions using the foreground and background
markers shown in blue and red respectively. This results in (d) the watershed using the regular distance
function and (f) the watershed using the generalised distance function.

relation simplifies into:

Dt = min {Dt−1, εH (Dt−1) + η} (3.14)

We observe that this sequence monotonically decreases until it reaches convergence, since

Dt−1 > Dt > 0. Upon convergence for t = t?, the second property of the geodesic distance

function is satisfied, and we have Dt?+1 = Dt? = D?. Finally, we note that, replacing η by a

constant, such that η = 1, the recurrence relation 3.14 enables the computation of the regular

distance function, from a binary mask, as seen in section 3.1.1.

Applications to segmentation

Figure 3.11 shows an example where we employ the generalised distance function in order to

find a shortest path binding two minima of a topographic surface I. The length of the path is

defined as the sum of elevation values of I for every pixel belonging to the path. The underlying

segmentation is based on the watershed transformation addressed in section 3.3 using two

markers positioned near the top and bottom image borders, while the topographical surface

being flooded corresponds to the inverted distance function. Being able to perform a guided
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interpolation of an arbitrary function may prove particularly useful within the processing of

disparity space images, and we shall go deeper into such distance functions in the second part of

the thesis.

Further reading

The reader may be interested in the presentation of generalised distance functions, which were

introduced for the first time in mathematical morphology, in [Beucher, 1990]. The proposed

algorithm is slightly different, since it enables points of the same plateau to be discovered

simultaneously, thus avoiding the usual iteration process. Generalised distances were also used

in Beucher’s work to adapt the scale of morphological operators across road images, for which

the filtering intensity was dependent on the depth of vehicles.

Summary

The purpose of this chapter was to accompany the reader on a guided tour of mathematical

morphology. The dilation and erosion operators are at the heart of morphological image pro-

cessing. On the one hand, we placed particular emphasis on the geodesic operators, from which

we derived the image levelling; a filtering method based on geodesic reconstruction principles.

Geodesy also proved essential to the watershed transformation which, when combined with

markers, allows us to control the segmentation of images according to specific needs. On the

other hand, we devoted an important part of this discussion to the computation and usage of

distance functions. First, we explained how the distance functions computed from binary masks

could be used to express the binary dilations and erosions, both in the classic and geodesic

configurations. Then we mentioned some of their applications with respect to the segmentation

of images and showed their effectiveness when capturing subjective contours from greyscale

images. To a certain extent, distance functions, when used in conjunction with the watershed

transformation, provide a powerful means of interpolating functions. We concluded this chapter

with the presentation of generalised distance functions, which enable more subtle interpolations

in complex scenarios.

An understanding of the operators as well as of the filtering and segmentation techniques

presented here, will prove essential to comprehending the methods introduced in the second part

of this thesis. With respect to depth map computation, we will be interested in three problems

which deal with mathematical morphology. The first is how to generate a segmentation of the

scene, which captures all object boundaries with little over-segmentation. The second problem

we will address is the generation of equivalent stereo segmentations. The ability to drive the

watershed using markers will be particularly useful in that respect. The third and ultimate

problem we aim to solve, is the segmentation of the disparity space volume into foreground and
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background voxels. To proceed, a distance function based on the cells of the image partitions will

be employed in the context of disparity map interpolation.
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Methodology
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Résumé du chapitre 4

Ce chapitre détaille notre utilisation de la Ligne de Partage des Eaux dans le but de générer des

segmentations qui soient cohérentes pour l’analyse de mises en correspondance entre images

stéréoscopiques.

Afin de contrôler une segmentation recourant à la L.P.E., il est nécessaire de choisir non

seulement les marqueurs d’objets à segmenter, mais aussi la surface topographique à inonder,

de manière appropriée. Concernant les scènes naturelles, la magnitude du gradient de l’image

semble être un bon choix de surface topographique. Pourtant, le gradient brut est souvent sujet

au bruit, et les contours que nous percevons comme étant saillants dans l’image ne s’y traduisent

pas de manière aussi prononcée. Pour cette raison, nous proposons un gradient morphologique

régularisé et multi-échelle, qui préserve la dynamique des contours perçus par la vision humaine.

Ensuite, en partant de ce type de surface topographique, nous présentons un ensemble

de méthodes d’extraction de marqueurs. L’extraction de marqueurs exploite principalement

les inondations dont les principes ont été introduits au chapitre 3. Différents critères, tels

que la profondeur des lacs ou l’aire de leur surface, permettent d’interrompre les inondations.

La combinaison de ces critères nous permet d’obtenir des segmentations d’objets relativement

pertinentes. Ces mêmes critères sont ensuite utilisés pour générer des sur-segmentations d’images,

lesquelles seront employées dans notre algorithme de calcul de profondeur le plus avancé. Ces

sur-segmentations offrent un bon compromis entre l’aire et la saillance des régions les composant.

En effet, plus les contours d’une région sont fortement prononcés dans le gradient de l’image,

plus cette région aura des chances d’être segmentée correctement, même si elle est de petite

taille. Plus les contours sont associés à un faible gradient, plus la région devra atteindre une

taille importante pour être parfaitement segmentée. Les attributs contrôlant les seuils minimaux

de contraste et d’aire s’adaptent automatiquement au contenu de l’image afin de garantir que

les segmentations obtenues préservent leur pertinence et leur utilité au travers de la base de

données considérée.

Les segmentations obtenues par les méthodes proposées dans ce chapitre contrôleront ainsi

les algorithmes de calcul de cartes de profondeur présentés dans la suite de l’exposé.
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Chapter 4

Controlled Watershed Segmentations

In this work, the segmentation of stereo images always constitutes the starting point for the

estimation of disparity maps. As indicated in chapter 2, regions will provide the shape of relevant

correlation supports across which the superimpositions of stereo images will be processed

and analysed. Therefore, in order for the analysis of image correlations to be pertinent, it is

essential that the regions represent the objects composing the scene. Unfortunately, computing a

semantic partition for an image of unknown nature remains a difficult task; one which generally

necessitates learning and pattern recognition strategies. Rather than address this problem, we

propose to design a segmentation algorithm delineating most of the relevant contours based on

perceptual cues.

Since the images we are dealing with mostly represent in-door scenes, we aim to compute

segmentations which take the perception of contrast into account. These segmentations must be

sufficiently coarse to turn regions into meaningful aggregation supports, but should nevertheless

capture thin image structures. To fulfil this objective using the watershed transformation, an

appropriate topographical surface is needed as input. In section 4.1, we present a morphological

and multi-scale gradient which enhances the saliency of the perceived contours across the images.

This gradient will be useful as soon as we need to deal with microstereopsis imagery which

is not in focus. Next, in section 4.2, we show how to extract meaningful markers from the

provided gradient according to three alternatives. The first consists of obtaining the markers

by separating the h-minima of the gradient in places where the latter is subject to leakages.

In the second and third alternatives, markers directly originate from the minima of an altered

gradient. We investigate reconstruction mechanisms enforcing contrast, area and volume criteria

on the partition’s regions, and the viscous transformation which drastically reduces the number

of gradient minima so as to yield pertinent over-segmentations. To conclude, we show in section

4.3 how partitions satisfying different segmentation attributes can be combined to produce the

final segmentations.
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4.1 Multi-scale enhancement of contour saliency

The morphological gradient described by equation 3.6, which is in fact nothing other than the

gradient magnitude of the topographical surface associated with the processed image, provides a

natural means of highlighting the high frequencies of an image. However, the contours of interest

might not be sufficiently well accentuated and several reasons can account for this fact.

The first problem is that sensor noise is systematically amplified in the gradient. Either it

should be filtered out before computation, or adequate algorithms should be employed instead.

For example, [Lerallut, 2006] defines the gradient, at a given image point, as the distance between

the two most significant modes of the brightness distribution covering the neighbourhood of

the pixel under consideration. In the same spirit, [Arbelaez et al., 2011] build a gradient by

comparing brightness distributions from either side of a circular patch centred at the pixel of

interest and for different orientations. The second problem is therefore the choice of the patch size.

Indeed, significant sizes widen the scope of analysis and enable one to be attentive to smoothly

evolving brightness transitions. This aspect is particularly useful when having to deal with out-of-

focus imagery. Nevertheless, when using large filtering kernels, thin homogeneous areas will be

filled with high gradient values, which is not desirable for the detection of contours. The third

problem, specific to colour imaging, is the interpretation of colour differences; an interpretation

which depends on the type of images being studied. For instance, the CIE colour distances

[McLaren, 1976] based on perceptual differences should be the most appropriate for natural

scene photography. Further studies of morphological colour gradients for the same context

but also for medical imagery have been proposed in [Angulo López, 2003]. However, when

dealing with broadcast images, other transformations such as the enhanced HLS transformation

[Demarty and Beucher, 1998] may be more suitable for discriminating objects in a scene.

In order to address these three problems, we developed a novel multi-scale and morphological

gradient [Bricola et al., 2015], building on the regularised gradient [Beucher, 1990].

4.1.1 Regularised gradients

The regularised gradient G is a morphological and multi-scale gradient determined for greyscale

images. Let I be a greyscale image. In section 3.1.1, we explained how to compute thick

gradients for different sizes of structuring elements. In fact, each size refers to a specific scale.

The computation of the regularised gradient between scales λs and λe, such that λs, λe ∈ N

and λe > λs > 0, involves the computation of a series of thin image gradients Gλs , . . . ,Gλe .

Each thin gradient Gλ is deduced from the corresponding thick gradient of size λ according to

algorithm 4.1. Finally, the supremum of all these thin gradients constitutes the final regularised

gradient, expressed by equation 4.1.
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Algorithm 4.1 Regularised gradient at a particular scale

1: function COMPUTEGRADIENTATSCALE(I, λ)
2: Gλ ← δλ (I) − ελ (I) . Thick gradient capturing transitions at scale λ
3: Gλ ← Gλ − γλ (Gλ) . White top-hat discarding contours of thickness > λ
4: Gλ ← ελ−1 (Gλ) . Erosion bringing contours back to original resolution
5: return Gλ

Algorithm 4.2 Enhanced regularised gradient at a particular scale

1: function COMPUTEGRADIENTATSCALE(I, λ)
2: IF obtained by a strong levelling of I up to scale λ . cf. equation 3.12
3: Mλ is a binary mask highlighting intensity transition points in IF . cf. equation 4.3
4: Gλ ← δλ (IF) − ελ (IF)

5: Gλ ← Gλ − γ2λ−1 (Gλ)

6: Gλ ← Gλ ×Mλ

7: return Gλ

G = sup
λ

{Gλ} | λ ∈ {λs, λs + 1, . . . , λe} (4.1)

Assuming that both the dilations and the erosions use isotropic structuring elements, the thick

gradient at line 2 captures brightness transitions taking at most 2λ pixels. Relevant contours

should also reach a thickness of 2λ pixels. However, it may be that the contours of an object

having a thickness smaller than λ pixels have fused. The white top-hat operator at line 3 aims to

remove those fusions, since the resulting contours exceed the expected thickness of 2λ pixels.

Finally, the erosion in line 4 restores the residual contours to their original resolution.

Thick gradient enhancement

Despite the fact that brightness variations are well captured by the thick gradient, the product

of the regularised gradient, computed using algorithm 4.1, does not reflect this quality. In fact,

the thick gradient is, by definition, highly sensitive to noise. This means that regions affected

by sensor noise will acquire significant gradient values and thus, the top-hat operator which is

applied next, will break the dynamic of the crests of interest, as shown in figure 4.1(d). It is

therefore essential to filter the image before applying the thick gradient operator. In section 3.2,

we discussed the way that levelling simplifies images without altering contours. We also explained

that a strong levelling of size λ broadly removes structures which cannot be reconstructed after a

closing or an opening of size λ. Therefore, the strong levelling seems a very good choice of image

pre-filtering, which can be adapted to the desired scale: not only will sharp contours remain

intact, but most artefacts caused by the fusion of contours at the given scale will be prevented.

Figure 4.2 illustrates how the latter property contributes to a better preservation of thick contours

at high scales. Once the gradients are de-noised, there is nothing to prevent the employment of a

white top-hat of a greater thickness. Since we are interested only in eliminating contours which
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Figure 4.1: Increasing the gradient’s thickness in algorithm 4.1. (a) Input image of size 1920 × 1080
pixels. (b) The morphological gradient of the green channel struggles to capture smooth transitions
occurring between the penguin’s foot and stomach, the railway lines, the train’s windows, etc. (c) The
thick gradient of size λ = 16 accentuates these smooth transitions but is severely affected by noise which
leads to (d) the destruction of the contrast dynamic after having applied the white top-hat operator.

have fused, and have therefore attained the thickness of 4λ pixels, we can adjust the size of the

white top-hat to 2λ− 1, as shown in algorithm 4.2, line 5.

Original scale restoration enhancement

In a binary image composed of black and white connected components, the erosion step of

algorithm 4.1 correctly restores the residual thick gradient contours to their original resolution.

However, in greyscale images displaying smooth brightness transitions, the thick erosion is likely

to diminish values captured by the residual thick gradient, as illustrated in figure 4.3. This is

the reason our preferred enhanced algorithm proposes a mechanism which does not alter the

gradient values.

At each scale, a binary mask highlighting the image locations where a brightness transition

occurs, is superimposed over the residual thick gradient. The structure of this mask is dependent

on the levelled image IF obtained at the scale we are considering, λ. First, we compute the thick

morphological average IA associated with image IF and to scale λ using equation 4.2.

IA =
1

2
(δλ (IF) + ελ (IF)) (4.2)
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Figure 4.2: The pyramid of thick gradients after applying alternate sequential levelling operations in line
with the gradient thickness of (a) λ = 1 pixel, (b) λ = 4 pixels, (c) λ = 8 pixels and (d) λ = 16 pixels, to
the green channel. Compared to the original thick gradients, the noise has been filtered out and small
structures responsible for a great number of undesirable contour fusions have already been discarded.

�
A

B

C
λ

Figure 4.3: A limitation induced by the erosion occurring in algorithm 4.1, step 4. The black curve
represents a smoothly evolving intensity function I. The blue segments represent the difference of
intensity values observed around points A, B and C in a neighbourhood of λ pixels. From this illustration,
we can predict that the erosion of size λ− 1 will, at point A, reduce the thick gradient intensity by a factor
of two.
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δ(�F)

δλ(�F)

�A = 1/2 (δλ(�F) + ελ(�F))

Transition detection
0
1 �F ≤ �A

ελ(�F)
�F ≥ �A

ε(�F)

Figure 4.4: Relation between the brightness function shown as the black dotted curve, and its morpho-
logical average displayed as the red dotted curve. The ideal transition point should be at the intersection
of IF and IA, when the function IF is not flat.

If we interpret IA and IF as brightness functions, we can expect that the points where both

functions are equal with non-null derivatives will be at the centre of a brightness transition, as

illustrated in figure 4.4. Therefore, it is tempting to search for perfect equality between IA and

IF. However, this does not always work well in practice, because nothing guarantees that this

equality will be effectively found within a discretised space. We can instead, search for points

lying in the direct neighbourhood of the intersection of the functions. Figure 4.5 illustrates the

procedure enabling such a detection. The points belonging to the mask Mλ of algorithm 4.2 are

ultimately defined by the set:

S(Mλ) = {(x, y) | ε (IF) [x, y] < IA[x, y] < δ (IF) [x, y]} (4.3)

where ε and δ denote the isotropic erosion and dilation operators of unitary size, respectively.

Note that, by construction, points lying near the end of the brightness transitions might belong

to the detections. But since their gradient values are close to zero, the impact on the final

regularised gradient is minimal.

Preliminary results

We now have all necessary ingredients to implement algorithm 4.2. Figure 4.6 shows some

outputs produced by this algorithm on defocused greyscale images. As expected, contours

situated in blurred image areas are more salient in the enhanced regularised gradient than in

the morphological gradient. Besides, the levelling of size 1 also clears the gradient of the high

frequencies caused by texture, leading to more pertinent catchment basins as can be observed

for the image showing coffee beans. The next section is devoted to the integration of colour
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Figure 4.5: Detection of the brightness transition points. (a) Pixels of IF having a brightness inferior to
IA are coloured red. Those having a brightness above the morphological average are coloured purple
and those of equal brightness are highlighted in white. The same process is repeated by replacing IF with
δ (IF) in (c) and ε (IF) in (e). The change of labels between scenarios (a) and (c) yields the detection of
points lying on the intersection of IF and IA, or near that intersection with a brightness value just below
that found in δ (IF). A similar comment can be formulated for (f), by comparing scenarios (a) and (e).
The union of the detections in (d) and (f) yields the transition points in (b).
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information, which is valuable when it comes to distinguishing objects of different hues and

saturations. As a concluding remark regarding regularised gradients, it is worth observing that

the argument accompanying the optimisation expressed by equation 4.1 would indicate at which

scale a contour with the maximum gradient value has been detected. If we were able to relate

the focus strength to the depth of a scene, this argument could encode interesting contour depth

cues.

4.1.2 Exploitation of colour information

As mentioned earlier in this text, there are many different ways to compute colour gradients.

Adapting morphological operators to operate on colours remains a serious active research topic.

The reason behind this is that there is no obvious way to order colours and to make sense

of dilations or erosions on colours without a specific application domain. However, when we

compute gradients, it is the distance between any two colours in which we are interested.

Therefore, the thick gradient of size λ at a given point could easily be replaced by the highest

colour distance (for instance, the CIE-LAB ∆E distance) observed between the given point and

any of its neighbours at scale λ.

In this section, we focus on broadcast images, for which we initially needed the saliency of

contours to be enhanced.

Gradient magnitude of perceived brightness The first aspect of the problem was to ensure

that the gradient magnitudes obtained in terms of image lightness, truly correspond to that which

humans perceive. For example, if we look at the penguin’s stomach in image 4.1(a), we perceive

it as being white, while the penguin’s leg is black. Therefore, we expect a gradient of very high

magnitude at the border separating these two regions. Unfortunately, if we just compute the

gradient based on the numerical values stored in each image pixel, we get a low image gradient

magnitude. This can be justified by the fact that human perception of the brightness of a greyscale

patch follows Weber-Fechner’s law. More precisely, the perceived brightness of a greyscale patch

is related to its actual luminance by a logarithmic transformation function, except when dealing

with luminance values which are critical in imaging. Therefore, when computing the gradient

associated with the perceived brightness, we take into account this logarithmic transformation.

Exploitation of the saturation channel A previous study, which is detailed in the article of

[Demarty and Beucher, 1998], revealed that a distinction between very desaturated image pixels

and those which are highly colourful, usually provides pertinent segmentation boundaries in

broadcast images. These boundaries can be perceived as sharp transitions occurring in the images

which result from a colour transformation. We refer to this as the enhanced HLS transformation:

every image pixel is classified into two groups according to a chosen saturation threshold.
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(a) (b) (c)

Figure 4.6: Comparison between (b) morphological gradients and (c) the regularised gradients obtained
using algorithm 4.2 on (a) defocused greyscale images. The average image dimension is 1920× 1276
pixels. The minimum and maximum scales for the regularised gradients are λs = 1 pixel and λe = 16

pixels. Image sources: https://pixabay.com.
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Figure 4.7: Saturation helps with discriminating objects in broadcast images. (a) The output of the
enhanced HLS transformation with a threshold at 20% of the full saturation range reveals interesting
frontiers between the saturated and desaturated tones. However, too many artefacts prevents its use for
the gradient computation. (b) The processed saturation channel to be used within the colour gradient
computation.

The pixels with a saturation value below that threshold become completely desaturated in the

transformed image. Those with a saturation above the threshold preserve their hue, but are set

maximum saturation level and middle lightness level. An example of HLS transformed image is

provided in figure 4.7(a). One drawback with this transformation is the occasional binarisation

effect resulting from the pixel-based classification. Therefore, we propose to apply a non-linear

transformation on the saturation function, such that the continuity of the saturation function

is preserved, and the rate at which the saturation function increases is more significant when

approaching the chosen saturation threshold. To proceed, we use a threshold τ set to 20% of the

maximum saturation value so as to transform any saturation value s ∈ [0, 1] into s ′ ∈ [0, 1] as

follows: if s > τ, then s ′ = s, otherwise s ′ = max(0, (s + (1 − τ))2 − (1 − τ)). This yields the

saturation channel visualised in figure 4.7(b) which can be easily related to the enhanced HLS

transformed image.

Combining perceived brightness and saturation information After the logarithmic transfor-

mation, the regularised gradients are computed independently for the red and green channels

and the altered saturation channels. Finally, the supremum of all these three gradients constitutes

the final colour gradient. Figure 4.8 shows the result of this procedure for different types of

gradients.

This algorithm concludes our study on the multi-scale enhancements of contour saliency. The next

sections concentrate on how we can employ such gradient functions to compute segmentations

appropriate for stereo image analysis.
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Figure 4.8: Comparison between themaxima of the (b) morphological gradients, (c) regularised gradients
and (d) enhanced regularised gradients, generated for the red, green and altered saturation channels of
(a) the input image. For the regularised gradients, the minimum and maximum scales are λs = 2 pixels
and λe = 10 pixels.

4.2 Methods of markers generation

The concept of markers controlling segmentations based on the watershed was introduced in

section 3.3. Now we are interested in the extraction of markers facilitating the partitioning of

an image into a set of homogeneous regions, which potentially constitute good aggregation

supports for stereo image analysis. Three methods are investigated: the first consists of converting

h-minima of the input gradient to markers, as a result of an adaptive erosion process, whilst

the second and third alternatives amount to processing the gradient so that its minima directly

constitute the final markers.

4.2.1 Adaptive erosion on gradient’s h-minima

In section 3.2, we saw that the computation of the h-minima of a topographical surface, amounts

to flooding that topographical surface, such that the depth of the resulting lakes equals h units of

elevation maximum. If we interpret the topographical surface as an image gradient, then the

h-minima will constitute binary markers overlapping the image areas which have a low contrast.

It is therefore tempting to use h-minima as markers for the segmentation of highly salient objects,

with respect to the watershed transformation. But in practice, the gradient along the contours of
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(a) (b) (c) (d) (e)

Figure 4.9: Adaptive erosion. (a) Input binary mask and (b) its distance functionD. (c) Scaled version of
the distance function, using α = 1

2
. (d) The geodesic reconstruction ofD by αD. (e) The adaptive erosion

of (a) consists of the pixels having different distance values in (b) and (d). The advantage of the adaptive
erosion over the regular erosion resides in its ability to mark all the original connected components.

such salient regions, may be low at some locations, due to a locally poor contrast. The proposed

algorithm is used to handle what we call gradient leakages when computing markers based on

the h-minima of the image gradient.

This problem shares some similarities with the segmentation of coffee beans discussed in

[Vincent and Dougherty, 1994], that is, the segmentation enabling the separation of coffee beans

based on the ultimate erosion of a binary set. Leakages are indeed characterised by a narrowing

of the h-minima. Applying an erosion to the original shape of the h-minima therefore splits the

markers where leakages occur, but a significantly strong erosion would also destroy pertinent

markers across thin regions, hence the need for an adaptive erosion. Suppose that D is the

distance function associated with the binary image Mh(I) containing the h-minima of the

gradient image I, as in equation 3.13. Let M̃h(I, α) be the marker set obtained after an adaptive

erosion on Mh(I) of strength 0 6 α < 1, where α is a real number. The set of points activated in

M̃h(I, α) is expressed by equation 4.4.

S(M̃h(I, α)) = {(x, y) | (D− RD (αD)) [x, y] > 0} (4.4)

Figure 4.9 illustrates how the reconstruction of the original distance function by a scaled version

of the latter yields the output markers. α controls the adaptive erosion’s strength. When α = 0,

the original h-minima remain unaltered. As α → 1, the markers resulting from the adaptive

erosion process tend towards the ultimate erosion of Mh(I). Furthermore, since M̃h(I, α) is the

residue of a geodesic reconstruction of Mh(I), the inclusion property S(M̃h(I, α)) ⊆ S(Mh(I))

holds, and more generally S(M̃h(I, α
′)) ⊆ S(M̃h(I, α)) for α ′ > α. However, the hierarchical

relationship obtained for the h-minima in function of the elevation h is no longer verified: indeed,

h ′ < h does not necessarily imply that S(M̃h ′(I, α)) ⊆ S(M̃h(I, α)).

There is nonetheless a method which permits the generation of hierarchical segmentations

based on adaptively eroded h-minima. Suppose MW is the binary image containing the wa-
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Figure 4.10: Segmentation examples using the adaptive erosion on h-minima with an elevation of h = 20.
(a) Input image, (b) The h-minima of the basic colour gradient are practically useless, whereas (c) the
h-minima of the enhanced regularised gradient seem to highlight the different homogeneous regions quite
well. Unfortunately, leakages in the gradient lead to the early fusion of catchment basins, hence (e) the
resulting segmentation missing many important object boundaries (ruler, railway lines, etc.). It is possible
to apply (d) an adaptive erosion on the h-minima, in order to obtain (f) a slightly over-segmented but
more useful partition. The scaling factor employed in this example was set to α = 0.25.
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tershed obtained using M̃h(I, α) as the segmentation markers. We would like to generate a

finer segmentation containing the watershed held by MW. To proceed, let us define a new

topographical surface I ′ such that:

I ′[x, y] =

I[x, y] if (x, y) /∈ S(MW)

+∞ otherwise

Notice that the points of S(MW) belong to the catchment basins’ frontiers of the topographical

surface I ′. Besides, since they are of an infinite altitude, we have the guarantee that each

catchment basin of MW is marked by at least one h-minimum of I ′ and that none of these

h-minima crosses the frontier of a catchment basin in MW. Therefore, if M ′W contains the

segmentation controlled by the topographical surface I ′ and the markers described by the binary

image M̃h ′(I
′, α ′) for h ′ < h and 1 > α ′ > α, then S(MW) ⊆ S(M ′W) as desired. The usage

of hierarchical segmentations within stereo analysis will become clearer when dealing with the

refinement of disparity measurements.

To summarise, the adaptive erosion of the gradient’s h-minima produces pertinent markers of

contrast. However, they may not solve our segmentation problem completely: for example, it

could be that the gradient contains parasites, i.e. very small, yet contrasted catchment basins,

which would be retained in the final segmentations. Some morphological filtering, such as

the supremum of directional openings on the marker set, could prove useful to avoid the

segmentation of these catchment basins. The following section focuses on reconstruction and

chaining mechanisms enabling the generation of markers based on criteria other than the contrast

alone.

4.2.2 Criteria-based reconstructions of the gradient and minima

In this second alternative, the segmentation markers correspond to the minima of a topographical

surface resulting from a dual reconstruction of the original gradient. To be more specific, the dual

reconstructions discussed here fall into the category of synchronous flooding, which has been

thoroughly discussed in [Zanoguera Tous, 2001] and [Gomila, 2001]. The most straightforward

type of synchronous flooding is that based on the depth of the catchment basins, i.e. a flooding

from which the h-minima of the gradient are typically recovered. The method we now introduce

as algorithm 4.3, is designed to simulate the depth-based flooding of the original topographical

surface represented by the image gradient I. As the flooding continues, we track the evolution of

the attributes associated with the constructed lakes and catchment basins. For any given lake,

the flooding may be permanently interrupted once the minimum depth for which the associated

attributes satisfy the chosen segmentation criterion, has been attained.
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Algorithm 4.3 Criterion-based flooding of a topographical surface

1: function BUILDONCRITERION(I, criterionFx)
2: h← 0

3: Sh ← I . Current state of the flooding
4: while h 6 hmax do
5: Mh ← criteronFx(I,Sh) . Selection mask of “invalid” catchment basins
6: if ∃(x, y) |Mh[x, y] 6= 0 then
7: Sh ← Fl (Sh,Sh +Mh) . Flooding on selected catchment basins
8: h← h+ 1

9: return Sh

The segmentation criterion refers to a threshold, for instance an objective with respect to the

depth, the area, or the volume of the lakes produced by the flooding. Suppose we are given

the original image gradient I as well as a flooding of that image, say Sh. The zones of I being

flooded are given by the set of points S = {(x, y) | (Sh − I)[x, y] > 0}. Furthermore, let Lh

be the image mapping every pixel (x, y) to the label Lh[x, y] of the corresponding catchment

basin of Sh. We denote by Ri, the region describing a particular catchment basin of Lh as

S(Ri) = {(x, y) | Lh[x, y] = i}. Then, the following attributes can be computed for each catchment

basin associated with Ri:

• the lake depth di, given by the equation di = max(x,y)∈Si (Sh − I) [x, y]

• the lake volume vi, given by the equation vi =
∑

(x,y)∈Si (Sh − I) [x, y]

• the area ai of the catchment basin, related to the cardinal of the set Ri by ai =
∑

(x,y)∈Si 1

Based on the combination of such attributes, one may define more complex criteria. For example,

the volume attribute yields perceptually appealing segmentations. However, very large homo-

geneous regions have a tendency to become over-segmented whilst particularly thin structures

never appear in the final segmentation despite their contrast. To overcome that limitation, it

is necessary to impose a volume limit v, in addition to ensuring that the non-absorbed lakes

have a minimum depth of dmin, while not exceeding the maximum depth of dmax elevation units.

At iteration h, the binary mask highlighting the pixels belonging to the lakes satisfying such

conditions, is given by relation 4.5.

Mh[x, y] =
⋃
i

(Lh[x, y] = i)∧ ((di 6 dmin)∨ ((vi 6 v)∧ (di 6 dmax))) (4.5)

The use of such a binary image, for a given elevation value h, is key to the success of the flooding

process represented by algorithm 4.3. At each iteration step h, the catchment basins which do not

yet satisfy the chosen criterion, are selected by function criterionFx and represented by means

of a binary image; for instance Mh, which constitutes the output of the function. In general, the

criterion is chosen so that S(Mh) ⊇ S(Mh+1), i.e. it is not possible for the flooding state of a

catchment basin to first verify and then contradict the criterion. Finally, as desired, the depth of
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the lakes increases only for those appearing in this validity mask. Figures 4.11 and 4.12 illustrate

area- and volume-based flooding using constraints derived from the lake depths.

Synchronous flooding methods have enjoyed a wide range of applications in image com-

pression. Since they induce hierarchies of segmentations [Meyer, 2001], it is indeed possible

to search a hierarchy for a partition composed of a fixed number of regions. The pertinence of

these regions, of course, will depend on the segmentation criterion. However, in an application

like ours, where the delineation of every objects is important, limiting the number of regions

would not be realistic. It is possible to manually set the contrast, area or volume criteria for a

single-shot video sequence, but one should not expect such fixed parameters to remain optimal

when used across a database composed of diverse images. It would be useful to add a criterion

based on the consistency between the mosaic image resulting from the current segmentation and

the original image, as in [Vilaplana et al., 2008]. However the problem would be different from

ours, since it would be necessary to stop the flooding before the criterion was breached. There

is also a growing interest in employing energy functions to determine optimal cuts across trees

encoding partition hierarchies [Kiran and Serra, 2014], but here too the success of the method

depends on how the hierarchies are constructed and on the pertinence of the energy function

symbolising, in that case, the segmentation criterion.

The last method of generating markers presented in this section resorts to a viscous transfor-

mation applied to the input gradient. The idea is to devise an algorithm, which can be applied

to any kind of image, and which is able to produce more relevant over-segmentations than the

watershed resulting from the direct minima of the gradient. In section 4.3, we show how the

regions of such over-segmentations can be merged in order to provide consistent correlation

supports.

4.2.3 Viscous transformation of the gradient and minima

Originally, the purpose of the viscous watershed transformation was to compute the watershed of

an arbitrary topographical surface, using a viscous substance in place of water within the uniform

flooding procedure. In other words, the traversal of the topographical surface by the viscous liquid

at a given altitude is impeded in sinuous and narrow passages, thus making the watershed less

sensitive to gradient leakages. In their work, [Vachier and Meyer, 2005] show that simulating

a viscous flooding on the original topographical surface I amounts to performing a standard

flooding on an altered version of the topographical surface, say Ĩ. In the case of oil-based flooding,

the construction of Ĩ consists of applying closings of different sizes to each level set I0, . . . , In of

I, while decreasing the closing strength λi as the altitude increases. Consequently, the resulting

contours are quite regular if they happen to cross homogeneous areas while sharp gradient areas

remain delineated with high fidelity in terms of boundary adherence. Mathematically speaking, I
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4.2. METHODS OF MARKERS GENERATION

Figure 4.11: Impact of regularised gradient and chaining between contrast and area attributes on image
segmentation. (a) Morphological gradient, (c) the resulting segmentation from the h-minima of the
gradient, for h = 25, (e) the resulting segmentation from a synchronous flooding based on a fixed area
criterion, imposing a lake of minimum depth h = 5 and maximum depth h = 25. (b) Enhanced regularised
gradient. (d) and (f) correspond to the resulting segmentations using the same parameters as in (c) and
(e) respectively. Image source: https://pixabay.com

Figure 4.12: Segmentations resulting from the flooding of the gradient shown in figure 4.8(d). Both are
controlled by the criterion of equation 4.5 with (a) dmin = 0, dmax = 25 and (b) dmin = 10, dmax = 25.
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Figure 4.13: Viscous transformation of a gradient, based on oil flooding. Top row: input image and
viscous gradient. Bottom row: the minima of the viscous gradient and the resulting segmentation of the
gradient’s catchment basins. Image source: Motorcycle from Middlebury 2014 dataset.

and Ĩ are related by equation 4.6.

Ĩ = sup
i

{i×ϕλiH (Ii)} (4.6)

In our experiments, the choice of λi has been determined empirically: we express the latter as an

exponential decay of the form λi = b25 · exp(−0.1 · i) + 1
2c, where i denotes the greyscale level in

the range of 0 and 255. Therefore, the viscous transformation we perform only alters the gradient

levels for i < 40, with a closing strength decreasing from λ1 = 23, to λ10 = 9, to λ20 = 3, etc.

Figure 4.13 shows an example of such a viscous transformation applied to an image gradient.

We can observe that the markers yield a perceptually consistent over-segmentation. Nonetheless,

some segments are extremely small, especially across textured areas, making them inadequate if

used as correlation supports. The last section of this chapter therefore presents a segmentation

algorithm which resorts to both the viscous transformation and the contrast and area criteria to

obtain useful over-segmentations.
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4.3 Over-segmentation for correlation analysis

In the over-segmentations resulting from the direct viscous watershed transformation, we observe

that homogeneous regions are fragmented into many cells, without any clear meaning with

respect to the perceived regional boundaries. Such a partitioning is not desirable, if our goal is

to enforce consistency of stereo matches across homogeneous areas. Fortunately, the gradient

values associated with the non-relevant boundaries are very low and therefore can easily be

removed. A second source of severe over-segmentation arises from the textured areas, where cells

are particularly small. Although stereo matches tend to be more achievable across such areas,

parasite cells do not offer sufficiently discriminant correlation supports. Therefore, a minimum

cell area must be enforced to facilitate the establishment of future matches. Obviously, we are

again interested in a criterion-based segmentation. However, unlike the method proposed in

section 4.2.2, the method proposed in this section:

1. employs the viscous transformed gradient, in order to pre-empt the problem of leaking

passages.

2. performs the segmentation without having to simulate the complete synchronous flooding.

This latter would indeed be time consuming, since all depths would need to be tested to

ensure that the minimum area criterion remained predominant.

3. automatically tunes the contrast and area thresholds based on the image contents.

The algorithm

The proposed algorithm is illustrated by the flowchart displayed in figure 4.14. As input, the

segmentation process requires Ĩ, the image gradient obtained after the viscous transformation

described in section 4.2.3. Then two partitions Lc and Lf are generated. The first is designed to

contain regions which split only at very sharp edges, while satisfying the minimum area criterion.

Alternatively, the second is composed of segments with less accentuated boundaries, but with

more significant areas.

Lc and Lf are computed by means of a watershed transformation of Ĩ. In both cases, the

markers driving this transformation are obtained by a simple threshold on Ĩ. The threshold

parameters tc and tf with tc > tf symbolise therefore the minimum gradient values expected

along the boundaries of the regions appearing in Lc and Lf respectively. Next, the partition-based

area openings, controlled by parameters σc and σf with σc < σf, prune the cells in Lc and Lf

which have not attained an area of σc and σf pixels respectively. With respect to figure 4.14, we

have just reached breakpoints (a) and (c). As can be observed, the generation of Lc involves

more work than that of Lf. Indeed, both partitions contain holes, i.e. pixels with a label value

set to zero. So, if a textured image zone is composed of a multitude of small regions which do
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not satisfy the minimum area criterion depending on σc, then it will be necessary for the entire

textured zone to be replaced by a large hole in the partition obtained at breakpoint (a). The

partition map obtained at breakpoint (b) represents all the holes resulting from the small area

opening on a labelled partition map. The holes with an area higher than σc pixels are recovered

and appended to the partition obtained at breakpoint (a), which constitutes the final construction

step resulting in partition Lc.

The final part of the segmentation procedure consists of building a new map of markers from

partitions Lc and Lf. In fact, thin and elongated regions as well as textured regions should have

disappeared from partition Lf because of the high area criterion. Lc is the only partition able to

represent these regions, provided that their boundaries are sufficiently accentuated in the gradient

Ĩ. We are therefore interested in the residue of reconstruction of the cells [Beucher, 2013a] of

Lc by the cells of Lf, since this residue contains all the cells in Lc which were replaced by holes

in Lf. The structures appearing in this residue, at breakpoint (d), are ultimately added to Lf

in order to constitute the new map of markers, which in conjunction with Ĩ, will drive the final

watershed segmentation.

Figure 4.15 highlights some breakpoints of the segmentation procedure performed on an

example composed of a large number of thin and textured regions, while figure 4.16 provides

additional examples performed on images from the Middlebury 2014 database.

Automatic tuning of parameters

The selection of the four area and contrast parameters will depend on the image characteristics.

In our experiments, tc corresponds to the 45th percentile of the intensity values observed in the

initial colour gradient excluding 0, and tf corresponds to the 10th percentile. Additionally, the

ratio of the opening parameter with respect to the full image area is fixed. In our experiments,

this ratio has been set to 5 · 10−5 for σc and to ten times more for σf.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: The over-segmentation of AustraliaP. (a) Input image and (b) its associated over-
segmentation. (c) Binary mask highlighting the structures removed by the area opening at breakpoint (a)

(cf. figure 4.14). Some of these structures are either parasites, or they constitute parts of thin objects, or
parts of textured regions. (d) The holes marking new regions in the partition imageMc. (e) The holes
appearing in partition imageMf, (f) Binary mask highlighting the markers inMc which are merged with
those ofMf at breakpoint (d). This last step of the over-segmentation algorithm is essential to ensure
that the thin and salient regions appear in the final segmentation.
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Classroom2 Segmentation of Classroom2

CrusadeP Segmentation of CrusadeP

Motorcycle Segmentation of Motorcycle

Recycle Segmentation of Recycle

Figure 4.16: Some examples of over-segmentations on Middlebury 2014 dataset.
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Summary

In order to harness the watershed transformation so that it produces pertinent image segmenta-

tions, it is necessary to use care when choosing the topographical surface that will be flooded,

and the controlling markers.

Regarding the topographical surface, we developed an enhanced version of the regularised

gradient, which preserves its multi-scale properties but which also ameliorates gradient values

near region boundaries so that they remain consistent with respect to human perception. This

type of gradient proves particularly useful when applied to natural scene images where there

is partial blurring due to defocus aberration. Its attractive filtering properties mean it is also

suitable for non-defocused images.

Next we addressed the problem of automatic markers extraction from the topographical surface

of interest. We proposed different approaches based on depth-based synchronous flooding, for

which the flooded parts of the image belong to the connected components describing the markers.

We saw that it is possible to rely solely on the contrast, but that the markers usually require some

post-processing, similar to adaptive erosion, in order to avoid leaking gradient passages, which

could prematurely merge regions. Combining contrast with other criteria, such as area, usually

leads to more useful and meaningful object-like segmentations.

The concluding part of this chapter focused on controlled image over-segmentations. We

produced partitions offering a trade-off between the contrast and area criteria. In particular, the

regions each covering a small area of the image plane can be preserved only if they are salient,

while the other regions with less accentuated boundaries must cover larger areas. Moreover,

the regions of these partitions are always guaranteed a minimum area. The contrast and area

parameters driving these over-segmentations have also been adapted to the dynamic range and

size of the image respectively. This results in segmentations which will remain consistent across

an entire database.

Both over-segmentation and object-like segmentation will make their appearance in our

depth map estimation methods, since their regions constitute reasonably wide and consistent

aggregation supports with respect to the image contents.
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Résumé du chapitre 5

Au chapitre 2, nous avons établi que régions homogènes et occultations étaient source de nom-

breux problèmes lors de l’établissement d’appariements entre les deux images stéréoscopiques.

Dans ce chapitre, nous proposons deux méthodes alternatives permettant de gérer ces deux

difficultés, au moyen des segmentations associées aux deux images stéréoscopiques.

Les régions générées pour chaque image stéréo sont exploitées dans le but de contraindre

la façon dont les coûts de superpositions peuvent s’agréger. Plus précisément, nous empêchons

que les coûts provenant de superpositions de régions différentes puissent se mélanger. De cette

manière, les coûts résultant d’une occultation ne peuvent s’agréger avec ceux résultant d’une

superposition effective entre deux régions.

Les résultats produits par les deux algorithmes sont cependant très distincts. La première

méthode produit des cartes de disparités régionales. Dans ces dernières, tous les pixels d’une

même région reçoivent la même mesure de disparité. La fonction de disparité résultante est

donc lisse par morceaux. De plus, les discontinuités de disparités délimitent avec précision les

différents objets présents dans la scène, et les pixels étant occultés dans l’une des deux images

stéréoscopiques reçoivent des valeurs de disparité plausibles. D’un point de vue perceptuel, cela

rend ces cartes de disparités régionales particulièrement attrayantes, en particulier lorsqu’une

majorité d’objets se positionne de manière quasi fronto-parallèle à la caméra. En revanche, dans

les bases de données modernes, la validité de telles hypothèses géométriques est de plus en plus

remise en question.

Dans cette optique, nous avons proposé une deuxième approche qui cherche, au moyen d’un

volume de superposition d’images filtré, des mesures de disparité sur une base ponctuelle. Le

filtrage du volume dépend de deux paramètres : le premier contraint la portée maximale de

l’agrégation, le second contrôle les fluctuations des chemins d’agrégation couvrant plusieurs

décalages pour lesquels les images stéréo ont été superposées. Nous observerons que, pour une

portée d’agrégation suffisamment large, et en utilisant un filtrage morphologique approprié, il est

possible d’obtenir des cartes de disparités sporadiques très précises, malgré l’absence de mesures

dans les régions homogènes. Cependant, en considérant différentes portées d’agrégation, nous

verrons qu’un mécanisme mesurant les disparités à différentes échelles permet d’aboutir à des
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cartes de disparités sporadiques beaucoup plus denses, dont les seules informations manquantes

se situent au niveau des pixels occultés dans l’autre image de la paire stéréoscopique. Le

lecteur trouvera dans ce chapitre les détails nécessaires à la compréhension des paramètres et à

l’implémentation du filtrage des cartes de disparités sporadiques. Enfin, un tableau permettra de

comparer de manière efficace les deux méthodes proposées.
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Chapter 5

Disparity Measurements based on Regions

In this methodology, the extraction of pertinent disparity measures and the estimation of the

whole disparity map are dissociated. This chapter therefore deals with the first aspect, i.e. the

measurement of disparities across a pair of stereo images. We propose two alternatives based on

the segmentations described in chapter 4.

Section 5.1 deals with the first approach resorting to regional disparities. These measures

enable the generation of consistent disparity maps with respect to depth perception and facilitate

refinement operations across segmentation hierarchies. A key advantage of regional disparity

maps, if all underlying assumptions of the model are satisfied, is that no estimation procedure is

required to deduce a complete disparity map. Section 5.2 presents a second approach which is

more robust in cases where both the stereo images were acquired using a wide baseline and the

regions composing these images depict very tilted objects in the actual 3D scene. This second

alternative however yields sparse disparity maps.

5.1 Regional disparities

A regional disparity is a measure allocated to a region of the left image partition, i.e. the one for

which we aim to compute the associated disparity map. It indicates the intensity of the horizontal

shift which must be applied to the right image towards the right-hand side, so that the left and

shifted right images are in “best” superimposition within the region under consideration.

The computation of regional disparities is initially performed on coarse partitions, computed

for example using either of the algorithms introduced in sections 4.2.1 and 4.2.2. Using the

notation of table 2.1, we assume that Ri represents the i-th region of the left image partition,

whilst R ′(d)j corresponds to the j-th region of the right image partition, shifted horizontally

towards the right by d pixels. Furthermore, we define D as the regional disparity map associated

with the left view Il as:

D[x, y] = d?(Ri)⇐ (x, y) ∈ Ri (5.1)
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(a) (b) (c)

Figure 5.1: Superimpositions and semi-occlusions. (a) Left view of Teddy. The thick lines represent the
coarse segmentation of the image, while the union of thick and thin lines represents the fine segmentation.
(b) Absolute differences between the left and right stereo images for a left-to-right shift of 66 pixels and
(c) 118 pixels. The region delineated by the white lines is in “best” superimposition with the right image of
the stereo pair at 66 pixels, but the sum of absolute differences inside the whole region support is unlikely
to constitute a pertinent superimposition cost.

where d?(Ri) corresponds to the regional disparity retained for and allotted to region Ri. A

simple method of computing this regional disparity is to minimise the sum of absolute differences

of the brightness for the two superimposed images and across region Ri as follows:

d?(Ri) = arg min
d

∑
(x,y)∈Ri

|Il [x, y] − Ir [x− d, y]|

Note that with respect to the cost corresponding to the superposition of (xi, yi) in Il with (xj, yi)

in Ir, as described by equation 2.2, this would amount to choosing the aggregation support

A(xi, xj, yi) =
{
(x, y, xi − xj) | (xi, yi) ∈ Ri ⇒ (x, y) ∈ Ri

}
. Such an aggregation support, if

used with the absolute differences of image brightness, proves inadequate if region Ri contains

points occluded in Ir. The reason behind this is clearly illustrated in figure 5.1(b), where

the aggregation support overlaps two different regions of Ir, despite correct registration. The

methods proposed below enable computation of more pertinent regional disparities.

5.1.1 Gradient-based computation

Originally, the gradient-based computation of regional disparities was developed in order to

register relatively homogeneous regions where there are slight brightness and colour discrepancies

across the stereo pair. In this study case, the most important source of gradient information arises

from the region contours. But as stated in section 2.3.2, special care has to be taken to properly

interpret the disparities measured along the contours: should they be transferred to the region of

interest, or to a neighbouring region, or both?

Assuming that Ri represents an object lying parallel to the image plane, we can then expect
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Figure 5.2: The logic behind the gradient-based computation of regional disparities. (a) Each region is
split along its vertical skeleton into two left and right subregions. In this example, Ri is semi-occluded.
The regional disparity of R(L)

i is induced by the left vertical contour of Ri, whereas the regional disparity of
R

(R)
i is induced by the occlusion resulting from R(L)

j . Therefore, the regional disparity of R(R)
i should be

replaced by the one of R(L)
i . (b) There are extreme cases, where an occluding region would interfere in

both subregions of the semi-occluded region. The asymmetric superimposition cost based on Laplacians
limits the impact of this interference.

that if Ri is semi-occluded in the right image, there will be displacement d1 for which the contours

corresponding to the physical frontiers of Ri are in best superimposition, and a displacement

d2 >> d1 for which its occlusion contours are in best superimposition. Furthermore, if d2

corresponds to the actual disparity of an occluding contour, it should correspond to the regional

disparity of a region adjacent to Ri. Of course, if we are then left to choose between d1 and d2

for the regional disparity for Ri, we should opt for the smallest measured displacement, i.e. d1.

To proceed, every region Ri of the left image partition is split along its vertical skeleton into

two subregions R(L)
i and R(R)

i , as illustrated in figure 5.2(a). We then seek a regional disparity for

each of these sub-regions. We could try a direct superimposition of the gradients corresponding

to Il and Ir, but our experience showed that this typically leads to inaccuracies, in particular

if the gradient is fairly thick. This problem can be bypassed by employing a signed Laplacian

function L(I) instead which, given the function associated with input image I, is computed as

follows:

L(I) = ε→ (‖∇I‖) − ε← (‖∇I‖) (5.2)

The arrows← and→ represent the directional structuring elements employed with the erosion

operators. This Laplacian function has the advantage of highlighting the rising and descending

edges of the gradient along the horizontal image axis. The regional disparity d?G(R̃i) of subregion

R̃i associated with the gradient-based computation is then defined by equation 5.3.

d?G(R̃i) = arg min
d

∑
(x,y)∈R̃i

min {|Ll[x, y]| , |Ll[x, y] − Lr[x− d, y]|} (5.3)
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(a) (b) (c)

Figure 5.3: A first example of regional disparity map. (a) Input image Art originating from the Middlebury
2005 dataset. (b) The raw regional disparities obtained using the gradient-based computation without the
analysis across subregions. As can be seen, the disparities of foreground objects are often inherited by
the objects they occlude, or partly occlude, in the other image of the stereo pair. (c) Regional disparities
displayed in each subregion of the partition after rectification. Semi-occluded regions are ultimately
assigned perceptually relevant disparities, though the problem remains unsolved for those regions fully
surrounded by occluding contours, such as the gap between the brush, the chalk and the jar.

with Ll and Lr representing the short-cut notations of L(Il) and L(Ir) respectively. The absolute

difference between the Laplacians ensures that the gradients are correctly superimposed, whilst

the minimum with |Ll| is enforced, so that the occluding contours do not interfere with the

aggregation costs, as shown in figure 5.2(b). The regional disparity of Ri is finally estimated

directly as

d?G(Ri) = min
{
d?G

(
R
(L)
i

)
, d?G

(
R
(R)
i

)}
In some cases though, it is useful to compute the regional disparity map associated with the

partition containing the subregions. Indeed, when two subregions share the same parent region,

the map will be coherent if both subregions are allocated different regional disparities, in

particular if the parent region is tilted around some vertical axis. However, major differences

in regional disparities could indicate that the highest regional disparity is the product of an

occlusion. In order to establish whether the subregion assigned the highest regional disparity

has inherited from the regional disparity of an occluded region, it suffices to find an adjacent

subregion which has been allocated a similar regional disparity. In the affirmative case, the

regional disparity of the subregion under consideration is finally replaced with the regional

disparity of the other subregion belonging to the same parent region. Figure 5.3 shows the

efficacy of this rectification method on one example from the Middlebury database.

The second method presented in this section investigates the possibilities offered by a change

of aggregation support and is more robust than the method derived from gradient-based regional

disparities, when processing images which have no difference in colour.
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5.1.2 Lightness-based computation

In section 2.1.2, we focused our attention on using regional intersections between the partitions

of Il and Ir to aggregate superimposition costs. We shall now reuse this idea to define the

illumination cost of superimposing Ri with R ′j for a left-to-right displacement of d pixels as:

cIllum(d,Ri,R
′
j) =

1

|Ri ∩ R
′(d)
j |

∑
(x,y)∈Ri∩R

′(d)
j

|Il [x, y] − Ir [x− d, y]| (5.4)

If the input images are composed of multiple channels, it is possible to take the mean average of

the costs computed for each as the final illumination cost. The cost computed in equation 5.4

will unfortunately lack relevance when the size of the intersection is very small compared to the

size of the original regions. The significance of an intersection between two regions Ri and R ′(d)j

can be measured by the Jaccard distance [Jaccard, 1901], as follows:

cJaccard(d,Ri,R
′
j) = 1−

|Ri ∩ R
′(d)
j |

|Ri ∪ R
′(d)
j |

(5.5)

In fact, the Jaccard distance plays the role of a coverage cost between two superimposed regions.

The asymmetrical version of this coverage cost, which is obtained by replacing |Ri ∪ R
′(d)
j | with

|Ri| in equation 5.5, is useful if the segmentation of Ir is coarser than that of Il.

We now have two criteria based on image contents and shape similarities, which can be

combined to compute regional disparities. We simply propose to discredit the superimposition

of Ri with R ′(d)j if the asymmetrical Jaccard distance between Ri and R ′(d)j is above τ = 0.75,

resulting in less than 25% of the region of Ri being superimposed with the candidate matching

region R ′j when shifting the right image from left to right, by a magnitude of d pixels. The

regional disparity d?L(Ri) associated with the lightness-based computation is then defined by

equation 5.6.

c̃Illum(d,Ri,R
′
j) =

cIllum(d,Ri,R
′
j) if cJaccard(d,Ri,R

′
j) 6 τ

+∞ otherwise

d?L(Ri) = arg min
d

{
min
R ′j

c̃Illum(d,Ri,R
′
j)

}
(5.6)

As figure 5.4(a) shows, these regional disparities are also particularly resistant to occlusions. The

two assumptions of this alternative are that corresponding pixels between the two stereo images

have the same lightness and that semi-occlusions occurring in the right image do not occlude

more than 75% of the region of interest in the left image.
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(a) (b) (c)

Figure 5.4: Regional disparities and segmentation hierarchies. (a) The regional disparity map for
the coarse partition of Teddy using the lightness-based computation is, at a global observation scale,
consistent with respect to depth perception. (b) The same regional disparities computed for the finer
partition are more accurate across tilted regions with respect to the image plane. However, the errors
caused by the total occlusion of small regions and by the non-textured areas are perceptually disturbing.
(c) Using the coarse regional disparity map shown in (a), it is possible to generate a binary mask to
estimate the image areas subject to the occlusion phenomenon. Here, only object-type occlusions are
shown in black.

5.1.3 Properties of regional disparity maps

The regional disparity maps generated by equation 5.1 come with a wealth of positive features,

although some requirements must be fulfilled to ensure the quality of the end result. In this last

subsection on the measurements related to regional disparities, we draw an objective analysis of

the measure.

Underlying assumptions In order to compute the regional disparities of a coarse image parti-

tion, it has been assumed that the regions could be registered across the stereo pair by means of

translations. Theoretically, this is only true if the regions correspond to planar objects parallel

to the image plane, i.e. if all objects are fronto-parallel to the camera. Nonetheless, when the

baseline between the two sensors acquiring the pair of stereo images is low, the geometrical

distortions between the image regions are less important than the distortions, which result when

using a wide baseline. Thus translational registration model still produces stable measurements.

The same applies to the wide baseline case if regions are not excessively tilted.

Perceptual features and accuracy Regional disparity maps are strongly related to the segmen-

tations from which they originate. This encourages the generation of sharp disparity discon-

tinuities at regional boundaries. Furthermore, regional disparity maps are not subject to the

fattening effect observed in a large number of pixel-based approaches and the depth ordering

between different objects in the scene is therefore consistently revealed. Another advantageous

feature of regional disparity maps resides in their ability to handle semi-occlusions: indeed, any
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(a) (b)

(c) (d)

Figure 5.5: Regional disparities and microstereopsis. (a) and (c) represent the left and right views of
the stereo pair respectively. (b) The disparity map obtained using the semi-global matching algorithm
[Hirschmüller, 2008]. Disparities are captured well around contours, but the main source of difficulty
arises from the homogeneous regions of the scene and the fattening effect can be observed around every
contour, especially for the foreground objects, such as the figurine, the tape roll, the little box and the ruler.
(d) The regional disparity map obtained using the gradient-based computation.

pixel occluded in one image of the stereo pair inherits the regional disparity of the region to

which it belongs. Not only does this make the disparity of the occluded pixel relevant to those

which belong to the same region, but it also eliminates any need for an additional diffusion

or procedure to estimate the disparities across the region’s occluded areas. However, since the

pixels of any given tilted region all receive the same disparity, regional disparity maps will always

constitute gross estimations of the real disparity functions and therefore cannot be accurate.

Fortunately, it is possible to refine the disparity maps by using regional disparities at a finer

degree of segmentation, i.e. with more over-segmentation.

Hierarchical characteristics The computation of regional disparities driven by a finer partition

typically yields regional disparity maps, which are more accurate than those observed at the

coarse level of segmentation. But using smaller regions comes at a price: it is likely that a greater

number of regions will be totally occluded, making their associated disparity measures completely

erroneous, and that across homogeneous regions, a greater number of ambiguities will arise. This

can be observed in figure 5.4(b). In this scenario, the coarse regional disparity map associated

with the same image, though inaccurate, may constitute a very pertinent a priori assumption to
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constrain the refinement of regional disparities at a finer level of a hierarchical segmentation.

The first thing to note is that the regional disparity of a fine region should never be at a great

distance from the regional disparity of the gross region of which it is part. The second, is that

it is easy, using the coarse regional disparity map, to derive the image areas subject to object

occlusions. These can be gathered in an occlusion binary mask Moccl., of the same size as the

coarse regional disparity map D, such that:

S(Moccl.) =

(x, y) | (x−D[x, y] < 0)︸ ︷︷ ︸
border occlusion

∨
(
∃ x ′ > x | x ′ −D[x ′, y] = x−D[x, y]

)︸ ︷︷ ︸
object occlusion

 (5.7)

For each region of the fine partition, it is therefore possible to measure what proportion is occluded

and to determine whether or not its associated disparity measure is relevant. Refinements across

partitions related by a hierarchy will be treated as part of our study on disparity estimation, in

section 7.2.

5.2 Regional aggregations and point disparities

This second section presents an alternative mechanism which, given a pair of stereo images,

produces accurate disparity measurements. As was the case with regional disparities, the

intersections of the left and right image segmentations will be used to constrain the aggregation

of superimposition costs. Furthermore, the detection of disparities induced by occluding contours

will again prove useful during the filtering of bad disparity measures. However, the aggregation

supports will be defined on a pixel basis in order to allow variations of disparities across tilted

objects. Therefore, unlike regional disparities, the fronto-parallel assumption will no longer hold.

The purpose of the aggregation phase in stereo image analysis is to filter a disparity space

volume (cf. section 2.1.4) in such a way that the minimum superimposition cost observed

for a given pixel will occur for a meaningful displacement, corresponding to the measured

disparity. Because the filtering essentially aims to smooth or average the costs in a particular

neighbourhood, the term diffusion is sometimes employed in place of aggregation, especially when

referring to a process which updates the cost values locally and iteratively. Experiments have

already dealt with different diffusion costs in stereo. For example, the diffusion model chosen

by [Scharstein and Szeliski, 1998] would, if no constraint were applied, amount to performing a

Gaussian convolution on each disparity plane of the cost volume. As they show in their article,

one advantage of iterative schemes over straightforward filtering operations lies in the ability

to easily interrupt the diffusion based on local stopping criteria, and to dynamically adapt the

diffusion strength. In [De-Maeztu et al., 2012], this strength is related to a geodesic colour

distance, which separates the pixel undergoing the cost update from the distant pixel contributing
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to this update. However, in [Cigla and Alatan, 2013], the more that high frequency areas are

traversed by a diffusion path, the less significant becomes the contribution of the cost conveyed

along this path.

2D diffusion In order to introduce our cost diffusion algorithm, let us start with a relatively

straightforward example taking place in 2D space, without any constraint. Suppose we want to

perform a diffusion having a scope of n pixels, which transforms an image I into Ĩ(L)
n , such that

Ĩ
(L)
n [x, y] =

1

n+ 1

n∑
i=0

I[x− i, y]

By developing this equation and setting i = j+ 1, one obtains:

Ĩ
(L)
n [x, y] =

1

n+ 1

(
I[x, y] +

n∑
i=1

I[x− i, y]

)

=
1

n+ 1

I[x, y] + n−1∑
j=0

I[(x− 1) − j, y]


=

1

n+ 1

(
I[x, y] + n · Ĩ(L)

n−1[x− 1, y]
)

Observing that Ĩ(L)
n−1[x − 1, y] can be written as

(
εBL

(
Ĩ
(L)
n−1

))
[x, y], where S(BL) = {(−1, 0)}

represents the set of points parametrising a directional structuring element oriented towards the

left-hand side of the image and not containing the centre point, we conclude that:

Ĩ
(L)
n =

1

n+ 1

(
I+ n · εBL

(
Ĩ
(L)
n−1

))
, ∀n > 1

Now, let S(BR) = {(+1, 0)}, S(BT ) = {(0,−1)} and S(BB) = {(0,+1)} represent the sets of points

of structuring elements BR, BT and BB inducing the unitary translations towards the left, the

bottom and the top respectively of the image plane under consideration, when used with the

erosion operator. A horizontal moving average filter of size 2n+ 1 on I yields as output:

IH =
1

2n+ 1

(
I+ n · εBL

(
Ĩ
(L)
n−1

)
+ n · εBR

(
Ĩ
(R)
n−1

))
And since the multi-dimensional moving average filter is linearly separable [Szeliski, 2011], we

can finally deduce the 2D moving average of image I as:

IA =
1

2n+ 1

(
I+ n · εBT

(
ĨH

(T)
n−1

)
+ n · εBB

(
ĨH

(B)
n−1

))
(5.8)

This derivation shows that it is possible to build an iterative diffusion model which ultimately

results in a simple moving average filter on a plane, if no constraint intervenes. Of course, the

diffusion will not be applied to an image, but to a 3D volume, containing the stereo superimpo-
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sition costs. [Cigla and Alatan, 2013] chose a very similar diffusion scheme with permeability

constraints and made their algorithm operate independently on each disparity plane. However,

this latter feature is precisely what we wish to avoid in this second approach to the measurement

of disparities, since it favours fronto-parallel configurations to the detriment of tilted configura-

tions. Besides, in a scenario where both n→ +∞ and the diffusion is impeded at the regional

boundaries, the cost allocated to an arbitrary pixel would tend towards the average cost of the

pixels belonging to the same region. This recalls the cost computed for the regional disparities,

which we know to be inaccurate.

3D diffusion Our cost diffusion scheme therefore needs to tolerate 3D diffusion paths. More

precisely, we can keep the 2D aggregation scheme based on the moving average filter, but this

time, we should consider the possibility that the 2D surface we would like to span with our

diffusion algorithm, may be twisted inside the disparity space volume. Therefore, a unitary

variation of disparity may occur every time the diffusion path progresses along a particular

direction of the image plane. It is impossible to know in advance which variation of disparity will

be favoured at a given step of the diffusion. However, we know how to compute the cost of the

path which best warps both stereo images along the left-to-right direction, according to equation

2.6. By slightly adapting this equation, we can handle other warping directions with respect to

the image plane and impose that the path should systematically evolve in the chosen direction,

i.e. that no two points of the warping path will project onto the same image plane coordinates.

Furthermore, we can choose the maximum length n of the warping path, which is of interest

to us. Assuming that the direction of propagation is d = (dx, dy) 6= 0 with respect to the image

plane, the 3D diffusion transforming volume D = D̃
(d)
0 into D̃(d)

n then becomes:

D̃
(d)
n =

1

n+ 1

(
D+ n ·min

{
εB0

(
D̃

(d)
n−1

)
, εB1

(
D̃

(d)
n−1

)
+ ξ
})
, ∀n > 1 (5.9)

with S(B0) = {(dx, dy, 0)} and S(B1) = {(dx, dy,−1), (dx, dy,+1)} representing the sets of

points for the fronto-parallel and tilted structuring elements respectively. The impact of the

regularisation term ξ on the diffusion mechanism will be discussed later in this section. We

now have all the necessary ingredients required to define our cost diffusion algorithm. All that

remains for us to do is to integrate the segmentations of the left and right images as the main

diffusion constraint.

5.2.1 Cost diffusion algorithm

The cost diffusion algorithm requires as input a disparity space volume D representative of the

stereo image superimpositions, the partitions Ll and Lr of the left and right images respectively,

as well as the maximum scope of the cost diffusion, n. First we provide some particulars about
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Figure 5.6: Binary representation of the values resulting from the Census transformation with respect
to the two pixels circled in bold, and illustration of the mechanism allowing the computation of their
superimposition cost, based on the Hamming distance between the two binary sequences associated
with their values in the Census transformed images.

these parameters which we follow with details of our algorithm.

DSV specifications Each entry of the disparity space volume D corresponds to a superimpo-

sition cost between one pixel of the left view and one pixel of the right view. In chapter 2, we

defined this cost as the absolute difference between the lightness values attributed to each pixel

of the pair under consideration. Of course, this is a bad choice when illumination discrepancies

manifest between the two images of the stereo pair. In this algorithm, we derive each superimpo-

sition cost from the Census transformed stereo images [Zabih and Woodfill, 1994]. Applying the

Census transformation to a greyscale image I consists of mapping each pixel of I into a binary

code composed of 8-bits. With respect to the square grid, a direction corresponds to each bit

of the binary code. A bit is activated for a given pixel, if and only if the neighbour pixel in the

direction associated with the bit being considered, has a lightness value smaller than that of the

given pixel. More formally, the Census transformation maps an image I into another image of

identical dimensions Census(I), according to equation 5.10:

Census(I)[x, y] =
7∑
i=0

T(I− εBi (I))[x, y] · 2
i (5.10)

where T represents a binary indicator function, such that T(I)[x, y] = 1 ⇔ I[x, y] > 0 and Bi

corresponds to the i-th directional structuring element defined on the square grid. Figure 5.6

illustrates that particular transformation.

Once the Census transformed images are computed, it is possible to compute a dissimilarity cost

between any pixel of the left view and any pixel of the right view, by considering the Hamming

distance between their associated binary codes. Each entry of the normalised DSV is ultimately
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(a) (b)

Figure 5.7: Visualisation of the disparity space volume computed according to equation 5.11 for the
Motorcycle stereo pair. Volume slices obtained for (a) disparity d = 21 pixels and (b) disparity d = 60

pixels. Input image dimensions: 741× 497 pixels.

computed as:

D[x, y, d] =
1

8
·
7∑
i=0

⌊
Census(Il)[x, y]⊕ Census(Ir)[x− d, y]

2i

⌋
mod 2 (5.11)

where ⊕ denotes the XOR operator between the binary sequences associated with two integers.

In the case of colour images, three DSVs are computed, one for each image channel according to

equation 5.11, and D is equal to their mean average.

Since the Census transformation is only sensitive to the directions in which the lightness is

lower than that of the pixel under consideration, the superimposition costs computed according

to equation 5.11 remain relevant when the illumination discrepancies manifesting between

the stereo images are due to a strictly increasing transformation function. Furthermore a null

superimposition cost between two pixels indicates that the variations of lightness within their

direct neighbourhood are similar, which suggests that the two pixels effectively match with more

certainty than would a null superimposition cost which is computed as the absolute difference

between two pixel lightness values.

Segmentation characteristics The partitions Ll and Lr are generated according to the over-

segmentation algorithm presented in section 4.3. Each of these partitions is in fact an image

where each pixel maps to the label which uniquely identifies the region to which it belongs. We

call Ll[x, y] the label of pixel (x, y) in partition Ll, and Lr[x, y] the label of pixel (x, y) in partition

Lr. If we superimpose these two partitions, we can compute their intersection. The intersection

of two partitions is a partition, where each pixel has a label which uniquely identifies the regions

where the pixel is included with respect to the two input partitions. We can then generate a

volume containing the intersections of Ll and Lr for different left-to-right displacements applied
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Figure 5.8: Execution sample of the DIRECTIONALDIFFUSION function of algorithm 5.1 illustrating how
the distance function DB, derived from the volume LV encoding the superimpositions between the left
and right image segmentations, constrains the diffusion so that no costs arising from different regional
intersections can combine.

to the right image partition Lr. We call this volume LV and we express it as:

LV [x, y, d] = Ll[x, y] + Lr[x− d, y] ·max
x,y

Ll[x, y]

If we propagate the costs along the direction opposite to that indicated by a translational structur-

ing element Bi, such that the scope of the propagation equals n = 1 pixel only, then the region

from which the cost propagated at voxel (x, y, d) originates is simply given by εBi (LV) [x, y, d].

The voxels where costs from different regions would be combined if the diffusion were happening

without constraint, are identified by the set

SBi = {(x, y, d) | LV [x, y, d] 6= εBi (LV) [x, y, d]}

Of course, if we use the diffusion model represented by equation 5.9, the set containing the

voxels where the costs of different regions have the potential to combine, is defined by SB for

S(B) = B0 ∪ B1.

Diffusion constrained by distance functions We call DB the distance function associated

with the binary volume for which the deactivated voxels are all those belonging the set SB, i.e.

DB[x, y, d] = 0⇔ (x, y, d) ∈ SB. DB may be computed by means of successive erosions on this

binary volume, according to the algorithm presented in section 3.1.1, but replacing the isotropic

structuring element with structuring element B. Algorithm 5.1, which implements our 3D cost

diffusion method, uses this distance function at line 9, in order to constrain the directional

diffusions driven by structuring element B. The voxels for which the costs of different regions
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Algorithm 5.1 3D diffusion of superimposition costs

1: function DIRECTIONALDIFFUSION(D, n, ξ, (dx, dy))
2: t← 0

3: DOUT ← D

4: B0 ← Structuring element defined by S(B0) = {(dx, dy, 0)}
5: B1 ← Structuring element defined by S(B1) = {(dx, dy,−1), (dx, dy,+1)}
6: B← B0 ∪ B1
7: while t < n do
8: DUPD ← D+ min{εD0 (DOUT) , εD1 (DOUT) + ξ}
9: DSEL ← Binary volume indicating voxels where DB > t

10: DOUT ← DUPD ·DSEL +DOUT · (1−DSEL)
11: t← t+ 1

12: return DOUT

13: function DIFFUSECOSTS(D, n, ξ)
14: Initialisation of structuring elements
15: BL ← Structuring element defined by S(BL) =

⋃
dz∈{−1,0,+1}{(−1, 0, dz)}

16: BR ← Structuring element defined by S(BR) =
⋃
dz∈{−1,0,+1}{(+1, 0, dz)}

17: BT ← Structuring element defined by S(BT ) =
⋃
dz∈{−1,0,+1}{(0,−1, dz)}

18: BB ← Structuring element defined by S(BB) =
⋃
dz∈{−1,0,+1}{(0,+1, dz)}

19: Diffusion algorithm
20: DXL ← DIRECTIONALDIFFUSION(D, n, ξ, (−1, 0))
21: DXR ← DIRECTIONALDIFFUSION(D, n, ξ, (+1, 0))
22: DX ← (DXL +DXR −D)÷ (min{n,DBL}+ min{n,DBR}+ 1)
23: DYT ← DIRECTIONALDIFFUSION(DX, n, ξ, (0,−1))
24: DYB ← DIRECTIONALDIFFUSION(DX, n, ξ, (0,+1))
25: DY ← (DYT +DYB −DX)÷ (min{n,DBT }+ min{n,DBB}+ 1)
26: return DY
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would merge at the first iteration of the diffusion, are those where DB = 0. These appear as

deactivated in DSEL, which prevents their cost update at line 10. At the start of iteration t = 1,

their costs in DOUT are identical to those of D. However, their costs have been propagated to

some neighbour voxels in the previous iteration, and diffusing them again would add influence

to the initial superimposition costs close to the regional boundaries, which would unbalance the

weights of each initial cost. Therefore, at t = 1, the voxels where DB = 1 are also deactivated in

DSEL, and their cost update is definitively stopped. The process continues in this manner until

the maximum scope of the diffusion is attained. Figure 5.8 illustrates the execution of such a

directional diffusion using a one-dimensional example.

Algorithm’s features Algorithm 5.1 is composed of two functions. The first performs the 3D

directional diffusion of the costs constrained by the superimpositions of the left and right image

partitions. The update rule for the directional diffusion at line 8 is based on equation 5.9, which

resorts to directional warping. In the second function, the costs are initially diffused separately

along the left and right directions of the image plane. They are then combined into a new cost

volume, which is in turn diffused with respect to the two vertical directions of the image plane.

The combination of the two vertical diffusions ultimately yields the output cost volume. This is

similar to the aggregation scheme of equation 5.8. Note that, due to the boundary constraint,

the normalisation factors may vary for each voxel. They depend on distances which separate the

voxel under consideration from the segmentation boundaries, according to the four directions

tested. Furthemore, by construction, more weight is given to the diffusion coming from the

direction where the segmentation boundary is farthest from the voxel being considered.

Resulting sparse disparity maps Let D(init) be the sparse disparity map resulting from the

diffused cost volume, say D̃, produced by algorithm 5.1. A sparse disparity map contains pixels

with or without a disparity value. Pixels which are not allocated a disparity value are those for

which the measure is ambiguous, for instance across homogeneous regions, or for which the

measure is simply not feasible because of occlusions. In chapter 2, we saw how to detect such

configurations using the cross-checking criterion expressed by equation 2.7. Therefore, we define

D(init) as

D(init)[x, y] = arg min
d
D̃[x, y, d] (5.12)

for any pixel (x, y) which satisfies the cross-checking criterion when allocated disparity d accord-

ing to the disparity space volume D̃. The disparity remains undefined for any other pixels. Some

examples of disparity maps are provided in figures 5.9 and 5.10.

Parameters’ impact Now, by referring to the aforementioned figures, we can observe the

impact of the diffusion scope and regularisation parameters n and ξ on the sparse disparity maps

deduced from the diffused cost volumes. For each disparity map, we also measured the ratio

of pixels allocated a disparity measure in excess of one unit above or below the ground truth

111



CHAPTER 5. DISPARITY MEASUREMENTS BASED ON REGIONS

n ξ = 0 ξ = 0.2 ξ = +∞

5

10

25

50

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

Adirondack: Bad pixels (1 px. error)

ξ = 0
ξ = 0.2
ξ = +∞

Diffusion scope

E
rro

r p
er

ce
nt

ag
e

Figure 5.9: Initial sparse disparity maps obtained for Adirondack using algorithm 5.1 and varying the
diffusion scope parameter n as well as the warping regularisation term ξ. Pixels shown in black are those
which do not satisfy the cross checking criterion. Input image dimensions: 718× 496 pixels.
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Figure 5.10: Initial sparse disparity maps obtained for Motorcycle using algorithm 5.1 and varying the
diffusion scope parameter n as well as the warping regularisation term ξ. Pixels shown in black are those
which do not satisfy the cross checking criterion. Input image dimensions: 741× 497 pixels.
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disparity measures, resulting from the method of [Scharstein et al., 2014]. As a general rule,

the disparity maps increase in density as the term ξ regularising the warping paths increases.

Choosing ξ = 0 results in the depth of the warping paths fluctuating in an uncontrolled way, which

completely alters the diffused cost volume and increases the sparsity of the output disparity maps.

When ξ = +∞, no warping takes place, since the diffusion then operates in fronto-parallel mode.

For sufficiently textured cases, like Motorcycle, we can obtain dense and relevant measures

for a small diffusion scope n. However, we notice that employing high diffusion scopes within

the fronto-parallel diffusion produces an annoying staircase effect and greatly deteriorates the

accuracy of the disparity map. High diffusion scopes are necessary when dealing with images

abounding with homogeneous regions, such as Adirondack, since otherwise there would be

many ambiguities. The diffusion controlled by ξ set to 20% of the worst superimposition cost,

yields disparity maps which have equivalent performances in terms of accuracy for small diffusion

scopes, and significantly better performances at higher diffusion scopes, in comparison with the

fronto-parallel mode. An observation which does not emerge from the quantitative results is

that the errors occurring when ξ = 0 and ξ = 0.2 are mainly noisy measurements, being totally

disconnected from the blocks of disparities that seem relevant.

The need for a filtering stage When interested in using sparse disparity maps to initialise the

estimation process with the aim of generating complete disparity maps without holes, then the

sparse disparity maps should be as accurate and as dense as possible. The following subsection

presents morphological filters designed to remove erroneous disparity measures. Several problems

will be addressed: one which consists of localising clusters of disparities, one which uses the

occlusion reasoning to determine disparities originating from occluding contours, and one which

relates the relevance of a measure to the gradient information. Finally the filtering will also play

an essential role with respect to the extended diffusion mechanism presented at the end of this

section...

5.2.2 Morphological filtering of sparse disparity maps

The goal of this filtering stage is the elimination of bad measures occurring in the sparse disparity

maps computed according to equation 5.12. On the one hand, most of the bad measures occur

as small but widely dispersed artefacts in the disparity function, especially when the warping

is enabled. On the other hand, most of the good measures form smoothly evolving disparity

blocks with a variable number of holes, which extend across the image plane. Furthermore,

these considerably outnumber the bad measures. For that reason, we propose first, to group

the disparity measures of D(init) into pertinent clusters, and then to detect and prune the bad

measures, based on the analysis of these clusters.
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Clustering the disparities

Let us provide a definition for the clusters of a disparity map D• which has no hole. Suppose

that pA and pB are two points belonging to the same image plane. pA and pB belong to the

same cluster if and only if there exists a path Γ(pA,pB) characterised by an ordered sequence of

points {pk}`k=1 of arbitrary length ` such that

• The starting and ending points of the sequence are p1 = pA and p` = pB.

• There is no spatial discontinuity in the path Γ(pA,pB), in that pk and pk+1 are neighbours

with respect to the image plane, for any 1 6 k 6 `.

• Disparity discontinuities no larger than 1 pixel are tolerated along the path, i.e. |D•[pk] −

D•[pk+1]| 6 1 for all 1 6 k 6 `.

Intuition tells us, the connected components resulting from a simple threshold on the gradient of

the disparity map should easily highlight most of these clusters.

Algorithm 5.2 Sparse disparity map clustering

1: function CLUSTERDISPARITIES(D(init), ‖∇Il‖)
2: Filling holes
3: D• ←W.T.(L := D(init),S := ‖∇Il‖)
4: Mask holding pixels satisfying cross-checking
5: M(init) ← Binary image highlighting all pixels set to a disparity in D(init)

6: Masks highlighting disparity discontinuities
7: M(disc.E.) ← Binary image highlighting all pixels satisfying (δ (D•) − D•) 6 1
8: M(disc.I.) ← Binary image highlighting all pixels satisfying (D• − ε (D•)) 6 1
9: Clusters labelling

10: C← Label(M(disc.E.))
11: Extending labelling to discontinuities
12: C←W.T.(L := C,S := 1−M(disc.I.))×max{M(disc.E.),M(disc.I.)}

13: Superimposing validity mask
14: return C×M(init)

However, we are dealing with sparse disparity maps. Therefore, we need a way to transform

D(init) into a full disparity map D•. If we interpret D(init) as an initial image of lakes L, it

is possible to fill the holes of L with the disparities lying on the lakes’ borders by means of

the watershed transformation presented in section 3.3. The topographical surface driving the

flooding is then nothing other than the gradient of the reference image Il for which the disparity

map is generated. Algorithm 5.2 provides the details of the disparity map clustering, with W.T.

representing the watershed transformation operator and Label being the function which allocates

a unique and strictly positive integer label to each connected component of the binary mask it

takes as input.

The most delicate part of the procedure is the allocation of cluster labels to the image zones

where disparity discontinuities occur. Algorithm 5.2 handles all single disparity discontinuities of

more than 1 disparity unit at line 12, as shown by the example of figure 5.11. For the extreme
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•

�(init)
�
�(init)
�(disc.E)
�(disc.I)
� (l.10)

� (l.12)

� (l.14)

Figure 5.11: Illustration of the different stages of the clustering procedure implemented by algorithm 5.2
for a one-dimensional case. Pixels shown in black within the disparity map D(init) are those which are not
allocated a disparity measure.

and rare cases where such discontinuities occur consecutively, the pixels concerned receive the

null cluster identifier and their disparity measures are automatically pruned from D(init).

Pruning bad clusters

The spiky disparity measures which occur in the initial disparity map must, by construction of

algorithm 5.2, belong to very small disparity clusters. At the opposite extreme, we expect the very

large clusters of smoothly evolving disparities to contain only pertinent measures. For this reason,

we introduce two parameters: σ0, which represents the area below which a cluster is considered

to contain bad disparity measures, and σ1, which corresponds to the area above which the cluster

is systematically considered to contain good disparity measures. We can therefore compute two

binary imagesMσ1 andMσ0 | S(Mσ1) ⊆ S(Mσ0) indicating respectively the localisation of large

clusters to be maintained throughout this filtering stage and the localisation of those clusters

which are not considered to be parasites.

In order to decide whether the clusters indicated by the binary function Mσ0 −Mσ1 should

be retained or not, it is necessary to refer to an attribute related to the input image contents.

Remember from section 2.3.2 that most ambiguities arise across homogeneous regions and

that the non-periodically textured regions usually constitute image zones where disparities

can be computed with a high degree of confidence. Therefore, we can accept a cluster of

intermediate size if and only if it spans a portion of the reference image containing sufficient

gradient information. Considering that Ci represents the set of pixels belonging to the i-th

116



5.2. REGIONAL AGGREGATIONS AND POINT DISPARITIES

disparity cluster produced by algorithm 5.2, we call gi its gradient information computed as:

gi =
1

|Ci|

∑
(x,y)∈Ci

(δn (Il) − εn (Il)) [x, y]

where n corresponds to the scope of the diffusion employed to generate the sparse disparity

map D(init). The reason for reusing this parameter here, is because the disparity information

originating from a gradient crest is likely to propagate a maximum of n pixels in each direction

of the image plane, due to the cost diffusion. Therefore, if the gradient magnitude were the only

data considered when calculating the gradient information, this gradient magnitude would be

likely to be allocated a fairly low value for any cluster under consideration, hence the use of the

thick gradient adapted to the diffusion’s scope.

To summarise, an arbitrary clusterCi may be preserved at this stage of the filtering if it belongs

to the binary mask Mσ1 , or if it both belongs to the binary mask Mσ0 and satisfies gi > gmin

where gmin constitutes the third parameter, representing the minimum gradient information

requested for clusters of intermediate size. Figure 5.12 is an example which shows each step of

the cluster selection.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Pruning of bad disparity clusters for AustraliaP. (a) Input image (excerpt). (b) Initial
disparity map D(init). (c) Resulting clusters map. Pixels coloured in white are excluded from the validity
mask. (d) Points of D(init) belonging toMσ1

. (e) Points of D(init) belonging toMσ0
. (f) Removal of

points belonging to the clusters ofMσ0
−Mσ1

and which do not contain sufficient gradient information.
Parameters: This initial disparity map results from the diffusion algorithm of section 5.1 with ξ = +∞ and
n = 5 for an initial image size of 1472× 984 pixels. The area thresholds are set to 0.5% and 0.005% of the
image area for σ1 and σ0 respectively. The minimum gradient information gmin expected for all clusters of
intermediate size is set to 10% of the maximum lightness value.
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Filtering out the fattening effect

Despite the use of aggregation supports constrained by the left and right image segmentations,

we note that the fattening effect still surrounds the contours adjacent to very homogeneous

regions. Also, this had been foreseen in section 2.1.2. Filtering based on the pruning of clusters

does not suffice to handle this situation, because the pixels allocated fattened disparities are

connected to those assigned a correct disparity measure.

As with the occlusion reasoning scheme presented in section 5.1.1, it is necessary to analyse

the spatial distribution of the disparities on a regional basis in order to detect the abnormalities.

For a diffusion scope of n pixels, those points being subject to the fattening effect lie at a distance

of n pixels maximum from the region borders. Therefore, the points which are not subject to this

fattening effect belong to the cells of the partition Ll each having undergone an erosion of size n.

These cells can be represented by an eroded partition [Beucher, 2013a] which, henceforth, will

be referred to as L(εn)
l .

We propose an algorithm which either discards or preserves the disparity clusters remaining

after the pruning of bad clusters. This time though, the algorithm acts on a regional basis,

rather than at global scale. Therefore, the disparity measures contained by one cluster could be

discarded for one region and yet preserved for another. The decision on the preservation of an

arbitrary cluster within a given region Ri depends on three scenarios:

1. If Ri is thin, then the label i should not appear in the eroded partition L
(εn)
l . Empirical

observations show that different clusters of disparities can legitimately cover such regions,

which are often difficult to adequately segment. Therefore, any cluster belonging to the

region is retained.

2. Otherwise, if the points having label i in L
(εn)
l are allocated some disparity measures, it

indicates that region Ri contains some internal disparity information. In section 2.3.2, we

established that internal disparities should be favoured over contour disparities due to the

self-occlusion problem. Therefore, only the clusters to which the internal points belong are

to be preserved.

3. Otherwise, region Ri is sufficiently large, but doesn’t seem to contain any internal discrimi-

nant features useful for the measurement of disparities. Therefore, we need to resort to the

contour disparities. Following our study of the gradient-based computation for the regional

disparities, we opted to preserve the cluster with smallest average disparity in Ri.

These three scenarios are illustrated in figure 5.13. Additionally, figure 5.14, which summarises

the two stages of the filtering block proposed in this method, provides a good example of fattening

effect.
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Case Input Cell erosion Output Case Input Cell erosion Output

(1) (2)

(3)

Figure 5.13: The logic behind the last stage of the filtering, occurring after the pruning of bad clusters.
For case (1), the region of interest is extremely thin. Such regions undergo no additional filtering, and
thus allow different clusters of disparities to co-exist. In case (2), the region of interest contains disparities
lying far from its contours. We therefore retain only those clusters to which these disparities belong, in
order to avoid both the fattening effect and self-occlusion disparities. In case (3), the disparity information
stems from the contours. Therefore, we exclusively consider the cluster having the smallest average
disparity in the final output.

Input image Initial disparity map

Pruning of bad clusters Fattening effect removal

Figure 5.14: The filtering block proposed in this method consists of two stages: the pruning of bad
disparity clusters followed by the removal of the fattening effect. The effect of the latter action is clearly
visible on the Jadeplant test case, which contains an important number of homogeneous regions.
Parameters: This initial disparity map results from the diffusion algorithm of section 5.1 with ξ = 0.2

and n = 25 for an initial image size of 659× 497 pixels. The settings for the pruning of bad clusters are
identical to those presented in figure 5.12.
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Further filtering

The filtering operator proposed in this section relies on the selection of pertinent disparity clusters

and on the removal of the fattening effect. The reader may have noticed that there is no constraint

to ensure that the disparities will induce point matches occurring within the same pair of stereo

regions. Adding this constraint to the filtering operator could improve the effectiveness of the

operator, though any such constraint would assume that the ordering constraint is verified, i.e.

that the points project in the same order in both stereo images, which happens decreasingly often

in modern stereo databases. We also mentioned the gradient magnitude as an appropriate source

of information regarding the reliability of small disparity clusters. Other useful information

could have been the relevance, for a given pixel, of the cost value attached to the minimisation

in equation 5.12. Of course, this cost value corresponds to a local minimum along the whole

disparity axis of the DSV. But the real question is “how deep” is this minimum. Indeed, across

homogeneous regions, the costs allocated to the same point but for neighbouring disparities will

share very similar values. By contrast, we expect that the cost value associated with the disparity

found across an irregularly textured area will be easily distinguishable from the other cost values.

In that respect, the dynamic of minima [Vachier and Vincent, 1995] could play a useful role in

highlighting pixels for which the superimposition cost is sufficiently discriminant.

5.2.3 Reiterated diffusions and multi-scale stereo analysis

Up to now, we have provided a cost diffusion algorithm enabling the generation of sparse disparity

maps as well as a filtering operator pruning most of the erroneous measures. The examples of

Adirondack and Motorcycle in figures 5.9 and 5.10 however, suggested that there is no fixed

parameter systematically yielding the most dense and most accurate disparity maps. The purpose

of this section is to show how the diffusion algorithm may be employed at different scales,

referring here to the diffusion scope n, so that the resulting disparity maps are less sparse, more

regularised and yet accurate.

Reiterating diffusions with increasing scopes

Small diffusion scopes employed with algorithm 5.1 yield two groups of disparity measures:

those with high accuracy, especially across textured regions, and those which are wholly invalid.

Fortunately, the filtering block designed in section 5.2.2 should be capable of removing the bad

measures. We propose to use, in an iterative fashion, the filtered measures found in the sparse

disparity map at a given scale, in order to constrain the diffusion of the original disparity space

volume D at a higher scale.

Constrained diffusion Let D̃ be the sparse disparity map serving as input to constrain the next

diffusion operation. We add the following instruction after lines 3 and 10 of algorithm 5.1, i.e.
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Diffusion
n=5, X→Y

Filtering
¾0 = 5∙ 10-3

Constrained 
Diffusion

n=10, Y→X

Filtering
¾0 = 5∙ 10-4

Constrained 
Diffusion

n=15, X→Y

Filtering
¾0 = 5∙ 10-5

Constrained 
Diffusion

n=20, Y→X

Filtering
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Constrained 
Diffusion

n=25, X→Y
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¾0 = 5∙ 10-5

D

 �̃
Figure 5.15: Reiterating diffusions with increasing scopes. Apart from the first diffusion, all diffusions are
constrained by the filtered disparity map obtained at the preceding iteration, using equation 5.12 and the
filtering block presented in section 5.2.2. σ0 corresponds to the minimum area ratio expected for the small
disparity clusters with respect to the entire image area. The dependence relationship X→ Y indicates
that the diffusion is first performed along the horizontal axis and then along the vertical axis, and vice
versa for Y → X.

after each update of the diffused cost volume DOUT:

DOUT[x, y, D̃[x, y]]← 0, for all (x, y) having a measure in D̃ (5.13)

In other words, the disparity measures found in D̃ now systematically induce a trace in DOUT

along which the superimposition costs are set to zero. The voxels which are part of this superim-

position trace are never updated, which means that:

• the disparities allocated to the pixels onto which they project remain unchanged, once the

diffusion process is complete.

• at each iteration of the directional diffusion, a null cost is diffused to their neighbour voxels.

Therefore, the pixels onto which these neighbour voxels project should receive disparities

close to those found in their neighbourhood, after the diffusion terminates.

The full multi-scale diffusion pipeline is schematised in figure 5.15. We tested five different scales

with a diffusion scope ranging from n = 5 pixels to n = 25 pixels. Remember that figures 5.9

and 5.10 showed that higher scopes do not seem to add further relevant information. We impose

a more significant filtering for the smaller diffusion scopes, so that only the biggest disparity

clusters are preserved. This is in order to maximise the chances of pruning all the bad measures.

Figure 5.16 shows the result of this multi-scale diffusion on Adirondack and Motorcycle.
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Motorcycle Adirondack

Figure 5.16: Top row: Filtered disparity maps resulting from diffusion algorithm 5.1 with n = 25 and
ξ = 0.2. Bottom row: Disparity maps resulting from the chaining scheme represented in figure 5.15, using
ξ = 0.2.

Observations The first noticeable change between the single diffusion at scope n = 25 and

the chaining of these reiterated diffusions is of course the strong reduction of sparsity which we

expected. For Motorcycle, the disparity map seems impressive since details almost indiscernible

in the original image, such as the side-view mirror, are clearly accentuated. However, the small

diffusion scope already provided very good measurements. If we now look at the Adirondack

example, we can see some bumps appearing across the homogeneous regions. These bumps are

due to initial measurements at fine diffusion scopes, which initially seemed correct, but which

proved inaccurate after completion of the multi-scale densification. Therefore, the disparity

maps produced could still lack regularity. Smoothness can be achieved using global minimisation

frameworks driven by equation 2.8, but this is computationally very expensive. Research in optical

flow [Fleet and Weiss, 2006] established that coarse-to-fine refinements approaches, being the

exact inverse of what we have just proposed, typically help in solving the ambiguities that arise

from taking measurements at fine scales. In the next paragraph, we investigate how coarse-

to-fine refinement can be performed using our diffusion algorithm. Note, however, that the

fine-to-coarse iteration technique we have just presented will produce the best results if used

after the coarse-to-fine refinement.
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Figure 5.17: The coarse-to-fine refinement system proposed using our diffusion algorithm is the reverse
of the multi-scale diffusion approach using increasing diffusion scopes. Note that the enveloped diffusion
operator enforces that the measures available in the input disparity map, are allowed a variation of a few
pixels in the output disparity map.

Coarse-to-fine refinement

The coarse-to-fine refinement pipeline based on our diffusion algorithm is illustrated in figure

5.17. Contrary to the fine-to-coarse procedure elaborated previously, it is no longer sensible to

impose that the disparities found at a higher scale of the diffusion be exactly the same at a finer

scale. This is because the disparities measured at the coarser scale, are more approximate than

those obtained at finer scales. However, the disparities measured at high diffusion scopes never

differ too much from the actual disparities. Therefore, the dependence between two consecutive

diffusions should be modelled such that the disparity measures obtained after the i-th iteration,

for a diffusion scope ni, define an envelope inside which we expect to find the disparities after the

subsequent iteration i+ 1, for a diffusion scope ni+1 < ni. Furthermore, this envelope should be

related to the variability of the measure obtained at iteration i, which should gradually decrease

to zero as the scale diminishes.

In order to take this envelope into account within the diffusion operator at iteration i + 1,

lines 3 and 10 of algorithm 5.1 must be followed by the this next instruction:

DOUT[x, y, d]←

cmax if d ′ = D̃[x, y] and |d− d ′| > ∆(ni)

DOUT[x, y, d] otherwise
(5.14)

where cmax represents the worst superimposition cost possible for the DSV and ∆(ni) indicates

the tolerated variation of disparity from the disparity measures performed at iteration i. When
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Motorcycle Adirondack

Figure 5.18: Top row: Filtered disparity maps resulting from the chaining scheme represented in figure
5.17, using ξ = 0.2. Bottom row: Disparity maps resulting from the chaining of coarse-to-fine refinement
and iterative diffusions of increasing scopes.

employing a diffusion scope of n = 25 pixels across the Middlebury 2014 dataset, we found that

the average error rate for the worst 10% of bad measures after the filtering stage was 2.55 pixels

(quarter resolution), which confirms that the bias between the measured and actual disparities is

a matter of a few pixels. In our experiments, we chose to tolerate slightly more variation than

the aforementioned mean error and therefore, we opted for ∆(ni) = bni/5c.

Observations The top row of figure 5.18 shows the result of the coarse-to-fine refinement on

the Adirondack and Motorcycle test cases. The images are slightly sparser than those obtained

using the fine-to-coarse scheme, but it can be observed that the disparities related to the ground

region have been corrected for Motorcycle and that the disparity function across the armrests

and the pedestal of the chair has been considerably smoothed. The bottom row of figure 5.18

shows the output of the fine-to-coarse procedure starting directly from the constrained diffusion

of size n = 10, with the disparity maps presented in the top row as an initial constraint. A further

example is provided for the Recycle test case in figure 5.19 showing the intermediate disparity

maps after each step of the refinement. The benefits of the coarse-to-fine refinement are clearly

noticeable when comparing the disparity map ensuing from the chaining of both multi-scale

systems and that resulting from the fine-to-coarse expansion only.
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Coarse-to-fine refinement, followed by fine-to-coarse densification

To summarise, we have devised two complementary multi-scale pipelines. It is first necessary to

employ the coarse-to-fine refinement system displayed in figure 5.17 in order to regularise the

disparity maps and to prevent the occurrence of artefacts arising from the measurements at fine

scale. Then, the fine-to-coarse densification system shown in figure 5.15 has to be used to reduce

the sparsity of the disparity map while taking account of the image superimposition costs.

Quantitative evaluation We refer the reader to section A.3 of the appendix, which provides, in

terms of accuracy, an analysis of the evolution of the disparity maps through the different stages

of this multi-scale computation.
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Summary

The issue which makes the measurement of disparities across a pair of stereo images a challenging

task, is the abundance of homogeneous areas and occlusions. In this study, we proposed two

alternative methods which exploit the segmentations of the left and right stereo images, so as to

properly handle these two phenomena. Common to both alternatives is the constraint imposed

on the correlation supports, which prevents costs from different regions mixing with each other,

thus hindering the integration of the costs of occluded image areas with those of correctly super-

imposed image areas. Another important result of this work was the manipulation of occluding

contour disparities which caused incorrect regional disparities, or incorrectly propagated contour

disparities in both homogeneous and occluded areas when performing the cost diffusion.

The results produced by the two algorithms are distinct. The regional disparities are used to

generate regional disparity maps, which are complete disparity functions; smooth because they are

flat across each region, sharp at the segmentation boundaries, and perceptually appealing if the

geometrical assumptions concerning the scene (objects relatively fronto-parallel to the camera),

or the acquisition setup (low-baseline) are satisfied. Furthermore, they are comparatively easy

to compute. However regional disparities are not sufficiently meaningful when the objects in

the scene are very tilted with respect to the image plane. In that case, it is preferable to deduce

disparities on a point basis from the a diffused disparity space volume. We observed the effect

of the different parameters and the accompanying filtering operator on the resulting disparity

maps. By using one single diffusion, it is possible to obtain very accurate disparity measures,

despite some lack of information across homogeneous regions. Re-iterating diffusions helps with

reducing the sparsity of the disparity measures across homogeneous regions and with allocating

a disparity value to virtually all image points, except those lying in the occluded image areas. At

the end of this summary, we provide a comparative chart to facilitate weighing the features of

both methods.

The following chapters explain how disparity measures can be used to compute the equivalent

segmentations of stereo images and how they can be integrated within the estimation of the final

depth maps.
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SUMMARY

Regional disparities Regional aggregations

Correlation supports

Investigated cost
measures

Mean of absolute differences
(luminance or gradient-based).

Hamming distance between
Census-transformed images.

Stereo matching strategy Pixels belonging to the same region are
matched in one block and thus receive the
same disparity.

Each pixel is matched separately.

DSV Aggregation
supports

1. span only one disparity plane
(fronto-parallel assumption).
2. are the same for any voxel lying in the
same disparity plane and regional
intersection.

1. span several disparity planes.
2. may be different for each voxel of the
DSV.
3. are constrained by the regional
intersections and maximum diffusion
scopes.

Occlusions processing

Costs in occluded area do not aggregate with others due to correlation supports constrained by the boundaries
provided by the left and right segmentations.

Fattening of occluding
contour disparities

is handled in the gradient-based
computation by virtue of contour-based
occlusion reasoning.

occurs only in homogeneous areas and is
detected and removed during the filtering
stage.

Occlusion area detection deduced from the regional disparity maps,
at a coarse segmentation level.

performed via cross-checking.

Measure(s) assigned to
points lying in occluded
areas

Regional disparity of the region to which
the points belong.

None.

Homogeneous areas processing

Measure(s) assigned to
points lying in
homogeneous areas

Regional disparity of the region to which
the points belong.

None if cross-checking is not satisfied.
Ambiguities can be overcome using the
coarse-to-fine-to-coarse multi-scale diffusion
system.

Working conditions

Geometrical assumptions 1. Regions are (almost) fronto-parallel to
the camera.
2. A low baseline has been used to acquire
the stereo images.
3. Intra-region ordering constraint applies.

None.

Parameters Minimum overlap ratio required between
matched regions.

1. Diffusion maximal scope.
2. Warping regularisation term.
3. Filtering area and gradient information
terms.
4. Multi-scale envelope variation term.

Computational load

Memory load Small. Only a few 2D images have to be
kept in memory (suitable for HD
processing).

Significant. Full disparity space volume
required to be stored in memory.

Time load (Python 2.7
environment, 1x Core i5
at 2.7 GHz)

Relatively small: less than 60 sec. to process
a full HD stereo pair.

Depends on the diffusion scope. Around
300 sec. for a diffusion of n = 25 pixels on
an SD stereo pair.

End-results quality

Perception 1. Complete disparity maps.
2. Very sharp boundaries.
3. Consistent regional depth ordering.

1. Sparse disparity maps.
2. Only occluded areas are left without a
measure after multi-scale expansion.

Accuracy 1. Optimal in fronto-parallel scenarios.
2. Approximate for regions being slightly
tilted. May be refined using finer
segmentation.
3. Bad for highly tilted regions. Main
limitation: no information available about
the bias induced by regional disparities.

1. High precision for disparity maps
obtained using a single diffusion.
2. Still good precision after the multi-scale
expansion.
3. Very low RMS errors.
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Résumé du chapitre 6

Ce sixième chapitre est consacré à l’utilisation des mesures de disparité dans le cadre de la

génération de co-segmentations : étant donné la segmentation associée à la vue de référence, le

but du problème est de trouver la segmentation équivalente associée à l’autre vue de la paire

stéréo. Pour ce faire, chaque région issue de la partition de l’image de référence est associée à un

marqueur. Ce marqueur est ensuite décalé en fonction des mesures de disparité disponibles, de

telle sorte à être inclus dans la future région correspondante de l’image cible. Afin d’identifier

les régions de l’image de référence dont proviennent ces marqueurs, nous préservons leur label

durant le transfert. Enfin, un mécanisme supplémentaire garantit que les régions de l’image cible,

occultées dans l’image de référence, puissent être attribuées à de nouveaux marqueurs.

Nos expériences montrent que les disparités régionales, utilisées comme mesures de dispar-

ité, fournissent de très bons résultats, ces derniers pouvant servir à l’extraction de disparités

ponctuelles, le long des contours de régions. Dans le cas des cartes de disparités sporadiques,

les résultats sont globalement bons, mais peuvent être sujets à quelques artefacts, dont nous

expliquons les causes dans ce chapitre. Quelques pistes quant à leur résorption sont par ailleurs

suggérées.
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Chapter 6

Equivalent Stereo Partitions

Until now, the left and right segmentations of a pair of stereo images have been generated using

identical parameters, though independently of each other. Equivalent partitions, which could be

beneficial either to the filtering and multi-scale cost diffusion discussed in section 5.2, or to the

final estimation phase, are indispensable if regional correspondences are to be used to further

prevent the establishment of bad point correspondences.

This chapter introduces the co-segmentation of stereo images, which consists in producing

equivalent stereo partitions. In equivalent partitions, corresponding objects are segmented in

exactly the same way, and are allocated the same label. One type of co-segmentation is the

binary co-segmentation, used to extract the same object from a collection of images acquired

in different environments. Several methods exist, including that of [Joulin et al., 2010], who

classify the cells of an image over-segmentation into two categories; “object” or “background” by

use of a discriminative clustering technique. [Rubio et al., 2012] label the pixels of a collection

of images in such a way that each label represents a unique type of object. The labelling remains

consistent with respect to the regions to which a pixel belongs, depending on the segmentation

levels under consideration. This labelling also induces consistent region matches across the

image collection, so that the colour and internal SIFT descriptors of the matched regions concur.

This last method also analyses the topology of the segmentation graph to compare the region

nodes, as was also the case in [Gomila, 2001], where an approach to perform equivalent multi-

object segmentations across video sequences is proposed. With reference to stereo images,

[Bleyer et al., 2011] propose an algorithm capable of simultaneously estimating depth maps and

generating equivalent segmentations between stereo images, but it is computationally expensive

and requires generation of the full depth map to obtain equivalent segmentations. An approach

based on the watershed transformation was proposed earlier: it required no initial disparity

measure, and consisted of transferring the segmentation markers along with their labels from

one image of the stereo pair to the other [Beucher, 1990]. Our proposed method of generating

equivalent stereo partitions expands on this work, adapting it to conform to modern stereo

databases.
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6.1 Algorithms

Let Ll be the partition of the reference image Il, for which the disparity map is denoted by D. We

call Ll[x, y] and D[x, y] the regional label and disparity allocated to pixel p = (x, y), respectively.

Assuming that all pixels of D are assigned correct disparity measures, we can determine their

locations in the equivalent partition of the stereo pair L̃r.

Algorithm 6.1 Partition transfer and occlusion map generation

1: function TRANSFERPARTITION(Ll, D)
2: Initialise right image partition
3: L̃r ← Label map initialised to the size of Ll, all labels set to 0.
4: Initialise right image disparity map
5: D̃r ← Disparity map initialised to the size of D, all disparities set to 0.
6: Initialise occlusion mask for the left image
7: M← Binary mask initialised to the size of Ll, all pixels deactivated.
8: Browse all pixels
9: for all (x, y) belonging to the image domain do

10: d ′ ← D[x, y]
11: if x− d ′ < 0 then
12: M[x, y]← 1 . Border occlusion
13: else
14: d← D̃r[x− d

′, y]
15: if d ′ > d then
16: L̃r[x− d

′, y]← Ll[x, y] . Label transfer
17: D̃r[x− d

′, y]← d ′

18: if d > 0 then
19: M[x− d ′ + d, y]← 1 . Object occlusion
20: else
21: M[x, y]← 1 . Object occlusion
22: return L̃r and M

6.1.1 Partition transfer from a disparity map

Initially, we set all pixels in L̃r to zero, i.e. without an attributed region label. The disparity of p

is d = D[x, y], therefore we expect that p projects with label Ll[x, y] in L̃r[x − d, y]. However,

this is only possible if p is not occluded by another point in the right image of the stereo pair

Ir. In order to establish whether or not this is the case, it suffices to recall from equation 5.7

that p is occluded by another point if and only if there exists a pixel p ′ = (x ′, y) with x ′ > x and

projecting onto (x− d, y) in L̃r. In the affirmative, if d ′ = D[x ′, y], we have an equality between

x− d and x ′ − d ′, which implies that d ′ > d, i.e. that, in the rectified stereo configuration, p ′ is

closer to the camera than p. As a result, equation 6.1 summarises the transfer of the left image

134



6.1. ALGORITHMS

partition to the right image partition:

d ′[x, y] = max
d

{D[x+ d, y]× T̄(D[x+ d, y] − d)}

L̃r[x, y] = Ll[x+ d
′[x, y], y] (6.1)

where T̄ represents a binary indicator function, such that T̄[x] = 1 ⇔ x = 0, and d ′[x, y] is the

disparity of the point projected onto (x, y) in the right image of the stereo pair, Ir. In fact, both

the occlusion map and label transfer can be computed in a single pass, by dealing only once with

each pixel of the image plane, using algorithm 6.1.

We notice that the pixels of Ll which are occluded in the right view of the stereo pair cannot

propagate their labels to the transferred partition L̃r, which is a desirable property. However,

pixels in the right view which are occluded in the left view, will also receive no label at all. This

is problematic if a full region of the right image is occluded in the left image, since the watershed

transformation generated from the incomplete label map L̃r would merge these regions with

non-occluded regions. The purpose of the next algorithm is to prevent such errors. Finally, we

shall explain how disparity measures resulting from the methods presented in chapter 5 can be

employed in conjunction with the proposed transfer mechanism.

6.1.2 Handling occluded regions

The regions which appear only in the right view of the stereo pair, therefore excluding correspond-

ing regions, which appear in the right view and partly in the left view, are part of the independent

partition Lr computed for Ir. We explained that when transferring the labels of Ll to L̃r using

disparity map D, such regions could not receive a label or, in other words, could not be marked.

Let LE be the initial label map used to generate the watershed segmentation of Ir, equivalent

to segmentation Ll. We expect LE to be of the form:

LE = “Markers from the left view” + “Markers for occluded right view objects”

The markers from the left view correspond directly to L̃r and are already allocated the desired

labels. Concerning the second term of this addition, a cell of partition Lr allocated an arbitrary

label `, denotes a right view object being totally occluded in the left view, if for all (x, y) |Lr[x, y] =

`, the relation L̃r[x, y] = 0 holds. Such cells may therefore be extracted as the residue of the cell-

reconstruction [Beucher, 2013a] of Lr by the partition L̃r. After their extraction, it is necessary

to allocate them new labels, distinct from those included in L̃r. The label map resulting from this

process then only needs to be appended to L̃r to form the initial image of markers LE driving the

equivalent watershed segmentation of the right image Ir. Figure 6.1 summarises the partition
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Illustration of the partition transfer from the left to the right view of the stereo pair, and
occlusion handling. (a) and (b) represent the initial left and right partitions of the stereo pair, Ll and
Lr respectively. (c) Ll is transferred to the right view according to a disparity map D to form L̃r. Some
pixels of L̃r are not allocated any label. These are displayed in white. Objects in the left view occluded in
the right view immediately disappear from L̃r. (d) There are regions of Lr where no pixel has a label.
(e) These regions are allocated new labels, distinct from those contained in L̃r to form LO. (f) The
watershed transformation of the right image gradient driven by the initial markers LE = max(L̃r,LO)

yields an equivalent segmentation of Ll for the right view.

transfer from the left to the right view of the stereo pair, and the handling of occluded regions.

6.1.3 Using available disparity measures

So far, we have defined the main principles of our co-segmentation algorithm: transferring

available regions from one view to the other and treating occlusion issues with care. However,

with respect to our method of computing disparity maps, it is essential to produce such co-

segmentations without the need to resort to a complete or accurate disparity map. As mentioned

in the introduction, the original co-segmentation method devised by [Beucher, 1990] does not

require any disparity information at all. The markers responsible for generating the segmentation

of the reference image originate from the gradient’s minima. They are then superimposed on

the gradient of the second image. Afterwards, a gradient descent is used to make these markers

trickle down the slopes of the second image gradient, until they each reach a local minimum.

This last point is essential in order to avoid segmentation artefacts brought about by badly placed
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Topographical surface �

C.B. jCatchment Basin i

ℒ = i ℒ = j
marker i marker j

Topographical surface �

C.B. jCatchment Basin i

ℒ = i ℒ = j
marker i marker j

(a) (b)

Figure 6.2: Badly placed markers can be the source of segmentation errors. There are two possible
scenarios: The competing markers lie (a) at the same altitude or (b) at different altitudes with respect
to the topographical surface S. But in both cases, the markers are outside the catchment basins they
intended to segment. Since their altitude is higher than the crest representing the watershed which
separates catchment basins i and j, the watershed line induced by the two markers does not necessarily
belong to the watershed generated from the minima of S. This watershed line is obtained by their SKIZ
within the mask described by {(x, y) | S[x, y] < h} for the altitude being considered, h.

markers, as demonstrated by figure 6.2.

This method has been employed on stereo images with a small baseline, and mainly composed

of wide regions. As a result, each marker involved in the segmentation of the left view, could

be transferred to the right view without altering its position, since it would already be placed

over its target catchment basin. The reason we need prior disparity data is precisely because

the aforementioned assumptions no longer hold true. Nonetheless, it is worth remembering, as

explained in this study, that it is not necessary to employ markers which each cover the full region

they are required to describe, and that, in order to avoid false segmentation lines, the transferred

labels should always be projected onto the minima of the topographical surface controlling the

watershed segmentation of the right view.

From regional disparities to co-segmentation

Let us explain how to derive co-segmentations from the regional disparities presented in section

5.1. We recall that regional disparities are approximate. Therefore, if we transfer the partition of

the left view according to its regional disparity map, some pixels in L̃r are likely to be allocated

wrong labels, especially if they originate from cell borders. In order to reduce the risk of bad

labellings, the transfer can be limited to the pixels lying at a sufficient distance from the cell

borders. To proceed, one can use the adaptive erosion introduced in section 4.2.1 and apply it

to each cell of the transferred partition. The co-segmentation procedure based on the regional

disparities is implemented by the following execution steps:
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1. Given the regional disparity map D(R) associated with the left view, compute partition L̃r,

transferred from partition Ll, using algorithm 6.1.

2. Perform an adaptive erosion of fixed scale α ∈ [0; 1[, on each cell of the transferred partition

L̃r, so as to produce partition L̃αr . Given thatM(I, α) is the result of the adaptive erosion of

scale α on a binary image I, L̃αr may be expressed by equation 6.2, for all labels ` contained

in Ll.

L̃αr = max
`

{
`×M(T̄(L̃r − `), α)

}
(6.2)

3. Deduce label image LαE from partition L̃αr and the adaptively eroded partition Lαr of the

right view of the stereo pair, so that regions in the right view which are occluded in the left

view have a unique marker.

4. Given the gradient of the right view Sr, update LαE , such that LαE [x, y] = 0 if (x, y) is not a

minimum of Sr.

5. Compute the watershed transformation of Sr using LαE as the initial image of markers, in

order to compute the equivalent partition of Ll for the right view of the stereo pair, where

corresponding regions share the same label.

In the experiments performed on low-baseline stereo images and on the Middlebury 2002

benchmark, we found that the erosion scale of α = 0.25 produced very good results, some of

which are displayed in figure 6.3. It is advisable not to use excessively strong erosions, otherwise

the markers may no longer be sufficiently pertinent to describe the region they are intended

to segment. Furthermore, the partition of the right image is expected to have the same or a

higher degree of coarseness, compared to the left image partition. Indeed, at a finer degree

of segmentation, more cells of the right partition are likely to be unmarked by the transferred

partition, although these cells do not necessarily correspond to occluded areas in the left view,

which is not desirable.

From sparse disparity measures to co-segmentation

Sparse disparity maps computed using the diffusion method introduced in section 5.2, can also

be used to generate co-segmentations of stereo images. As usual, the first step of the process

consists in transferring labels from the left to the right view of the stereo pair. Algorithm 6.1 can

be used to this end, but it is worth mentioning that the process can be greatly simplified. Indeed,

by construction, all our sparse disparity measures satisfy the cross-checking criterion. Therefore,

any of our sparse disparity maps, say D(S), induces a bijection between the correspondences of

the left and right views of the stereo pair, ensuring that no overlap will occur while transferring

the labels. Unfortunately, this also means that the occlusion mask cannot be generated from the

sparse disparity data.

Note that, when using algorithm 6.1, it will be necessary to alter the transfer domain at line
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Teddy

(a) (c) (e)

(b) (d) (f)

Cones

(a) (c) (e)

(b) (d) (f)

Figure 6.3: Generation of image co-segmentations from regional disparities. (a) Left view of the stereo
pair. (b) Right view of the stereo pair. (c) The partition of the left view Ll. (d) Co-segmentation of the
right view. (e) The partition L̃αr obtained by transferring the labels of Ll according to regional disparity
map D(R), and by applying an adaptive erosion to the cells of the transferred partition. The black lines
represent the frontiers of the initial right image partition Lr. (f) Regions in Lr not marked by L̃αr receive
new labels.
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9, so that (x, y) belongs to the set of points associated with a measure in the provided sparse

disparity map, D = D(S). The rest of the procedure strictly follows the instruction set given for

the co-segmentation controlled by regional disparities. Finally, since the sparse measures have

a high accuracy, the strength of the adaptive erosion may be reduced: we chose α = 0.05 in

place of 0.25. Figure 6.4 shows some of the co-segmentations obtained on the Middlebury 2014

dataset. In this experiment, the over-segmentation that was used to generate the sparse disparity

maps of the left view, has been re-employed to produce the co-segmentation of the right view.

Known issues and possible ameliorations While the co-segmentations still look consistent,

there are some issues related either to the usage of sparse measures or to the complexity of the

scene. The first thing to remark is that the co-segmentation will be highly dependent on the

efficiency of the pruning of bad measures, as discussed in section 5.2.2. Indeed, one error suffices

to transfer a pixel with its label to the wrong catchment basin of the second image gradient.

Although this error may concern just one pixel, the effect on the final segmentation is far more

significant. This problem may be observed in the Adirondack example, where the slat of an

armchair has merged with some parts of the background. It is not an issue affecting regional

disparities, because of their strong and inherent regional consistency. The second thing to remark

is about the complexity of the segmented scenes, for which the ordering constraint does not apply,

as is the case for the background visible between the mug and its handle in Adirondack. We see

that this internal region is shifted correctly to the right image of the stereo pair, therefore we

know the part of the background in the right image which corresponds to the area enclosed by

the contours of the mug. But this region does not seem meaningful at all with respect to the right

image of the stereo pair. As part of a future work, it would be useful to improve two aspects of

these co-segmentations:

1. In the generated co-segmentation, suppress segmentation borders along which the gradient

of the disparity function never exceeds a specific intensity. Note that this would necessitate

filling the holes of the disparity map: a strategy to fulfil this goal will be discussed in the

succeeding chapter.

2. Take advantage of the regional merging induced by this border deletion to relabel the

regions of the left view, so that both left and right segmentations are synchronised. As

a result, a region such as that surrounded by the mug would inherit the label of the

background object to which it belongs.

6.2 Applications

Given the perfect co-segmentations of two stereo images, we can prevent matches across the stereo

pair of points belonging to different regions. For example, when using the diffusion algorithm
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Playroom

(a) (c) (e)

(b) (d) (f)

Adirondack

(a) (c) (e)

(b) (d) (f)

Figure 6.4: Generation of image co-segmentations from sparse disparities. (a) Left view of the stereo
pair. (b) Right view of the stereo pair. (c) The partition of the left view Ll. (d) Co-segmentation of the
right view. (e) The partition L̃αr obtained by transferring the labels of Ll according to regional disparity
map D(S), and by applying an adaptive erosion to the cells of the transferred partition. (f) Regions in Lr

not marked by L̃αr receive new labels.
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presented in section 5.2, the disparity space volumeD, provided as input of the algorithm, should

be updated in order to verify thatD[x, y, d] equals the maximum superimposition cost cmax when

points (x, y) in the left view Il and (x− d, y) in the right view Ir are allocated different labels in

their respective equivalent segmentations. Beyond the simple alteration of the DSV, equivalent

partitions have further useful applications in image interpolation and stereo matching, two of

which are briefly summarised in this section.

Interpolation of partitions

The interpolation of two equivalent partitions is an extension of the morphological median of

two binary images [Beucher, 1998]. Let L0 and L1 be two complete and equivalent partitions.

We denote by M0,1, the binary image highlighting the points allocated the same label in both

partitions, i.e. M0,1[x, y] = 1 ⇔ L0[x, y] = L1[x, y]. The median partition of L0 and L1 is

defined as L(0+1)/2 and is expressed as L1/2 = W.T.(S,L0 ×M0,1), where W.T. represents the

watershed transformation operator, and S the topographical surface controlling the flooding,

such that S[x, y] = 0 for all pixels of the image domain. From this median partition, it is possible

to generate new intermediate partitions L1/4 from L0 and L1/2, and L3/4 from L1/2 and L1. By

iteration, we can ultimately construct a sequence of intermediate partitions between L0 and L1

of the form L1/2n , . . . ,Lk/2n ,L(k+1)/2n , . . . ,L(2n−1)/2n , for any n ∈ N. When each cell is mapped

to grey level in function of its label, this sequence of partitions will transform into a sequence

of mosaic images estimating the intermediate frames, and thereby the motion which occurred

between the two keyframes partitioned as L0 and L1. This type of mechanism has very attractive

features in the context of video compression. In order to be successful, it is necessary that a

co-segmentation of the keyframes be used and that an overlap persist with each pair of equivalent

cells when L0 and L1 are superimposed.

Contour point matching

Co-segmentations may be employed to facilitate the establishment of correspondences between

points lying on the contours of the equivalent stereo segmentations. This aspect is interesting

when the co-segmentations originate from regional disparity maps, since they do not contain

accurate measures. The purpose of contour point matching in this case study therefore is to

obtain accurate measures along the contours of the coarse regions.

We assume first, that the images are rectified, so that the corresponding points have the same

ordinates in both images, and second, that the ordering constraint applies. For a particular

ordinate y, we extract the contour points from both the left and right partitions of the stereo

pair, and recover their respective sequences of abscissa: Sl = {x1, . . . , xM} and Sr = {x ′1, . . . , x
′
N}.

Both sequences are strictly increasing, i.e. xi < xj and x ′i < x
′
j for i < j. Given the left and right

equivalent partitions of the stereo pair, say Ll and Lr, we define the cost of matching the i-th
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(a) (b)

Figure 6.5: Visualisation of the contour disparities obtained for Teddy at resolution 1800× 1600 pixels
using the dynamic time warping procedure. The co-segmentations used to perform this computation
are driven by the regional disparity map of the coarse partition, as shown in figure 6.3. The maximum
variability with respect to the regional disparity assigned to each point was set to τ = 20 pixels. The jet
colormap is used to display disparities in the range of (a) [41; 197] pixels and (b) [115; 140] pixels.

point in Sl with the j-th point in Sr as c(xi, x ′j). We impose that c(xi, x ′j) = 0 when the following

conditions are satisfied:

1. the labels surrounding the two points on the same scanline are identical, i.e. if Ll[xi−1, y] =

Lr[x
′
j − 1, y] and Ll[xi + 1, y] = Lr[x

′
j + 1, y].

2. the disparity induced by the matching of the two points, i.e. xi− x ′j must satisfy |(xi− x
′
j)−

D(R)[xi, y]| 6 τ, τ being the maximum variability in disparity allowed with respect to the

regional disparity allocated to the point in the left view.

Otherwise, we deduce that the two points cannot be matched, in which case c(xi, x ′j) = +∞.

In order to enforce the ordering constraint, the definitive matches result from the backtracing

of a dynamic time warping (cf. section 2.1.4) of the two sequences Sl and Sr. In particular, if

A : {0, . . . ,M}× {0, . . . ,N}→ R represents the accumulator array of the warping costs, the latter

is initialised such that A[0, 0] = 0 and A[i, j] = +∞ if i > 0 or j > 0. The accumulator array is

then recursively updated using the recurrence relationship as follows:

A[i, 0] = A[i− 1, 0] + ξ, ∀ i > 1

A[i, j] = min


A[i− 1, j− 1] + c(xi, x

′
j)

A[i− 1, j] + ξ

A[i, j− 1] + ξ

, ∀ i, j > 1

with ξ > 0, so that the warping path is encouraged to pass by the pair of points having a null

matching cost. Though simple, this procedure results in the contour disparities displayed in

figure 6.5 for the Teddy example. Current limitations incurred by the chosen matching cost are
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Left view partition Right view partition Left view partition Right view partition

(a) (b)

Figure 6.6: Comparing the labels surrounding contour points makes sense as long as (a) no region is
totally occluded in one view of the stereo pair. (b) Occluded regions change the labelling configuration of
the contour points and prevent them from being matched by the proposed algorithm.

the inability to distinguish points lying along horizontal contours, and the absence of a strategy

to deal with totally occluded regions, which could change the label coding of some points across

the stereo pair, as illustrated in figure 6.6.

Summary

In this chapter, an asymmetric approach to the computation of equivalent stereo partitions

has been proposed: given the partition for the left view of the stereo pair, one computes the

equivalent partition for the right view. To proceed, it is necessary to separately mark the areas

of the right view being occluded in the left view, and to transform the cells of the left partition

into markers for the segmentation of the right view. The cells of the left partition are transferred

to the right view taking account of disparity information. We investigated the use of regional

disparities and sparse disparity maps to serve that purpose and identified the possible pitfalls.

What transpired from the experiments was that the regional disparities typically lead to high

quality co-segmentations, provided the geometric assumptions, which require satisfaction for

the computation of regional disparities, remain satisfied. Additionally, we showed that such

co-segmentations provide useful clues to the computation of accurate contour based disparities.

This function will be reused in one of our case studies of disparity map estimation. As far as the

sparse measurements are concerned, the resulting co-segmentations are globally pertinent, but

may comprise some undesirable artefacts. These are mainly due to rare disparity errors being

unavoidable in sparse measurements, and to the non-respect of the ordering constraint, for which

we suggested a solution.

We are now ready to introduce the final chapter, which concentrates on the most important

application of disparity measures: the estimation of the final disparity maps.
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Résumé du chapitre 7

Dans ce dernier chapitre, nous abordons les méthodes d’estimation servant à la finalisation

des cartes de disparités. Le choix de la méthode dépend de la nature des mesures de disparités

considérées.

Par exemple, les mesures de disparité obtenues par diffusions multi-échelles peuvent être

considérées comme très fiables. L’estimation de la carte de disparités complète consiste donc à

remplir les trous de la carte de disparités sporadique avec des valeurs de disparités plausibles.

Dans ce contexte, nous aurons recours à l’interpolation de fonctions basées sur les fonctions

distance introduites au chapitre 3. Prenons maintenant les cartes de disparités régionales

mesurées à une échelle grossière ainsi qu’à une échelle fine de la segmentation de l’image de

référence. Dans ce cas de figure, l’objectif de la méthode d’estimation consiste à corriger les

mesures de disparités régionales qui sont erronées vis-à-vis de la partition fine.

Les méthodes d’estimation présentées dans ce chapitre partagent néanmoins des objectifs

identiques. La carte de disparités finale doit, au travers de chaque région grossière, évoluer sans

discontinuité. Par ailleurs, les mesures fiables doivent être préservées tandis que les mesures

erronées doivent être détectées de telle sorte à ne pas perturber le mécanisme d’estimation qui se

chargera par la suite de les corriger.

Le chapitre 7 présente les résultats obtenus pour chaque méthode testée. La dernière méthode

exposée est appliquée sur l’ensemble de la base de Middlebury 2014, et fait l’objet d’une évaluation

plus approfondie dont le lecteur trouvera le détail dans l’annexe.
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Chapter 7

Estimation for Depth Map Computation

The estimation phase is an essential aspect of depth map computation. It takes place after the

measurement of disparities. In the case of sparse disparities, it comprises filling the holes of the

disparity map meaningfully, while in the case of regional disparities, it consists of using available

disparity measures to infer more accurate disparity maps.

The chapter is arranged as four independent sections, each presenting an estimation technique

with an application relevant to the computation of disparity maps. The first two sections

specifically target regional disparity maps: in section 7.1, we will study a linear estimator arising

from the field of geostatistics, called “kriging”. Used in conjunction with a segmentation of

the reference image, a linear variability model and both contour and internal disparity points,

kriging can produce very appealing disparity maps. In order to extract internal disparity points

reliably, we resort to a regularised version of the regional disparity map calculated at a fine

level of segmentation. The regularisation scheme, based on maximum a posteriori estimation

is presented in section 7.2. The last two sections concern the filling of sparse disparity maps.

We start in section 7.3, with a very simple filling technique based on regional statistics. This

will essentially serve to improve the fattening effect removal and therefore, the quality of the

multi-scale diffusion. Finally, section 7.4 focuses on the use of distance functions to accomplish

the final disparity map interpolation.

7.1 Kriging with linear variograms

Let S be a topographical surface, such that S[x, y] denotes the altitude of the relief with respect

to the zero-level coordinate (x, y). The problem is the following: given a set of sample data

{(x1, y1), . . . , (xn, yn)} for which the altitudes Si = S[xi, yi] are known for i = 1, . . . , n, estimate

the altitudes of the other points of the relief.

Linear estimation The purpose of a linear estimator is to express the altitudes of the estimated

topographical surface, as a linear combination of the altitudes provided for the sample points.
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Let S◦ be the estimated topographical surface, then:

S◦[x0, y0] =

n∑
i=1

λi[x0, y0]S[xi, yi]

In order to simplify the notation of the above formula, we can write it more compactly as

S◦0 =
∑n
i=1 λiSi, so that the weights λ1, . . . , λn control only the linear combination allocated

to the estimation of (x0, y0). In order to perform this estimation using a kriging operator and

to understand what it does, it is useful to view S as the realisation of a random process F. The

kriging operator seeks a linear estimator F◦ in the same way as that above, as F◦0 =
∑n
i=1 λiFi.

It is defined such that the following properties hold:

1. The estimator is unbiased. That is: E [F◦0 −F0] = 0

2. The variance of the estimation error, Var (
∑n
i=1 λiFi −F0), is minimised.

The problem of kriging therefore comprises finding the weights λ1, . . . , λn which satisfy these

two properties.

Kriging: a solution Let us provide a solution for the case where, for any point of the relief

denoted by index k, E[Fk] = E[F◦k] = m, where m represents a constant real number. This

particular case is often referred to as ordinary kriging. We wish to minimise the variance of the

estimation error, under the non-bias constraint. The constraint states that:

E[F◦0 −F0] =

n∑
i=1

(λiE[Fi]) − E[F0]

= m

(
n∑
i=1

λi − 1

)
= 0

Therefore, we deduce that:
∑n
i=1 λi = 1. The objective function to minimise is then expressed

as:

Φ(λ1, . . . , λn, µ) = Var(F◦0 −F0) + 2µ

(
n∑
i=1

λi − 1

)

The intuition behind this objective function is that, if the constraint is verified, i.e. if
∑n
i=1 λi−1 =

0, then it is indeed the variance of the estimation error which is minimised. In calculus, µ

corresponds to a Lagrange multiplier. We now need to find the parameters minimising Φ, which

can be achieved by solving the following system of equations:

∂

∂λi
Φ = 0 for all i ∈ 1, . . . , n

∂

∂µ
Φ = 0
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To proceed, it is necessary to recall some relations of variance algebra:

Var

(
n∑
i=1

λiFi

)
= E

( n∑
i=1

λiFi

)2−

(
E

[
n∑
i=1

λiFi

])2

The square of a sum may be simplified as follows:

(
n∑
i=1

ai

)2
= a21 + 2a1

n∑
i=2

ai +

(
n∑
i=2

ai

)2

= a21 + 2a1

n∑
i=2

ai + . . .+ a
2
n−1 + 2an−1an + a2n

=

n∑
i=1

a2i + 2

n−1∑
j=1

n∑
i=j+1

aiaj

=

n∑
i=1

n∑
j=1

aiaj

Therefore,

Var

(
n∑
i=1

λiFi

)
= E

 n∑
i=1

n∑
j=1

λiλjFiFj

−

(
n∑
i=1

λiE [Fi]

)2

=

n∑
i=1

n∑
j=1

λiλjE
[
FiFj

]
−

n∑
i=1

n∑
j=1

λiλjE [Fi]E
[
Fj
]

=

n∑
i=1

n∑
j=1

λiλjCov
(
Fi,Fj

)
Given that the variance of a linear combination of two random variables X and Y may be derived

from the above equation as Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X, Y), we deduce

that:

Var

(
n∑
i=1

λiFi −F0

)
= Var (F0) + Var

(
n∑
i=1

λiFi

)
− 2Cov

(
n∑
i=1

λiFi,F0

)

= Var (F0) +
n∑
i=1

n∑
j=1

λiλjCov
(
Fi,Fj

)
− 2

n∑
i=1

λiCov (Fi,F0)

We can now find the parameters minimising the objective function Φ, by solving the following

system of linear equations:

∂

∂λi
Φ = 0 = 2

n∑
j=1

λjCov
(
Fi,Fj

)
− 2Cov (Fi,F0) + 2µ

∂

∂µ
Φ = 0 =

n∑
i=1

λi − 1
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In matrix form, this system of equation may be expressed as equation 7.1:



Cov(F1,F1) · · · Cov(F1,Fn) 1

...
. . .

...
...

Cov(Fn,F1) · · · Cov(Fn,Fn) 1

1 · · · 1 0





λ1

...

λn

µ


=



Cov(F0,F1)
...

Cov(F0,Fn)

1


(7.1)

Or more compactly, as  C 1

1ᵀ 0


 λ
µ

 =

 c0
1


The solution of this system can be computed simultaneously for different points for which we seek

an estimate: it suffices to replace the equation of the form Ax = b by AX = B, such that each

column of A and B reflects, for a particular target, the sought coefficients and the covariances

between data and target respectively. X can then be found by Gaussian elimination. A more

efficient method of computing the altitudes of S◦ directly is provided by the dual kriging.

Dual kriging The estimation of the altitude taken at point (x0, y0) may be expressed as an

inner product of the form

S◦0 =

[
S1 · · · Sn 0

] λ
µ


which can be developed via equation 7.1 as:

S◦0 =

[
S1 · · · Sn 0

] C 1

1ᵀ 0


−1  c0

1

 = kᵀ

 c0
1


The vector k depends solely on the kriging configuration; that is the sample points and the

covariance between these sample points. This means it can be re-utilised to perform the estimation

at any other point of the relief. Now, in order to use the kriging operator properly, it is necessary

to determine the model of the random process F.

Intrinsic random processes A random process F is said to be intrinsic, when its variations are

stationary of order 2, and of null expectation. Mathematically, an intrinsic random process is

characterised by the following properties:

E [F[pi + h] −F[pi]] = 0 (7.2)

Var (F[pi + h] −F[pi]) = E
[
(F[pi + h] −F[pi])

2
]

= 2 · Υ(‖h‖) (7.3)
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Equation 7.2 indicates that we should expect no particular tendency of variation in altitude

when shifting the points of the relief in a particular direction h, while equation 7.3 imposes

the condition that the variance of the differences in altitude at any two points be stationary,

i.e. invariant to translation. Υ denotes the variogram, which models the variability of altitudes,

taken at two points, in function of their distance ‖h‖. When using intrinsic processes, we can

replace the covariance terms in equation 7.1 with the additive inverse of the values taken by

the variogram Υ in function of the spatial distance between the points we are considering. We

refer the reader to [Linchtenstern, 2013] for a proof of this assertion. When the covariance of

F is also stationary, the relationship between the variogram and the covariance is given by the

following relation:

Υ(‖h‖) =
1

2
· Var(Fi −Fj)

=
1

2

(
Var(Fi) + Var(Fj) − 2Cov(Fi,Fj)

)
=

1

2

(
Cov(‖pi − pi‖) + Cov(‖pj − pj‖) − 2Cov(‖pi − pj‖)

)
= Cov(0) − Cov(‖h‖)

h denoting the distance between points pi and pj. A comprehensive survey of variogram models

is provided in [Delhomme, 1976]. In geostatistics, the parameters of the chosen model are

determined experimentally, in order to be in accordance with the type of the topographical

surface or phenomenon being studied. When processing images of unknown nature, it is usually

more difficult to characterise precisely the process that should result from the interpolator, and

thus the variability model needs to be sufficiently general for the kriging to perform well in most

scenarios. It is then often desirable to leave the variogram unbounded so that a higher distance

between two coordinates of a relief results in a lower correlation of the values (altitude, grey

level, disparity, etc.) to which they are attributed. Kriging has already been used in the context of

image and video sequence coding [Decenciere et al., 1998], where the variogram followed the

thin-plate elastic model. In this work, we shall use the linear variogram for our interpolation

requirements.

7.1.1 Application: disparity maps from feature points

A linear variogram is expressed according to the distance between two coordinates of a random

function as:

Υ(pi,pj) ∝ ‖pi − pj‖ (7.4)

In this application, we propose to utilise the ordinary kriging operator with a linear variogram so

as to interpolate disparity maps from sample points, given an associated regional disparity map.
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Sample points originate both from the disparities available along the contours of the reference

image partition, obtained using the method presented in section 6.2, and from feature points

lying in the interior of the partition cells.

Characterisation of internal feature points Candidate internal points are extracted from both

images of the stereo pair, using the white and the black top-hat transformations (cf. equation 3.7),

which respectively recover the peaks and the cavities of the topographical surface representing

the grey-level function attributed to each of the stereo images. These points are matched across

the stereo pair using a patch-based correlation and only if cross-checking is satisfied. Only the

candidate points being matched with a disparity equal to that of the regional disparity may be

part of the kriging sample points. We can regard each of these samples as an anchor of the

regional disparity allotted to the related region.

Sample point selection Let Ll be the partition of the reference image. S denotes the set of

sample points {p1, . . . ,pn}, such that each pixel pi ∈ S is associated with a disparity measure

D[pi]. We now seek the estimated disparity D◦[p0] of point p0 using the kriging operator

controlled by linear variogram. Employing a linear variogram and all the sample points in S

means that there would always be a dependency between D◦[p0] and D[pi] for any i ∈ {1, . . . , n}.

This is of course not realistic in the context of disparity map estimation. Therefore, the set

of points we need to consider in order to compute D◦[p0] must be a subset of S, say S0 ⊆ S.

Furthermore, the neighbourhood of p0 inside which we expect some correlation between the

disparity values taken in D, extends to the frontiers of the region to which p0 belongs. Hence,

S0 ⊆ {pi ∈ S | Ll[p0] = Ll[pi]}. This is equivalent to stating that the regional boundaries

represent geological faults in the topographical surface associated with the disparity function D.

Finally, it should be noted that the contour points considerably outnumber the internal points and

that choosing two sample points in close proximity, such as those available along the contours,

could lead to numerical instabilities when solving the kriging system of equation 7.1. It is

therefore important to ensure that the sample points included in S0 are spatially well distributed.

If all these constraints are taken into consideration, the kriging can produce piece-wise smooth

disparity maps such as that displayed in figure 7.1.

7.2 Maximum a posteriori estimation for Markov Random Fields

If we wish to extract more internal points to feed the kriging system described in the previous

section, it may be helpful to substitute the coarse regional disparity map for one obtained at a

finer degree of segmentation. In section 5.1, we saw that the regional disparities obtained at a

fine scale of segmentation were globally accurate, but that some regions were allocated wholly

invalid measures. The purpose of this section is to introduce an estimation mechanism which will

view the regional disparities obtained both at the coarse and at the fine level of a segmentation,
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(a) (b)

Figure 7.1: Kriging with linear variogram on the Teddy test case. (a) Representation of the sample
points providing the disparity data. (b) Output of the kriging applied separately to each cell of the coarse
partition accompanying Teddy.

as observations. These observations will in turn be analysed to deduce a regional disparity map,

where each set of fine regions contained in the same coarse region, constitutes a Markov field.

Markov random fields A Markov Random Field, or MRF, is a particular kind of undirected

graph G = (V, E), composed of a set of nodes V and edges E, for which there exists a trans-

formation F mapping each node v ∈ V to a random variable F(v). The edges of G model the

dependencies between these random variables as follows:

• F(vi) is independent of F(vj) if there is no path in G from vi to vj

• Given the set of random variables associated with the points lying in the direct neighbour-

hood of vi ∈ V, i.e. {F(vk) | (vk, vj) ∈ E}, F(vi) is independent of F(vj) if (vi, vj) /∈ E.

Assuming that G is fully connected, the MRF is characterised as pairwise when the joint distribu-

tion of the random variables associated with all the nodes v1, . . . , vn ∈ V, factorise as:

Pr {F(v1), . . . ,F(vn)} =
1

Z

∏
(i,j) | (vi,vj)∈E

φi,j(F(vi),F(vj)) (7.5)

which is also known as a Gibbs distribution with pairwise potential terms. Z is the constant

so that Pr {F(v1), . . . ,F(vn)} denotes a valid probability distribution, and φi,j represents the

pairwise potential related to the joint probability of random variables F(vi) and F(vj).

Pairwise MRFs in MAP inference Let S1, . . . , Sn be the realisation of the random variables

F(v1), . . . ,F(vn) characterising the MRF described by graph G. At each node vi ∈ V, we are

provided with an observation O(vi) of the state Si taken by F(vi). We define the likelihood

that we observe event O(vi) when F(vi) = Si as: Pr{O(vi) | F(vi) = Si}. The maximum a

posteriori inference comprises finding the realisation S1, . . . , Sn of F which maximises the
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posterior probability function Pr{F(v1), . . . ,F(vn) | O(v1), . . . ,O(vn)}. Using Bayes’ rule and

taking the negative logarithm of this objective function, [Prince, 2012] shows that this amounts

to solving equation 7.6:

S1, . . . , Sn = arg min
S1,...,Sn

 ∑
i | vi∈V

Ui(Si) +
∑

(i,j) | (vi,vj)∈E

Pi,j(Si, Sj)

 (7.6)

where the unary and pairwise terms, being identical to those in equation 2.8, are defined as:

Ui(Si) = − log (Pr {O(vi) | F(vi) = Si})

Pi,j(Si, Sj) = − log
(
φi,j(F(vi) = Si,F(vj) = Sj)

)
In order to solve equation 7.6, we have implemented and employed the method proposed

in [Prince, 2012] consisting of labelling the nodes of graph G by means of a max-flow/min-cut

algorithm [Kleinberg and Tardos, 2006]. The method is valid for pairwise MRFs containing

discrete random variables with a finite number of states, and pairwise terms satisfying the

submodularity condition. We refer the reader to [Prince, 2012] pp. 293–296 for additional

details.

7.2.1 Application: regional disparity maps refinement

In section 5.1, we presented a method of computing regional disparities based on the brightness

of the stereo images. Figure 5.4(b) revealed that the regional disparities obtained at a fine scale

of segmentation are generally fairly accurate, but can be subject to serious errors, especially

when the regions concerned are occluded. In order to determine whether or not a fine region is

occluded, we proposed to employ algorithm 6.1 to compute an occlusion mask from the more

approximate regional disparities obtained at the coarse level of segmentation. It is now time to

investigate how this information may be exploited to refine the regional disparity maps obtained

at the fine level of segmentation. We are provided with the following data:

• L
(C)
l and L

(F)
l , denote the coarse and fine partitions of the reference image respectively.

• R1, . . . ,Rn, represent the n regions of partition L
(F)
l .

• RC1 , . . . ,RCm, represent the m 6 n regions of partition L
(C)
l .

• A transformation H mapping each region Ri of the fine partition, to the region H↑(Ri) of

the coarse partition inside which Ri is enclosed.

• The measured regional disparity for any region Ri, denoted as d(Ri).

• The measured regional disparity for any region RCi , denoted as d(RCi ).

For each region Ri, we seek the refined regional disparity, expressed as d◦(Ri).
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MRF characterisation For each region RCk of the coarse partition L
(C)
l , there is a set Sk of

regions belonging to the fine partition, such that Sk = {Ri | ∀ i ∈ {1, . . . , n}, H↑(Ri) = R
C
k }. We

assume that, across each coarse region, the refined regional disparity function is the realisation

of a Markov Random Field. For a given region RCk , the MRF is defined such that each node of

the graph corresponds to a region belonging to Sk and such that its edges model the adjacency

relations between the regions of Sk. The definition of the pairwise potentials is what controls the

random field. We expect the refined disparities taken by two adjacent nodes of the MRF to be

rather close. For that reason, we express the pairwise term of the MRF as:

Pi,j(d
◦(Ri), d

◦(Rj)) ∝
(
d◦(Ri) − d

◦(Rj)
)2 (7.7)

This pairwise term therefore models the smoothness of the refined disparity function.

Likelihood characterisation Now the regional disparities measured for RCk and for all the

regions of the fine partition included in Sk should be interpreted as observations of the realisation

of the MRF described above. Therefore, for a given node of the MRF, the observation consists

of the regional disparity allotted to the fine region to which the node corresponds, say Ri, as

well as the regional disparity of region RCk . Furthermore, we accompany this observation with a

binary indicator variable αi, such that αi = 1 if and only if Ri is not occluded according to the

occlusion mask computed from the coarse regional disparity map. A disagreement between the

measured disparity d(Ri) and the actual disparity d◦(Ri) is possible if αi = 0. This will need to

be reflected in the definition of the likelihood. Nonetheless, it is expected that d◦(Ri) remains at

a reasonable distance from d(RCk ). Therefore, we determine the unary term of equation 7.6 as:

Ui(d
◦(Ri)) = αi |d

◦(Ri) − d(Ri)|+ (1− αi)
∣∣d◦(Ri) − d(H↑(Ri))∣∣ (7.8)

In other words, when region Ri is occluded, d(RCk ) is used in place of d(Ri) as a pertinent

observation of the realisation d◦(Ri).

Concluding remarks Using the unary and pairwise terms described in this subsection, the

solution of equation 7.6 yields the refined regional disparity maps displayed in figure 7.2.

Although the choice of the energy terms produces good results, a more rigorous utilisation of the

MAP inference for pairwise MRFs should ensure that these energy terms truly represent valid

probability functions.

7.3 Hole filling strategy based on regional statistics

The final part of this chapter concerns a strategy for filling the holes which appear in the sparse

disparity maps, computed using the cost diffusion algorithm. In this section, we propose a simple
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Input images Refined regional disparities

Tsukuba

Venus

Cones

Teddy

Figure 7.2: Regional disparity maps obtained at a fine level of segmentation, using MAP inference across
pairwise MRFs. The images showcased in this example originate from Middlebury 2002 dataset.
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hole filling strategy, which resorts to look-up-tables generated for each cell of the reference image

partition. First, let:

• D(S) be a sparse disparity map provided as input of the algorithm. We assume that this

sparse disparity map has undergone the cluster-based filtering presented in section 5.2.2.

• X be the set of points having a disparity measure in D(S), i.e. D(S)[x, y] is defined if and

only if (x, y) ∈ X. X̄ represents the set of points which do not have a measure in D(S).

• L be the partition of the image for which D(S) has been computed. We call Ri the set of

points satisfying the relation Ri = {(x, y) | L[x, y] = i}, and thus corresponding to the i-th

region of partition L.

For any i-th cell of the partition, we can compute a normalised histogram function hi mapping

a disparity d to its occupancy ratio within Ri. More precisely, if T̄ denotes the binary indicator

function such that T̄(x) = 1⇔ x = 0, then:

hi[d] =

0 if |X ∩ Ri| = 0(∑
(x,y)∈X∩Ri T̄

(
D(S)[x, y] − d

))
÷ |X ∩ Ri| if |X ∩ Ri| > 0

(7.9)

The cumulative histogram of disparities Hi associated with region Ri is simply expressed as:

Hi[d] =

d∑
k=0

hi[k] (7.10)

from which we define the q-th upper percentile of hi as:

P(q, i) = inf
{
d ∈ N |Hi[d] >

q

100

}
(7.11)

The purpose of the hole filling method is to allocate a disparity to every point (x, y) left

without a disparity measure in D(S), i.e. to any (x, y) ∈ X̄, and under the condition that the

region to which the point belongs, contains some disparity measure. In other words, a new

disparity is allocated to (x, y) if and only if: (x, y) ∈ X̄ and (x, y) ∈ Ri, such that Ri ∩ X 6= ∅.

The disparity value allocated to point (x, y) is given by a percentile of hi, with q < 100, so that

P(q, i) corresponds to a disparity measure, within the same region, already belonging to D(S).

Therefore, suppose that D(SF)
q represents the filled in disparity map, then:

D
(SF)
q [x, y] =

D(S)[x, y] if (x, y) ∈ X

P(q, i) if (x, y) ∈
(
X̄ ∩ Ri

)
and Ri ∩ X 6= ∅

(7.12)

We can also project the percentiles onto each cell of the partition, by computing a disparity

map D
(P)
q using equation 7.13. This regional disparity map will prove useful in the application
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: Estimated disparity maps using hole filling for the Adirondack test case. (a) Sparse disparity
map D(S). Regional disparity maps D

(P)
q obtained for the upper percentiles (b) q = 0, (c) q = 10, (d)

q = 20 and (e) q = 30. Filled-in disparity map D
(SF)
q for q = 10.

presented at the end of this section.

D
(P)
q [x, y] = P(q, i) if (x, y) ∈ Ri and Ri ∩ X 6= ∅ (7.13)

If we set q = 0, then P(0, i) returns the smallest disparity measure found inside the i-th cell

of partition L. We show the effect of this setting in figure 7.3. The majority of the areas which

were devoid of disparity measures, are filled in with perceptually satisfying disparity values. This

is not surprising, since we know that the missing disparity measures are essentially caused by

homogeneous regions or occlusions. In the case of the latter, it is safer to reuse the smallest

disparity measure observed across the region than to use the highest, as this high disparity could

be due to a fattening artefact. It is, however, good practice to consider the 10-th, the 20-th or

even the 30-th percentiles rather than the minimum disparity value found within the region. This

will avoid erroneous measures with the smallest disparity values; an occurrence which would

deteriorate the quality of the hole filling.

These disparity maps alone should not constitute the final output of a depth estimation

algorithm, because they are, as are the regional disparities, inaccurate. But, when comparing

image (a) to images (b)–(e) of figure 7.3, we see that the fattening artefacts appearing in the

sparse disparity map D(S) and in D
(SF)
q are replaced by far more plausible disparities in any of the

displayed D
(P)
q functions. This observation gave rise to a significantly more efficient algorithm
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devised to filter these fattening artefacts from the sparse disparity maps.

7.3.1 Application: fattening effect removal revisited

The revised algorithm for the removal of fattening artefacts comprises two steps. First, we locate

the points (x, y) ∈ X having a disparity measure D(S)[x, y], close to the one of D(P)
q [x, y] for at

least one q ∈ {10, 20, 30}. Such points are registered in a binary image M which, in order to

summarise, is defined as:

M[x, y] = 1⇔ (x, y) ∈ X and ∃q ∈ {10, 20, 30} s.t.
∣∣∣D(S) −D

(P)
q

∣∣∣ [x, y] 6 τ
τ, being the maximum difference in disparity allowed between the compared disparity maps, is

set to a few pixels. Increasing this parameter will increase the span of the binary mask M across

tilted regions, but will also increase the risk of appending pixels with bad disparity measures to

the mask. Therefore, τ must remain small, independently of the scene configuration. In order to

increase the span of the mask across tilted regions, we will use the binary mask M as a marker

to reconstruct a special kind of disparity clusters. This action constitutes the second step of the

algorithm.

The clustering of sparse disparity functions has been solved by algorithm 5.2. At a global

scale, the fattening artefacts can belong to the same cluster as those points allocated correct

disparity measures. This is the case in the Recycle instance, where one huge disparity cluster

covers almost all the disparity measures, as can be observed in figure 7.4. Therefore, if all the

measures of this cluster were reconstructed, the action of the filtering would be virtually nullified.

At a regional scale though, we are able to attribute fattening artefacts more appropriately to

separate clusters, which are not marked by M. Therefore, instead of applying algorithm 5.2 to

the entire domain of the disparity map D(S), we need to apply it separately to each cell of the

related image partition L, and then concatenate the produced clusters into a new cluster map

CL, so that no label appears simultaneously in different cells of L. Let M+ be the binary image

containing the points which remain after the filtering of the disparity map. M+ is then defined

by equation 7.14 as :

M+[x, y] = 1⇔ ∃ (x ′, y ′) s.t. CL[x
′, y ′] = CL[x, y] and M[x ′, y ′] = 1 (7.14)

One final remark regarding the generation of the binary image M: although the regional

disparity map D
(P)
q proved very useful in detecting the vast majority of fattening artefacts, those

which constitute the sole disparity measures contained in the region to which they belong, could

not be recognised by the method proposed thus far. In these particular cases, however, the

occupancy of fattening artefacts remains a small percentage of the entire region area. It is
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(a) (b)

Figure 7.4: Disparity clusters defined (a) across the whole image domain and (b) on a regional basis,
for the Recycle instance.

(a) (b)

(c) (d)

Figure 7.5: Fattening effect removal on Adirondack. (a) The visualisation of |D(SF)
q −D

(P)
q | for q = 20

accentuates the detection of fattening artefacts. (b) The cluster map of disparities computed on a regional
basis, CL. (c) The binary imageM computed for τ = 5 pixels (points without a disparity measure appear
in white, points with a disparity measure but enclosed in a region where measures cover less than 5% of
the whole region area are deactivated) and (d) the binary imageM+, superimposed on the segmentation.
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therefore good practice to clear the regions containing insufficient disparity information of all

their measures and to reflect this pruning by updating image M accordingly.

Figure 7.5 shows the detection of fattening artefacts on the Adirondack example. Furthermore,

it is interesting to study the impact of updating the filtering blocks used within the multi-scale

diffusion scheme introduced in section 5.2.3. In figure 7.6, we see, by changing the former

fattening removal method for the new one, that further errors are avoided and that the disparity

maps thus reach a higher level of accuracy. That confirms that the filtering stage in multi-scale

approaches should never be neglected and that a simple mechanism of disparity map estimation,

such as that presented in this section, can help to fulfil the requirements of a good filtering

operator for sparse disparity maps.

7.4 Interpolation using distance functions on partitions

The objective of the two-pass multi-scale diffusion presented in section 5.2.3, is to enable the

measurement of disparities across all the non-occluded image areas. The characteristic feature of

this refinement is its ability to take account of the superimposition costs found in the disparity

space volume. We are now about to fill the holes of the sparse disparity maps. Essentially, these

holes cover occluded areas, for which the superimposition costs are meaningless. Therefore, we

would expect the superimposition costs to have hardly any beneficial effect on the interpolation

process. For that reason, we propose, in the first instance, to resort to the interpolation mechanism

based on binary distance functions. In section 3.4, we presented an interpolation example for

a one-dimensional function; here we have to extend it so that it works with a two-dimensional

disparity function.

Distance functions of binary volumes Let D(S) be the sparse disparity map considered as

input of the interpolator. The available disparity measures may be projected into a 3D relief D0

expressed as follows:

D0[x, y, d] =

0 if D(S)[x, y] = d

+∞ otherwise

The reader might have noticed that D0 constitutes the starting point of the computation of a

distance function. Using recurrence relation 3.14 with η = 1, we obtain the distance function

of the binary mask M described by S(M) = {(x, y, d) |D0[x, y, d] = +∞}. We shall refer to this

distance function as D. If we invert D, we may compute its 3D watershed from the background

and foreground markers covering initially the lowest and the highest disparity planes, respectively.

The 3D watershed then constitutes a hyperplane enclosed in the volume D, and separating it into

foreground and background voxels. Projecting onto each pixel of the image plane, the disparity

at which this watershed occurs, results in a full disparity map such as the one displayed in figure
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Former fattening removal Revised fattening removal

Adirondack

Playroom

PlaytableP

Recycle

Figure 7.6: Comparison of the two proposed fattening removal methods. The disparity maps displayed
are those obtained by the multi-scale diffusion mechanism, using the coarse-to-fine refinement, followed
by the fine-to-coarse densification.
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(a) (b)

Figure 7.7: Disparity maps deduced from the distance function D, given as input the sparse disparity
map shown in figure 7.6 for the Adirondack test case. (a) Exact interpolation supllied by the 3D watershed
of the inverted distance function, using the settings described in section 3.4. (b) Interpolation resulting
from minimising equation 7.15.

7.7(a). We notice that the disparities surrounding the contours are blurred which, in hindsight, is

not surprising. The problem derives from the fact that the distance function has been computed at

a global scale. Therefore, across occluded areas, the disparities between occluded and occluding

objects are simply interpolated.

Another way of using distance function D to find the interpolated disparity map of D(S),

consists of minimising equation 7.15, so that:

D[x, y] = arg min
d

D[x, y, d] (7.15)

For example, doing so results in the disparity map shown in figure 7.7(b). Concerning the areas

of the image where the actual disparity function is continuous, we notice little difference between

this map and that resulting from the interpolation based on the 3D watershed. The fattening

artefact though replaces the blurring artefact, for the same reasons we mentioned earlier. Once

more, for distance functions to be meaningful with respect to our objective of interpolating

disparity maps, their computation must be performed on a regional basis. Later, we shall consider

the interpolation based only on the minimisation of equation 7.15.

Distance functions on partition Let L be the partition of the reference image. P denotes the

set of points lying on the borders of any cell in L, such that, for any directional structuring

element h:

P = {(x, y) | ∃h s.t. (δh (L) − εh (L)) [x, y] > 0}

Furthermore, we call M(P) the volume defined such that M(P)[x, y, d] = +∞ if (x, y) ∈ P,

otherwise M(P)[x, y, d] = 0. Let D(P) be a distance function computed using the recurrence
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relation as:

D
(P)
0 = max

{
M(P),D0

}
D

(P)
t = max

{
M(P),min

{
D

(P)
t−1, εH

(
D

(P)
t−1

)
+ 1
}}

D(P) = D
(P)
t? ⇔ D

(P)
t? = D

(P)
t?+1 (7.16)

D(P) corresponds to the distance function of the binary volume M, computed independently

for the interior of each of the cells of partition L. Substituting D with D(P) in equation 7.15,

we obtain a new interpolated disparity map, such as that illustrated in figure 7.8(a). Yet, the

result is not perfect for two reasons. Firstly, due to the way D(P) is constructed, it is impossible

to allocate a disparity value along the contours of the partition cells. Secondly, no interpolation is

possible across cells devoid of disparity measures in their interior. Nonetheless, we have only

presented the core of the interpolation process. Section 7.4.1 concentrates exclusively on the

intricacies of the final depth map estimation and provides its full algorithm.

7.4.1 Application: final disparity maps computation

The algorithm transforming the sparse disparity maps into final disparity maps using the afore-

mentioned distance functions, requires as input:

• I, the gradient magnitude of the image associated with the sought disparity map.

• L, the partition of the image for which the disparity map is computed.

• D(S), the sparse disparity map resulting from the multi-scale diffusion presented in section

5.2.3, using the two-pass refinement scheme and the fattening effect removal described in

section 7.3.1.

The algorithm then consists of the following high-level execution steps:

1. Locate cells of L which do not have a disparity measure in their interior. Mark these cells

as “invalid”

2. Update L, so that each invalid cell is assigned the label of a valid cell lying in its vicinity.

3. Compute the set P of points lying on the new cell borders.

4. Compute the distance function D(P) according to equation 7.16.

5. Deduce the interpolated disparity map according to equation 7.15 and invalidate disparities

for all points belonging to set P.

6. If available, restore the disparity measures from D(S) for all points belonging to set P.

7. Fill the remaining invalid points with a disparity lying in their vicinity, giving preference to

points marked by same label in L.
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Steps 2 and 7 are certainly the most abstract in this description, and we shall now provide details

necessary for their implementation.

Attributing new labels to invalidated cells There are two obstacles to overcome with this

problem of relabelling. The first consists of merging invalid cells to valid cells. This fusion should

remain meaningful; so that the likelihood of merged cells effectively segmenting the objects of

the scene continues. Second, there is the potential for an invalid cell to be surrounded entirely

by other invalid cells. In order to initiate the relabelling process, we compute the watershed

transformation of the topographical surface represented by image I using L0 as the controlling

map of markers. L0 is defined such that L0[x, y] = 0 if (x, y) belongs to an invalidated cell,

otherwise L0[x, y] = L[x, y]. Let L? be the output of this watershed transformation. We now have

the guarantee that partition L? is fully covered by labels allocated to valid cells in L. Using the

gradient magnitude I to control the watershed allows two neighbouring cells sharing a frontier

with little accentuation to be more easily merged. But supposing a cell becomes separated from

its neighbours by frontiers of strictly identical gradient magnitudes all along its border, then

this cell would be flooded by each of the surrounding lakes simultaneously and thus, would be

covered with different labels. In order to take the final decision, an invalid cell of L is updated

with the label in L? that covers the majority of its surface.

Final disparity map filling along the cell borders Algorithm 7.1 provides all the details about

how to update and finalise the disparity map obtained at step 6. The missing disparities all

lie along the contours of the cells composing partition L. The idea of the filling mechanism is

to assign the remaining invalid points to the smallest disparity found in their neighbourhood

and preferably in the same region. We acknowledge that the adverb “preferably” might strike

the reader as illogical: of course, if the regions denote objects in the scene, the disparity

allocated to the invalid points must originate from the same region. However, experience showed

that the fusion of thin and elongated structures with valid cells performed at step 2, is not

systematically appropriate. Therefore, for these special structures, imposing the condition that

the disparity originate from the same region, typically results in a higher number of critical errors

compared to the scenario where only the regional membership preference is applied, in the direct

neighbourhood of the image plane. This is illustrated by the Adirondack examples, displayed in

figures 7.8(c) and 7.8(d).
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(a) (b)

(c) (d)

Figure 7.8: Disparity maps resulting from the distance functions computed for each cell of the image
partition. (a) Disparity map resulting from the minimisation of equation 7.15 for D(P). Image areas shown
in black are the cell borders and the cells which do not have a disparity measure in their interior. (b)

Disparity map obtained after step 6 of our estimation algorithm. (c) Final disparity map resulting from
algorithm 7.1, replacing line 11 with sl ← True, that is enforcing regional consistency for the filling of
disparities. (d) Final disparity map resulting from algorithm 7.1.

(a) (b)

Figure 7.9: Output of algorithm 7.1 for (a) Playroom and (b) PlaytableP test cases
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Algorithm 7.1 Filling of contour disparities

1: function FILLCONTOURDISPARITIES(D, L)
2: D ′ ← D
3: D← D× 0

4: Re-iterate until process converges
5: while D ′ 6= D do
6: D← D ′

7: for all (x, y) left without a disparity in D do
8: Disparity to be assigned to (x, y)
9: d← +∞

10: Token indicating whether disparity stems from the same region
11: sl← False

12: for all (x ′, y ′) lying in the neighbourhood of (x, y) do
13: if (x ′, y ′) has a disparity in D then
14: if L[x ′, y ′] = L[x, y] then
15: Processing a disparity discovered in the same region
16: if sl = False then
17: Disparities discovered in the same region have the priority
18: sl← True
19: d← D[x ′, y ′]
20: else if d > D ′[x ′, y ′] then
21: d← D[x ′, y ′]

22: else if sl = False then
23: Processing a disparity discovered in a different region
24: if d > D[x ′, y ′] then
25: d← D[x ′, y ′]

26: Update disparity of current point
27: D ′[x, y]← d
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Summary

The choice of an estimation method for the computation of disparity maps depends on the

nature of the measured disparity data. This is predominantly characterised by its sparsity and by

its reliability. In this chapter, we dealt with three types of measures: feature point disparities,

sparse disparity maps produced by the multi-scale diffusion system, and regional disparities. In

the first two cases, the data is assumed to be fully accurate and the purpose of the estimation

method is to generate the disparities of the points for which no measure is available. In the

third case, the regional disparities measured on the coarse and fine partitions of the image of

interest, are interpreted as observations of the actual regional disparity function for a fine level of

segmentation. The purpose of the estimation algorithm is to discover this regional disparity map

in such a manner that it best fits the observations, while satisfying a plausible variational model.

This model has remained virtually the same in all scenarios: the estimated disparity function,

whether it takes its values on a pixel basis or on a regional basis, must evolve smoothly across the

main regions of the partition accompanying the disparity map. To proceed, each of these main

regions has been processed independently in conjunction with: a linear variogram for the kriging

technique, adequate pairwise potentials for the MAP inference with pairwise MRFs, and distance

functions to interpolate the holes of the sparse disparity maps.

This summary concludes our methodology on the estimation of depth maps. We shall now

provide the reader with an analysis of the results obtained on the Middlebury 2014 benchmark.

Perhaps the main limitation of the methods proposed throughout this study, is the binary way in

which segmentations control the measurement and the estimation algorithms, explaining most

of the artefacts which occasionally remain in the final results. Some suggestions about how to

improve this aspect of the methodology will be provided.
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Appendix

In this work, two major frameworks were developed for the computation of disparity maps from

pairs of stereo images. The first is based on the utilisation and refinement of regional disparities.

The second concerns the multi-scale aggregations of individual pixel superimposition costs.

The first part of this appendix provides the block diagrams corresponding to these two distinct

frameworks. For the most important blocks of each diagram, the reader will be referred to the

sections where implementation details can be found. The second part of this appendix is devoted

to the experiments performed on the Middlebury 2014 dataset using the second framework: a

quantitative assessment is performed and related to a more objective evaluation of the algorithm’s

features and qualities.
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A.1 Framework 1: Multi-scale regional disparities

Left image Right image

Coarse segmentation
(Section 4.2.1)

Coarse segmentation
(Section 4.2.1)

Computation of regional disparities
(Section 5.1.2)

● Each region of the left image is allocated a unique disparity.
● For each region of the left image, this disparity minimises the cost of super-

imposing the region under consideration with another region of the right image.

Regional disparities at coarse level

Fine segmentation
(Section 4.2.1)

Computation of 
regional disparities

(Section 5.1.2)

Occlusion mask 
computation

(Section 6.1.1)

Co-segmentations
(Section 6.1.3)

Refinement of regional disparities
(Section 7.2.1)

● Measures are unreliable if they originate from:
● A fully occluded fine region.
● A fine region for which the measured regional disparity

differs significantly from the coarse regional disparity.
● Refined disparity map must be smoothed across coarse

regions.

Rectified regional disparities
at fine level of segmentation

Computation of
contour disparities

(Section 6.2)

Linear interpolation (kriging) of disparities
(Section 7.1.1)

● Disparities of keypoints must equal fine regional disparities.
● Contour disparities should apply to relevant regions only.

Stereo images

Keypoints extraction
with disparities

Regularised disparity map

Compare contour points 
based on equivalent 
segmentation labels

Determine regional 
membership of contours
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A.2 Framework 2: Multi-scale regional aggregations

Over-segmentation
(Section 4.2.3)

Over-segmentation
(Section 4.2.3)

Computation of Disparity Space Volume
(Section 2.1.4)

● Costs are derived from the Census 
transformed images (Sections 2.1.1 and 5.2.1).

Left image Right image

Multi-scale Sparse disparity map computation
(Section 5.2.3)

Single-scale Computational Block

Disparity Space Volume Diffusion
(Section 5.2.1)

● Original DSV is diffused according to left, right, up and down image
plane directions. 

● Stopping criterion is provided by the left and right segmentations.
● n controls the maximum diffusion scope.
● ξ regulates disparity plane variation.

Generation of sparse disparity map
(Section 5.2.1)

● At each pixel, the disparity minimising the cost is retained.
● Cross-checking prunes inconsistent matches.

Filtering of sparse disparity map
(Sections 5.2.2 and 7.3.1)

● Disparity map is split into smoothly evolving disparity clusters.
● Clusters containing bad disparity values are pruned.
● Fattening artefacts are detected and removed.

DSV n, ξ Segmentations Opt. Constraints

Left partition Sparse disparity map

Initial diffusion
● High diffusion scope.

Coarse-to-Fine
Refinement

● Several disparity maps
are computed for a
range of decreasing 
diffusion scopes.

● The disparity map 
computed for the 
preceding scale
constrains the changes
of disparity measures.

Fine-to-Coarse
Densification

● Several disparity maps
are computed for a
range of increasing 
diffusion scopes.

● The measures found for
the preceding scale are
imposed.

Output sparse disparity map Left image partition

Interpolation using 3D distance functions from binary data
(Sections 3.4 and 7.4.1)

● Available disparity measures are projected as binary seeds in a 3D volume.
● Binary seeds drive the computation of a distance function, on a regional basis.
● Final disparities are deduced from that distance function and from some finishing algorithms.

Final disparity map
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A.3 Experiments conducted on the Middlebury 2014 dataset

Since September 2014, the Middlebury website 1 has provided a modern stereo vision dataset

comprising high quality photographs of interior scenes. In contrast to the 2002 dataset, these

scenes are composed of objects of various shapes, with or without texture. There is also a

significant number of thin and tilted objects, requiring that stereo algorithms operate without the

ordering constraint and without the fronto-parallel assumption. For that reason, the experiments

performed on this dataset resort to our algorithm based on multi-scale diffusions, as illustrated

by the flowchart of framework 2.

Exploited features

Resolution and baseline Three different kinds of image dimensions are provided for each

image of the dataset. At full dimensions, images have a size in the region of 2900× 2000 pixels.

Due to the amount of memory required by our disparity space volumes, we opted for the quarter

resolution, where image dimensions are close to 725 × 500 pixels. For such dimensions, the

maximum disparity observed reaches 200 pixels.

Calibration data Each stereo pair is accompanied by a calibration file, containing the calibration

parameters of the cameras, as well as a maximum disparity threshold. In the experiments

presented in this appendix, this threshold was used to constrain the disparity search space

considered by our stereo algorithms.

Rectification The stereo images do not have a perfect calibration, which implies that some

vertical disparities exist between corresponding pixels. In the quarter resolution dataset though,

most of the occasional vertical disparities are smaller than 1 pixel, and therefore we did not

perform the rectification. This, of course, will severely affect our results on the Playtable,

Australia and Crusade test cases, where the vertical disparities resulting from the non-rectified

configuration are far more significant. Therefore, the output of our algorithm is only relevant

to the rectified versions of these images, which are provided as PlaytableP, AustraliaP and

CrusadeP.

Quality metrics

Accuracy measures for full disparity maps The Middlebury 2014 benchmark system com-

pares the performances of several methods of disparity map estimation, by analysing the accuracy

of the disparity maps obtained for the proposed dataset. To proceed, each disparity map is

1Please, visit the Middlebury website at http://vision.middlebury.edu/stereo/

172

http://vision.middlebury.edu/stereo/


A.3. EXPERIMENTS CONDUCTED ON THE MIDDLEBURY 2014 DATASET

compared to a ground truth, obtained at the shooting stage using the structured lighting tech-

nique described in [Scharstein et al., 2014]. The principal metrics considered for an accuracy

assessment of disparity maps are:

• The ratio of bad pixels – This measure indicates the percentage of pixels which are allocated

a disparity measure which differs from the ground truth, by a magnitude equal to or greater

than 1 pixel, at quarter resolution.

• Average error – This measure indicates the mean average of the absolute difference

between the computed and ground truth disparities. We express this error in terms of pixels,

with respect to the quarter resolution images.

• RMS error – This measure is the root-mean-square error observed between the computed

and ground truth disparities. By nature, the RMS error is more sensitive to high disparity

discrepancies than is the average error. In this evaluation, the RMS error is also expressed

in terms of pixels, with respect to the quarter resolution images.

Accuracy measures for sparse disparity maps The analysis of sparse disparity maps is slightly

more complex than that of full disparity maps, since we have to deal with pixels having no

disparity measure. The three metrics mentioned for the full disparity maps will also be considered

within the analysis of sparse disparity maps, but we need to consider the following:

• Bad pixels – The ratio of bad pixels is expressed according to the full image area. Pixels

having no disparity measure are considered neither “good” nor “bad”, but belong to a third

class, which we will call “invalid”. This choice was made in order to remain consistent with

the “Bad Pixels 4.0” metric proposed by the online benchmarking system.

• Average error – Invalid pixels are not taken into account.

• RMS error – Invalid pixels are not taken into account.

In addition to these three standard metrics, we provide:

• The precision of the disparity map – This measure corresponds to the proportion of “good”

pixels relative to all the pixels of the image plane which are allocated a disparity measure.

Coverage measures for sparse disparity maps An important aspect of the evaluation of sparse

disparity maps is the image plane coverage of disparity measures, which gives an indication of

the density of the disparity map. We provide two different types of measure:

• Occupancy ratio – This measure provides, with respect to the full image plane, the

proportion of pixels being allocated a disparity measure.

• Occluded ratio – This measure indicates, with respect to the truly occluded image areas,

the proportion of pixels which have been allocated a disparity measure. Ideally, disparity

measures should not be assigned to occluded areas, thus we expect low results for that

particular metric.
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Filtering quality The filtering stage of sparse disparity map computation is quite specific to

this work, and therefore deserves some attention within the evaluation. We already provide the

precision measure for all sparse disparity maps. When comparing the filtered results with the

initial results, we shall also provide the filter recall. This corresponds to the proportion of pixels

in the initial disparity map, which have been preserved by the filter and have been allocated a

“good” disparity measure.

Further considerations Since the handling of occlusions has been an important focus of this

work, all pixels of the image domain, including those in occluded areas, participate in the

accuracy measurements. When comparing the results presented in this appendix, to those

available in the Middlebury benchmark, it is important to notice that every result presented in

the benchmark relates to the full resolution images. Since we are working at quarter resolution,

the bad pixel ratio corresponds to the “Bad Pixels 4.0” metric. Furthermore, the errors expressed

in terms of pixels should be multiplied by a factor of four, in order to compare them with errors

observed at full resolution.

Sparse disparity map quantitative evaluation

The results regarding the quality of our sparse disparity maps, have been assembled in tables A.1

and A.2. We show the evolution of the quality measures after different stages of our multi-scale

computational system: we consider the sparse disparity maps obtained immediately after the

initial cost diffusion, those obtained after the filtering step, those obtained after the multi-scale

refinement step, and finally those resulting from the fine-to-coarse densification. For each metric,

we provide the mean average for the 13 images presented at the top of the list. Due to the

non-ideal calibration, our method still has difficulty handling the Playtable and Shelves test

cases. Thus their associated disparity maps are not comparable to those obtained for other images

of the dataset. Therefore, the quality measures obtained from these test cases do not contribute

to the displayed mean averages.

Comments The evolution of the mean averages computed for each metric and for each stage

of the disparity map computation process, shows that the filtered sparse disparity maps resulting

from the single-scale diffusion are the most precise, with, at quarter resolution, 92.3% of pixels

allocated a disparity measure corresponding to the ground truth. The mean error is a disparity

of approximately half a pixel, whilst, at the time of writing, the RMS error ranks these sparse

disparity maps third, amongst the 44 methods displayed in the benchmark. The issue with

these filtered disparity maps, is the occupancy of the image plane, which is slightly higher than

45% of the full image area. The refinement of the disparity maps allows the recovery of a level

of densification close to 60%, similar to that observed for the initial disparity maps, whilst it

produces disparity measures with a level of accuracy comparable to that obtained for filtered
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A.3. EXPERIMENTS CONDUCTED ON THE MIDDLEBURY 2014 DATASET

Initial sparse disparity maps (single, high level diffusion)

Image name Bad pixel Mean error RMS error Occluded Precision Occupancy
ratio in pixels in pixels ratio ratio ratio

Adirondack 0.077 1.600 6.019 0.103 0.859 0.547

ArtL 0.079 1.833 5.736 0.109 0.862 0.573

Jadeplant 0.080 4.930 16.470 0.101 0.834 0.483

Motorcycle 0.105 1.762 6.045 0.128 0.820 0.583

MotorcycleE 0.096 1.630 5.798 0.125 0.835 0.582

Piano 0.087 1.331 4.268 0.180 0.863 0.633

PianoL 0.097 2.049 6.073 0.153 0.808 0.506

Pipes 0.077 2.022 6.709 0.140 0.868 0.585

Playroom 0.113 2.096 6.726 0.113 0.782 0.518

PlaytableP 0.099 1.305 4.447 0.148 0.836 0.605

Recycle 0.075 1.185 4.445 0.097 0.881 0.631

Teddy 0.051 1.163 4.505 0.094 0.921 0.646

Vintage 0.093 3.196 10.565 0.093 0.755 0.379

Mean average 0.087 2.008 6.754 0.122 0.840 0.559

Playtable 0.253 4.743 8.912 0.185 0.525 0.533

Shelves 0.174 2.592 5.577 0.181 0.659 0.511

Filtered sparse disparity maps (single, high level diffusion)

Image name Bad pixel Mean error RMS error Occluded Precision Filter recall Occupancy
ratio in pixels in pixels ratio ratio ratio ratio

Adirondack 0.035 0.488 1.469 0.029 0.925 0.915 0.465

ArtL 0.022 0.517 1.822 0.026 0.952 0.891 0.462

Jadeplant 0.011 0.631 4.465 0.013 0.971 0.903 0.375

Motorcycle 0.054 0.566 1.788 0.041 0.889 0.902 0.485

MotorcycleE 0.051 0.544 1.810 0.044 0.896 0.907 0.492

Piano 0.032 0.493 1.307 0.087 0.940 0.921 0.535

PianoL 0.033 0.528 1.224 0.061 0.916 0.885 0.395

Pipes 0.021 0.639 2.603 0.053 0.954 0.860 0.458

Playroom 0.054 0.644 1.807 0.037 0.870 0.894 0.416

PlaytableP 0.049 0.504 1.125 0.043 0.904 0.907 0.508

Recycle 0.035 0.426 0.978 0.033 0.938 0.948 0.562

Teddy 0.013 0.379 1.303 0.036 0.977 0.911 0.555

Vintage 0.037 0.848 2.927 0.024 0.872 0.881 0.289

Mean average 0.034 0.554 1.894 0.041 0.923 0.902 0.461

Playtable 0.162 3.438 5.889 0.072 0.595 0.850 0.400

Shelves 0.093 1.407 3.309 0.106 0.765 0.899 0.396

Goal Minimise Minimise Minimise Minimise Maximise Maximise Maximise

Table A.1: Quantitative performances on the Middlebury 2014 training set
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Sparse disparity maps after the multi-scale coarse-to-fine refinement and filtering

Image name Bad pixel Mean error RMS error Occluded Precision Occupancy
ratio in pixels in pixels ratio ratio ratio

Adirondack 0.055 0.513 1.478 0.043 0.911 0.621

ArtL 0.033 0.623 2.083 0.040 0.937 0.526

Jadeplant 0.031 0.971 5.299 0.019 0.926 0.419

Motorcycle 0.032 0.554 2.191 0.063 0.948 0.620

MotorcycleE 0.026 0.492 1.975 0.059 0.959 0.629

Piano 0.065 0.650 1.770 0.117 0.900 0.653

PianoL 0.074 0.813 2.068 0.094 0.865 0.548

Pipes 0.031 0.697 2.770 0.061 0.941 0.527

Playroom 0.090 0.779 2.139 0.052 0.838 0.556

PlaytableP 0.067 0.549 1.243 0.067 0.900 0.672

Recycle 0.060 0.532 1.344 0.042 0.911 0.674

Teddy 0.023 0.454 1.876 0.051 0.965 0.652

Vintage 0.059 1.149 3.651 0.037 0.855 0.408

Mean average 0.050 0.675 2.299 0.057 0.912 0.577

Playtable 0.299 3.645 5.778 0.131 0.526 0.631

Shelves 0.258 2.627 5.086 0.214 0.592 0.633

Sparse disparity maps after the multi-scale fine-to-coarse densification and filtering

Image name Bad pixel Mean error RMS error Occluded Precision Occupancy
ratio in pixels in pixels ratio ratio ratio

Adirondack 0.087 0.577 1.529 0.081 0.892 0.804

ArtL 0.055 0.844 2.693 0.074 0.911 0.616

Jadeplant 0.074 1.945 7.773 0.051 0.873 0.584

Motorcycle 0.049 0.703 2.813 0.124 0.934 0.747

MotorcycleE 0.040 0.622 2.605 0.120 0.947 0.757

Piano 0.113 0.865 2.246 0.192 0.858 0.794

PianoL 0.116 0.984 2.517 0.158 0.935 0.705

Pipes 0.061 1.093 3.894 0.144 0.907 0.653

Playroom 0.132 0.888 2.406 0.086 0.815 0.714

PlaytableP 0.092 0.618 1.412 0.107 0.883 0.783

Recycle 0.086 0.624 1.679 0.067 0.897 0.833

Teddy 0.041 0.563 2.471 0.089 0.947 0.780

Vintage 0.139 2.305 5.961 0.080 0.777 0.624

Mean average 0.083 0.972 3.007 0.106 0.883 0.723

Playtable 0.356 3.447 5.617 0.187 0.541 0.776

Shelves 0.357 2.953 5.514 0.301 0.553 0.798

Goal Minimise Minimise Minimise Minimise Maximise Maximise

Table A.2: Quantitative performances on the Middlebury 2014 training set (continued)
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Full disparity maps

Image name Bad pixel Mean error RMS error
ratio in pixels in pixels

Adirondack 0.148 0.813 2.411

ArtL 0.211 1.800 4.541

Jadeplant 0.320 6.040 15.740

Motorcycle 0.142 1.693 5.724

MotorcycleE 0.127 1.612 5.592

Piano 0.213 1.253 2.960

PianoL 0.297 2.072 4.845

Pipes 0.252 3.416 8.094

Playroom 0.299 1.928 5.295

PlaytableP 0.165 0.910 2.338

Recycle 0.151 0.946 2.511

Teddy 0.134 0.992 3.679

Vintage 0.384 4.363 9.106

Mean average 0.219 2.141 5.603

Playtable 0.477 3.576 5.940

Shelves 0.467 3.159 5.828

Goal Minimise Minimise Minimise

Table A.3: Quantitative performances on the Middlebury 2014 training set (continued)

disparity maps with a single diffusion. The multi-scale densification on average allocates disparity

values to 72.3% of the full image plane. However, we observe a decrease in the proportion of

pixels with a disparity measure matching that of the ground truth with an error tolerance of 1

pixel. Nonetheless, the mean and RMS errors remain relatively small, which explains why the

disparity maps produced remain perceptually appealing. In terms of RMS error, these densified

disparity maps attain eighth position in the benchmark.

Full disparity map quantitative evaluation

The results regarding the quality of the full disparity maps resulting from our interpolation

method, are assembled in table A.3. About a fifth of the disparity values differ from the ground

truth, by a magnitude of 1 pixel or more, which is a borderline performance compared to

competing methods, since our algorithm is ranked 28th amongst the 44 registered methods.

However, the mean error remains relatively small and the ranking according to the RMS error

allows our method to once more gain the 8th position with respect to the online benchmark. This

is not surprising, given the perceptual quality of our final disparity maps.
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Conclusion to the quantitative analysis

As a conclusion to this quantitative analysis, we would ascertain that, compared to current

approaches to the computation of full disparity maps, our method performs well with respect to

the minimisation of the RMS disparity error. This can be explained by the fact that the removal

of fattening artefacts has been one of the focuses of this work, and that sharp discontinuities of

disparity functions are ensured by the use of our over-segmentations within the aggregation and

the interpolation phases. Finally, the pixels allocated the most accurate disparity measures can be

easily recovered from our sparse disparity maps.
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Conclusion

Despite more than forty years of research on the topic, the computation of depth maps from a pair

of stereo images still constitutes a challenging task, as demonstrated by recent stereo databases.

The principal difficulties arise from the considerable amount of homogeneous regions appearing

in the stereo images, the unpredictability of their actual 3D shape in the scene, the denial of

geometrical assumptions such as the ordering constraint, and the abundance of occluded areas.

In this work, we have proposed two major frameworks enabling the computation of depth

maps according to distinct scenarios. The first framework uses the concept of regional disparities,

whereby pixels belonging to the same region are matched in one block instead of being matched

individually. This procedure yields visually appealing disparity maps, characterised by sharp

and precise disparity discontinuities with no ambiguity across homogeneous regions. Whilst the

method proved particularly useful in microstereopsis and on low-baseline stereo imagery, it relies

on the fronto-parallel assumption which may be unrealistic in modern scenarios. For that reason,

a second framework has been proposed. The latter is based on the diffusion of superimposition

costs within a disparity space volume and is better suited to wide-baseline stereo imagery.

Common to both frameworks is the separation of the measurement phase from the estimation

phase of the disparity map computation. A key feature of the measurement phase has been

the handling of occlusion problems. In particular, we ensured that the superimposition costs of

regions which have nothing in common, do not become mixed with the costs of regions which

effectively match. Furthermore, we paid particular attention to the removal of fattening effects

occurring across the areas of the stereo images which were both homogeneous and occluded.

The development of segmentation algorithms, which produce partitions relevant to the analysis

of stereo superimpositions, has been essential in fulfilling these objectives. In the context of

regional disparities, coarse and fine segmentations related by a hierarchical dependence have

been generated, whereas a single fine partition has been used within the diffusion method.

For this latter partition, we imposed the constraints that homogeneous regions should not be

exaggeratedly over-segmented and that the minimum area of a region should depend on its

saliency in the scene, so as to increase the chances of efficiently capturing thin and contrasted

structures.
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Mathematical morphology has of course played a pivotal role in the generation of the afore-

mentioned segmentations. But it has also proved essential in the multi-scale analyses performed

at different stages of this work. For example, the enhanced regularised gradient, which has been

utilised to generate the coarse segmentations of defocused images, is fully driven by morpho-

logical operators. The same applies to the filtering component of the multi-scale cost diffusion

system, requiring the clustering of disparities and the removal of fattening artefacts. Our study

confirmed the importance of the filtering component intervening in multi-scale frameworks, and

that it is key to obtaining good results. In the case of the enhanced regularised gradient, the

filtering essentially resides in the levelling and the removal of fused contours. In multi-scale

stereo analysis, the filtering consists of pruning bad matches.

The purpose of multi-scale analysis in stereo is to refine the disparity maps. In the case of cost

diffusion, the transition from the coarse analysis to the fine one prevents the erroneous measures,

which generally arise from correlation windows of insufficient size, whilst offering the high

standard of accuracy typically found at fine scales. We conducted a similar refinement procedure

from a coarse to a fine partition, when performing MAP inference. Finally, the fine-to-coarse

diffusion employed within the diffusion scheme increases the density of the measured data.

MAP inference has been one of the estimation techniques studied in this work and is the

only technique capable of correcting erroneous disparities while estimating a full disparity map.

In the other techniques, we assumed that the disparity measures were filtered and accurate,

and that the purpose of the estimation procedure was simply to fill in the holes of the sparse

disparity maps. For those disparity maps obtained by using the multi-scale cost diffusion, we

chose the interpolation based on cell distance functions, thereby producing results which are

comparable to those generated by state-of-the-art methods. We also proposed an estimation

approach based on linear kriging: for situations requiring regularisation of disparity functions,

where disparities take floating values, this method may be extremely useful. Finally, for all these

estimation techniques, we encouraged disparity functions to evolve smoothly across each of the

main regions accompanying the image for which the disparity map is computed.

Perspectives

Before concluding this thesis, we propose some suggestions about how specific areas of this work

could be improved, in order to avoid the imprecisions or errors which currently remain in our

final disparity maps.

Non-blind estimation The estimation methods proposed in chapter 7 rely exclusively on the

measured disparity data, without resorting to the disparity space volume. For that reason, we

could have said that they are blind to the stereo image superimpositions. This is acceptable if
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all the measures across non-occluded areas have been obtained and are pertinent, since the

disparity space volume is not informative about the disparities of occluded areas. Besides, this

was the point of separating the measurement phase from the estimation phase. However, for

image areas left without disparity measures and not occluded in the other image of the stereo

pair, the replacement of the regular distance by the generalised geodesic distance related to the

disparity space volume, could improve the accuracy of the full disparity map. Likewise for the

MAP inference, the unary terms could take into account the cost associated with each possible

regional disparity.

Thorough exploitation of segmentation hierarchies Although mathematical morphology

offers a wide range of hierarchical segmentations, these have only been touched upon in this

work. When discussing the MAP inference, only two levels of segmentations have been used

in order to provide a binary criterion stating whether or not two adjacent nodes in the fine

partition should be linked. It is possible to imagine a more permissive scheme, with a single MRF

modelling the entire regional disparity map at the finest level of the segmentation hierarchy. The

strength of the pairwise term between two regions could for instance decrease as the resistance of

the watershed separating these two regions increases with respect to the segmentation hierarchy.

Furthermore, it could also be interesting to see how cost diffusions can be combined meaningfully

for different levels of segmentation.

Towards 3D reconstruction The methods developed in this thesis have been presented on a

modular basis, rather than on a framework basis. We opted for such a presentation, because

many algorithms such as those of the enhanced gradient, the adaptive over-segmentation, the

interpolation based on distance functions and kriging, may find other applications in image

processing. Dedicated tools such as the fattening artefact removal and the correlation across

intersections of the partition cells, may also be integrated to the pipeline of other depth estimation

approaches. Finally, the framework based on the cost diffusion, produced results on wide-baseline

imagery, which seem sufficiently accurate to infer depth data from multiple views, the combination

of depth data paving the way to the reconstruction of 3D scenes.
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Résumé 
 

Cette thèse propose de nouvelles approches 

pour le calcul de cartes de profondeur asso-

ciées à deux images stéréoscopiques. 

La difficulté du problème réside dans l'éta-

blissement de mises en correspondances 

entre les deux images stéréoscopiques. Cet 

établissement s'avère en effet incertain dans 

les zones de l'image qui sont homogènes, 

voire impossible en cas d'occultation. 

Afin de gérer ces deux problèmes, nos mé-

thodes procèdent en deux étapes. Tout 

d'abord nous cherchons des mesures de 

profondeur fiables en comparant les deux 

images stéréoscopiques à l'aide de leurs 

segmentations associées. L'analyse des 

coûts de superpositions d'images, sur une 

base régionale et au travers d'échelles mul-

tiples, nous permet de réaliser des agréga-

tions de coûts pertinentes, desquelles nous 

déduisons des mesures de disparités pré-

cises. De plus, cette analyse facilite la détec-

tion des zones de l'image de référence étant 

potentiellement occultées dans l’autre image 

de la paire stéréoscopique. Dans un deu-

xième temps, un mécanisme d'estimation se 

charge de trouver les profondeurs les plus 

plausibles, là où aucune mise en correspon-

dance n'a pu être établie. 

L'ouvrage est scindé en deux parties : la 

première permettra au lecteur de se familiari-

ser avec les problèmes fréquemment obser-

vés en analyse d'images stéréoscopiques. Il y 

trouvera également une brève introduction au 

traitement d'images morphologique. Dans une 

deuxième partie, nos opérateurs de calcul de 

profondeur sont présentés, détaillés et éva-

lués. 

 

Mots Clés 
 

Traitement d’image morphologique, cartes de 

disparités, vision stéréoscopique, analyse 

d’images stéréo basée sur la segmentation, 

gestion des occultations, agrégation de coûts, 

filtrage de bavures, interpolation, approches 

multi-échelles. 

 

Abstract 
 

In this thesis, we introduce new approaches 

dedicated to the computation of depth maps 

associated with a pair of stereo images. 

The main difficulty of this problem resides in 

the establishment of correspondences be-

tween the two stereoscopic images. Indeed, it 

is difficult to ascertain the relevance of 

matches occurring in homogeneous areas, 

whilst matches are infeasible for pixels oc-

cluded in one of the stereo views. 

 

In order to handle these two problems, our 

methods are composed of two steps. First, we 

search for reliable depth measures, by com-

paring the two images of the stereo pair with 

the help of their associated segmentations. 

The analysis of image superimposition costs, 

on a regional basis and across multiple 

scales, allows us to perform relevant cost 

aggregations, from which we deduce accurate 

disparity measures. Furthermore, this analy-

sis facilitates the detection of the reference 

image areas, which are potentially occluded 

in the other image of the stereo pair. Second, 

an interpolation mechanism is devoted to the 

estimation of depth values, where no corre-

spondence could have been established. 

 

The manuscript is divided into two parts: the 

first will allow the reader to become familiar 

with the problems and issues frequently en-

countered when analysing stereo images. A 

brief introduction to morphological image 

processing is also provided. In the second 

part, our algorithms to the computation of 

depth maps are introduced, detailed and 

evaluated. 

 

Keywords 
 

Morphological image processing, disparity 

maps, stereovision, segmentation-based 

stereo image analysis, occlusion handling, 

cost aggregation, filtering of fattening arte-

facts, interpolation, multi-scale approaches. 
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