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Large effects of subtle electronic correlations on the energetics of vacancies in α-Fe

for the general public

The structural, spectral, magnetic, and many other properties of materials are mostly determined by the behavior of the electrons that glue the atoms together. Some of the most important technological advances of the 20 th century were made in the field of semi-conductors, where electrons behave like a dilute gas of weakly interacting particles. In contrast, many of the most promising materials for technological applications today are oxides. In transition metal or rare earth oxides, but also in some pure metals or alloys, the Coulomb repulsion between the electrons can give rise to exotic properties and phase transitions.

In this thesis, we developed and applied first-principles (i.e. based on fundamental laws of physics) methods to evaluate the behavior of electrons interacting with each other and the physical properties stemming from it. We use these tools to study several materials of fundamental and technological interest, in particular iron, vanadium dioxide and hard magnets.

Résumé "grand public"

Les propriétés structurelles, magnétiques et de conduction des matériaux sont déterminées par le comportement des électrons qui lient leurs atomes.

Parmi les plus importantes avancées technologiques du 20 e siècle ont eu lieu dans le domaine des semiconducteurs, dans lesquels les électrons se comportent comme un gaz peu dense interagissant faiblement. En revanche, les oxydes sont des matériaux prometteurs pour les applications technologiques à venir. Dans les oxydes de métaux de transition ou de terres rares, ainsi que dans certains métaux purs et alliages, la répulsion entre électrons peut donner lieu à des propriétés exotiques et à des transitions de phase.

Dans cette thèse, nous avons développé et utilisé des méthodes partant des "premiers principes" de la physique pour évaluer le comportement d'électrons en interaction et les propriétés physiques qui en découlent. Nous avons appliqué ces outils à plusieurs matériaux, en particulier le fer, le dioxyde de vanadium et les aimants permanents.

Dans un deuxième temps, nous étudions la transition métal-isolant dans la phase métastable VO 2 B. Nous montrons que cette transition ressemble à celle entre la phase conventionnelle rutile et la phase M 2 de VO 2 , mettant en jeu à la fois des liaisons covalentes dans les dimères et une transition de Mott sur les atomes V restants. Nous étudions également l'effet de lacunes d'oxygène sur la structure électronique de VO 2 .

Enfin, nous proposons une technique au-delà de la DFT pour calculer le champ cristallin dans les oxydes et alliages de terres rares. Bien que l'amplitude de ce champ soit faible pour les orbitales localisées 4f des lanthanides, il est crucial pour leur caractère d'aimant permanent. En modifiant l'approximation Hubbard I pour résoudre les équations de DMFT, nous évitons une erreur d'auto-interaction faible en valeur absolue mais physiquement importante, démontrant à nouveau l'importance de modèles de basse énergie correctement définis. 

Correlated materials 1.1 Context

A remarkable early success of quantum mechanics was the determination of the electronic structure and the resulting optical spectrum of the hydrogen atom H. Even at present, this problem is famous for being one of the few fully analytically solvable textbook problems in quantum mechanics. The next step was of course to study the electronic structure of systems with a larger number of particles, in particular with more electrons. These systems may be, for example, molecules and crystals. In this manuscript we will focus on the ideal crystal. In particular we will not discuss the electronic structure of amorphous materials, quasicrystals, or finite size effects in crystals. While these are all important subjects of research, the electronic structure of the perfect crystal is the starting point in the electronic structure calculation of materials. Understanding this important model system is the first step that allows for an understanding of many physical properties of real materials.

The equations that describe a crystal are in fact surprisingly well known. The hamiltonian of a set of N n nuclei with masses (M i ) i≤Nn and atomic numbers (Z i ) i≤Nn , and N e electrons with mass m 0 and charge -e can be written as follows: The two first terms represent the kinetic energy and Coulomb repulsion between nuclei, the third and fourth the same quantities for the electrons, and the last term the Coulomb attraction between nuclei and electrons. All the parameters of this Hamiltonian are known with great precision. To this we should add relativistic corrections, the largest one being the spin-orbit coupling between the electron's spin and orbital. Once this is established, though, we still know essentially nothing about the physics of electrons in a crystal. Indeed, a macroscopic quantity of matter (say, a few grams of essentially any solid) contains a number of atoms within a few orders of magnitude of Avogadro's number N A = 6.022 × 10 23 . Schrödinger's equation for Hamiltonian H, however, can hardly be solved even approximately when the number of particles exceeds 10. Indeed, its full solution is of the form Ψ(r 1 , r 2 ...r Ne )

H = - Nn i=1 2 2M i ∇ 2 ri + Nn i,j=j i<j Z i Z j
(1.

2)

The memory necessary to store this many-body wave function increases exponentially with the number of particles: if n b bytes of memory are needed to store the wave function of one particle, then n Ne b bytes are needed for the full many-body wave function of N e particles.

Chapter 1. Correlated materials

A common approximation to equation 1.1 is the so-called Born-Oppenheimer approximation, that consists in neglecting the degrees of freedom of the nuclei. The justification for this approximation lies in the large difference between the electron mass m 0 and the nucleus mass M j . Because M j > 10 4 × m 0 for most atoms, the timescales for electron dynamics and nuclei dynamics are very different, so that it makes sense to study the electronic structure for some instantaneous set of positions of the nuclei. This leads to the simpler equation

H = Ne i=1 - 2 2m 0 ∇ 2 ri + V (r i ) + Nn i,j=j i<j e 2 4πε 0 |r i -r j | (1.3)
Here, V (r) is a periodic potential with the periodicity of the crystal, created by the nuclei and acting on the electrons. By writing this, we removed an additional term that depends only on the nuclei's relative positions, and becomes constant if only the electronic degrees of freedom are considered.

This approximation does not mean, however, that the lattice dynamics is to be neglected. Phonons (elementary lattice excitations) are at play in many physical phenomena, ranging from indirect gap excitations in semiconductors to the "glue" that binds electron pairs in the Bardeen-Schrieffer-Cooper picture of superconductivity [1], or to the stabilizing mechanism behind the high-temperature body-centered phase of iron, δ-Fe [2]. By writing equation 1.3, all we imply is that it often makes sense to talk about the equilibrium distribution and excitations of electrons in a crystal for a given set of atomic positions, valid at a given time for a duration far longer than that of electron dynamics. The above remark on the impossibility to numerically solve equation 1.1 remains true for equation 1.3. Indeed, we still have to find a many-body wave function with a macroscopic number of particles, which is numerically impossible. The Born-Oppenheimer approximation is no more than a convenient way to separate the dynamics of two many-body problems with different time scales. Indeed, the term in equation 1.3 that makes the problem so difficult is the right-hand term, that is to say the electron-electron Coulomb repulsion. This term means it is impossible to discuss the wave function ψ(r i ) of a single electron in the system. Crucially, it is not even possible to discuss the wave function of a single electron knowing the wave functions of all other electrons. The only exact description of the system is the many-body wave function Ψ(r 1 , r 2 ..., r Ne ), describing N e electrons in interaction in a potential created by the nuclei. Correlations is the general name we give to the notion that electrons exist as a many-body wave function, or more precisely a wave function beyond a Slater determinant of one-body wave functions Ψ(r 1 , r 2 ..., r Ne ) = det (ψ 1 (r 1 ), ψ 2 (r 2 ), ..., ψ Ne (r Ne )) (1.4) so that acting on one electron of a system is impossible without affecting all the others. Correlations may be strong, weak or almost inexistent. This classification obviously depends on the material considered, but also, more subtly, on the probe that is used to study the material of interest. We discuss weakly and strongly correlated materials in section 1.3.

Electronic band theory: the Bloch theorem and the independent electron picture

Let us suppose for a while that the electron-electron interaction term can be simplified as an effective periodic potential acting on a given electron.

H = Ne i=1 - 2 2m 0 ∇ 2 ri + V eff (r i ) (1.5)
where V eff (r) is an effective periodic potential created by the nuclei and the mean field of surrounding electrons. While this is a drastic approximation compared to Eq. 1.3, it can still be a reasonable description for some materials. More importantly, this effective periodic potential hypothesis is at work in the 1.2. Electronic band theory most widely used ab initio calculation techniques, that are in turn often used as a starting point for more accurate models describing correlated electrons. In this -much simpler -case, what can we say about the solutions of Schrödinger's equation?

It turns out that the spatial periodicity of the potential simplifies the problem tremendously, and leads to the famous band picture of electrons in a solid. Below, we introduce the Bloch's theorem that, based on the sole assumption of translational invariance, justifies the picture of electronic "bands" forming in a reciprocal space of crystal momentum, and is thus a fundamental theorem of solid state physics.

Bloch's theorem:

If the Hamiltonian H is periodic in space, that is to say H commutes with the translation operator T : [H, T ] = 0, where T is the translation in space along the Bravais lattice vector R, then the eigenfunctions of H can be written as:

Hψ nk (r) = ε nk ψ nk (r) (1.6) with ψ nk (r) = e ik.r u nk (r) (1.7) where k is a reciprocal space vector within the first Brillouin zone (BZ), n is a band index and the function u has the periodicity of the lattice: u(r + R) = u(r). All quantities that depend on k are invariant by translation of any reciprocal lattice vector k, so that we may restrict ourselves to reciprocal vectors k in the first BZ. For a 1D chain of atoms with spacing a, this amounts to -π a ≤ k ≤ π a . The values that k can take are quantified (by π L , with L the crystal size) in a finite crystal, calculated with periodic boundary conditions, but become continuous in a perfect, infinite crystal. Equation 1.6 means that wave functions in the periodic potential still essentially look like plane waves, or more precisely that they combine a short-range varying eigenfunction multiplied by a longerrange modulating plane wave. This is what is called a Bloch wave. The quantum number defining the plane wave part is its crystal momentum k, similar to a wave vector but periodic in the reciprocal space. However, because the eigenfunctions and eigenvalues are invariant by translation of k by a reciprocal lattice vector, there is an infinity of acceptable wave vectors likes this. Hence k is not associated to a momentum through p = k, but rather to a pseudomomentum.

Eigenvalues ε nk of the Hamiltonian are indexed by k, the plane wave's wave vector, and n, the band index. These eigenvalues form energy bands of possible energies, with band gaps or regions in energy without any admissible wave function in between. The formation of bands can be seen in the tight-binding model as a generalization of molecular bonding for a large (infinite) number of atoms, or in the nearly free electron picture as a degeneracy lifting opening the parabola of free electrons. Either way, the result is that the electronic structure of materials in the independent electron picture or band picture is formed of energy bands, filled with electrons in increasing energy order, with up to two electrons per state due to the Pauli principle. This gives two possibilities for a material, depending on its number of electrons and possible overlap of bands.

1. Either the last filled band is completely filled, and it takes finite energy (the band gap E g ) to promote an electron to a higher-lying state. In this case, the material is insulating. The last filled band is then called the valence band, the first empty band is called the conduction band (because promoting electrons to this band allows electric conduction), and the material is a band insulator.

In insulators, E g , and more generally the dispersion relation of the excited states, are quantities of the utmost interest. Other types of insulators, where a localization of electrons due to interactions rather than the filling of a band forbids conductivity, are discussed in chapter 3.

2. Or the last filled band is not completely filled. In this case, the marginal energy cost to go from the ground state to an excited state is 0, and the material is conducting or metallic. The density of states at the Fermi level, that is to say the differential number of available states around the Chapter 1. Correlated materials last occupied state, is an important physical quantity, and is one good indicator of the strength of correlations. Indeed, a high density of states at the Fermi level indicates weakly dispersive (hence localized) bands and can cause for instance a Stoner magnetic instability [3] where the electrons rearrange to reduce the Coulomb interaction.

Beyond band theory: correlations

In reality, as we discussed above, this description is too simplistic. Correlations can appear in different forms, that we briefly discuss qualitatively below, and more in detail in the following chapters. For a general discussion of correlations in a solid, we refer the reader to one of the many textbooks on solid-state physics and many-body physics [4][5][6][7].

• One of the most basic and most important ways in which electrons in a solid react to the presence of any given electron on a given site is screening. In vacuum, the Coulomb potential between two point charges is

V (r 1 -r 2 ) = q 1 q 2 4πε 0 |r 1 -r 2 |
In presence of a charge density, the potential is screened by a non-trivial dielectric function ε(ω, r 1r 2 ):

V (r 1r 2 ) = q 1 q 2 4πε 0 ε|r 1r 2 | ε may take different shapes: in metals a simple approximation for screening is Thomas-Fermi screening, which postulates exponential decay of V as a function of distance. In insulators, screening is less efficient and a simple approximation is to take a constant ε > 1.

• Static screening is, in fact, effectively present in the effective potential of equation 1.5, and is compatible with the band picture. Frequency dependent screening ε(ω), however, leads to satellite peaks in the emission and absorption spectrum, and accordingly to reduced spectral weight at the Fermi level.

• Landau's Fermi Liquid theory [6,8] postulates that, when electron-electron interactions are adiabatically turned on in a normal metal, the band picture does not break down completely. More precisely, there exists a one-to-one correspondence between the one-electron excitations of the noninteracting system and the quasi-particles of the interacting system, close to the Fermi level. The quasi-particles are characterized by a lifetime that becomes arbitrarily long close enough to the Fermi level and at zero temperature, and by a renormalized mass (the quasi-particles are heavier than free electrons), synonymous of a spectral weight transfer.

• In more extreme cases, the repulsion between electrons may be so strong that they effectively become localized on a given site. In this case, a material that ought to be metallic according to band theory and electron counting becomes a so-called Mott insulator [9]. Mott physics arises when the (screened) Coulomb energy becomes important with respect to the kinetic energy. This is for example the case in many transition metal oxides, including the famous high-T c superconducting cuprates, as well as in rare-earth based materials. Mott insulators are a typical example (but not the only one) of what we call strongly correlated materials.

Above are but a few examples of how electronic correlations qualitatively modify the effective equations describing electrons in solids, as well as the corresponding physically measurable effects. This list is not a comprehensive one (such a list would be much longer) and, more importantly, these aspects of correlations are not mutually exclusive. Often, a material shows different signs of correlations when probed at different energy levels, and can go from weakly to strongly correlated when a parameter is tuned, for example by electronic doping or by applying pressure.

In the following, for simplicity, we use a unit system where = m e = e 2 = 4πε 0 = 1.

Chapter 2

Ab initio electronic structure calculations: from Hartree to the GW approximation Despite the complexity of studying the electronic structure of materials with a macroscopic number of electrons, enormous progress has been made since the early days of quantum mechanics. Materials have been approached from two somewhat different perspectives. Model-based calculations have been widely used to describe, at least qualitatively, complex physical phenomena occurring in materials. The main goal is to keep only the most relevant physical degrees of freedom in a model as simple as possible. The downside is that such models often have to focus on a certain energy window (for example, physics close to the Fermi level), with phenomena occurring outside this window (for example screening) described by ad hoc parameters. Examples of such models include the Anderson impurity model and the Hubbard model used for strongly correlated materials, or model Hamiltonian techniques used for studying topological insulators.

In contrast, ab initio calculations try to take as few parameters as possible, at best none at all, and to make general predictions about a material. Furthermore, there is usually a stronger emphasis on making quantitative, not only qualitative, predictions. Because this requires to take into account a much larger number of electrons and orbitals, ab initio approaches usually require some tricks to make computations tractable. As we will see below, a famous and useful approach is to forget about wave functions, and study the electronic density instead.

In the present chapter, we introduce some of the modern techniques used for ab initio electronic structure calculations. Models for strongly correlated materials, in particular the Hubbard model, will be discussed in chapter 3. An important subject of modern research, and the subject of the present manuscript, is to interface ab initio techniques with more accurate many-body techniques in order to make quantitative predictions for strongly correlated real materials. We will introduce these methods in chapter 4.

Early approaches: Hartree-Fock theory

The Hartree and Hartree-Fock (HF) theories are two conceptually simple theories, relatively straightforward from the physical point of view (though not necessarily so numerically). As such, they count among the first methods introduced in the 20's to study the electronic structure of materials [10][11][12][13]. Both are based on strong approximations, so that purely Hartree or HF calculations for real materials give results that are far from reliable. However, both -in particular HF -remain an important building block in 8 Chapter 2. Ab initio electronic structure calculations modern ab initio techniques such as hybrid functionals in density functional theory, or a simple reference system in GW theory, which we discuss in section 2.3. For this reason, we believe it is best to introduce the Hartree and HF approximations before moving to more modern techniques.

The Hartree approximation

The Hartree approximation [10,11] is what we obtain if we consider a variational principle where the wave function of the full Hamiltonian 1.3 is searched for in the form of the most simple many-body wave function there is: a product of one-particle wave functions. In other words, Ψ(r 1 , r 2 ...r Ne ) = ψ 1 (r 1 )×ψ 2 (r 2 )×...×ψ Ne (r Ne ). The variational principle then leads to independent one-electron equations:

h Hartree i ψ i =ε i ψ i
(2.1)

h Hartree i = -∇ 2 ri + v Hartree (r) (2.2) v Hartree (r) = dr ρ(r ) |r -r | + v nuclei (r) (2.
3)

The Hartree potential contains the potential felt by one electron from the ions and the static, meanfield electron density. The Hartree equations can then be solved self-consistently, by using in the Hartree potential the density ρ = occ |ψ i | 2 . This is reasonably easy to do numerically because the potential in the Hartree Hamiltonian 2.2 is local, i.e. involves a term v(r)ψ(r).

The weakest point of the Hartree method is that the trial wave functions are not antisymmetric with respect to particle permutation, and hence do not respect the Pauli exclusion principle. This causes excessive overlap of the electrons.

The Hartree-Fock method

Hartree-Fock theory, in turn, builds on Hartree theory while forcing wave functions the respect the Pauli principle, i.e. by taking Slater determinants of one-particle wave functions as trial wave functions [12,13]. By performing again the variational principle over this new set of wave functions we obtain similar equations, with an additional "exchange" or Fock term:

h HF iσ ψ iσ =ε iσ ψ iσ (2.4) 
h HF iσ = -∇ 2 ri + v Hartree (r) + v ex iσ (r) (2.5)

v ex iσ (r)ψ iσ (r) = - Ne j=1 dr ψ iσ (r )ψ jσ (r ) * 1 |r -r | ψ jσ (r) (2.6)
Note the sum over j, so that the term j = i removes the interaction of a given electron with itself. Unlike the Hartree term, ψ iσ (r) appears in an integral in the HF exchange term, so that Schrödinger's equation involves a term of the form dr v(rr )ψ(r ).

The Hartree-Fock method breaks down when screening is important, as it only contains unscreened Coulomb potentials. This is why it performs badly in solids, particularly metals, but somewhat better in molecules. Missing screening means that Hartree-Fock calculations tend to excessively delocalize electrons (contrarily to Hartree), that is to say, to produce excessively dispersive band structures. This shortcoming is however not a critical one. Indeed, we know exactly what physical phenomena are described or not by the Hartree-Fock equations, which makes them a useful tool in hybrid functionals, or a starting point which we may generalize to screened exchange (see chapter 6) or GW calculations (see section 2.3).
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Density Functional Theory

The huge conceptual and computational difficulty of many-body quantum physics resides in the nature of the question: diagonalizing the Hamiltonian for many-body wave functions that are difficult to imaginebeyond some basic qualitative properties -and perhaps impossible to solve numerically. Indeed, if even drastically simplified theories like HF theory are numerically challenging, is there any reason to believe that we could store in a computer, let alone study the properties of, a wave function that depends on a macroscopic number of variables?

"If you don't like the answer, change the question" is the approach followed by Pierre Hohenberg and Walter Kohn in 1964 [14], when they introduced Density Functional Theory (DFT). As its name indicates, the idea behind DFT is to study not the complicated many-variable wave function Ψ(r 1 , r 2 ..., r Ne ) of the electrons in the solid, but rather the infinitely more simple electronic density ρ(r). The achievement of Hohenberg and Kohn was to show that such a simple approach allows to determine all ground state properties of the system (at least in principle). What has over the years made DFT one of the most popular methods in condensed matter physics, however, is that, perhaps surprisingly, it delivered much more than just that. In particular, as we discuss below, DFT is a useful and lightweight tool to obtain an approximation to excited state properties of materials, even though it is not formally designed for this.

For a general review of DFT, see Ref [15,16]. For a more historical and retrospective point of view, as well as some remarks on the future of DFT, see the recent review by Jones [17]. Below, we first introduce the Hohenberg-Kohn theorems, and then briefly discuss the Kohn-Sham Ansatz and how practical DFT calculations are performed.

The Hohenberg-Kohn theorems 1. For a system of interacting electrons described by a Hamiltonian of the shape 1.3, the external potential v ext (r) is uniquely defined (up to an additive constant) by the ground state density ρ 0 (r). In other words, two different potentials v ext (r) cannot have the same ground state density.

Since the external potential in turn fully determines the Hamiltonian, and knowledge of the Hamiltonian defines the expectation value of all observables in the ground state  GS , it follows that all these ground state expectation values can be expressed as a functional of the ground state density ρ 0 (r):

 GS = F A [ρ 0 ]
2. The ground state energy is given by a Rayleigh-Ritz variational principle over all possible densities,

∀ρ, E 0 ≤ E HK [ρ] (2.7)
with equality only when ρ = ρ 0 . E HK [ρ] is a functional of the density only, parameterized by the external potential. E HK can be written

E HK [ρ] = F [ρ] + v ext (r)ρ(r)d 3 r (2.8)
where F is a universal functional of the density, and does not depend on the system. Formally, F gives the sum of kinetic and Coulomb repulsion energy for a given density ρ.

The incredible simplification in the Hohenberg-Kohn theorems is the fact that, contrary to intuition, knowledge of the many-body ground state wave function is not required to determine ground state properties: the ground state density is sufficient. As usual, there is no free lunch: the two Hohenberg-Kohn theorems are respectively unicity and existence theorems, but are not constructive: we don't know the formula that gives F [ρ]. There is no reason to believe, in fact, that such a "formula" exists in closed analytic form. Chapter 2. Ab initio electronic structure calculations At first sight, the practical way to use Hohenberg-Kohn DFT appears to consist, in taking an approximation of F [ρ] and using the variational principle. Much of the success of DFT is due to fact that there exists a better, algorithmic way to find the ground state density. We present this method in the following section.

Kohn-Sham equations and approximate functionals

Very often in condensed matter theory, a practical way to solve a complicated problem with correlations present is to make use of a simpler reference system with similar properties. This approach is used, as we have seen, in HF theory; another typical example is the mean-field treatment of a spin in an Ising model or, as we will see in chapter 3, an impurity model in Dynamical Mean Field Theory. Often, the best reference model is a simple one. However, not all reference models are good, and finding the one that is useful in practice is usually difficult. The second important step that made the success of DFT was the introduction of such a reference system, to be used in an algorithm that solves (at least approximately) the original problem. Kohn and Sham proposed in 1965 [18] to use a reference system of non-interacting electrons to solve the Hohenberg-Kohn variational principle.

The ground state energy functional of equation 2.8 can as well be written

E HK [ρ] = T s [ρ] + v ext (r)ρ(r)d 3 r + v Hartree (r)ρ(r)d 3 r + E xc [ρ]
(2.9)

where T s [ρ] is the ground-state kinetic energy of a set of non-interacting electrons with density ρ. We call the new functional E xc [ρ] the exchange-correlation functional. We did not introduce any new information, because E xc [ρ] is formally unknown, just as is F [ρ]. In practice, however, removing all the terms that are known from the functional, in particular large ones like the Hartree energy and the kinetic energy, should make it easier to find approximations to the exact functional.

In Kohn-Sham (KS) DFT, we study a system of non-interacting electrons in an external potential v KS , defined such that the ground state density ρ KS of this effective system is identical to the ground state density ρ 0 of the initial system. This is useful only if we can deduce the ground state electronic density and total energy of the interacting system, from the same quantities calculated in the effective non-interacting system. We will now see how this can be done in practice.

By applying the variational principle 2.7 to equation 2.9, we obtain

∂E [ρ, V ext ] ∂ρ(r) = ∂T s ∂ρ(r) + v ext (r) + v Hartree (r) + ∂E xc [ρ] ∂ρ(r) + µ (2.10)
where µ is the Lagrange multiplier associated with the constraint of conserved particle number, ρ(r)dr = N e . On the other hand, applying the same variational principle to the corresponding equation for a system of non-interacting particles in some external potential v KS , we obtain

∂E [n] ∂ρ(r) = ∂T s ∂ρ(r) + v KS (r) + µ (2.11)
Equations 2.10 and 2.11 give the same stationarity condition if the Kohn-Sham potential v KS is such that v KS (r) = v ext (r) + v Hartree (r) + v xc (r) (2.12)

v xc (r) = ∂E xc [ρ] ∂ρ(r) (2.13)
The calculation scheme consists in solving the Schrödinger equation for the effective set of noninteracting electrons with potential v KS , where this very potential depends on the density of the system as per equation 2.12 and has to be obtained self-consistently. This procedure is in principle exact, as long as stationarity of the self-consistency equation 2.12 is reached.

In practice, approximations have to be made, since we still do not know the exchange-correlation functional E xc [ρ], nor the corresponding potential v xc .
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Exchange-correlation potentials in practice

While the true exchange-correlation functional is not known exactly, the original publication by Kohn and Sham [18] introduced an approximate functional that allowed computationally inexpensive calculations to be done with high precision. Their Local Density Approximation (LDA) treats the Kohn-Sham potential as a local potential. Its value is equal, at each point in space r, to the exchange-correlation potential of a homogenous electron gas with density equal to the density ρ(r).

E LDA xc [ρ(r)] = d 3 rρ(r)ε xc [ρ(r)]
(2.14)

For a homogenous electron gas, the exchange energy density is known analytically as ε x [ρ] = -3 4 3 π ρ 1 3 . The correlation part, on the other hand, has been computed numerically using a quantum Monte-Carlo method [19]. As its name indicates, the LDA exchange-correlation potential is local: this was implied in equation 2.12, but is not necessary. It is, in fact, a rather drastic approximation, indeed one that was corrected in more recent approximate potentials. DFT with LDA exchange-correlation potential tends to excessively delocalize electrons (in other words, to overestimate bonding). It also suffers from self-interaction, known as the erroneous interaction of a given electron with itself through the exchange-correlation potential, or missing correction of the self-interaction term in the Hartree term by the exchange-correlation potential. Self-interaction is particularly problematic on atoms with localized orbitals, where correlations are usually the strongest. Conceptually, it is most easily seen in the H atom, where DFT LDA predicts wrong ionization energies even though the system has only one electron and should therefore not have exchange nor correlations.

Still, the locality of the LDA exchange-correlation potential means that converging DFT calculations using the KS ansatz and the LDA potential is about as fast as Hartree calculations, and orders of magnitude faster than HF calculations or derivatives thereof, that were largely used before DFT. Partly non-local exchange-correlation functionals with the same computational advantage have been introduced [20][21][22][23], commonly known as generalized gradient approximation (GGA), where the same form of equation 2.14 is kept but ε GGA xc also depends on the local gradient of ρ, and not only the value of ρ itself. Other extensions of DFT, usually called hybrid functionals [24], use a fraction of exact Fock exchange. They further improve on the non-local exchange and improve many structural properties. However, hybrid functionals are (like HF exchange) defined in terms of orbitals and not just density, hence carry the full computation cost of nonlocal HF calculations.

Obtaining spectra from density functional theory

DFT at first suffered significant criticism on two fronts: first on the lack of control of the approximations that are made on the exchange-correlation potential, second by prominent condensed matter theorists because of the lack of physical insight in the results, since DFT can feel like a "black box". However, since it was realized in the early 1990's in the chemistry community that DFT gave better predictions of most structural and physical parameters of a whole range of molecules than HF-based methods, DFT and its derivatives have become one of the most ubiquitous methods in both applied and theoretical chemistry and condensed matter physics.

In principle, DFT is only a ground state theory, and can only be used to predict quantities such as crystal structures, lattice parameters, bond lengths, ionization energies, as well as the energetic response to all kinds of structural changes. Yet, part of the success of DFT is that, in many cases, DFT can be used to predict spectra (photoemission, optics) with remarkably little error, or at least with somewhat systematic, hence predictable errors.

The Kohn-Sham reference system of non-interacting electrons in a self-consistent potential is only designed so that after convergence, the electronic density is equal to the ground state density of the real system. In the KS scheme, one computes the eigenvalues of the KS Hamiltonian, which gives a set of Bloch eigenfuctions and energy eigenvalues, so that one may associate a band structure to the interacting Chapter 2. Ab initio electronic structure calculations system. There is no a priori reason to expect this band structure to describe the interacting system correctly, except for one energy value: the energy of the highest lying occupied state should be equal to the first ionization energy, due to the identification of Lagrange parameter µ as the chemical potential in equation 2. 10. In practice, it turns out that Kohn-Sham DFT band structures are very often at least qualitatively close to measured quasi-particle excitation energies, with systematic and well known errors on some parameters, such as band gaps in insulators and band widths. It is very common to simply talk of "the DFT band structure" instead of "the band structure of the KS Hamiltonian calculated for the DFT density": we will do the same in this thesis.

To conclude, let us note that we have not mentioned here one of the most critical aspects of the development of DFT techniques. There has been a huge effort since the early days of DFT to develop software that solves the KS equations in an efficient, precise and reproducible way. This required, above all, considerable effort on the optimization of basis sets that are used: plane-waves, augmented planewaves (APW) [25], linearized muffin-tin orbitals (LMTO) [26], full-potential linearized augmented planewaves (FLAPW) [27]... as well as pseudo-potentials [25] for a simplified treatment of core electrons in some codes. There are tens of available codes, optimized for different types of systems. For our DFT calculations, we used the Wien2k software [27], an all electron, FLAPW implementation of DFT. The aim of the present thesis is not to compare technical aspects of DFT, but rather to look at methods beyond DFT for real material electronic structure calculations, hence we will not dwell further on this subject.

Many-body theory: Hedin's equations and perturbation theory 2.3.1 Hedin's equations

Often, computing wave-functions of a complicated Hamiltonian is not the best approach. In DFT, this idea leads to the use of the electronic density as the main variable, but calculating quasi-particle excitations beyond the band picture is then difficult. To compute these, precisely, the Green's function formalism can be useful. We remind some definitions for Green's functions in Appendix B.

In 1965, Lars Hedin [28] introduced a closed set of coupled integral equations, using the full many-body Hamiltonian and the equations of motion, now known as Hedin's equations. They can be expressed as follows, where a variable i represents space and time dependence (r i , t i ), and i + always comes before i in time-ordered Green's functions: They involve the one-body Green's function G, the screened Coulomb interaction W , the polarization P , the self-energy Σ and the vertex function Γ.

G(1, 2) = G 0 (1,
The screened Coulomb interaction W describes how two charges, present in the solid, interact: the usual Coulomb repulsion, that decays as 1/r in the vacuum, decays much faster due to the screening from all the other charges present in the solid. The polarization P is precisely what determines how these other charges react: in fact, Eq. 2.18 is the equivalent of the Dyson equation 2.19 (see also Eq. B.8 and B.9 in the Appendix) for the Coulomb interaction, where the polarization takes the place of a selfenergy. Finally, the vertex Γ is a diagrammatic object containing the "bare" vertex Γ = 1 and the vertex corrections corresponding to higher-order electron-electron and electron-boson couplings. Γ is expected to be small in weakly interacting systems.

Hedin's equation are formally exact, but solving them in practice is quite intractable. A self-consistent scheme could in principle be used, but computing the integrals is a formidable computational task, and even then the procedure can easily become divergent. This should not come as a surprise: since the original problem is computationally intrinsically complex, an exact method can hardly be expected to solve it in a simple way. In practice, approximations are required to use Hedin's equations for model systems, let alone real materials.

The GW equations

One such approximation, commonly used, is the so-called GW approximation [28]. For a review on the GW method, see for instance [29,30], or [31] for a more recent point of view. It does not take its name from the person who first derived it, but from the formula used for the self-energy: Σ = iGW . More specifically, the GW approximation is obtained by neglecting the integral term, that is to say the most difficult to calculate, in the vertex Γ in equation 2. 16. This leads to a simplified set of equations

G(1, 2) = G 0 (1, 2) (2.20) Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (2.21) 
P (1, 2) = -iG(1, 2)G(2, 1 + ) (2.22) W (1, 2) = v(1, 2) + d(3, 4)v(1, 3)P (3, 4)W (4, 2) (2.23) Σ(1, 2) = iG(1, 2)W (2, 1 + ) (2.24)
with equation 2.24 giving its name to the method. We now have a simpler set of equations, that can be used for real systems (though they are still much more computationally challenging to solve than the DFT equations). They are typically used in a one-shot scheme, rather than self-consistently like Hedin's equations, so that we sometimes call this method "G 0 W 0 ". One starts from a non-interacting Green's function G 0 , obtains a polarization P , the corresponding dynamical screened exchange W , and finally a self-energy Σ. One can then obtain a k and ω-resolved spectrum by constructing the interacting Green's function G from Dyson's equation 2. 15.

This supposes that we know a reasonable non-interacting initial Green's function G 0 . In practice, a converged DFT spectrum is often a convenient starting point, for which the GW self-energy correction to the spectrum significantly improves agreement with measured spectra for many materials, metals or semi-conductor, at least when correlations are not too strong. This is one of the reasons why actual implementations of GW were done much later than implementations of DFT: working DFT codes were needed to apply the equations that were derived in the same year as the KS equations. Even now, GW calculations are not routinely done for metallic systems. In Fig. 2.1, we give an example of how a one-shot GW calculation improves the band structure and in particular the band gap of semiconducting Si.

Self-consistency in the GW approximation

On the other hand, for all its successes, this procedure is not intellectually very satisfying, and it would be desirable to obtain results that are independent from the starting point. In principle, an intuitive form of self-consistency can be introduced by updating G using Dyson's equation, computing new P , W , Σ, until convergence is reached. This of course increases the computational cost very significantly, but is still possible. A limited version of self-consistency, the GW 0 approximation, consists in keeping W = W 0 , and only converging with respect to G. In both cases, the surprising result is that self-consistency seems to make agreement with measured band structures worse [32,33], as the bands become wider, while the The band gap E g is severely underestimated in DFT (0.52 eV) compared to the experimental band gap (1.17 eV). The GW calculation (0.96 eV) partly corrects this, without significantly changing the overall shape of the occupied or excited part of the spectrum. The GW calculation is performed on a 10x10x10 Brillouin zone mesh.

satellites are broadened and lose spectral weight. Surprisingly, full self-consistency seems to be worse than the partial variant, as the screened interaction W suffers from the previous effects. The generally held opinion is that G 0 W 0 improves on the non-interacting quasi-particles energies but does not give correct quasi-particle weights, and self-consistency only enhances this error. Local vertex-corrections in Eq. 2.24 (to restore Eq. 2.19) have been studied [34]. A similar idea is also behind the GW+EDMFT method, that we discuss in the following chapter (4.4).

On the other hand, self-consistency in GW may be useful to determine total energies, as such a scheme would satisfy conservation equations [35]. Calculations on the electron gas [36] seem to support this view.

An alternative way to treat self-consistency is quasi-particle self-consistent GW, as proposed by van Schilfgaarde et al. [37]. The physical intuition behind quasi-particle self-consistent GW was already present in the review by Aryasetiawan [29]. Instead of using the GW equations 2.20 to 2.24 in a loop, a noninteracting Hamiltonian H 0 is constructed (self-consistently) such that the time-dependence of this noninteracting system is as close as possible to that of the interacting system, computed within GW. This procedure was shown to improve band gaps in a wide range of semi-conductors, compared to simple one-shot GW calculations.

GW in practice

A last weak point of the GW method comes from the technical challenge in actually implementing it. It is twofold. First, the full GW polarization, self-energy and Green's function with k and ω dependence are computationally heavy objects. In systems with many particles, manipulating them is complicated, the scaling both of computation time and memory usage with the particle number and the Brillouin zone discretization is not favorable (at best O(N 3 ) in the number of atoms and O(N k ) in the Brillouin zone discretization).

Second, the output of a GW calculation, and in particular the calculation of the screened interaction 2.3. Hedin's equations and perturbation theory W , is strongly sensitive to the choice of basis functions and k-mesh [38][39][40]. Therefore, band structures calculated within the GW approximation tend to vary a lot between different codes (at least for metals). Even for a given code, convergence of the basis set may be excessively slow. This is to be compared with usual implementations of DFT that are much less sensitive to such issues.

Simplified forms of GW

An interesting feature of GW theory is that, in its diagrammatic form, it appears as a very natural improvement on HF theory. Indeed, HF is obtained as a (very) simplified GW theory if we set P = 0, hence W = v. The HF self-energy can then simply be expressed as Σ HF = iGv. As mentioned in section 2.1, one important shortcoming of HF theory is the fact that it ignores the screening of Coulomb interactions by the charges present in the solid. It is then natural (though this is not a formal proof of the method) to replace the bare Coulomb interaction v by the fully screened, dynamic interaction W (k, ω).

As full-fledged GW calculations are still heavy, further approximations may be introduced. One such approximation, introduced by Hedin in 1965 in his seminal paper, is the Coulomb Hole -Screened Exchange (CoHSEx) approximation, that separates the poles due to the Green's function G and poles due to the screened interaction W in the integral expression of the self-energy. The real part of the self-energy is then given by the sum of

ReΣ SEx (r, r , ω) = - occ i ψ i (r)ψ * i (r )ReW (r, r , ω -ε i ) (2.25) ReΣ CoH (r, r , ω) = i ψ i (r)ψ * i (r ) ∞ 0 dω D(r, r , ω ) ω -ε i -ω (2.26) 
where D(r, r , ω ) = -1 π ImW c (r, r , ω ) and W c = W cv bare is the frequency-dependent part of W . Such a decomposition can always be made, but it becomes more simple in the static approximation where the Coulomb hole term becomes local:

Σ SEx (r, r ) = - occ i ψ i (r)ψ * i (r )W (r, r , ω = 0) (2.27) Σ CoH (r, r) = 1 2 δ(r -r ) [W (r, r , ω = 0) -v(r -r )] (2.28)
The GW self-energy is then separated into two terms, one of which is purely local:

Σ GW ≈ Σ SEx (k) + Σ CoH (2.29)
Σ SEx (k) can be seen as the HF exchange self-energy with static screening, and Σ CoH corresponds to the interaction energy between a quasi-particle and the exchange hole created around itself due to screening. CoHSEx calculations are not as accurate as GW calculations, but being static they do not suffer the same issues as GW as far as self-consistency is concerned. Moreover, CoHSEx represents a good starting point to understand more complicated methods based on the GW approximation, so we will come back to this concept when we discuss the validity of DFT+DMFT in chapter 4 and chapter 6.

Chapter 3

When correlations are too strong: the Hubbard model and Dynamical Mean Field Theory

The DFT and GW methods both describe the physics of correlated electrons, in the sense that both take into account electron-electron interactions beyond Hartree and Fock exchange. In particular, both methods contain the notion of electronic screening -explicitly for GW, self-consistently in the one-particle Kohn-Sham potential for DFT. Both methods, however, break down when calculating the properties of strongly correlated systems, where the notion of strong correlations depends on a criterion to be defined below.

In the case of GW, this breakdown happens because of the neglected vertex when going from Hedin's equations to the GW equations. DFT is in principle expected to give exact results for ground state properties of such systems, but:

1. Approximate exchange-correlation functionals, in particular simple ones like the LDA functional, work better for systems with delocalized electrons 2. One-particle spectra obtained from KS DFT (which, as we mentioned, have no a priori reasons to coincide with measured spectra) tend to be qualitatively worse for such systems While comparison with experiments is an obvious way to determine whether or not a material behaves as predicted in GW or DFT, hence if it should be considered strongly correlated or not, it is a longstanding goal of electronic structure theory to determine this a priori, and of course to determine the physics of strongly correlated materials.

When studying such systems, it is often convenient to study low energy models with a reduced number of degrees of freedom, typically involving only electrons around the Fermi level. In this section, we discuss low energy models often used to study strongly correlated systems, and some techniques to solve them. We further discuss how such models can be defined and parameterized in chapter 4.

The Hubbard model and the Mott transition: from band theory to local physics

In 1963 [41], John Hubbard defined an improved tight-binding model including electron-electron interactions, the eponymous Hubbard model, also derived by Kanamori and Gutzwiller in the same year [42,43]. 

H = ( 0 -µ) i,σ n iσ - i,j ,σ t ij c † iσ c jσ + c † jσ c iσ + U i n i↑ n i↓ (3.1)
where the sum i, j runs over all pairs of nearest neighbor sites of the lattice, 0 is the reference energy level of the band, µ the chemical potential, t ij the hopping amplitude between sites i and j, and U the on-site Coulomb interaction strength. This Hamiltonian is fairly simple, but it is not analytically solvable (except in one dimension) because of the U n i↑ n i↓ interaction term. In fact, Hamiltonian 3.1 is widely considered to contain most of the physics of a wide range of strongly correlated materials, not least the high-temperature superconductors of the cuprates family [44,45]. It has a complex phase diagram in terms of the lattice shape (square, triangular, Bethe...), t, U , µ (or electron count), temperature T , and dimension [46,47]. In the limit of t/U → 0, the electrons are completely localized while in the opposite limit of t/U → ∞, the band picture of non-interacting particles is recovered.

If such a model is to describe a real material, even qualitatively, then physically relevant values for the parameters, in particular t and U , must be chosen. These values depend on the full electronic structure, while the Hubbard model only describes the physics of a band around the Fermi level. Moreover, in most real systems a multi-orbital model is required. We come back to the derivation of such a lattice model from the full many-body problem in chapter 4. Here, we first discuss methods that can be used to study the Hubbard model.

How to solve the Hubbard model: Dynamical Mean-Field Theory

The Curie-Weiss mean-field

The concept of a mean field is an important one in physics, first introduced in the context of phase transitions by Curie and Weiss in the early 20 th century [48,49]. The most simple example of mean-field theory is given in the case of the Ising model [50]. This Ising model describes a set of spins {s i } on a lattice, coupled to one-another by an exchange interaction J between nearest neighbors i, j and in an external uniform magnetic field h ext .

H = -J i,j s i s j -h ext i s i (3.2)
where s i can take the values ±1. In practice, s i represents the z component S z i of a full spin operator S i , and J stems from the exchange interaction of electrons rather than direct spin-spin coupling. If J < 0, two neighboring spins lower the energy level by pointing in opposite directions, and the ground state of this Ising model is fully antiferromagnetically ordered (in the absence of frustration in the lattice, for example on a 2D square lattice). If J > 0, on the other hand, the ground state is ferromagnetically ordered.

While determining the ground state of the ferromagnetic Ising model is fairly simple, things become more complicated at non-zero temperature. The Ising Hamiltonian is in essence a many-body Hamiltonian, so that direct calculation of the partition function is not possible. Thus, computing the magnetization is not trivial. At high temperature, entropy is dominating and the Ising model paramagnetic, with a symmetry breaking to the ferromagnetic phase as the temperature is lowered.
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Let us isolate a given spin s 0 . The Hamiltonian acting on this spin is

H 0 =   -J 0,j s j -h ext   s 0 H 0 = -   Jzm + J 0,j (s j -m) + h ext   s 0 (3.3)
where z is the number of nearest neighbors of a given spin (or connectivity of the lattice) and m = s i .

The Curie-Weiss mean-field approximation consists in neglecting the second term in the brackets, containing the fluctuations around the average of the neighboring spins, in second order in the fluctuations (the first order term is zero by construction). This becomes justified in the infinite dimension limit, where the central limit theorem ensures that the sum over all neighboring sites of this fluctuation stays smaller than the first term, Jzm, by a factor of the order of √ z. Our spin s 0 is then only feeling an effective field depending on the average magnetization m

h eff = Jzm + h ext (3.4)
The partition function of Hamiltonian H 0 is readily obtained as

Z 0 = 2 cosh h ext + zJm k B T (3.5) 
where k B is the Boltzmann constant and β = 1 k B T . From this one can self-consistently compute the average magnetization

m = tanh (β(h ext + zJm)) (3.6) 
predicting a paramagnetic to ferromagnetic transition below T c = zJ k B . The mean-field description is of course a strong approximation: it assumes that fluctuations around the mean value are negligible.

Still, even in finite dimensions, a mean field theory can give a good picture of the physical behavior. A classical result of statistical field theory is that for continuous order parameters (which is not the case of the Ising model) and in dimensions d ≥ 4, the critical exponents computed with mean-field theories are exact. In dimension 2 ≤ d < 4, fluctuations modify the critical exponents but the phase transitions stay. Only when d < 2, the Mermin-Wagner theorem states that long-range fluctuation destroy long-range order.

From Ising to Hubbard: a mean-field description of the electrons

Since the Hubbard model is defined on a lattice, like the Ising model, it is rather natural to consider a mean-field approximation. However, the physics of the Hubbard model is much more complex than the one of the Ising model. Indeed, in the simplest limiting case, the half-filled Hubbard Hamiltonian can be shown to simplify to the antiferromagnetic Heisenberg model in the limit of infinite U [51]. It follows that we cannot expect a simple scalar mean-field to describe the system well, like in the case of the Ising model: the mean-field parameter has to be something more complex than a scalar.

A first important step towards solving the Hubbard model was made by Metzner and Vollhardt, who showed in 1989 [52] that a limit of infinitely large lattice coordination z can be defined for the Hubbard model if the hopping parameter is adequately renormalized by √ 2z. Furthermore, it was shown in the same year that the self-energy becomes local in this limit [53].

The second step came in 1992, when Georges and Kotliar [54] showed that the lattice Hubbard model can be self-consistently mapped onto a local impurity problem of an atom with local Coulomb interactions, exchanging electrons with a bath. Similarly to the mean-field treatment of the Ising model, this implies to make an approximation, namely to consider a purely local self-energy. As previously mentionned, this approximation becomes exact in the limit of infinite coordination, as well as in the limit of vanishing hopping. The equivalent in DMFT of an isolated spin in an self-consistent magnetic field in the Ising model, is then an isolated atom, exchanging electrons with a self-consistent bath.

For a general review on DMFT, we refer the reader to the review paper by Georges et al. [55], or [47] for a more qualitative description.

The Anderson impurity model

The Anderson impurity model (AIM) was first introduced in 1961 by Anderson [56] to describe magnetic impurities in a metal, to treat Kondo-like problems. The AIM Hamiltonian can be written as follows:

H AIM = H atom + H bath + H coupling H atom = U n ↑ n ↓ + (ε 0 -µ)(n ↑ + n ↓ ) H bath = lσ ε lσ a † lσ a lσ H coupling = lσ V l (c † σ a lσ + a † lσ c σ ) (3.7)
where c † σ creates an electron with spin σ on the atom and a † lσ creates an electron with spin σ and energy ε lσ in the bath (that is to say, e.g. a conduction electron). The coupling term is exchanging electrons between the atom and the bath. The bath electrons are considered to be non-interacting, but the electrons on the local atom carry the full local Coulomb interaction term U n ↑ n ↓ .

The critical point is that, while directly solving the full Hubbard model is rather untractable, efficient and numerically exact methods exist for solving such impurity models. One method that was widely used throughout this thesis is continuous time quantum Monte-Carlo (CTQMC). For a review of CTQMC techniques, we refer the reader to Ref. [57].

The Dynamical Mean-Field Theory equations

In this part, we derive the DMFT equations using the cavity method, following the review paper by Georges et al. [55]. We already employed this same cavity method above on the Ising model (without citing its name); it turns out that a similar method can be used to derive a solution for the Hubbard model in infinite dimensions.

The Hubbard model, written in Hamiltonian form in Eq. 3.1, can equivalently be expressed using a path integral formalism [58]. The Hubbard action is given by

S Hubbard = β 0 dτ   - ijσ c † iσ (τ ) ((∂ τ -µ) δ ij + t ij ) c jσ (τ ) + U i n i↑ (τ )n j↓ (τ )   (3.8)
From this action, the partition function is calculated as an integral over all Grassmann variables c iσ , c † iσ :

Z = i,σ D c † iσ c iσ e -S Hubbard (3.9)
Similarly to the above treatment of the Ising model, one may choose a given site (say, site 0) of the lattice, and split the full action into three terms: a local action on site 0 (S 0 ), an action containing the terms coupling site 0 to the others (∆S), and the rest, S (0) , describing the lattice with site 0 removed.

S Hubbard = S 0 + ∆S + S (0)
(3.10)
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This allows us to define an effective action on site 0 by integrating out all the other degrees of freedom:

1 Z imp e -Simp(c † 0σ ,c0σ) = 1 Z i =0,σ D c † iσ c iσ e -S Hubbard = e -S0 Z i =0,σ D c † iσ c iσ e -(S (0) +∆S) (3.11)
At this point, we have not introduced any approximations. This effective (or impurity) action S imp can be used to compute all the local correlators, in particular the local or impurity Green's function:

G loc (τ -τ ) = G imp (τ -τ ) = -< T c(τ )c † (τ ) > Simp (3.12)
The expression giving S imp is a rather complicated infinite sum, but with some bookkeeping one can show that, in the limit of infinite dimensions and rescaling the hopping parameters appropriately, the expression simplifies to

S imp = - β 0 dτ β 0 dτ σ c † σ (τ )G -1 0 (τ -τ )c σ (τ ) + U β 0 n ↑ (τ )n ↓ (τ ) (3.13)
where G 0 is given by

G -1 0 (iω n ) = iω n + µ -ε 0 - ij =0 t 0i t 0j G (0) ij (iω n ) (3.14) G (0) ij (iω n )
is the Green's function of the Hubbard model without site 0. One can show (see [55]), using again the infinite dimension limit, that this is equivalent to

G -1 0 = G -1 loc + Σ imp (3.15)
where the self-energy Σ becomes local [53], hence equal to the "impurity" self-energy Σ imp on site 0 computed from the impurity action S imp . The local Green's function G loc is calculated as follows

G loc (iω n ) = k 1 iω n + µ -ε 0 -ε k -Σ imp (iω n ) = k G(iω n , k) (3.16)
where ε k are the non-interacting band energies (or Fourier transform of the hopping), or equivalently, using the non-interacting density of states D(ω) from the dispersion relation ε k :

G loc (iω n ) = +∞ -∞ D(ε)dε iω n + µ -ε 0 -ε -Σ imp (iω n ) (3.17)
We thus have all the DMFT self-consistency equations. In practice, the DMFT self-consistency loop is the following:

1. Start from an initial approximation for the self-energy, and compute the local Green's function from Eq. 3.16.

2. Use the self-consistency equation to obtain the Weiss dynamical mean-field G 0 by Eq. 3.15.

3. Compute the impurity Green's function from the impurity action 3.12 and update the self-energy by re-applying Eq. 3.15.

4. Go back to the first step with the new self-energy, until self-consistency is reached.

This procedure is exact in infinite dimensions. In the general case, an approximation is made by assuming that G loc can be expressed using a local self-energy.

The present equations are written in the case of a one-band Hubbard model. The generalization to a multi-band model is straightforward, the quantities involved (ε k , ε 0 , G, G 0 and Σ) being matrices rather than scalars. The local Green's function should in this case be calculated from Eq. 3.16. 

The Anderson impurity model in Dynamical Mean-Field Theory

The effective action S imp and the dynamical mean-field G 0 in its formula (3.13) can be conveniently parameterized as the action of a self-consistent (Anderson) impurity model, described by Eq. 3.7. Indeed, we can rewrite Eq. 3.14 by introducing a hybridization function

G -1 0 (iω n ) = iω n + µ -ε 0 -∆(iω n ) (3.18)
In practice, this hybridization function is computed as

∆(iω n ) = iω n + µ -ε 0 -G -1 0 (iω n ) (3.19)
from the self-consistent dynamical mean-field G 0 . In the AIM of Eq. 3.7, the action takes the same form as 3.13 with G -1 0 (iω n ) given by Eq. 3.18 above, and the hybridization is given by

∆(iω n ) = l |V l | 2 iω n -ε lσ (3.20)
If we were to choose actual parameters for V l and ε lσ , they should be chosen self-consistently so that the impurity Green's function of the AIM coincides with the local Green's function of the initial Hubbard model. In practice, only the full function ∆(iω n ) is useful, so there is no need to explicitly define the AIM by its parameters. Still, this analogy gives a better physical understanding of the DMFT equations: they describe a lattice where local correlations are those of an impurity exchanging electrons with a non-interacting bath, itself self-consistently parameterized by the interacting local Green's function (as seen in Eq. 3.14.) This technique of using an auxiliary system is reminiscent of the Kohn-Sham system of non-interacting electrons used self-consistently in DFT, while the cavity construction is similar to the the Curie-Weiss mean-field approximation in the Ising model. This DMFT self-consistency loop is illustrated in Fig. 3.1. In table 3.1, we summarize the analogy between the classical Ising Weiss mean-field and DMFT.
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Ising mean-field DMFT 

Hamiltonian H = -ij J ij s i s j -h i s i H = ( 0 -µ) i,σ n iσ - i,j ,σ t ij c † iσ c jσ + c † jσ c iσ + U i n i↑ n i↓ Local Observable m i =< s i > G loc (τ -τ ) = -< T c † i (τ )c i (τ ) > Effective local model H eff = -h eff s i U n ↑ n ↓ + (ε 0 -µ)n + lσ ε lσ a † lσ a lσ -lσ V l (c † σ a lσ + a † lσ c σ ) Weiss field h eff G -1 0 (iω n ) = iω n + µ -∆(iω n ) ∆ σ (iω n ) = l |V l | 2 iω n -ε lσ Self-consistency relation h eff = j J ij m j + h G(iω n ) = k iω n + µ -ε 0 -ε k + G -1 (iω n ) -G -1 0 (iω n ) -1 G -1 0 = G -1 imp + Σ imp = G -1 loc + Σ imp

Strengths and limitations of Dynamical Mean-Field Theory

DMFT has several strong points. First, contrary to other methods like the GW method, it is not a perturbative method. This allows us to treat systems with arbitrarily strong correlations. Furthermore, DMFT becomes exact in a number of limiting cases:

• Infinite dimensions (or infinite lattice coordination)

• The non-interacting limit, U = 0.

• The atomic limit, t = 0.

Being exact in these opposite limiting cases opens the possibility for reasonable results in the intermediate regime, where kinetic energy or hopping t is of similar magnitude as Coulomb interaction U . Indeed, as we discuss below, DMFT provides a good description of the one-band Hubbard model's Mott insulating transition, when the ratio U/t is varied.

More generally, DMFT is expected to work well as long as local quantum fluctuations are more important than non-local fluctuations. In particular, phenomena like charge or spin-density waves are not captured in single-site DMFT. Several extensions of DMFT have been proposed in order to treat long-range correlations, long-range interactions and the coupling of electrons to boson modes (plasmons, spin-waves, etc) in a similar framework. Regarding long-range interactions, prominent examples are extended DMFT and its combination with GW theory (see section 4.4), or the dual boson approach [60]. Extensions of DMFT that include non-local correlation effects (i.e. non-local self-energies) include cluster extensions (cluster DMFT or dynamical cluster approximation, see section 4.4), diagrammatic extensions like the dynamical vertex approximation (or DΓA) [61], the TRILEX [62] and QUADRILEX [63] methods, and the dual fermion method [64]. For a recent and extensive discussion of non-local extensions of DMFT, we refer the reader to the review paper by Rohringer et al [65].

Most of these methods are still computationally heavy, so that first principles calculations of real systems with multiple orbitals are, if not impossible, not yet routinely done (though an ab initio DΓA scheme has recently been tested on the benchmark strongly correlated material, SrVO 3 [66]). In a recent review, Lechermann et al. [67] suggested there are two main routes worth pursuing in the field of strongly correlated electronic structure calculations: one aims at better describing material-specific electronic structures, the other aims at going beyond local mean-field theory. In this thesis, we choose to discuss the former aspect.
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Dynamical Mean-Field Theory treatment of the single-orbital Hubbard model on Bethe lattice

As an illustration, we show below how DMFT captures the metal-insulator transition in the one-orbital Hubbard model on the infinite-connectivity Bethe lattice.

The Bethe lattice (or Cayley tree) is an infinite cycle-free graph where each node has the same number of neighbors z [68]. It does not appear at first sight a reasonable description of a lattice made of atoms and carrying electrons. Nevertheless, the Bethe lattice has been a popular tool in the context of DMFT. Indeed, as mentioned earlier, in the limit of large connectivity z, DMFT becomes exact [52]. Furthermore, and only in the case of the Bethe lattice, the density of states becomes semi-circular (or semi-elliptic with more that one band) and the self-consistency equation becomes much simpler in this limit, allowing for simpler equations. Last but not least, in many cases the physics of correlated electrons does not depend too much on the geometry of the lattice.

In Fig. 3.2, we show the spectral function calculated with DMFT for the one-orbital, Bethe lattice Hubbard model at half-filling. The temperature is β = 80 eV -1 , for different ratios of U/t. At U/t = 0, we recover the semi-circular density of states of the non-interacting Bethe lattice. For large values of U/t, the density of states is separated into two so-called Hubbard bands, separated by the energy U . Note that these bands are qualitatively different from non-interacting bands: each Hubbard band can only contain one electron, instead of two (taking into account spin-degeneracy) for a non-interacting band. This means that at half-filling and large U/t, the system becomes insulating, whereas non-interacting bands are necessarily metallic with an odd electron number. If the limiting case U/t = 0 describes completely delocalized (dispersive) electrons on a lattice, where all of the energy is kinetic energy, the large U limit is the opposite: it consists in perfectly localized electrons on the atom sites, stuck in place because the cost of double occupancy is too high to hop (even briefly) to a neighboring site. Re Σ(iω) (eV) In the intermediate regime, partially formed Hubbard bands and a quasi-particle peak at the Fermi level, narrowing as U/t is increased, until it vanishes.
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The quasi-particle weight Z can be defined as

Z = (1 -∂ ω ReΣ(ω)| ω=0 ) -1 = (1 -∂ iω ImΣ(iω n )| iω=0 ) -1 (3.21)
depending on whether we are working with real or imaginary frequency Green's functions (see Appendix B). It is shown in Fig. 3.3 in the case of the one-band Hubbard model.

If we look at a k-and ω-resolved Green's function, on a lattice where k is properly defined, and compute the spectral function A(k, ω), the signification of the quasi-particle weight Z becomes more apparent. A non-interacting system of electrons in a periodic lattice has perfectly defined electronic bands, so that A(k, ω) is a sum of Dirac peaks (one per band) when k or ω are varied. This is illustrated in the left panel of Fig. 3.5. At zero temperature, the distribution function is given by a step function, with a step of height one as one goes through the Fermi level. This picture of non-interacting bands changes in the presence of correlations, where the system has a non-trivial self-energy. The Dirac peaks that form the bands are gradually widened as the imaginary part of the self-energy increases, and the integral of the peak becomes less than unity. The new weight of this quasi-particle peak is precisely given by Z, as defined in Eq. (3.21). Since there is conservation of the particle numbers, this implies a spectral weight transfer to higher and / or lower energies, for example in the form of Hubbard bands or plasmon satellites. In addition, a reduced step of height Z appears in the zero-temperature distribution function, as a consequence of correlations. This case is illustrated in the right-hand panel of Fig. 3.5.

What is implied by the above discussion and Fig. 3.5 is that, in presence of correlations, the band picture becomes invalid but does not break down altogether. This situation is described by Landau's Fermi liquid (FL) theory [8]. If correlations are not excessively strong, the Dirac peak of non-interacting bands can be adiabatically traced back to the widened main peak in the interacting spectral function. Oneparticle excitations corresponding to thus derived photoemission peaks cannot really be called "particles", as they do not correspond to the removal of an electron with well-defined energy and momentum. This means that a Fermi liquid is characterized by quasi-particles with a finite lifetime. More precisely, quasi-particles in Fermi liquid theory have a lifetime τ k such that

1 τ k ∝ (ε k -ε F ) 2 + (πk B T ) 2 (3.22)
where ε F is the Fermi energy and ε k the eigenenergy of a quasi-particle. In other words, at low temperatures, quasi-particles close enough to the Fermi level can be long-lived. However, their lifetime decreases as one moves away from the Fermi level, as illustrated in the right-hand panel of Fig. 3.5.

All of the properties of the quasi-particles are encoded in the self-energy Σ(ω) of the system. In particular, quasi-particles in a Fermi liquid:

1. have a finite lifetime away from the Fermi level, encoded by the low-energy dynamical behavior of the imaginary part of Σ(ω).

2. have a renormalized mass (usually heavier than non-interacting electrons) proportional to 1/Z k , encoded by the low-energy dynamical behavior of the real part of Σ(ω).

have a renormalized dispersion relation near the

Fermi level, also encoded by the real part of the self-energy.

Let us go back to the one-band Hubbard model previously discussed to see what happens during the metal-insulator transition. In Fig. 3.2, the decrease of the bandwidth as U is switched on is visible, synonymous of heavier quasi-particles and transfer of spectral weight to satellites. The renormalization factor Z decreases until it reaches 0 between U = 2.5 and 3 eV, which marks the transition to the insulating phase (Fig. 3.3). The reduced quasi-particle lifetime is not so easily visible here, and would appear more clearly in a k-resolved spectral function on a "real" (not Bethe) lattice.

The corresponding self-energies Σ(ω) also show this transition. In Fig. 3.6, we display the analytical continuation of the Matsubara frequency self-energies calculated in Fig. 3.4. For small values of U and at zero temperature, the imaginary part of Σ(ω) is going to 0 quadratically as -Γω 2 at ω = µ, where Γ is the electron-electron scattering rate, equal to the inverse quasi-particle lifetime. At finite temperature T ,

ImΣ(ω) = -(Γω 2 + π 2 (k B T ) 2 ) (3.23)
When U is greater than a critical value (here, slightly below 3 eV), ImΣ(ω) does not go to zero at the Fermi level anymore (even at T = 0), so that no quasi-particles with arbitrarily long lifetime can be defined: the Fermi liquid picture breaks down. The real part of Σ is quasi-linear at ω = µ, and its slope gives the quasi-particle weight as in Eq. 3.21.

In the one-band model, a metal-insulator transition has to be caused by a vanishing quasi-particle peak, as Brinkman and Rice showed in 1970 [71]. This seems in fact quite straightforward: correlations increase the effective mass of quasi-particles, until the mass diverges and electrons become localized. This is not sufficient to describe all correlation-driven metal-insulator transitions: in a multi-orbital system, the effect of the self-energy can be to shift one band with respect to the others, and thus open a band gap [9]. We removed the static real contribution corresponding to the chemical potential, µ = U/2, in order to compare the different self-energies more easily. In the Fermi liquid regime, the real part of Σ(ω) is linear around ω = 0, with the slope giving the mass renormalization factor Z, and the imaginary part vanishes at ω = 0. Near and above the Mott transition, the imaginary part of the self-energy does not go to zero at the Fermi level, but becomes a Dirac peak in the limit of large U .

Chapter 4

Bridging the gap to realistic material calculations: combined Density Functional Theory and Dynamical Mean-Field Theory

DMFT and its extensions have demonstrated their value for solving Hubbard-like problems in a large variety of configurations: two-dimensional or three-dimensional lattices of square, triangular, honeycomb or Bethe type, with local Coulomb interaction U only or with additional nearest-neighbor Coulomb interaction V , with one or several orbitals... Such models can, to some extent, be made material specific.

A first approach is to measure the parameters. This is not trivial, but can be done, for example in photoemission experiments. In a single-orbital system, the distance between two Hubbard bands, U , is obtained by comparing the position of the lower Hubbard band in direct photoemission and of the upper Hubbard band in inverse photoemission (this is the more difficult part). A more general theory for measuring U from spectroscopy experiments, including for multi-orbital systems, was proposed by Sawatzky et al. [72]. The hopping parameter t can in principle be obtained by angle resolved photoemission spectroscopy by measuring the bandwidth [70], but in practice (and in materials where DMFT would be useful) this only gives an effective t eff , renormalized by correlations.

The second approach, more often followed, consists in exploring phase diagrams by varying one or several parameters. This gives information on a whole family of materials, and a specific material can be understood by comparing calculated observables and measured ones, and placing the material on the phase diagram. The "true" parameters of the system are then considered to be those that best fit the experiments.

Either way, model-based DMFT calculations are more often used to qualitatively understand materials than to make predictions. The need for input parameters is, in fact, a consequence of the fact that DMFT and similar methods can only be used to solve low-energy models with few bands, and do not provide a general description of the electronic structure of materials. An ideal theory would:

• Reasonably describe bands far away from the Fermi level (core states and excited states), both in terms of the energetic position and of the charge density of occupied bands

• Use some form of many-body technique to treat the low-energy degrees of freedom, where correlations are typically most present and upon which many important physical properties (conductivity, magnetism...) depend

• Have a consistent link between both parts of the energy spectrum: this is probably the most difficult 29 Chapter 4. Realistic material calculations: combined DFT+DMFT requirement.

The need for such a theory became evident as soon as DMFT demonstrated its efficiency for treating low-energy models in the mid-90's. A first approach was proposed in 1997 by Anisimov et al. [START_REF] Anisimov | First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory[END_REF] and in 1998 by Lichtenstein et al. [74]. Their "DFT+DMFT" formalism has had great success to quantitatively describe very diverse strongly correlated metals and oxides in the last twenty years (see section 4.2 for examples). In the present chapter, we briefly review the philosophy behind DFT+DMFT, present a few achievements of this method, and finally discuss some of its extensions. As in DFT+U, in DFT+DMFT a subset of localized states around the Fermi level for which KS DFT does not work well is designated as "correlated" and treated within DMFT, while the other orbitals are simply treated at the KS DFT level. By using (for example) projectors, a projected Hamiltonian H proj k is defined, and, after removing a double-counting term, used as a non-interacting Hamiltonian in DMFT. The density matrix of the correlated shell, obtained from the converged DMFT calculation, can be fed back into the DFT loop, updating the charge density around the correlated atom.

DFT+DMFT can be used in two similar but different ways:

• A first way to use the DFT+DMFT method, introduced in 1997 and 1998 [START_REF] Anisimov | First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory[END_REF]74], is to use the DFT density and KS wave functions to parameterize a material-specific Hubbard model, to be solved in DMFT. A number of properties, for example spectral functions, magnetizations or quasi-particle effective masses, can then be obtained by embedding the impurity self-energy obtained by DMFT into the DFT KS Hamiltonian. This approach is often called "one-shot" DFT+DMFT.

• A slightly more recent and more sophisticated method is to see the DFT+DMFT equations as deriving from a more general energy functional. This paves the way for fully charge self-consistent DFT+DMFT calculations and allows to compute total energies in a similar fashion to DFT, but with local correlations taken into account more accurately.

In this manuscript, we follow the framework for DFT+DMFT using Wannier functions described in Lechermann et al. in Ref. [START_REF] Lechermann | Dynamical mean-field theory using Wannier functions: a flexible route to electronic structure calculations of strongly correlated materials[END_REF], and its implementation in FLAPW DFT by Amadon et al. and Aichhorn et al. [START_REF] B Amadon | Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals[END_REF][START_REF] Aichhorn | Dynamical mean-field theory within an augmented plane-wave framework: assessing electronic correlations in the iron pnictide LaFeAsO[END_REF]. A general review of DFT+DMFT can be found in [START_REF] Kotliar | Electronic structure calculations with dynamical mean-field theory[END_REF]. [59,[START_REF] Biermann | Dynamical mean field theory-based electronic structure calculations for correlated materials[END_REF] provide a more qualitative and pedagogical introduction.

In the following sections, we discuss the basic ideas behind both approaches.

One-shot Density Functional Theory + Dynamical Mean-Field Theory equations

One typically starts from a converged KS DFT calculation. This means that for each k-point in the Brillouin zone mesh, we have a set of Bloch waves ψ σ kν with eigenenergies ε σ kν . The Bloch waves are by essence delocalized and not of pure atomic and orbital character, though some may be predominantly formed by a given orbital. In a window around the Fermi level (since DMFT is typically useful to study low-energy degrees of freedom around the Fermi level, in partly filled d or f shells), Bloch waves with different atomic and orbital characters may be present. In the simplest case, the only bands crossing the Fermi level belong to a subset of orbitals considered as correlated. This can, for example, be the t 2g states of a transition metal in an oxide. The situation is more complicated when other bands are also present, for example dispersive states of predominant s character in metalic Fe.

Either way, the challenge is to define a mapping to go from the Bloch space to a correlated space with less orbitals, and inversely. One way of doing so, that was extensively applied in the present thesis, is described below. An initial set of atomic-like orbitals |χ ασ m is created from atomic-like functions in the KS DFT basis set. This is very natural in implementations of DFT that work with localized functions, as is the case in the FLAPW DFT code Wien2k. At each k-point, these atomic-like orbitals are then expanded in the Bloch functions: At each k-point, P ασ (k) is a matrix whose dimensions are given by the number of Bloch bands N ν in the energy window W on one hand, and the size L of the correlated subspace on the other hand (for example, L = 5 for a d shell, 7 for an f shell or 3 for a t 2g shell, times the number of independent correlated atoms). The rows of the matrix P ασ (k) contain the decomposition of Wannier functions |w ασ km over the Bloch waves |ψ σ kν .

|χ ασ km = ν ψ σ
Chapter 4. Realistic material calculations: combined DFT+DMFT If the correlated bands are perfectly separated from the other ones (say, t 2g states in a transition metal oxide), the matrix P σ k is unitary, and the transformation from the Bloch space to the space of correlated orbitals is quite simple. If the bands are entangled (which is typically the case in pure metals), P σ k is only semi-unitary:

P σ k P σ † k = Id L but P σ † k P σ k = Id Nν
, where Id n is the identity matrix of size n and A † is the transposed conjugate of matrix A.

We can then define the notion of up-and down-folding of a matrix. Projecting a (matrix) quantity defined in the Bloch space to the space of correlated orbitals is called down-folding, and corresponds to the operation A → P σ k AP σ † k . The inverse operation of bringing a quantity defined in the space of correlated orbitals (say, the DMFT self-energy) back into the Bloch space is called up-folding, and corresponds to the operation B → P σ † k BP σ k . The DFT+DMFT self-consistency loop is then obtained by going back and forth from the Bloch space to the correlated subspace. The lattice Green's function of the solid in the Bloch space is given by

G σ,latt (k, iω n ) -1 νν = (iω n + µ -ε σ kν )δ νν + Σ σ νν (k, iω n ) (4.10)
and obtained by up-folding the DMFT impurity self-energy in subsequent iterations:

Σ σ νν (k, iω n ) = αmm P ασ † mν (k)Σ σ,imp mm (iω n )P ασ m ν (k) (4.11)
with Σ σ,imp mm is the impurity self-energy. In practice, an additional double-counting term must be subtracted from the self-energy, as discussed in section 4.1.2. The local Green's function G loc is in turn obtained from the Green's function of the solid by down-folding it and summing over the Brillouin zone:

G σ,loc αm (iω n ) = kνν P ασ m ν (k)G σ,latt νν (k, iω n )P ασ † mν (k) (4.12)
Finally, the DMFT self-consistency condition giving the dynamical Weiss field G 0 is, as in regular DMFT:

G -1 0 = Σ imp + G -1 loc (4.13)
The one-shot DFT+DMFT self-consistency cycle is the following:

1. Compute an initial local Green's function in the correlated space by down-folding the lattice Green's function.

2. Solve the local impurity model to obtain the impurity self-energy.

3. Up-fold the impurity self-energy to insert it in the lattice Green's function, and update the chemical potential µ

Compute the new local Green's function, iterate until convergence

The need to repeatedly switch between two spaces can seem surprising, but is crucial to obtain physical results in the case where additional, non-correlated bands cross the Fermi level. Indeed, applying the selfconsistency condition directly on the level of the correlated subspace would be wrong, and in particular would not conserve the electron number. Again, in the case of well separated bands, the equations simplify and it is possible to work directly in the correlated subspace: in this case, the DFT+DMFT method is equivalent to parameterizing the non-interacting part of a Hubbard-like model with parameters obtained from the projected DFT Hamiltonian.

The double-counting term

In Eq. 4.11, we introduced a double counting correction Σ σ,dc mm to the impurity self-energy. Indeed, local Coulomb interactions are taken into account explicitly at the DMFT level, but are at least partly present in the DFT exchange-correlation and Hartree potentials, hence in the DFT Hamiltonian used to construct the Green's function in Eq. 4.10. This problem has been recognized early on in the context of DFT+U [START_REF] Anisimov | Band theory and Mott insulators: Hubbard U instead of Stoner I[END_REF][START_REF] Anisimov | Density-functional theory and NiO photoemission spectra[END_REF], and different approaches have been proposed to correct for double-counting. However, finding an exact correction is impossible, because DFT and DMFT are by construction two methods based on different observables: the key quantity in DFT is the electronic density, upon which the KS exchange-correlation potential acts. In contrast, DMFT works with Green's functions, orbital-resolved by construction. The interface between DFT and DMFT (typically a projection scheme as described above) does not allow for an explicit formula for Σ dc . Nevertheless, various schemes exist and are ubiquitous in DFT+U and DFT+DMFT calculations. Among the most used are:

• The fully localized limit (FLL) approximation [START_REF] Anisimov | Density-functional theory and NiO photoemission spectra[END_REF], whereby

Σ σ,dc mm = U (N c - 1 2 ) -J(N σ c - 1 2 ) δ mm (4.14)
where N c is the total number of particles in the correlated subspace, U the Coulomb interaction parameter, and J the Hund's coupling. The assumption behind the FLL approximation is that total energies are determined well in DFT when orbital shells are either empty or completely filled.

• The around mean-field (AMF) approximation [START_REF] Anisimov | Band theory and Mott insulators: Hubbard U instead of Stoner I[END_REF], whereby

Σ σ,dc mm = [U (N c -n σ ) -J(N σ c -n σ )] δ mm (4.15)
where n is the average occupancy per orbital, and n σ the average occupancy per orbital with spin σ.

The assumption behind the AMF approximation is that exchange and correlation effects are partly included in DFT, but only in an orbitally averaged way. For a half-filled band, the FLL and AMF expressions coincide.

• The Lichtenstein's correction for metallic systems [START_REF] Lichtenstein | Finite-temperature magnetism of transition metals: an ab initio dynamical mean-field theory[END_REF], based on the idea that static correlation effects are described reasonably well in DFT for such systems:

Σ σ,dc mm = 1 2 Tr[Σ(ω = 0)] (4.16)
Depending on what kind of properties (and what material) one wants to describe, the double-counting correction may or may not be important. The crucial idea is that a correct double-counting correction is needed to correctly describe the energetic position of the subset of correlated orbitals with respect to other orbitals present in the system. These "other" orbitals can be either states not considered as correlated within DMFT or another inequivalent shell, also treated as correlated.

As a consequence, the double-counting correction becomes less relevant, for example, in the context of studying a Mott metal-insulator transition in a system with well separated bands at the Fermi level, or quantities like the quasi-particle lifetime in such a system. Indeed, in this configuration, the doublecounting correction amounts to a trivial shift of the chemical potential.

It is, however, critical when other bands cross the Fermi level, or to compute excitations of the system corresponding to transitions to excited states implying other orbitals, or describing a charge-transfer metal-insulator transition.

We also note that orbital-dependent double-counting schemes have been tested [START_REF] Van Roekeghem | Electronic coulomb correlations in transition metal pnictides[END_REF], motivated by the fact that different orbitals of a given shell on an atom are not equally occupied in a solid. Finally, charge self-consistency in DFT+DMFT has been shown to somewhat decrease the dependence of results on the choice of double-counting correction [START_REF] Aichhorn | Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO[END_REF].

Overall, it is not an overstatement to say that double-counting corrections are important more often than not, so that efforts to design double-counting free ab initio electronic structure methods remain crucial.

Charge self-consistency and total energies in Density Functional Theory + Dynamical Mean-Field Theory

One-shot DFT+DMFT calculations are very useful to compute spectral properties of real materials, providing a welcome extension of DMFT model calculations. However, they are not sufficient to achieve what DFT was initially designed for: total energy and electronic density distribution calculations, the spectral properties of the KS auxiliary system coming as a "bonus". Kotliar and Savrasov derived in the early 2000's a functional formulation of DFT+DMFT [START_REF] Kotliar | Electronic structure calculations with dynamical mean-field theory[END_REF][START_REF] Kotliar | Dynamical mean field theory, model hamiltonians and first principles electronic structure calculations[END_REF][START_REF] Savrasov | Spectral density functionals for electronic structure calculations[END_REF], introducing a free energy functional Γ of four variables: the total charge density ρ, the local Green's function of the correlated subspace G loc , an effective interaction potential v int = v xcv ext conjugate to the charge density, and a local self-energy Σ loc conjugate to G loc . This functional is derived in the more general framework of spectral density functional theory, and its approximate expression in DFT+DMFT is given by

Γ ρ, G loc , v int , Σ loc = -Tr[lnG latt ] -drv int (r)ρ(r) -Tr [G loc (Σ loc -Σ DC )] + E H [ρ] + E xc [ρ] + Φ DMFT LW [G loc ] -Φ DC [G loc ] (4.17)
where G latt is obtained from the up-folding procedure of Eq. 4.10, and E H and E xc are respectively the Hartree and DFT exchange-correlation functionals. The two last terms are respectively the DMFT approximation to the Luttinger-Ward functional [START_REF] Luttinger | Ground-state energy of a many-fermion system. II[END_REF] and the double-counting correction to it. The Luttinger-Ward functional is a diagrammatic object whose value does not carry direct physical meaning, but is useful in DMFT because its functional derivative with respect to the local Green's function is equal to the self-energy:

∂Φ DMFT LW [G loc ] ∂G loc (iω n ) = 1 β Σ loc (iω n ) (4.18)
The stationarity of the Γ functional with respect to v int gives the charge self-consistency relation:

ρ(r) = Tr r|G latt |r (4.19)
where the trace is over all Matsubara frequencies and Bloch orbitals: Tr = 1 β iωn,νν . In practical implementations of charge self-consistent DFT+DMFT, one first determines a k-dependent density matrix from the interacting lattice Green's function (a generally non-diagonal matrix, contrary to the DFT density matrix)

N k = 1 β iωn G latt (k, iω n ) (4.20)
and the updated real space density obtained, as described in Ref. [START_REF] Lechermann | Dynamical mean-field theory using Wannier functions: a flexible route to electronic structure calculations of strongly correlated materials[END_REF], by

ρ(r) = k νν ψ kν (r)N k νν ψ kν (r) (4.21)
in the step of the DFT code that calculates the occupation of the orbitals. Thereafter, one may calculate a new KS potential, new eigenvalues and projectors, and perform a new DMFT cycle, until convergence is reached. The resulting DFT+DMFT self-consistency cycle is illustrated in Fig. 4.1

The stationarity of Γ with respect to Σ loc , on the other hand, recovers the relation between the lattice Green's function and the correlated subspace's local Green's function, as described in Eq. 4.10. Finally, the stationarity conditions of Γ with respect to ρ and G loc amount respectively to Eq. 2.12 defining the KS potential in DFT, and to Eq. 4.18 giving the self-energy from the Luttinger-Ward functional.

Given the stationarity conditions, it follows that the total energy of the system can be written as a functional of only two variables: the charge density ρ and the local Green's function in the correlated subspace G loc . Introducing G 0 loc , the local Green's function without the self-energy, the total energy functional reads [START_REF] Kotliar | Electronic structure calculations with dynamical mean-field theory[END_REF][START_REF] Amadon | A self-consistent DFT+DMFT scheme in the projector augmented wave method: applications to cerium, Ce 2 O 3 and Pu 2 O 3 with the Hubbard I solver and comparison to DFT+U[END_REF][START_REF] Park | Total energy calculations using DFT+DMFT: computing the pressure phase diagram of the rare earth nickelates[END_REF]] where ε k,ν denotes the KS eigenvalues and f is the Fermi-Dirac distribution. The first term is none other than the KS DFT total energy of Eq. 2.9,

E DFT+DMFT = E DFT + k,ν ε KS kν (N k νν -f (ε k,ν -µ)) + H U -E DC (4.22)
E HK [ρ] = T s [ρ] + v ext (r)ρ(r)d 3 r + v Hartree (r)ρ(r)d 3 r + E xc [ρ]
where in the present notations,

T s [ρ] = k Tr H KS k G 0 latt = k,occ ε n k
is the sum of occupied Kohn-Sham eigenenergies. The second term of Eq. 4.22 is the DMFT correction to the occupation of the KS eigenstates, and can also be seen as the DMFT correction the the electronic kinetic energy. Finally, the last terms H U -E DC contain the effect of the double-counting correction on the total energy. The double-counting term E DC is computed from the double-counting energy formula [START_REF] Anisimov | Band theory and Mott insulators: Hubbard U instead of Stoner I[END_REF][START_REF] Anisimov | Density-functional theory and NiO photoemission spectra[END_REF] from the DFT occupancies of orbitals. The local Coulomb energy H U can be computed conveniently in DMFT from the Migdal formula

H U = 1 2 Tr [ΣG imp ] (4.23)
Alternatively, for a density-density Hamiltonian and if the solver used in DMFT allows to directly measure the correlator n m n m , H U can be calculated directly as

H U = 1 2 mm H U mm n m n m imp . (4.24)
In applications using numerical quantum Monte-Carlo methods, the latter may have less noise or statistical error than Migdal's formula. 

Overview of achievements

In the last two decades, DFT+DMFT has been used extensively to study from first principles a wide variety of transition metal oxides [74,[START_REF] Mo | Prominent quasiparticle peak in the photoemission spectrum of the metallic phase of V 2 O 3[END_REF][START_REF] Pavarini | Mott transition and suppression of orbital fluctuations in orthorhombic 3d 1 perovskites[END_REF][START_REF] Sekiyama | Mutual experimental and theoretical validation of bulk photoemission spectra of Sr 1-x Ca x VO 3[END_REF][START_REF] Anisimov | Full orbital calculation scheme for materials with strongly correlated electrons[END_REF][START_REF] Biermann | Dynamical singlets and correlationassisted Peierls transition in VO 2[END_REF][START_REF] Poteryaev | Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in V 2 O 3[END_REF][START_REF] Tomczak | Momentum-resolved spectroscopy of correlated metals: a view from dynamical mean field theory[END_REF][START_REF] Thunström | Electronic entanglement in late transition metal oxides[END_REF][START_REF] Nekrasov | Consistent LDA+DMFT approach to the electronic structure of transition metal oxides: charge transfer insulators and correlated metals[END_REF][START_REF] Leonov | Magnetic collapse and the behavior of transition metal oxides at high pressure[END_REF], pure transition metals [START_REF] Lichtenstein | Finite-temperature magnetism of transition metals: an ab initio dynamical mean-field theory[END_REF][START_REF] Sánchez-Barriga | Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt[END_REF][START_REF] Leonov | Electronic correlations at the αγ structural phase transition in paramagnetic iron[END_REF][START_REF] Leonov | Calculated phonon spectra of paramagnetic iron at the αγ phase transition[END_REF][START_REF] Pourovskii | Impact of electronic correlations on the equation of state and transport in ε-Fe[END_REF][START_REF] Delange | Large effects of subtle electronic correlations on the energetics of vacancies in α-Fe[END_REF], lanthanides [START_REF] Pourovskii | Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications[END_REF][START_REF] Locht | Standard model of the rare earths analyzed from the Hubbard I approximation[END_REF] and actinides [START_REF] Savrasov | Correlated electrons in δ-plutonium within a dynamical mean-field picture[END_REF][START_REF] Pourovskii | Correlation effects in electronic structure of actinide monochalcogenides[END_REF][START_REF] Kolorenč | Electronic structure and core-level spectra of light actinide dioxides in the dynamical mean-field theory[END_REF].

The first implementations, without full charge self-consistency, were used to describe the spectral and conduction properties of materials, for instance transition metal oxides at or near a phase transition. The method has been particularly useful to understand the physics of materials with intermediate correlation strength, presenting interaction-driven metal-insulator transitions and other exotic properties.

More recently, as fully charge self-consistent implementations of DFT+DMFT have become more widespread and QMC solvers more powerful, this technique has been applied to describe the structural properties (crystal structures, lattice constants, bulk moduli...) of pure transition metals, lanthanides and actinides in their more strongly correlated phases. In these, DFT+DMFT total energies significantly improve on results obtained within DFT with "standard" approximate exchange-correlation functionals like LDA or GGA [START_REF] Leonov | Electronic correlations at the αγ structural phase transition in paramagnetic iron[END_REF][START_REF] Pourovskii | Impact of electronic correlations on the equation of state and transport in ε-Fe[END_REF], as illustrated in Fig. 4.2. The phonon spectrum is also improved [START_REF] Leonov | Calculated phonon spectra of paramagnetic iron at the αγ phase transition[END_REF].

Determining H U : the constrained random phase approximation

The DFT+DMFT method, as described above, is a material-specific alternative to model-based DMFT.

It provides an ab initio way of deriving the equivalent of the hopping parameter t and the local level positions (in the multi-orbital case) of the Hubbard model (Eq. 3.1), allows to treat systems with many bands of different natures crossing the Fermi level, and to compute total energies (hence structural properties) of strongly correlated materials.

Nevertheless, an important parameter of the calculations has yet to be determined: the Coulomb interaction parameter U (or, more generally, the interaction Hamiltonian H U ). Indeed, the DFT+DMFT method is frequently criticized for not being truly ab initio because of this parameterization. It should of course be possible to determine H U from first principles in the context of a complete, 4.3. The constrained random phase approximation self-contained electronic structure theory. But what exactly is H U ? Here, it is useful to remember how DFT+DMFT was derived: a low-energy model containing only a subset of states around the Fermi level is defined by down-folding a Hamiltonian (or Green's function) describing all the orbital degrees of freedom of a system. It is reasonable that this same idea of down-folding should also be present in the definition of H U . Let us first state what H U is not:

• H U is not the local interaction Hamiltonian obtained by taking the matrix elements of the bare Coulomb interaction,

V bare m1m2m3m4 = drdr φ m1 (r)φ * m3 (r)v bare (r, r )φ m2 (r )φ * m4 (r ) (4.25)
Indeed, this expression does not take into account screening. It would lead to values of U so large (typically of the order of 10 to 30 eV for transition metals or rare-earths), that virtually every metal should become a Mott insulator.

• In Eq. 2.22 and 2.23, we introduced a way to compute the screened Coulomb interaction W . Yet, H U is also not the local interaction Hamiltonian obtained by taking the matrix elements of the fully screened Coulomb interaction W . The reason for this is slightly more subtle, but not surprising: W is also screened (indeed, most stronly screened) by transitions within the very subspace whose lowenergy degrees of freedom we want to describe in DMFT, so that W is significantly over-screened.

• Screening is involved, and we know from GW theory that screening is a dynamical effect. Therefore, it seems reasonable that H U is not a static quantity but should have some frequency-dependence like W (ω), and simplify to the expression of Eq. 4.25 above in the limit of infinite frequency ω → +∞.

In other words, to determine H U consistently from first principles, a down-folding procedure should be used, like in DFT+DMFT. Only screening channels outside the correlated subspace should be allowed to screen the bare Coulomb interaction.

A popular method in the 90's, applied for DFT+U calculations, is constrained LDA (cLDA) [START_REF] Dederichs | Ground states of constrained systems: application to cerium impurities[END_REF][START_REF] Anisimov | Density-functional calculation of effective Coulomb interactions in metals[END_REF]. By constraining the occupation of the d or f shell on a given atom in a supercell, and computing the second derivative of the total energy with respect to the d or f occupation, a value can be deduced for U cLDA and J cLDA . DFT implementations with local basis functions like LMTO are best suited for such calculations. However, cLDA has a tendency to overestimate U because the screening channels are not described correctly [START_REF] F Aryasetiawan | Calculations of Hubbard U from first-principles[END_REF]. For a long time, this was not considered to be an important problem, since somewhat inflated values of U were required in DFT+DMFT to reproduce experimental results. More recently, it was understood that this is due to the neglect of effects like dynamical screening [START_REF] Casula | Lowenergy models for correlated materials: bandwidth renormalization from coulombic screening[END_REF].

To improve on these deficiencies, building on the ideas of GW theory, Aryasetiawan et al. introduced the idea of the constrained Random Phase Approximation (cRPA) [START_REF] F Aryasetiawan | Calculations of Hubbard U from first-principles[END_REF][START_REF] Aryasetiawan | Frequencydependent local interactions and low-energy effective models from electronic structure calculations[END_REF]. In cRPA, the polarization function is computed in the random phase approximation, separating transitions within the correlated subspace and the others:

P = P d-d + P rest (4.26)
considering for instance a correlated d shell. The correlated subspace can conveniently be defined with the same projectors as the one used in DFT+DMFT, so that the determination and usage of U and J are consistent. The partially screened interaction W rest , of which U and J are respectively direct and Fock-like matrix elements, can then be calculated as

W rest = V bare 1 -P rest V bare (4.27)
This equation is similar to Eq. 2.23, with a partial screening. Incidentally, since the polarization computed in RPA is frequency-dependent, so is W rest (ω) and its matrix elements. cRPA has been used extensively with DFT+DMFT, to make the calculations ab initio [START_REF] Aichhorn | Dynamical mean-field theory within an augmented plane-wave framework: assessing electronic correlations in the iron pnictide LaFeAsO[END_REF][START_REF] Martins | Reduced effective spin-orbital degeneracy and spin-orbital ordering in paramagnetic transition-metal oxides: sr 2 iro 4 versus sr 2 rho 4[END_REF] and analyze which screening channels are important (see, for instance, [START_REF] Vaugier | Hubbard U and Hund exchange J in transition metal oxides: screening versus localization trends from constrained random phase approximation[END_REF][START_REF] Van Roekeghem | Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo 2 As 2[END_REF]). Nevertheless, cRPA is not Figure 4.3 -Summary of the cRPA procedure, applied to a system with a single correlated band at the Fermi level. Reproduced from Ref. [START_REF] Hansmann | What about U on surfaces? Extended Hubbard models for adatom systems from first principles[END_REF]. P target denotes the polarization from transitions within the low-energy subspace, while P rest denotes the polarization due to all transitions between bands outside the low-energy subspace or between a band within, and a band outside of it.

equally powerful for all systems. It produces reasonably good results when the bands corresponding to the correlated subspace are well separated from the others (so that the projectors are unitary), but less so when other (dispersive) bands cross the Fermi level. In this case, residual metallic character after the projection often leads to overscreening or requires additional approximations. A disentanglement procedure has been proposed [START_REF] Miyake | Ab initio procedure for constructing effective models of correlated materials with entangled band structure[END_REF] and successfully applied to consistently compute H U even in such cases. Indeed, it is not trivial to cut out transitions within the correlated subspace when other bands with mixed orbital character co-exist in the energy window. However, the issues above are not strictly a a defect of cRPA method: rather, they emphasize the fact that defining a good low-energy model, starting from an all-electron electronic structure calculation, is difficult. Moreover, for states hybridizing strongly with bands from different atoms (for example, e g states in transition metal oxides hybridizing with oxygen 2p states), some ambiguity exists on how to best construct the projectors. In oxides with partially filled e g states, a common procedure is to exclude transitions within the d orbital subspace but construct Wannier functions with a window containing transition metal d and ligand 2p states. Such a model is called a "ddp" model [START_REF] Vaugier | Hubbard U and Hund exchange J in transition metal oxides: screening versus localization trends from constrained random phase approximation[END_REF]. Several "A -B" models like this have been used in the context of cRPA calculations, where the notation "A -B" indicates that Wannier functions are constructed and orthonormalized in a space A (which may for instance include only d orbitals, or d and p orbitals) and transitions within the space B, included in A, are removed when calculating the partially screened Coulomb interaction. Finally, the output of cRPA depends somewhat on the input DFT calculation. Ideally, it should be performed self-consistently with the DFT+DMFT cycle, where the positions and occupation of bands can be reshuffled.

In conclusion, cRPA is a powerful tool that gives both qualitative and quantitative indications on the values of the local interaction Hamiltonian H U used in DMFT or DFT+DMFT, and is defined in a framework compatible by construction with DFT+DMFT calculations. It also provides the full frequencydependence of H U , as well as its non-local components if supercells are used. Still, DFT+cRPA+DMFT (as we may call such a scheme) feels like an awkward way of combining building bricks that are not exactly compatible, and does not define a full electronic structure theory.

Methods beyond Density Functional Theory + Dynamical

Mean-Field Theory DMFT, and likewise its combination with DFT, rely on a set of approximations that are often, but not always justified. The most obvious approximation is of course the locality of the self-energy Σ(ω), which is exact only in infinite dimensions. This was shown to be insufficient in, among others, the high critical temperature superconducting cuprates (a family of materials that happen to be quasi twodimensional) [70].

Other approximations include the supposed locality of effective Coulomb interactions in the Hubbard model, or the lack of self-consistence with respect to the screening and dependence on an approximate double-counting correction in DFT+DMFT.

Extending DMFT and DFT+DMFT to improve on these issues has been a longstanding field of research, and several solutions have indeed been applied. In this section, I briefly present the main ideas behind some of them.

Cellular Dynamical Mean-Field Theory

A first way to partially restore the non-locality of the self-energy is to define a cluster of impurities, coupled to a common bath with non-local hybridization [START_REF] Lichtenstein | Antiferromagnetism and d-wave superconductivity in cuprates: a cluster dynamical mean-field theory[END_REF][START_REF] Kotliar | Cellular dynamical mean field approach to strongly correlated systems[END_REF]. In this real-space picture, called cellular DMFT (or CDMFT), the DMFT hybridization ∆, dynamical Weiss field G 0 , Green's function G loc and self-energy Σ all take the matrix form

G = (G 1-1 ) (G 1-2 ) (G 2-1 ) (G 2-2 )
where (G i-j ) represents the (matrix) quantity between atoms i and j in the cell, instead of the blockdiagonal form in single-site DMFT:

G = (G 1-1 ) (0) (0) (G 2-2 )
The problem is then treated in a way similar to DMFT, with k-independent self-energy

[Σ(iω n , k)] mm = Σ cell (iω n ) mm (4.28) 
This may be misleading: while the self-energy appears local in the k-space, it is a matrix and the nonlocality is partially restored by non-local off-diagonal elements, that link different sites (indexed by a and b above) in real space.

CDMFT was instrumental for understanding the metal-insulator transition in oxides such as VO 2 [START_REF] Biermann | Dynamical singlets and correlationassisted Peierls transition in VO 2[END_REF] (more on this in chapter 8) or the d-wave superconductivity of cuprates [START_REF] Lichtenstein | Antiferromagnetism and d-wave superconductivity in cuprates: a cluster dynamical mean-field theory[END_REF].

Dynamical cluster approximation

The counterpart to CDMFT in the reciprocal space is the Dynamical Cluster Approximation (DCA) [START_REF] Hettler | Nonlocal dynamical correlations of strongly interacting electron systems[END_REF][START_REF] Maier | Quantum cluster theories[END_REF]. In DCA, rather than using a constant self-energy in the k-space, a coarse graining of the Brillouin zone in a finite number N c of patches is introduced. DCA has been used on the single band Hubbard model to explain the k-dependence of the quasi-particle lifetime in cuprates.

However, the QMC fermionic sign problem (see chapter 5) increases exponentially with the number of atoms in the cluster N c , so that exploring long-range correlations, low-temperatures and multi-orbital systems is difficult, if not impossible.

Extended Dynamical Mean-Field Theory

It is well known that, while the bare Coulomb interaction is long-ranged (it decreases as 1/r), the screened one is much shorter-ranged. However, considering it to be purely local, as in the Hubbard model, is a somewhat rough approximation that deserves to be discussed. Arguably, a better model is the extended Hubbard model, which can be written in the single band case as follows:

H = ( 0 -µ) i,σ n iσ -t i,j ,σ c † iσ c jσ + c † jσ c iσ + U i n i↑ n i↓ + i =j V ij n i n j (4.29)
where V ij describes non-local Coulomb interactions: they can act on nearest neighbors, second-nearest neighbors, or even be more long-ranged. Such non-local interactions are usually smaller than the local sort, but are physically important in some cases. In surface systems, for instance, reduced screening means the Coulomb interaction decays more slowly than in the bulk, so that non-local interactions can make the difference between metallic or insulating behavior [START_REF] Hansmann | Long-range coulomb interactions in surface systems: a first-principles description within self-consistently combined GW and dynamical mean-field theory[END_REF]. In the square lattice Hubbard model, non-local interactions can give rise to a charge-ordering [START_REF] Ayral | Spectral properties of correlated materials: local vertex and nonlocal two-particle correlations from combined GW and dynamical mean field theory[END_REF]. Finally, on a triangular lattice, non-local interactions can cause frustration and bring forth exotic charge-ordered metallic phases [START_REF] Hotta | Strong coupling theory of the spinless charges on triangular lattices: possible formation of a gapless charge-ordered liquid[END_REF].

Extended DMFT (EDMFT) [START_REF] Sengupta | Non-Fermi-liquid behavior near a T = 0 spin-glass transition[END_REF][START_REF] Si | Kosterlitz-Thouless transition and short range spatial correlations in an extended Hubbard model[END_REF][START_REF] Kajueter | Interpolating perturbation scheme for correlated electron systems[END_REF] is (at its name indicates) an extension of DMFT, used to describe this extended Hubbard model. The bottom line is that, as in DMFT, the extended Hubbard model can be treated by mapping the lattice problem onto an single-site impurity model, at the cost of introducing a retarded Coulomb interaction.

Thanks to a Hubbard-Stratonovich transformation of the non-local part of the action

e β 0 dτ ij 1 2 Vij ni(τ )nj (τ ) = D[φ]e -β 0 dτ 1 2 ij φi(τ )[-V -1 ij ]φj (τ )± β 0 i φi(τ )ni(τ ) (4.30) 
we integrate out the bosonic degrees of freedom, which allows to define an impurity action similarly to single-site DMFT:

S imp = - β 0 dτ β 0 dτ σ c † σ (τ )G -1 0 (τ -τ )c σ (τ ) + 1 2 β 0 dτ β 0 dτ U(τ -τ )n ↑ (τ )n ↓ (τ ) (4.31)
where a bosonic dynicamical interaction U(ττ ) (or equivalently, U(ω)) has been introduced. U is an additional bosonic mean-field, similar to the fermionic dynamical mean-field G 0 . Thus the problem with static, non-local interactions is reduced to a problem with local, dynamical interactions.

A local screened interaction W loc (iΩ n ) (bosonic equivalent of the local Green's function G loc (iω n )) and a polarization P imp (iΩ n ) (bosonic equivalent of the self-energy Σ imp (iω n )) are introduced, and computed self-consistently in the EDMFT loop. Here, iΩ n represents a bosonic Matsubara frequency, iΩ n = 2nπ β , whereas iω n = (2n+1)π β . The self-consistency equations in EDMFT read

G -1 0 (iω n ) = G -1 (iω n ) + Σ imp (iω n ) U -1 (iΩ n ) = W -1 (iΩ n ) + P imp (iΩ n ) (4.32)
Both self-consistency loops are performed at the same time and are not linked, except inside the impurity solver that gives Σ imp (iω n ) and P imp (iΩ n ) as an output. Note that the polarization P and self-energy Σ are local, even though the problem has non-local interaction.

We refer the reader to Ref. [START_REF] Sun | Extended dynamical mean-field theory and GW method[END_REF] for a more technical description of EDMFT. We discuss the physical implications of a dynamical interaction in section 6.

GW + Extended Dynamical Mean-Field Theory

More generally, among the requirements for an "ideal" ab initio electronic structure theory, the following points stand out:

1. Have a k-dependent self-energy, Σ(ω, k).

2. Treat correlations in a non-perturbative way as DMFT does, at least in the subspace of correlated bands around the Fermi level.

3. Contain the full, non-local screened Coulomb interaction.

4. Be double-counting free.

5. Be as parameter-free as possible. (At least in principle. In reality, having some parameters in the implementation, for example the basis set for the GW calculation, may be unavoidable)

To this we may add a last point, but this may be wishful thinking:

6. Be computationally tractable with today's algorithms and hardware.

The GW+EDMFT method [START_REF] Sun | Extended dynamical mean-field theory and GW method[END_REF][START_REF] Biermann | First-principles approach to the electronic structure of strongly correlated systems: combining the GW approximation and dynamical mean-field theory[END_REF][START_REF] Sun | Many-body approximation scheme beyond GW[END_REF] is an attempt at providing such a theory, mostly fulfilling the requirements above (except for point 6., one may argue). In GW+EDMFT, as its name suggests, a nonlocal and non-perturbative self-energy and polarization by adding the (local, non-perturbative) values and the non-local part of the GW values:

Σ GW+DMFT (iω n , k) = Σ imp (iω n ) + Σ GW nloc (iω n , k) P GW+DMFT (iΩ n , k) = P imp (iΩ n ) + P GW nloc (iΩ n , k) (4.33)
where the non-local part of the self-energy and polarization are computed as

Σ GW nloc (iω n , k) = Σ GW (iω n , k) - k Σ GW (iω n , k) P GW nloc (iΩ n , k) = P GW (iΩ n , k) - k P GW (iΩ n , k) (4.34) 
The GW contributions to Σ and P are calculated according to the GW equations 2.22 and 2.24. The (dynamical) screening U(iΩ n ) is treated in the same fashion as in EDMFT, except it is not obtained from a set of parameters V ij but from the Eq. 2.23 applied on the bare Coulomb interaction v with a constrained polarization, obtained as a by-product in Eq. 2.22.

GW and EDMFT are both based on Green's functions, and thus interface well. Indeed, the GW+EDMFT equations can be derived from a functional Γ[G, W ]. It follows that no double-counting correction is needed, as the diagrams entering Γ from the local DMFT part and the non-local GW part can be clearly separated.

GW+EDMFT calculations can, at least in principle, be performed self-consistently. Indeed, while self-consistent GW are known to deteriorate the results of one-shot GW due to neglect of the vertex, the approximation in GW+EDMFT is less drastic. In practice, full self-consistent GW+EDMFT calculations have been implemented only for one-band systems [START_REF] Hansmann | Long-range coulomb interactions in surface systems: a first-principles description within self-consistently combined GW and dynamical mean-field theory[END_REF][START_REF] Ayral | Spectral properties of correlated materials: local vertex and nonlocal two-particle correlations from combined GW and dynamical mean field theory[END_REF][START_REF] Sun | Extended dynamical mean-field theory and GW method[END_REF][START_REF] Ayral | Screening and nonlocal correlations in the extended hubbard model from self-consistent combined GW and dynamical mean field theory[END_REF]. In multi-band systems, the computational cost is so formidable that approximations must be made. GW+DMFT calculations have for instance been performed on a classical benchmark system of ab initio many-body methods, SrVO 3 , an perovskite oxide with partly filled t 2g bands [START_REF] Tomczak | Combined GW and dynamical mean-field theory: dynamical screening effects in transition metal oxides[END_REF][START_REF] Tomczak | Asymmetry in band widening and quasiparticle lifetimes in SrVO 3 : competition between screened exchange and local correlations from combined GW and dynamical mean-field theory GW+DMFT[END_REF]. Therein, the full self-consistency in GW and EDMFT was dropped, so that a self-consistent EDMFT calculation was made on top of a one-shot GW calculation, taking the GW polarization P GW (iΩ n , k) as an input.

Let us note that, for all of its conceptual strengths, GW+EDMFT does not capture all physical effects that can be observed in materials. In particular, long-range collective modes are better described by methods that impose lesser approximations on the full many-body vertex, like the recently proposed TRILEX approximation [START_REF] Ayral | The fierz convergence criterion: a controlled approach to strongly-interacting systems with small embedded clusters[END_REF].

Finally, computing the full dynamical GW self-energy can be challenging for large realistic systems. One advantage of GW+EDMFT is that we understand rather clearly what physical phenomena are described by it. This means further approximations can be made to keep the computation charge reasonable (which is often needed) while keeping track of the physical aspects that are described. This aspect is further discussed in the next chapter, Chap. 6.

Chapter 5

Technical aspects

As we have seen in section 3.2, DMFT allows to map a lattice problem onto a self-consistently determined impurity model describing a lattice site exchanging particles with a non-interacting bath, the solution of which provides an approximation to the self-energy (or indeed the exact one in the limit of infinite dimensions). We have not yet, however, discussed how this very impurity model is solved. Moreover, though we discussed how the interaction Hamiltonian H U can be determined from first principles, for instance using the cRPA method, we have not yet discussed the forms of H U used in practice.

We do not plan here to give a full discussion of either aspect: we refer the reader to [57] for a review on modern quantum Monte-Carlo impurity solvers, and to [START_REF] Vaugier | Electronic structure of correlated materials from first principles: Hubbard interaction and Hund's exchange[END_REF] for a discussion of local interaction Hamiltonians. Rather, for the sake of completeness, we discuss a few aspects impurity solvers and interaction Hamiltonians that were applied in this thesis.

Local interaction Hamiltonians

The Slater Hamiltonian

In single band models, H U is a simple scalar U . Many-band cases are more complicated. The most general local interaction Hamiltonian is a four-dimensional matrix U m1m2m3m4 , where (m i ) 1<i≤4 refer to orbital indices in the correlated subspace. The corresponding Slater Hamiltonian is

H = 1 2 m1m2m3m4,σσ U m1m2m3m4 c † m1σ c † m2σ c m3σ c m4σ (5.1)
This Hamiltonian is rotationally invariant.

U m1m2m3m4 is generally parameterized from a set of Slater integrals:

U m1m2m3m4 = 2l k=0 α k (m 1 m 2 m 3 m 4 )F k (5.2)
where α k (m 1 m 2 m 3 m 4 ) are the Racah-Wigner parameters (see [START_REF] Vaugier | Electronic structure of correlated materials from first principles: Hubbard interaction and Hund's exchange[END_REF][START_REF] Haverkort | Spin and orbital degrees of freedom in transition metal oxides and oxide thin films studied by soft X-ray absorption spectroscopy[END_REF]) and F k are material-dependent Slater integrals that describe the monopole (F 0 ) or higher-order moments (the others) part of the Coulomb interaction. In practice, only F 0 , F 2 , F 4 are required for d orbitals, or F 0 , F 2 , F 4 , F 6 for f orbitals. F 0 is most affected by screening and varies most for different materials. The higher-order integrals vary somewhat with materials, but their ratios not so much: (5.5)

F 4 /F 2 ≈ 0.625 (in 3d shells) (5.3) F 4 /F 2 ≈ 0.
J H = F 2 + F 4 14 (in d shells) (5.6
)

J H = 286F 2 + 195F 4 + 250F 6 6435 (in f shells) (5.7)

The density-density interaction Hamiltonian

A simpler type of interaction Hamiltonian is the density-density Hamiltonian

H = 1 2 (mσ) =(m σ ) U σσ mm n mσ n m σ (5.8)
where

U σσ mm = U Slater mm mm
(5.9)

J mm = U Slater mm m m
(5.10)

U σσ mm = U Slater mm mm -J mm (5.11) 
The density-density Hamiltonian is not rotationally invariant, and does not contain all interaction terms. For instance, it does not have the spin-flip terms

J mm c † m↑ c m↓ c † m ↑ c m ↓ .
However, it allows much faster calculations in some cases (see section 5.2.2), which makes it useful in calculations with many orbitals.

The Hubbard-Kanamori Hamiltonian for t 2g systems

When working in a cubic basis, in particular for t 2g orbitals, it is necessary to employ the same basis in Eq. 5.2. One can show (see [START_REF] Vaugier | Electronic structure of correlated materials from first principles: Hubbard interaction and Hund's exchange[END_REF]) that the density-density part of the Hamiltonian can in that case be parameterized from the Slater integrals as

U σ σ mm = U
(5.12)

U σσ m =m = U -3J (5.13) U σσ m =m = U -2J (5.14) 
(5.15)

with

U = F 0 + 4 49 F 2 + 4 49 F 4 (5.16) J = 3 49 F 2 + 20 441 F 4 (5.17)
giving the Hubbard-Kanamori Hamiltonian

H = m Un m↑ n m↓ + σ,m>m (U -2J ) n mσ n m σ + (U -3J ) n mσ n m σ (5.18)
In the context of cRPA (see section 4.3), however, U and J are often computed by averaging the matrix elements of U m1m2m3m4 directly in the cubic basis:

U = 1 N N =3 m=1 U mmmm (5.19) J = 1 N (N -1) N =3 m =m U mm m m (5.20)
because this makes it easier to remove the screening channels within the t 2g sub-space.

Impurity solvers 5.2.1 The Hubbard I approximation

In the Hubbard I or atomic approximation [41,74], the impurity problem is solved by neglecting the dynamical hybridization with the bath. Only its static part, or in other words the effective atomic levels H 1el of the impurity given by Ĥ1el

= -µ + H c -Σ DC (5.21)
is used to obtain the self-energy, where H c is the projected Kohn-Sham Hamiltonian on the correlated d or f orbitals of the atom, summed over the Brillouin zone. Note that H 1el is a matrix and may contain off-diagonal elements: this is not an issue.

The full impurity Hamiltonian is

H imp = H 1el + H U
, where H U is the Slater Hamiltonian 5.1. For a single atom that does not exchange particles with a bath, it can be solved analytically.

The first step consists in diagonalizing H imp for N , N -1 and N + 1 electrons, where the ground state has N electrons. The interacting Green's function is then obtained from the Lehmann representation formula

G ij (iω n ) = 1 Z nn n|c i |n n |c † j |n iω n + E n -E n (e -βEn + e -βE n ) (5.22)
where the sum is formally over all atomic states n, n with all possible electron numbers, though in practice the Boltzmann factors e -βEn + e -βE n usually mean that the contribution of states with N -2 electrons or less, and N + 2 electrons or more, is negligible. The self-energy is then readily obtained from the Dyson equation:

Σ(iω n ) = G -1 0 (iω n ) -G -1 (iω n ) (5.23)
Conveniently, the real-frequency Green's function (and, correspondingly, the self-energy) can be obtained in the same way

G ij (ω) = 1 Z nn n|c i |n n |c † j |n ω + E n -E n + iη (e -βEn + e -βE n ) (5.24)
with η an infinitesimal small real number.

The Hubbard I approximation makes for very quick calculation: in the worst case, corresponding to a half-filled f shell, the longest part of the calculation is the diagonalization of H imp with a Hilbert space of dimension 14 7 = 3432, which takes of the order of 10 minutes. In more favorable cases, the diagonalization is almost immediate.

In practice, the Hubbard I approximation gives good results (and is mostly used) to describe the physics of partly filled 4f shells [START_REF] Locht | Standard model of the rare earths analyzed from the Hubbard I approximation[END_REF][START_REF] Pourovskii | Role of atomic multiplets in the electronic structure of rare-earth semiconductors and semimetals[END_REF][START_REF] Litsarev | Correlated electronic structure and chemical bonding of cerium pnictides and γ-Ce[END_REF] where the hybridization with the other orbitals is small. It fails to describe some properties of the nominally d 1 and d 13 lanthanides Ce and Yb, in particular in the parameter regimes or phases where Kondo physics is at play [START_REF] Litsarev | Correlated electronic structure and chemical bonding of cerium pnictides and γ-Ce[END_REF][START_REF] Pourovskii | Theoretical prediction and spectroscopic fingerprints of an orbital transition in CeCu 2 Si 2[END_REF] and the 4f electrons become delocalized. Extensions of the Hubbard I approximation can also be used to study some well-chose properties of transition metal oxides [START_REF] Pourovskii | Two-site fluctuations and multipolar intersite exchange interactions in strongly correlated systems[END_REF].

Continuous-time quantum Monte-Carlo and the hybridization expansion

Continuous-time Quantum Monte-Carlo (CTQMC) solvers [57,[START_REF] Werner | Continuous-time solver for quantum impurity models[END_REF] allow to obtain numerically exact (assuming ergodicity and sufficient sampling) interacting Green's functions of impurity models. In particular, contrary to the Hirsch-Fye quantum Monte-Carlo algorithm [START_REF] Hirsch | Monte-Carlo method for magnetic impurities in metals[END_REF], CTQMC solvers do not have an imaginary time discretization bias.

We recall the expression of the impurity DMFT action in a multiorbital case

S imp = - mm β 0 dτ β 0 dτ σ c † mσ (τ ) (∂ τ + H 1el mm )δ(τ -τ ) + ∆ mm (τ -τ ) c m σ (τ ) + β 0 dτ H U (τ )
(5.25) where E ab is a matrix containing level positions (the static part of the hybridization), and H U (τ ) is the interaction part of the action. In a single-band case and for a density-density interaction Hamiltonian,

H U (τ ) = mm σσ U σσ mm n mσ (τ )n m σ (τ ) (5.26)
The partition function is given by

Z = D[c † c]e -Simp (5.27)
Different types of CTQMC algorithms [START_REF] Werner | Continuous-time solver for quantum impurity models[END_REF][START_REF] Rombouts | Quantum Monte Carlo method for fermions, free of discretization errors[END_REF][START_REF] Rubtsov | Continuous-time quantum Monte Carlo method for fermions[END_REF] are obtained by choosing a part of the action to expand Eq. 5.27 as an infinite series. In this thesis, we used the hybridization expansion CTQMC algorithm [START_REF] Werner | Continuous-time solver for quantum impurity models[END_REF], obtained as follows. One separates the action 5.25 into a hybridization term and a local term

S imp = S loc + σ S σ hyb (5.28)
which allows to compute the partition function as

Z = Z loc σ S σ hyb loc (5.29)
After replacing the hybridization term by its expression and some algebra (see Ref. [57,[START_REF] Werner | Continuous-time solver for quantum impurity models[END_REF] for the details) one obtains the diagrammatic expansion

Z = Z loc ∞ kσ=0 dτ 1 ...dτ kσ dτ 1 ...dτ kσ j1...j kσ j 1 ...j kσ Tr d T τ e -βH loc d j kσ (τ kσ )d j kσ (τ kσ )d † j kσ (τ kσ )...d j1 (τ 1 )d † j 1 (τ 1 ) det∆ σ (5.30) = c det∆ σ (c)w loc (c) (5.31)
where we introduced a sum over all diagrammatic configurations c (a set of creation and annihilation operators (c i , c † i ) at times τ i ), a trace over the local Hamiltonian w loc (c) and a hybridization determinant det∆ σ where ∆ σ is a matrix whose coefficients are given by ∆ σ lm = ∆ j l jm (τ l -τ m ), the letter j designating an orbital index.

One can then use a Metropolis-Hastings [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF][START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF] (Monte-Carlo) algorithm, adding and removing creation and annihilation operators at random times τ i and using the configuration weight

w c = det∆ σ (c)w loc (c) (5.32)
Crucially, this allows to sample not only the partition function but also different types of correlators, notably the local Green's function. Both the calculation (or update) of det∆ σ (c) and w loc (c) in a Monte-Carlo move are fairly costly in terms of computational time. In particular, the hybridization expansion CTQMC solver becomes slow at very high and low temperatures, for systems with many orbitals, and when the hybridization function takes large values.

Another practical issue is that w c as defined above is not necessarily a good Monte-Carlo weight. When the hybridization ∆ ij (τ ) has off-diagonal elements (which is usually the case in multi-orbital systems, unless they are zero by symmetry), w c can take negative values due to the fermion sign problem [57]. In this case its absolute value |w c | should be used as Monte-Carlo weight in the Metropolis algorithm, but all measured observables must then be rescaled by sign MC , the average sign of w c over the Monte-Carlo steps, dramatically reducing the accuracy when the average sign is close to 0. Empirically, the sign problems is under control at high temperatures but grows exponentially worse at low temperatures. It has also been demonstrated that the fermionic sign problem is "NP hard", meaning there is no polynomial solution to it [START_REF] Troyer | Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations[END_REF].

Density-density interactions and the segment picture

We conclude this chapter by pointing out a convenient property of density-density interaction Hamiltonians. For such a local interaction Hamiltonian like that of Eq. 5.8, one may use the so-called "segment picture" in the CTQMC algorithm [57], where the calculation of w loc (c) in the Monte-Carlo weight 5.32 becomes almost immediate. The only remaining bottleneck is then the time spent calculating the determinant det∆ σ (c).

For multi-orbitals systems, the difference can be quite dramatic. For instance, in the DMFT calculations discussed in Chapter 7, involving the full 3d shell of metallic Fe (7 electrons), using the densitydensity Hamiltonian and segment picture in CTQMC makes for calculations about ten times faster than using the full Slater Hamiltonian and standard hybridization expansion solver.

Part II

Methods: construction of low-energy models

Chapter 6

Screened exchange and bosonic renormalizations: novel approaches to simple metals

In section 4.4, we introduced the GW+EDMFT method. This approximation is superior to the more simple DFT+DMFT method in terms of accurately predicting the electronic structure of weakly to strongly correlated electron materials. We do not repeat here all of its advantages over DFT+DMFT, but let us simply recall two points we wish to discuss in the present chapter:

• GW+EDMFT has non-local exchange, given by a dynamically screened HF self-energy from GW theory [START_REF] Ayral | Influence of fock exchange in combined many-body perturbation and dynamical mean field theory[END_REF] • It also incorporates the band renormalization effects coming from the dynamically screened Coulomb interaction in the correlated subspace, as described in EDMFT

The main drawback of GW+EDMFT -but an important one -is its computational cost, which is much higher compared to DFT+DMFT.

Here, we discuss a simplification to GW+EDMFT that brings the computational cost back to a more reasonable level. This scheme uses a screened exchange band structure and a renormalization of the bandwidth due to dynamical screening effects [START_REF] Van Roekeghem | Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo 2 As 2[END_REF][START_REF] Van Roekeghem | Screened exchange dynamical mean-field theory and its relation to density functional theory: SrVO 3 and SrTiO 3[END_REF][START_REF] Biermann | Dynamical screening effects in correlated electron materials: a progress report on combined many-body perturbation and dynamical mean field theory:GW+ DMFT[END_REF][START_REF] Van Roekeghem | Tetragonal and collapsed-tetragonal phases of CaFe 2 As 2 : a view from angle-resolved photoemission and dynamical mean-field theory[END_REF]. In the following, we will refer to this scheme as SEx+Z B , where SEx is short for "screened exchange" and Z B is the typical name given to the bosonic renormalization factor that arises from the self-energy when dynamical Coulomb interactions are considered.

Note that in this chapter, we are interested in the methodological aspect of constructing consistent low-energy models for many-body calculations rather than in the details of how to solve them. For all the merits of the DFT+DMFT method, it contains approximations beyond the locality of the self-energy, inherent in the construction of the low-energy correlated subspace. For a more in-depth discussion of the conceptual difficulty of constructing consistent models without double-counting of interactions and without over-simplifying high-energy degrees of freedom, as well as a proposed "multi-scale ab initio model for correlated electrons", we refer the reader to a recent publication by Hirayama et al. [START_REF] Hirayama | Low-energy effective Hamiltonians for correlated electron systems beyond density functional theory[END_REF].
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Chapter 6. SEx and bosonic renormalizations 6.1 From GW + Dynamical Mean-Field Theory to Screened Exchange + renormalization Z B

Separation of the GW self-energy

The GW self-energy, computed via Eq. 2.21 to 2.24, is at the same time non-local and dynamical:

Σ GW = Σ GW (k, ω)
In this aspect, it is qualitatively different from the HF self-energy (which is non-local but static) or the DMFT self-energy (dynamical but local). Interestingly, however, the two aspects can to some extent be decoupled. Though this is an empirical observation rather than a mathematically provable statement, Tomczak et al. [START_REF] Tomczak | Asymmetry in band widening and quasiparticle lifetimes in SrVO 3 : competition between screened exchange and local correlations from combined GW and dynamical mean-field theory GW+DMFT[END_REF][START_REF] Tomczak | Many-body effects in iron pnictides and chalcogenides: nonlocal versus dynamic origin of effective masses[END_REF] have shown that in the context of pnictides, chalocogenides and SrVO 3 , and van Roekeghem et al. [START_REF] Van Roekeghem | Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo 2 As 2[END_REF] in the context of the cobalt pnictide BaCo 2 As 2 , the GW self-energy can be split into a local dynamical part Σ loc (ω) and a static non-local part Σ nloc (k).

This separation cannot be universally valid. Indeed, by construction the static part of Σ GW is given by the unscreened non-local Fock potential v F . However, in practical calculations one observes that the effects of Σ GW arising from non-local components can be well approximated by a statically screened Fock potential.

Therefore, it is often found that, within a low-energy subspace, a decomposition as

Σ GW = [GW (ω = 0)] nloc + [GW ] loc (6.1)
is a good approximation. Here GW (ω = 0) is the GW self-energy computed with a static screening, and its non-local part [GW (ω = 0)] nloc is computed in the same way as in Eq. 4.34.

[GW ] loc is the local (or k-summed) part of the full GW self-energy. When dealing with strongly correlated materials, the next natural step is to replace this local part by the non-perturbative, fully dynamical DMFT self-energy.

Another way to think about this is to start from the CoHSEx approximation of Eq. 2.29, and replace the local Coulomb hole term by the DMFT self-energy, which should better account for strong local correlations.

A further approximation [START_REF] Van Roekeghem | Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo 2 As 2[END_REF] that greatly decreases the computational cost is to replace the statically screened, non-local GW self energy [GW (ω = 0)] nloc by a simpler Fock term with a Yukawa potential as implemented in Wien2k [27] V SEx = -

occ bands i ψ i (r)ψ i (r ) * W (r, r , 0) (6.2) with W (r, r , ω = 0) = e -kTF.|r-r | 1 |r -r | (6.3)
k TF is a Thomas-Fermi wave-vector encoding how quickly the Coulomb interaction decays due to screening. In metals, k TF can be related to the density of states at the Fermi level, and therefore can then be obtained self-consistently. In semi-conductors or Mott insulators, this scheme is less appropriate, as dielectric screening should allow more long-range exchange than in metals [START_REF] Maksimov | Excitation spectra of semiconductors and insulators: a density-functional approach to many-body theory[END_REF].

Screened Exchange + Dynamical Mean-Field Theory with dynamical U

A scheme combining SEx with DMFT has been tested on iron pnictides coumpounds and discussed in Ref. [START_REF] Van Roekeghem | Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo 2 As 2[END_REF]. The authors compared angle-resolved photoemission spectroscopy (ARPES) experiments to the momentum-resolved spectral functions calculated within different schemes: DFT (LDA), DFT+DMFT, SEx+DMFT, and SEx+DMFT with dynamical U (ω). They found that the 3d bands calculated within 6.1. From GW+DMFT to SEx+Z B
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LDA are too wide, an issue that is partially corrected by the DMFT self-energy. However, DFT+DMFT does not correctly reproduce the experimental Fermi surface.

A SEx+DMFT calculation reproduces the bandwidths and Fermi surface better than DFT+DMFT, but only when dynamical screening effects (U (ω) in the impurity action, similarly to the EDMFT action 4.31) are taken into account. Indeed, the non-local exchange from SEx leads to a significant widening of the LDA bands, and even more compared to the measured bandwidths from ARPES. An additional renormalization of the bands, arising from the frequency-dependence of the local Coulomb interaction, is required to get correct bandwidths. At first sight, this looks similar to the error cancellation effect in the LDA exchange-correlation potential, where the underestimation in the correlation effects effectively cancels the overestimation in the exchange contribution to yield a bandwidth that is not too far off from experiment. in SEx+DMFT with dynamical U , the effects of correlations and exchange also cancel each other to some degree, but they are calculated more accurately, and eventually lead to a bandwidth closer to the correct one than LDA or DFT+DMFT. This should not come as a surprise: if we consider that GW+EDMFT contains all the important physical effects (non-local self-energy, dynamical screening...) then it is reasonable that, even as we make the approximation of replacing the non-local self-energy by its static part (thus making bands wider) we should keep the counter-acting dynamical screening present in EDMFT.

Band renormalization with dynamical U

The effect of dynamical (or retarded) Coulomb interactions, a by-product of the downfolding to a lowenergy subspace, on the bandwidth, is discussed in a publication by Casula et al. [START_REF] Casula | Lowenergy models for correlated materials: bandwidth renormalization from coulombic screening[END_REF]. The authors consider a Hubbard-Holstein Hamiltonian [START_REF] Takada | Possibility of a metallic phase in the charge-density-wave-spindensity-wave crossover region in the one-dimensional Hubbard-Holstein model at half filling[END_REF][START_REF] Macridin | Two-dimensional Hubbard-Holstein bipolaron[END_REF][START_REF] Werner | Dynamical screening in correlated electron systems -from lattice models to realistic materials[END_REF]: The bosons in this model are coupling to the charge density, so we can interpret them as plasmon modes. A Lang-Firsov transformation of this Hamiltonian (see [START_REF] Lang | Kinetic theory of semiconductors with low mobility[END_REF]) replaces H by e S He -S , where

H = - ijσ t ij d † iσ d jσ + v i n i↑ n i↓ + λ iσ n iσ (b i + b † i ) + ω 0 i b † i b i + µ iσ n iσ (6.
S = λ ω 0 iσ n iσ (b † i -b i )
so that the electron operators are replaced by polaron operators

c † iσ = exp λ ω 0 (b † i -b i ) d † iσ c iσ = exp λ ω 0 (b i -b † i ) d iσ
The transformed Hamiltonian can be written as

H LF = - ijσ t ij c † iσ c jσ + U 0 i c † i↑ c i↑ c † i↓ c i↓ + ω 0 i b † i b i + µ iσ n iσ (6.5)
where

U 0 = v -2λ 2 ω0
is the local effective Coulomb interaction, screened by the plasmon mode. To build a low-energy model (supposing the plasmon frequency is large enough), one may project the Hamiltonian 54 Chapter 6. SEx and bosonic renormalizations onto the subspace with zero bosons, H eff = 0|H LF |0 . Then, H eff is given by

H eff = - ijσ Z B t ij d † iσ d jσ + U 0 i d † i↑ d i↑ d † i↓ d i↓ + µ iσ n iσ (6.6)
by introducing a bosonic renormalization factor

Z B = exp -λ 2 /ω 0 (6.7)
that renormalizes the hopping t ij . More precisely, in a general model including itinerant p states as well as more localized d states, it is shown that each d operator is renormalized by √ Z B , so that the hopping term of the Hamiltonian becomes

(p † d † ) t pp √ Z B t pd √ Z B t † pd Z B t dd p d (6.8)
Finally, Casula et al. [START_REF] Casula | Lowenergy models for correlated materials: bandwidth renormalization from coulombic screening[END_REF] generalize expression 6.7 to a general screened U (ω) by considering a continuum of boson modes:

Z B = exp 1 π ∞ 0 ImU (ω)/ω 2 dω (6.9)
where U is expressed in real frequencies.

In section 4.3, we discussed cRPA as a tool to obtain partially screened values of the Coulomb parameters (U and J H ) for usage in DFT+U or DFT+DMFT calculations from first principles. However, it turns out that using the static screened U given by cRPA in such calculations tends to systematically underestimate the strength of correlations in materials (see Table III of Ref. [START_REF] Casula | Lowenergy models for correlated materials: bandwidth renormalization from coulombic screening[END_REF] and references therein), so that artificially larger values must be used to reproduce experimental findings. Casula, Werner et al. [START_REF] Casula | Lowenergy models for correlated materials: bandwidth renormalization from coulombic screening[END_REF][START_REF] Werner | Dynamical screening in correlated electron systems -from lattice models to realistic materials[END_REF] explain this by the neglect of band-renormalization due to coupling to plasmons, which is contained effectively in the DFT exchange-correlation potential -but only to some degree.

Recently, using dynamical Coulomb interactions in DMFT (or similar) calculations has become more common, and several QMC solvers have been implemented with this in mind [62,[START_REF] Steiner | Double-expansion impurity solver for multiorbital models with dynamically screened U and J[END_REF][START_REF] Seth | TRIQS/CTHYB: a continuous-time quantum Monte Carlo hybridization expansion solver for quantum impurity problems[END_REF].

6.2 Screened Exchange as a generalized Kohn-Sham scheme

Generalized Kohn-Sham

The SEx+DMFT method described above can also be seen as a specific approximation to a spectral density functional theory based on the Generalized Kohn-Sham (GKS) scheme of Seidl et al. [START_REF] Seidl | Generalized Kohn-Sham schemes and the band-gap problem[END_REF]. This view was recently put forward in Ref. [START_REF] Delange | Novel approaches to spectral properties of correlated electron materials: from generalized Kohn-Sham theory to screened exchange dynamical mean field theory[END_REF]. In GKS theory, alternative choices for the reference system that are different than the familiar Kohn-Sham system of DFT are explored. Following similar theorems as one of the Hohenberg-Kohn theorems, GKS theory allows (in principle) to find the exact ground state energy and electronic density, just like DFT.

Rather than the non-interacting Kohn-Sham system, a different auxiliary reference system is used in order to obtain eigenvalues of the reference system, that is to say a band structure, closer to the real, fully interacting spectrum. In particular, a generalized Kohn-Sham scheme where the reference system is a screened exchange Hamiltonian can be constructed. The main motivation for the inclusion of screened exchange in the literature has been to improve upon the band gap problem in semiconductors. Indeed, it can be shown that the screened exchange contribution, which corresponds to a non-local potential, effectively reintroduces to some degree the derivative discontinuity that is missing in the pure DFT description based on local exchange-correlation potentials [START_REF] Perdew | Density-functional theory for fractional particle number: derivative discontinuities of the energy[END_REF]. Since the derivative discontinuity corresponds to the discrepancy between the true gap and the Kohn-Sham gap in exact DFT, a substantial improvement of the theoretical estimate for band gaps can be expected on physical grounds and has indeed been found.
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Here, our goal is somewhat different: motivated by the analysis of the role of screened exchange in GW+DMFT described above, we would like to connect the screened Exchange DMFT scheme introduced above to generalized KS schemes making direct use of the non-local screened exchange potential. With this goal in mind, we briefly review the generalized Kohn-Sham construction in the case of an effective Kohn-Sham system including screened exchange. Hereby, we follow closely Seidl et al. [START_REF] Seidl | Generalized Kohn-Sham schemes and the band-gap problem[END_REF], both in notation and presentation. 

The generalized Kohn-Sham equations

S [Φ] = Φ T Φ + v H [{φ i }] + E x [{φ i }] (6.11)
or

S [Φ] = Φ T Φ + v H [{φ i }] + E sx x [{φ i }] (6.12)
where T is the kinetic energy operator, v H the Hartree potential and E x (respectively E sx x ) the exact exchange (respectively, screened exchange) functional. Eq. 6.10 will lead to the standard KS DFT equations with a reference system of non-interacting particles, Eq. 6.11 describes a reference system of interacting particles with an exchange energy given by exact HF exchange, and Eq. 6.12 describes a reference system of interacting particles where the exchange energy is given by a Thomas-Fermi screened Fock term

E sx x [{φ i }] = - N i<j drdr × φ * i (r)φ * j (r )e -kTF|r-r | φ j (r)φ i (r ) |r -r | (6.13)
where the indices i, j range over all Bloch eigenfunctions. The other terms are the familiar kinetic energy term Φ| T |Φ and the Hartree energy U H [{φ i }]. In the following, for simplicity, we consider the case of a screened exchange reference system deriving from Eq. 6.12. The more general equations are given in [START_REF] Seidl | Generalized Kohn-Sham schemes and the band-gap problem[END_REF].

In order to derive a functional of the density Seidl et al. define a functional F s via the minimization

F S [ρ] = min Φ→ρ(r) S [Φ] = min {φi}→ρ(r) S [{φ i }] (6.14)
that is to be used in a similar way to the non-interacting kinetic energy of the reference Kohn-Sham system in KS DFT. Next, we define the energy functional

E S [{φ i }; v eff ] = S [{φ i }] + drv eff (r)ρ(r) (6.15)
where now the potential v eff does not only include the external potential v ext as in usual KS DFT, but also a contribution by the exchange-correlation part

v eff = v ext + v sx xc [ρ] (6.16)
The additional contribution, the generalized (local) exchange-correlation potential

v sx xc = ∂E sx xc [ρ] ∂ρ (6.17) 56 
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E sx xc [ρ] = E xc [ρ] -E sx x [ρ] + T [ρ] -T sx [ρ] (6.18)
which comprises the difference between the exchange-correlation potential of standard Kohn-Sham DFT and the non-local exchange energy defined above, as well as the difference between the kinetic energies of the standard and generalized Kohn-Sham systems. The functional derivative will eventually have to be evaluated self-consistently at the converged density.

The generalized KS equations that define the eigenvalues of the auxiliary reference system (and, in turn, the electronic density) are then given by

-∇ 2 φ i (r) + v ext (r)φ i (r) + u ([ρ]; r) φ i (r) -dr v sx,NL x (r, r )φ i (r ) + v sx xc ([ρ]; r) φ i (r) = ε i φ i (6.19)
with the Hartree potential u for density ρ, the non-local screened Fock potential

v sx,NL x (r, r ) = - N j=1 φ i (r)e -kTF|r-r | φ * j (r ) |r -r | (6.20)
and the effective (local) generalized Kohn Sham potential v sx xc defined by Eq. 6.17. The generalized Kohn-Sham equations take the form

Ô [{φ i }] φ j + veff φ j = ε j φ j (6.21)
where Ô is a non-local operator, generalizing the standard Kohn-Sham operator consisting solely of the kinetic energy and Hartree potential.

The ground state energy for a system with the external potential v ext is then given by the expression

E SEx-DFT [v] = F S ρ S 0 [v eff ] + E sx xc ρ S 0 [v eff ] + drv ext (r)ρ S 0 [v eff ] (6.22)
where the self-consistently determined density ρ S 0 ([v eff ], r) is obtained by minimizing

E S 0 [v eff ] = min ρ(r)→N F S [ρ] + v eff (r)ρ(r)dr (6.23)
and v eff is determined therein by Eq. 6.16. To actually perform calculations with such a GKS scheme, approximations must be made on the screened exchange-correlation functional E sx xc or on the corresponding potential v sx xc . The relevant approximations, similar to the LDA expressions, are proposed in [START_REF] Seidl | Generalized Kohn-Sham schemes and the band-gap problem[END_REF]. Let us insist one more time on the nature of the approximation that is made: a SEx GKS scheme is in no way equivalent to solving self-consistently the HF equations with a screened Fock term. The latter is known to be physically wrong, while the former is conceptually exact if the exact exchange-correlation potential was known. The goal is not to improve on the total energy or electronic density given by KS DFT, but rather to ensure that the band structure derived from the auxiliary reference system be closer to the "exact" one.

A word on the choice of parameters: k TF

Since the beginning, we have introduced the Thomas-Fermi screening vector k TF without specifying its value. Surprisingly, in the GKS scheme the choice of k TF is completely free: indeed, starting from Eq. 6.11 one may define a HF GKS scheme corresponding to k TF = 0. Because k TF enters (explicitly or implicitly) into both v sx xc and v sx,NL x in Eq. 6.19, a cancellation effect ensures that the same ground state density and energy is reached, for the exact functionals.

For spectral properties extracted from the auxiliary KGS reference system, however, k TF does play a role and should be chosen in order to produce a physically meaningful band structure. In practical calculations, k TF can be determined from the electronic density at the Fermi level in metals (from an initial DFT calculation, or self-consistently) [START_REF] Van Roekeghem | Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo 2 As 2[END_REF]. In insulators, where SEx GKS was first applied, this scheme cannot be applied since there is no density of states at the Fermi level. A usual choice is to define it from the average valence electron density [START_REF] Seidl | Generalized Kohn-Sham schemes and the band-gap problem[END_REF].

From Screened Exchange generalized Kohn-Sham to Screened Exchange + Dynamical Mean-Field Theory

Once we have such a functional derivation, we may construct a spectral density functional in the same spirit as in DFT+DMFT [START_REF] Kotliar | Electronic structure calculations with dynamical mean-field theory[END_REF], but starting from the generalized KS functional. In [START_REF] B Amadon | The αγ transition of cerium is entropy driven[END_REF], the expression for the total energy within the standard DFT+DMFT case was shown to be

E = E DFT - l ε KS l + H KS + (H U -H dc ) (6.24)
where l ε KS l is the sum of the occupied Kohn-Sham eigenvalues, H KS = Tr H KS Ĝ , and H U and H dc denote the local interaction part of the Hamiltonian and the corresponding double counting term, respectively.

Instead of using the usual Kohn-Sham Hamiltonian for the construction of the one-body part, SEx+DMFT relies on the generalized Kohn-Sham reference system that includes the screened exchange potential. The generalization of (6.24) to the present case thus replaces the Kohn-Sham Hamiltonian H KS in the expression for the energy by its non-local form, keeping track of the effective potential part:

E = E SEx-DFT - l ε SEx-KS l + Ô + veff + H U (V ee , λ s , ω s ) -H dc (6.25)
Furthermore, the local interaction term is taken in the more general form of a dynamical interaction, thus corresponding to a local Hubbard term with unscreened interactions and local Einstein plasmons of energy ω s coupling to the electronic density via the coupling strength λ s .

In practice: one-shot Screened Exchange + Dynamical Mean-Field Theory

This concludes our description of the generalized Kohn-Sham interpretation of screened Exchange DMFT, resulting in particular in an energy functional expression. However, actually using the SEx GKS scheme greatly increases the computational cost compared to KS DFT: the difference is the same as using HF or hybrid functionals. Hence, a common approximation is to take the converged DFT density as a starting point, and then investigate spectral properties using the screened Exchange DMFT formalism [START_REF] Van Roekeghem | Dynamical correlations and screened exchange on the experimental bench: spectral properties of the cobalt pnictide BaCo 2 As 2[END_REF]. This amounts to a one-shot screened Exchange-DFT+DMFT calculation that uses the DFT density as a starting point. The advantage of such an approach is obvious: numerically, this procedure allows us to avoid the expensive evaluation of non-local exchange terms within the self-consistency cycle of GKS theory.

Moreover, as is well-known, while severe deviations of the true spectrum from the Kohn-Sham spectrum are quite common, the ground state density obtained even from approximate DFT functionals is often a good representation of the true one. In the case of the exact DFT functional, this approach would also lead to the exact ground state density and energy, with additional improvements of the spectrum over standard Kohn-Sham DFT. Seidl et al. [START_REF] Seidl | Generalized Kohn-Sham schemes and the band-gap problem[END_REF] themselves proposed a scheme adding a screened exchange perturbative term on top of the KS DFT eigenvalues, and showed that this is sufficient to improve on the spectral properties. 

How should screened exchange Dynamical Mean Field Theory behave in weakly correlated materials?

Hamiltonians built as combinations of a DFT part and local Hubbard-type interaction terms trivially reduce to the DFT Kohn-Sham electronic structure when assuming that in weakly correlated materials the effective local interactions become negligible. The question of the recovery of the weakly interacting limit is, however, more interesting in the case of screened Exchange DMFT. While the static part of the effective local interaction may be assumed to lose its importance, band widening by the replacement of the DFT exchange correlation potential by the non-local exchange-correlation GW self-energy persists.

On the other hand, plasmonic effects are also present in weakly correlated materials and continue to renormalize the low-energy band structure through electron-plasmon coupling. This raises the question of what the resulting spectra for weakly correlated materials look like in screened exchange + DMFT.

In Ref. [START_REF] Van Roekeghem | Screened exchange dynamical mean-field theory and its relation to density functional theory: SrVO 3 and SrTiO 3[END_REF], this question has been studied for early transition metal perovskites, where it was found that the band widening effect induced by non-local exchange and the electronic polaron effect counteract each other and tend to approximately cancel, thus resulting in a low-energy electronic structure close to the DFT Kohn-Sham band structure as long as static Hubbard interactions are disregarded. Here, we address this question in the case of the seemingly "simple" transition metals zinc and cadmium.

Both elements nominally display a d 10 configuration, with fully occupied 3d orbitals in the case of Zn and 4d in the case of Cd, the dominantly d-derived bands being located several eV below the Fermi level. In Fig. 6.1a and Fig. 6.1b we show the band structure calculated within DFT for both materials. In the following we use the experimental crystal structure and lattice constants. DFT places the occupied d states at around -8 eV in Zn and -9 eV in Cd. The conducting states of these transition metals are formed by dispersive 4s(5s) in Zn(Cd) states around the Fermi level, that hybridize strongly with the p-manifold.

These facts raise the immediate expectation of negligibly small correlation effects on the occupied d shells. An effective Hubbard interaction calculated for the d-manifold within the constrained random phase approximation coincides with the fully screened interaction, since as a consequence of the complete filling of the d-shell there are no intra-d transitions to be cut out as opposed to an open shell system, where transitions inside the shell contribute to screening effects. manifold. The low-frequency limit approaches a value of 4.8 eV and 3.1 eV for Zn and Cd respectively. Even though this value is similar to their oxides, which are open shell systems, where correlations on the d states are significant, the high binding energy of these states far away from the Fermi level effectively prevents dynamical fluctuations. This suggests that screened exchange + DMFT should in fact reduce to screened exchange renormalized by the bosonic factor Z B discussed above. Nevertheless, this does not mean that static effects of the interaction are properly treated in DFT. Even if this were the case, there is no reason that the DFT Kohn-Sham spectrum, being derived from an effective non-interacting system, provides an accurate description of the experimental situation.

Figs. 6.4 and 6.5 compare the experimental photoemission spectra [START_REF] Poole | Photoelectron emission and the d bands of zinc and cadmium[END_REF][START_REF] Himpsel | Experimental E(k) dispersions for the Zn 3d states: evidence for itinerant character[END_REF] from the literature to the density of states (DOS) derived from DFT and Hartree-Fock (HF) theory. The resulting discrepancy in terms of an underestimation of the binding energy of the d states in DFT of several eV had been noted in the literature before [START_REF] Norman | Application of a screened self-interaction correction to transition metals: copper and zinc[END_REF][START_REF] Aryasetiawan | 3d semicore states in ZnSe, GaAs, and Ge[END_REF][START_REF] Oshikiri | Band gaps and quasiparticle energy calculations on ZnO, ZnS, and ZnSe in the zinc-blende structure by the GW approximation[END_REF]: Norman et al. [START_REF] Norman | Application of a screened self-interaction correction to transition metals: copper and zinc[END_REF] discussed it in terms of a self-interaction error, proposing a correction in terms of an approximate substraction of self-interaction contributions contained in DFT [START_REF] Perdew | Self-interaction correction to density-functional approximations for many-electron systems[END_REF]. Hartree-Fock calculations are, on the one hand, self-interaction free, but on the other hand -due to the absence of screening -widen all bands and place the d-bands far too low in energy, as can be seen in Figs. 6.4 and 6.5.

Since local dynamical correlations can be assumed to be small as discussed before, an improved treatment of the screened interaction and the self-interaction correction at the same time is likely to improve the shortcomings of Hartree-Fock (respectively DFT). Here we will discuss the two possible extensions of screened Exchange plus a bosonic renormalization factor Z B and the GW approximation.

The computationally cheaper option of screened exchange is including only static exchange contributions with a Yukawa-type interaction potential, and an effective renormalization Z B which originates from the spectral weight transfer to plasmonic excitations. GW is computationally more demanding, but has the advantage of treating the dynamical part of the screening and correlation. Even though both methods include a self-interaction correction, the self-interaction contained in the Hartree term is not completely cancelled since the exchange contributions are derived from a screened interaction and not the bare one, as opposed to the Hartree term.

In Figs. 6.6 and 6.7 we show comparisons of the DOS of zinc and cadmium, calculated within DFT, screened Exchange(+Z B ) and GW [START_REF] Jiang | FHI-gap: A GW code based on the all-electron augmented plane wave method[END_REF] to photoemission spectra. In the GW calculation we used 7 × 7 × 3 k-points and 5 additional high-energy local orbitals. Interestingly, while in both systems the GW approximation provides a significant correction of the DFT Kohn-Sham spectrum in the right direction, but still underestimates the binding energy, the screened exchange scheme places the d-states too low in energy for Zn while providing a slightly better estimate than GW in Cd. The addition of the bosonic renormalization factor Z B merely renormalizes the d bandwidth but keeps the average level position constant.

This raises the interesting question of which effects are missing in screened exchange and GW? The incomplete cancellation of the self-interaction in both approaches is expected to lead to an overall underestimation of the binding energy, since the additional unphysical interaction increases the energy of the d states. A more accurate estimate of this term would lead to an improvement of GW in both systems, but an even larger error of screened exchange in Zn. Another effect neglected in screened exchange is the Coulomb hole contribution: this term, discussed by Hedin as part of the "Coulomb hole screened exchange (COHSEX)" approximation (see 2.3.2) translates the fact that the presence of an electron at a position r pushes away charge at r (in the language of a lattice model, the charge-charge correlation function exhibits a reduction of the double occupancy), and the interaction of this effective positive charge with the electron presents an energy gain expressed in the form of an interaction of the electron with a "Coulomb hole". This term, contained in GW but not in screened exchange, also increases the binding energy.

This leads to the overall picture that screened exchange with the inclusion of the static corrections [START_REF] Poole | Photoelectron emission and the d bands of zinc and cadmium[END_REF] (dashed line, symbols). DFT calculations underestimate the binding energy of the Cd 3d states, while the HF overestimates the binding energy significantly (see explanation in the text).

just discussed has a tendency to overestimate the binding energy in general, while GW underestimates it. The obvious difference between the two methods is the dynamical treatment of the screened interaction, which is treated more appropriately in GW, but it is not clear a priori whether the static approximation of the screened interaction or the approximative form of the screened interaction in terms of a Yukawa potential gives rise to the difference between screened exchange and GW.

The GW description of zinc and cadmium is close to the experiment. The remaining discrepancy to experiment is likely explained by remaining self-interaction contributions and/or missing self-consistency. Self-consistency (or quasi-particle self-consistency) has been investigated in the homogeneous electron gas [START_REF] Holm | Fully self-consistent GW self-energy of the electron gas[END_REF] and various solid state systems [37] with different degrees of succes. These questions are left for future work.

Conclusion

In this chapter, we have reviewed and applied existing as well as novel approaches to obtain spectral properties of correlated electron materials. Guided by the need of a proper treatment of the long-ranged Coulomb interaction and non-local exchange effects we presented a lightweight version of the general GW+DMFT approach, the so-called screened exchange DMFT. It can be derived as a simplification to GW+DMFT in terms of a generalized screened exchange DFT scheme where local interactions are treated by dynamical DMFT.

We discussed the case of the elemental transition metals Zn and Cd, where strong local correlations are unimportant but the position of the occupied d manifold is sensitive to a proper treatment of screened exchange effects.

- 

Chapter 7

Vacancy formation energies in α-Fe 

Iron in human technology

Iron (Fe) is the fourth most abundant element in the earth's crust, with 5.63% in weight. The only metal more abundant on earth is aluminum (Al), the second most abundant transition metal being titanium (0.56%). Because of its relatively high melting point of T m =1811 K, other metals (in particular copper and its alloy, bronze) have been used in tools before long before mankind discovered techniques to smelt iron. On the other hand, aluminum is more abundant but only present in nature in oxidized form, often in low concentrations in rocks or clays. Chemical treatments to purify aluminum have only been discovered in 1825, very recently in human history.

Iron is thought to have first been used around 1400 B.C. in the near east, and has become more widespread in Europe and Asia after 1200 B.C. Iron and its carbon-doped cousin, steel, were poised to become the most heavily used metal over the following 3200 years, begin employed first in weapons, later in common tools, building structures, vehicles, etc. Iron and steel have undoubtably been one of the most icon materials of human technological development and manufacturing, only matched, perhaps, by oil and silicon in more recent technological revolutions.

Today, the annual iron ore production is estimated at over 3200 millions metric tons, in contrast with "only" about 5 million metric tons of aluminum. Most of this production is used in steels, often with a small percentage of dopants such as chromium, nickel or manganese that improve its mechanical properties (high-strength low-alloy steel) or its chemical properties (corrosion-resistant stainless steel).

In spite of its importance for technological applications, some of its basic properties, in particular its magnetism, remained hardly understood for a long time.

Phase diagram of iron

Fe comes in different phases depending on temperature and pressure (Fig. 7.1). The low-pressure, lowtemperature α-phase (ferrite) crystallizes in a body-centered cubic (bcc) structure and is ferromagnetic, with a local moment of 2.22 µ B /atom. The Curie temperature is T c = 1043 K. At 1185 K, α-Fe undergoes a phase transition to a paramagnetic face-centered cubic (fcc) γ (also called austenite) phase, together with a local moments collapse [START_REF] Hasegawa | Microscopic theory of the temperature-pressure phase diagram of iron[END_REF]. γ-Fe has a complex magnetic structure [START_REF] Antropov | Ab initio spin dynamics in magnets[END_REF][START_REF] Herper | Ab initio full-potential study of the structural and magnetic phase stability of iron[END_REF], with short-range order and magnetic frustration.

At even higher temperatures, Fe presents another transition back to another paramagnetic bcc phase, δ-Fe with an onset temperature of 1670 K. Anharmonic effects (like phonon-phonon interactions) are 66 Chapter 7. Vacancies in α-Fe thought to stabilize this phase [2,[START_REF] Carling | Vacancies in metals: from first-principles calculations to experimental data[END_REF][START_REF] Andersson | Monovacancy and divacancy formation and migration in copper: a first-principles theory[END_REF][START_REF] Glensk | Breakdown of the Arrhenius law in describing vacancy formation energies: the importance of local anharmonicity revealed by Ab initio thermodynamics[END_REF][START_REF] Lian | Ab initio study of the anharmonic lattice dynamics of iron at the γδ phase transition[END_REF]. The melting point at atmospheric pressure is of 1811 K.

At higher pressures (about 13GPa at room temperature), α-Fe transforms into paramagnetic, hexagonal close-packed ε-Fe [START_REF] Takahashi | High-pressure polymorph of iron[END_REF][START_REF] Dupé | Mechanism for the α → ε phase transition in iron[END_REF]. It exhibits unconventional superconductivity between 13 GPa and 31 GPa [START_REF] Pedrazzini | Probing the extended non-Fermi liquid regimes of MnSi and Fe[END_REF], and is surprisingly paramagnetic even at low temperatures. Electronic correlations must be taken into account to understand the magnetic, conduction and structural properties of ε-Fe [START_REF] Pourovskii | Impact of electronic correlations on the equation of state and transport in ε-Fe[END_REF]. ε-Fe is, for obvious reasons, of limited interest for practical applications, but has received renewed interest in geology: it is one of the phases that may form the iron earth core. There, strong electronic correlations are key to understanding the magnetic properties as well [START_REF] Pourovskii | Electronic properties and magnetism of iron at the Earth's inner core conditions[END_REF][START_REF] Pourovskii | Fermi-liquid behavior and thermal conductivity of ε-iron at Earth's core conditions[END_REF]. Doping C into metal Fe (to make steel) also changes its structure and physical properties. Depending on the carbon concentration, it allows a coexistence of α and γ Fe, as well as iron carbide FeC 3 (forming cast iron). Controlling the doping (in C and other metals) and the manufacturing process (rate of cooling, annealing...) allows to tune the mechanical properties: bulk modulus, hardness, yield).

Ab initio calculations of the properties of iron

Being one of the most used materials in today's technology, the different phases of Fe have been studied extensively with modern first principles calculation tools. In particular, its magnetism, conduction, phase stabilities, phase transitions and defect properties are all of interest. Typically used methods include DFT, its extensions like DFT+DMFT [START_REF] Lichtenstein | Finite-temperature magnetism of transition metals: an ab initio dynamical mean-field theory[END_REF][START_REF] Katanin | Orbital-selective formation of local moments in α-iron: first-principles route to an effective model[END_REF][START_REF] Katsnelson | LDA++ approach to the electronic structure of magnets: correlation effects in iron[END_REF], as well as methods able to treat a larger number of atoms at the cost of lower precision such as molecular dynamics or the embedded atom method [START_REF] Daw | Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals[END_REF].

Obtaining reasonable results, let alone making quantitative predictions, with commonly available methods is no easy task. α-Fe at low temperatures is a fully polarized, rather weakly correlated ferromagnet, rather well described in LSDA or GGA DFT. This is, however, as easy as it gets. All the other usual phases: paramagnetic α-Fe, γ-Fe, ε-Fe display local moment physics [START_REF] Katanin | Orbital-selective formation of local moments in α-iron: first-principles route to an effective model[END_REF], magnetic frustration [START_REF] Antropov | Ab initio spin dynamics in magnets[END_REF] and/or non-Fermi liquid behavior [START_REF] Katanin | Orbital-selective formation of local moments in α-iron: first-principles route to an effective model[END_REF]. All of them are significantly more strongly correlated, and only imperfectly described by KS DFT with common exchange-correlation potentials. To cite just one example, non-magnetic LDA or GGA calculations fail to account for the stability of bcc α-Fe [START_REF] Leonov | Electronic correlations at the αγ structural phase transition in paramagnetic iron[END_REF] above T c . Those phases are not quite exotic, however, being present at temperatures where iron (or steel) is typically used in real-world devices. The difficulty in simulating the paramagnetic states of magnetic materials (in particular iron and its alloys), and recent progress in this field, were recently reviewed by Abrikosov et al. [START_REF] Abrikosov | Recent progress in simulations of the paramagnetic state of magnetic materials[END_REF] with an emphasis on spin states, phase stabilities and phase transitions, as well as point defects.

In the present chapter, parts of which are published in Ref. [START_REF] Delange | Large effects of subtle electronic correlations on the energetics of vacancies in α-Fe[END_REF], we study more specifically the properties and, in particular, the formation energy of monovacancies in paramagnetic α-Fe. Next, we In the ferromagnetic calculation, Fe is almost completely spin-polarized, and spin down electrons have mostly t 2g character. In the nonmagnetic calculation, the e g partial DOS sums to 2.3 and t 2g partial DOS sums to 3.9 states per unit cell up to the Fermi level.

briefly discuss the electronic structure of α-Fe, before discussing the formation energy of vacancies.

Electronic structure of α-Fe

General remarks The DFT density of states from spin-polarized LSDA and non-magnetic LDA calculations is shown in Fig. 7.2. As one can see in the left-hand panel (7.2a), spin-polarization of the d electrons is almost complete, with a total spin-moment per atom of 2.19 µ B . The two spin down electrons have mostly (about 3/4) t 2g character. A dispersive s-band with onset at -8.3 eV that crosses the d-bands completes the picture. Even if non-magnetic LDA poorly describes the structural parameters of α-Fe, one can still gain some insights from such a calculation. The right-hand panel (7.2b) displays a high density of states at the Fermi level, due in particular to weakly dispersive (strongly localized) e g states having a van Hove singularity near the Fermi level. Thus Fe fulfills the Stoner criterion [3] for ferromagnetism. On the other hand, such localized states are typically insufficiently described by DFT LDA, so it is no surprise that DFT gets the structural parameters of paramagnetic α-Fe wrong.

Charge self-consistent DFT+DMFT calculations further explain the difference in the physics of ferromagnetic and paramagnetic Fe. In Fig. 7.3, we display the self-energy of Fe e g and t 2g states in both phases. While the ferromagnetic self-energy points to a weakly renormalized Fermi liquid (Z ≈ 0.7 on spin down orbitals, 0.75 on spin up orbitals), the paramagnetic phase shows clearly non-Fermi liquid behavior, particularly the e g states: the self-energy Σ(iω n ) does not go to zero as iω n goes to zero. This can be understood in the following way: in the ferromagnetic phase, full spin-polarization does not leave much space for dynamical fluctuations. In the paramagnetic phase, on the other hand, local moments form and have many configurations to explore, allowing for stronger electronic correlations.

Monovacancies in α-Fe

State of the art from experiment and theory

Point defects, such as vacancies, play an important role for the electronic (conductivity, magnetism), mechanical (hardness, ductility) and thermodynamic (melting point) properties of materials. However, measuring the formation or migration energies of so seemingly simple defects is far from easy, since there are few experimental probes that couple to vacancies. The best available techniques are differential dilatometry [START_REF] Hadjadj | Characterization of precipitation and phase transformations in Al-Zn-Mg alloy by the differential dilatometry[END_REF] and positron annihilation spectroscopy [START_REF] Siegel | Positron annihilation spectroscopy[END_REF]. Both suffer from large error bars, and strong sample dependence: the discrepancies between different measurements on one given material may be significant (see Table 7.1).

A further limit on experimental measurements is that they have to be performed at high enough temperatures: at low temperatures, the vacancy concentration is too low to be detected. This further complicates measurements on magnetic materials, like Fe. De facto, only the paramagnetic phase of α-Fe can be measured somewhat reliably [START_REF] De Schepper | Positron annihilation on pure and carbon-doped α-iron in thermal equilibrium[END_REF]. Finally, the formation energy is typically obtained as a fitting parameter of a measured curve over a range of temperatures, never at a given temperature. The advantage is, however, that the formation energy is fitted separately from the formation entropy S f vac , as reported in Ref. [START_REF] De Schepper | Positron annihilation on pure and carbon-doped α-iron in thermal equilibrium[END_REF]. All of this explains that only few measurements of the vacancy formation energy (E f vac ) in iron have been reported, with relatively little agreement between groups (see standing of the defect properties of materials [START_REF] Freysoldt | First-principles calculations for point defects in solids[END_REF]. Early DFT LDA calculations have predicted formation energies of vacancies in simple metals in good agreement with experiment [START_REF] Manninen | Screening of light impurities in simple metals[END_REF][START_REF] Chakraborty | Self-consistent electronic structure of a vacancy in aluminum[END_REF]. Despite a large body of successful calculations, it has later been recognized that the good agreement with experiment could often be the effect of the cancellation of errors in the exchange and correlation parts of the density functional [START_REF] Carling | Vacancies in metals: from first-principles calculations to experimental data[END_REF]. Indeed, as has been discussed by Ruban [START_REF] Ruban | Thermal vacancies in random alloys in the single-site mean-field approximation[END_REF], despite the structural simplicity of vacancies, their energetics is still one of the least reliable physical properties determined in first-principles calculations.

In the more complex transition metals, where the open d shells are often poorly described in LDA or GGA, the quality of results of DFT calculations for point defect properties is rather unpredictable and strongly material-dependent. There have been several attempts to improve the available functionals (see, e.g. Refs. [START_REF] Glensk | Breakdown of the Arrhenius law in describing vacancy formation energies: the importance of local anharmonicity revealed by Ab initio thermodynamics[END_REF][START_REF] Armiento | Functional designed to include surface effects in self-consistent density functional theory[END_REF][START_REF] Mattsson | Electronic surface error in the Si interstitial formation energy[END_REF][START_REF] Nazarov | Vacancy formation energies in fcc metals: influence of exchange-correlation functionals and correction schemes[END_REF]). It was noticed that the predicted vacancy formation energies seem to be especially poor for 3d transition metals, for which many-body effects are fairly important, in particular in the paramagnetic state and body-centered cubic crystal structure [START_REF] Korhonen | Vacancy-formation energies for fcc and bcc transition metals[END_REF]. Likewise, DFT has limitations for point defect calculations in correlated lanthanide or actinide oxides with 4f or 5f electrons, for example in the case of uranium oxides used in the nuclear industry [START_REF] Dorado | Advances in firstprinciples modeling of point defects in UO 2 : f electron correlations and the issue of local energy minima[END_REF].

The paramagnetic phase of α-Fe, as discussed above, is challenging for DFT. If basic structural parameters cannot be obtained accurately, what can one expect for point defects? Indeed, extensive DFT calculations of α-Fe [START_REF] Korzhavyi | First-principles calculations of the vacancy formation energy in transition and noble metals[END_REF][START_REF] Söderlind | First-principles formation energies of monovacancies in bcc transition metals[END_REF][START_REF] Domain | Ab initio calculations of defects in Fe and dilute Fe-Cu alloys[END_REF][START_REF] Hoshino | Full-potential KKR calculations for point defect energies in metals, based on the generalized-gradient approximation. I. Vacancy formation energies in fcc and bcc metals[END_REF][START_REF] Mizuno | First-principles calculations for vacancy formation energies in Ni and Fe: non-local effect beyond the LSDA and magnetism[END_REF][START_REF] Tateyama | Stability and clusterization of hydrogen-vacancy complexes in α-Fe: an ab initio study[END_REF][START_REF] Fu | Stability and mobility of mono-and di-interstitials in α-Fe[END_REF][START_REF] Derlet | Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals[END_REF][START_REF] Olsson | Ab initio study of Cr interactions with point defects in bcc Fe[END_REF][START_REF] Ohnuma | First-principles calculations of vacancy-solute element interactions in body-centered cubic iron[END_REF][START_REF] Kandaskalov | Study of multivacancies in alpha Fe[END_REF][START_REF] Dudarev | Density functional theory models for radiation damage[END_REF] predict a monovacancy formation energy about 30 to 40 % higher than the measured values, with significant variations depending on the DFT implementation used (see table 7.2). Such comparison between theory and experiment is, of course, of limited meaning since it concerns two different phases (ferromagnetic and paramagnetic).

Just as DMFT corrections to DFT have helped to better understand the electronic and structural properties of α and ε-Fe [START_REF] Leonov | Electronic correlations at the αγ structural phase transition in paramagnetic iron[END_REF][START_REF] Pourovskii | Impact of electronic correlations on the equation of state and transport in ε-Fe[END_REF][START_REF] Pourovskii | Electronic properties and magnetism of iron at the Earth's inner core conditions[END_REF], it is likely that an explicit treatment of many-body effects within DMFT will also correct the severe problems of DFT in describing point defects in paramagnetic α-Fe.

Hence, in the present work we have developed a state-of-the-art DFT+DMFT method [START_REF] Lechermann | Dynamical mean-field theory using Wannier functions: a flexible route to electronic structure calculations of strongly correlated materials[END_REF][START_REF] Kotliar | Electronic structure calculations with dynamical mean-field theory[END_REF][START_REF]Full orbital calculation scheme for materials with strongly correlated electrons[END_REF] into a scheme for studying vacancy properties. We have applied this technique to a single vacancy in paramagnetic α-Fe. We have computed the electronic structure around the vacancy as well as the vacancy's formation energy, taking into account local lattice distortions around the defect. Compared to ferromagnetic DFT calculations, a significant reduction of the theoretical formation energy is obtained, with calculated values in remarkable agreement with experimental estimates [START_REF] De Schepper | Positron annihilation on pure and carbon-doped α-iron in thermal equilibrium[END_REF][START_REF] Kim | Vacancy formation energy in iron by positron annihilation[END_REF][START_REF] Matter | Phase transformations and vacancy formation energies of transition metals by positron annihilation[END_REF][START_REF] Schaefer | Vacancy formation in iron investigated by positron annihilation in thermal equilibrium[END_REF][START_REF] Schaefer | Investigation of thermal equilibrium vacancies in metals by positron annihilation[END_REF]. We trace back this reduction to rather subtle effects of the vacancy on the local density of states and hybridization with its nearest neighbors.

Methods

We model a single vacancy in bcc Fe using the 2 × 2 × 2 and 3 × 3 × 3 cubic supercells represented in Fig. 7.4, with the vacancy placed at the origin of the supercells. The vacancy formation energy is FP LMTO GGA full / volume 2.18 / 2.60 [START_REF] Hoshino | Full-potential KKR calculations for point defect energies in metals, based on the generalized-gradient approximation. I. Vacancy formation energies in fcc and bcc metals[END_REF] FP KKR in GGA PW91 none 2.44 [START_REF] Kandaskalov | Study of multivacancies in alpha Fe[END_REF] PAW GGA PW91 full 2.16 [START_REF] Ohnuma | First-principles calculations of vacancy-solute element interactions in body-centered cubic iron[END_REF] PAW GGA full / position 2.17 / 2.17 [START_REF] Derlet | Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals[END_REF] PAW GGA PBE full 2.15 [START_REF] Olsson | Ab initio study of Cr interactions with point defects in bcc Fe[END_REF] PAW GGA position 2.16 [START_REF] Olsson | Ab initio study of Cr interactions with point defects in bcc Fe[END_REF] US-PP GGA position 2.15 [START_REF] Domain | Ab initio calculations of defects in Fe and dilute Fe-Cu alloys[END_REF] US-PP GGA PW92 full / volume / none 1.95 / 1.94 / 2.24 [START_REF] Tateyama | Stability and clusterization of hydrogen-vacancy complexes in α-Fe: an ab initio study[END_REF] US-PP GGA none 2.04 [START_REF] Fu | Stability and mobility of mono-and di-interstitials in α-Fe[END_REF] SIESTA method GGA PBE full 2.07 [START_REF] Korzhavyi | First-principles calculations of the vacancy formation energy in transition and noble metals[END_REF] LSGF ASA LDA volume 2.25 

E f vac = E vac (N -1) - N -1 N E no vac (N ), (7.1)
where N is the number of atoms in the ideal supercell, E no vac (N ) is the total energy of the ideal supercell containing N atoms and no vacancy, and E vac (N -1) is the total energy of the same supercell with a vacancy (hence N -1 atoms). N is 16 in the 2 × 2 × 2 supercell and 54 in the 3 × 3 × 3 supercell, corresponding to vacancy concentrations of 6.25% and 1.85%, respectively.

The DFT+DMFT method had hitherto rarely been used to compute point defect properties, due to the heavy computational load when working with supercells. The calculations in the present work were rather heavy (two to three weeks on 100 cores to obtain a reliable total energy for one set of parameters), but have become possible thanks to recent developments in quantum impurity solvers. We used a continuous-time quantum Monte-Carlo (CTQMC) hybridization expansion algorithm [57] in the segment representation for the solution of the local impurity problems (see Chap. 5).

The computational cost of performing DFT+DMFT calculations in larger cells (which is necessary to treat reasonably low concentrations of vacancies) was for a long time a bottleneck to performing such calculations. In the last few years, the effect of oxygen vacancies on the magnetism and photoemission spectra in oxides has been investigated using DFT+DMFT in supercells. Lechermann et al. have reported about the effect of vacancies on magnetism within DFT+DMFT [START_REF] Lechermann | Electron correlation and magnetism at the LaAlO 3 /SrTiO 3 interface: a DFT+DMFT investigation[END_REF][START_REF] Behrmann | Interface exchange processes in LaAlO 3 /SrTiO 3 induced by oxygen vacancies[END_REF]. They found that, for instance, the combined presence of oxygen vacancies at the LaAlO 3 /SrTiO 3 interface and local many-body physics explains the stabilization of interface ferromagnetism. In the well-known "drosophila" of correlated materials, SrVO 3 , Backes et al. [START_REF] Backes | Hubbard band versus oxygen vacancy states in the correlated electron metal SrVO 3[END_REF] found that oxygen vacancies play an important (if not dominant) role in explaining the photoemission peak at -1 eV, sometimes assigned to a lower Hubbard band.

Technicalities

The on-site density-density interaction between the 3d is parametrized by the Slater parameter F 0 = U = 4.3 eV and the Hund's rule coupling J H = 1.0 eV that were previously used in the DFT+DMFT calculations of α and -Fe of Ref. [START_REF] Pourovskii | Impact of electronic correlations on the equation of state and transport in ε-Fe[END_REF]. The same work reproduced almost exactly the experimental lattice parameter of 2.86 Å, hence we perform our DFT+DMFT calculations at the experimental volume. Other DFT calculations were performed at the corresponding theoretical volume. All DFT+DMFT calculations were performed at the electronic temperature of 1162K, corresponding to β =10 eV -1 .

We use a k-point mesh with 8 × 8 × 8 points for the 16 atom supercell, and 4 × 4 × 4 points for the 54 atom supercell. Convergence with respect to calculation parameters (the k-point mesh density, supercell size and size of the functions basis) has been verified within DFT. In particular, using a larger 4 × 4 × 4 (128 atoms) supercell is not useful and leads to the same results.

The DFT+DMFT Hamiltonian is parameterized with the density-density interaction Hamiltonian of Eq. 5.8 for the full d-shell (see Chap. 5).

We use the around mean-field approximation of Eq. 4.15 for the double-counting correction H DC [START_REF] Anisimov | Band theory and Mott insulators: Hubbard U instead of Stoner I[END_REF][START_REF] Czyżyk | Local-density functional and on-site correlations: the electronic structure of La 2 CuO 4 and LaCuO 3[END_REF]. Finally, the interaction energy is computed according to Eq. 4.24.

About 15 iterations are needed to reach convergence in the DFT+DMFT cycle. An averaging of the total energy values over further iterations is required to obtain precise enough values. In practice, at least 50 more cycles are needed. The error bars shown in table 7.3 and Fig. 7.5 are computed as the empirical standard deviation over these iterations. This uncertainty increases with the supercell size. Indeed, for each impurity site small fluctuations around the equilibrium value of the Hubbard interaction energy exist, and are multiplied by the number of atoms in the supercell.

The 2 × 2 × 2 and 3 × 3 × 3 supercells with a vacancy have an overall cubic symmetry. However, the presence of the vacancy still breaks the on-site cubic point group symmetries for all iron atoms apart from the central one. For those atoms the Wien2k code uses local coordinate frames chosen in such a way as to have the highest possible on-site symmetry. Subsequently, our impurity problems are also solved or not, non-magnetic, paramagnetic (PM) or ferromagnetic (FM). Calculations are performed at the equilibrium volume for the relevant setup. The average of experimental values is shown for comparison [START_REF] De Schepper | Positron annihilation on pure and carbon-doped α-iron in thermal equilibrium[END_REF][START_REF] Kim | Vacancy formation energy in iron by positron annihilation[END_REF][START_REF] Matter | Phase transformations and vacancy formation energies of transition metals by positron annihilation[END_REF][START_REF] Schaefer | Vacancy formation in iron investigated by positron annihilation in thermal equilibrium[END_REF][START_REF] Schaefer | Investigation of thermal equilibrium vacancies in metals by positron annihilation[END_REF] in these local coordinate frames. Hence, a corresponding rotation back to the reference frame should be applied to the resulting self-energies, if one wishes to compare them with the self-energy of perfect bcc Fe. The latter is, of course, obtained for the standard coordinate frame with x, y, and z axises along the cube edges. However, because we are using a density-density Hamiltonian instead of the full rotationallyinvariant one, the self-energies obtained for those local frames are still somewhat different from that of perfect bcc iron even after the inverse rotation. Hence, in our calculations of the ideal supercells (without vacancies) we employed the same local coordinate frames as for the supercells with vacancy in order to avoid spurious contributions of those rotations to the vacancy formation energy. Furthermore, we verified that the off-diagonal elements in the Green's functions stay small, so that we could neglect them.

Results

Vacancy formation energy E f vac

The vacancy formation energies obtained within DFT+DMFT together with different DFT results and experimental values are shown in Fig. 7.5, and also summarized more extensively in table 7.3. The resulting value for E f vac in DFT+DMFT is 1.77 eV for the unrelaxed 54-atom supercell with lattice relaxations reducing it further to E f vac = 1.56 ± 0.13eV, in excellent agreement with the experimental average value of about 1.6 eV. We also calculated E f vac within DFT+DMFT for the unrelaxed ferromagnetic phase obtaining a higher value of 2.45±0.15eV. Experiments indeed seem to confirm that E f vac in the ferromagnetic phase should be larger than in the nonmagnetic one [START_REF] De Schepper | Positron annihilation on pure and carbon-doped α-iron in thermal equilibrium[END_REF][START_REF] Schaefer | Investigation of thermal equilibrium vacancies in metals by positron annihilation[END_REF] and 2.32 eV for an unrelaxed and a fully relaxed cell, respectively. Hence, one can see that many-body effects included within DMFT reduce E f vac for the paramagnetic phase by about 0.7 eV. The impact of correlation effects for ferromagnetic α-Fe is much less significant, in agreement with the predicted suppression of dynamic correlations in this phase [START_REF] Pourovskii | Impact of electronic correlations on the equation of state and transport in ε-Fe[END_REF] (see also Fig. 7.3). The vacancy formation energies obtained with nonmagnetic DFT calculations are even lower than the measured values, with E f vac ≈ 1.5eV in unrelaxed GGA. They have, however, very little physical meaning: DFT in general fails dramatically for the paramagnetic phase, which is reflected by the fact that α-Fe is not dynamically stable and the predicted lattice parameter would be significantly smaller in nonmagnetic DFT. Hence, using our relaxed positions in a nonmagnetic DFT calculation gives an (unphysical) negative vacancy formation energy. Thus, the strongly reduced value of E f vac in nonmagnetic DFT calculations compared to ferromagnetic ones may be due to a spurious cancellation of errors.

Discussion

The total energy in DFT+DMFT, given in Eq. 4.22, can alternatively be written

E tot DMFT = Tr( ĤKS k N DMFT k ) + E[ρ DMFT ] + ( H U -E DC ) (7.2)
where N DMFT k is the density matrix at crystal momentum k, ĤKS k the corresponding Kohn-Sham LDA Hamiltonian and E[ρ DMFT ] only depends explicitly on the charge density.

H U = 1 2 mm U mm n m n m
is the Coulomb interaction between Fe 3d electrons (m and m are orbital indices and U mm is the densitydensity Coulomb matrix, see Chap. 5), and E DC is the double-counting term that estimates the energy already present in LDA. When one removes an atom from the cell to create a vacancy, all three terms in Eq. (7.2) change. Figure 7.6 shows the difference in the third term, E int = H U -E DC , for each respective atom in the supercell before and after removing an atom. Summing this up and taking into account the multiplicity of the atoms in the cell yields a change ∆E int ≈ -1.6 eV, that is compensated by a larger change in E[ρ DMFT ] due to a redistribution of the charge density, as wavefunctions from DFT+DMFT are more localized. The contributions from the second and third coordination shells compensate one another in E int , so that the net change in the interaction energy only comes from the first nearest neighbor. This is due to efficient metallic screening, and is in good agreement with embedded atom method calculations of iron vacancies near the surface [START_REF] Wang | A single vacancy diffusion near a Fe (110) surface: a molecular dynamics study[END_REF] that show that the vacancy formation energy becomes equal to the bulk value for the vacancy located in the third layer or deeper.

The self-energy of the vacancy's first coordination shell shows a significant difference from the bulk bcc-Fe self-energy, as shown in Fig. 7.7 (a) and (b). t 2g states, but also e g states to a lesser extent, become more strongly correlated (less coherent) with a larger ImΣ(iω). A larger absolute value of the imaginary part of the self-energy at low frequencies means reduced quasi-particle lifetimes, equivalent to stronger dynamic correlations. This difference almost vanishes for the self-energy of the atoms further away than the nearest neighbor, in agreement with the variation of the interaction energy shown in Fig. 7.6. Stronger correlations on the atoms near the vacancy imply that a more accurate description of the 3d electrons of the Fe atoms in DFT+DMFT is crucial, not only for predicting the crystal structure, but especially for estimating the energetics of the vacancy, which eventually leads to a smaller formation energy. Note that the self-energies are slightly atom-dependent even in the absence of a vacancy in our calculations, due to an artificial symmetry-breaking in the supercell in DFT calculations and the non-rotational invariance of the density-density Hubbard Hamiltonian. However, we compare self-energies and interaction energies in a consistent, atom-to-atom way.

The enhancement of the nearest-neighbor self-energy can be traced back to a change in the hybridization function. As can be seen in Figure 7.8b, the imaginary-frequency hybridization function, in particular for the t 2g states, is reduced at low frequencies for the atom near the vacancy. This reduction is due to an increase in the corresponding t 2g partial density of states (DOS) in the vicinity of the Fermi level, E F , as one can see in Fig. 7.8a. A larger DOS at E F induces a suppression of low-energy hopping leading to stronger correlation [START_REF] Pourovskii | Electronic properties and magnetism of iron at the Earth's inner core conditions[END_REF][START_REF] Mravlje | Coherence-incoherence crossover and the mass-renormalization puzzles in Sr 2 RuO 4[END_REF]: at the first iteration of DMFT, Im∆(i0 + ) = -πρ F / ReG loc (i0 + ) 2 + (πρ F ) 2 ≈ -1/(πρ F ), with ρ F the LDA DOS. The enhancement of the nearest-neighbor e g self-energy is smaller and the corresponding DOS at E F even decreases compared to the bulk case. This decrease in the value the of DOS exactly at E F is compensated by an overall narrowing of the e g peak in the vicinity of E F , see Fig. 7.8a (see also Fig. 7.9 for the full partial densities of states). Hence, the resulting hybridization function for e g is still suppressed starting from the second Matsubara frequency. ω n (eV) ω n (eV)
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nearest neighbor e g nearest neighbor t 2g central atom e g central atom t 2g Figure 7.9 -Partial density of states of the e g (full line) and t 2g (dashed line) orbitals on the first nearest neighbor atom to the vacancy (blue) and on the central atom (red). Away from the Fermi level, the difference in the partial DOS between both atoms is small.

Importance of local atomic relaxations

Next, we calculated the relaxed atomic positions in DFT+DMFT around the vacancy. Computing atomic forces in DFT+DMFT is rather complicated [START_REF] Leonov | First-principles calculation of atomic forces and structural distortions in strongly correlated materials[END_REF], so we obtained the relaxed atomic positions by shifting the atoms around their equilibrium position and minimizing the total energies. We performed a relaxation of the atoms around the vacancy in two steps in order to reduce the computational effort. We first obtained a fully relaxed structure in spin-polarized GGA (at its corresponding theoretical volume, computing atomic forces), to obtain an initial guess of the atomic positions.

In this calculation, we observe a shift of the first coordination shell towards the vacancy by about 4%, and a shift of the second coordination shell away from the vacancy by about 1.5%, while all the other atoms do not move significantly, in agreement with previous calculations [START_REF] Domain | Ab initio calculations of defects in Fe and dilute Fe-Cu alloys[END_REF]. In the second step, the positions of the two first nearest neighbors were relaxed within DFT+DMFT. In Fig. 7.10, we show the total energy (minus an offset depending on the method used, GGA or DFT+DMFT, for easier representation) of the supercell as a function of the relaxed position of the nearest and second nearest neighbor of the vacancy. Each site was moved independently, preserving the symmetry of the cell, while the positions of others were fixed at their fractional GGA values.

We obtain the following results: in DFT+DMFT, for paramagnetic α-Fe, the first nearest neighbor relaxes by 5.7% towards the vacancy while the second nearest neighbor relaxes away from it by 0.7%. One sees that many-body effects have a significant impact on the nearest-neighbor relaxation, enhancing the shift away from the unrelaxed position by almost 50%. Overall, relaxing the two first coordination shells in full DFT+DMFT reduces the vacancy formation energy by 0.21 eV.

Conclusion

We have shown that local many-body effects are crucial for explaining a relatively low vacancy formation energy in α-Fe. The presence of a vacancy induces rather subtle changes in the local electronic structure of its surroundings, leading to a moderate increase in the strength of correlations at neighboring sites. This moderate increase has, however, a very significant impact on the vacancy energetics. When the effect of local relaxations is consistently included, the calculated vacancy formation energy in paramagnetic α-Fe is reduced by about 0.7 eV, or about 30% compared to the corresponding value in the ferromagnetic phase and is in excellent agreement with experiment. The predicted magnitude of nearest-neighbor relaxations is about 50% larger compared to the one obtained within DFT. This remarkable sensitivity to correlation effects is most probably pertinent to other types of defects in iron that are of crucial importance for mechanical properties and thermodynamics of steels, e.g. interstitial sites, stacking faults and dislocations. It seems plausible that the same kind of effects should also be considered in other strongly correlated materials.

Finally, this is a proof of principle that total energy calculations can be performed with reasonable precision in supercells with DFT+DMFT, in somewhat long but not prohibitive computation time. This would have been much more complicated even a few years ago, as quantum impurity solvers have made tremendous progress. The present calculation scheme could probably still be refined, considering that most of the important physics is happening on the vacancy's nearest neighbor site. A much less expensive approach would be to freeze the DMFT loop on the atoms far away from the vacancy, where a perfect bcc self-energy is a very good approximation.

Chapter 8

Epitaxially stabilized phases of VO 2 : the B phases

In this chapter, we study the reported phase transition in the metastable B phase of VO 2 . We first give an overview of the experimental and theoretical state of the art on VO 2 in section 8.1. We then discuss recent measurements on the B phase [START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF]231] in sections 8.2 and 8.3. Next, we show how a simplified form of DFT+CDMFT accounts for the measured bad metal to insulator transition in this phase in sections 8.4 and 8.5. Finally, motivated by a recent publication demonstrating the importance of oxygen vacancies for understanding the electronic structure of SrVO 3 [START_REF] Backes | Hubbard band versus oxygen vacancy states in the correlated electron metal SrVO 3[END_REF], we investigate the possible effects of the presence of oxygen vacancies on the spectra of VO 2 in section 8.6. 

General remarks

Vanadium dioxide (or VO 2 ) is a 3d transition metal oxide with electronic configuration 3d 1 that comes in many different phases, depending on temperature, doping and stress. It is probably best known for its extensively studied insulator to metal transition as temperature is increased above T c = 340 K [START_REF] Morin | Oxides which show a metal-to-insulator transition at the Néel temperature[END_REF]. Indeed, the proximity of this phase transition to standard room temperature, together with its ultrashort timescale and sensitivity to tuning by doping, is one of the reasons why VO 2 is considered a promising material for electronic devices and applications [START_REF] Yang | Oxide electronics utilizing ultrafast metal-insulator transitions[END_REF]. Recently, VO 2 has made headlines due to a severe breakdown of the Wiedemann-Franz law in its high-temperature phase [START_REF] Lee | Anomalously low electronic thermal conductivity in metallic vanadium dioxide[END_REF], suggesting possible uses as a thermoelectric material. Again, the proximity of the phase transition to room temperature is critical.

The two best known phases of VO 2 are the high-temperature tetragonal (rutile) R phase, and the lowtemperature monoclinic M 1 phase. VO 2 (R) is a (bad) metal, with fairly short-lived quasi-particles [START_REF] Qazilbash | Mott transition in VO 2 revealed by infrared spectroscopy and nano-imaging[END_REF]. It has space group No. 136 (P4 2 /mmnm) (see Fig. 8.1). At T c = 340 K, VO 2 goes through a first-order structural transition whereby two nearest V atoms along the rutile c axis dimerize, and the resulting dimers are tilted, forming zig-zag dimer chains. This phase is called the monoclinic M 1 phase of VO 2 (see Fig. 8.1). Concurrently, the material undergoes a Mott-Peierls metal to insulator transition (MIT), with the resistivity changing by two orders of magnitude. Because of the doubling of the unit cell, a Peierls mechanism has been proposed as an explanation for the MIT. The question of "the chicken or the egg", or which of the structural and electronic transition causes the other, has been debated but has not been completely settled yet [START_REF] Wentzcovitch | VO 2 : Peierls or Mott-Hubbard? a view from band theory[END_REF][START_REF] Rice | Comment on "VO 2 : Peierls or Mott-Hubbard? A view from band theory[END_REF][START_REF] Brito | Metal-insulator transition in VO 2 : a DFT+ DMFT perspective[END_REF][START_REF] Nájera | Resolving the VO 2 controversy: Mott mechanism dominates the insulator-to-metal transition[END_REF].

A qualitative but still very relevant description of the electronic structures of VO 2 was given early on by Goodenough [START_REF] Goodenough | Direct cation-cation interactions in several oxides[END_REF][START_REF] Goodenough | The two components of the crystallographic transition in VO 2[END_REF]. The five V 3d orbitals are split by the cubic component of the crystal field into two e g orbitals and three lower energy t 2g orbitals. The actual symmetry on a V site is in fact Figure 8.1 -Crystal structure of VO 2 (R) (left panel) and VO 2 (M 1 ) (right panel). To form the M 1 phase, consider a double unit cell of the rutile phase and form tilted dimers along the c axis. The resulting monoclinic unit cell is twice as large. Reproduced from [START_REF] Eyert | The metal-insulator transitions of VO 2 : a band theoretical approach[END_REF]. lower than cubic, so that the e g orbitals are further split into two non-degenerate orbitals, and the t 2g orbitals are split into a more stable a 1g orbital pointing along the c axis and two less stable e π g orbitals. According to Goodenough's analysis, both the a 1g and e π g states are partly filled in the metallic rutile phase, VO 2 (R). At lower temperatures in the M 1 phase, the physics of the dimer become important. The intra-dimer hopping between the a 1g orbitals of two neighboring V ions splits the a 1g band in two, stabilizing a bonding state. At the same time, the tilting of the dimers increases hybridization between the O 2p and the V e π g orbitals, pushing the e π g states to higher energies. The aggregate effect of the distortion is to stabilize an isolated bonding a 1g state, separated from the other bands. As the total occupancy per V remains unity, this explains the insulating state. Hence, in Goodenough's view, VO 2 is a band insulator showing a Peierls transition.

On the other hand, Zylbersztejn and Mott [START_REF] Zylbersztejn | Metal-insulator transition in vanadium dioxide[END_REF] proposed an explanation for the MIT of VO 2 that emphasizes the importance of correlations in the material. In their view, it is the Coulomb repulsion between electrons that freezes them in place, forming a Mott insulator. To this day, the Peierls or Mott nature of the insulating phase of VO 2 remains unsettled. Experiments and calculations over the last 15 years suggest that both aspects are needed to completely understand the MIT of VO 2 .

VO 2 has, in fact, not one but several insulating phases. Uniaxial strain or doping with Cr, Fe, Al or Ga stabilizes another monoclinic phase, VO 2 (M 2 ) [START_REF] Pouget | Dimerization of a linear Heisenberg chain in the insulating phases of V 1-x Cr x O 2[END_REF][START_REF] Pouget | Electron localization induced by uniaxial stress in pure VO 2[END_REF], where one half of the V ion pairs dimerize (but do not tilt) and the other half of V pairs tilt (but do not dimerize). Yet another insulating phase, VO 2 (T), has triclinic symmetry and is an intermediate phase between M 1 and M 2 , where all V pairs are tilted (though at different degrees) but only half dimerize. The existence of several insulating phases generates some complexity but actually provides useful informations on the mechanisms of the MIT. Indeed, it allows to partly decouple the lattice and electronic transitions. All three insulating phases have very similar values of the insulating gap [START_REF] Huffman | Insulating phases of vanadium dioxide are Mott-Hubbard insulators[END_REF] (about 0.6 eV), similar free energies [START_REF] Rice | Comment on "VO 2 : Peierls or Mott-Hubbard? A view from band theory[END_REF][START_REF] Pouget | Dimerization of a linear Heisenberg chain in the insulating phases of V 1-x Cr x O 2[END_REF] and revert to the rutile phase at high temperatures (though VO 2 (T) transits through the M 2 phase). There are, however, also differences from the electronic point of view. V ions in VO 2 (M 1 ) have been shown in NMR experiments to be nonmagnetic (S=0), consistent with the band picture. In the M 2 phase, on the other hand, dimerized V ions are nonmagnetic but the non-dimerized tilted V chains form local moments (S = 1/2) with antiferromagnetic coupling [START_REF] Pouget | Dimerization of a linear Heisenberg chain in the insulating phases of V 1-x Cr x O 2[END_REF]. This is more in line with the physics of a Mott insulator.

Other (less stable) polymorphic forms of VO 2 can be stabilized as nano powders or thin films. This is the case for VO 2 (A) [START_REF] Oka | Formation and phase transitions of hydrated vanadium oxides with layered structures[END_REF] and VO 2 (B) [START_REF] Oka | Phase transition and V 4+ -V 4+ pairing in VO 2 (B)[END_REF]. VO 2 (B), in particular, is attracting much attention in the chemistry community because it is considered a promising cathode material for new generation batteries [START_REF] Liu | Design and synthesis of a novel nanothorn VO 2 (B) hollow microsphere and their application in lithium-ion batteries[END_REF]. Thermal annealing on powders causes both materials to revert to the rutile phase [START_REF] Marini | Optical properties of V 1-x Cr x O 2 compounds under high pressure[END_REF]. They have recently been grown epitaxially as thin films over a SrTiO 3 substrate with a pulsed laser The MIT from M 1 to R is both wider (occuring over a 10 K range) and lesser (the resistivity changes by only two orders of magnitude) than can be observed in single crystal VO 2 . Reproduced from [START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF]. deposition technique by Srivastava et al. [START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF]. The oxygen pressure and laser pulse frequency determine which phase is deposited. In their work, VO 2 (B) was shown to go from a bad metal high-temperature (HT) phase, with conductivity 10 times lower than the rutile phase, to a low-temperature (LT) insulating phase over a range of 100 K when temperature is lowered below about 250 K (see Fig. 8.2). VO 2 (B) crystallizes in a monoclinic structure with lower symmetry than VO 2 (M 1 ), similar to VO 2 (M 2 ). This was shown to be linked to a structural transition preserving the symmetry where half of the V ions form dimers in the LT phase. In this chapter, we study the electronic structure and phase transition of VO 2 (B). In what follows, for simplicity, we shall label the low-temperature phase of VO 2 (B) as LT and the high-temperature phase of VO 2 (B) as HT.

VO 2 as seen by experiments

Since the original publication on the MIT of VO 2 in 1959 [START_REF] Morin | Oxides which show a metal-to-insulator transition at the Néel temperature[END_REF], this material has attracted much attention from the solid state physics community. In particular, the advent of modern electronic structure codes in the 1990's has initiated a renewed interest from the experimental and theoretical communities to try and explain the nature of the MIT transition. In this section, we briefly review some key experimental findings on VO 2 .

Many photoemission spectroscopy (PES) experiments have been carried out on VO 2 , using single crystals or thin films and at different photon energies [START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF][START_REF] Blaauw | The metal-non-metal transition in VO 2 : X-ray photoemission and resistivity measurements[END_REF][START_REF] Shin | Electron correlation energies and metal-insulator transition of VO 2[END_REF][START_REF] Okazaki | Photoemission study of the metal-insulator transition in VO 2 /TiO 2 (001): evidence for strong electron-electron and electron-phonon interaction[END_REF][START_REF] Koethe | Transfer of spectral weight and symmetry across the metal-insulator transition in VO 2[END_REF][START_REF] Suga | 8 keV photoemission of the metal-insulator transition system VO 2[END_REF][START_REF] Saeki | Band dispersion near the fermi level for VO 2 thin films grown on TiO 2 (001) substrates[END_REF][START_REF] Haverkort | Orbital-assisted metal-insulator transition in VO 2[END_REF][START_REF] Eguchi | Electronic structure of VO 2 /TiO 2 :Nb upon photocarrier injection[END_REF][START_REF] Eguchi | Photoemission evidence for a Mott-Hubbard metal-insulator transition in VO 2[END_REF][START_REF] Wegkamp | Instantaneous band gap collapse in photoexcited monoclinic VO 2 due to photocarrier doping[END_REF][START_REF] Laverock | Direct observation of decoupled structural and electronic transitions and an ambient pressure monoclinic-like metallic phase of VO 2[END_REF]. We display a few examples of photoemission spectra in Fig. 8.3. One may observe that, while all VO 2 (M 1 ) spectra have a proper PES peak at around -0.9 eV, the picture is not so clear in the metallic R phase. Indeed, while some groups observe a clear quasi-particle peak at the Fermi level, others measure a superposition of several peaks or indeed mainly incoherent spectra. Such is the case, in particular, in recent measurements made on epitaxially grown thin films.

PES experiments give us several pieces of information on the phase transition. Okazaki et al. [START_REF] Okazaki | Photoemission study of the metal-insulator transition in VO 2 /TiO 2 (001): evidence for strong electron-electron and electron-phonon interaction[END_REF] noted that the self-energy in the metallic rutile phase is k-dependent and explained this by ferromagnetic fluctuations mediated by the Hund's coupling between the d orbitals, a view rather in agreement with the Zylbersztejn and Mott picture of the phase transition. The temperature dependence of the V 3d band width in the insulating phase is attributed to a strong electron-phonon coupling. They also concluded that electrons in the rutile phase are actually more localized than in the insulating M 1 phase. Haverkort et al. [START_REF] Haverkort | Orbital-assisted metal-insulator transition in VO 2[END_REF], on the other hand, pointed out the importance of orbital polarization across the transition: . Full lines indicate measurements on "bulk" samples, and broken lines measurements on thin films. While the measurements on the M 1 phase consistently show a single peak centered around -0.9 eV, measurements on the metallic R phase are not so consistent and tend to display secondary peaks, in particular on thin films. Data from [START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF][START_REF] Blaauw | The metal-non-metal transition in VO 2 : X-ray photoemission and resistivity measurements[END_REF][START_REF] Shin | Electron correlation energies and metal-insulator transition of VO 2[END_REF][START_REF] Okazaki | Photoemission study of the metal-insulator transition in VO 2 /TiO 2 (001): evidence for strong electron-electron and electron-phonon interaction[END_REF][START_REF] Koethe | Transfer of spectral weight and symmetry across the metal-insulator transition in VO 2[END_REF][START_REF] Suga | 8 keV photoemission of the metal-insulator transition system VO 2[END_REF][START_REF] Saeki | Band dispersion near the fermi level for VO 2 thin films grown on TiO 2 (001) substrates[END_REF] (in chronological order).

they confirmed experimentally the idea advanced by Goodenough that the rutile phase has partially filled e π g and a 1g bands, while the M 1 phase has one completely filled a 1g band. This importance of orbital polarization was further strengthened in a recent experiment by Aetukuri et al. [START_REF] Aetukuri | Control of the metal-insulator transition in vanadium dioxide by modifying orbital occupancy[END_REF]. In their work, the strain on VO 2 thin films was tailored by inserting a RuO 2 layer with varying thickness between the substrate TiO 2 and VO 2 . By changing the strain, they were able to shift the energetic levels of the different orbitals and thus engineer the onset temperature of the MIT. Koethe et al. [START_REF] Koethe | Transfer of spectral weight and symmetry across the metal-insulator transition in VO 2[END_REF] expanded on this work [START_REF] Haverkort | Orbital-assisted metal-insulator transition in VO 2[END_REF] and concluded that a dimer model accounts for the k-dependence of the self-energy. Suga et al. [START_REF] Suga | 8 keV photoemission of the metal-insulator transition system VO 2[END_REF] confirmed the proposal of [START_REF] Biermann | Dynamical singlets and correlationassisted Peierls transition in VO 2[END_REF] that the PES peak at -0.9 eV in the M 1 phase is a coherent peak corresponding to a dispersive electronic band, not an incoherent peak corresponding to a lower Hubbard band. Eguchi et al. [START_REF] Eguchi | Photoemission evidence for a Mott-Hubbard metal-insulator transition in VO 2[END_REF], however, favor a Mott-Hubbard transition picture. Saeki et al. [START_REF] Saeki | Band dispersion near the fermi level for VO 2 thin films grown on TiO 2 (001) substrates[END_REF] performed angle-resolved PES on VO 2 (R) and found two electron pockets with different masses at the center of the Brillouin zone.

All this means there is conclusive evidence for the importance of both Peierls and Mott physics in the R-M 1 phase transition. Recent experiments on more exotic metallic phases of VO 2 further complicate the picture.

Recent femtosecond time-resolved PES [START_REF] Wegkamp | Instantaneous band gap collapse in photoexcited monoclinic VO 2 due to photocarrier doping[END_REF] and electron diffraction [START_REF] Morrison | A photoinduced metal-like phase of monoclinic VO 2 revealed by ultrafast electron diffraction[END_REF] measurements reported a metastable, relatively long-lived metallic state upon photoexcitation of VO 2 (M 1 ). Because the transition to this metallic state is significantly faster than the structural transition and the thermalization time is much shorter than the reversal to the insulating ground state, this demonstrates that an out-of-equilibrium but metastable metallic state with M 1 structure is possible. Arcangeletti et al. [START_REF] Arcangeletti | Evidence of a pressure-induced metallization process in monoclinic VO 2[END_REF] stabilized an ambient temperature metallic phase with monoclinic symmetry at high pressures. More surprisingly, it has been suggested that these high pressure and out-of-equilibrium metallic monoclinic phases are of similar nature, and are also comparable to an intermediate metallic phase measured within the transition temperature range in thin films [START_REF] Laverock | Direct observation of decoupled structural and electronic transitions and an ambient pressure monoclinic-like metallic phase of VO 2[END_REF]. Finally, it appears that creating oxygen vacancies can strongly affect the phase transition, as is visible in two recent experiments. Jeong et al. [START_REF] Jeong | Suppression of metal-insulator transition in VO 2 by electric field-induced oxygen vacancy formation[END_REF] demonstrated that a suppression of the MIT and metallization of the monoclinic phase by gating-induced oxygen vacancy creation is possible. Similarly, Zhang et al. [START_REF] Zhang | Evolution of metallicity in vanadium dioxide by creation of oxygen vacancies[END_REF] stabilized a metallic rutile phase down to 1.8 K after creating oxygen vacancies by annealing thin films at low oxygen partial pressure.

The R to M 1 MIT has been studied for longer, and much more extensively, than the transition of VO 2 (B) displayed in Fig. 8.2. Indeed, as of today, VO 2 (B) has been mostly studied by the chemistry community from the point of view of film and nanocrystal growth, and the electronic and structural properties thereof [START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF][START_REF] Oka | Phase transition and V 4+ -V 4+ pairing in VO 2 (B)[END_REF][START_REF] Liu | Design and synthesis of a novel nanothorn VO 2 (B) hollow microsphere and their application in lithium-ion batteries[END_REF][START_REF] Chen | Textured metastable VO 2 (B) thin films on SrTiO 3 substrates with significantly enhanced conductivity[END_REF][START_REF] Rúa | Semiconductor-insulator transition in VO 2 (B) thin films grown by pulsed laser deposition[END_REF]. Oka et al. [START_REF] Oka | Phase transition and V 4+ -V 4+ pairing in VO 2 (B)[END_REF] measured the structural parameters across the transition. They also performed magnetic susceptibility, finding a dip in the susceptibility below 300 K followed by a renewed increase below 200 K, and nuclear magnetic resonance, finding a positive knight shift characteristic of a singlet spin state, to demonstrate the formation of bonding dimers in half the V pairs. The susceptibility measurements are qualitatively similar to those on the M 2 phase [START_REF] Pouget | Dimerization of a linear Heisenberg chain in the insulating phases of V 1-x Cr x O 2[END_REF], though the drop is much sharper in the latter.

A recent publication by Lourembam et al. [START_REF] Lourembam | New insights into the diverse electronic phases of a novel vanadium dioxide polymorph: a terahertz spectroscopy study[END_REF] extensively studies both phase transitions (M 1 to R and B low-temperature to high-temperature) using terahertz spectropscopy. In this work, the authors measure the complex optical conductivity in the THz range and extract the plasma frequency ω p and free carrier scattering rate γ by fitting the measured data to a Drude model. In VO 2 (B), they find an onset of the phase transition at 240 K and a near saturation of ω p and γ above 280 K, linked to a lower activation energy of the dc conductivity. In VO 2 (M 1 ), a Drude-Smith model, taking into account charge localization, is shown to be necessary to to fit the complex conductivities. This is, the authors argue, consistent with the picture of a MIT in VO 2 (M 1 ) to (R) taking place by percolation, with metallic domains nucleating in the insulating phase, as described by Qazilbash et al. [START_REF] Qazilbash | Mott transition in VO 2 revealed by infrared spectroscopy and nano-imaging[END_REF]. On the other hand, this suggests that the VO 2 (B) LT to HT transition does not follow such a percolation mechanism. Furthermore, the authors argue that the lower inter-axial angle β of VO 2 (B) (as compared to M 1 ) facilitates the formation of defects and impurities in epitaxially grown films.

In a follow-up to this first publication [START_REF] Lourembam | New insights into the diverse electronic phases of a novel vanadium dioxide polymorph: a terahertz spectroscopy study[END_REF], Lourembam et al. show that, similarly to what has been observed in VO 2 (M 1 ) [START_REF] Wegkamp | Instantaneous band gap collapse in photoexcited monoclinic VO 2 due to photocarrier doping[END_REF][START_REF] Morrison | A photoinduced metal-like phase of monoclinic VO 2 revealed by ultrafast electron diffraction[END_REF], photoinduced electrons can stabilize an out-of-equilibrium but long-lived metallic state in the LT phase of VO 2 (B) [START_REF] Lourembam | Evidence for photoinduced insulator-to-metal transition in B-phase vanadium dioxide[END_REF].

We conclude this brief overview of experimental results by pointing out that based on experiments published so far, the phase transitions of VO 2 cannot be understood in a purely Peierls or Mott physics picture. Rather, the two aspects should be treated on equal footing, for example in a correlation-assisted Peierls transition. In the following section, we discuss how ab initio or model-based calculations account for the electronic structure of the different phases of VO 2 .

8.1.3 The band picture: VO 2 from Density Functional Theory to the GW approximation

With the development of modern DFT codes since the 1990's, and after having been studied mostly by experiments or more phenomenological theories, VO 2 has been the subject of several ab initio calculations aiming at understanding its conductive properties and phase stability.

The KS band structure from DFT calculations using the LDA or GGA exchange-correlation potentials does not reproduce the experimental gap of about 0.6 eV in the insulating M 1 and M 2 phases [START_REF] Wentzcovitch | VO 2 : Peierls or Mott-Hubbard? a view from band theory[END_REF][START_REF] Eyert | The metal-insulator transitions of VO 2 : a band theoretical approach[END_REF]. Instead, DFT predicts a small overlap between the bonding a 1g states and the e π g states (that is to say a "negative" gap of ≈ -0.05 eV). This result has led to a longstanding controversy. For proponents of the band picture and Peierls transition, this reflects the well known and systematic tendency of LDA and GGA DFT to underestimate band gaps, and even artificially closing band gaps in small gap semiconductors like Ge. The underlying idea is that the different phases of the materials are well described by LDA and GGA DFT, and the band gap problem is but an unphysical artifact of the calculation method.

More recently, DFT calculations have been performed with the HES hybrid exchange-correlation functionals [START_REF] Eyert | VO 2 : a novel view from band theory[END_REF][START_REF] Grau-Crespo | Why the Heyd-Scuseria-Ernzerhof hybrid functional description of VO 2 phases is not correct[END_REF][START_REF] Yuan | VO 2 : orbital competition, magnetism, and phase stability[END_REF]. On the one hand, these calculations correctly open the band gap observed in the M 1 and M 2 phases, though the value is overestimated, at about 1.1 eV. In the case of the M 2 phase, antiferromagnetic calculations are needed to account for the non-dimerized, antiferromagnetic zig-zag chains. This result is supposed to confirm that VO 2 is properly described by a band picture, as the authors of Ref. [START_REF] Eyert | VO 2 : a novel view from band theory[END_REF] argue. On the other hand, the same hybrid functionals fail at predicting the correct non-magnetic ground state of VO 2 (M 1 ) [START_REF] Grau-Crespo | Why the Heyd-Scuseria-Ernzerhof hybrid functional description of VO 2 phases is not correct[END_REF][START_REF] Yuan | VO 2 : orbital competition, magnetism, and phase stability[END_REF]. They also predict a ferromagnetic insulating ground state for VO 2 (R), but this is less critical: there are indeed signs of ferromagnetic fluctuations in this phase [START_REF] Okazaki | Photoemission study of the metal-insulator transition in VO 2 /TiO 2 (001): evidence for strong electron-electron and electron-phonon interaction[END_REF] and the Curie temperature would be well below the MIT temperature. Still, no known exchange-correlation potential predicts simultaneously the quasi-particle spectrum and the respective phase stabilities. The same remarks apply to DFT+U calculations [START_REF] Yuan | VO 2 : orbital competition, magnetism, and phase stability[END_REF][START_REF] Liebsch | Coulomb correlations and orbital polarization in the metal-insulator transition of VO 2[END_REF].

To go beyond the KS DFT picture, and take into account non-local self-energy effects, a simple model GW scheme [START_REF] Continenza | Self-energy corrections in VO 2 within a model GW scheme[END_REF] and, more recently, self-consistent GW calculations without further approximations [START_REF] Gatti | Understanding correlations in vanadium dioxide from first principles[END_REF][START_REF] Sakuma | First-principles study of correlation effects in VO 2[END_REF] have been reported. Both groups [START_REF] Gatti | Understanding correlations in vanadium dioxide from first principles[END_REF][START_REF] Sakuma | First-principles study of correlation effects in VO 2[END_REF] found that some level of self-consistency in the GW calculation is necessary to obtain reasonable spectra, and that one-shot G 0 W 0 calculations on top of LDA are not sufficient. Moreover, the off-diagonal elements of the GW self-energy are important [START_REF] Sakuma | First-principles study of correlation effects in VO 2[END_REF]. This suggests that the physics of VO 2 is indeed much more complex than that of a "simple" small gap semiconductor whose band gap is underestimated in DFT [START_REF] Wentzcovitch | VO 2 : Peierls or Mott-Hubbard? a view from band theory[END_REF][START_REF] Eyert | The metal-insulator transitions of VO 2 : a band theoretical approach[END_REF].

Correlations in VO 2 : Density Functional Theory + (Cluster) Dynamical Mean-Field Theory

In order to better understand the strong correlations in VO 2 , several attempts have been made to apply the DFT+DMFT method to its phase transition. While local correlations are thought to be strong in rutile VO 2 , there exists overwhelming experimental proof that the dimer physics is crucial for (though not sufficient to explain) the electronic structure of the M 1 and M 2 phases. Therefore, it was realized early on that any DMFT calculation of VO 2 should be performed in its cluster extension (or CDMFT), allowing at least an off-diagonal self-energy element between the dimer a 1g states [START_REF] Biermann | Dynamical singlets and correlationassisted Peierls transition in VO 2[END_REF]. This approach was shown to be sufficient to describe the spectral properties of VO 2 (R) and (M 1 ) on an equal footing. More importantly, it illustrated how the Peierls and Mott physics can overlap when local Coulomb interactions contribute to push electrons in the dimer bonding state to minimize the interaction energy.

In a series of publications [START_REF] Tomczak | Effective band structure of correlated materials: the case of VO 2[END_REF][START_REF] Tomczak | Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO 2[END_REF][START_REF] Tomczak | Optical properties of correlated materials: generalized Peierls approach and its application to VO 2[END_REF][START_REF] Tomczak | Materials design using correlated oxides: optical properties of vanadium dioxide[END_REF], Tomczak et al. expanded and refined the initial work by Biermann et al. [START_REF] Biermann | Dynamical singlets and correlationassisted Peierls transition in VO 2[END_REF]. In particular, the authors demonstrated that in the M 1 phase, since the intra-dimer self-energy elements are essentially real and static, the electronic structure is well reproduced by adding off-diagonal matrix elements (or "scissors operators") on the Kohn-Sham Hamiltonian. The values of the relevant matrix elements are calculated from a simpler system, the Hubbard dimer.

Several other calculations using DFT+CDMFT on VO 2 followed. Lazarovits et al. [START_REF] Lazarovits | Effects of strain on the electronic structure of VO 2[END_REF] showed how uniaxial strain stabilizes the metallic phase, by enhancing the bonding-antibonding splitting but simultaneously stabilizing the e π g orbitals and enhancing the a 1g bandwidth. Belozerov et al. [START_REF] Belozerov | Monoclinic M 1 phase of VO 2 : Mott-Hubbard versus band insulator[END_REF], in a publication extending the work by Biermann et al. [START_REF] Biermann | Dynamical singlets and correlationassisted Peierls transition in VO 2[END_REF], where intra dimer Coulomb interactions are taken into account (as in the extended Hubbard model), confirmed the results of the calculations by Tomczak et al.

More recently, motivated by the experimental observation of metastable metallic phases of VO 2 [START_REF] Wegkamp | Instantaneous band gap collapse in photoexcited monoclinic VO 2 due to photocarrier doping[END_REF][START_REF] Morrison | A photoinduced metal-like phase of monoclinic VO 2 revealed by ultrafast electron diffraction[END_REF], out-of-equilibrium quantum Boltzmann equation [START_REF] He | Photoinduced phase transitions in narrow-gap Mott insulators: the case of VO 2[END_REF] and high-temperature DFT+CDMFT [START_REF] Brito | Metal-insulator transition in VO 2 : a DFT+ DMFT perspective[END_REF] calculations have been performed. In the former [START_REF] He | Photoinduced phase transitions in narrow-gap Mott insulators: the case of VO 2[END_REF], He et al. theoretically confirmed the existence of a long-lived metastable metallic state in the M 1 phase upon photoexcitation. In the latter [START_REF] Brito | Metal-insulator transition in VO 2 : a DFT+ DMFT perspective[END_REF], Brito et al. treated the electronic structures of the R, M 1 and M 2 phases on the same footing and reproduce the respective metallic and insulating states. Furthermore, they found a metallic state in the M 1 phase when the electronic temperature is high (900 K), in agreement with the photoexcitation of the electrons.

Finally, Nareja et al. proposed another perspective on the problem of the phase transition in presence of strong correlations and dimer physics [START_REF] Nájera | Resolving the VO 2 controversy: Mott mechanism dominates the insulator-to-metal transition[END_REF]. They calculated (U -T ) and (t -U ) phase diagrams of a dimer Hubbard model (where T is the temperature, U the local Coulomb interaction, and t the intradimer hopping). With this, they reproduced the Coulomb-assisted MIT of the dimers with the formation of singlet states. However, the validity of the analogy with the physics of VO 2 is debatable, since their model essentially represents a single-band problem containing only the a 1g band (with dimers) while the importance of the e π g orbitals in VO 2 is well-known.

Recent measurements on VO 2 (B)

Pal et al. [231] recently performed further PES and optical conductivity measurements on thin films of VO 2 (B), in continuation of Ref. [START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF]. The theoretical work presented in this chapter was prepared together with B. Pal, D.D. Sarma et al., to try explain their measurements from electronic structure calculations.

In Fig. 8.4 we display the photoelectron spectra of the VO 2 (B) HT and LT phases. The lineshapes are similar, with slightly more intensity at the Fermi level in the (nominally metallic) HT phase. Both spectra suggest a dominant peak centered around 0.4 eV binding energy. Comparing this data to Fig. 8.3, the LT phase seems less clearly insulating than the M 1 phase, and the HT phase less metallic than the R phase. The difference between both B phases is no longer easily visible in the core state photoelectron spectra of Fig. 8.5 (for the B phase and the R to M 1 phase transition).

Finally, let us go back to the resistivity measurements of Fig. 8.2. The change in resistivity through the transition is rather large. Being four orders of magnitude, it is comparable to what can be obtained in good single crystals of VO 2 (R), and much larger than the change in resistivity reported on the R to M 1 transition in samples of the same set. However, the lowest resistivity reached for the HT phase is almost an order of magnitude larger than the resistivity of the VO 2 (R) thin films, and we know that the rutile phase is itself rather a bad metal.

These experimental findings seem contradictory. They suggest a material going through a structural transition with a large change in resistivity, while on the other hand its photoelectron spectrum is largely unchanged. In the calculations discussed below, we use a DFT+DMFT scheme to understand how these measurements can be reconciled. (M 1 ). The low binding energy shoulders can be associated to charge fluctuations in the valence band (see also [START_REF] Eguchi | Photoemission evidence for a Mott-Hubbard metal-insulator transition in VO 2[END_REF]). Again, there is little sign of a drastic phase transition in the valence states (contrary to the R to M 1 transition). In the R to M 1 transition, it appears that the non-local screening channel is free in the HT R phase but blocked in the LT M 1 phase, but that there is little change in the available screening channels through the B phase transition. From Ref. [231] 8.3. Crystal structures of VO 2 (B) 87

Crystal structures of VO 2 (B)

For the sake of clarity, we present here the crystal structures used in our calculations. We remind that VO 2 (B) has the space group 12 (C 2 /m). The (small) difference between the HT and LT phases is in the lattice constants and atom positions, as given in Tables 8 Table 8.4 -Experimental atomic positions in the conventional unit cell of VO 2 (B) LT and HT (as fraction of the lattice parameters in the primitive cell). In addition, an atom at coordinates (x, y, 0) has equivalent positions at (x + 1 2 , y, 1 2 ) and (x, y, 1). From Ref. [START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF] The distance between two V 2 atoms is 2.867 Å in the HT phase and 2.6072 Å in the LT phase (forming a dimer). In contrast, the nearest vanadium atom for a given V 1 is a V 2 atom, at a distance of about 3 Å.

Methods

As discussed above, single-site DMFT calculations alone do not account for the MIT of VO 2 R to M 1 . A cluster extension has to be used to obtain the intra-dimer self-energy term that, supported by local Coulomb interactions, opens a gap. In the LT phase of VO 2 (B), dimer effects are expected to be important as well: the large change in resistivity goes together with a dimer formation on one of two inequivalent V pairs. For simplicity, and following the observation that the intra-dimer self-energy is well approximated by a real and static term, we use in this work only single-site DMFT and mimic the effect of dimerization by a "scissor operator", as discussed by Tomczak et al. [START_REF] Tomczak | Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO 2[END_REF]. Namely, the bonding-antibonding splitting is given by its limit in the isolated dimer:

∆ bab = -2t + 16t 2 + U 2 (8.1)
where t is the intra-dimer hopping and U the local Coulomb interaction. This corresponds to adding an off-diagonal self-energy term on the Kohn-Sham Hamiltonian, between the respective a 1g states of the dimer, with the value

Σ a1g-a1g = - 1 2 16t 2 + U 2
In the present work, we use this approach, which we may call "DFT+Σ dimer +DMFT". It is of course an approximation, but it accounts for much of the physics of VO 2 , as previously noted.

Our DMFT calculations, except otherwise noted:

• run at an electronic temperature of β = 40 eV -1 (corresponding to room temperature)

• use the Hubbard-Kanamori parameterization of the interaction Hamiltonian in the impurity model:

H U = m Un m↑ n m↓ + σ,m>m (U -2J ) n mσ n m σ + (U -3J ) n mσ n m σ (8.2)
where σ is the opposite spin of σ. This allows us to use the much faster segment picture in the CTQMC hybridization-expansion solver (see Chap. 5)

• include only the t 2g states as correlated in DMFT: the e g states are treated within DFT LDA.

Some exceptions appear below, but are clearly labeled as such.

The monoclinic phases of VO 2 have a low-symmetry distorted structure, and a rotation of the axes may be needed to obtain the correct coordinate systems t 2g and e g orbitals on a V atom. Moreover, the octahedra surrounding a V atom are distorted, which tends to create off-diagonal elements on the local density matrix, Hamiltonian and Green's functions. This is particularly the case in the B phase. To avoid taking into account off-diagonal elements in the CTQMC solver, we perform a rotation in the basis of d orbitals that minimizes these off-diagonal elements. This rotation is chosen in the following way: we first compute the local (i.e. projected and k-summed) Kohn-Sham Hamiltonian H 1el on each inequivalent V site. We then diagonalize H 1el and use the corresponding rotation to compute a new set of Wannier functions and projectors. This does not make the off-diagonal elements disappear completely. Indeed, unless imposed by symmetries (say, in cubic symmetry), there is generally no rotation that makes the off-diagonal elements in the Green's function vanish at all frequencies. Still, in practice, the density matrices and hybridization functions constructed with this choice of basis have off-diagonal elements smaller than the diagonal parts by about an order of magnitude. Hence, in a first approximation, we neglect them here.

8.5 Calculated electronic structure of VO 2

Electronic structure within the local density approximation

In this section, we first summarize a few results from DFT LDA calculations on VO 2 B, as well as the R and M 1 phases for comparison. These calculations are important as they are used as a starting point for our DFT+DMFT calculations.

In Fig. 8.6, we show the atom-resolved LDA DOS of the HT and LT phases of VO 2 (B), in a window containing O 2p and V 3d states. The O 2p states span an energy range from -7.5 to -2.5 eV, and the V 3d states range from -0.5 to 5 eV. Excited states above 6 eV are delocalized states with mixed O 3s and V 4p character. The metallic HT phase has a larger DOS at the Fermi level than the LT phase, which displays peaks slightly below and above the Fermi level. We zoom in and show the orbital-resolved partial DOS of the V 3d states in the HT and LT phase in Fig. 8.7 and Fig. 8.8, respectively. In both phases, the separation between t 2g and e g states is only approximate, with a boundary roughly around 1.9 eV but some overlap of e g and e π g orbitals. This is the result of the important distortion of the cell and of the O octahedra surrounding the V atoms, and of the fact that the vanadium atoms (especially V 1 ) are not well centered in their respective octahedra. There are also significant differences between both phases. In the HT phase, the occupied states have mixed a 1g and e π g orbital character. The a 1g states are almost divided into two peaks at 0 eV and 1.1 eV, suggesting there is also some dimer bonding.
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In the LT phase, on the other hand, there is a rather strong orbital-polarization of the occupied states. The non-dimerized V 1 atom has an almost half-filled, dispersive a 1g band at the Fermi level, and the e π g bands are mostly centered around 1 eV. The dimerized V 2 atom, however, a prominent peak of mostly a 1g character below the Fermi level takes almost one electron. The a 1g band of V 2 is in fact split into a first peak at -0.3 eV and a second peak 1.6 eV, corresponding respectively to the bonding and anti-bonding states of the dimer formed by two V 2 atoms. The difference in energy between these two peaks gives the order of magnitude of the intra-dimer hopping t (or more precisely, 2t).

In Fig. 8.9, we show the LDA density of states (DOS) on VO 2 R and M 1 for comparison. Here, the t 2g and e g states are barely, but clearly separated: the boundary is around 2.3 eV. Within LDA, the t 2g orbitals are almost equally occupied in the R phase, though the a 1g state is slightly lower in energy (this can be seen by computing the projected local Hamiltonian or by taking the center of mass of the partial density of states). The DOS of VO 2 (R) is similar to the partial DOS on atoms V 1 and V 2 of the HT B phase, and to the partial DOS of V 1 of the LT B phase. In the M 1 phase, however, there is a fairly strong orbital polarization, the a 1g state taking most of the V d 1 electron. The a 1g band is split into a bonding and anti-bonding states, similarly to V 2 in the LT B phase. The M 1 phase according to LDA is metallic, with some spectral weight from all three t 2g orbitals remaining at the Fermi level. However, it is clearly apparent that little more is needed to push the bonding a 1g state completely below the Fermi level and the e π g states, giving a band insulator. Finally, Fig. 8.10 displays the LDA band structure of VO 2 B along a path in the Brillouin zone. In terms of LDA bands, we can see that the HT phase has 4 bands crossing the Fermi level, with a 5 th band in close vicinity to E F . The separation between t 2g and e g states is also more pronounced in the band structure than in the DOS: bands are touching but relatively disentangled with a boundary at about 1.75 
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e g e g e gπ e gπ a 1g Here, we first present our results using the same values of U = 4 eV and J H = 0.68 eV as used in previous reports on VO 2 [START_REF] Biermann | Dynamical singlets and correlationassisted Peierls transition in VO 2[END_REF][START_REF] Tomczak | Effective band structure of correlated materials: the case of VO 2[END_REF][START_REF] Belozerov | Monoclinic M 1 phase of VO 2 : Mott-Hubbard versus band insulator[END_REF]. In section 8.5.3, we discuss the validity of this choice of parameters and compare them to values calculated in the constrained random phase approximation.
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Self-energies

Fig. 8.11 shows the local self-energy for the R and M 1 phases. One can see that the rutile phase is a rather strongly renormalized Fermi liquid, with a quasi-particle renormalization factor of Z ≈ 0.3 on the most occupied a 1g orbital and Z ≈ 0.5 on the less occupied e π g orbitals. On the other hand, the imaginary part of the self-energy in the M 1 phase is small and quasi-static, demonstrating weak correlations. This is no surprise, since the complete filling of the dimer singlet state makes this phase essentially a band insulator.

The self-energies should be compared with those of the HT and LT phases of VO 2 (B), displayed in Fig. 8.12. The HT phase is very similar to the rutile phase, as expected from the similarity of the DFT DOS in Fig. 8.9a and 8.7. The magnitude of the imaginary self-energies and quasi-particle renormalization factors are about the same, and there is little difference between the two inequivalent atoms. The picture is very different in the LT phase. There, the dimerized atom 2 has a local self-energy close to the one calculated in the M 1 phase. Again, the dimerized atom behaves like a band insulator with weak correlations.

What is more interesting is what happens to non-dimerized atom V 1 . On this atom, the self-energy of the a 1g orbital (the one that is occupied) develops a non-Fermi liquid, pole-like structure. Importantly, this is also an effect of the dimer physics. Indeed, in DFT+DMFT calculations of the LT phase without the Σ dimer term, we obtain a weakly renormalized Fermi liquid (more weakly, in fact, that the HT phase). In other words, it is the freezing of the electron of V 2 in the a 1g dimer singlet state that forbids the hopping of the electrons on V 1 to neighboring V 2 sites, and thus favors their localization.

In Fig. 8.13 and 8.14, we obtained the real-frequency self energy of the two B phases, by using the maximum entropy analytical continuation (Bryan's maxent) algorithm [69]. Again, we see in the LT phase that the self-energy of all orbitals but the a 1g orbital of the non-dimerized atom are roughly equal to a constant shift. That last a 1g orbital, on the other hand, shows all the signs of a strongly correlated orbital. In the HT phase, we have a Fermi liquid self-energy with prominent features around -1.5 eV and 1.5eV, the a 1g orbital being more strongly correlated. 

Spectral functions

We used these real-frequency self-energies to obtain the real-frequency Green's functions, and the corresponding spectral functions as A(ω) = -1 π ImG(ω). In Fig. 8.15, we show the total local (k-summed) spectral function of t 2g states in the VO 2 R, M 1 1 , B (HT) and B (LT) phases.

In Fig. 8. 16 and Fig. 8.17, we show the same spectral functions in a reduced energy window and in an orbitally-resolved way.

In VO 2 (R) (see Fig. 8.16a), both the a 1g and e π g states are partly filled, in agreement with Ref. [START_REF] Haverkort | Orbital-assisted metal-insulator transition in VO 2[END_REF], though we find a quantitatively stronger orbital-polarization towards a 1g than they measured. The a 1g orbital has a lower Hubbard band at -1.2 eV, and an upper Hubbard band at 3 eV. All t 2g orbitals contribute to a strong quasi-particle peak. This description is consistent with the strongly renormalized metal picture observed in spectroscopy.

In VO 2 (M 1 ) (see Fig. 8.16b), the e π g states are around the same level they are in DFT (and empty), and the enhanced bonding-antibonding splitting pushes the bonding a 1g states well below the Fermi level. This opens a gap of about 0.5 eV between the bonding a 1g state and the e π g states. Several bands contribute to a strong quasi-particle peak at the Fermi level in the VO 2 (B) HT phase (see Fig. 8.17a), and the a 1g orbitals (but not the e π g ones) contribute to a nascent Hubbard band around -1.5 eV. This Hubbard band develops into a fully fledged peak only with higher values of U : the HT phase appears to be slightly less correlated than the rutile phase. Generally, though, whether we judge from the self-energy or from the spectral function, the HT phase seems to behave similarly to the rutile phase.

The VO 2 (B) LT phase (see Fig. 8.17b) is more complex, due to the interplay of dimer and local correlation physics. We make two observations. First, there are two peaks around -1 eV to -2 eV in the spectral function: one of roughly Lorentzian shape, and another displaying more structures. These peaks 2 1 0 1 2 3 4
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A(ω) (eV ω (eV) are of different natures: the first (corresponding to the lower Hubbard band of V 1 ) is a non-dispersive, incoherent peak, while the other (corresponding to the bonding a 1g state of the dimer formed by V 2 ) is a dispersive band below the Fermi level. A pseudogap of about 0.3 eV forms between the lower Hubbard band of V 1 and the e π g states of V 2 . A little spectral weight, belonging to the remaining quasi-particle peak of the V 1 a 1g orbital, remains at the Fermi level.
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Second, comparing the spectral function 8.17b to the DFT DOS 8.8a where the occupied states have some e π g character, we see that the combined effect of the dimer bonding on V 2 and local correlations on both atoms stabilizes the a 1g state with respect to the e π g states on V 1 . This enhanced orbital-polarization and suppressed hopping to the dimer V 2 favors a Mott transition of V 1 .

In Fig. 8.18 and 8.19, we display the momentum-resolved spectral functions of the HT and LT phases, respectively. In the HT phase, this confirms the picture of three t 2g bands crossing the Fermi level. The case of the LT phase is, again, more interesting, because it emphasizes the difference between atoms V 1 and V 2 : the momentum-resolved spectral function makes the nature of the insulating LT phase clearer than the k-summed one. In particular, we can clearly see how the bonding a 1g state of atom V 2 forms a dispersive band below the Fermi level, while the V 1 atom a 1g band forms a mostly incoherent lower Hubbard band (around -1.2 eV) and upper Hubbard band (around 3 eV). A strong peak around 0.8 eV, also visible in the k-summed spectral function and in the HT phase to some extent, has mainly V 1 e π g character. The hybridization between the two atoms restores some itinerant character of the a 1g states of The orbital-polarization (or absence thereof) appears to be important to explain the physics of VO 2 , and also represents a useful sanity check against experiment. The respective fillings of the a 1g and e π g orbitals in the four phases, obtained within LDA and DFT+DMFT (+Σ dimer in the M 1 and LT phases) are summarized in Table 8 The column e π g contains the total filling of the two higher-lying t 2g states.
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Our DFT+Σ dimer + DM F T calculations explain the electronic transition observed in VO 2 (B). Moreover, the same choice of method and parameters also provides a good description of the R and M 1 phases. We understand why the resistivity goes through a large transition (Fig. 8.2), though it is not yet clear why the resistivity of the HT phase is significantly higher than that of the rutile phase. Importantly, antiferromagnetic ordering of the non-dimerized atom chains is not needed to make the LT phase insulating, characteristically of a Mott transition. In Fig. 8.20, we compare our calculated spectral function with the photoemission spectra of Fig. 8.4. Up to a shift of the peak in the LT phase, that could be partly explained by an error in determining the chemical potential within the pseudogap, the general shape of the calculated and measured spectral functions in reasonable agreement. 

What about U in VO 2 ?

An important parameter of our DMFT calculations are the Coulomb interaction parameter U and Hund's coupling J H . What are reasonable values for these parameters, and can we determine them from first principles?

Our cRPA calculations

We performed cRPA calculations on VO 2 (R) using the implementation by Vaugier et al. [START_REF] Vaugier | Hubbard U and Hund exchange J in transition metal oxides: screening versus localization trends from constrained random phase approximation[END_REF][START_REF] Vaugier | Electronic structure of correlated materials from first principles: Hubbard interaction and Hund's exchange[END_REF]. Calculations for the monoclinic phases were not accessible, for technical reasons. However, since the energetic positions of the relevant bands (O 2p, V 3d t 2g and e g , and higher energy excited levels) are comparable in the rutile and monoclinic phases, it is reasonable to think that calculations on these other phases would yield similar results. We used a 7 × 7 × 11 discretized Brillouin zone mesh and a cutoff at 7 Ry on the excited states to compute the polarization, which was sufficient to converge the values of U and J H .

The results of our cRPA calculations are displayed in Table 8.6. For a t 2g model and with the usual parameterization of the Hubbard-Kanamori Hamiltonian (8.2), this suggests to use U = 2.6 eV J = 0.4 eV These numbers are based on the average direct and exchange terms of the full U m1m2m3m4 matrix, following Eq. 5.19 and 5.20. In reality, the a 1g orbital has a significantly larger value of the direct interaction U mmmm . This is due to the a 1g orbital being more localized, not to a reduced screening: the bare Coulomb matrix element is also larger, in the same proportions. Since it is also at a lower energy 8.5. Calculated electronic structure of VO 2 101 than the e π g states due to the crystal field splitting, and consequently the most occupied orbital, it may be better to use the larger resulting F 0 , leading to U = 2.8 eV J = 0.4 eV Whichever choice we make, these values are significantly smaller than the values used in most previous DMFT calculations on VO 2 [START_REF] Biermann | Dynamical singlets and correlationassisted Peierls transition in VO 2[END_REF][START_REF] Brito | Metal-insulator transition in VO 2 : a DFT+ DMFT perspective[END_REF][START_REF] Tomczak | Effective band structure of correlated materials: the case of VO 2[END_REF][START_REF] Tomczak | Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO 2[END_REF][START_REF] Belozerov | Monoclinic M 1 phase of VO 2 : Mott-Hubbard versus band insulator[END_REF]. This raises the question of whether these smaller values can account for the insulating state of the M 1 , M 2 and B (LT) phases.

For the sake of completeness, we also computed the values in a dd model and in a dpdp model (see section 4.3 for the definition of these models). 

t

Comparison with reported values

In the DFT+CDMFT calculations of VO 2 reported in the literature [START_REF] Biermann | Dynamical singlets and correlationassisted Peierls transition in VO 2[END_REF][START_REF] Brito | Metal-insulator transition in VO 2 : a DFT+ DMFT perspective[END_REF][START_REF] Tomczak | Effective band structure of correlated materials: the case of VO 2[END_REF][START_REF] Tomczak | Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO 2[END_REF][START_REF] Tomczak | Optical properties of correlated materials: generalized Peierls approach and its application to VO 2[END_REF][START_REF] Tomczak | Materials design using correlated oxides: optical properties of vanadium dioxide[END_REF][START_REF] Lazarovits | Effects of strain on the electronic structure of VO 2[END_REF][START_REF] Belozerov | Monoclinic M 1 phase of VO 2 : Mott-Hubbard versus band insulator[END_REF], different values of U and J H have been used. However, surprisingly for a material as iconic as VO 2 , we found rather few ab initio calculations of the Coulomb parameters. Early constrained LDA calculations reported larger values of U , of the order of 4 eV and equal in the R and M 1 phases, in the context of DFT+U calculations [START_REF] Liebsch | Coulomb correlations and orbital polarization in the metal-insulator transition of VO 2[END_REF][START_REF] Korotin | Variation of orbital symmetry of the localized 3d 1 electron of the V 4+ ion upon the metal-insulator transition in VO 2[END_REF].

A value of U = 2.7 eV in the t 2g subspace was reported by Casula et al. [START_REF] Casula | Lowenergy models for correlated materials: bandwidth renormalization from coulombic screening[END_REF] in a work comparing the values for different oxides. This value was obtained with the same code as used in this work, so it is not surprising that we find a similar value for a t 2gt 2g model. Shih et al. [START_REF] Shih | Screened coulomb interactions of localized electrons in transition metals and transition-metal oxides[END_REF] performed the most detailed cRPA calculation of VO 2 reported so far, to the best of our knowledge. They found a surprisingly small value of U = 1.12 eV in the rutile phase and U = 2.61 eV in the M 1 phase in a dd model, where their maximally localized Wannier functions are constructed using all the d orbitals and transitions within the d states are excluded. After removing residual metallic screening due to the pd hybridization, they obtain larger values of respectively 3.12 eV and 3.45 eV. The exchange J H is found to be around 0.6 eV in all cases. The difficulty of consistently determining the Coulomb parameters in oxides, in particular in the full d shell where the e g states are strongly hybridizing with the O 2p states, remains a bottleneck. A scheme taking into account pd Coulomb interactions has been proposed by Seth et al. [START_REF] Seth | Towards a first-principles determination of effective Coulomb interactions in correlated electron materials: role of intershell interactions[END_REF].

However, we rather disagree with the approach used by Shih et al. in their work, because VO 2 hosts only one electron in the V d orbitals and has well-separated t 2g and e g states: the physics should be determined by the t 2g states only. It is known [START_REF] Vaugier | Hubbard U and Hund exchange J in transition metal oxides: screening versus localization trends from constrained random phase approximation[END_REF], but rarely discussed, that the values of U and J H to be used in a DFT+DMFT calculation are not universally defined for the material, but actually depend strongly on the exact definition of the low energy space where the DMFT calculations are performed. In particular, the interaction Hamiltonian is different for a calculation in the t 2g subspace and in the full d space. More critically, for a given material and subset of orbitals, quite different values can be obtained for different projection schemes (e.g. Wannier functions constructed in a small or large energy window).

Dynamical Mean-Field Theory calculations with the cRPA U and J H

We performed the same calculations reported above, this time using our calculated values of U and J (or rather, Kanamori U and J ). In the R and M 1 phases, the results are comparable to the ones described in the previous section: a rather strongly renormalized metallic R phase, and a band insulating M 1 phase, where the band gap is about 0.5 eV and opens between the a 1g bonding state and the e π g states. We display the orbital-resolved spectral function of the R, M 1 , B HT and LT phases calculated with DFT+Σ dimer +DMFT with the values of U = 2.8 eV and J = 0.4 eV from cRPA (Table 8.6) in Fig. 8.21. Using these values, not much is changed in the R and M 1 phases: in the former, the Hubbard peaks are less marked and the quasi-particle peak stronger (corresponding to a larger value of Z ≈ 0.45 instead of 0.3). In the latter, a gap opens and the a 1g anti-bonding state is at a lower energy. In the HT phase, similarly to the R phase, the Hubbard peaks are slightly weaker than in the calculation using U = 4 eV and J = 0.68 eV, but there is no important qualitative difference. However, the smaller values of U and J fail to open a gap in the LT phase. Indeed, we see that a strong quasi-particle peak remains on the a 1g orbital of the non-dimerized atom V 1 in the LT phase, with a quasi-particle renormalization factor Z ≈ 0.15.

Taking into account the dynamical character of the effective screened Coulomb interaction U(ω) (as discussed in Chapter 6), the additional hopping renormalization could possibly be sufficient to cause the Mott transition on this orbital. This is one aspect of the physics of VO 2 that we would like to further investigate.

The physics of oxygen vacancies in VO 2

In a recent publication, Backes et al. [START_REF] Backes | Hubbard band versus oxygen vacancy states in the correlated electron metal SrVO 3[END_REF] demonstrated that oxygen vacancies participate strongly in what was thought to be the lower Hubbard band of SrVO 3 , observed in PES. The same phenomenon could possibly be observed in other oxides, including VO 2 . In this section, we study the hypothetical properties of vacancies in the R, M 1 and B phases of VO 2 . In particular, we discuss on which site such vacancies would form, and what the spectral signature could be.

Motivation

The creation of oxygen vacancies by UV or X-ray exposition in d 0 transition metal oxides has been observed and discussed by several groups [START_REF] Santander-Syro | Two-dimensional electron gas with universal subbands at the surface of SrTiO 3[END_REF][START_REF] Meevasana | Creation and control of a two-dimensional electron liquid at the bare SrTiO 3 surface[END_REF][START_REF] Rödel | Engineering two-dimensional electron gases at the (001) and (101) surfaces of TiO 2 anatase using light[END_REF]. In Ref. [START_REF] Backes | Hubbard band versus oxygen vacancy states in the correlated electron metal SrVO 3[END_REF], the authors show that oxygen vacancies in the correlated d 1 oxide SrVO 3 cause a peak of e g character in the DOS at about -1.5 eV binding energy. In DFT+DMFT calculations, they show that electronic correlation effects do not qualitatively modify these vacancy states, only broadening them to some degree, and that the vacancy's effect on the lower Hubbard band in that material is only to widen it. Moreover, using photoemission spectroscopy, the authors suggest that the quasi-particle peak is hardly changed by the creation of oxygen vacancies (monitored in real time by a growing satellite peak between -1 and -1.5 eV in SrVO 3 and SrTiO 3 ). This suggests that oxygen vacancies form localized electronic states rather than doping the t 2g conduction band.

Finally, the authors suggest that similar effects may be visible in other correlated transition metal oxides. The difficulty to observe such effects lies in the fact that the vacancy states are typically around the same energies where lower Hubbard bands are expected, which may explain that this question has not been studied more extensively until now.

We speculate that the question may be even more relevant here. Indeed, the samples are grown on a substrate, where the lattice mismatch may generate substantial strain at the interface, thus favoring the formation of defects compared to the perfect crystal. Moreover, as the B phase of VO 2 is only metastable, it would not be a surprise if this particular phase had a rather higher concentration of point defects.

Finally, we would like to investigate whether the presence of vacancies could explain the qualitative difference in photoemission spectra on thin films and single crystals of VO 2 (R), as shown in Fig. 8.3. In other words, are Okazaki et al. observing a large vacancy concentration contributing to a peak at -1 eV in the thin films of rutile VO 2 , or do they see a magnified Hubbard band at the surface?

Possible configurations of vacancies in VO 2

First, let us analyze the possible configurations for an oxygen vacancy in VO 2 . As described in Table 8.2 and 8.3, there are four (inequivalent) possible positions to introduce such a vacancy. We shall denote these four positions as "position 1,2,3,4", respectively, in agreement with the labeling of inequivalent oxygen atoms in the aforementioned tables (see crystal structure in Fig. 8

.22).

When an oxygen vacancy is created in VO 2 , two additional electrons are donated to the unit cell (because the oxygens are nominally in a O 2-state). These electrons are naturally distributed on the vanadium atoms (that are nominally in a d 1 , or V 4+ state in VO 2 ). We studied the whereabouts of these 8.6. The physics of oxygen vacancies in VO 2 105 electrons when a single O atom is removed in the primitive cell using DFT. The corresponding atom-and orbital-resolved DOS are shown in Fig. 8.23 and Fig. 8.24 for the HT and LT phases, respectively. Note that the creation of a vacancy breaks the symmetry of the cell, so that there are now four inequivalent V atoms. Here, we show the orbital-projected partial DOS on all four inequivalent V atoms, for the four possible positions of a vacancy. In the figure, "inequivalent atom 1 and 2" refers to the two previously equivalent V 1 atoms, and "inequivalent atom 3 and 4" refers to the two previously equivalent V 2 atoms.

It appears that the effect of creating an O vacancy causes the e g states of the nearest neighbor V atom(s) to drop to much lower energies, while the filling of the t 2g states is to a large extent unchanged. This does not come as a surprise: the e g orbitals are pushed to higher energies by the crystal / ligand field precisely because they are pointing towards the oxygen atoms of the octahedra, contrary to the t 2g orbitals. Removing one of these oxygen atoms is thus bound to partially stabilize the e g states. As mentioned in Ref. [START_REF] Backes | Hubbard band versus oxygen vacancy states in the correlated electron metal SrVO 3[END_REF], this fact has been discussed in the case of oxygen vacancies in SrTiO 3 [START_REF] Lechermann | Electron correlation and magnetism at the LaAlO 3 /SrTiO 3 interface: a DFT+DMFT investigation[END_REF][START_REF] Lin | Orbital ordering under reduced symmetry in transition metal perovskites: oxygen vacancy in SrTiO 3[END_REF][START_REF] Jeschke | Localized versus itinerant states created by multiple oxygen vacancies in SrTiO 3[END_REF][START_REF] Altmeyer | Magnetism, spin texture, and ingap states: atomic specialization at the surface of oxygen-deficient SrTiO 3[END_REF].

Based on the DOS of Fig. 8.23 and 8.24, we observe that there is a qualitative difference between the vacancy positions 1 and 3 on the one hand, and the positions 2 and 4 on the other hand. In the former case, the stabilized e g state becomes approximately degenerate with the t 2g states around the Fermi level. In the latter case, a clear and sharp peak of predominantly e g character is formed at around -1 eV binding energy, corresponding to a completely filled band holding two electrons in the band picture. This difference is not a coincidence. Indeed, the oxygen atoms O 1 and O 3 on the one hand and O 2 and O 4 on the other hand are in a rather different environment.

More specifically, O 2 is located at the tip shared by two equivalent octahedra surrounding the vanadium atom V 1 , along the c axis of the conventional monoclinic cell (out of the plane containing the dimer bonds, see Fig. 8.1). O 4 is in a similar position, but near V 2 . In contrast, O 1 and O 3 are located on the other vertices of the octahedra, in the ab plane of the conventional monoclinic cell, orthogonal to the c axis and containing the dimers. Moreover, O 1 and O 3 have more nearest V neighbors (respectively 3) than O 2 and O 4 , so that the two electrons they donate when a vacancy is created is distributed more evenly over the surrounding V atoms. This difference is not only visible in the spectral properties, but also in the respective formation energies of vacancies in these four positions. Here, we do not compute the total formation energy of these vacancies (doing so would require to estimate the formation energy of an O 2 molecule) but simply compare the DFT total energies of a unit cell with one vacancy present in the four configurations. The results are summarized in Tables 8.7 and 8.8. Vacancies on O 2 and O 4 are significantly more stable than vacancies on O 1 and O 3 . Consequently is seems likely that, if vacancies are induced by strain in the thin films or irradiation in the PES experiment (as discussed in Ref. [START_REF] Backes | Hubbard band versus oxygen vacancy states in the correlated electron metal SrVO 3[END_REF]), those vacancies would rather migrate to the O 2 and O 4 sites. Of course this supposes that the migration energy is not too high so that the migration of vacancies can happen, which we do not investigate here any further.

In VO 2 (M 1 ), where symmetry is higher, there are only two inequivalent O positions. The formation energy for vacancies on these two sites only differ by about 0.06 eV. In VO 
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Effect of vacancies on the photoemission spectra

In this section, we study the effect of oxygen vacancies on the spectral function in VO 2 . We use a simple approximation where a vacancy correction is added to the spectral functions shown above (Fig. 8.16 and 8.17).

Based on the remarks above (oxygen vacancies in the positions 1 and 3 have significantly higher formation energy than in position 2 and 4), we only consider the effect of oxygen vacancies in positions 2 and 4. In VO 2 (M 1 ) we consider both positions on an equal footing, and the rutile phase has only one position available. Fig. 8.25 displays the total DFT DOS of VO 2 (B) without vacancies, the same DOS averaged for one vacancy per unit cell in position 2 or 4, and the additional peak of e g character around -1 eV corresponding to the vacancy states. Fig. 8.26 displays the same for the R and M 1 phases. Note that in the rutile phase, contrary to the B and M 1 phases, spectral weight is displaced below the t 2g states of the perfect cell, but without creating a well separated peak. This can be understood in the following way: in the R phase, any given oxygen atom is at the tip of three octahedra, with two different orientations and at the same distance of the corresponding vanadium atoms (see Fig. 8.27a). Therefore, the structure is less favorable for distributing the electron over the nearest d z 2 orbitals, as happens in the B phase. The same argument holds for the structure of the M 1 phase, but the octahedra are distorted so that a given oxygen atom has one neighboring V closer than the others (see Fig. 8

.27b).

It is this additional spectral weight at the lower edge of the d states, depicted as a blue broken line in Fig. 8.25 and 8.26, that we now add to the previously calculated spectral functions, and compare to the experimentally measured spectra. Therefore, our simple approximation for including the effect of oxygen vacancies on the spectral function can be written as

A DMFT+vac (ω) = α 1 [A DMFT (ω) + α 2 A vac (ω)] (8.3)
where α 2 is chosen such that a vacancy concentration of 1/16 is obtained (i.e. one out of 16 oxygen atoms is missing), and α 1 normalizes the spectral function to ensure a consistent comparison of the different quantities. As a reference, Zhang et al. [START_REF] Zhang | Evolution of metallicity in vanadium dioxide by creation of oxygen vacancies[END_REF] have reported a metastable oxygen vacancy concentration of 10%, higher than we use here, by annealing under low oxygen pressure.

The corresponding spectra are shown in Fig. 8.28 and 8.29. More precisely, in the upper panels we show the total spectral function of t 2g states, multiplied by a Fermi occupation factor (with β = 40 eV -1 ), and broadened to mimic the finite experimental resolution. For the rutile and M 1 phases, the broadening is obtained by a convolution with a gaussian with standard deviation σ = 0.1 eV. For the B phases, we use a larger standard deviation σ = 0.3 eV, as the PES measurements of Ref. [231] (and Fig. 8.4) have lower resolution.

In VO 2 (R), the calculated spectral function agrees surprisingly well with the PES of Koethe et al. [START_REF] Koethe | Transfer of spectral weight and symmetry across the metal-insulator transition in VO 2[END_REF]. Their measurements showed a strong quasi-particle peak at the Fermi level. However, they do not explain the secondary peak seen in thin films in the experiments by Okazaki et al. [START_REF] Okazaki | Photoemission study of the metal-insulator transition in VO 2 /TiO 2 (001): evidence for strong electron-electron and electron-phonon interaction[END_REF] and Saeki and with one O vacancy (average over positions 2 and 4 in a four times larger supercell). In particular, spectral weight corresponding to V e g states is pulled down to around -1 eV when an oxygen vacancy is introduced (blue dotted line). The vacancy concentration is of 1/16. The additional peak in the DOS at -1 eV contains the 2 electrons that are donated when an O vacancy is created. For better readability, we only show the difference in the energy range around -1 eV, corresponding to e g spectral weight pulled down when a vacancy is created. In particular, spectral weight corresponding to V e g states is pulled down to around -1 eV when an oxygen vacancy is introduced (blue dotted line). This mechanism works does not work as well in the more symmetric rutile phase: no completely separate peak is created. For better readability, we only show the difference in the energy range around -1 eV, corresponding to e g spectral weight pulled down when a vacancy is created. (For consistent plotting, we double the VO 2 (R) unit cell in order to have 4 V and 8 O atoms in the unit cell.)

(a) VO 2 (R) (b) VO 2 (M 1 )
Figure 8.27 -Local environment and distance to the nearest V atoms (in Å) for a given oxygen atom in the rutile and M 1 phases. The small spheres at the tips of the octahedra are oxygen atoms, the larger spheres within the octahedra are the vanadium atoms.

et al. [START_REF] Saeki | Band dispersion near the fermi level for VO 2 thin films grown on TiO 2 (001) substrates[END_REF]. This raises the question whether this peak corresponds to a lower Hubbard band or vacancy states.

We observe that the lower Hubbard band in our calculations is centered around -1 eV, just like the peak measured by Okazaki et al. However, the lower Hubbard band should contribute a weaker peak than the quasi-particle one. On the other hand, the oxygen vacancy peak in the rutile phase is at lower binding energy (0.5 eV) than in the B phase (1 eV) (see Fig. 8.26a). It may contribute to the measured secondary peak, but the incoherent character seems dominant (see lower panel of Fig. 8.28a). With this observation we cannot exlude or confirm the presence of oxygen vacancies in the experiment, but it seems more likely that enhanced correlations of surface states (due to reduced screening and hopping) are reinforcing the Hubbard band. In the M 1 phase (Fig. 8.28b), the O vacancy states at -0.7 eV are close to the a 1g bonding state, so that the presence of vacancies does not qualitatively change the spectrum.

In the LT phase of VO 2 (B), similarly to the M 1 phase, the oxygen vacancy states are found at approximately the same energy as the bonding state and lower Hubbard band (see Fig 8.29b). This means that separating the contributions in a k-summed spectral function is difficult. A momentumresolved PES experiment, on the other hand, could possibly discriminate the non-dispersive oxygen vacancy state from the broader V 1 Hubbard band and the itinerant V 2 bonding band.

In the HT phase, the vacancy peak is separated from the quasi-particle peak by about 1 eV (see Fig 8.29a). Moreover, the lower Hubbard band is much weaker than in the rutile phase. Again, the presence of vacancies is consistent with the measured spectrum, and could help explaining the asymmetric shape of the experimental PES. The energy resolution of the photoemission spectrum in Fig. 8.4 is not sufficient to clearly separate the contributions from both peaks, and a measurement with higher energy resolution would be useful to confirm the hypothesis of oxygen vacancies in VO 2 thin films. If two clearly separate peaks can be measured, this would strongly hint at the presence of vacancies. A(ω) (eV
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Conclusion

In this chapter, we have shown that a unified framework using DFT+DMFT with an additional static intra-dimer self-energy on the dimerized V atoms reproduces both the VO 2 rutile to M 1 and the VO 2 (B) high temperature to low temperature bad metal to insulator transitions. We found that the VO 2 (B) HT to LT transition is similar, from the electronic point of view, to the rutile to M 2 transition, with half the V pairs forming dimers and a filled band below the Fermi level, thus causing the other half to become orbital-polarized and undergo a Mott transition. This observation is in agreement with the qualitatively similar magnetic susceptibility measurements in the B and R to M 2 transitions [START_REF] Pouget | Dimerization of a linear Heisenberg chain in the insulating phases of V 1-x Cr x O 2[END_REF][START_REF] Oka | Phase transition and V 4+ -V 4+ pairing in VO 2 (B)[END_REF].

Our results indicates that the different phases of VO 2 , with their subtle but physically significant structural differences, should be described on the same footing, including both dimer physics and correlation effects. There are, however, some differences between the two aforementioned phase transitions: the R to M 2 transition happens sharply over a few K with a change of crystal structure, while the B transition occurs over a range of over 100 K and conserves the space group. The present calculations do not allow us to understand this difference.

We also investigated effects of oxygen vacancies in VO 2 on the electronic structure. We have shown that in the B phase, the preferred configuration for an O vacancy is at the tip pointing along the c axis of the octahedron surrounding the V atoms. In this configuration, the (e g ) d z 2 orbital is pulled down in energy, creating a localized bound state 1 eV below the Fermi level. In the insulating M 1 and LT phases, these states are roughly at the same binding energy as the bonding states or lower Hubbard bands. We suggest that photoemission spectroscopy measurements with a higher energy resolution than the ones recently reported on VO 2 (B) should allow to confirm or invalidate the presence of vacancies under photo-excitation in the metallic HT phase.

From a methodological point of view, the DFT+CDMFT method has already been shown to provide a sufficient description of both aspects: here, we followed the calculations of Tomczak et al. [START_REF] Tomczak | Effective band structure of correlated materials: the case of VO 2[END_REF][START_REF] Tomczak | Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO 2[END_REF][START_REF] Tomczak | Optical properties of correlated materials: generalized Peierls approach and its application to VO 2[END_REF][START_REF] Tomczak | Materials design using correlated oxides: optical properties of vanadium dioxide[END_REF] on the M 1 phase and showed that a simplified scheme combining DFT+DMFT with an additional intradimer static self-energy is sufficient to describe the more complex B phase, and has the advantage of reduced computational cost. In the future, it would be interesting to use this comparably lightweight computational scheme to assess the properties of larger supercells. This could allow us to study point defects (e.g. oxygen vacancies) with a full DMFT treatment of the d states, strained or epitaxially grown samples or even doped ones. Finally, we have observed that the values of the Coulomb interaction parameter U and of the Hund's rule coupling J calculated in cRPA are too small to explain the opening of a gap in the VO 2 B LT phase. Drawing on the ideas discussed in Chapter 6, it would be interesting to know if the neglect of dynamical interactions in the present calculations is sufficient to explain this discrepancy.

Chapter 9

Hard magnets & Crystal-Field calculations

In the present chapter, we discuss crystal-field parameter calculations from first principles. In section 9.1, we give a general introduction to crystal-field interactions: their physical effects, parameterization and derivation. In section 9.2, we give a brief introduction to hard magnetic materials, and the importance of crystal-field interactions in these materials. In section 9.3, we provide a brief summary of previous theoretical approaches to calculations of crystal-field parameters in rare-earth ions. Next, in section 9.4 we propose a technique to obtain crystal-field parameters from first principles in an important subgroup of hard magnets, namely rare-earth intermetallics. Finally, in section 9.5 we apply our method and discuss the results on compounds of the RFe 12 family. This chapter presents and extends the work published in Ref. [START_REF] Delange | Crystal-field splittings in rare-earth-based hard magnets: an ab initio approach[END_REF].

Introduction to Crystal-Field theory 9.1.1 Generalities

In a spherically symmetric environment (e.g. in an isolated atom or ion), the energy levels of the orbitals with a given principal and orbital quantum number are degenerate. For instance, if we neglect the (in that case weak) spin-orbit coupling, the d orbitals of an isolated Fe atom with magnetic quantum number m = -2 to 2 have the same energy and occupation (so that the charge on the atom is spherically symmetric, as well). However, this breaks down for atoms embedded in a crystal. An atom embedded in a crystal is in an environment with reduced symmetry.

In the perovskite-type oxide SrVO 3 , for instance, a given V atom is surrounded by an octahedron of ligands (O ions). This breaks the degeneracy of the d orbitals, separating the five d states into two higher-energy e g states and three lower-energy t 2g states, while keeping the average level of all d orbitals the same (see Fig. 9.1). In this case the complex harmonics are not eigenfunctions of the Hamiltonian any more. Instead, one typically uses real or cubic harmonics, obtained as linear combinations of the complex harmonics: d z 2 and d x 2 -y 2 for the e g orbitals and d xy , d xz and d yz for the t 2g orbitals. The lifting of the degeneracy stems from the fact that the t 2g orbitals are pointing away from the neighboring ligands "as much as possible", as seen in Fig. 9.2. In contrast, the e g states are pointing towards the neighboring oxygen atoms: they are at the same time pushed away by the electrostatic interaction and hybridize with the occupied ligand p states, forming bonding and anti-bonding states. The resulting bonding states have mostly oxygen character and are usually filled, while the anti-bonding states have mostly e g character and are found at higher energies.

The number of degenerate "subshells" of a given set of orbitals (e.g. p, d or f orbitals), and the number of degenerate orbitals therein, is almost entirely determined by the local symmetry or point group. There can be additional "accidental" degeneracies, but the local point group determines the minimal symmetry of the orbitals' degeneracy. Apart from this, the amplitude and the sign of the splitting(s) depend on a multitude of parameters, including the nature of the reference atom, its oxidation state, the nature of its neighbors and the distance to them. This phenomenon, namely the lifting of degeneracy of p, or more usually d and f orbitals of atoms in molecules and crystals, is commonly known as crystal-field (CF) theory. The study of crystal-fields is a longstanding problem of quantum chemistry (like the more general problem of the electronic structure of materials). The early work on CF theory goes back to the early days of quantum physics, with works by Bethe [START_REF] Bethe | Termaufspaltung in Kristallen[END_REF] and van Vleck [START_REF] Van Vleck | Theory of the variations in paramagnetic anisotropy among different salts of the iron group[END_REF]. CF theory was combined with molecular orbital theory (a quantum chemistry theory) to form ligand field theory [START_REF] Ballhausen | Ligand field theory[END_REF], which models the bonding of a metal ion with its ligands. The word "ligand" refers to ions or molecules that bond to a central metal atom in organic and inorganic chemistry. Typical ligands are nonmetals and halogens, or molecules formed by them. The term of ligand field theory is often used instead of CF theory, especially since the most dramatic CF splittings tend to be observed in molecules or materials made of transition metals and such ligands. However, the concept of CF theory is not limited to this case. For instance, as we discuss later in this chapter, even small CF splittings in intermetallic materials can have important physical effects.

Physical effects due to crystal-field splittings

The magnitude of crystal-field splittings can vary significantly. The largest ones are obtained, for instance, in transition metal oxides, where the energy difference between t 2g and e g levels can reach several eV. Splittings within the t 2g subspace in oxides with reduced local symmetry, or t 2ge g splittings in pure transition metals are typically of the order of a few 100 meV, but the CF splitting on rare-earth sites in rare-earth intermetallics (which we discuss more specifically in the present chapter) can be as small as a few meV.

The value of the crystal-field splitting in materials, both in absolute value and with respect to other relevant quantities, is of crucial importance for determining spectral and ground state properties in molecules, oxides and pure metals. In pigments consisting of transition metal oxides, the color is determined both by the charge transfer transitions (i.e. transitions from the ligand to the metallic cation) and transitions between the metal's d orbitals, split by the crystal-field [START_REF] Demiray | Zircon-vanadium blue pigment[END_REF][START_REF] Dondi | The role of counterions (Mo, Nb, Sb, W) in Cr-, Mn-, Ni-and V-doped rutile ceramic pigments: part 2. colour and technological properties[END_REF]. The same holds in active laser materials, where crystal-field levels can be tuned for optimal optical transitions [START_REF] Henderson | Crystal-field engineering of solid-state laser materials[END_REF]. These are but two examples where the crystal-field levels determine the spectral properties.

To illustrate how the crystal-field splitting also determines the ground state properties, let us give the example of the high-spin state in transition metal oxides. In an isolated atom, the occupation of the orbitals for a given number of electrons is given by Hund's rules [START_REF] Hund | Zur Deutung der Molekelspektren. I[END_REF][START_REF] Hund | Zur Deutung der Molekelspektren. II[END_REF]. First, to minimize the electrostatic electron-electron interaction, one maximizes the total spin moment S while respecting the Pauli principle, then the total orbital angular momentum L while respecting the previous constraint. Finally, owing to the spin-orbit (SO) interaction, the spin and orbital angular momentums combine to form a total angular momentum J = S + L with an associated quantum number J: such that J = L -S for less than half-filled shells, or J = |L + S| for more than half-filled shells (for exactly half-filled shells, L = 0 so J = S). This two-step procedure is based on the fact that the spin-orbit interaction is of much smaller amplitude than the Coulomb interaction.

In a crystal, the breaking of the degeneracy by the crystal-field must be considered on top of these two interaction terms. This can have many different effects, because the CF splitting can take all kind of values with respect to the on-site Coulomb and SO interactions.

• H CF > H e-e > H SO in nearly empty or nearly filled transition metal oxides (e.g. SrVO 3 )

• H e-e > H CF > H SO in nearly half-filled transition metals (e.g. elemental Fe)

• H e-e > H SO > H CF in rare-earth intermetallics (e.g. NdFe 12 , see next section) Of course, the most complex effects are observed when the CF term is of similar order of magnitude as one of the other terms. This is illustrated in Fig. 9.3, showing a high to low spin transition in a transition metal with 5 electrons. With an intermediate CF splitting, the electrons minimize the total energy by spreading over the orbitals, and the resulting total spin moment S is large. Inversely, if the CF splitting between orbitals is large enough, the electrons minimize their energy by aggregating in the low-energy states, even though this increases the on-site Coulomb interaction. By doing this, the total spin moment S is reduced. LaCoO 3 is an example of a material going through a metal to insulator transition above 400 K, associated with a transition from low to intermediate spin state at 90 K [START_REF] Korotin | Intermediatespin state and properties of LaCoO 3[END_REF].

In the rest of the chapter, we focus on the opposite limiting case: we will consider rare-earth intermetallics where the crystal-field splitting is the smallest energy scale.

Crystal-field parameters: notation and symmetry

Here we introduce some commonly used notations for crystal-field parameters (CFP). For a more extensive discussion, we refer the reader to Refs. [START_REF] Newman | The superposition model of crystal fields[END_REF][START_REF] Mulak | The effective crystal field potential[END_REF][START_REF] Newman | Crystal field handbook[END_REF].

The local Hamiltonian of a rare-earth or transition metal ion with a partially-filled d or f shell subject to the exchange field created by the rest of the lattice and to a crystal-field potential reads

H = H 1el + H U = E 0 + λ L • Ŝ + 2µ B B ex Ŝa + H CF + H U (9.1)
where the one-electron part of the Hamiltonian corresponds to the first four terms on the right-hand side, namely, a uniform shift, spin-orbit, exchange-field, and crystal-field terms. Ŝa is the in-plane or ouf-ofplane spin operator, corresponding to the case where B ex is along x or z, respectively. ĤU represents the atomic (local) electron-electron Coulomb repulsion term of the many-body Hamiltonian. The crystalfield term ĤCF is defined as the non-spherically symmetric part of the one-electron Hamiltonian. The corresponding non-spherical part V ns (r) of the one-electron potential can be expanded into spherical harmonics as follows:

V ns (r) = ∞ k=1 k q=-k A q k r k Y kq (r). (9.2)
where Y kq (r) is the spherical harmonic function with total angular moment k and projected angular moment q. The CF Hamiltonian is then defined as

H CF = drV ns (r)Ψ(r) † Ψ(r) (9.3)
where Ψ † (r) and Ψ(r) are respectively the operators creating and removing an electron at r in real space. The matrix elements of V ns (r) between 4f orbitals define H CF . Due to the properties of the spherical harmonics, only A q k for k ≤ 2l, i.e. k ≤ 6 in the case of an f shell or k ≤ 4 in the case of a d shell, can contribute to H CF . For historic reasons, several conventions exist for the parameterization of H CF , 9.2. Hard magnets and the importance of crystal-field effects 119 leading to a rather confusing variety of definitions for the crystal-field parameters. One of the earlier parameterizations involves the Stevens operator equivalents [START_REF] Stevens | Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions[END_REF] Ôq k : ( Ôq k ) kq are operators acting on the atomic (e.g. 3d or 4f ) states, obtained by taking the Cartesian expression or the tesseral harmonic functions and replacing each coordinate x, y or z by the corresponding component of the total angular momentum Ĵ : Ĵx , Ĵy or Ĵz , allowing for the commutation relations the angular moment operators. Using the Stevens operator equivalents, H CF is decomposed as follows

H CF = kq A q k r k Θ k (J) Ôq k (9.4)
where A q k r k are the crystal-field parameters for given k and q, Θ k (J) is the Stevens factor for a given ground state multiplet defined by the quantum number J. Θ k (J) for k =2, 4, and 6 are often designated by α J , β J , and γ J , respectively. Note that the implied factorization A q k r k is only valid for an atom surrounded by point charges [START_REF] Hutchings | Point-charge calculations of energy levels of magnetic ions in crystalline electric fields[END_REF], a rather crude model: the notation, however, continues to be used in the community. The Stevens operator equivalents are more convenient for analytical calculations and somewhat outdated, but they are still extensively used in the literature. For numerical calculations it is more convenient to express H CF in terms of Wybourne's [START_REF] Wybourne | Spectroscopic properties of rare earths[END_REF] spherical tensor operators Ĉq k :

H CF = kq B q k Ĉq k (9.5)
where Ĉq k are defined by C q k (r) = 4π/(2k + 1)Y kq (r) Moreover, the CFP can be made real by employing the Hermitian combination of Wybourne's operators T q k defined by

T 0 k = Ĉ0 k and T ±|q| k = √ ±1 Ĉ-|q| l ± (-1) |q| Ĉ|q| k
H CF can then be expressed as

H CF = kq L q k T q k (9.6)
with a set of real parameters L q k . L q k are linked to the Stevens CFP A q k r l by a set of positive prefactors λ kq = A q k r k /L q k . For a more extensive discussion of CFP conventions see, e.g., Refs. [START_REF] Newman | The superposition model of crystal fields[END_REF][START_REF] Mulak | The effective crystal field potential[END_REF][START_REF] Newman | Crystal field handbook[END_REF]. Note that to simplify the notations, we have not introduced a spin label to the CF parameters in Eqs. 9.5 and 9.6. In reality, the CFP can be spin-dependent. More specifically, the electrostatic contribution is of course identical for up and down spins on the atom, but the effect of hybridization is in general spindependent if the sub-lattice is spin-polarized. We found that taking into account this spin-dependence of CFP improves the fit for spin-polarized H 1el .

The number of a priori non-zero CF parameters A q k r k is constrained by the point-group symmetry of a given rare-earth site. In particular, in the presence of inversion symmetry, V ns (r) = V ns (-r), only A q k r k for even k can be nonzero (cf. eq. 9.

2). Other point-group symmetries further reduce the number of relevant A q k r k .

Hard magnets and the importance of crystal-field effects

Hard-magnetic rare-earth intermetallics represent an outstanding example of the importance of crystalfield effects for functional properties of materials. As these materials are the main focus of the present chapter, we briefly summarize here their principal properties and introduce key quantities characterizing the hard-magnetic behavior.

Permanent magnets are a key component of modern electronic devices, ranging from electrical motors to medical imaging. Making a good permanent magnet, however, is more challenging than making a simple ferromagnet. Indeed, regular ferromagnets like iron have little magnetic anisotropy and spontaneously demagnetize under their own demagnetizing field, unless made in unwieldy shapes (e.g. needles). An important breakthrough in the quest for high-performance permanent magnets was the discovery of rareearth intermetallic magnets, starting with SmCo 5 in 1966 [START_REF] Strnat | The recent development of permanent magnet materials containing rare earth metals[END_REF]. Since its discovery in 1982, the champion of hard magnets has been Nd 2 Fe 14 B [START_REF] Herbst | R 2 Fe 14 B materials: Intrinsic properties and technological aspects[END_REF]. Most rare-earths are expensive and strategically important, however, so that it has become important to find alternative compositions or at least materials with a reduced rare-earth concentration [START_REF] Coey | Hard magnetic materials: a perspective[END_REF]. More recently, rare-earth iron-based hard magnets RFe 12 X with the ThMn 12 structure such as NdFe 12 N have been under renewed scrutiny [START_REF] Körner | Theoretical screening of intermetallic ThMn 12 -type phases for new hard-magnetic compounds with low rare earth content[END_REF][START_REF] Suzuki | A new magnet material with ThMn 12 structure: (Nd 1-x Zr x )(Fe 1-y Co y ) 11+z Ti 1-z N α (α= 0.6-1.3)[END_REF][START_REF] Harashima | Nitrogen as the best interstitial dopant among X= B, C, N, O, and F for strong permanent magnet NdFe 11 TiX: first-principles study[END_REF][START_REF] Hirayama | NdFe 12 N x hard-magnetic compound with high magnetization and anisotropy field[END_REF][START_REF] Miyake | First-principles study of magnetocrystalline anisotropy and magnetization in NdFe 12 , NdFe 11 Ti, and NdFe 11 TiN[END_REF].

The main physical ingredients for a rare-earth hard magnet are the high magnetic anisotropy energy provided by rare-earth ions combined with the high magnetization and Curie temperature from the transition metal sub-lattice, typically composed of Fe or Co atoms [START_REF] Coey | Hard magnetic materials: a perspective[END_REF][START_REF] Coey | Rare-earth iron permanent magnets[END_REF][START_REF] Gutfleisch | Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient[END_REF]. The 3d transition metal atoms carry little anisotropy: because of their rather small spin-orbit coupling, their magnetization direction is approximately fixed by that of the rare-earth ion through an exchange coupling. Their anisotropy is not, in fact, completely negligible, in particular in non-cubic or distorted structures [START_REF] Delczeg-Czirjak | Stabilization of the tetragonal distortion of Fe x Co 1-x alloys by C impurities: a potential new permanent magnet[END_REF]. Here, however, we rather focus on the rare-earth contribution to the anisotropy. As mentioned above, most rare-earth elements, especially heavy rare-earth elements, are very expensive. Moreover, the magnetic moment of heavy rare-earth is normally anti-parallel to the transition-metal one reducing the net magnetization [START_REF] Coey | Hard magnetic materials: a perspective[END_REF]. Hence, one advantage of new compounds like RFe 12 X is a reduced rare-earth concentration. In turn, a higher Fe concentration is favorable for achieving a large magnetization and Curie temperature, which is another advantage of RFe 12 X compounds. However, this reduced rare-earth concentration means each rare-earth ion must contribute a strong magnetic anisotropy to keep the overall magnetic hardness. Another remaining bottleneck is that RFe 12 X compounds are usually not stable: at least one of the Fe atoms must be substituted by another transition metal (Ti, for instance), thus loosing some magnetization [START_REF] Harashima | First-principles study on stability and magnetism of NdFe 11 M and NdFe 11 MN for M = Ti[END_REF]. Thin films of RFe 12 X have, however, been obtained using epitaxial growth [START_REF] Hirayama | NdFe 12 N x hard-magnetic compound with high magnetization and anisotropy field[END_REF].

Additional small doping of light elements is also found to strongly modify the anisotropy by affecting the rare-earth CF splitting [START_REF] Harashima | Nitrogen as the best interstitial dopant among X= B, C, N, O, and F for strong permanent magnet NdFe 11 TiX: first-principles study[END_REF][START_REF] Matsumoto | Relevance of 4f -3d exchange to finite-temperature magnetism of rare-earth permanent magnets: an ab-initio-based spin model approach for NdFe 12 N[END_REF]. They also modify the structural stability: doping boron makes the Nd 2 Fe 14 B phase more stable, while interstitial nitrogen has only a minor effect on the structural stability.

The preferred magnetization direction (in-plane or out-of-plane) of a given rare-earth ion is determined by the interplay between the crystal-field (CF) splitting and spin-orbit (SO) interactions. To first order, the crystalline magnetic anisotropy energy is given by:

E A ≈ K 1 sin 2 θ
where θ is the angle between the magnetization and the easy axis, and

K 1 = -3J(J - 1 2 )α J A 0 2 r 2 n R (9.7)
where J is the total angular momentum for the rare-earth 4f shell and n R the concentration of rare-earth atoms (in atoms per volume unit).

This result of perturbation theory (where the crystal-field is the small perturbation parameter) can be understood qualitatively in the following way [START_REF] Coey | Rare-earth iron permanent magnets[END_REF][START_REF] Skomski | Anisotropy of rare-earth magnets[END_REF]: In trivalent rare-earths of the first or third quarter of the 4f series (Ce 3+ , Pr 3+ , Nd 3+ , Tb 3+ , Dy 3+ , Ho 3+ ), atomic eigenstates with a given orientation of the magnetic moment are associated with an oblate (or "flat") charge distribution (see Fig. 9.4). Conversely, if the environment of the ion favors an anisotropic 4f charge density, this constrains the magnetization: out-of-plane for an oblate or in-plane for an prolate ("elongated" charge distribution) distribution. The opposite effect happens in the second and fourth quarter of the 4f series (Sm 3+ , Er 3+ , Tm 3+ , Yb 3+ ). The Stevens factor α J encodes this, taking negative and positive values respectively for the former and the latter ions.

Note that, because the crystal-field splitting is the smallest energy scale in this case, it leads to radically different effects from the low to high-spin transition in transition metals (Fig. 9.3). This epitomizes how even small effects in the electronic structure, with couplings of the order of a few meV, can have sizable macroscopic effects and technological consequences. This simple picture also explains why different light element dopants, depending on the charge they Reproduced from Ref. [START_REF] Skomski | Anisotropy of rare-earth magnets[END_REF] take in the crystal and the nature of their (possible) bonding with the rare-earth, can have opposite effects on the anisotropy (see Ref. [START_REF] Harashima | Nitrogen as the best interstitial dopant among X= B, C, N, O, and F for strong permanent magnet NdFe 11 TiX: first-principles study[END_REF] and section 9.5 below).

Determining the crystal-field parameters

Hereafter, when discussing CFP calculations, we focus on the particular case of rare-earth based elements (intermetallics or oxides). The same methods should not be expected to work in transition metal compounds.

Calculating crystal-field parameters

Considering the importance of crystal-field splittings for the physical properties of materials, it is hardly surprising that considerable effort was spent both by theoretical chemists and condensed matter physicists to determine the exact values of CF parameters. The simple point charge model [START_REF] Hutchings | Point-charge calculations of energy levels of magnetic ions in crystalline electric fields[END_REF] describes, as its name indicates, an atom surrounded by point charges representing its neighbors. If the position and valence of the ligands are known, this is enough to determine the CF Hamiltonian. The approximation is quite drastic since all hybridization and screening effects are neglected. More sophisticated models have been developed and widely used since the 60's, such as the superposition model [START_REF] Newman | The superposition model of crystal fields[END_REF] or the overlap model [START_REF] Porcher | Relationship between phenomenological crystal field parameters and the crystal structure: the simple overlap model[END_REF]. However, such models, which are extensively discussed in Ref. [START_REF] Newman | Crystal field handbook[END_REF], are intrinsically semi-empirical and require external information such as the ligands positions and effective charge to give reasonable results. In other words, some experimental input is needed to make these models work. Such experimental information is readily available for large band-gap insulators, where the CFP can be extracted from measurements of dipole-forbidden optical transitions between f -states [START_REF] Brecher | Polarized spectra and crystal-field parameters of Eu 3+ in YVO 4[END_REF]. In the case of rare-earth intermetallics, where the f -f transitions are hidden by the optical response of conduction electrons, inelastic neutron spectroscopy can be used to determine CFP [START_REF] Buschow | Crystal-field anisotropy of Sm 3+ in SmCo 5[END_REF][START_REF] Sankar | Magnetocrystalline anisotropy of SmCo 5 and its interpretation on a crystal-field model[END_REF][START_REF] Givord | Temperature dependence of the samarium magnetic form factor in SmCo 5[END_REF][START_REF] Tie-Song | Magnetic properties of R ions in RCo 5 compounds (R= Pr[END_REF][START_REF] Tils | Crystal and exchange fields in SmCo 5 studied by inelastic neutron scattering[END_REF]. However, the results are more ambiguous as one needs to sort out the contributions of phonons and the effect of inter-site exchange interactions (moreover, neutron data are usually less sharp than optical measurements).

Crystal-field parameters from first principles using Density Functional Theory

In contrast, ab initio calculations do not rely on experimental input and can have truly predictive power. With the development of modern DFT codes since the 80's, such calculations have been applied to compute CFP [START_REF] Miyake | First-principles study of magnetocrystalline anisotropy and magnetization in NdFe 12 , NdFe 11 Ti, and NdFe 11 TiN[END_REF][START_REF] Coehoorn | First principles band structure calculations for rare earth-transition metal compounds: magnetization, hyperfine parameters and magnetocrystalline anisotropy[END_REF][START_REF] Daalderop | Magnetocrystalline anisotropy of RECo 5 compounds[END_REF][START_REF] Steinbeck | Calculated crystal-field parameters for rare-earth impurities in noble metals[END_REF][START_REF] Novák | Calculation of crystal-field parameters in the RNi 5 (R = rare earth) system[END_REF][START_REF] Steinbeck | Ab initio calculation of electronic structure, crystal field, and intrinsic magnetic properties of Sm 2 Fe 17 , Sm 2 Fe 17 N 3 , Sm 2 Fe 17 C 3 , and Sm 2 Co 17[END_REF][START_REF] Novák | Calculated crystal field parameters in RCo 5 and RNi 5 systems[END_REF][START_REF] Ning | Density functional theory calculation of crystal-field energy levels for Yb 3+ in the Cs 2 Na 2 YbF 6 crystal[END_REF][START_REF] Novák | Crystal field parameters of praseodymium in oxides[END_REF][START_REF] Hu | Extraction of crystal-field parameters for lanthanide ions from quantum-chemical calculations[END_REF][START_REF] Novák | Crystal field parameters with Wannier functions: application to rare-earth aluminates[END_REF]. First-principles techniques for computing the CF parameters can be separated into two main approaches. The first one [START_REF] Miyake | First-principles study of magnetocrystalline anisotropy and magnetization in NdFe 12 , NdFe 11 Ti, and NdFe 11 TiN[END_REF][START_REF] Daalderop | Magnetocrystalline anisotropy of RECo 5 compounds[END_REF][START_REF] Steinbeck | Calculated crystal-field parameters for rare-earth impurities in noble metals[END_REF][START_REF] Novák | Calculation of crystal-field parameters in the RNi 5 (R = rare earth) system[END_REF][START_REF] Steinbeck | Ab initio calculation of electronic structure, crystal field, and intrinsic magnetic properties of Sm 2 Fe 17 , Sm 2 Fe 17 N 3 , Sm 2 Fe 17 C 3 , and Sm 2 Co 17[END_REF][START_REF] Novák | Calculated crystal field parameters in RCo 5 and RNi 5 systems[END_REF][START_REF] Ning | Density functional theory calculation of crystal-field energy levels for Yb 3+ in the Cs 2 Na 2 YbF 6 crystal[END_REF] consists in extracting the nonspherical Kohn-Sham potential V lm and the 4f charge density ρ 4f around the rare-earth site and then computing the corresponding crystal-field parameter as

B lm ∝ +∞ 0 ρ 4f (r)V lm (r)r 2 d 3 r (9.8)
Since density functional theory (DFT) with usual local or semi-local exchange-correlation functionals (LDA or GGA) is not able to fully capture the physics of partially-filled localized 4f shells, one has to impose their localization by, for example, treating the 4f orbitals as semi-core states.

In the second more recent approach, the 4f states are represented by projective Wannier functions [START_REF] Hu | Extraction of crystal-field parameters for lanthanide ions from quantum-chemical calculations[END_REF][START_REF] Novák | Crystal field parameters with Wannier functions: application to rare-earth aluminates[END_REF][START_REF] Haverkort | Multiplet ligand-field theory using Wannier orbitals[END_REF], while the charge density and, correspondingly, the Kohn-Sham potential are generated by selfconsistent DFT calculations with 4f states treated as semi-core. In this case, the CFP are obtained by fitting the projected Kohn-Sham eigenvalues. One consequence is that, similarly to band gaps in semiconductors, a systematic error may be introduced as the (auxiliary) Kohn-Sham eigenvalues are identified to the excitation energies of the real system. Moreover, in Ref. [START_REF] Novák | Crystal field parameters with Wannier functions: application to rare-earth aluminates[END_REF], an additional ad hoc parameter is used to correct the charge transfer energy between 4f and conduction bands.

Overall, ab initio calculations of CFP for rare-earth ions remain a formidable theoretical problem, due to generally small values of those CFP and their extreme sensitivity to computational details. The main weak point of previously proposed DFT-based approaches is that they are not able to correctly treat the localized valence 4f states. Hence, the charge density is derived under the drastic approximation of treating them as fully localized core states, spherically-averaged inside the atomic sphere. The DFT+U method provides a more realistic treatment for the 4f density in the limit of strong ordered magnetism. However, it is not able to capture the true quasi-atomic (multiplet) nature of rare-earth shells in the paramagnetic or partially-polarized state.

We note that different techniques are used in quantum chemistry, in the context of calculating crystalfield splittings in molecules or complexes [START_REF] Aquilante | MOLCAS 7: the next generation[END_REF][START_REF] Ungur | Ab initio crystal field for lanthanides[END_REF]. While conceptually similar to techniques used in solid state physics, their techniques cannot be directly used in periodic but infinite crystals, so we do not further discuss them here.

Crystal-field parameters and the self-interaction problem

The non-spherical 4f charge density ρ 4f (r) of the rare-earth ion includes an unphysical contribution to the CFP stemming from the local-density-approximation (LDA) self-interaction error. Indeed, the differential occupation of f orbitals and the resulting non-spherical charge density feeds back into the Kohn-Sham potential. This is problematic, since the CFP felt by the atom should not depend on its occupancy.

The self-interaction problem in the context of CF calculations of 4f elements was studied by Brooks et al. [START_REF] Brooks | Density functional theory of crystal field quasiparticle excitations and the ab initio calculation of spin Hamiltonian parameters[END_REF]. The authors interpreted crystal-field excitations of the rare-earth electrons in terms of quasiparticle excitations and proposed a constrained variational scheme to determine the spin Hamiltonian in rare-earth compounds from LDA total energy calculations.

In CFP calculations based on Eq. 9.8, the self-interaction problem is usually corrected by sphericallyaveraging the 4f charge density. In practical DFT implementations, this means approximations must be made, for instance treating the 4f electrons as core rather than valence states, and approximating the long-range "tails" of ρ 4f (r), as discussed in Refs. [START_REF] Miyake | First-principles study of magnetocrystalline anisotropy and magnetization in NdFe 12 , NdFe 11 Ti, and NdFe 11 TiN[END_REF][START_REF] Novák | Crystal field parameters of praseodymium in oxides[END_REF]. 9.4. Density Functional Theory + Hubbard I approach to crystal-field parameters: eliminating the self-interaction error by averaging over the ground state multiplet 123

9.4 Density Functional Theory + Hubbard I approach to crystalfield parameters: eliminating the self-interaction error by averaging over the ground state multiplet

Numerical approach

We propose an approach to ab initio CFP calculations based on charge self-consistent DFT+DMFT, treating the local many-body problem for the 4f shell in the quasi-atomic (Hubbard-I) approximation (see section 5.2.1). While this approach of using DFT+DMFT with the Hubbard I approximation, which we may call DFT+Hub-I, is rather simple and computationally efficient, it was shown to capture not only the 4f multiplet structure in the paramagnetic state [START_REF] Locht | Standard model of the rare earths analyzed from the Hubbard I approximation[END_REF][START_REF] Pourovskii | Role of atomic multiplets in the electronic structure of rare-earth semiconductors and semimetals[END_REF][START_REF] Lebègue | Electronic structure and spectroscopic properties of thulium monochalcogenides[END_REF][START_REF] Lebègue | Multiplet effects in the electronic structure of heavy rare-earth metals[END_REF], but also the 4f -conduction band exchange interaction and the resulting exchange splitting of the Fermi-surface [START_REF] Pourovskii | Role of atomic multiplets in the electronic structure of rare-earth semiconductors and semimetals[END_REF]. Locht et al. [START_REF] Locht | Standard model of the rare earths analyzed from the Hubbard I approximation[END_REF] recently benchmarked the Hubbard I approximation by studying a wide range of properties of rare-earth metals: lattice parameters, bulk moduli, photoemission spectra, magnetic ground state properties and intersite exchange parameters, finding good agreement with experimental data. Moreover, in the present context of CFP calculations, this scheme provides a rather natural way of averaging the 4f partial charge density to reduce the self-interaction error discussed in section 9.3.3 from the CF Hamiltonian.

In the Hubbard-I approximation the hybridization function is neglected and solving of the DMFT impurity problem is reduced to the diagonalization of the atomic Hamiltonian (9.1), see section 5.2.1. The one-electron part H 1el thereof is then given by [START_REF] Pourovskii | Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications[END_REF] 

H 1el = -µ + H f f -Σ DC (9.9)
where µ is the chemical potential, H f f is the Kohn-Sham Hamiltonian projected to the basis of 4f Wannier orbitals and summed over the Brillouin zone, Σ DC is the double counting correction term for which we employ the "frozen integer" or nominal limit [START_REF] Pourovskii | Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications[END_REF][START_REF] Haule | Exact double counting in combining the dynamical mean field theory and the density functional theory[END_REF], best adapted with the Hubbard I approximation.

Self-consistent DFT+Hub-I calculations produce a non-spherical one-electron Kohn-Sham potential (9.2), that includes several non-spherical contributions acting on 4f states: the long-range electrostatic (Madelung) interaction, as well as the LDA exchange-correlation potential due to conduction electrons and 4f states themselves. As mentioned in section 9.3, this last "intra-4f shell" contribution to the exchange-correlation potential should be removed within DFT+Hub-I, since the on-site interaction H U between 4f states is already treated within DMFT. Hence, the "intra-4f shell" contribution in the oneelectron part H 1el of (9.1) due to LDA is counted twice and should be removed by a double-counting correction. Moreover, this contribution includes the LDA self-interaction error for localized states directly impacting CFP: for low-lying CF levels, the self-interaction error will be larger than for less occupied excited CF states.

In order to reduce the self-interaction error from CFP we enforce uniform occupancy of all states within the 4f ground state multiplet in our charge self-consistent DFT+Hub-I calculations. For this, we define the imaginary-frequency atomic (Hubbard-I) Green's function at the fermionic Matsubara frequency ω n = (2n + 1)πT , where T is the temperature, as follows:

G at mm (iω n ) = 1 M n∈GSM n / ∈GSM n|f m |n n |f † m |n iω n -E n + E n + n |f m |n n|f † m |n iω n + E n -E n (9.10)
where the eigenstates |γ and |δ with eigenenergies E γ and E δ are obtained by diagonalization of Eq. ?? and belong to the ground-state multiplet (GSM) and excited multiplets respectively, a and b label 4f orbitals, M is the degeneracy of the GSM. In other words, to obtain Eq. 9.10 we substitute the standard Boltzmann weight X γ = e -Eγ /T /Z, where Z is the partition function, with the uniform weight Xγ = 1/M for the GSM and Xδ = 0 for exited multiplets in the spectral representation of the Green's Chapter 9. Hard magnets & Crystal-Field calculations function 12 . In practice, the degeneracy of the ground state multiplet M is chosen to be the same as for the corresponding free ion, hence, it is given by Hund's rules. Therefore, M = 10 for Nd and M = 6 for Sm. This leads to a spherically-averaged contribution from the 4f orbitals, both inside and outside the rare-earth atomic sphere, while non-spherical contributions from other states are taken into account. Conceptually speaking, our approach amounts to replacing in Eq. 9.9 the double-counting correction by a term that enforces equal occupancy of the ground state multiplet:

H 1el = -µ + H f f -Σ DC -v KS [ρ spd + ρ 4f ] + v KS [ρ spd + ρ4f ] (9.11)
where v KS [ρ] is the Kohn-Sham potential (v KS = v Hartree + v xc ) acting on density ρ. ρ 4f designates the projected electronic density belonging to the rare-earth's 4f orbitals, ρ4f is the same density, spherically averaged, and ρ spd designates all the remaining density, belonging to all atoms' s, p and d orbitals.

The same approach is used in the spin-polarized DFT+Hub-I calculations: in this case the exchange splitting is also removed within the ground state multiplet. However, we found that this averaging is not sufficient, since the value of the exchange field within our DFT+Hub-I iterations may become larger than the inter-multiplet splitting. Hence we also remove the 4f spin polarization from the resulting DFT+Hub-I density matrix. For a given k-point the "averaged" density matrix Ñ k in the Bloch basis reads

Ñ k = N k + 1 2 P † (k) T n f f (k)T † -n f f (k) P (k) (9.12)
where N k is the density matrix in the Bloch basis calculated as described in chapter 4.1, section 4.1.3 and in Refs. [START_REF] Lechermann | Dynamical mean-field theory using Wannier functions: a flexible route to electronic structure calculations of strongly correlated materials[END_REF][START_REF] Aichhorn | Importance of electronic correlations for structural and magnetic properties of the iron pnictide superconductor LaFeAsO[END_REF][START_REF] Aichhorn | TRIQS/DFTTools: a TRIQS application for ab initio calculations of correlated materials[END_REF]. P (k) is the projector [START_REF] Aichhorn | Dynamical mean-field theory within an augmented plane-wave framework: assessing electronic correlations in the iron pnictide LaFeAsO[END_REF][START_REF] Aichhorn | TRIQS/DFTTools: a TRIQS application for ab initio calculations of correlated materials[END_REF] between the spaces of Wannier and Bloch functions, n f f (k) is the density matrix in the Wannier basis, T is the time-reversal operator. The averaged density matrix Ñ k is then used to recalculate the electron density at the next DFT iteration as described in section 4.1.3. The contribution of 4f states to the spin density and LSDA exchange field is thus suppressed. The resulting exchange field is due to the polarization of the transition-metal sub-lattice, as expected for rareearth intermetallics. In contrast, direct spin-polarized DFT+Hub-I calculations without the averaging would lead to a large unphysical exchange field on rare-earth sites due to the magnetization density of 4f electrons themselves.

Having converged DFT+Hub-I calculations, we extract the set of parameters L q k defined in Eq. 9.6 (or equivalently, A q k r k ), as well as B ex and λ, by a least-square fit of the ab initio Hamiltonian H 1el defined in Eq. 9.1 and obtained within DFT+Hub-I (see below).

Calculation details

The Wannier orbitals representing the rare-earth 4f states are constructed from the Kohn-Sham bands within the window [-ω win , ω win ] relative to the Fermi level. The choice of the half-window size ω win is the only significant parameter in our calculations. Indeed, the choice of Hubbard U and Hund's coupling J has limited impact on the results, as we discuss in section 9.7.1. In the results described in the following section, we use U = 6 eV and J H = 0.85 eV (see also section 9.5.2).

In order to construct a complete orthonormal basis of Wannier orbitals one needs to choose ω win large enough to include at least all 4f -like Kohn-Sham bands. It is well known that Wannier orbitals constructed with a small window leak [START_REF] Aichhorn | TRIQS/DFTTools: a TRIQS application for ab initio calculations of correlated materials[END_REF] to neighboring sites due to hybridization between 4f states and conduction band states. A larger window, on the other hand, results in more localized Wannier orbitals consisting almost exclusively of the corresponding 4f partial waves inside the rare-earth atomic sphere [START_REF] Aichhorn | Dynamical mean-field theory within an augmented plane-wave framework: assessing electronic correlations in the iron pnictide LaFeAsO[END_REF][START_REF] Aichhorn | TRIQS/DFTTools: a TRIQS application for ab initio calculations of correlated materials[END_REF], as discussed in sections 9.5.2 and 9.7.2 below.

In the present case of rare-earth intermetallics we find a rather weak dependence of CFP to variations of ω win within the reasonable range from 2 to 8 eV, see section 9.7.2. DFT+Hub-I studies of rare-earth [351] and purple from Ref. [START_REF] Laslo | Effects of m= si, ga and al for co substitution on the electronic properties of rco 4 m as probed by xps[END_REF]) and the full experimental spectrum of metal Sm (red, from Ref. [START_REF] Lang | Study of the 4f and valence band density of states in rare-earth metals. ii. experiment and results[END_REF]) are shown for comparison in dotted lines.

wide-gap insulators show a rather strong sensitivity of calculated CFP to the window size; less-localized small window Wannier 4f orbitals result in a better agreement with experimental CFP [START_REF] Pourovskii | Crystal field splitting in rare-earth oxyfluorides and oxychlorides[END_REF]. Hence, we employ ω win =2 eV in our calculations throughout.

Results and discussion

In the present section, we apply the calculation scheme derived above to the well known hard magnet SmCo 5 for the purpose of testing. Then, we use it on several materials of the RFe 12 X family and discuss their magnetic anisotropy.

Crystal-field parameters in SmCo 5

SmCo 5 has been studied more extensively than other hard magnetic rare-earth intermetallics, so ample experimental data is available in this case. In particular, several groups measured the CF parameters using inelastic neutron diffraction [START_REF] Buschow | Crystal-field anisotropy of Sm 3+ in SmCo 5[END_REF][START_REF] Sankar | Magnetocrystalline anisotropy of SmCo 5 and its interpretation on a crystal-field model[END_REF][START_REF] Givord | Temperature dependence of the samarium magnetic form factor in SmCo 5[END_REF][START_REF] Tie-Song | Magnetic properties of R ions in RCo 5 compounds (R= Pr[END_REF][START_REF] Tils | Crystal and exchange fields in SmCo 5 studied by inelastic neutron scattering[END_REF]. Therefore, this compound is a good benchmark to test our approach.

SmCo 5 has tetragonal space group 91 (P 4 1 22). The unit cell contains one formula unit, with one Sm atom and two inequivalent types of Co atoms. The lattice parameters are a = b = 4.76 Å and c = 3.70 Å, with angles α = β = 90 • and γ = 120 • . The crystal-field on Sm 4f in SmCo 5 can be fully described with only four CF parameters: A 0 2 , A 0 4 , A 0 6 , and A 6 6 . The k-summed spectral function of SmCo 5 is displayed in Fig. 9.5, together with experimental data for SmCo 5 and metallic Sm. The calculated CFP and exchange fields for SmCo 5 are listed in Table 9.1, together with experimental data. The calculations on SmCo 5 are done at the experimental lattice constants.

One may notice that the CF parameter A 0 2 r 2 exhibits a strong dependence on the spin polarization; it is about twice larger in the FM phase. For other CF parameters this dependence is small. Ref. [START_REF] Tie-Song | Magnetic properties of R ions in RCo 5 compounds (R= Pr[END_REF] Ref. [START_REF] Givord | Temperature dependence of the samarium magnetic form factor in SmCo 5[END_REF] Ref. [START_REF] Sankar | Magnetocrystalline anisotropy of SmCo 5 and its interpretation on a crystal-field model[END_REF] Ref. [ Our results for A 0 2 r 2 are in good agreement with the experimental (rather wide) values, ranging from about -180 to -420 K. The calculated B ex also agrees rather well with the experimental range from 260 to 360 T. One may notice that the experimental measurements were performed at room temperature, hence, in ferromagnetic SmCo 5 . Also, the most recent experimental values [START_REF] Tils | Crystal and exchange fields in SmCo 5 studied by inelastic neutron scattering[END_REF] of A 0 2 r 2 are in very good agreement with our results for the FM phase.

The main discrepancy between our theoretical and experimental CFP lies in the large value that we find for A 6 6 r 6 . The high-order CF parameters are usually assumed to be rather small in SmCo 5 . However, as noted in Ref. [START_REF] Hummler | Full-potential linear-muffin-tin-orbital calculations of the magnetic properties of rare-earth transition-metal intermetallics. I. description of the formalism and application to the series RCo 5 (R = rare-earth atom)[END_REF], experimental inelastic neutron and susceptibility data are not particularly sensitive to those high-order parameters. Hence, they are often assumed to be small from the onset and neglected in the fitting procedure.

Crystal-field parameters in RFe 12 X

The RFe 12 X family (where R is a rare-earth atom and X is a small interstitial atom, e.g. N) has space group I4/mmm, with a tetragonal primitive unit cell. The conventional unit cell, with twice the volume and atoms, is orthorhombic. It has equivalent R sites in the corner and the center at Wyckoff position 2a, X interstitial sites between two nearest R sites on Wyckoff position 2b, and contains 24 Fe atoms distributed on three inequivalent sites, denoted below Fe 1 , Fe 2 and Fe 3 on Wyckoff positions 8j, 8i and 8f respectively, as displayed in Fig. 9.6. Calculations are done using the theoretical lattice constants for RFe 12 X, summarized in table 9.2 in the conventional unit cell (from Table II of Ref. [START_REF] Harashima | First-principles study of structural and magnetic properties of R(Fe, Ti) 11 and R(Fe, Ti) 12 N[END_REF], or computed with the method therein for the X =Li compounds). The calculated lattice constants agree within 2 % with the measured ones in the more stable NdFe 11 Ti(N) and SmFe 11 Ti(N) compounds [START_REF] Harashima | First-principles study of structural and magnetic properties of R(Fe, Ti) 11 and R(Fe, Ti) 12 N[END_REF]. The DFT calculations are performed with spin-orbit coupling included within the second variational approach. We employ throughout the rotationally-invariant Coulomb vertex specified by Slater integrals F 0 = U =6.0 eV as well as F 2 =10.1 eV, F 4 =6.8 eV, and F 6 =5.0 eV corresponding to Hund's rule coupling J H =0.85 eV. These values of U and J H are in agreement with those in the literature [START_REF] Pourovskii | Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications[END_REF][START_REF] Locht | Standard model of the rare earths analyzed from the Hubbard I approximation[END_REF][START_REF] Nilsson | AB INITIO calculations of the Hubbard U for the early lanthanides using the constrained random-phase approximation[END_REF]. One may notice, that while the values of U and J H are important to determine the one-electron spectrum of a material, they are expected to have a rather small effect on the crystal-field parameters that we consider in this work 3 . We discuss this dependence in section 9.7.1. DFT+Hub-I calculations are carried out for the temperature of 290 K.

DFT and DFT + Hubbard I electronic structure of RFe 12 X

We first compare the electronic structure of RFe 12 X obtained within DFT (LSDA) and DFT+Hub-I. A typical DFT density of states (DOS) and a DFT+Hub-I spectral function for ferromagnetic RFe 12 X, namely, for NdFe 12 N, are shown in Fig. 9.7. The DFT DOS of Fig. 9.7(a) features a strong polarization of the Fe 3d band. N 2p states are dispersive, with the bottom of the bands contributing to a peak in the DOS around -6 eV. The Nd 4f band is fully spin-polarized and anti-ferromagnetically aligned to Fe 3d, with the total spin moment within the Nd atomic sphere equal to -2.77 µ B , i.e. close to the Hund's rule value of 3 µ B for the Nd 3+ ion. The Nd majority-spin 4f band is pinned at the Fermi level, its double-peak structure is due to spin-orbit splitting. This picture of 4f bands pinned at the Fermi level is qualitatively incorrect and illustrates the difficulties of DFT with local or semi-local exchange-correlation functionals to correctly treat strongly-interacting localized valence states.

The spin-polarized DFT+Hub-I spectral function shown in Fig. 9.7(b) was calculated using the averaging approach described in Sec. 9.4.1. It features an almost fully polarized Fe 3d band as well as occupied and empty 4f states separated, to first approximation, by U , thus forming lower and upper Hubbard bands, respectively. The Hubbard bands are split due to the Hund's rule and spin-orbit couplings into several manifolds with characteristically sharp peaks corresponding to transitions from the ground state to different quasi-atomic multiplets upon electron addition or removal. The 4f multiplet structure in lanthanides is known to be only weakly sensitive to the crystalline environment. Indeed, the positions of the Hubbard bands in Fig. 9.7(b) as well as the overall shape of the upper Hubbard band split into two manifolds of multiplet peaks centered at about 2 and 4 eV are in agreement with photoemission and inverse-photoemission spectra of the Nd metal [START_REF] Lang | Study of the 4f and valence band density of states in rareearth metals. II. experiment and results[END_REF]. One also sees that the Nd 4f states in DFT+Hub-I are not fully spin-polarized, in contrast to the DFT case. Indeed the Nd spin moment of -1.61 µ B obtained 3 In rare-earth ions one typically has U J H λ, hence, the atomic multiplet structure is set within the LS-couping scheme. With the crystal-field splitting in lanthanides being typically much smaller than all those energy scales one may neglect the mixture between different multiplets, in that case CFP exhibits only very weak dependence to U and J H . within DFT+Hub-I is only about half of the Hund's rule value and is also aligned antiferromagnetically with respect to the spin moment on iron. The calculated Nd orbital moment is 3.40 µ B . It is precisely the crystal-field splitting of the Nd 4f shell that prevents the full saturation of the Nd magnetization.

Crystal-field parameters and exchange fields in RFe 12 X

In the RFe 12 X family, the crystal-field Hamiltonian is entirely parameterized by A 0 2 , A 0 4 , A 4 4 , A 0 6 , and A 4 6 . The calculated CF and exchange fields for Nd and Sm RFe 12 (N,Li) compounds are listed in Table 9.3 and 9.4, together with the magnetic moments on R and in the full cell. Comparing the different materials, one sees that RFe 12 has the smallest values of A 0 2 r 2 (in absolute value), while N insertion enhances A 0 2 r 2 up to positive values of about 400 to 600 K. Li insertion has the opposite effect, leading to large negative A 0 2 r 2 , in particular for R =Nd. We notice some dependence of the CF parameters A q k r k on the spin direction in the ferromagnetic phase. It is mostly weak, of the order of a few tenths of kelvin for the most important CFP A 0 2 r 2 , except in NdFe 12 N. It can be significant, though, for higher-order CFP. The magnetic state (paramagnetic or ferromagnetic) has a significant impact on A 0 2 r 2 in some compounds: one may notice larger values of A 0 2 r 2 for paramagnetic SmFe 12 (N,Li) than for either spin direction in the ferromagnetic phase.

Finally, the total magnetization appears to be slightly reduced in Sm compounds, compared to Nd compounds: in the former, the spin magnetic moment on the rare-earth compensates the orbital magnetic moment, leading to negligible total moment, while the Nd total moment is dominated by the orbital component, and in the same direction as the Fe sub-lattice magnetization.

The sign and overall magnitude of our calculated A 0 2 r 2 are in agreement with previous calculations for RFe 12 (N) in Ref. [START_REF] Harashima | Nitrogen as the best interstitial dopant among X= B, C, N, O, and F for strong permanent magnet NdFe 11 TiX: first-principles study[END_REF] using the 4f -in-core approach, though there are some differences in the precise values. We obtain a similar value for NdFe 12 , a somewhat larger one for NdFe 12 N, a more negative value for SmFe 12 and a smaller (positive) value for SmFe 12 N. One may notice that the results in Ref. [START_REF] Harashima | Nitrogen as the best interstitial dopant among X= B, C, N, O, and F for strong permanent magnet NdFe 11 TiX: first-principles study[END_REF] are quite sensitive to different treatments of the "tails" of 4f core orbitals: there is no such uncertainty in our approach.

Performing the averaging over the ground state multiplet as described in Eq. 9.10 is crucial to obtain reasonable CFP: the lowest-order CFP A 0 2 r 2 is most sensitive to this. The corresponding data without Table 9.3 -Calculated CF parameters in ferromagnetic (FM) and paramagnetic (PM) NdFe 12 (N,Li) in kelvin. For the FM case we list the CF parameters for each spin direction. The exchange field in the FM phase (in tesla), the spin and orbital magnetic moments of the rare-earth as well as the total magnetic moment per crystal unit cell (in Bohr magneton µ B ) are also listed. averaging for NdFe 12 N is SmCo 5 are given and discussed in section 9.6.

The lowest-order CF parameters A 0 2 r 2 and the corresponding single-ion anisotropy energies K 1 evaluated using (9.7) are displayed in Fig. 9.8. One can see that, while NdFe 12 N and NdFe 12 Li exhibit larger |A 0 2 r 2 | (upper panel) than their Sm counterparts, this difference is offset by a larger Stevens prefactor of Sm in (9.7), so that the Sm and Nd-based compounds have a magnetic anisotropy coefficient K 1 of similar magnitude. A physically significant difference between Nd and Sm is the opposite sign of their Stevens factors α J (α J = -7/1089 for Nd, α J = 13/315 for Sm). Consequently, N insertion leads to a large out-of-plane anisotropy for Nd, but in-plane anisotropy for Sm. Li has the opposite effect: doping Li into SmFe 12 leads to a rather large out-of-plane anisotropy of SmFe 12 Li, of comparable magnitude to that of NdFe 12 N. Furthermore, an interesting point is that the exchange fields B ex on the rare-earth are enhanced by Li and reduced by N. This is interesting because the exchange field, or exchange coupling between Fe and R, is essential for finite temperature magnetocrystalline anisotropy. The rare-earth-originated anisotropy becomes ineffective at high temperature, and the temperature is characterized by the exchange coupling B ex . In Fig. 9.9, we show the difference between the 4f shell atomic energies E ⊥ and E , computed as E = Tr[He -βH ]/Tr[e -βH ] with H defined in Eq. (9.1) and the exchange field B ex along the z and x axis, respectively. This energy difference is more general than the expression of Eq. (9.7), because it also contains higher order CFP, excited atomic multiplets and non-zero temperature. To compute it, we diagonalize the full Hamiltonian H, without restricting ourselves to the ground state multiplet.

We scale the exchange field B ex by the measured [START_REF] Hirayama | NdFe 12 N x hard-magnetic compound with high magnetization and anisotropy field[END_REF] magnetization fraction of the iron sub-lattice M F e (T )/M F e (0) at non-zero temperatures, using the measured magnetization ratio of NdFe 12 N from Hirayama et al [START_REF] Hirayama | NdFe 12 N x hard-magnetic compound with high magnetization and anisotropy field[END_REF]. This gives quite a different picture than Fig. 9.8: the strongly enhanced exchange coupling due to Li doping causes the magnetocrystalline anisotropy to persist at much higher temperatures than with N doping.

Discussion: Wannier-functions analysis of the effect of interstitials

Let us now analyze the mechanisms determining the CFP on the rare-earth site and, in particular, the impact of the N and Li interstitials on them. We consider the NdFe 12 X (X =N, Li) compounds as an example. The N atom nominally contains three 2p electrons, but in the RFe 12 N compounds the N M Fe (T)/M Fe (0) Figure 9.9 -Evolution with temperature of the difference in the 4f shell energy E ⊥ -E between the moments on R and Fe aligned perpendicularly and parallel to the z axis, respectively, for NdFe 12 N (blue, full line) and SmFe 12 Li (red, dashed line). Inset: magnetization fraction of the Fe sublattice in NdFe 12 N, as a function of temperature from Hirayama et al [START_REF] Hirayama | NdFe 12 N x hard-magnetic compound with high magnetization and anisotropy field[END_REF]. 2p bands are more than half-filled (Fig. 9.7). To verify this we have also performed a Bader chargeanalysis [START_REF] Bader | Atoms in molecules: a quantum theory, international series of monographs on chemistry[END_REF] (a technique that allows to attribute the charge density to a given atom in molecules or crystals in a more physically meaningful way than the LAPW atomic spheres) for NdFe 12 X and found 8.3 electrons on N resulting in an ion charge of -1.3. In contrast, the Li atom is nominally 2s 1 , but it looses its single 2s electron inside the NdFe 12 matrix, the corresponding Bader ion charge is +0.7.

In Fig. 9.10 we display the complex Wannier orbitals constructed for Nd 4f states (see Eq. 4.9) with window size ω win = 2 eV with magnetic quantum numbers m = 0 and m = -3, in the presence of interstitial N or Li. The orbitals with m = ±3 do not point towards the N or Li atom, and leak only to neighboring Fe atoms. On the other hand, the orbital with m = 0 (corresponding to f z 3 cubic orbital) points towards the interstitial site, and shows strong leakage to the interstitial atom, particularly in the Li case. The same applies, to a lesser extent, to the orbitals m = ±1 that are also pointing towards the interstitials.

The N (Li) insertion has thus two effects on the CFP. The first one is due to the electrostatic interaction between the 4f electrons and the interstitial ions. This interaction with the negative N (positive Li) ion pushes the on-site energies of the m = -1, 0, 1 orbitals, which point towards the interstitial, to higher (lower) energies.

The second contribution is due to hybridization between the 4f states and the N 2p (Li 2s and 2p) bands, which is expected to mainly affect the m = -1, 0, 1 orbitals pointing towards the interstitial. Mixing with the empty Li 2s and 2p bands pushes them to lower energies, while the opposite shift is induced due to hybridization with mostly filled N 2p located well below rare-earth 4f states, see Fig. 9.7. Hence, one sees that both the electrostatic and hybridization effects act in the same direction, raising the on-site energies of the m = -1, 0, 1 orbitals in the case of N and lowering them in the case of Li. This analysis explains the effect of interstitials on the CFP A 0 2 r 2 . Indeed, the contribution due to A 0 2 r 2 into the CF Hamiltonian 9.6 is reads

A 0 2 r 2 T 0 2 /λ 0 2 ,
T 0 2 /λ 0 2 = 2             -1 3 0 (0) 1 5 4 15 1 5 (0) 0 -1 3            
in the basis of complex 4f orbitals. Hence, the energy level of 4f orbitals m = ±3 is negatively correlated with A 0 2 r 2 , while the energy levels of the orbitals with m = -1, 0, 1 are positively correlated with A 0 2 r 2 (orbitals with m = ±2 are unaffected by Ôm l ). Thus, the effect of N (Li) insertion is to enhance (reduce) the value of A 0 2 r 2 . One may argue that the Hubbard-I approximation neglects the hybridization function in solving the quantum impurity problem, hence, dynamical hybridization to the bath is not included explicitly when solving for the self-energy Σ in the DMFT (Hubbard-I) step of our DFT+Hub-I calculations. However, our Wannier orbitals constructed within the "small" energy window do contain the effect of static hybridization implicitly, which is evidenced by their "leakage" to neighboring sites due to mixing of rare-earth 4f states with Fe 3d, N 2p and Li 2s bands. The real-space Wannier functions of Fig. 9.10 thus represent a convenient visualization of hybridization between rare-earth and other orbitals. In order to quantify the amount of this admixture of the conduction band states we also expand those extended small-window Wannier orbitals |w σ m (k) in the basis of localized Wannier functions | wασ lm (k) (labeled by spin σ , orbital l and magnetic m quantum numbers, as well as atomic site α) constructed within a large energy window for all relevant bands. We derive the corresponding projection operators relating |w σ m (k) and | wασ lm (k) in Appendix C. We employ it to extract the corresponding contribution ρm σ αl (ω) of the shell l (with l = 4f ) on the site α into the spectral function of the "small-window" 4f orbital with indices σm.

The comparison of ρ mσ

αl for the orbital m = 0 and m = 3 are shown in Figs. 9.12 and 9.11 for NdFe 12 Li and NdFe 12 N, respectively. One may notice in Fig. 9.11(a) that Nd f z 3 (m = 0) in NdFe 12 Li exhibits a strong hybridization with Li 2s and 2p; their contribution is significantly larger than the admixture of Fe 3d states. We further observe that spin up states are hybridizing more strongly than spin down states.

In contrast, in the same compound for m = 3 (Fig. 9.11(b)), there is a peak of hybridization with Fe states but barely any with the Li 2s and 2p ones. The same difference, but much less pronounced, is noticeable in the case of NdFe 12 N, see Fig. 9.12. Hence, one may conclude that the effect of the hybridization with the interstitial on the CF is much larger for Li than for N. In the latter case the electrostatic shift due to the negative charge on N seems to play the leading role.

Importance of the charge averaging

In this section, we explicitly demonstrate the effect of averaging of 4f charge density (eq. 9.10) by comparing the CFP calculated with and without this averaging (but in both cases the 4f magnetic density is suppressed following Eq. 9.12) in two materials, NdFe 12 N and SmCo 5 , that are known to have an out-of-plane magnetic anisotropy.

The corresponding values are displayed in Table 9.5. One sees that the difference is largest for the lowest-order CFP A 0 2 r 2 , where calculations without averaging lead to the wrong sign with respect to experiment (suggesting in-plane anisotropy in both cases). Hence, the proper averaging of 4f charge density is crucial for a correct description of the single-ion anisotropy. For the higher order terms the difference between two approaches is smaller. This suggests that the self-interaction contribution in the CFP has predominantly l = 2 symmetry. 9.7 Crystal-field parameters from Density Functional Theory + Hubbard I approximation: sensitivity to the parameters

In this last section, we discuss the importance of the calculation parameters, namely the Coulomb parameters U and J H and the window size ω win .

Dependence of the results on Coulomb U and Hund's J H

To perform DFT+DMFT calculations, we have to choose a value for the on-site screened Coulomb interaction parameter U and for the Hund's coupling parameter J H . Several methods have been developed in order to compute those parameters from first principles, most notably the constrained local density approximation [START_REF] Dederichs | Ground states of constrained systems: application to cerium impurities[END_REF] and, more recently, the constrained random phase approximation [START_REF] Aryasetiawan | Frequencydependent local interactions and low-energy effective models from electronic structure calculations[END_REF].

In the present work, however, we do not attempt a first principles determination. We use U = 6 eV and J H = 0.85 eV because these values have given satisfactory results in other calculations on rareearth materials [START_REF] Pourovskii | Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications[END_REF][START_REF] Locht | Standard model of the rare earths analyzed from the Hubbard I approximation[END_REF]. They are also in line with reported values calculated from first principles [START_REF] Nilsson | AB INITIO calculations of the Hubbard U for the early lanthanides using the constrained random-phase approximation[END_REF]. Nevertheless, it is preferable that results obtained by our calculation scheme do not depend too strongly on the value of U and J H . In Fig. 9.13, we show that the dependence of the CFP A 0 2 r 2 in NdFe 12 N is very moderate, as long as values reasonably close to our reference values are used. Furthermore, we observe that smaller values of U lead to slightly larger values of A 0 2 r 2 : this is not surprising if we keep in mind that a large U is favorable to a strong localization of the 4f electrons, hence to a weaker coupling to the crystal-field. Conversely, a small J H favors a stronger orbital polarization and more localized character, and leads to smaller CFP.

Dependence of the results on the window size

Another important parameter of our calculations is the size of the window around the Fermi level that we use to construct the 4f Wannier functions. In Fig. 9.14 we compare the Wannier orbitals constructed for the same orbital m = 0 in NdFe 12 Li for two different window sizes: a small window with ω win = 2 eV, and a large one with ω win = 20 eV. For the large window, the Wannier orbital (WO) takes essentially pure Nd 4f orbital character, while the small-window WO leaks significantly to neighboring sites, in particular, to Li.

The effect of the window size on the CF parameters is shown more quantitatively in Fig. 9.15, which displays those parameters computed for several window choices [-ω win , ω win ] for different materials. The smallest window size of ω win =2 eV is required to enclose all the 4f -like bands, increasing it to 4 eV includes most of the Fe states and part of the N or Li states inside the window. The largest size of 20 eV gives Wannier functions with essentially pure orbital character. One may notice a relatively mild dependence of the CFP on the choice of the window up to ω win =8 eV.

Conclusion

In conclusion, we propose a novel first-principles approach for calculating crystal and exchange fields in rare-earth systems. This approach is formulated within the DFT+DMFT framework with local correla- tions on the rare-earth 4f shell treated within the quasi-atomic Hubbard-I approximation. The 4f states are represented by Wannier functions constructed from a narrow energy range of Kohn-Sham states of mainly 4f character. We employ a charge-density averaging that suppresses the contribution due to the self-interaction of the 4f orbitals to the one-electron Kohn-Sham potential. We thus reduce the effect of this unphysical self-interaction from the crystal-field splitting, while keeping non-spherical contributions to CFP from other bands. Similarly, by removing the contribution due to the 4f magnetic density from the exchange-correlation potential we suppress its unphysical contribution to the exchange field at the rare-earth site.

Our ab initio scheme reproduces the measured crystal-field parameters in the well-known hard magnet SmCo 5 . We subsequently applied it to prospective rare-earth hard magnetic intermetallics of the RFe 12 X family (where R =Nd, Sm and X can be N, Li or vacancy). Our calculations reproduce the strong out-ofplane anisotropy of NdFe 12 N due to a large positive value of the key CFP A 0 2 r 2 induced by insertion of N. Interestingly, we find that interstitial Li has a strong opposite effect, leading to a large negative value of A 0 2 r 2 . We thus predict a strong out-of-plane anisotropy in the hypothetical compound SmFe 12 Li. We also find the anisotropy in SmFe 12 Li to persist to higher temperatures as compared to NdFe 12 N. Hence, Sm-based compounds may represent interesting candidates for hard-magnetic applications. Of course, the thermodynamic stability of SmFe 12 Li and technological feasibility of Li doping still need to be demonstrated by future studies.

We analyzed the effect of N and Li interstitials on A 0 2 r 2 by evaluating the Bader charges as well as by studying the leakage of 4f Wannier orbitals to interstitial sites and quantifying the 4f hybridization with N 2p and Li 2s states. This analysis demonstrates the importance of hybridization effects when computing CFP.

Extensions of the present approach beyond the Hubbard-I approximation are promising for applications to other rare-earth intermetallics. In particular, a similar DFT+DMFT technique suppressing subtle self-interaction and double-counting contributions to the Kohn-Sham potential might be necessary to study, for example, the impact of a spin-polarized transition-metal sub-lattice on heavy-fermion behavior in Yb-based intermetallics [START_REF] Mazet | Nonpareil Yb behavior in YbMn 6 Ge 6-x Sn x[END_REF][START_REF] Mazet | Composition and temperature dependence of the Yb valence in YbMn 6 Ge 6-x Sn x studied by RIXS[END_REF]. In Ce-based compounds, too, extensions beyond Hubbard I may be required, since Ce 4f electrons tend to have more itinerant character than in rare-earths closer to half-filling.

Chapter 10

Conclusions and Outlook

This thesis has dealt with the problem of calculating the electronic structure of correlated materials. The emphasis has been on "realistic material" calculations from first principles, rather than simple model Hamiltonians like variations of the Hubbard model. This is not to underestimate the usefulness and power of model calculations: model Hamiltonians are and will certainly remain an indispensable tool of solid state physics.

Over the last few years, the number of publicly available software libraries or codes for combining "all electron" electronic structure calculations (such as Density Functional Theory (DFT) or many-body perturbation theory) with more powerful many-body theories going beyond the band picture or perturbation theory (in particular Dynamical Mean-Field Theory, or DMFT) has been steadily increasing. We believe this has significantly lowered the threshold for using such methods, making them more mainstream to study from first principles materials that are known to push DFT to its limits. This development is all the better, for if the second half of the previous century has been dubbed the "age of silicon", we are probably entering the age of oxides (for all its promises, the age of graphene is not quite here yet). Oxides, in turn, are precisely an important class of materials where strong electronic correlations are possible (at least, those that are not natural band insulators).

Though they are becoming more routine, calculations coupling electronic structure codes and manybody techniques (like DFT+DMFT) remain challenging, both from a conceptual and practical point of view. Conceptually, the art of defining low-energy models that consistently integrate out the highenergy dynamics and the motion of valence and core electrons, crudely introduced with the first DFT+U calculations, is still in the process of being refined, and indeed probably still has much way to go. To cite but a few examples, the problems of band alignments (or relative positions of orbitals treated within DMFT), the related problem of the double-counting of interactions, the screened Coulomb interactions (and dynamics thereof), non-local interactions and correlations are still difficult ones. The conceptually more exact methods, like GW + extended DMFT (GW+EDMFT), are still a long way from being used routinely on many-orbital systems, at least without simplifying approximations. From a more practical point of view, DFT+DMFT (or similar) calculations are still not always performed "from first principles". Methods have been devised to estimate the parameters, such as the Coulomb interaction parameter U or Hund's coupling J H , from ab initio electronic structure calculations. Nevertheless, such calculations still require more physical insight from the physicist and fine-tuning of parameters than simple DFT calculations.

In the present manuscript, we have first given an introduction to electronic structure theories, to many-body techniques for strongly interacting electrons, and more importantly to methods that combine both approaches.

In the second part, we have studied from a methodological point of view a simplification to the GW+EDMFT method, dubbed Screened Exchange+DMFT, that contains non-local screened Fock exchange and dynamical local Coulomb interactions in the impurity model. We discuss this as an extension 140 Chapter 10. Conclusions and Outlook of a screened exchange generalized Kohn-Sham scheme, and analyse what happens in the limit of a full d shell, where the correlation effects usually obtained in DMFT are expected to be small. We find that the inclusion of non-local exchange partly corrects the position of the filled d states, probably by reducing the self-interaction error. Band renormalization effects due to dynamical screening, present in the GW approximation, are also found to be important. It would be interesting to continue benchmarking the Screened Exchange+DMFT techniques on different materials: oxides, metals, strongly correlated or not. It would also be useful to go beyond using a Yukawa potential to calculate the Screened Exchange part, and to investigate more general static screened Coulomb potentials, computed in the random phase approximation.

In the third and last part of this thesis, we have studied from first principles three types of materials of technological interest.

First, we used charge self-consistent DFT+DMFT calculations within supercells to evaluate the formation energy of monovacancies in paramagnetic α-Fe. We directly calculated the vacancy formation energy in this phase that is poorly described by standard DFT but is well captured within DFT+DMFT and in which the measurements are possible. Being the high-temperature phase, it is also the phase where vacancies are more likely to be present, and where the experimental estimates for their concentrations are the most reliable. Monovacancies are the simplest of point defects, so a next step would be to use a similar method to study more complex properties of point defects: for instance the formation energy of bivacancies, or the migration energy of monovacancies. Doing so may require additional simplifications in the scheme. In the case of monovacancies, it was found that the self-energy on atoms further from the vacancy than the second nearest neighbors was almost equal to the one in the perfect lattice. Hence it is probably not necessary to treat independently all the atoms that are nominally inequivalent in the supercell, potentially reducing the computational cost.

Next, we have studied the metal to insulator transition in the metastable B phase of VO 2 . We found that during this transition, where half the V atoms present in the cell form dimers in the low-temperature phase, two effects contribute to the metal to insulator transition. The dimerized V atoms form a bonding state lowered in energy by the on-site Coulomb interaction, leading to a band insulator-like behavior. The remaining V atoms, that are expected to have metallic behavior within DFT, but have reduced hopping possibilities at the Fermi level due to the dimerization of their neighbors, undergo a standard Mott transition. The phase transition of VO 2 (B) is, in that sense, similar to the rutile to M 2 transition that is observed under uniaxial pressure or Cr doping. Motivated by recent experimental findings about oxygen vacancies in VO 2 and about the contribution of oxygen vacancies to the spectral properties of SrVO 3 , we study within DFT some properties of oxygen vacancies in VO 2 . We find that, out of the possible inequivalent positions where an oxygen vacancy can form in VO 2 (B), the preferred ones are located along the c axis. When such a vacancy is created, the e g state that most hybridizes with the oxygen states on that site is pulled down in energy, forming a localized state with about 1 eV binding energy. With experimental data available so far on VO 2 (B), it is difficult to confirm or rule out the presence of such vacancies.

Finally, we have devised a scheme allowing to calculate the crystal field parameters in rare earth compounds with a precision of a few meV. Our method combines DFT with an atomic (or Hubbard I) approximation to DMFT,which describes the electronic density of the 4f shell better than standard DFT with local or semi-local functionals. Enforcing equal occupancy of the states within the ground state 4f multiplet, which is equivalent to using a modified double-counting correction, allows us to enforce a spherically symmetric 4f partial charge density, thus avoiding a well-known self-interaction error in the crystal field Hamiltonian. Our method is able, to a certain extent, to capture hybridization effects in contrast with most methods designed so far, where the 4f electrons are treated like core states in DFT. We benchmark this scheme on the well-known hard magnet compound SmCo 5 and then study some properties of the RFe 12 X intermetallics, where R is a rare earth atom (here, Nd or Sm) and X an empty site or a dopant. We study the cases X = N and the more hypothetical X = Li, in order to better understand how the electron-count of the light atom influences the crystal field on the rare earth. This work is aimed to contribute to an ongoing research effort for finding better (or leaner) hard magnetic materials. From a methodological point of view, it would be interesting to confirm the heuristic observation that Wannier functions constructed in a small energy window, hence not too localized, lead to the best predictions of crystal field parameters.

Appendix B. Green's functions

The spectral function is defined by

A(k, ω) = - 1 π ImG(k, ω) (B.4)
Since the imaginary part of 1/(ω + iη) is -πδ(ω), taking the spectral function derived from Eq. B.3 gives a sum of delta peaks corresponding to one-particle addition (positive ω) or removal (negative ω), with amplitudes given by the matrix elements.

B.1.2 Matsubara Green's functions

The Matsubara (or imaginary time / frequency) Green's function is convenient for calculations at finite temperature. The expression of the Matsubara Green's function is similar to that of Eq. B.1:

G R (rστ, r σ τ ) = -T Ψ(rστ ), Ψ † (r σ τ ) (B. 5 
)
where T is the imaginary time-ordering operator, that orders later times to the left. The corresponding Lehmann representation is

G R (k, iω n ) = 1 Z nn n|c k |n n |c † k |n iω n + E n -E n (e -βEn + e -βE n ) (B.6)

B.2 The self-energy

For a one-particle Hamiltonian H 0 (k), the expression of the Green's function is simply obtained as

G 0 (k, iω n ) = [iω n -H 0 (k)] -1 (B.7)
(and analogously for the real-frequency Green's function)

If an additional many-body term is present in the Hamiltonian, a self-energy Σ(k, iω n ), that behaves like a dynamical potential, can be introduced that encodes the effect of correlations in the system:

G(k, iω n ) = [iω n -H 0 (k) -Σ(k, iω n )] -1 = [G 0 (k, iω n ) -1 -Σ(k, iω n )] -1 (B.8)
This is one of several ways to write the famous Dyson equation. Another usual form is We use these projectors U σ,ασ m,l m (k) to project the 4f spectral function computed in the small-window WO basis on large-window localized WOs representing the other valence and conduction states.Namely, having obtained the real-axis lattice Green's function in the small-window Wannier basis for the orbital (σm) of the 4f shell, G mσ (k, ω + iδ), as well as the corresponding partial spectral function ρ mσ (ω) = -1 π ImG mσ (k, ω + iδ), we compute the different orbital contributions into it as follows:

G = G 0 + G 0 ΣG 0 + G 0 ΣG 0 ΣG 0 + ... = G 0 + G 0 Σ(G 0 + G 0 ΣG 0 + ...) G = G 0 + G 0 ΣG (B.
ρmσ αl (ω) = - 1 π Im k m σ U σ,ασ m,lm (k) * × G mσ (k, ω + iδ)U σ,ασ m,lm (k) (C.7)
where ρmσ αl (ω) is the fraction of the 4f spectral function of orbital index (σm) with the character (αl). Using (C.3) and the orthonormality of small-window WOs

w σ m (k)|w σ m (k) = δ mm δ σσ = ν [P σ mν (k)] * P σ m ν (k)
one may easily show the completeness of the expansion (C.7)

αl ρmσ αl (ω) = ρ mσ (ω)
Point defects, such as vacancies, play an important role for the mechanical and thermodynamic properties of materials [1]. However, the experimental determination of vacancy formation or migration energies is difficult. Even the best available techniques, the differential dilatometry and the positron annihilation spectroscopy, suffer from large error bars, and the discrepancies between different measurements on one and the same material may be significant. Therefore, ab initio theoretical calculations are an indispensable tool for developing a better understanding of the defect properties of materials [2].

Early density-functional theory (DFT) calculations in the local density approximation (LDA) have predicted formation energies of vacancies in simple metals in good agreement with experiment [3,4]. Despite a large body of successful calculations, it has later been recognized that the nice agreement with experiment could often be the effect of the cancellation of errors in the exchange and correlation parts of the density functional [5]. As has been discussed by Ruban [6], despite the structural simplicity of vacancies, their energetics is still one of the least reliable physical properties determined in first-principles calculations.

In transition metals, where the open d shells are often poorly described in LDA or the generalized gradient approximation (GGA), the quality of results of DFT calculations for point defect properties is rather unpredictable and strongly material dependent. There have been several attempts to improve the available functionals (see, e.g., Refs. [7][8][9][10]). We notice that the predicted vacancy formation energies seem to be especially poor for 3d transition metals, for which many-body effects are fairly important, in particular in the paramagnetic state and body-centered cubic (bcc) crystal structure [11]. Likewise, DFT has limitations for point defect calculations in correlated lanthanide or actinide oxides with 4f or 5f electrons, for example in the case of uranium oxides used in the nuclear industry [12].

Among the 3d transition metals, iron is a particularly complex system, where the strength of electronic correlations is very sensitive to the lattice structure and magnetic state. However, from a practical point of view, vacancies in iron and steels are of particular interest because they affect a number of important characteristics of the metal, e.g., toughness and ductility. Iron's low-temperature ferromagnetic bcc α phase is a weakly renormalized Fermi liquid [13] well described within DFT [14][15][16]. However, the same α-Fe in the hightemperature paramagnetic phase exhibits a strongly correlated non-Fermi-liquid behavior [17][18][19] with DFT calculations failing to describe its structural parameters (lattice constants, bulk modulus, or even the shape of the crystal) [18]. The low-temperature paramagnetic hexagonal ϵ phase stabilized by pressure is also rather strongly correlated [13] (though less so as compared to paramagnetic α-Fe), exhibiting a large electron-electron scattering contribution to the resistivity [20] as well as unconventional superconductivity [21,22]. All this hints at a strong sensitivity of many-body effects in Fe to local disturbances of the crystalline order (e.g., to point defects) that cannot be captured easily within standard DFT. Indeed, extensive DFT calculations of α-Fe [23][24][25][26][27][28][29][30][31][32][33][34] predict a monovacancy formation energy about 30%-40% higher than the measured values, with significant scatter depending on the DFT implementation used (see also Table II in Ref. [35]). In contrast to other 3d metals, this formation energy has been somewhat reliably determined thanks to extensive experiments [36][37][38][39][40].

The deficiencies of standard DFT to describe ϵ-Fe and paramagnetic α-Fe have been successfully corrected by combining it with a dynamical mean-field theory (DMFT) [41,42] treatment of the local repulsion between 3d electrons. Ab initio calculations using this DFT+DMFT approach [43,44] were able to reproduce the ground-state properties and phonon spectra of the α and δ phase [18,45,46] as well as the equation of state of ϵ-Fe [13]. It is thus likely that an explicit treatment of many-body effects within DMFT will also correct the severe problems of DFT in describing point defects in iron.

Hence, in the present work we have developed the stateof-the-art DFT+DMFT method [47][48][49][50] into a scheme for studying vacancy properties. We have applied our technique to a single vacancy in paramagnetic α-Fe, where positron annihilation measurements have been performed on pure iron without further approximations (contrary to the formation energy in 2469-9950/2016/94(10)/100102 (6) 100102-1 ©2016 American Physical Society the ferromagnetic phase). We have computed the electronic structure around the vacancy as well as the vacancy's formation energy, taking into account local lattice distortions around the defect. We do not treat here the high-temperature face-centered cubic phase, or temperatures close to the melting point, where the influence of the (anharmonic) lattice vibrations may play a crucial role [5,10,51] and the bcc phase is stabilized again. Compared to ferromagnetic DFT calculations, a significant reduction of the theoretical formation energy is obtained, with calculated values in remarkable agreement with experimental estimates [36][37][38][39][40]. We trace back this reduction to rather subtle effects of the vacancy on the local density of states and hybridization with its nearest neighbors.

We model a single vacancy in bcc Fe using the 2 × 2 × 2 and 3 × 3 × 3 cubic supercells represented in Fig. 1, with the vacancy placed at the origin of the supercells. We compute the vacancy formation energy from the supercell total energy using the standard formula

E f vac = E vac (N -1) - N -1 N E no vac (N ), (1) 
where N is the number of atoms in the ideal supercell, E no vac (N ) is the total energy of the ideal supercell containing N atoms and no vacancy, and E vac (N -1) is the total energy of the same supercell with a vacancy (hence N -1 atoms). N is 16 in the 2 × 2 × 2 supercell and 54 in the 3 × 3 × 3 supercell, corresponding to vacancy concentrations of 6.25% and 1.85%, respectively. Our calculations have been carried out using a fully charge self-consistent implementation of DFT+DMFT [53,54] based on the TRIQS package [55,56], with LDA as DFT exchangecorrelation potential. This implementation is based on the full potential linearized augmented plane-wave WIEN2K code [57]. The on-site density-density interaction between those orbitals is parametrized by the Slater parameter F 0 = U = 4.3 eV and the Hund's rule coupling J = 1.0 eV that were previously used in the DFT+DMFT calculations of α and ϵ-Fe of Ref. [13]. The same work reproduced almost exactly the experimental lattice parameter of 2.86 Å, hence we perform our DFT+DMFT calculations at the experimental volume. Other DFT calculations were performed at the corresponding theoretical volume. Technical details about the DFT and DFT+DMFT calculations are included in the Supplemental FIG. 2. Vacancy formation energies calculated by different methods (GGA and DFT+DMFT) in the different setups: small and large supercell, relaxed or not, nonmagnetic, paramagnetic (PM) or ferromagnetic (FM). Calculations are performed at the equilibrium volume for the relevant setup. The average of experimental values is shown for comparison [36][37][38][39][40].

Material [35]. The calculation of a vacancy formation energy using supercells with seven inequivalent atomic sites has become possible thanks to the use of a continuous-time quantum Monte Carlo hybridization expansion algorithm [58] in the segment representation for the solution of the local impurity problems (Backes et al. (Ref. [59]) and Behrmann et al. (Ref. [60]) have reported about the effect of vacancies on magnetism within DFT+DMFT). All DFT+DMFT calculations were performed at a temperature of 1162 K.

The vacancy formation energies obtained within DFT+DMFT together with different DFT results and experimental values are shown in Fig. 2 (see also Table I of the Supplemental Material [35]). The resulting value for E f vac in DFT+DMFT is 1.77 eV for the unrelaxed 54-atom supercell with lattice relaxations reducing it further to E f vac = 1.56 ± 0.13 eV, in excellent agreement with the mean experimental value of about 1.6 eV. We also calculated E f vac within DFT+DMFT for the unrelaxed ferromagnetic phase obtaining a higher value of 2.45 ± 0.15 eV. Experiments indeed seem to confirm that E f vac in the ferromagnetic phase should be larger than in the nonmagnetic one [39,40], although direct low-temperature measurements of E f vac in the ferromagnetic phase with positron annihilation spectroscopy are notoriously difficult.

DFT (GGA) calculations assuming ferromagnetic bcc Fe predict a significantly larger value E f vac of 2.51 and 2.32 eV for an unrelaxed and a fully relaxed cell, respectively. Hence, one sees that many-body effects included within DMFT reduce E f vac for the paramagnetic phase by about 0.7 eV. The impact of correlation effects for ferromagnetic α-Fe is much less significant, in agreement with the predicted suppression of dynamic correlations in this phase [13]. Indeed, the large static spin splitting in the ferromagnetic phase leads to a suppression of dynamical correlations, which explains why DFT works well in the ferromagnetic, but not in the paramagnetic phase of α-Fe. The vacancy formation energies obtained with nonmagnetic DFT calculations are even lower than the measured values, with E f vac ≈ 1.5 eV in unrelaxed GGA. They have, however, very little physical meaning: DFT in general fails dramatically for the paramagnetic phase, which is reflected by the fact that α-Fe is not dynamically stable and the predicted lattice parameter would be significantly smaller in nonmagnetic DFT. Hence, using our relaxed positions in a nonmagnetic DFT calculation gives an (unphysical) negative vacancy formation energy. Thus, the strongly reduced value of E f vac in nonmagnetic DFT calculations compared to ferromagnetic ones may be due to a spurious cancellation of errors.

The total energy in DFT+DMFT is

E tot DMFT = Tr εk ρDMFT k + E[ρ DMFT ] + (E Hub -E DC ), (2) 
where ρDMFT k is the density matrix for crystal momentum k, εk the corresponding LDA Hamiltonian and E[ρ DMFT ] only depends explicitly on the charge density. E Hub = 1 2 ij U ij ⟨n i n j ⟩ is the Coulomb interaction between Fe 3d electrons (i and j are orbital indices and U ij is the densitydensity Coulomb matrix), and E DC is the double-counting term that estimates the energy already present in LDA (see Supplemental Material for the details [35]). When one removes an atom from the cell to create a vacancy, all three terms in Eq. (2) change. Figure 3 shows the difference in the third term, E int = E Hub -E DC , on each respective atom of the supercell before and after removing an atom. Summing this up and taking into account the multiplicity of the atoms in the cell yields a change E int ≈ -1.6 eV, that is compensated by a larger change in E[ρ DMFT ] due to a redistribution of the charge density, as wave functions from DFT+DMFT are more localized. The contributions from the second and third coordination shells compensate one another, so that the net change in the interaction energy only comes from the first nearest neighbor. This is due to good metallic screening, and is in good agreement with embedded atom method calculations of iron vacancies near a surface [61] that show the vacancy formation energy becomes equal to the bulk value for the vacancy located in the third layer or deeper.

The self-energy of the vacancy's first coordination shell shows a significant difference from the bulk bcc-Fe selfenergy, as shown in Figs. 4(a) and 4(b). t 2g states, but also e g states to a lesser extent, become more strongly correlated Correlations become stronger on the atom nearest to the vacancy, while the difference between e g and t 2g is strongly reduced. (c) LDA density of states around the Fermi level and (d) hybridization function on the Matsubara axis for the nearest neighbors (blue, full) to the vacancy, and for the central atom (black, dashed). The full Fe 3d DOS is shown in the Supplemental Material [35].

(less coherent) with a larger Im (iω). A larger absolute value of the imaginary part of the self-energy at low frequencies means a shorter quasiparticle lifetime, synonymous to stronger dynamic correlations. This difference almost vanishes for the self-energy of the atoms further than the nearest neighbor, in agreement with the variation of the interaction energy shown in Fig. 3. Stronger correlations on the atoms near the vacancy imply that a more correct description of the 3d electrons of the Fe atoms in DFT+DMFT, already important to predict the crystal structure and lattice parameter, is especially crucial when estimating the energetics of the vacancy and indeed leads to a smaller formation energy. Note that the self-energies are slightly atom dependent even in the absence of a vacancy in our calculations, due to an artificial symmetry breaking in the supercell in DFT calculations and the nonrotational invariance of the density-density Hubbard Hamiltonian. However, we compare self-energies and interaction energies in a consistent, atom-to-atom way.
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The enhancement of the nearest-neighbor self-energy can be traced back to a change in the hybridization function. As can be seen in Fig. 4(d), the imaginary-frequency hybridization function, in particular for the t 2g states, is reduced at low frequencies for the atom near the vacancy. This reduction is due to an increase in the corresponding t 2g partial density of states (DOS) in the vicinity of the Fermi level, E F , as one can see in Fig. 4(c). A larger DOS at E F induces a suppression of low-energy hopping leading to stronger correlation [19,62]: at the first iteration of DMFT, Im (i0 + ) = -πρ F /[ReG loc (i0 + ) 2 + (πρ F ) 2 ] ≈ -1/(πρ F ), with ρ F the LDA DOS. The enhancement of the nearest-neighbor e g self-energy is smaller and the corresponding DOS at E F even decreases compared to the bulk case. This decrease in the value of the DOS exactly at E F is compensated by an overall narrowing of the e g peak in the vicinity of E F [see Fig. 4(c)]. Hence, the resulting hybridization function for e g is still suppressed starting from the second Matsubara point.

Next, we calculated the relaxed atomic positions in DFT+DMFT around the vacancy. Computing atomic forces in DFT+DMFT is rather complicated [63], so we obtained the relaxed atomic positions by moving atoms and minimizing the total energies. We performed a relaxation of the atoms around the vacancy in two steps, in order to reduce the computational effort. We first performed the full relaxation in spin-polarized GGA (at its corresponding theoretical volume, computing atomic forces), to obtain an initial guess of the atomic positions. We observe a shift of the first coordination shell towards the vacancy by about 4%, and a shift of the second coordination shell away from the vacancy by about 1.5%, while all the other atoms do not move significantly, in agreement with previous calculations [25]. In the second step, the positions of the two first nearest neighbors were relaxed within DFT+DMFT. In Fig. 5 we show the total energy (minus an offset depending on the method used, GGA or DFT+DMFT) of the supercell as a function of the relaxed position of the nearest and second nearest neighbor of the vacancy. Each site was moved independently, preserving the symmetry of the cell, while the positions of others were fixed at their fractional GGA values. We obtain the following results: in DFT+DMFT, for paramagnetic α-Fe, the first nearest neighbor relaxes by 5.7% towards the vacancy, while the second nearest neighbor relaxes away from it by 0.7%. One sees that manybody effects have a significant impact on the nearest-neighbor relaxation, enhancing it by almost 50%. Overall, relaxing the two first coordination shells in full DFT+DMFT reduces the vacancy formation energy by 0.21 eV.

In conclusion, we have shown that local many-body effects are crucial for explaining a relatively low vacancy formation energy in α-Fe. The presence of a vacancy induces rather subtle changes in the local electronic structure of its surroundings, leading to a moderate increase in the strength of correlations at neighboring sites. This moderate increase has, however, a FIG. 5. Total energy vs distance to the vacancy (as a fraction of the lattice parameter) for the first nearest neighbor (blue) and the second nearest neighbor (red), in DFT+DMFT (full line) and GGA (dashed line). The black arrows show the position of the atoms in the unrelaxed bcc supercell. very significant impact on the vacancy energetics. When the effect of local relaxations is included, the calculated vacancy formation energy is reduced by about 0.7 eV compared with the corresponding DFT value and is in excellent agreement with experiment. The predicted magnitude of nearest-neighbor relaxations is about 50% larger compared to the one obtained within DFT. This remarkable sensitivity to correlation effects is most probably pertinent to other types of defects in iron that are of the crucial importance for mechanical properties and thermodynamics of steels, e.g., interstitial sites, stacking faults, and dislocations.

Introduction

Technological progress has been intimately related with progress in materials science since its very early days. The last century has seen the development of refined capabilities for materials elaboration, characterisation and control of properties, culminating among others in the unprecedented possibilities of the digital age: materials properties have become an object of theoretical simulations, stimulating systematic searches for systems with desired characteristics. This branch of condensed matter physics is continuously evolving into a true new pillar of materials science, where the theoretical assessment of solid state systems becomes a fundamental tool for materials screening.

Obviously, the success of this program hinges on the degree of predictive power of modern simulation techniques, which have to allow for performing calculations without introducing adjustable parameters. This requirement is even more severe since the most popular branch of ab initio calculations, the Density Functional Theory (DFT) approach, is restricted to ground state properties of the solid, while most properties of potential technological interest stem from excited states: the calculation of any type of transport phenomenon, for example electric, thermal, thermoelectric or magnetoelectric transport, of optical or spectroscopic properties, or of magnetic, charge-or orbital susceptibilites requires the accurate assessment of highly non-trivial response functions within a finite-temperature description.

It is not a coincidence that the materials with the most exotic features are also most challenging to get to grips with from a theoretical point of view: both the complexity of their properties and the difficulty of their description are in fact a consequence of the very nature of the underlying electronic structure: typically, one is dealing with transition metal, lanthanide or actinide compounds, where the electrons in partially filled d-or f -shells strongly interact with each other through electron-electron Coulomb interactions, leading to highly entangled many-body quantum states.

Even when using a simplified description of the solid in terms of an effective lattice model, assessing these quantum correlated states is a tremendous challenge. If local quantum fluctuations on a given atomic site are dominant, dynamical mean-field theory (DMFT) 1, 2) yields an accurate description of the system. In particular, DMFT captures both the strong coupling Mott-insulating limit and the weakly interacting band limit of the Hubbard model, and is able to describe the salient spectral features of a correlated metal with coexisting quasi-particle and Hubbard peaks even in the intermediate correlation regime. In the multi-orbital case, additional degrees of freedom can lead to even richer physics with unconventional (e.g. orbital-selective) behavior, 3) or complex ordering phenomena. 4-9) In order to recover the material-specific character of the calculations, DMFT has been combined with DFT 10, 11) into the so-called "DFT+DMFT" scheme, which is nowadays one of the most popular workhorses of electronic structure theory for correlated electron materials. Successful applications include transition metals, 12-14) transition metal oxides, 4, 15-26) lanthanide 27, 28) or actinide 29-32) systems. Comparisons be-tween calculated and measured spectral functions have sometimes led to impressive agreement. 33, 34) However, despite these successes the construction of the Hamiltonian used in these calculations is rather ad hoc and remains a limitation to the predictive power of the approach. Therefore, the elaboration of more systematic interfaces between electronic structure and many-body theory has become an active area of research. 35) In this work, we review a recent scheme combining screened exchange and DMFT. 36-38) We discuss its relation to many-body perturbation theory and generalized Kohn-Sham (KS) Theory and analyse the effects included at the different levels of the theory. As an illustration we describe its application to the low-energy spectral properties of the cobalt pnictide BaCo 2 As 2 .

How does a theory thas has been designed for strongly correlated materials reduce to an a priori simpler version in the case of a weakly correlated system ? For methods based on DFT that include only the static on-site Coulomb interaction between localized states, like DFT+U 39) or DFT+DMFT, the spectrum in the limit of vanishing Hubbard interactions reduces trivially to the Kohn-Sham spectrum of DFT. For more complex interfaces of electronic structure and many-body theory which we will discuss here, however, it is a non-trivial question and allows for interesting possibilities to check their consistency. Here, we will discuss this issue on the example of the transition metals zinc and cadmium. This also allows us to comment on the challenge of including states in a wider energy range, identifying a challenging problem on these seemingly "simple" systems.

The paper is organised as follows: in section 2 we review how Screened Exchange Dynamical Mean Field Theory derives from the combined many-body perturbation theory + dynamical mean field scheme "GW+DMFT". In section 3 we analyse the relation of screened exchange schemes to generalized KS theory. Section 4 provides an example of the application of such methods to BaCo 2 As 2 , while section 5 discusses the electronic structure of elemental zinc and cadmium within a simplified approach. Finally, we conclude in section 6.

From GW+DMFT to Screened Exchange Dynamical Mean Field Theory

Improving the predictive power of methods that combine electronic structure and many-body theory poses the challenge of properly connecting the two worlds, without double counting of interactions or screening. At the heart of this challenge lies the mismatch between the density-based description of DFT and the Green's function formalism used at the many-body level, as well as the difficulty of incorporating the feedback of high-energy screening processes governed by the unscreened Coulomb interaction onto the low-energy electronic structure. Conceptually speaking, these difficulties can be avoided by working on a large energy scale in the continuum with the full long-range Coulomb interactions, and a Green's function-based formalism even at the level of the weakly correlated states. These features are realised within the combined many-body perturbation theory and dynamical mean field theory scheme "GW+DMFT": 40-49) screening is assessed by the random phase approximation in the continuum, augmented by a local vertex correction, while the starting electronic structure for the DMFT calculation can be roughly interpreted as a "non-local GW" calculation. 50) Screened Exchange Dynamical Mean Field Theory 36-38) can be understood as an approximation to this full GW+DMFT scheme. It is based on the recent observation 36, 50) that within the GW approximation the correction to LDA can be split into two contributions: a local dynamical self-energy Σ loc (ω) and a k-dependent but static self-energy Σ nloc (k), which does not contain any local component. If such a separation was strictly valid in the full energy range, the non-local static part of the full self-energy would be given by the non-local Hartree-Fock contribution, since the dynamical part vanishes at high frequency. In many realistic systems such a decomposition holds to a good approximation in the low-energy regime that we are interested in, where the static part Σ nloc (k) is quite different from the Fock exchange term. It is approximately given by a screened exchange selfenergy, leading to a decomposition of the GW self-energy into

Σ GW = [GW(ν = 0)] nonloc + [GW] loc .
Here, the first term is a screened exchange contribution arising from the screened interaction W(ν) evaluated at zero frequency W(ν = 0). The second term is the local projection of the GW self-energy. It is simply given by the GW self-energy evaluated using a local propagator G loc and the local screened Coulomb interaction W loc . Exactly as in GW+DMFT, Screened Exchange Dynamical Mean Field Theory replaces this term by a nonperturbative one: it is calculated from an effective local impurity problem with dynamical interactions. In current practical applications of Screened Exchange + DMFT the RPAscreened Coulomb potential W has been replaced by its longwavelength limit, which reduces to a simple Yukawa-form. 36) Quite generally the dynamical character of the interactions results in an additional renormalization Z B of the hopping amplitudes, which can be understood as an electronic polaron effect: the coupling of the electrons to plasmonic screening degrees of freedom leads to an effective mass enhancement corresponding to the hopping reduction, manifesting itself as a narrowing of the band. This effect can be estimated from the plasmon density of modes as given by the imaginary part of the frequency dependent interaction W. An explicit expression for Z B has been derived in Ref. 51.

Relation to Generalized Kohn-Sham Theory

Screened Exchange Dynamical Mean Field Theory can also be viewed as a specific approximation to a spectral density functional theory based on the Generalized Kohn-Sham (GKS) scheme of Seidl et al. 52) In GKS theory, alternative choices for the reference system that are different than the familiar Kohn-Sham system of DFT are explored. In particular, a generalized Kohn-Sham scheme where the reference system is a screened exchange Hamiltonian can be constructed. The main motivation for the inclusion of screened exchange in the literature has been to improve upon the band gap problem in semiconductors. Indeed, it can be shown that the screened exchange contribution, which corresponds to a non-local potential, effectively reintroduces to some degree the derivative discontinuity that is missing in the pure DFT description based on local exchange-correlation potentials. 53) Since the derivative discontinuity corresponds to the discrepancy between the true gap and the Kohn-Sham gap in exact DFT, a substantial improvement of the theoretical estimate for band gaps can be expected on physical grounds and has indeed been found. Here, our goal is somewhat different: motivated by the analysis of the role of screened exchange in GW+DMFT described above, we would like to connect the Screened Exchange DMFT scheme introduced above to generalized KS schemes making direct use of the non-local screened exchange potential.

With this aim in mind, we briefly review the generalized Kohn-Sham construction in the case an effective Kohn-Sham system including screened exchange. Hereby, we follow closely Seidl et al., 52) both in notation and presentation. First, one defines a functional

S [Φ] = Φ T Φ + U H {φ i } + E sx x {φ i } (1) 
that includes, in addition to the familiar kinetic energy term Φ| T |Φ and the Hartree energy U H {φ i } also the screened Fock term

E sx x {φ i } = - N i< j drdr × φ * i (r)φ * j (r )e -k TF| r-r | φ j (r)φ i (r ) |r -r | (2) 
Here, Φ are Slater determinants of single-particle states φ i . k TF is the Thomas Fermi wave vector. In order to derive a functional of the density Seidl et al. define a functional F s via the minimisation

F S ρ = min Φ→ρ(r) S [Φ] = min {φi}→ρ(r) S {φ i } (3) 
Next we define the energy functional

E S {φ i }; v e f f = S {φ i } + drv e f f (r)ρ(r) (4) 
where now the potential v e f f does not only include the external potential v as in usual DFT, but also a contribution by the exchange-correlation part

v e f f = v + v sx xc ρ . ( 5 
)
The additional contribution, the generalized (local) exchangecorrelation potential

v sx xc = ∂E sx xc ρ ∂ρ . ( 6 
)
is the functional derivative of the generalized (local) exchange-correlation functional

E sx xc ρ = E xc ρ -E sx x ρ + T ρ -T sx ρ (7) 
which comprises the difference between the exchangecorrelation potential of standard Kohn-Sham DFT and the non-local exchange energy defined above, as well as the difference between the kinetic energies of the standard and generalized Kohn-Sham systems. The functional derivative will eventually have to be evaluated self-consistently at the converged density. This construction leads to the generalized Kohn-Sham equations

-∇ 2 φ i (r) + v(r)φ i (r) + u ([ρ]; r) φ i (r) -dr v sx,NL x (r, r )φ i (r ) + v sx xc ([ρ]; r) φ i (r) = ε i φ i (8)
with the Hartree potential u and the non-local screened Fock potential

v sx,NL x (r, r ) = - N j=1 φ i (r)e -k TF| r-r | φ * j (r ) |r -r | . ( 9 
)
and the effective (local) generalized Kohn Sham potential v sx xc defined above. The generalized Kohn-Sham equations have the form

Ô {φ i } φ j + ve f f φ j = j φ j ( 10 
)
where Ô is a non-local operator, generalizing the standard Kohn-Sham operator consisting solely of kinetic energy and Hartree potential. The ground state energy for a system in the external potential v is then given by the expression

E SEx-DFT [v] = F S ρ S 0 v e f f + E sx xc ρ S 0 v e f f + drv(r)ρ S 0 v e f f (11) 
Now, the relation to Screened Exchange DMFT is becoming clear: one may construct a spectral density functional in the same spirit as in DFT+DMFT, 54) but starting from the generalized KS functional. In 55, the expression for the total energy within the standard DFT+DMFT case was derived to be

E = E DFT - l KS l + H KS + (H int -H dc ) (12) 
where l KS l is the sum of the occupied Kohn-Sham eigenvalues, H KS = tr [H KS Ĝ], and H int and H dc denote the local interaction part of the Hamiltonian and the corresponding double counting term, respectively.

Instead of using the usual Kohn-Sham Hamiltonian for the construction of the one-body part, Screened Exchange DMFT relies on the generalized Kohn-Sham reference system that includes the screened exchange potential. The generalization of (12) to the present case thus replaces the Kohn-Sham Hamiltonian H KS in the expression for the energy by its non-local form, keeping track of the effective potential part: 

E = E SEx-DFT - l SEx-KS l + Ô + ve f f -6 -5 -4 -3 -2 -1 0 1 2 3 Γ X M Γ E -E F (eV) -6 -5 -4 -3 -2 -1 0 1 2 3 -6 -5 -4 -3 -2 - 
+ (H int (V ee , λ s , ω s ) -H dc ) (13) 
Furthermore, the local interaction term is taken in the more general form of a dynamical interaction, thus corresponding to a local Hubbard term with unscreened interactions and local Einstein plasmons of energy ω s coupling to the electrons via coupling strength λ s . This concludes our description of the generalized Kohn-Sham interpretation of Screened Exchange DMFT, resulting in particular in an energy functional expression. However, in the practical calculations presented in the following we do not minimise the full energy expression as given above, but rather work at the converged DFT density and then investigate spectral properties using the Screened Exchange DMFT formalism. This amounts to a one-shot Screened Exchange-DFT+DMFT calculation that uses the DFT density as a starting point. The advantage of such an approach is obvious: Numerically, this procedure allows us to avoid the expensive evaluation of non-local exchange terms within the selfconsistency cycle of GKS theory. Moreover, as is well-known, while severe deviations of the true spectrum from the Kohn-Sham spectrum are quite common, the ground state density obtained even from approximate DFT functionals is often a good representation of the true one. In the case of the exact DFT functional, our approach would also lead to the exact ground state density and energy, with additional improvements of the spectrum over standard Kohn-Sham DFT. 3d states changes from d 6 to d 7 , which strongly reduces the degree of Coulomb correlations, making BaCo 2 As 2 a moderately correlated compound. 36, 56) Indeed, the power-law deviations from Fermi liquid behavior above an extremely low coherence temperature discussed in the Fe-based compounds 57) are a consequence of the d 6 configuration and strong intraatomic exchange interactions. This is no longer the case in the cobalt pnictides, where angle-resolved photoemission spectroscopy (ARPES) identifies well-defined and long-lived quasiparticle excitations with relatively weak mass renormalization. Nevertheless, the DFT-LDA derived Fermi surface differs from experiment. 36, 56, 58, 59) Therefore, BaCo 2 As 2 provides an ideal testing ground for new approaches to spectroscopic properties. We do not discuss here the details of yet another interesting question, which is the absence of ferromagnetism despite a high value of the DFT density of states at the Fermi level, suggestive of Stoner ferromagnetism, but refer the reader to Ref. 36, where the solution to this puzzle was discussed in detail. Fig. 1 shows the DFT band structure of BaCo 2 As 2 , in comparison to a screened exchange calculation. As in the ironbased pnictides, the dominantly 3d-derived states are located around the Fermi level; in this case in a window of about -3 eV to 2 eV. As compared to the parent iron pnictides with 3d 6 configuration of the Fe shell, the Fermi surface topology is modified due to the larger 3d 7 filling. The hole pocket at the Γ point that is present in most Fe-based pnictide compounds is pushed below the Fermi level, as well as the band forming the electron pocket at M, which is now fully filled. In standard DFT-LDA (see Fig. 2), a characteristic flat band of dominant x 2 -y 2 character lies directly on the Fermi level around the M point, giving rise to a huge peak in the density of states. E -E F (eV) The close proximity of this band to the Fermi level will render its energy highly sensitive to the details of the calculation and thus provides a perfect benchmark for improved computational techniques.

Comparison to angle-resolved photoemission experiments, 36) as reproduced in Fig. 3, reveals that the overall bandwidth of the LDA band structure is too wide by roughly a factor of 1.5. In a DFT+DMFT calculation, as shown in Fig. 4, this band renormalisation is reproduced, giving an overall occupied bandwidth of about 1.5 eV. The fine details of the Fermi surface, and in particular the position of the flat x 2 -y 2 band are however not well described. For a detailed comparison we refer the reader to Ref. 36.

Including screened exchange in the form of a Yukawa potential on top of DFT, as shown in Fig. 1 widens the band by a considerable amount as compared to DFT-LDA. Even more striking are the modifications at the Fermi level: the x 2 -y 2 band has been shifted above the Fermi level, with an energy at the M point of about 0.15 eV above E F . While the lowering of the filling of this band improves the agreement between theory and experiment, the shift is too large to reproduce the experimental Fermi surface. However, when applying DMFT with dynamical interactions on top of the screened exchange Hamiltonian, equivalent to the one-shot Screened Exchange DMFT procedure described above, this band is renormalized by the electronic interactions and ends up again close (but above!) the Fermi level. Its energy is slightly higher than in DFT-LDA and is now in excellent agreement with the experimental Fermi surface. A more detailed analysis presented in Ref. 36) reveals that also the higher energy features such as the bands within the range of up to 2 eV are well reproduced in this one-shot Screened Exchange DMFT approach.

The comparison of the band structures and spectral func- tions within the different computational schemes illustrates the effects of the different terms in an instructive way: Improving on the description of exchange by replacing the local exchange as contained in DFT-LDA by a non-local screened Fock exchange widens the bandwidth and strongly "overcorrects" the Fermi surface. Improving at the same time on the correlation part by applying DMFT with frequencydependent interactions then leads to a partial cancellation of the band widening, giving an overall bandwidth surprisingly close to the LDA+DMFT one. This suggests that the good description of the overall bandwidth in DFT+DMFT is the result of an error cancellation between the local approximation to exchange and partial neglect of correlations. However, the Fermi surface is strongly modified by the non-local corrections, leading to a significant improvement over LDA+DMFT and resulting in good agreement with experiment. These findings might suggest that possible inconsistencies between theoretical and experimental Fermi surfaces that are observed in many pnictide materials could be corrected by adding simple non-local self-energy corrections stemming from screened exchange effects. Whether this treatment can fully account for the "red-blue shift" of Fermi surface pockets found in the experimental-theoretical comparisons 60) is a most interesting topic for future research. The current example may give rise to optimism.

How does Screened Exchange Dynamical Mean Field

Theory behave for weakly correlated materials?

Hamiltonians built as combinations of a DFT part and local Hubbard-type interaction terms trivially reduce to the DFT Kohn-Sham electronic structure when assuming that in weakly correlated materials the effective local interactions become negligible. The question of the recovery of the weakly interacting limit is, however, more interesting in the case of In Ref. 38, this question has been studied for early transition metal perovskites, where it was found that the band widening effect induced by non-local exchange and the electronic polaron effect counteract each other and tend to approximately cancel, thus resulting in a low-energy electronic structure close to the DFT Kohn-Sham band structure as long as static Hubbard interactions are disregarded. Here, we address this question in the case of the seemingly "simple" transition metals zinc and cadmium.

Both elements nominally display a d 10 configuration, with fully occupied 3d orbitals in the case of Zn and 4d in the case of Cd, the dominantly d-derived bands being located several eV below the Fermi level. In Fig. 7 and Fig. 8 we show the band structure calculated within DFT for both materials. Here and in the following we use the experimental crystal structure. DFT puts the occupied d states at around -8 eV in Zn and -9 eV in Cd. The conducting states of this transition metal are formed by dispersive 4s(5s) in Zn(Cd) states around the Fermi level, that hybridize with the p-manifold.

These facts raise the immediate expectation of negligibly small correlation effects on the occupied d shells. An effective Hubbard interaction calculated for the d-manifold within the constrained random phase approximation coincides with the fully screened interaction, since as a consequence of the complete filling of the d-shell there are no intra-d transitions to be cut out as opposed to an open shell system, where transitions inside the shell contribute to screening effects. Figs. 9 and 10 display the local component of this fully screened interaction projected on the d-manifold. The lowfrequency limit approaches a value of 4.8 eV and 3.1 eV for Zn and Cd respectively. Even though this value is similar to their oxides, which are open shell systems, where correlations on the d states are significant, the high binding energy of these states far away from the Fermi level effectively prevents dynamical fluctuations. This suggests that screened exchange + DMFT should in fact reduce to screened exchange renormalized by the bosonic factor Z B discussed above. Nevertheless, this does not mean that static effects of the interaction are properly treated in DFT. Even if this were the case, there is no reason that the DFT Kohn-Sham spectrum, being derived from an effective non-interacting system, provides an accurate description of the experimental situation.

Figs. 11 and 12 compare the experimental photoemission spectra 61, 62) from the literature to the density of states (DOS) derived from DFT and Hartree-Fock (HF) theory. The resulting discrepancy in terms of an underestimation of the binding energy of the d states in DFT of several eV had been noted in the literature before: 63-65) Norman et a.l 63) discussed it in terms of a self-interaction error, proposing a correction in terms of an approximate substraction of self-interaction contributions contained in DFT. 66) Hartree-Fock calculations are, on the one hand, self-interaction free, but on the other handdue to the absence of screening -widen all bands and place the d-bands far too low in energy, as can be seen in Figs. 11 and12.

Since local dynamical correlations can assumed to be small as discussed before, an improved treatment of the screened interaction and the self-interaction correction at the same time is likely to improve the shortcomings of Hartree-Fock, resp. DFT. Here we will discuss the two possible extensions of Screened Exchange plus a bosonic renormalization factor Z B and the GW approximation. The computationally cheaper option of screened exchange is including only static exchange contributions with a Yukawa-type interaction potential, and an effective renormalization Z B which originates from the spectral weight transfer to plasmonic excitations. GW is computationally more demanding, but has the advantage of treating the dynamical part of the screening and correlation. Even though both methods include a self-interaction correction, the selfinteraction contained in the Hartree term is not completely cancelled since the exchange contributions are derived from a screened interaction and not the bare one, as opposed to the Hartree term.

In Figs. 13 and 14 we show comparisons of the DOS of zinc and cadmium, calculated within DFT, screened Exchange(+Z B ) and GW 67) to photoemission spectra. In the GW calculation we used 7 × 7 × 3 k-points and 5 additional high-energy local orbitals. Interestingly, while in both systems the GW approximation provides a significant correction of the DFT Kohn-Sham spectrum in the right direction, but still underestimates the binding energy, the screened exchange scheme places the d-states too low in energy for Zn while providing a slightly better estimate than GW in Cd. The addition of the bosonic renormalization factor Z B merely renormalizes the d bandwidth but keeps the average level position constant.

This raises the interesting question of which effects are missing in screened exchange and GW? The incomplete cancellation of the self-interaction in both approaches is expected to lead to an overall underestimation of the binding energy, since the additional unphysical interaction increases the energy of the d states. A more accurate estimate of this term would lead to an improvement of GW in both systems, but an even larger error of screened exchange in Zn. Another effect neglected in screened exchange is the Coulomb hole contribution: this term, discussed by Hedin as part of the "Coulomb hole screened exchange (COHSEX)" approximation translates the fact that the presence of an electron at a position r pushes away charge at r (in the language of a lattice model, the charge-charge correlation function exhibits a reduction of the double occupancy), and the interaction of this effective positive charge with the electron presents an energy gain expressed in the form of an interaction of the electron with a "Coulomb hole". This term, contained in GW but not in screened exchange, also increases the binding energy.

This leads to the overall picture that screened exchange with the inclusion of the static corrections just discussed has a tendency to overestimate the binding energy in general, while GW underestimates it. The obvious difference between the two methods is the dynamical treatment of the screened interaction, which is treated more appropriately in GW, but it is not clear a priori whether the static approximation of the screened interaction or the approximated form of the screened interaction in terms of a Yukawa potential gives rise to the difference between screened exchange and GW. The GW description of zinc and cadmium is close to the experiment. The remaining discrepancy to experiment is likely explained by remaining self-interaction contributions and/or missing self-consistency. Self-consistency (or quasiparticle self-consistency) has been investigated in the homogeneous electron gas 68) and various solid state systems. 69) These questions are left for future work.

Conclusions

In this work we have reviewed and applied existing as well as novel approaches to obtain spectral properties of correlated electron materials. Guided by the need of a proper treatment of the long-range Coulomb interaction and non-local exchange effects we presented a lightweight version of the general GW+DMFT approach, the so-called Screened Exchange DMFT. It can be derived as a simplication to GW+DMFT in terms of a generalized screened exchange DFT scheme where local interactions are treated by dynamical DMFT.

Analysis and the application of a simplifed form of this scheme to BaCo 2 As 2 indeed showed that non-local exchange and electronic screening lead to significant corrections to the electronic spectrum which are necessary to obtain a proper description of the experimental observations. Furthermore, we discussed the case of the elemental transition metals Zn and Cd, where strong local correlations are unimportant but the position of the occupied d manifold is very sensitive to a proper treatment of screened exchange effects.
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where the f -f transitions are hidden by the optical response of conduction electrons, inelastic neutron spectroscopy can be used to determine CFP [16][17][18][19][20], but its results are more ambiguous as one needs to sort out the contributions of phonons and the effect of intersite exchange interactions.

Ab initio calculations do not rely on experimental input and can have truly predictive power. First-principles techniques for computing the CF parameters [7,[21][22][23][24][25][26][27][28][29] can be separated into two main approaches. The first one [7,[22][23][24][25][26][27] consists of extracting the nonspherical Kohn-Sham potential V lm and the 4f charge density ρ 4f around the rare-earth site and then computing the corresponding crystal-field parameter. As the density functional theory (DFT) is not able to fully capture the physics of partially filled localized 4f shells, one imposes their localization by treating the 4f orbitals as semicore states. The nonspherical 4f charge density ρ 4f (r) of the rare-earth ion includes an unphysical contribution to the CFP stemming from the local-density-approximation (LDA) self-interaction error. This is usually corrected by spherically averaging the 4f charge density, but then approximations have to be made for the long-range "tails" of ρ 4f (r).

The importance of excluding the self-interaction of the nonspherical part of the partial 4f charge density to obtain proper crystal-field energies was first recognized by Brooks et al. in a publication aimed at calculating the spin Hamiltonian parameters of rare-earth compounds [30].

In the second, more recent, approach the 4f states are represented by Wannier functions [28,29,31], while the charge density and, correspondingly, the Kohn-Sham potential are generated by self-consistent DFT calculations with 4f states treated as semicore. An additional ad hoc parameter is used to correct the charge transfer energy between 4f and conduction bands.

One may also mention recent work on determining the CFP of lanthanides and transition metals using quantum-chemical methods, in particular, in order to understand the properties of magnetic molecules. Such approaches employ, for instance, the complete active space self-consistent field method [32] or multireference second order perturbation theory [33]. Here, however, we choose to focus on perfect crystals rather than on molecules.

Overall, ab initio calculations of CFP for rare-earth ions are a formidable theoretical problem, due to generally small values of those CFP and their extreme sensitivity to computational details. The main weak point of previously proposed DFTbased approaches is that they are not able to correctly treat the localized valence 4f states. Hence, the charge density is derived under the drastic approximation of treating them as fully localized core states, spherically averaged inside the atomic sphere. The DFT+U method provides a more realistic treatment for the 4f density in the limit of strong ordered magnetism. However, it is usually not able to capture the true quasiatomic (multiplet) nature of rare-earth shells in the paramagnetic or partially polarized state. The DFT+U calculations can nevertheless be used to estimate the CFP by converging them to the on-site density matrix corresponding to a given atomic wave function. The CF splitting can then be evaluated from the difference in DFT+U total energy between such calculations for relevant CF states. This method in fact makes use of the (usually inconvenient) tendency of DFT+U to remain in a local energy minimum instead of converging to the ground-state density. Zhou et al. [34] employed this approach together with an orbital-dependent self-interaction correction [35], to obtain total energies for different orbital occupancies in UO 2 and deduce its CFP.

In this work we propose an approach to ab initio CFP calculations based on self-consistent DFT+dynamical meanfield theory (DFT+DMFT) [36,37] treating the local manybody problem for the 4f shell in the quasiatomic (Hubbard-I) approximation. While this approach of using DFT+DMFT with the Hubbard-I approximation, which we may call DFT+Hub-I, is rather simple and computationally efficient, it was shown to capture not only the 4f multiplet structure in the paramagnetic state [37][38][39][40][41] and in the ferromagnetic state [42], but also the 4f -conduction band exchange interaction and the resulting exchange splitting of the Fermi surface [40]. This scheme also provides a rather natural way of averaging the 4f partial density to reduce the self-interaction error from the CF Hamiltonian. We validate it by applying it to the well-known hard magnet SmCo 5 , for which the crystal-field splitting has been measured in multiple experiments [16][17][18][19][20]. We then apply our method to much less investigated new hard magnets of the RFe 12 X family, computing their CFP for different rare-earth elements (Sm or Nd) and considering N and Li interstitials. Our calculations predict the hypothetical SmFe 12 Li compound to possess a strong axial anisotropy and, possibly, interesting hard magnetic properties.

The paper is organized as follows: in Sec. II A we introduce basic notions as well as relevant notations of the CF theory. Our first-principles computational approach is presented in more details in Sec. II B. Our results for the DFT+Hub-I electronic structure and CFP for the RFe 12 (X) hard magnets are presented in Secs. III A and III B, respectively. In Sec. IV we analyze the shape 4f Wannier functions (WF) in real space and employ a projective approach to evaluate the WF localization and the contribution of hybridization effects to CFP.

II. METHOD

A. Crystal-field parameters: Notation and symmetry

We start by introducing crystal-field parameter notations. The local Hamiltonian for a rare-earth ion with a partially filled 4f shell subject to the exchange field created by the transition-metal sublattice and to a crystal-field potential reads

Ĥ = Ĥ1el + ĤU = Ê0 + λ i s i l i + 2μ B B ex Ŝa + Ĥcf + ĤU , (2) 
where the one-electron part of the Hamiltonian corresponds to the first four terms on the right-hand side, namely, a uniform shift, spin-orbit, exchange-field, and crystal-field terms. Ŝa is the in-plane or out-of-plane spin operator, corresponding to the case where B ex is along x or z, respectively. ĤU represents the electron-electron Coulomb repulsion term of the many-body Hamiltonian. The crystal-field term Ĥcf is defined as the nonspherically symmetric part of the one-electron Hamiltonian. The corresponding nonspherical part V ns (r) of the one-electron potential can be expanded into spherical 

V ns (r) = ∞ k=1 k q=-k A q k (r)Y kq (r), (3) 
where Y kq (r) is the spherical harmonic function with total angular moment k and projected angular moment q. The matrix elements of V ns (r) between 4f orbitals define Ĥcf . Due to the properties of the spherical harmonics, only A q k for k 2l, i.e., k 6 in the case of an f shell, can contribute to Ĥcf . In the point-charge CF calculations A q k (r) is reduced to A q k r k . While we do not assume this form for A q k (r) in the present formalism we still employ the now standard notation A q k (r) ≡ A q k r k . For historic reasons, several conventions exist for the parametrization of Ĥcf , leading to a rather confusing variety of definitions for the crystal-field parameters. Using the so-called Stevens operator equivalents [43], Ĥcf is decomposed as follows:

Ĥcf = kq A q k r k k (J ) Ôq k , (4) 
where Ôq k is the Stevens operator equivalent, and A q k r k , as explained above, is the standard notation for the crystal-field parameter for given k and q. k (J ) is the Stevens factor for a given ground-state multiplet defined by the quantum number J . k (J ) for k = 2, 4, and 6 are often designated by α J , β J , and γ J , respectively. The Stevens operator equivalents are more convenient for analytical calculations and somewhat outdated, but they are still extensively used in the literature. For numerical calculations it is more convenient to express Ĥcf in terms of Wybourne's [44] spherical tensor operators Ĉq

k : Ĥcf = kq B q k Ĉq k , (5) 
where Ĉq k are defined by C q k (r) = 4π/(2k + 1)Y kq (r). Moreover, the CFP can be made real by employing the Hermitian combination of Wybourne's operators T q k defined by

T 0 k = Ĉ0 k and T ±|q| k = √ ±1 Ĉ-|q| k ± (-1) |q| Ĉ|q| k . Ĥcf can then be expressed as Ĥcf = kq L q k T q k , (6) 
with a set of real parameters L q k . L q k are linked to the Stevens CFP A q k r l by a set of positive prefactors λ kq = A q k r k /L q k . For a more extensive discussion of CFP conventions see, e.g., Refs. [14,45,46].

The number of a priori nonzero CF parameters A q k r k is constrained by the point-group symmetry of a given rare-earth site. In particular, in the presence of inversion symmetry, V ns (r) = V ns (-r), only A q k r k for even k can be nonzero [cf. Eq. ( 3)]. Other point-group symmetries further reduce the number of relevant A q k r k . As a consequence, the crystal field on Sm 4f in SmCo 5 can be fully described with only four CF parameters: A 0 2 r 2 , A 0 4 r 4 , A 0 6 r 6 , and A 6 6 r 6 . In the case of the RFe 12 X family, the relevant parameters are A 0 2 r 2 , A 0 4 r 4 , A 4 4 r 4 , A 0 6 r 6 , and A 4 6 r 6 . In our calculations, we extract the set of parameters L q k (or A q k r k ), as well as B ex and λ by a least-square fit of ab initio Ĥ1el (using the usual Frobenius norm) obtained within DFT+Hub-I [see Eq. ( 7) in the next section]. Note that one may assign a spin label to the CF parameters in Eqs. ( 5) and ( 6), hence allowing for different CF potentials for spin up and down electrons. We found that this improves the fit for spin-polarized Ĥ1el .

B. Calculational approach

We employ the DFT+Hub-I approach [47] based on the TRIQS library [48] and the full potential linearized augmented plane-wave Wien-2k [49] band structure code in conjunction with the projective Wannier-orbitals construction [50,51]. The charge-density self-consistency [52,53] is implemented as described in Ref. [54]. The Hubbard-I impurity solver is provided by the TRIQS library.

The Wannier orbitals representing the rare-earth 4f states are constructed from the Kohn-Sham bands within the window [-ω win ,ω win ] = [-2,2] eV relative to the Fermi level. The choice of the half-window size ω win is the only significant parameter in our calculations (indeed, the choice of Hubbard U and Hund's coupling J has limited impact on the results, as we demonstrate in Appendix D). In order to construct a complete orthonormal basis of Wannier orbitals one needs to choose ω win large enough to include at least all 4f -like Kohn-Sham bands. Wannier orbitals constructed with a "small window" leak [47] to neighboring sites due to hybridization between 4f states and conduction band states. A larger window results in more localized Wannier orbitals consisting almost exclusively of the corresponding 4f partial waves inside the rare-earth atomic sphere [47,51], as discussed in Sec. IV and Appendix E below. DFT+Hub-I studies of rare-earth wide-gap insulators show a rather strong sensitivity of calculated CFP to the window size; less-localized small window Wannier 4f orbitals result in a better agreement with experimental CFP [55]. In the present case of rare-earth intermetallics we find a rather weak dependence of CFP to variations of ω win within the reasonable range from 2 to 8 eV, see Appendix E. Hence, we employ ω win = 2 eV in our calculations throughout.

In the Hubbard-I approximation the hybridization function is neglected and solving of the DMFT impurity problem is reduced to the diagonalization of the atomic Hamiltonian (2). The one-electron part Ĥ1el of Eq. ( 2) is then given by [53] Ĥ1el

= -μ + H ff -DC , ( 7 
)
where μ is the chemical potential, H ff is the Kohn-Sham Hamiltonian projected to the basis of 4f Wannier orbitals and summed over the Brillouin zone, DC is the double-counting correction term for which we employ the fully localized-limit (FLL) form [56] that is known to work best for localized states such as 4f orbitals. In our calculations, we evaluate the FLL double counting using the occupancy of the DMFT local Green's function, which comes out to be close to the nominal 4f occupancy of the corresponding 3+ rare-earth ion. If the nominal occupancy is used in FLL DC instead one obtains almost the same CFP, with differences no larger than 10 to 20 K. We carry out DFT+Hub-I iterations until convergence in the total energy with precision 10 -5 Ry is reached and then extract the CFP from Eq. ( 7) as described in the previous section. Self-consistent DFT+Hub-I calculations produce a nonspherical one-electron Kohn-Sham potential (3), that includes several nonspherical contributions acting on 4f states: the long-range electrostatic (Madelung) interaction, as well as the local-density-approximation (LDA) exchange-correlation potential due to the conduction electrons and 4f states themselves. This last "intra-4f shell" contribution to the exchangecorrelation potential should be removed within DFT+Hub-I, since the on-site interaction H U between 4f states is already treated explicitly within DMFT. Hence, the intra-4f shell contribution in the one-electron part Ĥ1el of Eq. ( 2) due to LDA is counted twice and should be removed by a double-counting correction. Moreover, this contribution includes the LDA self-interaction error for localized states directly impacting CFP: for low-lying CF levels, the self-interaction error will be larger than for less occupied excited CF states.

In order to reduce the self-interaction error in the CFP we enforce uniform occupancy of all states within the 4f groundstate multiplet in our self-consistent DFT+Hub-I calculations.

To that end, we define the imaginary-frequency atomic (Hubbard-I) Green's function at the fermionic Matsubara frequency ω n = (2n + 1)πT , where T is the temperature, as follows:

G at ab (iω n )= 1 M γ ∈GSM δ / ∈GSM γ |f a |δ δ|f † b |γ iω n -E γ + E δ + δ|f a |γ γ |f † b |δ iω n + E γ -E δ , (8) 
where the eigenstates |γ and |δ with eigenenergies E γ and E δ are obtained by diagonalization of Eq. ( 2) and belong to the ground-state multiplet (GSM) and excited multiplets, respectively, a and b label 4f orbitals, M is the degeneracy of the GSM. In other words, to obtain Eq. ( 8) we substitute the standard Boltzmann weight X γ = e -E γ /T /Z, where Z is the partition function, with the uniform weight Xγ = 1/M for the GSM and Xδ = 0 for excited multiplets in the spectral representation of the Green's function [57,58]. In practice, the degeneracy of the ground-state multiplet M is chosen to be the same as for the corresponding free ion, hence it is given by Hund's rules. Therefore, M = 10 for Nd and M = 6 for Sm. The self-energy thus obtained is then plugged back into the self-consistency cycle. This leads to a spherically averaged contribution from the 4f orbitals, both inside and outside the rare-earth atomic sphere, while nonspherical contributions from other states are taken into account. We verified the validity of this method by calculating the density matrix from the local Green's function and transforming it to the relativistic basis of one-electron J = 5 2 and J = 7 2 orbitals. With the averaging, the resulting density matrix is made of two identity blocks with deviations of the order of few percent, to be compared with over 50% without the averaging.

Conceptually speaking, our approach amounts to replacing Eq. ( 7) by (9) where v KS [ρ] is the Kohn-Sham potential (v KS = v Hartree + v xc ) evaluated from the total electronic density ρ and then projected to the basis of 4f Wannier orbitals. ρ 4f designates the projected electronic density belonging to the rare-earth's 4f orbitals, ρ4f is the same density, spherically averaged, and ρ spd designates all the remaining density, belonging to all atoms' s, p, and d orbitals.

Ĥ1el = -μ + H ff -DC -v KS [ρ spd + ρ 4f ] + v KS [ρ spd + ρ4f ],
The same approach is used in the spin-polarized DFT+Hub-I calculations: in this case the exchange splitting is also removed within the GSM. We found, however, that this averaging is not sufficient, since the value of the exchange field within our DFT+Hub-I iterations may become larger than the intermultiplet splitting. Hence we also directly remove the 4f spin polarization from the resulting DFT+Hub-I density matrix. For a given k-point the "averaged" density matrix Ñk in the Bloch basis reads

Ñk = N k + 1 2 P † (k)[T n ff (k)T † -n ff (k)]P (k), (10) 
where N k is the density matrix in the Bloch basis calculated as described in Refs. [47,54], P (k) is the projector [47,51] between the Wannier and Bloch spaces, n ff (k) is the density matrix in the Wannier basis, and T is the time-reversal operator. The averaged density matrix Ñk is then used to recalculate the electron density at the next DFT iteration as described in Ref. [54]. The contribution of 4f states to the spin density and local-spin-density-approximation (LSDA) exchange field is thus suppressed. The resulting exchange field is due to the polarization of the transition-metal sublattice, as expected for hard magnetic rare-earth intermetallics. In contrast, direct spin-polarized DFT+Hub-I calculations without the averaging would lead to a large unphysical exchange field on rareearth sites due to the magnetization density of 4f electrons themselves.

In Appendix A we benchmark the present method on the prototypical rare-earth hard magnet SmCo 5 , for which several measurements of CFP exist, and show good agreement between calculated and measured CFPs. Moreover, the actual eigenstates of the Sm 4f shell in SmCo 5 obtained within DFT+HubI are also in very good agreement with previous neutron scattering and magnetic form-factor measurements, see Appendix B.

C. Calculational details

The RFe 12 X family has the space group I 4/mmm, with a tetragonal primitive unit cell. The conventional unit cell, with twice the volume and the atoms, is orthorhombic. It has equivalent R sites in the corner and the center at Wyckoff position 2a, X interstitial sites between two nearest R sites at Wyckoff position 2b, and contains 24 Fe atoms on three inequivalent sites, denoted below Fe 1 , Fe 2 , and Fe 3 at Wyckoff positions 8j , 8i, and 8f , respectively, as displayed in Fig. 1. Calculations are done at the theoretical lattice constants for RFe 12 X, summarized in Table I in the conventional unit cell (from Table II of Ref. [59] and from this work). The calculated lattice constants agree within 2% with the measured ones in the more stable NdFe 11 Ti(N) and SmFe 11 Ti(N) compounds [59].

The DFT calculations are performed with spin-orbit coupling included within the second variational approach. We employ throughout the rotationally invariant Coulomb vertex specified by Slater integrals F 0 = U = 6.0 eV as well as F 2 = 10.13, F 4 = 6.77, and F 6 = 5.01 eV corresponding to Hund's rule coupling J H = 0.85 eV. These values of U and J H are in agreement with those in the literature [41,53,60]. One may notice, that while the values of U and J H are important to determine the one-electron spectrum of a material, they are expected to have a rather small effect on the crystal-field parameters that we consider in this work [61]. We discuss this dependence in Appendix D. DFT+Hub-I calculations are carried out for the temperature of 290 K.

III. RESULTS

A. DFT and DFT+Hubbard-I electronic structure of RFe 12 X

We first compare the electronic structure of RFe 12 X obtained within DFT (LSDA) and DFT+Hub-I. A typical DFT density of states (DOS) and a DFT+Hub-I spectral function for ferromagnetic RFe 12 X, namely, for NdFe 12 N, are shown in Fig. 2. The DFT DOS of Fig. 2(a) features a strong polarization of the Fe 3d band. N 2p states are dispersive, with the bottom of the bands contributing to a peak in the DOS around -6 eV. The Nd 4f band is fully spin polarized and antiferromagnetically aligned to Fe 3d, with the total spin moment within the Nd atomic sphere equal to -2.77 μ B , i.e., close to the Hund's rule value of 3 μ B for the Nd 3+ ion. The Nd majority-spin 4f band is pinned at the Fermi level, its double-peak structure is due to spin-orbit splitting. This picture of 4f bands pinned at the Fermi level is qualitatively incorrect and illustrates the difficulties of DFT with local or semilocal exchange-correlation functionals to correctly treat strongly interacting localized valence states. The spin-polarized DFT+Hub-I spectral function shown in Fig. 2 was calculated using the averaging approach described in Sec. II B. It features an almost fully polarized Fe 3d band as well as occupied and empty 4f states separated, to first approximation, by U , thus forming lower and upper Hubbard bands, respectively. The Hubbard bands are split due to the Hund's rule and spin-orbit couplings into several manifolds with characteristically sharp peaks corresponding to transitions from the ground state to different quasiatomic multiplets upon electron addition or removal. The 4f multiplet structure in lanthanides is known to be only weakly sensitive to the crystalline environment. Indeed, the positions of the Hubbard bands in Fig. 2(b) as well as the overall shape of the upper Hubbard band split into two manifolds of multiplet peaks centered at about 2 and 4 eV are in agreement with photoemission and inverse-photoemission spectra of the Nd metal [62]. One also sees that the Nd 4f states in DFT+Hub-I are not fully spin polarized, in contrast to the DFT case. Indeed the Nd spin moment of -1.61 μ B obtained within DFT+Hub-I is only about half of the Hund's rule value and is also aligned antiferromagnetically with respect to the spin moment on iron. The calculated Nd orbital moment is 3.40 μ B . It is precisely the crystal-field splitting of the Nd 4f shell that prevents the full saturation of the Nd magnetization.

B. Crystal-field parameters and exchange fields in RFe 12 X

The calculated CF and exchange fields for Nd and Sm RFe 12 (N,Li) compounds are listed in Tables II and III, together with the magnetic moments on R and in the full cell. Comparing the different materials, one sees that RFe 12 has the smallest values of A 0 2 r 2 (in absolute value), while N insertion enhances A 0 2 r 2 up to positive values of about 400 to 600 K. Li insertion has the opposite effect, leading to large negative A 0 2 r 2 , in particular for R = Nd. We notice some dependence of the CF parameters A q k r k on the spin direction in the ferromagnetic phase. It is mostly weak, of the order of a few tenths of Kelvin for the most important CFP A 0 2 r 2 , except in NdFe 12 N. It can be significant, though, for higher-order CFP. The magnetic state (paramagnetic of ferromagnetic) has a significant impact on A 0 2 r 2 in some compounds: one may notice larger values of A 0 2 r 2 for paramagnetic SmFe 12 (N,Li) than for either spin direction in the ferromagnetic phase.

Finally, the total magnetization appears to be slightly reduced in Sm compounds, compared to Nd compounds: in the former, the spin magnetic moment on the rare earth compensates the orbital magnetic moment, leading to negligible total moment, while Nd presents a total moment dominated by the orbital component, and in the same direction as the Fe sublattice magnetization.

The sign and overall magnitude of our calculated A 0 2 r 2 are in agreement with previous calculations for RFe 12 (N) in Ref. [5] using the 4f -in-core approach, though there are some differences in the precise values. We obtain a similar value for NdFe 12 , a somewhat larger one for NdFe 12 N, a more negative value for SmFe 12 , and a smaller (positive) value for SmFe 12 N. One may notice that the results in Ref. [5] are quite sensitive 155132-5 to different treatments of the "tails" of 4f core orbitals: there is no such uncertainty in our approach.

The lowest-order CF parameters A 0 2 r 2 and the corresponding single-ion anisotropy energies K 1 evaluated using Eq. ( 1) are displayed in Fig. 3. One may see that, while NdFe 12 N and NdFe 12 Li exhibit larger |A 0 2 r 2 | (upper panel) than their Sm counterparts, this difference is offset by a larger Stevens prefactor of Sm in Eq. ( 1), so that the Sm-and Nd-based compounds have a magnetic anisotropy coefficient K 1 of similar magnitude. An important difference between Nd and Sm is the different signs of their Stevens factors α J (α J = -7/1089 for Nd, α J = 13/315 for Sm). Consequently, N insertion leads to a large out-of-plane anisotropy for Nd, but in-plane anisotropy for Sm. Li has the opposite effect: doping Li into SmFe 12 leads to a rather large out-of-plane anisotropy of SmFe 12 Li, of comparable magnitude to that of NdFe 12 N.

Performing the averaging over the ground-state multiplet as described in Eq. ( 8) is crucial to obtain reasonable CFP: the lowest-order CFP A 0 2 r 2 is most sensitive to this. The corresponding data without averaging for NdFe 12 N are given and discussed in Appendix C.

For the sake of comparison with future experiments we list low-energy eigenvalues and eigenstates of all RFe 12 X compounds in Appendix B. It is interesting to notice that eigenstates of the ground-state J = 5/2 multiplet of Sm (Table VI) are often found to exhibit a significant admixture from exited J = 7/2 states; the Nd J = 9/2 states (Table V) contain a significantly lower admixture from the first exited multiplet.

A last interesting point is that the exchange fields B ex on the rare earth are enhanced by Li and reduced by N. This is useful because the exchange field, or exchange coupling between Fe and R, is essential for finite temperature magnetocrystalline anisotropy. The rare-earth-originated anisotropy becomes ineffective at high temperature, and this threshold temperature is determined by the exchange coupling B ex . In Fig. 4 we show the difference between the 4f shell atomic energies E ⊥ and E , computed as E = Tr[ Ĥ e -β Ĥ ]/Tr[e -β Ĥ ] with Ĥ defined in TABLE II. Calculated CF parameters in ferromagnetic (FM) and paramagnetic (PM) NdFe 12 (N,Li) in Kelvin. For the FM case we list the CF parameters for each spin direction. The exchange field in the FM phase (in Tesla), the spin and orbital magnetic moments of the rare earth as well as the total magnetic moment per crystal unit cell (in Bohr magneton μ B ) are also listed. Eq. ( 2) and the exchange field B ex is along the z axis (along the c lattice parameter) and x axis (along the a lattice parameter), respectively. We scale the exchange field B ex by a coefficient M Fe (T )/M Fe (0) at nonzero temperatures, using the measured magnetization ratio of NdFe 12 N from Hirayama et al. [6]. The energy difference plotted in Fig. 4 is more general than the expression of Eq. ( 1), because it also contains higher order CFP and nonzero temperature; to compute E ⊥ and E we diagonalize the full Hamiltonian Ĥ , without restricting ourselves to the ground-state multiplet. This gives quite a different picture than Fig. 3: the strongly enhanced exchange coupling due to Li doping causes the magnetocrystalline anisotropy to persist at much higher temperatures than with N doping.

IV. DISCUSSION: THE EFFECT OF HYBRIDIZATION WITH THE INTERSTITIALS

Let us now analyze the mechanisms determining the CFP on the rare-earth site and, in particular, the impact of the N and FIG. 3. Crystal-field parameters A 0 2 r 2 (average for up and down spins in the FM phase) and anisotropy energy K 1 for RFe 12 X, with R = Nd,Sm and X is either empty, N, or Li [K 1 is obtained from Eq. ( 1)].

Li interstitials on them. We consider the NdFe 12 X (X = Ni, Li) compounds as an example. The N atom nominally carries three 2p electrons, but in the RFe 12 N compounds the N 2p bands are more than half-filled (Fig. 2). To verify this we have also performed a Bader-charge analysis [63] for NdFe 12 X and found 8.3 electrons on N resulting in an ion charge of -1.3. In contrast, the Li atom is nominally 2s 1 , but it looses its single 2s electron inside the NdFe 12 matrix, the corresponding Bader ion charge is +0.7.

In Fig. 5 we display the complex Wannier orbitals constructed for Nd 4f states with window size ω win = 2 eV with magnetic quantum numbers m = 0 and m = -3, in the presence of interstitial N or Li. The orbitals with m = ±3 do not point towards the N or Li atom, and leak only to neighboring Fe atoms. On the other hand, the orbital with m = 0 (corresponding to f z 3 cubic orbital) points towards the interstitial site, and shows strong leakage to the interstitial atom, particularly in the Li case. The same applies, to a lesser extent, to the orbitals m = ±1 that are also pointing towards the interstitials. The N (Li) insertion has thus two effects on the CFP. The first one is due to the electrostatic interaction between the 4f electrons and the interstitial ions. This interaction with the negative N (positive Li) ion pushes the on-site energies of the m = -1,0,1 orbitals, which point towards the interstitial, to higher (lower) energies.

The second contribution is due to hybridization between the 4f states and the N 2p (Li 2s and 2p) bands, which is expected to mainly affect the m = -1,0,1 orbitals pointing towards the interstitial. Mixing with the empty Li 2s and 2p bands pushes them to lower energies, while the opposite shift is induced due to hybridization with mostly filled N 2p located well below rare-earth 4f states, see Fig. 2. Hence, one sees that both the electrostatic and hybridization effects act in the same direction, raising the on-site energies of the m = -1,0,1 orbitals in the case of N and lowering them in the case of Li.

This analysis explains the effect of interstitials on the CFP A 0 2 r 2 . Indeed, the contribution due to A 0 2 r 2 into the CF Hamiltonian ( 6) is A 0 2 r 2 T 0 2 /λ 0 2 , where the matrix of the oneelectron operator T 0 2 /λ 0 2 (6) reads

T 0 2 /λ 0 2 = 2 ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ -1 3 0 ( 0 ) 1 5 4 15 1 5 (0) 0 -1 3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
in the basis of complex 4f orbitals. Hence, the energy level of 4f orbitals m = ±3 is negatively correlated with A 0 2 r 2 , while the energy levels of the orbitals with m = -1,0,1 are positively correlated with A 0 2 r 2 (orbitals with m = ±2 are unaffected by T 0 2 /λ 0 2 ). Thus, the effect of N (Li) insertion is to enhance (reduce) the value of A 0 2 r 2 . One may argue that the Hubbard-I approximation neglects the hybridization function in solving the quantum impurity problem, hence, hybridization to the bath is not included explicitly when solving for the self-energy in the DMFT (Hubbard-I) step of our DFT+Hub-I calculations. However, our Wannier orbitals constructed within the "small" energy window do contain the effect of hybridization implicitly, which is evidenced by their "leakage" to neighboring sites due to mixing of rare-earth 4f states with Fe 3d, N 2p, and Li 2s bands. The real-space Wannier functions of Fig. 5 thus represent a convenient visualization of hybridization between rare earth and other orbitals. In order to quantify the amount of this admixture of the conduction band states we also expand those extended small-window Wannier orbitals |w σ m (k) in the basis of localized Wannier functions | wασ lm (k) (labeled by spin σ , orbital l, and magnetic m quantum numbers, as well as atomic site α) constructed within a large energy window for all relevant bands. In Appendix F we derive the corresponding projection operators relating |w σ m (k) and | wασ lm (k) . We employ it to extract the corresponding contribution ρmσ αl (ω) of the shell l on the site α into the spectral function of the "small-window" 4f orbital σ m.

The comparison of ρ mσ αl for the orbital m = 0 and m = 3 are shown in Figs. 6 and7 for NdFe 12 N and NdFe 12 Li, respectively. One may notice in Fig. 6(a) that Nd f z 3 (m = 0) in NdFe 12 Li exhibits a strong hybridization with Li 2s and 2p; their contribution is significantly larger than the admixture of Fe 3d states. We further observe that spin up states are hybridizing more strongly than spin down states. In contrast, in the same compound for m = 3 [Fig. 6(b)], there is a peak of hybridization with Fe states but barely any with the Li 2s and 2p ones. The same difference, but much less pronounced, is noticeable in the case of NdFe 12 N, see Fig. 7. Hence, one may conclude, that the effect of the hybridization with the interstitial on the CF is much larger for Li than for N. In the latter case the electrostatic shift due to the negative charge on N seems to play the leading role.

V. CONCLUSION

In conclusion, we propose a novel first-principles approach for calculating crystal and exchange fields in rare-earth systems. This approach is formulated within the DFT+DMFT framework with local correlations on the rare-earth 4f shell treated within the quasiatomic Hubbard-I approximation. The 4f states are represented by Wannier functions constructed from a narrow energy range of Kohn-Sham states of mainly 4f character. We employ a charge-density averaging that suppresses the contribution due to the self-interaction of the 4f orbitals to the one-electron Kohn-Sham potential. We thus reduce the effect of this unphysical self-interaction from the crystal-field splitting, while keeping nonspherical contributions to CFP from other bands. Similarly, by removing the contribution due to the 4f magnetic density from the exchange-correlation potential we suppress its unphysical contribution to the exchange field at the rare-earth site.

The present approach is effectively free from adjustable parameters and can be applied to evaluate CFP in any localized lanthanide compound. While in the present work we chose the value for the on-site interaction parameters U and J , they can in principle be evaluated using constrained local-density or random-phase approximation [64]. Moreover, we show that the crystal-field splitting exhibits a rather weak dependence on the value of U chosen within a reasonable range for lanthanide 4f shells (4 to 8 eV). Our choice for the local basis representing 4f orbitals, namely, that we construct it from a narrow range of Kohn-Sham bands with heavy 4f character, is physically motivated as it allows for the impact of the hybridization on the CFP being included within DFT+Hub-I.

We apply this approach to evaluate the crystal and exchange-field potentials as well as the resulting single-ion magnetic anisotropies in several rare-earth hard magnetic intermetallics. First, we verify that our ab initio scheme reproduces the measured crystal-field parameters (CFP) in the well-known hard magnet SmCo 5 . We subsequently apply it to prospective rare-earth hard magnetic intermetallics of the RFe 12 X family (where R = Nd, Sm and X can be N, Li, or vacancy). Our calculations reproduce the strong out-of-plane anisotropy of NdFe 12 N due to a large positive value of the key CFP A 0 2 r 2 induced by insertion of N. Interestingly, we find that interstitial Li has a strong opposite effect, leading to a large negative value of A 0 2 r 2 . We thus predict a strong out-of-plane anisotropy in the hypothetical compound SmFe 12 Li. We also find the anisotropy in SmFe 12 Li to persist to higher temperatures as compared to NdFe 12 N. Hence, Sm-based compounds may represent interesting candidates for hard magnetic applications. Of course, the thermodynamic stability of SmFe 12 Li and technological feasibility of Li doping still need to be demonstrated by future studies.

We analyze the effect of N and Li interstitials on A 0 2 r 2 by evaluating the Bader charges as well as by studying the leakage 155132-9 of 4f Wannier orbitals to interstitial sites and quantifying the 4f hybridization with N 2p and Li 2s states.

Extensions of the present approach beyond the Hubbard-I approximation are promising for applications to other rareearth intermetallics. In particular, a similar DFT+DMFT technique suppressing subtle self-interaction and doublecounting contributions to the Kohn-Sham potential might be necessary to study, for example, the impact of a spin-polarized transition-metal sublattice on heavy-fermion behavior in Ybbased intermetallics [65,66].

APPENDIX A: CRYSTAL-FIELD PARAMETERS IN SmCo 5

SmCo 5 has been studied more extensively than other hard magnetic rare-earth intermetallics, so ample experimental data are available in this case. In particular, several groups estimated the CF parameters using inelastic neutron scattering or magnetization measurements. Therefore, this compound is a good benchmark to test our approach. SmCo 5 has already been studied within DFT+Hub-I to evaluate its ground-state magnetization and photoemission spectra [42], but the CF parameters were not calculated in this work.

The calculated spectral function of SmCo 5 is shown in Fig. 8. We find a total magnetic moment on the 4f shell of Sm of 0.42 μ B , antiparallel with the Co moments. This compares well with the measured value of 0.38 μ B at 4.2 K [18].

The calculated CFP and exchange fields for SmCo 5 are listed in Table IV, together with experimental data. The calculations on SmCo 5 are done at the experimental lattice constants.

FIG. 8. Atom-resolved spectral function of SmCo 5 obtained within self-consistent spin-polarized DFT+Hubbard-I (full lines). The two inequivalent Co types are summed to give the total Co 3d spectral function. The occupied part of the experimental spectrum of SmCo 5 (light blue from Ref. [67] and purple from Ref. [68]) and the full experimental spectrum of metal Sm (red, from Ref. [62]) are shown for comparison in dotted lines.

One may notice that the CF parameter A 0 2 r 2 exhibits a strong dependence on the spin polarization; it is about twice larger in the FM phase. For other CF parameters this dependence is small.

Our results for A 0 2 r 2 are in good agreement with the experimental (rather wide) range from about -180 to -420 K. The calculated B ex also agrees rather well with the experimental range from 260 to 360 T. One may notice that the experimental measurements were performed at room temperature, hence, in ferromagnetic SmCo 5 . Also, the most recent experimental values [20] of A 0 2 r 2 are in very good agreement with our results for the FM phase.

The main discrepancy between our theoretical and experimental CFP lies in the large value that we find for A 6 6 r 6 . The high-order CF parameters are usually assumed to be rather small in SmCo 5 . However, as noted in Ref. [70], experimental inelastic neutron and susceptibility data are not particularly sensitive to those high-order parameters. Hence, they are often assumed to be small from the onset and neglected in the fitting procedure.

In order to facilitate the reproducibility of our calculations, we provide below the one-electron Hamiltonian of Eq. ( 7) for a converged, ferromagnetic calculation of SmCo 5 , used to obtain the CFP of Table IV. TABLE V. Energies (in meV) and wave functions (expanded in the total angular momentum J basis) of the atomic eigenstates in the ground-state multiplet (GSM) and of the lowest eigenstate of the first excited multiplet (FEM) for NdFe 12 X. NdFe 12 GSM 0 0.996|9/2; +9/2 + 0.081|11/2; +9/2 8 0 .995|9/2; +5/2 + 0.094|11/2; +5/2 18 0.989|9/2; +3/2 + 0.145|11/2; +3/2 -0.037|9/2; -5/2 18 0.999|9/2; +7/2 + 0.042|11/2; +7/2 39 0.989|9/2; +1/2 + 0.145|11/2; +1/2 -0.032|9/2; -7/2 51 0.996|9/2; -3/2 + 0.085|11/2; -3/2 51 0.994|9/2; -1/2 + 0.105|11/2; -1/2 56 0.992|9/2; -5/2 + 0.121|11/2; -5/2 + 0.038|9/2; +3/2 82 0.985|9/2; -7/2 + 0.166|11/2; -7/2 + 0.033|9/2; +1/2 88 0.998|9/2; -9/2 + 0.057|11/2; -9/2 FEM 309 0.987|11/2; +5/2 + 0.126|13/2; +5/2 -0.093|9/2; +5/2 -0.046|11/2; -3/2

NdFe 12 N GSM 0 0.994|9/2; +9/2 + 0.092|11/2; +9/2 -0.054|9/2; +1/2 32 0.998|9/2; +5/2 + 0.065|11/2; +5/2 38 0.994|9/2; +3/2 + 0.106|11/2; +3/2 41 0.997|9/2; +7/2 -0.065|9/2; -1/2 56 0.993|9/2; +1/2 + 0.101|11/2; +1/2 + 0.055|9/2; +9/2 66 0.998|9/2; -3/2 + 0.052|11/2; -3/2 66 0.966|9/2; -1/2 -0.242|9/2; -9/2 + 0.064|9/2; +7/2 + 0.061|11/2; -1/2 67 0.996|9/2; -5/2 + 0.077|11/2; -5/2 73 0.970|9/2; -9/2 + 0.241|9/2; -1/2 80 0.996|9/2; -7/2 + 0.093|11/2; -7/2 FEM 301 0.994|11/2; +11/2 + 0.091|13/2; +11/2 -0.051|11/2; +3/2 NdFe 12 Li GSM 0 0.993|9/2; +7/2 + 0.116|11/2; +7/2 16 0.990|9/2; +5/2 + 0.137|11/2; +5/2 24 0.994|9/2; +9/2 + 0.105|9/2; +1/2 31 0.989|9/2; +3/2 + 0.137|11/2; +3/2 -0.041|9/2; -5/2 40 0.983|9/2; +1/2 + 0.146|11/2; +1/2 -0.107|9/2; +9/2 51 0.986|9/2; -1/2 + 0.163|11/2; -1/2 65 0.985|9/2; -3/2 + 0.166|11/2; -3/2 80 0.988|9/2; -5/2 + 0.148|11/2; -5/2 + 0.042|9/2; +3/2 93 0.990|9/2; -7/2 + 0.135|11/2; -7/2 126 0.984|9/2; -9/2 + 0.179|11/2; -9/2 FEM 319 0.983|11/2; +7/2 + 0.134|13/2; +7/2 -0.116|9/2; +7/2 + 0.042|11/2; -1/2

U and for the Hund's coupling parameter J H . Several methods have been developed in order to compute those parameters from first principles, most notably the constrained local density approximation [74] and, more recently, the constrained random phase approximation [64].

In the present work, however, we do not attempt a first principles determination. We use U = 6 eV and J H = 0.85 eV because these values have given satisfactory results in other calculations on rare-earth materials [41,53]. They are also in line with reported values calculated from first principles [60]. Nevertheless, it is preferable that results obtained by our calculation scheme do not depend too strongly on the value of U and J H . In Fig. 9 we show that the dependence of the CFP A 0 2 r 2 in NdFe 12 N is very moderate, as long as the values of U and J are chosen within a reasonable ranges for rare-earth ions.

Furthermore, we observe that smaller values of U lead to slightly larger values of A 0 2 r 2 : this is not surprising if we keep in mind that a large U is favorable to a strong localization of the 4f electrons, hence to a weaker coupling to the crystal field.

APPENDIX E: DEPENDENCE OF RESULTS ON WINDOW SIZE

Another important parameter of our calculations is the size of the window around the Fermi level that we use to construct the 4f Wannier functions. In Fig. 10 we compare the Wannier orbitals constructed for the same orbital m = 0 in NdFe 12 Li for two different window sizes: a small window with ω win = 2 eV, and a large one with ω win = 20 eV. For the large window, the Wannier orbital (WO) takes essentially pure Nd 4f orbital character, while the small-window WO leaks significantly to neighboring sites, in particular, to Li.

The effect of the window size on the CF parameters is shown more quantitatively in Fig. 11 [20]) and Givord et al. (right,Ref. [18]). Note that only Tils et al. directly measure the eigenenergies, while Givord et al. obtain them from an atomic Hamiltonian fitted to reproduce the measured magnetic form factor. SmFe 12 GSM 0 0.986|5/2; +5/2 + 0.164|7/2; +5/2 27 0.983|5/2; +3/2 + 0.183|7/2; +3/2 47 0.968|5/2; +1/2 + 0.245|7/2; +1/2 + 0.043|9/2; +1/2 69 0.977|5/2; -1/2 + 0.209|7/2; -1/2 + 0.041|9/2; -1/2 85 0.976|5/2; -3/2 + 0.218|7/2; -3/2 99 0.987|5/2; -5/2 + 0.159|7/2; -5/2 + 0.032|9/2; -5/2 FEM 191 0.987|7/2; +7/2 + 0.154|9/2; +7/2 + 0.034|7/2; -1/2

SmFe 12 N GSM 0 0.997|5/2; +5/2 + 0.079|7/2; +5/2 2 0 .990|5/2; +3/2 + 0.143|7/2; +3/2 13 0.976|5/2; +1/2 + 0.216|7/2; +1/2 31 0.982|5/2; -1/2 + 0.186|7/2; -1/2 + 0.035|9/2; -1/2 48 0.978|5/2; -3/2 + 0.209|7/2; -3/2 75 0.971|5/2; -5/2 + 0.238|7/2; -5/2 FEM 176 0.988|7/2; +5/2 + 0.129|9/2; +5/2 -0.078|5/2; +5/2 SmFe 12 Li GSM 0 0.977|5/2; +5/2 + 0.212|7/2; +5/2 + 0.037|9/2; +5/2 39 0.965|5/2; +3/2 + 0.256|7/2; +3/2 + 0.047|9/2; +3/2 67 0.960|5/2; +1/2 + 0.278|7/2; +1/2 + 0.042|9/2; +1/2 90 0.946|5/2; -1/2 + 0.318|7/2; -1/2 + 0.051|9/2; -1/2 116 0.941|5/2; -3/2 + 0.330|7/2; -3/2 + 0.068|9/2; -3/2 137 0.974|5/2; -5/2 + 0.221|7/2; -5/2 + 0.053|9/2; -5/2 FEM 202 0.977|7/2; +7/2 + 0.211|9/2; +7/2 + 0.035|11/2; +7/2 SmCo 5 GSM 0 (0 / 0) 0.984|5/2; +5/2 + 0.171|7/2; +5/2 33 (31 / 28) 0.983|5/2; +3/2 + 0.181|7/2; +3/2 52(-/ 47) 0.973|5/2; +1/2 + 0.225|7/2; +1/2 + 0.033|9/2; +1/2 71(-/ 73) 0.977|5/2; -1/2 + 0.209|7/2; -1/2 + 0.035|9/2; -1/2 86(-/ 91) 0.977|5/2; -3/2 + 0.211|7/2; -3/2 -0.032|9/2; +9/2 95(-/ 109) 0.989|5/2; -5/2 + 0.122|7/2; -5/2 + 0.073|7/2; +7/2 + 0.033|9/2; -5/2 FEM 188 (166 / -) 0.963|7/2; +7/2 + 0.187|7/2; -5/2 + 0.164|9/2; +7/2 -0.093|5/2; -5/2 parameters computed for several window choices [-ω win ,ω win ] for different materials. The smallest window size of ω win = 2 eV is required to enclose all the 4f -like We assume that the window W in Eq. (F1) is large, i.e., that it includes both rare-earth 4f states and all relevant valence bands that are expected to hybridize with them. As a result, with such a large-window construction one obtains a set of mutually orthogonal and rather well localized Wannier orbtials (WO). In particular, the large-window 4f WOs wασ lm (r) almost do not leak onto neighboring sites, as discussed in the previous section, see Fig. 10(a). If one constructs as many WOs as the number of Kohn-Sham bands within W then the projection operator P (k) is just a unitary transformation, hence, Eq. (F1) can be inverted Fermi energy the resulting small nonunitarity of P (k) can be neglected.

Alternatively, one may construct 4f Wannier orbitals from the bands within that small window W enclosing mainly 4flike Kohn-Sham bands:

w σ m (k) = ν∈W P σ mν (k) φ k ν , ( F4 
)
where 4f WOs are constructed for the single rare-earth site in the unit cell for the compounds under consideration. Hence, the site and l labels are suppressed in |w σ m (k) . The resulting small-window WOs are rather extended in real space, as one sees in Figs. 
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 221 Figure2.1 -DFT LDA and GW (G 0 W 0 ) band structure of Si. The band gap E g is severely underestimated in DFT (0.52 eV) compared to the experimental band gap (1.17 eV). The GW calculation (0.96 eV) partly corrects this, without significantly changing the overall shape of the occupied or excited part of the spectrum. The GW calculation is performed on a 10x10x10 Brillouin zone mesh.
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 31 Figure 3.1 -DMFT self-consistency cycle, illustrating Eq. 3.12 to 3.15.

Figure 3 . 2 -

 32 Figure 3.2 -Spectral function of the single orbital Hubbard model on Bethe lattice, at β = 100 eV -1 . The half-bandwidth is t = 1 eV. A continuous time quantum Monte-Carlo (CTQMC) hybridization expansion algorithm is used in the DMFT cycle, and the real frequency spectral function is obtained by a maximum entropy (Bryan) algorithm [69].
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 133 Figure 3.3 -quasi-particle weight Z as a function of Hubbard U , in the same model as in Fig. 3.2.
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 34 Figure 3.4 -Real (upper panel) and imaginary (lower panel) part of the self-energy on the Matsubara axis for the single orbital Hubbard model on Bethe lattice, at β = 80 eV -1 at different values of U .At half-filling, the real part of Σ is equal to U/2, the Hartree-Fock selfenergy, and the imaginary part goes to zero at high frequencies. Below the Mott transition, which happens between U = 2.5 eV and U = 3.0 eV, the self-energy is that of a Fermi liquid, as can be seen in the imaginary part, that goes linearly to zero. Above the Mott transition, in the particle-hole symmetric case, Σ has a divergence around iω = 0.
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 35 Figure 3.5 -Illustration of non-interacting bands (left-hand side) and correlated-quasi-particles with Hubbard bands (right-hand side). Reproduced from Ref. [70]
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 336 Figure 3.6 -Real (upper panel) and imaginary (lower panel) part of the self-energy on the real axis for the single orbital Hubbard model on Bethe lattice, at β = 100 eV -1 at different values of U . The real axis functions are obtained by analytical continuation of the Matsubara self-energies of Fig. 3.4.We removed the static real contribution corresponding to the chemical potential, µ = U/2, in order to compare the different self-energies more easily. In the Fermi liquid regime, the real part of Σ(ω) is linear around ω = 0, with the slope giving the mass renormalization factor Z, and the imaginary part vanishes at ω = 0. Near and above the Mott transition, the imaginary part of the self-energy does not go to zero at the Fermi level, but becomes a Dirac peak in the limit of large U .

Figure 4 . 1 -

 41 Figure 4.1 -Full DFT+DMFT self-consistency cycle.
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 42 Figure 4.2 -Volume vs pressure dependence in low-temperature ferromagnetic body-centeredcubic (bcc) and paramagnetic hexagonal compact (hcp) Fe. GGA DFT significantly underestimates the lattice constants the the slope or bulk modulus. DFT LDA+DMFT values are much closer to experimental values. Reproduced from Ref. [105]

Fig. 4 .

 4 3 illustrates equations 4.26 and 4.27 with diagrams.
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 445 67 and F 6 /F 2 ≈ 0.49 (in 4f shells) (5.4) Technical aspects This property allows to define the Hamiltonian with only two parameters: the Hubabrd U and Hund's exchange J H , with U = F 0

4 )

 4 where d † and d represent fermionic creation and annihilation operators, n the corresponding density (n = d † d), v is the bare on-site Coulomb interaction, b † and b are bosonic creation and annihilation operators, ω 0 the corresponding plasmon frequency, and λ a coupling term between electrons and bosons.

First, one defines

  a functional S [Φ], where Φ are Slater determinants of single-particle states {φ i }. Several possibilities exist for S [Φ]: three examples are S [Φ] = Φ T Φ (6.10)
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 6 SEx and bosonic renormalizations
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 61 Figure 6.1 -The band structure of elemental Zn and Cd calculated within DFT. The orbital character is indicated by the intensity of the different colors.
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 66263 Figs.6.2 and 6.3 display the local component of this fully screened interaction projected on the d-

Figure 6 . 4 -

 64 Figure 6.4 -The Density of States of elemental Zn calculated within Density Functional Theory (DFT, black solid line) and Hartree-Fock (HF, red solid line) in comparison with Photoemission experiments[START_REF] Poole | Photoelectron emission and the d bands of zinc and cadmium[END_REF][START_REF] Himpsel | Experimental E(k) dispersions for the Zn 3d states: evidence for itinerant character[END_REF] (dashed line, symbols). DFT calculations underestimate the binding energy of the Zn 3d states, while the HF overestimates the binding energy significantly (see explanation in the text).
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 65 Figure 6.5 -The Density of States of elemental Cd calculated within Density Functional Theory (DFT, black solid line) and Hartree-Fock (HF, red solid line) in comparison with Photoemission experiments[START_REF] Poole | Photoelectron emission and the d bands of zinc and cadmium[END_REF] (dashed line, symbols). DFT calculations underestimate the binding energy of the Cd 3d states, while the HF overestimates the binding energy significantly (see explanation in the text).
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 1 Introduction to iron 7.1.
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 71 Figure 7.1 -Pressure-temperature phase diagram of Fe. Reproduced from Ref. [103].
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 172 Figure 7.2 -Orbital-resolved density of states (DOS) of bcc Fe, calculated in ferromagnetic LSDA (left-hand panel) and nonmagnetic LDA (right-hand panel).In the ferromagnetic calculation, Fe is almost completely spin-polarized, and spin down electrons have mostly t 2g character. In the nonmagnetic calculation, the e g partial DOS sums to 2.3 and t 2g partial DOS sums to 3.9 states per unit cell up to the Fermi level.

Figure 7 . 3 -

 73 Figure 7.3 -Imaginary part of the DFT+DMFT self-energy of α-Fe calculated in the ferromagnetic phase (left-hand panel) at inverse temperature β = 40 eV -1 and in the paramagnetic phase (right-hand panel) at inverse temperature β = 10 eV -1 .In the latter case, paramagnetism is enforced, since DFT+DMFT, as a local mean-field theory, overestimates the Curie temperature. In the ferromagnetic phase, e g and t 2g orbitals have almost the same imaginary self-energy.

(a) 2

 2 × 2 × 2 supercell (b) 3 × 3 × 3 supercell
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 74 Figure 7.4 -The 2 × 2 × 2 and 3 × 3 × 3 supercells with the vacancy in the corner. Different colors indicate the atom nearest to the vacancy (red), the second nearest (purple), and the furthest (the central atom, yellow). Generated with XCrySDen [222]
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 75 Figure 7.5 -Vacancy formation energies calculated by different methods (GGA and DFT+DMFT) in the different setups: small (2 × 2 × 2) and large (3 × 3 × 3) supercell, relaxedor not, non-magnetic, paramagnetic (PM) or ferromagnetic (FM). Calculations are performed at the equilibrium volume for the relevant setup. The average of experimental values is shown for comparison[START_REF] De Schepper | Positron annihilation on pure and carbon-doped α-iron in thermal equilibrium[END_REF][START_REF] Kim | Vacancy formation energy in iron by positron annihilation[END_REF][START_REF] Matter | Phase transformations and vacancy formation energies of transition metals by positron annihilation[END_REF][START_REF] Schaefer | Vacancy formation in iron investigated by positron annihilation in thermal equilibrium[END_REF][START_REF] Schaefer | Investigation of thermal equilibrium vacancies in metals by positron annihilation[END_REF] 

Figure 7 . 6 -

 76 Figure 7.6 -Difference in the interaction energy per atom, before and after adding a vacancy. Inset : Fe 3d charge in the cell with one vacancy.
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 77 Figure 7.7 -Imaginary part of the Matsubara self-energies for a) the vacancy nearest neighbor and b) central atom in the 3 × 3 × 3 supercell with a vacancy present (red, full) or without it (blue, dashed). Correlations become stronger on the atom nearest to the vacancy while the difference between e g and t 2g is strongly reduced.

Figure 7 .

 7 Figure 7.8 -a) LDA density of states around the Fermi level and b) Hybridization function on the Matsubara axis for the nearest neighbors (blue, full) to the vacancy, and for the central atom (black, dashed).

  LDA density of states (eV-1 cell -1

  Figure7.10 -Total energy vs distance to the vacancy (as fraction of the lattice parameter) for the first nearest neighbor (blue) and the second nearest neighbor atom (red), in DFT+DMFT (full line) and GGA (dashed line). The black arrows show the position of the atoms in the unrelaxed bcc supercell. The points denote the calculated values, while the lines are obtained by a cubic fitting of these points.
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 1 Introduction to VO 2 : the well-known rutile and M 1 phases 8.1.
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 82 Figure 8.2 -Resistivity of the M 1 , R (black line, above 340K), A and B phases of thin films of VO 2 grown on SrTiO 3 .The MIT from M 1 to R is both wider (occuring over a 10 K range) and lesser (the resistivity changes by only two orders of magnitude) than can be observed in single crystal VO 2 . Reproduced from[START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF].

Figure 8 . 3 -

 83 Figure 8.3 -Valence band photoemission spectra of VO 2 (R) and VO 2 (M 1 ). Full lines indicate measurements on "bulk" samples, and broken lines measurements on thin films. While the measurements on the M 1 phase consistently show a single peak centered around -0.9 eV, measurements on the metallic R phase are not so consistent and tend to display secondary peaks, in particular on thin films. Data from[START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF][START_REF] Blaauw | The metal-non-metal transition in VO 2 : X-ray photoemission and resistivity measurements[END_REF][START_REF] Shin | Electron correlation energies and metal-insulator transition of VO 2[END_REF][START_REF] Okazaki | Photoemission study of the metal-insulator transition in VO 2 /TiO 2 (001): evidence for strong electron-electron and electron-phonon interaction[END_REF][START_REF] Koethe | Transfer of spectral weight and symmetry across the metal-insulator transition in VO 2[END_REF][START_REF] Suga | 8 keV photoemission of the metal-insulator transition system VO 2[END_REF][START_REF] Saeki | Band dispersion near the fermi level for VO 2 thin films grown on TiO 2 (001) substrates[END_REF] (in chronological order).
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 884 Figure 8.4 -Photoelectron spectrum of VO 2 (B). The lineshape is very similar, with a slightly upward shift of the peak in the HT phase. From Ref.[231].

Figure 8 . 5 -

 85 Figure 8.5 -Core state (V 2p) photoelectron spectra of (a) VO 2 (B) and (b) of VO 2 (R) and(M 1 ). The low binding energy shoulders can be associated to charge fluctuations in the valence band (see also[START_REF] Eguchi | Photoemission evidence for a Mott-Hubbard metal-insulator transition in VO 2[END_REF]). Again, there is little sign of a drastic phase transition in the valence states (contrary to the R to M 1 transition). In the R to M 1 transition, it appears that the non-local screening channel is free in the HT R phase but blocked in the LT M 1 phase, but that there is little change in the available screening channels through the B phase transition. From Ref.[231] 
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 5 Calculated electronic structure of VO 2

  a) VO 2 (B) HT
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 86 Figure 8.6 -Atom-resolved partial LDA density of states for VO 2 (B) in the HT and LT phases.

2 Figure 8 . 7 -Figure 8 . 8 -

 28788 Figure 8.7 -Partial LDA density of states for 3d states of inequivalent atoms V 1 and V 2 (dimerized) in high-temperature (HT) VO 2 (B). Atom 2 (right-hand panel) displays a nascent splitting between bonding and anti-bonding a 1g states, but the effect is less pronounced compared to what is seen in the LT phase (Fig. 8.8b)
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 89810 Figure 8.9 -Partial LDA density of states for 3d states of the rutile (R) and monoclinic (M 1 ) phases of VO 2 . The rutile density of states is multiplied by two, for easier comparison: the unit cell is half that of the M 1 phase.
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 5812 Figure 8.11 -Real (upper panel) and imaginary (lower panel) part of the local DFT+DMFT self-energy on the V t 2g states of VO 2 (R) and VO 2 (M 1). Inset: zoom on the imaginary part of Σ in VO 2 (M 1 ). The full line (resp. broken line) corresponds to the self-energy of the lower-energy a 1g (resp. higher-energy e π g ) states.
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 813 Figure 8.13 -Real (upper panel) and imaginary (lower panel) part of the real-frequency, local DFT+DMFT self-energy of the V t 2g states of VO 2 (B) in the LT phase. Blue and red are used for the two inequivalent V atoms. The full line (resp. broken line) corresponds to the self-energy of the lower-energy a 1g (resp. higher-energy e π g ) states.
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 814 Figure 8.14 -Real (upper panel) and imaginary (lower panel) part of the real-frequency, local DFT+DMFT self-energy of the V t 2g states of VO 2 (B) in the HT phase. Blue and red are used for the two inequivalent V atoms. The full line (resp. broken line) corresponds to the self-energy of the lower-energy a 1g (resp. higher-energy e π g ) states.

Figure 8 . 15 -

 815 Figure 8.15 -Total spectral function computed within DFT+DMFT for the V t 2g states of VO 2 R, M 1 and B in the HT and LT phases.
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 816 Figure 8.16 -Orbital-resolved spectral function computed within DFT+DMFT for the V t 2g states of VO 2 (R) and VO 2 (M 1 ). The total spectral function is overlain (black broken line).

Figure 8 . 17 -

 817 Figure 8.17 -Orbital-resolved spectral function computed within DFT+DMFT for the V t 2g states of VO 2 (B) in the HT and LT phases. The total spectral function is overlain (black broken line).
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 5 

Figure 8 .

 8 Figure 8.18 -Momentum-resolved spectral function in the HT phase of VO 2 (B). Left panel: spectral function of atom V 1 . Middle panel: spectral function of atom V 2 . Right panel: total spectral function.
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 819 Figure 8.19 -Momentum-resolved spectral function in the LT phase of VO 2 (B). Left panel: spectral function of atom V 1 . Middle panel: spectral function of atom V 2 . Right panel: total spectral function. The different nature of the insulating character on atoms V 1 and V 2 appears clearly.
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 1008820 Figure 8.20 -Total spectral function of VO 2 (B) as computed within DFT+DMFT (black broken line), multiplied by the Fermi function (red line) and broadened by a gaussian with σ = 0.3 (green line), compared to the PES of Fig. 8.4 (blue line), in the HT (upper panel) and LT (lower panel) phases.
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 6821822 Figure 8.21 -Orbital-resolved spectral function of VO 2 R, M 1 , B HT and B LT, calculated within DFT+Σ dimer +DMFT with the cRPA values of U = 2.8 eV and J = 0.4 eV. Note the quasi-particle peak stemming from the non-dimerized atom V 1 in the LT phase (8.21d)
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 10684823862 Figure 8.23 -Partial density of states of VO 2 (B) HT in the presence of an oxygen vacancy in position O 1 , O 2 , O 3 or O 4 , resolved on the four inequivalent vanadium sites (the vacancy breaks the symmetry). For a vacancy in position O 2 (respectively O 4), the nearest V 1 (respectively V 2 ) atoms capture its electrons in the d z 2 (e g ) orbital. The color code is the same as in Fig.8.7 to 8.9, with states of dominant e g character shown in red and orange and states of dominant t 2g character shown in blue (a 1g ) and green (e π g ).

  Figure 8.25 -LDA density of states for 3d states in VO 2 (B) without vacancies (perfect cell) and with one O vacancy (average over positions 2 and 4 in a four times larger supercell). In particular, spectral weight corresponding to V e g states is pulled down to around -1 eV when an oxygen vacancy is introduced (blue dotted line). The vacancy concentration is of 1/16. The additional peak in the DOS at -1 eV contains the 2 electrons that are donated when an O vacancy is created. For better readability, we only show the difference in the energy range around -1 eV, corresponding to e g spectral weight pulled down when a vacancy is created.

  ) -(without vac) (b) VO 2 (M 1 ) DOS with vacancies

Figure 8 . 26 -

 826 Figure 8.26 -LDA density of states for 3d states in VO 2 (R) and VO 2 (M 1 ) without vacancies (perfect cell) and with one O vacancy (average over all possible positions). In particular, spectral weight corresponding to V e g states is pulled down to around -1 eV when an oxygen vacancy is introduced (blue dotted line). This mechanism works does not work as well in the more symmetric rutile phase: no completely separate peak is created. For better readability, we only show the difference in the energy range around -1 eV, corresponding to e g spectral weight pulled down when a vacancy is created. (For consistent plotting, we double the VO 2 (R) unit cell in order to have 4 V and 8 O atoms in the unit cell.)
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 8281128829 Figure 8.28 -Total spectral function computed within DFT+DMFT for the V t 2g states of VO 2 (R) and VO 2 (R) and occupied part thereof, with and without a broadening of 0.1 eV. The upper panel shows the quantities in a perfect unit cell, while in the lower panel an additional peak due to vacancy states (see Fig.8.26) is added to the spectral function to simulate the presence of oxygen vacancies. The photoemission spectrum (blue line) correspond to the measurement by Koethe et al.[START_REF] Koethe | Transfer of spectral weight and symmetry across the metal-insulator transition in VO 2[END_REF] and Okazaki et al.[START_REF] Okazaki | Photoemission study of the metal-insulator transition in VO 2 /TiO 2 (001): evidence for strong electron-electron and electron-phonon interaction[END_REF].
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 116991 Figure 9.1 -Splitting of the 5 degenerate d orbitals into e g and t 2g states by the crystal-field.
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 92 Figure 9.2 -Cubic harmonics in a perovskite. The e g states (upper 2 orbitals) point to the nearest oxygen atoms, the t 2g states (lower 3 orbitals) point away from them. Reproduced from [295].
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 93 Figure 9.3 -High-spin and low-spin configuration of a set of d orbitals with 5 electrons.

9. 3 . 121 Figure 9 . 4 -

 312194 Figure 9.4 -Shape of 4f shells of different rare-earth ions, depending on the electron-count.Sm, Er, Tm and Yb have positive α J , in Gd α J = 0, and it is negative in the other lanthanides. Reproduced from Ref.[START_REF] Skomski | Anisotropy of rare-earth magnets[END_REF] 

Figure 9 . 5 -

 95 Figure 9.5 -Atom-resolved spectral function of SmCo 5 obtained within self-consistent spinpolarized DFT+Hubbard I (full lines). The two inequivalent Co types are summed to give the total Co 3d spectral function. The occupied part of the experimental spectrum of SmCo 5 (light blue from Ref.[351] and purple from Ref.[START_REF] Laslo | Effects of m= si, ga and al for co substitution on the electronic properties of rco 4 m as probed by xps[END_REF]) and the full experimental spectrum of metal Sm (red, from Ref.[START_REF] Lang | Study of the 4f and valence band density of states in rare-earth metals. ii. experiment and results[END_REF]) are shown for comparison in dotted lines.
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 1269 Hard magnets & Crystal-Field calculations PM FM Tils et al. Zhao et al. Givord et al. Sankar et al. Bushow et al. ↑ ↓ Ref. [331]

Figure 9 . 6 -

 96 Figure 9.6 -Conventional unit cell of RFe 12 X. The rare-earth R sites are yellow, the three types of Fe sites are grey, light and dark blue, and dopant X sites purple.

128 Chapter 9 .

 1289 Figure9.7 -a. Atom-and orbital-resolved density of states of NdFe 12 N calculated with the spin-polarized DFT method. b. Atom-and orbital-resolved spectral function of the same compound obtained within self-consistent spin-polarized DFT+Hubbard I. For better readability we take the average over the three types of Fe atoms: the actual total Fe density of states per unit cell is three times larger.
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 98 Figure 9.8 -Crystal-field parameters A 0 2 r 2 (average for up and down spins in the FM phase) and anisotropy energy K 1 for RFe 12 X, with R=Nd,Sm and X is either empty, N or Li (K 1 is obtained from equation 9.7).

Figure 9 .

 9 Figure 9.10 -4f Wannier orbitals of NdFe 12 N and NdFe 12 Li, for magnetic quantum number m = -3 and m = 0 and window size [-2, 2] eV. The orbital with m = 0 points towards and leak to the N or Li sites, while orbitals with m = ±3 do not. All of them leak somewhat to the nearest-neighbor Fe atoms. The Wannier functions are constructed using the dmftproj program[START_REF] Aichhorn | TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials[END_REF], their real-space representations are generated with the help of the wplot program from the wien2wannier[START_REF] Kuneš | Wien2wannier: from linearized augmented plane waves to maximally localized Wannier functions[END_REF] package. Plots are produced using XCrysDen[START_REF] Kokalj | Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale[END_REF].

9. 6 .Figure 9 .

 69 Figure 9.11 -a) Projected spectral functions ρ 0σ αl (ω) for the 4f orbital with m =0 in NdFe 12 Li, where the atom α and shell l are given in the legend. The magnitude ρ mσ αl (ω) indicates the amount of admixture of the character αl into a given 4f orbital, for its precise formulation see Appendix C. b) The same for the 4f orbital m =3.

Figure 9 .

 9 Figure 9.12 -a) Projected spectral functions ρ 0σ αl (ω) for the 4f orbital with m =0 in NdFe 12 N. For the notation see caption of Fig. 9.11. b) The same for the 4f orbital m =3, ρ 3σ αl (ω)
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 913 Figure 9.13 -CFP A 0 2 r 2 in NdFe 12 N as a function of U for J H = 0.85 eV (left-hand panel), and as a function of J H for U = 6 eV (right-hand panel). Our reference values are (U = 6 eV, J H = 0.85 eV).

  Figure 9.14 -NdFe 12 Li 4f Wannier orbital m = 0 constructed with a large window [-20, 20] eV (left) and a small window [-2, 2] eV (right). The use of a large window essentially removes all hybridization between the rare-earth and neighboring atoms.

Figure 9 . 15 -CFP A 0 2 r 2

 9152 Figure 9.15 -CFP A 0 2 r 2 as a function of window size ω win for NdFe 12 , NdFe 12 N and NdFe 12 Li

9 ) 150 Appendix

 9150 C. Projection of extended Wannier orbitals to localized Wannier basis enclosing mainly 4f -like Kohn-Sham bands: are constructed for the single rare earth site in the unit cell for the compounds under consideration. Hence, the site and l labels are suppressed in |w σ m (k) . The resulting small-window WOs are rather extended in real space, as one sees in Figs. 9.10 and 9.14(b). Inserting the expansion (C.3) of the KS states |φ k ν into (C.4) one obtains ασ m,l m (k) = ν∈W P σ mν (k) P ασ lm ν (k) * (C.6)

(a) 2 × 2

 22 FIG. 1. The 2 × 2 × 2 and 3 × 3 × 3 supercells with the vacancy in the corner. Different colors indicate the atom nearest to the vacancy (red), the second nearest (purple), and the furthest (the central atom, yellow). Generated with XCRYSDEN [52].
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 23 FIG.3. Difference in the interaction energy per atom, before and after adding a vacancy. Inset: Fe 3d charge in the cell with vacancy.

FIG. 4 .

 4 FIG. 4. Imaginary part of the Matsubara self-energies for (a) the vacancy nearest neighbor and (b) central atom in the 3 × 3 × 3 supercell with a vacancy present (red, full) or without it (blue, dashed).Correlations become stronger on the atom nearest to the vacancy, while the difference between e g and t 2g is strongly reduced. (c) LDA density of states around the Fermi level and (d) hybridization function on the Matsubara axis for the nearest neighbors (blue, full) to the vacancy, and for the central atom (black, dashed). The full Fe 3d DOS is shown in the Supplemental Material[35].

Fig. 1 .

 1 Fig. 1. (Color online) Kohn-Sham band structure of BaCo 2 As 2 within DFT-LDA (red lines) and the screened exchange approximation (black lines).

Fig. 2 .

 2 Fig. 2. (Color online) Kohn-Sham band structure of BaCo 2 As 2 within DFT-LDA, projected on the d x 2 -y 2 orbital.

Fig. 3 .

 3 Fig. 3. (Color online) Angle-resolved photoemission spectrum of BaCo 2 As 2 . Adapted from Ref. 36.

Fig. 4 .

 4 Fig. 4. (Color online) k-resolved spectral function of BaCo 2 As 2 within LDA+DMFT. Adapted from Ref. 36.

Fig. 5 .

 5 Fig. 5. (Color online) k-resolved spectral function of BaCo 2 As 2 within Screened Exchange DMFT (with dynamical interactions). Adapted from Ref. 36.

Fig. 6 .

 6 Fig. 6. (Color online) k-resolved spectral function of BaCo 2 As 2 within Screened Exchange DMFT (with dynamical interactions), projected on the d x 2 -y 2 orbital. Adapted from Ref. 36.

Fig. 7 .

 7 Fig. 7. (Color online) The band structure of elemental Zn calculated within DFT. The orbital character is indicated by the intensity of the different colors.

Fig. 8 .

 8 Fig. 8. (Color online) The band structure of elemental Cd calculated within DFT. The orbital character is indicated by the intensity of the different colors.

Fig. 9 .Fig. 10 .

 910 Fig. 9. (Color online) The fully screened effective local Hubbard interaction on the 3d manifold for Zn.

Fig. 11 .Fig. 12 .

 1112 Fig. 11. (Color online) The Density of States of elemental Zn calculated within Density Functional Theory (DFT, black solid line) and Hartree-Fock (HF, red solid line) in comparison with Photoemission experiments61, 62) (dashed line, symbols). Density Functional Theory (DFT) calculations underestimate the binding energy of the Zn 3d states, while the HF overestimates the binding energy significantly (see explanation in the text).

Fig. 13 .Fig. 14 .

 1314 Fig. 13. (Color online) The Density of States of elemental Zn calculated within different theoretical methods (solid lines), in comparison with Photoemission experiments61, 62) (dashed line, symbols). Density Functional Theory (DFT) calculations significantly underestimate the binding energy of the Zn 3d states, while the GW approximation obtains a much better agreement. Screened exchange overestimates the binding energy significantly.

  SPLITTINGS IN RARE-EARTH-BASED . . . PHYSICAL REVIEW B 96, 155132 (2017) harmonics as follows:

  FIG. 1. Conventional unit cell of RFe 12 X. The rare-earth R sites are yellow, the three types of Fe sites are gray, light blue, and dark blue, and dopant X sites purple.

  FIG. 2. (a)Atom-and orbital-resolved density of states of NdFe 12 N calculated with the spin-polarized DFT method. (b) Atom-and orbital-resolved spectral function of the same compound obtained within self-consistent spin-polarized DFT+Hubbard-I. For better readability we take the average over the three types of Fe atoms: the actual total Fe density of states per unit cell is three times larger.

FIG. 4 .

 4 FIG.4. Evolution with temperature of the difference in the 4f shell energy E ⊥ -E between the moments on R and Fe aligned perpendicularly and parallel to the z axis, respectively, for NdFe 12 N (blue, full line) and SmFe 12 Li (red, dashed line). Inset: Magnetization fraction of the Fe sublattice in NdFe 12 N, as a function of temperature from Hirayama et al.[6].

FIG. 6 .

 6 FIG. 6. (a) Projected spectral functions ρ 0σ αl (ω) for the 4f orbital with m = 0 in NdFe 12 Li, where the atom α and shell l are given in the legend. The magnitude ρ mσ αl (ω) indicates the amount of admixture of the character αl into a given 4f orbital, for its precise formulation see the text. (b) The same for the 4f orbital m = 3.

  FIG. 7. (a) Projected spectral functions ρ 0σ αl (ω) for the 4f orbital with m = 0 in NdFe 12 N. For the notation see the caption of Fig. 6. (b) The same for the 4f orbital m = 3, ρ 3σ αl (ω).
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  FIG. 9. CFP A 0 2 r 2 in NdFe 12 N as a function of U for J H = 0.85 eV (left-hand panel), and as a function of J H for U = 6 eV (righthand panel). Our reference values are (U = 6 eV, J H = 0.85 eV).described in Refs.[50,51]. The corresponding real-space Wannier functions are then obtained by a Fourier transformation

  FIG. 10. NdFe 12 Li 4f Wannier orbital m = 0 constructed with a large window [-20,20] eV (left) and a small window [-2,2] eV (right). The use of a large window essentially removes all hybridization between the rare-earth and neighboring atoms.

FIG. 11 .

 11 FIG. 11. Absolute value of the CFP A 0 2 r 2 as a function of window size ω win for NdFe 12 , NdFe 12 N, NdFe 12 Li, and SmCo 5 .

  5 and 10(b). Inserting the expansion Eq. (F3) of the KS states |φ k ν into Eq. (F4) one obtains ασ m,lm (k) wασ lm (k) , (F5) where U σ,ασ m,l m (k) = ν∈W P σ mν (k) P ασ lm ν (k) * . (F6) We use these projectors U σ,ασ m,l m (k) to project the 4f spectral function computed in the small-window WO basis on large-window localized WOs representing other states (Fe 3d, N 2p, Li 2s, and so on). Namely, having obtained the real-axis lattice Green's function in the small-window Wannier basis for the orbital (σ m) of the 4f shell G mσ (k,ω + iδ), as well as the corresponding partial spectral function ρ mσ (ω) = -1 π ImG mσ (k,ω + iδ), we compute the different orbital contributions into it as follows: ρmσ αl (ω) = -1 π Im k m σ U σ,ασ m,lm (k) * ×G mσ (k,ω + iδ)U σ,ασ m,lm (k), (F7) where ρmσ αl (ω) is the fraction of the 4f spectral function of orbital index (σ m) with the character (αl). Using Eq. (F3) and 155132-14 CRYSTAL-FIELD SPLITTINGS IN RARE-EARTH-BASED . . . PHYSICAL REVIEW B 96, 155132 (2017) the orthonormality of small-window WOs: w σ m (k) w σ m (k) = δ mm δ σ σ = ν P σ mν (k) * P σ m ν (k), one may easily show the completeness of the expansion (F7) αl ρmσ αl (ω) = ρ mσ (ω).
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  Chapter 3. The Hubbard model and Dynamical Mean Field Theory Many variations exist, but the simplest form of Hubbard's model describes one band, nearest-neighbor hopping and on-site interactions only. It can be written in second quantization as

Table 3 .

 3 

1 -Analogy between the classical Ising mean-field and dynamical mean-field theory applied to the Hubbard model. Adapted from Ref.

[59]

.

  DFT is the usual DFT Hamiltonian, H U is a Coulomb term screened by itinerant states and acting on a d or f shell, and H dc is a double-counting term that corrects for local Coulomb interactions already present in H DFT . The local Coulomb interaction of H U is treated in a Hartree-Fock approximation, giving a static and real local self-energy. This can be sufficient to, for instance, open a gap in the fully ordered phases of antiferromagnetic Mott insulators. DFT+DMFT can be understood as a natural improvement on DFT+U, because it starts from the same Hamiltonian 4.1. It opens, however, the possibility for a fully dynamical self-energy and all that it implies: quasi-particle lifetimes, bandwidth renormalization...

	4.1 The combined Density Functional Theory + Dynamical Mean-
	Field Theory method	
	Extensions of DFT (in practice, LDA or GGA) such as the DFT+U method have been developed for
	systems with partly filled d or f orbitals before DFT+DMFT[75-77]. DFT+U considers a Hamiltonian
	H DFT+U = H DFT + H U -H dc	(4.1)
	where H	

table 7

 7 

	69

.1). Therefore, ab initio theoretical calculations are an indispensable tool for developing a better under-7.3. Monovacancies in α-Fe

Table 7 .

 7 1 -Vacancy formation energies from reported measurements. PM refers to the paramagnetic phase, FM to the ferromagnetic one. FM values are in fact inferred from the PM values, using additional approximations.

Table 7 .

 7 

2 -DFT results for the vacancy formation energies for iron. All results above are for the ferromagnetic (FM) phase. The results are sorted by the method used (with decreasing accuracy of the basis set from top to bottom.) There are significant variations depending on the method, ultrasoft pseudopotential calculations reporting values significantly smaller than all-electron full potential ones.

Table 7 .

 7 

3 -Vacancy formation energies computed this work. The statistical uncertainty shown is the empirical standard deviation of the value over the last 50 iterations. Different calculation setups are shown: ferromagnetic (FM), paramagnetic (PM) or nonmagnetic (NM), experimental volume or DFT theoretical volume, relaxed or unrelaxed.

Table 8 .

 8 .1, 8.2 and 8.3. All atoms have multiplicity 2 (by symmetry) in the primitive unit cell, and multiplicity 6 in the conventional unit cell (as in Fig.8.1). 1 -Experimental lattice parameters of the conventional unit cell of VO 2 (B). The lengths are in Å. From Ref.[START_REF] Srivastava | Selective growth of single phase VO 2 (A, B, and M) polymorph thin films[END_REF].

				a	b	c	α	β	γ
			HT 12.09 11.92 3.70	90 •	90 •	148.9 •
			LT	12.15 11.89 3.72	90 •	90 •	149.4 •
	Atom	x	y		z	
	V 1	0.9204	0.7214	0	
		0.0796	0.2786	0	
	V 2	0.4150	0.3145	0	
		0.5850	0.6855	0	
	O 1	0.1405	0.0006	0	
		0.8595	0.9994	0	
	O 2	0.6098	0.3436	0	
		0.3902	0.6564	0	
	O 3	0.7064	0.6496	0	
		0.2936	0.3504	0	
	O 4	0.7016	0.6928	0	
		0.9284	0.3072	0	

Table 8 .

 8 2 -Atomic positions in VO 2 (B) HT.

	Atom	x	y	z
	V 1	0.9285	0.7249	0
		0.0715	0.2751	0
	V 2	0.4241	0.3281	0
		0.5759	0.6719	0
	O 1	0.1432	0.9944	0
		0.8568	0.0056	0
	O 2	0.6174	0.3502	0
		0.3826	0.6498	0
	O 3	0.7144	0.6545	0
		0.2856	0.3455	0
	O 4	0.0746	0.6792	0
		0.9254	0.3208	0

Table 8 . 3

 83 

-Atomic positions in VO 2 (B) LT.

Table 8 . 5

 85 .5.

	Phase	Method	Filling V 1	Filling V 2
			a 1g	e π g	a 1g	e π g
	VO 2 (B) HT DFT+DMFT	0.69	0.33	0.60	0.42
		LDA	0.47	0.39	0.51	0.58
	VO 2 (B) LT DFT+Σ dimer + DM F T	0.92	0.10	0.92	0.09
		LDA	0.51	0.21	0.75	0.49
	VO 2 (M 1 )	DFT+Σ dimer + DM F T	0.98	0.02	
		LDA	0.75	0.24	
		Haverkort et al. [257]	0.81	0.19	
	VO 2 (R)	DFT+DMFT	0.60	0.40	
		LDA	0.45	0.55	
		Haverkort et al. [257]	0.33	0.67	

-Occupation of orbitals, calculated within LDA and DFT+Σ dimer + DM F T .

Table 8 .

 8 

	U bare 14.4	2g -t 2g model U J bare 2.6 0.5	J 0.4
	U bare	U	J bare H	J H
	13.7	2.0	0.7	0.5
	t 2g -t 2g model (U from a 1g orbital) U bare U J bare 15.8 2.8 0.5 0.4 J
	U bare	U	J bare H	J H
	15.1	2.3	0.7	0.5
	U bare	d -d model U J bare H	J H
	16.3	2.8	0.6	0.4
	U bare dd	dp -dp model U dd J bare,dd H	J dd H
	20.2	11.9	0.8	0.7
	U bare dp	U dp	U bare pp	U pp
	7.5	4.1	19.5	9.9

6 

-Parameters (in eV) of the interaction Hamiltonian VO 2 (R) calculated in a t 2g -t 2g model, a dd model and a dpdp model. Here, U and J denote the parameters of the t 2g Hubbard-Kanamori Hamiltonian, while U = F 0 denotes the monopole part of the Slater interaction Hamiltonian and J H = (F 2 + F 4 )/14.

Table 8 .

 8 

	2 (R), all O positions are

7 -Summary of the relative values of the vacancy formation energies E f vac (in eV. Reference point: formation energy at O 4 ), index of nearest V atom, and orientation with respect to it for the four different vacancy sites in the HT phase.

Table 8 .

 8 8 -Summary of the relative values of the vacancy formation energies E f vac (in eV. Reference point: formation energy at O 4 ), index of nearest V atom, and orientation with respect to it for the four different vacancy sites in the LT phase.

	Inequiv. atom
	1 0 1 2 3 4 5 ω (eV)

Table 9 .

 9 1 -Calculated CF parameters in ferromagnetic (FM) and paramagnetic (PM) SmCo 5 in kelvin. For the FM case we list the CF parameters for each spin direction. The exchange field in the FM phase (in tesla) is also listed. For comparison, measured values from several groups are also shown.

	327]

Table 9 .

 9 

2 -Conventional unit cell lattice constants used in our calculations. b = a, and the angles are α = β = γ = 90

Table 9 .

 9 4 -The same quantities as in Table9.3 for SmFe 12 (N,Li).

	130				Chapter 9. Hard magnets & Crystal-Field calculations
		SmFe 12			SmFe 12 N			SmFe 12 Li	
		PM	FM		PM	FM		PM	FM	
	A 0 2 r 2	-32	↑ -184	↓ -211	249	↑ 195	↓ 225	-458	↑ -297	↓ -272
	A 0 4 r 4	-11	-21	-18	99	78	70	-116	-68	-71
	A 4 4 r 4	-215	-41	-136	-122	22	-91	-124	61	-198
	A 0 6 r 6	47	45	40	71	47	25	-13	-2	-12
	A 4 6 r 6	-85	-95	-58	-184	-97	-82	44	30	38
	B ex (T )	-	232		-	205		-	331	
	Sm M spin	-	-3.31 µ B	-	-2.41 µ B	-	-3.96 µ B
	NSmM orb	-	3.29 µ B	-	2.35 µ B	-	3.60 µ B
	M cell	-	24.54 µ B	-	26.83 µ B	-	25.77 µ B
			600							
		A 0 2 < r 2 > (K)	-600 -300 0 300							
			NdFe NdFeN NdFeLi SmFe SmFeN SmFeLi		

Table 9 .

 9 5 -crystal-field parameters and exchange field in NdFe 12 N and SmCo 5 in the ferromagnetic phase, calculated with and without averaging over the ground state multiplet.

			NdFe 12 N			SmCo 5		
		with		without	with		without
	A 0 2 r 2	↑ 477	↓ 653	↑ -190	↓ 26	↑ -313	↓ -262	↑ 278	↓ 331
	A 0 4 r 4	75	112	30	82	-40	-55	-30	-37
	A 4 4 r 4	-105	-141	-65	-124	0	-0	0	0
	A 0 6 r 6	32	63	27	64	35	25	38	25
	A 4 6 r 6	-65	-91	-61	-112	0	0	0	0
	A 6 6 r 6	0	-0	0	0	-731	-593	-945	-806
	B ex (T )	217		206		227		235	

TABLE I .

 I Conventional unit cell lattice constants used in our calculations. b = a, and the angles are α = β = γ = 90 • .

		Lattice constant ( Å)
	Compound	a	c
	NdFe 12	8.533	4.681
	NdFe 12 N	8.521	4.883
	NdFe 12 Li	8.668	4.873
	SmFe 12	8.497	4.687
	SmFe 12 N	8.517	4.844
	SmFe 12 Li	8.640	4.863

TABLE III .

 III The same quantities as in TableIIfor SmFe 12 (N,Li).

			SmFe 12			SmFe 12 N			S m F e 12 Li	
		PM	FM		PM	FM		PM	FM	
			↑	↓		↑	↓		↑	↓
	A 0 2 r 2 A 0 4 r 4	-32 -11	-184 -21	-211 -18	249 99	195 78	225 70	-458 -116	-297 -68	-272 -71
	A 4 4 r 4 A 0 6 r 6	-215 47	-41 45	-136 40	-122 71	22 47	-91 25	-124 -13	61 -2	-198 -12
	A 4 6 r 6	-85	-95	-58	-184	-97	-82	44	30	38
	B ex (T )	-	232		-	205		-	331	
	Sm M spin	-	-3.31 μ B	-	-2.41 μ B	-	-3.96 μ B
	Sm M orb	-	3 .29 μ B		-	2 .35 μ B		-	3 .60 μ B	
	M cell	-	2 4 .54 μ B		-	2 6 .83 μ B		-	2 5 .77 μ B	

TABLE IV .

 IV Calculated CF parameters in ferromagnetic (FM) and paramagnetic (PM) SmCo 5 in Kelvin. For the FM case we list the CF parameters for each spin direction. The exchange field in the FM phase (in Tesla) is also listed. For comparison, measured and calculated values from several groups are also given. References corresponding to an experimental work are denoted by the symbol †.PMFM Tils et al. Zhao et al. Givord et al. Sankar et al. Bushow et al. Richter et al. Hummler et al. Novak et al.

		↑	↓	Ref. [20] † Ref. [19] † Ref. [18] †	Ref. [17] †	Ref. [16] †	Ref. [69]	Ref.[70]	Ref.[71]
	A 0 2 r 2 -140 -313 -262 A 0 -40 -40 -55 4 r 4 A 0 33 35 25 6 r 6 A 6 6 r 6 -684 -731 -593	-326 ---	-330 -45 0 0	-200 0 50 0	-420 25 0 6	-180 0 0 0	-755 -37 11 290	-509 -20 2 -55	-160 -33 40 168
	B ex (T )	-	227	260	327.5	260.5	357	298	-	279	-

TABLE VI .

 VI , which displays those 155132-12 CRYSTAL-FIELD SPLITTINGS IN RARE-EARTH-BASED . . . Same as Table V, for SmFe 12 X and SmCo 5 . For SmCo 5 , between brackets next to the calculated energies: energies of the atomic eigenstates measured by Tils et al. (left, Ref.
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TABLE VII .

 VII Crystal-field parameters and exchange field in NdFe 12 N and SmCo 5 in the ferromagnetic phase, calculated with and without averaging over the ground-state multiplet. it to 4 eV includes most of the Fe states and part of the N or Li states inside the window. The largest size of 20 eV gives Wannier functions with essentially pure orbital character. One may notice a relatively mild dependence of the CFP on the choice of the window up to ω win = 8 eV.

									bands, increasing
			NdFe 12 N			S m C o 5
		with		without	with		without
		↑	↓	↑	↓	↑	↓	↑	↓
	A 0 2 r 2 A 0 4 r 4	477 75	653 -190 112 30	26 -313 -262 82 -40 -55 -30 -37 278 331
	A 4 4 r 4 -105 -141 -65 -124 A 0 6 r 6 32 63 27 64	0 35	0 25	0 38	0 25
	A 4 6 r 6 A 6 6 r 6	-65 -91 -61 -112 0 0 0 0 -731 -593 -945 -806 0 0 0 0
	B ex (T )	217		206		227		235

For technical reasons, in the M 1 phase we directly performed analytical continuation on the spectral function, rather than on the self-energy.

We consider the case of T being much lower than the inter-multiplet splitting, hence, the contribution of excited multiplets into the partition function Z can be neglected

An equivalent approach would be to make the one-electron Hamiltonian that serves as an input to the Hubbard I solver spherically symmetric: both approaches should be equivalent and nearly equally simple to implement.

As a first illustration of Screened Exchange DMFT, we review calculations on BaCo 2 As 2 , which is the fully Cosubstituted representative of the so-called "122" family of the iron-based superconductors, isostructural to the prototypical parent compound BaFe 2 As 2 . The Fe → Co substitution has however important consequences: the nominal filling of theΓ X M Γ
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Appendices

• r denotes a (vector) space variable

• k denotes a (vector) momentum or crystal momentum variable

• ω denotes the real-axis frequency variable

• iω n = i (2n + 1)π β denotes a fermionic imaginary-axis (or Matsubara) frequency

• iΩ n = i 2nπ β denotes a bosonic imaginary-axis (or Matsubara) frequency

A.1.2 Operators and others

• H denotes a Hamiltonian

• S or S denotes an action

• Ψ denotes a many-body wave function

• ψ denotes a one-particle wave function

• In a Hamiltonian, c † and c denote respectively a second-quantization creation and annihilation operator

• In an action, c † and c denote conjugate Grassmann variables

• A[B] means a quantity A is a functional of B

• σ denotes an electron spin (↑ or ↓), and σ the opposite spin of σ 145 Appendix A. Conventions

A.1.3 Units

• Except in the introductory chapter 1, we use a unit system where = m e = e 2 = 4πε 0 = 1

• All units are in electron-volts (eV)

A.2 Fourier transformations

A.2.1 Time-frequency domain

The direct and inverse Fourier transforms in real time and frequency are defined by

For an imaginary time β-periodic or β-antiperiodic function f (τ ) and its corresponding Matsubara representation f (iω n ), where iω n is a fermionic or a bosonic Matsubara frequency:

A.2.2 Space-momentum domain

In the continuum, in a crystal of volume Ω with a periodic potential, the Fourier transform is defined as

where G is a vector of the reciprocal lattice and k belongs to the first Brillouin zone.

Appendix B

Green's functions

B.1 Definitions

Here, we remind the reader of a few useful formulas regarding Green's functions. For a more complete description, see for instance the textbook on many-body physics by Bruus and Flensberg [START_REF] Bruus | Many-body quantum theory in condensed matter physics: an introduction[END_REF]. The Green's function of a many-body system is a propagator, encoding the probability of finding at time t 2 and point r 2 a particle created at time t 1 and point r 1 .

B.1.1 Real-time Green's functions

The real-time retarded Green's function is defined as

where Ψ † (rσt)r and Ψ(rσt) are the particle creation and annihilation operators in the continuum, and [A, B] ± denotes the commutator or anti-commutator for bosonic or fermionic quantities A and B, respectively. θ(t) is the Heavyside step function, equal to 0 when t < 0 and 1 when t ≥ 0. A denotes the average value of a quantity A, computed using the full Hamiltonian of the system.

The Fourier transform of G R (rσt, r σ t ) is G R (kσω, k σ ω ). For a system invariant by translation in space and time variables, and without spin-flip terms in the many-body Hamiltonian, this can simply be written G R (k, σ, ω).

By introducing a complete set of states n |n n| = Id into Eq. B.1, we obtain the Lehmann representation:

where iη is an infinitesimal imaginary shift and Z the partition function of the system with N particles.

In particular at zero temperature, either n or n must be the ground state of the system, so that

A is a many-body eigenstate with N -1 particles, Ψ N -1 B is a many-body eigenstate with N -1 particles and Ψ 0 is the ground state wave function (with N particles).

Appendix C Projection of extended Wannier orbitals to localized Wannier basis

In this appendix, we derive the projection operator between localized and extended Wannier spaces used in chapter 9, section 9.5. Consistently with that chapter, we consider here the case of correlated 4f orbitals treated within DFT+DMFT. This is simply in order to simplify the notations: the same relations hold for Wannier functions with different orbital character. This derivation can be seen as an extension of the ideas developed in section 4.1.1 and Ref. [START_REF] Aichhorn | Dynamical mean-field theory within an augmented plane-wave framework: assessing electronic correlations in the iron pnictide LaFeAsO[END_REF] about the DFT+DMFT projection scheme.

A set of Wannier-like functions | wασ lm (k) is constructed for an atom α of the unit cell and quantum numbers (lmσ) as a combinations of Kohn-Sham Bloch waves for a range of bands within the chosen energy window W:

where φ k ν are the Bloch functions and P ασ lmν (k) is the corresponding matrix element of the projector constructed as described in Refs. [START_REF] B Amadon | Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals[END_REF][START_REF] Aichhorn | Dynamical mean-field theory within an augmented plane-wave framework: assessing electronic correlations in the iron pnictide LaFeAsO[END_REF]. The corresponding real-space Wannier functions are then obtained by a Fourier transformation

We assume that the window W in (C.1) is large, i.e. that it includes both rare earth 4f states and all relevant valence bands that are expected to hybridize with them. In result, with such a large-window construction one obtains a set of mutually-orthogonal and rather well localized Wannier orbtials (WO). In particular, the large-window 4f WOs wασ lm (r) almost do not leak onto neighboring sites, as discussed in the previous section, see Fig. 9.14(a). If one constructs as many WOs as the number of Kohn-Sham bands within W then the projection operator P (k) is just a unitary transformation, hence, (C.1) can be inverted

where the equality is approximate because high-energy empty bands usually cross and, hence, one cannot generally chose such a window as to have the same number of bands for all k-points. However, those high-energy states are far from the relevant region close to the Fermi level, and if one applies (C.3) to the bands within a small window W around the the Fermi energy the resulting small non-unitarity of P (k) can be neglected. We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo 5 . Applying it to RFe 12 and RFe 12 X hard magnets (R = Nd, Sm and X = N, Li), we obtain in particular a large positive value of the crystal-field parameter A 0 2 r 2 in NdFe 12 N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A 0 2 r 2 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe 12 Li. We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites. DOI: 10.1103/PhysRevB.96.155132

I. INTRODUCTION

Permanent magnets are a key component of modern electronic devices, ranging from electric motors to medical imaging. An important breakthrough in the quest for highperformance permanent magnets was the discovery of rareearth intermetallic magnets, starting with SmCo 5 in 1966 [1]. Since its discovery in 1982, the champion of hard magnets has been Nd 2 Fe 14 B [2]. More recently, rare-earth iron-based hard magnets RFe 12 X with the ThMn 12 structure such as NdFe 12 N have been under renewed scrutiny [3][4][5][6][7]. The underlying reason is the high price and strategical importance of rare earths and cobalt, and the ongoing research effort to find good permanent magnets with reduced rare-earth concentration [8]. The ThMn 12 structure has a reduced ratio of rare earth vs transition metal compared to Nd 2 Fe 14 B, but nevertheless conserves strong hard magnetic properties (large magnetization and Curie temperature, and strong anisotropy) when doped with light elements such as nitrogen [4][5][6].

The main physical ingredients for a rare-earth hard magnet are the high magnetic anisotropy energy provided by rareearth ions combined with the high magnetization and Curie temperature from the transition metal sublattice, typically composed of Fe or Co atoms [8][9][10]. The 3d transition metal atoms carry little anisotropy; because of their rather small spin-orbit coupling, their magnetization direction is essentially fixed by that of the rare-earth ion through an exchange coupling. The majority of rare-earth elements, especially heavy rare-earth elements, are very expensive. Moreover, the magnetic moment of heavy rare earth is normally antiparallel to the transition-metal one reducing the net magnetization [8]. Hence, one advantage of new compounds like RFe 12 X is a reduced rare-earth concentration. In turn, a higher Fe concentration is favorable for achieving a large magnetization, which is another advantage of RFe 12 X compounds. However, this reduced rare-earth concentration means each rare-earth ion must contribute a strong magnetic anisotropy to keep the overall magnetic hardness. The preferred magnetization direction (in-plane or out-of-plane) of a given rare-earth ion is determined by the interplay between the crystal-field (CF) splitting and spin-orbit (SO) interaction. To the first order, the crystalline magnetic anisotropy energy reads

where θ is the angle between the magnetization and the easy axis, and

where J is the total angular momentum for the rare-earth 4f shell, n R is the concentration of rare-earth atoms, α J is the corresponding Stevens factor, and A 0 2 r 2 is the lowest-order crystal-field parameter (CFP). Additional small doping of light elements is also found to strongly modify the anisotropy by affecting the rare-earth CF splitting [5,11,12]. They also modify the structural stability: doping B makes the Nd 2 Fe 14 B phase more stable, while interstitial nitrogen has only a minor effect in structural stability.

It follows that the CF splitting on the rare-earth 4f shell is a crucial quantity defining the magnetic hardness of rare-earth intermetallics. The theoretical search for new rare-earth hard magnets thus requires a reliable approach to calculating CFP. The importance of crystal-field effects for the optical, magnetic, and other properties of solids has been recognized long ago, and semiempirical models of the CF Hamiltonian, such as the point charge model [13] and the superposition model [14], have been developed since the 1960s. While they provide an inexpensive and physically transparent description of CF parameters, their predictive power is limited as they require experimental input to determine the actual values. Experimental information is readily available for large bandgap rare-earth insulators, where the CFP can be extracted from measurements of dipole-forbidden optical transitions between f states [15]. In the case of rare-earth intermetallics, In this Appendix we present the actual converged eigenfunctions and eigenstates of the 4f shell obtained within our DFT+Hub-I approach. In Tables V and VI we list those eigenenergies and the corresponding wave functions for the ground-state multiplet, as well as for the lowest-energy state of the first exited multiplet, in all the materials considered. The eigenenergies are given with respect to the ground state. The eigenvalues are expanded in the basis of total angular momentum J as J,m J a(J,m J )|J ; m J ; we include all contributions with |a(J,m J )| > 0.03.

One sees that the eigenstates of Sm belonging to the ground-state multiplet feature a rather significant admixture of the exited J = 7/2 multiplet. The intermultiplet mixing is markedly lower in the case of Nd.

To our awareness, only 4f eigenstates in SmCo 5 have been measured to date. Our calculated intra-and intermultiplet splittings are in good agreement with the results of of Tils et al. [20] and Givord et al. [18], see the lowest panel of Table VI. Moreover, the actual eigenstates and their order are also in very good agreement with the magnetic form-factor measurements [18,72], especially for the lowest-energy states [START_REF] Anisimov | First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory[END_REF].

APPENDIX C: IMPORTANCE OF THE CHARGE AVERAGING

In this Appendix we explicitly demonstrate the effect of averaging of 4f charge density [Eq. (8)] by comparing the CFP calculated with and without this averaging [but in both cases the 4f magnetic density is suppressed following Eq. ( 10)] in two materials, NdFe 12 N and SmCo 5 , that are known to have an out-of-plane magnetic anisotropy.

The corresponding values are displayed in Table VII. One sees that the difference is largest for the lowest-order CFP A 0 2 r 2 , where calculations without averaging lead to the wrong sign with respect to experiment (suggesting in-plane anisotropy in both cases). Hence, the proper averaging of 4f charge density is crucial for a correct description of the single-ion anisotropy. For the higher order terms the difference between two approaches is smaller. This suggests that the self-interaction contribution in the CFP has predominantly l = 2 symmetry.

APPENDIX D: DEPENDENCE OF RESULTS

ON COULOMB U AND HUND's J H

To perform DFT+DMFT calculations, we have to choose a value for the on-site screened Coulomb interaction parameter 
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Abstract:

The structural, spectral, magnetic, and many other properties of materials are mostly determined by the behavior of the electrons that glue the atoms together. Some of the most important technological advances of the 20 th century were made in the field of semi-conductors, where electrons behave like a dilute gas of weakly interacting particles. In contrast, many of the most promising materials for technological applications today are oxides. In transition metal or rare earth oxides, but also in some pure metals or alloys, the Coulomb repulsion between the electrons can give rise to exotic properties and phase transitions. In this thesis, we developed and applied firstprinciples (i.e. based on fundamental laws of physics) methods to evaluate the behavior of electrons interacting with each other and the physical properties stemming from it. We use these tools to study several materials of fundamental and technological interest, in particular iron, vanadium dioxide and hard magnets.