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laume pour m’avoir permis de faire cette thèse, j’en garderai un excellent souvenir. Une
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infaillible pendant ces trois années a été très important pour moi et je leur en suis infiniment

reconnaissant. Je remercie tous mes amis, en particulier Flavie, Julien et Nirmala pour

leur bonne humeur et tous les moments passés ensemble. Enfin, merci Maud pour ton

immense patience et tes encouragements qui n’ont jamais fait défaut.

3



4



Contents

1 Introduction 9

1.1 Clustering and density estimation problem . . . . . . . . . . . . . . . . . . 9

1.1.1 Centroid-Based Clustering: K-means . . . . . . . . . . . . . . . . . 10

1.1.2 Agglomerative Hierarchical Methods . . . . . . . . . . . . . . . . . 13

1.1.3 Spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.4 Finding the number of clusters . . . . . . . . . . . . . . . . . . . . . 18

1.2 The Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2.1 EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.2 K-means from the EM angle . . . . . . . . . . . . . . . . . . . . . . 24

1.3 The curse of dimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Partial contributions to clustering 27

2.1 Graphical Lasso for Gaussian mixtures . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Graphical Lasso on Gaussian mixtures . . . . . . . . . . . . . . . . 34

2.2 Estimating the number of clusters . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 First method: regularizing the posterior probabilities . . . . . . . . 37

2.2.2 Second method: penalizing the weight vector . . . . . . . . . . . . . 42

2.3 Clustering and density estimation . . . . . . . . . . . . . . . . . . . . . . . 47

3 KL-Aggregation in Density Estimation 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.1.2 Additional notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.3 Agenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Oracles inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.1 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5



6 CONTENTS

3.3.2 Weight vector estimation . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Proofs: Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.1 Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 Proof of Theorem 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.3 Proof of Theorem 3.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.4 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.5 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.6 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Proofs: Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.1 Lower bound on HF(0, D) . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.2 Lower bound on HF(γ, 1) . . . . . . . . . . . . . . . . . . . . . . . 76

3.6.3 Lower bound holding for all densities . . . . . . . . . . . . . . . . . 78

4 Experiments for the KL-aggregation 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Alternative methods considered . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 SPADES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Adaptive Dantzig density estimation . . . . . . . . . . . . . . . . . 85

4.3.3 Kernel density estimation . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Dictionaries considered . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.2 Densities considered . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.3 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 A method for constructing the dictionary of densities . . . . . . . . . . . . 106

4.5.1 Implementation of the dictionary generator . . . . . . . . . . . . . . 106

4.5.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



Résumé substantiel

Dans ce mémoire de thèse1, nous abordons deux thèmes, le clustering en haute dimension

d’une part et l’estimation de densités de mélange d’autre part. Le premier chapitre est une

introduction au clustering. Nous y présentons différentes méthodes répandues et nous nous

concentrons sur un des principaux modèles de notre travail qui est le mélange de Gaussi-

ennes. Nous abordons aussi les problèmes inhérents à l’estimation en haute dimension

(Section 1.3) et la difficulté d’estimer le nombre de clusters (Section 1.1.4). Nous exposons

brièvement ici les notions abordées dans ce manuscrit.

Considérons une loi mélange de K Gaussiennes dans Rp et notons f sa densité par

rapport à la mesure de Lebesgue. Notons µk et Σk respectivement la moyenne et la vari-

ance de la k-ème composante Gaussienne. Alors, la densité f peut s’écrire pour x ∈ Rp:

f(x) =
∑K

k=1 πkϕµk,Σk
(x), où π = (π1, . . . , πK) est le vecteur de poids du mélange dans

[0, 1]K qui vérifie
∑K

k=1 πk = 1, et ϕµk,Σk
est la densité de la k-ième Gaussienne. Soient

X1, . . . ,Xn, n variables aléatoires i.i.d. dans Rp. Une des approches courantes pour es-

timer les paramètres du mélange est d’utiliser l’estimateur du maximum de vraisemblance:

θ̂ = arg maxθ Pθ(X1, . . . ,Xn). Dans la dernière formule, la notation θ désigne l’ensemble

des paramètres décrivant une loi de mélange (moyennes, matrices de covariances et poids

des composantes). Ce problème n’étant pas convexe, on ne peut garantir la convergence des

méthodes classiques comme la descente de gradient ou l’algorithme de Newton. Cepen-

dant, en exploitant la biconvexité de la log-vraisemblance négative, on peut utiliser la

procédure itérative “Expectation-Maximization” (EM) décrite dans la Section 1.2.1. Mal-

heureusement, cette méthode n’est pas bien adaptée pour relever les défis posés par la

grande dimension. Par ailleurs, il est nécessaire de connâıtre le nombre de clusters afin de

l’utiliser.

Le Chapitre 2 présente trois méthodes que nous avons développées pour tenter de

résoudre les problèmes décrits précédemment. Les travaux qui y sont exposés n’ont pas

fait l’objet de recherches approfondies pour diverses raisons. La première méthode que l’on

1Thèse effectué dans le cadre d’une convention CIFRE avec l’entreprise ARTEFACT.
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pourrait appeler “lasso graphique sur des mélanges de Gaussiennes” consiste à estimer les

matrices inverses des matrices de covariance Σ (Section 2.1) dans l’hypothèse où celles-ci

sont parcimonieuses. Nous adaptons la méthode du lasso graphique de [Friedman et al.,

2007] sur une composante dans le cas d’un mélange et nous évaluons expérimentalement

cette méthode. Les deux autres méthodes abordent le problème d’estimation du nombre

de clusters dans le mélange. La première est une estimation pénalisée de la matrice des

probabilités postérieures T ∈ Rn×K dont la composante (i, j) est la probabilité que la i-ème

observation soit dans le j-ème cluster. Malheureusement, cette méthode s’est avérée trop

coûteuse en complexité (Section 2.2.1). Enfin, la deuxième méthode considérée consiste à

pénaliser le vecteur de poids π afin de le rendre parcimonieux. Cette méthode montre des

résultats prometteurs (Section 2.2.2).

Dans le Chapitre 3, nous étudions l’estimateur du maximum de vraisemblance d’une

densité de n observations i.i.d. sous l’hypothèse qu’elle est bien approximée par un mélange

de plusieurs densités données. Nous nous intéressons aux performances de l’estimateur par

rapport à la perte de Kullback-Leibler. Nous établissons des bornes de risque sous la forme

d’inégalités d’oracle exactes, que ce soit en probabilité ou en espérance. Nous démontrons

à travers ces bornes que, dans le cas du problème d’agrégation convexe, l’estimateur du

maximum de vraisemblance atteint la vitesse ((logK)/n)1/2, qui est optimale à un terme

logarithmique près, lorsque le nombre de composant est plus grand que n1/2. Plus impor-

tant, sous l’hypothèse supplémentaire que la matrice de Gram des composantes du dictio-

nnaire satisfait la condition de compatibilité, les inégalités d’oracles obtenues donnent la

vitesse optimale dans le scénario parcimonieux. En d’autres termes, si le vecteur de poids

est (presque) D-parcimonieux, nous obtenons une vitesse (D logK)/n. En complément de

ces inégalités d’oracle, nous introduisons la notion d’agrégation (presque)-D-parcimonieuse

et établissons pour ce type d’agrégation les bornes inférieures correspondantes.

Enfin, dans le Chapitre 4, nous proposons un algorithme qui réalise l’agrégation en

Kullback-Leibler de composantes d’un dictionnaire telle qu’étudiée dans le Chapitre 3.

Nous comparons sa performance avec différentes méthodes: l’estimateur de densité à

noyaux, l’estimateur “Adaptive Dantzig”, l’estimateur SPADES et EM avec le critère

BIC. Nous proposons ensuite une méthode pour construire le dictionnaire de densités et

l’étudions de manière numérique.



Chapter 1

Introduction

Contents

1.1 Clustering and density estimation problem . . . . . . . . . . . 9

1.2 The Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . 20

1.3 The curse of dimensionality . . . . . . . . . . . . . . . . . . . . 25

In this thesis, we focus on the unsupervised learning problem through the study of

clustering in high dimensional (Gaussian) mixtures and density estimation. In this chap-

ter, we introduce the clustering problem in the first section and the Gaussian mixtures

framework in the second. In the third section, we highlight the complexities inherent to

the high dimension. Then we will discuss some of the work carried out during this thesis

but has been left unfinished for various reasons.

1.1 Clustering and density estimation problem

The goal of cluster analysis is to find groups in data so that each element within a group

is more similar to other elements of the same group rather than to those outside of the

group. The literature is rich on this topic, with different approaches coming from statistics

and computer science. A clustering problem has several dimensions: the input data can

be a distance or similarity matrix, the similarity can be for instance a kernel chosen by

expert knowledge. The input can also be a raw data matrix with N rows, the observations

and p columns, the features. Another dimension for clustering methods is ‘hard versus

soft’ assignment of points to clusters. In hard assignment, a point is assigned to a unique

cluster. In soft assignment, for each point, the probabilities of belonging to each clusters

are furnished. This particularity is specific to probabilistic methods. A third dimension is

9



10 CHAPTER 1. INTRODUCTION

flat versus hierarchical clustering. In flat clustering, the output is a partition of the dataset

or the state-space into disjoint clusters whereas in hierarchical clustering the output is a

tree of nested clusters. The latter is a finite sequence of nested partitions. We will give a

glimpse on 4 well-known clustering techniques, K-means, Hierarchical clustering, Spectral

clustering and the Gaussian mixtures model with the Expectation-Maximization algorithm

(EM) which will be our topic of main interest. The reader can refer to [Hennig et al., 2015]

for an extensive review of cluster analysis.

1.1.1 Centroid-Based Clustering: K-means

K-means is a popular method of clustering which aims to partition the data into K clusters

such that the within-cluster sum of squares of distances to the cluster center is minimal. It

has been introduced in signal theory for vector quantization by [MacQueen, 1967]. Given

N points, x1, . . . ,xN in Rp, the goal of K-means is to find a set of centers C = {c1, . . . , cK}
that minimizes the following objective function:

Lk-means(C) =
N∑
i=1

min
c∈C
‖xi − c‖2. (1.1)

Clearly this objective function is not convex and finding an exact solution of this problem is

known to be NP-hard, even for 2-means [Dasgupta, 2008, Aloise et al., 2009]. As a matter

of fact, for K and p fixed, the problem can be solved exactly in O(nKp) iterations [Inaba

et al., 1994]. A simple and yet widely used approximation method to resolve the K-means

minimization problem is Lloyd’s algorithm [Lloyd, 1982]. Today, because of its popularity,

Lloyd’s method is assimilated with the minimization problem of K-means (eq. (1.1)). A

key element of this method is the Voronoi partitioning:

Definition 1. (Voronoi Partition) Given n points in Rp, K points c1, . . . , cK ∈ Rp and a

distance d, a Voronoi partition of Rp consists on K disjoint clusters such that for i ∈ [K],

cluster i is the set of points satisfying d(x, ci) ≤ d(x, cj) for all j 6= i.

Lloyd’s procedure, depicted in Figure 1.1 and described in Figure 1.2, consists in build-

ing a Voronoi partition of the data from K initial randomly chosen centers and iterate

partitioning with the cell-means of the previous partition. The following lemma will help

us to understand the convergence of the algorithm:

Lemma 1.1.1. Consider a finite set X ⊂ Rp and denote by µ its mean. Let d be a metric.

For any y ∈ Rp, we have that∑
x∈X

d(x,y)2 =
∑
x∈X

d(x,µ)2 + |X |d(µ,y)2. (1.2)
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The reader can refer to Fact 5.1 of Hennig et al. [2015] for a simple proof. This lemma

claims that, after a Voronoi partitioning, replacing a center by the mean of the cell can

not increase the K-means cost. Hence this ensures the convergence of the algorithm.

Unfortunately, Lloyd’s algorithm tends to reach local optima of the K-means objective.

Therefore, several runs of the algorithm are necessary to ensure an acceptable clustering.

Figure 1.1: Llyod’s algorithm with randomly initialized centers and final Voronoi partitions

at different steps: with 1 iteration (left), 3 (middle) and 10 (right) iterations (the algorithm

converged). K-means costs are given on top.

Input: N points x1, . . . ,xN ∈ Rp and the number of clusters K.

Output: Cluster centers ĉ1, . . . , ĉK and clusters assignments.

Init: Set Lold =∞. and chose K seed points c1, . . . , cK . Compute the K-means

cost Lcurr given in eq. (1.1) with these points as centers.

while Lcurr < Lold do

1: Compute the Voronoi partitioning of the data with c1, . . . , cK as centers.

Get K clusters, C1, . . . , CK .

2: For each cluster, compute the sample means ĉ1, . . . , ĉK :

ĉi =
1

|Ci|
∑
xj∈Ci

xj (1.3)

3: Set Lold = Lcurr and compute the new K-means cost Lcurr with ĉ1, . . . , ĉK

as centers.

end while

Figure 1.2: K-means Lloyd’s algorithm

Note that Lloyd’s algorithm has several drawbacks:
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1. It is a hard-assignment method since it assigns points to clusters and does not reflect

a level of uncertainty on the assignments such as a probability of belonging to a

cluster.

2. The number of clusters has to be given, we will see some techniques to select the

number of clusters in Section 2.2.

3. The worst-case time complexity T (n) is superpolynomial, T (n) = 2Ω(
√
n) iterations

[Arthur and Vassilvitskii, 2006] (not bounded above by any polynomial). Fortunately,

in practice it is observed that Lloyd’s algorithm converges quickly to a local minimum.

4. If the initial centers are chosen randomly, the resulting K-means cost can be made

arbitrarily bad compared to the optimal clustering (see section 5.2 of [Hennig et al.,

2015]). K-means++ [Arthur and Vassilvitskii, 2007] addresses this problem by choos-

ing carefully the initial centers in Lloyd’s algorithm, see Figure 1.3 for the procedure.

Furthermore, K-means++ is a logK approximation algorithm for the K-means ob-

jective in the following sense.

Theorem 1.1.1. [Arthur and Vassilvitskii, 2007] Let S be the set of centers output by

the algorithm K-means++ and L(S) be the K-means cost of the clustering obtained

using S as the centers. Then E[L(S)] ≤ O(log(K))L∗, where L∗ is the cost of the

optimal K-means solution.

5. K-means can not distinguish noise or select relevant features. This last point is

particularly important in the case of high dimensional data, since it is generally

accepted that the most relevant clusters lies in subspaces of much smaller dimension,

we will discuss this phenomenon in section 1.3. An idea would be to adapt Lloyd’s

method to the weighted qth-root of the Minkowski metric

dw(x,y) =

p∑
l=1

wl|xl − yl|q, (1.4)

with w a weight vector updated at each iterations. A first method of weighted

K-means has been introduced in [Makarenkov and Legendre, 2001] and further de-

veloped in [Zhexue Huang et al., 2007] (WK-Means) for the Euclidean norm. An ex-

tension to the Minkowski metric (MWK-Means) is proposed in [Cordeiro de Amorim

and Mirkin, 2012] that outperforms K-means and WK-Means. Note that the use of

a different metric has a profound impact on the implementation and running time

since the computation of Minkowski centers is not straightforward.
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Input: N points x1, . . . ,xN ∈ Rp and the number of clusters K.

Init: Choose one center c1 uniformly at random among the data points and add

it to the set S.

for j = 2 to K do

1: Choose a point x from {x1, . . . ,xN} with probability proportional to

minc∈S d(x, c)2 and add it to S.

end for

2: Proceed with K-means algorithm and the set S as initialized centers.

Figure 1.3: K-means++ algorithm

The research on K-means is dense and several variants of this method has been developed.

For instance K-medoids [Kaufman and Rousseeuw, 1990] uses points of the data as centers,

Mini-batch K-means [Sculley, 2010] takes mini-batches of data to reduce significantly com-

putational cost without penalizing too much the K-means cost, or clustering algorithms

that enjoy strong theoretical guarantees on non-worst case scenarios using the notion of

stability [Ostrovsky et al., 2006]. The reader can refer to [Hennig et al., 2015] for further

details on this topic.

1.1.2 Agglomerative Hierarchical Methods

In this section, we will present the Agglomerative Hierarchical clustering, a very popular

method due to its simplicity and the nested structure of clusters that it produces. The

idea of Hierarchical clustering is to form a hierarchy of clusters (i.e. nested partitions)

according to a merging rule which helps us to see how clusters are related to each other

(a structure unavailable with the other methods). There exist two types of hierarchical

clustering: agglomerative and divisive. The first type consists in starting from N clusters,

each containing one element of the dataset and in merging clusters iteratively into larger

groups according to an agglomeration rule and a similarity. This process builds a hierarchy,

until finding only one cluster that contains the whole dataset. The similarity can be a

Minkowski distance, the cosine similarity or other distance such as Hamming, Hellinger or

Mahalanobis. The divisive procedure is the opposite of the agglomerative: starting from

the whole dataset and splitting iteratively until obtaining N clusters. Divisive methods

are generally very expensive, with a complexity of O(2n) [Guénoche et al., 1991], and are

therefore not used in practice. Let us consider the agglomerative procedure and a metric

d, a simple implementation is to build the dissimilarity matrix of the N original clusters
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{x1}, . . . , {xN} noted S = (dij = d(xi,xj))i,j∈[N ]2 (which is symmetric) and consider the

couple (i, j) such that dij is the smallest dissimilarity in S. We create a new cluster i ∪ j,
add it to the matrix S with the rule di∪j,k = min{dik, djk} and remove the rows and columns

of sets i and j from S. The iteration of this procedure leads to one final cluster containing

all points in the dataset. This method is called ‘Single-linkage’ clustering [Graham and

Hell, 1985]; a naive implementation of it with a complexity of O(n3) is given in Figure 1.5.

Note that it can be optimized to O(n2)[Murtagh and Contreras, 2012]. The hierarchy

can be visualized via a binary tree called “dendrogram”, see an illustration in Figure 1.4.

This method has a severe drawback called ‘chaining phenomenon’ referring to the fact that

clusters can be merged due to the presence of close points even if they contain other points

that are very distant. An alternative method called ‘Complete-linkage’ clustering solves

this problem by taking the maximum instead of the minimum in step 1 of the Single-linkage

algorithm in Figure 1.5. Similarly to Single-linkage method, the complexity of the naive

implementation is O(n3) but can be optimized to O(n2). Another popular method worth

mentioning for its use of cluster centers is Ward’s method[Jr., 1963] also called Ward’s

minimum variance method which consists in optimizing an objective function, generally

the sum of squared Euclidean distances between points. Let us consider the merging cost

of combining clusters A and B. If A ∩B = ∅, then

∆(A,B) =
∑
i∈A∪B

‖xi − cA∪B‖2 −
∑
i∈A

‖xi − cA‖2 −
∑
i∈B

‖xi − cB‖2

=
nAnB
nA + nB

‖cA − cB‖2,

where cI and nI are the center of cluster I and its size respectively. This quantity is

positive, hence the within-group variance increases when merging two clusters. Ward’s

method seek to minimize this growth. Alternatively, this amounts to looking for the

maximum between-cluster variance.

We can notice that agglomerative methods might differ on the computation of dissim-

ilarities following the agglomeration process (step 2 in Figure 1.5). Lance and Williams

developed an updating formula [Lance and Williams, 1967] for these dissimilarities that

generalizes several agglomerative methods. The dissimilarity between a new merged cluster

i ∪ j and cluster k is

d(i ∪ j, k) = αid(i, k) + αjd(j, k) + βd(i, j) + γ|d(i, k)− d(j, k)|, (1.5)

where the parameters αi, αj, β, γ depend on the clustering criterion. For instance, the

single-linkage method is recovered by setting αi = αj = 1/2, β = 0 and γ = −1/2, the
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complete-linkage method with αi = αj = 1/2, β = 0 and γ = 1/2 and Ward’s method

can be expressed in this framework [Batagelj, 1988, Murtagh, 1985, Jambu, 1989] with

αi = (ni + nk)/(ni + nj + nk), αj = (nj + nk)/(ni + nj + nk), β = −nk/(ni + nj + nk)

and γ = 0. The reader can find parameters for other methods in Table 6.1 of [Hennig

et al., 2015]. More efficient algorithms rely on ‘Nearest Neighbor Chains’. We invite the

Figure 1.4: A dataset with 4 clusters (top-left) used with the Agglomerative hierarchi-

cal clustering and the corresponding dendrogram, single-link (top-right), complete-link

(bottom-left) and Ward’s method (bottom-right). A simple way for finding clusters would

be to cut the dendrogram with a horizontal line from bottom to top until finding the

number of clusters desired. Note the difficulty to recover the 4 original clusters.

reader to refer to [Murtagh and Contreras, 2012] for a detailed review on Agglomerative

hierarchical methods.

1.1.3 Spectral clustering

Recently, spectral clustering has become widely used thanks to its performance compared

to traditional clustering techniques and its computational attractiveness. One interesting

feature of spectral clustering is that it does not make any assumption on the form of

the clusters contrary to K-means. This method of clustering relies deeply on the graph

theory [Donath and Hoffman, 1973, Fiedler, 1973]. The reader can refer to [von Luxburg,
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Input: A similarity matrix S.

while at least 2 objects remain in S do

1: Determine the smallest dissimilarity dij in S.

2: Let m be the size of S, compute the dissimilarities for the new cluster i∪j:

di∪j,k = min{dik, djk}, k ∈ [m], k 6= i, j. (1.6)

3: Add the dissimilarities of i ∪ j in S and remove those of clusters i and j.

end while

Figure 1.5: Simple single-linkage hierarchical clustering

2007] and [Spielman and Teng, 2007] for a survey of the literature on this topic. Although

several methods exist which all are referred to as “Spectral clustering” we will describe

the simplest formulation of this method. Let us consider x1, . . . ,xN , N points in Rp and

a similarity measure sij ≥ 0 between xi and xj. We can construct the similarity matrix

S = (sij)i,j∈[N2] which can be represented by a similarity graph G = (V,E) where the

vertices v1, . . . , vN correspond to the points x1, . . . ,xN and the edge between vi and vj

exists if sij 6= 0 and thus has weight sij. Note that G is an undirected graph, i.e. sij = sji.

The main idea of spectral clustering is to find a partition of G with minimal cuts, that is

to find a partition such that the cumulative weight of the edges between different groups is

low and those within a group are high. This can be done by analyzing the spectrum of the

Laplacian matrix L of S and a clustering such as K-means in a low-dimensional subspace

spanned by eigenvectors of L corresponding to its largest eigenvalues. It is clear that a

sparse graph G is interesting for such a cutting problem. There exist several methods to

sparsify S:

K-nearest neighbor graphs: Modify the similarity matrix S by keeping for each nodes

the k-nearest neighbors and set sij = 0 for the other vertices. We can make this

graph undirected in different ways, see section 2.2 of [von Luxburg, 2007].

ε-neighborhood graph: We connect nodes vi and vj if si,j ≥ ε, this graph is usually

unweighted.

We will note W the resulting weighted adjacency matrix. The reader can find more

details on the behavior of these different graphs in section 8 of [von Luxburg, 2007]. The

simplest approach for spectral clustering is to consider the ‘unnormalized graph Laplacian’,

L = D −W , where D is a diagonal matrix called the ‘degree matrix’ and the element i

of its diagonal is the degree of the vertex vi, di =
∑N

j=1 sij. An important property of this



1.1. CLUSTERING AND DENSITY ESTIMATION PROBLEM 17

matrix is that its smallest eigenvalue is 0 and the corresponding eigenvector is the constant

vector (see Proposition 1 of [von Luxburg, 2007]). In the sequel, we say that A ⊂ G is

connected if any two vertices in A can be joined with a path such that all the intermediate

vertices lie in A. The subgraph A is a connected component if it is connected and there

are no connections between A and its complement Ā. An important result for spectral

clustering is the following proposition:

Proposition 1 (Number of connected components, proposition 2 in [von Luxburg, 2007]).

The multiplicity k of the eigenvalue 0 of L is the number of connected components A1, . . . , Ak

in the graph G. The eigenspace of eigenvalue 0 is spanned by the indicator vectors 1A1 , . . . , 1Ak
of these components.

The simplest implementation of the spectral clustering is given in Figure 1.6. Two other

Input: A similarity matrix S ∈ RN×N and the number of clusters to find k.

Output: Clusters A1, . . . , Ak.

1: Construct the weighted adjacency matrix W .

2: Compute the unnormalized Laplacian L.

3: Compute the k eigenvectors v1, . . . ,vk of L corresponding to the k smallest

eigenvalues of L.

4: Let V ∈ RN×k be the matrix containing the vectors v1, . . . ,vk as columns.

5: For i ∈ [N ], let yi ∈ Rk be the vector corresponding to the ith row of V .

6: Cluster the points (yi)i∈[N ] ∈ Rk with the k-means algorithm into clusters

C1, . . . , Ck.

7: Construct clusters A1, . . . , Ak with Ai = {i,yi ∈ Ci}

Figure 1.6: Unnormalized spectral clustering according to [von Luxburg, 2007]

types of Laplacian matrices are used in the literature called “normalized graph Laplacians”

and offer theoretical advantages compared to the unnormalized Laplacian (see section 8.4

of [von Luxburg, 2007]). They are defined as follows:

Lsym = I −D−1/2WD
1/2 and Lrw = I −D−1W . (1.7)

We will refrain from addressing these two matrices, we shall content ourselves with saying

that there exist more efficient spectral clustering algorithms called “Normalized spectral

clustering” that are of the same spirit as Figure 1.6, the reader can refer to [Shi and

Malik, 2000, Ng et al., 2001, von Luxburg, 2007] for a deeper analysis of the use of these

Laplacians. We will simply give an insight on the mechanics behind the spectral clustering
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algorithm and we shall highlight the problem from a graph point of view. The spectral

algorithm is an approximation to the problem of partitioning the graph G. For A and B,

two disjoint subsets of the vertex set V of G we define the cut of A and B as:

cut(A,B) =
∑

i∈A,j∈B

wij. (1.8)

Two common objective functions to minimize for such partitioning are RatioCut [Hagen

and Kahng, 1992] and Ncut [Shi and Malik, 2000] defined as

RatioCut(A1, . . . , Ak) =
k∑
i=1

cut(Ai, Āi)

|Ai|
,

Ncut(A1, . . . , Ak) =
k∑
i=1

cut(Ai, Āi)

vol(Ai)
,

where |A| is the number of vertices in A and vol(A) =
∑

i∈A di. Note that these two

objective functions try to achieve a ”balanced” partitioning, a small component leads to a

high value of these objective functions. Unfortunately, solving such a partitioning problem

is NP-hard [Wagner and Wagner, 1993, von Luxburg, 2007]. Fortunately, a relaxation of

this problem with RatioCut is:

min
H∈RN×K

Tr(HTLH) subject to HTH = I, (1.9)

and can be solved explicitly. It turns out that choosing H as the matrix with the first

k eigenvectors of L as columns is a solution of Equation (1.9) (see 5.2 of [von Luxburg,

2007]) which is exactly step 4 in Figure 1.6. Similar relaxation can be done for the Ncut

objective function

min
U∈RN×k

Tr(UTD−
1/2LD−

1/2U) subject to UTU = I. (1.10)

These relaxations do not give guarantees on the quality of the solutions and the resulting

partition can be significantly worse than the optimal one in regards to RatioCut and Ncut

[Guattery and Miller, 1998, Nadler and Galun, 2007]. In particular, spectral clustering

methods are global methods and fail to identify clusters at different scales [Nadler and

Galun, 2007]. But these approximations are computationally attractive and very simple

to solve, especially with a sparse weighted adjacency matrix.

1.1.4 Finding the number of clusters

The determination of the number of clusters in a dataset is fundamental and still unsolved

problem. Numerous approaches to this problem has been developed over the years, see
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[Hardy, 1996, Milligan and Cooper, 1985] and Chapter 26 of [Hennig et al., 2015]. Several

popular heuristics rely on a graphical interpretation of the quality of clustering. The

most popular is the Elbow criterion which consists in performing clusterings with different

number of clusters K and computing the ratio of the between group variance and the

total variance (the F-test statistic) for each K. The detection of an ‘elbow’ indicates

the appropriate number of clusters; i.e. clusterings with larger K do not really improve

the explained proportion of the variance. Another technique that relies on a graphical

interpretation is the Silhouette method [Rousseeuw, 1987] which assesses how well a point

is assigned to its cluster compared to nearest neighbor cluster. A more formal approach is

the ‘Gap Statistic’ developed in [Tibshirani et al., 2001], an efficient statistical procedure

that compares the change in within-cluster dispersion with that expected under a reference

null distribution. In the case of the spectral clustering, one can use the ‘eigengap’ heuristic

on the eigenvalues λ1, . . . , λN of the Laplacian matrix by choosing K such that λ1, . . . , λK

are small and λK+1 is relatively large (see section 8.3 of [von Luxburg, 2007]). Finally, a

model selection criterion widely used in probabilistic models and important in our work is

the Bayesian Information Criterion (BIC). This method has been developed in [Schwarz,

1978] following the work of Akaike on the AIC [Akaike, 1973]. The idea of this method,

under the assumption that the observations {x1, . . . ,xN} are drawn from an exponential

family, is to derive from the approximation of the asymptotic expansion of the Bayes

estimator the following quantity

BIC = ̂̀
j(θ̂j,x)− 1

2
kj log(N), (1.11)

where ̂̀j(θ̂,x) is the maximized log-likelihood of model j, θ̂j is the MLE and kj is the

number of free parameters of model j. Therefore, the model selection rule is to choose the

model for which the BIC is the largest. BIC has several nice properties; in particular, it

penalizes the complexity of the model which is interesting since choosing the model only

on the criterion of the likelihood in the case of Gaussian mixtures leads to select as many

components as there are points.

One can remark that all procedures mentioned previously require to perform a large

number of clusterings and select the best model according to a given criterion. Such an

approach is computationally expensive. In Section 2.2.2, we try to address this challenge by

iteratively penalizing the weight vector of large Gaussian mixture in an EM-like procedure.
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1.2 The Gaussian Mixture Model

We will now focus on the Gaussian Mixture Model (GMM), an important framework

for clustering problems. Unlike the other previously seen methods, it is a probabilistic

approach to clustering. One of the main advantages of model-based clustering is that the

resulting partition can be interpreted statistically. It assumes that the observations are

drawn from a mixture distribution the components of which are Gaussian with parameters

(µk,Σk), the density of the k-th mixture component is

ϕµk,Σk
(x) =

1

(2π)p/2|Σk|1/2
exp

(
− 1

2
(x− µk)>Σ−1

k (x− µk)
)
. (1.12)

Let θ be the list containing all the unknown parameters of a Gaussian mixture model:

the family of means µ = (µ1, . . . ,µK) ∈ (Rp)K , the family of covariance matrices Σ =

(Σ1, . . . ,Σk) ∈ (Sp++)K and the vector of cluster probabilities π = (π1, . . . , πK) ∈ [0, 1]K

such that 1>Kπ = 1. The density of one observation X1 is then given by:

pθ(x) =
K∑
k=1

πkϕµk,Σk
(x), ∀x ∈ Rp, (1.13)

where θ = (µ,Σ,π). This model can be interpreted from a latent variable perspective.

Let Z be a discrete random variable taking its values in the set [K] and such that P(Z =

k) = πk for every k ∈ [K]. The random variable Z indicates the cluster from which the

observation X is drawn. Considering that all the conditional distributions X|Z = k are

Gaussian, we get the following formula for the marginal density of X:

pθ(x) =
K∑
k=1

P(Z = k)pθ(x|Z = k) =
K∑
k=1

πkϕµk,Σk
(x), ∀x ∈ Rp. (1.14)

In the clustering problem, the goal is to assign X to a cluster or, equivalently, to predict

the cluster Z of the vector X. A prediction function in such a context is g : Rp → [K]

such that g(X) is as close as possible to Z. If we measure the risk of a prediction function

g in terms of misclassification error rate Rθ(g) = Pθ(g(X) 6= Z), then it is well known

that the optimal (Bayes) predictor g∗θ ∈ arg ming Rθ(g) is provided by the rule

g∗θ(x) = arg max
k∈[K]

τk(x,θ),

where τk(x,θ) = pθ(Z = k|X = x) stands for the conditional probability of the latent

variable Z given X. In the Gaussian mixture model, Bayes’s rule implies that

τk(x,θ) =
pθ(x|Z = k)P(Z = k)

pθ(x)
=

πkϕµk,Σk
(x)∑K

k′=1 πk′ϕµk′ ,Σk′
(x)

(1.15)
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Xi
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{µk}{Σk}

{πk}

Figure 1.7: The Gaussian Mixture Model.

Since the true value of the parameter θ is not available, formula (1.15) can not be directly

used for solving the problem of clustering. Instead, a natural strategy is to estimate θ by

some vector θ̂, based on a sample X1, . . . ,Xn drawn from the density pθ, and then to

define the clustering rule by

ĝ(x) = g∗
θ̂
(x) = arg max

k∈[K]
τk(x, θ̂) = arg max

k∈[K]
π̂kϕµ̂k,Σ̂k

(x). (1.16)

A common approach to estimating the parameter θ is to rely on the likelihood maximiza-

tion. Let X1, . . . ,XN with X i ∈ Rp be a set of iid observations drawn from the density pθ

given by (1.13). The graphical model in Figure 1.7 depicts the scheme of the observations.

The log-likelihood of the Gaussian mixture model is

`N(θ) =
N∑
i=1

log pθ(xi) =
N∑
i=1

log

{ K∑
k=1

πkϕ(µk,Σk)(xi)

}
. (1.17)

Because of the presence in this equation of the logarithm of a sum, the maximization of

the log-likelihood is a difficult nonlinear and nonconvex problem. In particular, this is not

a exponential family distribution yielding simple expressions. A commonly used approach

for approximately maximizing (1.17) with respect to θ is the Expectation-Maximization

(EM) Algorithm [Dempster et al., 1977] that we recall below.

Summarizing the content of this section, we can describe the following natural approach

to solving the clustering problem under Gaussian mixture modeling assumption:

1.2.1 EM Algorithm

The goal of the EM algorithm is to approximate a solution of the problem (1.18). Since

this optimization problem contains a nonconvex cost function, it is impossible to design a

polynomial time algorithm that provably converges to the global maximum point. Instead,

the EM algorithm provides a sequence {θ̂(t)}t∈N of parameter values such that the cost



22 CHAPTER 1. INTRODUCTION

Input: data vectors x1, . . . ,xN ∈ Rp and the number of clusters K

Output: function ĝ : Rp → [K]

1: Estimate θ = (π,µ,Σ) by maximizing the log-likelihood:

θ̂ ∈ arg max
θ∈Θ

`(θ|x1, . . . ,xN ) = arg max
π,µ,Σ

N∑
i=1

log

{ K∑
k=1

πkϕµk,Σk
(xi)

}
. (1.18)

2: Output the clustering rule:

ĝ(·) = arg max
k∈[K]

π̂kϕµ̂k,Σ̂k
(·). (1.19)

Figure 1.8: Clustering under Gaussian mixture modeling

function (i.e., the log-likelihood) evaluated at these values forms an increasing sequence

that converges to a local maximum.

The main idea underlying the EM algorithm is the following representation of the log-

likelihood of one observation derived from the log-sum inequality:

log

{ K∑
k=1

πkϕµk,Σk
(xi)

}
= max
τ∈[0,1]K τ>1K=1

K∑
k=1

{
τk logϕµk,Σk

(xi) + τk log(πk/τk)
}
. (1.20)

Let us denote by T = (τi,k) a N×K matrix with nonnegative entries such that T 1K = 1n,

that is each row of T is a probability distribution on [K]. Combining (1.18) and (1.20),

we get

θ̂ ∈ arg max
θ=(π,µ,Σ)

max
T

N∑
i=1

K∑
k=1

{
τi,k logϕµk,Σk

(xi) + τi,k log(πk/τi,k)
}
. (1.21)

The great advantage of this new representation of the log-likelihood function is that the

cost function in (1.21), considered as a function of θ and T , is biconcave, i.e., it is concave

with respect to θ for every fixed T and concave with respect to T for every fixed θ.

In such a situation, one can apply the alternating maximization approach to sequentially

improve on an initial point. In the present context, an additional attractive feature of the

cost function in (1.21) is that the two optimization problems involved in the alternating

maximization procedure admit explicit solutions.

Lemma 1. Let us introduce the cost function

F (θ,T ) =
N∑
i=1

K∑
k=1

{
τi,k logϕµk,Σk

(xi) + τi,k log(πk/τi,k)
}
. (1.22)
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Input: data vectors x1, . . . ,xN ∈ Rp and the number of clusters K

Output: parameter estimate θ̂ = {µ̂k, Σ̂k, πk}k∈[K]

1: Initialize t = 0, θ = θ0.

2: Repeat

3: Update the parameter T :

τ ti,k =
πtkϕµtk,Σ

t
k
(xi)∑

k′∈[K] π
t
k′ϕµt

k′ ,Σ
t
k′

(xi)
.

4: Update the parameter θ:

πt+1
k =

1

N

N∑
i=1

τ ti,k, µt+1
k =

1

Nπt+1
k

N∑
i=1

τ ti,kxi,

Σt+1
k =

1

Nπt+1
k

N∑
i=1

τ ti,k(xi − µt+1
k )(xi − µt+1

k )>.

5: increment t: t = t+ 1.

6: Until stopping rule.

7: Return θt.

Figure 1.9: EM algorithm for Gaussian mixtures

Then, the following two optimization problems

θ̂(T ) ∈ arg max
θ

F (θ,T ), T̂ (θ) ∈ arg max
T

F (θ,T ) (1.23)

has explicit solutions given by

π̂k =
1

N

N∑
i=1

τi,k, µ̂k =
1

Nπ̂k

N∑
i=1

τi,kxi, ∀k ∈ [K], (1.24)

Σ̂k =
1

Nπ̂k

N∑
i=1

τi,k(xi − µ̂k)(xi − µ̂k)>, ∀k ∈ [K], (1.25)

τ̂i,k =
πkϕµk,Σk

(xi)∑
k′∈[K] πk′ϕµk′ ,Σk′

(xi)
, ∀k ∈ [K], ∀i ∈ [N ]. (1.26)

Based on this result, the EM algorithm is defined as in Figure 1.9. The algorithm oper-

ates iteratively and needs a criterion to determine when the iterations should be stopped.

There is no clear consensus on this point in the statistical literature, but it is a commonly

used practice to stop when one of the following conditions is fulfilled:
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i) The number of iterations t exceeds a pre-specified level tmax.

ii) The increase of the log-likelihood over past t0 iterations is not significantly different

from zero: `N(θt)− `N(θt−t0) ≤ ε for some pre-specified values t0 ∈ N and ε > 0.

EM is conceptually easy and each iteration increases the log-likelihood:

`N(θt+1) ≥ `N(θt), ∀t ∈ N.

The complexity at each step of the EM algorithm is O(KNp2) and it usually requires

many iterations to converge. In a high-dimensional setting when p is large, the quadratic

dependence on p may result in prohibitively large running times. However, the computation

of the elements of the covariance matrices Σt
k and the mean vectors µtk can be parallelized

which may lead to considerable savings in the running time.

1.2.2 K-means from the EM angle

In this section, we will see that the K-means problem is closely related to the EM algorithm.

We rewrite the minimization problem of K-means defined in eq. (1.1) as follows

min
c1,...,cK

min
R∈{0,1}N×K

N∑
i=1

K∑
k=1

rik‖xi − ck‖2, (1.27)

where, in the matrix R, the rows sum to 1. One can solve this problem by repeating two

steps, the first one consists in minimizing the objective function with respect to c1, . . . , cK

with R fixed (Maximization step) and the second one consists in minimizing the objective

function with respect to R with c1, . . . , cK fixed (Expectation step). Consider the E-step

and note that the objective function is linear with respect to R. It consists for a data point

xi, to find the cluster k such that k = arg minj∈[K] ‖xi− cj‖2. For the M-step, setting the

gradient with respect to ck to 0 gives us

2
N∑
i=1

rik(xi − ck) = 0, (1.28)

which leads to

ck =

∑N
i=1 rikxi∑N
i=1 rik

. (1.29)

Since
∑N

i=1 rik is the size of the cluster k, we recovered Lloyd’s algorithm.
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1.3 The curse of dimensionality

The expression ‘Curse of dimensionality’ introduced by R. Bellman in his book on dynamic

programming [Bellman, 1957] refers to the problems related to high dimension. One can see

that evaluating a function on the segment (0, 1) with a step size of 0.1 is straightforward.

However, evaluating the function in a grid of dimension 10 requires 1010 computations which

can be intractable even today within a reasonable time. Many computational and statistical

problems arise in this setting. Sometimes the literature refers to a ‘high dimensional’ setting

when p� n and more precisely when the model considered has more parameters or degrees

of freedom than there are observations. In the sequel, we recall some classical phenomena

that appear in this context and focus on the clustering with high dimensional data.

We saw previously different clustering methods that rely on a distance such as the

Euclidean distance. It turns out that in a high dimensional setting, the notion of nearest

point vanishes: the minimal distance increases but on the other hand the variance of the

distance between points has a slower increase. Consider 2 p-dimensional random vectors

X,X ′ with i.i.d. entries and the Euclidean norm, the scaled deviation is then

sdev[‖X −X ′‖2]

E[‖X −X ′‖2]
≈ 1
√
p
, (1.30)

and goes to 0 when p → ∞. A direct consequence of such distance concentration phe-

nomenon is the loss of relevance of the methods based on discriminating near and far

neighbors such as those studied in the previous section (nearest center for K-means, ag-

glomeration in hierarchical clustering or constructing adjacency graph for spectral cluster-

ing). In the clustering context, a strong assumption for ensuring the separation of clusters

would be to consider the inter-cluster distance dominant compared to the variance within

each clusters. Another phenomenon is the “error accumulation”. Consider the classical

linear regression setting Y = Xβ∗+ε withX an orthogonal matrix in RN×p and ε1, . . . , εN

i.i.d. centered with variance σ2. The least-squares estimator β̂ = arg minβ∈Rp ‖Y −Xβ‖2

has an estimation error given by

E[‖β̂ − β∗‖2] = pσ2. (1.31)

Therefore we can see that the estimation error increases linearly with the dimension. Fur-

thermore, an interesting phenomenon that occurs in high dimension is that spaces are

mostly empty and the realizations of a p-dimensional random vector with a uniform proba-

bility distribution on the unit ball lie with high probability close to a hypersphere. There-

fore, the data belong mostly to a p − 1 dimensional subspace. Interestingly, the ratio of
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the volume of a unit ball and the volume of the unit hypercube goes to 0 as p → ∞
(see section 2.3 of [Zimek et al., 2012]). This means that most of the volume lies in the

corner of the hypercube. Therefore, any method based on a spherical distance such as

the Euclidean norm is deficient in this context. One can consider a probabilistic approach

to overcome the issues with high dimension, but the näıve model-based clustering suffers

over-parametrization. In the Gaussian mixture model of K components in dimension p,

the number of free parameters to estimate is

ν = (K − 1)︸ ︷︷ ︸
Weights

+ Kp︸︷︷︸
Means

+ Kp(p− 1)︸ ︷︷ ︸
Covariances Matrices

, (1.32)

which for p = 100 and K = 5 is 125704. Moreover, the evaluation of τ̂i,k in eq. (1.26)

requires the computation of the inverse of the covariance matrix Σ̂k which is called the

precision matrix. If n < p the matrices Σ̂k with k ∈ [K] are ill-conditioned and the

precision matrices are prone to large numerical errors or more often are singular and the

problem can not be solved.

Several popular methods are used to overcome these issues. One can reasonably consider

that several variables are correlated or that projections on many directions are irrelevant

and, therefore, clusters may live on a lower-dimensional subspace. A first approach would

be to perform a dimension reduction like Principal Component Analysis (PCA) but this

leads to a decoupling of the dimension reduction task from the clustering task and may

lead to a poor selection of the subspace [Bouveyron and Brunet, 2013], keeping information

from irrelevant dimensions. Moreover, the resulting linearly transformed dimensions are

difficult to interpret. Another approach called “feature selection” consists in selecting the

most relevant features but fails when clusters live in different subspaces. This scenario

leads to the development of “subspace clustering” techniques that go one step further by

selecting the most relevant features for each cluster separately (see [Parsons et al., 2004]

for a review on this topic).

In the rest of this chapter, we discuss some approaches based on the regularization

technique and make sparsity assumption on the structure of the precision matrices in the

Gaussian mixture model. The goal is to reduce the number of free parameters and tackle

the problem of estimating the inverse of the covariance matrix. In section 2.1, we address

this challenge by studying some nice structural properties of precision matrices.

The reader can find a more thorough overview of high dimensional statistics in Giraud

[2014], Zimek et al. [2012], Bühlmann and van de Geer [2011]. For a survey of clustering

in high dimension, see [Bouveyron and Brunet, 2013, Parsons et al., 2004].



Chapter 2

Partial contributions to clustering

In this chapter, we present some work carried out during this thesis which have unfortu-

nately not been able to be the subject of an in-depth study that can be published. The first

part deals with the sparsity hypothesis of the precision matrices within a high dimensional

Gaussian mixture and adapts the single-component Graphical Lasso from [Friedman et al.,

2007] to the mixture setting. In the second part, we assume that the weight vector of

the mixture is sparse in order to obtain an estimator of the number of components in the

mixture that is generally unknown.

2.1 Graphical Lasso for Gaussian mixtures

As we saw in the previous sections, the number of free parameters in a full GMM with K

components in dimension p are (K−1)+Kp+Kp(p+1)/2 which means, for instance, that

for K = 5 and p = 100 we have 125704 parameters to estimate. In this high dimensional

setting, the EM algorithm experiences severe performance degradation. In particular, the

inversion of the covariance matrices are one source of error. One way to circumvent these

problems is to use regularization. To this end, we will make a structural assumption

on the inverse of the covariance matrices, called precision or concentration matrices, of

a component. The work presented in this chapter is inspired by [Friedman et al., 2007],

[Banerjee et al., 2008], [Yuan and Lin, 2007] and [Meinshausen and Bühlmann, 2006] where

it is suggested to penalize the off-diagonal entries of the precision matrix of a Gaussian

graphical model. We do an attempt to generalize this work to the Gaussian mixture model.

We consider X = (X(1), . . . , X(p)), a random vector admitting a p-dimensional normal

distribution N (µ,Σ) with a non-singular Σ. One can construct an undirected graph G =

(V,E) with p vertices corresponding to each coordinate and, E = (ei,j)1≤i<j≤p, the edges

27
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between the vertices describing the conditional independence relation amongX(1), . . . , X(p).

If in this graph, ei,j is absent in E if and only if X(i) and X(j) are independent conditionally

to the other variables {X(l)} with l 6= i, j (denoted X(i) ⊥⊥ X(j)|X(l) l 6= i, j). Then G

is called the Gaussian concentration graph model for the Gaussian random vector X.

This representation is particularly interesting in the study of the inverse of the covariance

matrix. Let us denote Σ−1 = Ω = (ωi,j) the precision matrix. The entries of this matrix

satisfy ωi,j = 0 if and only if X(i) ⊥⊥ X(j) conditionally to all the other variables. We recall

in the following lemma this well-known result

Lemma 2.1.1 (Conditional independence in Gaussian concentration graph model). Con-

sider X = (X(1), . . . , X(p)), a p-dimensional random vector with a multivariate normal dis-

tribution N (µ,Σ), and set Σ−1 = Ω = (ωi,j). Then X(i) ⊥⊥ X(j)|{X(l) : l /∈ {i, j}} ⇐⇒
ωi,j = 0 with l 6= i, j

Proof. This result can be found in [Edwards, 2000]. Consider the density of X

ϕµ,Σ(x) =
1

(2π)p/2|Σ|1/2
exp

(
− 1

2
(x− µ)>Σ−1(x− µ)

)
. (2.1)

It can be rewritten as

ϕµ,Σ(x) = exp(α + βTx− 1

2
xTΩx), (2.2)

with β = Ωµ and α = 1
2

log(|Ω|)− 1
2
µTΩµ− p

2
log(2π). Then, the previous equation can

be rewritten as

exp
(
α +

p∑
j=1

βjx
(j) − 1

2

p∑
j=1

p∑
i=1

ωi,jx
(j)x(i)

)
. (2.3)

Now, for three random variables X, Y, Z, we have X ⊥⊥ Y |Z if and only if the joint density

can be factorized into two factors fX,Y,Z(x, y, z) = h(x, z)g(y, z), with h anf g two functions.

Then, in the light of eq. (2.3), we have X(i) ⊥⊥ X(j)|{X(l) : l /∈ {i, j}} ⇐⇒ ωi,j = 0.

The first result available in the literature on gaussian graphical models focused on

the estimation of the graph structure. In particular [Dempster, 1972] developed a greedy

forward or backward search method to estimate the set of non-zero entries in the con-

centration matrix. The forward method relies on initializing an empty set and selecting

iteratively an edge with an MLE fit for O(p2) different parameters. The procedure stops

according to a suitable selection criterion. The backward method proceeds in the same

manner by starting with all edges and operating deletions. It is obvious that such methods

are computationally intractable in high dimension. In [Meinshausen and Bühlmann, 2006],

the authors studied a neighborhood selection procedure with lasso. The goal is to estimate
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the neighborhood neX(i) of a node X(i) which is the smallest subset of G\{X(i)} such that

X(i) ⊥⊥
{
X(j) : X(j) ∈ G \ {neX(i)}

}
|Xne

X(i)
. The estimation of the neighborhood is cast

as a sparse regression problem and tackled with a lasso penalization. The authors show

that this procedure is consistent for sparse high dimensional graphs and computationally

efficient. More precisely, let θ(i) ∈ Rp be the vector of coefficients of the optimal prediction,

θ(i) = arg min
θ:θi=0

E
[(
X(i) −

p∑
k=1

θkX
(k)
)2
]
, (2.4)

then the components of θ(i) are determined by the precision matrix, θ
(i)
j = −ωi,j/ωi,i.

Therefore, the set of neighbors of X(i) ∈ G is given by

neX(i) = {X(j), j ∈ [p] : ωi,j 6= 0}. (2.5)

Now, let X be the N×p-dimensional matrix such that the column X(i) is the vector formed

by N of X(i). Given a suitably chosen regularization parameter λ ≥ 0, the Lasso estimate

θ̂i,λ of θ(i) is defined as

θ̂i,λ = arg min
θ:θi=0

( 1

N
‖X(i) − Xθ‖2

2 + λ‖θ‖1

)
. (2.6)

The authors prove under several assumptions that

P (n̂eλX(i) = neX(i))→ 1 when N →∞, (2.7)

and for some ε > 0,

P (Êλ = E) = 1−O(exp(−cN ε)) when N →∞, (2.8)

where Eλ in a estimate of the edge set. Therefore, this method recovers the conditional

independence structure of sparse high-dimensional Gaussian concentration graph at expo-

nential rates. One can estimate the parameters of the model which has been selected by

this method using, for instance ordinary least squares. Such a procedure often suffers from

the instability of the estimator since small changes in the data change the selected model

[Yuan and Lin, 2007, Breiman, 1996]. One difficulty of a method that would perform both

tasks is to ensure that the estimator of the precision matrix is positive definite. [Yuan

and Lin, 2007] proposed a penalized-likelihood method that performs model selection and

parameter estimation simultaneously as well as ensures the positive definiteness of the pre-

cision matrix. Their approach is similar to [Meinshausen and Bühlmann, 2006] as they use
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the `1 penalty, they additionally impose a positive definiteness constraint. Furthermore,

they replace the residual sum of squares by the negative log-likelihood,

−
{N

2
log(|Ω|)− 1

2

N∑
i=1

XT
i ΩX i

}
. (2.9)

The resulting constrained minimization problem over the set of positive definite matrices

is

min
{
− log(|Ω|) +

1

N

N∑
i=1

XT
i ΩX i

}
subject to

∑
i 6=j

|ωi,j| ≤ t and Ω � 0, (2.10)

with t ≥ 0 a tuning parameter. In these formulae we assume that the mean of the Gaussian

distribution is known to be equal to 0. Consider the empirical covariance matrix S =

1/N
∑N

i=1X iX
T
i , eq. (2.10) can be rewritten as

min
{
− log(|Ω|) + tr(SΩ)

}
subject to

∑
i 6=j

|ωi,j| ≤ t. (2.11)

Since the whole problem is convex, the Lagrangian is given by

L(λ,Ω) = − log(|Ω|) + tr(SΩ) + λ
∑
i 6=j

|ωi,j|, (2.12)

where λ is a tuning parameter. A non-negative garrote-type estimator is provided in

[Yuan and Lin, 2007] which requires a good initial estimator of Ω. The authors provided

an asymptotic result:

Theorem 2.1.1 (Theorem 1 from [Yuan and Lin, 2007]). If
√
Nλ→ λ0 ≥ 0 as N →∞,

the lasso-type estimator satisfies

√
N(Ω̂−Ω)→ arg min

U=UT
(V(U)),

where the convergence is in distribution and V is defined by the formula

V(U) = tr(UΣUΣ) + tr(UW ) + λ0

∑
i 6=j

{
ui,jsign(ωi,j)I(ωi,j 6= 0) + |ui,j|I(ωi,j = 0)

}
in which W is a random symmetric p × p matrix such that vec(W ) ∼ N (0,Λ), and Λ is

such that

cov(wi,j, wi′,j′) = cov(X(i)X(j), X(i′)X(j′)).
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Unfortunately, the computational complexity of interior point methods for maximizing

eq. (2.12) is O(p6) and at each step, we have to compute and store a Hessian matrix of size

O(p2). These prohibitively large complexities led the research on more specialized methods.

[Banerjee et al., 2008] worked on the same approach, solving a maximum likelihood problem

with an `1 penalty and focusing on the computational complexity by proposing an iterative

block coordinate descent algorithm. The problem to maximize is similar to eq. (2.12)

Ω̂ = arg max
Ω�0

{log(|Ω|)− tr(SΩ)− λ‖Ω‖1}. (2.13)

Note that the `1 norm of a matrix Ω can be expressed as

‖Ω‖1 = max
‖U‖∞≤1

tr(ΩU), (2.14)

injecting this in eq. (2.13) gives

max
Ω�0

min
‖U‖∞≤λ

{
log(|Ω|)− tr(Ω(S +U))

}
. (2.15)

After exchanging the min and the max, we solve the problem for Ω by setting the gradient

to 0. This gives (Ω−1)T − (S + U)T = 0 yielding Ω = (S + U)−1. The dual problem is

then

min
‖U‖∞
{− log(|S +U |)− p}, (2.16)

or by setting W = S +U ,

Σ̂ = Ω̂−1 = arg max log(|W |) s.t ‖W − S‖∞ ≤ λ. (2.17)

We observe the presence of a log-barrier adding the implicit constraint (S + U) � 0.

Furthermore, the dual problem estimates the covariance matrix. To solve this maximization

problem, the authors proposed a Block Coordinate Descent Algorithm that we describe

below (see also Figure 2.1).

It can be proved that the Block Coordinate Descent algorithm converges [Banerjee et al.,

2008], achieving an ε-suboptimal solution to eq. (2.17) and each iterate produces a strictly

positive definite matrix. For a fixed number of sweeps K, the complexity of this algorithm

is O(Kp4). They provide also another algorithm using Nesterov’s first order method which

has a O(p4.5/ε) complexity for ε > 0, the desired accuracy. For any symmetric matrix A,

let A\k\j be the matrix produced by removing column k and row j from A. Let Aj the jth

column of A with the element Ajj removed. It is interesting to note that the dual problem

of Line 6 in fig. 2.1 is

min
x
xTW

(j−1)
\j\j x− S

T
j x+ λ‖x‖1, (2.18)
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1: Input: Matrix S, parameter λ and threshold ε

2: Output: Estimate of W

3: Initialize W (0) := S + λI

4: repeat

5: for j = 1, . . . , p do

6: (a) Let W (j−1) denote the current iterate. Solve the quadratic program

ŷ := arg min
y
{yT (W

(j−1)
\j\j )−1y : ‖y − Sj‖∞ ≤ λ}.

7: (b) Update the rule: W (j) is W (j−1) with column/row W j replaced by ŷ.

8: end for

9: Let Ŵ
(0)

:= W (p).

10: until convergence occurs when

tr
(
(Ŵ

(0)
)−1S

)
− p+ λ

∥∥(Ŵ
(0)

)−1
∥∥

1
≤ ε.

Figure 2.1: Block Coordinate Descent Algorithm

and strong duality holds, it can best casted as

min
x
‖Qx− b‖2

2 + λ‖x‖1, (2.19)

with Q = (W
(j−1)
\j\j )1/2 and b := 1

2
Q−1Sj. Therefore, we recover the Lasso problem. More

precisely, the algorithm can be interpreted as a sequence of iterative Lasso problems. This

approach is similar to another paper that we would like to mention [Friedman et al., 2007].

The authors proposed a faster algorithm based on the Block Coordinate Descent algorithm

from [Banerjee et al., 2008] called Graphical Lasso. They estimate the matrix W = Ω−1

by performing iterative permutations of the columns of this matrix to make the target

column the last for a coupled Lasso problem. The matrices W and S will be presented as

following

W =

[
W 11 w12

w21 w22

]
, S =

[
S11 s12

s21 s22

]
, (2.20)

and the Graphical Lasso algorithm is described in Figure 2.2. The Lasso problem can

be solved via a coordinate descent, the reader can refer to [Friedman et al., 2007] for the

procedure. In this problem, the algorithm estimates Σ̂ and returns alsoB = (b(1), . . . , b(p)),

the matrix where each column is the solution of the Lasso problem in eq. (2.19) for each
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1: Input: Matrix S, parameter λ and threshold ε

2: Output: Estimate of W and B a matrix of parameters.

3: Initialize W (0) := S + λI and B = 0p×p. The diagonal of W remained unchanged in what

follows.

4: repeat

5: for j = 1, . . . , p do

6: (a) Let W (j−1) denote the current iterate. Solve the Lasso problem in eq. (2.19)

x̂(j−1) = arg min
x

1

2
‖(W (j−1)

11 )1/2x− b‖22 + λ‖x‖1, (2.22)

with b := (W
(j−1)
11 )−1/2s12.

7: (b) Update: W (j) is W (j−1) with w12 = W
(j−1)
11 x̂(j−1).

8: (c) Save the parameter x(j−1) in the jth column of B.

9: (d) Permute the columns and rows of W (j−1) such that the jth column is w12, the next

target.

10: end for

11: Let Ŵ
(0)

:= W (p).

12: until convergence occurs.

Figure 2.2: The Graphical Lasso from [Friedman et al., 2007].

column of W . It is easy then to recover Ω since

W =

[
W 11 w12

wT
21 w22

]
.

[
Ω11 ω12

ωT21 ω22

]
=

[
Ip−1 0

0T 1

]
, (2.21)

and

ω12 = −W−1
11w12ω22

ω22 = 1/(w22 −wT
12W

−1
11w12).

Therefore, for j = 1, . . . , p, the permuted target components of Ω are

ω12 = −b(j)ω̂22

ω22 = 1/(w22 −wT
12b

(j)).

In what follows, we will adapt these methods to a Gaussian mixture model. More precisely,

we will assume that each cluster is associated with a sparse Gaussian concentration graph.

We will rely on the Graphical Lasso for estimating the precision matrix and will derive an

EM algorithm for estimating the model parameters.
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2.1.1 Graphical Lasso on Gaussian mixtures

In this part, we present our contribution. We consider a Gaussian mixture model of

K components and our task is to estimate the parameters θ = (θ1, . . . , θK) with θk =

(πk,µk,Ωk), where Ωk is the precision matrix of the kth component of the mixture. We

denote ϕ(µk,Ωk) the Gaussian density of mean µk and precision matrix Ωk. The penalized

log-likelihood is

`penN (θ) =
N∑
i=1

log pθ(xi)− pen(θ) =
N∑
i=1

log

{ K∑
k=1

πkϕ(µk,Ωk)(xi)

}
− pen(θ). (2.23)

We suppose that each component of the mixture has a sparse Gaussian concentration

graph. Therefore, in the spirit of [Banerjee et al., 2008] and [Friedman et al., 2007], we

consider an `1 regularization pen(θk) =
∑K

k=1 λk||Ωk||1,1 with λk > 0. The penalization of

the log-likelihood concerns only the precision matrices Ωk. Regarding the other parameters

(πk,µk), our algorithm is the same as EM and we can use the same iteration technique as

in Lemma 1 to maximize the following cost function

F pen(θ,T ) =
K∑
k=1

( N∑
i=1

{
τi,k logϕµk,Ωk

(xi) + τi,k log(πk/τi,k)
}
− λk||Ωk||1,1

)
. (2.24)

The maximization of this function over θ and T leads to the two following optimization

problems:

θ̂(T ) ∈ arg max
θ

F pen(θ,T ), T̂ (θ) ∈ arg max
T

F pen(θ,T ). (2.25)

For a given T̂ , estimates of (π1, . . . , πK) and (µ1, . . . ,µK) obtained by the first optimization

problem in eq. (2.25) are the same as in the EM algorithm:

π̂k =
1

N

N∑
i=1

τ̂i,k, and µ̂k =
1

Nπ̂k

N∑
i=1

τ̂i,kxi ∀k ∈ [K], (2.26)

and for a given θ̂, the estimate of T obtained by the second optimization problem is

τ̂i,k = Pθ̂(Z = k|X = xi) =
π̂kϕµ̂k,Ω̂k

(xi)∑
k′∈[K] π̂k′ϕµ̂k′ ,Ω̂k′

(xi)
, ∀k ∈ [K], ∀i ∈ [N ]. (2.27)

However, due to the penalty λk||Ωk||1,1, the estimation of Ωk is not straightforward. To

overcome this problem, let us introduce the weighted empirical covariance matrix

ΣN,k =
1

N

∑N
i=1 τi,k(xi − µ̂k)(xi − µ̂k)>∑N

i=1 τi,k
. (2.28)
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The penalized log-likelihood in equation (2.24) can therefore be expanded as follows

F pen(θ,T ) =
K∑
k=1

( N∑
i=1

{
τi,k

(
− p

2
log(2π) +

1

2
log |Ωk| −

1

2
(xi − µk)TΩk(xi − µk)

)
+ τi,k log(πk/τi,k)

}
− λk||Ωk||1,1

)
=− Np

2
log(2π) +

K∑
k=1

(
Nπk

2
log |Ωk|

+
N∑
i=1

{
− τi,k

2
(xi − µk)TΩk(xi − µk) + τi,k log(πk/τi,k)

}
− λk||Ωk||1,1

)
.

Hence, the opposite minimization problem regarding each Ωk is

Ωk ∈ arg min
Ω�0

{
− Nπk

2
log |Ω|+ 1

2

N∑
i=1

τi,k(xi − µk)TΩ(xi − µk) + λk||Ω||1,1
}
. (2.29)

And using the well-known commutativity property of the trace operator and dividing by

Nπk gives

Ωk ∈ arg min
Ω�0

{
− 1

2
log |Ω|+ 1

2
tr(ΣN,kΩ) +

λk
Nπk
||Ω||1,1

}
. (2.30)

In the light of this equation, one can notice that we solve a graphical lasso problem within

each cluster. This minimization problem is convex and can be solved with a block co-

ordinate ascent algorithm as described in [Mazumder, 2012]. This results in an EM-like

alternating minimization procedure summarized in Figure 2.3.

Experimental evaluation

We created a mixture of K ∈ {2, 4, 10, 20, 50} Gaussian components with equally dis-

tributed weights. The centers of the Gaussian densities reside on the nodes of the p-

dimensional unit hypercube. We considered two simple structures of the precision matri-

ces:

1. A multiple of the identity matrix (10−3Ip).

2. The sum of the identity matrix with a matrix the upper and lower parts of which

has a diagonal of ones at the middle.

We sampled N ∈ {100, 500, 1000} points from these densities in dimension p ∈ {2, 10, 50}
and compared the estimation error ‖Ω̂k − Ω∗‖F of EM and our algorithm, where ‖.‖F is

the Frobenius norm. We ran 100 simulations for each scenarios.



36 CHAPTER 2. PARTIAL CONTRIBUTIONS TO CLUSTERING

Input: Observations x1, . . . ,xN ∈ Rp and the number of clusters K.

Output: Parameter estimate θ̂ = {µ̂k, Ω̂k, π̂k}k∈[K]

1: Initialize t = 0, θ = θ0.

for t = 1, . . . , until convergence occurs, do

2: Update the parameter T :

τ ti,k =
πtkϕµtk,Ω

t
k
(xi)∑

k′∈[K] π
t
k′ϕµt

k′ ,Ω
t
k′

(xi)
.

3: Update the parameter θ for each component:

πt+1
k =

1

N

N∑
i=1

τ ti,k,

µt+1
k =

1

Nπt+1
k

N∑
i=1

τ ti,kxi

Σn,k =
1

N2πt+1
k

N∑
i=1

τ t+1
i,k (xi − µ̂t+1

k )(xi − µ̂t+1
k )>

Ωt+1
k ∈ arg min

Ω�0

{
− 1

2
log |Ω|+ 1

2
tr(ΣN,kΩ) +

λk

nπt+1
k

||Ω||1,1
}

end for

Figure 2.3: Graphical lasso algorithm for Gaussian mixtures.
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In the first scenario, with the scaled identity matrix as precision matrix, the estimation

error ‖Ω̂k − Ω∗‖F of our algorithm is slightly better than EM, as shown in Figure 2.4

and Figure 2.5. The increase of the dimension accentuates the gap between EM and our

algorithm. However, the increase of the number of clusters does not have a large impact

on the error.

In the second scenario, the estimation error of our algorithm is smaller than EM except

in one case, in the middle graph of Figure 2.6. In this experiment we wanted to see the

behavior of our algorithm in a non-high-dimensional regime when p = 10, N = 500, K = 4

and it turns out that EM behave better. But as the number of clusters increases (i.e.

the complexity), the error of EM get worse. Finally, in a very high dimensional setting

(p = 50, N = 1000, K ∈ {20, 50}), the estimation error of the graphical lasso on GMM

algorithm is much better than EM.

2.2 Estimating the number of clusters

In this section, we will focus on the problem of estimating the number of clusters, K,

in a Gaussian mixture model. Most of popular clustering methods such as K-Means,

Expectation-Maximization with Gaussian mixture model or spectral clustering need this

parameter in input. Various methods are used to perform a selection of the best model

according to a given criterion. As we saw in Section 1.1.4,a common approach is to perform

multiple clusterings with the parameter K ranging from say 2 to Kmax, where Kmax is the

maximum number of clusters we assume are present in the dataset, and to select the best

model according to some prescribed criterion. In this work, we seek to incorporate the

model selection step into the estimation step by means of an “adaptive” sparse estimation

of the weight vector of the Gaussian components.

2.2.1 First method: regularizing the posterior probabilities

Our first approach was to penalize the matrix of posteriors T defined in Section 1.2.1.

Given N p-dimensional observations x1, . . . ,xN , let us consider the EM algorithm with a

given maximal number of clusters Kmax. The idea of this method is to add a regularization

term on the estimation of the N ×Kmax matrix T , the component τi,j of which, we recall,

is defined as

τi,j = pθ(Z = j|X = xi) =
πjϕµj ,Σj

(xi)∑Kmax
k=1 πkϕµk,Σk

(xi)
. (2.31)
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Figure 2.4: Estimation error maxk ‖Ω̂k −Ω∗k‖F in log scale for EM and graphical lasso on

GMM where Ω∗k = 10−3Ip. With p = 2, N = 100 (upper graph) and p = 5, N = 1000

(lower graph).
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Figure 2.5: Estimation error maxk ‖Ω̂k −Ω∗k‖F in log scale for EM and graphical lasso on

GMM where Ω∗k = 10−3Ip. With p = 10, N = 1000 (upper graph) and p = 50, N = 1000

(lower graph).
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Figure 2.6: Estimation error maxk ‖Ω̂k −Ω∗k‖F in log scale for EM and graphical lasso on

GMM where Ω∗ is the sum of the identity matrix with a matrix the upper and lower parts

of which has a diagonal of ones at the middle. With p = 10, N = 100 (upper graph),

p = 10, N = 500 (middle graph) and p = 50, N = 1000 (lower graph).
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The estimated number of clusters K̂ will be the number of non-zero columns of T . Let us

consider the probability simplex in RKmax , Π := {τ ∈ RKmax :
∑Kmax

k=1 τk = 1, τk ≥ 0 ∀k ∈
[Kmax]} and the indicator function χΠ(.) defined as

χΠ(τ ) =

0 if τ ∈ Π,

+∞ elsewhere.

We note T .,k the kth column and T i,. the ith row of T . Using the cost function in Equa-

tion (1.22) and adding a penalization term composed of the L2-norms of the columns of T
with a parameter λ > 0, we have the following cost function for our problem:

F pen(θ,T ) =−
K∑
k=1

( n∑
i=1

{
τi,k logϕµk,Ωk

(xi) + τi,k log(
πk
τi,k

)
})

+ λ
K∑
k=1

‖T .,k‖2 +
n∑
i=1

χΠ(T i,.).

The expectation step in an EM-like algorithm for this cost function leads to the following

optimization problem:

T̂ (θ) ∈ arg min
T

F pen(θ,T ). (2.32)

A nice property of this problem is that it is convex. Unfortunately, the regularization term

does not allow us to derive an explicit solution. Furthermore, the objective function is

not decomposable since we optimize along columns and rows of T . The objective function

F pen(θ,T ) rewritten F pen
θ (T ) can be split into two terms:

F pen
θ (T ) = f(T ) + g(T ) (2.33)

with

f(T ) =−
K∑
k=1

( n∑
i=1

{
τi,k logϕµk,Ωk

(xi) + τi,k log(πk/τi,k)
}

+
K∑
k=1

‖T .,k‖2,

g(T ) =
n∑
i=1

χA(T i,.).

Note that f is convex and differentiable on its domain, g is also convex but not differen-

tiable. We will tackle this problem by using a proximal method (see [Parikh and Boyd,

2014] for more details), proximal gradient descent. It is an iterative method the (k + 1)th
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Input: Parameters θ = (µ,Σ,π)

Output: Estimate T̂
1: Initialize t0 = 1 and ξ0 with

ξ0
i,k =

π0
kϕµ0

k,Ω
0
k
(xi)∑

k′∈[K] π
0
k′ϕµ0

k′ ,Ω
0
k′

(xi)

for k ≥ 1, until convergence occurs, do

(a) T k = arg minT :∀i,T i,.∈Π

(
‖T − (ξk − η∇f(ξk))‖22

)
,

(b) tk+1 =
1+
√

1+4t2k
2 ,

(c) ξk+1 = T k +

(
tk−1
tk+1

)(
T k − T k−1

)
.

end for

Figure 2.7: Expectation step, estimation of T with FISTA.

step of which is given by

T k+1 = proxg(T k − η∇f(T k))

= PΠ(T k − η∇f(T k))

= arg min
T :∀i,T i,.∈Π

(
‖T − (T k − η∇f(T k))‖2

2

)
,

where PΠ is the projection function on Π. The gradient of f on T is given by[
∇T f(T )

]
i,j

= 1 +
τi,j
||T .,j||2

− log(ϕµj ,Ωj
(xi))− log(

πj
τi,j

) (2.34)

We use the algorithm FISTA [Beck and Teboulle, 2009] for minimizing f + g. We provide

more details on this method in Section 4.2. The implementation of this method is given in

Figure 2.7, the whole EM-like method for the estimation of the parameters of the GMM

is given in Figure 2.8.

A major drawback of this method is the computational cost of minimizing over the set

of N ×Kmax matrices and we didn’t manage to get interesting results for this algorithm.

2.2.2 Second method: penalizing the weight vector

The second approach that we took in order to have an estimate of the number of clusters

was to penalize the weight vector of the Gaussian mixture. The idea is similar to the
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Input: Observations x1, . . . ,xN ∈ Rp and the number of clusters K

Output: Parameter estimate θ̂ = {µ̂k, Σ̂k, πk}k∈[K]

1: Initialize t = 0, θ = θ0.

2: Repeat

3: Update the parameter T by using the procedure given in Figure 2.7.

4: Update the parameter θ:

πt+1
k =

1

N

N∑
i=1

τ ti,k, µt+1
k =

1

Nπt+1
k

N∑
i=1

τ ti,kxi,

Σt+1
k =

1

Nπt+1
k

N∑
i=1

τ ti,k(xi − µt+1
k )(xi − µt+1

k )>.

5: increment t: t = t+ 1.

6: Until stopping rule.

7: Return θt.

Figure 2.8: EM algorithm with penalization on the columns of T .

previous method with an EM-like algorithm maximizing a penalized log-likelihood. Let

λ > 0 be a tuning parameter and consider the following negative penalized log-likelihood:

`N(θ) = − 1

N

N∑
i=1

log

{ K∑
j=1

πkϕ(µj ,Σj)(xi)

}
+ λ

K∑
j=1

π
1/γ
j γ > 1, (2.35)

such that:

∀j ∈ [K], πj ≥ 0 and
K∑
j

πj = 1. (2.36)

One may wonder why choosing such a penalization. The aim is to promote the merging

of similar clusters. For instance, let us consider 2 similar clusters (similar means and

covariance matrices) with a weight vector π = (1/2, 1/2) and the merged cluster with

weight π′ = (1, 0). It is obvious that the log-likelihoods are the same. By choosing

the L1 norm, the penalty ‖π‖1 is equal to 1 both for π and π′. However, by taking

the penalty π
1/2
1 + π

1/2
2 , we have a penalty for the clustering with two clusters equal to

2/
√

2 ∼ 1.4. Hence, the method will favor the solution with one cluster. Let us consider

the K-dimensional probability simplex B+
K = {π ∈ RK : ∀j ∈ [K], πj ≥ 0,

∑
j πj = 1}.

Our method is similar to EM in the expectation step and in the maximization step for

estimating µk and Σk, it differs on the estimation of the weights vector π by solving the
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following minimization problem:

π̂ = arg min
π∈B+

K

{
− 1

N

N∑
i=1

log
( K∑
j=1

πjϕ(µj ,Σj)(xi)
)

+ λ

K∑
j=1

π
1/γ
j

}
γ > 1. (2.37)

Unfortunately,
∑

j π
1/γ
j is neither convex nor smooth. We overcome this problem by making

a change of variable. Let us note αj = π
1/γ
j and consider the problem:

α̂ ∈ arg min
α

{
− 1

N

N∑
i=1

log
{ K∑
j=1

αγjϕ(µj ,Σj)(xi)
}

+ λ

K∑
j=1

αj

}
γ > 1, (2.38)

subject to ∀j ∈ [K]αj ≥ 0 and
∑

j α
γ
j = 1. This is a smooth problem and we can recover

an estimate π̂ = (α̂γ1 , . . . , α̂
γ
K). The objective function is differentiable with respect to α,

we note it fθ(α). As we saw in the previous section, we can use an iterative proximal

method to solve this problem. Let us consider γ > 1 and define Aγ = {α ∈ RK : ∀j ∈
[K]αj ≥ 0 and

∑
j α

γ
j = 1}. If we consider χAγ , the indicator function of Aγ (0 in Aγ, ∞

elsewhere), the minimization problem can be rewritten as

α̂ ∈ arg min
α∈RK

{fθ(α) + χAγ (α)}, (2.39)

and the (t+ 1)th step of the iterative proximal procedure is:

α̂t+1 = proxχAγ (αt − h∇fθ(αt)) (2.40)

= arg min
x∈RK

{
χAγ (x) +

1

2
‖x− (αt − h∇fθ(αt))‖2

}
(2.41)

= PAγ (α
t − h∇fθ(αt)), (2.42)

with h > 0 a gradient step. For j ∈ [K], the gradient of fθ w.r.t α is

[
∇fθ(α)

]
j

= − 1

N

N∑
i=1

γαγ−1
j ϕµj ,Σj

(xi)∑K
k=1 α

γ
kϕµk,Σk

(xi)
+ λ. (2.43)

The FISTA procedure for estimating α̂ is given in Figure 2.9. Note that we relaxed the

constraints by estimating the K−1 components of α since αγK = 1−
∑K−1

k=1 α
γ
k . The set Aγ

is redefined accordingly: Aγ = {α ∈ RK :
∑K−1

k=1 α
γ
k ≤ 1, αγK = 1 −

∑K−1
k=1 α

γ
k}. The final

EM-like procedure for estimating the parameters of a Gaussian mixture with penalization

of the weight vector is given in Figure 2.10.

We generated different mixtures with K varying from 2 to 30 components in dimension

5 and draw N = 1000 observations. We compared our algorithm with EM and the BIC
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Input: Parameter θ = {(µk,Σk,π)k∈[K]}.
Output: Parameter estimate α̂ =

(
α1, ...,αK−1, (1−

∑K−1
j=1 α

γ
j )1/γ).

1: Initialize t0 = 1 and ξ0 = (π
1/γ
1 , ...,π

1/γ
K−1).

for k ≥ 1, until convergence occurs, do

(a) αk = PA(ξk − h∇fθ(ξk)),

(b) tk+1 =
1+

√
1+4t2k+1

2

(c) ξk+1 = αt +

(
tk−1
tk+1

)(
αk −αk−1

)
end for

Figure 2.9: Estimation of α via the FISTA method.

Input: Observations x1, . . . ,xN ∈ Rp and a number of clusters Kmax.

Output: parameter estimate θ̂ = {µ̂k, Σ̂k, π̂k}k∈[K]

1: Initialize t = 0, θ = θ0.

for t = 1, . . . , until convergence occurs, do

2: Update the parameter T :

τ ti,k =
πtkϕµtk,Σ

t
k
(xi)∑

k′∈[K] π
t
k′ϕµt

k′ ,Σ
t
k′

(xi)
.

3: Update the parameter α̂t+1 with algorithm in Figure 2.9 and compute

π̂t+1 = ((αt+1
1 )γ), . . . , (αt+1

K )γ).

4: Update parameters (µk,Σk) for k ∈ [Kmax]:

µt+1
k =

1

nπt+1
k

n∑
i=1

τ ti,kxi,

Σt+1
k =

1

nπt+1
k

n∑
i=1

τ ti,k(xi − µt+1
k )(xi − µt+1

k )>.

end for

Figure 2.10: Algorithm for estimating sparse weights vector on GMM.
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Figure 2.11: Estimation error ‖π̂ − π∗‖1, for our algorithm (green) and EM-BIC (red).

Vertical axis: error ‖π̂ − π∗‖1 in log scale, horizontal axis: real number of clusters. First

and third quartiles are shown as long as the median.

selection method with Kmax = 2 ∗ K. The resulting weight vectors are compared with

the true weight π∗ in L1 norm. The plot of our simulations is given in Figure 2.11.

The horizontal axis corresponds to the number of real clusters in the mixture and in the

vertical axis corresponds to the error ‖π̂ − π∗‖1. We ran 50 simulations, the first and

third quartiles are shown as long as the median error. As we can see, our algorithm shows

promising results. With a small number of clusters, the estimation error ‖π̂ −π∗‖1 of our

algorithm (green) is larger than with EM-BIC (red). However, when the number of clusters

K increases, the estimation error of our algorithm decreases, whereas the estimation error

of EM-BIC increases. Such phenomenon of decreasing error while the complexity increases

is not natural. We believe that is caused by the choice of the parameter λ, a more clever

choice of which would improve the error in the regime of small number of clusters.
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2.3 Clustering and density estimation

We have tried several approaches to perform clustering using the GMM and various notions

of sparsity. Unfortunately, the results were never as good as expected. One of the reasons

is that all these approaches are too complex to be easily understood. In particular, they

involve a number of parameters to be tuned, which turned out to be a difficult task. This

led us to consider a slightly simpler task investigated in next chapters. It corresponds to

choosing the weights of the components in a mixture assuming that the densities of the

components (which can be interpreted as clusters) are known in advance. In practice, these

densities can be furnished by some other algorithm or by an expert. This approach can be

seen as an ensemble method applied to unsupervised learning.
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Chapter 3

Optimal KL-Aggregation in Density

Estimation
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We study the maximum likelihood estimator of density of n independent observations,

under the assumption that it is well approximated by a mixture with a large number of

components. The main focus is on statistical properties with respect to the Kullback-

Leibler loss. We establish risk bounds taking the form of sharp oracle inequalities both in

deviation and in expectation. A simple consequence of these bounds is that the maximum

likelihood estimator attains the optimal rate ((logK)/n)1/2, up to a possible logarithmic

correction, in the problem of convex aggregation when the number K of components is

larger than n1/2. More importantly, under the additional assumption that the Gram matrix

of the components satisfies the compatibility condition, the obtained oracle inequalities

yield the optimal rate in the sparsity scenario. That is, if the weight vector is (nearly) D-

sparse, we get the rate (D logK)/n. As a natural complement to our oracle inequalities, we

introduce the notion of nearly-D-sparse aggregation and establish matching lower bounds

for this type of aggregation.

49
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3.1 Introduction

Assume that we observe n independent random vectors X1, . . . ,Xn ∈ X drawn from a

probability distribution P ∗ that admits a density function f ∗ with respect to some reference

measure ν. The goal is to estimate the unknown density by a mixture density. More

precisely, we assume that for a given family of mixture components f1, . . . , fK , the unknown

density of the observations f ∗ is well approximated by a convex combination fπ of these

components, where

fπ(x) =
K∑
j=1

πjfj(x), π ∈ BK+ =
{
π ∈ [0, 1]K :

K∑
j=1

πj = 1
}
. (3.1)

The assumption that the component densities F = {fj : j ∈ [K]} are known essentially

means that they are chosen from a dictionary obtained on the basis of previous experiments

or expert knowledge.

We focus on the problem of estimation of the density function fπ and the weight vector

π from the simplex BK+ under the sparsity scenario: the ambient dimension K can be large,

possibly larger than the sample size n, but most entries of π are either equal to zero or

very small.

Our goal is to investigate the statistical properties of the Maximum Likelihood Esti-

mator (MLE), defined by

π̂ ∈ arg min
π∈Π

{
− 1

n

n∑
i=1

log fπ(X i)
}
, (3.2)

where the minimum is computed over a suitably chosen subset Π of BK+ . In the present

work, we will consider sets Π = Πn(µ), depending on a parameter µ > 0 and the sample

{X1, . . . ,Xn}, defined by

Πn(µ) =

{
π ∈ BK+ : min

i∈[n]

K∑
j=1

πjfj(X i) ≥ µ

}
. (3.3)

Note that the objective function in (3.2) is convex and the same is true for set (3.3).

Therefore, the MLE π̂ can be efficiently computed even for large K by solving a problem

of convex programming. To ease notation, very often, we will omit the dependence of

Πn(µ) on µ and write Πn instead of Πn(µ).

The quality of an estimator π̂ can be measured in various ways. For instance, one can

consider the Kullback-Leibler divergence

KL(f ∗||fπ̂) =


∫
X f
∗(x) log f∗(x)

fπ̂(x)
ν(dx), if P ∗

(
f ∗(X)/fπ̂(X) = 0

)
= 0,

+∞, otherwise,
(3.4)
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which has the advantage of bypassing identifiability issues. One can also consider the (well-

specified) setting where f ∗ = fπ∗ for some π∗ ∈ BK+ and measure the quality of estimation

through a distance between the vectors π̂ and π∗ (such as the `1-norm ‖π̂ − π∗‖1 or the

Euclidean norm ‖π̂ − π∗‖2).

The main contributions of the present work are the following:

(a) We demonstrate that in the mixture model there is no need to introduce sparsity

favoring penalty in order to get optimal rates of estimation under the Kullback-Leibler

loss in the sparsity scenario. In fact, the constraint that the weight vector belongs to

the simplex acts as a sparsity inducing penalty. As a consequence, there is no need to

tune a parameter accounting for the magnitude of the penalty.

(b) We show that the maximum likelihood estimator of the mixture density simultaneously

attains the optimal rate of aggregation for the Kullback-Leibler loss for at least three

types of aggregation: model-selection, convex and D-sparse aggregation.

(c) We introduce a new type of aggregation, termed nearly D-sparse aggregation that

extends and unifies the notions of convex and D-sparse aggregation. We establish

strong lower bounds for the nearly D-sparse aggregation and demonstrate that the

maximum likelihood estimator attains this lower bound up to logarithmic factors.

3.1.1 Related work

The results developed in the present work aim to gain a better understanding (a) of the

statistical properties of the maximum likelihood estimator over a high-dimensional simplex

and (b) of the problem of aggregation of density estimators under the Kullback-Leibler

loss. Various procedures of aggregation1 for density estimation have been studied in the

literature with respect to different loss functions. [Catoni, 1997, Yang, 2000, Juditsky

et al., 2008] investigated different variants of the progressive mixture rules, also known

as mirror averaging [Yuditskĭı et al., 2005, Dalalyan and Tsybakov, 2012], with respect

to the Kullback-Leibler loss and established model selection type oracle inequalities2 in

expectation. Same type of guarantees, but holding with high probability, were recently

obtained in [Bellec, 2014, Butucea et al., 2016] for the procedure termed Q-aggregation,

introduced in other contexts by [Dai et al., 2012, Rigollet, 2012].

1We refer the interested reader to [Tsybakov, 2014] for an up to date introduction into aggregation of

statistical procedures.
2This means that they prove that the expected loss of the aggregate is almost as small as the loss of

the best element of the dictionary {f1, . . . , fK}.
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Aggregation of estimators of a probability density function under the L2-loss was consid-

ered in [Rigollet and Tsybakov, 2007], where it was shown that a suitably chosen unbiased

risk estimate minimizer is optimal both for convex and linear aggregation. The goal in the

present work is to go beyond the settings of the aforementioned papers in that we want

simultaneously to do as well as the best element of the dictionary, the best convex combi-

nation of the dictionary elements but also the best sparse convex combination. Note that

the latter task was coined D-aggregation in [Lounici, 2007] (see also [Bunea et al., 2007]).

In the present work, we rename it in D-sparse aggregation, in order to make explicit its

relation to sparsity.

Key differences between the latter work and ours are that we do not assume the sparsity

index to be known and we are analyzing an aggregation strategy that is computationally

tractable even for large K. This is also the case of [Bunea et al., 2010, Bertin et al., 2011],

which are perhaps the most relevant references to the present work. These papers deal

with the L2-loss and investigate the lasso and the Dantzig estimators, respectively, suitably

adapted to the problem of density estimation. Their methods handle dictionary elements

{fj} which are not necessarily probability density functions, but has the drawback of

requiring the choice of a tuning parameter. This choice is a nontrivial problem in practice.

Instead, we show here that the optimal rates of sparse aggregation with respect to the

Kullback-Leibler loss can be attained by procedure which is tuning parameter free.

Risk bounds for the maximum likelihood and other related estimators in the mixture

model have a long history [Li and Barron, 1999, Li, 1999, Rakhlin et al., 2005]. For the

sake of comparison we recall here two elegant results providing non-asymptotic guarantees

for the Kullback-Leibler loss.

Theorem 3.1.1 (Theorem 5.1 in [Li, 1999]). Let F be a finite dictionary of cardinality

K of density functions such that maxf∈F ‖f ∗/f‖∞ ≤ V . Then, the maximum likelihood

estimator over F , f̂ML
F ∈ arg maxf∈F

∑n
i=1 log f(X i), satisfies the inequality

Ef∗
[
KL
(
f ∗||f̂ML

F
)]
≤
(
2 + log V

)(
min
f∈F

KL(f ∗||f) +
2 logK

n

)
. (3.5)

Inequality (3.5) is an inexact oracle inequality in expectation that quantifies the ability

of f̂ML
F to solve the problem of model-selection aggregation. The adjective inexact refers to

the fact that the “bias term” minf∈F KL(f ∗||f) is multiplied by factor strictly larger than

one. It is noteworthy that the remainder term 2 logK
n

corresponds to the optimal rate of

model-selection aggregation [Juditsky and Nemirovski, 2000, Tsybakov, 2003]. In relation

with Theorem 3.1.1, it is worth mentioning a result of [Yang, 2000] and [Catoni, 1997], see

also Theorem 5 in [Lecué, 2006] and Corollary 5.4 in [Juditsky et al., 2008], establishing
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a risk bound similar to (3.5) without the extra factor 2 + log V for the so called mirror

averaging aggregate.

Theorem 3.1.2 (page 226 in [Rakhlin et al., 2005]). Let F be a finite dictionary of cardi-

nality K of density functions and let Ck =
{
fπ : ‖π‖0 ≤ k

}
be the set of all the mixtures of

at most k elements of F (k ∈ [K]). Assume that f ∗ and the densities fk from F are bounded

from below and above by some positive constants m and M , respectively. Then, there is a

constant C depending only on m and M such that, for any tolerance level δ ∈ (0, 1), the

maximum likelihood estimator over Ck, f̂ML
Ck ∈ arg maxf∈Ck

∑n
i=1 log f(X i), satisfies the

inequality

KL
(
f ∗||f̂ML

Ck

)
≤ min

f∈Ck
KL(f ∗||f) + C

( log(K/δ)

n

)1/2

(3.6)

with probability at least 1− δ.

This result is remarkably elegant and can be seen as an exact oracle inequality in

deviation for D-sparse aggregation (for D = k). Furthermore, if we choose k = K in

Theorem 3.1.2, then we get an exact oracle inequality for convex aggregation with a rate-

optimal remainder term [Tsybakov, 2003]. However, it fails to provide the optimal rate for

D-sparse aggregation.

Closing this section, we would like to mention the recent work [Xia and Koltchinskii,

2016], where oracle inequalities for estimators of low rank density matrices are obtained.

They share a common feature with those obtained in this work: the adaptation to the

unknown sparsity or rank is achieved without any additional penalty term. The constraint

that the unknown parameter belongs to the simplex acts as a sparsity inducing penalty.

3.1.2 Additional notation

In what follows, for any i ∈ [n], we denote byZi theK- dimensional vector [f1(X i), . . . , fK(X i)]
>

and by Z the n ×K matrix [Z>1 , . . . ,Z
>
n ]>. We also define `(u) = − log u, u ∈ (0,+∞),

so that the MLE π̂ is the minimizer of the function

Ln(π) =
1

n

n∑
i=1

`
(
Z>i π

)
. (3.7)

For any set of indices J ⊆ [K] and any π = (π1, . . . , πK)> ∈ RK , we define πJ as the

K-dimensional vector whose j-th coordinate equals πj if j ∈ J and 0 otherwise. We denote

the cardinality of any J ⊆ [K] by |J |. For any set J ⊂ {1, . . . , K} and any constant c ≥ 0,
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we introduce the compatibility constants [van de Geer and Bühlmann, 2009] of a K ×K
positive semidefinite matrix A,

κA(J, c) = inf

{
c2|J |‖A1/2v‖2

2

(c‖vJ‖1 − ‖vJc‖1)2
: v ∈ RK , ‖vJc‖ < c‖vJ‖1

}
, (3.8)

κ̄A(J, c) = inf

{
|J |‖A1/2v‖2

2

‖vJ‖2
1

: v ∈ RK , ‖vJc‖1 < c‖vJ‖1

}
. (3.9)

The risk bounds established in the present work involve the factors κA(J, 3) and κ̄A(J, 1).

One can easily check that κ̄A(J, 3) ≤ κA(J, 3) ≤ 9
4
κ̄A(J, 1). We also recall that the com-

patibility constants of a matrix A are bounded from below by the smallest eigenvalue of

A.

Let us fix a function f0 : X → R and denote f̄k = fk − f0 and

Z̄i = [f̄1(X i), . . . , f̄K(X i)]
>, (3.10)

for i ∈ [n]. In the results of this work, the compatibility factors are used for the empirical

and population Gram matrices of vectors Z̄k, that is when A = Σ̂n and A = Σ with

Σ̂n =
1

n

n∑
i=1

Z̄iZ̄
>
i , Σ = E[Z̄1Z̄

>
1 ]. (3.11)

The general entries of these matrices are (Σ̂n)k,l = 1/n
∑n

i=1 f̄k(X i)f̄l(X i) and (Σ)k,l =

E[f̄k(X1)f̄l(X1)], respectively. We assume that there exist positive constants m and M

such that for all densities fk with k ∈ [K], we have

∀x ∈ X , m ≤ fk(x) ≤M. (3.12)

We use the notation V = M/m. It is worth mentioning that the set of dictionaries satisfying

simultaneously this boundedness assumption and the aforementioned compatibility condi-

tion is not empty. For instance, one can consider the functions fk(x) = 1 + 1/2 sin(2πkx)

for k ∈ [K]. These functions are probability densities w.r.t. the Lebesgue measure on

X = [0, 1]. They are bounded from below and from above by 1/2 and 3/2, respectively.

Taking f0(x) = 1, the corresponding Gram matrix is Σ = 1/8 IK , which has all eigenvalues

equal to 1/8.

3.1.3 Agenda

The rest of the paper is organized as follows. In Section 3.2, we state our main theoretical

contributions and discuss their consequences. Possible relaxations of the conditions, as
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well as lower bounds showing the tightness of the established risk bounds, are considered

in Section 3.3. A brief summary of the paper and some future directions of research are

presented in Section 3.4. The proofs of all theoretical results are postponed to Section 3.5

and Section 3.6.

3.2 Oracle inequalities in deviation and in expecta-

tion

In this work, we prove several non-asymptotic risk bounds that imply, in particular, that

the maximum likelihood estimator is optimal in model-selection aggregation, convex ag-

gregation and D-sparse aggregation (up to log-factors). In all the results of this section we

assume the parameter µ in (3.3) to be equal to 0.

Theorem 3.2.1. Let F be a set of K ≥ 4 densities satisfying the boundedness condition

(3.12). Denote by fπ̂ the mixture density corresponding to the maximum likelihood esti-

mator π̂ over Πn defined in (3.7). There are constants c1 ≤ 32V 3, c2 ≤ 288M2V 6 and

c3 ≤ 128M2V 6 such that, for any δ ∈ (0, 1/2), the following inequalities hold

KL(f ∗||fπ̂) ≤ inf
J⊂[K]

π∈BK+

{
KL(f ∗||fπ) + c1

( log(K/δ)

n

)1/2

‖πJc‖1

+
c2|J | log(K/δ)

nκΣ̂n
(J, 3)

}
, (3.13)

KL(f ∗||fπ̂) ≤ inf
J⊂[K]

inf
π∈BK+
πJc=0

{
KL(f ∗||fπ) +

c3|J | log(K/δ)

nκ̄Σ̂n
(J, 1)

}
(3.14)

with probability at least 1− δ.

The proof of this and the subsequent results stated in this section are postponed to

Section 3.5. Comparing the two inequalities of the above theorem, one can notice two

differences. First, the term proportional to ‖πJc‖1 is absent in the second risk bound,

which means that the risk of the MLE is compared to that of the best mixture with a

weight sequences supported by J . Hence, this risk bound is weaker than the first one

provided by (3.13). Second, the compatibility factor κ̄Σ̂n
(J, 1) in (3.14) is larger that its

counterpart κΣ̂n
(J, 3) in (3.13). This entails that in the cases where the oracle is expected

to be sparse, the remainder term of the bound in (3.13) is slightly looser than that of

(3.14).
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A first and simple consequence of Theorem 3.2.1 is obtained by taking J = ∅ in the

right hand side of the first inequality. Then, ‖πJc‖1 = ‖π‖1 = 1 and we get

KL(f ∗||fπ̂) ≤ inf
π∈BK+

KL(f ∗||fπ) + c1

( log(K/δ)

n

)1/2

. (3.15)

This implies that for every dictionary F , without any assumption on the smallness of the

coherence between its elements, the maximum likelihood estimator achieves the optimal

rate of convex aggregation, up to a possible3 logarithmic correction, in the high-dimensional

regime K ≥ n1/2. In the case of regression with random design, an analogous result has been

proved by Lecué and Mendelson [2013] and Lecué [2013]. One can also remark that the

upper bound in (3.15) is of the same form as the one of Theorem 3.1.2 stated in section 3.1.1

above.

The main compelling feature of our results is that they show that the MLE adaptively

achieves the optimal rate of aggregation not only in the case of convex aggregation, but

also for the model-selection aggregation and D-(convex) aggregation. For handling these

two cases, it is more convenient to get rid of the presence of the compatibility factor of the

empirical Gram matrix Σ̂n. The latter can be replaced by the compatibility factor of the

population Gram matrix, as stated in the next result.

Theorem 3.2.2. Let F be a set of K densities satisfying the boundedness condition (3.12).

Denote by fπ̂ the mixture density corresponding to the maximum likelihood estimator π̂

over Πn defined in (3.7). There are constants c4 ≤ 32V 3 + 4, c5 ≤ 4.5M2(8V 3 + 1)2 and

c6 ≤ 2M2(8V 3 + 1)2 such that, for any δ ∈ (0, 1/2), the following inequalities hold

KL(f ∗||fπ̂) ≤ inf
J⊂[K]

π∈BK+

{
KL(f ∗||fπ) + c4

( log(K/δ)

n

)1/2

‖πJc‖1

+
c5|J | log(K/δ)

nκΣ(J, 3)

}
, (3.16)

KL(f ∗||fπ̂) ≤ inf
J⊂[K]

inf
π∈BK+
πJc=0

{
KL(f ∗||fπ) +

c6|J | log(K/δ)

nκ̄Σ(J, 1)

}
(3.17)

with probability at least 1− 2δ.

The main advantage of the upper bounds provided by Theorem 3.2.2 as compared with

those of Theorem 3.2.1 is that the former is deterministic, whereas the latter involves the

3In fact, the optimal rate of convex aggregation when K ≥ n1/2 is of order
(
log(K/n

1/2)/n
)1/2

. Therefore,

even the logK term is optimal whenever K ≥ Cn1/2+α for some α > 0.
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compatibility factor of the empirical Gram matrix which is random. The price to pay for

getting rid of randomness in the risk bound is the increased values of the constants c4, c5

and c6. Note, however, that this price is not too high, since obviously 1 ≤ M ≤ L and,

therefore, c4 ≤ 1.25c1, c5 ≤ 1.56c2 and c6 ≤ 1.56c3. In addition, the absence of randomness

in the risk bound allows us to integrate it and to convert the bound in deviation into a

bound in expectation.

Theorem 3.2.3 (Bound in Expectation). Let F be a set of K densities satisfying the

boundedness condition (3.12). Denote by fπ̂ the mixture density corresponding to the max-

imum likelihood estimator π̂ over Πn defined in (3.7). There are constants c7 ≤ 20V 3 + 8,

c8 ≤M2(22V 3 + 3)2 and c9 ≤M2(15V 3 + 2)2 such that

E[KL(f ∗||fπ̂)] ≤ inf
J⊂[K]

π∈BK+

{
KL(f ∗||fπ) + c7

( logK

n

)1/2

‖πJc‖1 +
c8|J | logK

nκΣ(J, 3)

}
, (3.18)

E[KL(f ∗||fπ̂)] ≤ inf
J⊂[K]

inf
π∈BK+
πJc=0

{
KL(f ∗||fπ) +

c9|J | logK

nκ̄Σ(J, 1)

}
. (3.19)

In inequality (3.19), upper bounding the infimum over all sets J by the infimum over

the singletons, we get

E[KL(f ∗||fπ̂)] ≤ inf
j∈[K]

{
KL(f ∗||fj) +

c9 logK

nκ̄Σ(J, 1)

}
. (3.20)

This implies that the maximum likelihood estimator fπ̂ achieves the rate logK
n

in model-

selection type aggregation. This rate is known to be optimal in the model of regression

[Rigollet, 2012]. If we compare this result with Theorem 3.1.1 stated in Section 3.1.1,

we see that the remainder terms of these two oracle inequalities are of the same order

(provided that the compatibility factor is bounded away from zero), but inequality (3.20)

has the advantage of being exact.

We can also apply (3.19) to the problem of convex aggregation with small dictionary,

that is for K smaller than n1/2. Upper bounding |J | by K, we get

E[KL(f ∗||fπ̂)] ≤ inf
π∈BK+

KL(f ∗||fπ) +
c9K logK

nκ̄Σ([K], 1)
. (3.21)

Assuming, for instance, the smallest eigenvalue of Σ bounded away from zero (which is a

quite reasonable assumption in the context of low dimensionality), the above upper bound

provides a rate of convex aggregation of the order of K logK
n

. Up to a logarithmic term, this

rate is known to be optimal for convex aggregation in the model of regression.
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Finally, considering all the sets J of cardinality smaller than D (with D ≤ K) and

setting κ̄Σ(D, 1) = infJ :|J |≤D κ̄Σ(J, 1), we deduce from (3.19) that

E[KL(f ∗||fπ̂)] ≤ inf
π∈BK+ :‖π‖0≤D

KL(f ∗||fπ) +
c9D logK

nκ̄Σ(D, 1)
. (3.22)

According to [Rigollet and Tsybakov, 2011, Theorem 5.3], in the regression model, the

optimal rate of D-sparse aggregation is of order (D/n) log(K/D), whenever D = o(n1/2).

Inequality (3.22) shows that the maximum likelihood estimator over the simplex achieves

this rate up to a logarithmic factor. Furthermore, this logarithmic inflation disappears

when the sparsity D is such that, asymptotically, the ratio logD
logK

is bounded from above by

a constant α < 1. Indeed, in such a situation the optimal rate D log(K/D)
n

= D logK
n

(1− logD
logK

)

is of the same order as the remainder term in (3.22), that is D logK
n

.

3.3 Discussion of the conditions and possible exten-

sions

In this section, we start by announcing lower bounds for the Kullback-Leibler aggregation

in the problem of density estimation. Then we discuss the implication of the risk bounds

of the previous section to the case where the target is the weight vector π rather than the

mixture density fπ. Finally, we present some extensions to the case where the boundedness

assumption is violated.

3.3.1 Lower bounds for nearly-D-sparse aggregation

As mentioned in previous section, the literature is replete with lower bounds on the min-

imax risk for various types of aggregation. However most of them concern the regression

setting either with random or with deterministic design. Lower bounds of aggregation for

density estimation were first established by Rigollet [2006] for the L2-loss. In the case of

Kullback-Leibler aggregation in density estimation, the only lower bounds we are aware

are those established by Lecué [2006] for model-selection type aggregation. It is worth

emphasizing here that the results of the aforementioned two papers provide weak lower

bounds. Indeed, they establish the existence of a dictionary for which the minimax excess

risk is lower bounded by the suitable quantity. In contrast with this, we establish here

strong lower bounds that hold for every dictionary satisfying the boundedness and the

compatibility conditions.
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Let F = {f1, . . . , fK} be a dictionary of density functions on X = [0, 1]. We say that

the dictionary F satisfies the boundedness and the compatibility assumptions if for some

positive constants m,M and κ, we have m ≤ fj(x) ≤M for all j ∈ [K], x ∈ X . In addition,

we assume in this subsection that all the eigenvalues of the Gram matrix Σ belong to the

interval [κ∗,κ∗], with κ∗ > 0 and κ∗ <∞.

For every γ ∈ (0, 1) and any D ∈ [K], we define the set of nearly-D-sparse convex

combinations of the dictionary elements fj ∈ F by

HF(γ,D) =
{
fπ : π ∈ BK+ such that min

J :|J |≤D
‖πJc‖1 ≤ γ

}
. (3.23)

In simple words, fπ belongs to HF(γ,D) if it admits a γ-approximately D-sparse represen-

tation in the dictionary F . We are interested in bounding from below the minimax excess

risk

R
(
HF(γ,D)

)
= inf

f̂
sup
f∗

{
E[KL(f ∗|| f̂ )]− inf

fπ∈HF (γ,D)
KL(f ∗||fπ)

}
, (3.24)

where the inf is over all possible estimators of f ∗ and the sup is over all density functions

over [0, 1]. Note that the estimator f̂ is not necessarily a convex combination of the

dictionary elements. Furthermore, it is allowed to depend on the parameters γ and D

characterizing the class HF(γ,D). It follows from (3.18), that if the dictionary satisfies

the boundedness and the compatibility condition, then

R
(
HF(γ,D)

)
≤ C

{(γ2 logK

n

)1/2

+
D logK

n

}∧( logK

n

)1/2

, (3.25)

for some constant C depending only on m,M and κ∗. Note that the last term accounts for

the following phenomenon: If the sparsity index D is larger than a multiple of
√
n, then

the sparsity bears no advantage as compared to the `1 constraint. The next result implies

that this upper bound is optimal, at least up to logarithmic factors.

Theorem 3.3.1. Assume that log(1 + eK) ≤ n. Let γ ∈ (0, 1) and D ∈ [K] be fixed.

There exists a constant A depending only on m, M , κ∗ and κ∗ such that R(HF(γ,D)) is

larger than

A

{[
γ2

n
log

(
1 +

K

γ
√
n

)]1/2

+
D log(1 +K/D)

n

}∧[
1

n
log

(
1 +

K√
n

)]1/2

. (3.26)

This is the first result providing lower bounds on the minimax risk of aggregation over

nearly-D-sparse aggregates. To the best of our knowledge, even in the Gaussian sequence

model, such a result has not been established to date. It has the advantage of unifying the

results on convex and D-sparse aggregation, as well as extending them to a more general

class. Let us also stress that the condition log(1 + eK) ≤ n is natural and unavoidable,

since it ensures that the right hand side of (3.25) is smaller than the trivial bound log V .
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3.3.2 Weight vector estimation

The risk bounds carried out in the previous section for the problem of density estimation

in the Kullback-Leibler loss imply risk bounds for the problem of weight vector estimation.

Indeed, under the boundedness assumption (3.12), the Kullback-Leibler divergence between

two mixture densities can be shown to be equivalent to the squared Mahalanobis distance

between the weight vectors of these mixtures with respect to the Gram matrix. In order

to go from the Mahalanobis distance to the Euclidean one, we make use of the restricted

eigenvalue

κRE
Σ (s, c) = inf

v∈∆(s,c)
‖Σ1/2v‖2

2, (3.27)

with ∆(s, c) := {v : ∃ J ⊂ [K] s.t. |J | ≤ s, ‖vJc‖1 ≤ c‖vJ‖1 and ‖vJ‖2 = 1}. This

strategy leads to the next result.

Proposition 2. Let F be a set of K ≥ 4 densities satisfying condition (3.12). Denote by fπ̂

the mixture density corresponding to the maximum likelihood estimator π̂ over Πn defined in

(3.7). Let π∗ the weight-vector of the best mixture density: π∗ ∈ arg minπ KL(f ∗||fπ), and

let J∗ be the support of π∗. There are constants c10 ≤M2(64V 3+8) and c11 ≤ 4M2(8V 3+1)

such that, for any δ ∈ (0, 1/2), the following inequalities hold

‖π̂ − π∗‖1 ≤
c10|J∗|
κ̄Σ(J∗, 1)

( log(K/δ)

n

)1/2

, (3.28)

‖π̂ − π∗‖2 ≤
c11

κRE
Σ (|J∗|, 1)

(2|J∗| log(K/δ)

n

)1/2

, (3.29)

‖π̂ − π∗‖2
2 ≤

c11

κRE
Σ (|J∗|, 1)

(2 log(K/δ)

n

)1/2

(3.30)

with probability at least 1− 2δ.

In simple words, this result tells us that the weight estimator π̂ attains the minimax

rate of estimation |J∗|( log(K)
n

)1/2 over the intersection of the `1 and `0 balls, when the error

is measured by the `1-norm, provided that the compatibility factor of the dictionary F is

bounded away from zero. The optimality of this rate—up to logarithmic factors—follows

from the fact that the error of estimation of each nonzero coefficients of π∗ is at least cn−1/2

(for some c > 0), leading to a sum of the absolute values of the errors at least of the order

|J∗|n−1/2. The logarithmic inflation of the rate is the price to pay for not knowing the

support J∗. It is clear that this reasoning is valid only when the sparsity |J∗| is of smaller

order than n1/2. Indeed, in the case |J∗| ≥ cn1/2, the trivial bound ‖π̂−π∗‖1 ≤ 2 is tighter

than the one in (3.28).
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Concerning the risk measured by the Euclidean norm, we underline that there are two

regimes characterized by the order between upper bounds in (3.29) and (3.30). Roughly

speaking, when the signal is highly sparse in the sense that |J∗| is smaller than (n/ logK)1/2,

then the smallest bound is given by (3.29) and is of the order |J
∗| log(K)
n

. This rate is can be

compared to the rate |J
∗| log(K/|J∗|)

n
, known to be optimal in the Gaussian sequence model.

In the second regime corresponding to mild sparsity, |J∗| > (n/ logK)1/2, the smallest

bound is the one in (3.30). The latter is of order ( log(K)
n

)1/2, which is known to be optimal

in the Gaussian sequence model. For various results providing lower bounds in regression

framework we refer the interested reader to [Raskutti et al., 2011, Rigollet and Tsybakov,

2011, Wang et al., 2014].

3.3.3 Extensions to the case of vanishing components

In the previous sections we have deliberately avoided any discussion of the role of the

parameter µ, present in the search space Πn(µ) of the problem (3.2)-(3.3). In fact, when

all the dictionary elements are separated from zero by a constant m, a condition assumed

throughout previous sections, choosing any value of µ ≤ m is equivalent to choosing µ = 0.

Therefore, the choice of this parameter does not impact the quality of estimation. However,

this parameter might have strong influence in practice both on statistical and computa-

tional complexity of the maximum likelihood estimator. A first step in understanding the

influence of µ on the statistical complexity is made in the next paragraphs.

Let us consider the case where the condition minx minj fj(x) ≥ m > 0 fails, but the

upper-boundedness condition maxx maxj fj(x) ≤ M holds true. In such a situation, we

replace the definition V = M/m by V = M/µ. We also define the set Π∗(µ) =
{
π ∈ BK+ :

P ∗
(
fπ(X) ≥ µ

)
= 1
}

. In order to keep mathematical formulae simple, we will only state

the equivalent of (3.14) in the case of m = 0. All the other results of the previous section

can be extended in a similar way.

Proposition 3. Let F be a set of K ≥ 2 densities satisfying the boundedness condition

supx∈X fj(x) ≤ M . Denote by fπ̂ the mixture density corresponding to the maximum

likelihood estimator π̂ over Πn(µ) defined in (3.7). There is a constant c̄ ≤ 128M2V 4 such

that, for any δ ∈ (0, 1/2),

KL(f ∗||fπ̂) ≤ inf
J⊂[K]

inf
π∈Π∗(µ)
πJc=0

{
KL(f ∗||fπ) +

c̄|J | log(K/δ)

nκ̄Σ̂n
(J, 1)

}

+

∫
X

(log µ− log fπ̂)+f
∗dν (3.31)
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on an event of probability at least 1 − δ. Furthermore, if infx∈X f
∗(x) ≥ µ, then, on the

same event, we have

‖f ∗ − fπ̂‖2
L2(P ∗) ≤ 2M2 inf

J⊂[K]
inf

π∈Π∗(µ)
πJc=0

{
KL(f ∗||fπ) +

c̄|J | log(K/δ)

nκ̄Σ̂n
(J, 1)

}
. (3.32)

The last term present in the first upper bound,
∫
X (log µ− log fπ̂)+f

∗dν is the price we

pay for considering densities that are not lower bounded by a given constant. A simple,

non-random upper bound on this term is
∫
X maxk∈[K](log µ − log fk)+f

∗dν. Providing a

tight upper bound on this kind or remainder terms is an important problem which lies

beyond the scope of the present work.

3.4 Conclusion

In this paper, we have established exact oracle inequalities for the maximum likelihood

estimator of a mixture density. This oracle inequality clearly highlights the interplay

of three sources of error: misspecification of the model of mixture, departure from D-

sparsity and stochastic error of estimating D nonzero coefficients. We have also proved

a lower bound that show that the remainder terms of our upper bounds are optimal, up

to logarithmic terms. This lower bound is valid not only for the maximum likelihood

estimator, but for any estimator of the density function. As a consequence, the maximum

likelihood estimator has a nearly optimal excess risk in the minimax sense.

In all the results of the present paper, we have assumed that the components of the

mixture model are deterministic. From a practical point of view, it might be reasonable

to choose these components in a data driven way, using, for instance, a hold-out sample.

This question, as well as the problem of tuning the parameter µ , constitute interesting

and challenging avenues for future research.

3.5 Proofs of results stated in previous sections

This section collects the proofs of the theorems and claims stated in previous sections.

3.5.1 Proof of Theorem 3.2.1

The main technical ingredients of the proof are a strong convexity argument and a control of

the maximum of an empirical process. The corresponding results are stated in Lemma 3.5.2
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and Proposition 3.5.1, respectively, deferred to Section 3.5.6. We denote by Z̄ the n ×K
matrix [Z̄1, . . . , Z̄K ].

Since π̂ is a minimizer of Ln(·), see (3.2) and (3.7), we know that Ln(π̂) ≤ Ln(π) for

every π. However, this inequality can be made sharper using the (local) strong convexity

of the function `(u) = − log(u). Indeed, Lemma 3.5.2 below shows that

1

n

n∑
i=1

`(fπ̂(X i)) ≤
1

n

n∑
i=1

`(fπ(X i))−
1

2M2n
‖Z̄(π̂ − π)‖2

2. (3.33)

On the other hand, if we set ϕ(π,x) =
∫

(log fπ)f ∗dν− log fπ(x), we have Ef∗ [ϕ(π,X i)] =

0 and

`(fπ(X i)) = KL(f ∗||fπ)−
∫
X
f ∗ log f ∗dν + ϕ(π,X i). (3.34)

Combining inequalities (3.33) and (3.34), we get

KL(f ∗||fπ̂) ≤ KL(f ∗||fπ)− 1

2M2n
‖Z̄(π̂ − π)‖2

2 +
1

n

n∑
i=1

(
ϕ(π,X i)− ϕ(π̂,X i)

)
. (3.35)

The next step of the proof consists in establishing a suitable upper bound on the noise

term Φn(π)− Φn(π̂) where

Φn(π) =
1

n

n∑
i=1

ϕ(π,X i). (3.36)

According to the mean value theorem, setting ζn := supπ̄∈Πn

∥∥∇Φn(π̄)
∥∥
∞, for every vector

π ∈ Πn, it holds that

|Φn(π̂)− Φn(π)| ≤ sup
π̄∈Πn

∥∥∇Φn(π̄)
∥∥
∞‖π̂ − π‖1 = ζn‖π̂ − π‖1. (3.37)

This inequality, combined with (3.35), yields

KL(f ∗||fπ̂) ≤ KL(f ∗||fπ)− 1

2M2n
‖Z̄(π̂ − π)‖2

2 + ζn‖π̂ − π‖1. (3.38)

Using the Gram matrix Σ̂n = 1/nZ̄>Z̄, the quantity ‖Z̄(π̂ − π)‖2 can be rewritten as

‖Z̄(π̂ − π)‖2
2 = n‖Σ̂

1/2

n (π̂ − π)‖2
2. (3.39)

We proceed with applying the following result [Bellec et al., 2016, Lemma 2].

Lemma 3.5.1 (Bellec et al. [2016], Lemma 2). For any pair of vectors π,π′ ∈ RK, for

any pair of scalars µ > 0 and γ > 1, for any K ×K symmetric matrix A and for any set

J ⊂ [p], the following inequality is true

2µγ−1(‖π−π′‖1 + γ‖π‖1− γ‖π′‖1)−‖A(π−π′)‖2
2 ≤ 4µ‖πJc‖1 +

(γ + 1)2µ2|J |
γ2κA2(J, cγ)

, (3.40)

where cγ = (γ + 1)/(γ − 1).
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Choosing A = Σ̂
1/2

n /(
√

2M), µ = ζn and γ = 2 (thus cγ = 3) we get the inequality

ζn‖π − π̂‖1 − ‖A(π − π̂)‖2
2 ≤ 4ζn‖πJc‖1 +

9ζ2
n|J |

4κA2(J, 3)
, ∀J ∈ {1, . . . , p}. (3.41)

One can check that κA2(J, 3) = κΣ̂n
(J, 3)/(2M2). Combining the last inequality with

(3.38), we arrive at

KL(f ∗||fπ̂) ≤ KL(f ∗||fπ) + 4ζn‖πJc‖1 +
9M2ζ2

n|J |
2κΣ̂n

(J, 3)
. (3.42)

Since the last inequality holds for every π, we can insert an infπ in the right hand side.

Furthermore, in view of Proposition 3.5.1 below, with probability larger than 1 − δ, ζn is

bounded from above by 8V 3( log(K/δ)
n

)1/2. This completes the proof of (3.13).

To prove (3.14), we follow the same steps as above up to inequality (3.38). Then, we

remark that for every π in the simplex satisfying πJc = 0, it holds

‖(π̂ − π)Jc‖1 = ‖π̂Jc‖1 = 1− ‖π̂J‖1 = ‖πJ‖1 − ‖π̂J‖1 ≤ ‖(π̂ − π)J‖1. (3.43)

Therefore, ‖Σ̂
1/2

n (π̂ − π)‖2
2 ≥

κ̄
Σ̂n

(J,1)‖(π−π̂)J‖21
|J | , we have with probability at least 1− δ

ζn‖π̂ − π‖1 −
1

2M2n
‖Z(π̂ − π)‖2

2 ≤ 2ζn‖(π̂ − π)J‖1 −
1

2M2
‖Σ̂

1/2

n (π̂ − π)‖2
2

≤ 2ζn‖(π − π̂)J‖1 −
κ̄Σ̂n

(J, 1)‖(π − π̂)J‖2
1

2M2|J |

≤ 2ζ2
nM

2|J |
κ̄Σ̂n

(J, 1)
. (3.44)

Replacing the right hand term in (3.38) and taking the infimum, we get the claim of the

corollary. Since, in view of Proposition 3.5.1 below, with probability larger than 1− δ, ζn
is bounded from above by 8V 3( log(K/δ)

n
)1/2, we get the claim of (3.14).

3.5.2 Proof of Theorem 3.2.2

Let us denote v = π̂ − π. According to (3.38) and (3.39), we have

KL(f ∗||fπ̂) ≤ KL(f ∗||fπ) + ζn‖π̂ − π‖1 −
1

2M2
‖Σ̂

1/2

n (π̂ − π)‖2
2 (3.45)

≤ KL(f ∗||fπ) + ζn‖v‖1 −
1

2M2
‖Σ1/2v‖2

2 +
1

2M2
v>(Σ− Σ̂n)v. (3.46)
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As v is the difference of two vectors lying on the simplex, we have ‖v‖1 ≤ 2. Let ‖Σ −
Σ̂n‖∞ = maxj,j′ |(Σ − Σ̂n)j,j′| stand for the largest (in absolute values) element of the

matrix Σ− Σ̂n. We have

v>(Σ− Σ̂n)v ≤ ‖Σ− Σ̂n‖∞‖v‖2
1 ≤ 2‖Σ− Σ̂n‖∞‖v‖1. (3.47)

Setting ζ̄n = ζn +M−2‖Σ− Σ̂n‖∞, we get

KL(f ∗||fπ̂) ≤ KL(f ∗||fπ) + ζ̄n‖π̂ − π‖1 −
1

2M2
‖Σ1/2(π̂ − π)‖2

2. (3.48)

Following the same steps as those used for obtaining (3.42), we arrive at

KL(f ∗||fπ̂) ≤ KL(f ∗||fπ) + 4ζ̄n‖πJc‖1 +
9ζ̄2
nM

2|J |
2κΣ(J, 3)

. (3.49)

The last step consists in evaluating the quantiles of the random variable ζ̄n. To this end,

one checks that the Hoeffding inequality combined with the union bound yields

P
{
‖Σ− Σ̂n‖∞ > t

}
≤ K(K − 1) exp(−2nt2/M4), ∀t > 0. (3.50)

In other terms, for every δ ∈ (0, 1), we have

P
{
‖Σ− Σ̂n‖∞ ≤M2

( log(K2/δ)

2n

)1/2}
≥ 1− δ. (3.51)

Note that for δ ≤ 1, we have log(K2/δ) ≤ 2 log(K/δ). Combining with Proposition 3.5.1,

this implies that ζ̄n ≤ (8V 3 + 1)
( log(K/δ)

n

)1/2
with probability larger than 1 − 2δ. This

completes the proof of (3.16). The proof of (3.17) is omitted since it repeats the same

arguments as those used for proving (3.14).

3.5.3 Proof of Theorem 3.2.3

According to (3.49), for any π ∈ Π and any J ⊂ {1, . . . , K}, we have

E[KL(f ∗||fπ̂)] ≤ KL(f ∗||fπ) + 4‖πJc‖1E[ζ̄n] +
9M2|J |

2κΣ(J, 3)
E[ζ̄2

n]. (3.52)

Recall now that ζ̄n = ζn +M−2‖Σ̂n −Σ‖∞ and, according to Proposition 3.5.1, we have

E[ζn] ≤ 4V 3
(2 log(2K2)

n

)1/2

and Var[ζn] ≤ V 2

2n
. (3.53)

Using Theorem 3.6.2, one easily checks that

E[‖Σ̂n −Σ‖∞] ≤M2
( log(2K2)

2n

)1/2

. (3.54)
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This implies that

E[ζ̄n] ≤ (8V 3 + 1
)( log(2K2)

2n

)1/2

. (3.55)

Similarly, in view of the Efron-Stein inequality, we have Var[‖Σ̂n − Σ‖∞] ≤ M4

2n
. This

implies that

E[ζ̄2
n] ≤ (E[ζ̄n])2 +

{
(Var[ζn])

1/2 +M−2(Var[‖Σ̂n −Σ‖∞])
1/2
}2

(3.56)

≤ (8V 3 + 1
)2 log(2K2)

2n
+

(V + 1)2

2n
(3.57)

≤ 1.615(8V 3 + 1
)2 logK

n
. (3.58)

Combining (3.55), (3.58) and (3.52), we get the desired result.

3.5.4 Proof of Proposition 2

Using the strong convexity of the function u 7→ − log u over the interval [m,M ] and the

fact that π∗ minimizes the convex function π 7→ KL(f ∗||fπ), we get

KL(f ∗||fπ̂) ≥ KL(f ∗||fπ∗) +
1

2M2
‖Σ̂

1/2

n (π̂ − π∗)‖2
2. (3.59)

Combining with (3.48), in which we replace π by π∗, we get

‖Σ1/2(π̂ − π∗)‖2
2 ≤ 2M2ζ̄n‖π̂ − π∗‖1. (3.60)

Let us set v = π̂ − π∗. If v = 0, then the claims are trivial. In the rest of this proof,

we assume ‖v‖1 > 0. In view of (3.43), we have ‖v‖1 ≤ 2‖vJ∗‖1. Therefore, using the

definition of the compatibility factor, we get

‖v‖2
1 ≤ 4‖vJ∗‖2

1 ≤
4|J∗| ‖Σ1/2v‖2

2

κ̄(J∗, 1)
≤ 8|J∗|M2ζ̄n‖v‖1

κ̄(J∗, 1)
. (3.61)

We have already checked that ζ̄n ≤ (8V 3+1)
( log(K/δ)

n

)1/2
with probability larger than 1−2δ.

Dividing both sides of inequality (3.61) by ‖v‖1 and using the aforementioned upper bound

on ζ̄n, we get the desired bound on ‖v‖1 = ‖π̂ − π∗‖1.

In order to bound the error v = π̂−π∗ in the Euclidean norm, we denote by Ĵ the set

of D = |J∗| indices corresponding to D largest entries of the vector (|v1|, . . . , |vK |). Since
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‖v‖1 ≤ 2‖vJ∗‖1, we clearly have ‖v‖1 ≤ 2‖vĴ‖1. Therefore,

‖v‖2
2 = ‖vĴ‖

2
2 + ‖vĴc‖

2
2 (3.62)

≤ ‖vĴ‖
2
2 + ‖vĴc‖∞‖vĴc‖1 (3.63)

≤ ‖vĴ‖
2
2 +
‖vĴ‖1

D
‖vĴc‖1 (3.64)

≤ ‖vĴ‖
2
2 +

1

D
‖vĴ‖

2
1 ≤ 2‖vĴ‖

2
2. (3.65)

Combining this inequality with the definition of the restricted eigenvalue and inequality

(3.60) above, we arrive at

‖vĴ‖
2
2 ≤

‖Σ1/2v‖2
2

κRE(D, 1)
≤ 2M2ζ̄n‖v‖1

κRE(D, 1)
(3.66)

≤
4M2ζ̄n(‖vĴ‖1 ∧ 1)

κRE(D, 1)
≤

4M2 ζ̄n(
√
D‖vĴ‖2 ∧ 1)

κRE(D, 1)
. (3.67)

Dividing both sides by ‖vĴ‖2, taking the square and using (3.65), we get

‖v‖2 ≤
√

2 ‖vĴ‖2 ≤
4
√

2M2|J∗|1/2 ζ̄n
κRE(|J∗|, 1)

∧ 2
√

2Mζ̄
1/2
n

κRE(|J∗|, 1)1/2
. (3.68)

This inequality, in conjunction with the upper bound on ζ̄n used above, completes the

proof of the second claim.

3.5.5 Proof of Proposition 3

We repeat the proof of Theorem 3.2.1 with some small modifications. First of all, we

replace the function `(u) = − log(u) by the function

¯̀(u) =

− log(u/µ), if u ≥ µ,

(1− u
µ
) + 1

2
(1− u

µ
)2, if u ∈ (0, µ).

(3.69)

One easily checks that this function is twice continuously differentiable with a second

derivative satisfying M−2 ≤ ¯̀′′(u) ≤ µ−2 for every u ∈ (0,M). Furthermore, since ¯̀(u) =

`(u/µ) for every u ≥ µ, we have L̄n(π̂) = Ln(π̂), where we have used the notation L̄n(π) =
1
n

∑n
i=1

¯̀(fπ(X i)). Therefore, similarly to (3.33), we get

1

n

n∑
i=1

¯̀(fπ̂(X i)) ≤
1

n

n∑
i=1

¯̀(fπ(X i))−
1

2M2n
‖Z̄(π̂ − π)‖2

2, (3.70)
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Figure 3.1: The plot of the function u 7→ ¯̀(u), used in the proof of Proposition 3, super-

posed on the plot of the function u 7→ `(u) = − log u. We see that the former is a strongly

convex surrogate of the latter.

for every π ∈ Π∗(µ). Let us define ϕ̄(π,x) = ¯̀(fπ(x)) −
∫

¯̀(fπ)f ∗dν and Φ̄n(π) =
1
n

∑n
i=1 ϕ̄(π,X i). We have∫

¯̀(fπ̂) f ∗dν ≤
∫

¯̀(fπ) f ∗dν − 1

2M2n
‖Z̄(π̂ − π)‖2

2

+
1

n

n∑
i=1

(
ϕ(π,X i)− ϕ(π̂,X i)

)
(3.71)

≤
∫

¯̀(fπ) f ∗dν − 1

2M2n
‖Z̄(π̂ − π)‖2

2

+ sup
π∈Πn(0)

‖∇Φ̄n(π)‖∞︸ ︷︷ ︸
:=ξn

‖π̂ − π‖1. (3.72)

Notice that π ∈ Π∗(µ) implies that ¯̀(fπ) = log µ− log fπ and that ¯̀(fπ̂) ≥ log µ− log fπ̂−
(log µ− log fπ̂)+. Therefore, along the lines of the proof of (3.14) (see, namely, (3.44)), we

get

KL(f ∗||fπ̂) ≤ KL(f ∗||fπ) +
2ξ2
nM

2|J |
κ̄Σ̂n

(J, 1)
+

∫
X

(log µ− log fπ̂)+f
∗dν. (3.73)

We can repeat now the arguments of Proposition 3.5.1 with some minor modifications. First

of all, we rewrite ξn as ξn = maxl=1,...,K ξl,n with ξl,n = supπ∈Πn(0) |∂lΦ̄n(π)|. One checks
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that the bounded difference inequality and the Efron-Stein inequality can be applied with

an additional factor 2, since for Fl(X) = supπ∈Πn(0) |∂lΦ̄n(π)|, we have

|Fl(X)− Fl(X′)| ≤
2M

nµ
=

2V

n
. (3.74)

Therefore, for every l ∈ [K], with probability larger than 1 − (δ/K), we have ξl,n ≤
E[ξl,n] + V (2 log(K/δ)

n
)1/2 and Var[ξn] ≤ (2V )2/n. By the union bound, we obtain that with

probability larger than 1 − δ, ξn ≤ maxl E[ξl,n] + V (2 log(K/δ)
n

)1/2. Thus, to upper bound

E[ξl,n], we use the symmetrization argument:

E[ξl,n] ≤ 2E

[
sup

π∈Πn(0)

∣∣∣∣ 1n
n∑
i=1

εi ¯̀
′(fπ(X i))fl(X i)

∣∣∣∣] (3.75)

≤ 2ME

[
sup

π∈Πn(0)

∣∣∣∣ 1n
n∑
i=1

εi ¯̀
′(fπ(X i))

∣∣∣∣] (3.76)

≤ 2M

µ
E

[∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣]+ 2ME

[
sup

π∈Πn(0)

∣∣∣∣ 1n
n∑
i=1

εi[¯̀
′(fπ(X i))− ¯̀′(0)]

∣∣∣∣], (3.77)

where the second inequality comes from [Boucheron et al., 2013, Th. 11.5]. Note that the

function ¯̀′, the derivative of ¯̀ defined in (3.69), is by construction Lipschitz with constant

1/µ2. Therefore, in view of the contraction principle,

E[ξl,n] ≤ 2M

µ
E

[(
1

n

n∑
i=1

εi

)2]1/2

+
4M

µ2
E

[
sup

π∈Πn(0)

1

n

n∑
i=1

εifπ(X i)

]
(3.78)

≤ 2M

µ
√
n

+
4M

µ2
E

[
sup
k∈[K]

1

n

n∑
i=1

εifk(X i)

]
(3.79)

≤ 2M

µ
√
n

+
8M2

µ2

( logK

2n

)1/2

≤ 2V 2(1 + 2
√

2 logK)√
n

. (3.80)

As a consequence, we proved that with probability larger than 1 − δ, we have ξn ≤
8V 2( logK

n
)1/2. This completes the proof of the first inequality. In order to prove the second

one, we simply change the way we have evaluated the term
∫

¯̀(fπ̂)f ∗ in the left hand side

of (3.71). Since ¯̀ is strongly convex with a second order derivative bounded from below by

1/M2, we have ¯̀(fπ̂) ≥ ¯̀(f ∗) + ¯̀′(f ∗)(fπ̂ − f ∗) + 1
2M2 (fπ̂ − f ∗)2. Since f ∗ is always larger

than µ, the derivative ¯̀′(f ∗) equals 1/f ∗. Integrating over X , we get the second inequality

of the proposition.

3.5.6 Auxiliary results

We start by a general convex result based on the strong convexity of the −log function to

derive a bound on the estimated log-likelihood.
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Lemma 3.5.2. Let us assume that M = maxj∈[K] ‖fj‖∞ <∞. Then, for any π ∈ BK+ , it

holds that

Ln(π̂) ≤ Ln(π)− 1

2M2n
‖Z̄(π̂ − π)‖2

2. (3.81)

Proof. Recall that π̂ minimizes the function Ln defined in (3.7) over Πn. Furthermore, the

function u 7→ `(u) is clearly strongly convex with a second order derivative bounded from

below by 1/M2 over the set u ∈ (0,M ]. Therefore, for every û ∈ (0,M ], the function ˜̀
given by: ˜̀(u) = `(u)− 1

2M2
(û− u)2, u ∈ (0,M ], (3.82)

is convex. This implies that the mapping

π 7→ L̃n(π) = Ln(π)− 1

2M2n
‖Z(π̂ − π)‖2

2 (3.83)

is convex over the set π ∈ BK+ . This yields4

L̃n(π)− L̃n(π̂) ≥ sup
v∈∂ L̃n(π̂)

v>(π − π̂), ∀π ∈ BK+ . (3.84)

Using the Karush-Kuhn-Tucker conditions and the fact that π̂ minimizes Ln, we get 0K ∈
∂ Ln(π̂) = ∂ L̃n(π̂). This readily gives L̃n(π)− L̃n(π̂) ≥ 0, for any π ∈ BK+ . The last step

is to remark that Z(π̂ − π) = Z̄(π̂ − π), since both π̂ and π have entries summing to

one.

The core of our results lies in the following proposition which bound the deviations of

the empirical process part.

Proposition 3.5.1 (Supremum of Empirical Process). For any π ∈ BK+ and x ∈ X , define

ϕ(π,x) =
∫

(log fπ)f ∗− log fπ(x) and consider Φn(π) = 1
n

∑n
i=1 ϕ(π,X i). If K ≥ 2, then

for any δ ∈ (0, 1), with probability at least 1− δ, we have

ζn = sup
π∈Πn

∥∥∇Φn(π)
∥∥
∞ ≤ 8V 3

( log(K/δ)

n

)1/2

. (3.85)

Furthermore, we have E[ζn] ≤ 4V 3
(2 log(2K2)

n

)1/2
and Var[ζn] ≤ V 2/(2n).

Proof. To ease notation, let us denote gπ,l(x) = fl(x)
fπ(x)

− E
[
fl(X)
fπ(X)

]
and

F (X) = sup
π∈Πn

∥∥∇Φn(π)
∥∥
∞ = sup

(π,l)∈Πn×[K]

∣∣∣ 1
n

n∑
i=1

gπ,l(X i)
∣∣∣, (3.86)

4We denote by ∂g the sub-differential of a convex function g.
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where X = (X1, . . . ,Xn). To derive a bound on F , we will use the McDiarmid concen-

tration inequality that requires the bounded difference condition to hold for F . For some

i0 ∈ [n], let X′ = (X1, . . . ,X
′
i0
, . . . ,Xn) be a new sample obtained from X by modifying

the i0-th element X i and by leaving all the others unchanged. Then, we have

F (X)− F (X′) = sup
(π,l)∈Πn×[K]

∣∣∣∣ 1n
n∑
i=1

gπ,l
(
X i

)∣∣∣∣− sup
(π,l)∈Π×[K]

∣∣∣∣ 1n
n∑
i=1

gπ,l
(
X ′i
)∣∣∣∣ (3.87)

≤ sup
(π,l)∈Πn×[K]

∣∣∣∣ 1n
n∑
i=1

gπ,l
(
X i

)
− 1

n

n∑
i=1

gπ,l
(
X ′i
)∣∣∣∣ (3.88)

= sup
(π,l)∈Πn×[K]

∣∣∣∣ 1n(gπ,l(X i0

)
− gπ,l

(
X ′i0

))∣∣∣∣ ≤ V

n
, (3.89)

where the last inequality is a direct consequence of assumption (3.12). Therefore, using

the McDiarmid concentration inequality recalled in Theorem 3.6.3 below, we check that

the inequality

F (X) ≤ E(F (X)) + V

√
log(1/δ)

2n
(3.90)

holds with probability at least 1 − δ. Furthermore, in view of the Efron-Stein inequality,

we have

Var[ζn] = Var[F (X)] ≤ V 2

2n
. (3.91)

Let us denote G := {(fl/fπ) − 1, (π, l) ∈ Πn × [K]} and Rn,q(G) the Rademacher

complexity of G given by

Rn(G) = Eε

[
sup

(π,l)∈Πn×[K]

∣∣∣∣ 1n
n∑
i=1

εi

( fl(X i)

fπ(X i)
− 1
)∣∣∣∣], (3.92)

with ε1, . . . , εn independent and identically distributed Rademacher random variables in-

dependent of X1, . . . ,Xn. Using the symmetrization inequality (see, for instance, Theo-

rem 2.1 in Koltchinskii [2011]) we have

E[F (X)] = E[ζn] ≤ 2E[Rn(G)]. (3.93)

Lemma 3.5.3. The Rademacher complexity defined in (3.92) satisfies

Rn(G) ≤ 4V 3

√
logK

n
. (3.94)

Proof. The proof relies on the contraction principle of Ledoux and Talagrand [1991] that

we recall in Section 3.6.3 for the convenience. We apply this principle to the random
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variables Xi,(π,l) = fπ(X i)/fl(X i) − 1 and to the function ψ(x) = (1 + x)−1 − 1. Clearly

ψ is Lipschitz on [ 1
V
− 1, V − 1] with the Lipschitz constant equal to V 2 and ψ(0) = 0.

Therefore

Rn(G) ≤ Eε

[
sup
(π,l)

1

n

n∑
i=1

εiψ(X i,(π,l))

]
+ Eε

[
sup
(π,l)

1

n

n∑
i=1

εi(−ψ)(X i,(π,l))

]
≤ 2V 2Eε

[
sup

(π,l)∈Πn×[K]

1

n

n∑
i=1

εiX i,(π,l)

]
= 2V 2Eε

[
sup

(π,l)∈Πn×[K]

1

n

n∑
i=1

εi

(
fπ(X i)

fl(X i)
− 1

)]
. (3.95)

Expanding fπ(X i) we obtain

Eε

[
sup
(π,l)

1

n

n∑
i=1

εi

(
fπ(X i)

fl(X i)
− 1

)]
= Eε

[
sup
(π,l)

K∑
k=1

πk
n

n∑
i=1

εi

(
fk(X i)

fl(X i)
− 1

)]
= Eε

[
max
k,l∈[K]

1

n

n∑
i=1

εi

(
fk(X i)

fl(X i)
− 1

)]
. (3.96)

We apply now Theorem 3.6.2 with s = (k, l), N = K2, a = −V , b = V and Yi,s =

εi
(fk(Xi)
fl(Xi)

− 1
)
. This yields

Eε

[
max
k,l∈[K]

1

n

n∑
i=1

εi

(
fk(X i)

fl(X i)
− 1

)]
≤ 2V

( logK2

2n

)1/2

. (3.97)

This completes the proof of the lemma.

Combining inequalities (3.90,3.93) and Lemma 3.5.3, we get that the inequality

F (X) ≤ 8V 3
( logK

n

)1/2

+ V
( log(1/δ)

2n

)1/2

(3.98)

holds with probability at least 1− δ. Noticing that V ≥ 1 and, for K ≥ 2, δ ∈ (0, K−1/31)

we have 8
√

logK+
√

(1/2)log(1/δ) ≤ 8
√

log(K/δ), we get the first claim of the proposition.

The second claim is a direct consequence of Lemma 3.5.3 and (3.93).

3.6 Proof of the lower bound for nearly-D-sparse ag-

gregation

We prove the minimax lower bound for estimation in Kullback-Leibler risk using the fol-

lowing slightly adapted version of Theorem 2.5 from Tsybakov [2009]. Throughout this
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section, we denote by λmin,Σ(k) and λmax,Σ(k), respectively, the smallest and the largest

eigenvalue of all k × k principal minors of the matrix Σ.

Theorem 3.6.1. For some integer L ≥ 4 assume that HF(γ,D) contains L elements

fπ(1) , . . . , fπ(L) satisfying the following two conditions.

(i) KL(fπ(j) ||fπ(k)) ≥ 2s > 0, for all pairs (j, k) such that 1 ≤ j < k ≤ L.

(ii) For product densities fn` defined on X n by fn` (x1, . . . ,xn) = fπ(`)(x1)× . . .×fπ(`)(xn)

it holds

max
`∈[L]

KL(fn` ||fn1 ) ≤ logL

16
. (3.99)

Then

inf
f̂

sup
f∈HF (γ,D)

Pf
(
KL(f ||f̂) ≥ s

)
≥ 0.17. (3.100)

To establish the bound claimed in Theorem 3.3.1, we will split the problem into two

parts, corresponding to the following two subsets of HF(γ,D)

HF(0, D) =
{
fπ : π ∈ BK+ s.t. ∃ J ⊂ [K] with ‖πJc‖1 = 0 and |J | ≤ D

}
,

HF(γ, 1) =
{
fπ : π ∈ BK+ s.t. π1 = 1− γ and

∑K
j=2 πj = γ

}
.

(3.101)

We will show that over HF(0, D), we have a lower bound of order log(1 + K/D)/n while

over HF(γ, 1), a lower bound of order
[
γ2

n
log
(
1 +K/(γ

√
n)
)]1/2

holds true. Therefore, the

lower bound over HF(γ,D) is larger than the average of these bounds.

For any M ≥ 1 and k ∈ [M − 1], let ΩM
k be the subset of {0, 1}M defined by

ΩM
k :=

{
ω ∈ {0, 1}M : ‖ω‖1 = k

}
. (3.102)

Before starting, we remind here a version of the Varshamov-Gilbert lemma (see, for in-

stance, [Rigollet and Tsybakov, 2011, Lemma 8.3]) which will be helpful for deriving our

lower bounds.

Lemma 3.6.1. Let M ≥ 4 and k ∈ [M/2] be two integers. Then there exist a subset

Ω ⊂ ΩM
k and an absolute constant C1 such that

‖ω − ω′‖1 ≥
k + 1

4
∀ω,ω′ ∈ Ω s.t. ω 6= ω′ (3.103)

and L = |Ω| satisfies L ≥ 4 and

logL ≥ C1k log
(

1 +
eM

k

)
. (3.104)

We will also use the following lemma that allows us to relate the KL-divergence KL(fπ||fπ′)
to the Euclidean distance between the weight vectors π and π′.
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Lemma 3.6.2. If the dictionary F satisfies the boundedness assumption (3.12), then for

any fπ, fπ′ ∈ HF(γ,D) we have

1

2V 2M
‖Σ1/2(π′ − π)‖2

2 ≤ KL(fπ||fπ′) ≤
V 2

2m
‖Σ1/2(π′ − π)‖2

2. (3.105)

Proof. Using the Taylor expansion, one can check that for any u ∈ [1/V, V ], we have

(1− u) + 1
2V 2 (u− 1)2 ≤ − log u ≤ (1− u) + V 2

2
(u− 1)2. Therefore,

1

2V 2

∫
X

(fπ′
fπ
− 1
)2

fπ dν ≤ KL(fπ||fπ′) ≤
V 2

2

∫
X

(fπ′
fπ
− 1
)2

fπ dν. (3.106)

Since F satisfies the boundedness assumption, we get

1

2MV 2

∫
X

(
fπ′ − fπ

)2
dν ≤ KL(fπ||fπ′) ≤

V 2

2m

∫
X

(
fπ′ − fπ

)2
dν. (3.107)

The claim of the lemma follows from these inequalities and the fact that
∫
X

(
fπ′−fπ

)2
dν =

‖Σ1/2(π′ − π)‖2
2.

3.6.1 Lower bound on HF(0, D)

We show that the lower bound (D/n) log(1 + eK/D) ∧
(
(1/n)log(1 + K/√n)

)1/2
holds when we

consider the worst case error for f ∗ belonging to the set HF(0, D).

Proposition 4. If log(1 + eK) ≤ n then, for the constant

C2 =
C1mκ̄Σ(2D, 0)

29V 2M(C1m ∨ 4V 2λmax,Σ(2D))
≥ C1mκ∗

29V 2M(C1m ∨ 4V 2κ∗)
, (3.108)

we have

inf
f̂

sup
f∈HF (0,D)

Pf

(
KL(f ||f̂) ≥ C2

D log(1 + K
D )

n

∧( log
(
1 + K√

n

)
n

)1/2
)
≥ 0.17. (3.109)

Proof. We assume that D ≤ K/2. The case D > K/2 can be reduced to the case D = K/2 by

using the inclusion HF(0,K/2) ⊂ HF(0, D). Let us set A1 = 4 ∨ 16V 2λmax,Σ(2D)/(C1m)

and denote by d the largest integer such that

d ≤ D and d2 log
(

1 +
eK

d

)
≤ A1n. (3.110)

According to Lemma 3.6.1, there exists a subset Ω = {ω(`) : ` ∈ [L]} of ΩK
d of cardinality

L ≥ 4 satisfying logL ≥ C1d log(1+eK/d) such that for any pair of distinct elements ω(`),
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ω(`′) ∈ Ω we have ‖ω(`) −ω(`′)‖1 ≥ d/4. Using these binary vectors ω(`), we define the set

D = {π(1), . . . ,π(L)} ⊂ BK+ as follows:

π(1) = ω(1)/d, π(`) = (1− ε)π(1) + εω(`)/d, ` = 2, . . . , L. (3.111)

Clearly, for every ε ∈ [0, 1], the vectors π(`) belong to BK+ . Furthermore, for any pair of

distinct values `, `′ ∈ [L], we have ‖π(`) − π(`′)‖qq = (ε/d)q‖ω(`) − ω(`′)‖1 ≥ (ε/d)qd/4. In

view of Lemma 3.6.2, this yields

KL(fπ(`)||fπ(`′)) ≥
κ̄Σ(2d, 0)

4V 2Md

∥∥π(`) − π(`′)
∥∥2

1
≥ κ̄Σ(2D, 0)

64V 2M
× ε2

d
. (3.112)

Let us choose

ε2 =
d2 log(1 + eK/d)

nA1

. (3.113)

It follows from (3.110) that ε ≤ 1. Inserting this value of ε in (3.112), we get

KL(fπ(`) ||fπ(`′)) ≥ 2C2
d log(1 + eK/d)

n
. (3.114)

This inequality shows that condition (i) of Theorem 3.6.1 is satisfied with s = C2 (d/n) log(1+

eK/d). For the second condition of the same theorem, we have

max
`∈[L]

KL(fn` ||fn1 ) = nmax
`

KL(fπ(`)||fπ(1)) (3.115)

≤ nV 2λmax,Σ(2d)

2m
max
`
‖π(`) − π(1)‖2

2 (3.116)

≤ nV 2λmax,Σ(2D)

m
× ε2

d
, (3.117)

since one can check that ‖π(`) − π(1)‖2
2 ≤ (ε/d)2‖ω(`) − ω(1)‖1 ≤ 2ε2/d. Therefore, using

the definition of ε, we get

max
`∈[L]

KL(fn` ||fn1 ) ≤ nV 2λmax,Σ(2D)

m
× C1dm log(1 + eK/d)

16nV 2λmax,Σ(2D)
(3.118)

=
C1d log(1 + eK/d)

16
≤ logL

16
. (3.119)

Theorem 3.6.1 implies that

inf
f̂

sup
f∈HF (0,D)

Pf

(
KL(f ||f̂) ≥ C2

d log(1 + eK/d)

n

)
≥ 0.17. (3.120)

We use the fact that d is the largest integer satisfying (3.110). Therefore, either d+ 1 > D

or

(d+ 1)2 log
(

1 +
eK

d+ 1

)
≥ A1n. (3.121)
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If d ≥ D, then the claim of the proposition follows from (3.120), since d log(1 + eK/d) ≥
D log(1 + eK/D). On the other hand, if (3.121) is true, then

d log(1 + eK/d) ≥ 1

2
(d+ 1) log(1 + eK/(d+ 1))

≥ 1

2

(
A1nlog(1 + eK/(d+ 1))

)1/2
. (3.122)

In addition, d2 log(1 + eK/d) ≤ A1n implies that (d + 1)2 ≤ A1n. Combining the last

two inequalities, we get the inequality d log(1 + eK/d) ≥ 1/2
(
A1nlog(1 + eK/

√
A1n)

)1/2 ≥(
nlog(1 + eK/

√
n)
)1/2

. Therefore, in view of (3.120), we get the claim of the proposition.

3.6.2 Lower bound on HF(γ, 1)

Next result shows that the lower bound γ2

n
log
(
1 + K

γ
√
n

)
holds for the worst case error

when f ∗ belongs to the set HF(γ, 1).

Proposition 5. Assume that ( log(1 + eK)

n

)1/2

≤ 2γ. (3.123)

Then, for the constant C3 = C1mκ̄Σ(2D,0)
212V 4Mλmax,Σ(2D)

, it holds that

inf
f̂

sup
f∈HF (γ,1)

Pf

(
KL(f ||f̂) ≥ C3

{γ2

n
log
(

1 +
K

γ
√
n

)}1/2
)
≥ 0.17. (3.124)

Proof. Let C > 2 be a constant the precise value of which will be specified later. Denote

by d the largest integer satisfying

d
√

log(1 + eK/d) ≤ Cγ
√
n. (3.125)

Note that d ≥ 1 in view of the condition ( log(1+eK)
n

)1/2 ≤ 2γ of the proposition. This readily

implies that d ≤ Cγ
√
n and, therefore,

γ

d
≥ C−1

{ 1

n
log
(

1 +
eK

Cγ
√
n

)}1/2

≥ 2C−2
{ 1

n
log
(

1 +
K

γ
√
n

)}1/2

. (3.126)

Let us first consider the case d ≤ (K−1)/2. According to Lemma 3.6.1, there exists a subset

Ω ⊂ ΩK−1
d of cardinality L satisfying logL ≥ C1d log

(
1+ e(K−1)

d

)
and ‖ω(`)−ω(`′)‖1 ≥ d/4

for any pair of distinct elements ω,ω′ taken from Ω. With these binary vectors in hand,

we define the set D ⊂ BK+ of cardinality L as follows:

D =
{
π =

(
1− γ, γω/d

)
: ω ∈ Ω

}
. (3.127)
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It is clear that all the vectors of D belong to HF(γ, 1). Let us fix now an element of D and

denote it by π1, the corresponding element of Ω being denoted by ω1. We have

max
π∈D

KL(fnπ ||fnπ1) ≤
nV 2

2m
max
π∈D
‖Σ1/2(π − π1)‖2

2 (3.128)

≤ nV 2λmax,Σ(2d)γ2

2md2
max
ω∈Ω
‖ω − ω1‖2

2 (3.129)

≤ nV 2λmax,Σ(2d)γ2

md
. (3.130)

The definition of d yields (d+ 1)
√

log(1 + eK/(d+ 1)) > Cγ
√
n, which implies that

γ2

d
≤ 2(d+ 1)

γ2

(d+ 1)2

≤ 2(d+ 1)
log
(
1 + eK/(d+ 1)

)
nC2

≤
4d log

(
1 + e(K − 1)/d

)
nC2

. (3.131)

Combined with eq. (3.130), this implies that

max
π∈D

KL(fnπ ||fnπ1) ≤
nV 2λmax,Σ(2d)

m
×

4d log
(
1 + e(K − 1)/d

)
nC2

(3.132)

=
4V 2λmax,Σ(2d)

mC2
× d log

(
1 + e(K − 1)/d

)
. (3.133)

Choosing

C2 = 2 ∨ 64V 2λmax,Σ(2d)

C1m

we get that maxπ∈DKL(fnπ ||fnπ1) ≤ 1
16
C1d log

(
1 + e(K − 1)/d

)
≤ logL

16
.

Furthermore, for any π,π′ ∈ D, in view of Lemma 3.6.2 and (3.126), we have

KL(fπ||fπ′) ≥
κ̄Σ(2d, 0)

4V 2Md

∥∥π − π′∥∥2

1
=
κ̄Σ(2d, 0)γ2

4V 2Md3
‖ω − ω′

∥∥2

1
(3.134)

≥ κ̄Σ(2d, 0)

64V 2M
× γ2

d
(3.135)

≥ κ̄Σ(2d, 0)

32V 2MC2
×
{γ2

n
log
(

1 +
K

γ
√
n

)}1/2

. (3.136)

Since κ̄Σ(2d,0)
32V 2MC2 = 2C3, this implies that Theorem 3.6.1 can be applied, which leads to the

inequality

inf
f̂

sup
f∈HF (γ,1)

Pf

(
KL(f ||f̂) ≥ C3

{γ2

n
log
(

1 +
K

γ
√
n

)}1/2
)
≥ 0.17. (3.137)
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To complete the proof of the proposition, we have to consider the case d > (K − 1)/2.

In this case, we can repeat all the previous arguments for d = K/2 and get the desired

inequality.

3.6.3 Lower bound holding for all densities

Now that we have lower bounds in probability for HF(0, D) and HF(γ, 1), we can derive

a lower bound in expectation for HF(γ,D). In particular, to prove Theorem 3.3.1, we will

use the inequality

R
(
HF(γ,D)

)
≥ inf

f̂
sup

f∗∈HF (0,D)∪HF (γ,1)

E[KL(f ∗||f̂)]. (3.138)

Proof of Theorem 3.3.1. To ease notation, let us define

r(n,K, γ,D) =

[
γ2

n
log

(
1 +

K

γ
√
n

)]1/2

+
D log(1 +K/D)

n

∧( log(1 +K/
√
n)

n

)1/2

. (3.139)

We first consider the case where the dominating term is the first one, that is[
γ2

n
log

(
1 +

K

γ
√
n

)]1/2

≥ 3D log(1 +K/D)

n
. (3.140)

On the one hand, since D ≥ 1, we have

3D log(1 +K/D)

n
≥ log(1 + eK)

n
. (3.141)

On the other hand, using the inequality log(1 + x) ≤ x, we get[
γ2

n
log

(
1 +

K

γ
√
n

)]1/2

≤ γ√
n

[
log(1 + eK) + log

(
1 +

1

e2γ2n

)]1/2

(3.142)

≤ γ

[
log(1 + eK)

n

]1/2

+
γ√
n

[
1

e2γ2n

]1/2

(3.143)

≤ γ

[
log(1 + eK)

n

]1/2

+
log(1 + eK)

2n
. (3.144)

Combining (3.140), (3.141) and (3.144), we get( log(1 + eK)

n

)1/2

≤ 2γ. (3.145)

This implies that we can apply Proposition 5, which yields

inf
f̂

sup
f∈HF (γ,D)

Pf

(
KL(f ||f̂) ≥ C3

{γ2

n
log
(

1 +
K

γ
√
n

)}1/2
)
≥ 0.17. (3.146)
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In view of (3.140), this implies that

inf
f̂

sup
f∈HF (γ,D)

Pf

(
KL(f ||f̂) ≥ 3

4
C3 r(n,K, γ,D)

)
≥ 0.17. (3.147)

We now consider the second case, where the dominating term in the rate is the second one,

that is [
γ2

n
log

(
1 +

K

γ
√
n

)]1/2

≤ 3D log(1 +K/D)

n

∧( log(1 +K/
√
n)

n

)1/2

. (3.148)

In view of Proposition 4, we have

inf
f̂

sup
f∈HF (γ,D)

Pf

(
KL(f ||f̂) ≥ C2

D log(1 + K
D )

n

∧( log
(
1 + K√

n

)
n

)1/2
)
≥ 0.17. (3.149)

In view of (3.148), we get

inf
f̂

sup
f∈HF (γ,D)

Pf

(
KL(f ||f̂) ≥ 1

4
C2 r(n,K, γ,D)

)
≥ 0.17. (3.150)

Thus, we have proved that log(1 + eK) ≤ n implies that

inf
f̂

sup
f∈HF (γ,D)

Pf
(
KL(f ||f̂) ≥ C4 r(n,K, γ,D)

)
≥ 0.17, (3.151)

for some constant C4 > 0, whatever the relation between γ and D. The desired lower bound

follows now from the Tchebychev inequality E
[
KL(f ||f̂)

]
≥ C4 r(n,K, γ,D)Pf

(
KL(f ||f̂) ≥

C4 r(n,K, γ,D)
)
.

Appendix A: Concentration inequalities

This section contains some well-known results, which are recalled here for the sake of the

self-containedness of the paper.

Theorem 3.6.2. For each s = 1, . . . , N , let Y1,s, . . . , Yn,s be n independent and zero mean

random variables such that for some real numbers a, b we have P(Yi,s ∈ [a, b]) = 1 for all

i ∈ [n] and s ∈ [N ]. Then, we have

E
[

max
s∈[N ]

1

n

n∑
i=1

Yi,s

]
≤ (b− a)

( logN

2n

)1/2

, (3.152)

E
[

max
s∈[N ]

∣∣∣ 1
n

n∑
i=1

Yi,s

∣∣∣] ≤ (b− a)
( log(2N)

2n

)1/2

. (3.153)
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Proof. We denote Zs = 1
n

∑n
i=1 Yi,s for s = 1, . . . , N and Zs = − 1

n

∑n
i=1 Yi,s for s =

N + 1, . . . , 2N . For every s ∈ [2N ], the logarithmic moment generating function ψs(λ) =

log E[eλZs ] satisfies

ψs(λ) = log
(∏

i

E[eλYi,s/n]) =
n∑
i=1

log E[eλYi,s/n] ≤ λ2(b− a)2

8n
, (3.154)

where the last inequality is a consequence of the Hoeffding lemma (see, for instance,

Lemma 2.2 in [Boucheron et al., 2013]). This means that Zs is sub-Gaussian with variance-

factor ν = (b− a)2/4n. Therefore, Theorem 2.5 from [Boucheron et al., 2013] yields

E[maxs Zs] ≤
√

2ν log(2N), which completes the proof.

We group and state together the bounded differences and the Efron-Stein inequalities

(Boucheron et al. [2013], Theorems 6.2 and 3.1, respectively).

Theorem 3.6.3. Assume that a function f satisfies the bounded difference condition: there

exist constants ci, i = 1, . . . , n such that for all i = 1, . . . , n, all X = (X1, . . . , Xi, . . . , Xn)

and X ′ = (X1, . . . , X
′
i, . . . , Xn) where only the ith vector is changed

|f(X)− f(X ′)| ≤ ci. (3.155)

Denote

ν =
n∑
i=1

c2
i . (3.156)

Let Z = f(X1, . . . , Xn) where Xi are independent. Then, for every δ ∈ (0, 1),

P
{
Z ≤ EZ +

(ν log(1/δ)

2

)1/2}
≥ 1− δ, and Var[Z] ≤ ν

2
. (3.157)

Next we state the contraction principle of [Ledoux and Talagrand, 1991]; a proof can

be found in (Boucheron et al. [2013], Theorem 11.6).

Theorem 3.6.4. Let x1, . . . , xn be vectors whose real-valued components are indexed by

T , that is, xi = (xi,s)s∈T . For each i = 1, . . . , n let ϕi : R → R be a 1-Lipschitz function

such that ϕi(0) = 0. Let ε1, . . . , εn be independent Rademacher random variables, and let

Ψ : [0,∞)→ R be a non-decreasing convex function. Then

E

[
Ψ

(
1

2
sup
s∈T

∣∣∣∣ n∑
i=1

εiϕi(xi,s)

∣∣∣∣)] ≤ E

[
Ψ

(
sup
s∈T

∣∣∣∣ n∑
i=1

εixi,s

∣∣∣∣)] (3.158)

E

[
Ψ

(
sup
s∈T

n∑
i=1

εiϕi(xi,s)

)]
≤ E

[
Ψ

(
sup
s∈T

n∑
i=1

εixi,s

)]
. (3.159)
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In this section we propose an efficient algorithm for performing the KL-aggregation

(see Chapter 3) and describe its implementation. We also compare its performance with

different alternative methods. For the sake of simplicity, the comparison with the other

methods is done in the univariate case only. The implementation of our algorithm and its

behavior are the same in the multivariate setting.

4.1 Introduction

Before anything else, we remind the reader the problem setting and the estimator consid-

ered. We observe n independent random vectorsX1, . . . ,Xn ∈ X drawn from a probability

distribution P ∗ that admits a density function f ∗ with respect to the Lebesgue measure.

Given a family of mixture components f1, . . . , fK , we assumed that this unknown density

81
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is well approximated by a convex combination fπ of these components:

fπ(x) =
K∑
j=1

πjfj(x), π ∈ BK+ =
{
π ∈ [0, 1]K :

K∑
j=1

πj = 1
}
. (4.1)

The component densities F = {fj : j ∈ [K]} are assumed to be given by previous experi-

ments or expert knowledge. The problem of construction of this family is an open problem

that we try to address in Section 4.5. The objective of this chapter is to expose and

study experimentally the algorithm implemented for computing the Maximum Likelihood

Estimator (MLE), defined by

π̂ ∈ arg min
π∈BK+

{
− 1

n

n∑
i=1

log fπ(X i)
}
. (4.2)

One can note that this problem is convex as the composition of − log and a linear function

is convex. Furthermore, the feasible space is also convex. This problem can be solved

via a Primal-Dual interior point method. But we opted for an approach based on the

accelerated proximal gradient descent method because of its suitability to the problems in

high-dimensions with sparsity assumption [Beck and Teboulle, 2009].

4.2 Implementation

Input: π ∈ Rp.
Output: The projection πproj of π onto the probability simplex.

1: Sort π into u : u1 ≥ u2 ≥ · · · ≥ up.
2: Find ρ = max{1 ≤ j ≤ p : uj + 1

j (1−
∑j

i=1 ui) > 0}.
3: Define λ = 1

ρ(1−
∑ρ

i=1 ui).

4: Construct πproj s.t.πproji = max{πi + λ, 0}, i = 1, . . . , p.

Figure 4.1: Projection procedure onto the probability simplex

We can see that eq. (4.2) is equivalent to

arg min
π∈RK

{
− 1

n

n∑
i=1

log fπ(X i) + χBK+ (π)
}
, (4.3)

where χBK+ is the indicator function

χBK+ (π) =

0, if π ∈ BK+ ,

+∞, otherwise.
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This problem can be decomposed into

min
π

{
`(π) + g(π)

}
, (4.4)

where `(π) = − 1
n

∑n
i=1 log fπ(X i) and g(π) = χBK+ (π). One can note that this problem

is convex but not smooth since ` is differentiable but g is not. One way to tackle this

minimization is to consider the proximal operator

proxλg(π) = arg min
u

{
g(u) +

1

2λ
‖u− π‖2

2

}
, (4.5)

where λ > 0 is a scale parameter for the function g. One can interpret proxλg(π) as a point

that compromises between minimizing g and being near to π. Note that in our context,

g(.) = χBK+ (.), therefore

proxλg(π) = arg min
u

{
χBK+ (u) +

1

2λ
‖u− π‖2

2

}
,

= arg min
u∈BK+

{
‖u− π‖2

2

}
,

= ΠBK+ (π)

where ΠBK+ (π) is the Euclidean projection of π into the probability simplex. The reader

can find in [Parikh and Boyd, 2014] a detailed study of proximal algorithms. A particularly

interesting procedure for our problem is the proximal gradient method that solves eq. (4.4).

This method is iterative and the (k + 1)th step is

πk+1 := proxλkg(π
k − λk∇f(πk)), (4.6)

where λk > 0 is a step size. This step size can be found via a line-search method [Parikh

and Boyd, 2014]. However, if ∇f is L-Lipschitz, we can chose a fixed λk ∈ (0, 1/L). In this

setting, one can show that this method converges with a rate of O(1/k). This rate is known

to be sub-optimal. To improve this slow rate, accelerated versions of the proximal gradient

method have been developed [Nesterov, 2007, Beck and Teboulle, 2009] that achieve op-

timal O(1/k2) rate under the L-Lipschitz condition on ∇f . These optimization methods

rely on the proximal operator and Nesterov’s accelerated gradient method [Nesterov, 1983].

A version of this accelerated method isξk := πk + ωk(πk − πk−1),

πk+1 := proxλkg(ξ
k − λk∇f(ξk)),
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where ωk is defined by ω1 := 1 and

ωk :=
2(ωk−1 − 1)

1 +
√

1 + (ωk−1)2
.

This method has been coined Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)

in [Beck and Teboulle, 2009]. Our procedure is a special case of this algorithm that can be

called “Accelerated projected gradient descent” since the proximal is the projection into

BK+ . A procedure for the projection onto the probability simplex can be found in [Duchi

et al., 2008] and a simple proof in [Wang et al., 2013]. The procedure for this projector is

given in Figure 4.1. Finally, the complete procedure for our algorithm is given in Figure 4.2.

1: Input: A gradient step λ.

2: Output: parameter estimate π̂.

3: 1: Initialize t0 = 1 and π0 = (1/K, . . . , 1/K),

4: for k ≥ 1, until convergence occurs, do

5: (a) πk = ΠBK+

(
ξk − λ∇fξk(ξk)

)
,

6: (b) tk+1 =
1+
√

1+4t2k
2 ,

7: (c) ξk+1 = πk +
(
tk−1
tk+1

)
(πk − πk−1).

8: end for.

Figure 4.2: FISTA for the estimation of π.

A nice property of this method is that it provides a sparse solution of this minimization

problem which fits with our goal of selecting elements of the dictionary. General Primal-

Dual interior points methods do not offer this feature.

4.3 Alternative methods considered

In this section we briefly describe several estimators of the density which are compared to

our estimator. Note that although we used the algorithm EM in our experiments, we do

not described it in this section since it is already done in Chapter 1.

4.3.1 SPADES

A method combining the dictionary approach and the `1-penalty (and, therefore, very close

in spirit to our method) have been proposed by [Bunea et al., 2010]. They studied the
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linear combinations (as opposed to convex combinations studied in the previous chapter)

of functions {f1, . . . , fM} with fj ∈ L2(Rd), j = 1, . . . ,M :

fλ(x) =
M∑
j=1

λjfj(x), λ = (λ1, . . . , λM) ∈ RM . (4.7)

They suggested the following estimator λ̂ called SPADES:

λ̂ = arg min
λ∈RM

{
− 2

n

n∑
i=1

fλ(X i) + ‖fλ‖2 + 2
M∑
j=1

ωj|λj|
}
. (4.8)

It could be interesting to include SPADES in our experimental evaluation, but we did not

manage to find an easy-to-use implementation of it, and it turned out that our implemen-

tation was quite slow. Furthermore, the SPADES is conceptually close to the Adaptive

Dantzig (AD) [Bertin et al., 2011] procedure described in the next subsection. Therefore,

we opted for excluding SPADES from our experiments but including AD.

4.3.2 Adaptive Dantzig density estimation

The Adaptive Dantzig estimator of a density has been introduced in [Bertin et al., 2011].

This method is similar to ours as it constructs an estimator of the unknown density from

a linear mixture of functions taken from a dictionary. The key idea of this estimator is

to minimize the `1-norm of the weight vector of the linear combination under an adaptive

Dantzig constraint. This constraint comes from concentration inequalities. We recall here

some material about the Dantzig selector. It has been introduced by [Candes and Tao,

2007] in the linear regression model

Y = Aλ0 + ε (4.9)

where Y ∈ Rn, A is a n by M matrix, ε ∈ Rn is the noise vector and λ0 ∈ RM the

unknown regression parameter to estimate. The Dantzig estimator is then defined as the

solution of the problem

minimize ‖λ‖1 subject to ‖AT (Aλ− Y )‖∞ ≤ η, (4.10)

where η is a regularization parameter. Statistical properties of this estimator were estab-

lished in [Bickel et al., 2009]. They considered the non-parametric regression framework

Yi = f0(xi) + εi, i = 1, . . . , n (4.11)
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where f is an unknown function, the design points (xi)i=1,...,n are known and (εi)i=1,...,n is

a noise vector. One can estimate f0 as a weighted sum fλ0 of elements of a dictionary

D = (ϕm)m=1,...,M

fλ0 =
M∑
i=1

λ0,mϕm. (4.12)

One easily checks that the model in 4.11 coincides with model in eq. (4.9) if we choose as

design matrix A = (ϕm(xi)). The goal of [Bertin et al., 2011] was to estimate an unknown

density f0 with respect to a known measure dx on R by using the observation of n-sample

X1, . . . , Xn and to build a linear combination fλ of elements of the dictionary D as in

eq. (4.12). It follows from the strong law of large numbers that

β̂m =
1

n

n∑
i=1

ϕm(Xi)

converges almost surely to the scalar product of f0 and ϕm:∫
ϕm(x)f0(x)dx = β0,m, (4.13)

and the Gram matrix associated to the dictionary D

Gm,m′ =

∫
ϕm(x)ϕm′(x)dx with 1 ≤ m,m′ ≤M. (4.14)

The scalar product of fλ and ϕm is therefore∫
ϕm(x)fλ(x)dx =

M∑
m′=1

λm′

∫
ϕm′(x)ϕm(x)dx = (Gλ)m. (4.15)

The Dantzig estimate λ̂
D

is then obtained by solving the following constrained minimiza-

tion problem {
minimize ‖λ‖1

subject to |(Gλ)m − β̂m| ≤ ηγ,m m ∈ {1, . . . ,M},

where, for a constant γ > 0,

ηγ,m =

√
2σ̃2

mγ logM

n
+

2‖ϕm‖∞γ logM

3n
, (4.16)

with

σ̃2
m = σ̂2

m + 2‖ϕm‖∞

√
2σ̂2

mγ logM

n
+

8‖ϕm‖2
∞γ logM

n
, (4.17)
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and

σ̂2
m =

1

n(n− 1)

n∑
i=2

i−1∑
j=1

(ϕm(Xi)− ϕm(Xj)). (4.18)

Note that ηγ,m depends on the data which explains the name Adaptive Dantzig. [Bertin

et al., 2011] derived the form of ηγ,m from sharp concentration inequalities (see Theorem

1 of [Bertin et al., 2011]). More precisely, if we consider λ0 = (λ0,m)m=1,...,M such that the

projection of f0 on the space spanned by D is

PDf0 =
M∑
m=1

λ0,mϕm, (4.19)

then (Gλ0)m = β0,m and the parameter ηγ,m can be seen as the smallest quantity such

that, for γ > 1, we have |β0,m−β̂m| ≤ ηγ,m with high probability. Note that the assumption

γ > 1 is an almost necessary condition to have a theoretical control on the quadratic error

E‖f̂D − f0‖2
2. Therefore, we will follow the choice of γ = 1.01 made by the authors in our

experiments. The pseudo code of the procedure is given in Figure 4.3. In what follows,

the Adaptive Dantzig density estimator is noted f̂AD and the abbreviation AD is used in

the plots.

4.3.3 Kernel density estimation

The kernel density estimator (KDE) is a well established non-parametric way of estimating

the probability density function of a random variable. We will recall in this section some

material about KDE.

Let X1, . . . , Xn be i.i.d. random variables drawn from an unknown probability density f

with respect to the Lebesgue measure on R. The kernel density estimator f̂h is given by

f̂h(x) ,
1

nh

n∑
i=1

K
(Xi − x

h

)
(4.22)

where K : R → R and
∫
K(u)du = 1 is called a kernel and h is the bandwidth. We used

Gaussian kernel and three methods to select the bandwidth: Cross Validation, Scott’s rule

of thumb which is the default method in Scipy [Jones et al., 2001–] and the Sheather and

Jones bandwidth selection procedure [Sheather and Jones, 1991].
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1: Input: A sample X1, . . . ,Xn ∈ Rp and the dictionary D = (ϕm)m=1,...,M .

2: Output: Dantzig density estimate f̂AD = f
λ̂
D .

3: Init: Set γ = 1.01.

4: Compute β̂m = 1
n

∑N
i=1 ϕm(Xi).

5: Compute σ̂2
m = 1

n(n−1)

∑n
i=2

∑i−1
j=1(ϕm(Xi)− ϕm(Xj))

2.

6: Compute σ̃2
m.

σ̃2
m = σ̂2

m + 2‖ϕm‖∞

√
2σ̂2

mγ logM

n
+

8‖ϕm‖2∞γ logM

n
. (4.20)

7: Compute ηγ,m

ηγ,m =

√
2σ̃2

mγ logM

n
+

2‖ϕm‖∞γ logM

3n
.

8: Compute the coefficients λ̂
D,γ

of the Dantzig estimate, λ̂
D,γ

=

arg minλ∈RM ‖λ‖1 such that λ satisfies the Dantzig constraint

∀m ∈ {1, . . . ,m}, |(Gλ)m − β̂m| ≤ ηγ,m. (4.21)

9: Compute the mixture density f
λ̂
D =

∑M
m=1 λ̂

D
mϕm.

Figure 4.3: Adaptive Dantzig density estimation procedure

Methods based on minimizing the AMISE

The most natural way to derive an estimator of the bandwidth would be to minimize the

Mean Integrated Squared Error (MISE)

MISE(h) := E
[ ∫

(f̂h(x)− f(x))2dx
]
. (4.23)

Unfortunately, we can not rely on this quantity since f is unavailable. However, we can

derive the first two terms of the asymptotic expansion of the MISE (AMISE). When n→∞
and h = h(n)→ 0, and under regularity assumptions on f and K, we have

AMISE(h) =
1

nh
R(K) +

h4σ4
K

4
R(f ′′), (4.24)

where for an appropriate function g,

R(g) =

∫
g2(x)dx and σ2

g =

∫
x2g(x)dx.
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The reader can refer to the appendix of [Tsybakov, 2009] for a proof of this expansion.

Setting the derivative w.r.t. h of the right hand side of eq. (4.24) to 0, we see that a suitable

estimate of the bandwidth would be the solution of

h =

(
R(K)

σ4
KR(f ′′)

)1/5

n−1/5. (4.25)

However, this cannot be done directly since we do not know R(f ′′). In the special case

where we consider that the kernels are Gaussian and the target density to be estimated is

also a Gaussian with density φ(0,σ2), we have R(φ′′(0,σ2)(x)) = 3/(8
√
πσ5) and we can derive

the Scott’s rule of thumb in univariate case [Scott, 2015]

ĥ = (4/3)1/5σn−1/5 ≈ 1.06σ̂n−1/5. (4.26)

Without this assumption on the target density, we have to look deeper into the study of

R(f ′′). Several estimators of this quantity has been developed to circumvent this issue

[Hall and Marron, 1987, Jones and Sheather, 1991, Sheather and Jones, 1991]. We will

focus on a popular method from [Sheather and Jones, 1991]. The authors constructed a

kernel density estimator of R(f ′′)

Ŝ(α̂2(h)) =
1

n(n− 1)
(α̂2(h))−5

n∑
i=1

n∑
j=1

Φ(4)
(Xi −Xj

α̂2(h)

)
, (4.27)

where Φ(i) is the ith derivative of the standard normal density. Note that α̂2(h) depends

on h. An estimator of α̂2(h) can be built with specific properties on the diagonal elements

of eq. (4.27)

α̂2(h) = 1.357
(
Ŝ(a)/T̂ (b)

)1/7
h5/7, (4.28)

with

T̂ (b) = − 1

n(n− 1)
b−7

n∑
i=1

n∑
j=1

Φ(6)
(Xi −Xj

b

)
, (4.29)

and

a = 0.920λ̂n−1/7, b = 0.912λ̂n−1/9, (4.30)

where λ̂ is the sample interquartile range. We will not go into the details of these ex-

pressions but it is worth mentioning that T̂ (b) is a kernel density estimator of R(f ′′′).

Therefore combining eq. (4.27), eq. (4.28) and eq. (4.29), we can solve eq. (4.25) over h via

a Newton-Raphson procedure. The algorithm is given in Figure 4.4.
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1: Input: A sample X1, . . . ,Xn ∈ R.

2: Output: A bandwidth estimator ĥ.

3: Init: Set a = 0.920λ̂n−1/7 and b = 0.912λ̂n−1/9.

4: Compute

T̂ (b) = − 1

n(n− 1)
b−7

n∑
i=1

n∑
j=1

Φ(6)
(Xi −Xj

b

)
. (4.31)

5: Compute

Ŝ(a) =
1

n(n− 1)
a−5

n∑
i=1

n∑
j=1

Φ(4)
(Xi −Xj

a

)
(4.32)

6: Define the function α̂2(h) = 1.357
(
Ŝ(a)/T̂ (b)

)1/7
h5/7.

7: Solve over h

h−
(

R(K)

σ4
K Ŝ(α̂2(h))

)1/5

= 0. (4.33)

Figure 4.4: Sheather and Jones bandwidth selection method.

Behavior of KDE in high dimension

It is well known that the kernel density estimator performs badly in the high dimensional

setting, [Stone, 1980] proved that the kernel density estimator of a p times continuously

differentiable density in dimension d converges at most at the rate n−p/(2p+d). Therefore, for

a given target error, the size of the sample must increase exponentially as the dimension

increases. For a study of kernel density estimators in the high dimensional setting, see

Chapter 7 of [Scott, 2015].

4.4 Experimental Evaluation

In order to carry out an experimental evaluation, we constructed a set of target densities

with different shapes and recorded the performances of the estimators. We considered

different density dictionaries. Finally we assessed the performance through the Kullback-

Leibler divergence and the L2 distance. All the experiments reported in this section were

conducted in the univariate case.
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4.4.1 Dictionaries considered

We did experiments with the following two dictionaries containing various types of densi-

ties.

1. The first dictionary, denoted by DGL, is composed of Gaussian and Laplace densi-

ties. The Gaussian densities have their means in the set {0, 0.2, 0.4, 0.6, 0.8, 1} and

their variances in {0.001, 0.01, 0.1, 1}. The Laplace densities have their means in

{0, 0.2, 0.4, 0.6, 0.8, 1} and their scales in {0.05, 0.1, 0.2, 0.5, 1}. Therefore, the dictio-

nary DGL has 54 elements. The plots of these functions are depicted in Figure 4.5.

Figure 4.5: DGL, set of Gaussian and Laplace densities.

2. The second dictionary, denoted by DGLU , is obtained by enriching the first dictionary

DGL by the set of 10 uniform densities on the intervals (i, i+0.1), i ∈ {0, 0.1, . . . , 0.9}.
This dictionary DGLU has 64 elements.

A table of the dictionary DGL (and DGLU with the uniform densities) can be found in

Figure 4.17.

4.4.2 Densities considered

We considered 5 target densities corresponding to 5 different scenarios. The 1st and 2nd

will asses the performance of our method on uniform based densities, the 3rd and 4th on
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dictionary based density. The last one is a complex density made from elements which are

not in the dictionary that we will consider.

1. funif: A uniform density on [0, 1].

2. frect: A mixture of uniform densities on subintervals. This density is called “Rectan-

gular”:

frect =
10

7
1[0,1/5] +

5

7
1[1/5,2/5] +

10

7
1[2/5,3/5] +

10

7
1[4/5,1]. (4.34)

3. fgauss: A mixture of 5 Gaussian densities taken from the dictionary DGL equally

centered in [0, 1] with same variance:

fgauss =
5∑

k=1

0.2fk with fk = ϕ(k/5,0.001). (4.35)

4. fgauss-lapl: A mixture of 5 Gaussian and Laplace densities taken from the dictionary

DGL with different variances and scales:

fgauss-lapl = 0.2
(

ϕ(0,10−2) + ϕ(0.2,10−3) + ϕ(0.6,10−3)

+Lapl(0.4,0.2) + Lapl(0.8,0.1)

)
.

(4.36)

5. fext: A mixture of Gaussian and Laplace densities taken from another dictionary

Dout:

fext =
7∑

k=1

1

7
fk with fk ∈ Dout. (4.37)

These target densities are plotted in Figure 4.6.

4.4.3 Discussion of the results

In the numerical experiments reported in this section, the dictionaries used for the Adap-

tive Dantzig and the Maximum likelihood density estimators are DGL and DGLU . Note

that the AD is the direct competitor of the MLE as both methods rely on a dictionary.

However, in order to get a broader insight of what is going on, we also compared these

dictionary based methods with other commonly used density estimators such as the EM

algorithm on Gaussian mixtures with a model selection performed by the BIC criterion and

Kernel Density Estimators (KDE). In the plots, KDE refers to the kernel density estimate

with Scott’s rule as chosen by default in the Python library Scipy, KDE-SJ refers to the
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Figure 4.6: Five target densities considered in the experiments.

KDE with the Sheather-Jones bandwidth selector and KDE CV refers to the KDE with

bandwidth selected via cross-validation. The two latter were implemented by ourselves.

For each scenario of the target density, funif, frect, fgauss, fgauss-lapl, fext and for each

sample size N with N ∈ {100, 500, 1000}, we ran 200 simulations. The boxplots of the

errors are plotted in Figure 4.7-Figure 4.19. The running times of different arguments

are depicted in Figure 4.20. A rapid observation is that the performance of the MLE is

good both in Kullback-Leibler and L2 losses, and it outperforms in all considered scenarios

the AD estimator. This is true both in terms of statistical accuracy and computational

complexity. The comparison with the other estimation methods is more subtle, and requires

a closer look to the results.

Mis-specification bias

Obviously, the densities funif, frect and fext were not built with elements in the dictionary

DGL. In other terms, they do not lie in the convex hull of the dictionary DGL. Further-

more, they can be hardly approximated by convex combinations of functions from DGL.

Therefore, it is clear that whatever the dictionary based approach we use, it will have a

significant bias due to the “model mis-specification”.

Since the cardinality of the dictionary is chosen independently of the sample size n,

this bias term is constant across different values of n. This is exactly what we observe in

Figure 4.7. Such methods as the EM-BIC or various versions of KDE have an L2 error that

decreases significantly when the sample size increases, whereas the AD and, especially, the

MLE show only a slight improvement of the error. This is a strong indication of the fact

that the bias of the methods AD and MLE substantially dominates the bias, when the true
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Figure 4.7: Results with funif (upper panel), frect (middle panel) and fext (lower panel) in

L2 loss with DGL.
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density is chosen from the set {funif, frect, fext}. Thus, the apparently poor behavior of the

MLE as compared to the EM-BIC and the KDE is not a surprise and, more importantly,

it is not caused by the method of estimation itself but rather by the inappropriate choice

of the dictionary.

Note that in all the experiments, the conclusions drawn from the error bars correspond-

ing to the L2-error can be drawn from the error bars corresponding to the KL-error.

Assessing estimation error

While for the three densities discussed in the foregoing paragraph the bias was largely

dominating the variance, the situation is reversed for the densities fgauss and fgauss-lapl.

Both of them belong to the convex hull of the dictionary DGL, which implies that the

mis-specification bias vanishes. Therefore, the error is mostly dominated by the estimation

variance. This explains why for these two densities the MLE has the smallest error, both in

L2 and KL loss (see Figure 4.9 and Figure 4.10). Interestingly, the second best is EM-BIC,

which performs better than the AD. Note that the default KDE in Scipy [Jones et al.,

2001–] with Scott’s rule presents poor results in these scenarios. This observation should

come to mind of the practitioner when applying kernel density estimators with default

package setting.

One can also remark that the error of the MLE when estimating fgauss is smaller than

the one of estimating fgauss-lapl. This is perfectly in line with the theory developed in

previous chapter, telling that the variance term is proportional to the sparsity index. In

these examples, the sparsity index of fgauss-lapl is larger than that of fgauss.

Impact of the choice of the dictionary

The discussion of the foregoing paragraphs demonstrates the importance of the choice of

the dictionary. The purpose of the additional experiments conducted with the same target

densities but with a larger dictionary, DGLU , is to further illustrate this importance and to

show that the size of the dictionary does not significantly impact the quality of estimation1.

The inclusion of 10 uniform densities on (0, 0.1), . . . , (0.9, 1) to the dictionary DGL re-

moves the mis-specification bias in the case of a uniform and rectangular densities, and

reduces it in the case of fext. The results are plotted in Figure 4.11 and Figure 4.18. We

can see that the MLE becomes generally the best estimator when the density is uniform

or rectangular. It is still slightly worse than the KDE with data-driven bandwidths for

estimating fext. Finally, the results for the densities fgauss and fgauss-lapl plotted on Fig-

1It certainly does impact the running time
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Figure 4.8: Results with funif (upper panel), frect (middle panel) and fext (lower panel) in

KL loss with DGL.
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Figure 4.9: Results with fgauss (upper panel) and fgauss-lapl (lower panel) in L2 loss with

DGL.
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Figure 4.10: Results with fgauss (upper panel) and fgauss-lapl (lower panel) in KL loss with

DGL.
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Figure 4.11: Results with funif (upper panel), frect (middle panel) and fext (lower panel) in

L2 loss with DGLU .
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Figure 4.12: Results with fgauss (upper panel) and fgauss-lapl (lower panel) in L2 loss with

DGLU .

ure 4.12 and Figure 4.19 confirm that adding new elements to the dictionary (even if they

are “useless”) do not deteriorate the quality of estimation. The `1-constraint allow us to

avoid the overfitting.

Comparison of weights estimated by AD and MLE

A closer look on the estimated weights by AD and MLE gives us knowledge on the behavior

of these estimators. We considered the full dictionary DGLU and we provided a table of

the indexes of components of this dictionary in Figure 4.17. We plotted the estimated

weights of the true components of fgauss and fgauss-lapl in Figure 4.13 and Figure 4.15. The

MLE estimates correctly the real weights of fgauss and most of the weights of fgauss-lapl.

We recall the reader that those weights were set to 0.2. However, AD did not succeed to
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Figure 4.13: Estimated weights of the components of fgauss, with N = 500 (upper panel)

and N = 1000 (lower panel).

estimate correctly these weights. It turns out that AD gave importance on components

that overlap the true densities of the mixture as shown in Figure 4.14 with the uniform

components. Both AD and MLE provide sparse estimators, this can be seen by looking at

components not used in the dictionary (see Figure 4.16). As a matter of fact, the estimated

weight vector by AD is more sparse that MLE, but AD is more prone to be influenced by

overlapping densities.

Concluding remarks

To conclude, the performance of the MLE method in these simulations is promising to

achieve a good mixture density estimate. In addition, the computational efficiency of the
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Figure 4.14: Estimated weights of uniform components of the dictionary for fgauss (upper

panel) and fgauss-lapl (lower panel) with N = 1000.
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Figure 4.15: Estimated weights of the components of fgauss-lapl, with N = 500 (upper panel)

and N = 1000 (lower panel).
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Figure 4.16: Estimated weights of non-used components of the dictionary for fgauss (upper

panel) and fgauss-lapl (lower panel), with N = 1000.
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0 Normal( 0 , 1 ) 22 Normal( 1 , 0.01 ) 44 Laplace( 0.8 , 0.05 )

1 Normal( 0 , 0.1 ) 23 Normal( 1 , 0.001 ) 45 Laplace( 0.8 , 0.1 )

2 Normal( 0 , 0.01 ) 24 Laplace( 0 , 0.05 ) 46 Laplace( 0.8 , 0.2 )

3 Normal( 0 , 0.001 ) 25 Laplace( 0 , 0.1 ) 47 Laplace( 0.8 , 0.5 )

4 Normal( 0.2 , 1 ) 26 Laplace( 0 , 0.2 ) 48 Laplace( 0.8 , 1 )

5 Normal( 0.2 , 0.1 ) 27 Laplace( 0 , 0.5 ) 49 Laplace( 1 , 0.05 )

6 Normal( 0.2 , 0.01 ) 28 Laplace( 0 , 1 ) 50 Laplace( 1 , 0.1 )

7 Normal( 0.2 , 0.001 ) 29 Laplace( 0.2 , 0.05 ) 51 Laplace( 1 , 0.2 )

8 Normal( 0.4 , 1 ) 30 Laplace( 0.2 , 0.1 ) 52 Laplace( 1 , 0.5 )

9 Normal( 0.4 , 0.1 ) 31 Laplace( 0.2 , 0.2 ) 53 Laplace( 1 , 1 )

10 Normal( 0.4 , 0.01 ) 32 Laplace( 0.2 , 0.5 ) 54 Uniform( 0.0 , 0.1 )

11 Normal( 0.4 , 0.001 ) 33 Laplace( 0.2 , 1 ) 55 Uniform( 0.1 , 0.2 )

12 Normal( 0.6 , 1 ) 34 Laplace( 0.4 , 0.05 ) 56 Uniform( 0.2 , 0.3 )

13 Normal( 0.6 , 0.1 ) 35 Laplace( 0.4 , 0.1 ) 57 Uniform( 0.3 , 0.4 )

14 Normal( 0.6 , 0.01 ) 36 Laplace( 0.4 , 0.2 ) 58 Uniform( 0.4 , 0.5 )

15 Normal( 0.6 , 0.001 ) 37 Laplace( 0.4 , 0.5 ) 59 Uniform( 0.5 , 0.6 )

16 Normal( 0.8 , 1 ) 38 Laplace( 0.4 , 1 ) 60 Uniform( 0.6 , 0.7 )

17 Normal( 0.8 , 0.1 ) 39 Laplace( 0.6 , 0.05 ) 61 Uniform( 0.7 , 0.8 )

18 Normal( 0.8 , 0.01 ) 40 Laplace( 0.6 , 0.1 ) 62 Uniform( 0.8 , 0.9 )

19 Normal( 0.8 , 0.001 ) 41 Laplace( 0.6 , 0.2 ) 63 Uniform( 0.9 , 1.0 )

20 Normal( 1 , 1 ) 42 Laplace( 0.6 , 0.5 )

21 Normal( 1 , 0.1 ) 43 Laplace( 0.6 , 1 )

Figure 4.17: Indexes of components of the dictionary DGL and DGLU
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MLE displayed in Figure 4.20 makes it highly attractive for performing density estimation.

Our algorithm was coded in Python with some elements accelerated with the Just-In-Time

(JIT) compiler Numba [Lam et al., 2015]. Compared to compiled optimized versions of

KDE and EM from Scipy and Scikit-Learn[Pedregosa et al., 2011], we are confident that

the computation time of our algorithm can be further decreased. Another important point

is in the case of high dimensional data, KDE and EM+BIC methods are known to present

poor performance. Our method needs the computation of the matrix (fj(Xi))(i,j)∈[N ]×[K]

which might consume a lot of memory. Some techniques such as a Mini-batch approach

can help. Furthermore, at the light of the results in the uniform and rectangular case, the

choice of the dictionary is a cornerstone in density estimation. The size of the dictionary

should be chosen by considering both statistical arguments and computational limitations.

4.5 A method for constructing the dictionary of den-

sities

In this section, we propose a data-driven method to construct a dictionary of densities for

the KL-aggregation algorithm. We compare mixture densities estimated by this dictionary

generation method and the KL-aggregation algorithm with the Kernel density estimator

with the bandwidth selected via cross-validation and the Expectation-Maximization algo-

rithm with the BIC criterion in different dimensional settings. We show experimentally

that the KL-aggregation algorithm with a dictionary provided by this method offers good

performance at an attractive computation cost.

4.5.1 Implementation of the dictionary generator

Given a sample X1, . . . ,Xn ∈ Rp, we construct the set of principal components C of

the design matrix X by PCA. Then we build the set S of all subspaces spanned by two

elements of C:

S = {span(vi,vj), (vi,vj) ∈ C.}. (4.38)

On each subspace of S, we perform a clustering to find groups. For each group, we

consider the points assigned to it in the original space and recover the empirical mean,

the sample variance and construct a normal density with these parameters. A simple

implementation would consider all principal components and thus p(p−1)
2

subspaces. On

each of these subspace a clustering method such as K-means with an arbitrary large number

of clusters K would be applied. The whole complexity would be O(p2n2K+1). To reduce
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Figure 4.18: Results with funif (upper panel), frect (middle panel) and fext (lower panel) in

KL loss with DGLU .
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Figure 4.19: Results with fgauss (upper panel) and fgauss-lapl (lower panel) in KL loss with

DGLU .

Figure 4.20: Computation times
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the computational complexity of this procedure, especially in high dimension, we adopted

three strategies:

1. Select the most informative components obtained via the PCA. One can use differ-

ent techniques such as the Truncated SVD or the method proposed in [Gavish and

Donoho, 2014] which circumvent the issue of not knowing rank(X). They considered

the recovery of low-rank matrices from noisy data by hard thresholding of singular

values by studying the asymptotic MSE. The AMSE-optimal choice of hard threshold

would be for a n-by-p matrix with n 6= p, τ̂∗ = ω(β).ymed, with β = n/p, ymed is the

median singular value of X and ω(β) is described in [Gavish and Donoho, 2014]. An

approximation of ω(β) is ω(β) ≈ 0.56β3 − 0.95β2 + 1.82β + 1.43.

2. Perform a model selection for each clustering which reduces the number of densities

added to the dictionary. The method chosen is EM with BIC.

3. We address the problem of density duplicates in the dictionary originating from the

same subset of points. We saw in the previous section that overlapping densities can

degrade the performance of our estimators. One would like to remove these similar

densities by performing a two-sample test. The reduction of multivariate two-sample

testing to a binary classification problem follows from Friedman in [Friedman, 2003].

To test whether two densities P and Q are equal, we draw two samples {y1, . . . ,yn}
and {z1, . . . , zm} from P and Q respectively and construct the dataset

D = {(ui, li)}n+m
i=1 := {(yi,−1)}ni=1 ∪ {(zi, 0)}mi=1. (4.39)

We shuffle D and keep a record of the original assignments for each sample in D.

Then, we split this dataset into two parts, Dtr for training a binary classifier and

Dte for predicting the classification scores {si}n+m
i=1 . We consider the two sets S+ and

S−, the first one contains the scores of the samples originating from {zi}mi=1 and S−

contains the scores of the samples originating from {yi}ni=1. We can view S+ and S−

as two samples drawn from two probability distributions, p+(s) and p−(s), and apply

a goodness-of-fit test such as the univariate Kolmogorov–Smirnov test, for testing

the equality of these two densities. The resulting test statistic is the statistic for the

multivariate two-sample test for the equality of the distributions P and Q.

The dictionary construction procedure is given in Figure 4.21
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4.5.2 Experimental evaluation

We created a mixture of 6 components in dimension 5, see Figure 4.22, which mimics data

that can be seen in real use cases. The simulation were run in dimension 3, 4 and 5 by

selecting the corresponding first axis. We generated N ∈ {200, 500, 1000, 5000} points and

ran 200 simulations for each scenario (N, dimension). We used the dictionary generation

procedure for the KL-aggregation algorithm with Kmax = 10 on each subspaces and signifi-

cance level α = 0.05. The dataset has been split into two equal parts, one for the dictionary

generation algorithm and the other for the KL-aggregation algorithm. We compared the

L2-loss and KL-loss of our method to EM-BIC (Kmax = 20) and KDE-CV (The bandwidth

h is selected via cross-validation in [0.01, . . . , 1] in an equal partition of 20 elements). The

computation times were also recorded.

Results without the selection of principal components and the goodness-of-fit

test for the dictionary generator algorithm.

We compared, first, the KL-algorithm with the dictionary generated by our procedure to

KDE-CV and EM-BIC without the two computation optimization techniques discussed

before (selection of principal components and the deletion of similar densities). The time

given for MLE is the total computational time of the generation of the dictionary and the

aggregation algorithm. In the three scenarios (dimension 3,4 and 5), our algorithm presents

same performance as EM-BIC in L2 and KL loss with a better result when N = 5000 (see

Figures 4.23 to 4.25). Both methods outperforms KDE-CV in all scenarios. This indicates

that the set of bandwidths explored for KDE-CV does not fit the data correctly. Increasing

the size of this set would increase dramatically the computation times of KDE-CV. Despite

the quadratic increase of the size of the dictionary with the dimension, our algorithm takes

less time to compute than KDE-CV and slightly more than EM-BIC.

Results with the selection of principal components and the goodness-of-fit test

for the dictionary generator algorithm.

Adding the two computation optimization techniques, our algorithm still performs better

than KDE-CV and has similar performance than EM-BIC in L2-loss (see Figures 4.26

to 4.28). Unfortunately our method shows a bigger error variance for the KL-loss, espe-

cially when N = 5000. This behavior is not expected and may be due to incorrect settings

and subtleties in the implementation. Despite adding more “intelligence” in the construc-

tion of the dictionary, this procedures counterbalance the cost of adding too much densities
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to the KL-aggregation algorithm and therefore leads to smaller computational times in-

dependent of the size of the sample. Note that we implemented our methods in Python

without Just-In-Time compilations and therefore suffers significant computation overhead

compared to Numpy’s implementation of EM-BIC and KDE-CV. We are confident that a

proper optimized implementation would be significantly faster. This remark highlights the

attractiveness of our methods when the size of the sample increases.

4.5.3 Concluding remarks

To conclude, the density dictionary generation method we developed is well suited for our

KL-aggregation algorithm. Without the techniques that we implemented to lighten the

density dictionary, our methods performs as well as EM-BIC in KL-loss and L2-loss and

slightly better with a large sample (N = 5000). With the selection of principal components

and the tests of similarity of densities in the dictionary, we tried to solve the problem of

computational complexity of our method as the dimension and the size of the sample

increase. On this setting, our method shows computation times independent of the size

of the sample. Unfortunately, our algorithm shows a large error variance when N = 5000

in KL-loss. We are confident that a fine tuning of the parameters of the selection of

principal components method and of the tests of similarity of densities would solve this

problem. Moreover, we observed in our simulations that the use of the selection of principal

components technique and the tests of density similarities to lighten the density dictionary

gives us an estimation of the number of real clusters in the data and can be seen as a

parameter-free clustering method. From this perspective, our method can be related to a

subspace clustering method.
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Input: X1, . . . ,Xn with Xi ∈ Rp. And Kmax, maximum number of clusters for EM-BIC,

significance level α.

Output: A dictionary of densities D = {f1, . . . , fM}.
1: Construct the set Ω of singular values of the design matrix X ∈ Rp×n

which are greater than ω(β).ymed with ymed median of singular values, β = p/n

and ω(β) ≈ 0.56β3 − 0.95β2 + 1.82β + 1.43.

2: Construct the set of principal components C̄ corresponding to the singular

values in Ω.

for vi,vj ∈ C̄ do

3: Run EM-BIC with maximum Kmax clusters on the data projected to

span(vi,vj), X
(i,j)
1 , . . . ,X

(i,j)
n , and construct clusters of points G1, . . . , GK .

4: For each cluster Gm, m ∈ [K], compute the mean µ̂m and variance Σ̂m of

the points assigned to Gm in the original space RP .

5: Add to the dictionary D the Gaussian densities {ϕ(µ̂m,σ̂m)}m∈[K].

end for.

for f̂i, f̂j ∈ D do

6: Draw two samples {y1, . . . ,yl}, {z1, . . . , zm} from Y ∼ f̂i and Z ∼ f̂j and

construct the dataset D = {(ui, li)}n+m
i=1 := {(yi,−1)}ni=1 ∪ {(zi, 0)}mi=1.

7: Shuffle and split D into Dtr and Dte.
8: Train a binary classifier on Dtr and get the classification scores {si}

on Dte.
9: Separate {si} into {si}+, scores of points drawn from Z and {si}− for Y .

10: Perform a two-samples Kolmogorov-Smirnov test on {si}+ and {si}− and

reject H0 (The two multivariate samples are drawn from the same distribution)

with significance level α.

11: If H0 rejected, remove f̂j of D, else, keep f̂i and f̂j.

end for.

Figure 4.21: Procedure for generating a dictionary of densities
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Figure 4.22: Simulated data for the dictionary generator algorithm and KL-aggregation
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Figure 4.23: Results for dimension 3. KL-Loss (upper panel), L2-Loss (middle panel) and

computation time (lower panel). Without dictionary generation optimizations.
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Figure 4.24: Results for dimension 4. KL-Loss (upper panel), L2-Loss (middle panel) and

computation time (lower panel). Without dictionary generation optimizations.
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Figure 4.25: Results for dimension 5. KL-Loss (upper panel), L2-Loss (middle panel) and

computation time (lower panel). Without dictionary generation optimizations.
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Figure 4.26: Results for dimension 3. KL-Loss (upper panel), L2-Loss (middle panel) and

computation time (lower panel). With selection of principal components and deletion of

similar densities.
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Figure 4.27: Results for dimension 4. KL-Loss (upper panel), L2-Loss (middle panel) and

computation time (lower panel). With selection of principal components and deletion of

similar densities.



4.5. A METHOD FOR CONSTRUCTING THE DICTIONARY OF DENSITIES 119

Figure 4.28: Results for dimension 5. KL-Loss (upper panel), L2-Loss (middle panel) and

computation time (lower panel). With selection of principal components and deletion of

similar densities.
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Stat., 49(1):288–306, 2013.
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Titre : Sur l’apprentissage non supervisé en haute dimension

Mots Clefs : clustering, agrégation, haute dimension, estimation de densité, mélanges.

Résumé : Deux sujet sont traités dans cette thèse: le clustering en haute dimension et

l’estimation de densités de mélange. L’estimation des paramètres d’une loi mélange est un

problème difficile en haute dimension. Trois méthodes sont présentées pour résoudre ce problème:

la première est une estimation des matrices de covariances avec hypothèse de parcimonie, les

deux autres visent à estimer le nombre de composantes du mélange. La deuxième partie étudie

l’estimateur du maximum de vraisemblance d’une densité sous l’hypothèse qu’elle est bien ap-

proximée par un mélange de plusieurs densités données. Nous réalisons une étude statistique des

performances de l’estimateur par rapport à la perte de Kullback-Leibler et établissons des bornes

de risque sous la forme d’inégalités d’oracle exacte. Nous introduisons la notion d’agrégation

(presque)-D-parcimonieuse et des bornes inférieures sont établies. Enfin, nous proposons un al-

gorithme qui réalise l’agrégation en Kullback-Leibler de composantes d’un dictionnaire. Nous

comparons sa performance avec différentes méthodes. Nous proposons ensuite une méthode pour

construire le dictionnaire de densités et l’étudions de manière numérique.

Title : On unsupervised learning in high dimension

Keys words : clustering, aggregation, high dimension, density estimation, mixtures.

Abstract : Two subjects are treated in this thesis: high-dimensional clustering and estimation

of mixture densities. The estimation of the parameters of a mixture law is a difficult problem in

high dimension. Three methods are presented to solve this problem: the first is an estimation of

covariance matrices with sparsity hypothesis, the other two are aimed at estimating the number

of components of the mixture. The second part studies the maximum likelihood estimator of a

density under the assumption that it is well approximated by a mixture of several given densities.

We perform a statistical study of the performance of the estimator with respect to the loss of

Kullback-Leibler and establish risk bounds in the form of exact oracle inequalities. We intro-

duce the concept of (nearly)-D-sparse aggregation and lower bounds are established. Finally, we

propose an algorithm that performs Kullback-Leibler aggregation of components of a dictionary.

We compare its performance with different methods. We then propose a method to build the

dictionary of densities and study it experimentally.
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