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Long Abstract in French 

Titre: Modélisation des patterns d'analyse des performances des systèmes de production et de 

sûreté de fonctionnement dans l'industrie des procédés 

Mots clés: Pattern, Performance, Fiabilité, Disponibilité, AltaRica 

Résumé long: Les systèmes de production et de sûreté de fonctionnement sont d'une importance 

majeure dans l'industrie des procédés. Leurs performances impactent directement les intérêts de 

l'industrie. En effet, ces systèmes ont des comportements similaires. Ces comportements peuvent 

être conceptualisés dans des modèles via des patterns de modélisation. La réutilisation de ces 

patterns permet de rendre le processus de modélisation à la fois simplifiée et plus efficace. 

Dans ce projet de thèse, les patterns de modélisation sont étudiés  selon plusieurs axes, à savoir la 

forme de capitaliser les patterns (catalogue), l'approche pour développer ces patterns 

(méthodologie) et l'aspect expérimental pour tester ces  modèles. 

Nous proposons une approche basée sur des modèles d'analyse de la performance des systèmes de 

production et de sûreté de fonctionnement   dans l'industrie des procédés. Nous nous somme 

particulièrement concentrés sur les systèmes pétroliers et gaziers. Les patterns de modélisation 

sont capables de stabiliser l'expérience  à partir du processus de modélisation (expérience). Trois 

principaux travaux sont réalisés  dans cette thèse: 

� Nous avons étudié les patterns de modélisation suivant plusieurs aspects; Nous les avons 

classés  en fonction de leurs finalités, ce qui reflète la fonction d'un pattern spécifique de  

modélisation. Les schémas de modélisation sont classés en comportementales, 

propagation de flux, et des patterns de composition. Chaque type de pattern de 

modélisation est illustrée à l'aide des Guarded Transition Systems (GTS). Une 

méthodologie pour développer des patterns de modélisation est proposée. 



� Nous avons établi un catalogue de patterns de modélisation. En examinant de nombreux 

systèmes de production et de sûreté de fonctionnement, nous avons proposé 24  patterns 

de modélisation comprenant 8 patterns comportemantals, 13 patterns de propagation de 

flux et 3 patterns de composition. Chaque pattern est représenté avec un ensemble 

d'éléments structurés (p. ex., de structures et de modèle exemple ). Les structures de 

patterns comportementals et ceux de composition sont illustrés avec des représentations 

graphiques de GTS. Cependant, Les structures de flux de propagation sont représentés 

avec leurs graphes de dépendance. Des modèles exemples  sont donnés avec le 

programme AltaRica 3.0  où les intéractions entre les patterns  de modélisation sont aussi 

rapportées. Nous avons également discuté de la méthodologie pour réutiliser ces patterns 

de modélisation. 

� Nous avons mené des études expérimentales sur un ensemble des systèmes de production 

et de sûreté de fonctionnement qui ont été extraits de la littérature. Les systèmes de 

production sont censes couvrir l'ensemble des difficultés de modélisation pour l' analyse 

de la pérformance de la production. Les systèmes de sûreté de fonctionnement sont 

composés d'un groupe de systèmes dans ISO/TR 12489, qui inclut la majorité des 

problèmes de fiabilité. Pour chaque système, nous avons présentés sa description, ses 

propre patterns de modélisation et les résultats expérimentaux correspondants. Les 

résultats expérimentaux obtenus en déployant les patterns de modélisation convergent 

vers les résultats rapportés dans la littérature. Il est démontré que les patterns de 

modélisation suggérés proposés sont applicables aux systèmes de production et de sûreté 

de fonctionnement des modèles dans l'industrie des procédés. 

 



i

Acknowledgment

First of all, I would like to express my sincere thanks to my advisers, Professors Antoine Rauzy
and Leïla Kloul, for offering me this precious opportunity to conduct the research presented
in this thesis. Without their patient guidance and insightful suggestions during the past three
years, this dissertation would not have been possible.

I would also like to thank Professors Dominique Barth, Jean-Yves Choley, and Mitra Fouladi-
rad, who kindly accepted to be the jury members of my thesis. They took enormous effort to
carefully examine or review my thesis.

I would also like to thank my colleagues in the AltaRica team for their help. Besides my
supervisors, their names are Michel Batteux, Jean-Marc Roussel, Tatiana Prosvirnova, Benjamin
Aupetit, Anthony Legendre, Melissa Issad, Loïc Peletan, Benoît Lebeaupin, Walid Bennaceur,
Abraham Cherfi, and Pierre-Antoine Brameret.

I would also like to thank Cyrille Folleau (SATODEV), Stéphane Collas and Jean-Pierre Sig-
noret (TOTAL) for their invaluable advice.

I would also like to thank my colleagues and friends in the building Turing, whose names are
Mireille Regnier, Evelyne Rayssac, Vanessa Molina Magana, Ruqi Huang, Afaf Saaidi, Guangshuo
Chen, William George, Fei Song, Dorian Nogneng, Emmanuel Haucourt, and Juraj Muchalix.

I would also like to thank the laboratory DAVID (formerly PRiSM) at UVSQ. I worked there
about once a week in the past three years.

I would also like to thank Alexandra Belus, Emmanuel Fullenwarth, and Audrey Lemaréchal
(Graduate School) and Nathalie Legeay (Administration of international scientists) at École Poly-
technique for their invaluable help.

I would also like to thank the financial support from the China Scholarship Council.
I would also like to thank all my teachers and friends in my 24-year student life.
Last but not least, I owe special thanks to my family, especially to my parents and my won-

derful beloved Jinduo, for their consistent encouragement and support in the past (and follow-
ing) years.

Huixing

Paris, 16/11/2017



ii



Contents

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

1 Introduction 1

1.1 Production and Safety Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Modeling Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Performance Analysis of Production and Safety Systems 5

2.1 Glossary for Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Production-performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Reliability Analysis of Safety Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Model-based Safety Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Modeling Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Classical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2 Model-based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 AltaRica Modeling Language 15

3.1 Formal Definition of Guarded Transition Systems . . . . . . . . . . . . . . . . . . . . 15

3.2 States and Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Flow Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Looped Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Data-flow Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Synchronization Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Prototypes and Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Comparison with other State/transition Modeling Languages . . . . . . . . . . . . . 26

3.7.1 Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7.2 Similarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

iii



iv CONTENTS

4 Modeling Patterns 29
4.1 Notion of Modeling Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Categories of Modeling Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Behavioral Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Flow Propagation Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Composition Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Methodology to Develop Modeling Patterns . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Catalog of Modeling Patterns 37
5.1 Behavioral Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 PERFECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 NonRepairable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.3 CorrectiveMaintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.4 PreventiveMaintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.5 DEGRADATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.6 PeriodicTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.7 RevealUndetectedFailure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.8 StaggeredPeriodicTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Flow Propagation Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.1 SISO: Single-Input-Single-Output . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.2 SIMO: Single-Input-Multiple-Output . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 MISO: Multiple-Input-Single-Output . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.4 SOURCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.5 SINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.6 MIMO: Multiple-Input-Multiple-Output . . . . . . . . . . . . . . . . . . . . . 55
5.2.7 SERIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.8 PARALLEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.9 KooN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.10 SwitchKooN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.11 SequentialWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.12 BYPASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.13 LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Composition Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.1 Main unit/Cold standby unit Coordination (MCC) . . . . . . . . . . . . . . . 69
5.3.2 Main unit/Hot standby unit Coordination (MHC) . . . . . . . . . . . . . . . . 71
5.3.3 Repairable unit/Repair crew Coordination (RRC) . . . . . . . . . . . . . . . . 71

5.4 Relationships between Modeling Patterns . . . . . . . . . . . . . . . . . . . . . . . . 72
5.5 Modeling Patterns Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Experimental Studies 77
6.1 Production Systems in Process Industry . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.1 A Production Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1.2 A Floating Production Storage and Offloading System . . . . . . . . . . . . . 79



CONTENTS v

6.1.3 An Oil Production System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.4 An Offshore Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Safety Systems in Process Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.1 An Overpressure Protection System with Single Channel . . . . . . . . . . . . 88
6.2.2 An Overpressure Protection System with Dual Channel . . . . . . . . . . . . 90
6.2.3 An Overpressure Protection System with Redundant Architecture . . . . . . 91
6.2.4 A Multiple Safety System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.5 An Emergency Depressurization System of A Hydrocracking Unit . . . . . . 94

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusion and Future Works 97
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A Production Availability Analysis using Stochastic Petri Nets 99

B Modeling Patterns for Production Performance Analysis 109

C Modeling Patterns for Reliability Analyses of Safety Systems 117

D Acronyms and Abbreviations 125

Bibliography 127



vi CONTENTS



List of Figures

1.1 Venn diagram of thesis topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Production losses and safety incidents. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Categories of modeling languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Demonstrations of classical approaches. . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Demonstration of the AltaRica 3.0 language. . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Block diagram of a simplified system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Functional breakdown of the simplified system. . . . . . . . . . . . . . . . . . . . . . 16
3.3 Transitions in guarded transition systems. . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 GTS representing a repairable component. . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 GTS representing a cold standby component. . . . . . . . . . . . . . . . . . . . . . . 19
3.6 A gas system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Dependency graph of assertions of the gas system in Figure 3.6. . . . . . . . . . . . 21
3.8 Dependency graph of assertions of the simplified system in Figure 3.1. . . . . . . . 21
3.9 GTS representing a common cause failure. . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Prototype (Block) usage in the simplified system. . . . . . . . . . . . . . . . . . . . . 23
3.11 Graphical representation of the guarded transition system in Figure 3.4. . . . . . . 23
3.12 Graphical representation of the guarded transition system in Figure 3.5. . . . . . . 24
3.13 Class usage in the simplified system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.14 AltaRica model for the simplified system in Figure 3.1. . . . . . . . . . . . . . . . . . 25
3.15 Reachability graph of the main structure in Figure 3.1. . . . . . . . . . . . . . . . . . 26

4.1 Categories of modeling patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Guarded transition system for behavioral patterns. . . . . . . . . . . . . . . . . . . . 31
4.3 Flow propagations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Hierarchical composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Methodology to develop modeling patterns. . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Graphical representation of GTS for PERFECT. . . . . . . . . . . . . . . . . . . . . . . 38
5.2 The AltaRica 3.0 code of PERFECT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Graphical representation of GTS for NonRepairable. . . . . . . . . . . . . . . . . . . 39
5.4 The AltaRica 3.0 code of NonRepairable. . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.5 Graphical representation of GTS for CorrectiveMaintenance. . . . . . . . . . . . . . 40
5.6 The AltaRica 3.0 code of CorrectiveMaintenance. . . . . . . . . . . . . . . . . . . . . 40
5.7 Graphical representation of GTS for PreventiveMaintenance. . . . . . . . . . . . . . 41

vii



viii LIST OF FIGURES

5.8 The AltaRica 3.0 code of PreventiveMaintenance. . . . . . . . . . . . . . . . . . . . . 42
5.9 Graphical representation of GTS for DEGRADATION. . . . . . . . . . . . . . . . . . . 42
5.10 The AltaRica 3.0 code of DEGRADATION. . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.11 Graphical representation of GTS for PeriodicTest. . . . . . . . . . . . . . . . . . . . . 44
5.12 The AltaRica 3.0 code of PeriodicTest. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.13 Graphical representation of GTS for RevealUndetectedFailure. . . . . . . . . . . . . 45
5.14 The AltaRica 3.0 code of RevealUndetectedFailure. . . . . . . . . . . . . . . . . . . . 46
5.15 Sketch diagram of staggered periodic test. . . . . . . . . . . . . . . . . . . . . . . . . 46
5.16 Graphical representation of GTS for StaggeredPeriodicTest. . . . . . . . . . . . . . . 46
5.17 The AltaRica 3.0 code of StaggeredPeriodicTest. . . . . . . . . . . . . . . . . . . . . . 47
5.18 Dependency graph of the assertion of SISO. . . . . . . . . . . . . . . . . . . . . . . . 48
5.19 The AltaRica 3.0 code of SISO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.20 Running scheme considering capacity limit in SISO. . . . . . . . . . . . . . . . . . . 48
5.21 Dependency graph of the assertion of SIMO. . . . . . . . . . . . . . . . . . . . . . . . 49
5.22 The AltaRica 3.0 code of SIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.23 Running scheme considering capacity limit in SIMO. . . . . . . . . . . . . . . . . . . 50
5.24 Dependency graph of the assertion of MISO. . . . . . . . . . . . . . . . . . . . . . . . 51
5.25 The AltaRica 3.0 code of MISO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.26 Running scheme considering capacity limit in MISO. . . . . . . . . . . . . . . . . . . 52
5.27 Dependency graph of the assertion of SOURCE. . . . . . . . . . . . . . . . . . . . . . 53
5.28 The AltaRica 3.0 code of SOURCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.29 Running scheme considering capacity limit in SOURCE. . . . . . . . . . . . . . . . . 53
5.30 Dependency graph of the assertion of SINK. . . . . . . . . . . . . . . . . . . . . . . . 54
5.31 The AltaRica 3.0 code of SINK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.32 Running scheme considering capacity limit in SINK. . . . . . . . . . . . . . . . . . . 55
5.33 Dependency graph of the assertion of MIMO. . . . . . . . . . . . . . . . . . . . . . . 56
5.34 The AltaRica 3.0 code of MIMO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.35 Running scheme considering capacity limit in MIMO. . . . . . . . . . . . . . . . . . 57
5.36 Dependency graph of the assertion of SERIES. . . . . . . . . . . . . . . . . . . . . . . 58
5.37 The AltaRica 3.0 code of SERIES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.38 Running scheme considering capacity limit in SERIES. . . . . . . . . . . . . . . . . . 59
5.39 Dependency graph of the assertion of PARALLEL. . . . . . . . . . . . . . . . . . . . . 60
5.40 The AltaRica 3.0 code of PARALLEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.41 Running scheme considering capacity limit in PARALLEL. . . . . . . . . . . . . . . . 60
5.42 Dependency graph of the assertion of KooN. . . . . . . . . . . . . . . . . . . . . . . . 61
5.43 Graphical representation of GTS for KooN. . . . . . . . . . . . . . . . . . . . . . . . . 62
5.44 The AltaRica 3.0 code of KooN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.45 Dependency graph of the assertion of SwitchKooN. . . . . . . . . . . . . . . . . . . . 63
5.46 Graphical representation of GTS for SwitchKooN. . . . . . . . . . . . . . . . . . . . . 64
5.47 The AltaRica 3.0 code of SwitchKooN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.48 Graphical representation of GTS for SequentialWork. . . . . . . . . . . . . . . . . . . 65
5.49 The AltaRica 3.0 code of SequentialWork. . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.50 Dependency graph of the assertion of BYPASS. . . . . . . . . . . . . . . . . . . . . . . 66
5.51 The AltaRica 3.0 code of BYPASS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.52 Dependency graph of the assertion of LOOP. . . . . . . . . . . . . . . . . . . . . . . . 67



LIST OF FIGURES ix

5.53 Running scheme of LOOP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.54 The AltaRica 3.0 code of LOOP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.55 Graphical representation of GTS for cold standby unit. . . . . . . . . . . . . . . . . . 70
5.56 The AltaRica 3.0 code of Main unit/Cold standby unit Coordination (MCC). . . . . 70
5.57 Graphical representation of GTS for repair crew. . . . . . . . . . . . . . . . . . . . . . 71
5.58 The AltaRica 3.0 code of Repairable unit/Repair crew Coordination (RRC). . . . . . 72
5.59 Modeling pattern relationships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 A production facility [68]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 A Floating Production Storage and Offloading (FPSO) system [85]. . . . . . . . . . . 79
6.3 Modeling patterns-based presentation of the FPSO system in Figure 6.2. . . . . . . 80
6.4 Production availabilities (AltaRica). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 Production availabilities (SPN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6 An oil production system [107]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.7 An offshore installation, redraw from [111, 129]. . . . . . . . . . . . . . . . . . . . . . 84
6.8 Modeling patterns-based presentation of the system in Figure 6.7. . . . . . . . . . . 85
6.9 An overpressure protection system with single channel (System �1) [60]. . . . . . . 88
6.10 An overpressure protection system with dual channels (System �2) [60]. . . . . . . . 90
6.11 An overpressure protection system with redundant architecture (System �3) [60]. . 92
6.12 A multiple safety system (System �4) [60]. . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.13 An emergency depressurization system of a hydrocracking unit (System �5) [60]. . 94



x LIST OF FIGURES



List of Tables

6.1 Modeling patterns classification for the system in Figure 6.1. . . . . . . . . . . . . . 78
6.2 Probabilities comparison for the production facility. . . . . . . . . . . . . . . . . . . 79
6.3 Modeling patterns classification in the FPSO system. . . . . . . . . . . . . . . . . . . 80
6.4 Comparison of production availabilities of the FPSO system. . . . . . . . . . . . . . 81
6.5 Modeling patterns classification in the oil production system. . . . . . . . . . . . . 83
6.6 Results comparison for the oil production system. . . . . . . . . . . . . . . . . . . . 83
6.7 Modeling patterns classification for the system in Figure 6.7. . . . . . . . . . . . . . 85
6.8 Production availabilities of the SAFERELNET system. . . . . . . . . . . . . . . . . . . 86
6.9 Modeling patterns classification for the safety systems in ISO/TR 12489. . . . . . . 87
6.10 Experimental results in system �1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.11 Experimental results in system �2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.12 Experimental results in system �3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.13 Unavailability results comparison (system �3-2). . . . . . . . . . . . . . . . . . . . . . 93
6.14 Experimental results in system �3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.15 Experimental results in system �4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.16 Experimental results in system �5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xi



Chapter 1

Introduction

The target of this thesis is to develop a pattern-based approach for performance analysis of pro-
duction and safety systems in process industry. We focus particularly on oil and gas systems.
Indeed, these systems share common behaviors. Modeling patterns allow to capitalize the ex-
perience from modeling systems. By reusing modeling patterns, a modeling mission can be
simplified when evaluating the performance of these systems.

Topics of this thesis are illustrated by the Venn diagram in Figure 1.1: production and safety
systems, performance analysis, as well as modeling languages and methodologies. The focus
locates at the intersection of these three sets.

Production  
and Safety 

Systems 

Performance 
Analysis 

Modeling Languages 
and Methodologies 

      Focus of thesis. 

Figure 1.1: Venn diagram of thesis topics.

In the following, we introduce the context, the problem formulation, and the objective of
the thesis. The context lies in the domain of performance analysis of production and safety
systems. We try to address the problem of simplifying a modeling mission by reusing modeling
knowledge. Accordingly, to reduce the modeling burden, we aim at proposing a pattern-based
approach for performance analysis.
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2 CHAPTER 1. INTRODUCTION

1.1 Production and Safety Systems

Production and safety systems confront risk of production losses and safety incidents. Both are
related as shown in Figure 1.2. Production losses belong to high-frequency and low-consequence
issues. On the contrary, safety incidents are considered as low-frequency and high-consequence
problems.

C
on

se
qu

en
ce

 

Low 

High 

Frequency 
Low High 

Safety incidents 

� High frequency 
� Low consequence 

� Low frequency 
� High consequence 

Figure 1.2: Production losses and safety incidents.

Sound performance of production and safety systems is crucial for industrial plants. For
example, the oil industry involves large capital investment costs and operational expenditures.
The profitability of this industry heavily relies on the RAM (Reliability, Availability and Main-
tainability) of systems [6]. In particular, offshore oil and gas activities are characterized by an
incident-prone environment, which includes harsh natural phenomena (e.g. the wind, wave,
current, hydrate, high pressure, and high/low temperature) and complex working processes (e.g.
complicated systems and procedures). Therefore, offshore activities are accompanied with high
risk of production losses and safety incidents.

1.2 Performance Analysis

Designers and operators can benefit from the performance analysis of a system. The perfor-
mance of production systems is important for explicit benefits of industrial plants. Cumulative
production loss can bring negative impact on the financial performance [112], while perfor-
mance of safety systems is significant for implicit benefits of industrial plants. Safety systems
aim to protect equipments under control from hazardous events. They are regarded as crucial
safety barriers to prevent, control, or mitigate undesired events or accidents [115]. Various in-
dustrial sectors have paid close attention to safety systems.

We need to select criteria (metrics) to evaluate the system performance. To some extent,
performance is treated as the ability to perform. Therefore, we mainly focus on the availability
throughout the thesis. With regard to production systems, the metric is production availability,
which is the ratio of the actual production of a system to its planned production. Regarding
safety systems, the metric is mainly the average unavailability of the system, which is also called
“average Probability of Failure on Demand” (PFDavg) in functional safety terminology.

A wide variety of works related to performance analysis have been carried out. However,
few studies have considered this issue from the viewpoint of patterns. Details are provided in
Sections 2.2 and 2.3.
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1.3 Problem Formulation

To analyze performance of production and safety systems, we first need to model them. How-
ever, it may be tedious and error-prone to model complex systems. Thus modeling tasks are
required to be simplified. Problems considered are formulated as follows:

1. How to capitalize modeling knowledge? Knowledge is the awareness gained by experience
of a fact or situation. Likewise, modeling knowledge captures modeling experience and
shared behaviors during modeling process. It plays a crucial role for effectively handling
and reusing models. Without capitalization of modeling knowledge, the modeling process
of complex systems remains tedious because it requires to create a model from scratch.

2. How to implement modeling knowledge? To implement is to put a decision/plan into
effect. After capitalizing modeling knowledge, we have to implement it concretely with
a specific modeling language. A modeling language needs to be selected for stabilizing
modeling knowledge. Review of classical and model-based formalisms is required before
choosing a modeling language.

3. How to reuse modeling knowledge? Reuse of modeling knowledge is a common practice in
performance analysis of systems. After capitalizing and implementing modeling knowl-
edge, we need to explicitly figure out a way to reuse it. Reusing capitalized modeling
knowledge allows us to model new systems in a more efficient way.

1.4 Modeling Patterns

Modeling complex systems is a complex process in itself. Without a solid methodology, it can-
not be made efficient. In particular, two rules need to be obeyed: First, models should be de-
signed at the right level of abstraction. On the one hand, the model has to be detailed enough
to encompass relevant information. On the other hand, an overly detailed model may lead to
intractable calculations of performance indicators. Second, modeling experience is expected
to be capitalized. Otherwise, modeling activity is unlikely to be profitable. There should be as
much reuse as possible.

The whole point of a pattern is to reuse, rather than to reinvent [34]. A pattern describes
a problem occurring frequently and depicts the core of the solution for this problem [2], thus
we could use this solution constantly. Patterns were first formally proposed in civil engineer-
ing. They have been adopted in software engineering afterwards. We could depict the pattern
problems, condition constraints, code templates, final results, and trade-offs when employing
patterns. Further details of modeling patterns studies can be found in Section 4.1.

The requirement of reusing modeling experience can be met by developing modeling pat-
terns. The advantage of this approach is twofold. First, it enables beginners to avoid “blank
page” syndrome. With patterns, analysts have models at hand that are both a source of inspi-
ration and an example of the right level of abstraction. Second, it makes it possible to capital-
ize modeling experience, by considering components in libraries as prototypical examples that
must be tailored for a particular problem and be enriched with new experiences.
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1.5 Objectives of the Thesis

This thesis aims at developing a modeling pattern-based approach for performance analysis of
production and safety systems, especially in process industry. This methodology relies on:

1. Capitalization of modeling knowledge as a catalog. The pattern can be utilized for reusing
capitalized knowledge. Inspired by design patterns, we present modeling patterns as a
catalog. We describe and store modeling knowledge with structured items. Thus fre-
quently occurring behaviors and their solutions can be recorded.

2. Implementation of modeling patterns as a library with a formal language. AltaRica lan-
guage is devoted to performance and safety analysis. It is introduced in IEC 61508 [50]
as a technique for calculating probabilities of hardware failures in safety systems. It is
also mentioned in ISO/TR 12489 [60]. AltaRica has become a defacto European industrial
standard for model-based safety assessment [15]. Thus the AltaRica modeling language is
selected to implement modeling patterns in this thesis.

3. Reuse of modeling patterns with experimental studies. To demonstrate capabilities of mod-
eling patterns, we reuse implemented modeling patterns to model and analyze a set of
production and safety systems. Obtained experimental results are compared with those
from the literature.

1.6 Structure of the Thesis

The rest of the thesis is organized as follows. Performance analysis of production and safety
systems, as well as model-based safety assessment are discussed in Chapter 2. Chapter 3 re-
calls the AltaRica modeling language and its mathematical background (i.e. guarded transition
systems). Chapter 4 introduces modeling patterns in the realm of guarded transition systems.
The methodology of how to develop modeling patterns is proposed as well. Chapter 5 shows
the catalog of proposed modeling patterns. Chapter 6 demonstrates capabilities of modeling
patterns with experimental studies. Chapter 7 concludes the thesis with summary and recom-
mendations.



Chapter 2

Performance Analysis of Production and
Safety Systems

This chapter introduces performance analysis of production and safety systems. Firstly, related
definitions for performance analysis are discussed. Secondly, production-performance analysis
are reviewed. Subsequently, reliability analysis of safety systems are examined. Related work
about model-based safety assessment is presented. Finally, modeling languages that can be
used for performance analysis are introduced.

2.1 Glossary for Performance Analysis

� Reliability: The ability of an item to perform a required function under given conditions for
a given time interval [44].

The reliability R(t ) of an item is:

R(t ) = Pr (T > t ),∀t > 0 (2.1)

where T is the time to failure.

� Availability: The ability of an item to be in a state to perform a required function under given
conditions at a given instant of time, or in average over a given time interval [58].

The availability A(t ) and reliability R(t ) of a nonrepairable component are identical.

� Average availability: Average value of the availability over a given interval [t1, t2] [60].
The average availability Ā(t1, t2) of an item is defined as follows:

Ā(t1, t2) = 1

t2 − t1

t2∫
t1

A(τ)dτ (2.2)

� Unavailability: Probability for an item not to be in a state to perform as required at a given
instant [60].

5
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Unavailability U (t ) = 1− A(t ). It is called Probability of Failure on Demand (PFD) in the
functional safety standard terminology.

� Average unavailability: Average value of the unavailability over a given interval [t1, t2] [60].
The average unavailability Ū (t1, t2) of an item is defined as follows:

Ū (t1, t2) = 1− Ā(t1, t2) = 1− 1

t2 − t1

t2∫
t1

A(τ)dτ (2.3)

The average unavailability is labeled as the average Probability of Failure on Demand (PF-
Davg) in the functional safety terminology.

� Production availability: The ratio of production to planned production, or any other refer-
ence level, over a specified period of time [58].

The output of a production system varies a lot, and the availability is not enough to mea-
sure the performance of the production system [105]. The production availability, production
assurance, or production regularity have the similar meaning about how a system is capable of
meeting demands for deliveries or performance [7]. The production availability P A is defined as
follows:

P A = VP

VR
(2.4)

where VP is the produced volume and VR is a reference production volume.

� Failure frequency: Conditional probability per time unit that the item fails between t and
t +d t , provided that it was working at time 0 [60].

� Average failure frequency: Average value of the time-dependent failure frequency over a
given time interval [t1, t2] [60]. Formally, it is defined as follows:

w̄(t1, t2) = 1

t2 − t1

t2∫
t1

w(t )dt (2.5)

where w(t ) is the failure frequency at time t . Average failure frequency is termed as Proba-
bility of Failure per Hour (PFH) in functional safety standards.

2.2 Production-performance Analysis

Long outages are particularly important for process plants [83]. Indeed, production availability
is a feasible measurement for evaluating changing production yields. It is defined as the ra-
tio of the actual production to the planned production (field capacity), over a specified period
of time [4, 91, 58]. Production availability can combine both RAM (Reliability, Availability and
Maintainability) indicators and production expectations. Stakeholders are prone to attach great
importance to production availability at ordinary times, which has a strong economic effect [11].
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The production target of the production system is often presented in form of production
availability [113]. When assessing production availability, we need to consider dynamic behav-
iors, operation procedures and complex maintenance policies. Since a production system holds
several production levels, Flow Diagrams (FD) are used instead of RBD [113].

ISO 20815 [58] and NORSOK Z-016 [91] standards provide a general framework to perform
production availability studies. Two categories of methods have been used so far: analyti-
cal methods and simulation methods (see [125, 8] for a review). Analytical methods use a set
of predefined formula based on a theoretical model for system availability, which include re-
liability block diagrams, fault tree analysis, Markov modeling, Petri nets, or combinations of
them [42, 68, 36]. These methods are interesting but limited in terms of size and complexity
of systems. Simulation based studies are performed using discrete events Monte-Carlo simula-
tion, where events such as failures, repairs, and reconfigurations are associated with stochastic
delays [16, 12, 129, 130, 127]. Simulation methods are flexible and can provide highly accurate
predictions of system performance. However, it is usually time consuming to use simulation
methods.

There are three main ways to develop tools for production availability studies on industrial
systems [112]: fault injection in existing design packages, specific Monte Carlo software pack-
ages, and generic models. Most production availability analysis performed in industry are con-
ducted via Monte Carlo simulation software. Generic models are developed by the reliability
engineering community, which include the Markovian approach, Generalized Stochastic Petri
nets (GSPN), and the AltaRica language. Among various attempts to develop methods and tools
for production availability analysis, Petri nets and the AltaRica language are among the solid
solutions [112].

Some scientific and industrial projects have been carried out on production-performance
analysis. A multi-state, multi-output offshore installation is proposed as test case within the
European Union sponsored Thematic Network SAFERELNET [111, 129]. FAMUS (Flow Assur-
ance by Management of Uncertainties and Simulation) is a Joint Industry Project run by DNV
and IFP and sponsored by Total, Statoil, ENI, GDF, and Petrobras. Its goal is to couple RAM
modeling with Flow Assurance issues in order to provide realistic decision support [25, 30]. The
production system is modeled by hybrid stochastic Petri nets, which can model both discrete
and continuous aspects of the system [25].

Several commercial tools are available to conduct production-performance analysis. MAROS
(Maintainability, Availability, Reliability, Operability Simulation) program is developed for RAM
analysis for upstream oil and gas industry [26]. The production availability in MAROS program
is termed as production efficiency. TAROTM program is developed for RAM analysis of down-
stream oil and gas industry, especially for refining and petrochemical plants [27]. An Event-
Driven algorithm is used to create lifecycle scenarios of the system under investigation account-
ing for its reliability, maintainability and operating policies [27]. GRIF (GRaphical Interface for
reliability Forecasting) is a system analysis software platform for determining essential indi-
cators of dependability [122]. It includes the BStok (Stochastic block diagrams or RBD driven
Petri Nets) and Petro (Multi-flow Stochastic Block diagram) modules that can be used to assess
production availability of a production system. MAROS and GRIF/BStok are compared by re-
searchers from DNVGL [20]. Both tools can generate similar results of production performance
and meet industrial needs.

Several studies are conducted on production-performance analysis of offshore systems. Pro-
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duction availability of an offshore plant is assessed using Monte Carlo simulation [129]. This off-
shore installation is part of SAFERELNET project. SPN are also applied to model the production
availability of the same system [17]. FPSO (Floating Production Storage and Offloading) systems
are employed for processing and provisionally storing the crude oil from offshore platforms or
subsea wells. SPN are selected for modeling production availability of a FSPO system [85]. SPN
are also used for the production availability analysis of offshore facilities with GRIF [126]. Their
work mainly focuses on the subsea part of the FPSO. A recent study investigates the production
availability of subsea separators [118].

Modularized models keep a better control in modeling development [112]. Flow diagram-
driven Petri nets are proposed to deal with production availability issues for production sys-
tems [114].

In this thesis, we propose modeling patterns for production-performance analysis imple-
mented using the AltaRica language [86]. We apply proposed modeling patterns on several pro-
duction systems, including the SAFERELNET test case.

2.3 Reliability Analysis of Safety Systems

Safety Instrumented Systems (SIS) are crucial safety barriers for preventing hazardous accidents
in industrial systems. These systems are composed of sensors (e.g. pressure sensors), logic
solvers (e.g. programmable logic controllers), and final elements (e.g. isolation valves). Logic
solvers translate signals transmitted from sensors into decisions made on final elements. SIS
have received huge attention from various industrial sectors. Associated standards are proposed
in specific industries, such as the process industry [56], the nuclear power industry [52], the
machinery industry [46, 61], the automotive industry [59], as well as the railway industry [45,
54, 49]. The main standard is IEC 61508 [50]. Sound performance of SIS is crucial for protected
systems (i.e. Equipment Under Control: EUC).

Reliability issues of SIS have been studied extensively (see e.g. [60, 104, 105, 29]). Many as-
pects related to SIS have been investigated, including proof tests (see e.g. [73, 21, 79]), K-out-of-
N voting structures (see e.g. [121, 92, 62]), common cause failures (see e.g. [81, 66, 40]), spurious
failures (see e.g. [82, 64]), human and organizational factors (see e.g. [109, 100]), uncertainty
(see e.g. [57, 65]), and optimization issues (see e.g. [120, 80]). In particular, Markov Chain mod-
els are applied to study proof tests considering demand rate and imperfect behaviors in [73].
In [21], FT and PN are used to investigate proof tests. Another way to study SIS is to use (sim-
plified) equations/formulae. In [79], PN and approximation formulae are employed to analyze
the safety performance of insert testing (proof test after the repair of a dangerous detected fail-
ure by the same maintenance team). In [121], MooN structures (i.e. k-out-of-n: G system with
added voters) are analyzed using FT and formulae. In [92], the authors generalize an analyt-
ical equations for analyzing any KooN structures. In [62], the authors give a generalized PFD
formula for KooN systems used in IEC 61508. In [81], a Common Cause Failure (CCF) defense
approach is presented, which comprises checklists and analytical tools, for SIS in oil and gas
industry. SIS normally operate in low demand mode, which means that regular testing and in-
spection are required to reveal SIS failures. In [66], average PFD formulae for KooN systems are
proposed. They take into account both CCF and non-periodic partial testing. In [40], generic
estimates of beta-factors for CCF are discussed. In [82], generic formulae are established for
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spurious trips, and in [64], the authors further develop available analytical formulae for spuri-
ous trip rate. In [109], a methodology is proposed to evaluate human and organizational fac-
tors in operational phase of SIS. In [100], a framework is given to manage factors influencing
beta-factor (for modeling CCF) of SIS in operational phase. Uncertainty of the PFD estimate is
classified as completeness uncertainty, model uncertainty, and parameter uncertainty [65]. In
order to avoid evaluation uncertainties, influencing factors (e.g. design, environment, and use)
in reliability are discussed [18, 19]. A methodology for failure rate evaluation of SIS considering
influencing factors is proposed. In [57], an approach combining Monte Carlo and fuzzy set is
put forward to handing uncertainties in SIS. In [120], the researchers show multi-objective opti-
mization of proof testing policies using genetic algorithms. In [80], the authors gave a model to
optimize operation and testing of SIS, applying modeling by fault trees together with optimiza-
tion by genetic algorithm.

Few works related to patterns of SIS have been carried out. Related works can be found
in [60, 114], where the Reliability Block Diagram driven Petri nets are proposed for reliability
analysis of SIS. The readability of PN is improved by means of RBD. FT patterns are proposed
to model safety mechanisms of automotive electric and electronic functions [23]. FT patterns
include classic second order Safety Mechanisms (SM2) representation, maintenance, periodic
tests, and the scenario without SM2. The proposed FT pattern models are tested using XFTA1, a
Fault Tree calculation engine.

SIS have common behaviors such as periodic test policies to discover dangerous undetected
failures. In a recent work, we propose a pattern-based methodology for reliability assessment
of SIS [87]. Based on a series of SIS provided in ISO/TR 12489, a set of modeling patterns is put
forward.

2.4 Model-based Safety Assessment

The classical safety assessment techniques suffer from several intrinsic and incidental limita-
tions. One of main limitations is that FT and ET, the two formalisms that are mainly used to
design models, stand at a relative low level. Not only their expressive power is limited, but mod-
els are distant from systems under study. As a consequence, models are hard to design and
even harder to share amongst stakeholders and to maintain throughout the life-cycle of sys-
tems. Hence the interest for higher level modeling formalisms increases steadily.

Major advantages of Model-Based Systems Engineering (MBSE) include enhanced commu-
nications between stakeholders and team members. MBSE also allows shared understanding
of the domain, improved knowledge capture, design precision and integrity without disconnec-
tions among data representations, better information traceability, enhanced reuse of artifacts,
and reduced development risk [101]. The model-based approach for safety analysis is gradu-
ally winning the trust of safety engineers but is still a wide domain of research [76]. Model-
Based Safety Assessment (MBSA) is a reliability engineering branch of MBSE. MBSA techniques
have been developed in recent years to address challenges in analyzing and verifying complex
safety–critical systems. MBSA focuses on developing effective and robust safety assessment
techniques through the automation of the safety analysis process [110].

1see e.g. http://www.altarica-association.org
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Among the MBSA techniques, the AltaRica language is introduced in IEC 61508 [50] as a
technique for calculating probabilities of hardware failures in SIS. It is also mentioned in ISO/TR
12489 as a formal language to model the functioning and dysfunctioning of industrial systems [60].
AltaRica has become a defacto European industrial standard for MBSA [15]. It is currently em-
ployed as an internal representation language by several safety analysis workshops: Cecilia
OCAS (Dassault Aviation), Simfia (EADS Apsys), Safety Designer (Dassault Systemes), and Al-
taRica Studio (LaBRI) [76].

The first version of AltaRica has been designed at the end of 1990s [95, 3]. Since then, a sig-
nificant amount of scientific research has been done and a solid industrial experience has been
acquired, including the certification of aircrafts. Commercially distributed environments make
it possible to create, to edit, to assess and to simulate models graphically. AltaRica Data-Flow,
the 2.0 version of AltaRica, has already been used for evaluating the production availability of an
oil production system [11]. Mathematical foundations of AltaRica Data-Flow [11] and AltaRica
3.0 [99] are mode automata and guarded transition systems, respectively. Guarded transition
systems make the new version of the language possible to handle systems with instant loops
and to define acausal components [108].

Several assessment tools are available for analyzing AltaRica 3.0 models. These tools include
Markov chain generator, fault tree compiler, stepwise simulator, and stochastic simulator. The
last one is currently the most powerful one, especially when other tools cannot work [76]. In-
deed, stochastic simulation is an important tool for safety and reliability analysis of the systems,
which could generate reasonable results for safety and reliability indicators [10, 128].

2.5 Modeling Languages

Modeling languages are indispensable for performance analysis. These languages can be clas-
sified into two categories: classical and model-based approaches, as shown in Figure 2.1. Clas-
sical approaches are those traditionally leveraged for reliability assessment. They are further
classified into Boolean and state/transition formalisms.

Modeling Languages 

Classical Approaches 

Boolean Formalisms 
• Reliability Block Diagrams 
• Fault Trees 
• Event Trees 

 

State/Transition Formalisms 
• Markov Chains 
• Stochastic Petri Nets 
• … 
 

• HiP-HOPS 
• SAML 
• FIGARO 
• AltaRica 
• … 

Model-based Approaches 

Figure 2.1: Categories of modeling languages.

Boolean formalisms are commonly used in safety and reliability studies of industrial sys-
tems. Boolean formalisms can describe static (logical) links between elementary failures and
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system failure. Reliability block diagrams, fault trees, and event trees belong to Boolean for-
malisms.

State/transition formalisms can describe how a system behaves (jumps between states) ac-
cording to arising events (e.g. failures and repairs). Markov Chains (MC) and Stochastic Petri
Nets (SPN) are example of such formalisms.

Classical approaches are well established and are used extensively for reliability assessment.
Nevertheless, models designed with these formalisms are far from the functional architecture of
the system. As a consequence, models are hard to design and to maintain throughout the lifecy-
cle of systems. A small change in specifications may require a complete revisit of safety models,
which is both resource consuming and error prone [76]. Therefore model-based approaches
are proposed to track this issue. Model-based approaches describe system with high modeling
formalisms. Many approaches have been developed, such as Hip-HOPS, SAML, FIGARO, and
AltaRica.
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Figure 2.2: Demonstrations of classical approaches.
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2.5.1 Classical Approaches

We take simple series and parallel structures to illustrate classical approaches, as shown in Fig-
ure 2.2. Classical approaches are graphical and event-based. They can explicitly describe sys-
tems of interest. However, they have their own drawbacks. It is not easy to construct com-
plex systems using classical approaches. A Boolean formalism provides static combinations
of blocks/events. This formalism is not appropriate to model dynamic systems with complex
maintenance policies and dynamic behaviors.

In general, state/transition formalisms are more powerful than Boolean ones. They can de-
scribe dependencies and dynamic behaviors. However, state/transition formalisms become
hard to control when the system is complex. MC provide many metrics to evaluate the sys-
tem of interest. However, MC are particularly appropriate to model small systems with com-
plex/dynamic behaviors. This is because the number of states increases exponentially with the
increase of the number of components. SPN are capable of modeling systems with complex
behaviors. The size of an SPN model keeps linear with the number of components. But SPN
become hard to control when modeling large systems. In the following, several classical ap-
proaches are briefly presented.

Boolean Formalisms

In a Reliability Block Diagram (RBD), the components of a system are represented using blocks.
The RBD shows the logical connections between these components. It is thus a success-oriented
network for illustrating the system function. An international standard, IEC 61078 [55], is avail-
able to describe procedure of using RBD.

A Fault Tree (FT) is a top-down (deductive) logic diagram that displays interrelationships
between a potential critical event in a system and causes of this event. A fault tree provides
valuable information about possible combinations of basic events that can result in TOP event
(i.e. a potential critical event). An international standard, IEC 61025 [47], is issued to depict
procedure of applying FT. Details of FT can also be found in [124, 116]. A fault tree can always be
translated into a reliability block diagram, and vice versa. In a word, FT and RBD are equivalent
to some extent, up to minor modifications.

An Event Tree (ET) pictures the evolution of hazardous events. It is inductive and follows
a forward logic. The resulting diagram displays possible accident scenarios, that is, event se-
quences that may follow a specified hazardous event. Responses of the system/plant to the
hazardous event are illustrated in event tree. The international standard IEC 62502 [51] illus-
trates the procedure of using ET. The combination of ETA (Event Tree Analysis) and FTA (Fault
Tree Analysis) is sometimes referred to as Cause-Consequence Analysis (CCA).

State/Transition Formalisms

A Markov chain is an analytical method that is based on a Markov process with discrete states
and continuous time [103]. An international standard, IEC 61165 [48], is published to elabo-
rate the procedure of applying this formalism. Markov chains are suitable to analyze small but
complex systems. They provide a range of performance measures for the system.

A Petri Net (PN) is a graphical and mathematical tool for modeling and analysis of discrete
event systems [103]. It is said to be a stochastic Petri net when random delays are associated
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with places or transitions. An international standard, IEC 62551 [53], provides guidance for ap-
plication of Petri nets in dependability field. The modeling formalism PN is powerful among
classical approaches. Petri nets can replace FT, ET, and MC and add several new features to
analysis [103]. For example, PN can be tested with stepwise simulation/execution (animators).

2.5.2 Model-based Approaches

domain ComponentState {WORKING, FAILED} 
class RepairableComponent // Repairable component 
       ComponentState varState (init = WORKING);  
       Boolean varInFlow, varOutFlow (reset = false);  
       parameter Real Lambda = 0.001; // Failure rate 
       parameter Real Mu         = 0.1;     // Repair rate   
       event failure (delay = exponential (Lambda)); 
       event repair  (delay = exponential (Mu));  
       transition 
               failure: varState == WORKING -> varState := FAILED;     
               repair:  varState == FAILED      -> varState := WORKING; 
       assertion 
               varOutFlow := if varState == WORKING then varInFlow else false; 
end 
// ------------------------------------------------------------------------------------------  
class SeriesStructure 
        RepairableComponent A, B; // instantiate RepairableComponent 
        parameter Boolean inFlow = true; // system input is true 
        Boolean outFlow (reset = false);   
        observer Boolean systemState = outFlow; // indicate system state 
        assertion // different with parallel structure 
               A.varInFlow := inFlow; 
               B.varInFlow := A.varOutFlow; 
               outFlow        := B.varOutFlow; 
end 
// ------------------------------------------------------------------------------------------  
class ParallelStructure 
        RepairableComponent A, B;            
        parameter Boolean inFlow = true;  
        Boolean outFlow (reset = false);   
        observer Boolean systemState = outFlow;  
        assertion //different with series structure 
                A.varInFlow := inFlow; 
                B.varInFlow := inFlow;  
                outFlow        := A.varOutFlow or B.varOutFlow;  
end 

Figure 2.3: Demonstration of the AltaRica 3.0 language.

Model-based approaches try to address difficulties encountered by classical ones. These ap-
proaches are attracting increasing attention. In this realm, systems are usually modeled with
a high-level formalism. They aim at the automation of safety and reliability studies. In this
way, it becomes easier to design, share, and maintain system models. Each approach has its
own advantages and drawbacks. For instance, it is hard for model-based approaches to capture
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intrinsically continuous phenomena. It is also difficult for them to deal with processes which
are dynamically created and destroyed in a mission. In the following, several model-based ap-
proaches are briefly recalled.

Hip-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies) is an auto-
mated FT, FMEA (Failure Mode and Effects Analysis) and optimisation tool. It is developed by
the Dependable Systems Research Group at University of Hull in the United Kingdom. There are
three main phases in HiP-HOPS: model annotation, fault tree synthesis, as well as FT and FMEA
analysis phase [93, 94, 110].

SAML (Safety Analysis and Modeling Language) was designed as a tool independent formal
system specification and modeling language developed in Germany [37, 76]. A SAML model is
expressed in terms of finite stochastic state automata. Besides technical systems with deter-
ministic behavior, SAML may also denote failure models with stochastic behaviors and system
environment. Due to the combination of stochastic and non-deterministic specification, the
semantics of a SAML model is defined as Markov decision process.

FIGARO is a modeling language for reliability assessment. It is developed by EDF R&D (Re-
search and Development Division, Electricity of France) [14, 13]. FIGARO is applied to describe
knowledge bases of KB3. KB3 workbench allows automatic reliability analysis on the basis of
system layout, system mission, as well as a generic Knowledge Base (KB).

AltaRica is a language for event driven modeling of complex systems [95, 3, 11]. It is es-
pecially suitable for performance and safety analysis. The current version of the language is
AltaRica 3.0 [99, 98]. Models in AltaRica 3.0 are mathematically described by guarded transition
systems [108]. Several assessment tools are available, such as stepwise simulators, compilers to
fault trees, generators of critical sequences, compilers to Markov chains, and stochastic simula-
tors [99, 98]. The corresponding AltaRica 3.0 model of series and parallel structures in Figure 2.2
is illustrated in Figure 2.3. Components in the structure is regarded as repairable components.
A class named RepairableComponent is predefined. It is instantiated by two components after-
wards. Differences between series and parallel structures are in their assertions.

2.6 Summary

In this chapter, performance analysis of production and safety systems are introduced. The
glossary and modeling languages for performance analysis are reviewed. Topics of production-
performance analysis, reliability analysis of safety systems, as well as model-based safety assess-
ment are discussed. Since we use the AltaRica 3.0 language throughout this thesis, the following
chapter is dedicated to introduce it.



Chapter 3

AltaRica Modeling Language

In this chapter, we present the AltaRica 3.0 modeling language and its mathematical background,
that is, the Guarded Transition Systems (GTS). They have been used to implement proposed
modeling patterns. Further details of GTS and AltaRica 3.0 can be found in [108, 98].

We illustrate GTS and AltaRica 3.0 with a simplified example, as it is depicted in Figure 3.1.
Components A, B1, and B2 make up a series-parallel structure (main structure), and they are
repairable. Component C acts as a cold standby component. The failure of the main structure
activates component C.

A 
B1 

B2 

C 

Figure 3.1: Block diagram of a simplified system.

Functional breakdown of this system is shown in Figure 3.2. Each leaf stands for a basic
component. Each intermediate node represents a subsystem.

3.1 Formal Definition of Guarded Transition Systems

A GTS is a quintuple 〈V ,E ,T, A, ι〉, where V is a finite set of variables, E is a finite set of events, T
is a finite set of transitions, A is an assertion, and ι is the initial assignment of variables.

(i) V is the disjoint union of the set S of state variables and the set F of flow variables: V =
S �F . Each variable v ∈ V takes its value from a domain denoted by domai n(v). Variables can
be Boolean, Integers, Floating point numbers, members of finite sets of symbolic constants or
anything convenient for the modeling purpose.

A variable assignment is a function from V to
∏

v∈V domai n(v). A variable update is a func-
tion from

∏
v∈V domai n(v) into itself. It is a function that transforms a variable assignment into

another one.

15
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system 

main C 

A B 

B1 B2 

Figure 3.2: Functional breakdown of the simplified system.

(ii) Each event e ∈ E is associated with:
– A monotonically increasing and invertible function del aye from [0,1] into ℜ+, the set of

positive real numbers.
– A weight (a real number) wei g hte (by default, wei g hte = 1.0).

(iii) Each transition t ∈ T is a triple 〈e, g , a〉, denoted by g
e−→ a, where e is an event in E , g is

a Boolean condition (guard) over the variables in V and a is an instruction over the variables of
V , that is a variable update. a is called the action of the transition.

(iv) The assertion A is an instruction over the variables of V .

Let σ be a variable assignment and t : g
e−→ a be a transition which is potentially fireable in

σ, such that σ(g ) = tr ue. Firing t updates σ into the assignment ρ = A(a(σ)), which means
applying on σ the update of a first, then the update A (the global assertion).

We say that a variable v ∈V is impacted by the update of σ into ρ if ρ(v) 	=σ(v). By extension,

we say that the transition g ′ e ′−→ a′ is affected by this variable update if at least one of the variables
occurring in g ′ is impacted by the update.

Let t : g
e−→ a be a transition in T . By extension, we define wei g htt as wei g hte . If the two

transitions can be fired at the same time, then the weight is used to choose randomly among
them.

3.2 States and Transitions

The AltaRica 3.0 modeling language is an event-driven language. State variables are updated
with transitions.

Transitions in GTS are categorized into immediate and timed transitions, as shown in Fig-
ure 3.3. Immediate transitions are fired with zero delays. Timed transitions are fireable after
non-zero delays. An immediate transition has a positive priority, while a timed transition has a
priority equals to zero.

Immediate transitions can be classified into plain immediate transitions and conditional
(on-demand) immediate transitions. Plain immediate transitions obey the diamond property.
According to this property, if we have two fireable immediate transitions ta and tb , tb remains
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fireable after the firing of ta and vice versa. For conditional immediate transitions such as
tur nOn and f ai lur eOnDemand for a cold standby component, a weight is assigned to each
transition.

Timed transitions can be classified into Dirac and regular timed transitions. Dirac transi-
tions are fired after deterministic (> 0) delays. Delays associated with regular timed transitions
obey certain probability distributions, such as exponential or Weibull ones.

Plain 
immediate transitions 

Conditional 
immediate transitions 

Dirac timed transitions 

Regular timed transitions 

Probability defined by 
Weights 

Diamond Property 

Probability distribution 
(e.g. exponential, Weibull) 

Immediate transitions 

Timed transitions 

Diamond Property 

Transitions 

Figure 3.3: Transitions in guarded transition systems.

Note that several conditional immediate transitions can be fired simultaneously.
Let Γ be a run. There may be several transitions t1,. . . , tk actually fireable in Γ. During a

stochastic simulation, we have to choose which of the ti ’s to fire. This choice is done via weights.
Namely, the probability p(ti ) to draw the transition ti is defined as follows:

p(ti )
de f= wei g htti∑k

j=1 wei g htt j

Consider the cold standby component C in Figure 3.5 as an example, f ai lur eOnDemand
and tur nOn are conditional immediate transitions. Both are firable when the component state
is �������. They are associated with respective weights γ and 1-γ. This probability is defined
via attribute �	
������� in AltaRica model.

The system in Figure 3.1 is composed of two types of components: repairable component
and cold standby component. The GTS representing a repairable component is shown in Fig-
ure 3.4. It is composed of following elements:

– A state variable st ate, which takes its value from the enumeration {WORKING, FAILED}.
The initial value of st ate is WORKING.

– Two Boolean flow variables: i nF low and outF l ow .

– Two events: f ai lur e and r epai r . Both are stochastic events with exponentially dis-
tributed delays.

– Two transitions:

– failure: st ate = WORKING −→ st ate := FAILED
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– repair: st ate = FAILED −→ st ate := WORKING

– An assertion made of a unique assignment: outFlow := if st ate == WORKING then inFlow
else false

domain RepairableComponentState {WORKING, FAILED} 
class RepairableComponent 
       RepairableComponentState state (init = WORKING); 
       Boolean inFlow, outFlow (reset = false);  
       parameter Real Lambda = 1.0e-5; 
       parameter Real Mu = 1.0e-1;  
       event failure (delay = exponential(Lambda)); 
       event repair  (delay = exponential(Mu)); 
       transition 
               failure: state == WORKING -> state := FAILED;    
               repair:  state == FAILED      -> state := WORKING; 
       assertion 
               outFlow := if state == WORKING then inFlow else false;    
end 

Figure 3.4: GTS representing a repairable component.

The GTS representing a cold standby component is given in Figure 3.5. It is composed of
following elements:

– A state variable st ate, which takes its value from the enumeration {STANDBY, WORKING,
FAILED}. The initial value of st ate is STANDBY.

– Three Boolean flow variables: demand , i nF l ow , and outF l ow . demand determines
when to turn on or turn off the component.

– Five events: tur nOn, f ai lur eOnDemand , tur nO f f , f ai lur e, and r epai r . tur nOn,
f ai lur eOnDemand , and tur nO f f are immediate transitions (i.e. delay = 0), while f ai lur e
and r epai r are stochastic transitions with exponentially distributed delays. tur nOn and
f ai lur eOnDemand are associated with weights 1−γ and γ, respectively.

– Five transitions:

– turnOn: st ate = STANDBY and demand −→ st ate := WORKING
– failureOnDemand: st ate = STANDBY and demand −→ st ate := FAILED
– turnOff: st ate = WORKING and not demand −→ st ate := STANDBY
– failure: st ate = WORKING −→ st ate := FAILED
– repair: st ate = FAILED −→ st ate := STANDBY

– An assertion made of a unique assignment: outFlow := if st ate == WORKING then inFlow
else false

Relationships between components can be described through flow propagations and syn-
chronization mechanisms. In GT S= 〈S �F,E ,T, A, ι〉, flow propagations refer to connections of
flows via assertions (A). Synchronization mechanisms refer to simultaneously occurrence of
several events (E). We describe flow propagations and synchronization mechanisms one by one
in the following two sections .
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domain ColdStandbyComponentState {WORKING, FAILED, STANDBY} 
class ColdStandbyComponent 
       ComponentState state (init = STANDBY); 
       parameter Real Lambda = 1.0e-5; 
       parameter Real Mu = 1.0e-1; 
       parameter Real Gamma = 1.0e-2; 
       Boolean demand (reset = false);  
       Boolean inFlow, outFlow (reset = false);   
       event turnOn                   (delay = 0, expectation = 1-Gamma); 
       event failureOnDemand (delay = 0, expectation = Gamma); 
       event turnOff                  (delay = 0); 
       event failure (delay = exponential(Lambda)); 
       event repair  (delay = exponential(Mu)); 
       transition 
              turnOn:                   state == STANDBY and demand        -> state := WORKING; 
              failureOnDemand: state == STANDBY and demand        -> state := FAILED; 
              turnOff:                  state == WORKING and not demand -> state := STANDBY; 
              failure:                    state == WORKING                            -> state := FAILED;  
              repair:                     state == FAILED                                 -> state := STANDBY; 
       assertion  
              outFlow := if state == WORKING then inFlow else false;     
end 

Figure 3.5: GTS representing a cold standby component.

3.3 Flow Propagation

The flow propagation is indispensable for a modeling formalism to depict flows circulating
among components and subsystems. In GTS, these flows are represented via flow variables in
F and assertions in A. Flow variables are recalculated through assertions after firing transitions
(i.e. state variables in S are updated accordingly). Assertions in A are capable of constructing
complex hierarchical structures by connecting flow variables of separate components. There-
fore an assertion in A is appropriate to express remote interaction between components.

Two categories of assertions can be found in systems, that is, looped assertions and data-flow
(non-looped) assertions. In GTS, a fixpoint mechanism is applied to deal with looped models.
Flow variables in these models depend instantaneously on each other.

Let v , u, and w be three variables from V . Let I be an instruction built over variables from V .
If v depends on w (i.e. v → w) and u depends on v (i.e. u → v), we say that u depends on w (i.e.
u → w). The dependency relationship between variables can be depicted in a dependency graph.
A dependency graph is an oriented graph GD = (VD ,ED ), where VD is a set of vertices (variables
in GTS), and ED is a set of dependency edges. If there are looped structures in a system, then the
corresponding dependency graph of this system contains cycles. Note that if variables are state
variables, the corresponding vertices have no out-going edges.
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3.3.1 Looped Assertions

Here we propose a gas system to illustrate looped assertions, as shown in Figure 3.6. In this
systems, components D, E, and F are repairable components. The turbo-compressor D is fueled
by the gas (��������	) from downstream. Note that ��������	 is treated as a condition, not as
an inflow because ��������	 is consumed to support running of D. Components E and F are
dehydration units, which are employed to dehydrate the gas. The inflow of the system (
����)
is a constant. The ����� of the system equals to ������� − ��������	.

D F inFlow 

E.
ou

tF
lo

w
 

F.
in

Fl
ow

 

D.fuelGas 

F.
ou

tF
lo

w
 outFlow 

D
.in

Fl
ow

 E 

D
.o

ut
Fl

ow
 

E.
in

Fl
ow

 

Figure 3.6: A gas system.

Dependency graph of looped instructions is a Directed Cyclic Graph (DCG). Figure 3.7 shows
the dependency graph of the assertions of the gas system in Figure 3.6. There is one loop in-
side, that is, “������� → ��������	 → ������� → ��
���� → ������� → ��
����

→ �������”. System state (	�	��������) is determined by states of components D , E , and
F . ����� of each component depends on its 
����, 	����, and 	�	��������. At the ini-
tial stage, if the components are working (	���� = �������), 	�	�������� = ����. Otherwise,
	�	�������� = �����. To increase readability of the dependency graph, we give background
frameworks for different components.

3.3.2 Data-flow Assertions

Unlike looped assertions, non-looped assertions are called data-flow assertions as no variable
depends on itself in an instruction. Dependency graph of data-flow instructions is a Directed
Acyclic Graph (DAG). There is no circle in such a dependency graph. The dependency graph
of assertions of the system in Figure 3.1 is shown in Figure 3.8. Note that the demand of C
(��������) depends on the status of A and B .

3.4 Synchronization Mechanisms

The synchronization of events can also connect components in a system. For example, behav-
iors of Common Cause Failures (CCF) and shared repair crews can be captured via synchroniza-
tion mechanisms. In the realm of GTS = 〈V ,E ,T, A, ι〉, synchronization can be represented by a
transition:

e : {!a1& · · ·&!am} & {?b1& · · ·&?bn} & {(L1 → R1)& · · ·&(Lr → Rr )},m ≥ 0,n ≥ 0,r ≥ 0
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E.outFlow 

D.inFlow 

systemState  

E.state 

D.state 

D.outFlow 
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Figure 3.7: Dependency graph of assertions of the gas system in Figure 3.6.
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Figure 3.8: Dependency graph of assertions of the simplified system in Figure 3.1.
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where e, ai (i = 0, · · · ,m), b j ( j = 0, · · · ,n) are events from E . Operators ′′!′′ and ′′?′′ indicate
that the associate events are mandatory or optional, respectively. Lk and Rk (k = 0, · · · ,r ) are
guards and actions, respectively. Lk → Rk are unnamed transitions.

We assume that there is a CCF event in the subsystem composed of components B1 and B2
in Figure 3.1. That is, a failure in B1 or B2 can lead to failures of both B1 and B2. CCF event can
reduce the benefit of this parallel redundancy.

block B 
       … 
       event CCFB (delay = 0); // Common cause failure 
       … 
       transition 
              CCFB: ?B1.failure & ?B2.failure; 
              … 
end 

Figure 3.9: GTS representing a common cause failure.

In AltaRica, we add a new event CC F B and relevant transition to represent this CCF behavior
between B1 and B2, as shown in Figure 3.9. Operator ′′&′′ synchronizes B1.failure and B2.failure.
In transition CC F B , B1.failure and B2.failure are prefixed by ′′?′′, which means that both events
are optional. To trigger CC F B , at least one of the synchronized transitions (B1.failure or B2.failure)
need to be fireable. All possible synchronized transitions are fired simultaneously once the syn-
chronizing transition is fired. CC F B is equivalent to the following flattened transition:

      CCFB: B1.state == WORKING or B2.state == WORKING -> 
             {if B1.state == WORKING then B1.state := FAILED; 
               if B2.state == WORKING then B2.state := FAILED;} 

3.5 Prototypes and Classes

Prototypes and classes are used in the AltaRica 3.0 language. A prototype is represented by a
structural block. In a block, a component can occur only once. Classes are always employed in
blocks. The entire system is usually described with a block.

The structural block modeling the system in Figure 3.1 is shown in Figure 3.10, in accor-
dance with the functional breakdown of this system described in Figure 3.2. This partial AltaR-
ica model represents the hierarchical structure of the system. In this model, each block appears
only once.

In the system of Figure 3.1, components in main structure have shared behaviors. In other
words, they can fail and be repaired afterwards. To model these similar components efficiently,
we prefer to define a generic cl ass rather than duplicate them repeatedly. With a cl ass, the
component behaviors (i.e. state/flow variables, events, transitions, assertions, and initial as-
signments) are encapsulated. A cl ass is defined once and instantiated arbitrary times whenever
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block System  
       block main // Main structure of system (A, B1, and B2) 
              block A … end 
              block B 
                    block B1 … end 
                    block B2 … end 
              end 
       end 
       block C … end // Cold standby 
end 

Figure 3.10: Prototype (Block) usage in the simplified system.

needed in the modeling process. Classes of repairable and standby components can be found in
Figure 3.4 and Figure 3.5, respectively. Their corresponding graphical representations are shown
in Figure 3.11 and Figure 3.12.

state == WORKING state == FAILED 

failure (delay: exponential(λ)) 

repair (delay: exponential(µ)) 

inFlow outFlow 

Figure 3.11: Graphical representation of the guarded transition system in Figure 3.4.

Components in this simplified system are modeled via instantiating classes. Subsystems
main and B are modeled using blocks. Class usage in the system is shown in Figure 3.13.

Based on proposed classes for repairable components and cold standby components, we
can model the system. Three repairable components and one cold standby component work
jointly to represent the whole system. Basic components are assembled to model the system,
as shown in Figure 3.14. The demand of component C is true when the main series-parallel
structure fails. This hierarchical model can be flattened into one GTS by the AltaRica complier.

3.6 Semantics

The syntax of the AltaRica 3.0 language is illustrated in a Backus–Naur form (BNF) [9]. The
semantics of the AltaRica 3.0 language is a Kripke structure (reachability graph). The structure is
composed of nodes defined by variable assignments and ed g es defined by transitions (labeled
by events). If the delays associated with events are exponentially distributed, the reachability
graph can be regarded as a Continuous Time Markov Chain (CTMC).
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repair (delay: exponential(µ)) 

state==STANDBY 

state==WORKING not demand? turnOff (delay: 0) 

state==FAILED 

failure (delay: exponential(λ)) 

demand? failureOnDemand (delay: 0, weight: γ) 

demand? turnOn (delay: 0, weight: 1-γ) 

demand inFlow outFlow 

Figure 3.12: Graphical representation of the guarded transition system in Figure 3.5.

block System  
       block main // Main structure of system (A, B1, and B2) 
              RepairableComponent A (Lambda = 3.0e-6, Mu = 2.0e-3);  
              block B 
                    RepairableComponent B1 (Lambda = 2.0e-5, Mu = 1.0e-3);                 
                    RepairableComponent B2 (Lambda = 2.0e-5, Mu = 1.0e-3);                 
              end  
       end  
       ColdStandbyComponent C (Lambda = 1.0e-6, Mu = 1.0e-3, Gamma = 0.01);            
end 

Figure 3.13: Class usage in the simplified system.

In particular, semantics of a GTS is defined as the set of its possible runs. A schedule is a func-
tion from T to ℜ+∪ {+∞}. It is a function which associates a (possibly infinite) date with each
transition. A run of a GTS is a finite sequence of triples (d0,σ0,δ0), (d1,σ1,δ1),. . . , (dn ,σn ,δn)
where the di ’s are dates, the σi ’s are variable assignments and the δi ’s are schedules.

The set of runs of the GTS is defined inductively, starting from date 0, as the smallest set such
that:
Initialization: The sequence made of only one triple (0, ι,δ) is a run, if for each transition t : g

e−→
a in T the following conditions hold:

(i) δ(t ) <+∞ if and only if t is potentially fireable in ι.

(ii) If δ(t ) <+∞, there exists z ∈ [0,1] such that δ(t ) = del aye (z).

Run extension: if Γ= (d0,σ0,δ0), . . . , (dn ,σn ,δn) is a run (n ≥ 0), then Γ′ = Γ, (dn+1,σn+1,δn+1), if
there is a transition t : g

e−→ a scheduled at date δn(d) <+∞ such that:

(iii) t is potentially fireable in σn ;
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block System  
       block main // Main structure of system (A, B1, B2) 
              RepairableComponent A (Lambda = 3.0e-6, Mu = 2.0e-3); 
              Boolean outFlow (reset = false); // Outflow of main structure  
              block B 
                    RepairableComponent B1 (Lambda = 2.0e-5, Mu = 1.0e-3);   
                    RepairableComponent B2 (Lambda = 2.0e-5, Mu = 1.0e-3);                               
                    Boolean outFlow (reset = false); // Outflow of parallel structure  
                    assertion 
                           B1.inFlow  := A.outFlow; 
                           B2.inFlow  := A.outFlow;;  
                           outFlow := B1.outFlow or B2.outFlow; 
              end 
              assertion 
                    outFlow := B.outFlow; 
       end 
       parameter Boolean inFlow = true;        
       Boolean outFlow (reset = false); // System outflow 
       ColdStandbyComponent C (Lambda = 1.0e-6, Mu = 1.0e-3, Gamma = 1.0e-2);  
       assertion 
              A.inFlow := inFlow; 
              C.inFlow := inFlow; 
              C.demand := A.state != WORKING or (B1.state != WORKING and B2.state != WORKING);    
              outFlow := C.outFlow or main.outFlow;    
end 

Figure 3.14: AltaRica model for the simplified system in Figure 3.1.

(iv) There is no transition t ′ such that δn(t ′) < d , or δn(t ′) = d , and pr i or i t yt ′ < pr i or i t yt ;

We say that such a transition t is actually fireable in the run Γ. σn+1 and δn+1 are related to σn

and δn as follows.

(v) σn+1 = A(a(σn)), i.e. σn+1 is obtained from σn by firing transition t .

(vi) δn+1 is obtained from δn by reexamining t and all transitions impacted by the update from

σn to σn+1, that is, for all such transitions t ′ : g ′ e ′−→ a′:

– δn+1(t ′) <+∞ if and only if t ′ is potentially fireable in σn+1.
– If δn+1(t ′) <+∞, then there exists z ∈ [0,1] such that δn+1(t ′) = d +del aye ′(z).

Take the main structure of the system in Figure 3.1 as an example, its reachability graph is
shown in Figure 3.15. The states of the main structure are expressed as nodes (rounded rectan-
gles) in the reachability graph. The node with bold edges is the initial state of the main structure.
The state of main structure is indicated as a Boolean variable ��������	
��. The other states
of the graph states can be reached via enabled transitions. There are cycles in this reachability
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graph. Since all components are repairable, from each node there are transitions leading to the
initial node.

A.failure 

B1.failure 

B1.repair 

B2.failure 
B2.repair 

B2.failure 

B1.failure 
B1.repair 

  A.state == WORKING 
B1.state == WORKING 
B2.state == WORKING 
main.outFlow==TRUE 

  A.state == FAILED 
B1.state == WORKING 
B2.state == WORKING 
main.outFlow==FALSE 

  A.state == WORKING 
B1.state == FAILED 
B2.state == WORKING 
main.outFlow==TRUE 

  A.state == WORKING 
B1.state ==WORKING 
B2.state == FAILED 
main.outFlow==TRUE 

  A.state == WORKING 
B1.state == FAILED 
B2.state == FAILED 
main.outFlow==FALSE 

B2.repair 

A.repair 

  A.state == FAILED 
B1.state == FAILED 
B2.state == WORKING 
main.outFlow==FALSE 

   A.state == FAILED 
 B1.state ==WORKING 
 B2.state == FAILED 
main.outFlow==FALSE 

A.failure 

A.repair A.repair 

A.failure 

B1.repair B2.repair 

Figure 3.15: Reachability graph of the main structure in Figure 3.1.

3.7 Comparison with other State/transition Modeling Languages

There are differences and similarities between GTS and other state/transition modeling lan-
guages such as Markov chains (here we mainly consider CTMC) and stochastic Petri nets.

3.7.1 Differences

Systems are composed of components and subsystems according to the hierarchical composi-
tion scheme. With MC and SPN, it is difficult to model a system in a hierarchical way. But the
integration with other methods may acquire such capability, for example, the reliability block
diagrams driven Petri nets (see e.g. [114]). GTS are capable of modeling a system with hierar-
chies of reusable components.

A modeling formalism is expected to describe remote interactions between components. MC
and SPN are difficult to model remote interactions in a system. With regard to GTS, it provides
two ways to describe remote interactions. On the one hand, flow propagations are modeled
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through assertions. One the other hand, synchronization of events can be used to represent
interactions between components.

State space is a set of reachable states. The way of representing a state space can be either
explicit or implicit. The state space of Markov Chains (MC) is given explicitly. However, the state
spaces of Stochastic Petri Nets (SPN) and GTS are represented implicitly. In order to avoid the
state explosion problem, the state space is preferred to be given in an implicit way together with
approximations.

3.7.2 Similarities

In reliability studies, it is crucial to be able to describe various events such as failures, repairs,
and tests. Therefore it is necessary for a formalism to model a system using states and events.
MC, SPN, and GTS can model a system with states and transitions. MC can deal with exponen-
tially distributed events. GTS and SPN allow arbitrary probability distributions for time delays.

Efficient assessment tools are available for MC, SPN, and GTS. For example, GRIF, a system
analysis software platform for determining essential indicators of dependability, can be used to
analyze MC and SPN. Fault tree compiler, Markov chain generator, stepwise simulator, stochas-
tic simulator, as well as generator of critical sequence of events are available for assessing GTS.

3.8 Summary

In this chapter, we recall basics of the Guarded Transition Systems (GTS) and AltaRica 3.0 lan-
guage. They are capable of describing common cause failures, shared resources, acausal com-
ponents, as well as looped systems. The following chapter is dedicated to introduce modeling
patterns.
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Chapter 4

Modeling Patterns

Production and safety systems have similarities and differences. On the one hand, both systems
can be repaired, series-connected, parallel-connected, and k-out-of-n composed. On the other
hand, production systems are usually connected with multi-state components. Safety systems
are commonly composed of binary components.

Capitalized modeling knowledge can make modeling activity profitable. The more reuse of
such knowledge, the more benefit can be attained. A pattern describes a problem occurring fre-
quently and depicts the core of the solution for this problem [2]. Thus we could use this solution
constantly. Moreover, modeling patterns can make modeling process a modular approach.

In the following, we discuss the notion of modeling patterns, then we categorize them ac-
cording to their purpose. Finally, a methodology to develop modeling patterns is proposed.

4.1 Notion of Modeling Patterns

In some modeling languages, for instance Modelica [33], modeling experience is capitalized
by designing libraries of reusable components. The experience with AltaRica shows that when
designing models, same modeling patterns occur systematically. For instance, modeling two
components in cold redundancy involves basically the same AltaRica mechanisms, regardless
of these components are pumps, valves, or repair crews. Designing libraries of modeling pat-
terns is applying model engineering principles and techniques that have been proved to be very
efficient in software engineering [35, 119].

The pattern can be utilized for reusing capitalized knowledge, which was initially proposed
in civil engineering [2]. The concept was adopted in software engineering subsequently as de-
sign patterns [35]. These patterns are descriptions of communicating objects and classes that
are customized to solve a general design problem in a particular context [35]. A design pat-
tern promotes design reuse, conforms to a literary style, and defines a vocabulary for discussing
design [34]. Some researchers tried to provide a general framework of reusing patterns. Pattern
based system engineering was proposed [24], whose procedure includes pattern definitions and
system development with patterns [39]. The basic idea of pattern-related studies is that the de-
sign should be specific to the present problem but also general enough to solve future problems
and to meet requirements [35].

Reuse of components and subsystems is a usual practice in modeling safety-critical sys-

29
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tems. To reuse system behaviors, we need to standardize the representation of reusable compo-
nents and figure out the way they exchange information [67]. A library of reusable argumen-
tation patterns is put forward to capture known solution algorithms and architectural mea-
sures/constraints in [70]. This library focuses on safety mechanisms in automotive domain.

In RAMS (Reliability, Availability, Maintainability, and Safety) community, patterns have been
discussed in [96]. Patterns involved in accident analysis are discussed in traffic domain [38] and
industrial plants [123], albeit these studies mainly employ statistical methods to discover pat-
terns of accident causes. Dependability pattern is the description of a particular recurring de-
pendability problem that arises in specific contexts and presents a well-proven generic scheme
for its solution [39]. Resilience design patterns are raised to meet demand of extreme-scale high-
performance computing systems [43]. In order to conduct safety analysis efficiently and avoid
redesign, the researchers proposed a framework termed SafeSysE which merges safety assess-
ment and systems engineering [88]. FMEA and FTA are automatically generated. Block design
patterns are proposed to automatically generate fault trees. Each pattern leads to a sub-fault
tree.

An advantage of high level modeling languages (like AltaRica) is to reuse models of com-
ponents or even subsystems. There are two ways for attaining such an objective [98]: reuse
of components (objective-oriented), and reuse of modeling patterns (prototype-oriented). The
reuse of components comes directly from programming languages (like C++ [117]) or modeling
languages (like Matlab/Simulink [84] and Modelica). The reuse of modeling patterns starts from
an existing code and adapts it to specific requirements [98].

From modeling experience of several aircraft systems using the AltaRica Data-Flow language,
Safety Architecture Patterns (SAP) are proposed to simplify modeling missions [69]. SAP are
component assemblies used to ensure the safety of architectures [69]. The application of SAP
can be found in the avionics domain [69, 89]. Unlike their work, first, we use the AltaRica 3.0
language rather than AltaRica Data-Flow language. Mathematical backgrounds of the AltaRica
Data-Flow language and the AltaRica 3.0 language are mode automata [106] and Guarded Tran-
sition Systems (GTS) [108], respectively. GTS extends mode automata with the capabilities of
modeling instant loops and acausal components (i.e. inflows and outflows are decided at run
time). Second, we propose patterns for modeling production and safety systems mainly in pro-
cess industry. Their work primarily locates in aviation industry. Third, they mainly proposed a
collection of redundancy based architecture patterns, while we describe behavioral, flow prop-
agation, and composition behaviors of production and safety systems with modeling patterns.
A set of SAP is also listed in [97], where they focus on patterns of the redundancy and software
faults.

It also deserves to learn from Case-based reasoning (CBR). CBR is the process of solving new
problems based on the solutions to similar past problems [1]. It is carried out in four steps:
retrieve, reuse, revise, and retain.

4.2 Categories of Modeling Patterns

Modeling Patterns (MP) are a general means of modeling frequently occurring functional and
physical behaviors. They can be classified according to their purpose, which reflects what a
modeling pattern works for. Modeling patterns can have either a behavioral, a flow propaga-
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tion, or a composition purpose. Behavioral Patterns (BP) describe basic behaviors of compo-
nents. For instance, the repairable behavior is regarded as a basic character in production and
safety systems. Flow Propagation Patterns (FPP) depict flow propagations inside and between
components. Composition Patterns (CP) represent cooperations in a system, such as the coop-
eration between main and standby units.

Figure 4.1 shows categories of modeling patterns. FPP can be further classified as intra-
component FPP and inter-component FPP. Specific modeling patterns are discussed in detail
in Chapter 5. In the following subsections, we discuss categories of modeling patterns in the
framework of GTS.

Modeling Patterns 
(MP) 

Flow Propagation Patterns 
(FPP) 

Composition Patterns 
(CP) 

Behavioral Patterns 
(BP) 

Intra-component FPP Inter-component FPP 

Figure 4.1: Categories of modeling patterns.

4.2.1 Behavioral Patterns

si 

si+2 

si+1 sn s0 ••• ••• 

••• ••• 

operating := (si != FAILED and si != REPAIR) demanded 

diagnosis 

Figure 4.2: Guarded transition system for behavioral patterns.

Behavioral patterns capture the phenomena of internal state transitions at component level.
Guarded transition system for a generic BP is shown in Figure 4.2. A BP is typically comprised of
the following elements:

– State variables: si indicates the internal state of the component. Several applicable state
variables identify component phases (e.g. preventive maintenance and periodic test).

– Flow variables: Boolean demanded ,di ag nosi s, and oper ati ng . demanded indicates
the demand of activation of a component. di ag nosi s indicates the diagnostic test used
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to discover Dangerous Detected (DD) failures of a component. oper ati ng indicates if the
component works or not.

– Events: changes between states with immediate or stochastic delays.

– Assertions: since the left member of an assertion is a flow variable, there are assignments
for demanded ,di ag nosi s, and oper ati ng .

– Input variables: demanded and di ag nosi s.

– Output variables: oper ati ng .

4.2.2 Flow Propagation Patterns

Flow propagation patterns capture flow-circulating behaviors inside (intra-) or between (inter-)
components. A FPP is typically composed of the following elements:

– State variables: the current state is assigned by BP.

– Flow variables: Boolean demanded ,di ag nosi s, and oper ati ng .

– Events: since the transitions are mainly between state variables, there are few events for
FPP. Indeed, flow variables are assigned in assertions but not in transitions.

– Assertions: a set of assignments for flow variables.

– Input variables: demanded and di ag nosi s.

– Output variables: oper ati ng .

U 
unit 

S2 
supplier 

S1 
supplier 

S3 
supplier 

C2 
consumer 

C1 
consumer 

demanded diagnosis operating 

Figure 4.3: Flow propagations.

Flow propagations in a system (with three suppliers and two consumers) are shown in Fig-
ure 4.3. Unit U has three suppliers (upstream units S1, S2 and S3) and two consumers (down-
stream units C1 and C2). Note that the unit here can be a single component or a macro compo-
nent composed of several components (elaborated in following section). demanded flow for
each unit is composed of demanded In and demandedOut . Analogously, oper ati ng In and
oper ati ngOut are associated with each block. This scheme can be extended to more suppliers
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and consumers. Regarding unit U, we have typically:

U .demanded In := C 1.demandedOut or C 2.demandedOut

U .demandedOut := U .demanded In

S1.demanded In := U .demandedOut

S2.demanded In := U .demandedOut

S3.demanded In := U .demandedOut

U .oper ati ng In := S1.oper ati ng or S2.oper ati ng or S3.oper ati ng

U .oper ati ngOut := U .oper ati ng In and U .s ! = F AI LED and U .s ! = REPAI R

and U .di ag nosi s

4.2.3 Composition Patterns

Composition patterns capture hierarchical composition phenomena between components. CP
also share behaviors described in BP and FPP. A CP is typically made of the following elements:

– State variables: si indicates the internal state of a component. Several applicable state
variables identify component phases (e.g. preventive maintenance and periodic test).

– Flow variables: Boolean oper ati ng , demanded and di ag nosi s when applicable.

– Events: changes between states with immediate or stochastic delays.

– Assertions: a set of assignments for flow variables.

– Input variables: demanded and di ag nosi s.

– Output variables: oper ati ng .

U2 U1 

V 

operating demanded 

diagnosis 

Figure 4.4: Hierarchical composition.

The hierarchical composition in a safety system is shown in Figure 4.4. A virtual macro unit
(V) is created to gather two or more units (U1 and U2). The distribution of flows on children
units is governed by composition type.
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Start 

End 

Catalog of 
Modeling Patterns 
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Systems of Interest 
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Modeling Patterns 

Describe 
Modeling Patterns 
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Modeling Patterns 

Reuse 
Modeling Patterns 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Requirement for  
modeling a new system 

Figure 4.5: Methodology to develop modeling patterns.

4.3 Methodology to Develop Modeling Patterns

Based on the introduction of modeling patterns, we propose a methodology to develop model-
ing pattens. The methodology is shown in Figure 4.5, which is composed of six steps:

• Step (1): Review production and safety systems in the literature. A set of production and
safety systems is reviewed, from the viewpoint of frequently occurring behaviors. That is,
we focus on the way each component operates and the hierarchy structure of each system.

• Step (2): Extract modeling patterns from referred systems. Shared system behaviors are
extracted and capitalized as modeling patterns. They are regarded general to cover most
modeling behaviors of related systems. We record behavioral, flow propagation, and com-
position features of modeling patterns.

• Step (3): Describe modeling patterns with a finite set of structured items. To reuse mod-
eling knowledge afterwards, we have to record each modeling pattern in a consistent for-
mat. For example, we need to take note of intent, motivation, and sample model for each
modeling pattern. In a uniform way, we can make modeling patterns straightforward to
be studied and reused. These items are inspired from design patterns [35] and introduced
at the beginning of Chapter 5.

• Step (4): A catalog of modeling patterns can be proposed. Twenty-four (24) extracted
modeling patterns are listed as a catalog. The catalog is further elaborated in Chapter 5.
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Relationships between modeling pattens are discussed as well.
• Step (5): To model a new system, we select applicable modeling patterns from catalog

for each component and subsystem. Modeling patterns may be integrated to model a
complex unit. A methodology of modeling patterns reuse is discussed in Section 5.5.

• Step (6): Selected modeling patterns are reused to model targeted systems. Based on se-
lected modeling patterns, we can model systems in a modular way. Experimental studies
of reusing modeling patterns are illustrated thoroughly in Chapter 6. Simulation results
obtained using modeling patterns approach are compared with those reported in the lit-
erature.

4.4 Summary

In this chapter, we discuss modeling patterns from several viewpoints. Initially, we discuss the
notion of modeling patterns. According to their purpose, modeling patterns are classified as
Behavioral Patterns (BP), Flow Propagation Patterns (FPP), and Composition Patterns (CP). A
methodology of how to develop modeling patterns is proposed. The next chapter is devoted to
exhibit the catalog of proposed modeling patterns.
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Chapter 5

Catalog of Modeling Patterns

The objective of this chapter is to exhibit modeling patterns as catalog. Based on reviewing
numerous production and safety systems from [4, 42, 5, 68, 74, 107, 111, 129, 41, 22, 36, 32, 114,
72, 6, 126, 102, 20, 85, 90, 29, 28, 60], twenty-four (24) modeling patterns are extracted, which
include eight (8) Behavioral Patterns (BP), thirteen (13) Flow Propagation Patterns (FPP), and
three (3) Composition Patterns (CP). A set of structured items is employed to display modeling
pattens. Eventually, relationships between modeling patterns are discussed.

Each modeling pattern is presented with a set of structured items, which are adapted from [35]:

• Name: the name of a modeling pattern needs to be both generic and specific, that is, at
a trade-off level of abstraction. The name acts as vocabulary for communicating in the
domain-specific community.

• Intent: the function and the application scenario of a modeling pattern.

• Also Known As: the other usually-used name of the pattern. It is therefore optional for a
specific pattern.

• Motivation: a scenario that elaborates model problem and how proposed pattern solves
the problem.

• Structure: a graphical representation of a modeling pattern. Regarding BP and CP, we
apply graphical representations of Guarded Transition Systems (GTS) as their structures.
Concerning FPP, we use dependency graphs as their structures. Elements participating in
the modeling pattern and their responsibilities are elaborated. The way that participants
collaborate to take their responsibilities is outlined. The trade-offs and results by using
modeling patterns are pointed out.

• Implementation: notes and hints that are required to be paid attention to when applying
modeling patterns.

• Sample Model: the model fragments that show how to implement the pattern using a
modeling formalism. We use AltaRica 3.0 code throughout the catalog.

• Known Uses: examples of the pattern found in realistic case studies.

• Related Patterns: the relationship and difference between the targeted pattern and rele-
vant ones.

37
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5.1 Behavioral Patterns

Behavioral patterns capture shared basic behaviors of components in production and safety
systems. The structure of a BPP is given via its graphical representation of GTS.

5.1.1 PERFECT

Intent: Provides a general way to model components which cannot fail, that is, components
which are perfectly reliable.
Motivation: Consider the perfect behavior where components can work in any scenario. Al-
though perfect behavior may not be the real situation, some categories of components, such as
oil wells may be assumed to be perfect in the literature.
Structure: The graphical representation of GTS for PERFECT is shown in Figure 5.1. There is
only one state and no transition. The component state keeps invariant (i.e. WORKING).

state == WORKING 

Figure 5.1: Graphical representation of GTS for PERFECT.

Implementation: The implementation of PERFECT pattern is straightforward.
Sample Model: The AltaRica 3.0 code of PERFECT is shown in Figure 5.2.

domain�ComponentState�{WORKING}
class�PERFECT�

ComponentState�varState�(init�=�WORKING);�
end

Figure 5.2: The AltaRica 3.0 code of PERFECT.

Known Uses: The well, separator, and pumps are assumed to be perfect in an offshore installa-
tion [129]. Perfect behaviors can also be found in the wellbore and surface manifold of a sepa-
ration plant [90].

5.1.2 NonRepairable

Intent: Provides a generic way to model components that can fail but cannot be repaired.
Motivation: Many modern products can be treated as nonrepairable systems because of tech-
nological advances and their short-term technological obsolescence [31]. In production and
safety systems, some components cannot be restored after their failures. For instance, uncov-
ered DU (Dangerous Undetected) failures in safety systems cannot be detected and repaired.
Structure: The graphical representation of GTS for NonRepairable is shown in Figure 5.3. The
component is initially in WORKING state. Once a failure occurs, the component state becomes
FAILED.
Implementation: Consider following implementation issues when applying the pattern:
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state == WORKING state == FAILED 
failure  

Figure 5.3: Graphical representation of GTS for NonRepairable.

• Degradation may exist: there may be intermediate states between WORKING and FAILED
states.

• Different lifetime distributions: events (transitions) may folllow different lifetime distribu-
tions. Exponential distribution is one of the most widely used lifetime distributions.

Sample Model: The AltaRica 3.0 code of NonRepairable is shown in Figure 5.4.

domain�ComponentState�{WORKING,�FAILED}
class�Nonrepairable

ComponentState�varState�(init�=�WORKING);�//Initial�state�of�component
parameter�Real�Lambda�=�1.0e�3;�//Failure�rate
//Transition�"failure"�obeys�exponential�distribution�with�a�rate�"Lambda"
event�failure�(delay�=�exponential(Lambda));
transition

//Failure�transition�is�between�WORKING�and�FAILED�states
failure:�varState�==�WORKING��>�varState�:=�FAILED;

end

Figure 5.4: The AltaRica 3.0 code of NonRepairable.

Known Uses: In safety systems, DU failures are preventing activation on demand and can be
revealed only by periodic tests. Part of DU failures cannot be covered by imperfect periodic
tests that is the test coverage < 100%. Such DU failures can be modeled using this pattern.
Related Patterns: NonRepairable can be obtained by adding failure-related transitions and
states to PERFECT pattern.

5.1.3 CorrectiveMaintenance

Intent: Provides a general way to model repair after the component’s failure till its restoration.
Also Known As: Repair, Breakdown maintenance, Run-to-failure maintenance, Curative main-
tenance
Motivation: Corrective Maintenance (CM) is conducted after an item has failed. The target of
CM is to bring component back to a functioning state. Many components are assumed to be
repaired after their failures.
Structure: The graphical representation of GTS for CorrectiveMaintenance is shown in Fig-
ure 5.5. The component is initially working (st ate == WORKING). Once a failure occurs, the
component falls into FAILED state. When the corrective maintenance crew is available, the
component state becomes UNDER_REPAIR. Finally, the component returns to its initial state
once the repair operation is finished. In CorrectiveMaintenance pattern, if the state is WORK-
ING, the component is up (available).
Implementation: Consider following issues when implementing this pattern:
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state == WORKING state ==  
UNDER_REPAIR state == FAILED 

failure  startRepair  

endRepair  

Figure 5.5: Graphical representation of GTS for CorrectiveMaintenance.

• Repair crew: with regard to a system, the number of repair crews is usually limited and
predetermined. However, if the repair crew is assumed to be available at any time, the
state UNDER_REPAIR can be omitted.

• Different lifetime distributions: involved events can follow different lifetime distributions.
For instance, the failure transition may follow the exponential distribution. Nevertheless,
the endRepair transition can follow a deterministic distribution.

• Possible intermediate states: there may be degradation states between WORKING and
FAILED states.

Sample Model: The AltaRica 3.0 code of CorrectiveMaintenance is shown in Figure 5.6.

domain�ComponentState�{WORKING,�FAILED,�UNDER_REPAIR}
class�CorrectiveMaintenance����������������������������������������

ComponentState�varState�(init�=�WORKING);
parameter�Real�Lambda�=�1.0e�3;�//Failure�rate
parameter�Real�Mu�����=�1.0e�1;�//Repair�rate
event�failure�����(delay�=�exponential(Lambda));
event�startRepair�(delay�=�0);�//No�delay
event�endRepair���(delay�=�exponential(Mu));
transition

failure:�����varState�==�WORKING�������>�varState�:=�FAILED;���
startRepair:�varState�==�FAILED��������>�varState�:=�UNDER_REPAIR;
endRepair:���varState�==�UNDER_REPAIR��>�varState�:=�WORKING;

end

Figure 5.6: The AltaRica 3.0 code of CorrectiveMaintenance.

Known Uses: CorrectiveMaintenance can be found in almost every system in process industry.
Related Patterns: CorrectiveMaintenance pattern can be obtained by assigning repair-related
transitions and states to NonRepairable pattern.

5.1.4 PreventiveMaintenance

Intent: Provides a general way to model preventive maintenance policy which is carried out
with predefined intervals and durations. The component is often assumed to be out of work
under preventive maintenance.
Motivation: Preventive Maintenance (PM) is conducted according to a specified time schedule.
PM seeks to reduce the failure probability of the component. It may involve inspection, ad-
justments, lubrication, parts replacement, calibration, and repair of items that are beginning to
wear out. PM is generally performed on a regular basis, regardless of whether the functionality
of performance is degraded or not [105].
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Structure: The graphical representation of GTS for PreventiveMaintenance is shown in Fig-
ure 5.7. This can be seen as CorrectiveMaintenance pattern to which the preventive mainte-
nance behavior is added. Besides transitions described in CorrectiveMaintenance pattern, if
the preventive interval is reached and preventive maintenance crew is available, the component
runs into preventive maintenance phase. If the component state is WORKING before changing
its phase into preventive maintenance, the component keeps its state after transition endMain-
tenance. Otherwise, the component state becomes WORKING after endMaintenance.

state == WORKING  
phase == OPERATION 

Operation 
phase 

Preventive  
maintenance 

phase 

state == FAILED 
phase == OPERATION 

state == WORKING  
phase==MAINTENANCE 

state == FAILED 
phase==MAINTENANCE 

startMaintenance startMaintenance 

failure  state== UNDER_REPAIR 
phase == OPERATION 

state== UNDER_REPAIR 
phase==MAINTENANCE 

startMaintenance 

startRepair  

endMaintenance 

endRepair  

Figure 5.7: Graphical representation of GTS for PreventiveMaintenance.

Implementation: Be aware of that there may be more complex PM policy. For example, some
components can work with three types of PM, such as every 3 months, 1 year, and 3 years. Nor-
mally, corresponding maintenance durations are different. We may use some state variables to
define maintenance type and to count number of times of different maintenances.
Sample Model: The AltaRica 3.0 code of PreventiveMaintenance is shown in Figure 5.8.
Known Uses: PreventiveMaintenance can be used to model primary separators, heat exchang-
ers, thermal chemical processor in a FPSO (Floating Production Storage and Offloading) sys-
tem [85]. Components (two turbo-compressors and two turbo-generators) with three types of
PM can be found in another offshore installation [129].
Related Patterns: PreventiveMaintenance can be obtained by adding PM-related states and
transitions to CorrectiveMaintenance and DEGRADATION patterns.

5.1.5 DEGRADATION

Intent: Provides a generic way to model degraded behaviors between working and failed states.
The component may degrade, in which situation the component becomes less available and
more vulnerable.
Motivation: Traditional reliability models, which assume systems and their components can be
either working perfectly or completely failed, are unable to characterize the multi-state nature
of advanced engineering systems [63, 77]. Thus degradation behaviors are required to be stud-
ied. For example, working conditions in oil and gas systems are usually harsh. Exposed to such
circumstances, components are prone to degrade.
Structure: The graphical representation of GTS for DEGRADATION is shown in Figure 5.9. Once
there is a degradation, the component transfers to DEGRADED state. If a repair crew is avail-
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domain�ComponentState�{WORKING,�FAILED,�UNDER_REPAIR}�//States�of�component
domain�Phase�{OPERATION,�MAINTENANCE}�//Phases�of�component
class�PreventiveMaintenance

ComponentState�varState�(init�=�WORKING);
Phase�phase�(init�=�OPERATION);
parameter�Real�Lambda�=�1.0e�3;�//Failure�rate
parameter�Real�Mu�����=�1.0e�1;�//Repair�rate
parameter�Real�PreventiveInterval�=�8760.0;�//Maintenance�interval
parameter�Real�PreventiveDuration�=�10.0;���//Maintenance�duration
event�failure�����(delay�=�exponential(Lambda));
event�startRepair�(delay�=�0);
event�endRepair���(delay�=�exponential(Mu));
event�startMaintenance�(delay�=�PreventiveInterval);
event�endMaintenance���(delay�=�PreventiveDuration);
transition

failure:�����varState�==�WORKING�and�phase�==�OPERATION��>�
������������{varState�:=�FAILED;�phase�:=�OPERATION;}
startRepair:�varState�==�FAILED�and�phase�==�OPERATION��>

��������������������{varState�:=�UNDER_REPAIR;�phase�:=�OPERATION;}
endRepair:���varState�==�UNDER_REPAIR�and�phase�==�OPERATION��>�
������������{varState�:=�WORKING;�phase�:=�OPERATION;}����
startMaintenance:�phase�==�OPERATION��>�phase�:=�MAINTENANCE;�������
endMaintenance:���phase�==�MAINTENANCE��>�
�����������������{varState�:=�WORKING;�phase�:=�OPERATION;}

end

Figure 5.8: The AltaRica 3.0 code of PreventiveMaintenance.
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Figure 5.9: Graphical representation of GTS for DEGRADATION.

able, the component state turns into UNDER_DEGRADEDREPAIR. The degraded component
can also fall into FAILED state. If the corrective repair crew is available, the component transfers
from FAILED to UNDER_REPAIR. The component returns to WORKING if the repair is finished.
Implementation: Here are four implementation issues to be considered:

• The DEGRADATION and UNDER_DEGRADEDREPAIR states may be assumed as up states,
that is, the component works in full capacity. But in some situations, the component is
assumed to work with decreased or null capacity.

• More intermediate states can be applied in degradation process.

• A degraded component can also be nonrepairable, by deleting repair-related states and
transitions.
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• Weibull like distribution may be used. Here we use multi-state models to define finite
degradation states. Some systems are required to apply other lifetime distributions, like
Weibull distribution (with shape parameter > 1), to model degradation behaviors.

Sample Model: The AltaRica 3.0 code of DEGRADATION is shown in Figure 5.10.

domain�ComponentState�{WORKING,�FAILED,�UNDER_REPAIR,�DEGRADED,�UNDER_DEGRADEDREPAIR}
class�DEGRADATION�

ComponentState�varState�(init�=�WORKING);
parameter�Real�Lambda01�=�0.79e�3;�//Failure�rate�from�WORKING�to�DEGRADED
parameter�Real�Lambda12�=�1.86e�3;�//Failure�rate�from�DEGRADED�to�FAILED
parameter�Real�Lambda02�=�0.77e�3;�//Failure�rate�from�WORKING�to�FAILED
parameter�Real�Mu10�����=�3.20e�2;�//Repair�rate�from�DEGRADED�to�WORKING
parameter�Real�Mu20�����=�3.80e�2;�//Repair�rate�from�FAILED�to�WORKING
event�failure01�(delay�=�exponential(Lambda01));
event�failure12�(delay�=�exponential(Lambda12));
event�failure02�(delay�=�exponential(Lambda02));
event�startRepair10�(delay�=�0);
event�startRepair20�(delay�=�0);
event�endRepair10���(delay�=�exponential(Mu10));
event�endRepair20���(delay�=�exponential(Mu20));
transition

failure01:�����varState�==�WORKING���>�varState�:=�DEGRADED;
startRepair10:�varState�==�DEGRADED��>�varState�:=�UNDER_DEGRADEDREPAIR;
endRepair10:���varState�==�UNDER_DEGRADEDREPAIR��>�varState�:=�WORKING;
failure12:�����varState�==�DEGRADED��������������>�varState�:=�FAILED;
failure02:�����varState�==�WORKING���������������>�varState�:=�FAILED;
startRepair20:�varState�==�FAILED����������������>�varState�:=�UNDER_REPAIR;
endRepair20:���varState�==�UNDER_REPAIR����������>�varState�:=�WORKING;

end

Figure 5.10: The AltaRica 3.0 code of DEGRADATION.

Known Uses: Since the severe working conditions (e.g. high temperature and high pressure)
in oil industry, related equipment reveal degradation phenomena. Degradation behaviors can
be found in an oil production system (treatment units) [107] and an offshore installation (two
turbo-compressors and two turbo-generators) [129].
Related Patterns: DEGRADATION can be obtained by adding intermediate transitions and states
to CorrectiveMaintenance or NonRepairable patterns.

5.1.6 PeriodicTest

Intent: Provides a general way to model periodic test which is used to reveal dangerous unde-
tected failures.
Also Known As: Proof test, Proof testing, Periodic testing
Motivation: A periodic test is a planned operation performed at constant time intervals to detect
hidden failures [60].
Structure: The graphical representation of GTS for PeriodicTest is shown in Figure 5.11. Periodic
tests are conducted at predefined intervals and durations.

• PeriodicTest: indicates the state of the periodic test. The periodic test is conducted when
the PeriodicTest is true.
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PeriodicTest == FALSE PeriodicTest == TRUE 

periodicTest 

completeTest 

Figure 5.11: Graphical representation of GTS for PeriodicTest.

• Transitions: reveal transfers between the PeriodicTest states.

Implementation: Here are two implementation issues to be considered:

• It is usually used in safety systems.
• It is applied for revealing dangerous undetected failures.

Sample Model: The AltaRica 3.0 code of PeriodicTest is shown in Figure 5.12.

class�PeriodicTest
Boolean�PeriodicTestDetectFailure�(�init�=�false�);//State�of�periodic�test

����parameter�Real�PeriodicTestInterval�=�8760.0;//Intervals�between�tests
����parameter�Real�PeriodicTestDuration�=�10.0;��//Test�duration
����event�periodicTest�(�delay�=�PeriodicTestInterval�);
����event�completeTest�(�delay�=�PeriodicTestDuration�);

transition
periodicTest:�PeriodicTestDetectFailure�==�false�
�����������>��PeriodicTestDetectFailure�:=�true;
completeTest:�PeriodicTestDetectFailure�==�true
�����������>��PeriodicTestDetectFailure�:=�false;

end

Figure 5.12: The AltaRica 3.0 code of PeriodicTest.

Known Uses: This pattern models the periodic test which can detect Dangerous Undetected
(DU) failures. It can be used to model periodic tests in all safety systems in ISO/TR 12489 [60].
Related Patterns: PeriodicTest serves as basis of RevealUndetectedFailure and StaggeredPerio-
dicTest.

5.1.7 RevealUndetectedFailure

Intent: Provides a generic way to model the process to detect dangerous undetected failures in
safety systems.
Motivation: To model how to reveal dangerous undetected failures.
Structure: The graphical representation of GTS for RevealUndetectedFailure is shown in Fig-
ure 5.13.
Implementation: Two implementation matters of this pattern deserve to be underlined:

• DU failures can only be discovered when state==DU and phase==TEST. That is, when
state==DU, periodic test can be completed only after DU failures are revealed.

• After DU failures are detected, the component evolves as CorrectiveMaintenance pattern.
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Figure 5.13: Graphical representation of GTS for RevealUndetectedFailure.

Sample Model: The AltaRica 3.0 code of RevealUndetectedFailure is shown in Figure 5.14.
Known Uses: This pattern can be employed to model behaviors of revealing DU failures in all
safety systems in ISO/TR 12489 [60].
Related Patterns: RevealUndetectedFailure is proposed based on PeriodicTest and Corrective-
Maintenance patterns.

5.1.8 StaggeredPeriodicTest

Intent: Provides a universal way to model the staggered periodic test, which can obtain higher
availability than simultaneous tests.
Motivation: In simultaneous tests, redundant components are tested simultaneously. This strat-
egy is not applied for safety systems that (is required to) remain in service permanently because
the system is unavailable during test. When redundant components of a system are tested con-
currently, unavailabilities of components peak at the same time. This has an adverse effect on
system availability which can be mitigated by de-synchronizing tests [60]. A practical way to do
that is staggering these tests. A staggered testing (of redundant items) is a test of several items
with the same test interval but not at the same time. The unavailability peaks are also staggered
and this improves average availability of the system [60, 78].

When several components are applied in redundant structures, tests may be staggered, in
which situation the first test interval is different from others [50]. The sketch diagram of stag-
gered periodic test is shown in Figure 5.15, where τ is the test interval. When several compo-
nents are involved, the periodic test may be staggered, thus to increase the likelihood of detect-
ing CCF (Common Cause Failures) and improve system availability. Compared with a reference
periodic test, the duration of the first test interval in staggered periodic test is different (e.g. mτ,
0<m<1) from the duration of following test intervals (e.g. τ).
Structure: The graphical representation of GTS for StaggeredPeriodicTest is shown in Figure 5.16.
Initially, the startStaggeredTest is triggered. Subsequently, the rest of the pattern architecture
becomes similar to PeriodicTest pattern in Figure 5.11.

• PeriodicTest: indicates the state of periodic test.
• startStaggeredTest: indicates the start of staggered test. If the staggered test starts, the

periodic test initiates concurrently. After the periodic test is conducted, startStaggeredTest
cannot be enabled the second time.
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domain�ComponentState�{OK,�DU,�DD,�UNDER_REPAIR}�//States�of�component
domain�Phase�{OPERATION,�TEST}�//Phases�of�component
class�RevealUndetectedFailure

ComponentState�varState�(�init�=�OK�);
Phase�phase�(�init�=�OPERATION�);
Boolean�ComponentAvailable�(�init�=�true�);�//Component�availability
parameter�Real�LambdaDU�=�1.0e�3;�//Dangerous�Undetected�(DU)�failure�rate
parameter�Real�Mu�������=�1.0e�1;�//Repair�rate

����parameter�Real�PeriodicTestInterval�=�8760.0;//Intervals�between�tests
����parameter�Real�PeriodicTestDuration�=�10.0;��//Test�duration

event�failure������(�delay�=�exponential�(�LambdaDU�)�);
event�startRepair��(�delay�=�0�);
event�endRepair����(�delay�=�exponential�(�Mu�)�);

����event�periodicTest�(�delay�=�PeriodicTestInterval�);
����event�completeTest�(�delay�=�PeriodicTestDuration�);

transition
failure:�varState�==�OK�and�phase�==�OPERATION�and�ComponentAvailable�==�true �
������>�{varState�:=�DU;�ComponentAvailable�:=�false;}
startRepair:�varState�==�DD�and�phase�==�OPERATION��>�varState�:=�UNDER_REPAIR;
endRepair:���varState�==�UNDER_REPAIR�and�phase�==�OPERATION� ��
����������>�{varState�:=�OK;�ComponentAvailable�:=�true;}
periodicTest:�phase�==�OPERATION��>�phase�:=�TEST;
completeTest:�phase�==�TEST
�����������>�{phase�:=�OPERATION;�if�varState�==�DU�then�varState�:=�DD;}

end

Figure 5.14: The AltaRica 3.0 code of RevealUndetectedFailure.
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Figure 5.15: Sketch diagram of staggered periodic test.
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Figure 5.16: Graphical representation of GTS for StaggeredPeriodicTest.



5.2. FLOW PROPAGATION PATTERNS 47

Sample Model: The AltaRica 3.0 code of StaggeredPeriodicTest is shown in Figure 5.17.

domain�ComponentState�{OK,�DU,�DD,�UNDER_REPAIR}�//States�of�component
domain�Phase�{OPERATION,�TEST}�//Phases�of�component
class�StaggeredPeriodicTest

ComponentState�varState�(�init�=�OK�);
Phase�phase�(�init�=�OPERATION�);
Boolean�ComponentAvailable�(�init�=�true�);�//Component�availability
Boolean�StartStaggeredTest�(�init�=�false�);//Check�if�staggered�test�started
parameter�Real�LambdaDU�=�1.0e�3;�//Dangerous�Undetected�(DU)�failure�rate
parameter�Real�Mu�������=�1.0e�1;�//Repair�rate

����parameter�Real�PeriodicTestInterval�=�8760.0;//Intervals�between�tests
����parameter�Real�PeriodicTestDuration�=�10.0;��//Test�duration
����parameter�Real�StaggeredFactor�=�0.5;//Determine�time�to�start�staggered�test
����event�startStagger�(�delay�=�PeriodicTestInterval�*�StaggeredFactor�);
����event�failure������(�delay�=�exponential�(�LambdaDU�)�);

event�startRepair��(�delay�=�0�);
event�endRepair����(�delay�=�exponential�(�Mu�)�);

����event�periodicTest�(�delay�=�PeriodicTestInterval�);
����event�completeTest�(�delay�=�PeriodicTestDuration�);

transition
failure:�varState�==�OK�and�phase�==�OPERATION�and�ComponentAvailable�==�true ����
������>�{varState�:=�DU;�ComponentAvailable�:=�false;}
startRepair:�varState�==�DD�and�phase�==�OPERATION��>�varState�:=�UNDER_REPAIR;
endRepair:���varState�==�UNDER_REPAIR�and�phase�==�OPERATION� ��
����������>�{varState�:=�OK;�ComponentAvailable�:=�true;}
startStagger:�phase�!=�TEST�and�StartStaggeredTest�==�false�
�����������>�{phase�:=�TEST;�StartStaggeredTest�:=�true;}
periodicTest:�phase�==�OPERATION�and�StartStaggeredTest�==�true��>�phase�:=�TEST;
completeTest:�phase�==�TEST�and�StartStaggeredTest�==�true
�����������>�{phase�:=�OPERATION;�if�varState�==�DU�then�varState�:=�DD;}

end

Figure 5.17: The AltaRica 3.0 code of StaggeredPeriodicTest.

Known Uses: This pattern can be employed to model staggered periodic test for the pressure
sensors and isolation valves in a safety system (Typical Application 2-4 in ISO/TR 12489) [60].
Related Patterns: StaggeredPeriodicTest is based on PeriodicTest pattern.

5.2 Flow Propagation Patterns

Flow Propagation Patterns (FPP) depict flow propagation inside and between components. The
structure of a FPP is illustrated with the dependency graph of assertions. An assertion is used to
update flow variables on the basis of state variables.

5.2.1 SISO: Single-Input-Single-Output

Intent: Provides a general way to model physical structure with one inflow and one outflow.
Motivation: Consider a component with one inflow and one outflow. The flow chart of the
component is shown in the following, where C is a targeted component, I and O are its inflow
and outflow, respectively.
Structure: Dependency graph of the assertion of SISO is shown in Figure 5.18.
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• varInFlow: defines the component inflow, which can be real or Boolean variable. It may
be treated as a constant parameter.

• varState: declares the component state, which is assigned by using behavioral patterns.
• varOutFlow: monitors the component output which relies on its inflow and state. varOut-

Flow equals to varInFlow when the varState is up.

varOutFlow 

varInFlow varState 

Figure 5.18: Dependency graph of the assertion of SISO.

Implementation: The implementation of SISO is straightforward.
Sample Model: The AltaRica 3.0 code of SISO is shown in Figure 5.19.

class�SISO�//Single�Input�Single�Output�������������
Component�C;//The�behavioral�pattern�of�component�is�predefined
Real�varInFlow��(reset�=�0.0);�
Real�varOutFlow�(reset�=�0.0);
assertion//Treat�WORKING�as�the�up�state����������������������������

varOutFlow�:=�if�C.varState�==�WORKING�then�varInFlow�else�0.0;
end

Figure 5.19: The AltaRica 3.0 code of SISO.

By considering capacity constraints of components, we propose to add flow variables de-
mands for each component. demands are requirements from downstream components. SISO
has Demand Input (DI), Demand Output (DO), Flow Input (FI), and Flow Output (FO). Among
them, FI and FO are physical flows. The running scheme considering capacity limit in SISO is
shown in Figure 5.20. Variables can be defined in SISO. The partial AltaRica 3.0 code is placed in
assertion.

DI 
FO 

DO 
FI 

DO := if state == WORKING then min(DI, Capacity) else 0.0; 
FO := min(FI, DO); 

Figure 5.20: Running scheme considering capacity limit in SISO.

Known Uses: SISO can be frequently used in process industry. For example, this pattern can be
employed to model the treatment units in an oil extraction installation [107] and the valves in a
Christmas tree sitting above a basic wellhead [102].
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Related Patterns: SISO is applied in other patterns, especially inter-component flow propaga-
tion patterns at subsystem level. SERIES and PARALLEL are separately the series and parallel
connections of several SISO. SISO is a special case of MIMO.

5.2.2 SIMO: Single-Input-Multiple-Output

Intent: Provides a general way to model the physical structure that has one inflow and multiple
outflows.
Also Known As: Divergence
Motivation: Consider a dehydration unit, which has one inflow and multiple outflows. We can
judge the outputs by the component state and downstream demands. Demands are associated
with outflows.

C 
I O1 

O2 

On 

C 
I O1 

O2 

Structure: Dependency graph of the assertion of SIMO is shown in Figure 5.21. The varOut-
Flow1 depends on varInFlow, varState, as well as two demands. The way of modeling varOut-
Flow2 is similar to that of varOutFlow1.

• varInFlow: defines the component inflow.

• varState: declares the component state.

• demand1, demand2: are downstream demands corresponding to varOutFlow1 and varOut-
Flow2.

• varOutFlow1, varOutFlow2: observe outputs of the component, which rely on inflow, state,
and demands. varOutFlow1 and varOutFlow2 are positive when demands are true and
varState is up.

varOutFlow2 

varState varInFlow 

varOutFlow1 

demand1 demand2 

Figure 5.21: Dependency graph of the assertion of SIMO.

Implementation: This pattern needs to be adjusted according to the distribution policy. For
example, the policy can be governed by preference (priority).
Sample Model: The AltaRica 3.0 code of SIMO is shown in Figure 5.22.
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//Assume�an�equally�split�policy�(i.e.,�50%:50%),�which�needs�to�be�predefined
//Assume�no�capacity�limit
class�SIMO�//Single�Input�Multiple�Output�

Component�C;//The�behavioral�pattern�of�component�is�predefined
Real�varInFlow,�varOutFlow1,�varOutFlow2�(reset�=�0.0);
Boolean�demand1,�demand2�(reset�=�false);�������
assertion//Treat�WORKING�as�the�up�state�����������������������������������

varOutFlow1�:=�if�demand1�and�demand2�and�C.varState�==�WORKING�then�0.5*varInFlow
������else�if�demand1�and�not�demand2�and�C.varState�==�WORKING�then�varInFlow

������������������else�0;
varOutFlow2�:=�if�demand2�and�demand1�and�C.varState�==�WORKING�then�0.5*varInFlow

������������������else�if�demand2�and�not�demand1�and�C.varState�==�WORKING�then�varInFlow
������������������else�0;
end

Figure 5.22: The AltaRica 3.0 code of SIMO.
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//We assume three downstream components, i.e. n=3 
DO := if state == WORKING then min (DI1+DI2+DI3, Capacity) else 0.0; 
FO1 := if DI1 > 0 then min(FI, DO) * DI1/(DI1 + DI2 + DI3) else 0.0; 
FO2 := if DI2 > 0 then min(FI, DO) * DI2/(DI1 + DI2 + DI3) else 0.0; 
FO3 := if DI3 > 0 then min(FI, DO) * DI3/(DI1 + DI2 + DI3) else 0.0; 

Figure 5.23: Running scheme considering capacity limit in SIMO.
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By considering capacity constraints, SIMO has demand inputs, demand output, flow input,
and flow outputs. The running scheme considering capacity limit in SIMO is shown in Fig-
ure 5.23.
Known Uses: SIMO is commonly applied in oil and gas systems, such as a dehydration unit with
one inflow from the gas compressor and several outflows [111, 129], and a flowline-riser loop in
a subsea oil production system [126].
Related Patterns: SIMO is a special case of MIMO.

5.2.3 MISO: Multiple-Input-Single-Output

Intent: Provides a general way to model the physical structure that has multiple inflows and one
outflow.
Also Known As: Convergence
Motivation: Consider a component with two inflows and one outflow. It is straightforward to
obtain the outflow by the sum of inflows, as well as considering component state.
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Structure: Dependency graph of the assertion of MISO is shown in Figure 5.24. The varOutFlow
of MISO depends on its varState and varInFlows.

• varInFlow1, varInFlow2: stand for component inflows.
• varState: declares the component state.
• varOutFlow: observes the component output, which relies on inflows and component

state.

varOutFlow 

varInFlow2 varState varInFlow1 

Figure 5.24: Dependency graph of the assertion of MISO.

Implementation: Here we assume that flows are mono-flux and no chemical reaction occurs.
Sample Model: The AltaRica 3.0 code of MISO is shown in Figure 5.25.

By considering capacity constraints, MISO has demand input, demand outputs, flow in-
puts, and flow output. The running scheme considering capacity limit in MISO is shown in
Figure 5.26.
Known Uses: In an oil production system [107], MISO can be used to model a treatment unit
with two inflows (from a well and another treatment unit) and one outflow. In a FPSO sys-
tem [85], a sea water cooler can be modeled by MISO, which has two inflows (from heat ex-
changers) and one outflow (to a cargo tank).
Related Patterns: When inflows are mono-flux, MISO and MIMO can be modeled in a similar
way.
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class�MISO�//Multiple�Input�Single�Output
Component�C;//The�behavioral�pattern�of�component�is�predefined
Real�varInFlow1,�varInFlow2�(reset=�0.0);��
Real�varOutFlow�(reset�=�0.0);
assertion//Treat�WORKING�as�the�up�state�������������������������������������������

varOutFlow�:=�if�C.varState�==�WORKING�then�(varInFlow1�+�varInFlow2)�else�0.0;
end

Figure 5.25: The AltaRica 3.0 code of MISO.
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DOm 
FIm 

//We assume two upstream components, U1, U2, i.e. m=2 
//We define new variable DO – Demand Output 
//Capacity-based distribution 
DO   := if state == WORKING then min(DI, Capacity) else 0.0; 
DO1 := if U1.state == WORKING and U2.state == WORKING then DO*U1.Capacity/(U1.Capacity+U2.Capacity) 
             else if U1.state == WORKING and U2.state != WORKING then DO 
             else 0.0; 
DO2 := if U1.state == WORKING and U2.state == WORKING then DO*U2.Capacity/(U1.Capacity+U2.Capacity) 
             else if U2.state == WORKING and U1.state != WORKING then DO 
             else 0.0; 
FO := min(FI1, DO1) + min(FI2, DO2); 

Figure 5.26: Running scheme considering capacity limit in MISO.

5.2.4 SOURCE

Intent: Provides a general way to model the physical structure with only outflows.
Motivation: Consider a structure with merely outflows, which can be regarded as the start of
systems (e.g. oil wells, electricity generators).

C 
O1 
O2 

On 

C 
O1 
O2 
O3 

Structure: Dependency graph of the assertion of SOURCE is shown in Figure 5.27.

• varState: indicates component status.
• varOutFlow1, varOutFlow2, varOutFlow3: define component outputs, which only depend

on component state.

Implementation: Even though some components have “inflows”, they are still modeled using
SOURCE pattern. For example, electricity generators have gas inflow and electricity outflow.
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varState 

varOutFlow2 varOutFlow3 varOutFlow1 

Figure 5.27: Dependency graph of the assertion of SOURCE.

Because their inflow and outflow carry different media, we model them using SOURCE rather
than SISO pattern.
Sample Model: The AltaRica 3.0 code of SOURCE is shown in Figure 5.28.

class�SOURCE
Component�C;//The�behavioral�pattern�of�component�is�predefined
//Used�by�downstream�components
Real�varOutFlow1,�varOutFlow2,�varOutFlow3�(reset�=�0.0);�

end

Figure 5.28: The AltaRica 3.0 code of SOURCE.

By considering capacity constraints, SOURCE has demand inputs and flow outputs. The
running scheme considering capacity limit in SOURCE is shown in Figure 5.29.

DI1 
FO1 

DI2 
FO2 …

 

DIn 
FOn 

//We assume three downstream components, n=3 
//Multi-flux, three types of capacity 
FO1 := if state == WORKING then min(DI1, Capacity1) else 0.0; 
FO2 := if state == WORKING then min(DI2, Capacity2) else 0.0; 
FO3 := if state == WORKING then min(DI3, Capacity3) else 0.0; 
//Mono-flux, one capacity 
FO1 := if state == WORKING and DI1 > 0 then Capacity*DI1/(DI1+DI2+DI3) else 0.0; 
FO2 := if state == WORKING and DI2 > 0 then Capacity*DI2/(DI1+DI2+DI3) else 0.0; 
FO3 := if state == WORKING and DI3 > 0 then Capacity*DI3/(DI1+DI2+DI3) else 0.0; 

Figure 5.29: Running scheme considering capacity limit in SOURCE.

Known Uses: SOURCE can be used to model wells and turbo generators in offshore plants [129,
90].
Related Patterns: SOURCE usually collaborates with MIMO pattern. SOURCE is also a special
case of MIMO.
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5.2.5 SINK

Intent: Provides a general way to model the physical structure with only inflows.
Motivation: Consider a tank in a production system, which solely has inflows.

C 
I1 
I2 

In 

C 
I1 
I2 
I3 

Structure: Dependency graph of the assertion of SINK is shown in Figure 5.30.

• varInFlow1, varInFlow2, varInFlow3: define component inflows.

• varState: indicates the component state.

• volume: monitors inflows. The volume, a flow variable acting as observer, is treated as
“outflow” of the component, which relies on its state and inflows.

volume 

varInFlow1 varState varInFlow3 varInFlow2 

Figure 5.30: Dependency graph of the assertion of SINK.

Implementation: Inflows are usually mono-flux, that is, the materials in the flow are identical.
In real cases, SINK structures (e.g. a tank) have outflows. However, when export valves/pipelines
are closed, such structures can be modeled using SINK pattern. For example, in a FPSO, the oil
inside its cargo tank is transferred to shuttle tankers periodically. Except offloading stage, the oil
cargo tank can be modeled with SINK pattern.
Sample Model: The AltaRica 3.0 code of SINK is shown in Figure 5.31.

//Mono�flux,�assume�no�capacity�limit
class�SINK

Component�C;//The�behavioral�pattern�of�component�is�predefined
Real�varInFlow1,�varInFlow2,�varInFlow3�(reset�=�0.0);�
Real�volume�(reset�=�0.0);�//Virtual�variable,�used�for�monitoring
assertion//Treat�WORKING�as�the�up�state���������������������������������������������
��volume�:=�if�C.varState�==�WORKING�then�(varInFlow1+varInFlow2+varInFlow3)�else�0.0;

end

Figure 5.31: The AltaRica 3.0 code of SINK.

By considering capacity constraints, SINK has demand outputs and flow inputs. The running
scheme considering capacity limit in SINK is shown in Figure 5.32.
Known Uses: The SINK pattern can be applied to model the tanks in an oil production sys-
tem [107] and the oil cargo tank in a FPSO system [85].
Related Patterns: SINK is regarded as a special case of MIMO.
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//We assume two upstream components, U1, U2, i.e. m=2 
//We define new variable DO – Demand Output 
//We define v1, v2 for observations 
//Capacity-based distribution 
DO := if state == WORKING then Capacity else 0.0; 
DO1 := if U1.state == WORKING and U2.state == WORKING then DO*U1.Capacity/(U1.Capacity+U2.Capacity) 
             else if U1.state == WORKING and U2.state != WORKING then DO 
             else 0.0; 
DO2 := if U1.state == WORKING and U2.state == WORKING then DO*U2.Capacity/(U1.Capacity+U2.Capacity) 
             else if U2.state == WORKING and U1.state != WORKING then DO 
             else 0.0; 
v1 := min(FI1, DO1); 
v2 := min(FI2, DO3); 

Figure 5.32: Running scheme considering capacity limit in SINK.

5.2.6 MIMO: Multiple-Input-Multiple-Output

Intent: Provides a generic way to model the physical structure that has multiple inflows and
multiple outflows.
Motivation: Consider a unit which has m (m > 1) inflows and n (n > 1) outflows.
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O1 O1 
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I3 O3 

Structure: Dependency graph of the assertion of MIMO is shown in Figure 5.33. The varOut-
Flow1 of MIMO depends on varState and varInFlow1. The way to model varOutFlow2 and
varOutFlow3 is similar to varOutFlow1.

• varInFlow1, varInFlow2, varInFlow3: define component inflows.
• varState: represents the component state.
• varOutFlow1, varOutFlow2, varOutFlow3: observe component outflows, which rely on in-

flows and component sate. All outflows depend on associated inflows and component
state.

Implementation: Here are two implementation matters to be considered:

• Judge if inflows are mono-flux or multi-flux.
• Consider using other flow propagation patterns if necessary. For instance, MIMO (e.g.

separators) usually works together with SOURCE (e.g. wells).
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varOutFlow1 

varInFlow1 

varState 

varInFlow2 

varOutFlow2 varOutFlow3 

varInFlow3 

Figure 5.33: Dependency graph of the assertion of MIMO.

Sample Model: The AltaRica 3.0 code of MIMO is shown in Figure 5.34. The AltaRica 3.0 code of
mono-flux MIMO is similar to that of SIMO. With regard to multi-flux MIMO, its flow allocation
is predetermined.

//The�flow�allocation�is�predetermined,�let�us�assume�I1�O1,I2�O2,I3�O3
class�MIMO�//Multiple�Input�Multiple�Output

Component�C;//The�behavioral�pattern�of�component�is�predefined
Real�varInFlow1,�varInFlow2,�varInFlow3����(reset�=�0.0);�
Real�varOutFlow1,�varOutFlow2,�varOutFlow3�(reset�=�0.0);
assertion//Treat�WORKING�as�the�up�state������������������������������

varOutFlow1�:=�if�C.varState�==�WORKING�then�varInFlow1�else�0.0;
varOutFlow2�:=�if�C.varState�==�WORKING�then�varInFlow2�else�0.0;
varOutFlow3�:=�if�C.varState�==�WORKING�then�varInFlow3�else�0.0;

end

Figure 5.34: The AltaRica 3.0 code of MIMO.

By considering capacity constraints, MIMO has demand inputs, demand outputs, flow in-
puts, and flow outputs. The running scheme considering capacity limit in MIMO is shown in
Figure 5.35. Note that there are two scenarios in modeling MIMO structures. First, when flows
are multi-flux, for example, a separator with oil, gas and water flows, we model each type of flow
separately. Capacity of the structure is predefined for each flow. Second, when flows are mono-
flux, that is, only one type of flow circulates the component. Demand outputs are assigned
according to states and capacities of upstream components.
Known Uses: MIMO can be applied to model a thermal chemical processor in an offshore pro-
duction system [85], which has two inflows from heat exchangers and three outflows to booster
pumps. MIMO can also be used to model a tri-ethylene glycol in an offshore installation [129].
Related Patterns: We can apply MIMO in different situations. First, when inflows have identical
media (mono-flux), MIMO can be treated as the similar way of MISO. Second, supposing that
inflows have different media (multi-flux), outflows are normally predetermined according to
inflows. In addition, SOURCE often works with MIMO pattern. SISO, SIMO, MISO, SOURCE,
and SINK can be regarded as special cases of MIMO.

5.2.7 SERIES

Intent: Provides a general way to model series structures which function when all of their com-
ponents work.
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 //We assume two upstream components, U1, U2, i.e. m=2; two downstream components, n=2 
//Multi-flux 
DO1 := if state == WORKING then min(DI1, Capacity1) else 0.0; 
DO2 := if state == WORKING then min(DI2, Capacity2) else 0.0; 
FO1 := min (FI1, DO1); 
FO2 := min (FI2, DO2); 
 
//Mono-flux 
//Define new variables DO – Demand Output, FO – Flow Output 
DO   := if state == WORKING then min(DI1 + DI2, Capacity) else 0.0; 
DO1 := if U1.state == WORKING and U2.state == WORKING then DO*U1.Capacity/(U1.Capacity+U2.Capacity) 
             else if U1.state == WORKING and U2.state != WORKING then DO 
             else 0.0; 
DO2 := if U1.state == WORKING and U2.state == WORKING then DO*U2.Capacity/(U1.Capacity+U2.Capacity) 
             else if U2.state == WORKING and U1.state != WORKING then DO 
             else 0.0; 
FO := min(FI1, DO1) + min(FI2, DO2); 
FO1 := if DI1 > 0 then FO*DI1/(DI1 + DI2) else 0.0; 
FO2 := if DI2 > 0 then FO*DI2/(DI1 + DI2) else 0.0; 

Figure 5.35: Running scheme considering capacity limit in MIMO.

Motivation: Consider the structure with several components connected in series, which is com-
monly found in production and safety systems.

C1 C2 Cn 

C1 C2 

The average unavailability of SERIES pattern ŪSERIES is:

ŪSERIES = 1− (1− ū1)(1− ū2) · · · (1− ūn) = 1−
n∏

i=1
(1− ūi ) (5.1)

where ū1, ū2, · · · , ūn are average unavailabilities of components C1, C2, · · · , Cn, respectively.
Structure: Dependency graph of the assertion of SERIES is shown in Figure 5.36.

• C1.varState, C2.varState: indicates the states of C1 and C2, respectively.

• C1.varOutFlow, C2.varOutFlow: define separately the outputs of C1 and C2. The output of
C1 depends on its state and inflow. A similar situation occurs for C2.



58 CHAPTER 5. CATALOG OF MODELING PATTERNS

• varInFlow, varOutFlow: defines inflow and outflow of the structure. The inflow of the
SERIES structure is identical to the input of C1. The outflow of the SERIES structure equals
to the output of C2.

varOutFlow 

C2.varOutFlow C2.varState 

C1.varOutFlow C1.varState 

varInFlow 

Figure 5.36: Dependency graph of the assertion of SERIES.

Implementation: Consider following matters when implementing this pattern:

• If downstream components have several outputs, they cannot be modeled using SERIES.

• Consider other behavioral patterns if necessary. It means that components in a series
structure can be modeled with different behavioral patterns.

Sample Model: The AltaRica 3.0 code of SERIES is shown in Figure 5.37.

class�SERIES
Component�C1,�C2;//Behavioral�patterns�of�components�are�predefined
Real�varInFlow,�varOutFlow�(reset�=�0.0);��������
assertion

C1.varInFlow�:=�varInFlow;
C2.varInFlow�:=�C1.varOutFlow;
varOutFlow���:=�C2.varOutFlow;

end

Figure 5.37: The AltaRica 3.0 code of SERIES.

By considering capacity constraints, SERIES is crossed with demands and flows. The run-
ning scheme considering capacity limit in SERIES is shown in Figure 5.38.
Known Uses: In a gas system [68], the separator, compressor, and dehydration units work as a
series subsystem. SERIES structures (x-mas tree, flow module, and manifold) can also be found
in a subsea gas production system [6].
Related Patterns: SERIES is the series connection of several SISO patterns. NooN, a special case
of KooN, is identical to SERIES.

5.2.8 PARALLEL

Intent: Provides a general way to model the parallel structure which functions when at least one
component works.
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//We know C2.DI and C1.FI 
//Demands 
C2.DO := if C2.state == WORKING then min(C2.DI, C2.Capacity) else 0.0; 
C1.DI := C2.DO; 
C1.DO := if C1.state == WORKING then min(C1.DI, C1.Capacity) else 0.0; 
//Flows 
C1.FO := min(C1.FI, C1.DO); 
C2.FI := C1.FO; 
C2.FO := min(C2.FI, C2.DO); 

C2 
C2.DI 
C2.FO 

C2.DO 

C2.FI 

C1 
C1.DO 

C1.FI 

C1.DI 

C1.FO 

Figure 5.38: Running scheme considering capacity limit in SERIES.

Motivation: Consider a structure which connects components in parallel. The average unavail-
ability of PARALLEL pattern ŪPARALLEL is:

ŪPARALLEL = ū1ū2 · · · ūn =
n∏

i=1
ūi (5.2)

where ū1, ū2, · · · , ūn are average unavailabilities of components C1, C2, · · · , Cn, respectively.

C1 

C2 

Cn 

C1 

C2 

Structure: Dependency graph of the assertion of PARALLEL is shown in Figure 5.39.

• C1.varState, C2.varState: indicate the states of C1 and C2, respectively.

• C1.varOutFlow, C2.varOutFlow: define outputs of C1 and C2, respectively. The output
of C1 depends on its component state and structure inflow. The way of modeling C2 is
similar to that of C1.

• varInFlow, varOutFlow: define input and output of the structure. The outflow of a parallel
subsystem relies on the outputs of its components.

Implementation: Parallel components may not be identical. They may deal with different per-
centage of structure flows.
Sample Model: The AltaRica 3.0 code of PARALLEL is shown in Figure 5.40.

By considering capacity constraints, PARALLEL is crossed with demands and flows. The run-
ning scheme considering capacity limit in PARALLEL is shown in Figure 5.41.
Known Uses: Parallel structures can be frequently found in engineered systems, such as turbo
compressors and generators in offshore production systems [68, 36].
Related Patterns:
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varOutFlow 

C2.varOutFlow 

C2.varState 

C1.varOutFlow 

C1.varState varInFlow 

Figure 5.39: Dependency graph of the assertion of PARALLEL.

//Assume�that�each�component�is�capable�of�processing�the�inflow�of�system
class�PARALLEL

Component�C1,�C2;//Behavioral�patterns�of�components�are�predefined
Real�varInFlow,�varOutFlow�(reset�=�0.0);��
assertion//Treat�WORKING�as�the�up�state
�C1.varInFlow�:=�if�(C1.varState==WORKING�and�C2.varState==WORKING)�then�0.5*varInFlow

��������else�if�(C1.varState==WORKING�and�C2.varState�!=WORKING)�then�varInFlow
������������else�0.0;
�C2.varInFlow�:=�if�(C1.varState==WORKING�and�C2.varState==WORKING)�then�0.5*varInFlow

��������else�if�(C1.varState�!=WORKING�and�C2.varState==WORKING)�then�varInFlow
��������else�0.0;

�varOutFlow���:=�C1.varOutFlow�+�C2.varOutFlow;
end

Figure 5.40: The AltaRica 3.0 code of PARALLEL.

//Capacity-based distribution 
C1.DI   := if C1.state == WORKING and C2.state == WORKING then DI*C1.Capacity/(C1.Capacity+C2.Capacity) 
                 else if C1.state == WORKING and C2.state != WORKING then DI 
                 else 0.0; 
C1.DO := min(C1.DI, C1.Capacity); 
C2.DI   := if C1.state == WORKING and C2.state == WORKING then DI*C2.Capacity/(C1.Capacity+C2.Capacity) 
                 else if C2.state == WORKING and C1.state != WORKING then DI 
                 else 0.0; 
C2.DO := min(C2.DI, C2.Capacity); 
DO       := C1.DO + C2.DO; 
C1.FI    := if C1.DO > 0 then FI*C1.DO/(C1.DO + C2.DO) else 0.0; 
C1.FO  := min(C1.FI, C1.DO); 
C2.FI    := if C2.DO > 0 then FI*C2.DO/(C1.DO + C2.DO) else 0.0; 
C2.FO  := min(C2.FI, C2.DO); 
FO        := C1.FO + C2.FO; 
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Figure 5.41: Running scheme considering capacity limit in PARALLEL.
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• PARALLEL pattern is parallel connection of several SISO patterns.

• The special case of KooN, 1ooN is identical to PARALLEL.

• If the working of only one component can meet the demand for running the hot standby
subsystem, Main unit/Hot standby unit Coordination (MHC) is identical to PARALLEL.

5.2.9 KooN

Intent: Provides a general way to model the subsystem which works when at least k of the total
n items must be functioning.
Also Known As: koon; k-out-of-n voting; koon: G (“good”)
Motivation: Consider the structure which works when the minimum number of available com-
ponents is required.

k/n 

C1 

C2 

Cn 

2/3 

C1 

C2 

C3 

The average unavailability of KooN pattern ŪKooN is:

ŪKooN = 1−
n∑

x=k

(
n

x

)
(1− ū)xūn−x (5.3)

where components in KooN are usually identical, and ū is the average unavailability of each
component.
Structure: Dependency graph of the assertion of KooN is shown in Figure 5.42.

• C1.varState, C2.varState, and C3.varState: indicate states of C1, C2, and C3, respectively.

• varInFlow, varOutFlow: indicate the input and output of the structure, respectively. The
structure outflow relies on component states, as well as the structure inflow.

varOutFlow 

varInFlow C3.varState C2.varState C1.varState 

Figure 5.42: Dependency graph of the assertion of KooN.

Sample Model: The graphical representation of GTS for KooN is shown in Figure 5.43. The
AltaRica 3.0 code of KooN is shown in Figure 5.44.
Known Uses: KooN can model sensors (2-out-of-3) of pressure protection systems [28, 29].
Related Patterns:
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Figure 5.43: Graphical representation of GTS for KooN.

class�KooN�//k�out�of�n
Component�C1,�C2,�C3;//Behavioral�patterns�of�components�are�predefined
Real�varInFlow��(reset�=�0.0);��������
Real�varOutFlow�(reset�=�0.0);
assertion//Treat�WORKING�as�the�up�state

varOutFlow�:=�if�C1.varState�==�WORKING�and�C2.varState�==�WORKING�then�varInFlow
�����������������else�if�C1.varState�==�WORKING�and�C3.varState�==�WORKING�then varInFlow�
�����������������else�if�C2.varState�==�WORKING�and�C3.varState�==�WORKING�then varInFlow�
�����������������else�0.0;
end

Figure 5.44: The AltaRica 3.0 code of KooN.

• The special case of KooN, 1ooN is identical to PARALLEL.

• Special case of KooN, NooN is identical to SERIES.

• KooN serves as the basis of SwitchKooN.

5.2.10 SwitchKooN

Intent: Provides a general way to model the structure which switches a KooN (K-out-of-N) struc-
ture into (K-1)-out-of-(N-1) structure when a dangerous failure occurs.
Also Known As: Changing logic
Motivation: Consider the structure when the KooN needs to be switched after a failure. Once
the failure is repaired, the structure is restored to KooN structure.

This new configuration can increase system availability. If there is no switch, the structure
is supposed to work as a K-out-of-(N-1) structure after a failure (similar like in degraded mode).
According to Equation (5.3),

Ū(K-1)-out-of-(N-1) = 1−
n−1∑

y=k−1

(
n −1

y

)
(1− ū)y ūn−y−1 (5.4)
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Note: Residual components are renamed as D1, D2, …, D(n-1). 

ŪK-out-of-(N-1) = 1−
n−1∑
y=k

(
n −1

y

)
(1− ū)y ūn−y−1 (5.5)

Ū(K-1)-out-of-(N-1) −ŪK-out-of-(N-1) =−
(

n −1

k −1

)
(1− ū)k−1ūn−k (5.6)

where Ū(K-1)-out-of-(N-1) and ŪK-out-of-(N-1) are the unavailabilities of (K-1)-out-of-(N-1) and
K-out-of-(N-1) structures, respectively. Since −(n−1

k−1

)
(1− ū)k−1ūn−k is a negative number, thus

Ū(K-1)-out-of-(N-1) < ŪK-out-of-(N-1). That is, availability of the (K-1)-out-of-(N-1) structure is higher
than that of K-out-of-(N-1) structure.
Structure: Dependency graph of the assertion of SwitchKooN is shown in Figure 5.45. Consider
a 2oo3 structure as an example, if a dangerous failure occurs in 2oo3, the logic is reconfigured
into 1oo2. In 2oo3, the system becomes unavailable when two components are failed. However,
after switch, the system is still available if there are two failed components. Regarding 1oo2
structure, the system can work with only one working component.

varOutFlow 

varInFlow C3.varState C2.varState C1.varState 

varOutFlow 

varInFlow D2.varState D1.varState 

A dangerous failure occurs 

2oo3 

1oo2 

Note: The residual  two components are renamed as D1 and D2. 

Figure 5.45: Dependency graph of the assertion of SwitchKooN.

Implementation: There are two matters to be considered when applying this pattern:

• 2oo3 structures can be commonly found in safety systems.
• Flow variable in the assertion of GTS can be updated using “if-then-else” or “switch-case”

instructions.
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Figure 5.46: Graphical representation of GTS for SwitchKooN.

Sample Model: The graphical representation of GTS for SwitchKooN is shown in Figure 5.46.
The AltaRica 3.0 code of SwitchKooN is illustrated in Figure 5.47.

class�SwitchKooN
Component�C1,�C2,�C3;//Behavioral�patterns�of�components�are�predefined
assertion�//Components�from�2oo3�to�1oo2

SystemAvailable�:=�if�(C1.varState==OK�and�C2.varState==OK�and�C3.varState==OK)
�������������������then�(�1���(�1���C1.Available�*�C2.Available�)�*�

����� ������������������(�1���C1.Available�*�C3.Available�)�*�
����� ������������������(�1���C2.Available�*�C3.Available�)�)

���else�(�1���(�1���C1.Available�)�*�
��� ����������(�1���C2.Available�)�*�
��� ����������(�1���C3.Available�)�);

end

Figure 5.47: The AltaRica 3.0 code of SwitchKooN.

Known Uses: SwitchKooN can be used to model the sensors (i.e. from 2oo3 to 1oo2) in typical
applications 3-6 and 5 in ISO/TR 12489 [60].
Related Patterns: SwitchKooN is based on KooN.

5.2.11 SequentialWork

Intent: Provides a general way to model multiple safety systems working in a sequential order.
Motivation: Consider the structure when its subsystems work sequentially, for example, a mul-
tiple (multi-layers) safety system comprises several subsystems operating one after the other
when prior ones fail.
Structure: The graphical representation of GTS for SequentialWork is shown in Figure 5.48. The
failure of former subsystem behaves as the demand for the working of following subsystem.
The failure of previous subsystem i − 1 triggers (with startDemand) subsequent subsystem i .
This one is initially out of work (subSystemState == 0). If the trigger action (startDemand) from
subsystem i −1 succeeds, subsystem i becomes working (subSystemState == 1). If subsystem i
fails (subSystemState == 2), it can be used to trigger the working of subsystem i +1.
Implementation: There are two matters to be considered when using this pattern:



5.2. FLOW PROPAGATION PATTERNS 65

subSystemState == 0 
(Initial state: out-work) 

subSystemState == 1 
(Working state) 

startDemand? initialStart 

startDemand subSystemState == 2 
(Failed state) 

systemFailure 
Subsystem i Subsystem i+1 Subsystem i-1 

Failed 
state 

Initial 
state 

Figure 5.48: Graphical representation of GTS for SequentialWork.

• Define failure mechanisms of subsystems. subSystemState needs to be determined on the
basis of component states.

• Assign probabilities of failure on demand of trigger events. initialStart may not be perfect.
It can be triggered with a probability of failure on demand.

Sample Model: The AltaRica 3.0 code of SequentialWork is shown in Figure 5.49.

class�subSystem
Boolean�startDemand�(�reset�=�false�);

����Integer�subSystemState�(�init�=�0�);�//0:Initial�state(out�work);�1:Working;�2:Failed.
Boolean�subSystemAvailable�(�init�=�true�);�//Availability�of�subsystem ���� �
event�initialStart�(delay�=�0);�//Launch�system
event�subSystemFailure�(delay�=�0);�//Indicates�the�failure�of�subsystem
transition

initialStart:��subSystemState�==�0�and�startDemand�==�true���������
�������������>�subSystemState�:=�1;�
systemFailure:�subSystemState�==�1�and�subSystemAvailable�==�false�
�������������>�subSystemState�:=�2;

end

class�SequentialWork
subSystem�S1�(�subSystemState.init�=�1�);�//S1�works�initially
subSystem�S2�(�subSystemState.init�=�0�);�//S2�works�after�S1�fails
subSystem�S3�(�subSystemState.init�=�0�);�//S3�works�after�S2�fails
assertion

S2.startDemand�:=�(�S1.subSystemState�==�2�);
S3.startDemand�:=�(�S2.subSystemState�==�2�);

end

Figure 5.49: The AltaRica 3.0 code of SequentialWork.

Known Uses: SequentialWork can be applied to model a multiple safety system (i.e. typical
application 4) in ISO/TR 12489 [60].

5.2.12 BYPASS

Intent: Provides a generic way to model the bypass structure which is activated when the main
component fails. In this situation, the quality of the flow decreases (e.g. the gas is not purified
or processed), but the quantity of the flow holds.
Motivation: A bypass is the temporary replacement or bypassing of equipment such as a reac-
tor or heat exchanger with a length of pipe [83]. Consider a structure, its system unavailability
decreases with a bypass line.
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C 
S 

Bypass 

Structure: Dependency graph of the assertion of BYPASS is shown in Figure 5.50. varInFlow and
varOutFlow indicate the input and output of the structure, respectively. The structure outflow
relies on its inflow.

varOutFlow 

varInFlow 

Figure 5.50: Dependency graph of the assertion of BYPASS.

Implementation: Consider following implementation issues when applying the pattern:

• Different from cold standby. The cold standby component maintains both flow quantity
(except possible losses in adapt time) and quality. However, BYPASS gets decreased quality
when compared with cold standby structure.

• Outflow differs according to protected component. If the protected (main) component is
non-critical, the outflow equals to the inflow when using bypass line. In this situation, the
bypass outflow is acceptable (or after treatment) for downstream components.

• We usually assume that the bypass line and the switch are perfect.

Sample Model: The AltaRica 3.0 code of BYPASS is shown in Figure 5.51.

//Quality�of�the�flow�is�reduced,�but�the�quantity�keeps
//Assume�a�perfect�switch
class�BYPASS

Component�C;//The�behavioral�pattern�of�component�is�predefined
Real�varInFlow�(reset�=�0.0);��������
Real�varOutFlow�(reset�=�0.0);�
assertion

varOutFlow�:=�varInFlow;�
end

Figure 5.51: The AltaRica 3.0 code of BYPASS.

Known Uses: A dummy bypass can be found in a flow network in oil and gas industry [4]. A
make-up compressor in a gas system [68] can also be modeled using BYPASS pattern.

5.2.13 LOOP

Intent: Provides a general way to model the loop structure whose components depend on each
other.
Also Known As: Logical loops, circular logics
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C1 C2 inFlow 

fuelGas 

outFlow 

Motivation: Consider the loop structure with several components depending on themselves.
Structure: Dependency graph of the assertion of LOOP is shown in Figure 5.52. This depen-
dency graph is a Directed Cyclic Graph (DCG). There is one circle inside, that is, “���������	
→ 
�����→ ���������	→ ��������	→ ���������	”.

C2.outFlow 

C1.inFlow 

systemState 

C2.state 

C1.state 

C1.outFlow 

outFlow 

inFlow 

C2.inFlow 

fuelGas 

Figure 5.52: Dependency graph of the assertion of LOOP.

• systemState: indicates the system state. When the system is up, systemState (state vari-
able) is TRUE, otherwise FALSE.

• C1.state, C1.inFlow, and C1.outFlow: indicate the state, input, and output of C1, respec-
tively. The way to model C2 is similar to C1. The outflow of C1 depends on its state, inflow,
systemState, and outflow of C2. The outflow of C2 relies on its state, systemState, and
outflow of C1.

• inFlow and outFlow: indicate input and output of the structure, respectively. The structure
outflow relies on systemState, fuelGas, and outflow of C2.

Implementation: Consider following issues when implementing LOOP pattern:

• The returned flow (e.g. fuelGas) is predetermined in a system.
• LOOP is required to initialize subsystem at the beginning. A running scheme is used for

loop structures. Consider the two-component structure in Motivation part, its running
scheme is shown in Figure 5.53.
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• systemState becomes complicated once the targeted system is complex. We need to pre-
define the out-of-work state (the structure is unavailable) and working state (the structure
works). It means that even if some (unimportant) components have failed, the structure
is still available.

C1.state==WORKING 
and  
C2.state==WORKING  

systemState == FALSE 
(Initial state: out-work) 

systemState == TRUE 
(Working state) 

C1.state == FAILED 
or 
C2.state == FAILED 

startDemand? initialStart 

backDemand? backInitial 

startDemand backDemand 

Figure 5.53: Running scheme of LOOP.

In Figure 5.53, a state variable systemState is defined. systemState==FALSE means that the
system is at the initial stage and systemState==TRUE indicates that the system is out of the initial
state. The scheme covers the following steps:

(1) When both C1 and C2 are in WORKING state, the startDemand becomes true. Associated
with startDemand, the system is launched when systemState is in its initial state. Once
transition initialStart occurs, systemState changes from FALSE to TRUE, and startDemand
is set to false.

(2) Either C1 or C2 is out of WORKING state, backDemand becomes true. Together with back-
Demand, the system returns to the initial stage, that is, the transition backInitial occurs.
In this situation, systemState transfers from TRUE to FALSE.

(3) If both components are repaired, that is, the startDemand is fulfilled, the process enters
into step (1) again. Note that transitions initialStart and backInitial are perfect, that is
probabilities of failure on demand are 0.

Sample Model: The AltaRica 3.0 code of LOOP is shown in Figure 5.54.

Known Uses: LOOP can be used in an offshore installation [129], where the gas flows from com-
pressors to a dehydration unit. Subsequently, the gas from the dehydration unit returns to sup-
port the work of compressors. Similar structures can also be found in an oil and gas separation
plant [90].

5.3 Composition Patterns

Composition Patterns (CP) represent cooperations in systems such as the main and standby
units.
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class�LOOP
Component�C1,�C2;//Behavioral�patterns�of�components�are�predefined
Boolean�startDemand�(reset�=�false);
Boolean�backDemand��(reset�=�false);
Boolean�systemState�(init�=�false);
parameter�Real�inFlow�=�10.0;//Inflow�of�structure
parameter�Real�fuelGas�=�1.0;//Return�inflow�for�C1,�be�treated�as�a�condition
Real�outFlow�(reset�=�0.0);//Outflow�of�structure
event�initialStart��(delay�=�0);//To�start�the�structure
event�backToInitial�(delay�=�0);//The�structure�returns�to�initial�phase
transition

initialStart:systemState�==�false�and�startDemand��>�systemState�:=�true;
backToInitial:systemState�==�true�and�backDemand���>�systemState�:=�false;

assertion
startDemand�:=�C1.varState�==�WORKING�and�C2.varState�==�WORKING;
backDemand��:=�C1.varState�==�FAILED��or��C2.varState�==�FAILED;
C1.inFlow���:=�inFlow;
C1.outFlow��:=�if�systemState�==�true�then�C1.inFlow�else�0.0;
C2.inFlow���:=�C1.outFlow;
C2.outFlow��:=�if�systemState�==�true�then�C2.inFlow�else�0.0;
outFlow�����:=�if�systemState�==�true�then�(C2.outFlow���fuelGas)�else�0.0;

end

Figure 5.54: The AltaRica 3.0 code of LOOP.

5.3.1 Main unit/Cold standby unit Coordination (MCC)

Intent: Provides a general way to model components which are waiting for passively substitut-
ing failed components, thus to maintain higher system availability.
As Known As: Passive redundancy, cold redundancy, cold spare
Motivation: A standby redundant system requires an additional equipment, called a fault detec-
tor/switch, to identify the failure of operating components and transfer their functions to some
other components that act as substitutes [71].

When an on-line unit becomes faulty, it is removed from the operation and replaced with a
standby unit. The standby units can be in either a hot or a cold mode. A hot standby unit op-
erates in synchrony with the (on-line) main unit, and is ready to take over at any time. A cold
standby unit is unpowered until it is required to replace the faulty main unit. Hot standby sys-
tems are typically used when the reconfiguration time is required to be minimized, while cold-
standby systems are usually used in applications where energy consumption is more crucial [75].
Hot standby is discussed in the following section.

Consider the cold standby unit waiting for passively replacing main units.

C1 

C2 

Cn 

S 
C1 

C2 
S 

Structure: Graphical representation of GTS for cold standby unit is shown in Figure 5.55. The
failure of the main unit, acting as a demand, triggers the cold standby unit. The initial state of
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state==WORKING 

state== 
UNDER_REPAIR 

state==FAILED 

state==STANDBY failure  

startRepair  

endRepair  

demand? start 

demand? failureOnDemand 

demand 

not demand? stop 

Figure 5.55: Graphical representation of GTS for cold standby unit.

the component is STANDBY. If there is a demand, the component becomes WORKING. If the
switch is perfect after the demand, the component works. Otherwise, the component fails. The
component returns to STANDBY state after repair.
Implementation: The fault detector/switch may be perfect. In this situation, event failureOn-
Demand can be omitted.
Sample Model: The AltaRica 3.0 code of Main unit/Cold standby unit Coordination (MCC) is
shown in 5.56.

class�MCC//Main�unit/�ColdStandby�unit�coordination��
Component�C�(init�=�STANDBY);//Behavioral�patterns�of�components�are�predefined

����parameter�Real�Lambda�=�1.0e�3;
parameter�Real�Mu�=�1.0e�1;
parameter�Real�Gamma�=�1.0e�2;
Boolean�demand�(reset�=�false);
event�start ��(delay�=�0,�expectation�=�1�Gamma);
event�failureOnDemand�(delay�=�0,�expectation�=�Gamma);
event�stop ����������(delay�=�0);
event�failure���������(delay�=�exponential(Lambda));
event�startRepair�����(delay�=�0);
event�endRepair�������(delay�=�exponential(Mu));
transition

start: �C.varState�==�STANDBY�and�demand�����>�C.varState�:=�WORKING;
failureOnDemand:�C.varState�==�STANDBY�and�demand�����>�C.varState�:=�FAILED;
stop:������������C.varState�==�WORKING�and�not�demand�>�C.varState�:=�STANDBY;
failure: �C.varState�==�WORKING ������>�C.varState�:=�FAILED;�
startRepair: �C.varState�==�FAILED ������>�C.varState�:=�UNDER_REPAIR;
endRepair: �C.varState�==�UNDER_REPAIR ������>�C.varState�:=�STANDBY;

end

Figure 5.56: The AltaRica 3.0 code of Main unit/Cold standby unit Coordination (MCC).

Known Uses: MCC can be used to model two cold-standby treatment units in an oil production
system [107].
Related Patterns: MCC can be obtained by adding cold standby-related transitions and states
to PERFECT, NonRepairable, CorrectiveMaintenance, and DEGRADATION patterns.
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5.3.2 Main unit/Hot standby unit Coordination (MHC)

Intent: Provides a generic way to model components which are waiting for actively substituting
failed components, thus to assure higher system availability.
Also Known As: Active redundancy
Motivation: Similar as in PARALLEL.
Structure: The dependency graph of the assertion of MHC is similar to that of PARALLEL (see
Figure 5.39 on page 60).
Implementation: MHC is similar to, but different from PARALLEL pattern. Parallel structure
operates when at least one of its components works. However, the structure with hot standby
behavior may require more components to work simultaneously.
Sample Model: The sample model of MHC is similar to the one in PARALLEL (see Figure 5.40).
Known Uses: MHC can be used to model several treatment units in an oil production sys-
tem [107] and the pre-heaters in a FPSO system [85].
Related Patterns: If the system can work with only one working component, MHC is identical
to PARALLEL.

5.3.3 Repairable unit/Repair crew Coordination (RRC)

Intent: Provides a general way to model the situation that the number of repair crew is limited.
Motivation: Consider the behavior when repair resources are limited.
Structure: Graphical representation of GTS for Repairable unit/Repair crew Coordination (RRC)
is shown in Figure 5.57. The repairable unit can be modeled with the corresponding repairable
pattern.

• RepairCrewWork: indicates the work state of repair crew. The working state of the repair
crew (RepairCrewWork) is initially FALSE.

• numberBusyCrew: represents the number of busy repair crews.

• totalNumberCrew: stands for the total number of repair crews. If numberBusyCrew is
smaller than totalNumberCrew, the repair is started. Simultaneously, one (1) is added to
numberBusyCrew. Adversely, one (1) is decreased to numberBusyCrew when the repair is
completed.

RepairCrewWork == 
FALSE 

RepairCrewWork == 
TRUE 

numberBusyCrew < totalNumberCrew ? 
startRepair 

numberBusyCrew := numberBusyCrew + 1 ! 

numberBusyCrew > 0 ? 
endRepair 

numberBusyCrew := numberBusyCrew - 1 ! 

Figure 5.57: Graphical representation of GTS for repair crew.
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Implementation: The startRepair of RRC needs to synchronize together with the startRepair of
repairable components (see e.g. Figure 5.5 on page 40).
Sample Model: The AltaRica 3.0 code of Repairable unit/Repair crew Coordination (RRC) is
shown in 5.58. Synchronization mechanisms are applied to compel several events simultane-
ously. In RRC, startRepair events of CorrectiveRepairCrew and component C are synchronized
through event C_startRepair. endRepair events of CorrectiveRepairCrew and component C are
synchronized through event C_endRepair.

class�RRC//Repairable�unit/�Repair�crew�coordination
����Integer�numberBusyCrew�(init�=�0);//Number�of�busy�repair�crew
����parameter�Integer�totalNumberCrew�=�1;//Total�number�of�repair�crew

parameter�Real�MobilizationTime�=�0.0;//Mobilization�time�for�repair�crew�(default�=�0)
��

����event�startRepair�(delay�=�MobilizationTime);
����event�endRepair���(delay�=�0);����
����transition����
������startRepair:numberBusyCrew�<�totalNumberCrew��>�numberBusyCrew�:=�numberBusyCrew�+�1;
������endRepair:��numberBusyCrew�>�0����������������>�numberBusyCrew�:=�numberBusyCrew���1;
end

block�system
CorrectiveMaintenance�C;//Component�C�is�modeled�using�CorrectiveMaintenance�pattern
RRC�CorrectiveRepairCrew;
//sychronization
event�C_startRepair�(delay�=�0);
event�C_endRepair���(delay�=�exponential(C.Mu));
transition

C_startRepair:�!CorrectiveRepairCrew.startRepair�&�!C.startRepair;
C_endRepair:���!CorrectiveRepairCrew.endRepair���&�!C.endRepair;

end

Figure 5.58: The AltaRica 3.0 code of Repairable unit/Repair crew Coordination (RRC).

Known Uses: This pattern can be used in many production and safety systems. For instance, it is
employed to model limited repair crews in typical applications 3-5 and 3-6 in ISO/TR 12489 [60].
Related Patterns: RRC can work with any repairable components when the number of repair
crew is limited.

5.4 Relationships between Modeling Patterns

Modeling patterns are not independent. There are not only interactions inside each category,
but also relationships between the three categories. Figure 5.59 depicts relationships between
modeling patterns graphically. They are:

• NonRepairable pattern is obtained based on PERFECT pattern together with failure be-
haviors.

• CorrectiveMaintenance pattern can be gained by adding repair behaviors on NonRepairable
pattern.

• PreventiveMaintenance can be obtained by adding preventive maintenance behaviors to
CorrectiveMaintenance and DEGRADATION.
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Figure 5.59: Modeling pattern relationships.

• DEGRADATION pattern is proposed with adding degradation behavior on either NonRe-
pairable or CorrectiveMaintenance pattern.

• PeriodicTest is the basis of StaggeredPeriodicTest.

• PeriodicTest works with RevealUndetectedFailure to detect dangerous undetected fail-
ures.

• RevealUndetectedFailure is proposed based on PeriodicTest and CorrectiveMaintenance
patterns.

• When inflows are mono-flux, MISO and MIMO can be modeled in a similar way.

• SOURCE usually collaborates with MIMO pattern.

• SISO, SIMO, MISO, SOURCE, and SINK patterns are special cases of MIMO.

• SERIES and PARALLEL are series and parallel connections of several SISO, respectively.

• When K =N, NooN is identical to SERIES.

• When K = 1, 1ooN and PARALLEL are identical.

• SwitchKooN is based on KooN.

• If the working of only one component can meet the demand for the work of the hot standby
subsystem, PARALLEL is identical to Main unit/Hot standby unit Coordination (MHC).

• MCC can be obtained by adding cold standby-related transitions and states to PERFECT,
NonRepairable, CorrectiveMaintenance, and DEGRADATION patterns.

• RRC can work with any repairable components when the number of repair crews is lim-
ited.
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5.5 Modeling Patterns Reuse

After obtaining a catalog of modeling patterns, it is essential to figure out how to model a system
using the catalog. In particular, we need to select appropriate modeling patterns in a modeling
mission. In addition, we have to point out the methodology of reusing those modeling patterns.
In this section, we state the issues and provide some ideas of what a methodology could be.

Two issues related to modeling patterns reuse have to be considered: First, how modeling
patterns behave independently and cooperatively? That is, regarding a specific component or
subsystem, we would like to know whether the proposed catalog can be used directly or not.
Second, how we reuse modeling patterns step by step in a realistic system? That is, we want to
figure out the methodology of how to classify modeling patterns, model a system, and obtain
results.

We propose some ideas to address aforementioned questions. Firstly, modeling patterns can
be used independently. That is, it is straightforward to apply them as in the catalog of model-
ing patterns. Adversely, in some situations, they have to work together to model a particular
component or subsystem. It happens inside behavioral patterns themselves, as well as between
behavioral and flow propagation patterns. For example, the repairable component with one in-
flow and one outflow can be commonly found in production and safety systems. We can apply
SISO and CorrectiveMaintenance patterns to model such a component. The component out-
flow relies on its inflow and state. The inflow and outflow are assigned by SISO. The component
state is provided by CorrectiveMaintenance.

Subsequently, we need to point out the way to reuse suitable modeling patterns. The method-
ology to model target systems via reusing modeling patterns could be composed of four steps:

(1) Classification: In this step, we identify units to be modeled and select corresponding mod-
eling patterns. The target system is initially decomposed into components and subsys-
tems. We select modeling patterns that are capable of modeling components and sub-
systems. In particular, we classify behavioral patterns at component level and flow prop-
agation modeling patterns at component/subsystem level. We can use some features to
determine suitable modeling patterns. Those features may be the cardinalities (sizes) of
the inflow, outflow, and transition set of a component.

(2) Pattern-based model: Based on classification results, a model employing modeling pat-
terns is established. Associated modeling patterns are assigned for each component and
subsystem in a block diagram. The pattern-based model simplifies the task of establishing
the AltaRica 3.0 model.

(3) AltaRica 3.0 model: On the basis of the pattern-based model, the corresponding AltaRica
3.0 model of the system can be built. Modeling patterns are firstly presented in AltaRica
environment. Subsequently, the AltaRica 3.0 model of a system is constructed with iden-
tified modeling patterns.

(4) Experimental results: We acquire experimental results to quantitatively evaluate the ben-
efit of using modeling patterns. We can obtain numerical results using AltaRica 3.0 tools.
We compare results obtained using modeling patterns with those reported in the litera-
ture.
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5.6 Summary

In this chapter, we present a catalog composed of twenty-four (24) modeling patterns for per-
formance analysis of production and safety systems. We discuss each pattern with a set of struc-
tured items. The relationships between modeling patterns are presented. Some ideas of how to
reuse modeling patterns are put forward. In order to test proposed modeling patterns, several
typical production and safety systems are modeled using modeling patterns in the following
chapter.
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Chapter 6

Experimental Studies

In this chapter, we evaluate the applicability of proposed modeling patterns with a set of pro-
duction and safety systems. Production systems are declared to cover most modeling difficul-
ties for production-performance analysis. Safety systems are composed of a series of systems in
ISO/TR 12489 [60], which encompass the majority of reliability issues of safety systems. In each
experimental study, we provide the system description, identify involved modeling patterns,
and compare experimental results obtained using modeling patterns and those reported in the
literature. Note that AltaRica results are obtained using stochastic simulator of the AltaRica 3.0
language.

6.1 Production Systems in Process Industry

Leveraging the modeling patterns, we modeled several production systems from [68, 107, 129,
85]. The system in [68] is a concise production facility; the system in [107] is an oil production
system; the system in [129] is an offshore installation; and the system in [85] is a FPSO (Floating
Production Storage and Offloading) system.

6.1.1 A Production Facility

A production facility consisting of eight units is proposed in [68]. Figure 6.1 shows a flow dia-
gram of this production facility. Gas separated from the well fluid at the upstream side is fed
to the facility, treated through separators and dehydrators, and led to compressors (CMP-A and
CMP-B). A make-up compressor (MUP) is installed to enable CMP-A and CMP-B to discharge
gas with full flow rate even if some gas treatment units (HPS or DEH) are failed. It is assumed
that MUP is equipped with dedicated gas treatment units.

The maximum throughput capacity for each unit is shown on blocks (in percentage form) in
Figure 6.1. The maximum throughput capacity means that the unit has a potential to deal with
the throughput volume, which does not mean that the unit is always operated at that condition.
For simplicity, it is assumed that these units are stochastically independent with constant failure
rates. It is further assumed that all units are independently repaired with constant repair rates.
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Figure 6.1: A production facility [68].

Modeling Patterns

We identify modeling patterns to model systems. We show how to construct this production sys-
tem using modeling patterns (see Table 6.1). First, components and subsystems in this produc-
tion facility are decomposed. Second, modeling patterns are assigned to decomposed units. For
instance, High Pressure Separator A (HPS-A) can be modeled using SISO and CorrectiveMain-
tenance patterns. HPS (a three-component subsystem) can be constructed using PARALLEL
pattern. {HPS, DEH} represents the SERIES connection of these two subsystems. The remaining
units can be understood in an analogous way.

Table 6.1: Modeling patterns classification for the system in Figure 6.1.
Components/Subsystems Modeling patterns
• HPS-A, HPS-B, HPS-C, DEH-A, DEH-B, CMP-A, CMP-B SISO, CorrectiveMaintenance
• MUP SISO, MCC
• HPS, DEH, CMP PARALLEL
• {HPS, DEH}, {UPSTREAM, CMP} SERIES

Experimental Results

After constructing the system with modeling patterns, we obtain numerical results, as shown
in Table 6.2. Results attained using proposed modeling patterns agree well with those obtained
by applying Markov approach and the UNIRAM software [68]. In our experiments, the mission
time (length of histories) of stochastic simulator is 8.76×104 h (10 years); the number of Monte
Carlo simulations (number of histories) of the system is 106. Note that the sum of each result
column is 1.
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Table 6.2: Probabilities comparison for the production facility.
System throughput Results in [68] Results in [68] Our results
capacity level (%) (Markov Chains) (UNIRAM software)
0 4.58E-5 5.48E-5 4.64E-5
52 1.34E-2 1.34E-2 1.34E-2
55 3.28E-6 0 2.12E-6
65 1.52E-5 2.74E-5 1.08E-5
100 9.86E-1 9.87E-1 9.87E-1

6.1.2 A Floating Production Storage and Offloading System

The FPSO (Floating Production Storage and Offloading) system is one of the most commercially
viable systems in offshore production activities. The FPSO system in our case study includes
a crude oil processing system, a single point mooring system, a crude oil storage and ballast
system, a fire protection and lifesaving system, and a power and instrumental system [85]. We
focus here on the production availability of the crude oil processing system.
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Figure 6.2: A Floating Production Storage and Offloading (FPSO) system [85].

As shown in Figure 6.2, the FPSO system consists of four sub-systems: platforms A, B, and
C, and the FPSO subsystem. Platform A transfers the oil to a buffer tank in plaform B. Together
with the output oil of platforms B and C, the overall oil is transported to heat exchangers on the
FPSO subsystem. In Figure 6.2, the arrows with solid lines represent main streams of the system,
that is, crude oil flows; the dashed arrows stand for the flows of separated gas and waste water.
The required data (i.e. expected crude oil outputs, preventive maintenance intervals/durations,
and failure/repair rates) is available in [85].
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Modeling Patterns

Classification of modeling patterns for the FPSO system is given in Table 6.3. The FPSO sys-
tem is firstly decomposed into components and subsystems. Take PSA as an example, it can
be modeled using SISO, CorrectiveMaintenance, and PreventiveMaintenance patterns. With re-
gard to {BP1, BP2, BP3} (a subsystem), it can be model with applying KooN pattern. In detail,
this subsystem is a 2-out-of-3 structure. The rest of components/subsystems can be explained
in a similar way.

Table 6.3: Modeling patterns classification in the FPSO system.
Components/Subsystems Modeling patterns
• PSA, PSB, PSC, HE1, HE2 SISO, CorrectiveMaintenance

PreventiveMaintenance
• EPA, EPB1, EPB2, EPC, COBT, PH1, PH2 SISO, CorrectiveMaintenance
• BP1, BP2, BP3 SISO, CorrectiveMaintenance

PreventiveMaintenance, MCC
• EDSP SIMO, CorrectiveMaintenance
• TCP MIMO, CorrectiveMaintenance

PreventiveMaintenance
• EDHP, SWC MISO, CorrectiveMaintenance
• {PSA, EPA, COBT, EPB2}, {PSB, EPB1}, {PSC, EPC} SERIES
• {HE1, HE2}, {PH1, PH2} PARALLEL
• {BP1, BP2, BP3} KooN

The FPSO system can be represented utilizing modeling patterns, as shown in Figure 6.3.
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Figure 6.3: Modeling patterns-based presentation of the FPSO system in Figure 6.2.
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Experimental Results

The production availability of the FPSO system is mainly affected by failure rates and repair rates
of the system. Failure rates and repair rates used in experiments are multiplied with practical
values in [85] and a coefficient in {0.5,1.0,1.5,2.0}. In our experiments, we take 8.76×104h (10
years) as the mission time and 2×104 as simulation histories (Monte Carlo simulations) [85].

Similar results are obtained via AltaRica models and corresponding Stochastic Petri Nets
(SPN) model using GRIF software. Figures 6.4 and 6.5 show production availabilities of the FPSO
system under different failure and repair rates. Results show that the production availability of
the FPSO system decreases as the failure rates arise. Simultaneously, the production availability
of the FPSO system rises as the repair rates increase. The reference point (second point on blue
line with circle) of our test is the time when both the failure rate and repair rate are multiplied
by 1.0.
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Figure 6.4: Production availabilities (AltaRica).
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Figure 6.5: Production availabilities (SPN).

Table 6.4 shows that the result (at reference point) of production availability obtained with
AltaRica is comparable with that reported in [85] using SPN. Nevertheless, SPN are difficult to
master when the system under study becomes complex. The AltaRica 3.0 language is powerful
in terms of modeling flexibility and understandability, which is convenient to update and revise.

Table 6.4: Comparison of production availabilities of the FPSO system.
Cases Production availability
SPN model [85] 0.9636
AltaRica model 0.9445

6.1.3 An Oil Production System

An oil production system proposed in [107] is shown in Figure 6.6. This system represents a part
of an oil extraction installation. This test case has been designed to concentrate most modeling
difficulties of the assessment of production availability [107]. Details of this system are listed as
follows:
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Figure 6.6: An oil production system [107].

• W1 and W2 are wells. Their production capacities are, respectively, 160 and 70 (barrels/day).
When they are failed, the production is stopped.

• T1 and T2 are tanks. They are assumed to be perfectly reliable. Their storage capacities
are, respectively, 110 and 100 (barrels/day).

• A, B are two treatment units. They have two failure modes: a failure that decreases their
capacities from 170 to 100 (resp. 120 to 70), and a severe failure that stops the treatment. A
severe failure may occur when the unit is either working correctly or in a degraded mode.

• Components Ci , Di (i = 1, 2) and E j ( j = 1, 2, 3) are treatment units. Their capacities are,
respectively, 120, 80 and 50. For all of these units, a failure stops the treatment. Compo-
nents of bloc E are in hot redundancy.

• Line D is in cold redundancy with line C. As soon as line C is repaired, line D is stopped. If
C1 fails, then C2 is stopped and vice-versa.

• Two repair crews are available in this system, that is, at most two components can be
repaired simultaneously. A component is not able to treat the production during a repair.

• The production entering component A is split into two: a fraction goes to tank T1 through
the top line and the remainder goes to tank T2 through the bottom line. This requires
defining a splitting policy. We adopt the following one. The production of W1 goes prefer-
ably to the top line. The production of W2 goes to the bottom line in preference (priority).
If needed, what remains available from W1 goes to the bottom line.

The problem is to assess the average production of two wells and the average storage in two
tanks, that is, the mathematical expectation of these quantities throughout the mission time.
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Modeling Patterns

Modeling patterns classification for the oil production system is given in Table 6.5. Take W1 as
an example, it can be modeled with SOURCE and CorrectiveMaintenance patterns. That is, the
applied flow propagation modeling pattern for W1 is SOURCE. The utilized behavioral pattern
for W1 is CorrectiveMaintenance. {C1, C2} subsystem can be modeled with SERIES pattern.
Remaining components/subsystems can be interpreted in a similar way.

Table 6.5: Modeling patterns classification in the oil production system.
Components/Subsystems Modeling patterns
• W1, W2 SOURCE, CorrectiveMaintenance
• A SIMO, CorrectiveMaintenance, DEGRADATION
• B MISO, CorrectiveMaintenance, DEGRADATION
• C1, C2 SISO, CorrectiveMaintenance
• D1, D2 SISO, CorrectiveMaintenance, MCC
• E1, E2, E3 SISO, CorrectiveMaintenance, MHC
• T1,T2 SINK, PERFECT
• {C1, C2}, {D1, D2} SERIES
• {E1, E2, E3} PARALLEL

Experimental Results

After modeling the system with the AltaRica 3.0 language, we obtain experimental results, as
shown in Table 6.6. Results obtained using modeling patterns meet well with those given in [107].
Note that the sum of the productions from W1 and W2 equals to the storages in T1 and T2. The
Matrix Exponential Method is employed to obtain results in [107]. The mission time is 8.76×103

h (1 year). The number of Monte Carlo simulations of the system is 105.

Table 6.6: Results comparison for the oil production system.
Quantities Results in [107] Our results
Production of W1 83.6248 82.8309
Production of W2 47.6409 47.7638
Storage in T1 70.0677 69.3603
Storage in T2 61.198 61.2344

6.1.4 An Offshore Installation

We consider an offshore installation system (so-called SAFERELNET) proposed in [111, 129].
The system encompasses majority of modeling difficulties encountered when conducting stud-
ies related to production processes.

Figure 6.7 shows the flow diagram of the SAFERELNET system. SEP (Separation unit) divides
the flow from the well (WEL) into three types of flows: gas, oil and water. The separated ���

firstly flows to two parallel Turbo-Compressors (TC1 and TC2), and then to TEG (Tri-Ethylene



84 CHAPTER 6. EXPERIMENTAL STUDIES

Glycol) for dehydration. Before the final gas exports, there are three gas flows which are em-
ployed for fueling and lifting operations. One part of the fuel gas returns to support the work
of TCs, while the other part of fuel gas flows assists the electricity generation in TGs (Turbo-
Generators). The obtained electricity is utilized by units TEG, EC (Electro-Compressor), OPS
(Oil Pumping System), and WPS (Water Pumping System). Finally, the lift gas flow goes back to
the well for assisting well production. The isolated ��� flow is exported through OPS. To main-
tain the well pressure, the separated ����� is rejected into the well through WPS.
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Figure 6.7: An offshore installation, redraw from [111, 129].

Three types of preventive maintenance are considered for TCs and TGs, where preventive
intervals are every 2.16× 103 h, 8.76× 103 h, and 4.38× 104 h [129]. Moreover, corresponding
preventive maintenance durations are different. The required data for analyzing the production
performance of SAFERELNET system can be found in [129].

Modeling Patterns

Classification of modeling patterns for the SAFERELNET system is provided in Table 6.7. Take
WEL as an example, it can be modeled using SOURCE and PERFECT patterns. In simplicity,
WEL can be constructed only with SOURCE pattern. Since the inflow (gas) and outflow (electric-
ity) are different materials, both TG1 and TG2 (origin of electricity) are modeled with SOURCE
pattern. Gas is treated as a condition for their working. The remaining components can be in-
terpreted in a similar way. Regarding {TC1, TC2} subsystem, it can be model with PARALLEL
pattern. The same situation comes to subsystem {TG1, TG2}.

The SAFERELNET system can be represented using identified modeling patterns, as shown
in Figure 6.8.
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Table 6.7: Modeling patterns classification for the system in Figure 6.7.
Components/Subsystems Modeling patterns
• WEL SOURCE, PERFECT
• TG1, TG2 SOURCE, CorrectiveMaintenance

DEGRADATION, PreventiveMaintenance
• OPS, WPS SISO, PERFECT
• TC1, TC2 SISO, CorrectiveMaintenance, DEGRADATION

PreventiveMaintenance
• EC SISO, CorrectiveMaintenance

PreventiveMaintenance, MCC
• TEG SIMO, CorrectiveMaintenance
• {TC1, TC2}, {TG1, TG2} PARALLEL
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Figure 6.8: Modeling patterns-based presentation of the system in Figure 6.7.

Experimental Results

The AltaRica model of SAFERELNET system is established using proposed modeling patterns.
We conduct experiments with three cases. Case A is the system without preventive maintenance.
Case B refers to the system as perfect without failure, but the system is operated with preventive
maintenance. Case C reflects the real situation in which the system runs with both corrective
and preventive maintenances. In experiments, simulation histories (Monte Carlo simulations)
are 105; the mission time in cases A, B, C are 103h, 104h, 5×105h, respectively [129].

Table 6.8 shows the comparison of production availabilities of SAFERELNET system with re-
sults in [129]. Results obtained using modeling patterns and those reported in [129] are similar.
The results reveal that the production availabilities in cases A and B are higher than the ones in
case C. The outcome is rational, and shares the same tendency as results in [129]. When system
components are perfect without failure (no downtime caused by the corrective maintenance),
the production availability becomes higher. Thus the production availability in case A is higher
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than the ones in case C. Given that components in the system run without preventive main-
tenance (no downtime generated by the preventive maintenance), the production availability
becomes higher. Hence the production availabilities in case B is higher than the ones in case C.

Table 6.8: Production availabilities of the SAFERELNET system.
Cases Production availability Gas Oil Water
A Results in [129] 0.9726 0.9974 0.9577

Our results 0.9570 0.9848 0.9564
B Results in [129] 0.9763 0.9970 0.9730

Our results 0.9711 0.9898 0.9758
C Results in [129] 0.8858 0.9588 0.9573

Our results 0.8860 0.9577 0.8875

6.2 Safety Systems in Process Industry

We choose safety systems in ISO/TR 12489 as our running examples because these architectures
are general enough to cover most safety systems [60]. In addition, these systems are represen-
tative of most reliability studies of safety systems performed in petroleum, petrochemical, and
natural gas industries, as well as in other industries [60].

Three assumptions are made for all systems in ISO/TR 12489:

• Detected and undetected dangerous failures of a given component are independent, with
exception of systems �3-2 and �3-3.

• Failure rates are constant.
• Components are as good as new after repairs.

Table 6.9 shows the modeling patterns used for modeling SIS in ISO/TR 12489. We take
systems �1-1 and �5 as an example to illustrate the results.

Two components are modeled in system �1-1, where the protected system is shut down dur-
ing periodic tests and repairs. Therefore activities related to the maintenance/repair are negligi-
ble when calculating the system unavailability. Since the system unavailability of system �1-1 is
only generated by DU failures, the logical solver (which only has DD failures) has not been con-
sidered. Both the pressure sensor and isolation valve are modeled by RevealUndetectedFailure
pattern. These two components work in series, thus SERIES pattern is used as well.

In system �5, we employ a 2oo3 structure (S1a, S1b, and S1c) as an example to elaborate the
results. Since DD and DU failures of the component are assumed to be independent in EDP sys-
tem, the DD failure of a component (e.g. S1a) can be modeled using the CorrectiveMaintenance
pattern. Since the uncovered DU failure cannot be repaired, it is constructed with the NonRe-
pairable pattern. The covered DU failure by periodic tests is considered to be modeled with the
RevealUndetectedFailure pattern. The subsystem composed by these three components, {S1a,
S1b, S1c}, can be modeled by both KooN pattern and SwitchKooN pattern. Two groups of 2oo3
structures, {S1, S2}, in the EDP system can be modeled with PARALLEL pattern. Note that S1 and
S2 stand for 2oo3 subsystems. The rest of classification results can be interpreted in the similar
way.
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Table 6.9: Modeling patterns classification for the safety systems in ISO/TR 12489.
System Components/Subsystems Modeling patterns
�1-1 S, V RevealUndetectedFailure

{S, V} SERIES
�1-2 S, V RevealUndetectedFailure

{S, V} SERIES
�1-3 S CorrectiveMaintenance,RevealUndetectedFailure

LS CorrectiveMaintenance
V RevealUndetectedFailure
{S, LS, V} SERIES

�1-4 S, V NonRepairable, RevealUndetectedFailure
{S, V} SERIES

�2-1 S1, S2, V1, V2 RevealUndetectedFailure
{S1, V1},{S2, V2} SERIES
{{S1, V1},{S2, V2}} PARALLEL

�2-2 S1, S2, V1, V2 RevealUndetectedFailure
{S1, V1},{S2, V2} SERIES
{{S1, V1},{S2, V2}} PARALLEL

�2-3 S1, S2 CorrectiveMaintenance,RevealUndetectedFailure
LS1,LS2 CorrectiveMaintenance
V1, V2 RevealUndetectedFailure
{S1, LS1, V1},{S2, LS2, V2} SERIES
{{S1, LS1, V1},{S2, LS2, V2}} PARALLEL

�2-4 S1, V1 RevealUndetectedFailure
S2, V2 StaggeredPeriodicTest
{S1, V1},{S2, V2} SERIES
{{S1, V1},{S2, V2}} PARALLEL

�3-1 S1, S2, S3, SV1, V1, SV2, V2 RevealUndetectedFailure
{S1, S2, S3} KooN
{SV1, V1},{SV2, V2} SERIES
{{SV1, V1},{SV2, V2}} PARALLEL

�3-2 S1, S2, S3, SV1, V1, SV2, V2 RevealUndetectedFailure, CorrectiveMaintenance
LS CorrectiveMaintenance
{S1, S2, S3} KooN
{SV1, V1},{SV2, V2} SERIES
{{SV1, V1},{SV2, V2}} PARALLEL

�3-3 S1, S2, S3, SV1, V1, SV2, V2 RevealUndetectedFailure, CorrectiveMaintenance
LS CorrectiveMaintenance
{S1, S2, S3} KooN,SwitchKooN
{SV1, V1},{SV2, V2} SERIES
{{SV1, V1},{SV2, V2}} PARALLEL

�4 S1, S2, S3 CorrectiveMaintenance,RevealUndetectedFailure
LS1,LS2 CorrectiveMaintenance
SV1, SV2, SV3, V1, V2 RevealUndetectedFailure
{SV1, LS1, V1} SERIES
All components CorrectiveMaintenance

�5 S1a, S1b, S1c, S2a, S2b, S2c CorrectiveMaintenance, NonRepairable, RevealUndetectedFailure
{S1a, S1b, S1c},{S2a, S2b, S2c} KooN, SwitchKooN
{S1, S2} PARALLEL
LS, SV1, V1, SV2, V2 NonRepairable, RevealUndetectedFailure
{SV1, V1},{SV2, V2} SERIES
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Safety systems in ISO/TR 12489 are modeled using proposed modeling patterns. The mis-
sion time of all SIS is 8.76×104 h (10 years) except the one of system �5 which is 1.314×105 h (15
years). The number of Monte Carlo simulations of all systems is 106.

The results are listed in Tables 6.10 to 6.16. Note that the unavailability in tables refers to the
average unavailability for simplicity. The failure frequency in tables is the average dangerous
failure frequency. The Formulae, Fault tree, Markovian, and Petri net approaches are used in
ISO/TR 12489. In general, the more complex the systems become, fewer approaches can be
utilized. For example, because of the state explosion problem, the Markovian approach is only
used in systems �1-1, �1-2, and �2-1.

6.2.1 An Overpressure Protection System with Single Channel
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Figure 6.9: An overpressure protection system with single channel (System �1) [60].

The simplest architecture of a SIS is illustrated in Figure 6.9, which is composed of a pressure
sensor (S), a logic solver (LS), and an isolation valve (V). This system is popular in process in-
dustry for common safety loops with low to moderate reliability requirements (Safety Integrity
Level: SIL1 to SIL2). When the pressure exceeds the predefined threshold, the sensor sends a
signal to the logic solver, which in turn commands the valve to close. According to different as-
sumptions, there are four SIS generated from the system in Figure 6.9. They are numbered from
�1-1 to �1-4.

The assumptions used for system �1-1 are:

• Perfect periodic tests are performed simultaneously.
• Installation (protected section) is stopped during periodic tests and repair.

The assumptions applied for system �1-2 are identical to system �1-1 except that:

• The periodic tests of components are not performed with the same interval.
• In addition, two kinds of periodic tests are performed on the isolation valve:

– Partial stroking tests to check if the valve is able to move or not;
– Full stroking tests to check if the valve is tight after closure.

The assumptions assigned for system �1-3 are exactly the same as �1-1 except that:

• The installation is not shut down during the repair of the sensor and of the logic solver.
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• The sensor is periodically tested off line and is no longer available for its safety function
during the periodic test.

Assumptions made for system �1-4 are just the same as for system �1-1, except that coverages
of the periodic tests are not 100%. This means that part of the Dangerous Undetected (DU)
failure is not covered by periodic tests, and thus will not be detected.

Experimental Results

Experimental results for system �1 are tabulated in Table 6.10. In general, results from AltaRica
3.0 models agree well with those reported in ISO/TR 12489.

Table 6.10: Experimental results in system �1.
Systems Approaches Unavailability Failure frequency(h−1)
�1-1 Formulae [60] 1.4E-2 3.2E-6

Fault tree [60] 1.39E-2 3.16E-6
Markovian [60] 1.39E-2 3.16E-6
Petri net [60] 1.38E-2 3.15E-6
AltaRica 3.0 1.39E-2 3.15E-6

�1-2 Formulae [60] 1.06E-2 –
Fault tree [60] 1.05E-2 3.17E-6
Markovian [60] 1.05E-2 3.17E-6
Petri net [60] 1.05E-2 3.17E-6
AltaRica 3.0 1.05E-2 3.18E-6

�1-3 Formulae [60] 1.47E-2 –
Fault tree [60] 1.46E-2 1.39E-4
Petri net [60] 1.46E-2 1.442E-4
AltaRica 3.0 1.45E-2 1.35E-4

�1-4 Formulae [60] 2.09E-2 –
Fault tree [60] 2.08E-2 3.158E-6
Petri net [60] 2.07E-2 3.13E-6
AltaRica 3.0 2.07E-2 3.13E-6

With regard to system �1-1, AltaRica 3.0 results meet well with those given in ISO/TR 12489.
Among these four systems, system �1-1 serves as a reference for systems �1-2, �1-3, and �1-4.

The average unavailability of system �1-2 is lower than the one of system �1-1 because two
kinds of periodic tests are conducted on the isolation valve in system �1-2: the full stroking
and partial stoking. The partial stoking is regarded as the main form of periodic test, and the
corresponding periodic test interval decreases from 8760h to 4380h. Because DU failures may
put a SIS in a down state for a long period until a periodic test is conducted, DU failures are
always main contributors to the unavailability of a SIS [79]. Thus DU failures in system �1-2 can
be discovered timely and less unavailability will be generated.

The average unavailability of system �1-3 is slightly higher than the one of system �1-1 due to
the EUC is not stopped during the repair of the sensor and the logic solver. Thus DD failures of
the sensor and the logic solver are considered. In addition, the sensor is periodically tested off
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line, therefore the periodic test duration is taken into account. DD failures, repair time, as well
as the periodic test duration bring higher, albeit not significant, unavailability of SIS.

The average unavailability of system �1-4 is higher than the one of system �1-1 because im-
perfect periodic tests are taken into account. Uncovered DU failures will not be detected and
repaired.

6.2.2 An Overpressure Protection System with Dual Channel

Pressure

PSH

LS2

V2Vx
Protected section

S2

LS1

V1

S1PSH

Figure 6.10: An overpressure protection system with dual channels (System �2) [60].

Figure 6.10 illustrates an overpressure protection system with dual channels. It is a structure
with two channels (S1, LS1, and V1; S2, LS2, and V2) working in parallel. Such dual-channel
architecture is commonly used for conforming to high reliability requirements (SIL2 to SIL4).
According to various assumptions, four systems (�2-1, �2-2, �2-3, and �2-4) are generated from
the system in Figure 6.10.

Assumptions used for system �2-1 are exactly the same as �1-1 except that failure rates have
been split into an independent part and a common cause failure part (Beta-factor model is ap-
plied).

Comparing with system �2-1, additional assumptions are added to system �2-2. It is the same
way as systems �1-1 and �1-2.

Extra assumptions are assigned to system �2-3 when compared with system �2-1. It is the
same way as systems �1-1 and �1-3.

Assumptions made for system �2-4 are identical to those for �2-1, except that:

• Periodic tests of sensors and valves are staggered.

– The pressure sensor S2 is periodically tested in the middle of the periodic test interval
of S1.

– The isolation valve V2 is periodically tested in the middle of the periodic test interval
of V1.

• Each periodic test of a component provides an opportunity to detect related potential
common cause failures.

Experimental Results

Results comparison of system �2 can be found in Table 6.11. There is a good agreement for
results obtained using modeling patterns and those reported in ISO/TR 12489. Since system �2
is a dual-channel SIS, system unavailabilities of �2 are lower than those of system �1.
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Table 6.11: Experimental results in system �2.
Systems Approaches Unavailability Failure frequency(h−1)
�2-1 Formulae [60] 9.37E-4 –

Fault tree [60] 9.33E-4 2.39E-7
Markovian [60] 9.20E-4 2.34E-7
Petri net [60] 9.30E-4 2.41E-7
AltaRica 3.0 9.29E-4 2.37E-7

�2-2 Formulae [60] 6.26E-4 –
Fault tree [60] 6.45E-4 –
Petri net [60] 6.46E-4 –
AltaRica 3.0 6.45E-4 2.19E-7

�2-3 Fault tree [60] 1.19E-3 –
Petri net [60] 1.19E-3 –
AltaRica 3.0 1.18E-3 1.05E-4

�2-4 Fault tree [60] 4.9E-4 –
Petri net [60] 4.94E-4 –
AltaRica 3.0 4.94E-4 2.36E-7

According to the system description and assumptions, relationships between systems �2-1,
�2-2, and �2-3 are similar to those between systems �1-1, �1-2, and �1-3. The situation of system
�2-4 is different.

The staggered test is applied in system �2-4. Redundant components (e.g. S1 and S2, V1 and
V2) in system �2-4 are tested with the same periodic test interval but not simultaneously. This
policy decreases the risk that redundant components are unavailable at the same time in test.
Thus the average unavailability of system �2-4 is significantly lower than that of system �2-1.

6.2.3 An Overpressure Protection System with Redundant Architecture

Figure 6.11 depicts an overpressure protection system with redundant architecture. The sys-
tem is a popular architecture of SIS, which is composed of three parts in series: three pressure
sensors (S1, S2, and S3) in a 2oo3 configuration, one logic solver (LS) and two channels of final
elements (the solenoid valve SV1 and isolation valve V1; SV2 and V2). Such an architecture is
used in process industry for safety loops with conforming to high reliability requirements (SIL3
to SIL4). Based on different assumptions, three systems (�3-1, �3-2, and �3-3) are generated from
the system in Figure 6.11.

Assumptions used for system �3-1 are identical to those for system �1-1. Assumptions as-
signed for system �3-2 are:

• Perfect periodic tests are performed simultaneously.

• The production is not shut down during the repairs of a sensor, the logic solver and solenoid
valves.

• This system may be used as a subsea High Integrity Pressure Protection System (HIPPS),
which is difficult to be maintained. A maintenance rig (carrying the repair crew) is re-
quired to be mobilized for repair operations and the production is not shut down while
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Figure 6.11: An overpressure protection system with redundant architecture (System �3) [60].

waiting for the maintenance rig.

• Sensors and solenoid valves are periodically tested off line and are no longer available for
their safety function during periodic tests.

• The production is stopped during the maintenance of isolation valves.

Assumptions considered for system �3-3 are the same as those made for �3-2, except that
when a dangerous failure of one sensor is detected, remaining sensors are reorganized from
2oo3 to 1oo2. This extra assumption makes system �3-3 more available than �3-2 when a dan-
gerous failure is detected.

Experimental Results

Experimental results of system �3-1 are listed in Table 6.12. Average unavailabilities obtained
using modeling patterns and those provided in ISO/TR 12489 give very similar results.

Table 6.12: Experimental results in system �3-1.
Approaches Unavailability
Formulae [60] 9.0E-4
Fault tree [60] 9.0E-4
Petri net [60] 9.0E-4
AltaRica 3.0 9.1E-4

Experimental results of system �3-2 are tabulated in Table 6.13. Average unavailabilities ob-
tained using AltaRica models are in good agreement with those in ISO/TR 12489.

Experimental results of system �3-3 are listed in Table 6.14. The average unavailability ob-
tained using the AltaRica model agrees well with that in ISO/TR 12489. Note that in system
�3-3, the mobilization time of the maintenance rig is 720h and the periodic test duration is 2h.
Because of applying the SwitchKooN pattern (see section 5.2.10 on page 62), the average un-
availability of system �3-3 is obviously lower than the one of �3-2.
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Table 6.13: Unavailability results comparison (system �3-2).
Mobilization Periodic test Petri net [60] AltaRica 3.0
time (h) duration (h)
0 0 9.76E-4 9.78E-4
0 2 1.14E-3 1.17E-3
720 0 3.95E-3 3.93E-3
720 2 4.09E-3 4.14E-3

Table 6.14: Experimental results in system �3-3.
Approaches Unavailability
Petri net [60] 2.70E-3
AltaRica 3.0 2.74e-3

6.2.4 A Multiple Safety System

Figure 6.12 represents a multiple safety system. It is comprised of two subsystems working in a
predetermined sequence. The first one (S1, LS1, SV1, and V1) can be a safety loop of the BPCS
(Basic Process Control System) and the second one (S2, S3, LS2, SV2, SV3, V1, and V2) can be a
safety loop of the ESD (Emergency Shut Down system) or a HIPPS.

Pressure
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LS1

V1Vx
Protected section

S1

LS2

V2

S3PSH

SV2

S2PSH

SV1 SV3

Figure 6.12: A multiple safety system (System �4) [60].

Assumptions used for system �4 are:

• Perfect periodic tests are performed simultaneously.

• Installation is stopped during repair of valves.

• Periodic test durations are negligible.

Experimental Results

Table 6.15 shows that results obtained using AltaRica agree rather well with those in ISO/TR
12489.



94 CHAPTER 6. EXPERIMENTAL STUDIES

Table 6.15: Experimental results in system �4.
Approaches Unavailability Failure frequency(h−1)
Fault tree [60] 2.96E-4 4.02E-7
Petri net [60] 2.95E-4 4.0E-7
AltaRica 3.0 2.95E-4 3.98E-7

6.2.5 An Emergency Depressurization System of A Hydrocracking Unit

Figure 6.13 represents an Emergency DePressurization (EDP) system of a hydrocracking unit,
which comes from the downstream oil and gas industry. This system is composed of two groups
of temperature sensors (S1a, S1b, and S1c; S2a, S2b, and S2c) organized in 2oo3, one logic solver
(LS) and two isolation valves (V1 and V2) organized in parallel and piloted by two solenoid valves
(SV1 and SV2). This safety system aims to quickly depressurize the reactor when the tempera-
ture increases and reaches a predetermined threshold, thus to avoid a runaway of the exother-
mic chemical reaction.

Assumptions used for system �5 are:

• Periodic tests are performed when the reactor is stopped.
• Installation is paused during repair of Dangerous Undetected (DU) failures.
• Installation is shut down during periodic tests and repair of the logic solver.
• Failures that are not covered by periodic tests will not be detected and repaired.
• The 2oo3 logic of a group of sensors is switched to 1oo2 in case of one Dangerous Detected

(DD) failure in the group.
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TSH
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Figure 6.13: An emergency depressurization system of a hydrocracking unit (System �5) [60].
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Experimental Results

Experimental results comparison of system �5 can be found in Table 6.16. The AltaRica 3.0 and
ISO/TR 12489 (Fault tree) give almost the same results.

Table 6.16: Experimental results in system �5.
Approaches Unavailability
Fault tree [60] 3.50E-4
AltaRica 3.0 3.46E-4

6.3 Summary

In this chapter, we conduct experimental studies on a set of production and safety systems. With
regard to each system, the system description, the involved modeling patterns, and the exper-
imental results are elaborated. Experimental results demonstrate that proposed modeling pat-
terns are applicable to model production and safety systems in process industry, especially in oil
and gas industry. Results comparisons show that experimental results obtained using modeling
patterns are in good agreement with those from the literature.
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Chapter 7

Conclusion and Future Works

In this PhD project, modeling patterns have been discussed in several aspects, that is, the form
to capitalize modeling patterns (catalog), the way to develop modeling patterns (methodology),
and experimental studies to test modeling patterns.

7.1 Conclusion

We proposed a pattern-based approach for performance analysis of production and safety sys-
tems. Modeling patterns are capable of stabilizing the experience from modeling processes. By
reusing modeling patterns, a modeling mission can be simplified when analyzing performance
of systems. Three main works have been completed in this thesis:

• We studied modeling patterns in different facets. We classified modeling patterns accord-
ing to their purpose, which reflects the function of a specific modeling pattern. Modeling
patterns were categorized into behavioral, flow propagation, and composition patterns.
Each type of modeling pattern was illustrated using Guarded Transition Systems (GTS). A
methodology to develop modeling patterns was proposed.

• We showed modeling patterns as a catalog. Based on reviewing numerous production and
safety systems, we proposed twenty-four (24) modeling patterns. They are composed of
eight (8) Behavioral Patterns (BP), thirteen (13) Flow Propagation Patterns (FPP), and three
(3) Composition Patterns (CP). Each pattern was illustrated with a set of structured items
(e.g. structure and sample model). Structures of BP and CP are shown with graphical rep-
resentations of GTS. Structures of FPP are shown with their dependency graphs. Sample
models are given with AltaRica 3.0 code. Relationships between modeling patterns were
illustrated as well. We also discussed the methodology to reuse modeling patterns.

• We conducted experimental studies on a set of production and safety systems. We extracted
these systems from the literature. Production systems are declared to cover most of mod-
eling difficulties for production-performance analysis. Safety systems are composed of
a group of systems in ISO/TR 12489, which encompass the majority of reliability issues.
With regard to each system, we illustrated its system description, involved modeling pat-
terns, as well as experimental results. Experimental results obtained using the modeling
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patterns are in good agreement with those reported in the literature. It is shown that pro-
posed modeling patterns are applicable to model production and safety systems in pro-
cess industry.

7.2 Future Works

Three issues related to the topic of this thesis can be investigated in future works:

• Modeling patterns can be improved. Raised modeling patterns are based on a limited set
of production and safety systems. Even though they are declared to cover most reliability
studies [107, 129, 60], these patterns can be improved and expanded with new system
behaviors. Moreover, further research may consider EUC (Equipment Under Control) as
an integral part of safety systems. New modeling patterns are also expected with such
integrations.

• The proposed pattern-based approach has proven to be applicable to a finite set of pro-
duction and safety systems from the literature. However, more experiments are required to
further validate the solidity of the proposed approach.

• The pattern-based approach can simplify modeling missions in a modular way. This ap-
proach can be extended to other performance engineering domains, such as performance
testing and requirements engineering.



Appendix A

Production Availability Analysis using
Stochastic Petri Nets

The offshore oil industry holds characteristics of high risk, investment and profit. Increasing
attention has been paid to ensure that the production system possesses the capacity to perform
its required functions as expected. Hence the performance of offshore production systems is
important for stakeholders from both industry and public domains. In this chapter, we show
our work of production performance analysis using stochastic Petri nets1.

We perform the production availability analysis of a FPSO (Floating Production Storage and
Offloading) system. The FPSO system is employed for processing and provisionally storing the
crude oil from offshore platforms or subsea wells. The oil inside the FPSO cargo tank is trans-
ferred to shuttle tankers periodically. We select stochastic Petri nets (SPN) as the modeling tool
in this study. In summary, highlights of this work are:

• SPN model of a FPSO system is proposed.
• Production availability of the FPSO system is obtained.
• Different preventive maintenance policies are considered.

1H. Meng, L. Kloul, A. Rauzy. Production availability modeling of FPSO system using stochastic Petri nets. In L.
Podofillini, B. Sudret, B. Stojadinovic, E. Zio, and W. Kröger, editors, Proceedings of the 25th European Safety and
Reliability Conference (ESREL 2015), Zurich, Switzerland, Sept. 2015: 2271-2279.
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ABSTRACT: The offshore oil industry holds the characteristics of high risk, investment and profit. Increasing
attention has been paid to ensure that the production system possesses the capacity to perform its required func-
tions as expected. Hence the performance and the reliability of the offshore production systems are important
for the stakeholders from both the industry and public domains. The objective of our study is to perform the
production availability analysis of the FPSO (Floating Production Storage and Offloading) system. The FPSO
system is employed for processing and provisionally storing the crude oil from the offshore production plat-
forms or the subsea oil wells directly. The oil inside the FPSO cargo tank is transferred to the shuttle tankers
periodically. We selected stochastic Petri nets (SPN) as the modeling tool in this study because they are naturally
suitable for the performance evaluation and availability analysis.

1 INTRODUCTION

The life cycle of the offshore oil activities cover-
s the offshore exploration, drilling, production, as
well as the decommission processes. Among them,
the offshore production period occupies the longer
time, which could last from several years to decades,
whereas the offshore drilling normally takes several
months. The FPSO (Floating Production Storage and
Offloading) is now a popular scheme for the offshore
production (Lake & Arnold 2007). The FPSO could
work in both shallow and deep waters, as well as in
rich and poor reserves oil fields. The FPSO can be
shifted to another offshore field conveniently and e-
conomically after its previous commission.

The FPSOs are widely employed all over the world,
but mainly operated in the North Sea, both sides of
South Atlantic Ocean, Australia and East Asia water-
s (Tillie Nutter 2014). FPSOs are complex systems,
the operations of them may generate lots of possible
uncertainties and failures, as well as reliability and
risk difficulties. Lots of incidents and accidents of the
FPSOs have been reported (HSE 2003). Recently, an
explosion accident happening on the FPSO Cidade de
São Mateus left 9 fatalities and several injured, which

was occurred on February 11, 2015, about 120 km
away from the coast of Brazil (BW Offshore 2015).

Long outages are particularly important for the pro-
cess plants (Mannan 2005). The aforementioned inci-
dents or accidents can lead to the decrease of produc-
tion availability. In practice, the stakeholders, espe-
cially the decision makers from the offshore oil com-
panies are prone to attach greater importance to the
production availability at ordinary times, which has a
strong economic effect (Boiteau et al. 2006).

The offshore industry involves large capital invest-
ment and operational costs, also the profitability of it
is extremely dependent on the reliability, availabili-
ty and maintainability of the facilities systems (Aven
and Pedersen 2014). Thus there is the need for evalu-
ating the availability of multi-state, multi-output sys-
tems in the oil industry (Zio et al. 2006).

The production availability is the ratio of produc-
tion to planned production, or any other reference lev-
el, over a specified period of time (ISO 2008, Aven
1987). The production availability, production assur-
ance, or production regularity have the similar mean-
ing about how a system could meet the demand for
deliveries or performance (Barabady and Aven 2008).

Many complex industrial processes are dynamic in
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essence (Li and Peng 2014), including the FPSO sys-
tem. Therefore Petri nets (PN) based techniques are
good candidates for modeling this type of systems
(Grunt and Briš 2015), which hold the relative high
algorithm efficiency (Kloul et al. 2013).

PN were initially proposed by Dr. Carl Adam Petri
in 1960s. The PN are both a graphical and mathe-
matical modeling tool (Murata 1989), which is widely
used in automation, communication, chemistry, econ-
omy, reliability and safety areas (Rausand 2011).

PN can deal with arbitrary probabilistic distribu-
tions. The model size of PN increases linearly asso-
ciated with the component numbers, which makes it
possible to model larger complex systems when com-
pared with the peer methods (ISO 2013). For instance,
the scale of the Markov chains increases exponential-
ly along with the rise of the components number.

The stochastic Petri net (SPN) is the extended P-
N whose transitions are associated with random wait-
ing times (Rausand 2011). The SPN can be utilized to
compute reliability measures such as system produc-
tion losses, production (un)availability, maintenance
man-hours (ISO 2008). The PN family has already
been applied in several offshore cases (Liu et al. 2015,
Zhang et al. 2014).

In this paper, SPN are selected for modeling the
production availability of the FPSO system. Our ob-
jective is to model and analyze the FPSO production
availability, and conduct a realistic case study.

The remainder of this article is organized as fol-
lows. We discuss some related works in Section 2. We
introduce briefly the FPSO technology in Section 3.
We present the Petri nets model we designed in Sec-
tion 4. Finally, we give some numerical results and
discuss them in Section 5.

2 RELATED WORKS

The methods for production availability (regularity)
assessment mainly include the simulation and analyt-
ical ones. For the easy recalculation of the production
regularity, an analytical method based on Markov dia-
grams and merging rules was put forward (Kawauchi
and Rausand 2002).

Zio et al. (2006) investigated the production avail-
ability of an offshore production plant using Monte
Carlo simulation. The offshore installation is part
of European thematic network SAFERELNET. Briš
and Kochanı́čková (2006) employed the SPN with
MOCA-RP software to model the production avail-
ability of the same shared offshore system.

Zhang et al. (2014) employed the SPN in the pro-
duction availability analysis of the offshore facilities
with the GRIF tool. The work mainly focuses on the
subsea part of the FPSO, which directly obtains the
oil and gas from the subsea manifold.

3 THE FPSO SYSTEM

Our case study is a realistic FPSO system, which is
now serving in an offshore oil field in South China
Sea with the water depth of 90m. To analyze the pro-
duction availability of the FPSO system, we concen-
trate on the FPSO crude oil processing system.

The FPSO system consists of four sub-systems:
platforms A, B, C and the FPSO subsystem, as shown
in Figure 1. Platform A transfers the oil to a buffer
tank in plaform B. Together with the output oil of plat-
forms B and C, the overall oil is transported to the heat
exchangers on the FPSO. In Figure 1, the arrows with
solid lines represent the main streams of the system,
the crude oil flows, in which we are interested. The
dashdotted arrows stand for the flows of the separat-
ed gas or waste water. The three platforms work in
parallel, and are relatively independent. The system
functions of the three platforms and the FPSO system
are presented in the following parts.

3.1 System description of the FPSO system

The goal of platform A is to conduct the prefraction-
ation and transportation of the oil from the WEllhead
A (WEA). There are two main components on platfor-
m A: the Primary Separator A (PSA) and the Efflux
Pump A (EPA). The PSA separates the crude oil into
three parts: the gas is transported to Vent A (VA), the
water is delivered to the Water Processing System A
(WPSA), and the more purified crude oil flows into
the EPA. The provisional destination of the crude oil
from platform A is the Crude Oil Buffer Tank (COBT)
on platform B.

The objective of platform B is to purify and trans-
port the crude oil from the WEllhead B (WEB). Plat-
form B covers the Primary Separator B (PSB), COBT,
the Efflux Pumps B1 (EPB1) and B2 (EPB2). The PS-
B separates the crude oil into three parts: the separat-
ed gas flows to Vent B (VB), the exporting crude oil
is carried to EPB1, and the remaining water is deliv-
ered to the Water Processing System B (WPSB). The
oil flowing from platform A, is temporarily stored in
COBT, before being transferred to platform C through
EPB2. The exported oil from EPB1 and EPB2 are in-
tegrated together to the one from platform C.

The aim of platform C is to implement the purifi-
cation and transportation of the initial oil flow from
the WEllhead C (WEC). Like Platform A, Platform
C includes two components: the Primary Separator C
(PSC) and the Efflux Pump C (EPC). The former sep-
arates the initial oil into three parts: the gas is trans-
fered to Vent C (VC), the water is delivered to Water
Processing System C (WPSC), and the treated crude
oil is transferred to EPC. The oil from EPC joins the
flows from EPB1 and EPB2 to the FPSO.

The FPSO subsystem is employed to process and
store the required crude oil. This subsystem consists
of two Heat Exchangers (HEs) working in parallel,

101



Primary
Separator A

Platform A

Efflux Pump A
(EPA)

WEllhead A

Vent A

Water Processing System A

Primary
Separator B

Platform B

Efflux Pump B1
(EPB1)

WEllhead B

Vent B

Water Processing System B

Crude Oil Buffer 
Tank

Efflux Pump B2
(EPB2)

Primary
Separator C

Platform C

Efflux Pump C
(EPC)

WEllhead C

Vent C

Water Processing System C

Thermal Chemical
Processor(TCP) BP2 PH2

E-DeHydration
Processor

E-DeSalting
Processor

Sea Water Cooler
(SWC)

Oil Cargo Tank

Flare

Water Processing
System FPSO(WPSF)

FPSO subsystem

HE2

(WEA)

(VA)
 PSA

(WPSA)

(WPSC)

 PSC

(WEC)

(WEB)

 PSB
(VB)

(VC)
COBT

(WPSB)

(OCT)

(F)

 EDHP

EDSP

Heat Exchanger 1 

Booster Pump 1
(BP1)

BP3(standby)

(HE1)

Pre-Heater1 
(PH1)

Figure 1: The flow diagram of the FPSO production system.

one Sea Water Cooler (SWC), three parallel Booster
Pump (BPs), two parallel PreHeaters (PHs), as well
as three processors. The main function of the FPSO is
to process the primarily separated oil to become up to
the standard. The overall oil flowing from platforms is
initially delivered to HEs to increase its temperature.

After HEs, the flow goes to the Thermal Chemi-
cal Processor (TCP) for separating the oil from the
remaining gas and water. The gas is sent to the flare
for burning, and the water is delivered to the Water
Processing System of the FPSO (WPSF). Regarding
the oil flow, it goes to PreHeaters (PHs) through BP-
s. BP3 is a standby pump for redundancy, which has
three states (work, failure and standby). BP3 carries
load once BP1 or BP2 fails. The FPSO requires that at
least two pumps work simultaneously. After the PHs,
the oil flow is transferred to the Electric DeHydration
Processor (EDHP). The EDHP is utilized for further
dehydration, using the mixed electric field generators
by the alternative and direct currents.

Normally the crude oil from the oil reservoir
contains several chemical materials such as NaCl,
MgCl2 and CaCl2, which are harmful to the further
onshore refinery. Thus an Electro-DeSalting Proces-
sor (EDSP) is required. The remaining water from
EDHP and EDSP goes to WPSF. From the EDSP, the
oil flows to the HEs and SWC to decrease its tem-
perature. The oil is then delivered to the Oil Cargo
Tank (OCT), which is transported periodically (nor-
mally around once a week) to the onshore refinery us-
ing oil barges.

3.2 Oil yield of the FPSO system

Table 1 shows the oil yield parameters of the plat-
forms (CNOOC 2007). The oil yields increase at the

Table 1: Crude oil outputs of the platforms (104m3/a).

Year/ a Platform A Platform B Platform C
1 12.9 16.7 14.0
2 164.2 213.6 178.7
3 153.8 200.1 167.4
4 83.2 108.2 90.5
5 56.9 74.0 61.9
6 44.8 58.3 48.8
7 37.3 48.5 40.6
8 31.4 40.9 34.2
9 27.2 35.4 29.6
10 21.9 28.4 23.8

beginning and decrease to the stable values subse-
quently.

3.3 Maintenance policy of the FPSO system

The maintenance policy of FPSO system consists of
both the corrective maintenance (CM) and preventive
maintenance (PM). The former is implemented right
after the failures. The clock-based PM is carried out
at predefined time points for the FPSO system. The
maintenance strategy may include periodic tests and
limited maintenance resources, like having only one
repair team. In our case, the PSA, PSB, PSC, HEs
and TCP are operated with both the CM and periodic
PM. The other components run with the CM strategy.
Table 2 shows the PM policies of the FPSO system.

4 AVAILABILITY MODELING OF THE FPSO
SYSTEM

4.1 Stochastic Petri nets overview

Stochastic Petri nets (SPN) is an extension of Petri
nets, which possesses the probabilistic time delays of
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Table 2: The preventive maintenance policy of the FPSO produc-
tion system.

PM level Components Period/ h Duration/ h
PSA, PSB, PSC 2190 36

PM1 HE1, HE2 4380 36
TCP 8760 72
PSA, PSB, PSC 2190 72

PM2 HE1, HE2 4380 72
TCP 8760 144
PSA, PSB, PSC 4380 36

PM3 HE1, HE2 8760 36
TCP 17520 72

the transitions or spaces. The delays could represen-
t the failure or repair rates of the components. When
analyzing the production availability of the FPSO sys-
tem, it is essential to calculate the availability of the
FPSO system by the combination of the different fail-
ure or repair rates/ delays between the places.

SPN can be expressed as (Molloy 1982, Bause &
Kritzinger 2002): SPN =< P,T,A,M0, λ > where
P is the set of places, graphically represented using
circles. T is the set of the transitions between the
places, represented as rectangles. A stands for the di-
rected arcs connecting transitions and places. The arcs
have weights which by default are equal to 1. The arc
may be an inhibitor one, which can be shown as an
undirected solid line with a small circle near the tran-
sition or a dotted directed line. M0 is the initial mark-
ing, which represents the initial numbers of token-
s in different places. λ represents the corresponding
transition rates of the transitions in T . Further work-
s (Molloy 1982, Murata 1989, Bause and Kritzinger
2002) are available for the details of the SPN.

4.2 Stochastic Petri nets model of the FPSO system

We consider several assumptions for the production
availability modeling of the FPSO system as follow-
ing: The test and maintenance are perfect. Each time
after the periodic repair or replacement, the compo-
nents are regarded as good as new. The repair teams
of the corrective and preventive maintenance are not
the same. For simplicity, BPs are assumed to be re-
paired immediately after their failures. The corrective
and preventive maintenances of one component can-
not take place simultaneously.

We consider the SPN of platform A (Figure 2) as
an example to illustrate the modeling of the FPSO
system. Component PSA has both the CM and PM
policies, while the EPA merely has the CM strategy.

• Let a token in place P1 stand for the working s-
tate of platform A and a token in P2 represent the
failed state of platform A.

• Let a token in place P3 represent the working s-
tate of PSA, a token in P4 stand for the CM wait-
ing state of PSA, and a token in P5 represent the
CM repairing state of PSA.

• Let a token in P6 represent the PM waiting state
of PSA and a token in P7 stand for the PM testing
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P3

T5
P4

P5

T7

T9

T8P7

P6

T10

T12

P8

T11
P10

P9

T2

P1 P2

T1 T3

EPAPSA

Figure 2: Stochatic Petri nets of platform A.

state of PSA.
• Let a token in place P8 represent the working s-

tate of EPA, a token in P9 stand for the CM wait-
ing state of EPA, and a token in P10 represent the
CM repairing state of EPA.

• T1 and T2 are the failure transitions caused by
PSA and EPA, respectively. T3 is the working
restart transition.

• T4, T5 and T6 represent the CM failure, CM start
and CM repair transitions of PSA, respectively.

• T7, T8 and T9 are the PM wait, PM start and PM
transitions of PSA, respectively.

• T10, T11 and T12 denote the CM failure, start
and repair transitions of EPA, respectively.

The firing delays of transitions T7 and T9 are de-
terministic, whereas T1, T2, T3, T5, T8 and T11 are
instantaneous transitions. The remaining transition-
s (T4, T6, T10, T12) are exponentially distributed.
There are also some conditions and assertions for
these transitions.

• T1 is enabled if P3 is empty, which means the
failure of PSA can lead to the failure of platform
A. T2 works alike with T1.

• T3 is enabled if both P3 and P8 have tokens,
which implies that platform A can restart work
if both of PSA and EPA are working.

• The conditions of firing T4 are that PSA is work-
ing (P3 is non-empty) and PSA is not in PM pro-
cess. After firing T4, the state of PSA is asserted
to failed. The availability of PSA is assigned to
be 0. T10 operates similar with T4.

• T5 is enabled once the corrective maintenance
team is available. After its firing, the correc-
tive maintenance team becomes unavailable. T11
works similar with T5.

• After firing T6, the corrective maintenance team
turns into available and the state of PSA is as-
signed to working. The availability of PSA is as-
signed to be 1. T12 runs alike with T6.
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Table 3: Failure data and maintenance policy of FPSO system.

Components FR/ h−1 RT/ h Maintenance
PSA,PSB,PSC 2.63e-4 8.2 PM+CM
EPA,EPB1,EPB2,EPC 5.51e-4 32.7 CM
COBT 1.63e-4 30.3 CM
HE1,HE2 2.00e-4 8.9 PM+CM
TCP,EDHP,EDSP 2.63e-4 8.2 PM+CM
BP1,BP2,BP3 1.03e-3 5.0 CM
PH1,PH2 6.96e-5 42.2 CM
SWC 9.78e-5 70.0 CM

• T7 is enabled if PSA is working and PSA is not
in the PM state. After firing T7, PSA is assert-
ed to be in PM state. The availability of PSA is
assigned to be 0.

• T8 is enabled once the preventive maintenance
team is available. After its firing, the preventive
maintenance team becomes unavailable.

• After firing T9, PSA is asserted to be out of P-
M state, the PM team turns into available. The
availability of PSA is assigned to be 1.

The modeling of platforms B and C is similar to
platform A. Figures A1 and A2 in the end of the paper
show the SPNs of the platforms and the FPSO sub-
system, respectively. The three platforms are in paral-
lel relationship, but they are dependent, because they
share the same preventive and corrective repair teams.
Based on the logic understanding and the preliminary
risk assessment of the system, we assume that the fail-
ure of PHs, EDHP, EDSP and SWC cannot lead to the
failure of the FPSO subsystem.

Finally, we obtain the whole SPN model of the F-
PSO system with 89 places and 112 transitions. 74
of the transitions are deterministic (with 62 instanta-
neous) and 38 of them are exponentially distributed.

The predicated oil yield (production) of the FPSO
system Y (t) is given by:

Y (t) = AF (AAYA +ABYB +ACYC) for t > 0 (1)

where AF is the availability of the FPSO subsys-
tem. AA and YA are the availability and oil yield of
platform A, respectively. It is similar when it comes
to platforms B and C. At each time, we can compute
the total yield after attaining the availabilities of the
subsystems.

The production availability of the FPSO system
P (t) is defined as:

P (t) =
Y (t)

E(t)
for t > 0 (2)

where E(t) is the expected oil yield of the FPSO
system, which can be obtained from Table 1.

5 NUMERICAL RESULTS

5.1 Input data

Table 3 shows the failure rate (FR), the repair time
(RT) and the maintenance policy of the platforms and

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

O
il 

yi
el

d 
/ 1

04 
m

3

Year/ a

Predicated-PM1
Predicated-PM2
Predicated-PM3
Expected

Figure 3: Expected and predicated annual oil yields of the FPSO
system .

FPSO subsystem (OREDA Participants 2002). In our
experiments, we use the GRIF package, a tool de-
veloped by TOTAL (2014). By employing the GRIF-
Predicates Petri Nets Module, the SPN model of the
FPSO production system can be attained.

5.2 The production availability results

The number of histories (the number of Monte Carlo
simulations) in our case is 20,000. We use Equation 1
to compute the predicated oil production output of the
FPSO system.

Figure 3 shows the comparison of the predicat-
ed and expected oil production of the FPSO system,
under different preventive maintenance policies. The
predicated oil yield shares the alike tendency with the
expected one. The results show that the increase of
the PM duration time can decrease the predicated oil
yield, and the growth of the PM period time can bring
the contrary results. This figure reveals that the pred-
icated oil yield is less than the expected one, thus the
production availability ought to be paid attention to.

Figure 4 demonstrates the cumulative oil losses
under three PM policies, which are 99.02, 129.22,
78.66×104m3, respectively. Because the ratio of PM
duration time to period time of the PM level 2 is rela-
tively larger than the one of PM1 and PM3, the FPSO
system with PM2 policy can generate more oil losses.
Although the oil loss seems little than the cumulative
oil yield, the economic effect of the oil loss (produc-
tion unavailability) cannot be ignored.

Table 4 indicates that the availability and the pro-
duction availability of the FPSO system are different
in our case. The system availability is attained from
the logic relationship of the components. Whereas
the production availability is obtained by the ratio of
predicated and expected production outputs. Based on
Equation 1, the difference of the two availabilities can
be caused by the different oil yields of the platforms.
The choice of PM3 policy can attain a higher produc-
tion availability. From the results, we learned that this
FPSO system is highly reliable and available.
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Table 4: Production availability and system availability under d-
ifferent preventive maintenance policies.

PM policies PM1 PM2 PM3
Production availability 0.9541 0.9403 0.9636
Availability 0.9943 0.9920 0.9964

6 CONCLUSION

Stochastic Petri nets made it possible to assess the
production availability of the FPSO system. The re-
sults we obtain are very interesting from an indus-
trial standpoint. Our study shows however that SPN
are quite difficult to master when the system under s-
tudy gets complex. Without our assumptions, the SP-
N model can become more complex. SPN models are
relatively easy to design, but quite hard to update and
revise. It makes us a bit worrying since the models
we shall design in the next phases of our study will
get even more complex so to take into account inter-
actions and working conditions.

Therefore, we think about moving to other model-
ing formalisms. For instance, the reliability block dia-
grams (RBD) driven Petri nets is regarded as effective
way to improve the readability and the understand-
ability of PNs (Signoret et al. 2013).

We are also planning to use a higher level modeling
language like AltaRica (Boiteau et al. 2006), which
is considered as more powerful when it comes to the
modeling flexibility, efficiency and understandability.
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Figure A1: Stochatic Petri nets of three platforms.
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Figure A2: Stochatic Petri nets of the FPSO subsytem.
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Appendix B

Modeling Patterns for Production
Performance Analysis

Production systems own shared behaviors, so-called modeling patterns, like the single-input-
single-output physical structure and the preventive maintenance strategy. In this chapter, we
show our work of pattern-based production performance analysis1.

To ease modeling missions when analyzing the production performance, we propose a set
of modeling patterns. We implement modeling patterns, which capitalize the modeling knowl-
edge, with the AltaRica 3.0 modeling language. We apply proposed modeling patterns on a prac-
tical offshore installation. Results generated by using modeling patterns agree well with the ones
in literature. Our study indicates that it is beneficial to reuse the capitalized knowledge for mod-
eling production systems. In summary, highlights of this work are:

• A set of modeling patterns for production availability analysis is proposed.
• Modeling patterns are defined and classified.
• Modeling patterns are applied on a complex production system.
• Comparison is conducted between results from literature and those from using modeling

patterns.

1H. Meng, L. Kloul, A. Rauzy. Modeling patterns for performance analyses of offshore production systems, Pro-
ceedings of the 27th International Ocean and Polar Engineering Conference, International Society of Offshore and
Polar Engineers (ISOPE 2017), San Francisco, California, USA, Jun. 2017: 1199-1205.
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ABSTRACT

To ease the modeling missions when analyzing the production perfor-

mance, we proposed a set of modeling patterns. The production systems

own shared behaviors, the so-called modeling patterns, like the single-

input-single-output physical structure and the preventive maintenance

strategy. We implement the modeling patterns, which capitalize the mod-

eling knowledge, with the AltaRica 3.0 modeling language. We apply the

proposed modeling patterns on a practical offshore installation. The re-

sults generated by the modeling patterns agree well with the ones in the

literature. Our study indicates that it is beneficial to reuse the capitalized

knowledge for modeling the production systems.

KEY WORDS: Modeling patterns; Production performance; AltaRica

3.0 modeling language; Offshore installation.

INTRODUCTION

The performance of the production system is crucial for the process

industry, such as the oil and chemical plants. The production facil-

ities in process industry confront two types of risk. First, the low-

probability/high-consequence incidents, like the severe accidents (such

as the fire and explosion), are constantly attracting high attention from

both industry and society. Second, the high-probability/low-consequence

incidents (Signoret, 2010), like the production losses, require further fo-

cus from the stakeholders of the production systems.

Several definitions for assessing the production system are commonly

utilized. Production performance is the capacity of a system to meet

demand for deliveries or performance (NORSOK,1998; ISO, 2008).

Production-performance analysis refers to the systematic evaluations

and calculations carried out to assess the production performance (NOR-

SOK,1998; ISO, 2008). Conducting production-performance analyses

contributes to assess the production losses, thus to check if the system

complies with the production requirements. Production availability can

measure the production performance, which is the ratio of real produc-

tion to the expected production, or to a reference level, in a period of time

(NORSOK,1998; ISO, 2008).

Modeling the production systems is challenging when the systems are

complex. It is resource-consuming when the updates of these models

are required. The models are expected to be improved by increasing the

capability for updating and maintaining the models in the life-cycle of the

systems. The high-level modeling languages are alternatives for dealing

with these issues.

The formal modeling formalism, such as the AltaRica 3.0 modeling lan-

guage (Prosvirnova et al., 2013; Prosvirnova, 2014; Lipaczewski et al.,

2015; Bateaux et al., 2015), is more near to the targeted systems and eas-

ier to be updated in different life phases of the system. AltaRica 3.0 is

dedicated to safety and performance analyses (Prosvirnova et al., 2013;

Prosvirnova, 2014; Lipaczewski et al., 2015; Bateaux et al., 2015).

An advantage of the formal modeling languages is to reuse the models

of components or even subsystems (Prosvirnova, 2014). There are two

ways for attaining such an objective: reuse of components (objective-

oriented) and modeling patterns (prototype-oriented) (Prosvirnova,

2014). The reuse of components comes directly from programming

languages, like C++, or modeling languages, like Matlab/Simulink and

Modelica (Fritzson, 2010). The reuse of the modeling patterns is to begin

with an existing code, duplicate and adapt it to meet the specific require-

ments (Prosvirnova, 2014).

The experience shows that it is rewarding to employ the modeling pat-

terns in AltaRica environment (Kehren, 2005). When assessing the per-

formance of a production system, the modeling patterns are expected to

relieve the modeling task. The benefits from using modeling patterns

are: first, the modeling experience is capitalized; second, the blank can

be avoided at the initial stage and the systems can be abstracted at a rea-

sonable level.

The objective of this article is to illustrate how to analyze the production

performance using the capitalized modeling knowledge. In this article,

we propose the modeling patterns for performance analysis of production

systems, especially in process industry. The applicability of the modeling

patterns is tested with an offshore production system.

The rest of this paper is structured as follows. First, we review the related

works. Second, an offshore production system is illustrated as a running

example. The modeling patterns found in the system are listed as well.

Third, we propose the formal definitions of the modeling patterns and

implement the modeling patterns with AltaRica 3.0 modeling language.

Eventually, we present the methodology to recognize the modeling pat-

terns and apply them for modeling the production system.

RELATED WORKS

Production-performance analyses
The standards issued by NORSOK and ISO give basic guidelines for

production-performance analyses (NORSOK,1998; ISO, 2008). Analyt-

ical and simulation methods are utilized for evaluating the production

performance (Aven,1987; Vesteraas, 2008). Simple systems can be eval-

uated using the analytical methods. In practice, most of the systems are

evaluated with simulation methods.

The production availability of an offshore production plant is studied us-

ing the Monte Carlo simulation (Zio et al., 2006). This offshore test case

is part of an European thematic network SAFERELNET. SPN (Stochas-

tic Petri Nets) is employed to study the production performance of the
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same system (Briš et al., 2006).

SPN is also used for calculating the production availability of the top-

side (Meng et al., 2015) and subsea part (Zhang et al., 2014) of the FPSO

(Floating Production, Storage and Offloading unit).

An oil production system is proposed and analyzed using (Rauzy, 2004).

The performance of this multi-state production system is also evaluated

with AltaRica Data-Flow language (Boiteau et al., 2006), the 2.0 version

of the AltaRica language.

Modeling experience can be obtained from the above studies. Few re-

search reports the methodology to reuse such knowledge to analyze the

production performance.

Modeling patterns
Pattern can be utilized for reusing the capitalized knowledge, which was

formally proposed in civil engineering (Alexander, 1977). The concept

was adopted in software engineering afterwards, which was known as

design patterns (Gamma et al., 1995). The design patterns are descrip-

tions of communicating objects and classes that are customized to solve

a general design problem in a particular context (Gamma et al., 1995).

Some pattern-related concepts try to provide a general framework of

reusing patterns. The pattern based system engineering (PBSE) was pro-

posed, whose procedure includes the pattern definition and system devel-

opment with patterns (Hamid et al., 2016). The dependability pattern is

proposed (Hamid et al., 2016), which is defined as the description of a

particular recurring dependability problem that arises in specific contexts

and presents a well-proven generic scheme for its solution.

Basing on the modeling experience of several aircraft systems using Al-

taRica Data-Flow language, the safety architecture patterns (SAP) are

proposed to simplify the modeling missions (Kehren, 2005). SAP are

the component assemblies used to ensure the safety of the architec-

tures (Kehren, 2005). The application of SAP can be found in the avion-

ics domain (Kehren, 2005; Morel, 2014).

A library of patterns is proposed to capture known solution algorithms

and architectural measures/constraints (Khalil et al., 2014). This library

focuses on the safety mechanisms in the automotive domain.

The aforementioned pattern-related studies focus on safety do-

mains (Kehren, 2005; Morel, 2014; Khalil et al., 2014), which cannot

be applied directly to evaluate the production performance.

RUNNING EXAMPLE

We have modeled several production systems (Kawauchi et al., 2002;

Rauzy, 2004; Zio et al., 2006; Meng et al., 2015), with the system

in (Kawauchi et al., 2002) is a production facility, the system in (Rauzy,

2004) is an oil production system, the system in (Zio et al., 2006) is a

SAFERELNET offshore installation, and the one in (Meng et al., 2015)

is a FPSO.

The SAFERELNET system (Signoret, 2000; Zio et al., 2006) encom-

passes many modeling difficulties encountered when conducting studies

related to the production processes (Signoret, 2000). We consider this

SAFERELNET production system, an offshore installation, as a running

example throughout this study.

Figure 1 shows the flow diagram of the SAFERELNET system. SEP

(Separation unit) divides the flow from the well (WEL) into three types

of flows: gas, oil and water. The separated gas firstly flows to two

parallel Turbo-Compressors (TC1 and TC2), and then to TEG (Tri-

Ethylene Glycol) for dehydration. Before the final gas export, there

are three gas flows which are employed for fueling and lifting opera-

tions. One part of the fuel gas returns to support the work of TCs, while

the other part of fuel gas flows assists the electricity generation in TGs

(Turbo-Generators). The obtained electricity is utilized by units TEG,

EC (Electro-Compressor), OPS (Oil Pumping System) and WPS (Wa-

ter Pumping System). Finally, the lift gas flow goes back to the well

for assisting well production. The isolated oil flow is exported through

OPS. To maintain the well pressure, the separated water is sent for water

injection through WPS.
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Fig. 1 Flow diagram of the SAFERELNET system, redraw

from (Signoret, 2000; Zio et al., 2006).

Three types of preventive maintenance are considered for TCs and TGs,

where the preventive intervals are every 2160h, 8760h, and 43800h (Zio

et al., 2006). Moreover, the corresponding preventive maintenance dura-

tions are different. The required data for analyzing the production perfor-

mance of SAFERELNET system are too numerous to list here, but can

be found in (Zio et al., 2006).

MODELING PATTERNS

A modeling pattern (MP) is a modeling means which allow of modeling

recurrent behaviors and structures. In the following, we distinguish be-

tween the functional and the physical modeling patterns. These patterns

are extracted from the studied systems (Kawauchi et al., 2002; Rauzy,

2004; Zio et al., 2006; Meng et al., 2015).

Functional modeling patterns
Functional modeling patterns capture shared behaviors between the sys-

tems. Figure 2 provides the following functional modeling patterns.

(1) PERFECT pattern: it stands for the perfect components, which are

always working and cannot fail. In the SAFERELNET system (Figure 1),

units WEL, SEP, OPS, WPS are modeled using such a pattern.

(2) CorrectiveMaintenance pattern: it models the repairable com-

ponents. The repairable components have three states, which are

WORKING, FAILED, and UNDER REPAIR. The component stays initially

in the WORKING state. Once a failure occurs, the component turns into

the FAILED state. If the corrective repair crew is available, the compo-

nent state becomes UNDER REPAIR. Subsequently, the component returns

to WORKING state once the repair operation is completed. In the SAFER-

ELNET system, unit TEG can be modeled using this pattern.

(3) PreventiveMaintenance pattern: it represents the repairable

components with preventive maintenance. This can be seen as the

CorrectiveMaintenance pattern to which the preventive maintenance

action is added. Thus in addition to the transitions described in

the CorrectiveMaintenance pattern, once the preventive interval is

reached and the preventive maintenance crew is available, the component

becomes UNDER MAINTENANCE. The component returns to the WORKING

state once the preventive maintenance is finished. In the SAFERELNET

system, unit EC can be modeled using such a pattern.

(4) DEGRADATION pattern models the degraded behaviors between the

WORKING and FAILED states. When the component degrades, it becomes

less available and more vulnerable. Once there is a degradation, the
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Fig. 2 Functional modeling patterns.

component transfers to DEGRADED state. If the corrective repair crew

is available, the component state turns into UNDER DEGRADEDREPAIR.

The degraded component can also fall into the FAILED state. Once

the corrective repair crew is available, the component transfers from

WORKING to UNDER REPAIR. The component returns to WORKING once

the repair is finished. Once the preventive interval is reached and

the preventive maintenance crew is available, the component becomes

UNDER MAINTENANCE. In the SAFERELNET system, units TCs and TGs

can be modeled using this pattern.

(5) STANDBY pattern models the standby behaviors. The standby com-

ponents with corrective maintenance adds the STANDBY state to the

CorrectiveMaintenance pattern. The initial state of the component

is STANDBY. When there is a demand, the component becomes WORKING.

After repair, the component returns to STANDBY state. There is no such

a pattern in SAFERELNET system. An example is a standby booster

pump in FPSO (Meng et al., 2015).

Physical modeling patterns
The physical modeling patterns capture the structures which are similar

in the systems. There are two types of physical modeling patterns. One

type of the patterns is based on the input and output flows (component-

level). The other patterns are based on the structure interactions between

the components (subsystem-level). Figure 3 shows the physical modeling

patterns.

The component-level physical modeling patterns mainly include the

SOURCE, SISO, MIMO, SIMO, and SINK patterns.

(1) SOURCE pattern has only outputs, which runs under particular condi-

tions. Units WEL, TG1 and TG2 in SAFERELNET system are modeled

with such a pattern. WEL produces three outflows (gas, oil and wa-

ter) under different conditions. TG1 and TG2 generate electricity for the

components TEG, EC, OPS and WPS, with the condition that there is

gas fueling the generators.

(2) SISO (Single-Input-Single-Output) pattern has one inflow and one

outflow. Units TC1, TC2, OPS, WPS and EC in SAFERELNET system

are modeled with the SISO pattern. The conditions for the working of

TC1 and TC2 are the capacity limit and adequate fuel gas. The prereq-

uisites for running OPS, WPS and EC are sufficient electricity from TG1

and TG2.

(3) MIMO (Multiple-Input-Multiple-Output) pattern has at least two in-

flows and two outflows. Unit SEP in SAFERELNET system is a MIMO

structure. The three inflows come from WEL, and the four outflows turn

into TC1, TC2, OPS and WPS. There is a capacity constraint for SEP,

which processes the limited oil, gas and water.

(4) SIMO (Single-Input-Multiple-Output) pattern splits one inflow into

multiple outflows. Unit TEG in SAFERELNET system is a single-

inflow-multi-outflow structure. The inflow comes from the combination

of the outflows of TC1 and TC2. Part of the outflows goes to TC1, TC2,

TG1 and TG2 as fuel gas. Part of the outflows turns into WEL, may via

EC when EC works, for gas lift. The residual is the final output gas of

the system.

(5) SINK pattern models the physical structure that only has inflows.

There is no such a pattern in the SAFERELNET system. This pattern

can be used to model a tank in an oil production system (Rauzy, 2004).

The subsystem-level pattern is composed of several component-level pat-

terns. The subsystem-level physical modeling patterns mainly include

the SERIES, PARALLEL, and KooN patterns.

(6) SERIES pattern describes the series structure. SERIES models the

series connection of several SISO patterns. The primary separator and

efflux pump in FPSO (Meng et al., 2015) are modeled using such a pat-

tern.

(7) PARALLEL pattern describes the parallel structures. It models the par-

allel connection of several SISO patterns. In SAFERELNET system,

units TCs and TGs can be modeled using this pattern.

(8) KooN (k-out-of-n) pattern describes the structure which works when

at least k of the total n items must be functioning. An example is the

booster pumps in FPSO, which is a 2-out-of-3 structure (Meng et al.,
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Fig. 3 Physical modeling patterns.

2015).

DEFINITIONS OF MODELING PATTERNS

In this section, we formally define the modeling patterns. The modeling

patterns are first defined from the functional and physical viewpoints.

Subsequently, the modeling patterns are given by integrating both the

functional and physical ones.

A functional modeling pattern (FMP) is a shared functional behavior in

the production systems. For example, the repairable and degradation

behaviors are two independent functional modeling patterns. The pattern

resulting from the combination of these patterns is also a functional mod-

eling pattern. FMP construction relies on the finite-state automata of the

patterns (see e.g. (Rosen, 2011)). Here we provide the formal definition

of FMP first.

Definition 1. A functional modeling pattern is the tuple

〈S,S0,S f ,T ,D〉 where:

• S is a finite set of states.

• S0 is a finite set of initial states, S0 ⊆ S.

• S f is a finite set of final states, S f ⊆ S.

• T is a finite set of state transitions. A transition t ∈ T can be

immediate or be associated with delayed.

• D is a finite set of demands. The demand is a Boolean variable.

The set S f can be empty. It is nonempty when the component is non-

repairable. T can be omitted when encountering the perfect behavior. D
stands for the pre-conditions for some transitions in cold-standby com-

ponents.

Example 1: Consider the STANDBY pattern in Figure 2 as an example:

• S = { STANDBY, WORKING, FAILED, UNDER REPAIR }.
• S0 = { STANDBY }. The initial state is STANDBY.

• S f = ∅. There is no final state in STANDBY pattern.

• T = { start, failureOnDemand, failure, startRepair, endRepair }.
• D = { demand }. There is a demand in STANDBY pattern.

A physical modeling pattern (PMP) is a shared structural behavior in the

production systems. For instance, a Single-Input-Single-Output structure

is a PMP. Here we give the formal definition of the PMP.

Definition 2. A physical modeling pattern is defined by the tuple

〈Fin,Fout,Sc,Ccap,Ccon,I〉 where:

• Fin and Fout are the finite sets of inflows and outflows of the phys-

ical structures, respectively. Fin and Fout are disjoint sets, that is,

Fin
⋂
Fout = ∅. The values of the flows can be Boolean, integer

or floating-point numbers.

• Sc stands for the current state of the physical structure, Sc ⊆ S.

• Ccap is a finite set of capacity constraints on the physical structure

• Ccon is a finite set of condition constraints on the physical struc-

ture. The condition is a Boolean variable.

• I is a finite set of indicators with regard to the system stages. An

indicator i ∈ I is defined by a tuple 〈i0,Ti〉:

– i0 is the initial indicator of the system, i0 ∈ I.

– Ti is a set of transitions between the indicators.

For each PMP, Fin � ∅ or Fout � ∅. In extreme situations, such as SINK

pattern, only Fin is required. Similarly, SOURCE pattern has only Fout.

The functional modeling pattern provides the current state Sc for the

physical ones. This one represents the connection between both types

of modeling patterns.

The set Ccap can be empty because some structures may be assumed to

handle unlimited capacities. Similarly, the set Ccon can be empty as well.

For example, the required gas for the turbo-generator in the offshore in-

stallation is treated as a condition constraint, not as an inflow. This is

because the materials of inflow and outflow are not identical.
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The set I is often used in the looped structures. Normally we assume

that I = { 0, 1, 2 }. 0 indicates that the system is at the initial stage,

which needs to be launched to work. 1 means that the system is failed. 2

represents that the system returns to work after repair, if it is repairable.

Example 2: Consider a SISO (Single-Input-Single-Output) pattern,

which works with the CorrectiveMaintenance pattern:

• Fin = { InFlow }.
• Fout = { OutFlow }.
• Sc = { WORKING, FAILED, UNDER REPAIR }. Sc is provided by

the CorrectiveMaintenance pattern.

• Ccap = { 80% }. We assume the capacity constraint is 80%.

• Ccon = { true, false }.
• I = { 0 }. With regard to SISO pattern, this is the only indicator

and there is no indicator transition.

After defining the physical and functional modeling patterns, we give

the definition of the modeling patterns. Modeling patterns can be di-

rectly utilized for modeling the targeted production systems. When

modeling the targeted systems, functional modeling pattern and physi-

cal modeling pattern work jointly to complete the mission. We define

the modeling pattern (MP) by integrating the FMP and PMP. For ex-

ample, a PreventiveMaintenance pattern which works with the SIMO

pattern belongs to MP. Note that FMP and PMP are disjoint sets, that is,

FMP
⋂

PMP = ∅.

Definition 3. A modeling pattern is a tuple

〈S,S0,S f ,T ,D,Fin,Fout,Sc,Ccap,Ccon,I〉. The notations are

those in Definitions 1 and 2. The set S in FMP provides current state Sc

in PMP.

MODELING PATTERNS IMPLEMENTATION

In order to implement the library of defined modeling patterns, we con-

sider using the AltaRica 3.0 modeling language. The Guarded Transition

Systems (GTS), which is the mathematical foundation of the AltaRica

3.0 modeling language, is formally defined in (Rauzy, 2008). A GTS is

a quintuple 〈V, E,T, A, ι〉 where V is a finite set of variables, E is a finite

set of events, T is a finite set of transitions, A is an assertion and ι is the

initial assignment of variables (Rauzy, 2008).

GTS is capable of implementing the elements in the modeling patterns:

• V can model S and S f in FMP, as well as Fin, Fout, Sc and I in

PMP.

• E can model T in FMP and Ti in PMP.

• T can modelD in FMP, as well as Ccap and Ccon in PMP.

• A is the instruction of variable in V .

• ι can model S0 in FMP and I0 in PMP.

We implement the proposed modeling patterns, which are listed in Fig-

ures 2 and 3, using AltaRica 3.0 language. Here we use an example to

show how to implement the modeling patterns.

Example 3: The repairable components with one inflow and one out-

flow are commonly found in the production systems. The required

SISO CorrectiveMaintenance pattern is implemented using AltaR-

ica 3.0 language, as it is depicted in Figure 4, which can be obtained by

integrating SISO and CorrectiveMaintenance patterns. As it is shown

in Figure 2 (2), the events failure, startRepair, and endRepair en-

code the transitions in Figure 4.

//�State�of�the�components
domain�ComponentState�{WORKING,�FAILED,�UNDER_REPAIR}

//�CorrectiveMaintenance���Functional�Modeling�Pattern
class�CorrectiveMaintenance

ComponentState�varState�(init�=�WORKING);

parameter�Real�Lambda�=�0.001;//failure�rate
parameter�Real�Mu�����=�0.1;��//repair��rate

event�failure�����(delay�=�exponential(Lambda));
event�startRepair�(delay�=�0);
event�endRepair���(delay�=�exponential(Mu));
transition

failure:�����varState�==�WORKING�������
�����������>�varState�:=�FAILED;
startRepair:�varState�==�FAILED��������
�����������>�varState�:=�UNDER_REPAIR;
endRepair:���varState�==�UNDER_REPAIR��
�����������>�varState�:=�WORKING;

end

//�SISO���Physical�Modeling�Pattern
class�SISO

Real�varInFlow��(reset�=�0.0);
Real�varOutFlow�(reset�=�0.0);

end

//�SISO_CorrectiveMaintenance���Modeling�Pattern
class�SISO_CorrectiveMaintenance

//�Integrate�CorrectiveMaintenance
extends�CorrectiveMaintenance;
//�Integrate�SISO
extends�SISO;�
assertion

varOutFlow�:=�if�varState�==�WORKING�
��������������then�varInFlow�else�0.0;

end

Fig. 4 AltaRica 3.0 code of SISO CorrectiveMaintenance.

MODELING PATTERNS RECOGNITION

By integrating the pattern recognition and the proposed modeling pat-

terns, we can conduct the modeling pattern recognition, which is the au-

tomatic process of classifying the components of a targeted production

system into different known modeling patterns. This work falls into the

domain of pattern recognition.

The field of pattern recognition is concerned with the automatic discov-

ery of regularities in data through the use of computer algorithms and

with the use of these regularities to take actions such as classifying the

data into different categories (Bishop, 2006). Since the input compo-

nents correspond to the targeted modeling patterns, the modeling pattern

recognition is a supervised learning problem. The modeling patterns in-

clude a finite number of discrete categories, thus the modeling pattern

recognition is also regarded as the modeling pattern classification.

We propose a methodology for modeling pattern recognition, as it is

shown in Figure 5.

• (1) Pre-processing: In this step, the functional and physical be-

haviors of the given production system are identified. Take the

SAFERELNET system as an example, the functional and physi-

cal modeling behaviors are listed in Figures 2 and 3.
• (2) Feature selection: Features are the characteristics which can

describe the targeted systems. Let F be the set of these fea-

tures, such that f1, ..., fn, where n is the total number of the

features. F = { f1, ..., fn} =
n
∪
i=1

fi. In SAFERELNET system,

F =
(

f1 f2 f3 f4 f5 f6 f7 f8

)
.
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Fig. 5 Methodology for modeling pattern recognition.

– f1 is the cardinality of the inflow setFin, that is, the number

of members in the set.

– f2 is the cardinality of the outflow set Fout.

– f3 is the cardinality of the set S.

– f4 is the cardinality of the transition set T .

– f5 is the cardinality of the demand setD.

– f6 is the cardinality of the capacity set Ccap.

– f7 is the cardinality of the condition set Ccon.

– f8 is the discriminatory feature for modeling patterns. For

instance, if we find the DEGRADED state in the component,

it can be modeled at least with the DEGRADATION pattern.

The features that can reflect the inherent characteristics of the

production system are selected. After reviewing the features,

we found that f6 and f7 do not allow to identify the model-

ing patterns because the capacity and condition constraints are

commonly found in the production systems. We select the

rest features for classifying the components in the production

systems. Here we obtain the selected feature vector F
′
=(

f1 f2 f3 f4 f5 f8

)
.

• (3) Classification: The components are classified into known

modeling patterns.
• (4) Decision making: The modeling pattern is decided based on

the classification results. The modeling patterns recognized in

SAFERELNET system are listed in Table 1.
• (5) Pattern-based Model: The production system is modeled us-

ing the recognized modeling patterns.

Table 1 Modeling patterns recognized in SAFERELNET system.

Modeling patterns Components

SOURCE PERFECT WEL

SOURCE DEGRADATION CorrectiveMaintenance TG1, TG2

PreventiveMaintenance

SISO PERFECT OPS, WPS

SISO DEGRADATION CorrectiveMaintenance TC1, TC2

PreventiveMaintenance

SISO CorrectiveMaintenance PreventiveMaintenance EC

SIMO CorrectiveMaintenance TEG

MIMO PERFECT SEP

SIMULATION RESULTS

The SAFERELNET system can be represented using the proposed mod-

eling patterns, as it is shown in Figure 6. The AltaRica model of this

system is established using the proposed modeling patterns. The used

modeling patterns are listed in Table 1. The simulation results are ob-

tained from the stochastic (Monte Carlo) simulation of AltaRica model.

The AltaRica model of SAFERELNET system is established using the

proposed modeling patterns. The used modeling patterns are listed in

WEL SEP OPS 

WPS 

TC2 

TC1 

OE 

WI 

TEG 

TG1 

TG2 

GE 

EC 

EC 
works? NO 

YES 

SOURCE 
SIMO MIMO 

WEL 

TC1 

TC2 

OPS 
WPS 

TEG 

EC 

SISO 
conditions 
flows 

Fig. 6 Modeling patterns-based presentation of SAFERELNET

system.

Table 1. The results are obtained from the stochastic simulation (Monte

Carlo simulation) of AltaRica model. We conducted experiments with

three cases. Case A is the system without preventive maintenance. Case

B refers to the system as perfect without failure, but the system is op-

erated with preventive maintenance. Case C reflects the real situation in

which the system runs with both corrective and preventive maintenances.

In the experiments, the simulation histories (Monte Carlo simulations)

are 105. The mission time in cases A, B, C are 103h, 104h, 5 × 105h,

respectively (Zio et al., 2006).

Table 2 shows the comparison of the production availabilities of SAFER-

ELNET system with the results in (Zio et al., 2006). The results reveal

that the production availabilities in cases A and B are higher than the ones

in case C. The outcome is rational, which shares the same tendency as

the results in (Zio et al., 2006). When the system components are perfect

without failure (no downtime caused by the corrective maintenance), the

production availability becomes higher. Thus the production availability

in case A is higher than the ones in case C. Given that the components

in the system run without preventive maintenance (no downtime gener-

ated by the preventive maintenance), the production availability becomes

higher. Hence the production availability in case B is higher than the ones

in case C.

Table 2 Production availabilities of SAFERELNET system.

Cases Production availability Gas Oil Water

A Results in (Zio et al., 2006) 0.9726 0.9974 0.9577

Our results 0.9570 0.9848 0.9564

B Results in (Zio et al., 2006) 0.9763 0.9970 0.9730

Our results 0.9711 0.9898 0.9758

C Results in (Zio et al., 2006) 0.8858 0.9588 0.9573

Our results 0.8860 0.9577 0.8875

CONCLUSION

We studied the production-performance issue with a viewpoint of how

to reuse the capitalized knowledge. Many approaches have been utilized

to assess the production performance, such as the analytical methods,

Markov approach, Petri nets, Monte Carlo simulation, and AltaRica lan-

guage. Currently, few studies have concerned about how to reuse the

modeling experience of the production systems.

Our results demonstrate that it is beneficial to employ the capitalized

knowledge. We propose the modeling patterns for performance analyses

of the production systems. The modeling patterns are implemented with
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the AltaRica 3.0 modeling language. An offshore production system is

studied. This work indicates that the modeling patterns allow us to model

the production systems in a modular way. The methodology in this paper

could also serve as a hint for establishing the modeling patterns in other

domains.

Since the proposed modeling patterns are based on a limited set of pro-

duction systems, these modeling patterns can be improved to cover more

system behaviors. The modeling patterns here cannot be applied to

model the systems with chemical reactions. That is, we generally con-

sider the upstream oil and gas plants, but not the systems like the oil

refineries and petrochemical plants.
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Appendix C

Modeling Patterns for Reliability Analyses of
Safety Systems

Safety Instrumented Systems (SIS) act as important safety barriers in industrial systems for pre-
venting hazardous accidents. It is therefore significant to study the reliability of SIS, which have
been investigated extensively. As a matter of fact, SIS have common behaviors such as periodic
test policies to discover dangerous undetected failures. Modeling patterns capitalize the expe-
rience from modeling SIS. By reusing modeling patterns, modeling mission can be simplified
when assessing the reliability and availability of systems. Few studies related to SIS have been
conducted on patterns for reliability assessment. In this chapter, we show our work of pattern-
based reliability analyses of safety systems1.

This work proposes a pattern-based methodology for reliability assessment of SIS. To demon-
strate its applicability, the proposed methodology is applied on an emergency depressurization
system provided in an ISO technical report (ISO/TR 12489). The comparison is performed be-
tween results obtained using given modeling patterns and the ones from ISO/TR 12489. It is
shown that the pattern-based methodology can serve as an effective tool for modeling SIS in a
modular way. In short, highlights of this study are:

• A pattern-based methodology for reliability assessment of SIS is put forward.
• A set of modeling patterns for reliability assessment of SIS is proposed.
• Proposed methodology is applied on an emergency depressurization system.

1H. Meng, L. Kloul, A. Rauzy. A pattern-based methodology for reliability assessment of safety instrumented sys-
tems, Proceedings of the 2017 IEEE International Symposium on Systems Engineering (ISSE 2017), IEEE Systems
Council, Vienna, Austria, Oct. 2017: 438-443.
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Abstract—Safety Instrumented Systems (SIS) act as important
safety barriers in industrial systems for preventing hazardous
accidents. It is therefore significant to study the reliability issues
of SIS. As a matter of fact, SIS have common behaviors such as
periodic test policies to discover dangerous undetected failures.
Modeling patterns capitalize the experience from modeling SIS.
By reusing modeling patterns, modeling mission can be simplified
when assessing reliability and availability of systems. Few studies
related to SIS have been conducted on patterns for reliability
assessment. This paper proposes a pattern-based methodology
for reliability assessment of SIS. To demonstrate the applicability,
the proposed methodology is applied on an emergency depres-
surization system provided in an ISO technical report (ISO/TR
12489). The comparison is performed between results obtained
using given modeling patterns and the ones from ISO/TR 12489.
It is shown that the pattern-based methodology can serve as an
effective tool for modeling SIS in a modular way.

I. INTRODUCTION

Safety Instrumented Systems (SIS) play an important role

in industrial plants for preventing hazardous accidents. These

systems are composed of sensors (e.g. pressure sensors),

logic solvers (e.g. programmable logic controllers), and final

elements (e.g. isolation valves). Logic solvers translate sig-

nals transmitted from sensors into decisions made on final

elements. SIS have attracted a lot of attention from various in-

dustrial sectors. Associated standards are proposed in specific

industries, such as the process industry, the nuclear power in-

dustry, the machinery industry, the automotive systems, as well

as the railway systems. The main standard is IEC 61508 [1].

Sound performance of SIS is crucial for Equipments Under

Control (EUC). It is therefore significant to study the reliability

issues of SIS.

Reliability studies of SIS have been conducted tremendously

(see e.g. [2]–[5]). Many aspects related to SIS have been

investigated, including proof tests, k-out-of-n voting structures,

common cause failures, spurious failures, human and organi-

zational factors, uncertainty, and optimization issues.

Models and modeling experience are expected to be capi-

talized, otherwise, the modeling activity is hardly profitable.

Patterns can be utilized for reusing the stabilized knowledge.

Reliability studies can benefit from reusing modeling patterns.

However, few studies have been carried out on modeling

patterns for reliability assessment of SIS.

The pattern was initially proposed in civil engineering [6].

The concept was adopted in software engineering subsequently

as the design pattern [7]. This one promotes design reuse,

conforms to a literary style, and defines a vocabulary for

discussing design [8].

A modeling pattern is a general means allowing to capture

the frequently recurrent component and subsystem behaviors

in industrial systems. Some researchers try to provide a

general framework of reusing patterns. The pattern based sys-

tem engineering was proposed [9], whose procedure includes

the pattern definition and the system development with pat-

terns [10]. The reuse of systems and subsystems is a common

practice in safety-critical systems engineering [11]. To reuse

system behaviors, we need to standardize the representation

of reusable components and figure out the way they exchange

information [12]. The whole point of a pattern is to reuse,

rather than to reinvent [8].

An advantage of high-level modeling languages, like AltaR-

ica [13], [14], is to reuse models of components or even sys-

tems [13]. The AltaRica modeling language is especially well

suited for safety analyses [13], [14]. The AltaRica language

is introduced in IEC 61508 as a technique for calculating the

probabilities of hardware failures in SIS [1]. The language is

also mentioned in ISO/TR 12489 [2].

To reuse modeling patterns, a methodology is the pre-

requisite when assessing reliabilities of SIS. Two benefits

are expected with such a particular procedure: first, one can

follow steps to analyze the reliability of a SIS via modeling

patterns; second, people can propose their own pattern-based

methodology in a similar way.

In this article, we develop a pattern-based methodology

for reliability assessment of SIS. We classify modeling pat-

terns into different categories. Proposed modeling patterns are

implemented with the AltaRica 3.0 modeling language. The

methodology is tested with a SIS in ISO/TR 12489.

The rest of this paper is organized as follows. Section II

reviews related works. Section III is dedicated to modeling

patterns extracted from SIS in ISO/TR 12489. Section IV de-

velops a pattern-based methodology for reliability assessment

of SIS. Section V studies an emergency depressurization sys-

tem to illustrate the application of the proposed methodology.

Finally, Section VI concludes this work.
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II. RELATED WORKS

Patterns have been discussed in reliability and safety do-

mains [15]. Patterns related to accident analyses are investi-

gated in traffic domain [16] and industrial plants [17], whereas

these studies employ statistical methods to discover patterns of

accident causes. The dependability pattern is proposed in [10].

It is defined as the description of a particular recurring depend-

ability problem that arises in specific contexts and presents a

well-proven generic scheme for its solution. Resilience design

patterns are raised to meet the demand of extreme-scale high-

performance computing systems [18].

From the modeling experience of several aircraft systems

using AltaRica Data-Flow language, Safety Architecture Pat-

terns (SAP) are proposed to simplify modeling missions [19].

SAP are component assemblies used to ensure the safety of

architectures [19]. The application of SAP can be found in

the avionics domain [19], [20]. Unlike their work [19], first,

we use the AltaRica 3.0 language, which has a different

mathematical foundation. The mathematical backgrounds of

AltaRica Data-Flow and AltaRica 3.0 are mode automata [21]

and guarded transition systems [22], separately. Second, we

propose patterns for modeling SIS aiming in process industry.

However, their work primarily locates in aviation industry.

Third, they mainly proposed the structured collection of re-

dundancy based architecture patterns. But we try to describe

behavioral, flow propagation, and coordination characteristics

of SIS with modeling patterns.

In a recent work [23], we propose the modeling patterns for

production-performance analyses. We apply proposed model-

ing patterns on a practical offshore installation. The two sets of

modeling patterns (in [23] and this article) share some patterns,

that is, CorrectiveMaintenance, SERIES, PARALLEL, and

KooN (k-out-of-n). However, most of patterns are different,

which include patterns for performance analyses of production

systems and patterns for reliability assessment of SIS.

Few studies related to patterns of SIS have been conducted.

Related works can be found in [2], [24], where the Reliability

Block Diagram (RBD) driven Petri Nets (PN) are proposed

for reliability analyses. The readability of PN is improved by

means of RBD.

III. MODELING PATTERNS

A Modeling Pattern (MP) is a general means allowing to

capture the frequently recurrent component and subsystem be-

haviors in process industry. Modeling patterns can be classified

according to their purpose, which reflects what a modeling

pattern works for. They can have either behavioral, flow prop-

agation, and coordination purpose. Behavioral Patterns (BP)

describe the basic behaviors of a component. For instance, the

repairable behavior is regarded as a basic character in SIS.

Flow Propagation Patterns (FPP) depict the flow propagations

inside or between components. Coordination Patterns (CP)

represent cooperations or synchronizations in a system, such

as repairable units and repair crews.

We choose SIS in ISO/TR 12489 as our running examples.

This is because these architectures are general enough to

cover most of safety systems [2]. In addition, these systems

are representative of most of reliability studies of safety

systems performed in petroleum, petrochemical, and natural

gas industries, as well as in other industries [2].

A. Behavioral Patterns
In this part, we introduce five BP, as shown in Figure 1,

which mainly capture shared component behaviors.

state == WORKING 

state== 
UNDER_REPAIR 

state == FAILED 

failure  

startRepair  endRepair  

state == WORKING state == FAILED 
failure  

PeriodicTest == FALSE PeriodicTest == TRUE 

periodicTest 

completeTest 

PeriodicTest == 
FALSE 

StartStaggeredTest == 
FALSE 

PeriodicTest == 
TRUE 

StartStaggeredTest == 
TRUE 

PeriodicTest == 
FALSE 

StartStaggeredTest == 
TRUE 

startStaggeredTest  

periodicTest 

completeTest 

PeriodicTest == 
FALSE 

PeriodicTest ==  
TRUE 

periodicTest 

state != DU ? 
completeTest 

state == FAILED 

state == OK state == DU 

failureDU  

PeriodicTest == TRUE? 
DU2DD 

WORK 

TEST 

startRepair  

state == UNDER_REPAIR 

endRepair  

( MP1 ) CorrectiveMaintenance Pattern  

( MP2 ) NonRepairable Pattern  

( MP3 ) PeriodicTest Pattern  

( MP4 ) StaggeredPeriodicTest Pattern  

( MP5 ) RevealUndetectedFailure Pattern  

Fig. 1. Behavioral Patterns.

(1) CorrectiveMaintenance pattern (Figure 1, MP1):

it models components which can be repaired after failure. The

component is initially working (state == OK). Once a failure

occurs, the component falls into FAILED state. When the

corrective maintenance team is available, the component state

becomes UNDER_REPAIR. Finally, the component returns to

the initial state once the repair operation is finished. This

pattern is used to model Dangerous Detected (DD) failures.

DD failures are detected a short time after their occurrence by

automatic diagnostic testing [3].
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(2) NonRepairable pattern (Figure 1, MP2): it mod-

els components which cannot be repaired after failure. The

component is initially in OK state. Once a failure occurs, the

component becomes FAILED. In SIS, Dangerous Undetected

(DU) failures are preventing activation on demand and can be

revealed only by periodic tests (i.e., proof tests) [3]. Part of

DU failures cannot be covered by imperfect periodic tests (i.e.,

the proof test coverage < 100%), such uncovered DU failures

can be modeled using this pattern. The rest part of DU failures

are covered by periodic tests, which are modeled by means of

the following pattern.

(3) PeriodicTest pattern (Figure 1, MP3): it models the

periodic test which can detect DU failures. Periodic tests are

conducted at predefined intervals and durations.

(4) StaggeredPeriodicTest pattern (Figure 1, MP4):

it models the staggered periodic test, which is thought to

allow obtaining higher availability than simultaneous tests.

Compared with a reference periodic test, the duration of the

first test interval in the staggered periodic test is different

from the duration of following test intervals. Initially, the

startStaggeredTest is triggered. Subsequently, the rest of the

pattern architecture becomes similar to the PeriodicTest
pattern.

(5) RevealUndetectedFailure pattern (Figure 1,

MP5): it models the process to detect DU failures and is based

on the CorrectiveMaintenance and PeriodicTest
patterns. Three issues of this pattern deserve to be underlined:

first, DU failures can only be discovered once the PeriodicTest
is true; second, the periodic test can be completed only after

DU failures are detected; third, revealed DU failure works

following the CorrectiveMaintenance pattern.

B. Flow Propagation Patterns

Flow Propagation Patterns (FPP) depict flow propagations

inside and between components. In the following, we illustrate

five FPP, as shown in Figure 2.

(6) SERIES pattern (Figure 2, MP6) describes the series

structure, which models series connection of several basic

patterns. The average unavailability of the SERIES pattern

ŪSERIES is:

ŪSERIES = 1− (1− ū1) (1− ū2) · · · (1− ūn) (1)

where ū1, ū2, · · · , ūn are average unavailabilities of com-

ponents C1, C2, · · · , Cn, respectively.

(7) PARALLEL pattern (Figure 2, MP7) depicts the par-

allel structures. It models the parallel connection of sev-

eral SERIES patterns. The average unavailability of the

PARALLEL pattern ŪPARALLEL is:

ŪPARALLEL = ū1ū2 · · · ūn (2)

where ū1, ū2, · · · , ūn are average unavailabilities of com-

ponents C1, C2, · · · , Cn, respectively.

(8) KooN (k-out-of-n: G) pattern (Figure 2, MP8) describes

the structure which works when at least k of the total number

k/n 

C1 

C2 

Cn 

C1 

C2 

Cn 

C1 C2 Cn 

( MP6 ) SERIES Pattern 

( MP7 ) PARALLEL Pattern 

( MP8 ) KooN (k-out-of-n: G) Pattern 

k/n 

C1 

C2 

Cn 

(k-1)/(n-1) 

C’1 

C’2 

C’n-1 

KooN (K-1)-out-of-(N-1)  

A dangerous failure occurs 

Dangerous failure is repaired 

( MP9 ) SwitchKooN Pattern 

subSystemState == 0 
(Initial state: out-work) 

subSystemState == 1 
(Working state) 

startDemand? initialStart 

subSystemState == 2 
(Failed state) 

systemFailure Subsystem i 

Subsystem i+1 Subsystem i-1 

Failed 
state 

Initial 
state 

startDemand 

( MP10 ) SequentialWork Pattern 

Fig. 2. Flow Propagation Patterns.

n of items must be functioning. The average unavailability of

the KooN pattern ŪKooN is:

ŪKooN = 1−
n∑

x=k

(
n

x

)
(1− ū)

x
ūn−x (3)

where components in KooN are usually identical, and ū is

the average unavailability of each component. Some typical

configurations of KooN structure are 1oo1 (i.e. single item),

1oo2, 2oo2, and 2oo3 [1].

(9) SwitchKooN pattern (Figure 2, MP9) depicts the

behavior of switching a KooN structure into (K-1)-out-of-

(N-1) structure when a DD or DU failure occurs. Once the
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failure is repaired, the structure is normally restored to KooN

structure.

The switched configuration, (K-1)-out-of-(N-1), can in-

crease the system availability. If there is no such a switch, the

structure is supposed to work as a K-out-of-(N-1) structure

after a failure. According to Equation (3),

Ū(K-1)-out-of-(N-1) − ŪK-out-of-(N-1) = −
(
n− 1

k − 1

)
(1− ū)

k−1
ūn−k

(4)

where Ū(K-1)-out-of-(N-1) and ŪK-out-of-(N-1) are the unavail-

abilities of (K-1)-out-of-(N-1) and K-out-of-(N-1) structures,

respectively.

Since −(
n−1
k−1

)
(1− ū)

k−1
ūn−k is a negative number,

Ū(K-1)-out-of-(N-1) < ŪK-out-of-(N-1). That is, the availability of

the (K-1)-out-of-(N-1) structure increases after switch, when

compared with the K-out-of-(N-1) structure.

Typically, if a dangerous failure (DD or DU) occurs in a

2oo3 structure, the logic solver changes the policy from 2oo3

to 1oo2.

(10) SequentialWork pattern (Figure 2, MP10) depicts

the multiple SIS which work in a sequential order.The failed

state of the previous subsystem i − 1 triggers the successive

subsystem i. This one is initially out of work (subSystemState
== 0). If the trigger action (startDemand) from subsystem i−1
is perfect, the subsystem i becomes working (subSystemState
== 1). If the subsystem i fails (subSystemState == 2), it can

trigger the working of subsystem i+1. Note that if the trigger

action is perfect, SequentialWork is equivalent to the

PARALLEL pattern.

C. Coordination Patterns

Coordination Patterns (CP) represent cooperations or syn-

chronizations in a system.

(11) Repairable unit/Repair crew Coordina-
tion pattern (Figure 3): it models limited repair crews in

SIS. The working state of the repair crew (RepairCrewWork)

is FALSE initially. If the number of busy repair crews (num-
berBusyCrew) is smaller than the total number of repair crews

(totalNumberCrew) and a repair is required by a repairable

unit, the repair is started. Simultaneously, 1 is added to num-
berBusyCrew. Adversely, 1 is decreased to numberBusyCrew
when a repair is completed.

RepairCrewWork == 
FALSE 

RepairCrewWork == 
TRUE 

numberBusyCrew < totalNumberCrew ? 
startRepair 

numberBusyCrew := numberBusyCrew + 1 ! 

numberBusyCrew > 0 ? 
endRepair 

numberBusyCrew := numberBusyCrew - 1 ! 

Fig. 3. Modeling pattern (MP11): Repairable unit/ Repair crew
Coordination.

IV. PROPOSED METHODOLOGY

Figure 4 describes the methodology to model SIS using

modeling patterns. This methodology is composed of four

steps: classification, pattern-based model, AltaRica 3.0 model,

and experimental results. We take typical application (TA)

1-1 in ISO/TR 12489 [2] as an example to illustrate this

methodology. As a basic architecture of SIS, TA 1-1 is formed

by a pressure sensor, a logic solver, and an isolation valve

working in series.

Classification  

Pattern-based 
model 

AltaRica 3.0 
model 

Experimental 
results 

Modeling 
patterns 

( 1 ) 

( 2 ) 

( 3 ) 

( 4 ) 

Target 
system 

Fig. 4. Pattern-based methodology for reliability assessment of safety
instrumented systems.

(1) Classification: In this step, we identify units to be

modeled and recognize corresponding modeling patterns. The

target system is initially decomposed into components and

subsystems. We identify modeling patterns that are required

to construct these components and subsystems.

Two components are modeled in TA 1-1, where the pro-

tected system is shut down during periodic tests and repairs.

Thus the activities related to the maintenance/repair are neg-

ligible when calculating the system unavailability. Since the

system unavailability of TA 1-1 is only generated by DU

failures, thus the logical solver (which only has DD failures)

has not been considered. The pressure sensor and isolation

valve are modeled by the RevealUndetectedFailure
pattern. These two components work in series, thus SERIES

pattern is used as well.

RevealUndetectedFailure
( MP5 ) 

Sensor Valve 
MP6 

RevealUndetectedFailure
( MP5 ) 

Fig. 5. Pattern-based model of the typical application 1-1 in ISO/TR 12489.

(2) Pattern-based model: Based on classification results, a

pattern-based model can be obtained. This model is illustrated

with the form of schematic diagrams. That is, we use such

diagrams to exhibit classification results. The pattern-based

model of TA 1-1 is shown in Figure 5. The pattern-based

model is prepared for constructing the concrete model with a

modeling language.
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(3) AltaRica 3.0 model: AltaRica 3.0 modeling language is

employed to model safety instrumented systems. The pattern-

based model can be implemented with AltaRica 3.0.

(4) Experimental results: The obtained AltaRica 3.0 model

is firstly translated and flattened into a GTS (Guarded Transi-

tion Systems) model. Subsequently, experimental results are

acquired by analyzing the GTS model with the stochastic

simulator [25], [26].

V. CASE STUDY

In order to validate the solidity of the proposed approach, we

have modeled all SIS (13 systems with different architectures

and assumptions) in ISO/TR 12489 with the proposed method-

ology and modeling patterns. The results applying proposed

approach agree rather well with those from ISO/TR 12489.

Because of the limited length of the paper, we consider an

Emergency DePressurization (EDP) system (Figure 6) of a

hydrocracking unit in ISO/TR 12489 as a case study.

S1aTSH

S1bTSH

S1c
TSH

TSH

TSH

TSH

2/3

S2a

S2b

S2c

2/3

1/2

SV2

V2

SV1

V1

LS

Reactor

Fig. 6. An emergency depressurization (EDP) system [2].

The EDP system is composed of two groups of temperature

sensors (S1a, S1b, and S1c; S2a, S2b, and S2c) organized in

2oo3, one Logic Solver (LS) and two corresponding isolation

Valve (V1 and V2) in parallel and piloted by two corre-

sponding Solenoid Valves (SV1 and SV2). This safety system

aims to quickly depressurize the reactor when the temperature

increases and reaches a predetermined threshold, thus to avoid

a runaway of the exothermic chemical reaction.

The assumptions used for the EDP system are:

• DD and DU failures of a given component are indepen-

dent.

• Constant failure rates are assumed.

• Components are as good as new after repairs.

• Periodic tests are performed when the reactor is stopped.

• Installation is paused during repair of DU failures.

• Installation is shut down during periodic tests and repair

of the logic solver.

• Failures that are not covered by periodic tests will not be

detected and repaired.

• The 2oo3 logic of a group of sensors is switched to 1oo2

in case of one dangerous detected failure in the group.

In the following, we illustrate how to assess the reliability of

the EDP system when applying the pattern-based methodology

in Figure 4.

(1) Classification: We identify the modeling patterns match-

ing components and subsystems in EDP system. Modeling

patterns classification for EDP system is provided in Table I.

TABLE I
MODELING PATTERNS CLASSIFICATION FOR EDP SYSTEM.

Components/Subsystems Modeling patterns
• S1a, S1b, S1c, S2a, S2b, S2c MP1, MP2, MP5
• {S1a, S1b, S1c},{S2a, S2b, S2c} MP8, MP9
• {S1, S2} MP7
• LS, SV1, V1, SV2, V2 MP2, MP5
• {SV1, V1},{SV2, V2} MP6

We employ a 2oo3 structure (S1a, S1b, and S1c) as an

example to elaborate the results. Since DD and DU failures

of a component are assumed to be independent in EDP

system, the DD failure of a component (e.g., S1a) can be

modeled using CorrectiveMaintenance pattern (MP1).

Since the uncovered DU failure cannot be repaired, it is

constructed with the NonRepairable pattern (MP2). The

covered DU failure by periodic tests is considered with the

RevealUndetectedFailure pattern (MP5). The sub-

system composed by these three components, {S1a, S1b,

S1c}, can be modeled by both KooN pattern (MP8) and

SwitchKooN pattern (MP9). The two groups of 2oo3 struc-

tures, {S1, S2}, in the EDP system can be modeled with

PARALLEL pattern (MP7). Note that S1 and S2 stand for

the 2oo3 subsystems. The rest of classification results can be

interpreted in the similar way.

(2) Pattern-based model: On the basis of results in Table I,

we establish the pattern-based model of EDP system, as it is

shown in Figure 7. Associated modeling patterns are assigned

for each component/subsystem in the diagram. The pattern-

based model simplifies the task of constructing the AltaRica

3.0 model.

MP1, MP2, MP5 

S1a 

MP1, MP2, MP5 

S1b 

MP8, MP9 

MP1, MP2, MP5 

S1c 

2/3 

MP7 

MP1, MP2, MP5 

S2a 

MP1, MP2, MP5 

S2b 

MP8, MP9 

MP1, MP2, MP5 

S2c 

2/3 

MP2, MP5 

LS 
MP2, MP5 MP2, MP5 

MP2, MP5 MP2, MP5 

SV1 V1 

SV2 V2 

MP6 

MP6 

MP7 

MP6 

Fig. 7. Pattern-based model of the EDP system.
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(3) AltaRica 3.0 model: In this step, we translate the pattern-

based model of the EDP system into the corresponding AltaR-

ica 3.0 model. Modeling patterns are firstly presented in the

AltaRica environment. Subsequently, the AltaRica 3.0 model

of the EDP system is constructed with identified modeling

patterns.

(4) Experimental results: The mission time (length of his-

tories) of this simulation experiment is 131, 400 h (15 years).

The number of the Monte Carlo simulations (number of

histories) is 106. The results comparison can be found in

Table II. The AltaRica 3.0 (Stochastic simulator) and ISO/TR

12489 (Fault tree) give almost the same results, where the

percentage difference is 1.14%.

TABLE II
EXPERIMENTAL RESULTS OF THE EDP SYSTEM.

Approaches Average unavailability
Fault tree [2] 3.50E-4
AltaRica 3.0 3.46E-4

VI. CONCLUSION

This paper has presented a pattern-based methodology for

reliability assessment of Safety Instrumented Systems (SIS).

First, based on a series of SIS provided in ISO/TR 12489,

a set of modeling patterns is proposed. Modeling patterns

are categorized into behavioral patterns, flow propagation

patterns, and coordination patterns. Second, a pattern-based

methodology is put forward and illustrated with a simplified

SIS. Eventually, the proposed methodology is tested with a

complex SIS in ISO/TR 12489. The corresponding AltaRica

model has been developed to assess the system reliability.

The result obtained from AltaRica model using modeling

patterns is in good agreement with that from ISO/TR 12489.

It is concluded that the proposed methodology is capable of

constructing targeted systems in a modular way.

Raised modeling patterns are based on a limited set of

SIS. Even if they are declared to cover most of reliability

studies [2], these patterns can be improved with new system

behaviors. The current paper is restricted to study SIS and

EUC (Equipments Under Control) separately. Further research

may consider EUC as an integral part of SIS. New modeling

patterns are therefore expected with such integrations.
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Appendix D

Acronyms and Abbreviations

BNF Backus-Naur form

BPCS Basic process control system

CCA Cause-consequence analysis

CCF Common cause failures

CM Corrective maintenance

CTMC Continuous-time Markov chains

DAG Directed acyclic graph

DCG Directed cyclic graph

DD Dangerous detected failure

DU Dangerous undetected failure

EDP Emergency depressurization system

ESD Emergency shut down system

ET Event tree

EUC Equipment under control

FMEA Failure mode and effects analysis

FPSO Floating production, storage, and offloading unit

FT Fault tree

GRIF GRaphical Interface for reliability Forecasting (Total)

GSPN Generalized stochastic Petri nets
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GTS Guarded transition systems

HIPPS High integrity pressure protection system

IEC International Electrotechnical Commission

ISO International Organization for Standardization

MBSA Model-based safety analysis/assessment

MBSE Model-based system engineering

MC Markov chain

MP Modeling patterns

OREDA Offshore and Onshore Reliability Data

PAP Production assurance program

PBSE Pattern based system engineering

PFD Probability of failure on demand

PFH Probability of failure per hour

PM Preventive maintenance

PN Petri nets

PRA Probabilistic risk assessment

RAMS Reliability, Availability, Maintainability and Safety

RBD Reliability block diagrams

SAP Safety architecture patterns

SIF Safety instrumented function

SIL Safety integrity level

SIS Safety instrumented system

SM2 Second order safety mechanisms

SPN Stochastic Petri nets

Taro Total Asset Review and Optimization software (DNV GL)

MAROS Maintainability, Availability, Reliability, Operability Simulation software (DNV GL)
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Titre: Modélisation des patterns d'analyse des performances des systèmes de production et de sûreté 
de fonctionnement dans l'industrie des procédés 

Mots clés: Pattern, Performance, Fiabilité, Disponibilité, AltaRica 

Résumé: Les systèmes de production et de sûreté de fonctionnement sont d'une importance majeure 
dans l'industrie des procédés. Leurs performances impactent directement les intérêts de l'industrie. 
Ces systèmes ont des comportements similaires. Ces comportements peuvent être conceptualisés dans 
des modèles via des patterns de modélisation. La réutilisation de ces patterns permet de rendre le 
processus de modélisation à la fois simplifiée et plus efficace. 
 
Dans cette thèse, nous proposons un ensemble varié de patterns de modélisation. Ils sont classés en 
fonction de leur usage, ce qui reflète le fonctionnement d'un pattern de modélisation. Les patterns 
sont présentés sous forme d’un catalogue. Sur la base de l'étude de nombreux systèmes de production 
et de sécurité, vingt-quatre (24) patterns de modélisation sont introduits. Chaque pattern est 
représenté par un ensemble d'éléments structurés. Nous proposons une méthodologie basée sur les 
patterns pour l'analyse des performances des systèmes de production et de sûreté de fonctionnement. 
 
Pour tester la pertinence des patterns de modélisation suggérés, nous avons mené des études 
expérimentales sur un ensemble de systèmes de production et de sûreté. Tous les systèmes de 
validation sont extraits de la littérature. Ces systèmes traitent la majorité des difficultés de 
modélisation détectées auparavant. Une comparaison est effectuée entre les résultats obtenus en 
utilisant la modélisation basée sur les patterns et ceux rapportés dans la littérature. 
 
 

Title: Modeling Patterns for Performance Analysis of Production and Safety Systems in Process 
Industry 

Keywords: Pattern, Performance, Reliability, Availability, AltaRica 

Abstract: Production and safety systems are crucial in the process industry. Their performances 
affect significantly the industry interests.  These systems have common behaviors. Such behaviors 
can be captured in models via modeling patterns. By reusing modeling patterns, the modeling process 
can be simplified and made more efficient. 
 
In this thesis, we propose a versatile set of modeling patterns. They are classified according to their 
purpose, which reflects what a modeling pattern works for. Modeling patterns are exhibited as a 
catalog. Based on reviewing numerous production and safety systems, twenty-four (24) modeling 
patterns are introduced.  Each pattern is illustrated with a set of structured items. We propose a 
pattern-based methodology for performance analysis of production and safety systems. 
 
To test the applicability of proposed modeling patterns, we conducted experimental studies on a set of 
production and safety systems. All systems are extracted from the literature. These systems are 
declared to cover most of modeling difficulties. Comparisons are performed between the results 
obtained using modeling patterns and those reported in the literature.  
 
 

 


