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Abstract

Most innovative applications having robotic capabilities like self-driving cars are de-
veloped from scratch with little reuse of design or code artifacts from previous similar
projects. As a result, work at times is duplicated adding time and economic costs. To
address this, standardization, benchmarking, and formalization activities in robotics
are being undertaken by many technical working groups and independent agencies
such as, IEEE, ISO, and OMG. Absence of integrated tools is the real barrier that
exists between early adopters of such e�orts and early majority of research and in-
dustrial community. In addition, Robotic systems are becoming more safety critical
systems as they are deployed in unstructured human-centered environments. These
software intensive systems are composed of distributed, heterogeneous software com-
ponents interacting in a highly dynamic, uncertain environment. However, no signi�-
cant systematic software development process is followed in robotics research. This is
a real barrier for system level performance analysis and reasoning, which are in turn
required for scalable benchmarking methods and reusing existing software.

The process of developing robotic software frameworks and tools for designing
robotic architectures is expensive both in terms of time and e�ort, and absence of
systematic approach may result in ad hoc designs that are not �exible and reusable.
Therefore, within the context of architecture design, component development, and
their support tools, a coherent practice is required for developing architectural frame-
works. Making architecture meta-framework a point of conformance opens new possi-
bilities for interoperability and knowledge sharing in the architecture and framework
communities. We tried to make a step in this direction by proposing a common model
and by providing a systematic methodological approach that helps in specifying di�er-
ent aspects of software architecture development and their interplay in a framework.
As a part of the methodology, we also propose a solution space modeling language
for design space exploration by modeling the functional as well as non-functional
properties of the components.
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Résumé : 

 
La plupart des applications robotiques, telles que les véhicules autonomes, sont 

développées à partir d’une page blanche avec quelques rares réutilisations de 

conceptions ou de codes issus d’anciens projets équivalents. Pour répondre à ce 

problème, les activités de standardisation, d’évaluation, et de formalisation en 

robotique sont actuellement prises en charge par de nombreux groupes de travail, ainsi 

que par des agences indépendantes telles que l’IEEE, l’ISO, et l’OMG. L’absence d’outils 

intégrés rend difficile la communication entre les organismes menant cet effort, et la 

majorité des chercheurs et industriels. Qui plus est, les systèmes robotiques deviennent 

de plus en plus critiques, dans la mesure où ils sont déployés dans des environnements 

peu structurés, et centrés sur l’humain.  Ces systèmes à fort contenu logiciel qui utilisent 

des composants distribués et hétérogènes interagissent dans un environnement 

dynamique, et incertain. Cependant, aucun processus de développement de logiciel 

n’est systématiquement suivi dans le cadre de la recherche en robotique, ce qui 

complique la réflexion au niveau système, ainsi que l’évaluation complète des 

performances d’un système robotique. Or, il s’agit là d’étapes indispensables pour la 

mise en place de méthodes d’évaluation extensibles, ainsi que pour permettre la 

réutilisation de composants logiciels pré-existants. 

Le développement de structures logicielles et d’outils de conception d’architectures, 

orientés pour la robotique, coûte cher en termes de temps et d’effort, et l’absence 

d’une approche systématique pourrait conduire à la production de conceptions adhoc, 

peu flexibles et peu réutilisables. De ce fait, dans le cadre de la conception 

d’architectures, et du développement de composants, et de la mise en place d’outil 

correspondant, une pratique cohérente est obligatoire pour le développement de 

structures architecturales. Faire de la meta-structure de l’architecture un point de 

convergence offre de nouvelles possibilités en termes d’interopérabilité, et de partage 

de la connaissance, au sein des communautés dédiées à la mise en place d’architectures 

et de structures. Nous suivons cette direction, en proposant un modèle commun, et en 

fournissant une approche méthodologique systématique aidant à spécifier les 

différents aspects du développement d’architectures logicielles, et leurs relations au 

sein d’une structure partagée. Dans le cadre de cette méthodologie, nous proposons 

également un langage de modélisation de l’espace de solution pour l’exploration de 

l’espace de conception, par la modélisation des propriétés fonctionnelles et non-

fonctionnelles des composants. 
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Chapter 1

Introduction

If I have seen further it is by

standing on the shoulders of giants

Sir Issac Newton

A robotic system is a software intensive system that is composed of distributed,

heterogeneous software components interacting in a highly dynamic and uncertain

environment. According to IEEE 1471-2000 standard, a software-intensive system is

"any system where software contributes essential in�uences to the design, construc-

tion, deployment, and evolution of the system as a whole" [2]. However, a major part

of the robotics research concentrates on the delivery of �proof of concepts" in order to

substantiate the researcher's idea, for example, a robust path planning algorithm or

a real-time collision detection system. Typically, these are developed from scratch or

by using external code-based libraries [3]. Nevertheless, when such components are

composed with other functional modules, the system does not exhibit the expected

behavior. Hence, the approach in which di�erent functionalities are integrated, com-

monly known as architecture of the system, determine the overall behavior of the

robot. Therefore, the robot architecture in�uences the system emergent behavior to

a large extent even when the behavior of individual functional components are known

[4].

In order to address challenges posed by large scale integration e�orts in robotics,

many researchers have created a wide variety of frameworks [5]. These frameworks

helped to manage complexity to some extent, and facilitated rapid prototyping of
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software for experiments, resulting in the many robotic software systems that are cur-

rently being used in academics and industry. Each of these frameworks was designed

for addressing a particular purpose, perhaps in response to perceived weaknesses of

other available frameworks, or to place emphasis on aspects, which were seen as most

important in their own development process. However, relying on a given library

results in applications that cannot be easily portable.

Issac Newton once stated that "If I have seen further it is by standing on the

shoulders of giants" and he acknowledges the process of discovering truth by build-

ing on previous discoveries. The statement is highly relevant in this current era of

rapid technological progress, where most of the technical progress is built on the

foundations of earlier innovations [6]. Most of the innovative robotic projects, e.g.,

in government funded projects, and systems, where robotics research plays a vital

role, e.g., self-driving cars, are built almost from scratch every time with little reuse

of design or code artifacts from previous similar projects. This is mainly due to the

fact that software components developed are hard-bound to their operational context

and thus they are least reusable. Component Based Software Engineering (CBSE) is

proposed in Robotics to manage complexity, reusability, and portability. In CBSE,

components are standalone systems having prede�ned interfaces, which perform a

speci�c functionality. Typically, these components use a communication middleware

to interact with each other and do not impose any speci�c architecture on the de-

signer. However, such techniques did not solve the challenges raised by the robotics

domain where the systems are deployed in uncertain real-world environment. The

core problem is that when such components are merged and/or combined with other

functional modules, the system does not always exhibit the expected behavior. The

fundamental tenet in this process is to reuse existing works and to benchmark one's

invention with others. Scenario and application based benchmarking techniques are

often considered in robotics. However, such techniques are not scalable enough con-

sidering the open-ended, unstructured, and dynamic environments where robots are

deployed. In addition, large application domains in robotics make it more complex.

We believe that the replication and benchmarking of such complex systems should be

performed at higher abstraction levels and with better formalized process and quanti-

tative evaluation procedures. This is di�cult with the absence of formal speci�cation
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and specialized tools.

1.1 Software Engineering in Robotics

Software plays a key role in robotics as it is the medium to embody intelligence in

the machine [7]. Since robotics and their application are becoming more pervasive

than ever, software in these systems is often required to (1) operate in distributed and

embedded environment consisting of diverse computational capabilities, (2) interact

in various communication paradigms, (3) adapt to changes in an indeterministic envi-

ronment, and �nally (4) should behave rationally. Despite advances in programming

languages and supporting tools, code-centric development of such complex systems

requires immense e�ort.

The fundamental tenet of Software Engineering (SE) is that the development and

evolution of software systems can be facilitated by adopting a systematic, disciplined,

quanti�able approach in each phases of a software application's life span, from re-

quirements analysis, system architecture de�nition, and component design to code

implementation, testing, and deployment [7]. Despite this understanding, it is still

common for an engineering team to develop the decision-making and control system of

a robotics system from scratch, only to discover that it is too di�cult to separate this

software from the rest of the system and reuse it [8]. In the past, the robotics commu-

nity has been shown reluctance in adopting modern software engineering methods for

developing software architectures. This has led to the increased time-to-market and

large system integration e�orts when such systems are to be used in safety critical

applications.

In the last two decades, the robotics research community has seen a large num-

ber of middlewares, code libraries, and component frameworks developed by di�er-

ent research laboratories and universities. They facilitate software development by

providing infrastructure for communication (e.g., ROS [9]), real-time control (e.g.,

Orocos [10]), abstract access to sensors and actuators (e.g., Player [11]), algorithm

reuse (e.g., OpenCV [12], PCL [13]), and simulation (e.g., Stage [11], Gazebo [14]).

To a large extent, these frameworks have helped in rapid prototyping of individual

functionalities, but system level analysis still remains an issue. Usually, the system
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Figure 1-1: Deviation from linear problem solving caused by wicked problems [1]

level properties, such as response time, �exibility, and deployment have been realized

as accidental outcomes, rather than a design decision. It is high time that roboticists

transform themselves as system thinkers in addition to being domain experts.

Motivated by the positive results from the application of Model-driven Software

Development (MDSD) in other domains, such as automotive, avionics, etc., there is

an encouraging trend in its adoption in the robotics domain [15]. MDSD helps the

domain experts shift their focus from implementation to the problem space. The

robotic software architects are attracted by the fact that appropriately selecting the

viewpoints and levels of abstraction, the system can be analyzed more e�ciently.

However, the model-driven work �ow cannot directly be applied in the robotics do-

main. The unpredictability spans over various phases in software development - from

requirement speci�cation, system design, implementation, integration, and till it is

deployed in real world scenarios. The system cannot be realized in an uni-directional

process �ow because the solution for a robotic problem cannot be �nalized during the

design time. It is because neither the problem space nor the target environment can

be completely modeled as in embedded systems.

Realizing MDSD vision requires addressing a variety of complex interrelated soft-
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ware engineering problems that is further aggravated by the issues intrinsic to the

robotics domain. The use of MDSD in software lifecycle is considered to be a 'wicked

problem' [16]. A wicked problem has multiple dimensions that are related in complex

ways and thus cannot be solved by cobbling solutions to the di�erent problem dimen-

sions. In many of the complex robotics systems, the development of software in a

linear fashion is not practically possible. It is because the problem is not well under-

stood until a solution is developed. The Figure 1-1, which is inspired from an article

by Douglas C. Schmidt, illustrates several iterations between problem understanding

and solution that exists during software design, implementation, and testing [1]. To

cope with the problem of software complexity MDSD researchers need to develop

technologies that developers can use to generate domain-speci�c software develop-

ment methodology and associated tools. Such Integrated Development Environment

(IDE) should consist of languages and supporting infrastructure that are tailored to

the robotic applications. Developing such technologies requires codifying knowledge

that re�ects a deep understanding of the common and variable aspects of the gap

bridging process. Such an understanding can be gained only through costly experi-

mentation and systematic accumulation and examination of experience. Developing

such technologies is thus a wicked problem [16].

1.1.1 Model-Driven Software Engineering

In Model-Driven Software Engineering (MDSE), modeling techniques are used to tame

the complexity of bridging the gap between the problem domain and the software

implementation domain [16]. Although component-based development and model-

driven engineering address complexity management, the former adopts a bottom-up

approach, while the latter is more top-down in nature [17]. In MDSE, the complexity

of the software is managed by using the mechanism called `separation of concerns

(SoC)'. In MDSE approach, abstract models are gradually converted into concrete

executable models by a series of systematic transformation processes. Models are

designed based on meta-models and domain-speci�c language(DSLs).

The next section has two objectives:

1. To identify the current model-driven approaches in robotics.
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2. Analyze how the identi�ed approaches achieve general modeling related advan-

tages and how e�ective they are in satisfying robot speci�c requirements.

We evaluate the identi�ed approaches in robotics by addressing the following

questions:

- How is domain knowledge modeled and how it is used in various phases of software

development?

- What are the common Separation of Concerns (SoC) that are relevant in robotics

and how these SoCs are used for analyzing the desirable properties and facilitate

system level reasoning?

- How are the models used at run-time?

- How are the non-functional properties incorporated in the system?

- How are the robotic component speci�c requirements, such as composability, com-

positionality, variability, technology neutrality, addressed in these systems?

1.1.2 MDSE Approaches in Robotics

This section provides an overview of some of the MDSD approaches available in

robotics. To the best of our knowledge, there are four model based approaches in

robotics: BRICS [18], RobotML [19], SmartSoft [15], and V3CMM [20] approach.

There are many component-based approaches, in which modeling is mainly used for

generating basic skeleton codes rather than using models as a developmental artifact.

These four model-based approaches are brie�y described below:

BRICS Component Model

BRICS Component model [18] is built upon two complimentary paradigms - Model-

driven approach and Separation of Concerns (SoC). The syntax of the model is rep-

resented by Component-Port-Connector (CPC) meta-model and their semantics is

mapped to the 5Cs - Communication, Computation, Con�guration, Coordination,

and Composition. The components represent computation and can be hierarchically
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composed to represent composite components. A composite component contains a

coordinator who is in charge of starting and stopping the computational components.

Port represent the type of communication, for example: data�ow, events, service

calls, etc. and the connectors connect two compatible ports. The components are

con�gured by using their visible properties, for example: maximum iterations for a

planning algorithm. The compositional aspect concerns the interaction between the

other 4 concerns. The BRICS approach is built using Eclipse and all the concepts are

currently not integrated in the toolchain. The work�ow can be roughly summarized

as follows:

1. De�ne the structural architecture by using components, port, and connectors.

2. De�ne a coordinator for each composite component using state machines.

3. Perform a Model to Text (M2T) transformation to generate executable code

(currently Orocos and ROS middleware are supported).

RobotML

RobotML is a DSL for designing, simulating, and deploying robotic applications. It

is developed in the framework of the French research project PROTEUS [19]. The

domain model consists of architecture, communication, behavior, and deployment

metamodels. The architectural model de�nes the structural design using the CPC

model. In addition, it also de�nes the environment, data types, robotic mission,

and platform. The communication model associated with ports de�nes the type

of communication - data�ow port or service port. The behavior model is de�ned

using state machines. Speci�c activities are associated with states and transitions are

mapped to speci�c algorithms. The deployment model speci�es a set constructs that

de�ne the assignment of each component to a target robotic middleware or simulator.

The work�ow is described below:

1. De�ne the architecture using a component-port-connector diagram.

2. De�ne the communication policy between components by setting the port at-

tributes.
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3. De�ne the behavioral model of each component using state machines.

4. Create a deployment plan by allocating the components to a middleware or a

simulator.

5. Execute Model to Text (M2T) transformation to generate the executable code.

SmartSoft

SmartSoft [15] employs a model-driven approach in creating component skeleton

(called component hull in SmartSoft terminology) that mediates the external visi-

ble services of a component and internal component implementation. The skeleton

provides links to four di�erent artifacts: internal usercode, communication to ex-

ternal components, platform-independent concepts such as threads, synchronization,

etc., and platform-speci�c middleware, and operating system.

The communication between external services (interfaces to other components)

and internal visible access methods (interface to user code inside component) is based

on a set of communication patterns. A set of seven communication patterns are

identi�ed that are relevant to robotics systems: send, query, push newest, push

time, event patterns, state, and wiring patterns. The wiring pattern provides

dynamic connection of components at run-time. These patterns provide required ab-

straction from implementation technologies with respect to the middleware systems.

In order to promote loose coupling between components, the objects are transmit-

ted by value and the data are marshaled into a platform-independent representation

for transmission. The behavior of the component is speci�ed by an automaton with

generic states Init, FatalError, Shutdown, and Alive. The Alive state can be extended

by the user-de�ned states. The life cycle of the component is managed using these

pre-de�ned states including the fault detection. The work�ow can be summarized as

follows:

1. Create a Platform-Independent Model (PIM) of a component skeleton with sta-

ble interfaces to usercode, externally visible interfaces, and interfaces to Smart-

Soft framework. The component model contains explicit parameters and at-

tributes, that �nally need to be validated while generating platform-speci�c

models (e.g., wcet: 100 ms [requirement]).
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2. The platform speci�c information is then added to a PIM and component at-

tributes are re�ned (e.g., wcet: 80 ms [estimation]).

3. In the deployment phase, a system is designed by wiring the components and

system level parameters are extracted with the help of a Platform Description

Model (PDM) (e.g., wcet: 85 ms [measurement]).

4. The timing parameters of system are exported to an external tool called Cheddar

[21] to analyze for the timing analysis.

5. The PSI is generated from Platform-Speci�c Model (PSM) using Model to Text

(M2T) transformation.

V3CMM

V3CMM component meta-model consists of three complementary views: structural,

coordination, and algorithmic views [20]. The structural view describes the static

structure of the components, coordination view describes the event-driven behavior

of the components and the algorithmic view describes the algorithm executed by each

component based on its current state. The structural view consists of component,

ports, interfaces and their interconnections. The coordination model is de�ned using

UML state machines, while algorithmic view consist of UML activity diagrams. The

work�ow is described below:

1. De�ne the common data types and interfaces.

2. Create the simple and complex component de�nitions.

3. Design the behavioral model of each component using the UML state machines.

4. Design the algorithmic models using the UML activity diagrams.

5. Link activities to state machines and state machines to components.

6. Execute Model to Model (M2M) transformation to generate UML models and

M2T transformation to generate the executable code.
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Feature RobotML[19] SmartSoft [15] BCM [18] V3CMM [20]

SoC 3 3 3 3

Composability 5 5 5 5

Compositionality 5 5 5 5

Static Variability 3 3 3 3

Dynamic Variability 5 3 5 5

Component Abstraction 3 3 3 3

Technology Neutrality 3 3 3 3

Knowledge Model 3 5 5 5

System Reasoning 5 3 5 5

Run-time Models 5 5 5 5

NFP Model 5 3 5 5

Table 1.1: Feature Comparison of MDSE Approaches in Robotics

Feature Analysis

An overview of features available in each approach is depicted in Table 1.1. We have

identi�ed these required features from our previous research work as detailed in [22].

A brief discussions on these features are provided in the following sections:

Separation of Concerns

In MDSD, the complexity of the software is managed `Separation of Concerns (SoC)'.

Vertical SoC is built on multiple levels of abstraction. Model Driven Architecture

(MDA), a model-driven architecture standardized by OMG speci�es four abstrac-

tion layers - Computation-Independent Model (CIM), Platform-Independent Model

(PIM), Platform-Speci�c Model (PSM), and Platform-Speci�c Implementation (PSI)

[23]. Horizontal SoC manages complexity by providing di�erent overlapping view-

points of the model at the same abstraction level. All of the MDSD approaches in

robotics primarily use only two vertical SoC - PIM and PSI. Horizontal SoC is seen

only in one of the abstraction layer - PIM. We depict a comparison of SoCs for the

four approaches in Figure 1-2.

Composability

A model is said to be composable if its core properties do not change upon integra-

tion. In other words, the composability of a model guarantees preservation of its
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Figure 1-2: A comparison of vertical and horizontal separation of concerns

properties across integration with other components. A highly composable model

can freely move around in the design space and assemble itself to a more complex

structure that is semantically correct. However, functional composability such as, se-

mantic correctness and non-functional composability of the composed models are not

addressed in any of the approaches. It is very important in robotics since the com-

ponents are highly heterogeneous in nature in terms of semantics and necessary for

providing unambiguous interfaces. For example, the authors of [24], in their proposal

of standardization, have provided approximately 24 di�erent ways of representing a

geometric relation between rigid bodies and have proposed a DSL based on it [25].

Compositionality

Compositionality allows to deduce properties of a composite component models from

its constituent components. It enables hierarchical composition of components and

provides correctness of the structure. The reusability of a component is enhanced

by providing compile-time guarantees by verifying that formal parameters and actual

parameters match regardless of the software module's location. The behavior of the

reused components can be predicted in the new con�guration and the result of the

composition can be analyzed for anomalies. Only syntactic correctness of the archi-

tecture is addressed in all the approaches. It is worth mentioning that the works

associated with Ptolemy [26] framework provide formal proofs for correctness when

heterogeneous actors with di�erent models of computation are composed. The major

hindrance in robotics is the lack of standards, however, the robotics domain task force
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at OMG [27] and standard committee at IEEE Robotics and Automation society is

in the process of standardization. The European project `RoSta' provides standards

and a reference architecture for service robots [28]. Most of the approaches previously

analyzed does not provide support for the composability and compositionality prop-

erties. Smartsoft provides composability at the service level by explicating Quality

of Service (QoS) parameters and required resources [29]. This is due to the fact that

the component attributes are not explicitly modeled using formal methods.

Static and Dynamic Variability

Static variability is the con�guration of the system and dynamic variability is related

to the context dependent coordination of the components. Con�guration de�nes

which system can communicate with each other and coordination determines when

such communication can occur. Con�guration can be completely speci�ed during de-

sign time while coordination is achieved by allowing variability during design time and

run-time dynamic invocation. Static variability and limited context-dependent dy-

namic variability is provided by the analyzed approaches. SmartSoft models variation

points, context, QoS, and Adaptation rules using the Variability Modeling Language

(VML) to support run-time variability for service robotics [30]. BRICS uses feature

models similar to the one used in Software Product Line (SPL) to specify, implement,

and constraint resolution of variabilities and provide graphical models for selecting

possible con�guration during design time [31]. Recently the authors of [32] have pro-

posed an approach for dynamic variability modeling and its exploitation at run-time

for robotic systems.

Technology Neutrality

The component properties and speci�cation should not depend on a speci�c tech-

nology. Software technology neutrality and hardware neutrality to some extent are

achieved by many of the already available code-based frameworks, such as, ROS [9],

Player project [11], etc. To a larger extent, all the MDSD approaches have achieved

middleware independence by using various M2T approaches for generation of exe-

cutable code.
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Modeling Domain knowledge

A primary focus of MDSD is the separation of domain knowledge and implementation

details. Among the compared approaches, domain knowledge is explicitly modeled

only in RobotML. In RobotML, the DSL is designed with the robot domain ontology

as the backbone. In fact, the domain concepts that are required while designing the

DSL is derived from the ontology. The ontology is used for two purposes - to normalize

the robot domain concepts and to act as an inference mechanism during runtime [33].

However, it is not clear from the literature how the ontologies can e�ectively be used

for modeling developmental and run-time models.

Round-tripping Problem

Round-tripping is a major concern of a model-based system, especially if it has multi-

ple abstraction layers and di�erent horizontal SoC. It is a major problem in analyzed

approaches because SoC is applied only at the model level. Restricting SoC only to

models and in addition only to single abstraction levels worsens the round-tripping

e�ect and reduces the reusability. Providing SoC to models and code can support

better traceability and system evolution. Aspect-oriented modeling and template-

based techniques can be used to provide an integrated way of dealing with SoC. It

will simplify the model development and transformation tasks [34] [35]. Approaches

in RobotML and V3CMM provide only loose coupling among di�erent viewpoints,

for example, in V3CMM, the uni-directional relationship between structural, coordi-

national, and algorithmic views have to manually be corrected if there is change in

one of the viewpoints.

System level reasoning

SmartSoft and RobotML provide support to some extend to reason about the timing

analysis of the models at the system level. Properties such as WCET, Periods, etc, are

provided as attributes to components. During the system deployment these properties

are exported to an external tool `Cheddar' for schedulability analysis [36]. Semantic

reasoning is not yet realized in any approaches because of the lack of standards.
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Run-time Models

In robotics, the adaptation of the robotic system to the dynamic environments are

in the computational algorithms of the constituent systems. This severely limits the

con�guration space of such systems. Explicit modeling of the variabilities and varia-

tion points during the system design can help �nd the best possible solution during

run-time and can lead to the use of framework supported adaptation mechanisms.

Hence, in order to achieve run-time adaptation, explicit models of variation points,

variabilities, context or environment and decision mechanisms should be supported

by the framework. In [37] run-time models are used for simple scenarios. The authors

in [30] have demonstrated how SmartSoft framework with support of VML can be

used for run-time adaptation for service robots.

Non-Functional Properties

Non-Functional Properties (NFP) de�ne how a functionality operates, for example,

performance, availability, e�ectiveness, etc. The functional and non-functional at-

tributes of the components are considered to make `who does, what, and when' de-

cisions depending on the operational context. However, non-functional properties

are not given su�cient importance compared to that of the functional requirements

during the developmental stages. SmartSoft uses NFPs as attributes to a component

model and employs those attributes during the development process.

1.2 Brief Overview on Robotic Architectures

The initial work on robot architectures began with two extreme approaches - one

is based on sense-plan-act paradigm [38], which is a deliberative approach and the

other is based on a purely reactive Brooks' subsumption architecture [39]. To take

advantage of these two extreme approaches, a number of hybrid architectures were

then proposed. A notable one is Gat's three layer architecture that uses controller,

sequencer, and deliberator layers to enable the robot to make high level plans and at

the same time reactive to sudden events [40]. In NASREM architecture, the perceived

information passes through several processing stages until a coherent view of the cur-
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rent situation is obtained. A plan is then adopted and successively decomposed by

di�erent modules until the desired actions can be directly executed by the actua-

tors [41]. The Task Control Architecture (TCA), developed by Simmons, provides

a general framework for controlling distributed robot systems. TCA is essentially

a high-level robot operating system with a set of commonly required mechanisms

to support distributed communications, task decomposition, resource management,

execution monitoring, and error recovery [42].

Majority of the robot architectures found in literature [43], in one form or another

consists of the below three distinct characteristics:

• Hierarchical vs. Centralized architectures

• Behavioral vs. Functional systems.

• Reactive vs. Deliberative control

Cognitive architectures such as ACT-R [44] and ICARUS [45] use concepts from

arti�cial intelligence and cognitive psychology to create and understand synthetic

agent that support the same capabilities as human and thus makes the robots more

pervasive in a social environment. These architectures can be broadly classi�ed as

conceptual architectures, though their depth of in�uence in robotic domain as a whole

may be di�erent. For example, the hybrid architectures concentrated mainly on

how low level reactive behaviors can be coordinated using high level planning and

decisional algorithms, while an expert system that models human driver is valid in

very narrow contexts.

1.2.1 Architecture Modeling in Robotics

Typically software architectures are modeled as a collection of interacting compo-

nents, where low level implementation details are hidden while expressing abstract

high-level properties. An architecture model captures multiple abstraction levels or

viewpoints that satisfy the requirements of di�erent stakeholders. A hardware en-

gineer would like to see the components allocated to a particular processor, while a

system architect would be interested in component topology. A good architecture

model facilitates decision making and acts as a mediator between requirements and
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Figure 1-3: Architecture Modeling Spectrum in Robotics

�nal implementation. Speci�cally the architecture model plays a critical role in many

aspects of software development life-cycle such as requirement speci�cation, system

design, implementation, reuse, maintenance, and run-time adaptation [46].

The architectures that concern the execution and implementation aspects lie in the

lower end of the abstraction axis. Modeling languages such as UML [47], SysML [48],

and Marte [49], model the system that is more closer to the software realizations.

Their semantics are mostly implementation-speci�c and contain semantic models,

such as communication patterns, model of computation (MoC). There is another cat-

egory of architecture that consists of conceptual architectures that are tightly bound

to speci�c implementation models. Architectures such as GenoM [50], and ACT-R

[44] provide their software development kits (SDK) to design systems complying with

those models. The main advantages of such models is that more stringent validation

methods can be applied and can maintain traceability from domain concepts to its

implementations. However it takes signi�cant e�ort to port from one implementation

technology to another.

We can view this as a spectrum of models on an abstraction axis as shown in

Figure 1-3. One can notice the concentration of architectures on both ends of the

spectrum and the signi�cant gap in the middle. Our meta-framework approach, pro-

posed in Chapter 5, tries to �lls this gap by acting as a transition architecture model

that bridges the gap between conceptual architectures and low level implementation

architectures.
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Figure 1-4: Relationship between the concept of Architecture and Framework

1.3 Thesis Context

An architecture framework is a collection of conventions, principles for the description

of architectures established within a speci�c domain of application and/or community

of stakeholders [51]. For example, NIST 4D/RCS is a robotic architecture standards

framework used by US Department of Defense (DoD) for unmanned vehicle systems

[52][53]. Architectures are based on well-de�ned semantics and conventions provided

by the framework. Describing di�erent architectures using the rules provided by the

framework helps in standardization at the architecture level. Generally, the architec-

tures are speci�ed using Architecture Description Languages (ADLs). ADLs provides

notations and concrete syntax for characterizing software architectures. Typically, the

framework also provides tools for parsing, viewing, compiling, analyzing, or simulat-

ing architectures speci�ed in their associated description language. The relationship

between these concepts is illustrated in Figure 1-4. It also shows the context and

in�uence of this thesis on the those areas.

Based on our comparative survey on existing model-driven frameworks in robotics

and qualitative analysis of their features, we found that many of the domain-speci�c

requirements such as architecture level analysis, system reasoning, non-functional

property modeling, run-time models, component composition, etc., were addressed

di�erently in these approaches. In addition, it is hard to �nd a single approach

that has features according to one's requirement. Systematic development process

and detailed instructions for building such frameworks and supporting infrastruc-

ture have not been studied enough. In addition, there is no clear de�nition on

how OMG's Model Driven Architecture (MDA) could be realized in a framework.
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The contributions from this thesis comprise conceptual methodology and a devel-

opment approach that facilitates design, analysis, and deployment of framework for

robotic systems. The methodology will be based on three well-established software

engineering paradigms: Model-Driven Software Development (MDSD), Component-

Based Software Engineering (CBSE), and Knowledge-Based Engineering (KBE). The

main advantages of our proposed framework are:

1. Rapid development of custom framework for required set of domains.

2. Support for e�cient integration of existing heterogeneous architecture styles

that accelerates the complex system design.

3. Enables analysis, comparison, and benchmarking of various functional units and

architectural paradigms.

4. Homogeneous development environment irrespective of framework or middle-

ware and thus promoting faster adoption among software developers and system

engineers.

1.4 Thesis Contents and Contributions

The remaining of the thesis is organized as follows:

Chapter 2 introduces the methodology of SafeRobots Framework. It discusses the

di�erent conceptual spaces in the framework and drives through the systematic de-

velopmental phases in the proposed methodology.

Chapter 3 discusses the concepts of Non-Functional Properties (NFP) and Quality

of Services (QoS). The importance of modeling these properties in robotics especially

in human-machine systems is explained in this chapter. A metamodel for modeling

NFP is also introduced in this chapter.

Chapter 4 identi�es several inherent problems in the software design stage of robotics

software development. The chapter starts by discussing several challenges faced dur-

ing design phase of robotic software development. In this direction, di�erent problems
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posed during the software development of a robotic software subsystem in an indus-

trial setup are analysed. A domain-speci�c language that facilitates the design space

exploration speci�c to the �eld of robotics is also introduced.

Chapter 5 investigates the possibility of a common model for framework speci�ca-

tion so as to model heterogeneous architectural paradigms. It reviews and studies

di�erent robotic architectures from an abstraction and software engineering point of

view. A domain-speci�c language in the operational space that integrates with our

SafeRobots methodology is proposed in this chapter.

Chapter 6 details di�erent tools used and the stages involved in implementing the

framework by the developer of the tool. It provides a brief overview on Eclipse

Modeling Framework and discusses the selected tools and approaches supporting the

framework development.

Chapter 7 employs the proposed framework and methodology to speci�c applica-

tions in robotics. Two case studies are shown so as to demonstrate how a system can

be developed and formally speci�ed in our framework. The �rst case study uses a

mobile robot mapping application and shows how two di�erent architectures were de-

veloped from the same solution model and by semi-automated model transformations.

The second case study is about an application in cognitive architecture domain. A

lane keeping and lane changing assistance system is modeled using our framework.

Chapter 8 �nally concludes the thesis and provides directions for future work.
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Part I

Methodology
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Chapter 2

SafeRobots Methodology

Methodology is intuition

reconstructed in tranquility

Paul Lazarsfeld

2.1 Introduction

A software development methodology is a framework that is used to structure, plan,

and control the process of developing software for a system. This includes pre-

de�nition of speci�c deliverables and artifacts that are created and completed by

a project team to develop or maintain an application [54]. Although e�ective tech-

niques for developing safety-critical software are well established, for example, in

avionics industry, these techniques are in general designed for projects with long

timescale and high sta�ng levels. It can be unsuitable for use without adaptation

in the �eld of innovative robotics research, where timescale is shorter and, human

resource and �nancial investment are typically much lower [55]. Typically, in robotics

domain, one has to deal with a wide variety of sensors and actuators with varying level

of capabilities. Adding to this complexity of having heterogeneous hardware devices,

robots has to deal with open-ended environment with limited resources [15]. There is

a pressing need to tailor proven approaches of software engineering in other domains

to the requirements of robotics. In this direction, there is a need for a methodology

that do not constraint any speci�c framework or architecture. In this context, the
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Figure 2-1: Informal Model for a mapping system

purpose of this chapter is:

• To identify the core software engineering methods and developmental phases

involved, on which the proposed framework is developed.

• To propose a conceptual methodology for developing software with generic tools

for robotics domain.

• To analyze di�erent software developmental phases involved in our methodology.

2.1.1 Motivating Example

Consider the problem of designing a software architecture for a mobile robot that

needs to create a map of an indoor environment. The mobile robot is equipped

with two `Time of Flight' (ToF) cameras positioned at right angles to each other

with an overlapping `Field of View' (FoV). The goal is to develop a SLAM1 based

mapping system using the point cloud data from the two ToF sensors. Assume that

a hypothetical library is also given that provides software code implementing the

SLAM algorithm. The library also contains a functions that can extract the points

on a single plane (Virtual Laser Scanner) and for simple point cloud registration.

Since all the computational algorithms are provided as implemented software com-

ponents, the primary task of the system developer is to design a data �ow structure

1In robotics, Simultaneous Localization and Mapping (SLAM) is the computational problem of
constructing or updating a map of an unknown environment while simultaneously keeping track of
an agent's location within it [56].
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connecting these components. Using pragmatic knowledge, this can be achieved by

connecting each camera to the virtual laser scanner function and simply summing up

the two planar point clouds and then fed it to the SLAM algorithm along with the

pose estimates. Another alternative is to combine the raw point cloud from the two

cameras applying the provided registration function and then convert the resulting

point cloud to the planar laser data. Although, the two approaches seems to be very

similar in functionality (creating a map), the system level emergent non-functional

properties are di�erent. The non-functional properties of each software component,

such as execution time, con�dence level, cannot be predicted at this stage because we

do not have any data regarding the hardware platform in which it will be executed

or whether all these computational components will be executed on a single platform

or in a distributed fashion, and there is no information regarding the network band-

width, latencies, etc. This will in�uence the rate at which the SLAM algorithm will

be executed and it will a�ect the resolution and con�dence level of the resulting map.

An informal representation of these two solutions is illustrated in Figure 2-1.

Nonetheless, it is clear that we have used our pragmatism and past experiences

to arrive at this mental solution model. This integration method is highly non-

deterministic, since the system integration for the same problem with the same `in-

gredients' provides di�erent results because the knowledge used is in the designer's

mental form. The disparity will be more evident for complex situations or when the

system designer's knowledge is di�erent from the algorithm developer's knowledge.

Since such knowledge is not explicitly encoded anywhere in the design speci�cation,

this can hinder the system evolution for large scale projects.

2.2 Conceptual Paradigms in SafeRobots Framework

Building on the identi�ed problems and domain-speci�c requirements, we propose a

conceptual methodological framework called `Self Adaptive Framework for Robotic

Systems (SafeRobots)'. This section provides an overview of the three orthogonal, yet

complementary software engineering methods, on which the proposed methodology

is developed (see Figure 2-2).
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Figure 2-2: Developmental Phases and Conceptual Paradigms in SafeRobots Frame-
work

2.2.1 Component-Based Software Engineering

In Component-Based Software Engineering (CBSE) approach, a software is developed

using o�-the-shelf components and custom-built components. A software component

is a unit of composition with contractually speci�ed interfaces and explicit context

dependencies only, and can be deployed independently and is subject to composition

by third parties [57]. In our previous research paper [58], we have identi�ed speci�c

requirements of components, that are more relevant in robotics: composability, com-

positionality, static and dynamic variability, component abstraction, and technology

neutrality. The main goal of CBSE is to manage complexity and foster software reuse

by employing the divide and rule strategy. In order to promote reuse, the focus should

be on the design and implementation of individual components and on the techniques

that maximize component interoperability and �exibility. A more detailed discussion

on CBSE in robotics can be found in [59].

2.2.2 Model-Driven Engineering

In Model-Driven Engineering (MDE), modeling techniques are used to tame the com-

plexity of bridging the gap between the problem domain and the software implemen-

tation domain [16]. Although component-based development and model-driven engi-

neering address complexity management, the former adopts a bottom-up approach,

while the latter is more top-down in nature [17]. In MDE, the complexity of the

software is managed by using the mechanism called `separation of concerns (SoC)'.

Conceptually, it can be classi�ed into vertical and horizontal SoCs. Vertical SoCs
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are built on multiple levels of abstraction. Model-Driven Architecture (MDA) [23],

a trademarked name for MDE by Object Management Group (OMG), speci�es four

abstraction models - Computation Independent Model (CIM), Platform Independent

Model (PIM), Platform-Speci�c Model (PSM), and Platform-Speci�c Implementa-

tion (PSI). The computation independent model focuses on the environment of the

system, the requirements of the system without any structural or processing details.

The platform independent model focuses on the operation of the system while hid-

ing the details regarding the platform, middleware, etc. The platform-speci�c model

is generated using PIM by adding platform speci�c details. The platform-speci�c

implementation is then generated by using appropriate Model to Text (M2T) trans-

formations. Horizontal SoCs manage complexity by providing di�erent overlapping

viewpoints of the model at the same abstraction level. In [60], the authors suggest

four horizontal SoCs for large scale distributed systems: coordination, con�guration,

computation, and communication. In summary, the main challenges in MDE are

designing modeling languages at right abstraction level, modeling with multiple over-

lapping viewpoints, model manipulation, and maintaining viewpoints' consistency

[16].

2.2.3 Knowledge-Based Engineering

Knowledge-Based Engineering (KBE) has the potential to change automated reason-

ing, methodologies, and life cycle of software artifacts. In order to achieve that, do-

main concepts should be represented at various granularity levels in accordance with

multiple abstraction layers. For example, in the case of self-driving cars, for system

level reasoning, the knowledge required is regarding the environment, the socio-legal

contraints, tra�c rules, etc., and for platform independent layers, the knowledge re-

quired is about algorithmic parameters, structural con�guration, semantics of data,

etc. In general, information and knowledge can be represented in symbolic and non-

symbolic representation. In the non-symbolic approach, a promising work is proposed

by Gardenfors that represents conceputual spaces in the context of cognitive science

[61]. Conceptual spaces are simple geometric representations based on quality di-

mensions, designed for modeling and managing concepts. The quality dimensions are

used as framework to assign properties to objects and to specify relationships between
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them. The reasoning is mainly based on the distances between points in this concep-

tual space. In general, the smaller the distance between two objects, the more similar

they are. For example, the distance from the concept `canny edge detector' to the

concept `grayscale image' is smaller than to the RGB image'. However formalizing

this approach with respect to software development is beyond the scope of this thesis.

2.3 Developmental Phases in SafeRobots Framework

The di�erent developmental phases, modeling languages, and models involved in the

proposed framework are illustrated in Figure 2-3. The software development process

in robotics can be conceptually divided into three spaces: problem space, solution

space, and operational space, where each space is supported by the knowledge space.

The following developmental phases are involved in the proposed framework:

General Domain Knowledge Modeling

The domain knowledge modeling in this phase is independent of the problem spec-

i�cation or application constraints. The domain concepts can be formally modeled

using ontologies, Domain-Speci�c Languages (DSLs), Knowledge graphs, etc. The

models at this level capture the robotic domain speci�c concepts, meta-data about

the computational algorithms and standard interfaces, their structural dependencies,

etc. The domain knowledge complements the various application speci�c develop-

ment process by providing a knowledge base for abstract concepts such as image,

point clouds, links, joints, platform, etc.

Problem Modeling

In this phase of problem modeling, the application-speci�c requirements, context or

environment, are formally modeled. The functional and non-functional requirements

are explicitly captured in the problem model.

Problem-Speci�c Knowledge Modeling

Problem-speci�c knowledge modeling or solution space modeling is designed with the

help of functional requirements from the problem model as constraints applied to

the domain model. In other words, a solution model captures multiple solutions for

the given problem by considering only the functional requirements and given domain

knowledge base. The strategy postpones the decisions on non-functional requirements
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at a later stage, since such properties can be estimated only when platform-speci�c

decisions are made.

Problem-Speci�c Concrete Modeling

Problem-speci�c concrete model, also called operational model, is a reduced subset

of a solution model. The reduction is carried out by mapping non-functional re-

quirements of a problem model, and system level and components' non-functional

properties such as timings, con�dence, resolution levels, etc. If there are multiple

solutions that satisfy the constraints, they are modeled as variation points that can

be resolved after applying more concrete constraints or during runtime depending on

the context.

Executable Code Generation

In this �nal process, an executable code is generated depending on the platform and

the speci�ed middlewares. Several Model to Text (M2T) techniques are available for

applying this transformation (see Appendix A for details).

2.4 Overview

SafeRobots is an architecture agnostic framework development methodology, tailored

to the needs of robotic domain. It is supported by extensible tools and provides a set of

basic metamodels and domain-speci�c languages, and a formal process for the design

and development of software for robotic systems. The methodology comprises four

conceptual spaces as shown in Figure 2-3: knowledge space, problem space, solution

space, and operational space. The knowledge space is common with the other three

spaces and provides abstract knowledge on robotic domain-speci�c concepts. The

models at this level capture the robotic domain-speci�c concepts, meta-data about

the computational algorithms, and standard interfaces, their data structures, etc. The

domain knowledge complements the various application-speci�c development process

by providing a knowledge base for abstract concepts such as image, point clouds,

links, joints, platform, etc.

The three spaces - problem space, solution space, and operational space are

application-speci�c modeling phases. However, models in solution space can be reused

across di�erent applications and hence the solution space models can be seen as do-
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Figure 2-3: SafeRobots Methodology

main models as well. The requirements, goals, and contexts models in problem space

capture functional and non-functional requirements. Di�erent solutions for solving

speci�c functionalities are modeled in the solution space. In the solution space, only

functional requirements are considered while non-functional requirements are speci-

�ed as properties in this space. In other words, the models in the solution space sat-

isfy only the functional requirements, however, these models comprise non-functional

speci�cations as well, but it may not comply with the requirements. For example,

a non-functional requirement may specify certain con�dence level for the data, but

the solution space models contains the information on how aforementioned con�dence

can be evaluated from it models, and it may not necessarily satisfy the con�dence

requirement. The models in the operational space are derived from the solution

space model by applying the non-functional constraints. Concrete architectural mod-

els are speci�ed in this operational space. If there are multiple models that satisfy

the non-functional requirements, there are considered as variation points, which are

dynamically resolved during run-time.
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The conceptual spaces in the our approach are hierarchically arranged in such a

way that the lower layer uses the knowledge gained in the upper layer. For example,

models in solution space comply to the functional requirements from problem space

and use the domain knowledge from knowledge space. Non-functional requirements

from problem space is applied to solution space models to create operational space

models. The models in all these spaces is supported by domain concepts in knowledge

space as well. The following section provides a brief description of the three conceptual

spaces and modeling - requirement modeling in the problem space, solution space

modeling in the solution space, and architecture modeling in the operational space.

2.4.1 Knowledge Space

The knowledge space provides abstract knowledge on robotic domain-speci�c con-

cepts. The domain knowledge modeling in knowledge space is independent of the

problem or application constraints. Our methodology does not recommend any par-

ticular way of modeling these concepts. However, some parts of our development

uses ontologies to some extend. Ontologies are mainly used in Arti�cial Intelligence

(AI) and Semantic Web communities to represent knowledge as a set of concepts and

relationships of a domain [62]. Ontology can be thought of as a knowledge repre-

sentation approach that represents key concepts with their properties, relationships,

rules, and constraints. The IEEE Robotics and Automation Society is sponsoring

the working group Ontologies for Robotics and Automation to streamline develop-

ment trends, work on the harmonization of taxonomies and ontologies, along with

the standardization of terms, interfaces, and technologies [63]. The goal is to provide

a standard ontology and associated methodology for knowledge representation and

reasoning in robotics and automation, together with the representation of concepts

in an initial set of application domains [64]. Going one step further, software com-

ponents and various implementations of algorithms can be represented in the form of

knowledge graphs. Some examples include the selection and con�guration of sensors,

robust software components that implement speci�c functionalities, such as object

detectors, classi�ers, etc. For such representations, conceptual spaces introduced by

Gardenfors is very promising by presenting a framework for representing information

on the conceptual level that provide us with a natural way of representing similari-
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ties [65]. The authors of [66] have used such a framework to enable the systematic

integration of di�erent knowledge representations required in robotics. Recently, the

authors of [67] have extended this framework to represent robotics perception archi-

tectures and showed how to model and store ready-to-use perception graphs and to

e�ciently select the most appropriate perception graph at run time [68].

2.4.2 Solution Space

The solution space for implementing a functionality in robotics domain is large. A

complex robotic system cannot be �nalized during design-time [15]. Hence, there is

a need to support reasoning during development stages by the system designer to

mitigate the uncertainty. Nowadays, there is a trend to delay decisions to handle

uncertainty at runtime instead of handling it during development-time [69]. Nev-

ertheless, there is a need to de�ne the solutions at a higher abstraction level at

which relevant properties and characteristics are expressed. Solution space modeling

is performed with the help of functional requirements from the problem model as

constraints applied to the concepts modeled in knowledge space. In other words, a

solution space model captures multiple solutions for the given problem by consider-

ing only the functional requirements and given domain knowledge base modeled in

problem independent knowledge space. The strategy is to postpone the decisions on

non-functional requirements at a later stage, since such properties can be estimated

only when platform-speci�c decisions are made. The solution model also helps in

- system level reasoning, making tradeo�s, documenting decisions, and comparing

them, and for formally proving and validating the �nal implementation.

2.4.3 Solution space to Operational space transformation

Once the solution space model for a given problem is modeled, the next step is to

transform it into an operational model. It is to be noted that the solution space

model only satis�es the functional requirements and the non-functional requirements

are enforced only while it is transformed to the operational model. It is common that

there may be more than one solution that satis�es the non-functional requirements, in

which case, the best possible solution can only be resolved during runtime. In addition
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Figure 2-4: Transformation from solution space to operational space

to these solution subsets, there may be some solutions that partially satis�es or may

depend on the context variables that can be estimated in real execution scenarios.

Hence, the transformation has two stages - design time and runtime.

A reduced form of the transformation process is illustrated in Figure 2-4. The

core idea is a systematic semi-automated process to use models from problem space,

solution space, and knowledge space to guide the system designer to make princi-

pled decisions and trade o�s during the system development process. The high level

models are functional models, non-functional models, architecture metamodels (con-

ventions and patterns), and middleware metamodels. In the transformation process,

the user includes the custom software code, maps the software components to the

corresponding architecture models, and generate a system architecture. It is to be

noted that models are not only primary artifacts for development, they are primary

means by which the di�erent users such as developers and system architects interact

and share.

The functional models consist of operations that have to be carried out in or-

der to accomplish a speci�c functionality. Figure 2-5a shows an informal model of

a functional model for navigating a mobile robot. The dark and white circle repre-

sents the starting and ending points of the directed graph representation. The model

shows that for navigating a mobile robot, four di�erent operations: Move Forward,
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(a) Navigate

(b) Sensor fusion and Mapping

Figure 2-5: Informal model of mobile robot functionality

Move Backward, Turn Left, and Turn Right can be performed. The model also

assumes that these operations are independent in the sense that performing one op-

eration do not constraint the other three operations to be activated or deactivated.

In other words, in order to have the Navigate skill, the four sub-skills are required.

The functional model can also model more complex functionalities, for example, Fig-

ure 2-5b shows a functional model for a sensor fusion and mapping operation for a

mobile robot. The Sensor Fusion and Sampler block receives data from two Laser

acquisition blocks and sends data to the SLAM block. In a certain sense, the model can

be viewed as a data �ow diagram, but conceptually it shows the relationship between

functions in order to achieve more complex functions. Non-Functional model are also

linked with these functions that can be in the form of attributes as shown in Figure 2-

5b. Non-Functional model captures the non-functional properties of a functionality.

Non-functional properties (NFP) de�ne how a functionality operates, for example,

performance, availability, e�ectiveness, etc. For example, the NFP model of a map-

ping functionality may require that the resolution of the map should be less than a

speci�c value, res_map < 3cm. The core idea is to apply constraints from problem

space to the models (functional and non-functional) in solution space together with

domain concepts from knowledge space to guide the user in the process of system

design.

The vision of our methodology is to use the functional and non-functional models

to generate the system architecture in a tool-assisted way with core software engi-

neering methods and systematic developmental phases. The semi-automatic trans-

formation process also uses metamodels of architecture, communication middleware,

supporting tools, and custom software components to generate the architecture of

the system. If the system architect needs to change the middleware, he/she has to
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change the middleware metamodel and perform the transformation process to gener-

ate the architecture in a di�erent middleware. The process is the same if he/she has

to change the architecture, the corresponding metamodel has to be replaced. The

architecture metamodel consists of abstract information and constraints related to

the architecture.

2.4.4 Operational Space

In the operational space, a concrete architecture of the system is modeled that satis�es

the functional and non-functional requirements. Robotics domain is highly heteroge-

neous with domains ranging from conceptual domain such as perception, planning,

control, decision making to computational domain consisting of discrete, continuous;

software domain consisting of communication middlewares, operating systems, etc.

Hence, the meta-framework architecture should be extensible in order to incorporate

di�erent domain models. The composed domain models should be semantically com-

patible. For example, assume a model incorporates concepts from two domains a and

b. In domain a, the modeling element connector represents a computation process,

and in domain b, the connector represents an instantaneous transition between two

states. These two domains are semantically incompatible unless the con�ict between

them is resolved, say by assigning the computational process to the component.

The model relationships enable integration of various domains so as to built more

complex systems. The support for architectural views manages complexity by pro-

moting separation of concerns (SoC). Our Open Semantic Framework proposed in

Chapter 5 helps to modify and extend the semantics to incorporate di�erent domain

concepts and to capture the relationships and identify the con�icting domain seman-

tics.

2.5 Related Works

We have discussed di�erent MDSD approaches in Robotics in Chapter 1. In addition,

there are many approaches that target speci�c area of software development life cycle

such as,task coordination [70], deployment [71], and integration [72] of software for

robotic systems. Recently, SmartMDSD Toolchain v2 was released that provides an
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Integrated Development Environment (IDE) for robotics software development that

combines a set of DSLs and tools that guides experts and stakeholders through a

formalized development process [73]. The authors have used an approach of using

models to cover and support the whole life-cycle of robotic components and their

evolution from design phase to run-time usage. As an extension of BRICS approach,

HyperFlex toolchain proposes a development process that de�nes how reference ar-

chitectures can be exploited for building robotic applications. It provides a set of

principles and tools that support the software engineers and the robotic developers

in the task of designing, reusing, and composing robotic systems [74].

2.6 Conclusion and Contributions

In this chapter, we proposed SafeRobots methodology based on three orthogonal

software development approaches: Component-Based Software Engineering, Model-

Driven Software Development, and Knowledge-Based Engineering. The developmen-

tal phases in this framework can be classi�ed into four phases: General Domain

Knowledge Modeling, Problem Speci�c Solution Modeling, Problem Speci�c Concrete

Modeling, and Executable Code Generation. Functional and Non-Functional Meta-

model are proposed to model functional and non-functional aspects of the system.

Once the solution space of a problem is modeled, an appropriate solution or a set of

solutions is selected depending on the application context and quality requirements.

After this resolution, a more concrete solution (system architecture) is modeled in

the operational space. A semi-automated transformation will facilitate this process

of mapping to the operational space models. A detailed analysis of solution space

modeling and framework design in operational space is provided in Chapter 4 and 5,

respectively.
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Chapter 3

Speci�cation of Non-Functional

Properties

Quality is never an accident. It is

always the result of intelligent e�ort.

John Ruskin

3.1 Introduction

A major part of the robotics research concentrates on the delivery of `proof of con-

cepts' in order to substantiate the researchers' ideas, for example, a robust path

planning algorithm or a real-time collision detection system. Typically, these are de-

veloped from scratch or by using external code-based libraries. Nevertheless, when

such components are merged and/or combined with other functional modules, the

system does not always exhibit the expected behavior. This has led to the increased

time-to-market and large system integration e�orts when such systems are to be used

in safety critical applications. The main issue that arises when such heterogeneous

components are combined, is in ensuring reliability and safety at the system level.

In cyber-physical systems execution correctness encompass both functional and non-

functional properties. However, only functional semantics is treated in traditional

programming languages. Software modules built on such programming languages

becomes unreliable unless it is handled at the component level in the hierarchy.
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Adaptable components should provide a way to incorporate Non-Functional Prop-

erties (NFP) along with the data that they consume and produce. System engineers

take into account the non-functional properties of components to characterize the

system architecture. It necessitates a mechanism in which the NFPs propagate in

component interactions so that it will assist system engineers to provide a better ar-

chitecture for target applications. The con�dence level of the components does not

depend only on the e�ciency of the implemented algorithm but also on the context

in which it is executed such as resource availability, external disturbance, etc. For

example, if a component is implementing localization using adaptable particle �lters,

the quality and response time depends on the number of particles used, which in

turn depends on available memory during execution time, the state uncertainty level

[2], etc. The component developer cannot test these properties unless it considers

a Worst Case Execution Time (WCET) anticipating the available resources and the

component should be incorporated in the anticipated platform. Nonetheless, that will

fail the very purpose of reusable component for a recon�guring system.

Speci�cation and utilization of NFPs are crucial for building quality robotic soft-

ware architectures. While functional properties decide what the system is supposed

to do, the non-functional properties specify the conditions and how a functionality

operates. Description of non-functional properties are essential for design analysis

and re�nement decisions, as well as automatic generation of code and test cases [75].

Usually, these properties are not explicitly dealt during robotic system development

because of their complexity, informal way of their requirement speci�cation, high ab-

straction level, as well as due to the limited support of languages, methodologies,

and tools [76]. Hence, it is necessary that a framework developer for robotics domain

should provide a facility for the system designer to specify NFP in a more consistent

manner. Accordingly, the purpose of this chapter is:

• To introduce the importance of NFPs in Robotics and Human-Machine Inter-

action systems.

• To structure the speci�cation of NFPs using a common metamodel.

• To provide tooling support for NFP speci�cation that integrates with the SafeR-

obots methodology.
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3.2 Non-Functional Properties and Quality of Ser-

vice

Non-functional properties de�ne how a functionality operates, for example, perfor-

mance, availability, e�ectiveness, etc. QoS is the aptitude of a service for providing a

quality level to the di�erent demands of the clients [77]. There is no general consensus

in the community about the concepts of NFP and QoS. In [78], the authors de�ne Non-

Functional Properties (NFP) as the element that speci�es system properties, such as

environmental and implementation constraints, performance, platform dependencies,

maintainability, extensibility, and reliability; in short, a requirement that speci�es

constraints on a functional requirement. In the early phases of system development,

Non-Functional Properties are considered as requirements that impose certain con-

strains to be met. Subsequently, during the development process, these properties

will become integral part of the system. Non-Functional Requirements are not imple-

mented in the same way as functional ones. NFPs are seen as by products when a func-

tionality is implemented. In software engineering terms, usability, integrity, e�ciency,

correctness, reliability, maintainability, testability, �exibility, reusablity, portability,

interoperability, performance, etc. constitute NFPs [76]. At the same time, what

determines QoS is highly domain speci�c. For example, throughput and bandwidth

determines QoS for a network; performance, fault-tolerance, availability, and security

for an embedded system; personality, empathy, engagement, and adaptation for so-

cial robots [79]; resource utilization, run-time adaptation for service robots [30]. In

[80], the authors identi�ed some non-functional properties (in the form of metrics)

for tasks in navigation, perception, management, and manipulation for Human-Robot

Interaction. For example, e�ectiveness of a navigation task can be measured by:

• Percentage of navigation tasks successfully completed

• Coverage of area

• Deviation from planned route

• Obstacles that were successfully avoided

• Obstacles that were not avoided, but could be overcome
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E�ciency can be measured by time to complete the task, operator time for task,

average time for obstacle extraction, etc.

The management of NFPs in component models is one of the main challenges in

the component-based software engineering community. The starting point in their

management, namely their speci�cation in a context of component models is not

addressed in a systematic way [81]. The purpose of NFPs is to provide additional

information about the components, complementing the structural information that is

provided by the component model. This additional information is intended to give

a better insight in the behavior and capability of the component in terms of relia-

bility, safety, security, maintainability, accuracy, compliance to a standard, resource

consumption, and timing capabilities, among many others. In that sense, these prop-

erties bridge the gap between the knowledge of what a component does and its actually

capabilities. As the system development progresses, the meaning of the NFPs typi-

cally changes from 'required' to 'exhibited'. In most cases, the value of the property

also might change as knowledge about the system and its target platform changes.

For example, a NFP requirement in the requirement speci�cation phase might be

considered as a NFP property in the design phase with an estimated value. As the

system development progresses towards implementation, the value will be replaced

by a measured value [81]. Hence, NFPs shall be allowed to assume multiple values

that are valid depending on the context of existence.

3.3 Example of Relevance to Human-Machine Sys-

tems

In this section, we discuss why specifying NFP is important for robotic systems that

involve human interaction. In a typical Human-Machine Interaction (HMI) system,

a task is performed by cooperation of the human and the automation component.

The system adopts a cognitive architecture to model human psychology and makes

optimum decisions on dynamic task allocation between human and the machine coun-

terpart depending on the context. However, such architectures do not de�ne how these

systems are implemented in a software. This is due to the gap in the abstraction axis
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Figure 3-1: Models and their Interactions in a typical Human-Machine System

as detailed in Chapter 1.

In certain tasks, humans outperform automation while in some others, it is the

opposite. However, in most of semi-autonomous systems involving humans, for ex-

ample in cars, many functions that human performs are provided by the automation

also. Although the software component and the human counterpart can perform the

same functionality, it is the quality expected from the entire system and the context

that determines which one should be activated or deactivated in compliance with

the regulation authority such as FAA for civil aviation. A typical human-machine

system maintains three kinds of models: (a) human model, (b) environment model,

and (c) the internal state model of the system as shown in Figure 3-1. The func-

tionality is achieved through the interaction of these three models. Most modeling

languages provide support for the description of functional behavior, while the non-

functional requirements are normally described using informal comments even though

these properties play a vital role in determining the quality of the system. A decision

making system estimates the quality provided by the human and that of the automa-

tion, and decides the authority for control. For example, attributes such as response

time, accuracy, and reliability may comprise the quality of the software component,

while alertness, skills, and expectation-intention correlation may decide the quality

of the human.

Furthermore, selecting the services based on the quality have advantage not only

between human and automation agents but also within the automation system itself.

39



Since the functionalites are viewed as services it is possible to compose basic low

level services in di�erent fashion to provide di�erent functionalities. For example,

in cars, voice recognition service can be used in an entertainment system as well

as in a navigation system. However, the bottleneck is more related to the business

models existing in industries that develop such systems. The standard approach for

automobile OEMs is to develop systems by assembling components that have been

completely or partly designed and developed by external vendors [82]. Because of

the increasing complexity of automobile systems with large number of distributed

features, such an approach will also lead to various compositional issues commonly

known as feature interactions. Therefore, Service Oriented Architectures (SoA) are

gradually being adopted in these systems where various functionalities are provided

as services and the assembled components are seen as service providers. This software

engineering paradigm has many advantages in Human-Machine collaborative work.

Advances in human behavior research helps to model various human actions. These

actions can be seen as services provided by human, for example, steering, braking, etc,

applying acceleration by the driver can be viewed as services provided by the human

driver. In some context, humans provide high quality services while in some others

the machine counterpart does. For example, in the case of assisted parking, human

steering control service is delegated to the machine still retaining the authority over

acceleration with the driver.

The problem of dynamic adaptation is to maintain the QoS of the system at a

certain level. In order to do that in a system involving humans, the QoS of human

models as well as for automation models needs to be speci�ed in a common framework.

The challenge is that various attributes that determine a NFP are heterogeneous in

nature while considering human and machine models. We can address this problem

using our common NFP structure to specify the QoS of human, machine, and their

interactions.

3.4 NFP Metamodel

In order to set a general consensus, based on empirical observations, the following

assumptions are made: A NFP are determined by a set of non-functional attributes
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Figure 3-2: NFP Metamodel

(e.g., performance of a object classi�er can be estimated by the time required for clas-

si�cation; and its e�ciency by the rate of misclassi�cation, etc.). QoS is a high level

property for comparing a functionality in di�erent contexts (e.g., QoS of a speci�c

object classi�cation algorithm is better in indoors as compared to outdoor environ-

ments). Policies associated with NFP and QoS determine how these properties are

estimated from its constituent attributes. Policies are functions that act on a set of

attributes, and de�ne how these properties are estimated. Policies can be de�ned

using logic systems, such as a �rst order logic, predicate logic, etc [83]. In a nutshell,

NFP_Policy(NFP attributes) de�nes NFP, QoS_Policy(NFPs, Context) de�nes

QoS of a functionality. However, there is no strict rule to identify whether a property

is NFP or QoS. In our work, we use a rule of thumb that a functionality (or system)

can have multiple NFPs (e.g., performance, e�ciency), but can have only a single QoS

property (e.g., QoS_Policy(performance, efficiency, context) de�nes QoS). In

our NFP metamodel terminology, the attributes that determine NFPs are called QoS

attributes. Each NFP has at least one QoS pro�le associated with it. A QoS pro�le

consists of a set of QoS attributes and a QoS policy that de�nes how the attributes

a�ect the quality of NFP.

Based on the assumptions made in Section 3.2, a metamodel is proposed for

specifying the NFP as shown in Figure 3-2. NFP and QoS are the root entities in this

metamodel. NFP has at least one NFP Policy and a set of NFP Attributes. Similarly,

QoS has at least one QoS Policy and a set of NFPs as its attributes. NFP attributes
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Figure 3-3: Common tooling support with additional editors for having multiple
values for a property and a navigator for browsing history of values

can be Quantitative or Qualitative. Quantitative attributes can be directly measured

or can be estimated. Quantitative attributes have metric units associated with it,

for example: seconds for responsiveness, bits per second for throughput, etc. The

quantitative attributes can be static, dynamic, or derived. Static attributes will not

change during the course of system operation, for example, pixel density of a camera.

Dynamic attributes can change during system operation, for example, frames per

second of a camera. Derived attributes can be static or dynamic and depend on the

constituent attributes when they are hierarchically composed. Qualitative attributes

refer to discrete characteristics that may not be measured directly but provide a high

level abstraction that are meaningful in a domain, for example, reliability of a network

channel. Sometimes a qualitative attribute needs some quantitative measures also,

for instance, round robin scheduler with a refresh rate of 100ms.

3.5 Tool Support for NFP speci�cation

In Chapter 5, we will introduce a framework speci�cation method that supports

semantic extension for di�erent domains. This extension framework provides a tool

support in the form of viewpoints and property sheets. In order to make use of this

tool support, the NFP structure is mapped to the Property element as shown in

Figure 3-3. However, additional plugins were created for improving usability mainly

for two reasons. First, to facilitate that a property can assume multiple values and
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secondly, to provide a view that help user to navigate through history of values for

a property. In early phases of the system life cycle when a component is being

modeled, the properties can be an estimation or even a requirement. The accuracy

of the estimation during the development process can be changed, as a result of an

increasing amount of information or a change in the way the value is obtained. In the

run-time phase (or even in the development phase in some cases), the property value

could be measured [81]. For this purpose, appropriate tools are provided to allow a

property to assume multiple values.

One of the major ambition of MDE is to provide automated code generation to be

executed on a target platform [23]. On one hand it is important to have a structure

for specifying the NFPs that can be reviewed at di�erent design phases and that

facilitates in veri�cation and validation e�orts. On the other hand, certain NFPs

cannot be preserved at code level and sometimes they cannot be accurately deter-

mined until the execution of the code [84]. To facilitate this process, the tool allows

multiple values for an NFP during the development process and helps to incorporate

a full round-trip engineering approach in order to evaluate quality attributes of the

system by code execution monitoring as well as code static analysis, and then provide

back-propagation of the resulting values to modeling level [85].

3.6 Example of NFP speci�cation in an Assistive

Lane Keeping System

Assistive lane keeping is a perfect example for dynamic function allocation in Human-

Machine system. The automation part is the lateral control of the vehicle to keep

the vehicle in the same lane. The system takes control by applying the required

torque on the steering wheel in case of lane departure situations. In Chapter 7,

we have used this application as case study for specifying framework for developing

cognitive systems. NFPs of Human and Machine are formally modeled using the

proposed NFP metamodel. In Figure 3-4, e�ciency property of human, machine

and interaction model is speci�ed. We de�ne QoS for e�ciency as the response time

in which the human will react to a critical event (here lane departure). Modeling
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Figure 3-4: A high level NFP speci�cation of E�ciency property of human driver and
automation, and their interactions

the human driver in ACT-R architecture [86] is selected for demonstrating the NFP

modeling because of the availability of large number of tunable parameters in models

representing various aspects of human driver such as memory, perception, control,

monitoring, and decision skills. A detailed description of the model can be found in

[87]. The e�ciency model of the human driver, machine and their interactions based

on the proposed NFP metamodel. The policy functions can be de�ned based on logic

systems, such as a �rst order logic, predicate logic, etc., by the system designer. An

example on how such speci�cations can be employed in a framework is provided in

Chapter 7.

3.7 Related Works

The importance of specifying non-functional properties in computer vision systems

is studied in [88]. In [30], the authors showed how to express variability in a robotic

system for non-functional properties using a DSL called Variability Modeling Lan-
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guage (VML). They have also provided a mechanism to express how a system should

adapt at run-time based on those properties and adaptation rules. In [89], a practical

means of exploiting non-functional properties in an architectural assembly process

with structural constraints are introduced. The authors of [29] have proposed a

development process and meta-model that allows the explication, management and

analysis of non-functional properties which enables analysis of resource usage and

veri�cation of resource constraints. Although there is little literature that deals di-

rectly with modeling NFPs in human-machine systems, the works in metrics used in

human-machine systems can be used for reference. Metrics for standardization for

Human-Robot Interactions (HRI) have been proposed by [90], [91], [80], and [92].

The proceedings of the workshop on 'the Metrics for Human-Robot Interaction' pro-

posed several guidelines for the analysis of human-robot experiments and forwarded

a handbook of metrics that would be acceptable to the HRI community [93].

Garlan et al. [94], in their work on Acme, enable architectural adaptation by

writing repair strategies which work within an architectural style. Each component

declares a number of non-functional properties to be monitored by the running system.

If a constraint is violated, a repair strategy is invoked in response. [95] proposes two

complementary approaches for using Non-Functional information - process oriented

and product oriented. Process oriented approach used NFP to guide the development

of software systems. While in the product oriented approach, the non-functional

characteristics of the �nal product are explicitly stated, making it possible to examine

if products fall within the constraints of non-functionality. There are three UML

pro�les that are standardized by the Object Management Group (OMG) that deal

with modeling QoS for software components - [96], [97], and [77] pro�les. In [98] a

QoS ontology for service-oriented systems has been proposed. Our intention is to

structure the property speci�cation at a certain abstraction level and to integrate

in our framework development methodology. The level of details and constraints on

those speci�cation is decided by the framework developer and it is open for him to map

the required concepts. In the context of safety in autonomous systems, the authors

of [99] describe the computation of probabilities according to di�erent speci�cations,

based on functional and non-functional requirements, through probabilistic model

checking.
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3.8 Conclusion

Providing a systematic way of NFP speci�cation and integrating it with development

process by appropriate tools are essential for e�cient framework development process.

The importance of Non-Functional properties in robotics and human-machine systems

were discussed. Modeling those properties are necessary in architectures where func-

tionality alone cannot be used for making both design time and run-time decisions.

Our NFP metamodel provides a generic base for specifying the non-functional as-

pects of both human and machine models. The main challenge in �nding structure

for NFP speci�cation is to provide a �exible mechanism to address a large variety

of property types and providing a tooling support to manage them. The challenge

of dealing with heterogeneous attributes are addressed by categorizing the attributes

into pro�les hierarchically and then using policies to compare at a higher abstraction

level.

3.9 My Contributions

The main contributions in this chapter are enumerated below:

1. The chapter analyzed the importance of specifying and integrating NFPs in

Framework development in Robotics domain.

2. A metamodel to structure the speci�cation of Non-Functional Properties is pro-

posed. A common structure for NFP helps in specifying the non-functional

aspects of both human and machine models.

3. An extensible tooling support is developed to manage NFP speci�cation and

their management.
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Chapter 4

Solution Space Modeling

The more of the context of a

problem that a scientist can

comprehend, the greater are his

chances of �nding a truly adequate

solution.

Russell L. Acko�

4.1 Introduction

Architecting a robotic system is a science of integrating various independently oper-

able heterogeneous systems such as perception, navigation, planner, controller, etc.

Traditionally in robotics, the adaptation of the robotic system to the dynamic envi-

ronments is embedded in the functionality of the constituent systems, for example,

by designing a dynamic path planning algorithm. This practice limits the adaptation

within the functional boundaries of the system components. Therefore, the purpose

of this chapter is:

• To identify the inherent problems in the software design stage of robotic software

development.

• To propose a Domain-Speci�c Language (DSL) that facilitates the design space

exploration speci�c to the �eld of robotics
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The solution space for implementing a functionality in robotics domain is large.

Unlike in research laboratories, where domain experts are involved in software devel-

opment, in industries there is a clear separation of roles. Domain experts design the

system (e.g., using UML class diagrams) and make key decisions on algorithms that

are then communicated to the software developer who develops the software code.

Robotic experts can oversee various algorithmic solutions, specify abstract software

component interfaces, predict high level dependencies, etc.; however, they may not

be well versed in best software engineering practices, cannot predict execution time

of algorithms, etc. A software developer, sometimes, anticipates and assumes sev-

eral facets about the target environments while implementing and testing software

components that may not be valid in the �nal system composition. For example, a

developer may implement a particular localization algorithm that requires the sensor

data to have a certain con�dence level and resolution, which may not be satis�ed

in the target application. The underlying reason is that no formal model is used to

analyze and manage the solution space available to various stakeholders. Taking into

account several experts' opinion from academics and industry, the robotic system

designs are fallible due to these general reasons:

1. Most of the robotic system designs are purely functional, they do not explicitly

capture the non-functional aspects, such as, timing properties, etc.

2. The decision on which algorithms to use is decided by the domain expert during

the design phase without considering the operational pro�le of those function-

alities and its prerequisites, run-time environment, potential interactions etc.

3. Only functional veri�cation of individual systems is conducted and the per-

formance of these modules cannot be guaranteed when it coexists with other

systems, for example, the obstacle detection system may take more time to com-

pute when it is executed along with other systems in the real world scenario.

4. Lack of common ontologies and reluctance of roboticists to accept any standard

development process.
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Figure 4-1: Test Vehicle used for vehicle tracking experiment. Lidar and GPS are
mounted on top of the vehicle and embedded computers are located in the trunk of
the vehicle (see picture inset).

4.2 Motivational Experiment

The problems faced and lessons learnt during the system design, software develop-

ment, and �eld experiments conducted during a research at Renault were the driving

forces to propose a model-based approach. The objective of the experiment was to

design and implement a vehicle tracking system using Velodyne HDL-64E lidar sen-

sor. Velodyne lidar is a high de�nition laser scanning system that generates about a

million points per second using its rotating sensor head containing 64 semiconductor

lasers as shown in Figure 4-1. The tracking system should detect vehicles in the envi-

ronment and compute its state - 2D position and velocity. It was foreseen to use the

system for the following scenarios: a) Ground truth generation, b) Path planning for

autonomous vehicle, c) Tra�c surveillance, and d) Map building applications. The

experiment was successfully completed, however, in an ad-hoc manner that made it

impractical in several other anticipated application scenarios. This section document

some of the encountered problems and classi�es them into four core categories.

In our work, we employed the classical approach of performing data association

on segmented scenes across frames followed by the probabilistic state estimation. The

process �ow is composed of the following four stages: a) Data acquisition: Spatio-

temporal point cloud data is acquired; b) Segmentation: Points clouds are segmented

to object level; c) Data association: Point cloud features are computed for segmented
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clusters and then associated with objects across frames; d) State estimation: Proba-

bilistic inference methods such as Kalman Filters, PHD Filters are applied to estimate

the position and velocity of the detected vehicles.

Some of the relevant problems encountered during the design and development of

the tracking system are discussed below.

Large number of segmentation algorithms are available in the literature to seg-

ment point cloud data. Some of them were dependent on the type of the sensor (e.g.,

Lidar, Time-of-Flight Cameras), properties of data (e.g., density, resolution, colour,

intensity), environment features (e.g., indoor, outdoor, cluttered, �at or sloppy ter-

rain, vegetative land). In addition, the intention to use the tracking system in a

variety of applications, such as ground truth generation, and autonomous driving,

whose requirements for timing properties, resolution and con�dence levels are en-

tirely di�erent, makes it di�cult to choose an appropriate algorithm.

The rotating head of lidar takes non-negligible amount of time to capture a frame.

If the lidar is mounted on a moving vehicle, the generated 3D point cloud frames get

distorted due to this motion. Since this was not properly captured in the initial

designs, considerable amount of time was spent on implementing software that later

failed in �eld experiments. One such incorrect component composition was when

Point Cloud Histograms (PFH) were used as feature descriptors in the data associ-

ation step. PFH descriptors captures the spatial distribution of points in the point

cloud. When the tracking system was used in moving vehicle without including an

undistortion process on the point cloud data, the feature correspondences do not

work. The undistortion process requires a high performance inertial localization sys-

tem to compute the pose of the vehicle at the timestamp of each captured point and

applies coordinate transformation to compute the exact 3D point. Such induced re-

quirements and constraints must be captured to make the system more adaptable,

for run-time dynamic wiring of software components, and for deriving a product from

product line systems.

Context information was unavailable during design time as well as during �eld

experiments. Certain algorithms can be integrated to the system only by using such

information, for example, an object classi�er needs the road information to help in

classifying between vehicles or buildings on the road side, between pedestrians and
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parking poles, etc. Several algorithms (ground classi�cation, for instance) require

parameter selection based on the context, such as terrain type - sloppy or �at, road

width, etc.

Identi�ed Challenges

From the experiment discussed above, and from the previous experiences in developing

similar robotic systems, the common challenges can be broadly classi�ed into four

categories:

1. Uncertain problem space: Ambiguity in requirements due to the desire to

reuse the system across various applications.

2. Large solution space: Availability of multiple algorithms for implementing a

functionality.

3. Lack of design time context information: The developer cannot anticipate

all the use cases and his/her assumptions are not properly documented.

4. Incorrect level of abstraction: Code-centric designs cannot provide the right

level of abstraction that promote portability and reusablity.

To address these aforementioned problems, we propose a modeling language to

formally model the solution space and to specify the quality attributes during design

time. The approach is to capture multiple solutions in the model that permits formal

analysis, reasoning, and decision making on selecting best possible solution depending

on the functional and non-functional properties. The solution model also helps in

- system level reasoning, making tradeo�s, documenting decisions, and comparing

them, and for formally proving and validating the �nal implementation.

4.3 Solution Space Model

By critical analysis of the problems described in Section 4.2, the desirable features

for a solution space model are deduced: a) It should be a graphical model that

can be visually inspected, as well as machine readable; b) It must be a hierarchical

model that provides views at di�erent granularity levels; c) Non-Functional Properties

(NFP) and Quality of Service (QoS) must be explicitly stated; d) It must capture
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Figure 4-2: Relationship between the proposed models

the uncertainties in problem space and must act as a reference model for developing

concrete software models in the operational space. Equally important to the desirable

features, the model should not include any implementation speci�c details, such as

communication patterns and programming language dependencies.

In this chapter, a Solution Space Modeling Language (SSML) is proposed. SSML

is speci�ed at two abstract levels as shown in Figure 4-2. Solution space meta-

metamodel is at the highest level and functional and non-functional metamodels at

the lower level in the MDE hierarchy. Figure 4-3 shows the Ecore meta-metamodel

diagram and the graphical representation of the primitive elements. In natural lan-

guage, the syntax can be explained as follows: the solution space consists of Dispatch

Gates, Ports, Connectors as the primitive elements. A Dispatch gate consists of num-

ber of ports and is associated with a Dispatch Policy. The ports can be `in' or `out'

indicated by the port_type. A connector is associated with two ports of which one

should be an `in' port and the other an `out' port. A connector can have NFP and

QoS associated with it.

The semantics of the proposed model is as follows: the dispatch gates represent

basic operations for composing di�erent functional computational processes, such

as selecting an appropriate data source for a computation, synchronization point,

bu�ering, etc. The dispatch policy associated with it de�nes the operation of the

gate. The data enters or leaves the gates through ports. Ports can be of type `in' or

`out' depending on whether the data enters or leaves the gate. A connector connects

two semantically compatible `in' and `out' ports. A Connector represents a functional

computation and its quality aspects are represented by NFP and QoS.
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Figure 4-3: Metamodel (left) and its graphical representation (right) of SSML. Dis-
patch Gate, Port, and Connector represents the functional aspect and NFP and QoS
Pro�le represents the non-functional aspect.

4.3.1 Functional Model

A functional model satis�es the behavioral requirements of the system. A behavioral

or functional requirements are those requirements that specify the inputs (stimuli)

to the system, the outputs (response) from the system, and the behavioral relation-

ships between them [100]. The functional model in the solution space should not be

interpreted as a data �ow diagram, but as a relationship diagram between functional

concepts.

Functional Metamodel

A functional metamodel is depicted in Figure 4-4 that conforms to the solution space

meta-metamodel. This metamodel imposes soft constraints on the dispatch policies

of the gates and the number of ports [101]. Soft constraints means that the dispatch

policies are not concretely de�ned but only conceptual restrictions are only imposed

in the metamodel. The intention is to facilitate the designer to apply application

speci�c policies, at the same time, the gates can be used for automated reasoning of

the solution space.

a) Splitter gate consists of 1 input port and n output ports. It creates n splits/copies

of the input data and transfers to its output ports.

b) Merger gate consists of n input ports and 1 output port. It merges the data from

n input ports to the output port.
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Figure 4-4: Metamodel for functional modeling (left) and graphical representation of
dispatch gates (right).
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Figure 4-5: Solution space model for tracking system. High level model is shown
(top), zero delay gates (G1-5) are inserted to separate the computations. Connector
C1 representing data preprocessing is modeled (right)

c) Selector gate consists of m input ports and n output ports. It selects n out of m

input data.

d) Synchronizer gate consists of an equal number of input and output ports. It acts

as a synchronization point between the di�erent data streams.

e) Delay gate consists of one input and output port. It passes the data in the input

port after a time delay and can also act as a data bu�er.

f) User-de�ned gate does not have any constraints on the number of ports and dis-

patch policy.

4.4 Solution Space Model for Lidar Based Vehicle

Tracking System

This section models the solution space of a lidar based vehicle tracking problem using

the proposed SSML. Figure 4-5 shows the high level model of a classical approach in

tracking described in section 4.2. Four connectors, C1, C2, C3, C4, represent data

preprocessing, segmentation, data association, and state estimation process and the

zero delay gates are inserted to di�erentiate between these processes. This model

consists of single sequence of processes that do not have multiple solution paths at

this hierarchical level. In this context, a solution is referred as an execution path

or simply a path in the solution space model. In textual form, it is represented as

a sequence of labels indicating gates and nodes in that solution. The path repre-

sented by adjacent parenthesis, for example (path 1)(path 2), indicates a mandatory

parallel execution path. The lidar data preprocessing solution model captures two

solutions: G11-C11-G12-C13-G15-C18 and G11-(C11-G12-C14-G13-C16)(C12-G13-
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C15)-G14-C17-G15-C18. The two solutions do the same functionality: converting

raw sensor data into point cloud frame. The di�erence between the two solutions

is the quality aspect that changes with context. In this case, context represents the

motion of the vehicle and the di�erence in quality is due to time latency of lidar, as

explained in section 4.2. The NFPs that are considered for this process are perfor-

mance and resource cost. The NFP attributes that model performance are response

time, resolution, and average distortion. An example snippet from the NFP model

for data preprocessing represented by C11 is shown in Listing 4.1.

CONTEXT: vehicle

NFP: vehicle_motion

NFP_ATTRIBUTES: velx:base_velocity_x:msrd:dynamic:mps , vely:base_velocity_y:msrd:

dynamic:mps , velz:base_velocity_z:msrd:dynamic:mps , rr:roll_rate:msrd:dynamic:

degpsec , pr:pitch_rate:msrd:dynamic:degpsec , yr:yaw_rate:msrd:dynamic:degpsec;

NFP_POLICY: vehicle_motion_policy ();

***********************************************************************************

NFP: C11.response_time;

NFP_ATTRIBUTES: fps:frame_per_second:msrd:static:int ,tp:transmission_speed:msrd:

static:msec;wcet:worst_case_execution_time:est:static:msec;

NFP_POLICY: response_time_lidar_policy ();

-----------------------------------------------------------------------------------

IMPORT CONTEXT vehicle;

NFP: C11.resolution;

NFP_ATTRIBUTES: ar:angular_resolution:est:static:deg ,rps:rotations_per_second:msrd:

static:Hz ,tlppr:total_laser_points_revolution:msrd:static:int ,pplpr:

points_per_laser_per_revolution:msrd:static:int;

NFP_POLICY: resolution_lidar_policy ();

-----------------------------------------------------------------------------------

IMPORT NFP C11.response_time ,C11.resolution ,C11.average_distortion

NFP: C11.performance;

NFP_ATTRIBUTES: rtl:response_time ,rl:resolution_lidar;

NFP_POLICY: c11_performance_policy ();

-----------------------------------------------------------------------------------

IMPORT CONTEXT vehicle ,environment;

IMPORT NFP C11.performance , C11.resource_cost;

QOS: C11.QoS

NFP: C11.performance ,C11.resource_cost;

QOS_POLICY: C11_QoS_Policy ();

Listing 4.1: Relevant snippets of the Non-Functional Model of vehicle, environment,

and lidar data preprocessing process.

Another signi�cant advantage of modeling functional and non-functional aspects

separately is that certain invalid compositions of systems can be found. For example,
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referring to the problem described in section 4.2 regarding PFH feature correspon-

dence failure, such anomalies in system composition can be captured without explic-

itly indicating that Point Feature Histogram (PFH) feature `requires' undistortion

process. Listing 4.1 shows an example of non-functional properties associated with

Lidar data parser (connector C11 in Figure 4-5). The modeling elements comply to

the data structure presented in Chapter 3. Resolution property of lidar data prepro-

cessing process shown in Listing 4.1 using vehicle context to determine the resolution

of the point cloud data. Hence, if PFH feature that requires a better resolution is

composed without undistortion process, the QoS of the system will be lower since the

resolution constraint does not satisfy point cloud resolution level.

The solution space for segmentation process represented by connector C2 in Figure

4-5 is modeled in Figure 4-6. The objective is to cluster a point cloud frame into

smaller clusters in such a way that each cluster represents individual objects. There

are multiple data processing steps and algorithms to achieve the goal. In general, a

point cloud data can be segmented into clusters using two methods: 1) By directly

processing the 3D data and clustering using some criteria such as Euclidean distance

or 2) By mapping the point cloud to a 2D image and performing segmentation in 2D

space using image processing techniques and then projecting back to the 3D space to

compute the �nal point cloud clusters. Each algorithmic step indicated in Figure 4-6

is brie�y explained as follows:

Ground Classi�er: The algorithm can classify ground and non-ground points from a

point cloud frame. By rejecting the ground points, this algorithm can signi�cantly

reduce the number of points for further processing.

2D Projection Method: This method uses (x,y) coordinates of the point cloud and

converts it to a two-dimensional binary image. This is best suited for point clouds

consisting of non-ground points and hence, it receives data from a ground classi�er.

Euclidean Clustering: This algorithm uses Euclidean distance to cluster the point

clouds. It can be applied on non-ground point cloud data to generate the �nal point

cloud clusters.

2.5D Projection: This algorithm can convert a point cloud to a 2D grayscale image.

Ground points are automatically rejected and there is no requirement for explicitly

classifying the ground and non-ground points.
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Figure 4-6: Connector C2 representing segmentation shown in Figure 4-5 is modeled
in the �gure

No. Execution Path Variation Points

1 G21-(C21-G23-C26)(C23)-
G24-C27-G25 (C21),

2 G21-(C22-G22-C24-G23-
C26)(C23)-

(C22-G22-C24)

G24-C27-G25 (C24-G24-C27),
3 G21-C22-G22-C25-G25 (C25)

Subpath

No.
Variation

Performance Ground
Truth
Generation

Autonomous
Driving

AET Res. Stage 1 Stage 2 Stage 1 Stage 2

1 (C21) 48ms Med Fail Pass Pass
2 (C22-G22-C24) 107ms High Pass Pass Fail
3 (C24-G24-C27) 31ms Med Pass Fail Pass Fail
4 (C25) 120ms Low Fail Fail

Table 4.1: Solution comparison for segmentation w.r.t application: Ground truth
generation and Autonomous Driving

Image Segmentation: Using image processing techniques, connected regions are found

in the image and a bounding box is computed for each region.

2D to 3D Box Mapping This uses a list of 2D boxes and the correspondence point

clouds and generates 3D point cloud clusters. Some intermediate results are shown

in Figure 4-7.

The NFP of segmentation process are modeled in a similar way as previously de-

scribed in this section. In this example, two contexts are considered; one for a ground

truth generation application and another for autonomous driving application. The

intention is to reason, analyze, and extract appropriate solutions from the solution

space that satisfy the context requirements. If two or more solutions satisfy the re-

quirements, it will be considered as variation point that can be resolved in the design

or implementation phase, or dynamically selected during run-time. For simplicity,

only the performance property is considered here. The performance is modeled with
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Figure 4-7: Vehicle Tracking Results: Segmented point clouds (left), detected vehicles
(middle), tracked vehicles (right)

two NFP attributes - Average Execution Time (AET) and Resolution. AET is com-

puted as the average time taken to execute the computation and it is estimated in

the test platform, since an accurate timing information is not required at this stage.

Also it is reasonable to compare the AET of di�erent computations on the same plat-

form for primary investigations. The resolution is divided into three levels depending

on the grid size of the map: High, Medium, and Low, to facilitate the demonstra-

tion. The appropriate solution in di�erent contexts is extracted in a staged process

as described below:

1. Find the multiple solutions available in the solution space model.

2. Find the variation sub-paths among the multiple solution paths.

3. List the sub-paths from the variations found in step 2.

4. For a given context, �nd whether the homogeneous sub-paths satisfy the quality

policy (NFP or QoS Policy) of that subpath. A homogeneous sub-paths is a set

of sub-paths that perform exactly the same functionality.

5. Consider all the sub-paths satis�ed in step 4 and check for any contradictory

results, for example, if the solution passed in one homogeneous check and failed

in another.

6. If there were any contradictory results, repeat the quality check for the solution

at the higher level in the hierarchy.
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The solution resolution steps of segmentation model are captured in Table 4.1.

There are three execution paths as listed in the table. Two variation points are then

found - one variation sub-path between execution path 1 and 2 and the second be-

tween 2 and 3. It is to be noted that individual paths that end with a synchronizer

gate cannot be considered as separate execution path since all the paths are manda-

tory for synchronization. The next step is to list out the sub-paths in the variation

points. The four sub-paths are indicated in the second half of the table. The sub-path

1 and 2, and 3 and 4 are homogeneous pairs since they represent the same function-

ality. The policy used were (Resolution==High) for ground truth application and

(Resolution==High) AND (AET<50ms) for autonomous driving application. In stage

1, two solutions satisfy the policy and in the next stage, one solution is extracted by

considering the policy in that level.

4.5 Solution to Operational Space Transformation

After the solution space model for a given problem is modeled in SSML language,

the next stage is to transform it to an operational model. It is to be noted that the

solution space model only satis�es the functional requirements and the non-functional

requirements are enforced only while it is transformed to the operational model. It

is common that there may be more than one solution that satis�es the NFP require-

ments, in which case, the best possible solution can only be resolved during runtime.

In addition to these solution subsets, there may be some solutions that partially

satisfy or may depend on the context variables that can be estimated in real execu-

tion scenarios. Hence, the transformation has two analysis stages - design time and

runtime.

The solution model for point cloud segmentation problem is shown in Figure 4-6.

The solution space model is a form of Directed Acyclic Graph (DAC) with functional

computations represented as edges, and gates form the nodes of the graph. The non-

functional properties associated with the edges are assumed to be fully observable in

our study. This is a valid assumption for most of the NFP properties such as, WCET,

Required Memory, etc., as these can be estimated using external tools when the exe-

cution context is known. This assumption can be extended to qualitative properties
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Figure 4-8: SSML Gates and corresponding MDP models

such as, usability, portability, etc., by mapping it to a range of values. For example,

portability can be given values in the range 0 to 5, 0 being least portable component

and 5 for the component with a high portability. The uncertain environment in which

the robot is to be deployed makes the decision process on the best possible solution,

stochastic in nature. The graph can be seen as a �nite state machine augmented with

probabilities and non-deterministic transitions. Hence, this model can be translated

to a formal decision model called as Markov Decision Process (MDP). MDP mod-

els a sequential decision problem for a fully observable, stochastic environment with

Markovian transition model and additive reward. By Markov transition model, we

mean that the probability of reaching the next state from the current state depends

only on the current state and not on the earlier states [102].

4.5.1 Transformation Process

The solution space model is transformed into MDP model in a systematic approach. A

solution space model is composed of gates and connectors as basic modeling elements
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that represent decision points and computational functionalities respectively. The

connectors are transformed to states and gates are translated to edges connected

to these states. Figure 4-8 shows the translation of SSML gates to MDP graphs.

The grey states are decision points where multiple edges can be connected. The

decision states do not have an associated NFP properties, hence they are also called

as non-impact states. The NFP property associated with the connectors in solution

space are augmented with the corresponding states in the MDP model. As shown

in Figure 4-8, splitter gate is transformed into two decision states and one impact

state that represents the connector connected to the input port of the gate. Three

edges that originate from the second decision state has an associated probability that

should sum to 1. The MDP model corresponding to Merger gate consists of two

decision states and one impact state. In this model, the impact state represent two

functional computations connected to the input ports of the gate. This means that

both functionalities are active in this state and the NFP property associated with

this state is estimated by composing the properties of the two functionalities. The

MDP model of the selector gate is composed of the same number of impact states

corresponding to the number of ports in the gate. In the MDP model of delay gate, an

additional impact state D1 is added that has a time-based NFP property. Similarly

for the synchronizer gate, the additional state Z1 models the time delay caused by

the data synchronization.

After translating the gates to MDP model, the �nal MDP model of the complete

system is generated by merging the corresponding decision states. Figure 4-10 shows

the translated MDP model for the point cloud segmentation solution model. The

states are annotated with two kinds of NFP property - Execution time (ET) and

Resolution (Res). These are translated directly from the solution model. The trans-

formation of solution space model to MDP model is performed by the SafeRobots

tool and is generally hidden from the user.

4.5.2 MDP Model Analysis

The analysis of the MDP model is performed in two stages - design time and runtime.

The design time analysis is an o�ine process to compute a subset of solution space

model given the problem model. Runtime analysis is an online process during the
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Figure 4-9: Design-time model analysis

system execution and is a pre-requisite for the self-adaptation of the system.

Design-time Analysis

The functional and non-functional requirements are modeled in the problem space

of the framework. The NFP requirements are modeled in domain-speci�c language,

which is presented in Chapter 3. However, for simplicity, in this chapter we spec-

ify them as simple name-value pairs. For example, estimated execution time of a

functional computation is denoted as ET : 20ms.

Due to the stochastic nature of the execution context, a �xed sequence of actions

may not work. There should be a policy that speci�es what should be performed next

from any given state. The overall goal of the system is to maximize the utility that

depends on the sequence of states selected. We attach a bounded reward R(s) to each

state. The rewards are speci�ed in terms of the NFP property attached to the state.

For decision states, rewards are not speci�ed since they do not in�uence the overall

utility directly. In this chapter, we use the term reward in general, in some case it can

represent a cost, for e.g. execution time (ET). This depends on how the requirement

is speci�ed, ET < 100ms denotes ET as a cost and usability, U > 3 presents it as

a reward. The policy, π should yield expected utility value that is satis�ed by the

requirement. For example, assume that a policy πx can provide a expected reward

in terms of execution time of < 21, 44 > for a particular subset of solution space

model. Due to the stochastic nature of the system, the expected reward will always

be a range of values. Only the overall utility of each path is considered during the
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design-time analysis of the model.
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The expected utility, Uh for each model path can be computed as:

Uh ([s0, s1, s2, · · · , sn]) = R(s0)⊕R(s1)⊕R(s2)⊕ · · ·R(sn) (4.1)

Where, R(s) is the reward for state s, ⊕ denotes a composition operator. Figure

4-9 illustrates the utility values for a model consisting of two paths. The composition

scheme depends on the type of non-functional property used as rewards. For exam-

ple, ET property can be simply composed by adding the values of all the states in

the sequence, while most of qualitative properties have more complex composition

schemes. In many cases, the composition of NFP properties depend on the external

environment and the system architecture. For example, the composition of compo-

nent performance may depend on scheduling policies and the system con�guration.

Currently, the common practice is to de�ne the composition based on some con-

straints/assumptions. For example, static memory usage is considered to be additive

give that there is no concurrency in assembly execution [103]. The utility values are

computed for all the available paths in the solution space model. Only those paths

that satisfy the requirements are then selected. For example, if the requirement spec-

i�es the ET < 100ms, only those paths with utility value of ET less than 100ms are

selected for the runtime resolution.

Runtime Analysis

The MDP model generated after the design time analysis is a subset of solution space

that satis�es the non functional requirements. However, the best possible solution

can be selected only during runtime due to the environment dependency. During the

runtime analysis each NFP reward is replaced by the expected utility value from that

state to the terminal state in form of < min(Uh),max(Uh) >. The Figure 4-11 shows

an example of a runtime MDP model in which each functional state is augmented

with the expected utility forecast. The utility forecast estimation is performed using

a probabilistic model checker called PRISM, which is a tool used for formal modeling

and analysis of systems that exhibit random or probabilistic behavior [104]. For

example, the state s2 in Figure 4-11 is augmented with a expected utility forecast of

< 89, 134 >, which means that the ET property will have a value in that range from
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Figure 4-10: Solution space model for tracking system (top) and the corresponding
MDP model (down).

state s2 to the terminal state. While executing the system, the model also maintains

a context data structure that comprises of the real value of the NFP property for

the current state. For example, if the functionality associated with state s1 is being

executed, the data structure contains the execution time already taken to reach that

state, say ETcurrent. Therefore, the available time for reaching the terminal state will

be ETreq−ETcurrent, where ETreq is the required ET speci�ed by the requirement. In

the example shown in Figure 4-11, there are two execution path after the state s1 is

executed. The decision on the execution path depends on the context data structure

and the expected utility forecast of the next states. Here, we model the forecast

< min(Uh),max(Uh) > as uniform probability distribution as shown in Figure 4-

11. The available time ETreq − ETcurrent should be within min(Uh) and max(Uh) in

order to reach the terminal state. Hence, the probability at which the execution path

reaches the terminal state satisfying the requirements is given by the area under the

shaded region shown in Figure 4-11.
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Figure 4-11: An example of annotated runtime MDP model (top) and the probability
analysis of expected utility forecast (down)

The area can be computed as:

P (ET < ETreq) = P (ETsi ≤ ETreq − ETcurrent)

=
(ETreq − ETcurrent)−min(Uh)

max(Uh)−min(Uh)

(4.2)

The execution branch with the highest probability of satisfying the requirement

will be selected at the decision point. We have explained the process with the help

of ET as the reward, however this can be extended to any quantitative property as

reward with proper composition operation as discussed earlier.

4.6 Operational Models

The SafeRobots component model adopts the separation of concerns approach pro-

posed by the BRICS framework [105]. The component semantics is mapped to the

5Cs - Communication, Computation, Con�guration, Coordination, and Composition.

In addition, the operation space also consist of architectural models in the form of

meta model that speci�es the constraints and knowledge regarding the con�guration

of the �nal system. The solution space model to operational model transformation
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performs this semantic mapping to the 5Cs. However, the con�guration-coordination

pattern uses internally the MDP models and the mechanisms discussed previously for

runtime coordination and dynamic invocation of computational components. Finally,

the operational model is automatically translated to executable code using Model

to Text (M2T) transformation. The real advantage of our process is that the self-

adaptation capability is introduced before architectural decisions are made and they

handled by the framework tool and hence, it enables evaluation and benchmarking of

robotic architecture in an e�cient manner.

4.7 Related works

By learning from the shortcomings of code-based approaches, the software engineering

community in robotics is gradually moving towards Model-Driven Software Develop-

ment (MDSD) approach [15]. Modeling solution space using SSML can be seen as a

complementary approach to many existing methods in the robotics. Software prod-

uct line approach is popular in software engineering community to enhance product

quality and reduce developmental cost by promoting constructive reusability [106].

Recently, the authors of [107] have adapted this approach in robotic domain by pro-

viding feature resolution and transformation steps. However, one should have already

identi�ed well de�ned boundaries for variation points and a reference architecture for

adapting this approach. In addition, many DSLs are proposed in robotics domain

for deployment, simulation [19], component creation [108], etc. All these languages

reside in the operational space, our proposed SSML can complement and facilitate a

smooth transition from problem space to operational space.

Similar to our transformation approach, the authors of [109] have used a probability-

based functionality adaptation for distributed mobile applications. However, they

mainly address the problem of unexpected high response time and faults during the

runtime of the system alone. Current research in self-adaptive systems concerns on

the e�ective utilization of models during runtime. In such situations, the runtime

models should re�ect the most up-to-date information in order to perform online

analysis and reasoning. There are some interesting reference architectures available

from self-adaptive systems and models@runtime communities [110]. In [111] authors
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have proposed a technique to explicitly document the existence of uncertainty about

how architectural decision contribute towards satisfying non-functional properties in

the form of soft goals. The technique allows developers to deal with uncertainty

during both development time and runtime [112].

4.8 Conclusion

This chapter focused on the problems faced while developing software for robotic

systems. An experience report on developing a lidar based vehicle tracking system in

an industrial context is used for motivational purpose. The problems were classi�ed

into four categories: uncertain problem space, large solution space, lack of design-time

context information, and abstraction issue. In this chapter, Solution Space Modeling

Language is proposed to address the multiple solution problem and to formally specify

NFP during system design. Solution space modeling can expand this design space,

help �nding the best possible solution, and also permit to perform run-time adaptation

of the system. Solution model helps in early analysis of quality attributes, to identity

variations and acts as a bridge between problem and implementation space.

More research is required on formal methods for specifying composable policies

of Gates, NFP, and QoS in the proposed SSML language. Once the solution space

of a problem is modeled, an appropriate solution or a set of solutions are selected

depending on the application context and quality requirements. A transformation

model will facilitate this process of mapping to the operational space models, for

example, discrete timing properties of gates can be employed for process allocation,

selecting scheduling policies, etc. In Part III of this thesis, we discuss the tooling

support based on Eclipse IDE for graphical and textual editing of SSML models and

using Eclipse plug-in feature for semantic enrichment of the model.
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4.9 My Contributions

In this chapter, we started by discussing several challenges faced during design phase

of robotic software development. Subsequently, we analysed di�erent problems posed

during the software development of a robotic software subsystem in an industrial

context (intelligent vehicles). The following contributions are made in this chapter.

• We studied common reasons that makes the robotic system designs fallible by

taking into account the previous experience of robotics experts in various ex-

periments in academics and industry,

• The common challenges are then broadly classi�ed into four categories: uncer-

tain problem space, large solution space, lack of design time context information,

and incorrect level of abstraction.

• To address these aforementioned problems, we proposed a modeling language

- Solution Space Modeling Language (SSML), to formally model the solution

space and to specify the quality attributes during design time.

• The relevancy of the model is demonstrated by modeling the solution space of

vehicle tracking problem. NFP and QoS Policies facilitated the quality �ow

across functionalities at di�erent granularity levels.

• The resolution of solution space might not always result in a static operational

model. Typical the resolution process performed during development time result

in a subset of solutions that are modeled as variation points in the architecture.

This is attributed mainly due to certain context-based properties that can be

estimated only during runtime. We formally de�ne the solution space to oper-

ational space transformation process and employs a probabilistic approach to

resolve the solution model during design time and execution time. These oper-

ations are handled automatically by the framework tool and are independent of

any particular robotic framework.
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Chapter 5

Architecture Modeling in Operational

Space

It is always easier to destroy a

complex system than to selectively

alter it.

Roby James

5.1 Introduction

Despite the research that spanned almost three decades, the robotics community has

not converged to a single or a minimal set of e�cient architectures [113]. Although

most of the existing architecture styles can be classi�ed into three categories: hierar-

chical, behavioral, and hybrid; it is very common that each robotic system designer

or research group builds their own architecture from scratch considering only their

short-term immediate requirements. The design, simulation, and programming of

robotics systems is challenging as expertise from multiple domains needs to be inte-

grated conceptually and technically. In addition, complex robotic systems typically

involve software components that use a variety of mathematical models for prob-

lem solving, for e.g., state machines for robot control [114], stochastic Petri Nets for

navigation [115]. Furthermore, as an emerging solution for handling complex and

evolving software problems, several Domain Speci�c Languages (DSLs) have been
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proposed for speci�c functional domains in robotics [116]. They indeed help to raise

the level of abstraction through the use of speci�c concepts that are closer to the

respective domain concerns and facilitate validation and analysis [117]. A typical

process for designing a robot architecture involves 'mix and match' of such archi-

tecture paradigms, mathematical models, DSLs, and implementation technologies.

Without any common conformance model, this process is expensive both in terms of

time and e�ort, and absence of systematic approach may result in adhoc designs that

are not �exible and reusable. Therefore, within the context of architecture design,

component development and their support tools, a coherent practice is required for

developing architectural frameworks. The purpose of this chapter is:

• To investigate the possibility of a formal meta-framework model so as to model

frameworks that support heterogeneous domains related to robotics.

• To propose a formal way to speci�y the interactions between di�erent archi-

tecture concepts (e.g., state transition system [118] and process control sys-

tem [100]) and paradigms (e.g., behavior-based [119] and cognitive architecture

[120]) in the operational space.

5.2 Software Architecture

The unprecedented growth of software systems in size and complexity has led to new

opportunities, but also to increased challenges in designing and specifying the system.

Architecture frameworks and architecture description languages are created as a way

to capture the conventions and common practices of architecting and the description

of architecture within each application domain.

A software architecture helps in several purposes such as:

1. To recognize and reuse common paradigms so that their high level relationships

and interactions can be clearly understood.

2. To describe the system topology and guide the decisions leading to the system

structure.

3. To make principled choices among design alternatives.
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4. To specify high-level properties, which are essential for the analysis of the sys-

tem.

De�nitions of terms that are central to our concept development and further discus-

sions are given below.

Basic De�nitions

The following terms and de�nitions have been adapted from the international stan-

dard for describing the architecture of a software-intensive system - ANSI/IEEE Std

1471-2000 [51]. The next section provides more details about this standard.

- A system is a collection of components organized to accomplish a speci�c function

or set of functions.

- The architecture of a system is the system's fundamental organization, embodied

in its components, their relationships to each other and to the environment, and

the principles guiding its design and evolution.

- The architecture framework are a collection of conventions, principles and practices

for the description of architectures established within a speci�c domain of applica-

tion and/or community of stakeholders.

- The concern de�nes an interest in a system relevant to one or more of its stakehold-

ers. A concern pertains to any in�uence on a system in its environment, including

developmental, technological, business, operational, organizational, political, eco-

nomic, legal, regulatory, ecological and social in�uences.

- An architecture view expresses the architecture of the system-of-interest in accor-

dance with an architecture viewpoint (or simply, viewpoint).

There are some arguments and discussions in the community regarding the de�ni-

tions and their relationships between the concept of architecture description, frame-

work, and meta-frameworks [121][122][123]. In order to position our work and moti-

vate its importance, the relationships illustrated in Figure 5-1 are followed in the rest

of the chapter. Architecture conforms to an architecture framework and is speci�ed

using an Architecture Description Language (ADL). Architecture addresses known

concerns for known stakeholders for the system of interest. Architecture frameworks
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Figure 5-1: Relationship between various concepts related to architecture and frame-
work

introduce a level of indirection such that the stakeholders for system architecture are

not known when the framework is de�ned. However, common practice indicates that

framework developers often have in mind known or established stakeholders within

the domain of the framework. These stakeholders motivate the set of architecture

related concerns that the architecture framework will focus on. A conforming ar-

chitecture will identi�es these concerns and it directly lead to a set of views to be

included. Viewpoints governs these views and it establishes notations, model kinds,

tools, techniques and methods to be used while creating models. Model kind are

conventions for a type of modeling, for e.g., data �ow diagrams, Petri nets, and state

machines. Various model kinds in robotics and the relationship between viewpoints

and views are discussed in Section 5.2.3 and 5.3.3 respectively.

5.2.1 The ISO standard

IEEE 1471:2000, Recommended Practice for Architectural Description of Software-

intensive Systems, was the �rst formal standard by IEEE computer society in the

direction for incorporating architectural thinking into IEEE standards and to estab-

lish a conceptual framework and vocabulary for talking about architectural issues of

systems [2]. Although the idea of an architecture framework was implicit within the
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2000 edition, the notion was not de�ned in the standard. Later a revision proposal

was made to de�ne architecture framework explicitly [123]. The proposed de�nition

is:

An architecture framework establishes a common practice for creating, or-

ganizing, interpreting and analyzing architectural descriptions used within

a particular domain of application or stakeholder community.

ISO adopted the IEEE standard in 2007 as ISO/IEC 42010:2007 [124]. Subse-

quently ISO and IEEE produced a joint revision, published as ISO/IEC/IEEE 42010

[51], System and software engineering - Architecture description. The �rst edition

of ISO/IEC/IEEE 42010 cancels and replaces ISO/IEC 42010:2007 which has been

technically revised. This International standard is used to establish a coherent prac-

tice for developing architecture descriptions, architecture frameworks and architecture

description languages within the context of a life cycle and its processes.

The fundamental goal of an architecture framework is to codify a common set of

architecture practices within a community: for the sake of understandability, com-

monality and synergy - reducing the need for individual architects to re-invent the

wheel; and to promote interoperability. To achieve this goal, the Standard establishes

its minimal requirements on architecture frameworks in terms of their content and

presentation. Unless otherwise mentioned, in the rest of this chapter, the term 'in-

ternational standard' refers to ISO/IEC/IEEE 42010:2011(E) [125], Recommended

Practice for Architectural Description of Software-intensive Systems.

5.2.2 Architecture Framework and Architecture Description

The international standard de�nes architecture framework as conventions, princi-

ples, and practices for the description of architectures established within a speci�c

domain of application and/or community of stakeholders [51]. Architecture frame-

works and architecture description languages (ADLs) are two mechanisms widely used

in architecting. The uses of architecture frameworks include: creating architecture

descriptions; developing architecture modeling tools and architecting methods; and

establishing processes to facilitate communication, commitments and interoperation

across multiple projects.
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A well-de�ned architecture allows to reason about system properties at a high level

[126]. Typical properties include interface compatibility between components, inter-

action protocols, performance, resource consumption, conformance to standards, and

reliability. Despite its relevance, the practice of architecture description in robotics,

is not much used or appreciated. According to the international standards, an archi-

tecture description is a work product to express an architecture.

In the life-cycle of the system, an architecture description has many uses:

- a basis for system design and development activities.

- a basis to analyze and evaluate an alternate implementation of an architecture.

- documenting essential aspects of a system, such as, intended use and its environ-

ment, principles, assumption, and constraints to guide future system evolution.

- to guide architecture decisions, their rationales and implications.

- specifying a group of systems sharing common features (such as architectural styles,

reference architectures and product line architectures)

Architecture descriptions are used to create, utilize, and manage systems to im-

prove communication and co-operation, enabling them to work in an integrated, co-

herent fashion. Architecture frameworks and architecture description languages are

being created as assets that codify the conventions and common practices of archi-

tecting and the description of architectures within di�erent application domains.

5.2.3 Model Kinds in Robotics

According to the International standard, conventions for a type of modeling are called

model kind. Example of models kinds that are common in robotics are state machines,

component-based software architectures, control diagrams, and probabilistic models.

State machines model the discrete behavior of a robot control system. It decides

what activities must be running in the system in concurrent ways, and based on

which events the system must switch its overall behavior to another set of concurrent

activities. The structure of these switches is modeled by the states being connected

through transitions. Structural hierarchy abstracts away how the system reacts to a

set of events [127].
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A Bayesian Network (BN) is a directed acyclic graph G = (V,E) with nodes rep-

resenting a set of RVs X1, X2, ..., X|V |, and edges denoting conditional dependence

relationships between random variables. In a nutshell, the structure of the BN en-

codes the assertion that each node is conditionally independent of its non-descendants,

given its parents [128]. BNs are widely used in robotics for localization, and for several

learning algorithms [129].

Knowledge networks such as the semantic web, and conceptual graphs are widely used

to enable sharing and reuse of knowledge by specifying the terms and relationships

among them [130]. In robotics, these kind of models are used to represent knowledge-

linked semantic object maps in order to provide a range of information for robots to

accomplish complex tasks [131]. In such models, nodes represent facts, data, etc.,

and edges represent relationships.

Control diagrams such as Cartesian position control and other data �ow models such

as Simulink [132] consists of node that represent certain functions and edges represents

their input/output relationships.

Component based software architectures are approaches used to compose software sys-

tems from o�-the-shelf and custom components [133]. In such models, nodes repre-

sent a piece of software with contractually speci�ed interfaces that implement robotic

functionality and the connector represents their interactions [7].

One can see that all the aforementioned models are some form of Hierarchical

Graphs with certain additional properties. This is an important realization since our

language proposed in the next section has a basic formalism on which the semantic

and other properties are added according to the concerned domain.

5.3 Architecture Modeling and Analysis Language

A well-de�ned architecture framework is a key component for architecture descrip-

tion. Architecture Modeling and Analysis Language (AMAL) together with speci�c

viewpoints and supporting tools forms the core of the operational space in SafeRobots

methodology.

A key outcome of IEEE 1471 - Recommended Practice for Architectural Descrip-

tion of Software-Intensive Systems, was the introduction of architecture viewpoints
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Figure 5-2: Metamodel of Architecture Modeling and Analysis Language (AMAL)

to codify best practices for the creation and use of architecture views within an archi-

tecture description. A viewpoint speci�es the architecture concerns to be dealt with,

the stakeholder addressed, and the languages, models, methods and techniques used

to create, interpret, and analyze any view resulting from applying that viewpoint.

A conceptual overview of di�erent constructs is shown in Figure 5-1. The approach

we have taken is to de�ne a set of basic primitives upon which to construct di�erent

domain models.

5.3.1 AMAL Core Elements

The structure of AMAL is de�ned using four core elements: Component, Port, Con-

nector, and Role. The semantics of the core elements are extended using properties

as detailed in the next section. Figure 5-2 shows relationships between AMAL ele-

ments using Ecore diagram. The AMAL metamodel provides minimal syntactic rules

using constraints, for example, a port cannot be connected to another port without

a connector. The description of each core element is as follows:
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Figure 5-3: Illustration of AMAL model instance with semantic information

1) Component: The component denotes the computation or a physical entity of the

architecture. Components can hierarchically compose other components. A compo-

nent can be atomic, representing an indivisible unit; or composite, representing a

collection of components or an entire system itself.

2) Port: A Port represents the interface of the component. An interface is the inter-

action point of the component with the external environment. They are the external

visible parts of the component that may facilitate data communication, monitoring,

and reasoning of the component composition. A port can also represent viewpoints

associated with the components. A detailed explanation of viewpoints is given in

Section 5.3.3.

3) Connector: A connector represents the interaction between the components and

are identi�ed as the building blocks of the architecture. Depending on the domain

semantics it can represent a data stream, event connections, state transitions, etc.

4) Role: A role represents the interface of the connectors similar to ports is for compo-

nents. For example, a remote procedure call (RPC) connector consists of two roles: a

callee and a caller role, an event broadcaster connector consists of one broadcaster role

and arbitrary number of receiver roles. When connectors connect two components,

roles are associated with compatible ports.

As a very simple example, Figure 5-3 depicts a system containing two nodes: talker
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Figure 5-4: Simple publish-subscribe system represented in AMAL

and listener, communicating using publish subscribe mechanism. For illustrative pur-

pose, each element of the system is showed as core_element: semantic_element

in the Figure 5-3. For example, In the domain that this system represents, a com-

ponent is a node, a connector represents a publish subscribe communication protocol

with associated roles taking the form of publish or subscribe accordingly. The ability

to re�ne the semantics of the core elements is facilitated by Property element in

AMAL.

5.3.2 Open Semantics Framework

Property associated with core elements of AMAL facilitates the annotation mecha-

nism for extending the semantics of the model elements. For example, it can contain

information on its semantic information, non-functional properties, the graphical rep-

resentation of the model element, etc. The contents of the property are not interpreted

by AMAL. It has to be de�ned by the domain models. A deployment domain may

use non-functional property associated with the component to dynamically allocate

resources.

Figure 5-4 shows the textual representation of the publish-subscribe system. For
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simplicity, only the semantic information is shown as associated property in the model.

The attributes of the Property element are shown using the syntax - Property name:

type = value. For convenience, we represent the property as {name, type, value}

in the text. It is to be noted that the textual form of the model is shown only for

illustrative purpose. The model creation and manipulation is accomplished using the

tools associated with speci�c viewpoints. However, it is important for the viewpoint

or tool developer to understand how it will be captured in the model. For exam-

ple, if the user click on a tool to create a node in the system, the tool will create a

component with associated property as {Node,semantic_element,}. Furthermore,

a property can represent complex properties by composing more properties and can

refer to other properties according to the AMAL metamodel. This mechanism along

with viewpoints and tools provides the framework with di�erent viewpoints, cus-

tomized tools and rich visualizations. The following two sections discuss the concept

of viewpoints and views, and constraint speci�cation.

5.3.3 Viewpoints and Views

A Viewpoint of a system is a work product establishing the conventions for the con-

struction, interpretation and use of architecture views to frame speci�c system con-

cerns. The concept of view and viewpoints is central to the International Standard. A

viewpoint is a way of looking at systems; a view is the result of applying a viewpoint

to a particular system of interest. In other words, a view is a description of the system

relative to a set of concerns from a certain viewpoint. Similar to the use of modules

and packages to manage the complexity of system, we employ viewpoints to man-

age the complexity of framework. Furthermore, the views can be seen as constructs

for the management of architecture. The relationship between the aforementioned

notions can be seen as follows:

viewpoints : framework :: views : architecture :: packages : system

AMAL does not enforce any particular views or viewpoints, but provides facili-

ties for specifying viewpoints and further to create tooling support for view creation,

interpretation, modi�cation, etc. AMAL strongly encourages the practice of de�ning
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and selecting viewpoints according to the stakeholder's concerns and treating view-

points as �rst-class elements of architecture. In the framework modeled using AMAL,

each view is governed by exactly one viewpoint. Each view conforms to one set of

conventions, but can be possibly using multiple model kinds. However, for speci�c

purposes, viewpoints can be combined in any manner.

There are two di�erent approaches for creating views: constructive and projective

approaches. In the constructive approach, views of the system based on model kinds

are created individually. These views are then synthesized to an overall model. Model

correspondences are performed for integrating views from multiple model kinds. In

the projective approach, the views are derived from the overall model. AMAL strongly

recommends the projective approach. This is to avoid the problem of view integration

and view consistency. Since the semantics of AMAL is open, new model kinds can

be extended from the meta-model and hence projective approach is a more conve-

nient approach. Currently, constructive approach has not been applied using AMAL

formalism and is not further discussed in this thesis.

Motivated from the bene�ts of Separations of Concerns (SoC) in addressing the

inherent complexity in large software intensive systems, multiple views are being used

in software architecture. However, they introduce the problem of view integration and

model consistency. The notion of multiple views appeared in one of the earliest work

titled "Foundations for the study of software architecture" by Perry and Wolf [134].

Although the concept of view is not de�ned during that time, it states that:

Three important views in software architecture are those of processing,

data, and connections ... all three views are necessary and useful at the

architectural level.

Most of the views are not independent or fully orthogonal. Elements of one view

are connected to elements in another view, following certain rules and heuristics. A

general technique called model correspondences introduced by ISO 42010, is used for

expressing relations between views. Model Correspondence rules are constraints on

two or more architecture models, which is enforced on a model correspondence.
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5.3.4 Constraint Speci�cation

The model instance that conforms to AMAL metamodel is not re�ned enough to

provide all the relevant aspects of a speci�cation. The AMAL metamodel itself is

developed as an Ecore model which is typically not re�ned enough to provide all the

relevant aspects of a speci�cation. There is, among other things, a need to describe

additional constraints about the objects in the model. Such constraints cannot be

described in natural language as they will always result in ambiguities. In order to

write unambiguous constraints, formal languages called Object Constraints Language

(OCL) is used [135].

OCL is a formal language that has been developed as a business modeling language

within the IBM Insurance division, and has its roots in the Syntropy method. OCL

is a pure speci�cation language; therefore, an OCL expression is guaranteed to be

without side e�ect. When an OCL expression is evaluated, it simply returns a value.

It cannot change anything in the model. This means that the state of the system will

never change because of the evaluation of an OCL expression, even though an OCL

expression can be used to specify a state change (e.g., in a post-condition).

OCL can be used for a number of di�erent purposes. In our context, we use it to

to specify invariants on model elements in AMAL metamodel and for to describe pre-

and post conditions on Operations and Methods. An OCL expression is an invariant

of the type and must be true for all instances of that type at any time. For example,

if in the context of the Connector element in AMAL model, the following expression

would specify an invariant that the number of roles must always be more than 2:

context Connector inv:

self.roles > 1

5.3.5 Framework Speci�cation Templates

This section provide templates for documenting framework speci�cation, viewpoints,

and views. The template consists of a set of slots or information items followed by a

brief description of its intended content, guidance for developing that content, and in

some cases appropriate examples are given. Not every slot is needed for specifying the
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framework. These templates are designed in such a way as to claim the conformance

with the provisions of the International Standard ISO/IEC/IEEE 42010:2011(E).

Framework Template

Framework name: The name of the framework or phrase for identi�cation.

Viewpoint overview: An abstract or brief overview of the framework and its

key features.

AMAL Formalism: The de�nition of the framework in AMAL formalism,

which is detailed in Section 5.3.6

System stakeholders: A listing of system stakeholders expected to be users

of this framework

Concerns: A listing of the architecture-related concerns that are required for

this framework.

Viewpoints: A listing of viewpoints available for the users.

Examples: This section provides examples for the framework developer.

Notes: Any additional information that users of this views might need or �nd

helpful.

Sources: Identify the sources for this views, if any, including author, history,

literature reference, etc.

Viewpoint Template

Viewpoint name: The name of the viewpoint or phrase for identi�cation.

Viewpoint overview: An abstract or brief overview of the viewpoint and its

key features.

Concerns: A listing of architecture related concerns framed by this viewpoint.

This is a critical information as it decides whether the viewpoint is valid or not

at the current abstraction level. At the tool level, when the user selects a model

element, the current list of valid viewpoints are visible to the user. This usually

takes the form of preconditions in viewpoint designing tool. In our framework

Acceleo Query Language (AQL) is used for de�ning the precondition. AQL is
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Figure 5-5: Screenshot of the model creating methods implementing in Sirius. The
�gure shows a component creating on the left and a connection creation method on
the right. Note that roles are also created while a connector is created.

a language used to navigate and query EMF models. An example precondition

for a viewpoint that shall be valid for a model element that represents a state

machine is shown below:

[self.property->select(myprop | myprop.type =

'semantic_element')->first().name='statemachine'/]

The given AQL query checks whether the property associated with the se-

lected model element is {statemachine,semantic_element,}

Typical Stakeholders: A listing of the system stakeholders expected to be users

or audiences for views prepared using this viewpoint.

Views: The identifying name or phrase of the view governed by this viewpoint.

Examples: This section provides examples for the framework developer.

Notes: Any additional information that users of this viewpoint might need or

�nd helpful.

Sources: Identify the sources for this viewpoint, if any, including author, his-

tory, literature reference, etc.
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View Template

View name: The name of the viewpoint or phrase for identi�cation.

View overview: An abstract or brief overview of the viewpoint and its key

features.

Model Kinds: Each model kind speci�ed by this view is identi�ed in this section.

For each model kind used, describe the convention to structure the properties

associated with AMAL core elements. Key modeling resources that the view

makes available including how the model elements are visually rendered by the

view and determine the vocabularies for constructing the view. These includes the

tools for operations such model creation, deletion, making connections, editing

properties, etc.

For example, for specifying the source and target of a connector are specifying

as below in AQL:

domain class: amal.connector

source finder expression:

[self.eGet('role')->first().eInverse()/]

target finder expression:

[self.eGet('role')->last().eInverse()/]

For better understanding, model kinds can also be presenting in the form of

metamodels specifying the structure and vocabulary.

A model kind may be documented in a number of ways such as:

1. by specifying a metamodel that de�nes its core elements and their relation-

ships.

2. by providing a pseudo code that conforms to AMAL metamodel by speci-

fying the associated properties.

3. via a language de�nition or by reference to existing modeling language.

4. or by combination of these methods.

86



Operation on views: Operations de�ne the methods to be applied to views or

to their models. Operations can be divided into categories:

• Creation methods: These are the means by which the model elements rep-

resented by this view are created. This is usually in the form of process

guidance and are speci�c to the tool used for creating viewpoint. Since we

adopt Sirius tool, the operations are implemented using the user interface

provided by the tool.

• Interpretive methods: These are the means by which view are to be under-

stood by the system stakeholders.

• Analysis methods: These are used to check, reason and transform, predict,

apply and evaluate results from this view.

• Design methods: These are used to realize or construct systems using infor-

mation from this view.

Examples: This section provides examples for the framework developer.

Notes: Any additional information that users of this views might need or �nd

helpful.

Sources: Identify the sources for this views, if any, including author, history,

literature reference, etc.

5.3.6 AMAL Speci�cation Formalism

We adopt a formalism to specify the framework. The formalism de�nes the partici-

pating domain models, viewpoints, views, and their relationships.

De�nition 1: An architectural framework X, that conforms to AMAL formalism is

a tuple 〈MX , DM, IM, RAMAL
X ,RDM

AMAL,RIM
AMAL〉, where

• MX is the model de�ned in framework X.

• DM is the domain model where the framework X has conceptual relationships.

• IM is the implementation model that framework X supports.
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Figure 5-6: AMAL Model Relationships

• RAMAL
X is a relation that associates AMAL model elements to the framework X.

• RDM
AMAL is a relation that associates model elements from DM to AMAL model

elements.

• RIM
AMAL is a relation that associates model elements from implementation model

IM to AMAL model elements.

Robotics domain is heterogeneous with domains ranging from conceptual domain

such as perception, planning, control, decision making; computational domain con-

sisting of discrete, continuous; software domain consisting of communication middle-

wares, operating systems, etc. Hence, the meta-framework architecture should be

extensible in order to incorporate di�erent domain models. The composed domain

models should be semantically compatible. For example, assume a model incorpo-

rates concepts from two domains a and b. In domain a, the modeling element con-

nector represents a computation process, and in domain b, the connector represents

an instantaneous transition between two states. These two domains are semanti-

cally incompatible unless the con�ict between them is resolved, say by assigning the

computational process to component.

In Figure 5-6, model relationships among multiple domain models and implemen-

tation models, in AMAL formalism are shown.

De�nition 2: The viewpoints Vn, of an architectural framework X is a set of tuple〈
MV1 ,MV2 ,RV1

V2
,RV2

V1

〉
, where

• MV1 is the model de�ned in viewpoint V1.

• MV2 is the model de�ned in viewpoint V2.
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Figure 5-7: A prototype model of vehicle tracking system designed using the TrackX
framework. Structural view (left) and Coordination view (right) of the system is
shown

• RV1
V2

is a relation that associates model elements from V1 to V2.

• RV2
V1

is a relation that associates model elements from V2 to V1.

Architectures are speci�ed as a collection of viewpoints and their relationships

among them. A viewpoint isolates independently solvable aspect of a system in order

to manage complexity. For example, a deployment view of the system addresses only

the concerns related to initiating the execution of components in a particular order.

The relation between the viewpoints is an important requirement for an analyzable

architecture. The relationships are loosely coupled (uni-directional) or tightly coupled

(bi-directional). For example, a coordination view that models `when components

should communicate' should be aware of the con�guration view that models `who

communicates with whom' of a system, while con�guration view need not know about

the coordination model.

5.4 Case Study on an Example Framework

In this section, we describe how a hypothetical framework (say `TrackX') can be

designed using our meta-framework. TrackX is a framework for designing software

system for tracking vehicles using lidar. It uses concepts and algorithms from per-

ception and object tracking domain. We have selected only minimal concepts from

these domains for the simplicity of explanation. The framework shall support model-

89



Figure 5-8: An illustration of the proposed framework topology

ing a system using two complementary views: structural viewpoint and coordination

viewpoint. The structural view models the interconnection of various computational

algorithms and its communication aspects, and the coordination view models the co-

ordination of these computations using state transition formalism. TrackX supports

ROS based implementation and can be simulated using Gazebo simulator.

An example model of system in the TrackX framework is shown in Figure 5-7. A

high-level structural model and its coordination model of a vehicle tracking system

modeled in TrackX framework. The structural model consists of four components:

Lidar, Frame grabber, Vehicle tracker, and a Vehicle state subscriber. The compo-

nent denotes a computational process and can be hierarchically composed, i.e., vehicle

tracker component can be expanded to represent the system a lower abstraction level

with more detailed view of algorithms involved. The connector represents the com-

munication pattern (using connector label) between the connected components. The

coordination view models the system behavior using states and transitions. The states

represents the activation/deactivation of computational processes in structural view

and transition coordinate the state changes. In order to concentrate on the overall el-

ements of framework speci�cation in the operational space, in this case study, details

regarding the formal semantics of state transition model and activation/deactivation

of computational processes in the states will not be further discussed. Furthermore,

code generation techniques and AMAL to implementation model transformation de-

tails are discussed in Part 3 of this thesis.
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Figure 5-9: Framework model of a TrackX framework

5.4.1 TrackX - Framework speci�cation

Framework name: TrackX

Framework overview: TrackX is a framework for designing software system for

tracking vehicles using lidar. An illustration of di�erent viewpoints and associated

views are shown in Figure 5-8. TrackX requires knowledge from three conceptual

domains and two implementation domains. The conceptual domains are Perception,

Communication, and State Machine Formalism, and implementation domains are

ROS middleware and Gazebo simulator.

Viewpoints: structural, coordination.

AMAL Formalism: The TrackX framework in AMAL formalism is de�ned as:

With reference to the domain models, the framework can be de�ned as:

TrackXAMAL ⇒ 〈MTrackX , PM,CM,RM,GM,RTrackX
AMAL ,RPM

AMAL,RCM
AMAL,

RRM
AMAL,RGM

AMAL,RCM
PM 〉.

With reference to the required viewpoints, the framework can be de�ned as:

TrackXAMAL ⇒ 〈MSV ,MCV ,RAMAL
SV ,RAMAL

CV ,RSV
CV 〉.

A pictorial representation of the relationship between di�erent domains in shown

in Figure 7-10. Each element is explained as follows:

MSV denotes the model in the structural view (SV) of the system.

MCV : denotes the model in the coordination view (CV) of the system.

Di�erent domain models and their relationships are described below:
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Perception Model (PM): Perception model captures the conceptual knowledge of

the perception domain. It contains abstract knowledge (solution space) regarding

various computational algorithms, its dependencies, etc. The domain model speci�ed

in SSML contains meta-data on algorithms, their execution sequence, non-functional

properties, expected quality of service, their constraints, etc.

Communication Model (CM): Communication models capture the knowledge re-

garding several patterns that cover the communication requirements for component

interactions. In this example, we use the communication patterns proposed by the

authors of [15]. It consists of a minimal set of communication patterns required by

robotic software component interaction: send, query, push_newest, push_timed, and

event. It supports communications such as synchronous, asynchronous, publish/sub-

scribe, client/server, and dynamic wiring.

ROS Model (RM) and Gazebo Model (GM) represent the implementation

model of ROS middleware and Gazebo simulator respectively. The model of ROS is

captured as metamodels. It contains meta-information regarding supported commu-

nication pattern, deployment, etc.

RCM
AMAL represents the relation between communication model and the elements in the

AMAL model. Figure 5-10 shows the mapping between CM model elements to model

element: Connector in the structural view. Intuitively, the communication patterns

are mapped to connectors in SV. It also details the the number of roles that each

connector is associated with, depending on the patterns, for example, a connector

that represent push_timed can have 1 publisher role and `n' number of subscriber

role.

RPM
AMAL represents the relation between perception model and the structural view in

AMAL formalism. Figure 5-10 shows the mapping between PM model elements to

model elements in structural view. Since the PM is modeled by SSML language,

the mapping is between abstract elements of SSML with that of AMAL. In SSML,

the connector represents the computation process, Dispatch_Gate represent the in-

terconnection between computations, Ports represent abstract data types and NFP

represent the non-functional property of the algorithm. The relation table maps

ConnectorSSML to ComponentSV , Dispatch_GateSSML to ConnectorSV .

RCM
PM represents the relation between communication domain and perception domain
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model. It captures the semantic compatibility between the domain and con�icts (if

any) in the relationship. For example, the previous two relation model maps com-

munication pattern in CM and Dispatch_Gate in PM to the same model element

Connector in SV. The relation RCM
PM speci�es that these two concepts are seman-

tically compatible since Dispatch_Gate and communication pattern represent the

interaction between computations in their respective domains.

RCV
AMAL represents the relation between state machine formalism in the coordination

view and the model elements in AMAL formalism. Figure 5-10 shows the mapping

between SM model elements to model elements in coordination view. States are

mapped to component and transitions to connectors in relationship model. It is to

be noted that components in the structural view and coordination view need not be

semantically compatible since it resides in two di�erent views.

RCV
SV represents the relation from coordination view to structural view. A component

(state) in CV is mapped to arbitrary number components in the SV. It means that a

state in�uence (activate/deactivate) one or more components in structural view. In

addition, the relationship is unidirectional from CV to SV denoting loose coupling

between the two views. It is recommended and in fact comparatively easy to provide

only a unidirectional mapping because the structural model can express di�erent

behavior depending on the coordination model.

RRM
AMAL represent the relation from ROS middleware implementation model to AMAL

formalism. For convenience, we map the model elements from structural view model

elements in AMAL to ROS since coordination view do not in�uence the ROS node

interconnection structure directly. RGM
AMAL and RRM

GM are not shown explicitly as

Gazebo internally depends on ROS middleware and hence have the similar relation

as RRM
AMAL. RAMAL

TrackX captures the relations that are not explicitly captured by other

model relationships. In this case, all the relations have been implicitly captured by

the model relationships.

5.4.2 Structural viewpoint speci�cation

Viewpoint name: Structural viewpoint

Viewpoint overview: The structural view models the interconnection of var-
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Figure 5-10: Model relations between Communication Domain Model (CM), Percep-
tion Domain Model (PM), ROS Model (RM), and AMAL core elements

ious computational algorithms and its communication aspects. The component

denotes a computational process and can be hierarchically composed, i.e., a high-

level component can be expanded to represent the system a lower abstraction

level with more detailed view of algorithms involved. The connector represents

the communication pattern (using connector label) between the connected com-

ponents.

Concerns: Component-based system architecture.

Views: Component-Port-Connector view

5.4.3 Coordination viewpoint speci�cation

Viewpoint name: Coordination viewpoint

Viewpoint overview: The coordination view models the coordination of these

computations using state transition formalism. It captures the system behavior

using states and transitions. The states represents the activation/deactivation of
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computational processes in structural view and transition coordinate the state

changes.

Concerns: System Behavior

Views: State-transition view

Examples: Figure 5-11 shows an example view of the model.

5.4.4 Component-Port-Connector view speci�cation

View name: Component-Connector view

View overview: The structure of the system is modeled as nodes and their

interconnections using edges.

Model Kinds: Node Graph

Operation on views:

• Creation methods: The tools for creating models shall be provided in tools

palette. The model element creation of nodes and connectors will be pro-

vided. The model deletion operation shall be implemented as key bindings.

• Design methods: The view shall allow the creation of sub nodes and hence

the tool shall disable the capability to create composite nodes.

5.4.5 State transition view speci�cation

View name: State-transition view

View overview: The behavior of the system is modeled using state machine

formalism.

Model Kinds: State Machine

Operation on views:

• Creation methods: The tools for creating models shall be provided in tools

palette. The model element creation of states and transitions will be pro-

vided. The model deletion operation shall be implemented as key bindings.
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Figure 5-11: Visualization of state transition view and its corresponding AMAL model

• Design methods: The view does not allow to create substates and hence the

tool shall disable the capability to create hierarchical states.

Examples: An example of the state transition view and the corresponding model

is shown in Figure 5-11.

5.5 Related Works

Architecture Description Languages

ADLs developed in terms of the international standard include Rapide [136], Wright

[137], SysML [138], and ArchiMate [139]. Our approach of providing common syn-

tax with semantic content, whose semantic enrichment is provided specialized sub-

domain speci�c language is conceptually related to that of ACME [140]. ACME is an

interchange language for software architecture that provides structural core that rep-

resents commonalities between various Architectural Description Languages (ADL)

[141]. ACME uses annotations to add semantic information by sub-languages. How-

ever, the objective is to serve as a common representation for software architectures

and that permits the integration of diverse collection of independently developed ar-

chitecture analysis tools. The Architecture Analysis and Design Language (AADL)

is a modeling language standardized by Society of Automotive Engineers (SAE) to

specify and analyze software architectures for complex real-time embedded systems.
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Views and Viewpoints

There are number of existing approaches utilizing viewpoints and views in software

systems architecture. The earliest work on viewpoints appeard in Ross' Structured

Analysis in 1977 [142]. Many �rst generation software engineering techniques used

functional and data viewpoints. Nuseibeh, Kramer and Finkelstein treated viewpoints

as �rst class entities, with associated attributes and operations [143]. Clements et al.

introduced the term viewtype for categorization of viewpoints [144]. Three categories

of viewpoints are described in their work: module, component, and connector, and

allocation viewtypes. Kruchten's 4+1 view model takes four views as its starting point

[145]. The integration of these viewpoints is accomplished through a �fth viewpoint

which is a set of scenarios used to validate the other view and their interactions. The

authors of [146] investigated the composition of heterogeneous styles in architectures.

They characterized a style (which is actually a view in our terminology) as a collection

of constraints on the structure, behavior, and resource usage of the components and

connectors in a software system.

Architecture Meta-Frameworks

The authors of [147] introduced Meta Architecture Description Language (MADL)

to de�ne, comment, document, compare architectures, in particular semiformal ar-

chitectures. Their main proposal is for unifying ADLs in the context of software

architectures and to provide re�exivity in architecture metamodeling. However our

work is at the framework level and we introduced common primitive elements with

semantic extensibility to manage complexity of multiple viewpoints and views. Rich

Hilliard introduced decorative stance as an alternative to constructive views in frame-

works. Our work is more similar to this approach. The approach is to decorate a

primary representation with attributes pertaining to other concerns, rather than sep-

arate concerns. This is to address multiple-view problem in architectures, that lead

di�erent speci�cation describe di�erent, but overlapping issues. In another work,

behavioral semantics are integrated in structural formalism [148]. Our method does

not enforce any such speci�c views and it entirely depends on the framework devel-

oper. The Practical Architecture Method prescribes no particular view; instead the

determination of useful views is part of the architect's work and is driven by concerns

related to the speci�c system [149].
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5.6 Conclusion

Making architecture meta-framework a point of conformance opens new possibilities

for interoperability and knowledge sharing in the architecture and framework commu-

nities. We tried to make a �rst step in this direction by proposing common model and

provided a systematic approach that helps in specifying di�erent aspects and their

interplay in a framework. The multi-domain architecture modeling helps to build

integrated intelligent robotic systems. We have presented an architecture description

language Architecture Modeling and Analysis Language to model system architec-

tures based on heterogeneous architectural paradigms. The semantic extensibility

feature of AMAL helps to re�ne the semantic knowledge, and to specify inter-domain

relationships. It provided a homogeneous development environment irrespective of

framework or middleware and thus promoting faster adoption among software devel-

opers and system engineers.

5.7 My Contributions

The contributions of my thesis brought in this chapter are:

1. Formalized the robotic framework design and development process in order to

build custom frameworks and integrate existing best practices in architecture

development.

2. A meta-framework language, AMAL is proposed that provides a minimal set

modeling elements.

3. The Open Semantic Framework helps to modify and extend the semantics to

incorporate di�erent domain concepts and to capture the relationships and iden-

tify the con�icting domain semantics.

4. The model relationships enables integration of various domains in the framework

and support building complex robotic systems.

5. Our approach of framework speci�cation and development is suitable to compare

various architectures. Describing various architecture with the same formalism

facilitates their comparison and analysis.

98



6. Our approach of having minimal primitive elements with associated properties

promotes reuse of software

- reuse of model to model transformation code: Our framework is de�ned as a

collection of viewpoints and views, and the relationship between the domain

models. New frameworks can be created with di�erent set of domain models

and mixing it in di�erent fashions. Since all the domain models use the same

set of primitive elements, the model to model transformation code can be

easily reused in the new framework.

- reuse of code generation templates : The models needs to be transformed to

executable code at some point of time in the development process. Such model

to text transformation templates can be reused across frameworks.

- reuse of graphical editors : The tools required for model parsing and visual-

ization can be reused. The views are generated by applying viewpoints to

the model. The associated tools for model creation and manipulation can be

easily reused. For example, in the new framework, if there is a viewpoint to

model state machine, this can be reused from another framework if it uses the

same model kind.

- reuse of infrastructure: The usefulness of the framework is considerably in-

creased if it provides facilities for logging, messaging, tracing, debugging, etc.

Such supporting tools can be easily imported and reused in our approach.

7. The potential bene�t of having a common base for the models is developing

application and platform neutral meta-architecture. It promotes reuse in sys-

tem modeling in robotics and in the development of reusable tools and generic

algorithms.

8. Irrespective of the framework, the look and feel of the graphical interfaces will

be the same. The tools provided with the frameworks provides homogeneous

user interfaces and thus promoting faster adoption among users.
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Chapter 6

Framework Implementation

Give us the tools and we will �nish

the job

Winston Churchill

6.1 Introduction

In a model driven approach, the vision is that models become artifacts to be main-

tained along with the code. This will only happen if the bene�t obtained from pro-

ducing the models is considerably higher and the e�ort required to keep them in line

with the code is considerably lower than the current practice. Models are valuable as

tools for abstraction, for summarizing, and for providing alternative perspectives. The

value is greatly enhanced if models become tangible artifacts that can be simulated,

transformed, checked etc., and if the burden of keeping them in step with each other

and the delivered system is considerably reduced. Tooling is essential to maximize

the bene�ts of having models, and to minimize the e�ort required to maintain them.

Speci�cally, more sophisticated tools are required than those in common use today,

which are in many cases just model editors. In this chapter, we detail the di�erent

tools used and the stages involved in implementing the framework by the developer

of the tool. Section 6.2 provides a brief overview on Eclipse Modeling Framework

and discusses about selected tools supporting the framework development. Di�erent

stages in our framework implementation process are detailed in Section 6.3.
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Figure 6-1: Eclipse modeling framework and supporting tools

6.2 Eclipse Modeling Framework

Eclipse is an open source software project dedicated to providing a robust, full-

featured, and commercial-quality platform for developing and supporting highly in-

tegrated software engineering tools [150]. The Eclipse platform de�nes a set of

frameworks and common services that collectively make up the "integrationware"

required to support a comprehensive tool integration platform. Except the small

Eclipse runtime kernel, all the platform components are plug-in tools integrated seam-

lessly through prede�ned extension points [151]. Fundamentally, Eclipse is a frame-

work for plug-ins. Beside its runtime kernel, the platform consists of the workbench,

workspace, help, and team components. Other tools plug into this basic framework to

create a usable application. Plug-ins can also de�ne new extension points for others

to extend. For example, a group of plugins implements the workbench user interface.

The Eclipse Modeling Framework (EMF) is a modeling framework and code gen-

eration facility for building tools and other applications based on a structured data

model. From a model speci�cation point of view as described in XML Metadata
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Interchange (XMI), EMF provides tools and runtime support to produce a set of

Java classes for the model, along with a set of adapter classes that enable viewing

and command-based editing of the model, and a basic editor [152]. Associated with

EMF, there is an ecosystem of plugins that assist the developer during di�erent phases

of model based tool development as illustrated in Figure 6-1. A brief overview on the

selected tools is given below. Detailed discussion on each tool is provided in Appendix

A for reference.

Ecore Tools for Metamodeling

Ecore Tools plugin provides a complete environment to create, edit, and maintain

Ecore models. This component facilitates handling of Ecore models with a Graphical

Ecore Editor and bridges to other existing Ecore tools. It is a powerful tool for

designing Model-Driven Architecture (MDA), which can be used as a starting point

for software development. Typically, the process is to de�ne the objects (of type

EClass) in the domain of application, their attributes, and their relationships. In

addition, speci�c operations that belong to these objects are also de�ned using the

EOperation model element. By default, EMF will generate skeletons, or method

signatures which can modi�ed according to our use.

Sirius for designing graphical workbench

Sirius allows to create custom graphical modeling workbenches by leveraging the

Eclipse Modeling technologies, including EMF and Graphical Modeling Framework

(GMF) [153][154]. The modeling workbench created is composed of a set of Eclipse

editors (diagrams, tables and trees) which allow the users to create, edit and visualize

EMF models. All graphical characteristics and behaviors can be con�gured with a

minimum technical knowledge. This description is dynamically interpreted to mate-

rialize the workbench within the Eclipse. Since no code generation is involved, the

speci�er of the workbench can have instant feedback while adapting the description.

Once completed, the modeling workbench can be deployed as a standard Eclipse plu-

gin. In our reference implementation, Sirius is used for developing graphical user

interfaces and viewpoint development.

Epsilon for Model transformation and Code Generation

Epsilon provides consistent and interoperable languages for common model-driven

engineering activities such as code generation, model validation and model transfor-
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mation [155]. All languages in Epsilon build on top of a common expression language

that promotes code across your model-to-model transformations, code generators,

validation constraints etc .

6.3 Framework Implementation Process

In this section, we detail di�erent stages in which the framework developer can specify,

implement, and deploy the framework tool.

Stage 1: The �rst step is to specify the framework using the templates and formalism

proposed in Chapter 5. This process identi�es the domains involved, required view-

points in the framework, target platform and middleware, etc. The domain models

and their relationships are formally speci�ed using our AMAL based approach. Based

on the artifacts generated in this stage, the developer creates appropriate Eclipse plu-

gins to implement the framework.

Stage 2: In this stage, the developer implements the framework speci�cation. As dis-

cussed in the previous section, Eclipse Modeling Framework is used for implementing

the framework.

Stage 2.1: The developer creates meta models of identi�ed domain models involved

in the framework. This can be performed in two ways:

1. By creating an Ecore metamodel and mapping its elements with the respective

elements in AMAL metamodel. For this procedure, the developer develops

the metamodel based on Ecore and generates necessary java templates using

the tools by EMF. The developer then develops Model transformation tool to

transform the model to our AMAL compatible model. However, we recommend

the second procedure, as it eliminates the need to create a model transformation

tool.

2. By using the facility provided by Sirius to create model elements directly based

on AMAL metamodel. For when the user create a component that repre-

sents a state machine, the property of the component will be having name

as semantic_element and value as state_machine as shown below.

Property state_machine : semantic_element
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Sirius supports dynamic changes of tool designs even while the development is

in progress and the developer can take advantage of this feature to develop tools

much faster.

Stage 2.2: The developer provides necessary constraints on the model elements.

There are three options available to perform validation on the constraints:

1. Object Constraints Language (OCL): Although many approaches have

been proposed to enable automated model validation, the OCL is the de facto

standard for capturing constraints in modeling languages speci�ed using object-

oriented meta modeling technologies. While its powerful syntax enables users to

specify meaningful and concise constraints, its purely declarative and side-e�ect

free nature introduces a number of limitations in the context of a contemporary

model management environment. In OCL, structural constraints are captured

in the form of invariants. Each invariant is de�ned in the context of a meta-

class of the metamodel and speci�es a name and a body. The body is an

OCL expression that must evaluate to a Boolean result, indicating whether an

instance of the meta-class satis�es the invariant or not. Execution-wise, the

body of each invariant is evaluated for each instance of the meta-class and

the results are stored in a set of <Element, Invariant, Boolean> triplets. Each

triplet captures the Boolean result of the evaluation of an Invariant on a quali�ed

Element [135].

2. Sirius Validation Mechanism: Sirius allows to de�ne custom validation

rules, which will only be applied while the user creates the model in the graph-

ical modeler. To de�ne validation rules the developer �rst create a Validation

element inside the diagram, and then add one or more Semantic Validation Rule

or View Validation Rule. Both kinds of rules are similar, but semantic rules

check the structure of the underlying semantic model, which view validation

rules can check the structure of the representation itself. When a rule is vio-

lated, a marker will appear on the diagram on the problematic elements and in

the Problems view [156].

3. Epsilon Validation Language (EVL): EVL can be used to specify and eval-

uate constraints on models of arbitrary metamodels and modelling technologies.
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EVL constraints are quite similar to OCL constraints. However, EVL also sup-

ports dependencies between constraints (e.g. if constraint A fails, don't evaluate

constraint B), customizable error messages to be displayed to the user and spec-

i�cation of �xes, which users can invoke to repair inconsistencies. Also, as EVL

builds on Epsilon Object Language, it can evaluate inter-model constraints (un-

like OCL)[155].

In our case, we suggest to use any of the aforementioned methods to specify con-

straints depending on usecase. We primarily used Sirius validation mechanism

as it is easy to use without any external dependencies. In some cases, OCL is

also used for specifying the constraints speci�cally while creating a standalone

metamodel. EVL is mainly used for validation during model transformation

process.

Stage 2.3: Implementing the graphical modeling workbench is the process that

consumes most of the time according to our experience. Initially, we used Graphiti

[157] for creating the graphical user interfaces. Later, we switched to Sirius that

have inbuilt support for implementing the viewpoints, di�erent graphical options,

and validation mechanisms.

Stage 3: Eclipse is an open platform and it is designed to be easily and in�nitely

extensible by third parties. At the core is the Eclipse SDK, various products/tools

around this SDK. A plugin is a small unit of Eclipse Platform that can be developed

separately. It must be noted that all of the functionalities of Eclipse are located in

di�erent plugins. The resulting framework that we implemented is a set of plugins

as shown in Figure 6-2. In order to promote reusability, the developer should to

make it more modular in the form of several plugins. For example, if the framework

has a structural viewpoint and behavioral viewpoint, these will be implemented as

two separate plugins. The speci�c viewpoint will be available to the user only if the

corresponding plugin is installed. This also helps in mix and match of frameworks

according to the user's need. The plugins can also be provided in the form of a

repository, from where the user selects and installs according to the requirement.

The only constraint is that necessary relationship and model transformations should

be accordingly available in the tool.
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Figure 6-2: Structure of the framework with appropriate plugins

6.4 Conclusion and Contributions

In this chapter, an overview on the Eclipse Modeling Framework and several support-

ing tools were provided. Available tools and technologies in di�erent stages of frame-

work development are also discussed. Several macro and micro processes are required

for systematic engineering of di�erent models. Macro process outlines the order in

which models are developed, transformed, and coordinated. Micro process is mostly

concerned with producing a particular model. We have detailed these processes based

on our reference implementation and suggestions based on our experiences. We have

carefully avoided certain tools in the process which requires high level of knowledge in

the domain of Java object oriented language, EMF, and Eclipse plug-in development.

Our recommended tools simpli�es the product, reduces design time and rapidly in-

creases the overall productivity of building the framework. However, it is to be noted

that our methodology does not enforce any particular formal process in developing

the model. This can be considered as one of our future works.

108



Chapter 7

Extended Applications

7.1 Introduction

Framework design and tools development that support the framework are expensive in

terms of development time and expertise. Therefore, frameworks should be developed

only when many applications are going to be developed within a speci�c problem

domain, allowing to save time by reusing the tools and to recoup the time invested

to develop them. The purpose of this chapter to provide some insights on framework

development using example applications in which our methodology is applied. The

chapter is organized as follows: In Section 7.2 we discuss some of the existing methods

for framework development. Section 7.3 and 7.4 discusses two case studies in which

speci�c processes from our methodology are detailed.

7.2 Existing Framework Development Methods

Framework Development based on Generalization

When a framework and support tools are designed, the main concern is to recognize

things that should be kept �exible. These are called the hot spots of the framework

[158]. In order to identify variant parts, some of the following questions should be

answered [159]:

1. Which concepts of the problem domain exist in variants and should be treated

uniformly?
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2. Is it possible to �nd a concrete concept that can be generalized?

3. Which parts of the system might change?

4. Where might a user want to hook custom code into the framework? and How?

The author of [160] suggests a two-phase design method to build an initial version

of a framework; the �rst phase is called problem generalization and the second phase

is called framework design. Problem generalization starts from the speci�cation of a

representative application of the intended framework, and generalizes it in a sequence

of steps into the most general form. During the second phase the generalization levels

of the previous phase are considered in reverse order leading to an implementation

for each level. One of the limitations of this method is that essential tasks to prob-

lem generalization or framework design are not de�ned concretely. Also, concrete

guidelines to identify hot spots are not described in this method.

Framework Development based on Application Experiences

This method is a pragmatic framework development approach [161]. The �rst step

is to develop some candidate applications in the problem domain. Then, the next

step is to identify the common features in these applications and extract these into a

framework. To evaluate whether the extracted features are the right ones, redevelop

the these applications based on the framework. The advantage of this method is that

the framework development is easy, because we extract commonalities from pre-built

applications through previously building applications. Whereas it requires much of

time to build framework in the case of complex or large domain, and it is di�cult to

evaluate whether extracted commonalities are the right ones.

Framework Development based on Domain Analysis

The �rst activity is to analyze the problem domain so as to identify and understand

well-known abstractions in the domain [161]. This is similar to the one discussed for

lane keep assistance example in Chapter 5. Analyzing the domain requires analyzing

existing applications and the analysis of existing applications will also take a large

portion of the budget. After the abstractions have been identi�ed, the next step is to

develop the framework together with a test application and modify the framework if

necessary. Subsequently, a second application based on the framework is developed.

Then, through domain analysis, commonalities are identi�ed. In this direction, we
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Figure 7-1: Illustration of features discussed in the respective case studies

can extract well-de�ned abstract concepts, whereas this method requires much of time

and budget because of domain analysis.

In this chapter, we present two applications in which our methodology and frame-

work development process are explained. We have adopted a mix of the above three

approaches for framework development in our case study. We start with problem

analysis based on the case study where the required domains are identi�ed, and then

we try to generalize using past experiences in framework speci�cation to �nally to

develop the tool. Speci�cally, our two case studies addresses the following aspects:

• Our �rst case study provides an overall process of framework development from

requirement speci�cation to code generation. Requirement modeling in problem

space is provided as an example in this case study. For experimental purpose,

an example transformation process from solution model to a basic architecture

model in operational space is also provided.

• Second case study focuses on how frameworks based on cognitive architecture

can be speci�ed using our approach. We show how non-functional properties

are used in human behavior modeling and their interaction with the help of an

example of lane keeping and assistance system.

7.3 Case Study 1: Mobile Robot Navigation

In this section, we will use a mobile robot navigation example to demonstrate how a

robotic system can be developed and formally speci�ed in our SafeRobots methodolgy.
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Figure 7-2: Requirement model using KAOS notation

The robot is an indoor di�erential robot equipped with depth camera for perception

and a bumper sensor. The mobile robot has to perform di�erent tasks such as map-

ping, go to a user-speci�ed goal position by avoiding obstacles, and blinking led in

case of low battery. The robot should accept the user-speci�ed goal position only if

it has su�cient con�dence on its own position and the goal position has been already

explored. If the robot does not receive any goal position, it should explore new places

and continue the mapping process. The robot should wander aimlessly avoiding ob-

stacles if the mapping process is completed. The system should be based on ROS

middleware [9] and the developer intends to use Gazebo simulator [14].

We assume that the knowledge space of the SafeRobots already de�nes domain

speci�c knowledge, such as the structure of laser range scan, image properties, etc., in

the form of knowledge graphs and ontologies. The following section discusses di�erent

processes, such as requirement modeling, solution space modeling, and architecture

modeling corresponding to the problem space, the solution space, and the operational

space of the SafeRobots framework, respectively.

7.3.1 Requirement Modeling

The functional and non-functional requirements of the mobile robot are modeled using

KAOS notation [162]. It is a hierarchical structure in which the goals are re�ned

into conjoint subgoals (AND re�nement) or a combination of disjoint subgoals (OR
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re�nement). The goals are decomposed until the leaf node (shown as ellipses) that

represents a requirement [69]. We use an extended version of KAOS notation in which

the non-functional requirements can be represented as nodes or by attaching a NFP

model to a functional goal node. Each functional goal can be associated with a non-

functional model speci�ed using the NFP language. For example, the requirement

says that the robot should navigate to the goal position (goal G1.2) only if goal

position in map is explored and the con�dence in the pose of the robot with respect

to the map is above a threshold level.

import goal ,robot;

NFP: (G1.2).valid;

NFP_ATTRIBUTES: goal.pose , robot.pose;

NFP_POLICY: map(goal.pose).is_explored () AND robot.pose.isConfident ();

Listing 7.1: NFP model for goal - G1.2 in requirement model

This requirement is speci�ed using NFP language as shown in Listing 7.1 and is

attached to the G1.2 goal in the requirement model. The model speci�es a valid

property to goal G1.2, and the NFP_POLICY speci�es how it is evaluated based on the

NFP_ATTRIBUTES - pose of the goal and robot.

7.3.2 Solution Space Modeling

The solution space model captures the design space available for a given domain

or functionality. Figure 7-3b shows the solution space model in SSML language for

a functionality from perception domain and navigation domain. The Figure 7-3a

models the design space for a point cloud segmentation function (subgoal of require-

ment G1.1.1). The model formally speci�es four di�erent solution paths in which

point clouds can be segmented. We have already discussed this model in Chapter

4. Similarly, Figure 7-3b shows a model for obstacle avoidance functionality from

the navigation domain. This is the real advantage that the domain model can be

reused, instead of reusing just software code libraries. It is to be noted that the

solution model only comply with the functional constraints and the non-functional

properties are speci�ed as such in the model. In other words, the NFPs speci�ed in

the requirement model are not imposed on the SSML model. The NFP constraints

are imposed only in the next phase, i.e. architecture modeling. The strategy is to
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(a) Point cloud segmentation domain model

(b) Obstacle avoidance domain model

Figure 7-3: A excerpt form solution space model of perception and navigation domains

postpone the decision on NFPs on a stage, which is closer to the implementation

where more information on platform, communication middleware, etc., are known.

The �nal executable models generated during the architecture modeling process

are called operational models, and they usually comprise a reduced subset of solution

space model. The reduction is carried out by considering the required system level

non-functional properties such as response time, con�dence, resolution levels, etc,

as constraints to the solution space model. We have already shown a reduction

process based on MDPs in Chapter 4. If there are multiple solutions that satisfy the

constraints, they are modeled as variation points that can be resolved during runtime

when more contextual information is available. The following sections describe how

the architecture for the case study can be implemented using a simple subsumption

architecture and a more complex Hierarchical Behavior-Based Architecture (HBBA).

Subsumption Architecture

A layered reactive control architecture called subsumption architecture was intro-

duced by Brooks in 1985 [39]. It is primarily based on the decomposition of robot
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Figure 7-4: Ecore metamodel of subsumption architecture

control problem into special task achieving modules. Required behaviors can be gener-

ated by composing the modules at di�erent competency levels in a layered fashion. A

level of competency achieves a set of behaviors that can be overridden or constrained

by a higher level of competency. Each module is a �nite state machine augmented

with some instance variable that can hold data structures. There are number of input

and output lines for carrying messages, that are associated with each module. An

output line from one module can be connected to one or more input lines of other

modules. The output line of a module can also terminate at output site of other

modules inhibiting the messages on that line for a speci�c period of time. Similarly,

it can terminate in input site of other modules suppressing the usual message and

replacing it.

Architecture Metamodel

A formal model of the subsumption architecture using Ecore metamodel is shown

in Figure 7-4. It de�nes that the system comprises a number of modules that are

identi�ed by an unique name. It has an integer attribute named layer that indicates

the layer to which it belongs to. The input and output lines have name and datatype

as its attributes. The outline can be associated with a modi�er that can inhibit or

suppress an output or input line, respectively. The time attribute of the modi�er

represents the time period in which the modi�cation happens.
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AMAL formalism

The Subsumption-based architecture of our mobile robot use case requires knowledge

from three conceptual domains and two implementation domains. The conceptual

domains are Perception, Navigation, and Subsumption-based control, and implemen-

tation domains are ROS middleware and Gazebo simulator. The framework of our

mobile robot architecture in AMAL formalism is de�ned as:

SystemAMAL ⇒ 〈MMRA, PM,NM,SBT,RM,GM, RPM
AMAL,RNM

AMAL,RAMAL
SBT ,

RRM
AMAL,RGM

AMAL,RRM
GM〉.

where, MMRA is the system architecture model that performs the tasks mentioned

in the requirement model; PM,NM are the solution space model pertaining to per-

ception and navigation domains; SBT is the architecture model of subsumption ar-

chitecture; RM,GM are domain models of ROS and Gazebo; and their relationship

among these models and with AMAL model are also included in the speci�cation.

Figure 7-5 shows a pictorial representation of this formal speci�cation. The rela-

tionships de�ne the conceptual mapping from one model to another. For example,

the relationship, RAMAL
SBT , de�nes that a module in subsumption architecture is a com-

ponent in AMAL model; and the relationship RRM
AMAL de�nes that a component in

AMAL is a node in ROS middleware. Therefore, in a system point of view, the module

in subsumption architecture is mapped to the ros node. The transformation process

from solution space model to the architecture model using these relationship speci�-

cation. However, they cannot be completely automated, and it is a human-assisted

process since there are architecture speci�c decisions to be taken. For example, in this

case the information related to the layer at which the behavior belongs is not available

in the SSML model and the designer has to manually include it in the transformation

process.

Hierarchical Behavior-Based Architecture

The Hybrid Behavior-Based Architecture (HBBA) is a robot control framework that

was originally developed for the IRL-1 humanoid robot [163]. HBBA combines two

robot control paradigms: behavior-based control (�Think the way you act�), and Hy-

brid control (�Think and act concurrently�) [164]. HBBA uni�es both paradigms by

adding layers on top of a behavior-producing modules (referred to as Behaviors), al-
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Figure 7-5: Architecture Model in AMAL formalism

lowing Perception and Behavior modules to be selected and con�gured according to

the Intentions of the system. These Intentions are derived from Desires, which repre-

sent the satisfaction or inhibition of Intentions as generated by Motivations. Just like

Behaviors, Motivations are distributed processes from which a decision can emerge

at the Organization Layer. The Intention Workspace, situated at the Coordination

Layer, gathers all Desires to infer the Intentions of the robot, mainly by determining

which speci�c modules in the Behavioral Layer must be activated. Like in the Be-

havioral Layer, con�icting Desires are selected on a priority basis according to their

intensity.

Interaction performance can be a�ected by an unbalanced allocation of computing

resources. For instance, acceptable delays in vocal interaction can be di�cult to

satisfy if computationally expensive modules are simply added to the architecture: it

may result in a robot that can navigate e�ciently, but may not perform well engaging

and interacting with people, or vice versa. To solve this, human-inspired selective

attention [165] takes place in HBBA by perceptual �ltering of Perception modules

and by con�guration and activation of Behaviors. Computing resources allocation

can therefore be prioritized according to the current Intentions of the robot.

Architecture Metamodel

A formal model of HBBA using Ecore metamodel is shown in Figure 7-6. It de�nes

that the system primarily consists of modules and knowledge. Task, Desire, Intention,
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Figure 7-6: Ecore metamodel of HBBA architecture

Strategies, and Resources are a part of the knowledge. Scenario Coordinator and

Intention Translator are special types of modules. Scenario Coordinator is the only

Motivation module in this instance of HBBA. It receives tasks and generates Desires,

such as performing simultaneous localization and mapping (SLAM) and going to a

speci�c place on the generated map. Intention Translator generates Intentions from

Desires based on Strategies and Resources constraints describing the capabilities of

the robot. An Intention can con�gure parameters of a module and a�ects the input

and output lines of the module by changing the state of Message Filter modules.

AMAL formalism

The architecture based on HBBA uses a similar model as proposed for subsumption

based architecture. In this case, the subsumption model is replaced by the HBBA

model and RAMAL
SBT de�nes its relation with the AMAL model.

7.3.3 Discussion

The operational model for our mobile robot use case in subsumption and HBBA

architecture are shown in Figure 7-7. These are the �nal executable model after

human-assisted transformation from solution space model. During this transforma-

tion process, the decision is made, which is speci�c with respect to the target architec-
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(a) Operational Model in Subsumption Architecture

(b) Operational Model in HBBA Architecture

Figure 7-7: Architecture for the case study

ture. For example, priorities are decided for the behaviors in the case of subsumption

architectures and default desires for the HBBA architectures. It is also to be noted

that there is no explicit Charge Battery behavior in HBBA architecture shown in

Figure 7-7b, as it is handled by the desire that generates Planning Intentions with

appropriate parameters con�gured. Using the results of the domain analysis, the

framework speci�cation templates based on AMAL formalism were created. Since

we have targeted ROS middleware in the case study, the generated �les are a set of

ROS launch �les. The computational components are generated as ROS Nodes with

protected area in which the users can insert their custom code.

Figure 7-8 illustrates the CPU usage for subsumption and HBBA architectures.

The average resources usage for subsumption architecture is signi�cantly higher than

that of the HBBA architecture due to the fact that all behaviors are active all the time.

However, for the HBBA, the behaviors are activated only when the required desires are

present. The higher resource usage for HBBA as seen in the Figure 7-8 occurs when a

GoTo Desire with maximum intensity is generated by Scenario Coordinator, which in

turn activates the planning and navigation components required to the reach the goal
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Figure 7-8: CPU usage for Subsumption and HBBA architecture

pose. The main intention of our case study is not to benchmark the architectures, but

to demonstrate the process in which di�erent domains are identi�ed and how their

interactions are formally speci�ed.

7.4 Case Study 2: Framework based on Cognitive

Architecture

Cognitive models are very complex to develop and understand, and the systems based

on cognitive paradigms are hard to analyze by system architects without expertise

in cognitive architectures. In real world applications, cognitive models have to be

integrated with other computational models, such as in robotic systems and other

intelligent systems. One reason why cognitive architectures are not yet e�ective in

industrial applications is that most of the cognitive control uses a production system

paradigm1. Production systems are used in cognitive architectures to model cognitive

processes that act on memory and employ con�ict resolution mechanisms to create

new production rules and memory elements. When such cognitive architectures are

integrated in existing systems, there is no formal way to analyze and validate the

system, since the control �ow cannot be explicitly represented [167]. Systematic ap-

proaches and tools are required so as to increase the breadth of in�uence of cognitive

models and to prove their capabilities in addressing much more complex tasks, and

1A production is a rule that collectively form an information processing model of some cognitive
task or a range of tasks. Each production represents a retrieval of knowledge from long-term memory.
Production systems are a major formalism for modelling integrated cognitive architecture [166]
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building robust human-machine systems. In this case study, a framework for de-

signing service oriented architecture is developed using our approach. We use a lane

keeping and lane change assistance system as an example application. Speci�cally,

we concentrate on the formal de�nition of di�erent aspects of the framework. We

explain how multiple domains are incorporated using our AMAL formalism. We also

emphasize the importance of modeling Non-Functional properties in human-machine

systems using this case study. In the next section, an overview on human-machine

systems are provided and it shows how modeling of NFP and QoS, helps in dynamic

adaptation of the system. In Section 7.4, we use a Lane keeping and lane changing

assistance system as an application to demonstrate our approach. It is to be noted

that our intention is to demonstrate framework speci�cation that facilitate cognitive

architecture based system, and sometimes during the discussions, we tend to go into

the details of the architecture and the domain itself. Hence, the merits and demerits

of the architecture is of no concern in our case study.

7.4.1 Overview on Human-Machine Systems

In earlier times, function allocation in human-machine systems was primarily a design

decision. Consider the case of cruise control in today's cars, the steering control is

allocated to the human driver while the automation is responsible for applying ac-

celeration. This is an example for static function allocation. Some of the traditional

strategies for function allocation are: (a) assigning each function to the most capable

agent, (b) allocating to machine every function that can be automated, and (c) ap-

plying an appropriate allocation policy [168]. However, in adaptive human-machine

systems the function allocation is a run-time problem. Consider the case of auto-pilot

taking control of an aircraft in emergency situations. In such systems, there is some

kind of control sharing and trading that happens. The �rst example of adaptive cruise

control is a control sharing case, while the second one is a control trading problem. In

the latter case, the software takes the control of system with or without the consent

of human.
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7.4.2 Application: Lane keeping and lane changing assistance

system

Lane keeping and lane changing assistance in automobiles is a perfect application in

which human and automation have to be integrated seamlessly. Research in intelli-

gent transportation systems has improved the vehicle's ability to sense, understand,

make decisions, and ultimately act on its own accord in its operating environment.

The desire for better driver assistance and machine intelligence drives automobile

manufactures to pack more sensors and more computation into their vehicles in a

cost-e�ective manner. Hence, the vehicle architecture designer has to integrate var-

ious domain concepts and subsystems that have their own design paradigms and

constraints. In this case study, we intend to design a framework that supports build-

ing an architecture for a system that provides assistance for lane keeping and lane

changing. The automation part is the lateral control of the vehicle to keep the vehicle

in the same lane and the assistance is provided by applying a thrust on the steering

wheel. The system takes control by applying the required torque on the steering

wheel in case of lane departure situations. The driver behavior and external envi-

ronment have to be continuously monitored in order to predict the driver's intention.

Speci�cally, the system has to predict whether the driver is trying to change the lane

or he/she is erroneously departing from the lane. Most of the commercially available

lane keeping assistance systems predict the driver's behavior during the maneuver ex-

ecution phase. But there are promising results in research, that predicts the driver's

intention in the decision phase by modeling cognitive processes behind the behavior.

The theoretical basis for our cognitive model of the driver is based on the works of

D. Salvucci [87, 169, 170].

An overview on the application framework

The standard approach for automobile OEMs is to develop systems by assembling

components that have been completely or partly designed and developed by exter-

nal vendors [82]. Because of the increasing complexity of automobile systems with

large number of distributed features, such an approach will also lead to various com-

positional issues commonly known as feature interactions. Therefore, Service Ori-
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Figure 7-9: Architecture modeled in the proposed framework

ented Architectures (SoA) are gradually being adopted in these systems where var-

ious functionalities are provided as services and the assembled components are seen

as service providers. This software engineering paradigm has many advantages in

Human-Machine collaborative work. Advances in human behavior research helps to

model various human actions. These actions can be seen as services provided by the

human, for example, steering, braking, applying acceleration by the driver can be

viewed as services provided by the human driver. In some contexts, humans provide

high quality services while in some others the machine counterpart does. For exam-

ple, in the case of assisted parking, human steering control service is delegated to the

machine still retaining the authority over acceleration with the driver. Furthermore,

selecting the services based on the quality has advantage not only between human

and automation agents but also within the automation system itself. Since the func-

tionalities are viewed as services, it is possible to compose basic low level services

in di�erent fashion to provide di�erent functionalities. For example, in cars, voice

recognition service can be used in an entertainment system as well as in a navigation

system.

In the target application of our proposed framework, we design a SoA for lane

keeping and lane changing assistance system based on AMAL formalism. The pro-

posed framework supports designing the architecture by using two complementary

views - structural view and behavioral view. An example of an architecture modeled

by using this framework is shown in Figure 7-9. The structural view models the

interconnection of various computational algorithms and its communication aspects,
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Figure 7-10: Framework model of driver assistance system using AMAL formalism.
Various domains and their relationships are shown.

and the behavioral view models the coordination of these computations using state

machine formalism. In our example, the behavioral view shown in Figure 7-9, mod-

els two states: manual driving and automatic steering control. Quality of Service

of Driver and the interaction_policy() coordinate when automation has to take

control and when it should be deactivated. The main intention of this case study is

to show the architectural model, details regarding interaction policies are beyond the

scope of this study.

Figure 7-10 illustrates various domains and their relationships involved in the

architecture modeled in AMAL formalism. Domain models are speci�ed using meta-

models. The various domains and their formal models in the proposed framework are

described in the following sections.

ACT-R Cognitive Architecture

The ACT-R cognitive architecture is based on rigid theory of human cognition and

provides a computational framework that constraints the models that are cognitively

plausible. It consists of four modules - Intentional, Declarative, Visual and Manual

Modules. A central production system communicates with these modules through
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Figure 7-11: Ecore diagram of ACT-R metamodel

associated bu�ers. Visual and Manual modules represent the perception and motor

schema, respectively. Intentional module and Declarative module represent memory

stores for goals and facts (termed as `chunks'), respectively. The production system

represents procedural memory that consists of condition-action rules that uses the

respective bu�ers of the modules to `�re' the actions. The actions can add or modify

chunks in declarative memory, create a new sub-goal and issue commands to visual

and manual modules. Each chunk has sub-symbolic parameters, such as chunk acti-

vation that represents the relative ease with which the chunk can be recalled. The

activation level decay over time to replicate forgetting aspects of human. Similarly,

the procedural rule has real-values quantities called utilities that represent the cost

and probability of reaching the goal if that rule is chosen. In addition, learning mech-

anisms a�ects the activation and utilities, and creates new chunks and production

rules. Con�ict resolution mechanism uses activation and utilities to choose �ring

when multiple production condition matches [86].

ACT-R Metamodel

Figure 7-11 shows the structure of the ACT-R 6.0 framework as an Ecore diagram.

The Ecore model shown in Figure 7-11 also contains constraints such as the production
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system always communicates to modules through bu�ers. The constraints that are

not expressed by Ecore model are speci�ed using Object Constraints Language (OCL)

[171]. OCL constraints on the size of Retrieval Bu�er and activation level of merged

chunks are shown in Listing 7.2. The �rst constraint states an invariant that the

bu�er can hold a maximum of MAX_RB number of elements at any time. The

second formalism states that when two chunks are merged, the activation level of the

resulting chunk is the sum of the activation of the added chunks.

context: Retrieval_Buffer

inv: self.size >= MAX_RB

context: merge(chunk_source:Chunk , chunk_target:Chunk)

def: chunk_target.activation += chunk_source.activation

Listing 7.2: OCL constraints on bu�er size and activation level of merged chunks

7.4.3 Harel Statecharts

The Harel statechart [118] is a formalism of state machines and state diagrams for the

speci�cation and design of complex discrete-event systems, that include the notion of

hierarchy, concurrency, and communication.

Harel Statecharts Metamodel

Figure 7-12 shows an Ecore model of minimalist variation of Harel statecharts, rFSM

proposed by [70], for de�ning execution and interaction semantics of robotic tasks.

It consists of three model elements: states, transitions, and connectors. A virtual

element name node is used to simplify the concepts. State can be composite or atomic,

depending on whether it has leaf nodes or not. An active node consists of exactly

one leaf node that must be active. The Boolean function guard determines whether

a transition can occur and e�ect function is executed when transition occurs. The

e�ect function can represent computation and, hence consumes time. The functions

associated with states are executed during the in-state do activity. The action entry

and exit are executed upon entering and leaving the state.
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Figure 7-12: Ecore diagram of Harel statechart

Figure 7-13: Ecore diagram of relational model RACTR
SC between ACT-R model and

statechart model

7.4.4 Relation Model RACTR
SC between ACT-R Model and Stat-

echart Model

The relation model RACTR
SC between the ACT-R and statechart formalism is shown in

Figure 7-13. The state represents the state of bu�ers, for example, goals, chunks, etc.

The entry, exit, and do behavior can a�ect the state of the bu�ers, in turn a�ects

the four modules in ACT-R. The state transition represents the production rule. The

guard of transition is mapped to con�ict resolution, that determines which production

rule to �re (e�ect of transition). The function is mapped to Learning mechanism,

that can a�ect the activation and utilities associated with chunks and production

rules respectively. The Ecore model in Figure 7-13 represents these relations and the

internal mechanism, such learning a�ects activation are speci�ed by their respective

metamodels.
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Figure 7-14: A reference model for service oriented architecture

7.4.5 Service Oriented Architecture

Figure 7-14 shows an abstract architecture of a service oriented system. The reference

architecture is used here only as a way to explain the concepts hiding all the technology

and platform speci�c details. The architecture is comprised of a number of low level

services that provide support for service discovery, QoS negotiation, supervisors, etc.

Figure 7-14 also shows a typical sequence of activities in the system. The request

for service can be generated either from human or machine. The service description

with all the required parameters and required levels of QoS is computed with respect

to the context. For example, emergency braking service will be at a high level while

a music streaming service will be at a lower level. Appropriate services found from a

repository are composed to check for con�ict, redundancy etc. and QoS is computed

for the composed service. The composed service is veri�ed with QoS speci�cation

and the required service is activated. A supervisor continuously monitors the quality

level of the running services and recon�guration is done when anomalies are detected.

Figure 7-15 shows the metamodel of service oriented architecture.
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Figure 7-15: Ecore diagram of service oriented architecture domain model

7.4.6 Perception Model

The Perception model captures the conceptual knowledge of the perception domain.

It contains abstract knowledge (solution space) regarding various computational algo-

rithms, its dependencies, etc. In this domain model, we have utilized Solution Space

Modeling Language (SSML) to model multiple solutions.

7.4.7 Communication Patterns

Distributed components exchange data, message, or events through speci�c commu-

nication protocols, such as Remote Method Invocation (RMI), Message Passing, etc.

A communication pattern de�nes the communication mode, formally de�ne acces-

sor methods and hides all the middleware, platform-speci�c synchronization issues.

It always consists of two complementary parts named service requestor and service

provider representing a client/server, master/slave or publisher/subscriber relation-

ship [15].

Communication Pattern Domain Model

Communication domain models capture the knowledge regarding several patterns

that cover the communication requirements for component interactions. In this case,

we use the communication patterns proposed by the authors of [15]. It consists of

a minimal set of communication patterns required by robotic software component

interaction: send, query, push_newest, push_timed, and event. It supports commu-

nications such as synchronous, asynchronous, publish/subscribe, client/server, and

dynamic wiring. Figure 7-16 shows the metamodel of communication pattern domain

used in our case study.
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Figure 7-16: Ecore diagram of communication domain model

Relation Models

Similar to relation model between ACT-R and statechart formulated in Section 7.4.4,

the relation between domain models can be speci�ed. Table 7.1 shows the relations

that maps model elements across di�erent domain models that was described in pre-

vious sections. For better understanding, some of the relation models is coupled

together, for example, RBV
AMAL and RSC

AMAL shown as separate relation in Figure 7-10

is coupled in form of RSC
BV in Table 7.4.4 to represent the relation between behavioral

view and statechart formalism.

RCM
SV represents the relation between Communication Model (CM) and the Struc-

tural View (SV) in AMAL formalism. Table 7.1a shows the mapping between CM

model elements to model elements in structural view. Intuitively, the communication

patterns are mapped to connectors in SV. Table 7.1a also lists the number of roles

that each connector is associated with, depending on the patterns, for example, a

connector that represent push_timed can have 1 publisher role and `n' number of

subscriber role.

RPM
SV represents the relation between Perception Model (PM) and the structural view

in AMAL formalism. Table 7.1b shows the mapping between PM model elements to

model elements in structural view. Since the PM is modeled by SSML language,

the mapped is between abstract elements of SSML with that of AMAL. In SSML,

the connector represents the computation process, Dispatch_Gate represent the in-

terconnection between computations, Ports represent abstract data types and NFP

represents the non-functional property of the algorithm. The relation table maps
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ConnectorSSML to ComponentSV , Dispatch_GateSSML to ConnectorSV , and the

rest as shown in the Table 7.1b.

RCM
PM represents the relation between communication domain and perception domain

model. It captures the semantic compatibility between the domain and con�icts (if

any) in the relationship. For example, the previous two relation model maps com-

munication pattern in CM and Dispatch_Gate in PM to the same model element

Connector in SV. The relation RCM
PM shown in Table 7.1c speci�es that these two con-

cepts are semantically compatible since Dispatch_Gate and communication pattern

represent the interaction between computations in their respective domains. In the

similar fashion, the relationships between model elements between the domain models

are shown in Table 7.1.

7.4.8 Discussion

In this section, we highlight di�erent aspects on our multi-domain architecture for-

malism for control component in Human driver model. To provide a theoretical basis

for our discussions, a brief overview of the driver model is discussed below. More

detailed description can be found in [87].

Human Driver Behavior Model: Human driver model in ACT- R architecture consists

of control, monitoring, and decision making components. The control component is

responsible for low level perception and, lateral and longitude control. Lateral control

is based on two features - near point and far point. The near point represents the

vehicle's current lane position. It is measured at 10m from the vehicle's center. The

far point can be: (a) the vanishing point of a straight road, (b) the tangent point

for the curve, and (c) the lead vehicle. The control law for steering angle can be

expressed as [169] :

∆ϕ = kfar∆θfar + knear∆θnear + kIθnear∆t (7.1)

where ϕ is the steering angle, θfar and θnear are visual angles of near and far points,

respectively, ∆ϕ, ∆θfar,∆θnear, and ∆t are the di�erence of the respective parameters

with respect to the last cycle. In short, the control law imposes three constraints on

the steering angle: a steady far point(∆θfar = 0), a steady near point (∆θnear = 0),
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Communication Model Structural View

Communication Pattern Connector

Pattern Relationship Roles
send client/server client(1), server(1)
query client/server client(1), server(1)
push_newest publisher/subscriber publisher(1), subscriber(n)
push_timed publisher/subscriber publisher(1), subscriber(n)
event client/server client(1), server(1)

(a) RCM
SV

Perception Structural
Domain Model View

Connector Component
Dispath_Gate Connector
Port Port
NFP Property

(b) RPM
SV

Communication Perception
Model Model

Communication Dispatch
Pattern Gate

(c) RCM
PM

Statechart Behavioral
Model View

State Component
Transition Connector

(d) RSC
BV

Behavioral Structural
View View

Component Component[n]

(e) RBV
SV

SOA AMAL

QoS Property
Service_component Component
Contract Connector
Role Role

(f) RSOA
AMAL

NFP AMAL
Model

NFP Property
QoS Property

(g) RNFP
AMAL

ROS Middleware Model AMAL

Node Component
Publish/Subscribe & Service client/server Connector
Provided/Required Interfaces Port
Parameters Property

(h) RRM
AMAL

Table 7.1: Metamodel relations between Communication Domain Model (CM), Per-
ception Domain Model (PM), Statechart Model (SM), ROS Model (RM), NFP Model
(NFP), SOA Model (SOA), Structural View (SV) and Behavioral View (BV)
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Figure 7-17: Control component in AMAL formalism

and a near point at the center of the lane (θnear = 0). Similarly, the longitude control

law can be expressed as:

∆ψ = kcar∆thwcar + kfollow(thwcar − thwfollow)∆t (7.2)

where ψ is the acceleration value, thwcar is the time headway to the lead vehicle,

∆thwcar is the di�erence of thwcar with respect to the previous cycle, and thwfollow is

the time headway for following a lead vehicle. The monitoring model is de�ned by a

random probability measure (pmonitor) that checks left or right lane, and forward and

backward with equal likelihood. The decision model is de�ned by the safe distance

(dsafe) and the lead vehicle distance that is considered as safe by the driver. The

memory is modeled as total number of references that can be stored in declarative

knowledge, decay time for the memory, and memory creation time.

Figure 7-17 shows the speci�cation of control component in AMAL formalism. It

shows four properties corresponding to four di�erent domains - Graphics, ACT-R,

Non-functional property, and service oriented architecture. The domain models and

their relations were discussed in the previous sections. The graphics property is used

for visualization by the modeling tool, for example, control component will be shown

as circular nodes while modeling graphically in statecharts domain. The property

name, for instance ACT-R determines the domain in which the properties are valid.

The properties are speci�ed using domain-speci�c language and they can be parsed
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only using the domain knowledge. For example, the property ACT-R shown in Figure

7-17 de�nes two control laws for lateral and longitudinal control, and the execution

time for the control loop, model parameters.

Figure 7-18 shows the production system of ACT-R driver model proposed for lane

changing behavior in statechart formalism. Notice the control component is visualized

as circular node in this domain. This is due to the Graphics property de�ned for

that domain. The state represents the goal and the transitions that originate from

the state represents the production rules for that goal.

REQUIRES ACTR;

import control_skill ,monitor_skill ,decision_skill ,memory_skill

NFP: performance;

NFP_ATTRIBUTES: cs:control_skill:derived , ms:monitor_skill:derived , ds:decision_skill

:derived , memory_skill:derived; NFP_POLICY: eh.cs>thr_cs & eh.ms >thr_ms & eh.ds >

thr_ds;

-------------------------------------------

NFP: control_skill; NFP_ATTRIBUTES: prep_time:static:ms, exec_time:static:ms,

kfar_lateral:dynamic , knear_lateral:dynamic , ki_lateral:dynamic , kfar_speed:

dynamic , knear_speed:dynamic , ki_speed:dynamic; NFP_POLICY: contrl_policy ();

-------------------------------------------

NFP: monitor_skill; NFP_ATTRIBUTES: prob_monitor:dynamic , NFP_POLICY: monitor_policy

();

-------------------------------------------

NFP: decision_skill; NFP_ATTRIBUTES: safe_distance:dynamic:m, NFP_POLICY:

decision_policy ();

Listing 7.3: NFP model of performance of driver model

The NFP domain is valid in the implementation (see implementation model ele-

ment in SOA metamodel) domain, i.e., in this case when the human model is viewed

as a piece of software. For example, NFP property shown in Figure 7-17 speci�es two

policies, rt_policy() and conf_policy(), that act on model parameters derived

from ACT-R domain, to de�ne the response_time and confidence respectively.

This NFP model is visible when the control component is implemented in software,

in a formal way, when the control component is associated with an implementation

domain element in SOA metamodel. Listing 7.3 shows the NFP model for perfor-

mance of the driver model in the NFP domain-speci�c language.

The QoS property is de�ned for a service component in the SOA domain when the

software realization is used as a service. Notice that qos_policy(response_time,

confidence) shown in Figure 7-17 uses the response time and the con�dence prop-
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Figure 7-18: Production system in ACT-R driver model for lane changing behavior
using statechart formalism

erty, to de�ne the QoS property. In short, non-functional properties are viewed as

model parameters in ACT-R domain, as NFP in the implementation domain, and as

QoS in service oriented architecture domain. For example, the authors of [170] have

proposed a `model tracing' methodology for detecting lane change intention. The

QoS policies of this model in our approach is listed in Table 7.2. In ACT-R domain,

the model parameters are production_cycle_time and lane_change_score. The

production_cycle_time is the cycle time (nominally 50ms) needed to �re a produc-

tion rule. The lane_change_score is the probability of lane changing behavior by

the human driver. It is computed as shown below:

Score =
logS(LK)

logS(LC) + logS(LK)
(7.3)

where LK is the lane keeping model, LC is lane changing model, and S is the sim-

ilarity score between model simulation and the observed human data (refer to [170]

for more theoretical details). Two non-functional properties are de�ned, when this

model is realized in software - response_time and confidence. The response_time

is de�ned as 3 X production_cycle_time represented the time required for �ring

three productions rules (nominally 150ms). Two rules for encoding near point and
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far point, and one to issue motor commands as shown in Figure 7-18. When this

software implementation is used as a service in SOA domain, these non-functional

properties are employed to compute the QoS. Table 7.2 shows that QoS is the sum of

normalized response_time and confidence. Hence, the main idea is to determine

the relevant parameters in higher abstraction level (QoS in SOA domain) using inde-

pendent low-level domain-speci�c parameters (model parameters in ACT-R domain).

Domain Visibility
Policy

Viewpoint Domain
Model

ACT-R
{production_cycle_time,

Parameters lane_change_score}

NFP
Software

{rt_policy:response_time =

Implementation
3 X production_cycle_time, conf_policy:
con�dence = lane_change_score}

QoS SOA
QoS = [normalize(response_time, base)
+ con�dence]

Table 7.2: An example for estimation of quality parameters while composing mul-
tiple domains

7.5 Conclusion

In this chapter, we started by discussing some of the existing methods for framework

development. Two applications in which our methodology and framework develop-

ment process were then explained. We have adopted a mix of the three approaches for

framework development in our case study. We started with problem analysis based

on the case study and subsequently, required domains were identi�ed, and then we

tried to generalize using past experiences in framework speci�cation. Our �rst case

study provided an overall process of framework development from requirement spec-

i�cation to framework development in operational space. For experimental purpose,

an example transformation process from solution model to a basic architecture model

in operational space is also provided. Second case study focused on how frameworks

based on cognitive architecture can be speci�ed using our approach. We showed how

non-functional properties are used in human behavior model and their interaction

with the help of a case study on lane keeping and assistance system.

136



Part III

Conclusion

137



138



Chapter 8

Conclusion and Future Research

Directions

8.1 Summary and Contributions

The process of developing robotic software frameworks and tools for designing robotic

architectures is expensive both in terms of time and e�ort, and the lack of a systematic

approach may result in adhoc designs that are not �exible and reusable. Accordingly,

we identi�ed the current model-driven approaches in robotics and we analyzed how

these approaches achieve general modeling related advantages and how e�ective they

are in satisfying robotic domain speci�c requirements. Based on our comparative

survey on existing model-driven frameworks in robotics and qualitative analysis of

their features, we found that many of the domain-speci�c requirements such as archi-

tecture level analysis, system reasoning, non-functional property modeling, run-time

models, component composition, etc., were addressed di�erently in these approaches.

Hence, it is hard to �nd a single approach that has features according to one's re-

quirement. In addition, it is di�cult to reuse these solutions encoded in tools, model

transformations, and middleware modules. Systematic development process and de-

tailed instructions for building such frameworks and supporting infrastructure have

not been studied enough. In this direction, the thesis proposes a conceptual method-

ology and development approach that facilitates speci�cation, design, and deployment

of framework for robotic systems.
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We analyzed the importance of specifying and integrating NFPs in Framework de-

velopment in Robotics domain. Providing a systematic way of NFP speci�cation and

integrating it with development process by appropriate tools are essential for e�cient

framework development process. The importance of Non-Functional properties in

robotics and human-machine systems were discussed with an example from cognitive

architecture domain. Modeling those properties are necessary in architectures where

functionality alone cannot be used for making both design time and run-time deci-

sions. Our NFP metamodel provides a generic base for specifying the non-functional

aspects of both human and machine models. The main challenge in �nding structure

for NFP speci�cation is to provide a �exible mechanism to address a large variety

of property types and providing a tooling support to manage them. The challenge

of dealing with heterogeneous attributes are addressed by categorizing the attributes

into pro�les hierarchically and then using policies to compare at a higher abstraction

level.

We studied common reasons that make the robotic system designs fallible by tak-

ing into account the previous experience of robotics experts in various experiments in

academics and industry. For motivational purpose, we used an experience report on

developing a lidar based vehicle tracking system in an industrial context. To address

the identi�ed problems, we proposed a modeling language - Solution Space Modeling

Language (SSML), to formally model the solution space and to specify the quality

attributes during design time. Solution space modeling can expand this design space,

help �nding the best possible solution, and also permit to perform run-time adapta-

tion of the system. Solution model helps in early analysis of quality attributes, to

identity variations and acts as a bridge between problem and implementation space.

The resolution of solution space might not always result in a static operational model.

Typically, the resolution process performed during development time results in a sub-

set of solutions that are modeled as variation points in the architecture. This is

attributed mainly due to certain context-based properties that can be estimated only

during runtime. We formally de�ned the solution space to operational space transfor-

mation process and employed a probabilistic approach to resolve the solution model

during design time and execution time. These operations are handled automatically

by the framework tool and are independent of any particular robotic framework.
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The speci�cation of architecture framework is intended to facilitate its develop-

ment and to establish the relationships between di�erent domain models in a formal-

ized manner. We saw that most of the discussed model kinds in robotics are some

form of Hierarchical Graphs with certain additional properties. This is an important

observation since our metamodel has a basic formalism on which the semantic and

other properties are added according to the concerned domain. Making architecture

meta-framework a point of conformance opens new possibilities for interoperability

and knowledge sharing in the architecture and framework communities. The �rst

step in this direction is made by proposing common model and by providing a sys-

tematic approach that helps in specifying di�erent aspects and their interplay in a

framework. We emphasized on the infrastructure modularity and the reuse of trans-

formation tools and middleware modules. The uniform de�nition and underlying

common conformance model of architecture viewpoints and coordinated collection of

these viewpoints can promote reuse of tools and techniques to the robotic communi-

ties using these frameworks. It is also possible to integrate existing tools based on

Eclipse that has a well-formed meta model by mapping its elements with that of our

AMAL model.

As the community �nd better ways to abstract and standardize concepts in robotics,

Domain Speci�c Languages (DSLs) will become more and more attractive. By map-

ping these concepts with our meta level models, it is possible to save considerable

amount of time for development tools by reusing system infrastructure code. We

believe that combining the bene�ts of integrating existing solutions with bene�t of

having common underlying structure result in more mature tools. In addition, by

specifying the relationship with other domain models in an already existing frame-

work, it is possible to integrate these DSLs with less e�ort. We also discussed how

our methodology can be employed to model domain knowledge and how they can

be applied in intelligent software tools and processes, to develop complex robotic

systems. The main challenge is to adopt the domain model at the appropriate gran-

ularity to assist the system designer in systematic software development process to

develop e�cient and reusable software for robotic systems.
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8.2 Future Directions

8.2.1 Search-Based Software Engineering

Search-Based Software Engineering (SBSE) reformulates software engineering as a

search problem [172]. Our experience indicates that the existence of large solution

space available for system designers leads to poor software quality. In Chapter 4,

we showed that multiple algorithms are available for implementing a functionality

in robotics and early decisions assuming future operating conditions tend to degrade

the software quality. Once the solution space for a given problem is modeled in

our SSML, computational search techniques can be applied to evaluate the system

objectives and to converge to a reduced set of solutions. We showed one method

using a probabilistic method. However, more research is required in this direction,

especially when the system consists of humans and robots with a speci�c goal to

accomplish. For example, the system's objective to maximize its Quality of Service

(QoS) can be de�ned as:

Maximize
k∑

i=1

QoS(mi) (8.1)

where mi is an abstract term that represents an algorithm (algorithmic sequence),

model (human or automation), or a control �ow. We have seen the bene�ts of mod-

eling NFP of human driver, automation and their interaction in the case study of

assistive lane keeping system for vehicles. The QoS of the mi can be de�ned as:

QoS(mi) =
n∑

j=1

cijxij (8.2)

where, cij are application-speci�c coe�cients and xij are model parameters. It is an

open research question how adaptation can be made in real world complex systems.

There exist some interesting approaches based on ontologies and genetic programming

in the domain of Service Oriented Architectures (SOA) [173], but these are still in

their infancy.
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8.2.2 Non-Functional Property Composition

The NFP speci�cation provides a structure using a formal language and helps to

manage those properties using the associated tools. The NFP models are utilized

in the three spaces - problem, solution, and operation spaces; and are used to make

developmental time decisions and runtime QoS resolution. The NFP policies that

are de�ned by the user are used to compose and compare these properties. Composi-

tions of NFPs are based on di�erent composition theories, and, in addition, they are

often not only the result of compositions of component properties, but also depend

on other elements of a particular system architecture or even its environment. For

example, determining the composition of component performance may depend on

the scheduling policies and the system architecture. According to [174], NFPs can be

classi�ed in categories depending on the composition domains (i.e. type of parameters

that determine the composition). However, due to the highly heterogeneous nature

of these properties, there is no formally de�ned method to compose the components

and estimate the emergent properties [175]. However, more research is required in

this direction.

8.2.3 Runtime Models

The resolution of solution space might not always result in a static operational model.

Typically the resolution process performed during development time result in a subset

of solutions that are modeled as variation points in the architecture. This is attributed

mainly due to certain context-based properties that can be estimated only during

runtime. In these situations, the runtime models should re�ect the most up-to-date

information in order to perform online analysis and reasoning. In this direction,

reference architectures are available from self-adaptive systems and models@runtime

research [110]. A detailed discussion on addressing uncertainty in models can be found

in [69]. A proposal for adapting the Eclipse Modelling Framework (EMF), for a more

dynamic usage of models in the context of Models@Runtime is already made by the

authors of [176]. Innovative approaches in reasoning on the presence of uncertainty

and its in�uence during runtime needs to be studied.
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Appendix A

Eclipse Modeling Framework and

Supporting Plugins

A.1 Eclipse Modeling Framework

Eclipse is an open source software project dedicated to providing a robust, full-

featured and commercial-quality platform for developing and supporting highly inte-

grated software engineering tools [150]. The Eclipse platform de�nes a set of frame-

works and common services that collectively make up the "integrationware" required

to support a comprehensive tool integration platform. Except the small Eclipse

runtime kernel, all the platform components are plug-in tools integrated seamlessly

through prede�ned extension points [151]. Fundamentally, Eclipse is a framework

for plug-ins. Besides its runtime kernel, the platform consists of the workbench,

workspace, help, and team components. Other tools plug into this basic framework

to create a usable application. Plug-ins can also de�ne new extension points for others

to extend. For example, a group of plug-ins implements the workbench user interface.

A.1.1 Metamodeling using Ecore

According to the Eclipse Foundation, the core EMF framework includes a metamodel

(Ecore) for describing models and run-time support for the models, including change

noti�cation, persistence support with default XMI serialization, and a re�ective API

for manipulating EMF objects generically. In other words, Ecore de�nes the structure
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Figure A-1: Overview of the EMF tool set

of core models, which de�ne the structure of the models developers use to maintain

application data.

There are four Ecore classes needed to represent a model:

1. EClass is used to represent a modeled class. It has a name, zero or more

attributes, and zero or more references.

2. EAttribute is used to represent a modeled attribute. Attributes have a name

and a type.

3. EReference is used to represent one end of an association between classes.

It has a name, a boolean �ag to indicate if it represents containment, and a

reference (target) type, which is another class.

4. EDataType is used to represent the type of an attribute. A data type can be

a primitive type like int or �oat or an object type.

Basic templates and support code is generated from the Ecore model using the

transformation engine provide by the EMF as illustrated in Figure A-1. Ecore and

its XMI serialization, is the center of the EMF world. An Ecore model can be created

from any of at least three sources: a UML model, an XML Schema, or annotated

Java interfaces. Java implementation code and, optionally, other forms of the model

can be generated from an Ecore model.
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A.1.2 Graphical Modeling Workbench

Building a very �exible graphical editor for editing the models is really a labor-

intensive task. EMF provides an object graph for representing models, as well as

capabilities for (de)serializing models in a number of formats, checking constraints,

and generating various types of tree editors for use in Eclipse. The Graphical Editor

Framework (GEF) and Draw2D provide the foundations for building graphical views

for EMF and other model types [150]. The Graphical Modeling Framework (GMF),

by encapsulating GEF and Draw2D, provides a tool for creating graphical editor with

a high degree of �exibility. Creation of editor in GMF is often complex and highly

depends on Java, XML and Eclipse plug-in knowledge.

To implement graphical interfaces and tools for our methodology, we choose a

graphical modeling workbench, Sirius, whose concepts of viewpoints and view lies

closer to our approach. In addition, the structure of our framework description tem-

plates discussed in Chapter 5 makes it easier for the framework developer to imple-

ment it.

Sirius

Sirius framework is built on top of Graphical Modeling Framework (GMF) and uses

interactive editors called "modelers" to create, visualize and edit models. Depending

on the required visual representations, Sirius supports three di�erent dialects (kinds

of representations): diagrams (graphical modelers), tables, and trees (hierarchical

representations), but new dialects can be added through programming [156]. Sir-

ius provides possibility of analysis, roles and concerns of same data using di�erent

viewpoint on the same domain model. Sirius provides tools to specify the viewpoints

which are relevant for user business domain which are usually speci�ed as a EMF

metamodel. Due to Sirius uses domain speci�cation, which is not strictly in the scope

of Sirius, it provides a graphical modeler for creating a DSM, which de�nes concepts

and their relations in the abstract. After de�ning DSM models, Sirius allows easily

creation of speci�c concrete representations of these models, and representations can

be presented in more than one diagrams, tables, matrices (cross-tables) or hierarchies

(trees) [157].
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Figure A-2: Graphical Workbench Speci�cation using Sirius

The representations are not static, and they complete modeling environments

where user can create, modify and validate their designs. It can be logically or-

ganized in categories (viewpoints), which can be able or disabled by end-user, with

purpose to provide a di�erent, logically consistent, view on the same model. It can be

concluded that Sirius simpli�es the product, reduces design time and rapidly increases

the overall productivity of building a domain-speci�c graphical editor. It uses Acceleo

[177] as recommended language for de�ning expressions. By using a Java class as Java

Extensions and Acceleo queries, de�ned in .mtl �les, Sirius supports customization

according to the particular user needs in form of service methods which is available

inside all the representations de�ned in the viewpoint. Considering that Sirius en-

capsulates GMF, user can customize the program code on GMF level too. However,

this is an advanced feature, because user must have a deep knowledge of GMF.

The �ve main concepts on which Sirius is based are stored using Viewpoint Spec-

i�cation Model (VSM). In the Sirius terminology, the following concepts are de�ned:

- viewpoint is a core element which is a logical set of representation speci�cations

and representation extension speci�cations.

- representation is a group of graphical construction which represent domain data.

It also describes the structure, appearance and behavior of models. There are four
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representations (dialects) available: diagrams, tables, matrices and trees.

- mapping strongly depends of dialect and identi�es a sub-set of the semantic model

element that should appear in a representation and indicates how they should be

represented.

- style is used to con�gure the visual appearance of the elements

- tool describes behaviors mapping.

Sirius works with models which describe semantics of editors - structure, appear-

ance and behavior of dedicated representations and associated tools. For creation of

editor, no Java code is necessary. A main disadvantage is need for interpreted expres-

sions which will be evaluated at runtime to provide a behavior speci�c to domain and

representations. An expression can be written in Acceleo [177], OCL [135] or Java

language.

Property sheet views are widely used in our framework for editing the component

properties. The Property Sheet view is used to display the properties of the current

selection and modify their values. Views must implement the IViewPart interface

and can be contributed to the workbench by extending the org.eclipse.ui.views

extension point. However, more easier ways are currently available in the eclipse

ecosystem. During the initial part of the framework development, we used Eclipse

Exented Editing Framework (EEF) for creating property sheets. EEF is explained

in the next section. Later, a new feature for property views was introduced in Sirius

version 4.0 with many features like complex styling, validation, context etc. Now we

suggest to use property views provided by Sirius for creating property sheets.

Exented Editing Framework

Extended Editing Framework (EEF) provides advanced editing components for the

properties of EMF elements and a default generation based on standard metamodels.

Most of the concepts of the language can be con�gured using expressions based

on various interpreters. By using EEF along with Sirius, all the interpreters can be

leveraged and makes it available in Sirius and it is possible to use it out of Eclipse

Sirius, with our own interpreter. By using EEF with AQL, we can navigate very
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Figure A-3: Basic concept behind Model Transformation

easily in the concepts of your models to compute what to display and edit. In order

to be as powerful to build a form-based user interface as Sirius is for diagrams, the

language used by EEF is not linked to the EMF-based meta-models of the speci�er.

A.1.3 Model Transformation Engines and Generators

The very basic concept of a model transformation on the highest level of abstraction

is to translate one model to another model. Model translations can be of two types

- endogenous and exogenous model transformation. For an endogenous model trans-

formation we take a source model expressed in a modeling language and produce a

target model expressed in the same modeling language. While an exogenous model

transformation translates a source model expressed in one modeling language into a

target model expressed in another modeling language [178]. It is essential that these

models remain consistent, and therefore both the source and target model have to

conform to their corresponding meta-models. Figure A-3 represents the basic con-

cepts of a model transformation. The two concepts, transformation language and

transformation engine are provided by model transformation environment. The main

idea behind changing two models are to read a source model and write a target model.

The transformation engine executes a set of guidelines provided by a transformation

language that express how the target model is constructed. These guidelines is cre-

ated from meta-data that are de�ned in the source and target meta-model to create

an executable environment for the transformation engine

Transformation engines and generators analyze certain aspects of models and then

synthesize various types of artifacts, such as source code, simulation inputs, XML

deployment descriptions, or alternative model representations. The ability to syn-
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thesize artifacts from models helps ensure the consistency between application im-

plementations and analysis information associated with functional and QoS require-

ments captured by models.This automated transformation process is often referred

to as "correct-by-construction," as opposed to conventional handcrafted "construct-

by-correction" software development processes that are tedious and error prone [1].

In our SafeRobots Framework, Model to Model (M2M) and Model to Text (M2T)

tranformation engines are widely used in many processes. We use Epsilon for de�n-

ing templates for model transformation engines. Epsilon, standing for Extensible

Platform of Integrated Languages for mOdel maNagement, is a platform for build-

ing consistent and interoperable task-speci�c languages for model management tasks

such as model transformation, code generation, model comparison, merging, refac-

toring and validation. Epsilon is a family of languages and tools for code generation,

model-to-model transformation, etc., that work out of the box with EMF and other

types of models. M2M and M2T templates are discussed in the following sections.

Model to Model Transformation

Model to model transformation templates are de�ned using Epsilon Transformation

Language (ETL). ETL provides all the standard features of a transformation lan-

guage but also provides enhanced �exibility as it can transform many input to many

output models,and can query/navigate/modify both source and target models. More

speci�cally, ETL can be used to transform an arbitrary number of input models into

an arbitrary number of output models of di�erent modelling languages and technolo-

gies at a high level of abstraction. ETL adopts a hybrid style and features declarative

rule speci�cation using advanced concepts such as guards, abstract, lazy and primary

rules, and automatic resolution of target elements from their source counterparts.

Also, as ETL is based on EOL reuses its imperative features to enable users to spec-

ify particularly complex, and even interactive, transformations [155]. Figure A-5

show a snippet from the M2M ETL template for transforming a AMAL compliant

model to ROS Middleware compliant model. In this case the target model conforms

to the ROS metamodel as shown in Figure A-4. ETL transformations are organized

in modules (EtlModule). A module can contain a number of transformation rules

(TransformationRule). Each rule has a unique name (in the context of the module)
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Figure A-4: Metamodel for ROS Middleware

and also speci�es one source and many target parameters. A transformation rule

can also extend a number of other transformation rules and be declared as abstract,

primary and/or lazy.

Certain transformation are more complex and may have more than one inter-

mediate model and may require user assistance for including missing information or

for making decisions. For instance, solution space model are transformed in a user

assisted way to operational models. This process comprises of transforming SSML

models to intermediate MDP models and then, �nally to operational model in a user

assisted manner.
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Figure A-5: Code Snippet showing a M2M ETL template for transforming a AMAL
compliant model to ROS Middleware-based model

Model to Text Transformation

Code generation is a Model to Text transformation that translates a source model

that is described by a DSL and produce a target model that usually is described by

a general purpose programming language, such as Java or C++.

The code generation templates in SafeRobots framework are de�ned in Epsilon

Generation Language (EGL). EGL provides a language tailored for model-to-text

transformation (M2T). EGL can be used to transform models into various types of

textual artefact, including executable code (e.g. Java), reports (e.g. in HTML),

images (e.g. using DOT), formal speci�cations (e.g. Z notation), or even entire

applications comprising code in multiple languages (e.g. HTML, Javascript and CSS).

EGL is a template-based code generator (i.e. EGL programs resemble the text that

they generate), and provides several features that simplify and support the generation

of text from models, including: a sophisticated and language-independent merging

engine (for preserving hand-written sections of generated text), an extensible template

system (for generating text to a variety of sources, such as a �le on disk, a database

server, or even as a response issued by a web server), formatting algorithms (for

producing generated text that is well-formatted and hence readable), and traceability
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Figure A-6: Code Snippet showing a M2T EGL template for generating C++ code
from a ROS + Boost Statecharts model

mechanisms (for linking generated text with source models). EGL provides language

constructs that allow M2T transformations to designate regions of generated text

as protected. Whenever an EGL program attempts to generate text, any protected

regions that are encountered in the speci�ed destination are preserved. Within an

EGL program, protected regions are speci�ed with the preserve(String, String, String,

Boolean, String) method on the out keyword. The �rst two parameters de�ne the

comment delimiters of the target language. The other parameters provide the name,

enable-state and content of the protected region, as shown below.

[%=out.preserve("/*", "*/", "anId", true,

//user code here

%]
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Résumé : La plupart des applications robotiques, 

telles que les véhicules autonomes, sont 

développées à partir d’une page blanche avec 

quelques rares réutilisations de conceptions ou de 

codes issus d’anciens projets équivalents. Qui plus 

est, les systèmes robotiques deviennent de plus en 

plus critiques, dans la mesure où ils sont déployés 

dans des environnements peu structurés, et centrés 

sur l’humain.  Ces systèmes à fort contenu logiciel 

qui utilisent des composants distribués et 

hétérogènes interagissent dans un environnement 

dynamique, et incertain. Or, il s’agit là d’étapes 

indispensables pour la mise en place de méthodes 

d’évaluation extensibles, ainsi que pour permettre 

la réutilisation de composants logiciels pré-

existants. 
 

 

Le développement de structures logicielles et 

d’outils de conception d’architectures, orientés pour 

la robotique, coûte cher en termes de temps et 

d’effort, et l’absence d’une approche systématique 

pourrait conduire à la production de conceptions 

adhoc, peu flexibles et peu réutilisables. Faire de la 

meta-structure de l’architecture un point de 

convergence offre de nouvelles possibilités en 

termes d’interopérabilité, et de partage de la 

connaissance, au sein des communautés dédiées à la 

mise en place d’architectures et de structures. Nous 

suivons cette direction, en proposant un modèle 

commun, et en fournissant une approche 

méthodologique systématique aidant à spécifier     

les différents aspects du développement 

d’architectures logicielles, et leurs relations au sein 

d’une structure partagée.  

 

 

Title : A model-driven framework development methodology for robotic systems 
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Abstract : Most innovative applications having 

robotic capabilities like self-driving cars are 

developed from scratch with little reuse of design 

or code artifacts from previous similar projects. As 

a result, work at times is duplicated adding time 

and economic costs. Absence of integrated tools is 

the real barrier that exists between early adopters 

of standardization efforts and early majority of 

research and industrial community. These software 

intensive systems are composed of distributed, 

heterogeneous software components interacting in 

a highly dynamic, uncertain environment. 

However, no significant systematic software 

development process is followed in robotics 

research.  

The process of developing robotic software 

frameworks and tools for designing robotic 

architectures is expensive both in terms of time and 

effort, and absence of systematic approach may 

result in ad hoc designs that are not flexible and 

reusable. Making architecture meta-framework a 

point of conformance opens new possibilities for 

interoperability and knowledge sharing in the 

architecture and framework communities. We tried 

to make a step in this direction by proposing a 

common model and by providing a systematic 

methodological approach that helps in specifying 

different aspects of software architecture 

development and their interplay in a framework.  

 
 

 

 
 


