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Abstract for the general public

The structural, spectral, magnetic, and many other properties of materials are mostly determined by the
behavior of the electrons that glue the atoms together.

Some of the most important technological advances of the 20th century were made in the field of
semi-conductors, where electrons behave like a dilute gas of weakly interacting particles. In contrast,
many of the most promising materials for technological applications today are oxides. In transition metal
or rare earth oxides, but also in some pure metals or alloys, the Coulomb repulsion between the electrons
can give rise to exotic properties and phase transitions.

In this thesis, we developed and applied first-principles (i.e. based on fundamental laws of physics)
methods to evaluate the behavior of electrons interacting with each other and the physical properties
stemming from it. We use these tools to study several materials of fundamental and technological interest,
in particular iron, vanadium dioxide and hard magnets.

Résumé “grand public”

Les propriétés structurelles, magnétiques et de conduction des matériaux sont déterminées par le
comportement des électrons qui lient leurs atomes.

Parmi les plus importantes avancées technologiques du 20e siècle ont eu lieu dans le domaine des semi-
conducteurs, dans lesquels les électrons se comportent comme un gaz peu dense interagissant faiblement.
En revanche, les oxydes sont des matériaux prometteurs pour les applications technologiques à venir. Dans
les oxydes de métaux de transition ou de terres rares, ainsi que dans certains métaux purs et alliages, la
répulsion entre électrons peut donner lieu à des propriétés exotiques et à des transitions de phase.

Dans cette thèse, nous avons développé et utilisé des méthodes partant des “premiers principes”
de la physique pour évaluer le comportement d’électrons en interaction et les propriétés physiques qui
en découlent. Nous avons appliqué ces outils à plusieurs matériaux, en particulier le fer, le dioxyde de
vanadium et les aimants permanents.
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Abstract

The topic of this thesis is the first-principles theory of the electronic structure of materials with strong
electronic correlations. Tremendous progress has been made in this field thanks to modern implemen-
tations of Density Functional Theory (DFT). However, the DFT framework has some limits. First, it
is designed to predict ground state but not excited state properties of materials, even though the latter
may be just as important for many applications. Second, the approximate functionals used in actual
calculations have more limited validity than conceptually exact DFT: in particular, they are not able to
describe those materials where many-electron effects are most important.

Since the 1990’s, different many-body theories have been used to improve or complement DFT cal-
culations of materials. One of the most significant non-perturbative methods is Dynamical Mean-Field
Theory (DMFT), where a lattice model is self-consistently mapped onto an impurity model, producing
good results if correlations are mostly local. We briefly review these methods in the first part of this
thesis. Recent developments on DMFT and its extensions were aimed at better describing non-local ef-
fects, understanding out-of-equilibrium properties or describing real materials rather than model systems,
among others. Here, we focus on the latter aspect.

In order to describe real materials with DMFT, one typically needs to start with an electronic structure
calculation that treats all the electrons of the system on the same footing, and apply a many-body
correction on a well-chosen subspace of orbitals near the Fermi level. Defining such a low-energy subspace
consistently requires to integrate out the motion of the electrons outside this subspace. Taking this into
account correctly is crucial: it is, for instance, the screening by electrons outside the subspace strongly
reduces the Coulomb interaction between electrons within the subspace. Yet it is a complex task, not
least because DFT and DMFT are working on different observables. In the second part of this thesis,
we discuss low-energy models in the context of the recently proposed Screened Exchange + DMFT
scheme. In particular, we study the importance of non-local exchange and dynamically-screened Coulomb
interactions. We illustrate this by discussing semi-core states in the d10 metals Zn and Cd.

In the third and last part, we use the methods described above to study the electronic structure of
three fundamentally and technologically important correlated materials. First, we discuss the physics of
point defects in the paramagnetic phase of bcc Fe, more precisely the simplest of them: the monovacancy.
Surprisingly for such a simple point defect, its formation energy had not yet been reported consistently
from calculations and experiments. We show that this is due to subtle but nevertheless important
correlation effects around the vacancy in the high-temperature paramagnetic phase, which is significantly
more strongly correlated than the ferromagnetic phase where DFT calculations had been done.

Second, we study the metal-insulator phase transition in the metastable VO2 B phase. We show
that this transition is similar to that between the conventional rutile and M2 VO2 phases, involving
both bonding physics in the dimer and an atom-selective Mott transition on the remaining V atoms.
Motivated by recent calculations on SrVO3, we study the possible effect of oxygen vacancies on the
electronic structure of VO2.

Finally, we propose a scheme beyond DFT for calculating the crystal field splittings in rare earth
intermetallics or oxides. While the magnitude of this splitting for the localized 4f shell of lanthanides
does not typically exceed a few hundred Kelvin, it is crucial for their hard-magnetic properties. Using
a modified Hubbard I approximation as DMFT solver, we avoid a nominally small but important self-
interaction error, stressing again the importance of carefully tailored low-energy models.
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Résumé

Le sujet de cette thèse est la théorie à partir des premiers principes de la structure électronique de
matériaux présentant de fortes corrélations électroniques. D’importants progrès ont été faits dans ce do-
maine grâce aux implémentations modernes de Théorie de la Fonctionelle de Densité (DFT). Néanmoins,
la méthode DFT a certaines limitations. D’une part, elle est faite pour décrire les propriétés de l’état
fondamental mais pas des états excités des matériaux, bien que ces derniers soient également importants.
D’autre part, les approximations de la fonctionnelle employées en pratique réduisent la validité de la
DFT, conceptuellement exacte : en particulier, elles décrivent mal les matériaux aux effets de corrélations
les plus importants.

Depuis les années 1990, différentes théoriques quantiques à N corps ont été utilisées pour améliorer
ou compléter les simulations à base de DFT. Une des plus importantes est la Théorie du Champ Moyen
Dynamique (DMFT), dans laquelle un modèle sur réseau est relié de manière auto-cohérente à un modèle
plus simple d’impureté, ce qui donne de bons résultats à condition que les corrélations soient principale-
ment locales. Nous présentons brièvement ces théories dans la première partie de cette thèse. Les progrès
récents de la DMFT visent, entre autres, à mieux décrire les effets non-locaux, à comprendre les propriétés
hors équilibre et à décrire de “vrais” matériaux plutôt que des modèles.

Afin d’utiliser la DMFT pour décrire de vrais matériaux, il faut partir d’un calcul de structure
électronique traitant tous les électrons au même niveau, puis appliquer une correction traitant les effets
à N corps sur un sous-espace de basse énergie d’orbitales autour niveau de Fermi. La définition cohérente
d’un tel sous-espace nécessite de tenir compte de la dynamique des électrons en-dehors de cet espace. Ces
derniers, par exemple, réduisent la répulsion de Coulomb entre électrons dans le sous-espace. Néanmoins,
combiner la DFT et la DMFT n’est pas aisé car les deux n’agissent pas sur la même observable. Dans
la deuxième partie de cette thèse, nous étudions les modèles de basses énergies, comme la technique
“échange écranté + DMFT” récemment proposée. Nous analysons l’importance de l’échange non-local
et des interactions de Coulomb retardées, et illustrons cette théorie en l’appliquant aux états semi-cœur
dans les métaux d10 Zn et Cd.

Dans la dernière partie, nous utilisons ces méthodes pour étudier trois matériaux corrélés importants
d’un point de vue technologique. Dans un premier temps, nous nous intéressons à la physique des mono-
lacunes dans la phase paramagnétique du fer. De façon surprenante pour un défaut aussi simple, son
énergie de formation n’a toujours pas été obtenue de manière cohérente par la théorie et l’expérience.
Nous démontrons que cela est dû à de subtils effets de corrélations autour de la lacune dans la phase pa-
ramagnétique à haute température : cette phase est plus fortement corrélée que la phase ferromagnétique,
où des calculs de DFT ont été faits.

Dans un deuxième temps, nous étudions la transition métal-isolant dans la phase métastable VO2 B.
Nous montrons que cette transition ressemble à celle entre la phase conventionnelle rutile et la phase M2

de VO2, mettant en jeu à la fois des liaisons covalentes dans les dimères et une transition de Mott sur les
atomes V restants. Nous étudions également l’effet de lacunes d’oxygène sur la structure électronique de
VO2.

Enfin, nous proposons une technique au-delà de la DFT pour calculer le champ cristallin dans les
oxydes et alliages de terres rares. Bien que l’amplitude de ce champ soit faible pour les orbitales localisées
4f des lanthanides, il est crucial pour leur caractère d’aimant permanent. En modifiant l’approximation
Hubbard I pour résoudre les équations de DMFT, nous évitons une erreur d’auto-interaction faible en
valeur absolue mais physiquement importante, démontrant à nouveau l’importance de modèles de basse
énergie correctement définis.
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Chapter 1

Correlated materials

1.1 Context

A remarkable early success of quantum mechanics was the determination of the electronic structure and
the resulting optical spectrum of the hydrogen atom H. Even at present, this problem is famous for being
one of the few fully analytically solvable textbook problems in quantum mechanics. The next step was
of course to study the electronic structure of systems with a larger number of particles, in particular
with more electrons. These systems may be, for example, molecules and crystals. In this manuscript we
will focus on the ideal crystal. In particular we will not discuss the electronic structure of amorphous
materials, quasicrystals, or finite size effects in crystals. While these are all important subjects of research,
the electronic structure of the perfect crystal is the starting point in the electronic structure calculation of
materials. Understanding this important model system is the first step that allows for an understanding
of many physical properties of real materials.

The equations that describe a crystal are in fact surprisingly well known. The hamiltonian of a set
of Nn nuclei with masses (Mi)i≤Nn and atomic numbers (Zi)i≤Nn , and Ne electrons with mass m0 and
charge −e can be written as follows:

H =−
Nn∑
i=1

~2

2Mi
∇2

ri +

Nn∑
i,j=j
i<j

ZiZje
2

4πε0|ri − rj |

−
Ne∑
i=1

~2

2m0
∇2

ri +

Nn∑
i,j=j
i<j

e2

4πε0|ri − rj |
−

Ne∑
i=1

Nn∑
j=1

Zje
2

4πε0|ri − rj |

(1.1)

The two first terms represent the kinetic energy and Coulomb repulsion between nuclei, the third
and fourth the same quantities for the electrons, and the last term the Coulomb attraction between
nuclei and electrons. All the parameters of this Hamiltonian are known with great precision. To this we
should add relativistic corrections, the largest one being the spin-orbit coupling between the electron’s
spin and orbital. Once this is established, though, we still know essentially nothing about the physics of
electrons in a crystal. Indeed, a macroscopic quantity of matter (say, a few grams of essentially any solid)
contains a number of atoms within a few orders of magnitude of Avogadro’s number NA = 6.022× 1023.
Schrödinger’s equation for Hamiltonian H, however, can hardly be solved even approximately when the
number of particles exceeds 10. Indeed, its full solution is of the form

Ψ(r1, r2...rNe) (1.2)

The memory necessary to store this many-body wave function increases exponentially with the number
of particles: if nb bytes of memory are needed to store the wave function of one particle, then nNeb bytes
are needed for the full many-body wave function of Ne particles.

3



4 Chapter 1. Correlated materials

A common approximation to equation 1.1 is the so-called Born-Oppenheimer approximation, that
consists in neglecting the degrees of freedom of the nuclei. The justification for this approximation lies
in the large difference between the electron mass m0 and the nucleus mass Mj . Because Mj > 104 ×m0

for most atoms, the timescales for electron dynamics and nuclei dynamics are very different, so that it
makes sense to study the electronic structure for some instantaneous set of positions of the nuclei.

This leads to the simpler equation

H =

Ne∑
i=1

(
− ~2

2m0
∇2

ri + V (ri)

)
+

Nn∑
i,j=j
i<j

e2

4πε0|ri − rj |
(1.3)

Here, V (r) is a periodic potential with the periodicity of the crystal, created by the nuclei and acting on
the electrons. By writing this, we removed an additional term that depends only on the nuclei’s relative
positions, and becomes constant if only the electronic degrees of freedom are considered.

This approximation does not mean, however, that the lattice dynamics is to be neglected. Phonons
(elementary lattice excitations) are at play in many physical phenomena, ranging from indirect gap excita-
tions in semiconductors to the “glue” that binds electron pairs in the Bardeen-Schrieffer-Cooper picture of
superconductivity[1], or to the stabilizing mechanism behind the high-temperature body-centered phase
of iron, δ-Fe[2]. By writing equation 1.3, all we imply is that it often makes sense to talk about the
equilibrium distribution and excitations of electrons in a crystal for a given set of atomic positions, valid
at a given time for a duration far longer than that of electron dynamics. The above remark on the
impossibility to numerically solve equation 1.1 remains true for equation 1.3. Indeed, we still have to
find a many-body wave function with a macroscopic number of particles, which is numerically impossible.
The Born-Oppenheimer approximation is no more than a convenient way to separate the dynamics of
two many-body problems with different time scales.

Indeed, the term in equation 1.3 that makes the problem so difficult is the right-hand term, that is
to say the electron-electron Coulomb repulsion. This term means it is impossible to discuss the wave
function ψ(ri) of a single electron in the system. Crucially, it is not even possible to discuss the wave
function of a single electron knowing the wave functions of all other electrons. The only exact description
of the system is the many-body wave function Ψ(r1, r2..., rNe), describing Ne electrons in interaction in
a potential created by the nuclei. Correlations is the general name we give to the notion that electrons
exist as a many-body wave function, or more precisely a wave function beyond a Slater determinant of
one-body wave functions

Ψ(r1, r2..., rNe) = det (ψ1(r1), ψ2(r2), ..., ψNe(rNe)) (1.4)

so that acting on one electron of a system is impossible without affecting all the others. Correlations may
be strong, weak or almost inexistent. This classification obviously depends on the material considered,
but also, more subtly, on the probe that is used to study the material of interest. We discuss weakly and
strongly correlated materials in section 1.3.

1.2 Electronic band theory: the Bloch theorem and the inde-
pendent electron picture

Let us suppose for a while that the electron-electron interaction term can be simplified as an effective
periodic potential acting on a given electron.

H =

Ne∑
i=1

− ~2

2m0
∇2

ri + Veff(ri) (1.5)

where Veff(r) is an effective periodic potential created by the nuclei and the mean field of surrounding
electrons. While this is a drastic approximation compared to Eq. 1.3, it can still be a reasonable descrip-
tion for some materials. More importantly, this effective periodic potential hypothesis is at work in the
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most widely used ab initio calculation techniques, that are in turn often used as a starting point for more
accurate models describing correlated electrons. In this – much simpler – case, what can we say about
the solutions of Schrödinger’s equation?

It turns out that the spatial periodicity of the potential simplifies the problem tremendously, and leads
to the famous band picture of electrons in a solid. Below, we introduce the Bloch’s theorem that, based
on the sole assumption of translational invariance, justifies the picture of electronic “bands” forming in
a reciprocal space of crystal momentum, and is thus a fundamental theorem of solid state physics.

Bloch’s theorem:

If the Hamiltonian H is periodic in space, that is to say H commutes with the translation operator T :
[H,T ] = 0, where T is the translation in space along the Bravais lattice vector R, then the eigenfunctions
of H can be written as:

Hψnk(r) = εnkψnk(r) (1.6)

with
ψnk(r) = eik.runk(r) (1.7)

where k is a reciprocal space vector within the first Brillouin zone (BZ), n is a band index and the
function u has the periodicity of the lattice: u(r + R) = u(r). All quantities that depend on k are
invariant by translation of any reciprocal lattice vector k, so that we may restrict ourselves to reciprocal
vectors k in the first BZ. For a 1D chain of atoms with spacing a, this amounts to −πa ≤ k ≤ π

a . The
values that k can take are quantified (by π

L , with L the crystal size) in a finite crystal, calculated with
periodic boundary conditions, but become continuous in a perfect, infinite crystal.

Equation 1.6 means that wave functions in the periodic potential still essentially look like plane
waves, or more precisely that they combine a short-range varying eigenfunction multiplied by a longer-
range modulating plane wave. This is what is called a Bloch wave. The quantum number defining the
plane wave part is its crystal momentum k, similar to a wave vector but periodic in the reciprocal space.
However, because the eigenfunctions and eigenvalues are invariant by translation of k by a reciprocal
lattice vector, there is an infinity of acceptable wave vectors likes this. Hence k is not associated to a
momentum through p = ~k, but rather to a pseudomomentum.

Eigenvalues εnk of the Hamiltonian are indexed by k, the plane wave’s wave vector, and n, the band
index. These eigenvalues form energy bands of possible energies, with band gaps or regions in energy
without any admissible wave function in between. The formation of bands can be seen in the tight-binding
model as a generalization of molecular bonding for a large (infinite) number of atoms, or in the nearly
free electron picture as a degeneracy lifting opening the parabola of free electrons. Either way, the result
is that the electronic structure of materials in the independent electron picture or band picture is formed
of energy bands, filled with electrons in increasing energy order, with up to two electrons per state due
to the Pauli principle.

This gives two possibilities for a material, depending on its number of electrons and possible overlap
of bands.

1. Either the last filled band is completely filled, and it takes finite energy (the band gap Eg) to
promote an electron to a higher-lying state. In this case, the material is insulating. The last filled
band is then called the valence band, the first empty band is called the conduction band (because
promoting electrons to this band allows electric conduction), and the material is a band insulator.
In insulators, Eg, and more generally the dispersion relation of the excited states, are quantities of
the utmost interest. Other types of insulators, where a localization of electrons due to interactions
rather than the filling of a band forbids conductivity, are discussed in chapter 3.

2. Or the last filled band is not completely filled. In this case, the marginal energy cost to go from
the ground state to an excited state is 0, and the material is conducting or metallic. The density
of states at the Fermi level, that is to say the differential number of available states around the
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last occupied state, is an important physical quantity, and is one good indicator of the strength of
correlations. Indeed, a high density of states at the Fermi level indicates weakly dispersive (hence
localized) bands and can cause for instance a Stoner magnetic instability[3] where the electrons
rearrange to reduce the Coulomb interaction.

1.3 Beyond band theory: correlations

In reality, as we discussed above, this description is too simplistic. Correlations can appear in different
forms, that we briefly discuss qualitatively below, and more in detail in the following chapters. For a
general discussion of correlations in a solid, we refer the reader to one of the many textbooks on solid-state
physics and many-body physics[4–7].

• One of the most basic and most important ways in which electrons in a solid react to the presence
of any given electron on a given site is screening. In vacuum, the Coulomb potential between two
point charges is

V (r1 − r2) =
q1q2

4πε0|r1 − r2|
In presence of a charge density, the potential is screened by a non-trivial dielectric function ε(ω, r1−
r2):

V (r1 − r2) =
q1q2

4πε0ε|r1 − r2|
ε may take different shapes: in metals a simple approximation for screening is Thomas-Fermi
screening, which postulates exponential decay of V as a function of distance. In insulators, screening
is less efficient and a simple approximation is to take a constant ε > 1.

• Static screening is, in fact, effectively present in the effective potential of equation 1.5, and is
compatible with the band picture. Frequency dependent screening ε(ω), however, leads to satellite
peaks in the emission and absorption spectrum, and accordingly to reduced spectral weight at the
Fermi level.

• Landau’s Fermi Liquid theory[6, 8] postulates that, when electron-electron interactions are adia-
batically turned on in a normal metal, the band picture does not break down completely. More
precisely, there exists a one-to-one correspondence between the one-electron excitations of the non-
interacting system and the quasi-particles of the interacting system, close to the Fermi level. The
quasi-particles are characterized by a lifetime that becomes arbitrarily long close enough to the
Fermi level and at zero temperature, and by a renormalized mass (the quasi-particles are heavier
than free electrons), synonymous of a spectral weight transfer.

• In more extreme cases, the repulsion between electrons may be so strong that they effectively
become localized on a given site. In this case, a material that ought to be metallic according to
band theory and electron counting becomes a so-called Mott insulator [9]. Mott physics arises when
the (screened) Coulomb energy becomes important with respect to the kinetic energy. This is for
example the case in many transition metal oxides, including the famous high-Tc superconducting
cuprates, as well as in rare-earth based materials. Mott insulators are a typical example (but not
the only one) of what we call strongly correlated materials.

Above are but a few examples of how electronic correlations qualitatively modify the effective equations
describing electrons in solids, as well as the corresponding physically measurable effects. This list is not a
comprehensive one (such a list would be much longer) and, more importantly, these aspects of correlations
are not mutually exclusive. Often, a material shows different signs of correlations when probed at different
energy levels, and can go from weakly to strongly correlated when a parameter is tuned, for example by
electronic doping or by applying pressure.

In the following, for simplicity, we use a unit system where ~ = me = e2 = 4πε0 = 1.



Chapter 2

Ab initio electronic structure
calculations: from Hartree to the
GW approximation

Despite the complexity of studying the electronic structure of materials with a macroscopic number of
electrons, enormous progress has been made since the early days of quantum mechanics. Materials have
been approached from two somewhat different perspectives. Model-based calculations have been widely
used to describe, at least qualitatively, complex physical phenomena occurring in materials. The main
goal is to keep only the most relevant physical degrees of freedom in a model as simple as possible. The
downside is that such models often have to focus on a certain energy window (for example, physics close to
the Fermi level), with phenomena occurring outside this window (for example screening) described by ad
hoc parameters. Examples of such models include the Anderson impurity model and the Hubbard model
used for strongly correlated materials, or model Hamiltonian techniques used for studying topological
insulators.

In contrast, ab initio calculations try to take as few parameters as possible, at best none at all, and to
make general predictions about a material. Furthermore, there is usually a stronger emphasis on making
quantitative, not only qualitative, predictions. Because this requires to take into account a much larger
number of electrons and orbitals, ab initio approaches usually require some tricks to make computations
tractable. As we will see below, a famous and useful approach is to forget about wave functions, and
study the electronic density instead.

In the present chapter, we introduce some of the modern techniques used for ab initio electronic
structure calculations. Models for strongly correlated materials, in particular the Hubbard model, will
be discussed in chapter 3. An important subject of modern research, and the subject of the present
manuscript, is to interface ab initio techniques with more accurate many-body techniques in order to
make quantitative predictions for strongly correlated real materials. We will introduce these methods in
chapter 4.

2.1 Early approaches: Hartree-Fock theory

The Hartree and Hartree-Fock (HF) theories are two conceptually simple theories, relatively straightfor-
ward from the physical point of view (though not necessarily so numerically). As such, they count among
the first methods introduced in the 20’s to study the electronic structure of materials[10–13]. Both are
based on strong approximations, so that purely Hartree or HF calculations for real materials give results
that are far from reliable. However, both – in particular HF – remain an important building block in

7



8 Chapter 2. Ab initio electronic structure calculations

modern ab initio techniques such as hybrid functionals in density functional theory, or a simple reference
system in GW theory, which we discuss in section 2.3. For this reason, we believe it is best to introduce
the Hartree and HF approximations before moving to more modern techniques.

2.1.1 The Hartree approximation

The Hartree approximation[10, 11] is what we obtain if we consider a variational principle where the
wave function of the full Hamiltonian 1.3 is searched for in the form of the most simple many-body
wave function there is: a product of one-particle wave functions. In other words, Ψ(r1, r2...rNe) =
ψ1(r1)×ψ2(r2)×...×ψNe(rNe). The variational principle then leads to independent one-electron equations:

hHartree
i ψi =εiψi (2.1)

hHartree
i =−∇2

ri + vHartree(r) (2.2)

vHartree(r) =

∫
dr′

ρ(r′)

|r− r′| + vnuclei(r) (2.3)

The Hartree potential contains the potential felt by one electron from the ions and the static, mean-
field electron density. The Hartree equations can then be solved self-consistently, by using in the Hartree
potential the density ρ =

∑
occ |ψi|2. This is reasonably easy to do numerically because the potential in

the Hartree Hamiltonian 2.2 is local, i.e. involves a term v(r)ψ(r).

The weakest point of the Hartree method is that the trial wave functions are not antisymmetric with
respect to particle permutation, and hence do not respect the Pauli exclusion principle. This causes
excessive overlap of the electrons.

2.1.2 The Hartree-Fock method

Hartree-Fock theory, in turn, builds on Hartree theory while forcing wave functions the respect the Pauli
principle, i.e. by taking Slater determinants of one-particle wave functions as trial wave functions[12,
13]. By performing again the variational principle over this new set of wave functions we obtain similar
equations, with an additional “exchange” or Fock term:

hHF
iσ ψiσ =εiσψiσ (2.4)

hHF
iσ =−∇2

ri + vHartree(r) + vexiσ (r) (2.5)

vexiσ (r)ψiσ(r) =−
Ne∑
j=1

∫
dr′ψiσ(r′)ψjσ(r′)∗

1

|r− r′|ψjσ(r) (2.6)

Note the sum over j, so that the term j = i removes the interaction of a given electron with itself.
Unlike the Hartree term, ψiσ(r) appears in an integral in the HF exchange term, so that Schrödinger’s
equation involves a term of the form

∫
dr′v(r− r′)ψ(r′).

The Hartree-Fock method breaks down when screening is important, as it only contains unscreened
Coulomb potentials. This is why it performs badly in solids, particularly metals, but somewhat better in
molecules. Missing screening means that Hartree-Fock calculations tend to excessively delocalize electrons
(contrarily to Hartree), that is to say, to produce excessively dispersive band structures. This shortcoming
is however not a critical one. Indeed, we know exactly what physical phenomena are described or not
by the Hartree-Fock equations, which makes them a useful tool in hybrid functionals, or a starting point
which we may generalize to screened exchange (see chapter 6) or GW calculations (see section 2.3).
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2.2 Modern approaches: Density Functional Theory, the Kohn-
Sham scheme and the GW equations

2.2.1 Density Functional Theory

The huge conceptual and computational difficulty of many-body quantum physics resides in the nature of
the question: diagonalizing the Hamiltonian for many-body wave functions that are difficult to imagine –
beyond some basic qualitative properties – and perhaps impossible to solve numerically. Indeed, if even
drastically simplified theories like HF theory are numerically challenging, is there any reason to believe
that we could store in a computer, let alone study the properties of, a wave function that depends on a
macroscopic number of variables?

“If you don’t like the answer, change the question” is the approach followed by Pierre Hohenberg and
Walter Kohn in 1964[14], when they introduced Density Functional Theory (DFT). As its name indicates,
the idea behind DFT is to study not the complicated many-variable wave function Ψ(r1, r2..., rNe) of the
electrons in the solid, but rather the infinitely more simple electronic density ρ(r). The achievement
of Hohenberg and Kohn was to show that such a simple approach allows to determine all ground state
properties of the system (at least in principle). What has over the years made DFT one of the most
popular methods in condensed matter physics, however, is that, perhaps surprisingly, it delivered much
more than just that. In particular, as we discuss below, DFT is a useful and lightweight tool to obtain an
approximation to excited state properties of materials, even though it is not formally designed for this.

For a general review of DFT, see Ref [15, 16]. For a more historical and retrospective point of view, as
well as some remarks on the future of DFT, see the recent review by Jones [17]. Below, we first introduce
the Hohenberg-Kohn theorems, and then briefly discuss the Kohn-Sham Ansatz and how practical DFT
calculations are performed.

The Hohenberg-Kohn theorems

1. For a system of interacting electrons described by a Hamiltonian of the shape 1.3, the external po-
tential vext(r) is uniquely defined (up to an additive constant) by the ground state density ρ0(r). In
other words, two different potentials vext(r) cannot have the same ground state density.
Since the external potential in turn fully determines the Hamiltonian, and knowledge of the Hamil-
tonian defines the expectation value of all observables in the ground state 〈Â〉GS , it follows that all
these ground state expectation values can be expressed as a functional of the ground state density
ρ0(r): 〈Â〉GS = FA [ρ0]

2. The ground state energy is given by a Rayleigh-Ritz variational principle over all possible densities,

∀ρ,E0 ≤ EHK [ρ] (2.7)

with equality only when ρ = ρ0. EHK [ρ] is a functional of the density only, parameterized by the
external potential. EHK can be written

EHK [ρ] = F [ρ] +

∫
vext(r)ρ(r)d3r (2.8)

where F is a universal functional of the density, and does not depend on the system. Formally, F
gives the sum of kinetic and Coulomb repulsion energy for a given density ρ.

The incredible simplification in the Hohenberg-Kohn theorems is the fact that, contrary to intuition,
knowledge of the many-body ground state wave function is not required to determine ground state
properties: the ground state density is sufficient. As usual, there is no free lunch: the two Hohenberg-
Kohn theorems are respectively unicity and existence theorems, but are not constructive: we don’t know
the formula that gives F [ρ]. There is no reason to believe, in fact, that such a “formula” exists in closed
analytic form.
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At first sight, the practical way to use Hohenberg-Kohn DFT appears to consist, in taking an ap-
proximation of F [ρ] and using the variational principle. Much of the success of DFT is due to fact that
there exists a better, algorithmic way to find the ground state density. We present this method in the
following section.

2.2.2 Kohn-Sham equations and approximate functionals

Very often in condensed matter theory, a practical way to solve a complicated problem with correlations
present is to make use of a simpler reference system with similar properties. This approach is used, as we
have seen, in HF theory; another typical example is the mean-field treatment of a spin in an Ising model
or, as we will see in chapter 3, an impurity model in Dynamical Mean Field Theory. Often, the best
reference model is a simple one. However, not all reference models are good, and finding the one that is
useful in practice is usually difficult. The second important step that made the success of DFT was the
introduction of such a reference system, to be used in an algorithm that solves (at least approximately)
the original problem. Kohn and Sham proposed in 1965[18] to use a reference system of non-interacting
electrons to solve the Hohenberg-Kohn variational principle.

The ground state energy functional of equation 2.8 can as well be written

EHK [ρ] = Ts [ρ] +

∫
vext(r)ρ(r)d3r +

∫
vHartree(r)ρ(r)d3r + Exc [ρ] (2.9)

where Ts [ρ] is the ground-state kinetic energy of a set of non-interacting electrons with density ρ. We call
the new functional Exc [ρ] the exchange-correlation functional. We did not introduce any new information,
because Exc [ρ] is formally unknown, just as is F [ρ]. In practice, however, removing all the terms that
are known from the functional, in particular large ones like the Hartree energy and the kinetic energy,
should make it easier to find approximations to the exact functional.

In Kohn-Sham (KS) DFT, we study a system of non-interacting electrons in an external potential
vKS , defined such that the ground state density ρKS of this effective system is identical to the ground
state density ρ0 of the initial system. This is useful only if we can deduce the ground state electronic
density and total energy of the interacting system, from the same quantities calculated in the effective
non-interacting system. We will now see how this can be done in practice.

By applying the variational principle 2.7 to equation 2.9, we obtain

∂E [ρ, Vext]

∂ρ(r)
=

∂Ts
∂ρ(r)

+ vext(r) + vHartree(r) +
∂Exc [ρ]

∂ρ(r)
+ µ (2.10)

where µ is the Lagrange multiplier associated with the constraint of conserved particle number,
∫
ρ(r)dr =

Ne. On the other hand, applying the same variational principle to the corresponding equation for a system
of non-interacting particles in some external potential vKS, we obtain

∂E [n]

∂ρ(r)
=

∂Ts
∂ρ(r)

+ vKS(r) + µ (2.11)

Equations 2.10 and 2.11 give the same stationarity condition if the Kohn-Sham potential vKS is such that

vKS(r) = vext(r) + vHartree(r) + vxc(r) (2.12)

vxc(r) =
∂Exc [ρ]

∂ρ(r)
(2.13)

The calculation scheme consists in solving the Schrödinger equation for the effective set of non-
interacting electrons with potential vKS, where this very potential depends on the density of the system
as per equation 2.12 and has to be obtained self-consistently. This procedure is in principle exact, as long
as stationarity of the self-consistency equation 2.12 is reached.

In practice, approximations have to be made, since we still do not know the exchange-correlation
functional Exc [ρ], nor the corresponding potential vxc.
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2.2.3 Exchange-correlation potentials in practice

While the true exchange-correlation functional is not known exactly, the original publication by Kohn and
Sham[18] introduced an approximate functional that allowed computationally inexpensive calculations to
be done with high precision. Their Local Density Approximation (LDA) treats the Kohn-Sham potential
as a local potential. Its value is equal, at each point in space r, to the exchange-correlation potential of
a homogenous electron gas with density equal to the density ρ(r).

ELDA
xc [ρ(r)] =

∫
d3rρ(r)εxc [ρ(r)] (2.14)

For a homogenous electron gas, the exchange energy density is known analytically as εx [ρ] = − 3
4

[
3
πρ
] 1

3 .
The correlation part, on the other hand, has been computed numerically using a quantum Monte-
Carlo method[19]. As its name indicates, the LDA exchange-correlation potential is local: this was
implied in equation 2.12, but is not necessary. It is, in fact, a rather drastic approximation, indeed
one that was corrected in more recent approximate potentials. DFT with LDA exchange-correlation
potential tends to excessively delocalize electrons (in other words, to overestimate bonding). It also suf-
fers from self-interaction, known as the erroneous interaction of a given electron with itself through the
exchange-correlation potential, or missing correction of the self-interaction term in the Hartree term by
the exchange-correlation potential. Self-interaction is particularly problematic on atoms with localized
orbitals, where correlations are usually the strongest. Conceptually, it is most easily seen in the H atom,
where DFT LDA predicts wrong ionization energies even though the system has only one electron and
should therefore not have exchange nor correlations.

Still, the locality of the LDA exchange-correlation potential means that converging DFT calcula-
tions using the KS ansatz and the LDA potential is about as fast as Hartree calculations, and orders
of magnitude faster than HF calculations or derivatives thereof, that were largely used before DFT.
Partly non-local exchange-correlation functionals with the same computational advantage have been in-
troduced[20–23], commonly known as generalized gradient approximation (GGA), where the same form of
equation 2.14 is kept but εGGA

xc also depends on the local gradient of ρ, and not only the value of ρ itself.
Other extensions of DFT, usually called hybrid functionals[24], use a fraction of exact Fock exchange.
They further improve on the non-local exchange and improve many structural properties. However, hy-
brid functionals are (like HF exchange) defined in terms of orbitals and not just density, hence carry the
full computation cost of nonlocal HF calculations.

2.2.4 Obtaining spectra from density functional theory

DFT at first suffered significant criticism on two fronts: first on the lack of control of the approximations
that are made on the exchange-correlation potential, second by prominent condensed matter theorists
because of the lack of physical insight in the results, since DFT can feel like a “black box”. However, since
it was realized in the early 1990’s in the chemistry community that DFT gave better predictions of most
structural and physical parameters of a whole range of molecules than HF-based methods, DFT and its
derivatives have become one of the most ubiquitous methods in both applied and theoretical chemistry
and condensed matter physics.

In principle, DFT is only a ground state theory, and can only be used to predict quantities such as
crystal structures, lattice parameters, bond lengths, ionization energies, as well as the energetic response
to all kinds of structural changes. Yet, part of the success of DFT is that, in many cases, DFT can be
used to predict spectra (photoemission, optics) with remarkably little error, or at least with somewhat
systematic, hence predictable errors.

The Kohn-Sham reference system of non-interacting electrons in a self-consistent potential is only
designed so that after convergence, the electronic density is equal to the ground state density of the real
system. In the KS scheme, one computes the eigenvalues of the KS Hamiltonian, which gives a set of
Bloch eigenfuctions and energy eigenvalues, so that one may associate a band structure to the interacting
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system. There is no a priori reason to expect this band structure to describe the interacting system
correctly, except for one energy value: the energy of the highest lying occupied state should be equal to
the first ionization energy, due to the identification of Lagrange parameter µ as the chemical potential
in equation 2.10. In practice, it turns out that Kohn-Sham DFT band structures are very often at least
qualitatively close to measured quasi-particle excitation energies, with systematic and well known errors
on some parameters, such as band gaps in insulators and band widths. It is very common to simply talk
of “the DFT band structure” instead of “the band structure of the KS Hamiltonian calculated for the
DFT density”: we will do the same in this thesis.

To conclude, let us note that we have not mentioned here one of the most critical aspects of the
development of DFT techniques. There has been a huge effort since the early days of DFT to develop
software that solves the KS equations in an efficient, precise and reproducible way. This required, above
all, considerable effort on the optimization of basis sets that are used: plane-waves, augmented plane-
waves (APW)[25], linearized muffin-tin orbitals (LMTO)[26], full-potential linearized augmented plane-
waves (FLAPW)[27]... as well as pseudo-potentials[25] for a simplified treatment of core electrons in
some codes. There are tens of available codes, optimized for different types of systems. For our DFT
calculations, we used the Wien2k software[27], an all electron, FLAPW implementation of DFT. The aim
of the present thesis is not to compare technical aspects of DFT, but rather to look at methods beyond
DFT for real material electronic structure calculations, hence we will not dwell further on this subject.

2.3 Many-body theory: Hedin’s equations and perturbation the-
ory

2.3.1 Hedin’s equations

Often, computing wave-functions of a complicated Hamiltonian is not the best approach. In DFT,
this idea leads to the use of the electronic density as the main variable, but calculating quasi-particle
excitations beyond the band picture is then difficult. To compute these, precisely, the Green’s function
formalism can be useful. We remind some definitions for Green’s functions in Appendix B.

In 1965, Lars Hedin[28] introduced a closed set of coupled integral equations, using the full many-body
Hamiltonian and the equations of motion, now known as Hedin’s equations. They can be expressed as
follows, where a variable i represents space and time dependence (ri, ti), and i+ always comes before i in
time-ordered Green’s functions:

G(1, 2) = G0(1, 2) +

∫
d(34)G0(1, 3)Σ(3, 4)G(4, 2) (2.15)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +

∫
d(4567)

∂Σ(1, 2)

∂G(4, 5)
G(4, 6)G(7, 5)Γ(6, 7, 3) (2.16)

P (1, 2) = −i
∫
d(34)G(1, 3)Γ(3, 4, 2)G(4, 1+) (2.17)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)P (3, 4)W (4, 2) (2.18)

Σ(1, 2) = i

∫
d(3, 4)G(1, 3+)W (1, 4)Γ(3, 2, 4) (2.19)

They involve the one-body Green’s function G, the screened Coulomb interaction W , the polarization P ,
the self-energy Σ and the vertex function Γ.

The screened Coulomb interaction W describes how two charges, present in the solid, interact: the
usual Coulomb repulsion, that decays as 1/r in the vacuum, decays much faster due to the screening
from all the other charges present in the solid. The polarization P is precisely what determines how
these other charges react: in fact, Eq. 2.18 is the equivalent of the Dyson equation 2.19 (see also Eq. B.8
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and B.9 in the Appendix) for the Coulomb interaction, where the polarization takes the place of a self-
energy. Finally, the vertex Γ is a diagrammatic object containing the “bare” vertex Γ = 1 and the vertex
corrections corresponding to higher-order electron-electron and electron-boson couplings. Γ is expected
to be small in weakly interacting systems.

Hedin’s equation are formally exact, but solving them in practice is quite intractable. A self-consistent
scheme could in principle be used, but computing the integrals is a formidable computational task, and
even then the procedure can easily become divergent. This should not come as a surprise: since the
original problem is computationally intrinsically complex, an exact method can hardly be expected to
solve it in a simple way. In practice, approximations are required to use Hedin’s equations for model
systems, let alone real materials.

2.3.2 The GW equations

One such approximation, commonly used, is the so-called GW approximation[28]. For a review on the
GW method, see for instance [29, 30], or [31] for a more recent point of view. It does not take its name
from the person who first derived it, but from the formula used for the self-energy: Σ = iGW . More
specifically, the GW approximation is obtained by neglecting the integral term, that is to say the most
difficult to calculate, in the vertex Γ in equation 2.16. This leads to a simplified set of equations

G(1, 2) = G0(1, 2) (2.20)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) (2.21)

P (1, 2) = −iG(1, 2)G(2, 1+) (2.22)

W (1, 2) = v(1, 2) +

∫
d(3, 4)v(1, 3)P (3, 4)W (4, 2) (2.23)

Σ(1, 2) = iG(1, 2)W (2, 1+) (2.24)

with equation 2.24 giving its name to the method. We now have a simpler set of equations, that can
be used for real systems (though they are still much more computationally challenging to solve than the
DFT equations). They are typically used in a one-shot scheme, rather than self-consistently like Hedin’s
equations, so that we sometimes call this method “G0W0”. One starts from a non-interacting Green’s
function G0, obtains a polarization P , the corresponding dynamical screened exchange W , and finally a
self-energy Σ. One can then obtain a k and ω-resolved spectrum by constructing the interacting Green’s
function G from Dyson’s equation 2.15.

This supposes that we know a reasonable non-interacting initial Green’s function G0. In practice, a
converged DFT spectrum is often a convenient starting point, for which the GW self-energy correction
to the spectrum significantly improves agreement with measured spectra for many materials, metals or
semi-conductor, at least when correlations are not too strong. This is one of the reasons why actual
implementations of GW were done much later than implementations of DFT: working DFT codes were
needed to apply the equations that were derived in the same year as the KS equations. Even now, GW
calculations are not routinely done for metallic systems. In Fig. 2.1, we give an example of how a one-shot
GW calculation improves the band structure and in particular the band gap of semiconducting Si.

Self-consistency in the GW approximation

On the other hand, for all its successes, this procedure is not intellectually very satisfying, and it would
be desirable to obtain results that are independent from the starting point. In principle, an intuitive
form of self-consistency can be introduced by updating G using Dyson’s equation, computing new P , W ,
Σ, until convergence is reached. This of course increases the computational cost very significantly, but is
still possible. A limited version of self-consistency, the GW0 approximation, consists in keeping W = W0,
and only converging with respect to G. In both cases, the surprising result is that self-consistency seems
to make agreement with measured band structures worse[32, 33], as the bands become wider, while the
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Figure 2.1 – DFT LDA and GW (G0W0) band structure of Si. The band gap Eg is severely
underestimated in DFT (0.52 eV) compared to the experimental band gap (1.17 eV). The GW
calculation (0.96 eV) partly corrects this, without significantly changing the overall shape of
the occupied or excited part of the spectrum. The GW calculation is performed on a 10x10x10
Brillouin zone mesh.

satellites are broadened and lose spectral weight. Surprisingly, full self-consistency seems to be worse
than the partial variant, as the screened interaction W suffers from the previous effects. The generally
held opinion is that G0W0 improves on the non-interacting quasi-particles energies but does not give
correct quasi-particle weights, and self-consistency only enhances this error. Local vertex-corrections in
Eq. 2.24 (to restore Eq. 2.19) have been studied[34]. A similar idea is also behind the GW+EDMFT
method, that we discuss in the following chapter (4.4).

On the other hand, self-consistency in GW may be useful to determine total energies, as such a scheme
would satisfy conservation equations[35]. Calculations on the electron gas[36] seem to support this view.

An alternative way to treat self-consistency is quasi-particle self-consistent GW, as proposed by van
Schilfgaarde et al.[37]. The physical intuition behind quasi-particle self-consistent GW was already present
in the review by Aryasetiawan[29]. Instead of using the GW equations 2.20 to 2.24 in a loop, a non-
interacting Hamiltonian H0 is constructed (self-consistently) such that the time-dependence of this non-
interacting system is as close as possible to that of the interacting system, computed within GW. This
procedure was shown to improve band gaps in a wide range of semi-conductors, compared to simple
one-shot GW calculations.

GW in practice

A last weak point of the GW method comes from the technical challenge in actually implementing it. It
is twofold. First, the full GW polarization, self-energy and Green’s function with k and ω dependence
are computationally heavy objects. In systems with many particles, manipulating them is complicated,
the scaling both of computation time and memory usage with the particle number and the Brillouin zone
discretization is not favorable (at best O(N3) in the number of atoms and O(Nk) in the Brillouin zone
discretization).

Second, the output of a GW calculation, and in particular the calculation of the screened interaction
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W , is strongly sensitive to the choice of basis functions and k-mesh[38–40]. Therefore, band structures
calculated within the GW approximation tend to vary a lot between different codes (at least for metals).
Even for a given code, convergence of the basis set may be excessively slow. This is to be compared with
usual implementations of DFT that are much less sensitive to such issues.

Simplified forms of GW

An interesting feature of GW theory is that, in its diagrammatic form, it appears as a very natural
improvement on HF theory. Indeed, HF is obtained as a (very) simplified GW theory if we set P = 0,
hence W = v. The HF self-energy can then simply be expressed as ΣHF = iGv. As mentioned in
section 2.1, one important shortcoming of HF theory is the fact that it ignores the screening of Coulomb
interactions by the charges present in the solid. It is then natural (though this is not a formal proof of the
method) to replace the bare Coulomb interaction v by the fully screened, dynamic interaction W (k, ω).

As full-fledged GW calculations are still heavy, further approximations may be introduced. One
such approximation, introduced by Hedin in 1965 in his seminal paper, is the Coulomb Hole - Screened
Exchange (CoHSEx) approximation, that separates the poles due to the Green’s function G and poles
due to the screened interaction W in the integral expression of the self-energy. The real part of the
self-energy is then given by the sum of

ReΣSEx(r, r′, ω) = −
occ∑
i

ψi(r)ψ∗i (r′)ReW (r, r′, ω − εi) (2.25)

ReΣCoH(r, r′, ω) =
∑
i

ψi(r)ψ∗i (r′)

∫ ∞
0

dω′
D(r, r′, ω′)

ω − εi − ω′
(2.26)

where D(r, r′, ω′) = − 1
π ImW c(r, r′, ω′) and W c = W c − vbare is the frequency-dependent part of W .

Such a decomposition can always be made, but it becomes more simple in the static approximation
where the Coulomb hole term becomes local:

ΣSEx(r, r′) = −
occ∑
i

ψi(r)ψ∗i (r′)W (r, r′, ω = 0) (2.27)

ΣCoH(r, r) =
1

2
δ(r− r′) [W (r, r′, ω = 0)− v(r− r′)] (2.28)

The GW self-energy is then separated into two terms, one of which is purely local:

ΣGW ≈ ΣSEx(k) + ΣCoH (2.29)

ΣSEx(k) can be seen as the HF exchange self-energy with static screening, and ΣCoH corresponds to the
interaction energy between a quasi-particle and the exchange hole created around itself due to screening.
CoHSEx calculations are not as accurate as GW calculations, but being static they do not suffer the
same issues as GW as far as self-consistency is concerned. Moreover, CoHSEx represents a good starting
point to understand more complicated methods based on the GW approximation, so we will come back
to this concept when we discuss the validity of DFT+DMFT in chapter 4 and chapter 6.
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Chapter 3

When correlations are too strong:
the Hubbard model and Dynamical
Mean Field Theory

The DFT and GW methods both describe the physics of correlated electrons, in the sense that both
take into account electron-electron interactions beyond Hartree and Fock exchange. In particular, both
methods contain the notion of electronic screening – explicitly for GW, self-consistently in the one-particle
Kohn-Sham potential for DFT. Both methods, however, break down when calculating the properties of
strongly correlated systems, where the notion of strong correlations depends on a criterion to be defined
below.

In the case of GW, this breakdown happens because of the neglected vertex when going from Hedin’s
equations to the GW equations. DFT is in principle expected to give exact results for ground state
properties of such systems, but:

1. Approximate exchange-correlation functionals, in particular simple ones like the LDA functional,
work better for systems with delocalized electrons

2. One-particle spectra obtained from KS DFT (which, as we mentioned, have no a priori reasons to
coincide with measured spectra) tend to be qualitatively worse for such systems

While comparison with experiments is an obvious way to determine whether or not a material behaves
as predicted in GW or DFT, hence if it should be considered strongly correlated or not, it is a longstanding
goal of electronic structure theory to determine this a priori, and of course to determine the physics of
strongly correlated materials.

When studying such systems, it is often convenient to study low energy models with a reduced number
of degrees of freedom, typically involving only electrons around the Fermi level. In this section, we discuss
low energy models often used to study strongly correlated systems, and some techniques to solve them.
We further discuss how such models can be defined and parameterized in chapter 4.

3.1 The Hubbard model and the Mott transition: from band
theory to local physics

In 1963[41], John Hubbard defined an improved tight-binding model including electron-electron interac-
tions, the eponymous Hubbard model, also derived by Kanamori and Gutzwiller in the same year[42, 43].

17
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Many variations exist, but the simplest form of Hubbard’s model describes one band, nearest-neighbor
hopping and on-site interactions only. It can be written in second quantization as

H = (ε0 − µ)
∑
i,σ

niσ −
∑
〈i,j〉,σ

tij

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓ (3.1)

where the sum 〈i, j〉 runs over all pairs of nearest neighbor sites of the lattice, ε0 is the reference energy
level of the band, µ the chemical potential, tij the hopping amplitude between sites i and j, and U the
on-site Coulomb interaction strength. This Hamiltonian is fairly simple, but it is not analytically solvable
(except in one dimension) because of the Uni↑ni↓ interaction term. In fact, Hamiltonian 3.1 is widely
considered to contain most of the physics of a wide range of strongly correlated materials, not least the
high-temperature superconductors of the cuprates family[44, 45]. It has a complex phase diagram in
terms of the lattice shape (square, triangular, Bethe...), t, U , µ (or electron count), temperature T , and
dimension[46, 47]. In the limit of t/U → 0, the electrons are completely localized while in the opposite
limit of t/U →∞, the band picture of non-interacting particles is recovered.

If such a model is to describe a real material, even qualitatively, then physically relevant values for the
parameters, in particular t and U , must be chosen. These values depend on the full electronic structure,
while the Hubbard model only describes the physics of a band around the Fermi level. Moreover, in most
real systems a multi-orbital model is required. We come back to the derivation of such a lattice model
from the full many-body problem in chapter 4. Here, we first discuss methods that can be used to study
the Hubbard model.

3.2 How to solve the Hubbard model: Dynamical Mean-Field
Theory

3.2.1 The Curie-Weiss mean-field

The concept of a mean field is an important one in physics, first introduced in the context of phase
transitions by Curie and Weiss in the early 20th century[48, 49]. The most simple example of mean-field
theory is given in the case of the Ising model[50]. This Ising model describes a set of spins {si} on a
lattice, coupled to one-another by an exchange interaction J between nearest neighbors 〈i, j〉 and in an
external uniform magnetic field hext.

H = −J
∑
〈i,j〉

sisj − hext

∑
i

si (3.2)

where si can take the values ±1. In practice, si represents the z component Szi of a full spin operator ~Si,
and J stems from the exchange interaction of electrons rather than direct spin-spin coupling. If J < 0,
two neighboring spins lower the energy level by pointing in opposite directions, and the ground state of
this Ising model is fully antiferromagnetically ordered (in the absence of frustration in the lattice, for
example on a 2D square lattice). If J > 0, on the other hand, the ground state is ferromagnetically
ordered.

While determining the ground state of the ferromagnetic Ising model is fairly simple, things become
more complicated at non-zero temperature. The Ising Hamiltonian is in essence a many-body Hamilto-
nian, so that direct calculation of the partition function is not possible. Thus, computing the magnetiza-
tion is not trivial. At high temperature, entropy is dominating and the Ising model paramagnetic, with
a symmetry breaking to the ferromagnetic phase as the temperature is lowered.
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Let us isolate a given spin s0. The Hamiltonian acting on this spin is

H0 =

−J ∑
〈0,j〉

sj − hext

 s0

H0 = −

Jzm+ J
∑
〈0,j〉

(sj −m) + hext

 s0 (3.3)

where z is the number of nearest neighbors of a given spin (or connectivity of the lattice) and m = 〈si〉.
The Curie-Weiss mean-field approximation consists in neglecting the second term in the brackets,

containing the fluctuations around the average of the neighboring spins, in second order in the fluctuations
(the first order term is zero by construction). This becomes justified in the infinite dimension limit, where
the central limit theorem ensures that the sum over all neighboring sites of this fluctuation stays smaller
than the first term, Jzm, by a factor of the order of

√
z. Our spin s0 is then only feeling an effective field

depending on the average magnetization m

heff = Jzm+ hext (3.4)

The partition function of Hamiltonian H0 is readily obtained as

Z0 = 2 cosh

(
hext + zJm

kBT

)
(3.5)

where kB is the Boltzmann constant and β = 1
kBT

. From this one can self-consistently compute the
average magnetization

m = tanh (β(hext + zJm)) (3.6)

predicting a paramagnetic to ferromagnetic transition below Tc =
zJ

kB
. The mean-field description is of

course a strong approximation: it assumes that fluctuations around the mean value are negligible.

Still, even in finite dimensions, a mean field theory can give a good picture of the physical behavior.
A classical result of statistical field theory is that for continuous order parameters (which is not the case
of the Ising model) and in dimensions d ≥ 4, the critical exponents computed with mean-field theories are
exact. In dimension 2 ≤ d < 4, fluctuations modify the critical exponents but the phase transitions stay.
Only when d < 2, the Mermin-Wagner theorem states that long-range fluctuation destroy long-range
order.

3.2.2 From Ising to Hubbard: a mean-field description of the electrons

Since the Hubbard model is defined on a lattice, like the Ising model, it is rather natural to consider a
mean-field approximation. However, the physics of the Hubbard model is much more complex than the
one of the Ising model. Indeed, in the simplest limiting case, the half-filled Hubbard Hamiltonian can
be shown to simplify to the antiferromagnetic Heisenberg model in the limit of infinite U [51]. It follows
that we cannot expect a simple scalar mean-field to describe the system well, like in the case of the Ising
model: the mean-field parameter has to be something more complex than a scalar.

A first important step towards solving the Hubbard model was made by Metzner and Vollhardt, who
showed in 1989[52] that a limit of infinitely large lattice coordination z can be defined for the Hubbard
model if the hopping parameter is adequately renormalized by

√
2z. Furthermore, it was shown in the

same year that the self-energy becomes local in this limit[53].

The second step came in 1992, when Georges and Kotliar[54] showed that the lattice Hubbard model
can be self-consistently mapped onto a local impurity problem of an atom with local Coulomb interactions,
exchanging electrons with a bath. Similarly to the mean-field treatment of the Ising model, this implies
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to make an approximation, namely to consider a purely local self-energy. As previously mentionned, this
approximation becomes exact in the limit of infinite coordination, as well as in the limit of vanishing
hopping. The equivalent in DMFT of an isolated spin in an self-consistent magnetic field in the Ising
model, is then an isolated atom, exchanging electrons with a self-consistent bath.

For a general review on DMFT, we refer the reader to the review paper by Georges et al. [55], or [47]
for a more qualitative description.

3.2.3 The Anderson impurity model

The Anderson impurity model (AIM) was first introduced in 1961 by Anderson[56] to describe magnetic
impurities in a metal, to treat Kondo-like problems. The AIM Hamiltonian can be written as follows:

HAIM = Hatom +Hbath +Hcoupling

Hatom = Un↑n↓ + (ε0 − µ)(n↑ + n↓)

Hbath =
∑
lσ

εlσa
†
lσalσ

Hcoupling =
∑
lσ

Vl(c
†
σalσ + a†lσcσ)

(3.7)

where c†σ creates an electron with spin σ on the atom and a†lσ creates an electron with spin σ and energy
εlσ in the bath (that is to say, e.g. a conduction electron). The coupling term is exchanging electrons
between the atom and the bath. The bath electrons are considered to be non-interacting, but the electrons
on the local atom carry the full local Coulomb interaction term Un↑n↓.

The critical point is that, while directly solving the full Hubbard model is rather untractable, efficient
and numerically exact methods exist for solving such impurity models. One method that was widely used
throughout this thesis is continuous time quantum Monte-Carlo (CTQMC). For a review of CTQMC
techniques, we refer the reader to Ref. [57].

3.3 The Dynamical Mean-Field Theory equations

In this part, we derive the DMFT equations using the cavity method, following the review paper by
Georges et al. [55]. We already employed this same cavity method above on the Ising model (without
citing its name); it turns out that a similar method can be used to derive a solution for the Hubbard
model in infinite dimensions.

The Hubbard model, written in Hamiltonian form in Eq. 3.1, can equivalently be expressed using a
path integral formalism[58]. The Hubbard action is given by

SHubbard =

∫ β

0

dτ

−∑
ijσ

c†iσ(τ) ((∂τ − µ) δij + tij) cjσ(τ) + U
∑
i

ni↑(τ)nj↓(τ)

 (3.8)

From this action, the partition function is calculated as an integral over all Grassmann variables ciσ, c
†
iσ:

Z =

∫ ∏
i,σ

D
[
c†iσciσ

]
e−SHubbard (3.9)

Similarly to the above treatment of the Ising model, one may choose a given site (say, site 0) of the
lattice, and split the full action into three terms: a local action on site 0 (S0), an action containing the
terms coupling site 0 to the others (∆S), and the rest, S(0), describing the lattice with site 0 removed.

SHubbard = S0 + ∆S + S(0) (3.10)
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This allows us to define an effective action on site 0 by integrating out all the other degrees of freedom:

1

Zimp
e−Simp(c†0σ,c0σ) =

1

Z

∫ ∏
i 6=0,σ

D
[
c†iσciσ

]
e−SHubbard =

e−S0

Z

∫ ∏
i 6=0,σ

D
[
c†iσciσ

]
e−(S(0)+∆S) (3.11)

At this point, we have not introduced any approximations. This effective (or impurity) action Simp can
be used to compute all the local correlators, in particular the local or impurity Green’s function:

Gloc(τ − τ ′) = Gimp(τ − τ ′) = − < Tc(τ)c†(τ ′) >Simp (3.12)

The expression giving Simp is a rather complicated infinite sum, but with some bookkeeping one can
show that, in the limit of infinite dimensions and rescaling the hopping parameters appropriately, the
expression simplifies to

Simp = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ ′) + U

∫ β

0

n↑(τ)n↓(τ) (3.13)

where G0 is given by

G−1
0 (iωn) = iωn + µ− ε0 −

∑
ij 6=0

t0it0jG
(0)
ij (iωn) (3.14)

G
(0)
ij (iωn) is the Green’s function of the Hubbard model without site 0. One can show (see [55]), using

again the infinite dimension limit, that this is equivalent to

G−1
0 = G−1

loc + Σimp (3.15)

where the self-energy Σ becomes local[53], hence equal to the “impurity” self-energy Σimp on site 0
computed from the impurity action Simp. The local Green’s function Gloc is calculated as follows

Gloc(iωn) =
∑
k

1

iωn + µ− ε0 − εk − Σimp(iωn)
=
∑
k

G(iωn,k) (3.16)

where εk are the non-interacting band energies (or Fourier transform of the hopping), or equivalently,
using the non-interacting density of states D(ω) from the dispersion relation εk:

Gloc(iωn) =

∫ +∞

−∞

D(ε)dε

iωn + µ− ε0 − ε− Σimp(iωn)
(3.17)

We thus have all the DMFT self-consistency equations. In practice, the DMFT self-consistency loop
is the following:

1. Start from an initial approximation for the self-energy, and compute the local Green’s function from
Eq. 3.16.

2. Use the self-consistency equation to obtain the Weiss dynamical mean-field G0 by Eq. 3.15.

3. Compute the impurity Green’s function from the impurity action 3.12 and update the self-energy
by re-applying Eq. 3.15.

4. Go back to the first step with the new self-energy, until self-consistency is reached.

This procedure is exact in infinite dimensions. In the general case, an approximation is made by assuming
that Gloc can be expressed using a local self-energy.

The present equations are written in the case of a one-band Hubbard model. The generalization to a
multi-band model is straightforward, the quantities involved (εk, ε0, G, G0 and Σ) being matrices rather
than scalars. The local Green’s function should in this case be calculated from Eq. 3.16.
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Figure 3.1 – DMFT self-consistency cycle, illustrating Eq. 3.12 to 3.15.

3.4 The Anderson impurity model in Dynamical Mean-Field
Theory

The effective action Simp and the dynamical mean-field G0 in its formula (3.13) can be conveniently
parameterized as the action of a self-consistent (Anderson) impurity model, described by Eq. 3.7. Indeed,
we can rewrite Eq. 3.14 by introducing a hybridization function

G−1
0 (iωn) = iωn + µ− ε0 −∆(iωn) (3.18)

In practice, this hybridization function is computed as

∆(iωn) = iωn + µ− ε0 − G−1
0 (iωn) (3.19)

from the self-consistent dynamical mean-field G0. In the AIM of Eq. 3.7, the action takes the same form
as 3.13 with G−1

0 (iωn) given by Eq. 3.18 above, and the hybridization is given by

∆(iωn) =
∑
l

|Vl|2
iωn − εlσ

(3.20)

If we were to choose actual parameters for Vl and εlσ, they should be chosen self-consistently so that
the impurity Green’s function of the AIM coincides with the local Green’s function of the initial Hubbard
model. In practice, only the full function ∆(iωn) is useful, so there is no need to explicitly define the
AIM by its parameters. Still, this analogy gives a better physical understanding of the DMFT equations:
they describe a lattice where local correlations are those of an impurity exchanging electrons with a
non-interacting bath, itself self-consistently parameterized by the interacting local Green’s function (as
seen in Eq. 3.14.) This technique of using an auxiliary system is reminiscent of the Kohn-Sham system
of non-interacting electrons used self-consistently in DFT, while the cavity construction is similar to the
the Curie-Weiss mean-field approximation in the Ising model.

This DMFT self-consistency loop is illustrated in Fig. 3.1. In table 3.1, we summarize the analogy
between the classical Ising Weiss mean-field and DMFT.
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Ising mean-field DMFT

Hamiltonian H = −∑ij Jijsisj − h
∑
i si H = (ε0 − µ)

∑
i,σ niσ

−∑〈i,j〉,σ tij (c†iσcjσ + c†jσciσ

)
+ U

∑
i ni↑ni↓

Local Observable mi =< si > Gloc(τ − τ ′) = − < Tc†i (τ)ci(τ
′) >

Effective local model Heff = −heffsi Un↑n↓ + (ε0 − µ)n+
∑
lσ εlσa

†
lσalσ

−∑lσ Vl(c
†
σalσ + a†lσcσ)

Weiss field heff G−1
0 (iωn) = iωn + µ−∆(iωn)

∆σ(iωn) =
∑
l

|Vl|2
iωn − εlσ

Self-consistency relation heff =
∑
j Jijmj + h G(iωn) =

∑
k

[
iωn + µ− ε0 − εk +G−1(iωn)− G−1

0 (iωn)
]−1

G−1
0 = G−1

imp + Σimp = G−1
loc + Σimp

Table 3.1 – Analogy between the classical Ising mean-field and dynamical mean-field theory
applied to the Hubbard model. Adapted from Ref. [59].

3.5 Strengths and limitations of Dynamical Mean-Field Theory

DMFT has several strong points. First, contrary to other methods like the GW method, it is not a
perturbative method. This allows us to treat systems with arbitrarily strong correlations. Furthermore,
DMFT becomes exact in a number of limiting cases:

• Infinite dimensions (or infinite lattice coordination)

• The non-interacting limit, U = 0.

• The atomic limit, t = 0.

Being exact in these opposite limiting cases opens the possibility for reasonable results in the intermediate
regime, where kinetic energy or hopping t is of similar magnitude as Coulomb interaction U . Indeed, as
we discuss below, DMFT provides a good description of the one-band Hubbard model’s Mott insulating
transition, when the ratio U/t is varied.

More generally, DMFT is expected to work well as long as local quantum fluctuations are more
important than non-local fluctuations. In particular, phenomena like charge or spin-density waves are
not captured in single-site DMFT. Several extensions of DMFT have been proposed in order to treat
long-range correlations, long-range interactions and the coupling of electrons to boson modes (plasmons,
spin-waves, etc) in a similar framework. Regarding long-range interactions, prominent examples are
extended DMFT and its combination with GW theory (see section 4.4), or the dual boson approach[60].
Extensions of DMFT that include non-local correlation effects (i.e. non-local self-energies) include cluster
extensions (cluster DMFT or dynamical cluster approximation, see section 4.4), diagrammatic extensions
like the dynamical vertex approximation (or DΓA)[61], the TRILEX[62] and QUADRILEX[63] methods,
and the dual fermion method[64]. For a recent and extensive discussion of non-local extensions of DMFT,
we refer the reader to the review paper by Rohringer et al[65].

Most of these methods are still computationally heavy, so that first principles calculations of real
systems with multiple orbitals are, if not impossible, not yet routinely done (though an ab initio DΓA
scheme has recently been tested on the benchmark strongly correlated material, SrVO3[66]). In a recent
review, Lechermann et al.[67] suggested there are two main routes worth pursuing in the field of strongly
correlated electronic structure calculations: one aims at better describing material-specific electronic
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Figure 3.2 – Spectral function of the single orbital Hubbard model on Bethe lattice, at
β = 100 eV−1. The half-bandwidth is t = 1 eV. A continuous time quantum Monte-Carlo
(CTQMC) hybridization expansion algorithm is used in the DMFT cycle, and the real fre-
quency spectral function is obtained by a maximum entropy (Bryan) algorithm [69].

structures, the other aims at going beyond local mean-field theory. In this thesis, we choose to discuss
the former aspect.

3.6 Dynamical Mean-Field Theory treatment of the single-orbital
Hubbard model on Bethe lattice

As an illustration, we show below how DMFT captures the metal-insulator transition in the one-orbital
Hubbard model on the infinite-connectivity Bethe lattice.

The Bethe lattice (or Cayley tree) is an infinite cycle-free graph where each node has the same number
of neighbors z[68]. It does not appear at first sight a reasonable description of a lattice made of atoms
and carrying electrons. Nevertheless, the Bethe lattice has been a popular tool in the context of DMFT.
Indeed, as mentioned earlier, in the limit of large connectivity z, DMFT becomes exact[52]. Furthermore,
and only in the case of the Bethe lattice, the density of states becomes semi-circular (or semi-elliptic with
more that one band) and the self-consistency equation becomes much simpler in this limit, allowing for
simpler equations. Last but not least, in many cases the physics of correlated electrons does not depend
too much on the geometry of the lattice.

In Fig. 3.2, we show the spectral function calculated with DMFT for the one-orbital, Bethe lattice
Hubbard model at half-filling. The temperature is β = 80 eV−1, for different ratios of U/t. At U/t = 0,
we recover the semi-circular density of states of the non-interacting Bethe lattice. For large values of
U/t, the density of states is separated into two so-called Hubbard bands, separated by the energy U . Note
that these bands are qualitatively different from non-interacting bands: each Hubbard band can only
contain one electron, instead of two (taking into account spin-degeneracy) for a non-interacting band.
This means that at half-filling and large U/t, the system becomes insulating, whereas non-interacting
bands are necessarily metallic with an odd electron number. If the limiting case U/t = 0 describes
completely delocalized (dispersive) electrons on a lattice, where all of the energy is kinetic energy, the
large U limit is the opposite: it consists in perfectly localized electrons on the atom sites, stuck in place
because the cost of double occupancy is too high to hop (even briefly) to a neighboring site.
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Figure 3.3 – quasi-particle weight Z as a function of Hubbard U , in the same model as in
Fig. 3.2.

0.0

0.5

1.0

1.5

R
e

Σ
(i
ω
)
(e

V
)

0 1 2 3 4 5

iω−µ (eV)

4

2

0

Im
Σ

(i
ω
)
(e

V
)

U = 1.0

U = 1.5

U = 2.0

U = 2.5

U = 3.0

Figure 3.4 – Real (upper panel) and imaginary (lower panel) part of the self-energy on the
Matsubara axis for the single orbital Hubbard model on Bethe lattice, at β = 80 eV−1 at
different values of U . At half-filling, the real part of Σ is equal to U/2, the Hartree-Fock self-
energy, and the imaginary part goes to zero at high frequencies. Below the Mott transition,
which happens between U = 2.5 eV and U = 3.0 eV, the self-energy is that of a Fermi liquid,
as can be seen in the imaginary part, that goes linearly to zero. Above the Mott transition, in
the particle-hole symmetric case, Σ has a divergence around iω = 0.
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Figure 3.5 – Illustration of non-interacting bands (left-hand side) and correlated-quasi-particles
with Hubbard bands (right-hand side). Reproduced from Ref. [70]

In the intermediate regime, partially formed Hubbard bands and a quasi-particle peak at the Fermi
level, narrowing as U/t is increased, until it vanishes.

The quasi-particle weight Z can be defined as

Z = (1− ∂ωReΣ(ω)|ω=0)
−1

= (1− ∂iωImΣ(iωn)|iω=0)
−1

(3.21)

depending on whether we are working with real or imaginary frequency Green’s functions (see Appendix
B). It is shown in Fig. 3.3 in the case of the one-band Hubbard model.

If we look at a k- and ω-resolved Green’s function, on a lattice where k is properly defined, and
compute the spectral function A(k, ω), the signification of the quasi-particle weight Z becomes more
apparent. A non-interacting system of electrons in a periodic lattice has perfectly defined electronic
bands, so that A(k, ω) is a sum of Dirac peaks (one per band) when k or ω are varied. This is illustrated
in the left panel of Fig. 3.5. At zero temperature, the distribution function is given by a step function,
with a step of height one as one goes through the Fermi level.

This picture of non-interacting bands changes in the presence of correlations, where the system has
a non-trivial self-energy. The Dirac peaks that form the bands are gradually widened as the imaginary
part of the self-energy increases, and the integral of the peak becomes less than unity. The new weight of
this quasi-particle peak is precisely given by Z, as defined in Eq. (3.21). Since there is conservation of the
particle numbers, this implies a spectral weight transfer to higher and / or lower energies, for example in
the form of Hubbard bands or plasmon satellites. In addition, a reduced step of height Z appears in the
zero-temperature distribution function, as a consequence of correlations. This case is illustrated in the
right-hand panel of Fig. 3.5.

What is implied by the above discussion and Fig. 3.5 is that, in presence of correlations, the band
picture becomes invalid but does not break down altogether. This situation is described by Landau’s Fermi
liquid (FL) theory[8]. If correlations are not excessively strong, the Dirac peak of non-interacting bands
can be adiabatically traced back to the widened main peak in the interacting spectral function. One-
particle excitations corresponding to thus derived photoemission peaks cannot really be called “particles”,
as they do not correspond to the removal of an electron with well-defined energy and momentum. This
means that a Fermi liquid is characterized by quasi-particles with a finite lifetime. More precisely, quasi-
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particles in Fermi liquid theory have a lifetime τk such that

1

τk
∝ (εk − εF )2 + (πkBT )2 (3.22)

where εF is the Fermi energy and εk the eigenenergy of a quasi-particle. In other words, at low tempera-
tures, quasi-particles close enough to the Fermi level can be long-lived. However, their lifetime decreases
as one moves away from the Fermi level, as illustrated in the right-hand panel of Fig. 3.5.

All of the properties of the quasi-particles are encoded in the self-energy Σ(ω) of the system. In
particular, quasi-particles in a Fermi liquid:

1. have a finite lifetime away from the Fermi level, encoded by the low-energy dynamical behavior of
the imaginary part of Σ(ω).

2. have a renormalized mass (usually heavier than non-interacting electrons) proportional to 1/Zk,
encoded by the low-energy dynamical behavior of the real part of Σ(ω).

3. have a renormalized dispersion relation near the Fermi level, also encoded by the real part of the
self-energy.

Let us go back to the one-band Hubbard model previously discussed to see what happens during
the metal-insulator transition. In Fig. 3.2, the decrease of the bandwidth as U is switched on is visible,
synonymous of heavier quasi-particles and transfer of spectral weight to satellites. The renormalization
factor Z decreases until it reaches 0 between U = 2.5 and 3 eV, which marks the transition to the
insulating phase (Fig. 3.3). The reduced quasi-particle lifetime is not so easily visible here, and would
appear more clearly in a k-resolved spectral function on a “real” (not Bethe) lattice.

The corresponding self-energies Σ(ω) also show this transition. In Fig. 3.6, we display the analytical
continuation of the Matsubara frequency self-energies calculated in Fig. 3.4. For small values of U and
at zero temperature, the imaginary part of Σ(ω) is going to 0 quadratically as −Γω2 at ω = µ, where Γ
is the electron-electron scattering rate, equal to the inverse quasi-particle lifetime. At finite temperature
T ,

ImΣ(ω) = −(Γω2 + π2(kBT )2) (3.23)

When U is greater than a critical value (here, slightly below 3 eV), ImΣ(ω) does not go to zero at
the Fermi level anymore (even at T = 0), so that no quasi-particles with arbitrarily long lifetime can be
defined: the Fermi liquid picture breaks down. The real part of Σ is quasi-linear at ω = µ, and its slope
gives the quasi-particle weight as in Eq. 3.21.

In the one-band model, a metal-insulator transition has to be caused by a vanishing quasi-particle
peak, as Brinkman and Rice showed in 1970[71]. This seems in fact quite straightforward: correlations
increase the effective mass of quasi-particles, until the mass diverges and electrons become localized. This
is not sufficient to describe all correlation-driven metal-insulator transitions: in a multi-orbital system,
the effect of the self-energy can be to shift one band with respect to the others, and thus open a band
gap[9].
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Figure 3.6 – Real (upper panel) and imaginary (lower panel) part of the self-energy on the
real axis for the single orbital Hubbard model on Bethe lattice, at β = 100 eV−1 at different
values of U . The real axis functions are obtained by analytical continuation of the Matsubara
self-energies of Fig. 3.4. We removed the static real contribution corresponding to the chemical
potential, µ = U/2, in order to compare the different self-energies more easily. In the Fermi
liquid regime, the real part of Σ(ω) is linear around ω = 0, with the slope giving the mass
renormalization factor Z, and the imaginary part vanishes at ω = 0. Near and above the Mott
transition, the imaginary part of the self-energy does not go to zero at the Fermi level, but
becomes a Dirac peak in the limit of large U .



Chapter 4

Bridging the gap to realistic material
calculations: combined Density
Functional Theory and Dynamical
Mean-Field Theory

DMFT and its extensions have demonstrated their value for solving Hubbard-like problems in a large
variety of configurations: two-dimensional or three-dimensional lattices of square, triangular, honeycomb
or Bethe type, with local Coulomb interaction U only or with additional nearest-neighbor Coulomb
interaction V , with one or several orbitals... Such models can, to some extent, be made material specific.

A first approach is to measure the parameters. This is not trivial, but can be done, for example
in photoemission experiments. In a single-orbital system, the distance between two Hubbard bands, U ,
is obtained by comparing the position of the lower Hubbard band in direct photoemission and of the
upper Hubbard band in inverse photoemission (this is the more difficult part). A more general theory
for measuring U from spectroscopy experiments, including for multi-orbital systems, was proposed by
Sawatzky et al. [72]. The hopping parameter t can in principle be obtained by angle resolved photoemis-
sion spectroscopy by measuring the bandwidth[70], but in practice (and in materials where DMFT would
be useful) this only gives an effective teff , renormalized by correlations.

The second approach, more often followed, consists in exploring phase diagrams by varying one or
several parameters. This gives information on a whole family of materials, and a specific material can
be understood by comparing calculated observables and measured ones, and placing the material on the
phase diagram. The “true” parameters of the system are then considered to be those that best fit the
experiments.

Either way, model-based DMFT calculations are more often used to qualitatively understand materials
than to make predictions. The need for input parameters is, in fact, a consequence of the fact that DMFT
and similar methods can only be used to solve low-energy models with few bands, and do not provide a
general description of the electronic structure of materials. An ideal theory would:

• Reasonably describe bands far away from the Fermi level (core states and excited states), both in
terms of the energetic position and of the charge density of occupied bands

• Use some form of many-body technique to treat the low-energy degrees of freedom, where correla-
tions are typically most present and upon which many important physical properties (conductivity,
magnetism...) depend

• Have a consistent link between both parts of the energy spectrum: this is probably the most difficult

29
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requirement.

The need for such a theory became evident as soon as DMFT demonstrated its efficiency for treating
low-energy models in the mid-90’s. A first approach was proposed in 1997 by Anisimov et al.[73] and in
1998 by Lichtenstein et al.[74]. Their “DFT+DMFT” formalism has had great success to quantitatively
describe very diverse strongly correlated metals and oxides in the last twenty years (see section 4.2 for
examples). In the present chapter, we briefly review the philosophy behind DFT+DMFT, present a few
achievements of this method, and finally discuss some of its extensions.

4.1 The combined Density Functional Theory + Dynamical Mean-
Field Theory method

Extensions of DFT (in practice, LDA or GGA) such as the DFT+U method have been developed for
systems with partly filled d or f orbitals before DFT+DMFT[75–77]. DFT+U considers a Hamiltonian

HDFT+U = HDFT +HU −Hdc (4.1)

where HDFT is the usual DFT Hamiltonian, HU is a Coulomb term screened by itinerant states and acting
on a d or f shell, and Hdc is a double-counting term that corrects for local Coulomb interactions already
present in HDFT. The local Coulomb interaction of HU is treated in a Hartree-Fock approximation, giving
a static and real local self-energy. This can be sufficient to, for instance, open a gap in the fully ordered
phases of antiferromagnetic Mott insulators. DFT+DMFT can be understood as a natural improvement
on DFT+U, because it starts from the same Hamiltonian 4.1. It opens, however, the possibility for a
fully dynamical self-energy and all that it implies: quasi-particle lifetimes, bandwidth renormalization...

As in DFT+U, in DFT+DMFT a subset of localized states around the Fermi level for which KS DFT
does not work well is designated as “correlated” and treated within DMFT, while the other orbitals are
simply treated at the KS DFT level. By using (for example) projectors, a projected Hamiltonian Hproj

k

is defined, and, after removing a double-counting term, used as a non-interacting Hamiltonian in DMFT.
The density matrix of the correlated shell, obtained from the converged DMFT calculation, can be fed
back into the DFT loop, updating the charge density around the correlated atom.

DFT+DMFT can be used in two similar but different ways:

• A first way to use the DFT+DMFT method, introduced in 1997 and 1998[73, 74], is to use the DFT
density and KS wave functions to parameterize a material-specific Hubbard model, to be solved in
DMFT. A number of properties, for example spectral functions, magnetizations or quasi-particle
effective masses, can then be obtained by embedding the impurity self-energy obtained by DMFT
into the DFT KS Hamiltonian. This approach is often called “one-shot” DFT+DMFT.

• A slightly more recent and more sophisticated method is to see the DFT+DMFT equations as
deriving from a more general energy functional. This paves the way for fully charge self-consistent
DFT+DMFT calculations and allows to compute total energies in a similar fashion to DFT, but
with local correlations taken into account more accurately.

In this manuscript, we follow the framework for DFT+DMFT using Wannier functions described in
Lechermann et al. in Ref. [78], and its implementation in FLAPW DFT by Amadon et al. and Aichhorn
et al.[79, 80]. A general review of DFT+DMFT can be found in [81]. [59, 82] provide a more qualitative
and pedagogical introduction.

In the following sections, we discuss the basic ideas behind both approaches.
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4.1.1 One-shot Density Functional Theory + Dynamical Mean-Field Theory
equations

One typically starts from a converged KS DFT calculation. This means that for each k-point in the
Brillouin zone mesh, we have a set of Bloch waves ψσkν with eigenenergies εσkν . The Bloch waves are by
essence delocalized and not of pure atomic and orbital character, though some may be predominantly
formed by a given orbital. In a window around the Fermi level (since DMFT is typically useful to study
low-energy degrees of freedom around the Fermi level, in partly filled d or f shells), Bloch waves with
different atomic and orbital characters may be present. In the simplest case, the only bands crossing
the Fermi level belong to a subset of orbitals considered as correlated. This can, for example, be the t2g
states of a transition metal in an oxide. The situation is more complicated when other bands are also
present, for example dispersive states of predominant s character in metalic Fe.

Either way, the challenge is to define a mapping to go from the Bloch space to a correlated space with
less orbitals, and inversely. One way of doing so, that was extensively applied in the present thesis, is
described below. An initial set of atomic-like orbitals |χασm 〉 is created from atomic-like functions in the
KS DFT basis set. This is very natural in implementations of DFT that work with localized functions,
as is the case in the FLAPW DFT code Wien2k. At each k-point, these atomic-like orbitals are then
expanded in the Bloch functions:

|χασkm〉 =
∑
ν

〈ψσkν |χασkm〉|ψσkν〉 (4.2)

Subsequently, this expansion is truncated in an energy window W around the Fermi level

|χ̃ασkm〉 =
∑
ν∈W
〈ψσkν |χασkm〉|ψσkν〉 (4.3)

This defines a set of projectors
P̃ασmν(k) = 〈ψσkν |χ̃ασkm〉 (4.4)

for m in the subspace of correlated orbitals and ν ∈ W. The atomic-like orbitals |χ̃ασkm〉 thus obtained are
not orthonormal, but can be made so by computing the overlap elements

Oαα
′

mm′(k, σ) = 〈χ̃ασkm|χ̃α
′σ

km′〉 (4.5)

and transforming the functions to

|wασkm〉 =
∑
α′m′

Sαα
′

mm′ |χ̃α
′σ

km′〉 (4.6)

where
Sαα

′

mm′ = {O(k, σ)−1/2}αα′mm′ (4.7)

is the inverse square root of the (hermitian, definite positive) matrix O, and |wασkm〉 defines a set of
orthonormal Wannier-like orbitals. A final set of projectors Pασmν(k) is defined in the same way by

Pασmν(k) =
∑
α′m′

Sαα
′

mm′ P̃
α′σ
m′ν(k) (4.8)

so that the Wannier-like functions wασkm can be expanded in the Bloch basis as

|wασkm〉 =
∑
ν

Pασmν(k)|ψσkν〉 (4.9)

At each k-point, Pασ(k) is a matrix whose dimensions are given by the number of Bloch bands Nν in the
energy windowW on one hand, and the size L of the correlated subspace on the other hand (for example,
L = 5 for a d shell, 7 for an f shell or 3 for a t2g shell, times the number of independent correlated
atoms). The rows of the matrix Pασ(k) contain the decomposition of Wannier functions |wασkm〉 over the
Bloch waves |ψσkν〉.



32 Chapter 4. Realistic material calculations: combined DFT+DMFT

If the correlated bands are perfectly separated from the other ones (say, t2g states in a transition
metal oxide), the matrix Pσk is unitary, and the transformation from the Bloch space to the space of
correlated orbitals is quite simple. If the bands are entangled (which is typically the case in pure metals),

Pσk is only semi-unitary: Pσk P
σ†
k = IdL but Pσ†k Pσk 6= IdNν , where Idn is the identity matrix of size n and

A† is the transposed conjugate of matrix A.

We can then define the notion of up- and down-folding of a matrix. Projecting a (matrix) quantity
defined in the Bloch space to the space of correlated orbitals is called down-folding, and corresponds to the
operation A→ PσkAP

σ†
k . The inverse operation of bringing a quantity defined in the space of correlated

orbitals (say, the DMFT self-energy) back into the Bloch space is called up-folding, and corresponds to

the operation B → Pσ†k BP σk .

The DFT+DMFT self-consistency loop is then obtained by going back and forth from the Bloch space
to the correlated subspace. The lattice Green’s function of the solid in the Bloch space is given by

Gσ,latt(k, iωn)−1
νν′ = (iωn + µ− εσkν)δνν′ + Σσνν′(k, iωn) (4.10)

and obtained by up-folding the DMFT impurity self-energy in subsequent iterations:

Σσνν′(k, iωn) =
∑
αmm′

Pασ†mν (k)Σσ,imp
mm′ (iωn)Pασm′ν′(k) (4.11)

with Σσ,imp
mm′ is the impurity self-energy. In practice, an additional double-counting term must be sub-

tracted from the self-energy, as discussed in section 4.1.2. The local Green’s function Gloc is in turn
obtained from the Green’s function of the solid by down-folding it and summing over the Brillouin zone:

Gσ,loc
αm (iωn) =

∑
kνν′

Pασm′ν′(k)Gσ,latt
νν′ (k, iωn)Pασ†mν (k) (4.12)

Finally, the DMFT self-consistency condition giving the dynamical Weiss field G0 is, as in regular DMFT:

G−1
0 = Σimp +G−1

loc (4.13)

The one-shot DFT+DMFT self-consistency cycle is the following:

1. Compute an initial local Green’s function in the correlated space by down-folding the lattice Green’s
function.

2. Solve the local impurity model to obtain the impurity self-energy.

3. Up-fold the impurity self-energy to insert it in the lattice Green’s function, and update the chemical
potential µ

4. Compute the new local Green’s function, iterate until convergence

The need to repeatedly switch between two spaces can seem surprising, but is crucial to obtain physical
results in the case where additional, non-correlated bands cross the Fermi level. Indeed, applying the self-
consistency condition directly on the level of the correlated subspace would be wrong, and in particular
would not conserve the electron number. Again, in the case of well separated bands, the equations simplify
and it is possible to work directly in the correlated subspace: in this case, the DFT+DMFT method is
equivalent to parameterizing the non-interacting part of a Hubbard-like model with parameters obtained
from the projected DFT Hamiltonian.

4.1.2 The double-counting term

In Eq. 4.11, we introduced a double counting correction Σσ,dc
mm′ to the impurity self-energy. Indeed,

local Coulomb interactions are taken into account explicitly at the DMFT level, but are at least partly
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present in the DFT exchange-correlation and Hartree potentials, hence in the DFT Hamiltonian used to
construct the Green’s function in Eq. 4.10. This problem has been recognized early on in the context of
DFT+U[75, 83], and different approaches have been proposed to correct for double-counting. However,
finding an exact correction is impossible, because DFT and DMFT are by construction two methods
based on different observables: the key quantity in DFT is the electronic density, upon which the KS
exchange-correlation potential acts. In contrast, DMFT works with Green’s functions, orbital-resolved
by construction. The interface between DFT and DMFT (typically a projection scheme as described
above) does not allow for an explicit formula for Σdc.

Nevertheless, various schemes exist and are ubiquitous in DFT+U and DFT+DMFT calculations.
Among the most used are:

• The fully localized limit (FLL) approximation[83], whereby

Σσ,dc
mm′ =

[
U(Nc −

1

2
)− J(Nσ

c −
1

2
)

]
δmm′ (4.14)

where Nc is the total number of particles in the correlated subspace, U the Coulomb interaction
parameter, and J the Hund’s coupling. The assumption behind the FLL approximation is that
total energies are determined well in DFT when orbital shells are either empty or completely filled.

• The around mean-field (AMF) approximation[75], whereby

Σσ,dc
mm′ = [U(Nc − nσ)− J(Nσ

c − nσ)] δmm′ (4.15)

where n is the average occupancy per orbital, and nσ the average occupancy per orbital with spin
σ. The assumption behind the AMF approximation is that exchange and correlation effects are
partly included in DFT, but only in an orbitally averaged way. For a half-filled band, the FLL and
AMF expressions coincide.

• The Lichtenstein’s correction for metallic systems[84], based on the idea that static correlation
effects are described reasonably well in DFT for such systems:

Σσ,dc
mm′ =

1

2
Tr[Σ(ω = 0)] (4.16)

Depending on what kind of properties (and what material) one wants to describe, the double-counting
correction may or may not be important. The crucial idea is that a correct double-counting correction
is needed to correctly describe the energetic position of the subset of correlated orbitals with respect
to other orbitals present in the system. These “other” orbitals can be either states not considered as
correlated within DMFT or another inequivalent shell, also treated as correlated.

As a consequence, the double-counting correction becomes less relevant, for example, in the context
of studying a Mott metal-insulator transition in a system with well separated bands at the Fermi level,
or quantities like the quasi-particle lifetime in such a system. Indeed, in this configuration, the double-
counting correction amounts to a trivial shift of the chemical potential.

It is, however, critical when other bands cross the Fermi level, or to compute excitations of the system
corresponding to transitions to excited states implying other orbitals, or describing a charge-transfer
metal-insulator transition.

We also note that orbital-dependent double-counting schemes have been tested [85], motivated by the
fact that different orbitals of a given shell on an atom are not equally occupied in a solid. Finally, charge
self-consistency in DFT+DMFT has been shown to somewhat decrease the dependence of results on the
choice of double-counting correction[86].

Overall, it is not an overstatement to say that double-counting corrections are important more often
than not, so that efforts to design double-counting free ab initio electronic structure methods remain
crucial.
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4.1.3 Charge self-consistency and total energies in Density Functional Theory
+ Dynamical Mean-Field Theory

One-shot DFT+DMFT calculations are very useful to compute spectral properties of real materials,
providing a welcome extension of DMFT model calculations. However, they are not sufficient to achieve
what DFT was initially designed for: total energy and electronic density distribution calculations, the
spectral properties of the KS auxiliary system coming as a “bonus”. Kotliar and Savrasov derived in the
early 2000’s a functional formulation of DFT+DMFT[81, 87, 88], introducing a free energy functional Γ
of four variables: the total charge density ρ, the local Green’s function of the correlated subspace Gloc,
an effective interaction potential vint = vxc− vext conjugate to the charge density, and a local self-energy
Σloc conjugate to Gloc. This functional is derived in the more general framework of spectral density
functional theory, and its approximate expression in DFT+DMFT is given by

Γ
[
ρ,Gloc, v

int,Σloc

]
=− Tr[lnGlatt]−

∫
drvint(r)ρ(r)− Tr [Gloc(Σloc − ΣDC)]

+ EH [ρ] + Exc [ρ] + ΦDMFT
LW [Gloc]− ΦDC [Gloc]

(4.17)

where Glatt is obtained from the up-folding procedure of Eq. 4.10, and EH and Exc are respectively the
Hartree and DFT exchange-correlation functionals. The two last terms are respectively the DMFT ap-
proximation to the Luttinger-Ward functional[89] and the double-counting correction to it. The Luttinger-
Ward functional is a diagrammatic object whose value does not carry direct physical meaning, but is
useful in DMFT because its functional derivative with respect to the local Green’s function is equal to
the self-energy:

∂ΦDMFT
LW [Gloc]

∂Gloc(iωn)
=

1

β
Σloc(iωn) (4.18)

The stationarity of the Γ functional with respect to vint gives the charge self-consistency relation:

ρ(r) = Tr〈r|Glatt|r〉 (4.19)

where the trace is over all Matsubara frequencies and Bloch orbitals: Tr = 1
β

∑
iωn,νν′

. In practical
implementations of charge self-consistent DFT+DMFT, one first determines a k-dependent density matrix
from the interacting lattice Green’s function (a generally non-diagonal matrix, contrary to the DFT
density matrix)

Nk =
1

β

∑
iωn

Glatt(k, iωn) (4.20)

and the updated real space density obtained, as described in Ref. [78], by

ρ(r) =
∑
k

∑
νν′

ψkν(r)Nk
νν′ψkν′(r) (4.21)

in the step of the DFT code that calculates the occupation of the orbitals. Thereafter, one may calculate
a new KS potential, new eigenvalues and projectors, and perform a new DMFT cycle, until convergence
is reached. The resulting DFT+DMFT self-consistency cycle is illustrated in Fig. 4.1

The stationarity of Γ with respect to Σloc, on the other hand, recovers the relation between the lattice
Green’s function and the correlated subspace’s local Green’s function, as described in Eq. 4.10. Finally,
the stationarity conditions of Γ with respect to ρ and Gloc amount respectively to Eq. 2.12 defining the
KS potential in DFT, and to Eq. 4.18 giving the self-energy from the Luttinger-Ward functional.

Given the stationarity conditions, it follows that the total energy of the system can be written as a
functional of only two variables: the charge density ρ and the local Green’s function in the correlated
subspace Gloc. Introducing G0

loc, the local Green’s function without the self-energy, the total energy
functional reads[81, 90, 91]

EDFT+DMFT = EDFT +
∑
k,ν

[
εKS
kν (Nk

νν − f(εk,ν − µ))
]

+ 〈HU 〉 − EDC (4.22)
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Figure 4.1 – Full DFT+DMFT self-consistency cycle.

where εk,ν denotes the KS eigenvalues and f is the Fermi-Dirac distribution. The first term is none other
than the KS DFT total energy of Eq. 2.9,

EHK [ρ] = Ts [ρ] +

∫
vext(r)ρ(r)d3r +

∫
vHartree(r)ρ(r)d3r + Exc [ρ]

where in the present notations,

Ts [ρ] =
∑
k

Tr
[
HKS

k G0
latt

]
=
∑
k,occ

εnk

is the sum of occupied Kohn-Sham eigenenergies. The second term of Eq. 4.22 is the DMFT correction
to the occupation of the KS eigenstates, and can also be seen as the DMFT correction the the electronic
kinetic energy. Finally, the last terms 〈HU 〉−EDC contain the effect of the double-counting correction on
the total energy. The double-counting term EDC is computed from the double-counting energy formula[75,
83] from the DFT occupancies of orbitals. The local Coulomb energy 〈HU 〉 can be computed conveniently
in DMFT from the Migdal formula

〈HU 〉 =
1

2
Tr [ΣGimp] (4.23)

Alternatively, for a density-density Hamiltonian and if the solver used in DMFT allows to directly measure
the correlator 〈nmnm′〉, 〈HU 〉 can be calculated directly as

〈HU 〉 =
1

2

∑
mm′

HU
mm′ 〈nmnm′〉imp . (4.24)

In applications using numerical quantum Monte-Carlo methods, the latter may have less noise or statis-
tical error than Migdal’s formula.
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Figure 4.2 – Volume vs pressure dependence in low-temperature ferromagnetic body-centered-
cubic (bcc) and paramagnetic hexagonal compact (hcp) Fe. GGA DFT significantly under-
estimates the lattice constants the the slope or bulk modulus. DFT LDA+DMFT values are
much closer to experimental values. Reproduced from Ref. [105]

4.2 Overview of achievements

In the last two decades, DFT+DMFT has been used extensively to study from first principles a wide
variety of transition metal oxides [74, 92–101], pure transition metals [84, 102–106], lanthanides [107,
108] and actinides [109–111].

The first implementations, without full charge self-consistency, were used to describe the spectral and
conduction properties of materials, for instance transition metal oxides at or near a phase transition. The
method has been particularly useful to understand the physics of materials with intermediate correlation
strength, presenting interaction-driven metal-insulator transitions and other exotic properties.

More recently, as fully charge self-consistent implementations of DFT+DMFT have become more
widespread and QMC solvers more powerful, this technique has been applied to describe the structural
properties (crystal structures, lattice constants, bulk moduli...) of pure transition metals, lanthanides
and actinides in their more strongly correlated phases. In these, DFT+DMFT total energies significantly
improve on results obtained within DFT with “standard” approximate exchange-correlation functionals
like LDA or GGA[103, 105], as illustrated in Fig. 4.2. The phonon spectrum is also improved[104].

4.3 Determining HU : the constrained random phase approxima-
tion

The DFT+DMFT method, as described above, is a material-specific alternative to model-based DMFT.
It provides an ab initio way of deriving the equivalent of the hopping parameter t and the local level
positions (in the multi-orbital case) of the Hubbard model (Eq. 3.1), allows to treat systems with many
bands of different natures crossing the Fermi level, and to compute total energies (hence structural
properties) of strongly correlated materials.

Nevertheless, an important parameter of the calculations has yet to be determined: the Coulomb
interaction parameter U (or, more generally, the interaction Hamiltonian HU ). Indeed, the DFT+DMFT
method is frequently criticized for not being truly ab initio because of this parameterization.

It should of course be possible to determine HU from first principles in the context of a complete,
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self-contained electronic structure theory. But what exactly is HU? Here, it is useful to remember how
DFT+DMFT was derived: a low-energy model containing only a subset of states around the Fermi level is
defined by down-folding a Hamiltonian (or Green’s function) describing all the orbital degrees of freedom
of a system. It is reasonable that this same idea of down-folding should also be present in the definition
of HU . Let us first state what HU is not :

• HU is not the local interaction Hamiltonian obtained by taking the matrix elements of the bare
Coulomb interaction,

V bare
m1m2m3m4

=

∫
drdr′φm1

(r)φ∗m3
(r)vbare(r, r′)φm2

(r′)φ∗m4
(r′) (4.25)

Indeed, this expression does not take into account screening. It would lead to values of U so large
(typically of the order of 10 to 30 eV for transition metals or rare-earths), that virtually every metal
should become a Mott insulator.

• In Eq. 2.22 and 2.23, we introduced a way to compute the screened Coulomb interaction W . Yet,
HU is also not the local interaction Hamiltonian obtained by taking the matrix elements of the fully
screened Coulomb interaction W . The reason for this is slightly more subtle, but not surprising: W
is also screened (indeed, most stronly screened) by transitions within the very subspace whose low-
energy degrees of freedom we want to describe in DMFT, so that W is significantly over-screened.

• Screening is involved, and we know from GW theory that screening is a dynamical effect. Therefore,
it seems reasonable that HU is not a static quantity but should have some frequency-dependence like
W (ω), and simplify to the expression of Eq. 4.25 above in the limit of infinite frequency ω → +∞.

In other words, to determine HU consistently from first principles, a down-folding procedure should
be used, like in DFT+DMFT. Only screening channels outside the correlated subspace should be allowed
to screen the bare Coulomb interaction.

A popular method in the 90’s, applied for DFT+U calculations, is constrained LDA (cLDA)[112,
113]. By constraining the occupation of the d or f shell on a given atom in a supercell, and computing
the second derivative of the total energy with respect to the d or f occupation, a value can be deduced
for U cLDA and JcLDA. DFT implementations with local basis functions like LMTO are best suited for
such calculations. However, cLDA has a tendency to overestimate U because the screening channels are
not described correctly[114]. For a long time, this was not considered to be an important problem, since
somewhat inflated values of U were required in DFT+DMFT to reproduce experimental results. More
recently, it was understood that this is due to the neglect of effects like dynamical screening[115].

To improve on these deficiencies, building on the ideas of GW theory, Aryasetiawan et al. introduced
the idea of the constrained Random Phase Approximation (cRPA)[114, 116]. In cRPA, the polarization
function is computed in the random phase approximation, separating transitions within the correlated
subspace and the others:

P = P d−d + P rest (4.26)

considering for instance a correlated d shell. The correlated subspace can conveniently be defined with
the same projectors as the one used in DFT+DMFT, so that the determination and usage of U and J
are consistent. The partially screened interaction W rest, of which U and J are respectively direct and
Fock-like matrix elements, can then be calculated as

W rest =
Vbare

1− P restVbare
(4.27)

This equation is similar to Eq. 2.23, with a partial screening. Incidentally, since the polarization computed
in RPA is frequency-dependent, so is W rest(ω) and its matrix elements. Fig. 4.3 illustrates equations 4.26
and 4.27 with diagrams.

cRPA has been used extensively with DFT+DMFT, to make the calculations ab initio[80, 118] and
analyze which screening channels are important (see, for instance, [119, 120]). Nevertheless, cRPA is not
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Figure 4.3 – Summary of the cRPA procedure, applied to a system with a single correlated
band at the Fermi level. Reproduced from Ref. [117]. Ptarget denotes the polarization from
transitions within the low-energy subspace, while Prest denotes the polarization due to all
transitions between bands outside the low-energy subspace or between a band within, and a
band outside of it.

equally powerful for all systems. It produces reasonably good results when the bands corresponding to
the correlated subspace are well separated from the others (so that the projectors are unitary), but less
so when other (dispersive) bands cross the Fermi level. In this case, residual metallic character after
the projection often leads to overscreening or requires additional approximations. A disentanglement
procedure has been proposed[121] and successfully applied to consistently compute HU even in such
cases. Indeed, it is not trivial to cut out transitions within the correlated subspace when other bands
with mixed orbital character co-exist in the energy window. However, the issues above are not strictly a a
defect of cRPA method: rather, they emphasize the fact that defining a good low-energy model, starting
from an all-electron electronic structure calculation, is difficult.

Moreover, for states hybridizing strongly with bands from different atoms (for example, eg states in
transition metal oxides hybridizing with oxygen 2p states), some ambiguity exists on how to best construct
the projectors. In oxides with partially filled eg states, a common procedure is to exclude transitions
within the d orbital subspace but construct Wannier functions with a window containing transition metal
d and ligand 2p states. Such a model is called a “d − dp” model[119]. Several “A − B” models like
this have been used in the context of cRPA calculations, where the notation “A − B” indicates that
Wannier functions are constructed and orthonormalized in a space A (which may for instance include
only d orbitals, or d and p orbitals) and transitions within the space B, included in A, are removed when
calculating the partially screened Coulomb interaction. Finally, the output of cRPA depends somewhat
on the input DFT calculation. Ideally, it should be performed self-consistently with the DFT+DMFT
cycle, where the positions and occupation of bands can be reshuffled.

In conclusion, cRPA is a powerful tool that gives both qualitative and quantitative indications on
the values of the local interaction Hamiltonian HU used in DMFT or DFT+DMFT, and is defined in a
framework compatible by construction with DFT+DMFT calculations. It also provides the full frequency-
dependence of HU , as well as its non-local components if supercells are used. Still, DFT+cRPA+DMFT
(as we may call such a scheme) feels like an awkward way of combining building bricks that are not
exactly compatible, and does not define a full electronic structure theory.
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4.4 Methods beyond Density Functional Theory + Dynamical
Mean-Field Theory

DMFT, and likewise its combination with DFT, rely on a set of approximations that are often, but
not always justified. The most obvious approximation is of course the locality of the self-energy Σ(ω),
which is exact only in infinite dimensions. This was shown to be insufficient in, among others, the
high critical temperature superconducting cuprates (a family of materials that happen to be quasi two-
dimensional)[70].

Other approximations include the supposed locality of effective Coulomb interactions in the Hubbard
model, or the lack of self-consistence with respect to the screening and dependence on an approximate
double-counting correction in DFT+DMFT.

Extending DMFT and DFT+DMFT to improve on these issues has been a longstanding field of
research, and several solutions have indeed been applied. In this section, I briefly present the main ideas
behind some of them.

4.4.1 Cellular Dynamical Mean-Field Theory

A first way to partially restore the non-locality of the self-energy is to define a cluster of impurities,
coupled to a common bath with non-local hybridization[122, 123]. In this real-space picture, called
cellular DMFT (or CDMFT), the DMFT hybridization ∆, dynamical Weiss field G0, Green’s function
Gloc and self-energy Σ all take the matrix form

G =

(
(G1−1) (G1−2)

(G2−1) (G2−2)

)

where (Gi−j) represents the (matrix) quantity between atoms i and j in the cell, instead of the block-
diagonal form in single-site DMFT:

G =

(
(G1−1) (0)

(0) (G2−2)

)

The problem is then treated in a way similar to DMFT, with k-independent self-energy

[Σ(iωn,k)]mm′ =
[
Σcell(iωn)

]
mm′

(4.28)

This may be misleading: while the self-energy appears local in the k-space, it is a matrix and the non-
locality is partially restored by non-local off-diagonal elements, that link different sites (indexed by a and
b above) in real space.

CDMFT was instrumental for understanding the metal-insulator transition in oxides such as VO2[96]
(more on this in chapter 8) or the d-wave superconductivity of cuprates[122].

4.4.2 Dynamical cluster approximation

The counterpart to CDMFT in the reciprocal space is the Dynamical Cluster Approximation (DCA)[124,
125]. In DCA, rather than using a constant self-energy in the k-space, a coarse graining of the Brillouin
zone in a finite number Nc of patches is introduced. DCA has been used on the single band Hubbard
model to explain the k-dependence of the quasi-particle lifetime in cuprates.

However, the QMC fermionic sign problem (see chapter 5) increases exponentially with the number
of atoms in the cluster Nc, so that exploring long-range correlations, low-temperatures and multi-orbital
systems is difficult, if not impossible.
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4.4.3 Extended Dynamical Mean-Field Theory

It is well known that, while the bare Coulomb interaction is long-ranged (it decreases as 1/r), the screened
one is much shorter-ranged. However, considering it to be purely local, as in the Hubbard model, is a
somewhat rough approximation that deserves to be discussed. Arguably, a better model is the extended
Hubbard model, which can be written in the single band case as follows:

H = (ε0 − µ)
∑
i,σ

niσ − t
∑
〈i,j〉,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓ +
∑
i 6=j

Vijninj (4.29)

where Vij describes non-local Coulomb interactions: they can act on nearest neighbors, second-nearest
neighbors, or even be more long-ranged. Such non-local interactions are usually smaller than the local
sort, but are physically important in some cases. In surface systems, for instance, reduced screening
means the Coulomb interaction decays more slowly than in the bulk, so that non-local interactions can
make the difference between metallic or insulating behavior[126]. In the square lattice Hubbard model,
non-local interactions can give rise to a charge-ordering[127]. Finally, on a triangular lattice, non-local
interactions can cause frustration and bring forth exotic charge-ordered metallic phases[128].

Extended DMFT (EDMFT)[129–131] is (at its name indicates) an extension of DMFT, used to de-
scribe this extended Hubbard model. The bottom line is that, as in DMFT, the extended Hubbard
model can be treated by mapping the lattice problem onto an single-site impurity model, at the cost of
introducing a retarded Coulomb interaction.

Thanks to a Hubbard-Stratonovich transformation of the non-local part of the action

e
∫ β
0
dτ

∑
ij

1
2Vijni(τ)nj(τ) =

∫
D[φ]e−

∫ β
0
dτ 1

2

∑
ij φi(τ)[−V −1

ij ]φj(τ)±
∫ β
0

∑
i φi(τ)ni(τ) (4.30)

we integrate out the bosonic degrees of freedom, which allows to define an impurity action similarly to
single-site DMFT:

Simp = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†σ(τ)G−1
0 (τ − τ ′)cσ(τ ′) +

1

2

∫ β

0

dτ

∫ β

0

dτ ′U(τ − τ ′)n↑(τ)n↓(τ
′) (4.31)

where a bosonic dynicamical interaction U(τ − τ ′) (or equivalently, U(ω)) has been introduced. U is an
additional bosonic mean-field, similar to the fermionic dynamical mean-field G0. Thus the problem with
static, non-local interactions is reduced to a problem with local, dynamical interactions.

A local screened interaction Wloc(iΩn) (bosonic equivalent of the local Green’s function Gloc(iωn)) and
a polarization Pimp(iΩn) (bosonic equivalent of the self-energy Σimp(iωn)) are introduced, and computed
self-consistently in the EDMFT loop. Here, iΩn represents a bosonic Matsubara frequency, iΩn = 2nπ

β ,

whereas iωn = (2n+1)π
β . The self-consistency equations in EDMFT read

G−1
0 (iωn) = G−1(iωn) + Σimp(iωn)

U−1(iΩn) = W−1(iΩn) + Pimp(iΩn)
(4.32)

Both self-consistency loops are performed at the same time and are not linked, except inside the impurity
solver that gives Σimp(iωn) and Pimp(iΩn) as an output. Note that the polarization P and self-energy Σ
are local, even though the problem has non-local interaction.

We refer the reader to Ref. [132] for a more technical description of EDMFT. We discuss the physical
implications of a dynamical interaction in section 6.

4.4.4 GW + Extended Dynamical Mean-Field Theory

More generally, among the requirements for an “ideal” ab initio electronic structure theory, the following
points stand out:
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1. Have a k-dependent self-energy, Σ(ω,k).

2. Treat correlations in a non-perturbative way as DMFT does, at least in the subspace of correlated
bands around the Fermi level.

3. Contain the full, non-local screened Coulomb interaction.

4. Be double-counting free.

5. Be as parameter-free as possible. (At least in principle. In reality, having some parameters in the
implementation, for example the basis set for the GW calculation, may be unavoidable)

To this we may add a last point, but this may be wishful thinking:

6. Be computationally tractable with today’s algorithms and hardware.

The GW+EDMFT method[132–134] is an attempt at providing such a theory, mostly fulfilling the
requirements above (except for point 6., one may argue). In GW+EDMFT, as its name suggests, a non-
local and non-perturbative self-energy and polarization by adding the (local, non-perturbative) values
and the non-local part of the GW values:

ΣGW+DMFT(iωn,k) = Σimp(iωn) + ΣGW
nloc(iωn,k)

PGW+DMFT(iΩn,k) = Pimp(iΩn) + PGW
nloc (iΩn,k)

(4.33)

where the non-local part of the self-energy and polarization are computed as

ΣGW
nloc(iωn,k) = ΣGW(iωn,k)−

∑
k

ΣGW(iωn,k)

PGW
nloc (iΩn,k) = PGW(iΩn,k)−

∑
k

PGW(iΩn,k)
(4.34)

The GW contributions to Σ and P are calculated according to the GW equations 2.22 and 2.24. The
(dynamical) screening U(iΩn) is treated in the same fashion as in EDMFT, except it is not obtained
from a set of parameters Vij but from the Eq. 2.23 applied on the bare Coulomb interaction v with a
constrained polarization, obtained as a by-product in Eq. 2.22.

GW and EDMFT are both based on Green’s functions, and thus interface well. Indeed, the GW+EDMFT
equations can be derived from a functional Γ[G,W ]. It follows that no double-counting correction is
needed, as the diagrams entering Γ from the local DMFT part and the non-local GW part can be clearly
separated.

GW+EDMFT calculations can, at least in principle, be performed self-consistently. Indeed, while
self-consistent GW are known to deteriorate the results of one-shot GW due to neglect of the vertex, the
approximation in GW+EDMFT is less drastic. In practice, full self-consistent GW+EDMFT calculations
have been implemented only for one-band systems[126, 127, 132, 135]. In multi-band systems, the
computational cost is so formidable that approximations must be made. GW+DMFT calculations have
for instance been performed on a classical benchmark system of ab initio many-body methods, SrVO3,
an perovskite oxide with partly filled t2g bands[136, 137]. Therein, the full self-consistency in GW and
EDMFT was dropped, so that a self-consistent EDMFT calculation was made on top of a one-shot GW
calculation, taking the GW polarization PGW(iΩn,k) as an input.

Let us note that, for all of its conceptual strengths, GW+EDMFT does not capture all physical
effects that can be observed in materials. In particular, long-range collective modes are better described
by methods that impose lesser approximations on the full many-body vertex, like the recently proposed
TRILEX approximation[138].

Finally, computing the full dynamical GW self-energy can be challenging for large realistic systems.
One advantage of GW+EDMFT is that we understand rather clearly what physical phenomena are de-
scribed by it. This means further approximations can be made to keep the computation charge reasonable
(which is often needed) while keeping track of the physical aspects that are described. This aspect is
further discussed in the next chapter, Chap. 6.
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Chapter 5

Technical aspects

As we have seen in section 3.2, DMFT allows to map a lattice problem onto a self-consistently determined
impurity model describing a lattice site exchanging particles with a non-interacting bath, the solution
of which provides an approximation to the self-energy (or indeed the exact one in the limit of infinite
dimensions). We have not yet, however, discussed how this very impurity model is solved. Moreover,
though we discussed how the interaction Hamiltonian HU can be determined from first principles, for
instance using the cRPA method, we have not yet discussed the forms of HU used in practice.

We do not plan here to give a full discussion of either aspect: we refer the reader to [57] for a review
on modern quantum Monte-Carlo impurity solvers, and to [139] for a discussion of local interaction
Hamiltonians. Rather, for the sake of completeness, we discuss a few aspects impurity solvers and
interaction Hamiltonians that were applied in this thesis.

5.1 Local interaction Hamiltonians

5.1.1 The Slater Hamiltonian

In single band models, HU is a simple scalar U . Many-band cases are more complicated. The most
general local interaction Hamiltonian is a four-dimensional matrix Um1m2m3m4 , where (mi)1<i≤4 refer to
orbital indices in the correlated subspace. The corresponding Slater Hamiltonian is

H =
1

2

∑
m1m2m3m4,σσ′

Um1m2m3m4
c†m1σc

†
m2σ′

cm3σ′cm4σ (5.1)

This Hamiltonian is rotationally invariant.

Um1m2m3m4 is generally parameterized from a set of Slater integrals:

Um1m2m3m4
=

2l∑
k=0

αk(m1m2m3m4)F k (5.2)

where αk(m1m2m3m4) are the Racah-Wigner parameters (see [139, 140]) and F k are material-dependent
Slater integrals that describe the monopole (F 0) or higher-order moments (the others) part of the Coulomb
interaction. In practice, only F 0, F 2, F 4 are required for d orbitals, or F 0, F 2, F 4, F 6 for f orbitals. F 0

is most affected by screening and varies most for different materials. The higher-order integrals vary
somewhat with materials, but their ratios not so much:

F 4/F 2 ≈ 0.625 (in 3d shells) (5.3)

F 4/F 2 ≈ 0.67 and F 6/F 2 ≈ 0.49 (in 4f shells) (5.4)
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This property allows to define the Hamiltonian with only two parameters: the Hubabrd U and Hund’s
exchange JH , with

U = F 0 (5.5)

JH =
F 2 + F 4

14
(in d shells) (5.6)

JH =
286F 2 + 195F 4 + 250F 6

6435
(in f shells) (5.7)

5.1.2 The density-density interaction Hamiltonian

A simpler type of interaction Hamiltonian is the density-density Hamiltonian

H =
1

2

∑
(mσ)6=(m′σ′)

Uσσ
′

mm′nmσnm′σ′ (5.8)

where

Uσσ̄mm′ = USlater
mm′mm′ (5.9)

Jmm′ = USlater
mm′m′m (5.10)

Uσσmm′ = USlater
mm′mm′ − Jmm′ (5.11)

The density-density Hamiltonian is not rotationally invariant, and does not contain all interaction
terms. For instance, it does not have the spin-flip terms Jmm′c

†
m↑cm↓c

†
m′↑cm′↓. However, it allows much

faster calculations in some cases (see section 5.2.2), which makes it useful in calculations with many
orbitals.

5.1.3 The Hubbard-Kanamori Hamiltonian for t2g systems

When working in a cubic basis, in particular for t2g orbitals, it is necessary to employ the same basis in
Eq. 5.2. One can show (see [139]) that the density-density part of the Hamiltonian can in that case be
parameterized from the Slater integrals as

Uσσ̄mm = U (5.12)

Uσσm6=m′ = U − 3J (5.13)

Uσσ̄m6=m′ = U − 2J (5.14)

(5.15)

with

U = F 0 +
4

49
F 2 +

4

49
F 4 (5.16)

J =
3

49
F 2 +

20

441
F 4 (5.17)

giving the Hubbard-Kanamori Hamiltonian

H =
∑
m

Unm↑nm↓ +
∑

σ,m>m′

(U − 2J )nmσ̄nm′σ + (U − 3J )nmσnm′σ (5.18)

In the context of cRPA (see section 4.3), however, U and J are often computed by averaging the
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matrix elements of Um1m2m3m4
directly in the cubic basis:

U =
1

N

N=3∑
m=1

Ummmm (5.19)

J =
1

N(N − 1)

N=3∑
m 6=m′

Umm′m′m (5.20)

because this makes it easier to remove the screening channels within the t2g sub-space.

5.2 Impurity solvers

5.2.1 The Hubbard I approximation

In the Hubbard I or atomic approximation[41, 74], the impurity problem is solved by neglecting the
dynamical hybridization with the bath. Only its static part, or in other words the effective atomic levels
H1el of the impurity given by

Ĥ1el = −µ+ 〈Hc〉 − ΣDC (5.21)

is used to obtain the self-energy, where 〈Hc〉 is the projected Kohn-Sham Hamiltonian on the correlated
d or f orbitals of the atom, summed over the Brillouin zone. Note that H1el is a matrix and may contain
off-diagonal elements: this is not an issue.

The full impurity Hamiltonian is Himp = H1el +HU , where HU is the Slater Hamiltonian 5.1. For a
single atom that does not exchange particles with a bath, it can be solved analytically.

The first step consists in diagonalizing Himp for N , N−1 and N +1 electrons, where the ground state
has N electrons. The interacting Green’s function is then obtained from the Lehmann representation
formula

Gij(iωn) =
1

Z

∑
nn′

〈n|ci|n′〉〈n′|c†j |n〉
iωn + En − En′

(e−βEn + e−βEn′ ) (5.22)

where the sum is formally over all atomic states n, n′ with all possible electron numbers, though in
practice the Boltzmann factors e−βEn + e−βEn′ usually mean that the contribution of states with N − 2
electrons or less, and N + 2 electrons or more, is negligible. The self-energy is then readily obtained from
the Dyson equation:

Σ(iωn) = G−1
0 (iωn)−G−1(iωn) (5.23)

Conveniently, the real-frequency Green’s function (and, correspondingly, the self-energy) can be ob-
tained in the same way

Gij(ω) =
1

Z

∑
nn′

〈n|ci|n′〉〈n′|c†j |n〉
ω + En − En′ + iη

(e−βEn + e−βEn′ ) (5.24)

with η an infinitesimal small real number.

The Hubbard I approximation makes for very quick calculation: in the worst case, corresponding
to a half-filled f shell, the longest part of the calculation is the diagonalization of Himp with a Hilbert
space of dimension

(
14
7

)
= 3432, which takes of the order of 10 minutes. In more favorable cases, the

diagonalization is almost immediate.

In practice, the Hubbard I approximation gives good results (and is mostly used) to describe the
physics of partly filled 4f shells[108, 141, 142] where the hybridization with the other orbitals is small.
It fails to describe some properties of the nominally d1 and d13 lanthanides Ce and Yb, in particular in
the parameter regimes or phases where Kondo physics is at play[142, 143] and the 4f electrons become
delocalized. Extensions of the Hubbard I approximation can also be used to study some well-chose
properties of transition metal oxides[144].
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5.2.2 Continuous-time quantum Monte-Carlo and the hybridization expan-
sion

Continuous-time Quantum Monte-Carlo (CTQMC) solvers[57, 145] allow to obtain numerically exact
(assuming ergodicity and sufficient sampling) interacting Green’s functions of impurity models. In par-
ticular, contrary to the Hirsch-Fye quantum Monte-Carlo algorithm[146], CTQMC solvers do not have
an imaginary time discretization bias.

We recall the expression of the impurity DMFT action in a multiorbital case

Simp = −
∑
mm′

∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†mσ(τ)
[
(∂τ +H1el

mm′)δ(τ − τ ′) + ∆mm′(τ − τ ′)
]
cm′σ(τ ′) +

∫ β

0

dτHU (τ)

(5.25)
where Eab is a matrix containing level positions (the static part of the hybridization), and HU (τ) is the
interaction part of the action. In a single-band case and for a density-density interaction Hamiltonian,

HU (τ) =
∑

mm′σσ′

Uσσ
′

mm′nmσ(τ)nm′σ′(τ) (5.26)

The partition function is given by

Z =

∫
D[c†c]e−Simp (5.27)

Different types of CTQMC algorithms[145, 147, 148] are obtained by choosing a part of the action
to expand Eq. 5.27 as an infinite series. In this thesis, we used the hybridization expansion CTQMC
algorithm[145], obtained as follows. One separates the action 5.25 into a hybridization term and a local
term

Simp = Sloc +
∑
σ

Sσhyb (5.28)

which allows to compute the partition function as

Z = Zloc

〈∏
σ

Sσhyb

〉
loc

(5.29)

After replacing the hybridization term by its expression and some algebra (see Ref. [57, 145] for the
details) one obtains the diagrammatic expansion

Z = Zloc

∞∑
kσ=0

∫
dτ1...dτkσ

∫
dτ ′1...dτ

′
kσ

∑
j1...jkσ

∑
j′1...j

′
kσ

Trd

[
Tτe
−βHlocdjkσ (τkσ )djkσ (τkσ )d†j′kσ

(τ ′kσ )...dj1(τ1)d†j′1
(τ ′1)

]
det∆σ (5.30)

=
∑

c

det∆σ(c)wloc(c) (5.31)

where we introduced a sum over all diagrammatic configurations c (a set of creation and annihilation

operators (ci, c
†
i ) at times τi), a trace over the local Hamiltonian wloc(c) and a hybridization determinant

det∆σ where ∆σ is a matrix whose coefficients are given by ∆σ
lm = ∆jljm(τl−τm), the letter j designating

an orbital index.

One can then use a Metropolis-Hastings[149, 150] (Monte-Carlo) algorithm, adding and removing
creation and annihilation operators at random times τi and using the configuration weight

wc = det∆σ(c)wloc(c) (5.32)

Crucially, this allows to sample not only the partition function but also different types of correlators,
notably the local Green’s function. Both the calculation (or update) of det∆σ(c) and wloc(c) in a Monte-
Carlo move are fairly costly in terms of computational time. In particular, the hybridization expansion
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CTQMC solver becomes slow at very high and low temperatures, for systems with many orbitals, and
when the hybridization function takes large values.

Another practical issue is that wc as defined above is not necessarily a good Monte-Carlo weight. When
the hybridization ∆ij(τ) has off-diagonal elements (which is usually the case in multi-orbital systems,
unless they are zero by symmetry), wc can take negative values due to the fermion sign problem[57]. In
this case its absolute value |wc| should be used as Monte-Carlo weight in the Metropolis algorithm, but
all measured observables must then be rescaled by 〈sign〉MC, the average sign of wc over the Monte-Carlo
steps, dramatically reducing the accuracy when the average sign is close to 0. Empirically, the sign
problems is under control at high temperatures but grows exponentially worse at low temperatures. It
has also been demonstrated that the fermionic sign problem is “NP hard”, meaning there is no polynomial
solution to it[151].

5.2.3 Density-density interactions and the segment picture

We conclude this chapter by pointing out a convenient property of density-density interaction Hamilto-
nians. For such a local interaction Hamiltonian like that of Eq. 5.8, one may use the so-called “segment
picture” in the CTQMC algorithm[57], where the calculation of wloc(c) in the Monte-Carlo weight 5.32
becomes almost immediate. The only remaining bottleneck is then the time spent calculating the deter-
minant det∆σ(c).

For multi-orbitals systems, the difference can be quite dramatic. For instance, in the DMFT calcu-
lations discussed in Chapter 7, involving the full 3d shell of metallic Fe (7 electrons), using the density-
density Hamiltonian and segment picture in CTQMC makes for calculations about ten times faster than
using the full Slater Hamiltonian and standard hybridization expansion solver.



48 Chapter 5. Technical aspects



Part II

Methods: construction of low-energy
models
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Chapter 6

Screened exchange and bosonic
renormalizations: novel approaches
to simple metals

In section 4.4, we introduced the GW+EDMFT method. This approximation is superior to the more
simple DFT+DMFT method in terms of accurately predicting the electronic structure of weakly to
strongly correlated electron materials. We do not repeat here all of its advantages over DFT+DMFT,
but let us simply recall two points we wish to discuss in the present chapter:

• GW+EDMFT has non-local exchange, given by a dynamically screened HF self-energy from GW
theory[152]

• It also incorporates the band renormalization effects coming from the dynamically screened Coulomb
interaction in the correlated subspace, as described in EDMFT

The main drawback of GW+EDMFT – but an important one – is its computational cost, which is much
higher compared to DFT+DMFT.

Here, we discuss a simplification to GW+EDMFT that brings the computational cost back to a
more reasonable level. This scheme uses a screened exchange band structure and a renormalization of
the bandwidth due to dynamical screening effects[120, 153–155]. In the following, we will refer to this
scheme as SEx+ZB , where SEx is short for “screened exchange” and ZB is the typical name given to the
bosonic renormalization factor that arises from the self-energy when dynamical Coulomb interactions are
considered.

Note that in this chapter, we are interested in the methodological aspect of constructing consistent
low-energy models for many-body calculations rather than in the details of how to solve them. For all
the merits of the DFT+DMFT method, it contains approximations beyond the locality of the self-energy,
inherent in the construction of the low-energy correlated subspace. For a more in-depth discussion of
the conceptual difficulty of constructing consistent models without double-counting of interactions and
without over-simplifying high-energy degrees of freedom, as well as a proposed “multi-scale ab initio
model for correlated electrons”, we refer the reader to a recent publication by Hirayama et al.[156].
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6.1 From GW + Dynamical Mean-Field Theory to Screened
Exchange + renormalization ZB

6.1.1 Separation of the GW self-energy

The GW self-energy, computed via Eq. 2.21 to 2.24, is at the same time non-local and dynamical:

ΣGW = ΣGW (k, ω)

In this aspect, it is qualitatively different from the HF self-energy (which is non-local but static) or the
DMFT self-energy (dynamical but local). Interestingly, however, the two aspects can to some extent be
decoupled. Though this is an empirical observation rather than a mathematically provable statement,
Tomczak et al.[137, 157] have shown that in the context of pnictides, chalocogenides and SrVO3, and van
Roekeghem et al.[120] in the context of the cobalt pnictide BaCo2As2, the GW self-energy can be split
into a local dynamical part Σloc(ω) and a static non-local part Σnloc(k).

This separation cannot be universally valid. Indeed, by construction the static part of ΣGW is given
by the unscreened non-local Fock potential vF . However, in practical calculations one observes that the
effects of ΣGW arising from non-local components can be well approximated by a statically screened Fock
potential.

Therefore, it is often found that, within a low-energy subspace, a decomposition as

ΣGW = [GW (ω = 0)]nloc + [GW ]loc (6.1)

is a good approximation. Here GW (ω = 0) is the GW self-energy computed with a static screening, and
its non-local part [GW (ω = 0)]nloc is computed in the same way as in Eq. 4.34. [GW ]loc is the local (or
k-summed) part of the full GW self-energy. When dealing with strongly correlated materials, the next
natural step is to replace this local part by the non-perturbative, fully dynamical DMFT self-energy.
Another way to think about this is to start from the CoHSEx approximation of Eq. 2.29, and replace
the local Coulomb hole term by the DMFT self-energy, which should better account for strong local
correlations.

A further approximation[120] that greatly decreases the computational cost is to replace the statically
screened, non-local GW self energy [GW (ω = 0)]nloc by a simpler Fock term with a Yukawa potential as
implemented in Wien2k[27]

VSEx = −
∑

occ bands i

ψi(r)ψi(r
′)∗W (r, r′, 0) (6.2)

with

W (r, r′, ω = 0) = e−kTF.|r−r′| 1

|r − r′| (6.3)

kTF is a Thomas-Fermi wave-vector encoding how quickly the Coulomb interaction decays due to screen-
ing. In metals, kTF can be related to the density of states at the Fermi level, and therefore can then
be obtained self-consistently. In semi-conductors or Mott insulators, this scheme is less appropriate, as
dielectric screening should allow more long-range exchange than in metals[158].

6.1.2 Screened Exchange + Dynamical Mean-Field Theory with dynamical
U

A scheme combining SEx with DMFT has been tested on iron pnictides coumpounds and discussed in
Ref. [120]. The authors compared angle-resolved photoemission spectroscopy (ARPES) experiments to
the momentum-resolved spectral functions calculated within different schemes: DFT (LDA), DFT+DMFT,
SEx+DMFT, and SEx+DMFT with dynamical U(ω). They found that the 3d bands calculated within



6.1. From GW+DMFT to SEx+ZB 53

LDA are too wide, an issue that is partially corrected by the DMFT self-energy. However, DFT+DMFT
does not correctly reproduce the experimental Fermi surface.

A SEx+DMFT calculation reproduces the bandwidths and Fermi surface better than DFT+DMFT,
but only when dynamical screening effects (U(ω) in the impurity action, similarly to the EDMFT action
4.31) are taken into account. Indeed, the non-local exchange from SEx leads to a significant widening
of the LDA bands, and even more compared to the measured bandwidths from ARPES. An additional
renormalization of the bands, arising from the frequency-dependence of the local Coulomb interaction,
is required to get correct bandwidths. At first sight, this looks similar to the error cancellation effect in
the LDA exchange-correlation potential, where the underestimation in the correlation effects effectively
cancels the overestimation in the exchange contribution to yield a bandwidth that is not too far off from
experiment. in SEx+DMFT with dynamical U , the effects of correlations and exchange also cancel each
other to some degree, but they are calculated more accurately, and eventually lead to a bandwidth closer
to the correct one than LDA or DFT+DMFT.

This should not come as a surprise: if we consider that GW+EDMFT contains all the important
physical effects (non-local self-energy, dynamical screening...) then it is reasonable that, even as we make
the approximation of replacing the non-local self-energy by its static part (thus making bands wider) we
should keep the counter-acting dynamical screening present in EDMFT.

6.1.3 Band renormalization with dynamical U

The effect of dynamical (or retarded) Coulomb interactions, a by-product of the downfolding to a low-
energy subspace, on the bandwidth, is discussed in a publication by Casula et al.[115]. The authors
consider a Hubbard-Holstein Hamiltonian[159–161]:

H =−
∑
ijσ

tijd
†
iσdjσ + v

∑
i

ni↑ni↓ + λ
∑
iσ

niσ(bi + b†i )

+ ω0

∑
i

b†i bi + µ
∑
iσ

niσ
(6.4)

where d† and d represent fermionic creation and annihilation operators, n the corresponding density
(n = d†d), v is the bare on-site Coulomb interaction, b† and b are bosonic creation and annihilation
operators, ω0 the corresponding plasmon frequency, and λ a coupling term between electrons and bosons.
The bosons in this model are coupling to the charge density, so we can interpret them as plasmon modes.
A Lang-Firsov transformation of this Hamiltonian (see [162]) replaces H by eSHe−S , where

S =
λ

ω0

∑
iσ

niσ(b†i − bi)

so that the electron operators are replaced by polaron operators

c†iσ = exp

(
λ

ω0
(b†i − bi)

)
d†iσ

ciσ = exp

(
λ

ω0
(bi − b†i )

)
diσ

The transformed Hamiltonian can be written as

HLF = −
∑
ijσ

tijc
†
iσcjσ + U0

∑
i

c†i↑ci↑c
†
i↓ci↓ + ω0

∑
i

b†i bi + µ
∑
iσ

niσ (6.5)

where U0 = v− 2λ2

ω0
is the local effective Coulomb interaction, screened by the plasmon mode. To build a

low-energy model (supposing the plasmon frequency is large enough), one may project the Hamiltonian
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onto the subspace with zero bosons, Heff = 〈0|HLF|0〉. Then, Heff is given by

Heff = −
∑
ijσ

ZBtijd
†
iσdjσ + U0

∑
i

d†i↑di↑d
†
i↓di↓ + µ

∑
iσ

niσ (6.6)

by introducing a bosonic renormalization factor

ZB = exp
(
−λ2/ω0

)
(6.7)

that renormalizes the hopping tij . More precisely, in a general model including itinerant p states as well
as more localized d states, it is shown that each d operator is renormalized by

√
ZB , so that the hopping

term of the Hamiltonian becomes

(p†d†)

(
tpp

√
ZBtpd√

ZBt
†
pd ZBtdd

)(
p

d

)
(6.8)

Finally, Casula et al.[115] generalize expression 6.7 to a general screened U(ω) by considering a
continuum of boson modes:

ZB = exp

(
1

π

∫ ∞
0

ImU(ω)/ω2dω

)
(6.9)

where U is expressed in real frequencies.

In section 4.3, we discussed cRPA as a tool to obtain partially screened values of the Coulomb
parameters (U and JH) for usage in DFT+U or DFT+DMFT calculations from first principles. However,
it turns out that using the static screened U given by cRPA in such calculations tends to systematically
underestimate the strength of correlations in materials (see Table III of Ref. [115] and references therein),
so that artificially larger values must be used to reproduce experimental findings. Casula, Werner et
al.[115, 161] explain this by the neglect of band-renormalization due to coupling to plasmons, which is
contained effectively in the DFT exchange-correlation potential – but only to some degree.

Recently, using dynamical Coulomb interactions in DMFT (or similar) calculations has become more
common, and several QMC solvers have been implemented with this in mind[62, 163, 164].

6.2 Screened Exchange as a generalized Kohn-Sham scheme

6.2.1 Generalized Kohn-Sham

The SEx+DMFT method described above can also be seen as a specific approximation to a spectral
density functional theory based on the Generalized Kohn-Sham (GKS) scheme of Seidl et al.[165]. This
view was recently put forward in Ref. [166]. In GKS theory, alternative choices for the reference system
that are different than the familiar Kohn-Sham system of DFT are explored. Following similar theorems
as one of the Hohenberg-Kohn theorems, GKS theory allows (in principle) to find the exact ground state
energy and electronic density, just like DFT.

Rather than the non-interacting Kohn-Sham system, a different auxiliary reference system is used
in order to obtain eigenvalues of the reference system, that is to say a band structure, closer to the
real, fully interacting spectrum. In particular, a generalized Kohn-Sham scheme where the reference
system is a screened exchange Hamiltonian can be constructed. The main motivation for the inclusion of
screened exchange in the literature has been to improve upon the band gap problem in semiconductors.
Indeed, it can be shown that the screened exchange contribution, which corresponds to a non-local
potential, effectively reintroduces to some degree the derivative discontinuity that is missing in the pure
DFT description based on local exchange-correlation potentials[167]. Since the derivative discontinuity
corresponds to the discrepancy between the true gap and the Kohn-Sham gap in exact DFT, a substantial
improvement of the theoretical estimate for band gaps can be expected on physical grounds and has indeed
been found.
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Here, our goal is somewhat different: motivated by the analysis of the role of screened exchange in
GW+DMFT described above, we would like to connect the screened Exchange DMFT scheme introduced
above to generalized KS schemes making direct use of the non-local screened exchange potential. With
this goal in mind, we briefly review the generalized Kohn-Sham construction in the case of an effective
Kohn-Sham system including screened exchange. Hereby, we follow closely Seidl et al.[165], both in
notation and presentation.

6.2.2 The generalized Kohn-Sham equations

First, one defines a functional S [Φ], where Φ are Slater determinants of single-particle states {φi}. Several
possibilities exist for S [Φ]: three examples are

S [Φ] =
〈

Φ
∣∣∣T̂ ∣∣∣Φ〉 (6.10)

S [Φ] =
〈

Φ
∣∣∣T̂ ∣∣∣Φ〉+ vH [{φi}] + Ex [{φi}] (6.11)

or

S [Φ] =
〈

Φ
∣∣∣T̂ ∣∣∣Φ〉+ vH [{φi}] + Esxx [{φi}] (6.12)

where T̂ is the kinetic energy operator, vH the Hartree potential and Ex (respectively Esxx ) the exact ex-
change (respectively, screened exchange) functional. Eq. 6.10 will lead to the standard KS DFT equations
with a reference system of non-interacting particles, Eq. 6.11 describes a reference system of interacting
particles with an exchange energy given by exact HF exchange, and Eq. 6.12 describes a reference system
of interacting particles where the exchange energy is given by a Thomas-Fermi screened Fock term

Esxx [{φi}] =−
N∑
i<j

∫
drdr′ ×

φ∗i (r)φ∗j (r
′)e−kTF|r−r′|φj(r)φi(r

′)

|r − r′| (6.13)

where the indices i, j range over all Bloch eigenfunctions. The other terms are the familiar kinetic energy
term 〈Φ|T̂ |Φ〉 and the Hartree energy UH [{φi}]. In the following, for simplicity, we consider the case of
a screened exchange reference system deriving from Eq. 6.12. The more general equations are given in
[165].

In order to derive a functional of the density Seidl et al. define a functional F s via the minimization

FS [ρ] = min
Φ→ρ(r)

S [Φ] = min
{φi}→ρ(r)

S [{φi}] (6.14)

that is to be used in a similar way to the non-interacting kinetic energy of the reference Kohn-Sham
system in KS DFT. Next, we define the energy functional

ES [{φi}; veff ] = S [{φi}] +

∫
drveff(r)ρ(r) (6.15)

where now the potential veff does not only include the external potential vext as in usual KS DFT, but
also a contribution by the exchange-correlation part

veff = vext + vsxxc [ρ] (6.16)

The additional contribution, the generalized (local) exchange-correlation potential

vsxxc =
∂Esxxc [ρ]

∂ρ
(6.17)
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is the functional derivative of the generalized (local) exchange-correlation functional

Esxxc [ρ] = Exc [ρ]− Esxx [ρ] + T [ρ]− T sx [ρ] (6.18)

which comprises the difference between the exchange-correlation potential of standard Kohn-Sham DFT
and the non-local exchange energy defined above, as well as the difference between the kinetic energies
of the standard and generalized Kohn-Sham systems. The functional derivative will eventually have to
be evaluated self-consistently at the converged density.

The generalized KS equations that define the eigenvalues of the auxiliary reference system (and, in
turn, the electronic density) are then given by

−∇2φi(r) + vext(r)φi(r) + u ([ρ]; r)φi(r)−
∫
dr′vsx,NL

x (r, r′)φi(r
′) + vsxxc ([ρ]; r)φi(r) = εiφi (6.19)

with the Hartree potential u for density ρ, the non-local screened Fock potential

vsx,NL
x (r, r′) = −

N∑
j=1

φi(r)e−kTF|r−r′|φ∗j (r′)
|r − r′| (6.20)

and the effective (local) generalized Kohn Sham potential vsxxc defined by Eq. 6.17. The generalized
Kohn-Sham equations take the form

Ô [{φi}]φj + v̂effφj = εjφj (6.21)

where Ô is a non-local operator, generalizing the standard Kohn-Sham operator consisting solely of the
kinetic energy and Hartree potential.

The ground state energy for a system with the external potential vext is then given by the expression

ESEx−DFT [v] = FS
[
ρS0 [veff ]

]
+ Esxxc

[
ρS0 [veff ]

]
+

∫
drvext(r)ρ

S
0 [veff ] (6.22)

where the self-consistently determined density ρS0 ([veff ], r) is obtained by minimizing

ES0 [veff ] = min
ρ(r)→N

{
FS [ρ] +

∫
veff(r)ρ(r)dr

}
(6.23)

and veff is determined therein by Eq. 6.16. To actually perform calculations with such a GKS scheme, ap-
proximations must be made on the screened exchange-correlation functional Esxxc or on the corresponding
potential vsxxc . The relevant approximations, similar to the LDA expressions, are proposed in [165].

Let us insist one more time on the nature of the approximation that is made: a SEx GKS scheme is
in no way equivalent to solving self-consistently the HF equations with a screened Fock term. The latter
is known to be physically wrong, while the former is conceptually exact if the exact exchange-correlation
potential was known. The goal is not to improve on the total energy or electronic density given by KS
DFT, but rather to ensure that the band structure derived from the auxiliary reference system be closer
to the “exact” one.

6.2.3 A word on the choice of parameters: kTF

Since the beginning, we have introduced the Thomas-Fermi screening vector kTF without specifying its
value. Surprisingly, in the GKS scheme the choice of kTF is completely free: indeed, starting from Eq. 6.11
one may define a HF GKS scheme corresponding to kTF = 0. Because kTF enters (explicitly or implicitly)
into both vsxxc and vsx,NL

x in Eq. 6.19, a cancellation effect ensures that the same ground state density and
energy is reached, for the exact functionals.
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For spectral properties extracted from the auxiliary KGS reference system, however, kTF does play
a role and should be chosen in order to produce a physically meaningful band structure. In practical
calculations, kTF can be determined from the electronic density at the Fermi level in metals (from an
initial DFT calculation, or self-consistently)[120]. In insulators, where SEx GKS was first applied, this
scheme cannot be applied since there is no density of states at the Fermi level. A usual choice is to define
it from the average valence electron density[165].

6.2.4 From Screened Exchange generalized Kohn-Sham to Screened Exchange
+ Dynamical Mean-Field Theory

Once we have such a functional derivation, we may construct a spectral density functional in the same
spirit as in DFT+DMFT [81], but starting from the generalized KS functional. In [168], the expression
for the total energy within the standard DFT+DMFT case was shown to be

E = EDFT −
∑
l

εKS
l + 〈HKS〉+ 〈(HU −Hdc)〉 (6.24)

where
∑
l ε

KS
l is the sum of the occupied Kohn-Sham eigenvalues, 〈HKS〉 = Tr

[
HKSĜ

]
, and HU and

Hdc denote the local interaction part of the Hamiltonian and the corresponding double counting term,
respectively.

Instead of using the usual Kohn-Sham Hamiltonian for the construction of the one-body part, SEx+DMFT
relies on the generalized Kohn-Sham reference system that includes the screened exchange potential. The
generalization of (6.24) to the present case thus replaces the Kohn-Sham Hamiltonian HKS in the expres-
sion for the energy by its non-local form, keeping track of the effective potential part:

E = ESEx−DFT −
∑
l

εSEx−KS
l + 〈Ô + v̂eff〉+ 〈HU (Vee, λs, ωs)−Hdc〉 (6.25)

Furthermore, the local interaction term is taken in the more general form of a dynamical interaction,
thus corresponding to a local Hubbard term with unscreened interactions and local Einstein plasmons of
energy ωs coupling to the electronic density via the coupling strength λs.

6.2.5 In practice: one-shot Screened Exchange + Dynamical Mean-Field
Theory

This concludes our description of the generalized Kohn-Sham interpretation of screened Exchange DMFT,
resulting in particular in an energy functional expression. However, actually using the SEx GKS scheme
greatly increases the computational cost compared to KS DFT: the difference is the same as using HF or
hybrid functionals. Hence, a common approximation is to take the converged DFT density as a starting
point, and then investigate spectral properties using the screened Exchange DMFT formalism[120]. This
amounts to a one-shot screened Exchange-DFT+DMFT calculation that uses the DFT density as a
starting point. The advantage of such an approach is obvious: numerically, this procedure allows us
to avoid the expensive evaluation of non-local exchange terms within the self-consistency cycle of GKS
theory.

Moreover, as is well-known, while severe deviations of the true spectrum from the Kohn-Sham spec-
trum are quite common, the ground state density obtained even from approximate DFT functionals is
often a good representation of the true one. In the case of the exact DFT functional, this approach would
also lead to the exact ground state density and energy, with additional improvements of the spectrum over
standard Kohn-Sham DFT. Seidl et al.[165] themselves proposed a scheme adding a screened exchange
perturbative term on top of the KS DFT eigenvalues, and showed that this is sufficient to improve on
the spectral properties.
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Figure 6.1 – The band structure of elemental Zn and Cd calculated within DFT. The orbital
character is indicated by the intensity of the different colors.

6.3 How should screened exchange Dynamical Mean Field The-
ory behave in weakly correlated materials?

Hamiltonians built as combinations of a DFT part and local Hubbard-type interaction terms trivially
reduce to the DFT Kohn-Sham electronic structure when assuming that in weakly correlated materials
the effective local interactions become negligible. The question of the recovery of the weakly interacting
limit is, however, more interesting in the case of screened Exchange DMFT. While the static part of the
effective local interaction may be assumed to lose its importance, band widening by the replacement of
the DFT exchange correlation potential by the non-local exchange-correlation GW self-energy persists.
On the other hand, plasmonic effects are also present in weakly correlated materials and continue to
renormalize the low-energy band structure through electron-plasmon coupling. This raises the question
of what the resulting spectra for weakly correlated materials look like in screened exchange + DMFT.

In Ref. [153], this question has been studied for early transition metal perovskites, where it was found
that the band widening effect induced by non-local exchange and the electronic polaron effect counteract
each other and tend to approximately cancel, thus resulting in a low-energy electronic structure close to
the DFT Kohn-Sham band structure as long as static Hubbard interactions are disregarded. Here, we
address this question in the case of the seemingly “simple” transition metals zinc and cadmium.

Both elements nominally display a d10 configuration, with fully occupied 3d orbitals in the case of Zn
and 4d in the case of Cd, the dominantly d-derived bands being located several eV below the Fermi level.
In Fig. 6.1a and Fig. 6.1b we show the band structure calculated within DFT for both materials. In
the following we use the experimental crystal structure and lattice constants. DFT places the occupied
d states at around -8 eV in Zn and -9 eV in Cd. The conducting states of these transition metals are
formed by dispersive 4s(5s) in Zn(Cd) states around the Fermi level, that hybridize strongly with the
p-manifold.

These facts raise the immediate expectation of negligibly small correlation effects on the occupied d
shells. An effective Hubbard interaction calculated for the d-manifold within the constrained random
phase approximation coincides with the fully screened interaction, since as a consequence of the complete
filling of the d-shell there are no intra-d transitions to be cut out as opposed to an open shell system,
where transitions inside the shell contribute to screening effects.

Figs. 6.2 and 6.3 display the local component of this fully screened interaction projected on the d-
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Figure 6.2 – The fully screened effective local Hubbard interaction on the 3d manifold for Zn.
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Figure 6.3 – The fully screened effective local Hubbard interaction on the 4d manifold for Cd.

manifold. The low-frequency limit approaches a value of 4.8 eV and 3.1 eV for Zn and Cd respectively.
Even though this value is similar to their oxides, which are open shell systems, where correlations on the
d states are significant, the high binding energy of these states far away from the Fermi level effectively
prevents dynamical fluctuations. This suggests that screened exchange + DMFT should in fact reduce
to screened exchange renormalized by the bosonic factor ZB discussed above. Nevertheless, this does not
mean that static effects of the interaction are properly treated in DFT. Even if this were the case, there
is no reason that the DFT Kohn-Sham spectrum, being derived from an effective non-interacting system,
provides an accurate description of the experimental situation.

Figs. 6.4 and 6.5 compare the experimental photoemission spectra [169, 170] from the literature to
the density of states (DOS) derived from DFT and Hartree-Fock (HF) theory. The resulting discrepancy
in terms of an underestimation of the binding energy of the d states in DFT of several eV had been noted
in the literature before[171–173]: Norman et al. [171] discussed it in terms of a self-interaction error,
proposing a correction in terms of an approximate substraction of self-interaction contributions contained
in DFT [174]. Hartree-Fock calculations are, on the one hand, self-interaction free, but on the other hand
– due to the absence of screening – widen all bands and place the d-bands far too low in energy, as can
be seen in Figs. 6.4 and 6.5.

Since local dynamical correlations can be assumed to be small as discussed before, an improved
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Figure 6.4 – The Density of States of elemental Zn calculated within Density Functional Theory
(DFT, black solid line) and Hartree-Fock (HF, red solid line) in comparison with Photoemission
experiments [169, 170] (dashed line, symbols). DFT calculations underestimate the binding
energy of the Zn 3d states, while the HF overestimates the binding energy significantly (see
explanation in the text).

treatment of the screened interaction and the self-interaction correction at the same time is likely to
improve the shortcomings of Hartree-Fock (respectively DFT). Here we will discuss the two possible
extensions of screened Exchange plus a bosonic renormalization factor ZB and the GW approximation.
The computationally cheaper option of screened exchange is including only static exchange contributions
with a Yukawa-type interaction potential, and an effective renormalization ZB which originates from the
spectral weight transfer to plasmonic excitations. GW is computationally more demanding, but has the
advantage of treating the dynamical part of the screening and correlation. Even though both methods
include a self-interaction correction, the self-interaction contained in the Hartree term is not completely
cancelled since the exchange contributions are derived from a screened interaction and not the bare one,
as opposed to the Hartree term.

In Figs. 6.6 and 6.7 we show comparisons of the DOS of zinc and cadmium, calculated within DFT,
screened Exchange(+ZB) and GW[175] to photoemission spectra. In the GW calculation we used 7 ×
7 × 3 k-points and 5 additional high-energy local orbitals. Interestingly, while in both systems the GW
approximation provides a significant correction of the DFT Kohn-Sham spectrum in the right direction,
but still underestimates the binding energy, the screened exchange scheme places the d-states too low in
energy for Zn while providing a slightly better estimate than GW in Cd. The addition of the bosonic
renormalization factor ZB merely renormalizes the d bandwidth but keeps the average level position
constant.

This raises the interesting question of which effects are missing in screened exchange and GW? The
incomplete cancellation of the self-interaction in both approaches is expected to lead to an overall under-
estimation of the binding energy, since the additional unphysical interaction increases the energy of the
d states. A more accurate estimate of this term would lead to an improvement of GW in both systems,
but an even larger error of screened exchange in Zn. Another effect neglected in screened exchange is
the Coulomb hole contribution: this term, discussed by Hedin as part of the “Coulomb hole screened
exchange (COHSEX)” approximation (see 2.3.2) translates the fact that the presence of an electron at
a position r pushes away charge at r (in the language of a lattice model, the charge-charge correlation
function exhibits a reduction of the double occupancy), and the interaction of this effective positive charge
with the electron presents an energy gain expressed in the form of an interaction of the electron with a
“Coulomb hole”. This term, contained in GW but not in screened exchange, also increases the binding
energy.

This leads to the overall picture that screened exchange with the inclusion of the static corrections
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Figure 6.5 – The Density of States of elemental Cd calculated within Density Functional Theory
(DFT, black solid line) and Hartree-Fock (HF, red solid line) in comparison with Photoemission
experiments [169] (dashed line, symbols). DFT calculations underestimate the binding energy
of the Cd 3d states, while the HF overestimates the binding energy significantly (see explanation
in the text).

just discussed has a tendency to overestimate the binding energy in general, while GW underestimates it.
The obvious difference between the two methods is the dynamical treatment of the screened interaction,
which is treated more appropriately in GW, but it is not clear a priori whether the static approximation
of the screened interaction or the approximative form of the screened interaction in terms of a Yukawa
potential gives rise to the difference between screened exchange and GW.

The GW description of zinc and cadmium is close to the experiment. The remaining discrepancy to
experiment is likely explained by remaining self-interaction contributions and/or missing self-consistency.
Self-consistency (or quasi-particle self-consistency) has been investigated in the homogeneous electron
gas [176] and various solid state systems [37] with different degrees of succes. These questions are left for
future work.

6.4 Conclusion

In this chapter, we have reviewed and applied existing as well as novel approaches to obtain spectral
properties of correlated electron materials. Guided by the need of a proper treatment of the long-ranged
Coulomb interaction and non-local exchange effects we presented a lightweight version of the general
GW+DMFT approach, the so-called screened exchange DMFT. It can be derived as a simplification
to GW+DMFT in terms of a generalized screened exchange DFT scheme where local interactions are
treated by dynamical DMFT.

We discussed the case of the elemental transition metals Zn and Cd, where strong local correlations
are unimportant but the position of the occupied d manifold is sensitive to a proper treatment of screened
exchange effects.
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Figure 6.6 – The Density of States of elemental Zn calculated within different theoretical
methods (solid lines), in comparison with Photoemission experiments [169, 170] (dashed line,
symbols). Density Functional Theory (DFT) calculations significantly underestimate the bind-
ing energy of the Zn 3d states, while the GW approximation obtains a much better agreement.
Screened exchange overestimates the binding energy significantly.
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Figure 6.7 – The Density of States of elemental Cd calculated within different theoretical
methods (solid lines), in comparison with Photoemission experiments [169] (dashed line). DFT
calculations significantly underestimate the binding energy of the Cd 4d states, while the GW
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Chapter 7

Vacancy formation energies in α-Fe

7.1 Introduction to iron

7.1.1 Iron in human technology

Iron (Fe) is the fourth most abundant element in the earth’s crust, with 5.63% in weight. The only metal
more abundant on earth is aluminum (Al), the second most abundant transition metal being titanium
(0.56%). Because of its relatively high melting point of Tm=1811 K, other metals (in particular copper
and its alloy, bronze) have been used in tools before long before mankind discovered techniques to smelt
iron. On the other hand, aluminum is more abundant but only present in nature in oxidized form, often in
low concentrations in rocks or clays. Chemical treatments to purify aluminum have only been discovered
in 1825, very recently in human history.

Iron is thought to have first been used around 1400 B.C. in the near east, and has become more
widespread in Europe and Asia after 1200 B.C. Iron and its carbon-doped cousin, steel, were poised to
become the most heavily used metal over the following 3200 years, begin employed first in weapons, later
in common tools, building structures, vehicles, etc. Iron and steel have undoubtably been one of the
most icon materials of human technological development and manufacturing, only matched, perhaps, by
oil and silicon in more recent technological revolutions.

Today, the annual iron ore production is estimated at over 3200 millions metric tons, in contrast
with “only” about 5 million metric tons of aluminum. Most of this production is used in steels, often
with a small percentage of dopants such as chromium, nickel or manganese that improve its mechanical
properties (high-strength low-alloy steel) or its chemical properties (corrosion-resistant stainless steel).

In spite of its importance for technological applications, some of its basic properties, in particular its
magnetism, remained hardly understood for a long time.

7.1.2 Phase diagram of iron

Fe comes in different phases depending on temperature and pressure (Fig. 7.1). The low-pressure, low-
temperature α-phase (ferrite) crystallizes in a body-centered cubic (bcc) structure and is ferromagnetic,
with a local moment of 2.22 µB/atom. The Curie temperature is Tc = 1043 K. At 1185 K, α-Fe undergoes
a phase transition to a paramagnetic face-centered cubic (fcc) γ (also called austenite) phase, together
with a local moments collapse[177]. γ-Fe has a complex magnetic structure[178, 179], with short-range
order and magnetic frustration.

At even higher temperatures, Fe presents another transition back to another paramagnetic bcc phase,
δ-Fe with an onset temperature of 1670 K. Anharmonic effects (like phonon-phonon interactions) are

65
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Figure 7.1 – Pressure-temperature phase diagram of Fe. Reproduced from Ref. [103].

thought to stabilize this phase[2, 180–183]. The melting point at atmospheric pressure is of 1811 K.

At higher pressures (about 13GPa at room temperature), α-Fe transforms into paramagnetic, hexag-
onal close-packed ε-Fe[184, 185]. It exhibits unconventional superconductivity between 13 GPa and
31 GPa[186], and is surprisingly paramagnetic even at low temperatures. Electronic correlations must be
taken into account to understand the magnetic, conduction and structural properties of ε-Fe[105]. ε-Fe
is, for obvious reasons, of limited interest for practical applications, but has received renewed interest in
geology: it is one of the phases that may form the iron earth core. There, strong electronic correlations
are key to understanding the magnetic properties as well[187, 188].

Doping C into metal Fe (to make steel) also changes its structure and physical properties. Depending
on the carbon concentration, it allows a coexistence of α and γ Fe, as well as iron carbide FeC3 (forming
cast iron). Controlling the doping (in C and other metals) and the manufacturing process (rate of cooling,
annealing...) allows to tune the mechanical properties: bulk modulus, hardness, yield).

7.1.3 Ab initio calculations of the properties of iron

Being one of the most used materials in today’s technology, the different phases of Fe have been studied
extensively with modern first principles calculation tools. In particular, its magnetism, conduction, phase
stabilities, phase transitions and defect properties are all of interest. Typically used methods include DFT,
its extensions like DFT+DMFT[84, 189, 190], as well as methods able to treat a larger number of atoms
at the cost of lower precision such as molecular dynamics or the embedded atom method[191].

Obtaining reasonable results, let alone making quantitative predictions, with commonly available
methods is no easy task. α-Fe at low temperatures is a fully polarized, rather weakly correlated ferro-
magnet, rather well described in LSDA or GGA DFT. This is, however, as easy as it gets. All the other
usual phases: paramagnetic α-Fe, γ-Fe, ε-Fe display local moment physics[189], magnetic frustration[178]
and/or non-Fermi liquid behavior[189]. All of them are significantly more strongly correlated, and only
imperfectly described by KS DFT with common exchange-correlation potentials. To cite just one ex-
ample, non-magnetic LDA or GGA calculations fail to account for the stability of bcc α-Fe[103] above
Tc. Those phases are not quite exotic, however, being present at temperatures where iron (or steel) is
typically used in real-world devices. The difficulty in simulating the paramagnetic states of magnetic
materials (in particular iron and its alloys), and recent progress in this field, were recently reviewed by
Abrikosov et al.[192] with an emphasis on spin states, phase stabilities and phase transitions, as well as
point defects.

In the present chapter, parts of which are published in Ref. [106], we study more specifically the
properties and, in particular, the formation energy of monovacancies in paramagnetic α-Fe. Next, we
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Figure 7.2 – Orbital-resolved density of states (DOS) of bcc Fe, calculated in ferromagnetic
LSDA (left-hand panel) and nonmagnetic LDA (right-hand panel). In the ferromagnetic cal-
culation, Fe is almost completely spin-polarized, and spin down electrons have mostly t2g
character. In the nonmagnetic calculation, the eg partial DOS sums to 2.3 and t2g partial
DOS sums to 3.9 states per unit cell up to the Fermi level.

briefly discuss the electronic structure of α-Fe, before discussing the formation energy of vacancies.

7.2 Electronic structure of α-Fe

General remarks

Due to the bcc structure of Fe, the t2g orbitals (dxy, dxz and dyz) are pointing towards the nearest Fe
atoms and have a large overlap with the corresponding t2g orbitals. The eg orbitals (dz2 and dx2−y2),
on the other hand, are pointing away from the nearest neighbors, and have a smaller overlap. As a
consequence, the electronic bands with eg character have a smaller bandwidth those with t2g character.
Since the Fe d-shell is only partially filled, this means that the occupied part of the t2g bands has a
lower center of weight than the occupied part of the eg bands even though, from an atomic point of view,
the d orbitals all have the same energy level. The ground state has non-integer occupation of t2g and
eg orbitals, with the former containing approximately 4 electrons and the latter approximately 3 (see
Fig. 7.2).

The DFT density of states from spin-polarized LSDA and non-magnetic LDA calculations is shown
in Fig. 7.2. As one can see in the left-hand panel (7.2a), spin-polarization of the d electrons is almost
complete, with a total spin-moment per atom of 2.19 µB . The two spin down electrons have mostly
(about 3/4) t2g character. A dispersive s-band with onset at -8.3 eV that crosses the d-bands completes
the picture. Even if non-magnetic LDA poorly describes the structural parameters of α-Fe, one can still
gain some insights from such a calculation. The right-hand panel (7.2b) displays a high density of states
at the Fermi level, due in particular to weakly dispersive (strongly localized) eg states having a van Hove
singularity near the Fermi level. Thus Fe fulfills the Stoner criterion[3] for ferromagnetism. On the other
hand, such localized states are typically insufficiently described by DFT LDA, so it is no surprise that
DFT gets the structural parameters of paramagnetic α-Fe wrong.

Charge self-consistent DFT+DMFT calculations further explain the difference in the physics of fer-
romagnetic and paramagnetic Fe. In Fig. 7.3, we display the self-energy of Fe eg and t2g states in both
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Figure 7.3 – Imaginary part of the DFT+DMFT self-energy of α-Fe calculated in the ferro-
magnetic phase (left-hand panel) at inverse temperature β = 40 eV−1 and in the paramagnetic
phase (right-hand panel) at inverse temperature β = 10 eV−1. In the latter case, paramag-
netism is enforced, since DFT+DMFT, as a local mean-field theory, overestimates the Curie
temperature. In the ferromagnetic phase, eg and t2g orbitals have almost the same imaginary
self-energy.

phases. While the ferromagnetic self-energy points to a weakly renormalized Fermi liquid (Z ≈ 0.7 on
spin down orbitals, 0.75 on spin up orbitals), the paramagnetic phase shows clearly non-Fermi liquid
behavior, particularly the eg states: the self-energy Σ(iωn) does not go to zero as iωn goes to zero. This
can be understood in the following way: in the ferromagnetic phase, full spin-polarization does not leave
much space for dynamical fluctuations. In the paramagnetic phase, on the other hand, local moments
form and have many configurations to explore, allowing for stronger electronic correlations.

7.3 Monovacancies in α-Fe

7.3.1 State of the art from experiment and theory

Point defects, such as vacancies, play an important role for the electronic (conductivity, magnetism),
mechanical (hardness, ductility) and thermodynamic (melting point) properties of materials. However,
measuring the formation or migration energies of so seemingly simple defects is far from easy, since
there are few experimental probes that couple to vacancies. The best available techniques are differential
dilatometry[193] and positron annihilation spectroscopy[194]. Both suffer from large error bars, and
strong sample dependence: the discrepancies between different measurements on one given material may
be significant (see Table 7.1).

A further limit on experimental measurements is that they have to be performed at high enough
temperatures: at low temperatures, the vacancy concentration is too low to be detected. This further
complicates measurements on magnetic materials, like Fe. De facto, only the paramagnetic phase of
α-Fe can be measured somewhat reliably[195]. Finally, the formation energy is typically obtained as a
fitting parameter of a measured curve over a range of temperatures, never at a given temperature. The
advantage is, however, that the formation energy is fitted separately from the formation entropy Sfvac, as
reported in Ref. [195]. All of this explains that only few measurements of the vacancy formation energy
(Efvac) in iron have been reported, with relatively little agreement between groups (see table 7.1).

Therefore, ab initio theoretical calculations are an indispensable tool for developing a better under-
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Method Efvac (eV) Uncertainty (eV)

Experiment (positron annihilation spectroscopy)

Kim et al. (1978)[196] (PM) 1.4 ±0.1

Matter et al. (1979)[197] (PM) 1.60 ± 0.1

Schaefer et al. (1977)[198] (PM / FM) 1.53 / 1.60 ±0.15

Schaefer et al. (1987)[199] (PM / FM) 1.74 / 1.81 ±0.1

de Shepper et al. (1983)[195] (PM / FM) 1.79 / 2.0 ±0.1

Table 7.1 – Vacancy formation energies from reported measurements. PM refers to the para-
magnetic phase, FM to the ferromagnetic one. FM values are in fact inferred from the PM
values, using additional approximations.

standing of the defect properties of materials[200]. Early DFT LDA calculations have predicted formation
energies of vacancies in simple metals in good agreement with experiment[201, 202]. Despite a large body
of successful calculations, it has later been recognized that the good agreement with experiment could
often be the effect of the cancellation of errors in the exchange and correlation parts of the density
functional [180]. Indeed, as has been discussed by Ruban [203], despite the structural simplicity of va-
cancies, their energetics is still one of the least reliable physical properties determined in first-principles
calculations.

In the more complex transition metals, where the open d shells are often poorly described in LDA
or GGA, the quality of results of DFT calculations for point defect properties is rather unpredictable
and strongly material-dependent. There have been several attempts to improve the available functionals
(see, e.g. Refs. [182, 204–206]). It was noticed that the predicted vacancy formation energies seem to be
especially poor for 3d transition metals, for which many-body effects are fairly important, in particular in
the paramagnetic state and body-centered cubic crystal structure[207]. Likewise, DFT has limitations for
point defect calculations in correlated lanthanide or actinide oxides with 4f or 5f electrons, for example
in the case of uranium oxides used in the nuclear industry[208].

The paramagnetic phase of α-Fe, as discussed above, is challenging for DFT. If basic structural
parameters cannot be obtained accurately, what can one expect for point defects? Indeed, extensive
DFT calculations of α-Fe [209–220] predict a monovacancy formation energy about 30 to 40 % higher
than the measured values, with significant variations depending on the DFT implementation used (see
table 7.2). Such comparison between theory and experiment is, of course, of limited meaning since it
concerns two different phases (ferromagnetic and paramagnetic).

Just as DMFT corrections to DFT have helped to better understand the electronic and structural
properties of α and ε-Fe[103, 105, 187], it is likely that an explicit treatment of many-body effects within
DMFT will also correct the severe problems of DFT in describing point defects in paramagnetic α-Fe.

Hence, in the present work we have developed a state-of-the-art DFT+DMFT method [78, 81, 221]
into a scheme for studying vacancy properties. We have applied this technique to a single vacancy
in paramagnetic α-Fe. We have computed the electronic structure around the vacancy as well as the
vacancy’s formation energy, taking into account local lattice distortions around the defect. Compared to
ferromagnetic DFT calculations, a significant reduction of the theoretical formation energy is obtained,
with calculated values in remarkable agreement with experimental estimates [195–199]. We trace back
this reduction to rather subtle effects of the vacancy on the local density of states and hybridization with
its nearest neighbors.

7.3.2 Methods

We model a single vacancy in bcc Fe using the 2 × 2 × 2 and 3 × 3 × 3 cubic supercells represented
in Fig. 7.4, with the vacancy placed at the origin of the supercells. The vacancy formation energy is
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Reference Method Relaxation Efvac (eV)

this work FP LAPW GGA PBE position / none 2.32 / 2.51

[210] FP LMTO GGA full / volume 2.18 / 2.60

[212] FP KKR in GGA PW91 none 2.44

[219] PAW GGA PW91 full 2.16

[218] PAW GGA full / position 2.17 / 2.17

[216] PAW GGA PBE full 2.15

[217] PAW GGA position 2.16

[217] US-PP GGA position 2.15

[211] US-PP GGA PW92 full / volume / none 1.95 / 1.94 / 2.24

[214] US-PP GGA none 2.04

[215] SIESTA method GGA PBE full 2.07

[209] LSGF ASA LDA volume 2.25

Table 7.2 – DFT results for the vacancy formation energies for iron. All results above are for
the ferromagnetic (FM) phase. The results are sorted by the method used (with decreasing
accuracy of the basis set from top to bottom.) There are significant variations depending on
the method, ultrasoft pseudopotential calculations reporting values significantly smaller than
all-electron full potential ones.

(a) 2 × 2 × 2 supercell (b) 3 × 3 × 3 supercell

Figure 7.4 – The 2× 2× 2 and 3× 3× 3 supercells with the vacancy in the corner. Different
colors indicate the atom nearest to the vacancy (red), the second nearest (purple), and the
furthest (the central atom, yellow). Generated with XCrySDen [222]
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calculated from the supercell total energy using the standard formula

Efvac = Evac(N − 1)− N − 1

N
Eno vac(N), (7.1)

where N is the number of atoms in the ideal supercell, Eno vac(N) is the total energy of the ideal
supercell containing N atoms and no vacancy, and Evac(N − 1) is the total energy of the same supercell
with a vacancy (hence N − 1 atoms). N is 16 in the 2× 2× 2 supercell and 54 in the 3× 3× 3 supercell,
corresponding to vacancy concentrations of 6.25% and 1.85%, respectively.

The DFT+DMFT method had hitherto rarely been used to compute point defect properties, due
to the heavy computational load when working with supercells. The calculations in the present work
were rather heavy (two to three weeks on 100 cores to obtain a reliable total energy for one set of
parameters), but have become possible thanks to recent developments in quantum impurity solvers. We
used a continuous-time quantum Monte-Carlo (CTQMC) hybridization expansion algorithm [57] in the
segment representation for the solution of the local impurity problems (see Chap. 5).

The computational cost of performing DFT+DMFT calculations in larger cells (which is necessary
to treat reasonably low concentrations of vacancies) was for a long time a bottleneck to performing such
calculations. In the last few years, the effect of oxygen vacancies on the magnetism and photoemission
spectra in oxides has been investigated using DFT+DMFT in supercells. Lechermann et al. have reported
about the effect of vacancies on magnetism within DFT+DMFT[223, 224]. They found that, for instance,
the combined presence of oxygen vacancies at the LaAlO3/SrTiO3 interface and local many-body physics
explains the stabilization of interface ferromagnetism. In the well-known “drosophila” of correlated
materials, SrVO3, Backes et al.[225] found that oxygen vacancies play an important (if not dominant)
role in explaining the photoemission peak at -1 eV, sometimes assigned to a lower Hubbard band.

7.3.3 Technicalities

The on-site density-density interaction between the 3d is parametrized by the Slater parameter F0 =
U = 4.3 eV and the Hund’s rule coupling JH = 1.0 eV that were previously used in the DFT+DMFT
calculations of α and ε-Fe of Ref. [105]. The same work reproduced almost exactly the experimental lattice
parameter of 2.86 Å, hence we perform our DFT+DMFT calculations at the experimental volume. Other
DFT calculations were performed at the corresponding theoretical volume. All DFT+DMFT calculations
were performed at the electronic temperature of 1162K, corresponding to β =10 eV−1.

We use a k-point mesh with 8× 8× 8 points for the 16 atom supercell, and 4× 4× 4 points for the 54
atom supercell. Convergence with respect to calculation parameters (the k-point mesh density, supercell
size and size of the functions basis) has been verified within DFT. In particular, using a larger 4× 4× 4
(128 atoms) supercell is not useful and leads to the same results.

The DFT+DMFT Hamiltonian is parameterized with the density-density interaction Hamiltonian of
Eq. 5.8 for the full d-shell (see Chap. 5).

We use the around mean-field approximation of Eq. 4.15 for the double-counting correction HDC[75,
226]. Finally, the interaction energy is computed according to Eq. 4.24.

About 15 iterations are needed to reach convergence in the DFT+DMFT cycle. An averaging of the
total energy values over further iterations is required to obtain precise enough values. In practice, at least
50 more cycles are needed. The error bars shown in table 7.3 and Fig. 7.5 are computed as the empirical
standard deviation over these iterations. This uncertainty increases with the supercell size. Indeed, for
each impurity site small fluctuations around the equilibrium value of the Hubbard interaction energy
exist, and are multiplied by the number of atoms in the supercell.

The 2× 2× 2 and 3× 3× 3 supercells with a vacancy have an overall cubic symmetry. However, the
presence of the vacancy still breaks the on-site cubic point group symmetries for all iron atoms apart
from the central one. For those atoms the Wien2k code uses local coordinate frames chosen in such a way
as to have the highest possible on-site symmetry. Subsequently, our impurity problems are also solved
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Figure 7.5 – Vacancy formation energies calculated by different methods (GGA and
DFT+DMFT) in the different setups: small (2× 2× 2) and large (3× 3× 3) supercell, relaxed
or not, non-magnetic, paramagnetic (PM) or ferromagnetic (FM). Calculations are performed
at the equilibrium volume for the relevant setup. The average of experimental values is shown
for comparison[195–199]

in these local coordinate frames. Hence, a corresponding rotation back to the reference frame should be
applied to the resulting self-energies, if one wishes to compare them with the self-energy of perfect bcc
Fe. The latter is, of course, obtained for the standard coordinate frame with x, y, and z axises along the
cube edges. However, because we are using a density-density Hamiltonian instead of the full rotationally-
invariant one, the self-energies obtained for those local frames are still somewhat different from that of
perfect bcc iron even after the inverse rotation. Hence, in our calculations of the ideal supercells (without
vacancies) we employed the same local coordinate frames as for the supercells with vacancy in order to
avoid spurious contributions of those rotations to the vacancy formation energy. Furthermore, we verified
that the off-diagonal elements in the Green’s functions stay small, so that we could neglect them.

7.4 Results

7.4.1 Vacancy formation energy Ef
vac

The vacancy formation energies obtained within DFT+DMFT together with different DFT results and
experimental values are shown in Fig. 7.5, and also summarized more extensively in table 7.3. The result-
ing value for Efvac in DFT+DMFT is 1.77 eV for the unrelaxed 54-atom supercell with lattice relaxations
reducing it further to Efvac = 1.56± 0.13eV, in excellent agreement with the experimental average value
of about 1.6 eV. We also calculated Efvac within DFT+DMFT for the unrelaxed ferromagnetic phase
obtaining a higher value of 2.45±0.15eV. Experiments indeed seem to confirm that Efvac in the ferro-
magnetic phase should be larger than in the nonmagnetic one[195, 199], though direct low-temperature
measurements of Efvac in the ferromagnetic phase with positron annihilation spectroscopy are notoriously
difficult.

DFT (GGA) calculations for ferromagnetic bcc Fe predict a significantly larger value Efvac of 2.51
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Method Efvac (eV) Uncertainty (eV)

2× 2× 2 supercell

GGA (NM, exp vol) 3.46 < 10−2

GGA (NM, theo. vol) 1.39 < 10−2

GGA (FM, exp vol) 2.50 < 10−2

GGA (FM, theo. vol) 2.44 < 10−2

DFT+DMFT 1.90 ±0.097

3× 3× 3 supercell

GGA (NM, exp vol) 1.51 < 10−2

GGA (NM, theo. vol) 1.21 < 10−2

GGA (NM, relaxed) unstable -

GGA (FM, exp vol) 2.71 < 10−2

GGA (FM, exp vol, relaxed) 2.50 < 10−2

GGA (FM, theo. vol) 2.51 < 10−2

GGA (FM, theo. vol, relaxed) 2.32 < 10−2

DFT+DMFT (PM, unrelaxed) 1.77 ±0.14

DFT+DMFT (PM, relaxed in FM GGA) 1.66 ±0.15

DFT+DMFT (PM, relaxed in DMFT) 1.56 ±0.13

DFT+DMFT (FM DMFT, unrelaxed) 2.45 ±0.15

Table 7.3 – Vacancy formation energies computed this work. The statistical uncertainty shown
is the empirical standard deviation of the value over the last 50 iterations. Different cal-
culation setups are shown: ferromagnetic (FM), paramagnetic (PM) or nonmagnetic (NM),
experimental volume or DFT theoretical volume, relaxed or unrelaxed.

and 2.32 eV for an unrelaxed and a fully relaxed cell, respectively. Hence, one can see that many-body
effects included within DMFT reduce Efvac for the paramagnetic phase by about 0.7 eV. The impact
of correlation effects for ferromagnetic α-Fe is much less significant, in agreement with the predicted
suppression of dynamic correlations in this phase[105] (see also Fig. 7.3). The vacancy formation energies
obtained with nonmagnetic DFT calculations are even lower than the measured values, with Efvac ≈ 1.5eV
in unrelaxed GGA. They have, however, very little physical meaning: DFT in general fails dramatically
for the paramagnetic phase, which is reflected by the fact that α−Fe is not dynamically stable and the
predicted lattice parameter would be significantly smaller in nonmagnetic DFT. Hence, using our relaxed
positions in a nonmagnetic DFT calculation gives an (unphysical) negative vacancy formation energy.
Thus, the strongly reduced value of Efvac in nonmagnetic DFT calculations compared to ferromagnetic
ones may be due to a spurious cancellation of errors.

7.4.2 Discussion

The total energy in DFT+DMFT, given in Eq. 4.22, can alternatively be written

Etot
DMFT = Tr(ĤKS

k N̂DMFT
k ) + E[ρDMFT] + (〈HU 〉 − EDC) (7.2)

where N̂DMFT
k is the density matrix at crystal momentum k, ĤKS

k the corresponding Kohn-Sham LDA
Hamiltonian and E[ρDMFT] only depends explicitly on the charge density. 〈HU 〉 = 1

2

∑
mm′ Umm′ 〈nmnm′〉

is the Coulomb interaction between Fe 3d electrons (m and m′ are orbital indices and Umm′ is the density-
density Coulomb matrix, see Chap. 5), and EDC is the double-counting term that estimates the energy
already present in LDA. When one removes an atom from the cell to create a vacancy, all three terms in
Eq. (7.2) change. Figure 7.6 shows the difference in the third term, Eint = 〈HU 〉−EDC, for each respective
atom in the supercell before and after removing an atom. Summing this up and taking into account the
multiplicity of the atoms in the cell yields a change ∆Eint ≈ -1.6 eV, that is compensated by a larger
change in E[ρDMFT] due to a redistribution of the charge density, as wavefunctions from DFT+DMFT are
more localized. The contributions from the second and third coordination shells compensate one another
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in Eint, so that the net change in the interaction energy only comes from the first nearest neighbor. This
is due to efficient metallic screening, and is in good agreement with embedded atom method calculations
of iron vacancies near the surface[227] that show that the vacancy formation energy becomes equal to
the bulk value for the vacancy located in the third layer or deeper.

The self-energy of the vacancy’s first coordination shell shows a significant difference from the bulk
bcc-Fe self-energy, as shown in Fig. 7.7 (a) and (b). t2g states, but also eg states to a lesser extent, become
more strongly correlated (less coherent) with a larger ImΣ(iω). A larger absolute value of the imaginary
part of the self-energy at low frequencies means reduced quasi-particle lifetimes, equivalent to stronger
dynamic correlations. This difference almost vanishes for the self-energy of the atoms further away than
the nearest neighbor, in agreement with the variation of the interaction energy shown in Fig. 7.6. Stronger
correlations on the atoms near the vacancy imply that a more accurate description of the 3d electrons of
the Fe atoms in DFT+DMFT is crucial, not only for predicting the crystal structure, but especially for
estimating the energetics of the vacancy, which eventually leads to a smaller formation energy. Note that
the self-energies are slightly atom-dependent even in the absence of a vacancy in our calculations, due to
an artificial symmetry-breaking in the supercell in DFT calculations and the non-rotational invariance of
the density-density Hubbard Hamiltonian. However, we compare self-energies and interaction energies in
a consistent, atom-to-atom way.

The enhancement of the nearest-neighbor self-energy can be traced back to a change in the hy-
bridization function. As can be seen in Figure 7.8b, the imaginary-frequency hybridization function,
in particular for the t2g states, is reduced at low frequencies for the atom near the vacancy. This
reduction is due to an increase in the corresponding t2g partial density of states (DOS) in the vicin-
ity of the Fermi level, EF , as one can see in Fig. 7.8a. A larger DOS at EF induces a suppres-
sion of low-energy hopping leading to stronger correlation[187, 228]: at the first iteration of DMFT,
Im∆(i0+) = −πρF /

[
ReGloc(i0+)2 + (πρF )2

]
≈ −1/(πρF ), with ρF the LDA DOS. The enhancement of

the nearest-neighbor eg self-energy is smaller and the corresponding DOS at EF even decreases compared
to the bulk case. This decrease in the value the of DOS exactly at EF is compensated by an overall
narrowing of the eg peak in the vicinity of EF , see Fig. 7.8a (see also Fig. 7.9 for the full partial densities
of states). Hence, the resulting hybridization function for eg is still suppressed starting from the second
Matsubara frequency.
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7.4.3 Importance of local atomic relaxations

Next, we calculated the relaxed atomic positions in DFT+DMFT around the vacancy. Computing
atomic forces in DFT+DMFT is rather complicated[229], so we obtained the relaxed atomic positions by
shifting the atoms around their equilibrium position and minimizing the total energies. We performed a
relaxation of the atoms around the vacancy in two steps in order to reduce the computational effort. We
first obtained a fully relaxed structure in spin-polarized GGA (at its corresponding theoretical volume,
computing atomic forces), to obtain an initial guess of the atomic positions.

In this calculation, we observe a shift of the first coordination shell towards the vacancy by about
4%, and a shift of the second coordination shell away from the vacancy by about 1.5%, while all the
other atoms do not move significantly, in agreement with previous calculations[211]. In the second step,
the positions of the two first nearest neighbors were relaxed within DFT+DMFT. In Fig. 7.10, we show
the total energy (minus an offset depending on the method used, GGA or DFT+DMFT, for easier
representation) of the supercell as a function of the relaxed position of the nearest and second nearest
neighbor of the vacancy. Each site was moved independently, preserving the symmetry of the cell, while
the positions of others were fixed at their fractional GGA values.

We obtain the following results: in DFT+DMFT, for paramagnetic α-Fe, the first nearest neighbor
relaxes by 5.7% towards the vacancy while the second nearest neighbor relaxes away from it by 0.7%.
One sees that many-body effects have a significant impact on the nearest-neighbor relaxation, enhancing
the shift away from the unrelaxed position by almost 50%. Overall, relaxing the two first coordination
shells in full DFT+DMFT reduces the vacancy formation energy by 0.21 eV.

7.5 Conclusion

We have shown that local many-body effects are crucial for explaining a relatively low vacancy formation
energy in α-Fe. The presence of a vacancy induces rather subtle changes in the local electronic structure
of its surroundings, leading to a moderate increase in the strength of correlations at neighboring sites.
This moderate increase has, however, a very significant impact on the vacancy energetics.
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When the effect of local relaxations is consistently included, the calculated vacancy formation energy
in paramagnetic α-Fe is reduced by about 0.7 eV, or about 30% compared to the corresponding value
in the ferromagnetic phase and is in excellent agreement with experiment. The predicted magnitude of
nearest-neighbor relaxations is about 50% larger compared to the one obtained within DFT.

This remarkable sensitivity to correlation effects is most probably pertinent to other types of defects
in iron that are of crucial importance for mechanical properties and thermodynamics of steels, e.g.
interstitial sites, stacking faults and dislocations. It seems plausible that the same kind of effects should
also be considered in other strongly correlated materials.

Finally, this is a proof of principle that total energy calculations can be performed with reasonable
precision in supercells with DFT+DMFT, in somewhat long but not prohibitive computation time. This
would have been much more complicated even a few years ago, as quantum impurity solvers have made
tremendous progress. The present calculation scheme could probably still be refined, considering that
most of the important physics is happening on the vacancy’s nearest neighbor site. A much less expensive
approach would be to freeze the DMFT loop on the atoms far away from the vacancy, where a perfect
bcc self-energy is a very good approximation.
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Chapter 8

Epitaxially stabilized phases of VO2:
the B phases

In this chapter, we study the reported phase transition in the metastable B phase of VO2. We first give
an overview of the experimental and theoretical state of the art on VO2 in section 8.1. We then discuss
recent measurements on the B phase[230, 231] in sections 8.2 and 8.3. Next, we show how a simplified
form of DFT+CDMFT accounts for the measured bad metal to insulator transition in this phase in
sections 8.4 and 8.5. Finally, motivated by a recent publication demonstrating the importance of oxygen
vacancies for understanding the electronic structure of SrVO3[225], we investigate the possible effects of
the presence of oxygen vacancies on the spectra of VO2 in section 8.6.

8.1 Introduction to VO2: the well-known rutile and M1 phases

8.1.1 General remarks

Vanadium dioxide (or VO2) is a 3d transition metal oxide with electronic configuration 3d1 that comes
in many different phases, depending on temperature, doping and stress. It is probably best known for
its extensively studied insulator to metal transition as temperature is increased above Tc = 340 K[232].
Indeed, the proximity of this phase transition to standard room temperature, together with its ultrashort
timescale and sensitivity to tuning by doping, is one of the reasons why VO2 is considered a promising
material for electronic devices and applications[233]. Recently, VO2 has made headlines due to a severe
breakdown of the Wiedemann-Franz law in its high-temperature phase[234], suggesting possible uses as
a thermoelectric material. Again, the proximity of the phase transition to room temperature is critical.

The two best known phases of VO2 are the high-temperature tetragonal (rutile) R phase, and the low-
temperature monoclinic M1 phase. VO2 (R) is a (bad) metal, with fairly short-lived quasi-particles[235].
It has space group No. 136 (P42/mmnm) (see Fig. 8.1). At Tc = 340 K, VO2 goes through a first-order
structural transition whereby two nearest V atoms along the rutile c axis dimerize, and the resulting
dimers are tilted, forming zig-zag dimer chains. This phase is called the monoclinic M1 phase of VO2 (see
Fig. 8.1). Concurrently, the material undergoes a Mott-Peierls metal to insulator transition (MIT), with
the resistivity changing by two orders of magnitude. Because of the doubling of the unit cell, a Peierls
mechanism has been proposed as an explanation for the MIT. The question of “the chicken or the egg”,
or which of the structural and electronic transition causes the other, has been debated but has not been
completely settled yet[236–239].

A qualitative but still very relevant description of the electronic structures of VO2 was given early
on by Goodenough[241, 242]. The five V 3d orbitals are split by the cubic component of the crystal
field into two eg orbitals and three lower energy t2g orbitals. The actual symmetry on a V site is in fact
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Figure 8.1 – Crystal structure of VO2 (R) (left panel) and VO2 (M1) (right panel). To form
the M1 phase, consider a double unit cell of the rutile phase and form tilted dimers along the
c axis. The resulting monoclinic unit cell is twice as large. Reproduced from [240].

lower than cubic, so that the eg orbitals are further split into two non-degenerate orbitals, and the t2g
orbitals are split into a more stable a1g orbital pointing along the c axis and two less stable eπg orbitals.
According to Goodenough’s analysis, both the a1g and eπg states are partly filled in the metallic rutile
phase, VO2 (R). At lower temperatures in the M1 phase, the physics of the dimer become important.
The intra-dimer hopping between the a1g orbitals of two neighboring V ions splits the a1g band in two,
stabilizing a bonding state. At the same time, the tilting of the dimers increases hybridization between
the O 2p and the V eπg orbitals, pushing the eπg states to higher energies. The aggregate effect of the
distortion is to stabilize an isolated bonding a1g state, separated from the other bands. As the total
occupancy per V remains unity, this explains the insulating state. Hence, in Goodenough’s view, VO2 is
a band insulator showing a Peierls transition.

On the other hand, Zylbersztejn and Mott[243] proposed an explanation for the MIT of VO2 that
emphasizes the importance of correlations in the material. In their view, it is the Coulomb repulsion
between electrons that freezes them in place, forming a Mott insulator. To this day, the Peierls or Mott
nature of the insulating phase of VO2 remains unsettled. Experiments and calculations over the last 15
years suggest that both aspects are needed to completely understand the MIT of VO2.

VO2 has, in fact, not one but several insulating phases. Uniaxial strain or doping with Cr, Fe, Al or
Ga stabilizes another monoclinic phase, VO2 (M2)[244, 245], where one half of the V ion pairs dimerize
(but do not tilt) and the other half of V pairs tilt (but do not dimerize). Yet another insulating phase,
VO2 (T), has triclinic symmetry and is an intermediate phase between M1 and M2, where all V pairs
are tilted (though at different degrees) but only half dimerize. The existence of several insulating phases
generates some complexity but actually provides useful informations on the mechanisms of the MIT.
Indeed, it allows to partly decouple the lattice and electronic transitions. All three insulating phases
have very similar values of the insulating gap[246] (about 0.6 eV), similar free energies[237, 244] and
revert to the rutile phase at high temperatures (though VO2 (T) transits through the M2 phase). There
are, however, also differences from the electronic point of view. V ions in VO2 (M1) have been shown in
NMR experiments to be nonmagnetic (S=0), consistent with the band picture. In the M2 phase, on the
other hand, dimerized V ions are nonmagnetic but the non-dimerized tilted V chains form local moments
(S = 1/2) with antiferromagnetic coupling[244]. This is more in line with the physics of a Mott insulator.

Other (less stable) polymorphic forms of VO2 can be stabilized as nano powders or thin films. This
is the case for VO2 (A) [247] and VO2 (B) [248]. VO2 (B), in particular, is attracting much attention
in the chemistry community because it is considered a promising cathode material for new generation
batteries[249]. Thermal annealing on powders causes both materials to revert to the rutile phase[250].
They have recently been grown epitaxially as thin films over a SrTiO3 substrate with a pulsed laser
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Figure 8.2 – Resistivity of the M1, R (black line, above 340K), A and B phases of thin films
of VO2 grown on SrTiO3. The MIT from M1 to R is both wider (occuring over a 10 K range)
and lesser (the resistivity changes by only two orders of magnitude) than can be observed in
single crystal VO2. Reproduced from [230].

deposition technique by Srivastava et al.[230]. The oxygen pressure and laser pulse frequency determine
which phase is deposited. In their work, VO2 (B) was shown to go from a bad metal high-temperature
(HT) phase, with conductivity 10 times lower than the rutile phase, to a low-temperature (LT) insulating
phase over a range of 100 K when temperature is lowered below about 250 K (see Fig. 8.2). VO2 (B)
crystallizes in a monoclinic structure with lower symmetry than VO2 (M1), similar to VO2 (M2). This
was shown to be linked to a structural transition preserving the symmetry where half of the V ions form
dimers in the LT phase. In this chapter, we study the electronic structure and phase transition of VO2

(B). In what follows, for simplicity, we shall label the low-temperature phase of VO2 (B) as LT and the
high-temperature phase of VO2 (B) as HT.

8.1.2 VO2 as seen by experiments

Since the original publication on the MIT of VO2 in 1959[232], this material has attracted much attention
from the solid state physics community. In particular, the advent of modern electronic structure codes
in the 1990’s has initiated a renewed interest from the experimental and theoretical communities to try
and explain the nature of the MIT transition. In this section, we briefly review some key experimental
findings on VO2.

Many photoemission spectroscopy (PES) experiments have been carried out on VO2, using single
crystals or thin films and at different photon energies[230, 251–261]. We display a few examples of
photoemission spectra in Fig. 8.3. One may observe that, while all VO2 (M1) spectra have a proper PES
peak at around −0.9 eV, the picture is not so clear in the metallic R phase. Indeed, while some groups
observe a clear quasi-particle peak at the Fermi level, others measure a superposition of several peaks
or indeed mainly incoherent spectra. Such is the case, in particular, in recent measurements made on
epitaxially grown thin films.

PES experiments give us several pieces of information on the phase transition. Okazaki et al.[253]
noted that the self-energy in the metallic rutile phase is k-dependent and explained this by ferromagnetic
fluctuations mediated by the Hund’s coupling between the d orbitals, a view rather in agreement with the
Zylbersztejn and Mott picture of the phase transition. The temperature dependence of the V 3d band
width in the insulating phase is attributed to a strong electron-phonon coupling. They also concluded
that electrons in the rutile phase are actually more localized than in the insulating M1 phase. Haverkort
et al.[257], on the other hand, pointed out the importance of orbital polarization across the transition:
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Figure 8.3 – Valence band photoemission spectra of VO2 (R) and VO2 (M1). Full lines indicate
measurements on “bulk” samples, and broken lines measurements on thin films. While the
measurements on the M1 phase consistently show a single peak centered around −0.9 eV,
measurements on the metallic R phase are not so consistent and tend to display secondary
peaks, in particular on thin films. Data from [230, 251–256] (in chronological order).
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they confirmed experimentally the idea advanced by Goodenough that the rutile phase has partially filled
eπg and a1g bands, while the M1 phase has one completely filled a1g band. This importance of orbital
polarization was further strengthened in a recent experiment by Aetukuri et al.[262]. In their work, the
strain on VO2 thin films was tailored by inserting a RuO2 layer with varying thickness between the
substrate TiO2 and VO2. By changing the strain, they were able to shift the energetic levels of the
different orbitals and thus engineer the onset temperature of the MIT. Koethe et al.[254] expanded on
this work[257] and concluded that a dimer model accounts for the k-dependence of the self-energy. Suga
et al.[255] confirmed the proposal of [96] that the PES peak at −0.9 eV in the M1 phase is a coherent peak
corresponding to a dispersive electronic band, not an incoherent peak corresponding to a lower Hubbard
band. Eguchi et al.[259], however, favor a Mott-Hubbard transition picture. Saeki et al.[256] performed
angle-resolved PES on VO2 (R) and found two electron pockets with different masses at the center of the
Brillouin zone.

All this means there is conclusive evidence for the importance of both Peierls and Mott physics in the
R–M1 phase transition. Recent experiments on more exotic metallic phases of VO2 further complicate
the picture.

Recent femtosecond time-resolved PES[260] and electron diffraction[263] measurements reported a
metastable, relatively long-lived metallic state upon photoexcitation of VO2 (M1). Because the transition
to this metallic state is significantly faster than the structural transition and the thermalization time is
much shorter than the reversal to the insulating ground state, this demonstrates that an out-of-equilibrium
but metastable metallic state with M1 structure is possible. Arcangeletti et al.[264] stabilized an ambient
temperature metallic phase with monoclinic symmetry at high pressures. More surprisingly, it has been
suggested that these high pressure and out-of-equilibrium metallic monoclinic phases are of similar nature,
and are also comparable to an intermediate metallic phase measured within the transition temperature
range in thin films[261]. Finally, it appears that creating oxygen vacancies can strongly affect the phase
transition, as is visible in two recent experiments. Jeong et al.[265] demonstrated that a suppression of
the MIT and metallization of the monoclinic phase by gating-induced oxygen vacancy creation is possible.
Similarly, Zhang et al.[266] stabilized a metallic rutile phase down to 1.8 K after creating oxygen vacancies
by annealing thin films at low oxygen partial pressure.

The R to M1 MIT has been studied for longer, and much more extensively, than the transition of
VO2 (B) displayed in Fig. 8.2. Indeed, as of today, VO2 (B) has been mostly studied by the chemistry
community from the point of view of film and nanocrystal growth, and the electronic and structural
properties thereof[230, 248, 249, 267, 268]. Oka et al.[248] measured the structural parameters across the
transition. They also performed magnetic susceptibility, finding a dip in the susceptibility below 300 K
followed by a renewed increase below 200 K, and nuclear magnetic resonance, finding a positive knight
shift characteristic of a singlet spin state, to demonstrate the formation of bonding dimers in half the V
pairs. The susceptibility measurements are qualitatively similar to those on the M2 phase[244], though
the drop is much sharper in the latter.

A recent publication by Lourembam et al.[269] extensively studies both phase transitions (M1 to R
and B low-temperature to high-temperature) using terahertz spectropscopy. In this work, the authors
measure the complex optical conductivity in the THz range and extract the plasma frequency ωp and
free carrier scattering rate γ by fitting the measured data to a Drude model. In VO2 (B), they find
an onset of the phase transition at 240 K and a near saturation of ωp and γ above 280 K, linked to a
lower activation energy of the dc conductivity. In VO2 (M1), a Drude-Smith model, taking into account
charge localization, is shown to be necessary to to fit the complex conductivities. This is, the authors
argue, consistent with the picture of a MIT in VO2 (M1) to (R) taking place by percolation, with metallic
domains nucleating in the insulating phase, as described by Qazilbash et al.[235]. On the other hand,
this suggests that the VO2 (B) LT to HT transition does not follow such a percolation mechanism.
Furthermore, the authors argue that the lower inter-axial angle β of VO2 (B) (as compared to M1)
facilitates the formation of defects and impurities in epitaxially grown films.

In a follow-up to this first publication[269], Lourembam et al. show that, similarly to what has been
observed in VO2 (M1)[260, 263], photoinduced electrons can stabilize an out-of-equilibrium but long-lived
metallic state in the LT phase of VO2 (B)[270].
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We conclude this brief overview of experimental results by pointing out that based on experiments
published so far, the phase transitions of VO2 cannot be understood in a purely Peierls or Mott physics
picture. Rather, the two aspects should be treated on equal footing, for example in a correlation-assisted
Peierls transition. In the following section, we discuss how ab initio or model-based calculations account
for the electronic structure of the different phases of VO2.

8.1.3 The band picture: VO2 from Density Functional Theory to the GW
approximation

With the development of modern DFT codes since the 1990’s, and after having been studied mostly by
experiments or more phenomenological theories, VO2 has been the subject of several ab initio calculations
aiming at understanding its conductive properties and phase stability.

The KS band structure from DFT calculations using the LDA or GGA exchange-correlation potentials
does not reproduce the experimental gap of about 0.6 eV in the insulating M1 and M2 phases[236, 240].
Instead, DFT predicts a small overlap between the bonding a1g states and the eπg states (that is to say a
“negative” gap of ≈ −0.05 eV). This result has led to a longstanding controversy. For proponents of the
band picture and Peierls transition, this reflects the well known and systematic tendency of LDA and GGA
DFT to underestimate band gaps, and even artificially closing band gaps in small gap semiconductors
like Ge. The underlying idea is that the different phases of the materials are well described by LDA and
GGA DFT, and the band gap problem is but an unphysical artifact of the calculation method.

More recently, DFT calculations have been performed with the HES hybrid exchange-correlation
functionals[271–273]. On the one hand, these calculations correctly open the band gap observed in the
M1 and M2 phases, though the value is overestimated, at about 1.1 eV. In the case of the M2 phase,
antiferromagnetic calculations are needed to account for the non-dimerized, antiferromagnetic zig-zag
chains. This result is supposed to confirm that VO2 is properly described by a band picture, as the
authors of Ref. [271] argue. On the other hand, the same hybrid functionals fail at predicting the
correct non-magnetic ground state of VO2 (M1)[272, 273]. They also predict a ferromagnetic insulating
ground state for VO2 (R), but this is less critical: there are indeed signs of ferromagnetic fluctuations in
this phase[253] and the Curie temperature would be well below the MIT temperature. Still, no known
exchange-correlation potential predicts simultaneously the quasi-particle spectrum and the respective
phase stabilities. The same remarks apply to DFT+U calculations[273, 274].

To go beyond the KS DFT picture, and take into account non-local self-energy effects, a simple model
GW scheme[275] and, more recently, self-consistent GW calculations without further approximations[276,
277] have been reported. Both groups[276, 277] found that some level of self-consistency in the GW
calculation is necessary to obtain reasonable spectra, and that one-shot G0W0 calculations on top of
LDA are not sufficient. Moreover, the off-diagonal elements of the GW self-energy are important[277].
This suggests that the physics of VO2 is indeed much more complex than that of a “simple” small gap
semiconductor whose band gap is underestimated in DFT[236, 240].

8.1.4 Correlations in VO2: Density Functional Theory + (Cluster) Dynami-
cal Mean-Field Theory

In order to better understand the strong correlations in VO2, several attempts have been made to apply
the DFT+DMFT method to its phase transition. While local correlations are thought to be strong in
rutile VO2, there exists overwhelming experimental proof that the dimer physics is crucial for (though
not sufficient to explain) the electronic structure of the M1 and M2 phases. Therefore, it was realized
early on that any DMFT calculation of VO2 should be performed in its cluster extension (or CDMFT),
allowing at least an off-diagonal self-energy element between the dimer a1g states[96]. This approach was
shown to be sufficient to describe the spectral properties of VO2 (R) and (M1) on an equal footing. More
importantly, it illustrated how the Peierls and Mott physics can overlap when local Coulomb interactions
contribute to push electrons in the dimer bonding state to minimize the interaction energy.



8.2. Recent measurements on VO2 (B) 85

In a series of publications[278–281], Tomczak et al. expanded and refined the initial work by Biermann
et al.[96]. In particular, the authors demonstrated that in the M1 phase, since the intra-dimer self-energy
elements are essentially real and static, the electronic structure is well reproduced by adding off-diagonal
matrix elements (or “scissors operators”) on the Kohn-Sham Hamiltonian. The values of the relevant
matrix elements are calculated from a simpler system, the Hubbard dimer.

Several other calculations using DFT+CDMFT on VO2 followed. Lazarovits et al.[282] showed how
uniaxial strain stabilizes the metallic phase, by enhancing the bonding-antibonding splitting but simulta-
neously stabilizing the eπg orbitals and enhancing the a1g bandwidth. Belozerov et al.[283], in a publication
extending the work by Biermann et al.[96], where intra dimer Coulomb interactions are taken into account
(as in the extended Hubbard model), confirmed the results of the calculations by Tomczak et al.

More recently, motivated by the experimental observation of metastable metallic phases of VO2[260,
263], out-of-equilibrium quantum Boltzmann equation[284] and high-temperature DFT+CDMFT[238]
calculations have been performed. In the former[284], He et al. theoretically confirmed the existence of
a long-lived metastable metallic state in the M1 phase upon photoexcitation. In the latter[238], Brito et
al. treated the electronic structures of the R, M1 and M2 phases on the same footing and reproduce the
respective metallic and insulating states. Furthermore, they found a metallic state in the M1 phase when
the electronic temperature is high (900 K), in agreement with the photoexcitation of the electrons.

Finally, Nareja et al. proposed another perspective on the problem of the phase transition in presence
of strong correlations and dimer physics[239]. They calculated (U − T ) and (t − U) phase diagrams of
a dimer Hubbard model (where T is the temperature, U the local Coulomb interaction, and t the intra-
dimer hopping). With this, they reproduced the Coulomb-assisted MIT of the dimers with the formation
of singlet states. However, the validity of the analogy with the physics of VO2 is debatable, since their
model essentially represents a single-band problem containing only the a1g band (with dimers) while the
importance of the eπg orbitals in VO2 is well-known.

8.2 Recent measurements on VO2 (B)

Pal et al.[231] recently performed further PES and optical conductivity measurements on thin films of
VO2 (B), in continuation of Ref. [230]. The theoretical work presented in this chapter was prepared
together with B. Pal, D.D. Sarma et al., to try explain their measurements from electronic structure
calculations.

In Fig. 8.4 we display the photoelectron spectra of the VO2 (B) HT and LT phases. The lineshapes
are similar, with slightly more intensity at the Fermi level in the (nominally metallic) HT phase. Both
spectra suggest a dominant peak centered around 0.4 eV binding energy. Comparing this data to Fig. 8.3,
the LT phase seems less clearly insulating than the M1 phase, and the HT phase less metallic than the
R phase. The difference between both B phases is no longer easily visible in the core state photoelectron
spectra of Fig. 8.5 (for the B phase and the R to M1 phase transition).

Finally, let us go back to the resistivity measurements of Fig. 8.2. The change in resistivity through
the transition is rather large. Being four orders of magnitude, it is comparable to what can be obtained
in good single crystals of VO2 (R), and much larger than the change in resistivity reported on the R to
M1 transition in samples of the same set. However, the lowest resistivity reached for the HT phase is
almost an order of magnitude larger than the resistivity of the VO2 (R) thin films, and we know that the
rutile phase is itself rather a bad metal.

These experimental findings seem contradictory. They suggest a material going through a structural
transition with a large change in resistivity, while on the other hand its photoelectron spectrum is largely
unchanged. In the calculations discussed below, we use a DFT+DMFT scheme to understand how these
measurements can be reconciled.
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Figure 8.4 – Photoelectron spectrum of VO2 (B). The lineshape is very similar, with a slightly
upward shift of the peak in the HT phase. From Ref. [231].
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Figure 8.5 – Core state (V 2p) photoelectron spectra of (a) VO2 (B) and (b) of VO2 (R) and
(M1). The low binding energy shoulders can be associated to charge fluctuations in the valence
band (see also [259]). Again, there is little sign of a drastic phase transition in the valence
states (contrary to the R to M1 transition). In the R to M1 transition, it appears that the
non-local screening channel is free in the HT R phase but blocked in the LT M1 phase, but
that there is little change in the available screening channels through the B phase transition.
From Ref. [231]
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8.3 Crystal structures of VO2 (B)

For the sake of clarity, we present here the crystal structures used in our calculations. We remind that
VO2 (B) has the space group 12 (C2/m). The (small) difference between the HT and LT phases is in the
lattice constants and atom positions, as given in Tables 8.1, 8.2 and 8.3. All atoms have multiplicity 2
(by symmetry) in the primitive unit cell, and multiplicity 6 in the conventional unit cell (as in Fig. 8.1).

a b c α β γ

HT 12.09 11.92 3.70 90◦ 90◦ 148.9◦

LT 12.15 11.89 3.72 90◦ 90◦ 149.4◦

Table 8.1 – Experimental lattice parameters of the conventional unit cell of VO2 (B). The
lengths are in Å. From Ref. [230].

Atom x y z

V1 0.9204 0.7214 0

0.0796 0.2786 0

V2 0.4150 0.3145 0

0.5850 0.6855 0

O1 0.1405 0.0006 0

0.8595 0.9994 0

O2 0.6098 0.3436 0

0.3902 0.6564 0

O3 0.7064 0.6496 0

0.2936 0.3504 0

O4 0.7016 0.6928 0

0.9284 0.3072 0

Table 8.2 – Atomic positions in VO2 (B) HT.

Atom x y z

V1 0.9285 0.7249 0

0.0715 0.2751 0

V2 0.4241 0.3281 0

0.5759 0.6719 0

O1 0.1432 0.9944 0

0.8568 0.0056 0

O2 0.6174 0.3502 0

0.3826 0.6498 0

O3 0.7144 0.6545 0

0.2856 0.3455 0

O4 0.0746 0.6792 0

0.9254 0.3208 0

Table 8.3 – Atomic positions in VO2 (B) LT.

Table 8.4 – Experimental atomic positions in the conventional unit cell of VO2 (B) LT and HT
(as fraction of the lattice parameters in the primitive cell). In addition, an atom at coordinates
(x, y, 0) has equivalent positions at (x+ 1

2 , y,
1
2 ) and (x, y, 1). From Ref. [230]

The distance between two V2 atoms is 2.867 Å in the HT phase and 2.6072 Å in the LT phase (forming
a dimer). In contrast, the nearest vanadium atom for a given V1 is a V2 atom, at a distance of about
3 Å.

8.4 Methods

As discussed above, single-site DMFT calculations alone do not account for the MIT of VO2 R to M1.
A cluster extension has to be used to obtain the intra-dimer self-energy term that, supported by local
Coulomb interactions, opens a gap. In the LT phase of VO2 (B), dimer effects are expected to be
important as well: the large change in resistivity goes together with a dimer formation on one of two
inequivalent V pairs.

For simplicity, and following the observation that the intra-dimer self-energy is well approximated by
a real and static term, we use in this work only single-site DMFT and mimic the effect of dimerization



88 Chapter 8. Epitaxially stabilized phases of VO2: the B phases

by a “scissor operator”, as discussed by Tomczak et al.[279]. Namely, the bonding-antibonding splitting
is given by its limit in the isolated dimer:

∆bab = −2t+
√

16t2 + U2 (8.1)

where t is the intra-dimer hopping and U the local Coulomb interaction. This corresponds to adding an
off-diagonal self-energy term on the Kohn-Sham Hamiltonian, between the respective a1g states of the
dimer, with the value

Σa1g−a1g = −1

2

√
16t2 + U2

In the present work, we use this approach, which we may call “DFT+Σdimer+DMFT”. It is of course an
approximation, but it accounts for much of the physics of VO2, as previously noted.

Our DMFT calculations, except otherwise noted:

• run at an electronic temperature of β = 40 eV−1 (corresponding to room temperature)

• use the Hubbard-Kanamori parameterization of the interaction Hamiltonian in the impurity model:

HU =
∑
m

Unm↑nm↓ +
∑

σ,m>m′

(U − 2J )nmσ̄nm′σ + (U − 3J )nmσnm′σ (8.2)

where σ̄ is the opposite spin of σ. This allows us to use the much faster segment picture in the
CTQMC hybridization-expansion solver (see Chap. 5)

• include only the t2g states as correlated in DMFT: the eg states are treated within DFT LDA.

Some exceptions appear below, but are clearly labeled as such.

The monoclinic phases of VO2 have a low-symmetry distorted structure, and a rotation of the axes
may be needed to obtain the correct coordinate systems t2g and eg orbitals on a V atom. Moreover,
the octahedra surrounding a V atom are distorted, which tends to create off-diagonal elements on the
local density matrix, Hamiltonian and Green’s functions. This is particularly the case in the B phase.
To avoid taking into account off-diagonal elements in the CTQMC solver, we perform a rotation in the
basis of d orbitals that minimizes these off-diagonal elements. This rotation is chosen in the following
way: we first compute the local (i.e. projected and k-summed) Kohn-Sham Hamiltonian H1el on each
inequivalent V site. We then diagonalize H1el and use the corresponding rotation to compute a new set
of Wannier functions and projectors. This does not make the off-diagonal elements disappear completely.
Indeed, unless imposed by symmetries (say, in cubic symmetry), there is generally no rotation that makes
the off-diagonal elements in the Green’s function vanish at all frequencies. Still, in practice, the density
matrices and hybridization functions constructed with this choice of basis have off-diagonal elements
smaller than the diagonal parts by about an order of magnitude. Hence, in a first approximation, we
neglect them here.

8.5 Calculated electronic structure of VO2

8.5.1 Electronic structure within the local density approximation

In this section, we first summarize a few results from DFT LDA calculations on VO2 B, as well as the R
and M1 phases for comparison. These calculations are important as they are used as a starting point for
our DFT+DMFT calculations.

In Fig. 8.6, we show the atom-resolved LDA DOS of the HT and LT phases of VO2 (B), in a window
containing O 2p and V 3d states. The O 2p states span an energy range from -7.5 to -2.5 eV, and the V
3d states range from -0.5 to 5 eV. Excited states above 6 eV are delocalized states with mixed O 3s and
V 4p character. The metallic HT phase has a larger DOS at the Fermi level than the LT phase, which
displays peaks slightly below and above the Fermi level.
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Figure 8.6 – Atom-resolved partial LDA density of states for VO2 (B) in the HT and LT phases.

We zoom in and show the orbital-resolved partial DOS of the V 3d states in the HT and LT phase
in Fig. 8.7 and Fig. 8.8, respectively. In both phases, the separation between t2g and eg states is only
approximate, with a boundary roughly around 1.9 eV but some overlap of eg and eπg orbitals. This is
the result of the important distortion of the cell and of the O octahedra surrounding the V atoms, and
of the fact that the vanadium atoms (especially V1) are not well centered in their respective octahedra.
There are also significant differences between both phases. In the HT phase, the occupied states have
mixed a1g and eπg orbital character. The a1g states are almost divided into two peaks at 0 eV and 1.1 eV,
suggesting there is also some dimer bonding.

In the LT phase, on the other hand, there is a rather strong orbital-polarization of the occupied
states. The non-dimerized V1 atom has an almost half-filled, dispersive a1g band at the Fermi level, and
the eπgbands are mostly centered around 1 eV. The dimerized V2 atom, however, a prominent peak of
mostly a1g character below the Fermi level takes almost one electron. The a1g band of V2 is in fact split
into a first peak at -0.3 eV and a second peak 1.6 eV, corresponding respectively to the bonding and
anti-bonding states of the dimer formed by two V2 atoms. The difference in energy between these two
peaks gives the order of magnitude of the intra-dimer hopping t (or more precisely, 2t).

In Fig. 8.9, we show the LDA density of states (DOS) on VO2 R and M1 for comparison. Here, the
t2g and eg states are barely, but clearly separated: the boundary is around 2.3 eV. Within LDA, the t2g
orbitals are almost equally occupied in the R phase, though the a1g state is slightly lower in energy (this
can be seen by computing the projected local Hamiltonian or by taking the center of mass of the partial
density of states). The DOS of VO2 (R) is similar to the partial DOS on atoms V1 and V2 of the HT
B phase, and to the partial DOS of V1 of the LT B phase. In the M1 phase, however, there is a fairly
strong orbital polarization, the a1g state taking most of the V d1 electron. The a1g band is split into a
bonding and anti-bonding states, similarly to V2 in the LT B phase. The M1 phase according to LDA is
metallic, with some spectral weight from all three t2g orbitals remaining at the Fermi level. However, it
is clearly apparent that little more is needed to push the bonding a1g state completely below the Fermi
level and the eπg states, giving a band insulator.

Finally, Fig. 8.10 displays the LDA band structure of VO2 B along a path in the Brillouin zone. In
terms of LDA bands, we can see that the HT phase has 4 bands crossing the Fermi level, with a 5th band
in close vicinity to EF . The separation between t2g and eg states is also more pronounced in the band
structure than in the DOS: bands are touching but relatively disentangled with a boundary at about 1.75
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eV. In the LT phase, one of these four bands completely drops below the Fermi level (this is the dimer
bonding state), leaving 3 bands crossing it.
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8.5.2 Electronic structure within the Density Functional Theory + Dynam-
ical Mean-Field Theory + Σdimer scheme

Here, we first present our results using the same values of U = 4 eV and JH = 0.68 eV as used in previous
reports on VO2[96, 278, 283]. In section 8.5.3, we discuss the validity of this choice of parameters and
compare them to values calculated in the constrained random phase approximation.

Self-energies

Fig. 8.11 shows the local self-energy for the R and M1 phases. One can see that the rutile phase is a
rather strongly renormalized Fermi liquid, with a quasi-particle renormalization factor of Z ≈ 0.3 on the
most occupied a1g orbital and Z ≈ 0.5 on the less occupied eπg orbitals. On the other hand, the imaginary
part of the self-energy in the M1 phase is small and quasi-static, demonstrating weak correlations. This
is no surprise, since the complete filling of the dimer singlet state makes this phase essentially a band
insulator.

The self-energies should be compared with those of the HT and LT phases of VO2 (B), displayed in
Fig. 8.12. The HT phase is very similar to the rutile phase, as expected from the similarity of the DFT
DOS in Fig. 8.9a and 8.7. The magnitude of the imaginary self-energies and quasi-particle renormalization
factors are about the same, and there is little difference between the two inequivalent atoms. The picture
is very different in the LT phase. There, the dimerized atom 2 has a local self-energy close to the
one calculated in the M1 phase. Again, the dimerized atom behaves like a band insulator with weak
correlations.

What is more interesting is what happens to non-dimerized atom V1. On this atom, the self-energy of
the a1g orbital (the one that is occupied) develops a non-Fermi liquid, pole-like structure. Importantly,
this is also an effect of the dimer physics. Indeed, in DFT+DMFT calculations of the LT phase without
the Σdimer term, we obtain a weakly renormalized Fermi liquid (more weakly, in fact, that the HT phase).
In other words, it is the freezing of the electron of V2 in the a1g dimer singlet state that forbids the
hopping of the electrons on V1 to neighboring V2 sites, and thus favors their localization.

In Fig. 8.13 and 8.14, we obtained the real-frequency self energy of the two B phases, by using the
maximum entropy analytical continuation (Bryan’s maxent) algorithm [69]. Again, we see in the LT
phase that the self-energy of all orbitals but the a1g orbital of the non-dimerized atom are roughly equal
to a constant shift. That last a1g orbital, on the other hand, shows all the signs of a strongly correlated
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orbital. In the HT phase, we have a Fermi liquid self-energy with prominent features around -1.5 eV and
1.5eV, the a1g orbital being more strongly correlated.
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Spectral functions

We used these real-frequency self-energies to obtain the real-frequency Green’s functions, and the cor-
responding spectral functions as A(ω) = − 1

π ImG(ω). In Fig. 8.15, we show the total local (k-summed)
spectral function of t2g states in the VO2 R, M1

1, B (HT) and B (LT) phases.

In Fig. 8.16 and Fig. 8.17, we show the same spectral functions in a reduced energy window and in
an orbitally-resolved way.

In VO2 (R) (see Fig. 8.16a), both the a1g and eπg states are partly filled, in agreement with Ref. [257],
though we find a quantitatively stronger orbital-polarization towards a1g than they measured. The a1g

orbital has a lower Hubbard band at -1.2 eV, and an upper Hubbard band at 3 eV. All t2g orbitals
contribute to a strong quasi-particle peak. This description is consistent with the strongly renormalized
metal picture observed in spectroscopy.

In VO2 (M1) (see Fig. 8.16b), the eπg states are around the same level they are in DFT (and empty),
and the enhanced bonding-antibonding splitting pushes the bonding a1g states well below the Fermi level.
This opens a gap of about 0.5 eV between the bonding a1g state and the eπg states.

Several bands contribute to a strong quasi-particle peak at the Fermi level in the VO2 (B) HT phase
(see Fig. 8.17a), and the a1g orbitals (but not the eπg ones) contribute to a nascent Hubbard band around
-1.5 eV. This Hubbard band develops into a fully fledged peak only with higher values of U : the HT
phase appears to be slightly less correlated than the rutile phase. Generally, though, whether we judge
from the self-energy or from the spectral function, the HT phase seems to behave similarly to the rutile
phase.

The VO2 (B) LT phase (see Fig. 8.17b) is more complex, due to the interplay of dimer and local
correlation physics. We make two observations. First, there are two peaks around -1 eV to -2 eV in the
spectral function: one of roughly Lorentzian shape, and another displaying more structures. These peaks

1For technical reasons, in the M1 phase we directly performed analytical continuation on the spectral function, rather
than on the self-energy.
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Figure 8.15 – Total spectral function computed within DFT+DMFT for the V t2g states of
VO2 R, M1 and B in the HT and LT phases.
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Figure 8.17 – Orbital-resolved spectral function computed within DFT+DMFT for the V t2g
states of VO2 (B) in the HT and LT phases. The total spectral function is overlain (black
broken line).

are of different natures: the first (corresponding to the lower Hubbard band of V1) is a non-dispersive,
incoherent peak, while the other (corresponding to the bonding a1g state of the dimer formed by V2) is
a dispersive band below the Fermi level. A pseudogap of about 0.3 eV forms between the lower Hubbard
band of V1 and the eπg states of V2. A little spectral weight, belonging to the remaining quasi-particle
peak of the V1 a1g orbital, remains at the Fermi level.

Second, comparing the spectral function 8.17b to the DFT DOS 8.8a where the occupied states have
some eπg character, we see that the combined effect of the dimer bonding on V2 and local correlations on
both atoms stabilizes the a1g state with respect to the eπg states on V1. This enhanced orbital-polarization
and suppressed hopping to the dimer V2 favors a Mott transition of V1.

In Fig. 8.18 and 8.19, we display the momentum-resolved spectral functions of the HT and LT phases,
respectively. In the HT phase, this confirms the picture of three t2g bands crossing the Fermi level. The
case of the LT phase is, again, more interesting, because it emphasizes the difference between atoms V1

and V2: the momentum-resolved spectral function makes the nature of the insulating LT phase clearer
than the k-summed one. In particular, we can clearly see how the bonding a1g state of atom V2 forms
a dispersive band below the Fermi level, while the V1 atom a1g band forms a mostly incoherent lower
Hubbard band (around -1.2 eV) and upper Hubbard band (around 3 eV). A strong peak around 0.8 eV,
also visible in the k-summed spectral function and in the HT phase to some extent, has mainly V1 e

π
g

character. The hybridization between the two atoms restores some itinerant character of the a1g states
of V1.
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The orbital-polarization (or absence thereof) appears to be important to explain the physics of VO2,
and also represents a useful sanity check against experiment. The respective fillings of the a1g and eπg
orbitals in the four phases, obtained within LDA and DFT+DMFT (+Σdimer in the M1 and LT phases)
are summarized in Table 8.5.

Phase Method Filling V1 Filling V2

a1g eπg a1g eπg

VO2 (B) HT DFT+DMFT 0.69 0.33 0.60 0.42

LDA 0.47 0.39 0.51 0.58

VO2 (B) LT DFT+Σdimer +DMFT 0.92 0.10 0.92 0.09

LDA 0.51 0.21 0.75 0.49

VO2 (M1) DFT+Σdimer +DMFT 0.98 0.02

LDA 0.75 0.24

Haverkort et al. [257] 0.81 0.19

VO2 (R) DFT+DMFT 0.60 0.40

LDA 0.45 0.55

Haverkort et al. [257] 0.33 0.67

Table 8.5 – Occupation of orbitals, calculated within LDA and DFT+Σdimer +DMFT . The
column eπg contains the total filling of the two higher-lying t2g states.

Our DFT+Σdimer +DMFT calculations explain the electronic transition observed in VO2 (B). More-
over, the same choice of method and parameters also provides a good description of the R and M1 phases.
We understand why the resistivity goes through a large transition (Fig. 8.2), though it is not yet clear
why the resistivity of the HT phase is significantly higher than that of the rutile phase. Importantly, anti-
ferromagnetic ordering of the non-dimerized atom chains is not needed to make the LT phase insulating,
characteristically of a Mott transition. In Fig. 8.20, we compare our calculated spectral function with
the photoemission spectra of Fig. 8.4. Up to a shift of the peak in the LT phase, that could be partly
explained by an error in determining the chemical potential within the pseudogap, the general shape of
the calculated and measured spectral functions in reasonable agreement.
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8.5.3 What about U in VO2?

An important parameter of our DMFT calculations are the Coulomb interaction parameter U and Hund’s
coupling JH . What are reasonable values for these parameters, and can we determine them from first
principles?

Our cRPA calculations

We performed cRPA calculations on VO2 (R) using the implementation by Vaugier et al.[119, 139].
Calculations for the monoclinic phases were not accessible, for technical reasons. However, since the
energetic positions of the relevant bands (O 2p, V 3d t2g and eg, and higher energy excited levels) are
comparable in the rutile and monoclinic phases, it is reasonable to think that calculations on these other
phases would yield similar results. We used a 7× 7× 11 discretized Brillouin zone mesh and a cutoff at
7 Ry on the excited states to compute the polarization, which was sufficient to converge the values of U
and JH .

The results of our cRPA calculations are displayed in Table 8.6. For a t2g model and with the usual
parameterization of the Hubbard-Kanamori Hamiltonian (8.2), this suggests to use

U = 2.6 eV

J = 0.4 eV

These numbers are based on the average direct and exchange terms of the full Um1m2m3m4
matrix,

following Eq. 5.19 and 5.20. In reality, the a1g orbital has a significantly larger value of the direct
interaction Ummmm. This is due to the a1g orbital being more localized, not to a reduced screening: the
bare Coulomb matrix element is also larger, in the same proportions. Since it is also at a lower energy
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than the eπg states due to the crystal field splitting, and consequently the most occupied orbital, it may
be better to use the larger resulting F 0, leading to

U = 2.8 eV

J = 0.4 eV

Whichever choice we make, these values are significantly smaller than the values used in most previous
DMFT calculations on VO2[96, 238, 278, 279, 283]. This raises the question of whether these smaller
values can account for the insulating state of the M1, M2 and B (LT) phases.

For the sake of completeness, we also computed the values in a d − d model and in a dp − dp model
(see section 4.3 for the definition of these models).

t2g − t2g model

Ubare U J bare J
14.4 2.6 0.5 0.4

Ubare U Jbare
H JH

13.7 2.0 0.7 0.5

t2g − t2g model (U from a1g orbital)

Ubare U J bare J
15.8 2.8 0.5 0.4

Ubare U Jbare
H JH

15.1 2.3 0.7 0.5

d− d model

Ubare U Jbare
H JH

16.3 2.8 0.6 0.4

dp− dp model

Ubare
dd Udd Jbare,dd

H JddH
20.2 11.9 0.8 0.7

Ubare
dp Udp Ubare

pp Upp

7.5 4.1 19.5 9.9

Table 8.6 – Parameters (in eV) of the interaction Hamiltonian VO2 (R) calculated in a t2g−t2g
model, a d − d model and a dp − dp model. Here, U and J denote the parameters of the
t2g Hubbard-Kanamori Hamiltonian, while U = F 0 denotes the monopole part of the Slater
interaction Hamiltonian and JH = (F 2 + F 4)/14.

Comparison with reported values

In the DFT+CDMFT calculations of VO2 reported in the literature[96, 238, 278–283], different values of
U and JH have been used. However, surprisingly for a material as iconic as VO2, we found rather few ab
initio calculations of the Coulomb parameters. Early constrained LDA calculations reported larger values
of U , of the order of 4 eV and equal in the R and M1 phases, in the context of DFT+U calculations[274,
285].

A value of U = 2.7 eV in the t2g subspace was reported by Casula et al.[115] in a work comparing the
values for different oxides. This value was obtained with the same code as used in this work, so it is not
surprising that we find a similar value for a t2g − t2g model.

Shih et al.[286] performed the most detailed cRPA calculation of VO2 reported so far, to the best of
our knowledge. They found a surprisingly small value of U = 1.12 eV in the rutile phase and U = 2.61 eV



102 Chapter 8. Epitaxially stabilized phases of VO2: the B phases

in the M1 phase in a d − d model, where their maximally localized Wannier functions are constructed
using all the d orbitals and transitions within the d states are excluded. After removing residual metallic
screening due to the p − d hybridization, they obtain larger values of respectively 3.12 eV and 3.45 eV.
The exchange JH is found to be around 0.6 eV in all cases. The difficulty of consistently determining the
Coulomb parameters in oxides, in particular in the full d shell where the eg states are strongly hybridizing
with the O 2p states, remains a bottleneck. A scheme taking into account p − d Coulomb interactions
has been proposed by Seth et al.[287].

However, we rather disagree with the approach used by Shih et al. in their work, because VO2 hosts
only one electron in the V d orbitals and has well-separated t2g and eg states: the physics should be
determined by the t2g states only. It is known[119], but rarely discussed, that the values of U and JH to
be used in a DFT+DMFT calculation are not universally defined for the material, but actually depend
strongly on the exact definition of the low energy space where the DMFT calculations are performed. In
particular, the interaction Hamiltonian is different for a calculation in the t2g subspace and in the full d
space. More critically, for a given material and subset of orbitals, quite different values can be obtained
for different projection schemes (e.g. Wannier functions constructed in a small or large energy window).

Dynamical Mean-Field Theory calculations with the cRPA U and JH

We performed the same calculations reported above, this time using our calculated values of U and J (or
rather, Kanamori U and J ). In the R and M1 phases, the results are comparable to the ones described in
the previous section: a rather strongly renormalized metallic R phase, and a band insulating M1 phase,
where the band gap is about 0.5 eV and opens between the a1g bonding state and the eπg states.

We display the orbital-resolved spectral function of the R, M1, B HT and LT phases calculated with
DFT+Σdimer+DMFT with the values of U = 2.8 eV and J = 0.4 eV from cRPA (Table 8.6) in Fig. 8.21.
Using these values, not much is changed in the R and M1 phases: in the former, the Hubbard peaks are
less marked and the quasi-particle peak stronger (corresponding to a larger value of Z ≈ 0.45 instead of
0.3). In the latter, a gap opens and the a1g anti-bonding state is at a lower energy. In the HT phase,
similarly to the R phase, the Hubbard peaks are slightly weaker than in the calculation using U = 4 eV
and J = 0.68 eV, but there is no important qualitative difference. However, the smaller values of U and
J fail to open a gap in the LT phase. Indeed, we see that a strong quasi-particle peak remains on the
a1g orbital of the non-dimerized atom V1 in the LT phase, with a quasi-particle renormalization factor
Z ≈ 0.15.

Taking into account the dynamical character of the effective screened Coulomb interaction U(ω) (as
discussed in Chapter 6), the additional hopping renormalization could possibly be sufficient to cause the
Mott transition on this orbital. This is one aspect of the physics of VO2 that we would like to further
investigate.

8.6 The physics of oxygen vacancies in VO2

In a recent publication, Backes et al.[225] demonstrated that oxygen vacancies participate strongly in
what was thought to be the lower Hubbard band of SrVO3, observed in PES. The same phenomenon
could possibly be observed in other oxides, including VO2. In this section, we study the hypothetical
properties of vacancies in the R, M1 and B phases of VO2. In particular, we discuss on which site such
vacancies would form, and what the spectral signature could be.

8.6.1 Motivation

The creation of oxygen vacancies by UV or X-ray exposition in d0 transition metal oxides has been
observed and discussed by several groups[288–290]. In Ref. [225], the authors show that oxygen vacancies
in the correlated d1 oxide SrVO3 cause a peak of eg character in the DOS at about -1.5 eV binding
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Figure 8.21 – Orbital-resolved spectral function of VO2 R, M1, B HT and B LT, calculated
within DFT+Σdimer+DMFT with the cRPA values of U = 2.8 eV and J = 0.4 eV. Note the
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Figure 8.22 – Conventional unit cell of VO2 (B). One conventional unit cell contains three
formula units. The two inequivalent V and four inequivalent O atoms are labeled. Note the
qualitative difference between O1 and O3 on the one hand (at the touching point of three
octahedra in the same plane, at the c-direction tip of none), and O2 and O4 on the other
hand (at the c-direction tip of the touching octahedra of two equivalent V1 and V2 atoms,
respectively).

energy. In DFT+DMFT calculations, they show that electronic correlation effects do not qualitatively
modify these vacancy states, only broadening them to some degree, and that the vacancy’s effect on the
lower Hubbard band in that material is only to widen it. Moreover, using photoemission spectroscopy,
the authors suggest that the quasi-particle peak is hardly changed by the creation of oxygen vacancies
(monitored in real time by a growing satellite peak between -1 and -1.5 eV in SrVO3 and SrTiO3). This
suggests that oxygen vacancies form localized electronic states rather than doping the t2g conduction
band.

Finally, the authors suggest that similar effects may be visible in other correlated transition metal
oxides. The difficulty to observe such effects lies in the fact that the vacancy states are typically around
the same energies where lower Hubbard bands are expected, which may explain that this question has
not been studied more extensively until now.

We speculate that the question may be even more relevant here. Indeed, the samples are grown on a
substrate, where the lattice mismatch may generate substantial strain at the interface, thus favoring the
formation of defects compared to the perfect crystal. Moreover, as the B phase of VO2 is only metastable,
it would not be a surprise if this particular phase had a rather higher concentration of point defects.

Finally, we would like to investigate whether the presence of vacancies could explain the qualitative
difference in photoemission spectra on thin films and single crystals of VO2 (R), as shown in Fig. 8.3. In
other words, are Okazaki et al. observing a large vacancy concentration contributing to a peak at -1 eV
in the thin films of rutile VO2, or do they see a magnified Hubbard band at the surface?

8.6.2 Possible configurations of vacancies in VO2

First, let us analyze the possible configurations for an oxygen vacancy in VO2. As described in Table 8.2
and 8.3, there are four (inequivalent) possible positions to introduce such a vacancy. We shall denote
these four positions as “position 1,2,3,4”, respectively, in agreement with the labeling of inequivalent
oxygen atoms in the aforementioned tables (see crystal structure in Fig. 8.22).

When an oxygen vacancy is created in VO2, two additional electrons are donated to the unit cell
(because the oxygens are nominally in a O2− state). These electrons are naturally distributed on the
vanadium atoms (that are nominally in a d1, or V4+ state in VO2). We studied the whereabouts of these
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electrons when a single O atom is removed in the primitive cell using DFT. The corresponding atom- and
orbital-resolved DOS are shown in Fig. 8.23 and Fig. 8.24 for the HT and LT phases, respectively. Note
that the creation of a vacancy breaks the symmetry of the cell, so that there are now four inequivalent
V atoms. Here, we show the orbital-projected partial DOS on all four inequivalent V atoms, for the four
possible positions of a vacancy. In the figure, “inequivalent atom 1 and 2” refers to the two previously
equivalent V1 atoms, and “inequivalent atom 3 and 4” refers to the two previously equivalent V2 atoms.

It appears that the effect of creating an O vacancy causes the eg states of the nearest neighbor V
atom(s) to drop to much lower energies, while the filling of the t2g states is to a large extent unchanged.
This does not come as a surprise: the eg orbitals are pushed to higher energies by the crystal / ligand
field precisely because they are pointing towards the oxygen atoms of the octahedra, contrary to the
t2g orbitals. Removing one of these oxygen atoms is thus bound to partially stabilize the eg states.
As mentioned in Ref. [225], this fact has been discussed in the case of oxygen vacancies in SrTiO3[223,
291–293].

Based on the DOS of Fig. 8.23 and 8.24, we observe that there is a qualitative difference between
the vacancy positions 1 and 3 on the one hand, and the positions 2 and 4 on the other hand. In the
former case, the stabilized eg state becomes approximately degenerate with the t2g states around the
Fermi level. In the latter case, a clear and sharp peak of predominantly eg character is formed at around
-1 eV binding energy, corresponding to a completely filled band holding two electrons in the band picture.
This difference is not a coincidence. Indeed, the oxygen atoms O1 and O3 on the one hand and O2 and
O4 on the other hand are in a rather different environment.

More specifically, O2 is located at the tip shared by two equivalent octahedra surrounding the vana-
dium atom V1, along the c axis of the conventional monoclinic cell (out of the plane containing the dimer
bonds, see Fig. 8.1). O4 is in a similar position, but near V2. In contrast, O1 and O3 are located on the
other vertices of the octahedra, in the ab plane of the conventional monoclinic cell, orthogonal to the c
axis and containing the dimers. Moreover, O1 and O3 have more nearest V neighbors (respectively 3)
than O2 and O4, so that the two electrons they donate when a vacancy is created is distributed more
evenly over the surrounding V atoms.

This difference is not only visible in the spectral properties, but also in the respective formation
energies of vacancies in these four positions. Here, we do not compute the total formation energy of
these vacancies (doing so would require to estimate the formation energy of an O2 molecule) but simply
compare the DFT total energies of a unit cell with one vacancy present in the four configurations. The
results are summarized in Tables 8.7 and 8.8. Vacancies on O2 and O4 are significantly more stable than
vacancies on O1 and O3. Consequently is seems likely that, if vacancies are induced by strain in the
thin films or irradiation in the PES experiment (as discussed in Ref. [225]), those vacancies would rather
migrate to the O2 and O4 sites. Of course this supposes that the migration energy is not too high so that
the migration of vacancies can happen, which we do not investigate here any further.

In VO2 (M1), where symmetry is higher, there are only two inequivalent O positions. The formation
energy for vacancies on these two sites only differ by about 0.06 eV. In VO2 (R), all O positions are
equivalent by symmetry.

vac. position Efvac (LDA) Efvac (GGA) nearest V direction

1 0.92 1.09 V1 and V2 ab plane

2 0.24 0.20 V1 c axis

3 0.66 0.65 V1 and V2 ab plane

4 0 0 V2 c axis

Table 8.7 – Summary of the relative values of the vacancy formation energies Efvac (in eV.
Reference point: formation energy at O4), index of nearest V atom, and orientation with
respect to it for the four different vacancy sites in the HT phase.
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Figure 8.23 – Partial density of states of VO2 (B) HT in the presence of an oxygen vacancy in
position O1, O2, O3 or O4, resolved on the four inequivalent vanadium sites (the vacancy breaks
the symmetry). For a vacancy in position O2 (respectively O4), the nearest V1 (respectively
V2) atoms capture its electrons in the dz2 (eg) orbital. The color code is the same as in Fig. 8.7
to 8.9, with states of dominant eg character shown in red and orange and states of dominant
t2g character shown in blue (a1g) and green (eπg ).
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(a) VO2 (B) LT with O vacancy in position 1
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Figure 8.24 – Same as Fig. 8.23, but for the VO2 (B) LT phase. The color code is the same as
in Fig. 8.7 to 8.9, with states of dominant eg character shown in red and orange and states of
dominant t2g character shown in blue (a1g) and green (eπg ).
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vac. position Efvac (LDA) Efvac (GGA) nearest V direction

1 0.97 1.11 V1 and V2 ab plane

2 0.23 0.18 V1 c axis

3 0.51 0.46 V1 and V2 ab plane

4 0 0 V2 c axis

Table 8.8 – Summary of the relative values of the vacancy formation energies Efvac (in eV.
Reference point: formation energy at O4), index of nearest V atom, and orientation with
respect to it for the four different vacancy sites in the LT phase.

8.6.3 Effect of vacancies on the photoemission spectra

In this section, we study the effect of oxygen vacancies on the spectral function in VO2. We use a simple
approximation where a vacancy correction is added to the spectral functions shown above (Fig. 8.16 and
8.17).

Based on the remarks above (oxygen vacancies in the positions 1 and 3 have significantly higher
formation energy than in position 2 and 4), we only consider the effect of oxygen vacancies in positions
2 and 4. In VO2 (M1) we consider both positions on an equal footing, and the rutile phase has only one
position available.

Fig. 8.25 displays the total DFT DOS of VO2 (B) without vacancies, the same DOS averaged for one
vacancy per unit cell in position 2 or 4, and the additional peak of eg character around -1 eV corresponding
to the vacancy states. Fig. 8.26 displays the same for the R and M1 phases. Note that in the rutile phase,
contrary to the B and M1 phases, spectral weight is displaced below the t2g states of the perfect cell, but
without creating a well separated peak. This can be understood in the following way: in the R phase,
any given oxygen atom is at the tip of three octahedra, with two different orientations and at the same
distance of the corresponding vanadium atoms (see Fig. 8.27a). Therefore, the structure is less favorable
for distributing the electron over the nearest dz2 orbitals, as happens in the B phase. The same argument
holds for the structure of the M1 phase, but the octahedra are distorted so that a given oxygen atom has
one neighboring V closer than the others (see Fig. 8.27b).

It is this additional spectral weight at the lower edge of the d states, depicted as a blue broken line
in Fig. 8.25 and 8.26, that we now add to the previously calculated spectral functions, and compare to
the experimentally measured spectra.

Therefore, our simple approximation for including the effect of oxygen vacancies on the spectral
function can be written as

ADMFT+vac(ω) = α1 [ADMFT(ω) + α2Avac(ω)] (8.3)

where α2 is chosen such that a vacancy concentration of 1/16 is obtained (i.e. one out of 16 oxygen atoms
is missing), and α1 normalizes the spectral function to ensure a consistent comparison of the different
quantities. As a reference, Zhang et al.[266] have reported a metastable oxygen vacancy concentration of
10%, higher than we use here, by annealing under low oxygen pressure.

The corresponding spectra are shown in Fig. 8.28 and 8.29. More precisely, in the upper panels we
show the total spectral function of t2g states, multiplied by a Fermi occupation factor (with β = 40 eV−1),
and broadened to mimic the finite experimental resolution. For the rutile and M1 phases, the broadening
is obtained by a convolution with a gaussian with standard deviation σ = 0.1 eV. For the B phases, we
use a larger standard deviation σ = 0.3 eV, as the PES measurements of Ref. [231] (and Fig. 8.4) have
lower resolution.

In VO2 (R), the calculated spectral function agrees surprisingly well with the PES of Koethe et
al.[254]. Their measurements showed a strong quasi-particle peak at the Fermi level. However, they do
not explain the secondary peak seen in thin films in the experiments by Okazaki et al.[253] and Saeki
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Figure 8.25 – LDA density of states for 3d states in VO2 (B) without vacancies (perfect cell)
and with one O vacancy (average over positions 2 and 4 in a four times larger supercell). In
particular, spectral weight corresponding to V eg states is pulled down to around -1 eV when
an oxygen vacancy is introduced (blue dotted line). The vacancy concentration is of 1/16.
The additional peak in the DOS at -1 eV contains the 2 electrons that are donated when an
O vacancy is created. For better readability, we only show the difference in the energy range
around -1 eV, corresponding to eg spectral weight pulled down when a vacancy is created.
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Figure 8.26 – LDA density of states for 3d states in VO2 (R) and VO2 (M1) without vacancies
(perfect cell) and with one O vacancy (average over all possible positions). In particular,
spectral weight corresponding to V eg states is pulled down to around -1 eV when an oxygen
vacancy is introduced (blue dotted line). This mechanism works does not work as well in the
more symmetric rutile phase: no completely separate peak is created. For better readability,
we only show the difference in the energy range around -1 eV, corresponding to eg spectral
weight pulled down when a vacancy is created. (For consistent plotting, we double the VO2

(R) unit cell in order to have 4 V and 8 O atoms in the unit cell.)
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(a) VO2 (R) (b) VO2 (M1)

Figure 8.27 – Local environment and distance to the nearest V atoms (in Å) for a given oxygen
atom in the rutile and M1 phases. The small spheres at the tips of the octahedra are oxygen
atoms, the larger spheres within the octahedra are the vanadium atoms.

et al.[256]. This raises the question whether this peak corresponds to a lower Hubbard band or vacancy
states.

We observe that the lower Hubbard band in our calculations is centered around -1 eV, just like the
peak measured by Okazaki et al. However, the lower Hubbard band should contribute a weaker peak
than the quasi-particle one. On the other hand, the oxygen vacancy peak in the rutile phase is at lower
binding energy (0.5 eV) than in the B phase (1 eV) (see Fig. 8.26a). It may contribute to the measured
secondary peak, but the incoherent character seems dominant (see lower panel of Fig. 8.28a). With
this observation we cannot exlude or confirm the presence of oxygen vacancies in the experiment, but it
seems more likely that enhanced correlations of surface states (due to reduced screening and hopping) are
reinforcing the Hubbard band. In the M1 phase (Fig. 8.28b), the O vacancy states at -0.7 eV are close
to the a1g bonding state, so that the presence of vacancies does not qualitatively change the spectrum.

In the LT phase of VO2 (B), similarly to the M1 phase, the oxygen vacancy states are found at
approximately the same energy as the bonding state and lower Hubbard band (see Fig 8.29b). This
means that separating the contributions in a k-summed spectral function is difficult. A momentum-
resolved PES experiment, on the other hand, could possibly discriminate the non-dispersive oxygen
vacancy state from the broader V1 Hubbard band and the itinerant V2 bonding band.

In the HT phase, the vacancy peak is separated from the quasi-particle peak by about 1 eV (see
Fig 8.29a). Moreover, the lower Hubbard band is much weaker than in the rutile phase. Again, the
presence of vacancies is consistent with the measured spectrum, and could help explaining the asymmetric
shape of the experimental PES. The energy resolution of the photoemission spectrum in Fig. 8.4 is not
sufficient to clearly separate the contributions from both peaks, and a measurement with higher energy
resolution would be useful to confirm the hypothesis of oxygen vacancies in VO2 thin films. If two clearly
separate peaks can be measured, this would strongly hint at the presence of vacancies.
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Figure 8.28 – Total spectral function computed within DFT+DMFT for the V t2g states of VO2

(R) and VO2 (R) and occupied part thereof, with and without a broadening of 0.1 eV. The upper
panel shows the quantities in a perfect unit cell, while in the lower panel an additional peak due to
vacancy states (see Fig. 8.26) is added to the spectral function to simulate the presence of oxygen
vacancies. The photoemission spectrum (blue line) correspond to the measurement by Koethe et
al.[254] and Okazaki et al.[253].
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Figure 8.29 – Total spectral function computed within DFT+DMFT for the V t2g states of VO2

(B) in the HT and LT phases and occupied part thereof, with and without a broadening of 0.3 eV
corresponding to the experimental resolution. The upper panel shows the quantities in a perfect
unit cell, while in the lower panel an additional peak around -1 eV (see Fig. 8.25) is added to the
spectral function. The photoemission curve (blue line) corresponds to the measurement by Pal et
al.[231].
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8.7 Conclusion

In this chapter, we have shown that a unified framework using DFT+DMFT with an additional static
intra-dimer self-energy on the dimerized V atoms reproduces both the VO2 rutile to M1 and the VO2 (B)
high temperature to low temperature bad metal to insulator transitions. We found that the VO2 (B) HT
to LT transition is similar, from the electronic point of view, to the rutile to M2 transition, with half the
V pairs forming dimers and a filled band below the Fermi level, thus causing the other half to become
orbital-polarized and undergo a Mott transition. This observation is in agreement with the qualitatively
similar magnetic susceptibility measurements in the B and R to M2 transitions[244, 248].

Our results indicates that the different phases of VO2, with their subtle but physically significant
structural differences, should be described on the same footing, including both dimer physics and corre-
lation effects. There are, however, some differences between the two aforementioned phase transitions:
the R to M2 transition happens sharply over a few K with a change of crystal structure, while the B
transition occurs over a range of over 100 K and conserves the space group. The present calculations do
not allow us to understand this difference.

We also investigated effects of oxygen vacancies in VO2 on the electronic structure. We have shown
that in the B phase, the preferred configuration for an O vacancy is at the tip pointing along the c axis
of the octahedron surrounding the V atoms. In this configuration, the (eg) dz2 orbital is pulled down
in energy, creating a localized bound state 1 eV below the Fermi level. In the insulating M1 and LT
phases, these states are roughly at the same binding energy as the bonding states or lower Hubbard
bands. We suggest that photoemission spectroscopy measurements with a higher energy resolution than
the ones recently reported on VO2 (B) should allow to confirm or invalidate the presence of vacancies
under photo-excitation in the metallic HT phase.

From a methodological point of view, the DFT+CDMFT method has already been shown to provide
a sufficient description of both aspects: here, we followed the calculations of Tomczak et al.[278–281] on
the M1 phase and showed that a simplified scheme combining DFT+DMFT with an additional intra-
dimer static self-energy is sufficient to describe the more complex B phase, and has the advantage of
reduced computational cost. In the future, it would be interesting to use this comparably lightweight
computational scheme to assess the properties of larger supercells. This could allow us to study point
defects (e.g. oxygen vacancies) with a full DMFT treatment of the d states, strained or epitaxially grown
samples or even doped ones.

Finally, we have observed that the values of the Coulomb interaction parameter U and of the Hund’s
rule coupling J calculated in cRPA are too small to explain the opening of a gap in the VO2 B LT phase.
Drawing on the ideas discussed in Chapter 6, it would be interesting to know if the neglect of dynamical
interactions in the present calculations is sufficient to explain this discrepancy.
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Chapter 9

Hard magnets & Crystal-Field
calculations

In the present chapter, we discuss crystal-field parameter calculations from first principles. In section 9.1,
we give a general introduction to crystal-field interactions: their physical effects, parameterization and
derivation. In section 9.2, we give a brief introduction to hard magnetic materials, and the importance
of crystal-field interactions in these materials. In section 9.3, we provide a brief summary of previous
theoretical approaches to calculations of crystal-field parameters in rare-earth ions. Next, in section 9.4
we propose a technique to obtain crystal-field parameters from first principles in an important subgroup of
hard magnets, namely rare-earth intermetallics. Finally, in section 9.5 we apply our method and discuss
the results on compounds of the RFe12 family. This chapter presents and extends the work published in
Ref. [294].

9.1 Introduction to Crystal-Field theory

9.1.1 Generalities

In a spherically symmetric environment (e.g. in an isolated atom or ion), the energy levels of the orbitals
with a given principal and orbital quantum number are degenerate. For instance, if we neglect the
(in that case weak) spin-orbit coupling, the d orbitals of an isolated Fe atom with magnetic quantum
number m = −2 to 2 have the same energy and occupation (so that the charge on the atom is spherically
symmetric, as well). However, this breaks down for atoms embedded in a crystal. An atom embedded in
a crystal is in an environment with reduced symmetry.

In the perovskite-type oxide SrVO3, for instance, a given V atom is surrounded by an octahedron
of ligands (O ions). This breaks the degeneracy of the d orbitals, separating the five d states into two
higher-energy eg states and three lower-energy t2g states, while keeping the average level of all d orbitals
the same (see Fig. 9.1). In this case the complex harmonics are not eigenfunctions of the Hamiltonian any
more. Instead, one typically uses real or cubic harmonics, obtained as linear combinations of the complex
harmonics: dz2 and dx2−y2 for the eg orbitals and dxy, dxz and dyz for the t2g orbitals. The lifting of the
degeneracy stems from the fact that the t2g orbitals are pointing away from the neighboring ligands “as
much as possible”, as seen in Fig. 9.2. In contrast, the eg states are pointing towards the neighboring
oxygen atoms: they are at the same time pushed away by the electrostatic interaction and hybridize with
the occupied ligand p states, forming bonding and anti-bonding states. The resulting bonding states have
mostly oxygen character and are usually filled, while the anti-bonding states have mostly eg character
and are found at higher energies.

The number of degenerate “subshells” of a given set of orbitals (e.g. p, d or f orbitals), and the number
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Figure 9.1 – Splitting of the 5 degenerate d orbitals into eg and t2g states by the crystal-field.

Figure 9.2 – Cubic harmonics in a perovskite. The eg states (upper 2 orbitals) point to the
nearest oxygen atoms, the t2g states (lower 3 orbitals) point away from them. Reproduced
from [295].
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of degenerate orbitals therein, is almost entirely determined by the local symmetry or point group. There
can be additional “accidental” degeneracies, but the local point group determines the minimal symmetry
of the orbitals’ degeneracy. Apart from this, the amplitude and the sign of the splitting(s) depend on a
multitude of parameters, including the nature of the reference atom, its oxidation state, the nature of its
neighbors and the distance to them.

This phenomenon, namely the lifting of degeneracy of p, or more usually d and f orbitals of atoms
in molecules and crystals, is commonly known as crystal-field (CF) theory. The study of crystal-fields is
a longstanding problem of quantum chemistry (like the more general problem of the electronic structure
of materials). The early work on CF theory goes back to the early days of quantum physics, with works
by Bethe[296] and van Vleck[297]. CF theory was combined with molecular orbital theory (a quantum
chemistry theory) to form ligand field theory[298], which models the bonding of a metal ion with its
ligands. The word “ligand” refers to ions or molecules that bond to a central metal atom in organic and
inorganic chemistry. Typical ligands are nonmetals and halogens, or molecules formed by them. The term
of ligand field theory is often used instead of CF theory, especially since the most dramatic CF splittings
tend to be observed in molecules or materials made of transition metals and such ligands. However, the
concept of CF theory is not limited to this case. For instance, as we discuss later in this chapter, even
small CF splittings in intermetallic materials can have important physical effects.

9.1.2 Physical effects due to crystal-field splittings

The magnitude of crystal-field splittings can vary significantly. The largest ones are obtained, for instance,
in transition metal oxides, where the energy difference between t2g and eg levels can reach several eV.
Splittings within the t2g subspace in oxides with reduced local symmetry, or t2g − eg splittings in pure
transition metals are typically of the order of a few 100 meV, but the CF splitting on rare-earth sites in
rare-earth intermetallics (which we discuss more specifically in the present chapter) can be as small as a
few meV.

The value of the crystal-field splitting in materials, both in absolute value and with respect to other
relevant quantities, is of crucial importance for determining spectral and ground state properties in
molecules, oxides and pure metals. In pigments consisting of transition metal oxides, the color is deter-
mined both by the charge transfer transitions (i.e. transitions from the ligand to the metallic cation) and
transitions between the metal’s d orbitals, split by the crystal-field[299, 300]. The same holds in active
laser materials, where crystal-field levels can be tuned for optimal optical transitions[301]. These are but
two examples where the crystal-field levels determine the spectral properties.

To illustrate how the crystal-field splitting also determines the ground state properties, let us give
the example of the high-spin state in transition metal oxides. In an isolated atom, the occupation of
the orbitals for a given number of electrons is given by Hund’s rules[302, 303]. First, to minimize the
electrostatic electron-electron interaction, one maximizes the total spin moment S while respecting the
Pauli principle, then the total orbital angular momentum L while respecting the previous constraint.
Finally, owing to the spin-orbit (SO) interaction, the spin and orbital angular momentums combine to
form a total angular momentum J = S +L with an associated quantum number J : such that J = L−S
for less than half-filled shells, or J = |L+ S| for more than half-filled shells (for exactly half-filled shells,
L = 0 so J = S). This two-step procedure is based on the fact that the spin-orbit interaction is of much
smaller amplitude than the Coulomb interaction.

In a crystal, the breaking of the degeneracy by the crystal-field must be considered on top of these
two interaction terms. This can have many different effects, because the CF splitting can take all kind
of values with respect to the on-site Coulomb and SO interactions.

• HCF > He−e > HSO in nearly empty or nearly filled transition metal oxides (e.g. SrVO3)

• He−e > HCF > HSO in nearly half-filled transition metals (e.g. elemental Fe)

• He−e > HSO > HCF in rare-earth intermetallics (e.g. NdFe12, see next section)
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Figure 9.3 – High-spin and low-spin configuration of a set of d orbitals with 5 electrons.

Of course, the most complex effects are observed when the CF term is of similar order of magnitude as
one of the other terms. This is illustrated in Fig. 9.3, showing a high to low spin transition in a transition
metal with 5 electrons. With an intermediate CF splitting, the electrons minimize the total energy by
spreading over the orbitals, and the resulting total spin moment S is large. Inversely, if the CF splitting
between orbitals is large enough, the electrons minimize their energy by aggregating in the low-energy
states, even though this increases the on-site Coulomb interaction. By doing this, the total spin moment
S is reduced. LaCoO3 is an example of a material going through a metal to insulator transition above
400 K, associated with a transition from low to intermediate spin state at 90 K[304].

In the rest of the chapter, we focus on the opposite limiting case: we will consider rare-earth inter-
metallics where the crystal-field splitting is the smallest energy scale.

9.1.3 Crystal-field parameters: notation and symmetry

Here we introduce some commonly used notations for crystal-field parameters (CFP). For a more extensive
discussion, we refer the reader to Refs. [305–307].

The local Hamiltonian of a rare-earth or transition metal ion with a partially-filled d or f shell subject
to the exchange field created by the rest of the lattice and to a crystal-field potential reads

H = H1el +HU = E0 + λL̂ · Ŝ + 2µBBexŜa +HCF +HU (9.1)

where the one-electron part of the Hamiltonian corresponds to the first four terms on the right-hand side,
namely, a uniform shift, spin-orbit, exchange-field, and crystal-field terms. Ŝa is the in-plane or ouf-of-
plane spin operator, corresponding to the case where Bex is along x or z, respectively. ĤU represents the
atomic (local) electron-electron Coulomb repulsion term of the many-body Hamiltonian. The crystal-
field term ĤCF is defined as the non-spherically symmetric part of the one-electron Hamiltonian. The
corresponding non-spherical part Vns(r̂) of the one-electron potential can be expanded into spherical
harmonics as follows:

Vns(r̂) =

∞∑
k=1

k∑
q=−k

Aqkr
kYkq(r̂). (9.2)

where Ykq(r̂) is the spherical harmonic function with total angular moment k and projected angular
moment q. The CF Hamiltonian is then defined as

HCF =

∫
drVns(r)Ψ(r̂)†Ψ(r̂) (9.3)

where Ψ†(r) and Ψ(r) are respectively the operators creating and removing an electron at r in real space.
The matrix elements of Vns(r) between 4f orbitals define HCF. Due to the properties of the spherical
harmonics, only Aqk for k ≤ 2l, i.e. k ≤ 6 in the case of an f shell or k ≤ 4 in the case of a d shell,
can contribute to HCF. For historic reasons, several conventions exist for the parameterization of HCF,



9.2. Hard magnets and the importance of crystal-field effects 119

leading to a rather confusing variety of definitions for the crystal-field parameters. One of the earlier
parameterizations involves the Stevens operator equivalents[308] Ôqk: (Ôqk)kq are operators acting on the
atomic (e.g. 3d or 4f) states, obtained by taking the Cartesian expression or the tesseral harmonic
functions and replacing each coordinate x, y or z by the corresponding component of the total angular
momentum Ĵ : Ĵx, Ĵy or Ĵz, allowing for the commutation relations the angular moment operators. Using
the Stevens operator equivalents, HCF is decomposed as follows

HCF =
∑
kq

Aqk〈rk〉Θk(J)Ôqk (9.4)

where Aqk〈rk〉 are the crystal-field parameters for given k and q, Θk(J) is the Stevens factor for a given
ground state multiplet defined by the quantum number J . Θk(J) for k =2, 4, and 6 are often designated
by αJ , βJ , and γJ , respectively. Note that the implied factorization Aqk〈rk〉 is only valid for an atom
surrounded by point charges[309], a rather crude model: the notation, however, continues to be used in
the community. The Stevens operator equivalents are more convenient for analytical calculations and
somewhat outdated, but they are still extensively used in the literature. For numerical calculations it is
more convenient to express HCF in terms of Wybourne’s[310] spherical tensor operators Ĉqk :

HCF =
∑
kq

BqkĈ
q
k (9.5)

where Ĉqk are defined by

Cqk(r̂) =
√

4π/(2k + 1)Ykq(r̂)

Moreover, the CFP can be made real by employing the Hermitian combination of Wybourne’s operators
T̂ qk defined by

T̂ 0
k = Ĉ0

k and T̂
±|q|
k =

√
±1
[
Ĉ
−|q|
l ± (−1)|q|Ĉ

|q|
k

]
HCF can then be expressed as

HCF =
∑
kq

LqkT̂
q
k (9.6)

with a set of real parameters Lqk. Lqk are linked to the Stevens CFP Aqk〈rl〉 by a set of positive prefactors
λkq = Aqk〈rk〉/L

q
k. For a more extensive discussion of CFP conventions see, e.g., Refs. [305–307]. Note

that to simplify the notations, we have not introduced a spin label to the CF parameters in Eqs. 9.5
and 9.6. In reality, the CFP can be spin-dependent. More specifically, the electrostatic contribution is
of course identical for up and down spins on the atom, but the effect of hybridization is in general spin-
dependent if the sub-lattice is spin-polarized. We found that taking into account this spin-dependence of
CFP improves the fit for spin-polarized H1el.

The number of a priori non-zero CF parameters Aqk〈rk〉 is constrained by the point-group symmetry
of a given rare-earth site. In particular, in the presence of inversion symmetry, Vns(r̂) = Vns(−r̂), only
Aqk〈rk〉 for even k can be nonzero (cf. eq. 9.2). Other point-group symmetries further reduce the number
of relevant Aqk〈rk〉.

9.2 Hard magnets and the importance of crystal-field effects

Hard-magnetic rare-earth intermetallics represent an outstanding example of the importance of crystal-
field effects for functional properties of materials. As these materials are the main focus of the present
chapter, we briefly summarize here their principal properties and introduce key quantities characterizing
the hard-magnetic behavior.

Permanent magnets are a key component of modern electronic devices, ranging from electrical motors
to medical imaging. Making a good permanent magnet, however, is more challenging than making a sim-
ple ferromagnet. Indeed, regular ferromagnets like iron have little magnetic anisotropy and spontaneously
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demagnetize under their own demagnetizing field, unless made in unwieldy shapes (e.g. needles). An
important breakthrough in the quest for high-performance permanent magnets was the discovery of rare-
earth intermetallic magnets, starting with SmCo5 in 1966[311]. Since its discovery in 1982, the champion
of hard magnets has been Nd2Fe14B[312]. Most rare-earths are expensive and strategically important,
however, so that it has become important to find alternative compositions or at least materials with a
reduced rare-earth concentration[313]. More recently, rare-earth iron-based hard magnets RFe12X with
the ThMn12 structure such as NdFe12N have been under renewed scrutiny[314–318].

The main physical ingredients for a rare-earth hard magnet are the high magnetic anisotropy energy
provided by rare-earth ions combined with the high magnetization and Curie temperature from the tran-
sition metal sub-lattice, typically composed of Fe or Co atoms[313, 319, 320]. The 3d transition metal
atoms carry little anisotropy: because of their rather small spin-orbit coupling, their magnetization direc-
tion is approximately fixed by that of the rare-earth ion through an exchange coupling. Their anisotropy is
not, in fact, completely negligible, in particular in non-cubic or distorted structures[321]. Here, however,
we rather focus on the rare-earth contribution to the anisotropy. As mentioned above, most rare-earth
elements, especially heavy rare-earth elements, are very expensive. Moreover, the magnetic moment of
heavy rare-earth is normally anti-parallel to the transition-metal one reducing the net magnetization[313].
Hence, one advantage of new compounds like RFe12X is a reduced rare-earth concentration. In turn, a
higher Fe concentration is favorable for achieving a large magnetization and Curie temperature, which is
another advantage of RFe12X compounds. However, this reduced rare-earth concentration means each
rare-earth ion must contribute a strong magnetic anisotropy to keep the overall magnetic hardness. An-
other remaining bottleneck is that RFe12X compounds are usually not stable: at least one of the Fe atoms
must be substituted by another transition metal (Ti, for instance), thus loosing some magnetization[322].
Thin films of RFe12X have, however, been obtained using epitaxial growth[317].

Additional small doping of light elements is also found to strongly modify the anisotropy by affecting
the rare-earth CF splitting [316, 323]. They also modify the structural stability: doping boron makes the
Nd2Fe14B phase more stable, while interstitial nitrogen has only a minor effect on the structural stability.

The preferred magnetization direction (in-plane or out-of-plane) of a given rare-earth ion is determined
by the interplay between the crystal-field (CF) splitting and spin-orbit (SO) interactions. To first order,
the crystalline magnetic anisotropy energy is given by:

EA ≈ K1sin2θ

where θ is the angle between the magnetization and the easy axis, and

K1 = −3J(J − 1

2
)αJA

0
2〈r2〉nR (9.7)

where J is the total angular momentum for the rare-earth 4f shell and nR the concentration of rare-earth
atoms (in atoms per volume unit).

This result of perturbation theory (where the crystal-field is the small perturbation parameter) can be
understood qualitatively in the following way[319, 324]: In trivalent rare-earths of the first or third quarter
of the 4f series (Ce3+, Pr3+, Nd3+, Tb3+, Dy3+, Ho3+), atomic eigenstates with a given orientation of the
magnetic moment are associated with an oblate (or “flat”) charge distribution (see Fig. 9.4). Conversely,
if the environment of the ion favors an anisotropic 4f charge density, this constrains the magnetization:
out-of-plane for an oblate or in-plane for an prolate (“elongated” charge distribution) distribution. The
opposite effect happens in the second and fourth quarter of the 4f series (Sm3+, Er3+, Tm3+, Yb3+).
The Stevens factor αJ encodes this, taking negative and positive values respectively for the former and
the latter ions.

Note that, because the crystal-field splitting is the smallest energy scale in this case, it leads to radically
different effects from the low to high-spin transition in transition metals (Fig. 9.3). This epitomizes how
even small effects in the electronic structure, with couplings of the order of a few meV, can have sizable
macroscopic effects and technological consequences.

This simple picture also explains why different light element dopants, depending on the charge they
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Figure 9.4 – Shape of 4f shells of different rare-earth ions, depending on the electron-count.
Sm, Er, Tm and Yb have positive αJ , in Gd αJ = 0, and it is negative in the other lanthanides.
Reproduced from Ref. [324]

take in the crystal and the nature of their (possible) bonding with the rare-earth, can have opposite
effects on the anisotropy (see Ref. [316] and section 9.5 below).

9.3 Determining the crystal-field parameters

Hereafter, when discussing CFP calculations, we focus on the particular case of rare-earth based ele-
ments (intermetallics or oxides). The same methods should not be expected to work in transition metal
compounds.

9.3.1 Calculating crystal-field parameters

Considering the importance of crystal-field splittings for the physical properties of materials, it is hardly
surprising that considerable effort was spent both by theoretical chemists and condensed matter physicists
to determine the exact values of CF parameters. The simple point charge model[309] describes, as its
name indicates, an atom surrounded by point charges representing its neighbors. If the position and
valence of the ligands are known, this is enough to determine the CF Hamiltonian. The approximation
is quite drastic since all hybridization and screening effects are neglected.

More sophisticated models have been developed and widely used since the 60’s, such as the superpo-
sition model[305] or the overlap model[325]. However, such models, which are extensively discussed in
Ref. [307], are intrinsically semi-empirical and require external information such as the ligands positions
and effective charge to give reasonable results. In other words, some experimental input is needed to
make these models work. Such experimental information is readily available for large band-gap insula-
tors, where the CFP can be extracted from measurements of dipole-forbidden optical transitions between
f -states[326]. In the case of rare-earth intermetallics, where the f−f transitions are hidden by the optical
response of conduction electrons, inelastic neutron spectroscopy can be used to determine CFP[327–331].
However, the results are more ambiguous as one needs to sort out the contributions of phonons and
the effect of inter-site exchange interactions (moreover, neutron data are usually less sharp than optical
measurements).

9.3.2 Crystal-field parameters from first principles using Density Functional
Theory

In contrast, ab initio calculations do not rely on experimental input and can have truly predictive power.
With the development of modern DFT codes since the 80’s, such calculations have been applied to com-
pute CFP[318, 332–341]. First-principles techniques for computing the CF parameters can be separated
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into two main approaches. The first one [318, 333–338] consists in extracting the nonspherical Kohn-
Sham potential Vlm and the 4f charge density ρ4f around the rare-earth site and then computing the
corresponding crystal-field parameter as

Blm ∝
∫ +∞

0

ρ4f (r)Vlm(r)r2d3r (9.8)

Since density functional theory (DFT) with usual local or semi-local exchange-correlation functionals
(LDA or GGA) is not able to fully capture the physics of partially-filled localized 4f shells, one has to
impose their localization by, for example, treating the 4f orbitals as semi-core states.

In the second more recent approach, the 4f states are represented by projective Wannier functions[340–
342], while the charge density and, correspondingly, the Kohn-Sham potential are generated by self-
consistent DFT calculations with 4f states treated as semi-core. In this case, the CFP are obtained
by fitting the projected Kohn-Sham eigenvalues. One consequence is that, similarly to band gaps in
semiconductors, a systematic error may be introduced as the (auxiliary) Kohn-Sham eigenvalues are
identified to the excitation energies of the real system. Moreover, in Ref. [341], an additional ad hoc
parameter is used to correct the charge transfer energy between 4f and conduction bands.

Overall, ab initio calculations of CFP for rare-earth ions remain a formidable theoretical problem, due
to generally small values of those CFP and their extreme sensitivity to computational details. The main
weak point of previously proposed DFT-based approaches is that they are not able to correctly treat
the localized valence 4f states. Hence, the charge density is derived under the drastic approximation of
treating them as fully localized core states, spherically-averaged inside the atomic sphere. The DFT+U
method provides a more realistic treatment for the 4f density in the limit of strong ordered magnetism.
However, it is not able to capture the true quasi-atomic (multiplet) nature of rare-earth shells in the
paramagnetic or partially-polarized state.

We note that different techniques are used in quantum chemistry, in the context of calculating crystal-
field splittings in molecules or complexes[343, 344]. While conceptually similar to techniques used in solid
state physics, their techniques cannot be directly used in periodic but infinite crystals, so we do not further
discuss them here.

9.3.3 Crystal-field parameters and the self-interaction problem

The non-spherical 4f charge density ρ4f (r) of the rare-earth ion includes an unphysical contribution
to the CFP stemming from the local-density-approximation (LDA) self-interaction error. Indeed, the
differential occupation of f orbitals and the resulting non-spherical charge density feeds back into the
Kohn-Sham potential. This is problematic, since the CFP felt by the atom should not depend on its
occupancy.

The self-interaction problem in the context of CF calculations of 4f elements was studied by Brooks
et al.[345]. The authors interpreted crystal-field excitations of the rare-earth electrons in terms of quasi-
particle excitations and proposed a constrained variational scheme to determine the spin Hamiltonian in
rare-earth compounds from LDA total energy calculations.

In CFP calculations based on Eq. 9.8, the self-interaction problem is usually corrected by spherically-
averaging the 4f charge density. In practical DFT implementations, this means approximations must be
made, for instance treating the 4f electrons as core rather than valence states, and approximating the
long-range “tails” of ρ4f (r), as discussed in Refs. [318, 339].
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9.4 Density Functional Theory + Hubbard I approach to crystal-
field parameters: eliminating the self-interaction error by
averaging over the ground state multiplet

9.4.1 Numerical approach

We propose an approach to ab initio CFP calculations based on charge self-consistent DFT+DMFT,
treating the local many-body problem for the 4f shell in the quasi-atomic (Hubbard-I) approximation
(see section 5.2.1). While this approach of using DFT+DMFT with the Hubbard I approximation, which
we may call DFT+Hub-I, is rather simple and computationally efficient, it was shown to capture not
only the 4f multiplet structure in the paramagnetic state[108, 141, 346, 347], but also the 4f–conduction
band exchange interaction and the resulting exchange splitting of the Fermi-surface[141]. Locht et al.[108]
recently benchmarked the Hubbard I approximation by studying a wide range of properties of rare-earth
metals: lattice parameters, bulk moduli, photoemission spectra, magnetic ground state properties and
intersite exchange parameters, finding good agreement with experimental data. Moreover, in the present
context of CFP calculations, this scheme provides a rather natural way of averaging the 4f partial charge
density to reduce the self-interaction error discussed in section 9.3.3 from the CF Hamiltonian.

In the Hubbard-I approximation the hybridization function is neglected and solving of the DMFT
impurity problem is reduced to the diagonalization of the atomic Hamiltonian (9.1), see section 5.2.1.
The one-electron part H1el thereof is then given by[107]

H1el = −µ+ 〈Hff 〉 − ΣDC (9.9)

where µ is the chemical potential, 〈Hff 〉 is the Kohn-Sham Hamiltonian projected to the basis of 4f
Wannier orbitals and summed over the Brillouin zone, ΣDC is the double counting correction term for
which we employ the “frozen integer” or nominal limit[107, 348], best adapted with the Hubbard I
approximation.

Self-consistent DFT+Hub-I calculations produce a non-spherical one-electron Kohn-Sham potential
(9.2), that includes several non-spherical contributions acting on 4f states: the long-range electrostatic
(Madelung) interaction, as well as the LDA exchange-correlation potential due to conduction electrons
and 4f states themselves. As mentioned in section 9.3, this last “intra-4f shell” contribution to the
exchange-correlation potential should be removed within DFT+Hub-I, since the on-site interaction HU

between 4f states is already treated within DMFT. Hence, the “intra-4f shell” contribution in the one-
electron part H1el of (9.1) due to LDA is counted twice and should be removed by a double-counting
correction. Moreover, this contribution includes the LDA self-interaction error for localized states directly
impacting CFP: for low-lying CF levels, the self-interaction error will be larger than for less occupied
excited CF states.

In order to reduce the self-interaction error from CFP we enforce uniform occupancy of all states
within the 4f ground state multiplet in our charge self-consistent DFT+Hub-I calculations. For this,
we define the imaginary-frequency atomic (Hubbard-I) Green’s function at the fermionic Matsubara
frequency ωn = (2n+ 1)πT , where T is the temperature, as follows:

Gat
mm′(iωn) =

1

M

∑
n∈GSM
n′ /∈GSM

( 〈n|fm|n′〉〈n′|f†m′ |n〉
iωn − En + En′

+
〈n′|fm|n〉〈n|f†m′ |n′〉
iωn + En − En′

)
(9.10)

where the eigenstates |γ〉 and |δ〉 with eigenenergies Eγ and Eδ are obtained by diagonalization of
Eq. ?? and belong to the ground-state multiplet (GSM) and excited multiplets respectively, a and b
label 4f orbitals, M is the degeneracy of the GSM. In other words, to obtain Eq. 9.10 we substitute the
standard Boltzmann weight Xγ = e−Eγ/T /Z, where Z is the partition function, with the uniform weight

X̃γ = 1/M for the GSM and X̃δ = 0 for exited multiplets in the spectral representation of the Green’s



124 Chapter 9. Hard magnets & Crystal-Field calculations

function 12. In practice, the degeneracy of the ground state multiplet M is chosen to be the same as for
the corresponding free ion, hence, it is given by Hund’s rules. Therefore, M = 10 for Nd and M = 6
for Sm. This leads to a spherically-averaged contribution from the 4f orbitals, both inside and outside
the rare-earth atomic sphere, while non-spherical contributions from other states are taken into account.
Conceptually speaking, our approach amounts to replacing in Eq. 9.9 the double-counting correction by
a term that enforces equal occupancy of the ground state multiplet:

H1el = −µ+ 〈Hff 〉 − ΣDC − vKS [ρspd + ρ4f ] + vKS [ρspd + ρ̄4f ] (9.11)

where vKS [ρ] is the Kohn-Sham potential (vKS = vHartree + vxc ) acting on density ρ. ρ4f designates the
projected electronic density belonging to the rare-earth’s 4f orbitals, ρ̄4f is the same density, spherically
averaged, and ρspd designates all the remaining density, belonging to all atoms’ s, p and d orbitals.

The same approach is used in the spin-polarized DFT+Hub-I calculations: in this case the exchange
splitting is also removed within the ground state multiplet. However, we found that this averaging is
not sufficient, since the value of the exchange field within our DFT+Hub-I iterations may become larger
than the inter-multiplet splitting. Hence we also remove the 4f spin polarization from the resulting
DFT+Hub-I density matrix. For a given k-point the “averaged” density matrix Ñk in the Bloch basis
reads

Ñk = Nk +
1

2
P †(k)

(
Tnff (k)T † − nff (k)

)
P (k) (9.12)

where Nk is the density matrix in the Bloch basis calculated as described in chapter 4.1, section 4.1.3 and
in Refs. [78, 86, 349]. P (k) is the projector[80, 349] between the spaces of Wannier and Bloch functions,
nff (k) is the density matrix in the Wannier basis, T is the time-reversal operator. The averaged density
matrix Ñk is then used to recalculate the electron density at the next DFT iteration as described in section
4.1.3. The contribution of 4f states to the spin density and LSDA exchange field is thus suppressed. The
resulting exchange field is due to the polarization of the transition-metal sub-lattice, as expected for rare-
earth intermetallics. In contrast, direct spin-polarized DFT+Hub-I calculations without the averaging
would lead to a large unphysical exchange field on rare-earth sites due to the magnetization density of
4f electrons themselves.

Having converged DFT+Hub-I calculations, we extract the set of parameters Lqk defined in Eq. 9.6
(or equivalently, Aqk〈rk〉), as well as Bex and λ, by a least-square fit of the ab initio Hamiltonian H1el

defined in Eq. 9.1 and obtained within DFT+Hub-I (see below).

9.4.2 Calculation details

The Wannier orbitals representing the rare-earth 4f states are constructed from the Kohn-Sham bands
within the window [−ωwin, ωwin] relative to the Fermi level. The choice of the half-window size ωwin is the
only significant parameter in our calculations. Indeed, the choice of Hubbard U and Hund’s coupling J
has limited impact on the results, as we discuss in section 9.7.1. In the results described in the following
section, we use U = 6 eV and JH = 0.85 eV (see also section 9.5.2).

In order to construct a complete orthonormal basis of Wannier orbitals one needs to choose ωwin

large enough to include at least all 4f -like Kohn-Sham bands. It is well known that Wannier orbitals
constructed with a small window leak[349] to neighboring sites due to hybridization between 4f states
and conduction band states. A larger window, on the other hand, results in more localized Wannier
orbitals consisting almost exclusively of the corresponding 4f partial waves inside the rare-earth atomic
sphere [80, 349], as discussed in sections 9.5.2 and 9.7.2 below.

In the present case of rare-earth intermetallics we find a rather weak dependence of CFP to variations
of ωwin within the reasonable range from 2 to 8 eV, see section 9.7.2. DFT+Hub-I studies of rare-earth

1We consider the case of T being much lower than the inter-multiplet splitting, hence, the contribution of excited
multiplets into the partition function Z can be neglected

2An equivalent approach would be to make the one-electron Hamiltonian that serves as an input to the Hubbard I solver
spherically symmetric: both approaches should be equivalent and nearly equally simple to implement.
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Figure 9.5 – Atom-resolved spectral function of SmCo5 obtained within self-consistent spin-
polarized DFT+Hubbard I (full lines). The two inequivalent Co types are summed to give
the total Co 3d spectral function. The occupied part of the experimental spectrum of SmCo5

(light blue from Ref. [351] and purple from Ref. [352]) and the full experimental spectrum of
metal Sm (red, from Ref. [353]) are shown for comparison in dotted lines.

wide-gap insulators show a rather strong sensitivity of calculated CFP to the window size; less-localized
small window Wannier 4f orbitals result in a better agreement with experimental CFP[350]. Hence, we
employ ωwin =2 eV in our calculations throughout.

9.5 Results and discussion

In the present section, we apply the calculation scheme derived above to the well known hard magnet
SmCo5 for the purpose of testing. Then, we use it on several materials of the RFe12X family and discuss
their magnetic anisotropy.

9.5.1 Crystal-field parameters in SmCo5

SmCo5 has been studied more extensively than other hard magnetic rare-earth intermetallics, so ample
experimental data is available in this case. In particular, several groups measured the CF parameters
using inelastic neutron diffraction[327–331]. Therefore, this compound is a good benchmark to test our
approach.

SmCo5 has tetragonal space group 91 (P4122). The unit cell contains one formula unit, with one Sm
atom and two inequivalent types of Co atoms. The lattice parameters are a = b = 4.76 Å and c = 3.70 Å,
with angles α = β = 90◦ and γ = 120◦. The crystal-field on Sm 4f in SmCo5 can be fully described with
only four CF parameters: A0

2, A0
4, A0

6, and A6
6.

The k-summed spectral function of SmCo5 is displayed in Fig. 9.5, together with experimental data
for SmCo5 and metallic Sm. The calculated CFP and exchange fields for SmCo5 are listed in Table 9.1,
together with experimental data. The calculations on SmCo5 are done at the experimental lattice con-
stants.

One may notice that the CF parameter A0
2〈r2〉 exhibits a strong dependence on the spin polarization;

it is about twice larger in the FM phase. For other CF parameters this dependence is small.
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PM FM Tils et al. Zhao et al. Givord et al. Sankar et al. Bushow et al.

↑ ↓ Ref. [331] Ref. [330] Ref. [329] Ref. [328] Ref. [327]

A0
2〈r2〉 -140 -313 -262 -326 -330 -200 -420 -180

A0
4〈r4〉 -40 -40 -55 - -45 0 25 0

A0
6〈r6〉 33 35 25 - 0 50 0 0

A6
6〈r6〉 -684 -731 -593 - 0 0 6 0

Bex (T ) - 227 260 327.5 260.5 357 298

Table 9.1 – Calculated CF parameters in ferromagnetic (FM) and paramagnetic (PM) SmCo5

in kelvin. For the FM case we list the CF parameters for each spin direction. The exchange
field in the FM phase (in tesla) is also listed. For comparison, measured values from several
groups are also shown.

Lattice constant (Å)

Compound a c

NdFe12 8.533 4.681

NdFe12N 8.521 4.883

NdFe12Li 8.668 4.873

SmFe12 8.497 4.687

SmFe12N 8.517 4.844

SmFe12Li 8.640 4.863

Table 9.2 – Conventional unit cell lattice constants used in our calculations. b = a, and the
angles are α = β = γ = 90◦

Our results for A0
2〈r2〉 are in good agreement with the experimental (rather wide) values, ranging

from about -180 to -420 K. The calculated Bex also agrees rather well with the experimental range from
260 to 360 T. One may notice that the experimental measurements were performed at room temperature,
hence, in ferromagnetic SmCo5. Also, the most recent experimental values[331] of A0

2〈r2〉 are in very
good agreement with our results for the FM phase.

The main discrepancy between our theoretical and experimental CFP lies in the large value that
we find for A6

6〈r6〉. The high-order CF parameters are usually assumed to be rather small in SmCo5.
However, as noted in Ref. [354], experimental inelastic neutron and susceptibility data are not particularly
sensitive to those high-order parameters. Hence, they are often assumed to be small from the onset and
neglected in the fitting procedure.

9.5.2 Crystal-field parameters in RFe12X

The RFe12X family (where R is a rare-earth atom and X is a small interstitial atom, e.g. N) has space
group I4/mmm, with a tetragonal primitive unit cell. The conventional unit cell, with twice the volume
and atoms, is orthorhombic. It has equivalent R sites in the corner and the center at Wyckoff position
2a, X interstitial sites between two nearest R sites on Wyckoff position 2b, and contains 24 Fe atoms
distributed on three inequivalent sites, denoted below Fe1, Fe2 and Fe3 on Wyckoff positions 8j, 8i and
8f respectively, as displayed in Fig. 9.6. Calculations are done using the theoretical lattice constants for
RFe12X, summarized in table 9.2 in the conventional unit cell (from Table II of Ref. [355], or computed
with the method therein for the X =Li compounds). The calculated lattice constants agree within 2 %
with the measured ones in the more stable NdFe11Ti(N) and SmFe11Ti(N) compounds[355].
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Figure 9.6 – Conventional unit cell of RFe12X. The rare-earth R sites are yellow, the three
types of Fe sites are grey, light and dark blue, and dopant X sites purple.

The DFT calculations are performed with spin-orbit coupling included within the second variational
approach. We employ throughout the rotationally-invariant Coulomb vertex specified by Slater integrals
F 0 = U =6.0 eV as well as F 2 =10.1 eV, F 4 =6.8 eV, and F 6 =5.0 eV corresponding to Hund’s rule
coupling JH =0.85 eV. These values of U and JH are in agreement with those in the literature[107, 108,
356]. One may notice, that while the values of U and JH are important to determine the one-electron
spectrum of a material, they are expected to have a rather small effect on the crystal-field parameters
that we consider in this work3. We discuss this dependence in section 9.7.1. DFT+Hub-I calculations
are carried out for the temperature of 290 K.

DFT and DFT + Hubbard I electronic structure of RFe12X

We first compare the electronic structure of RFe12X obtained within DFT (LSDA) and DFT+Hub-I.
A typical DFT density of states (DOS) and a DFT+Hub-I spectral function for ferromagnetic RFe12X,
namely, for NdFe12N, are shown in Fig. 9.7. The DFT DOS of Fig. 9.7(a) features a strong polarization
of the Fe 3d band. N 2p states are dispersive, with the bottom of the bands contributing to a peak in
the DOS around -6 eV. The Nd 4f band is fully spin-polarized and anti-ferromagnetically aligned to Fe
3d, with the total spin moment within the Nd atomic sphere equal to -2.77 µB , i.e. close to the Hund’s
rule value of 3 µB for the Nd3+ ion. The Nd majority-spin 4f band is pinned at the Fermi level, its
double-peak structure is due to spin-orbit splitting. This picture of 4f bands pinned at the Fermi level is
qualitatively incorrect and illustrates the difficulties of DFT with local or semi-local exchange-correlation
functionals to correctly treat strongly-interacting localized valence states.

The spin-polarized DFT+Hub-I spectral function shown in Fig. 9.7(b) was calculated using the
averaging approach described in Sec. 9.4.1. It features an almost fully polarized Fe 3d band as well as
occupied and empty 4f states separated, to first approximation, by U , thus forming lower and upper
Hubbard bands, respectively. The Hubbard bands are split due to the Hund’s rule and spin-orbit couplings
into several manifolds with characteristically sharp peaks corresponding to transitions from the ground
state to different quasi-atomic multiplets upon electron addition or removal. The 4f multiplet structure
in lanthanides is known to be only weakly sensitive to the crystalline environment. Indeed, the positions
of the Hubbard bands in Fig. 9.7(b) as well as the overall shape of the upper Hubbard band split into
two manifolds of multiplet peaks centered at about 2 and 4 eV are in agreement with photoemission and
inverse-photoemission spectra of the Nd metal[357]. One also sees that the Nd 4f states in DFT+Hub-I
are not fully spin-polarized, in contrast to the DFT case. Indeed the Nd spin moment of -1.61 µB obtained

3In rare-earth ions one typically has U � JH � λ, hence, the atomic multiplet structure is set within the LS-couping
scheme. With the crystal-field splitting in lanthanides being typically much smaller than all those energy scales one may
neglect the mixture between different multiplets, in that case CFP exhibits only very weak dependence to U and JH .
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Figure 9.7 – a. Atom- and orbital-resolved density of states of NdFe12N calculated with the
spin-polarized DFT method. b. Atom- and orbital-resolved spectral function of the same com-
pound obtained within self-consistent spin-polarized DFT+Hubbard I. For better readability
we take the average over the three types of Fe atoms: the actual total Fe density of states per
unit cell is three times larger.

within DFT+Hub-I is only about half of the Hund’s rule value and is also aligned antiferromagnetically
with respect to the spin moment on iron. The calculated Nd orbital moment is 3.40 µB . It is precisely
the crystal-field splitting of the Nd 4f shell that prevents the full saturation of the Nd magnetization.

Crystal-field parameters and exchange fields in RFe12X

In the RFe12X family, the crystal-field Hamiltonian is entirely parameterized by A0
2, A0

4, A4
4, A0

6, and A4
6.

The calculated CF and exchange fields for Nd and Sm RFe12(N,Li) compounds are listed in Table 9.3
and 9.4, together with the magnetic moments on R and in the full cell. Comparing the different materials,
one sees that RFe12 has the smallest values of A0

2〈r2〉 (in absolute value), while N insertion enhances
A0

2〈r2〉 up to positive values of about 400 to 600 K. Li insertion has the opposite effect, leading to large
negative A0

2〈r2〉, in particular for R =Nd. We notice some dependence of the CF parameters Aqk〈rk〉 on
the spin direction in the ferromagnetic phase. It is mostly weak, of the order of a few tenths of kelvin
for the most important CFP A0

2〈r2〉, except in NdFe12N. It can be significant, though, for higher-order
CFP. The magnetic state (paramagnetic or ferromagnetic) has a significant impact on A0

2〈r2〉 in some
compounds: one may notice larger values of A0

2〈r2〉 for paramagnetic SmFe12(N,Li) than for either spin
direction in the ferromagnetic phase.

Finally, the total magnetization appears to be slightly reduced in Sm compounds, compared to Nd
compounds: in the former, the spin magnetic moment on the rare-earth compensates the orbital magnetic
moment, leading to negligible total moment, while the Nd total moment is dominated by the orbital
component, and in the same direction as the Fe sub-lattice magnetization.

The sign and overall magnitude of our calculated A0
2〈r2〉 are in agreement with previous calculations

for RFe12(N) in Ref. [316] using the 4f -in-core approach, though there are some differences in the precise
values. We obtain a similar value for NdFe12, a somewhat larger one for NdFe12N, a more negative value
for SmFe12 and a smaller (positive) value for SmFe12N. One may notice that the results in Ref. [316] are
quite sensitive to different treatments of the “tails” of 4f core orbitals: there is no such uncertainty in
our approach.

Performing the averaging over the ground state multiplet as described in Eq. 9.10 is crucial to obtain
reasonable CFP: the lowest-order CFP A0

2〈r2〉 is most sensitive to this. The corresponding data without
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Table 9.3 – Calculated CF parameters in ferromagnetic (FM) and paramagnetic (PM)
NdFe12(N,Li) in kelvin. For the FM case we list the CF parameters for each spin direction.
The exchange field in the FM phase (in tesla), the spin and orbital magnetic moments of the
rare-earth as well as the total magnetic moment per crystal unit cell (in Bohr magneton µB)
are also listed.

NdFe12 NdFe12N NdFe12Li

PM FM PM FM PM FM

↑ ↓ ↑ ↓ ↑ ↓
A0

2〈r2〉 -57 -71 -116 486 477 653 -656 -687 -742

A0
4〈r4〉 -29 -5 -1 107 75 112 -182 -158 -186

A4
4〈r4〉 -129 -76 -270 7 -105 -141 -118 -60 -228

A0
6〈r6〉 52 62 54 51 32 63 -24 -17 -31

A4
6〈r6〉 70 -224 -107 -160 -65 -91 37 -6 96

Bex (T ) - 265 - 217 - 410

Nd Mspin - -1.48 µB - -1.61 µB - -1.69 µB

Nd Morb - 2.96 µB - 3.40 µB - 3.28 µB

Mcell - 26.39 µB - 29.15 µB - 27.59 µB

averaging for NdFe12N is SmCo5 are given and discussed in section 9.6.

The lowest-order CF parameters A0
2〈r2〉 and the corresponding single-ion anisotropy energies K1

evaluated using (9.7) are displayed in Fig. 9.8. One can see that, while NdFe12N and NdFe12Li exhibit
larger |A0

2〈r2〉| (upper panel) than their Sm counterparts, this difference is offset by a larger Stevens
prefactor of Sm in (9.7), so that the Sm and Nd-based compounds have a magnetic anisotropy coefficient
K1 of similar magnitude. A physically significant difference between Nd and Sm is the opposite sign of
their Stevens factors αJ (αJ = −7/1089 for Nd, αJ = 13/315 for Sm). Consequently, N insertion leads to
a large out-of-plane anisotropy for Nd, but in-plane anisotropy for Sm. Li has the opposite effect: doping
Li into SmFe12 leads to a rather large out-of-plane anisotropy of SmFe12Li, of comparable magnitude to
that of NdFe12N.

Furthermore, an interesting point is that the exchange fields Bex on the rare-earth are enhanced by Li
and reduced by N. This is interesting because the exchange field, or exchange coupling between Fe and
R, is essential for finite temperature magnetocrystalline anisotropy. The rare-earth-originated anisotropy
becomes ineffective at high temperature, and the temperature is characterized by the exchange coupling
Bex. In Fig. 9.9, we show the difference between the 4f shell atomic energies E⊥ and E‖, computed

as E = Tr[He−βH ]/Tr[e−βH ] with H defined in Eq. (9.1) and the exchange field Bex along the z and
x axis, respectively. This energy difference is more general than the expression of Eq. (9.7), because it
also contains higher order CFP, excited atomic multiplets and non-zero temperature. To compute it, we
diagonalize the full Hamiltonian H, without restricting ourselves to the ground state multiplet.

We scale the exchange field Bex by the measured[317] magnetization fraction of the iron sub-lattice
MFe(T )/MFe(0) at non-zero temperatures, using the measured magnetization ratio of NdFe12N from
Hirayama et al [317]. This gives quite a different picture than Fig. 9.8: the strongly enhanced exchange
coupling due to Li doping causes the magnetocrystalline anisotropy to persist at much higher temperatures
than with N doping.

Discussion: Wannier-functions analysis of the effect of interstitials

Let us now analyze the mechanisms determining the CFP on the rare-earth site and, in particular, the
impact of the N and Li interstitials on them. We consider the NdFe12X (X =N, Li) compounds as
an example. The N atom nominally contains three 2p electrons, but in the RFe12N compounds the N
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Table 9.4 – The same quantities as in Table 9.3 for SmFe12(N,Li).

SmFe12 SmFe12N SmFe12Li

PM FM PM FM PM FM

↑ ↓ ↑ ↓ ↑ ↓
A0

2〈r2〉 -32 -184 -211 249 195 225 -458 -297 -272

A0
4〈r4〉 -11 -21 -18 99 78 70 -116 -68 -71

A4
4〈r4〉 -215 -41 -136 -122 22 -91 -124 61 -198

A0
6〈r6〉 47 45 40 71 47 25 -13 -2 -12

A4
6〈r6〉 -85 -95 -58 -184 -97 -82 44 30 38

Bex (T ) - 232 - 205 - 331

Sm Mspin - -3.31 µB - -2.41 µB - -3.96 µB

NSmMorb - 3.29 µB - 2.35 µB - 3.60 µB

Mcell - 24.54 µB - 26.83 µB - 25.77 µB
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Figure 9.8 – Crystal-field parameters A0
2〈r2〉 (average for up and down spins in the FM phase)

and anisotropy energy K1 for RFe12X, with R=Nd,Sm and X is either empty, N or Li (K1 is
obtained from equation 9.7).
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Figure 9.9 – Evolution with temperature of the difference in the 4f shell energy E⊥−E‖ between
the moments on R and Fe aligned perpendicularly and parallel to the z axis, respectively, for
NdFe12N (blue, full line) and SmFe12Li (red, dashed line). Inset: magnetization fraction of the
Fe sublattice in NdFe12N, as a function of temperature from Hirayama et al [317].

2p bands are more than half-filled (Fig. 9.7). To verify this we have also performed a Bader charge-
analysis[358] (a technique that allows to attribute the charge density to a given atom in molecules or
crystals in a more physically meaningful way than the LAPW atomic spheres) for NdFe12X and found
8.3 electrons on N resulting in an ion charge of -1.3. In contrast, the Li atom is nominally 2s1, but it
looses its single 2s electron inside the NdFe12 matrix, the corresponding Bader ion charge is +0.7.

In Fig. 9.10 we display the complex Wannier orbitals constructed for Nd 4f states (see Eq. 4.9)
with window size ωwin = 2 eV with magnetic quantum numbers m = 0 and m = −3, in the presence of
interstitial N or Li. The orbitals with m = ±3 do not point towards the N or Li atom, and leak only to
neighboring Fe atoms. On the other hand, the orbital with m = 0 (corresponding to fz3 cubic orbital)
points towards the interstitial site, and shows strong leakage to the interstitial atom, particularly in the
Li case. The same applies, to a lesser extent, to the orbitals m = ±1 that are also pointing towards the
interstitials.

The N (Li) insertion has thus two effects on the CFP. The first one is due to the electrostatic interaction
between the 4f electrons and the interstitial ions. This interaction with the negative N (positive Li) ion
pushes the on-site energies of the m = −1, 0, 1 orbitals, which point towards the interstitial, to higher
(lower) energies.

The second contribution is due to hybridization between the 4f states and the N 2p (Li 2s and 2p)
bands, which is expected to mainly affect the m = −1, 0, 1 orbitals pointing towards the interstitial.
Mixing with the empty Li 2s and 2p bands pushes them to lower energies, while the opposite shift is
induced due to hybridization with mostly filled N 2p located well below rare-earth 4f states, see Fig. 9.7.
Hence, one sees that both the electrostatic and hybridization effects act in the same direction, raising the
on-site energies of the m = −1, 0, 1 orbitals in the case of N and lowering them in the case of Li.

This analysis explains the effect of interstitials on the CFP A0
2〈r2〉. Indeed, the contribution due to

A0
2〈r2〉 into the CF Hamiltonian 9.6 is A0

2〈r2〉T̂ 0
2 /λ

0
2, where the matrix of the one-electron operator T̂ 0

2 /λ
0
2
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(a) NdFe12N, m = −3 (b) NdFe12N, m = 0

(c) NdFe12Li, m = −3 (d) NdFe12Li, m = 0

Figure 9.10 – 4f Wannier orbitals of NdFe12N and NdFe12Li, for magnetic quantum number
m = −3 and m = 0 and window size [−2, 2] eV. The orbital with m = 0 points towards and
leak to the N or Li sites, while orbitals with m = ±3 do not. All of them leak somewhat
to the nearest-neighbor Fe atoms. The Wannier functions are constructed using the dmftproj
program[359], their real-space representations are generated with the help of the wplot program
from the wien2wannier[360] package. Plots are produced using XCrysDen[222].
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in the basis of complex 4f orbitals. Hence, the energy level of 4f orbitals m = ±3 is negatively correlated
with A0

2〈r2〉, while the energy levels of the orbitals with m = −1, 0, 1 are positively correlated with A0
2〈r2〉

(orbitals with m = ±2 are unaffected by Ôml ). Thus, the effect of N (Li) insertion is to enhance (reduce)
the value of A0

2〈r2〉.
One may argue that the Hubbard-I approximation neglects the hybridization function in solving

the quantum impurity problem, hence, dynamical hybridization to the bath is not included explicitly
when solving for the self-energy Σ in the DMFT (Hubbard-I) step of our DFT+Hub-I calculations.
However, our Wannier orbitals constructed within the “small” energy window do contain the effect of
static hybridization implicitly, which is evidenced by their “leakage” to neighboring sites due to mixing
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Figure 9.11 – a) Projected spectral functions ρ0σ
αl (ω) for the 4f orbital with m =0 in NdFe12Li,

where the atom α and shell l are given in the legend. The magnitude ρmσαl (ω) indicates the
amount of admixture of the character αl into a given 4f orbital, for its precise formulation see
Appendix C. b) The same for the 4f orbital m =3.

of rare-earth 4f states with Fe 3d, N 2p and Li 2s bands. The real-space Wannier functions of Fig. 9.10
thus represent a convenient visualization of hybridization between rare-earth and other orbitals. In order
to quantify the amount of this admixture of the conduction band states we also expand those extended
small-window Wannier orbitals |wσm(k)〉 in the basis of localized Wannier functions |w̃ασ′lm′ (k)〉 (labeled
by spin σ′, orbital l and magnetic m′ quantum numbers, as well as atomic site α) constructed within a
large energy window for all relevant bands. We derive the corresponding projection operators relating
|wσm(k)〉 and |w̃ασ′lm′ (k)〉 in Appendix C. We employ it to extract the corresponding contribution ρ̃m

′σ
αl (ω)

of the shell l (with l 6= 4f) on the site α into the spectral function of the “small-window” 4f orbital with
indices σm.

The comparison of ρmσαl for the orbital m = 0 and m = 3 are shown in Figs. 9.12 and 9.11 for NdFe12Li
and NdFe12N, respectively. One may notice in Fig.9.11(a) that Nd fz3 (m = 0) in NdFe12Li exhibits a
strong hybridization with Li 2s and 2p; their contribution is significantly larger than the admixture of Fe
3d states. We further observe that spin up states are hybridizing more strongly than spin down states.

In contrast, in the same compound for m = 3 (Fig.9.11(b)), there is a peak of hybridization with
Fe states but barely any with the Li 2s and 2p ones. The same difference, but much less pronounced,
is noticeable in the case of NdFe12N, see Fig.9.12. Hence, one may conclude that the effect of the
hybridization with the interstitial on the CF is much larger for Li than for N. In the latter case the
electrostatic shift due to the negative charge on N seems to play the leading role.

9.6 Importance of the charge averaging

In this section, we explicitly demonstrate the effect of averaging of 4f charge density (eq. 9.10) by
comparing the CFP calculated with and without this averaging (but in both cases the 4f magnetic
density is suppressed following Eq. 9.12) in two materials, NdFe12N and SmCo5, that are known to have
an out-of-plane magnetic anisotropy.

The corresponding values are displayed in Table 9.5. One sees that the difference is largest for the
lowest-order CFP A0

2〈r2〉, where calculations without averaging lead to the wrong sign with respect to
experiment (suggesting in-plane anisotropy in both cases). Hence, the proper averaging of 4f charge
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Figure 9.12 – a) Projected spectral functions ρ0σ
αl (ω) for the 4f orbital with m =0 in NdFe12N.

For the notation see caption of Fig. 9.11. b) The same for the 4f orbital m =3, ρ3σ
αl (ω)

Table 9.5 – crystal-field parameters and exchange field in NdFe12N and SmCo5 in the ferromagnetic
phase, calculated with and without averaging over the ground state multiplet.

NdFe12N SmCo5

with without with without

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
A0

2〈r2〉 477 653 -190 26 -313 -262 278 331

A0
4〈r4〉 75 112 30 82 -40 -55 -30 -37

A4
4〈r4〉 -105 -141 -65 -124 0 -0 0 0

A0
6〈r6〉 32 63 27 64 35 25 38 25

A4
6〈r6〉 -65 -91 -61 -112 0 0 0 0

A6
6〈r6〉 0 -0 0 0 -731 -593 -945 -806

Bex (T ) 217 206 227 235

density is crucial for a correct description of the single-ion anisotropy. For the higher order terms the
difference between two approaches is smaller. This suggests that the self-interaction contribution in the
CFP has predominantly l = 2 symmetry.

9.7 Crystal-field parameters from Density Functional Theory +
Hubbard I approximation: sensitivity to the parameters

In this last section, we discuss the importance of the calculation parameters, namely the Coulomb pa-
rameters U and JH and the window size ωwin.

9.7.1 Dependence of the results on Coulomb U and Hund’s JH

To perform DFT+DMFT calculations, we have to choose a value for the on-site screened Coulomb
interaction parameter U and for the Hund’s coupling parameter JH . Several methods have been developed
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Figure 9.13 – CFP A0
2〈r2〉 in NdFe12N as a function of U for JH = 0.85 eV (left-hand panel),

and as a function of JH for U = 6 eV (right-hand panel). Our reference values are (U = 6 eV,
JH = 0.85 eV).

in order to compute those parameters from first principles, most notably the constrained local density
approximation[112] and, more recently, the constrained random phase approximation[116].

In the present work, however, we do not attempt a first principles determination. We use U = 6 eV
and JH = 0.85 eV because these values have given satisfactory results in other calculations on rare-
earth materials[107, 108]. They are also in line with reported values calculated from first principles[356].
Nevertheless, it is preferable that results obtained by our calculation scheme do not depend too strongly
on the value of U and JH . In Fig. 9.13, we show that the dependence of the CFP A0

2〈r2〉 in NdFe12N is
very moderate, as long as values reasonably close to our reference values are used.

Furthermore, we observe that smaller values of U lead to slightly larger values of A0
2〈r2〉: this is not

surprising if we keep in mind that a large U is favorable to a strong localization of the 4f electrons, hence
to a weaker coupling to the crystal-field. Conversely, a small JH favors a stronger orbital polarization
and more localized character, and leads to smaller CFP.

9.7.2 Dependence of the results on the window size

Another important parameter of our calculations is the size of the window around the Fermi level that
we use to construct the 4f Wannier functions. In Fig. 9.14 we compare the Wannier orbitals constructed
for the same orbital m = 0 in NdFe12Li for two different window sizes: a small window with ωwin = 2 eV,
and a large one with ωwin = 20 eV. For the large window, the Wannier orbital (WO) takes essentially
pure Nd 4f orbital character, while the small-window WO leaks significantly to neighboring sites, in
particular, to Li.

The effect of the window size on the CF parameters is shown more quantitatively in Fig. 9.15, which
displays those parameters computed for several window choices [−ωwin, ωwin] for different materials. The
smallest window size of ωwin =2 eV is required to enclose all the 4f -like bands, increasing it to 4 eV
includes most of the Fe states and part of the N or Li states inside the window. The largest size of 20
eV gives Wannier functions with essentially pure orbital character. One may notice a relatively mild
dependence of the CFP on the choice of the window up to ωwin =8 eV.

9.8 Conclusion

In conclusion, we propose a novel first-principles approach for calculating crystal and exchange fields in
rare-earth systems. This approach is formulated within the DFT+DMFT framework with local correla-
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(a) [−20, 20] eV window (b) [−2, 2] eV window

Figure 9.14 – NdFe12Li 4f Wannier orbital m = 0 constructed with a large window [−20, 20] eV
(left) and a small window [−2, 2] eV (right). The use of a large window essentially removes all
hybridization between the rare-earth and neighboring atoms.
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Figure 9.15 – CFP A0
2〈r2〉 as a function of window size ωwin for NdFe12, NdFe12N and NdFe12Li
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tions on the rare-earth 4f shell treated within the quasi-atomic Hubbard-I approximation. The 4f states
are represented by Wannier functions constructed from a narrow energy range of Kohn-Sham states of
mainly 4f character. We employ a charge-density averaging that suppresses the contribution due to the
self-interaction of the 4f orbitals to the one-electron Kohn-Sham potential. We thus reduce the effect of
this unphysical self-interaction from the crystal-field splitting, while keeping non-spherical contributions
to CFP from other bands. Similarly, by removing the contribution due to the 4f magnetic density from
the exchange-correlation potential we suppress its unphysical contribution to the exchange field at the
rare-earth site.

Our ab initio scheme reproduces the measured crystal-field parameters in the well-known hard magnet
SmCo5. We subsequently applied it to prospective rare-earth hard magnetic intermetallics of the RFe12X
family (where R =Nd, Sm and X can be N, Li or vacancy). Our calculations reproduce the strong out-of-
plane anisotropy of NdFe12N due to a large positive value of the key CFP A0

2〈r2〉 induced by insertion of
N. Interestingly, we find that interstitial Li has a strong opposite effect, leading to a large negative value
of A0

2〈r2〉. We thus predict a strong out-of-plane anisotropy in the hypothetical compound SmFe12Li.
We also find the anisotropy in SmFe12Li to persist to higher temperatures as compared to NdFe12N.
Hence, Sm-based compounds may represent interesting candidates for hard-magnetic applications. Of
course, the thermodynamic stability of SmFe12Li and technological feasibility of Li doping still need to
be demonstrated by future studies.

We analyzed the effect of N and Li interstitials on A0
2〈r2〉 by evaluating the Bader charges as well as

by studying the leakage of 4f Wannier orbitals to interstitial sites and quantifying the 4f hybridization
with N 2p and Li 2s states. This analysis demonstrates the importance of hybridization effects when
computing CFP.

Extensions of the present approach beyond the Hubbard-I approximation are promising for appli-
cations to other rare-earth intermetallics. In particular, a similar DFT+DMFT technique suppressing
subtle self-interaction and double-counting contributions to the Kohn-Sham potential might be necessary
to study, for example, the impact of a spin-polarized transition-metal sub-lattice on heavy-fermion be-
havior in Yb-based intermetallics[361, 362]. In Ce-based compounds, too, extensions beyond Hubbard I
may be required, since Ce 4f electrons tend to have more itinerant character than in rare-earths closer
to half-filling.
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Chapter 10

Conclusions and Outlook

This thesis has dealt with the problem of calculating the electronic structure of correlated materials. The
emphasis has been on “realistic material” calculations from first principles, rather than simple model
Hamiltonians like variations of the Hubbard model. This is not to underestimate the usefulness and
power of model calculations: model Hamiltonians are and will certainly remain an indispensable tool of
solid state physics.

Over the last few years, the number of publicly available software libraries or codes for combining “all
electron” electronic structure calculations (such as Density Functional Theory (DFT) or many-body per-
turbation theory) with more powerful many-body theories going beyond the band picture or perturbation
theory (in particular Dynamical Mean-Field Theory, or DMFT) has been steadily increasing. We believe
this has significantly lowered the threshold for using such methods, making them more mainstream to
study from first principles materials that are known to push DFT to its limits. This development is all
the better, for if the second half of the previous century has been dubbed the “age of silicon”, we are
probably entering the age of oxides (for all its promises, the age of graphene is not quite here yet). Oxides,
in turn, are precisely an important class of materials where strong electronic correlations are possible (at
least, those that are not natural band insulators).

Though they are becoming more routine, calculations coupling electronic structure codes and many-
body techniques (like DFT+DMFT) remain challenging, both from a conceptual and practical point
of view. Conceptually, the art of defining low-energy models that consistently integrate out the high-
energy dynamics and the motion of valence and core electrons, crudely introduced with the first DFT+U
calculations, is still in the process of being refined, and indeed probably still has much way to go. To
cite but a few examples, the problems of band alignments (or relative positions of orbitals treated within
DMFT), the related problem of the double-counting of interactions, the screened Coulomb interactions
(and dynamics thereof), non-local interactions and correlations are still difficult ones. The conceptually
more exact methods, like GW + extended DMFT (GW+EDMFT), are still a long way from being used
routinely on many-orbital systems, at least without simplifying approximations. From a more practical
point of view, DFT+DMFT (or similar) calculations are still not always performed “from first principles”.
Methods have been devised to estimate the parameters, such as the Coulomb interaction parameter U
or Hund’s coupling JH , from ab initio electronic structure calculations. Nevertheless, such calculations
still require more physical insight from the physicist and fine-tuning of parameters than simple DFT
calculations.

In the present manuscript, we have first given an introduction to electronic structure theories, to
many-body techniques for strongly interacting electrons, and more importantly to methods that combine
both approaches.

In the second part, we have studied from a methodological point of view a simplification to the
GW+EDMFT method, dubbed Screened Exchange+DMFT, that contains non-local screened Fock ex-
change and dynamical local Coulomb interactions in the impurity model. We discuss this as an extension
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of a screened exchange generalized Kohn-Sham scheme, and analyse what happens in the limit of a full
d shell, where the correlation effects usually obtained in DMFT are expected to be small. We find that
the inclusion of non-local exchange partly corrects the position of the filled d states, probably by reduc-
ing the self-interaction error. Band renormalization effects due to dynamical screening, present in the
GW approximation, are also found to be important. It would be interesting to continue benchmarking
the Screened Exchange+DMFT techniques on different materials: oxides, metals, strongly correlated or
not. It would also be useful to go beyond using a Yukawa potential to calculate the Screened Exchange
part, and to investigate more general static screened Coulomb potentials, computed in the random phase
approximation.

In the third and last part of this thesis, we have studied from first principles three types of materials
of technological interest.

First, we used charge self-consistent DFT+DMFT calculations within supercells to evaluate the for-
mation energy of monovacancies in paramagnetic α-Fe. We directly calculated the vacancy formation
energy in this phase that is poorly described by standard DFT but is well captured within DFT+DMFT
and in which the measurements are possible. Being the high-temperature phase, it is also the phase where
vacancies are more likely to be present, and where the experimental estimates for their concentrations
are the most reliable. Monovacancies are the simplest of point defects, so a next step would be to use a
similar method to study more complex properties of point defects: for instance the formation energy of
bivacancies, or the migration energy of monovacancies. Doing so may require additional simplifications
in the scheme. In the case of monovacancies, it was found that the self-energy on atoms further from
the vacancy than the second nearest neighbors was almost equal to the one in the perfect lattice. Hence
it is probably not necessary to treat independently all the atoms that are nominally inequivalent in the
supercell, potentially reducing the computational cost.

Next, we have studied the metal to insulator transition in the metastable B phase of VO2. We found
that during this transition, where half the V atoms present in the cell form dimers in the low-temperature
phase, two effects contribute to the metal to insulator transition. The dimerized V atoms form a bonding
state lowered in energy by the on-site Coulomb interaction, leading to a band insulator-like behavior.
The remaining V atoms, that are expected to have metallic behavior within DFT, but have reduced
hopping possibilities at the Fermi level due to the dimerization of their neighbors, undergo a standard
Mott transition. The phase transition of VO2 (B) is, in that sense, similar to the rutile to M2 transition
that is observed under uniaxial pressure or Cr doping. Motivated by recent experimental findings about
oxygen vacancies in VO2 and about the contribution of oxygen vacancies to the spectral properties of
SrVO3, we study within DFT some properties of oxygen vacancies in VO2. We find that, out of the
possible inequivalent positions where an oxygen vacancy can form in VO2 (B), the preferred ones are
located along the c axis. When such a vacancy is created, the eg state that most hybridizes with the
oxygen states on that site is pulled down in energy, forming a localized state with about 1 eV binding
energy. With experimental data available so far on VO2 (B), it is difficult to confirm or rule out the
presence of such vacancies.

Finally, we have devised a scheme allowing to calculate the crystal field parameters in rare earth
compounds with a precision of a few meV. Our method combines DFT with an atomic (or Hubbard I)
approximation to DMFT,which describes the electronic density of the 4f shell better than standard DFT
with local or semi-local functionals. Enforcing equal occupancy of the states within the ground state
4f multiplet, which is equivalent to using a modified double-counting correction, allows us to enforce
a spherically symmetric 4f partial charge density, thus avoiding a well-known self-interaction error in
the crystal field Hamiltonian. Our method is able, to a certain extent, to capture hybridization effects
in contrast with most methods designed so far, where the 4f electrons are treated like core states in
DFT. We benchmark this scheme on the well-known hard magnet compound SmCo5 and then study
some properties of the RFe12X intermetallics, where R is a rare earth atom (here, Nd or Sm) and X
an empty site or a dopant. We study the cases X = N and the more hypothetical X = Li, in order
to better understand how the electron-count of the light atom influences the crystal field on the rare
earth. This work is aimed to contribute to an ongoing research effort for finding better (or leaner) hard
magnetic materials. From a methodological point of view, it would be interesting to confirm the heuristic
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observation that Wannier functions constructed in a small energy window, hence not too localized, lead
to the best predictions of crystal field parameters.
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Appendix A

Conventions

A.1 Notations

A.1.1 Time and space variables

• t denotes the real time variable and τ denotes the imaginary time variable

• β denotes the inverse temperature, β =
1

kBT

• r denotes a (vector) space variable

• k denotes a (vector) momentum or crystal momentum variable

• ω denotes the real-axis frequency variable

• iωn = i
(2n+ 1)π

β
denotes a fermionic imaginary-axis (or Matsubara) frequency

• iΩn = i
2nπ

β
denotes a bosonic imaginary-axis (or Matsubara) frequency

A.1.2 Operators and others

• H denotes a Hamiltonian

• S or S denotes an action

• Ψ denotes a many-body wave function

• ψ denotes a one-particle wave function

• In a Hamiltonian, c† and c denote respectively a second-quantization creation and annihilation
operator

• In an action, c† and c denote conjugate Grassmann variables

• A[B] means a quantity A is a functional of B

• σ denotes an electron spin (↑ or ↓), and σ̄ the opposite spin of σ
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A.1.3 Units

• Except in the introductory chapter 1, we use a unit system where ~ = me = e2 = 4πε0 = 1

• All units are in electron-volts (eV)

A.2 Fourier transformations

A.2.1 Time-frequency domain

The direct and inverse Fourier transforms in real time and frequency are defined by

f(ω) =

∫ +∞

−∞
dteiωtf(t)

f(t) =

∫ +∞

−∞
dωe−iωtf(ω)

(A.1)

For an imaginary time β-periodic or β-antiperiodic function f(τ) and its corresponding Matsubara
representation f(iωn), where iωn is a fermionic or a bosonic Matsubara frequency:

f(iωn) =

∫ β

0

dτeiωnτf(τ)

f(τ) =
1

β

∞∑
−∞

e−iωnτf(iωn)

(A.2)

A.2.2 Space-momentum domain

In the continuum, in a crystal of volume Ω with a periodic potential, the Fourier transform is defined as

f(k + G) =

∫
Ω

f(r)e−i(k+G).r

f(r) =
1

Ω

∑
k,G

f(k + G)ei(k+G).r
(A.3)

where G is a vector of the reciprocal lattice and k belongs to the first Brillouin zone.



Appendix B

Green’s functions

B.1 Definitions

Here, we remind the reader of a few useful formulas regarding Green’s functions. For a more complete
description, see for instance the textbook on many-body physics by Bruus and Flensberg[363]. The
Green’s function of a many-body system is a propagator, encoding the probability of finding at time t2
and point r2 a particle created at time t1 and point r1.

B.1.1 Real-time Green’s functions

The real-time retarded Green’s function is defined as

GR(rσt, r′σ′t′) = −θ(t′ − t)〈[Ψ(rσt),Ψ†(r′σ′t′)]±〉 (B.1)

where Ψ†(rσt)r and Ψ(rσt) are the particle creation and annihilation operators in the continuum, and
[A,B]± denotes the commutator or anti-commutator for bosonic or fermionic quantities A and B, re-
spectively. θ(t) is the Heavyside step function, equal to 0 when t < 0 and 1 when t ≥ 0. 〈A〉 denotes the
average value of a quantity A, computed using the full Hamiltonian of the system.

The Fourier transform of GR(rσt, r′σ′t′) is GR(kσω,k′σ′ω′). For a system invariant by translation in
space and time variables, and without spin-flip terms in the many-body Hamiltonian, this can simply be
written GR(k, σ, ω).

By introducing a complete set of states
∑
n |n〉〈n| = Id into Eq. B.1, we obtain the Lehmann repre-

sentation:

GR(k, ω) =
1

Z

∑
nn′

〈n|ck|n′〉〈n′|c†k|n〉
ω + En − En′ + iη

(e−βEn + e−βEn′ ) (B.2)

where iη is an infinitesimal imaginary shift and Z the partition function of the system with N particles.
In particular at zero temperature, either n or n′ must be the ground state of the system, so that

GR(k, ω) =
∑

A(N+1)

〈Ψ0|ck|ΨN+1
A 〉〈ΨN+1

A |c†k|Ψ0〉
ω + (EN+1

A − E0) + iη

+
∑

B(N−1)

〈ΨN−1
B |ck|Ψ0〉〈Ψ0|c†k|ΨN−1

B 〉
ω + (E0 − EN−1

B ) + iη

(B.3)

where ΨN+1
A is a many-body eigenstate with N −1 particles, ΨN−1

B is a many-body eigenstate with N −1
particles and Ψ0 is the ground state wave function (with N particles).
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The spectral function is defined by

A(k, ω) = − 1

π
ImG(k, ω) (B.4)

Since the imaginary part of 1/(ω+ iη) is −πδ(ω), taking the spectral function derived from Eq. B.3 gives
a sum of delta peaks corresponding to one-particle addition (positive ω) or removal (negative ω), with
amplitudes given by the matrix elements.

B.1.2 Matsubara Green’s functions

The Matsubara (or imaginary time / frequency) Green’s function is convenient for calculations at finite
temperature. The expression of the Matsubara Green’s function is similar to that of Eq. B.1:

GR(rστ, r′σ′τ ′) = −〈T Ψ(rστ),Ψ†(r′σ′τ ′)〉 (B.5)

where T is the imaginary time-ordering operator, that orders later times to the left. The corresponding
Lehmann representation is

GR(k, iωn) =
1

Z

∑
nn′

〈n|ck|n′〉〈n′|c†k|n〉
iωn + En − En′

(e−βEn + e−βEn′ ) (B.6)

B.2 The self-energy

For a one-particle Hamiltonian H0(k), the expression of the Green’s function is simply obtained as

G0(k, iωn) = [iωn −H0(k)]
−1

(B.7)

(and analogously for the real-frequency Green’s function)

If an additional many-body term is present in the Hamiltonian, a self-energy Σ(k, iωn), that behaves
like a dynamical potential, can be introduced that encodes the effect of correlations in the system:

G(k, iωn) = [iωn −H0(k)− Σ(k, iωn)]−1

= [G0(k, iωn)−1 − Σ(k, iωn)]−1
(B.8)

This is one of several ways to write the famous Dyson equation. Another usual form is

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + ...

= G0 +G0Σ(G0 +G0ΣG0 + ...)

G = G0 +G0ΣG

(B.9)



Appendix C

Projection of extended Wannier
orbitals to localized Wannier basis

In this appendix, we derive the projection operator between localized and extended Wannier spaces
used in chapter 9, section 9.5. Consistently with that chapter, we consider here the case of correlated 4f
orbitals treated within DFT+DMFT. This is simply in order to simplify the notations: the same relations
hold for Wannier functions with different orbital character. This derivation can be seen as an extension
of the ideas developed in section 4.1.1 and Ref. [80] about the DFT+DMFT projection scheme.

A set of Wannier-like functions |w̃ασlm (k)〉 is constructed for an atom α of the unit cell and quantum
numbers (lmσ) as a combinations of Kohn-Sham Bloch waves for a range of bands within the chosen
energy window W̃:

|w̃ασlm (k)〉 =
∑
ν∈W̃

P̃ασlmν(k)|φkν〉 (C.1)

where φkν are the Bloch functions and P̃ασlmν(k) is the corresponding matrix element of the projector
constructed as described in Refs. [79, 80]. The corresponding real-space Wannier functions are then
obtained by a Fourier transformation

w̃ασlm (r) =
∑
k

e−ik.r|w̃ασlm (k)〉 (C.2)

We assume that the window W̃ in (C.1) is large, i.e. that it includes both rare earth 4f states and
all relevant valence bands that are expected to hybridize with them. In result, with such a large-window
construction one obtains a set of mutually-orthogonal and rather well localized Wannier orbtials (WO).
In particular, the large-window 4f WOs w̃ασlm (r) almost do not leak onto neighboring sites, as discussed
in the previous section, see Fig. 9.14(a). If one constructs as many WOs as the number of Kohn-Sham
bands within W̃ then the projection operator P̃ (k) is just a unitary transformation, hence, (C.1) can be
inverted

|φkν〉 ≈
∑
ασlm

[
P̃ασlmν(k)

]∗
|w̃ασlm (k)〉 (C.3)

where the equality is approximate because high-energy empty bands usually cross and, hence, one cannot
generally chose such a window as to have the same number of bands for all k-points. However, those
high-energy states are far from the relevant region close to the Fermi level, and if one applies (C.3) to the
bands within a small window W around the the Fermi energy the resulting small non-unitarity of P (k)
can be neglected.

Alternatively, one may construct 4f Wannier orbitals from the bands within that small window W
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enclosing mainly 4f -like Kohn-Sham bands:

|wσm(k)〉 =
∑
ν∈W

Pσmν(k)|φkν〉 (C.4)

where 4f WOs are constructed for the single rare earth site in the unit cell for the compounds under
consideration. Hence, the site and l labels are suppressed in |wσm(k)〉. The resulting small-window WOs
are rather extended in real space, as one sees in Figs. 9.10 and 9.14(b).

Inserting the expansion (C.3) of the KS states |φkν〉 into (C.4) one obtains

|wσm(k)〉 =
∑
ν∈W

∑
lm′σ′

Pσmν(k)
[
P̃ασ

′

lm′ν(k)
]∗
w̃ασ

′

lm′ (k)〉

=
∑

ασ′lm′

Uσ,ασ
′

m,lm′(k)w̃ασ
′

lm′ (k)〉 (C.5)

where

Uσ,ασ
′

m,l′m′(k) =
∑
ν∈W

Pσmν(k)
[
P̃ασ

′

lm′ν(k)
]∗

(C.6)

We use these projectors Uσ,ασ
′

m,l′m′(k) to project the 4f spectral function computed in the small-window
WO basis on large-window localized WOs representing the other valence and conduction states.Namely,
having obtained the real-axis lattice Green’s function in the small-window Wannier basis for the orbital
(σm) of the 4f shell, Gmσ(k, ω + iδ), as well as the corresponding partial spectral function ρmσ(ω) =
− 1
π ImGmσ(k, ω + iδ), we compute the different orbital contributions into it as follows:

ρ̃mσαl (ω) = − 1

π
Im
∑
k

∑
m′σ′

[
Uσ,ασ

′

m,lm′(k)
]∗
×Gmσ(k, ω + iδ)Uσ,ασ

′

m,lm′(k) (C.7)

where ρ̃mσαl (ω) is the fraction of the 4f spectral function of orbital index (σm) with the character (αl).
Using (C.3) and the orthonormality of small-window WOs

〈wσm(k)|wσ′m′(k)〉 = δmm′δσσ′ =
∑
ν

[Pσmν(k)]
∗
Pσ
′

m′ν(k)

one may easily show the completeness of the expansion (C.7)∑
αl

ρ̃mσαl (ω) = ρmσ(ω)
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Le Fèvre. “Engineering two-dimensional electron gases at the (001) and (101) surfaces of TiO2

anatase using light”. In: Physical Review B 92 (4 2015), p. 041106.

[291] C. Lin, C. Mitra, and A. A. Demkov. “Orbital ordering under reduced symmetry in transition
metal perovskites: oxygen vacancy in SrTiO3”. In: Physical Review B 86 (16 2012), p. 161102.

[292] H. O. Jeschke, J. Shen, and R. Valent́ı. “Localized versus itinerant states created by multiple
oxygen vacancies in SrTiO3”. In: New Journal of Physics 17.2 (2015), p. 023034.

[293] M. Altmeyer, H. O. Jeschke, O. Hijano-Cubelos, C. Martins, F. Lechermann, K. Koepernik, A. F.
Santander-Syro, M. J. Rozenberg, R. Valent́ı, and M. Gabay. “Magnetism, spin texture, and in-
gap states: atomic specialization at the surface of oxygen-deficient SrTiO3”. In: Physical Review
Letters 116 (15 2016), p. 157203.

[294] P. Delange, S. Biermann, T. Miyake, and L. Pourovskii. “Crystal-field splittings in rare-earth-based
hard magnets: an ab initio approach”. In: Phys. Rev. B 96 (15 2017), p. 155132.

[295] E. Pavarini. Crystal-field theory, tight-binding method and Jahn-Teller effect. 2012.

[296] H. Bethe. “Termaufspaltung in Kristallen”. In: Annalen der Physik 395.2 (1929), pp. 133–208.

[297] J. H. Van Vleck. “Theory of the variations in paramagnetic anisotropy among different salts of
the iron group”. In: Physical Review 41 (2 1932), pp. 208–215.

[298] C. J. Ballhausen. Ligand field theory. Vol. 241. McGraw-Hill, New York, 1962.

[299] T. Demiray, D. Nath, and F. Hummel. “Zircon-vanadium blue pigment”. In: Journal of the Amer-
ican Ceramic Society 53.1 (1970), pp. 1–4.

[300] M Dondi, G Cruciani, G Guarini, F Matteucci, and M Raimondo. “The role of counterions (Mo,
Nb, Sb, W) in Cr-, Mn-, Ni-and V-doped rutile ceramic pigments: part 2. colour and technological
properties”. In: Ceramics international 32.4 (2006), pp. 393–405.

[301] B. Henderson and R. H. Bartram. Crystal-field engineering of solid-state laser materials. Vol. 25.
Cambridge University Press, 2005.

[302] F. Hund. “Zur Deutung der Molekelspektren. I”. In: Zeitschrift für Physik 40.10 (1927), pp. 742–
764.

[303] F. Hund. “Zur Deutung der Molekelspektren. II”. In: Zeitschrift für Physik 42.2 (1927), pp. 93–
120.

[304] M. Korotin, S. Y. Ezhov, I. Solovyev, V. Anisimov, D. Khomskii, and G. Sawatzky. “Intermediate-
spin state and properties of LaCoO3”. In: Physical Review B 54.8 (1996), p. 5309.

[305] D. J. Newman and B. Ng. “The superposition model of crystal fields”. In: Reports on Progress in
Physics 52.6 (1989), p. 699.

[306] J. Mulak and Z. Gajek. The effective crystal field potential. Elsevier, 2000.

[307] D. J. Newman and B. Ng. Crystal field handbook. Cambridge University Press, 2007.

[308] K. Stevens. “Matrix elements and operator equivalents connected with the magnetic properties of
rare earth ions”. In: Proceedings of the Physical Society. Section A 65.3 (1952), p. 209.

[309] M. T. Hutchings. “Point-charge calculations of energy levels of magnetic ions in crystalline electric
fields”. In: Solid state physics 16 (1964), pp. 227–273.

[310] B. G. Wybourne and W. F. Meggers. Spectroscopic properties of rare earths. 1965.

[311] K Strnat. “The recent development of permanent magnet materials containing rare earth metals”.
In: IEEE Transactions on Magnetics 6.2 (1970), pp. 182–190.

[312] J. Herbst. “R2Fe14B materials: Intrinsic properties and technological aspects”. In: Reviews of
Modern Physics 63.4 (1991), p. 819.

[313] J. Coey. “Hard magnetic materials: a perspective”. In: IEEE Transactions on Magnetics 47.12
(2011), pp. 4671–4681.



Bibliography 167
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Large effects of subtle electronic correlations on the energetics of vacancies in α-Fe
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We study the effect of electronic Coulomb correlations on the vacancy formation energy in paramagnetic
α-Fe within ab initio dynamical mean-field theory. The calculated value for the formation energy is substantially
lower than in standard density-functional calculations and in excellent agreement with experiment. The reduction
is caused by an enhancement of electronic correlations at the nearest neighbors of the vacancy. This effect is
explained by subtle changes in the corresponding spectral function of the d electrons. The local lattice relaxations
around the vacancy are substantially increased by many-body effects.

DOI: 10.1103/PhysRevB.94.100102

Point defects, such as vacancies, play an important role
for the mechanical and thermodynamic properties of materi-
als [1]. However, the experimental determination of vacancy
formation or migration energies is difficult. Even the best
available techniques, the differential dilatometry and the
positron annihilation spectroscopy, suffer from large error
bars, and the discrepancies between different measurements
on one and the same material may be significant. Therefore,
ab initio theoretical calculations are an indispensable tool for
developing a better understanding of the defect properties of
materials [2].

Early density-functional theory (DFT) calculations in the
local density approximation (LDA) have predicted formation
energies of vacancies in simple metals in good agreement with
experiment [3,4]. Despite a large body of successful calcu-
lations, it has later been recognized that the nice agreement
with experiment could often be the effect of the cancellation
of errors in the exchange and correlation parts of the density
functional [5]. As has been discussed by Ruban [6], despite
the structural simplicity of vacancies, their energetics is still
one of the least reliable physical properties determined in
first-principles calculations.

In transition metals, where the open d shells are often poorly
described in LDA or the generalized gradient approximation
(GGA), the quality of results of DFT calculations for point
defect properties is rather unpredictable and strongly material
dependent. There have been several attempts to improve the
available functionals (see, e.g., Refs. [7–10]). We notice that
the predicted vacancy formation energies seem to be especially
poor for 3d transition metals, for which many-body effects are
fairly important, in particular in the paramagnetic state and
body-centered cubic (bcc) crystal structure [11]. Likewise,
DFT has limitations for point defect calculations in correlated
lanthanide or actinide oxides with 4f or 5f electrons, for
example in the case of uranium oxides used in the nuclear
industry [12].

Among the 3d transition metals, iron is a particularly
complex system, where the strength of electronic correlations
is very sensitive to the lattice structure and magnetic state.
However, from a practical point of view, vacancies in iron and

steels are of particular interest because they affect a number
of important characteristics of the metal, e.g., toughness and
ductility. Iron’s low-temperature ferromagnetic bcc α phase
is a weakly renormalized Fermi liquid [13] well described
within DFT [14–16]. However, the same α-Fe in the high-
temperature paramagnetic phase exhibits a strongly correlated
non-Fermi-liquid behavior [17–19] with DFT calculations
failing to describe its structural parameters (lattice constants,
bulk modulus, or even the shape of the crystal) [18]. The
low-temperature paramagnetic hexagonal ϵ phase stabilized
by pressure is also rather strongly correlated [13] (though
less so as compared to paramagnetic α-Fe), exhibiting a large
electron-electron scattering contribution to the resistivity [20]
as well as unconventional superconductivity [21,22]. All this
hints at a strong sensitivity of many-body effects in Fe to
local disturbances of the crystalline order (e.g., to point
defects) that cannot be captured easily within standard DFT.
Indeed, extensive DFT calculations of α-Fe [23–34] predict
a monovacancy formation energy about 30%–40% higher
than the measured values, with significant scatter depending
on the DFT implementation used (see also Table II in
Ref. [35]). In contrast to other 3d metals, this formation energy
has been somewhat reliably determined thanks to extensive
experiments [36–40].

The deficiencies of standard DFT to describe ϵ-Fe and
paramagnetic α-Fe have been successfully corrected by com-
bining it with a dynamical mean-field theory (DMFT) [41,42]
treatment of the local repulsion between 3d electrons. Ab
initio calculations using this DFT+DMFT approach [43,44]
were able to reproduce the ground-state properties and phonon
spectra of the α and δ phase [18,45,46] as well as the equation
of state of ϵ-Fe [13]. It is thus likely that an explicit treatment
of many-body effects within DMFT will also correct the severe
problems of DFT in describing point defects in iron.

Hence, in the present work we have developed the state-
of-the-art DFT+DMFT method [47–50] into a scheme for
studying vacancy properties. We have applied our technique to
a single vacancy in paramagnetic α-Fe, where positron annihi-
lation measurements have been performed on pure iron without
further approximations (contrary to the formation energy in

2469-9950/2016/94(10)/100102(6) 100102-1 ©2016 American Physical Society
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(a) 2 × 2 × 2 supercell (b) 3 × 3 × 3 supercell

FIG. 1. The 2 × 2 × 2 and 3 × 3 × 3 supercells with the vacancy
in the corner. Different colors indicate the atom nearest to the vacancy
(red), the second nearest (purple), and the furthest (the central atom,
yellow). Generated with XCRYSDEN [52].

the ferromagnetic phase). We have computed the electronic
structure around the vacancy as well as the vacancy’s formation
energy, taking into account local lattice distortions around the
defect. We do not treat here the high-temperature face-centered
cubic phase, or temperatures close to the melting point, where
the influence of the (anharmonic) lattice vibrations may play
a crucial role [5,10,51] and the bcc phase is stabilized again.
Compared to ferromagnetic DFT calculations, a significant
reduction of the theoretical formation energy is obtained, with
calculated values in remarkable agreement with experimental
estimates [36–40]. We trace back this reduction to rather
subtle effects of the vacancy on the local density of states
and hybridization with its nearest neighbors.

We model a single vacancy in bcc Fe using the 2 × 2 × 2
and 3 × 3 × 3 cubic supercells represented in Fig. 1, with the
vacancy placed at the origin of the supercells. We compute
the vacancy formation energy from the supercell total energy
using the standard formula

Ef
vac = Evac(N − 1) − N − 1

N
Eno vac(N ), (1)

where N is the number of atoms in the ideal supercell,
Eno vac(N ) is the total energy of the ideal supercell containing
N atoms and no vacancy, and Evac(N − 1) is the total energy
of the same supercell with a vacancy (hence N − 1 atoms).
N is 16 in the 2 × 2 × 2 supercell and 54 in the 3 × 3 × 3
supercell, corresponding to vacancy concentrations of 6.25%
and 1.85%, respectively.

Our calculations have been carried out using a fully charge
self-consistent implementation of DFT+DMFT [53,54] based
on the TRIQS package [55,56], with LDA as DFT exchange-
correlation potential. This implementation is based on the full
potential linearized augmented plane-wave WIEN2K code [57].
The on-site density-density interaction between those orbitals
is parametrized by the Slater parameter F0 = U = 4.3 eV and
the Hund’s rule coupling J = 1.0 eV that were previously
used in the DFT+DMFT calculations of α and ϵ-Fe of
Ref. [13]. The same work reproduced almost exactly the
experimental lattice parameter of 2.86 Å, hence we perform
our DFT+DMFT calculations at the experimental volume.
Other DFT calculations were performed at the corresponding
theoretical volume. Technical details about the DFT and
DFT+DMFT calculations are included in the Supplemental

FIG. 2. Vacancy formation energies calculated by different meth-
ods (GGA and DFT+DMFT) in the different setups: small and
large supercell, relaxed or not, nonmagnetic, paramagnetic (PM) or
ferromagnetic (FM). Calculations are performed at the equilibrium
volume for the relevant setup. The average of experimental values is
shown for comparison [36–40].

Material [35]. The calculation of a vacancy formation energy
using supercells with seven inequivalent atomic sites has be-
come possible thanks to the use of a continuous-time quantum
Monte Carlo hybridization expansion algorithm [58] in the
segment representation for the solution of the local impurity
problems (Backes et al. (Ref. [59]) and Behrmann et al. (Ref.
[60]) have reported about the effect of vacancies on magnetism
within DFT+DMFT). All DFT+DMFT calculations were
performed at a temperature of 1162 K.

The vacancy formation energies obtained within
DFT+DMFT together with different DFT results and exper-
imental values are shown in Fig. 2 (see also Table I of the
Supplemental Material [35]). The resulting value for E

f
vac in

DFT+DMFT is 1.77 eV for the unrelaxed 54-atom supercell
with lattice relaxations reducing it further to E

f
vac = 1.56 ±

0.13 eV, in excellent agreement with the mean experimental
value of about 1.6 eV. We also calculated E

f
vac within

DFT+DMFT for the unrelaxed ferromagnetic phase obtaining
a higher value of 2.45 ± 0.15 eV. Experiments indeed seem
to confirm that E

f
vac in the ferromagnetic phase should be

larger than in the nonmagnetic one [39,40], although direct
low-temperature measurements of E

f
vac in the ferromagnetic

phase with positron annihilation spectroscopy are notoriously
difficult.

DFT (GGA) calculations assuming ferromagnetic bcc
Fe predict a significantly larger value E

f
vac of 2.51 and

2.32 eV for an unrelaxed and a fully relaxed cell, respectively.
Hence, one sees that many-body effects included within DMFT
reduce E

f
vac for the paramagnetic phase by about 0.7 eV.

The impact of correlation effects for ferromagnetic α-Fe
is much less significant, in agreement with the predicted
suppression of dynamic correlations in this phase [13]. Indeed,
the large static spin splitting in the ferromagnetic phase leads
to a suppression of dynamical correlations, which explains

100102-2
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FIG. 3. Difference in the interaction energy per atom, before and
after adding a vacancy. Inset: Fe 3d charge in the cell with vacancy.

why DFT works well in the ferromagnetic, but not in the
paramagnetic phase of α-Fe. The vacancy formation energies
obtained with nonmagnetic DFT calculations are even lower
than the measured values, with E

f
vac ≈ 1.5 eV in unrelaxed

GGA. They have, however, very little physical meaning: DFT
in general fails dramatically for the paramagnetic phase, which
is reflected by the fact that α-Fe is not dynamically stable and
the predicted lattice parameter would be significantly smaller
in nonmagnetic DFT. Hence, using our relaxed positions
in a nonmagnetic DFT calculation gives an (unphysical)
negative vacancy formation energy. Thus, the strongly reduced
value of E

f
vac in nonmagnetic DFT calculations compared to

ferromagnetic ones may be due to a spurious cancellation of
errors.

The total energy in DFT+DMFT is

Etot
DMFT = Tr

(
ϵ̂kρ̂

DMFT
k

)
+ E[ρDMFT] + (EHub − EDC), (2)

where ρ̂DMFT
k is the density matrix for crystal momentum

k, ϵ̂k the corresponding LDA Hamiltonian and E[ρDMFT]
only depends explicitly on the charge density. EHub =
1
2

∑
ij Uij ⟨ninj ⟩ is the Coulomb interaction between Fe 3d

electrons (i and j are orbital indices and Uij is the density-
density Coulomb matrix), and EDC is the double-counting
term that estimates the energy already present in LDA (see
Supplemental Material for the details [35]). When one removes
an atom from the cell to create a vacancy, all three terms in
Eq. (2) change. Figure 3 shows the difference in the third
term, Eint = EHub − EDC, on each respective atom of the
supercell before and after removing an atom. Summing this
up and taking into account the multiplicity of the atoms in the
cell yields a change %Eint ≈ −1.6 eV, that is compensated
by a larger change in E[ρDMFT] due to a redistribution of
the charge density, as wave functions from DFT+DMFT are
more localized. The contributions from the second and third
coordination shells compensate one another, so that the net
change in the interaction energy only comes from the first
nearest neighbor. This is due to good metallic screening, and is
in good agreement with embedded atom method calculations
of iron vacancies near a surface [61] that show the vacancy
formation energy becomes equal to the bulk value for the
vacancy located in the third layer or deeper.

The self-energy of the vacancy’s first coordination shell
shows a significant difference from the bulk bcc-Fe self-
energy, as shown in Figs. 4(a) and 4(b). t2g states, but also
eg states to a lesser extent, become more strongly correlated

(a)

(b)

(c) (d)

FIG. 4. Imaginary part of the Matsubara self-energies for
(a) the vacancy nearest neighbor and (b) central atom in the 3 × 3 × 3
supercell with a vacancy present (red, full) or without it (blue, dashed).
Correlations become stronger on the atom nearest to the vacancy,
while the difference between eg and t2g is strongly reduced. (c) LDA
density of states around the Fermi level and (d) hybridization function
on the Matsubara axis for the nearest neighbors (blue, full) to the
vacancy, and for the central atom (black, dashed). The full Fe 3d

DOS is shown in the Supplemental Material [35].

(less coherent) with a larger Im&(iω). A larger absolute value
of the imaginary part of the self-energy at low frequencies
means a shorter quasiparticle lifetime, synonymous to stronger
dynamic correlations. This difference almost vanishes for the
self-energy of the atoms further than the nearest neighbor, in
agreement with the variation of the interaction energy shown
in Fig. 3. Stronger correlations on the atoms near the vacancy
imply that a more correct description of the 3d electrons of
the Fe atoms in DFT+DMFT, already important to predict
the crystal structure and lattice parameter, is especially crucial
when estimating the energetics of the vacancy and indeed leads
to a smaller formation energy. Note that the self-energies are
slightly atom dependent even in the absence of a vacancy in
our calculations, due to an artificial symmetry breaking in the
supercell in DFT calculations and the nonrotational invariance
of the density-density Hubbard Hamiltonian. However, we
compare self-energies and interaction energies in a consistent,
atom-to-atom way.

100102-3



RAPID COMMUNICATIONS

PASCAL DELANGE et al. PHYSICAL REVIEW B 94, 100102(R) (2016)

The enhancement of the nearest-neighbor self-energy can
be traced back to a change in the hybridization function. As can
be seen in Fig. 4(d), the imaginary-frequency hybridization
function, in particular for the t2g states, is reduced at low
frequencies for the atom near the vacancy. This reduction is
due to an increase in the corresponding t2g partial density
of states (DOS) in the vicinity of the Fermi level, EF , as
one can see in Fig. 4(c). A larger DOS at EF induces
a suppression of low-energy hopping leading to stronger
correlation [19,62]: at the first iteration of DMFT, Im%(i0+) =
−πρF /[ReGloc(i0+)2 + (πρF )2] ≈ −1/(πρF ), with ρF the
LDA DOS. The enhancement of the nearest-neighbor eg

self-energy is smaller and the corresponding DOS at EF

even decreases compared to the bulk case. This decrease in
the value of the DOS exactly at EF is compensated by an
overall narrowing of the eg peak in the vicinity of EF [see
Fig. 4(c)]. Hence, the resulting hybridization function for eg is
still suppressed starting from the second Matsubara point.

Next, we calculated the relaxed atomic positions in
DFT+DMFT around the vacancy. Computing atomic forces
in DFT+DMFT is rather complicated [63], so we obtained
the relaxed atomic positions by moving atoms and minimizing
the total energies. We performed a relaxation of the atoms
around the vacancy in two steps, in order to reduce the
computational effort. We first performed the full relaxation in
spin-polarized GGA (at its corresponding theoretical volume,
computing atomic forces), to obtain an initial guess of the
atomic positions. We observe a shift of the first coordination
shell towards the vacancy by about 4%, and a shift of the
second coordination shell away from the vacancy by about
1.5%, while all the other atoms do not move significantly,
in agreement with previous calculations [25]. In the second
step, the positions of the two first nearest neighbors were
relaxed within DFT+DMFT. In Fig. 5 we show the total
energy (minus an offset depending on the method used, GGA
or DFT+DMFT) of the supercell as a function of the relaxed
position of the nearest and second nearest neighbor of the
vacancy. Each site was moved independently, preserving the
symmetry of the cell, while the positions of others were fixed at
their fractional GGA values. We obtain the following results: in
DFT+DMFT, for paramagnetic α-Fe, the first nearest neighbor
relaxes by 5.7% towards the vacancy, while the second nearest
neighbor relaxes away from it by 0.7%. One sees that many-
body effects have a significant impact on the nearest-neighbor
relaxation, enhancing it by almost 50%. Overall, relaxing the
two first coordination shells in full DFT+DMFT reduces the
vacancy formation energy by 0.21 eV.

In conclusion, we have shown that local many-body effects
are crucial for explaining a relatively low vacancy formation
energy in α-Fe. The presence of a vacancy induces rather subtle
changes in the local electronic structure of its surroundings,
leading to a moderate increase in the strength of correlations
at neighboring sites. This moderate increase has, however, a

FIG. 5. Total energy vs distance to the vacancy (as a fraction of
the lattice parameter) for the first nearest neighbor (blue) and the
second nearest neighbor (red), in DFT+DMFT (full line) and GGA
(dashed line). The black arrows show the position of the atoms in the
unrelaxed bcc supercell.

very significant impact on the vacancy energetics. When the
effect of local relaxations is included, the calculated vacancy
formation energy is reduced by about 0.7 eV compared with
the corresponding DFT value and is in excellent agreement
with experiment. The predicted magnitude of nearest-neighbor
relaxations is about 50% larger compared to the one obtained
within DFT. This remarkable sensitivity to correlation effects
is most probably pertinent to other types of defects in iron
that are of the crucial importance for mechanical properties
and thermodynamics of steels, e.g., interstitial sites, stacking
faults, and dislocations.
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The most intriguing properties of emergent materials are typically consequences of highly correlated quantum states
of their electronic degrees of freedom. Describing those materials from first principles remains a challenge for modern
condensed matter theory. Here, we review, apply and discuss novel approaches to spectral properties of correlated elec-
tron materials, assessing current day predictive capabilities of electronic structure calculations. In particular, we focus
on the recent Screened Exchange Dynamical Mean-Field Theory scheme and its relation to generalized Kohn-Sham
Theory. These concepts are illustrated on the transition metal pnictide BaCo2As2 and elemental zinc and cadmium.

1. Introduction
Technological progress has been intimately related with

progress in materials science since its very early days. The last
century has seen the development of refined capabilities for
materials elaboration, characterisation and control of proper-
ties, culminating among others in the unprecedented possi-
bilities of the digital age: materials properties have become
an object of theoretical simulations, stimulating systematic
searches for systems with desired characteristics. This branch
of condensed matter physics is continuously evolving into a
true new pillar of materials science, where the theoretical as-
sessment of solid state systems becomes a fundamental tool
for materials screening.

Obviously, the success of this program hinges on the degree
of predictive power of modern simulation techniques, which
have to allow for performing calculations without introducing
adjustable parameters. This requirement is even more severe
since the most popular branch of ab initio calculations, the
Density Functional Theory (DFT) approach, is restricted to
ground state properties of the solid, while most properties of
potential technological interest stem from excited states: the
calculation of any type of transport phenomenon, for exam-
ple electric, thermal, thermoelectric or magnetoelectric trans-
port, of optical or spectroscopic properties, or of magnetic,
charge- or orbital susceptibilites requires the accurate assess-
ment of highly non-trivial response functions within a finite-
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†steffen.backes@polytechnique.edu
‡ambroise.vanroekeghem@gmail.com
§leonid@cpht.polytechnique.fr
¶jianghchem@pku.edu.cn
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temperature description.
It is not a coincidence that the materials with the most ex-

otic features are also most challenging to get to grips with
from a theoretical point of view: both the complexity of their
properties and the difficulty of their description are in fact a
consequence of the very nature of the underlying electronic
structure: typically, one is dealing with transition metal, lan-
thanide or actinide compounds, where the electrons in par-
tially filled d- or f -shells strongly interact with each other
through electron-electron Coulomb interactions, leading to
highly entangled many-body quantum states.

Even when using a simplified description of the solid in
terms of an effective lattice model, assessing these quantum
correlated states is a tremendous challenge. If local quan-
tum fluctuations on a given atomic site are dominant, dynam-
ical mean-field theory (DMFT)1, 2) yields an accurate descrip-
tion of the system. In particular, DMFT captures both the
strong coupling Mott-insulating limit and the weakly inter-
acting band limit of the Hubbard model, and is able to de-
scribe the salient spectral features of a correlated metal with
coexisting quasi-particle and Hubbard peaks even in the in-
termediate correlation regime. In the multi-orbital case, addi-
tional degrees of freedom can lead to even richer physics with
unconventional (e.g. orbital-selective) behavior,3) or complex
ordering phenomena.4–9)

In order to recover the material-specific character of the
calculations, DMFT has been combined with DFT10, 11) into
the so-called “DFT+DMFT” scheme, which is nowadays one
of the most popular workhorses of electronic structure the-
ory for correlated electron materials. Successful applications
include transition metals,12–14) transition metal oxides,4, 15–26)

lanthanide27, 28) or actinide29–32) systems. Comparisons be-
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tween calculated and measured spectral functions have some-
times led to impressive agreement.33, 34) However, despite
these successes the construction of the Hamiltonian used in
these calculations is rather ad hoc and remains a limitation to
the predictive power of the approach. Therefore, the elabora-
tion of more systematic interfaces between electronic struc-
ture and many-body theory has become an active area of re-
search.35)

In this work, we review a recent scheme combining
screened exchange and DMFT.36–38) We discuss its relation to
many-body perturbation theory and generalized Kohn-Sham
(KS) Theory and analyse the effects included at the different
levels of the theory. As an illustration we describe its applica-
tion to the low-energy spectral properties of the cobalt pnic-
tide BaCo2As2.

How does a theory thas has been designed for strongly cor-
related materials reduce to an a priori simpler version in the
case of a weakly correlated system ? For methods based on
DFT that include only the static on-site Coulomb interaction
between localized states, like DFT+U39) or DFT+DMFT, the
spectrum in the limit of vanishing Hubbard interactions re-
duces trivially to the Kohn-Sham spectrum of DFT. For more
complex interfaces of electronic structure and many-body the-
ory which we will discuss here, however, it is a non-trivial
question and allows for interesting possibilities to check their
consistency. Here, we will discuss this issue on the example
of the transition metals zinc and cadmium. This also allows us
to comment on the challenge of including states in a wider en-
ergy range, identifying a challenging problem on these seem-
ingly “simple” systems.

The paper is organised as follows: in section 2 we review
how Screened Exchange Dynamical Mean Field Theory de-
rives from the combined many-body perturbation theory +

dynamical mean field scheme “GW+DMFT”. In section 3 we
analyse the relation of screened exchange schemes to general-
ized KS theory. Section 4 provides an example of the applica-
tion of such methods to BaCo2As2, while section 5 discusses
the electronic structure of elemental zinc and cadmium within
a simplified approach. Finally, we conclude in section 6.

2. From GW+DMFT to Screened Exchange Dynamical
Mean Field Theory

Improving the predictive power of methods that combine
electronic structure and many-body theory poses the chal-
lenge of properly connecting the two worlds, without dou-
ble counting of interactions or screening. At the heart of this
challenge lies the mismatch between the density-based de-
scription of DFT and the Green’s function formalism used at
the many-body level, as well as the difficulty of incorporat-
ing the feedback of high-energy screening processes governed
by the unscreened Coulomb interaction onto the low-energy
electronic structure. Conceptually speaking, these difficulties
can be avoided by working on a large energy scale in the con-
tinuum with the full long-range Coulomb interactions, and
a Green’s function-based formalism even at the level of the
weakly correlated states. These features are realised within

the combined many-body perturbation theory and dynami-
cal mean field theory scheme “GW+DMFT”:40–49) screening
is assessed by the random phase approximation in the con-
tinuum, augmented by a local vertex correction, while the
starting electronic structure for the DMFT calculation can be
roughly interpreted as a “non-local GW” calculation.50)

Screened Exchange Dynamical Mean Field Theory36–38)

can be understood as an approximation to this full
GW+DMFT scheme. It is based on the recent observa-
tion36, 50) that within the GW approximation the correction to
LDA can be split into two contributions: a local dynamical
self-energy Σloc(ω) and a k-dependent but static self-energy
Σnloc(k), which does not contain any local component. If such
a separation was strictly valid in the full energy range, the
non-local static part of the full self-energy would be given
by the non-local Hartree-Fock contribution, since the dynam-
ical part vanishes at high frequency. In many realistic sys-
tems such a decomposition holds to a good approximation in
the low-energy regime that we are interested in, where the
static part Σnloc(k) is quite different from the Fock exchange
term. It is approximately given by a screened exchange self-
energy, leading to a decomposition of the GW self-energy into
ΣGW = [GW(ν = 0)]nonloc + [GW]loc. Here, the first term is a
screened exchange contribution arising from the screened in-
teraction W(ν) evaluated at zero frequency W(ν = 0). The
second term is the local projection of the GW self-energy.
It is simply given by the GW self-energy evaluated using a
local propagator Gloc and the local screened Coulomb inter-
action Wloc. Exactly as in GW+DMFT, Screened Exchange
Dynamical Mean Field Theory replaces this term by a non-
perturbative one: it is calculated from an effective local im-
purity problem with dynamical interactions. In current prac-
tical applications of Screened Exchange + DMFT the RPA-
screened Coulomb potential W has been replaced by its long-
wavelength limit, which reduces to a simple Yukawa-form.36)

Quite generally the dynamical character of the interactions
results in an additional renormalization ZB of the hopping am-
plitudes, which can be understood as an electronic polaron
effect: the coupling of the electrons to plasmonic screening
degrees of freedom leads to an effective mass enhancement
corresponding to the hopping reduction, manifesting itself as
a narrowing of the band. This effect can be estimated from
the plasmon density of modes as given by the imaginary part
of the frequency dependent interaction W. An explicit expres-
sion for ZB has been derived in Ref. 51.

3. Relation to Generalized Kohn-Sham Theory
Screened Exchange Dynamical Mean Field Theory can

also be viewed as a specific approximation to a spectral den-
sity functional theory based on the Generalized Kohn-Sham
(GKS) scheme of Seidl et al.52) In GKS theory, alternative
choices for the reference system that are different than the
familiar Kohn-Sham system of DFT are explored. In par-
ticular, a generalized Kohn-Sham scheme where the refer-
ence system is a screened exchange Hamiltonian can be con-
structed. The main motivation for the inclusion of screened

2
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exchange in the literature has been to improve upon the band
gap problem in semiconductors. Indeed, it can be shown that
the screened exchange contribution, which corresponds to a
non-local potential, effectively reintroduces to some degree
the derivative discontinuity that is missing in the pure DFT
description based on local exchange-correlation potentials.53)

Since the derivative discontinuity corresponds to the discrep-
ancy between the true gap and the Kohn-Sham gap in ex-
act DFT, a substantial improvement of the theoretical esti-
mate for band gaps can be expected on physical grounds and
has indeed been found. Here, our goal is somewhat different:
motivated by the analysis of the role of screened exchange
in GW+DMFT described above, we would like to connect
the Screened Exchange DMFT scheme introduced above to
generalized KS schemes making direct use of the non-local
screened exchange potential.

With this aim in mind, we briefly review the general-
ized Kohn-Sham construction in the case an effective Kohn-
Sham system including screened exchange. Hereby, we fol-
low closely Seidl et al.,52) both in notation and presentation.
First, one defines a functional

S [Φ] =
〈
Φ

∣∣∣T̂
∣∣∣ Φ

〉
+ UH

[{φi}] + E sx
x

[{φi}] (1)

that includes, in addition to the familiar kinetic energy term
〈Φ|T̂ |Φ〉 and the Hartree energy UH

[{φi}] also the screened
Fock term

E sx
x

[{φi}] = −
N∑

i< j

∫
drdr′

×
φ∗i (r)φ∗j(r′)e−kTF |r−r′ |φ j(r)φi(r′)

|r − r′| (2)

Here, Φ are Slater determinants of single-particle states φi.
kTF is the Thomas Fermi wave vector. In order to derive a
functional of the density Seidl et al. define a functional F s via
the minimisation

FS [
ρ
]

= min
Φ→ρ(r)

S [Φ] = min
{φi}→ρ(r)

S
[{φi}] (3)

Next we define the energy functional

ES
[
{φi}; ve f f

]
= S

[{φi}] +

∫
drve f f (r)ρ(r) (4)

where now the potential ve f f does not only include the exter-
nal potential v as in usual DFT, but also a contribution by the
exchange-correlation part

ve f f = v + vsx
xc

[
ρ
]
. (5)

The additional contribution, the generalized (local) exchange-
correlation potential

vsx
xc =

∂E sx
xc

[
ρ
]

∂ρ
. (6)

is the functional derivative of the generalized (local)
exchange-correlation functional

E sx
xc

[
ρ
]

= Exc
[
ρ
] − E sx

x
[
ρ
]
+ T

[
ρ
] − T sx [

ρ
]

(7)

which comprises the difference between the exchange-
correlation potential of standard Kohn-Sham DFT and the
non-local exchange energy defined above, as well as the dif-
ference between the kinetic energies of the standard and gen-
eralized Kohn-Sham systems. The functional derivative will
eventually have to be evaluated self-consistently at the con-
verged density.

This construction leads to the generalized Kohn-Sham
equations

−∇2φi(r) + v(r)φi(r) + u ([ρ]; r) φi(r)

−
∫

dr′vsx,NL
x (r, r′)φi(r′) + vsx

xc ([ρ]; r) φi(r) = εiφi (8)

with the Hartree potential u and the non-local screened Fock
potential

vsx,NL
x (r, r′) = −

N∑

j=1

φi(r)e−kTF |r−r′ |φ∗j(r′)
|r − r′| . (9)

and the effective (local) generalized Kohn Sham potential vsx
xc

defined above. The generalized Kohn-Sham equations have
the form

Ô [{φi}] φ j + v̂e f fφ j = ε jφ j (10)

where Ô is a non-local operator, generalizing the standard
Kohn-Sham operator consisting solely of kinetic energy and
Hartree potential.

The ground state energy for a system in the external poten-
tial v is then given by the expression

ESEx−DFT [v] = FS
[
ρS

0

[
ve f f

]]
+ E sx

xc

[
ρS

0

[
ve f f

]]

+

∫
drv(r)ρS

0

[
ve f f

]
(11)

Now, the relation to Screened Exchange DMFT is becom-
ing clear: one may construct a spectral density functional in
the same spirit as in DFT+DMFT,54) but starting from the
generalized KS functional. In 55, the expression for the total
energy within the standard DFT+DMFT case was derived to
be

E = EDFT −
∑

l

εKS
l + 〈HKS〉 + 〈(Hint − Hdc)〉 (12)

where
∑

l ε
KS
l is the sum of the occupied Kohn-Sham eigen-

values, 〈HKS〉 = tr [HKS Ĝ], and Hint and Hdc denote the lo-
cal interaction part of the Hamiltonian and the corresponding
double counting term, respectively.

Instead of using the usual Kohn-Sham Hamiltonian for the
construction of the one-body part, Screened Exchange DMFT
relies on the generalized Kohn-Sham reference system that in-
cludes the screened exchange potential. The generalization of
(12) to the present case thus replaces the Kohn-Sham Hamil-
tonian HKS in the expression for the energy by its non-local
form, keeping track of the effective potential part:

E = ESEx−DFT −
∑

l

εSEx−KS
l + 〈Ô + v̂e f f 〉

3
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Fig. 1. (Color online) Kohn-Sham band structure of BaCo2As2 within
DFT-LDA (red lines) and the screened exchange approximation (black lines).

+〈(Hint(Vee, λs,ωs) − Hdc)〉 (13)

Furthermore, the local interaction term is taken in the more
general form of a dynamical interaction, thus corresponding
to a local Hubbard term with unscreened interactions and lo-
cal Einstein plasmons of energy ωs coupling to the electrons
via coupling strength λs.

This concludes our description of the generalized Kohn-
Sham interpretation of Screened Exchange DMFT, resulting
in particular in an energy functional expression. However, in
the practical calculations presented in the following we do
not minimise the full energy expression as given above, but
rather work at the converged DFT density and then investi-
gate spectral properties using the Screened Exchange DMFT
formalism. This amounts to a one-shot Screened Exchange-
DFT+DMFT calculation that uses the DFT density as a start-
ing point. The advantage of such an approach is obvious:
Numerically, this procedure allows us to avoid the expen-
sive evaluation of non-local exchange terms within the self-
consistency cycle of GKS theory. Moreover, as is well-known,
while severe deviations of the true spectrum from the Kohn-
Sham spectrum are quite common, the ground state density
obtained even from approximate DFT functionals is often a
good representation of the true one. In the case of the ex-
act DFT functional, our approach would also lead to the ex-
act ground state density and energy, with additional improve-
ments of the spectrum over standard Kohn-Sham DFT.

4. Results on BaCo2As2

As a first illustration of Screened Exchange DMFT, we
review calculations on BaCo2As2, which is the fully Co-
substituted representative of the so-called “122” family of the
iron-based superconductors, isostructural to the prototypical
parent compound BaFe2As2. The Fe → Co substitution has
however important consequences: the nominal filling of the
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Fig. 2. (Color online) Kohn-Sham band structure of BaCo2As2 within
DFT-LDA, projected on the dx2−y2 orbital.

3d states changes from d6 to d7, which strongly reduces the
degree of Coulomb correlations, making BaCo2As2 a moder-
ately correlated compound.36, 56) Indeed, the power-law devi-
ations from Fermi liquid behavior above an extremely low co-
herence temperature discussed in the Fe-based compounds57)

are a consequence of the d6 configuration and strong intra-
atomic exchange interactions. This is no longer the case
in the cobalt pnictides, where angle-resolved photoemission
spectroscopy (ARPES) identifies well-defined and long-lived
quasiparticle excitations with relatively weak mass renormal-
ization. Nevertheless, the DFT-LDA derived Fermi surface
differs from experiment.36, 56, 58, 59) Therefore, BaCo2As2 pro-
vides an ideal testing ground for new approaches to spectro-
scopic properties. We do not discuss here the details of yet
another interesting question, which is the absence of ferro-
magnetism despite a high value of the DFT density of states
at the Fermi level, suggestive of Stoner ferromagnetism, but
refer the reader to Ref. 36, where the solution to this puzzle
was discussed in detail.

Fig. 1 shows the DFT band structure of BaCo2As2, in com-
parison to a screened exchange calculation. As in the iron-
based pnictides, the dominantly 3d-derived states are located
around the Fermi level; in this case in a window of about -
3 eV to 2 eV. As compared to the parent iron pnictides with
3d6 configuration of the Fe shell, the Fermi surface topology
is modified due to the larger 3d7 filling. The hole pocket at the
Γ point that is present in most Fe-based pnictide compounds
is pushed below the Fermi level, as well as the band forming
the electron pocket at M, which is now fully filled. In standard
DFT-LDA (see Fig. 2), a characteristic flat band of dominant
x2 − y2 character lies directly on the Fermi level around the
M point, giving rise to a huge peak in the density of states.
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Fig. 3. (Color online) Angle-resolved photoemission spectrum of
BaCo2As2. Adapted from Ref. 36.
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Fig. 4. (Color online) k-resolved spectral function of BaCo2As2 within
LDA+DMFT. Adapted from Ref. 36.
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Fig. 5. (Color online) k-resolved spectral function of BaCo2As2 within
Screened Exchange DMFT (with dynamical interactions). Adapted from
Ref. 36.
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Fig. 6. (Color online) k-resolved spectral function of BaCo2As2 within
Screened Exchange DMFT (with dynamical interactions), projected on the
dx2−y2 orbital. Adapted from Ref. 36.

The close proximity of this band to the Fermi level will ren-
der its energy highly sensitive to the details of the calculation
and thus provides a perfect benchmark for improved compu-
tational techniques.

Comparison to angle-resolved photoemission experi-
ments,36) as reproduced in Fig. 3, reveals that the overall
bandwidth of the LDA band structure is too wide by roughly a
factor of 1.5. In a DFT+DMFT calculation, as shown in Fig. 4,
this band renormalisation is reproduced, giving an overall oc-
cupied bandwidth of about 1.5 eV. The fine details of the
Fermi surface, and in particular the position of the flat x2 − y2

band are however not well described. For a detailed compari-
son we refer the reader to Ref. 36.

Including screened exchange in the form of a Yukawa po-
tential on top of DFT, as shown in Fig. 1 widens the band by
a considerable amount as compared to DFT-LDA. Even more
striking are the modifications at the Fermi level: the x2 − y2

band has been shifted above the Fermi level, with an energy
at the M point of about 0.15 eV above EF . While the lower-
ing of the filling of this band improves the agreement between
theory and experiment, the shift is too large to reproduce the
experimental Fermi surface. However, when applying DMFT
with dynamical interactions on top of the screened exchange
Hamiltonian, equivalent to the one-shot Screened Exchange
DMFT procedure described above, this band is renormalized
by the electronic interactions and ends up again close (but
above!) the Fermi level. Its energy is slightly higher than in
DFT-LDA and is now in excellent agreement with the exper-
imental Fermi surface. A more detailed analysis presented in
Ref.36) reveals that also the higher energy features such as the
bands within the range of up to 2 eV are well reproduced in
this one-shot Screened Exchange DMFT approach.

The comparison of the band structures and spectral func-
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Fig. 7. (Color online) The band structure of elemental Zn calculated within
DFT. The orbital character is indicated by the intensity of the different colors.

tions within the different computational schemes illustrates
the effects of the different terms in an instructive way: Im-
proving on the description of exchange by replacing the local
exchange as contained in DFT-LDA by a non-local screened
Fock exchange widens the bandwidth and strongly “over-
corrects” the Fermi surface. Improving at the same time
on the correlation part by applying DMFT with frequency-
dependent interactions then leads to a partial cancellation of
the band widening, giving an overall bandwidth surprisingly
close to the LDA+DMFT one. This suggests that the good de-
scription of the overall bandwidth in DFT+DMFT is the re-
sult of an error cancellation between the local approximation
to exchange and partial neglect of correlations. However, the
Fermi surface is strongly modified by the non-local correc-
tions, leading to a significant improvement over LDA+DMFT
and resulting in good agreement with experiment.

These findings might suggest that possible inconsistencies
between theoretical and experimental Fermi surfaces that are
observed in many pnictide materials could be corrected by
adding simple non-local self-energy corrections stemming
from screened exchange effects. Whether this treatment can
fully account for the “red-blue shift” of Fermi surface pock-
ets found in the experimental-theoretical comparisons60) is a
most interesting topic for future research. The current exam-
ple may give rise to optimism.

5. How does Screened Exchange Dynamical Mean Field
Theory behave for weakly correlated materials?

Hamiltonians built as combinations of a DFT part and
local Hubbard-type interaction terms trivially reduce to the
DFT Kohn-Sham electronic structure when assuming that in
weakly correlated materials the effective local interactions be-
come negligible. The question of the recovery of the weakly
interacting limit is, however, more interesting in the case of
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Fig. 8. (Color online) The band structure of elemental Cd calculated within
DFT. The orbital character is indicated by the intensity of the different colors.

Screened Exchange DMFT. While the static part of the effec-
tive local interaction may be assumed to lose its importance,
band widening by the replacement of the DFT exchange cor-
relation potential by the non-local exchange-correlation GW
self-energy persists. On the other hand, plasmonic effects are
also present in weakly correlated materials and continue to
renormalize the low-energy band structure through electron-
plasmon coupling. This raises the question of what the re-
sulting spectra for weakly correlated materials look like in
screened exchange + DMFT.

In Ref. 38, this question has been studied for early tran-
sition metal perovskites, where it was found that the band
widening effect induced by non-local exchange and the elec-
tronic polaron effect counteract each other and tend to approx-
imately cancel, thus resulting in a low-energy electronic struc-
ture close to the DFT Kohn-Sham band structure as long as
static Hubbard interactions are disregarded. Here, we address
this question in the case of the seemingly “simple” transition
metals zinc and cadmium.

Both elements nominally display a d10 configuration, with
fully occupied 3d orbitals in the case of Zn and 4d in the case
of Cd, the dominantly d-derived bands being located several
eV below the Fermi level. In Fig. 7 and Fig. 8 we show the
band structure calculated within DFT for both materials. Here
and in the following we use the experimental crystal structure.
DFT puts the occupied d states at around -8 eV in Zn and -
9 eV in Cd. The conducting states of this transition metal are
formed by dispersive 4s(5s) in Zn(Cd) states around the Fermi
level, that hybridize with the p-manifold.

These facts raise the immediate expectation of negligibly
small correlation effects on the occupied d shells. An effec-
tive Hubbard interaction calculated for the d-manifold within
the constrained random phase approximation coincides with
the fully screened interaction, since as a consequence of the
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Fig. 9. (Color online) The fully screened effective local Hubbard interac-
tion on the 3d manifold for Zn.
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Fig. 10. (Color online) The fully screened effective local Hubbard interac-
tion on the 4d manifold for Cd.

complete filling of the d-shell there are no intra-d transitions
to be cut out as opposed to an open shell system, where tran-
sitions inside the shell contribute to screening effects.

Figs. 9 and 10 display the local component of this fully
screened interaction projected on the d-manifold. The low-
frequency limit approaches a value of 4.8 eV and 3.1 eV for
Zn and Cd respectively. Even though this value is similar to
their oxides, which are open shell systems, where correlations
on the d states are significant, the high binding energy of these
states far away from the Fermi level effectively prevents dy-
namical fluctuations. This suggests that screened exchange +

DMFT should in fact reduce to screened exchange renormal-
ized by the bosonic factor ZB discussed above. Nevertheless,
this does not mean that static effects of the interaction are
properly treated in DFT. Even if this were the case, there is
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Fig. 11. (Color online) The Density of States of elemental Zn calculated
within Density Functional Theory (DFT, black solid line) and Hartree-Fock
(HF, red solid line) in comparison with Photoemission experiments61, 62)

(dashed line, symbols). Density Functional Theory (DFT) calculations under-
estimate the binding energy of the Zn 3d states, while the HF overestimates
the binding energy significantly (see explanation in the text).
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Fig. 12. (Color online) The Density of States of elemental Cd calcu-
lated within Density Functional Theory (DFT, black solid line) and Hartree-
Fock (HF, red solid line) in comparison with Photoemission experiments61)

(dashed line, symbols). Density Functional Theory (DFT) calculations under-
estimate the binding energy of the Cd 3d states, while the HF overestimates
the binding energy significantly (see explanation in the text).

no reason that the DFT Kohn-Sham spectrum, being derived
from an effective non-interacting system, provides an accurate
description of the experimental situation.

Figs. 11 and 12 compare the experimental photoemission
spectra61, 62) from the literature to the density of states (DOS)
derived from DFT and Hartree-Fock (HF) theory. The result-
ing discrepancy in terms of an underestimation of the bind-
ing energy of the d states in DFT of several eV had been
noted in the literature before:63–65) Norman et a.l63) discussed
it in terms of a self-interaction error, proposing a correction in
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terms of an approximate substraction of self-interaction con-
tributions contained in DFT.66) Hartree-Fock calculations are,
on the one hand, self-interaction free, but on the other hand –
due to the absence of screening – widen all bands and place
the d-bands far too low in energy, as can be seen in Figs. 11
and 12.

Since local dynamical correlations can assumed to be small
as discussed before, an improved treatment of the screened in-
teraction and the self-interaction correction at the same time
is likely to improve the shortcomings of Hartree-Fock, resp.
DFT. Here we will discuss the two possible extensions of
Screened Exchange plus a bosonic renormalization factor ZB

and the GW approximation. The computationally cheaper op-
tion of screened exchange is including only static exchange
contributions with a Yukawa-type interaction potential, and an
effective renormalization ZB which originates from the spec-
tral weight transfer to plasmonic excitations. GW is computa-
tionally more demanding, but has the advantage of treating the
dynamical part of the screening and correlation. Even though
both methods include a self-interaction correction, the self-
interaction contained in the Hartree term is not completely
cancelled since the exchange contributions are derived from a
screened interaction and not the bare one, as opposed to the
Hartree term.

In Figs. 13 and 14 we show comparisons of the DOS
of zinc and cadmium, calculated within DFT, screened
Exchange(+ZB) and GW67) to photoemission spectra. In the
GW calculation we used 7 × 7 × 3 k-points and 5 additional
high-energy local orbitals. Interestingly, while in both sys-
tems the GW approximation provides a significant correction
of the DFT Kohn-Sham spectrum in the right direction, but
still underestimates the binding energy, the screened exchange
scheme places the d-states too low in energy for Zn while pro-
viding a slightly better estimate than GW in Cd. The addition
of the bosonic renormalization factor ZB merely renormalizes
the d bandwidth but keeps the average level position constant.

This raises the interesting question of which effects are
missing in screened exchange and GW? The incomplete can-
cellation of the self-interaction in both approaches is expected
to lead to an overall underestimation of the binding energy,
since the additional unphysical interaction increases the en-
ergy of the d states. A more accurate estimate of this term
would lead to an improvement of GW in both systems, but
an even larger error of screened exchange in Zn. Another
effect neglected in screened exchange is the Coulomb hole
contribution: this term, discussed by Hedin as part of the
“Coulomb hole screened exchange (COHSEX)” approxima-
tion translates the fact that the presence of an electron at a
position r pushes away charge at r (in the language of a lat-
tice model, the charge-charge correlation function exhibits a
reduction of the double occupancy), and the interaction of this
effective positive charge with the electron presents an energy
gain expressed in the form of an interaction of the electron
with a “Coulomb hole”. This term, contained in GW but not
in screened exchange, also increases the binding energy.

This leads to the overall picture that screened exchange
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Fig. 13. (Color online) The Density of States of elemental Zn calculated
within different theoretical methods (solid lines), in comparison with Photoe-
mission experiments61, 62) (dashed line, symbols). Density Functional Theory
(DFT) calculations significantly underestimate the binding energy of the Zn
3d states, while the GW approximation obtains a much better agreement.
Screened exchange overestimates the binding energy significantly.
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Fig. 14. (Color online) The Density of States of elemental Cd calculated
within different theoretical methods (solid lines), in comparison with Photoe-
mission experiments61) (dashed line). DFT calculations significantly under-
estimate the binding energy of the Cd 4d states, while the GW approximation
and also screened exchange obtain a much better agreement.

with the inclusion of the static corrections just discussed has a
tendency to overestimate the binding energy in general, while
GW underestimates it. The obvious difference between the
two methods is the dynamical treatment of the screened inter-
action, which is treated more appropriately in GW, but it is not
clear a priori whether the static approximation of the screened
interaction or the approximated form of the screened interac-
tion in terms of a Yukawa potential gives rise to the difference
between screened exchange and GW.

The GW description of zinc and cadmium is close to the ex-
periment. The remaining discrepancy to experiment is likely
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explained by remaining self-interaction contributions and/or
missing self-consistency. Self-consistency (or quasiparticle
self-consistency) has been investigated in the homogeneous
electron gas68) and various solid state systems.69) These ques-
tions are left for future work.

6. Conclusions
In this work we have reviewed and applied existing as well

as novel approaches to obtain spectral properties of corre-
lated electron materials. Guided by the need of a proper treat-
ment of the long-range Coulomb interaction and non-local ex-
change effects we presented a lightweight version of the gen-
eral GW+DMFT approach, the so-called Screened Exchange
DMFT. It can be derived as a simplication to GW+DMFT in
terms of a generalized screened exchange DFT scheme where
local interactions are treated by dynamical DMFT.

Analysis and the application of a simplifed form of this
scheme to BaCo2As2 indeed showed that non-local exchange
and electronic screening lead to significant corrections to the
electronic spectrum which are necessary to obtain a proper
description of the experimental observations.

Furthermore, we discussed the case of the elemental tran-
sition metals Zn and Cd, where strong local correlations are
unimportant but the position of the occupied d manifold is
very sensitive to a proper treatment of screened exchange ef-
fects.
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We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the
crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation
is employed for local correlations on the rare-earth 4f shell and self-consistency in the charge density is
implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting
by properly averaging the 4f charge density before recalculating the one-electron Kohn-Sham potential. Our
approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet
SmCo5. Applying it to RFe12 and RFe12X hard magnets (R = Nd, Sm and X = N, Li), we obtain in particular a
large positive value of the crystal-field parameter A0

2〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy
observed experimentally. The sign of A0

2〈r2〉 is predicted to be reversed by substituting N with Li, leading to a
strong out-of-plane anisotropy in SmFe12Li. We discuss the origin of this strong impact of N and Li interstitials
on the crystal-field splitting on rare-earth sites.

DOI: 10.1103/PhysRevB.96.155132

I. INTRODUCTION

Permanent magnets are a key component of modern
electronic devices, ranging from electric motors to medical
imaging. An important breakthrough in the quest for high-
performance permanent magnets was the discovery of rare-
earth intermetallic magnets, starting with SmCo5 in 1966
[1]. Since its discovery in 1982, the champion of hard
magnets has been Nd2Fe14B [2]. More recently, rare-earth
iron-based hard magnets RFe12X with the ThMn12 structure
such as NdFe12N have been under renewed scrutiny [3–7]. The
underlying reason is the high price and strategical importance
of rare earths and cobalt, and the ongoing research effort
to find good permanent magnets with reduced rare-earth
concentration [8]. The ThMn12 structure has a reduced ratio
of rare earth vs transition metal compared to Nd2Fe14B, but
nevertheless conserves strong hard magnetic properties (large
magnetization and Curie temperature, and strong anisotropy)
when doped with light elements such as nitrogen [4–6].

The main physical ingredients for a rare-earth hard magnet
are the high magnetic anisotropy energy provided by rare-
earth ions combined with the high magnetization and Curie
temperature from the transition metal sublattice, typically
composed of Fe or Co atoms [8–10]. The 3d transition metal
atoms carry little anisotropy; because of their rather small
spin-orbit coupling, their magnetization direction is essentially
fixed by that of the rare-earth ion through an exchange
coupling. The majority of rare-earth elements, especially
heavy rare-earth elements, are very expensive. Moreover, the
magnetic moment of heavy rare earth is normally antiparallel
to the transition-metal one reducing the net magnetization
[8]. Hence, one advantage of new compounds like RFe12X

is a reduced rare-earth concentration. In turn, a higher Fe
concentration is favorable for achieving a large magnetization,
which is another advantage of RFe12X compounds. However,
this reduced rare-earth concentration means each rare-earth
ion must contribute a strong magnetic anisotropy to keep

the overall magnetic hardness. The preferred magnetization
direction (in-plane or out-of-plane) of a given rare-earth ion
is determined by the interplay between the crystal-field (CF)
splitting and spin-orbit (SO) interaction. To the first order, the
crystalline magnetic anisotropy energy reads

EA ≈ K1sin2θ,

where θ is the angle between the magnetization and the easy
axis, and

K1 = −3J
(
J − 1

2

)
αJ A0

2〈r2〉nR, (1)

where J is the total angular momentum for the rare-earth 4f

shell, nR is the concentration of rare-earth atoms, αJ is the
corresponding Stevens factor, and A0

2〈r2〉 is the lowest-order
crystal-field parameter (CFP). Additional small doping of light
elements is also found to strongly modify the anisotropy
by affecting the rare-earth CF splitting [5,11,12]. They also
modify the structural stability: doping B makes the Nd2Fe14B
phase more stable, while interstitial nitrogen has only a minor
effect in structural stability.

It follows that the CF splitting on the rare-earth 4f shell is
a crucial quantity defining the magnetic hardness of rare-earth
intermetallics. The theoretical search for new rare-earth hard
magnets thus requires a reliable approach to calculating
CFP. The importance of crystal-field effects for the optical,
magnetic, and other properties of solids has been recognized
long ago, and semiempirical models of the CF Hamiltonian,
such as the point charge model [13] and the superposition
model [14], have been developed since the 1960s. While they
provide an inexpensive and physically transparent description
of CF parameters, their predictive power is limited as they
require experimental input to determine the actual values.
Experimental information is readily available for large band-
gap rare-earth insulators, where the CFP can be extracted
from measurements of dipole-forbidden optical transitions
between f states [15]. In the case of rare-earth intermetallics,
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where the f -f transitions are hidden by the optical response
of conduction electrons, inelastic neutron spectroscopy can
be used to determine CFP [16–20], but its results are more
ambiguous as one needs to sort out the contributions of
phonons and the effect of intersite exchange interactions.

Ab initio calculations do not rely on experimental input and
can have truly predictive power. First-principles techniques
for computing the CF parameters [7,21–29] can be separated
into two main approaches. The first one [7,22–27] consists
of extracting the nonspherical Kohn-Sham potential Vlm and
the 4f charge density ρ4f around the rare-earth site and then
computing the corresponding crystal-field parameter. As the
density functional theory (DFT) is not able to fully capture
the physics of partially filled localized 4f shells, one imposes
their localization by treating the 4f orbitals as semicore states.
The nonspherical 4f charge density ρ4f (r) of the rare-earth
ion includes an unphysical contribution to the CFP stemming
from the local-density-approximation (LDA) self-interaction
error. This is usually corrected by spherically averaging the
4f charge density, but then approximations have to be made
for the long-range “tails” of ρ4f (r).

The importance of excluding the self-interaction of the
nonspherical part of the partial 4f charge density to obtain
proper crystal-field energies was first recognized by Brooks
et al. in a publication aimed at calculating the spin Hamiltonian
parameters of rare-earth compounds [30].

In the second, more recent, approach the 4f states are
represented by Wannier functions [28,29,31], while the charge
density and, correspondingly, the Kohn-Sham potential are
generated by self-consistent DFT calculations with 4f states
treated as semicore. An additional ad hoc parameter is used to
correct the charge transfer energy between 4f and conduction
bands.

One may also mention recent work on determining the CFP
of lanthanides and transition metals using quantum-chemical
methods, in particular, in order to understand the properties
of magnetic molecules. Such approaches employ, for instance,
the complete active space self-consistent field method [32] or
multireference second order perturbation theory [33]. Here,
however, we choose to focus on perfect crystals rather than on
molecules.

Overall, ab initio calculations of CFP for rare-earth ions are
a formidable theoretical problem, due to generally small values
of those CFP and their extreme sensitivity to computational
details. The main weak point of previously proposed DFT-
based approaches is that they are not able to correctly treat
the localized valence 4f states. Hence, the charge density
is derived under the drastic approximation of treating them
as fully localized core states, spherically averaged inside the
atomic sphere. The DFT+U method provides a more realistic
treatment for the 4f density in the limit of strong ordered
magnetism. However, it is usually not able to capture the
true quasiatomic (multiplet) nature of rare-earth shells in
the paramagnetic or partially polarized state. The DFT+U

calculations can nevertheless be used to estimate the CFP by
converging them to the on-site density matrix corresponding
to a given atomic wave function. The CF splitting can then be
evaluated from the difference in DFT+U total energy between
such calculations for relevant CF states. This method in fact
makes use of the (usually inconvenient) tendency of DFT+U

to remain in a local energy minimum instead of converging
to the ground-state density. Zhou et al. [34] employed this
approach together with an orbital-dependent self-interaction
correction [35], to obtain total energies for different orbital
occupancies in UO2 and deduce its CFP.

In this work we propose an approach to ab initio CFP
calculations based on self-consistent DFT+dynamical mean-
field theory (DFT+DMFT) [36,37] treating the local many-
body problem for the 4f shell in the quasiatomic (Hubbard-I)
approximation. While this approach of using DFT+DMFT
with the Hubbard-I approximation, which we may call
DFT+Hub-I, is rather simple and computationally efficient, it
was shown to capture not only the 4f multiplet structure in the
paramagnetic state [37–41] and in the ferromagnetic state [42],
but also the 4f –conduction band exchange interaction and the
resulting exchange splitting of the Fermi surface [40]. This
scheme also provides a rather natural way of averaging the 4f

partial density to reduce the self-interaction error from the CF
Hamiltonian. We validate it by applying it to the well-known
hard magnet SmCo5, for which the crystal-field splitting has
been measured in multiple experiments [16–20]. We then apply
our method to much less investigated new hard magnets of the
RFe12X family, computing their CFP for different rare-earth
elements (Sm or Nd) and considering N and Li interstitials.
Our calculations predict the hypothetical SmFe12Li compound
to possess a strong axial anisotropy and, possibly, interesting
hard magnetic properties.

The paper is organized as follows: in Sec. II A we introduce
basic notions as well as relevant notations of the CF theory. Our
first-principles computational approach is presented in more
details in Sec. II B. Our results for the DFT+Hub-I electronic
structure and CFP for the RFe12(X) hard magnets are presented
in Secs. III A and III B, respectively. In Sec. IV we analyze the
shape 4f Wannier functions (WF) in real space and employ
a projective approach to evaluate the WF localization and the
contribution of hybridization effects to CFP.

II. METHOD

A. Crystal-field parameters: Notation and symmetry

We start by introducing crystal-field parameter notations.
The local Hamiltonian for a rare-earth ion with a partially
filled 4f shell subject to the exchange field created by the
transition-metal sublattice and to a crystal-field potential reads

Ĥ = Ĥ1el + ĤU = Ê0 + λ
∑

i

si li + 2μBBexŜa + Ĥcf + ĤU ,

(2)

where the one-electron part of the Hamiltonian corresponds to
the first four terms on the right-hand side, namely, a uniform
shift, spin-orbit, exchange-field, and crystal-field terms. Ŝa

is the in-plane or out-of-plane spin operator, corresponding
to the case where Bex is along x or z, respectively. ĤU

represents the electron-electron Coulomb repulsion term of the
many-body Hamiltonian. The crystal-field term Ĥcf is defined
as the nonspherically symmetric part of the one-electron
Hamiltonian. The corresponding nonspherical part Vns(r) of
the one-electron potential can be expanded into spherical
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harmonics as follows:

Vns(r) =
∞∑

k=1

k∑
q=−k

A
q

k (r)Ykq(r̂), (3)

where Ykq(r̂) is the spherical harmonic function with total
angular moment k and projected angular moment q. The
matrix elements of Vns(r) between 4f orbitals define Ĥcf.
Due to the properties of the spherical harmonics, only A

q

k for
k � 2l, i.e., k � 6 in the case of an f shell, can contribute
to Ĥcf. In the point-charge CF calculations A

q

k (r) is reduced
to A

q

k r
k . While we do not assume this form for A

q

k (r) in the
present formalism we still employ the now standard notation
〈Aq

k (r)〉 ≡ A
q

k 〈rk〉. For historic reasons, several conventions
exist for the parametrization of Ĥcf, leading to a rather con-
fusing variety of definitions for the crystal-field parameters.
Using the so-called Stevens operator equivalents [43], Ĥcf is
decomposed as follows:

Ĥcf =
∑
kq

A
q

k 〈rk〉�k(J )Ôq

k , (4)

where Ô
q

k is the Stevens operator equivalent, and A
q

k 〈rk〉, as
explained above, is the standard notation for the crystal-field
parameter for given k and q. �k(J ) is the Stevens factor for a
given ground-state multiplet defined by the quantum number
J . �k(J ) for k = 2, 4, and 6 are often designated by αJ ,
βJ , and γJ , respectively. The Stevens operator equivalents
are more convenient for analytical calculations and somewhat
outdated, but they are still extensively used in the literature.
For numerical calculations it is more convenient to express Ĥcf

in terms of Wybourne’s [44] spherical tensor operators Ĉ
q

k :

Ĥcf =
∑
kq

B
q

k Ĉ
q

k , (5)

where Ĉ
q

k are defined by

C
q

k (r̂) =
√

4π/(2k + 1)Ykq(r̂).

Moreover, the CFP can be made real by employing the
Hermitian combination of Wybourne’s operators T̂

q

k defined
by

T̂ 0
k = Ĉ0

k and T̂
±|q|
k = √±1

[
Ĉ

−|q|
k ± (−1)|q|Ĉ|q|

k

]
.

Ĥcf can then be expressed as

Ĥcf =
∑
kq

L
q

k T̂
q

k , (6)

with a set of real parameters L
q

k . L
q

k are linked to the Stevens
CFP A

q

k 〈rl〉 by a set of positive prefactors λkq = A
q

k 〈rk〉/Lq

k .
For a more extensive discussion of CFP conventions see, e.g.,
Refs. [14,45,46].

The number of a priori nonzero CF parameters A
q

k 〈rk〉 is
constrained by the point-group symmetry of a given rare-earth
site. In particular, in the presence of inversion symmetry,
Vns(r̂) = Vns(−r̂), only A

q

k 〈rk〉 for even k can be nonzero
[cf. Eq. (3)]. Other point-group symmetries further reduce
the number of relevant A

q

k 〈rk〉. As a consequence, the crystal
field on Sm 4f in SmCo5 can be fully described with only
four CF parameters: A0

2〈r2〉, A0
4〈r4〉, A0

6〈r6〉, and A6
6〈r6〉. In

the case of the RFe12X family, the relevant parameters are
A0

2〈r2〉, A0
4〈r4〉, A4

4〈r4〉, A0
6〈r6〉, and A4

6〈r6〉.
In our calculations, we extract the set of parameters L

q

k

(or A
q

k 〈rk〉), as well as Bex and λ by a least-square fit of ab
initio Ĥ1el (using the usual Frobenius norm) obtained within
DFT+Hub-I [see Eq. (7) in the next section]. Note that one
may assign a spin label to the CF parameters in Eqs. (5) and
(6), hence allowing for different CF potentials for spin up
and down electrons. We found that this improves the fit for
spin-polarized Ĥ1el.

B. Calculational approach

We employ the DFT+Hub-I approach [47] based on the
TRIQS library [48] and the full potential linearized augmented
plane-wave Wien-2k [49] band structure code in conjunction
with the projective Wannier-orbitals construction [50,51]. The
charge-density self-consistency [52,53] is implemented as
described in Ref. [54]. The Hubbard-I impurity solver is
provided by the TRIQS library.

The Wannier orbitals representing the rare-earth 4f states
are constructed from the Kohn-Sham bands within the window
[−ωwin,ωwin] = [−2,2] eV relative to the Fermi level. The
choice of the half-window size ωwin is the only significant
parameter in our calculations (indeed, the choice of Hubbard U

and Hund’s coupling J has limited impact on the results, as we
demonstrate in Appendix D). In order to construct a complete
orthonormal basis of Wannier orbitals one needs to choose ωwin

large enough to include at least all 4f -like Kohn-Sham bands.
Wannier orbitals constructed with a “small window” leak [47]
to neighboring sites due to hybridization between 4f states
and conduction band states. A larger window results in more
localized Wannier orbitals consisting almost exclusively of the
corresponding 4f partial waves inside the rare-earth atomic
sphere [47,51], as discussed in Sec. IV and Appendix E below.
DFT+Hub-I studies of rare-earth wide-gap insulators show
a rather strong sensitivity of calculated CFP to the window
size; less-localized small window Wannier 4f orbitals result
in a better agreement with experimental CFP [55]. In the
present case of rare-earth intermetallics we find a rather weak
dependence of CFP to variations of ωwin within the reasonable
range from 2 to 8 eV, see Appendix E. Hence, we employ
ωwin = 2 eV in our calculations throughout.

In the Hubbard-I approximation the hybridization function
is neglected and solving of the DMFT impurity problem is
reduced to the diagonalization of the atomic Hamiltonian (2).
The one-electron part Ĥ1el of Eq. (2) is then given by [53]

Ĥ1el = −μ + 〈Hff 〉 − �DC, (7)

where μ is the chemical potential, 〈Hff 〉 is the Kohn-Sham
Hamiltonian projected to the basis of 4f Wannier orbitals and
summed over the Brillouin zone, �DC is the double-counting
correction term for which we employ the fully localized-limit
(FLL) form [56] that is known to work best for localized
states such as 4f orbitals. In our calculations, we evaluate the
FLL double counting using the occupancy of the DMFT local
Green’s function, which comes out to be close to the nominal
4f occupancy of the corresponding 3+ rare-earth ion. If the
nominal occupancy is used in FLL DC instead one obtains al-
most the same CFP, with differences no larger than 10 to 20 K.
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We carry out DFT+Hub-I iterations until convergence in the
total energy with precision 10−5 Ry is reached and then extract
the CFP from Eq. (7) as described in the previous section.

Self-consistent DFT+Hub-I calculations produce a non-
spherical one-electron Kohn-Sham potential (3), that includes
several nonspherical contributions acting on 4f states: the
long-range electrostatic (Madelung) interaction, as well as
the local-density-approximation (LDA) exchange-correlation
potential due to the conduction electrons and 4f states them-
selves. This last “intra-4f shell” contribution to the exchange-
correlation potential should be removed within DFT+Hub-I,
since the on-site interaction HU between 4f states is already
treated explicitly within DMFT. Hence, the intra-4f shell
contribution in the one-electron part Ĥ1el of Eq. (2) due to LDA
is counted twice and should be removed by a double-counting
correction. Moreover, this contribution includes the LDA
self-interaction error for localized states directly impacting
CFP: for low-lying CF levels, the self-interaction error will be
larger than for less occupied excited CF states.

In order to reduce the self-interaction error in the CFP we
enforce uniform occupancy of all states within the 4f ground-
state multiplet in our self-consistent DFT+Hub-I calculations.
To that end, we define the imaginary-frequency atomic
(Hubbard-I) Green’s function at the fermionic Matsubara
frequency ωn = (2n + 1)πT , where T is the temperature, as
follows:

Gat
ab(iωn)= 1

M

∑
γ∈GSM
δ /∈GSM

( 〈γ |fa|δ〉〈δ|f †
b |γ 〉

iωn − Eγ + Eδ

+ 〈δ|fa|γ 〉〈γ |f †
b |δ〉

iωn + Eγ − Eδ

)
,

(8)

where the eigenstates |γ 〉 and |δ〉 with eigenenergies Eγ and
Eδ are obtained by diagonalization of Eq. (2) and belong
to the ground-state multiplet (GSM) and excited multiplets,
respectively, a and b label 4f orbitals, M is the degeneracy
of the GSM. In other words, to obtain Eq. (8) we substitute
the standard Boltzmann weight Xγ = e−Eγ /T /Z, where Z is
the partition function, with the uniform weight X̃γ = 1/M for
the GSM and X̃δ = 0 for excited multiplets in the spectral
representation of the Green’s function [57,58]. In practice, the
degeneracy of the ground-state multiplet M is chosen to be the
same as for the corresponding free ion, hence it is given by
Hund’s rules. Therefore, M = 10 for Nd and M = 6 for Sm.
The self-energy thus obtained is then plugged back into the
self-consistency cycle. This leads to a spherically averaged
contribution from the 4f orbitals, both inside and outside
the rare-earth atomic sphere, while nonspherical contributions
from other states are taken into account. We verified the
validity of this method by calculating the density matrix
from the local Green’s function and transforming it to the
relativistic basis of one-electron J = 5

2 and J = 7
2 orbitals.

With the averaging, the resulting density matrix is made of two
identity blocks with deviations of the order of few percent, to
be compared with over 50% without the averaging.

Conceptually speaking, our approach amounts to replacing
Eq. (7) by

Ĥ1el = −μ + 〈Hff 〉 − �DC − vKS[ρspd + ρ4f ]

+ vKS[ρspd + ρ̄4f ], (9)

where vKS[ρ] is the Kohn-Sham potential (vKS = vHartree +
vxc) evaluated from the total electronic density ρ and then
projected to the basis of 4f Wannier orbitals. ρ4f designates
the projected electronic density belonging to the rare-earth’s
4f orbitals, ρ̄4f is the same density, spherically averaged,
and ρspd designates all the remaining density, belonging to all
atoms’ s, p, and d orbitals.

The same approach is used in the spin-polarized
DFT+Hub-I calculations: in this case the exchange splitting
is also removed within the GSM. We found, however, that this
averaging is not sufficient, since the value of the exchange field
within our DFT+Hub-I iterations may become larger than the
intermultiplet splitting. Hence we also directly remove the
4f spin polarization from the resulting DFT+Hub-I density
matrix. For a given k-point the “averaged” density matrix Ñk

in the Bloch basis reads

Ñk = Nk + 1
2P †(k)[T nff (k)T † − nff (k)]P (k), (10)

where Nk is the density matrix in the Bloch basis calculated
as described in Refs. [47,54], P (k) is the projector [47,51]
between the Wannier and Bloch spaces, nff (k) is the density
matrix in the Wannier basis, and T is the time-reversal operator.
The averaged density matrix Ñk is then used to recalculate
the electron density at the next DFT iteration as described in
Ref. [54]. The contribution of 4f states to the spin density
and local-spin-density-approximation (LSDA) exchange field
is thus suppressed. The resulting exchange field is due to
the polarization of the transition-metal sublattice, as expected
for hard magnetic rare-earth intermetallics. In contrast, direct
spin-polarized DFT+Hub-I calculations without the averaging
would lead to a large unphysical exchange field on rare-
earth sites due to the magnetization density of 4f electrons
themselves.

In Appendix A we benchmark the present method on
the prototypical rare-earth hard magnet SmCo5, for which
several measurements of CFP exist, and show good agreement
between calculated and measured CFPs. Moreover, the actual
eigenstates of the Sm 4f shell in SmCo5 obtained within
DFT+HubI are also in very good agreement with previous
neutron scattering and magnetic form-factor measurements,
see Appendix B.

C. Calculational details

The RFe12X family has the space group I4/mmm, with
a tetragonal primitive unit cell. The conventional unit cell,
with twice the volume and the atoms, is orthorhombic. It has
equivalent R sites in the corner and the center at Wyckoff
position 2a, X interstitial sites between two nearest R sites
at Wyckoff position 2b, and contains 24 Fe atoms on three
inequivalent sites, denoted below Fe1, Fe2, and Fe3 at Wyckoff
positions 8j , 8i, and 8f , respectively, as displayed in Fig. 1.
Calculations are done at the theoretical lattice constants for
RFe12X, summarized in Table I in the conventional unit cell
(from Table II of Ref. [59] and from this work). The calculated
lattice constants agree within 2% with the measured ones in
the more stable NdFe11Ti(N) and SmFe11Ti(N) compounds
[59].

The DFT calculations are performed with spin-orbit cou-
pling included within the second variational approach. We
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FIG. 1. Conventional unit cell of RFe12X. The rare-earth R sites
are yellow, the three types of Fe sites are gray, light blue, and dark
blue, and dopant X sites purple.

employ throughout the rotationally invariant Coulomb vertex
specified by Slater integrals F 0 = U = 6.0 eV as well as
F 2 = 10.13, F 4 = 6.77, and F 6 = 5.01 eV corresponding to
Hund’s rule coupling JH = 0.85 eV. These values of U and JH

are in agreement with those in the literature [41,53,60]. One
may notice, that while the values of U and JH are important
to determine the one-electron spectrum of a material, they
are expected to have a rather small effect on the crystal-field
parameters that we consider in this work [61]. We discuss
this dependence in Appendix D. DFT+Hub-I calculations are
carried out for the temperature of 290 K.

III. RESULTS

A. DFT and DFT+Hubbard-I electronic structure of RFe12 X

We first compare the electronic structure of RFe12X

obtained within DFT (LSDA) and DFT+Hub-I. A typical
DFT density of states (DOS) and a DFT+Hub-I spectral
function for ferromagnetic RFe12X, namely, for NdFe12N, are
shown in Fig. 2. The DFT DOS of Fig. 2(a) features a strong
polarization of the Fe 3d band. N 2p states are dispersive,
with the bottom of the bands contributing to a peak in the
DOS around −6 eV. The Nd 4f band is fully spin polarized
and antiferromagnetically aligned to Fe 3d, with the total spin
moment within the Nd atomic sphere equal to −2.77 μB , i.e.,
close to the Hund’s rule value of 3 μB for the Nd3+ ion.
The Nd majority-spin 4f band is pinned at the Fermi level,
its double-peak structure is due to spin-orbit splitting. This
picture of 4f bands pinned at the Fermi level is qualitatively
incorrect and illustrates the difficulties of DFT with local or

TABLE I. Conventional unit cell lattice constants used in our
calculations. b = a, and the angles are α = β = γ = 90◦.

Lattice constant (Å)

Compound a c

NdFe12 8.533 4.681
NdFe12N 8.521 4.883
NdFe12Li 8.668 4.873
SmFe12 8.497 4.687
SmFe12N 8.517 4.844
SmFe12Li 8.640 4.863

semilocal exchange-correlation functionals to correctly treat
strongly interacting localized valence states.

The spin-polarized DFT+Hub-I spectral function shown in
Fig. 2 was calculated using the averaging approach described
in Sec. II B. It features an almost fully polarized Fe 3d

band as well as occupied and empty 4f states separated,
to first approximation, by U , thus forming lower and upper
Hubbard bands, respectively. The Hubbard bands are split
due to the Hund’s rule and spin-orbit couplings into several
manifolds with characteristically sharp peaks corresponding
to transitions from the ground state to different quasiatomic
multiplets upon electron addition or removal. The 4f multiplet
structure in lanthanides is known to be only weakly sensitive
to the crystalline environment. Indeed, the positions of the
Hubbard bands in Fig. 2(b) as well as the overall shape of
the upper Hubbard band split into two manifolds of multiplet
peaks centered at about 2 and 4 eV are in agreement with
photoemission and inverse-photoemission spectra of the Nd
metal [62]. One also sees that the Nd 4f states in DFT+Hub-I
are not fully spin polarized, in contrast to the DFT case. Indeed
the Nd spin moment of −1.61 μB obtained within DFT+Hub-I
is only about half of the Hund’s rule value and is also aligned
antiferromagnetically with respect to the spin moment on iron.
The calculated Nd orbital moment is 3.40 μB . It is precisely
the crystal-field splitting of the Nd 4f shell that prevents the
full saturation of the Nd magnetization.

B. Crystal-field parameters and exchange fields in RFe12 X

The calculated CF and exchange fields for Nd and Sm
RFe12(N,Li) compounds are listed in Tables II and III, together
with the magnetic moments on R and in the full cell.
Comparing the different materials, one sees that RFe12 has
the smallest values of A0

2〈r2〉 (in absolute value), while N
insertion enhances A0

2〈r2〉 up to positive values of about 400
to 600 K. Li insertion has the opposite effect, leading to large
negative A0

2〈r2〉, in particular for R = Nd. We notice some
dependence of the CF parameters A

q

k 〈rk〉 on the spin direction
in the ferromagnetic phase. It is mostly weak, of the order of a
few tenths of Kelvin for the most important CFP A0

2〈r2〉, except
in NdFe12N. It can be significant, though, for higher-order
CFP. The magnetic state (paramagnetic of ferromagnetic) has
a significant impact on A0

2〈r2〉 in some compounds: one may
notice larger values of A0

2〈r2〉 for paramagnetic SmFe12(N,Li)
than for either spin direction in the ferromagnetic phase.

Finally, the total magnetization appears to be slightly
reduced in Sm compounds, compared to Nd compounds: in
the former, the spin magnetic moment on the rare earth com-
pensates the orbital magnetic moment, leading to negligible
total moment, while Nd presents a total moment dominated
by the orbital component, and in the same direction as the Fe
sublattice magnetization.

The sign and overall magnitude of our calculated A0
2〈r2〉

are in agreement with previous calculations for RFe12(N) in
Ref. [5] using the 4f -in-core approach, though there are some
differences in the precise values. We obtain a similar value for
NdFe12, a somewhat larger one for NdFe12N, a more negative
value for SmFe12, and a smaller (positive) value for SmFe12N.
One may notice that the results in Ref. [5] are quite sensitive
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(a) NdFe12N DFT density of states (b) NdFe12N DFT + Hubbard I spectral function

FIG. 2. (a) Atom- and orbital-resolved density of states of NdFe12N calculated with the spin-polarized DFT method. (b) Atom- and
orbital-resolved spectral function of the same compound obtained within self-consistent spin-polarized DFT+Hubbard-I. For better readability
we take the average over the three types of Fe atoms: the actual total Fe density of states per unit cell is three times larger.

to different treatments of the “tails” of 4f core orbitals: there
is no such uncertainty in our approach.

The lowest-order CF parameters A0
2〈r2〉 and the corre-

sponding single-ion anisotropy energies K1 evaluated using
Eq. (1) are displayed in Fig. 3. One may see that, while
NdFe12N and NdFe12Li exhibit larger |A0

2〈r2〉| (upper panel)
than their Sm counterparts, this difference is offset by a larger
Stevens prefactor of Sm in Eq. (1), so that the Sm- and
Nd-based compounds have a magnetic anisotropy coefficient
K1 of similar magnitude. An important difference between
Nd and Sm is the different signs of their Stevens factors αJ

(αJ = −7/1089 for Nd, αJ = 13/315 for Sm). Consequently,
N insertion leads to a large out-of-plane anisotropy for Nd, but
in-plane anisotropy for Sm. Li has the opposite effect: doping
Li into SmFe12 leads to a rather large out-of-plane anisotropy
of SmFe12Li, of comparable magnitude to that of NdFe12N.

Performing the averaging over the ground-state multiplet
as described in Eq. (8) is crucial to obtain reasonable CFP:
the lowest-order CFP A0

2〈r2〉 is most sensitive to this. The

corresponding data without averaging for NdFe12N are given
and discussed in Appendix C.

For the sake of comparison with future experiments we
list low-energy eigenvalues and eigenstates of all RFe12X

compounds in Appendix B. It is interesting to notice that
eigenstates of the ground-state J = 5/2 multiplet of Sm
(Table VI) are often found to exhibit a significant admixture
from exited J = 7/2 states; the Nd J = 9/2 states (Table V)
contain a significantly lower admixture from the first exited
multiplet.

A last interesting point is that the exchange fields Bex on the
rare earth are enhanced by Li and reduced by N. This is useful
because the exchange field, or exchange coupling between Fe
and R, is essential for finite temperature magnetocrystalline
anisotropy. The rare-earth-originated anisotropy becomes in-
effective at high temperature, and this threshold temperature is
determined by the exchange coupling Bex. In Fig. 4 we show
the difference between the 4f shell atomic energies E⊥ and
E‖, computed as E = Tr[Ĥ e−βĤ ]/Tr[e−βĤ ] with Ĥ defined in

TABLE II. Calculated CF parameters in ferromagnetic (FM) and paramagnetic (PM) NdFe12(N,Li) in Kelvin. For the FM case we list the
CF parameters for each spin direction. The exchange field in the FM phase (in Tesla), the spin and orbital magnetic moments of the rare earth
as well as the total magnetic moment per crystal unit cell (in Bohr magneton μB ) are also listed.

NdFe12 NdFe12N NdFe12Li

PM FM PM FM PM FM

↑ ↓ ↑ ↓ ↑ ↓
A0

2〈r2〉 −57 −71 −116 486 477 653 −656 −687 −742
A0

4〈r4〉 −29 −5 −1 107 75 112 −182 −158 −186
A4

4〈r4〉 −129 −76 −270 7 −105 −141 −118 −60 −228
A0

6〈r6〉 52 62 54 51 32 63 −24 −17 −31
A4

6〈r6〉 70 −224 −107 −160 −65 −91 37 −6 96

Bex (T ) – 265 – 217 – 410
Nd Mspin – −1.48 μB – −1.61 μB – −1.69 μB

Nd Morb – 2.96 μB – 3.40 μB – 3.28 μB

Mcell – 26.39 μB – 29.15 μB – 27.59 μB
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TABLE III. The same quantities as in Table II for SmFe12(N,Li).

SmFe12 SmFe12N SmFe12Li

PM FM PM FM PM FM

↑ ↓ ↑ ↓ ↑ ↓
A0

2〈r2〉 −32 −184 −211 249 195 225 −458 −297 −272
A0

4〈r4〉 −11 −21 −18 99 78 70 −116 −68 −71
A4

4〈r4〉 −215 −41 −136 −122 22 −91 −124 61 −198
A0

6〈r6〉 47 45 40 71 47 25 −13 −2 −12
A4

6〈r6〉 −85 −95 −58 −184 −97 −82 44 30 38

Bex (T ) – 232 – 205 – 331
Sm Mspin – −3.31 μB – −2.41 μB – −3.96 μB

Sm Morb – 3.29 μB – 2.35 μB – 3.60 μB

Mcell – 24.54 μB – 26.83 μB – 25.77 μB

Eq. (2) and the exchange field Bex is along the z axis (along the
c lattice parameter) and x axis (along the a lattice parameter),
respectively. We scale the exchange field Bex by a coefficient
MFe(T )/MFe(0) at nonzero temperatures, using the measured
magnetization ratio of NdFe12N from Hirayama et al. [6]. The
energy difference plotted in Fig. 4 is more general than the
expression of Eq. (1), because it also contains higher order CFP
and nonzero temperature; to compute E⊥ and E‖ we diago-
nalize the full Hamiltonian Ĥ , without restricting ourselves to
the ground-state multiplet. This gives quite a different picture
than Fig. 3: the strongly enhanced exchange coupling due to
Li doping causes the magnetocrystalline anisotropy to persist
at much higher temperatures than with N doping.

IV. DISCUSSION: THE EFFECT OF HYBRIDIZATION
WITH THE INTERSTITIALS

Let us now analyze the mechanisms determining the CFP
on the rare-earth site and, in particular, the impact of the N and

FIG. 3. Crystal-field parameters A0
2〈r2〉 (average for up and down

spins in the FM phase) and anisotropy energy K1 for RFe12X, with
R = Nd,Sm and X is either empty, N, or Li [K1 is obtained from
Eq. (1)].

Li interstitials on them. We consider the NdFe12X (X = Ni,
Li) compounds as an example. The N atom nominally carries
three 2p electrons, but in the RFe12N compounds the N 2p

bands are more than half-filled (Fig. 2). To verify this we have
also performed a Bader-charge analysis [63] for NdFe12X and
found 8.3 electrons on N resulting in an ion charge of −1.3. In
contrast, the Li atom is nominally 2s1, but it looses its single
2s electron inside the NdFe12 matrix, the corresponding Bader
ion charge is +0.7.

In Fig. 5 we display the complex Wannier orbitals con-
structed for Nd 4f states with window size ωwin = 2 eV with
magnetic quantum numbers m = 0 and m = −3, in the pres-
ence of interstitial N or Li. The orbitals with m = ±3 do not
point towards the N or Li atom, and leak only to neighboring Fe
atoms. On the other hand, the orbital with m = 0 (correspond-
ing to fz3 cubic orbital) points towards the interstitial site, and
shows strong leakage to the interstitial atom, particularly in
the Li case. The same applies, to a lesser extent, to the orbitals
m = ±1 that are also pointing towards the interstitials.

FIG. 4. Evolution with temperature of the difference in the 4f

shell energy E⊥ − E‖ between the moments on R and Fe aligned
perpendicularly and parallel to the z axis, respectively, for NdFe12N
(blue, full line) and SmFe12Li (red, dashed line). Inset: Magnetization
fraction of the Fe sublattice in NdFe12N, as a function of temperature
from Hirayama et al. [6].
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FIG. 5. 4f Wannier orbitals of NdFe12N and NdFe12Li, for
magnetic quantum number m = −3 and m = 0 and window size
[−2,2] eV. The orbital with m = 0 points towards and leak to the
N or Li sites, while orbitals with m = ±3 do not. All of them leak
somewhat to the nearest-neighbor Fe atoms.

The N (Li) insertion has thus two effects on the CFP. The
first one is due to the electrostatic interaction between the 4f

electrons and the interstitial ions. This interaction with the
negative N (positive Li) ion pushes the on-site energies of the
m = −1,0,1 orbitals, which point towards the interstitial, to
higher (lower) energies.

The second contribution is due to hybridization between
the 4f states and the N 2p (Li 2s and 2p) bands, which is
expected to mainly affect the m = −1,0,1 orbitals pointing
towards the interstitial. Mixing with the empty Li 2s and 2p

bands pushes them to lower energies, while the opposite shift
is induced due to hybridization with mostly filled N 2p located
well below rare-earth 4f states, see Fig. 2. Hence, one sees
that both the electrostatic and hybridization effects act in the
same direction, raising the on-site energies of the m = −1,0,1
orbitals in the case of N and lowering them in the case of Li.

This analysis explains the effect of interstitials on the CFP
A0

2〈r2〉. Indeed, the contribution due to A0
2〈r2〉 into the CF

Hamiltonian (6) is A0
2〈r2〉T̂ 0

2 /λ0
2, where the matrix of the one-

electron operator T̂ 0
2 /λ0

2 (6) reads

T̂ 0
2 /λ0

2 = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
3

0 (0)
1
5

4
15

1
5

(0) 0
− 1

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

in the basis of complex 4f orbitals. Hence, the energy level
of 4f orbitals m = ±3 is negatively correlated with A0

2〈r2〉,
while the energy levels of the orbitals with m = −1,0,1 are

FIG. 6. (a) Projected spectral functions ρ0σ
αl (ω) for the 4f orbital

with m = 0 in NdFe12Li, where the atom α and shell l are given in
the legend. The magnitude ρmσ

αl (ω) indicates the amount of admixture
of the character αl into a given 4f orbital, for its precise formulation
see the text. (b) The same for the 4f orbital m = 3.

positively correlated with A0
2〈r2〉 (orbitals with m = ±2 are

unaffected by T̂ 0
2 /λ0

2). Thus, the effect of N (Li) insertion is to
enhance (reduce) the value of A0

2〈r2〉.
One may argue that the Hubbard-I approximation neglects

the hybridization function in solving the quantum impurity
problem, hence, hybridization to the bath is not included
explicitly when solving for the self-energy � in the DMFT
(Hubbard-I) step of our DFT+Hub-I calculations. However,
our Wannier orbitals constructed within the “small” energy
window do contain the effect of hybridization implicitly,
which is evidenced by their “leakage” to neighboring sites
due to mixing of rare-earth 4f states with Fe 3d, N 2p,
and Li 2s bands. The real-space Wannier functions of Fig. 5
thus represent a convenient visualization of hybridization
between rare earth and other orbitals. In order to quantify
the amount of this admixture of the conduction band states we
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FIG. 7. (a) Projected spectral functions ρ0σ
αl (ω) for the 4f orbital

with m = 0 in NdFe12N. For the notation see the caption of Fig. 6.
(b) The same for the 4f orbital m = 3, ρ3σ

αl (ω).

also expand those extended small-window Wannier orbitals
|wσ

m(k)〉 in the basis of localized Wannier functions |w̃ασ ′
lm′ (k)〉

(labeled by spin σ ′, orbital l, and magnetic m′ quantum
numbers, as well as atomic site α) constructed within a large
energy window for all relevant bands. In Appendix F we
derive the corresponding projection operators relating |wσ

m(k)〉
and |w̃ασ ′

lm′ (k)〉. We employ it to extract the corresponding
contribution ρ̃mσ

αl (ω) of the shell l on the site α into the spectral
function of the “small-window” 4f orbital σm.

The comparison of ρmσ
αl for the orbital m = 0 and m =

3 are shown in Figs. 6 and 7 for NdFe12N and NdFe12Li,
respectively. One may notice in Fig. 6(a) that Nd fz3 (m = 0)
in NdFe12Li exhibits a strong hybridization with Li 2s and 2p;
their contribution is significantly larger than the admixture
of Fe 3d states. We further observe that spin up states are
hybridizing more strongly than spin down states. In contrast,
in the same compound for m = 3 [Fig. 6(b)], there is a peak
of hybridization with Fe states but barely any with the Li 2s

and 2p ones. The same difference, but much less pronounced,
is noticeable in the case of NdFe12N, see Fig. 7. Hence, one
may conclude, that the effect of the hybridization with the
interstitial on the CF is much larger for Li than for N. In the
latter case the electrostatic shift due to the negative charge on
N seems to play the leading role.

V. CONCLUSION

In conclusion, we propose a novel first-principles approach
for calculating crystal and exchange fields in rare-earth
systems. This approach is formulated within the DFT+DMFT
framework with local correlations on the rare-earth 4f shell
treated within the quasiatomic Hubbard-I approximation. The
4f states are represented by Wannier functions constructed
from a narrow energy range of Kohn-Sham states of mainly
4f character. We employ a charge-density averaging that
suppresses the contribution due to the self-interaction of
the 4f orbitals to the one-electron Kohn-Sham potential.
We thus reduce the effect of this unphysical self-interaction
from the crystal-field splitting, while keeping nonspherical
contributions to CFP from other bands. Similarly, by removing
the contribution due to the 4f magnetic density from the
exchange-correlation potential we suppress its unphysical
contribution to the exchange field at the rare-earth site.

The present approach is effectively free from adjustable
parameters and can be applied to evaluate CFP in any localized
lanthanide compound. While in the present work we chose the
value for the on-site interaction parameters U and J , they
can in principle be evaluated using constrained local-density
or random-phase approximation [64]. Moreover, we show that
the crystal-field splitting exhibits a rather weak dependence on
the value of U chosen within a reasonable range for lanthanide
4f shells (4 to 8 eV). Our choice for the local basis representing
4f orbitals, namely, that we construct it from a narrow range
of Kohn-Sham bands with heavy 4f character, is physically
motivated as it allows for the impact of the hybridization on
the CFP being included within DFT+Hub-I.

We apply this approach to evaluate the crystal and
exchange-field potentials as well as the resulting single-ion
magnetic anisotropies in several rare-earth hard magnetic
intermetallics. First, we verify that our ab initio scheme
reproduces the measured crystal-field parameters (CFP) in the
well-known hard magnet SmCo5. We subsequently apply it
to prospective rare-earth hard magnetic intermetallics of the
RFe12X family (where R = Nd, Sm and X can be N, Li, or
vacancy). Our calculations reproduce the strong out-of-plane
anisotropy of NdFe12N due to a large positive value of the
key CFP A0

2〈r2〉 induced by insertion of N. Interestingly, we
find that interstitial Li has a strong opposite effect, leading
to a large negative value of A0

2〈r2〉. We thus predict a
strong out-of-plane anisotropy in the hypothetical compound
SmFe12Li. We also find the anisotropy in SmFe12Li to persist
to higher temperatures as compared to NdFe12N. Hence,
Sm-based compounds may represent interesting candidates
for hard magnetic applications. Of course, the thermodynamic
stability of SmFe12Li and technological feasibility of Li doping
still need to be demonstrated by future studies.

We analyze the effect of N and Li interstitials on A0
2〈r2〉 by

evaluating the Bader charges as well as by studying the leakage
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of 4f Wannier orbitals to interstitial sites and quantifying the
4f hybridization with N 2p and Li 2s states.

Extensions of the present approach beyond the Hubbard-I
approximation are promising for applications to other rare-
earth intermetallics. In particular, a similar DFT+DMFT
technique suppressing subtle self-interaction and double-
counting contributions to the Kohn-Sham potential might be
necessary to study, for example, the impact of a spin-polarized
transition-metal sublattice on heavy-fermion behavior in Yb-
based intermetallics [65,66].
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APPENDIX A: CRYSTAL-FIELD PARAMETERS IN SmCo5

SmCo5 has been studied more extensively than other hard
magnetic rare-earth intermetallics, so ample experimental
data are available in this case. In particular, several groups
estimated the CF parameters using inelastic neutron scattering
or magnetization measurements. Therefore, this compound is
a good benchmark to test our approach. SmCo5 has already
been studied within DFT+Hub-I to evaluate its ground-state
magnetization and photoemission spectra [42], but the CF
parameters were not calculated in this work.

The calculated spectral function of SmCo5 is shown in
Fig. 8. We find a total magnetic moment on the 4f shell of Sm
of 0.42 μB , antiparallel with the Co moments. This compares
well with the measured value of 0.38 μB at 4.2 K [18].

The calculated CFP and exchange fields for SmCo5 are
listed in Table IV, together with experimental data. The
calculations on SmCo5 are done at the experimental lattice
constants.

FIG. 8. Atom-resolved spectral function of SmCo5 obtained
within self-consistent spin-polarized DFT+Hubbard-I (full lines).
The two inequivalent Co types are summed to give the total Co
3d spectral function. The occupied part of the experimental spectrum
of SmCo5 (light blue from Ref. [67] and purple from Ref. [68]) and
the full experimental spectrum of metal Sm (red, from Ref. [62]) are
shown for comparison in dotted lines.

One may notice that the CF parameter A0
2〈r2〉 exhibits

a strong dependence on the spin polarization; it is about
twice larger in the FM phase. For other CF parameters this
dependence is small.

Our results for A0
2〈r2〉 are in good agreement with the exper-

imental (rather wide) range from about −180 to −420 K. The
calculated Bex also agrees rather well with the experimental
range from 260 to 360 T. One may notice that the experimental
measurements were performed at room temperature, hence,
in ferromagnetic SmCo5. Also, the most recent experimental
values [20] of A0

2〈r2〉 are in very good agreement with our
results for the FM phase.

The main discrepancy between our theoretical and experi-
mental CFP lies in the large value that we find for A6

6〈r6〉. The
high-order CF parameters are usually assumed to be rather
small in SmCo5. However, as noted in Ref. [70], experimental
inelastic neutron and susceptibility data are not particularly
sensitive to those high-order parameters. Hence, they are often
assumed to be small from the onset and neglected in the fitting
procedure.

In order to facilitate the reproducibility of our calculations,
we provide below the one-electron Hamiltonian of Eq. (7)
for a converged, ferromagnetic calculation of SmCo5, used to
obtain the CFP of Table IV.

Ĥ
↑↑
1el =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−26.5763 0 0 0 0 0 0.0235
0 −26.5003 0 0 0 0 0
0 0 −26.4465 0 0 0 0
0 0 0 −26.3511 0 0 0
0 0 0 0 −26.2796 0 0
0 0 0 0 0 −26.1675 0

0.0235 0 0 0 0 0 −26.0800

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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TABLE IV. Calculated CF parameters in ferromagnetic (FM) and paramagnetic (PM) SmCo5 in Kelvin. For the FM case we list the CF
parameters for each spin direction. The exchange field in the FM phase (in Tesla) is also listed. For comparison, measured and calculated values
from several groups are also given. References corresponding to an experimental work are denoted by the symbol †.

PM FM Tils et al. Zhao et al. Givord et al. Sankar et al. Bushow et al. Richter et al. Hummler et al. Novak et al.

↑ ↓ Ref. [20]† Ref. [19]† Ref. [18]† Ref. [17]† Ref. [16]† Ref. [69] Ref. [70] Ref. [71]

A0
2〈r2〉 −140 −313 −262 −326 −330 −200 −420 −180 −755 −509 −160

A0
4〈r4〉 −40 −40 −55 – −45 0 25 0 −37 −20 −33

A0
6〈r6〉 33 35 25 – 0 50 0 0 11 2 40

A6
6〈r6〉 −684 −731 −593 – 0 0 6 0 290 −55 168

Bex (T ) – 227 260 327.5 260.5 357 298 – 279 –

Ĥ
↓↓
1el =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−26.1093 0 0 0 0 0 0.0191
0 −26.1926 0 0 0 0 0
0 0 −26.3023 0 0 0 0
0 0 0 −26.3802 0 0 0
0 0 0 0 −26.4688 0 0
0 0 0 0 0 −26.5252 0

0.0191 0 0 0 0 0 −26.6069

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Ĥ
↑↓
1el = (Ĥ ↓↑

1el )† =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0.2032 0 0 0 0 0
0 0 0.2632 0 0 0 0
0 0 0 0.2893 0 0 0
0 0 0 0 0.2886 0 0
0 0 0 0 0 0.2633 0

−0.0002 0 0 0 0 0 0.2036
0 −0.0003 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Ĥ1el =
(

Ĥ
↑↑
1el Ĥ

↑↓
1el

Ĥ
↓↑
1el Ĥ

↓↓
1el

)
.

APPENDIX B: EIGENENERGIES AND EIGENSTATES
OF THE 4 f SHELLS IN SmCo5 AND RFe12 X

In this Appendix we present the actual converged eigen-
functions and eigenstates of the 4f shell obtained within
our DFT+Hub-I approach. In Tables V and VI we list those
eigenenergies and the corresponding wave functions for the
ground-state multiplet, as well as for the lowest-energy state
of the first exited multiplet, in all the materials considered.
The eigenenergies are given with respect to the ground
state. The eigenvalues are expanded in the basis of total
angular momentum J as

∑
J,mJ

a(J,mJ )|J ; mJ 〉; we include
all contributions with |a(J,mJ )| > 0.03.

One sees that the eigenstates of Sm belonging to the
ground-state multiplet feature a rather significant admixture
of the exited J = 7/2 multiplet. The intermultiplet mixing is
markedly lower in the case of Nd.

To our awareness, only 4f eigenstates in SmCo5 have
been measured to date. Our calculated intra- and intermultiplet
splittings are in good agreement with the results of of Tils et al.
[20] and Givord et al. [18], see the lowest panel of Table VI.
Moreover, the actual eigenstates and their order are also in very
good agreement with the magnetic form-factor measurements
[18,72], especially for the lowest-energy states [73].

APPENDIX C: IMPORTANCE OF THE CHARGE
AVERAGING

In this Appendix we explicitly demonstrate the effect of
averaging of 4f charge density [Eq. (8)] by comparing the CFP
calculated with and without this averaging [but in both cases
the 4f magnetic density is suppressed following Eq. (10)] in
two materials, NdFe12N and SmCo5, that are known to have
an out-of-plane magnetic anisotropy.

The corresponding values are displayed in Table VII. One
sees that the difference is largest for the lowest-order CFP
A0

2〈r2〉, where calculations without averaging lead to the
wrong sign with respect to experiment (suggesting in-plane
anisotropy in both cases). Hence, the proper averaging of
4f charge density is crucial for a correct description of the
single-ion anisotropy. For the higher order terms the difference
between two approaches is smaller. This suggests that the
self-interaction contribution in the CFP has predominantly
l = 2 symmetry.

APPENDIX D: DEPENDENCE OF RESULTS
ON COULOMB U AND HUND’s JH

To perform DFT+DMFT calculations, we have to choose a
value for the on-site screened Coulomb interaction parameter
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TABLE V. Energies (in meV) and wave functions (expanded in the total angular momentum J basis) of the atomic eigenstates in the
ground-state multiplet (GSM) and of the lowest eigenstate of the first excited multiplet (FEM) for NdFe12X.

NdFe12

GSM 0 0.996|9/2; +9/2〉 + 0.081|11/2; +9/2〉
8 0.995|9/2; +5/2〉 + 0.094|11/2; +5/2〉
18 0.989|9/2; +3/2〉 + 0.145|11/2; +3/2〉 − 0.037|9/2; −5/2〉
18 0.999|9/2; +7/2〉 + 0.042|11/2; +7/2〉
39 0.989|9/2; +1/2〉 + 0.145|11/2; +1/2〉 − 0.032|9/2; −7/2〉
51 0.996|9/2; −3/2〉 + 0.085|11/2; −3/2〉
51 0.994|9/2; −1/2〉 + 0.105|11/2; −1/2〉
56 0.992|9/2; −5/2〉 + 0.121|11/2; −5/2〉 + 0.038|9/2; +3/2〉
82 0.985|9/2; −7/2〉 + 0.166|11/2; −7/2〉 + 0.033|9/2; +1/2〉
88 0.998|9/2; −9/2〉 + 0.057|11/2; −9/2〉

FEM 309 0.987|11/2; +5/2〉 + 0.126|13/2; +5/2〉 − 0.093|9/2; +5/2〉 − 0.046|11/2; −3/2〉
NdFe12N

GSM 0 0.994|9/2; +9/2〉 + 0.092|11/2; +9/2〉 − 0.054|9/2; +1/2〉
32 0.998|9/2; +5/2〉 + 0.065|11/2; +5/2〉
38 0.994|9/2; +3/2〉 + 0.106|11/2; +3/2〉
41 0.997|9/2; +7/2〉 − 0.065|9/2; −1/2〉
56 0.993|9/2; +1/2〉 + 0.101|11/2; +1/2〉 + 0.055|9/2; +9/2〉
66 0.998|9/2; −3/2〉 + 0.052|11/2; −3/2〉
66 0.966|9/2; −1/2〉 − 0.242|9/2; −9/2〉 + 0.064|9/2; +7/2〉 + 0.061|11/2; −1/2〉
67 0.996|9/2; −5/2〉 + 0.077|11/2; −5/2〉
73 0.970|9/2; −9/2〉 + 0.241|9/2; −1/2〉
80 0.996|9/2; −7/2〉 + 0.093|11/2; −7/2〉

FEM 301 0.994|11/2; +11/2〉 + 0.091|13/2; +11/2〉 − 0.051|11/2; +3/2〉
NdFe12Li

GSM 0 0.993|9/2; +7/2〉 + 0.116|11/2; +7/2〉
16 0.990|9/2; +5/2〉 + 0.137|11/2; +5/2〉
24 0.994|9/2; +9/2〉 + 0.105|9/2; +1/2〉
31 0.989|9/2; +3/2〉 + 0.137|11/2; +3/2〉 − 0.041|9/2; −5/2〉
40 0.983|9/2; +1/2〉 + 0.146|11/2; +1/2〉 − 0.107|9/2; +9/2〉
51 0.986|9/2; −1/2〉 + 0.163|11/2; −1/2〉
65 0.985|9/2; −3/2〉 + 0.166|11/2; −3/2〉
80 0.988|9/2; −5/2〉 + 0.148|11/2; −5/2〉 + 0.042|9/2; +3/2〉
93 0.990|9/2; −7/2〉 + 0.135|11/2; −7/2〉
126 0.984|9/2; −9/2〉 + 0.179|11/2; −9/2〉

FEM 319 0.983|11/2; +7/2〉 + 0.134|13/2; +7/2〉 − 0.116|9/2; +7/2〉 + 0.042|11/2; −1/2〉

U and for the Hund’s coupling parameter JH . Several methods
have been developed in order to compute those parameters
from first principles, most notably the constrained local density
approximation [74] and, more recently, the constrained random
phase approximation [64].

In the present work, however, we do not attempt a first
principles determination. We use U = 6 eV and JH = 0.85 eV
because these values have given satisfactory results in other
calculations on rare-earth materials [41,53]. They are also
in line with reported values calculated from first principles
[60]. Nevertheless, it is preferable that results obtained by our
calculation scheme do not depend too strongly on the value of
U and JH . In Fig. 9 we show that the dependence of the CFP
A0

2〈r2〉 in NdFe12N is very moderate, as long as the values of U

and J are chosen within a reasonable ranges for rare-earth ions.
Furthermore, we observe that smaller values of U lead to

slightly larger values of A0
2〈r2〉: this is not surprising if we keep

in mind that a large U is favorable to a strong localization of the
4f electrons, hence to a weaker coupling to the crystal field.

APPENDIX E: DEPENDENCE OF RESULTS
ON WINDOW SIZE

Another important parameter of our calculations is the size
of the window around the Fermi level that we use to construct
the 4f Wannier functions. In Fig. 10 we compare the Wannier
orbitals constructed for the same orbital m = 0 in NdFe12Li for
two different window sizes: a small window with ωwin = 2 eV,
and a large one with ωwin = 20 eV. For the large window, the
Wannier orbital (WO) takes essentially pure Nd 4f orbital
character, while the small-window WO leaks significantly to
neighboring sites, in particular, to Li.

The effect of the window size on the CF parameters is
shown more quantitatively in Fig. 11, which displays those
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TABLE VI. Same as Table V, for SmFe12X and SmCo5. For SmCo5, between brackets next to the calculated energies: energies of the
atomic eigenstates measured by Tils et al. (left, Ref. [20]) and Givord et al. (right, Ref. [18]). Note that only Tils et al. directly measure the
eigenenergies, while Givord et al. obtain them from an atomic Hamiltonian fitted to reproduce the measured magnetic form factor.

SmFe12

GSM 0 0.986|5/2; +5/2〉 + 0.164|7/2; +5/2〉
27 0.983|5/2; +3/2〉 + 0.183|7/2; +3/2〉
47 0.968|5/2; +1/2〉 + 0.245|7/2; +1/2〉 + 0.043|9/2; +1/2〉
69 0.977|5/2; −1/2〉 + 0.209|7/2; −1/2〉 + 0.041|9/2; −1/2〉
85 0.976|5/2; −3/2〉 + 0.218|7/2; −3/2〉
99 0.987|5/2; −5/2〉 + 0.159|7/2; −5/2〉 + 0.032|9/2; −5/2〉

FEM 191 0.987|7/2; +7/2〉 + 0.154|9/2; +7/2〉 + 0.034|7/2; −1/2〉
SmFe12N

GSM 0 0.997|5/2; +5/2〉 + 0.079|7/2; +5/2〉
2 0.990|5/2; +3/2〉 + 0.143|7/2; +3/2〉
13 0.976|5/2; +1/2〉 + 0.216|7/2; +1/2〉
31 0.982|5/2; −1/2〉 + 0.186|7/2; −1/2〉 + 0.035|9/2; −1/2〉
48 0.978|5/2; −3/2〉 + 0.209|7/2; −3/2〉
75 0.971|5/2; −5/2〉 + 0.238|7/2; −5/2〉

FEM 176 0.988|7/2; +5/2〉 + 0.129|9/2; +5/2〉 − 0.078|5/2; +5/2〉
SmFe12Li

GSM 0 0.977|5/2; +5/2〉 + 0.212|7/2; +5/2〉 + 0.037|9/2; +5/2〉
39 0.965|5/2; +3/2〉 + 0.256|7/2; +3/2〉 + 0.047|9/2; +3/2〉
67 0.960|5/2; +1/2〉 + 0.278|7/2; +1/2〉 + 0.042|9/2; +1/2〉
90 0.946|5/2; −1/2〉 + 0.318|7/2; −1/2〉 + 0.051|9/2; −1/2〉
116 0.941|5/2; −3/2〉 + 0.330|7/2; −3/2〉 + 0.068|9/2; −3/2〉
137 0.974|5/2; −5/2〉 + 0.221|7/2; −5/2〉 + 0.053|9/2; −5/2〉

FEM 202 0.977|7/2; +7/2〉 + 0.211|9/2; +7/2〉 + 0.035|11/2; +7/2〉
SmCo5

GSM 0 (0 / 0) 0.984|5/2; +5/2〉 + 0.171|7/2; +5/2〉
33 (31 / 28) 0.983|5/2; +3/2〉 + 0.181|7/2; +3/2〉
52(– / 47) 0.973|5/2; +1/2〉 + 0.225|7/2; +1/2〉 + 0.033|9/2; +1/2〉
71(– / 73) 0.977|5/2; −1/2〉 + 0.209|7/2; −1/2〉 + 0.035|9/2; −1/2〉
86(– / 91) 0.977|5/2; −3/2〉 + 0.211|7/2; −3/2〉 − 0.032|9/2; +9/2〉

95(– / 109) 0.989|5/2; −5/2〉 + 0.122|7/2; −5/2〉 + 0.073|7/2; +7/2〉 + 0.033|9/2; −5/2〉
FEM 188 (166 / –) 0.963|7/2; +7/2〉 + 0.187|7/2; −5/2〉 + 0.164|9/2; +7/2〉 − 0.093|5/2; −5/2〉

parameters computed for several window choices
[−ωwin,ωwin] for different materials. The smallest window
size of ωwin = 2 eV is required to enclose all the 4f -like

TABLE VII. Crystal-field parameters and exchange field in
NdFe12N and SmCo5 in the ferromagnetic phase, calculated with
and without averaging over the ground-state multiplet.

NdFe12N SmCo5

with without with without

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓
A0

2〈r2〉 477 653 −190 26 −313 −262 278 331
A0

4〈r4〉 75 112 30 82 −40 −55 −30 −37
A4

4〈r4〉 −105 −141 −65 −124 0 0 0 0
A0

6〈r6〉 32 63 27 64 35 25 38 25
A4

6〈r6〉 −65 −91 −61 −112 0 0 0 0
A6

6〈r6〉 0 0 0 0 −731 −593 −945 −806

Bex (T ) 217 206 227 235

bands, increasing it to 4 eV includes most of the Fe states and
part of the N or Li states inside the window. The largest size
of 20 eV gives Wannier functions with essentially pure orbital
character. One may notice a relatively mild dependence of the
CFP on the choice of the window up to ωwin = 8 eV.

APPENDIX F: PROJECTION OF EXTENDED WANNIER
ORBITALS TO LOCALIZED WANNIER BASIS

In this Appendix we derive the projection operator between
localized and extended Wannier spaces. A set of Wannier-like
functions |w̃ασ

lm (k)〉 is constructed for an atom α of the unit cell
and quantum numbers (lmσ ) as a combinations of Kohn-Sham
Bloch waves for a range of bands within the chosen energy
window W̃: ∣∣w̃ασ

lm (k)
〉 =

∑
ν∈W̃

P̃ ασ
lmν(k)

∣∣φk
ν

〉
, (F1)

where φk
ν are the Bloch functions and P̃ ασ

lmν(k) is the cor-
responding matrix element of the projector constructed as
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FIG. 9. CFP A0
2〈r2〉 in NdFe12N as a function of U for JH =

0.85 eV (left-hand panel), and as a function of JH for U = 6 eV (right-
hand panel). Our reference values are (U = 6 eV, JH = 0.85 eV).

described in Refs. [50,51]. The corresponding real-space Wan-
nier functions are then obtained by a Fourier transformation

w̃ασ
lm (r) =

∑
k

e−ik.r
∣∣w̃ασ

lm (k)
〉
. (F2)

We assume that the window W̃ in Eq. (F1) is large, i.e., that
it includes both rare-earth 4f states and all relevant valence
bands that are expected to hybridize with them. As a result,
with such a large-window construction one obtains a set of
mutually orthogonal and rather well localized Wannier orbtials
(WO). In particular, the large-window 4f WOs w̃ασ

lm (r) almost
do not leak onto neighboring sites, as discussed in the previous
section, see Fig. 10(a). If one constructs as many WOs as the
number of Kohn-Sham bands within W̃ then the projection
operator P̃ (k) is just a unitary transformation, hence, Eq. (F1)
can be inverted∣∣φk

ν

〉 ≈
∑
ασ lm

[
P̃ ασ

lmν(k)
]∗∣∣w̃ασ

lm (k)
〉
, (F3)

where the equality is approximate because high-energy empty
bands usually cross and, hence, one cannot generally chose
such a window as to have the same number of bands for all
k points. However, those high-energy states are far from the
relevant region close to the Fermi level, and if one applies
Eq. (F3) to the bands within a small window W around the the

FIG. 10. NdFe12Li 4f Wannier orbital m = 0 constructed with
a large window [−20,20] eV (left) and a small window [−2,2] eV
(right). The use of a large window essentially removes all hybridiza-
tion between the rare-earth and neighboring atoms.

FIG. 11. Absolute value of the CFP A0
2〈r2〉 as a function of

window size ωwin for NdFe12, NdFe12N, NdFe12Li, and SmCo5.

Fermi energy the resulting small nonunitarity of P (k) can be
neglected.

Alternatively, one may construct 4f Wannier orbitals from
the bands within that small window W enclosing mainly 4f -
like Kohn-Sham bands:∣∣wσ

m(k)
〉 =

∑
ν∈W

P σ
mν(k)

∣∣φk
ν

〉
, (F4)

where 4f WOs are constructed for the single rare-earth site in
the unit cell for the compounds under consideration. Hence,
the site and l labels are suppressed in |wσ

m(k)〉. The resulting
small-window WOs are rather extended in real space, as one
sees in Figs. 5 and 10(b).

Inserting the expansion Eq. (F3) of the KS states |φk
ν 〉 into

Eq. (F4) one obtains∣∣wσ
m(k)

〉 =
∑
ν∈W

∑
lm′σ ′

P σ
mν(k)

[
P̃ ασ ′

lm′ν(k)
]∗∣∣w̃ασ ′

lm′ (k)
〉

=
∑

ασ ′lm′
U

σ,ασ ′
m,lm′ (k)

∣∣w̃ασ ′
lm′ (k)

〉
, (F5)

where

U
σ,ασ ′
m,l′m′(k) =

∑
ν∈W

P σ
mν(k)

[
P̃ ασ ′

lm′ν(k)
]∗

. (F6)

We use these projectors U
σ,ασ ′
m,l′m′(k) to project the 4f

spectral function computed in the small-window WO basis
on large-window localized WOs representing other states
(Fe 3d, N 2p, Li 2s, and so on). Namely, having obtained
the real-axis lattice Green’s function in the small-window
Wannier basis for the orbital (σm) of the 4f shell Gmσ (k,ω +
iδ), as well as the corresponding partial spectral function
ρmσ (ω) = − 1

π
ImGmσ (k,ω + iδ), we compute the different

orbital contributions into it as follows:

ρ̃mσ
αl (ω) = − 1

π
Im

∑
k

∑
m′σ ′

[
U

σ,ασ ′
m,lm′ (k)

]∗

×Gmσ (k,ω + iδ)Uσ,ασ ′
m,lm′ (k), (F7)

where ρ̃mσ
αl (ω) is the fraction of the 4f spectral function of

orbital index (σm) with the character (αl). Using Eq. (F3) and
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the orthonormality of small-window WOs:〈
wσ

m(k)
∣∣wσ ′

m′(k)
〉 = δmm′δσσ ′ =

∑
ν

[
P σ

mν(k)
]∗

P σ ′
m′ν(k),

one may easily show the completeness of the expansion (F7)∑
αl

ρ̃mσ
αl (ω) = ρmσ (ω).
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Résumé :  

Les propriétés structurelles, magnétiques et de 

conduction des matériaux sont déterminées par 

le comportement des électrons qui lient leurs 

atomes. 

Parmi les plus importantes avancées 

technologiques du 20e siècle ont eu lieu dans le 

domaine des semi-conducteurs, dans lesquels 

les électrons se comportent comment un gaz peu 

dense interagissant faiblement. Pour les 

applications technologiques à venir, en 

revanche, les oxydes sont parmi les matériaux 

les plus prometteurs. 

Dans les oxydes de métaux de transition ou de  

 

terres rares, ainsi que dans certains métaux purs 

et alliages, la répulsion entre électrons peut 

donner lieu à des propriétés exotiques et à des 

transitions de phase. 

Dans cette thèse, nous avons développé des 

méthodes partant des "premiers principes" de la 

physique pour évaluer le comportement 

d'électrons en interaction et les propriétés 

physiques qui en découlent. Nous avons 

appliqué ces outils à plusieurs matériaux dont le 

fer, le dioxyde de vanadium et les aimants 

permanents. 
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Abstract:  

The structural, spectral, magnetic, and many 

other properties of materials are mostly 

determined by the behavior of the electrons that 

glue the atoms together. 

Some of the most important technological 

advances of the 20th century were made in the 

field of semi-conductors, where electrons 

behave like a dilute gas of weakly interacting 

particles. In contrast, many of the most 

promising materials for technological 

applications today are oxides. 

In transition metal or rare earth oxides, but also 

in some pure metals or alloys, the Coulomb 

 

repulsion between the electrons can give rise to 

exotic properties and phase transitions. 

In this thesis, we developed and applied first-

principles (i.e. based on fundamental laws of 

physics) methods to evaluate the behavior of 

electrons interacting with each other and the 

physical properties stemming from it.  

We use these tools to study several materials of 

fundamental and technological interest, in 

particular iron, vanadium dioxide and hard 

magnets. 
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