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Chapter 1

Introduction

1.1 Motivation

Hellebore Capital is investing in developing AI & Machine Learning techniques specifically
tailored to financial time series. The goal of Hellebore Capital R&D is to develop models
and methodologies that improve upon the body of existing knowledge and, using robust AI
& Machine Learning methods could provide an alternative framework in respect of:

• Risk management

– Value-at-Risk

– SPAN-like methods (stressed scenarios on groups of assets)

• Investment activity

– portfolio design

– statistical arbitrage

– market-making

• Data analysis

– cleaning historical time series (missing values imputation, outliers detection)

– exploring thousands of time series (e.g. www.datagrapple.com)

Why are these tasks difficult?

Though AI & Machine Learning have shown impressive success in many applications such
as in Computer Vision (self-driving vehicles) and audio signal processing (live translators)
during the last 5 years (due in part to the availability of Big Data to train the models),
their application to financial time series (such as those displayed in Figure 1.1) is much more
involved for several reasons:

1. non-stationarity
since the conditions are always changing it is hard to have lots of data and it would
be misleading to use data from the distant past for fitting the models;

2. near efficiency
the financial time series of asset prices behave nearly like random walks, no trivial
patterns are to be found;

7



8 CHAPTER 1. INTRODUCTION

Figure 1.1: Time series of spreads (bps) for European corporates

3. very low signal-to-noise ratio
these time series are very noisy (non-relevant information and measure artifacts hide
information in random fluctuations) and overfitting is a common pitfall with this kind
of data; and

4. unfavorable statistical setting
having many time series to study but only few observations for each of them (due
to reason 1 above), it makes the estimation of many quantities (such as a correlation
matrix) even more challenging (adding to reason 3 above).

For these reasons, fitting robust models is hard and out-of-sample results are often poor.
Finding groups of assets who share a similar behaviour helps to reduce dimensionality and

thus alleviates the problems mentioned above. Clusters, i.e. groups of similarly behaving
assets, can be important building blocks for bigger systems. The present work aims at
grounding their construction and use in order to obtain more robust models.

1.2 Main contributions and outline of the thesis
In Chapter 2, we start this thesis by providing an extensive review of the field of research.
The relevant literature is scattered among different research fields. Econophysics is the major
one, but one can find useful contributions from the following literature: econometrics, finance
and accounting, risk and quantitative finance, multivariate analysis, bayesian statistics, data
mining, intelligent and fuzzy systems, machine learning and artificial intelligence, etc. We
also take advantage of this review to contextualize our main contributions that are listed in
the Bibliography below.

In Chapter 3, we present the datasets built and maintained by Hellebore Capital which
both motivated and showcased the methodologies we developed. We also take advantage of
this chapter to convey key insights into the credit default swap markets.

The core part of the thesis, i.e. Chapters 4 & 5, is dedicated to highlight our main
published contributions. The Chapter 6 provides practical methods for a good clustering
analysis of the financial time series, e.g. model selection, sanity checks, visualization, etc.

We conclude by providing some avenues for further research and open questions which
are ongoing research problems.
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Chapter 2

A review of two decades of correlations,
hierarchies, networks and clustering in
financial markets

This chapter corresponds to a review that is still evolving and that I shall try to keep it
updated with new research and findings. The working document can be found on arXiv:
https://arxiv.org/abs/1703.00485 [138]. We highlight in blue our contributions.

2.1 The standard and widely adopted methodology

The methodology which is widely adopted in the literature stems from Mantegna’s seminal
paper [133] (cited more than 1200 times as of 2017) and chapter 13 of the book [134] (cited
more than 3600 times as of 2017) published in 1999. We describe it below:

• Let N be the number of assets.
• Let Pi(t) be the price at time t of asset i, 1 ≤ i ≤ N .
• Let ri(t) be the log-return at time t of asset i:

ri(t) = logPi(t)− logPi(t− 1).

• For each pair i, j of assets, compute their correlation:

ρij =
〈rirj〉 − 〈ri〉〈rj〉√

(〈r2
i 〉 − 〈ri〉2)

(
〈r2
j 〉 − 〈rj〉2

) .
• Convert the correlation coefficients ρij into distances:

dij =
√

2(1− ρij).

• From all the distances dij, compute a minimum spanning tree (MST) using, for exam-
ple, Algorithm 1:

Several other algorithms are available to build the MST [98].

The methodology described above builds a tree, i.e. a connected graph with N − 1 edges
and no loop. This tree is unique as soon as all distances dij are different. The resulting MST
also provides a unique indexed hierarchy [134] which corresponds to the one given by the
dendrogram obtained using the Single Linkage Clustering Algorithm.

13
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Algorithm 1 Kruskal’s algorithm
1: procedure BuildMST({dij}1≤i,j≤N)
2: . Start with a fully disconnected graph G = (V,E)
3: E ← ∅
4: V ← {i}1≤i≤N
5: . Try to add edges by increasing distances
6: for (i, j) ∈ V 2 ordered by increasing dij do
7: . Verify that i and j are not already connected by a path
8: if not connected(i, j) then
9: . Add the edge (i, j) to connect i and j

10: E ← E ∪ {(i, j)}
11: . G is the resulting MST
12: return G = (V,E)

2.2 Methodological concerns and extensions

2.2.1 Concerns about the standard methodology

We list below the concerns that have been raised about the standard methodology during
the last 20 years:

• The clusters obtained from the MST (or equivalently, the Single Linkage Clustering
Algorithm (SLCA)) are known to be unstable (small perturbations of the input data
may cause big differences in the resulting clusters) [137].
• The clustering instability may be partly due to the algorithm (MST/Single Linkage

are known for the chaining phenomenon [49]).
• The clustering instability may be partly due to the correlation coefficient (Pearson
linear correlation) defining the distance which is known for being brittle to out-
liers, and, more generally, not well suited to distributions other than the Gaussian
ones [67].
• Theoretical results providing the statistical reliability of hierarchical trees and correlation-

based networks are still not available [215].
• One might expect that the higher the correlation associated to a link in a correlation-

based network is, the higher the reliability of this link is. In [220], authors show that
this is not always observed empirically.
• Changes affecting specific links (and clusters) during prominent crises are of difficult
interpretation due to the high level of statistical uncertainty associated with
the correlation estimation [195].
• The standard method is somewhat arbitrary: A change in the method (e.g. using

a different clustering algorithm or a different correlation coefficient) may yield a huge
change in the clustering results [123], [137]. As a consequence, it implies huge variability
in portfolio formation and perceived risk [123].

Notice that Benjamin F. King in his 1966 paper [112] (the first paper, to the best of our
knowledge, about clustering stocks based on their historical returns; apparently unknown to
Mantegna and his colleagues who reinvented a similar method) adds a final footnote which
serves both as an advice and a warning for future work and applications:

One final comment on the method of analysis: this study has employed techniques
that rely on finite variances and stationary processes when there is considerable
doubt about the existence of these conditions. It is believed that a convincing
argument has been made for acceptance of the hypothesis that a small number of
factors, market and industry, are sufficient to explain the essential comovement of
a large group of stock prices; it is possible, however, that more satisfactory results
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could be obtained by methods that are distribution free. Here we are thinking of
a factor-analytic analogue to median regression and non-parametric analysis of
variance, where the measure of distance is something other than expected squared
deviation. In future research we would probably seriously consider investing some
time in the exploration of distribution free methods.

It is only but recently that researchers have started to focus on these shortcomings as we
will observe through the research contributions detailed in the next section.

2.2.2 Contributions for improving the methodology

To alleviate some of the shortcomings mentioned in the previous section, researchers have
mainly proposed alternative algorithms and enhanced distances. Some refinements of the
methodology as a whole, alongside efforts to tackle the concerns about statistical soundness,
have been proposed.

On algorithms

Several alternative algorithms have been proposed to replace the minimum spanning tree
and its corresponding clusters:

• Average Linkage Minimum Spanning Tree (ALMST) [220]; Authors introduce
a spanning tree associated to the Average Linkage Clustering Algorithm (ALCA); It is
designed to remedy the unwanted chaining phenomenon of MST/SLCA.
• Planar Maximally Filtered Graph (PMFG) [218] which strictly contains the

Minimum Spanning Tree (MST) but encodes a larger amount of information in its
internal structure.
• Directed Bubble Hierarchal Tree (DBHT) [196] which is designed to extract,

without parameters, the deterministic clusters from the PMFG.
• Clustering using Potts super-paramagnetic transitions [118]; When anti-correlations

occur, the model creates repulsion between the stocks which modify their clustering
structure.
• Clustering using maximum likelihood [90, 89]; Authors define the likelihood of a

clustering based on a simple 1-factor model, then devise parameter-free methods to
find a clustering with high likelihood.
• Clustering using Random Matrix Theory (RMT) [171]; Eigenvalues help to deter-

mine the number of clusters, and eigenvectors their composition.
• Clustering using the p-median problem [115]; With this construction, every cluster

is a star, i.e. a tree with one central node.

On distances

At the heart of clustering algorithms is the fundamental notion of distance that can be
defined upon a proper representation of data. It is thus an obvious direction to explore. We
list below what has been proposed in the literature so far:

• Distances that try to quantify how one financial instrument provides information about
another instrument:

– Distance using Granger causality [18],

– Distance using partial correlation [107],

– Study of asynchronous, lead-lag relationships by using mutual information
instead of Pearson’s correlation coefficient [81, 180],
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– The correlation matrix is normalized using the affinity transformation: the corre-
lation between each pair of stocks is normalized according to the correlations of
each of the two stocks with all other stocks [108].

• Distances that aim at including non-linear relationships in the analysis:

– Distances using mutual information, mutual information rate, and other information-
theoretic distances [82, 180, 8],

– The Brownian distance [229],

– Copula-based [136], [71, 26] and tail dependence [74] distances.

• Distances that aim at taking into account multivariate dependence:

– Each stock is represented by a bivariate time series: its returns and traded volumes
[29]; a distance is then applied to an ad hoc transform of the two time series into
a symbolic sequence,

– Each stock is represented by a multivariate time series, for example the daily
(high, low, open, close) [121]; Authors use the Escoufier’s RV coefficient (a
multivariate extension of the Pearson’s correlation coefficient).

• A distance taking into account both the correlation between returns and their dis-
tributions [67].

On other methodological aspects

Besides research contributions on algorithms and distances, other methodological aspects
have been pushed further.

• Reliability and statistical uncertainty of the methods:

– A bootstrap approach is used to estimate the statistical reliability of both hier-
archical trees [216], [139] and correlation-based networks [220],

– Consistency proof of clustering algorithms for recovering clusters defined by
nested block correlation matrices; Study of empirical convergence rates [139],

– Kullback-Leibler divergence is used to estimate the amount of filtered infor-
mation between the sample correlation matrix and the filtered one [217],

– Cophenetic correlation is used between the original correlation distances and
the hierarchical cluster representation [166],

– Several measures between successive (in time) clusters, dendrograms, networks are
used to estimate stability of the methods, e.g. cophenetic correlation between
dendrograms in [165], adjusted Rand index (ARI) between clusters in [137], mu-
tual information (MI) of link co-occurrence between networks in [195].

• Preprocessing of the time series:

– Subtract the market mode before performing a cluster or network analysis on
the returns [22],

– Encode both rank statistics and a distribution histogram of the returns into
a representative vector [67],

– Fit an ARMA(p,q)-FIEGARCH(1,d,1)-cDCC process (econometric prepro-
cessing) to obtain dynamic correlations instead of the common approach of rolling
window Pearson correlations [188],

– Use a clustering of successive correlation matrices to infer a market state [166].

• Use of other types of networks: threshold networks [160], influence networks [86],
partial-correlation networks [107, 106], Granger causality networks [18, 225], cointegration-
based networks [211], bipartite networks [221], etc.
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• Understanding of the drivers of synchronous correlations using the properties of the
collective stock dynamics at shorter time scales [58] by using directed networks
of lagged correlations [58, 57].

2.3 Dynamics of correlations, hierarchies, networks and
clustering

Many of the empirical studies are based on the whole period available from the data. Some
researchers have started to investigate the dynamics of the empirical correlations, and also
the hierarchies, networks and clusters extracted from them (cf. [163] as one of the earliest
work). This dynamic setting which has the potential to track changes of the market structure
is more interesting for practitioners (e.g. risk managers, traders, regulatory agencies). This
research is still in its infancy and we think its results are still hardly exploitable in practice.
For instance, an interesting but difficult question is the following: Are changes in the
correlation structure due to statistical noise and data artifacts or do they provide a real
signal?

No predominant methodology has emerged for now but the naive one which consists in:

• Computing Pearson correlations on a rolling window of arbitrary length,

• then computing a network or a clustering based on the rolling empirical correlation
matrix.

Besides the shortcomings of Pearson correlation detailed above, this approach is brittle
due to its strong dependence a priori on:

• the sampling frequency (e.g., intraday, daily, weekly),

– Concerning the sampling frequency, authors in [20] notice that at intraday fre-
quency level some time is needed before the cluster organization emerges com-
pletely. According to the paper, “the changes observed in the structure of the
MST and of the hierarchical tree suggest that the intrasector correlation decreases
faster than intersector correlation between pairs of stocks” when sampling fre-
quency increases. In [22], [137], authors observe that the clusters obtained using
daily returns are similar to the ones obtained with weekly timescales, and even
to some extent to the ones using monthly returns. Most of the empirical studies
focus on daily returns and only a few explore intraday data: [20, 102, 22, 230,
122, 58]. Working with higher frequencies (e.g. at the transaction or quote level)
brings further difficulties such as coping with asynchronous data and the Epps
effect [79].

• the length T of the rolling window,

– What is the right length for the rolling window? No clear-cut answer has yet
been proposed and, in most studies, its length is set somewhat arbitrarily. In
[163], authors posit that “the choice of window width is a trade-off between too
noisy and too smoothed data for small and large window widths, respectively”
and that they “have explored a large scale of different values for both parameters,
and the given values were found optimal”. What are the proper criteria for setting
the window length? The choice can be driven by the goal (e.g. time investment
horizon), by regulatory rules (e.g. computing Value-at-Risk using 1-year historical
data), by the stability of clusters [137], by a statistical convergence rate [139], by
economic regimes or by a trade-off of the preceding criteria.

• the number N of assets studied.
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– The number of considered assets has also a significant impact on the results:
the ratio T/N drives the precision of correlation estimation and ultimately the
clustering [23], [139, 48].

This dependence makes it difficult to fully understand and analyze results. Once these
‘parameters’, i.e. the sampling frequency, T , and N , are chosen, one can study

• the dynamics of correlations:

– In [108], authors are using a sliding window of T = 22 days to measure and
monitor the eigenvalue entropy of the stock correlation matrices (estimated using
daily returns, for N = 25 (Tel-Aviv stock market), and N = 455 (from S&P500)).
They also propose a 3D visualization to monitor the configuration of stocks using
a 3D PCA.

– [148] notices three regime shifts during the period 1989-2011 by monitoring eigen-
values and eigenvectors of the empirical correlation matrices (estimated using
quarterly recorded prices from the US housing market; T = 60, N = 51, the
number of US states).

• the dynamics of the MST and other hierarchical trees:
Using summary statistics:

– The MST which evolves over time is monitored using summary statistics (also
called topological features) [161] such as the normalized tree length [163], the
mean occupation layer [163], the tree half-life [163], a survival ratio of the edges
[162, 102, 188], node degree, strength [188], eigenvector, betweenness, closeness
centrality [188], the agglomerative coefficient [145].

– Using these statistics, [163] notices that:
∗ the MST strongly shrinks during a stock market crisis,
∗ the optimal Markowitz portfolio lies practically at all times on the outskirts

of the tree,
∗ the normalized tree length and the investment diversification potential are

very strongly correlated.
– And [188] notices that in the Asia-Pacific stock market:
∗ the DST (dynamic alternative of the MST, built from dynamic correlations)

shrinks over time,
∗ Hong Kong is found to be the key financial market,
∗ the DST has a significantly increased stability in the last few years,
∗ the removal of the key player has two effects: there is no clear key market

any longer and the stability of the DST significantly decreases.
– In [103], authors observe that for the Japanese and Korean stock markets, there

is a decrease of grouping by industry categories.

Using distances or similarity measures between successive dendrograms:

– Cophenetic correlation coefficient. In [145], authors propose a cophenetic analysis
of public debt dendrograms in the European Union (N = 29 countries) computed
using Pearson correlation of quarterly debt-to-GDP ratios between 2000 Q1 and
2014 Q1 (T = 57) with a sliding window of size w = 15.

• the dynamics of clusters:

– The paper [115] finds that the cluster structures are more stable during crises
(using the p-median problem, an alternative clustering methodology).

– Authors in [102] notice that there is an “ecology of clusters”: They “can survive
for finite periods of time during which time they may evolve in some identifiable
way before eventually dissipating or dying”.
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– In [166], the authors track the merging, splitting, birth, death, contraction, and
growth of the clusters in time.

2.4 Financial applications

Though many of the academic studies focus on the MST or the clusters per se, some papers
try to extend their use beyond the filtering of empirical correlation matrices. It has been
proposed to leverage them for making financial policies, optimizing portfolios, computing
alternative Value-at-Risk measures, etc.

2.4.1 Portfolio design and trading strategies

• [163] finds that the Markowitz portfolio layer in the MST is higher than the mean layer
at all times.
• As the stocks of the minimum risk portfolio are found on the outskirts of the tree [174,

163], authors expect larger trees to have greater diversification potential.
• In [207, 165], authors compare the Markowitz portfolios from the filtered empirical cor-

relation matrices using the clustering approach, the RMT approach and the shrinkage
approach.
• [177, 169] propose to invest in different part of the MST depending on the estimated

market conditions.
• It appears that a large number of stocks are unnecessary for building an index of market

change [112].
• The paper [69] describes methods for index tracking and enhanced index tracking based

on clusters of financial time series.
• [74] introduces a procedure to design portfolios which are diversified in their tail be-

havior by selecting only a single asset in each cluster.
• [7] investigates several network and hierarchy based active portfolio optimizations, and

find their out-of-sample performance competitive with respect to conventional ones.
• In [166], they suggest that tracking the merging, splitting, birth, and death of the

clusters in time could be the basis for pairs-like reversal trading strategies but with
pairs corresponding to clusters.
• Earnings per share forecasts prepared on the basis of statistically grouped data (clus-

ters) outperform forecasts made on data grouped on traditional industrial criteria as
well as forecasts prepared by mechanical extrapolation techniques [78].
• [186] suggests that one may design a new set of Ricci network curvature based-strategies

in statistical arbitrage (e.g. for mean-reverting portfolios).

2.4.2 Risk management

How much money a given portfolio can lose? in normal market conditions? in stressed
market conditions? in the presence of systemic risk?

To answer these questions, the use of clusters and networks can help. As presented
previously, the clustering hierarchy can be used to filter a correlation [207, 213] or a tail
dependence [74] matrix, which helps to measure the risk in normal and stressed market con-
ditions respectively. The systemic risk as defined by the Bank for International Settlements
is the risk that a failure of a participant to meet its contractual obligations may in turn cause
other participants to default, with the chain reaction leading to broader financial difficulties.
Networks seem thus a particularly relevant tool to study this kind of risk.

• Study of systemic risk:
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– In [94], authors assert that the diminution of regulation has removed barriers be-
tween sectors and regions allowing bank to diversify their risk, but it also increased
the economic risk through increased interdependencies.

– The paper [120] is focused on energy derivative markets, and their market inte-
gration which can be seen as a necessary condition for the propagation of price
shocks. The MST is used to “identify the most probable and the shortest path for
the transmission of price shocks”.

– Authors in [148] focus on the US housing market. According to the paper, “dra-
matic increases in the systemic risk are usually accompanied by regime shifts,
which provide a means of early detection of housing bubbles.” They find a sharp
increase in housing market correlations over the past decade, indicating that sys-
temic market risk has also greatly increased; They observe that prices diffuse in
complex ways that do not require geographical clusters unlike worldwide stock
markets which exhibit clear geographical clustering [195].

– The paper [229] is focused on the shipping market. Authors explore the connec-
tions between the shipping market and the financial market: The shipping market
can provide efficient warning before market downturn. Alike many economic sys-
tems which have been exhibiting an increase in the correlation between different
market sectors, a factor that exacerbates the level of systemic risk, the three ma-
jor world shipping markets, (i) the new ship market, (ii) the second-hand ship
market, and (iii) the freight market, have experienced such an increase. Authors
show it using the MST, Granger causality analysis, and Brownian distance on the
prices of the real shipping market, and the stock prices of publicly-listed shipping
companies.

– [18] investigates the monthly returns of hedge funds, banks, broker/dealers, and
insurance companies. They find that all four sectors have become highly interre-
lated over the past decade, likely increasing the level of systemic risk.

– [186] shows that Ricci curvature may serve as an indicator of fragility in the
context of financial networks.

– [166] detects distinct correlation regimes between 1998 and 2013. These corre-
lation regimes have been significantly different since the financial crisis of 2008
than they had been previously. Cluster tracking shows that asset classes are now
less separated. Correlation networks help the authors to identify “risk-on” and
“risk-off” assets.

– In [154], authors study the clusters’ composition evolution, and their persistence.
They observe that the clustering structure is quite stable in the early 2000s be-
coming gradually less persistent before the unfolding of the 2007-2008 crisis. The
correlation structure eventually recovers persistence in the aftermath of the crisis,
settling up a new phase which is distinct from the pre-crisis structure one, where
the market structure is less related to industrial sector activity.
[99] finds that financial institutions which have, in the correlation networks,
greater node strength, larger node betweenness centrality, larger node closeness
centrality and larger node clustering coefficient tend to be associated with larger
systemic risk contributions.

• Risk management methods:

– In [72], authors design clusters that tend to be comonotone in their extreme low
values: To avoid contagion in the portfolio during risky scenarios, an investor
should diversify over these clusters.

– As far as diversification is concerned, portfolio managers should probably focus
on the most stable parts of the graph [120].
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– In [152], authors postulate the existence of a hierarchical structure of risks which
can be deemed responsible for both stock multivariate dependency structure and
univariate multifractal behaviour, and then propose a model that reproduces the
empirical observations (entanglement of univariate multi-scaling and multivariate
cross-correlation properties of financial time series).

We found that the risk literature using correlation networks and clusters consists essen-
tially in descriptive studies. For now, there are only too few propositions in the academic
literature to build effective network-based or cluster-based risk systems.

2.4.3 Financial policy making

Clusters and networks can help designing financial policies. Several papers propose to lever-
age them to detect risky market environments, develop indicators that can predict forth-
coming crisis or economic recovery [230], or find key markets and assets that drive a whole
region, and on which stimulus can be applied effectively.

• Authors of [94] claim that “separation prevents failure propagation and connections
increase risks of global crises” whereas the prevailing view in favor of deregulation is
that banks, by investing in diverse sectors, would have greater stability. To support
their argument, using financial networks, they study the aftermath of the Glass-Steagall
Act (1933) repeal by Clinton administration in 1999. They find that erosion of the
Glass-Steagall Act, and cross sector investments eliminated “firewalls” that could have
prevented the housing sector decline from triggering a wider financial and economic
crisis:

Our analysis implies that the investment across economic sectors itself creates
increased cross-linking of otherwise much more weakly coupled parts of the
economy, causing dependencies that increase, rather than decrease, risk.

• According to [18], bank and insurance capital requirements and risk management prac-
tices based on VaR, which are intended to ensure the soundness of individual financial
institutions, may amplify aggregate fluctuations if they are widely adopted:

For example, if the riskiness of assets held by one bank increases due to
heightened market volatility, to meet its VaR requirements the bank will have
to sell some of these risky assets. This liquidation may restore the bank’s
financial soundness, but if all banks engage in such liquidations at the same
time, a devastating positive feedback loop may be generated unintentionally.
These endogenous feedback effects can have significant implications for the
returns of financial institutions, including autocorrelation, increased corre-
lation, changes in volatility, Granger causality, and, ultimately, increased
systemic risk, as our empirical results seem to imply.

• In [120], authors find that the move towards integration started some time ago and
there is probably no way to stop or refrain it. However, regulation authorities may
act in order to prevent prices shocks from occurring, especially in places where their
impact may be important.

2.5 Practical fruits of clusters, networks, and hierarchies1

2.5.1 Stylized facts

Stylized facts can be described as follows [54]:
1reference to the book Practical Fruits of Econophysics [203]
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A set of [statistical] properties, common across many instruments, markets and
time periods, [which] has been observed by independent studies.

From the papers we reviewed, we can list the following stylized facts:

• Elements belonging to some economic sectors are strongly connected within themselves,
whereas others are much less connected.
• The Energy and Financial sectors are examples of strong connections whereas ele-

ments belonging to the Conglomerates, Consumer cyclical, Transportation, and Capital
Goods sectors are weakly connected.
• General Electric is at the center of US stocks networks (for several centrality criteria)

[133, 20, 163, 29].
• The Energy, Technology, and Basic Materials sectors are sectors of elements signifi-

cantly connected among them but weakly interacting with stocks belonging to different
economic sectors.
• The Financial sector is strongly connected within, but also to others.
• The assets of the classic Markowitz portfolio are always located on the outer leaves of

the tree [163].
• The maximum eigenvalue of the correlation matrix, which carries most of the correla-

tions, is very large during market crashes [70] (increased value of the mean correlation).
• The MST shrinks during market crashes [163] and contains a low number of clusters

[145].
• The MST provides a taxonomy which is well compatible with the sector classification

provided by an outside institution [134, 163].
• Scale free (i.e. the degree of vertices is power law distributed f(n) ∼ n−α) structure of

the MST [222, 111, 163, 21], but the scaling exponent depends on market period and
window width [162].
• The MST obtained with the one-factor model is very different from the one obtained

using real data [21]. This invalidates the Capital Asset Pricing Model which is based
on the one-factor model ri(t) = αi + βirM(t) + εi(t).
• Stocks compose a hierarchical system progressively structuring as the sampling time

horizon increases [219, 22].
• The correlation among market indices presents both a fast and a slow dynamics. The

slow dynamics is a gradual growth associated with the development and consolidation
of globalization. The fast dynamics is associated with events that originate in a specific
part of the world and rapidly (in less than 3 months) affect the global system [195,
148].
• Removing the dynamics of the center of mass decreases the level of correlations, but

also makes the cluster structure more evident [22].
• Scale invariance of correlation structure (by subtraction of the market mode) might

have important implications for risk management, because it suggests that correlations
on short time scales might be used as a proxy for correlations on longer time-horizons
[22].
• The MST is star-like in low-volatility segments, and chain-like in high-volatility seg-

ments [230].
• Volatility shocks always start at the fringe and propagate inwards [230].
• The “post-subprime” regime correlation matrix shows markedly higher absolute corre-

lations than the others [166].
• In [166], authors find far less asset class separation in the post-subprime period.
• One can distinguish three types of topological configurations for the companies: (i)

important nodes, (ii) links and (iii) dangling ends [222].
• A node keeps the majority of its neighbours. The non-randomness of the stock market

topology is thus a robust property [222].
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• The largest eigenvector of the correlation matrix is strongly non-Gaussian, tending
to uniform - suggesting that all companies participate. Authors find indeed that all
components participate approximately equally to the largest eigenvector. This implies
that every company is connected with every other company. In the stock market
problem, this eigenvector conveys the fact that the whole market “moves” together and
indicates the presence of correlations that pervade the entire system [171].
• The measure of the average length of shortest path in the PMFG shows a small world

effect present in the networks at any time horizon [219].
• Among the 100 largest market capitalization stocks in the NYSE, the auto and lagged

intraday correlations play a much more prominent role in 2011-2013 than in 2001-2003
[58].
• Authors in [58] find striking periodicities in the validated lagged correlations, charac-

terized by surges in network connectivity at the end of the trading day.
• At short time scales, measured synchronous correlations among stock returns tend to

be lower in magnitude [79], but lagged correlations among assets may become non-
negligible [209, 57].
• Banks may be of more concern than hedge funds from the perspective of connectedness

[18].
• A lack of distinct sector identity in emerging markets [164]; Few largest eigenvalues

deviate from the bulk of the spectrum predicted by RMT (far fewer than for the NYSE)
[164].
• Emergence of an internal structure comprising multiple groups of strongly coupled

components is a signature of market development [164].

2.5.2 Moot points and controversies

Though most of the conclusions of empirical studies do agree, we find some claims that seem
to be contradictory:

• Volatility shocks always start at the fringe and propagate inwards [230], but in [194],
authors assert that the credit crisis spreads among affected stocks from more centralized
to more outer ones, as spread the news about the extent of damage to the global
economy.
• One might expect that the higher the correlation associated to a link in a correlation-

based network is, the higher the reliability of the link is. The paper [220] shows that it
is not always observed empirically. However, the Cramér-Rao lower bound (CRLB) for
correlation [144] points out that the higher the correlation, the easier its estimation,
i.e. less statistical uncertainty for high correlations.
• For filtering the correlation matrix, SLCA is more stable than ALCA according to

[215], but ALCA is more stable and appropriate than SLCA according to [207, 166].
• During a crisis period, is there an increase or decrease of clusters stability? Most papers

find a decrease (e.g. [120, 154]), but at least one [115] (using an alternative clustering
methodology, the p-median problem) advocates for an increase.
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Chapter 3

Introduction to credit default swaps

3.1 Credit default swaps

This chapter does not intend to give a thorough presentation of credit default swaps and it is
not the main intent of this thesis. However, we feel that it is important to give the reader some
flavour of the credit default swap market and its data mechanism since it drove much of the
modeling decisions and tools presented in the remaining part of the thesis. We feel confident
though that the techniques we developed can be applied to many other time series sharing
similar characteristics such as meteorological time series (e.g. temperature, rainfall) and
economic variables (e.g. Gross Domestic Product, Consumer Price Index, unemployment).

3.1.1 A short introduction to credit default swaps

The credit default swap market is an important one. Its outstanding notional amounts to
trillions of dollars, often exceeding the gross domestic product of nations.

A credit default swap (CDS) is a financial swap agreement that the seller of protection
will compensate the buyer of protection in the case of a credit event such as default of
the underlying for example (cf. Figure 3.1 from Wikipedia article ‘Credit default swap’).
This bilateral contract which transfers the credit risk of a specific company or sovereign
from one party to another for a specified period of time can be considered as the simplest
and most important credit derivative [159]: CDS is like an insurance on the default of the
underlying (usually, but not exclusively, a corporate bond). Credit default swaps are thus a
very important financial product that banks can use to hedge counterparty credit risk and
credit valuation adjustment (CVA) [35].

Figure 3.1: Left: No default occurs during the lifetime of the CDS, the protection seller
gets his quarterly coupons until maturity of the contract; Right: A default occurs before the
maturity of the CDS, the protection seller stopped being paid and must pay the protection
buyer the notional of the CDS minus recovery (the figure describes an hedging use case: the
CDS notional is chosen to be the par value of a bond)

25
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The precise definitions of credit events and credit default swap contracts are given by the
International Swaps and Derivatives Association (ISDA) http://www2.isda.org/. One of
the ISDA’s mission is to standardize and document the market structure of these over-the-
counter (OTC) derivatives products.

3.1.2 CDS pricing

The main idea for pricing a credit default swap (and other derivatives) is that it should be
a fair contract at inception: neither of the two counterparties should have an advantage. It
means that the present value, i.e. the sum of the expected discounted cash flows (depicted in
Figure 3.2), of the protection-buyer leg has to be equal to the present value of the protection-
seller leg.

Figure 3.2: Left: In case of ‘no default’ the protection buyer pays to the protection seller
quarterly coupons. Before the 2009 ‘Big Bang’ the value of these coupons was a fair spread
(also called par spread), i.e. a spread such that the protection-buyer and the protection-seller
legs match at inception. After the 2009 ‘Big Bang’, it is typically a standard contractual
coupon of 100bps or 500bps (depending on the credit quality) that is quarterly paid until
maturity. An upfront payment, i.e. an amount to be exchanged immediately upon entering
the contract, is made between the two counterparties to make the deal fair; Right: In case
of ‘default’, the protection-buyer stops paying coupons to the protection-seller and received
from the protection-seller an amount equivalent to the CDS notional minus the recovery;
illustrations taken from Wikipedia ‘Credit default swap’

These present values depend on interest rates (for discounting the cash flows), but more
essentially on the probability of default to know how much cash flows to expect. Pricing a
CDS is the conversion of the CDS default probabilities to CDS prices/upfront/spreads. In
practice, most practitioners use market-based pricing, i.e. they use quotes (upfront/spread)
from the CDS market on some standard and liquid maturities (typically 1, 2, 3, 4, 5, 7,
10-year contracts) to calibrate a model of default probabilities, and then recover the CDS
prices (upfront/spread) for any (not necessarily quoted) maturities (for example 3.5 years).

Technically, it is assumed that default is a Poisson process, with an intensity (or hazard
rate) λ(t). If we note τ the default time, then the probability of default over an infinitesimal
time period dt, given no default to time t is P(t < τ < t + dt | τ > t) = λ(t)dt. The
probability of surviving to at least time T > t assuming that the default did not occur
before time t is Q(t, T ) = P(τ > T | τ > t) = e−

∫ T
t λ(s)ds. A well-spread assumption is

that t 7→ λ(t) is piecewise constant [16, 227] between the quoted maturities as depicted in
Figure 3.3. Calibration of the model, i.e. finding default probabilities that are consistent
with market prices, is thus easy: simple integration and use of the bootstrap technique [159].

Another pricing tool widely used by market participants is the ISDA standard CDS model
www.cdsmodel.com. The ISDA standard CDS model is used to convert upfronts to running
conventional spreads (given an hypothetic recovery rate, the contractual coupon and interest
rates) and conversely. This model has documented shortcomings [227, 16]: it is essentially a
conversion tool that yields a semblance of the previous fair spreads (aka par spreads) and as
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Figure 3.3: Historically, most market participants have used a piecewise constant intensities
model to calibrate spread curves from market quotes on 1, 2, 3, 4, 5, 7, 10-year credit default
swap spreads.

such acts as a lingua franca between the market participants which were accustomed to the
more convenient (but contracts are then less fungible) par spreads which are not notional
dependent unlike upfronts. These conventional spreads computed by the ISDA model should
not be used for modeling purpose, for example one should not strip hazard rates or calibrate
models across them [16].

3.1.3 Market structure and participants

There is no exchange or market place to trade credit default swaps. As of today single-name
credit default swaps are still traded over-the-counter with market makers in investment
banks. The role of these market-makers is to bring liquidity by buying and selling these
products and trying to capture the bid/ask spread to remunerate themselves for this service.
They work in two different and separated markets (cf. Figure 3.4):
• the inter-dealer market (aka the street) where they trade between themselves using

brokers’ intermediation to manage their inventories;
• with clients (hedge funds such as Hellebore Capital and other asset management com-

panies) where they act as liquidity providers.
There are about 13 main dealers for credit default swaps: JPMorgan Chase & Co., Goldman
Sachs, Morgan Stanley, BNP Paribas, Société générale, Bank of America, Barclays, Citi,
Deutsche Bank, Credit Suisse, UBS, HSBC, Nomura. As we will see in section 3.2, these
traders send messages containing prices (but not exclusively, it may also contain other infor-
mation such as market comments) to their clients. Their contribution is unequal and some
market makers contribute much more than the others (cf. subsection 3.2.2).

3.1.4 Resources

We conclude this section by listing below a few resources to understand more thoroughly the
credit default swap market:

• Data:

– DataGrapple www.datagrapple.com

– OTCStreaming www.otcstreaming.com

– ISDA http://www.swapsinfo.org/

– Bloomberg (Enter > CDWS)

– Quandl/Cambridge https://www.quandl.com/databases/CCDS

– Markit http://www.markit.com/Product/Pricing-Data-CDS
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Figure 3.4: Market-makers provide liquidity to their clients by selling and buying them
credit default swaps. If needed they can trade between themselves by using brokers services
to avoid collusion.

– Ice https://www.theice.com/market-data/pricing-and-evaluations/cds_pricing

– Thomson Reuters Datastream
http://financial.thomsonreuters.com/en/products/tools-applications/trading-investment-tools/datastream-macroeconomic-analysis.html

• Official documentation:

– ISDA http://www2.isda.org/ and more particularly https://www2.isda.org/
asset-classes/credit-derivatives/

– Big Bang Protocol (April 8, 2009):
http://www.isda.org/bigbangprot/docs/Big-Bang-Protocol.pdf

– Small Bang Protocol (July 27, 2009):
http://www.isda.org/smallbang/

– 2014 ISDA Credit Derivatives Definitions http://www2.isda.org/asset-classes/
credit-derivatives/2014-isda-credit-derivatives-definitions/

– Single-name CDS Roll http://www2.isda.org/asset-classes/credit-derivatives/
single-name-cds-roll, December 21, 2015.

– ISDA Bookstore
http://www.isda.org/publications/isdacredit-deri-def-sup-comm.aspx#isdacrd

• Books:

– Modelling single-name and multi-name credit derivatives [159]

– The credit default swap basis [53]

– An introduction to credit derivatives [52]

– Interest-Rate Models: Theory and Practice (Chapters on CDS, CDS calibration,
CDS options, CDS market models) [39]
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– Credit Models and the Crisis: A journey into CDOs, Copulas, Correlations and
Dynamic Models [44]

– Counterparty Credit Risk, Collateral and Funding, with Pricing cases for all asset
classes [41]

• Standard models:

– ISDA/Markit http://www.cdsmodel.com/cdsmodel/

• ISDA research:
Single-name Credit Default Swaps: A Review of the Empirical Academic Literature [56]
http://www2.isda.org/attachment/ODcwMw==/Single-Name%20CDS%20Literature%
20Review%20-%20Culp,%20van%20der%20Merwe%20&%20Staerkle%20-%20ISDA.pdf

• Sell-side research:

– CDS Curve Trading Handbook 2008 - Quantitative Credit Strategy [175]
http://mhderivativesolutions.com/wp-content/uploads/2014/07/6716-Barclays-Capital-CDS-Curve-Trading-Handbook-20081.pdf

• Academic research with practical concerns (the following list does not intend to be
exhaustive at all):

– [31], [34], [40], [30], [32], [43], [42], [13], [208], [37], [35], [38], [44], [45], [36], [33],
[16], [47], [46]
Notice that the works [32, 43] also deal with a notion of clustering: the clustering
of defaults. Authors (Brigo et al.) propose the first arbitrage-free dynamic loss
model that can be calibrated cross-sectionally and consistently to tranches (of a
credit derivatives portfolio) for different attachment and detachment points and
maturities. They observe that clusters (modes) appear on the tail of the implied
loss distribution coming from the model calibration under the pricing measure.
This clustering in the loss distribution is analyzed through the financial crisis in
[38], and the youtube video https://www.youtube.com/watch?v=YZO-HeaGHkk&
t=62m40s shows an animation with this clustering behaviour through the crisis.
Though interesting for credit derivatives risk management, this type of clustering
(implied clustering of defaults with respect to the pricing measure) is not inves-
tigated further in this thesis. It could have been a fruitful avenue of research to
compare the implied clustering (of defaults) versus the historical clustering based
on a tail-dependence measure: Does the hierarchical clustering structure based
on a tail-dependence measure estimated on historical data become sharper when
the clusters in the implied distribution loss appear? The question is left open.

3.2 A database of CDS quotes sent by dealers

The market structure for credit derivatives, and in particular for credit default swaps and
credit default swaps indices, keeps transforming and modernizing. In its “Big Bang” of April
2009, the International Swaps and Derivatives Association (ISDA) introduced a number of
documentation changes where the single-name CDS contracts have been standardized (http:
//www.isda.org/press/press040809.html). After that major standardization phase, as
one of the consequences of the ‘Dodd-Frank Wall Street Reform and Consumer Protection
Act’ vote, transaction mechanisms for CDS indices have evolved: CDS indices can be (but
not exclusively) traded on Swap Execution Facilities (SEFs), which are electronic platforms
for financial swaps trading. SEFs provide pre-trade information such as bid and offer quotes.
SEFs also record the trades which are done on the platforms and they have to release publicly
part of the information in swap default repositories (SDRs) in order to comply with the
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‘Dodd-Frank Act’ (cf. Section 3.3). However, as of today, messages (such as emails or
Bloomberg chats) remain the mainstream way to convey information between dealers and
their clients.

This section presents Hellebore Capital’s proprietary database of credit derivatives mes-
sages. We first describe in subsection 3.2.1 a few typical messages and explain their content.
Then, we propose a descriptive study of the database volumetry and its main characteristics
in subsection 3.2.2. We also briefly describe in subsection 3.2.3 how we convert this raw data
into time series.

3.2.1 Zoology of credit default swaps messages

The ever growing database of messages is as of today the main source of information for
Hellebore Capital upon which models, decision making and other processings (market mon-
itoring, valuation, risk calculations) rely on.

Hellebore Capital receives about 20,000 messages a day which add to the database count-
ing more than 40,000,000 messages in total.

Messages contain bid and ask prices for CDS, CDS indices, options on CDS indices,
tranches, bonds, loans and other bespoke products. Some may contain market comments
from traders or simply financial news that were forwarded to Hellebore’s mailbox. We display
in Figures 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 a few typical examples of messages received
from Hellebore Capital’s counterparties, i.e. the main credit dealers, to illustrate the raw
material.

The message depicted in Figure 3.5 is a typical example of a CDS ‘run’: it contains a list of
bids and asks (which are separated by the “/” character) for a subset of credit default swaps.
The trader who had sent it is in charge of the ‘Automotive’ sector and showed Hellebore
Capital quotes on the 5-year credit default swaps on these companies (BMW, Daimler, Ford
Credit Europe, Fiat, Peugeot, Porsche, Renault, Jaguar and Volkswagen). Quoted entities
are designated here by both a ‘long name’ (rightmost column in the message) and a ‘ticker’
(leftmost column). Most of the time, only tickers are used. There may exist several ‘reference’
ticker (from Bloomberg, Markit, etc.) for designating a given credit default swap. Their use
is at the counterparty discretion. The market-maker also gave us ‘curve switches’ (columns
3s5 and 5s7), i.e. the price difference between a 3-year contract and a 5-year contract (3s5),
here 15/21 for BMW, and the price difference between a 5-year contract and a 7-year contract
(5s7), here 12/20 for BMW. We can notice that the price for a 2 year extension of the contract
between a 3-year maturity to a 5-year one is more expensive than the price for extending
from a 5-year maturity to a 7-year one. The CDS term structure is concave which is the
standard behaviour for unstressed entities. We can also notice that the market-maker did
not give the ‘switch’ information for all the single-names (FIAT, PEUGOT, TTMTIN curves
are missing). In the third column from the left, the market-maker indicated some additional
information: the price change since the previous end of day.

The message displayed in Figure 3.6 is about some European ‘High-Yield’ single-name
credit default swaps. Unlike the previous one which is focused on a particular sector (au-
tomotive industry), this one gathers entities having a ‘High-Yield’ (non investment grade)
rating and which are members of the iTraxx Crossover (XO) index. The market-maker in-
dicated that this information is conditional to a given price of the index: “XO = 239.50”. In
this message, there are only information for the 5-year credit default swaps (not the curves),
but more detailed:
• Both a ticker (leftmost column) and a longer name (rightmost column),
• Bid and ask spreads separated by “...”,
• Indicative notional sizes (in million of euros) for which these quotes are valid: The

market-maker gave the size for both the bid and ask spreads separated by the character
“x”. Notice that they are the same but for one entity (Hellenic Telecom, 2x0) which
incurred a strong widening of its spread: +10bps (indicated in the ‘CoD’ column).
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Figure 3.5: A CDS run on the automotive sector

• The CDS standard coupon is indicated (typically 100 or 500 bps). This information
is mandatory to correctly interpret the CDS spread, but is often left implicit in the
messages.
• A market on recovery rate swaps (column “RR Swap”). They are another kind of

derivatives whose purpose is to hedge the recovery risk in case of a default. They
essentially become traded when an entity is near default, otherwise they take a standard
and conventional value of 40% for European credit default swaps referencing senior debt
(20% for subordinated debt; other standard rates for Asian and American entities).

Figure 3.6: A run on some European “High-Yield” CDSs, mostly members of the XO index

The two previous messages were describing bid and ask prices for a particular subset of
credit default swaps quoted by a given trader. A market-maker may sometimes be partic-
ularly interested to clean positions from his portfolio and can indicate it very clearly such
as in the message depicted in Figure 3.7. We can learn from it that this trader is willing
to buy some names (e.g., “BUYER ABIBB”) and sell others (e.g., “SELLER BERTEL”) at
the proposed levels (indicated by the character ‘@’ followed by the spread in bps; here it is
implicit that the focus is on 5-year maturity contracts with standard coupon of 100 bps).
Since market-makers at the moment of sending axes are generally willing to trade and reveal
their interest, they propose to their clients rather aggressive prices (at least according to
their market view) to win the trades from their competitors (other market-makers in the
major investment banks). Notice that this information was also somewhat present in the
previous message (in Figure 3.6): proposed sizes for Hellenic Telecom were 2x0 meaning that
the market-maker did not want to offer the CDS.

The message in Figure 3.8 was sent by a “High-Yield” trader. It gives several inter-
esting pieces of information besides the 5-year prices such as the standard coupons which
are implicitly 500 bps but for one CDS (Ladbrokes PLC) which has a coupon of 100 bps
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Figure 3.7: Axes for investment grade ‘retail’, ‘media’ and ‘telecommunications’ single names

(indicated by the character “#” explained in the message header), price changes and alter-
native tickers for some companies (e.g., BAB and IAGLN for British Airways PLC; UNITY,
LBTYA, IESY for Unitymedia KabelBW GmbH; NXPBV, NXPI for NXP B.V.). Quotes for
Air France-KLM, Altice SA, Eileme 2 AB, Scandinavian Airlines System Denmark-Norway-
Sweden, TVN Finance Corp III AB, Vougeot Bidco PLC are only ‘indicative’ (cf. character
“*” in the message header). The trader is showing us that he is not willing to trade at these
levels or on these names at the moment.

Figure 3.8: A CDS run on some European “High-Yield” single names including indicative
quotes

The message displayed in Figure 3.9 has a rich content as it describes several different
contracts for a given entity:
• Bids and asks spreads for the most quoted maturities, i.e. 1, 3, 5, 7, 10-year contracts;
• Bids and asks spreads (also the recovery rate in column ‘REC’) for the two different

ISDA definitions: 2003 and 2014 (cf. the ‘ISDA’ column).
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The trader also gave the price to switch from the old 2003 definition to the new 2014 credit
default swaps revised definition updated by the ISDA. We can notice that buying protection
is more expensive (higher spread) for the new ISDA 2014 definition than for the ISDA 2003
one. Indeed, the chances of triggering the CDS in case of a default are slightly higher due to
a wider definition of what constitutes a default. These amendments were incentivised by the
experience of the great financial crisis of 2007-2008 and the Greek default to better tackle
government bail-ins of banks and sovereign credit event mechanism.

Figure 3.9: A full CDS run with curves for European sovereigns (2003 and 2014 ISDA
definitions)

Close to the roll dates (March 20 and September 20 of each year since December 21, 2015
- before this date single-name credit default swaps were rolled quarterly: every March 20,
June 20, September 20, December 20) market-makers send messages such as those displayed
in Figure 3.10. They indicate how much the client has to pay to roll its current 5-year CDS
(which is going to be off-the-run after the roll date, i.e. much less liquid since its 4.5-year
equivalent maturity is not standard and quoted) into a 5.5-year contract (as indicated by
‘ROLLS 5-5.5y’). The 5.5-year contract will become a plain 5-year CDS after the roll date
and as such will de facto benefit from the best liquidity possible in the market. In Figure 3.10,
the message on the left only indicates rolls for Latin American sovereign credit default swaps,
but not the outright levels; the message displayed on the right gives both outright 5-year
prices and the ‘5-5.5y’ rolls for US insurance credit default swaps. Notice that the price for
a 6-month extension of a 5-year contract corresponds roughly to 1/10th of the price for the
5-year contract; only roughly since the term structure is not necessarily linear.

The message in Figure 3.11 is typical of a market on indices: a one-liner in the subject
of the email, repeated in the body, and containing index vintage (usually the on-the-run
one), bid and ask spreads, index ticker. Here, the iTraxx Crossover (“XO”, in short) and the
iTraxx Europe (aka the “Main”) are the indices concerned. The maturity is implicitly 5 years
since index vintage “S22” was the on-the-run one at that time. Sometimes this information
is also implicit. This kind of message is sent with a relatively high-frequency by the dealers
(several times an hour) as these indices are particularly liquid.

At a much lower frequency, market-makers also send messages containing prices for other
less liquid maturities (such as the 3, 7, 10-year in Figure 3.12) and off-the-run index vintages
(such as IG22, IG21, IG20, . . . , IG4 in the message displayed in Figure 3.12).
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Figure 3.10: Latin American sovereign rolls (left); 5-year spreads (top) + rolls (bottom) for
US insurance credit default swaps (right)

Figure 3.11: A market on two European CDS indices: iTraxx Europe and iTraxx Crossover

Figure 3.12: A run on CDX North American Investment Grade index: curves and off-the-run
vintages

3.2.2 Descriptive statistics of the database

In this subsection, we briefly describe the content of Hellebore Capital’s database in terms
of volumetry through the graphs displayed in Figures 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19,
3.20, 3.21, 3.22 (produced by Philippe Very).

In Figure 3.13, we display the number of quotes received daily on CDS and CDS indices.
We can see that these numbers peaked during the European debt crisis (about 80,000 quotes
a day).

If we consider only 5-year credit default swaps which are by far the most liquid ones, we
can see in Figure 3.14 that they amount for about half of the total number of quotes received
each day.

In Figure 3.15, we focus on the daily number of 5-year quotes received by geographical
region (Asia, US, Europe) subdivided by rating (investment grade or high-yield). We can
see that the most contributed 5-year credit default swaps are those on the Europe and US
investment grade entities. Relatively few quotes are available on Asia credit default swaps.
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Figure 3.13: Daily number of quotes received concerning CDS and CDS indices

Figure 3.14: Half of the quotes received daily relate to 5-year credit default swaps

In Figure 3.16, we display the proportion of 5-year quotes received from the different
dealers by ‘region - rating’. We can see that for Asian High-Yield entities more than 60% of
the 5-year quotes were sent by a single dealer (Dealer 2). This dealer is also very active in
sending information on sovereign 5-year credit default swaps. For Europe and US, investment
grade and high-year, Dealer 1 is a major contributor. He sends 50% of the total number
of quotes on US entities, 35% of the total number of quotes. Dealer 2 and 3 have sent
respectively 13% and 12% of the total number of quotes for 5-year credit default swaps.

In Figure 3.17, we display the number of quotes received each hour during an average
trading day. Notice that we receive some quotes during the night which correspond to quotes
on Asian entities; They are sent between 23pm until the Asian market is closed at roughly
10am. The bulk of quotes is received between 6am and 8pm. We receive the highest number
of quotes during the day when both the European and US markets are open, i.e. between
11am and 16pm. For each market (Europe and US), a peak is observed at the start of the
trading day (7am and 12am respectively) as market-makers may send full runs with the
opening prices.

In Figure 3.18, we display the proportion of the quotes received for different CDS ma-
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Figure 3.15: Daily number of quotes for 5-year credit default swaps by ‘region - rating’

Figure 3.16: Proportion of 5-year quotes received from the different dealers by ‘region -
rating’

turities by ‘region - rating’. We can notice that in Asia, most of the quotes received relate
to 5-year contracts. For Asian investment grade entities, the quotes on 5-year credit default
swaps constitute more than 90% of the information received; 60% for European entities and
50% overall. To see better how the quotes are distributed between the less liquid maturities,
we display the same graph excluding the 5-year quotes in Figure 3.19.

Overall quotes on maturities other than the 5-year one are rather equally distributed:
20% for the 3,7-year quotes, 14% for the 4,10-year quotes. However, the proportion of 10-
year quotes significantly varies across the regions: 13% and 7% for US investment grade
and US high-yield respectively, but more than 40% for sovereign entities; almost no 10-year
quotes for Asia high-yield entities. For the latter ones, the 3-year CDS maturity is the most
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Figure 3.17: Average number of 5-year CDS quotes received each hour during a trading day;
In color, the ‘region - rating’ proportion concerned by the quotes is indicated

Figure 3.18: Proportion of the quotes received for different CDS maturities by ‘region -
rating’

significant one (excluding 5-year quotes): 35% of the information on curves.
In Figure 3.20, we display the proportion of the quotes received from the different dealers

by CDS maturity. We can notice that most of the information on curves (about 70% overall)
was sent from a single dealer (Dealer 1), especially for 1,2,4-year credit default swaps. For
US entities, Dealer 1 have sent 80% of all the curves. For European entities, ‘only’ 50% of
the quotes on curves were sent by Dealer 1. Dealer 2, Dealer 4 and Dealer 7 had also a
significant contribution with 15%, 16% and 12% of the total number of quotes on European
curves respectively. Dealer 1 is also the one who sends most of the information on 5-year
contracts (about 35%).

In Figure 3.21, we display the proportion of received quotes on curves (maturities other
than the 5-year one) by ‘region - rating’ and by ‘sector’. We can notice that most of them
relate to European investment grade entities (27% of the quotes on curves) and US investment
grade entities (38%). We do not receive many curves on Asian entities (less than 1%).
Concerning the distribution of received curves by sector, 22% of them relate to financial
entities and 32% to consumer goods entities (17% cyclical, 15% non-cyclical); for other
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Figure 3.19: Proportion of the quotes received for different CDS maturities (without the
most contributed 5-year) by ‘region - rating’

Figure 3.20: Proportion of the quotes received from the different dealers by CDS maturity

sectors, curves are roughly equally distributed (around 8%) but for the technology sector
(only 2%).

Figure 3.21: Proportion of received CDS curves (1,2,3,4,7,10-year) by ‘region - rating’ and
by ‘sector’

In Figure 3.22, we show the distribution of the quotes received from the different dealers
by CDS index. Dealer 1 is still the most significant provider of information with 28% of the
quotes sent overall followed by Dealer 4 (19%), Dealer 3 (13%) and Dealer 2 (12%). However,
their contribution strongly depends on the index family: Dealer 7 (30%) and Dealer 4 (26%)
are the major provider of quotes on the US investment grade indices (CDXIG family) whereas
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Dealer 1 had sent only 7% of the CDXIG quotes; On financial indices (ITXES and ITXEU),
Dealer 1 is the major one by far with 37% of all the quotes sent.

Figure 3.22: Proportion of the quotes received from the different dealers by CDS index

3.2.3 From quotes to time series

One of the service provided by Hellebore Technologies is the accurate extraction of infor-
mation from these messages into a standard structured database (www.scriptminer.com).
Part of the methodology using modern Natural Language Processing techniques such as to-
ken embeddings is presented in [200] and has been the subject of Marc Szafraniec research
internship.

In Figure 3.23, we show the quotes received on the 5-year CDS of Banco Santander, S.A.
during one week (between September 6, 2016 and September 14, 2016). We can notice that
several market-makers (11 market-makers that have been anonymized as A, B, . . . , K) have
contributed to quote its spread according to their market views, the flows from clients, the
content of their inventory and their risk limits. They send these bid and ask quotes more
or less frequently and not necessarily regularly. We thus receive asynchronously these price
updates from the different market-makers.

This information is then fed to the many services (market-based valuation of credit deriva-
tives portfolios, risk calculation, market monitoring, backtesting quantitative strategies, etc.)
running at Hellebore Capital.

One of the first such processing is the building of synthetic order books. These synthetic
order books, which are inspired by the order books on organized markets, help to summarize
efficiently all this information. In our synthetic order book, quotes are ordered from the best
bid to the worst one, same for ask quotes so that it gives Hellebore Capital the best market
conditions (counterparties and spreads) when it decides to trade. We can visualize these
real-time ‘best bid / best ask’ in Figure 3.24. To effectively implement these synthetic order
books, two assumptions are made: (i) price persistence (we do not know for how long a quote
is valid, it is not necessarily valid until we receive a new one from the same market-maker)
up to a certain amount of time; (ii) priority to certain dealers which are known to be more
reliable. The thorough study and modeling improvement of these synthetic order books is
one of the research axes at Hellebore Capital. Mikołaj Bińkowski, a PhD student supervised
by Prof. Rama Cont at Imperial College London, is partially working on this topic [19].

Once the ‘best bid / best ask’ quotes have been identified on all the products, further
processings can be applied to their mid-price (arithmetic average of the best bid and best
ask quotes). For example, one can build historical daily time series by taking snapshots
of these mid-prices at 5:00 PM GMT (convenient but arbitrary closing time which helps
to alleviate many statistical issues due to the different market closing hours) every trading
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Figure 3.23: Quotes on Santander CDS received from 11 different market-makers during one
week
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Figure 3.24: Quotes from four different market participants (sources) for the same CDS
(iTraxx Europe Main Index, a tradable Credit Default Swap index of 125 investment grade
rated European entities) throughout one day. Each trader displays from time to time the
prices for which he offers to buy (bid) and sell (ask) the underlying CDS. The filled area
marks the difference between the best sell and buy offers (spread) at each time.
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days. It yields time series such as those displayed in Figure 3.25 and available in DataGrapple
(www.datagrapple.com) starting January 2006 and still growing as of today. . .

Figure 3.25: Historical time series of ‘Consumer, non-cyclical’ 5-year CDS spreads (with
coupon 100) over the last 3 years; DataGrapple (www.datagrapple.com), powered by Helle-
bore Technologies, is a web portal that allows to browse efficiently thousands of time series
using hierarchical clustering

3.3 A database of reported trades on CDS indices

Besides the information extracted in the messages received from CDS market-makers, a good
market monitoring should also include a real-time feed from the Swap Execution Facilities
(SEFs) and the trades that other market participants have done and reported. In this
section, we present a dataset of reported trades on CDS indices. This dataset has been
created by financial regulations following the financial crisis of 2007-2008 where the opacity
of derivatives and swaps markets were largely incriminated. Though these regulations have
incurred large operational costs for financial institutions and their clients to report correctly
all information required, we think that these data are under-exploited (perhaps due to a
difficult and poorly documented access). For now, a curated version of the data is freely and
readily available at www.otcstreaming.com. We have started to investigate this dataset,
and presented our first findings at the XVIII workshop on quantitative finance https://
sites.google.com/site/qfw2017/. Though this dataset can be valuable on a standalone
basis, it could be even more interesting when coupled to other datasets such as CDS quotes.
It remains to be determined whether it is really the case.

3.3.1 Regulatory context of swap data repositories

First sentence of the G20 Leaders Statement of the Pittsburgh Summit (September 24-25,
2009) preamble:

We meet in the midst of a critical transition from crisis to recovery to turn
the page on an era of irresponsibility and to adopt a set of policies, regulations
and reforms to meet the needs of the 21st century global economy.

More precisely, they propose
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strengthening prudential oversight, improving risk management, strengthen-
ing transparency, promoting market integrity, establishing supervisory colleges,
and reinforcing international cooperation.

They have

enhanced and expanded the scope of regulation and oversight, with tougher
regulation of over-the-counter (OTC) derivatives.

G20 leaders have decided that:

All standardized OTC derivative contracts should be traded on exchanges
or electronic trading platforms, where appropriate, and cleared through central
counterparties by end-2012 at the latest. OTC derivative contracts should be
reported to trade repositories. Non-centrally cleared contracts should be subject
to higher capital requirements. We ask the Financial Stability Board (FSB)
and its relevant members to assess regularly implementation and whether it is
sufficient to improve transparency in the derivatives markets, mitigate systemic
risk, and protect against market abuse.

These decisions were implemented by the Dodd-Frank Wall Street Reform and Consumer
Protection Act (Dodd-Frank Act), July 21, 2010, in the United States, and by the European
Market Infrastructure Regulation (EMIR), July 4, 2012, in Europe. EMIR was a major
development which enabled the European Union to deliver the G20 commitments on OTC
derivatives agreed in Pittsburgh in September 2009, nearly two years after the US.

Swap data repositories (SDRs) are entities created by the Dodd-Frank Act in order to
provide a central facility for swap data reporting and recordkeeping. Under the Dodd-Frank
Act, all swaps, whether cleared or uncleared, are required to be reported to registered SDRs.
SDRs are required to register with the Commodity Futures Trading Commission (CFTC)
and comply with rules promulgated by the CFTC, including real-time public reporting of
swap transaction and pricing data www.cftc.gov/industryoversight/datarepositories/
index.htm. These electronic platforms, acting as authoritative registries of key information
regarding open OTC derivatives trades, are thought to provide an effective tool for mitigating
the inherent opacity of OTC derivatives markets. Several firms are currently registered as
SDRs in the US and in Europe.

Concerning credit default swaps, DTCC (Depository Trust & Clearing Corp.) and BSDR
LLC (Bloomberg) are the major SDRs, and in practice get all the trades. For now only CDS
indices are reported. However, starting the 3rd January 2018, CDS single-names will also
be reported in the “Approved Publication Arrangement” (European equivalent of the SDRs)
according to MiFIR regulation.

In the next section, we briefly analyze the data that have been recorded since 2012-01-03
on DTCC, and since 2014-05-30 on Bloomberg SDRs (cf. Figure 3.26 for the 5-year iTraxx
Europe Main Index ITXEB historical data).

3.3.2 Descriptive statistics of the dataset

The dataset comprises:

• more than 600,000 transactions registered (as of Dec. 2016)

• 4 sources of data: ’Bloomberg SEF’, ’Bloomberg OTC’, ’Dtcc SEF’, ’Dtcc OTC’

• 14 different CDS indices (some of them are not traded/liquid anymore)

Numerical experiments (Python Notebooks) and SDRs historical data access through
APIs are made available for reproducible research, and further investigation (www.otcstreaming.
com).



3.3. A DATABASE OF REPORTED TRADES ON CDS INDICES 43

Statistics of traded volumes

We give here some simple statistics about the volumes traded on the main credit indices. All
the graphs can be reproduced using code and data available at http://public.otcstreaming.
com/tech/articles.

List of CDS indices (Markit defines and owns the indices), and their definition:

• ITXEB, the iTraxx Europe index comprises 125 equally-weighted European names

• ITXEX, the iTraxx Crossover comprises the 75 most liquid sub-investment grade enti-
ties

• ITXES, the iTraxx Europe Senior Financials index comprises 25 financial entities from
the iTraxx Europe index referencing senior debt

• ITXEU, the iTraxx Europe Subordinated Financials index comprises 25 financial en-
tities from the iTraxx Europe index referencing subordinated debt

• ITXEE, the iTraxx Corp CEEMEA index comprises 25 of the most liquid corporate
and quasi-sovereign entities from Central & Eastern European, Middle Eastern and
African countries

• ITXHV, the iTraxx Main HiVol index comprises 30 entities with the widest 5-year CDS
spreads from the iTraxx Europe Non-Financials index

• ITXSW, the iTraxx Western Europe Sovereign index comprises the 15 most actively
traded contracts from Western Europe sovereign credit default swaps

• ITXAA, the iTraxx Australia index comprises 25 of the most liquid Australian entities
with investment grade credit ratings

Figure 3.26: Each reported trade is represented by a colored dot. The color indicates the
index vintage (which is updated every 6 months) membership.
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• ITXAJ, the iTraxx Japan index comprises 50 of the most liquid Japanese entities with
investment grade credit ratings

• ITXAG, the iTraxx Asia Ex-Japan index comprises 40 of the most liquid Asian entities
with investment grade credit ratings

• CDXIG, the CDX IG index comprises 125 of the most liquid North American entities
with investment grade credit ratings

• CDXHY, the CDS HY index comprises 100 liquid North American entities with high
yield credit ratings

• CDXEM, the CDX EM index comprises sovereign issuers from Latin America, Eastern
Europe, the Middle East, Africa and Asia

• CDXHV, the CDX HiVol index comprises 30 entities in the CDX IG index with the
widest 5-year average CDS spreads over the last 90 days prior to the CDX HiVol index
composition

Not all of these indices are liquid. Some of them (ITXEE, ITXHV, ITXSW, CDXHV)
are not traded any longer. In Table 3.1, we show how many trades occur during a trading
day, in average.

Table 3.1: Average number of trades and traded volume for a day

Market Index number of trades traded volume

Europe

ITXEB 121 4687 mm EUR
ITXEX 122 1717 mm EUR
ITXES 42 1188 mm EUR
ITXEU 10 158 mm EUR
ITXEE � 1
ITXHV � 1
ITXSW � 1

Asia
ITXAA 6 123 mm USD
ITXAJ 7 11703 mm JPY
ITXAG 8 161 mm USD

America

CDXIG 177 9662 mm USD
CDXHY 189 3458 mm USD
CDXEM 45 691 mm USD
CDXHV � 1

Since the mean is only a rough indicator of the whole distribution. We also display below
the full distribution for ITXEB. We notice (cf. Figure 3.27) that though the distributions
are skewed, the mean is meaningful and roughly corresponds to the mode of the distribution.

In Table 3.1 and Figure 3.27 data have been aggregated by trading day. In Figure 3.28, we
look for seasonality during the trading day (by aggregating data by hours), and throughout
the week (by aggregating data by weekdays).

We show in Figure 3.29 the distribution of trades by trade-size. For each index, most of
the trades concentrate on a few standard sizes (10, 25, 50, 100mm).

A marked point process

Reported trades arrive in irregular time intervals, while standard econometric techniques are
based on fixed time interval analysis. As we have done previously in our simple statistical
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Figure 3.27: (top) Correlation between volumes and number of trades: The daily number
of trades and the total volume reported each day are very correlated (about 0.95 for all
indices); (below) the distributions are skewed: the volume distribution is more skewed than
the number of trades one; (left) number of trades; (right) total volume traded throughout
the day
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Choosing ’London time’ we can see that
the most active trading hours are between
2pm and 3pm when both US and Euro-
pean markets are open. That is, in the
afternoon for European indices (ITXEB,
ITXEX, ITXES), but in the morning (lo-
cal time) for the US index CDXIG.
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One may think that Casual Friday is the
coolest day of the week, and that most of
the trading have already been done. This
prejudice is just plainly wrong according to
the SDRs data, and pictured by the graphs
below. If there is such a thing as a low
activity day, then it is definitely Monday!

Figure 3.28: (left) Average distribution of the traded volume over the day; (right) Average
distribution of the traded volume over the week.
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Figure 3.29: We can see that ITXEX usually trades in small sizes (more than 1/3 trades are
10mm) whereas CDXIG trades are usually bigger (more than 1/4 trades are over 100mm).
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Figure 3.30: Distributions of intraday price changes and durations for ITXEB525

analysis of the traded volumes, we can alleviate this problem by aggregating transaction
data. However, the choice of a proper time interval is not obvious: Too short, one can
introduce biases due to empty intervals; Too long, much of the information is lost. The
‘optimal’ length of the interval may also depend on several seasonality factors (as we have
seen in Figure 3.28).

For ITXEB525, considering all the intraday data while it has been on-the-run, we find
that:

• minimum time between two successive trades (duration) is 0 seconds

• maximum duration is 14843 seconds (4 hours 7 minutes 23 seconds)

• median duration is 242 seconds (4 minutes 2 seconds)

• average duration is 487 seconds (8 minutes 7 seconds), with standard deviation of 761
seconds (12 minutes 41 seconds)

Distributions of the intraday price changes and durations for this index (5-year series 25)
while being on-the-run are displayed in Figure 3.30.
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Novel contributions to the clustering of
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Chapter 4

Consistency of clustering correlated
random variables

4.1 Consistency

Researchers have used from 30 days to several years of daily returns as source data for
clustering financial time series based on their correlations. This paper sets up a statistical
framework to study the validity of such practices. We first show that clustering correlated
random variables from their observed values is statistically consistent. Then, we also give a
first empirical answer to the much debated question: How long should the time series be? If
too short, the clusters found can be spurious; if too long, dynamics can be smoothed out.

Introduction

Clustering can be informally described as the task of grouping objects in subsets (also named
clusters) in such a way that objects in the same cluster are more similar to each other than
those in different clusters. Since the clustering task is notably hard to formalize [114],
designing a clustering algorithm that solves it perfectly in any cases seems farfetched. How-
ever, under strong mathematical assumptions made on the data, desirable properties such
as statistical consistency, i.e. more data means more accuracy and in the limit a perfect
solution, have been shown: Starting from Hartigan’s proof of Single Linkage [95] and Pol-
lard’s proof of k-means consistency [173] to recent work such as the consistency of spectral
clustering [224], or modified k-means [204, 205]. These research papers assume that N data
points are independently sampled from an underlying probability distribution in dimension
T fixed. Clusters can be seen as regions of high density. They show that in the large sample
limit, N → ∞, the clustering sequence constructed by the given algorithm converges to a
clustering of the whole underlying space. When we consider the clustering of time series,
another asymptotics matter: N fixed and T → ∞. Clusters gather objects that behave
similarly through time. To the best of our knowledge, much fewer researchers have dealt
with this asymptotics: [23] show the consistency of three hierarchical clustering algorithms
when dimension T is growing to correctly gather N = n + m observations from a mixture
of two T dimensional Gaussian distributions N (µ1, σ

2
1IT ) and N (µ2, σ

2
2IT ). [182, 109] prove

the consistency of k-means for clustering processes according to their distribution. In this
work, motivated by the clustering of financial time series, we will instead consider the consis-
tency of clustering N random variables from their T observations according to their observed
correlations.

For financial applications, clustering is usually used as a building block before further
processing such as portfolio selection [207]. Before becoming a mainstream methodology
among practitioners, one has to provide theoretical guarantees that the approach is sound.
In this work, we first show that the clustering methodology is theoretically valid, but when
working with finite length time series extra care should be taken: Convergence rates depend
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on many factors (underlying correlation structure, separation between clusters, underlying
distribution of returns) and implementation choice (correlation coefficient, clustering algo-
rithm). Since financial time series are thought to be approximately stationary for short
periods only, a clustering methodology that requires a large sample to recover the under-
lying clusters is unlikely to be useful in practice and can be misleading. In section 4.2,
we illustrate on simulated time series the empirical convergence rates achieved by several
clustering approaches.

Notations

• X1, . . . , XN univariate random variables

• X t
i is the tth observation of variable Xi

• X(t)
i is the tth sorted observation of Xi

• FX is the cumulative distribution function of X

• ρij = ρ(Xi, Xj) correlation between Xi, Xj

• dij = d(Xi, Xj) distance between Xi, Xj

• Dij = D(Ci, Cj) distance between clusters Ci, Cj

• Pk = {C(k)
1 , . . . , C

(k)
lk
} is a partition of X1, . . . , XN

• C(k)(Xi) denotes the cluster of Xi in partition Pk

• ‖Σ‖∞ = maxij Σij

• X = Op(k) means X/k is stochastically bounded, i.e. ∀ε > 0, ∃M > 0, P (|X/k| >
M) < ε.

4.1.1 The Hierarchical Correlation Block Model

Stylized facts about financial time series

Since the seminal work in [133], it has been verified several times for different markets (e.g.
stocks, forex, credit default swaps [137]) that price time series of traded assets have a hierar-
chical correlation structure. Another well-known stylized fact is the non-Gaussianity of daily
asset returns [54]. These empirical properties motivate both the use of alternative correlation
coefficients described in section 4.1.1 and the definition of the Hierarchical Correlation Block
Model (HCBM) presented in section 4.1.1.

Dependence and correlation coefficients

The most common correlation coefficient is the Pearson correlation coefficient defined by

ρ(X, Y ) =
E[XY ]− E[X]E[Y ]√

E[X2]− E[X]2
√
E[Y 2]− E[Y ]2

(4.1)

which can be estimated by

ρ̂(X, Y ) =

∑T
t=1(X t −X)(Y t − Y )√∑T

t=1

(
X t −X

)2
√∑T

t=1

(
Y t − Y

)2
(4.2)

where X = 1
T

∑T
t=1X

t is the empirical mean of X. This coefficient suffers from several
drawbacks: it only measures linear relationship between two variables; it is not robust to
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noise and may be undefined if the distribution of one of these variables have infinite second
moment. More robust correlation coefficients are copula-based dependence measures such as
Spearman’s rho

ρS(X, Y ) = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3 (4.3)

= 12 E [FX(X), FY (Y )]− 3 (4.4)
= ρ (FX(X), FY (Y )) (4.5)

and its statistical estimate

ρ̂S(X, Y ) = 1− 6

T (T 2 − 1)

T∑
t=1

(
X(t) − Y (t)

)2
. (4.6)

These correlation coefficients are robust to noise (since rank statistics normalize outliers)
and invariant to monotonous transformations of the random variables (since copula-based
measures benefit from the probability integral transform FX(X) ∼ U [0, 1]).

The HCBM model

We assume that the N univariate random variables X1, . . . , XN follow a Hierarchical Correla-
tion Block Model (HCBM). This model consists in correlation matrices having a hierarchical
block structure [9], [117]. Each block corresponds to a correlation cluster that we want to
recover with a clustering algorithm. In Fig. 4.1, we display a correlation matrix from the
HCBM. Notice that in practice one does not observe the hierarchical block diagonal struc-
ture displayed in the left picture, but a correlation matrix similar to the one displayed in the
right picture which is identical to the left one up to a permutation of the data. The HCBM
defines a set of nested partitions P = {P0 ⊇ P1 ⊇ . . . ⊇ Ph} for some h ∈ [1, N ], where P0

is the trivial partition, the partitions Pk = {C(k)
1 , . . . , C

(k)
lk
}, and

⊔lk
i=1C

(k)
i = {X1, . . . , XN}.

For all 1 ≤ k ≤ h, we define ρ
k
and ρk such that for all 1 ≤ i, j ≤ N , we have ρ

k
≤ ρij ≤ ρk

when C(k)(Xi) = C(k)(Xj) and C(k+1)(Xi) 6= C(k+1)(Xj), i.e. ρk and ρk are the minimum and
maximum correlation respectively within all the clusters C(k)

i in the partition Pk at depth
k. In order to have a proper nested correlation hierarchy, we must have ρk < ρ

k+1
for all k.

Depending on the context, it can be a Spearman or Pearson correlation matrix.

Figure 4.1: (left) hierarchical correlation block model; (right) observed correlation matrix
(following the HCBM) identical to the left one up to a permutation of the data

Without loss of generality and for ease of demonstration we will consider the one-level
HCBM with K blocks of size n1, . . . , nK such that

∑K
i=1 ni = N . We explain later how to

extend the results to the general HCBM. We also consider the associated distance matrix d,
where dij =

1−ρij
2

. In practice, clustering methods are applied on statistical estimates of the
distance matrix d, i.e. on d̂ij = dij + εij, where εij are noises resulting from the statistical
estimation of correlations.
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Table 4.1: Many well-known hierarchical agglomerative clustering algorithms are members
of the Lance-Williams family, i.e. the distance between clusters can be written:
D(Ci ∪ Cj, Ck) = αiDik + αjDjk + βDij + γ|Dik −Djk|

αi β γ
Single 1/2 0 -1/2
Complete 1/2 0 1/2
Average |Ci|

|Ci|+|Cj | 0 0
McQuitty 1/2 0 0
Median 1/2 -1/4 0
Centroid |Ci|

|Ci|+|Cj | − |Ci||Cj |
(|Ci|+|Cj |)2 0

Ward |Ci|+|Ck|
|Ci|+|Cj |+|Ck|

− |Ck|
|Ci|+|Cj |+|Ck|

0

Clustering methods

Algorithms of interest

Many paradigms exist in the literature for clustering data. We consider in this work only
hard (in opposition to soft) clustering methods, i.e. algorithms producing partitions of the
data (in opposition to methods assigning several clusters to a given data point). Within the
hard clustering family, we can classify for instance these algorithms in hierarchical clustering
methods (yielding nested partitions of the data) and flat clustering methods (yielding a single
partition) such as k-means.

We will consider the infinite Lance-Williams family which further subdivides the hi-
erarchical clustering since many of the popular algorithms such as Single Linkage, Com-
plete Linkage, Average Linkage (UPGMA), McQuitty’s Linkage (WPGMA), Median Linkage
(WPGMC), Centroid Linkage (UPGMC), and Ward’s method are members of this family
(cf. Table 4.1 [153]). It will allow us a more concise and unified treatment of the consistency
proofs for these algorithms. Interesting and recently designed hierarchical agglomerative
clustering algorithms such as Hausdorff Linkage [12] and Minimax Linkage [4] do not be-
long to this family [17], but their linkage functions share a convenient property for cluster
separability.

Separability conditions for clustering

In our context the distances between the points we want to cluster are random and defined
by the estimated correlations. However by definition of the HCBM, each point Xi belongs
to exactly one cluster C(k)(Xi) at a given depth k, and we want to know under which
condition on the distance matrix we will find the correct clusters defined by Pk. We call these
conditions the separability conditions. A separability condition for the points X1, . . . , XN

is a condition on the distance matrix of these points such that if we apply a clustering
procedure whose input is the distance matrix, then the algorithm yields the correct clustering
Pk = {C(k)

1 , . . . , C
(k)
lk
}, . For example, for {X1, X2, X3} if we have C(X1) = C(X2) 6= C(X3)

in the one-level two-block HCBM, then a separability condition is d1,2 < d1,3 and d1,2 < d2,3.
Separability conditions are deterministic and depend on the algorithm used for cluster-

ing. They are generic in the sense that for any sets of points that satisfy the condition
the algorithm will separate them in the correct clusters. In the Lance-Williams algorithm
framework [51], they are closely related to “space conserving” properties of the algorithm and
in particular on the way the distances between clusters change during the clustering process.

Space-conserving algorithms

In [51], the authors define what they call a semi-space-conserving algorithm.
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Definition 1 (Semi-space-conserving algorithms). An algorithm is semi-space-conserving if
for all clusters Ci, Cj, and Ck,

D(Ci ∪ Cj, Ck) ∈ [min(Dik, Djk),max(Dik, Djk)]

Among the Lance-Williams algorithms we study here, Single, Complete, Average and Mc-
Quitty algorithms are semi-space-conserving. Although Chen and Van Ness only considered
Lance-Williams algorithms the definition of a space conserving algorithm is useful for any ag-
glomerative hierarchical algorithm. An alternative formulation of the semi-space-conserving
property is:

Definition 2 (Space-conserving algorithms). A linkage agglomerative hierarchical algorithm

is space-conserving if Dij ∈
[

min
x∈Ci,y∈Cj

d(x, y), max
x∈Ci,y∈Cj

d(x, y)

]
.

Such an algorithm does not “distort" the space when points are clustered which makes the
sufficient separability condition easier to get. For these algorithms the separability condition
does not depend on the size of the clusters.

The following two propositions are easy to verify.

Property 1. The semi-space-conserving Lance-Williams algorithms are space-conserving.

Property 2. Minimax linkage and Hausdorff linkage are space-conserving.

For space-conserving algorithms we can now state a sufficient separability condition on
the distance matrix.

Property 3. The following condition is a separability condition for space-conserving algo-
rithms:

max
1≤i,j≤N
C(i)=C(j)

d(Xi, Xj) < min
1≤i,j≤N
C(i)6=C(j)

d(Xi, Xj) (S1)

The maximum distance is taken over any two points in a same cluster (intra) and the mini-
mum over any two points in different clusters (inter).

Proof. Consider the set {dsij} of distances between clusters after s steps of the clustering
algorithm (therefore {d0

ij} is the initial set of distances between the points). Denote {dsinter}
(resp. {dsintra}) the sets of distances between subclusters belonging to different clusters (resp.
the same cluster) at step s. If the separability condition is satisfied then we have the following
inequalities:

min d0
intra ≤ max d0

intra < min d0
inter ≤ max d0

inter (S2)
Then the separability condition implies that the separability condition S2 is verified for

all step s because after each step the updated intra distances are in the convex hull of the
intra distances of the previous step and the same is true for the inter distances. Moreover
since S2 is verified after each step, the algorithm never links points from different clusters
and the proposition entails. �

Ward algorithm

TheWard algorithm is a space-dilating Lance-Williams algorithm: D(Ci∪Cj, Ck) > max(Dik, Djk).
This is a more complicated situation because the structure

min dinter < max dinter < min dintra < max dintra

is not necessarily preserved under the condition max d0
inter < min d0

intra. Points which are not
clustered move away from the clustered points. Outliers, which will only be clustered at the
very end, will end up close to each other and far from the clustered points. This can lead
to wrong clusters. Therefore a generic separability condition for Ward needs to be stronger
and account for the distortion of the space. Since the distortion depends on the number of
steps the algorithm needs, the separability condition depends on the size of the clusters.
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Property 4 (Separability condition for Ward). The separability condition for Ward reads:

n[max d0
intra −min d0

intra] < [min d0
inter −min d0

intra]

where n = maxi ni is the size of the largest cluster.

Proof. Let A and B be two subsets of the N points of size a and b respectively. Then

D(A,B) =
ab

a+ b

 2

ab

∑
i∈A
j∈B

dij −
1

a2

∑
i∈A
i′∈A

dii′ −
1

b2

∑
j∈B
j′∈B

djj′


is a linkage function for the Ward algorithm. To ensure that the Ward algorithm will never
merge the wrong subsets it is sufficient that for any sets A and B in a same cluster, and A′,
B′ in different clusters, we have:

D(A,B) < D(A′, B′).

Since {
D(A,B) ≤ n(max d0

intra −min d0
intra) + min d0

intra − 1

D(A′, B′) ≥ (min d0
inter −max d0

intra) + max d0
intra − 1

we obtain the condition:

n(max d0
intra −min d0

intra) < min d0
inter −min d0

intra.

�

k-means

The k-means algorithm is not a linkage algorithm. For the k-means algorithm we need
a separability condition that ensures that the initialization will be good enough for the
algorithm to find the partition. In [182] (Theorem 1), the author proves the consistency
of the one-step farthest-point initialization k-means [104] with a distributional distance for
clustering processes. The separability condition S1 of Proposition 3 is sufficient for k-means.

4.1.2 Consistency of well-known clustering algorithms

In the previous section we have determined configurations of points such that the clustering
algorithm will find the right partition. The proof of the consistency now relies on showing
that these configurations are likely. In fact the probability that our points fall in these
configurations goes to 1 as T →∞.

The precise definition of what we mean by consistency of an algorithm is the following:

Definition 3 (Consistency of a clustering algorithm). Let (X t
1, . . . , X

t
N), t = 1, . . . , T , be

N univariate random variables observed T times. A clustering algorithm A is consistent
with respect to the Hierarchical Correlation Block Model (HCBM) defining a set of nested
partitions P if the probability that the algorithm A recovers all the partitions in P converges
to 1 when T →∞.

As we have seen in the previous section the correct clustering can be ensured if the
estimated correlation matrix verifies some separability condition. This condition can be
guaranteed by requiring the error on each entry of the matrix R̂T to be smaller than the con-
trast, i.e.

ρ
1
−ρ0
2

, on the theoretical matrix R. There are classical results on the concentration
properties of estimated correlation matrices such as:
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Theorem 5 (Concentration properties of the estimated correlation matrices [131]). If Σ
and Σ̂ are the population and empirical Spearman correlation matrix respectively, then with
probability at least 1− 1

T 2 , for N ≥ 24
log T

+ 2, we have

‖Σ̂− Σ‖∞ ≤ 24

√
logN

T

The concentration bounds entails that if T � log(N) then the clustering will find the
correct partition because the clusters will be sufficiently separated with high probability. In
financial applications of clustering, we need the error on the estimated correlation matrix to
be small enough for relatively short time-windows. However there is a dimensional depen-
dency of these bounds [210] that make them uninformative for realistic values of N and T in
financial applications, but there is hope to improve the bounds using the special structure
of HCBM correlation matrices.

From the one-level to the general HCBM

To go from the one-level HCBM to the general case we need to get a separability condition
on the nested partition model. For both space-conserving algorithms and the Ward algo-
rithm, this is done by requiring the corresponding separability condition for each level of the
hierarchy.

For all 1 ≤ k ≤ h, we define dk and dk such that for all 1 ≤ i, j ≤ N , we have dk ≤ dij ≤ dk
when C(k)(Xi) = C(k)(Xj) and C(k+1)(Xi) 6= C(k+1)(Xj). Notice that dk = (1 − ρk)/2 and
dk = (1− ρ

k
)/2.

Property 6. [Separability condition for space-conserving algorithms in the case of nested
partitions] The separability condition reads:

dh < dh−1 < . . . < dk+1 < dk < . . . < d1.

This condition can be guaranteed by requiring the error on each entry of the matrix
Σ̂ to be smaller than the lowest contrast. Therefore the maximum error we can have for
space-conserving algorithms on the correlation matrix is

‖Σ− Σ̂‖∞ < min
k

ρ
k+1
− ρk

2
.

Property 7. [Separability condition for the Ward algorithm in the case of nested partitions]
Let nk be the size of the largest cluster at the level k of the hierarchy.

The separability condition reads:

∀k ∈ {1, . . . , h}, nk(dk − dh) < dk−1 − dh

Therefore the maximum error we can have for space-conserving algorithms on the corre-
lation matrix is

‖Σ− Σ̂‖∞ < min
k

ρh − ρk−1 − nk(ρh − ρk)
1 + 2nk

,

where nk is the size of the largest cluster at the level k of the hierarchy.
We finally obtain consistency for the presented algorithms with respect to the HCBM

from the previous concentration results.

4.2 Empirical rates of convergence
We have shown in the previous sections that clustering correlated random variables is con-
sistent under the hierarchical correlation block model. This model is supported by many
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empirical studies [133] where the authors scrutinize time series of returns for several asset
classes. However, it was also noticed that the correlation structure is not fixed and tends to
evolve through time. This is why, besides being consistent, the convergence of the methodol-
ogy needs to be fast enough for the underlying clustering to be accurate. For now, theoretical
bounds such as the ones obtained in Theorem 5 are uninformative for realistic values of N
and T . For example, for N = 265 and T = 2500 (roughly 10 years of historical daily returns)
with a separation between clusters of d = 0.2, we are confident with probability greater than
1 − 2N2e−Td

2/24 ≈ −2176 that the clustering algorithm has recovered the correct clusters.
These bounds will eventually converge to 0 with rate OP (

√
logN/

√
T ). In addition, the

convergence rates also depend on many factors, e.g. the number of clusters, their relative
sizes, their separations, whose influence is very specific to a given clustering algorithm, and
thus difficult to consider in a theoretical analysis.

To get an idea of the minimal amount of data one should use in applications to be
confident with the clustering results, we suggest to design realistic simulations of financial
time series and determine the sample critical size from which the clustering approach “always"
recovers the underlying model. We illustrate such an empirical study in the following section.

Financial time series models

For the simulations, implementation and tutorial available at www.datagrapple.com/Tech,
we will consider two models:

• The standard but debated model of quantitative finance, the Gaussian random walk
model whose increments are realizations from a N -variate Gaussian: X ∼ N (0,Σ).

The Gaussian model does not generate heavy-tailed behavior (strong unexpected variations
in the price of an asset) which can be found in many asset returns [54] nor does it generate
tail-dependence (strong variations tend to occur at the same time for several assets). This
oversimplified model provides an empirical convergence rate for clustering that is unlikely to
be exceeded on real data.

• The increments are realizations from a N -variate Student’s t-distribution, with degree
of freedom ν = 3: X ∼ tν(0,

ν−2
ν

Σ).

The N -variate Student’s t-distribution (ν = 3) captures both the heavy-tailed behavior
(since marginals are univariate Student’s t-distribution with the same parameter ν = 3) and
the tail-dependence. It has been shown that this distribution yields a much better fit to real
returns than the Gaussian distribution [97].

The Gaussian and t-distribution are parameterized by a covariance matrix Σ. We define
Σ such that the underlying correlation matrix has the structure depicted in Figure 5.7. This
correlation structure is inspired by the real correlations between credit default swap assets
in the European “investment grade”, European “high-yield” and Japanese markets. More
precisely, this correlation matrix allows us to simulate the returns time series for N = 265
assets divided into

• a “European investment grade” cluster composed of 115 assets, subdivided into

– 7 industry-specific clusters of sizes 10, 20, 20, 5, 30, 15, 15; the pairwise correlation
inside these 7 clusters is 0.7;

• a “European high-yield” cluster composed of 100 assets, subdivided into

– 7 industry-specific clusters of sizes 10, 20, 25, 15, 5, 10, 15; the pairwise correlation
inside these 7 clusters is 0.7;

• a “Japanese” cluster composed of 50 assets whose pairwise correlation is 0.6.

We can then sample time series from these two models.
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Figure 4.2: Illustration of the correlation structure used for simulations: European assets
(numbered 0, . . . , 214) are subdivided into 2 clusters which are themselves subdivided into 7
clusters each; Japanese assets (numbered 215 . . . , 264) are weakly correlated to the European
markets: ρ = 0.15 with “investment grade” assets, ρ = 0.00 with “high-yield” assets
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Figure 4.3: Single Linkage (left), Average Linkage (mid), Ward method (right) are used for
clustering the simulated time series; Dashed lines represent the ratio of correct clustering
over the number of trials (the score displayed in y-axis) when using Pearson coefficient, solid
lines for the Spearman one; Magenta lines are used when the underlying model is Gaussian,
blue lines for the t-distribution

Experiment: Recovering the initial clusters

For each model, for every T ranging from 10 to 500, we sample L = 103 datasets of N =
265 time series with length T from the model. We count how many times the clustering
methodology (here, the choice of an algorithm and a correlation coefficient) is able to recover
the underlying clusters defined by the correlation matrix. In Figure 4.3, we display the
results obtained using Single Linkage (motivated in Mantegna et al.’s research [134] by the
ultrametric space hypothesis and the related subdominant ultrametric given by the minimum
spanning tree), Average Linkage (which is used to palliate against the unbalanced effect of
Single Linkage, yet unlike Single Linkage, it is sensitive to monotone transformations of the
distances dij) and the Ward method leveraging either the Pearson correlation coefficient or
the Spearman one.

Conclusions from the empirical study

As expected, the Pearson coefficient yields the best results when the underlying distribution is
Gaussian and the worst when the underlying distribution is heavy-tailed. For such elliptical
distributions, rank-based correlation estimators are more relevant [130, 93]. Concerning
clustering algorithm convergence rates, we find that Average Linkage outperforms Single
Linkage for T � N and T ' N . One can also notice that both Single Linkage and Average
Linkage have not yet converged after 500 realizations (roughly 2 years of daily returns)
whereas the Ward method, which is not mainstream in the econophysics literature, has
converged after 250 realizations (about a year of daily returns). Its variance is also much
smaller. Based on this empirical study, a practitioner working with N = 265 assets whose
underlying correlation matrix may be similar to the one depicted in Figure 5.7 should use
the Ward + Spearman methodology on a sliding window of length T = 250.

Application to credit default swaps

From Hellebore Capital database, we use N = 561 daily time series with full history starting
from the 01/01/2006, that is T = 2805 observations for each entity as of April 2017. We
then

• compute an empirical correlation matrix of this sample (displayed in Figure 4.4) that
we serialize for visualizing its hierarchical structure (displayed in Figure 4.5). We
serialize the correlation matrix by traversing recursively and top down the dendrogram
obtained from an agglomerative hierarchical clustering algorithm which allows us to
find a good permutation of the rows (we apply the same permutation for the columns),
i.e. a kind of ‘quicksort’ of the rows (and columns);
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• compute a ‘reasonable’ number of clusters (according to a model selection method, e.g.
using bootstrapping and a stability score). In this case, we choose K = 30 clusters.
In Figure 4.6, we overlay the boundaries of these K = 30 clusters on the empirical
correlation matrix of the whole sample.

• average the correlations inside each of the K = 30 clusters (displayed in Figure 4.7).

• build a filtered correlation matrix (displayed in Figure 4.8) which can be used to
parameterize a multivariate distribution such as a Gaussian or Student one.

• sample from the previous model, i.e. from a distribution parameterized by the filtered
correlation matrix. In Figure 4.9 and Figure 4.10, we show the empirical correlation
matrix estimated from a sample of size T = 250 (about 1 year of historical daily
‘returns’) and T = 2000 (about 8 years of historical daily ‘returns’) respectively.

• estimate the K = 30 clusters on different samples of increasing sizes. Compare them to
the K = 30 original clusters encoded in the correlation matrix model using a similarity
score. We display the scores obtained in Figure 4.11. We can notice that we can
perfectly recover the K = 30 original clusters with at least T = 1000 observations
(about 4 years of historical daily ‘returns’).
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Figure 4.4: Empirical correlations
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Figure 4.5: Seriated correlations

Discussion

In this contribution, we only show consistency with respect to a model motivated by empirical
evidence. All models are wrong and this one is no exception to the rule: random walk
hypothesis, real correlation matrices are not that “blocky". We identified several theoretical
directions for the future:

• The theoretical concentration bounds are not sharp enough for usual values of N, T .
Since the intrinsic dimension of the correlation matrices in the HCBM is low, there
might be some possible improvements [210].

• “Space-conserving", “space-dilating” is a coarse classification that does not allow to
distinguish between several algorithms with different behaviors. Though Single Linkage
(which is nearly “space-contracting”) and Average Linkage have different convergence
rates as shown by the empirical study, they share the same theoretical bounds.
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Figure 4.6: Overlaid clusters boundaries
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Figure 4.7: Clusters average correlations
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Figure 4.8: Correlations model
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Figure 4.9: T = 250
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Figure 4.10: T = 2000

And also directions for experimental studies:

• It would be interesting to study spectral clustering techniques which are less greedy
than the hierarchical clustering algorithms. In [217], authors show that they are less
stable with respect to statistical uncertainty than hierarchical clustering. Less stability
may imply a slower convergence rate.

• We notice that there are isoquants of clustering accuracy for many sets of parameters,
e.g. (N, T ), (ρ, T ). Such isoquants are displayed in Figure 4.12. Further work may aim
at characterizing these curves. We can also observe in Figure 4.12 that for ρ ≤ 0.08,
the critical value for T explodes. It would be interesting to determine this asymptotics
as ρ tends to 0.

Finally, we have provided a guideline to help the practitioner set the critical window-size
T for a given clustering methodology. One can also investigate which consistent methodology
provides the correct clustering the fastest. However, much work remains to understand the
convergence behaviors of clustering algorithms on financial time series.
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Figure 4.11: The clustering scores indicate that T = 1000 is a suitable sample size for being
confident in the clustering results.

Figure 4.12: Heatmap encoding the ratio of correct clustering over the number of trials (score
in [0, 1]) for the Ward + Spearman methodology as a function of ρ and T ; underlying model
is a Gaussian distribution parameterized by a 2-block-uniform-ρ correlation matrix; red color
(score = 1) represents a perfect and systematic recovering of the underlying two clusters,
deep blue (score = 0) encodes 0 correct clustering; notice the clear-cut isoquants
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Chapter 5

Distances between financial time series

5.1 A correlation/distribution distance

Motivation: A better representation which is appropriately taken into account with a
suitable distance should imply a more stable and faster convergence clustering.

We introduce a novel non-parametric approach to represent random variables which splits
apart dependency and distribution without losing any information. We also propound an
associated metric leveraging this representation and its statistical estimate. Besides ex-
periments on synthetic datasets, the benefits of our contribution is illustrated through the
example of clustering financial time series, for instance prices from the credit default swaps
market. Results are available on the website www.datagrapple.com and an IPython Note-
book tutorial is available at www.datagrapple.com/Tech for reproducible research.

Introduction

Machine learning on time series is a booming field and as such plenty of representations,
transformations, normalizations, metrics and other divergences are thrown at disposal to the
practitioner. A further consequence of the recent advances in time series mining is that it is
difficult to have a sober look at the state of the art since many papers state contradictory
claims as described in [66]. To be fair, we should mention that when data, pre-processing
steps, distances and algorithms are combined together, they have an intricate behaviour
making it difficult to draw unanimous conclusions especially in a fast-paced environment.
Restricting the scope of time series to independent and identically distributed (i.i.d.) stochas-
tic processes, we propound a method which, on the contrary to many of its counterparts, is
mathematically grounded with respect to the clustering task defined in subsection 5.1. The
representation we present in Section 5.1 exploits a property similar to the seminal result
of copula theory, namely Sklar’s theorem [192]. This approach leverages the specificities
of random variables and this way solves several shortcomings of more classical data pre-
processing and distances that will be detailed in subsection 5.1. Section 5.1 is dedicated to
experiments on synthetic and real datasets to illustrate the benefits of our method which
relies on the hypothesis of i.i.d. sampling of the random variables. Synthetic time series are
generated by a simple model yielding correlated random variables following different distribu-
tions. The presented approach is also applied to financial time series from the credit default
swaps market whose prices dynamics are usually modelled by random walks according to the
efficient-market hypothesis [80]. This dataset seems more interesting than stocks as credit
default swaps are often considered as a gauge of investors’ fear, thus time series are subject
to more violent moves and may provide more distributional information than the ones from
the stock market. We have made our detailed experiments (cf. Machine Tree on the web-
site www.datagrapple.com) and Python code available (www.datagrapple.com/Tech) for
reproducible research. Finally, we conclude the paper with a discussion on the method and
we propound future research directions.

65



66 CHAPTER 5. DISTANCES BETWEEN FINANCIAL TIME SERIES

Motivation and goal of study

Machine learning methodology usually consists in several pre-processing steps aiming at
cleaning data and preparing them for being fed to a battery of algorithms. Data scientists
have the daunting mission to choose the best possible combination of pre-processing, dissim-
ilarity measure and algorithm to solve the task at hand among a profuse literature. In this
article, we provide both a pre-processing and a distance for studying i.i.d. random processes
which are compatible with basic machine learning algorithms.

Many statistical distances exist to measure the dissimilarity of two random variables,
and therefore two i.i.d. random processes. Such distances can be roughly classified in two
families:

1. distributional distances, for instance [184], [110] and [96], which focus on dissimilarity
between probability distributions and quantify divergences in marginal behaviours,

2. dependence distances, such as the distance correlation or copula-based kernel depen-
dency measures [172], which focus on the joint behaviours of random variables, gener-
ally ignoring their distribution properties.

However, we may want to be able to discriminate random variables both on distribution
and dependence. This can be motivated, for instance, from the study of financial assets re-
turns: are two perfectly correlated random variables (assets returns), but one being normally
distributed and the other one following a heavy-tailed distribution, similar? From risk per-
spective, the answer is no [105], hence the propounded distance of this article. We illustrate
its benefits through clustering, a machine learning task which primarily relies on the metric
space considered (data representation and associated distance). Besides clustering has found
application in finance, e.g. [207], which gives us a framework for benchmarking on real data.

Our objective is therefore to obtain a good clustering of random variables based on an
appropriate and simple enough distance for being used with basic clustering algorithms, e.g.
Ward hierarchical clustering [226], k-means++ [5], affinity propagation [84].

By clustering we mean the task of grouping sets of objects in such a way that objects
in the same cluster are more similar to each other than those in different clusters. More
specifically, a cluster of random variables should gather random variables with common
dependence between them and with a common distribution. Two clusters should differ
either in the dependency between their random variables or in their distributions.

A good clustering is a partition of the data that must be stable to small perturbations of
the dataset. “Stability of some kind is clearly a desirable property of clustering methods" [49].
In the case of random variables, these small perturbations can be obtained from resampling
[124], [151], [119] in the spirit of the bootstrap method since it preserves the statistical
properties of the initial sample [75].

Yet, practitioners and researchers pinpoint that state-of-the-art results of clustering
methodology applied to financial times series are very sensitive to perturbations [123]. The
observed unstability may result from a poor representation of these time series, and thus
clusters may not capture all the underlying information.

Shortcomings of a standard machine learning approach

A naive but often used distance between random variables to measure similarity and to
perform clustering is the L2 distance E[(X − Y )2]. Yet, this distance is not suited to our
task.

Example 1 (Distance L2 between two Gaussians). Let (X, Y ) be a bivariate Gaussian vector,
with X ∼ N (µX , σ

2
X), Y ∼ N (µY , σ

2
Y ) and whose correlation is ρ(X, Y ) ∈ [−1, 1]. We obtain

E[(X −Y )2] = (µX −µY )2 + (σX − σY )2 + 2σXσY (1− ρ(X, Y )). Now, consider the following
values for correlation:
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Figure 5.1: Probability density functions of Gaussians N (−5, 1) and N (5, 1) (in green),
Gaussians N (−5, 3) and N (5, 3) (in red), and Gaussians N (−5, 10) and N (5, 10) (in blue).
Green, red and blue Gaussians are equidistant using L2 geometry on the parameter space
(µ, σ).

• ρ(X, Y ) = 0, so E[(X−Y )2] = (µX−µY )2+σ2
X+σ2

Y . The two variables are independent
(since uncorrelated and jointly normally distributed), thus we must discriminate on
distribution information. Assume µX = µY and σX = σY . For σX = σY � 1, we
obtain E[(X − Y )2] � 1 instead of the distance 0, expected from comparing two equal
Gaussians.

• ρ(X, Y ) = 1, so E[(X − Y )2] = (µX − µY )2 + (σX − σY )2. Since the variables are
perfectly correlated, we must discriminate on distributions. We actually compare them
with a L2 metric on the mean × standard deviation half-plane. However, this is not an
appropriate geometry for comparing two Gaussians [55]. For instance, if σX = σY = σ,
we find E[(X−Y )2] = (µX−µY )2 for any values of σ. As σ grows, probability attached
by the two Gaussians to a given interval grows similar (cf. Fig. 5.1), yet this increasing
similarity is not taken into account by this L2 distance.

E[(X−Y )2] considers both dependence and distribution information of the random vari-
ables, but not in a relevant way with respect to our task. Yet, we will benchmark against
this distance since other more sophisticated distances on time series such as dynamic time
warping [15] and representations such as wavelets [170] or SAX [129] were explicitly designed
to handle temporal patterns which are inexistant in i.i.d. random processes.

A generic representation for random variables

Our purpose is to introduce a new data representation and a suitable distance which takes
into account both distributional proximities and joint behaviours.
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Figure 5.2: ArcelorMittal and Société générale prices (T observations (X t
1, X

t
2)Tt=1 from

(X1, X2) ∈ V2) are projected on dependence ⊕ distribution space; (GX1(X1), GX2(X2)) ∈ U2

encode the dependence between X1 and X2 (a perfect correlation would be represented by
a sharp diagonal on the scatterplot); (GX1 , GX2) are the margins (their log-densities are
displayed above), notice their heavy-tailed exponential distribution (especially for Arcelor-
Mittal).

A representation preserving total information

Let (Ω,F ,P) be a probability space. Ω is the sample space, F is the σ-algebra of events,
and P is the probability measure. Let V be the space of all continuous real-valued random
variables defined on (Ω,F ,P). Let U be the space of random variables following a uniform
distribution on [0, 1] and G be the space of absolutely continuous cumulative distribution
functions (cdf).

Definition 4 (The copula transform). Let X = (X1, . . . , XN) ∈ VN be a random vector with
cdfs GX = (GX1 , . . . , GXN ) ∈ GN . The random vector GX(X) = (GX1(X1), . . . , GXN (XN)) ∈
UN is known as the copula transform.

Property 8 (Uniform margins of the copula transform). GXi(Xi), 1 ≤ i ≤ N , are uniformly
distributed on [0, 1].

Proof. x = GXi(G
−1
Xi

(x)) = P(Xi ≤ G−1
Xi

(x)) = P(GXi(Xi) ≤ x).

We define the following representation of random vectors that actually splits the joint
behaviours of the marginal variables from their distributional information.

Definition 5 (dependence⊕ distribution space projection). Let T be a mapping which trans-
forms X = (X1, . . . , XN) into its generic representation, an element of UN×GN representing
X, defined as follow

T : VN → UN × GN (5.1)
X 7→ (GX(X), GX).

Property 9. T is a bijection.

Proof. T is surjective as any element (U,G) ∈ UN ×GN has the fiber G−1(U). T is injective
as (U1, G1) = (U2, G2) a.s. in UN × GN implies that they have the same cdf G = G1 = G2

and since U1 = U2 a.s., it follows that G−1(U1) = G−1(U2) a.s.

This result replicates the seminal result of copula theory, namely Sklar’s theorem [192],
which asserts one can split the dependency and distribution apart without losing any infor-
mation. Fig. 5.2 illustrates this projection for N = 2.
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A distance between random variables

We leverage the propounded representation to build a suitable yet simple distance between
random variables which is invariant under diffeomorphism.

Definition 6 (Distance dθ between two random variables). Let θ ∈ [0, 1]. Let (X, Y ) ∈ V2.
Let G = (GX , GY ), where GX and GY are respectively X and Y marginal cdfs. We define
the following distance

d2
θ(X, Y ) = θd2

1(GX(X), GY (Y )) + (1− θ)d2
0(GX , GY ), (5.2)

where

d2
1(GX(X), GY (Y )) = 3E[|GX(X)−GY (Y )|2], (5.3)

and

d2
0(GX , GY ) =

1

2

∫
R

(√
dGX

dλ
−
√
dGY

dλ

)2

dλ. (5.4)

In particular, d0 =
√

1−BC is the Hellinger distance related to the Bhattacharyya
(1/2-Chernoff) coefficient BC upper bounding the Bayes’ classification error. To quantify
distribution dissimilarity, d0 is used rather than the more general α-Chernoff divergences
since it satisfies the properties 10, 11, 12 (significant for practitioners). In addition, dθ
can thus be efficiently implemented as a scalar product. d1 =

√
(1− ρS)/2 is a distance

correlation measuring statistical dependence between two random variables, where ρS is the
Spearman’s correlation between X and Y . Notice that d1 can be expressed by using the
copula C : [0, 1]2 → [0, 1] implicitly defined by the relation G(X, Y ) = C(GX(X), GY (Y ))

since ρS(X, Y ) = 12
∫ 1

0

∫ 1

0
C(u, v) du dv − 3 [83].

Example 2 (Distance dθ between two Gaussians). Let (X, Y ) be a bivariate Gaussian vector,
with X ∼ N (µX , σ

2
X), Y ∼ N (µY , σ

2
Y ) and ρ(X, Y ) = ρ. We obtain,

d2
θ(X, Y ) = θ

1− ρS
2

+ (1− θ)

(
1−

√
2σXσY
σ2
X + σ2

Y

e
− 1

4

(µX−µY )2

σ2
X

+σ2
Y

)
.

Remember that for perfectly correlated Gaussians (ρ = ρS = 1), we want to discriminate
on their distributions. We can observe that

• for σX , σY → +∞, then d0(X, Y ) → 0, it alleviates a main shortcoming of the basic
L2 distance which is diverging to +∞ in this case;

• if µX 6= µY , for σX , σY → 0, then d0(X, Y )→ 1, its maximum value, i.e. it means that
two Gaussians cannot be more remote from each other than two different Dirac delta
functions.

We will refer to the use of this distance as the generic parametric representation (GPR)
approach. GPR distance is a fast and good proxy for distance dθ when the first two moments
µ and σ predominate. Nonetheless, for datasets which contain heavy-tailed distributions,
GPR fails to capture this information.

Property 10. Let θ ∈ [0, 1]. The distance dθ verifies 0 ≤ dθ ≤ 1.

Proof. Let θ ∈ [0, 1]. We have

1. 0 ≤ d0 ≤ 1, property of the Hellinger distance;

2. 0 ≤ d1 ≤ 1, since −1 ≤ ρS ≤ 1.
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Finally, by convex combination, 0 ≤ dθ ≤ 1.

Property 11. For 0 < θ < 1, dθ is a metric.

Proof. Let (X, Y ) ∈ V2. For 0 < θ < 1, dθ is a metric, and the only non-trivial property to
verify is the separation axiom

1. X = Y a.s. ⇒ dθ(X, Y ) = 0
X = Y a.s. ⇒ d1(GX(X), GY (Y )) = d0(GX , GY ) = 0, and thus dθ(X, Y ) = 0,

2. dθ(X, Y ) = 0⇒ X = Y a.s.
dθ(X, Y ) = 0⇒ d1(GX(X), GY (Y )) = 0 and d0(GX , GY ) = 0 ⇒ GX(X) = GY (Y ) a.s.
and GX = GY . Since G is absolutely continuous, it follows X = Y a.s.

Notice that for θ ∈ {0, 1}, this property does not hold. Let U ∈ V , U ∼ U [0, 1]. U 6= 1− U
but d0(U, 1− U) = 0. Let V ∈ V . V 6= 2V but d1(V, 2V ) = 0.

Property 12. Diffeomorphism invariance. Let h : V → V be a diffeomorphism. Let
(X, Y ) ∈ V2. Distance dθ is invariant under diffeomorphism, i.e.

dθ(h(X), h(Y )) = dθ(X, Y ). (5.5)

Proof. From definition, we have

d2
0(h(X), h(Y )) = 1−

∫
R

√
dGh(X)

dλ

dGh(Y )

dλ
dλ (5.6)

and since
dGh(X)

dλ
(λ) =

1

h′ (h−1(λ))

dGX

dλ

(
h−1(λ)

)
, (5.7)

we obtain

d2
0(h(X), h(Y )) = 1−

∫
R

1

h′ (h−1(λ))

√
dGX

dλ

dGY

dλ

(
h−1(λ)

)
dλ

= d2
0(X, Y ).

(5.8)

In addition, ∀x ∈ R, we have

Gh(X) (h(x)) = P [h(X) ≤ h(x)]

=

{
P [X ≤ x] = GX(x), if h increasing

1− P [X ≤ x] = 1−GX(x), otherwise

(5.9)

which implies that

d2
1 (h(X), h(Y )) = 3E

[
|Gh(X)(h(X))−Gh(Y )(h(Y ))|2

]
= 3E

[
|GX(X)−GY (Y )|2

]
= d2

1(X, Y ).

(5.10)

Finally, we obtain Property 12 by definition of dθ.

Thus, dθ is invariant under monotonic transformations, a desirable property as it ensures
to be insensitive to scaling (e.g. choice of units) or measurement scheme (e.g. device,
mathematical modelling) of the underlying phenomenon.
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A non-parametric statistical estimation of dθ

To apply the propounded distance dθ on sampled data without parametric assumptions,
we have to define its statistical estimate d̃θ working on realizations of the i.i.d. random
variables. Distance d1 working with continuous uniform distributions can be approximated
by normalized rank statistics yielding to discrete uniform distributions, in fact coordinates
of the multivariate empirical copula [62] which is a non-parametric estimate converging
uniformly toward the underlying copula [61]. Distance d0 working with densities can be
approximated by using its discrete form working on histogram density estimates.

Definition 7 (The empirical copula transform). Let XT = (X t
1, . . . , X

t
N), t = 1, . . . , T , be

T observations from a random vector X = (X1, . . . , XN) with continuous margins GX =
(GX1(X1), . . . , GXN (XN)). Since one cannot directly obtain the corresponding copula ob-
servations (GX1(X

t
1), . . . , GXN (X t

N)) without knowing a priori GX , one can instead esti-
mate the N empirical margins GT

Xi
(x) = 1

T

∑T
t=1 1(X t

i ≤ x) to obtain T empirical obser-
vations (GT

X1
(X t

1), . . . , GT
XN

(X t
N)) which are thus related to normalized rank statistics as

GT
Xi

(X t
i ) = X

(t)
i /T , where X(t)

i denotes the rank of observation X t
i .

Definition 8 (Empirical distance). Let (X t)Tt=1 and (Y t)Tt=1 be T realizations of real-valued
random variables X, Y ∈ V respectively. An empirical distance between realizations of ran-
dom variables can be defined by

d̃2
θ

(
(X t)Tt=1, (Y

t)Tt=1

) a.s.
= θd̃2

1 + (1− θ)d̃2
0, (5.11)

where

d̃2
1 =

3

T (T 2 − 1)

T∑
t=1

(
X(t) − Y (t)

)2
(5.12)

and

d̃2
0 =

1

2

+∞∑
k=−∞

(√
ghX(hk)−

√
ghY (hk)

)2

, (5.13)

h being here a suitable bandwidth, and ghX(x) = 1
T

∑T
t=1 1(bx

h
ch ≤ X t < (bx

h
c + 1)h) being a

density histogram estimating pdf gX from (X t)Tt=1, T realizations of random variable X ∈ V.

We will refer henceforth to this distance and its use as the generic non-parametric repre-
sentation (GNPR) approach. To use effectively dθ and its statistical estimate, it boils down
to select a particular value for θ. We suggest here an exploratory approach where one can
test (i) distribution information (θ = 0), (ii) dependence information (θ = 1), and (iii) a
mix of both information (θ = 0.5). Ideally, θ should reflect the balance of dependence and
distribution information in the data. In a supervised setting, one could select an estimate θ̂
of the right balance θ? optimizing some loss function by techniques such as cross-validation.
Yet, the lack of a clear loss function makes the estimation of θ? difficult in an unsupervised
setting. For clustering, many authors [119], [189], [190], [147] suggest stability as a tool
for parameter selection. But, [14] warn against its irrelevant use for this purpose. Besides,
we already use stability for clustering validation and we want to avoid overfitting. Finally,
we think that finding an optimal trade-off θ? is important for accelerating the rate of con-
vergence toward the underlying ground truth when working with finite and possibly small
samples, but ultimately lose its importance asymptotically as soon as 0 < θ < 1.

Experiments and applications

Synthetic datasets

We propose the following model for testing the efficiency of the GNPR approach: N time
series of length T which are subdivided into K correlation clusters themselves subdivided
into D distribution clusters.
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GPR θ = 0 GPR θ = 1 GPR θ = 0.5

GNPR θ = 0 GNPR θ = 1 GNPR θ = 0.5

Figure 5.3: GPR and GNPR distance matrices. Both GPR and GNPR highlight the 5
correlation clusters (θ = 1), but only GNPR finds the 2 distributions (S and L) subdividing
them (θ = 0). Finally, by combining both information GNPR (θ = 0.5) can highlight the 10
original clusters, while GPR (θ = 0.5) simply adds noise on the correlation distance matrix
it recovers.

Table 5.1: Model parameters for some interesting test case datasets
Clustering Dataset N T Q K β Yk Zi

1 Zi
2 Zi

3 Zi
4

Distribution A 200 5000 4 1 0 N (0, 1) N (0, 1) L S N (0, 2)
Dependence B 200 5000 10 10 0.1 S S S S S

Mix C 200 5000 10 5 0.1 N (0, 1) N (0, 1) S N (0, 1) S
G 32, . . . , 640 10, . . . , 2000 32 8 0.1 N (0, 1) N (0, 1) N (0, 2) L S

Let (Yk)
K
k=1, be K i.i.d. random variables. Let p,D ∈ N. Let N = pKD. Let (Zi

d)
D
d=1,

1 ≤ i ≤ N , be independent random variables. For 1 ≤ i ≤ N , we define

Xi =
K∑
k=1

βk,iYk +
D∑
d=1

αd,iZ
i
d, (5.14)

where

1. αd,i = 1, if i ≡ d− 1 (mod D), 0 otherwise;

2. β ∈ [0, 1],

3. βk,i = β, if diK/Ne = k, 0 otherwise.

(Xi)
N
i=1 are partitioned into Q = KD clusters of p random variables each. Playing with the

model parameters, we define in Table 5.1 some interesting test case datasets to study distri-
bution clustering, dependence clustering or a mix of both. We use the following notations
as a shorthand: L := Laplace(0, 1/

√
2) and S := t-distribution(3)/

√
3. Since L and S have

both a mean of 0 and a variance of 1, GPR cannot find any difference between them, but
GNPR can discriminate on higher moments as it can be seen in Fig. 5.3.

Performance of clustering using GNPR

We empirically show that the GNPR approach achieves better results than others using
common distances regardless of the algorithm used on the defined test cases A, B and C
described in Table 5.1. Test case A illustrates datasets containing only distribution infor-
mation: there are 4 clusters of distributions. Test case B illustrates datasets containing
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(1− ρ)/2 L2 GPR θ = 0.5 GNPR θ = 0.5

Figure 5.4: Distance matrices obtained on dataset C using distance correlation, L2 distance,
GPR and GNPR. None but GNPR highlights the 10 original clusters which appear on its
diagonal.

200

400

600

0 500 1000 1500 2000
T

N

0.4

0.6

0.8

1.0
ARI

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

A
R

I

T

Clustering convergence to the ground-truth partition

Clustering distribution θ = 0 
Clustering dependence θ = 1 

Clustering total information θ = θ*

Figure 5.5: Empirical consistency of clustering using GNPR as T →∞

only dependence information: there are 10 clusters of correlation between random variables
which are heavy-tailed. Test case C illustrates datasets containing both information: it
consists in 10 clusters composed of 5 correlation clusters and each of them is divided into
2 distribution clusters. Using scikit-learn implementation [167], we apply 3 clustering algo-
rithms with different paradigms: a hierarchical clustering using average linkage (HC-AL),
k-means++ (KM++), and affinity propagation (AP). Experiment results are reported in
Table 5.2. GNPR performance is due to its proper representation (cf. Fig. 5.4). Finally,
we have noticed increasing precision of clustering using GNPR as time T grows to infinity,
all other parameters being fixed. The number of time series N seems rather uninformative
as illustrated in Fig. 5.5 (left) which plots ARI [100] between computed clustering and
ground-truth of dataset G as an heatmap for varying N and T . Fig. 5.5 (right) shows the
convergence to the true clustering as a function of T .

Application to financial time series clustering

Clustering assets: a (too) strong focus on correlation

It has been noticed that straightfoward approaches automatically discover sector and indus-
tries [133]. Since detected patterns are blatantly correlation-flavoured, it prompted econo-
physicists to focus on correlations, hierarchies and networks [212] from the Minimum Span-
ning Tree and its associated clustering algorithm the Single Linkage to the state of the art
[155] exploiting the topological properties of the Planar Maximally Filtered Graph [214] and
its associated algorithm the Directed Bubble Hierarchical Tree (DBHT) technique [197]. In
practice, econophysicists consider the assets log returns and compute their correlation ma-
trix. The correlation matrix is then filtered thanks to a clustering of the correlation-network
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Table 5.2: Comparison of distance correlation, L2 distance, GPR and GNPR: GNPR ap-
proach improves clustering performance

Adjusted Rand Index
Algo. Distance A B C

HC-AL

(1− ρ)/2 0.00 ±0.01 0.99 ±0.01 0.56 ±0.01

E[(X − Y )2] 0.00 ±0.00 0.09 ±0.12 0.55 ±0.05

GPR θ = 0 0.34 ±0.01 0.01 ±0.01 0.06 ±0.02

GPR θ = 1 0.00 ±0.01 0.99 ±0.01 0.56 ±0.01

GPR θ = .5 0.34 ±0.01 0.59 ±0.12 0.57 ±0.01

GNPR θ = 0 1 0.00 ±0.00 0.17 ±0.00

GNPR θ = 1 0.00 ±0.00 1 0.57 ±0.00

GNPR θ = .5 0.99 ±0.01 0.25 ±0.20 0.95 ±0.08

KM++

(1− ρ)/2 0.00 ±0.01 0.60 ±0.20 0.46 ±0.05

E[(X − Y )2] 0.00 ±0.00 0.34 ±0.11 0.48 ±0.09

GPR θ = 0 0.41 ±0.03 0.01 ±0.01 0.06 ±0.02

GPR θ = 1 0.00 ±0.00 0.45 ±0.11 0.43 ±0.09

GPR θ = .5 0.27 ±0.05 0.51 ±0.14 0.48 ±0.06

GNPR θ = 0 0.96 ±0.11 0.00 ±0.01 0.14 ±0.02

GNPR θ = 1 0.00 ±0.01 0.65 ±0.13 0.53 ±0.02

GNPR θ = .5 0.72 ±0.13 0.21 ±0.07 0.64 ±0.10

AP

(1− ρ)/2 0.00 ±0.00 0.99 ±0.07 0.48 ±0.02

E[(X − Y )2] 0.14 ±0.03 0.94 ±0.02 0.59 ±0.00

GPR θ = 0 0.25 ±0.08 0.01 ±0.01 0.05 ±0.02

GPR θ = 1 0.00 ±0.01 0.99 ±0.01 0.48 ±0.02

GPR θ = .5 0.06 ±0.00 0.80 ±0.10 0.52 ±0.02

GNPR θ = 0 1 0.00 ±0.00 0.18 ±0.01

GNPR θ = 1 0.00 ±0.01 1 0.59 ±0.00

GNPR θ = .5 0.39 ±0.02 0.39 ±0.11 1

[63] built using similarity and dissimilarity matrices which are derived from the correlation
one by convenient ad hoc transformations. Clustering these correlation-based networks [160]
aims at filtering the correlation matrix for standard portfolio optimization [207]. Yet, adopt-
ing similar approaches only allow to retrieve information given by assets co-movements and
nothing about the specificities of their returns behaviour, whereas we may also want to dis-
tinguish assets by their returns distribution. For example, we are interested to know whether
they undergo fat tails, and to which extent.

Clustering credit default swaps

We apply the GNPR approach on financial time series, namely daily credit default swap
[101] (CDS) prices. We consider the N = 500 most actively traded CDS according to DTCC
(http://www.dtcc.com/). For each CDS, we have T = 2300 observations corresponding
to historical daily prices over the last 9 years, amounting for more than one million data
points. Since credit default swaps are traded over-the-counter, closing time for fixing prices
can be arbitrarily chosen, here 5pm GMT, i.e. after the London Stock Exchange trading
session. This synchronous fixing of CDS prices avoids spurious correlations arising from
different closing times. For example, the use of close-to-close stock prices artificially over-
estimates intra-market correlation and underestimates inter-market dependence since they
have different trading hours [135]. These CDS time series can be consulted on the web portal
http://www.datagrapple.com/.

Assuming that CDS prices (P t)t≥1 follow random walks, their increments ∆P t = P t−P t−1
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Figure 5.6: Standard Deviation Histogram. The 4 clusters found using GNPR θ = 0 repre-
sented by the 4 colors fit precisely the multi-modal distribution of standard deviations.

are i.i.d. random variables, and therefore the GNPR approach can be applied to the time
series of prices variations, i.e. on data (∆P t

1, . . . ,∆P
t
N), t = 1, . . . , T . Thus, for aggregating

CDS prices time series, we use a clustering algorithm (for instance, Ward’s method [226])
based on the GNPR distance matrices between their variations.

Using GNPR θ = 0, we look for distribution information in our CDS dataset. We observe
that clustering based on the GNPR θ = 0 distance matrix yields 4 clusters which fit precisely
the multi-modal empirical distribution of standard deviations as can be seen in Fig. 5.6. For
GNPR θ = 1, we display in Fig. 5.7 the rank correlation distance matrix obtained. We can
notice its hierarchical structure already described in many papers, e.g. [133], [28], focusing
on stock markets. There is information in distribution and in correlation, thus taking into
account both information, i.e. using GNPR θ = 0.5, should lead to a meaningful clustering.
We verify this claim by using stability as a criterion for validation. Practically, we consider
even and odd trading days and perform two independent clusterings, one on even days and
the other one on odd days. We should obtain the same partitions. In Fig. 5.8, we display the
partitions obtained using the GNPR θ = 0.5 approach next to the ones obtained by applying
a L2 distance on prices returns. We find that GNPR clustering is more stable than L2 on
returns clustering. Moreover, clusters obtained from GNPR are more homogeneous in size.

To conclude on the experiments, we have highlighted through clustering that the pre-
sented approach leveraging dependence and distribution information leads to better results:
finer partitions on synthetic test cases and more stable partitions on financial time series.

Discussion

In this paper, we have exposed a novel representation of random variables which could lead to
improvements in applying machine learning techniques on time series describing underlying
i.i.d. stochastic processes. We have empirically shown its relevance to deal with random
walks and financial time series. We have led a large scale experiment on the credit derivatives
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Figure 5.7: Centered Rank Correlation Distance Matrix. GNPR θ = 1 exhibits a hierarchical
structure of correlations: first level consists in Europe, Japan and US; second level corre-
sponds to credit quality (investment grade or high yield); third level to industrial sectors.

market notorious for not having Gaussian but heavy-tailed returns, first results are available
on website www.datagrapple.com. We also intend to lead such clustering experiments for
testing applicability of the method to areas outside finance. On the theoretical side, we
plan to improve the aggregation of the correlation and distribution part by using elements
of information geometry theory and to study the consistency property of our method.

5.2 Alternatives to standard correlations
We propose a methodology to explore and measure the pairwise correlations that exist be-
tween variables in a dataset. The methodology leverages copulas for encoding dependence
between two variables, state-of-the-art optimal transport for providing a relevant geometry
to the copulas, and clustering for summarizing the main dependence patterns found between
the variables. Some of the clusters centers can be used to parameterize a novel dependence
coefficient which can target or forget specific dependence patterns. Finally, we illustrate
and benchmark the methodology on several datasets. Code and numerical experiments are
available online for reproducible research.

Introduction

Pearson’s correlation coefficient which estimates linear dependence between two variables is
still the mainstream tool for measuring variable correlations in science and engineering. How-
ever, its shortcomings are well-documented in the statistics literature: not robust to outliers;
not invariant to monotone transformations of the variables; can take value 0 whereas vari-
ables are strongly dependent; only relevant when variables are jointly normally distributed.
A large but under-exploited literature in statistics and machine learning has expanded re-
cently to alleviate these issues [179, 201, 187]. An underlying idea to many of the dependence
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Figure 5.8: Better clustering stability using the GNPR approach: GNPR θ = 0.5 achieves
ARI = 0.85; L2 on returns achieves ARI 0.64; The two leftmost partitions built from GNPR
on the odd/even trading days sampling look similar: only a few CDS are switching from
clusters; The two rightmost partitions built using a L2 on returns display very inhomogeneous
(odd-2,3,9 vs. odd-4,14,15) and unstable (even-1 splitting into odd-3 and odd-2) clusters.

coefficients is to compute a distance D(P (X, Y ), P (X)P (Y )) between the joint distribution
P (X, Y ) of variables X, Y and P (X)P (Y ) the product of marginal distributions encoding
the independence. For example, choosing D = KL (Kullback-Leibler divergence), we end
up with the Mutual Information (MI) measure, well-known in information theory. Thus,
one can detect all the dependences between X and Y since the distance will be greater
than 0 as soon as P (X, Y ) is different from P (X)P (Y ). Then, the dependence literature
focus has shifted toward the new concept of “equitability” [113]: How can one quantify the
strength of a statistical association between two variables without bias for relationships of
a specific form? Many researchers now aim at designing and proving that their proposed
measures are indeed equitable [178, 65, 50]. This is not what we look for in this article.
But, on the contrary, we want to target specific dependence patterns and ignore others. We
want to target dependence which are relevant to such or such problem, and forget about
the dependence which are not in the scope of the problems at hand, or even worse which
may be spurious associations (pure chance or artifacts in the data). The latter will be de-
tected with an equitable dependence measure since they are deviation from independence,
and will be given as much weight as the interesting ones. Rather than using the biases for
specific dependence of several coefficients, we propose a dependence coefficient that can be
parameterized by a set of target-dependences, and a set of forget-dependences. Sets of target
and forget dependences can be built using expert hypotheses, or by leveraging the centers of
clusters resulting from an exploratory clustering of the pairwise dependences. To achieve this
goal, we will leverage three tools: copulas, optimal transportation, and clustering. Whereas
clustering, the task of grouping a set of objects in such a way that objects in the same group
(also called cluster) are more similar to each other than those in different groups, is common
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Figure 5.9: Copulas measure (left column) and cumulative distribution function (right col-
umn) heatmaps for negative dependence (first row), independence (second row), i.e. the
uniform distribution over [0, 1]2, and positive dependence (third row)

knowledge in the machine learning community, copulas and optimal transportation are not
yet mainstream tools. Copulas have recently gained attention in machine learning [77], and
several copula-based dependence measures have been proposed for improving feature selec-
tion methods [88, 132, 50]. Optimal transport may be more familiar to computer scientists
working in computer vision since it is the underlying theory of the Earth Mover’s Distance
[181]. Until very recently, optimal transportation distances between distributions were not
deemed relevant for machine learning applications since the best computational cost known
was super-cubic to the number of bins used for discretizing the distribution supports which
grows itself exponentially with the dimension. A mere distance evaluation could take several
seconds! In this article, we leverage recent computational breakthroughs detailed in [59]
which make their use practical in machine learning.

Background on Copulas and Optimal Transport

Copulas

Copulas are functions that couple multivariate distribution functions to their one-dimensional
marginal distribution functions [156]. In this article, we will only consider bivariate copulas,
but most of the results and the methodology presented hold in the multivariate setting, at
the cost of a much higher computational burden which is for now a bit unrealistic.

Definition 9 (Sklar’s Theorem [193]). For any random vector X = (Xi, Xj) having con-
tinuous marginal cumulative distribution functions Fi, Fj respectively, its joint cumulative
distribution F is uniquely expressed as F (Xi, Xj) = C(Fi(Xi), Fj(Xj)), where C, the bivari-
ate distribution of uniform marginals Ui, Uj := Fi(Xi), Fj(Xj), is known as the copula of
X.

Copulas are central for studying the dependence between random variables: their uniform
marginals jointly encode all the dependence. They allow to study scale-free measures of
dependence and are invariant to monotonous transformations of the variables. Some copulas
play a major role in the measure of dependence, namely W and M the Fréchet-Hoeffding
copula bounds, and the independence copula Π(ui, uj) = uiuj (depicted in Figure 5.9).

Definition 10 (Fréchet-Hoeffding copula bounds). For any copula C : [0, 1]2 → [0, 1] and
any (ui, uj) ∈ [0, 1]2 the following bounds hold:

W(ui, uj) ≤ C(ui, uj) ≤M(ui, uj), (5.15)

where W(ui, uj) = max {ui + uj − 1, 0} is the copula for countermonotonic random variables
andM(ui, uj) = min {ui, uj} is the copula for comonotonic random variables.

Many correlation coefficients can actually be expressed as a distance between the data
copula and one of these reference copulas. For example, the Spearman (rank) correla-
tion ρS which is usually understood as ρS(Xi, Xj) = ρ(Fi(Xi), Fj(Xj)), i.e. the linear
dependence of the probability integral transformed variables (rank-transformed data), can
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also be viewed as an average distance between the copula C of (Xi, Xj) and the indepen-
dence copula Π: ρS(Xi, Xj) = 12

∫ ∫
[0,1]2

(C(ui, uj)− uiuj) duiduj [156]. Moreover, since
|ui − uj|/

√
2 is the distance between point (ui, uj) to the diagonal (the measure of the posi-

tive dependence copula), one can rewrite ρS(Xi, Xj) = 12
∫ ∫

[0,1]2
(C(ui, uj)− uiuj) duiduj =

12
∫ ∫

[0,1]2
uiujdC(ui, uj)− 3 = 1− 6

∫ ∫
[0,1]2

(ui − uj)2dC(ui, uj) [127]. Thus, Spearman cor-
relation can also be viewed as measuring a deviation from the monotonically increasing
dependence to the data copula using a quadratic distance. We will leverage this idea to
propose our dependence-parameterized dependence coefficient.

Notice that when working with empirical data, we do not know a priori the margins Fi for
applying the probability integral transform Ui := Fi(Xi). Deheuvels in [62] has introduced a
practical estimator for the uniform margins and the underlying copula, the empirical copula
transform.

Definition 11 (Empirical Copula Transform). Let (X t
i , X

t
j), t = 1, . . . , T , be T observations

from a random vector (Xi, Xj) with continuous margins. Since one cannot directly obtain the
corresponding copula observations (U t

i , U
t
j ) := (Fi(X

t
i ), Fj(X

t
j)), where t = 1, . . . , T , without

knowing a priori Fi, one can instead estimate the empirical margins F T
i (x) = 1

T

∑T
t=1 1(X t

i ≤
x), to obtain the T empirical observations (Ũ t

i , Ũ
t
j ) := (F T

i (X t
i ), F

T
j (X t

j)). Equivalently, since
Ũ t
i = Rt

i/T , Rt
i being the rank of observation X t

i , the empirical copula transform can be
considered as the normalized rank transform.

Notice that the empirical copula transform is fast to compute, sorting arrays of length T
can be done in O(T log T ), consistent and converges fast to the underlying copula [61], [88].

As motivated in the introduction, we want to compare and summarize the pairwise em-
pirical dependence structure (empirical bivariate copulas) of many variables. This brings
the following questions: How can we compare two such copulas? What is a relevant repre-
sentative of a set of empirical copulas? Which geometries are relevant for clustering these
empirical distributions, and which are not?

Optimal Transport vs. Fisher-Rao Geometry of Gaussian copulas

Our approach (depicted in Fig. 5.2) is to leverage distances from Information Geometry to
compare distributions - the copulas encoding dependence between the variates - in order
to discriminate on the dependence between the random variables (but not on their distri-
butions). What kind of distances is relevant for comparing copulas? Far from being com-
prehensive, we illustrate our point with Wasserstein distances, Fisher-Rao geodesic distance
and related divergences.

Sensitivity of distances with respect to dependence

A reminder on statistical distances

Statistical distances are distances between probability distributions. Many such distances
have been designed to deal with practical problems in signal processing [157].

One of the leading approaches is to consider the parameter space Θ = {θ ∈ RD |
∫
pθ(x)dx =

1} of a family of parametric probability distributions {pθ(x)}θ with x ∈ Rd and θ ∈ RD as a
Riemannian manifold endowed with the Fisher-Rao metric ds2(θ) =

∑D
i=1

∑D
j=1 gij(θ)dθidθj

[176]. The coefficients gij(θ) = Eθ

[
1
p(θ)

∂p
∂θi

1
p(θ)

∂p
∂θj

]
= gji(θ) are known as the Fisher Infor-

mation Matrix coefficients. Two probability distributions represented by their respective
density pθ1 and pθ2 are considered as two points θ1 and θ2 on the manifold (Θ, ds2). The
Fisher-Rao geodesic distance between these two probability distributions can be computed
by integrating the Fisher-Rao metric along the geodesics (locally shortest paths) between
the corresponding points θ1 and θ2: D(θ1, θ2) =

∫ θ2
θ1
ds.
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tions can help for clustering time series based on their dependence. Which ones are relevant
for this task? And which ones are not?

Since computing geodesics which requires solving ordinary differential equations (ODEs)
can be intractable, one often considers related divergences such as Kullback-Leibler, sym-
metrized Jeffreys, Hellinger, or Bhattacharrya divergences which coincide with the quadratic
form approximations of the Fisher-Rao distance between two close distributions, and which
are computationally more tractable. These divergences all belong to the class of Ali-Silvey-
Csiszár f -divergences, enjoy the information monotonicity [3] (coarsing bins decrease the
divergence value), are invariant under reparametrizations, and furthermore induce the ±α-
geometry for α = 3 + 2f ′′′(1) (where f is a convex function).

Alternatively to the Fisher-Rao geometry, Wasserstein distances [223] provide another
natural way to compare probability distributions. Given a metric space M , these distances
optimally transport the probability measure µ defined on M to turn it into ν:

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
M×M

d(x, y)p dγ(x, y)

)1/p

,

where p ≥ 1, Γ(µ, ν) denotes the collection of all measures onM×M with marginals µ and ν.
It can be observed that computing the Wasserstein distance between two probability measures
amounts to finding the most correlated copula associated with these measures. Notice also
that unlike Fisher-Rao and related divergences, Wasserstein distances work with probability
measures instead of probability density functions.

Distances between Gaussian copulas

We illustrate the behaviour of these distances in the simple case where the underlying copula
is a Gaussian (which may not be relevant for all applications). Moreover, when the compared
distributions are multivariate Gaussians, we have analytical formulas (which are reported in
Table 5.3).

The Gaussian copula is a distribution over the unit cube [0, 1]d. It is constructed from
a multivariate normal distribution over Rd by using the probability integral transform. For
a given correlation matrix R ∈ Rd×d, the Gaussian copula with parameter matrix R can be
written as

CGauss
R (u1, . . . , ud) = ΦR(Φ−1(u1), . . . ,Φ−1(ud)),

where Φ−1 is the inverse cumulative distribution function of a standard normal and ΦR is the
joint cumulative distribution function of a multivariate normal distribution with mean vector
zero and covariance matrix equal to the correlation matrix R. For illustration purposes, we
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Figure 5.11: Densities of CGauss
RA

, CGauss
RB

, CGauss
RC

respectively; Notice that for strong correla-
tions, the density tends to be distributed very close to the diagonal.

Table 5.3: Distances in closed-form between Gaussians and their sensitivity to the correlation
strength

D (N (0,Σ1),N (0,Σ2)) D(RA, RB) D(RB, RC)

Fisher-Rao [6]
√

1
2

∑n
i=1(log λi)2 2.77 < 3.26

KL(Σ1||Σ2) 1
2

(
log |Σ2|

|Σ1| − n+ tr(Σ−1
2 Σ1)

)
22.6 < 47.2

Jeffreys KL(Σ1||Σ2) +KL(Σ2||Σ1) 24 < 49

Hellinger
√

1− |Σ1|1/4|Σ2|1/4
|Σ|1/2 0.48 < 0.56

Bhattacharyya 1
2

log |Σ|√
|Σ1||Σ2|

0.65 < 0.81

W2 [202]

√
tr

(
Σ1 + Σ2 − 2

√
Σ

1/2
1 Σ2Σ

1/2
1

)
0.63 > 0.09

λi eigenvalues of Σ−1
1 Σ2; Σ = Σ1+Σ2

2

consider three bivariate Gaussian copulas parameterized by

RA =

(
1 0.5

0.5 1

)
, RB =

(
1 0.99

0.99 1

)
,

andRC =

(
1 0.9999

0.9999 1

)
respectively. Heatmaps of their densities are plotted in Fig. 5.11.

In Table 5.3, we report the distances D(RA, RB) between CGauss
RA

and CGauss
RB

, and the
distances D(RB, RC) between CGauss

RB
and CGauss

RC
. We can observe that unlike Wasserstein

W2 distance, Fisher-Rao and related divergences consider that CGauss
RA

and CGauss
RB

are nearer
than CGauss

RB
and CGauss

RC
. This may sound surprising since CGauss

RB
and CGauss

RC
both describe a

strong positive dependence between the two variates whereas CGauss
RA

describes only a mild
positive dependence.

Our geometric intuition to explain this fact is that Fisher-Rao geodesic distance and its
related divergences are only defined on the manifold of probability distribution densities.
However, the copula characterizing comonotonicity (perfect positive dependence), known as
the Fréchet-Hoeffding upper bound copula M(u1, . . . , ud) = min{u1, . . . , ud}, has no density.
So, perfect positive dependence (for a bivariate Gaussian, it means that the two variates
are perfectly correlated: ρ = 1) is not a point of the manifold. Unlike these distances,
Wasserstein distances are defined between probability measures, so no such problem arises
for the Fréchet-Hoeffding upper bound copula. In the Gaussian case considered, the closed-
form formulas for these distances can make this intuition clearer. For Fisher-Rao and related
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Figure 5.12: Cramér-Rao Lower Bound Var(ρ̂) ≥ 1
I(ρ)

for Pearson correlation estimator

divergences, distances are expressed using the inverse of the covariance matrix and the inverse
of its determinant. These matrices are ill-conditioned when correlation is strong, and singular
when correlation is perfect. For WassersteinW2 distance, the formula is well defined in terms
of square roots.

In [11], Barbaresco gives an extensive comparison of Fisher-Rao geometry versus Wasser-
stein geometry on the space of covariance matrices. One of the noticeable difference is that
the Fisher-Rao geometry has negative curvature whereas Wasserstein geometry is flat and
has nonnegative curvature. The notion of curvature is key to understand the behaviour
of clustering using statistical distances. For instance, we have displayed in Fig. 5.13 the
distances D(ρ1, ρ2) between the Gaussian copulas parameterized by(

1 ρ1

ρ1 1

)
and

(
1 ρ2

ρ2 1

)
.

One can notice that WassersteinW2 exhibits a roughly linear increase away from the diagonal
with low curvature: It can discriminate equally well for all parameters (ρ1, ρ2) ∈ [0, 1]2. On
the contrary, the behaviour of Fisher-Rao strongly depends on the values ρ1, ρ2 as shown
in Fig. 5.13: For high correlations, a small change induces a big change on the distance
value due to the curvature. We call it sensitivity. In addition to returning counter-intuitive
distance values as reported in Table 5.3, this property could lead to totally spurious distances
and thus clusters when working with finite sample data: What if the parameters estimation
error is bigger than the sensitivity? In practice, the distance would be useless.

However, Fisher-Rao and related divergences do not suffer from this drawback. They all
can be locally written as a quadratic form of the Fisher Information Matrix I(ρ). Through
this connection to the Cramér-Rao Lower Bound Var(ρ̂) ≥ 1

I(ρ)
[176], they deviate (the

distance sensitivity) just the right amount with respect to the statistical uncertainty of the
estimator. For Pearson correlation estimate, we have Var(ρ̂) ≥ 1

I(ρ)
= (ρ−1)2(ρ+1)2

3(ρ2+1)
(graphed

in Figure 5.12), i.e. stronger the correlation, finer the estimate can be [144].

Proof. We consider the set of 2× 2 correlation matrices C =

(
1 θ
θ 1

)
parameterized by θ.

Let x =

(
x1

x2

)
∈ R2.

f(x; θ) = 1
2π
√

1−θ2 exp
(
−1

2
x>C−1x

)
= 1

2π
√

1−θ2 exp
(
− 1

2(1−θ2)
(x2

1 + x2
2 − 2θx1x2)

)



5.2. ALTERNATIVES TO STANDARD CORRELATIONS 83

Figure 5.13: Distance heatmap and surface as a function of (ρ1, ρ2) for Fisher-Rao (left), for
Wasserstein W2 (right)

Figure 5.14: Datasets of bivariate time series are generated from six Gaussian copulas with
correlation .1, .2, .6, .7, .99, .9999

log f(x; θ) = − log(2π
√

1− θ2)− 1
2(1−θ2)

(x2
1 + x2

2 − 2θx1x2)
∂2 log f(x;θ)

∂θ2
= − θ2+1

(θ2−1)2
− x21

2(θ+1)3
+

x21
2(θ−1)3

− x22
2(θ+1)3

+
x22

2(θ−1)3
− x1x2

(θ+1)3
− x1x2

(θ−1)3

Then, we compute
∫∞
−∞

∂2 log f(x;θ)
∂θ2

f(x; θ)dx. Since E[x1] = E[x2] = 0, E[x1x2] = θ,
E[x2

1] = E[x2
2] = 1, we get∫∞

−∞
∂2 log f(x;θ)

∂θ2
f(x; θ)dx = − θ2+1

(θ2−1)2
− 1

2(θ+1)3
+ 1

2(θ−1)3
− 1

2(θ+1)3
+ 1

2(θ−1)3
− θ

(θ+1)3
− θ

(θ−1)3
=

− 3(θ2+1)
(θ−1)2(θ+1)2

Thus,

g(θ) =
3(θ2 + 1)

(θ − 1)2(θ + 1)2
.

Clustering experiments

Fisher-Rao geodesic distance has been successfully applied for clustering and classification
[76], statistical analysis (e.g., mean, median, PCA) on covariance manifolds in computa-
tional anatomy [168] and radar processing [11]. In financial applications, variates tend to be
strongly correlated (for instance, correlation between maturities in a term structure can be
up to 0.99). In such cases, the sensitivity problem discussed above may impair the clustering
results. We illustrate this assertion by considering a dataset of N bivariate time series evenly
generated from the six Gaussian copulas depicted in Fig. 5.14. When a clustering algorithm
such as Ward is given a distance matrix computed from Fisher-Rao (displayed in Fig. 5.15),
it will tend to gather in a cluster all copulas but the ones describing high dependence which
are isolated. W2 yields a more balanced and intuitive clustering where clusters contain cop-
ulas of similar dependence. Code for the numerical and clustering experiments are available
at www.datagrapple.com/Tech.

Discussion

In this paper, we have focused on Gaussian copulas for two reasons: (i) we know closed-
form formulas for the distances between multivariate Gaussian distributions; (ii) the existing
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Figure 5.15: Distance heatmaps for Fisher-Rao (left), W2 (right); Using Ward clustering,
Fisher-Rao yields clusters of copulas with correlations {.1, .2, .6, .7}, {.99}, {.9999},W2 yields
{.1, .2}, {.6, .7}, {.99, .9999}

machine learning literature focus on the manifold of covariances [1]. We have shown that if
the dependence is strong between the time series, the use of Fisher-Rao geodesic distance
and related divergences may not be appropriate. They are relevant to find which samples
were generated from the same set of parameters (clustering viewed as a generalization of
the three-sample problem [183]) due to their local expression as a quadratic form of the
Fisher Information Matrix determining the Cramér-Rao Lower Bound on the variance of
estimators. To measure distance between copulas, we think that the Wasserstein geometry
is more appropriate since it does not lead to these counter-intuitive clusters. Beyond the
Gaussian case, the phenomenon illustrated here should subsist as Fisher-Rao is defined
on manifold of densities but the copula for comonotonicity cannot be part of it. We will
investigate further this issue. We would also like to encompass the embedding of probability
distributions into reproducing kernel Hilbert spaces [198] in our comparison of the possible
distances for copulas.

Open problem: Fisher-Rao Riemannian Geometry of Correlation Matrices

Motivation:
For detecting correlation regime changes as soon as possible, Fisher-Rao geometry may

be then more appropriate since its discriminative power (the manifold curvature) is function
of the ease of statistical estimation depending on the values of the parameters. We may
want to build a moving average of correlation matrices, compute an information ball of the
last m matrices and monitor its radius: a relatively large radius implies significant changes,
a relatively small radius implies no significant changes. The mathematical difficulty is to
compute an appropriate Riemannian mean of the m correlation matrices.

Formulation of the problem:
The goal is to provide the Fisher-Rao Riemannian metric, geodesic, distance and mean

for the set of correlation matrices. Such results will allow intrisic computing in the set of
correlation matrices, and thus may improve the methodology of many applications in signal
processing, e.g. radar, telecom, finance.

Introduction

Considering the set of centered normal distributions {N (0, C) | C ∈ E}, where C lives in
the elliptope, i.e. the set of correlation matrices:

E = {C ∈ Rn×n | C = C>,∀x ∈ Rn, x>Cx ≥ 0,∀i ∈ {1, . . . , n}, Cii = 1}
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Example. For n = 3, correlation matrices can be written

1 x y
x 1 z
y z 1

 verifying above

conditions. E is the compact convex set whose boundary is displayed in Figure 5.16. Corre-
lation matrices of rank 1 are the corners, of rank 2 the faces, and rank 3 are inside. Our goal
is to endow E with a metric having good properties. For example, we may want that the
mean of two correlation matrices of rank 2 is a correlation matrix of rank 2. More generally,
we may want that a geodesic, i.e. a ’shortest path’, between two such matrices stays in this
subset. This is not the case with Euclidean geometry.

Figure 5.16: 3D elliptope. Each 3× 3 correlation matrix is represented by a point (x, y, z)

Considering the set of centered normal distributions {N (0,Σ) | Σ ∈ C}, where Σ lives in
the cone of PSD matrices, i.e. the set of covariance matrices:

C = {Σ ∈ Rn×n | Σ = Σ>,∀x ∈ Rn, x>Σx ≥ 0}

E ⊂ C.
Example. In Figure 5.17, we display the boundary of the set of 2×2 covariances matrices(

x y
y z

)
. The blue segment is the subset E .

Figure 5.17: 3D cone. Each 2× 2 covariance matrix is represented by a point (x, y, z). The
blue segment (x = z = 1) is the set of 2× 2 correlation matrices

Fisher-Rao Riemannian Geometry of Covariance Matrices

Information Geometry for multivariate Gaussian with zero mean and intrinsic geometry of
positive-semidefinite matrices lead to same metric and distance.
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• metric: ds2 = ‖Σ−1/2dΣΣ−1/2‖2 = Tr
(

(Σ−1dΣ)
2
)

• distance: d2(Σ1,Σ2) = 1
2

∑n
i=1 log(λi)

2, λi eigenvalues of Σ−1
1 Σ2

• geodesic between Σ1 and Σ2, t ∈ [0, 1]: γ(t) = Σ
1/2
1 e

t log
(

Σ
−1/2
1 Σ2Σ

−1/2
1

)
Σ

1/2
1

• mean of Σ1 and Σ2: γ(1/2)

• mean of Σ1, . . . ,Σn: argminΣ∈C
∑n

k=1 d
2(Σ,Σi)

These results are well known and widely used in signal processing. Some use them for
correlation matrices (since they are also covariance matrices),

but. . .

The submanifold E is not totally geodesic in C

We can observe that the submanifold E is not totally geodesic in C which means that a
geodesic (using the metric from C) between two points in E do not necessarily live in E (cf.
Figure 5.18). As a consequence, though we can use the geometry for covariance matrices, the
mean of correlation matrices is not necessarily a correlation matrix but a covariance matrix.

Figure 5.18: 3D cone. Each 2 × 2 covariance matrix is represented by a point (x, y, z) The
blue segment (x = z = 1) is the set of 2×2 correlation matrices. In green, the geodesic (using
Fisher-Rao metric for covariances) between correlation matrix (1,−0.75, 1) and correlation
matrix (1, 0.75, 1). It is not included in the blue segment representing E

Open questions

Find for E , how to compute

• its metric?

• associated distance?

• its geodesics?

• a mean?
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Optimal Transport

In [144], authors illustrate in a parametric setting using Gaussian copulas that common
divergences (such as Kullback-Leibler, Jeffreys, Hellinger, Bhattacharyya) are not relevant
for clustering these distributions, especially when dependence is high. These information
divergences are only defined for absolutely continuous measures whereas some copulas have
no density (e.g. the one for positive dependence). In practice, when working with frequency
histograms, it gets worse: One has to pre-process the empirical measures with a kernel
density estimator before computing these divergences. On the contrary, optimal transport
distances are well-defined for both discrete (e.g. empirical) and continuous measures.

The idea of optimal transport is intuitive. It was first formulated by Gaspard Monge in
1781 [150] as a problem to efficiently level the ground: Given that work is measured by the
distance multiplied by the amount of dirt displaced, what is the minimum amount of work
required to level the ground? Optimal transport plans and distances give the answer to this
problem.

In practice, empirical distributions can be represented by histograms. We follow notations
from [59]. Let r, c be two histograms in the probability simplex Σm = {x ∈ Rm

+ : x>1m = 1}.
Let U(r, c) = {P ∈ Rm×m

+ | P1m = r, P>1m = c} be the transportation polytope of r and c,
that is the set containing all possible transport plans between r and c.

Definition 12 (Optimal Transport). Given a m×m cost matrixM , the cost of mapping r to
c using a transportation matrix P can be quantified as 〈P,M〉F , where 〈·, ·〉F is the Frobenius
dot-product. The optimal transport between r and c given transportation cost M is thus:

dM(r, c) := min
P∈U(r,c)

〈P,M〉F . (5.16)

WheneverM belongs to the cone of distance matrices, the optimum of the transportation
problem dM(r, c) is itself a distance.

Lightspeed transportation. Optimal transport distances suffer from a computational
burden scaling in O(m3 logm) which has prevented their widespread use in machine learning:
A mere distance computation between two high-dimensional histograms can take several
seconds. In [59], Cuturi provides a solution to this problem: He restrains the polytope U(r, c)
of all possible transport plans between r and c to a Kullback-Leibler ball Uα(r, c) ⊂ U(r, c),
where Uα(r, c) = {P ∈ U(r, c) | KL(P‖rc>) ≤ α}. He then shows that it amounts to
perform an entropic regularization of the optimal transportation problem whose solution is
smoother and less deterministic. The regularized optimal transportation problem is now
strictly convex, and can be solved efficiently using the Sinkhorn-Knopp iterative algorithm
which exhibits linear convergence. Its solution is the Sinkhorn distance [59]:

dM,α(r, c) := min
P∈Uα(r,c)

〈P,M〉F , (5.17)

and its dual dλM(r, c): ∀α > 0,∃λ > 0,

dM,α(r, c) = dλM(r, c) := 〈P λ,M〉F , (5.18)

where P λ = argminP∈U(r,c)〈P,M〉F − 1
λ
h(P ), and h is the entropy function.

In the following, we will leverage the dual-Sinkhorn distances for comparing, clustering
and computing the clusters centers [60] of a set of copulas at full speed.

A methodology to explore and measure non-linear correlations

We propose an approach to explore and measure non-linear correlations between N variables
X1, . . . , XN in a dataset. These N variables can be, for instance, time series or features. The
methodology presented (which is summarized in Figure 5.19) is twofold, and consists of: (i)
an exploratory part of the pairwise dependence between variables, (ii) the parameterization
and use of a novel dependence coefficient.
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Figure 5.19: Exploration (left panel) and measure (right panel) of non-linear correlations.
Exploration consists in finding clusters of similar copulas, visualizing their centroids, and
eventually using them to assess the dependence of given variables represented by their copula

Using transportation of copulas as a measure of correlations

In this section, we leverage and extend the idea presented in our short introduction to
copulas: correlation coefficients can be viewed as a distance between the data-copula and
the Fréchet-Hoeffding bounds or the independence copula. The distance involved is usually
an `p Minkowski metric distance. In the following, we will:

• replace the `p distance by an optimal transport distance between measures,

• parameterize a dependence coefficient with other copulas than the Fréchet-Hoeffding
bounds or the independence one.

Using the optimal transport distance between copulas, we now propose a dependence
coefficient which is parameterized by two sets of copulas: target copulas and forget copulas.

Definition 13 (Target/Forget Dependence Coefficient). Let {C−l }l be the set of forget-
dependence copulas. Let {C+

k }k be the set of target-dependence copulas. Let C be the copula
of (Xi, Xj). Let dM be an optimal transport distance parameterized by a ground metric M .
We define the Target/Forget Dependence Coefficient as such:
TFDC

(
Xi, Xj; {C+

k }k, {C
−
l }l
)

:=

minl dM(C−l , C)

minl dM(C−l , C) + mink dM(C,C+
k )
∈ [0, 1]. (5.19)

Using this definition, we obtain: TFDC
(
Xi, Xj; {C+

k }k, {C
−
l }l
)

= 0⇔ C ∈ {C−l }l,
TFDC

(
Xi, Xj; {C+

k }k, {C
−
l }l
)

= 1⇔ C ∈ {C+
k }k.

Example. A standard correlation coefficient can be obtained by setting the forget-
dependence set to the independence copula, and the target-dependence set to the Fréchet-
Hoeffding bounds. How does it compare to the Spearman correlation? In Figure 5.20, we dis-
play how the two coefficients behave on a simple numerical experiment: X = Z1Z<a+εX1Z>a,
Y = Z1Z<a+0.25+εY 1Z>a+0.25, where Z is uniform on [0, 1] and εX , εY are independent noises.
That is X = Y over [0, a]. Notice that for a = 0.75, Spearman coefficient takes a negative
value. We may thus prefer the monotonically increasing behaviour of the TFDC to the
Spearman one.

How to choose, design and build targets?

We now propose two alternatives for choosing, designing and building the target and forget
copulas: an exploratory data-driven approach and an hypotheses testing approach.
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Figure 5.20: Empirical copulas for (X, Y ) where X = Z1Z<a + εX1Z>a, Y = Z1Z<a+0.25 +
εY 1Z>a+0.25, a = 0, 0.05, . . . , 0.95, 1, and where Z is uniform on [0, 1] and εX , εY are indepen-
dent noises (left figure). Top left is an empirical copula for independence (a = 0), bottom
right is the copula for perfect positive dependence (a = 1). Parameter a is increasing from
top to bottom, and from left to right; TFDC and Spearman coefficients estimated between X
and Y as a function of a (right figure). For a = 0.75, Spearman coefficient yields a negative
value, yet X = Y over [0, a]
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Figure 5.21: 4 copulas describing the dependence between X ∼ U([0, 1]) and Y ∼ (X ± εi)2,
where εi is a constant noise specific for each distribution. X and Y are counter-monotonic
(more or less) half of the time, and co-monotonic (more or less) half of the time

Data-driven: Clustering of copulas

Assume we have N variables X1, . . . , XN , and T observations for each of them. First, we
compute

(
N
2

)
= O(N2) empirical copulas which represent the dependence structure between

all the couples (Xi, Xj). Then, we summarize all these distributions using a center-based
clustering algorithm, and extract the clusters centers using a fast computation of Wasser-
stein barycenters [60]. A given center represents the mean dependence between the couples
(Xi, Xj) inside the corresponding cluster. Figure 5.21 and 5.22 illustrate why a Wasserstein
W2 barycenter, i.e. the minimizer µ? of 1

N

∑N
i=1W

2
2 (µ, νi) [2] where {ν1, . . . , νN} is a set of

N measures (here, bivariate empirical copulas), is more relevant to our needs: we benefit
from robustness against small deformations of the dependence patterns.

Example. In Table 5.4, we display some interesting dependence patterns which can be
found in UCI datasets http://archive.ics.uci.edu/ml/. In this case, variablesX1, . . . , XN

are the N features. Some associations are easy to explain (e.g. top left copula representing
the relation between radius and area of roughly round cells in the Breast Cancer Wisconsin
(Diagnostic) Data Set) whereas some others less (e.g. top row third copula from the left
which represents the relation between the perimeter and the fractal dimension of the cells).

An equitable copula-based dependence measure such as the one described in [88] may
detect them well, but will also detect the spurious ones which are due to artifacts in the
data (or pure chance). With this approach, one can spot them and add them to the set of
forget-dependence copulas. For these reasons, we think that this approach could improve
the feature selection correlation-based approaches [92, 228] which rely on the hypothesis that
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Figure 5.22: Barycenter of the 4 copulas from Figure 5.21 for: (left) Bregman geometry [10]
(which includes, for example, squared Euclidean and Kullback-Leibler distances); (right)
Wasserstein geometry. Notice that the Wasserstein barycenter better describes the underly-
ing dependence between X and Y : the copula encodes a functional association. This is not
the case for the Bregman barycenter

good feature subsets contain features highly correlated with the class, yet uncorrelated with
each other [92].

Table 5.4: Dependence patterns (= clustering centroids) found between variables in UCI
datasets

Breast Cancer (wdbc) 0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Libras Movement 0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Parkinsons 0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Gamma Telescope 0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Targets as hypotheses from an expert

One can specify dependence hypotheses, generate the corresponding copulas, then measure
and rank correlations with respect to them. For example, one can answer to questions such
as: Which are the pairs of assets that are usually positively correlated for small variations
but uncorrelated otherwise? In [73], authors present a method for constructing bivariate
copulas by changing the values that a given copula assumes on some subrectangles of the
unit square. They discuss some applications of their methodology including the construction
of copulas with different tail dependencies. Building target and forget copulas is another
one. In the Experiments section, we illustrate its use to answer the previous question and
other dependence queries.
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Experiments

Exploration of financial correlations

We illustrate the first part of the methodology with three different datasets of financial time
series. These time series consist in the daily returns of stocks (40 stocks from the CAC 40
index comprising the French highest market capitalizations), credit default swaps (75 CDS
from the iTraxx Crossover index comprising the most liquid sub-investment grade European
entities) and foreign exchange rates (80 FX rates of major world currencies) between Jan-
uary 2006 and August 2016. We display some of the clustering centroids obtained for each
asset class on the top row, and below we display their corresponding Gaussian copulas pa-
rameterized by the estimated linear correlations. Notice the strong difference between the
empirical copulas and the Gaussian ones which are still widely used in financial engineering
due to their convenience. Notice also the difference between asset classes: Though estimated
correlations are ρ = 0.34 for the leftmost copulas, they have much dissimilar peculiarities.

Stocks

Centroids’ main feature: More mass in the bottom-left corner, i.e. lower tail dependence.
Stock prices tend to plummet together.

Credit default swaps

Centroids’ main feature: More mass in the top-right corner, i.e. upper tail dependence.
Insurance cost against entities’ default tends to soar in stressed market.

FX rates

Centroids’ main feature: Empirical copulas show that dependence between FX rates are
various. For example, rates may exhibit either strong dependence or independence while
being anti-correlated during extreme events.
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Figure 5.23: Target copulas (simulated or handcrafted) and their respective nearest copulas
which answer questions A,B,C,D

Answering dependence queries

Inspired by the previous exploration results, we may want to answer such questions: (A)
Which pair of assets having ρ = 0.7 correlation has the nearest copula to the Gaussian
one? Though such questions can be answered by computing a likelihood for each pairs, our
methodology stands out for dealing with non-parametric dependence patterns, and thus for
questions such as: (B) Which pairs of assets are both positively and negatively correlated?
(C) Which assets occur extreme variations while those of others are relatively small, and
conversely? (D) Which pairs of assets are positively correlated for small variations but
uncorrelated otherwise?

Considering a cross-asset dataset which comprises the SBF 120 components (index in-
cluding the CAC 40 and 80 other highly capitalized French entities), the 500 most liquid
CDS worldwide, and 80 FX rates, we display in Figure 5.23 the empirical copulas (alongside
their respective targets) which best answer questions A,B,C,D.

Power of TFDC

In this experiment, we compare the empirical power of TFDC to well-known dependence co-
efficients such as Pearson linear correlation (cor), distance correlation (dCor) [201], maximal
information coefficient (MIC) [179], alternating conditional expectations (ACE) [27], max-
imum mean discrepancy (MMD) [91], copula maximum mean discrepancy (CMMD) [88],
randomized dependence coefficient (RDC) [132]. Statistical power of a binary hypothesis
test is the probability that the test correctly rejects the null hypothesis (H0) when the alter-
native hypothesis (H1) is true. In the case of dependence coefficients, we consider (H0): X
and Y are independent; (H1): X and Y are dependent. Following the numerical experiment
described in [191, 132], we estimate the power of the aforementioned dependence measures
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Figure 5.24: Power of several dependence coefficients as a function of the noise level in
eight different scenarios. Insets show the noise-free form of each association pattern. The
coefficient power was estimated via 500 simulations with sample size 500 each

with simulated pairs of variables with different relationships (considered in [179, 191, 132]),
but with varying levels of noise added. By design, TFDC aims at detecting the simulated
dependence relationships. Thus, this dependence measure is expected to have a much higher
power than coefficients such as MIC since, according to Simon and Tibshirani in [191], co-
efficients “which strive to have high power against all alternatives can have low power in
many important situations." TFDC only targets the specific important situations. Results
are displayed in Figure 5.24.

Discussion

It is known by risk managers how dangerous it can be to rely solely on a correlation coeffi-
cient to measure dependence. That is why we have proposed a novel approach to explore,
summarize and measure the pairwise correlations which exist between variables in a dataset.
We have also pointed out through the UCI-datasets example that non-trivial dependence
patterns can be easily found between the features variables. Using these patterns as targets
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when performing correlation-based feature selection may improve results. This idea still
needs to be empirically verified. The experiments show the benefits of the proposed method:
It allows to highlight the various dependence patterns that can be found between financial
time series, which strongly depart from the Gaussian copula widely used in financial engi-
neering. Though answering dependence queries as briefly outlined is still an art, we plan to
develop a rich language so that a user can formulate complex questions about dependence,
which will be automatically translated into copulas in order to let the methodology provide
these questions accurate answers.



Chapter 6

Practical considerations for using
clustering

6.1 Number of clusters

“What is the correct number of clusters?” is the perennial question for practitioners. Many
papers have been published on this topic [199, 116, 149, 185, 206] (and the list goes on and
on), but no off-the-shelf estimator working well in practice and for a broad range of domains
has been found yet.

As we have seen throughout this thesis, the similarity/correlation matrix is highly hierar-
chical, it is not clear that there is a unique ‘correct’ number of clusters but there are maybe
layers in the hierarchy which are more relevant than others. We propose to use a simple
bootstrapping procedure [75] to try to find them: We generate 100 bootstrapped samples of
the initial time series (N = 1025 CDS time series of length T = 750 (3 years)) and compute
the 100 corresponding clustering for a given number of clusters K. We associate to K a
score which is the average similarity (measured using the Adjusted Rand Index (ARI)) of
the obtained partitions. The more similar these partitions, the more relevant is the tested
K, as the results are robust to small perturbations of the data which is a desirable prop-
erty. We display in Figure 6.1 the similarity scores obtained daily during two months for the
different values of K. We can notice that these curves are stable from one day to another
and that they indicate some layers which are more stable than their adjacent layers (local
maxima). However, we can see that the hierarchy is quite developed: unlike clusters built
from datasets in other domains which become unstable for high values of K, we have noticed
that the stability score was increasing for values of K tending to the number of time series
N (then going to 0 for K = N (like for K = 1) the trivial cases). Indeed, we can understand
that the European automotive sub-sector is a strong meaningful cluster, but some pairs like
Peugeot/Renault or BMW/Daimler are even more robust and meaningful.

Ultimately, the correct number of clusters has to be task dependent: For example, if
one wants to devise a cluster-based mean reverting strategy using potential cointegration
relationships, then one should probably select a fine partition giving relatively small and
very correlated clusters. Using these clusters should help to avoid using spurious and fast
breaking cointegration relationships.

6.2 Imputation of missing values in multivariate time se-
ries

We may want that the N time series of length T have no missing values. For example, this
can be an assumption of risk models to work with full historical data (no missing values in
the N×T data matrix). In the CDS market, however, it can happen that some single names
are not quoted every day. It can also happen that new credit default swaps are created

95
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Figure 6.1: Stability scores for clustering N = 1025 CDS time series of length T = 750 (3
years) as a function of the number of clusters K, K ∈ [[2, 343]], between 13-08-2016 and 07-
11-2016. These scores are stable from one day to another. Local maxima indicate layers in
the hierarchy with a stronger stability. They can be found at 2 (essentially Europe vs. US),
6 (essentially the economic regions (Europe, US, Asia) subdivided by the quality of credit:
investment grade vs. high-yield), 10 (US and Europe further subdivided by corporate vs.
financial). The red curves correspond to the stability scores of clustering pure noise (T i.i.d.
samples of a N -variate Gaussian N (0,Σ), where Σ = IN). Clusters of pure noise are not
stable (we can notice however a small bias of the stability score for large values of K).
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and therefore have no historical data. How can we seamlessly incorporate them in existing
risk/trading/analysis frameworks which assume the complete history hypothesis?

Cluster-based regressions

In this section, we propose to use clustering as a relevant way to impute the missing values
for these time series. We suggest using the following procedure:

• for time series having enough observations (let’s say 120 quoted days), we use statisti-
cal benchmarks, i.e. clusters obtained by one of the many clustering methodologies,
to impute the missing prices. We first build statistical clusters based on time series
having full history, then we find the nearest cluster for each of the missing-values time
series based on their history, and finally we do a regression between the existing quotes
and the center of their respective cluster;

• for time series having too few observations (let’s say less than 120), we use economic
benchmarks, i.e. clusters crafted by macro and economic variables, to build the
regression.

Optional step specific to credit default swaps: A quadratic process for time series
of prices normalization

As conventional spreads may not be compatible with any upfront price, we prefer to use
directly upfront quotations. As the regression aims at completing the missing values of the
time series, it is helpful to have a statistical model that describes the upfront-prices behaviour
correctly. We use a quadratic diffusion model that proved to be efficient for option pricing
and Value-at-Risk computations.

At any quotation date t, the clean upfront price NPV (t) can be written:

NPV (t) = (S(t)− C)Rbp(t),

where Rbp(t) is the risky duration inferred by a probabilistic model, C is the quoted coupon,
and S(t) is the par-spread. If R(t) is the residual maturity,

NPV (t) + CR(t) = S(t)Rbp(t) + C(R(t)−Rbp(t)) ∈ [0, 1 + CR(t)]

as S(t)Rbp(t) is the market expected loss and R(t) ≥ Rbp(t).
We consider the following quantity:

U(t) =
NPV (t) + CR(t)

1 + CR(t)
∈ [0, 1].

The quadratic diffusion process allows to model time series belonging to [0, 1]:

dU(t) = U(t)(1− U(t))σdW (t).

We therefore choose to work on the following series of innovations N(t):

N(t) =
U(t)− U(t− 1)

U(t)(1− U(t))
.

Results

As time goes on this procedure is applied regularly to refine the imputed missing values. For
new entities, past values are imputed first using economic clusters (cf. Figure 6.2 and blog
post https://www.datagrapple.com/Blog/Show/11831/spring-rolls.html), then after
6 months they can be estimated using statistical clusters (cf. Figures 6.3, 6.4). With more
data, it is possible that the cluster assignment changes and therefore the estimated past.
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Figure 6.2: CSTM (Constellium NV) - the producer of aluminium cans but also elements for
planes and cars (CSTM includes former French Pechiney activities and Arconic is its main
competitor) - has been added to the iTraxx Crossover index and thus should start to be
traded actively. This entity has no previous CDS history.

Figure 6.3: This statistical cluster gathers high-yield European entities which have only
partial historical data. Bounded by the red box, we can see in dotted lines the spreads
imputed by the cluster-based regression for MTNLN (Matalan Finance PLC), CAREUK
(Care UK Health and Social Care PLC), SELNSW (Selecta Group B.V.), PFDLN (Premier
Foods Finance PLC), HEMABV (Hema Bondco I B.V.), PIZEXP (PizzaExpress Financ-
ing 1 PLC), ICELTD (Iceland Bondco PLC), BROPRLN (Boparan Finance PLC), CAB-
BCO (Monitchem Holdco 3 S.A.), DRYMIX (Dry Mix Solutions Investissements S.A.S.),
STGATE (Stonegate Pub Company Financing PLC), CVRD (VALE S.A.), GALAPG (Gala-
pagos Holding S.A.), LINDOR (Lock Lower Holding AS), NUMFP (Numericable-SFR S.A.),
NVFVES (Novafives S.A.S) which were introduced in the iTraxx Crossover index during the
September 2014 roll, and ZIGGO (Ziggo Bond Finance B.V.) which was introduced during
the next roll in March 2015.
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Figure 6.4: Same cluster as in Figure 6.3, i.e. high-yield European entities in the iTraxx
Crossover index with partial history. Some of the names have been introduced earlier, for
example POLKOM (Eileme 2 AB (Publ)) has been introduced in September 2013, UCBBB
(UCB Pharma) has been introduced in March 2014. Their history have been imputed so
that the time series start 01/01/2006. We can notice that they share a common history.
They are now in the same cluster because their historical data were imputed using the same
cluster for the regression. Going forward, with more market data, they may be projected on
different clusters (which should be more and more relevant as market prices are obtained) for
the regression and thus their imputed past may change, and so their final cluster. Hopefully,
it may converge to the ‘true’ clustering, if any.

6.3 Hierarchical clustering visualization

In this section, we present a visualization that is useful to answer such questions:
• How strong and homogeneous are the clusters?
• How strongly connected / correlated to others clusters are they?
• Is the clustering structure strictly hierarchical?
• Are there overlapping clusters?
• What is the content of a cluster?
• What are the main characteristics of a cluster? of its components?
• Can we name automatically a cluster?
The visualization displayed in Figure 6.5 helps to answer quickly to these questions

besides quantitative indicators. It builds upon a technique called seriation (cf. [128] for
an historical overview) which aims at reordering the matrix so that its structure appears
more blatantly. There are many ways to serialize a similarity (or dissimilarity) matrix
and hierarchical clustering is such one. Though hierarchical clustering may not be the
‘best’ approach possible for the visualization purpose, the same algorithm has to be used to
correctly explore the clusters obtained. We already mentioned at the end of Chapter 4 how to
leverage the dendrogram to obtain a reordering of the rows (and columns) of the correlation
matrix by recursively traversing it from top to bottom using the idea of the quicksort.

In Figure 6.5, we can see the results obtained on historical time series of returns for the
STOXX Europe 600. The historical prices are adjusted for all cash and special dividends,
splits and all capital changes to produce homogeneous time series (courtesy of Finaltis).
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Unlike the hierarchical correlation structure for credit default swaps displayed at the end
of Chapter 4 which is quite clear, the one for these stocks is more fuzzy. We can notice
that small blocks appear on the diagonal corresponding to subsectors such as, for example,
the UK Real Estate Investment Trusts (REITS) depicted in the bottom window having an
average correlation of 0.67. The clusters boundaries are overlaid over the correlation matrix
heatmap: we can see K = 26 clusters which correspond more or less to subsectors which
are themselves more or less strongly correlated and more or less interdependent. To see how
good a flat partition of K given clusters is, we inspect how their boundaries overlay the
coefficients. Do the boundaries cut homogeneous clusters? For example, on the top window,
with K = 2, we can see that the small cluster does not contain strongly correlated stocks
but all these clusters are weakly correlated with those in the big cluster; the big cluster is
too coarse, it clearly contains different groups.

Visualization features: When hovering a position (x,y) we obtain the two corresponding
stocks and their correlation. If we hover a cluster, we get its components, its mean correlation,
and the main characteristics of this cluster based on meta-information for each its stocks
(quotation place, industry, sector, subsector, market capitalization, etc.). This information
could also be useful for an automatic naming procedure of the clusters (which we used on
the HCMapper/Sankeys described in the next section). We note that automatic naming of
the clusters is not a well developed research topic and that bespoke recipes prevail though
that this issue is a very important practical one.

Figure 6.5: Seriation of the STOXX Europe 600 correlation matrix by hierarhical clustering
and for hierarchical clustering investigation
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6.4 Experimental guidelines to investigate clustering sta-
bility

6.4.1 Visualization and comparison of clusters

We describe in this subsection a new visualization tool, dubbed HCMapper, that visually
helps to compare a pair of dendrograms computed on the same dataset by displaying multi-
scale partition-based layered structures. HCMapper is specifically designed to grasp at first
glance both whether the two compared dendrograms broadly agree and the data points on
which they do not concur. HCMapper is currently released as a visualization tool on the
DataGrapple time series and clustering analysis platform at www.datagrapple.com.

Visualization construction

We start from a dataset X = {x1, . . . , xn}. We obtain a dendrogram on X using a hierarchical
clustering algorithm. For comparing two dendrograms built over X , we extract from each
dendrogram all possible flat partitions over X , thus transforming each one into a tree whose
vertices at a given depth define a partition over X , partitions ranging from the coarsest one
at the root to the finest one at the leaves as illustrated in Figure 6.6.

Figure 6.6: Extracting flat partition-based clustering from a dendrogram and transforming
it into a tree of clusters; all clusters at a given depth in this tree form a partition over the
dataset X = {x1, x2, x3, x4, x5}.

Bonds between the two tree vertices are explicitly encoded as links representing whether
their associated cluster intersects or not. Since cluster size is a significant information of
clustering, we display it through its associated vertex whose size is proportional to the ratio
of the cluster size over the dataset size. Even more important to our task, understanding
clusters intersection: intersection size is encoded through the size of the edge that bonds
them, wider is the edge relatively to the cluster size, bigger the intersection; intersection
content can be displayed by hovering over the edge. To display this graph, we can leverage
the D3.js [24] Sankey, a highly customizable chart, which is amenable for adding application-
oriented features.

Concerning time complexity for building the visualization from scratch on X = {x1, . . . , xn},
it requires O(n2 log n) for applying agglomerative hierarchical clustering algorithm, then for
transforming the dendrograms obtained it costs O(n2), and finally for displaying V vertices
O(V 3).

Visualization interpretation

The HCMapper graph is depicted in Figure 6.7. There are three main areas: two contexts,
and a focus. The left and right contexts (Tree 1 and Tree 2 in the picture) represent some
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of the successive coarser layers of the left and right inner layers (colored layers in the image)
to be compared in the focus area. The main goal is to understand how these two partitions
are related. In Figure 6.7, we compare a partition at depth n obtained from a dendrogram
reflecting hypothesis 1, and a partition at depthm obtained from the alternative dendrogram
reflecting hypothesis 2. Looking at the left partition in the focus area, we can see that it
is composed of three clusters (green, yellow, orange) of approximately equal size. The right
partition consists in four clusters (light green, deep green, light orange and red). We can
observe that the left green cluster is mapped onto the light and deep green clusters from
the right partition which consist in a refinement. However, right partition is not a strict
refinement of the left partition as it can be seen by looking at the right light orange cluster.
Indeed, this one is composed of the left yellow cluster and a part of the left orange cluster,
the latter evenly splitting into the right light orange cluster and the red one. But, what is the
most important to notice here, and which is visually blatant, is the small edge diverging from
the bulk of edges linking the left green cluster to the two right green clusters. This singular
edge links an element from the left green cluster to the corresponding same labeled element
yet belonging to the red cluster in the right partition. This actually can be considered as an
outlier or a point of special interest since the two hypotheses broadly agree but on this point.
Notice that finding so readily this special point would be much harder by looking through
clustering textual results or by inspecting common visual comparison between dendrograms
such as the tanglegram displayed in Figure 6.9 which is implemented in the dendextend R
package.

Figure 6.7: Two hypotheses are compared through the dendrograms which were transformed
into two trees of partition-layers; note the diverging edge from the green cluster to the red
one which highlights a moot point of special interest for experts.



6.4. EXPERIMENTAL GUIDELINES TO INVESTIGATE CLUSTERING STABILITY103

A simple use case: Comparison of the correlation-only vs. the correlation+distribution
clustering

We compute two dendrograms: one dendrogram based on correlation only (H1); one den-
drogram based on the correlation+distribution distance proposed in Chapter 5 (H2). The
resulting HCMapper graph is displayed in Figure 6.8. At once, one can notice that clusters
for (H1) are broadly in a one-to-one correspondence with clusters for (H2), but a few outliers
highlighted by thin diverging edges. Thus, thanks to the HCMapper visualization, we can
conclude that correlation is the main explanatory factor for the clustering of prices time
series since only few clusters are modified by adding the distribution information. This can
be explained by market microstructure: market makers are specialized and cover specific
sectors (as we have seen in Chapter 3), thus adding correlation between prices which are al-
ready influenced by common macroeconomic factors. Yet, the few moot points found are of
paramount significance for experts as they may correspond to assets whose price variations
undergo heavy-tailed distribution or suffer from illiquidity, therefore particular attention
should be given to these assets while performing a risk analysis.

Figure 6.8: Left: two partitions extracted from a dendrogram built from correlation only;
Right: two partitions extracted from a dendrogram built using a dependence+distribution
distance. By hovering over the thin edge diverging from the “America" cluster in the
correlation-only case, we can read AL (Rio Tinto) and CNG (AT&T) on the tooltip. These
American companies are clustered with high quality European government debt assets (e.g.
Norway, Sweden, Denmark), all of them having a daily variation distribution characterizing
illiquid products.

6.4.2 A perturbation framework for testing clusters stability

We present in this subsection an empirical framework motivated by the practitioner point of
view on stability. Clustering stability designates the reproducibility of the clustering when
data is slightly perturbed [49]. Clustering stability for model selection or validity assessment
[124] is indeed a hot topic in the machine learning literature: [14] warn against its irrelevant
use as stability only depends on the uniqueness of the clustering objective function minimizer
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Figure 6.9: Left: two partitions extracted from a dendrogram based on correlation only;
Right: two partitions extracted from a dendrogram based on our dependence+distribution
distance; Consensus or divergence is much harder to grasp in the dendextend tanglegram
[85] than in HCMapper.

for large sample size, yet [189] advocate that this criterion remains useful in the case of finite
possibly small samples. From the quantitative analyst or trader perspective, dynamical
stability of models, i.e. stability to online perturbations arising from streaming data, is
required for being confident using them. A clustering should only change when a meaningful
event happens in the market. Despite being an important notion for practitioners, few
works have dealt with the dynamical stability properties of clusters computed on financial
time series [64].

The goal of our perturbation framework is to both assess clustering validity and yield
market insights by providing through the data perturbations we propose a multi-view of the
assets’ clustering behaviour.

Perturbations can be performed both on returns (some of the T values of each time series)
or on assets (some of the N time series themselves). Concretely, these perturbations consist
in modifying row-wise or column-wise the N × T data matrix X.

We provide below a list of perturbations concerning some of the T time series values. We
explain their motivations arising from financial concerns and what we can learn from them
by analyzing the clustering stability.

Sliding Window

Motivation: Dynamical stability of models is a requirement for trading and risk information
systems. For example, value at risk (VaR), an estimated amount of money so that the
potential loss of a portfolio over a given timespan should not exceed, is computed on a
moving window and updated with respect to the asset prices stream. With no trading in the
portfolio, and in a stationary regime, VaR should not vary too much.

Definition: Given a window width W and a step size S, clustering is performed on
X:,[tcur,tcur+W [ and X:,[tcur+S,tcur+S+W [, then current time tcur is updated tcur := tcur + S, and
so on.

Insight: A clustering that strongly differs from one time to another when the market seems
in a steady regime should be rejected since very sensitive to noise, i.e. small unsignificant
market variations. If confidence is high in the methodology, modification of clusters may be
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a signal that market structure is changing (for instance, end of a crisis and decrease in global
correlation).

Odd vs. Even

Motivation: A clustering algorithm applied on two samples describing the same phenomenon
should yield the same results. How to obtain two of these samples? The goal is to split
the sample in two while mitigating the effect of non-stationarity, seasonality, end-of-the-
week trading activity, meetings and announcements from the ECB or the FED generally
happening on Friday.

Definition: We define X(1) = {X:,t | t is odd} and X(2) = {X:,t | t is even}, i.e. we build
the sample of the odd trading days and the sample of the even trading days. Since the
trading week lasts 5 days, we alleviate the aforementioned statistical biases. Clustering is
performed independently on X(1) and on X(2).

Insight: If not stable, the clustering method should be rejected.

Economic Regimes

Motivation: Since the economic context can change dramatically, financial time series do not
evolve in a steady regime in the long run. It makes sense to split the timespan into different
periods where the statistical regime can be considered stationary.

Definition: We partition the sample into M subsamples X = tMi=1X
(i), where X(i) =

X:,[ti,ti+1[ and the (ti)
M+1
i=1 delimit time intervals. The breakpoints (ti)

M+1
i=1 can be chosen

guided by market understanding or computed using a dynamical changes and regime detec-
tion algorithm.

Insight: We can study whether the clustering structure is persistent throughout different
economic regimes, and how strongly it is. If not, which are the periods concerned and how
steep is the change? Which assets are involved? Why do they switch from clusters? What
happened to them and their clusters? However, we must keep in mind that it is difficult to
separate the signal from the noise of the clustering methodology.

Heart vs. Tails

Motivation: Does the market under stress share a common clustering structure with the
market during uneventful periods?

Definition: Let X t = 1
N

∑N
i=1Xi,t be the mean time series of the market. let Q1 be the

lower quartile and Q3 be the upper quartile. We define T = {t | X t ≤ Q1 ∨X t ≥ Q3} and
H = {t | X t /∈ T } corresponding to times having market values in the tails and in the heart
respectively. Then we split the sample X in the two following subsamples X(1) = {X:,t | t ∈
T } and X(2) = {X:,t | t ∈ H} on which we apply the same clustering algorithm.

Insight: Although it is difficult to anticipate changes of the market behaviour, in period of
stress all assets tend to be simultaneously affected by macroeconomic tensions which usually
induce a significant increase in correlation betweem them (cf. Fig. 6.10). Thus, correlation
should be less discriminating and a correlation-based clustering might be unstable with
respect to this perturbation.

Multiscale

Motivation: Markets prices can be monitored from a high frequency sampling (tick by tick
or minute by minute) to much lower frequency (from hours to hours, days by days or on
a weekly basis). The sampling frequency used is linked to the type of trading, from high-
frequency trading (HFT) and algorithmic trading to long-term investments. Is the clustering
structure persistent throughout a wide range of time scales or does it strongly depend on
the sampling?
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Figure 6.10: Mean Correlation Dynamics computed on the whole CDS dataset from 2006 to
2015 using a 6-month sliding window

Definition: From X we can build M datasets X(i) = X:,si , i = 1, . . . ,M where si are
regularly-spaced multiscale subsample of {1, . . . , T}.

Insight: Ideally, in the perspective of building a risk system, we would like that the choice
of risk factors is independent of the time scale used for the analysis. This perturbation allows
us to verify to which extent clustering is multiscale persistent.

Maturities

Motivation: Fixed-income assets such as bonds, swaps and CDS for instance, have a lifespan
called their maturity. Several products with different maturities (say an insurance against
the default of a corporate for 1, 2, 3, 5, 7 or 10 years) can concern the same entity. Since
the underlying risk is the same, we would like similar clusterings.

Definition: We get from the market several time series dataset X(i), one N × T data
matrix for each quoted maturity.

Insight: We can either reject a clustering method which yields to unstable clusters or
investigate why a particular maturity has a different clustering structure compared to the
others.

Term Structure

Motivation: The term structure is the set of all quoted maturities. Clustering term structure
could lead to a more meaningful result than clustering separately each maturity.

Definition: For clustering term structures, one need a specific distance. To our knowledge,
the problem of obtaining a proper one which captures the whole information (e.g. dynamics,
distribution and correlation of its distortions, intra- and inter-correlation) has not been
addressed. Here, we give a simple one for clustering CDS term structures at a given date t.
A CDS probability of default P (t) can be viewed as a cumulative distribution function onR+.
Indeed, the probability of default is increasing, the probability of instantaneous default is 0,
and at infinity all entities will eventually default. Thus, f(t) = ∂P (t)/∂t defines a probability
density function on R+, and since

∫
R+ f(t) dt = 1,

√
f(t) is a unit vector in L2(R). The

inner product between two unit vectors defines an angle φ which is the distance between two
term structures. Given two term structures P1, P2 and f1, f2 such that fi(t) = ∂Pi(t)/∂t,
their distance φ can be written cosφ =

∫
R+

√
f1(t)

√
f2(t) dt = 1 − H2(

√
f1(t),

√
f2(t)),

where H is the Hellinger distance.
Insight: For entities near default, the term structure should be inverted, i.e. the market

anticipates a renormalisation if these entities survive. For entities having seemingly no
troubles, the quoted term structure should mirror the debt term structure of these entities.
Some industries have a particular debt structure (short term debt for financials, long term
debt for basic materials and industrials). Part of this information should also be captured
by correlation between assets on a given maturity.



6.4. EXPERIMENTAL GUIDELINES TO INVESTIGATE CLUSTERING STABILITY107

DP ARI 0.46 DS ARI 0.71 DE ARI 0.47 DG ARI 0.90

Figure 6.11: Stability to Odd vs. Even perturbation and the associated ARI showing a
better stability of DG-based clustering; partitions obtained from DS-based clustering are
rather similar but less stable

To the presented time-based perturbations, we add the following two population-based
perturbations on the set of assets: increasing/decreasing the number of entities and
adding entities with imputed historical prices. These perturbations can be easily
motivated: new companies emerge regularly and some others disappear from the market.
The clustering structure should not radically change when adding or removing entities from
the clustering perimeter. When new companies are created and introduced in the market,
they have not much history. It may be necessary to impute missing data based, for instance,
on a clustering methodology. We would like to verify that adding synthetic time series
built from existing ones to the clustering perimeters does not change the original clustering
structure. The clustering structure should be robust to the statistical engineering performed
to impute missing data or clean their poor quality.

This list of perturbations is obviously not exhaustive but gives an idea on how to empir-
ically investigate the clusters. For example, one could think of using different CDS datasets
of historical prices and compare the results since these datasets differ in quality as pointed
out in [146]. It would be embarrassing for policymakers or traders that their decisions are
‘overfitted’ to some measurement noise and carefree recording of data.

Comparison of distances using the perturbation framework

We leverage the proposed perturbation framework to test four distances used for clustering
financial time series. We also observe some stylized facts about the CDS market. The
four distances DP , DS, DE and DG are essentially distances based on Pearson correlation,
Spearman correlation, Euclidean distance and the distance introduced in Chapter 5 based
on correlation and distribution respectively. We illustrate the clustering stability with the
HCMapper visualization, essentially a Sankey diagram, which highlights the dissimilarties
between partitions as explained in the previous subsection.

In Fig. 6.11, we display the stability results on the Odd vs. Even experiments. For
each distance, we have displayed the partitions obtained on the odd trading days sample
(left) and on the even trading days sample (right). A grey link binds a given asset in the
left partition to the same asset in the right partition. Thus, a perfectly stable clustering is
displayed by a one-to-one correspondence between left and right clusters. Diverging edges
highlight mismatches between partitions, hovering on the edges shows the assets switching
from clusters. In this experiment, these can be assets with an unusual history, for instance
they may have encountered a strong variation on a particular day due to a merger (M&A),
a catastrophe or a fraud. But, of course, a cluster switch can happen due the clustering
method shortcomings.

The Heart vs. Tails experiment displayed in Fig. 6.12 shows an interesting stylized fact
about the CDS market. Clustering on correlation (DS and DP ) is not stable at all with
respect to this perturbation. This means that the sample of the strongest moves in the
market has a totally different clustering structure than the sample of the mildest moves
when considering only correlation. This can be explained since when the market is stressed,
macroeconomic tensions tend to affect all the participants and correlation between assets be-
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DP ARI 0.24 DS ARI 0.09 DE ARI 0.31 DG ARI 0.43

Figure 6.12: Stability to Heart vs. Tails perturbations for different distances and the asso-
ciated ARI

DP

1 → 3 0.34
3 → 5 0.43
5 → 7 0.50
7 → 10 0.46

DS

1 → 3 0.71
3 → 5 0.92
5 → 7 0.86
7 → 10 0.88

DE

1 → 3 0.05
3 → 5 0.62
5 → 7 0.61
7 → 10 0.87

DG

1 → 3 0.61
3 → 5 0.90
5 → 7 0.83
7 → 10 0.87

Figure 6.13: Stability to Maturity perturbations

comes significatively higher and similar for all assets, thus becomes uninformative. This claim
is supported by the fact that DS based on the Spearman correlation (correlation between
ranks) performs the worst, whereas DP , based on the Pearson correlation measure known to
be decreased by fat-tailed variations, achieves a better stability since this correlation-based
distance discriminates unintentionally on distributions. For high values of ρ, which is the
case in stressed period, DE discriminates on the mean and variance of the variations, so
performs better than the correlation-based distances. Finally, DG which intentionally works
on both information can leverage the distribution information and obtain a rather stable
clustering between the stress periods and the more quiet ones.

In Fig. 6.13, we display results of the Maturity experiment. For each clustering, we
show 5 partitions corresponding to clustering the 1,3,5,7,10-year CDS. We can notice that
the partition corresponding to the 1-year CDS is the less stable whatever the distance used.
This can be explained by the relative illiquidity of the 1-year maturity compared to the
others yielding to scarce and noisy quotes from the market makers. Stability is high for DS

and DG and abnormally low for DP and DE while information is essentially the same.
The Fig. 6.14 depicts results of the Multiscale experiments. 6 partitions are dis-

played for each distance corresponding to the clusterings obtained by considering respectively

DP

1 → 2 0.81
2 → 4 0.41
4 → 8 0.58
8 → 16 0.12
16 → 32 0.07

DS

1 → 2 0.86
2 → 4 0.62
4 → 8 0.55
8 → 16 0.30
16 → 32 0.15

DE

1 → 2 0.42
2 → 4 0.63
4 → 8 0.59
8 → 16 0.43
16 → 32 0.60

DG

1 → 2 0.81
2 → 4 0.58
4 → 8 0.61
8 → 16 0.48
16 → 32 0.11

Figure 6.14: Stability to Multiscale perturbations
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DP

ARI 0.13/0.30/0.30
DS

ARI 0.36/0.14/0.16
DE

ARI 0.26/0.02/0.10
DG

ARI 0.40/0.69/0.60

Figure 6.15: Stability to Economic Regimes perturbations

1,2,4,8,16,32 trading days variations. We can observe as a stylized fact that the clustering
structure is persistent up to a weekly sampling, and that the clustering structure is essen-
tially determined by correlations as advocated by the high stability achieved by DS and DP .
DG, once again, is relatively stable leveraging its correlation part which is similar to DS.

We finally conclude this empirical study with the Economic Regimes perturbations. In
Fig. 6.15, we display 4 partitions corresponding to the clusterings obtained on different
economic periods. From left to right, the pre subprime crisis period 2006-2007, the subprime
crisis period 2008-2009, the European debt crisis 2011-2012 and the quantitative easing 2013-
2014. We can notice in Fig. 6.15 that the period 2006-2007 yields very different clusters
compared to what follows. Indeed, looking at Fig. 6.10, we observe that correlation in
the market was very low. Except clustering with DG, clusters obtained with the other
methods are not stable. The partitions and their stability scores obtained from the DG-based
clustering agree with previous remarks: pre-crisis period was much different, the clustering
structure is the same during both crises, and now that correlation is decreasing and that
quantitative easing is at work the clustering structure of the market is changing.

6.5 Monitoring clusters
From day to day, the clustering may change. We already explained that some of these
changes may be artifacts of the methodologies. Some changes may be of interest. We use
the HCMapper to spot these changes (cf. Figure 6.16) and matrix serialization (re-ordering
of the rows/columns to make the hierarchical sub-structure appear more blatantly) to inspect
the similarity/correlation matrices of the clusters involved in the moves (cf. Figures 6.17,
6.18, 6.19, 6.20). For example, in the case of the ‘Korean’ cluster displayed in Figure 6.17,
HANABK (Korea Exchange Bank (KEB) Hana Bank) joins an already existing cluster of Ko-
rean entities (but for the less correlated one, ADGB (Abu Dhabi)). This move may be only
due to an oversegmentation of the time series over a short period (1 year) as in the long run,
the ‘Asia Ex-Japan’/‘Korean’ cluster is usually and neatly divided into two subclusters: ‘Cor-
porate’ and ‘Financial’ (cf. the Machine Tree on DataGrapple www.datagrapple.com). Over
a short period, they can mix as seen in Figure 6.17: Corporate entities (POHANG (Posco),
SAMSNG (Samsung Electronics), KORELE (Korea Electric Power Corporation)), and Fi-
nancial ones (CITNAT (Kookmin Bank), EIBKOR (The Export-Import Bank of Korea),
KDB (The Korea Development Bank), HANABK (KEB Hana Bank), INDKOR (Industrial
Bank of Korea)). On the contrary, Figures 6.18, 6.19, 6.20) may be cases of undersegmenta-
tion: One can notice several subclusters which are only mildly correlated together. It is not
surprising then that these subclusters can split.

We can also monitor the clusters using lots of relevant indicators, but this is much more
of an art reserved to practitioners who have particular ideas in mind than science.
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Figure 6.16: The rightmost partition corresponds to the partition as of ‘today’ (31-03-2017).
From right to left, they correspond to the ‘today’−i, 0 ≤ i ≤ 6, trading days. We can notice
that 3 trading days ago, there have been some changes in the clusters (e.g., some entities
left the ‘JAPAN’ cluster to move into the ‘FINANCIAL/JAPAN’ cluster).

Figure 6.17: Top: Korean cluster at time t − 1 (left) and t (right): HANABK (KEB Hana
Bank, a Korean bank holding) have joined a cluster of Korean companies; Bottom: NPVs
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Figure 6.18: LPX (Louisiana-Pacific Corporation), OI (Owens-Illinois), VMC (Vulcan Mate-
rials Company) provide building materials. They leave a cluster of industrials which explodes
(cf. also next figure) for another one where they seem better integrated.

Figure 6.19: TXTF (Textron) is an aerospace, defense, security and advanced technologies
conglomerate. GROHE (Grohe) is a sanitary fittings manufacturer. They also move to
another cluster which contain mostly illiquid names.
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Figure 6.20: AET, AXP, COF, GE, MCD, MMC, UNH (blue chip companies) are joined by
ALL, BRK, HIG, XL, AIG, L, PRU, MET (financial services and insurance) and are left by
BWA, REALOG, VRX, YUM (misc. industries)



Chapter 7

Conclusion and perspectives

7.1 Summary of contributions and main ideas

In this thesis we have first gathered and reviewed the scattered literature about clustering
financial time series (see also [138]). This research topic really emerged two decades ago
(in 1999) with Mantegna’s paper [133] though some early attempts were already published
in the 1960s [112]. This approach, which is essentially computational, benefited from the
increase and widespread of computing power in the late 1990s to find a broader public. We
have highlighted in this review that most of the papers were focusing on exploration and
explanation of the minimum spanning tree and the dynamics of the hierarchical structure,
but not on the robustness of these techniques to build information systems on top of them.
At Hellebore Capital, clusters are used as building blocks to build risk measures (improved
Value-at-Risks and SPAN-like methods) and trading systems. They are also used for data
quality: cleaning historical databases, monitoring and finding outliers in the livefeed. We
provided in Chapter 6 some practical methodologies to apply clustering analysis on finan-
cial time series. Since their applications can be critical, one may want to verify that the
methodology is sound hence the consistency part of the thesis (see also [139]). The second
and core part is dedicated to distances between financial time series which are designed
to increase relevance and robustness of the existing clustering methods with the idea that
a proper distance working on a proper representation of the data should help stabilize the
clustering results (see also [68, 140, 136, 144, 141, 143]).

In Chapter 3, we spent several pages explaining the CDS datasets to highlight the many
possible sources of noise: prices are sent by different sources which are more or less reli-
able; the messages can contain typos; their information is not always clearly structured; the
messages can contain ambiguities and implicit information; the ‘smart parsing’ technology
[200] is robust but does not yet capture 100% of the information; we do not necessarily
get information from all the current CDS traders; several arbitrary choices have been made
such as the rules for a synthetic order book, i.e. the time persistence for a quote or its
priority; the snapshot time for building the daily time series, etc. It all results in a very
noisy process having possibly many biases. In these conditions, modeling sophistication (e.g.
learning models with millions of parameters to fit on small noisy datasets) may have pitfalls
and can ‘overfit’ the noise by recovering statistical patterns which are only artifacts of the
data sources or processing pipeline. For example, even with simple clustering algorithms one
can discover plainly wrong patterns such as the specific curves of the Japanese CDS term
structures which are essentially due to the relatively high frequency of 5-year quotes vs. the
lack of frequent information on other maturities (as we have seen in the Chapter 3 volumetry
statistics). The number of public holidays (higher in Japan) can also bias the distribution of
returns and correlations. We have striven to achieve an appropriate balance in our modeling.
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7.2 A research program
Many questions have been raised during our investigation. Not all were answered, and not
all that have been answered have been included in the manuscript. We list below issues that
we think are important to solve for advancing the research in financial time series clustering:

• Riemannian geometry of correlation matrices (Fisher-Rao distance and mean)
potential use case: moving average of correlation matrices; computing information ball
[158] of correlation matrices; study the evolution of the correlation structure inside a
given cluster / between the cluster representatives;

• multivariate correlation (dependence measure for several random variables/vectors
and dependence measure between two random vectors)
potential use case: portfolio diversification; alternative hierarchical agglomerative clus-
tering algorithm based on the principle that merging groups of variables/vectors should
yield a minimum decrease in the resulting dependence of the groups; dependence be-
tween random vectors is not well understood (copulas are not suitable anymore, cf.
[87], some tools have been proposed [126, 125, 25] but they have not received much
follow-up until now); These dependence measures between random vectors would help
to leverage richer time series representations of assets;

• augmented representation (several time series are used to describe an asset)
potential use case: using a (credit default swap spread, stock price) time series repre-
sentation for entities, one can take into account both the credit and equity of the firms
into the analysis; using a term structure representation, one can discover entities with a
particular debt profile; one can investigate the added value of a bid/ask representation,
an open-high-low-close representation, etc.; Which time series should one include in
the representation? Having a richer representation, i.e. several time series describing
an entity, raises problems: It is harder to understand and measure dependence between
random vectors. Developing such tools could:
– improve stability of the clustering methodology;
– improve convergence rates of the clustering algorithms (empirical ergodicity);
– provide an elaborate analysis.

• number of clusters (most probably there isn’t a ‘correct’ number of clusters since
the structure is highly hierarchical with many stable layers, so an appropriate number
has to be task and goal specific)
potential use case: filtering of covariances; portfolio diversification; cluster-based trad-
ing strategies

• better understanding of entities switching clusters: noise or signal?
potential use case: trading signal for trend following or mean reverting strategies.

• obtain more precise results for (empirical) convergence rates, and propose a robust
tool for checking whether the statistical conditions are good enough for a clustering
algorithm to be applied on the financial time series; if not, suggest a minimum sample
size.

• build an open source library of the most common techniques described in the
survey. It can allow a more effective technology transfer from academics to practitioners
and it can also help researchers to compare more efficiently the methodologies they
suggest without implementation biases.

• create and provide synthetic datasets (essentially paths of random processes) con-
taining stylized facts of financial time series and acting as gold standard bench-
marks to understand and compare the behaviour of the different methods.



Résumé de la thèse

Introduction

La modélisation statistique des séries temporelles financières est une tâche difficile, mais peut
permettre une meilleure gestion du risque et des investissements. Cette tâche est difficile car
les séries temporelles financières exhibent des comportements particuliers : non-stationarité,
rapport ‘signal / bruit’ faible, peu d’observations par rapport au nombre de variables à
étudier. Pour ces raisons, calibrer des modèles robustes qui sont également valables sur des
données futures est compliqué. La plupart des modèles ne fonctionnent que pour une certaine
période et fournissent par la suite des résultats trompeurs. Le clustering, qui peut permettre
de regrouper des actifs ayant un comportement similaire, aide à réduire la dimensionnalité
des données et peut constituer une brique de base importante dans l’élaboration de modèles
robustes.

Dans cette thèse, nous nous efforcerons de justifier la construction et l’utilisation des
clusters comme pré-traitement utile à la modélisation des séries temporelles financières.

Des données et un état de l’art épars

La littérature sur le clustering de séries temporelles financières est répartie dans différents
domaines : la physique statistique et l’éconophysique, l’économétrie, le data mining et le
machine learning, la comptabilité et la finance. Ces domaines communiquent relativement
peu, et les conclusions respectives ne sont pas encore organisées clairement pour pouvoir
constituer un socle solide de connaissances.

Le marché de gré à gré des couvertures de défaillance (en anglais, credit default swaps)
a cela en commun. La donnée (prix, volumes, transactions effectuées) est répartie dans
de nombreuses bases qui ne se concilient pas facilement, elle est coûteuse à acquérir et à
maintenir.

État de l’art

La majorité des études se concentre sur l’utilisation de l’arbre couvrant de poids minimal
construit à partir d’une estimation des corrélations linéaires (estimateur de Pearson) pour
étudier la structure hiérarchique des corrélations pour tel ou tel marché. Il est maintenant
connu que la plupart des marchés financiers vérifient cette propriéte. Ces études conduisent
ensuite à diverses interprétations économiques des résultats (clusters, statistiques descrip-
tives du graphe) et de leurs évolutions temporelles. Relativement peu d’entre elles visent à
améliorer la démarche statistique proposée par Mantegna en 1999, et encore moins à proposer
les clusters comme briques de base à des systèmes de risque ou de gestion.

Dans cette thèse, nous proposons une revue de la littérature [138] qui essaye de couvrir le
plus large spectre possible sur le clustering de séries temporelles financières, allant de leurs
conceptions à leurs utilisations.
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Les données sur les couvertures de défaillance

Les données utilisées dans cette thèse sur les couvertures de défaillance viennent essentielle-
ment de deux sources : des messages envoyés par les principaux teneurs de marché, et les
transactions reportées dans des registres spéciaux dont la création a été imposée par le “Dodd-
Frank Act” (21 juillet 2010) suite à la crise financière mondiale de 2007-2008 où l’opacité de
ces marchés a joué un rôle.

Dans cette thèse, nous décrivons les traitements de ces données qui ont permis de créer
les séries temporelles de spreads des credit default swaps sur lesquelles nous avons ensuite
travaillé. Le fonctionnement de ce marché, et les procédures de traitement des données [200],
ont très certainement ajouté du bruit supplémentaire au bruit structurel de marché.

De la consistance du clustering

Pour que les praticiens aient davantage de confiance dans ces méthodes de partitionnement
automatique des données (clustering), il est nécessaire de leur fournir certaines garanties. La
consistance en est l’une d’entre elle : pour peu qu’il y ait suffisamment de données, est-ce
que le modèle trouve toujours les bons résultats ? Dans le chapitre de cette these dédié à
cette question, nous montrons de tels résultats, sous certaines hypothèses [139]. Nous nous
intéressons ensuite à étudier empiriquement les convergences empiriques des méthodes. Pour
le praticien, en effet, il est non seulement important d’utiliser des méthodes fondées, mais
encore faut-il qu’elles puissent fonctionner dans les conditions auxquelles il est confronté,
c’est-à-dire relativement peu d’historique utilisable de manière pertinente, et beaucoup de
bruit. Nous cherchons donc des méthodes robustes et qui convergent vite vers les résultats
attendus. L’étude empirique permet d’en exhiber quelques-unes.

De nouvelles distances entre séries temporelles corrélées

La seconde partie de cette thèse part du constat que les distances utilisées dans les méthodes
de clustering décrites dans la littérature sont en général simplistes et fondées sur l’utilisation
de la corrélation linéaire qui ne capture qu’une très faible partie de l’information disponible.
Dans ce chapitre, nous proposons deux nouvelles distances qui permettent de pallier certains
de ces problèmes.

Une distance en corrélation et distribution

La littérature se concentre sur la corrélation, les comovements des actifs financiers. Elle con-
state que les prix des actifs financiers tendent à évoluer de manière synchrone par industrie
sectorielle (par exemple, l’énergie, la technologie, la chimie, le divertissement, les télécom-
munications). Au sein d’un même groupe, par exemple celui des télécommunications, les
cours des actions de deux entreprises peuvent croître et décroître de manière synchrone
(corrélation des rendements), mais avec des caractéristiques très différentes, par exemple
des sauts brusques pour l’un et des variations quasi-continues pour l’autre (distribution des
rendements). Nous pouvons alors vouloir les distinguer.

Nous proposons dans cette thèse une distance simple qui travaille à partir de deux vecteurs
représentant les deux séries temporelles à comparer et encodant l’information de corrélation
et l’information de distribution [68]. Il se trouve que cette distance peut s’interpréter comme
une distance en corrélation de Spearman (corrélation linéaire sur les rangs) et en distance
d’Hellinger (distance classique entre densités). La motivation et la construction de cette
distance s’appuie sur la théorie des copules et le théorème de Sklar.
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Des distances entre copules pour une nouvelle mesure de dépendance

Nous avons proposé, dans la partie précédente, une représentation alternative pour les séries
temporelles financières, mais la distance reste encore relativement élémentaire : en pratique,
pour la partie “dépendance” de l’information, elle calcule une simple corrélation de rang
(Spearman). Cette corrélation de rang (tout comme celle de Kendall) est plus robuste aux
valeurs aberrantes que la version linéaire, et est également invariante par transformations
strictement monotones des variables, propriété héritée de sa définition en fonction de la
copule. Cependant, les corrélations de Spearman et Kendall peuvent être vues comme des
projections simplistes de la copule sous-jacente. Nous proposons de définir des mesures de
dépendance alternatives qui se fondent sur la comparaison de la copule empirique avec des
copules bien choisies [136, 141]. Ainsi, nous pouvons imiter le comportement du coefficient de
Spearman en prenant comme copules de référence les copules encodant la dépendance posi-
tive, la dépendance négative (les bornes de Fréchet-Hoeffding), et l’indépendance. En consid-
érant une bonne distance entre copules (nous avons suggéré le transport optimal [144]), nous
pouvons mesurer où se trouve la copule empirique sur la géodésique allant de l’indépendance
à l’une des copules cibles (dépendance positive ou négative). Nous avons illustré comment ce
nouveau coefficient de dépendance se comporte par rapport à son concurrent direct (de par
la motivation de la construction) le coefficient de Spearman, mais aussi par rapport à l’état
de l’art des coefficients de dépendance provenant de la littérature statistique mathématique
et apprentissage automatique. L’approche étant très générale, il est possible de changer les
copules références pour définir d’autres types de coefficients (par exemple, de dépendance en
queue de distribution), ou encore adopter un point de vue plus “reconnaissance de forme”
et chercher dans un jeu de données des couples de variables vérifiant un certain motif de
dépendance encodé dans une copule cible.

Considérations pratiques
Enfin, nous discutons de quelques considérations pratiques, importantes pour pouvoir ap-
pliquer le clustering, telles que choisir un bon nombre de clusters, utiliser des outils de
visualisations pour inspecter les clusters et leurs évolutions, ainsi que comparer différents
résultats [142].
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élisation, nous essayons de donner des informa-
tions intéressantes sur l’état du marché des cou-
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tionnement automatique des séries temporelles fi-
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Les résultats de ces études peuvent être consultés
sur www.datagrapple.com.

Title : Some contributions to the clustering of financial time series and applica-
tions to credit default swaps

Keywords : clustering, financial time series, copulas, measures of correlations, distances between
distributions, stability of clusters

Abstract :
In this thesis we first review the scattered liter-
ature about clustering financial time series. We
then try to give as much colors as possible on the
credit default swap market, a relatively unknown
market from the general public but for its role in
the contagion of bank failures during the global fi-
nancial crisis of 2007-2008, while introducing the
datasets that have been used in the empirical stud-
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